xref: /openbmc/linux/fs/ext4/mballoc.c (revision bc000245)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30 
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33 
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37 
38 /*
39  * MUSTDO:
40  *   - test ext4_ext_search_left() and ext4_ext_search_right()
41  *   - search for metadata in few groups
42  *
43  * TODO v4:
44  *   - normalization should take into account whether file is still open
45  *   - discard preallocations if no free space left (policy?)
46  *   - don't normalize tails
47  *   - quota
48  *   - reservation for superuser
49  *
50  * TODO v3:
51  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
52  *   - track min/max extents in each group for better group selection
53  *   - mb_mark_used() may allocate chunk right after splitting buddy
54  *   - tree of groups sorted by number of free blocks
55  *   - error handling
56  */
57 
58 /*
59  * The allocation request involve request for multiple number of blocks
60  * near to the goal(block) value specified.
61  *
62  * During initialization phase of the allocator we decide to use the
63  * group preallocation or inode preallocation depending on the size of
64  * the file. The size of the file could be the resulting file size we
65  * would have after allocation, or the current file size, which ever
66  * is larger. If the size is less than sbi->s_mb_stream_request we
67  * select to use the group preallocation. The default value of
68  * s_mb_stream_request is 16 blocks. This can also be tuned via
69  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70  * terms of number of blocks.
71  *
72  * The main motivation for having small file use group preallocation is to
73  * ensure that we have small files closer together on the disk.
74  *
75  * First stage the allocator looks at the inode prealloc list,
76  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77  * spaces for this particular inode. The inode prealloc space is
78  * represented as:
79  *
80  * pa_lstart -> the logical start block for this prealloc space
81  * pa_pstart -> the physical start block for this prealloc space
82  * pa_len    -> length for this prealloc space (in clusters)
83  * pa_free   ->  free space available in this prealloc space (in clusters)
84  *
85  * The inode preallocation space is used looking at the _logical_ start
86  * block. If only the logical file block falls within the range of prealloc
87  * space we will consume the particular prealloc space. This makes sure that
88  * we have contiguous physical blocks representing the file blocks
89  *
90  * The important thing to be noted in case of inode prealloc space is that
91  * we don't modify the values associated to inode prealloc space except
92  * pa_free.
93  *
94  * If we are not able to find blocks in the inode prealloc space and if we
95  * have the group allocation flag set then we look at the locality group
96  * prealloc space. These are per CPU prealloc list represented as
97  *
98  * ext4_sb_info.s_locality_groups[smp_processor_id()]
99  *
100  * The reason for having a per cpu locality group is to reduce the contention
101  * between CPUs. It is possible to get scheduled at this point.
102  *
103  * The locality group prealloc space is used looking at whether we have
104  * enough free space (pa_free) within the prealloc space.
105  *
106  * If we can't allocate blocks via inode prealloc or/and locality group
107  * prealloc then we look at the buddy cache. The buddy cache is represented
108  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109  * mapped to the buddy and bitmap information regarding different
110  * groups. The buddy information is attached to buddy cache inode so that
111  * we can access them through the page cache. The information regarding
112  * each group is loaded via ext4_mb_load_buddy.  The information involve
113  * block bitmap and buddy information. The information are stored in the
114  * inode as:
115  *
116  *  {                        page                        }
117  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118  *
119  *
120  * one block each for bitmap and buddy information.  So for each group we
121  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122  * blocksize) blocks.  So it can have information regarding groups_per_page
123  * which is blocks_per_page/2
124  *
125  * The buddy cache inode is not stored on disk. The inode is thrown
126  * away when the filesystem is unmounted.
127  *
128  * We look for count number of blocks in the buddy cache. If we were able
129  * to locate that many free blocks we return with additional information
130  * regarding rest of the contiguous physical block available
131  *
132  * Before allocating blocks via buddy cache we normalize the request
133  * blocks. This ensure we ask for more blocks that we needed. The extra
134  * blocks that we get after allocation is added to the respective prealloc
135  * list. In case of inode preallocation we follow a list of heuristics
136  * based on file size. This can be found in ext4_mb_normalize_request. If
137  * we are doing a group prealloc we try to normalize the request to
138  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
139  * dependent on the cluster size; for non-bigalloc file systems, it is
140  * 512 blocks. This can be tuned via
141  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142  * terms of number of blocks. If we have mounted the file system with -O
143  * stripe=<value> option the group prealloc request is normalized to the
144  * the smallest multiple of the stripe value (sbi->s_stripe) which is
145  * greater than the default mb_group_prealloc.
146  *
147  * The regular allocator (using the buddy cache) supports a few tunables.
148  *
149  * /sys/fs/ext4/<partition>/mb_min_to_scan
150  * /sys/fs/ext4/<partition>/mb_max_to_scan
151  * /sys/fs/ext4/<partition>/mb_order2_req
152  *
153  * The regular allocator uses buddy scan only if the request len is power of
154  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155  * value of s_mb_order2_reqs can be tuned via
156  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
157  * stripe size (sbi->s_stripe), we try to search for contiguous block in
158  * stripe size. This should result in better allocation on RAID setups. If
159  * not, we search in the specific group using bitmap for best extents. The
160  * tunable min_to_scan and max_to_scan control the behaviour here.
161  * min_to_scan indicate how long the mballoc __must__ look for a best
162  * extent and max_to_scan indicates how long the mballoc __can__ look for a
163  * best extent in the found extents. Searching for the blocks starts with
164  * the group specified as the goal value in allocation context via
165  * ac_g_ex. Each group is first checked based on the criteria whether it
166  * can be used for allocation. ext4_mb_good_group explains how the groups are
167  * checked.
168  *
169  * Both the prealloc space are getting populated as above. So for the first
170  * request we will hit the buddy cache which will result in this prealloc
171  * space getting filled. The prealloc space is then later used for the
172  * subsequent request.
173  */
174 
175 /*
176  * mballoc operates on the following data:
177  *  - on-disk bitmap
178  *  - in-core buddy (actually includes buddy and bitmap)
179  *  - preallocation descriptors (PAs)
180  *
181  * there are two types of preallocations:
182  *  - inode
183  *    assiged to specific inode and can be used for this inode only.
184  *    it describes part of inode's space preallocated to specific
185  *    physical blocks. any block from that preallocated can be used
186  *    independent. the descriptor just tracks number of blocks left
187  *    unused. so, before taking some block from descriptor, one must
188  *    make sure corresponded logical block isn't allocated yet. this
189  *    also means that freeing any block within descriptor's range
190  *    must discard all preallocated blocks.
191  *  - locality group
192  *    assigned to specific locality group which does not translate to
193  *    permanent set of inodes: inode can join and leave group. space
194  *    from this type of preallocation can be used for any inode. thus
195  *    it's consumed from the beginning to the end.
196  *
197  * relation between them can be expressed as:
198  *    in-core buddy = on-disk bitmap + preallocation descriptors
199  *
200  * this mean blocks mballoc considers used are:
201  *  - allocated blocks (persistent)
202  *  - preallocated blocks (non-persistent)
203  *
204  * consistency in mballoc world means that at any time a block is either
205  * free or used in ALL structures. notice: "any time" should not be read
206  * literally -- time is discrete and delimited by locks.
207  *
208  *  to keep it simple, we don't use block numbers, instead we count number of
209  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210  *
211  * all operations can be expressed as:
212  *  - init buddy:			buddy = on-disk + PAs
213  *  - new PA:				buddy += N; PA = N
214  *  - use inode PA:			on-disk += N; PA -= N
215  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
216  *  - use locality group PA		on-disk += N; PA -= N
217  *  - discard locality group PA		buddy -= PA; PA = 0
218  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219  *        is used in real operation because we can't know actual used
220  *        bits from PA, only from on-disk bitmap
221  *
222  * if we follow this strict logic, then all operations above should be atomic.
223  * given some of them can block, we'd have to use something like semaphores
224  * killing performance on high-end SMP hardware. let's try to relax it using
225  * the following knowledge:
226  *  1) if buddy is referenced, it's already initialized
227  *  2) while block is used in buddy and the buddy is referenced,
228  *     nobody can re-allocate that block
229  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
231  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232  *     block
233  *
234  * so, now we're building a concurrency table:
235  *  - init buddy vs.
236  *    - new PA
237  *      blocks for PA are allocated in the buddy, buddy must be referenced
238  *      until PA is linked to allocation group to avoid concurrent buddy init
239  *    - use inode PA
240  *      we need to make sure that either on-disk bitmap or PA has uptodate data
241  *      given (3) we care that PA-=N operation doesn't interfere with init
242  *    - discard inode PA
243  *      the simplest way would be to have buddy initialized by the discard
244  *    - use locality group PA
245  *      again PA-=N must be serialized with init
246  *    - discard locality group PA
247  *      the simplest way would be to have buddy initialized by the discard
248  *  - new PA vs.
249  *    - use inode PA
250  *      i_data_sem serializes them
251  *    - discard inode PA
252  *      discard process must wait until PA isn't used by another process
253  *    - use locality group PA
254  *      some mutex should serialize them
255  *    - discard locality group PA
256  *      discard process must wait until PA isn't used by another process
257  *  - use inode PA
258  *    - use inode PA
259  *      i_data_sem or another mutex should serializes them
260  *    - discard inode PA
261  *      discard process must wait until PA isn't used by another process
262  *    - use locality group PA
263  *      nothing wrong here -- they're different PAs covering different blocks
264  *    - discard locality group PA
265  *      discard process must wait until PA isn't used by another process
266  *
267  * now we're ready to make few consequences:
268  *  - PA is referenced and while it is no discard is possible
269  *  - PA is referenced until block isn't marked in on-disk bitmap
270  *  - PA changes only after on-disk bitmap
271  *  - discard must not compete with init. either init is done before
272  *    any discard or they're serialized somehow
273  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
274  *
275  * a special case when we've used PA to emptiness. no need to modify buddy
276  * in this case, but we should care about concurrent init
277  *
278  */
279 
280  /*
281  * Logic in few words:
282  *
283  *  - allocation:
284  *    load group
285  *    find blocks
286  *    mark bits in on-disk bitmap
287  *    release group
288  *
289  *  - use preallocation:
290  *    find proper PA (per-inode or group)
291  *    load group
292  *    mark bits in on-disk bitmap
293  *    release group
294  *    release PA
295  *
296  *  - free:
297  *    load group
298  *    mark bits in on-disk bitmap
299  *    release group
300  *
301  *  - discard preallocations in group:
302  *    mark PAs deleted
303  *    move them onto local list
304  *    load on-disk bitmap
305  *    load group
306  *    remove PA from object (inode or locality group)
307  *    mark free blocks in-core
308  *
309  *  - discard inode's preallocations:
310  */
311 
312 /*
313  * Locking rules
314  *
315  * Locks:
316  *  - bitlock on a group	(group)
317  *  - object (inode/locality)	(object)
318  *  - per-pa lock		(pa)
319  *
320  * Paths:
321  *  - new pa
322  *    object
323  *    group
324  *
325  *  - find and use pa:
326  *    pa
327  *
328  *  - release consumed pa:
329  *    pa
330  *    group
331  *    object
332  *
333  *  - generate in-core bitmap:
334  *    group
335  *        pa
336  *
337  *  - discard all for given object (inode, locality group):
338  *    object
339  *        pa
340  *    group
341  *
342  *  - discard all for given group:
343  *    group
344  *        pa
345  *    group
346  *        object
347  *
348  */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352 
353 /* We create slab caches for groupinfo data structures based on the
354  * superblock block size.  There will be one per mounted filesystem for
355  * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358 
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364 
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 					ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 						ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 				struct ext4_journal_cb_entry *jce, int rc);
371 
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 	*bit += ((unsigned long) addr & 7UL) << 3;
376 	addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 	*bit += ((unsigned long) addr & 3UL) << 3;
379 	addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 	return addr;
384 }
385 
386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 	/*
389 	 * ext4_test_bit on architecture like powerpc
390 	 * needs unsigned long aligned address
391 	 */
392 	addr = mb_correct_addr_and_bit(&bit, addr);
393 	return ext4_test_bit(bit, addr);
394 }
395 
396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 	addr = mb_correct_addr_and_bit(&bit, addr);
399 	ext4_set_bit(bit, addr);
400 }
401 
402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 	addr = mb_correct_addr_and_bit(&bit, addr);
405 	ext4_clear_bit(bit, addr);
406 }
407 
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 	addr = mb_correct_addr_and_bit(&bit, addr);
411 	return ext4_test_and_clear_bit(bit, addr);
412 }
413 
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 	int fix = 0, ret, tmpmax;
417 	addr = mb_correct_addr_and_bit(&fix, addr);
418 	tmpmax = max + fix;
419 	start += fix;
420 
421 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 	if (ret > max)
423 		return max;
424 	return ret;
425 }
426 
427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 	int fix = 0, ret, tmpmax;
430 	addr = mb_correct_addr_and_bit(&fix, addr);
431 	tmpmax = max + fix;
432 	start += fix;
433 
434 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 	if (ret > max)
436 		return max;
437 	return ret;
438 }
439 
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 	char *bb;
443 
444 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 	BUG_ON(max == NULL);
446 
447 	if (order > e4b->bd_blkbits + 1) {
448 		*max = 0;
449 		return NULL;
450 	}
451 
452 	/* at order 0 we see each particular block */
453 	if (order == 0) {
454 		*max = 1 << (e4b->bd_blkbits + 3);
455 		return e4b->bd_bitmap;
456 	}
457 
458 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460 
461 	return bb;
462 }
463 
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 			   int first, int count)
467 {
468 	int i;
469 	struct super_block *sb = e4b->bd_sb;
470 
471 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 		return;
473 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 	for (i = 0; i < count; i++) {
475 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 			ext4_fsblk_t blocknr;
477 
478 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 			ext4_grp_locked_error(sb, e4b->bd_group,
481 					      inode ? inode->i_ino : 0,
482 					      blocknr,
483 					      "freeing block already freed "
484 					      "(bit %u)",
485 					      first + i);
486 		}
487 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 	}
489 }
490 
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 	int i;
494 
495 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 		return;
497 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 	for (i = 0; i < count; i++) {
499 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 	}
502 }
503 
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 		unsigned char *b1, *b2;
508 		int i;
509 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 		b2 = (unsigned char *) bitmap;
511 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 			if (b1[i] != b2[i]) {
513 				ext4_msg(e4b->bd_sb, KERN_ERR,
514 					 "corruption in group %u "
515 					 "at byte %u(%u): %x in copy != %x "
516 					 "on disk/prealloc",
517 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 				BUG();
519 			}
520 		}
521 	}
522 }
523 
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 				struct ext4_buddy *e4b, int first, int count)
527 {
528 	return;
529 }
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 						int first, int count)
532 {
533 	return;
534 }
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 	return;
538 }
539 #endif
540 
541 #ifdef AGGRESSIVE_CHECK
542 
543 #define MB_CHECK_ASSERT(assert)						\
544 do {									\
545 	if (!(assert)) {						\
546 		printk(KERN_EMERG					\
547 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
548 			function, file, line, # assert);		\
549 		BUG();							\
550 	}								\
551 } while (0)
552 
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 				const char *function, int line)
555 {
556 	struct super_block *sb = e4b->bd_sb;
557 	int order = e4b->bd_blkbits + 1;
558 	int max;
559 	int max2;
560 	int i;
561 	int j;
562 	int k;
563 	int count;
564 	struct ext4_group_info *grp;
565 	int fragments = 0;
566 	int fstart;
567 	struct list_head *cur;
568 	void *buddy;
569 	void *buddy2;
570 
571 	{
572 		static int mb_check_counter;
573 		if (mb_check_counter++ % 100 != 0)
574 			return 0;
575 	}
576 
577 	while (order > 1) {
578 		buddy = mb_find_buddy(e4b, order, &max);
579 		MB_CHECK_ASSERT(buddy);
580 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 		MB_CHECK_ASSERT(buddy2);
582 		MB_CHECK_ASSERT(buddy != buddy2);
583 		MB_CHECK_ASSERT(max * 2 == max2);
584 
585 		count = 0;
586 		for (i = 0; i < max; i++) {
587 
588 			if (mb_test_bit(i, buddy)) {
589 				/* only single bit in buddy2 may be 1 */
590 				if (!mb_test_bit(i << 1, buddy2)) {
591 					MB_CHECK_ASSERT(
592 						mb_test_bit((i<<1)+1, buddy2));
593 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 					MB_CHECK_ASSERT(
595 						mb_test_bit(i << 1, buddy2));
596 				}
597 				continue;
598 			}
599 
600 			/* both bits in buddy2 must be 1 */
601 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603 
604 			for (j = 0; j < (1 << order); j++) {
605 				k = (i * (1 << order)) + j;
606 				MB_CHECK_ASSERT(
607 					!mb_test_bit(k, e4b->bd_bitmap));
608 			}
609 			count++;
610 		}
611 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 		order--;
613 	}
614 
615 	fstart = -1;
616 	buddy = mb_find_buddy(e4b, 0, &max);
617 	for (i = 0; i < max; i++) {
618 		if (!mb_test_bit(i, buddy)) {
619 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 			if (fstart == -1) {
621 				fragments++;
622 				fstart = i;
623 			}
624 			continue;
625 		}
626 		fstart = -1;
627 		/* check used bits only */
628 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 			buddy2 = mb_find_buddy(e4b, j, &max2);
630 			k = i >> j;
631 			MB_CHECK_ASSERT(k < max2);
632 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 		}
634 	}
635 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637 
638 	grp = ext4_get_group_info(sb, e4b->bd_group);
639 	list_for_each(cur, &grp->bb_prealloc_list) {
640 		ext4_group_t groupnr;
641 		struct ext4_prealloc_space *pa;
642 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 		for (i = 0; i < pa->pa_len; i++)
646 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 	}
648 	return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
652 					__FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656 
657 /*
658  * Divide blocks started from @first with length @len into
659  * smaller chunks with power of 2 blocks.
660  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661  * then increase bb_counters[] for corresponded chunk size.
662  */
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 					struct ext4_group_info *grp)
666 {
667 	struct ext4_sb_info *sbi = EXT4_SB(sb);
668 	ext4_grpblk_t min;
669 	ext4_grpblk_t max;
670 	ext4_grpblk_t chunk;
671 	unsigned short border;
672 
673 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674 
675 	border = 2 << sb->s_blocksize_bits;
676 
677 	while (len > 0) {
678 		/* find how many blocks can be covered since this position */
679 		max = ffs(first | border) - 1;
680 
681 		/* find how many blocks of power 2 we need to mark */
682 		min = fls(len) - 1;
683 
684 		if (max < min)
685 			min = max;
686 		chunk = 1 << min;
687 
688 		/* mark multiblock chunks only */
689 		grp->bb_counters[min]++;
690 		if (min > 0)
691 			mb_clear_bit(first >> min,
692 				     buddy + sbi->s_mb_offsets[min]);
693 
694 		len -= chunk;
695 		first += chunk;
696 	}
697 }
698 
699 /*
700  * Cache the order of the largest free extent we have available in this block
701  * group.
