xref: /openbmc/linux/fs/ext4/mballoc.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/backing-dev.h>
30 #include <trace/events/ext4.h>
31 
32 #ifdef CONFIG_EXT4_DEBUG
33 ushort ext4_mballoc_debug __read_mostly;
34 
35 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
36 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
37 #endif
38 
39 /*
40  * MUSTDO:
41  *   - test ext4_ext_search_left() and ext4_ext_search_right()
42  *   - search for metadata in few groups
43  *
44  * TODO v4:
45  *   - normalization should take into account whether file is still open
46  *   - discard preallocations if no free space left (policy?)
47  *   - don't normalize tails
48  *   - quota
49  *   - reservation for superuser
50  *
51  * TODO v3:
52  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
53  *   - track min/max extents in each group for better group selection
54  *   - mb_mark_used() may allocate chunk right after splitting buddy
55  *   - tree of groups sorted by number of free blocks
56  *   - error handling
57  */
58 
59 /*
60  * The allocation request involve request for multiple number of blocks
61  * near to the goal(block) value specified.
62  *
63  * During initialization phase of the allocator we decide to use the
64  * group preallocation or inode preallocation depending on the size of
65  * the file. The size of the file could be the resulting file size we
66  * would have after allocation, or the current file size, which ever
67  * is larger. If the size is less than sbi->s_mb_stream_request we
68  * select to use the group preallocation. The default value of
69  * s_mb_stream_request is 16 blocks. This can also be tuned via
70  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
71  * terms of number of blocks.
72  *
73  * The main motivation for having small file use group preallocation is to
74  * ensure that we have small files closer together on the disk.
75  *
76  * First stage the allocator looks at the inode prealloc list,
77  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
78  * spaces for this particular inode. The inode prealloc space is
79  * represented as:
80  *
81  * pa_lstart -> the logical start block for this prealloc space
82  * pa_pstart -> the physical start block for this prealloc space
83  * pa_len    -> length for this prealloc space (in clusters)
84  * pa_free   ->  free space available in this prealloc space (in clusters)
85  *
86  * The inode preallocation space is used looking at the _logical_ start
87  * block. If only the logical file block falls within the range of prealloc
88  * space we will consume the particular prealloc space. This makes sure that
89  * we have contiguous physical blocks representing the file blocks
90  *
91  * The important thing to be noted in case of inode prealloc space is that
92  * we don't modify the values associated to inode prealloc space except
93  * pa_free.
94  *
95  * If we are not able to find blocks in the inode prealloc space and if we
96  * have the group allocation flag set then we look at the locality group
97  * prealloc space. These are per CPU prealloc list represented as
98  *
99  * ext4_sb_info.s_locality_groups[smp_processor_id()]
100  *
101  * The reason for having a per cpu locality group is to reduce the contention
102  * between CPUs. It is possible to get scheduled at this point.
103  *
104  * The locality group prealloc space is used looking at whether we have
105  * enough free space (pa_free) within the prealloc space.
106  *
107  * If we can't allocate blocks via inode prealloc or/and locality group
108  * prealloc then we look at the buddy cache. The buddy cache is represented
109  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
110  * mapped to the buddy and bitmap information regarding different
111  * groups. The buddy information is attached to buddy cache inode so that
112  * we can access them through the page cache. The information regarding
113  * each group is loaded via ext4_mb_load_buddy.  The information involve
114  * block bitmap and buddy information. The information are stored in the
115  * inode as:
116  *
117  *  {                        page                        }
118  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
119  *
120  *
121  * one block each for bitmap and buddy information.  So for each group we
122  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
123  * blocksize) blocks.  So it can have information regarding groups_per_page
124  * which is blocks_per_page/2
125  *
126  * The buddy cache inode is not stored on disk. The inode is thrown
127  * away when the filesystem is unmounted.
128  *
129  * We look for count number of blocks in the buddy cache. If we were able
130  * to locate that many free blocks we return with additional information
131  * regarding rest of the contiguous physical block available
132  *
133  * Before allocating blocks via buddy cache we normalize the request
134  * blocks. This ensure we ask for more blocks that we needed. The extra
135  * blocks that we get after allocation is added to the respective prealloc
136  * list. In case of inode preallocation we follow a list of heuristics
137  * based on file size. This can be found in ext4_mb_normalize_request. If
138  * we are doing a group prealloc we try to normalize the request to
139  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
140  * dependent on the cluster size; for non-bigalloc file systems, it is
141  * 512 blocks. This can be tuned via
142  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
143  * terms of number of blocks. If we have mounted the file system with -O
144  * stripe=<value> option the group prealloc request is normalized to the
145  * the smallest multiple of the stripe value (sbi->s_stripe) which is
146  * greater than the default mb_group_prealloc.
