xref: /openbmc/linux/fs/ext4/mballoc.c (revision b98b3581)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <trace/events/ext4.h>
29 
30 /*
31  * MUSTDO:
32  *   - test ext4_ext_search_left() and ext4_ext_search_right()
33  *   - search for metadata in few groups
34  *
35  * TODO v4:
36  *   - normalization should take into account whether file is still open
37  *   - discard preallocations if no free space left (policy?)
38  *   - don't normalize tails
39  *   - quota
40  *   - reservation for superuser
41  *
42  * TODO v3:
43  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
44  *   - track min/max extents in each group for better group selection
45  *   - mb_mark_used() may allocate chunk right after splitting buddy
46  *   - tree of groups sorted by number of free blocks
47  *   - error handling
48  */
49 
50 /*
51  * The allocation request involve request for multiple number of blocks
52  * near to the goal(block) value specified.
53  *
54  * During initialization phase of the allocator we decide to use the
55  * group preallocation or inode preallocation depending on the size of
56  * the file. The size of the file could be the resulting file size we
57  * would have after allocation, or the current file size, which ever
58  * is larger. If the size is less than sbi->s_mb_stream_request we
59  * select to use the group preallocation. The default value of
60  * s_mb_stream_request is 16 blocks. This can also be tuned via
61  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
62  * terms of number of blocks.
63  *
64  * The main motivation for having small file use group preallocation is to
65  * ensure that we have small files closer together on the disk.
66  *
67  * First stage the allocator looks at the inode prealloc list,
68  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
69  * spaces for this particular inode. The inode prealloc space is
70  * represented as:
71  *
72  * pa_lstart -> the logical start block for this prealloc space
73  * pa_pstart -> the physical start block for this prealloc space
74  * pa_len    -> length for this prealloc space (in clusters)
75  * pa_free   ->  free space available in this prealloc space (in clusters)
76  *
77  * The inode preallocation space is used looking at the _logical_ start
78  * block. If only the logical file block falls within the range of prealloc
79  * space we will consume the particular prealloc space. This makes sure that
80  * we have contiguous physical blocks representing the file blocks
81  *
82  * The important thing to be noted in case of inode prealloc space is that
83  * we don't modify the values associated to inode prealloc space except
84  * pa_free.
85  *
86  * If we are not able to find blocks in the inode prealloc space and if we
87  * have the group allocation flag set then we look at the locality group
88  * prealloc space. These are per CPU prealloc list represented as
89  *
90  * ext4_sb_info.s_locality_groups[smp_processor_id()]
91  *
92  * The reason for having a per cpu locality group is to reduce the contention
93  * between CPUs. It is possible to get scheduled at this point.
94  *
95  * The locality group prealloc space is used looking at whether we have
96  * enough free space (pa_free) within the prealloc space.
97  *
98  * If we can't allocate blocks via inode prealloc or/and locality group
99  * prealloc then we look at the buddy cache. The buddy cache is represented
100  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
101  * mapped to the buddy and bitmap information regarding different
102  * groups. The buddy information is attached to buddy cache inode so that
103  * we can access them through the page cache. The information regarding
104  * each group is loaded via ext4_mb_load_buddy.  The information involve
105  * block bitmap and buddy information. The information are stored in the
106  * inode as:
107  *
108  *  {                        page                        }
109  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
110  *
111  *
112  * one block each for bitmap and buddy information.  So for each group we
113  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
114  * blocksize) blocks.  So it can have information regarding groups_per_page
115  * which is blocks_per_page/2
116  *
117  * The buddy cache inode is not stored on disk. The inode is thrown
118  * away when the filesystem is unmounted.
119  *
120  * We look for count number of blocks in the buddy cache. If we were able
121  * to locate that many free blocks we return with additional information
122  * regarding rest of the contiguous physical block available
123  *
124  * Before allocating blocks via buddy cache we normalize the request
125  * blocks. This ensure we ask for more blocks that we needed. The extra
126  * blocks that we get after allocation is added to the respective prealloc
127  * list. In case of inode preallocation we follow a list of heuristics
128  * based on file size. This can be found in ext4_mb_normalize_request. If
129  * we are doing a group prealloc we try to normalize the request to
130  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
131  * dependent on the cluster size; for non-bigalloc file systems, it is
132  * 512 blocks. This can be tuned via
133  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
134  * terms of number of blocks. If we have mounted the file system with -O
135  * stripe=<value> option the group prealloc request is normalized to the
136  * the smallest multiple of the stripe value (sbi->s_stripe) which is
137  * greater than the default mb_group_prealloc.
138  *
139  * The regular allocator (using the buddy cache) supports a few tunables.
140  *
141  * /sys/fs/ext4/<partition>/mb_min_to_scan
142  * /sys/fs/ext4/<partition>/mb_max_to_scan
143  * /sys/fs/ext4/<partition>/mb_order2_req
144  *
145  * The regular allocator uses buddy scan only if the request len is power of
146  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
147  * value of s_mb_order2_reqs can be tuned via
148  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
149  * stripe size (sbi->s_stripe), we try to search for contiguous block in
150  * stripe size. This should result in better allocation on RAID setups. If
151  * not, we search in the specific group using bitmap for best extents. The
152  * tunable min_to_scan and max_to_scan control the behaviour here.
153  * min_to_scan indicate how long the mballoc __must__ look for a best
154  * extent and max_to_scan indicates how long the mballoc __can__ look for a
155  * best extent in the found extents. Searching for the blocks starts with
156  * the group specified as the goal value in allocation context via
157  * ac_g_ex. Each group is first checked based on the criteria whether it
158  * can be used for allocation. ext4_mb_good_group explains how the groups are
159  * checked.
160  *
161  * Both the prealloc space are getting populated as above. So for the first
162  * request we will hit the buddy cache which will result in this prealloc
163  * space getting filled. The prealloc space is then later used for the
164  * subsequent request.
165  */
166 
167 /*
168  * mballoc operates on the following data:
169  *  - on-disk bitmap
170  *  - in-core buddy (actually includes buddy and bitmap)
171  *  - preallocation descriptors (PAs)
172  *
173  * there are two types of preallocations:
174  *  - inode
175  *    assiged to specific inode and can be used for this inode only.
176  *    it describes part of inode's space preallocated to specific
177  *    physical blocks. any block from that preallocated can be used
178  *    independent. the descriptor just tracks number of blocks left
179  *    unused. so, before taking some block from descriptor, one must
180  *    make sure corresponded logical block isn't allocated yet. this
181  *    also means that freeing any block within descriptor's range
182  *    must discard all preallocated blocks.
183  *  - locality group
184  *    assigned to specific locality group which does not translate to
185  *    permanent set of inodes: inode can join and leave group. space
186  *    from this type of preallocation can be used for any inode. thus
187  *    it's consumed from the beginning to the end.
188  *
189  * relation between them can be expressed as:
190  *    in-core buddy = on-disk bitmap + preallocation descriptors
191  *
192  * this mean blocks mballoc considers used are:
193  *  - allocated blocks (persistent)
194  *  - preallocated blocks (non-persistent)
195  *
196  * consistency in mballoc world means that at any time a block is either
197  * free or used in ALL structures. notice: "any time" should not be read
198  * literally -- time is discrete and delimited by locks.
199  *
200  *  to keep it simple, we don't use block numbers, instead we count number of
201  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
202  *
203  * all operations can be expressed as:
204  *  - init buddy:			buddy = on-disk + PAs
205  *  - new PA:				buddy += N; PA = N
206  *  - use inode PA:			on-disk += N; PA -= N
207  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
208  *  - use locality group PA		on-disk += N; PA -= N
209  *  - discard locality group PA		buddy -= PA; PA = 0
210  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
211  *        is used in real operation because we can't know actual used
212  *        bits from PA, only from on-disk bitmap
213  *
214  * if we follow this strict logic, then all operations above should be atomic.
215  * given some of them can block, we'd have to use something like semaphores
216  * killing performance on high-end SMP hardware. let's try to relax it using
217  * the following knowledge:
218  *  1) if buddy is referenced, it's already initialized
219  *  2) while block is used in buddy and the buddy is referenced,
220  *     nobody can re-allocate that block
221  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
222  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
223  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
224  *     block
225  *
226  * so, now we're building a concurrency table:
227  *  - init buddy vs.
228  *    - new PA
229  *      blocks for PA are allocated in the buddy, buddy must be referenced
230  *      until PA is linked to allocation group to avoid concurrent buddy init
231  *    - use inode PA
232  *      we need to make sure that either on-disk bitmap or PA has uptodate data
233  *      given (3) we care that PA-=N operation doesn't interfere with init
234  *    - discard inode PA
235  *      the simplest way would be to have buddy initialized by the discard
236  *    - use locality group PA
237  *      again PA-=N must be serialized with init
238  *    - discard locality group PA
239  *      the simplest way would be to have buddy initialized by the discard
240  *  - new PA vs.
241  *    - use inode PA
242  *      i_data_sem serializes them
243  *    - discard inode PA
244  *      discard process must wait until PA isn't used by another process
245  *    - use locality group PA
246  *      some mutex should serialize them
247  *    - discard locality group PA
248  *      discard process must wait until PA isn't used by another process
249  *  - use inode PA
250  *    - use inode PA
251  *      i_data_sem or another mutex should serializes them
252  *    - discard inode PA
253  *      discard process must wait until PA isn't used by another process
254  *    - use locality group PA
255  *      nothing wrong here -- they're different PAs covering different blocks
256  *    - discard locality group PA
257  *      discard process must wait until PA isn't used by another process
258  *
259  * now we're ready to make few consequences:
260  *  - PA is referenced and while it is no discard is possible
261  *  - PA is referenced until block isn't marked in on-disk bitmap
262  *  - PA changes only after on-disk bitmap
263  *  - discard must not compete with init. either init is done before
264  *    any discard or they're serialized somehow
265  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
266  *
267  * a special case when we've used PA to emptiness. no need to modify buddy
268  * in this case, but we should care about concurrent init
269  *
270  */
271 
272  /*
273  * Logic in few words:
274  *
275  *  - allocation:
276  *    load group
277  *    find blocks
278  *    mark bits in on-disk bitmap
279  *    release group
280  *
281  *  - use preallocation:
282  *    find proper PA (per-inode or group)
283  *    load group
284  *    mark bits in on-disk bitmap
285  *    release group
286  *    release PA
287  *
288  *  - free:
289  *    load group
290  *    mark bits in on-disk bitmap
291  *    release group
292  *
293  *  - discard preallocations in group:
294  *    mark PAs deleted
295  *    move them onto local list
296  *    load on-disk bitmap
297  *    load group
298  *    remove PA from object (inode or locality group)
299  *    mark free blocks in-core
300  *
301  *  - discard inode's preallocations:
302  */
303 
304 /*
305  * Locking rules
306  *
307  * Locks:
308  *  - bitlock on a group	(group)
309  *  - object (inode/locality)	(object)
310  *  - per-pa lock		(pa)
311  *
312  * Paths:
313  *  - new pa
314  *    object
315  *    group
316  *
317  *  - find and use pa:
318  *    pa
319  *
320  *  - release consumed pa:
321  *    pa
322  *    group
323  *    object
324  *
325  *  - generate in-core bitmap:
326  *    group
327  *        pa
328  *
329  *  - discard all for given object (inode, locality group):
330  *    object
331  *        pa
332  *    group
333  *
334  *  - discard all for given group:
335  *    group
336  *        pa
337  *    group
338  *        object
339  *
340  */
341 static struct kmem_cache *ext4_pspace_cachep;
342 static struct kmem_cache *ext4_ac_cachep;
343 static struct kmem_cache *ext4_free_data_cachep;
344 
345 /* We create slab caches for groupinfo data structures based on the
346  * superblock block size.  There will be one per mounted filesystem for
347  * each unique s_blocksize_bits */
348 #define NR_GRPINFO_CACHES 8
349 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
350 
351 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
352 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
353 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
354 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
355 };
356 
357 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
358 					ext4_group_t group);
359 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
360 						ext4_group_t group);
361 static void ext4_free_data_callback(struct super_block *sb,
362 				struct ext4_journal_cb_entry *jce, int rc);
363 
364 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
365 {
366 #if BITS_PER_LONG == 64
367 	*bit += ((unsigned long) addr & 7UL) << 3;
368 	addr = (void *) ((unsigned long) addr & ~7UL);
369 #elif BITS_PER_LONG == 32
370 	*bit += ((unsigned long) addr & 3UL) << 3;
371 	addr = (void *) ((unsigned long) addr & ~3UL);
372 #else
373 #error "how many bits you are?!"
374 #endif
375 	return addr;
376 }
377 
378 static inline int mb_test_bit(int bit, void *addr)
379 {
380 	/*
381 	 * ext4_test_bit on architecture like powerpc
382 	 * needs unsigned long aligned address
383 	 */
384 	addr = mb_correct_addr_and_bit(&bit, addr);
385 	return ext4_test_bit(bit, addr);
386 }
387 
388 static inline void mb_set_bit(int bit, void *addr)
389 {
390 	addr = mb_correct_addr_and_bit(&bit, addr);
391 	ext4_set_bit(bit, addr);
392 }
393 
394 static inline void mb_clear_bit(int bit, void *addr)
395 {
396 	addr = mb_correct_addr_and_bit(&bit, addr);
397 	ext4_clear_bit(bit, addr);
398 }
399 
400 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
401 {
402 	int fix = 0, ret, tmpmax;
403 	addr = mb_correct_addr_and_bit(&fix, addr);
404 	tmpmax = max + fix;
405 	start += fix;
406 
407 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
408 	if (ret > max)
409 		return max;
410 	return ret;
411 }
412 
413 static inline int mb_find_next_bit(void *addr, int max, int start)
414 {
415 	int fix = 0, ret, tmpmax;
416 	addr = mb_correct_addr_and_bit(&fix, addr);
417 	tmpmax = max + fix;
418 	start += fix;
419 
420 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
421 	if (ret > max)
422 		return max;
423 	return ret;
424 }
425 
426 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
427 {
428 	char *bb;
429 
430 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
431 	BUG_ON(max == NULL);
432 
433 	if (order > e4b->bd_blkbits + 1) {
434 		*max = 0;
435 		return NULL;
436 	}
437 
438 	/* at order 0 we see each particular block */
439 	if (order == 0) {
440 		*max = 1 << (e4b->bd_blkbits + 3);
441 		return e4b->bd_bitmap;
442 	}
443 
444 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
445 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
446 
447 	return bb;
448 }
449 
450 #ifdef DOUBLE_CHECK
451 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
452 			   int first, int count)
453 {
454 	int i;
455 	struct super_block *sb = e4b->bd_sb;
456 
457 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
458 		return;
459 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
460 	for (i = 0; i < count; i++) {
461 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
462 			ext4_fsblk_t blocknr;
463 
464 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
465 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
466 			ext4_grp_locked_error(sb, e4b->bd_group,
467 					      inode ? inode->i_ino : 0,
468 					      blocknr,
469 					      "freeing block already freed "
470 					      "(bit %u)",
471 					      first + i);
472 		}
473 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
474 	}
475 }
476 
477 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
478 {
479 	int i;
480 
481 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
482 		return;
483 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
484 	for (i = 0; i < count; i++) {
485 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
486 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
487 	}
488 }
489 
490 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
491 {
492 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
493 		unsigned char *b1, *b2;
494 		int i;
495 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
496 		b2 = (unsigned char *) bitmap;
497 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
498 			if (b1[i] != b2[i]) {
499 				ext4_msg(e4b->bd_sb, KERN_ERR,
500 					 "corruption in group %u "
501 					 "at byte %u(%u): %x in copy != %x "
502 					 "on disk/prealloc",
503 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
504 				BUG();
505 			}
506 		}
507 	}
508 }
509 
510 #else
511 static inline void mb_free_blocks_double(struct inode *inode,
512 				struct ext4_buddy *e4b, int first, int count)
513 {
514 	return;
515 }
516 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
517 						int first, int count)
518 {
519 	return;
520 }
521 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
522 {
523 	return;
524 }
525 #endif
526 
527 #ifdef AGGRESSIVE_CHECK
528 
529 #define MB_CHECK_ASSERT(assert)						\
530 do {									\
531 	if (!(assert)) {						\
532 		printk(KERN_EMERG					\
533 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
534 			function, file, line, # assert);		\
535 		BUG();							\
536 	}								\
537 } while (0)
538 
539 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
540 				const char *function, int line)
541 {
542 	struct super_block *sb = e4b->bd_sb;
543 	int order = e4b->bd_blkbits + 1;
544 	int max;
545 	int max2;
546 	int i;
547 	int j;
548 	int k;
549 	int count;
550 	struct ext4_group_info *grp;
551 	int fragments = 0;
552 	int fstart;
553 	struct list_head *cur;
554 	void *buddy;
555 	void *buddy2;
556 
557 	{
558 		static int mb_check_counter;
559 		if (mb_check_counter++ % 100 != 0)
560 			return 0;
561 	}
562 
563 	while (order > 1) {
564 		buddy = mb_find_buddy(e4b, order, &max);
565 		MB_CHECK_ASSERT(buddy);
566 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
567 		MB_CHECK_ASSERT(buddy2);
568 		MB_CHECK_ASSERT(buddy != buddy2);
569 		MB_CHECK_ASSERT(max * 2 == max2);
570 
571 		count = 0;
572 		for (i = 0; i < max; i++) {
573 
574 			if (mb_test_bit(i, buddy)) {
575 				/* only single bit in buddy2 may be 1 */
576 				if (!mb_test_bit(i << 1, buddy2)) {
577 					MB_CHECK_ASSERT(
578 						mb_test_bit((i<<1)+1, buddy2));
579 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
580 					MB_CHECK_ASSERT(
581 						mb_test_bit(i << 1, buddy2));
582 				}
583 				continue;
584 			}
585 
586 			/* both bits in buddy2 must be 1 */
587 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
588 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
589 
590 			for (j = 0; j < (1 << order); j++) {
591 				k = (i * (1 << order)) + j;
592 				MB_CHECK_ASSERT(
593 					!mb_test_bit(k, e4b->bd_bitmap));
594 			}
595 			count++;
596 		}
597 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
598 		order--;
599 	}
600 
601 	fstart = -1;
602 	buddy = mb_find_buddy(e4b, 0, &max);
603 	for (i = 0; i < max; i++) {
604 		if (!mb_test_bit(i, buddy)) {
605 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
606 			if (fstart == -1) {
607 				fragments++;
608 				fstart = i;
609 			}
610 			continue;
611 		}
612 		fstart = -1;
613 		/* check used bits only */
614 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
615 			buddy2 = mb_find_buddy(e4b, j, &max2);
616 			k = i >> j;
617 			MB_CHECK_ASSERT(k < max2);
618 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
619 		}
620 	}
621 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
622 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
623 
624 	grp = ext4_get_group_info(sb, e4b->bd_group);
625 	list_for_each(cur, &grp->bb_prealloc_list) {
626 		ext4_group_t groupnr;
627 		struct ext4_prealloc_space *pa;
628 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
629 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
630 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
631 		for (i = 0; i < pa->pa_len; i++)
632 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
633 	}
634 	return 0;
635 }
636 #undef MB_CHECK_ASSERT
637 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
638 					__FILE__, __func__, __LINE__)
639 #else
640 #define mb_check_buddy(e4b)
641 #endif
642 
643 /*
644  * Divide blocks started from @first with length @len into
645  * smaller chunks with power of 2 blocks.
646  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
647  * then increase bb_counters[] for corresponded chunk size.
