1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <trace/events/ext4.h> 21 22 /* 23 * MUSTDO: 24 * - test ext4_ext_search_left() and ext4_ext_search_right() 25 * - search for metadata in few groups 26 * 27 * TODO v4: 28 * - normalization should take into account whether file is still open 29 * - discard preallocations if no free space left (policy?) 30 * - don't normalize tails 31 * - quota 32 * - reservation for superuser 33 * 34 * TODO v3: 35 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 36 * - track min/max extents in each group for better group selection 37 * - mb_mark_used() may allocate chunk right after splitting buddy 38 * - tree of groups sorted by number of free blocks 39 * - error handling 40 */ 41 42 /* 43 * The allocation request involve request for multiple number of blocks 44 * near to the goal(block) value specified. 45 * 46 * During initialization phase of the allocator we decide to use the 47 * group preallocation or inode preallocation depending on the size of 48 * the file. The size of the file could be the resulting file size we 49 * would have after allocation, or the current file size, which ever 50 * is larger. If the size is less than sbi->s_mb_stream_request we 51 * select to use the group preallocation. The default value of 52 * s_mb_stream_request is 16 blocks. This can also be tuned via 53 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 54 * terms of number of blocks. 55 * 56 * The main motivation for having small file use group preallocation is to 57 * ensure that we have small files closer together on the disk. 58 * 59 * First stage the allocator looks at the inode prealloc list, 60 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 61 * spaces for this particular inode. The inode prealloc space is 62 * represented as: 63 * 64 * pa_lstart -> the logical start block for this prealloc space 65 * pa_pstart -> the physical start block for this prealloc space 66 * pa_len -> length for this prealloc space (in clusters) 67 * pa_free -> free space available in this prealloc space (in clusters) 68 * 69 * The inode preallocation space is used looking at the _logical_ start 70 * block. If only the logical file block falls within the range of prealloc 71 * space we will consume the particular prealloc space. This makes sure that 72 * we have contiguous physical blocks representing the file blocks 73 * 74 * The important thing to be noted in case of inode prealloc space is that 75 * we don't modify the values associated to inode prealloc space except 76 * pa_free. 77 * 78 * If we are not able to find blocks in the inode prealloc space and if we 79 * have the group allocation flag set then we look at the locality group 80 * prealloc space. These are per CPU prealloc list represented as 81 * 82 * ext4_sb_info.s_locality_groups[smp_processor_id()] 83 * 84 * The reason for having a per cpu locality group is to reduce the contention 85 * between CPUs. It is possible to get scheduled at this point. 86 * 87 * The locality group prealloc space is used looking at whether we have 88 * enough free space (pa_free) within the prealloc space. 89 * 90 * If we can't allocate blocks via inode prealloc or/and locality group 91 * prealloc then we look at the buddy cache. The buddy cache is represented 92 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 93 * mapped to the buddy and bitmap information regarding different 94 * groups. The buddy information is attached to buddy cache inode so that 95 * we can access them through the page cache. The information regarding 96 * each group is loaded via ext4_mb_load_buddy. The information involve 97 * block bitmap and buddy information. The information are stored in the 98 * inode as: 99 * 100 * { page } 101 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 102 * 103 * 104 * one block each for bitmap and buddy information. So for each group we 105 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 106 * blocksize) blocks. So it can have information regarding groups_per_page 107 * which is blocks_per_page/2 108 * 109 * The buddy cache inode is not stored on disk. The inode is thrown 110 * away when the filesystem is unmounted. 111 * 112 * We look for count number of blocks in the buddy cache. If we were able 113 * to locate that many free blocks we return with additional information 114 * regarding rest of the contiguous physical block available 115 * 116 * Before allocating blocks via buddy cache we normalize the request 117 * blocks. This ensure we ask for more blocks that we needed. The extra 118 * blocks that we get after allocation is added to the respective prealloc 119 * list. In case of inode preallocation we follow a list of heuristics 120 * based on file size. This can be found in ext4_mb_normalize_request. If 121 * we are doing a group prealloc we try to normalize the request to 122 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 123 * dependent on the cluster size; for non-bigalloc file systems, it is 124 * 512 blocks. This can be tuned via 125 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 126 * terms of number of blocks. If we have mounted the file system with -O 127 * stripe=<value> option the group prealloc request is normalized to the 128 * smallest multiple of the stripe value (sbi->s_stripe) which is 129 * greater than the default mb_group_prealloc. 130 * 131 * If "mb_optimize_scan" mount option is set, we maintain in memory group info 132 * structures in two data structures: 133 * 134 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) 135 * 136 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) 137 * 138 * This is an array of lists where the index in the array represents the 139 * largest free order in the buddy bitmap of the participating group infos of 140 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total 141 * number of buddy bitmap orders possible) number of lists. Group-infos are 142 * placed in appropriate lists. 143 * 144 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size) 145 * 146 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks) 147 * 148 * This is an array of lists where in the i-th list there are groups with 149 * average fragment size >= 2^i and < 2^(i+1). The average fragment size 150 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments. 151 * Note that we don't bother with a special list for completely empty groups 152 * so we only have MB_NUM_ORDERS(sb) lists. 153 * 154 * When "mb_optimize_scan" mount option is set, mballoc consults the above data 155 * structures to decide the order in which groups are to be traversed for 156 * fulfilling an allocation request. 157 * 158 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order 159 * >= the order of the request. We directly look at the largest free order list 160 * in the data structure (1) above where largest_free_order = order of the 161 * request. If that list is empty, we look at remaining list in the increasing 162 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED 163 * lookup in O(1) time. 164 * 165 * At CR_GOAL_LEN_FAST, we only consider groups where 166 * average fragment size > request size. So, we lookup a group which has average 167 * fragment size just above or equal to request size using our average fragment 168 * size group lists (data structure 2) in O(1) time. 169 * 170 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied 171 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in 172 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg 173 * fragment size > goal length. So before falling to the slower 174 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and 175 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big 176 * enough average fragment size. This increases the chances of finding a 177 * suitable block group in O(1) time and results in faster allocation at the 178 * cost of reduced size of allocation. 179 * 180 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in 181 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and 182 * CR_GOAL_LEN_FAST phase. 183 * 184 * The regular allocator (using the buddy cache) supports a few tunables. 185 * 186 * /sys/fs/ext4/<partition>/mb_min_to_scan 187 * /sys/fs/ext4/<partition>/mb_max_to_scan 188 * /sys/fs/ext4/<partition>/mb_order2_req 189 * /sys/fs/ext4/<partition>/mb_linear_limit 190 * 191 * The regular allocator uses buddy scan only if the request len is power of 192 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 193 * value of s_mb_order2_reqs can be tuned via 194 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 195 * stripe size (sbi->s_stripe), we try to search for contiguous block in 196 * stripe size. This should result in better allocation on RAID setups. If 197 * not, we search in the specific group using bitmap for best extents. The 198 * tunable min_to_scan and max_to_scan control the behaviour here. 199 * min_to_scan indicate how long the mballoc __must__ look for a best 200 * extent and max_to_scan indicates how long the mballoc __can__ look for a 201 * best extent in the found extents. Searching for the blocks starts with 202 * the group specified as the goal value in allocation context via 203 * ac_g_ex. Each group is first checked based on the criteria whether it 204 * can be used for allocation. ext4_mb_good_group explains how the groups are 205 * checked. 206 * 207 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not 208 * get traversed linearly. That may result in subsequent allocations being not 209 * close to each other. And so, the underlying device may get filled up in a 210 * non-linear fashion. While that may not matter on non-rotational devices, for 211 * rotational devices that may result in higher seek times. "mb_linear_limit" 212 * tells mballoc how many groups mballoc should search linearly before 213 * performing consulting above data structures for more efficient lookups. For 214 * non rotational devices, this value defaults to 0 and for rotational devices 215 * this is set to MB_DEFAULT_LINEAR_LIMIT. 216 * 217 * Both the prealloc space are getting populated as above. So for the first 218 * request we will hit the buddy cache which will result in this prealloc 219 * space getting filled. The prealloc space is then later used for the 220 * subsequent request. 221 */ 222 223 /* 224 * mballoc operates on the following data: 225 * - on-disk bitmap 226 * - in-core buddy (actually includes buddy and bitmap) 227 * - preallocation descriptors (PAs) 228 * 229 * there are two types of preallocations: 230 * - inode 231 * assiged to specific inode and can be used for this inode only. 232 * it describes part of inode's space preallocated to specific 233 * physical blocks. any block from that preallocated can be used 234 * independent. the descriptor just tracks number of blocks left 235 * unused. so, before taking some block from descriptor, one must 236 * make sure corresponded logical block isn't allocated yet. this 237 * also means that freeing any block within descriptor's range 238 * must discard all preallocated blocks. 239 * - locality group 240 * assigned to specific locality group which does not translate to 241 * permanent set of inodes: inode can join and leave group. space 242 * from this type of preallocation can be used for any inode. thus 243 * it's consumed from the beginning to the end. 244 * 245 * relation between them can be expressed as: 246 * in-core buddy = on-disk bitmap + preallocation descriptors 247 * 248 * this mean blocks mballoc considers used are: 249 * - allocated blocks (persistent) 250 * - preallocated blocks (non-persistent) 251 * 252 * consistency in mballoc world means that at any time a block is either 253 * free or used in ALL structures. notice: "any time" should not be read 254 * literally -- time is discrete and delimited by locks. 255 * 256 * to keep it simple, we don't use block numbers, instead we count number of 257 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 258 * 259 * all operations can be expressed as: 260 * - init buddy: buddy = on-disk + PAs 261 * - new PA: buddy += N; PA = N 262 * - use inode PA: on-disk += N; PA -= N 263 * - discard inode PA buddy -= on-disk - PA; PA = 0 264 * - use locality group PA on-disk += N; PA -= N 265 * - discard locality group PA buddy -= PA; PA = 0 266 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 267 * is used in real operation because we can't know actual used 268 * bits from PA, only from on-disk bitmap 269 * 270 * if we follow this strict logic, then all operations above should be atomic. 271 * given some of them can block, we'd have to use something like semaphores 272 * killing performance on high-end SMP hardware. let's try to relax it using 273 * the following knowledge: 274 * 1) if buddy is referenced, it's already initialized 275 * 2) while block is used in buddy and the buddy is referenced, 276 * nobody can re-allocate that block 277 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 278 * bit set and PA claims same block, it's OK. IOW, one can set bit in 279 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 280 * block 281 * 282 * so, now we're building a concurrency table: 283 * - init buddy vs. 284 * - new PA 285 * blocks for PA are allocated in the buddy, buddy must be referenced 286 * until PA is linked to allocation group to avoid concurrent buddy init 287 * - use inode PA 288 * we need to make sure that either on-disk bitmap or PA has uptodate data 289 * given (3) we care that PA-=N operation doesn't interfere with init 290 * - discard inode PA 291 * the simplest way would be to have buddy initialized by the discard 292 * - use locality group PA 293 * again PA-=N must be serialized with init 294 * - discard locality group PA 295 * the simplest way would be to have buddy initialized by the discard 296 * - new PA vs. 297 * - use inode PA 298 * i_data_sem serializes them 299 * - discard inode PA 300 * discard process must wait until PA isn't used by another process 301 * - use locality group PA 302 * some mutex should serialize them 303 * - discard locality group PA 304 * discard process must wait until PA isn't used by another process 305 * - use inode PA 306 * - use inode PA 307 * i_data_sem or another mutex should serializes them 308 * - discard inode PA 309 * discard process must wait until PA isn't used by another process 310 * - use locality group PA 311 * nothing wrong here -- they're different PAs covering different blocks 312 * - discard locality group PA 313 * discard process must wait until PA isn't used by another process 314 * 315 * now we're ready to make few consequences: 316 * - PA is referenced and while it is no discard is possible 317 * - PA is referenced until block isn't marked in on-disk bitmap 318 * - PA changes only after on-disk bitmap 319 * - discard must not compete with init. either init is done before 320 * any discard or they're serialized somehow 321 * - buddy init as sum of on-disk bitmap and PAs is done atomically 322 * 323 * a special case when we've used PA to emptiness. no need to modify buddy 324 * in this case, but we should care about concurrent init 325 * 326 */ 327 328 /* 329 * Logic in few words: 330 * 331 * - allocation: 332 * load group 333 * find blocks 334 * mark bits in on-disk bitmap 335 * release group 336 * 337 * - use preallocation: 338 * find proper PA (per-inode or group) 339 * load group 340 * mark bits in on-disk bitmap 341 * release group 342 * release PA 343 * 344 * - free: 345 * load group 346 * mark bits in on-disk bitmap 347 * release group 348 * 349 * - discard preallocations in group: 350 * mark PAs deleted 351 * move them onto local list 352 * load on-disk bitmap 353 * load group 354 * remove PA from object (inode or locality group) 355 * mark free blocks in-core 356 * 357 * - discard inode's preallocations: 358 */ 359 360 /* 361 * Locking rules 362 * 363 * Locks: 364 * - bitlock on a group (group) 365 * - object (inode/locality) (object) 366 * - per-pa lock (pa) 367 * - cr_power2_aligned lists lock (cr_power2_aligned) 368 * - cr_goal_len_fast lists lock (cr_goal_len_fast) 369 * 370 * Paths: 371 * - new pa 372 * object 373 * group 374 * 375 * - find and use pa: 376 * pa 377 * 378 * - release consumed pa: 379 * pa 380 * group 381 * object 382 * 383 * - generate in-core bitmap: 384 * group 385 * pa 386 * 387 * - discard all for given object (inode, locality group): 388 * object 389 * pa 390 * group 391 * 392 * - discard all for given group: 393 * group 394 * pa 395 * group 396 * object 397 * 398 * - allocation path (ext4_mb_regular_allocator) 399 * group 400 * cr_power2_aligned/cr_goal_len_fast 401 */ 402 static struct kmem_cache *ext4_pspace_cachep; 403 static struct kmem_cache *ext4_ac_cachep; 404 static struct kmem_cache *ext4_free_data_cachep; 405 406 /* We create slab caches for groupinfo data structures based on the 407 * superblock block size. There will be one per mounted filesystem for 408 * each unique s_blocksize_bits */ 409 #define NR_GRPINFO_CACHES 8 410 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 411 412 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 413 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 414 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 415 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 416 }; 417 418 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 419 ext4_group_t group); 420 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 421 422 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 423 ext4_group_t group, enum criteria cr); 424 425 static int ext4_try_to_trim_range(struct super_block *sb, 426 struct ext4_buddy *e4b, ext4_grpblk_t start, 427 ext4_grpblk_t max, ext4_grpblk_t minblocks); 428 429 /* 430 * The algorithm using this percpu seq counter goes below: 431 * 1. We sample the percpu discard_pa_seq counter before trying for block 432 * allocation in ext4_mb_new_blocks(). 433 * 2. We increment this percpu discard_pa_seq counter when we either allocate 434 * or free these blocks i.e. while marking those blocks as used/free in 435 * mb_mark_used()/mb_free_blocks(). 436 * 3. We also increment this percpu seq counter when we successfully identify 437 * that the bb_prealloc_list is not empty and hence proceed for discarding 438 * of those PAs inside ext4_mb_discard_group_preallocations(). 439 * 440 * Now to make sure that the regular fast path of block allocation is not 441 * affected, as a small optimization we only sample the percpu seq counter 442 * on that cpu. Only when the block allocation fails and when freed blocks 443 * found were 0, that is when we sample percpu seq counter for all cpus using 444 * below function ext4_get_discard_pa_seq_sum(). This happens after making 445 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 446 */ 447 static DEFINE_PER_CPU(u64, discard_pa_seq); 448 static inline u64 ext4_get_discard_pa_seq_sum(void) 449 { 450 int __cpu; 451 u64 __seq = 0; 452 453 for_each_possible_cpu(__cpu) 454 __seq += per_cpu(discard_pa_seq, __cpu); 455 return __seq; 456 } 457 458 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 459 { 460 #if BITS_PER_LONG == 64 461 *bit += ((unsigned long) addr & 7UL) << 3; 462 addr = (void *) ((unsigned long) addr & ~7UL); 463 #elif BITS_PER_LONG == 32 464 *bit += ((unsigned long) addr & 3UL) << 3; 465 addr = (void *) ((unsigned long) addr & ~3UL); 466 #else 467 #error "how many bits you are?!" 468 #endif 469 return addr; 470 } 471 472 static inline int mb_test_bit(int bit, void *addr) 473 { 474 /* 475 * ext4_test_bit on architecture like powerpc 476 * needs unsigned long aligned address 477 */ 478 addr = mb_correct_addr_and_bit(&bit, addr); 479 return ext4_test_bit(bit, addr); 480 } 481 482 static inline void mb_set_bit(int bit, void *addr) 483 { 484 addr = mb_correct_addr_and_bit(&bit, addr); 485 ext4_set_bit(bit, addr); 486 } 487 488 static inline void mb_clear_bit(int bit, void *addr) 489 { 490 addr = mb_correct_addr_and_bit(&bit, addr); 491 ext4_clear_bit(bit, addr); 492 } 493 494 static inline int mb_test_and_clear_bit(int bit, void *addr) 495 { 496 addr = mb_correct_addr_and_bit(&bit, addr); 497 return ext4_test_and_clear_bit(bit, addr); 498 } 499 500 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 501 { 502 int fix = 0, ret, tmpmax; 503 addr = mb_correct_addr_and_bit(&fix, addr); 504 tmpmax = max + fix; 505 start += fix; 506 507 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 508 if (ret > max) 509 return max; 510 return ret; 511 } 512 513 static inline int mb_find_next_bit(void *addr, int max, int start) 514 { 515 int fix = 0, ret, tmpmax; 516 addr = mb_correct_addr_and_bit(&fix, addr); 517 tmpmax = max + fix; 518 start += fix; 519 520 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 521 if (ret > max) 522 return max; 523 return ret; 524 } 525 526 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 527 { 528 char *bb; 529 530 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 531 BUG_ON(max == NULL); 532 533 if (order > e4b->bd_blkbits + 1) { 534 *max = 0; 535 return NULL; 536 } 537 538 /* at order 0 we see each particular block */ 539 if (order == 0) { 540 *max = 1 << (e4b->bd_blkbits + 3); 541 return e4b->bd_bitmap; 542 } 543 544 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 545 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 546 547 return bb; 548 } 549 550 #ifdef DOUBLE_CHECK 551 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 552 int first, int count) 553 { 554 int i; 555 struct super_block *sb = e4b->bd_sb; 556 557 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 558 return; 559 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 560 for (i = 0; i < count; i++) { 561 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 562 ext4_fsblk_t blocknr; 563 564 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 565 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 566 ext4_grp_locked_error(sb, e4b->bd_group, 567 inode ? inode->i_ino : 0, 568 blocknr, 569 "freeing block already freed " 570 "(bit %u)", 571 first + i); 572 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 573 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 574 } 575 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 576 } 577 } 578 579 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 580 { 581 int i; 582 583 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 584 return; 585 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 586 for (i = 0; i < count; i++) { 587 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 588 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 589 } 590 } 591 592 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 593 { 594 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 595 return; 596 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 597 unsigned char *b1, *b2; 598 int i; 599 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 600 b2 = (unsigned char *) bitmap; 601 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 602 if (b1[i] != b2[i]) { 603 ext4_msg(e4b->bd_sb, KERN_ERR, 604 "corruption in group %u " 605 "at byte %u(%u): %x in copy != %x " 606 "on disk/prealloc", 607 e4b->bd_group, i, i * 8, b1[i], b2[i]); 608 BUG(); 609 } 610 } 611 } 612 } 613 614 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 615 struct ext4_group_info *grp, ext4_group_t group) 616 { 617 struct buffer_head *bh; 618 619 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 620 if (!grp->bb_bitmap) 621 return; 622 623 bh = ext4_read_block_bitmap(sb, group); 624 if (IS_ERR_OR_NULL(bh)) { 625 kfree(grp->bb_bitmap); 626 grp->bb_bitmap = NULL; 627 return; 628 } 629 630 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 631 put_bh(bh); 632 } 633 634 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 635 { 636 kfree(grp->bb_bitmap); 637 } 638 639 #else 640 static inline void mb_free_blocks_double(struct inode *inode, 641 struct ext4_buddy *e4b, int first, int count) 642 { 643 return; 644 } 645 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 646 int first, int count) 647 { 648 return; 649 } 650 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 651 { 652 return; 653 } 654 655 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 656 struct ext4_group_info *grp, ext4_group_t group) 657 { 658 return; 659 } 660 661 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 662 { 663 return; 664 } 665 #endif 666 667 #ifdef AGGRESSIVE_CHECK 668 669 #define MB_CHECK_ASSERT(assert) \ 670 do { \ 671 if (!(assert)) { \ 672 printk(KERN_EMERG \ 673 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 674 function, file, line, # assert); \ 675 BUG(); \ 676 } \ 677 } while (0) 678 679 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 680 const char *function, int line) 681 { 682 struct super_block *sb = e4b->bd_sb; 683 int order = e4b->bd_blkbits + 1; 684 int max; 685 int max2; 686 int i; 687 int j; 688 int k; 689 int count; 690 struct ext4_group_info *grp; 691 int fragments = 0; 692 int fstart; 693 struct list_head *cur; 694 void *buddy; 695 void *buddy2; 696 697 if (e4b->bd_info->bb_check_counter++ % 10) 698 return 0; 699 700 while (order > 1) { 701 buddy = mb_find_buddy(e4b, order, &max); 702 MB_CHECK_ASSERT(buddy); 703 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 704 MB_CHECK_ASSERT(buddy2); 705 MB_CHECK_ASSERT(buddy != buddy2); 706 MB_CHECK_ASSERT(max * 2 == max2); 707 708 count = 0; 709 for (i = 0; i < max; i++) { 710 711 if (mb_test_bit(i, buddy)) { 712 /* only single bit in buddy2 may be 0 */ 713 if (!mb_test_bit(i << 1, buddy2)) { 714 MB_CHECK_ASSERT( 715 mb_test_bit((i<<1)+1, buddy2)); 716 } 717 continue; 718 } 719 720 /* both bits in buddy2 must be 1 */ 721 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 722 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 723 724 for (j = 0; j < (1 << order); j++) { 725 k = (i * (1 << order)) + j; 726 MB_CHECK_ASSERT( 727 !mb_test_bit(k, e4b->bd_bitmap)); 728 } 729 count++; 730 } 731 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 732 order--; 733 } 734 735 fstart = -1; 736 buddy = mb_find_buddy(e4b, 0, &max); 737 for (i = 0; i < max; i++) { 738 if (!mb_test_bit(i, buddy)) { 739 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 740 if (fstart == -1) { 741 fragments++; 742 fstart = i; 743 } 744 continue; 745 } 746 fstart = -1; 747 /* check used bits only */ 748 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 749 buddy2 = mb_find_buddy(e4b, j, &max2); 750 k = i >> j; 751 MB_CHECK_ASSERT(k < max2); 752 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 753 } 754 } 755 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 756 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 757 758 grp = ext4_get_group_info(sb, e4b->bd_group); 759 if (!grp) 760 return NULL; 761 list_for_each(cur, &grp->bb_prealloc_list) { 762 ext4_group_t groupnr; 763 struct ext4_prealloc_space *pa; 764 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 765 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 766 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 767 for (i = 0; i < pa->pa_len; i++) 768 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 769 } 770 return 0; 771 } 772 #undef MB_CHECK_ASSERT 773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 774 __FILE__, __func__, __LINE__) 775 #else 776 #define mb_check_buddy(e4b) 777 #endif 778 779 /* 780 * Divide blocks started from @first with length @len into 781 * smaller chunks with power of 2 blocks. 782 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 783 * then increase bb_counters[] for corresponded chunk size. 784 */ 785 static void ext4_mb_mark_free_simple(struct super_block *sb, 786 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 787 struct ext4_group_info *grp) 788 { 789 struct ext4_sb_info *sbi = EXT4_SB(sb); 790 ext4_grpblk_t min; 791 ext4_grpblk_t max; 792 ext4_grpblk_t chunk; 793 unsigned int border; 794 795 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 796 797 border = 2 << sb->s_blocksize_bits; 798 799 while (len > 0) { 800 /* find how many blocks can be covered since this position */ 801 max = ffs(first | border) - 1; 802 803 /* find how many blocks of power 2 we need to mark */ 804 min = fls(len) - 1; 805 806 if (max < min) 807 min = max; 808 chunk = 1 << min; 809 810 /* mark multiblock chunks only */ 811 grp->bb_counters[min]++; 812 if (min > 0) 813 mb_clear_bit(first >> min, 814 buddy + sbi->s_mb_offsets[min]); 815 816 len -= chunk; 817 first += chunk; 818 } 819 } 820 821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len) 822 { 823 int order; 824 825 /* 826 * We don't bother with a special lists groups with only 1 block free 827 * extents and for completely empty groups. 