1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "mballoc.h" 26 #include <linux/log2.h> 27 #include <linux/module.h> 28 #include <linux/slab.h> 29 #include <trace/events/ext4.h> 30 31 #ifdef CONFIG_EXT4_DEBUG 32 ushort ext4_mballoc_debug __read_mostly; 33 34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644); 35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc"); 36 #endif 37 38 /* 39 * MUSTDO: 40 * - test ext4_ext_search_left() and ext4_ext_search_right() 41 * - search for metadata in few groups 42 * 43 * TODO v4: 44 * - normalization should take into account whether file is still open 45 * - discard preallocations if no free space left (policy?) 46 * - don't normalize tails 47 * - quota 48 * - reservation for superuser 49 * 50 * TODO v3: 51 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 52 * - track min/max extents in each group for better group selection 53 * - mb_mark_used() may allocate chunk right after splitting buddy 54 * - tree of groups sorted by number of free blocks 55 * - error handling 56 */ 57 58 /* 59 * The allocation request involve request for multiple number of blocks 60 * near to the goal(block) value specified. 61 * 62 * During initialization phase of the allocator we decide to use the 63 * group preallocation or inode preallocation depending on the size of 64 * the file. The size of the file could be the resulting file size we 65 * would have after allocation, or the current file size, which ever 66 * is larger. If the size is less than sbi->s_mb_stream_request we 67 * select to use the group preallocation. The default value of 68 * s_mb_stream_request is 16 blocks. This can also be tuned via 69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 70 * terms of number of blocks. 71 * 72 * The main motivation for having small file use group preallocation is to 73 * ensure that we have small files closer together on the disk. 74 * 75 * First stage the allocator looks at the inode prealloc list, 76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 77 * spaces for this particular inode. The inode prealloc space is 78 * represented as: 79 * 80 * pa_lstart -> the logical start block for this prealloc space 81 * pa_pstart -> the physical start block for this prealloc space 82 * pa_len -> length for this prealloc space (in clusters) 83 * pa_free -> free space available in this prealloc space (in clusters) 84 * 85 * The inode preallocation space is used looking at the _logical_ start 86 * block. If only the logical file block falls within the range of prealloc 87 * space we will consume the particular prealloc space. This makes sure that 88 * we have contiguous physical blocks representing the file blocks 89 * 90 * The important thing to be noted in case of inode prealloc space is that 91 * we don't modify the values associated to inode prealloc space except 92 * pa_free. 93 * 94 * If we are not able to find blocks in the inode prealloc space and if we 95 * have the group allocation flag set then we look at the locality group 96 * prealloc space. These are per CPU prealloc list represented as 97 * 98 * ext4_sb_info.s_locality_groups[smp_processor_id()] 99 * 100 * The reason for having a per cpu locality group is to reduce the contention 101 * between CPUs. It is possible to get scheduled at this point. 102 * 103 * The locality group prealloc space is used looking at whether we have 104 * enough free space (pa_free) within the prealloc space. 105 * 106 * If we can't allocate blocks via inode prealloc or/and locality group 107 * prealloc then we look at the buddy cache. The buddy cache is represented 108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 109 * mapped to the buddy and bitmap information regarding different 110 * groups. The buddy information is attached to buddy cache inode so that 111 * we can access them through the page cache. The information regarding 112 * each group is loaded via ext4_mb_load_buddy. The information involve 113 * block bitmap and buddy information. The information are stored in the 114 * inode as: 115 * 116 * { page } 117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 118 * 119 * 120 * one block each for bitmap and buddy information. So for each group we 121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 122 * blocksize) blocks. So it can have information regarding groups_per_page 123 * which is blocks_per_page/2 124 * 125 * The buddy cache inode is not stored on disk. The inode is thrown 126 * away when the filesystem is unmounted. 127 * 128 * We look for count number of blocks in the buddy cache. If we were able 129 * to locate that many free blocks we return with additional information 130 * regarding rest of the contiguous physical block available 131 * 132 * Before allocating blocks via buddy cache we normalize the request 133 * blocks. This ensure we ask for more blocks that we needed. The extra 134 * blocks that we get after allocation is added to the respective prealloc 135 * list. In case of inode preallocation we follow a list of heuristics 136 * based on file size. This can be found in ext4_mb_normalize_request. If 137 * we are doing a group prealloc we try to normalize the request to 138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 139 * dependent on the cluster size; for non-bigalloc file systems, it is 140 * 512 blocks. This can be tuned via 141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 142 * terms of number of blocks. If we have mounted the file system with -O 143 * stripe=<value> option the group prealloc request is normalized to the 144 * the smallest multiple of the stripe value (sbi->s_stripe) which is 145 * greater than the default mb_group_prealloc. 146 * 147 * The regular allocator (using the buddy cache) supports a few tunables. 148 * 149 * /sys/fs/ext4/<partition>/mb_min_to_scan 150 * /sys/fs/ext4/<partition>/mb_max_to_scan 151 * /sys/fs/ext4/<partition>/mb_order2_req 152 * 153 * The regular allocator uses buddy scan only if the request len is power of 154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 155 * value of s_mb_order2_reqs can be tuned via 156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 157 * stripe size (sbi->s_stripe), we try to search for contiguous block in 158 * stripe size. This should result in better allocation on RAID setups. If 159 * not, we search in the specific group using bitmap for best extents. The 160 * tunable min_to_scan and max_to_scan control the behaviour here. 161 * min_to_scan indicate how long the mballoc __must__ look for a best 162 * extent and max_to_scan indicates how long the mballoc __can__ look for a 163 * best extent in the found extents. Searching for the blocks starts with 164 * the group specified as the goal value in allocation context via 165 * ac_g_ex. Each group is first checked based on the criteria whether it 166 * can be used for allocation. ext4_mb_good_group explains how the groups are 167 * checked. 168 * 169 * Both the prealloc space are getting populated as above. So for the first 170 * request we will hit the buddy cache which will result in this prealloc 171 * space getting filled. The prealloc space is then later used for the 172 * subsequent request. 173 */ 174 175 /* 176 * mballoc operates on the following data: 177 * - on-disk bitmap 178 * - in-core buddy (actually includes buddy and bitmap) 179 * - preallocation descriptors (PAs) 180 * 181 * there are two types of preallocations: 182 * - inode 183 * assiged to specific inode and can be used for this inode only. 184 * it describes part of inode's space preallocated to specific 185 * physical blocks. any block from that preallocated can be used 186 * independent. the descriptor just tracks number of blocks left 187 * unused. so, before taking some block from descriptor, one must 188 * make sure corresponded logical block isn't allocated yet. this 189 * also means that freeing any block within descriptor's range 190 * must discard all preallocated blocks. 191 * - locality group 192 * assigned to specific locality group which does not translate to 193 * permanent set of inodes: inode can join and leave group. space 194 * from this type of preallocation can be used for any inode. thus 195 * it's consumed from the beginning to the end. 196 * 197 * relation between them can be expressed as: 198 * in-core buddy = on-disk bitmap + preallocation descriptors 199 * 200 * this mean blocks mballoc considers used are: 201 * - allocated blocks (persistent) 202 * - preallocated blocks (non-persistent) 203 * 204 * consistency in mballoc world means that at any time a block is either 205 * free or used in ALL structures. notice: "any time" should not be read 206 * literally -- time is discrete and delimited by locks. 207 * 208 * to keep it simple, we don't use block numbers, instead we count number of 209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 210 * 211 * all operations can be expressed as: 212 * - init buddy: buddy = on-disk + PAs 213 * - new PA: buddy += N; PA = N 214 * - use inode PA: on-disk += N; PA -= N 215 * - discard inode PA buddy -= on-disk - PA; PA = 0 216 * - use locality group PA on-disk += N; PA -= N 217 * - discard locality group PA buddy -= PA; PA = 0 218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 219 * is used in real operation because we can't know actual used 220 * bits from PA, only from on-disk bitmap 221 * 222 * if we follow this strict logic, then all operations above should be atomic. 223 * given some of them can block, we'd have to use something like semaphores 224 * killing performance on high-end SMP hardware. let's try to relax it using 225 * the following knowledge: 226 * 1) if buddy is referenced, it's already initialized 227 * 2) while block is used in buddy and the buddy is referenced, 228 * nobody can re-allocate that block 229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 230 * bit set and PA claims same block, it's OK. IOW, one can set bit in 231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 232 * block 233 * 234 * so, now we're building a concurrency table: 235 * - init buddy vs. 236 * - new PA 237 * blocks for PA are allocated in the buddy, buddy must be referenced 238 * until PA is linked to allocation group to avoid concurrent buddy init 239 * - use inode PA 240 * we need to make sure that either on-disk bitmap or PA has uptodate data 241 * given (3) we care that PA-=N operation doesn't interfere with init 242 * - discard inode PA 243 * the simplest way would be to have buddy initialized by the discard 244 * - use locality group PA 245 * again PA-=N must be serialized with init 246 * - discard locality group PA 247 * the simplest way would be to have buddy initialized by the discard 248 * - new PA vs. 249 * - use inode PA 250 * i_data_sem serializes them 251 * - discard inode PA 252 * discard process must wait until PA isn't used by another process 253 * - use locality group PA 254 * some mutex should serialize them 255 * - discard locality group PA 256 * discard process must wait until PA isn't used by another process 257 * - use inode PA 258 * - use inode PA 259 * i_data_sem or another mutex should serializes them 260 * - discard inode PA 261 * discard process must wait until PA isn't used by another process 262 * - use locality group PA 263 * nothing wrong here -- they're different PAs covering different blocks 264 * - discard locality group PA 265 * discard process must wait until PA isn't used by another process 266 * 267 * now we're ready to make few consequences: 268 * - PA is referenced and while it is no discard is possible 269 * - PA is referenced until block isn't marked in on-disk bitmap 270 * - PA changes only after on-disk bitmap 271 * - discard must not compete with init. either init is done before 272 * any discard or they're serialized somehow 273 * - buddy init as sum of on-disk bitmap and PAs is done atomically 274 * 275 * a special case when we've used PA to emptiness. no need to modify buddy 276 * in this case, but we should care about concurrent init 277 * 278 */ 279 280 /* 281 * Logic in few words: 282 * 283 * - allocation: 284 * load group 285 * find blocks 286 * mark bits in on-disk bitmap 287 * release group 288 * 289 * - use preallocation: 290 * find proper PA (per-inode or group) 291 * load group 292 * mark bits in on-disk bitmap 293 * release group 294 * release PA 295 * 296 * - free: 297 * load group 298 * mark bits in on-disk bitmap 299 * release group 300 * 301 * - discard preallocations in group: 302 * mark PAs deleted 303 * move them onto local list 304 * load on-disk bitmap 305 * load group 306 * remove PA from object (inode or locality group) 307 * mark free blocks in-core 308 * 309 * - discard inode's preallocations: 310 */ 311 312 /* 313 * Locking rules 314 * 315 * Locks: 316 * - bitlock on a group (group) 317 * - object (inode/locality) (object) 318 * - per-pa lock (pa) 319 * 320 * Paths: 321 * - new pa 322 * object 323 * group 324 * 325 * - find and use pa: 326 * pa 327 * 328 * - release consumed pa: 329 * pa 330 * group 331 * object 332 * 333 * - generate in-core bitmap: 334 * group 335 * pa 336 * 337 * - discard all for given object (inode, locality group): 338 * object 339 * pa 340 * group 341 * 342 * - discard all for given group: 343 * group 344 * pa 345 * group 346 * object 347 * 348 */ 349 static struct kmem_cache *ext4_pspace_cachep; 350 static struct kmem_cache *ext4_ac_cachep; 351 static struct kmem_cache *ext4_free_data_cachep; 352 353 /* We create slab caches for groupinfo data structures based on the 354 * superblock block size. There will be one per mounted filesystem for 355 * each unique s_blocksize_bits */ 356 #define NR_GRPINFO_CACHES 8 357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 358 359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 362 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 363 }; 364 365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 366 ext4_group_t group); 367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 368 ext4_group_t group); 369 static void ext4_free_data_callback(struct super_block *sb, 370 struct ext4_journal_cb_entry *jce, int rc); 371 372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 373 { 374 #if BITS_PER_LONG == 64 375 *bit += ((unsigned long) addr & 7UL) << 3; 376 addr = (void *) ((unsigned long) addr & ~7UL); 377 #elif BITS_PER_LONG == 32 378 *bit += ((unsigned long) addr & 3UL) << 3; 379 addr = (void *) ((unsigned long) addr & ~3UL); 380 #else 381 #error "how many bits you are?!" 382 #endif 383 return addr; 384 } 385 386 static inline int mb_test_bit(int bit, void *addr) 387 { 388 /* 389 * ext4_test_bit on architecture like powerpc 390 * needs unsigned long aligned address 391 */ 392 addr = mb_correct_addr_and_bit(&bit, addr); 393 return ext4_test_bit(bit, addr); 394 } 395 396 static inline void mb_set_bit(int bit, void *addr) 397 { 398 addr = mb_correct_addr_and_bit(&bit, addr); 399 ext4_set_bit(bit, addr); 400 } 401 402 static inline void mb_clear_bit(int bit, void *addr) 403 { 404 addr = mb_correct_addr_and_bit(&bit, addr); 405 ext4_clear_bit(bit, addr); 406 } 407 408 static inline int mb_test_and_clear_bit(int bit, void *addr) 409 { 410 addr = mb_correct_addr_and_bit(&bit, addr); 411 return ext4_test_and_clear_bit(bit, addr); 412 } 413 414 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 415 { 416 int fix = 0, ret, tmpmax; 417 addr = mb_correct_addr_and_bit(&fix, addr); 418 tmpmax = max + fix; 419 start += fix; 420 421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 422 if (ret > max) 423 return max; 424 return ret; 425 } 426 427 static inline int mb_find_next_bit(void *addr, int max, int start) 428 { 429 int fix = 0, ret, tmpmax; 430 addr = mb_correct_addr_and_bit(&fix, addr); 431 tmpmax = max + fix; 432 start += fix; 433 434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 435 if (ret > max) 436 return max; 437 return ret; 438 } 439 440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 441 { 442 char *bb; 443 444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 445 BUG_ON(max == NULL); 446 447 if (order > e4b->bd_blkbits + 1) { 448 *max = 0; 449 return NULL; 450 } 451 452 /* at order 0 we see each particular block */ 453 if (order == 0) { 454 *max = 1 << (e4b->bd_blkbits + 3); 455 return e4b->bd_bitmap; 456 } 457 458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 460 461 return bb; 462 } 463 464 #ifdef DOUBLE_CHECK 465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 466 int first, int count) 467 { 468 int i; 469 struct super_block *sb = e4b->bd_sb; 470 471 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 472 return; 473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 474 for (i = 0; i < count; i++) { 475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 476 ext4_fsblk_t blocknr; 477 478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 480 ext4_grp_locked_error(sb, e4b->bd_group, 481 inode ? inode->i_ino : 0, 482 blocknr, 483 "freeing block already freed " 484 "(bit %u)", 485 first + i); 486 } 487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 488 } 489 } 490 491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 492 { 493 int i; 494 495 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 496 return; 497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 498 for (i = 0; i < count; i++) { 499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 501 } 502 } 503 504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 505 { 506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 507 unsigned char *b1, *b2; 508 int i; 509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 510 b2 = (unsigned char *) bitmap; 511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 512 if (b1[i] != b2[i]) { 513 ext4_msg(e4b->bd_sb, KERN_ERR, 514 "corruption in group %u " 515 "at byte %u(%u): %x in copy != %x " 516 "on disk/prealloc", 517 e4b->bd_group, i, i * 8, b1[i], b2[i]); 518 BUG(); 519 } 520 } 521 } 522 } 523 524 #else 525 static inline void mb_free_blocks_double(struct inode *inode, 526 struct ext4_buddy *e4b, int first, int count) 527 { 528 return; 529 } 530 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 531 int first, int count) 532 { 533 return; 534 } 535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 536 { 537 return; 538 } 539 #endif 540 541 #ifdef AGGRESSIVE_CHECK 542 543 #define MB_CHECK_ASSERT(assert) \ 544 do { \ 545 if (!(assert)) { \ 546 printk(KERN_EMERG \ 547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 548 function, file, line, # assert); \ 549 BUG(); \ 550 } \ 551 } while (0) 552 553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 554 const char *function, int line) 555 { 556 struct super_block *sb = e4b->bd_sb; 557 int order = e4b->bd_blkbits + 1; 558 int max; 559 int max2; 560 int i; 561 int j; 562 int k; 563 int count; 564 struct ext4_group_info *grp; 565 int fragments = 0; 566 int fstart; 567 struct list_head *cur; 568 void *buddy; 569 void *buddy2; 570 571 { 572 static int mb_check_counter; 573 if (mb_check_counter++ % 100 != 0) 574 return 0; 575 } 576 577 while (order > 1) { 578 buddy = mb_find_buddy(e4b, order, &max); 579 MB_CHECK_ASSERT(buddy); 580 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 581 MB_CHECK_ASSERT(buddy2); 582 MB_CHECK_ASSERT(buddy != buddy2); 583 MB_CHECK_ASSERT(max * 2 == max2); 584 585 count = 0; 586 for (i = 0; i < max; i++) { 587 588 if (mb_test_bit(i, buddy)) { 589 /* only single bit in buddy2 may be 1 */ 590 if (!mb_test_bit(i << 1, buddy2)) { 591 MB_CHECK_ASSERT( 592 mb_test_bit((i<<1)+1, buddy2)); 593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 594 MB_CHECK_ASSERT( 595 mb_test_bit(i << 1, buddy2)); 596 } 597 continue; 598 } 599 600 /* both bits in buddy2 must be 1 */ 601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 603 604 for (j = 0; j < (1 << order); j++) { 605 k = (i * (1 << order)) + j; 606 MB_CHECK_ASSERT( 607 !mb_test_bit(k, e4b->bd_bitmap)); 608 } 609 count++; 610 } 611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 612 order--; 613 } 614 615 fstart = -1; 616 buddy = mb_find_buddy(e4b, 0, &max); 617 for (i = 0; i < max; i++) { 618 if (!mb_test_bit(i, buddy)) { 619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 620 if (fstart == -1) { 621 fragments++; 622 fstart = i; 623 } 624 continue; 625 } 626 fstart = -1; 627 /* check used bits only */ 628 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 629 buddy2 = mb_find_buddy(e4b, j, &max2); 630 k = i >> j; 631 MB_CHECK_ASSERT(k < max2); 632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 633 } 634 } 635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 637 638 grp = ext4_get_group_info(sb, e4b->bd_group); 639 list_for_each(cur, &grp->bb_prealloc_list) { 640 ext4_group_t groupnr; 641 struct ext4_prealloc_space *pa; 642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 644 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 645 for (i = 0; i < pa->pa_len; i++) 646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 647 } 648 return 0; 649 } 650 #undef MB_CHECK_ASSERT 651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 652 __FILE__, __func__, __LINE__) 653 #else 654 #define mb_check_buddy(e4b) 655 #endif 656 657 /* 658 * Divide blocks started from @first with length @len into 659 * smaller chunks with power of 2 blocks. 