xref: /openbmc/linux/fs/ext4/mballoc.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "mballoc.h"
25 #include <linux/debugfs.h>
26 #include <linux/slab.h>
27 #include <trace/events/ext4.h>
28 
29 /*
30  * MUSTDO:
31  *   - test ext4_ext_search_left() and ext4_ext_search_right()
32  *   - search for metadata in few groups
33  *
34  * TODO v4:
35  *   - normalization should take into account whether file is still open
36  *   - discard preallocations if no free space left (policy?)
37  *   - don't normalize tails
38  *   - quota
39  *   - reservation for superuser
40  *
41  * TODO v3:
42  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
43  *   - track min/max extents in each group for better group selection
44  *   - mb_mark_used() may allocate chunk right after splitting buddy
45  *   - tree of groups sorted by number of free blocks
46  *   - error handling
47  */
48 
49 /*
50  * The allocation request involve request for multiple number of blocks
51  * near to the goal(block) value specified.
52  *
53  * During initialization phase of the allocator we decide to use the
54  * group preallocation or inode preallocation depending on the size of
55  * the file. The size of the file could be the resulting file size we
56  * would have after allocation, or the current file size, which ever
57  * is larger. If the size is less than sbi->s_mb_stream_request we
58  * select to use the group preallocation. The default value of
59  * s_mb_stream_request is 16 blocks. This can also be tuned via
60  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
61  * terms of number of blocks.
62  *
63  * The main motivation for having small file use group preallocation is to
64  * ensure that we have small files closer together on the disk.
65  *
66  * First stage the allocator looks at the inode prealloc list,
67  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
68  * spaces for this particular inode. The inode prealloc space is
69  * represented as:
70  *
71  * pa_lstart -> the logical start block for this prealloc space
72  * pa_pstart -> the physical start block for this prealloc space
73  * pa_len    -> length for this prealloc space
74  * pa_free   ->  free space available in this prealloc space
75  *
76  * The inode preallocation space is used looking at the _logical_ start
77  * block. If only the logical file block falls within the range of prealloc
78  * space we will consume the particular prealloc space. This make sure that
79  * that the we have contiguous physical blocks representing the file blocks
80  *
81  * The important thing to be noted in case of inode prealloc space is that
82  * we don't modify the values associated to inode prealloc space except
83  * pa_free.
84  *
85  * If we are not able to find blocks in the inode prealloc space and if we
86  * have the group allocation flag set then we look at the locality group
87  * prealloc space. These are per CPU prealloc list repreasented as
88  *
89  * ext4_sb_info.s_locality_groups[smp_processor_id()]
90  *
91  * The reason for having a per cpu locality group is to reduce the contention
92  * between CPUs. It is possible to get scheduled at this point.
93  *
94  * The locality group prealloc space is used looking at whether we have
95  * enough free space (pa_free) withing the prealloc space.
96  *
97  * If we can't allocate blocks via inode prealloc or/and locality group
98  * prealloc then we look at the buddy cache. The buddy cache is represented
99  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
100  * mapped to the buddy and bitmap information regarding different
101  * groups. The buddy information is attached to buddy cache inode so that
102  * we can access them through the page cache. The information regarding
103  * each group is loaded via ext4_mb_load_buddy.  The information involve
104  * block bitmap and buddy information. The information are stored in the
105  * inode as:
106  *
107  *  {                        page                        }
108  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
109  *
110  *
111  * one block each for bitmap and buddy information.  So for each group we
112  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
113  * blocksize) blocks.  So it can have information regarding groups_per_page
114  * which is blocks_per_page/2
115  *
116  * The buddy cache inode is not stored on disk. The inode is thrown
117  * away when the filesystem is unmounted.
118  *
119  * We look for count number of blocks in the buddy cache. If we were able
120  * to locate that many free blocks we return with additional information
121  * regarding rest of the contiguous physical block available
122  *
123  * Before allocating blocks via buddy cache we normalize the request
124  * blocks. This ensure we ask for more blocks that we needed. The extra
125  * blocks that we get after allocation is added to the respective prealloc
126  * list. In case of inode preallocation we follow a list of heuristics
127  * based on file size. This can be found in ext4_mb_normalize_request. If
128  * we are doing a group prealloc we try to normalize the request to
129  * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
130  * 512 blocks. This can be tuned via
131  * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
132  * terms of number of blocks. If we have mounted the file system with -O
133  * stripe=<value> option the group prealloc request is normalized to the
134  * stripe value (sbi->s_stripe)
135  *
136  * The regular allocator(using the buddy cache) supports few tunables.
137  *
138  * /sys/fs/ext4/<partition>/mb_min_to_scan
139  * /sys/fs/ext4/<partition>/mb_max_to_scan
140  * /sys/fs/ext4/<partition>/mb_order2_req
141  *
142  * The regular allocator uses buddy scan only if the request len is power of
143  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
144  * value of s_mb_order2_reqs can be tuned via
145  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
146  * stripe size (sbi->s_stripe), we try to search for contiguous block in
147  * stripe size. This should result in better allocation on RAID setups. If
148  * not, we search in the specific group using bitmap for best extents. The
149  * tunable min_to_scan and max_to_scan control the behaviour here.
150  * min_to_scan indicate how long the mballoc __must__ look for a best
151  * extent and max_to_scan indicates how long the mballoc __can__ look for a
152  * best extent in the found extents. Searching for the blocks starts with
153  * the group specified as the goal value in allocation context via
154  * ac_g_ex. Each group is first checked based on the criteria whether it
155  * can used for allocation. ext4_mb_good_group explains how the groups are
156  * checked.
157  *
158  * Both the prealloc space are getting populated as above. So for the first
159  * request we will hit the buddy cache which will result in this prealloc
160  * space getting filled. The prealloc space is then later used for the
161  * subsequent request.
162  */
163 
164 /*
165  * mballoc operates on the following data:
166  *  - on-disk bitmap
167  *  - in-core buddy (actually includes buddy and bitmap)
168  *  - preallocation descriptors (PAs)
169  *
170  * there are two types of preallocations:
171  *  - inode
172  *    assiged to specific inode and can be used for this inode only.
173  *    it describes part of inode's space preallocated to specific
174  *    physical blocks. any block from that preallocated can be used
175  *    independent. the descriptor just tracks number of blocks left
176  *    unused. so, before taking some block from descriptor, one must
177  *    make sure corresponded logical block isn't allocated yet. this
178  *    also means that freeing any block within descriptor's range
179  *    must discard all preallocated blocks.
180  *  - locality group
181  *    assigned to specific locality group which does not translate to
182  *    permanent set of inodes: inode can join and leave group. space
183  *    from this type of preallocation can be used for any inode. thus
184  *    it's consumed from the beginning to the end.
185  *
186  * relation between them can be expressed as:
187  *    in-core buddy = on-disk bitmap + preallocation descriptors
188  *
189  * this mean blocks mballoc considers used are:
190  *  - allocated blocks (persistent)
191  *  - preallocated blocks (non-persistent)
192  *
193  * consistency in mballoc world means that at any time a block is either
194  * free or used in ALL structures. notice: "any time" should not be read
195  * literally -- time is discrete and delimited by locks.
196  *
197  *  to keep it simple, we don't use block numbers, instead we count number of
198  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
199  *
200  * all operations can be expressed as:
201  *  - init buddy:			buddy = on-disk + PAs
202  *  - new PA:				buddy += N; PA = N
203  *  - use inode PA:			on-disk += N; PA -= N
204  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
205  *  - use locality group PA		on-disk += N; PA -= N
206  *  - discard locality group PA		buddy -= PA; PA = 0
207  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
208  *        is used in real operation because we can't know actual used
209  *        bits from PA, only from on-disk bitmap
210  *
211  * if we follow this strict logic, then all operations above should be atomic.
212  * given some of them can block, we'd have to use something like semaphores
213  * killing performance on high-end SMP hardware. let's try to relax it using
214  * the following knowledge:
215  *  1) if buddy is referenced, it's already initialized
216  *  2) while block is used in buddy and the buddy is referenced,
217  *     nobody can re-allocate that block
218  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
219  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
220  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
221  *     block
222  *
223  * so, now we're building a concurrency table:
224  *  - init buddy vs.
225  *    - new PA
226  *      blocks for PA are allocated in the buddy, buddy must be referenced
227  *      until PA is linked to allocation group to avoid concurrent buddy init
228  *    - use inode PA
229  *      we need to make sure that either on-disk bitmap or PA has uptodate data
230  *      given (3) we care that PA-=N operation doesn't interfere with init
231  *    - discard inode PA
232  *      the simplest way would be to have buddy initialized by the discard
233  *    - use locality group PA
234  *      again PA-=N must be serialized with init
235  *    - discard locality group PA
236  *      the simplest way would be to have buddy initialized by the discard
237  *  - new PA vs.
238  *    - use inode PA
239  *      i_data_sem serializes them
240  *    - discard inode PA
241  *      discard process must wait until PA isn't used by another process
242  *    - use locality group PA
243  *      some mutex should serialize them
244  *    - discard locality group PA
245  *      discard process must wait until PA isn't used by another process
246  *  - use inode PA
247  *    - use inode PA
248  *      i_data_sem or another mutex should serializes them
249  *    - discard inode PA
250  *      discard process must wait until PA isn't used by another process
251  *    - use locality group PA
252  *      nothing wrong here -- they're different PAs covering different blocks
253  *    - discard locality group PA
254  *      discard process must wait until PA isn't used by another process
255  *
256  * now we're ready to make few consequences:
257  *  - PA is referenced and while it is no discard is possible
258  *  - PA is referenced until block isn't marked in on-disk bitmap
259  *  - PA changes only after on-disk bitmap
260  *  - discard must not compete with init. either init is done before
261  *    any discard or they're serialized somehow
262  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
263  *
264  * a special case when we've used PA to emptiness. no need to modify buddy
265  * in this case, but we should care about concurrent init
266  *
267  */
268 
269  /*
270  * Logic in few words:
271  *
272  *  - allocation:
273  *    load group
274  *    find blocks
275  *    mark bits in on-disk bitmap
276  *    release group
277  *
278  *  - use preallocation:
279  *    find proper PA (per-inode or group)
280  *    load group
281  *    mark bits in on-disk bitmap
282  *    release group
283  *    release PA
284  *
285  *  - free:
286  *    load group
287  *    mark bits in on-disk bitmap
288  *    release group
289  *
290  *  - discard preallocations in group:
291  *    mark PAs deleted
292  *    move them onto local list
293  *    load on-disk bitmap
294  *    load group
295  *    remove PA from object (inode or locality group)
296  *    mark free blocks in-core
297  *
298  *  - discard inode's preallocations:
299  */
300 
301 /*
302  * Locking rules
303  *
304  * Locks:
305  *  - bitlock on a group	(group)
306  *  - object (inode/locality)	(object)
307  *  - per-pa lock		(pa)
308  *
309  * Paths:
310  *  - new pa
311  *    object
312  *    group
313  *
314  *  - find and use pa:
315  *    pa
316  *
317  *  - release consumed pa:
318  *    pa
319  *    group
320  *    object
321  *
322  *  - generate in-core bitmap:
323  *    group
324  *        pa
325  *
326  *  - discard all for given object (inode, locality group):
327  *    object
328  *        pa
329  *    group
330  *
331  *  - discard all for given group:
332  *    group
333  *        pa
334  *    group
335  *        object
336  *
337  */
338 static struct kmem_cache *ext4_pspace_cachep;
339 static struct kmem_cache *ext4_ac_cachep;
340 static struct kmem_cache *ext4_free_ext_cachep;
341 
342 /* We create slab caches for groupinfo data structures based on the
343  * superblock block size.  There will be one per mounted filesystem for
344  * each unique s_blocksize_bits */
345 #define NR_GRPINFO_CACHES	\
346 	(EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE + 1)
347 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
348 
349 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
350 					ext4_group_t group);
351 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
352 						ext4_group_t group);
353 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
354 
355 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
356 {
357 #if BITS_PER_LONG == 64
358 	*bit += ((unsigned long) addr & 7UL) << 3;
359 	addr = (void *) ((unsigned long) addr & ~7UL);
360 #elif BITS_PER_LONG == 32
361 	*bit += ((unsigned long) addr & 3UL) << 3;
362 	addr = (void *) ((unsigned long) addr & ~3UL);
363 #else
364 #error "how many bits you are?!"
365 #endif
366 	return addr;
367 }
368 
369 static inline int mb_test_bit(int bit, void *addr)
370 {
371 	/*
372 	 * ext4_test_bit on architecture like powerpc
373 	 * needs unsigned long aligned address
374 	 */
375 	addr = mb_correct_addr_and_bit(&bit, addr);
376 	return ext4_test_bit(bit, addr);
377 }
378 
379 static inline void mb_set_bit(int bit, void *addr)
380 {
381 	addr = mb_correct_addr_and_bit(&bit, addr);
382 	ext4_set_bit(bit, addr);
383 }
384 
385 static inline void mb_clear_bit(int bit, void *addr)
386 {
387 	addr = mb_correct_addr_and_bit(&bit, addr);
388 	ext4_clear_bit(bit, addr);
389 }
390 
391 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
392 {
393 	int fix = 0, ret, tmpmax;
394 	addr = mb_correct_addr_and_bit(&fix, addr);
395 	tmpmax = max + fix;
396 	start += fix;
397 
398 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
399 	if (ret > max)
400 		return max;
401 	return ret;
402 }
403 
404 static inline int mb_find_next_bit(void *addr, int max, int start)
405 {
406 	int fix = 0, ret, tmpmax;
407 	addr = mb_correct_addr_and_bit(&fix, addr);
408 	tmpmax = max + fix;
409 	start += fix;
410 
411 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
412 	if (ret > max)
413 		return max;
414 	return ret;
415 }
416 
417 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
418 {
419 	char *bb;
420 
421 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
422 	BUG_ON(max == NULL);
423 
424 	if (order > e4b->bd_blkbits + 1) {
425 		*max = 0;
426 		return NULL;
427 	}
428 
429 	/* at order 0 we see each particular block */
430 	*max = 1 << (e4b->bd_blkbits + 3);
431 	if (order == 0)
432 		return EXT4_MB_BITMAP(e4b);
433 
434 	bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
435 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
436 
437 	return bb;
438 }
439 
440 #ifdef DOUBLE_CHECK
441 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
442 			   int first, int count)
443 {
444 	int i;
445 	struct super_block *sb = e4b->bd_sb;
446 
447 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
448 		return;
449 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
450 	for (i = 0; i < count; i++) {
451 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
452 			ext4_fsblk_t blocknr;
453 
454 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
455 			blocknr += first + i;
456 			ext4_grp_locked_error(sb, e4b->bd_group,
457 					      inode ? inode->i_ino : 0,
458 					      blocknr,
459 					      "freeing block already freed "
460 					      "(bit %u)",
461 					      first + i);
462 		}
463 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
464 	}
465 }
466 
467 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
468 {
469 	int i;
470 
471 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 		return;
473 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
474 	for (i = 0; i < count; i++) {
475 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
476 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
477 	}
478 }
479 
480 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
481 {
482 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
483 		unsigned char *b1, *b2;
484 		int i;
485 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
486 		b2 = (unsigned char *) bitmap;
487 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
488 			if (b1[i] != b2[i]) {
489 				printk(KERN_ERR "corruption in group %u "
490 				       "at byte %u(%u): %x in copy != %x "
491 				       "on disk/prealloc\n",
492 				       e4b->bd_group, i, i * 8, b1[i], b2[i]);
493 				BUG();
494 			}
495 		}
496 	}
497 }
498 
499 #else
500 static inline void mb_free_blocks_double(struct inode *inode,
501 				struct ext4_buddy *e4b, int first, int count)
502 {
503 	return;
504 }
505 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
506 						int first, int count)
507 {
508 	return;
509 }
510 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
511 {
512 	return;
513 }
514 #endif
515 
516 #ifdef AGGRESSIVE_CHECK
517 
518 #define MB_CHECK_ASSERT(assert)						\
519 do {									\
520 	if (!(assert)) {						\
521 		printk(KERN_EMERG					\
522 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
523 			function, file, line, # assert);		\
524 		BUG();							\
525 	}								\
526 } while (0)
527 
528 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
529 				const char *function, int line)
530 {
531 	struct super_block *sb = e4b->bd_sb;
532 	int order = e4b->bd_blkbits + 1;
533 	int max;
534 	int max2;
535 	int i;
536 	int j;
537 	int k;
538 	int count;
539 	struct ext4_group_info *grp;
540 	int fragments = 0;
541 	int fstart;
542 	struct list_head *cur;
543 	void *buddy;
544 	void *buddy2;
545 
546 	{
547 		static int mb_check_counter;
548 		if (mb_check_counter++ % 100 != 0)
549 			return 0;
550 	}
551 
552 	while (order > 1) {
553 		buddy = mb_find_buddy(e4b, order, &max);
554 		MB_CHECK_ASSERT(buddy);
555 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
556 		MB_CHECK_ASSERT(buddy2);
557 		MB_CHECK_ASSERT(buddy != buddy2);
558 		MB_CHECK_ASSERT(max * 2 == max2);
559 
560 		count = 0;
561 		for (i = 0; i < max; i++) {
562 
563 			if (mb_test_bit(i, buddy)) {
564 				/* only single bit in buddy2 may be 1 */
565 				if (!mb_test_bit(i << 1, buddy2)) {
566 					MB_CHECK_ASSERT(
567 						mb_test_bit((i<<1)+1, buddy2));
568 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
569 					MB_CHECK_ASSERT(
570 						mb_test_bit(i << 1, buddy2));
571 				}
572 				continue;
573 			}
574 
575 			/* both bits in buddy2 must be 0 */
576 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
577 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
578 
579 			for (j = 0; j < (1 << order); j++) {
580 				k = (i * (1 << order)) + j;
581 				MB_CHECK_ASSERT(
582 					!mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
583 			}
584 			count++;
585 		}
586 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
587 		order--;
588 	}
589 
590 	fstart = -1;
591 	buddy = mb_find_buddy(e4b, 0, &max);
592 	for (i = 0; i < max; i++) {
593 		if (!mb_test_bit(i, buddy)) {
594 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
595 			if (fstart == -1) {
596 				fragments++;
597 				fstart = i;
598 			}
599 			continue;
600 		}
601 		fstart = -1;
602 		/* check used bits only */
603 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
604 			buddy2 = mb_find_buddy(e4b, j, &max2);
605 			k = i >> j;
606 			MB_CHECK_ASSERT(k < max2);
607 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
608 		}
609 	}
610 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
611 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
612 
613 	grp = ext4_get_group_info(sb, e4b->bd_group);
614 	buddy = mb_find_buddy(e4b, 0, &max);
615 	list_for_each(cur, &grp->bb_prealloc_list) {
616 		ext4_group_t groupnr;
617 		struct ext4_prealloc_space *pa;
618 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
619 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
620 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
621 		for (i = 0; i < pa->pa_len; i++)
622 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
623 	}
624 	return 0;
625 }
626 #undef MB_CHECK_ASSERT
627 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
628 					__FILE__, __func__, __LINE__)
629 #else
630 #define mb_check_buddy(e4b)
631 #endif
632 
633 /* FIXME!! need more doc */
634 static void ext4_mb_mark_free_simple(struct super_block *sb,
635 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
636 					struct ext4_group_info *grp)
637 {
638 	struct ext4_sb_info *sbi = EXT4_SB(sb);
639 	ext4_grpblk_t min;
640 	ext4_grpblk_t max;
641 	ext4_grpblk_t chunk;
642 	unsigned short border;
643 
644 	BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
645 
646 	border = 2 << sb->s_blocksize_bits;
647 
648 	while (len > 0) {
649 		/* find how many blocks can be covered since this position */
650 		max = ffs(first | border) - 1;
651 
652 		/* find how many blocks of power 2 we need to mark */
653 		min = fls(len) - 1;
654 
655 		if (max < min)
656 			min = max;
657 		chunk = 1 << min;
658 
659 		/* mark multiblock chunks only */
660 		grp->bb_counters[min]++;
661 		if (min > 0)
662 			mb_clear_bit(first >> min,
663 				     buddy + sbi->s_mb_offsets[min]);
664 
665 		len -= chunk;
666 		first += chunk;
667 	}
668 }
669 
670 /*
671  * Cache the order of the largest free extent we have available in this block
672  * group.