702  */
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 	int i;
707 	int bits;
708 
709 	grp->bb_largest_free_order = -1; /* uninit */
710 
711 	bits = sb->s_blocksize_bits + 1;
712 	for (i = bits; i >= 0; i--) {
713 		if (grp->bb_counters[i] > 0) {
714 			grp->bb_largest_free_order = i;
715 			break;
716 		}
717 	}
718 }
719 
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 				void *buddy, void *bitmap, ext4_group_t group)
723 {
724 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
726 	ext4_grpblk_t i = 0;
727 	ext4_grpblk_t first;
728 	ext4_grpblk_t len;
729 	unsigned free = 0;
730 	unsigned fragments = 0;
731 	unsigned long long period = get_cycles();
732 
733 	/* initialize buddy from bitmap which is aggregation
734 	 * of on-disk bitmap and preallocations */
735 	i = mb_find_next_zero_bit(bitmap, max, 0);
736 	grp->bb_first_free = i;
737 	while (i < max) {
738 		fragments++;
739 		first = i;
740 		i = mb_find_next_bit(bitmap, max, i);
741 		len = i - first;
742 		free += len;
743 		if (len > 1)
744 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
745 		else
746 			grp->bb_counters[0]++;
747 		if (i < max)
748 			i = mb_find_next_zero_bit(bitmap, max, i);
749 	}
750 	grp->bb_fragments = fragments;
751 
752 	if (free != grp->bb_free) {
753 		ext4_grp_locked_error(sb, group, 0, 0,
754 				      "%u clusters in bitmap, %u in gd; "
755 				      "block bitmap corrupt.",
756 				      free, grp->bb_free);
757 		/*
758 		 * If we intend to continue, we consider group descriptor
759 		 * corrupt and update bb_free using bitmap value
760 		 */
761 		grp->bb_free = free;
762 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
763 	}
764 	mb_set_largest_free_order(sb, grp);
765 
766 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
767 
768 	period = get_cycles() - period;
769 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
770 	EXT4_SB(sb)->s_mb_buddies_generated++;
771 	EXT4_SB(sb)->s_mb_generation_time += period;
772 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
773 }
774 
775 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
776 {
777 	int count;
778 	int order = 1;
779 	void *buddy;
780 
781 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
782 		ext4_set_bits(buddy, 0, count);
783 	}
784 	e4b->bd_info->bb_fragments = 0;
785 	memset(e4b->bd_info->bb_counters, 0,
786 		sizeof(*e4b->bd_info->bb_counters) *
787 		(e4b->bd_sb->s_blocksize_bits + 2));
788 
789 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
790 		e4b->bd_bitmap, e4b->bd_group);
791 }
792 
793 /* The buddy information is attached the buddy cache inode
794  * for convenience. The information regarding each group
795  * is loaded via ext4_mb_load_buddy. The information involve
796  * block bitmap and buddy information. The information are
797  * stored in the inode as
798  *
799  * {                        page                        }
800  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
801  *
802  *
803  * one block each for bitmap and buddy information.
804  * So for each group we take up 2 blocks. A page can
805  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
806  * So it can have information regarding groups_per_page which
807  * is blocks_per_page/2
808  *
809  * Locking note:  This routine takes the block group lock of all groups
810  * for this page; do not hold this lock when calling this routine!
811  */
812 
813 static int ext4_mb_init_cache(struct page *page, char *incore)
814 {
815 	ext4_group_t ngroups;
816 	int blocksize;
817 	int blocks_per_page;
818 	int groups_per_page;
819 	int err = 0;
820 	int i;
821 	ext4_group_t first_group, group;
822 	int first_block;
823 	struct super_block *sb;
824 	struct buffer_head *bhs;
825 	struct buffer_head **bh = NULL;
826 	struct inode *inode;
827 	char *data;
828 	char *bitmap;
829 	struct ext4_group_info *grinfo;
830 
831 	mb_debug(1, "init page %lu\n", page->index);
832 
833 	inode = page->mapping->host;
834 	sb = inode->i_sb;
835 	ngroups = ext4_get_groups_count(sb);
836 	blocksize = 1 << inode->i_blkbits;
837 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
838 
839 	groups_per_page = blocks_per_page >> 1;
840 	if (groups_per_page == 0)
841 		groups_per_page = 1;
842 
843 	/* allocate buffer_heads to read bitmaps */
844 	if (groups_per_page > 1) {
845 		i = sizeof(struct buffer_head *) * groups_per_page;
846 		bh = kzalloc(i, GFP_NOFS);
847 		if (bh == NULL) {
848 			err = -ENOMEM;
849 			goto out;
850 		}
851 	} else
852 		bh = &bhs;
853 
854 	first_group = page->index * blocks_per_page / 2;
855 
856 	/* read all groups the page covers into the cache */
857 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
858 		if (group >= ngroups)
859 			break;
860 
861 		grinfo = ext4_get_group_info(sb, group);
862 		/*
863 		 * If page is uptodate then we came here after online resize
864 		 * which added some new uninitialized group info structs, so
865 		 * we must skip all initialized uptodate buddies on the page,
866 		 * which may be currently in use by an allocating task.
867 		 */
868 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
869 			bh[i] = NULL;
870 			continue;
871 		}
872 		if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
873 			err = -ENOMEM;
874 			goto out;
875 		}
876 		mb_debug(1, "read bitmap for group %u\n", group);
877 	}
878 
879 	/* wait for I/O completion */
880 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
881 		if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
882 			err = -EIO;
883 			goto out;
884 		}
885 	}
886 
887 	first_block = page->index * blocks_per_page;
888 	for (i = 0; i < blocks_per_page; i++) {
889 		group = (first_block + i) >> 1;
890 		if (group >= ngroups)
891 			break;
892 
893 		if (!bh[group - first_group])
894 			/* skip initialized uptodate buddy */
895 			continue;
896 
897 		/*
898 		 * data carry information regarding this
899 		 * particular group in the format specified
900 		 * above
901 		 *
902 		 */
903 		data = page_address(page) + (i * blocksize);
904 		bitmap = bh[group - first_group]->b_data;
905 
906 		/*
907 		 * We place the buddy block and bitmap block
908 		 * close together
909 		 */
910 		if ((first_block + i) & 1) {
911 			/* this is block of buddy */
912 			BUG_ON(incore == NULL);
913 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
914 				group, page->index, i * blocksize);
915 			trace_ext4_mb_buddy_bitmap_load(sb, group);
916 			grinfo = ext4_get_group_info(sb, group);
917 			grinfo->bb_fragments = 0;
918 			memset(grinfo->bb_counters, 0,
919 			       sizeof(*grinfo->bb_counters) *
920 				(sb->s_blocksize_bits+2));
921 			/*
922 			 * incore got set to the group block bitmap below
923 			 */
924 			ext4_lock_group(sb, group);
925 			/* init the buddy */
926 			memset(data, 0xff, blocksize);
927 			ext4_mb_generate_buddy(sb, data, incore, group);
928 			ext4_unlock_group(sb, group);
929 			incore = NULL;
930 		} else {
931 			/* this is block of bitmap */
932 			BUG_ON(incore != NULL);
933 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
934 				group, page->index, i * blocksize);
935 			trace_ext4_mb_bitmap_load(sb, group);
936 
937 			/* see comments in ext4_mb_put_pa() */
938 			ext4_lock_group(sb, group);
939 			memcpy(data, bitmap, blocksize);
940 
941 			/* mark all preallocated blks used in in-core bitmap */
942 			ext4_mb_generate_from_pa(sb, data, group);
943 			ext4_mb_generate_from_freelist(sb, data, group);
944 			ext4_unlock_group(sb, group);
945 
946 			/* set incore so that the buddy information can be
947 			 * generated using this
948 			 */
949 			incore = data;
950 		}
951 	}
952 	SetPageUptodate(page);
953 
954 out:
955 	if (bh) {
956 		for (i = 0; i < groups_per_page; i++)
957 			brelse(bh[i]);
958 		if (bh != &bhs)
959 			kfree(bh);
960 	}
961 	return err;
962 }
963 
964 /*
965  * Lock the buddy and bitmap pages. This make sure other parallel init_group
966  * on the same buddy page doesn't happen whild holding the buddy page lock.
967  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
968  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
969  */
970 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
971 		ext4_group_t group, struct ext4_buddy *e4b)
972 {
973 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
974 	int block, pnum, poff;
975 	int blocks_per_page;
976 	struct page *page;
977 
978 	e4b->bd_buddy_page = NULL;
979 	e4b->bd_bitmap_page = NULL;
980 
981 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
982 	/*
983 	 * the buddy cache inode stores the block bitmap
984 	 * and buddy information in consecutive blocks.
985 	 * So for each group we need two blocks.
986 	 */
987 	block = group * 2;
988 	pnum = block / blocks_per_page;
989 	poff = block % blocks_per_page;
990 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
991 	if (!page)
992 		return -EIO;
993 	BUG_ON(page->mapping != inode->i_mapping);
994 	e4b->bd_bitmap_page = page;
995 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
996 
997 	if (blocks_per_page >= 2) {
998 		/* buddy and bitmap are on the same page */
999 		return 0;
1000 	}
1001 
1002 	block++;
1003 	pnum = block / blocks_per_page;
1004 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1005 	if (!page)
1006 		return -EIO;
1007 	BUG_ON(page->mapping != inode->i_mapping);
1008 	e4b->bd_buddy_page = page;
1009 	return 0;
1010 }
1011 
1012 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1013 {
1014 	if (e4b->bd_bitmap_page) {
1015 		unlock_page(e4b->bd_bitmap_page);
1016 		page_cache_release(e4b->bd_bitmap_page);
1017 	}
1018 	if (e4b->bd_buddy_page) {
1019 		unlock_page(e4b->bd_buddy_page);
1020 		page_cache_release(e4b->bd_buddy_page);
1021 	}
1022 }
1023 
1024 /*
1025  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1026  * block group lock of all groups for this page; do not hold the BG lock when
1027  * calling this routine!
1028  */
1029 static noinline_for_stack
1030 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1031 {
1032 
1033 	struct ext4_group_info *this_grp;
1034 	struct ext4_buddy e4b;
1035 	struct page *page;
1036 	int ret = 0;
1037 
1038 	might_sleep();
1039 	mb_debug(1, "init group %u\n", group);
1040 	this_grp = ext4_get_group_info(sb, group);
1041 	/*
1042 	 * This ensures that we don't reinit the buddy cache
1043 	 * page which map to the group from which we are already
1044 	 * allocating. If we are looking at the buddy cache we would
1045 	 * have taken a reference using ext4_mb_load_buddy and that
1046 	 * would have pinned buddy page to page cache.
1047 	 */
1048 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1049 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1050 		/*
1051 		 * somebody initialized the group
1052 		 * return without doing anything
1053 		 */
1054 		goto err;
1055 	}
1056 
1057 	page = e4b.bd_bitmap_page;
1058 	ret = ext4_mb_init_cache(page, NULL);
1059 	if (ret)
1060 		goto err;
1061 	if (!PageUptodate(page)) {
1062 		ret = -EIO;
1063 		goto err;
1064 	}
1065 	mark_page_accessed(page);
1066 
1067 	if (e4b.bd_buddy_page == NULL) {
1068 		/*
1069 		 * If both the bitmap and buddy are in
1070 		 * the same page we don't need to force
1071 		 * init the buddy
1072 		 */
1073 		ret = 0;
1074 		goto err;
1075 	}
1076 	/* init buddy cache */
1077 	page = e4b.bd_buddy_page;
1078 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1079 	if (ret)
1080 		goto err;
1081 	if (!PageUptodate(page)) {
1082 		ret = -EIO;
1083 		goto err;
1084 	}
1085 	mark_page_accessed(page);
1086 err:
1087 	ext4_mb_put_buddy_page_lock(&e4b);
1088 	return ret;
1089 }
1090 
1091 /*
1092  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1093  * block group lock of all groups for this page; do not hold the BG lock when
1094  * calling this routine!
1095  */
1096 static noinline_for_stack int
1097 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1098 					struct ext4_buddy *e4b)
1099 {
1100 	int blocks_per_page;
1101 	int block;
1102 	int pnum;
1103 	int poff;
1104 	struct page *page;
1105 	int ret;
1106 	struct ext4_group_info *grp;
1107 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1108 	struct inode *inode = sbi->s_buddy_cache;
1109 
1110 	might_sleep();
1111 	mb_debug(1, "load group %u\n", group);
1112 
1113 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1114 	grp = ext4_get_group_info(sb, group);
1115 
1116 	e4b->bd_blkbits = sb->s_blocksize_bits;
1117 	e4b->bd_info = grp;
1118 	e4b->bd_sb = sb;
1119 	e4b->bd_group = group;
1120 	e4b->bd_buddy_page = NULL;
1121 	e4b->bd_bitmap_page = NULL;
1122 
1123 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1124 		/*
1125 		 * we need full data about the group
1126 		 * to make a good selection
1127 		 */
1128 		ret = ext4_mb_init_group(sb, group);
1129 		if (ret)
1130 			return ret;
1131 	}
1132 
1133 	/*
1134 	 * the buddy cache inode stores the block bitmap
1135 	 * and buddy information in consecutive blocks.
1136 	 * So for each group we need two blocks.
1137 	 */
1138 	block = group * 2;
1139 	pnum = block / blocks_per_page;
1140 	poff = block % blocks_per_page;
1141 
1142 	/* we could use find_or_create_page(), but it locks page
1143 	 * what we'd like to avoid in fast path ... */
1144 	page = find_get_page(inode->i_mapping, pnum);
1145 	if (page == NULL || !PageUptodate(page)) {
1146 		if (page)
1147 			/*
1148 			 * drop the page reference and try
1149 			 * to get the page with lock. If we
1150 			 * are not uptodate that implies
1151 			 * somebody just created the page but
1152 			 * is yet to initialize the same. So
1153 			 * wait for it to initialize.
1154 			 */
1155 			page_cache_release(page);
1156 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1157 		if (page) {
1158 			BUG_ON(page->mapping != inode->i_mapping);
1159 			if (!PageUptodate(page)) {
1160 				ret = ext4_mb_init_cache(page, NULL);
1161 				if (ret) {
1162 					unlock_page(page);
1163 					goto err;
1164 				}
1165 				mb_cmp_bitmaps(e4b, page_address(page) +
1166 					       (poff * sb->s_blocksize));
1167 			}
1168 			unlock_page(page);
1169 		}
1170 	}
1171 	if (page == NULL || !PageUptodate(page)) {
1172 		ret = -EIO;
1173 		goto err;
1174 	}
1175 	e4b->bd_bitmap_page = page;
1176 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1177 	mark_page_accessed(page);
1178 
1179 	block++;
1180 	pnum = block / blocks_per_page;
1181 	poff = block % blocks_per_page;
1182 
1183 	page = find_get_page(inode->i_mapping, pnum);
1184 	if (page == NULL || !PageUptodate(page)) {
1185 		if (page)
1186 			page_cache_release(page);
1187 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1188 		if (page) {
1189 			BUG_ON(page->mapping != inode->i_mapping);
1190 			if (!PageUptodate(page)) {
1191 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1192 				if (ret) {
1193 					unlock_page(page);
1194 					goto err;
1195 				}
1196 			}
1197 			unlock_page(page);
1198 		}
1199 	}
1200 	if (page == NULL || !PageUptodate(page)) {
1201 		ret = -EIO;
1202 		goto err;
1203 	}
1204 	e4b->bd_buddy_page = page;
1205 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1206 	mark_page_accessed(page);
1207 
1208 	BUG_ON(e4b->bd_bitmap_page == NULL);
1209 	BUG_ON(e4b->bd_buddy_page == NULL);
1210 
1211 	return 0;
1212 
1213 err:
1214 	if (page)
1215 		page_cache_release(page);
1216 	if (e4b->bd_bitmap_page)
1217 		page_cache_release(e4b->bd_bitmap_page);
1218 	if (e4b->bd_buddy_page)
1219 		page_cache_release(e4b->bd_buddy_page);
1220 	e4b->bd_buddy = NULL;
1221 	e4b->bd_bitmap = NULL;
1222 	return ret;
1223 }
1224 
1225 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1226 {
1227 	if (e4b->bd_bitmap_page)
1228 		page_cache_release(e4b->bd_bitmap_page);
1229 	if (e4b->bd_buddy_page)
1230 		page_cache_release(e4b->bd_buddy_page);
1231 }
1232 
1233 
1234 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1235 {
1236 	int order = 1;
1237 	void *bb;
1238 
1239 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1240 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1241 
1242 	bb = e4b->bd_buddy;
1243 	while (order <= e4b->bd_blkbits + 1) {
1244 		block = block >> 1;
1245 		if (!mb_test_bit(block, bb)) {
1246 			/* this block is part of buddy of order 'order' */
1247 			return order;
1248 		}
1249 		bb += 1 << (e4b->bd_blkbits - order);
1250 		order++;
1251 	}
1252 	return 0;
1253 }
1254 
1255 static void mb_clear_bits(void *bm, int cur, int len)
1256 {
1257 	__u32 *addr;
1258 
1259 	len = cur + len;
1260 	while (cur < len) {
1261 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1262 			/* fast path: clear whole word at once */
1263 			addr = bm + (cur >> 3);
1264 			*addr = 0;
1265 			cur += 32;
1266 			continue;
1267 		}
1268 		mb_clear_bit(cur, bm);
1269 		cur++;
1270 	}
1271 }
1272 
1273 /* clear bits in given range
1274  * will return first found zero bit if any, -1 otherwise
1275  */
1276 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1277 {
1278 	__u32 *addr;
1279 	int zero_bit = -1;
1280 
1281 	len = cur + len;
1282 	while (cur < len) {
1283 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1284 			/* fast path: clear whole word at once */
1285 			addr = bm + (cur >> 3);
1286 			if (*addr != (__u32)(-1) && zero_bit == -1)
1287 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1288 			*addr = 0;
1289 			cur += 32;
1290 			continue;
1291 		}
1292 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1293 			zero_bit = cur;
1294 		cur++;
1295 	}
1296 
1297 	return zero_bit;
1298 }
1299 
1300 void ext4_set_bits(void *bm, int cur, int len)
1301 {
1302 	__u32 *addr;
1303 
1304 	len = cur + len;
1305 	while (cur < len) {
1306 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1307 			/* fast path: set whole word at once */
1308 			addr = bm + (cur >> 3);
1309 			*addr = 0xffffffff;
1310 			cur += 32;
1311 			continue;
1312 		}
1313 		mb_set_bit(cur, bm);
1314 		cur++;
1315 	}
1316 }
1317 
1318 /*
1319  * _________________________________________________________________ */
1320 
1321 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1322 {
1323 	if (mb_test_bit(*bit + side, bitmap)) {
1324 		mb_clear_bit(*bit, bitmap);
1325 		(*bit) -= side;
1326 		return 1;
1327 	}
1328 	else {
1329 		(*bit) += side;
1330 		mb_set_bit(*bit, bitmap);
1331 		return -1;
1332 	}
1333 }
1334 
1335 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1336 {
1337 	int max;
1338 	int order = 1;
1339 	void *buddy = mb_find_buddy(e4b, order, &max);
1340 
1341 	while (buddy) {
1342 		void *buddy2;
1343 
1344 		/* Bits in range [first; last] are known to be set since
1345 		 * corresponding blocks were allocated. Bits in range
1346 		 * (first; last) will stay set because they form buddies on
1347 		 * upper layer. We just deal with borders if they don't
1348 		 * align with upper layer and then go up.
1349 		 * Releasing entire group is all about clearing
1350 		 * single bit of highest order buddy.
1351 		 */
1352 
1353 		/* Example:
1354 		 * ---------------------------------
1355 		 * |   1   |   1   |   1   |   1   |
1356 		 * ---------------------------------
1357 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1358 		 * ---------------------------------
1359 		 *   0   1   2   3   4   5   6   7
1360 		 *      \_____________________/
1361 		 *
1362 		 * Neither [1] nor [6] is aligned to above layer.
1363 		 * Left neighbour [0] is free, so mark it busy,
1364 		 * decrease bb_counters and extend range to
1365 		 * [0; 6]
1366 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1367 		 * mark [6] free, increase bb_counters and shrink range to
1368 		 * [0; 5].
1369 		 * Then shift range to [0; 2], go up and do the same.
