xref: /openbmc/linux/fs/ext4/mballoc.c (revision b6dcefde)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "mballoc.h"
25 #include <linux/debugfs.h>
26 #include <trace/events/ext4.h>
27 
28 /*
29  * MUSTDO:
30  *   - test ext4_ext_search_left() and ext4_ext_search_right()
31  *   - search for metadata in few groups
32  *
33  * TODO v4:
34  *   - normalization should take into account whether file is still open
35  *   - discard preallocations if no free space left (policy?)
36  *   - don't normalize tails
37  *   - quota
38  *   - reservation for superuser
39  *
40  * TODO v3:
41  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
42  *   - track min/max extents in each group for better group selection
43  *   - mb_mark_used() may allocate chunk right after splitting buddy
44  *   - tree of groups sorted by number of free blocks
45  *   - error handling
46  */
47 
48 /*
49  * The allocation request involve request for multiple number of blocks
50  * near to the goal(block) value specified.
51  *
52  * During initialization phase of the allocator we decide to use the
53  * group preallocation or inode preallocation depending on the size of
54  * the file. The size of the file could be the resulting file size we
55  * would have after allocation, or the current file size, which ever
56  * is larger. If the size is less than sbi->s_mb_stream_request we
57  * select to use the group preallocation. The default value of
58  * s_mb_stream_request is 16 blocks. This can also be tuned via
59  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
60  * terms of number of blocks.
61  *
62  * The main motivation for having small file use group preallocation is to
63  * ensure that we have small files closer together on the disk.
64  *
65  * First stage the allocator looks at the inode prealloc list,
66  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
67  * spaces for this particular inode. The inode prealloc space is
68  * represented as:
69  *
70  * pa_lstart -> the logical start block for this prealloc space
71  * pa_pstart -> the physical start block for this prealloc space
72  * pa_len    -> lenght for this prealloc space
73  * pa_free   ->  free space available in this prealloc space
74  *
75  * The inode preallocation space is used looking at the _logical_ start
76  * block. If only the logical file block falls within the range of prealloc
77  * space we will consume the particular prealloc space. This make sure that
78  * that the we have contiguous physical blocks representing the file blocks
79  *
80  * The important thing to be noted in case of inode prealloc space is that
81  * we don't modify the values associated to inode prealloc space except
82  * pa_free.
83  *
84  * If we are not able to find blocks in the inode prealloc space and if we
85  * have the group allocation flag set then we look at the locality group
86  * prealloc space. These are per CPU prealloc list repreasented as
87  *
88  * ext4_sb_info.s_locality_groups[smp_processor_id()]
89  *
90  * The reason for having a per cpu locality group is to reduce the contention
91  * between CPUs. It is possible to get scheduled at this point.
92  *
93  * The locality group prealloc space is used looking at whether we have
94  * enough free space (pa_free) withing the prealloc space.
95  *
96  * If we can't allocate blocks via inode prealloc or/and locality group
97  * prealloc then we look at the buddy cache. The buddy cache is represented
98  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
99  * mapped to the buddy and bitmap information regarding different
100  * groups. The buddy information is attached to buddy cache inode so that
101  * we can access them through the page cache. The information regarding
102  * each group is loaded via ext4_mb_load_buddy.  The information involve
103  * block bitmap and buddy information. The information are stored in the
104  * inode as:
105  *
106  *  {                        page                        }
107  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
108  *
109  *
110  * one block each for bitmap and buddy information.  So for each group we
111  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
112  * blocksize) blocks.  So it can have information regarding groups_per_page
113  * which is blocks_per_page/2
114  *
115  * The buddy cache inode is not stored on disk. The inode is thrown
116  * away when the filesystem is unmounted.
117  *
118  * We look for count number of blocks in the buddy cache. If we were able
119  * to locate that many free blocks we return with additional information
120  * regarding rest of the contiguous physical block available
121  *
122  * Before allocating blocks via buddy cache we normalize the request
123  * blocks. This ensure we ask for more blocks that we needed. The extra
124  * blocks that we get after allocation is added to the respective prealloc
125  * list. In case of inode preallocation we follow a list of heuristics
126  * based on file size. This can be found in ext4_mb_normalize_request. If
127  * we are doing a group prealloc we try to normalize the request to
128  * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
129  * 512 blocks. This can be tuned via
130  * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
131  * terms of number of blocks. If we have mounted the file system with -O
132  * stripe=<value> option the group prealloc request is normalized to the
133  * stripe value (sbi->s_stripe)
134  *
135  * The regular allocator(using the buddy cache) supports few tunables.
136  *
137  * /sys/fs/ext4/<partition>/mb_min_to_scan
138  * /sys/fs/ext4/<partition>/mb_max_to_scan
139  * /sys/fs/ext4/<partition>/mb_order2_req
140  *
141  * The regular allocator uses buddy scan only if the request len is power of
142  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
143  * value of s_mb_order2_reqs can be tuned via
144  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
145  * stripe size (sbi->s_stripe), we try to search for contiguous block in
146  * stripe size. This should result in better allocation on RAID setups. If
147  * not, we search in the specific group using bitmap for best extents. The
148  * tunable min_to_scan and max_to_scan control the behaviour here.
149  * min_to_scan indicate how long the mballoc __must__ look for a best
150  * extent and max_to_scan indicates how long the mballoc __can__ look for a
151  * best extent in the found extents. Searching for the blocks starts with
152  * the group specified as the goal value in allocation context via
153  * ac_g_ex. Each group is first checked based on the criteria whether it
154  * can used for allocation. ext4_mb_good_group explains how the groups are
155  * checked.
156  *
157  * Both the prealloc space are getting populated as above. So for the first
158  * request we will hit the buddy cache which will result in this prealloc
159  * space getting filled. The prealloc space is then later used for the
160  * subsequent request.
161  */
162 
163 /*
164  * mballoc operates on the following data:
165  *  - on-disk bitmap
166  *  - in-core buddy (actually includes buddy and bitmap)
167  *  - preallocation descriptors (PAs)
168  *
169  * there are two types of preallocations:
170  *  - inode
171  *    assiged to specific inode and can be used for this inode only.
172  *    it describes part of inode's space preallocated to specific
173  *    physical blocks. any block from that preallocated can be used
174  *    independent. the descriptor just tracks number of blocks left
175  *    unused. so, before taking some block from descriptor, one must
176  *    make sure corresponded logical block isn't allocated yet. this
177  *    also means that freeing any block within descriptor's range
178  *    must discard all preallocated blocks.
179  *  - locality group
180  *    assigned to specific locality group which does not translate to
181  *    permanent set of inodes: inode can join and leave group. space
182  *    from this type of preallocation can be used for any inode. thus
183  *    it's consumed from the beginning to the end.
184  *
185  * relation between them can be expressed as:
186  *    in-core buddy = on-disk bitmap + preallocation descriptors
187  *
188  * this mean blocks mballoc considers used are:
189  *  - allocated blocks (persistent)
190  *  - preallocated blocks (non-persistent)
191  *
192  * consistency in mballoc world means that at any time a block is either
193  * free or used in ALL structures. notice: "any time" should not be read
194  * literally -- time is discrete and delimited by locks.
195  *
196  *  to keep it simple, we don't use block numbers, instead we count number of
197  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
198  *
199  * all operations can be expressed as:
200  *  - init buddy:			buddy = on-disk + PAs
201  *  - new PA:				buddy += N; PA = N
202  *  - use inode PA:			on-disk += N; PA -= N
203  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
204  *  - use locality group PA		on-disk += N; PA -= N
205  *  - discard locality group PA		buddy -= PA; PA = 0
206  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
207  *        is used in real operation because we can't know actual used
208  *        bits from PA, only from on-disk bitmap
209  *
210  * if we follow this strict logic, then all operations above should be atomic.
211  * given some of them can block, we'd have to use something like semaphores
212  * killing performance on high-end SMP hardware. let's try to relax it using
213  * the following knowledge:
214  *  1) if buddy is referenced, it's already initialized
215  *  2) while block is used in buddy and the buddy is referenced,
216  *     nobody can re-allocate that block
217  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
218  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
219  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
220  *     block
221  *
222  * so, now we're building a concurrency table:
223  *  - init buddy vs.
224  *    - new PA
225  *      blocks for PA are allocated in the buddy, buddy must be referenced
226  *      until PA is linked to allocation group to avoid concurrent buddy init
227  *    - use inode PA
228  *      we need to make sure that either on-disk bitmap or PA has uptodate data
229  *      given (3) we care that PA-=N operation doesn't interfere with init
230  *    - discard inode PA
231  *      the simplest way would be to have buddy initialized by the discard
232  *    - use locality group PA
233  *      again PA-=N must be serialized with init
234  *    - discard locality group PA
235  *      the simplest way would be to have buddy initialized by the discard
236  *  - new PA vs.
237  *    - use inode PA
238  *      i_data_sem serializes them
239  *    - discard inode PA
240  *      discard process must wait until PA isn't used by another process
241  *    - use locality group PA
242  *      some mutex should serialize them
243  *    - discard locality group PA
244  *      discard process must wait until PA isn't used by another process
245  *  - use inode PA
246  *    - use inode PA
247  *      i_data_sem or another mutex should serializes them
248  *    - discard inode PA
249  *      discard process must wait until PA isn't used by another process
250  *    - use locality group PA
251  *      nothing wrong here -- they're different PAs covering different blocks
252  *    - discard locality group PA
253  *      discard process must wait until PA isn't used by another process
254  *
255  * now we're ready to make few consequences:
256  *  - PA is referenced and while it is no discard is possible
257  *  - PA is referenced until block isn't marked in on-disk bitmap
258  *  - PA changes only after on-disk bitmap
259  *  - discard must not compete with init. either init is done before
260  *    any discard or they're serialized somehow
261  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
262  *
263  * a special case when we've used PA to emptiness. no need to modify buddy
264  * in this case, but we should care about concurrent init
265  *
266  */
267 
268  /*
269  * Logic in few words:
270  *
271  *  - allocation:
272  *    load group
273  *    find blocks
274  *    mark bits in on-disk bitmap
275  *    release group
276  *
277  *  - use preallocation:
278  *    find proper PA (per-inode or group)
279  *    load group
280  *    mark bits in on-disk bitmap
281  *    release group
282  *    release PA
283  *
284  *  - free:
285  *    load group
286  *    mark bits in on-disk bitmap
287  *    release group
288  *
289  *  - discard preallocations in group:
290  *    mark PAs deleted
291  *    move them onto local list
292  *    load on-disk bitmap
293  *    load group
294  *    remove PA from object (inode or locality group)
295  *    mark free blocks in-core
296  *
297  *  - discard inode's preallocations:
298  */
299 
300 /*
301  * Locking rules
302  *
303  * Locks:
304  *  - bitlock on a group	(group)
305  *  - object (inode/locality)	(object)
306  *  - per-pa lock		(pa)
307  *
308  * Paths:
309  *  - new pa
310  *    object
311  *    group
312  *
313  *  - find and use pa:
314  *    pa
315  *
316  *  - release consumed pa:
317  *    pa
318  *    group
319  *    object
320  *
321  *  - generate in-core bitmap:
322  *    group
323  *        pa
324  *
325  *  - discard all for given object (inode, locality group):
326  *    object
327  *        pa
328  *    group
329  *
330  *  - discard all for given group:
331  *    group
332  *        pa
333  *    group
334  *        object
335  *
336  */
337 static struct kmem_cache *ext4_pspace_cachep;
338 static struct kmem_cache *ext4_ac_cachep;
339 static struct kmem_cache *ext4_free_ext_cachep;
340 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
341 					ext4_group_t group);
342 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
343 						ext4_group_t group);
344 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
345 
346 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
347 {
348 #if BITS_PER_LONG == 64
349 	*bit += ((unsigned long) addr & 7UL) << 3;
350 	addr = (void *) ((unsigned long) addr & ~7UL);
351 #elif BITS_PER_LONG == 32
352 	*bit += ((unsigned long) addr & 3UL) << 3;
353 	addr = (void *) ((unsigned long) addr & ~3UL);
354 #else
355 #error "how many bits you are?!"
356 #endif
357 	return addr;
358 }
359 
360 static inline int mb_test_bit(int bit, void *addr)
361 {
362 	/*
363 	 * ext4_test_bit on architecture like powerpc
364 	 * needs unsigned long aligned address
365 	 */
366 	addr = mb_correct_addr_and_bit(&bit, addr);
367 	return ext4_test_bit(bit, addr);
368 }
369 
370 static inline void mb_set_bit(int bit, void *addr)
371 {
372 	addr = mb_correct_addr_and_bit(&bit, addr);
373 	ext4_set_bit(bit, addr);
374 }
375 
376 static inline void mb_clear_bit(int bit, void *addr)
377 {
378 	addr = mb_correct_addr_and_bit(&bit, addr);
379 	ext4_clear_bit(bit, addr);
380 }
381 
382 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
383 {
384 	int fix = 0, ret, tmpmax;
385 	addr = mb_correct_addr_and_bit(&fix, addr);
386 	tmpmax = max + fix;
387 	start += fix;
388 
389 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
390 	if (ret > max)
391 		return max;
392 	return ret;
393 }
394 
395 static inline int mb_find_next_bit(void *addr, int max, int start)
396 {
397 	int fix = 0, ret, tmpmax;
398 	addr = mb_correct_addr_and_bit(&fix, addr);
399 	tmpmax = max + fix;
400 	start += fix;
401 
402 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
403 	if (ret > max)
404 		return max;
405 	return ret;
406 }
407 
408 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
409 {
410 	char *bb;
411 
412 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
413 	BUG_ON(max == NULL);
414 
415 	if (order > e4b->bd_blkbits + 1) {
416 		*max = 0;
417 		return NULL;
418 	}
419 
420 	/* at order 0 we see each particular block */
421 	*max = 1 << (e4b->bd_blkbits + 3);
422 	if (order == 0)
423 		return EXT4_MB_BITMAP(e4b);
424 
425 	bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
426 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
427 
428 	return bb;
429 }
430 
431 #ifdef DOUBLE_CHECK
432 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
433 			   int first, int count)
434 {
435 	int i;
436 	struct super_block *sb = e4b->bd_sb;
437 
438 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
439 		return;
440 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
441 	for (i = 0; i < count; i++) {
442 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
443 			ext4_fsblk_t blocknr;
444 			blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
445 			blocknr += first + i;
446 			blocknr +=
447 			    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
448 			ext4_grp_locked_error(sb, e4b->bd_group,
449 				   __func__, "double-free of inode"
450 				   " %lu's block %llu(bit %u in group %u)",
451 				   inode ? inode->i_ino : 0, blocknr,
452 				   first + i, e4b->bd_group);
453 		}
454 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
455 	}
456 }
457 
458 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
459 {
460 	int i;
461 
462 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
463 		return;
464 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
465 	for (i = 0; i < count; i++) {
466 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
467 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
468 	}
469 }
470 
471 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
472 {
473 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
474 		unsigned char *b1, *b2;
475 		int i;
476 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
477 		b2 = (unsigned char *) bitmap;
478 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
479 			if (b1[i] != b2[i]) {
480 				printk(KERN_ERR "corruption in group %u "
481 				       "at byte %u(%u): %x in copy != %x "
482 				       "on disk/prealloc\n",
483 				       e4b->bd_group, i, i * 8, b1[i], b2[i]);
484 				BUG();
485 			}
486 		}
487 	}
488 }
489 
490 #else
491 static inline void mb_free_blocks_double(struct inode *inode,
492 				struct ext4_buddy *e4b, int first, int count)
493 {
494 	return;
495 }
496 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
497 						int first, int count)
498 {
499 	return;
500 }
501 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
502 {
503 	return;
504 }
505 #endif
506 
507 #ifdef AGGRESSIVE_CHECK
508 
509 #define MB_CHECK_ASSERT(assert)						\
510 do {									\
511 	if (!(assert)) {						\
512 		printk(KERN_EMERG					\
513 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
514 			function, file, line, # assert);		\
515 		BUG();							\
516 	}								\
517 } while (0)
518 
519 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
520 				const char *function, int line)
521 {
522 	struct super_block *sb = e4b->bd_sb;
523 	int order = e4b->bd_blkbits + 1;
524 	int max;
525 	int max2;
526 	int i;
527 	int j;
528 	int k;
529 	int count;
530 	struct ext4_group_info *grp;
531 	int fragments = 0;
532 	int fstart;
533 	struct list_head *cur;
534 	void *buddy;
535 	void *buddy2;
536 
537 	{
538 		static int mb_check_counter;
539 		if (mb_check_counter++ % 100 != 0)
540 			return 0;
541 	}
542 
543 	while (order > 1) {
544 		buddy = mb_find_buddy(e4b, order, &max);
545 		MB_CHECK_ASSERT(buddy);
546 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
547 		MB_CHECK_ASSERT(buddy2);
548 		MB_CHECK_ASSERT(buddy != buddy2);
549 		MB_CHECK_ASSERT(max * 2 == max2);
550 
551 		count = 0;
552 		for (i = 0; i < max; i++) {
553 
554 			if (mb_test_bit(i, buddy)) {
555 				/* only single bit in buddy2 may be 1 */
556 				if (!mb_test_bit(i << 1, buddy2)) {
557 					MB_CHECK_ASSERT(
558 						mb_test_bit((i<<1)+1, buddy2));
559 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
560 					MB_CHECK_ASSERT(
561 						mb_test_bit(i << 1, buddy2));
562 				}
563 				continue;
564 			}
565 
566 			/* both bits in buddy2 must be 0 */
567 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
568 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
569 
570 			for (j = 0; j < (1 << order); j++) {
571 				k = (i * (1 << order)) + j;
572 				MB_CHECK_ASSERT(
573 					!mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
574 			}
575 			count++;
576 		}
577 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
578 		order--;
579 	}
580 
581 	fstart = -1;
582 	buddy = mb_find_buddy(e4b, 0, &max);
583 	for (i = 0; i < max; i++) {
584 		if (!mb_test_bit(i, buddy)) {
585 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
586 			if (fstart == -1) {
587 				fragments++;
588 				fstart = i;
589 			}
590 			continue;
591 		}
592 		fstart = -1;
593 		/* check used bits only */
594 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
595 			buddy2 = mb_find_buddy(e4b, j, &max2);
596 			k = i >> j;
597 			MB_CHECK_ASSERT(k < max2);
598 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
599 		}
600 	}
601 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
602 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
603 
604 	grp = ext4_get_group_info(sb, e4b->bd_group);
605 	buddy = mb_find_buddy(e4b, 0, &max);
606 	list_for_each(cur, &grp->bb_prealloc_list) {
607 		ext4_group_t groupnr;
608 		struct ext4_prealloc_space *pa;
609 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
610 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
611 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
612 		for (i = 0; i < pa->pa_len; i++)
613 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
614 	}
615 	return 0;
616 }
617 #undef MB_CHECK_ASSERT
618 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
619 					__FILE__, __func__, __LINE__)
620 #else
621 #define mb_check_buddy(e4b)
622 #endif
623 
624 /* FIXME!! need more doc */
625 static void ext4_mb_mark_free_simple(struct super_block *sb,
626 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
627 					struct ext4_group_info *grp)
628 {
629 	struct ext4_sb_info *sbi = EXT4_SB(sb);
630 	ext4_grpblk_t min;
631 	ext4_grpblk_t max;
632 	ext4_grpblk_t chunk;
633 	unsigned short border;
634 
635 	BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
636 
637 	border = 2 << sb->s_blocksize_bits;
638 
639 	while (len > 0) {
640 		/* find how many blocks can be covered since this position */
641 		max = ffs(first | border) - 1;
642 
643 		/* find how many blocks of power 2 we need to mark */
644 		min = fls(len) - 1;
645 
646 		if (max < min)
647 			min = max;
648 		chunk = 1 << min;
649 
650 		/* mark multiblock chunks only */
651 		grp->bb_counters[min]++;
652 		if (min > 0)
653 			mb_clear_bit(first >> min,
654 				     buddy + sbi->s_mb_offsets[min]);
655 
656 		len -= chunk;
657 		first += chunk;
658 	}
659 }
660 
661 static noinline_for_stack
662 void ext4_mb_generate_buddy(struct super_block *sb,
663 				void *buddy, void *bitmap, ext4_group_t group)
664 {
665 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
666 	ext4_grpblk_t max = EXT4_BLOCKS_PER_GROUP(sb);
667 	ext4_grpblk_t i = 0;
668 	ext4_grpblk_t first;
669 	ext4_grpblk_t len;
670 	unsigned free = 0;
671 	unsigned fragments = 0;
672 	unsigned long long period = get_cycles();
673 
674 	/* initialize buddy from bitmap which is aggregation
675 	 * of on-disk bitmap and preallocations */
676 	i = mb_find_next_zero_bit(bitmap, max, 0);
677 	grp->bb_first_free = i;
678 	while (i < max) {
679 		fragments++;
680 		first = i;
681 		i = mb_find_next_bit(bitmap, max, i);
682 		len = i - first;
683 		free += len;
684 		if (len > 1)
685 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
686 		else
687 			grp->bb_counters[0]++;
688 		if (i < max)
689 			i = mb_find_next_zero_bit(bitmap, max, i);
690 	}
691 	grp->bb_fragments = fragments;
692 
693 	if (free != grp->bb_free) {
694 		ext4_grp_locked_error(sb, group,  __func__,
695 			"EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
696 			group, free, grp->bb_free);
697 		/*
698 		 * If we intent to continue, we consider group descritor
699 		 * corrupt and update bb_free using bitmap value
700 		 */
701 		grp->bb_free = free;
702 	}
703 
704 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
705 
706 	period = get_cycles() - period;
707 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
708 	EXT4_SB(sb)->s_mb_buddies_generated++;
709 	EXT4_SB(sb)->s_mb_generation_time += period;
710 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
711 }
712 
713 /* The buddy information is attached the buddy cache inode
714  * for convenience. The information regarding each group
715  * is loaded via ext4_mb_load_buddy. The information involve
716  * block bitmap and buddy information. The information are
717  * stored in the inode as
718  *
719  * {                        page                        }
720  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
721  *
722  *
723  * one block each for bitmap and buddy information.