673  */
674 static void
675 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
676 {
677 	int i;
678 	int bits;
679 
680 	grp->bb_largest_free_order = -1; /* uninit */
681 
682 	bits = sb->s_blocksize_bits + 1;
683 	for (i = bits; i >= 0; i--) {
684 		if (grp->bb_counters[i] > 0) {
685 			grp->bb_largest_free_order = i;
686 			break;
687 		}
688 	}
689 }
690 
691 static noinline_for_stack
692 void ext4_mb_generate_buddy(struct super_block *sb,
693 				void *buddy, void *bitmap, ext4_group_t group)
694 {
695 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
696 	ext4_grpblk_t max = EXT4_BLOCKS_PER_GROUP(sb);
697 	ext4_grpblk_t i = 0;
698 	ext4_grpblk_t first;
699 	ext4_grpblk_t len;
700 	unsigned free = 0;
701 	unsigned fragments = 0;
702 	unsigned long long period = get_cycles();
703 
704 	/* initialize buddy from bitmap which is aggregation
705 	 * of on-disk bitmap and preallocations */
706 	i = mb_find_next_zero_bit(bitmap, max, 0);
707 	grp->bb_first_free = i;
708 	while (i < max) {
709 		fragments++;
710 		first = i;
711 		i = mb_find_next_bit(bitmap, max, i);
712 		len = i - first;
713 		free += len;
714 		if (len > 1)
715 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
716 		else
717 			grp->bb_counters[0]++;
718 		if (i < max)
719 			i = mb_find_next_zero_bit(bitmap, max, i);
720 	}
721 	grp->bb_fragments = fragments;
722 
723 	if (free != grp->bb_free) {
724 		ext4_grp_locked_error(sb, group, 0, 0,
725 				      "%u blocks in bitmap, %u in gd",
726 				      free, grp->bb_free);
727 		/*
728 		 * If we intent to continue, we consider group descritor
729 		 * corrupt and update bb_free using bitmap value
730 		 */
731 		grp->bb_free = free;
732 	}
733 	mb_set_largest_free_order(sb, grp);
734 
735 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
736 
737 	period = get_cycles() - period;
738 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
739 	EXT4_SB(sb)->s_mb_buddies_generated++;
740 	EXT4_SB(sb)->s_mb_generation_time += period;
741 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
742 }
743 
744 /* The buddy information is attached the buddy cache inode
745  * for convenience. The information regarding each group
746  * is loaded via ext4_mb_load_buddy. The information involve
747  * block bitmap and buddy information. The information are
748  * stored in the inode as
749  *
750  * {                        page                        }
751  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
752  *
753  *
754  * one block each for bitmap and buddy information.
755  * So for each group we take up 2 blocks. A page can
756  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
757  * So it can have information regarding groups_per_page which
758  * is blocks_per_page/2
759  *
760  * Locking note:  This routine takes the block group lock of all groups
761  * for this page; do not hold this lock when calling this routine!
762  */
763 
764 static int ext4_mb_init_cache(struct page *page, char *incore)
765 {
766 	ext4_group_t ngroups;
767 	int blocksize;
768 	int blocks_per_page;
769 	int groups_per_page;
770 	int err = 0;
771 	int i;
772 	ext4_group_t first_group;
773 	int first_block;
774 	struct super_block *sb;
775 	struct buffer_head *bhs;
776 	struct buffer_head **bh;
777 	struct inode *inode;
778 	char *data;
779 	char *bitmap;
780 
781 	mb_debug(1, "init page %lu\n", page->index);
782 
783 	inode = page->mapping->host;
784 	sb = inode->i_sb;
785 	ngroups = ext4_get_groups_count(sb);
786 	blocksize = 1 << inode->i_blkbits;
787 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
788 
789 	groups_per_page = blocks_per_page >> 1;
790 	if (groups_per_page == 0)
791 		groups_per_page = 1;
792 
793 	/* allocate buffer_heads to read bitmaps */
794 	if (groups_per_page > 1) {
795 		err = -ENOMEM;
796 		i = sizeof(struct buffer_head *) * groups_per_page;
797 		bh = kzalloc(i, GFP_NOFS);
798 		if (bh == NULL)
799 			goto out;
800 	} else
801 		bh = &bhs;
802 
803 	first_group = page->index * blocks_per_page / 2;
804 
805 	/* read all groups the page covers into the cache */
806 	for (i = 0; i < groups_per_page; i++) {
807 		struct ext4_group_desc *desc;
808 
809 		if (first_group + i >= ngroups)
810 			break;
811 
812 		err = -EIO;
813 		desc = ext4_get_group_desc(sb, first_group + i, NULL);
814 		if (desc == NULL)
815 			goto out;
816 
817 		err = -ENOMEM;
818 		bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
819 		if (bh[i] == NULL)
820 			goto out;
821 
822 		if (bitmap_uptodate(bh[i]))
823 			continue;
824 
825 		lock_buffer(bh[i]);
826 		if (bitmap_uptodate(bh[i])) {
827 			unlock_buffer(bh[i]);
828 			continue;
829 		}
830 		ext4_lock_group(sb, first_group + i);
831 		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
832 			ext4_init_block_bitmap(sb, bh[i],
833 						first_group + i, desc);
834 			set_bitmap_uptodate(bh[i]);
835 			set_buffer_uptodate(bh[i]);
836 			ext4_unlock_group(sb, first_group + i);
837 			unlock_buffer(bh[i]);
838 			continue;
839 		}
840 		ext4_unlock_group(sb, first_group + i);
841 		if (buffer_uptodate(bh[i])) {
842 			/*
843 			 * if not uninit if bh is uptodate,
844 			 * bitmap is also uptodate
845 			 */
846 			set_bitmap_uptodate(bh[i]);
847 			unlock_buffer(bh[i]);
848 			continue;
849 		}
850 		get_bh(bh[i]);
851 		/*
852 		 * submit the buffer_head for read. We can
853 		 * safely mark the bitmap as uptodate now.
854 		 * We do it here so the bitmap uptodate bit
855 		 * get set with buffer lock held.
856 		 */
857 		set_bitmap_uptodate(bh[i]);
858 		bh[i]->b_end_io = end_buffer_read_sync;
859 		submit_bh(READ, bh[i]);
860 		mb_debug(1, "read bitmap for group %u\n", first_group + i);
861 	}
862 
863 	/* wait for I/O completion */
864 	for (i = 0; i < groups_per_page && bh[i]; i++)
865 		wait_on_buffer(bh[i]);
866 
867 	err = -EIO;
868 	for (i = 0; i < groups_per_page && bh[i]; i++)
869 		if (!buffer_uptodate(bh[i]))
870 			goto out;
871 
872 	err = 0;
873 	first_block = page->index * blocks_per_page;
874 	/* init the page  */
875 	memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
876 	for (i = 0; i < blocks_per_page; i++) {
877 		int group;
878 		struct ext4_group_info *grinfo;
879 
880 		group = (first_block + i) >> 1;
881 		if (group >= ngroups)
882 			break;
883 
884 		/*
885 		 * data carry information regarding this
886 		 * particular group in the format specified
887 		 * above
888 		 *
889 		 */
890 		data = page_address(page) + (i * blocksize);
891 		bitmap = bh[group - first_group]->b_data;
892 
893 		/*
894 		 * We place the buddy block and bitmap block
895 		 * close together
896 		 */
897 		if ((first_block + i) & 1) {
898 			/* this is block of buddy */
899 			BUG_ON(incore == NULL);
900 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
901 				group, page->index, i * blocksize);
902 			trace_ext4_mb_buddy_bitmap_load(sb, group);
903 			grinfo = ext4_get_group_info(sb, group);
904 			grinfo->bb_fragments = 0;
905 			memset(grinfo->bb_counters, 0,
906 			       sizeof(*grinfo->bb_counters) *
907 				(sb->s_blocksize_bits+2));
908 			/*
909 			 * incore got set to the group block bitmap below
910 			 */
911 			ext4_lock_group(sb, group);
912 			ext4_mb_generate_buddy(sb, data, incore, group);
913 			ext4_unlock_group(sb, group);
914 			incore = NULL;
915 		} else {
916 			/* this is block of bitmap */
917 			BUG_ON(incore != NULL);
918 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
919 				group, page->index, i * blocksize);
920 			trace_ext4_mb_bitmap_load(sb, group);
921 
922 			/* see comments in ext4_mb_put_pa() */
923 			ext4_lock_group(sb, group);
924 			memcpy(data, bitmap, blocksize);
925 
926 			/* mark all preallocated blks used in in-core bitmap */
927 			ext4_mb_generate_from_pa(sb, data, group);
928 			ext4_mb_generate_from_freelist(sb, data, group);
929 			ext4_unlock_group(sb, group);
930 
931 			/* set incore so that the buddy information can be
932 			 * generated using this
933 			 */
934 			incore = data;
935 		}
936 	}
937 	SetPageUptodate(page);
938 
939 out:
940 	if (bh) {
941 		for (i = 0; i < groups_per_page && bh[i]; i++)
942 			brelse(bh[i]);
943 		if (bh != &bhs)
944 			kfree(bh);
945 	}
946 	return err;
947 }
948 
949 /*
950  * lock the group_info alloc_sem of all the groups
951  * belonging to the same buddy cache page. This
952  * make sure other parallel operation on the buddy
953  * cache doesn't happen  whild holding the buddy cache
954  * lock
955  */
956 static int ext4_mb_get_buddy_cache_lock(struct super_block *sb,
957 					ext4_group_t group)
958 {
959 	int i;
960 	int block, pnum;
961 	int blocks_per_page;
962 	int groups_per_page;
963 	ext4_group_t ngroups = ext4_get_groups_count(sb);
964 	ext4_group_t first_group;
965 	struct ext4_group_info *grp;
966 
967 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
968 	/*
969 	 * the buddy cache inode stores the block bitmap
970 	 * and buddy information in consecutive blocks.
971 	 * So for each group we need two blocks.
972 	 */
973 	block = group * 2;
974 	pnum = block / blocks_per_page;
975 	first_group = pnum * blocks_per_page / 2;
976 
977 	groups_per_page = blocks_per_page >> 1;
978 	if (groups_per_page == 0)
979 		groups_per_page = 1;
980 	/* read all groups the page covers into the cache */
981 	for (i = 0; i < groups_per_page; i++) {
982 
983 		if ((first_group + i) >= ngroups)
984 			break;
985 		grp = ext4_get_group_info(sb, first_group + i);
986 		/* take all groups write allocation
987 		 * semaphore. This make sure there is
988 		 * no block allocation going on in any
989 		 * of that groups
990 		 */
991 		down_write_nested(&grp->alloc_sem, i);
992 	}
993 	return i;
994 }
995 
996 static void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
997 					 ext4_group_t group, int locked_group)
998 {
999 	int i;
1000 	int block, pnum;
1001 	int blocks_per_page;
1002 	ext4_group_t first_group;
1003 	struct ext4_group_info *grp;
1004 
1005 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1006 	/*
1007 	 * the buddy cache inode stores the block bitmap
1008 	 * and buddy information in consecutive blocks.
1009 	 * So for each group we need two blocks.
1010 	 */
1011 	block = group * 2;
1012 	pnum = block / blocks_per_page;
1013 	first_group = pnum * blocks_per_page / 2;
1014 	/* release locks on all the groups */
1015 	for (i = 0; i < locked_group; i++) {
1016 
1017 		grp = ext4_get_group_info(sb, first_group + i);
1018 		/* take all groups write allocation
1019 		 * semaphore. This make sure there is
1020 		 * no block allocation going on in any
1021 		 * of that groups
1022 		 */
1023 		up_write(&grp->alloc_sem);
1024 	}
1025 
1026 }
1027 
1028 /*
1029  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1030  * block group lock of all groups for this page; do not hold the BG lock when
1031  * calling this routine!
1032  */
1033 static noinline_for_stack
1034 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1035 {
1036 
1037 	int ret = 0;
1038 	void *bitmap;
1039 	int blocks_per_page;
1040 	int block, pnum, poff;
1041 	int num_grp_locked = 0;
1042 	struct ext4_group_info *this_grp;
1043 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1044 	struct inode *inode = sbi->s_buddy_cache;
1045 	struct page *page = NULL, *bitmap_page = NULL;
1046 
1047 	mb_debug(1, "init group %u\n", group);
1048 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1049 	this_grp = ext4_get_group_info(sb, group);
1050 	/*
1051 	 * This ensures that we don't reinit the buddy cache
1052 	 * page which map to the group from which we are already
1053 	 * allocating. If we are looking at the buddy cache we would
1054 	 * have taken a reference using ext4_mb_load_buddy and that
1055 	 * would have taken the alloc_sem lock.
1056 	 */
1057 	num_grp_locked =  ext4_mb_get_buddy_cache_lock(sb, group);
1058 	if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
1059 		/*
1060 		 * somebody initialized the group
1061 		 * return without doing anything
1062 		 */
1063 		ret = 0;
1064 		goto err;
1065 	}
1066 	/*
1067 	 * the buddy cache inode stores the block bitmap
1068 	 * and buddy information in consecutive blocks.
1069 	 * So for each group we need two blocks.
1070 	 */
1071 	block = group * 2;
1072 	pnum = block / blocks_per_page;
1073 	poff = block % blocks_per_page;
1074 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1075 	if (page) {
1076 		BUG_ON(page->mapping != inode->i_mapping);
1077 		ret = ext4_mb_init_cache(page, NULL);
1078 		if (ret) {
1079 			unlock_page(page);
1080 			goto err;
1081 		}
1082 		unlock_page(page);
1083 	}
1084 	if (page == NULL || !PageUptodate(page)) {
1085 		ret = -EIO;
1086 		goto err;
1087 	}
1088 	mark_page_accessed(page);
1089 	bitmap_page = page;
1090 	bitmap = page_address(page) + (poff * sb->s_blocksize);
1091 
1092 	/* init buddy cache */
1093 	block++;
1094 	pnum = block / blocks_per_page;
1095 	poff = block % blocks_per_page;
1096 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1097 	if (page == bitmap_page) {
1098 		/*
1099 		 * If both the bitmap and buddy are in
1100 		 * the same page we don't need to force
1101 		 * init the buddy
1102 		 */
1103 		unlock_page(page);
1104 	} else if (page) {
1105 		BUG_ON(page->mapping != inode->i_mapping);
1106 		ret = ext4_mb_init_cache(page, bitmap);
1107 		if (ret) {
1108 			unlock_page(page);
1109 			goto err;
1110 		}
1111 		unlock_page(page);
1112 	}
1113 	if (page == NULL || !PageUptodate(page)) {
1114 		ret = -EIO;
1115 		goto err;
1116 	}
1117 	mark_page_accessed(page);
1118 err:
1119 	ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1120 	if (bitmap_page)
1121 		page_cache_release(bitmap_page);
1122 	if (page)
1123 		page_cache_release(page);
1124 	return ret;
1125 }
1126 
1127 /*
1128  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1129  * block group lock of all groups for this page; do not hold the BG lock when
1130  * calling this routine!
1131  */
1132 static noinline_for_stack int
1133 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1134 					struct ext4_buddy *e4b)
1135 {
1136 	int blocks_per_page;
1137 	int block;
1138 	int pnum;
1139 	int poff;
1140 	struct page *page;
1141 	int ret;
1142 	struct ext4_group_info *grp;
1143 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1144 	struct inode *inode = sbi->s_buddy_cache;
1145 
1146 	mb_debug(1, "load group %u\n", group);
1147 
1148 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1149 	grp = ext4_get_group_info(sb, group);
1150 
1151 	e4b->bd_blkbits = sb->s_blocksize_bits;
1152 	e4b->bd_info = ext4_get_group_info(sb, group);
1153 	e4b->bd_sb = sb;
1154 	e4b->bd_group = group;
1155 	e4b->bd_buddy_page = NULL;
1156 	e4b->bd_bitmap_page = NULL;
1157 	e4b->alloc_semp = &grp->alloc_sem;
1158 
1159 	/* Take the read lock on the group alloc
1160 	 * sem. This would make sure a parallel
1161 	 * ext4_mb_init_group happening on other
1162 	 * groups mapped by the page is blocked
1163 	 * till we are done with allocation
1164 	 */
1165 repeat_load_buddy:
1166 	down_read(e4b->alloc_semp);
1167 
1168 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1169 		/* we need to check for group need init flag
1170 		 * with alloc_semp held so that we can be sure
1171 		 * that new blocks didn't get added to the group
1172 		 * when we are loading the buddy cache
1173 		 */
1174 		up_read(e4b->alloc_semp);
1175 		/*
1176 		 * we need full data about the group
1177 		 * to make a good selection
1178 		 */
1179 		ret = ext4_mb_init_group(sb, group);
1180 		if (ret)
1181 			return ret;
1182 		goto repeat_load_buddy;
1183 	}
1184 
1185 	/*
1186 	 * the buddy cache inode stores the block bitmap
1187 	 * and buddy information in consecutive blocks.
1188 	 * So for each group we need two blocks.
1189 	 */
1190 	block = group * 2;
1191 	pnum = block / blocks_per_page;
1192 	poff = block % blocks_per_page;
1193 
1194 	/* we could use find_or_create_page(), but it locks page
1195 	 * what we'd like to avoid in fast path ... */
1196 	page = find_get_page(inode->i_mapping, pnum);
1197 	if (page == NULL || !PageUptodate(page)) {
1198 		if (page)
1199 			/*
1200 			 * drop the page reference and try
1201 			 * to get the page with lock. If we
1202 			 * are not uptodate that implies
1203 			 * somebody just created the page but
1204 			 * is yet to initialize the same. So
1205 			 * wait for it to initialize.