648  */
649 static void ext4_mb_mark_free_simple(struct super_block *sb,
650 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
651 					struct ext4_group_info *grp)
652 {
653 	struct ext4_sb_info *sbi = EXT4_SB(sb);
654 	ext4_grpblk_t min;
655 	ext4_grpblk_t max;
656 	ext4_grpblk_t chunk;
657 	unsigned short border;
658 
659 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
660 
661 	border = 2 << sb->s_blocksize_bits;
662 
663 	while (len > 0) {
664 		/* find how many blocks can be covered since this position */
665 		max = ffs(first | border) - 1;
666 
667 		/* find how many blocks of power 2 we need to mark */
668 		min = fls(len) - 1;
669 
670 		if (max < min)
671 			min = max;
672 		chunk = 1 << min;
673 
674 		/* mark multiblock chunks only */
675 		grp->bb_counters[min]++;
676 		if (min > 0)
677 			mb_clear_bit(first >> min,
678 				     buddy + sbi->s_mb_offsets[min]);
679 
680 		len -= chunk;
681 		first += chunk;
682 	}
683 }
684 
685 /*
686  * Cache the order of the largest free extent we have available in this block
687  * group.
688  */
689 static void
690 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
691 {
692 	int i;
693 	int bits;
694 
695 	grp->bb_largest_free_order = -1; /* uninit */
696 
697 	bits = sb->s_blocksize_bits + 1;
698 	for (i = bits; i >= 0; i--) {
699 		if (grp->bb_counters[i] > 0) {
700 			grp->bb_largest_free_order = i;
701 			break;
702 		}
703 	}
704 }
705 
706 static noinline_for_stack
707 void ext4_mb_generate_buddy(struct super_block *sb,
708 				void *buddy, void *bitmap, ext4_group_t group)
709 {
710 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
711 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
712 	ext4_grpblk_t i = 0;
713 	ext4_grpblk_t first;
714 	ext4_grpblk_t len;
715 	unsigned free = 0;
716 	unsigned fragments = 0;
717 	unsigned long long period = get_cycles();
718 
719 	/* initialize buddy from bitmap which is aggregation
720 	 * of on-disk bitmap and preallocations */
721 	i = mb_find_next_zero_bit(bitmap, max, 0);
722 	grp->bb_first_free = i;
723 	while (i < max) {
724 		fragments++;
725 		first = i;
726 		i = mb_find_next_bit(bitmap, max, i);
727 		len = i - first;
728 		free += len;
729 		if (len > 1)
730 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
731 		else
732 			grp->bb_counters[0]++;
733 		if (i < max)
734 			i = mb_find_next_zero_bit(bitmap, max, i);
735 	}
736 	grp->bb_fragments = fragments;
737 
738 	if (free != grp->bb_free) {
739 		ext4_grp_locked_error(sb, group, 0, 0,
740 				      "%u clusters in bitmap, %u in gd",
741 				      free, grp->bb_free);
742 		/*
743 		 * If we intent to continue, we consider group descritor
744 		 * corrupt and update bb_free using bitmap value
745 		 */
746 		grp->bb_free = free;
747 	}
748 	mb_set_largest_free_order(sb, grp);
749 
750 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
751 
752 	period = get_cycles() - period;
753 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
754 	EXT4_SB(sb)->s_mb_buddies_generated++;
755 	EXT4_SB(sb)->s_mb_generation_time += period;
756 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
757 }
758 
759 /* The buddy information is attached the buddy cache inode
760  * for convenience. The information regarding each group
761  * is loaded via ext4_mb_load_buddy. The information involve
762  * block bitmap and buddy information. The information are
763  * stored in the inode as
764  *
765  * {                        page                        }
766  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
767  *
768  *
769  * one block each for bitmap and buddy information.
770  * So for each group we take up 2 blocks. A page can
771  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
772  * So it can have information regarding groups_per_page which
773  * is blocks_per_page/2
774  *
775  * Locking note:  This routine takes the block group lock of all groups
776  * for this page; do not hold this lock when calling this routine!
777  */
778 
779 static int ext4_mb_init_cache(struct page *page, char *incore)
780 {
781 	ext4_group_t ngroups;
782 	int blocksize;
783 	int blocks_per_page;
784 	int groups_per_page;
785 	int err = 0;
786 	int i;
787 	ext4_group_t first_group, group;
788 	int first_block;
789 	struct super_block *sb;
790 	struct buffer_head *bhs;
791 	struct buffer_head **bh;
792 	struct inode *inode;
793 	char *data;
794 	char *bitmap;
795 	struct ext4_group_info *grinfo;
796 
797 	mb_debug(1, "init page %lu\n", page->index);
798 
799 	inode = page->mapping->host;
800 	sb = inode->i_sb;
801 	ngroups = ext4_get_groups_count(sb);
802 	blocksize = 1 << inode->i_blkbits;
803 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
804 
805 	groups_per_page = blocks_per_page >> 1;
806 	if (groups_per_page == 0)
807 		groups_per_page = 1;
808 
809 	/* allocate buffer_heads to read bitmaps */
810 	if (groups_per_page > 1) {
811 		i = sizeof(struct buffer_head *) * groups_per_page;
812 		bh = kzalloc(i, GFP_NOFS);
813 		if (bh == NULL) {
814 			err = -ENOMEM;
815 			goto out;
816 		}
817 	} else
818 		bh = &bhs;
819 
820 	first_group = page->index * blocks_per_page / 2;
821 
822 	/* read all groups the page covers into the cache */
823 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
824 		if (group >= ngroups)
825 			break;
826 
827 		grinfo = ext4_get_group_info(sb, group);
828 		/*
829 		 * If page is uptodate then we came here after online resize
830 		 * which added some new uninitialized group info structs, so
831 		 * we must skip all initialized uptodate buddies on the page,
832 		 * which may be currently in use by an allocating task.
833 		 */
834 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
835 			bh[i] = NULL;
836 			continue;
837 		}
838 		if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
839 			err = -ENOMEM;
840 			goto out;
841 		}
842 		mb_debug(1, "read bitmap for group %u\n", group);
843 	}
844 
845 	/* wait for I/O completion */
846 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
847 		if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
848 			err = -EIO;
849 			goto out;
850 		}
851 	}
852 
853 	first_block = page->index * blocks_per_page;
854 	for (i = 0; i < blocks_per_page; i++) {
855 		int group;
856 
857 		group = (first_block + i) >> 1;
858 		if (group >= ngroups)
859 			break;
860 
861 		if (!bh[group - first_group])
862 			/* skip initialized uptodate buddy */
863 			continue;
864 
865 		/*
866 		 * data carry information regarding this
867 		 * particular group in the format specified
868 		 * above
869 		 *
870 		 */
871 		data = page_address(page) + (i * blocksize);
872 		bitmap = bh[group - first_group]->b_data;
873 
874 		/*
875 		 * We place the buddy block and bitmap block
876 		 * close together
877 		 */
878 		if ((first_block + i) & 1) {
879 			/* this is block of buddy */
880 			BUG_ON(incore == NULL);
881 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
882 				group, page->index, i * blocksize);
883 			trace_ext4_mb_buddy_bitmap_load(sb, group);
884 			grinfo = ext4_get_group_info(sb, group);
885 			grinfo->bb_fragments = 0;
886 			memset(grinfo->bb_counters, 0,
887 			       sizeof(*grinfo->bb_counters) *
888 				(sb->s_blocksize_bits+2));
889 			/*
890 			 * incore got set to the group block bitmap below
891 			 */
892 			ext4_lock_group(sb, group);
893 			/* init the buddy */
894 			memset(data, 0xff, blocksize);
895 			ext4_mb_generate_buddy(sb, data, incore, group);
896 			ext4_unlock_group(sb, group);
897 			incore = NULL;
898 		} else {
899 			/* this is block of bitmap */
900 			BUG_ON(incore != NULL);
901 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
902 				group, page->index, i * blocksize);
903 			trace_ext4_mb_bitmap_load(sb, group);
904 
905 			/* see comments in ext4_mb_put_pa() */
906 			ext4_lock_group(sb, group);
907 			memcpy(data, bitmap, blocksize);
908 
909 			/* mark all preallocated blks used in in-core bitmap */
910 			ext4_mb_generate_from_pa(sb, data, group);
911 			ext4_mb_generate_from_freelist(sb, data, group);
912 			ext4_unlock_group(sb, group);
913 
914 			/* set incore so that the buddy information can be
915 			 * generated using this
916 			 */
917 			incore = data;
918 		}
919 	}
920 	SetPageUptodate(page);
921 
922 out:
923 	if (bh) {
924 		for (i = 0; i < groups_per_page; i++)
925 			brelse(bh[i]);
926 		if (bh != &bhs)
927 			kfree(bh);
928 	}
929 	return err;
930 }
931 
932 /*
933  * Lock the buddy and bitmap pages. This make sure other parallel init_group
934  * on the same buddy page doesn't happen whild holding the buddy page lock.
935  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
936  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
937  */
938 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
939 		ext4_group_t group, struct ext4_buddy *e4b)
940 {
941 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
942 	int block, pnum, poff;
943 	int blocks_per_page;
944 	struct page *page;
945 
946 	e4b->bd_buddy_page = NULL;
947 	e4b->bd_bitmap_page = NULL;
948 
949 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
950 	/*
951 	 * the buddy cache inode stores the block bitmap
952 	 * and buddy information in consecutive blocks.
953 	 * So for each group we need two blocks.
954 	 */
955 	block = group * 2;
956 	pnum = block / blocks_per_page;
957 	poff = block % blocks_per_page;
958 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
959 	if (!page)
960 		return -EIO;
961 	BUG_ON(page->mapping != inode->i_mapping);
962 	e4b->bd_bitmap_page = page;
963 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
964 
965 	if (blocks_per_page >= 2) {
966 		/* buddy and bitmap are on the same page */
967 		return 0;
968 	}
969 
970 	block++;
971 	pnum = block / blocks_per_page;
972 	poff = block % blocks_per_page;
973 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
974 	if (!page)
975 		return -EIO;
976 	BUG_ON(page->mapping != inode->i_mapping);
977 	e4b->bd_buddy_page = page;
978 	return 0;
979 }
980 
981 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
982 {
983 	if (e4b->bd_bitmap_page) {
984 		unlock_page(e4b->bd_bitmap_page);
985 		page_cache_release(e4b->bd_bitmap_page);
986 	}
987 	if (e4b->bd_buddy_page) {
988 		unlock_page(e4b->bd_buddy_page);
989 		page_cache_release(e4b->bd_buddy_page);
990 	}
991 }
992 
993 /*
994  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
995  * block group lock of all groups for this page; do not hold the BG lock when
996  * calling this routine!
997  */
998 static noinline_for_stack
999 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1000 {
1001 
1002 	struct ext4_group_info *this_grp;
1003 	struct ext4_buddy e4b;
1004 	struct page *page;
1005 	int ret = 0;
1006 
1007 	mb_debug(1, "init group %u\n", group);
1008 	this_grp = ext4_get_group_info(sb, group);
1009 	/*
1010 	 * This ensures that we don't reinit the buddy cache
1011 	 * page which map to the group from which we are already
1012 	 * allocating. If we are looking at the buddy cache we would
1013 	 * have taken a reference using ext4_mb_load_buddy and that
1014 	 * would have pinned buddy page to page cache.
1015 	 */
1016 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1017 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1018 		/*
1019 		 * somebody initialized the group
1020 		 * return without doing anything
1021 		 */
1022 		goto err;
1023 	}
1024 
1025 	page = e4b.bd_bitmap_page;
1026 	ret = ext4_mb_init_cache(page, NULL);
1027 	if (ret)
1028 		goto err;
1029 	if (!PageUptodate(page)) {
1030 		ret = -EIO;
1031 		goto err;
1032 	}
1033 	mark_page_accessed(page);
1034 
1035 	if (e4b.bd_buddy_page == NULL) {
1036 		/*
1037 		 * If both the bitmap and buddy are in
1038 		 * the same page we don't need to force
1039 		 * init the buddy
1040 		 */
1041 		ret = 0;
1042 		goto err;
1043 	}
1044 	/* init buddy cache */
1045 	page = e4b.bd_buddy_page;
1046 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1047 	if (ret)
1048 		goto err;
1049 	if (!PageUptodate(page)) {
1050 		ret = -EIO;
1051 		goto err;
1052 	}
1053 	mark_page_accessed(page);
1054 err:
1055 	ext4_mb_put_buddy_page_lock(&e4b);
1056 	return ret;
1057 }
1058 
1059 /*
1060  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1061  * block group lock of all groups for this page; do not hold the BG lock when
1062  * calling this routine!
1063  */
1064 static noinline_for_stack int
1065 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1066 					struct ext4_buddy *e4b)
1067 {
1068 	int blocks_per_page;
1069 	int block;
1070 	int pnum;
1071 	int poff;
1072 	struct page *page;
1073 	int ret;
1074 	struct ext4_group_info *grp;
1075 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1076 	struct inode *inode = sbi->s_buddy_cache;
1077 
1078 	mb_debug(1, "load group %u\n", group);
1079 
1080 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1081 	grp = ext4_get_group_info(sb, group);
1082 
1083 	e4b->bd_blkbits = sb->s_blocksize_bits;
1084 	e4b->bd_info = grp;
1085 	e4b->bd_sb = sb;
1086 	e4b->bd_group = group;
1087 	e4b->bd_buddy_page = NULL;
1088 	e4b->bd_bitmap_page = NULL;
1089 
1090 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1091 		/*
1092 		 * we need full data about the group
1093 		 * to make a good selection
1094 		 */
1095 		ret = ext4_mb_init_group(sb, group);
1096 		if (ret)
1097 			return ret;
1098 	}
1099 
1100 	/*
1101 	 * the buddy cache inode stores the block bitmap
1102 	 * and buddy information in consecutive blocks.
1103 	 * So for each group we need two blocks.
1104 	 */
1105 	block = group * 2;
1106 	pnum = block / blocks_per_page;
1107 	poff = block % blocks_per_page;
1108 
1109 	/* we could use find_or_create_page(), but it locks page
1110 	 * what we'd like to avoid in fast path ... */
1111 	page = find_get_page(inode->i_mapping, pnum);
1112 	if (page == NULL || !PageUptodate(page)) {
1113 		if (page)
1114 			/*
1115 			 * drop the page reference and try
1116 			 * to get the page with lock. If we
1117 			 * are not uptodate that implies
1118 			 * somebody just created the page but
1119 			 * is yet to initialize the same. So
1120 			 * wait for it to initialize.
1121 			 */
1122 			page_cache_release(page);
1123 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1124 		if (page) {
1125 			BUG_ON(page->mapping != inode->i_mapping);
1126 			if (!PageUptodate(page)) {
1127 				ret = ext4_mb_init_cache(page, NULL);
1128 				if (ret) {
1129 					unlock_page(page);
1130 					goto err;
1131 				}
1132 				mb_cmp_bitmaps(e4b, page_address(page) +
1133 					       (poff * sb->s_blocksize));
1134 			}
1135 			unlock_page(page);
1136 		}
1137 	}
1138 	if (page == NULL || !PageUptodate(page)) {
1139 		ret = -EIO;
1140 		goto err;
1141 	}
1142 	e4b->bd_bitmap_page = page;
1143 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1144 	mark_page_accessed(page);
1145 
1146 	block++;
1147 	pnum = block / blocks_per_page;
1148 	poff = block % blocks_per_page;
1149 
1150 	page = find_get_page(inode->i_mapping, pnum);
1151 	if (page == NULL || !PageUptodate(page)) {
1152 		if (page)
1153 			page_cache_release(page);
1154 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1155 		if (page) {
1156 			BUG_ON(page->mapping != inode->i_mapping);
1157 			if (!PageUptodate(page)) {
1158 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1159 				if (ret) {
1160 					unlock_page(page);
1161 					goto err;
1162 				}
1163 			}
1164 			unlock_page(page);
1165 		}
1166 	}
1167 	if (page == NULL || !PageUptodate(page)) {
1168 		ret = -EIO;
1169 		goto err;
1170 	}
1171 	e4b->bd_buddy_page = page;
1172 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1173 	mark_page_accessed(page);
1174 
1175 	BUG_ON(e4b->bd_bitmap_page == NULL);
1176 	BUG_ON(e4b->bd_buddy_page == NULL);
1177 
1178 	return 0;
1179 
1180 err:
1181 	if (page)
1182 		page_cache_release(page);
1183 	if (e4b->bd_bitmap_page)
1184 		page_cache_release(e4b->bd_bitmap_page);
1185 	if (e4b->bd_buddy_page)
1186 		page_cache_release(e4b->bd_buddy_page);
1187 	e4b->bd_buddy = NULL;
1188 	e4b->bd_bitmap = NULL;
1189 	return ret;
1190 }
1191 
1192 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1193 {
1194 	if (e4b->bd_bitmap_page)
1195 		page_cache_release(e4b->bd_bitmap_page);
1196 	if (e4b->bd_buddy_page)
1197 		page_cache_release(e4b->bd_buddy_page);
1198 }
1199 
1200 
1201 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1202 {
1203 	int order = 1;
1204 	void *bb;
1205 
1206 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1207 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1208 
1209 	bb = e4b->bd_buddy;
1210 	while (order <= e4b->bd_blkbits + 1) {
1211 		block = block >> 1;
1212 		if (!mb_test_bit(block, bb)) {
1213 			/* this block is part of buddy of order 'order' */
1214 			return order;
1215 		}
1216 		bb += 1 << (e4b->bd_blkbits - order);
1217 		order++;
1218 	}
1219 	return 0;
1220 }
1221 
1222 static void mb_clear_bits(void *bm, int cur, int len)
1223 {
1224 	__u32 *addr;
1225 
1226 	len = cur + len;
1227 	while (cur < len) {
1228 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1229 			/* fast path: clear whole word at once */
1230 			addr = bm + (cur >> 3);
1231 			*addr = 0;
1232 			cur += 32;
1233 			continue;
1234 		}
1235 		mb_clear_bit(cur, bm);
1236 		cur++;
1237 	}
1238 }
1239 
1240 void ext4_set_bits(void *bm, int cur, int len)
1241 {
1242 	__u32 *addr;
1243 
1244 	len = cur + len;
1245 	while (cur < len) {
1246 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1247 			/* fast path: set whole word at once */
1248 			addr = bm + (cur >> 3);
1249 			*addr = 0xffffffff;
1250 			cur += 32;
1251 			continue;
1252 		}
1253 		mb_set_bit(cur, bm);
1254 		cur++;
1255 	}
1256 }
1257 
1258 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1259 			  int first, int count)
1260 {
1261 	int block = 0;
1262 	int max = 0;
1263 	int order;
1264 	void *buddy;
1265 	void *buddy2;
1266 	struct super_block *sb = e4b->bd_sb;
1267 
1268 	BUG_ON(first + count > (sb->s_blocksize << 3));
1269 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1270 	mb_check_buddy(e4b);
1271 	mb_free_blocks_double(inode, e4b, first, count);
1272 
1273 	e4b->bd_info->bb_free += count;
1274 	if (first < e4b->bd_info->bb_first_free)
1275 		e4b->bd_info->bb_first_free = first;
1276 
1277 	/* let's maintain fragments counter */
1278 	if (first != 0)
1279 		block = !mb_test_bit(first - 1, e4b->bd_bitmap);
1280 	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1281 		max = !mb_test_bit(first + count, e4b->bd_bitmap);
1282 	if (block && max)
1283 		e4b->bd_info->bb_fragments--;
1284 	else if (!block && !max)
1285 		e4b->bd_info->bb_fragments++;
1286 
1287 	/* let's maintain buddy itself */
1288 	while (count-- > 0) {
1289 		block = first++;
1290 		order = 0;
1291 
1292 		if (!mb_test_bit(block, e4b->bd_bitmap)) {
1293 			ext4_fsblk_t blocknr;
1294 
1295 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1296 			blocknr += EXT4_C2B(EXT4_SB(sb), block);
1297 			ext4_grp_locked_error(sb, e4b->bd_group,
1298 					      inode ? inode->i_ino : 0,
1299 					      blocknr,
1300 					      "freeing already freed block "
1301 					      "(bit %u)", block);
1302 		}
1303 		mb_clear_bit(block, e4b->bd_bitmap);
1304 		e4b->bd_info->bb_counters[order]++;
1305 
1306 		/* start of the buddy */
1307 		buddy = mb_find_buddy(e4b, order, &max);
1308 
1309 		do {
1310 			block &= ~1UL;
1311 			if (mb_test_bit(block, buddy) ||
1312 					mb_test_bit(block + 1, buddy))
1313 				break;
1314 
1315 			/* both the buddies are free, try to coalesce them */
1316 			buddy2 = mb_find_buddy(e4b, order + 1, &max);
1317 
1318 			if (!buddy2)
1319 				break;
1320 
1321 			if (order > 0) {
1322 				/* for special purposes, we don't set
1323 				 * free bits in bitmap */
1324 				mb_set_bit(block, buddy);
1325 				mb_set_bit(block + 1, buddy);
1326 			}
1327 			e4b->bd_info->bb_counters[order]--;
1328 			e4b->bd_info->bb_counters[order]--;
1329 
1330 			block = block >> 1;
1331 			order++;
1332 			e4b->bd_info->bb_counters[order]++;
1333 
1334 			mb_clear_bit(block, buddy2);
1335 			buddy = buddy2;
1336 		} while (1);
1337 	}
1338 	mb_set_largest_free_order(sb, e4b->bd_info);
1339 	mb_check_buddy(e4b);
1340 }
1341 
1342 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1343 				int needed, struct ext4_free_extent *ex)
1344 {
1345 	int next = block;
1346 	int max;
1347 	void *buddy;
1348 
1349 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1350 	BUG_ON(ex == NULL);
1351 
1352 	buddy = mb_find_buddy(e4b, order, &max);
1353 	BUG_ON(buddy == NULL);
1354 	BUG_ON(block >= max);
1355 	if (mb_test_bit(block, buddy)) {
1356 		ex->fe_len = 0;
1357 		ex->fe_start = 0;
1358 		ex->fe_group = 0;
1359 		return 0;
1360 	}
1361 
1362 	/* FIXME dorp order completely ? */
1363 	if (likely(order == 0)) {
1364 		/* find actual order */
1365 		order = mb_find_order_for_block(e4b, block);
1366 		block = block >> order;
1367 	}
1368 
1369 	ex->fe_len = 1 << order;
1370 	ex->fe_start = block << order;
1371 	ex->fe_group = e4b->bd_group;
1372 
1373 	/* calc difference from given start */
1374 	next = next - ex->fe_start;
1375 	ex->fe_len -= next;
1376 	ex->fe_start += next;
1377 
1378 	while (needed > ex->fe_len &&
1379 	       (buddy = mb_find_buddy(e4b, order, &max))) {
1380 
1381 		if (block + 1 >= max)
1382 			break;
1383 
1384 		next = (block + 1) * (1 << order);
1385 		if (mb_test_bit(next, e4b->bd_bitmap))
1386 			break;
1387 
1388 		order = mb_find_order_for_block(e4b, next);
1389 
1390 		block = next >> order;
1391 		ex->fe_len += 1 << order;
1392 	}
1393 
1394 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1395 	return ex->fe_len;
1396 }
1397 
1398 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1399 {
1400 	int ord;
1401 	int mlen = 0;
1402 	int max = 0;
1403 	int cur;
1404 	int start = ex->fe_start;
1405 	int len = ex->fe_len;
1406 	unsigned ret = 0;
1407 	int len0 = len;
1408 	void *buddy;
1409 
1410 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1411 	BUG_ON(e4b->bd_group != ex->fe_group);
1412 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1413 	mb_check_buddy(e4b);
1414 	mb_mark_used_double(e4b, start, len);
1415 
1416 	e4b->bd_info->bb_free -= len;
1417 	if (e4b->bd_info->bb_first_free == start)
1418 		e4b->bd_info->bb_first_free += len;
1419 
1420 	/* let's maintain fragments counter */
1421 	if (start != 0)
1422 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1423 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1424 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1425 	if (mlen && max)
1426 		e4b->bd_info->bb_fragments++;
1427 	else if (!mlen && !max)
1428 		e4b->bd_info->bb_fragments--;
1429 
1430 	/* let's maintain buddy itself */
1431 	while (len) {
1432 		ord = mb_find_order_for_block(e4b, start);
1433 
1434 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1435 			/* the whole chunk may be allocated at once! */
1436 			mlen = 1 << ord;
1437 			buddy = mb_find_buddy(e4b, ord, &max);
1438 			BUG_ON((start >> ord) >= max);
1439 			mb_set_bit(start >> ord, buddy);
1440 			e4b->bd_info->bb_counters[ord]--;
1441 			start += mlen;
1442 			len -= mlen;
1443 			BUG_ON(len < 0);
1444 			continue;
1445 		}
1446 
1447 		/* store for history */
1448 		if (ret == 0)
1449 			ret = len | (ord << 16);
1450 
1451 		/* we have to split large buddy */
1452 		BUG_ON(ord <= 0);
1453 		buddy = mb_find_buddy(e4b, ord, &max);
1454 		mb_set_bit(start >> ord, buddy);
1455 		e4b->bd_info->bb_counters[ord]--;
1456 
1457 		ord--;
1458 		cur = (start >> ord) & ~1U;
1459 		buddy = mb_find_buddy(e4b, ord, &max);
1460 		mb_clear_bit(cur, buddy);
1461 		mb_clear_bit(cur + 1, buddy);
1462 		e4b->bd_info->bb_counters[ord]++;
1463 		e4b->bd_info->bb_counters[ord]++;
1464 	}
1465 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1466 
1467 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1468 	mb_check_buddy(e4b);
1469 
1470 	return ret;
1471 }
1472 
1473 /*
1474  * Must be called under group lock!