1370 		 */
1371 
1372 
1373 		if (first & 1)
1374 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1375 		if (!(last & 1))
1376 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1377 		if (first > last)
1378 			break;
1379 		order++;
1380 
1381 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1382 			mb_clear_bits(buddy, first, last - first + 1);
1383 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1384 			break;
1385 		}
1386 		first >>= 1;
1387 		last >>= 1;
1388 		buddy = buddy2;
1389 	}
1390 }
1391 
1392 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1393 			   int first, int count)
1394 {
1395 	int left_is_free = 0;
1396 	int right_is_free = 0;
1397 	int block;
1398 	int last = first + count - 1;
1399 	struct super_block *sb = e4b->bd_sb;
1400 
1401 	BUG_ON(last >= (sb->s_blocksize << 3));
1402 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1403 	/* Don't bother if the block group is corrupt. */
1404 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1405 		return;
1406 
1407 	mb_check_buddy(e4b);
1408 	mb_free_blocks_double(inode, e4b, first, count);
1409 
1410 	e4b->bd_info->bb_free += count;
1411 	if (first < e4b->bd_info->bb_first_free)
1412 		e4b->bd_info->bb_first_free = first;
1413 
1414 	/* access memory sequentially: check left neighbour,
1415 	 * clear range and then check right neighbour
1416 	 */
1417 	if (first != 0)
1418 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1419 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1420 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1421 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1422 
1423 	if (unlikely(block != -1)) {
1424 		ext4_fsblk_t blocknr;
1425 
1426 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1427 		blocknr += EXT4_C2B(EXT4_SB(sb), block);
1428 		ext4_grp_locked_error(sb, e4b->bd_group,
1429 				      inode ? inode->i_ino : 0,
1430 				      blocknr,
1431 				      "freeing already freed block "
1432 				      "(bit %u); block bitmap corrupt.",
1433 				      block);
1434 		/* Mark the block group as corrupt. */
1435 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1436 			&e4b->bd_info->bb_state);
1437 		mb_regenerate_buddy(e4b);
1438 		goto done;
1439 	}
1440 
1441 	/* let's maintain fragments counter */
1442 	if (left_is_free && right_is_free)
1443 		e4b->bd_info->bb_fragments--;
1444 	else if (!left_is_free && !right_is_free)
1445 		e4b->bd_info->bb_fragments++;
1446 
1447 	/* buddy[0] == bd_bitmap is a special case, so handle
1448 	 * it right away and let mb_buddy_mark_free stay free of
1449 	 * zero order checks.
1450 	 * Check if neighbours are to be coaleasced,
1451 	 * adjust bitmap bb_counters and borders appropriately.
1452 	 */
1453 	if (first & 1) {
1454 		first += !left_is_free;
1455 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1456 	}
1457 	if (!(last & 1)) {
1458 		last -= !right_is_free;
1459 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1460 	}
1461 
1462 	if (first <= last)
1463 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1464 
1465 done:
1466 	mb_set_largest_free_order(sb, e4b->bd_info);
1467 	mb_check_buddy(e4b);
1468 }
1469 
1470 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1471 				int needed, struct ext4_free_extent *ex)
1472 {
1473 	int next = block;
1474 	int max, order;
1475 	void *buddy;
1476 
1477 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1478 	BUG_ON(ex == NULL);
1479 
1480 	buddy = mb_find_buddy(e4b, 0, &max);
1481 	BUG_ON(buddy == NULL);
1482 	BUG_ON(block >= max);
1483 	if (mb_test_bit(block, buddy)) {
1484 		ex->fe_len = 0;
1485 		ex->fe_start = 0;
1486 		ex->fe_group = 0;
1487 		return 0;
1488 	}
1489 
1490 	/* find actual order */
1491 	order = mb_find_order_for_block(e4b, block);
1492 	block = block >> order;
1493 
1494 	ex->fe_len = 1 << order;
1495 	ex->fe_start = block << order;
1496 	ex->fe_group = e4b->bd_group;
1497 
1498 	/* calc difference from given start */
1499 	next = next - ex->fe_start;
1500 	ex->fe_len -= next;
1501 	ex->fe_start += next;
1502 
1503 	while (needed > ex->fe_len &&
1504 	       mb_find_buddy(e4b, order, &max)) {
1505 
1506 		if (block + 1 >= max)
1507 			break;
1508 
1509 		next = (block + 1) * (1 << order);
1510 		if (mb_test_bit(next, e4b->bd_bitmap))
1511 			break;
1512 
1513 		order = mb_find_order_for_block(e4b, next);
1514 
1515 		block = next >> order;
1516 		ex->fe_len += 1 << order;
1517 	}
1518 
1519 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1520 	return ex->fe_len;
1521 }
1522 
1523 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1524 {
1525 	int ord;
1526 	int mlen = 0;
1527 	int max = 0;
1528 	int cur;
1529 	int start = ex->fe_start;
1530 	int len = ex->fe_len;
1531 	unsigned ret = 0;
1532 	int len0 = len;
1533 	void *buddy;
1534 
1535 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1536 	BUG_ON(e4b->bd_group != ex->fe_group);
1537 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1538 	mb_check_buddy(e4b);
1539 	mb_mark_used_double(e4b, start, len);
1540 
1541 	e4b->bd_info->bb_free -= len;
1542 	if (e4b->bd_info->bb_first_free == start)
1543 		e4b->bd_info->bb_first_free += len;
1544 
1545 	/* let's maintain fragments counter */
1546 	if (start != 0)
1547 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1548 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1549 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1550 	if (mlen && max)
1551 		e4b->bd_info->bb_fragments++;
1552 	else if (!mlen && !max)
1553 		e4b->bd_info->bb_fragments--;
1554 
1555 	/* let's maintain buddy itself */
1556 	while (len) {
1557 		ord = mb_find_order_for_block(e4b, start);
1558 
1559 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1560 			/* the whole chunk may be allocated at once! */
1561 			mlen = 1 << ord;
1562 			buddy = mb_find_buddy(e4b, ord, &max);
1563 			BUG_ON((start >> ord) >= max);
1564 			mb_set_bit(start >> ord, buddy);
1565 			e4b->bd_info->bb_counters[ord]--;
1566 			start += mlen;
1567 			len -= mlen;
1568 			BUG_ON(len < 0);
1569 			continue;
1570 		}
1571 
1572 		/* store for history */
1573 		if (ret == 0)
1574 			ret = len | (ord << 16);
1575 
1576 		/* we have to split large buddy */
1577 		BUG_ON(ord <= 0);
1578 		buddy = mb_find_buddy(e4b, ord, &max);
1579 		mb_set_bit(start >> ord, buddy);
1580 		e4b->bd_info->bb_counters[ord]--;
1581 
1582 		ord--;
1583 		cur = (start >> ord) & ~1U;
1584 		buddy = mb_find_buddy(e4b, ord, &max);
1585 		mb_clear_bit(cur, buddy);
1586 		mb_clear_bit(cur + 1, buddy);
1587 		e4b->bd_info->bb_counters[ord]++;
1588 		e4b->bd_info->bb_counters[ord]++;
1589 	}
1590 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1591 
1592 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1593 	mb_check_buddy(e4b);
1594 
1595 	return ret;
1596 }
1597 
1598 /*
1599  * Must be called under group lock!
1600  */
1601 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1602 					struct ext4_buddy *e4b)
1603 {
1604 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1605 	int ret;
1606 
1607 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1608 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1609 
1610 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1611 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1612 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1613 
1614 	/* preallocation can change ac_b_ex, thus we store actually
1615 	 * allocated blocks for history */
1616 	ac->ac_f_ex = ac->ac_b_ex;
1617 
1618 	ac->ac_status = AC_STATUS_FOUND;
1619 	ac->ac_tail = ret & 0xffff;
1620 	ac->ac_buddy = ret >> 16;
1621 
1622 	/*
1623 	 * take the page reference. We want the page to be pinned
1624 	 * so that we don't get a ext4_mb_init_cache_call for this
1625 	 * group until we update the bitmap. That would mean we
1626 	 * double allocate blocks. The reference is dropped
1627 	 * in ext4_mb_release_context
1628 	 */
1629 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1630 	get_page(ac->ac_bitmap_page);
1631 	ac->ac_buddy_page = e4b->bd_buddy_page;
1632 	get_page(ac->ac_buddy_page);
1633 	/* store last allocated for subsequent stream allocation */
1634 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1635 		spin_lock(&sbi->s_md_lock);
1636 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1637 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1638 		spin_unlock(&sbi->s_md_lock);
1639 	}
1640 }
1641 
1642 /*
1643  * regular allocator, for general purposes allocation
1644  */
1645 
1646 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1647 					struct ext4_buddy *e4b,
1648 					int finish_group)
1649 {
1650 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1651 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1652 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1653 	struct ext4_free_extent ex;
1654 	int max;
1655 
1656 	if (ac->ac_status == AC_STATUS_FOUND)
1657 		return;
1658 	/*
1659 	 * We don't want to scan for a whole year
1660 	 */
1661 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1662 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1663 		ac->ac_status = AC_STATUS_BREAK;
1664 		return;
1665 	}
1666 
1667 	/*
1668 	 * Haven't found good chunk so far, let's continue
1669 	 */
1670 	if (bex->fe_len < gex->fe_len)
1671 		return;
1672 
1673 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1674 			&& bex->fe_group == e4b->bd_group) {
1675 		/* recheck chunk's availability - we don't know
1676 		 * when it was found (within this lock-unlock
1677 		 * period or not) */
1678 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1679 		if (max >= gex->fe_len) {
1680 			ext4_mb_use_best_found(ac, e4b);
1681 			return;
1682 		}
1683 	}
1684 }
1685 
1686 /*
1687  * The routine checks whether found extent is good enough. If it is,
1688  * then the extent gets marked used and flag is set to the context
1689  * to stop scanning. Otherwise, the extent is compared with the
1690  * previous found extent and if new one is better, then it's stored
1691  * in the context. Later, the best found extent will be used, if
1692  * mballoc can't find good enough extent.
1693  *
1694  * FIXME: real allocation policy is to be designed yet!
1695  */
1696 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1697 					struct ext4_free_extent *ex,
1698 					struct ext4_buddy *e4b)
1699 {
1700 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1701 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1702 
1703 	BUG_ON(ex->fe_len <= 0);
1704 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1705 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1706 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1707 
1708 	ac->ac_found++;
1709 
1710 	/*
1711 	 * The special case - take what you catch first
1712 	 */
1713 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1714 		*bex = *ex;
1715 		ext4_mb_use_best_found(ac, e4b);
1716 		return;
1717 	}
1718 
1719 	/*
1720 	 * Let's check whether the chuck is good enough
1721 	 */
1722 	if (ex->fe_len == gex->fe_len) {
1723 		*bex = *ex;
1724 		ext4_mb_use_best_found(ac, e4b);
1725 		return;
1726 	}
1727 
1728 	/*
1729 	 * If this is first found extent, just store it in the context
1730 	 */
1731 	if (bex->fe_len == 0) {
1732 		*bex = *ex;
1733 		return;
1734 	}
1735 
1736 	/*
1737 	 * If new found extent is better, store it in the context
1738 	 */
1739 	if (bex->fe_len < gex->fe_len) {
1740 		/* if the request isn't satisfied, any found extent
1741 		 * larger than previous best one is better */
1742 		if (ex->fe_len > bex->fe_len)
1743 			*bex = *ex;
1744 	} else if (ex->fe_len > gex->fe_len) {
1745 		/* if the request is satisfied, then we try to find
1746 		 * an extent that still satisfy the request, but is
1747 		 * smaller than previous one */
1748 		if (ex->fe_len < bex->fe_len)
1749 			*bex = *ex;
1750 	}
1751 
1752 	ext4_mb_check_limits(ac, e4b, 0);
1753 }
1754 
1755 static noinline_for_stack
1756 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1757 					struct ext4_buddy *e4b)
1758 {
1759 	struct ext4_free_extent ex = ac->ac_b_ex;
1760 	ext4_group_t group = ex.fe_group;
1761 	int max;
1762 	int err;
1763 
1764 	BUG_ON(ex.fe_len <= 0);
1765 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1766 	if (err)
1767 		return err;
1768 
1769 	ext4_lock_group(ac->ac_sb, group);
1770 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1771 
1772 	if (max > 0) {
1773 		ac->ac_b_ex = ex;
1774 		ext4_mb_use_best_found(ac, e4b);
1775 	}
1776 
1777 	ext4_unlock_group(ac->ac_sb, group);
1778 	ext4_mb_unload_buddy(e4b);
1779 
1780 	return 0;
1781 }
1782 
1783 static noinline_for_stack
1784 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1785 				struct ext4_buddy *e4b)
1786 {
1787 	ext4_group_t group = ac->ac_g_ex.fe_group;
1788 	int max;
1789 	int err;
1790 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1791 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1792 	struct ext4_free_extent ex;
1793 
1794 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1795 		return 0;
1796 	if (grp->bb_free == 0)
1797 		return 0;
1798 
1799 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1800 	if (err)
1801 		return err;
1802 
1803 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1804 		ext4_mb_unload_buddy(e4b);
1805 		return 0;
1806 	}
1807 
1808 	ext4_lock_group(ac->ac_sb, group);
1809 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1810 			     ac->ac_g_ex.fe_len, &ex);
1811 
1812 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1813 		ext4_fsblk_t start;
1814 
1815 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1816 			ex.fe_start;
1817 		/* use do_div to get remainder (would be 64-bit modulo) */
1818 		if (do_div(start, sbi->s_stripe) == 0) {
1819 			ac->ac_found++;
1820 			ac->ac_b_ex = ex;
1821 			ext4_mb_use_best_found(ac, e4b);
1822 		}
1823 	} else if (max >= ac->ac_g_ex.fe_len) {
1824 		BUG_ON(ex.fe_len <= 0);
1825 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1826 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1827 		ac->ac_found++;
1828 		ac->ac_b_ex = ex;
1829 		ext4_mb_use_best_found(ac, e4b);
1830 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1831 		/* Sometimes, caller may want to merge even small
1832 		 * number of blocks to an existing extent */
1833 		BUG_ON(ex.fe_len <= 0);
1834 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1835 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1836 		ac->ac_found++;
1837 		ac->ac_b_ex = ex;
1838 		ext4_mb_use_best_found(ac, e4b);
1839 	}
1840 	ext4_unlock_group(ac->ac_sb, group);
1841 	ext4_mb_unload_buddy(e4b);
1842 
1843 	return 0;
1844 }
1845 
1846 /*
1847  * The routine scans buddy structures (not bitmap!) from given order
1848  * to max order and tries to find big enough chunk to satisfy the req
1849  */
1850 static noinline_for_stack
1851 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1852 					struct ext4_buddy *e4b)
1853 {
1854 	struct super_block *sb = ac->ac_sb;
1855 	struct ext4_group_info *grp = e4b->bd_info;
1856 	void *buddy;
1857 	int i;
1858 	int k;
1859 	int max;
1860 
1861 	BUG_ON(ac->ac_2order <= 0);
1862 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1863 		if (grp->bb_counters[i] == 0)
1864 			continue;
1865 
1866 		buddy = mb_find_buddy(e4b, i, &max);
1867 		BUG_ON(buddy == NULL);
1868 
1869 		k = mb_find_next_zero_bit(buddy, max, 0);
1870 		BUG_ON(k >= max);
1871 
1872 		ac->ac_found++;
1873 
1874 		ac->ac_b_ex.fe_len = 1 << i;
1875 		ac->ac_b_ex.fe_start = k << i;
1876 		ac->ac_b_ex.fe_group = e4b->bd_group;
1877 
1878 		ext4_mb_use_best_found(ac, e4b);
1879 
1880 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1881 
1882 		if (EXT4_SB(sb)->s_mb_stats)
1883 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1884 
1885 		break;
1886 	}
1887 }
1888 
1889 /*
1890  * The routine scans the group and measures all found extents.
1891  * In order to optimize scanning, caller must pass number of
1892  * free blocks in the group, so the routine can know upper limit.
1893  */
1894 static noinline_for_stack
1895 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1896 					struct ext4_buddy *e4b)
1897 {
1898 	struct super_block *sb = ac->ac_sb;
1899 	void *bitmap = e4b->bd_bitmap;
1900 	struct ext4_free_extent ex;
1901 	int i;
1902 	int free;
1903 
1904 	free = e4b->bd_info->bb_free;
1905 	BUG_ON(free <= 0);
1906 
1907 	i = e4b->bd_info->bb_first_free;
1908 
1909 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1910 		i = mb_find_next_zero_bit(bitmap,
1911 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1912 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1913 			/*
1914 			 * IF we have corrupt bitmap, we won't find any
1915 			 * free blocks even though group info says we
1916 			 * we have free blocks
1917 			 */
1918 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1919 					"%d free clusters as per "
1920 					"group info. But bitmap says 0",
1921 					free);
1922 			break;
1923 		}
1924 
1925 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1926 		BUG_ON(ex.fe_len <= 0);
1927 		if (free < ex.fe_len) {
1928 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1929 					"%d free clusters as per "
1930 					"group info. But got %d blocks",
1931 					free, ex.fe_len);
1932 			/*
1933 			 * The number of free blocks differs. This mostly
1934 			 * indicate that the bitmap is corrupt. So exit
1935 			 * without claiming the space.
1936 			 */
1937 			break;
1938 		}
1939 
1940 		ext4_mb_measure_extent(ac, &ex, e4b);
1941 
1942 		i += ex.fe_len;
1943 		free -= ex.fe_len;
1944 	}
1945 
1946 	ext4_mb_check_limits(ac, e4b, 1);
1947 }
1948 
1949 /*
1950  * This is a special case for storages like raid5
1951  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1952  */
1953 static noinline_for_stack
1954 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1955 				 struct ext4_buddy *e4b)
1956 {
1957 	struct super_block *sb = ac->ac_sb;
1958 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1959 	void *bitmap = e4b->bd_bitmap;
1960 	struct ext4_free_extent ex;
1961 	ext4_fsblk_t first_group_block;
1962 	ext4_fsblk_t a;
1963 	ext4_grpblk_t i;
1964 	int max;
1965 
1966 	BUG_ON(sbi->s_stripe == 0);
1967 
1968 	/* find first stripe-aligned block in group */
1969 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1970 
1971 	a = first_group_block + sbi->s_stripe - 1;
1972 	do_div(a, sbi->s_stripe);
1973 	i = (a * sbi->s_stripe) - first_group_block;
1974 
1975 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1976 		if (!mb_test_bit(i, bitmap)) {
1977 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1978 			if (max >= sbi->s_stripe) {
1979 				ac->ac_found++;
1980 				ac->ac_b_ex = ex;
1981 				ext4_mb_use_best_found(ac, e4b);
1982 				break;
1983 			}
1984 		}
1985 		i += sbi->s_stripe;
1986 	}
1987 }
1988 
1989 /* This is now called BEFORE we load the buddy bitmap. */
1990 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1991 				ext4_group_t group, int cr)
1992 {
1993 	unsigned free, fragments;
1994 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1995 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1996 
1997 	BUG_ON(cr < 0 || cr >= 4);
1998 
1999 	free = grp->bb_free;
2000 	if (free == 0)
2001 		return 0;
2002 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2003 		return 0;
2004 
2005 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2006 		return 0;
2007 
2008 	/* We only do this if the grp has never been initialized */
2009 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2010 		int ret = ext4_mb_init_group(ac->ac_sb, group);
2011 		if (ret)
2012 			return 0;
2013 	}
2014 
2015 	fragments = grp->bb_fragments;
2016 	if (fragments == 0)
2017 		return 0;
2018 
2019 	switch (cr) {
2020 	case 0:
2021 		BUG_ON(ac->ac_2order == 0);
2022 
2023 		/* Avoid using the first bg of a flexgroup for data files */
2024 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2025 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2026 		    ((group % flex_size) == 0))
2027 			return 0;
2028 
2029 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2030 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2031 			return 1;
2032 
2033 		if (grp->bb_largest_free_order < ac->ac_2order)
2034 			return 0;
2035 
2036 		return 1;
2037 	case 1:
2038 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2039 			return 1;
2040 		break;
2041 	case 2:
2042 		if (free >= ac->ac_g_ex.fe_len)
2043 			return 1;
2044 		break;
2045 	case 3:
2046 		return 1;
2047 	default:
2048 		BUG();
2049 	}
2050 
2051 	return 0;
2052 }
2053 
2054 static noinline_for_stack int
2055 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2056 {
2057 	ext4_group_t ngroups, group, i;
2058 	int cr;
2059 	int err = 0;
2060 	struct ext4_sb_info *sbi;
2061 	struct super_block *sb;
2062 	struct ext4_buddy e4b;
2063 
2064 	sb = ac->ac_sb;
2065 	sbi = EXT4_SB(sb);
2066 	ngroups = ext4_get_groups_count(sb);
2067 	/* non-extent files are limited to low blocks/groups */
2068 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2069 		ngroups = sbi->s_blockfile_groups;
2070 
2071 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2072 
2073 	/* first, try the goal */
2074 	err = ext4_mb_find_by_goal(ac, &e4b);
2075 	if (err || ac->ac_status == AC_STATUS_FOUND)
2076 		goto out;
2077 
2078 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2079 		goto out;
2080 
2081 	/*
2082 	 * ac->ac2_order is set only if the fe_len is a power of 2
2083 	 * if ac2_order is set we also set criteria to 0 so that we
2084 	 * try exact allocation using buddy.