1206 			 */
1207 			page_cache_release(page);
1208 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1209 		if (page) {
1210 			BUG_ON(page->mapping != inode->i_mapping);
1211 			if (!PageUptodate(page)) {
1212 				ret = ext4_mb_init_cache(page, NULL);
1213 				if (ret) {
1214 					unlock_page(page);
1215 					goto err;
1216 				}
1217 				mb_cmp_bitmaps(e4b, page_address(page) +
1218 					       (poff * sb->s_blocksize));
1219 			}
1220 			unlock_page(page);
1221 		}
1222 	}
1223 	if (page == NULL || !PageUptodate(page)) {
1224 		ret = -EIO;
1225 		goto err;
1226 	}
1227 	e4b->bd_bitmap_page = page;
1228 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1229 	mark_page_accessed(page);
1230 
1231 	block++;
1232 	pnum = block / blocks_per_page;
1233 	poff = block % blocks_per_page;
1234 
1235 	page = find_get_page(inode->i_mapping, pnum);
1236 	if (page == NULL || !PageUptodate(page)) {
1237 		if (page)
1238 			page_cache_release(page);
1239 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1240 		if (page) {
1241 			BUG_ON(page->mapping != inode->i_mapping);
1242 			if (!PageUptodate(page)) {
1243 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1244 				if (ret) {
1245 					unlock_page(page);
1246 					goto err;
1247 				}
1248 			}
1249 			unlock_page(page);
1250 		}
1251 	}
1252 	if (page == NULL || !PageUptodate(page)) {
1253 		ret = -EIO;
1254 		goto err;
1255 	}
1256 	e4b->bd_buddy_page = page;
1257 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1258 	mark_page_accessed(page);
1259 
1260 	BUG_ON(e4b->bd_bitmap_page == NULL);
1261 	BUG_ON(e4b->bd_buddy_page == NULL);
1262 
1263 	return 0;
1264 
1265 err:
1266 	if (e4b->bd_bitmap_page)
1267 		page_cache_release(e4b->bd_bitmap_page);
1268 	if (e4b->bd_buddy_page)
1269 		page_cache_release(e4b->bd_buddy_page);
1270 	e4b->bd_buddy = NULL;
1271 	e4b->bd_bitmap = NULL;
1272 
1273 	/* Done with the buddy cache */
1274 	up_read(e4b->alloc_semp);
1275 	return ret;
1276 }
1277 
1278 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1279 {
1280 	if (e4b->bd_bitmap_page)
1281 		page_cache_release(e4b->bd_bitmap_page);
1282 	if (e4b->bd_buddy_page)
1283 		page_cache_release(e4b->bd_buddy_page);
1284 	/* Done with the buddy cache */
1285 	if (e4b->alloc_semp)
1286 		up_read(e4b->alloc_semp);
1287 }
1288 
1289 
1290 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1291 {
1292 	int order = 1;
1293 	void *bb;
1294 
1295 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1296 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1297 
1298 	bb = EXT4_MB_BUDDY(e4b);
1299 	while (order <= e4b->bd_blkbits + 1) {
1300 		block = block >> 1;
1301 		if (!mb_test_bit(block, bb)) {
1302 			/* this block is part of buddy of order 'order' */
1303 			return order;
1304 		}
1305 		bb += 1 << (e4b->bd_blkbits - order);
1306 		order++;
1307 	}
1308 	return 0;
1309 }
1310 
1311 static void mb_clear_bits(void *bm, int cur, int len)
1312 {
1313 	__u32 *addr;
1314 
1315 	len = cur + len;
1316 	while (cur < len) {
1317 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1318 			/* fast path: clear whole word at once */
1319 			addr = bm + (cur >> 3);
1320 			*addr = 0;
1321 			cur += 32;
1322 			continue;
1323 		}
1324 		mb_clear_bit(cur, bm);
1325 		cur++;
1326 	}
1327 }
1328 
1329 static void mb_set_bits(void *bm, int cur, int len)
1330 {
1331 	__u32 *addr;
1332 
1333 	len = cur + len;
1334 	while (cur < len) {
1335 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1336 			/* fast path: set whole word at once */
1337 			addr = bm + (cur >> 3);
1338 			*addr = 0xffffffff;
1339 			cur += 32;
1340 			continue;
1341 		}
1342 		mb_set_bit(cur, bm);
1343 		cur++;
1344 	}
1345 }
1346 
1347 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1348 			  int first, int count)
1349 {
1350 	int block = 0;
1351 	int max = 0;
1352 	int order;
1353 	void *buddy;
1354 	void *buddy2;
1355 	struct super_block *sb = e4b->bd_sb;
1356 
1357 	BUG_ON(first + count > (sb->s_blocksize << 3));
1358 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1359 	mb_check_buddy(e4b);
1360 	mb_free_blocks_double(inode, e4b, first, count);
1361 
1362 	e4b->bd_info->bb_free += count;
1363 	if (first < e4b->bd_info->bb_first_free)
1364 		e4b->bd_info->bb_first_free = first;
1365 
1366 	/* let's maintain fragments counter */
1367 	if (first != 0)
1368 		block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1369 	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1370 		max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1371 	if (block && max)
1372 		e4b->bd_info->bb_fragments--;
1373 	else if (!block && !max)
1374 		e4b->bd_info->bb_fragments++;
1375 
1376 	/* let's maintain buddy itself */
1377 	while (count-- > 0) {
1378 		block = first++;
1379 		order = 0;
1380 
1381 		if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1382 			ext4_fsblk_t blocknr;
1383 
1384 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1385 			blocknr += block;
1386 			ext4_grp_locked_error(sb, e4b->bd_group,
1387 					      inode ? inode->i_ino : 0,
1388 					      blocknr,
1389 					      "freeing already freed block "
1390 					      "(bit %u)", block);
1391 		}
1392 		mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1393 		e4b->bd_info->bb_counters[order]++;
1394 
1395 		/* start of the buddy */
1396 		buddy = mb_find_buddy(e4b, order, &max);
1397 
1398 		do {
1399 			block &= ~1UL;
1400 			if (mb_test_bit(block, buddy) ||
1401 					mb_test_bit(block + 1, buddy))
1402 				break;
1403 
1404 			/* both the buddies are free, try to coalesce them */
1405 			buddy2 = mb_find_buddy(e4b, order + 1, &max);
1406 
1407 			if (!buddy2)
1408 				break;
1409 
1410 			if (order > 0) {
1411 				/* for special purposes, we don't set
1412 				 * free bits in bitmap */
1413 				mb_set_bit(block, buddy);
1414 				mb_set_bit(block + 1, buddy);
1415 			}
1416 			e4b->bd_info->bb_counters[order]--;
1417 			e4b->bd_info->bb_counters[order]--;
1418 
1419 			block = block >> 1;
1420 			order++;
1421 			e4b->bd_info->bb_counters[order]++;
1422 
1423 			mb_clear_bit(block, buddy2);
1424 			buddy = buddy2;
1425 		} while (1);
1426 	}
1427 	mb_set_largest_free_order(sb, e4b->bd_info);
1428 	mb_check_buddy(e4b);
1429 }
1430 
1431 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1432 				int needed, struct ext4_free_extent *ex)
1433 {
1434 	int next = block;
1435 	int max;
1436 	int ord;
1437 	void *buddy;
1438 
1439 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1440 	BUG_ON(ex == NULL);
1441 
1442 	buddy = mb_find_buddy(e4b, order, &max);
1443 	BUG_ON(buddy == NULL);
1444 	BUG_ON(block >= max);
1445 	if (mb_test_bit(block, buddy)) {
1446 		ex->fe_len = 0;
1447 		ex->fe_start = 0;
1448 		ex->fe_group = 0;
1449 		return 0;
1450 	}
1451 
1452 	/* FIXME dorp order completely ? */
1453 	if (likely(order == 0)) {
1454 		/* find actual order */
1455 		order = mb_find_order_for_block(e4b, block);
1456 		block = block >> order;
1457 	}
1458 
1459 	ex->fe_len = 1 << order;
1460 	ex->fe_start = block << order;
1461 	ex->fe_group = e4b->bd_group;
1462 
1463 	/* calc difference from given start */
1464 	next = next - ex->fe_start;
1465 	ex->fe_len -= next;
1466 	ex->fe_start += next;
1467 
1468 	while (needed > ex->fe_len &&
1469 	       (buddy = mb_find_buddy(e4b, order, &max))) {
1470 
1471 		if (block + 1 >= max)
1472 			break;
1473 
1474 		next = (block + 1) * (1 << order);
1475 		if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1476 			break;
1477 
1478 		ord = mb_find_order_for_block(e4b, next);
1479 
1480 		order = ord;
1481 		block = next >> order;
1482 		ex->fe_len += 1 << order;
1483 	}
1484 
1485 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1486 	return ex->fe_len;
1487 }
1488 
1489 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1490 {
1491 	int ord;
1492 	int mlen = 0;
1493 	int max = 0;
1494 	int cur;
1495 	int start = ex->fe_start;
1496 	int len = ex->fe_len;
1497 	unsigned ret = 0;
1498 	int len0 = len;
1499 	void *buddy;
1500 
1501 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1502 	BUG_ON(e4b->bd_group != ex->fe_group);
1503 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1504 	mb_check_buddy(e4b);
1505 	mb_mark_used_double(e4b, start, len);
1506 
1507 	e4b->bd_info->bb_free -= len;
1508 	if (e4b->bd_info->bb_first_free == start)
1509 		e4b->bd_info->bb_first_free += len;
1510 
1511 	/* let's maintain fragments counter */
1512 	if (start != 0)
1513 		mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1514 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1515 		max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1516 	if (mlen && max)
1517 		e4b->bd_info->bb_fragments++;
1518 	else if (!mlen && !max)
1519 		e4b->bd_info->bb_fragments--;
1520 
1521 	/* let's maintain buddy itself */
1522 	while (len) {
1523 		ord = mb_find_order_for_block(e4b, start);
1524 
1525 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1526 			/* the whole chunk may be allocated at once! */
1527 			mlen = 1 << ord;
1528 			buddy = mb_find_buddy(e4b, ord, &max);
1529 			BUG_ON((start >> ord) >= max);
1530 			mb_set_bit(start >> ord, buddy);
1531 			e4b->bd_info->bb_counters[ord]--;
1532 			start += mlen;
1533 			len -= mlen;
1534 			BUG_ON(len < 0);
1535 			continue;
1536 		}
1537 
1538 		/* store for history */
1539 		if (ret == 0)
1540 			ret = len | (ord << 16);
1541 
1542 		/* we have to split large buddy */
1543 		BUG_ON(ord <= 0);
1544 		buddy = mb_find_buddy(e4b, ord, &max);
1545 		mb_set_bit(start >> ord, buddy);
1546 		e4b->bd_info->bb_counters[ord]--;
1547 
1548 		ord--;
1549 		cur = (start >> ord) & ~1U;
1550 		buddy = mb_find_buddy(e4b, ord, &max);
1551 		mb_clear_bit(cur, buddy);
1552 		mb_clear_bit(cur + 1, buddy);
1553 		e4b->bd_info->bb_counters[ord]++;
1554 		e4b->bd_info->bb_counters[ord]++;
1555 	}
1556 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1557 
1558 	mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1559 	mb_check_buddy(e4b);
1560 
1561 	return ret;
1562 }
1563 
1564 /*
1565  * Must be called under group lock!
1566  */
1567 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1568 					struct ext4_buddy *e4b)
1569 {
1570 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1571 	int ret;
1572 
1573 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1574 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1575 
1576 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1577 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1578 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1579 
1580 	/* preallocation can change ac_b_ex, thus we store actually
1581 	 * allocated blocks for history */
1582 	ac->ac_f_ex = ac->ac_b_ex;
1583 
1584 	ac->ac_status = AC_STATUS_FOUND;
1585 	ac->ac_tail = ret & 0xffff;
1586 	ac->ac_buddy = ret >> 16;
1587 
1588 	/*
1589 	 * take the page reference. We want the page to be pinned
1590 	 * so that we don't get a ext4_mb_init_cache_call for this
1591 	 * group until we update the bitmap. That would mean we
1592 	 * double allocate blocks. The reference is dropped
1593 	 * in ext4_mb_release_context
1594 	 */
1595 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1596 	get_page(ac->ac_bitmap_page);
1597 	ac->ac_buddy_page = e4b->bd_buddy_page;
1598 	get_page(ac->ac_buddy_page);
1599 	/* on allocation we use ac to track the held semaphore */
1600 	ac->alloc_semp =  e4b->alloc_semp;
1601 	e4b->alloc_semp = NULL;
1602 	/* store last allocated for subsequent stream allocation */
1603 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1604 		spin_lock(&sbi->s_md_lock);
1605 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1606 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1607 		spin_unlock(&sbi->s_md_lock);
1608 	}
1609 }
1610 
1611 /*
1612  * regular allocator, for general purposes allocation
1613  */
1614 
1615 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1616 					struct ext4_buddy *e4b,
1617 					int finish_group)
1618 {
1619 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1620 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1621 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1622 	struct ext4_free_extent ex;
1623 	int max;
1624 
1625 	if (ac->ac_status == AC_STATUS_FOUND)
1626 		return;
1627 	/*
1628 	 * We don't want to scan for a whole year
1629 	 */
1630 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1631 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1632 		ac->ac_status = AC_STATUS_BREAK;
1633 		return;
1634 	}
1635 
1636 	/*
1637 	 * Haven't found good chunk so far, let's continue
1638 	 */
1639 	if (bex->fe_len < gex->fe_len)
1640 		return;
1641 
1642 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1643 			&& bex->fe_group == e4b->bd_group) {
1644 		/* recheck chunk's availability - we don't know
1645 		 * when it was found (within this lock-unlock
1646 		 * period or not) */
1647 		max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1648 		if (max >= gex->fe_len) {
1649 			ext4_mb_use_best_found(ac, e4b);
1650 			return;
1651 		}
1652 	}
1653 }
1654 
1655 /*
1656  * The routine checks whether found extent is good enough. If it is,
1657  * then the extent gets marked used and flag is set to the context
1658  * to stop scanning. Otherwise, the extent is compared with the
1659  * previous found extent and if new one is better, then it's stored
1660  * in the context. Later, the best found extent will be used, if
1661  * mballoc can't find good enough extent.
1662  *
1663  * FIXME: real allocation policy is to be designed yet!
1664  */
1665 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1666 					struct ext4_free_extent *ex,
1667 					struct ext4_buddy *e4b)
1668 {
1669 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1670 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1671 
1672 	BUG_ON(ex->fe_len <= 0);
1673 	BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1674 	BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1675 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1676 
1677 	ac->ac_found++;
1678 
1679 	/*
1680 	 * The special case - take what you catch first
1681 	 */
1682 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1683 		*bex = *ex;
1684 		ext4_mb_use_best_found(ac, e4b);
1685 		return;
1686 	}
1687 
1688 	/*
1689 	 * Let's check whether the chuck is good enough
1690 	 */
1691 	if (ex->fe_len == gex->fe_len) {
1692 		*bex = *ex;
1693 		ext4_mb_use_best_found(ac, e4b);
1694 		return;
1695 	}
1696 
1697 	/*
1698 	 * If this is first found extent, just store it in the context
1699 	 */
1700 	if (bex->fe_len == 0) {
1701 		*bex = *ex;
1702 		return;
1703 	}
1704 
1705 	/*
1706 	 * If new found extent is better, store it in the context
1707 	 */
1708 	if (bex->fe_len < gex->fe_len) {
1709 		/* if the request isn't satisfied, any found extent
1710 		 * larger than previous best one is better */
1711 		if (ex->fe_len > bex->fe_len)
1712 			*bex = *ex;
1713 	} else if (ex->fe_len > gex->fe_len) {
1714 		/* if the request is satisfied, then we try to find
1715 		 * an extent that still satisfy the request, but is
1716 		 * smaller than previous one */
1717 		if (ex->fe_len < bex->fe_len)
1718 			*bex = *ex;
1719 	}
1720 
1721 	ext4_mb_check_limits(ac, e4b, 0);
1722 }
1723 
1724 static noinline_for_stack
1725 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1726 					struct ext4_buddy *e4b)
1727 {
1728 	struct ext4_free_extent ex = ac->ac_b_ex;
1729 	ext4_group_t group = ex.fe_group;
1730 	int max;
1731 	int err;
1732 
1733 	BUG_ON(ex.fe_len <= 0);
1734 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1735 	if (err)
1736 		return err;
1737 
1738 	ext4_lock_group(ac->ac_sb, group);
1739 	max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1740 
1741 	if (max > 0) {
1742 		ac->ac_b_ex = ex;
1743 		ext4_mb_use_best_found(ac, e4b);
1744 	}
1745 
1746 	ext4_unlock_group(ac->ac_sb, group);
1747 	ext4_mb_unload_buddy(e4b);
1748 
1749 	return 0;
1750 }
1751 
1752 static noinline_for_stack
1753 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1754 				struct ext4_buddy *e4b)
1755 {
1756 	ext4_group_t group = ac->ac_g_ex.fe_group;
1757 	int max;
1758 	int err;
1759 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1760 	struct ext4_free_extent ex;
1761 
1762 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1763 		return 0;
1764 
1765 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1766 	if (err)
1767 		return err;
1768 
1769 	ext4_lock_group(ac->ac_sb, group);
1770 	max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1771 			     ac->ac_g_ex.fe_len, &ex);
1772 
1773 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1774 		ext4_fsblk_t start;
1775 
1776 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1777 			ex.fe_start;
1778 		/* use do_div to get remainder (would be 64-bit modulo) */
1779 		if (do_div(start, sbi->s_stripe) == 0) {
1780 			ac->ac_found++;
1781 			ac->ac_b_ex = ex;
1782 			ext4_mb_use_best_found(ac, e4b);
1783 		}
1784 	} else if (max >= ac->ac_g_ex.fe_len) {
1785 		BUG_ON(ex.fe_len <= 0);
1786 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1787 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1788 		ac->ac_found++;
1789 		ac->ac_b_ex = ex;
1790 		ext4_mb_use_best_found(ac, e4b);
1791 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1792 		/* Sometimes, caller may want to merge even small
1793 		 * number of blocks to an existing extent */
1794 		BUG_ON(ex.fe_len <= 0);
1795 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1796 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1797 		ac->ac_found++;
1798 		ac->ac_b_ex = ex;
1799 		ext4_mb_use_best_found(ac, e4b);
1800 	}
1801 	ext4_unlock_group(ac->ac_sb, group);
1802 	ext4_mb_unload_buddy(e4b);
1803 
1804 	return 0;
1805 }
1806 
1807 /*
1808  * The routine scans buddy structures (not bitmap!) from given order
1809  * to max order and tries to find big enough chunk to satisfy the req
1810  */
1811 static noinline_for_stack
1812 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1813 					struct ext4_buddy *e4b)
1814 {
1815 	struct super_block *sb = ac->ac_sb;
1816 	struct ext4_group_info *grp = e4b->bd_info;
1817 	void *buddy;
1818 	int i;
1819 	int k;
1820 	int max;
1821 
1822 	BUG_ON(ac->ac_2order <= 0);
1823 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1824 		if (grp->bb_counters[i] == 0)
1825 			continue;
1826 
1827 		buddy = mb_find_buddy(e4b, i, &max);
1828 		BUG_ON(buddy == NULL);
1829 
1830 		k = mb_find_next_zero_bit(buddy, max, 0);
1831 		BUG_ON(k >= max);
1832 
1833 		ac->ac_found++;
1834 
1835 		ac->ac_b_ex.fe_len = 1 << i;
1836 		ac->ac_b_ex.fe_start = k << i;
1837 		ac->ac_b_ex.fe_group = e4b->bd_group;
1838 
1839 		ext4_mb_use_best_found(ac, e4b);
1840 
1841 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1842 
1843 		if (EXT4_SB(sb)->s_mb_stats)
1844 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1845 
1846 		break;
1847 	}
1848 }
1849 
1850 /*
1851  * The routine scans the group and measures all found extents.
1852  * In order to optimize scanning, caller must pass number of
1853  * free blocks in the group, so the routine can know upper limit.
1854  */
1855 static noinline_for_stack
1856 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1857 					struct ext4_buddy *e4b)
1858 {
1859 	struct super_block *sb = ac->ac_sb;
1860 	void *bitmap = EXT4_MB_BITMAP(e4b);
1861 	struct ext4_free_extent ex;
1862 	int i;
1863 	int free;
1864 
1865 	free = e4b->bd_info->bb_free;
1866 	BUG_ON(free <= 0);
1867 
1868 	i = e4b->bd_info->bb_first_free;
1869 
1870 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1871 		i = mb_find_next_zero_bit(bitmap,
1872 						EXT4_BLOCKS_PER_GROUP(sb), i);
1873 		if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1874 			/*
1875 			 * IF we have corrupt bitmap, we won't find any
1876 			 * free blocks even though group info says we
1877 			 * we have free blocks
1878 			 */
1879 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1880 					"%d free blocks as per "
1881 					"group info. But bitmap says 0",
1882 					free);
1883 			break;
1884 		}
1885 
1886 		mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1887 		BUG_ON(ex.fe_len <= 0);
1888 		if (free < ex.fe_len) {
1889 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1890 					"%d free blocks as per "
1891 					"group info. But got %d blocks",
1892 					free, ex.fe_len);
1893 			/*
1894 			 * The number of free blocks differs. This mostly
1895 			 * indicate that the bitmap is corrupt. So exit
1896 			 * without claiming the space.