660 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 661 * then increase bb_counters[] for corresponded chunk size. 662 */ 663 static void ext4_mb_mark_free_simple(struct super_block *sb, 664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 665 struct ext4_group_info *grp) 666 { 667 struct ext4_sb_info *sbi = EXT4_SB(sb); 668 ext4_grpblk_t min; 669 ext4_grpblk_t max; 670 ext4_grpblk_t chunk; 671 unsigned short border; 672 673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 674 675 border = 2 << sb->s_blocksize_bits; 676 677 while (len > 0) { 678 /* find how many blocks can be covered since this position */ 679 max = ffs(first | border) - 1; 680 681 /* find how many blocks of power 2 we need to mark */ 682 min = fls(len) - 1; 683 684 if (max < min) 685 min = max; 686 chunk = 1 << min; 687 688 /* mark multiblock chunks only */ 689 grp->bb_counters[min]++; 690 if (min > 0) 691 mb_clear_bit(first >> min, 692 buddy + sbi->s_mb_offsets[min]); 693 694 len -= chunk; 695 first += chunk; 696 } 697 } 698 699 /* 700 * Cache the order of the largest free extent we have available in this block 701 * group. 702 */ 703 static void 704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 705 { 706 int i; 707 int bits; 708 709 grp->bb_largest_free_order = -1; /* uninit */ 710 711 bits = sb->s_blocksize_bits + 1; 712 for (i = bits; i >= 0; i--) { 713 if (grp->bb_counters[i] > 0) { 714 grp->bb_largest_free_order = i; 715 break; 716 } 717 } 718 } 719 720 static noinline_for_stack 721 void ext4_mb_generate_buddy(struct super_block *sb, 722 void *buddy, void *bitmap, ext4_group_t group) 723 { 724 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 725 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 726 ext4_grpblk_t i = 0; 727 ext4_grpblk_t first; 728 ext4_grpblk_t len; 729 unsigned free = 0; 730 unsigned fragments = 0; 731 unsigned long long period = get_cycles(); 732 733 /* initialize buddy from bitmap which is aggregation 734 * of on-disk bitmap and preallocations */ 735 i = mb_find_next_zero_bit(bitmap, max, 0); 736 grp->bb_first_free = i; 737 while (i < max) { 738 fragments++; 739 first = i; 740 i = mb_find_next_bit(bitmap, max, i); 741 len = i - first; 742 free += len; 743 if (len > 1) 744 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 745 else 746 grp->bb_counters[0]++; 747 if (i < max) 748 i = mb_find_next_zero_bit(bitmap, max, i); 749 } 750 grp->bb_fragments = fragments; 751 752 if (free != grp->bb_free) { 753 ext4_grp_locked_error(sb, group, 0, 0, 754 "%u clusters in bitmap, %u in gd; " 755 "block bitmap corrupt.", 756 free, grp->bb_free); 757 /* 758 * If we intend to continue, we consider group descriptor 759 * corrupt and update bb_free using bitmap value 760 */ 761 grp->bb_free = free; 762 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); 763 } 764 mb_set_largest_free_order(sb, grp); 765 766 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 767 768 period = get_cycles() - period; 769 spin_lock(&EXT4_SB(sb)->s_bal_lock); 770 EXT4_SB(sb)->s_mb_buddies_generated++; 771 EXT4_SB(sb)->s_mb_generation_time += period; 772 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 773 } 774 775 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 776 { 777 int count; 778 int order = 1; 779 void *buddy; 780 781 while ((buddy = mb_find_buddy(e4b, order++, &count))) { 782 ext4_set_bits(buddy, 0, count); 783 } 784 e4b->bd_info->bb_fragments = 0; 785 memset(e4b->bd_info->bb_counters, 0, 786 sizeof(*e4b->bd_info->bb_counters) * 787 (e4b->bd_sb->s_blocksize_bits + 2)); 788 789 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 790 e4b->bd_bitmap, e4b->bd_group); 791 } 792 793 /* The buddy information is attached the buddy cache inode 794 * for convenience. The information regarding each group 795 * is loaded via ext4_mb_load_buddy. The information involve 796 * block bitmap and buddy information. The information are 797 * stored in the inode as 798 * 799 * { page } 800 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 801 * 802 * 803 * one block each for bitmap and buddy information. 804 * So for each group we take up 2 blocks. A page can 805 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 806 * So it can have information regarding groups_per_page which 807 * is blocks_per_page/2 808 * 809 * Locking note: This routine takes the block group lock of all groups 810 * for this page; do not hold this lock when calling this routine! 811 */ 812 813 static int ext4_mb_init_cache(struct page *page, char *incore) 814 { 815 ext4_group_t ngroups; 816 int blocksize; 817 int blocks_per_page; 818 int groups_per_page; 819 int err = 0; 820 int i; 821 ext4_group_t first_group, group; 822 int first_block; 823 struct super_block *sb; 824 struct buffer_head *bhs; 825 struct buffer_head **bh = NULL; 826 struct inode *inode; 827 char *data; 828 char *bitmap; 829 struct ext4_group_info *grinfo; 830 831 mb_debug(1, "init page %lu\n", page->index); 832 833 inode = page->mapping->host; 834 sb = inode->i_sb; 835 ngroups = ext4_get_groups_count(sb); 836 blocksize = 1 << inode->i_blkbits; 837 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 838 839 groups_per_page = blocks_per_page >> 1; 840 if (groups_per_page == 0) 841 groups_per_page = 1; 842 843 /* allocate buffer_heads to read bitmaps */ 844 if (groups_per_page > 1) { 845 i = sizeof(struct buffer_head *) * groups_per_page; 846 bh = kzalloc(i, GFP_NOFS); 847 if (bh == NULL) { 848 err = -ENOMEM; 849 goto out; 850 } 851 } else 852 bh = &bhs; 853 854 first_group = page->index * blocks_per_page / 2; 855 856 /* read all groups the page covers into the cache */ 857 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 858 if (group >= ngroups) 859 break; 860 861 grinfo = ext4_get_group_info(sb, group); 862 /* 863 * If page is uptodate then we came here after online resize 864 * which added some new uninitialized group info structs, so 865 * we must skip all initialized uptodate buddies on the page, 866 * which may be currently in use by an allocating task. 867 */ 868 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 869 bh[i] = NULL; 870 continue; 871 } 872 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) { 873 err = -ENOMEM; 874 goto out; 875 } 876 mb_debug(1, "read bitmap for group %u\n", group); 877 } 878 879 /* wait for I/O completion */ 880 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 881 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) { 882 err = -EIO; 883 goto out; 884 } 885 } 886 887 first_block = page->index * blocks_per_page; 888 for (i = 0; i < blocks_per_page; i++) { 889 group = (first_block + i) >> 1; 890 if (group >= ngroups) 891 break; 892 893 if (!bh[group - first_group]) 894 /* skip initialized uptodate buddy */ 895 continue; 896 897 /* 898 * data carry information regarding this 899 * particular group in the format specified 900 * above 901 * 902 */ 903 data = page_address(page) + (i * blocksize); 904 bitmap = bh[group - first_group]->b_data; 905 906 /* 907 * We place the buddy block and bitmap block 908 * close together 909 */ 910 if ((first_block + i) & 1) { 911 /* this is block of buddy */ 912 BUG_ON(incore == NULL); 913 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 914 group, page->index, i * blocksize); 915 trace_ext4_mb_buddy_bitmap_load(sb, group); 916 grinfo = ext4_get_group_info(sb, group); 917 grinfo->bb_fragments = 0; 918 memset(grinfo->bb_counters, 0, 919 sizeof(*grinfo->bb_counters) * 920 (sb->s_blocksize_bits+2)); 921 /* 922 * incore got set to the group block bitmap below 923 */ 924 ext4_lock_group(sb, group); 925 /* init the buddy */ 926 memset(data, 0xff, blocksize); 927 ext4_mb_generate_buddy(sb, data, incore, group); 928 ext4_unlock_group(sb, group); 929 incore = NULL; 930 } else { 931 /* this is block of bitmap */ 932 BUG_ON(incore != NULL); 933 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 934 group, page->index, i * blocksize); 935 trace_ext4_mb_bitmap_load(sb, group); 936 937 /* see comments in ext4_mb_put_pa() */ 938 ext4_lock_group(sb, group); 939 memcpy(data, bitmap, blocksize); 940 941 /* mark all preallocated blks used in in-core bitmap */ 942 ext4_mb_generate_from_pa(sb, data, group); 943 ext4_mb_generate_from_freelist(sb, data, group); 944 ext4_unlock_group(sb, group); 945 946 /* set incore so that the buddy information can be 947 * generated using this 948 */ 949 incore = data; 950 } 951 } 952 SetPageUptodate(page); 953 954 out: 955 if (bh) { 956 for (i = 0; i < groups_per_page; i++) 957 brelse(bh[i]); 958 if (bh != &bhs) 959 kfree(bh); 960 } 961 return err; 962 } 963 964 /* 965 * Lock the buddy and bitmap pages. This make sure other parallel init_group 966 * on the same buddy page doesn't happen whild holding the buddy page lock. 967 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 968 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 969 */ 970 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 971 ext4_group_t group, struct ext4_buddy *e4b) 972 { 973 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 974 int block, pnum, poff; 975 int blocks_per_page; 976 struct page *page; 977 978 e4b->bd_buddy_page = NULL; 979 e4b->bd_bitmap_page = NULL; 980 981 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 982 /* 983 * the buddy cache inode stores the block bitmap 984 * and buddy information in consecutive blocks. 985 * So for each group we need two blocks. 986 */ 987 block = group * 2; 988 pnum = block / blocks_per_page; 989 poff = block % blocks_per_page; 990 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 991 if (!page) 992 return -EIO; 993 BUG_ON(page->mapping != inode->i_mapping); 994 e4b->bd_bitmap_page = page; 995 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 996 997 if (blocks_per_page >= 2) { 998 /* buddy and bitmap are on the same page */ 999 return 0; 1000 } 1001 1002 block++; 1003 pnum = block / blocks_per_page; 1004 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1005 if (!page) 1006 return -EIO; 1007 BUG_ON(page->mapping != inode->i_mapping); 1008 e4b->bd_buddy_page = page; 1009 return 0; 1010 } 1011 1012 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1013 { 1014 if (e4b->bd_bitmap_page) { 1015 unlock_page(e4b->bd_bitmap_page); 1016 page_cache_release(e4b->bd_bitmap_page); 1017 } 1018 if (e4b->bd_buddy_page) { 1019 unlock_page(e4b->bd_buddy_page); 1020 page_cache_release(e4b->bd_buddy_page); 1021 } 1022 } 1023 1024 /* 1025 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1026 * block group lock of all groups for this page; do not hold the BG lock when 1027 * calling this routine! 1028 */ 1029 static noinline_for_stack 1030 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) 1031 { 1032 1033 struct ext4_group_info *this_grp; 1034 struct ext4_buddy e4b; 1035 struct page *page; 1036 int ret = 0; 1037 1038 might_sleep(); 1039 mb_debug(1, "init group %u\n", group); 1040 this_grp = ext4_get_group_info(sb, group); 1041 /* 1042 * This ensures that we don't reinit the buddy cache 1043 * page which map to the group from which we are already 1044 * allocating. If we are looking at the buddy cache we would 1045 * have taken a reference using ext4_mb_load_buddy and that 1046 * would have pinned buddy page to page cache. 1047 */ 1048 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b); 1049 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1050 /* 1051 * somebody initialized the group 1052 * return without doing anything 1053 */ 1054 goto err; 1055 } 1056 1057 page = e4b.bd_bitmap_page; 1058 ret = ext4_mb_init_cache(page, NULL); 1059 if (ret) 1060 goto err; 1061 if (!PageUptodate(page)) { 1062 ret = -EIO; 1063 goto err; 1064 } 1065 mark_page_accessed(page); 1066 1067 if (e4b.bd_buddy_page == NULL) { 1068 /* 1069 * If both the bitmap and buddy are in 1070 * the same page we don't need to force 1071 * init the buddy 1072 */ 1073 ret = 0; 1074 goto err; 1075 } 1076 /* init buddy cache */ 1077 page = e4b.bd_buddy_page; 1078 ret = ext4_mb_init_cache(page, e4b.bd_bitmap); 1079 if (ret) 1080 goto err; 1081 if (!PageUptodate(page)) { 1082 ret = -EIO; 1083 goto err; 1084 } 1085 mark_page_accessed(page); 1086 err: 1087 ext4_mb_put_buddy_page_lock(&e4b); 1088 return ret; 1089 } 1090 1091 /* 1092 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1093 * block group lock of all groups for this page; do not hold the BG lock when 1094 * calling this routine! 1095 */ 1096 static noinline_for_stack int 1097 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1098 struct ext4_buddy *e4b) 1099 { 1100 int blocks_per_page; 1101 int block; 1102 int pnum; 1103 int poff; 1104 struct page *page; 1105 int ret; 1106 struct ext4_group_info *grp; 1107 struct ext4_sb_info *sbi = EXT4_SB(sb); 1108 struct inode *inode = sbi->s_buddy_cache; 1109 1110 might_sleep(); 1111 mb_debug(1, "load group %u\n", group); 1112 1113 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1114 grp = ext4_get_group_info(sb, group); 1115 1116 e4b->bd_blkbits = sb->s_blocksize_bits; 1117 e4b->bd_info = grp; 1118 e4b->bd_sb = sb; 1119 e4b->bd_group = group; 1120 e4b->bd_buddy_page = NULL; 1121 e4b->bd_bitmap_page = NULL; 1122 1123 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1124 /* 1125 * we need full data about the group 1126 * to make a good selection 1127 */ 1128 ret = ext4_mb_init_group(sb, group); 1129 if (ret) 1130 return ret; 1131 } 1132 1133 /* 1134 * the buddy cache inode stores the block bitmap 1135 * and buddy information in consecutive blocks. 1136 * So for each group we need two blocks. 1137 */ 1138 block = group * 2; 1139 pnum = block / blocks_per_page; 1140 poff = block % blocks_per_page; 1141 1142 /* we could use find_or_create_page(), but it locks page 1143 * what we'd like to avoid in fast path ... */ 1144 page = find_get_page(inode->i_mapping, pnum); 1145 if (page == NULL || !PageUptodate(page)) { 1146 if (page) 1147 /* 1148 * drop the page reference and try 1149 * to get the page with lock. If we 1150 * are not uptodate that implies 1151 * somebody just created the page but 1152 * is yet to initialize the same. So 1153 * wait for it to initialize. 1154 */ 1155 page_cache_release(page); 1156 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1157 if (page) { 1158 BUG_ON(page->mapping != inode->i_mapping); 1159 if (!PageUptodate(page)) { 1160 ret = ext4_mb_init_cache(page, NULL); 1161 if (ret) { 1162 unlock_page(page); 1163 goto err; 1164 } 1165 mb_cmp_bitmaps(e4b, page_address(page) + 1166 (poff * sb->s_blocksize)); 1167 } 1168 unlock_page(page); 1169 } 1170 } 1171 if (page == NULL || !PageUptodate(page)) { 1172 ret = -EIO; 1173 goto err; 1174 } 1175 e4b->bd_bitmap_page = page; 1176 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1177 mark_page_accessed(page); 1178 1179 block++; 1180 pnum = block / blocks_per_page; 1181 poff = block % blocks_per_page; 1182 1183 page = find_get_page(inode->i_mapping, pnum); 1184 if (page == NULL || !PageUptodate(page)) { 1185 if (page) 1186 page_cache_release(page); 1187 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1188 if (page) { 1189 BUG_ON(page->mapping != inode->i_mapping); 1190 if (!PageUptodate(page)) { 1191 ret = ext4_mb_init_cache(page, e4b->bd_bitmap); 1192 if (ret) { 1193 unlock_page(page); 1194 goto err; 1195 } 1196 } 1197 unlock_page(page); 1198 } 1199 } 1200 if (page == NULL || !PageUptodate(page)) { 1201 ret = -EIO; 1202 goto err; 1203 } 1204 e4b->bd_buddy_page = page; 1205 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1206 mark_page_accessed(page); 1207 1208 BUG_ON(e4b->bd_bitmap_page == NULL); 1209 BUG_ON(e4b->bd_buddy_page == NULL); 1210 1211 return 0; 1212 1213 err: 1214 if (page) 1215 page_cache_release(page); 1216 if (e4b->bd_bitmap_page) 1217 page_cache_release(e4b->bd_bitmap_page); 1218 if (e4b->bd_buddy_page) 1219 page_cache_release(e4b->bd_buddy_page); 1220 e4b->bd_buddy = NULL; 1221 e4b->bd_bitmap = NULL; 1222 return ret; 1223 } 1224 1225 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1226 { 1227 if (e4b->bd_bitmap_page) 1228 page_cache_release(e4b->bd_bitmap_page); 1229 if (e4b->bd_buddy_page) 1230 page_cache_release(e4b->bd_buddy_page); 1231 } 1232 1233 1234 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1235 { 1236 int order = 1; 1237 void *bb; 1238 1239 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1240 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1241 1242 bb = e4b->bd_buddy; 1243 while (order <= e4b->bd_blkbits + 1) { 1244 block = block >> 1; 1245 if (!mb_test_bit(block, bb)) { 1246 /* this block is part of buddy of order 'order' */ 1247 return order; 1248 } 1249 bb += 1 << (e4b->bd_blkbits - order); 1250 order++; 1251 } 1252 return 0; 1253 } 1254 1255 static void mb_clear_bits(void *bm, int cur, int len) 1256 { 1257 __u32 *addr; 1258 1259 len = cur + len; 1260 while (cur < len) { 1261 if ((cur & 31) == 0 && (len - cur) >= 32) { 1262 /* fast path: clear whole word at once */ 1263 addr = bm + (cur >> 3); 1264 *addr = 0; 1265 cur += 32; 1266 continue; 1267 } 1268 mb_clear_bit(cur, bm); 1269 cur++; 1270 } 1271 } 1272 1273 /* clear bits in given range 1274 * will return first found zero bit if any, -1 otherwise 1275 */ 1276 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1277 { 1278 __u32 *addr; 1279 int zero_bit = -1; 1280 1281 len = cur + len; 1282 while (cur < len) { 1283 if ((cur & 31) == 0 && (len - cur) >= 32) { 1284 /* fast path: clear whole word at once */ 1285 addr = bm + (cur >> 3); 1286 if (*addr != (__u32)(-1) && zero_bit == -1) 1287 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1288 *addr = 0; 1289 cur += 32; 1290 continue; 1291 } 1292 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1293 zero_bit = cur; 1294 cur++; 1295 } 1296 1297 return zero_bit; 1298 } 1299 1300 void ext4_set_bits(void *bm, int cur, int len) 1301 { 1302 __u32 *addr; 1303 1304 len = cur + len; 1305 while (cur < len) { 1306 if ((cur & 31) == 0 && (len - cur) >= 32) { 1307 /* fast path: set whole word at once */ 1308 addr = bm + (cur >> 3); 1309 *addr = 0xffffffff; 1310 cur += 32; 1311 continue; 1312 } 1313 mb_set_bit(cur, bm); 1314 cur++; 1315 } 1316 } 1317 1318 /* 1319 * _________________________________________________________________ */ 1320 1321 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1322 { 1323 if (mb_test_bit(*bit + side, bitmap)) { 1324 mb_clear_bit(*bit, bitmap); 1325 (*bit) -= side; 1326 return 1; 1327 } 1328 else { 1329 (*bit) += side; 1330 mb_set_bit(*bit, bitmap); 1331 return -1; 1332 } 1333 } 1334 1335 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1336 { 1337 int max; 1338 int order = 1; 1339 void *buddy = mb_find_buddy(e4b, order, &max); 1340 1341 while (buddy) { 1342 void *buddy2; 1343 1344 /* Bits in range [first; last] are known to be set since 1345 * corresponding blocks were allocated. Bits in range 1346 * (first; last) will stay set because they form buddies on 1347 * upper layer. We just deal with borders if they don't 1348 * align with upper layer and then go up. 1349 * Releasing entire group is all about clearing 1350 * single bit of highest order buddy. 