147  *
148  * The regular allocator (using the buddy cache) supports a few tunables.
149  *
150  * /sys/fs/ext4/<partition>/mb_min_to_scan
151  * /sys/fs/ext4/<partition>/mb_max_to_scan
152  * /sys/fs/ext4/<partition>/mb_order2_req
153  *
154  * The regular allocator uses buddy scan only if the request len is power of
155  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
156  * value of s_mb_order2_reqs can be tuned via
157  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
158  * stripe size (sbi->s_stripe), we try to search for contiguous block in
159  * stripe size. This should result in better allocation on RAID setups. If
160  * not, we search in the specific group using bitmap for best extents. The
161  * tunable min_to_scan and max_to_scan control the behaviour here.
162  * min_to_scan indicate how long the mballoc __must__ look for a best
163  * extent and max_to_scan indicates how long the mballoc __can__ look for a
164  * best extent in the found extents. Searching for the blocks starts with
165  * the group specified as the goal value in allocation context via
166  * ac_g_ex. Each group is first checked based on the criteria whether it
167  * can be used for allocation. ext4_mb_good_group explains how the groups are
168  * checked.
169  *
170  * Both the prealloc space are getting populated as above. So for the first
171  * request we will hit the buddy cache which will result in this prealloc
172  * space getting filled. The prealloc space is then later used for the
173  * subsequent request.
174  */
175 
176 /*
177  * mballoc operates on the following data:
178  *  - on-disk bitmap
179  *  - in-core buddy (actually includes buddy and bitmap)
180  *  - preallocation descriptors (PAs)
181  *
182  * there are two types of preallocations:
183  *  - inode
184  *    assiged to specific inode and can be used for this inode only.
185  *    it describes part of inode's space preallocated to specific
186  *    physical blocks. any block from that preallocated can be used
187  *    independent. the descriptor just tracks number of blocks left
188  *    unused. so, before taking some block from descriptor, one must
189  *    make sure corresponded logical block isn't allocated yet. this
190  *    also means that freeing any block within descriptor's range
191  *    must discard all preallocated blocks.
192  *  - locality group
193  *    assigned to specific locality group which does not translate to
194  *    permanent set of inodes: inode can join and leave group. space
195  *    from this type of preallocation can be used for any inode. thus
196  *    it's consumed from the beginning to the end.
197  *
198  * relation between them can be expressed as:
199  *    in-core buddy = on-disk bitmap + preallocation descriptors
200  *
201  * this mean blocks mballoc considers used are:
202  *  - allocated blocks (persistent)
203  *  - preallocated blocks (non-persistent)
204  *
205  * consistency in mballoc world means that at any time a block is either
206  * free or used in ALL structures. notice: "any time" should not be read
207  * literally -- time is discrete and delimited by locks.
208  *
209  *  to keep it simple, we don't use block numbers, instead we count number of
210  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211  *
212  * all operations can be expressed as:
213  *  - init buddy:			buddy = on-disk + PAs
214  *  - new PA:				buddy += N; PA = N
215  *  - use inode PA:			on-disk += N; PA -= N
216  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
217  *  - use locality group PA		on-disk += N; PA -= N
218  *  - discard locality group PA		buddy -= PA; PA = 0
219  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
220  *        is used in real operation because we can't know actual used
221  *        bits from PA, only from on-disk bitmap
222  *
223  * if we follow this strict logic, then all operations above should be atomic.
224  * given some of them can block, we'd have to use something like semaphores
225  * killing performance on high-end SMP hardware. let's try to relax it using
226  * the following knowledge:
227  *  1) if buddy is referenced, it's already initialized
228  *  2) while block is used in buddy and the buddy is referenced,
229  *     nobody can re-allocate that block
230  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
231  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
232  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
233  *     block
234  *
235  * so, now we're building a concurrency table:
236  *  - init buddy vs.
237  *    - new PA
238  *      blocks for PA are allocated in the buddy, buddy must be referenced
239  *      until PA is linked to allocation group to avoid concurrent buddy init
240  *    - use inode PA
241  *      we need to make sure that either on-disk bitmap or PA has uptodate data
242  *      given (3) we care that PA-=N operation doesn't interfere with init
243  *    - discard inode PA
244  *      the simplest way would be to have buddy initialized by the discard
245  *    - use locality group PA
246  *      again PA-=N must be serialized with init
247  *    - discard locality group PA
248  *      the simplest way would be to have buddy initialized by the discard
249  *  - new PA vs.