1897 			 */
1898 			break;
1899 		}
1900 
1901 		ext4_mb_measure_extent(ac, &ex, e4b);
1902 
1903 		i += ex.fe_len;
1904 		free -= ex.fe_len;
1905 	}
1906 
1907 	ext4_mb_check_limits(ac, e4b, 1);
1908 }
1909 
1910 /*
1911  * This is a special case for storages like raid5
1912  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1913  */
1914 static noinline_for_stack
1915 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1916 				 struct ext4_buddy *e4b)
1917 {
1918 	struct super_block *sb = ac->ac_sb;
1919 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1920 	void *bitmap = EXT4_MB_BITMAP(e4b);
1921 	struct ext4_free_extent ex;
1922 	ext4_fsblk_t first_group_block;
1923 	ext4_fsblk_t a;
1924 	ext4_grpblk_t i;
1925 	int max;
1926 
1927 	BUG_ON(sbi->s_stripe == 0);
1928 
1929 	/* find first stripe-aligned block in group */
1930 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1931 
1932 	a = first_group_block + sbi->s_stripe - 1;
1933 	do_div(a, sbi->s_stripe);
1934 	i = (a * sbi->s_stripe) - first_group_block;
1935 
1936 	while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1937 		if (!mb_test_bit(i, bitmap)) {
1938 			max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1939 			if (max >= sbi->s_stripe) {
1940 				ac->ac_found++;
1941 				ac->ac_b_ex = ex;
1942 				ext4_mb_use_best_found(ac, e4b);
1943 				break;
1944 			}
1945 		}
1946 		i += sbi->s_stripe;
1947 	}
1948 }
1949 
1950 /* This is now called BEFORE we load the buddy bitmap. */
1951 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1952 				ext4_group_t group, int cr)
1953 {
1954 	unsigned free, fragments;
1955 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1956 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1957 
1958 	BUG_ON(cr < 0 || cr >= 4);
1959 
1960 	/* We only do this if the grp has never been initialized */
1961 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1962 		int ret = ext4_mb_init_group(ac->ac_sb, group);
1963 		if (ret)
1964 			return 0;
1965 	}
1966 
1967 	free = grp->bb_free;
1968 	fragments = grp->bb_fragments;
1969 	if (free == 0)
1970 		return 0;
1971 	if (fragments == 0)
1972 		return 0;
1973 
1974 	switch (cr) {
1975 	case 0:
1976 		BUG_ON(ac->ac_2order == 0);
1977 
1978 		if (grp->bb_largest_free_order < ac->ac_2order)
1979 			return 0;
1980 
1981 		/* Avoid using the first bg of a flexgroup for data files */
1982 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1983 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1984 		    ((group % flex_size) == 0))
1985 			return 0;
1986 
1987 		return 1;
1988 	case 1:
1989 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
1990 			return 1;
1991 		break;
1992 	case 2:
1993 		if (free >= ac->ac_g_ex.fe_len)
1994 			return 1;
1995 		break;
1996 	case 3:
1997 		return 1;
1998 	default:
1999 		BUG();
2000 	}
2001 
2002 	return 0;
2003 }
2004 
2005 static noinline_for_stack int
2006 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2007 {
2008 	ext4_group_t ngroups, group, i;
2009 	int cr;
2010 	int err = 0;
2011 	struct ext4_sb_info *sbi;
2012 	struct super_block *sb;
2013 	struct ext4_buddy e4b;
2014 
2015 	sb = ac->ac_sb;
2016 	sbi = EXT4_SB(sb);
2017 	ngroups = ext4_get_groups_count(sb);
2018 	/* non-extent files are limited to low blocks/groups */
2019 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2020 		ngroups = sbi->s_blockfile_groups;
2021 
2022 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2023 
2024 	/* first, try the goal */
2025 	err = ext4_mb_find_by_goal(ac, &e4b);
2026 	if (err || ac->ac_status == AC_STATUS_FOUND)
2027 		goto out;
2028 
2029 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2030 		goto out;
2031 
2032 	/*
2033 	 * ac->ac2_order is set only if the fe_len is a power of 2
2034 	 * if ac2_order is set we also set criteria to 0 so that we
2035 	 * try exact allocation using buddy.
2036 	 */
2037 	i = fls(ac->ac_g_ex.fe_len);
2038 	ac->ac_2order = 0;
2039 	/*
2040 	 * We search using buddy data only if the order of the request
2041 	 * is greater than equal to the sbi_s_mb_order2_reqs
2042 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2043 	 */
2044 	if (i >= sbi->s_mb_order2_reqs) {
2045 		/*
2046 		 * This should tell if fe_len is exactly power of 2
2047 		 */
2048 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2049 			ac->ac_2order = i - 1;
2050 	}
2051 
2052 	/* if stream allocation is enabled, use global goal */
2053 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2054 		/* TBD: may be hot point */
2055 		spin_lock(&sbi->s_md_lock);
2056 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2057 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2058 		spin_unlock(&sbi->s_md_lock);
2059 	}
2060 
2061 	/* Let's just scan groups to find more-less suitable blocks */
2062 	cr = ac->ac_2order ? 0 : 1;
2063 	/*
2064 	 * cr == 0 try to get exact allocation,
2065 	 * cr == 3  try to get anything
2066 	 */
2067 repeat:
2068 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2069 		ac->ac_criteria = cr;
2070 		/*
2071 		 * searching for the right group start
2072 		 * from the goal value specified
2073 		 */
2074 		group = ac->ac_g_ex.fe_group;
2075 
2076 		for (i = 0; i < ngroups; group++, i++) {
2077 			if (group == ngroups)
2078 				group = 0;
2079 
2080 			/* This now checks without needing the buddy page */
2081 			if (!ext4_mb_good_group(ac, group, cr))
2082 				continue;
2083 
2084 			err = ext4_mb_load_buddy(sb, group, &e4b);
2085 			if (err)
2086 				goto out;
2087 
2088 			ext4_lock_group(sb, group);
2089 
2090 			/*
2091 			 * We need to check again after locking the
2092 			 * block group
2093 			 */
2094 			if (!ext4_mb_good_group(ac, group, cr)) {
2095 				ext4_unlock_group(sb, group);
2096 				ext4_mb_unload_buddy(&e4b);
2097 				continue;
2098 			}
2099 
2100 			ac->ac_groups_scanned++;
2101 			if (cr == 0)
2102 				ext4_mb_simple_scan_group(ac, &e4b);
2103 			else if (cr == 1 && sbi->s_stripe &&
2104 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2105 				ext4_mb_scan_aligned(ac, &e4b);
2106 			else
2107 				ext4_mb_complex_scan_group(ac, &e4b);
2108 
2109 			ext4_unlock_group(sb, group);
2110 			ext4_mb_unload_buddy(&e4b);
2111 
2112 			if (ac->ac_status != AC_STATUS_CONTINUE)
2113 				break;
2114 		}
2115 	}
2116 
2117 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2118 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2119 		/*
2120 		 * We've been searching too long. Let's try to allocate
2121 		 * the best chunk we've found so far
2122 		 */
2123 
2124 		ext4_mb_try_best_found(ac, &e4b);
2125 		if (ac->ac_status != AC_STATUS_FOUND) {
2126 			/*
2127 			 * Someone more lucky has already allocated it.
2128 			 * The only thing we can do is just take first
2129 			 * found block(s)
2130 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2131 			 */
2132 			ac->ac_b_ex.fe_group = 0;
2133 			ac->ac_b_ex.fe_start = 0;
2134 			ac->ac_b_ex.fe_len = 0;
2135 			ac->ac_status = AC_STATUS_CONTINUE;
2136 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2137 			cr = 3;
2138 			atomic_inc(&sbi->s_mb_lost_chunks);
2139 			goto repeat;
2140 		}
2141 	}
2142 out:
2143 	return err;
2144 }
2145 
2146 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2147 {
2148 	struct super_block *sb = seq->private;
2149 	ext4_group_t group;
2150 
2151 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2152 		return NULL;
2153 	group = *pos + 1;
2154 	return (void *) ((unsigned long) group);
2155 }
2156 
2157 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2158 {
2159 	struct super_block *sb = seq->private;
2160 	ext4_group_t group;
2161 
2162 	++*pos;
2163 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2164 		return NULL;
2165 	group = *pos + 1;
2166 	return (void *) ((unsigned long) group);
2167 }
2168 
2169 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2170 {
2171 	struct super_block *sb = seq->private;
2172 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2173 	int i;
2174 	int err;
2175 	struct ext4_buddy e4b;
2176 	struct sg {
2177 		struct ext4_group_info info;
2178 		ext4_grpblk_t counters[16];
2179 	} sg;
2180 
2181 	group--;
2182 	if (group == 0)
2183 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2184 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2185 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2186 			   "group", "free", "frags", "first",
2187 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2188 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2189 
2190 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2191 		sizeof(struct ext4_group_info);
2192 	err = ext4_mb_load_buddy(sb, group, &e4b);
2193 	if (err) {
2194 		seq_printf(seq, "#%-5u: I/O error\n", group);
2195 		return 0;
2196 	}
2197 	ext4_lock_group(sb, group);
2198 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2199 	ext4_unlock_group(sb, group);
2200 	ext4_mb_unload_buddy(&e4b);
2201 
2202 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2203 			sg.info.bb_fragments, sg.info.bb_first_free);
2204 	for (i = 0; i <= 13; i++)
2205 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2206 				sg.info.bb_counters[i] : 0);
2207 	seq_printf(seq, " ]\n");
2208 
2209 	return 0;
2210 }
2211 
2212 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2213 {
2214 }
2215 
2216 static const struct seq_operations ext4_mb_seq_groups_ops = {
2217 	.start  = ext4_mb_seq_groups_start,
2218 	.next   = ext4_mb_seq_groups_next,
2219 	.stop   = ext4_mb_seq_groups_stop,
2220 	.show   = ext4_mb_seq_groups_show,
2221 };
2222 
2223 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2224 {
2225 	struct super_block *sb = PDE(inode)->data;
2226 	int rc;
2227 
2228 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2229 	if (rc == 0) {
2230 		struct seq_file *m = file->private_data;
2231 		m->private = sb;
2232 	}
2233 	return rc;
2234 
2235 }
2236 
2237 static const struct file_operations ext4_mb_seq_groups_fops = {
2238 	.owner		= THIS_MODULE,
2239 	.open		= ext4_mb_seq_groups_open,
2240 	.read		= seq_read,
2241 	.llseek		= seq_lseek,
2242 	.release	= seq_release,
2243 };
2244 
2245 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2246 {
2247 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2248 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2249 
2250 	BUG_ON(!cachep);
2251 	return cachep;
2252 }
2253 
2254 /* Create and initialize ext4_group_info data for the given group. */
2255 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2256 			  struct ext4_group_desc *desc)
2257 {
2258 	int i;
2259 	int metalen = 0;
2260 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2261 	struct ext4_group_info **meta_group_info;
2262 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2263 
2264 	/*
2265 	 * First check if this group is the first of a reserved block.
2266 	 * If it's true, we have to allocate a new table of pointers
2267 	 * to ext4_group_info structures
2268 	 */
2269 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2270 		metalen = sizeof(*meta_group_info) <<
2271 			EXT4_DESC_PER_BLOCK_BITS(sb);
2272 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2273 		if (meta_group_info == NULL) {
2274 			printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2275 			       "buddy group\n");
2276 			goto exit_meta_group_info;
2277 		}
2278 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2279 			meta_group_info;
2280 	}
2281 
2282 	meta_group_info =
2283 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2284 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2285 
2286 	meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2287 	if (meta_group_info[i] == NULL) {
2288 		printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2289 		goto exit_group_info;
2290 	}
2291 	memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2292 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2293 		&(meta_group_info[i]->bb_state));
2294 
2295 	/*
2296 	 * initialize bb_free to be able to skip
2297 	 * empty groups without initialization
2298 	 */
2299 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2300 		meta_group_info[i]->bb_free =
2301 			ext4_free_blocks_after_init(sb, group, desc);
2302 	} else {
2303 		meta_group_info[i]->bb_free =
2304 			ext4_free_blks_count(sb, desc);
2305 	}
2306 
2307 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2308 	init_rwsem(&meta_group_info[i]->alloc_sem);
2309 	meta_group_info[i]->bb_free_root = RB_ROOT;
2310 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2311 
2312 #ifdef DOUBLE_CHECK
2313 	{
2314 		struct buffer_head *bh;
2315 		meta_group_info[i]->bb_bitmap =
2316 			kmalloc(sb->s_blocksize, GFP_KERNEL);
2317 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2318 		bh = ext4_read_block_bitmap(sb, group);
2319 		BUG_ON(bh == NULL);
2320 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2321 			sb->s_blocksize);
2322 		put_bh(bh);
2323 	}
2324 #endif
2325 
2326 	return 0;
2327 
2328 exit_group_info:
2329 	/* If a meta_group_info table has been allocated, release it now */
2330 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2331 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2332 exit_meta_group_info:
2333 	return -ENOMEM;
2334 } /* ext4_mb_add_groupinfo */
2335 
2336 static int ext4_mb_init_backend(struct super_block *sb)
2337 {
2338 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2339 	ext4_group_t i;
2340 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2341 	struct ext4_super_block *es = sbi->s_es;
2342 	int num_meta_group_infos;
2343 	int num_meta_group_infos_max;
2344 	int array_size;
2345 	struct ext4_group_desc *desc;
2346 	struct kmem_cache *cachep;
2347 
2348 	/* This is the number of blocks used by GDT */
2349 	num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2350 				1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2351 
2352 	/*
2353 	 * This is the total number of blocks used by GDT including
2354 	 * the number of reserved blocks for GDT.
2355 	 * The s_group_info array is allocated with this value
2356 	 * to allow a clean online resize without a complex
2357 	 * manipulation of pointer.
2358 	 * The drawback is the unused memory when no resize
2359 	 * occurs but it's very low in terms of pages
2360 	 * (see comments below)
2361 	 * Need to handle this properly when META_BG resizing is allowed
2362 	 */
2363 	num_meta_group_infos_max = num_meta_group_infos +
2364 				le16_to_cpu(es->s_reserved_gdt_blocks);
2365 
2366 	/*
2367 	 * array_size is the size of s_group_info array. We round it
2368 	 * to the next power of two because this approximation is done
2369 	 * internally by kmalloc so we can have some more memory
2370 	 * for free here (e.g. may be used for META_BG resize).
2371 	 */
2372 	array_size = 1;
2373 	while (array_size < sizeof(*sbi->s_group_info) *
2374 	       num_meta_group_infos_max)
2375 		array_size = array_size << 1;
2376 	/* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2377 	 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2378 	 * So a two level scheme suffices for now. */
2379 	sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2380 	if (sbi->s_group_info == NULL) {
2381 		printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2382 		return -ENOMEM;
2383 	}
2384 	sbi->s_buddy_cache = new_inode(sb);
2385 	if (sbi->s_buddy_cache == NULL) {
2386 		printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2387 		goto err_freesgi;
2388 	}
2389 	sbi->s_buddy_cache->i_ino = get_next_ino();
2390 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2391 	for (i = 0; i < ngroups; i++) {
2392 		desc = ext4_get_group_desc(sb, i, NULL);
2393 		if (desc == NULL) {
2394 			printk(KERN_ERR
2395 				"EXT4-fs: can't read descriptor %u\n", i);
2396 			goto err_freebuddy;
2397 		}
2398 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2399 			goto err_freebuddy;
2400 	}
2401 
2402 	return 0;
2403 
2404 err_freebuddy:
2405 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2406 	while (i-- > 0)
2407 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2408 	i = num_meta_group_infos;
2409 	while (i-- > 0)
2410 		kfree(sbi->s_group_info[i]);
2411 	iput(sbi->s_buddy_cache);
2412 err_freesgi:
2413 	kfree(sbi->s_group_info);
2414 	return -ENOMEM;
2415 }
2416 
2417 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2418 {
2419 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2420 	unsigned i, j;
2421 	unsigned offset;
2422 	unsigned max;
2423 	int ret;
2424 	int cache_index;
2425 	struct kmem_cache *cachep;
2426 	char *namep = NULL;
2427 
2428 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2429 
2430 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2431 	if (sbi->s_mb_offsets == NULL) {
2432 		ret = -ENOMEM;
2433 		goto out;
2434 	}
2435 
2436 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2437 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2438 	if (sbi->s_mb_maxs == NULL) {
2439 		ret = -ENOMEM;
2440 		goto out;
2441 	}
2442 
2443 	cache_index = sb->s_blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2444 	cachep = ext4_groupinfo_caches[cache_index];
2445 	if (!cachep) {
2446 		char name[32];
2447 		int len = offsetof(struct ext4_group_info,
2448 					bb_counters[sb->s_blocksize_bits + 2]);
2449 
2450 		sprintf(name, "ext4_groupinfo_%d", sb->s_blocksize_bits);
2451 		namep = kstrdup(name, GFP_KERNEL);
2452 		if (!namep) {
2453 			ret = -ENOMEM;
2454 			goto out;
2455 		}
2456 
2457 		/* Need to free the kmem_cache_name() when we
2458 		 * destroy the slab */
2459 		cachep = kmem_cache_create(namep, len, 0,
2460 					     SLAB_RECLAIM_ACCOUNT, NULL);
2461 		if (!cachep) {
2462 			ret = -ENOMEM;
2463 			goto out;
2464 		}
2465 		ext4_groupinfo_caches[cache_index] = cachep;
2466 	}
2467 
2468 	/* order 0 is regular bitmap */
2469 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2470 	sbi->s_mb_offsets[0] = 0;
2471 
2472 	i = 1;
2473 	offset = 0;
2474 	max = sb->s_blocksize << 2;
2475 	do {
2476 		sbi->s_mb_offsets[i] = offset;
2477 		sbi->s_mb_maxs[i] = max;
2478 		offset += 1 << (sb->s_blocksize_bits - i);
2479 		max = max >> 1;
2480 		i++;
2481 	} while (i <= sb->s_blocksize_bits + 1);
2482 
2483 	/* init file for buddy data */
2484 	ret = ext4_mb_init_backend(sb);
2485 	if (ret != 0) {
2486 		goto out;
2487 	}
2488 
2489 	spin_lock_init(&sbi->s_md_lock);
2490 	spin_lock_init(&sbi->s_bal_lock);
2491 
2492 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2493 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2494 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2495 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2496 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2497 	sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2498 
2499 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2500 	if (sbi->s_locality_groups == NULL) {
2501 		ret = -ENOMEM;
2502 		goto out;
2503 	}
2504 	for_each_possible_cpu(i) {
2505 		struct ext4_locality_group *lg;
2506 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2507 		mutex_init(&lg->lg_mutex);
2508 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2509 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2510 		spin_lock_init(&lg->lg_prealloc_lock);
2511 	}
2512 
2513 	if (sbi->s_proc)
2514 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2515 				 &ext4_mb_seq_groups_fops, sb);
2516 
2517 	if (sbi->s_journal)
2518 		sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2519 out:
2520 	if (ret) {
2521 		kfree(sbi->s_mb_offsets);
2522 		kfree(sbi->s_mb_maxs);
2523 		kfree(namep);
2524 	}
2525 	return ret;
2526 }
2527 
2528 /* need to called with the ext4 group lock held */
2529 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2530 {
2531 	struct ext4_prealloc_space *pa;
2532 	struct list_head *cur, *tmp;
2533 	int count = 0;
2534 
2535 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2536 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2537 		list_del(&pa->pa_group_list);
2538 		count++;
2539 		kmem_cache_free(ext4_pspace_cachep, pa);
2540 	}
2541 	if (count)
2542 		mb_debug(1, "mballoc: %u PAs left\n", count);
2543 
2544 }
2545 
2546 int ext4_mb_release(struct super_block *sb)
2547 {
2548 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2549 	ext4_group_t i;
2550 	int num_meta_group_infos;
2551 	struct ext4_group_info *grinfo;
2552 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2553 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2554 
2555 	if (sbi->s_group_info) {
2556 		for (i = 0; i < ngroups; i++) {
2557 			grinfo = ext4_get_group_info(sb, i);
2558 #ifdef DOUBLE_CHECK
2559 			kfree(grinfo->bb_bitmap);
2560 #endif
2561 			ext4_lock_group(sb, i);
2562 			ext4_mb_cleanup_pa(grinfo);
2563 			ext4_unlock_group(sb, i);
2564 			kmem_cache_free(cachep, grinfo);
2565 		}
2566 		num_meta_group_infos = (ngroups +
2567 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2568 			EXT4_DESC_PER_BLOCK_BITS(sb);
2569 		for (i = 0; i < num_meta_group_infos; i++)
2570 			kfree(sbi->s_group_info[i]);
2571 		kfree(sbi->s_group_info);
2572 	}
2573 	kfree(sbi->s_mb_offsets);
2574 	kfree(sbi->s_mb_maxs);
2575 	if (sbi->s_buddy_cache)
2576 		iput(sbi->s_buddy_cache);
2577 	if (sbi->s_mb_stats) {
2578 		printk(KERN_INFO
2579 		       "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2580 				atomic_read(&sbi->s_bal_allocated),
2581 				atomic_read(&sbi->s_bal_reqs),
2582 				atomic_read(&sbi->s_bal_success));
2583 		printk(KERN_INFO
2584 		      "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2585 				"%u 2^N hits, %u breaks, %u lost\n",
2586 				atomic_read(&sbi->s_bal_ex_scanned),
2587 				atomic_read(&sbi->s_bal_goals),
2588 				atomic_read(&sbi->s_bal_2orders),
2589 				atomic_read(&sbi->s_bal_breaks),
2590 				atomic_read(&sbi->s_mb_lost_chunks));
2591 		printk(KERN_INFO
2592 		       "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2593 				sbi->s_mb_buddies_generated++,
2594 				sbi->s_mb_generation_time);
2595 		printk(KERN_INFO
2596 		       "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2597 				atomic_read(&sbi->s_mb_preallocated),
2598 				atomic_read(&sbi->s_mb_discarded));
2599 	}
2600 
2601 	free_percpu(sbi->s_locality_groups);
2602 	if (sbi->s_proc)
2603 		remove_proc_entry("mb_groups", sbi->s_proc);
2604 
2605 	return 0;
2606 }
2607 
2608 static inline int ext4_issue_discard(struct super_block *sb,
2609 		ext4_group_t block_group, ext4_grpblk_t block, int count)
2610 {
2611 	int ret;
2612 	ext4_fsblk_t discard_block;
2613 
2614 	discard_block = block + ext4_group_first_block_no(sb, block_group);
2615 	trace_ext4_discard_blocks(sb,
2616 			(unsigned long long) discard_block, count);
2617 	ret = sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2618 	if (ret == -EOPNOTSUPP) {
2619 		ext4_warning(sb, "discard not supported, disabling");
2620 		clear_opt(EXT4_SB(sb)->s_mount_opt, DISCARD);
2621 	}
2622 	return ret;
2623 }
2624 
2625 /*
2626  * This function is called by the jbd2 layer once the commit has finished,
2627  * so we know we can free the blocks that were released with that commit.