828 */ 829 order = fls(len) - 2; 830 if (order < 0) 831 return 0; 832 if (order == MB_NUM_ORDERS(sb)) 833 order--; 834 if (WARN_ON_ONCE(order > MB_NUM_ORDERS(sb))) 835 order = MB_NUM_ORDERS(sb) - 1; 836 return order; 837 } 838 839 /* Move group to appropriate avg_fragment_size list */ 840 static void 841 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) 842 { 843 struct ext4_sb_info *sbi = EXT4_SB(sb); 844 int new_order; 845 846 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0) 847 return; 848 849 new_order = mb_avg_fragment_size_order(sb, 850 grp->bb_free / grp->bb_fragments); 851 if (new_order == grp->bb_avg_fragment_size_order) 852 return; 853 854 if (grp->bb_avg_fragment_size_order != -1) { 855 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 856 grp->bb_avg_fragment_size_order]); 857 list_del(&grp->bb_avg_fragment_size_node); 858 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 859 grp->bb_avg_fragment_size_order]); 860 } 861 grp->bb_avg_fragment_size_order = new_order; 862 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 863 grp->bb_avg_fragment_size_order]); 864 list_add_tail(&grp->bb_avg_fragment_size_node, 865 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]); 866 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 867 grp->bb_avg_fragment_size_order]); 868 } 869 870 /* 871 * Choose next group by traversing largest_free_order lists. Updates *new_cr if 872 * cr level needs an update. 873 */ 874 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac, 875 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 876 { 877 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 878 struct ext4_group_info *iter; 879 int i; 880 881 if (ac->ac_status == AC_STATUS_FOUND) 882 return; 883 884 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED)) 885 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions); 886 887 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 888 if (list_empty(&sbi->s_mb_largest_free_orders[i])) 889 continue; 890 read_lock(&sbi->s_mb_largest_free_orders_locks[i]); 891 if (list_empty(&sbi->s_mb_largest_free_orders[i])) { 892 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 893 continue; 894 } 895 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], 896 bb_largest_free_order_node) { 897 if (sbi->s_mb_stats) 898 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]); 899 if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) { 900 *group = iter->bb_group; 901 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED; 902 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 903 return; 904 } 905 } 906 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 907 } 908 909 /* Increment cr and search again if no group is found */ 910 *new_cr = CR_GOAL_LEN_FAST; 911 } 912 913 /* 914 * Find a suitable group of given order from the average fragments list. 915 */ 916 static struct ext4_group_info * 917 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order) 918 { 919 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 920 struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order]; 921 rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order]; 922 struct ext4_group_info *grp = NULL, *iter; 923 enum criteria cr = ac->ac_criteria; 924 925 if (list_empty(frag_list)) 926 return NULL; 927 read_lock(frag_list_lock); 928 if (list_empty(frag_list)) { 929 read_unlock(frag_list_lock); 930 return NULL; 931 } 932 list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) { 933 if (sbi->s_mb_stats) 934 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]); 935 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) { 936 grp = iter; 937 break; 938 } 939 } 940 read_unlock(frag_list_lock); 941 return grp; 942 } 943 944 /* 945 * Choose next group by traversing average fragment size list of suitable 946 * order. Updates *new_cr if cr level needs an update. 947 */ 948 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac, 949 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 950 { 951 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 952 struct ext4_group_info *grp = NULL; 953 int i; 954 955 if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) { 956 if (sbi->s_mb_stats) 957 atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions); 958 } 959 960 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len); 961 i < MB_NUM_ORDERS(ac->ac_sb); i++) { 962 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i); 963 if (grp) { 964 *group = grp->bb_group; 965 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED; 966 return; 967 } 968 } 969 970 /* 971 * CR_BEST_AVAIL_LEN works based on the concept that we have 972 * a larger normalized goal len request which can be trimmed to 973 * a smaller goal len such that it can still satisfy original 974 * request len. However, allocation request for non-regular 975 * files never gets normalized. 976 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA). 977 */ 978 if (ac->ac_flags & EXT4_MB_HINT_DATA) 979 *new_cr = CR_BEST_AVAIL_LEN; 980 else 981 *new_cr = CR_GOAL_LEN_SLOW; 982 } 983 984 /* 985 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment 986 * order we have and proactively trim the goal request length to that order to 987 * find a suitable group faster. 988 * 989 * This optimizes allocation speed at the cost of slightly reduced 990 * preallocations. However, we make sure that we don't trim the request too 991 * much and fall to CR_GOAL_LEN_SLOW in that case. 992 */ 993 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac, 994 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 995 { 996 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 997 struct ext4_group_info *grp = NULL; 998 int i, order, min_order; 999 unsigned long num_stripe_clusters = 0; 1000 1001 if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) { 1002 if (sbi->s_mb_stats) 1003 atomic_inc(&sbi->s_bal_best_avail_bad_suggestions); 1004 } 1005 1006 /* 1007 * mb_avg_fragment_size_order() returns order in a way that makes 1008 * retrieving back the length using (1 << order) inaccurate. Hence, use 1009 * fls() instead since we need to know the actual length while modifying 1010 * goal length. 1011 */ 1012 order = fls(ac->ac_g_ex.fe_len) - 1; 1013 if (WARN_ON_ONCE(order - 1 > MB_NUM_ORDERS(ac->ac_sb))) 1014 order = MB_NUM_ORDERS(ac->ac_sb); 1015 min_order = order - sbi->s_mb_best_avail_max_trim_order; 1016 if (min_order < 0) 1017 min_order = 0; 1018 1019 if (sbi->s_stripe > 0) { 1020 /* 1021 * We are assuming that stripe size is always a multiple of 1022 * cluster ratio otherwise __ext4_fill_super exists early. 1023 */ 1024 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe); 1025 if (1 << min_order < num_stripe_clusters) 1026 /* 1027 * We consider 1 order less because later we round 1028 * up the goal len to num_stripe_clusters 1029 */ 1030 min_order = fls(num_stripe_clusters) - 1; 1031 } 1032 1033 if (1 << min_order < ac->ac_o_ex.fe_len) 1034 min_order = fls(ac->ac_o_ex.fe_len); 1035 1036 for (i = order; i >= min_order; i--) { 1037 int frag_order; 1038 /* 1039 * Scale down goal len to make sure we find something 1040 * in the free fragments list. Basically, reduce 1041 * preallocations. 1042 */ 1043 ac->ac_g_ex.fe_len = 1 << i; 1044 1045 if (num_stripe_clusters > 0) { 1046 /* 1047 * Try to round up the adjusted goal length to 1048 * stripe size (in cluster units) multiple for 1049 * efficiency. 1050 */ 1051 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len, 1052 num_stripe_clusters); 1053 } 1054 1055 frag_order = mb_avg_fragment_size_order(ac->ac_sb, 1056 ac->ac_g_ex.fe_len); 1057 1058 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order); 1059 if (grp) { 1060 *group = grp->bb_group; 1061 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED; 1062 return; 1063 } 1064 } 1065 1066 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */ 1067 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 1068 *new_cr = CR_GOAL_LEN_SLOW; 1069 } 1070 1071 static inline int should_optimize_scan(struct ext4_allocation_context *ac) 1072 { 1073 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) 1074 return 0; 1075 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW) 1076 return 0; 1077 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) 1078 return 0; 1079 return 1; 1080 } 1081 1082 /* 1083 * Return next linear group for allocation. If linear traversal should not be 1084 * performed, this function just returns the same group 1085 */ 1086 static ext4_group_t 1087 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group, 1088 ext4_group_t ngroups) 1089 { 1090 if (!should_optimize_scan(ac)) 1091 goto inc_and_return; 1092 1093 if (ac->ac_groups_linear_remaining) { 1094 ac->ac_groups_linear_remaining--; 1095 goto inc_and_return; 1096 } 1097 1098 return group; 1099 inc_and_return: 1100 /* 1101 * Artificially restricted ngroups for non-extent 1102 * files makes group > ngroups possible on first loop. 1103 */ 1104 return group + 1 >= ngroups ? 0 : group + 1; 1105 } 1106 1107 /* 1108 * ext4_mb_choose_next_group: choose next group for allocation. 1109 * 1110 * @ac Allocation Context 1111 * @new_cr This is an output parameter. If the there is no good group 1112 * available at current CR level, this field is updated to indicate 1113 * the new cr level that should be used. 1114 * @group This is an input / output parameter. As an input it indicates the 1115 * next group that the allocator intends to use for allocation. As 1116 * output, this field indicates the next group that should be used as 1117 * determined by the optimization functions. 1118 * @ngroups Total number of groups 1119 */ 1120 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, 1121 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 1122 { 1123 *new_cr = ac->ac_criteria; 1124 1125 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) { 1126 *group = next_linear_group(ac, *group, ngroups); 1127 return; 1128 } 1129 1130 if (*new_cr == CR_POWER2_ALIGNED) { 1131 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups); 1132 } else if (*new_cr == CR_GOAL_LEN_FAST) { 1133 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups); 1134 } else if (*new_cr == CR_BEST_AVAIL_LEN) { 1135 ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups); 1136 } else { 1137 /* 1138 * TODO: For CR=2, we can arrange groups in an rb tree sorted by 1139 * bb_free. But until that happens, we should never come here. 1140 */ 1141 WARN_ON(1); 1142 } 1143 } 1144 1145 /* 1146 * Cache the order of the largest free extent we have available in this block 1147 * group. 1148 */ 1149 static void 1150 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 1151 { 1152 struct ext4_sb_info *sbi = EXT4_SB(sb); 1153 int i; 1154 1155 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) 1156 if (grp->bb_counters[i] > 0) 1157 break; 1158 /* No need to move between order lists? */ 1159 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || 1160 i == grp->bb_largest_free_order) { 1161 grp->bb_largest_free_order = i; 1162 return; 1163 } 1164 1165 if (grp->bb_largest_free_order >= 0) { 1166 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1167 grp->bb_largest_free_order]); 1168 list_del_init(&grp->bb_largest_free_order_node); 1169 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1170 grp->bb_largest_free_order]); 1171 } 1172 grp->bb_largest_free_order = i; 1173 if (grp->bb_largest_free_order >= 0 && grp->bb_free) { 1174 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1175 grp->bb_largest_free_order]); 1176 list_add_tail(&grp->bb_largest_free_order_node, 1177 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); 1178 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1179 grp->bb_largest_free_order]); 1180 } 1181 } 1182 1183 static noinline_for_stack 1184 void ext4_mb_generate_buddy(struct super_block *sb, 1185 void *buddy, void *bitmap, ext4_group_t group, 1186 struct ext4_group_info *grp) 1187 { 1188 struct ext4_sb_info *sbi = EXT4_SB(sb); 1189 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 1190 ext4_grpblk_t i = 0; 1191 ext4_grpblk_t first; 1192 ext4_grpblk_t len; 1193 unsigned free = 0; 1194 unsigned fragments = 0; 1195 unsigned long long period = get_cycles(); 1196 1197 /* initialize buddy from bitmap which is aggregation 1198 * of on-disk bitmap and preallocations */ 1199 i = mb_find_next_zero_bit(bitmap, max, 0); 1200 grp->bb_first_free = i; 1201 while (i < max) { 1202 fragments++; 1203 first = i; 1204 i = mb_find_next_bit(bitmap, max, i); 1205 len = i - first; 1206 free += len; 1207 if (len > 1) 1208 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 1209 else 1210 grp->bb_counters[0]++; 1211 if (i < max) 1212 i = mb_find_next_zero_bit(bitmap, max, i); 1213 } 1214 grp->bb_fragments = fragments; 1215 1216 if (free != grp->bb_free) { 1217 ext4_grp_locked_error(sb, group, 0, 0, 1218 "block bitmap and bg descriptor " 1219 "inconsistent: %u vs %u free clusters", 1220 free, grp->bb_free); 1221 /* 1222 * If we intend to continue, we consider group descriptor 1223 * corrupt and update bb_free using bitmap value 1224 */ 1225 grp->bb_free = free; 1226 ext4_mark_group_bitmap_corrupted(sb, group, 1227 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1228 } 1229 mb_set_largest_free_order(sb, grp); 1230 mb_update_avg_fragment_size(sb, grp); 1231 1232 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 1233 1234 period = get_cycles() - period; 1235 atomic_inc(&sbi->s_mb_buddies_generated); 1236 atomic64_add(period, &sbi->s_mb_generation_time); 1237 } 1238 1239 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 1240 { 1241 int count; 1242 int order = 1; 1243 void *buddy; 1244 1245 while ((buddy = mb_find_buddy(e4b, order++, &count))) 1246 mb_set_bits(buddy, 0, count); 1247 1248 e4b->bd_info->bb_fragments = 0; 1249 memset(e4b->bd_info->bb_counters, 0, 1250 sizeof(*e4b->bd_info->bb_counters) * 1251 (e4b->bd_sb->s_blocksize_bits + 2)); 1252 1253 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 1254 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info); 1255 } 1256 1257 /* The buddy information is attached the buddy cache inode 1258 * for convenience. The information regarding each group 1259 * is loaded via ext4_mb_load_buddy. The information involve 1260 * block bitmap and buddy information. The information are 1261 * stored in the inode as 1262 * 1263 * { page } 1264 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 1265 * 1266 * 1267 * one block each for bitmap and buddy information. 1268 * So for each group we take up 2 blocks. A page can 1269 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 1270 * So it can have information regarding groups_per_page which 1271 * is blocks_per_page/2 1272 * 1273 * Locking note: This routine takes the block group lock of all groups 1274 * for this page; do not hold this lock when calling this routine! 1275 */ 1276 1277 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 1278 { 1279 ext4_group_t ngroups; 1280 unsigned int blocksize; 1281 int blocks_per_page; 1282 int groups_per_page; 1283 int err = 0; 1284 int i; 1285 ext4_group_t first_group, group; 1286 int first_block; 1287 struct super_block *sb; 1288 struct buffer_head *bhs; 1289 struct buffer_head **bh = NULL; 1290 struct inode *inode; 1291 char *data; 1292 char *bitmap; 1293 struct ext4_group_info *grinfo; 1294 1295 inode = page->mapping->host; 1296 sb = inode->i_sb; 1297 ngroups = ext4_get_groups_count(sb); 1298 blocksize = i_blocksize(inode); 1299 blocks_per_page = PAGE_SIZE / blocksize; 1300 1301 mb_debug(sb, "init page %lu\n", page->index); 1302 1303 groups_per_page = blocks_per_page >> 1; 1304 if (groups_per_page == 0) 1305 groups_per_page = 1; 1306 1307 /* allocate buffer_heads to read bitmaps */ 1308 if (groups_per_page > 1) { 1309 i = sizeof(struct buffer_head *) * groups_per_page; 1310 bh = kzalloc(i, gfp); 1311 if (bh == NULL) 1312 return -ENOMEM; 1313 } else 1314 bh = &bhs; 1315 1316 first_group = page->index * blocks_per_page / 2; 1317 1318 /* read all groups the page covers into the cache */ 1319 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1320 if (group >= ngroups) 1321 break; 1322 1323 grinfo = ext4_get_group_info(sb, group); 1324 if (!grinfo) 1325 continue; 1326 /* 1327 * If page is uptodate then we came here after online resize 1328 * which added some new uninitialized group info structs, so 1329 * we must skip all initialized uptodate buddies on the page, 1330 * which may be currently in use by an allocating task. 1331 */ 1332 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 1333 bh[i] = NULL; 1334 continue; 1335 } 1336 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 1337 if (IS_ERR(bh[i])) { 1338 err = PTR_ERR(bh[i]); 1339 bh[i] = NULL; 1340 goto out; 1341 } 1342 mb_debug(sb, "read bitmap for group %u\n", group); 1343 } 1344 1345 /* wait for I/O completion */ 1346 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1347 int err2; 1348 1349 if (!bh[i]) 1350 continue; 1351 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 1352 if (!err) 1353 err = err2; 1354 } 1355 1356 first_block = page->index * blocks_per_page; 1357 for (i = 0; i < blocks_per_page; i++) { 1358 group = (first_block + i) >> 1; 1359 if (group >= ngroups) 1360 break; 1361 1362 if (!bh[group - first_group]) 1363 /* skip initialized uptodate buddy */ 1364 continue; 1365 1366 if (!buffer_verified(bh[group - first_group])) 1367 /* Skip faulty bitmaps */ 1368 continue; 1369 err = 0; 1370 1371 /* 1372 * data carry information regarding this 1373 * particular group in the format specified 1374 * above 1375 * 1376 */ 1377 data = page_address(page) + (i * blocksize); 1378 bitmap = bh[group - first_group]->b_data; 1379 1380 /* 1381 * We place the buddy block and bitmap block 1382 * close together 1383 */ 1384 grinfo = ext4_get_group_info(sb, group); 1385 if (!grinfo) { 1386 err = -EFSCORRUPTED; 1387 goto out; 1388 } 1389 if ((first_block + i) & 1) { 1390 /* this is block of buddy */ 1391 BUG_ON(incore == NULL); 1392 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 1393 group, page->index, i * blocksize); 1394 trace_ext4_mb_buddy_bitmap_load(sb, group); 1395 grinfo->bb_fragments = 0; 1396 memset(grinfo->bb_counters, 0, 1397 sizeof(*grinfo->bb_counters) * 1398 (MB_NUM_ORDERS(sb))); 1399 /* 1400 * incore got set to the group block bitmap below 1401 */ 1402 ext4_lock_group(sb, group); 1403 /* init the buddy */ 1404 memset(data, 0xff, blocksize); 1405 ext4_mb_generate_buddy(sb, data, incore, group, grinfo); 1406 ext4_unlock_group(sb, group); 1407 incore = NULL; 1408 } else { 1409 /* this is block of bitmap */ 1410 BUG_ON(incore != NULL); 1411 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 1412 group, page->index, i * blocksize); 1413 trace_ext4_mb_bitmap_load(sb, group); 1414 1415 /* see comments in ext4_mb_put_pa() */ 1416 ext4_lock_group(sb, group); 1417 memcpy(data, bitmap, blocksize); 1418 1419 /* mark all preallocated blks used in in-core bitmap */ 1420 ext4_mb_generate_from_pa(sb, data, group); 1421 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root)); 1422 ext4_unlock_group(sb, group); 1423 1424 /* set incore so that the buddy information can be 1425 * generated using this 1426 */ 1427 incore = data; 1428 } 1429 } 1430 SetPageUptodate(page); 1431 1432 out: 1433 if (bh) { 1434 for (i = 0; i < groups_per_page; i++) 1435 brelse(bh[i]); 1436 if (bh != &bhs) 1437 kfree(bh); 1438 } 1439 return err; 1440 } 1441 1442 /* 1443 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1444 * on the same buddy page doesn't happen whild holding the buddy page lock. 1445 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1446 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1447 */ 1448 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1449 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1450 { 1451 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1452 int block, pnum, poff; 1453 int blocks_per_page; 1454 struct page *page; 1455 1456 e4b->bd_buddy_page = NULL; 1457 e4b->bd_bitmap_page = NULL; 1458 1459 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1460 /* 1461 * the buddy cache inode stores the block bitmap 1462 * and buddy information in consecutive blocks. 1463 * So for each group we need two blocks. 1464 */ 1465 block = group * 2; 1466 pnum = block / blocks_per_page; 1467 poff = block % blocks_per_page; 1468 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1469 if (!page) 1470 return -ENOMEM; 1471 BUG_ON(page->mapping != inode->i_mapping); 1472 e4b->bd_bitmap_page = page; 1473 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1474 1475 if (blocks_per_page >= 2) { 1476 /* buddy and bitmap are on the same page */ 1477 return 0; 1478 } 1479 1480 block++; 1481 pnum = block / blocks_per_page; 1482 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1483 if (!page) 1484 return -ENOMEM; 1485 BUG_ON(page->mapping != inode->i_mapping); 1486 e4b->bd_buddy_page = page; 1487 return 0; 1488 } 1489 1490 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1491 { 1492 if (e4b->bd_bitmap_page) { 1493 unlock_page(e4b->bd_bitmap_page); 1494 put_page(e4b->bd_bitmap_page); 1495 } 1496 if (e4b->bd_buddy_page) { 1497 unlock_page(e4b->bd_buddy_page); 1498 put_page(e4b->bd_buddy_page); 1499 } 1500 } 1501 1502 /* 1503 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1504 * block group lock of all groups for this page; do not hold the BG lock when 1505 * calling this routine! 1506 */ 1507 static noinline_for_stack 1508 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1509 { 1510 1511 struct ext4_group_info *this_grp; 1512 struct ext4_buddy e4b; 1513 struct page *page; 1514 int ret = 0; 1515 1516 might_sleep(); 1517 mb_debug(sb, "init group %u\n", group); 1518 this_grp = ext4_get_group_info(sb, group); 1519 if (!this_grp) 1520 return -EFSCORRUPTED; 1521 1522 /* 1523 * This ensures that we don't reinit the buddy cache 1524 * page which map to the group from which we are already 1525 * allocating. If we are looking at the buddy cache we would 1526 * have taken a reference using ext4_mb_load_buddy and that 1527 * would have pinned buddy page to page cache. 1528 * The call to ext4_mb_get_buddy_page_lock will mark the 1529 * page accessed. 1530 */ 1531 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1532 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1533 /* 1534 * somebody initialized the group 1535 * return without doing anything 1536 */ 1537 goto err; 1538 } 1539 1540 page = e4b.bd_bitmap_page; 1541 ret = ext4_mb_init_cache(page, NULL, gfp); 1542 if (ret) 1543 goto err; 1544 if (!PageUptodate(page)) { 1545 ret = -EIO; 1546 goto err; 1547 } 1548 1549 if (e4b.bd_buddy_page == NULL) { 1550 /* 1551 * If both the bitmap and buddy are in 1552 * the same page we don't need to force 1553 * init the buddy 1554 */ 1555 ret = 0; 1556 goto err; 1557 } 1558 /* init buddy cache */ 1559 page = e4b.bd_buddy_page; 1560 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1561 if (ret) 1562 goto err; 1563 if (!PageUptodate(page)) { 1564 ret = -EIO; 1565 goto err; 1566 } 1567 err: 1568 ext4_mb_put_buddy_page_lock(&e4b); 1569 return ret; 1570 } 1571 1572 /* 1573 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1574 * block group lock of all groups for this page; do not hold the BG lock when 1575 * calling this routine! 1576 */ 1577 static noinline_for_stack int 1578 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1579 struct ext4_buddy *e4b, gfp_t gfp) 1580 { 1581 int blocks_per_page; 1582 int block; 1583 int pnum; 1584 int poff; 1585 struct page *page; 1586 int ret; 1587 struct ext4_group_info *grp; 1588 struct ext4_sb_info *sbi = EXT4_SB(sb); 1589 struct inode *inode = sbi->s_buddy_cache; 1590 1591 might_sleep(); 1592 mb_debug(sb, "load group %u\n", group); 1593 1594 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1595 grp = ext4_get_group_info(sb, group); 1596 if (!grp) 1597 return -EFSCORRUPTED; 1598 1599 e4b->bd_blkbits = sb->s_blocksize_bits; 1600 e4b->bd_info = grp; 1601 e4b->bd_sb = sb; 1602 e4b->bd_group = group; 1603 e4b->bd_buddy_page = NULL; 1604 e4b->bd_bitmap_page = NULL; 1605 1606 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1607 /* 1608 * we need full data about the group 1609 * to make a good selection 1610 */ 1611 ret = ext4_mb_init_group(sb, group, gfp); 1612 if (ret) 1613 return ret; 1614 } 1615 1616 /* 1617 * the buddy cache inode stores the block bitmap 1618 * and buddy information in consecutive blocks. 1619 * So for each group we need two blocks. 1620 */ 1621 block = group * 2; 1622 pnum = block / blocks_per_page; 1623 poff = block % blocks_per_page; 1624 1625 /* we could use find_or_create_page(), but it locks page 1626 * what we'd like to avoid in fast path ... */ 1627 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1628 if (page == NULL || !PageUptodate(page)) { 1629 if (page) 1630 /* 1631 * drop the page reference and try 1632 * to get the page with lock. If we 1633 * are not uptodate that implies 1634 * somebody just created the page but 1635 * is yet to initialize the same. So 1636 * wait for it to initialize. 1637 */ 1638 put_page(page); 1639 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1640 if (page) { 1641 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1642 "ext4: bitmap's paging->mapping != inode->i_mapping\n")) { 1643 /* should never happen */ 1644 unlock_page(page); 1645 ret = -EINVAL; 1646 goto err; 1647 } 1648 if (!PageUptodate(page)) { 1649 ret = ext4_mb_init_cache(page, NULL, gfp); 1650 if (ret) { 1651 unlock_page(page); 1652 goto err; 1653 } 1654 mb_cmp_bitmaps(e4b, page_address(page) + 1655 (poff * sb->s_blocksize)); 1656 } 1657 unlock_page(page); 1658 } 1659 } 1660 if (page == NULL) { 1661 ret = -ENOMEM; 1662 goto err; 1663 } 1664 if (!PageUptodate(page)) { 1665 ret = -EIO; 1666 goto err; 1667 } 1668 1669 /* Pages marked accessed already */ 1670 e4b->bd_bitmap_page = page; 1671 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1672 1673 block++; 1674 pnum = block / blocks_per_page; 1675 poff = block % blocks_per_page; 1676 1677 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1678 if (page == NULL || !PageUptodate(page)) { 1679 if (page) 1680 put_page(page); 1681 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1682 if (page) { 1683 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1684 "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) { 1685 /* should never happen */ 1686 unlock_page(page); 1687 ret = -EINVAL; 1688 goto err; 1689 } 1690 if (!PageUptodate(page)) { 1691 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1692 gfp); 1693 if (ret) { 1694 unlock_page(page); 1695 goto err; 1696 } 1697 } 1698 unlock_page(page); 1699 } 1700 } 1701 if (page == NULL) { 1702 ret = -ENOMEM; 1703 goto err; 1704 } 1705 if (!PageUptodate(page)) { 1706 ret = -EIO; 1707 goto err; 1708 } 1709 1710 /* Pages marked accessed already */ 1711 e4b->bd_buddy_page = page; 1712 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1713 1714 return 0; 1715 1716 err: 1717 if (page) 1718 put_page(page); 1719 if (e4b->bd_bitmap_page) 1720 put_page(e4b->bd_bitmap_page); 1721 1722 e4b->bd_buddy = NULL; 1723 e4b->bd_bitmap = NULL; 1724 return ret; 1725 } 1726 1727 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1728 struct ext4_buddy *e4b) 1729 { 1730 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1731 } 1732 1733 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1734 { 1735 if (e4b->bd_bitmap_page) 1736 put_page(e4b->bd_bitmap_page); 1737 if (e4b->bd_buddy_page) 1738 put_page(e4b->bd_buddy_page); 1739 } 1740 1741 1742 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1743 { 1744 int order = 1, max; 1745 void *bb; 1746 1747 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1748 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1749 1750 while (order <= e4b->bd_blkbits + 1) { 1751 bb = mb_find_buddy(e4b, order, &max); 1752 if (!mb_test_bit(block >> order, bb)) { 1753 /* this block is part of buddy of order 'order' */ 1754 return order; 1755 } 1756 order++; 1757 } 1758 return 0; 1759 } 1760 1761 static void mb_clear_bits(void *bm, int cur, int len) 1762 { 1763 __u32 *addr; 1764 1765 len = cur + len; 1766 while (cur < len) { 1767 if ((cur & 31) == 0 && (len - cur) >= 32) { 1768 /* fast path: clear whole word at once */ 1769 addr = bm + (cur >> 3); 1770 *addr = 0; 1771 cur += 32; 1772 continue; 1773 } 1774 mb_clear_bit(cur, bm); 1775 cur++; 1776 } 1777 } 1778 1779 /* clear bits in given range 1780 * will return first found zero bit if any, -1 otherwise 1781 */ 1782 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1783 { 1784 __u32 *addr; 1785 int zero_bit = -1; 1786 1787 len = cur + len; 1788 while (cur < len) { 1789 if ((cur & 31) == 0 && (len - cur) >= 32) { 1790 /* fast path: clear whole word at once */ 1791 addr = bm + (cur >> 3); 1792 if (*addr != (__u32)(-1) && zero_bit == -1) 1793 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1794 *addr = 0; 1795 cur += 32; 1796 continue; 1797 } 1798 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1799 zero_bit = cur; 1800 cur++; 1801 } 1802 1803 return zero_bit; 1804 } 1805 1806 void mb_set_bits(void *bm, int cur, int len) 1807 { 1808 __u32 *addr; 1809 1810 len = cur + len; 1811 while (cur < len) { 1812 if ((cur & 31) == 0 && (len - cur) >= 32) { 1813 /* fast path: set whole word at once */ 1814 addr = bm + (cur >> 3); 1815 *addr = 0xffffffff; 1816 cur += 32; 1817 continue; 1818 } 1819 mb_set_bit(cur, bm); 1820 cur++; 1821 } 1822 } 1823 1824 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1825 { 1826 if (mb_test_bit(*bit + side, bitmap)) { 1827 mb_clear_bit(*bit, bitmap); 1828 (*bit) -= side; 1829 return 1; 1830 } 1831 else { 1832 (*bit) += side; 1833 mb_set_bit(*bit, bitmap); 1834 return -1; 1835 } 1836 } 1837 1838 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1839 { 1840 int max; 1841 int order = 1; 1842 void *buddy = mb_find_buddy(e4b, order, &max); 1843 1844 while (buddy) { 1845 void *buddy2; 1846 1847 /* Bits in range [first; last] are known to be set since 1848 * corresponding blocks were allocated. Bits in range 1849 * (first; last) will stay set because they form buddies on 1850 * upper layer. We just deal with borders if they don't 1851 * align with upper layer and then go up. 1852 * Releasing entire group is all about clearing 1853 * single bit of highest order buddy. 