250  *    - use inode PA
251  *      i_data_sem serializes them
252  *    - discard inode PA
253  *      discard process must wait until PA isn't used by another process
254  *    - use locality group PA
255  *      some mutex should serialize them
256  *    - discard locality group PA
257  *      discard process must wait until PA isn't used by another process
258  *  - use inode PA
259  *    - use inode PA
260  *      i_data_sem or another mutex should serializes them
261  *    - discard inode PA
262  *      discard process must wait until PA isn't used by another process
263  *    - use locality group PA
264  *      nothing wrong here -- they're different PAs covering different blocks
265  *    - discard locality group PA
266  *      discard process must wait until PA isn't used by another process
267  *
268  * now we're ready to make few consequences:
269  *  - PA is referenced and while it is no discard is possible
270  *  - PA is referenced until block isn't marked in on-disk bitmap
271  *  - PA changes only after on-disk bitmap
272  *  - discard must not compete with init. either init is done before
273  *    any discard or they're serialized somehow
274  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
275  *
276  * a special case when we've used PA to emptiness. no need to modify buddy
277  * in this case, but we should care about concurrent init
278  *
279  */
280 
281  /*
282  * Logic in few words:
283  *
284  *  - allocation:
285  *    load group
286  *    find blocks
287  *    mark bits in on-disk bitmap
288  *    release group
289  *
290  *  - use preallocation:
291  *    find proper PA (per-inode or group)
292  *    load group
293  *    mark bits in on-disk bitmap
294  *    release group
295  *    release PA
296  *
297  *  - free:
298  *    load group
299  *    mark bits in on-disk bitmap
300  *    release group
301  *
302  *  - discard preallocations in group:
303  *    mark PAs deleted
304  *    move them onto local list
305  *    load on-disk bitmap
306  *    load group
307  *    remove PA from object (inode or locality group)
308  *    mark free blocks in-core
309  *
310  *  - discard inode's preallocations:
311  */
312 
313 /*
314  * Locking rules
315  *
316  * Locks:
317  *  - bitlock on a group	(group)
318  *  - object (inode/locality)	(object)
319  *  - per-pa lock		(pa)
320  *
321  * Paths:
322  *  - new pa
323  *    object
324  *    group
325  *
326  *  - find and use pa:
327  *    pa
328  *
329  *  - release consumed pa:
330  *    pa
331  *    group
332  *    object
333  *
334  *  - generate in-core bitmap:
335  *    group
336  *        pa
337  *
338  *  - discard all for given object (inode, locality group):
339  *    object
340  *        pa
341  *    group
342  *
343  *  - discard all for given group:
344  *    group
345  *        pa
346  *    group
347  *        object
348  *
349  */
350 static struct kmem_cache *ext4_pspace_cachep;
351 static struct kmem_cache *ext4_ac_cachep;
352 static struct kmem_cache *ext4_free_data_cachep;
353 
354 /* We create slab caches for groupinfo data structures based on the
355  * superblock block size.  There will be one per mounted filesystem for
356  * each unique s_blocksize_bits */
357 #define NR_GRPINFO_CACHES 8
358 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
359 
360 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
361 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
362 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
363 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
364 };
365 
366 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
367 					ext4_group_t group);
368 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
369 						ext4_group_t group);
370 
371 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
372 {
373 #if BITS_PER_LONG == 64
374 	*bit += ((unsigned long) addr & 7UL) << 3;
375 	addr = (void *) ((unsigned long) addr & ~7UL);
376 #elif BITS_PER_LONG == 32
377 	*bit += ((unsigned long) addr & 3UL) << 3;
378 	addr = (void *) ((unsigned long) addr & ~3UL);
379 #else
380 #error "how many bits you are?!"