1351 */ 1352 1353 /* Example: 1354 * --------------------------------- 1355 * | 1 | 1 | 1 | 1 | 1356 * --------------------------------- 1357 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1358 * --------------------------------- 1359 * 0 1 2 3 4 5 6 7 1360 * \_____________________/ 1361 * 1362 * Neither [1] nor [6] is aligned to above layer. 1363 * Left neighbour [0] is free, so mark it busy, 1364 * decrease bb_counters and extend range to 1365 * [0; 6] 1366 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1367 * mark [6] free, increase bb_counters and shrink range to 1368 * [0; 5]. 1369 * Then shift range to [0; 2], go up and do the same. 1370 */ 1371 1372 1373 if (first & 1) 1374 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1375 if (!(last & 1)) 1376 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1377 if (first > last) 1378 break; 1379 order++; 1380 1381 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1382 mb_clear_bits(buddy, first, last - first + 1); 1383 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1384 break; 1385 } 1386 first >>= 1; 1387 last >>= 1; 1388 buddy = buddy2; 1389 } 1390 } 1391 1392 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1393 int first, int count) 1394 { 1395 int left_is_free = 0; 1396 int right_is_free = 0; 1397 int block; 1398 int last = first + count - 1; 1399 struct super_block *sb = e4b->bd_sb; 1400 1401 BUG_ON(last >= (sb->s_blocksize << 3)); 1402 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1403 /* Don't bother if the block group is corrupt. */ 1404 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1405 return; 1406 1407 mb_check_buddy(e4b); 1408 mb_free_blocks_double(inode, e4b, first, count); 1409 1410 e4b->bd_info->bb_free += count; 1411 if (first < e4b->bd_info->bb_first_free) 1412 e4b->bd_info->bb_first_free = first; 1413 1414 /* access memory sequentially: check left neighbour, 1415 * clear range and then check right neighbour 1416 */ 1417 if (first != 0) 1418 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1419 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1420 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1421 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1422 1423 if (unlikely(block != -1)) { 1424 ext4_fsblk_t blocknr; 1425 1426 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1427 blocknr += EXT4_C2B(EXT4_SB(sb), block); 1428 ext4_grp_locked_error(sb, e4b->bd_group, 1429 inode ? inode->i_ino : 0, 1430 blocknr, 1431 "freeing already freed block " 1432 "(bit %u); block bitmap corrupt.", 1433 block); 1434 /* Mark the block group as corrupt. */ 1435 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1436 &e4b->bd_info->bb_state); 1437 mb_regenerate_buddy(e4b); 1438 goto done; 1439 } 1440 1441 /* let's maintain fragments counter */ 1442 if (left_is_free && right_is_free) 1443 e4b->bd_info->bb_fragments--; 1444 else if (!left_is_free && !right_is_free) 1445 e4b->bd_info->bb_fragments++; 1446 1447 /* buddy[0] == bd_bitmap is a special case, so handle 1448 * it right away and let mb_buddy_mark_free stay free of 1449 * zero order checks. 1450 * Check if neighbours are to be coaleasced, 1451 * adjust bitmap bb_counters and borders appropriately. 1452 */ 1453 if (first & 1) { 1454 first += !left_is_free; 1455 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1456 } 1457 if (!(last & 1)) { 1458 last -= !right_is_free; 1459 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1460 } 1461 1462 if (first <= last) 1463 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1464 1465 done: 1466 mb_set_largest_free_order(sb, e4b->bd_info); 1467 mb_check_buddy(e4b); 1468 } 1469 1470 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1471 int needed, struct ext4_free_extent *ex) 1472 { 1473 int next = block; 1474 int max, order; 1475 void *buddy; 1476 1477 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1478 BUG_ON(ex == NULL); 1479 1480 buddy = mb_find_buddy(e4b, 0, &max); 1481 BUG_ON(buddy == NULL); 1482 BUG_ON(block >= max); 1483 if (mb_test_bit(block, buddy)) { 1484 ex->fe_len = 0; 1485 ex->fe_start = 0; 1486 ex->fe_group = 0; 1487 return 0; 1488 } 1489 1490 /* find actual order */ 1491 order = mb_find_order_for_block(e4b, block); 1492 block = block >> order; 1493 1494 ex->fe_len = 1 << order; 1495 ex->fe_start = block << order; 1496 ex->fe_group = e4b->bd_group; 1497 1498 /* calc difference from given start */ 1499 next = next - ex->fe_start; 1500 ex->fe_len -= next; 1501 ex->fe_start += next; 1502 1503 while (needed > ex->fe_len && 1504 mb_find_buddy(e4b, order, &max)) { 1505 1506 if (block + 1 >= max) 1507 break; 1508 1509 next = (block + 1) * (1 << order); 1510 if (mb_test_bit(next, e4b->bd_bitmap)) 1511 break; 1512 1513 order = mb_find_order_for_block(e4b, next); 1514 1515 block = next >> order; 1516 ex->fe_len += 1 << order; 1517 } 1518 1519 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1520 return ex->fe_len; 1521 } 1522 1523 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1524 { 1525 int ord; 1526 int mlen = 0; 1527 int max = 0; 1528 int cur; 1529 int start = ex->fe_start; 1530 int len = ex->fe_len; 1531 unsigned ret = 0; 1532 int len0 = len; 1533 void *buddy; 1534 1535 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1536 BUG_ON(e4b->bd_group != ex->fe_group); 1537 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1538 mb_check_buddy(e4b); 1539 mb_mark_used_double(e4b, start, len); 1540 1541 e4b->bd_info->bb_free -= len; 1542 if (e4b->bd_info->bb_first_free == start) 1543 e4b->bd_info->bb_first_free += len; 1544 1545 /* let's maintain fragments counter */ 1546 if (start != 0) 1547 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1548 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1549 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1550 if (mlen && max) 1551 e4b->bd_info->bb_fragments++; 1552 else if (!mlen && !max) 1553 e4b->bd_info->bb_fragments--; 1554 1555 /* let's maintain buddy itself */ 1556 while (len) { 1557 ord = mb_find_order_for_block(e4b, start); 1558 1559 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1560 /* the whole chunk may be allocated at once! */ 1561 mlen = 1 << ord; 1562 buddy = mb_find_buddy(e4b, ord, &max); 1563 BUG_ON((start >> ord) >= max); 1564 mb_set_bit(start >> ord, buddy); 1565 e4b->bd_info->bb_counters[ord]--; 1566 start += mlen; 1567 len -= mlen; 1568 BUG_ON(len < 0); 1569 continue; 1570 } 1571 1572 /* store for history */ 1573 if (ret == 0) 1574 ret = len | (ord << 16); 1575 1576 /* we have to split large buddy */ 1577 BUG_ON(ord <= 0); 1578 buddy = mb_find_buddy(e4b, ord, &max); 1579 mb_set_bit(start >> ord, buddy); 1580 e4b->bd_info->bb_counters[ord]--; 1581 1582 ord--; 1583 cur = (start >> ord) & ~1U; 1584 buddy = mb_find_buddy(e4b, ord, &max); 1585 mb_clear_bit(cur, buddy); 1586 mb_clear_bit(cur + 1, buddy); 1587 e4b->bd_info->bb_counters[ord]++; 1588 e4b->bd_info->bb_counters[ord]++; 1589 } 1590 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1591 1592 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1593 mb_check_buddy(e4b); 1594 1595 return ret; 1596 } 1597 1598 /* 1599 * Must be called under group lock! 1600 */ 1601 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1602 struct ext4_buddy *e4b) 1603 { 1604 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1605 int ret; 1606 1607 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1608 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1609 1610 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1611 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1612 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1613 1614 /* preallocation can change ac_b_ex, thus we store actually 1615 * allocated blocks for history */ 1616 ac->ac_f_ex = ac->ac_b_ex; 1617 1618 ac->ac_status = AC_STATUS_FOUND; 1619 ac->ac_tail = ret & 0xffff; 1620 ac->ac_buddy = ret >> 16; 1621 1622 /* 1623 * take the page reference. We want the page to be pinned 1624 * so that we don't get a ext4_mb_init_cache_call for this 1625 * group until we update the bitmap. That would mean we 1626 * double allocate blocks. The reference is dropped 1627 * in ext4_mb_release_context 1628 */ 1629 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1630 get_page(ac->ac_bitmap_page); 1631 ac->ac_buddy_page = e4b->bd_buddy_page; 1632 get_page(ac->ac_buddy_page); 1633 /* store last allocated for subsequent stream allocation */ 1634 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1635 spin_lock(&sbi->s_md_lock); 1636 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1637 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1638 spin_unlock(&sbi->s_md_lock); 1639 } 1640 } 1641 1642 /* 1643 * regular allocator, for general purposes allocation 1644 */ 1645 1646 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1647 struct ext4_buddy *e4b, 1648 int finish_group) 1649 { 1650 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1651 struct ext4_free_extent *bex = &ac->ac_b_ex; 1652 struct ext4_free_extent *gex = &ac->ac_g_ex; 1653 struct ext4_free_extent ex; 1654 int max; 1655 1656 if (ac->ac_status == AC_STATUS_FOUND) 1657 return; 1658 /* 1659 * We don't want to scan for a whole year 1660 */ 1661 if (ac->ac_found > sbi->s_mb_max_to_scan && 1662 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1663 ac->ac_status = AC_STATUS_BREAK; 1664 return; 1665 } 1666 1667 /* 1668 * Haven't found good chunk so far, let's continue 1669 */ 1670 if (bex->fe_len < gex->fe_len) 1671 return; 1672 1673 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1674 && bex->fe_group == e4b->bd_group) { 1675 /* recheck chunk's availability - we don't know 1676 * when it was found (within this lock-unlock 1677 * period or not) */ 1678 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1679 if (max >= gex->fe_len) { 1680 ext4_mb_use_best_found(ac, e4b); 1681 return; 1682 } 1683 } 1684 } 1685 1686 /* 1687 * The routine checks whether found extent is good enough. If it is, 1688 * then the extent gets marked used and flag is set to the context 1689 * to stop scanning. Otherwise, the extent is compared with the 1690 * previous found extent and if new one is better, then it's stored 1691 * in the context. Later, the best found extent will be used, if 1692 * mballoc can't find good enough extent. 1693 * 1694 * FIXME: real allocation policy is to be designed yet! 1695 */ 1696 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1697 struct ext4_free_extent *ex, 1698 struct ext4_buddy *e4b) 1699 { 1700 struct ext4_free_extent *bex = &ac->ac_b_ex; 1701 struct ext4_free_extent *gex = &ac->ac_g_ex; 1702 1703 BUG_ON(ex->fe_len <= 0); 1704 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1705 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1706 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1707 1708 ac->ac_found++; 1709 1710 /* 1711 * The special case - take what you catch first 1712 */ 1713 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1714 *bex = *ex; 1715 ext4_mb_use_best_found(ac, e4b); 1716 return; 1717 } 1718 1719 /* 1720 * Let's check whether the chuck is good enough 1721 */ 1722 if (ex->fe_len == gex->fe_len) { 1723 *bex = *ex; 1724 ext4_mb_use_best_found(ac, e4b); 1725 return; 1726 } 1727 1728 /* 1729 * If this is first found extent, just store it in the context 1730 */ 1731 if (bex->fe_len == 0) { 1732 *bex = *ex; 1733 return; 1734 } 1735 1736 /* 1737 * If new found extent is better, store it in the context 1738 */ 1739 if (bex->fe_len < gex->fe_len) { 1740 /* if the request isn't satisfied, any found extent 1741 * larger than previous best one is better */ 1742 if (ex->fe_len > bex->fe_len) 1743 *bex = *ex; 1744 } else if (ex->fe_len > gex->fe_len) { 1745 /* if the request is satisfied, then we try to find 1746 * an extent that still satisfy the request, but is 1747 * smaller than previous one */ 1748 if (ex->fe_len < bex->fe_len) 1749 *bex = *ex; 1750 } 1751 1752 ext4_mb_check_limits(ac, e4b, 0); 1753 } 1754 1755 static noinline_for_stack 1756 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1757 struct ext4_buddy *e4b) 1758 { 1759 struct ext4_free_extent ex = ac->ac_b_ex; 1760 ext4_group_t group = ex.fe_group; 1761 int max; 1762 int err; 1763 1764 BUG_ON(ex.fe_len <= 0); 1765 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1766 if (err) 1767 return err; 1768 1769 ext4_lock_group(ac->ac_sb, group); 1770 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1771 1772 if (max > 0) { 1773 ac->ac_b_ex = ex; 1774 ext4_mb_use_best_found(ac, e4b); 1775 } 1776 1777 ext4_unlock_group(ac->ac_sb, group); 1778 ext4_mb_unload_buddy(e4b); 1779 1780 return 0; 1781 } 1782 1783 static noinline_for_stack 1784 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1785 struct ext4_buddy *e4b) 1786 { 1787 ext4_group_t group = ac->ac_g_ex.fe_group; 1788 int max; 1789 int err; 1790 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1791 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1792 struct ext4_free_extent ex; 1793 1794 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1795 return 0; 1796 if (grp->bb_free == 0) 1797 return 0; 1798 1799 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1800 if (err) 1801 return err; 1802 1803 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 1804 ext4_mb_unload_buddy(e4b); 1805 return 0; 1806 } 1807 1808 ext4_lock_group(ac->ac_sb, group); 1809 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1810 ac->ac_g_ex.fe_len, &ex); 1811 1812 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1813 ext4_fsblk_t start; 1814 1815 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1816 ex.fe_start; 1817 /* use do_div to get remainder (would be 64-bit modulo) */ 1818 if (do_div(start, sbi->s_stripe) == 0) { 1819 ac->ac_found++; 1820 ac->ac_b_ex = ex; 1821 ext4_mb_use_best_found(ac, e4b); 1822 } 1823 } else if (max >= ac->ac_g_ex.fe_len) { 1824 BUG_ON(ex.fe_len <= 0); 1825 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1826 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1827 ac->ac_found++; 1828 ac->ac_b_ex = ex; 1829 ext4_mb_use_best_found(ac, e4b); 1830 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1831 /* Sometimes, caller may want to merge even small 1832 * number of blocks to an existing extent */ 1833 BUG_ON(ex.fe_len <= 0); 1834 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1835 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1836 ac->ac_found++; 1837 ac->ac_b_ex = ex; 1838 ext4_mb_use_best_found(ac, e4b); 1839 } 1840 ext4_unlock_group(ac->ac_sb, group); 1841 ext4_mb_unload_buddy(e4b); 1842 1843 return 0; 1844 } 1845 1846 /* 1847 * The routine scans buddy structures (not bitmap!) from given order 1848 * to max order and tries to find big enough chunk to satisfy the req 1849 */ 1850 static noinline_for_stack 1851 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1852 struct ext4_buddy *e4b) 1853 { 1854 struct super_block *sb = ac->ac_sb; 1855 struct ext4_group_info *grp = e4b->bd_info; 1856 void *buddy; 1857 int i; 1858 int k; 1859 int max; 1860 1861 BUG_ON(ac->ac_2order <= 0); 1862 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1863 if (grp->bb_counters[i] == 0) 1864 continue; 1865 1866 buddy = mb_find_buddy(e4b, i, &max); 1867 BUG_ON(buddy == NULL); 1868 1869 k = mb_find_next_zero_bit(buddy, max, 0); 1870 BUG_ON(k >= max); 1871 1872 ac->ac_found++; 1873 1874 ac->ac_b_ex.fe_len = 1 << i; 1875 ac->ac_b_ex.fe_start = k << i; 1876 ac->ac_b_ex.fe_group = e4b->bd_group; 1877 1878 ext4_mb_use_best_found(ac, e4b); 1879 1880 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1881 1882 if (EXT4_SB(sb)->s_mb_stats) 1883 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1884 1885 break; 1886 } 1887 } 1888 1889 /* 1890 * The routine scans the group and measures all found extents. 1891 * In order to optimize scanning, caller must pass number of 1892 * free blocks in the group, so the routine can know upper limit. 1893 */ 1894 static noinline_for_stack 1895 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1896 struct ext4_buddy *e4b) 1897 { 1898 struct super_block *sb = ac->ac_sb; 1899 void *bitmap = e4b->bd_bitmap; 1900 struct ext4_free_extent ex; 1901 int i; 1902 int free; 1903 1904 free = e4b->bd_info->bb_free; 1905 BUG_ON(free <= 0); 1906 1907 i = e4b->bd_info->bb_first_free; 1908 1909 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1910 i = mb_find_next_zero_bit(bitmap, 1911 EXT4_CLUSTERS_PER_GROUP(sb), i); 1912 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1913 /* 1914 * IF we have corrupt bitmap, we won't find any 1915 * free blocks even though group info says we 1916 * we have free blocks 1917 */ 1918 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1919 "%d free clusters as per " 1920 "group info. But bitmap says 0", 1921 free); 1922 break; 1923 } 1924 1925 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1926 BUG_ON(ex.fe_len <= 0); 1927 if (free < ex.fe_len) { 1928 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1929 "%d free clusters as per " 1930 "group info. But got %d blocks", 1931 free, ex.fe_len); 1932 /* 1933 * The number of free blocks differs. This mostly 1934 * indicate that the bitmap is corrupt. So exit 1935 * without claiming the space. 1936 */ 1937 break; 1938 } 1939 1940 ext4_mb_measure_extent(ac, &ex, e4b); 1941 1942 i += ex.fe_len; 1943 free -= ex.fe_len; 1944 } 1945 1946 ext4_mb_check_limits(ac, e4b, 1); 1947 } 1948 1949 /* 1950 * This is a special case for storages like raid5 1951 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1952 */ 1953 static noinline_for_stack 1954 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1955 struct ext4_buddy *e4b) 1956 { 1957 struct super_block *sb = ac->ac_sb; 1958 struct ext4_sb_info *sbi = EXT4_SB(sb); 1959 void *bitmap = e4b->bd_bitmap; 1960 struct ext4_free_extent ex; 1961 ext4_fsblk_t first_group_block; 1962 ext4_fsblk_t a; 1963 ext4_grpblk_t i; 1964 int max; 1965 1966 BUG_ON(sbi->s_stripe == 0); 1967 1968 /* find first stripe-aligned block in group */ 1969 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 1970 1971 a = first_group_block + sbi->s_stripe - 1; 1972 do_div(a, sbi->s_stripe); 1973 i = (a * sbi->s_stripe) - first_group_block; 1974 1975 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 1976 if (!mb_test_bit(i, bitmap)) { 1977 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 1978 if (max >= sbi->s_stripe) { 1979 ac->ac_found++; 1980 ac->ac_b_ex = ex; 1981 ext4_mb_use_best_found(ac, e4b); 1982 break; 1983 } 1984 } 1985 i += sbi->s_stripe; 1986 } 1987 } 1988 1989 /* This is now called BEFORE we load the buddy bitmap. */ 1990 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 1991 ext4_group_t group, int cr) 1992 { 1993 unsigned free, fragments; 1994 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 1995 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1996 1997 BUG_ON(cr < 0 || cr >= 4); 1998 1999 free = grp->bb_free; 2000 if (free == 0) 2001 return 0; 2002 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2003 return 0; 2004 2005 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2006 return 0; 2007 2008 /* We only do this if the grp has never been initialized */ 2009 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2010 int ret = ext4_mb_init_group(ac->ac_sb, group); 2011 if (ret) 2012 return 0; 2013 } 2014 2015 fragments = grp->bb_fragments; 2016 if (fragments == 0) 2017 return 0; 2018 2019 switch (cr) { 2020 case 0: 2021 BUG_ON(ac->ac_2order == 0); 2022 2023 /* Avoid using the first bg of a flexgroup for data files */ 2024 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2025 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2026 ((group % flex_size) == 0)) 2027 return 0; 2028 2029 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) || 2030 (free / fragments) >= ac->ac_g_ex.fe_len) 2031 return 1; 2032 2033 if (grp->bb_largest_free_order < ac->ac_2order) 2034 return 0; 2035 2036 return 1; 2037 case 1: 2038 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2039 return 1; 2040 break; 2041 case 2: 2042 if (free >= ac->ac_g_ex.fe_len) 2043 return 1; 2044 break; 2045 case 3: 2046 return 1; 2047 default: 2048 BUG(); 2049 } 2050 2051 return 0; 2052 } 2053 2054 static noinline_for_stack int 2055 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2056 { 2057 ext4_group_t ngroups, group, i; 2058 int cr; 2059 int err = 0; 2060 struct ext4_sb_info *sbi; 2061 struct super_block *sb; 2062 struct ext4_buddy e4b; 2063 2064 sb = ac->ac_sb; 2065 sbi = EXT4_SB(sb); 2066 ngroups = ext4_get_groups_count(sb); 2067 /* non-extent files are limited to low blocks/groups */ 2068 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2069 ngroups = sbi->s_blockfile_groups; 2070 2071 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2072 2073 /* first, try the goal */ 2074 err = ext4_mb_find_by_goal(ac, &e4b); 2075 if (err || ac->ac_status == AC_STATUS_FOUND) 2076 goto out; 2077 2078 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2079 goto out; 2080 2081 /* 2082 * ac->ac2_order is set only if the fe_len is a power of 2 2083 * if ac2_order is set we also set criteria to 0 so that we 2084 * try exact allocation using buddy. 