724  * So for each group we take up 2 blocks. A page can
725  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
726  * So it can have information regarding groups_per_page which
727  * is blocks_per_page/2
728  */
729 
730 static int ext4_mb_init_cache(struct page *page, char *incore)
731 {
732 	ext4_group_t ngroups;
733 	int blocksize;
734 	int blocks_per_page;
735 	int groups_per_page;
736 	int err = 0;
737 	int i;
738 	ext4_group_t first_group;
739 	int first_block;
740 	struct super_block *sb;
741 	struct buffer_head *bhs;
742 	struct buffer_head **bh;
743 	struct inode *inode;
744 	char *data;
745 	char *bitmap;
746 
747 	mb_debug(1, "init page %lu\n", page->index);
748 
749 	inode = page->mapping->host;
750 	sb = inode->i_sb;
751 	ngroups = ext4_get_groups_count(sb);
752 	blocksize = 1 << inode->i_blkbits;
753 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
754 
755 	groups_per_page = blocks_per_page >> 1;
756 	if (groups_per_page == 0)
757 		groups_per_page = 1;
758 
759 	/* allocate buffer_heads to read bitmaps */
760 	if (groups_per_page > 1) {
761 		err = -ENOMEM;
762 		i = sizeof(struct buffer_head *) * groups_per_page;
763 		bh = kzalloc(i, GFP_NOFS);
764 		if (bh == NULL)
765 			goto out;
766 	} else
767 		bh = &bhs;
768 
769 	first_group = page->index * blocks_per_page / 2;
770 
771 	/* read all groups the page covers into the cache */
772 	for (i = 0; i < groups_per_page; i++) {
773 		struct ext4_group_desc *desc;
774 
775 		if (first_group + i >= ngroups)
776 			break;
777 
778 		err = -EIO;
779 		desc = ext4_get_group_desc(sb, first_group + i, NULL);
780 		if (desc == NULL)
781 			goto out;
782 
783 		err = -ENOMEM;
784 		bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
785 		if (bh[i] == NULL)
786 			goto out;
787 
788 		if (bitmap_uptodate(bh[i]))
789 			continue;
790 
791 		lock_buffer(bh[i]);
792 		if (bitmap_uptodate(bh[i])) {
793 			unlock_buffer(bh[i]);
794 			continue;
795 		}
796 		ext4_lock_group(sb, first_group + i);
797 		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
798 			ext4_init_block_bitmap(sb, bh[i],
799 						first_group + i, desc);
800 			set_bitmap_uptodate(bh[i]);
801 			set_buffer_uptodate(bh[i]);
802 			ext4_unlock_group(sb, first_group + i);
803 			unlock_buffer(bh[i]);
804 			continue;
805 		}
806 		ext4_unlock_group(sb, first_group + i);
807 		if (buffer_uptodate(bh[i])) {
808 			/*
809 			 * if not uninit if bh is uptodate,
810 			 * bitmap is also uptodate
811 			 */
812 			set_bitmap_uptodate(bh[i]);
813 			unlock_buffer(bh[i]);
814 			continue;
815 		}
816 		get_bh(bh[i]);
817 		/*
818 		 * submit the buffer_head for read. We can
819 		 * safely mark the bitmap as uptodate now.
820 		 * We do it here so the bitmap uptodate bit
821 		 * get set with buffer lock held.
822 		 */
823 		set_bitmap_uptodate(bh[i]);
824 		bh[i]->b_end_io = end_buffer_read_sync;
825 		submit_bh(READ, bh[i]);
826 		mb_debug(1, "read bitmap for group %u\n", first_group + i);
827 	}
828 
829 	/* wait for I/O completion */
830 	for (i = 0; i < groups_per_page && bh[i]; i++)
831 		wait_on_buffer(bh[i]);
832 
833 	err = -EIO;
834 	for (i = 0; i < groups_per_page && bh[i]; i++)
835 		if (!buffer_uptodate(bh[i]))
836 			goto out;
837 
838 	err = 0;
839 	first_block = page->index * blocks_per_page;
840 	/* init the page  */
841 	memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
842 	for (i = 0; i < blocks_per_page; i++) {
843 		int group;
844 		struct ext4_group_info *grinfo;
845 
846 		group = (first_block + i) >> 1;
847 		if (group >= ngroups)
848 			break;
849 
850 		/*
851 		 * data carry information regarding this
852 		 * particular group in the format specified
853 		 * above
854 		 *
855 		 */
856 		data = page_address(page) + (i * blocksize);
857 		bitmap = bh[group - first_group]->b_data;
858 
859 		/*
860 		 * We place the buddy block and bitmap block
861 		 * close together
862 		 */
863 		if ((first_block + i) & 1) {
864 			/* this is block of buddy */
865 			BUG_ON(incore == NULL);
866 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
867 				group, page->index, i * blocksize);
868 			grinfo = ext4_get_group_info(sb, group);
869 			grinfo->bb_fragments = 0;
870 			memset(grinfo->bb_counters, 0,
871 			       sizeof(*grinfo->bb_counters) *
872 				(sb->s_blocksize_bits+2));
873 			/*
874 			 * incore got set to the group block bitmap below
875 			 */
876 			ext4_lock_group(sb, group);
877 			ext4_mb_generate_buddy(sb, data, incore, group);
878 			ext4_unlock_group(sb, group);
879 			incore = NULL;
880 		} else {
881 			/* this is block of bitmap */
882 			BUG_ON(incore != NULL);
883 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
884 				group, page->index, i * blocksize);
885 
886 			/* see comments in ext4_mb_put_pa() */
887 			ext4_lock_group(sb, group);
888 			memcpy(data, bitmap, blocksize);
889 
890 			/* mark all preallocated blks used in in-core bitmap */
891 			ext4_mb_generate_from_pa(sb, data, group);
892 			ext4_mb_generate_from_freelist(sb, data, group);
893 			ext4_unlock_group(sb, group);
894 
895 			/* set incore so that the buddy information can be
896 			 * generated using this
897 			 */
898 			incore = data;
899 		}
900 	}
901 	SetPageUptodate(page);
902 
903 out:
904 	if (bh) {
905 		for (i = 0; i < groups_per_page && bh[i]; i++)
906 			brelse(bh[i]);
907 		if (bh != &bhs)
908 			kfree(bh);
909 	}
910 	return err;
911 }
912 
913 static noinline_for_stack
914 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
915 {
916 
917 	int ret = 0;
918 	void *bitmap;
919 	int blocks_per_page;
920 	int block, pnum, poff;
921 	int num_grp_locked = 0;
922 	struct ext4_group_info *this_grp;
923 	struct ext4_sb_info *sbi = EXT4_SB(sb);
924 	struct inode *inode = sbi->s_buddy_cache;
925 	struct page *page = NULL, *bitmap_page = NULL;
926 
927 	mb_debug(1, "init group %u\n", group);
928 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
929 	this_grp = ext4_get_group_info(sb, group);
930 	/*
931 	 * This ensures that we don't reinit the buddy cache
932 	 * page which map to the group from which we are already
933 	 * allocating. If we are looking at the buddy cache we would
934 	 * have taken a reference using ext4_mb_load_buddy and that
935 	 * would have taken the alloc_sem lock.
936 	 */
937 	num_grp_locked =  ext4_mb_get_buddy_cache_lock(sb, group);
938 	if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
939 		/*
940 		 * somebody initialized the group
941 		 * return without doing anything
942 		 */
943 		ret = 0;
944 		goto err;
945 	}
946 	/*
947 	 * the buddy cache inode stores the block bitmap
948 	 * and buddy information in consecutive blocks.
949 	 * So for each group we need two blocks.
950 	 */
951 	block = group * 2;
952 	pnum = block / blocks_per_page;
953 	poff = block % blocks_per_page;
954 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
955 	if (page) {
956 		BUG_ON(page->mapping != inode->i_mapping);
957 		ret = ext4_mb_init_cache(page, NULL);
958 		if (ret) {
959 			unlock_page(page);
960 			goto err;
961 		}
962 		unlock_page(page);
963 	}
964 	if (page == NULL || !PageUptodate(page)) {
965 		ret = -EIO;
966 		goto err;
967 	}
968 	mark_page_accessed(page);
969 	bitmap_page = page;
970 	bitmap = page_address(page) + (poff * sb->s_blocksize);
971 
972 	/* init buddy cache */
973 	block++;
974 	pnum = block / blocks_per_page;
975 	poff = block % blocks_per_page;
976 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
977 	if (page == bitmap_page) {
978 		/*
979 		 * If both the bitmap and buddy are in
980 		 * the same page we don't need to force
981 		 * init the buddy
982 		 */
983 		unlock_page(page);
984 	} else if (page) {
985 		BUG_ON(page->mapping != inode->i_mapping);
986 		ret = ext4_mb_init_cache(page, bitmap);
987 		if (ret) {
988 			unlock_page(page);
989 			goto err;
990 		}
991 		unlock_page(page);
992 	}
993 	if (page == NULL || !PageUptodate(page)) {
994 		ret = -EIO;
995 		goto err;
996 	}
997 	mark_page_accessed(page);
998 err:
999 	ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1000 	if (bitmap_page)
1001 		page_cache_release(bitmap_page);
1002 	if (page)
1003 		page_cache_release(page);
1004 	return ret;
1005 }
1006 
1007 static noinline_for_stack int
1008 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1009 					struct ext4_buddy *e4b)
1010 {
1011 	int blocks_per_page;
1012 	int block;
1013 	int pnum;
1014 	int poff;
1015 	struct page *page;
1016 	int ret;
1017 	struct ext4_group_info *grp;
1018 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1019 	struct inode *inode = sbi->s_buddy_cache;
1020 
1021 	mb_debug(1, "load group %u\n", group);
1022 
1023 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1024 	grp = ext4_get_group_info(sb, group);
1025 
1026 	e4b->bd_blkbits = sb->s_blocksize_bits;
1027 	e4b->bd_info = ext4_get_group_info(sb, group);
1028 	e4b->bd_sb = sb;
1029 	e4b->bd_group = group;
1030 	e4b->bd_buddy_page = NULL;
1031 	e4b->bd_bitmap_page = NULL;
1032 	e4b->alloc_semp = &grp->alloc_sem;
1033 
1034 	/* Take the read lock on the group alloc
1035 	 * sem. This would make sure a parallel
1036 	 * ext4_mb_init_group happening on other
1037 	 * groups mapped by the page is blocked
1038 	 * till we are done with allocation
1039 	 */
1040 repeat_load_buddy:
1041 	down_read(e4b->alloc_semp);
1042 
1043 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1044 		/* we need to check for group need init flag
1045 		 * with alloc_semp held so that we can be sure
1046 		 * that new blocks didn't get added to the group
1047 		 * when we are loading the buddy cache
1048 		 */
1049 		up_read(e4b->alloc_semp);
1050 		/*
1051 		 * we need full data about the group
1052 		 * to make a good selection
1053 		 */
1054 		ret = ext4_mb_init_group(sb, group);
1055 		if (ret)
1056 			return ret;
1057 		goto repeat_load_buddy;
1058 	}
1059 
1060 	/*
1061 	 * the buddy cache inode stores the block bitmap
1062 	 * and buddy information in consecutive blocks.
1063 	 * So for each group we need two blocks.
1064 	 */
1065 	block = group * 2;
1066 	pnum = block / blocks_per_page;
1067 	poff = block % blocks_per_page;
1068 
1069 	/* we could use find_or_create_page(), but it locks page
1070 	 * what we'd like to avoid in fast path ... */
1071 	page = find_get_page(inode->i_mapping, pnum);
1072 	if (page == NULL || !PageUptodate(page)) {
1073 		if (page)
1074 			/*
1075 			 * drop the page reference and try
1076 			 * to get the page with lock. If we
1077 			 * are not uptodate that implies
1078 			 * somebody just created the page but
1079 			 * is yet to initialize the same. So
1080 			 * wait for it to initialize.