1854 */ 1855 1856 /* Example: 1857 * --------------------------------- 1858 * | 1 | 1 | 1 | 1 | 1859 * --------------------------------- 1860 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1861 * --------------------------------- 1862 * 0 1 2 3 4 5 6 7 1863 * \_____________________/ 1864 * 1865 * Neither [1] nor [6] is aligned to above layer. 1866 * Left neighbour [0] is free, so mark it busy, 1867 * decrease bb_counters and extend range to 1868 * [0; 6] 1869 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1870 * mark [6] free, increase bb_counters and shrink range to 1871 * [0; 5]. 1872 * Then shift range to [0; 2], go up and do the same. 1873 */ 1874 1875 1876 if (first & 1) 1877 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1878 if (!(last & 1)) 1879 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1880 if (first > last) 1881 break; 1882 order++; 1883 1884 buddy2 = mb_find_buddy(e4b, order, &max); 1885 if (!buddy2) { 1886 mb_clear_bits(buddy, first, last - first + 1); 1887 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1888 break; 1889 } 1890 first >>= 1; 1891 last >>= 1; 1892 buddy = buddy2; 1893 } 1894 } 1895 1896 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1897 int first, int count) 1898 { 1899 int left_is_free = 0; 1900 int right_is_free = 0; 1901 int block; 1902 int last = first + count - 1; 1903 struct super_block *sb = e4b->bd_sb; 1904 1905 if (WARN_ON(count == 0)) 1906 return; 1907 BUG_ON(last >= (sb->s_blocksize << 3)); 1908 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1909 /* Don't bother if the block group is corrupt. */ 1910 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1911 return; 1912 1913 mb_check_buddy(e4b); 1914 mb_free_blocks_double(inode, e4b, first, count); 1915 1916 /* access memory sequentially: check left neighbour, 1917 * clear range and then check right neighbour 1918 */ 1919 if (first != 0) 1920 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1921 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1922 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1923 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1924 1925 if (unlikely(block != -1)) { 1926 struct ext4_sb_info *sbi = EXT4_SB(sb); 1927 ext4_fsblk_t blocknr; 1928 1929 /* 1930 * Fastcommit replay can free already freed blocks which 1931 * corrupts allocation info. Regenerate it. 1932 */ 1933 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 1934 mb_regenerate_buddy(e4b); 1935 goto check; 1936 } 1937 1938 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1939 blocknr += EXT4_C2B(sbi, block); 1940 ext4_grp_locked_error(sb, e4b->bd_group, 1941 inode ? inode->i_ino : 0, blocknr, 1942 "freeing already freed block (bit %u); block bitmap corrupt.", 1943 block); 1944 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1945 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1946 return; 1947 } 1948 1949 this_cpu_inc(discard_pa_seq); 1950 e4b->bd_info->bb_free += count; 1951 if (first < e4b->bd_info->bb_first_free) 1952 e4b->bd_info->bb_first_free = first; 1953 1954 /* let's maintain fragments counter */ 1955 if (left_is_free && right_is_free) 1956 e4b->bd_info->bb_fragments--; 1957 else if (!left_is_free && !right_is_free) 1958 e4b->bd_info->bb_fragments++; 1959 1960 /* buddy[0] == bd_bitmap is a special case, so handle 1961 * it right away and let mb_buddy_mark_free stay free of 1962 * zero order checks. 1963 * Check if neighbours are to be coaleasced, 1964 * adjust bitmap bb_counters and borders appropriately. 1965 */ 1966 if (first & 1) { 1967 first += !left_is_free; 1968 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1969 } 1970 if (!(last & 1)) { 1971 last -= !right_is_free; 1972 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1973 } 1974 1975 if (first <= last) 1976 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1977 1978 mb_set_largest_free_order(sb, e4b->bd_info); 1979 mb_update_avg_fragment_size(sb, e4b->bd_info); 1980 check: 1981 mb_check_buddy(e4b); 1982 } 1983 1984 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1985 int needed, struct ext4_free_extent *ex) 1986 { 1987 int next = block; 1988 int max, order; 1989 void *buddy; 1990 1991 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1992 BUG_ON(ex == NULL); 1993 1994 buddy = mb_find_buddy(e4b, 0, &max); 1995 BUG_ON(buddy == NULL); 1996 BUG_ON(block >= max); 1997 if (mb_test_bit(block, buddy)) { 1998 ex->fe_len = 0; 1999 ex->fe_start = 0; 2000 ex->fe_group = 0; 2001 return 0; 2002 } 2003 2004 /* find actual order */ 2005 order = mb_find_order_for_block(e4b, block); 2006 block = block >> order; 2007 2008 ex->fe_len = 1 << order; 2009 ex->fe_start = block << order; 2010 ex->fe_group = e4b->bd_group; 2011 2012 /* calc difference from given start */ 2013 next = next - ex->fe_start; 2014 ex->fe_len -= next; 2015 ex->fe_start += next; 2016 2017 while (needed > ex->fe_len && 2018 mb_find_buddy(e4b, order, &max)) { 2019 2020 if (block + 1 >= max) 2021 break; 2022 2023 next = (block + 1) * (1 << order); 2024 if (mb_test_bit(next, e4b->bd_bitmap)) 2025 break; 2026 2027 order = mb_find_order_for_block(e4b, next); 2028 2029 block = next >> order; 2030 ex->fe_len += 1 << order; 2031 } 2032 2033 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 2034 /* Should never happen! (but apparently sometimes does?!?) */ 2035 WARN_ON(1); 2036 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, 2037 "corruption or bug in mb_find_extent " 2038 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 2039 block, order, needed, ex->fe_group, ex->fe_start, 2040 ex->fe_len, ex->fe_logical); 2041 ex->fe_len = 0; 2042 ex->fe_start = 0; 2043 ex->fe_group = 0; 2044 } 2045 return ex->fe_len; 2046 } 2047 2048 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 2049 { 2050 int ord; 2051 int mlen = 0; 2052 int max = 0; 2053 int cur; 2054 int start = ex->fe_start; 2055 int len = ex->fe_len; 2056 unsigned ret = 0; 2057 int len0 = len; 2058 void *buddy; 2059 bool split = false; 2060 2061 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 2062 BUG_ON(e4b->bd_group != ex->fe_group); 2063 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 2064 mb_check_buddy(e4b); 2065 mb_mark_used_double(e4b, start, len); 2066 2067 this_cpu_inc(discard_pa_seq); 2068 e4b->bd_info->bb_free -= len; 2069 if (e4b->bd_info->bb_first_free == start) 2070 e4b->bd_info->bb_first_free += len; 2071 2072 /* let's maintain fragments counter */ 2073 if (start != 0) 2074 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 2075 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 2076 max = !mb_test_bit(start + len, e4b->bd_bitmap); 2077 if (mlen && max) 2078 e4b->bd_info->bb_fragments++; 2079 else if (!mlen && !max) 2080 e4b->bd_info->bb_fragments--; 2081 2082 /* let's maintain buddy itself */ 2083 while (len) { 2084 if (!split) 2085 ord = mb_find_order_for_block(e4b, start); 2086 2087 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 2088 /* the whole chunk may be allocated at once! */ 2089 mlen = 1 << ord; 2090 if (!split) 2091 buddy = mb_find_buddy(e4b, ord, &max); 2092 else 2093 split = false; 2094 BUG_ON((start >> ord) >= max); 2095 mb_set_bit(start >> ord, buddy); 2096 e4b->bd_info->bb_counters[ord]--; 2097 start += mlen; 2098 len -= mlen; 2099 BUG_ON(len < 0); 2100 continue; 2101 } 2102 2103 /* store for history */ 2104 if (ret == 0) 2105 ret = len | (ord << 16); 2106 2107 /* we have to split large buddy */ 2108 BUG_ON(ord <= 0); 2109 buddy = mb_find_buddy(e4b, ord, &max); 2110 mb_set_bit(start >> ord, buddy); 2111 e4b->bd_info->bb_counters[ord]--; 2112 2113 ord--; 2114 cur = (start >> ord) & ~1U; 2115 buddy = mb_find_buddy(e4b, ord, &max); 2116 mb_clear_bit(cur, buddy); 2117 mb_clear_bit(cur + 1, buddy); 2118 e4b->bd_info->bb_counters[ord]++; 2119 e4b->bd_info->bb_counters[ord]++; 2120 split = true; 2121 } 2122 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 2123 2124 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); 2125 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 2126 mb_check_buddy(e4b); 2127 2128 return ret; 2129 } 2130 2131 /* 2132 * Must be called under group lock! 2133 */ 2134 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 2135 struct ext4_buddy *e4b) 2136 { 2137 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2138 int ret; 2139 2140 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 2141 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2142 2143 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 2144 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 2145 ret = mb_mark_used(e4b, &ac->ac_b_ex); 2146 2147 /* preallocation can change ac_b_ex, thus we store actually 2148 * allocated blocks for history */ 2149 ac->ac_f_ex = ac->ac_b_ex; 2150 2151 ac->ac_status = AC_STATUS_FOUND; 2152 ac->ac_tail = ret & 0xffff; 2153 ac->ac_buddy = ret >> 16; 2154 2155 /* 2156 * take the page reference. We want the page to be pinned 2157 * so that we don't get a ext4_mb_init_cache_call for this 2158 * group until we update the bitmap. That would mean we 2159 * double allocate blocks. The reference is dropped 2160 * in ext4_mb_release_context 2161 */ 2162 ac->ac_bitmap_page = e4b->bd_bitmap_page; 2163 get_page(ac->ac_bitmap_page); 2164 ac->ac_buddy_page = e4b->bd_buddy_page; 2165 get_page(ac->ac_buddy_page); 2166 /* store last allocated for subsequent stream allocation */ 2167 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2168 spin_lock(&sbi->s_md_lock); 2169 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 2170 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 2171 spin_unlock(&sbi->s_md_lock); 2172 } 2173 /* 2174 * As we've just preallocated more space than 2175 * user requested originally, we store allocated 2176 * space in a special descriptor. 2177 */ 2178 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 2179 ext4_mb_new_preallocation(ac); 2180 2181 } 2182 2183 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 2184 struct ext4_buddy *e4b, 2185 int finish_group) 2186 { 2187 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2188 struct ext4_free_extent *bex = &ac->ac_b_ex; 2189 struct ext4_free_extent *gex = &ac->ac_g_ex; 2190 2191 if (ac->ac_status == AC_STATUS_FOUND) 2192 return; 2193 /* 2194 * We don't want to scan for a whole year 2195 */ 2196 if (ac->ac_found > sbi->s_mb_max_to_scan && 2197 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2198 ac->ac_status = AC_STATUS_BREAK; 2199 return; 2200 } 2201 2202 /* 2203 * Haven't found good chunk so far, let's continue 2204 */ 2205 if (bex->fe_len < gex->fe_len) 2206 return; 2207 2208 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 2209 ext4_mb_use_best_found(ac, e4b); 2210 } 2211 2212 /* 2213 * The routine checks whether found extent is good enough. If it is, 2214 * then the extent gets marked used and flag is set to the context 2215 * to stop scanning. Otherwise, the extent is compared with the 2216 * previous found extent and if new one is better, then it's stored 2217 * in the context. Later, the best found extent will be used, if 2218 * mballoc can't find good enough extent. 2219 * 2220 * The algorithm used is roughly as follows: 2221 * 2222 * * If free extent found is exactly as big as goal, then 2223 * stop the scan and use it immediately 2224 * 2225 * * If free extent found is smaller than goal, then keep retrying 2226 * upto a max of sbi->s_mb_max_to_scan times (default 200). After 2227 * that stop scanning and use whatever we have. 2228 * 2229 * * If free extent found is bigger than goal, then keep retrying 2230 * upto a max of sbi->s_mb_min_to_scan times (default 10) before 2231 * stopping the scan and using the extent. 2232 * 2233 * 2234 * FIXME: real allocation policy is to be designed yet! 2235 */ 2236 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 2237 struct ext4_free_extent *ex, 2238 struct ext4_buddy *e4b) 2239 { 2240 struct ext4_free_extent *bex = &ac->ac_b_ex; 2241 struct ext4_free_extent *gex = &ac->ac_g_ex; 2242 2243 BUG_ON(ex->fe_len <= 0); 2244 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2245 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2246 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 2247 2248 ac->ac_found++; 2249 ac->ac_cX_found[ac->ac_criteria]++; 2250 2251 /* 2252 * The special case - take what you catch first 2253 */ 2254 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2255 *bex = *ex; 2256 ext4_mb_use_best_found(ac, e4b); 2257 return; 2258 } 2259 2260 /* 2261 * Let's check whether the chuck is good enough 2262 */ 2263 if (ex->fe_len == gex->fe_len) { 2264 *bex = *ex; 2265 ext4_mb_use_best_found(ac, e4b); 2266 return; 2267 } 2268 2269 /* 2270 * If this is first found extent, just store it in the context 2271 */ 2272 if (bex->fe_len == 0) { 2273 *bex = *ex; 2274 return; 2275 } 2276 2277 /* 2278 * If new found extent is better, store it in the context 2279 */ 2280 if (bex->fe_len < gex->fe_len) { 2281 /* if the request isn't satisfied, any found extent 2282 * larger than previous best one is better */ 2283 if (ex->fe_len > bex->fe_len) 2284 *bex = *ex; 2285 } else if (ex->fe_len > gex->fe_len) { 2286 /* if the request is satisfied, then we try to find 2287 * an extent that still satisfy the request, but is 2288 * smaller than previous one */ 2289 if (ex->fe_len < bex->fe_len) 2290 *bex = *ex; 2291 } 2292 2293 ext4_mb_check_limits(ac, e4b, 0); 2294 } 2295 2296 static noinline_for_stack 2297 void ext4_mb_try_best_found(struct ext4_allocation_context *ac, 2298 struct ext4_buddy *e4b) 2299 { 2300 struct ext4_free_extent ex = ac->ac_b_ex; 2301 ext4_group_t group = ex.fe_group; 2302 int max; 2303 int err; 2304 2305 BUG_ON(ex.fe_len <= 0); 2306 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2307 if (err) 2308 return; 2309 2310 ext4_lock_group(ac->ac_sb, group); 2311 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 2312 goto out; 2313 2314 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 2315 2316 if (max > 0) { 2317 ac->ac_b_ex = ex; 2318 ext4_mb_use_best_found(ac, e4b); 2319 } 2320 2321 out: 2322 ext4_unlock_group(ac->ac_sb, group); 2323 ext4_mb_unload_buddy(e4b); 2324 } 2325 2326 static noinline_for_stack 2327 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 2328 struct ext4_buddy *e4b) 2329 { 2330 ext4_group_t group = ac->ac_g_ex.fe_group; 2331 int max; 2332 int err; 2333 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2334 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2335 struct ext4_free_extent ex; 2336 2337 if (!grp) 2338 return -EFSCORRUPTED; 2339 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY))) 2340 return 0; 2341 if (grp->bb_free == 0) 2342 return 0; 2343 2344 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2345 if (err) 2346 return err; 2347 2348 ext4_lock_group(ac->ac_sb, group); 2349 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 2350 goto out; 2351 2352 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 2353 ac->ac_g_ex.fe_len, &ex); 2354 ex.fe_logical = 0xDEADFA11; /* debug value */ 2355 2356 if (max >= ac->ac_g_ex.fe_len && 2357 ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) { 2358 ext4_fsblk_t start; 2359 2360 start = ext4_grp_offs_to_block(ac->ac_sb, &ex); 2361 /* use do_div to get remainder (would be 64-bit modulo) */ 2362 if (do_div(start, sbi->s_stripe) == 0) { 2363 ac->ac_found++; 2364 ac->ac_b_ex = ex; 2365 ext4_mb_use_best_found(ac, e4b); 2366 } 2367 } else if (max >= ac->ac_g_ex.fe_len) { 2368 BUG_ON(ex.fe_len <= 0); 2369 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2370 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2371 ac->ac_found++; 2372 ac->ac_b_ex = ex; 2373 ext4_mb_use_best_found(ac, e4b); 2374 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 2375 /* Sometimes, caller may want to merge even small 2376 * number of blocks to an existing extent */ 2377 BUG_ON(ex.fe_len <= 0); 2378 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2379 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2380 ac->ac_found++; 2381 ac->ac_b_ex = ex; 2382 ext4_mb_use_best_found(ac, e4b); 2383 } 2384 out: 2385 ext4_unlock_group(ac->ac_sb, group); 2386 ext4_mb_unload_buddy(e4b); 2387 2388 return 0; 2389 } 2390 2391 /* 2392 * The routine scans buddy structures (not bitmap!) from given order 2393 * to max order and tries to find big enough chunk to satisfy the req 2394 */ 2395 static noinline_for_stack 2396 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 2397 struct ext4_buddy *e4b) 2398 { 2399 struct super_block *sb = ac->ac_sb; 2400 struct ext4_group_info *grp = e4b->bd_info; 2401 void *buddy; 2402 int i; 2403 int k; 2404 int max; 2405 2406 BUG_ON(ac->ac_2order <= 0); 2407 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { 2408 if (grp->bb_counters[i] == 0) 2409 continue; 2410 2411 buddy = mb_find_buddy(e4b, i, &max); 2412 if (WARN_RATELIMIT(buddy == NULL, 2413 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i)) 2414 continue; 2415 2416 k = mb_find_next_zero_bit(buddy, max, 0); 2417 if (k >= max) { 2418 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 2419 "%d free clusters of order %d. But found 0", 2420 grp->bb_counters[i], i); 2421 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 2422 e4b->bd_group, 2423 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2424 break; 2425 } 2426 ac->ac_found++; 2427 ac->ac_cX_found[ac->ac_criteria]++; 2428 2429 ac->ac_b_ex.fe_len = 1 << i; 2430 ac->ac_b_ex.fe_start = k << i; 2431 ac->ac_b_ex.fe_group = e4b->bd_group; 2432 2433 ext4_mb_use_best_found(ac, e4b); 2434 2435 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2436 2437 if (EXT4_SB(sb)->s_mb_stats) 2438 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2439 2440 break; 2441 } 2442 } 2443 2444 /* 2445 * The routine scans the group and measures all found extents. 2446 * In order to optimize scanning, caller must pass number of 2447 * free blocks in the group, so the routine can know upper limit. 2448 */ 2449 static noinline_for_stack 2450 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2451 struct ext4_buddy *e4b) 2452 { 2453 struct super_block *sb = ac->ac_sb; 2454 void *bitmap = e4b->bd_bitmap; 2455 struct ext4_free_extent ex; 2456 int i, j, freelen; 2457 int free; 2458 2459 free = e4b->bd_info->bb_free; 2460 if (WARN_ON(free <= 0)) 2461 return; 2462 2463 i = e4b->bd_info->bb_first_free; 2464 2465 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2466 i = mb_find_next_zero_bit(bitmap, 2467 EXT4_CLUSTERS_PER_GROUP(sb), i); 2468 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2469 /* 2470 * IF we have corrupt bitmap, we won't find any 2471 * free blocks even though group info says we 2472 * have free blocks 2473 */ 2474 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2475 "%d free clusters as per " 2476 "group info. But bitmap says 0", 2477 free); 2478 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2479 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2480 break; 2481 } 2482 2483 if (!ext4_mb_cr_expensive(ac->ac_criteria)) { 2484 /* 2485 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are 2486 * sure that this group will have a large enough 2487 * continuous free extent, so skip over the smaller free 2488 * extents 2489 */ 2490 j = mb_find_next_bit(bitmap, 2491 EXT4_CLUSTERS_PER_GROUP(sb), i); 2492 freelen = j - i; 2493 2494 if (freelen < ac->ac_g_ex.fe_len) { 2495 i = j; 2496 free -= freelen; 2497 continue; 2498 } 2499 } 2500 2501 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2502 if (WARN_ON(ex.fe_len <= 0)) 2503 break; 2504 if (free < ex.fe_len) { 2505 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2506 "%d free clusters as per " 2507 "group info. But got %d blocks", 2508 free, ex.fe_len); 2509 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2510 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2511 /* 2512 * The number of free blocks differs. This mostly 2513 * indicate that the bitmap is corrupt. So exit 2514 * without claiming the space. 2515 */ 2516 break; 2517 } 2518 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2519 ext4_mb_measure_extent(ac, &ex, e4b); 2520 2521 i += ex.fe_len; 2522 free -= ex.fe_len; 2523 } 2524 2525 ext4_mb_check_limits(ac, e4b, 1); 2526 } 2527 2528 /* 2529 * This is a special case for storages like raid5 2530 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2531 */ 2532 static noinline_for_stack 2533 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2534 struct ext4_buddy *e4b) 2535 { 2536 struct super_block *sb = ac->ac_sb; 2537 struct ext4_sb_info *sbi = EXT4_SB(sb); 2538 void *bitmap = e4b->bd_bitmap; 2539 struct ext4_free_extent ex; 2540 ext4_fsblk_t first_group_block; 2541 ext4_fsblk_t a; 2542 ext4_grpblk_t i, stripe; 2543 int max; 2544 2545 BUG_ON(sbi->s_stripe == 0); 2546 2547 /* find first stripe-aligned block in group */ 2548 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2549 2550 a = first_group_block + sbi->s_stripe - 1; 2551 do_div(a, sbi->s_stripe); 2552 i = (a * sbi->s_stripe) - first_group_block; 2553 2554 stripe = EXT4_B2C(sbi, sbi->s_stripe); 2555 i = EXT4_B2C(sbi, i); 2556 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2557 if (!mb_test_bit(i, bitmap)) { 2558 max = mb_find_extent(e4b, i, stripe, &ex); 2559 if (max >= stripe) { 2560 ac->ac_found++; 2561 ac->ac_cX_found[ac->ac_criteria]++; 2562 ex.fe_logical = 0xDEADF00D; /* debug value */ 2563 ac->ac_b_ex = ex; 2564 ext4_mb_use_best_found(ac, e4b); 2565 break; 2566 } 2567 } 2568 i += stripe; 2569 } 2570 } 2571 2572 /* 2573 * This is also called BEFORE we load the buddy bitmap. 2574 * Returns either 1 or 0 indicating that the group is either suitable 2575 * for the allocation or not. 2576 */ 2577 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2578 ext4_group_t group, enum criteria cr) 2579 { 2580 ext4_grpblk_t free, fragments; 2581 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2582 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2583 2584 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS); 2585 2586 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2587 return false; 2588 2589 free = grp->bb_free; 2590 if (free == 0) 2591 return false; 2592 2593 fragments = grp->bb_fragments; 2594 if (fragments == 0) 2595 return false; 2596 2597 switch (cr) { 2598 case CR_POWER2_ALIGNED: 2599 BUG_ON(ac->ac_2order == 0); 2600 2601 /* Avoid using the first bg of a flexgroup for data files */ 2602 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2603 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2604 ((group % flex_size) == 0)) 2605 return false; 2606 2607 if (free < ac->ac_g_ex.fe_len) 2608 return false; 2609 2610 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) 2611 return true; 2612 2613 if (grp->bb_largest_free_order < ac->ac_2order) 2614 return false; 2615 2616 return true; 2617 case CR_GOAL_LEN_FAST: 2618 case CR_BEST_AVAIL_LEN: 2619 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2620 return true; 2621 break; 2622 case CR_GOAL_LEN_SLOW: 2623 if (free >= ac->ac_g_ex.fe_len) 2624 return true; 2625 break; 2626 case CR_ANY_FREE: 2627 return true; 2628 default: 2629 BUG(); 2630 } 2631 2632 return false; 2633 } 2634 2635 /* 2636 * This could return negative error code if something goes wrong 2637 * during ext4_mb_init_group(). This should not be called with 2638 * ext4_lock_group() held. 2639 * 2640 * Note: because we are conditionally operating with the group lock in 2641 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this 2642 * function using __acquire and __release. This means we need to be 2643 * super careful before messing with the error path handling via "goto 2644 * out"! 2645 */ 2646 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2647 ext4_group_t group, enum criteria cr) 2648 { 2649 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2650 struct super_block *sb = ac->ac_sb; 2651 struct ext4_sb_info *sbi = EXT4_SB(sb); 2652 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2653 ext4_grpblk_t free; 2654 int ret = 0; 2655 2656 if (!grp) 2657 return -EFSCORRUPTED; 2658 if (sbi->s_mb_stats) 2659 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2660 if (should_lock) { 2661 ext4_lock_group(sb, group); 2662 __release(ext4_group_lock_ptr(sb, group)); 2663 } 2664 free = grp->bb_free; 2665 if (free == 0) 2666 goto out; 2667 /* 2668 * In all criterias except CR_ANY_FREE we try to avoid groups that 2669 * can't possibly satisfy the full goal request due to insufficient 2670 * free blocks. 2671 */ 2672 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len) 2673 goto out; 2674 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2675 goto out; 2676 if (should_lock) { 2677 __acquire(ext4_group_lock_ptr(sb, group)); 2678 ext4_unlock_group(sb, group); 2679 } 2680 2681 /* We only do this if the grp has never been initialized */ 2682 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2683 struct ext4_group_desc *gdp = 2684 ext4_get_group_desc(sb, group, NULL); 2685 int ret; 2686 2687 /* 2688 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic 2689 * search to find large good chunks almost for free. If buddy 2690 * data is not ready, then this optimization makes no sense. But 2691 * we never skip the first block group in a flex_bg, since this 2692 * gets used for metadata block allocation, and we want to make 2693 * sure we locate metadata blocks in the first block group in 2694 * the flex_bg if possible. 2695 */ 2696 if (!ext4_mb_cr_expensive(cr) && 2697 (!sbi->s_log_groups_per_flex || 2698 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2699 !(ext4_has_group_desc_csum(sb) && 2700 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2701 return 0; 2702 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2703 if (ret) 2704 return ret; 2705 } 2706 2707 if (should_lock) { 2708 ext4_lock_group(sb, group); 2709 __release(ext4_group_lock_ptr(sb, group)); 2710 } 2711 ret = ext4_mb_good_group(ac, group, cr); 2712 out: 2713 if (should_lock) { 2714 __acquire(ext4_group_lock_ptr(sb, group)); 2715 ext4_unlock_group(sb, group); 2716 } 2717 return ret; 2718 } 2719 2720 /* 2721 * Start prefetching @nr block bitmaps starting at @group. 2722 * Return the next group which needs to be prefetched. 