2085 	 */
2086 	i = fls(ac->ac_g_ex.fe_len);
2087 	ac->ac_2order = 0;
2088 	/*
2089 	 * We search using buddy data only if the order of the request
2090 	 * is greater than equal to the sbi_s_mb_order2_reqs
2091 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2092 	 */
2093 	if (i >= sbi->s_mb_order2_reqs) {
2094 		/*
2095 		 * This should tell if fe_len is exactly power of 2
2096 		 */
2097 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2098 			ac->ac_2order = i - 1;
2099 	}
2100 
2101 	/* if stream allocation is enabled, use global goal */
2102 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2103 		/* TBD: may be hot point */
2104 		spin_lock(&sbi->s_md_lock);
2105 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2106 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2107 		spin_unlock(&sbi->s_md_lock);
2108 	}
2109 
2110 	/* Let's just scan groups to find more-less suitable blocks */
2111 	cr = ac->ac_2order ? 0 : 1;
2112 	/*
2113 	 * cr == 0 try to get exact allocation,
2114 	 * cr == 3  try to get anything
2115 	 */
2116 repeat:
2117 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2118 		ac->ac_criteria = cr;
2119 		/*
2120 		 * searching for the right group start
2121 		 * from the goal value specified
2122 		 */
2123 		group = ac->ac_g_ex.fe_group;
2124 
2125 		for (i = 0; i < ngroups; group++, i++) {
2126 			cond_resched();
2127 			/*
2128 			 * Artificially restricted ngroups for non-extent
2129 			 * files makes group > ngroups possible on first loop.
2130 			 */
2131 			if (group >= ngroups)
2132 				group = 0;
2133 
2134 			/* This now checks without needing the buddy page */
2135 			if (!ext4_mb_good_group(ac, group, cr))
2136 				continue;
2137 
2138 			err = ext4_mb_load_buddy(sb, group, &e4b);
2139 			if (err)
2140 				goto out;
2141 
2142 			ext4_lock_group(sb, group);
2143 
2144 			/*
2145 			 * We need to check again after locking the
2146 			 * block group
2147 			 */
2148 			if (!ext4_mb_good_group(ac, group, cr)) {
2149 				ext4_unlock_group(sb, group);
2150 				ext4_mb_unload_buddy(&e4b);
2151 				continue;
2152 			}
2153 
2154 			ac->ac_groups_scanned++;
2155 			if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2156 				ext4_mb_simple_scan_group(ac, &e4b);
2157 			else if (cr == 1 && sbi->s_stripe &&
2158 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2159 				ext4_mb_scan_aligned(ac, &e4b);
2160 			else
2161 				ext4_mb_complex_scan_group(ac, &e4b);
2162 
2163 			ext4_unlock_group(sb, group);
2164 			ext4_mb_unload_buddy(&e4b);
2165 
2166 			if (ac->ac_status != AC_STATUS_CONTINUE)
2167 				break;
2168 		}
2169 	}
2170 
2171 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2172 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2173 		/*
2174 		 * We've been searching too long. Let's try to allocate
2175 		 * the best chunk we've found so far
2176 		 */
2177 
2178 		ext4_mb_try_best_found(ac, &e4b);
2179 		if (ac->ac_status != AC_STATUS_FOUND) {
2180 			/*
2181 			 * Someone more lucky has already allocated it.
2182 			 * The only thing we can do is just take first
2183 			 * found block(s)
2184 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2185 			 */
2186 			ac->ac_b_ex.fe_group = 0;
2187 			ac->ac_b_ex.fe_start = 0;
2188 			ac->ac_b_ex.fe_len = 0;
2189 			ac->ac_status = AC_STATUS_CONTINUE;
2190 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2191 			cr = 3;
2192 			atomic_inc(&sbi->s_mb_lost_chunks);
2193 			goto repeat;
2194 		}
2195 	}
2196 out:
2197 	return err;
2198 }
2199 
2200 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2201 {
2202 	struct super_block *sb = seq->private;
2203 	ext4_group_t group;
2204 
2205 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2206 		return NULL;
2207 	group = *pos + 1;
2208 	return (void *) ((unsigned long) group);
2209 }
2210 
2211 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2212 {
2213 	struct super_block *sb = seq->private;
2214 	ext4_group_t group;
2215 
2216 	++*pos;
2217 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2218 		return NULL;
2219 	group = *pos + 1;
2220 	return (void *) ((unsigned long) group);
2221 }
2222 
2223 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2224 {
2225 	struct super_block *sb = seq->private;
2226 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2227 	int i;
2228 	int err, buddy_loaded = 0;
2229 	struct ext4_buddy e4b;
2230 	struct ext4_group_info *grinfo;
2231 	struct sg {
2232 		struct ext4_group_info info;
2233 		ext4_grpblk_t counters[16];
2234 	} sg;
2235 
2236 	group--;
2237 	if (group == 0)
2238 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2239 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2240 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2241 			   "group", "free", "frags", "first",
2242 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2243 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2244 
2245 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2246 		sizeof(struct ext4_group_info);
2247 	grinfo = ext4_get_group_info(sb, group);
2248 	/* Load the group info in memory only if not already loaded. */
2249 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2250 		err = ext4_mb_load_buddy(sb, group, &e4b);
2251 		if (err) {
2252 			seq_printf(seq, "#%-5u: I/O error\n", group);
2253 			return 0;
2254 		}
2255 		buddy_loaded = 1;
2256 	}
2257 
2258 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2259 
2260 	if (buddy_loaded)
2261 		ext4_mb_unload_buddy(&e4b);
2262 
2263 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2264 			sg.info.bb_fragments, sg.info.bb_first_free);
2265 	for (i = 0; i <= 13; i++)
2266 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2267 				sg.info.bb_counters[i] : 0);
2268 	seq_printf(seq, " ]\n");
2269 
2270 	return 0;
2271 }
2272 
2273 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2274 {
2275 }
2276 
2277 static const struct seq_operations ext4_mb_seq_groups_ops = {
2278 	.start  = ext4_mb_seq_groups_start,
2279 	.next   = ext4_mb_seq_groups_next,
2280 	.stop   = ext4_mb_seq_groups_stop,
2281 	.show   = ext4_mb_seq_groups_show,
2282 };
2283 
2284 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2285 {
2286 	struct super_block *sb = PDE_DATA(inode);
2287 	int rc;
2288 
2289 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2290 	if (rc == 0) {
2291 		struct seq_file *m = file->private_data;
2292 		m->private = sb;
2293 	}
2294 	return rc;
2295 
2296 }
2297 
2298 static const struct file_operations ext4_mb_seq_groups_fops = {
2299 	.owner		= THIS_MODULE,
2300 	.open		= ext4_mb_seq_groups_open,
2301 	.read		= seq_read,
2302 	.llseek		= seq_lseek,
2303 	.release	= seq_release,
2304 };
2305 
2306 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2307 {
2308 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2309 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2310 
2311 	BUG_ON(!cachep);
2312 	return cachep;
2313 }
2314 
2315 /*
2316  * Allocate the top-level s_group_info array for the specified number
2317  * of groups
2318  */
2319 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2320 {
2321 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2322 	unsigned size;
2323 	struct ext4_group_info ***new_groupinfo;
2324 
2325 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2326 		EXT4_DESC_PER_BLOCK_BITS(sb);
2327 	if (size <= sbi->s_group_info_size)
2328 		return 0;
2329 
2330 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2331 	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2332 	if (!new_groupinfo) {
2333 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2334 		return -ENOMEM;
2335 	}
2336 	if (sbi->s_group_info) {
2337 		memcpy(new_groupinfo, sbi->s_group_info,
2338 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2339 		ext4_kvfree(sbi->s_group_info);
2340 	}
2341 	sbi->s_group_info = new_groupinfo;
2342 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2343 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2344 		   sbi->s_group_info_size);
2345 	return 0;
2346 }
2347 
2348 /* Create and initialize ext4_group_info data for the given group. */
2349 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2350 			  struct ext4_group_desc *desc)
2351 {
2352 	int i;
2353 	int metalen = 0;
2354 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2355 	struct ext4_group_info **meta_group_info;
2356 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2357 
2358 	/*
2359 	 * First check if this group is the first of a reserved block.
2360 	 * If it's true, we have to allocate a new table of pointers
2361 	 * to ext4_group_info structures
2362 	 */
2363 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2364 		metalen = sizeof(*meta_group_info) <<
2365 			EXT4_DESC_PER_BLOCK_BITS(sb);
2366 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2367 		if (meta_group_info == NULL) {
2368 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2369 				 "for a buddy group");
2370 			goto exit_meta_group_info;
2371 		}
2372 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2373 			meta_group_info;
2374 	}
2375 
2376 	meta_group_info =
2377 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2378 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2379 
2380 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2381 	if (meta_group_info[i] == NULL) {
2382 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2383 		goto exit_group_info;
2384 	}
2385 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2386 		&(meta_group_info[i]->bb_state));
2387 
2388 	/*
2389 	 * initialize bb_free to be able to skip
2390 	 * empty groups without initialization
2391 	 */
2392 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2393 		meta_group_info[i]->bb_free =
2394 			ext4_free_clusters_after_init(sb, group, desc);
2395 	} else {
2396 		meta_group_info[i]->bb_free =
2397 			ext4_free_group_clusters(sb, desc);
2398 	}
2399 
2400 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2401 	init_rwsem(&meta_group_info[i]->alloc_sem);
2402 	meta_group_info[i]->bb_free_root = RB_ROOT;
2403 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2404 
2405 #ifdef DOUBLE_CHECK
2406 	{
2407 		struct buffer_head *bh;
2408 		meta_group_info[i]->bb_bitmap =
2409 			kmalloc(sb->s_blocksize, GFP_KERNEL);
2410 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2411 		bh = ext4_read_block_bitmap(sb, group);
2412 		BUG_ON(bh == NULL);
2413 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2414 			sb->s_blocksize);
2415 		put_bh(bh);
2416 	}
2417 #endif
2418 
2419 	return 0;
2420 
2421 exit_group_info:
2422 	/* If a meta_group_info table has been allocated, release it now */
2423 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2424 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2425 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2426 	}
2427 exit_meta_group_info:
2428 	return -ENOMEM;
2429 } /* ext4_mb_add_groupinfo */
2430 
2431 static int ext4_mb_init_backend(struct super_block *sb)
2432 {
2433 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2434 	ext4_group_t i;
2435 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2436 	int err;
2437 	struct ext4_group_desc *desc;
2438 	struct kmem_cache *cachep;
2439 
2440 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2441 	if (err)
2442 		return err;
2443 
2444 	sbi->s_buddy_cache = new_inode(sb);
2445 	if (sbi->s_buddy_cache == NULL) {
2446 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2447 		goto err_freesgi;
2448 	}
2449 	/* To avoid potentially colliding with an valid on-disk inode number,
2450 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2451 	 * not in the inode hash, so it should never be found by iget(), but
2452 	 * this will avoid confusion if it ever shows up during debugging. */
2453 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2454 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2455 	for (i = 0; i < ngroups; i++) {
2456 		desc = ext4_get_group_desc(sb, i, NULL);
2457 		if (desc == NULL) {
2458 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2459 			goto err_freebuddy;
2460 		}
2461 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2462 			goto err_freebuddy;
2463 	}
2464 
2465 	return 0;
2466 
2467 err_freebuddy:
2468 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2469 	while (i-- > 0)
2470 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2471 	i = sbi->s_group_info_size;
2472 	while (i-- > 0)
2473 		kfree(sbi->s_group_info[i]);
2474 	iput(sbi->s_buddy_cache);
2475 err_freesgi:
2476 	ext4_kvfree(sbi->s_group_info);
2477 	return -ENOMEM;
2478 }
2479 
2480 static void ext4_groupinfo_destroy_slabs(void)
2481 {
2482 	int i;
2483 
2484 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2485 		if (ext4_groupinfo_caches[i])
2486 			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2487 		ext4_groupinfo_caches[i] = NULL;
2488 	}
2489 }
2490 
2491 static int ext4_groupinfo_create_slab(size_t size)
2492 {
2493 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2494 	int slab_size;
2495 	int blocksize_bits = order_base_2(size);
2496 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2497 	struct kmem_cache *cachep;
2498 
2499 	if (cache_index >= NR_GRPINFO_CACHES)
2500 		return -EINVAL;
2501 
2502 	if (unlikely(cache_index < 0))
2503 		cache_index = 0;
2504 
2505 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2506 	if (ext4_groupinfo_caches[cache_index]) {
2507 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2508 		return 0;	/* Already created */
2509 	}
2510 
2511 	slab_size = offsetof(struct ext4_group_info,
2512 				bb_counters[blocksize_bits + 2]);
2513 
2514 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2515 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2516 					NULL);
2517 
2518 	ext4_groupinfo_caches[cache_index] = cachep;
2519 
2520 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2521 	if (!cachep) {
2522 		printk(KERN_EMERG
2523 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2524 		return -ENOMEM;
2525 	}
2526 
2527 	return 0;
2528 }
2529 
2530 int ext4_mb_init(struct super_block *sb)
2531 {
2532 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2533 	unsigned i, j;
2534 	unsigned offset;
2535 	unsigned max;
2536 	int ret;
2537 
2538 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2539 
2540 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2541 	if (sbi->s_mb_offsets == NULL) {
2542 		ret = -ENOMEM;
2543 		goto out;
2544 	}
2545 
2546 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2547 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2548 	if (sbi->s_mb_maxs == NULL) {
2549 		ret = -ENOMEM;
2550 		goto out;
2551 	}
2552 
2553 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2554 	if (ret < 0)
2555 		goto out;
2556 
2557 	/* order 0 is regular bitmap */
2558 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2559 	sbi->s_mb_offsets[0] = 0;
2560 
2561 	i = 1;
2562 	offset = 0;
2563 	max = sb->s_blocksize << 2;
2564 	do {
2565 		sbi->s_mb_offsets[i] = offset;
2566 		sbi->s_mb_maxs[i] = max;
2567 		offset += 1 << (sb->s_blocksize_bits - i);
2568 		max = max >> 1;
2569 		i++;
2570 	} while (i <= sb->s_blocksize_bits + 1);
2571 
2572 	spin_lock_init(&sbi->s_md_lock);
2573 	spin_lock_init(&sbi->s_bal_lock);
2574 
2575 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2576 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2577 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2578 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2579 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2580 	/*
2581 	 * The default group preallocation is 512, which for 4k block
2582 	 * sizes translates to 2 megabytes.  However for bigalloc file
2583 	 * systems, this is probably too big (i.e, if the cluster size
2584 	 * is 1 megabyte, then group preallocation size becomes half a
2585 	 * gigabyte!).  As a default, we will keep a two megabyte
2586 	 * group pralloc size for cluster sizes up to 64k, and after
2587 	 * that, we will force a minimum group preallocation size of
2588 	 * 32 clusters.  This translates to 8 megs when the cluster
2589 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2590 	 * which seems reasonable as a default.
2591 	 */
2592 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2593 				       sbi->s_cluster_bits, 32);
2594 	/*
2595 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2596 	 * to the lowest multiple of s_stripe which is bigger than
2597 	 * the s_mb_group_prealloc as determined above. We want
2598 	 * the preallocation size to be an exact multiple of the
2599 	 * RAID stripe size so that preallocations don't fragment
2600 	 * the stripes.
2601 	 */
2602 	if (sbi->s_stripe > 1) {
2603 		sbi->s_mb_group_prealloc = roundup(
2604 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2605 	}
2606 
2607 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2608 	if (sbi->s_locality_groups == NULL) {
2609 		ret = -ENOMEM;
2610 		goto out_free_groupinfo_slab;
2611 	}
2612 	for_each_possible_cpu(i) {
2613 		struct ext4_locality_group *lg;
2614 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2615 		mutex_init(&lg->lg_mutex);
2616 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2617 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2618 		spin_lock_init(&lg->lg_prealloc_lock);
2619 	}
2620 
2621 	/* init file for buddy data */
2622 	ret = ext4_mb_init_backend(sb);
2623 	if (ret != 0)
2624 		goto out_free_locality_groups;
2625 
2626 	if (sbi->s_proc)
2627 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2628 				 &ext4_mb_seq_groups_fops, sb);
2629 
2630 	return 0;
2631 
2632 out_free_locality_groups:
2633 	free_percpu(sbi->s_locality_groups);
2634 	sbi->s_locality_groups = NULL;
2635 out_free_groupinfo_slab:
2636 	ext4_groupinfo_destroy_slabs();
2637 out:
2638 	kfree(sbi->s_mb_offsets);
2639 	sbi->s_mb_offsets = NULL;
2640 	kfree(sbi->s_mb_maxs);
2641 	sbi->s_mb_maxs = NULL;
2642 	return ret;
2643 }
2644 
2645 /* need to called with the ext4 group lock held */
2646 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2647 {
2648 	struct ext4_prealloc_space *pa;
2649 	struct list_head *cur, *tmp;
2650 	int count = 0;
2651 
2652 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2653 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2654 		list_del(&pa->pa_group_list);
2655 		count++;
2656 		kmem_cache_free(ext4_pspace_cachep, pa);
2657 	}
2658 	if (count)
2659 		mb_debug(1, "mballoc: %u PAs left\n", count);
2660 
2661 }
2662 
2663 int ext4_mb_release(struct super_block *sb)
2664 {
2665 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2666 	ext4_group_t i;
2667 	int num_meta_group_infos;
2668 	struct ext4_group_info *grinfo;
2669 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2670 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2671 
2672 	if (sbi->s_proc)
2673 		remove_proc_entry("mb_groups", sbi->s_proc);
2674 
2675 	if (sbi->s_group_info) {
2676 		for (i = 0; i < ngroups; i++) {
2677 			grinfo = ext4_get_group_info(sb, i);
2678 #ifdef DOUBLE_CHECK
2679 			kfree(grinfo->bb_bitmap);
2680 #endif
2681 			ext4_lock_group(sb, i);
2682 			ext4_mb_cleanup_pa(grinfo);
2683 			ext4_unlock_group(sb, i);
2684 			kmem_cache_free(cachep, grinfo);
2685 		}
2686 		num_meta_group_infos = (ngroups +
2687 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2688 			EXT4_DESC_PER_BLOCK_BITS(sb);
2689 		for (i = 0; i < num_meta_group_infos; i++)
2690 			kfree(sbi->s_group_info[i]);
2691 		ext4_kvfree(sbi->s_group_info);
2692 	}
2693 	kfree(sbi->s_mb_offsets);
2694 	kfree(sbi->s_mb_maxs);
2695 	if (sbi->s_buddy_cache)
2696 		iput(sbi->s_buddy_cache);
2697 	if (sbi->s_mb_stats) {
2698 		ext4_msg(sb, KERN_INFO,
2699 		       "mballoc: %u blocks %u reqs (%u success)",
2700 				atomic_read(&sbi->s_bal_allocated),
2701 				atomic_read(&sbi->s_bal_reqs),
2702 				atomic_read(&sbi->s_bal_success));
2703 		ext4_msg(sb, KERN_INFO,
2704 		      "mballoc: %u extents scanned, %u goal hits, "
2705 				"%u 2^N hits, %u breaks, %u lost",
2706 				atomic_read(&sbi->s_bal_ex_scanned),
2707 				atomic_read(&sbi->s_bal_goals),
2708 				atomic_read(&sbi->s_bal_2orders),
2709 				atomic_read(&sbi->s_bal_breaks),
2710 				atomic_read(&sbi->s_mb_lost_chunks));
2711 		ext4_msg(sb, KERN_INFO,
2712 		       "mballoc: %lu generated and it took %Lu",
2713 				sbi->s_mb_buddies_generated,
2714 				sbi->s_mb_generation_time);
2715 		ext4_msg(sb, KERN_INFO,
2716 		       "mballoc: %u preallocated, %u discarded",
2717 				atomic_read(&sbi->s_mb_preallocated),
2718 				atomic_read(&sbi->s_mb_discarded));
2719 	}
2720 
2721 	free_percpu(sbi->s_locality_groups);
2722 
2723 	return 0;
2724 }
2725 
2726 static inline int ext4_issue_discard(struct super_block *sb,
2727 		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2728 {
2729 	ext4_fsblk_t discard_block;
2730 
2731 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2732 			 ext4_group_first_block_no(sb, block_group));
2733 	count = EXT4_C2B(EXT4_SB(sb), count);
2734 	trace_ext4_discard_blocks(sb,
2735 			(unsigned long long) discard_block, count);
2736 	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2737 }
2738 
2739 /*
2740  * This function is called by the jbd2 layer once the commit has finished,
2741  * so we know we can free the blocks that were released with that commit.