1475  */
1476 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1477 					struct ext4_buddy *e4b)
1478 {
1479 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1480 	int ret;
1481 
1482 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1483 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1484 
1485 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1486 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1487 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1488 
1489 	/* preallocation can change ac_b_ex, thus we store actually
1490 	 * allocated blocks for history */
1491 	ac->ac_f_ex = ac->ac_b_ex;
1492 
1493 	ac->ac_status = AC_STATUS_FOUND;
1494 	ac->ac_tail = ret & 0xffff;
1495 	ac->ac_buddy = ret >> 16;
1496 
1497 	/*
1498 	 * take the page reference. We want the page to be pinned
1499 	 * so that we don't get a ext4_mb_init_cache_call for this
1500 	 * group until we update the bitmap. That would mean we
1501 	 * double allocate blocks. The reference is dropped
1502 	 * in ext4_mb_release_context
1503 	 */
1504 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1505 	get_page(ac->ac_bitmap_page);
1506 	ac->ac_buddy_page = e4b->bd_buddy_page;
1507 	get_page(ac->ac_buddy_page);
1508 	/* store last allocated for subsequent stream allocation */
1509 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1510 		spin_lock(&sbi->s_md_lock);
1511 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1512 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1513 		spin_unlock(&sbi->s_md_lock);
1514 	}
1515 }
1516 
1517 /*
1518  * regular allocator, for general purposes allocation
1519  */
1520 
1521 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1522 					struct ext4_buddy *e4b,
1523 					int finish_group)
1524 {
1525 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1526 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1527 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1528 	struct ext4_free_extent ex;
1529 	int max;
1530 
1531 	if (ac->ac_status == AC_STATUS_FOUND)
1532 		return;
1533 	/*
1534 	 * We don't want to scan for a whole year
1535 	 */
1536 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1537 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1538 		ac->ac_status = AC_STATUS_BREAK;
1539 		return;
1540 	}
1541 
1542 	/*
1543 	 * Haven't found good chunk so far, let's continue
1544 	 */
1545 	if (bex->fe_len < gex->fe_len)
1546 		return;
1547 
1548 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1549 			&& bex->fe_group == e4b->bd_group) {
1550 		/* recheck chunk's availability - we don't know
1551 		 * when it was found (within this lock-unlock
1552 		 * period or not) */
1553 		max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1554 		if (max >= gex->fe_len) {
1555 			ext4_mb_use_best_found(ac, e4b);
1556 			return;
1557 		}
1558 	}
1559 }
1560 
1561 /*
1562  * The routine checks whether found extent is good enough. If it is,
1563  * then the extent gets marked used and flag is set to the context
1564  * to stop scanning. Otherwise, the extent is compared with the
1565  * previous found extent and if new one is better, then it's stored
1566  * in the context. Later, the best found extent will be used, if
1567  * mballoc can't find good enough extent.
1568  *
1569  * FIXME: real allocation policy is to be designed yet!
1570  */
1571 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1572 					struct ext4_free_extent *ex,
1573 					struct ext4_buddy *e4b)
1574 {
1575 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1576 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1577 
1578 	BUG_ON(ex->fe_len <= 0);
1579 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1580 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1581 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1582 
1583 	ac->ac_found++;
1584 
1585 	/*
1586 	 * The special case - take what you catch first
1587 	 */
1588 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1589 		*bex = *ex;
1590 		ext4_mb_use_best_found(ac, e4b);
1591 		return;
1592 	}
1593 
1594 	/*
1595 	 * Let's check whether the chuck is good enough
1596 	 */
1597 	if (ex->fe_len == gex->fe_len) {
1598 		*bex = *ex;
1599 		ext4_mb_use_best_found(ac, e4b);
1600 		return;
1601 	}
1602 
1603 	/*
1604 	 * If this is first found extent, just store it in the context
1605 	 */
1606 	if (bex->fe_len == 0) {
1607 		*bex = *ex;
1608 		return;
1609 	}
1610 
1611 	/*
1612 	 * If new found extent is better, store it in the context
1613 	 */
1614 	if (bex->fe_len < gex->fe_len) {
1615 		/* if the request isn't satisfied, any found extent
1616 		 * larger than previous best one is better */
1617 		if (ex->fe_len > bex->fe_len)
1618 			*bex = *ex;
1619 	} else if (ex->fe_len > gex->fe_len) {
1620 		/* if the request is satisfied, then we try to find
1621 		 * an extent that still satisfy the request, but is
1622 		 * smaller than previous one */
1623 		if (ex->fe_len < bex->fe_len)
1624 			*bex = *ex;
1625 	}
1626 
1627 	ext4_mb_check_limits(ac, e4b, 0);
1628 }
1629 
1630 static noinline_for_stack
1631 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1632 					struct ext4_buddy *e4b)
1633 {
1634 	struct ext4_free_extent ex = ac->ac_b_ex;
1635 	ext4_group_t group = ex.fe_group;
1636 	int max;
1637 	int err;
1638 
1639 	BUG_ON(ex.fe_len <= 0);
1640 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1641 	if (err)
1642 		return err;
1643 
1644 	ext4_lock_group(ac->ac_sb, group);
1645 	max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1646 
1647 	if (max > 0) {
1648 		ac->ac_b_ex = ex;
1649 		ext4_mb_use_best_found(ac, e4b);
1650 	}
1651 
1652 	ext4_unlock_group(ac->ac_sb, group);
1653 	ext4_mb_unload_buddy(e4b);
1654 
1655 	return 0;
1656 }
1657 
1658 static noinline_for_stack
1659 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1660 				struct ext4_buddy *e4b)
1661 {
1662 	ext4_group_t group = ac->ac_g_ex.fe_group;
1663 	int max;
1664 	int err;
1665 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1666 	struct ext4_free_extent ex;
1667 
1668 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1669 		return 0;
1670 
1671 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1672 	if (err)
1673 		return err;
1674 
1675 	ext4_lock_group(ac->ac_sb, group);
1676 	max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1677 			     ac->ac_g_ex.fe_len, &ex);
1678 
1679 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1680 		ext4_fsblk_t start;
1681 
1682 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1683 			ex.fe_start;
1684 		/* use do_div to get remainder (would be 64-bit modulo) */
1685 		if (do_div(start, sbi->s_stripe) == 0) {
1686 			ac->ac_found++;
1687 			ac->ac_b_ex = ex;
1688 			ext4_mb_use_best_found(ac, e4b);
1689 		}
1690 	} else if (max >= ac->ac_g_ex.fe_len) {
1691 		BUG_ON(ex.fe_len <= 0);
1692 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1693 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1694 		ac->ac_found++;
1695 		ac->ac_b_ex = ex;
1696 		ext4_mb_use_best_found(ac, e4b);
1697 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1698 		/* Sometimes, caller may want to merge even small
1699 		 * number of blocks to an existing extent */
1700 		BUG_ON(ex.fe_len <= 0);
1701 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1702 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1703 		ac->ac_found++;
1704 		ac->ac_b_ex = ex;
1705 		ext4_mb_use_best_found(ac, e4b);
1706 	}
1707 	ext4_unlock_group(ac->ac_sb, group);
1708 	ext4_mb_unload_buddy(e4b);
1709 
1710 	return 0;
1711 }
1712 
1713 /*
1714  * The routine scans buddy structures (not bitmap!) from given order
1715  * to max order and tries to find big enough chunk to satisfy the req
1716  */
1717 static noinline_for_stack
1718 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1719 					struct ext4_buddy *e4b)
1720 {
1721 	struct super_block *sb = ac->ac_sb;
1722 	struct ext4_group_info *grp = e4b->bd_info;
1723 	void *buddy;
1724 	int i;
1725 	int k;
1726 	int max;
1727 
1728 	BUG_ON(ac->ac_2order <= 0);
1729 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1730 		if (grp->bb_counters[i] == 0)
1731 			continue;
1732 
1733 		buddy = mb_find_buddy(e4b, i, &max);
1734 		BUG_ON(buddy == NULL);
1735 
1736 		k = mb_find_next_zero_bit(buddy, max, 0);
1737 		BUG_ON(k >= max);
1738 
1739 		ac->ac_found++;
1740 
1741 		ac->ac_b_ex.fe_len = 1 << i;
1742 		ac->ac_b_ex.fe_start = k << i;
1743 		ac->ac_b_ex.fe_group = e4b->bd_group;
1744 
1745 		ext4_mb_use_best_found(ac, e4b);
1746 
1747 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1748 
1749 		if (EXT4_SB(sb)->s_mb_stats)
1750 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1751 
1752 		break;
1753 	}
1754 }
1755 
1756 /*
1757  * The routine scans the group and measures all found extents.
1758  * In order to optimize scanning, caller must pass number of
1759  * free blocks in the group, so the routine can know upper limit.
1760  */
1761 static noinline_for_stack
1762 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1763 					struct ext4_buddy *e4b)
1764 {
1765 	struct super_block *sb = ac->ac_sb;
1766 	void *bitmap = e4b->bd_bitmap;
1767 	struct ext4_free_extent ex;
1768 	int i;
1769 	int free;
1770 
1771 	free = e4b->bd_info->bb_free;
1772 	BUG_ON(free <= 0);
1773 
1774 	i = e4b->bd_info->bb_first_free;
1775 
1776 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1777 		i = mb_find_next_zero_bit(bitmap,
1778 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1779 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1780 			/*
1781 			 * IF we have corrupt bitmap, we won't find any
1782 			 * free blocks even though group info says we
1783 			 * we have free blocks
1784 			 */
1785 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1786 					"%d free clusters as per "
1787 					"group info. But bitmap says 0",
1788 					free);
1789 			break;
1790 		}
1791 
1792 		mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1793 		BUG_ON(ex.fe_len <= 0);
1794 		if (free < ex.fe_len) {
1795 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1796 					"%d free clusters as per "
1797 					"group info. But got %d blocks",
1798 					free, ex.fe_len);
1799 			/*
1800 			 * The number of free blocks differs. This mostly
1801 			 * indicate that the bitmap is corrupt. So exit
1802 			 * without claiming the space.
1803 			 */
1804 			break;
1805 		}
1806 
1807 		ext4_mb_measure_extent(ac, &ex, e4b);
1808 
1809 		i += ex.fe_len;
1810 		free -= ex.fe_len;
1811 	}
1812 
1813 	ext4_mb_check_limits(ac, e4b, 1);
1814 }
1815 
1816 /*
1817  * This is a special case for storages like raid5
1818  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1819  */
1820 static noinline_for_stack
1821 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1822 				 struct ext4_buddy *e4b)
1823 {
1824 	struct super_block *sb = ac->ac_sb;
1825 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1826 	void *bitmap = e4b->bd_bitmap;
1827 	struct ext4_free_extent ex;
1828 	ext4_fsblk_t first_group_block;
1829 	ext4_fsblk_t a;
1830 	ext4_grpblk_t i;
1831 	int max;
1832 
1833 	BUG_ON(sbi->s_stripe == 0);
1834 
1835 	/* find first stripe-aligned block in group */
1836 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1837 
1838 	a = first_group_block + sbi->s_stripe - 1;
1839 	do_div(a, sbi->s_stripe);
1840 	i = (a * sbi->s_stripe) - first_group_block;
1841 
1842 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1843 		if (!mb_test_bit(i, bitmap)) {
1844 			max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1845 			if (max >= sbi->s_stripe) {
1846 				ac->ac_found++;
1847 				ac->ac_b_ex = ex;
1848 				ext4_mb_use_best_found(ac, e4b);
1849 				break;
1850 			}
1851 		}
1852 		i += sbi->s_stripe;
1853 	}
1854 }
1855 
1856 /* This is now called BEFORE we load the buddy bitmap. */
1857 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1858 				ext4_group_t group, int cr)
1859 {
1860 	unsigned free, fragments;
1861 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1862 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1863 
1864 	BUG_ON(cr < 0 || cr >= 4);
1865 
1866 	/* We only do this if the grp has never been initialized */
1867 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1868 		int ret = ext4_mb_init_group(ac->ac_sb, group);
1869 		if (ret)
1870 			return 0;
1871 	}
1872 
1873 	free = grp->bb_free;
1874 	fragments = grp->bb_fragments;
1875 	if (free == 0)
1876 		return 0;
1877 	if (fragments == 0)
1878 		return 0;
1879 
1880 	switch (cr) {
1881 	case 0:
1882 		BUG_ON(ac->ac_2order == 0);
1883 
1884 		if (grp->bb_largest_free_order < ac->ac_2order)
1885 			return 0;
1886 
1887 		/* Avoid using the first bg of a flexgroup for data files */
1888 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1889 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1890 		    ((group % flex_size) == 0))
1891 			return 0;
1892 
1893 		return 1;
1894 	case 1:
1895 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
1896 			return 1;
1897 		break;
1898 	case 2:
1899 		if (free >= ac->ac_g_ex.fe_len)
1900 			return 1;
1901 		break;
1902 	case 3:
1903 		return 1;
1904 	default:
1905 		BUG();
1906 	}
1907 
1908 	return 0;
1909 }
1910 
1911 static noinline_for_stack int
1912 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1913 {
1914 	ext4_group_t ngroups, group, i;
1915 	int cr;
1916 	int err = 0;
1917 	struct ext4_sb_info *sbi;
1918 	struct super_block *sb;
1919 	struct ext4_buddy e4b;
1920 
1921 	sb = ac->ac_sb;
1922 	sbi = EXT4_SB(sb);
1923 	ngroups = ext4_get_groups_count(sb);
1924 	/* non-extent files are limited to low blocks/groups */
1925 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1926 		ngroups = sbi->s_blockfile_groups;
1927 
1928 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1929 
1930 	/* first, try the goal */
1931 	err = ext4_mb_find_by_goal(ac, &e4b);
1932 	if (err || ac->ac_status == AC_STATUS_FOUND)
1933 		goto out;
1934 
1935 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1936 		goto out;
1937 
1938 	/*
1939 	 * ac->ac2_order is set only if the fe_len is a power of 2
1940 	 * if ac2_order is set we also set criteria to 0 so that we
1941 	 * try exact allocation using buddy.