381 #endif
382 	return addr;
383 }
384 
385 static inline int mb_test_bit(int bit, void *addr)
386 {
387 	/*
388 	 * ext4_test_bit on architecture like powerpc
389 	 * needs unsigned long aligned address
390 	 */
391 	addr = mb_correct_addr_and_bit(&bit, addr);
392 	return ext4_test_bit(bit, addr);
393 }
394 
395 static inline void mb_set_bit(int bit, void *addr)
396 {
397 	addr = mb_correct_addr_and_bit(&bit, addr);
398 	ext4_set_bit(bit, addr);
399 }
400 
401 static inline void mb_clear_bit(int bit, void *addr)
402 {
403 	addr = mb_correct_addr_and_bit(&bit, addr);
404 	ext4_clear_bit(bit, addr);
405 }
406 
407 static inline int mb_test_and_clear_bit(int bit, void *addr)
408 {
409 	addr = mb_correct_addr_and_bit(&bit, addr);
410 	return ext4_test_and_clear_bit(bit, addr);
411 }
412 
413 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
414 {
415 	int fix = 0, ret, tmpmax;
416 	addr = mb_correct_addr_and_bit(&fix, addr);
417 	tmpmax = max + fix;
418 	start += fix;
419 
420 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
421 	if (ret > max)
422 		return max;
423 	return ret;
424 }
425 
426 static inline int mb_find_next_bit(void *addr, int max, int start)
427 {
428 	int fix = 0, ret, tmpmax;
429 	addr = mb_correct_addr_and_bit(&fix, addr);
430 	tmpmax = max + fix;
431 	start += fix;
432 
433 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
434 	if (ret > max)
435 		return max;
436 	return ret;
437 }
438 
439 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
440 {
441 	char *bb;
442 
443 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
444 	BUG_ON(max == NULL);
445 
446 	if (order > e4b->bd_blkbits + 1) {
447 		*max = 0;
448 		return NULL;
449 	}
450 
451 	/* at order 0 we see each particular block */
452 	if (order == 0) {
453 		*max = 1 << (e4b->bd_blkbits + 3);
454 		return e4b->bd_bitmap;
455 	}
456 
457 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
458 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
459 
460 	return bb;
461 }
462 
463 #ifdef DOUBLE_CHECK
464 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
465 			   int first, int count)
466 {
467 	int i;
468 	struct super_block *sb = e4b->bd_sb;
469 
470 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
471 		return;
472 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
473 	for (i = 0; i < count; i++) {
474 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
475 			ext4_fsblk_t blocknr;
476 
477 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
478 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
479 			ext4_grp_locked_error(sb, e4b->bd_group,
480 					      inode ? inode->i_ino : 0,
481 					      blocknr,
482 					      "freeing block already freed "
483 					      "(bit %u)",
484 					      first + i);
485 		}
486 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
487 	}
488 }
489 
490 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
491 {
492 	int i;
493 
494 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
495 		return;
496 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
497 	for (i = 0; i < count; i++) {
498 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
499 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
500 	}
501 }
502 
503 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
504 {
505 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
506 		unsigned char *b1, *b2;
507 		int i;
508 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
509 		b2 = (unsigned char *) bitmap;
510 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
511 			if (b1[i] != b2[i]) {
512 				ext4_msg(e4b->bd_sb, KERN_ERR,
513 					 "corruption in group %u "
514 					 "at byte %u(%u): %x in copy != %x "
515 					 "on disk/prealloc",
516 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
517 				BUG();
518 			}
519 		}
520 	}
521 }
522 
523 #else
524 static inline void mb_free_blocks_double(struct inode *inode,
525 				struct ext4_buddy *e4b, int first, int count)
526 {
527 	return;
528 }
529 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
530 						int first, int count)
531 {
532 	return;
533 }
534 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
535 {
536 	return;
537 }
538 #endif
539 
540 #ifdef AGGRESSIVE_CHECK
541 
542 #define MB_CHECK_ASSERT(assert)						\
543 do {									\
544 	if (!(assert)) {						\
545 		printk(KERN_EMERG					\
546 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
547 			function, file, line, # assert);		\
548 		BUG();							\
549 	}								\
550 } while (0)
551 
552 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
553 				const char *function, int line)
554 {
555 	struct super_block *sb = e4b->bd_sb;
556 	int order = e4b->bd_blkbits + 1;
557 	int max;
558 	int max2;
559 	int i;
560 	int j;
561 	int k;
562 	int count;
563 	struct ext4_group_info *grp;
564 	int fragments = 0;
565 	int fstart;
566 	struct list_head *cur;
567 	void *buddy;
568 	void *buddy2;
569 
570 	{
571 		static int mb_check_counter;
572 		if (mb_check_counter++ % 100 != 0)
573 			return 0;
574 	}
575 
576 	while (order > 1) {
577 		buddy = mb_find_buddy(e4b, order, &max);
578 		MB_CHECK_ASSERT(buddy);
579 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
580 		MB_CHECK_ASSERT(buddy2);
581 		MB_CHECK_ASSERT(buddy != buddy2);
582 		MB_CHECK_ASSERT(max * 2 == max2);
583 
584 		count = 0;
585 		for (i = 0; i < max; i++) {
586 
587 			if (mb_test_bit(i, buddy)) {
588 				/* only single bit in buddy2 may be 1 */
589 				if (!mb_test_bit(i << 1, buddy2)) {
590 					MB_CHECK_ASSERT(
591 						mb_test_bit((i<<1)+1, buddy2));
592 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
593 					MB_CHECK_ASSERT(
594 						mb_test_bit(i << 1, buddy2));
595 				}
596 				continue;
597 			}
598 
599 			/* both bits in buddy2 must be 1 */
600 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
601 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
602 
603 			for (j = 0; j < (1 << order); j++) {
604 				k = (i * (1 << order)) + j;
605 				MB_CHECK_ASSERT(
606 					!mb_test_bit(k, e4b->bd_bitmap));
607 			}
608 			count++;
609 		}