2085 */ 2086 i = fls(ac->ac_g_ex.fe_len); 2087 ac->ac_2order = 0; 2088 /* 2089 * We search using buddy data only if the order of the request 2090 * is greater than equal to the sbi_s_mb_order2_reqs 2091 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2092 */ 2093 if (i >= sbi->s_mb_order2_reqs) { 2094 /* 2095 * This should tell if fe_len is exactly power of 2 2096 */ 2097 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2098 ac->ac_2order = i - 1; 2099 } 2100 2101 /* if stream allocation is enabled, use global goal */ 2102 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2103 /* TBD: may be hot point */ 2104 spin_lock(&sbi->s_md_lock); 2105 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2106 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2107 spin_unlock(&sbi->s_md_lock); 2108 } 2109 2110 /* Let's just scan groups to find more-less suitable blocks */ 2111 cr = ac->ac_2order ? 0 : 1; 2112 /* 2113 * cr == 0 try to get exact allocation, 2114 * cr == 3 try to get anything 2115 */ 2116 repeat: 2117 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2118 ac->ac_criteria = cr; 2119 /* 2120 * searching for the right group start 2121 * from the goal value specified 2122 */ 2123 group = ac->ac_g_ex.fe_group; 2124 2125 for (i = 0; i < ngroups; group++, i++) { 2126 cond_resched(); 2127 /* 2128 * Artificially restricted ngroups for non-extent 2129 * files makes group > ngroups possible on first loop. 2130 */ 2131 if (group >= ngroups) 2132 group = 0; 2133 2134 /* This now checks without needing the buddy page */ 2135 if (!ext4_mb_good_group(ac, group, cr)) 2136 continue; 2137 2138 err = ext4_mb_load_buddy(sb, group, &e4b); 2139 if (err) 2140 goto out; 2141 2142 ext4_lock_group(sb, group); 2143 2144 /* 2145 * We need to check again after locking the 2146 * block group 2147 */ 2148 if (!ext4_mb_good_group(ac, group, cr)) { 2149 ext4_unlock_group(sb, group); 2150 ext4_mb_unload_buddy(&e4b); 2151 continue; 2152 } 2153 2154 ac->ac_groups_scanned++; 2155 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2) 2156 ext4_mb_simple_scan_group(ac, &e4b); 2157 else if (cr == 1 && sbi->s_stripe && 2158 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2159 ext4_mb_scan_aligned(ac, &e4b); 2160 else 2161 ext4_mb_complex_scan_group(ac, &e4b); 2162 2163 ext4_unlock_group(sb, group); 2164 ext4_mb_unload_buddy(&e4b); 2165 2166 if (ac->ac_status != AC_STATUS_CONTINUE) 2167 break; 2168 } 2169 } 2170 2171 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2172 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2173 /* 2174 * We've been searching too long. Let's try to allocate 2175 * the best chunk we've found so far 2176 */ 2177 2178 ext4_mb_try_best_found(ac, &e4b); 2179 if (ac->ac_status != AC_STATUS_FOUND) { 2180 /* 2181 * Someone more lucky has already allocated it. 2182 * The only thing we can do is just take first 2183 * found block(s) 2184 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2185 */ 2186 ac->ac_b_ex.fe_group = 0; 2187 ac->ac_b_ex.fe_start = 0; 2188 ac->ac_b_ex.fe_len = 0; 2189 ac->ac_status = AC_STATUS_CONTINUE; 2190 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2191 cr = 3; 2192 atomic_inc(&sbi->s_mb_lost_chunks); 2193 goto repeat; 2194 } 2195 } 2196 out: 2197 return err; 2198 } 2199 2200 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2201 { 2202 struct super_block *sb = seq->private; 2203 ext4_group_t group; 2204 2205 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2206 return NULL; 2207 group = *pos + 1; 2208 return (void *) ((unsigned long) group); 2209 } 2210 2211 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2212 { 2213 struct super_block *sb = seq->private; 2214 ext4_group_t group; 2215 2216 ++*pos; 2217 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2218 return NULL; 2219 group = *pos + 1; 2220 return (void *) ((unsigned long) group); 2221 } 2222 2223 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2224 { 2225 struct super_block *sb = seq->private; 2226 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2227 int i; 2228 int err, buddy_loaded = 0; 2229 struct ext4_buddy e4b; 2230 struct ext4_group_info *grinfo; 2231 struct sg { 2232 struct ext4_group_info info; 2233 ext4_grpblk_t counters[16]; 2234 } sg; 2235 2236 group--; 2237 if (group == 0) 2238 seq_printf(seq, "#%-5s: %-5s %-5s %-5s " 2239 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " 2240 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", 2241 "group", "free", "frags", "first", 2242 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", 2243 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); 2244 2245 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2246 sizeof(struct ext4_group_info); 2247 grinfo = ext4_get_group_info(sb, group); 2248 /* Load the group info in memory only if not already loaded. */ 2249 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2250 err = ext4_mb_load_buddy(sb, group, &e4b); 2251 if (err) { 2252 seq_printf(seq, "#%-5u: I/O error\n", group); 2253 return 0; 2254 } 2255 buddy_loaded = 1; 2256 } 2257 2258 memcpy(&sg, ext4_get_group_info(sb, group), i); 2259 2260 if (buddy_loaded) 2261 ext4_mb_unload_buddy(&e4b); 2262 2263 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2264 sg.info.bb_fragments, sg.info.bb_first_free); 2265 for (i = 0; i <= 13; i++) 2266 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2267 sg.info.bb_counters[i] : 0); 2268 seq_printf(seq, " ]\n"); 2269 2270 return 0; 2271 } 2272 2273 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2274 { 2275 } 2276 2277 static const struct seq_operations ext4_mb_seq_groups_ops = { 2278 .start = ext4_mb_seq_groups_start, 2279 .next = ext4_mb_seq_groups_next, 2280 .stop = ext4_mb_seq_groups_stop, 2281 .show = ext4_mb_seq_groups_show, 2282 }; 2283 2284 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2285 { 2286 struct super_block *sb = PDE_DATA(inode); 2287 int rc; 2288 2289 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2290 if (rc == 0) { 2291 struct seq_file *m = file->private_data; 2292 m->private = sb; 2293 } 2294 return rc; 2295 2296 } 2297 2298 static const struct file_operations ext4_mb_seq_groups_fops = { 2299 .owner = THIS_MODULE, 2300 .open = ext4_mb_seq_groups_open, 2301 .read = seq_read, 2302 .llseek = seq_lseek, 2303 .release = seq_release, 2304 }; 2305 2306 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2307 { 2308 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2309 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2310 2311 BUG_ON(!cachep); 2312 return cachep; 2313 } 2314 2315 /* 2316 * Allocate the top-level s_group_info array for the specified number 2317 * of groups 2318 */ 2319 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2320 { 2321 struct ext4_sb_info *sbi = EXT4_SB(sb); 2322 unsigned size; 2323 struct ext4_group_info ***new_groupinfo; 2324 2325 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2326 EXT4_DESC_PER_BLOCK_BITS(sb); 2327 if (size <= sbi->s_group_info_size) 2328 return 0; 2329 2330 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2331 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL); 2332 if (!new_groupinfo) { 2333 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2334 return -ENOMEM; 2335 } 2336 if (sbi->s_group_info) { 2337 memcpy(new_groupinfo, sbi->s_group_info, 2338 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2339 ext4_kvfree(sbi->s_group_info); 2340 } 2341 sbi->s_group_info = new_groupinfo; 2342 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2343 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2344 sbi->s_group_info_size); 2345 return 0; 2346 } 2347 2348 /* Create and initialize ext4_group_info data for the given group. */ 2349 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2350 struct ext4_group_desc *desc) 2351 { 2352 int i; 2353 int metalen = 0; 2354 struct ext4_sb_info *sbi = EXT4_SB(sb); 2355 struct ext4_group_info **meta_group_info; 2356 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2357 2358 /* 2359 * First check if this group is the first of a reserved block. 2360 * If it's true, we have to allocate a new table of pointers 2361 * to ext4_group_info structures 2362 */ 2363 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2364 metalen = sizeof(*meta_group_info) << 2365 EXT4_DESC_PER_BLOCK_BITS(sb); 2366 meta_group_info = kmalloc(metalen, GFP_KERNEL); 2367 if (meta_group_info == NULL) { 2368 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2369 "for a buddy group"); 2370 goto exit_meta_group_info; 2371 } 2372 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2373 meta_group_info; 2374 } 2375 2376 meta_group_info = 2377 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2378 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2379 2380 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL); 2381 if (meta_group_info[i] == NULL) { 2382 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2383 goto exit_group_info; 2384 } 2385 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2386 &(meta_group_info[i]->bb_state)); 2387 2388 /* 2389 * initialize bb_free to be able to skip 2390 * empty groups without initialization 2391 */ 2392 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2393 meta_group_info[i]->bb_free = 2394 ext4_free_clusters_after_init(sb, group, desc); 2395 } else { 2396 meta_group_info[i]->bb_free = 2397 ext4_free_group_clusters(sb, desc); 2398 } 2399 2400 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2401 init_rwsem(&meta_group_info[i]->alloc_sem); 2402 meta_group_info[i]->bb_free_root = RB_ROOT; 2403 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2404 2405 #ifdef DOUBLE_CHECK 2406 { 2407 struct buffer_head *bh; 2408 meta_group_info[i]->bb_bitmap = 2409 kmalloc(sb->s_blocksize, GFP_KERNEL); 2410 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2411 bh = ext4_read_block_bitmap(sb, group); 2412 BUG_ON(bh == NULL); 2413 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2414 sb->s_blocksize); 2415 put_bh(bh); 2416 } 2417 #endif 2418 2419 return 0; 2420 2421 exit_group_info: 2422 /* If a meta_group_info table has been allocated, release it now */ 2423 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2424 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2425 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL; 2426 } 2427 exit_meta_group_info: 2428 return -ENOMEM; 2429 } /* ext4_mb_add_groupinfo */ 2430 2431 static int ext4_mb_init_backend(struct super_block *sb) 2432 { 2433 ext4_group_t ngroups = ext4_get_groups_count(sb); 2434 ext4_group_t i; 2435 struct ext4_sb_info *sbi = EXT4_SB(sb); 2436 int err; 2437 struct ext4_group_desc *desc; 2438 struct kmem_cache *cachep; 2439 2440 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2441 if (err) 2442 return err; 2443 2444 sbi->s_buddy_cache = new_inode(sb); 2445 if (sbi->s_buddy_cache == NULL) { 2446 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2447 goto err_freesgi; 2448 } 2449 /* To avoid potentially colliding with an valid on-disk inode number, 2450 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2451 * not in the inode hash, so it should never be found by iget(), but 2452 * this will avoid confusion if it ever shows up during debugging. */ 2453 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2454 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2455 for (i = 0; i < ngroups; i++) { 2456 desc = ext4_get_group_desc(sb, i, NULL); 2457 if (desc == NULL) { 2458 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2459 goto err_freebuddy; 2460 } 2461 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2462 goto err_freebuddy; 2463 } 2464 2465 return 0; 2466 2467 err_freebuddy: 2468 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2469 while (i-- > 0) 2470 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2471 i = sbi->s_group_info_size; 2472 while (i-- > 0) 2473 kfree(sbi->s_group_info[i]); 2474 iput(sbi->s_buddy_cache); 2475 err_freesgi: 2476 ext4_kvfree(sbi->s_group_info); 2477 return -ENOMEM; 2478 } 2479 2480 static void ext4_groupinfo_destroy_slabs(void) 2481 { 2482 int i; 2483 2484 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2485 if (ext4_groupinfo_caches[i]) 2486 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2487 ext4_groupinfo_caches[i] = NULL; 2488 } 2489 } 2490 2491 static int ext4_groupinfo_create_slab(size_t size) 2492 { 2493 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2494 int slab_size; 2495 int blocksize_bits = order_base_2(size); 2496 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2497 struct kmem_cache *cachep; 2498 2499 if (cache_index >= NR_GRPINFO_CACHES) 2500 return -EINVAL; 2501 2502 if (unlikely(cache_index < 0)) 2503 cache_index = 0; 2504 2505 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2506 if (ext4_groupinfo_caches[cache_index]) { 2507 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2508 return 0; /* Already created */ 2509 } 2510 2511 slab_size = offsetof(struct ext4_group_info, 2512 bb_counters[blocksize_bits + 2]); 2513 2514 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2515 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2516 NULL); 2517 2518 ext4_groupinfo_caches[cache_index] = cachep; 2519 2520 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2521 if (!cachep) { 2522 printk(KERN_EMERG 2523 "EXT4-fs: no memory for groupinfo slab cache\n"); 2524 return -ENOMEM; 2525 } 2526 2527 return 0; 2528 } 2529 2530 int ext4_mb_init(struct super_block *sb) 2531 { 2532 struct ext4_sb_info *sbi = EXT4_SB(sb); 2533 unsigned i, j; 2534 unsigned offset; 2535 unsigned max; 2536 int ret; 2537 2538 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2539 2540 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2541 if (sbi->s_mb_offsets == NULL) { 2542 ret = -ENOMEM; 2543 goto out; 2544 } 2545 2546 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2547 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2548 if (sbi->s_mb_maxs == NULL) { 2549 ret = -ENOMEM; 2550 goto out; 2551 } 2552 2553 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2554 if (ret < 0) 2555 goto out; 2556 2557 /* order 0 is regular bitmap */ 2558 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2559 sbi->s_mb_offsets[0] = 0; 2560 2561 i = 1; 2562 offset = 0; 2563 max = sb->s_blocksize << 2; 2564 do { 2565 sbi->s_mb_offsets[i] = offset; 2566 sbi->s_mb_maxs[i] = max; 2567 offset += 1 << (sb->s_blocksize_bits - i); 2568 max = max >> 1; 2569 i++; 2570 } while (i <= sb->s_blocksize_bits + 1); 2571 2572 spin_lock_init(&sbi->s_md_lock); 2573 spin_lock_init(&sbi->s_bal_lock); 2574 2575 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2576 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2577 sbi->s_mb_stats = MB_DEFAULT_STATS; 2578 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2579 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2580 /* 2581 * The default group preallocation is 512, which for 4k block 2582 * sizes translates to 2 megabytes. However for bigalloc file 2583 * systems, this is probably too big (i.e, if the cluster size 2584 * is 1 megabyte, then group preallocation size becomes half a 2585 * gigabyte!). As a default, we will keep a two megabyte 2586 * group pralloc size for cluster sizes up to 64k, and after 2587 * that, we will force a minimum group preallocation size of 2588 * 32 clusters. This translates to 8 megs when the cluster 2589 * size is 256k, and 32 megs when the cluster size is 1 meg, 2590 * which seems reasonable as a default. 2591 */ 2592 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2593 sbi->s_cluster_bits, 32); 2594 /* 2595 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2596 * to the lowest multiple of s_stripe which is bigger than 2597 * the s_mb_group_prealloc as determined above. We want 2598 * the preallocation size to be an exact multiple of the 2599 * RAID stripe size so that preallocations don't fragment 2600 * the stripes. 