1942 	 */
1943 	i = fls(ac->ac_g_ex.fe_len);
1944 	ac->ac_2order = 0;
1945 	/*
1946 	 * We search using buddy data only if the order of the request
1947 	 * is greater than equal to the sbi_s_mb_order2_reqs
1948 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1949 	 */
1950 	if (i >= sbi->s_mb_order2_reqs) {
1951 		/*
1952 		 * This should tell if fe_len is exactly power of 2
1953 		 */
1954 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1955 			ac->ac_2order = i - 1;
1956 	}
1957 
1958 	/* if stream allocation is enabled, use global goal */
1959 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1960 		/* TBD: may be hot point */
1961 		spin_lock(&sbi->s_md_lock);
1962 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1963 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1964 		spin_unlock(&sbi->s_md_lock);
1965 	}
1966 
1967 	/* Let's just scan groups to find more-less suitable blocks */
1968 	cr = ac->ac_2order ? 0 : 1;
1969 	/*
1970 	 * cr == 0 try to get exact allocation,
1971 	 * cr == 3  try to get anything
1972 	 */
1973 repeat:
1974 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1975 		ac->ac_criteria = cr;
1976 		/*
1977 		 * searching for the right group start
1978 		 * from the goal value specified
1979 		 */
1980 		group = ac->ac_g_ex.fe_group;
1981 
1982 		for (i = 0; i < ngroups; group++, i++) {
1983 			if (group == ngroups)
1984 				group = 0;
1985 
1986 			/* This now checks without needing the buddy page */
1987 			if (!ext4_mb_good_group(ac, group, cr))
1988 				continue;
1989 
1990 			err = ext4_mb_load_buddy(sb, group, &e4b);
1991 			if (err)
1992 				goto out;
1993 
1994 			ext4_lock_group(sb, group);
1995 
1996 			/*
1997 			 * We need to check again after locking the
1998 			 * block group
1999 			 */
2000 			if (!ext4_mb_good_group(ac, group, cr)) {
2001 				ext4_unlock_group(sb, group);
2002 				ext4_mb_unload_buddy(&e4b);
2003 				continue;
2004 			}
2005 
2006 			ac->ac_groups_scanned++;
2007 			if (cr == 0)
2008 				ext4_mb_simple_scan_group(ac, &e4b);
2009 			else if (cr == 1 && sbi->s_stripe &&
2010 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2011 				ext4_mb_scan_aligned(ac, &e4b);
2012 			else
2013 				ext4_mb_complex_scan_group(ac, &e4b);
2014 
2015 			ext4_unlock_group(sb, group);
2016 			ext4_mb_unload_buddy(&e4b);
2017 
2018 			if (ac->ac_status != AC_STATUS_CONTINUE)
2019 				break;
2020 		}
2021 	}
2022 
2023 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2024 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2025 		/*
2026 		 * We've been searching too long. Let's try to allocate
2027 		 * the best chunk we've found so far
2028 		 */
2029 
2030 		ext4_mb_try_best_found(ac, &e4b);
2031 		if (ac->ac_status != AC_STATUS_FOUND) {
2032 			/*
2033 			 * Someone more lucky has already allocated it.
2034 			 * The only thing we can do is just take first
2035 			 * found block(s)
2036 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2037 			 */
2038 			ac->ac_b_ex.fe_group = 0;
2039 			ac->ac_b_ex.fe_start = 0;
2040 			ac->ac_b_ex.fe_len = 0;
2041 			ac->ac_status = AC_STATUS_CONTINUE;
2042 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2043 			cr = 3;
2044 			atomic_inc(&sbi->s_mb_lost_chunks);
2045 			goto repeat;
2046 		}
2047 	}
2048 out:
2049 	return err;
2050 }
2051 
2052 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2053 {
2054 	struct super_block *sb = seq->private;
2055 	ext4_group_t group;
2056 
2057 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2058 		return NULL;
2059 	group = *pos + 1;
2060 	return (void *) ((unsigned long) group);
2061 }
2062 
2063 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2064 {
2065 	struct super_block *sb = seq->private;
2066 	ext4_group_t group;
2067 
2068 	++*pos;
2069 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2070 		return NULL;
2071 	group = *pos + 1;
2072 	return (void *) ((unsigned long) group);
2073 }
2074 
2075 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2076 {
2077 	struct super_block *sb = seq->private;
2078 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2079 	int i;
2080 	int err;
2081 	struct ext4_buddy e4b;
2082 	struct sg {
2083 		struct ext4_group_info info;
2084 		ext4_grpblk_t counters[16];
2085 	} sg;
2086 
2087 	group--;
2088 	if (group == 0)
2089 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2090 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2091 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2092 			   "group", "free", "frags", "first",
2093 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2094 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2095 
2096 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2097 		sizeof(struct ext4_group_info);
2098 	err = ext4_mb_load_buddy(sb, group, &e4b);
2099 	if (err) {
2100 		seq_printf(seq, "#%-5u: I/O error\n", group);
2101 		return 0;
2102 	}
2103 	ext4_lock_group(sb, group);
2104 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2105 	ext4_unlock_group(sb, group);
2106 	ext4_mb_unload_buddy(&e4b);
2107 
2108 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2109 			sg.info.bb_fragments, sg.info.bb_first_free);
2110 	for (i = 0; i <= 13; i++)
2111 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2112 				sg.info.bb_counters[i] : 0);
2113 	seq_printf(seq, " ]\n");
2114 
2115 	return 0;
2116 }
2117 
2118 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2119 {
2120 }
2121 
2122 static const struct seq_operations ext4_mb_seq_groups_ops = {
2123 	.start  = ext4_mb_seq_groups_start,
2124 	.next   = ext4_mb_seq_groups_next,
2125 	.stop   = ext4_mb_seq_groups_stop,
2126 	.show   = ext4_mb_seq_groups_show,
2127 };
2128 
2129 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2130 {
2131 	struct super_block *sb = PDE(inode)->data;
2132 	int rc;
2133 
2134 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2135 	if (rc == 0) {
2136 		struct seq_file *m = file->private_data;
2137 		m->private = sb;
2138 	}
2139 	return rc;
2140 
2141 }
2142 
2143 static const struct file_operations ext4_mb_seq_groups_fops = {
2144 	.owner		= THIS_MODULE,
2145 	.open		= ext4_mb_seq_groups_open,
2146 	.read		= seq_read,
2147 	.llseek		= seq_lseek,
2148 	.release	= seq_release,
2149 };
2150 
2151 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2152 {
2153 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2154 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2155 
2156 	BUG_ON(!cachep);
2157 	return cachep;
2158 }
2159 
2160 /* Create and initialize ext4_group_info data for the given group. */
2161 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2162 			  struct ext4_group_desc *desc)
2163 {
2164 	int i;
2165 	int metalen = 0;
2166 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2167 	struct ext4_group_info **meta_group_info;
2168 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2169 
2170 	/*
2171 	 * First check if this group is the first of a reserved block.
2172 	 * If it's true, we have to allocate a new table of pointers
2173 	 * to ext4_group_info structures
2174 	 */
2175 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2176 		metalen = sizeof(*meta_group_info) <<
2177 			EXT4_DESC_PER_BLOCK_BITS(sb);
2178 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2179 		if (meta_group_info == NULL) {
2180 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2181 				 "for a buddy group");
2182 			goto exit_meta_group_info;
2183 		}
2184 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2185 			meta_group_info;
2186 	}
2187 
2188 	meta_group_info =
2189 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2190 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2191 
2192 	meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2193 	if (meta_group_info[i] == NULL) {
2194 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2195 		goto exit_group_info;
2196 	}
2197 	memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2198 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2199 		&(meta_group_info[i]->bb_state));
2200 
2201 	/*
2202 	 * initialize bb_free to be able to skip
2203 	 * empty groups without initialization
2204 	 */
2205 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2206 		meta_group_info[i]->bb_free =
2207 			ext4_free_clusters_after_init(sb, group, desc);
2208 	} else {
2209 		meta_group_info[i]->bb_free =
2210 			ext4_free_group_clusters(sb, desc);
2211 	}
2212 
2213 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2214 	init_rwsem(&meta_group_info[i]->alloc_sem);
2215 	meta_group_info[i]->bb_free_root = RB_ROOT;
2216 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2217 
2218 #ifdef DOUBLE_CHECK
2219 	{
2220 		struct buffer_head *bh;
2221 		meta_group_info[i]->bb_bitmap =
2222 			kmalloc(sb->s_blocksize, GFP_KERNEL);
2223 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2224 		bh = ext4_read_block_bitmap(sb, group);
2225 		BUG_ON(bh == NULL);
2226 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2227 			sb->s_blocksize);
2228 		put_bh(bh);
2229 	}
2230 #endif
2231 
2232 	return 0;
2233 
2234 exit_group_info:
2235 	/* If a meta_group_info table has been allocated, release it now */
2236 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2237 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2238 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2239 	}
2240 exit_meta_group_info:
2241 	return -ENOMEM;
2242 } /* ext4_mb_add_groupinfo */
2243 
2244 static int ext4_mb_init_backend(struct super_block *sb)
2245 {
2246 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2247 	ext4_group_t i;
2248 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2249 	struct ext4_super_block *es = sbi->s_es;
2250 	int num_meta_group_infos;
2251 	int num_meta_group_infos_max;
2252 	int array_size;
2253 	struct ext4_group_desc *desc;
2254 	struct kmem_cache *cachep;
2255 
2256 	/* This is the number of blocks used by GDT */
2257 	num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2258 				1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2259 
2260 	/*
2261 	 * This is the total number of blocks used by GDT including
2262 	 * the number of reserved blocks for GDT.
2263 	 * The s_group_info array is allocated with this value
2264 	 * to allow a clean online resize without a complex
2265 	 * manipulation of pointer.
2266 	 * The drawback is the unused memory when no resize
2267 	 * occurs but it's very low in terms of pages
2268 	 * (see comments below)
2269 	 * Need to handle this properly when META_BG resizing is allowed
2270 	 */
2271 	num_meta_group_infos_max = num_meta_group_infos +
2272 				le16_to_cpu(es->s_reserved_gdt_blocks);
2273 
2274 	/*
2275 	 * array_size is the size of s_group_info array. We round it
2276 	 * to the next power of two because this approximation is done
2277 	 * internally by kmalloc so we can have some more memory
2278 	 * for free here (e.g. may be used for META_BG resize).
2279 	 */
2280 	array_size = 1;
2281 	while (array_size < sizeof(*sbi->s_group_info) *
2282 	       num_meta_group_infos_max)
2283 		array_size = array_size << 1;
2284 	/* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2285 	 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2286 	 * So a two level scheme suffices for now. */
2287 	sbi->s_group_info = ext4_kvzalloc(array_size, GFP_KERNEL);
2288 	if (sbi->s_group_info == NULL) {
2289 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2290 		return -ENOMEM;
2291 	}
2292 	sbi->s_buddy_cache = new_inode(sb);
2293 	if (sbi->s_buddy_cache == NULL) {
2294 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2295 		goto err_freesgi;
2296 	}
2297 	/* To avoid potentially colliding with an valid on-disk inode number,
2298 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2299 	 * not in the inode hash, so it should never be found by iget(), but
2300 	 * this will avoid confusion if it ever shows up during debugging. */
2301 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2302 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2303 	for (i = 0; i < ngroups; i++) {
2304 		desc = ext4_get_group_desc(sb, i, NULL);
2305 		if (desc == NULL) {
2306 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2307 			goto err_freebuddy;
2308 		}
2309 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2310 			goto err_freebuddy;
2311 	}
2312 
2313 	return 0;
2314 
2315 err_freebuddy:
2316 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2317 	while (i-- > 0)
2318 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2319 	i = num_meta_group_infos;
2320 	while (i-- > 0)
2321 		kfree(sbi->s_group_info[i]);
2322 	iput(sbi->s_buddy_cache);
2323 err_freesgi:
2324 	ext4_kvfree(sbi->s_group_info);
2325 	return -ENOMEM;
2326 }
2327 
2328 static void ext4_groupinfo_destroy_slabs(void)
2329 {
2330 	int i;
2331 
2332 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2333 		if (ext4_groupinfo_caches[i])
2334 			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2335 		ext4_groupinfo_caches[i] = NULL;
2336 	}
2337 }
2338 
2339 static int ext4_groupinfo_create_slab(size_t size)
2340 {
2341 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2342 	int slab_size;
2343 	int blocksize_bits = order_base_2(size);
2344 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2345 	struct kmem_cache *cachep;
2346 
2347 	if (cache_index >= NR_GRPINFO_CACHES)
2348 		return -EINVAL;
2349 
2350 	if (unlikely(cache_index < 0))
2351 		cache_index = 0;
2352 
2353 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2354 	if (ext4_groupinfo_caches[cache_index]) {
2355 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2356 		return 0;	/* Already created */
2357 	}
2358 
2359 	slab_size = offsetof(struct ext4_group_info,
2360 				bb_counters[blocksize_bits + 2]);
2361 
2362 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2363 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2364 					NULL);
2365 
2366 	ext4_groupinfo_caches[cache_index] = cachep;
2367 
2368 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2369 	if (!cachep) {
2370 		printk(KERN_EMERG
2371 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2372 		return -ENOMEM;
2373 	}
2374 
2375 	return 0;
2376 }
2377 
2378 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2379 {
2380 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2381 	unsigned i, j;
2382 	unsigned offset;
2383 	unsigned max;
2384 	int ret;
2385 
2386 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2387 
2388 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2389 	if (sbi->s_mb_offsets == NULL) {
2390 		ret = -ENOMEM;
2391 		goto out;
2392 	}
2393 
2394 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2395 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2396 	if (sbi->s_mb_maxs == NULL) {
2397 		ret = -ENOMEM;
2398 		goto out;
2399 	}
2400 
2401 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2402 	if (ret < 0)
2403 		goto out;
2404 
2405 	/* order 0 is regular bitmap */
2406 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2407 	sbi->s_mb_offsets[0] = 0;
2408 
2409 	i = 1;
2410 	offset = 0;
2411 	max = sb->s_blocksize << 2;
2412 	do {
2413 		sbi->s_mb_offsets[i] = offset;
2414 		sbi->s_mb_maxs[i] = max;
2415 		offset += 1 << (sb->s_blocksize_bits - i);
2416 		max = max >> 1;
2417 		i++;
2418 	} while (i <= sb->s_blocksize_bits + 1);
2419 
2420 	spin_lock_init(&sbi->s_md_lock);
2421 	spin_lock_init(&sbi->s_bal_lock);
2422 
2423 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2424 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2425 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2426 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2427 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2428 	/*
2429 	 * The default group preallocation is 512, which for 4k block
2430 	 * sizes translates to 2 megabytes.  However for bigalloc file
2431 	 * systems, this is probably too big (i.e, if the cluster size
2432 	 * is 1 megabyte, then group preallocation size becomes half a
2433 	 * gigabyte!).  As a default, we will keep a two megabyte
2434 	 * group pralloc size for cluster sizes up to 64k, and after
2435 	 * that, we will force a minimum group preallocation size of
2436 	 * 32 clusters.  This translates to 8 megs when the cluster
2437 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2438 	 * which seems reasonable as a default.
2439 	 */
2440 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2441 				       sbi->s_cluster_bits, 32);
2442 	/*
2443 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2444 	 * to the lowest multiple of s_stripe which is bigger than
2445 	 * the s_mb_group_prealloc as determined above. We want
2446 	 * the preallocation size to be an exact multiple of the
2447 	 * RAID stripe size so that preallocations don't fragment
2448 	 * the stripes.
2449 	 */
2450 	if (sbi->s_stripe > 1) {
2451 		sbi->s_mb_group_prealloc = roundup(
2452 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2453 	}
2454 
2455 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2456 	if (sbi->s_locality_groups == NULL) {
2457 		ret = -ENOMEM;
2458 		goto out_free_groupinfo_slab;
2459 	}
2460 	for_each_possible_cpu(i) {
2461 		struct ext4_locality_group *lg;
2462 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2463 		mutex_init(&lg->lg_mutex);
2464 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2465 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2466 		spin_lock_init(&lg->lg_prealloc_lock);
2467 	}
2468 
2469 	/* init file for buddy data */
2470 	ret = ext4_mb_init_backend(sb);
2471 	if (ret != 0)
2472 		goto out_free_locality_groups;
2473 
2474 	if (sbi->s_proc)
2475 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2476 				 &ext4_mb_seq_groups_fops, sb);
2477 
2478 	return 0;
2479 
2480 out_free_locality_groups:
2481 	free_percpu(sbi->s_locality_groups);
2482 	sbi->s_locality_groups = NULL;
2483 out_free_groupinfo_slab:
2484 	ext4_groupinfo_destroy_slabs();
2485 out:
2486 	kfree(sbi->s_mb_offsets);
2487 	sbi->s_mb_offsets = NULL;
2488 	kfree(sbi->s_mb_maxs);
2489 	sbi->s_mb_maxs = NULL;
2490 	return ret;
2491 }
2492 
2493 /* need to called with the ext4 group lock held */
2494 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2495 {
2496 	struct ext4_prealloc_space *pa;
2497 	struct list_head *cur, *tmp;
2498 	int count = 0;
2499 
2500 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2501 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2502 		list_del(&pa->pa_group_list);
2503 		count++;
2504 		kmem_cache_free(ext4_pspace_cachep, pa);
2505 	}
2506 	if (count)
2507 		mb_debug(1, "mballoc: %u PAs left\n", count);
2508 
2509 }
2510 
2511 int ext4_mb_release(struct super_block *sb)
2512 {
2513 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2514 	ext4_group_t i;
2515 	int num_meta_group_infos;
2516 	struct ext4_group_info *grinfo;
2517 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2518 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2519 
2520 	if (sbi->s_group_info) {
2521 		for (i = 0; i < ngroups; i++) {
2522 			grinfo = ext4_get_group_info(sb, i);
2523 #ifdef DOUBLE_CHECK
2524 			kfree(grinfo->bb_bitmap);
2525 #endif
2526 			ext4_lock_group(sb, i);
2527 			ext4_mb_cleanup_pa(grinfo);
2528 			ext4_unlock_group(sb, i);
2529 			kmem_cache_free(cachep, grinfo);
2530 		}
2531 		num_meta_group_infos = (ngroups +
2532 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2533 			EXT4_DESC_PER_BLOCK_BITS(sb);
2534 		for (i = 0; i < num_meta_group_infos; i++)
2535 			kfree(sbi->s_group_info[i]);
2536 		ext4_kvfree(sbi->s_group_info);
2537 	}
2538 	kfree(sbi->s_mb_offsets);
2539 	kfree(sbi->s_mb_maxs);
2540 	if (sbi->s_buddy_cache)
2541 		iput(sbi->s_buddy_cache);
2542 	if (sbi->s_mb_stats) {
2543 		ext4_msg(sb, KERN_INFO,
2544 		       "mballoc: %u blocks %u reqs (%u success)",
2545 				atomic_read(&sbi->s_bal_allocated),
2546 				atomic_read(&sbi->s_bal_reqs),
2547 				atomic_read(&sbi->s_bal_success));
2548 		ext4_msg(sb, KERN_INFO,
2549 		      "mballoc: %u extents scanned, %u goal hits, "
2550 				"%u 2^N hits, %u breaks, %u lost",
2551 				atomic_read(&sbi->s_bal_ex_scanned),
2552 				atomic_read(&sbi->s_bal_goals),
2553 				atomic_read(&sbi->s_bal_2orders),
2554 				atomic_read(&sbi->s_bal_breaks),
2555 				atomic_read(&sbi->s_mb_lost_chunks));
2556 		ext4_msg(sb, KERN_INFO,
2557 		       "mballoc: %lu generated and it took %Lu",
2558 				sbi->s_mb_buddies_generated,
2559 				sbi->s_mb_generation_time);
2560 		ext4_msg(sb, KERN_INFO,
2561 		       "mballoc: %u preallocated, %u discarded",
2562 				atomic_read(&sbi->s_mb_preallocated),
2563 				atomic_read(&sbi->s_mb_discarded));
2564 	}
2565 
2566 	free_percpu(sbi->s_locality_groups);
2567 	if (sbi->s_proc)
2568 		remove_proc_entry("mb_groups", sbi->s_proc);
2569 
2570 	return 0;
2571 }
2572 
2573 static inline int ext4_issue_discard(struct super_block *sb,
2574 		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2575 {
2576 	ext4_fsblk_t discard_block;
2577 
2578 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2579 			 ext4_group_first_block_no(sb, block_group));
2580 	count = EXT4_C2B(EXT4_SB(sb), count);
2581 	trace_ext4_discard_blocks(sb,
2582 			(unsigned long long) discard_block, count);
2583 	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2584 }
2585 
2586 /*
2587  * This function is called by the jbd2 layer once the commit has finished,
2588  * so we know we can free the blocks that were released with that commit.