2723 */ 2724 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2725 unsigned int nr, int *cnt) 2726 { 2727 ext4_group_t ngroups = ext4_get_groups_count(sb); 2728 struct buffer_head *bh; 2729 struct blk_plug plug; 2730 2731 blk_start_plug(&plug); 2732 while (nr-- > 0) { 2733 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2734 NULL); 2735 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2736 2737 /* 2738 * Prefetch block groups with free blocks; but don't 2739 * bother if it is marked uninitialized on disk, since 2740 * it won't require I/O to read. Also only try to 2741 * prefetch once, so we avoid getblk() call, which can 2742 * be expensive. 2743 */ 2744 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2745 EXT4_MB_GRP_NEED_INIT(grp) && 2746 ext4_free_group_clusters(sb, gdp) > 0 ) { 2747 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2748 if (bh && !IS_ERR(bh)) { 2749 if (!buffer_uptodate(bh) && cnt) 2750 (*cnt)++; 2751 brelse(bh); 2752 } 2753 } 2754 if (++group >= ngroups) 2755 group = 0; 2756 } 2757 blk_finish_plug(&plug); 2758 return group; 2759 } 2760 2761 /* 2762 * Prefetching reads the block bitmap into the buffer cache; but we 2763 * need to make sure that the buddy bitmap in the page cache has been 2764 * initialized. Note that ext4_mb_init_group() will block if the I/O 2765 * is not yet completed, or indeed if it was not initiated by 2766 * ext4_mb_prefetch did not start the I/O. 2767 * 2768 * TODO: We should actually kick off the buddy bitmap setup in a work 2769 * queue when the buffer I/O is completed, so that we don't block 2770 * waiting for the block allocation bitmap read to finish when 2771 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2772 */ 2773 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2774 unsigned int nr) 2775 { 2776 struct ext4_group_desc *gdp; 2777 struct ext4_group_info *grp; 2778 2779 while (nr-- > 0) { 2780 if (!group) 2781 group = ext4_get_groups_count(sb); 2782 group--; 2783 gdp = ext4_get_group_desc(sb, group, NULL); 2784 grp = ext4_get_group_info(sb, group); 2785 2786 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) && 2787 ext4_free_group_clusters(sb, gdp) > 0) { 2788 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2789 break; 2790 } 2791 } 2792 } 2793 2794 static noinline_for_stack int 2795 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2796 { 2797 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2798 enum criteria new_cr, cr = CR_GOAL_LEN_FAST; 2799 int err = 0, first_err = 0; 2800 unsigned int nr = 0, prefetch_ios = 0; 2801 struct ext4_sb_info *sbi; 2802 struct super_block *sb; 2803 struct ext4_buddy e4b; 2804 int lost; 2805 2806 sb = ac->ac_sb; 2807 sbi = EXT4_SB(sb); 2808 ngroups = ext4_get_groups_count(sb); 2809 /* non-extent files are limited to low blocks/groups */ 2810 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2811 ngroups = sbi->s_blockfile_groups; 2812 2813 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2814 2815 /* first, try the goal */ 2816 err = ext4_mb_find_by_goal(ac, &e4b); 2817 if (err || ac->ac_status == AC_STATUS_FOUND) 2818 goto out; 2819 2820 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2821 goto out; 2822 2823 /* 2824 * ac->ac_2order is set only if the fe_len is a power of 2 2825 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED 2826 * so that we try exact allocation using buddy. 2827 */ 2828 i = fls(ac->ac_g_ex.fe_len); 2829 ac->ac_2order = 0; 2830 /* 2831 * We search using buddy data only if the order of the request 2832 * is greater than equal to the sbi_s_mb_order2_reqs 2833 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2834 * We also support searching for power-of-two requests only for 2835 * requests upto maximum buddy size we have constructed. 2836 */ 2837 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { 2838 if (is_power_of_2(ac->ac_g_ex.fe_len)) 2839 ac->ac_2order = array_index_nospec(i - 1, 2840 MB_NUM_ORDERS(sb)); 2841 } 2842 2843 /* if stream allocation is enabled, use global goal */ 2844 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2845 /* TBD: may be hot point */ 2846 spin_lock(&sbi->s_md_lock); 2847 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2848 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2849 spin_unlock(&sbi->s_md_lock); 2850 } 2851 2852 /* 2853 * Let's just scan groups to find more-less suitable blocks We 2854 * start with CR_GOAL_LEN_FAST, unless it is power of 2 2855 * aligned, in which case let's do that faster approach first. 2856 */ 2857 if (ac->ac_2order) 2858 cr = CR_POWER2_ALIGNED; 2859 repeat: 2860 for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2861 ac->ac_criteria = cr; 2862 /* 2863 * searching for the right group start 2864 * from the goal value specified 2865 */ 2866 group = ac->ac_g_ex.fe_group; 2867 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; 2868 prefetch_grp = group; 2869 2870 for (i = 0, new_cr = cr; i < ngroups; i++, 2871 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) { 2872 int ret = 0; 2873 2874 cond_resched(); 2875 if (new_cr != cr) { 2876 cr = new_cr; 2877 goto repeat; 2878 } 2879 2880 /* 2881 * Batch reads of the block allocation bitmaps 2882 * to get multiple READs in flight; limit 2883 * prefetching at inexpensive CR, otherwise mballoc 2884 * can spend a lot of time loading imperfect groups 2885 */ 2886 if ((prefetch_grp == group) && 2887 (ext4_mb_cr_expensive(cr) || 2888 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2889 nr = sbi->s_mb_prefetch; 2890 if (ext4_has_feature_flex_bg(sb)) { 2891 nr = 1 << sbi->s_log_groups_per_flex; 2892 nr -= group & (nr - 1); 2893 nr = min(nr, sbi->s_mb_prefetch); 2894 } 2895 prefetch_grp = ext4_mb_prefetch(sb, group, 2896 nr, &prefetch_ios); 2897 } 2898 2899 /* This now checks without needing the buddy page */ 2900 ret = ext4_mb_good_group_nolock(ac, group, cr); 2901 if (ret <= 0) { 2902 if (!first_err) 2903 first_err = ret; 2904 continue; 2905 } 2906 2907 err = ext4_mb_load_buddy(sb, group, &e4b); 2908 if (err) 2909 goto out; 2910 2911 ext4_lock_group(sb, group); 2912 2913 /* 2914 * We need to check again after locking the 2915 * block group 2916 */ 2917 ret = ext4_mb_good_group(ac, group, cr); 2918 if (ret == 0) { 2919 ext4_unlock_group(sb, group); 2920 ext4_mb_unload_buddy(&e4b); 2921 continue; 2922 } 2923 2924 ac->ac_groups_scanned++; 2925 if (cr == CR_POWER2_ALIGNED) 2926 ext4_mb_simple_scan_group(ac, &e4b); 2927 else if ((cr == CR_GOAL_LEN_FAST || 2928 cr == CR_BEST_AVAIL_LEN) && 2929 sbi->s_stripe && 2930 !(ac->ac_g_ex.fe_len % 2931 EXT4_B2C(sbi, sbi->s_stripe))) 2932 ext4_mb_scan_aligned(ac, &e4b); 2933 else 2934 ext4_mb_complex_scan_group(ac, &e4b); 2935 2936 ext4_unlock_group(sb, group); 2937 ext4_mb_unload_buddy(&e4b); 2938 2939 if (ac->ac_status != AC_STATUS_CONTINUE) 2940 break; 2941 } 2942 /* Processed all groups and haven't found blocks */ 2943 if (sbi->s_mb_stats && i == ngroups) 2944 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 2945 2946 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN) 2947 /* Reset goal length to original goal length before 2948 * falling into CR_GOAL_LEN_SLOW */ 2949 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 2950 } 2951 2952 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2953 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2954 /* 2955 * We've been searching too long. Let's try to allocate 2956 * the best chunk we've found so far 2957 */ 2958 ext4_mb_try_best_found(ac, &e4b); 2959 if (ac->ac_status != AC_STATUS_FOUND) { 2960 /* 2961 * Someone more lucky has already allocated it. 2962 * The only thing we can do is just take first 2963 * found block(s) 2964 */ 2965 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2966 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2967 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2968 ac->ac_b_ex.fe_len, lost); 2969 2970 ac->ac_b_ex.fe_group = 0; 2971 ac->ac_b_ex.fe_start = 0; 2972 ac->ac_b_ex.fe_len = 0; 2973 ac->ac_status = AC_STATUS_CONTINUE; 2974 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2975 cr = CR_ANY_FREE; 2976 goto repeat; 2977 } 2978 } 2979 2980 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) 2981 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 2982 out: 2983 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2984 err = first_err; 2985 2986 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2987 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2988 ac->ac_flags, cr, err); 2989 2990 if (nr) 2991 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 2992 2993 return err; 2994 } 2995 2996 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2997 { 2998 struct super_block *sb = pde_data(file_inode(seq->file)); 2999 ext4_group_t group; 3000 3001 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 3002 return NULL; 3003 group = *pos + 1; 3004 return (void *) ((unsigned long) group); 3005 } 3006 3007 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 3008 { 3009 struct super_block *sb = pde_data(file_inode(seq->file)); 3010 ext4_group_t group; 3011 3012 ++*pos; 3013 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 3014 return NULL; 3015 group = *pos + 1; 3016 return (void *) ((unsigned long) group); 3017 } 3018 3019 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 3020 { 3021 struct super_block *sb = pde_data(file_inode(seq->file)); 3022 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 3023 int i; 3024 int err, buddy_loaded = 0; 3025 struct ext4_buddy e4b; 3026 struct ext4_group_info *grinfo; 3027 unsigned char blocksize_bits = min_t(unsigned char, 3028 sb->s_blocksize_bits, 3029 EXT4_MAX_BLOCK_LOG_SIZE); 3030 struct sg { 3031 struct ext4_group_info info; 3032 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 3033 } sg; 3034 3035 group--; 3036 if (group == 0) 3037 seq_puts(seq, "#group: free frags first [" 3038 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 3039 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 3040 3041 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 3042 sizeof(struct ext4_group_info); 3043 3044 grinfo = ext4_get_group_info(sb, group); 3045 if (!grinfo) 3046 return 0; 3047 /* Load the group info in memory only if not already loaded. */ 3048 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 3049 err = ext4_mb_load_buddy(sb, group, &e4b); 3050 if (err) { 3051 seq_printf(seq, "#%-5u: I/O error\n", group); 3052 return 0; 3053 } 3054 buddy_loaded = 1; 3055 } 3056 3057 memcpy(&sg, grinfo, i); 3058 3059 if (buddy_loaded) 3060 ext4_mb_unload_buddy(&e4b); 3061 3062 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 3063 sg.info.bb_fragments, sg.info.bb_first_free); 3064 for (i = 0; i <= 13; i++) 3065 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 3066 sg.info.bb_counters[i] : 0); 3067 seq_puts(seq, " ]"); 3068 if (EXT4_MB_GRP_BBITMAP_CORRUPT(&sg.info)) 3069 seq_puts(seq, " Block bitmap corrupted!"); 3070 seq_puts(seq, "\n"); 3071 3072 return 0; 3073 } 3074 3075 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 3076 { 3077 } 3078 3079 const struct seq_operations ext4_mb_seq_groups_ops = { 3080 .start = ext4_mb_seq_groups_start, 3081 .next = ext4_mb_seq_groups_next, 3082 .stop = ext4_mb_seq_groups_stop, 3083 .show = ext4_mb_seq_groups_show, 3084 }; 3085 3086 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 3087 { 3088 struct super_block *sb = seq->private; 3089 struct ext4_sb_info *sbi = EXT4_SB(sb); 3090 3091 seq_puts(seq, "mballoc:\n"); 3092 if (!sbi->s_mb_stats) { 3093 seq_puts(seq, "\tmb stats collection turned off.\n"); 3094 seq_puts( 3095 seq, 3096 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 3097 return 0; 3098 } 3099 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 3100 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 3101 3102 seq_printf(seq, "\tgroups_scanned: %u\n", 3103 atomic_read(&sbi->s_bal_groups_scanned)); 3104 3105 /* CR_POWER2_ALIGNED stats */ 3106 seq_puts(seq, "\tcr_p2_aligned_stats:\n"); 3107 seq_printf(seq, "\t\thits: %llu\n", 3108 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED])); 3109 seq_printf( 3110 seq, "\t\tgroups_considered: %llu\n", 3111 atomic64_read( 3112 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED])); 3113 seq_printf(seq, "\t\textents_scanned: %u\n", 3114 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED])); 3115 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3116 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED])); 3117 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3118 atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions)); 3119 3120 /* CR_GOAL_LEN_FAST stats */ 3121 seq_puts(seq, "\tcr_goal_fast_stats:\n"); 3122 seq_printf(seq, "\t\thits: %llu\n", 3123 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST])); 3124 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3125 atomic64_read( 3126 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST])); 3127 seq_printf(seq, "\t\textents_scanned: %u\n", 3128 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST])); 3129 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3130 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST])); 3131 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3132 atomic_read(&sbi->s_bal_goal_fast_bad_suggestions)); 3133 3134 /* CR_BEST_AVAIL_LEN stats */ 3135 seq_puts(seq, "\tcr_best_avail_stats:\n"); 3136 seq_printf(seq, "\t\thits: %llu\n", 3137 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN])); 3138 seq_printf( 3139 seq, "\t\tgroups_considered: %llu\n", 3140 atomic64_read( 3141 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN])); 3142 seq_printf(seq, "\t\textents_scanned: %u\n", 3143 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN])); 3144 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3145 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN])); 3146 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3147 atomic_read(&sbi->s_bal_best_avail_bad_suggestions)); 3148 3149 /* CR_GOAL_LEN_SLOW stats */ 3150 seq_puts(seq, "\tcr_goal_slow_stats:\n"); 3151 seq_printf(seq, "\t\thits: %llu\n", 3152 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW])); 3153 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3154 atomic64_read( 3155 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW])); 3156 seq_printf(seq, "\t\textents_scanned: %u\n", 3157 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW])); 3158 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3159 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW])); 3160 3161 /* CR_ANY_FREE stats */ 3162 seq_puts(seq, "\tcr_any_free_stats:\n"); 3163 seq_printf(seq, "\t\thits: %llu\n", 3164 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE])); 3165 seq_printf( 3166 seq, "\t\tgroups_considered: %llu\n", 3167 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE])); 3168 seq_printf(seq, "\t\textents_scanned: %u\n", 3169 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE])); 3170 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3171 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE])); 3172 3173 /* Aggregates */ 3174 seq_printf(seq, "\textents_scanned: %u\n", 3175 atomic_read(&sbi->s_bal_ex_scanned)); 3176 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 3177 seq_printf(seq, "\t\tlen_goal_hits: %u\n", 3178 atomic_read(&sbi->s_bal_len_goals)); 3179 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 3180 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 3181 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 3182 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 3183 atomic_read(&sbi->s_mb_buddies_generated), 3184 ext4_get_groups_count(sb)); 3185 seq_printf(seq, "\tbuddies_time_used: %llu\n", 3186 atomic64_read(&sbi->s_mb_generation_time)); 3187 seq_printf(seq, "\tpreallocated: %u\n", 3188 atomic_read(&sbi->s_mb_preallocated)); 3189 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded)); 3190 return 0; 3191 } 3192 3193 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) 3194 __acquires(&EXT4_SB(sb)->s_mb_rb_lock) 3195 { 3196 struct super_block *sb = pde_data(file_inode(seq->file)); 3197 unsigned long position; 3198 3199 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3200 return NULL; 3201 position = *pos + 1; 3202 return (void *) ((unsigned long) position); 3203 } 3204 3205 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) 3206 { 3207 struct super_block *sb = pde_data(file_inode(seq->file)); 3208 unsigned long position; 3209 3210 ++*pos; 3211 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3212 return NULL; 3213 position = *pos + 1; 3214 return (void *) ((unsigned long) position); 3215 } 3216 3217 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) 3218 { 3219 struct super_block *sb = pde_data(file_inode(seq->file)); 3220 struct ext4_sb_info *sbi = EXT4_SB(sb); 3221 unsigned long position = ((unsigned long) v); 3222 struct ext4_group_info *grp; 3223 unsigned int count; 3224 3225 position--; 3226 if (position >= MB_NUM_ORDERS(sb)) { 3227 position -= MB_NUM_ORDERS(sb); 3228 if (position == 0) 3229 seq_puts(seq, "avg_fragment_size_lists:\n"); 3230 3231 count = 0; 3232 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]); 3233 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position], 3234 bb_avg_fragment_size_node) 3235 count++; 3236 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]); 3237 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3238 (unsigned int)position, count); 3239 return 0; 3240 } 3241 3242 if (position == 0) { 3243 seq_printf(seq, "optimize_scan: %d\n", 3244 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); 3245 seq_puts(seq, "max_free_order_lists:\n"); 3246 } 3247 count = 0; 3248 read_lock(&sbi->s_mb_largest_free_orders_locks[position]); 3249 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], 3250 bb_largest_free_order_node) 3251 count++; 3252 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]); 3253 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3254 (unsigned int)position, count); 3255 3256 return 0; 3257 } 3258 3259 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) 3260 { 3261 } 3262 3263 const struct seq_operations ext4_mb_seq_structs_summary_ops = { 3264 .start = ext4_mb_seq_structs_summary_start, 3265 .next = ext4_mb_seq_structs_summary_next, 3266 .stop = ext4_mb_seq_structs_summary_stop, 3267 .show = ext4_mb_seq_structs_summary_show, 3268 }; 3269 3270 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 3271 { 3272 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3273 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 3274 3275 BUG_ON(!cachep); 3276 return cachep; 3277 } 3278 3279 /* 3280 * Allocate the top-level s_group_info array for the specified number 3281 * of groups 3282 */ 3283 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 3284 { 3285 struct ext4_sb_info *sbi = EXT4_SB(sb); 3286 unsigned size; 3287 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 3288 3289 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 3290 EXT4_DESC_PER_BLOCK_BITS(sb); 3291 if (size <= sbi->s_group_info_size) 3292 return 0; 3293 3294 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 3295 new_groupinfo = kvzalloc(size, GFP_KERNEL); 3296 if (!new_groupinfo) { 3297 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 3298 return -ENOMEM; 3299 } 3300 rcu_read_lock(); 3301 old_groupinfo = rcu_dereference(sbi->s_group_info); 3302 if (old_groupinfo) 3303 memcpy(new_groupinfo, old_groupinfo, 3304 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 3305 rcu_read_unlock(); 3306 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 3307 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 3308 if (old_groupinfo) 3309 ext4_kvfree_array_rcu(old_groupinfo); 3310 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 3311 sbi->s_group_info_size); 3312 return 0; 3313 } 3314 3315 /* Create and initialize ext4_group_info data for the given group. */ 3316 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 3317 struct ext4_group_desc *desc) 3318 { 3319 int i; 3320 int metalen = 0; 3321 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 3322 struct ext4_sb_info *sbi = EXT4_SB(sb); 3323 struct ext4_group_info **meta_group_info; 3324 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3325 3326 /* 3327 * First check if this group is the first of a reserved block. 3328 * If it's true, we have to allocate a new table of pointers 3329 * to ext4_group_info structures 3330 */ 3331 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3332 metalen = sizeof(*meta_group_info) << 3333 EXT4_DESC_PER_BLOCK_BITS(sb); 3334 meta_group_info = kmalloc(metalen, GFP_NOFS); 3335 if (meta_group_info == NULL) { 3336 ext4_msg(sb, KERN_ERR, "can't allocate mem " 3337 "for a buddy group"); 3338 return -ENOMEM; 3339 } 3340 rcu_read_lock(); 3341 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 3342 rcu_read_unlock(); 3343 } 3344 3345 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 3346 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 3347 3348 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 3349 if (meta_group_info[i] == NULL) { 3350 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 3351 goto exit_group_info; 3352 } 3353 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 3354 &(meta_group_info[i]->bb_state)); 3355 3356 /* 3357 * initialize bb_free to be able to skip 3358 * empty groups without initialization 3359 */ 3360 if (ext4_has_group_desc_csum(sb) && 3361 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3362 meta_group_info[i]->bb_free = 3363 ext4_free_clusters_after_init(sb, group, desc); 3364 } else { 3365 meta_group_info[i]->bb_free = 3366 ext4_free_group_clusters(sb, desc); 3367 } 3368 3369 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 3370 init_rwsem(&meta_group_info[i]->alloc_sem); 3371 meta_group_info[i]->bb_free_root = RB_ROOT; 3372 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); 3373 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node); 3374 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 3375 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */ 3376 meta_group_info[i]->bb_group = group; 3377 3378 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 3379 return 0; 3380 3381 exit_group_info: 3382 /* If a meta_group_info table has been allocated, release it now */ 3383 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3384 struct ext4_group_info ***group_info; 3385 3386 rcu_read_lock(); 3387 group_info = rcu_dereference(sbi->s_group_info); 3388 kfree(group_info[idx]); 3389 group_info[idx] = NULL; 3390 rcu_read_unlock(); 3391 } 3392 return -ENOMEM; 3393 } /* ext4_mb_add_groupinfo */ 3394 3395 static int ext4_mb_init_backend(struct super_block *sb) 3396 { 3397 ext4_group_t ngroups = ext4_get_groups_count(sb); 3398 ext4_group_t i; 3399 struct ext4_sb_info *sbi = EXT4_SB(sb); 3400 int err; 3401 struct ext4_group_desc *desc; 3402 struct ext4_group_info ***group_info; 3403 struct kmem_cache *cachep; 3404 3405 err = ext4_mb_alloc_groupinfo(sb, ngroups); 3406 if (err) 3407 return err; 3408 3409 sbi->s_buddy_cache = new_inode(sb); 3410 if (sbi->s_buddy_cache == NULL) { 3411 ext4_msg(sb, KERN_ERR, "can't get new inode"); 3412 goto err_freesgi; 3413 } 3414 /* To avoid potentially colliding with an valid on-disk inode number, 3415 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 3416 * not in the inode hash, so it should never be found by iget(), but 3417 * this will avoid confusion if it ever shows up during debugging. */ 3418 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 3419 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 3420 for (i = 0; i < ngroups; i++) { 3421 cond_resched(); 3422 desc = ext4_get_group_desc(sb, i, NULL); 3423 if (desc == NULL) { 3424 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 3425 goto err_freebuddy; 3426 } 3427 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 3428 goto err_freebuddy; 3429 } 3430 3431 if (ext4_has_feature_flex_bg(sb)) { 3432 /* a single flex group is supposed to be read by a single IO. 3433 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 3434 * unsigned integer, so the maximum shift is 32. 3435 */ 3436 if (sbi->s_es->s_log_groups_per_flex >= 32) { 3437 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 3438 goto err_freebuddy; 3439 } 3440 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 3441 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 3442 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 3443 } else { 3444 sbi->s_mb_prefetch = 32; 3445 } 3446 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 3447 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 3448 /* now many real IOs to prefetch within a single allocation at cr=0 3449 * given cr=0 is an CPU-related optimization we shouldn't try to 3450 * load too many groups, at some point we should start to use what 3451 * we've got in memory. 3452 * with an average random access time 5ms, it'd take a second to get 3453 * 200 groups (* N with flex_bg), so let's make this limit 4 3454 */ 3455 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 3456 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 3457 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 3458 3459 return 0; 3460 3461 err_freebuddy: 3462 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3463 while (i-- > 0) { 3464 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3465 3466 if (grp) 3467 kmem_cache_free(cachep, grp); 3468 } 3469 i = sbi->s_group_info_size; 3470 rcu_read_lock(); 3471 group_info = rcu_dereference(sbi->s_group_info); 3472 while (i-- > 0) 3473 kfree(group_info[i]); 3474 rcu_read_unlock(); 3475 iput(sbi->s_buddy_cache); 3476 err_freesgi: 3477 rcu_read_lock(); 3478 kvfree(rcu_dereference(sbi->s_group_info)); 3479 rcu_read_unlock(); 3480 return -ENOMEM; 3481 } 3482 3483 static void ext4_groupinfo_destroy_slabs(void) 3484 { 3485 int i; 3486 3487 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 3488 kmem_cache_destroy(ext4_groupinfo_caches[i]); 3489 ext4_groupinfo_caches[i] = NULL; 3490 } 3491 } 3492 3493 static int ext4_groupinfo_create_slab(size_t size) 3494 { 3495 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 3496 int slab_size; 3497 int blocksize_bits = order_base_2(size); 3498 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3499 struct kmem_cache *cachep; 3500 3501 if (cache_index >= NR_GRPINFO_CACHES) 3502 return -EINVAL; 3503 3504 if (unlikely(cache_index < 0)) 3505 cache_index = 0; 3506 3507 mutex_lock(&ext4_grpinfo_slab_create_mutex); 3508 if (ext4_groupinfo_caches[cache_index]) { 3509 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3510 return 0; /* Already created */ 3511 } 3512 3513 slab_size = offsetof(struct ext4_group_info, 3514 bb_counters[blocksize_bits + 2]); 3515 3516 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 3517 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 3518 NULL); 3519 3520 ext4_groupinfo_caches[cache_index] = cachep; 3521 3522 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3523 if (!cachep) { 3524 printk(KERN_EMERG 3525 "EXT4-fs: no memory for groupinfo slab cache\n"); 3526 return -ENOMEM; 3527 } 3528 3529 return 0; 3530 } 3531 3532 static void ext4_discard_work(struct work_struct *work) 3533 { 3534 struct ext4_sb_info *sbi = container_of(work, 3535 struct ext4_sb_info, s_discard_work); 3536 struct super_block *sb = sbi->s_sb; 3537 struct ext4_free_data *fd, *nfd; 3538 struct ext4_buddy e4b; 3539 LIST_HEAD(discard_list); 3540 ext4_group_t grp, load_grp; 3541 int err = 0; 3542 3543 spin_lock(&sbi->s_md_lock); 3544 list_splice_init(&sbi->s_discard_list, &discard_list); 3545 spin_unlock(&sbi->s_md_lock); 3546 3547 load_grp = UINT_MAX; 3548 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { 3549 /* 3550 * If filesystem is umounting or no memory or suffering 3551 * from no space, give up the discard 3552 */ 3553 if ((sb->s_flags & SB_ACTIVE) && !err && 3554 !atomic_read(&sbi->s_retry_alloc_pending)) { 3555 grp = fd->efd_group; 3556 if (grp != load_grp) { 3557 if (load_grp != UINT_MAX) 3558 ext4_mb_unload_buddy(&e4b); 3559 3560 err = ext4_mb_load_buddy(sb, grp, &e4b); 3561 if (err) { 3562 kmem_cache_free(ext4_free_data_cachep, fd); 3563 load_grp = UINT_MAX; 3564 continue; 3565 } else { 3566 load_grp = grp; 3567 } 3568 } 3569 3570 ext4_lock_group(sb, grp); 3571 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster, 3572 fd->efd_start_cluster + fd->efd_count - 1, 1); 3573 ext4_unlock_group(sb, grp); 3574 } 3575 kmem_cache_free(ext4_free_data_cachep, fd); 3576 } 3577 3578 if (load_grp != UINT_MAX) 3579 ext4_mb_unload_buddy(&e4b); 3580 } 3581 3582 int ext4_mb_init(struct super_block *sb) 3583 { 3584 struct ext4_sb_info *sbi = EXT4_SB(sb); 3585 unsigned i, j; 3586 unsigned offset, offset_incr; 3587 unsigned max; 3588 int ret; 3589 3590 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); 3591 3592 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 3593 if (sbi->s_mb_offsets == NULL) { 3594 ret = -ENOMEM; 3595 goto out; 3596 } 3597 3598 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); 3599 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 3600 if (sbi->s_mb_maxs == NULL) { 3601 ret = -ENOMEM; 3602 goto out; 3603 } 3604 3605 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 3606 if (ret < 0) 3607 goto out; 3608 3609 /* order 0 is regular bitmap */ 3610 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 3611 sbi->s_mb_offsets[0] = 0; 3612 3613 i = 1; 3614 offset = 0; 3615 offset_incr = 1 << (sb->s_blocksize_bits - 1); 3616 max = sb->s_blocksize << 2; 3617 do { 3618 sbi->s_mb_offsets[i] = offset; 3619 sbi->s_mb_maxs[i] = max; 3620 offset += offset_incr; 3621 offset_incr = offset_incr >> 1; 3622 max = max >> 1; 3623 i++; 3624 } while (i < MB_NUM_ORDERS(sb)); 3625 3626 sbi->s_mb_avg_fragment_size = 3627 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3628 GFP_KERNEL); 3629 if (!sbi->s_mb_avg_fragment_size) { 3630 ret = -ENOMEM; 3631 goto out; 3632 } 3633 sbi->s_mb_avg_fragment_size_locks = 3634 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3635 GFP_KERNEL); 3636 if (!sbi->s_mb_avg_fragment_size_locks) { 3637 ret = -ENOMEM; 3638 goto out; 3639 } 3640 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3641 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]); 3642 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]); 3643 } 3644 sbi->s_mb_largest_free_orders = 3645 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3646 GFP_KERNEL); 3647 if (!sbi->s_mb_largest_free_orders) { 3648 ret = -ENOMEM; 3649 goto out; 3650 } 3651 sbi->s_mb_largest_free_orders_locks = 3652 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3653 GFP_KERNEL); 3654 if (!sbi->s_mb_largest_free_orders_locks) { 3655 ret = -ENOMEM; 3656 goto out; 3657 } 3658 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3659 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); 3660 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); 3661 } 3662 3663 spin_lock_init(&sbi->s_md_lock); 3664 sbi->s_mb_free_pending = 0; 3665 INIT_LIST_HEAD(&sbi->s_freed_data_list); 3666 INIT_LIST_HEAD(&sbi->s_discard_list); 3667 INIT_WORK(&sbi->s_discard_work, ext4_discard_work); 3668 atomic_set(&sbi->s_retry_alloc_pending, 0); 3669 3670 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 3671 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 3672 sbi->s_mb_stats = MB_DEFAULT_STATS; 3673 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 3674 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 3675 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER; 3676 3677 /* 3678 * The default group preallocation is 512, which for 4k block 3679 * sizes translates to 2 megabytes. However for bigalloc file 3680 * systems, this is probably too big (i.e, if the cluster size 3681 * is 1 megabyte, then group preallocation size becomes half a 3682 * gigabyte!). As a default, we will keep a two megabyte 3683 * group pralloc size for cluster sizes up to 64k, and after 3684 * that, we will force a minimum group preallocation size of 3685 * 32 clusters. This translates to 8 megs when the cluster 3686 * size is 256k, and 32 megs when the cluster size is 1 meg, 3687 * which seems reasonable as a default. 