2628  */
2629 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2630 {
2631 	struct super_block *sb = journal->j_private;
2632 	struct ext4_buddy e4b;
2633 	struct ext4_group_info *db;
2634 	int err, count = 0, count2 = 0;
2635 	struct ext4_free_data *entry;
2636 	struct list_head *l, *ltmp;
2637 
2638 	list_for_each_safe(l, ltmp, &txn->t_private_list) {
2639 		entry = list_entry(l, struct ext4_free_data, list);
2640 
2641 		mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2642 			 entry->count, entry->group, entry);
2643 
2644 		if (test_opt(sb, DISCARD))
2645 			ext4_issue_discard(sb, entry->group,
2646 					entry->start_blk, entry->count);
2647 
2648 		err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2649 		/* we expect to find existing buddy because it's pinned */
2650 		BUG_ON(err != 0);
2651 
2652 		db = e4b.bd_info;
2653 		/* there are blocks to put in buddy to make them really free */
2654 		count += entry->count;
2655 		count2++;
2656 		ext4_lock_group(sb, entry->group);
2657 		/* Take it out of per group rb tree */
2658 		rb_erase(&entry->node, &(db->bb_free_root));
2659 		mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2660 
2661 		if (!db->bb_free_root.rb_node) {
2662 			/* No more items in the per group rb tree
2663 			 * balance refcounts from ext4_mb_free_metadata()
2664 			 */
2665 			page_cache_release(e4b.bd_buddy_page);
2666 			page_cache_release(e4b.bd_bitmap_page);
2667 		}
2668 		ext4_unlock_group(sb, entry->group);
2669 		kmem_cache_free(ext4_free_ext_cachep, entry);
2670 		ext4_mb_unload_buddy(&e4b);
2671 	}
2672 
2673 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2674 }
2675 
2676 #ifdef CONFIG_EXT4_DEBUG
2677 u8 mb_enable_debug __read_mostly;
2678 
2679 static struct dentry *debugfs_dir;
2680 static struct dentry *debugfs_debug;
2681 
2682 static void __init ext4_create_debugfs_entry(void)
2683 {
2684 	debugfs_dir = debugfs_create_dir("ext4", NULL);
2685 	if (debugfs_dir)
2686 		debugfs_debug = debugfs_create_u8("mballoc-debug",
2687 						  S_IRUGO | S_IWUSR,
2688 						  debugfs_dir,
2689 						  &mb_enable_debug);
2690 }
2691 
2692 static void ext4_remove_debugfs_entry(void)
2693 {
2694 	debugfs_remove(debugfs_debug);
2695 	debugfs_remove(debugfs_dir);
2696 }
2697 
2698 #else
2699 
2700 static void __init ext4_create_debugfs_entry(void)
2701 {
2702 }
2703 
2704 static void ext4_remove_debugfs_entry(void)
2705 {
2706 }
2707 
2708 #endif
2709 
2710 int __init ext4_init_mballoc(void)
2711 {
2712 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2713 					SLAB_RECLAIM_ACCOUNT);
2714 	if (ext4_pspace_cachep == NULL)
2715 		return -ENOMEM;
2716 
2717 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2718 				    SLAB_RECLAIM_ACCOUNT);
2719 	if (ext4_ac_cachep == NULL) {
2720 		kmem_cache_destroy(ext4_pspace_cachep);
2721 		return -ENOMEM;
2722 	}
2723 
2724 	ext4_free_ext_cachep = KMEM_CACHE(ext4_free_data,
2725 					  SLAB_RECLAIM_ACCOUNT);
2726 	if (ext4_free_ext_cachep == NULL) {
2727 		kmem_cache_destroy(ext4_pspace_cachep);
2728 		kmem_cache_destroy(ext4_ac_cachep);
2729 		return -ENOMEM;
2730 	}
2731 	ext4_create_debugfs_entry();
2732 	return 0;
2733 }
2734 
2735 void ext4_exit_mballoc(void)
2736 {
2737 	int i;
2738 	/*
2739 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2740 	 * before destroying the slab cache.
2741 	 */
2742 	rcu_barrier();
2743 	kmem_cache_destroy(ext4_pspace_cachep);
2744 	kmem_cache_destroy(ext4_ac_cachep);
2745 	kmem_cache_destroy(ext4_free_ext_cachep);
2746 
2747 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2748 		struct kmem_cache *cachep = ext4_groupinfo_caches[i];
2749 		if (cachep) {
2750 			char *name = (char *)kmem_cache_name(cachep);
2751 			kmem_cache_destroy(cachep);
2752 			kfree(name);
2753 		}
2754 	}
2755 	ext4_remove_debugfs_entry();
2756 }
2757 
2758 
2759 /*
2760  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2761  * Returns 0 if success or error code
2762  */
2763 static noinline_for_stack int
2764 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2765 				handle_t *handle, unsigned int reserv_blks)
2766 {
2767 	struct buffer_head *bitmap_bh = NULL;
2768 	struct ext4_group_desc *gdp;
2769 	struct buffer_head *gdp_bh;
2770 	struct ext4_sb_info *sbi;
2771 	struct super_block *sb;
2772 	ext4_fsblk_t block;
2773 	int err, len;
2774 
2775 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2776 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2777 
2778 	sb = ac->ac_sb;
2779 	sbi = EXT4_SB(sb);
2780 
2781 	err = -EIO;
2782 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2783 	if (!bitmap_bh)
2784 		goto out_err;
2785 
2786 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2787 	if (err)
2788 		goto out_err;
2789 
2790 	err = -EIO;
2791 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2792 	if (!gdp)
2793 		goto out_err;
2794 
2795 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2796 			ext4_free_blks_count(sb, gdp));
2797 
2798 	err = ext4_journal_get_write_access(handle, gdp_bh);
2799 	if (err)
2800 		goto out_err;
2801 
2802 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2803 
2804 	len = ac->ac_b_ex.fe_len;
2805 	if (!ext4_data_block_valid(sbi, block, len)) {
2806 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2807 			   "fs metadata\n", block, block+len);
2808 		/* File system mounted not to panic on error
2809 		 * Fix the bitmap and repeat the block allocation
2810 		 * We leak some of the blocks here.
2811 		 */
2812 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2813 		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2814 			    ac->ac_b_ex.fe_len);
2815 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2816 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2817 		if (!err)
2818 			err = -EAGAIN;
2819 		goto out_err;
2820 	}
2821 
2822 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2823 #ifdef AGGRESSIVE_CHECK
2824 	{
2825 		int i;
2826 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2827 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2828 						bitmap_bh->b_data));
2829 		}
2830 	}
2831 #endif
2832 	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len);
2833 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2834 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2835 		ext4_free_blks_set(sb, gdp,
2836 					ext4_free_blocks_after_init(sb,
2837 					ac->ac_b_ex.fe_group, gdp));
2838 	}
2839 	len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
2840 	ext4_free_blks_set(sb, gdp, len);
2841 	gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2842 
2843 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2844 	percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
2845 	/*
2846 	 * Now reduce the dirty block count also. Should not go negative
2847 	 */
2848 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2849 		/* release all the reserved blocks if non delalloc */
2850 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
2851 
2852 	if (sbi->s_log_groups_per_flex) {
2853 		ext4_group_t flex_group = ext4_flex_group(sbi,
2854 							  ac->ac_b_ex.fe_group);
2855 		atomic_sub(ac->ac_b_ex.fe_len,
2856 			   &sbi->s_flex_groups[flex_group].free_blocks);
2857 	}
2858 
2859 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2860 	if (err)
2861 		goto out_err;
2862 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2863 
2864 out_err:
2865 	ext4_mark_super_dirty(sb);
2866 	brelse(bitmap_bh);
2867 	return err;
2868 }
2869 
2870 /*
2871  * here we normalize request for locality group
2872  * Group request are normalized to s_strip size if we set the same via mount
2873  * option. If not we set it to s_mb_group_prealloc which can be configured via
2874  * /sys/fs/ext4/<partition>/mb_group_prealloc
2875  *
2876  * XXX: should we try to preallocate more than the group has now?
2877  */
2878 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2879 {
2880 	struct super_block *sb = ac->ac_sb;
2881 	struct ext4_locality_group *lg = ac->ac_lg;
2882 
2883 	BUG_ON(lg == NULL);
2884 	if (EXT4_SB(sb)->s_stripe)
2885 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
2886 	else
2887 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2888 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2889 		current->pid, ac->ac_g_ex.fe_len);
2890 }
2891 
2892 /*
2893  * Normalization means making request better in terms of
2894  * size and alignment
2895  */
2896 static noinline_for_stack void
2897 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2898 				struct ext4_allocation_request *ar)
2899 {
2900 	int bsbits, max;
2901 	ext4_lblk_t end;
2902 	loff_t size, orig_size, start_off;
2903 	ext4_lblk_t start;
2904 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2905 	struct ext4_prealloc_space *pa;
2906 
2907 	/* do normalize only data requests, metadata requests
2908 	   do not need preallocation */
2909 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2910 		return;
2911 
2912 	/* sometime caller may want exact blocks */
2913 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2914 		return;
2915 
2916 	/* caller may indicate that preallocation isn't
2917 	 * required (it's a tail, for example) */
2918 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2919 		return;
2920 
2921 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2922 		ext4_mb_normalize_group_request(ac);
2923 		return ;
2924 	}
2925 
2926 	bsbits = ac->ac_sb->s_blocksize_bits;
2927 
2928 	/* first, let's learn actual file size
2929 	 * given current request is allocated */
2930 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
2931 	size = size << bsbits;
2932 	if (size < i_size_read(ac->ac_inode))
2933 		size = i_size_read(ac->ac_inode);
2934 	orig_size = size;
2935 
2936 	/* max size of free chunks */
2937 	max = 2 << bsbits;
2938 
2939 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
2940 		(req <= (size) || max <= (chunk_size))
2941 
2942 	/* first, try to predict filesize */
2943 	/* XXX: should this table be tunable? */
2944 	start_off = 0;
2945 	if (size <= 16 * 1024) {
2946 		size = 16 * 1024;
2947 	} else if (size <= 32 * 1024) {
2948 		size = 32 * 1024;
2949 	} else if (size <= 64 * 1024) {
2950 		size = 64 * 1024;
2951 	} else if (size <= 128 * 1024) {
2952 		size = 128 * 1024;
2953 	} else if (size <= 256 * 1024) {
2954 		size = 256 * 1024;
2955 	} else if (size <= 512 * 1024) {
2956 		size = 512 * 1024;
2957 	} else if (size <= 1024 * 1024) {
2958 		size = 1024 * 1024;
2959 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2960 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2961 						(21 - bsbits)) << 21;
2962 		size = 2 * 1024 * 1024;
2963 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2964 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2965 							(22 - bsbits)) << 22;
2966 		size = 4 * 1024 * 1024;
2967 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2968 					(8<<20)>>bsbits, max, 8 * 1024)) {
2969 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2970 							(23 - bsbits)) << 23;
2971 		size = 8 * 1024 * 1024;
2972 	} else {
2973 		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2974 		size	  = ac->ac_o_ex.fe_len << bsbits;
2975 	}
2976 	size = size >> bsbits;
2977 	start = start_off >> bsbits;
2978 
2979 	/* don't cover already allocated blocks in selected range */
2980 	if (ar->pleft && start <= ar->lleft) {
2981 		size -= ar->lleft + 1 - start;
2982 		start = ar->lleft + 1;
2983 	}
2984 	if (ar->pright && start + size - 1 >= ar->lright)
2985 		size -= start + size - ar->lright;
2986 
2987 	end = start + size;
2988 
2989 	/* check we don't cross already preallocated blocks */
2990 	rcu_read_lock();
2991 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2992 		ext4_lblk_t pa_end;
2993 
2994 		if (pa->pa_deleted)
2995 			continue;
2996 		spin_lock(&pa->pa_lock);
2997 		if (pa->pa_deleted) {
2998 			spin_unlock(&pa->pa_lock);
2999 			continue;
3000 		}
3001 
3002 		pa_end = pa->pa_lstart + pa->pa_len;
3003 
3004 		/* PA must not overlap original request */
3005 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3006 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3007 
3008 		/* skip PAs this normalized request doesn't overlap with */
3009 		if (pa->pa_lstart >= end || pa_end <= start) {
3010 			spin_unlock(&pa->pa_lock);
3011 			continue;
3012 		}
3013 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3014 
3015 		/* adjust start or end to be adjacent to this pa */
3016 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3017 			BUG_ON(pa_end < start);
3018 			start = pa_end;
3019 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3020 			BUG_ON(pa->pa_lstart > end);
3021 			end = pa->pa_lstart;
3022 		}
3023 		spin_unlock(&pa->pa_lock);
3024 	}
3025 	rcu_read_unlock();
3026 	size = end - start;
3027 
3028 	/* XXX: extra loop to check we really don't overlap preallocations */
3029 	rcu_read_lock();
3030 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3031 		ext4_lblk_t pa_end;
3032 		spin_lock(&pa->pa_lock);
3033 		if (pa->pa_deleted == 0) {
3034 			pa_end = pa->pa_lstart + pa->pa_len;
3035 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3036 		}
3037 		spin_unlock(&pa->pa_lock);
3038 	}
3039 	rcu_read_unlock();
3040 
3041 	if (start + size <= ac->ac_o_ex.fe_logical &&
3042 			start > ac->ac_o_ex.fe_logical) {
3043 		printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3044 			(unsigned long) start, (unsigned long) size,
3045 			(unsigned long) ac->ac_o_ex.fe_logical);
3046 	}
3047 	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3048 			start > ac->ac_o_ex.fe_logical);
3049 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3050 
3051 	/* now prepare goal request */
3052 
3053 	/* XXX: is it better to align blocks WRT to logical
3054 	 * placement or satisfy big request as is */
3055 	ac->ac_g_ex.fe_logical = start;
3056 	ac->ac_g_ex.fe_len = size;
3057 
3058 	/* define goal start in order to merge */
3059 	if (ar->pright && (ar->lright == (start + size))) {
3060 		/* merge to the right */
3061 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3062 						&ac->ac_f_ex.fe_group,
3063 						&ac->ac_f_ex.fe_start);
3064 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3065 	}
3066 	if (ar->pleft && (ar->lleft + 1 == start)) {
3067 		/* merge to the left */
3068 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3069 						&ac->ac_f_ex.fe_group,
3070 						&ac->ac_f_ex.fe_start);
3071 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3072 	}
3073 
3074 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3075 		(unsigned) orig_size, (unsigned) start);
3076 }
3077 
3078 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3079 {
3080 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3081 
3082 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3083 		atomic_inc(&sbi->s_bal_reqs);
3084 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3085 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3086 			atomic_inc(&sbi->s_bal_success);
3087 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3088 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3089 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3090 			atomic_inc(&sbi->s_bal_goals);
3091 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3092 			atomic_inc(&sbi->s_bal_breaks);
3093 	}
3094 
3095 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3096 		trace_ext4_mballoc_alloc(ac);
3097 	else
3098 		trace_ext4_mballoc_prealloc(ac);
3099 }
3100 
3101 /*
3102  * Called on failure; free up any blocks from the inode PA for this
3103  * context.  We don't need this for MB_GROUP_PA because we only change
3104  * pa_free in ext4_mb_release_context(), but on failure, we've already
3105  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3106  */
3107 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3108 {
3109 	struct ext4_prealloc_space *pa = ac->ac_pa;
3110 	int len;
3111 
3112 	if (pa && pa->pa_type == MB_INODE_PA) {
3113 		len = ac->ac_b_ex.fe_len;
3114 		pa->pa_free += len;
3115 	}
3116 
3117 }
3118 
3119 /*
3120  * use blocks preallocated to inode
3121  */
3122 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3123 				struct ext4_prealloc_space *pa)
3124 {
3125 	ext4_fsblk_t start;
3126 	ext4_fsblk_t end;
3127 	int len;
3128 
3129 	/* found preallocated blocks, use them */
3130 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3131 	end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3132 	len = end - start;
3133 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3134 					&ac->ac_b_ex.fe_start);
3135 	ac->ac_b_ex.fe_len = len;
3136 	ac->ac_status = AC_STATUS_FOUND;
3137 	ac->ac_pa = pa;
3138 
3139 	BUG_ON(start < pa->pa_pstart);
3140 	BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3141 	BUG_ON(pa->pa_free < len);
3142 	pa->pa_free -= len;
3143 
3144 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3145 }
3146 
3147 /*
3148  * use blocks preallocated to locality group
3149  */
3150 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3151 				struct ext4_prealloc_space *pa)
3152 {
3153 	unsigned int len = ac->ac_o_ex.fe_len;
3154 
3155 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3156 					&ac->ac_b_ex.fe_group,
3157 					&ac->ac_b_ex.fe_start);
3158 	ac->ac_b_ex.fe_len = len;
3159 	ac->ac_status = AC_STATUS_FOUND;
3160 	ac->ac_pa = pa;
3161 
3162 	/* we don't correct pa_pstart or pa_plen here to avoid
3163 	 * possible race when the group is being loaded concurrently
3164 	 * instead we correct pa later, after blocks are marked
3165 	 * in on-disk bitmap -- see ext4_mb_release_context()
3166 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3167 	 */
3168 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3169 }
3170 
3171 /*
3172  * Return the prealloc space that have minimal distance
3173  * from the goal block. @cpa is the prealloc
3174  * space that is having currently known minimal distance
3175  * from the goal block.