2742  */
2743 static void ext4_free_data_callback(struct super_block *sb,
2744 				    struct ext4_journal_cb_entry *jce,
2745 				    int rc)
2746 {
2747 	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2748 	struct ext4_buddy e4b;
2749 	struct ext4_group_info *db;
2750 	int err, count = 0, count2 = 0;
2751 
2752 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2753 		 entry->efd_count, entry->efd_group, entry);
2754 
2755 	if (test_opt(sb, DISCARD)) {
2756 		err = ext4_issue_discard(sb, entry->efd_group,
2757 					 entry->efd_start_cluster,
2758 					 entry->efd_count);
2759 		if (err && err != -EOPNOTSUPP)
2760 			ext4_msg(sb, KERN_WARNING, "discard request in"
2761 				 " group:%d block:%d count:%d failed"
2762 				 " with %d", entry->efd_group,
2763 				 entry->efd_start_cluster,
2764 				 entry->efd_count, err);
2765 	}
2766 
2767 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2768 	/* we expect to find existing buddy because it's pinned */
2769 	BUG_ON(err != 0);
2770 
2771 
2772 	db = e4b.bd_info;
2773 	/* there are blocks to put in buddy to make them really free */
2774 	count += entry->efd_count;
2775 	count2++;
2776 	ext4_lock_group(sb, entry->efd_group);
2777 	/* Take it out of per group rb tree */
2778 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2779 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2780 
2781 	/*
2782 	 * Clear the trimmed flag for the group so that the next
2783 	 * ext4_trim_fs can trim it.
2784 	 * If the volume is mounted with -o discard, online discard
2785 	 * is supported and the free blocks will be trimmed online.
2786 	 */
2787 	if (!test_opt(sb, DISCARD))
2788 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2789 
2790 	if (!db->bb_free_root.rb_node) {
2791 		/* No more items in the per group rb tree
2792 		 * balance refcounts from ext4_mb_free_metadata()
2793 		 */
2794 		page_cache_release(e4b.bd_buddy_page);
2795 		page_cache_release(e4b.bd_bitmap_page);
2796 	}
2797 	ext4_unlock_group(sb, entry->efd_group);
2798 	kmem_cache_free(ext4_free_data_cachep, entry);
2799 	ext4_mb_unload_buddy(&e4b);
2800 
2801 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2802 }
2803 
2804 int __init ext4_init_mballoc(void)
2805 {
2806 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2807 					SLAB_RECLAIM_ACCOUNT);
2808 	if (ext4_pspace_cachep == NULL)
2809 		return -ENOMEM;
2810 
2811 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2812 				    SLAB_RECLAIM_ACCOUNT);
2813 	if (ext4_ac_cachep == NULL) {
2814 		kmem_cache_destroy(ext4_pspace_cachep);
2815 		return -ENOMEM;
2816 	}
2817 
2818 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2819 					   SLAB_RECLAIM_ACCOUNT);
2820 	if (ext4_free_data_cachep == NULL) {
2821 		kmem_cache_destroy(ext4_pspace_cachep);
2822 		kmem_cache_destroy(ext4_ac_cachep);
2823 		return -ENOMEM;
2824 	}
2825 	return 0;
2826 }
2827 
2828 void ext4_exit_mballoc(void)
2829 {
2830 	/*
2831 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2832 	 * before destroying the slab cache.
2833 	 */
2834 	rcu_barrier();
2835 	kmem_cache_destroy(ext4_pspace_cachep);
2836 	kmem_cache_destroy(ext4_ac_cachep);
2837 	kmem_cache_destroy(ext4_free_data_cachep);
2838 	ext4_groupinfo_destroy_slabs();
2839 }
2840 
2841 
2842 /*
2843  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2844  * Returns 0 if success or error code
2845  */
2846 static noinline_for_stack int
2847 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2848 				handle_t *handle, unsigned int reserv_clstrs)
2849 {
2850 	struct buffer_head *bitmap_bh = NULL;
2851 	struct ext4_group_desc *gdp;
2852 	struct buffer_head *gdp_bh;
2853 	struct ext4_sb_info *sbi;
2854 	struct super_block *sb;
2855 	ext4_fsblk_t block;
2856 	int err, len;
2857 
2858 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2859 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2860 
2861 	sb = ac->ac_sb;
2862 	sbi = EXT4_SB(sb);
2863 
2864 	err = -EIO;
2865 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2866 	if (!bitmap_bh)
2867 		goto out_err;
2868 
2869 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2870 	if (err)
2871 		goto out_err;
2872 
2873 	err = -EIO;
2874 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2875 	if (!gdp)
2876 		goto out_err;
2877 
2878 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2879 			ext4_free_group_clusters(sb, gdp));
2880 
2881 	err = ext4_journal_get_write_access(handle, gdp_bh);
2882 	if (err)
2883 		goto out_err;
2884 
2885 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2886 
2887 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2888 	if (!ext4_data_block_valid(sbi, block, len)) {
2889 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2890 			   "fs metadata", block, block+len);
2891 		/* File system mounted not to panic on error
2892 		 * Fix the bitmap and repeat the block allocation
2893 		 * We leak some of the blocks here.
2894 		 */
2895 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2896 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2897 			      ac->ac_b_ex.fe_len);
2898 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2899 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2900 		if (!err)
2901 			err = -EAGAIN;
2902 		goto out_err;
2903 	}
2904 
2905 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2906 #ifdef AGGRESSIVE_CHECK
2907 	{
2908 		int i;
2909 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2910 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2911 						bitmap_bh->b_data));
2912 		}
2913 	}
2914 #endif
2915 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2916 		      ac->ac_b_ex.fe_len);
2917 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2918 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2919 		ext4_free_group_clusters_set(sb, gdp,
2920 					     ext4_free_clusters_after_init(sb,
2921 						ac->ac_b_ex.fe_group, gdp));
2922 	}
2923 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2924 	ext4_free_group_clusters_set(sb, gdp, len);
2925 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2926 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2927 
2928 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2929 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2930 	/*
2931 	 * Now reduce the dirty block count also. Should not go negative
2932 	 */
2933 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2934 		/* release all the reserved blocks if non delalloc */
2935 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2936 				   reserv_clstrs);
2937 
2938 	if (sbi->s_log_groups_per_flex) {
2939 		ext4_group_t flex_group = ext4_flex_group(sbi,
2940 							  ac->ac_b_ex.fe_group);
2941 		atomic64_sub(ac->ac_b_ex.fe_len,
2942 			     &sbi->s_flex_groups[flex_group].free_clusters);
2943 	}
2944 
2945 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2946 	if (err)
2947 		goto out_err;
2948 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2949 
2950 out_err:
2951 	brelse(bitmap_bh);
2952 	return err;
2953 }
2954 
2955 /*
2956  * here we normalize request for locality group
2957  * Group request are normalized to s_mb_group_prealloc, which goes to
2958  * s_strip if we set the same via mount option.
2959  * s_mb_group_prealloc can be configured via
2960  * /sys/fs/ext4/<partition>/mb_group_prealloc
2961  *
2962  * XXX: should we try to preallocate more than the group has now?
2963  */
2964 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2965 {
2966 	struct super_block *sb = ac->ac_sb;
2967 	struct ext4_locality_group *lg = ac->ac_lg;
2968 
2969 	BUG_ON(lg == NULL);
2970 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2971 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2972 		current->pid, ac->ac_g_ex.fe_len);
2973 }
2974 
2975 /*
2976  * Normalization means making request better in terms of
2977  * size and alignment
2978  */
2979 static noinline_for_stack void
2980 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2981 				struct ext4_allocation_request *ar)
2982 {
2983 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2984 	int bsbits, max;
2985 	ext4_lblk_t end;
2986 	loff_t size, start_off;
2987 	loff_t orig_size __maybe_unused;
2988 	ext4_lblk_t start;
2989 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2990 	struct ext4_prealloc_space *pa;
2991 
2992 	/* do normalize only data requests, metadata requests
2993 	   do not need preallocation */
2994 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2995 		return;
2996 
2997 	/* sometime caller may want exact blocks */
2998 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2999 		return;
3000 
3001 	/* caller may indicate that preallocation isn't
3002 	 * required (it's a tail, for example) */
3003 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3004 		return;
3005 
3006 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3007 		ext4_mb_normalize_group_request(ac);
3008 		return ;
3009 	}
3010 
3011 	bsbits = ac->ac_sb->s_blocksize_bits;
3012 
3013 	/* first, let's learn actual file size
3014 	 * given current request is allocated */
3015 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3016 	size = size << bsbits;
3017 	if (size < i_size_read(ac->ac_inode))
3018 		size = i_size_read(ac->ac_inode);
3019 	orig_size = size;
3020 
3021 	/* max size of free chunks */
3022 	max = 2 << bsbits;
3023 
3024 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3025 		(req <= (size) || max <= (chunk_size))
3026 
3027 	/* first, try to predict filesize */
3028 	/* XXX: should this table be tunable? */
3029 	start_off = 0;
3030 	if (size <= 16 * 1024) {
3031 		size = 16 * 1024;
3032 	} else if (size <= 32 * 1024) {
3033 		size = 32 * 1024;
3034 	} else if (size <= 64 * 1024) {
3035 		size = 64 * 1024;
3036 	} else if (size <= 128 * 1024) {
3037 		size = 128 * 1024;
3038 	} else if (size <= 256 * 1024) {
3039 		size = 256 * 1024;
3040 	} else if (size <= 512 * 1024) {
3041 		size = 512 * 1024;
3042 	} else if (size <= 1024 * 1024) {
3043 		size = 1024 * 1024;
3044 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3045 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3046 						(21 - bsbits)) << 21;
3047 		size = 2 * 1024 * 1024;
3048 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3049 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3050 							(22 - bsbits)) << 22;
3051 		size = 4 * 1024 * 1024;
3052 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3053 					(8<<20)>>bsbits, max, 8 * 1024)) {
3054 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3055 							(23 - bsbits)) << 23;
3056 		size = 8 * 1024 * 1024;
3057 	} else {
3058 		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3059 		size	  = ac->ac_o_ex.fe_len << bsbits;
3060 	}
3061 	size = size >> bsbits;
3062 	start = start_off >> bsbits;
3063 
3064 	/* don't cover already allocated blocks in selected range */
3065 	if (ar->pleft && start <= ar->lleft) {
3066 		size -= ar->lleft + 1 - start;
3067 		start = ar->lleft + 1;
3068 	}
3069 	if (ar->pright && start + size - 1 >= ar->lright)
3070 		size -= start + size - ar->lright;
3071 
3072 	end = start + size;
3073 
3074 	/* check we don't cross already preallocated blocks */
3075 	rcu_read_lock();
3076 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3077 		ext4_lblk_t pa_end;
3078 
3079 		if (pa->pa_deleted)
3080 			continue;
3081 		spin_lock(&pa->pa_lock);
3082 		if (pa->pa_deleted) {
3083 			spin_unlock(&pa->pa_lock);
3084 			continue;
3085 		}
3086 
3087 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3088 						  pa->pa_len);
3089 
3090 		/* PA must not overlap original request */
3091 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3092 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3093 
3094 		/* skip PAs this normalized request doesn't overlap with */
3095 		if (pa->pa_lstart >= end || pa_end <= start) {
3096 			spin_unlock(&pa->pa_lock);
3097 			continue;
3098 		}
3099 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3100 
3101 		/* adjust start or end to be adjacent to this pa */
3102 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3103 			BUG_ON(pa_end < start);
3104 			start = pa_end;
3105 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3106 			BUG_ON(pa->pa_lstart > end);
3107 			end = pa->pa_lstart;
3108 		}
3109 		spin_unlock(&pa->pa_lock);
3110 	}
3111 	rcu_read_unlock();
3112 	size = end - start;
3113 
3114 	/* XXX: extra loop to check we really don't overlap preallocations */
3115 	rcu_read_lock();
3116 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3117 		ext4_lblk_t pa_end;
3118 
3119 		spin_lock(&pa->pa_lock);
3120 		if (pa->pa_deleted == 0) {
3121 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3122 							  pa->pa_len);
3123 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3124 		}
3125 		spin_unlock(&pa->pa_lock);
3126 	}
3127 	rcu_read_unlock();
3128 
3129 	if (start + size <= ac->ac_o_ex.fe_logical &&
3130 			start > ac->ac_o_ex.fe_logical) {
3131 		ext4_msg(ac->ac_sb, KERN_ERR,
3132 			 "start %lu, size %lu, fe_logical %lu",
3133 			 (unsigned long) start, (unsigned long) size,
3134 			 (unsigned long) ac->ac_o_ex.fe_logical);
3135 	}
3136 	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3137 			start > ac->ac_o_ex.fe_logical);
3138 	BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3139 
3140 	/* now prepare goal request */
3141 
3142 	/* XXX: is it better to align blocks WRT to logical
3143 	 * placement or satisfy big request as is */
3144 	ac->ac_g_ex.fe_logical = start;
3145 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3146 
3147 	/* define goal start in order to merge */
3148 	if (ar->pright && (ar->lright == (start + size))) {
3149 		/* merge to the right */
3150 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3151 						&ac->ac_f_ex.fe_group,
3152 						&ac->ac_f_ex.fe_start);
3153 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3154 	}
3155 	if (ar->pleft && (ar->lleft + 1 == start)) {
3156 		/* merge to the left */
3157 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3158 						&ac->ac_f_ex.fe_group,
3159 						&ac->ac_f_ex.fe_start);
3160 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3161 	}
3162 
3163 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3164 		(unsigned) orig_size, (unsigned) start);
3165 }
3166 
3167 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3168 {
3169 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3170 
3171 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3172 		atomic_inc(&sbi->s_bal_reqs);
3173 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3174 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3175 			atomic_inc(&sbi->s_bal_success);
3176 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3177 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3178 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3179 			atomic_inc(&sbi->s_bal_goals);
3180 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3181 			atomic_inc(&sbi->s_bal_breaks);
3182 	}
3183 
3184 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3185 		trace_ext4_mballoc_alloc(ac);
3186 	else
3187 		trace_ext4_mballoc_prealloc(ac);
3188 }
3189 
3190 /*
3191  * Called on failure; free up any blocks from the inode PA for this
3192  * context.  We don't need this for MB_GROUP_PA because we only change
3193  * pa_free in ext4_mb_release_context(), but on failure, we've already
3194  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3195  */
3196 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3197 {
3198 	struct ext4_prealloc_space *pa = ac->ac_pa;
3199 
3200 	if (pa && pa->pa_type == MB_INODE_PA)
3201 		pa->pa_free += ac->ac_b_ex.fe_len;
3202 }
3203 
3204 /*
3205  * use blocks preallocated to inode
3206  */
3207 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3208 				struct ext4_prealloc_space *pa)
3209 {
3210 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3211 	ext4_fsblk_t start;
3212 	ext4_fsblk_t end;
3213 	int len;
3214 
3215 	/* found preallocated blocks, use them */
3216 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3217 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3218 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3219 	len = EXT4_NUM_B2C(sbi, end - start);
3220 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3221 					&ac->ac_b_ex.fe_start);
3222 	ac->ac_b_ex.fe_len = len;
3223 	ac->ac_status = AC_STATUS_FOUND;
3224 	ac->ac_pa = pa;
3225 
3226 	BUG_ON(start < pa->pa_pstart);
3227 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3228 	BUG_ON(pa->pa_free < len);
3229 	pa->pa_free -= len;
3230 
3231 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3232 }
3233 
3234 /*
3235  * use blocks preallocated to locality group
3236  */
3237 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3238 				struct ext4_prealloc_space *pa)
3239 {
3240 	unsigned int len = ac->ac_o_ex.fe_len;
3241 
3242 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3243 					&ac->ac_b_ex.fe_group,
3244 					&ac->ac_b_ex.fe_start);
3245 	ac->ac_b_ex.fe_len = len;
3246 	ac->ac_status = AC_STATUS_FOUND;
3247 	ac->ac_pa = pa;
3248 
3249 	/* we don't correct pa_pstart or pa_plen here to avoid
3250 	 * possible race when the group is being loaded concurrently
3251 	 * instead we correct pa later, after blocks are marked
3252 	 * in on-disk bitmap -- see ext4_mb_release_context()
3253 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3254 	 */
3255 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3256 }
3257 
3258 /*
3259  * Return the prealloc space that have minimal distance
3260  * from the goal block. @cpa is the prealloc
3261  * space that is having currently known minimal distance
3262  * from the goal block.
3263  */
3264 static struct ext4_prealloc_space *
3265 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3266 			struct ext4_prealloc_space *pa,
3267 			struct ext4_prealloc_space *cpa)
3268 {
3269 	ext4_fsblk_t cur_distance, new_distance;
3270 
3271 	if (cpa == NULL) {
3272 		atomic_inc(&pa->pa_count);
3273 		return pa;
3274 	}
3275 	cur_distance = abs(goal_block - cpa->pa_pstart);
3276 	new_distance = abs(goal_block - pa->pa_pstart);
3277 
3278 	if (cur_distance <= new_distance)
3279 		return cpa;
3280 
3281 	/* drop the previous reference */
3282 	atomic_dec(&cpa->pa_count);
3283 	atomic_inc(&pa->pa_count);
3284 	return pa;
3285 }
3286 
3287 /*
3288  * search goal blocks in preallocated space
3289  */
3290 static noinline_for_stack int
3291 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3292 {
3293 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3294 	int order, i;
3295 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3296 	struct ext4_locality_group *lg;
3297 	struct ext4_prealloc_space *pa, *cpa = NULL;
3298 	ext4_fsblk_t goal_block;
3299 
3300 	/* only data can be preallocated */
3301 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3302 		return 0;
3303 
3304 	/* first, try per-file preallocation */
3305 	rcu_read_lock();
3306 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3307 
3308 		/* all fields in this condition don't change,
3309 		 * so we can skip locking for them */
3310 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3311 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3312 					       EXT4_C2B(sbi, pa->pa_len)))
3313 			continue;
3314 
3315 		/* non-extent files can't have physical blocks past 2^32 */
3316 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3317 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3318 		     EXT4_MAX_BLOCK_FILE_PHYS))
3319 			continue;
3320 
3321 		/* found preallocated blocks, use them */
3322 		spin_lock(&pa->pa_lock);
3323 		if (pa->pa_deleted == 0 && pa->pa_free) {
3324 			atomic_inc(&pa->pa_count);
3325 			ext4_mb_use_inode_pa(ac, pa);
3326 			spin_unlock(&pa->pa_lock);
3327 			ac->ac_criteria = 10;
3328 			rcu_read_unlock();
3329 			return 1;
3330 		}
3331 		spin_unlock(&pa->pa_lock);
3332 	}
3333 	rcu_read_unlock();
3334 
3335 	/* can we use group allocation? */
3336 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3337 		return 0;
3338 
3339 	/* inode may have no locality group for some reason */
3340 	lg = ac->ac_lg;
3341 	if (lg == NULL)
3342 		return 0;
3343 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3344 	if (order > PREALLOC_TB_SIZE - 1)
3345 		/* The max size of hash table is PREALLOC_TB_SIZE */
3346 		order = PREALLOC_TB_SIZE - 1;
3347 
3348 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3349 	/*
3350 	 * search for the prealloc space that is having
3351 	 * minimal distance from the goal block.