3688 */ 3689 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 3690 sbi->s_cluster_bits, 32); 3691 /* 3692 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 3693 * to the lowest multiple of s_stripe which is bigger than 3694 * the s_mb_group_prealloc as determined above. We want 3695 * the preallocation size to be an exact multiple of the 3696 * RAID stripe size so that preallocations don't fragment 3697 * the stripes. 3698 */ 3699 if (sbi->s_stripe > 1) { 3700 sbi->s_mb_group_prealloc = roundup( 3701 sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe)); 3702 } 3703 3704 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3705 if (sbi->s_locality_groups == NULL) { 3706 ret = -ENOMEM; 3707 goto out; 3708 } 3709 for_each_possible_cpu(i) { 3710 struct ext4_locality_group *lg; 3711 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3712 mutex_init(&lg->lg_mutex); 3713 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3714 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3715 spin_lock_init(&lg->lg_prealloc_lock); 3716 } 3717 3718 if (bdev_nonrot(sb->s_bdev)) 3719 sbi->s_mb_max_linear_groups = 0; 3720 else 3721 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; 3722 /* init file for buddy data */ 3723 ret = ext4_mb_init_backend(sb); 3724 if (ret != 0) 3725 goto out_free_locality_groups; 3726 3727 return 0; 3728 3729 out_free_locality_groups: 3730 free_percpu(sbi->s_locality_groups); 3731 sbi->s_locality_groups = NULL; 3732 out: 3733 kfree(sbi->s_mb_avg_fragment_size); 3734 kfree(sbi->s_mb_avg_fragment_size_locks); 3735 kfree(sbi->s_mb_largest_free_orders); 3736 kfree(sbi->s_mb_largest_free_orders_locks); 3737 kfree(sbi->s_mb_offsets); 3738 sbi->s_mb_offsets = NULL; 3739 kfree(sbi->s_mb_maxs); 3740 sbi->s_mb_maxs = NULL; 3741 return ret; 3742 } 3743 3744 /* need to called with the ext4 group lock held */ 3745 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3746 { 3747 struct ext4_prealloc_space *pa; 3748 struct list_head *cur, *tmp; 3749 int count = 0; 3750 3751 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3752 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3753 list_del(&pa->pa_group_list); 3754 count++; 3755 kmem_cache_free(ext4_pspace_cachep, pa); 3756 } 3757 return count; 3758 } 3759 3760 int ext4_mb_release(struct super_block *sb) 3761 { 3762 ext4_group_t ngroups = ext4_get_groups_count(sb); 3763 ext4_group_t i; 3764 int num_meta_group_infos; 3765 struct ext4_group_info *grinfo, ***group_info; 3766 struct ext4_sb_info *sbi = EXT4_SB(sb); 3767 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3768 int count; 3769 3770 if (test_opt(sb, DISCARD)) { 3771 /* 3772 * wait the discard work to drain all of ext4_free_data 3773 */ 3774 flush_work(&sbi->s_discard_work); 3775 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); 3776 } 3777 3778 if (sbi->s_group_info) { 3779 for (i = 0; i < ngroups; i++) { 3780 cond_resched(); 3781 grinfo = ext4_get_group_info(sb, i); 3782 if (!grinfo) 3783 continue; 3784 mb_group_bb_bitmap_free(grinfo); 3785 ext4_lock_group(sb, i); 3786 count = ext4_mb_cleanup_pa(grinfo); 3787 if (count) 3788 mb_debug(sb, "mballoc: %d PAs left\n", 3789 count); 3790 ext4_unlock_group(sb, i); 3791 kmem_cache_free(cachep, grinfo); 3792 } 3793 num_meta_group_infos = (ngroups + 3794 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3795 EXT4_DESC_PER_BLOCK_BITS(sb); 3796 rcu_read_lock(); 3797 group_info = rcu_dereference(sbi->s_group_info); 3798 for (i = 0; i < num_meta_group_infos; i++) 3799 kfree(group_info[i]); 3800 kvfree(group_info); 3801 rcu_read_unlock(); 3802 } 3803 kfree(sbi->s_mb_avg_fragment_size); 3804 kfree(sbi->s_mb_avg_fragment_size_locks); 3805 kfree(sbi->s_mb_largest_free_orders); 3806 kfree(sbi->s_mb_largest_free_orders_locks); 3807 kfree(sbi->s_mb_offsets); 3808 kfree(sbi->s_mb_maxs); 3809 iput(sbi->s_buddy_cache); 3810 if (sbi->s_mb_stats) { 3811 ext4_msg(sb, KERN_INFO, 3812 "mballoc: %u blocks %u reqs (%u success)", 3813 atomic_read(&sbi->s_bal_allocated), 3814 atomic_read(&sbi->s_bal_reqs), 3815 atomic_read(&sbi->s_bal_success)); 3816 ext4_msg(sb, KERN_INFO, 3817 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3818 "%u 2^N hits, %u breaks, %u lost", 3819 atomic_read(&sbi->s_bal_ex_scanned), 3820 atomic_read(&sbi->s_bal_groups_scanned), 3821 atomic_read(&sbi->s_bal_goals), 3822 atomic_read(&sbi->s_bal_2orders), 3823 atomic_read(&sbi->s_bal_breaks), 3824 atomic_read(&sbi->s_mb_lost_chunks)); 3825 ext4_msg(sb, KERN_INFO, 3826 "mballoc: %u generated and it took %llu", 3827 atomic_read(&sbi->s_mb_buddies_generated), 3828 atomic64_read(&sbi->s_mb_generation_time)); 3829 ext4_msg(sb, KERN_INFO, 3830 "mballoc: %u preallocated, %u discarded", 3831 atomic_read(&sbi->s_mb_preallocated), 3832 atomic_read(&sbi->s_mb_discarded)); 3833 } 3834 3835 free_percpu(sbi->s_locality_groups); 3836 3837 return 0; 3838 } 3839 3840 static inline int ext4_issue_discard(struct super_block *sb, 3841 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 3842 struct bio **biop) 3843 { 3844 ext4_fsblk_t discard_block; 3845 3846 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3847 ext4_group_first_block_no(sb, block_group)); 3848 count = EXT4_C2B(EXT4_SB(sb), count); 3849 trace_ext4_discard_blocks(sb, 3850 (unsigned long long) discard_block, count); 3851 if (biop) { 3852 return __blkdev_issue_discard(sb->s_bdev, 3853 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 3854 (sector_t)count << (sb->s_blocksize_bits - 9), 3855 GFP_NOFS, biop); 3856 } else 3857 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3858 } 3859 3860 static void ext4_free_data_in_buddy(struct super_block *sb, 3861 struct ext4_free_data *entry) 3862 { 3863 struct ext4_buddy e4b; 3864 struct ext4_group_info *db; 3865 int err, count = 0; 3866 3867 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3868 entry->efd_count, entry->efd_group, entry); 3869 3870 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3871 /* we expect to find existing buddy because it's pinned */ 3872 BUG_ON(err != 0); 3873 3874 spin_lock(&EXT4_SB(sb)->s_md_lock); 3875 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3876 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3877 3878 db = e4b.bd_info; 3879 /* there are blocks to put in buddy to make them really free */ 3880 count += entry->efd_count; 3881 ext4_lock_group(sb, entry->efd_group); 3882 /* Take it out of per group rb tree */ 3883 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3884 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3885 3886 /* 3887 * Clear the trimmed flag for the group so that the next 3888 * ext4_trim_fs can trim it. 3889 */ 3890 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3891 3892 if (!db->bb_free_root.rb_node) { 3893 /* No more items in the per group rb tree 3894 * balance refcounts from ext4_mb_free_metadata() 3895 */ 3896 put_page(e4b.bd_buddy_page); 3897 put_page(e4b.bd_bitmap_page); 3898 } 3899 ext4_unlock_group(sb, entry->efd_group); 3900 ext4_mb_unload_buddy(&e4b); 3901 3902 mb_debug(sb, "freed %d blocks in 1 structures\n", count); 3903 } 3904 3905 /* 3906 * This function is called by the jbd2 layer once the commit has finished, 3907 * so we know we can free the blocks that were released with that commit. 3908 */ 3909 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3910 { 3911 struct ext4_sb_info *sbi = EXT4_SB(sb); 3912 struct ext4_free_data *entry, *tmp; 3913 LIST_HEAD(freed_data_list); 3914 struct list_head *cut_pos = NULL; 3915 bool wake; 3916 3917 spin_lock(&sbi->s_md_lock); 3918 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 3919 if (entry->efd_tid != commit_tid) 3920 break; 3921 cut_pos = &entry->efd_list; 3922 } 3923 if (cut_pos) 3924 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 3925 cut_pos); 3926 spin_unlock(&sbi->s_md_lock); 3927 3928 list_for_each_entry(entry, &freed_data_list, efd_list) 3929 ext4_free_data_in_buddy(sb, entry); 3930 3931 if (test_opt(sb, DISCARD)) { 3932 spin_lock(&sbi->s_md_lock); 3933 wake = list_empty(&sbi->s_discard_list); 3934 list_splice_tail(&freed_data_list, &sbi->s_discard_list); 3935 spin_unlock(&sbi->s_md_lock); 3936 if (wake) 3937 queue_work(system_unbound_wq, &sbi->s_discard_work); 3938 } else { 3939 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3940 kmem_cache_free(ext4_free_data_cachep, entry); 3941 } 3942 } 3943 3944 int __init ext4_init_mballoc(void) 3945 { 3946 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3947 SLAB_RECLAIM_ACCOUNT); 3948 if (ext4_pspace_cachep == NULL) 3949 goto out; 3950 3951 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3952 SLAB_RECLAIM_ACCOUNT); 3953 if (ext4_ac_cachep == NULL) 3954 goto out_pa_free; 3955 3956 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3957 SLAB_RECLAIM_ACCOUNT); 3958 if (ext4_free_data_cachep == NULL) 3959 goto out_ac_free; 3960 3961 return 0; 3962 3963 out_ac_free: 3964 kmem_cache_destroy(ext4_ac_cachep); 3965 out_pa_free: 3966 kmem_cache_destroy(ext4_pspace_cachep); 3967 out: 3968 return -ENOMEM; 3969 } 3970 3971 void ext4_exit_mballoc(void) 3972 { 3973 /* 3974 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3975 * before destroying the slab cache. 3976 */ 3977 rcu_barrier(); 3978 kmem_cache_destroy(ext4_pspace_cachep); 3979 kmem_cache_destroy(ext4_ac_cachep); 3980 kmem_cache_destroy(ext4_free_data_cachep); 3981 ext4_groupinfo_destroy_slabs(); 3982 } 3983 3984 3985 /* 3986 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 3987 * Returns 0 if success or error code 3988 */ 3989 static noinline_for_stack int 3990 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 3991 handle_t *handle, unsigned int reserv_clstrs) 3992 { 3993 struct buffer_head *bitmap_bh = NULL; 3994 struct ext4_group_desc *gdp; 3995 struct buffer_head *gdp_bh; 3996 struct ext4_sb_info *sbi; 3997 struct super_block *sb; 3998 ext4_fsblk_t block; 3999 int err, len; 4000 4001 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4002 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4003 4004 sb = ac->ac_sb; 4005 sbi = EXT4_SB(sb); 4006 4007 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 4008 if (IS_ERR(bitmap_bh)) { 4009 return PTR_ERR(bitmap_bh); 4010 } 4011 4012 BUFFER_TRACE(bitmap_bh, "getting write access"); 4013 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 4014 EXT4_JTR_NONE); 4015 if (err) 4016 goto out_err; 4017 4018 err = -EIO; 4019 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 4020 if (!gdp) 4021 goto out_err; 4022 4023 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 4024 ext4_free_group_clusters(sb, gdp)); 4025 4026 BUFFER_TRACE(gdp_bh, "get_write_access"); 4027 err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE); 4028 if (err) 4029 goto out_err; 4030 4031 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4032 4033 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4034 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 4035 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 4036 "fs metadata", block, block+len); 4037 /* File system mounted not to panic on error 4038 * Fix the bitmap and return EFSCORRUPTED 4039 * We leak some of the blocks here. 4040 */ 4041 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 4042 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 4043 ac->ac_b_ex.fe_len); 4044 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 4045 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4046 if (!err) 4047 err = -EFSCORRUPTED; 4048 goto out_err; 4049 } 4050 4051 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 4052 #ifdef AGGRESSIVE_CHECK 4053 { 4054 int i; 4055 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 4056 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 4057 bitmap_bh->b_data)); 4058 } 4059 } 4060 #endif 4061 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 4062 ac->ac_b_ex.fe_len); 4063 if (ext4_has_group_desc_csum(sb) && 4064 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4065 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4066 ext4_free_group_clusters_set(sb, gdp, 4067 ext4_free_clusters_after_init(sb, 4068 ac->ac_b_ex.fe_group, gdp)); 4069 } 4070 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 4071 ext4_free_group_clusters_set(sb, gdp, len); 4072 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4073 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 4074 4075 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 4076 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 4077 /* 4078 * Now reduce the dirty block count also. Should not go negative 4079 */ 4080 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 4081 /* release all the reserved blocks if non delalloc */ 4082 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4083 reserv_clstrs); 4084 4085 if (sbi->s_log_groups_per_flex) { 4086 ext4_group_t flex_group = ext4_flex_group(sbi, 4087 ac->ac_b_ex.fe_group); 4088 atomic64_sub(ac->ac_b_ex.fe_len, 4089 &sbi_array_rcu_deref(sbi, s_flex_groups, 4090 flex_group)->free_clusters); 4091 } 4092 4093 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4094 if (err) 4095 goto out_err; 4096 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 4097 4098 out_err: 4099 brelse(bitmap_bh); 4100 return err; 4101 } 4102 4103 /* 4104 * Idempotent helper for Ext4 fast commit replay path to set the state of 4105 * blocks in bitmaps and update counters. 4106 */ 4107 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 4108 int len, int state) 4109 { 4110 struct buffer_head *bitmap_bh = NULL; 4111 struct ext4_group_desc *gdp; 4112 struct buffer_head *gdp_bh; 4113 struct ext4_sb_info *sbi = EXT4_SB(sb); 4114 ext4_group_t group; 4115 ext4_grpblk_t blkoff; 4116 int i, err = 0; 4117 int already; 4118 unsigned int clen, clen_changed, thisgrp_len; 4119 4120 while (len > 0) { 4121 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 4122 4123 /* 4124 * Check to see if we are freeing blocks across a group 4125 * boundary. 4126 * In case of flex_bg, this can happen that (block, len) may 4127 * span across more than one group. In that case we need to 4128 * get the corresponding group metadata to work with. 4129 * For this we have goto again loop. 4130 */ 4131 thisgrp_len = min_t(unsigned int, (unsigned int)len, 4132 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); 4133 clen = EXT4_NUM_B2C(sbi, thisgrp_len); 4134 4135 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) { 4136 ext4_error(sb, "Marking blocks in system zone - " 4137 "Block = %llu, len = %u", 4138 block, thisgrp_len); 4139 bitmap_bh = NULL; 4140 break; 4141 } 4142 4143 bitmap_bh = ext4_read_block_bitmap(sb, group); 4144 if (IS_ERR(bitmap_bh)) { 4145 err = PTR_ERR(bitmap_bh); 4146 bitmap_bh = NULL; 4147 break; 4148 } 4149 4150 err = -EIO; 4151 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 4152 if (!gdp) 4153 break; 4154 4155 ext4_lock_group(sb, group); 4156 already = 0; 4157 for (i = 0; i < clen; i++) 4158 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == 4159 !state) 4160 already++; 4161 4162 clen_changed = clen - already; 4163 if (state) 4164 mb_set_bits(bitmap_bh->b_data, blkoff, clen); 4165 else 4166 mb_clear_bits(bitmap_bh->b_data, blkoff, clen); 4167 if (ext4_has_group_desc_csum(sb) && 4168 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4169 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4170 ext4_free_group_clusters_set(sb, gdp, 4171 ext4_free_clusters_after_init(sb, group, gdp)); 4172 } 4173 if (state) 4174 clen = ext4_free_group_clusters(sb, gdp) - clen_changed; 4175 else 4176 clen = ext4_free_group_clusters(sb, gdp) + clen_changed; 4177 4178 ext4_free_group_clusters_set(sb, gdp, clen); 4179 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4180 ext4_group_desc_csum_set(sb, group, gdp); 4181 4182 ext4_unlock_group(sb, group); 4183 4184 if (sbi->s_log_groups_per_flex) { 4185 ext4_group_t flex_group = ext4_flex_group(sbi, group); 4186 struct flex_groups *fg = sbi_array_rcu_deref(sbi, 4187 s_flex_groups, flex_group); 4188 4189 if (state) 4190 atomic64_sub(clen_changed, &fg->free_clusters); 4191 else 4192 atomic64_add(clen_changed, &fg->free_clusters); 4193 4194 } 4195 4196 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 4197 if (err) 4198 break; 4199 sync_dirty_buffer(bitmap_bh); 4200 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 4201 sync_dirty_buffer(gdp_bh); 4202 if (err) 4203 break; 4204 4205 block += thisgrp_len; 4206 len -= thisgrp_len; 4207 brelse(bitmap_bh); 4208 BUG_ON(len < 0); 4209 } 4210 4211 if (err) 4212 brelse(bitmap_bh); 4213 } 4214 4215 /* 4216 * here we normalize request for locality group 4217 * Group request are normalized to s_mb_group_prealloc, which goes to 4218 * s_strip if we set the same via mount option. 4219 * s_mb_group_prealloc can be configured via 4220 * /sys/fs/ext4/<partition>/mb_group_prealloc 4221 * 4222 * XXX: should we try to preallocate more than the group has now? 4223 */ 4224 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 4225 { 4226 struct super_block *sb = ac->ac_sb; 4227 struct ext4_locality_group *lg = ac->ac_lg; 4228 4229 BUG_ON(lg == NULL); 4230 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 4231 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 4232 } 4233 4234 /* 4235 * This function returns the next element to look at during inode 4236 * PA rbtree walk. We assume that we have held the inode PA rbtree lock 4237 * (ei->i_prealloc_lock) 4238 * 4239 * new_start The start of the range we want to compare 4240 * cur_start The existing start that we are comparing against 4241 * node The node of the rb_tree 4242 */ 4243 static inline struct rb_node* 4244 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node) 4245 { 4246 if (new_start < cur_start) 4247 return node->rb_left; 4248 else 4249 return node->rb_right; 4250 } 4251 4252 static inline void 4253 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac, 4254 ext4_lblk_t start, loff_t end) 4255 { 4256 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4257 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4258 struct ext4_prealloc_space *tmp_pa; 4259 ext4_lblk_t tmp_pa_start; 4260 loff_t tmp_pa_end; 4261 struct rb_node *iter; 4262 4263 read_lock(&ei->i_prealloc_lock); 4264 for (iter = ei->i_prealloc_node.rb_node; iter; 4265 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) { 4266 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4267 pa_node.inode_node); 4268 tmp_pa_start = tmp_pa->pa_lstart; 4269 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4270 4271 spin_lock(&tmp_pa->pa_lock); 4272 if (tmp_pa->pa_deleted == 0) 4273 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start)); 4274 spin_unlock(&tmp_pa->pa_lock); 4275 } 4276 read_unlock(&ei->i_prealloc_lock); 4277 } 4278 4279 /* 4280 * Given an allocation context "ac" and a range "start", "end", check 4281 * and adjust boundaries if the range overlaps with any of the existing 4282 * preallocatoins stored in the corresponding inode of the allocation context. 4283 * 4284 * Parameters: 4285 * ac allocation context 4286 * start start of the new range 4287 * end end of the new range 4288 */ 4289 static inline void 4290 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac, 4291 ext4_lblk_t *start, loff_t *end) 4292 { 4293 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4294 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4295 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL; 4296 struct rb_node *iter; 4297 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1; 4298 loff_t new_end, tmp_pa_end, left_pa_end = -1; 4299 4300 new_start = *start; 4301 new_end = *end; 4302 4303 /* 4304 * Adjust the normalized range so that it doesn't overlap with any 4305 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock 4306 * so it doesn't change underneath us. 4307 */ 4308 read_lock(&ei->i_prealloc_lock); 4309 4310 /* Step 1: find any one immediate neighboring PA of the normalized range */ 4311 for (iter = ei->i_prealloc_node.rb_node; iter; 4312 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4313 tmp_pa_start, iter)) { 4314 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4315 pa_node.inode_node); 4316 tmp_pa_start = tmp_pa->pa_lstart; 4317 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4318 4319 /* PA must not overlap original request */ 4320 spin_lock(&tmp_pa->pa_lock); 4321 if (tmp_pa->pa_deleted == 0) 4322 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end || 4323 ac->ac_o_ex.fe_logical < tmp_pa_start)); 4324 spin_unlock(&tmp_pa->pa_lock); 4325 } 4326 4327 /* 4328 * Step 2: check if the found PA is left or right neighbor and 4329 * get the other neighbor 4330 */ 4331 if (tmp_pa) { 4332 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) { 4333 struct rb_node *tmp; 4334 4335 left_pa = tmp_pa; 4336 tmp = rb_next(&left_pa->pa_node.inode_node); 4337 if (tmp) { 4338 right_pa = rb_entry(tmp, 4339 struct ext4_prealloc_space, 4340 pa_node.inode_node); 4341 } 4342 } else { 4343 struct rb_node *tmp; 4344 4345 right_pa = tmp_pa; 4346 tmp = rb_prev(&right_pa->pa_node.inode_node); 4347 if (tmp) { 4348 left_pa = rb_entry(tmp, 4349 struct ext4_prealloc_space, 4350 pa_node.inode_node); 4351 } 4352 } 4353 } 4354 4355 /* Step 3: get the non deleted neighbors */ 4356 if (left_pa) { 4357 for (iter = &left_pa->pa_node.inode_node;; 4358 iter = rb_prev(iter)) { 4359 if (!iter) { 4360 left_pa = NULL; 4361 break; 4362 } 4363 4364 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4365 pa_node.inode_node); 4366 left_pa = tmp_pa; 4367 spin_lock(&tmp_pa->pa_lock); 4368 if (tmp_pa->pa_deleted == 0) { 4369 spin_unlock(&tmp_pa->pa_lock); 4370 break; 4371 } 4372 spin_unlock(&tmp_pa->pa_lock); 4373 } 4374 } 4375 4376 if (right_pa) { 4377 for (iter = &right_pa->pa_node.inode_node;; 4378 iter = rb_next(iter)) { 4379 if (!iter) { 4380 right_pa = NULL; 4381 break; 4382 } 4383 4384 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4385 pa_node.inode_node); 4386 right_pa = tmp_pa; 4387 spin_lock(&tmp_pa->pa_lock); 4388 if (tmp_pa->pa_deleted == 0) { 4389 spin_unlock(&tmp_pa->pa_lock); 4390 break; 4391 } 4392 spin_unlock(&tmp_pa->pa_lock); 4393 } 4394 } 4395 4396 if (left_pa) { 4397 left_pa_end = pa_logical_end(sbi, left_pa); 4398 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical); 4399 } 4400 4401 if (right_pa) { 4402 right_pa_start = right_pa->pa_lstart; 4403 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical); 4404 } 4405 4406 /* Step 4: trim our normalized range to not overlap with the neighbors */ 4407 if (left_pa) { 4408 if (left_pa_end > new_start) 4409 new_start = left_pa_end; 4410 } 4411 4412 if (right_pa) { 4413 if (right_pa_start < new_end) 4414 new_end = right_pa_start; 4415 } 4416 read_unlock(&ei->i_prealloc_lock); 4417 4418 /* XXX: extra loop to check we really don't overlap preallocations */ 4419 ext4_mb_pa_assert_overlap(ac, new_start, new_end); 4420 4421 *start = new_start; 4422 *end = new_end; 4423 } 4424 4425 /* 4426 * Normalization means making request better in terms of 4427 * size and alignment 4428 */ 4429 static noinline_for_stack void 4430 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 4431 struct ext4_allocation_request *ar) 4432 { 4433 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4434 struct ext4_super_block *es = sbi->s_es; 4435 int bsbits, max; 4436 loff_t size, start_off, end; 4437 loff_t orig_size __maybe_unused; 4438 ext4_lblk_t start; 4439 4440 /* do normalize only data requests, metadata requests 4441 do not need preallocation */ 4442 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4443 return; 4444 4445 /* sometime caller may want exact blocks */ 4446 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4447 return; 4448 4449 /* caller may indicate that preallocation isn't 4450 * required (it's a tail, for example) */ 4451 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 4452 return; 4453 4454 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 4455 ext4_mb_normalize_group_request(ac); 4456 return ; 4457 } 4458 4459 bsbits = ac->ac_sb->s_blocksize_bits; 4460 4461 /* first, let's learn actual file size 4462 * given current request is allocated */ 4463 size = extent_logical_end(sbi, &ac->ac_o_ex); 4464 size = size << bsbits; 4465 if (size < i_size_read(ac->ac_inode)) 4466 size = i_size_read(ac->ac_inode); 4467 orig_size = size; 4468 4469 /* max size of free chunks */ 4470 max = 2 << bsbits; 4471 4472 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 4473 (req <= (size) || max <= (chunk_size)) 4474 4475 /* first, try to predict filesize */ 4476 /* XXX: should this table be tunable? */ 4477 start_off = 0; 4478 if (size <= 16 * 1024) { 4479 size = 16 * 1024; 4480 } else if (size <= 32 * 1024) { 4481 size = 32 * 1024; 4482 } else if (size <= 64 * 1024) { 4483 size = 64 * 1024; 4484 } else if (size <= 128 * 1024) { 4485 size = 128 * 1024; 4486 } else if (size <= 256 * 1024) { 4487 size = 256 * 1024; 4488 } else if (size <= 512 * 1024) { 4489 size = 512 * 1024; 4490 } else if (size <= 1024 * 1024) { 4491 size = 1024 * 1024; 4492 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 4493 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4494 (21 - bsbits)) << 21; 4495 size = 2 * 1024 * 1024; 4496 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 4497 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4498 (22 - bsbits)) << 22; 4499 size = 4 * 1024 * 1024; 4500 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len), 4501 (8<<20)>>bsbits, max, 8 * 1024)) { 4502 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4503 (23 - bsbits)) << 23; 4504 size = 8 * 1024 * 1024; 4505 } else { 4506 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 4507 size = (loff_t) EXT4_C2B(sbi, 4508 ac->ac_o_ex.fe_len) << bsbits; 4509 } 4510 size = size >> bsbits; 4511 start = start_off >> bsbits; 4512 4513 /* 4514 * For tiny groups (smaller than 8MB) the chosen allocation 4515 * alignment may be larger than group size. Make sure the 4516 * alignment does not move allocation to a different group which 4517 * makes mballoc fail assertions later. 