2589  */
2590 static void ext4_free_data_callback(struct super_block *sb,
2591 				    struct ext4_journal_cb_entry *jce,
2592 				    int rc)
2593 {
2594 	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2595 	struct ext4_buddy e4b;
2596 	struct ext4_group_info *db;
2597 	int err, count = 0, count2 = 0;
2598 
2599 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2600 		 entry->efd_count, entry->efd_group, entry);
2601 
2602 	if (test_opt(sb, DISCARD))
2603 		ext4_issue_discard(sb, entry->efd_group,
2604 				   entry->efd_start_cluster, entry->efd_count);
2605 
2606 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2607 	/* we expect to find existing buddy because it's pinned */
2608 	BUG_ON(err != 0);
2609 
2610 
2611 	db = e4b.bd_info;
2612 	/* there are blocks to put in buddy to make them really free */
2613 	count += entry->efd_count;
2614 	count2++;
2615 	ext4_lock_group(sb, entry->efd_group);
2616 	/* Take it out of per group rb tree */
2617 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2618 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2619 
2620 	/*
2621 	 * Clear the trimmed flag for the group so that the next
2622 	 * ext4_trim_fs can trim it.
2623 	 * If the volume is mounted with -o discard, online discard
2624 	 * is supported and the free blocks will be trimmed online.
2625 	 */
2626 	if (!test_opt(sb, DISCARD))
2627 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2628 
2629 	if (!db->bb_free_root.rb_node) {
2630 		/* No more items in the per group rb tree
2631 		 * balance refcounts from ext4_mb_free_metadata()
2632 		 */
2633 		page_cache_release(e4b.bd_buddy_page);
2634 		page_cache_release(e4b.bd_bitmap_page);
2635 	}
2636 	ext4_unlock_group(sb, entry->efd_group);
2637 	kmem_cache_free(ext4_free_data_cachep, entry);
2638 	ext4_mb_unload_buddy(&e4b);
2639 
2640 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2641 }
2642 
2643 #ifdef CONFIG_EXT4_DEBUG
2644 u8 mb_enable_debug __read_mostly;
2645 
2646 static struct dentry *debugfs_dir;
2647 static struct dentry *debugfs_debug;
2648 
2649 static void __init ext4_create_debugfs_entry(void)
2650 {
2651 	debugfs_dir = debugfs_create_dir("ext4", NULL);
2652 	if (debugfs_dir)
2653 		debugfs_debug = debugfs_create_u8("mballoc-debug",
2654 						  S_IRUGO | S_IWUSR,
2655 						  debugfs_dir,
2656 						  &mb_enable_debug);
2657 }
2658 
2659 static void ext4_remove_debugfs_entry(void)
2660 {
2661 	debugfs_remove(debugfs_debug);
2662 	debugfs_remove(debugfs_dir);
2663 }
2664 
2665 #else
2666 
2667 static void __init ext4_create_debugfs_entry(void)
2668 {
2669 }
2670 
2671 static void ext4_remove_debugfs_entry(void)
2672 {
2673 }
2674 
2675 #endif
2676 
2677 int __init ext4_init_mballoc(void)
2678 {
2679 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2680 					SLAB_RECLAIM_ACCOUNT);
2681 	if (ext4_pspace_cachep == NULL)
2682 		return -ENOMEM;
2683 
2684 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2685 				    SLAB_RECLAIM_ACCOUNT);
2686 	if (ext4_ac_cachep == NULL) {
2687 		kmem_cache_destroy(ext4_pspace_cachep);
2688 		return -ENOMEM;
2689 	}
2690 
2691 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2692 					   SLAB_RECLAIM_ACCOUNT);
2693 	if (ext4_free_data_cachep == NULL) {
2694 		kmem_cache_destroy(ext4_pspace_cachep);
2695 		kmem_cache_destroy(ext4_ac_cachep);
2696 		return -ENOMEM;
2697 	}
2698 	ext4_create_debugfs_entry();
2699 	return 0;
2700 }
2701 
2702 void ext4_exit_mballoc(void)
2703 {
2704 	/*
2705 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2706 	 * before destroying the slab cache.
2707 	 */
2708 	rcu_barrier();
2709 	kmem_cache_destroy(ext4_pspace_cachep);
2710 	kmem_cache_destroy(ext4_ac_cachep);
2711 	kmem_cache_destroy(ext4_free_data_cachep);
2712 	ext4_groupinfo_destroy_slabs();
2713 	ext4_remove_debugfs_entry();
2714 }
2715 
2716 
2717 /*
2718  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2719  * Returns 0 if success or error code
2720  */
2721 static noinline_for_stack int
2722 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2723 				handle_t *handle, unsigned int reserv_clstrs)
2724 {
2725 	struct buffer_head *bitmap_bh = NULL;
2726 	struct ext4_group_desc *gdp;
2727 	struct buffer_head *gdp_bh;
2728 	struct ext4_sb_info *sbi;
2729 	struct super_block *sb;
2730 	ext4_fsblk_t block;
2731 	int err, len;
2732 
2733 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2734 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2735 
2736 	sb = ac->ac_sb;
2737 	sbi = EXT4_SB(sb);
2738 
2739 	err = -EIO;
2740 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2741 	if (!bitmap_bh)
2742 		goto out_err;
2743 
2744 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2745 	if (err)
2746 		goto out_err;
2747 
2748 	err = -EIO;
2749 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2750 	if (!gdp)
2751 		goto out_err;
2752 
2753 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2754 			ext4_free_group_clusters(sb, gdp));
2755 
2756 	err = ext4_journal_get_write_access(handle, gdp_bh);
2757 	if (err)
2758 		goto out_err;
2759 
2760 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2761 
2762 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2763 	if (!ext4_data_block_valid(sbi, block, len)) {
2764 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2765 			   "fs metadata", block, block+len);
2766 		/* File system mounted not to panic on error
2767 		 * Fix the bitmap and repeat the block allocation
2768 		 * We leak some of the blocks here.
2769 		 */
2770 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2771 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2772 			      ac->ac_b_ex.fe_len);
2773 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2774 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2775 		if (!err)
2776 			err = -EAGAIN;
2777 		goto out_err;
2778 	}
2779 
2780 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2781 #ifdef AGGRESSIVE_CHECK
2782 	{
2783 		int i;
2784 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2785 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2786 						bitmap_bh->b_data));
2787 		}
2788 	}
2789 #endif
2790 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2791 		      ac->ac_b_ex.fe_len);
2792 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2793 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2794 		ext4_free_group_clusters_set(sb, gdp,
2795 					     ext4_free_clusters_after_init(sb,
2796 						ac->ac_b_ex.fe_group, gdp));
2797 	}
2798 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2799 	ext4_free_group_clusters_set(sb, gdp, len);
2800 	gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2801 
2802 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2803 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2804 	/*
2805 	 * Now reduce the dirty block count also. Should not go negative
2806 	 */
2807 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2808 		/* release all the reserved blocks if non delalloc */
2809 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2810 				   reserv_clstrs);
2811 
2812 	if (sbi->s_log_groups_per_flex) {
2813 		ext4_group_t flex_group = ext4_flex_group(sbi,
2814 							  ac->ac_b_ex.fe_group);
2815 		atomic_sub(ac->ac_b_ex.fe_len,
2816 			   &sbi->s_flex_groups[flex_group].free_clusters);
2817 	}
2818 
2819 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2820 	if (err)
2821 		goto out_err;
2822 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2823 
2824 out_err:
2825 	ext4_mark_super_dirty(sb);
2826 	brelse(bitmap_bh);
2827 	return err;
2828 }
2829 
2830 /*
2831  * here we normalize request for locality group
2832  * Group request are normalized to s_mb_group_prealloc, which goes to
2833  * s_strip if we set the same via mount option.
2834  * s_mb_group_prealloc can be configured via
2835  * /sys/fs/ext4/<partition>/mb_group_prealloc
2836  *
2837  * XXX: should we try to preallocate more than the group has now?
2838  */
2839 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2840 {
2841 	struct super_block *sb = ac->ac_sb;
2842 	struct ext4_locality_group *lg = ac->ac_lg;
2843 
2844 	BUG_ON(lg == NULL);
2845 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2846 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2847 		current->pid, ac->ac_g_ex.fe_len);
2848 }
2849 
2850 /*
2851  * Normalization means making request better in terms of
2852  * size and alignment
2853  */
2854 static noinline_for_stack void
2855 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2856 				struct ext4_allocation_request *ar)
2857 {
2858 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2859 	int bsbits, max;
2860 	ext4_lblk_t end;
2861 	loff_t size, start_off;
2862 	loff_t orig_size __maybe_unused;
2863 	ext4_lblk_t start;
2864 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2865 	struct ext4_prealloc_space *pa;
2866 
2867 	/* do normalize only data requests, metadata requests
2868 	   do not need preallocation */
2869 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2870 		return;
2871 
2872 	/* sometime caller may want exact blocks */
2873 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2874 		return;
2875 
2876 	/* caller may indicate that preallocation isn't
2877 	 * required (it's a tail, for example) */
2878 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2879 		return;
2880 
2881 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2882 		ext4_mb_normalize_group_request(ac);
2883 		return ;
2884 	}
2885 
2886 	bsbits = ac->ac_sb->s_blocksize_bits;
2887 
2888 	/* first, let's learn actual file size
2889 	 * given current request is allocated */
2890 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
2891 	size = size << bsbits;
2892 	if (size < i_size_read(ac->ac_inode))
2893 		size = i_size_read(ac->ac_inode);
2894 	orig_size = size;
2895 
2896 	/* max size of free chunks */
2897 	max = 2 << bsbits;
2898 
2899 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
2900 		(req <= (size) || max <= (chunk_size))
2901 
2902 	/* first, try to predict filesize */
2903 	/* XXX: should this table be tunable? */
2904 	start_off = 0;
2905 	if (size <= 16 * 1024) {
2906 		size = 16 * 1024;
2907 	} else if (size <= 32 * 1024) {
2908 		size = 32 * 1024;
2909 	} else if (size <= 64 * 1024) {
2910 		size = 64 * 1024;
2911 	} else if (size <= 128 * 1024) {
2912 		size = 128 * 1024;
2913 	} else if (size <= 256 * 1024) {
2914 		size = 256 * 1024;
2915 	} else if (size <= 512 * 1024) {
2916 		size = 512 * 1024;
2917 	} else if (size <= 1024 * 1024) {
2918 		size = 1024 * 1024;
2919 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2920 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2921 						(21 - bsbits)) << 21;
2922 		size = 2 * 1024 * 1024;
2923 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2924 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2925 							(22 - bsbits)) << 22;
2926 		size = 4 * 1024 * 1024;
2927 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2928 					(8<<20)>>bsbits, max, 8 * 1024)) {
2929 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2930 							(23 - bsbits)) << 23;
2931 		size = 8 * 1024 * 1024;
2932 	} else {
2933 		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2934 		size	  = ac->ac_o_ex.fe_len << bsbits;
2935 	}
2936 	size = size >> bsbits;
2937 	start = start_off >> bsbits;
2938 
2939 	/* don't cover already allocated blocks in selected range */
2940 	if (ar->pleft && start <= ar->lleft) {
2941 		size -= ar->lleft + 1 - start;
2942 		start = ar->lleft + 1;
2943 	}
2944 	if (ar->pright && start + size - 1 >= ar->lright)
2945 		size -= start + size - ar->lright;
2946 
2947 	end = start + size;
2948 
2949 	/* check we don't cross already preallocated blocks */
2950 	rcu_read_lock();
2951 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2952 		ext4_lblk_t pa_end;
2953 
2954 		if (pa->pa_deleted)
2955 			continue;
2956 		spin_lock(&pa->pa_lock);
2957 		if (pa->pa_deleted) {
2958 			spin_unlock(&pa->pa_lock);
2959 			continue;
2960 		}
2961 
2962 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
2963 						  pa->pa_len);
2964 
2965 		/* PA must not overlap original request */
2966 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2967 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
2968 
2969 		/* skip PAs this normalized request doesn't overlap with */
2970 		if (pa->pa_lstart >= end || pa_end <= start) {
2971 			spin_unlock(&pa->pa_lock);
2972 			continue;
2973 		}
2974 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
2975 
2976 		/* adjust start or end to be adjacent to this pa */
2977 		if (pa_end <= ac->ac_o_ex.fe_logical) {
2978 			BUG_ON(pa_end < start);
2979 			start = pa_end;
2980 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
2981 			BUG_ON(pa->pa_lstart > end);
2982 			end = pa->pa_lstart;
2983 		}
2984 		spin_unlock(&pa->pa_lock);
2985 	}
2986 	rcu_read_unlock();
2987 	size = end - start;
2988 
2989 	/* XXX: extra loop to check we really don't overlap preallocations */
2990 	rcu_read_lock();
2991 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2992 		ext4_lblk_t pa_end;
2993 
2994 		spin_lock(&pa->pa_lock);
2995 		if (pa->pa_deleted == 0) {
2996 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
2997 							  pa->pa_len);
2998 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
2999 		}
3000 		spin_unlock(&pa->pa_lock);
3001 	}
3002 	rcu_read_unlock();
3003 
3004 	if (start + size <= ac->ac_o_ex.fe_logical &&
3005 			start > ac->ac_o_ex.fe_logical) {
3006 		ext4_msg(ac->ac_sb, KERN_ERR,
3007 			 "start %lu, size %lu, fe_logical %lu",
3008 			 (unsigned long) start, (unsigned long) size,
3009 			 (unsigned long) ac->ac_o_ex.fe_logical);
3010 	}
3011 	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3012 			start > ac->ac_o_ex.fe_logical);
3013 	BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
3014 
3015 	/* now prepare goal request */
3016 
3017 	/* XXX: is it better to align blocks WRT to logical
3018 	 * placement or satisfy big request as is */
3019 	ac->ac_g_ex.fe_logical = start;
3020 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3021 
3022 	/* define goal start in order to merge */
3023 	if (ar->pright && (ar->lright == (start + size))) {
3024 		/* merge to the right */
3025 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3026 						&ac->ac_f_ex.fe_group,
3027 						&ac->ac_f_ex.fe_start);
3028 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3029 	}
3030 	if (ar->pleft && (ar->lleft + 1 == start)) {
3031 		/* merge to the left */
3032 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3033 						&ac->ac_f_ex.fe_group,
3034 						&ac->ac_f_ex.fe_start);
3035 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3036 	}
3037 
3038 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3039 		(unsigned) orig_size, (unsigned) start);
3040 }
3041 
3042 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3043 {
3044 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3045 
3046 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3047 		atomic_inc(&sbi->s_bal_reqs);
3048 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3049 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3050 			atomic_inc(&sbi->s_bal_success);
3051 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3052 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3053 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3054 			atomic_inc(&sbi->s_bal_goals);
3055 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3056 			atomic_inc(&sbi->s_bal_breaks);
3057 	}
3058 
3059 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3060 		trace_ext4_mballoc_alloc(ac);
3061 	else
3062 		trace_ext4_mballoc_prealloc(ac);
3063 }
3064 
3065 /*
3066  * Called on failure; free up any blocks from the inode PA for this
3067  * context.  We don't need this for MB_GROUP_PA because we only change
3068  * pa_free in ext4_mb_release_context(), but on failure, we've already
3069  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3070  */
3071 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3072 {
3073 	struct ext4_prealloc_space *pa = ac->ac_pa;
3074 	int len;
3075 
3076 	if (pa && pa->pa_type == MB_INODE_PA) {
3077 		len = ac->ac_b_ex.fe_len;
3078 		pa->pa_free += len;
3079 	}
3080 
3081 }
3082 
3083 /*
3084  * use blocks preallocated to inode
3085  */
3086 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3087 				struct ext4_prealloc_space *pa)
3088 {
3089 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3090 	ext4_fsblk_t start;
3091 	ext4_fsblk_t end;
3092 	int len;
3093 
3094 	/* found preallocated blocks, use them */
3095 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3096 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3097 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3098 	len = EXT4_NUM_B2C(sbi, end - start);
3099 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3100 					&ac->ac_b_ex.fe_start);
3101 	ac->ac_b_ex.fe_len = len;
3102 	ac->ac_status = AC_STATUS_FOUND;
3103 	ac->ac_pa = pa;
3104 
3105 	BUG_ON(start < pa->pa_pstart);
3106 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3107 	BUG_ON(pa->pa_free < len);
3108 	pa->pa_free -= len;
3109 
3110 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3111 }
3112 
3113 /*
3114  * use blocks preallocated to locality group
3115  */
3116 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3117 				struct ext4_prealloc_space *pa)
3118 {
3119 	unsigned int len = ac->ac_o_ex.fe_len;
3120 
3121 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3122 					&ac->ac_b_ex.fe_group,
3123 					&ac->ac_b_ex.fe_start);
3124 	ac->ac_b_ex.fe_len = len;
3125 	ac->ac_status = AC_STATUS_FOUND;
3126 	ac->ac_pa = pa;
3127 
3128 	/* we don't correct pa_pstart or pa_plen here to avoid
3129 	 * possible race when the group is being loaded concurrently
3130 	 * instead we correct pa later, after blocks are marked
3131 	 * in on-disk bitmap -- see ext4_mb_release_context()
3132 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3133 	 */
3134 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3135 }
3136 
3137 /*
3138  * Return the prealloc space that have minimal distance
3139  * from the goal block. @cpa is the prealloc
3140  * space that is having currently known minimal distance
3141  * from the goal block.
3142  */
3143 static struct ext4_prealloc_space *
3144 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3145 			struct ext4_prealloc_space *pa,
3146 			struct ext4_prealloc_space *cpa)
3147 {
3148 	ext4_fsblk_t cur_distance, new_distance;
3149 
3150 	if (cpa == NULL) {
3151 		atomic_inc(&pa->pa_count);
3152 		return pa;
3153 	}
3154 	cur_distance = abs(goal_block - cpa->pa_pstart);
3155 	new_distance = abs(goal_block - pa->pa_pstart);
3156 
3157 	if (cur_distance <= new_distance)
3158 		return cpa;
3159 
3160 	/* drop the previous reference */
3161 	atomic_dec(&cpa->pa_count);
3162 	atomic_inc(&pa->pa_count);
3163 	return pa;
3164 }
3165 
3166 /*
3167  * search goal blocks in preallocated space
3168  */
3169 static noinline_for_stack int
3170 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3171 {
3172 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3173 	int order, i;
3174 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3175 	struct ext4_locality_group *lg;
3176 	struct ext4_prealloc_space *pa, *cpa = NULL;
3177 	ext4_fsblk_t goal_block;
3178 
3179 	/* only data can be preallocated */
3180 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3181 		return 0;
3182 
3183 	/* first, try per-file preallocation */
3184 	rcu_read_lock();
3185 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3186 
3187 		/* all fields in this condition don't change,
3188 		 * so we can skip locking for them */
3189 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3190 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3191 					       EXT4_C2B(sbi, pa->pa_len)))
3192 			continue;
3193 
3194 		/* non-extent files can't have physical blocks past 2^32 */
3195 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3196 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3197 		     EXT4_MAX_BLOCK_FILE_PHYS))
3198 			continue;
3199 
3200 		/* found preallocated blocks, use them */
3201 		spin_lock(&pa->pa_lock);
3202 		if (pa->pa_deleted == 0 && pa->pa_free) {
3203 			atomic_inc(&pa->pa_count);
3204 			ext4_mb_use_inode_pa(ac, pa);
3205 			spin_unlock(&pa->pa_lock);
3206 			ac->ac_criteria = 10;
3207 			rcu_read_unlock();
3208 			return 1;
3209 		}
3210 		spin_unlock(&pa->pa_lock);
3211 	}
3212 	rcu_read_unlock();
3213 
3214 	/* can we use group allocation? */
3215 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3216 		return 0;
3217 
3218 	/* inode may have no locality group for some reason */
3219 	lg = ac->ac_lg;
3220 	if (lg == NULL)
3221 		return 0;
3222 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3223 	if (order > PREALLOC_TB_SIZE - 1)
3224 		/* The max size of hash table is PREALLOC_TB_SIZE */
3225 		order = PREALLOC_TB_SIZE - 1;
3226 
3227 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3228 	/*
3229 	 * search for the prealloc space that is having
3230 	 * minimal distance from the goal block.