610 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
611 		order--;
612 	}
613 
614 	fstart = -1;
615 	buddy = mb_find_buddy(e4b, 0, &max);
616 	for (i = 0; i < max; i++) {
617 		if (!mb_test_bit(i, buddy)) {
618 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
619 			if (fstart == -1) {
620 				fragments++;
621 				fstart = i;
622 			}
623 			continue;
624 		}
625 		fstart = -1;
626 		/* check used bits only */
627 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
628 			buddy2 = mb_find_buddy(e4b, j, &max2);
629 			k = i >> j;
630 			MB_CHECK_ASSERT(k < max2);
631 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
632 		}
633 	}
634 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
635 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
636 
637 	grp = ext4_get_group_info(sb, e4b->bd_group);
638 	list_for_each(cur, &grp->bb_prealloc_list) {
639 		ext4_group_t groupnr;
640 		struct ext4_prealloc_space *pa;
641 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
642 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
643 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
644 		for (i = 0; i < pa->pa_len; i++)
645 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
646 	}
647 	return 0;
648 }
649 #undef MB_CHECK_ASSERT
650 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
651 					__FILE__, __func__, __LINE__)
652 #else
653 #define mb_check_buddy(e4b)
654 #endif
655 
656 /*
657  * Divide blocks started from @first with length @len into
658  * smaller chunks with power of 2 blocks.
659  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
660  * then increase bb_counters[] for corresponded chunk size.
661  */
662 static void ext4_mb_mark_free_simple(struct super_block *sb,
663 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
664 					struct ext4_group_info *grp)
665 {
666 	struct ext4_sb_info *sbi = EXT4_SB(sb);
667 	ext4_grpblk_t min;
668 	ext4_grpblk_t max;
669 	ext4_grpblk_t chunk;
670 	unsigned int border;
671 
672 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
673 
674 	border = 2 << sb->s_blocksize_bits;
675 
676 	while (len > 0) {
677 		/* find how many blocks can be covered since this position */
678 		max = ffs(first | border) - 1;
679 
680 		/* find how many blocks of power 2 we need to mark */
681 		min = fls(len) - 1;
682 
683 		if (max < min)
684 			min = max;
685 		chunk = 1 << min;
686 
687 		/* mark multiblock chunks only */
688 		grp->bb_counters[min]++;
689 		if (min > 0)
690 			mb_clear_bit(first >> min,
691 				     buddy + sbi->s_mb_offsets[min]);
692 
693 		len -= chunk;
694 		first += chunk;
695 	}
696 }
697 
698 /*
699  * Cache the order of the largest free extent we have available in this block
700  * group.
701  */
702 static void
703 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
704 {
705 	int i;
706 	int bits;
707 
708 	grp->bb_largest_free_order = -1; /* uninit */
709 
710 	bits = sb->s_blocksize_bits + 1;
711 	for (i = bits; i >= 0; i--) {
712 		if (grp->bb_counters[i] > 0) {
713 			grp->bb_largest_free_order = i;
714 			break;
715 		}
716 	}
717 }
718 
719 static noinline_for_stack
720 void ext4_mb_generate_buddy(struct super_block *sb,
721 				void *buddy, void *bitmap, ext4_group_t group)
722 {
723 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
724 	struct ext4_sb_info *sbi = EXT4_SB(sb);
725 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
726 	ext4_grpblk_t i = 0;
727 	ext4_grpblk_t first;
728 	ext4_grpblk_t len;
729 	unsigned free = 0;
730 	unsigned fragments = 0;
731 	unsigned long long period = get_cycles();
732 
733 	/* initialize buddy from bitmap which is aggregation
734 	 * of on-disk bitmap and preallocations */
735 	i = mb_find_next_zero_bit(bitmap, max, 0);
736 	grp->bb_first_free = i;
737 	while (i < max) {
738 		fragments++;
739 		first = i;
740 		i = mb_find_next_bit(bitmap, max, i);
741 		len = i - first;
742 		free += len;
743 		if (len > 1)
744 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
745 		else
746 			grp->bb_counters[0]++;
747 		if (i < max)
748 			i = mb_find_next_zero_bit(bitmap, max, i);
749 	}
750 	grp->bb_fragments = fragments;
751 
752 	if (free != grp->bb_free) {
753 		ext4_grp_locked_error(sb, group, 0, 0,
754 				      "block bitmap and bg descriptor "
755 				      "inconsistent: %u vs %u free clusters",
756 				      free, grp->bb_free);
757 		/*
758 		 * If we intend to continue, we consider group descriptor
759 		 * corrupt and update bb_free using bitmap value
760 		 */
761 		grp->bb_free = free;
762 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
763 			percpu_counter_sub(&sbi->s_freeclusters_counter,
764 					   grp->bb_free);
765 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
766 	}
767 	mb_set_largest_free_order(sb, grp);
768 
769 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
770 
771 	period = get_cycles() - period;
772 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
773 	EXT4_SB(sb)->s_mb_buddies_generated++;
774 	EXT4_SB(sb)->s_mb_generation_time += period;
775 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
776 }
777 
778 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
779 {
780 	int count;
781 	int order = 1;
782 	void *buddy;
783 
784 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
785 		ext4_set_bits(buddy, 0, count);
786 	}
787 	e4b->bd_info->bb_fragments = 0;
788 	memset(e4b->bd_info->bb_counters, 0,
789 		sizeof(*e4b->bd_info->bb_counters) *
790 		(e4b->bd_sb->s_blocksize_bits + 2));
791 
792 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
793 		e4b->bd_bitmap, e4b->bd_group);
794 }
795 
796 /* The buddy information is attached the buddy cache inode
797  * for convenience. The information regarding each group
798  * is loaded via ext4_mb_load_buddy. The information involve
799  * block bitmap and buddy information. The information are
800  * stored in the inode as
801  *
802  * {                        page                        }
803  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
804  *
805  *
806  * one block each for bitmap and buddy information.