3352 	 */
3353 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3354 		rcu_read_lock();
3355 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3356 					pa_inode_list) {
3357 			spin_lock(&pa->pa_lock);
3358 			if (pa->pa_deleted == 0 &&
3359 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3360 
3361 				cpa = ext4_mb_check_group_pa(goal_block,
3362 								pa, cpa);
3363 			}
3364 			spin_unlock(&pa->pa_lock);
3365 		}
3366 		rcu_read_unlock();
3367 	}
3368 	if (cpa) {
3369 		ext4_mb_use_group_pa(ac, cpa);
3370 		ac->ac_criteria = 20;
3371 		return 1;
3372 	}
3373 	return 0;
3374 }
3375 
3376 /*
3377  * the function goes through all block freed in the group
3378  * but not yet committed and marks them used in in-core bitmap.
3379  * buddy must be generated from this bitmap
3380  * Need to be called with the ext4 group lock held
3381  */
3382 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3383 						ext4_group_t group)
3384 {
3385 	struct rb_node *n;
3386 	struct ext4_group_info *grp;
3387 	struct ext4_free_data *entry;
3388 
3389 	grp = ext4_get_group_info(sb, group);
3390 	n = rb_first(&(grp->bb_free_root));
3391 
3392 	while (n) {
3393 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3394 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3395 		n = rb_next(n);
3396 	}
3397 	return;
3398 }
3399 
3400 /*
3401  * the function goes through all preallocation in this group and marks them
3402  * used in in-core bitmap. buddy must be generated from this bitmap
3403  * Need to be called with ext4 group lock held
3404  */
3405 static noinline_for_stack
3406 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3407 					ext4_group_t group)
3408 {
3409 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3410 	struct ext4_prealloc_space *pa;
3411 	struct list_head *cur;
3412 	ext4_group_t groupnr;
3413 	ext4_grpblk_t start;
3414 	int preallocated = 0;
3415 	int len;
3416 
3417 	/* all form of preallocation discards first load group,
3418 	 * so the only competing code is preallocation use.
3419 	 * we don't need any locking here
3420 	 * notice we do NOT ignore preallocations with pa_deleted
3421 	 * otherwise we could leave used blocks available for
3422 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3423 	 * is dropping preallocation
3424 	 */
3425 	list_for_each(cur, &grp->bb_prealloc_list) {
3426 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3427 		spin_lock(&pa->pa_lock);
3428 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3429 					     &groupnr, &start);
3430 		len = pa->pa_len;
3431 		spin_unlock(&pa->pa_lock);
3432 		if (unlikely(len == 0))
3433 			continue;
3434 		BUG_ON(groupnr != group);
3435 		ext4_set_bits(bitmap, start, len);
3436 		preallocated += len;
3437 	}
3438 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3439 }
3440 
3441 static void ext4_mb_pa_callback(struct rcu_head *head)
3442 {
3443 	struct ext4_prealloc_space *pa;
3444 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3445 	kmem_cache_free(ext4_pspace_cachep, pa);
3446 }
3447 
3448 /*
3449  * drops a reference to preallocated space descriptor
3450  * if this was the last reference and the space is consumed
3451  */
3452 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3453 			struct super_block *sb, struct ext4_prealloc_space *pa)
3454 {
3455 	ext4_group_t grp;
3456 	ext4_fsblk_t grp_blk;
3457 
3458 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3459 		return;
3460 
3461 	/* in this short window concurrent discard can set pa_deleted */
3462 	spin_lock(&pa->pa_lock);
3463 	if (pa->pa_deleted == 1) {
3464 		spin_unlock(&pa->pa_lock);
3465 		return;
3466 	}
3467 
3468 	pa->pa_deleted = 1;
3469 	spin_unlock(&pa->pa_lock);
3470 
3471 	grp_blk = pa->pa_pstart;
3472 	/*
3473 	 * If doing group-based preallocation, pa_pstart may be in the
3474 	 * next group when pa is used up
3475 	 */
3476 	if (pa->pa_type == MB_GROUP_PA)
3477 		grp_blk--;
3478 
3479 	grp = ext4_get_group_number(sb, grp_blk);
3480 
3481 	/*
3482 	 * possible race:
3483 	 *
3484 	 *  P1 (buddy init)			P2 (regular allocation)
3485 	 *					find block B in PA
3486 	 *  copy on-disk bitmap to buddy
3487 	 *  					mark B in on-disk bitmap
3488 	 *					drop PA from group
3489 	 *  mark all PAs in buddy
3490 	 *
3491 	 * thus, P1 initializes buddy with B available. to prevent this
3492 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3493 	 * against that pair
3494 	 */
3495 	ext4_lock_group(sb, grp);
3496 	list_del(&pa->pa_group_list);
3497 	ext4_unlock_group(sb, grp);
3498 
3499 	spin_lock(pa->pa_obj_lock);
3500 	list_del_rcu(&pa->pa_inode_list);
3501 	spin_unlock(pa->pa_obj_lock);
3502 
3503 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3504 }
3505 
3506 /*
3507  * creates new preallocated space for given inode
3508  */
3509 static noinline_for_stack int
3510 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3511 {
3512 	struct super_block *sb = ac->ac_sb;
3513 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3514 	struct ext4_prealloc_space *pa;
3515 	struct ext4_group_info *grp;
3516 	struct ext4_inode_info *ei;
3517 
3518 	/* preallocate only when found space is larger then requested */
3519 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3520 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3521 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3522 
3523 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3524 	if (pa == NULL)
3525 		return -ENOMEM;
3526 
3527 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3528 		int winl;
3529 		int wins;
3530 		int win;
3531 		int offs;
3532 
3533 		/* we can't allocate as much as normalizer wants.
3534 		 * so, found space must get proper lstart
3535 		 * to cover original request */
3536 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3537 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3538 
3539 		/* we're limited by original request in that
3540 		 * logical block must be covered any way
3541 		 * winl is window we can move our chunk within */
3542 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3543 
3544 		/* also, we should cover whole original request */
3545 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3546 
3547 		/* the smallest one defines real window */
3548 		win = min(winl, wins);
3549 
3550 		offs = ac->ac_o_ex.fe_logical %
3551 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3552 		if (offs && offs < win)
3553 			win = offs;
3554 
3555 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3556 			EXT4_NUM_B2C(sbi, win);
3557 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3558 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3559 	}
3560 
3561 	/* preallocation can change ac_b_ex, thus we store actually
3562 	 * allocated blocks for history */
3563 	ac->ac_f_ex = ac->ac_b_ex;
3564 
3565 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3566 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3567 	pa->pa_len = ac->ac_b_ex.fe_len;
3568 	pa->pa_free = pa->pa_len;
3569 	atomic_set(&pa->pa_count, 1);
3570 	spin_lock_init(&pa->pa_lock);
3571 	INIT_LIST_HEAD(&pa->pa_inode_list);
3572 	INIT_LIST_HEAD(&pa->pa_group_list);
3573 	pa->pa_deleted = 0;
3574 	pa->pa_type = MB_INODE_PA;
3575 
3576 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3577 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3578 	trace_ext4_mb_new_inode_pa(ac, pa);
3579 
3580 	ext4_mb_use_inode_pa(ac, pa);
3581 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3582 
3583 	ei = EXT4_I(ac->ac_inode);
3584 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3585 
3586 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3587 	pa->pa_inode = ac->ac_inode;
3588 
3589 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3590 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3591 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3592 
3593 	spin_lock(pa->pa_obj_lock);
3594 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3595 	spin_unlock(pa->pa_obj_lock);
3596 
3597 	return 0;
3598 }
3599 
3600 /*
3601  * creates new preallocated space for locality group inodes belongs to
3602  */
3603 static noinline_for_stack int
3604 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3605 {
3606 	struct super_block *sb = ac->ac_sb;
3607 	struct ext4_locality_group *lg;
3608 	struct ext4_prealloc_space *pa;
3609 	struct ext4_group_info *grp;
3610 
3611 	/* preallocate only when found space is larger then requested */
3612 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3613 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3614 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3615 
3616 	BUG_ON(ext4_pspace_cachep == NULL);
3617 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3618 	if (pa == NULL)
3619 		return -ENOMEM;
3620 
3621 	/* preallocation can change ac_b_ex, thus we store actually
3622 	 * allocated blocks for history */
3623 	ac->ac_f_ex = ac->ac_b_ex;
3624 
3625 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3626 	pa->pa_lstart = pa->pa_pstart;
3627 	pa->pa_len = ac->ac_b_ex.fe_len;
3628 	pa->pa_free = pa->pa_len;
3629 	atomic_set(&pa->pa_count, 1);
3630 	spin_lock_init(&pa->pa_lock);
3631 	INIT_LIST_HEAD(&pa->pa_inode_list);
3632 	INIT_LIST_HEAD(&pa->pa_group_list);
3633 	pa->pa_deleted = 0;
3634 	pa->pa_type = MB_GROUP_PA;
3635 
3636 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3637 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3638 	trace_ext4_mb_new_group_pa(ac, pa);
3639 
3640 	ext4_mb_use_group_pa(ac, pa);
3641 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3642 
3643 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3644 	lg = ac->ac_lg;
3645 	BUG_ON(lg == NULL);
3646 
3647 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3648 	pa->pa_inode = NULL;
3649 
3650 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3651 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3652 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3653 
3654 	/*
3655 	 * We will later add the new pa to the right bucket
3656 	 * after updating the pa_free in ext4_mb_release_context
3657 	 */
3658 	return 0;
3659 }
3660 
3661 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3662 {
3663 	int err;
3664 
3665 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3666 		err = ext4_mb_new_group_pa(ac);
3667 	else
3668 		err = ext4_mb_new_inode_pa(ac);
3669 	return err;
3670 }
3671 
3672 /*
3673  * finds all unused blocks in on-disk bitmap, frees them in
3674  * in-core bitmap and buddy.
3675  * @pa must be unlinked from inode and group lists, so that
3676  * nobody else can find/use it.
3677  * the caller MUST hold group/inode locks.
3678  * TODO: optimize the case when there are no in-core structures yet
3679  */
3680 static noinline_for_stack int
3681 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3682 			struct ext4_prealloc_space *pa)
3683 {
3684 	struct super_block *sb = e4b->bd_sb;
3685 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3686 	unsigned int end;
3687 	unsigned int next;
3688 	ext4_group_t group;
3689 	ext4_grpblk_t bit;
3690 	unsigned long long grp_blk_start;
3691 	int err = 0;
3692 	int free = 0;
3693 
3694 	BUG_ON(pa->pa_deleted == 0);
3695 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3696 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3697 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3698 	end = bit + pa->pa_len;
3699 
3700 	while (bit < end) {
3701 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3702 		if (bit >= end)
3703 			break;
3704 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3705 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3706 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3707 			 (unsigned) next - bit, (unsigned) group);
3708 		free += next - bit;
3709 
3710 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3711 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3712 						    EXT4_C2B(sbi, bit)),
3713 					       next - bit);
3714 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3715 		bit = next + 1;
3716 	}
3717 	if (free != pa->pa_free) {
3718 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3719 			 "pa %p: logic %lu, phys. %lu, len %lu",
3720 			 pa, (unsigned long) pa->pa_lstart,
3721 			 (unsigned long) pa->pa_pstart,
3722 			 (unsigned long) pa->pa_len);
3723 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3724 					free, pa->pa_free);
3725 		/*
3726 		 * pa is already deleted so we use the value obtained
3727 		 * from the bitmap and continue.
3728 		 */
3729 	}
3730 	atomic_add(free, &sbi->s_mb_discarded);
3731 
3732 	return err;
3733 }
3734 
3735 static noinline_for_stack int
3736 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3737 				struct ext4_prealloc_space *pa)
3738 {
3739 	struct super_block *sb = e4b->bd_sb;
3740 	ext4_group_t group;
3741 	ext4_grpblk_t bit;
3742 
3743 	trace_ext4_mb_release_group_pa(sb, pa);
3744 	BUG_ON(pa->pa_deleted == 0);
3745 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3746 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3747 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3748 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3749 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3750 
3751 	return 0;
3752 }
3753 
3754 /*
3755  * releases all preallocations in given group
3756  *
3757  * first, we need to decide discard policy:
3758  * - when do we discard
3759  *   1) ENOSPC
3760  * - how many do we discard
3761  *   1) how many requested
3762  */
3763 static noinline_for_stack int
3764 ext4_mb_discard_group_preallocations(struct super_block *sb,
3765 					ext4_group_t group, int needed)
3766 {
3767 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3768 	struct buffer_head *bitmap_bh = NULL;
3769 	struct ext4_prealloc_space *pa, *tmp;
3770 	struct list_head list;
3771 	struct ext4_buddy e4b;
3772 	int err;
3773 	int busy = 0;
3774 	int free = 0;
3775 
3776 	mb_debug(1, "discard preallocation for group %u\n", group);
3777 
3778 	if (list_empty(&grp->bb_prealloc_list))
3779 		return 0;
3780 
3781 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3782 	if (bitmap_bh == NULL) {
3783 		ext4_error(sb, "Error reading block bitmap for %u", group);
3784 		return 0;
3785 	}
3786 
3787 	err = ext4_mb_load_buddy(sb, group, &e4b);
3788 	if (err) {
3789 		ext4_error(sb, "Error loading buddy information for %u", group);
3790 		put_bh(bitmap_bh);
3791 		return 0;
3792 	}
3793 
3794 	if (needed == 0)
3795 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3796 
3797 	INIT_LIST_HEAD(&list);
3798 repeat:
3799 	ext4_lock_group(sb, group);
3800 	list_for_each_entry_safe(pa, tmp,
3801 				&grp->bb_prealloc_list, pa_group_list) {
3802 		spin_lock(&pa->pa_lock);
3803 		if (atomic_read(&pa->pa_count)) {
3804 			spin_unlock(&pa->pa_lock);
3805 			busy = 1;
3806 			continue;
3807 		}
3808 		if (pa->pa_deleted) {
3809 			spin_unlock(&pa->pa_lock);
3810 			continue;
3811 		}
3812 
3813 		/* seems this one can be freed ... */
3814 		pa->pa_deleted = 1;
3815 
3816 		/* we can trust pa_free ... */
3817 		free += pa->pa_free;
3818 
3819 		spin_unlock(&pa->pa_lock);
3820 
3821 		list_del(&pa->pa_group_list);
3822 		list_add(&pa->u.pa_tmp_list, &list);
3823 	}
3824 
3825 	/* if we still need more blocks and some PAs were used, try again */
3826 	if (free < needed && busy) {
3827 		busy = 0;
3828 		ext4_unlock_group(sb, group);
3829 		cond_resched();
3830 		goto repeat;
3831 	}
3832 
3833 	/* found anything to free? */
3834 	if (list_empty(&list)) {
3835 		BUG_ON(free != 0);
3836 		goto out;
3837 	}
3838 
3839 	/* now free all selected PAs */
3840 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3841 
3842 		/* remove from object (inode or locality group) */
3843 		spin_lock(pa->pa_obj_lock);
3844 		list_del_rcu(&pa->pa_inode_list);
3845 		spin_unlock(pa->pa_obj_lock);
3846 
3847 		if (pa->pa_type == MB_GROUP_PA)
3848 			ext4_mb_release_group_pa(&e4b, pa);
3849 		else
3850 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3851 
3852 		list_del(&pa->u.pa_tmp_list);
3853 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3854 	}
3855 
3856 out:
3857 	ext4_unlock_group(sb, group);
3858 	ext4_mb_unload_buddy(&e4b);
3859 	put_bh(bitmap_bh);
3860 	return free;
3861 }
3862 
3863 /*
3864  * releases all non-used preallocated blocks for given inode
3865  *
3866  * It's important to discard preallocations under i_data_sem
3867  * We don't want another block to be served from the prealloc
3868  * space when we are discarding the inode prealloc space.
3869  *
3870  * FIXME!! Make sure it is valid at all the call sites
3871  */
3872 void ext4_discard_preallocations(struct inode *inode)
3873 {
3874 	struct ext4_inode_info *ei = EXT4_I(inode);
3875 	struct super_block *sb = inode->i_sb;
3876 	struct buffer_head *bitmap_bh = NULL;
3877 	struct ext4_prealloc_space *pa, *tmp;
3878 	ext4_group_t group = 0;
3879 	struct list_head list;
3880 	struct ext4_buddy e4b;
3881 	int err;
3882 
3883 	if (!S_ISREG(inode->i_mode)) {
3884 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3885 		return;
3886 	}
3887 
3888 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3889 	trace_ext4_discard_preallocations(inode);
3890 
3891 	INIT_LIST_HEAD(&list);
3892 
3893 repeat:
3894 	/* first, collect all pa's in the inode */
3895 	spin_lock(&ei->i_prealloc_lock);
3896 	while (!list_empty(&ei->i_prealloc_list)) {
3897 		pa = list_entry(ei->i_prealloc_list.next,
3898 				struct ext4_prealloc_space, pa_inode_list);
3899 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3900 		spin_lock(&pa->pa_lock);
3901 		if (atomic_read(&pa->pa_count)) {
3902 			/* this shouldn't happen often - nobody should
3903 			 * use preallocation while we're discarding it */
3904 			spin_unlock(&pa->pa_lock);
3905 			spin_unlock(&ei->i_prealloc_lock);
3906 			ext4_msg(sb, KERN_ERR,
3907 				 "uh-oh! used pa while discarding");
3908 			WARN_ON(1);
3909 			schedule_timeout_uninterruptible(HZ);
3910 			goto repeat;
3911 
3912 		}
3913 		if (pa->pa_deleted == 0) {
3914 			pa->pa_deleted = 1;
3915 			spin_unlock(&pa->pa_lock);
3916 			list_del_rcu(&pa->pa_inode_list);
3917 			list_add(&pa->u.pa_tmp_list, &list);
3918 			continue;
3919 		}
3920 
3921 		/* someone is deleting pa right now */
3922 		spin_unlock(&pa->pa_lock);
3923 		spin_unlock(&ei->i_prealloc_lock);
3924 
3925 		/* we have to wait here because pa_deleted
3926 		 * doesn't mean pa is already unlinked from
3927 		 * the list. as we might be called from
3928 		 * ->clear_inode() the inode will get freed
3929 		 * and concurrent thread which is unlinking
3930 		 * pa from inode's list may access already
3931 		 * freed memory, bad-bad-bad */
3932 
3933 		/* XXX: if this happens too often, we can
3934 		 * add a flag to force wait only in case
3935 		 * of ->clear_inode(), but not in case of
3936 		 * regular truncate */
3937 		schedule_timeout_uninterruptible(HZ);
3938 		goto repeat;
3939 	}
3940 	spin_unlock(&ei->i_prealloc_lock);
3941 
3942 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3943 		BUG_ON(pa->pa_type != MB_INODE_PA);
3944 		group = ext4_get_group_number(sb, pa->pa_pstart);
3945 
3946 		err = ext4_mb_load_buddy(sb, group, &e4b);
3947 		if (err) {
3948 			ext4_error(sb, "Error loading buddy information for %u",
3949 					group);
3950 			continue;
3951 		}
3952 
3953 		bitmap_bh = ext4_read_block_bitmap(sb, group);
3954 		if (bitmap_bh == NULL) {
3955 			ext4_error(sb, "Error reading block bitmap for %u",
3956 					group);
3957 			ext4_mb_unload_buddy(&e4b);
3958 			continue;
3959 		}
3960 
3961 		ext4_lock_group(sb, group);
3962 		list_del(&pa->pa_group_list);
3963 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3964 		ext4_unlock_group(sb, group);
3965 
3966 		ext4_mb_unload_buddy(&e4b);
3967 		put_bh(bitmap_bh);
3968 
3969 		list_del(&pa->u.pa_tmp_list);
3970 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3971 	}
3972 }
3973 
3974 #ifdef CONFIG_EXT4_DEBUG
3975 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3976 {
3977 	struct super_block *sb = ac->ac_sb;
3978 	ext4_group_t ngroups, i;
3979 
3980 	if (!ext4_mballoc_debug ||
3981 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3982 		return;
3983 
3984 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
3985 			" Allocation context details:");
3986 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
3987 			ac->ac_status, ac->ac_flags);
3988 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
3989 		 	"goal %lu/%lu/%lu@%lu, "
3990 			"best %lu/%lu/%lu@%lu cr %d",
3991 			(unsigned long)ac->ac_o_ex.fe_group,
3992 			(unsigned long)ac->ac_o_ex.fe_start,
3993 			(unsigned long)ac->ac_o_ex.fe_len,
3994 			(unsigned long)ac->ac_o_ex.fe_logical,
3995 			(unsigned long)ac->ac_g_ex.fe_group,
3996 			(unsigned long)ac->ac_g_ex.fe_start,
3997 			(unsigned long)ac->ac_g_ex.fe_len,
3998 			(unsigned long)ac->ac_g_ex.fe_logical,
3999 			(unsigned long)ac->ac_b_ex.fe_group,
4000 			(unsigned long)ac->ac_b_ex.fe_start,
4001 			(unsigned long)ac->ac_b_ex.fe_len,
4002 			(unsigned long)ac->ac_b_ex.fe_logical,
4003 			(int)ac->ac_criteria);
4004 	ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
4005 		 ac->ac_ex_scanned, ac->ac_found);
4006 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4007 	ngroups = ext4_get_groups_count(sb);
4008 	for (i = 0; i < ngroups; i++) {
4009 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4010 		struct ext4_prealloc_space *pa;
4011 		ext4_grpblk_t start;
4012 		struct list_head *cur;
4013 		ext4_lock_group(sb, i);
4014 		list_for_each(cur, &grp->bb_prealloc_list) {
4015 			pa = list_entry(cur, struct ext4_prealloc_space,
4016 					pa_group_list);
4017 			spin_lock(&pa->pa_lock);
4018 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4019 						     NULL, &start);
4020 			spin_unlock(&pa->pa_lock);
4021 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4022 			       start, pa->pa_len);
4023 		}
4024 		ext4_unlock_group(sb, i);
4025 
4026 		if (grp->bb_free == 0)
4027 			continue;
4028 		printk(KERN_ERR "%u: %d/%d \n",
4029 		       i, grp->bb_free, grp->bb_fragments);
4030 	}
4031 	printk(KERN_ERR "\n");
4032 }
4033 #else
4034 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4035 {
4036 	return;
4037 }
4038 #endif
4039 
4040 /*
4041  * We use locality group preallocation for small size file. The size of the
4042  * file is determined by the current size or the resulting size after
4043  * allocation which ever is larger
4044  *
4045  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4046  */
4047 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4048 {
4049 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4050 	int bsbits = ac->ac_sb->s_blocksize_bits;
4051 	loff_t size, isize;
4052 
4053 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4054 		return;
4055 
4056 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4057 		return;
4058 
4059 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4060 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4061 		>> bsbits;
4062 
4063 	if ((size == isize) &&
4064 	    !ext4_fs_is_busy(sbi) &&
4065 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4066 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4067 		return;
4068 	}
4069 
4070 	if (sbi->s_mb_group_prealloc <= 0) {
4071 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4072 		return;
4073 	}
4074 
4075 	/* don't use group allocation for large files */
4076 	size = max(size, isize);
4077 	if (size > sbi->s_mb_stream_request) {
4078 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4079 		return;
4080 	}
4081 
4082 	BUG_ON(ac->ac_lg != NULL);
4083 	/*
4084 	 * locality group prealloc space are per cpu. The reason for having
4085 	 * per cpu locality group is to reduce the contention between block
4086 	 * request from multiple CPUs.