3231 	 */
3232 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3233 		rcu_read_lock();
3234 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3235 					pa_inode_list) {
3236 			spin_lock(&pa->pa_lock);
3237 			if (pa->pa_deleted == 0 &&
3238 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3239 
3240 				cpa = ext4_mb_check_group_pa(goal_block,
3241 								pa, cpa);
3242 			}
3243 			spin_unlock(&pa->pa_lock);
3244 		}
3245 		rcu_read_unlock();
3246 	}
3247 	if (cpa) {
3248 		ext4_mb_use_group_pa(ac, cpa);
3249 		ac->ac_criteria = 20;
3250 		return 1;
3251 	}
3252 	return 0;
3253 }
3254 
3255 /*
3256  * the function goes through all block freed in the group
3257  * but not yet committed and marks them used in in-core bitmap.
3258  * buddy must be generated from this bitmap
3259  * Need to be called with the ext4 group lock held
3260  */
3261 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3262 						ext4_group_t group)
3263 {
3264 	struct rb_node *n;
3265 	struct ext4_group_info *grp;
3266 	struct ext4_free_data *entry;
3267 
3268 	grp = ext4_get_group_info(sb, group);
3269 	n = rb_first(&(grp->bb_free_root));
3270 
3271 	while (n) {
3272 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3273 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3274 		n = rb_next(n);
3275 	}
3276 	return;
3277 }
3278 
3279 /*
3280  * the function goes through all preallocation in this group and marks them
3281  * used in in-core bitmap. buddy must be generated from this bitmap
3282  * Need to be called with ext4 group lock held
3283  */
3284 static noinline_for_stack
3285 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3286 					ext4_group_t group)
3287 {
3288 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3289 	struct ext4_prealloc_space *pa;
3290 	struct list_head *cur;
3291 	ext4_group_t groupnr;
3292 	ext4_grpblk_t start;
3293 	int preallocated = 0;
3294 	int len;
3295 
3296 	/* all form of preallocation discards first load group,
3297 	 * so the only competing code is preallocation use.
3298 	 * we don't need any locking here
3299 	 * notice we do NOT ignore preallocations with pa_deleted
3300 	 * otherwise we could leave used blocks available for
3301 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3302 	 * is dropping preallocation
3303 	 */
3304 	list_for_each(cur, &grp->bb_prealloc_list) {
3305 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3306 		spin_lock(&pa->pa_lock);
3307 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3308 					     &groupnr, &start);
3309 		len = pa->pa_len;
3310 		spin_unlock(&pa->pa_lock);
3311 		if (unlikely(len == 0))
3312 			continue;
3313 		BUG_ON(groupnr != group);
3314 		ext4_set_bits(bitmap, start, len);
3315 		preallocated += len;
3316 	}
3317 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3318 }
3319 
3320 static void ext4_mb_pa_callback(struct rcu_head *head)
3321 {
3322 	struct ext4_prealloc_space *pa;
3323 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3324 	kmem_cache_free(ext4_pspace_cachep, pa);
3325 }
3326 
3327 /*
3328  * drops a reference to preallocated space descriptor
3329  * if this was the last reference and the space is consumed
3330  */
3331 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3332 			struct super_block *sb, struct ext4_prealloc_space *pa)
3333 {
3334 	ext4_group_t grp;
3335 	ext4_fsblk_t grp_blk;
3336 
3337 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3338 		return;
3339 
3340 	/* in this short window concurrent discard can set pa_deleted */
3341 	spin_lock(&pa->pa_lock);
3342 	if (pa->pa_deleted == 1) {
3343 		spin_unlock(&pa->pa_lock);
3344 		return;
3345 	}
3346 
3347 	pa->pa_deleted = 1;
3348 	spin_unlock(&pa->pa_lock);
3349 
3350 	grp_blk = pa->pa_pstart;
3351 	/*
3352 	 * If doing group-based preallocation, pa_pstart may be in the
3353 	 * next group when pa is used up
3354 	 */
3355 	if (pa->pa_type == MB_GROUP_PA)
3356 		grp_blk--;
3357 
3358 	ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3359 
3360 	/*
3361 	 * possible race:
3362 	 *
3363 	 *  P1 (buddy init)			P2 (regular allocation)
3364 	 *					find block B in PA
3365 	 *  copy on-disk bitmap to buddy
3366 	 *  					mark B in on-disk bitmap
3367 	 *					drop PA from group
3368 	 *  mark all PAs in buddy
3369 	 *
3370 	 * thus, P1 initializes buddy with B available. to prevent this
3371 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3372 	 * against that pair
3373 	 */
3374 	ext4_lock_group(sb, grp);
3375 	list_del(&pa->pa_group_list);
3376 	ext4_unlock_group(sb, grp);
3377 
3378 	spin_lock(pa->pa_obj_lock);
3379 	list_del_rcu(&pa->pa_inode_list);
3380 	spin_unlock(pa->pa_obj_lock);
3381 
3382 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3383 }
3384 
3385 /*
3386  * creates new preallocated space for given inode
3387  */
3388 static noinline_for_stack int
3389 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3390 {
3391 	struct super_block *sb = ac->ac_sb;
3392 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3393 	struct ext4_prealloc_space *pa;
3394 	struct ext4_group_info *grp;
3395 	struct ext4_inode_info *ei;
3396 
3397 	/* preallocate only when found space is larger then requested */
3398 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3399 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3400 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3401 
3402 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3403 	if (pa == NULL)
3404 		return -ENOMEM;
3405 
3406 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3407 		int winl;
3408 		int wins;
3409 		int win;
3410 		int offs;
3411 
3412 		/* we can't allocate as much as normalizer wants.
3413 		 * so, found space must get proper lstart
3414 		 * to cover original request */
3415 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3416 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3417 
3418 		/* we're limited by original request in that
3419 		 * logical block must be covered any way
3420 		 * winl is window we can move our chunk within */
3421 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3422 
3423 		/* also, we should cover whole original request */
3424 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3425 
3426 		/* the smallest one defines real window */
3427 		win = min(winl, wins);
3428 
3429 		offs = ac->ac_o_ex.fe_logical %
3430 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3431 		if (offs && offs < win)
3432 			win = offs;
3433 
3434 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3435 			EXT4_B2C(sbi, win);
3436 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3437 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3438 	}
3439 
3440 	/* preallocation can change ac_b_ex, thus we store actually
3441 	 * allocated blocks for history */
3442 	ac->ac_f_ex = ac->ac_b_ex;
3443 
3444 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3445 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3446 	pa->pa_len = ac->ac_b_ex.fe_len;
3447 	pa->pa_free = pa->pa_len;
3448 	atomic_set(&pa->pa_count, 1);
3449 	spin_lock_init(&pa->pa_lock);
3450 	INIT_LIST_HEAD(&pa->pa_inode_list);
3451 	INIT_LIST_HEAD(&pa->pa_group_list);
3452 	pa->pa_deleted = 0;
3453 	pa->pa_type = MB_INODE_PA;
3454 
3455 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3456 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3457 	trace_ext4_mb_new_inode_pa(ac, pa);
3458 
3459 	ext4_mb_use_inode_pa(ac, pa);
3460 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3461 
3462 	ei = EXT4_I(ac->ac_inode);
3463 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3464 
3465 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3466 	pa->pa_inode = ac->ac_inode;
3467 
3468 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3469 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3470 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3471 
3472 	spin_lock(pa->pa_obj_lock);
3473 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3474 	spin_unlock(pa->pa_obj_lock);
3475 
3476 	return 0;
3477 }
3478 
3479 /*
3480  * creates new preallocated space for locality group inodes belongs to
3481  */
3482 static noinline_for_stack int
3483 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3484 {
3485 	struct super_block *sb = ac->ac_sb;
3486 	struct ext4_locality_group *lg;
3487 	struct ext4_prealloc_space *pa;
3488 	struct ext4_group_info *grp;
3489 
3490 	/* preallocate only when found space is larger then requested */
3491 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3492 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3493 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3494 
3495 	BUG_ON(ext4_pspace_cachep == NULL);
3496 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3497 	if (pa == NULL)
3498 		return -ENOMEM;
3499 
3500 	/* preallocation can change ac_b_ex, thus we store actually
3501 	 * allocated blocks for history */
3502 	ac->ac_f_ex = ac->ac_b_ex;
3503 
3504 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3505 	pa->pa_lstart = pa->pa_pstart;
3506 	pa->pa_len = ac->ac_b_ex.fe_len;
3507 	pa->pa_free = pa->pa_len;
3508 	atomic_set(&pa->pa_count, 1);
3509 	spin_lock_init(&pa->pa_lock);
3510 	INIT_LIST_HEAD(&pa->pa_inode_list);
3511 	INIT_LIST_HEAD(&pa->pa_group_list);
3512 	pa->pa_deleted = 0;
3513 	pa->pa_type = MB_GROUP_PA;
3514 
3515 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3516 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3517 	trace_ext4_mb_new_group_pa(ac, pa);
3518 
3519 	ext4_mb_use_group_pa(ac, pa);
3520 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3521 
3522 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3523 	lg = ac->ac_lg;
3524 	BUG_ON(lg == NULL);
3525 
3526 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3527 	pa->pa_inode = NULL;
3528 
3529 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3530 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3531 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3532 
3533 	/*
3534 	 * We will later add the new pa to the right bucket
3535 	 * after updating the pa_free in ext4_mb_release_context
3536 	 */
3537 	return 0;
3538 }
3539 
3540 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3541 {
3542 	int err;
3543 
3544 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3545 		err = ext4_mb_new_group_pa(ac);
3546 	else
3547 		err = ext4_mb_new_inode_pa(ac);
3548 	return err;
3549 }
3550 
3551 /*
3552  * finds all unused blocks in on-disk bitmap, frees them in
3553  * in-core bitmap and buddy.
3554  * @pa must be unlinked from inode and group lists, so that
3555  * nobody else can find/use it.
3556  * the caller MUST hold group/inode locks.
3557  * TODO: optimize the case when there are no in-core structures yet
3558  */
3559 static noinline_for_stack int
3560 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3561 			struct ext4_prealloc_space *pa)
3562 {
3563 	struct super_block *sb = e4b->bd_sb;
3564 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3565 	unsigned int end;
3566 	unsigned int next;
3567 	ext4_group_t group;
3568 	ext4_grpblk_t bit;
3569 	unsigned long long grp_blk_start;
3570 	int err = 0;
3571 	int free = 0;
3572 
3573 	BUG_ON(pa->pa_deleted == 0);
3574 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3575 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3576 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3577 	end = bit + pa->pa_len;
3578 
3579 	while (bit < end) {
3580 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3581 		if (bit >= end)
3582 			break;
3583 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3584 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3585 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3586 			 (unsigned) next - bit, (unsigned) group);
3587 		free += next - bit;
3588 
3589 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3590 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3591 						    EXT4_C2B(sbi, bit)),
3592 					       next - bit);
3593 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3594 		bit = next + 1;
3595 	}
3596 	if (free != pa->pa_free) {
3597 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3598 			 "pa %p: logic %lu, phys. %lu, len %lu",
3599 			 pa, (unsigned long) pa->pa_lstart,
3600 			 (unsigned long) pa->pa_pstart,
3601 			 (unsigned long) pa->pa_len);
3602 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3603 					free, pa->pa_free);
3604 		/*
3605 		 * pa is already deleted so we use the value obtained
3606 		 * from the bitmap and continue.
3607 		 */
3608 	}
3609 	atomic_add(free, &sbi->s_mb_discarded);
3610 
3611 	return err;
3612 }
3613 
3614 static noinline_for_stack int
3615 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3616 				struct ext4_prealloc_space *pa)
3617 {
3618 	struct super_block *sb = e4b->bd_sb;
3619 	ext4_group_t group;
3620 	ext4_grpblk_t bit;
3621 
3622 	trace_ext4_mb_release_group_pa(sb, pa);
3623 	BUG_ON(pa->pa_deleted == 0);
3624 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3625 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3626 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3627 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3628 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3629 
3630 	return 0;
3631 }
3632 
3633 /*
3634  * releases all preallocations in given group
3635  *
3636  * first, we need to decide discard policy:
3637  * - when do we discard
3638  *   1) ENOSPC
3639  * - how many do we discard
3640  *   1) how many requested
3641  */
3642 static noinline_for_stack int
3643 ext4_mb_discard_group_preallocations(struct super_block *sb,
3644 					ext4_group_t group, int needed)
3645 {
3646 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3647 	struct buffer_head *bitmap_bh = NULL;
3648 	struct ext4_prealloc_space *pa, *tmp;
3649 	struct list_head list;
3650 	struct ext4_buddy e4b;
3651 	int err;
3652 	int busy = 0;
3653 	int free = 0;
3654 
3655 	mb_debug(1, "discard preallocation for group %u\n", group);
3656 
3657 	if (list_empty(&grp->bb_prealloc_list))
3658 		return 0;
3659 
3660 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3661 	if (bitmap_bh == NULL) {
3662 		ext4_error(sb, "Error reading block bitmap for %u", group);
3663 		return 0;
3664 	}
3665 
3666 	err = ext4_mb_load_buddy(sb, group, &e4b);
3667 	if (err) {
3668 		ext4_error(sb, "Error loading buddy information for %u", group);
3669 		put_bh(bitmap_bh);
3670 		return 0;
3671 	}
3672 
3673 	if (needed == 0)
3674 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3675 
3676 	INIT_LIST_HEAD(&list);
3677 repeat:
3678 	ext4_lock_group(sb, group);
3679 	list_for_each_entry_safe(pa, tmp,
3680 				&grp->bb_prealloc_list, pa_group_list) {
3681 		spin_lock(&pa->pa_lock);
3682 		if (atomic_read(&pa->pa_count)) {
3683 			spin_unlock(&pa->pa_lock);
3684 			busy = 1;
3685 			continue;
3686 		}
3687 		if (pa->pa_deleted) {
3688 			spin_unlock(&pa->pa_lock);
3689 			continue;
3690 		}
3691 
3692 		/* seems this one can be freed ... */
3693 		pa->pa_deleted = 1;
3694 
3695 		/* we can trust pa_free ... */
3696 		free += pa->pa_free;
3697 
3698 		spin_unlock(&pa->pa_lock);
3699 
3700 		list_del(&pa->pa_group_list);
3701 		list_add(&pa->u.pa_tmp_list, &list);
3702 	}
3703 
3704 	/* if we still need more blocks and some PAs were used, try again */
3705 	if (free < needed && busy) {
3706 		busy = 0;
3707 		ext4_unlock_group(sb, group);
3708 		/*
3709 		 * Yield the CPU here so that we don't get soft lockup
3710 		 * in non preempt case.
3711 		 */
3712 		yield();
3713 		goto repeat;
3714 	}
3715 
3716 	/* found anything to free? */
3717 	if (list_empty(&list)) {
3718 		BUG_ON(free != 0);
3719 		goto out;
3720 	}
3721 
3722 	/* now free all selected PAs */
3723 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3724 
3725 		/* remove from object (inode or locality group) */
3726 		spin_lock(pa->pa_obj_lock);
3727 		list_del_rcu(&pa->pa_inode_list);
3728 		spin_unlock(pa->pa_obj_lock);
3729 
3730 		if (pa->pa_type == MB_GROUP_PA)
3731 			ext4_mb_release_group_pa(&e4b, pa);
3732 		else
3733 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3734 
3735 		list_del(&pa->u.pa_tmp_list);
3736 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3737 	}
3738 
3739 out:
3740 	ext4_unlock_group(sb, group);
3741 	ext4_mb_unload_buddy(&e4b);
3742 	put_bh(bitmap_bh);
3743 	return free;
3744 }
3745 
3746 /*
3747  * releases all non-used preallocated blocks for given inode
3748  *
3749  * It's important to discard preallocations under i_data_sem
3750  * We don't want another block to be served from the prealloc
3751  * space when we are discarding the inode prealloc space.