2601 */ 2602 if (sbi->s_stripe > 1) { 2603 sbi->s_mb_group_prealloc = roundup( 2604 sbi->s_mb_group_prealloc, sbi->s_stripe); 2605 } 2606 2607 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2608 if (sbi->s_locality_groups == NULL) { 2609 ret = -ENOMEM; 2610 goto out_free_groupinfo_slab; 2611 } 2612 for_each_possible_cpu(i) { 2613 struct ext4_locality_group *lg; 2614 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2615 mutex_init(&lg->lg_mutex); 2616 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2617 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2618 spin_lock_init(&lg->lg_prealloc_lock); 2619 } 2620 2621 /* init file for buddy data */ 2622 ret = ext4_mb_init_backend(sb); 2623 if (ret != 0) 2624 goto out_free_locality_groups; 2625 2626 if (sbi->s_proc) 2627 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, 2628 &ext4_mb_seq_groups_fops, sb); 2629 2630 return 0; 2631 2632 out_free_locality_groups: 2633 free_percpu(sbi->s_locality_groups); 2634 sbi->s_locality_groups = NULL; 2635 out_free_groupinfo_slab: 2636 ext4_groupinfo_destroy_slabs(); 2637 out: 2638 kfree(sbi->s_mb_offsets); 2639 sbi->s_mb_offsets = NULL; 2640 kfree(sbi->s_mb_maxs); 2641 sbi->s_mb_maxs = NULL; 2642 return ret; 2643 } 2644 2645 /* need to called with the ext4 group lock held */ 2646 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2647 { 2648 struct ext4_prealloc_space *pa; 2649 struct list_head *cur, *tmp; 2650 int count = 0; 2651 2652 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2653 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2654 list_del(&pa->pa_group_list); 2655 count++; 2656 kmem_cache_free(ext4_pspace_cachep, pa); 2657 } 2658 if (count) 2659 mb_debug(1, "mballoc: %u PAs left\n", count); 2660 2661 } 2662 2663 int ext4_mb_release(struct super_block *sb) 2664 { 2665 ext4_group_t ngroups = ext4_get_groups_count(sb); 2666 ext4_group_t i; 2667 int num_meta_group_infos; 2668 struct ext4_group_info *grinfo; 2669 struct ext4_sb_info *sbi = EXT4_SB(sb); 2670 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2671 2672 if (sbi->s_proc) 2673 remove_proc_entry("mb_groups", sbi->s_proc); 2674 2675 if (sbi->s_group_info) { 2676 for (i = 0; i < ngroups; i++) { 2677 grinfo = ext4_get_group_info(sb, i); 2678 #ifdef DOUBLE_CHECK 2679 kfree(grinfo->bb_bitmap); 2680 #endif 2681 ext4_lock_group(sb, i); 2682 ext4_mb_cleanup_pa(grinfo); 2683 ext4_unlock_group(sb, i); 2684 kmem_cache_free(cachep, grinfo); 2685 } 2686 num_meta_group_infos = (ngroups + 2687 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2688 EXT4_DESC_PER_BLOCK_BITS(sb); 2689 for (i = 0; i < num_meta_group_infos; i++) 2690 kfree(sbi->s_group_info[i]); 2691 ext4_kvfree(sbi->s_group_info); 2692 } 2693 kfree(sbi->s_mb_offsets); 2694 kfree(sbi->s_mb_maxs); 2695 if (sbi->s_buddy_cache) 2696 iput(sbi->s_buddy_cache); 2697 if (sbi->s_mb_stats) { 2698 ext4_msg(sb, KERN_INFO, 2699 "mballoc: %u blocks %u reqs (%u success)", 2700 atomic_read(&sbi->s_bal_allocated), 2701 atomic_read(&sbi->s_bal_reqs), 2702 atomic_read(&sbi->s_bal_success)); 2703 ext4_msg(sb, KERN_INFO, 2704 "mballoc: %u extents scanned, %u goal hits, " 2705 "%u 2^N hits, %u breaks, %u lost", 2706 atomic_read(&sbi->s_bal_ex_scanned), 2707 atomic_read(&sbi->s_bal_goals), 2708 atomic_read(&sbi->s_bal_2orders), 2709 atomic_read(&sbi->s_bal_breaks), 2710 atomic_read(&sbi->s_mb_lost_chunks)); 2711 ext4_msg(sb, KERN_INFO, 2712 "mballoc: %lu generated and it took %Lu", 2713 sbi->s_mb_buddies_generated, 2714 sbi->s_mb_generation_time); 2715 ext4_msg(sb, KERN_INFO, 2716 "mballoc: %u preallocated, %u discarded", 2717 atomic_read(&sbi->s_mb_preallocated), 2718 atomic_read(&sbi->s_mb_discarded)); 2719 } 2720 2721 free_percpu(sbi->s_locality_groups); 2722 2723 return 0; 2724 } 2725 2726 static inline int ext4_issue_discard(struct super_block *sb, 2727 ext4_group_t block_group, ext4_grpblk_t cluster, int count) 2728 { 2729 ext4_fsblk_t discard_block; 2730 2731 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2732 ext4_group_first_block_no(sb, block_group)); 2733 count = EXT4_C2B(EXT4_SB(sb), count); 2734 trace_ext4_discard_blocks(sb, 2735 (unsigned long long) discard_block, count); 2736 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2737 } 2738 2739 /* 2740 * This function is called by the jbd2 layer once the commit has finished, 2741 * so we know we can free the blocks that were released with that commit. 2742 */ 2743 static void ext4_free_data_callback(struct super_block *sb, 2744 struct ext4_journal_cb_entry *jce, 2745 int rc) 2746 { 2747 struct ext4_free_data *entry = (struct ext4_free_data *)jce; 2748 struct ext4_buddy e4b; 2749 struct ext4_group_info *db; 2750 int err, count = 0, count2 = 0; 2751 2752 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2753 entry->efd_count, entry->efd_group, entry); 2754 2755 if (test_opt(sb, DISCARD)) { 2756 err = ext4_issue_discard(sb, entry->efd_group, 2757 entry->efd_start_cluster, 2758 entry->efd_count); 2759 if (err && err != -EOPNOTSUPP) 2760 ext4_msg(sb, KERN_WARNING, "discard request in" 2761 " group:%d block:%d count:%d failed" 2762 " with %d", entry->efd_group, 2763 entry->efd_start_cluster, 2764 entry->efd_count, err); 2765 } 2766 2767 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2768 /* we expect to find existing buddy because it's pinned */ 2769 BUG_ON(err != 0); 2770 2771 2772 db = e4b.bd_info; 2773 /* there are blocks to put in buddy to make them really free */ 2774 count += entry->efd_count; 2775 count2++; 2776 ext4_lock_group(sb, entry->efd_group); 2777 /* Take it out of per group rb tree */ 2778 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2779 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2780 2781 /* 2782 * Clear the trimmed flag for the group so that the next 2783 * ext4_trim_fs can trim it. 2784 * If the volume is mounted with -o discard, online discard 2785 * is supported and the free blocks will be trimmed online. 2786 */ 2787 if (!test_opt(sb, DISCARD)) 2788 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2789 2790 if (!db->bb_free_root.rb_node) { 2791 /* No more items in the per group rb tree 2792 * balance refcounts from ext4_mb_free_metadata() 2793 */ 2794 page_cache_release(e4b.bd_buddy_page); 2795 page_cache_release(e4b.bd_bitmap_page); 2796 } 2797 ext4_unlock_group(sb, entry->efd_group); 2798 kmem_cache_free(ext4_free_data_cachep, entry); 2799 ext4_mb_unload_buddy(&e4b); 2800 2801 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2802 } 2803 2804 int __init ext4_init_mballoc(void) 2805 { 2806 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2807 SLAB_RECLAIM_ACCOUNT); 2808 if (ext4_pspace_cachep == NULL) 2809 return -ENOMEM; 2810 2811 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2812 SLAB_RECLAIM_ACCOUNT); 2813 if (ext4_ac_cachep == NULL) { 2814 kmem_cache_destroy(ext4_pspace_cachep); 2815 return -ENOMEM; 2816 } 2817 2818 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2819 SLAB_RECLAIM_ACCOUNT); 2820 if (ext4_free_data_cachep == NULL) { 2821 kmem_cache_destroy(ext4_pspace_cachep); 2822 kmem_cache_destroy(ext4_ac_cachep); 2823 return -ENOMEM; 2824 } 2825 return 0; 2826 } 2827 2828 void ext4_exit_mballoc(void) 2829 { 2830 /* 2831 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2832 * before destroying the slab cache. 2833 */ 2834 rcu_barrier(); 2835 kmem_cache_destroy(ext4_pspace_cachep); 2836 kmem_cache_destroy(ext4_ac_cachep); 2837 kmem_cache_destroy(ext4_free_data_cachep); 2838 ext4_groupinfo_destroy_slabs(); 2839 } 2840 2841 2842 /* 2843 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2844 * Returns 0 if success or error code 2845 */ 2846 static noinline_for_stack int 2847 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2848 handle_t *handle, unsigned int reserv_clstrs) 2849 { 2850 struct buffer_head *bitmap_bh = NULL; 2851 struct ext4_group_desc *gdp; 2852 struct buffer_head *gdp_bh; 2853 struct ext4_sb_info *sbi; 2854 struct super_block *sb; 2855 ext4_fsblk_t block; 2856 int err, len; 2857 2858 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2859 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2860 2861 sb = ac->ac_sb; 2862 sbi = EXT4_SB(sb); 2863 2864 err = -EIO; 2865 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2866 if (!bitmap_bh) 2867 goto out_err; 2868 2869 err = ext4_journal_get_write_access(handle, bitmap_bh); 2870 if (err) 2871 goto out_err; 2872 2873 err = -EIO; 2874 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2875 if (!gdp) 2876 goto out_err; 2877 2878 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2879 ext4_free_group_clusters(sb, gdp)); 2880 2881 err = ext4_journal_get_write_access(handle, gdp_bh); 2882 if (err) 2883 goto out_err; 2884 2885 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2886 2887 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2888 if (!ext4_data_block_valid(sbi, block, len)) { 2889 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2890 "fs metadata", block, block+len); 2891 /* File system mounted not to panic on error 2892 * Fix the bitmap and repeat the block allocation 2893 * We leak some of the blocks here. 2894 */ 2895 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2896 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2897 ac->ac_b_ex.fe_len); 2898 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2899 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2900 if (!err) 2901 err = -EAGAIN; 2902 goto out_err; 2903 } 2904 2905 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2906 #ifdef AGGRESSIVE_CHECK 2907 { 2908 int i; 2909 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2910 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2911 bitmap_bh->b_data)); 2912 } 2913 } 2914 #endif 2915 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2916 ac->ac_b_ex.fe_len); 2917 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2918 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2919 ext4_free_group_clusters_set(sb, gdp, 2920 ext4_free_clusters_after_init(sb, 2921 ac->ac_b_ex.fe_group, gdp)); 2922 } 2923 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 2924 ext4_free_group_clusters_set(sb, gdp, len); 2925 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 2926 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 2927 2928 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2929 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 2930 /* 2931 * Now reduce the dirty block count also. Should not go negative 2932 */ 2933 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 2934 /* release all the reserved blocks if non delalloc */ 2935 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 2936 reserv_clstrs); 2937 2938 if (sbi->s_log_groups_per_flex) { 2939 ext4_group_t flex_group = ext4_flex_group(sbi, 2940 ac->ac_b_ex.fe_group); 2941 atomic64_sub(ac->ac_b_ex.fe_len, 2942 &sbi->s_flex_groups[flex_group].free_clusters); 2943 } 2944 2945 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2946 if (err) 2947 goto out_err; 2948 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 2949 2950 out_err: 2951 brelse(bitmap_bh); 2952 return err; 2953 } 2954 2955 /* 2956 * here we normalize request for locality group 2957 * Group request are normalized to s_mb_group_prealloc, which goes to 2958 * s_strip if we set the same via mount option. 2959 * s_mb_group_prealloc can be configured via 2960 * /sys/fs/ext4/<partition>/mb_group_prealloc 2961 * 2962 * XXX: should we try to preallocate more than the group has now? 2963 */ 2964 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 2965 { 2966 struct super_block *sb = ac->ac_sb; 2967 struct ext4_locality_group *lg = ac->ac_lg; 2968 2969 BUG_ON(lg == NULL); 2970 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 2971 mb_debug(1, "#%u: goal %u blocks for locality group\n", 2972 current->pid, ac->ac_g_ex.fe_len); 2973 } 2974 2975 /* 2976 * Normalization means making request better in terms of 2977 * size and alignment 2978 */ 2979 static noinline_for_stack void 2980 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 2981 struct ext4_allocation_request *ar) 2982 { 2983 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2984 int bsbits, max; 2985 ext4_lblk_t end; 2986 loff_t size, start_off; 2987 loff_t orig_size __maybe_unused; 2988 ext4_lblk_t start; 2989 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 2990 struct ext4_prealloc_space *pa; 2991 2992 /* do normalize only data requests, metadata requests 2993 do not need preallocation */ 2994 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 2995 return; 2996 2997 /* sometime caller may want exact blocks */ 2998 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2999 return; 3000 3001 /* caller may indicate that preallocation isn't 3002 * required (it's a tail, for example) */ 3003 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3004 return; 3005 3006 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3007 ext4_mb_normalize_group_request(ac); 3008 return ; 3009 } 3010 3011 bsbits = ac->ac_sb->s_blocksize_bits; 3012 3013 /* first, let's learn actual file size 3014 * given current request is allocated */ 3015 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3016 size = size << bsbits; 3017 if (size < i_size_read(ac->ac_inode)) 3018 size = i_size_read(ac->ac_inode); 3019 orig_size = size; 3020 3021 /* max size of free chunks */ 3022 max = 2 << bsbits; 3023 3024 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3025 (req <= (size) || max <= (chunk_size)) 3026 3027 /* first, try to predict filesize */ 3028 /* XXX: should this table be tunable? */ 3029 start_off = 0; 3030 if (size <= 16 * 1024) { 3031 size = 16 * 1024; 3032 } else if (size <= 32 * 1024) { 3033 size = 32 * 1024; 3034 } else if (size <= 64 * 1024) { 3035 size = 64 * 1024; 3036 } else if (size <= 128 * 1024) { 3037 size = 128 * 1024; 3038 } else if (size <= 256 * 1024) { 3039 size = 256 * 1024; 3040 } else if (size <= 512 * 1024) { 3041 size = 512 * 1024; 3042 } else if (size <= 1024 * 1024) { 3043 size = 1024 * 1024; 3044 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3045 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3046 (21 - bsbits)) << 21; 3047 size = 2 * 1024 * 1024; 3048 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3049 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3050 (22 - bsbits)) << 22; 3051 size = 4 * 1024 * 1024; 3052 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3053 (8<<20)>>bsbits, max, 8 * 1024)) { 3054 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3055 (23 - bsbits)) << 23; 3056 size = 8 * 1024 * 1024; 3057 } else { 3058 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits; 3059 size = ac->ac_o_ex.fe_len << bsbits; 3060 } 3061 size = size >> bsbits; 3062 start = start_off >> bsbits; 3063 3064 /* don't cover already allocated blocks in selected range */ 3065 if (ar->pleft && start <= ar->lleft) { 3066 size -= ar->lleft + 1 - start; 3067 start = ar->lleft + 1; 3068 } 3069 if (ar->pright && start + size - 1 >= ar->lright) 3070 size -= start + size - ar->lright; 3071 3072 end = start + size; 3073 3074 /* check we don't cross already preallocated blocks */ 3075 rcu_read_lock(); 3076 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3077 ext4_lblk_t pa_end; 3078 3079 if (pa->pa_deleted) 3080 continue; 3081 spin_lock(&pa->pa_lock); 3082 if (pa->pa_deleted) { 3083 spin_unlock(&pa->pa_lock); 3084 continue; 3085 } 3086 3087 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3088 pa->pa_len); 3089 3090 /* PA must not overlap original request */ 3091 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3092 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3093 3094 /* skip PAs this normalized request doesn't overlap with */ 3095 if (pa->pa_lstart >= end || pa_end <= start) { 3096 spin_unlock(&pa->pa_lock); 3097 continue; 3098 } 3099 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3100 3101 /* adjust start or end to be adjacent to this pa */ 3102 if (pa_end <= ac->ac_o_ex.fe_logical) { 3103 BUG_ON(pa_end < start); 3104 start = pa_end; 3105 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3106 BUG_ON(pa->pa_lstart > end); 3107 end = pa->pa_lstart; 3108 } 3109 spin_unlock(&pa->pa_lock); 3110 } 3111 rcu_read_unlock(); 3112 size = end - start; 3113 3114 /* XXX: extra loop to check we really don't overlap preallocations */ 3115 rcu_read_lock(); 3116 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3117 ext4_lblk_t pa_end; 3118 3119 spin_lock(&pa->pa_lock); 3120 if (pa->pa_deleted == 0) { 3121 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3122 pa->pa_len); 3123 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3124 } 3125 spin_unlock(&pa->pa_lock); 3126 } 3127 rcu_read_unlock(); 3128 3129 if (start + size <= ac->ac_o_ex.fe_logical && 3130 start > ac->ac_o_ex.fe_logical) { 3131 ext4_msg(ac->ac_sb, KERN_ERR, 3132 "start %lu, size %lu, fe_logical %lu", 3133 (unsigned long) start, (unsigned long) size, 3134 (unsigned long) ac->ac_o_ex.fe_logical); 3135 } 3136 BUG_ON(start + size <= ac->ac_o_ex.fe_logical && 3137 start > ac->ac_o_ex.fe_logical); 3138 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 3139 3140 /* now prepare goal request */ 3141 3142 /* XXX: is it better to align blocks WRT to logical 3143 * placement or satisfy big request as is */ 3144 ac->ac_g_ex.fe_logical = start; 3145 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3146 3147 /* define goal start in order to merge */ 3148 if (ar->pright && (ar->lright == (start + size))) { 3149 /* merge to the right */ 3150 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3151 &ac->ac_f_ex.fe_group, 3152 &ac->ac_f_ex.fe_start); 3153 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3154 } 3155 if (ar->pleft && (ar->lleft + 1 == start)) { 3156 /* merge to the left */ 3157 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3158 &ac->ac_f_ex.fe_group, 3159 &ac->ac_f_ex.fe_start); 3160 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3161 } 3162 3163 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3164 (unsigned) orig_size, (unsigned) start); 3165 } 3166 3167 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3168 { 3169 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3170 3171 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3172 atomic_inc(&sbi->s_bal_reqs); 3173 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3174 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3175 atomic_inc(&sbi->s_bal_success); 3176 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3177 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3178 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3179 atomic_inc(&sbi->s_bal_goals); 3180 if (ac->ac_found > sbi->s_mb_max_to_scan) 3181 atomic_inc(&sbi->s_bal_breaks); 3182 } 3183 3184 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3185 trace_ext4_mballoc_alloc(ac); 3186 else 3187 trace_ext4_mballoc_prealloc(ac); 3188 } 3189 3190 /* 3191 * Called on failure; free up any blocks from the inode PA for this 3192 * context. We don't need this for MB_GROUP_PA because we only change 3193 * pa_free in ext4_mb_release_context(), but on failure, we've already 3194 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3195 */ 3196 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3197 { 3198 struct ext4_prealloc_space *pa = ac->ac_pa; 3199 3200 if (pa && pa->pa_type == MB_INODE_PA) 3201 pa->pa_free += ac->ac_b_ex.fe_len; 3202 } 3203 3204 /* 3205 * use blocks preallocated to inode 3206 */ 3207 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3208 struct ext4_prealloc_space *pa) 3209 { 3210 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3211 ext4_fsblk_t start; 3212 ext4_fsblk_t end; 3213 int len; 3214 3215 /* found preallocated blocks, use them */ 3216 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3217 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3218 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3219 len = EXT4_NUM_B2C(sbi, end - start); 3220 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3221 &ac->ac_b_ex.fe_start); 3222 ac->ac_b_ex.fe_len = len; 3223 ac->ac_status = AC_STATUS_FOUND; 3224 ac->ac_pa = pa; 3225 3226 BUG_ON(start < pa->pa_pstart); 3227 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3228 BUG_ON(pa->pa_free < len); 3229 pa->pa_free -= len; 3230 3231 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3232 } 3233 3234 /* 3235 * use blocks preallocated to locality group 3236 */ 3237 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3238 struct ext4_prealloc_space *pa) 3239 { 3240 unsigned int len = ac->ac_o_ex.fe_len; 3241 3242 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3243 &ac->ac_b_ex.fe_group, 3244 &ac->ac_b_ex.fe_start); 3245 ac->ac_b_ex.fe_len = len; 3246 ac->ac_status = AC_STATUS_FOUND; 3247 ac->ac_pa = pa; 3248 3249 /* we don't correct pa_pstart or pa_plen here to avoid 3250 * possible race when the group is being loaded concurrently 3251 * instead we correct pa later, after blocks are marked 3252 * in on-disk bitmap -- see ext4_mb_release_context() 3253 * Other CPUs are prevented from allocating from this pa by lg_mutex 3254 */ 3255 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3256 } 3257 3258 /* 3259 * Return the prealloc space that have minimal distance 3260 * from the goal block. @cpa is the prealloc 3261 * space that is having currently known minimal distance 3262 * from the goal block. 