3176  */
3177 static struct ext4_prealloc_space *
3178 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3179 			struct ext4_prealloc_space *pa,
3180 			struct ext4_prealloc_space *cpa)
3181 {
3182 	ext4_fsblk_t cur_distance, new_distance;
3183 
3184 	if (cpa == NULL) {
3185 		atomic_inc(&pa->pa_count);
3186 		return pa;
3187 	}
3188 	cur_distance = abs(goal_block - cpa->pa_pstart);
3189 	new_distance = abs(goal_block - pa->pa_pstart);
3190 
3191 	if (cur_distance < new_distance)
3192 		return cpa;
3193 
3194 	/* drop the previous reference */
3195 	atomic_dec(&cpa->pa_count);
3196 	atomic_inc(&pa->pa_count);
3197 	return pa;
3198 }
3199 
3200 /*
3201  * search goal blocks in preallocated space
3202  */
3203 static noinline_for_stack int
3204 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3205 {
3206 	int order, i;
3207 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3208 	struct ext4_locality_group *lg;
3209 	struct ext4_prealloc_space *pa, *cpa = NULL;
3210 	ext4_fsblk_t goal_block;
3211 
3212 	/* only data can be preallocated */
3213 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3214 		return 0;
3215 
3216 	/* first, try per-file preallocation */
3217 	rcu_read_lock();
3218 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3219 
3220 		/* all fields in this condition don't change,
3221 		 * so we can skip locking for them */
3222 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3223 			ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3224 			continue;
3225 
3226 		/* non-extent files can't have physical blocks past 2^32 */
3227 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3228 			pa->pa_pstart + pa->pa_len > EXT4_MAX_BLOCK_FILE_PHYS)
3229 			continue;
3230 
3231 		/* found preallocated blocks, use them */
3232 		spin_lock(&pa->pa_lock);
3233 		if (pa->pa_deleted == 0 && pa->pa_free) {
3234 			atomic_inc(&pa->pa_count);
3235 			ext4_mb_use_inode_pa(ac, pa);
3236 			spin_unlock(&pa->pa_lock);
3237 			ac->ac_criteria = 10;
3238 			rcu_read_unlock();
3239 			return 1;
3240 		}
3241 		spin_unlock(&pa->pa_lock);
3242 	}
3243 	rcu_read_unlock();
3244 
3245 	/* can we use group allocation? */
3246 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3247 		return 0;
3248 
3249 	/* inode may have no locality group for some reason */
3250 	lg = ac->ac_lg;
3251 	if (lg == NULL)
3252 		return 0;
3253 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3254 	if (order > PREALLOC_TB_SIZE - 1)
3255 		/* The max size of hash table is PREALLOC_TB_SIZE */
3256 		order = PREALLOC_TB_SIZE - 1;
3257 
3258 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3259 	/*
3260 	 * search for the prealloc space that is having
3261 	 * minimal distance from the goal block.
3262 	 */
3263 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3264 		rcu_read_lock();
3265 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3266 					pa_inode_list) {
3267 			spin_lock(&pa->pa_lock);
3268 			if (pa->pa_deleted == 0 &&
3269 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3270 
3271 				cpa = ext4_mb_check_group_pa(goal_block,
3272 								pa, cpa);
3273 			}
3274 			spin_unlock(&pa->pa_lock);
3275 		}
3276 		rcu_read_unlock();
3277 	}
3278 	if (cpa) {
3279 		ext4_mb_use_group_pa(ac, cpa);
3280 		ac->ac_criteria = 20;
3281 		return 1;
3282 	}
3283 	return 0;
3284 }
3285 
3286 /*
3287  * the function goes through all block freed in the group
3288  * but not yet committed and marks them used in in-core bitmap.
3289  * buddy must be generated from this bitmap
3290  * Need to be called with the ext4 group lock held
3291  */
3292 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3293 						ext4_group_t group)
3294 {
3295 	struct rb_node *n;
3296 	struct ext4_group_info *grp;
3297 	struct ext4_free_data *entry;
3298 
3299 	grp = ext4_get_group_info(sb, group);
3300 	n = rb_first(&(grp->bb_free_root));
3301 
3302 	while (n) {
3303 		entry = rb_entry(n, struct ext4_free_data, node);
3304 		mb_set_bits(bitmap, entry->start_blk, entry->count);
3305 		n = rb_next(n);
3306 	}
3307 	return;
3308 }
3309 
3310 /*
3311  * the function goes through all preallocation in this group and marks them
3312  * used in in-core bitmap. buddy must be generated from this bitmap
3313  * Need to be called with ext4 group lock held
3314  */
3315 static noinline_for_stack
3316 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3317 					ext4_group_t group)
3318 {
3319 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3320 	struct ext4_prealloc_space *pa;
3321 	struct list_head *cur;
3322 	ext4_group_t groupnr;
3323 	ext4_grpblk_t start;
3324 	int preallocated = 0;
3325 	int count = 0;
3326 	int len;
3327 
3328 	/* all form of preallocation discards first load group,
3329 	 * so the only competing code is preallocation use.
3330 	 * we don't need any locking here
3331 	 * notice we do NOT ignore preallocations with pa_deleted
3332 	 * otherwise we could leave used blocks available for
3333 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3334 	 * is dropping preallocation
3335 	 */
3336 	list_for_each(cur, &grp->bb_prealloc_list) {
3337 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3338 		spin_lock(&pa->pa_lock);
3339 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3340 					     &groupnr, &start);
3341 		len = pa->pa_len;
3342 		spin_unlock(&pa->pa_lock);
3343 		if (unlikely(len == 0))
3344 			continue;
3345 		BUG_ON(groupnr != group);
3346 		mb_set_bits(bitmap, start, len);
3347 		preallocated += len;
3348 		count++;
3349 	}
3350 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3351 }
3352 
3353 static void ext4_mb_pa_callback(struct rcu_head *head)
3354 {
3355 	struct ext4_prealloc_space *pa;
3356 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3357 	kmem_cache_free(ext4_pspace_cachep, pa);
3358 }
3359 
3360 /*
3361  * drops a reference to preallocated space descriptor
3362  * if this was the last reference and the space is consumed
3363  */
3364 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3365 			struct super_block *sb, struct ext4_prealloc_space *pa)
3366 {
3367 	ext4_group_t grp;
3368 	ext4_fsblk_t grp_blk;
3369 
3370 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3371 		return;
3372 
3373 	/* in this short window concurrent discard can set pa_deleted */
3374 	spin_lock(&pa->pa_lock);
3375 	if (pa->pa_deleted == 1) {
3376 		spin_unlock(&pa->pa_lock);
3377 		return;
3378 	}
3379 
3380 	pa->pa_deleted = 1;
3381 	spin_unlock(&pa->pa_lock);
3382 
3383 	grp_blk = pa->pa_pstart;
3384 	/*
3385 	 * If doing group-based preallocation, pa_pstart may be in the
3386 	 * next group when pa is used up
3387 	 */
3388 	if (pa->pa_type == MB_GROUP_PA)
3389 		grp_blk--;
3390 
3391 	ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3392 
3393 	/*
3394 	 * possible race:
3395 	 *
3396 	 *  P1 (buddy init)			P2 (regular allocation)
3397 	 *					find block B in PA
3398 	 *  copy on-disk bitmap to buddy
3399 	 *  					mark B in on-disk bitmap
3400 	 *					drop PA from group
3401 	 *  mark all PAs in buddy
3402 	 *
3403 	 * thus, P1 initializes buddy with B available. to prevent this
3404 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3405 	 * against that pair
3406 	 */
3407 	ext4_lock_group(sb, grp);
3408 	list_del(&pa->pa_group_list);
3409 	ext4_unlock_group(sb, grp);
3410 
3411 	spin_lock(pa->pa_obj_lock);
3412 	list_del_rcu(&pa->pa_inode_list);
3413 	spin_unlock(pa->pa_obj_lock);
3414 
3415 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3416 }
3417 
3418 /*
3419  * creates new preallocated space for given inode
3420  */
3421 static noinline_for_stack int
3422 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3423 {
3424 	struct super_block *sb = ac->ac_sb;
3425 	struct ext4_prealloc_space *pa;
3426 	struct ext4_group_info *grp;
3427 	struct ext4_inode_info *ei;
3428 
3429 	/* preallocate only when found space is larger then requested */
3430 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3431 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3432 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3433 
3434 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3435 	if (pa == NULL)
3436 		return -ENOMEM;
3437 
3438 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3439 		int winl;
3440 		int wins;
3441 		int win;
3442 		int offs;
3443 
3444 		/* we can't allocate as much as normalizer wants.
3445 		 * so, found space must get proper lstart
3446 		 * to cover original request */
3447 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3448 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3449 
3450 		/* we're limited by original request in that
3451 		 * logical block must be covered any way
3452 		 * winl is window we can move our chunk within */
3453 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3454 
3455 		/* also, we should cover whole original request */
3456 		wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3457 
3458 		/* the smallest one defines real window */
3459 		win = min(winl, wins);
3460 
3461 		offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3462 		if (offs && offs < win)
3463 			win = offs;
3464 
3465 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3466 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3467 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3468 	}
3469 
3470 	/* preallocation can change ac_b_ex, thus we store actually
3471 	 * allocated blocks for history */
3472 	ac->ac_f_ex = ac->ac_b_ex;
3473 
3474 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3475 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3476 	pa->pa_len = ac->ac_b_ex.fe_len;
3477 	pa->pa_free = pa->pa_len;
3478 	atomic_set(&pa->pa_count, 1);
3479 	spin_lock_init(&pa->pa_lock);
3480 	INIT_LIST_HEAD(&pa->pa_inode_list);
3481 	INIT_LIST_HEAD(&pa->pa_group_list);
3482 	pa->pa_deleted = 0;
3483 	pa->pa_type = MB_INODE_PA;
3484 
3485 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3486 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3487 	trace_ext4_mb_new_inode_pa(ac, pa);
3488 
3489 	ext4_mb_use_inode_pa(ac, pa);
3490 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3491 
3492 	ei = EXT4_I(ac->ac_inode);
3493 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3494 
3495 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3496 	pa->pa_inode = ac->ac_inode;
3497 
3498 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3499 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3500 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3501 
3502 	spin_lock(pa->pa_obj_lock);
3503 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3504 	spin_unlock(pa->pa_obj_lock);
3505 
3506 	return 0;
3507 }
3508 
3509 /*
3510  * creates new preallocated space for locality group inodes belongs to
3511  */
3512 static noinline_for_stack int
3513 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3514 {
3515 	struct super_block *sb = ac->ac_sb;
3516 	struct ext4_locality_group *lg;
3517 	struct ext4_prealloc_space *pa;
3518 	struct ext4_group_info *grp;
3519 
3520 	/* preallocate only when found space is larger then requested */
3521 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3522 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3523 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3524 
3525 	BUG_ON(ext4_pspace_cachep == NULL);
3526 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3527 	if (pa == NULL)
3528 		return -ENOMEM;
3529 
3530 	/* preallocation can change ac_b_ex, thus we store actually
3531 	 * allocated blocks for history */
3532 	ac->ac_f_ex = ac->ac_b_ex;
3533 
3534 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3535 	pa->pa_lstart = pa->pa_pstart;
3536 	pa->pa_len = ac->ac_b_ex.fe_len;
3537 	pa->pa_free = pa->pa_len;
3538 	atomic_set(&pa->pa_count, 1);
3539 	spin_lock_init(&pa->pa_lock);
3540 	INIT_LIST_HEAD(&pa->pa_inode_list);
3541 	INIT_LIST_HEAD(&pa->pa_group_list);
3542 	pa->pa_deleted = 0;
3543 	pa->pa_type = MB_GROUP_PA;
3544 
3545 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3546 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3547 	trace_ext4_mb_new_group_pa(ac, pa);
3548 
3549 	ext4_mb_use_group_pa(ac, pa);
3550 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3551 
3552 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3553 	lg = ac->ac_lg;
3554 	BUG_ON(lg == NULL);
3555 
3556 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3557 	pa->pa_inode = NULL;
3558 
3559 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3560 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3561 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3562 
3563 	/*
3564 	 * We will later add the new pa to the right bucket
3565 	 * after updating the pa_free in ext4_mb_release_context
3566 	 */
3567 	return 0;
3568 }
3569 
3570 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3571 {
3572 	int err;
3573 
3574 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3575 		err = ext4_mb_new_group_pa(ac);
3576 	else
3577 		err = ext4_mb_new_inode_pa(ac);
3578 	return err;
3579 }
3580 
3581 /*
3582  * finds all unused blocks in on-disk bitmap, frees them in
3583  * in-core bitmap and buddy.
3584  * @pa must be unlinked from inode and group lists, so that
3585  * nobody else can find/use it.
3586  * the caller MUST hold group/inode locks.
3587  * TODO: optimize the case when there are no in-core structures yet
3588  */
3589 static noinline_for_stack int
3590 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3591 			struct ext4_prealloc_space *pa)
3592 {
3593 	struct super_block *sb = e4b->bd_sb;
3594 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3595 	unsigned int end;
3596 	unsigned int next;
3597 	ext4_group_t group;
3598 	ext4_grpblk_t bit;
3599 	unsigned long long grp_blk_start;
3600 	int err = 0;
3601 	int free = 0;
3602 
3603 	BUG_ON(pa->pa_deleted == 0);
3604 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3605 	grp_blk_start = pa->pa_pstart - bit;
3606 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3607 	end = bit + pa->pa_len;
3608 
3609 	while (bit < end) {
3610 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3611 		if (bit >= end)
3612 			break;
3613 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3614 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3615 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3616 			 (unsigned) next - bit, (unsigned) group);
3617 		free += next - bit;
3618 
3619 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3620 		trace_ext4_mb_release_inode_pa(sb, pa->pa_inode, pa,
3621 					       grp_blk_start + bit, next - bit);
3622 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3623 		bit = next + 1;
3624 	}
3625 	if (free != pa->pa_free) {
3626 		printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3627 			pa, (unsigned long) pa->pa_lstart,
3628 			(unsigned long) pa->pa_pstart,
3629 			(unsigned long) pa->pa_len);
3630 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3631 					free, pa->pa_free);
3632 		/*
3633 		 * pa is already deleted so we use the value obtained
3634 		 * from the bitmap and continue.
3635 		 */
3636 	}
3637 	atomic_add(free, &sbi->s_mb_discarded);
3638 
3639 	return err;
3640 }
3641 
3642 static noinline_for_stack int
3643 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3644 				struct ext4_prealloc_space *pa)
3645 {
3646 	struct super_block *sb = e4b->bd_sb;
3647 	ext4_group_t group;
3648 	ext4_grpblk_t bit;
3649 
3650 	trace_ext4_mb_release_group_pa(sb, pa);
3651 	BUG_ON(pa->pa_deleted == 0);
3652 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3653 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3654 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3655 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3656 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3657 
3658 	return 0;
3659 }
3660 
3661 /*
3662  * releases all preallocations in given group
3663  *
3664  * first, we need to decide discard policy:
3665  * - when do we discard
3666  *   1) ENOSPC
3667  * - how many do we discard
3668  *   1) how many requested
3669  */
3670 static noinline_for_stack int
3671 ext4_mb_discard_group_preallocations(struct super_block *sb,
3672 					ext4_group_t group, int needed)
3673 {
3674 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3675 	struct buffer_head *bitmap_bh = NULL;
3676 	struct ext4_prealloc_space *pa, *tmp;
3677 	struct list_head list;
3678 	struct ext4_buddy e4b;
3679 	int err;
3680 	int busy = 0;
3681 	int free = 0;
3682 
3683 	mb_debug(1, "discard preallocation for group %u\n", group);
3684 
3685 	if (list_empty(&grp->bb_prealloc_list))
3686 		return 0;
3687 
3688 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3689 	if (bitmap_bh == NULL) {
3690 		ext4_error(sb, "Error reading block bitmap for %u", group);
3691 		return 0;
3692 	}
3693 
3694 	err = ext4_mb_load_buddy(sb, group, &e4b);
3695 	if (err) {
3696 		ext4_error(sb, "Error loading buddy information for %u", group);
3697 		put_bh(bitmap_bh);
3698 		return 0;
3699 	}
3700 
3701 	if (needed == 0)
3702 		needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3703 
3704 	INIT_LIST_HEAD(&list);
3705 repeat:
3706 	ext4_lock_group(sb, group);
3707 	list_for_each_entry_safe(pa, tmp,
3708 				&grp->bb_prealloc_list, pa_group_list) {
3709 		spin_lock(&pa->pa_lock);
3710 		if (atomic_read(&pa->pa_count)) {
3711 			spin_unlock(&pa->pa_lock);
3712 			busy = 1;
3713 			continue;
3714 		}
3715 		if (pa->pa_deleted) {
3716 			spin_unlock(&pa->pa_lock);
3717 			continue;
3718 		}
3719 
3720 		/* seems this one can be freed ... */
3721 		pa->pa_deleted = 1;
3722 
3723 		/* we can trust pa_free ... */
3724 		free += pa->pa_free;
3725 
3726 		spin_unlock(&pa->pa_lock);
3727 
3728 		list_del(&pa->pa_group_list);
3729 		list_add(&pa->u.pa_tmp_list, &list);
3730 	}
3731 
3732 	/* if we still need more blocks and some PAs were used, try again */
3733 	if (free < needed && busy) {
3734 		busy = 0;
3735 		ext4_unlock_group(sb, group);
3736 		/*
3737 		 * Yield the CPU here so that we don't get soft lockup
3738 		 * in non preempt case.