807  * So for each group we take up 2 blocks. A page can
808  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
809  * So it can have information regarding groups_per_page which
810  * is blocks_per_page/2
811  *
812  * Locking note:  This routine takes the block group lock of all groups
813  * for this page; do not hold this lock when calling this routine!
814  */
815 
816 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
817 {
818 	ext4_group_t ngroups;
819 	int blocksize;
820 	int blocks_per_page;
821 	int groups_per_page;
822 	int err = 0;
823 	int i;
824 	ext4_group_t first_group, group;
825 	int first_block;
826 	struct super_block *sb;
827 	struct buffer_head *bhs;
828 	struct buffer_head **bh = NULL;
829 	struct inode *inode;
830 	char *data;
831 	char *bitmap;
832 	struct ext4_group_info *grinfo;
833 
834 	mb_debug(1, "init page %lu\n", page->index);
835 
836 	inode = page->mapping->host;
837 	sb = inode->i_sb;
838 	ngroups = ext4_get_groups_count(sb);
839 	blocksize = i_blocksize(inode);
840 	blocks_per_page = PAGE_SIZE / blocksize;
841 
842 	groups_per_page = blocks_per_page >> 1;
843 	if (groups_per_page == 0)
844 		groups_per_page = 1;
845 
846 	/* allocate buffer_heads to read bitmaps */
847 	if (groups_per_page > 1) {
848 		i = sizeof(struct buffer_head *) * groups_per_page;
849 		bh = kzalloc(i, gfp);
850 		if (bh == NULL) {
851 			err = -ENOMEM;
852 			goto out;
853 		}
854 	} else
855 		bh = &bhs;
856 
857 	first_group = page->index * blocks_per_page / 2;
858 
859 	/* read all groups the page covers into the cache */
860 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
861 		if (group >= ngroups)
862 			break;
863 
864 		grinfo = ext4_get_group_info(sb, group);
865 		/*
866 		 * If page is uptodate then we came here after online resize
867 		 * which added some new uninitialized group info structs, so
868 		 * we must skip all initialized uptodate buddies on the page,
869 		 * which may be currently in use by an allocating task.