3263 */ 3264 static struct ext4_prealloc_space * 3265 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3266 struct ext4_prealloc_space *pa, 3267 struct ext4_prealloc_space *cpa) 3268 { 3269 ext4_fsblk_t cur_distance, new_distance; 3270 3271 if (cpa == NULL) { 3272 atomic_inc(&pa->pa_count); 3273 return pa; 3274 } 3275 cur_distance = abs(goal_block - cpa->pa_pstart); 3276 new_distance = abs(goal_block - pa->pa_pstart); 3277 3278 if (cur_distance <= new_distance) 3279 return cpa; 3280 3281 /* drop the previous reference */ 3282 atomic_dec(&cpa->pa_count); 3283 atomic_inc(&pa->pa_count); 3284 return pa; 3285 } 3286 3287 /* 3288 * search goal blocks in preallocated space 3289 */ 3290 static noinline_for_stack int 3291 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3292 { 3293 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3294 int order, i; 3295 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3296 struct ext4_locality_group *lg; 3297 struct ext4_prealloc_space *pa, *cpa = NULL; 3298 ext4_fsblk_t goal_block; 3299 3300 /* only data can be preallocated */ 3301 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3302 return 0; 3303 3304 /* first, try per-file preallocation */ 3305 rcu_read_lock(); 3306 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3307 3308 /* all fields in this condition don't change, 3309 * so we can skip locking for them */ 3310 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3311 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3312 EXT4_C2B(sbi, pa->pa_len))) 3313 continue; 3314 3315 /* non-extent files can't have physical blocks past 2^32 */ 3316 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3317 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3318 EXT4_MAX_BLOCK_FILE_PHYS)) 3319 continue; 3320 3321 /* found preallocated blocks, use them */ 3322 spin_lock(&pa->pa_lock); 3323 if (pa->pa_deleted == 0 && pa->pa_free) { 3324 atomic_inc(&pa->pa_count); 3325 ext4_mb_use_inode_pa(ac, pa); 3326 spin_unlock(&pa->pa_lock); 3327 ac->ac_criteria = 10; 3328 rcu_read_unlock(); 3329 return 1; 3330 } 3331 spin_unlock(&pa->pa_lock); 3332 } 3333 rcu_read_unlock(); 3334 3335 /* can we use group allocation? */ 3336 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3337 return 0; 3338 3339 /* inode may have no locality group for some reason */ 3340 lg = ac->ac_lg; 3341 if (lg == NULL) 3342 return 0; 3343 order = fls(ac->ac_o_ex.fe_len) - 1; 3344 if (order > PREALLOC_TB_SIZE - 1) 3345 /* The max size of hash table is PREALLOC_TB_SIZE */ 3346 order = PREALLOC_TB_SIZE - 1; 3347 3348 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3349 /* 3350 * search for the prealloc space that is having 3351 * minimal distance from the goal block. 3352 */ 3353 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3354 rcu_read_lock(); 3355 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3356 pa_inode_list) { 3357 spin_lock(&pa->pa_lock); 3358 if (pa->pa_deleted == 0 && 3359 pa->pa_free >= ac->ac_o_ex.fe_len) { 3360 3361 cpa = ext4_mb_check_group_pa(goal_block, 3362 pa, cpa); 3363 } 3364 spin_unlock(&pa->pa_lock); 3365 } 3366 rcu_read_unlock(); 3367 } 3368 if (cpa) { 3369 ext4_mb_use_group_pa(ac, cpa); 3370 ac->ac_criteria = 20; 3371 return 1; 3372 } 3373 return 0; 3374 } 3375 3376 /* 3377 * the function goes through all block freed in the group 3378 * but not yet committed and marks them used in in-core bitmap. 3379 * buddy must be generated from this bitmap 3380 * Need to be called with the ext4 group lock held 3381 */ 3382 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3383 ext4_group_t group) 3384 { 3385 struct rb_node *n; 3386 struct ext4_group_info *grp; 3387 struct ext4_free_data *entry; 3388 3389 grp = ext4_get_group_info(sb, group); 3390 n = rb_first(&(grp->bb_free_root)); 3391 3392 while (n) { 3393 entry = rb_entry(n, struct ext4_free_data, efd_node); 3394 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3395 n = rb_next(n); 3396 } 3397 return; 3398 } 3399 3400 /* 3401 * the function goes through all preallocation in this group and marks them 3402 * used in in-core bitmap. buddy must be generated from this bitmap 3403 * Need to be called with ext4 group lock held 3404 */ 3405 static noinline_for_stack 3406 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3407 ext4_group_t group) 3408 { 3409 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3410 struct ext4_prealloc_space *pa; 3411 struct list_head *cur; 3412 ext4_group_t groupnr; 3413 ext4_grpblk_t start; 3414 int preallocated = 0; 3415 int len; 3416 3417 /* all form of preallocation discards first load group, 3418 * so the only competing code is preallocation use. 3419 * we don't need any locking here 3420 * notice we do NOT ignore preallocations with pa_deleted 3421 * otherwise we could leave used blocks available for 3422 * allocation in buddy when concurrent ext4_mb_put_pa() 3423 * is dropping preallocation 3424 */ 3425 list_for_each(cur, &grp->bb_prealloc_list) { 3426 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3427 spin_lock(&pa->pa_lock); 3428 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3429 &groupnr, &start); 3430 len = pa->pa_len; 3431 spin_unlock(&pa->pa_lock); 3432 if (unlikely(len == 0)) 3433 continue; 3434 BUG_ON(groupnr != group); 3435 ext4_set_bits(bitmap, start, len); 3436 preallocated += len; 3437 } 3438 mb_debug(1, "prellocated %u for group %u\n", preallocated, group); 3439 } 3440 3441 static void ext4_mb_pa_callback(struct rcu_head *head) 3442 { 3443 struct ext4_prealloc_space *pa; 3444 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3445 kmem_cache_free(ext4_pspace_cachep, pa); 3446 } 3447 3448 /* 3449 * drops a reference to preallocated space descriptor 3450 * if this was the last reference and the space is consumed 3451 */ 3452 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3453 struct super_block *sb, struct ext4_prealloc_space *pa) 3454 { 3455 ext4_group_t grp; 3456 ext4_fsblk_t grp_blk; 3457 3458 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) 3459 return; 3460 3461 /* in this short window concurrent discard can set pa_deleted */ 3462 spin_lock(&pa->pa_lock); 3463 if (pa->pa_deleted == 1) { 3464 spin_unlock(&pa->pa_lock); 3465 return; 3466 } 3467 3468 pa->pa_deleted = 1; 3469 spin_unlock(&pa->pa_lock); 3470 3471 grp_blk = pa->pa_pstart; 3472 /* 3473 * If doing group-based preallocation, pa_pstart may be in the 3474 * next group when pa is used up 3475 */ 3476 if (pa->pa_type == MB_GROUP_PA) 3477 grp_blk--; 3478 3479 grp = ext4_get_group_number(sb, grp_blk); 3480 3481 /* 3482 * possible race: 3483 * 3484 * P1 (buddy init) P2 (regular allocation) 3485 * find block B in PA 3486 * copy on-disk bitmap to buddy 3487 * mark B in on-disk bitmap 3488 * drop PA from group 3489 * mark all PAs in buddy 3490 * 3491 * thus, P1 initializes buddy with B available. to prevent this 3492 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3493 * against that pair 3494 */ 3495 ext4_lock_group(sb, grp); 3496 list_del(&pa->pa_group_list); 3497 ext4_unlock_group(sb, grp); 3498 3499 spin_lock(pa->pa_obj_lock); 3500 list_del_rcu(&pa->pa_inode_list); 3501 spin_unlock(pa->pa_obj_lock); 3502 3503 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3504 } 3505 3506 /* 3507 * creates new preallocated space for given inode 3508 */ 3509 static noinline_for_stack int 3510 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3511 { 3512 struct super_block *sb = ac->ac_sb; 3513 struct ext4_sb_info *sbi = EXT4_SB(sb); 3514 struct ext4_prealloc_space *pa; 3515 struct ext4_group_info *grp; 3516 struct ext4_inode_info *ei; 3517 3518 /* preallocate only when found space is larger then requested */ 3519 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3520 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3521 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3522 3523 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3524 if (pa == NULL) 3525 return -ENOMEM; 3526 3527 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3528 int winl; 3529 int wins; 3530 int win; 3531 int offs; 3532 3533 /* we can't allocate as much as normalizer wants. 3534 * so, found space must get proper lstart 3535 * to cover original request */ 3536 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3537 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3538 3539 /* we're limited by original request in that 3540 * logical block must be covered any way 3541 * winl is window we can move our chunk within */ 3542 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3543 3544 /* also, we should cover whole original request */ 3545 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3546 3547 /* the smallest one defines real window */ 3548 win = min(winl, wins); 3549 3550 offs = ac->ac_o_ex.fe_logical % 3551 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3552 if (offs && offs < win) 3553 win = offs; 3554 3555 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3556 EXT4_NUM_B2C(sbi, win); 3557 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3558 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3559 } 3560 3561 /* preallocation can change ac_b_ex, thus we store actually 3562 * allocated blocks for history */ 3563 ac->ac_f_ex = ac->ac_b_ex; 3564 3565 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3566 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3567 pa->pa_len = ac->ac_b_ex.fe_len; 3568 pa->pa_free = pa->pa_len; 3569 atomic_set(&pa->pa_count, 1); 3570 spin_lock_init(&pa->pa_lock); 3571 INIT_LIST_HEAD(&pa->pa_inode_list); 3572 INIT_LIST_HEAD(&pa->pa_group_list); 3573 pa->pa_deleted = 0; 3574 pa->pa_type = MB_INODE_PA; 3575 3576 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3577 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3578 trace_ext4_mb_new_inode_pa(ac, pa); 3579 3580 ext4_mb_use_inode_pa(ac, pa); 3581 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3582 3583 ei = EXT4_I(ac->ac_inode); 3584 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3585 3586 pa->pa_obj_lock = &ei->i_prealloc_lock; 3587 pa->pa_inode = ac->ac_inode; 3588 3589 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3590 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3591 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3592 3593 spin_lock(pa->pa_obj_lock); 3594 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3595 spin_unlock(pa->pa_obj_lock); 3596 3597 return 0; 3598 } 3599 3600 /* 3601 * creates new preallocated space for locality group inodes belongs to 3602 */ 3603 static noinline_for_stack int 3604 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3605 { 3606 struct super_block *sb = ac->ac_sb; 3607 struct ext4_locality_group *lg; 3608 struct ext4_prealloc_space *pa; 3609 struct ext4_group_info *grp; 3610 3611 /* preallocate only when found space is larger then requested */ 3612 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3613 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3614 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3615 3616 BUG_ON(ext4_pspace_cachep == NULL); 3617 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3618 if (pa == NULL) 3619 return -ENOMEM; 3620 3621 /* preallocation can change ac_b_ex, thus we store actually 3622 * allocated blocks for history */ 3623 ac->ac_f_ex = ac->ac_b_ex; 3624 3625 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3626 pa->pa_lstart = pa->pa_pstart; 3627 pa->pa_len = ac->ac_b_ex.fe_len; 3628 pa->pa_free = pa->pa_len; 3629 atomic_set(&pa->pa_count, 1); 3630 spin_lock_init(&pa->pa_lock); 3631 INIT_LIST_HEAD(&pa->pa_inode_list); 3632 INIT_LIST_HEAD(&pa->pa_group_list); 3633 pa->pa_deleted = 0; 3634 pa->pa_type = MB_GROUP_PA; 3635 3636 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3637 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3638 trace_ext4_mb_new_group_pa(ac, pa); 3639 3640 ext4_mb_use_group_pa(ac, pa); 3641 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3642 3643 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3644 lg = ac->ac_lg; 3645 BUG_ON(lg == NULL); 3646 3647 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3648 pa->pa_inode = NULL; 3649 3650 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3651 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3652 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3653 3654 /* 3655 * We will later add the new pa to the right bucket 3656 * after updating the pa_free in ext4_mb_release_context 3657 */ 3658 return 0; 3659 } 3660 3661 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3662 { 3663 int err; 3664 3665 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3666 err = ext4_mb_new_group_pa(ac); 3667 else 3668 err = ext4_mb_new_inode_pa(ac); 3669 return err; 3670 } 3671 3672 /* 3673 * finds all unused blocks in on-disk bitmap, frees them in 3674 * in-core bitmap and buddy. 3675 * @pa must be unlinked from inode and group lists, so that 3676 * nobody else can find/use it. 3677 * the caller MUST hold group/inode locks. 3678 * TODO: optimize the case when there are no in-core structures yet 3679 */ 3680 static noinline_for_stack int 3681 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3682 struct ext4_prealloc_space *pa) 3683 { 3684 struct super_block *sb = e4b->bd_sb; 3685 struct ext4_sb_info *sbi = EXT4_SB(sb); 3686 unsigned int end; 3687 unsigned int next; 3688 ext4_group_t group; 3689 ext4_grpblk_t bit; 3690 unsigned long long grp_blk_start; 3691 int err = 0; 3692 int free = 0; 3693 3694 BUG_ON(pa->pa_deleted == 0); 3695 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3696 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3697 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3698 end = bit + pa->pa_len; 3699 3700 while (bit < end) { 3701 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3702 if (bit >= end) 3703 break; 3704 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3705 mb_debug(1, " free preallocated %u/%u in group %u\n", 3706 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3707 (unsigned) next - bit, (unsigned) group); 3708 free += next - bit; 3709 3710 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3711 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3712 EXT4_C2B(sbi, bit)), 3713 next - bit); 3714 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3715 bit = next + 1; 3716 } 3717 if (free != pa->pa_free) { 3718 ext4_msg(e4b->bd_sb, KERN_CRIT, 3719 "pa %p: logic %lu, phys. %lu, len %lu", 3720 pa, (unsigned long) pa->pa_lstart, 3721 (unsigned long) pa->pa_pstart, 3722 (unsigned long) pa->pa_len); 3723 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3724 free, pa->pa_free); 3725 /* 3726 * pa is already deleted so we use the value obtained 3727 * from the bitmap and continue. 3728 */ 3729 } 3730 atomic_add(free, &sbi->s_mb_discarded); 3731 3732 return err; 3733 } 3734 3735 static noinline_for_stack int 3736 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3737 struct ext4_prealloc_space *pa) 3738 { 3739 struct super_block *sb = e4b->bd_sb; 3740 ext4_group_t group; 3741 ext4_grpblk_t bit; 3742 3743 trace_ext4_mb_release_group_pa(sb, pa); 3744 BUG_ON(pa->pa_deleted == 0); 3745 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3746 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3747 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3748 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3749 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3750 3751 return 0; 3752 } 3753 3754 /* 3755 * releases all preallocations in given group 3756 * 3757 * first, we need to decide discard policy: 3758 * - when do we discard 3759 * 1) ENOSPC 3760 * - how many do we discard 3761 * 1) how many requested 3762 */ 3763 static noinline_for_stack int 3764 ext4_mb_discard_group_preallocations(struct super_block *sb, 3765 ext4_group_t group, int needed) 3766 { 3767 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3768 struct buffer_head *bitmap_bh = NULL; 3769 struct ext4_prealloc_space *pa, *tmp; 3770 struct list_head list; 3771 struct ext4_buddy e4b; 3772 int err; 3773 int busy = 0; 3774 int free = 0; 3775 3776 mb_debug(1, "discard preallocation for group %u\n", group); 3777 3778 if (list_empty(&grp->bb_prealloc_list)) 3779 return 0; 3780 3781 bitmap_bh = ext4_read_block_bitmap(sb, group); 3782 if (bitmap_bh == NULL) { 3783 ext4_error(sb, "Error reading block bitmap for %u", group); 3784 return 0; 3785 } 3786 3787 err = ext4_mb_load_buddy(sb, group, &e4b); 3788 if (err) { 3789 ext4_error(sb, "Error loading buddy information for %u", group); 3790 put_bh(bitmap_bh); 3791 return 0; 3792 } 3793 3794 if (needed == 0) 3795 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3796 3797 INIT_LIST_HEAD(&list); 3798 repeat: 3799 ext4_lock_group(sb, group); 3800 list_for_each_entry_safe(pa, tmp, 3801 &grp->bb_prealloc_list, pa_group_list) { 3802 spin_lock(&pa->pa_lock); 3803 if (atomic_read(&pa->pa_count)) { 3804 spin_unlock(&pa->pa_lock); 3805 busy = 1; 3806 continue; 3807 } 3808 if (pa->pa_deleted) { 3809 spin_unlock(&pa->pa_lock); 3810 continue; 3811 } 3812 3813 /* seems this one can be freed ... */ 3814 pa->pa_deleted = 1; 3815 3816 /* we can trust pa_free ... */ 3817 free += pa->pa_free; 3818 3819 spin_unlock(&pa->pa_lock); 3820 3821 list_del(&pa->pa_group_list); 3822 list_add(&pa->u.pa_tmp_list, &list); 3823 } 3824 3825 /* if we still need more blocks and some PAs were used, try again */ 3826 if (free < needed && busy) { 3827 busy = 0; 3828 ext4_unlock_group(sb, group); 3829 cond_resched(); 3830 goto repeat; 3831 } 3832 3833 /* found anything to free? */ 3834 if (list_empty(&list)) { 3835 BUG_ON(free != 0); 3836 goto out; 3837 } 3838 3839 /* now free all selected PAs */ 3840 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3841 3842 /* remove from object (inode or locality group) */ 3843 spin_lock(pa->pa_obj_lock); 3844 list_del_rcu(&pa->pa_inode_list); 3845 spin_unlock(pa->pa_obj_lock); 3846 3847 if (pa->pa_type == MB_GROUP_PA) 3848 ext4_mb_release_group_pa(&e4b, pa); 3849 else 3850 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3851 3852 list_del(&pa->u.pa_tmp_list); 3853 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3854 } 3855 3856 out: 3857 ext4_unlock_group(sb, group); 3858 ext4_mb_unload_buddy(&e4b); 3859 put_bh(bitmap_bh); 3860 return free; 3861 } 3862 3863 /* 3864 * releases all non-used preallocated blocks for given inode 3865 * 3866 * It's important to discard preallocations under i_data_sem 3867 * We don't want another block to be served from the prealloc 3868 * space when we are discarding the inode prealloc space. 