4087 	 */
4088 	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4089 
4090 	/* we're going to use group allocation */
4091 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4092 
4093 	/* serialize all allocations in the group */
4094 	mutex_lock(&ac->ac_lg->lg_mutex);
4095 }
4096 
4097 static noinline_for_stack int
4098 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4099 				struct ext4_allocation_request *ar)
4100 {
4101 	struct super_block *sb = ar->inode->i_sb;
4102 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4103 	struct ext4_super_block *es = sbi->s_es;
4104 	ext4_group_t group;
4105 	unsigned int len;
4106 	ext4_fsblk_t goal;
4107 	ext4_grpblk_t block;
4108 
4109 	/* we can't allocate > group size */
4110 	len = ar->len;
4111 
4112 	/* just a dirty hack to filter too big requests  */
4113 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4114 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4115 
4116 	/* start searching from the goal */
4117 	goal = ar->goal;
4118 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4119 			goal >= ext4_blocks_count(es))
4120 		goal = le32_to_cpu(es->s_first_data_block);
4121 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4122 
4123 	/* set up allocation goals */
4124 	ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1);
4125 	ac->ac_status = AC_STATUS_CONTINUE;
4126 	ac->ac_sb = sb;
4127 	ac->ac_inode = ar->inode;
4128 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4129 	ac->ac_o_ex.fe_group = group;
4130 	ac->ac_o_ex.fe_start = block;
4131 	ac->ac_o_ex.fe_len = len;
4132 	ac->ac_g_ex = ac->ac_o_ex;
4133 	ac->ac_flags = ar->flags;
4134 
4135 	/* we have to define context: we'll we work with a file or
4136 	 * locality group. this is a policy, actually */
4137 	ext4_mb_group_or_file(ac);
4138 
4139 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4140 			"left: %u/%u, right %u/%u to %swritable\n",
4141 			(unsigned) ar->len, (unsigned) ar->logical,
4142 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4143 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4144 			(unsigned) ar->lright, (unsigned) ar->pright,
4145 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4146 	return 0;
4147 
4148 }
4149 
4150 static noinline_for_stack void
4151 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4152 					struct ext4_locality_group *lg,
4153 					int order, int total_entries)
4154 {
4155 	ext4_group_t group = 0;
4156 	struct ext4_buddy e4b;
4157 	struct list_head discard_list;
4158 	struct ext4_prealloc_space *pa, *tmp;
4159 
4160 	mb_debug(1, "discard locality group preallocation\n");
4161 
4162 	INIT_LIST_HEAD(&discard_list);
4163 
4164 	spin_lock(&lg->lg_prealloc_lock);
4165 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4166 						pa_inode_list) {
4167 		spin_lock(&pa->pa_lock);
4168 		if (atomic_read(&pa->pa_count)) {
4169 			/*
4170 			 * This is the pa that we just used
4171 			 * for block allocation. So don't
4172 			 * free that
4173 			 */
4174 			spin_unlock(&pa->pa_lock);
4175 			continue;
4176 		}
4177 		if (pa->pa_deleted) {
4178 			spin_unlock(&pa->pa_lock);
4179 			continue;
4180 		}
4181 		/* only lg prealloc space */
4182 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4183 
4184 		/* seems this one can be freed ... */
4185 		pa->pa_deleted = 1;
4186 		spin_unlock(&pa->pa_lock);
4187 
4188 		list_del_rcu(&pa->pa_inode_list);
4189 		list_add(&pa->u.pa_tmp_list, &discard_list);
4190 
4191 		total_entries--;
4192 		if (total_entries <= 5) {
4193 			/*
4194 			 * we want to keep only 5 entries
4195 			 * allowing it to grow to 8. This
4196 			 * mak sure we don't call discard
4197 			 * soon for this list.
4198 			 */
4199 			break;
4200 		}
4201 	}
4202 	spin_unlock(&lg->lg_prealloc_lock);
4203 
4204 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4205 
4206 		group = ext4_get_group_number(sb, pa->pa_pstart);
4207 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4208 			ext4_error(sb, "Error loading buddy information for %u",
4209 					group);
4210 			continue;
4211 		}
4212 		ext4_lock_group(sb, group);
4213 		list_del(&pa->pa_group_list);
4214 		ext4_mb_release_group_pa(&e4b, pa);
4215 		ext4_unlock_group(sb, group);
4216 
4217 		ext4_mb_unload_buddy(&e4b);
4218 		list_del(&pa->u.pa_tmp_list);
4219 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4220 	}
4221 }
4222 
4223 /*
4224  * We have incremented pa_count. So it cannot be freed at this
4225  * point. Also we hold lg_mutex. So no parallel allocation is
4226  * possible from this lg. That means pa_free cannot be updated.
4227  *
4228  * A parallel ext4_mb_discard_group_preallocations is possible.
4229  * which can cause the lg_prealloc_list to be updated.
4230  */
4231 
4232 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4233 {
4234 	int order, added = 0, lg_prealloc_count = 1;
4235 	struct super_block *sb = ac->ac_sb;
4236 	struct ext4_locality_group *lg = ac->ac_lg;
4237 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4238 
4239 	order = fls(pa->pa_free) - 1;
4240 	if (order > PREALLOC_TB_SIZE - 1)
4241 		/* The max size of hash table is PREALLOC_TB_SIZE */
4242 		order = PREALLOC_TB_SIZE - 1;
4243 	/* Add the prealloc space to lg */
4244 	spin_lock(&lg->lg_prealloc_lock);
4245 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4246 						pa_inode_list) {
4247 		spin_lock(&tmp_pa->pa_lock);
4248 		if (tmp_pa->pa_deleted) {
4249 			spin_unlock(&tmp_pa->pa_lock);
4250 			continue;
4251 		}
4252 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4253 			/* Add to the tail of the previous entry */
4254 			list_add_tail_rcu(&pa->pa_inode_list,
4255 						&tmp_pa->pa_inode_list);
4256 			added = 1;
4257 			/*
4258 			 * we want to count the total
4259 			 * number of entries in the list
4260 			 */
4261 		}
4262 		spin_unlock(&tmp_pa->pa_lock);
4263 		lg_prealloc_count++;
4264 	}
4265 	if (!added)
4266 		list_add_tail_rcu(&pa->pa_inode_list,
4267 					&lg->lg_prealloc_list[order]);
4268 	spin_unlock(&lg->lg_prealloc_lock);
4269 
4270 	/* Now trim the list to be not more than 8 elements */
4271 	if (lg_prealloc_count > 8) {
4272 		ext4_mb_discard_lg_preallocations(sb, lg,
4273 						  order, lg_prealloc_count);
4274 		return;
4275 	}
4276 	return ;
4277 }
4278 
4279 /*
4280  * release all resource we used in allocation
4281  */
4282 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4283 {
4284 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4285 	struct ext4_prealloc_space *pa = ac->ac_pa;
4286 	if (pa) {
4287 		if (pa->pa_type == MB_GROUP_PA) {
4288 			/* see comment in ext4_mb_use_group_pa() */
4289 			spin_lock(&pa->pa_lock);
4290 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4291 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4292 			pa->pa_free -= ac->ac_b_ex.fe_len;
4293 			pa->pa_len -= ac->ac_b_ex.fe_len;
4294 			spin_unlock(&pa->pa_lock);
4295 		}
4296 	}
4297 	if (pa) {
4298 		/*
4299 		 * We want to add the pa to the right bucket.
4300 		 * Remove it from the list and while adding
4301 		 * make sure the list to which we are adding
4302 		 * doesn't grow big.
4303 		 */
4304 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4305 			spin_lock(pa->pa_obj_lock);
4306 			list_del_rcu(&pa->pa_inode_list);
4307 			spin_unlock(pa->pa_obj_lock);
4308 			ext4_mb_add_n_trim(ac);
4309 		}
4310 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4311 	}
4312 	if (ac->ac_bitmap_page)
4313 		page_cache_release(ac->ac_bitmap_page);
4314 	if (ac->ac_buddy_page)
4315 		page_cache_release(ac->ac_buddy_page);
4316 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4317 		mutex_unlock(&ac->ac_lg->lg_mutex);
4318 	ext4_mb_collect_stats(ac);
4319 	return 0;
4320 }
4321 
4322 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4323 {
4324 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4325 	int ret;
4326 	int freed = 0;
4327 
4328 	trace_ext4_mb_discard_preallocations(sb, needed);
4329 	for (i = 0; i < ngroups && needed > 0; i++) {
4330 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4331 		freed += ret;
4332 		needed -= ret;
4333 	}
4334 
4335 	return freed;
4336 }
4337 
4338 /*
4339  * Main entry point into mballoc to allocate blocks
4340  * it tries to use preallocation first, then falls back
4341  * to usual allocation
4342  */
4343 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4344 				struct ext4_allocation_request *ar, int *errp)
4345 {
4346 	int freed;
4347 	struct ext4_allocation_context *ac = NULL;
4348 	struct ext4_sb_info *sbi;
4349 	struct super_block *sb;
4350 	ext4_fsblk_t block = 0;
4351 	unsigned int inquota = 0;
4352 	unsigned int reserv_clstrs = 0;
4353 
4354 	might_sleep();
4355 	sb = ar->inode->i_sb;
4356 	sbi = EXT4_SB(sb);
4357 
4358 	trace_ext4_request_blocks(ar);
4359 
4360 	/* Allow to use superuser reservation for quota file */
4361 	if (IS_NOQUOTA(ar->inode))
4362 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4363 
4364 	/*
4365 	 * For delayed allocation, we could skip the ENOSPC and
4366 	 * EDQUOT check, as blocks and quotas have been already
4367 	 * reserved when data being copied into pagecache.
4368 	 */
4369 	if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4370 		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4371 	else {
4372 		/* Without delayed allocation we need to verify
4373 		 * there is enough free blocks to do block allocation
4374 		 * and verify allocation doesn't exceed the quota limits.
4375 		 */
4376 		while (ar->len &&
4377 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4378 
4379 			/* let others to free the space */
4380 			cond_resched();
4381 			ar->len = ar->len >> 1;
4382 		}
4383 		if (!ar->len) {
4384 			*errp = -ENOSPC;
4385 			return 0;
4386 		}
4387 		reserv_clstrs = ar->len;
4388 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4389 			dquot_alloc_block_nofail(ar->inode,
4390 						 EXT4_C2B(sbi, ar->len));
4391 		} else {
4392 			while (ar->len &&
4393 				dquot_alloc_block(ar->inode,
4394 						  EXT4_C2B(sbi, ar->len))) {
4395 
4396 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4397 				ar->len--;
4398 			}
4399 		}
4400 		inquota = ar->len;
4401 		if (ar->len == 0) {
4402 			*errp = -EDQUOT;
4403 			goto out;
4404 		}
4405 	}
4406 
4407 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4408 	if (!ac) {
4409 		ar->len = 0;
4410 		*errp = -ENOMEM;
4411 		goto out;
4412 	}
4413 
4414 	*errp = ext4_mb_initialize_context(ac, ar);
4415 	if (*errp) {
4416 		ar->len = 0;
4417 		goto out;
4418 	}
4419 
4420 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4421 	if (!ext4_mb_use_preallocated(ac)) {
4422 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4423 		ext4_mb_normalize_request(ac, ar);
4424 repeat:
4425 		/* allocate space in core */
4426 		*errp = ext4_mb_regular_allocator(ac);
4427 		if (*errp)
4428 			goto discard_and_exit;
4429 
4430 		/* as we've just preallocated more space than
4431 		 * user requested originally, we store allocated
4432 		 * space in a special descriptor */
4433 		if (ac->ac_status == AC_STATUS_FOUND &&
4434 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4435 			*errp = ext4_mb_new_preallocation(ac);
4436 		if (*errp) {
4437 		discard_and_exit:
4438 			ext4_discard_allocated_blocks(ac);
4439 			goto errout;
4440 		}
4441 	}
4442 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4443 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4444 		if (*errp == -EAGAIN) {
4445 			/*
4446 			 * drop the reference that we took
4447 			 * in ext4_mb_use_best_found
4448 			 */
4449 			ext4_mb_release_context(ac);
4450 			ac->ac_b_ex.fe_group = 0;
4451 			ac->ac_b_ex.fe_start = 0;
4452 			ac->ac_b_ex.fe_len = 0;
4453 			ac->ac_status = AC_STATUS_CONTINUE;
4454 			goto repeat;
4455 		} else if (*errp) {
4456 			ext4_discard_allocated_blocks(ac);
4457 			goto errout;
4458 		} else {
4459 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4460 			ar->len = ac->ac_b_ex.fe_len;
4461 		}
4462 	} else {
4463 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4464 		if (freed)
4465 			goto repeat;
4466 		*errp = -ENOSPC;
4467 	}
4468 
4469 errout:
4470 	if (*errp) {
4471 		ac->ac_b_ex.fe_len = 0;
4472 		ar->len = 0;
4473 		ext4_mb_show_ac(ac);
4474 	}
4475 	ext4_mb_release_context(ac);
4476 out:
4477 	if (ac)
4478 		kmem_cache_free(ext4_ac_cachep, ac);
4479 	if (inquota && ar->len < inquota)
4480 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4481 	if (!ar->len) {
4482 		if (!ext4_test_inode_state(ar->inode,
4483 					   EXT4_STATE_DELALLOC_RESERVED))
4484 			/* release all the reserved blocks if non delalloc */
4485 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4486 						reserv_clstrs);
4487 	}
4488 
4489 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4490 
4491 	return block;
4492 }
4493 
4494 /*
4495  * We can merge two free data extents only if the physical blocks
4496  * are contiguous, AND the extents were freed by the same transaction,
4497  * AND the blocks are associated with the same group.
4498  */
4499 static int can_merge(struct ext4_free_data *entry1,
4500 			struct ext4_free_data *entry2)
4501 {
4502 	if ((entry1->efd_tid == entry2->efd_tid) &&
4503 	    (entry1->efd_group == entry2->efd_group) &&
4504 	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4505 		return 1;
4506 	return 0;
4507 }
4508 
4509 static noinline_for_stack int
4510 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4511 		      struct ext4_free_data *new_entry)
4512 {
4513 	ext4_group_t group = e4b->bd_group;
4514 	ext4_grpblk_t cluster;
4515 	struct ext4_free_data *entry;
4516 	struct ext4_group_info *db = e4b->bd_info;
4517 	struct super_block *sb = e4b->bd_sb;
4518 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4519 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4520 	struct rb_node *parent = NULL, *new_node;
4521 
4522 	BUG_ON(!ext4_handle_valid(handle));
4523 	BUG_ON(e4b->bd_bitmap_page == NULL);
4524 	BUG_ON(e4b->bd_buddy_page == NULL);
4525 
4526 	new_node = &new_entry->efd_node;
4527 	cluster = new_entry->efd_start_cluster;
4528 
4529 	if (!*n) {
4530 		/* first free block exent. We need to
4531 		   protect buddy cache from being freed,
4532 		 * otherwise we'll refresh it from
4533 		 * on-disk bitmap and lose not-yet-available
4534 		 * blocks */
4535 		page_cache_get(e4b->bd_buddy_page);
4536 		page_cache_get(e4b->bd_bitmap_page);
4537 	}
4538 	while (*n) {
4539 		parent = *n;
4540 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4541 		if (cluster < entry->efd_start_cluster)
4542 			n = &(*n)->rb_left;
4543 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4544 			n = &(*n)->rb_right;
4545 		else {
4546 			ext4_grp_locked_error(sb, group, 0,
4547 				ext4_group_first_block_no(sb, group) +
4548 				EXT4_C2B(sbi, cluster),
4549 				"Block already on to-be-freed list");
4550 			return 0;
4551 		}
4552 	}
4553 
4554 	rb_link_node(new_node, parent, n);
4555 	rb_insert_color(new_node, &db->bb_free_root);
4556 
4557 	/* Now try to see the extent can be merged to left and right */
4558 	node = rb_prev(new_node);
4559 	if (node) {
4560 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4561 		if (can_merge(entry, new_entry) &&
4562 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4563 			new_entry->efd_start_cluster = entry->efd_start_cluster;
4564 			new_entry->efd_count += entry->efd_count;
4565 			rb_erase(node, &(db->bb_free_root));
4566 			kmem_cache_free(ext4_free_data_cachep, entry);
4567 		}
4568 	}
4569 
4570 	node = rb_next(new_node);
4571 	if (node) {
4572 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4573 		if (can_merge(new_entry, entry) &&
4574 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4575 			new_entry->efd_count += entry->efd_count;
4576 			rb_erase(node, &(db->bb_free_root));
4577 			kmem_cache_free(ext4_free_data_cachep, entry);
4578 		}
4579 	}
4580 	/* Add the extent to transaction's private list */
4581 	ext4_journal_callback_add(handle, ext4_free_data_callback,
4582 				  &new_entry->efd_jce);
4583 	return 0;
4584 }
4585 
4586 /**
4587  * ext4_free_blocks() -- Free given blocks and update quota
4588  * @handle:		handle for this transaction
4589  * @inode:		inode
4590  * @block:		start physical block to free
4591  * @count:		number of blocks to count
4592  * @flags:		flags used by ext4_free_blocks
4593  */
4594 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4595 		      struct buffer_head *bh, ext4_fsblk_t block,
4596 		      unsigned long count, int flags)
4597 {
4598 	struct buffer_head *bitmap_bh = NULL;
4599 	struct super_block *sb = inode->i_sb;
4600 	struct ext4_group_desc *gdp;
4601 	unsigned int overflow;
4602 	ext4_grpblk_t bit;
4603 	struct buffer_head *gd_bh;
4604 	ext4_group_t block_group;
4605 	struct ext4_sb_info *sbi;
4606 	struct ext4_inode_info *ei = EXT4_I(inode);
4607 	struct ext4_buddy e4b;
4608 	unsigned int count_clusters;
4609 	int err = 0;
4610 	int ret;
4611 
4612 	might_sleep();
4613 	if (bh) {
4614 		if (block)
4615 			BUG_ON(block != bh->b_blocknr);
4616 		else
4617 			block = bh->b_blocknr;
4618 	}
4619 
4620 	sbi = EXT4_SB(sb);
4621 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4622 	    !ext4_data_block_valid(sbi, block, count)) {
4623 		ext4_error(sb, "Freeing blocks not in datazone - "
4624 			   "block = %llu, count = %lu", block, count);
4625 		goto error_return;
4626 	}
4627 
4628 	ext4_debug("freeing block %llu\n", block);
4629 	trace_ext4_free_blocks(inode, block, count, flags);
4630 
4631 	if (flags & EXT4_FREE_BLOCKS_FORGET) {
4632 		struct buffer_head *tbh = bh;
4633 		int i;
4634 
4635 		BUG_ON(bh && (count > 1));
4636 
4637 		for (i = 0; i < count; i++) {
4638 			cond_resched();
4639 			if (!bh)
4640 				tbh = sb_find_get_block(inode->i_sb,
4641 							block + i);
4642 			if (!tbh)
4643 				continue;
4644 			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4645 				    inode, tbh, block + i);
4646 		}
4647 	}
4648 
4649 	/*
4650 	 * We need to make sure we don't reuse the freed block until
4651 	 * after the transaction is committed, which we can do by
4652 	 * treating the block as metadata, below.  We make an
4653 	 * exception if the inode is to be written in writeback mode
4654 	 * since writeback mode has weak data consistency guarantees.