4518 */ 4519 start = max(start, rounddown(ac->ac_o_ex.fe_logical, 4520 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); 4521 4522 /* avoid unnecessary preallocation that may trigger assertions */ 4523 if (start + size > EXT_MAX_BLOCKS) 4524 size = EXT_MAX_BLOCKS - start; 4525 4526 /* don't cover already allocated blocks in selected range */ 4527 if (ar->pleft && start <= ar->lleft) { 4528 size -= ar->lleft + 1 - start; 4529 start = ar->lleft + 1; 4530 } 4531 if (ar->pright && start + size - 1 >= ar->lright) 4532 size -= start + size - ar->lright; 4533 4534 /* 4535 * Trim allocation request for filesystems with artificially small 4536 * groups. 4537 */ 4538 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 4539 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 4540 4541 end = start + size; 4542 4543 ext4_mb_pa_adjust_overlap(ac, &start, &end); 4544 4545 size = end - start; 4546 4547 /* 4548 * In this function "start" and "size" are normalized for better 4549 * alignment and length such that we could preallocate more blocks. 4550 * This normalization is done such that original request of 4551 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and 4552 * "size" boundaries. 4553 * (Note fe_len can be relaxed since FS block allocation API does not 4554 * provide gurantee on number of contiguous blocks allocation since that 4555 * depends upon free space left, etc). 4556 * In case of inode pa, later we use the allocated blocks 4557 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated 4558 * range of goal/best blocks [start, size] to put it at the 4559 * ac_o_ex.fe_logical extent of this inode. 4560 * (See ext4_mb_use_inode_pa() for more details) 4561 */ 4562 if (start + size <= ac->ac_o_ex.fe_logical || 4563 start > ac->ac_o_ex.fe_logical) { 4564 ext4_msg(ac->ac_sb, KERN_ERR, 4565 "start %lu, size %lu, fe_logical %lu", 4566 (unsigned long) start, (unsigned long) size, 4567 (unsigned long) ac->ac_o_ex.fe_logical); 4568 BUG(); 4569 } 4570 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 4571 4572 /* now prepare goal request */ 4573 4574 /* XXX: is it better to align blocks WRT to logical 4575 * placement or satisfy big request as is */ 4576 ac->ac_g_ex.fe_logical = start; 4577 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 4578 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 4579 4580 /* define goal start in order to merge */ 4581 if (ar->pright && (ar->lright == (start + size)) && 4582 ar->pright >= size && 4583 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) { 4584 /* merge to the right */ 4585 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 4586 &ac->ac_g_ex.fe_group, 4587 &ac->ac_g_ex.fe_start); 4588 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4589 } 4590 if (ar->pleft && (ar->lleft + 1 == start) && 4591 ar->pleft + 1 < ext4_blocks_count(es)) { 4592 /* merge to the left */ 4593 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 4594 &ac->ac_g_ex.fe_group, 4595 &ac->ac_g_ex.fe_start); 4596 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4597 } 4598 4599 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 4600 orig_size, start); 4601 } 4602 4603 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 4604 { 4605 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4606 4607 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 4608 atomic_inc(&sbi->s_bal_reqs); 4609 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 4610 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 4611 atomic_inc(&sbi->s_bal_success); 4612 4613 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 4614 for (int i=0; i<EXT4_MB_NUM_CRS; i++) { 4615 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]); 4616 } 4617 4618 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 4619 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 4620 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 4621 atomic_inc(&sbi->s_bal_goals); 4622 /* did we allocate as much as normalizer originally wanted? */ 4623 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len) 4624 atomic_inc(&sbi->s_bal_len_goals); 4625 4626 if (ac->ac_found > sbi->s_mb_max_to_scan) 4627 atomic_inc(&sbi->s_bal_breaks); 4628 } 4629 4630 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 4631 trace_ext4_mballoc_alloc(ac); 4632 else 4633 trace_ext4_mballoc_prealloc(ac); 4634 } 4635 4636 /* 4637 * Called on failure; free up any blocks from the inode PA for this 4638 * context. We don't need this for MB_GROUP_PA because we only change 4639 * pa_free in ext4_mb_release_context(), but on failure, we've already 4640 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 4641 */ 4642 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 4643 { 4644 struct ext4_prealloc_space *pa = ac->ac_pa; 4645 struct ext4_buddy e4b; 4646 int err; 4647 4648 if (pa == NULL) { 4649 if (ac->ac_f_ex.fe_len == 0) 4650 return; 4651 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 4652 if (WARN_RATELIMIT(err, 4653 "ext4: mb_load_buddy failed (%d)", err)) 4654 /* 4655 * This should never happen since we pin the 4656 * pages in the ext4_allocation_context so 4657 * ext4_mb_load_buddy() should never fail. 4658 */ 4659 return; 4660 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4661 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 4662 ac->ac_f_ex.fe_len); 4663 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4664 ext4_mb_unload_buddy(&e4b); 4665 return; 4666 } 4667 if (pa->pa_type == MB_INODE_PA) { 4668 spin_lock(&pa->pa_lock); 4669 pa->pa_free += ac->ac_b_ex.fe_len; 4670 spin_unlock(&pa->pa_lock); 4671 } 4672 } 4673 4674 /* 4675 * use blocks preallocated to inode 4676 */ 4677 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 4678 struct ext4_prealloc_space *pa) 4679 { 4680 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4681 ext4_fsblk_t start; 4682 ext4_fsblk_t end; 4683 int len; 4684 4685 /* found preallocated blocks, use them */ 4686 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 4687 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 4688 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 4689 len = EXT4_NUM_B2C(sbi, end - start); 4690 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 4691 &ac->ac_b_ex.fe_start); 4692 ac->ac_b_ex.fe_len = len; 4693 ac->ac_status = AC_STATUS_FOUND; 4694 ac->ac_pa = pa; 4695 4696 BUG_ON(start < pa->pa_pstart); 4697 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 4698 BUG_ON(pa->pa_free < len); 4699 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4700 pa->pa_free -= len; 4701 4702 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 4703 } 4704 4705 /* 4706 * use blocks preallocated to locality group 4707 */ 4708 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 4709 struct ext4_prealloc_space *pa) 4710 { 4711 unsigned int len = ac->ac_o_ex.fe_len; 4712 4713 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 4714 &ac->ac_b_ex.fe_group, 4715 &ac->ac_b_ex.fe_start); 4716 ac->ac_b_ex.fe_len = len; 4717 ac->ac_status = AC_STATUS_FOUND; 4718 ac->ac_pa = pa; 4719 4720 /* we don't correct pa_pstart or pa_len here to avoid 4721 * possible race when the group is being loaded concurrently 4722 * instead we correct pa later, after blocks are marked 4723 * in on-disk bitmap -- see ext4_mb_release_context() 4724 * Other CPUs are prevented from allocating from this pa by lg_mutex 4725 */ 4726 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 4727 pa->pa_lstart, len, pa); 4728 } 4729 4730 /* 4731 * Return the prealloc space that have minimal distance 4732 * from the goal block. @cpa is the prealloc 4733 * space that is having currently known minimal distance 4734 * from the goal block. 4735 */ 4736 static struct ext4_prealloc_space * 4737 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 4738 struct ext4_prealloc_space *pa, 4739 struct ext4_prealloc_space *cpa) 4740 { 4741 ext4_fsblk_t cur_distance, new_distance; 4742 4743 if (cpa == NULL) { 4744 atomic_inc(&pa->pa_count); 4745 return pa; 4746 } 4747 cur_distance = abs(goal_block - cpa->pa_pstart); 4748 new_distance = abs(goal_block - pa->pa_pstart); 4749 4750 if (cur_distance <= new_distance) 4751 return cpa; 4752 4753 /* drop the previous reference */ 4754 atomic_dec(&cpa->pa_count); 4755 atomic_inc(&pa->pa_count); 4756 return pa; 4757 } 4758 4759 /* 4760 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY 4761 */ 4762 static bool 4763 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac, 4764 struct ext4_prealloc_space *pa) 4765 { 4766 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4767 ext4_fsblk_t start; 4768 4769 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))) 4770 return true; 4771 4772 /* 4773 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted 4774 * in ext4_mb_normalize_request and will keep same with ac_o_ex 4775 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep 4776 * consistent with ext4_mb_find_by_goal. 4777 */ 4778 start = pa->pa_pstart + 4779 (ac->ac_g_ex.fe_logical - pa->pa_lstart); 4780 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start) 4781 return false; 4782 4783 if (ac->ac_g_ex.fe_len > pa->pa_len - 4784 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart)) 4785 return false; 4786 4787 return true; 4788 } 4789 4790 /* 4791 * search goal blocks in preallocated space 4792 */ 4793 static noinline_for_stack bool 4794 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 4795 { 4796 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4797 int order, i; 4798 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4799 struct ext4_locality_group *lg; 4800 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL; 4801 struct rb_node *iter; 4802 ext4_fsblk_t goal_block; 4803 4804 /* only data can be preallocated */ 4805 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4806 return false; 4807 4808 /* 4809 * first, try per-file preallocation by searching the inode pa rbtree. 4810 * 4811 * Here, we can't do a direct traversal of the tree because 4812 * ext4_mb_discard_group_preallocation() can paralelly mark the pa 4813 * deleted and that can cause direct traversal to skip some entries. 4814 */ 4815 read_lock(&ei->i_prealloc_lock); 4816 4817 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) { 4818 goto try_group_pa; 4819 } 4820 4821 /* 4822 * Step 1: Find a pa with logical start immediately adjacent to the 4823 * original logical start. This could be on the left or right. 4824 * 4825 * (tmp_pa->pa_lstart never changes so we can skip locking for it). 4826 */ 4827 for (iter = ei->i_prealloc_node.rb_node; iter; 4828 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4829 tmp_pa->pa_lstart, iter)) { 4830 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4831 pa_node.inode_node); 4832 } 4833 4834 /* 4835 * Step 2: The adjacent pa might be to the right of logical start, find 4836 * the left adjacent pa. After this step we'd have a valid tmp_pa whose 4837 * logical start is towards the left of original request's logical start 4838 */ 4839 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) { 4840 struct rb_node *tmp; 4841 tmp = rb_prev(&tmp_pa->pa_node.inode_node); 4842 4843 if (tmp) { 4844 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space, 4845 pa_node.inode_node); 4846 } else { 4847 /* 4848 * If there is no adjacent pa to the left then finding 4849 * an overlapping pa is not possible hence stop searching 4850 * inode pa tree 4851 */ 4852 goto try_group_pa; 4853 } 4854 } 4855 4856 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4857 4858 /* 4859 * Step 3: If the left adjacent pa is deleted, keep moving left to find 4860 * the first non deleted adjacent pa. After this step we should have a 4861 * valid tmp_pa which is guaranteed to be non deleted. 4862 */ 4863 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) { 4864 if (!iter) { 4865 /* 4866 * no non deleted left adjacent pa, so stop searching 4867 * inode pa tree 4868 */ 4869 goto try_group_pa; 4870 } 4871 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4872 pa_node.inode_node); 4873 spin_lock(&tmp_pa->pa_lock); 4874 if (tmp_pa->pa_deleted == 0) { 4875 /* 4876 * We will keep holding the pa_lock from 4877 * this point on because we don't want group discard 4878 * to delete this pa underneath us. Since group 4879 * discard is anyways an ENOSPC operation it 4880 * should be okay for it to wait a few more cycles. 4881 */ 4882 break; 4883 } else { 4884 spin_unlock(&tmp_pa->pa_lock); 4885 } 4886 } 4887 4888 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4889 BUG_ON(tmp_pa->pa_deleted == 1); 4890 4891 /* 4892 * Step 4: We now have the non deleted left adjacent pa. Only this 4893 * pa can possibly satisfy the request hence check if it overlaps 4894 * original logical start and stop searching if it doesn't. 4895 */ 4896 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) { 4897 spin_unlock(&tmp_pa->pa_lock); 4898 goto try_group_pa; 4899 } 4900 4901 /* non-extent files can't have physical blocks past 2^32 */ 4902 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 4903 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) > 4904 EXT4_MAX_BLOCK_FILE_PHYS)) { 4905 /* 4906 * Since PAs don't overlap, we won't find any other PA to 4907 * satisfy this. 4908 */ 4909 spin_unlock(&tmp_pa->pa_lock); 4910 goto try_group_pa; 4911 } 4912 4913 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) { 4914 atomic_inc(&tmp_pa->pa_count); 4915 ext4_mb_use_inode_pa(ac, tmp_pa); 4916 spin_unlock(&tmp_pa->pa_lock); 4917 read_unlock(&ei->i_prealloc_lock); 4918 return true; 4919 } else { 4920 /* 4921 * We found a valid overlapping pa but couldn't use it because 4922 * it had no free blocks. This should ideally never happen 4923 * because: 4924 * 4925 * 1. When a new inode pa is added to rbtree it must have 4926 * pa_free > 0 since otherwise we won't actually need 4927 * preallocation. 4928 * 4929 * 2. An inode pa that is in the rbtree can only have it's 4930 * pa_free become zero when another thread calls: 4931 * ext4_mb_new_blocks 4932 * ext4_mb_use_preallocated 4933 * ext4_mb_use_inode_pa 4934 * 4935 * 3. Further, after the above calls make pa_free == 0, we will 4936 * immediately remove it from the rbtree in: 4937 * ext4_mb_new_blocks 4938 * ext4_mb_release_context 4939 * ext4_mb_put_pa 4940 * 4941 * 4. Since the pa_free becoming 0 and pa_free getting removed 4942 * from tree both happen in ext4_mb_new_blocks, which is always 4943 * called with i_data_sem held for data allocations, we can be 4944 * sure that another process will never see a pa in rbtree with 4945 * pa_free == 0. 4946 */ 4947 WARN_ON_ONCE(tmp_pa->pa_free == 0); 4948 } 4949 spin_unlock(&tmp_pa->pa_lock); 4950 try_group_pa: 4951 read_unlock(&ei->i_prealloc_lock); 4952 4953 /* can we use group allocation? */ 4954 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 4955 return false; 4956 4957 /* inode may have no locality group for some reason */ 4958 lg = ac->ac_lg; 4959 if (lg == NULL) 4960 return false; 4961 order = fls(ac->ac_o_ex.fe_len) - 1; 4962 if (order > PREALLOC_TB_SIZE - 1) 4963 /* The max size of hash table is PREALLOC_TB_SIZE */ 4964 order = PREALLOC_TB_SIZE - 1; 4965 4966 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 4967 /* 4968 * search for the prealloc space that is having 4969 * minimal distance from the goal block. 4970 */ 4971 for (i = order; i < PREALLOC_TB_SIZE; i++) { 4972 rcu_read_lock(); 4973 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i], 4974 pa_node.lg_list) { 4975 spin_lock(&tmp_pa->pa_lock); 4976 if (tmp_pa->pa_deleted == 0 && 4977 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) { 4978 4979 cpa = ext4_mb_check_group_pa(goal_block, 4980 tmp_pa, cpa); 4981 } 4982 spin_unlock(&tmp_pa->pa_lock); 4983 } 4984 rcu_read_unlock(); 4985 } 4986 if (cpa) { 4987 ext4_mb_use_group_pa(ac, cpa); 4988 return true; 4989 } 4990 return false; 4991 } 4992 4993 /* 4994 * the function goes through all preallocation in this group and marks them 4995 * used in in-core bitmap. buddy must be generated from this bitmap 4996 * Need to be called with ext4 group lock held 4997 */ 4998 static noinline_for_stack 4999 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 5000 ext4_group_t group) 5001 { 5002 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5003 struct ext4_prealloc_space *pa; 5004 struct list_head *cur; 5005 ext4_group_t groupnr; 5006 ext4_grpblk_t start; 5007 int preallocated = 0; 5008 int len; 5009 5010 if (!grp) 5011 return; 5012 5013 /* all form of preallocation discards first load group, 5014 * so the only competing code is preallocation use. 5015 * we don't need any locking here 5016 * notice we do NOT ignore preallocations with pa_deleted 5017 * otherwise we could leave used blocks available for 5018 * allocation in buddy when concurrent ext4_mb_put_pa() 5019 * is dropping preallocation 5020 */ 5021 list_for_each(cur, &grp->bb_prealloc_list) { 5022 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 5023 spin_lock(&pa->pa_lock); 5024 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5025 &groupnr, &start); 5026 len = pa->pa_len; 5027 spin_unlock(&pa->pa_lock); 5028 if (unlikely(len == 0)) 5029 continue; 5030 BUG_ON(groupnr != group); 5031 mb_set_bits(bitmap, start, len); 5032 preallocated += len; 5033 } 5034 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 5035 } 5036 5037 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 5038 struct ext4_prealloc_space *pa) 5039 { 5040 struct ext4_inode_info *ei; 5041 5042 if (pa->pa_deleted) { 5043 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 5044 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 5045 pa->pa_len); 5046 return; 5047 } 5048 5049 pa->pa_deleted = 1; 5050 5051 if (pa->pa_type == MB_INODE_PA) { 5052 ei = EXT4_I(pa->pa_inode); 5053 atomic_dec(&ei->i_prealloc_active); 5054 } 5055 } 5056 5057 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa) 5058 { 5059 BUG_ON(!pa); 5060 BUG_ON(atomic_read(&pa->pa_count)); 5061 BUG_ON(pa->pa_deleted == 0); 5062 kmem_cache_free(ext4_pspace_cachep, pa); 5063 } 5064 5065 static void ext4_mb_pa_callback(struct rcu_head *head) 5066 { 5067 struct ext4_prealloc_space *pa; 5068 5069 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 5070 ext4_mb_pa_free(pa); 5071 } 5072 5073 /* 5074 * drops a reference to preallocated space descriptor 5075 * if this was the last reference and the space is consumed 5076 */ 5077 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 5078 struct super_block *sb, struct ext4_prealloc_space *pa) 5079 { 5080 ext4_group_t grp; 5081 ext4_fsblk_t grp_blk; 5082 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 5083 5084 /* in this short window concurrent discard can set pa_deleted */ 5085 spin_lock(&pa->pa_lock); 5086 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 5087 spin_unlock(&pa->pa_lock); 5088 return; 5089 } 5090 5091 if (pa->pa_deleted == 1) { 5092 spin_unlock(&pa->pa_lock); 5093 return; 5094 } 5095 5096 ext4_mb_mark_pa_deleted(sb, pa); 5097 spin_unlock(&pa->pa_lock); 5098 5099 grp_blk = pa->pa_pstart; 5100 /* 5101 * If doing group-based preallocation, pa_pstart may be in the 5102 * next group when pa is used up 5103 */ 5104 if (pa->pa_type == MB_GROUP_PA) 5105 grp_blk--; 5106 5107 grp = ext4_get_group_number(sb, grp_blk); 5108 5109 /* 5110 * possible race: 5111 * 5112 * P1 (buddy init) P2 (regular allocation) 5113 * find block B in PA 5114 * copy on-disk bitmap to buddy 5115 * mark B in on-disk bitmap 5116 * drop PA from group 5117 * mark all PAs in buddy 5118 * 5119 * thus, P1 initializes buddy with B available. to prevent this 5120 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 5121 * against that pair 5122 */ 5123 ext4_lock_group(sb, grp); 5124 list_del(&pa->pa_group_list); 5125 ext4_unlock_group(sb, grp); 5126 5127 if (pa->pa_type == MB_INODE_PA) { 5128 write_lock(pa->pa_node_lock.inode_lock); 5129 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5130 write_unlock(pa->pa_node_lock.inode_lock); 5131 ext4_mb_pa_free(pa); 5132 } else { 5133 spin_lock(pa->pa_node_lock.lg_lock); 5134 list_del_rcu(&pa->pa_node.lg_list); 5135 spin_unlock(pa->pa_node_lock.lg_lock); 5136 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5137 } 5138 } 5139 5140 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new) 5141 { 5142 struct rb_node **iter = &root->rb_node, *parent = NULL; 5143 struct ext4_prealloc_space *iter_pa, *new_pa; 5144 ext4_lblk_t iter_start, new_start; 5145 5146 while (*iter) { 5147 iter_pa = rb_entry(*iter, struct ext4_prealloc_space, 5148 pa_node.inode_node); 5149 new_pa = rb_entry(new, struct ext4_prealloc_space, 5150 pa_node.inode_node); 5151 iter_start = iter_pa->pa_lstart; 5152 new_start = new_pa->pa_lstart; 5153 5154 parent = *iter; 5155 if (new_start < iter_start) 5156 iter = &((*iter)->rb_left); 5157 else 5158 iter = &((*iter)->rb_right); 5159 } 5160 5161 rb_link_node(new, parent, iter); 5162 rb_insert_color(new, root); 5163 } 5164 5165 /* 5166 * creates new preallocated space for given inode 5167 */ 5168 static noinline_for_stack void 5169 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 5170 { 5171 struct super_block *sb = ac->ac_sb; 5172 struct ext4_sb_info *sbi = EXT4_SB(sb); 5173 struct ext4_prealloc_space *pa; 5174 struct ext4_group_info *grp; 5175 struct ext4_inode_info *ei; 5176 5177 /* preallocate only when found space is larger then requested */ 5178 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5179 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5180 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5181 BUG_ON(ac->ac_pa == NULL); 5182 5183 pa = ac->ac_pa; 5184 5185 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) { 5186 struct ext4_free_extent ex = { 5187 .fe_logical = ac->ac_g_ex.fe_logical, 5188 .fe_len = ac->ac_orig_goal_len, 5189 }; 5190 loff_t orig_goal_end = extent_logical_end(sbi, &ex); 5191 loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex); 5192 5193 /* 5194 * We can't allocate as much as normalizer wants, so we try 5195 * to get proper lstart to cover the original request, except 5196 * when the goal doesn't cover the original request as below: 5197 * 5198 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048 5199 * best_ex:0/200(200) -> adjusted: 1848/2048(200) 5200 */ 5201 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 5202 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 5203 5204 /* 5205 * Use the below logic for adjusting best extent as it keeps 5206 * fragmentation in check while ensuring logical range of best 5207 * extent doesn't overflow out of goal extent: 5208 * 5209 * 1. Check if best ex can be kept at end of goal (before 5210 * cr_best_avail trimmed it) and still cover original start 5211 * 2. Else, check if best ex can be kept at start of goal and 5212 * still cover original end 5213 * 3. Else, keep the best ex at start of original request. 5214 */ 5215 ex.fe_len = ac->ac_b_ex.fe_len; 5216 5217 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len); 5218 if (ac->ac_o_ex.fe_logical >= ex.fe_logical) 5219 goto adjust_bex; 5220 5221 ex.fe_logical = ac->ac_g_ex.fe_logical; 5222 if (o_ex_end <= extent_logical_end(sbi, &ex)) 5223 goto adjust_bex; 5224 5225 ex.fe_logical = ac->ac_o_ex.fe_logical; 5226 adjust_bex: 5227 ac->ac_b_ex.fe_logical = ex.fe_logical; 5228 5229 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 5230 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end); 5231 } 5232 5233 pa->pa_lstart = ac->ac_b_ex.fe_logical; 5234 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5235 pa->pa_len = ac->ac_b_ex.fe_len; 5236 pa->pa_free = pa->pa_len; 5237 spin_lock_init(&pa->pa_lock); 5238 INIT_LIST_HEAD(&pa->pa_group_list); 5239 pa->pa_deleted = 0; 5240 pa->pa_type = MB_INODE_PA; 5241 5242 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5243 pa->pa_len, pa->pa_lstart); 5244 trace_ext4_mb_new_inode_pa(ac, pa); 5245 5246 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 5247 ext4_mb_use_inode_pa(ac, pa); 5248 5249 ei = EXT4_I(ac->ac_inode); 5250 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5251 if (!grp) 5252 return; 5253 5254 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock; 5255 pa->pa_inode = ac->ac_inode; 5256 5257 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5258 5259 write_lock(pa->pa_node_lock.inode_lock); 5260 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node); 5261 write_unlock(pa->pa_node_lock.inode_lock); 5262 atomic_inc(&ei->i_prealloc_active); 5263 } 5264 5265 /* 5266 * creates new preallocated space for locality group inodes belongs to 5267 */ 5268 static noinline_for_stack void 5269 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 5270 { 5271 struct super_block *sb = ac->ac_sb; 5272 struct ext4_locality_group *lg; 5273 struct ext4_prealloc_space *pa; 5274 struct ext4_group_info *grp; 5275 5276 /* preallocate only when found space is larger then requested */ 5277 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5278 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5279 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5280 BUG_ON(ac->ac_pa == NULL); 5281 5282 pa = ac->ac_pa; 5283 5284 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5285 pa->pa_lstart = pa->pa_pstart; 5286 pa->pa_len = ac->ac_b_ex.fe_len; 5287 pa->pa_free = pa->pa_len; 5288 spin_lock_init(&pa->pa_lock); 5289 INIT_LIST_HEAD(&pa->pa_node.lg_list); 5290 INIT_LIST_HEAD(&pa->pa_group_list); 5291 pa->pa_deleted = 0; 5292 pa->pa_type = MB_GROUP_PA; 5293 5294 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5295 pa->pa_len, pa->pa_lstart); 5296 trace_ext4_mb_new_group_pa(ac, pa); 5297 5298 ext4_mb_use_group_pa(ac, pa); 5299 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 5300 5301 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5302 if (!grp) 5303 return; 5304 lg = ac->ac_lg; 5305 BUG_ON(lg == NULL); 5306 5307 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock; 5308 pa->pa_inode = NULL; 5309 5310 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5311 5312 /* 5313 * We will later add the new pa to the right bucket 5314 * after updating the pa_free in ext4_mb_release_context 5315 */ 5316 } 5317 5318 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 5319 { 5320 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5321 ext4_mb_new_group_pa(ac); 5322 else 5323 ext4_mb_new_inode_pa(ac); 5324 } 5325 5326 /* 5327 * finds all unused blocks in on-disk bitmap, frees them in 5328 * in-core bitmap and buddy. 5329 * @pa must be unlinked from inode and group lists, so that 5330 * nobody else can find/use it. 5331 * the caller MUST hold group/inode locks. 