1081 			 */
1082 			page_cache_release(page);
1083 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1084 		if (page) {
1085 			BUG_ON(page->mapping != inode->i_mapping);
1086 			if (!PageUptodate(page)) {
1087 				ret = ext4_mb_init_cache(page, NULL);
1088 				if (ret) {
1089 					unlock_page(page);
1090 					goto err;
1091 				}
1092 				mb_cmp_bitmaps(e4b, page_address(page) +
1093 					       (poff * sb->s_blocksize));
1094 			}
1095 			unlock_page(page);
1096 		}
1097 	}
1098 	if (page == NULL || !PageUptodate(page)) {
1099 		ret = -EIO;
1100 		goto err;
1101 	}
1102 	e4b->bd_bitmap_page = page;
1103 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1104 	mark_page_accessed(page);
1105 
1106 	block++;
1107 	pnum = block / blocks_per_page;
1108 	poff = block % blocks_per_page;
1109 
1110 	page = find_get_page(inode->i_mapping, pnum);
1111 	if (page == NULL || !PageUptodate(page)) {
1112 		if (page)
1113 			page_cache_release(page);
1114 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1115 		if (page) {
1116 			BUG_ON(page->mapping != inode->i_mapping);
1117 			if (!PageUptodate(page)) {
1118 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1119 				if (ret) {
1120 					unlock_page(page);
1121 					goto err;
1122 				}
1123 			}
1124 			unlock_page(page);
1125 		}
1126 	}
1127 	if (page == NULL || !PageUptodate(page)) {
1128 		ret = -EIO;
1129 		goto err;
1130 	}
1131 	e4b->bd_buddy_page = page;
1132 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1133 	mark_page_accessed(page);
1134 
1135 	BUG_ON(e4b->bd_bitmap_page == NULL);
1136 	BUG_ON(e4b->bd_buddy_page == NULL);
1137 
1138 	return 0;
1139 
1140 err:
1141 	if (e4b->bd_bitmap_page)
1142 		page_cache_release(e4b->bd_bitmap_page);
1143 	if (e4b->bd_buddy_page)
1144 		page_cache_release(e4b->bd_buddy_page);
1145 	e4b->bd_buddy = NULL;
1146 	e4b->bd_bitmap = NULL;
1147 
1148 	/* Done with the buddy cache */
1149 	up_read(e4b->alloc_semp);
1150 	return ret;
1151 }
1152 
1153 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
1154 {
1155 	if (e4b->bd_bitmap_page)
1156 		page_cache_release(e4b->bd_bitmap_page);
1157 	if (e4b->bd_buddy_page)
1158 		page_cache_release(e4b->bd_buddy_page);
1159 	/* Done with the buddy cache */
1160 	if (e4b->alloc_semp)
1161 		up_read(e4b->alloc_semp);
1162 }
1163 
1164 
1165 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1166 {
1167 	int order = 1;
1168 	void *bb;
1169 
1170 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1171 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1172 
1173 	bb = EXT4_MB_BUDDY(e4b);
1174 	while (order <= e4b->bd_blkbits + 1) {
1175 		block = block >> 1;
1176 		if (!mb_test_bit(block, bb)) {
1177 			/* this block is part of buddy of order 'order' */
1178 			return order;
1179 		}
1180 		bb += 1 << (e4b->bd_blkbits - order);
1181 		order++;
1182 	}
1183 	return 0;
1184 }
1185 
1186 static void mb_clear_bits(void *bm, int cur, int len)
1187 {
1188 	__u32 *addr;
1189 
1190 	len = cur + len;
1191 	while (cur < len) {
1192 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1193 			/* fast path: clear whole word at once */
1194 			addr = bm + (cur >> 3);
1195 			*addr = 0;
1196 			cur += 32;
1197 			continue;
1198 		}
1199 		mb_clear_bit(cur, bm);
1200 		cur++;
1201 	}
1202 }
1203 
1204 static void mb_set_bits(void *bm, int cur, int len)
1205 {
1206 	__u32 *addr;
1207 
1208 	len = cur + len;
1209 	while (cur < len) {
1210 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1211 			/* fast path: set whole word at once */
1212 			addr = bm + (cur >> 3);
1213 			*addr = 0xffffffff;
1214 			cur += 32;
1215 			continue;
1216 		}
1217 		mb_set_bit(cur, bm);
1218 		cur++;
1219 	}
1220 }
1221 
1222 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1223 			  int first, int count)
1224 {
1225 	int block = 0;
1226 	int max = 0;
1227 	int order;
1228 	void *buddy;
1229 	void *buddy2;
1230 	struct super_block *sb = e4b->bd_sb;
1231 
1232 	BUG_ON(first + count > (sb->s_blocksize << 3));
1233 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1234 	mb_check_buddy(e4b);
1235 	mb_free_blocks_double(inode, e4b, first, count);
1236 
1237 	e4b->bd_info->bb_free += count;
1238 	if (first < e4b->bd_info->bb_first_free)
1239 		e4b->bd_info->bb_first_free = first;
1240 
1241 	/* let's maintain fragments counter */
1242 	if (first != 0)
1243 		block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1244 	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1245 		max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1246 	if (block && max)
1247 		e4b->bd_info->bb_fragments--;
1248 	else if (!block && !max)
1249 		e4b->bd_info->bb_fragments++;
1250 
1251 	/* let's maintain buddy itself */
1252 	while (count-- > 0) {
1253 		block = first++;
1254 		order = 0;
1255 
1256 		if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1257 			ext4_fsblk_t blocknr;
1258 			blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1259 			blocknr += block;
1260 			blocknr +=
1261 			    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1262 			ext4_grp_locked_error(sb, e4b->bd_group,
1263 				   __func__, "double-free of inode"
1264 				   " %lu's block %llu(bit %u in group %u)",
1265 				   inode ? inode->i_ino : 0, blocknr, block,
1266 				   e4b->bd_group);
1267 		}
1268 		mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1269 		e4b->bd_info->bb_counters[order]++;
1270 
1271 		/* start of the buddy */
1272 		buddy = mb_find_buddy(e4b, order, &max);
1273 
1274 		do {
1275 			block &= ~1UL;
1276 			if (mb_test_bit(block, buddy) ||
1277 					mb_test_bit(block + 1, buddy))
1278 				break;
1279 
1280 			/* both the buddies are free, try to coalesce them */
1281 			buddy2 = mb_find_buddy(e4b, order + 1, &max);
1282 
1283 			if (!buddy2)
1284 				break;
1285 
1286 			if (order > 0) {
1287 				/* for special purposes, we don't set
1288 				 * free bits in bitmap */
1289 				mb_set_bit(block, buddy);
1290 				mb_set_bit(block + 1, buddy);
1291 			}
1292 			e4b->bd_info->bb_counters[order]--;
1293 			e4b->bd_info->bb_counters[order]--;
1294 
1295 			block = block >> 1;
1296 			order++;
1297 			e4b->bd_info->bb_counters[order]++;
1298 
1299 			mb_clear_bit(block, buddy2);
1300 			buddy = buddy2;
1301 		} while (1);
1302 	}
1303 	mb_check_buddy(e4b);
1304 }
1305 
1306 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1307 				int needed, struct ext4_free_extent *ex)
1308 {
1309 	int next = block;
1310 	int max;
1311 	int ord;
1312 	void *buddy;
1313 
1314 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1315 	BUG_ON(ex == NULL);
1316 
1317 	buddy = mb_find_buddy(e4b, order, &max);
1318 	BUG_ON(buddy == NULL);
1319 	BUG_ON(block >= max);
1320 	if (mb_test_bit(block, buddy)) {
1321 		ex->fe_len = 0;
1322 		ex->fe_start = 0;
1323 		ex->fe_group = 0;
1324 		return 0;
1325 	}
1326 
1327 	/* FIXME dorp order completely ? */
1328 	if (likely(order == 0)) {
1329 		/* find actual order */
1330 		order = mb_find_order_for_block(e4b, block);
1331 		block = block >> order;
1332 	}
1333 
1334 	ex->fe_len = 1 << order;
1335 	ex->fe_start = block << order;
1336 	ex->fe_group = e4b->bd_group;
1337 
1338 	/* calc difference from given start */
1339 	next = next - ex->fe_start;
1340 	ex->fe_len -= next;
1341 	ex->fe_start += next;
1342 
1343 	while (needed > ex->fe_len &&
1344 	       (buddy = mb_find_buddy(e4b, order, &max))) {
1345 
1346 		if (block + 1 >= max)
1347 			break;
1348 
1349 		next = (block + 1) * (1 << order);
1350 		if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1351 			break;
1352 
1353 		ord = mb_find_order_for_block(e4b, next);
1354 
1355 		order = ord;
1356 		block = next >> order;
1357 		ex->fe_len += 1 << order;
1358 	}
1359 
1360 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1361 	return ex->fe_len;
1362 }
1363 
1364 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1365 {
1366 	int ord;
1367 	int mlen = 0;
1368 	int max = 0;
1369 	int cur;
1370 	int start = ex->fe_start;
1371 	int len = ex->fe_len;
1372 	unsigned ret = 0;
1373 	int len0 = len;
1374 	void *buddy;
1375 
1376 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1377 	BUG_ON(e4b->bd_group != ex->fe_group);
1378 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1379 	mb_check_buddy(e4b);
1380 	mb_mark_used_double(e4b, start, len);
1381 
1382 	e4b->bd_info->bb_free -= len;
1383 	if (e4b->bd_info->bb_first_free == start)
1384 		e4b->bd_info->bb_first_free += len;
1385 
1386 	/* let's maintain fragments counter */
1387 	if (start != 0)
1388 		mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1389 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1390 		max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1391 	if (mlen && max)
1392 		e4b->bd_info->bb_fragments++;
1393 	else if (!mlen && !max)
1394 		e4b->bd_info->bb_fragments--;
1395 
1396 	/* let's maintain buddy itself */
1397 	while (len) {
1398 		ord = mb_find_order_for_block(e4b, start);
1399 
1400 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1401 			/* the whole chunk may be allocated at once! */
1402 			mlen = 1 << ord;
1403 			buddy = mb_find_buddy(e4b, ord, &max);
1404 			BUG_ON((start >> ord) >= max);
1405 			mb_set_bit(start >> ord, buddy);
1406 			e4b->bd_info->bb_counters[ord]--;
1407 			start += mlen;
1408 			len -= mlen;
1409 			BUG_ON(len < 0);
1410 			continue;
1411 		}
1412 
1413 		/* store for history */
1414 		if (ret == 0)
1415 			ret = len | (ord << 16);
1416 
1417 		/* we have to split large buddy */
1418 		BUG_ON(ord <= 0);
1419 		buddy = mb_find_buddy(e4b, ord, &max);
1420 		mb_set_bit(start >> ord, buddy);
1421 		e4b->bd_info->bb_counters[ord]--;
1422 
1423 		ord--;
1424 		cur = (start >> ord) & ~1U;
1425 		buddy = mb_find_buddy(e4b, ord, &max);
1426 		mb_clear_bit(cur, buddy);
1427 		mb_clear_bit(cur + 1, buddy);
1428 		e4b->bd_info->bb_counters[ord]++;
1429 		e4b->bd_info->bb_counters[ord]++;
1430 	}
1431 
1432 	mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1433 	mb_check_buddy(e4b);
1434 
1435 	return ret;
1436 }
1437 
1438 /*
1439  * Must be called under group lock!
1440  */
1441 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1442 					struct ext4_buddy *e4b)
1443 {
1444 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1445 	int ret;
1446 
1447 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1448 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1449 
1450 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1451 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1452 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1453 
1454 	/* preallocation can change ac_b_ex, thus we store actually
1455 	 * allocated blocks for history */
1456 	ac->ac_f_ex = ac->ac_b_ex;
1457 
1458 	ac->ac_status = AC_STATUS_FOUND;
1459 	ac->ac_tail = ret & 0xffff;
1460 	ac->ac_buddy = ret >> 16;
1461 
1462 	/*
1463 	 * take the page reference. We want the page to be pinned
1464 	 * so that we don't get a ext4_mb_init_cache_call for this
1465 	 * group until we update the bitmap. That would mean we
1466 	 * double allocate blocks. The reference is dropped
1467 	 * in ext4_mb_release_context
1468 	 */
1469 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1470 	get_page(ac->ac_bitmap_page);
1471 	ac->ac_buddy_page = e4b->bd_buddy_page;
1472 	get_page(ac->ac_buddy_page);
1473 	/* on allocation we use ac to track the held semaphore */
1474 	ac->alloc_semp =  e4b->alloc_semp;
1475 	e4b->alloc_semp = NULL;
1476 	/* store last allocated for subsequent stream allocation */
1477 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1478 		spin_lock(&sbi->s_md_lock);
1479 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1480 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1481 		spin_unlock(&sbi->s_md_lock);
1482 	}
1483 }
1484 
1485 /*
1486  * regular allocator, for general purposes allocation
1487  */
1488 
1489 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1490 					struct ext4_buddy *e4b,
1491 					int finish_group)
1492 {
1493 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1494 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1495 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1496 	struct ext4_free_extent ex;
1497 	int max;
1498 
1499 	if (ac->ac_status == AC_STATUS_FOUND)
1500 		return;
1501 	/*
1502 	 * We don't want to scan for a whole year
1503 	 */
1504 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1505 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1506 		ac->ac_status = AC_STATUS_BREAK;
1507 		return;
1508 	}
1509 
1510 	/*
1511 	 * Haven't found good chunk so far, let's continue
1512 	 */
1513 	if (bex->fe_len < gex->fe_len)
1514 		return;
1515 
1516 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1517 			&& bex->fe_group == e4b->bd_group) {
1518 		/* recheck chunk's availability - we don't know
1519 		 * when it was found (within this lock-unlock
1520 		 * period or not) */
1521 		max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1522 		if (max >= gex->fe_len) {
1523 			ext4_mb_use_best_found(ac, e4b);
1524 			return;
1525 		}
1526 	}
1527 }
1528 
1529 /*
1530  * The routine checks whether found extent is good enough. If it is,
1531  * then the extent gets marked used and flag is set to the context
1532  * to stop scanning. Otherwise, the extent is compared with the
1533  * previous found extent and if new one is better, then it's stored
1534  * in the context. Later, the best found extent will be used, if
1535  * mballoc can't find good enough extent.
1536  *
1537  * FIXME: real allocation policy is to be designed yet!
1538  */
1539 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1540 					struct ext4_free_extent *ex,
1541 					struct ext4_buddy *e4b)
1542 {
1543 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1544 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1545 
1546 	BUG_ON(ex->fe_len <= 0);
1547 	BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1548 	BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1549 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1550 
1551 	ac->ac_found++;
1552 
1553 	/*
1554 	 * The special case - take what you catch first
1555 	 */
1556 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1557 		*bex = *ex;
1558 		ext4_mb_use_best_found(ac, e4b);
1559 		return;
1560 	}
1561 
1562 	/*
1563 	 * Let's check whether the chuck is good enough
1564 	 */
1565 	if (ex->fe_len == gex->fe_len) {
1566 		*bex = *ex;
1567 		ext4_mb_use_best_found(ac, e4b);
1568 		return;
1569 	}
1570 
1571 	/*
1572 	 * If this is first found extent, just store it in the context
1573 	 */
1574 	if (bex->fe_len == 0) {
1575 		*bex = *ex;
1576 		return;
1577 	}
1578 
1579 	/*
1580 	 * If new found extent is better, store it in the context
1581 	 */
1582 	if (bex->fe_len < gex->fe_len) {
1583 		/* if the request isn't satisfied, any found extent
1584 		 * larger than previous best one is better */
1585 		if (ex->fe_len > bex->fe_len)
1586 			*bex = *ex;
1587 	} else if (ex->fe_len > gex->fe_len) {
1588 		/* if the request is satisfied, then we try to find
1589 		 * an extent that still satisfy the request, but is
1590 		 * smaller than previous one */
1591 		if (ex->fe_len < bex->fe_len)
1592 			*bex = *ex;
1593 	}
1594 
1595 	ext4_mb_check_limits(ac, e4b, 0);
1596 }
1597 
1598 static noinline_for_stack
1599 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1600 					struct ext4_buddy *e4b)
1601 {
1602 	struct ext4_free_extent ex = ac->ac_b_ex;
1603 	ext4_group_t group = ex.fe_group;
1604 	int max;
1605 	int err;
1606 
1607 	BUG_ON(ex.fe_len <= 0);
1608 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1609 	if (err)
1610 		return err;
1611 
1612 	ext4_lock_group(ac->ac_sb, group);
1613 	max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1614 
1615 	if (max > 0) {
1616 		ac->ac_b_ex = ex;
1617 		ext4_mb_use_best_found(ac, e4b);
1618 	}
1619 
1620 	ext4_unlock_group(ac->ac_sb, group);
1621 	ext4_mb_release_desc(e4b);
1622 
1623 	return 0;
1624 }
1625 
1626 static noinline_for_stack
1627 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1628 				struct ext4_buddy *e4b)
1629 {
1630 	ext4_group_t group = ac->ac_g_ex.fe_group;
1631 	int max;
1632 	int err;
1633 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1634 	struct ext4_super_block *es = sbi->s_es;
1635 	struct ext4_free_extent ex;
1636 
1637 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1638 		return 0;
1639 
1640 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1641 	if (err)
1642 		return err;
1643 
1644 	ext4_lock_group(ac->ac_sb, group);
1645 	max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1646 			     ac->ac_g_ex.fe_len, &ex);
1647 
1648 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1649 		ext4_fsblk_t start;
1650 
1651 		start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1652 			ex.fe_start + le32_to_cpu(es->s_first_data_block);
1653 		/* use do_div to get remainder (would be 64-bit modulo) */
1654 		if (do_div(start, sbi->s_stripe) == 0) {
1655 			ac->ac_found++;
1656 			ac->ac_b_ex = ex;
1657 			ext4_mb_use_best_found(ac, e4b);
1658 		}
1659 	} else if (max >= ac->ac_g_ex.fe_len) {
1660 		BUG_ON(ex.fe_len <= 0);
1661 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1662 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1663 		ac->ac_found++;
1664 		ac->ac_b_ex = ex;
1665 		ext4_mb_use_best_found(ac, e4b);
1666 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1667 		/* Sometimes, caller may want to merge even small
1668 		 * number of blocks to an existing extent */
1669 		BUG_ON(ex.fe_len <= 0);
1670 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1671 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1672 		ac->ac_found++;
1673 		ac->ac_b_ex = ex;
1674 		ext4_mb_use_best_found(ac, e4b);
1675 	}
1676 	ext4_unlock_group(ac->ac_sb, group);
1677 	ext4_mb_release_desc(e4b);
1678 
1679 	return 0;
1680 }
1681 
1682 /*
1683  * The routine scans buddy structures (not bitmap!) from given order
1684  * to max order and tries to find big enough chunk to satisfy the req
1685  */
1686 static noinline_for_stack
1687 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1688 					struct ext4_buddy *e4b)
1689 {
1690 	struct super_block *sb = ac->ac_sb;
1691 	struct ext4_group_info *grp = e4b->bd_info;
1692 	void *buddy;
1693 	int i;
1694 	int k;
1695 	int max;
1696 
1697 	BUG_ON(ac->ac_2order <= 0);
1698 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1699 		if (grp->bb_counters[i] == 0)
1700 			continue;
1701 
1702 		buddy = mb_find_buddy(e4b, i, &max);
1703 		BUG_ON(buddy == NULL);
1704 
1705 		k = mb_find_next_zero_bit(buddy, max, 0);
1706 		BUG_ON(k >= max);
1707 
1708 		ac->ac_found++;
1709 
1710 		ac->ac_b_ex.fe_len = 1 << i;
1711 		ac->ac_b_ex.fe_start = k << i;
1712 		ac->ac_b_ex.fe_group = e4b->bd_group;
1713 
1714 		ext4_mb_use_best_found(ac, e4b);
1715 
1716 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1717 
1718 		if (EXT4_SB(sb)->s_mb_stats)
1719 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1720 
1721 		break;
1722 	}
1723 }
1724 
1725 /*
1726  * The routine scans the group and measures all found extents.
1727  * In order to optimize scanning, caller must pass number of
1728  * free blocks in the group, so the routine can know upper limit.
1729  */
1730 static noinline_for_stack
1731 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1732 					struct ext4_buddy *e4b)
1733 {
1734 	struct super_block *sb = ac->ac_sb;
1735 	void *bitmap = EXT4_MB_BITMAP(e4b);
1736 	struct ext4_free_extent ex;
1737 	int i;
1738 	int free;
1739 
1740 	free = e4b->bd_info->bb_free;
1741 	BUG_ON(free <= 0);
1742 
1743 	i = e4b->bd_info->bb_first_free;
1744 
1745 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1746 		i = mb_find_next_zero_bit(bitmap,
1747 						EXT4_BLOCKS_PER_GROUP(sb), i);
1748 		if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1749 			/*
1750 			 * IF we have corrupt bitmap, we won't find any
1751 			 * free blocks even though group info says we
1752 			 * we have free blocks
1753 			 */
1754 			ext4_grp_locked_error(sb, e4b->bd_group,
1755 					__func__, "%d free blocks as per "
1756 					"group info. But bitmap says 0",
1757 					free);
1758 			break;
1759 		}
1760 
1761 		mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1762 		BUG_ON(ex.fe_len <= 0);
1763 		if (free < ex.fe_len) {
1764 			ext4_grp_locked_error(sb, e4b->bd_group,
1765 					__func__, "%d free blocks as per "
1766 					"group info. But got %d blocks",
1767 					free, ex.fe_len);
1768 			/*
1769 			 * The number of free blocks differs. This mostly
1770 			 * indicate that the bitmap is corrupt. So exit
1771 			 * without claiming the space.