3739 		 */
3740 		yield();
3741 		goto repeat;
3742 	}
3743 
3744 	/* found anything to free? */
3745 	if (list_empty(&list)) {
3746 		BUG_ON(free != 0);
3747 		goto out;
3748 	}
3749 
3750 	/* now free all selected PAs */
3751 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3752 
3753 		/* remove from object (inode or locality group) */
3754 		spin_lock(pa->pa_obj_lock);
3755 		list_del_rcu(&pa->pa_inode_list);
3756 		spin_unlock(pa->pa_obj_lock);
3757 
3758 		if (pa->pa_type == MB_GROUP_PA)
3759 			ext4_mb_release_group_pa(&e4b, pa);
3760 		else
3761 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3762 
3763 		list_del(&pa->u.pa_tmp_list);
3764 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3765 	}
3766 
3767 out:
3768 	ext4_unlock_group(sb, group);
3769 	ext4_mb_unload_buddy(&e4b);
3770 	put_bh(bitmap_bh);
3771 	return free;
3772 }
3773 
3774 /*
3775  * releases all non-used preallocated blocks for given inode
3776  *
3777  * It's important to discard preallocations under i_data_sem
3778  * We don't want another block to be served from the prealloc
3779  * space when we are discarding the inode prealloc space.
3780  *
3781  * FIXME!! Make sure it is valid at all the call sites
3782  */
3783 void ext4_discard_preallocations(struct inode *inode)
3784 {
3785 	struct ext4_inode_info *ei = EXT4_I(inode);
3786 	struct super_block *sb = inode->i_sb;
3787 	struct buffer_head *bitmap_bh = NULL;
3788 	struct ext4_prealloc_space *pa, *tmp;
3789 	ext4_group_t group = 0;
3790 	struct list_head list;
3791 	struct ext4_buddy e4b;
3792 	int err;
3793 
3794 	if (!S_ISREG(inode->i_mode)) {
3795 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3796 		return;
3797 	}
3798 
3799 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3800 	trace_ext4_discard_preallocations(inode);
3801 
3802 	INIT_LIST_HEAD(&list);
3803 
3804 repeat:
3805 	/* first, collect all pa's in the inode */
3806 	spin_lock(&ei->i_prealloc_lock);
3807 	while (!list_empty(&ei->i_prealloc_list)) {
3808 		pa = list_entry(ei->i_prealloc_list.next,
3809 				struct ext4_prealloc_space, pa_inode_list);
3810 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3811 		spin_lock(&pa->pa_lock);
3812 		if (atomic_read(&pa->pa_count)) {
3813 			/* this shouldn't happen often - nobody should
3814 			 * use preallocation while we're discarding it */
3815 			spin_unlock(&pa->pa_lock);
3816 			spin_unlock(&ei->i_prealloc_lock);
3817 			printk(KERN_ERR "uh-oh! used pa while discarding\n");
3818 			WARN_ON(1);
3819 			schedule_timeout_uninterruptible(HZ);
3820 			goto repeat;
3821 
3822 		}
3823 		if (pa->pa_deleted == 0) {
3824 			pa->pa_deleted = 1;
3825 			spin_unlock(&pa->pa_lock);
3826 			list_del_rcu(&pa->pa_inode_list);
3827 			list_add(&pa->u.pa_tmp_list, &list);
3828 			continue;
3829 		}
3830 
3831 		/* someone is deleting pa right now */
3832 		spin_unlock(&pa->pa_lock);
3833 		spin_unlock(&ei->i_prealloc_lock);
3834 
3835 		/* we have to wait here because pa_deleted
3836 		 * doesn't mean pa is already unlinked from
3837 		 * the list. as we might be called from
3838 		 * ->clear_inode() the inode will get freed
3839 		 * and concurrent thread which is unlinking
3840 		 * pa from inode's list may access already
3841 		 * freed memory, bad-bad-bad */
3842 
3843 		/* XXX: if this happens too often, we can
3844 		 * add a flag to force wait only in case
3845 		 * of ->clear_inode(), but not in case of
3846 		 * regular truncate */
3847 		schedule_timeout_uninterruptible(HZ);
3848 		goto repeat;
3849 	}
3850 	spin_unlock(&ei->i_prealloc_lock);
3851 
3852 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3853 		BUG_ON(pa->pa_type != MB_INODE_PA);
3854 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3855 
3856 		err = ext4_mb_load_buddy(sb, group, &e4b);
3857 		if (err) {
3858 			ext4_error(sb, "Error loading buddy information for %u",
3859 					group);
3860 			continue;
3861 		}
3862 
3863 		bitmap_bh = ext4_read_block_bitmap(sb, group);
3864 		if (bitmap_bh == NULL) {
3865 			ext4_error(sb, "Error reading block bitmap for %u",
3866 					group);
3867 			ext4_mb_unload_buddy(&e4b);
3868 			continue;
3869 		}
3870 
3871 		ext4_lock_group(sb, group);
3872 		list_del(&pa->pa_group_list);
3873 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3874 		ext4_unlock_group(sb, group);
3875 
3876 		ext4_mb_unload_buddy(&e4b);
3877 		put_bh(bitmap_bh);
3878 
3879 		list_del(&pa->u.pa_tmp_list);
3880 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3881 	}
3882 }
3883 
3884 /*
3885  * finds all preallocated spaces and return blocks being freed to them
3886  * if preallocated space becomes full (no block is used from the space)
3887  * then the function frees space in buddy
3888  * XXX: at the moment, truncate (which is the only way to free blocks)
3889  * discards all preallocations
3890  */
3891 static void ext4_mb_return_to_preallocation(struct inode *inode,
3892 					struct ext4_buddy *e4b,
3893 					sector_t block, int count)
3894 {
3895 	BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
3896 }
3897 #ifdef CONFIG_EXT4_DEBUG
3898 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3899 {
3900 	struct super_block *sb = ac->ac_sb;
3901 	ext4_group_t ngroups, i;
3902 
3903 	if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
3904 		return;
3905 
3906 	printk(KERN_ERR "EXT4-fs: Can't allocate:"
3907 			" Allocation context details:\n");
3908 	printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
3909 			ac->ac_status, ac->ac_flags);
3910 	printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
3911 			"best %lu/%lu/%lu@%lu cr %d\n",
3912 			(unsigned long)ac->ac_o_ex.fe_group,
3913 			(unsigned long)ac->ac_o_ex.fe_start,
3914 			(unsigned long)ac->ac_o_ex.fe_len,
3915 			(unsigned long)ac->ac_o_ex.fe_logical,
3916 			(unsigned long)ac->ac_g_ex.fe_group,
3917 			(unsigned long)ac->ac_g_ex.fe_start,
3918 			(unsigned long)ac->ac_g_ex.fe_len,
3919 			(unsigned long)ac->ac_g_ex.fe_logical,
3920 			(unsigned long)ac->ac_b_ex.fe_group,
3921 			(unsigned long)ac->ac_b_ex.fe_start,
3922 			(unsigned long)ac->ac_b_ex.fe_len,
3923 			(unsigned long)ac->ac_b_ex.fe_logical,
3924 			(int)ac->ac_criteria);
3925 	printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
3926 		ac->ac_found);
3927 	printk(KERN_ERR "EXT4-fs: groups: \n");
3928 	ngroups = ext4_get_groups_count(sb);
3929 	for (i = 0; i < ngroups; i++) {
3930 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3931 		struct ext4_prealloc_space *pa;
3932 		ext4_grpblk_t start;
3933 		struct list_head *cur;
3934 		ext4_lock_group(sb, i);
3935 		list_for_each(cur, &grp->bb_prealloc_list) {
3936 			pa = list_entry(cur, struct ext4_prealloc_space,
3937 					pa_group_list);
3938 			spin_lock(&pa->pa_lock);
3939 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3940 						     NULL, &start);
3941 			spin_unlock(&pa->pa_lock);
3942 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
3943 			       start, pa->pa_len);
3944 		}
3945 		ext4_unlock_group(sb, i);
3946 
3947 		if (grp->bb_free == 0)
3948 			continue;
3949 		printk(KERN_ERR "%u: %d/%d \n",
3950 		       i, grp->bb_free, grp->bb_fragments);
3951 	}
3952 	printk(KERN_ERR "\n");
3953 }
3954 #else
3955 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3956 {
3957 	return;
3958 }
3959 #endif
3960 
3961 /*
3962  * We use locality group preallocation for small size file. The size of the
3963  * file is determined by the current size or the resulting size after
3964  * allocation which ever is larger
3965  *
3966  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3967  */
3968 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3969 {
3970 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3971 	int bsbits = ac->ac_sb->s_blocksize_bits;
3972 	loff_t size, isize;
3973 
3974 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3975 		return;
3976 
3977 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3978 		return;
3979 
3980 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3981 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3982 		>> bsbits;
3983 
3984 	if ((size == isize) &&
3985 	    !ext4_fs_is_busy(sbi) &&
3986 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3987 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3988 		return;
3989 	}
3990 
3991 	/* don't use group allocation for large files */
3992 	size = max(size, isize);
3993 	if (size > sbi->s_mb_stream_request) {
3994 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3995 		return;
3996 	}
3997 
3998 	BUG_ON(ac->ac_lg != NULL);
3999 	/*
4000 	 * locality group prealloc space are per cpu. The reason for having
4001 	 * per cpu locality group is to reduce the contention between block
4002 	 * request from multiple CPUs.
4003 	 */
4004 	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4005 
4006 	/* we're going to use group allocation */
4007 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4008 
4009 	/* serialize all allocations in the group */
4010 	mutex_lock(&ac->ac_lg->lg_mutex);
4011 }
4012 
4013 static noinline_for_stack int
4014 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4015 				struct ext4_allocation_request *ar)
4016 {
4017 	struct super_block *sb = ar->inode->i_sb;
4018 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4019 	struct ext4_super_block *es = sbi->s_es;
4020 	ext4_group_t group;
4021 	unsigned int len;
4022 	ext4_fsblk_t goal;
4023 	ext4_grpblk_t block;
4024 
4025 	/* we can't allocate > group size */
4026 	len = ar->len;
4027 
4028 	/* just a dirty hack to filter too big requests  */
4029 	if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4030 		len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4031 
4032 	/* start searching from the goal */
4033 	goal = ar->goal;
4034 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4035 			goal >= ext4_blocks_count(es))
4036 		goal = le32_to_cpu(es->s_first_data_block);
4037 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4038 
4039 	/* set up allocation goals */
4040 	memset(ac, 0, sizeof(struct ext4_allocation_context));
4041 	ac->ac_b_ex.fe_logical = ar->logical;
4042 	ac->ac_status = AC_STATUS_CONTINUE;
4043 	ac->ac_sb = sb;
4044 	ac->ac_inode = ar->inode;
4045 	ac->ac_o_ex.fe_logical = ar->logical;
4046 	ac->ac_o_ex.fe_group = group;
4047 	ac->ac_o_ex.fe_start = block;
4048 	ac->ac_o_ex.fe_len = len;
4049 	ac->ac_g_ex.fe_logical = ar->logical;
4050 	ac->ac_g_ex.fe_group = group;
4051 	ac->ac_g_ex.fe_start = block;
4052 	ac->ac_g_ex.fe_len = len;
4053 	ac->ac_flags = ar->flags;
4054 
4055 	/* we have to define context: we'll we work with a file or
4056 	 * locality group. this is a policy, actually */
4057 	ext4_mb_group_or_file(ac);
4058 
4059 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4060 			"left: %u/%u, right %u/%u to %swritable\n",
4061 			(unsigned) ar->len, (unsigned) ar->logical,
4062 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4063 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4064 			(unsigned) ar->lright, (unsigned) ar->pright,
4065 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4066 	return 0;
4067 
4068 }
4069 
4070 static noinline_for_stack void
4071 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4072 					struct ext4_locality_group *lg,
4073 					int order, int total_entries)
4074 {
4075 	ext4_group_t group = 0;
4076 	struct ext4_buddy e4b;
4077 	struct list_head discard_list;
4078 	struct ext4_prealloc_space *pa, *tmp;
4079 
4080 	mb_debug(1, "discard locality group preallocation\n");
4081 
4082 	INIT_LIST_HEAD(&discard_list);
4083 
4084 	spin_lock(&lg->lg_prealloc_lock);
4085 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4086 						pa_inode_list) {
4087 		spin_lock(&pa->pa_lock);
4088 		if (atomic_read(&pa->pa_count)) {
4089 			/*
4090 			 * This is the pa that we just used
4091 			 * for block allocation. So don't
4092 			 * free that
4093 			 */
4094 			spin_unlock(&pa->pa_lock);
4095 			continue;
4096 		}
4097 		if (pa->pa_deleted) {
4098 			spin_unlock(&pa->pa_lock);
4099 			continue;
4100 		}
4101 		/* only lg prealloc space */
4102 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4103 
4104 		/* seems this one can be freed ... */
4105 		pa->pa_deleted = 1;
4106 		spin_unlock(&pa->pa_lock);
4107 
4108 		list_del_rcu(&pa->pa_inode_list);
4109 		list_add(&pa->u.pa_tmp_list, &discard_list);
4110 
4111 		total_entries--;
4112 		if (total_entries <= 5) {
4113 			/*
4114 			 * we want to keep only 5 entries
4115 			 * allowing it to grow to 8. This
4116 			 * mak sure we don't call discard
4117 			 * soon for this list.
4118 			 */
4119 			break;
4120 		}
4121 	}
4122 	spin_unlock(&lg->lg_prealloc_lock);
4123 
4124 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4125 
4126 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4127 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4128 			ext4_error(sb, "Error loading buddy information for %u",
4129 					group);
4130 			continue;
4131 		}
4132 		ext4_lock_group(sb, group);
4133 		list_del(&pa->pa_group_list);
4134 		ext4_mb_release_group_pa(&e4b, pa);
4135 		ext4_unlock_group(sb, group);
4136 
4137 		ext4_mb_unload_buddy(&e4b);
4138 		list_del(&pa->u.pa_tmp_list);
4139 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4140 	}
4141 }
4142 
4143 /*
4144  * We have incremented pa_count. So it cannot be freed at this
4145  * point. Also we hold lg_mutex. So no parallel allocation is
4146  * possible from this lg. That means pa_free cannot be updated.
4147  *
4148  * A parallel ext4_mb_discard_group_preallocations is possible.
4149  * which can cause the lg_prealloc_list to be updated.
4150  */
4151 
4152 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4153 {
4154 	int order, added = 0, lg_prealloc_count = 1;
4155 	struct super_block *sb = ac->ac_sb;
4156 	struct ext4_locality_group *lg = ac->ac_lg;
4157 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4158 
4159 	order = fls(pa->pa_free) - 1;
4160 	if (order > PREALLOC_TB_SIZE - 1)
4161 		/* The max size of hash table is PREALLOC_TB_SIZE */
4162 		order = PREALLOC_TB_SIZE - 1;
4163 	/* Add the prealloc space to lg */
4164 	rcu_read_lock();
4165 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4166 						pa_inode_list) {
4167 		spin_lock(&tmp_pa->pa_lock);
4168 		if (tmp_pa->pa_deleted) {
4169 			spin_unlock(&tmp_pa->pa_lock);
4170 			continue;
4171 		}
4172 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4173 			/* Add to the tail of the previous entry */
4174 			list_add_tail_rcu(&pa->pa_inode_list,
4175 						&tmp_pa->pa_inode_list);
4176 			added = 1;
4177 			/*
4178 			 * we want to count the total
4179 			 * number of entries in the list
4180 			 */
4181 		}
4182 		spin_unlock(&tmp_pa->pa_lock);
4183 		lg_prealloc_count++;
4184 	}
4185 	if (!added)
4186 		list_add_tail_rcu(&pa->pa_inode_list,
4187 					&lg->lg_prealloc_list[order]);
4188 	rcu_read_unlock();
4189 
4190 	/* Now trim the list to be not more than 8 elements */
4191 	if (lg_prealloc_count > 8) {
4192 		ext4_mb_discard_lg_preallocations(sb, lg,
4193 						order, lg_prealloc_count);
4194 		return;
4195 	}
4196 	return ;
4197 }
4198 
4199 /*
4200  * release all resource we used in allocation
4201  */
4202 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4203 {
4204 	struct ext4_prealloc_space *pa = ac->ac_pa;
4205 	if (pa) {
4206 		if (pa->pa_type == MB_GROUP_PA) {
4207 			/* see comment in ext4_mb_use_group_pa() */
4208 			spin_lock(&pa->pa_lock);
4209 			pa->pa_pstart += ac->ac_b_ex.fe_len;
4210 			pa->pa_lstart += ac->ac_b_ex.fe_len;
4211 			pa->pa_free -= ac->ac_b_ex.fe_len;
4212 			pa->pa_len -= ac->ac_b_ex.fe_len;
4213 			spin_unlock(&pa->pa_lock);
4214 		}
4215 	}
4216 	if (ac->alloc_semp)
4217 		up_read(ac->alloc_semp);
4218 	if (pa) {
4219 		/*
4220 		 * We want to add the pa to the right bucket.
4221 		 * Remove it from the list and while adding
4222 		 * make sure the list to which we are adding
4223 		 * doesn't grow big.  We need to release
4224 		 * alloc_semp before calling ext4_mb_add_n_trim()
4225 		 */
4226 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4227 			spin_lock(pa->pa_obj_lock);
4228 			list_del_rcu(&pa->pa_inode_list);
4229 			spin_unlock(pa->pa_obj_lock);
4230 			ext4_mb_add_n_trim(ac);
4231 		}
4232 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4233 	}
4234 	if (ac->ac_bitmap_page)
4235 		page_cache_release(ac->ac_bitmap_page);
4236 	if (ac->ac_buddy_page)
4237 		page_cache_release(ac->ac_buddy_page);
4238 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4239 		mutex_unlock(&ac->ac_lg->lg_mutex);
4240 	ext4_mb_collect_stats(ac);
4241 	return 0;
4242 }
4243 
4244 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4245 {
4246 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4247 	int ret;
4248 	int freed = 0;
4249 
4250 	trace_ext4_mb_discard_preallocations(sb, needed);
4251 	for (i = 0; i < ngroups && needed > 0; i++) {
4252 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4253 		freed += ret;
4254 		needed -= ret;
4255 	}
4256 
4257 	return freed;
4258 }
4259 
4260 /*
4261  * Main entry point into mballoc to allocate blocks
4262  * it tries to use preallocation first, then falls back
4263  * to usual allocation
4264  */
4265 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4266 				struct ext4_allocation_request *ar, int *errp)
4267 {
4268 	int freed;
4269 	struct ext4_allocation_context *ac = NULL;
4270 	struct ext4_sb_info *sbi;
4271 	struct super_block *sb;
4272 	ext4_fsblk_t block = 0;
4273 	unsigned int inquota = 0;
4274 	unsigned int reserv_blks = 0;
4275 
4276 	sb = ar->inode->i_sb;
4277 	sbi = EXT4_SB(sb);
4278 
4279 	trace_ext4_request_blocks(ar);
4280 
4281 	/*
4282 	 * For delayed allocation, we could skip the ENOSPC and
4283 	 * EDQUOT check, as blocks and quotas have been already
4284 	 * reserved when data being copied into pagecache.
4285 	 */
4286 	if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4287 		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4288 	else {
4289 		/* Without delayed allocation we need to verify
4290 		 * there is enough free blocks to do block allocation
4291 		 * and verify allocation doesn't exceed the quota limits.