5332 * TODO: optimize the case when there are no in-core structures yet 5333 */ 5334 static noinline_for_stack int 5335 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 5336 struct ext4_prealloc_space *pa) 5337 { 5338 struct super_block *sb = e4b->bd_sb; 5339 struct ext4_sb_info *sbi = EXT4_SB(sb); 5340 unsigned int end; 5341 unsigned int next; 5342 ext4_group_t group; 5343 ext4_grpblk_t bit; 5344 unsigned long long grp_blk_start; 5345 int free = 0; 5346 5347 BUG_ON(pa->pa_deleted == 0); 5348 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5349 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 5350 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 5351 end = bit + pa->pa_len; 5352 5353 while (bit < end) { 5354 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 5355 if (bit >= end) 5356 break; 5357 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 5358 mb_debug(sb, "free preallocated %u/%u in group %u\n", 5359 (unsigned) ext4_group_first_block_no(sb, group) + bit, 5360 (unsigned) next - bit, (unsigned) group); 5361 free += next - bit; 5362 5363 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 5364 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 5365 EXT4_C2B(sbi, bit)), 5366 next - bit); 5367 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 5368 bit = next + 1; 5369 } 5370 if (free != pa->pa_free) { 5371 ext4_msg(e4b->bd_sb, KERN_CRIT, 5372 "pa %p: logic %lu, phys. %lu, len %d", 5373 pa, (unsigned long) pa->pa_lstart, 5374 (unsigned long) pa->pa_pstart, 5375 pa->pa_len); 5376 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 5377 free, pa->pa_free); 5378 /* 5379 * pa is already deleted so we use the value obtained 5380 * from the bitmap and continue. 5381 */ 5382 } 5383 atomic_add(free, &sbi->s_mb_discarded); 5384 5385 return 0; 5386 } 5387 5388 static noinline_for_stack int 5389 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 5390 struct ext4_prealloc_space *pa) 5391 { 5392 struct super_block *sb = e4b->bd_sb; 5393 ext4_group_t group; 5394 ext4_grpblk_t bit; 5395 5396 trace_ext4_mb_release_group_pa(sb, pa); 5397 BUG_ON(pa->pa_deleted == 0); 5398 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5399 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) { 5400 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu", 5401 e4b->bd_group, group, pa->pa_pstart); 5402 return 0; 5403 } 5404 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 5405 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 5406 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 5407 5408 return 0; 5409 } 5410 5411 /* 5412 * releases all preallocations in given group 5413 * 5414 * first, we need to decide discard policy: 5415 * - when do we discard 5416 * 1) ENOSPC 5417 * - how many do we discard 5418 * 1) how many requested 5419 */ 5420 static noinline_for_stack int 5421 ext4_mb_discard_group_preallocations(struct super_block *sb, 5422 ext4_group_t group, int *busy) 5423 { 5424 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5425 struct buffer_head *bitmap_bh = NULL; 5426 struct ext4_prealloc_space *pa, *tmp; 5427 LIST_HEAD(list); 5428 struct ext4_buddy e4b; 5429 struct ext4_inode_info *ei; 5430 int err; 5431 int free = 0; 5432 5433 if (!grp) 5434 return 0; 5435 mb_debug(sb, "discard preallocation for group %u\n", group); 5436 if (list_empty(&grp->bb_prealloc_list)) 5437 goto out_dbg; 5438 5439 bitmap_bh = ext4_read_block_bitmap(sb, group); 5440 if (IS_ERR(bitmap_bh)) { 5441 err = PTR_ERR(bitmap_bh); 5442 ext4_error_err(sb, -err, 5443 "Error %d reading block bitmap for %u", 5444 err, group); 5445 goto out_dbg; 5446 } 5447 5448 err = ext4_mb_load_buddy(sb, group, &e4b); 5449 if (err) { 5450 ext4_warning(sb, "Error %d loading buddy information for %u", 5451 err, group); 5452 put_bh(bitmap_bh); 5453 goto out_dbg; 5454 } 5455 5456 ext4_lock_group(sb, group); 5457 list_for_each_entry_safe(pa, tmp, 5458 &grp->bb_prealloc_list, pa_group_list) { 5459 spin_lock(&pa->pa_lock); 5460 if (atomic_read(&pa->pa_count)) { 5461 spin_unlock(&pa->pa_lock); 5462 *busy = 1; 5463 continue; 5464 } 5465 if (pa->pa_deleted) { 5466 spin_unlock(&pa->pa_lock); 5467 continue; 5468 } 5469 5470 /* seems this one can be freed ... */ 5471 ext4_mb_mark_pa_deleted(sb, pa); 5472 5473 if (!free) 5474 this_cpu_inc(discard_pa_seq); 5475 5476 /* we can trust pa_free ... */ 5477 free += pa->pa_free; 5478 5479 spin_unlock(&pa->pa_lock); 5480 5481 list_del(&pa->pa_group_list); 5482 list_add(&pa->u.pa_tmp_list, &list); 5483 } 5484 5485 /* now free all selected PAs */ 5486 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5487 5488 /* remove from object (inode or locality group) */ 5489 if (pa->pa_type == MB_GROUP_PA) { 5490 spin_lock(pa->pa_node_lock.lg_lock); 5491 list_del_rcu(&pa->pa_node.lg_list); 5492 spin_unlock(pa->pa_node_lock.lg_lock); 5493 } else { 5494 write_lock(pa->pa_node_lock.inode_lock); 5495 ei = EXT4_I(pa->pa_inode); 5496 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5497 write_unlock(pa->pa_node_lock.inode_lock); 5498 } 5499 5500 list_del(&pa->u.pa_tmp_list); 5501 5502 if (pa->pa_type == MB_GROUP_PA) { 5503 ext4_mb_release_group_pa(&e4b, pa); 5504 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5505 } else { 5506 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5507 ext4_mb_pa_free(pa); 5508 } 5509 } 5510 5511 ext4_unlock_group(sb, group); 5512 ext4_mb_unload_buddy(&e4b); 5513 put_bh(bitmap_bh); 5514 out_dbg: 5515 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 5516 free, group, grp->bb_free); 5517 return free; 5518 } 5519 5520 /* 5521 * releases all non-used preallocated blocks for given inode 5522 * 5523 * It's important to discard preallocations under i_data_sem 5524 * We don't want another block to be served from the prealloc 5525 * space when we are discarding the inode prealloc space. 5526 * 5527 * FIXME!! Make sure it is valid at all the call sites 5528 */ 5529 void ext4_discard_preallocations(struct inode *inode, unsigned int needed) 5530 { 5531 struct ext4_inode_info *ei = EXT4_I(inode); 5532 struct super_block *sb = inode->i_sb; 5533 struct buffer_head *bitmap_bh = NULL; 5534 struct ext4_prealloc_space *pa, *tmp; 5535 ext4_group_t group = 0; 5536 LIST_HEAD(list); 5537 struct ext4_buddy e4b; 5538 struct rb_node *iter; 5539 int err; 5540 5541 if (!S_ISREG(inode->i_mode)) { 5542 return; 5543 } 5544 5545 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 5546 return; 5547 5548 mb_debug(sb, "discard preallocation for inode %lu\n", 5549 inode->i_ino); 5550 trace_ext4_discard_preallocations(inode, 5551 atomic_read(&ei->i_prealloc_active), needed); 5552 5553 if (needed == 0) 5554 needed = UINT_MAX; 5555 5556 repeat: 5557 /* first, collect all pa's in the inode */ 5558 write_lock(&ei->i_prealloc_lock); 5559 for (iter = rb_first(&ei->i_prealloc_node); iter && needed; 5560 iter = rb_next(iter)) { 5561 pa = rb_entry(iter, struct ext4_prealloc_space, 5562 pa_node.inode_node); 5563 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock); 5564 5565 spin_lock(&pa->pa_lock); 5566 if (atomic_read(&pa->pa_count)) { 5567 /* this shouldn't happen often - nobody should 5568 * use preallocation while we're discarding it */ 5569 spin_unlock(&pa->pa_lock); 5570 write_unlock(&ei->i_prealloc_lock); 5571 ext4_msg(sb, KERN_ERR, 5572 "uh-oh! used pa while discarding"); 5573 WARN_ON(1); 5574 schedule_timeout_uninterruptible(HZ); 5575 goto repeat; 5576 5577 } 5578 if (pa->pa_deleted == 0) { 5579 ext4_mb_mark_pa_deleted(sb, pa); 5580 spin_unlock(&pa->pa_lock); 5581 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5582 list_add(&pa->u.pa_tmp_list, &list); 5583 needed--; 5584 continue; 5585 } 5586 5587 /* someone is deleting pa right now */ 5588 spin_unlock(&pa->pa_lock); 5589 write_unlock(&ei->i_prealloc_lock); 5590 5591 /* we have to wait here because pa_deleted 5592 * doesn't mean pa is already unlinked from 5593 * the list. as we might be called from 5594 * ->clear_inode() the inode will get freed 5595 * and concurrent thread which is unlinking 5596 * pa from inode's list may access already 5597 * freed memory, bad-bad-bad */ 5598 5599 /* XXX: if this happens too often, we can 5600 * add a flag to force wait only in case 5601 * of ->clear_inode(), but not in case of 5602 * regular truncate */ 5603 schedule_timeout_uninterruptible(HZ); 5604 goto repeat; 5605 } 5606 write_unlock(&ei->i_prealloc_lock); 5607 5608 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5609 BUG_ON(pa->pa_type != MB_INODE_PA); 5610 group = ext4_get_group_number(sb, pa->pa_pstart); 5611 5612 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5613 GFP_NOFS|__GFP_NOFAIL); 5614 if (err) { 5615 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5616 err, group); 5617 continue; 5618 } 5619 5620 bitmap_bh = ext4_read_block_bitmap(sb, group); 5621 if (IS_ERR(bitmap_bh)) { 5622 err = PTR_ERR(bitmap_bh); 5623 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 5624 err, group); 5625 ext4_mb_unload_buddy(&e4b); 5626 continue; 5627 } 5628 5629 ext4_lock_group(sb, group); 5630 list_del(&pa->pa_group_list); 5631 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5632 ext4_unlock_group(sb, group); 5633 5634 ext4_mb_unload_buddy(&e4b); 5635 put_bh(bitmap_bh); 5636 5637 list_del(&pa->u.pa_tmp_list); 5638 ext4_mb_pa_free(pa); 5639 } 5640 } 5641 5642 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 5643 { 5644 struct ext4_prealloc_space *pa; 5645 5646 BUG_ON(ext4_pspace_cachep == NULL); 5647 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 5648 if (!pa) 5649 return -ENOMEM; 5650 atomic_set(&pa->pa_count, 1); 5651 ac->ac_pa = pa; 5652 return 0; 5653 } 5654 5655 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac) 5656 { 5657 struct ext4_prealloc_space *pa = ac->ac_pa; 5658 5659 BUG_ON(!pa); 5660 ac->ac_pa = NULL; 5661 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 5662 /* 5663 * current function is only called due to an error or due to 5664 * len of found blocks < len of requested blocks hence the PA has not 5665 * been added to grp->bb_prealloc_list. So we don't need to lock it 5666 */ 5667 pa->pa_deleted = 1; 5668 ext4_mb_pa_free(pa); 5669 } 5670 5671 #ifdef CONFIG_EXT4_DEBUG 5672 static inline void ext4_mb_show_pa(struct super_block *sb) 5673 { 5674 ext4_group_t i, ngroups; 5675 5676 if (ext4_forced_shutdown(sb)) 5677 return; 5678 5679 ngroups = ext4_get_groups_count(sb); 5680 mb_debug(sb, "groups: "); 5681 for (i = 0; i < ngroups; i++) { 5682 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 5683 struct ext4_prealloc_space *pa; 5684 ext4_grpblk_t start; 5685 struct list_head *cur; 5686 5687 if (!grp) 5688 continue; 5689 ext4_lock_group(sb, i); 5690 list_for_each(cur, &grp->bb_prealloc_list) { 5691 pa = list_entry(cur, struct ext4_prealloc_space, 5692 pa_group_list); 5693 spin_lock(&pa->pa_lock); 5694 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5695 NULL, &start); 5696 spin_unlock(&pa->pa_lock); 5697 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 5698 pa->pa_len); 5699 } 5700 ext4_unlock_group(sb, i); 5701 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 5702 grp->bb_fragments); 5703 } 5704 } 5705 5706 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5707 { 5708 struct super_block *sb = ac->ac_sb; 5709 5710 if (ext4_forced_shutdown(sb)) 5711 return; 5712 5713 mb_debug(sb, "Can't allocate:" 5714 " Allocation context details:"); 5715 mb_debug(sb, "status %u flags 0x%x", 5716 ac->ac_status, ac->ac_flags); 5717 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 5718 "goal %lu/%lu/%lu@%lu, " 5719 "best %lu/%lu/%lu@%lu cr %d", 5720 (unsigned long)ac->ac_o_ex.fe_group, 5721 (unsigned long)ac->ac_o_ex.fe_start, 5722 (unsigned long)ac->ac_o_ex.fe_len, 5723 (unsigned long)ac->ac_o_ex.fe_logical, 5724 (unsigned long)ac->ac_g_ex.fe_group, 5725 (unsigned long)ac->ac_g_ex.fe_start, 5726 (unsigned long)ac->ac_g_ex.fe_len, 5727 (unsigned long)ac->ac_g_ex.fe_logical, 5728 (unsigned long)ac->ac_b_ex.fe_group, 5729 (unsigned long)ac->ac_b_ex.fe_start, 5730 (unsigned long)ac->ac_b_ex.fe_len, 5731 (unsigned long)ac->ac_b_ex.fe_logical, 5732 (int)ac->ac_criteria); 5733 mb_debug(sb, "%u found", ac->ac_found); 5734 mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no"); 5735 if (ac->ac_pa) 5736 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ? 5737 "group pa" : "inode pa"); 5738 ext4_mb_show_pa(sb); 5739 } 5740 #else 5741 static inline void ext4_mb_show_pa(struct super_block *sb) 5742 { 5743 } 5744 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5745 { 5746 ext4_mb_show_pa(ac->ac_sb); 5747 } 5748 #endif 5749 5750 /* 5751 * We use locality group preallocation for small size file. The size of the 5752 * file is determined by the current size or the resulting size after 5753 * allocation which ever is larger 5754 * 5755 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 5756 */ 5757 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 5758 { 5759 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5760 int bsbits = ac->ac_sb->s_blocksize_bits; 5761 loff_t size, isize; 5762 bool inode_pa_eligible, group_pa_eligible; 5763 5764 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 5765 return; 5766 5767 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 5768 return; 5769 5770 group_pa_eligible = sbi->s_mb_group_prealloc > 0; 5771 inode_pa_eligible = true; 5772 size = extent_logical_end(sbi, &ac->ac_o_ex); 5773 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 5774 >> bsbits; 5775 5776 /* No point in using inode preallocation for closed files */ 5777 if ((size == isize) && !ext4_fs_is_busy(sbi) && 5778 !inode_is_open_for_write(ac->ac_inode)) 5779 inode_pa_eligible = false; 5780 5781 size = max(size, isize); 5782 /* Don't use group allocation for large files */ 5783 if (size > sbi->s_mb_stream_request) 5784 group_pa_eligible = false; 5785 5786 if (!group_pa_eligible) { 5787 if (inode_pa_eligible) 5788 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5789 else 5790 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 5791 return; 5792 } 5793 5794 BUG_ON(ac->ac_lg != NULL); 5795 /* 5796 * locality group prealloc space are per cpu. The reason for having 5797 * per cpu locality group is to reduce the contention between block 5798 * request from multiple CPUs. 5799 */ 5800 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 5801 5802 /* we're going to use group allocation */ 5803 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 5804 5805 /* serialize all allocations in the group */ 5806 mutex_lock(&ac->ac_lg->lg_mutex); 5807 } 5808 5809 static noinline_for_stack void 5810 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 5811 struct ext4_allocation_request *ar) 5812 { 5813 struct super_block *sb = ar->inode->i_sb; 5814 struct ext4_sb_info *sbi = EXT4_SB(sb); 5815 struct ext4_super_block *es = sbi->s_es; 5816 ext4_group_t group; 5817 unsigned int len; 5818 ext4_fsblk_t goal; 5819 ext4_grpblk_t block; 5820 5821 /* we can't allocate > group size */ 5822 len = ar->len; 5823 5824 /* just a dirty hack to filter too big requests */ 5825 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 5826 len = EXT4_CLUSTERS_PER_GROUP(sb); 5827 5828 /* start searching from the goal */ 5829 goal = ar->goal; 5830 if (goal < le32_to_cpu(es->s_first_data_block) || 5831 goal >= ext4_blocks_count(es)) 5832 goal = le32_to_cpu(es->s_first_data_block); 5833 ext4_get_group_no_and_offset(sb, goal, &group, &block); 5834 5835 /* set up allocation goals */ 5836 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 5837 ac->ac_status = AC_STATUS_CONTINUE; 5838 ac->ac_sb = sb; 5839 ac->ac_inode = ar->inode; 5840 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 5841 ac->ac_o_ex.fe_group = group; 5842 ac->ac_o_ex.fe_start = block; 5843 ac->ac_o_ex.fe_len = len; 5844 ac->ac_g_ex = ac->ac_o_ex; 5845 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 5846 ac->ac_flags = ar->flags; 5847 5848 /* we have to define context: we'll work with a file or 5849 * locality group. this is a policy, actually */ 5850 ext4_mb_group_or_file(ac); 5851 5852 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 5853 "left: %u/%u, right %u/%u to %swritable\n", 5854 (unsigned) ar->len, (unsigned) ar->logical, 5855 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 5856 (unsigned) ar->lleft, (unsigned) ar->pleft, 5857 (unsigned) ar->lright, (unsigned) ar->pright, 5858 inode_is_open_for_write(ar->inode) ? "" : "non-"); 5859 } 5860 5861 static noinline_for_stack void 5862 ext4_mb_discard_lg_preallocations(struct super_block *sb, 5863 struct ext4_locality_group *lg, 5864 int order, int total_entries) 5865 { 5866 ext4_group_t group = 0; 5867 struct ext4_buddy e4b; 5868 LIST_HEAD(discard_list); 5869 struct ext4_prealloc_space *pa, *tmp; 5870 5871 mb_debug(sb, "discard locality group preallocation\n"); 5872 5873 spin_lock(&lg->lg_prealloc_lock); 5874 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 5875 pa_node.lg_list, 5876 lockdep_is_held(&lg->lg_prealloc_lock)) { 5877 spin_lock(&pa->pa_lock); 5878 if (atomic_read(&pa->pa_count)) { 5879 /* 5880 * This is the pa that we just used 5881 * for block allocation. So don't 5882 * free that 5883 */ 5884 spin_unlock(&pa->pa_lock); 5885 continue; 5886 } 5887 if (pa->pa_deleted) { 5888 spin_unlock(&pa->pa_lock); 5889 continue; 5890 } 5891 /* only lg prealloc space */ 5892 BUG_ON(pa->pa_type != MB_GROUP_PA); 5893 5894 /* seems this one can be freed ... */ 5895 ext4_mb_mark_pa_deleted(sb, pa); 5896 spin_unlock(&pa->pa_lock); 5897 5898 list_del_rcu(&pa->pa_node.lg_list); 5899 list_add(&pa->u.pa_tmp_list, &discard_list); 5900 5901 total_entries--; 5902 if (total_entries <= 5) { 5903 /* 5904 * we want to keep only 5 entries 5905 * allowing it to grow to 8. This 5906 * mak sure we don't call discard 5907 * soon for this list. 5908 */ 5909 break; 5910 } 5911 } 5912 spin_unlock(&lg->lg_prealloc_lock); 5913 5914 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 5915 int err; 5916 5917 group = ext4_get_group_number(sb, pa->pa_pstart); 5918 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5919 GFP_NOFS|__GFP_NOFAIL); 5920 if (err) { 5921 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5922 err, group); 5923 continue; 5924 } 5925 ext4_lock_group(sb, group); 5926 list_del(&pa->pa_group_list); 5927 ext4_mb_release_group_pa(&e4b, pa); 5928 ext4_unlock_group(sb, group); 5929 5930 ext4_mb_unload_buddy(&e4b); 5931 list_del(&pa->u.pa_tmp_list); 5932 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5933 } 5934 } 5935 5936 /* 5937 * We have incremented pa_count. So it cannot be freed at this 5938 * point. Also we hold lg_mutex. So no parallel allocation is 5939 * possible from this lg. That means pa_free cannot be updated. 5940 * 5941 * A parallel ext4_mb_discard_group_preallocations is possible. 5942 * which can cause the lg_prealloc_list to be updated. 5943 */ 5944 5945 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 5946 { 5947 int order, added = 0, lg_prealloc_count = 1; 5948 struct super_block *sb = ac->ac_sb; 5949 struct ext4_locality_group *lg = ac->ac_lg; 5950 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 5951 5952 order = fls(pa->pa_free) - 1; 5953 if (order > PREALLOC_TB_SIZE - 1) 5954 /* The max size of hash table is PREALLOC_TB_SIZE */ 5955 order = PREALLOC_TB_SIZE - 1; 5956 /* Add the prealloc space to lg */ 5957 spin_lock(&lg->lg_prealloc_lock); 5958 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 5959 pa_node.lg_list, 5960 lockdep_is_held(&lg->lg_prealloc_lock)) { 5961 spin_lock(&tmp_pa->pa_lock); 5962 if (tmp_pa->pa_deleted) { 5963 spin_unlock(&tmp_pa->pa_lock); 5964 continue; 5965 } 5966 if (!added && pa->pa_free < tmp_pa->pa_free) { 5967 /* Add to the tail of the previous entry */ 5968 list_add_tail_rcu(&pa->pa_node.lg_list, 5969 &tmp_pa->pa_node.lg_list); 5970 added = 1; 5971 /* 5972 * we want to count the total 5973 * number of entries in the list 5974 */ 5975 } 5976 spin_unlock(&tmp_pa->pa_lock); 5977 lg_prealloc_count++; 5978 } 5979 if (!added) 5980 list_add_tail_rcu(&pa->pa_node.lg_list, 5981 &lg->lg_prealloc_list[order]); 5982 spin_unlock(&lg->lg_prealloc_lock); 5983 5984 /* Now trim the list to be not more than 8 elements */ 5985 if (lg_prealloc_count > 8) 5986 ext4_mb_discard_lg_preallocations(sb, lg, 5987 order, lg_prealloc_count); 5988 } 5989 5990 /* 5991 * release all resource we used in allocation 5992 */ 5993 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 5994 { 5995 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5996 struct ext4_prealloc_space *pa = ac->ac_pa; 5997 if (pa) { 5998 if (pa->pa_type == MB_GROUP_PA) { 5999 /* see comment in ext4_mb_use_group_pa() */ 6000 spin_lock(&pa->pa_lock); 6001 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 6002 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 6003 pa->pa_free -= ac->ac_b_ex.fe_len; 6004 pa->pa_len -= ac->ac_b_ex.fe_len; 6005 spin_unlock(&pa->pa_lock); 6006 6007 /* 6008 * We want to add the pa to the right bucket. 6009 * Remove it from the list and while adding 6010 * make sure the list to which we are adding 6011 * doesn't grow big. 6012 */ 6013 if (likely(pa->pa_free)) { 6014 spin_lock(pa->pa_node_lock.lg_lock); 6015 list_del_rcu(&pa->pa_node.lg_list); 6016 spin_unlock(pa->pa_node_lock.lg_lock); 6017 ext4_mb_add_n_trim(ac); 6018 } 6019 } 6020 6021 ext4_mb_put_pa(ac, ac->ac_sb, pa); 6022 } 6023 if (ac->ac_bitmap_page) 6024 put_page(ac->ac_bitmap_page); 6025 if (ac->ac_buddy_page) 6026 put_page(ac->ac_buddy_page); 6027 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 6028 mutex_unlock(&ac->ac_lg->lg_mutex); 6029 ext4_mb_collect_stats(ac); 6030 return 0; 6031 } 6032 6033 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 6034 { 6035 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 6036 int ret; 6037 int freed = 0, busy = 0; 6038 int retry = 0; 6039 6040 trace_ext4_mb_discard_preallocations(sb, needed); 6041 6042 if (needed == 0) 6043 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 6044 repeat: 6045 for (i = 0; i < ngroups && needed > 0; i++) { 6046 ret = ext4_mb_discard_group_preallocations(sb, i, &busy); 6047 freed += ret; 6048 needed -= ret; 6049 cond_resched(); 6050 } 6051 6052 if (needed > 0 && busy && ++retry < 3) { 6053 busy = 0; 6054 goto repeat; 6055 } 6056 6057 return freed; 6058 } 6059 6060 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 6061 struct ext4_allocation_context *ac, u64 *seq) 6062 { 6063 int freed; 6064 u64 seq_retry = 0; 6065 bool ret = false; 6066 6067 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 6068 if (freed) { 6069 ret = true; 6070 goto out_dbg; 6071 } 6072 seq_retry = ext4_get_discard_pa_seq_sum(); 6073 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 6074 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 6075 *seq = seq_retry; 6076 ret = true; 6077 } 6078 6079 out_dbg: 6080 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 6081 return ret; 6082 } 6083 6084 /* 6085 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 6086 * linearly starting at the goal block and also excludes the blocks which 6087 * are going to be in use after fast commit replay. 6088 */ 6089 static ext4_fsblk_t 6090 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp) 6091 { 6092 struct buffer_head *bitmap_bh; 6093 struct super_block *sb = ar->inode->i_sb; 6094 struct ext4_sb_info *sbi = EXT4_SB(sb); 6095 ext4_group_t group, nr; 6096 ext4_grpblk_t blkoff; 6097 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 6098 ext4_grpblk_t i = 0; 6099 ext4_fsblk_t goal, block; 6100 struct ext4_super_block *es = sbi->s_es; 6101 6102 goal = ar->goal; 6103 if (goal < le32_to_cpu(es->s_first_data_block) || 6104 goal >= ext4_blocks_count(es)) 6105 goal = le32_to_cpu(es->s_first_data_block); 6106 6107 ar->len = 0; 6108 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 6109 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) { 6110 bitmap_bh = ext4_read_block_bitmap(sb, group); 6111 if (IS_ERR(bitmap_bh)) { 6112 *errp = PTR_ERR(bitmap_bh); 6113 pr_warn("Failed to read block bitmap\n"); 6114 return 0; 6115 } 6116 6117 while (1) { 6118 i = mb_find_next_zero_bit(bitmap_bh->b_data, max, 6119 blkoff); 6120 if (i >= max) 6121 break; 6122 if (ext4_fc_replay_check_excluded(sb, 6123 ext4_group_first_block_no(sb, group) + 6124 EXT4_C2B(sbi, i))) { 6125 blkoff = i + 1; 6126 } else 6127 break; 6128 } 6129 brelse(bitmap_bh); 6130 if (i < max) 6131 break; 6132 6133 if (++group >= ext4_get_groups_count(sb)) 6134 group = 0; 6135 6136 blkoff = 0; 6137 } 6138 6139 if (i >= max) { 6140 *errp = -ENOSPC; 6141 return 0; 6142 } 6143 6144 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i); 6145 ext4_mb_mark_bb(sb, block, 1, 1); 6146 ar->len = 1; 6147 6148 *errp = 0; 6149 return block; 6150 } 6151 6152 /* 6153 * Main entry point into mballoc to allocate blocks 6154 * it tries to use preallocation first, then falls back 6155 * to usual allocation 6156 */ 6157 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 6158 struct ext4_allocation_request *ar, int *errp) 6159 { 6160 struct ext4_allocation_context *ac = NULL; 6161 struct ext4_sb_info *sbi; 6162 struct super_block *sb; 6163 ext4_fsblk_t block = 0; 6164 unsigned int inquota = 0; 6165 unsigned int reserv_clstrs = 0; 6166 int retries = 0; 6167 u64 seq; 6168 6169 might_sleep(); 6170 sb = ar->inode->i_sb; 6171 sbi = EXT4_SB(sb); 6172 6173 trace_ext4_request_blocks(ar); 6174 if (sbi->s_mount_state & EXT4_FC_REPLAY) 6175 return ext4_mb_new_blocks_simple(ar, errp); 6176 6177 /* Allow to use superuser reservation for quota file */ 6178 if (ext4_is_quota_file(ar->inode)) 6179 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 6180 6181 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 6182 /* Without delayed allocation we need to verify 6183 * there is enough free blocks to do block allocation 6184 * and verify allocation doesn't exceed the quota limits. 6185 */ 6186 while (ar->len && 6187 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 6188 6189 /* let others to free the space */ 6190 cond_resched(); 6191 ar->len = ar->len >> 1; 6192 } 6193 if (!ar->len) { 6194 ext4_mb_show_pa(sb); 6195 *errp = -ENOSPC; 6196 return 0; 6197 } 6198 reserv_clstrs = ar->len; 6199 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 6200 dquot_alloc_block_nofail(ar->inode, 6201 EXT4_C2B(sbi, ar->len)); 6202 } else { 6203 while (ar->len && 6204 dquot_alloc_block(ar->inode, 6205 EXT4_C2B(sbi, ar->len))) { 6206 6207 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 6208 ar->len--; 6209 } 6210 } 6211 inquota = ar->len; 6212 if (ar->len == 0) { 6213 *errp = -EDQUOT; 6214 goto out; 6215 } 6216 } 6217 6218 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 6219 if (!ac) { 6220 ar->len = 0; 6221 *errp = -ENOMEM; 6222 goto out; 6223 } 6224 6225 ext4_mb_initialize_context(ac, ar); 6226 6227 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 6228 seq = this_cpu_read(discard_pa_seq); 6229 if (!ext4_mb_use_preallocated(ac)) { 6230 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 6231 ext4_mb_normalize_request(ac, ar); 6232 6233 *errp = ext4_mb_pa_alloc(ac); 6234 if (*errp) 6235 goto errout; 6236 repeat: 6237 /* allocate space in core */ 6238 *errp = ext4_mb_regular_allocator(ac); 6239 /* 6240 * pa allocated above is added to grp->bb_prealloc_list only 6241 * when we were able to allocate some block i.e. when 6242 * ac->ac_status == AC_STATUS_FOUND. 6243 * And error from above mean ac->ac_status != AC_STATUS_FOUND 6244 * So we have to free this pa here itself. 6245 */ 6246 if (*errp) { 6247 ext4_mb_pa_put_free(ac); 6248 ext4_discard_allocated_blocks(ac); 6249 goto errout; 6250 } 6251 if (ac->ac_status == AC_STATUS_FOUND && 6252 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 6253 ext4_mb_pa_put_free(ac); 6254 } 6255 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 6256 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 6257 if (*errp) { 6258 ext4_discard_allocated_blocks(ac); 6259 goto errout; 6260 } else { 6261 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 6262 ar->len = ac->ac_b_ex.fe_len; 6263 } 6264 } else { 6265 if (++retries < 3 && 6266 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 6267 goto repeat; 6268 /* 6269 * If block allocation fails then the pa allocated above 6270 * needs to be freed here itself. 6271 */ 6272 ext4_mb_pa_put_free(ac); 6273 *errp = -ENOSPC; 6274 } 6275 6276 if (*errp) { 6277 errout: 6278 ac->ac_b_ex.fe_len = 0; 6279 ar->len = 0; 6280 ext4_mb_show_ac(ac); 6281 } 6282 ext4_mb_release_context(ac); 6283 kmem_cache_free(ext4_ac_cachep, ac); 6284 out: 6285 if (inquota && ar->len < inquota) 6286 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 6287 if (!ar->len) { 6288 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 6289 /* release all the reserved blocks if non delalloc */ 6290 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 6291 reserv_clstrs); 6292 } 6293 6294 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 6295 6296 return block; 6297 } 6298 6299 /* 6300 * We can merge two free data extents only if the physical blocks 6301 * are contiguous, AND the extents were freed by the same transaction, 6302 * AND the blocks are associated with the same group. 