3752  *
3753  * FIXME!! Make sure it is valid at all the call sites
3754  */
3755 void ext4_discard_preallocations(struct inode *inode)
3756 {
3757 	struct ext4_inode_info *ei = EXT4_I(inode);
3758 	struct super_block *sb = inode->i_sb;
3759 	struct buffer_head *bitmap_bh = NULL;
3760 	struct ext4_prealloc_space *pa, *tmp;
3761 	ext4_group_t group = 0;
3762 	struct list_head list;
3763 	struct ext4_buddy e4b;
3764 	int err;
3765 
3766 	if (!S_ISREG(inode->i_mode)) {
3767 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3768 		return;
3769 	}
3770 
3771 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3772 	trace_ext4_discard_preallocations(inode);
3773 
3774 	INIT_LIST_HEAD(&list);
3775 
3776 repeat:
3777 	/* first, collect all pa's in the inode */
3778 	spin_lock(&ei->i_prealloc_lock);
3779 	while (!list_empty(&ei->i_prealloc_list)) {
3780 		pa = list_entry(ei->i_prealloc_list.next,
3781 				struct ext4_prealloc_space, pa_inode_list);
3782 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3783 		spin_lock(&pa->pa_lock);
3784 		if (atomic_read(&pa->pa_count)) {
3785 			/* this shouldn't happen often - nobody should
3786 			 * use preallocation while we're discarding it */
3787 			spin_unlock(&pa->pa_lock);
3788 			spin_unlock(&ei->i_prealloc_lock);
3789 			ext4_msg(sb, KERN_ERR,
3790 				 "uh-oh! used pa while discarding");
3791 			WARN_ON(1);
3792 			schedule_timeout_uninterruptible(HZ);
3793 			goto repeat;
3794 
3795 		}
3796 		if (pa->pa_deleted == 0) {
3797 			pa->pa_deleted = 1;
3798 			spin_unlock(&pa->pa_lock);
3799 			list_del_rcu(&pa->pa_inode_list);
3800 			list_add(&pa->u.pa_tmp_list, &list);
3801 			continue;
3802 		}
3803 
3804 		/* someone is deleting pa right now */
3805 		spin_unlock(&pa->pa_lock);
3806 		spin_unlock(&ei->i_prealloc_lock);
3807 
3808 		/* we have to wait here because pa_deleted
3809 		 * doesn't mean pa is already unlinked from
3810 		 * the list. as we might be called from
3811 		 * ->clear_inode() the inode will get freed
3812 		 * and concurrent thread which is unlinking
3813 		 * pa from inode's list may access already
3814 		 * freed memory, bad-bad-bad */
3815 
3816 		/* XXX: if this happens too often, we can
3817 		 * add a flag to force wait only in case
3818 		 * of ->clear_inode(), but not in case of
3819 		 * regular truncate */
3820 		schedule_timeout_uninterruptible(HZ);
3821 		goto repeat;
3822 	}
3823 	spin_unlock(&ei->i_prealloc_lock);
3824 
3825 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3826 		BUG_ON(pa->pa_type != MB_INODE_PA);
3827 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3828 
3829 		err = ext4_mb_load_buddy(sb, group, &e4b);
3830 		if (err) {
3831 			ext4_error(sb, "Error loading buddy information for %u",
3832 					group);
3833 			continue;
3834 		}
3835 
3836 		bitmap_bh = ext4_read_block_bitmap(sb, group);
3837 		if (bitmap_bh == NULL) {
3838 			ext4_error(sb, "Error reading block bitmap for %u",
3839 					group);
3840 			ext4_mb_unload_buddy(&e4b);
3841 			continue;
3842 		}
3843 
3844 		ext4_lock_group(sb, group);
3845 		list_del(&pa->pa_group_list);
3846 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3847 		ext4_unlock_group(sb, group);
3848 
3849 		ext4_mb_unload_buddy(&e4b);
3850 		put_bh(bitmap_bh);
3851 
3852 		list_del(&pa->u.pa_tmp_list);
3853 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3854 	}
3855 }
3856 
3857 #ifdef CONFIG_EXT4_DEBUG
3858 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3859 {
3860 	struct super_block *sb = ac->ac_sb;
3861 	ext4_group_t ngroups, i;
3862 
3863 	if (!mb_enable_debug ||
3864 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3865 		return;
3866 
3867 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
3868 			" Allocation context details:");
3869 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
3870 			ac->ac_status, ac->ac_flags);
3871 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
3872 		 	"goal %lu/%lu/%lu@%lu, "
3873 			"best %lu/%lu/%lu@%lu cr %d",
3874 			(unsigned long)ac->ac_o_ex.fe_group,
3875 			(unsigned long)ac->ac_o_ex.fe_start,
3876 			(unsigned long)ac->ac_o_ex.fe_len,
3877 			(unsigned long)ac->ac_o_ex.fe_logical,
3878 			(unsigned long)ac->ac_g_ex.fe_group,
3879 			(unsigned long)ac->ac_g_ex.fe_start,
3880 			(unsigned long)ac->ac_g_ex.fe_len,
3881 			(unsigned long)ac->ac_g_ex.fe_logical,
3882 			(unsigned long)ac->ac_b_ex.fe_group,
3883 			(unsigned long)ac->ac_b_ex.fe_start,
3884 			(unsigned long)ac->ac_b_ex.fe_len,
3885 			(unsigned long)ac->ac_b_ex.fe_logical,
3886 			(int)ac->ac_criteria);
3887 	ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found",
3888 		 ac->ac_ex_scanned, ac->ac_found);
3889 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
3890 	ngroups = ext4_get_groups_count(sb);
3891 	for (i = 0; i < ngroups; i++) {
3892 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3893 		struct ext4_prealloc_space *pa;
3894 		ext4_grpblk_t start;
3895 		struct list_head *cur;
3896 		ext4_lock_group(sb, i);
3897 		list_for_each(cur, &grp->bb_prealloc_list) {
3898 			pa = list_entry(cur, struct ext4_prealloc_space,
3899 					pa_group_list);
3900 			spin_lock(&pa->pa_lock);
3901 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3902 						     NULL, &start);
3903 			spin_unlock(&pa->pa_lock);
3904 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
3905 			       start, pa->pa_len);
3906 		}
3907 		ext4_unlock_group(sb, i);
3908 
3909 		if (grp->bb_free == 0)
3910 			continue;
3911 		printk(KERN_ERR "%u: %d/%d \n",
3912 		       i, grp->bb_free, grp->bb_fragments);
3913 	}
3914 	printk(KERN_ERR "\n");
3915 }
3916 #else
3917 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3918 {
3919 	return;
3920 }
3921 #endif
3922 
3923 /*
3924  * We use locality group preallocation for small size file. The size of the
3925  * file is determined by the current size or the resulting size after
3926  * allocation which ever is larger
3927  *
3928  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3929  */
3930 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3931 {
3932 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3933 	int bsbits = ac->ac_sb->s_blocksize_bits;
3934 	loff_t size, isize;
3935 
3936 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3937 		return;
3938 
3939 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3940 		return;
3941 
3942 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3943 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3944 		>> bsbits;
3945 
3946 	if ((size == isize) &&
3947 	    !ext4_fs_is_busy(sbi) &&
3948 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3949 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3950 		return;
3951 	}
3952 
3953 	if (sbi->s_mb_group_prealloc <= 0) {
3954 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3955 		return;
3956 	}
3957 
3958 	/* don't use group allocation for large files */
3959 	size = max(size, isize);
3960 	if (size > sbi->s_mb_stream_request) {
3961 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3962 		return;
3963 	}
3964 
3965 	BUG_ON(ac->ac_lg != NULL);
3966 	/*
3967 	 * locality group prealloc space are per cpu. The reason for having
3968 	 * per cpu locality group is to reduce the contention between block
3969 	 * request from multiple CPUs.
3970 	 */
3971 	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3972 
3973 	/* we're going to use group allocation */
3974 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
3975 
3976 	/* serialize all allocations in the group */
3977 	mutex_lock(&ac->ac_lg->lg_mutex);
3978 }
3979 
3980 static noinline_for_stack int
3981 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3982 				struct ext4_allocation_request *ar)
3983 {
3984 	struct super_block *sb = ar->inode->i_sb;
3985 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3986 	struct ext4_super_block *es = sbi->s_es;
3987 	ext4_group_t group;
3988 	unsigned int len;
3989 	ext4_fsblk_t goal;
3990 	ext4_grpblk_t block;
3991 
3992 	/* we can't allocate > group size */
3993 	len = ar->len;
3994 
3995 	/* just a dirty hack to filter too big requests  */
3996 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10)
3997 		len = EXT4_CLUSTERS_PER_GROUP(sb) - 10;
3998 
3999 	/* start searching from the goal */
4000 	goal = ar->goal;
4001 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4002 			goal >= ext4_blocks_count(es))
4003 		goal = le32_to_cpu(es->s_first_data_block);
4004 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4005 
4006 	/* set up allocation goals */
4007 	memset(ac, 0, sizeof(struct ext4_allocation_context));
4008 	ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1);
4009 	ac->ac_status = AC_STATUS_CONTINUE;
4010 	ac->ac_sb = sb;
4011 	ac->ac_inode = ar->inode;
4012 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4013 	ac->ac_o_ex.fe_group = group;
4014 	ac->ac_o_ex.fe_start = block;
4015 	ac->ac_o_ex.fe_len = len;
4016 	ac->ac_g_ex = ac->ac_o_ex;
4017 	ac->ac_flags = ar->flags;
4018 
4019 	/* we have to define context: we'll we work with a file or
4020 	 * locality group. this is a policy, actually */
4021 	ext4_mb_group_or_file(ac);
4022 
4023 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4024 			"left: %u/%u, right %u/%u to %swritable\n",
4025 			(unsigned) ar->len, (unsigned) ar->logical,
4026 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4027 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4028 			(unsigned) ar->lright, (unsigned) ar->pright,
4029 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4030 	return 0;
4031 
4032 }
4033 
4034 static noinline_for_stack void
4035 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4036 					struct ext4_locality_group *lg,
4037 					int order, int total_entries)
4038 {
4039 	ext4_group_t group = 0;
4040 	struct ext4_buddy e4b;
4041 	struct list_head discard_list;
4042 	struct ext4_prealloc_space *pa, *tmp;
4043 
4044 	mb_debug(1, "discard locality group preallocation\n");
4045 
4046 	INIT_LIST_HEAD(&discard_list);
4047 
4048 	spin_lock(&lg->lg_prealloc_lock);
4049 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4050 						pa_inode_list) {
4051 		spin_lock(&pa->pa_lock);
4052 		if (atomic_read(&pa->pa_count)) {
4053 			/*
4054 			 * This is the pa that we just used
4055 			 * for block allocation. So don't
4056 			 * free that
4057 			 */
4058 			spin_unlock(&pa->pa_lock);
4059 			continue;
4060 		}
4061 		if (pa->pa_deleted) {
4062 			spin_unlock(&pa->pa_lock);
4063 			continue;
4064 		}
4065 		/* only lg prealloc space */
4066 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4067 
4068 		/* seems this one can be freed ... */
4069 		pa->pa_deleted = 1;
4070 		spin_unlock(&pa->pa_lock);
4071 
4072 		list_del_rcu(&pa->pa_inode_list);
4073 		list_add(&pa->u.pa_tmp_list, &discard_list);
4074 
4075 		total_entries--;
4076 		if (total_entries <= 5) {
4077 			/*
4078 			 * we want to keep only 5 entries
4079 			 * allowing it to grow to 8. This
4080 			 * mak sure we don't call discard
4081 			 * soon for this list.
4082 			 */
4083 			break;
4084 		}
4085 	}
4086 	spin_unlock(&lg->lg_prealloc_lock);
4087 
4088 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4089 
4090 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4091 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4092 			ext4_error(sb, "Error loading buddy information for %u",
4093 					group);
4094 			continue;
4095 		}
4096 		ext4_lock_group(sb, group);
4097 		list_del(&pa->pa_group_list);
4098 		ext4_mb_release_group_pa(&e4b, pa);
4099 		ext4_unlock_group(sb, group);
4100 
4101 		ext4_mb_unload_buddy(&e4b);
4102 		list_del(&pa->u.pa_tmp_list);
4103 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4104 	}
4105 }
4106 
4107 /*
4108  * We have incremented pa_count. So it cannot be freed at this
4109  * point. Also we hold lg_mutex. So no parallel allocation is
4110  * possible from this lg. That means pa_free cannot be updated.
4111  *
4112  * A parallel ext4_mb_discard_group_preallocations is possible.
4113  * which can cause the lg_prealloc_list to be updated.
4114  */
4115 
4116 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4117 {
4118 	int order, added = 0, lg_prealloc_count = 1;
4119 	struct super_block *sb = ac->ac_sb;
4120 	struct ext4_locality_group *lg = ac->ac_lg;
4121 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4122 
4123 	order = fls(pa->pa_free) - 1;
4124 	if (order > PREALLOC_TB_SIZE - 1)
4125 		/* The max size of hash table is PREALLOC_TB_SIZE */
4126 		order = PREALLOC_TB_SIZE - 1;
4127 	/* Add the prealloc space to lg */
4128 	rcu_read_lock();
4129 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4130 						pa_inode_list) {
4131 		spin_lock(&tmp_pa->pa_lock);
4132 		if (tmp_pa->pa_deleted) {
4133 			spin_unlock(&tmp_pa->pa_lock);
4134 			continue;
4135 		}
4136 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4137 			/* Add to the tail of the previous entry */
4138 			list_add_tail_rcu(&pa->pa_inode_list,
4139 						&tmp_pa->pa_inode_list);
4140 			added = 1;
4141 			/*
4142 			 * we want to count the total
4143 			 * number of entries in the list
4144 			 */
4145 		}
4146 		spin_unlock(&tmp_pa->pa_lock);
4147 		lg_prealloc_count++;
4148 	}
4149 	if (!added)
4150 		list_add_tail_rcu(&pa->pa_inode_list,
4151 					&lg->lg_prealloc_list[order]);
4152 	rcu_read_unlock();
4153 
4154 	/* Now trim the list to be not more than 8 elements */
4155 	if (lg_prealloc_count > 8) {
4156 		ext4_mb_discard_lg_preallocations(sb, lg,
4157 						order, lg_prealloc_count);
4158 		return;
4159 	}
4160 	return ;
4161 }
4162 
4163 /*
4164  * release all resource we used in allocation
4165  */
4166 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4167 {
4168 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4169 	struct ext4_prealloc_space *pa = ac->ac_pa;
4170 	if (pa) {
4171 		if (pa->pa_type == MB_GROUP_PA) {
4172 			/* see comment in ext4_mb_use_group_pa() */
4173 			spin_lock(&pa->pa_lock);
4174 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4175 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4176 			pa->pa_free -= ac->ac_b_ex.fe_len;
4177 			pa->pa_len -= ac->ac_b_ex.fe_len;
4178 			spin_unlock(&pa->pa_lock);
4179 		}
4180 	}
4181 	if (pa) {
4182 		/*
4183 		 * We want to add the pa to the right bucket.
4184 		 * Remove it from the list and while adding
4185 		 * make sure the list to which we are adding
4186 		 * doesn't grow big.
4187 		 */
4188 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4189 			spin_lock(pa->pa_obj_lock);
4190 			list_del_rcu(&pa->pa_inode_list);
4191 			spin_unlock(pa->pa_obj_lock);
4192 			ext4_mb_add_n_trim(ac);
4193 		}
4194 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4195 	}
4196 	if (ac->ac_bitmap_page)
4197 		page_cache_release(ac->ac_bitmap_page);
4198 	if (ac->ac_buddy_page)
4199 		page_cache_release(ac->ac_buddy_page);
4200 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4201 		mutex_unlock(&ac->ac_lg->lg_mutex);
4202 	ext4_mb_collect_stats(ac);
4203 	return 0;
4204 }
4205 
4206 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4207 {
4208 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4209 	int ret;
4210 	int freed = 0;
4211 
4212 	trace_ext4_mb_discard_preallocations(sb, needed);
4213 	for (i = 0; i < ngroups && needed > 0; i++) {
4214 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4215 		freed += ret;
4216 		needed -= ret;
4217 	}
4218 
4219 	return freed;
4220 }
4221 
4222 /*
4223  * Main entry point into mballoc to allocate blocks
4224  * it tries to use preallocation first, then falls back
4225  * to usual allocation
4226  */
4227 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4228 				struct ext4_allocation_request *ar, int *errp)
4229 {
4230 	int freed;
4231 	struct ext4_allocation_context *ac = NULL;
4232 	struct ext4_sb_info *sbi;
4233 	struct super_block *sb;
4234 	ext4_fsblk_t block = 0;
4235 	unsigned int inquota = 0;
4236 	unsigned int reserv_clstrs = 0;
4237 
4238 	sb = ar->inode->i_sb;
4239 	sbi = EXT4_SB(sb);
4240 
4241 	trace_ext4_request_blocks(ar);
4242 
4243 	/* Allow to use superuser reservation for quota file */
4244 	if (IS_NOQUOTA(ar->inode))
4245 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4246 
4247 	/*
4248 	 * For delayed allocation, we could skip the ENOSPC and
4249 	 * EDQUOT check, as blocks and quotas have been already
4250 	 * reserved when data being copied into pagecache.
4251 	 */
4252 	if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4253 		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4254 	else {
4255 		/* Without delayed allocation we need to verify
4256 		 * there is enough free blocks to do block allocation
4257 		 * and verify allocation doesn't exceed the quota limits.
4258 		 */
4259 		while (ar->len &&
4260 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4261 
4262 			/* let others to free the space */
4263 			yield();
4264 			ar->len = ar->len >> 1;
4265 		}
4266 		if (!ar->len) {
4267 			*errp = -ENOSPC;
4268 			return 0;
4269 		}
4270 		reserv_clstrs = ar->len;
4271 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4272 			dquot_alloc_block_nofail(ar->inode,
4273 						 EXT4_C2B(sbi, ar->len));
4274 		} else {
4275 			while (ar->len &&
4276 				dquot_alloc_block(ar->inode,
4277 						  EXT4_C2B(sbi, ar->len))) {
4278 
4279 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4280 				ar->len--;
4281 			}
4282 		}
4283 		inquota = ar->len;
4284 		if (ar->len == 0) {
4285 			*errp = -EDQUOT;
4286 			goto out;
4287 		}
4288 	}
4289 
4290 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4291 	if (!ac) {
4292 		ar->len = 0;
4293 		*errp = -ENOMEM;
4294 		goto out;
4295 	}
4296 
4297 	*errp = ext4_mb_initialize_context(ac, ar);
4298 	if (*errp) {
4299 		ar->len = 0;
4300 		goto out;
4301 	}
4302 
4303 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4304 	if (!ext4_mb_use_preallocated(ac)) {
4305 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4306 		ext4_mb_normalize_request(ac, ar);
4307 repeat:
4308 		/* allocate space in core */
4309 		*errp = ext4_mb_regular_allocator(ac);
4310 		if (*errp)
4311 			goto errout;
4312 
4313 		/* as we've just preallocated more space than
4314 		 * user requested orinally, we store allocated
4315 		 * space in a special descriptor */
4316 		if (ac->ac_status == AC_STATUS_FOUND &&
4317 				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4318 			ext4_mb_new_preallocation(ac);
4319 	}
4320 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4321 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4322 		if (*errp == -EAGAIN) {
4323 			/*
4324 			 * drop the reference that we took
4325 			 * in ext4_mb_use_best_found
4326 			 */
4327 			ext4_mb_release_context(ac);
4328 			ac->ac_b_ex.fe_group = 0;
4329 			ac->ac_b_ex.fe_start = 0;
4330 			ac->ac_b_ex.fe_len = 0;
4331 			ac->ac_status = AC_STATUS_CONTINUE;
4332 			goto repeat;
4333 		} else if (*errp)
4334 		errout:
4335 			ext4_discard_allocated_blocks(ac);
4336 		else {
4337 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4338 			ar->len = ac->ac_b_ex.fe_len;
4339 		}
4340 	} else {
4341 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4342 		if (freed)
4343 			goto repeat;
4344 		*errp = -ENOSPC;
4345 	}
4346 
4347 	if (*errp) {
4348 		ac->ac_b_ex.fe_len = 0;
4349 		ar->len = 0;
4350 		ext4_mb_show_ac(ac);
4351 	}
4352 	ext4_mb_release_context(ac);
4353 out:
4354 	if (ac)
4355 		kmem_cache_free(ext4_ac_cachep, ac);
4356 	if (inquota && ar->len < inquota)
4357 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4358 	if (!ar->len) {
4359 		if (!ext4_test_inode_state(ar->inode,
4360 					   EXT4_STATE_DELALLOC_RESERVED))
4361 			/* release all the reserved blocks if non delalloc */
4362 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4363 						reserv_clstrs);
4364 	}
4365 
4366 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4367 
4368 	return block;
4369 }
4370 
4371 /*
4372  * We can merge two free data extents only if the physical blocks
4373  * are contiguous, AND the extents were freed by the same transaction,
4374  * AND the blocks are associated with the same group.