870 		 */
871 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
872 			bh[i] = NULL;
873 			continue;
874 		}
875 		bh[i] = ext4_read_block_bitmap_nowait(sb, group);
876 		if (IS_ERR(bh[i])) {
877 			err = PTR_ERR(bh[i]);
878 			bh[i] = NULL;
879 			goto out;
880 		}
881 		mb_debug(1, "read bitmap for group %u\n", group);
882 	}
883 
884 	/* wait for I/O completion */
885 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
886 		int err2;
887 
888 		if (!bh[i])
889 			continue;
890 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
891 		if (!err)
892 			err = err2;
893 	}
894 
895 	first_block = page->index * blocks_per_page;
896 	for (i = 0; i < blocks_per_page; i++) {
897 		group = (first_block + i) >> 1;
898 		if (group >= ngroups)
899 			break;
900 
901 		if (!bh[group - first_group])
902 			/* skip initialized uptodate buddy */
903 			continue;
904 
905 		if (!buffer_verified(bh[group - first_group]))
906 			/* Skip faulty bitmaps */
907 			continue;
908 		err = 0;
909 
910 		/*
911 		 * data carry information regarding this
912 		 * particular group in the format specified
913 		 * above
914 		 *
915 		 */
916 		data = page_address(page) + (i * blocksize);
917 		bitmap = bh[group - first_group]->b_data;
918 
919 		/*
920 		 * We place the buddy block and bitmap block
921 		 * close together
922 		 */
923 		if ((first_block + i) & 1) {
924 			/* this is block of buddy */
925 			BUG_ON(incore == NULL);
926 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
927 				group, page->index, i * blocksize);
928 			trace_ext4_mb_buddy_bitmap_load(sb, group);
929 			grinfo = ext4_get_group_info(sb, group);
930 			grinfo->bb_fragments = 0;
931 			memset(grinfo->bb_counters, 0,
932 			       sizeof(*grinfo->bb_counters) *
933 				(sb->s_blocksize_bits+2));
934 			/*
935 			 * incore got set to the group block bitmap below
936 			 */
937 			ext4_lock_group(sb, group);
938 			/* init the buddy */
939 			memset(data, 0xff, blocksize);
940 			ext4_mb_generate_buddy(sb, data, incore, group);
941 			ext4_unlock_group(sb, group);
942 			incore = NULL;
943 		} else {
944 			/* this is block of bitmap */
945 			BUG_ON(incore != NULL);
946 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
947 				group, page->index, i * blocksize);
948 			trace_ext4_mb_bitmap_load(sb, group);
949 
950 			/* see comments in ext4_mb_put_pa() */
951 			ext4_lock_group(sb, group);
952 			memcpy(data, bitmap, blocksize);
953 
954 			/* mark all preallocated blks used in in-core bitmap */
955 			ext4_mb_generate_from_pa(sb, data, group);
956 			ext4_mb_generate_from_freelist(sb, data, group);
957 			ext4_unlock_group(sb, group);
958 
959 			/* set incore so that the buddy information can be
960 			 * generated using this
961 			 */
962 			incore = data;
963 		}
964 	}
965 	SetPageUptodate(page);
966 
967 out:
968 	if (bh) {
969 		for (i = 0; i < groups_per_page; i++)
970 			brelse(bh[i]);
971 		if (bh != &bhs)
972 			kfree(bh);
973 	}
974 	return err;
975 }
976 
977 /*
978  * Lock the buddy and bitmap pages. This make sure other parallel init_group
979  * on the same buddy page doesn't happen whild holding the buddy page lock.
980  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
981  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
982  */
983 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
984 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
985 {
986 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
987 	int block, pnum, poff;
988 	int blocks_per_page;
989 	struct page *page;
990 
991 	e4b->bd_buddy_page = NULL;
992 	e4b->bd_bitmap_page = NULL;
993 
994 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
995 	/*
996 	 * the buddy cache inode stores the block bitmap
997 	 * and buddy information in consecutive blocks.
998 	 * So for each group we need two blocks.
999 	 */
1000 	block = group * 2;
1001 	pnum = block / blocks_per_page;
1002 	poff = block % blocks_per_page;
1003 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1004 	if (!page)
1005 		return -ENOMEM;
1006 	BUG_ON(page->mapping != inode->i_mapping);
1007 	e4b->bd_bitmap_page = page;
1008 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1009 
1010 	if (blocks_per_page >= 2) {
1011 		/* buddy and bitmap are on the same page */
1012 		return 0;
1013 	}
1014 
1015 	block++;
1016 	pnum = block / blocks_per_page;
1017 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1018 	if (!page)
1019 		return -ENOMEM;
1020 	BUG_ON(page->mapping != inode->i_mapping);
1021 	e4b->bd_buddy_page = page;
1022 	return 0;
1023 }
1024 
1025 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1026 {
1027 	if (e4b->bd_bitmap_page) {
1028 		unlock_page(e4b->bd_bitmap_page);
1029 		put_page(e4b->bd_bitmap_page);
1030 	}
1031 	if (e4b->bd_buddy_page) {
1032 		unlock_page(e4b->bd_buddy_page);
1033 		put_page(e4b->bd_buddy_page);
1034 	}
1035 }
1036 
1037 /*
1038  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1039  * block group lock of all groups for this page; do not hold the BG lock when
1040  * calling this routine!
1041  */
1042 static noinline_for_stack
1043 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1044 {
1045 
1046 	struct ext4_group_info *this_grp;
1047 	struct ext4_buddy e4b;
1048 	struct page *page;
1049 	int ret = 0;
1050 
1051 	might_sleep();
1052 	mb_debug(1, "init group %u\n", group);
1053 	this_grp = ext4_get_group_info(sb, group);
1054 	/*
1055 	 * This ensures that we don't reinit the buddy cache
1056 	 * page which map to the group from which we are already
1057 	 * allocating. If we are looking at the buddy cache we would
1058 	 * have taken a reference using ext4_mb_load_buddy and that
1059 	 * would have pinned buddy page to page cache.