1772 			 */
1773 			break;
1774 		}
1775 
1776 		ext4_mb_measure_extent(ac, &ex, e4b);
1777 
1778 		i += ex.fe_len;
1779 		free -= ex.fe_len;
1780 	}
1781 
1782 	ext4_mb_check_limits(ac, e4b, 1);
1783 }
1784 
1785 /*
1786  * This is a special case for storages like raid5
1787  * we try to find stripe-aligned chunks for stripe-size requests
1788  * XXX should do so at least for multiples of stripe size as well
1789  */
1790 static noinline_for_stack
1791 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1792 				 struct ext4_buddy *e4b)
1793 {
1794 	struct super_block *sb = ac->ac_sb;
1795 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1796 	void *bitmap = EXT4_MB_BITMAP(e4b);
1797 	struct ext4_free_extent ex;
1798 	ext4_fsblk_t first_group_block;
1799 	ext4_fsblk_t a;
1800 	ext4_grpblk_t i;
1801 	int max;
1802 
1803 	BUG_ON(sbi->s_stripe == 0);
1804 
1805 	/* find first stripe-aligned block in group */
1806 	first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1807 		+ le32_to_cpu(sbi->s_es->s_first_data_block);
1808 	a = first_group_block + sbi->s_stripe - 1;
1809 	do_div(a, sbi->s_stripe);
1810 	i = (a * sbi->s_stripe) - first_group_block;
1811 
1812 	while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1813 		if (!mb_test_bit(i, bitmap)) {
1814 			max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1815 			if (max >= sbi->s_stripe) {
1816 				ac->ac_found++;
1817 				ac->ac_b_ex = ex;
1818 				ext4_mb_use_best_found(ac, e4b);
1819 				break;
1820 			}
1821 		}
1822 		i += sbi->s_stripe;
1823 	}
1824 }
1825 
1826 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1827 				ext4_group_t group, int cr)
1828 {
1829 	unsigned free, fragments;
1830 	unsigned i, bits;
1831 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1832 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1833 
1834 	BUG_ON(cr < 0 || cr >= 4);
1835 	BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1836 
1837 	free = grp->bb_free;
1838 	fragments = grp->bb_fragments;
1839 	if (free == 0)
1840 		return 0;
1841 	if (fragments == 0)
1842 		return 0;
1843 
1844 	switch (cr) {
1845 	case 0:
1846 		BUG_ON(ac->ac_2order == 0);
1847 
1848 		/* Avoid using the first bg of a flexgroup for data files */
1849 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1850 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1851 		    ((group % flex_size) == 0))
1852 			return 0;
1853 
1854 		bits = ac->ac_sb->s_blocksize_bits + 1;
1855 		for (i = ac->ac_2order; i <= bits; i++)
1856 			if (grp->bb_counters[i] > 0)
1857 				return 1;
1858 		break;
1859 	case 1:
1860 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
1861 			return 1;
1862 		break;
1863 	case 2:
1864 		if (free >= ac->ac_g_ex.fe_len)
1865 			return 1;
1866 		break;
1867 	case 3:
1868 		return 1;
1869 	default:
1870 		BUG();
1871 	}
1872 
1873 	return 0;
1874 }
1875 
1876 /*
1877  * lock the group_info alloc_sem of all the groups
1878  * belonging to the same buddy cache page. This
1879  * make sure other parallel operation on the buddy
1880  * cache doesn't happen  whild holding the buddy cache
1881  * lock
1882  */
1883 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1884 {
1885 	int i;
1886 	int block, pnum;
1887 	int blocks_per_page;
1888 	int groups_per_page;
1889 	ext4_group_t ngroups = ext4_get_groups_count(sb);
1890 	ext4_group_t first_group;
1891 	struct ext4_group_info *grp;
1892 
1893 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1894 	/*
1895 	 * the buddy cache inode stores the block bitmap
1896 	 * and buddy information in consecutive blocks.
1897 	 * So for each group we need two blocks.
1898 	 */
1899 	block = group * 2;
1900 	pnum = block / blocks_per_page;
1901 	first_group = pnum * blocks_per_page / 2;
1902 
1903 	groups_per_page = blocks_per_page >> 1;
1904 	if (groups_per_page == 0)
1905 		groups_per_page = 1;
1906 	/* read all groups the page covers into the cache */
1907 	for (i = 0; i < groups_per_page; i++) {
1908 
1909 		if ((first_group + i) >= ngroups)
1910 			break;
1911 		grp = ext4_get_group_info(sb, first_group + i);
1912 		/* take all groups write allocation
1913 		 * semaphore. This make sure there is
1914 		 * no block allocation going on in any
1915 		 * of that groups
1916 		 */
1917 		down_write_nested(&grp->alloc_sem, i);
1918 	}
1919 	return i;
1920 }
1921 
1922 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1923 					ext4_group_t group, int locked_group)
1924 {
1925 	int i;
1926 	int block, pnum;
1927 	int blocks_per_page;
1928 	ext4_group_t first_group;
1929 	struct ext4_group_info *grp;
1930 
1931 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1932 	/*
1933 	 * the buddy cache inode stores the block bitmap
1934 	 * and buddy information in consecutive blocks.
1935 	 * So for each group we need two blocks.
1936 	 */
1937 	block = group * 2;
1938 	pnum = block / blocks_per_page;
1939 	first_group = pnum * blocks_per_page / 2;
1940 	/* release locks on all the groups */
1941 	for (i = 0; i < locked_group; i++) {
1942 
1943 		grp = ext4_get_group_info(sb, first_group + i);
1944 		/* take all groups write allocation
1945 		 * semaphore. This make sure there is
1946 		 * no block allocation going on in any
1947 		 * of that groups
1948 		 */
1949 		up_write(&grp->alloc_sem);
1950 	}
1951 
1952 }
1953 
1954 static noinline_for_stack int
1955 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1956 {
1957 	ext4_group_t ngroups, group, i;
1958 	int cr;
1959 	int err = 0;
1960 	int bsbits;
1961 	struct ext4_sb_info *sbi;
1962 	struct super_block *sb;
1963 	struct ext4_buddy e4b;
1964 
1965 	sb = ac->ac_sb;
1966 	sbi = EXT4_SB(sb);
1967 	ngroups = ext4_get_groups_count(sb);
1968 	/* non-extent files are limited to low blocks/groups */
1969 	if (!(EXT4_I(ac->ac_inode)->i_flags & EXT4_EXTENTS_FL))
1970 		ngroups = sbi->s_blockfile_groups;
1971 
1972 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1973 
1974 	/* first, try the goal */
1975 	err = ext4_mb_find_by_goal(ac, &e4b);
1976 	if (err || ac->ac_status == AC_STATUS_FOUND)
1977 		goto out;
1978 
1979 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1980 		goto out;
1981 
1982 	/*
1983 	 * ac->ac2_order is set only if the fe_len is a power of 2
1984 	 * if ac2_order is set we also set criteria to 0 so that we
1985 	 * try exact allocation using buddy.
1986 	 */
1987 	i = fls(ac->ac_g_ex.fe_len);
1988 	ac->ac_2order = 0;
1989 	/*
1990 	 * We search using buddy data only if the order of the request
1991 	 * is greater than equal to the sbi_s_mb_order2_reqs
1992 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1993 	 */
1994 	if (i >= sbi->s_mb_order2_reqs) {
1995 		/*
1996 		 * This should tell if fe_len is exactly power of 2
1997 		 */
1998 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1999 			ac->ac_2order = i - 1;
2000 	}
2001 
2002 	bsbits = ac->ac_sb->s_blocksize_bits;
2003 
2004 	/* if stream allocation is enabled, use global goal */
2005 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2006 		/* TBD: may be hot point */
2007 		spin_lock(&sbi->s_md_lock);
2008 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2009 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2010 		spin_unlock(&sbi->s_md_lock);
2011 	}
2012 
2013 	/* Let's just scan groups to find more-less suitable blocks */
2014 	cr = ac->ac_2order ? 0 : 1;
2015 	/*
2016 	 * cr == 0 try to get exact allocation,
2017 	 * cr == 3  try to get anything
2018 	 */
2019 repeat:
2020 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2021 		ac->ac_criteria = cr;
2022 		/*
2023 		 * searching for the right group start
2024 		 * from the goal value specified
2025 		 */
2026 		group = ac->ac_g_ex.fe_group;
2027 
2028 		for (i = 0; i < ngroups; group++, i++) {
2029 			struct ext4_group_info *grp;
2030 			struct ext4_group_desc *desc;
2031 
2032 			if (group == ngroups)
2033 				group = 0;
2034 
2035 			/* quick check to skip empty groups */
2036 			grp = ext4_get_group_info(sb, group);
2037 			if (grp->bb_free == 0)
2038 				continue;
2039 
2040 			err = ext4_mb_load_buddy(sb, group, &e4b);
2041 			if (err)
2042 				goto out;
2043 
2044 			ext4_lock_group(sb, group);
2045 			if (!ext4_mb_good_group(ac, group, cr)) {
2046 				/* someone did allocation from this group */
2047 				ext4_unlock_group(sb, group);
2048 				ext4_mb_release_desc(&e4b);
2049 				continue;
2050 			}
2051 
2052 			ac->ac_groups_scanned++;
2053 			desc = ext4_get_group_desc(sb, group, NULL);
2054 			if (cr == 0)
2055 				ext4_mb_simple_scan_group(ac, &e4b);
2056 			else if (cr == 1 &&
2057 					ac->ac_g_ex.fe_len == sbi->s_stripe)
2058 				ext4_mb_scan_aligned(ac, &e4b);
2059 			else
2060 				ext4_mb_complex_scan_group(ac, &e4b);
2061 
2062 			ext4_unlock_group(sb, group);
2063 			ext4_mb_release_desc(&e4b);
2064 
2065 			if (ac->ac_status != AC_STATUS_CONTINUE)
2066 				break;
2067 		}
2068 	}
2069 
2070 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2071 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2072 		/*
2073 		 * We've been searching too long. Let's try to allocate
2074 		 * the best chunk we've found so far
2075 		 */
2076 
2077 		ext4_mb_try_best_found(ac, &e4b);
2078 		if (ac->ac_status != AC_STATUS_FOUND) {
2079 			/*
2080 			 * Someone more lucky has already allocated it.
2081 			 * The only thing we can do is just take first
2082 			 * found block(s)
2083 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2084 			 */
2085 			ac->ac_b_ex.fe_group = 0;
2086 			ac->ac_b_ex.fe_start = 0;
2087 			ac->ac_b_ex.fe_len = 0;
2088 			ac->ac_status = AC_STATUS_CONTINUE;
2089 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2090 			cr = 3;
2091 			atomic_inc(&sbi->s_mb_lost_chunks);
2092 			goto repeat;
2093 		}
2094 	}
2095 out:
2096 	return err;
2097 }
2098 
2099 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2100 {
2101 	struct super_block *sb = seq->private;
2102 	ext4_group_t group;
2103 
2104 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2105 		return NULL;
2106 	group = *pos + 1;
2107 	return (void *) ((unsigned long) group);
2108 }
2109 
2110 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2111 {
2112 	struct super_block *sb = seq->private;
2113 	ext4_group_t group;
2114 
2115 	++*pos;
2116 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2117 		return NULL;
2118 	group = *pos + 1;
2119 	return (void *) ((unsigned long) group);
2120 }
2121 
2122 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2123 {
2124 	struct super_block *sb = seq->private;
2125 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2126 	int i;
2127 	int err;
2128 	struct ext4_buddy e4b;
2129 	struct sg {
2130 		struct ext4_group_info info;
2131 		ext4_grpblk_t counters[16];
2132 	} sg;
2133 
2134 	group--;
2135 	if (group == 0)
2136 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2137 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2138 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2139 			   "group", "free", "frags", "first",
2140 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2141 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2142 
2143 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2144 		sizeof(struct ext4_group_info);
2145 	err = ext4_mb_load_buddy(sb, group, &e4b);
2146 	if (err) {
2147 		seq_printf(seq, "#%-5u: I/O error\n", group);
2148 		return 0;
2149 	}
2150 	ext4_lock_group(sb, group);
2151 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2152 	ext4_unlock_group(sb, group);
2153 	ext4_mb_release_desc(&e4b);
2154 
2155 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2156 			sg.info.bb_fragments, sg.info.bb_first_free);
2157 	for (i = 0; i <= 13; i++)
2158 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2159 				sg.info.bb_counters[i] : 0);
2160 	seq_printf(seq, " ]\n");
2161 
2162 	return 0;
2163 }
2164 
2165 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2166 {
2167 }
2168 
2169 static const struct seq_operations ext4_mb_seq_groups_ops = {
2170 	.start  = ext4_mb_seq_groups_start,
2171 	.next   = ext4_mb_seq_groups_next,
2172 	.stop   = ext4_mb_seq_groups_stop,
2173 	.show   = ext4_mb_seq_groups_show,
2174 };
2175 
2176 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2177 {
2178 	struct super_block *sb = PDE(inode)->data;
2179 	int rc;
2180 
2181 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2182 	if (rc == 0) {
2183 		struct seq_file *m = (struct seq_file *)file->private_data;
2184 		m->private = sb;
2185 	}
2186 	return rc;
2187 
2188 }
2189 
2190 static const struct file_operations ext4_mb_seq_groups_fops = {
2191 	.owner		= THIS_MODULE,
2192 	.open		= ext4_mb_seq_groups_open,
2193 	.read		= seq_read,
2194 	.llseek		= seq_lseek,
2195 	.release	= seq_release,
2196 };
2197 
2198 
2199 /* Create and initialize ext4_group_info data for the given group. */
2200 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2201 			  struct ext4_group_desc *desc)
2202 {
2203 	int i, len;
2204 	int metalen = 0;
2205 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2206 	struct ext4_group_info **meta_group_info;
2207 
2208 	/*
2209 	 * First check if this group is the first of a reserved block.
2210 	 * If it's true, we have to allocate a new table of pointers
2211 	 * to ext4_group_info structures
2212 	 */
2213 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2214 		metalen = sizeof(*meta_group_info) <<
2215 			EXT4_DESC_PER_BLOCK_BITS(sb);
2216 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2217 		if (meta_group_info == NULL) {
2218 			printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2219 			       "buddy group\n");
2220 			goto exit_meta_group_info;
2221 		}
2222 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2223 			meta_group_info;
2224 	}
2225 
2226 	/*
2227 	 * calculate needed size. if change bb_counters size,
2228 	 * don't forget about ext4_mb_generate_buddy()
2229 	 */
2230 	len = offsetof(typeof(**meta_group_info),
2231 		       bb_counters[sb->s_blocksize_bits + 2]);
2232 
2233 	meta_group_info =
2234 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2235 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2236 
2237 	meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2238 	if (meta_group_info[i] == NULL) {
2239 		printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2240 		goto exit_group_info;
2241 	}
2242 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2243 		&(meta_group_info[i]->bb_state));
2244 
2245 	/*
2246 	 * initialize bb_free to be able to skip
2247 	 * empty groups without initialization
2248 	 */
2249 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2250 		meta_group_info[i]->bb_free =
2251 			ext4_free_blocks_after_init(sb, group, desc);
2252 	} else {
2253 		meta_group_info[i]->bb_free =
2254 			ext4_free_blks_count(sb, desc);
2255 	}
2256 
2257 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2258 	init_rwsem(&meta_group_info[i]->alloc_sem);
2259 	meta_group_info[i]->bb_free_root.rb_node = NULL;
2260 
2261 #ifdef DOUBLE_CHECK
2262 	{
2263 		struct buffer_head *bh;
2264 		meta_group_info[i]->bb_bitmap =
2265 			kmalloc(sb->s_blocksize, GFP_KERNEL);
2266 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2267 		bh = ext4_read_block_bitmap(sb, group);
2268 		BUG_ON(bh == NULL);
2269 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2270 			sb->s_blocksize);
2271 		put_bh(bh);
2272 	}
2273 #endif
2274 
2275 	return 0;
2276 
2277 exit_group_info:
2278 	/* If a meta_group_info table has been allocated, release it now */
2279 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2280 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2281 exit_meta_group_info:
2282 	return -ENOMEM;
2283 } /* ext4_mb_add_groupinfo */
2284 
2285 static int ext4_mb_init_backend(struct super_block *sb)
2286 {
2287 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2288 	ext4_group_t i;
2289 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2290 	struct ext4_super_block *es = sbi->s_es;
2291 	int num_meta_group_infos;
2292 	int num_meta_group_infos_max;
2293 	int array_size;
2294 	struct ext4_group_desc *desc;
2295 
2296 	/* This is the number of blocks used by GDT */
2297 	num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2298 				1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2299 
2300 	/*
2301 	 * This is the total number of blocks used by GDT including
2302 	 * the number of reserved blocks for GDT.
2303 	 * The s_group_info array is allocated with this value
2304 	 * to allow a clean online resize without a complex
2305 	 * manipulation of pointer.
2306 	 * The drawback is the unused memory when no resize
2307 	 * occurs but it's very low in terms of pages
2308 	 * (see comments below)
2309 	 * Need to handle this properly when META_BG resizing is allowed
2310 	 */
2311 	num_meta_group_infos_max = num_meta_group_infos +
2312 				le16_to_cpu(es->s_reserved_gdt_blocks);
2313 
2314 	/*
2315 	 * array_size is the size of s_group_info array. We round it
2316 	 * to the next power of two because this approximation is done
2317 	 * internally by kmalloc so we can have some more memory
2318 	 * for free here (e.g. may be used for META_BG resize).