3869 * 3870 * FIXME!! Make sure it is valid at all the call sites 3871 */ 3872 void ext4_discard_preallocations(struct inode *inode) 3873 { 3874 struct ext4_inode_info *ei = EXT4_I(inode); 3875 struct super_block *sb = inode->i_sb; 3876 struct buffer_head *bitmap_bh = NULL; 3877 struct ext4_prealloc_space *pa, *tmp; 3878 ext4_group_t group = 0; 3879 struct list_head list; 3880 struct ext4_buddy e4b; 3881 int err; 3882 3883 if (!S_ISREG(inode->i_mode)) { 3884 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 3885 return; 3886 } 3887 3888 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 3889 trace_ext4_discard_preallocations(inode); 3890 3891 INIT_LIST_HEAD(&list); 3892 3893 repeat: 3894 /* first, collect all pa's in the inode */ 3895 spin_lock(&ei->i_prealloc_lock); 3896 while (!list_empty(&ei->i_prealloc_list)) { 3897 pa = list_entry(ei->i_prealloc_list.next, 3898 struct ext4_prealloc_space, pa_inode_list); 3899 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 3900 spin_lock(&pa->pa_lock); 3901 if (atomic_read(&pa->pa_count)) { 3902 /* this shouldn't happen often - nobody should 3903 * use preallocation while we're discarding it */ 3904 spin_unlock(&pa->pa_lock); 3905 spin_unlock(&ei->i_prealloc_lock); 3906 ext4_msg(sb, KERN_ERR, 3907 "uh-oh! used pa while discarding"); 3908 WARN_ON(1); 3909 schedule_timeout_uninterruptible(HZ); 3910 goto repeat; 3911 3912 } 3913 if (pa->pa_deleted == 0) { 3914 pa->pa_deleted = 1; 3915 spin_unlock(&pa->pa_lock); 3916 list_del_rcu(&pa->pa_inode_list); 3917 list_add(&pa->u.pa_tmp_list, &list); 3918 continue; 3919 } 3920 3921 /* someone is deleting pa right now */ 3922 spin_unlock(&pa->pa_lock); 3923 spin_unlock(&ei->i_prealloc_lock); 3924 3925 /* we have to wait here because pa_deleted 3926 * doesn't mean pa is already unlinked from 3927 * the list. as we might be called from 3928 * ->clear_inode() the inode will get freed 3929 * and concurrent thread which is unlinking 3930 * pa from inode's list may access already 3931 * freed memory, bad-bad-bad */ 3932 3933 /* XXX: if this happens too often, we can 3934 * add a flag to force wait only in case 3935 * of ->clear_inode(), but not in case of 3936 * regular truncate */ 3937 schedule_timeout_uninterruptible(HZ); 3938 goto repeat; 3939 } 3940 spin_unlock(&ei->i_prealloc_lock); 3941 3942 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3943 BUG_ON(pa->pa_type != MB_INODE_PA); 3944 group = ext4_get_group_number(sb, pa->pa_pstart); 3945 3946 err = ext4_mb_load_buddy(sb, group, &e4b); 3947 if (err) { 3948 ext4_error(sb, "Error loading buddy information for %u", 3949 group); 3950 continue; 3951 } 3952 3953 bitmap_bh = ext4_read_block_bitmap(sb, group); 3954 if (bitmap_bh == NULL) { 3955 ext4_error(sb, "Error reading block bitmap for %u", 3956 group); 3957 ext4_mb_unload_buddy(&e4b); 3958 continue; 3959 } 3960 3961 ext4_lock_group(sb, group); 3962 list_del(&pa->pa_group_list); 3963 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3964 ext4_unlock_group(sb, group); 3965 3966 ext4_mb_unload_buddy(&e4b); 3967 put_bh(bitmap_bh); 3968 3969 list_del(&pa->u.pa_tmp_list); 3970 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3971 } 3972 } 3973 3974 #ifdef CONFIG_EXT4_DEBUG 3975 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3976 { 3977 struct super_block *sb = ac->ac_sb; 3978 ext4_group_t ngroups, i; 3979 3980 if (!ext4_mballoc_debug || 3981 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 3982 return; 3983 3984 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 3985 " Allocation context details:"); 3986 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 3987 ac->ac_status, ac->ac_flags); 3988 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 3989 "goal %lu/%lu/%lu@%lu, " 3990 "best %lu/%lu/%lu@%lu cr %d", 3991 (unsigned long)ac->ac_o_ex.fe_group, 3992 (unsigned long)ac->ac_o_ex.fe_start, 3993 (unsigned long)ac->ac_o_ex.fe_len, 3994 (unsigned long)ac->ac_o_ex.fe_logical, 3995 (unsigned long)ac->ac_g_ex.fe_group, 3996 (unsigned long)ac->ac_g_ex.fe_start, 3997 (unsigned long)ac->ac_g_ex.fe_len, 3998 (unsigned long)ac->ac_g_ex.fe_logical, 3999 (unsigned long)ac->ac_b_ex.fe_group, 4000 (unsigned long)ac->ac_b_ex.fe_start, 4001 (unsigned long)ac->ac_b_ex.fe_len, 4002 (unsigned long)ac->ac_b_ex.fe_logical, 4003 (int)ac->ac_criteria); 4004 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found", 4005 ac->ac_ex_scanned, ac->ac_found); 4006 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 4007 ngroups = ext4_get_groups_count(sb); 4008 for (i = 0; i < ngroups; i++) { 4009 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 4010 struct ext4_prealloc_space *pa; 4011 ext4_grpblk_t start; 4012 struct list_head *cur; 4013 ext4_lock_group(sb, i); 4014 list_for_each(cur, &grp->bb_prealloc_list) { 4015 pa = list_entry(cur, struct ext4_prealloc_space, 4016 pa_group_list); 4017 spin_lock(&pa->pa_lock); 4018 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4019 NULL, &start); 4020 spin_unlock(&pa->pa_lock); 4021 printk(KERN_ERR "PA:%u:%d:%u \n", i, 4022 start, pa->pa_len); 4023 } 4024 ext4_unlock_group(sb, i); 4025 4026 if (grp->bb_free == 0) 4027 continue; 4028 printk(KERN_ERR "%u: %d/%d \n", 4029 i, grp->bb_free, grp->bb_fragments); 4030 } 4031 printk(KERN_ERR "\n"); 4032 } 4033 #else 4034 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4035 { 4036 return; 4037 } 4038 #endif 4039 4040 /* 4041 * We use locality group preallocation for small size file. The size of the 4042 * file is determined by the current size or the resulting size after 4043 * allocation which ever is larger 4044 * 4045 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4046 */ 4047 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4048 { 4049 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4050 int bsbits = ac->ac_sb->s_blocksize_bits; 4051 loff_t size, isize; 4052 4053 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4054 return; 4055 4056 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4057 return; 4058 4059 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4060 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4061 >> bsbits; 4062 4063 if ((size == isize) && 4064 !ext4_fs_is_busy(sbi) && 4065 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 4066 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4067 return; 4068 } 4069 4070 if (sbi->s_mb_group_prealloc <= 0) { 4071 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4072 return; 4073 } 4074 4075 /* don't use group allocation for large files */ 4076 size = max(size, isize); 4077 if (size > sbi->s_mb_stream_request) { 4078 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4079 return; 4080 } 4081 4082 BUG_ON(ac->ac_lg != NULL); 4083 /* 4084 * locality group prealloc space are per cpu. The reason for having 4085 * per cpu locality group is to reduce the contention between block 4086 * request from multiple CPUs. 4087 */ 4088 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups); 4089 4090 /* we're going to use group allocation */ 4091 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4092 4093 /* serialize all allocations in the group */ 4094 mutex_lock(&ac->ac_lg->lg_mutex); 4095 } 4096 4097 static noinline_for_stack int 4098 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4099 struct ext4_allocation_request *ar) 4100 { 4101 struct super_block *sb = ar->inode->i_sb; 4102 struct ext4_sb_info *sbi = EXT4_SB(sb); 4103 struct ext4_super_block *es = sbi->s_es; 4104 ext4_group_t group; 4105 unsigned int len; 4106 ext4_fsblk_t goal; 4107 ext4_grpblk_t block; 4108 4109 /* we can't allocate > group size */ 4110 len = ar->len; 4111 4112 /* just a dirty hack to filter too big requests */ 4113 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4114 len = EXT4_CLUSTERS_PER_GROUP(sb); 4115 4116 /* start searching from the goal */ 4117 goal = ar->goal; 4118 if (goal < le32_to_cpu(es->s_first_data_block) || 4119 goal >= ext4_blocks_count(es)) 4120 goal = le32_to_cpu(es->s_first_data_block); 4121 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4122 4123 /* set up allocation goals */ 4124 ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1); 4125 ac->ac_status = AC_STATUS_CONTINUE; 4126 ac->ac_sb = sb; 4127 ac->ac_inode = ar->inode; 4128 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4129 ac->ac_o_ex.fe_group = group; 4130 ac->ac_o_ex.fe_start = block; 4131 ac->ac_o_ex.fe_len = len; 4132 ac->ac_g_ex = ac->ac_o_ex; 4133 ac->ac_flags = ar->flags; 4134 4135 /* we have to define context: we'll we work with a file or 4136 * locality group. this is a policy, actually */ 4137 ext4_mb_group_or_file(ac); 4138 4139 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4140 "left: %u/%u, right %u/%u to %swritable\n", 4141 (unsigned) ar->len, (unsigned) ar->logical, 4142 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4143 (unsigned) ar->lleft, (unsigned) ar->pleft, 4144 (unsigned) ar->lright, (unsigned) ar->pright, 4145 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4146 return 0; 4147 4148 } 4149 4150 static noinline_for_stack void 4151 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4152 struct ext4_locality_group *lg, 4153 int order, int total_entries) 4154 { 4155 ext4_group_t group = 0; 4156 struct ext4_buddy e4b; 4157 struct list_head discard_list; 4158 struct ext4_prealloc_space *pa, *tmp; 4159 4160 mb_debug(1, "discard locality group preallocation\n"); 4161 4162 INIT_LIST_HEAD(&discard_list); 4163 4164 spin_lock(&lg->lg_prealloc_lock); 4165 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4166 pa_inode_list) { 4167 spin_lock(&pa->pa_lock); 4168 if (atomic_read(&pa->pa_count)) { 4169 /* 4170 * This is the pa that we just used 4171 * for block allocation. So don't 4172 * free that 4173 */ 4174 spin_unlock(&pa->pa_lock); 4175 continue; 4176 } 4177 if (pa->pa_deleted) { 4178 spin_unlock(&pa->pa_lock); 4179 continue; 4180 } 4181 /* only lg prealloc space */ 4182 BUG_ON(pa->pa_type != MB_GROUP_PA); 4183 4184 /* seems this one can be freed ... */ 4185 pa->pa_deleted = 1; 4186 spin_unlock(&pa->pa_lock); 4187 4188 list_del_rcu(&pa->pa_inode_list); 4189 list_add(&pa->u.pa_tmp_list, &discard_list); 4190 4191 total_entries--; 4192 if (total_entries <= 5) { 4193 /* 4194 * we want to keep only 5 entries 4195 * allowing it to grow to 8. This 4196 * mak sure we don't call discard 4197 * soon for this list. 4198 */ 4199 break; 4200 } 4201 } 4202 spin_unlock(&lg->lg_prealloc_lock); 4203 4204 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4205 4206 group = ext4_get_group_number(sb, pa->pa_pstart); 4207 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4208 ext4_error(sb, "Error loading buddy information for %u", 4209 group); 4210 continue; 4211 } 4212 ext4_lock_group(sb, group); 4213 list_del(&pa->pa_group_list); 4214 ext4_mb_release_group_pa(&e4b, pa); 4215 ext4_unlock_group(sb, group); 4216 4217 ext4_mb_unload_buddy(&e4b); 4218 list_del(&pa->u.pa_tmp_list); 4219 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4220 } 4221 } 4222 4223 /* 4224 * We have incremented pa_count. So it cannot be freed at this 4225 * point. Also we hold lg_mutex. So no parallel allocation is 4226 * possible from this lg. That means pa_free cannot be updated. 4227 * 4228 * A parallel ext4_mb_discard_group_preallocations is possible. 4229 * which can cause the lg_prealloc_list to be updated. 4230 */ 4231 4232 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4233 { 4234 int order, added = 0, lg_prealloc_count = 1; 4235 struct super_block *sb = ac->ac_sb; 4236 struct ext4_locality_group *lg = ac->ac_lg; 4237 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4238 4239 order = fls(pa->pa_free) - 1; 4240 if (order > PREALLOC_TB_SIZE - 1) 4241 /* The max size of hash table is PREALLOC_TB_SIZE */ 4242 order = PREALLOC_TB_SIZE - 1; 4243 /* Add the prealloc space to lg */ 4244 spin_lock(&lg->lg_prealloc_lock); 4245 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4246 pa_inode_list) { 4247 spin_lock(&tmp_pa->pa_lock); 4248 if (tmp_pa->pa_deleted) { 4249 spin_unlock(&tmp_pa->pa_lock); 4250 continue; 4251 } 4252 if (!added && pa->pa_free < tmp_pa->pa_free) { 4253 /* Add to the tail of the previous entry */ 4254 list_add_tail_rcu(&pa->pa_inode_list, 4255 &tmp_pa->pa_inode_list); 4256 added = 1; 4257 /* 4258 * we want to count the total 4259 * number of entries in the list 4260 */ 4261 } 4262 spin_unlock(&tmp_pa->pa_lock); 4263 lg_prealloc_count++; 4264 } 4265 if (!added) 4266 list_add_tail_rcu(&pa->pa_inode_list, 4267 &lg->lg_prealloc_list[order]); 4268 spin_unlock(&lg->lg_prealloc_lock); 4269 4270 /* Now trim the list to be not more than 8 elements */ 4271 if (lg_prealloc_count > 8) { 4272 ext4_mb_discard_lg_preallocations(sb, lg, 4273 order, lg_prealloc_count); 4274 return; 4275 } 4276 return ; 4277 } 4278 4279 /* 4280 * release all resource we used in allocation 4281 */ 4282 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4283 { 4284 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4285 struct ext4_prealloc_space *pa = ac->ac_pa; 4286 if (pa) { 4287 if (pa->pa_type == MB_GROUP_PA) { 4288 /* see comment in ext4_mb_use_group_pa() */ 4289 spin_lock(&pa->pa_lock); 4290 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4291 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4292 pa->pa_free -= ac->ac_b_ex.fe_len; 4293 pa->pa_len -= ac->ac_b_ex.fe_len; 4294 spin_unlock(&pa->pa_lock); 4295 } 4296 } 4297 if (pa) { 4298 /* 4299 * We want to add the pa to the right bucket. 4300 * Remove it from the list and while adding 4301 * make sure the list to which we are adding 4302 * doesn't grow big. 4303 */ 4304 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4305 spin_lock(pa->pa_obj_lock); 4306 list_del_rcu(&pa->pa_inode_list); 4307 spin_unlock(pa->pa_obj_lock); 4308 ext4_mb_add_n_trim(ac); 4309 } 4310 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4311 } 4312 if (ac->ac_bitmap_page) 4313 page_cache_release(ac->ac_bitmap_page); 4314 if (ac->ac_buddy_page) 4315 page_cache_release(ac->ac_buddy_page); 4316 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4317 mutex_unlock(&ac->ac_lg->lg_mutex); 4318 ext4_mb_collect_stats(ac); 4319 return 0; 4320 } 4321 4322 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4323 { 4324 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4325 int ret; 4326 int freed = 0; 4327 4328 trace_ext4_mb_discard_preallocations(sb, needed); 4329 for (i = 0; i < ngroups && needed > 0; i++) { 4330 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4331 freed += ret; 4332 needed -= ret; 4333 } 4334 4335 return freed; 4336 } 4337 4338 /* 4339 * Main entry point into mballoc to allocate blocks 4340 * it tries to use preallocation first, then falls back 4341 * to usual allocation 4342 */ 4343 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4344 struct ext4_allocation_request *ar, int *errp) 4345 { 4346 int freed; 4347 struct ext4_allocation_context *ac = NULL; 4348 struct ext4_sb_info *sbi; 4349 struct super_block *sb; 4350 ext4_fsblk_t block = 0; 4351 unsigned int inquota = 0; 4352 unsigned int reserv_clstrs = 0; 4353 4354 might_sleep(); 4355 sb = ar->inode->i_sb; 4356 sbi = EXT4_SB(sb); 4357 4358 trace_ext4_request_blocks(ar); 4359 4360 /* Allow to use superuser reservation for quota file */ 4361 if (IS_NOQUOTA(ar->inode)) 4362 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4363 4364 /* 4365 * For delayed allocation, we could skip the ENOSPC and 4366 * EDQUOT check, as blocks and quotas have been already 4367 * reserved when data being copied into pagecache. 4368 */ 4369 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED)) 4370 ar->flags |= EXT4_MB_DELALLOC_RESERVED; 4371 else { 4372 /* Without delayed allocation we need to verify 4373 * there is enough free blocks to do block allocation 4374 * and verify allocation doesn't exceed the quota limits. 4375 */ 4376 while (ar->len && 4377 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4378 4379 /* let others to free the space */ 4380 cond_resched(); 4381 ar->len = ar->len >> 1; 4382 } 4383 if (!ar->len) { 4384 *errp = -ENOSPC; 4385 return 0; 4386 } 4387 reserv_clstrs = ar->len; 4388 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4389 dquot_alloc_block_nofail(ar->inode, 4390 EXT4_C2B(sbi, ar->len)); 4391 } else { 4392 while (ar->len && 4393 dquot_alloc_block(ar->inode, 4394 EXT4_C2B(sbi, ar->len))) { 4395 4396 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4397 ar->len--; 4398 } 4399 } 4400 inquota = ar->len; 4401 if (ar->len == 0) { 4402 *errp = -EDQUOT; 4403 goto out; 4404 } 4405 } 4406 4407 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4408 if (!ac) { 4409 ar->len = 0; 4410 *errp = -ENOMEM; 4411 goto out; 4412 } 4413 4414 *errp = ext4_mb_initialize_context(ac, ar); 4415 if (*errp) { 4416 ar->len = 0; 4417 goto out; 4418 } 4419 4420 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4421 if (!ext4_mb_use_preallocated(ac)) { 4422 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4423 ext4_mb_normalize_request(ac, ar); 4424 repeat: 4425 /* allocate space in core */ 4426 *errp = ext4_mb_regular_allocator(ac); 4427 if (*errp) 4428 goto discard_and_exit; 4429 4430 /* as we've just preallocated more space than 4431 * user requested originally, we store allocated 4432 * space in a special descriptor */ 4433 if (ac->ac_status == AC_STATUS_FOUND && 4434 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4435 *errp = ext4_mb_new_preallocation(ac); 4436 if (*errp) { 4437 discard_and_exit: 4438 ext4_discard_allocated_blocks(ac); 4439 goto errout; 4440 } 4441 } 4442 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4443 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4444 if (*errp == -EAGAIN) { 4445 /* 4446 * drop the reference that we took 4447 * in ext4_mb_use_best_found 4448 */ 4449 ext4_mb_release_context(ac); 4450 ac->ac_b_ex.fe_group = 0; 4451 ac->ac_b_ex.fe_start = 0; 4452 ac->ac_b_ex.fe_len = 0; 4453 ac->ac_status = AC_STATUS_CONTINUE; 4454 goto repeat; 4455 } else if (*errp) { 4456 ext4_discard_allocated_blocks(ac); 4457 goto errout; 4458 } else { 4459 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4460 ar->len = ac->ac_b_ex.fe_len; 4461 } 4462 } else { 4463 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4464 if (freed) 4465 goto repeat; 4466 *errp = -ENOSPC; 4467 } 4468 4469 errout: 4470 if (*errp) { 4471 ac->ac_b_ex.fe_len = 0; 4472 ar->len = 0; 4473 ext4_mb_show_ac(ac); 4474 } 4475 ext4_mb_release_context(ac); 4476 out: 4477 if (ac) 4478 kmem_cache_free(ext4_ac_cachep, ac); 4479 if (inquota && ar->len < inquota) 4480 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4481 if (!ar->len) { 4482 if (!ext4_test_inode_state(ar->inode, 4483 EXT4_STATE_DELALLOC_RESERVED)) 4484 /* release all the reserved blocks if non delalloc */ 4485 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4486 reserv_clstrs); 4487 } 4488 4489 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4490 4491 return block; 4492 } 4493 4494 /* 4495 * We can merge two free data extents only if the physical blocks 4496 * are contiguous, AND the extents were freed by the same transaction, 4497 * AND the blocks are associated with the same group. 4498 */ 4499 static int can_merge(struct ext4_free_data *entry1, 4500 struct ext4_free_data *entry2) 4501 { 4502 if ((entry1->efd_tid == entry2->efd_tid) && 4503 (entry1->efd_group == entry2->efd_group) && 4504 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster)) 4505 return 1; 4506 return 0; 4507 } 4508 4509 static noinline_for_stack int 4510 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4511 struct ext4_free_data *new_entry) 4512 { 4513 ext4_group_t group = e4b->bd_group; 4514 ext4_grpblk_t cluster; 4515 struct ext4_free_data *entry; 4516 struct ext4_group_info *db = e4b->bd_info; 4517 struct super_block *sb = e4b->bd_sb; 4518 struct ext4_sb_info *sbi = EXT4_SB(sb); 4519 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4520 struct rb_node *parent = NULL, *new_node; 4521 4522 BUG_ON(!ext4_handle_valid(handle)); 4523 BUG_ON(e4b->bd_bitmap_page == NULL); 4524 BUG_ON(e4b->bd_buddy_page == NULL); 4525 4526 new_node = &new_entry->efd_node; 4527 cluster = new_entry->efd_start_cluster; 4528 4529 if (!