4375  */
4376 static int can_merge(struct ext4_free_data *entry1,
4377 			struct ext4_free_data *entry2)
4378 {
4379 	if ((entry1->efd_tid == entry2->efd_tid) &&
4380 	    (entry1->efd_group == entry2->efd_group) &&
4381 	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4382 		return 1;
4383 	return 0;
4384 }
4385 
4386 static noinline_for_stack int
4387 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4388 		      struct ext4_free_data *new_entry)
4389 {
4390 	ext4_group_t group = e4b->bd_group;
4391 	ext4_grpblk_t cluster;
4392 	struct ext4_free_data *entry;
4393 	struct ext4_group_info *db = e4b->bd_info;
4394 	struct super_block *sb = e4b->bd_sb;
4395 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4396 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4397 	struct rb_node *parent = NULL, *new_node;
4398 
4399 	BUG_ON(!ext4_handle_valid(handle));
4400 	BUG_ON(e4b->bd_bitmap_page == NULL);
4401 	BUG_ON(e4b->bd_buddy_page == NULL);
4402 
4403 	new_node = &new_entry->efd_node;
4404 	cluster = new_entry->efd_start_cluster;
4405 
4406 	if (!*n) {
4407 		/* first free block exent. We need to
4408 		   protect buddy cache from being freed,
4409 		 * otherwise we'll refresh it from
4410 		 * on-disk bitmap and lose not-yet-available
4411 		 * blocks */
4412 		page_cache_get(e4b->bd_buddy_page);
4413 		page_cache_get(e4b->bd_bitmap_page);
4414 	}
4415 	while (*n) {
4416 		parent = *n;
4417 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4418 		if (cluster < entry->efd_start_cluster)
4419 			n = &(*n)->rb_left;
4420 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4421 			n = &(*n)->rb_right;
4422 		else {
4423 			ext4_grp_locked_error(sb, group, 0,
4424 				ext4_group_first_block_no(sb, group) +
4425 				EXT4_C2B(sbi, cluster),
4426 				"Block already on to-be-freed list");
4427 			return 0;
4428 		}
4429 	}
4430 
4431 	rb_link_node(new_node, parent, n);
4432 	rb_insert_color(new_node, &db->bb_free_root);
4433 
4434 	/* Now try to see the extent can be merged to left and right */
4435 	node = rb_prev(new_node);
4436 	if (node) {
4437 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4438 		if (can_merge(entry, new_entry)) {
4439 			new_entry->efd_start_cluster = entry->efd_start_cluster;
4440 			new_entry->efd_count += entry->efd_count;
4441 			rb_erase(node, &(db->bb_free_root));
4442 			ext4_journal_callback_del(handle, &entry->efd_jce);
4443 			kmem_cache_free(ext4_free_data_cachep, entry);
4444 		}
4445 	}
4446 
4447 	node = rb_next(new_node);
4448 	if (node) {
4449 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4450 		if (can_merge(new_entry, entry)) {
4451 			new_entry->efd_count += entry->efd_count;
4452 			rb_erase(node, &(db->bb_free_root));
4453 			ext4_journal_callback_del(handle, &entry->efd_jce);
4454 			kmem_cache_free(ext4_free_data_cachep, entry);
4455 		}
4456 	}
4457 	/* Add the extent to transaction's private list */
4458 	ext4_journal_callback_add(handle, ext4_free_data_callback,
4459 				  &new_entry->efd_jce);
4460 	return 0;
4461 }
4462 
4463 /**
4464  * ext4_free_blocks() -- Free given blocks and update quota
4465  * @handle:		handle for this transaction
4466  * @inode:		inode
4467  * @block:		start physical block to free
4468  * @count:		number of blocks to count
4469  * @flags:		flags used by ext4_free_blocks
4470  */
4471 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4472 		      struct buffer_head *bh, ext4_fsblk_t block,
4473 		      unsigned long count, int flags)
4474 {
4475 	struct buffer_head *bitmap_bh = NULL;
4476 	struct super_block *sb = inode->i_sb;
4477 	struct ext4_group_desc *gdp;
4478 	unsigned long freed = 0;
4479 	unsigned int overflow;
4480 	ext4_grpblk_t bit;
4481 	struct buffer_head *gd_bh;
4482 	ext4_group_t block_group;
4483 	struct ext4_sb_info *sbi;
4484 	struct ext4_buddy e4b;
4485 	unsigned int count_clusters;
4486 	int err = 0;
4487 	int ret;
4488 
4489 	if (bh) {
4490 		if (block)
4491 			BUG_ON(block != bh->b_blocknr);
4492 		else
4493 			block = bh->b_blocknr;
4494 	}
4495 
4496 	sbi = EXT4_SB(sb);
4497 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4498 	    !ext4_data_block_valid(sbi, block, count)) {
4499 		ext4_error(sb, "Freeing blocks not in datazone - "
4500 			   "block = %llu, count = %lu", block, count);
4501 		goto error_return;
4502 	}
4503 
4504 	ext4_debug("freeing block %llu\n", block);
4505 	trace_ext4_free_blocks(inode, block, count, flags);
4506 
4507 	if (flags & EXT4_FREE_BLOCKS_FORGET) {
4508 		struct buffer_head *tbh = bh;
4509 		int i;
4510 
4511 		BUG_ON(bh && (count > 1));
4512 
4513 		for (i = 0; i < count; i++) {
4514 			if (!bh)
4515 				tbh = sb_find_get_block(inode->i_sb,
4516 							block + i);
4517 			if (unlikely(!tbh))
4518 				continue;
4519 			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4520 				    inode, tbh, block + i);
4521 		}
4522 	}
4523 
4524 	/*
4525 	 * We need to make sure we don't reuse the freed block until
4526 	 * after the transaction is committed, which we can do by
4527 	 * treating the block as metadata, below.  We make an
4528 	 * exception if the inode is to be written in writeback mode
4529 	 * since writeback mode has weak data consistency guarantees.
4530 	 */
4531 	if (!ext4_should_writeback_data(inode))
4532 		flags |= EXT4_FREE_BLOCKS_METADATA;
4533 
4534 	/*
4535 	 * If the extent to be freed does not begin on a cluster
4536 	 * boundary, we need to deal with partial clusters at the
4537 	 * beginning and end of the extent.  Normally we will free
4538 	 * blocks at the beginning or the end unless we are explicitly
4539 	 * requested to avoid doing so.
4540 	 */
4541 	overflow = block & (sbi->s_cluster_ratio - 1);
4542 	if (overflow) {
4543 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4544 			overflow = sbi->s_cluster_ratio - overflow;
4545 			block += overflow;
4546 			if (count > overflow)
4547 				count -= overflow;
4548 			else
4549 				return;
4550 		} else {
4551 			block -= overflow;
4552 			count += overflow;
4553 		}
4554 	}
4555 	overflow = count & (sbi->s_cluster_ratio - 1);
4556 	if (overflow) {
4557 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4558 			if (count > overflow)
4559 				count -= overflow;
4560 			else
4561 				return;
4562 		} else
4563 			count += sbi->s_cluster_ratio - overflow;
4564 	}
4565 
4566 do_more:
4567 	overflow = 0;
4568 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4569 
4570 	/*
4571 	 * Check to see if we are freeing blocks across a group
4572 	 * boundary.
4573 	 */
4574 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4575 		overflow = EXT4_C2B(sbi, bit) + count -
4576 			EXT4_BLOCKS_PER_GROUP(sb);
4577 		count -= overflow;
4578 	}
4579 	count_clusters = EXT4_B2C(sbi, count);
4580 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4581 	if (!bitmap_bh) {
4582 		err = -EIO;
4583 		goto error_return;
4584 	}
4585 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4586 	if (!gdp) {
4587 		err = -EIO;
4588 		goto error_return;
4589 	}
4590 
4591 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4592 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4593 	    in_range(block, ext4_inode_table(sb, gdp),
4594 		     EXT4_SB(sb)->s_itb_per_group) ||
4595 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4596 		     EXT4_SB(sb)->s_itb_per_group)) {
4597 
4598 		ext4_error(sb, "Freeing blocks in system zone - "
4599 			   "Block = %llu, count = %lu", block, count);
4600 		/* err = 0. ext4_std_error should be a no op */
4601 		goto error_return;
4602 	}
4603 
4604 	BUFFER_TRACE(bitmap_bh, "getting write access");
4605 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4606 	if (err)
4607 		goto error_return;
4608 
4609 	/*
4610 	 * We are about to modify some metadata.  Call the journal APIs
4611 	 * to unshare ->b_data if a currently-committing transaction is
4612 	 * using it
4613 	 */
4614 	BUFFER_TRACE(gd_bh, "get_write_access");
4615 	err = ext4_journal_get_write_access(handle, gd_bh);
4616 	if (err)
4617 		goto error_return;
4618 #ifdef AGGRESSIVE_CHECK
4619 	{
4620 		int i;
4621 		for (i = 0; i < count_clusters; i++)
4622 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4623 	}
4624 #endif
4625 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4626 
4627 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4628 	if (err)
4629 		goto error_return;
4630 
4631 	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4632 		struct ext4_free_data *new_entry;
4633 		/*
4634 		 * blocks being freed are metadata. these blocks shouldn't
4635 		 * be used until this transaction is committed
4636 		 */
4637 		new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4638 		if (!new_entry) {
4639 			err = -ENOMEM;
4640 			goto error_return;
4641 		}
4642 		new_entry->efd_start_cluster = bit;
4643 		new_entry->efd_group = block_group;
4644 		new_entry->efd_count = count_clusters;
4645 		new_entry->efd_tid = handle->h_transaction->t_tid;
4646 
4647 		ext4_lock_group(sb, block_group);
4648 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4649 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4650 	} else {
4651 		/* need to update group_info->bb_free and bitmap
4652 		 * with group lock held. generate_buddy look at
4653 		 * them with group lock_held
4654 		 */
4655 		ext4_lock_group(sb, block_group);
4656 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4657 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4658 	}
4659 
4660 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4661 	ext4_free_group_clusters_set(sb, gdp, ret);
4662 	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4663 	ext4_unlock_group(sb, block_group);
4664 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4665 
4666 	if (sbi->s_log_groups_per_flex) {
4667 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4668 		atomic_add(count_clusters,
4669 			   &sbi->s_flex_groups[flex_group].free_clusters);
4670 	}
4671 
4672 	ext4_mb_unload_buddy(&e4b);
4673 
4674 	freed += count;
4675 
4676 	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4677 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4678 
4679 	/* We dirtied the bitmap block */
4680 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4681 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4682 
4683 	/* And the group descriptor block */
4684 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4685 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4686 	if (!err)
4687 		err = ret;
4688 
4689 	if (overflow && !err) {
4690 		block += count;
4691 		count = overflow;
4692 		put_bh(bitmap_bh);
4693 		goto do_more;
4694 	}
4695 	ext4_mark_super_dirty(sb);
4696 error_return:
4697 	brelse(bitmap_bh);
4698 	ext4_std_error(sb, err);
4699 	return;
4700 }
4701 
4702 /**
4703  * ext4_group_add_blocks() -- Add given blocks to an existing group
4704  * @handle:			handle to this transaction
4705  * @sb:				super block
4706  * @block:			start physcial block to add to the block group
4707  * @count:			number of blocks to free
4708  *
4709  * This marks the blocks as free in the bitmap and buddy.
4710  */
4711 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4712 			 ext4_fsblk_t block, unsigned long count)
4713 {
4714 	struct buffer_head *bitmap_bh = NULL;
4715 	struct buffer_head *gd_bh;
4716 	ext4_group_t block_group;
4717 	ext4_grpblk_t bit;
4718 	unsigned int i;
4719 	struct ext4_group_desc *desc;
4720 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4721 	struct ext4_buddy e4b;
4722 	int err = 0, ret, blk_free_count;
4723 	ext4_grpblk_t blocks_freed;
4724 
4725 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4726 
4727 	if (count == 0)
4728 		return 0;
4729 
4730 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4731 	/*
4732 	 * Check to see if we are freeing blocks across a group
4733 	 * boundary.
4734 	 */
4735 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4736 		ext4_warning(sb, "too much blocks added to group %u\n",
4737 			     block_group);
4738 		err = -EINVAL;
4739 		goto error_return;
4740 	}
4741 
4742 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4743 	if (!bitmap_bh) {
4744 		err = -EIO;
4745 		goto error_return;
4746 	}
4747 
4748 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4749 	if (!desc) {
4750 		err = -EIO;
4751 		goto error_return;
4752 	}
4753 
4754 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4755 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4756 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4757 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4758 		     sbi->s_itb_per_group)) {
4759 		ext4_error(sb, "Adding blocks in system zones - "
4760 			   "Block = %llu, count = %lu",
4761 			   block, count);
4762 		err = -EINVAL;
4763 		goto error_return;
4764 	}
4765 
4766 	BUFFER_TRACE(bitmap_bh, "getting write access");
4767 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4768 	if (err)
4769 		goto error_return;
4770 
4771 	/*
4772 	 * We are about to modify some metadata.  Call the journal APIs
4773 	 * to unshare ->b_data if a currently-committing transaction is
4774 	 * using it
4775 	 */
4776 	BUFFER_TRACE(gd_bh, "get_write_access");
4777 	err = ext4_journal_get_write_access(handle, gd_bh);
4778 	if (err)
4779 		goto error_return;
4780 
4781 	for (i = 0, blocks_freed = 0; i < count; i++) {
4782 		BUFFER_TRACE(bitmap_bh, "clear bit");
4783 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4784 			ext4_error(sb, "bit already cleared for block %llu",
4785 				   (ext4_fsblk_t)(block + i));
4786 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4787 		} else {
4788 			blocks_freed++;
4789 		}
4790 	}
4791 
4792 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4793 	if (err)
4794 		goto error_return;
4795 
4796 	/*
4797 	 * need to update group_info->bb_free and bitmap
4798 	 * with group lock held. generate_buddy look at
4799 	 * them with group lock_held
4800 	 */
4801 	ext4_lock_group(sb, block_group);
4802 	mb_clear_bits(bitmap_bh->b_data, bit, count);
4803 	mb_free_blocks(NULL, &e4b, bit, count);
4804 	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4805 	ext4_free_group_clusters_set(sb, desc, blk_free_count);
4806 	desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
4807 	ext4_unlock_group(sb, block_group);
4808 	percpu_counter_add(&sbi->s_freeclusters_counter,
4809 			   EXT4_B2C(sbi, blocks_freed));
4810 
4811 	if (sbi->s_log_groups_per_flex) {
4812 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4813 		atomic_add(EXT4_B2C(sbi, blocks_freed),
4814 			   &sbi->s_flex_groups[flex_group].free_clusters);
4815 	}
4816 
4817 	ext4_mb_unload_buddy(&e4b);
4818 
4819 	/* We dirtied the bitmap block */
4820 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4821 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4822 
4823 	/* And the group descriptor block */
4824 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4825 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4826 	if (!err)
4827 		err = ret;
4828 
4829 error_return:
4830 	brelse(bitmap_bh);
4831 	ext4_std_error(sb, err);
4832 	return err;
4833 }
4834 
4835 /**
4836  * ext4_trim_extent -- function to TRIM one single free extent in the group
4837  * @sb:		super block for the file system
4838  * @start:	starting block of the free extent in the alloc. group
4839  * @count:	number of blocks to TRIM
4840  * @group:	alloc. group we are working with
4841  * @e4b:	ext4 buddy for the group
4842  *
4843  * Trim "count" blocks starting at "start" in the "group". To assure that no
4844  * one will allocate those blocks, mark it as used in buddy bitmap. This must
4845  * be called with under the group lock.
4846  */
4847 static void ext4_trim_extent(struct super_block *sb, int start, int count,
4848 			     ext4_group_t group, struct ext4_buddy *e4b)
4849 {
4850 	struct ext4_free_extent ex;
4851 
4852 	trace_ext4_trim_extent(sb, group, start, count);
4853 
4854 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
4855 
4856 	ex.fe_start = start;
4857 	ex.fe_group = group;
4858 	ex.fe_len = count;
4859 
4860 	/*
4861 	 * Mark blocks used, so no one can reuse them while
4862 	 * being trimmed.
4863 	 */
4864 	mb_mark_used(e4b, &ex);
4865 	ext4_unlock_group(sb, group);
4866 	ext4_issue_discard(sb, group, start, count);
4867 	ext4_lock_group(sb, group);
4868 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
4869 }
4870 
4871 /**
4872  * ext4_trim_all_free -- function to trim all free space in alloc. group
4873  * @sb:			super block for file system
4874  * @group:		group to be trimmed
4875  * @start:		first group block to examine
4876  * @max:		last group block to examine
4877  * @minblocks:		minimum extent block count
4878  *
4879  * ext4_trim_all_free walks through group's buddy bitmap searching for free
4880  * extents. When the free block is found, ext4_trim_extent is called to TRIM
4881  * the extent.
4882  *
4883  *
4884  * ext4_trim_all_free walks through group's block bitmap searching for free
4885  * extents. When the free extent is found, mark it as used in group buddy
4886  * bitmap. Then issue a TRIM command on this extent and free the extent in
4887  * the group buddy bitmap. This is done until whole group is scanned.
4888  */
4889 static ext4_grpblk_t
4890 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
4891 		   ext4_grpblk_t start, ext4_grpblk_t max,
4892 		   ext4_grpblk_t minblocks)
4893 {
4894 	void *bitmap;
4895 	ext4_grpblk_t next, count = 0, free_count = 0;
4896 	struct ext4_buddy e4b;
4897 	int ret;
4898 
4899 	trace_ext4_trim_all_free(sb, group, start, max);
4900 
4901 	ret = ext4_mb_load_buddy(sb, group, &e4b);
4902 	if (ret) {
4903 		ext4_error(sb, "Error in loading buddy "
4904 				"information for %u", group);
4905 		return ret;
4906 	}
4907 	bitmap = e4b.bd_bitmap;
4908 
4909 	ext4_lock_group(sb, group);
4910 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
4911 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
4912 		goto out;
4913 
4914 	start = (e4b.bd_info->bb_first_free > start) ?
4915 		e4b.bd_info->bb_first_free : start;
4916 
4917 	while (start <= max) {
4918 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
4919 		if (start > max)
4920 			break;
4921 		next = mb_find_next_bit(bitmap, max + 1, start);
4922 
4923 		if ((next - start) >= minblocks) {
4924 			ext4_trim_extent(sb, start,
4925 					 next - start, group, &e4b);
4926 			count += next - start;
4927 		}
4928 		free_count += next - start;
4929 		start = next + 1;
4930 
4931 		if (fatal_signal_pending(current)) {
4932 			count = -ERESTARTSYS;
4933 			break;
4934 		}
4935 
4936 		if (need_resched()) {
4937 			ext4_unlock_group(sb, group);
4938 			cond_resched();
4939 			ext4_lock_group(sb, group);
4940 		}
4941 
4942 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
4943 			break;
4944 	}
4945 
4946 	if (!ret)
4947 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
4948 out:
4949 	ext4_unlock_group(sb, group);
4950 	ext4_mb_unload_buddy(&e4b);
4951 
4952 	ext4_debug("trimmed %d blocks in the group %d\n",
4953 		count, group);
4954 
4955 	return count;
4956 }
4957 
4958 /**
4959  * ext4_trim_fs() -- trim ioctl handle function
4960  * @sb:			superblock for filesystem
4961  * @range:		fstrim_range structure
4962  *
4963  * start:	First Byte to trim
4964  * len:		number of Bytes to trim from start
4965  * minlen:	minimum extent length in Bytes
4966  * ext4_trim_fs goes through all allocation groups containing Bytes from
4967  * start to start+len. For each such a group ext4_trim_all_free function
4968  * is invoked to trim all free space.
4969  */
4970 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
4971 {
4972 	struct ext4_group_info *grp;
4973 	ext4_group_t group, first_group, last_group;
4974 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
4975 	uint64_t start, end, minlen, trimmed = 0;
4976 	ext4_fsblk_t first_data_blk =
4977 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
4978 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
4979 	int ret = 0;
4980 
4981 	start = range->start >> sb->s_blocksize_bits;
4982 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
4983 	minlen = range->minlen >> sb->s_blocksize_bits;
4984 
4985 	if (unlikely(minlen > EXT4_CLUSTERS_PER_GROUP(sb)) ||
4986 	    unlikely(start >= max_blks))
4987 		return -EINVAL;
4988 	if (end >= max_blks)
4989 		end = max_blks - 1;
4990 	if (end <= first_data_blk)
4991 		goto out;
4992 	if (start < first_data_blk)
4993 		start = first_data_blk;
4994 
4995 	/* Determine first and last group to examine based on start and end */
4996 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
4997 				     &first_group, &first_cluster);
4998 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
4999 				     &last_group, &last_cluster);
5000 
5001 	/* end now represents the last cluster to discard in this group */
5002 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5003 
5004 	for (group = first_group; group <= last_group; group++) {
5005 		grp = ext4_get_group_info(sb, group);
5006 		/* We only do this if the grp has never been initialized */
5007 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5008 			ret = ext4_mb_init_group(sb, group);
5009 			if (ret)
5010 				break;
5011 		}
5012 
5013 		/*
5014 		 * For all the groups except the last one, last cluster will
5015 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5016 		 * change it for the last group, note that last_cluster is
5017 		 * already computed earlier by ext4_get_group_no_and_offset()
5018 		 */
5019 		if (group == last_group)
5020 			end = last_cluster;
5021 
5022 		if (grp->bb_free >= minlen) {
5023 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5024 						end, minlen);
5025 			if (cnt < 0) {
5026 				ret = cnt;
5027 				break;
5028 			}
5029 			trimmed += cnt;
5030 		}
5031 
5032 		/*
5033 		 * For every group except the first one, we are sure
5034 		 * that the first cluster to discard will be cluster #0.
5035 		 */
5036 		first_cluster = 0;
5037 	}
5038 
5039 	if (!ret)
5040 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5041 
5042 out:
5043 	range->len = trimmed * sb->s_blocksize;
5044 	return ret;
5045 }
5046