2319 	 */
2320 	array_size = 1;
2321 	while (array_size < sizeof(*sbi->s_group_info) *
2322 	       num_meta_group_infos_max)
2323 		array_size = array_size << 1;
2324 	/* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2325 	 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2326 	 * So a two level scheme suffices for now. */
2327 	sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2328 	if (sbi->s_group_info == NULL) {
2329 		printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2330 		return -ENOMEM;
2331 	}
2332 	sbi->s_buddy_cache = new_inode(sb);
2333 	if (sbi->s_buddy_cache == NULL) {
2334 		printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2335 		goto err_freesgi;
2336 	}
2337 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2338 	for (i = 0; i < ngroups; i++) {
2339 		desc = ext4_get_group_desc(sb, i, NULL);
2340 		if (desc == NULL) {
2341 			printk(KERN_ERR
2342 				"EXT4-fs: can't read descriptor %u\n", i);
2343 			goto err_freebuddy;
2344 		}
2345 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2346 			goto err_freebuddy;
2347 	}
2348 
2349 	return 0;
2350 
2351 err_freebuddy:
2352 	while (i-- > 0)
2353 		kfree(ext4_get_group_info(sb, i));
2354 	i = num_meta_group_infos;
2355 	while (i-- > 0)
2356 		kfree(sbi->s_group_info[i]);
2357 	iput(sbi->s_buddy_cache);
2358 err_freesgi:
2359 	kfree(sbi->s_group_info);
2360 	return -ENOMEM;
2361 }
2362 
2363 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2364 {
2365 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2366 	unsigned i, j;
2367 	unsigned offset;
2368 	unsigned max;
2369 	int ret;
2370 
2371 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2372 
2373 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2374 	if (sbi->s_mb_offsets == NULL) {
2375 		return -ENOMEM;
2376 	}
2377 
2378 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2379 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2380 	if (sbi->s_mb_maxs == NULL) {
2381 		kfree(sbi->s_mb_offsets);
2382 		return -ENOMEM;
2383 	}
2384 
2385 	/* order 0 is regular bitmap */
2386 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2387 	sbi->s_mb_offsets[0] = 0;
2388 
2389 	i = 1;
2390 	offset = 0;
2391 	max = sb->s_blocksize << 2;
2392 	do {
2393 		sbi->s_mb_offsets[i] = offset;
2394 		sbi->s_mb_maxs[i] = max;
2395 		offset += 1 << (sb->s_blocksize_bits - i);
2396 		max = max >> 1;
2397 		i++;
2398 	} while (i <= sb->s_blocksize_bits + 1);
2399 
2400 	/* init file for buddy data */
2401 	ret = ext4_mb_init_backend(sb);
2402 	if (ret != 0) {
2403 		kfree(sbi->s_mb_offsets);
2404 		kfree(sbi->s_mb_maxs);
2405 		return ret;
2406 	}
2407 
2408 	spin_lock_init(&sbi->s_md_lock);
2409 	spin_lock_init(&sbi->s_bal_lock);
2410 
2411 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2412 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2413 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2414 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2415 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2416 	sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2417 
2418 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2419 	if (sbi->s_locality_groups == NULL) {
2420 		kfree(sbi->s_mb_offsets);
2421 		kfree(sbi->s_mb_maxs);
2422 		return -ENOMEM;
2423 	}
2424 	for_each_possible_cpu(i) {
2425 		struct ext4_locality_group *lg;
2426 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2427 		mutex_init(&lg->lg_mutex);
2428 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2429 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2430 		spin_lock_init(&lg->lg_prealloc_lock);
2431 	}
2432 
2433 	if (sbi->s_proc)
2434 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2435 				 &ext4_mb_seq_groups_fops, sb);
2436 
2437 	if (sbi->s_journal)
2438 		sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2439 	return 0;
2440 }
2441 
2442 /* need to called with the ext4 group lock held */
2443 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2444 {
2445 	struct ext4_prealloc_space *pa;
2446 	struct list_head *cur, *tmp;
2447 	int count = 0;
2448 
2449 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2450 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2451 		list_del(&pa->pa_group_list);
2452 		count++;
2453 		kmem_cache_free(ext4_pspace_cachep, pa);
2454 	}
2455 	if (count)
2456 		mb_debug(1, "mballoc: %u PAs left\n", count);
2457 
2458 }
2459 
2460 int ext4_mb_release(struct super_block *sb)
2461 {
2462 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2463 	ext4_group_t i;
2464 	int num_meta_group_infos;
2465 	struct ext4_group_info *grinfo;
2466 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2467 
2468 	if (sbi->s_group_info) {
2469 		for (i = 0; i < ngroups; i++) {
2470 			grinfo = ext4_get_group_info(sb, i);
2471 #ifdef DOUBLE_CHECK
2472 			kfree(grinfo->bb_bitmap);
2473 #endif
2474 			ext4_lock_group(sb, i);
2475 			ext4_mb_cleanup_pa(grinfo);
2476 			ext4_unlock_group(sb, i);
2477 			kfree(grinfo);
2478 		}
2479 		num_meta_group_infos = (ngroups +
2480 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2481 			EXT4_DESC_PER_BLOCK_BITS(sb);
2482 		for (i = 0; i < num_meta_group_infos; i++)
2483 			kfree(sbi->s_group_info[i]);
2484 		kfree(sbi->s_group_info);
2485 	}
2486 	kfree(sbi->s_mb_offsets);
2487 	kfree(sbi->s_mb_maxs);
2488 	if (sbi->s_buddy_cache)
2489 		iput(sbi->s_buddy_cache);
2490 	if (sbi->s_mb_stats) {
2491 		printk(KERN_INFO
2492 		       "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2493 				atomic_read(&sbi->s_bal_allocated),
2494 				atomic_read(&sbi->s_bal_reqs),
2495 				atomic_read(&sbi->s_bal_success));
2496 		printk(KERN_INFO
2497 		      "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2498 				"%u 2^N hits, %u breaks, %u lost\n",
2499 				atomic_read(&sbi->s_bal_ex_scanned),
2500 				atomic_read(&sbi->s_bal_goals),
2501 				atomic_read(&sbi->s_bal_2orders),
2502 				atomic_read(&sbi->s_bal_breaks),
2503 				atomic_read(&sbi->s_mb_lost_chunks));
2504 		printk(KERN_INFO
2505 		       "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2506 				sbi->s_mb_buddies_generated++,
2507 				sbi->s_mb_generation_time);
2508 		printk(KERN_INFO
2509 		       "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2510 				atomic_read(&sbi->s_mb_preallocated),
2511 				atomic_read(&sbi->s_mb_discarded));
2512 	}
2513 
2514 	free_percpu(sbi->s_locality_groups);
2515 	if (sbi->s_proc)
2516 		remove_proc_entry("mb_groups", sbi->s_proc);
2517 
2518 	return 0;
2519 }
2520 
2521 /*
2522  * This function is called by the jbd2 layer once the commit has finished,
2523  * so we know we can free the blocks that were released with that commit.
2524  */
2525 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2526 {
2527 	struct super_block *sb = journal->j_private;
2528 	struct ext4_buddy e4b;
2529 	struct ext4_group_info *db;
2530 	int err, count = 0, count2 = 0;
2531 	struct ext4_free_data *entry;
2532 	struct list_head *l, *ltmp;
2533 
2534 	list_for_each_safe(l, ltmp, &txn->t_private_list) {
2535 		entry = list_entry(l, struct ext4_free_data, list);
2536 
2537 		mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2538 			 entry->count, entry->group, entry);
2539 
2540 		err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2541 		/* we expect to find existing buddy because it's pinned */
2542 		BUG_ON(err != 0);
2543 
2544 		db = e4b.bd_info;
2545 		/* there are blocks to put in buddy to make them really free */
2546 		count += entry->count;
2547 		count2++;
2548 		ext4_lock_group(sb, entry->group);
2549 		/* Take it out of per group rb tree */
2550 		rb_erase(&entry->node, &(db->bb_free_root));
2551 		mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2552 
2553 		if (!db->bb_free_root.rb_node) {
2554 			/* No more items in the per group rb tree
2555 			 * balance refcounts from ext4_mb_free_metadata()
2556 			 */
2557 			page_cache_release(e4b.bd_buddy_page);
2558 			page_cache_release(e4b.bd_bitmap_page);
2559 		}
2560 		ext4_unlock_group(sb, entry->group);
2561 		if (test_opt(sb, DISCARD)) {
2562 			ext4_fsblk_t discard_block;
2563 			struct ext4_super_block *es = EXT4_SB(sb)->s_es;
2564 
2565 			discard_block = (ext4_fsblk_t)entry->group *
2566 						EXT4_BLOCKS_PER_GROUP(sb)
2567 					+ entry->start_blk
2568 					+ le32_to_cpu(es->s_first_data_block);
2569 			trace_ext4_discard_blocks(sb,
2570 					(unsigned long long)discard_block,
2571 					entry->count);
2572 			sb_issue_discard(sb, discard_block, entry->count);
2573 		}
2574 		kmem_cache_free(ext4_free_ext_cachep, entry);
2575 		ext4_mb_release_desc(&e4b);
2576 	}
2577 
2578 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2579 }
2580 
2581 #ifdef CONFIG_EXT4_DEBUG
2582 u8 mb_enable_debug __read_mostly;
2583 
2584 static struct dentry *debugfs_dir;
2585 static struct dentry *debugfs_debug;
2586 
2587 static void __init ext4_create_debugfs_entry(void)
2588 {
2589 	debugfs_dir = debugfs_create_dir("ext4", NULL);
2590 	if (debugfs_dir)
2591 		debugfs_debug = debugfs_create_u8("mballoc-debug",
2592 						  S_IRUGO | S_IWUSR,
2593 						  debugfs_dir,
2594 						  &mb_enable_debug);
2595 }
2596 
2597 static void ext4_remove_debugfs_entry(void)
2598 {
2599 	debugfs_remove(debugfs_debug);
2600 	debugfs_remove(debugfs_dir);
2601 }
2602 
2603 #else
2604 
2605 static void __init ext4_create_debugfs_entry(void)
2606 {
2607 }
2608 
2609 static void ext4_remove_debugfs_entry(void)
2610 {
2611 }
2612 
2613 #endif
2614 
2615 int __init init_ext4_mballoc(void)
2616 {
2617 	ext4_pspace_cachep =
2618 		kmem_cache_create("ext4_prealloc_space",
2619 				     sizeof(struct ext4_prealloc_space),
2620 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2621 	if (ext4_pspace_cachep == NULL)
2622 		return -ENOMEM;
2623 
2624 	ext4_ac_cachep =
2625 		kmem_cache_create("ext4_alloc_context",
2626 				     sizeof(struct ext4_allocation_context),
2627 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2628 	if (ext4_ac_cachep == NULL) {
2629 		kmem_cache_destroy(ext4_pspace_cachep);
2630 		return -ENOMEM;
2631 	}
2632 
2633 	ext4_free_ext_cachep =
2634 		kmem_cache_create("ext4_free_block_extents",
2635 				     sizeof(struct ext4_free_data),
2636 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2637 	if (ext4_free_ext_cachep == NULL) {
2638 		kmem_cache_destroy(ext4_pspace_cachep);
2639 		kmem_cache_destroy(ext4_ac_cachep);
2640 		return -ENOMEM;
2641 	}
2642 	ext4_create_debugfs_entry();
2643 	return 0;
2644 }
2645 
2646 void exit_ext4_mballoc(void)
2647 {
2648 	/*
2649 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2650 	 * before destroying the slab cache.
2651 	 */
2652 	rcu_barrier();
2653 	kmem_cache_destroy(ext4_pspace_cachep);
2654 	kmem_cache_destroy(ext4_ac_cachep);
2655 	kmem_cache_destroy(ext4_free_ext_cachep);
2656 	ext4_remove_debugfs_entry();
2657 }
2658 
2659 
2660 /*
2661  * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2662  * Returns 0 if success or error code
2663  */
2664 static noinline_for_stack int
2665 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2666 				handle_t *handle, unsigned int reserv_blks)
2667 {
2668 	struct buffer_head *bitmap_bh = NULL;
2669 	struct ext4_super_block *es;
2670 	struct ext4_group_desc *gdp;
2671 	struct buffer_head *gdp_bh;
2672 	struct ext4_sb_info *sbi;
2673 	struct super_block *sb;
2674 	ext4_fsblk_t block;
2675 	int err, len;
2676 
2677 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2678 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2679 
2680 	sb = ac->ac_sb;
2681 	sbi = EXT4_SB(sb);
2682 	es = sbi->s_es;
2683 
2684 
2685 	err = -EIO;
2686 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2687 	if (!bitmap_bh)
2688 		goto out_err;
2689 
2690 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2691 	if (err)
2692 		goto out_err;
2693 
2694 	err = -EIO;
2695 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2696 	if (!gdp)
2697 		goto out_err;
2698 
2699 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2700 			ext4_free_blks_count(sb, gdp));
2701 
2702 	err = ext4_journal_get_write_access(handle, gdp_bh);
2703 	if (err)
2704 		goto out_err;
2705 
2706 	block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
2707 		+ ac->ac_b_ex.fe_start
2708 		+ le32_to_cpu(es->s_first_data_block);
2709 
2710 	len = ac->ac_b_ex.fe_len;
2711 	if (!ext4_data_block_valid(sbi, block, len)) {
2712 		ext4_error(sb, __func__,
2713 			   "Allocating blocks %llu-%llu which overlap "
2714 			   "fs metadata\n", block, block+len);
2715 		/* File system mounted not to panic on error
2716 		 * Fix the bitmap and repeat the block allocation
2717 		 * We leak some of the blocks here.
2718 		 */
2719 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2720 		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2721 			    ac->ac_b_ex.fe_len);
2722 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2723 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2724 		if (!err)
2725 			err = -EAGAIN;
2726 		goto out_err;
2727 	}
2728 
2729 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2730 #ifdef AGGRESSIVE_CHECK
2731 	{
2732 		int i;
2733 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2734 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2735 						bitmap_bh->b_data));
2736 		}
2737 	}
2738 #endif
2739 	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len);
2740 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2741 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2742 		ext4_free_blks_set(sb, gdp,
2743 					ext4_free_blocks_after_init(sb,
2744 					ac->ac_b_ex.fe_group, gdp));
2745 	}
2746 	len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
2747 	ext4_free_blks_set(sb, gdp, len);
2748 	gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2749 
2750 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2751 	percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
2752 	/*
2753 	 * Now reduce the dirty block count also. Should not go negative
2754 	 */
2755 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2756 		/* release all the reserved blocks if non delalloc */
2757 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
2758 
2759 	if (sbi->s_log_groups_per_flex) {
2760 		ext4_group_t flex_group = ext4_flex_group(sbi,
2761 							  ac->ac_b_ex.fe_group);
2762 		atomic_sub(ac->ac_b_ex.fe_len,
2763 			   &sbi->s_flex_groups[flex_group].free_blocks);
2764 	}
2765 
2766 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2767 	if (err)
2768 		goto out_err;
2769 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2770 
2771 out_err:
2772 	sb->s_dirt = 1;
2773 	brelse(bitmap_bh);
2774 	return err;
2775 }
2776 
2777 /*
2778  * here we normalize request for locality group
2779  * Group request are normalized to s_strip size if we set the same via mount
2780  * option. If not we set it to s_mb_group_prealloc which can be configured via
2781  * /sys/fs/ext4/<partition>/mb_group_prealloc
2782  *
2783  * XXX: should we try to preallocate more than the group has now?
2784  */
2785 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2786 {
2787 	struct super_block *sb = ac->ac_sb;
2788 	struct ext4_locality_group *lg = ac->ac_lg;
2789 
2790 	BUG_ON(lg == NULL);
2791 	if (EXT4_SB(sb)->s_stripe)
2792 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
2793 	else
2794 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2795 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2796 		current->pid, ac->ac_g_ex.fe_len);
2797 }
2798 
2799 /*
2800  * Normalization means making request better in terms of
2801  * size and alignment
2802  */
2803 static noinline_for_stack void
2804 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2805 				struct ext4_allocation_request *ar)
2806 {
2807 	int bsbits, max;
2808 	ext4_lblk_t end;
2809 	loff_t size, orig_size, start_off;
2810 	ext4_lblk_t start, orig_start;
2811 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2812 	struct ext4_prealloc_space *pa;
2813 
2814 	/* do normalize only data requests, metadata requests
2815 	   do not need preallocation */
2816 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2817 		return;
2818 
2819 	/* sometime caller may want exact blocks */
2820 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2821 		return;
2822 
2823 	/* caller may indicate that preallocation isn't
2824 	 * required (it's a tail, for example) */
2825 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2826 		return;
2827 
2828 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2829 		ext4_mb_normalize_group_request(ac);
2830 		return ;
2831 	}
2832 
2833 	bsbits = ac->ac_sb->s_blocksize_bits;
2834 
2835 	/* first, let's learn actual file size
2836 	 * given current request is allocated */
2837 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
2838 	size = size << bsbits;
2839 	if (size < i_size_read(ac->ac_inode))
2840 		size = i_size_read(ac->ac_inode);
2841 
2842 	/* max size of free chunks */
2843 	max = 2 << bsbits;
2844 
2845 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
2846 		(req <= (size) || max <= (chunk_size))
2847 
2848 	/* first, try to predict filesize */
2849 	/* XXX: should this table be tunable? */
2850 	start_off = 0;
2851 	if (size <= 16 * 1024) {
2852 		size = 16 * 1024;
2853 	} else if (size <= 32 * 1024) {
2854 		size = 32 * 1024;
2855 	} else if (size <= 64 * 1024) {
2856 		size = 64 * 1024;
2857 	} else if (size <= 128 * 1024) {
2858 		size = 128 * 1024;
2859 	} else if (size <= 256 * 1024) {
2860 		size = 256 * 1024;
2861 	} else if (size <= 512 * 1024) {
2862 		size = 512 * 1024;
2863 	} else if (size <= 1024 * 1024) {
2864 		size = 1024 * 1024;
2865 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2866 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2867 						(21 - bsbits)) << 21;
2868 		size = 2 * 1024 * 1024;
2869 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2870 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2871 							(22 - bsbits)) << 22;
2872 		size = 4 * 1024 * 1024;
2873 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2874 					(8<<20)>>bsbits, max, 8 * 1024)) {
2875 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2876 							(23 - bsbits)) << 23;
2877 		size = 8 * 1024 * 1024;
2878 	} else {
2879 		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2880 		size	  = ac->ac_o_ex.fe_len << bsbits;
2881 	}
2882 	orig_size = size = size >> bsbits;
2883 	orig_start = start = start_off >> bsbits;
2884 
2885 	/* don't cover already allocated blocks in selected range */
2886 	if (ar->pleft && start <= ar->lleft) {
2887 		size -= ar->lleft + 1 - start;
2888 		start = ar->lleft + 1;
2889 	}
2890 	if (ar->pright && start + size - 1 >= ar->lright)
2891 		size -= start + size - ar->lright;
2892 
2893 	end = start + size;
2894 
2895 	/* check we don't cross already preallocated blocks */
2896 	rcu_read_lock();
2897 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2898 		ext4_lblk_t pa_end;
2899 
2900 		if (pa->pa_deleted)
2901 			continue;
2902 		spin_lock(&pa->pa_lock);
2903 		if (pa->pa_deleted) {
2904 			spin_unlock(&pa->pa_lock);
2905 			continue;
2906 		}
2907 
2908 		pa_end = pa->pa_lstart + pa->pa_len;
2909 
2910 		/* PA must not overlap original request */
2911 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2912 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
2913 
2914 		/* skip PAs this normalized request doesn't overlap with */
2915 		if (pa->pa_lstart >= end || pa_end <= start) {
2916 			spin_unlock(&pa->pa_lock);
2917 			continue;
2918 		}
2919 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
2920 
2921 		/* adjust start or end to be adjacent to this pa */
2922 		if (pa_end <= ac->ac_o_ex.fe_logical) {
2923 			BUG_ON(pa_end < start);
2924 			start = pa_end;
2925 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
2926 			BUG_ON(pa->pa_lstart > end);
2927 			end = pa->pa_lstart;
2928 		}
2929 		spin_unlock(&pa->pa_lock);
2930 	}
2931 	rcu_read_unlock();
2932 	size = end - start;
2933 
2934 	/* XXX: extra loop to check we really don't overlap preallocations */
2935 	rcu_read_lock();
2936 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2937 		ext4_lblk_t pa_end;
2938 		spin_lock(&pa->pa_lock);
2939 		if (pa->pa_deleted == 0) {
2940 			pa_end = pa->pa_lstart + pa->pa_len;
2941 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
2942 		}
2943 		spin_unlock(&pa->pa_lock);
2944 	}
2945 	rcu_read_unlock();
2946 
2947 	if (start + size <= ac->ac_o_ex.fe_logical &&
2948 			start > ac->ac_o_ex.fe_logical) {
2949 		printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
2950 			(unsigned long) start, (unsigned long) size,
2951 			(unsigned long) ac->ac_o_ex.fe_logical);
2952 	}
2953 	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
2954 			start > ac->ac_o_ex.fe_logical);
2955 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
2956 
2957 	/* now prepare goal request */
2958 
2959 	/* XXX: is it better to align blocks WRT to logical
2960 	 * placement or satisfy big request as is */
2961 	ac->ac_g_ex.fe_logical = start;
2962 	ac->ac_g_ex.fe_len = size;
2963 
2964 	/* define goal start in order to merge */
2965 	if (ar->pright && (ar->lright == (start + size))) {
2966 		/* merge to the right */
2967 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
2968 						&ac->ac_f_ex.fe_group,
2969 						&ac->ac_f_ex.fe_start);
2970 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
2971 	}
2972 	if (ar->pleft && (ar->lleft + 1 == start)) {
2973 		/* merge to the left */
2974 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
2975 						&ac->ac_f_ex.fe_group,
2976 						&ac->ac_f_ex.fe_start);
2977 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
2978 	}
2979 
2980 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
2981 		(unsigned) orig_size, (unsigned) start);
2982 }
2983 
2984 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
2985 {
2986 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2987 
2988 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
2989 		atomic_inc(&sbi->s_bal_reqs);
2990 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
2991 		if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
2992 			atomic_inc(&sbi->s_bal_success);
2993 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
2994 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2995 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2996 			atomic_inc(&sbi->s_bal_goals);
2997 		if (ac->ac_found > sbi->s_mb_max_to_scan)
2998 			atomic_inc(&sbi->s_bal_breaks);
2999 	}
3000 
3001 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3002 		trace_ext4_mballoc_alloc(ac);
3003 	else
3004 		trace_ext4_mballoc_prealloc(ac);
3005 }
3006 
3007 /*
3008  * Called on failure; free up any blocks from the inode PA for this
3009  * context.  We don't need this for MB_GROUP_PA because we only change
3010  * pa_free in ext4_mb_release_context(), but on failure, we've already
3011  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3012  */
3013 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3014 {
3015 	struct ext4_prealloc_space *pa = ac->ac_pa;
3016 	int len;
3017 
3018 	if (pa && pa->pa_type == MB_INODE_PA) {
3019 		len = ac->ac_b_ex.fe_len;
3020 		pa->pa_free += len;
3021 	}
3022 
3023 }
3024 
3025 /*
3026  * use blocks preallocated to inode
3027  */
3028 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3029 				struct ext4_prealloc_space *pa)
3030 {
3031 	ext4_fsblk_t start;
3032 	ext4_fsblk_t end;
3033 	int len;
3034 
3035 	/* found preallocated blocks, use them */
3036 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3037 	end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3038 	len = end - start;
3039 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3040 					&ac->ac_b_ex.fe_start);
3041 	ac->ac_b_ex.fe_len = len;
3042 	ac->ac_status = AC_STATUS_FOUND;
3043 	ac->ac_pa = pa;
3044 
3045 	BUG_ON(start < pa->pa_pstart);
3046 	BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3047 	BUG_ON(pa->pa_free < len);
3048 	pa->pa_free -= len;
3049 
3050 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3051 }
3052 
3053 /*
3054  * use blocks preallocated to locality group
3055  */
3056 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3057 				struct ext4_prealloc_space *pa)
3058 {
3059 	unsigned int len = ac->ac_o_ex.fe_len;
3060 
3061 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3062 					&ac->ac_b_ex.fe_group,
3063 					&ac->ac_b_ex.fe_start);
3064 	ac->ac_b_ex.fe_len = len;
3065 	ac->ac_status = AC_STATUS_FOUND;
3066 	ac->ac_pa = pa;
3067 
3068 	/* we don't correct pa_pstart or pa_plen here to avoid
3069 	 * possible race when the group is being loaded concurrently
3070 	 * instead we correct pa later, after blocks are marked
3071 	 * in on-disk bitmap -- see ext4_mb_release_context()
3072 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3073 	 */
3074 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3075 }
3076 
3077 /*
3078  * Return the prealloc space that have minimal distance
3079  * from the goal block. @cpa is the prealloc
3080  * space that is having currently known minimal distance
3081  * from the goal block.