4292 		 */
4293 		while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4294 			/* let others to free the space */
4295 			yield();
4296 			ar->len = ar->len >> 1;
4297 		}
4298 		if (!ar->len) {
4299 			*errp = -ENOSPC;
4300 			return 0;
4301 		}
4302 		reserv_blks = ar->len;
4303 		while (ar->len && dquot_alloc_block(ar->inode, ar->len)) {
4304 			ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4305 			ar->len--;
4306 		}
4307 		inquota = ar->len;
4308 		if (ar->len == 0) {
4309 			*errp = -EDQUOT;
4310 			goto out;
4311 		}
4312 	}
4313 
4314 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4315 	if (!ac) {
4316 		ar->len = 0;
4317 		*errp = -ENOMEM;
4318 		goto out;
4319 	}
4320 
4321 	*errp = ext4_mb_initialize_context(ac, ar);
4322 	if (*errp) {
4323 		ar->len = 0;
4324 		goto out;
4325 	}
4326 
4327 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4328 	if (!ext4_mb_use_preallocated(ac)) {
4329 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4330 		ext4_mb_normalize_request(ac, ar);
4331 repeat:
4332 		/* allocate space in core */
4333 		*errp = ext4_mb_regular_allocator(ac);
4334 		if (*errp)
4335 			goto errout;
4336 
4337 		/* as we've just preallocated more space than
4338 		 * user requested orinally, we store allocated
4339 		 * space in a special descriptor */
4340 		if (ac->ac_status == AC_STATUS_FOUND &&
4341 				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4342 			ext4_mb_new_preallocation(ac);
4343 	}
4344 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4345 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4346 		if (*errp == -EAGAIN) {
4347 			/*
4348 			 * drop the reference that we took
4349 			 * in ext4_mb_use_best_found
4350 			 */
4351 			ext4_mb_release_context(ac);
4352 			ac->ac_b_ex.fe_group = 0;
4353 			ac->ac_b_ex.fe_start = 0;
4354 			ac->ac_b_ex.fe_len = 0;
4355 			ac->ac_status = AC_STATUS_CONTINUE;
4356 			goto repeat;
4357 		} else if (*errp)
4358 		errout:
4359 			ext4_discard_allocated_blocks(ac);
4360 		else {
4361 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4362 			ar->len = ac->ac_b_ex.fe_len;
4363 		}
4364 	} else {
4365 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4366 		if (freed)
4367 			goto repeat;
4368 		*errp = -ENOSPC;
4369 	}
4370 
4371 	if (*errp) {
4372 		ac->ac_b_ex.fe_len = 0;
4373 		ar->len = 0;
4374 		ext4_mb_show_ac(ac);
4375 	}
4376 	ext4_mb_release_context(ac);
4377 out:
4378 	if (ac)
4379 		kmem_cache_free(ext4_ac_cachep, ac);
4380 	if (inquota && ar->len < inquota)
4381 		dquot_free_block(ar->inode, inquota - ar->len);
4382 	if (!ar->len) {
4383 		if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4384 			/* release all the reserved blocks if non delalloc */
4385 			percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4386 						reserv_blks);
4387 	}
4388 
4389 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4390 
4391 	return block;
4392 }
4393 
4394 /*
4395  * We can merge two free data extents only if the physical blocks
4396  * are contiguous, AND the extents were freed by the same transaction,
4397  * AND the blocks are associated with the same group.
4398  */
4399 static int can_merge(struct ext4_free_data *entry1,
4400 			struct ext4_free_data *entry2)
4401 {
4402 	if ((entry1->t_tid == entry2->t_tid) &&
4403 	    (entry1->group == entry2->group) &&
4404 	    ((entry1->start_blk + entry1->count) == entry2->start_blk))
4405 		return 1;
4406 	return 0;
4407 }
4408 
4409 static noinline_for_stack int
4410 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4411 		      struct ext4_free_data *new_entry)
4412 {
4413 	ext4_group_t group = e4b->bd_group;
4414 	ext4_grpblk_t block;
4415 	struct ext4_free_data *entry;
4416 	struct ext4_group_info *db = e4b->bd_info;
4417 	struct super_block *sb = e4b->bd_sb;
4418 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4419 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4420 	struct rb_node *parent = NULL, *new_node;
4421 
4422 	BUG_ON(!ext4_handle_valid(handle));
4423 	BUG_ON(e4b->bd_bitmap_page == NULL);
4424 	BUG_ON(e4b->bd_buddy_page == NULL);
4425 
4426 	new_node = &new_entry->node;
4427 	block = new_entry->start_blk;
4428 
4429 	if (!*n) {
4430 		/* first free block exent. We need to
4431 		   protect buddy cache from being freed,
4432 		 * otherwise we'll refresh it from
4433 		 * on-disk bitmap and lose not-yet-available
4434 		 * blocks */
4435 		page_cache_get(e4b->bd_buddy_page);
4436 		page_cache_get(e4b->bd_bitmap_page);
4437 	}
4438 	while (*n) {
4439 		parent = *n;
4440 		entry = rb_entry(parent, struct ext4_free_data, node);
4441 		if (block < entry->start_blk)
4442 			n = &(*n)->rb_left;
4443 		else if (block >= (entry->start_blk + entry->count))
4444 			n = &(*n)->rb_right;
4445 		else {
4446 			ext4_grp_locked_error(sb, group, 0,
4447 				ext4_group_first_block_no(sb, group) + block,
4448 				"Block already on to-be-freed list");
4449 			return 0;
4450 		}
4451 	}
4452 
4453 	rb_link_node(new_node, parent, n);
4454 	rb_insert_color(new_node, &db->bb_free_root);
4455 
4456 	/* Now try to see the extent can be merged to left and right */
4457 	node = rb_prev(new_node);
4458 	if (node) {
4459 		entry = rb_entry(node, struct ext4_free_data, node);
4460 		if (can_merge(entry, new_entry)) {
4461 			new_entry->start_blk = entry->start_blk;
4462 			new_entry->count += entry->count;
4463 			rb_erase(node, &(db->bb_free_root));
4464 			spin_lock(&sbi->s_md_lock);
4465 			list_del(&entry->list);
4466 			spin_unlock(&sbi->s_md_lock);
4467 			kmem_cache_free(ext4_free_ext_cachep, entry);
4468 		}
4469 	}
4470 
4471 	node = rb_next(new_node);
4472 	if (node) {
4473 		entry = rb_entry(node, struct ext4_free_data, node);
4474 		if (can_merge(new_entry, entry)) {
4475 			new_entry->count += entry->count;
4476 			rb_erase(node, &(db->bb_free_root));
4477 			spin_lock(&sbi->s_md_lock);
4478 			list_del(&entry->list);
4479 			spin_unlock(&sbi->s_md_lock);
4480 			kmem_cache_free(ext4_free_ext_cachep, entry);
4481 		}
4482 	}
4483 	/* Add the extent to transaction's private list */
4484 	spin_lock(&sbi->s_md_lock);
4485 	list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4486 	spin_unlock(&sbi->s_md_lock);
4487 	return 0;
4488 }
4489 
4490 /**
4491  * ext4_free_blocks() -- Free given blocks and update quota
4492  * @handle:		handle for this transaction
4493  * @inode:		inode
4494  * @block:		start physical block to free
4495  * @count:		number of blocks to count
4496  * @metadata: 		Are these metadata blocks
4497  */
4498 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4499 		      struct buffer_head *bh, ext4_fsblk_t block,
4500 		      unsigned long count, int flags)
4501 {
4502 	struct buffer_head *bitmap_bh = NULL;
4503 	struct super_block *sb = inode->i_sb;
4504 	struct ext4_group_desc *gdp;
4505 	unsigned long freed = 0;
4506 	unsigned int overflow;
4507 	ext4_grpblk_t bit;
4508 	struct buffer_head *gd_bh;
4509 	ext4_group_t block_group;
4510 	struct ext4_sb_info *sbi;
4511 	struct ext4_buddy e4b;
4512 	int err = 0;
4513 	int ret;
4514 
4515 	if (bh) {
4516 		if (block)
4517 			BUG_ON(block != bh->b_blocknr);
4518 		else
4519 			block = bh->b_blocknr;
4520 	}
4521 
4522 	sbi = EXT4_SB(sb);
4523 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4524 	    !ext4_data_block_valid(sbi, block, count)) {
4525 		ext4_error(sb, "Freeing blocks not in datazone - "
4526 			   "block = %llu, count = %lu", block, count);
4527 		goto error_return;
4528 	}
4529 
4530 	ext4_debug("freeing block %llu\n", block);
4531 	trace_ext4_free_blocks(inode, block, count, flags);
4532 
4533 	if (flags & EXT4_FREE_BLOCKS_FORGET) {
4534 		struct buffer_head *tbh = bh;
4535 		int i;
4536 
4537 		BUG_ON(bh && (count > 1));
4538 
4539 		for (i = 0; i < count; i++) {
4540 			if (!bh)
4541 				tbh = sb_find_get_block(inode->i_sb,
4542 							block + i);
4543 			if (unlikely(!tbh))
4544 				continue;
4545 			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4546 				    inode, tbh, block + i);
4547 		}
4548 	}
4549 
4550 	/*
4551 	 * We need to make sure we don't reuse the freed block until
4552 	 * after the transaction is committed, which we can do by
4553 	 * treating the block as metadata, below.  We make an
4554 	 * exception if the inode is to be written in writeback mode
4555 	 * since writeback mode has weak data consistency guarantees.
4556 	 */
4557 	if (!ext4_should_writeback_data(inode))
4558 		flags |= EXT4_FREE_BLOCKS_METADATA;
4559 
4560 do_more:
4561 	overflow = 0;
4562 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4563 
4564 	/*
4565 	 * Check to see if we are freeing blocks across a group
4566 	 * boundary.
4567 	 */
4568 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4569 		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4570 		count -= overflow;
4571 	}
4572 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4573 	if (!bitmap_bh) {
4574 		err = -EIO;
4575 		goto error_return;
4576 	}
4577 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4578 	if (!gdp) {
4579 		err = -EIO;
4580 		goto error_return;
4581 	}
4582 
4583 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4584 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4585 	    in_range(block, ext4_inode_table(sb, gdp),
4586 		      EXT4_SB(sb)->s_itb_per_group) ||
4587 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4588 		      EXT4_SB(sb)->s_itb_per_group)) {
4589 
4590 		ext4_error(sb, "Freeing blocks in system zone - "
4591 			   "Block = %llu, count = %lu", block, count);
4592 		/* err = 0. ext4_std_error should be a no op */
4593 		goto error_return;
4594 	}
4595 
4596 	BUFFER_TRACE(bitmap_bh, "getting write access");
4597 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4598 	if (err)
4599 		goto error_return;
4600 
4601 	/*
4602 	 * We are about to modify some metadata.  Call the journal APIs
4603 	 * to unshare ->b_data if a currently-committing transaction is
4604 	 * using it
4605 	 */
4606 	BUFFER_TRACE(gd_bh, "get_write_access");
4607 	err = ext4_journal_get_write_access(handle, gd_bh);
4608 	if (err)
4609 		goto error_return;
4610 #ifdef AGGRESSIVE_CHECK
4611 	{
4612 		int i;
4613 		for (i = 0; i < count; i++)
4614 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4615 	}
4616 #endif
4617 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count);
4618 
4619 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4620 	if (err)
4621 		goto error_return;
4622 
4623 	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4624 		struct ext4_free_data *new_entry;
4625 		/*
4626 		 * blocks being freed are metadata. these blocks shouldn't
4627 		 * be used until this transaction is committed
4628 		 */
4629 		new_entry  = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4630 		new_entry->start_blk = bit;
4631 		new_entry->group  = block_group;
4632 		new_entry->count = count;
4633 		new_entry->t_tid = handle->h_transaction->t_tid;
4634 
4635 		ext4_lock_group(sb, block_group);
4636 		mb_clear_bits(bitmap_bh->b_data, bit, count);
4637 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4638 	} else {
4639 		/* need to update group_info->bb_free and bitmap
4640 		 * with group lock held. generate_buddy look at
4641 		 * them with group lock_held
4642 		 */
4643 		ext4_lock_group(sb, block_group);
4644 		mb_clear_bits(bitmap_bh->b_data, bit, count);
4645 		mb_free_blocks(inode, &e4b, bit, count);
4646 		ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4647 	}
4648 
4649 	ret = ext4_free_blks_count(sb, gdp) + count;
4650 	ext4_free_blks_set(sb, gdp, ret);
4651 	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4652 	ext4_unlock_group(sb, block_group);
4653 	percpu_counter_add(&sbi->s_freeblocks_counter, count);
4654 
4655 	if (sbi->s_log_groups_per_flex) {
4656 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4657 		atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4658 	}
4659 
4660 	ext4_mb_unload_buddy(&e4b);
4661 
4662 	freed += count;
4663 
4664 	/* We dirtied the bitmap block */
4665 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4666 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4667 
4668 	/* And the group descriptor block */
4669 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4670 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4671 	if (!err)
4672 		err = ret;
4673 
4674 	if (overflow && !err) {
4675 		block += count;
4676 		count = overflow;
4677 		put_bh(bitmap_bh);
4678 		goto do_more;
4679 	}
4680 	ext4_mark_super_dirty(sb);
4681 error_return:
4682 	if (freed)
4683 		dquot_free_block(inode, freed);
4684 	brelse(bitmap_bh);
4685 	ext4_std_error(sb, err);
4686 	return;
4687 }
4688 
4689 /**
4690  * ext4_trim_extent -- function to TRIM one single free extent in the group
4691  * @sb:		super block for the file system
4692  * @start:	starting block of the free extent in the alloc. group
4693  * @count:	number of blocks to TRIM
4694  * @group:	alloc. group we are working with
4695  * @e4b:	ext4 buddy for the group
4696  *
4697  * Trim "count" blocks starting at "start" in the "group". To assure that no
4698  * one will allocate those blocks, mark it as used in buddy bitmap. This must
4699  * be called with under the group lock.
4700  */
4701 static int ext4_trim_extent(struct super_block *sb, int start, int count,
4702 		ext4_group_t group, struct ext4_buddy *e4b)
4703 {
4704 	struct ext4_free_extent ex;
4705 	int ret = 0;
4706 
4707 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
4708 
4709 	ex.fe_start = start;
4710 	ex.fe_group = group;
4711 	ex.fe_len = count;
4712 
4713 	/*
4714 	 * Mark blocks used, so no one can reuse them while
4715 	 * being trimmed.
4716 	 */
4717 	mb_mark_used(e4b, &ex);
4718 	ext4_unlock_group(sb, group);
4719 
4720 	ret = ext4_issue_discard(sb, group, start, count);
4721 	if (ret)
4722 		ext4_std_error(sb, ret);
4723 
4724 	ext4_lock_group(sb, group);
4725 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
4726 	return ret;
4727 }
4728 
4729 /**
4730  * ext4_trim_all_free -- function to trim all free space in alloc. group
4731  * @sb:			super block for file system
4732  * @e4b:		ext4 buddy
4733  * @start:		first group block to examine
4734  * @max:		last group block to examine
4735  * @minblocks:		minimum extent block count
4736  *
4737  * ext4_trim_all_free walks through group's buddy bitmap searching for free
4738  * extents. When the free block is found, ext4_trim_extent is called to TRIM
4739  * the extent.
4740  *
4741  *
4742  * ext4_trim_all_free walks through group's block bitmap searching for free
4743  * extents. When the free extent is found, mark it as used in group buddy
4744  * bitmap. Then issue a TRIM command on this extent and free the extent in
4745  * the group buddy bitmap. This is done until whole group is scanned.
4746  */
4747 ext4_grpblk_t ext4_trim_all_free(struct super_block *sb, struct ext4_buddy *e4b,
4748 		ext4_grpblk_t start, ext4_grpblk_t max, ext4_grpblk_t minblocks)
4749 {
4750 	void *bitmap;
4751 	ext4_grpblk_t next, count = 0;
4752 	ext4_group_t group;
4753 	int ret = 0;
4754 
4755 	BUG_ON(e4b == NULL);
4756 
4757 	bitmap = e4b->bd_bitmap;
4758 	group = e4b->bd_group;
4759 	start = (e4b->bd_info->bb_first_free > start) ?
4760 		e4b->bd_info->bb_first_free : start;
4761 	ext4_lock_group(sb, group);
4762 
4763 	while (start < max) {
4764 		start = mb_find_next_zero_bit(bitmap, max, start);
4765 		if (start >= max)
4766 			break;
4767 		next = mb_find_next_bit(bitmap, max, start);
4768 
4769 		if ((next - start) >= minblocks) {
4770 			ret = ext4_trim_extent(sb, start,
4771 				next - start, group, e4b);
4772 			if (ret < 0)
4773 				break;
4774 			count += next - start;
4775 		}
4776 		start = next + 1;
4777 
4778 		if (fatal_signal_pending(current)) {
4779 			count = -ERESTARTSYS;
4780 			break;
4781 		}
4782 
4783 		if (need_resched()) {
4784 			ext4_unlock_group(sb, group);
4785 			cond_resched();
4786 			ext4_lock_group(sb, group);
4787 		}
4788 
4789 		if ((e4b->bd_info->bb_free - count) < minblocks)
4790 			break;
4791 	}
4792 	ext4_unlock_group(sb, group);
4793 
4794 	ext4_debug("trimmed %d blocks in the group %d\n",
4795 		count, group);
4796 
4797 	if (ret < 0)
4798 		count = ret;
4799 
4800 	return count;
4801 }
4802 
4803 /**
4804  * ext4_trim_fs() -- trim ioctl handle function
4805  * @sb:			superblock for filesystem
4806  * @range:		fstrim_range structure
4807  *
4808  * start:	First Byte to trim
4809  * len:		number of Bytes to trim from start
4810  * minlen:	minimum extent length in Bytes
4811  * ext4_trim_fs goes through all allocation groups containing Bytes from
4812  * start to start+len. For each such a group ext4_trim_all_free function
4813  * is invoked to trim all free space.
4814  */
4815 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
4816 {
4817 	struct ext4_buddy e4b;
4818 	ext4_group_t first_group, last_group;
4819 	ext4_group_t group, ngroups = ext4_get_groups_count(sb);
4820 	ext4_grpblk_t cnt = 0, first_block, last_block;
4821 	uint64_t start, len, minlen, trimmed;
4822 	int ret = 0;
4823 
4824 	start = range->start >> sb->s_blocksize_bits;
4825 	len = range->len >> sb->s_blocksize_bits;
4826 	minlen = range->minlen >> sb->s_blocksize_bits;
4827 	trimmed = 0;
4828 
4829 	if (unlikely(minlen > EXT4_BLOCKS_PER_GROUP(sb)))
4830 		return -EINVAL;
4831 
4832 	/* Determine first and last group to examine based on start and len */
4833 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
4834 				     &first_group, &first_block);
4835 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) (start + len),
4836 				     &last_group, &last_block);
4837 	last_group = (last_group > ngroups - 1) ? ngroups - 1 : last_group;
4838 	last_block = EXT4_BLOCKS_PER_GROUP(sb);
4839 
4840 	if (first_group > last_group)
4841 		return -EINVAL;
4842 
4843 	for (group = first_group; group <= last_group; group++) {
4844 		ret = ext4_mb_load_buddy(sb, group, &e4b);
4845 		if (ret) {
4846 			ext4_error(sb, "Error in loading buddy "
4847 					"information for %u", group);
4848 			break;
4849 		}
4850 
4851 		if (len >= EXT4_BLOCKS_PER_GROUP(sb))
4852 			len -= (EXT4_BLOCKS_PER_GROUP(sb) - first_block);
4853 		else
4854 			last_block = len;
4855 
4856 		if (e4b.bd_info->bb_free >= minlen) {
4857 			cnt = ext4_trim_all_free(sb, &e4b, first_block,
4858 						last_block, minlen);
4859 			if (cnt < 0) {
4860 				ret = cnt;
4861 				ext4_mb_unload_buddy(&e4b);
4862 				break;
4863 			}
4864 		}
4865 		ext4_mb_unload_buddy(&e4b);
4866 		trimmed += cnt;
4867 		first_block = 0;
4868 	}
4869 	range->len = trimmed * sb->s_blocksize;
4870 
4871 	return ret;
4872 }
4873