*n) { 4530 /* first free block exent. We need to 4531 protect buddy cache from being freed, 4532 * otherwise we'll refresh it from 4533 * on-disk bitmap and lose not-yet-available 4534 * blocks */ 4535 page_cache_get(e4b->bd_buddy_page); 4536 page_cache_get(e4b->bd_bitmap_page); 4537 } 4538 while (*n) { 4539 parent = *n; 4540 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4541 if (cluster < entry->efd_start_cluster) 4542 n = &(*n)->rb_left; 4543 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4544 n = &(*n)->rb_right; 4545 else { 4546 ext4_grp_locked_error(sb, group, 0, 4547 ext4_group_first_block_no(sb, group) + 4548 EXT4_C2B(sbi, cluster), 4549 "Block already on to-be-freed list"); 4550 return 0; 4551 } 4552 } 4553 4554 rb_link_node(new_node, parent, n); 4555 rb_insert_color(new_node, &db->bb_free_root); 4556 4557 /* Now try to see the extent can be merged to left and right */ 4558 node = rb_prev(new_node); 4559 if (node) { 4560 entry = rb_entry(node, struct ext4_free_data, efd_node); 4561 if (can_merge(entry, new_entry) && 4562 ext4_journal_callback_try_del(handle, &entry->efd_jce)) { 4563 new_entry->efd_start_cluster = entry->efd_start_cluster; 4564 new_entry->efd_count += entry->efd_count; 4565 rb_erase(node, &(db->bb_free_root)); 4566 kmem_cache_free(ext4_free_data_cachep, entry); 4567 } 4568 } 4569 4570 node = rb_next(new_node); 4571 if (node) { 4572 entry = rb_entry(node, struct ext4_free_data, efd_node); 4573 if (can_merge(new_entry, entry) && 4574 ext4_journal_callback_try_del(handle, &entry->efd_jce)) { 4575 new_entry->efd_count += entry->efd_count; 4576 rb_erase(node, &(db->bb_free_root)); 4577 kmem_cache_free(ext4_free_data_cachep, entry); 4578 } 4579 } 4580 /* Add the extent to transaction's private list */ 4581 ext4_journal_callback_add(handle, ext4_free_data_callback, 4582 &new_entry->efd_jce); 4583 return 0; 4584 } 4585 4586 /** 4587 * ext4_free_blocks() -- Free given blocks and update quota 4588 * @handle: handle for this transaction 4589 * @inode: inode 4590 * @block: start physical block to free 4591 * @count: number of blocks to count 4592 * @flags: flags used by ext4_free_blocks 4593 */ 4594 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4595 struct buffer_head *bh, ext4_fsblk_t block, 4596 unsigned long count, int flags) 4597 { 4598 struct buffer_head *bitmap_bh = NULL; 4599 struct super_block *sb = inode->i_sb; 4600 struct ext4_group_desc *gdp; 4601 unsigned int overflow; 4602 ext4_grpblk_t bit; 4603 struct buffer_head *gd_bh; 4604 ext4_group_t block_group; 4605 struct ext4_sb_info *sbi; 4606 struct ext4_inode_info *ei = EXT4_I(inode); 4607 struct ext4_buddy e4b; 4608 unsigned int count_clusters; 4609 int err = 0; 4610 int ret; 4611 4612 might_sleep(); 4613 if (bh) { 4614 if (block) 4615 BUG_ON(block != bh->b_blocknr); 4616 else 4617 block = bh->b_blocknr; 4618 } 4619 4620 sbi = EXT4_SB(sb); 4621 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4622 !ext4_data_block_valid(sbi, block, count)) { 4623 ext4_error(sb, "Freeing blocks not in datazone - " 4624 "block = %llu, count = %lu", block, count); 4625 goto error_return; 4626 } 4627 4628 ext4_debug("freeing block %llu\n", block); 4629 trace_ext4_free_blocks(inode, block, count, flags); 4630 4631 if (flags & EXT4_FREE_BLOCKS_FORGET) { 4632 struct buffer_head *tbh = bh; 4633 int i; 4634 4635 BUG_ON(bh && (count > 1)); 4636 4637 for (i = 0; i < count; i++) { 4638 cond_resched(); 4639 if (!bh) 4640 tbh = sb_find_get_block(inode->i_sb, 4641 block + i); 4642 if (!tbh) 4643 continue; 4644 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4645 inode, tbh, block + i); 4646 } 4647 } 4648 4649 /* 4650 * We need to make sure we don't reuse the freed block until 4651 * after the transaction is committed, which we can do by 4652 * treating the block as metadata, below. We make an 4653 * exception if the inode is to be written in writeback mode 4654 * since writeback mode has weak data consistency guarantees. 4655 */ 4656 if (!ext4_should_writeback_data(inode)) 4657 flags |= EXT4_FREE_BLOCKS_METADATA; 4658 4659 /* 4660 * If the extent to be freed does not begin on a cluster 4661 * boundary, we need to deal with partial clusters at the 4662 * beginning and end of the extent. Normally we will free 4663 * blocks at the beginning or the end unless we are explicitly 4664 * requested to avoid doing so. 4665 */ 4666 overflow = block & (sbi->s_cluster_ratio - 1); 4667 if (overflow) { 4668 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4669 overflow = sbi->s_cluster_ratio - overflow; 4670 block += overflow; 4671 if (count > overflow) 4672 count -= overflow; 4673 else 4674 return; 4675 } else { 4676 block -= overflow; 4677 count += overflow; 4678 } 4679 } 4680 overflow = count & (sbi->s_cluster_ratio - 1); 4681 if (overflow) { 4682 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4683 if (count > overflow) 4684 count -= overflow; 4685 else 4686 return; 4687 } else 4688 count += sbi->s_cluster_ratio - overflow; 4689 } 4690 4691 do_more: 4692 overflow = 0; 4693 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4694 4695 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 4696 ext4_get_group_info(sb, block_group)))) 4697 return; 4698 4699 /* 4700 * Check to see if we are freeing blocks across a group 4701 * boundary. 4702 */ 4703 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4704 overflow = EXT4_C2B(sbi, bit) + count - 4705 EXT4_BLOCKS_PER_GROUP(sb); 4706 count -= overflow; 4707 } 4708 count_clusters = EXT4_NUM_B2C(sbi, count); 4709 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4710 if (!bitmap_bh) { 4711 err = -EIO; 4712 goto error_return; 4713 } 4714 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4715 if (!gdp) { 4716 err = -EIO; 4717 goto error_return; 4718 } 4719 4720 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4721 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4722 in_range(block, ext4_inode_table(sb, gdp), 4723 EXT4_SB(sb)->s_itb_per_group) || 4724 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4725 EXT4_SB(sb)->s_itb_per_group)) { 4726 4727 ext4_error(sb, "Freeing blocks in system zone - " 4728 "Block = %llu, count = %lu", block, count); 4729 /* err = 0. ext4_std_error should be a no op */ 4730 goto error_return; 4731 } 4732 4733 BUFFER_TRACE(bitmap_bh, "getting write access"); 4734 err = ext4_journal_get_write_access(handle, bitmap_bh); 4735 if (err) 4736 goto error_return; 4737 4738 /* 4739 * We are about to modify some metadata. Call the journal APIs 4740 * to unshare ->b_data if a currently-committing transaction is 4741 * using it 4742 */ 4743 BUFFER_TRACE(gd_bh, "get_write_access"); 4744 err = ext4_journal_get_write_access(handle, gd_bh); 4745 if (err) 4746 goto error_return; 4747 #ifdef AGGRESSIVE_CHECK 4748 { 4749 int i; 4750 for (i = 0; i < count_clusters; i++) 4751 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4752 } 4753 #endif 4754 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4755 4756 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4757 if (err) 4758 goto error_return; 4759 4760 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) { 4761 struct ext4_free_data *new_entry; 4762 /* 4763 * blocks being freed are metadata. these blocks shouldn't 4764 * be used until this transaction is committed 4765 */ 4766 retry: 4767 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS); 4768 if (!new_entry) { 4769 /* 4770 * We use a retry loop because 4771 * ext4_free_blocks() is not allowed to fail. 4772 */ 4773 cond_resched(); 4774 congestion_wait(BLK_RW_ASYNC, HZ/50); 4775 goto retry; 4776 } 4777 new_entry->efd_start_cluster = bit; 4778 new_entry->efd_group = block_group; 4779 new_entry->efd_count = count_clusters; 4780 new_entry->efd_tid = handle->h_transaction->t_tid; 4781 4782 ext4_lock_group(sb, block_group); 4783 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4784 ext4_mb_free_metadata(handle, &e4b, new_entry); 4785 } else { 4786 /* need to update group_info->bb_free and bitmap 4787 * with group lock held. generate_buddy look at 4788 * them with group lock_held 4789 */ 4790 if (test_opt(sb, DISCARD)) { 4791 err = ext4_issue_discard(sb, block_group, bit, count); 4792 if (err && err != -EOPNOTSUPP) 4793 ext4_msg(sb, KERN_WARNING, "discard request in" 4794 " group:%d block:%d count:%lu failed" 4795 " with %d", block_group, bit, count, 4796 err); 4797 } else 4798 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 4799 4800 ext4_lock_group(sb, block_group); 4801 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4802 mb_free_blocks(inode, &e4b, bit, count_clusters); 4803 } 4804 4805 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4806 ext4_free_group_clusters_set(sb, gdp, ret); 4807 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 4808 ext4_group_desc_csum_set(sb, block_group, gdp); 4809 ext4_unlock_group(sb, block_group); 4810 4811 if (sbi->s_log_groups_per_flex) { 4812 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4813 atomic64_add(count_clusters, 4814 &sbi->s_flex_groups[flex_group].free_clusters); 4815 } 4816 4817 if (flags & EXT4_FREE_BLOCKS_RESERVE && ei->i_reserved_data_blocks) { 4818 percpu_counter_add(&sbi->s_dirtyclusters_counter, 4819 count_clusters); 4820 spin_lock(&ei->i_block_reservation_lock); 4821 if (flags & EXT4_FREE_BLOCKS_METADATA) 4822 ei->i_reserved_meta_blocks += count_clusters; 4823 else 4824 ei->i_reserved_data_blocks += count_clusters; 4825 spin_unlock(&ei->i_block_reservation_lock); 4826 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4827 dquot_reclaim_block(inode, 4828 EXT4_C2B(sbi, count_clusters)); 4829 } else if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4830 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4831 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); 4832 4833 ext4_mb_unload_buddy(&e4b); 4834 4835 /* We dirtied the bitmap block */ 4836 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4837 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4838 4839 /* And the group descriptor block */ 4840 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4841 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4842 if (!err) 4843 err = ret; 4844 4845 if (overflow && !err) { 4846 block += count; 4847 count = overflow; 4848 put_bh(bitmap_bh); 4849 goto do_more; 4850 } 4851 error_return: 4852 brelse(bitmap_bh); 4853 ext4_std_error(sb, err); 4854 return; 4855 } 4856 4857 /** 4858 * ext4_group_add_blocks() -- Add given blocks to an existing group 4859 * @handle: handle to this transaction 4860 * @sb: super block 4861 * @block: start physical block to add to the block group 4862 * @count: number of blocks to free 4863 * 4864 * This marks the blocks as free in the bitmap and buddy. 4865 */ 4866 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4867 ext4_fsblk_t block, unsigned long count) 4868 { 4869 struct buffer_head *bitmap_bh = NULL; 4870 struct buffer_head *gd_bh; 4871 ext4_group_t block_group; 4872 ext4_grpblk_t bit; 4873 unsigned int i; 4874 struct ext4_group_desc *desc; 4875 struct ext4_sb_info *sbi = EXT4_SB(sb); 4876 struct ext4_buddy e4b; 4877 int err = 0, ret, blk_free_count; 4878 ext4_grpblk_t blocks_freed; 4879 4880 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 4881 4882 if (count == 0) 4883 return 0; 4884 4885 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4886 /* 4887 * Check to see if we are freeing blocks across a group 4888 * boundary. 4889 */ 4890 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4891 ext4_warning(sb, "too much blocks added to group %u\n", 4892 block_group); 4893 err = -EINVAL; 4894 goto error_return; 4895 } 4896 4897 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4898 if (!bitmap_bh) { 4899 err = -EIO; 4900 goto error_return; 4901 } 4902 4903 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 4904 if (!desc) { 4905 err = -EIO; 4906 goto error_return; 4907 } 4908 4909 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 4910 in_range(ext4_inode_bitmap(sb, desc), block, count) || 4911 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 4912 in_range(block + count - 1, ext4_inode_table(sb, desc), 4913 sbi->s_itb_per_group)) { 4914 ext4_error(sb, "Adding blocks in system zones - " 4915 "Block = %llu, count = %lu", 4916 block, count); 4917 err = -EINVAL; 4918 goto error_return; 4919 } 4920 4921 BUFFER_TRACE(bitmap_bh, "getting write access"); 4922 err = ext4_journal_get_write_access(handle, bitmap_bh); 4923 if (err) 4924 goto error_return; 4925 4926 /* 4927 * We are about to modify some metadata. Call the journal APIs 4928 * to unshare ->b_data if a currently-committing transaction is 4929 * using it 4930 */ 4931 BUFFER_TRACE(gd_bh, "get_write_access"); 4932 err = ext4_journal_get_write_access(handle, gd_bh); 4933 if (err) 4934 goto error_return; 4935 4936 for (i = 0, blocks_freed = 0; i < count; i++) { 4937 BUFFER_TRACE(bitmap_bh, "clear bit"); 4938 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 4939 ext4_error(sb, "bit already cleared for block %llu", 4940 (ext4_fsblk_t)(block + i)); 4941 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 4942 } else { 4943 blocks_freed++; 4944 } 4945 } 4946 4947 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4948 if (err) 4949 goto error_return; 4950 4951 /* 4952 * need to update group_info->bb_free and bitmap 4953 * with group lock held. generate_buddy look at 4954 * them with group lock_held 4955 */ 4956 ext4_lock_group(sb, block_group); 4957 mb_clear_bits(bitmap_bh->b_data, bit, count); 4958 mb_free_blocks(NULL, &e4b, bit, count); 4959 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc); 4960 ext4_free_group_clusters_set(sb, desc, blk_free_count); 4961 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 4962 ext4_group_desc_csum_set(sb, block_group, desc); 4963 ext4_unlock_group(sb, block_group); 4964 percpu_counter_add(&sbi->s_freeclusters_counter, 4965 EXT4_NUM_B2C(sbi, blocks_freed)); 4966 4967 if (sbi->s_log_groups_per_flex) { 4968 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4969 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed), 4970 &sbi->s_flex_groups[flex_group].free_clusters); 4971 } 4972 4973 ext4_mb_unload_buddy(&e4b); 4974 4975 /* We dirtied the bitmap block */ 4976 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4977 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4978 4979 /* And the group descriptor block */ 4980 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4981 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4982 if (!err) 4983 err = ret; 4984 4985 error_return: 4986 brelse(bitmap_bh); 4987 ext4_std_error(sb, err); 4988 return err; 4989 } 4990 4991 /** 4992 * ext4_trim_extent -- function to TRIM one single free extent in the group 4993 * @sb: super block for the file system 4994 * @start: starting block of the free extent in the alloc. group 4995 * @count: number of blocks to TRIM 4996 * @group: alloc. group we are working with 4997 * @e4b: ext4 buddy for the group 4998 * 4999 * Trim "count" blocks starting at "start" in the "group". To assure that no 5000 * one will allocate those blocks, mark it as used in buddy bitmap. This must 5001 * be called with under the group lock. 5002 */ 5003 static int ext4_trim_extent(struct super_block *sb, int start, int count, 5004 ext4_group_t group, struct ext4_buddy *e4b) 5005 { 5006 struct ext4_free_extent ex; 5007 int ret = 0; 5008 5009 trace_ext4_trim_extent(sb, group, start, count); 5010 5011 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 5012 5013 ex.fe_start = start; 5014 ex.fe_group = group; 5015 ex.fe_len = count; 5016 5017 /* 5018 * Mark blocks used, so no one can reuse them while 5019 * being trimmed. 5020 */ 5021 mb_mark_used(e4b, &ex); 5022 ext4_unlock_group(sb, group); 5023 ret = ext4_issue_discard(sb, group, start, count); 5024 ext4_lock_group(sb, group); 5025 mb_free_blocks(NULL, e4b, start, ex.fe_len); 5026 return ret; 5027 } 5028 5029 /** 5030 * ext4_trim_all_free -- function to trim all free space in alloc. group 5031 * @sb: super block for file system 5032 * @group: group to be trimmed 5033 * @start: first group block to examine 5034 * @max: last group block to examine 5035 * @minblocks: minimum extent block count 5036 * 5037 * ext4_trim_all_free walks through group's buddy bitmap searching for free 5038 * extents. When the free block is found, ext4_trim_extent is called to TRIM 5039 * the extent. 5040 * 5041 * 5042 * ext4_trim_all_free walks through group's block bitmap searching for free 5043 * extents. When the free extent is found, mark it as used in group buddy 5044 * bitmap. Then issue a TRIM command on this extent and free the extent in 5045 * the group buddy bitmap. This is done until whole group is scanned. 5046 */ 5047 static ext4_grpblk_t 5048 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 5049 ext4_grpblk_t start, ext4_grpblk_t max, 5050 ext4_grpblk_t minblocks) 5051 { 5052 void *bitmap; 5053 ext4_grpblk_t next, count = 0, free_count = 0; 5054 struct ext4_buddy e4b; 5055 int ret = 0; 5056 5057 trace_ext4_trim_all_free(sb, group, start, max); 5058 5059 ret = ext4_mb_load_buddy(sb, group, &e4b); 5060 if (ret) { 5061 ext4_error(sb, "Error in loading buddy " 5062 "information for %u", group); 5063 return ret; 5064 } 5065 bitmap = e4b.bd_bitmap; 5066 5067 ext4_lock_group(sb, group); 5068 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 5069 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 5070 goto out; 5071 5072 start = (e4b.bd_info->bb_first_free > start) ? 5073 e4b.bd_info->bb_first_free : start; 5074 5075 while (start <= max) { 5076 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5077 if (start > max) 5078 break; 5079 next = mb_find_next_bit(bitmap, max + 1, start); 5080 5081 if ((next - start) >= minblocks) { 5082 ret = ext4_trim_extent(sb, start, 5083 next - start, group, &e4b); 5084 if (ret && ret != -EOPNOTSUPP) 5085 break; 5086 ret = 0; 5087 count += next - start; 5088 } 5089 free_count += next - start; 5090 start = next + 1; 5091 5092 if (fatal_signal_pending(current)) { 5093 count = -ERESTARTSYS; 5094 break; 5095 } 5096 5097 if (need_resched()) { 5098 ext4_unlock_group(sb, group); 5099 cond_resched(); 5100 ext4_lock_group(sb, group); 5101 } 5102 5103 if ((e4b.bd_info->bb_free - free_count) < minblocks) 5104 break; 5105 } 5106 5107 if (!ret) { 5108 ret = count; 5109 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 5110 } 5111 out: 5112 ext4_unlock_group(sb, group); 5113 ext4_mb_unload_buddy(&e4b); 5114 5115 ext4_debug("trimmed %d blocks in the group %d\n", 5116 count, group); 5117 5118 return ret; 5119 } 5120 5121 /** 5122 * ext4_trim_fs() -- trim ioctl handle function 5123 * @sb: superblock for filesystem 5124 * @range: fstrim_range structure 5125 * 5126 * start: First Byte to trim 5127 * len: number of Bytes to trim from start 5128 * minlen: minimum extent length in Bytes 5129 * ext4_trim_fs goes through all allocation groups containing Bytes from 5130 * start to start+len. For each such a group ext4_trim_all_free function 5131 * is invoked to trim all free space. 5132 */ 5133 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 5134 { 5135 struct ext4_group_info *grp; 5136 ext4_group_t group, first_group, last_group; 5137 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5138 uint64_t start, end, minlen, trimmed = 0; 5139 ext4_fsblk_t first_data_blk = 5140 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5141 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5142 int ret = 0; 5143 5144 start = range->start >> sb->s_blocksize_bits; 5145 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5146 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5147 range->minlen >> sb->s_blocksize_bits); 5148 5149 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5150 start >= max_blks || 5151 range->len < sb->s_blocksize) 5152 return -EINVAL; 5153 if (end >= max_blks) 5154 end = max_blks - 1; 5155 if (end <= first_data_blk) 5156 goto out; 5157 if (start < first_data_blk) 5158 start = first_data_blk; 5159 5160 /* Determine first and last group to examine based on start and end */ 5161 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5162 &first_group, &first_cluster); 5163 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5164 &last_group, &last_cluster); 5165 5166 /* end now represents the last cluster to discard in this group */ 5167 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5168 5169 for (group = first_group; group <= last_group; group++) { 5170 grp = ext4_get_group_info(sb, group); 5171 /* We only do this if the grp has never been initialized */ 5172 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5173 ret = ext4_mb_init_group(sb, group); 5174 if (ret) 5175 break; 5176 } 5177 5178 /* 5179 * For all the groups except the last one, last cluster will 5180 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5181 * change it for the last group, note that last_cluster is 5182 * already computed earlier by ext4_get_group_no_and_offset() 5183 */ 5184 if (group == last_group) 5185 end = last_cluster; 5186 5187 if (grp->bb_free >= minlen) { 5188 cnt = ext4_trim_all_free(sb, group, first_cluster, 5189 end, minlen); 5190 if (cnt < 0) { 5191 ret = cnt; 5192 break; 5193 } 5194 trimmed += cnt; 5195 } 5196 5197 /* 5198 * For every group except the first one, we are sure 5199 * that the first cluster to discard will be cluster #0. 5200 */ 5201 first_cluster = 0; 5202 } 5203 5204 if (!ret) 5205 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5206 5207 out: 5208 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5209 return ret; 5210 } 5211