3082  */
3083 static struct ext4_prealloc_space *
3084 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3085 			struct ext4_prealloc_space *pa,
3086 			struct ext4_prealloc_space *cpa)
3087 {
3088 	ext4_fsblk_t cur_distance, new_distance;
3089 
3090 	if (cpa == NULL) {
3091 		atomic_inc(&pa->pa_count);
3092 		return pa;
3093 	}
3094 	cur_distance = abs(goal_block - cpa->pa_pstart);
3095 	new_distance = abs(goal_block - pa->pa_pstart);
3096 
3097 	if (cur_distance < new_distance)
3098 		return cpa;
3099 
3100 	/* drop the previous reference */
3101 	atomic_dec(&cpa->pa_count);
3102 	atomic_inc(&pa->pa_count);
3103 	return pa;
3104 }
3105 
3106 /*
3107  * search goal blocks in preallocated space
3108  */
3109 static noinline_for_stack int
3110 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3111 {
3112 	int order, i;
3113 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3114 	struct ext4_locality_group *lg;
3115 	struct ext4_prealloc_space *pa, *cpa = NULL;
3116 	ext4_fsblk_t goal_block;
3117 
3118 	/* only data can be preallocated */
3119 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3120 		return 0;
3121 
3122 	/* first, try per-file preallocation */
3123 	rcu_read_lock();
3124 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3125 
3126 		/* all fields in this condition don't change,
3127 		 * so we can skip locking for them */
3128 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3129 			ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3130 			continue;
3131 
3132 		/* non-extent files can't have physical blocks past 2^32 */
3133 		if (!(EXT4_I(ac->ac_inode)->i_flags & EXT4_EXTENTS_FL) &&
3134 			pa->pa_pstart + pa->pa_len > EXT4_MAX_BLOCK_FILE_PHYS)
3135 			continue;
3136 
3137 		/* found preallocated blocks, use them */
3138 		spin_lock(&pa->pa_lock);
3139 		if (pa->pa_deleted == 0 && pa->pa_free) {
3140 			atomic_inc(&pa->pa_count);
3141 			ext4_mb_use_inode_pa(ac, pa);
3142 			spin_unlock(&pa->pa_lock);
3143 			ac->ac_criteria = 10;
3144 			rcu_read_unlock();
3145 			return 1;
3146 		}
3147 		spin_unlock(&pa->pa_lock);
3148 	}
3149 	rcu_read_unlock();
3150 
3151 	/* can we use group allocation? */
3152 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3153 		return 0;
3154 
3155 	/* inode may have no locality group for some reason */
3156 	lg = ac->ac_lg;
3157 	if (lg == NULL)
3158 		return 0;
3159 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3160 	if (order > PREALLOC_TB_SIZE - 1)
3161 		/* The max size of hash table is PREALLOC_TB_SIZE */
3162 		order = PREALLOC_TB_SIZE - 1;
3163 
3164 	goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3165 		     ac->ac_g_ex.fe_start +
3166 		     le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3167 	/*
3168 	 * search for the prealloc space that is having
3169 	 * minimal distance from the goal block.
3170 	 */
3171 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3172 		rcu_read_lock();
3173 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3174 					pa_inode_list) {
3175 			spin_lock(&pa->pa_lock);
3176 			if (pa->pa_deleted == 0 &&
3177 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3178 
3179 				cpa = ext4_mb_check_group_pa(goal_block,
3180 								pa, cpa);
3181 			}
3182 			spin_unlock(&pa->pa_lock);
3183 		}
3184 		rcu_read_unlock();
3185 	}
3186 	if (cpa) {
3187 		ext4_mb_use_group_pa(ac, cpa);
3188 		ac->ac_criteria = 20;
3189 		return 1;
3190 	}
3191 	return 0;
3192 }
3193 
3194 /*
3195  * the function goes through all block freed in the group
3196  * but not yet committed and marks them used in in-core bitmap.
3197  * buddy must be generated from this bitmap
3198  * Need to be called with the ext4 group lock held
3199  */
3200 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3201 						ext4_group_t group)
3202 {
3203 	struct rb_node *n;
3204 	struct ext4_group_info *grp;
3205 	struct ext4_free_data *entry;
3206 
3207 	grp = ext4_get_group_info(sb, group);
3208 	n = rb_first(&(grp->bb_free_root));
3209 
3210 	while (n) {
3211 		entry = rb_entry(n, struct ext4_free_data, node);
3212 		mb_set_bits(bitmap, entry->start_blk, entry->count);
3213 		n = rb_next(n);
3214 	}
3215 	return;
3216 }
3217 
3218 /*
3219  * the function goes through all preallocation in this group and marks them
3220  * used in in-core bitmap. buddy must be generated from this bitmap
3221  * Need to be called with ext4 group lock held
3222  */
3223 static noinline_for_stack
3224 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3225 					ext4_group_t group)
3226 {
3227 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3228 	struct ext4_prealloc_space *pa;
3229 	struct list_head *cur;
3230 	ext4_group_t groupnr;
3231 	ext4_grpblk_t start;
3232 	int preallocated = 0;
3233 	int count = 0;
3234 	int len;
3235 
3236 	/* all form of preallocation discards first load group,
3237 	 * so the only competing code is preallocation use.
3238 	 * we don't need any locking here
3239 	 * notice we do NOT ignore preallocations with pa_deleted
3240 	 * otherwise we could leave used blocks available for
3241 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3242 	 * is dropping preallocation
3243 	 */
3244 	list_for_each(cur, &grp->bb_prealloc_list) {
3245 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3246 		spin_lock(&pa->pa_lock);
3247 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3248 					     &groupnr, &start);
3249 		len = pa->pa_len;
3250 		spin_unlock(&pa->pa_lock);
3251 		if (unlikely(len == 0))
3252 			continue;
3253 		BUG_ON(groupnr != group);
3254 		mb_set_bits(bitmap, start, len);
3255 		preallocated += len;
3256 		count++;
3257 	}
3258 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3259 }
3260 
3261 static void ext4_mb_pa_callback(struct rcu_head *head)
3262 {
3263 	struct ext4_prealloc_space *pa;
3264 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3265 	kmem_cache_free(ext4_pspace_cachep, pa);
3266 }
3267 
3268 /*
3269  * drops a reference to preallocated space descriptor
3270  * if this was the last reference and the space is consumed
3271  */
3272 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3273 			struct super_block *sb, struct ext4_prealloc_space *pa)
3274 {
3275 	ext4_group_t grp;
3276 	ext4_fsblk_t grp_blk;
3277 
3278 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3279 		return;
3280 
3281 	/* in this short window concurrent discard can set pa_deleted */
3282 	spin_lock(&pa->pa_lock);
3283 	if (pa->pa_deleted == 1) {
3284 		spin_unlock(&pa->pa_lock);
3285 		return;
3286 	}
3287 
3288 	pa->pa_deleted = 1;
3289 	spin_unlock(&pa->pa_lock);
3290 
3291 	grp_blk = pa->pa_pstart;
3292 	/*
3293 	 * If doing group-based preallocation, pa_pstart may be in the
3294 	 * next group when pa is used up
3295 	 */
3296 	if (pa->pa_type == MB_GROUP_PA)
3297 		grp_blk--;
3298 
3299 	ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3300 
3301 	/*
3302 	 * possible race:
3303 	 *
3304 	 *  P1 (buddy init)			P2 (regular allocation)
3305 	 *					find block B in PA
3306 	 *  copy on-disk bitmap to buddy
3307 	 *  					mark B in on-disk bitmap
3308 	 *					drop PA from group
3309 	 *  mark all PAs in buddy
3310 	 *
3311 	 * thus, P1 initializes buddy with B available. to prevent this
3312 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3313 	 * against that pair
3314 	 */
3315 	ext4_lock_group(sb, grp);
3316 	list_del(&pa->pa_group_list);
3317 	ext4_unlock_group(sb, grp);
3318 
3319 	spin_lock(pa->pa_obj_lock);
3320 	list_del_rcu(&pa->pa_inode_list);
3321 	spin_unlock(pa->pa_obj_lock);
3322 
3323 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3324 }
3325 
3326 /*
3327  * creates new preallocated space for given inode
3328  */
3329 static noinline_for_stack int
3330 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3331 {
3332 	struct super_block *sb = ac->ac_sb;
3333 	struct ext4_prealloc_space *pa;
3334 	struct ext4_group_info *grp;
3335 	struct ext4_inode_info *ei;
3336 
3337 	/* preallocate only when found space is larger then requested */
3338 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3339 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3340 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3341 
3342 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3343 	if (pa == NULL)
3344 		return -ENOMEM;
3345 
3346 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3347 		int winl;
3348 		int wins;
3349 		int win;
3350 		int offs;
3351 
3352 		/* we can't allocate as much as normalizer wants.
3353 		 * so, found space must get proper lstart
3354 		 * to cover original request */
3355 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3356 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3357 
3358 		/* we're limited by original request in that
3359 		 * logical block must be covered any way
3360 		 * winl is window we can move our chunk within */
3361 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3362 
3363 		/* also, we should cover whole original request */
3364 		wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3365 
3366 		/* the smallest one defines real window */
3367 		win = min(winl, wins);
3368 
3369 		offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3370 		if (offs && offs < win)
3371 			win = offs;
3372 
3373 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3374 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3375 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3376 	}
3377 
3378 	/* preallocation can change ac_b_ex, thus we store actually
3379 	 * allocated blocks for history */
3380 	ac->ac_f_ex = ac->ac_b_ex;
3381 
3382 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3383 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3384 	pa->pa_len = ac->ac_b_ex.fe_len;
3385 	pa->pa_free = pa->pa_len;
3386 	atomic_set(&pa->pa_count, 1);
3387 	spin_lock_init(&pa->pa_lock);
3388 	INIT_LIST_HEAD(&pa->pa_inode_list);
3389 	INIT_LIST_HEAD(&pa->pa_group_list);
3390 	pa->pa_deleted = 0;
3391 	pa->pa_type = MB_INODE_PA;
3392 
3393 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3394 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3395 	trace_ext4_mb_new_inode_pa(ac, pa);
3396 
3397 	ext4_mb_use_inode_pa(ac, pa);
3398 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3399 
3400 	ei = EXT4_I(ac->ac_inode);
3401 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3402 
3403 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3404 	pa->pa_inode = ac->ac_inode;
3405 
3406 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3407 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3408 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3409 
3410 	spin_lock(pa->pa_obj_lock);
3411 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3412 	spin_unlock(pa->pa_obj_lock);
3413 
3414 	return 0;
3415 }
3416 
3417 /*
3418  * creates new preallocated space for locality group inodes belongs to
3419  */
3420 static noinline_for_stack int
3421 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3422 {
3423 	struct super_block *sb = ac->ac_sb;
3424 	struct ext4_locality_group *lg;
3425 	struct ext4_prealloc_space *pa;
3426 	struct ext4_group_info *grp;
3427 
3428 	/* preallocate only when found space is larger then requested */
3429 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3430 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3431 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3432 
3433 	BUG_ON(ext4_pspace_cachep == NULL);
3434 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3435 	if (pa == NULL)
3436 		return -ENOMEM;
3437 
3438 	/* preallocation can change ac_b_ex, thus we store actually
3439 	 * allocated blocks for history */
3440 	ac->ac_f_ex = ac->ac_b_ex;
3441 
3442 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3443 	pa->pa_lstart = pa->pa_pstart;
3444 	pa->pa_len = ac->ac_b_ex.fe_len;
3445 	pa->pa_free = pa->pa_len;
3446 	atomic_set(&pa->pa_count, 1);
3447 	spin_lock_init(&pa->pa_lock);
3448 	INIT_LIST_HEAD(&pa->pa_inode_list);
3449 	INIT_LIST_HEAD(&pa->pa_group_list);
3450 	pa->pa_deleted = 0;
3451 	pa->pa_type = MB_GROUP_PA;
3452 
3453 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3454 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3455 	trace_ext4_mb_new_group_pa(ac, pa);
3456 
3457 	ext4_mb_use_group_pa(ac, pa);
3458 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3459 
3460 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3461 	lg = ac->ac_lg;
3462 	BUG_ON(lg == NULL);
3463 
3464 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3465 	pa->pa_inode = NULL;
3466 
3467 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3468 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3469 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3470 
3471 	/*
3472 	 * We will later add the new pa to the right bucket
3473 	 * after updating the pa_free in ext4_mb_release_context
3474 	 */
3475 	return 0;
3476 }
3477 
3478 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3479 {
3480 	int err;
3481 
3482 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3483 		err = ext4_mb_new_group_pa(ac);
3484 	else
3485 		err = ext4_mb_new_inode_pa(ac);
3486 	return err;
3487 }
3488 
3489 /*
3490  * finds all unused blocks in on-disk bitmap, frees them in
3491  * in-core bitmap and buddy.
3492  * @pa must be unlinked from inode and group lists, so that
3493  * nobody else can find/use it.
3494  * the caller MUST hold group/inode locks.
3495  * TODO: optimize the case when there are no in-core structures yet
3496  */
3497 static noinline_for_stack int
3498 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3499 			struct ext4_prealloc_space *pa,
3500 			struct ext4_allocation_context *ac)
3501 {
3502 	struct super_block *sb = e4b->bd_sb;
3503 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3504 	unsigned int end;
3505 	unsigned int next;
3506 	ext4_group_t group;
3507 	ext4_grpblk_t bit;
3508 	unsigned long long grp_blk_start;
3509 	sector_t start;
3510 	int err = 0;
3511 	int free = 0;
3512 
3513 	BUG_ON(pa->pa_deleted == 0);
3514 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3515 	grp_blk_start = pa->pa_pstart - bit;
3516 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3517 	end = bit + pa->pa_len;
3518 
3519 	if (ac) {
3520 		ac->ac_sb = sb;
3521 		ac->ac_inode = pa->pa_inode;
3522 	}
3523 
3524 	while (bit < end) {
3525 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3526 		if (bit >= end)
3527 			break;
3528 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3529 		start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3530 				le32_to_cpu(sbi->s_es->s_first_data_block);
3531 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3532 				(unsigned) start, (unsigned) next - bit,
3533 				(unsigned) group);
3534 		free += next - bit;
3535 
3536 		if (ac) {
3537 			ac->ac_b_ex.fe_group = group;
3538 			ac->ac_b_ex.fe_start = bit;
3539 			ac->ac_b_ex.fe_len = next - bit;
3540 			ac->ac_b_ex.fe_logical = 0;
3541 			trace_ext4_mballoc_discard(ac);
3542 		}
3543 
3544 		trace_ext4_mb_release_inode_pa(ac, pa, grp_blk_start + bit,
3545 					       next - bit);
3546 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3547 		bit = next + 1;
3548 	}
3549 	if (free != pa->pa_free) {
3550 		printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3551 			pa, (unsigned long) pa->pa_lstart,
3552 			(unsigned long) pa->pa_pstart,
3553 			(unsigned long) pa->pa_len);
3554 		ext4_grp_locked_error(sb, group,
3555 					__func__, "free %u, pa_free %u",
3556 					free, pa->pa_free);
3557 		/*
3558 		 * pa is already deleted so we use the value obtained
3559 		 * from the bitmap and continue.