4655 	 */
4656 	if (!ext4_should_writeback_data(inode))
4657 		flags |= EXT4_FREE_BLOCKS_METADATA;
4658 
4659 	/*
4660 	 * If the extent to be freed does not begin on a cluster
4661 	 * boundary, we need to deal with partial clusters at the
4662 	 * beginning and end of the extent.  Normally we will free
4663 	 * blocks at the beginning or the end unless we are explicitly
4664 	 * requested to avoid doing so.
4665 	 */
4666 	overflow = block & (sbi->s_cluster_ratio - 1);
4667 	if (overflow) {
4668 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4669 			overflow = sbi->s_cluster_ratio - overflow;
4670 			block += overflow;
4671 			if (count > overflow)
4672 				count -= overflow;
4673 			else
4674 				return;
4675 		} else {
4676 			block -= overflow;
4677 			count += overflow;
4678 		}
4679 	}
4680 	overflow = count & (sbi->s_cluster_ratio - 1);
4681 	if (overflow) {
4682 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4683 			if (count > overflow)
4684 				count -= overflow;
4685 			else
4686 				return;
4687 		} else
4688 			count += sbi->s_cluster_ratio - overflow;
4689 	}
4690 
4691 do_more:
4692 	overflow = 0;
4693 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4694 
4695 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4696 			ext4_get_group_info(sb, block_group))))
4697 		return;
4698 
4699 	/*
4700 	 * Check to see if we are freeing blocks across a group
4701 	 * boundary.
4702 	 */
4703 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4704 		overflow = EXT4_C2B(sbi, bit) + count -
4705 			EXT4_BLOCKS_PER_GROUP(sb);
4706 		count -= overflow;
4707 	}
4708 	count_clusters = EXT4_NUM_B2C(sbi, count);
4709 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4710 	if (!bitmap_bh) {
4711 		err = -EIO;
4712 		goto error_return;
4713 	}
4714 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4715 	if (!gdp) {
4716 		err = -EIO;
4717 		goto error_return;
4718 	}
4719 
4720 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4721 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4722 	    in_range(block, ext4_inode_table(sb, gdp),
4723 		     EXT4_SB(sb)->s_itb_per_group) ||
4724 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4725 		     EXT4_SB(sb)->s_itb_per_group)) {
4726 
4727 		ext4_error(sb, "Freeing blocks in system zone - "
4728 			   "Block = %llu, count = %lu", block, count);
4729 		/* err = 0. ext4_std_error should be a no op */
4730 		goto error_return;
4731 	}
4732 
4733 	BUFFER_TRACE(bitmap_bh, "getting write access");
4734 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4735 	if (err)
4736 		goto error_return;
4737 
4738 	/*
4739 	 * We are about to modify some metadata.  Call the journal APIs
4740 	 * to unshare ->b_data if a currently-committing transaction is
4741 	 * using it
4742 	 */
4743 	BUFFER_TRACE(gd_bh, "get_write_access");
4744 	err = ext4_journal_get_write_access(handle, gd_bh);
4745 	if (err)
4746 		goto error_return;
4747 #ifdef AGGRESSIVE_CHECK
4748 	{
4749 		int i;
4750 		for (i = 0; i < count_clusters; i++)
4751 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4752 	}
4753 #endif
4754 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4755 
4756 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4757 	if (err)
4758 		goto error_return;
4759 
4760 	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4761 		struct ext4_free_data *new_entry;
4762 		/*
4763 		 * blocks being freed are metadata. these blocks shouldn't
4764 		 * be used until this transaction is committed
4765 		 */
4766 	retry:
4767 		new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4768 		if (!new_entry) {
4769 			/*
4770 			 * We use a retry loop because
4771 			 * ext4_free_blocks() is not allowed to fail.
4772 			 */
4773 			cond_resched();
4774 			congestion_wait(BLK_RW_ASYNC, HZ/50);
4775 			goto retry;
4776 		}
4777 		new_entry->efd_start_cluster = bit;
4778 		new_entry->efd_group = block_group;
4779 		new_entry->efd_count = count_clusters;
4780 		new_entry->efd_tid = handle->h_transaction->t_tid;
4781 
4782 		ext4_lock_group(sb, block_group);
4783 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4784 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4785 	} else {
4786 		/* need to update group_info->bb_free and bitmap
4787 		 * with group lock held. generate_buddy look at
4788 		 * them with group lock_held
4789 		 */
4790 		if (test_opt(sb, DISCARD)) {
4791 			err = ext4_issue_discard(sb, block_group, bit, count);
4792 			if (err && err != -EOPNOTSUPP)
4793 				ext4_msg(sb, KERN_WARNING, "discard request in"
4794 					 " group:%d block:%d count:%lu failed"
4795 					 " with %d", block_group, bit, count,
4796 					 err);
4797 		} else
4798 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4799 
4800 		ext4_lock_group(sb, block_group);
4801 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4802 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4803 	}
4804 
4805 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4806 	ext4_free_group_clusters_set(sb, gdp, ret);
4807 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4808 	ext4_group_desc_csum_set(sb, block_group, gdp);
4809 	ext4_unlock_group(sb, block_group);
4810 
4811 	if (sbi->s_log_groups_per_flex) {
4812 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4813 		atomic64_add(count_clusters,
4814 			     &sbi->s_flex_groups[flex_group].free_clusters);
4815 	}
4816 
4817 	if (flags & EXT4_FREE_BLOCKS_RESERVE && ei->i_reserved_data_blocks) {
4818 		percpu_counter_add(&sbi->s_dirtyclusters_counter,
4819 				   count_clusters);
4820 		spin_lock(&ei->i_block_reservation_lock);
4821 		if (flags & EXT4_FREE_BLOCKS_METADATA)
4822 			ei->i_reserved_meta_blocks += count_clusters;
4823 		else
4824 			ei->i_reserved_data_blocks += count_clusters;
4825 		spin_unlock(&ei->i_block_reservation_lock);
4826 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4827 			dquot_reclaim_block(inode,
4828 					EXT4_C2B(sbi, count_clusters));
4829 	} else if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4830 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4831 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4832 
4833 	ext4_mb_unload_buddy(&e4b);
4834 
4835 	/* We dirtied the bitmap block */
4836 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4837 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4838 
4839 	/* And the group descriptor block */
4840 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4841 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4842 	if (!err)
4843 		err = ret;
4844 
4845 	if (overflow && !err) {
4846 		block += count;
4847 		count = overflow;
4848 		put_bh(bitmap_bh);
4849 		goto do_more;
4850 	}
4851 error_return:
4852 	brelse(bitmap_bh);
4853 	ext4_std_error(sb, err);
4854 	return;
4855 }
4856 
4857 /**
4858  * ext4_group_add_blocks() -- Add given blocks to an existing group
4859  * @handle:			handle to this transaction
4860  * @sb:				super block
4861  * @block:			start physical block to add to the block group
4862  * @count:			number of blocks to free
4863  *
4864  * This marks the blocks as free in the bitmap and buddy.
4865  */
4866 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4867 			 ext4_fsblk_t block, unsigned long count)
4868 {
4869 	struct buffer_head *bitmap_bh = NULL;
4870 	struct buffer_head *gd_bh;
4871 	ext4_group_t block_group;
4872 	ext4_grpblk_t bit;
4873 	unsigned int i;
4874 	struct ext4_group_desc *desc;
4875 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4876 	struct ext4_buddy e4b;
4877 	int err = 0, ret, blk_free_count;
4878 	ext4_grpblk_t blocks_freed;
4879 
4880 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4881 
4882 	if (count == 0)
4883 		return 0;
4884 
4885 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4886 	/*
4887 	 * Check to see if we are freeing blocks across a group
4888 	 * boundary.
4889 	 */
4890 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4891 		ext4_warning(sb, "too much blocks added to group %u\n",
4892 			     block_group);
4893 		err = -EINVAL;
4894 		goto error_return;
4895 	}
4896 
4897 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4898 	if (!bitmap_bh) {
4899 		err = -EIO;
4900 		goto error_return;
4901 	}
4902 
4903 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4904 	if (!desc) {
4905 		err = -EIO;
4906 		goto error_return;
4907 	}
4908 
4909 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4910 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4911 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4912 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4913 		     sbi->s_itb_per_group)) {
4914 		ext4_error(sb, "Adding blocks in system zones - "
4915 			   "Block = %llu, count = %lu",
4916 			   block, count);
4917 		err = -EINVAL;
4918 		goto error_return;
4919 	}
4920 
4921 	BUFFER_TRACE(bitmap_bh, "getting write access");
4922 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4923 	if (err)
4924 		goto error_return;
4925 
4926 	/*
4927 	 * We are about to modify some metadata.  Call the journal APIs
4928 	 * to unshare ->b_data if a currently-committing transaction is
4929 	 * using it
4930 	 */
4931 	BUFFER_TRACE(gd_bh, "get_write_access");
4932 	err = ext4_journal_get_write_access(handle, gd_bh);
4933 	if (err)
4934 		goto error_return;
4935 
4936 	for (i = 0, blocks_freed = 0; i < count; i++) {
4937 		BUFFER_TRACE(bitmap_bh, "clear bit");
4938 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4939 			ext4_error(sb, "bit already cleared for block %llu",
4940 				   (ext4_fsblk_t)(block + i));
4941 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4942 		} else {
4943 			blocks_freed++;
4944 		}
4945 	}
4946 
4947 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4948 	if (err)
4949 		goto error_return;
4950 
4951 	/*
4952 	 * need to update group_info->bb_free and bitmap
4953 	 * with group lock held. generate_buddy look at
4954 	 * them with group lock_held
4955 	 */
4956 	ext4_lock_group(sb, block_group);
4957 	mb_clear_bits(bitmap_bh->b_data, bit, count);
4958 	mb_free_blocks(NULL, &e4b, bit, count);
4959 	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4960 	ext4_free_group_clusters_set(sb, desc, blk_free_count);
4961 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4962 	ext4_group_desc_csum_set(sb, block_group, desc);
4963 	ext4_unlock_group(sb, block_group);
4964 	percpu_counter_add(&sbi->s_freeclusters_counter,
4965 			   EXT4_NUM_B2C(sbi, blocks_freed));
4966 
4967 	if (sbi->s_log_groups_per_flex) {
4968 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4969 		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4970 			     &sbi->s_flex_groups[flex_group].free_clusters);
4971 	}
4972 
4973 	ext4_mb_unload_buddy(&e4b);
4974 
4975 	/* We dirtied the bitmap block */
4976 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4977 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4978 
4979 	/* And the group descriptor block */
4980 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4981 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4982 	if (!err)
4983 		err = ret;
4984 
4985 error_return:
4986 	brelse(bitmap_bh);
4987 	ext4_std_error(sb, err);
4988 	return err;
4989 }
4990 
4991 /**
4992  * ext4_trim_extent -- function to TRIM one single free extent in the group
4993  * @sb:		super block for the file system
4994  * @start:	starting block of the free extent in the alloc. group
4995  * @count:	number of blocks to TRIM
4996  * @group:	alloc. group we are working with
4997  * @e4b:	ext4 buddy for the group
4998  *
4999  * Trim "count" blocks starting at "start" in the "group". To assure that no
5000  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5001  * be called with under the group lock.
5002  */
5003 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5004 			     ext4_group_t group, struct ext4_buddy *e4b)
5005 {
5006 	struct ext4_free_extent ex;
5007 	int ret = 0;
5008 
5009 	trace_ext4_trim_extent(sb, group, start, count);
5010 
5011 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5012 
5013 	ex.fe_start = start;
5014 	ex.fe_group = group;
5015 	ex.fe_len = count;
5016 
5017 	/*
5018 	 * Mark blocks used, so no one can reuse them while
5019 	 * being trimmed.
5020 	 */
5021 	mb_mark_used(e4b, &ex);
5022 	ext4_unlock_group(sb, group);
5023 	ret = ext4_issue_discard(sb, group, start, count);
5024 	ext4_lock_group(sb, group);
5025 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5026 	return ret;
5027 }
5028 
5029 /**
5030  * ext4_trim_all_free -- function to trim all free space in alloc. group
5031  * @sb:			super block for file system
5032  * @group:		group to be trimmed
5033  * @start:		first group block to examine
5034  * @max:		last group block to examine
5035  * @minblocks:		minimum extent block count
5036  *
5037  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5038  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5039  * the extent.
5040  *
5041  *
5042  * ext4_trim_all_free walks through group's block bitmap searching for free
5043  * extents. When the free extent is found, mark it as used in group buddy
5044  * bitmap. Then issue a TRIM command on this extent and free the extent in
5045  * the group buddy bitmap. This is done until whole group is scanned.
5046  */
5047 static ext4_grpblk_t
5048 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5049 		   ext4_grpblk_t start, ext4_grpblk_t max,
5050 		   ext4_grpblk_t minblocks)
5051 {
5052 	void *bitmap;
5053 	ext4_grpblk_t next, count = 0, free_count = 0;
5054 	struct ext4_buddy e4b;
5055 	int ret = 0;
5056 
5057 	trace_ext4_trim_all_free(sb, group, start, max);
5058 
5059 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5060 	if (ret) {
5061 		ext4_error(sb, "Error in loading buddy "
5062 				"information for %u", group);
5063 		return ret;
5064 	}
5065 	bitmap = e4b.bd_bitmap;
5066 
5067 	ext4_lock_group(sb, group);
5068 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5069 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5070 		goto out;
5071 
5072 	start = (e4b.bd_info->bb_first_free > start) ?
5073 		e4b.bd_info->bb_first_free : start;
5074 
5075 	while (start <= max) {
5076 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5077 		if (start > max)
5078 			break;
5079 		next = mb_find_next_bit(bitmap, max + 1, start);
5080 
5081 		if ((next - start) >= minblocks) {
5082 			ret = ext4_trim_extent(sb, start,
5083 					       next - start, group, &e4b);
5084 			if (ret && ret != -EOPNOTSUPP)
5085 				break;
5086 			ret = 0;
5087 			count += next - start;
5088 		}
5089 		free_count += next - start;
5090 		start = next + 1;
5091 
5092 		if (fatal_signal_pending(current)) {
5093 			count = -ERESTARTSYS;
5094 			break;
5095 		}
5096 
5097 		if (need_resched()) {
5098 			ext4_unlock_group(sb, group);
5099 			cond_resched();
5100 			ext4_lock_group(sb, group);
5101 		}
5102 
5103 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5104 			break;
5105 	}
5106 
5107 	if (!ret) {
5108 		ret = count;
5109 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5110 	}
5111 out:
5112 	ext4_unlock_group(sb, group);
5113 	ext4_mb_unload_buddy(&e4b);
5114 
5115 	ext4_debug("trimmed %d blocks in the group %d\n",
5116 		count, group);
5117 
5118 	return ret;
5119 }
5120 
5121 /**
5122  * ext4_trim_fs() -- trim ioctl handle function
5123  * @sb:			superblock for filesystem
5124  * @range:		fstrim_range structure
5125  *
5126  * start:	First Byte to trim
5127  * len:		number of Bytes to trim from start
5128  * minlen:	minimum extent length in Bytes
5129  * ext4_trim_fs goes through all allocation groups containing Bytes from
5130  * start to start+len. For each such a group ext4_trim_all_free function
5131  * is invoked to trim all free space.
5132  */
5133 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5134 {
5135 	struct ext4_group_info *grp;
5136 	ext4_group_t group, first_group, last_group;
5137 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5138 	uint64_t start, end, minlen, trimmed = 0;
5139 	ext4_fsblk_t first_data_blk =
5140 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5141 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5142 	int ret = 0;
5143 
5144 	start = range->start >> sb->s_blocksize_bits;
5145 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5146 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5147 			      range->minlen >> sb->s_blocksize_bits);
5148 
5149 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5150 	    start >= max_blks ||
5151 	    range->len < sb->s_blocksize)
5152 		return -EINVAL;
5153 	if (end >= max_blks)
5154 		end = max_blks - 1;
5155 	if (end <= first_data_blk)
5156 		goto out;
5157 	if (start < first_data_blk)
5158 		start = first_data_blk;
5159 
5160 	/* Determine first and last group to examine based on start and end */
5161 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5162 				     &first_group, &first_cluster);
5163 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5164 				     &last_group, &last_cluster);
5165 
5166 	/* end now represents the last cluster to discard in this group */
5167 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5168 
5169 	for (group = first_group; group <= last_group; group++) {
5170 		grp = ext4_get_group_info(sb, group);
5171 		/* We only do this if the grp has never been initialized */
5172 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5173 			ret = ext4_mb_init_group(sb, group);
5174 			if (ret)
5175 				break;
5176 		}
5177 
5178 		/*
5179 		 * For all the groups except the last one, last cluster will
5180 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5181 		 * change it for the last group, note that last_cluster is
5182 		 * already computed earlier by ext4_get_group_no_and_offset()
5183 		 */
5184 		if (group == last_group)
5185 			end = last_cluster;
5186 
5187 		if (grp->bb_free >= minlen) {
5188 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5189 						end, minlen);
5190 			if (cnt < 0) {
5191 				ret = cnt;
5192 				break;
5193 			}
5194 			trimmed += cnt;
5195 		}
5196 
5197 		/*
5198 		 * For every group except the first one, we are sure
5199 		 * that the first cluster to discard will be cluster #0.
5200 		 */
5201 		first_cluster = 0;
5202 	}
5203 
5204 	if (!ret)
5205 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5206 
5207 out:
5208 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5209 	return ret;
5210 }
5211