6303 */ 6304 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 6305 struct ext4_free_data *entry, 6306 struct ext4_free_data *new_entry, 6307 struct rb_root *entry_rb_root) 6308 { 6309 if ((entry->efd_tid != new_entry->efd_tid) || 6310 (entry->efd_group != new_entry->efd_group)) 6311 return; 6312 if (entry->efd_start_cluster + entry->efd_count == 6313 new_entry->efd_start_cluster) { 6314 new_entry->efd_start_cluster = entry->efd_start_cluster; 6315 new_entry->efd_count += entry->efd_count; 6316 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 6317 entry->efd_start_cluster) { 6318 new_entry->efd_count += entry->efd_count; 6319 } else 6320 return; 6321 spin_lock(&sbi->s_md_lock); 6322 list_del(&entry->efd_list); 6323 spin_unlock(&sbi->s_md_lock); 6324 rb_erase(&entry->efd_node, entry_rb_root); 6325 kmem_cache_free(ext4_free_data_cachep, entry); 6326 } 6327 6328 static noinline_for_stack void 6329 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 6330 struct ext4_free_data *new_entry) 6331 { 6332 ext4_group_t group = e4b->bd_group; 6333 ext4_grpblk_t cluster; 6334 ext4_grpblk_t clusters = new_entry->efd_count; 6335 struct ext4_free_data *entry; 6336 struct ext4_group_info *db = e4b->bd_info; 6337 struct super_block *sb = e4b->bd_sb; 6338 struct ext4_sb_info *sbi = EXT4_SB(sb); 6339 struct rb_node **n = &db->bb_free_root.rb_node, *node; 6340 struct rb_node *parent = NULL, *new_node; 6341 6342 BUG_ON(!ext4_handle_valid(handle)); 6343 BUG_ON(e4b->bd_bitmap_page == NULL); 6344 BUG_ON(e4b->bd_buddy_page == NULL); 6345 6346 new_node = &new_entry->efd_node; 6347 cluster = new_entry->efd_start_cluster; 6348 6349 if (!*n) { 6350 /* first free block exent. We need to 6351 protect buddy cache from being freed, 6352 * otherwise we'll refresh it from 6353 * on-disk bitmap and lose not-yet-available 6354 * blocks */ 6355 get_page(e4b->bd_buddy_page); 6356 get_page(e4b->bd_bitmap_page); 6357 } 6358 while (*n) { 6359 parent = *n; 6360 entry = rb_entry(parent, struct ext4_free_data, efd_node); 6361 if (cluster < entry->efd_start_cluster) 6362 n = &(*n)->rb_left; 6363 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 6364 n = &(*n)->rb_right; 6365 else { 6366 ext4_grp_locked_error(sb, group, 0, 6367 ext4_group_first_block_no(sb, group) + 6368 EXT4_C2B(sbi, cluster), 6369 "Block already on to-be-freed list"); 6370 kmem_cache_free(ext4_free_data_cachep, new_entry); 6371 return; 6372 } 6373 } 6374 6375 rb_link_node(new_node, parent, n); 6376 rb_insert_color(new_node, &db->bb_free_root); 6377 6378 /* Now try to see the extent can be merged to left and right */ 6379 node = rb_prev(new_node); 6380 if (node) { 6381 entry = rb_entry(node, struct ext4_free_data, efd_node); 6382 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6383 &(db->bb_free_root)); 6384 } 6385 6386 node = rb_next(new_node); 6387 if (node) { 6388 entry = rb_entry(node, struct ext4_free_data, efd_node); 6389 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6390 &(db->bb_free_root)); 6391 } 6392 6393 spin_lock(&sbi->s_md_lock); 6394 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 6395 sbi->s_mb_free_pending += clusters; 6396 spin_unlock(&sbi->s_md_lock); 6397 } 6398 6399 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 6400 unsigned long count) 6401 { 6402 struct buffer_head *bitmap_bh; 6403 struct super_block *sb = inode->i_sb; 6404 struct ext4_group_desc *gdp; 6405 struct buffer_head *gdp_bh; 6406 ext4_group_t group; 6407 ext4_grpblk_t blkoff; 6408 int already_freed = 0, err, i; 6409 6410 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 6411 bitmap_bh = ext4_read_block_bitmap(sb, group); 6412 if (IS_ERR(bitmap_bh)) { 6413 pr_warn("Failed to read block bitmap\n"); 6414 return; 6415 } 6416 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 6417 if (!gdp) 6418 goto err_out; 6419 6420 for (i = 0; i < count; i++) { 6421 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data)) 6422 already_freed++; 6423 } 6424 mb_clear_bits(bitmap_bh->b_data, blkoff, count); 6425 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 6426 if (err) 6427 goto err_out; 6428 ext4_free_group_clusters_set( 6429 sb, gdp, ext4_free_group_clusters(sb, gdp) + 6430 count - already_freed); 6431 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 6432 ext4_group_desc_csum_set(sb, group, gdp); 6433 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 6434 sync_dirty_buffer(bitmap_bh); 6435 sync_dirty_buffer(gdp_bh); 6436 6437 err_out: 6438 brelse(bitmap_bh); 6439 } 6440 6441 /** 6442 * ext4_mb_clear_bb() -- helper function for freeing blocks. 6443 * Used by ext4_free_blocks() 6444 * @handle: handle for this transaction 6445 * @inode: inode 6446 * @block: starting physical block to be freed 6447 * @count: number of blocks to be freed 6448 * @flags: flags used by ext4_free_blocks 6449 */ 6450 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, 6451 ext4_fsblk_t block, unsigned long count, 6452 int flags) 6453 { 6454 struct buffer_head *bitmap_bh = NULL; 6455 struct super_block *sb = inode->i_sb; 6456 struct ext4_group_desc *gdp; 6457 struct ext4_group_info *grp; 6458 unsigned int overflow; 6459 ext4_grpblk_t bit; 6460 struct buffer_head *gd_bh; 6461 ext4_group_t block_group; 6462 struct ext4_sb_info *sbi; 6463 struct ext4_buddy e4b; 6464 unsigned int count_clusters; 6465 int err = 0; 6466 int ret; 6467 6468 sbi = EXT4_SB(sb); 6469 6470 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6471 !ext4_inode_block_valid(inode, block, count)) { 6472 ext4_error(sb, "Freeing blocks in system zone - " 6473 "Block = %llu, count = %lu", block, count); 6474 /* err = 0. ext4_std_error should be a no op */ 6475 goto error_return; 6476 } 6477 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6478 6479 do_more: 6480 overflow = 0; 6481 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6482 6483 grp = ext4_get_group_info(sb, block_group); 6484 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 6485 return; 6486 6487 /* 6488 * Check to see if we are freeing blocks across a group 6489 * boundary. 6490 */ 6491 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 6492 overflow = EXT4_C2B(sbi, bit) + count - 6493 EXT4_BLOCKS_PER_GROUP(sb); 6494 count -= overflow; 6495 /* The range changed so it's no longer validated */ 6496 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6497 } 6498 count_clusters = EXT4_NUM_B2C(sbi, count); 6499 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6500 if (IS_ERR(bitmap_bh)) { 6501 err = PTR_ERR(bitmap_bh); 6502 bitmap_bh = NULL; 6503 goto error_return; 6504 } 6505 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 6506 if (!gdp) { 6507 err = -EIO; 6508 goto error_return; 6509 } 6510 6511 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6512 !ext4_inode_block_valid(inode, block, count)) { 6513 ext4_error(sb, "Freeing blocks in system zone - " 6514 "Block = %llu, count = %lu", block, count); 6515 /* err = 0. ext4_std_error should be a no op */ 6516 goto error_return; 6517 } 6518 6519 BUFFER_TRACE(bitmap_bh, "getting write access"); 6520 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6521 EXT4_JTR_NONE); 6522 if (err) 6523 goto error_return; 6524 6525 /* 6526 * We are about to modify some metadata. Call the journal APIs 6527 * to unshare ->b_data if a currently-committing transaction is 6528 * using it 6529 */ 6530 BUFFER_TRACE(gd_bh, "get_write_access"); 6531 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6532 if (err) 6533 goto error_return; 6534 #ifdef AGGRESSIVE_CHECK 6535 { 6536 int i; 6537 for (i = 0; i < count_clusters; i++) 6538 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 6539 } 6540 #endif 6541 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 6542 6543 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 6544 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 6545 GFP_NOFS|__GFP_NOFAIL); 6546 if (err) 6547 goto error_return; 6548 6549 /* 6550 * We need to make sure we don't reuse the freed block until after the 6551 * transaction is committed. We make an exception if the inode is to be 6552 * written in writeback mode since writeback mode has weak data 6553 * consistency guarantees. 6554 */ 6555 if (ext4_handle_valid(handle) && 6556 ((flags & EXT4_FREE_BLOCKS_METADATA) || 6557 !ext4_should_writeback_data(inode))) { 6558 struct ext4_free_data *new_entry; 6559 /* 6560 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 6561 * to fail. 6562 */ 6563 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 6564 GFP_NOFS|__GFP_NOFAIL); 6565 new_entry->efd_start_cluster = bit; 6566 new_entry->efd_group = block_group; 6567 new_entry->efd_count = count_clusters; 6568 new_entry->efd_tid = handle->h_transaction->t_tid; 6569 6570 ext4_lock_group(sb, block_group); 6571 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6572 ext4_mb_free_metadata(handle, &e4b, new_entry); 6573 } else { 6574 /* need to update group_info->bb_free and bitmap 6575 * with group lock held. generate_buddy look at 6576 * them with group lock_held 6577 */ 6578 if (test_opt(sb, DISCARD)) { 6579 err = ext4_issue_discard(sb, block_group, bit, 6580 count_clusters, NULL); 6581 if (err && err != -EOPNOTSUPP) 6582 ext4_msg(sb, KERN_WARNING, "discard request in" 6583 " group:%u block:%d count:%lu failed" 6584 " with %d", block_group, bit, count, 6585 err); 6586 } 6587 6588 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 6589 6590 ext4_lock_group(sb, block_group); 6591 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6592 mb_free_blocks(inode, &e4b, bit, count_clusters); 6593 } 6594 6595 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 6596 ext4_free_group_clusters_set(sb, gdp, ret); 6597 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 6598 ext4_group_desc_csum_set(sb, block_group, gdp); 6599 ext4_unlock_group(sb, block_group); 6600 6601 if (sbi->s_log_groups_per_flex) { 6602 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6603 atomic64_add(count_clusters, 6604 &sbi_array_rcu_deref(sbi, s_flex_groups, 6605 flex_group)->free_clusters); 6606 } 6607 6608 /* 6609 * on a bigalloc file system, defer the s_freeclusters_counter 6610 * update to the caller (ext4_remove_space and friends) so they 6611 * can determine if a cluster freed here should be rereserved 6612 */ 6613 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 6614 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 6615 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 6616 percpu_counter_add(&sbi->s_freeclusters_counter, 6617 count_clusters); 6618 } 6619 6620 ext4_mb_unload_buddy(&e4b); 6621 6622 /* We dirtied the bitmap block */ 6623 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6624 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6625 6626 /* And the group descriptor block */ 6627 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6628 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6629 if (!err) 6630 err = ret; 6631 6632 if (overflow && !err) { 6633 block += count; 6634 count = overflow; 6635 put_bh(bitmap_bh); 6636 /* The range changed so it's no longer validated */ 6637 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6638 goto do_more; 6639 } 6640 error_return: 6641 brelse(bitmap_bh); 6642 ext4_std_error(sb, err); 6643 } 6644 6645 /** 6646 * ext4_free_blocks() -- Free given blocks and update quota 6647 * @handle: handle for this transaction 6648 * @inode: inode 6649 * @bh: optional buffer of the block to be freed 6650 * @block: starting physical block to be freed 6651 * @count: number of blocks to be freed 6652 * @flags: flags used by ext4_free_blocks 6653 */ 6654 void ext4_free_blocks(handle_t *handle, struct inode *inode, 6655 struct buffer_head *bh, ext4_fsblk_t block, 6656 unsigned long count, int flags) 6657 { 6658 struct super_block *sb = inode->i_sb; 6659 unsigned int overflow; 6660 struct ext4_sb_info *sbi; 6661 6662 sbi = EXT4_SB(sb); 6663 6664 if (bh) { 6665 if (block) 6666 BUG_ON(block != bh->b_blocknr); 6667 else 6668 block = bh->b_blocknr; 6669 } 6670 6671 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 6672 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count)); 6673 return; 6674 } 6675 6676 might_sleep(); 6677 6678 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6679 !ext4_inode_block_valid(inode, block, count)) { 6680 ext4_error(sb, "Freeing blocks not in datazone - " 6681 "block = %llu, count = %lu", block, count); 6682 return; 6683 } 6684 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6685 6686 ext4_debug("freeing block %llu\n", block); 6687 trace_ext4_free_blocks(inode, block, count, flags); 6688 6689 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6690 BUG_ON(count > 1); 6691 6692 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 6693 inode, bh, block); 6694 } 6695 6696 /* 6697 * If the extent to be freed does not begin on a cluster 6698 * boundary, we need to deal with partial clusters at the 6699 * beginning and end of the extent. Normally we will free 6700 * blocks at the beginning or the end unless we are explicitly 6701 * requested to avoid doing so. 6702 */ 6703 overflow = EXT4_PBLK_COFF(sbi, block); 6704 if (overflow) { 6705 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 6706 overflow = sbi->s_cluster_ratio - overflow; 6707 block += overflow; 6708 if (count > overflow) 6709 count -= overflow; 6710 else 6711 return; 6712 } else { 6713 block -= overflow; 6714 count += overflow; 6715 } 6716 /* The range changed so it's no longer validated */ 6717 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6718 } 6719 overflow = EXT4_LBLK_COFF(sbi, count); 6720 if (overflow) { 6721 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 6722 if (count > overflow) 6723 count -= overflow; 6724 else 6725 return; 6726 } else 6727 count += sbi->s_cluster_ratio - overflow; 6728 /* The range changed so it's no longer validated */ 6729 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6730 } 6731 6732 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6733 int i; 6734 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 6735 6736 for (i = 0; i < count; i++) { 6737 cond_resched(); 6738 if (is_metadata) 6739 bh = sb_find_get_block(inode->i_sb, block + i); 6740 ext4_forget(handle, is_metadata, inode, bh, block + i); 6741 } 6742 } 6743 6744 ext4_mb_clear_bb(handle, inode, block, count, flags); 6745 } 6746 6747 /** 6748 * ext4_group_add_blocks() -- Add given blocks to an existing group 6749 * @handle: handle to this transaction 6750 * @sb: super block 6751 * @block: start physical block to add to the block group 6752 * @count: number of blocks to free 6753 * 6754 * This marks the blocks as free in the bitmap and buddy. 6755 */ 6756 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 6757 ext4_fsblk_t block, unsigned long count) 6758 { 6759 struct buffer_head *bitmap_bh = NULL; 6760 struct buffer_head *gd_bh; 6761 ext4_group_t block_group; 6762 ext4_grpblk_t bit; 6763 unsigned int i; 6764 struct ext4_group_desc *desc; 6765 struct ext4_sb_info *sbi = EXT4_SB(sb); 6766 struct ext4_buddy e4b; 6767 int err = 0, ret, free_clusters_count; 6768 ext4_grpblk_t clusters_freed; 6769 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 6770 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 6771 unsigned long cluster_count = last_cluster - first_cluster + 1; 6772 6773 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 6774 6775 if (count == 0) 6776 return 0; 6777 6778 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6779 /* 6780 * Check to see if we are freeing blocks across a group 6781 * boundary. 6782 */ 6783 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 6784 ext4_warning(sb, "too many blocks added to group %u", 6785 block_group); 6786 err = -EINVAL; 6787 goto error_return; 6788 } 6789 6790 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6791 if (IS_ERR(bitmap_bh)) { 6792 err = PTR_ERR(bitmap_bh); 6793 bitmap_bh = NULL; 6794 goto error_return; 6795 } 6796 6797 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 6798 if (!desc) { 6799 err = -EIO; 6800 goto error_return; 6801 } 6802 6803 if (!ext4_sb_block_valid(sb, NULL, block, count)) { 6804 ext4_error(sb, "Adding blocks in system zones - " 6805 "Block = %llu, count = %lu", 6806 block, count); 6807 err = -EINVAL; 6808 goto error_return; 6809 } 6810 6811 BUFFER_TRACE(bitmap_bh, "getting write access"); 6812 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6813 EXT4_JTR_NONE); 6814 if (err) 6815 goto error_return; 6816 6817 /* 6818 * We are about to modify some metadata. Call the journal APIs 6819 * to unshare ->b_data if a currently-committing transaction is 6820 * using it 6821 */ 6822 BUFFER_TRACE(gd_bh, "get_write_access"); 6823 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6824 if (err) 6825 goto error_return; 6826 6827 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 6828 BUFFER_TRACE(bitmap_bh, "clear bit"); 6829 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 6830 ext4_error(sb, "bit already cleared for block %llu", 6831 (ext4_fsblk_t)(block + i)); 6832 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 6833 } else { 6834 clusters_freed++; 6835 } 6836 } 6837 6838 err = ext4_mb_load_buddy(sb, block_group, &e4b); 6839 if (err) 6840 goto error_return; 6841 6842 /* 6843 * need to update group_info->bb_free and bitmap 6844 * with group lock held. generate_buddy look at 6845 * them with group lock_held 6846 */ 6847 ext4_lock_group(sb, block_group); 6848 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 6849 mb_free_blocks(NULL, &e4b, bit, cluster_count); 6850 free_clusters_count = clusters_freed + 6851 ext4_free_group_clusters(sb, desc); 6852 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 6853 ext4_block_bitmap_csum_set(sb, desc, bitmap_bh); 6854 ext4_group_desc_csum_set(sb, block_group, desc); 6855 ext4_unlock_group(sb, block_group); 6856 percpu_counter_add(&sbi->s_freeclusters_counter, 6857 clusters_freed); 6858 6859 if (sbi->s_log_groups_per_flex) { 6860 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6861 atomic64_add(clusters_freed, 6862 &sbi_array_rcu_deref(sbi, s_flex_groups, 6863 flex_group)->free_clusters); 6864 } 6865 6866 ext4_mb_unload_buddy(&e4b); 6867 6868 /* We dirtied the bitmap block */ 6869 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6870 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6871 6872 /* And the group descriptor block */ 6873 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6874 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6875 if (!err) 6876 err = ret; 6877 6878 error_return: 6879 brelse(bitmap_bh); 6880 ext4_std_error(sb, err); 6881 return err; 6882 } 6883 6884 /** 6885 * ext4_trim_extent -- function to TRIM one single free extent in the group 6886 * @sb: super block for the file system 6887 * @start: starting block of the free extent in the alloc. group 6888 * @count: number of blocks to TRIM 6889 * @e4b: ext4 buddy for the group 6890 * 6891 * Trim "count" blocks starting at "start" in the "group". To assure that no 6892 * one will allocate those blocks, mark it as used in buddy bitmap. This must 6893 * be called with under the group lock. 6894 */ 6895 static int ext4_trim_extent(struct super_block *sb, 6896 int start, int count, struct ext4_buddy *e4b) 6897 __releases(bitlock) 6898 __acquires(bitlock) 6899 { 6900 struct ext4_free_extent ex; 6901 ext4_group_t group = e4b->bd_group; 6902 int ret = 0; 6903 6904 trace_ext4_trim_extent(sb, group, start, count); 6905 6906 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 6907 6908 ex.fe_start = start; 6909 ex.fe_group = group; 6910 ex.fe_len = count; 6911 6912 /* 6913 * Mark blocks used, so no one can reuse them while 6914 * being trimmed. 6915 */ 6916 mb_mark_used(e4b, &ex); 6917 ext4_unlock_group(sb, group); 6918 ret = ext4_issue_discard(sb, group, start, count, NULL); 6919 ext4_lock_group(sb, group); 6920 mb_free_blocks(NULL, e4b, start, ex.fe_len); 6921 return ret; 6922 } 6923 6924 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb, 6925 ext4_group_t grp) 6926 { 6927 unsigned long nr_clusters_in_group; 6928 6929 if (grp < (ext4_get_groups_count(sb) - 1)) 6930 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb); 6931 else 6932 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) - 6933 ext4_group_first_block_no(sb, grp)) 6934 >> EXT4_CLUSTER_BITS(sb); 6935 6936 return nr_clusters_in_group - 1; 6937 } 6938 6939 static bool ext4_trim_interrupted(void) 6940 { 6941 return fatal_signal_pending(current) || freezing(current); 6942 } 6943 6944 static int ext4_try_to_trim_range(struct super_block *sb, 6945 struct ext4_buddy *e4b, ext4_grpblk_t start, 6946 ext4_grpblk_t max, ext4_grpblk_t minblocks) 6947 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) 6948 __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) 6949 { 6950 ext4_grpblk_t next, count, free_count, last, origin_start; 6951 bool set_trimmed = false; 6952 void *bitmap; 6953 6954 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 6955 return 0; 6956 6957 last = ext4_last_grp_cluster(sb, e4b->bd_group); 6958 bitmap = e4b->bd_bitmap; 6959 if (start == 0 && max >= last) 6960 set_trimmed = true; 6961 origin_start = start; 6962 start = max(e4b->bd_info->bb_first_free, start); 6963 count = 0; 6964 free_count = 0; 6965 6966 while (start <= max) { 6967 start = mb_find_next_zero_bit(bitmap, max + 1, start); 6968 if (start > max) 6969 break; 6970 6971 next = mb_find_next_bit(bitmap, last + 1, start); 6972 if (origin_start == 0 && next >= last) 6973 set_trimmed = true; 6974 6975 if ((next - start) >= minblocks) { 6976 int ret = ext4_trim_extent(sb, start, next - start, e4b); 6977 6978 if (ret && ret != -EOPNOTSUPP) 6979 return count; 6980 count += next - start; 6981 } 6982 free_count += next - start; 6983 start = next + 1; 6984 6985 if (ext4_trim_interrupted()) 6986 return count; 6987 6988 if (need_resched()) { 6989 ext4_unlock_group(sb, e4b->bd_group); 6990 cond_resched(); 6991 ext4_lock_group(sb, e4b->bd_group); 6992 } 6993 6994 if ((e4b->bd_info->bb_free - free_count) < minblocks) 6995 break; 6996 } 6997 6998 if (set_trimmed) 6999 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info); 7000 7001 return count; 7002 } 7003 7004 /** 7005 * ext4_trim_all_free -- function to trim all free space in alloc. group 7006 * @sb: super block for file system 7007 * @group: group to be trimmed 7008 * @start: first group block to examine 7009 * @max: last group block to examine 7010 * @minblocks: minimum extent block count 7011 * 7012 * ext4_trim_all_free walks through group's block bitmap searching for free 7013 * extents. When the free extent is found, mark it as used in group buddy 7014 * bitmap. Then issue a TRIM command on this extent and free the extent in 7015 * the group buddy bitmap. 7016 */ 7017 static ext4_grpblk_t 7018 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 7019 ext4_grpblk_t start, ext4_grpblk_t max, 7020 ext4_grpblk_t minblocks) 7021 { 7022 struct ext4_buddy e4b; 7023 int ret; 7024 7025 trace_ext4_trim_all_free(sb, group, start, max); 7026 7027 ret = ext4_mb_load_buddy(sb, group, &e4b); 7028 if (ret) { 7029 ext4_warning(sb, "Error %d loading buddy information for %u", 7030 ret, group); 7031 return ret; 7032 } 7033 7034 ext4_lock_group(sb, group); 7035 7036 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || 7037 minblocks < EXT4_SB(sb)->s_last_trim_minblks) 7038 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); 7039 else 7040 ret = 0; 7041 7042 ext4_unlock_group(sb, group); 7043 ext4_mb_unload_buddy(&e4b); 7044 7045 ext4_debug("trimmed %d blocks in the group %d\n", 7046 ret, group); 7047 7048 return ret; 7049 } 7050 7051 /** 7052 * ext4_trim_fs() -- trim ioctl handle function 7053 * @sb: superblock for filesystem 7054 * @range: fstrim_range structure 7055 * 7056 * start: First Byte to trim 7057 * len: number of Bytes to trim from start 7058 * minlen: minimum extent length in Bytes 7059 * ext4_trim_fs goes through all allocation groups containing Bytes from 7060 * start to start+len. For each such a group ext4_trim_all_free function 7061 * is invoked to trim all free space. 7062 */ 7063 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 7064 { 7065 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev); 7066 struct ext4_group_info *grp; 7067 ext4_group_t group, first_group, last_group; 7068 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 7069 uint64_t start, end, minlen, trimmed = 0; 7070 ext4_fsblk_t first_data_blk = 7071 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 7072 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 7073 int ret = 0; 7074 7075 start = range->start >> sb->s_blocksize_bits; 7076 end = start + (range->len >> sb->s_blocksize_bits) - 1; 7077 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7078 range->minlen >> sb->s_blocksize_bits); 7079 7080 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 7081 start >= max_blks || 7082 range->len < sb->s_blocksize) 7083 return -EINVAL; 7084 /* No point to try to trim less than discard granularity */ 7085 if (range->minlen < discard_granularity) { 7086 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7087 discard_granularity >> sb->s_blocksize_bits); 7088 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) 7089 goto out; 7090 } 7091 if (end >= max_blks - 1) 7092 end = max_blks - 1; 7093 if (end <= first_data_blk) 7094 goto out; 7095 if (start < first_data_blk) 7096 start = first_data_blk; 7097 7098 /* Determine first and last group to examine based on start and end */ 7099 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 7100 &first_group, &first_cluster); 7101 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 7102 &last_group, &last_cluster); 7103 7104 /* end now represents the last cluster to discard in this group */ 7105 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7106 7107 for (group = first_group; group <= last_group; group++) { 7108 if (ext4_trim_interrupted()) 7109 break; 7110 grp = ext4_get_group_info(sb, group); 7111 if (!grp) 7112 continue; 7113 /* We only do this if the grp has never been initialized */ 7114 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 7115 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 7116 if (ret) 7117 break; 7118 } 7119 7120 /* 7121 * For all the groups except the last one, last cluster will 7122 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 7123 * change it for the last group, note that last_cluster is 7124 * already computed earlier by ext4_get_group_no_and_offset() 7125 */ 7126 if (group == last_group) 7127 end = last_cluster; 7128 if (grp->bb_free >= minlen) { 7129 cnt = ext4_trim_all_free(sb, group, first_cluster, 7130 end, minlen); 7131 if (cnt < 0) { 7132 ret = cnt; 7133 break; 7134 } 7135 trimmed += cnt; 7136 } 7137 7138 /* 7139 * For every group except the first one, we are sure 7140 * that the first cluster to discard will be cluster #0. 7141 */ 7142 first_cluster = 0; 7143 } 7144 7145 if (!ret) 7146 EXT4_SB(sb)->s_last_trim_minblks = minlen; 7147 7148 out: 7149 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 7150 return ret; 7151 } 7152 7153 /* Iterate all the free extents in the group. */ 7154 int 7155 ext4_mballoc_query_range( 7156 struct super_block *sb, 7157 ext4_group_t group, 7158 ext4_grpblk_t first, 7159 ext4_grpblk_t end, 7160 ext4_mballoc_query_range_fn meta_formatter, 7161 ext4_mballoc_query_range_fn formatter, 7162 void *priv) 7163 { 7164 void *bitmap; 7165 ext4_grpblk_t start, next; 7166 struct ext4_buddy e4b; 7167 int error; 7168 7169 error = ext4_mb_load_buddy(sb, group, &e4b); 7170 if (error) 7171 return error; 7172 bitmap = e4b.bd_bitmap; 7173 7174 ext4_lock_group(sb, group); 7175 7176 start = max(e4b.bd_info->bb_first_free, first); 7177 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 7178 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7179 if (meta_formatter && start != first) { 7180 if (start > end) 7181 start = end; 7182 ext4_unlock_group(sb, group); 7183 error = meta_formatter(sb, group, first, start - first, 7184 priv); 7185 if (error) 7186 goto out_unload; 7187 ext4_lock_group(sb, group); 7188 } 7189 while (start <= end) { 7190 start = mb_find_next_zero_bit(bitmap, end + 1, start); 7191 if (start > end) 7192 break; 7193 next = mb_find_next_bit(bitmap, end + 1, start); 7194 7195 ext4_unlock_group(sb, group); 7196 error = formatter(sb, group, start, next - start, priv); 7197 if (error) 7198 goto out_unload; 7199 ext4_lock_group(sb, group); 7200 7201 start = next + 1; 7202 } 7203 7204 ext4_unlock_group(sb, group); 7205 out_unload: 7206 ext4_mb_unload_buddy(&e4b); 7207 7208 return error; 7209 } 7210