3560 		 */
3561 	}
3562 	atomic_add(free, &sbi->s_mb_discarded);
3563 
3564 	return err;
3565 }
3566 
3567 static noinline_for_stack int
3568 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3569 				struct ext4_prealloc_space *pa,
3570 				struct ext4_allocation_context *ac)
3571 {
3572 	struct super_block *sb = e4b->bd_sb;
3573 	ext4_group_t group;
3574 	ext4_grpblk_t bit;
3575 
3576 	trace_ext4_mb_release_group_pa(ac, pa);
3577 	BUG_ON(pa->pa_deleted == 0);
3578 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3579 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3580 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3581 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3582 
3583 	if (ac) {
3584 		ac->ac_sb = sb;
3585 		ac->ac_inode = NULL;
3586 		ac->ac_b_ex.fe_group = group;
3587 		ac->ac_b_ex.fe_start = bit;
3588 		ac->ac_b_ex.fe_len = pa->pa_len;
3589 		ac->ac_b_ex.fe_logical = 0;
3590 		trace_ext4_mballoc_discard(ac);
3591 	}
3592 
3593 	return 0;
3594 }
3595 
3596 /*
3597  * releases all preallocations in given group
3598  *
3599  * first, we need to decide discard policy:
3600  * - when do we discard
3601  *   1) ENOSPC
3602  * - how many do we discard
3603  *   1) how many requested
3604  */
3605 static noinline_for_stack int
3606 ext4_mb_discard_group_preallocations(struct super_block *sb,
3607 					ext4_group_t group, int needed)
3608 {
3609 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3610 	struct buffer_head *bitmap_bh = NULL;
3611 	struct ext4_prealloc_space *pa, *tmp;
3612 	struct ext4_allocation_context *ac;
3613 	struct list_head list;
3614 	struct ext4_buddy e4b;
3615 	int err;
3616 	int busy = 0;
3617 	int free = 0;
3618 
3619 	mb_debug(1, "discard preallocation for group %u\n", group);
3620 
3621 	if (list_empty(&grp->bb_prealloc_list))
3622 		return 0;
3623 
3624 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3625 	if (bitmap_bh == NULL) {
3626 		ext4_error(sb, __func__, "Error in reading block "
3627 				"bitmap for %u", group);
3628 		return 0;
3629 	}
3630 
3631 	err = ext4_mb_load_buddy(sb, group, &e4b);
3632 	if (err) {
3633 		ext4_error(sb, __func__, "Error in loading buddy "
3634 				"information for %u", group);
3635 		put_bh(bitmap_bh);
3636 		return 0;
3637 	}
3638 
3639 	if (needed == 0)
3640 		needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3641 
3642 	INIT_LIST_HEAD(&list);
3643 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3644 	if (ac)
3645 		ac->ac_sb = sb;
3646 repeat:
3647 	ext4_lock_group(sb, group);
3648 	list_for_each_entry_safe(pa, tmp,
3649 				&grp->bb_prealloc_list, pa_group_list) {
3650 		spin_lock(&pa->pa_lock);
3651 		if (atomic_read(&pa->pa_count)) {
3652 			spin_unlock(&pa->pa_lock);
3653 			busy = 1;
3654 			continue;
3655 		}
3656 		if (pa->pa_deleted) {
3657 			spin_unlock(&pa->pa_lock);
3658 			continue;
3659 		}
3660 
3661 		/* seems this one can be freed ... */
3662 		pa->pa_deleted = 1;
3663 
3664 		/* we can trust pa_free ... */
3665 		free += pa->pa_free;
3666 
3667 		spin_unlock(&pa->pa_lock);
3668 
3669 		list_del(&pa->pa_group_list);
3670 		list_add(&pa->u.pa_tmp_list, &list);
3671 	}
3672 
3673 	/* if we still need more blocks and some PAs were used, try again */
3674 	if (free < needed && busy) {
3675 		busy = 0;
3676 		ext4_unlock_group(sb, group);
3677 		/*
3678 		 * Yield the CPU here so that we don't get soft lockup
3679 		 * in non preempt case.
3680 		 */
3681 		yield();
3682 		goto repeat;
3683 	}
3684 
3685 	/* found anything to free? */
3686 	if (list_empty(&list)) {
3687 		BUG_ON(free != 0);
3688 		goto out;
3689 	}
3690 
3691 	/* now free all selected PAs */
3692 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3693 
3694 		/* remove from object (inode or locality group) */
3695 		spin_lock(pa->pa_obj_lock);
3696 		list_del_rcu(&pa->pa_inode_list);
3697 		spin_unlock(pa->pa_obj_lock);
3698 
3699 		if (pa->pa_type == MB_GROUP_PA)
3700 			ext4_mb_release_group_pa(&e4b, pa, ac);
3701 		else
3702 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3703 
3704 		list_del(&pa->u.pa_tmp_list);
3705 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3706 	}
3707 
3708 out:
3709 	ext4_unlock_group(sb, group);
3710 	if (ac)
3711 		kmem_cache_free(ext4_ac_cachep, ac);
3712 	ext4_mb_release_desc(&e4b);
3713 	put_bh(bitmap_bh);
3714 	return free;
3715 }
3716 
3717 /*
3718  * releases all non-used preallocated blocks for given inode
3719  *
3720  * It's important to discard preallocations under i_data_sem
3721  * We don't want another block to be served from the prealloc
3722  * space when we are discarding the inode prealloc space.
3723  *
3724  * FIXME!! Make sure it is valid at all the call sites
3725  */
3726 void ext4_discard_preallocations(struct inode *inode)
3727 {
3728 	struct ext4_inode_info *ei = EXT4_I(inode);
3729 	struct super_block *sb = inode->i_sb;
3730 	struct buffer_head *bitmap_bh = NULL;
3731 	struct ext4_prealloc_space *pa, *tmp;
3732 	struct ext4_allocation_context *ac;
3733 	ext4_group_t group = 0;
3734 	struct list_head list;
3735 	struct ext4_buddy e4b;
3736 	int err;
3737 
3738 	if (!S_ISREG(inode->i_mode)) {
3739 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3740 		return;
3741 	}
3742 
3743 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3744 	trace_ext4_discard_preallocations(inode);
3745 
3746 	INIT_LIST_HEAD(&list);
3747 
3748 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3749 	if (ac) {
3750 		ac->ac_sb = sb;
3751 		ac->ac_inode = inode;
3752 	}
3753 repeat:
3754 	/* first, collect all pa's in the inode */
3755 	spin_lock(&ei->i_prealloc_lock);
3756 	while (!list_empty(&ei->i_prealloc_list)) {
3757 		pa = list_entry(ei->i_prealloc_list.next,
3758 				struct ext4_prealloc_space, pa_inode_list);
3759 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3760 		spin_lock(&pa->pa_lock);
3761 		if (atomic_read(&pa->pa_count)) {
3762 			/* this shouldn't happen often - nobody should
3763 			 * use preallocation while we're discarding it */
3764 			spin_unlock(&pa->pa_lock);
3765 			spin_unlock(&ei->i_prealloc_lock);
3766 			printk(KERN_ERR "uh-oh! used pa while discarding\n");
3767 			WARN_ON(1);
3768 			schedule_timeout_uninterruptible(HZ);
3769 			goto repeat;
3770 
3771 		}
3772 		if (pa->pa_deleted == 0) {
3773 			pa->pa_deleted = 1;
3774 			spin_unlock(&pa->pa_lock);
3775 			list_del_rcu(&pa->pa_inode_list);
3776 			list_add(&pa->u.pa_tmp_list, &list);
3777 			continue;
3778 		}
3779 
3780 		/* someone is deleting pa right now */
3781 		spin_unlock(&pa->pa_lock);
3782 		spin_unlock(&ei->i_prealloc_lock);
3783 
3784 		/* we have to wait here because pa_deleted
3785 		 * doesn't mean pa is already unlinked from
3786 		 * the list. as we might be called from
3787 		 * ->clear_inode() the inode will get freed
3788 		 * and concurrent thread which is unlinking
3789 		 * pa from inode's list may access already
3790 		 * freed memory, bad-bad-bad */
3791 
3792 		/* XXX: if this happens too often, we can
3793 		 * add a flag to force wait only in case
3794 		 * of ->clear_inode(), but not in case of
3795 		 * regular truncate */
3796 		schedule_timeout_uninterruptible(HZ);
3797 		goto repeat;
3798 	}
3799 	spin_unlock(&ei->i_prealloc_lock);
3800 
3801 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3802 		BUG_ON(pa->pa_type != MB_INODE_PA);
3803 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3804 
3805 		err = ext4_mb_load_buddy(sb, group, &e4b);
3806 		if (err) {
3807 			ext4_error(sb, __func__, "Error in loading buddy "
3808 					"information for %u", group);
3809 			continue;
3810 		}
3811 
3812 		bitmap_bh = ext4_read_block_bitmap(sb, group);
3813 		if (bitmap_bh == NULL) {
3814 			ext4_error(sb, __func__, "Error in reading block "
3815 					"bitmap for %u", group);
3816 			ext4_mb_release_desc(&e4b);
3817 			continue;
3818 		}
3819 
3820 		ext4_lock_group(sb, group);
3821 		list_del(&pa->pa_group_list);
3822 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3823 		ext4_unlock_group(sb, group);
3824 
3825 		ext4_mb_release_desc(&e4b);
3826 		put_bh(bitmap_bh);
3827 
3828 		list_del(&pa->u.pa_tmp_list);
3829 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3830 	}
3831 	if (ac)
3832 		kmem_cache_free(ext4_ac_cachep, ac);
3833 }
3834 
3835 /*
3836  * finds all preallocated spaces and return blocks being freed to them
3837  * if preallocated space becomes full (no block is used from the space)
3838  * then the function frees space in buddy
3839  * XXX: at the moment, truncate (which is the only way to free blocks)
3840  * discards all preallocations
3841  */
3842 static void ext4_mb_return_to_preallocation(struct inode *inode,
3843 					struct ext4_buddy *e4b,
3844 					sector_t block, int count)
3845 {
3846 	BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
3847 }
3848 #ifdef CONFIG_EXT4_DEBUG
3849 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3850 {
3851 	struct super_block *sb = ac->ac_sb;
3852 	ext4_group_t ngroups, i;
3853 
3854 	printk(KERN_ERR "EXT4-fs: Can't allocate:"
3855 			" Allocation context details:\n");
3856 	printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
3857 			ac->ac_status, ac->ac_flags);
3858 	printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
3859 			"best %lu/%lu/%lu@%lu cr %d\n",
3860 			(unsigned long)ac->ac_o_ex.fe_group,
3861 			(unsigned long)ac->ac_o_ex.fe_start,
3862 			(unsigned long)ac->ac_o_ex.fe_len,
3863 			(unsigned long)ac->ac_o_ex.fe_logical,
3864 			(unsigned long)ac->ac_g_ex.fe_group,
3865 			(unsigned long)ac->ac_g_ex.fe_start,
3866 			(unsigned long)ac->ac_g_ex.fe_len,
3867 			(unsigned long)ac->ac_g_ex.fe_logical,
3868 			(unsigned long)ac->ac_b_ex.fe_group,
3869 			(unsigned long)ac->ac_b_ex.fe_start,
3870 			(unsigned long)ac->ac_b_ex.fe_len,
3871 			(unsigned long)ac->ac_b_ex.fe_logical,
3872 			(int)ac->ac_criteria);
3873 	printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
3874 		ac->ac_found);
3875 	printk(KERN_ERR "EXT4-fs: groups: \n");
3876 	ngroups = ext4_get_groups_count(sb);
3877 	for (i = 0; i < ngroups; i++) {
3878 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3879 		struct ext4_prealloc_space *pa;
3880 		ext4_grpblk_t start;
3881 		struct list_head *cur;
3882 		ext4_lock_group(sb, i);
3883 		list_for_each(cur, &grp->bb_prealloc_list) {
3884 			pa = list_entry(cur, struct ext4_prealloc_space,
3885 					pa_group_list);
3886 			spin_lock(&pa->pa_lock);
3887 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3888 						     NULL, &start);
3889 			spin_unlock(&pa->pa_lock);
3890 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
3891 			       start, pa->pa_len);
3892 		}
3893 		ext4_unlock_group(sb, i);
3894 
3895 		if (grp->bb_free == 0)
3896 			continue;
3897 		printk(KERN_ERR "%u: %d/%d \n",
3898 		       i, grp->bb_free, grp->bb_fragments);
3899 	}
3900 	printk(KERN_ERR "\n");
3901 }
3902 #else
3903 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3904 {
3905 	return;
3906 }
3907 #endif
3908 
3909 /*
3910  * We use locality group preallocation for small size file. The size of the
3911  * file is determined by the current size or the resulting size after
3912  * allocation which ever is larger
3913  *
3914  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3915  */
3916 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3917 {
3918 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3919 	int bsbits = ac->ac_sb->s_blocksize_bits;
3920 	loff_t size, isize;
3921 
3922 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3923 		return;
3924 
3925 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3926 		return;
3927 
3928 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3929 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3930 		>> bsbits;
3931 
3932 	if ((size == isize) &&
3933 	    !ext4_fs_is_busy(sbi) &&
3934 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3935 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3936 		return;
3937 	}
3938 
3939 	/* don't use group allocation for large files */
3940 	size = max(size, isize);
3941 	if (size >= sbi->s_mb_stream_request) {
3942 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3943 		return;
3944 	}
3945 
3946 	BUG_ON(ac->ac_lg != NULL);
3947 	/*
3948 	 * locality group prealloc space are per cpu. The reason for having
3949 	 * per cpu locality group is to reduce the contention between block
3950 	 * request from multiple CPUs.
3951 	 */
3952 	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3953 
3954 	/* we're going to use group allocation */
3955 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
3956 
3957 	/* serialize all allocations in the group */
3958 	mutex_lock(&ac->ac_lg->lg_mutex);
3959 }
3960 
3961 static noinline_for_stack int
3962 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3963 				struct ext4_allocation_request *ar)
3964 {
3965 	struct super_block *sb = ar->inode->i_sb;
3966 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3967 	struct ext4_super_block *es = sbi->s_es;
3968 	ext4_group_t group;
3969 	unsigned int len;
3970 	ext4_fsblk_t goal;
3971 	ext4_grpblk_t block;
3972 
3973 	/* we can't allocate > group size */
3974 	len = ar->len;
3975 
3976 	/* just a dirty hack to filter too big requests  */
3977 	if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
3978 		len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
3979 
3980 	/* start searching from the goal */
3981 	goal = ar->goal;
3982 	if (goal < le32_to_cpu(es->s_first_data_block) ||
3983 			goal >= ext4_blocks_count(es))
3984 		goal = le32_to_cpu(es->s_first_data_block);
3985 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
3986 
3987 	/* set up allocation goals */
3988 	memset(ac, 0, sizeof(struct ext4_allocation_context));
3989 	ac->ac_b_ex.fe_logical = ar->logical;
3990 	ac->ac_status = AC_STATUS_CONTINUE;
3991 	ac->ac_sb = sb;
3992 	ac->ac_inode = ar->inode;
3993 	ac->ac_o_ex.fe_logical = ar->logical;
3994 	ac->ac_o_ex.fe_group = group;
3995 	ac->ac_o_ex.fe_start = block;
3996 	ac->ac_o_ex.fe_len = len;
3997 	ac->ac_g_ex.fe_logical = ar->logical;
3998 	ac->ac_g_ex.fe_group = group;
3999 	ac->ac_g_ex.fe_start = block;
4000 	ac->ac_g_ex.fe_len = len;
4001 	ac->ac_flags = ar->flags;
4002 
4003 	/* we have to define context: we'll we work with a file or
4004 	 * locality group. this is a policy, actually */
4005 	ext4_mb_group_or_file(ac);
4006 
4007 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4008 			"left: %u/%u, right %u/%u to %swritable\n",
4009 			(unsigned) ar->len, (unsigned) ar->logical,
4010 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4011 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4012 			(unsigned) ar->lright, (unsigned) ar->pright,
4013 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4014 	return 0;
4015 
4016 }
4017 
4018 static noinline_for_stack void
4019 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4020 					struct ext4_locality_group *lg,
4021 					int order, int total_entries)
4022 {
4023 	ext4_group_t group = 0;
4024 	struct ext4_buddy e4b;
4025 	struct list_head discard_list;
4026 	struct ext4_prealloc_space *pa, *tmp;
4027 	struct ext4_allocation_context *ac;
4028 
4029 	mb_debug(1, "discard locality group preallocation\n");
4030 
4031 	INIT_LIST_HEAD(&discard_list);
4032 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4033 	if (ac)
4034 		ac->ac_sb = sb;
4035 
4036 	spin_lock(&lg->lg_prealloc_lock);
4037 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4038 						pa_inode_list) {
4039 		spin_lock(&pa->pa_lock);
4040 		if (atomic_read(&pa->pa_count)) {
4041 			/*
4042 			 * This is the pa that we just used
4043 			 * for block allocation. So don't
4044 			 * free that
4045 			 */
4046 			spin_unlock(&pa->pa_lock);
4047 			continue;
4048 		}
4049 		if (pa->pa_deleted) {
4050 			spin_unlock(&pa->pa_lock);
4051 			continue;
4052 		}
4053 		/* only lg prealloc space */
4054 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4055 
4056 		/* seems this one can be freed ... */
4057 		pa->pa_deleted = 1;
4058 		spin_unlock(&pa->pa_lock);
4059 
4060 		list_del_rcu(&pa->pa_inode_list);
4061 		list_add(&pa->u.pa_tmp_list, &discard_list);
4062 
4063 		total_entries--;
4064 		if (total_entries <= 5) {
4065 			/*
4066 			 * we want to keep only 5 entries
4067 			 * allowing it to grow to 8. This
4068 			 * mak sure we don't call discard
4069 			 * soon for this list.
4070 			 */
4071 			break;
4072 		}
4073 	}
4074 	spin_unlock(&lg->lg_prealloc_lock);
4075 
4076 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4077 
4078 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4079 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4080 			ext4_error(sb, __func__, "Error in loading buddy "
4081 					"information for %u", group);
4082 			continue;
4083 		}
4084 		ext4_lock_group(sb, group);
4085 		list_del(&pa->pa_group_list);
4086 		ext4_mb_release_group_pa(&e4b, pa, ac);
4087 		ext4_unlock_group(sb, group);
4088 
4089 		ext4_mb_release_desc(&e4b);
4090 		list_del(&pa->u.pa_tmp_list);
4091 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4092 	}
4093 	if (ac)
4094 		kmem_cache_free(ext4_ac_cachep, ac);
4095 }
4096 
4097 /*
4098  * We have incremented pa_count. So it cannot be freed at this
4099  * point. Also we hold lg_mutex. So no parallel allocation is
4100  * possible from this lg. That means pa_free cannot be updated.
4101  *
4102  * A parallel ext4_mb_discard_group_preallocations is possible.
4103  * which can cause the lg_prealloc_list to be updated.
4104  */
4105 
4106 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4107 {
4108 	int order, added = 0, lg_prealloc_count = 1;
4109 	struct super_block *sb = ac->ac_sb;
4110 	struct ext4_locality_group *lg = ac->ac_lg;
4111 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4112 
4113 	order = fls(pa->pa_free) - 1;
4114 	if (order > PREALLOC_TB_SIZE - 1)
4115 		/* The max size of hash table is PREALLOC_TB_SIZE */
4116 		order = PREALLOC_TB_SIZE - 1;
4117 	/* Add the prealloc space to lg */
4118 	rcu_read_lock();
4119 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4120 						pa_inode_list) {
4121 		spin_lock(&tmp_pa->pa_lock);
4122 		if (tmp_pa->pa_deleted) {
4123 			spin_unlock(&tmp_pa->pa_lock);
4124 			continue;
4125 		}
4126 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4127 			/* Add to the tail of the previous entry */
4128 			list_add_tail_rcu(&pa->pa_inode_list,
4129 						&tmp_pa->pa_inode_list);
4130 			added = 1;
4131 			/*
4132 			 * we want to count the total
4133 			 * number of entries in the list
4134 			 */
4135 		}
4136 		spin_unlock(&tmp_pa->pa_lock);
4137 		lg_prealloc_count++;
4138 	}
4139 	if (!added)
4140 		list_add_tail_rcu(&pa->pa_inode_list,
4141 					&lg->lg_prealloc_list[order]);
4142 	rcu_read_unlock();
4143 
4144 	/* Now trim the list to be not more than 8 elements */
4145 	if (lg_prealloc_count > 8) {
4146 		ext4_mb_discard_lg_preallocations(sb, lg,
4147 						order, lg_prealloc_count);
4148 		return;
4149 	}
4150 	return ;
4151 }
4152 
4153 /*
4154  * release all resource we used in allocation
4155  */
4156 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4157 {
4158 	struct ext4_prealloc_space *pa = ac->ac_pa;
4159 	if (pa) {
4160 		if (pa->pa_type == MB_GROUP_PA) {
4161 			/* see comment in ext4_mb_use_group_pa() */
4162 			spin_lock(&pa->pa_lock);
4163 			pa->pa_pstart += ac->ac_b_ex.fe_len;
4164 			pa->pa_lstart += ac->ac_b_ex.fe_len;
4165 			pa->pa_free -= ac->ac_b_ex.fe_len;
4166 			pa->pa_len -= ac->ac_b_ex.fe_len;
4167 			spin_unlock(&pa->pa_lock);
4168 		}
4169 	}
4170 	if (ac->alloc_semp)
4171 		up_read(ac->alloc_semp);
4172 	if (pa) {
4173 		/*
4174 		 * We want to add the pa to the right bucket.
4175 		 * Remove it from the list and while adding
4176 		 * make sure the list to which we are adding
4177 		 * doesn't grow big.  We need to release
4178 		 * alloc_semp before calling ext4_mb_add_n_trim()
4179 		 */
4180 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4181 			spin_lock(pa->pa_obj_lock);
4182 			list_del_rcu(&pa->pa_inode_list);
4183 			spin_unlock(pa->pa_obj_lock);
4184 			ext4_mb_add_n_trim(ac);
4185 		}
4186 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4187 	}
4188 	if (ac->ac_bitmap_page)
4189 		page_cache_release(ac->ac_bitmap_page);
4190 	if (ac->ac_buddy_page)
4191 		page_cache_release(ac->ac_buddy_page);
4192 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4193 		mutex_unlock(&ac->ac_lg->lg_mutex);
4194 	ext4_mb_collect_stats(ac);
4195 	return 0;
4196 }
4197 
4198 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4199 {
4200 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4201 	int ret;
4202 	int freed = 0;
4203 
4204 	trace_ext4_mb_discard_preallocations(sb, needed);
4205 	for (i = 0; i < ngroups && needed > 0; i++) {
4206 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4207 		freed += ret;
4208 		needed -= ret;
4209 	}
4210 
4211 	return freed;
4212 }
4213 
4214 /*
4215  * Main entry point into mballoc to allocate blocks
4216  * it tries to use preallocation first, then falls back
4217  * to usual allocation
4218  */
4219 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4220 				 struct ext4_allocation_request *ar, int *errp)
4221 {
4222 	int freed;
4223 	struct ext4_allocation_context *ac = NULL;
4224 	struct ext4_sb_info *sbi;
4225 	struct super_block *sb;
4226 	ext4_fsblk_t block = 0;
4227 	unsigned int inquota = 0;
4228 	unsigned int reserv_blks = 0;
4229 
4230 	sb = ar->inode->i_sb;
4231 	sbi = EXT4_SB(sb);
4232 
4233 	trace_ext4_request_blocks(ar);
4234 
4235 	/*
4236 	 * For delayed allocation, we could skip the ENOSPC and
4237 	 * EDQUOT check, as blocks and quotas have been already
4238 	 * reserved when data being copied into pagecache.
4239 	 */
4240 	if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4241 		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4242 	else {
4243 		/* Without delayed allocation we need to verify
4244 		 * there is enough free blocks to do block allocation
4245 		 * and verify allocation doesn't exceed the quota limits.
4246 		 */
4247 		while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4248 			/* let others to free the space */
4249 			yield();
4250 			ar->len = ar->len >> 1;
4251 		}
4252 		if (!ar->len) {
4253 			*errp = -ENOSPC;
4254 			return 0;
4255 		}
4256 		reserv_blks = ar->len;
4257 		while (ar->len && vfs_dq_alloc_block(ar->inode, ar->len)) {
4258 			ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4259 			ar->len--;
4260 		}
4261 		inquota = ar->len;
4262 		if (ar->len == 0) {
4263 			*errp = -EDQUOT;
4264 			goto out3;
4265 		}
4266 	}
4267 
4268 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4269 	if (!ac) {
4270 		ar->len = 0;
4271 		*errp = -ENOMEM;
4272 		goto out1;
4273 	}
4274 
4275 	*errp = ext4_mb_initialize_context(ac, ar);
4276 	if (*errp) {
4277 		ar->len = 0;
4278 		goto out2;
4279 	}
4280 
4281 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4282 	if (!ext4_mb_use_preallocated(ac)) {
4283 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4284 		ext4_mb_normalize_request(ac, ar);
4285 repeat:
4286 		/* allocate space in core */
4287 		ext4_mb_regular_allocator(ac);
4288 
4289 		/* as we've just preallocated more space than
4290 		 * user requested orinally, we store allocated
4291 		 * space in a special descriptor */
4292 		if (ac->ac_status == AC_STATUS_FOUND &&
4293 				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4294 			ext4_mb_new_preallocation(ac);
4295 	}
4296 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4297 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4298 		if (*errp ==  -EAGAIN) {
4299 			/*
4300 			 * drop the reference that we took
4301 			 * in ext4_mb_use_best_found
4302 			 */
4303 			ext4_mb_release_context(ac);
4304 			ac->ac_b_ex.fe_group = 0;
4305 			ac->ac_b_ex.fe_start = 0;
4306 			ac->ac_b_ex.fe_len = 0;
4307 			ac->ac_status = AC_STATUS_CONTINUE;
4308 			goto repeat;
4309 		} else if (*errp) {
4310 			ext4_discard_allocated_blocks(ac);
4311 			ac->ac_b_ex.fe_len = 0;
4312 			ar->len = 0;
4313 			ext4_mb_show_ac(ac);
4314 		} else {
4315 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4316 			ar->len = ac->ac_b_ex.fe_len;
4317 		}
4318 	} else {
4319 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4320 		if (freed)
4321 			goto repeat;
4322 		*errp = -ENOSPC;
4323 		ac->ac_b_ex.fe_len = 0;
4324 		ar->len = 0;
4325 		ext4_mb_show_ac(ac);
4326 	}
4327 
4328 	ext4_mb_release_context(ac);
4329 
4330 out2:
4331 	kmem_cache_free(ext4_ac_cachep, ac);
4332 out1:
4333 	if (inquota && ar->len < inquota)
4334 		vfs_dq_free_block(ar->inode, inquota - ar->len);
4335 out3:
4336 	if (!ar->len) {
4337 		if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4338 			/* release all the reserved blocks if non delalloc */
4339 			percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4340 						reserv_blks);
4341 	}
4342 
4343 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4344 
4345 	return block;
4346 }
4347 
4348 /*
4349  * We can merge two free data extents only if the physical blocks
4350  * are contiguous, AND the extents were freed by the same transaction,
4351  * AND the blocks are associated with the same group.
4352  */
4353 static int can_merge(struct ext4_free_data *entry1,
4354 			struct ext4_free_data *entry2)
4355 {
4356 	if ((entry1->t_tid == entry2->t_tid) &&
4357 	    (entry1->group == entry2->group) &&
4358 	    ((entry1->start_blk + entry1->count) == entry2->start_blk))
4359 		return 1;
4360 	return 0;
4361 }
4362 
4363 static noinline_for_stack int
4364 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4365 		      struct ext4_free_data *new_entry)
4366 {
4367 	ext4_grpblk_t block;
4368 	struct ext4_free_data *entry;
4369 	struct ext4_group_info *db = e4b->bd_info;
4370 	struct super_block *sb = e4b->bd_sb;
4371 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4372 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4373 	struct rb_node *parent = NULL, *new_node;
4374 
4375 	BUG_ON(!ext4_handle_valid(handle));
4376 	BUG_ON(e4b->bd_bitmap_page == NULL);
4377 	BUG_ON(e4b->bd_buddy_page == NULL);
4378 
4379 	new_node = &new_entry->node;
4380 	block = new_entry->start_blk;
4381 
4382 	if (!*n) {
4383 		/* first free block exent. We need to
4384 		   protect buddy cache from being freed,
4385 		 * otherwise we'll refresh it from
4386 		 * on-disk bitmap and lose not-yet-available
4387 		 * blocks */
4388 		page_cache_get(e4b->bd_buddy_page);
4389 		page_cache_get(e4b->bd_bitmap_page);
4390 	}
4391 	while (*n) {
4392 		parent = *n;
4393 		entry = rb_entry(parent, struct ext4_free_data, node);
4394 		if (block < entry->start_blk)
4395 			n = &(*n)->rb_left;
4396 		else if (block >= (entry->start_blk + entry->count))
4397 			n = &(*n)->rb_right;
4398 		else {
4399 			ext4_grp_locked_error(sb, e4b->bd_group, __func__,
4400 					"Double free of blocks %d (%d %d)",
4401 					block, entry->start_blk, entry->count);
4402 			return 0;
4403 		}
4404 	}
4405 
4406 	rb_link_node(new_node, parent, n);
4407 	rb_insert_color(new_node, &db->bb_free_root);
4408 
4409 	/* Now try to see the extent can be merged to left and right */
4410 	node = rb_prev(new_node);
4411 	if (node) {
4412 		entry = rb_entry(node, struct ext4_free_data, node);
4413 		if (can_merge(entry, new_entry)) {
4414 			new_entry->start_blk = entry->start_blk;
4415 			new_entry->count += entry->count;
4416 			rb_erase(node, &(db->bb_free_root));
4417 			spin_lock(&sbi->s_md_lock);
4418 			list_del(&entry->list);
4419 			spin_unlock(&sbi->s_md_lock);
4420 			kmem_cache_free(ext4_free_ext_cachep, entry);
4421 		}
4422 	}
4423 
4424 	node = rb_next(new_node);
4425 	if (node) {
4426 		entry = rb_entry(node, struct ext4_free_data, node);
4427 		if (can_merge(new_entry, entry)) {
4428 			new_entry->count += entry->count;
4429 			rb_erase(node, &(db->bb_free_root));
4430 			spin_lock(&sbi->s_md_lock);
4431 			list_del(&entry->list);
4432 			spin_unlock(&sbi->s_md_lock);
4433 			kmem_cache_free(ext4_free_ext_cachep, entry);
4434 		}
4435 	}
4436 	/* Add the extent to transaction's private list */
4437 	spin_lock(&sbi->s_md_lock);
4438 	list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4439 	spin_unlock(&sbi->s_md_lock);
4440 	return 0;
4441 }
4442 
4443 /**
4444  * ext4_free_blocks() -- Free given blocks and update quota
4445  * @handle:		handle for this transaction
4446  * @inode:		inode
4447  * @block:		start physical block to free
4448  * @count:		number of blocks to count
4449  * @metadata: 		Are these metadata blocks
4450  */
4451 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4452 		      struct buffer_head *bh, ext4_fsblk_t block,
4453 		      unsigned long count, int flags)
4454 {
4455 	struct buffer_head *bitmap_bh = NULL;
4456 	struct super_block *sb = inode->i_sb;
4457 	struct ext4_allocation_context *ac = NULL;
4458 	struct ext4_group_desc *gdp;
4459 	struct ext4_super_block *es;
4460 	unsigned long freed = 0;
4461 	unsigned int overflow;
4462 	ext4_grpblk_t bit;
4463 	struct buffer_head *gd_bh;
4464 	ext4_group_t block_group;
4465 	struct ext4_sb_info *sbi;
4466 	struct ext4_buddy e4b;
4467 	int err = 0;
4468 	int ret;
4469 
4470 	if (bh) {
4471 		if (block)
4472 			BUG_ON(block != bh->b_blocknr);
4473 		else
4474 			block = bh->b_blocknr;
4475 	}
4476 
4477 	sbi = EXT4_SB(sb);
4478 	es = EXT4_SB(sb)->s_es;
4479 	if (!ext4_data_block_valid(sbi, block, count)) {
4480 		ext4_error(sb, __func__,
4481 			    "Freeing blocks not in datazone - "
4482 			    "block = %llu, count = %lu", block, count);
4483 		goto error_return;
4484 	}
4485 
4486 	ext4_debug("freeing block %llu\n", block);
4487 	trace_ext4_free_blocks(inode, block, count, flags);
4488 
4489 	if (flags & EXT4_FREE_BLOCKS_FORGET) {
4490 		struct buffer_head *tbh = bh;
4491 		int i;
4492 
4493 		BUG_ON(bh && (count > 1));
4494 
4495 		for (i = 0; i < count; i++) {
4496 			if (!bh)
4497 				tbh = sb_find_get_block(inode->i_sb,
4498 							block + i);
4499 			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4500 				    inode, tbh, block + i);
4501 		}
4502 	}
4503 
4504 	/*
4505 	 * We need to make sure we don't reuse the freed block until
4506 	 * after the transaction is committed, which we can do by
4507 	 * treating the block as metadata, below.  We make an
4508 	 * exception if the inode is to be written in writeback mode
4509 	 * since writeback mode has weak data consistency guarantees.
4510 	 */
4511 	if (!ext4_should_writeback_data(inode))
4512 		flags |= EXT4_FREE_BLOCKS_METADATA;
4513 
4514 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4515 	if (ac) {
4516 		ac->ac_inode = inode;
4517 		ac->ac_sb = sb;
4518 	}
4519 
4520 do_more:
4521 	overflow = 0;
4522 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4523 
4524 	/*
4525 	 * Check to see if we are freeing blocks across a group
4526 	 * boundary.
4527 	 */
4528 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4529 		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4530 		count -= overflow;
4531 	}
4532 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4533 	if (!bitmap_bh) {
4534 		err = -EIO;
4535 		goto error_return;
4536 	}
4537 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4538 	if (!gdp) {
4539 		err = -EIO;
4540 		goto error_return;
4541 	}
4542 
4543 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4544 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4545 	    in_range(block, ext4_inode_table(sb, gdp),
4546 		      EXT4_SB(sb)->s_itb_per_group) ||
4547 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4548 		      EXT4_SB(sb)->s_itb_per_group)) {
4549 
4550 		ext4_error(sb, __func__,
4551 			   "Freeing blocks in system zone - "
4552 			   "Block = %llu, count = %lu", block, count);
4553 		/* err = 0. ext4_std_error should be a no op */
4554 		goto error_return;
4555 	}
4556 
4557 	BUFFER_TRACE(bitmap_bh, "getting write access");
4558 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4559 	if (err)
4560 		goto error_return;
4561 
4562 	/*
4563 	 * We are about to modify some metadata.  Call the journal APIs
4564 	 * to unshare ->b_data if a currently-committing transaction is
4565 	 * using it
4566 	 */
4567 	BUFFER_TRACE(gd_bh, "get_write_access");
4568 	err = ext4_journal_get_write_access(handle, gd_bh);
4569 	if (err)
4570 		goto error_return;
4571 #ifdef AGGRESSIVE_CHECK
4572 	{
4573 		int i;
4574 		for (i = 0; i < count; i++)
4575 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4576 	}
4577 #endif
4578 	if (ac) {
4579 		ac->ac_b_ex.fe_group = block_group;
4580 		ac->ac_b_ex.fe_start = bit;
4581 		ac->ac_b_ex.fe_len = count;
4582 		trace_ext4_mballoc_free(ac);
4583 	}
4584 
4585 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4586 	if (err)
4587 		goto error_return;
4588 
4589 	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4590 		struct ext4_free_data *new_entry;
4591 		/*
4592 		 * blocks being freed are metadata. these blocks shouldn't
4593 		 * be used until this transaction is committed
4594 		 */
4595 		new_entry  = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4596 		new_entry->start_blk = bit;
4597 		new_entry->group  = block_group;
4598 		new_entry->count = count;
4599 		new_entry->t_tid = handle->h_transaction->t_tid;
4600 
4601 		ext4_lock_group(sb, block_group);
4602 		mb_clear_bits(bitmap_bh->b_data, bit, count);
4603 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4604 	} else {
4605 		/* need to update group_info->bb_free and bitmap
4606 		 * with group lock held. generate_buddy look at
4607 		 * them with group lock_held
4608 		 */
4609 		ext4_lock_group(sb, block_group);
4610 		mb_clear_bits(bitmap_bh->b_data, bit, count);
4611 		mb_free_blocks(inode, &e4b, bit, count);
4612 		ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4613 	}
4614 
4615 	ret = ext4_free_blks_count(sb, gdp) + count;
4616 	ext4_free_blks_set(sb, gdp, ret);
4617 	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4618 	ext4_unlock_group(sb, block_group);
4619 	percpu_counter_add(&sbi->s_freeblocks_counter, count);
4620 
4621 	if (sbi->s_log_groups_per_flex) {
4622 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4623 		atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4624 	}
4625 
4626 	ext4_mb_release_desc(&e4b);
4627 
4628 	freed += count;
4629 
4630 	/* We dirtied the bitmap block */
4631 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4632 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4633 
4634 	/* And the group descriptor block */
4635 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4636 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4637 	if (!err)
4638 		err = ret;
4639 
4640 	if (overflow && !err) {
4641 		block += count;
4642 		count = overflow;
4643 		put_bh(bitmap_bh);
4644 		goto do_more;
4645 	}
4646 	sb->s_dirt = 1;
4647 error_return:
4648 	if (freed)
4649 		vfs_dq_free_block(inode, freed);
4650 	brelse(bitmap_bh);
4651 	ext4_std_error(sb, err);
4652 	if (ac)
4653 		kmem_cache_free(ext4_ac_cachep, ac);
4654 	return;
4655 }
4656