1060 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1061 	 * page accessed.
1062 	 */
1063 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1064 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1065 		/*
1066 		 * somebody initialized the group
1067 		 * return without doing anything
1068 		 */
1069 		goto err;
1070 	}
1071 
1072 	page = e4b.bd_bitmap_page;
1073 	ret = ext4_mb_init_cache(page, NULL, gfp);
1074 	if (ret)
1075 		goto err;
1076 	if (!PageUptodate(page)) {
1077 		ret = -EIO;
1078 		goto err;
1079 	}
1080 
1081 	if (e4b.bd_buddy_page == NULL) {
1082 		/*
1083 		 * If both the bitmap and buddy are in
1084 		 * the same page we don't need to force
1085 		 * init the buddy
1086 		 */
1087 		ret = 0;
1088 		goto err;
1089 	}
1090 	/* init buddy cache */
1091 	page = e4b.bd_buddy_page;
1092 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1093 	if (ret)
1094 		goto err;
1095 	if (!PageUptodate(page)) {
1096 		ret = -EIO;
1097 		goto err;
1098 	}
1099 err:
1100 	ext4_mb_put_buddy_page_lock(&e4b);
1101 	return ret;
1102 }
1103 
1104 /*
1105  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1106  * block group lock of all groups for this page; do not hold the BG lock when
1107  * calling this routine!
1108  */
1109 static noinline_for_stack int
1110 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1111 		       struct ext4_buddy *e4b, gfp_t gfp)
1112 {
1113 	int blocks_per_page;
1114 	int block;
1115 	int pnum;
1116 	int poff;
1117 	struct page *page;
1118 	int ret;
1119 	struct ext4_group_info *grp;
1120 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1121 	struct inode *inode = sbi->s_buddy_cache;
1122 
1123 	might_sleep();
1124 	mb_debug(1, "load group %u\n", group);
1125 
1126 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1127 	grp = ext4_get_group_info(sb, group);
1128 
1129 	e4b->bd_blkbits = sb->s_blocksize_bits;
1130 	e4b->bd_info = grp;
1131 	e4b->bd_sb = sb;
1132 	e4b->bd_group = group;
1133 	e4b->bd_buddy_page = NULL;
1134 	e4b->bd_bitmap_page = NULL;
1135 
1136 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1137 		/*
1138 		 * we need full data about the group
1139 		 * to make a good selection
1140 		 */
1141 		ret = ext4_mb_init_group(sb, group, gfp);
1142 		if (ret)
1143 			return ret;
1144 	}
1145 
1146 	/*
1147 	 * the buddy cache inode stores the block bitmap
1148 	 * and buddy information in consecutive blocks.
1149 	 * So for each group we need two blocks.
1150 	 */
1151 	block = group * 2;
1152 	pnum = block / blocks_per_page;
1153 	poff = block % blocks_per_page;
1154 
1155 	/* we could use find_or_create_page(), but it locks page
1156 	 * what we'd like to avoid in fast path ... */
1157 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1158 	if (page == NULL || !PageUptodate(page)) {
1159 		if (page)
1160 			/*
1161 			 * drop the page reference and try
1162 			 * to get the page with lock. If we
1163 			 * are not uptodate that implies
1164 			 * somebody just created the page but
1165 			 * is yet to initialize the same. So
1166 			 * wait for it to initialize.
1167 			 */
1168 			put_page(page);
1169 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1170 		if (page) {
1171 			BUG_ON(page->mapping != inode->i_mapping);
1172 			if (!PageUptodate(page)) {
1173 				ret = ext4_mb_init_cache(page, NULL, gfp);
1174 				if (ret) {
1175 					unlock_page(page);
1176 					goto err;
1177 				}
1178 				mb_cmp_bitmaps(e4b, page_address(page) +
1179 					       (poff * sb->s_blocksize));
1180 			}
1181 			unlock_page(page);
1182 		}
1183 	}
1184 	if (page == NULL) {
1185 		ret = -ENOMEM;
1186 		goto err;
1187 	}
1188 	if (!PageUptodate(page)) {
1189 		ret = -EIO;
1190 		goto err;
1191 	}
1192 
1193 	/* Pages marked accessed already */
1194 	e4b->bd_bitmap_page = page;
1195 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1196 
1197 	block++;
1198 	pnum = block / blocks_per_page;
1199 	poff = block % blocks_per_page;
1200 
1201 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1202 	if (page == NULL || !PageUptodate(page)) {
1203 		if (page)
1204 			put_page(page);
1205 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1206 		if (page) {
1207 			BUG_ON(page->mapping != inode->i_mapping);
1208 			if (!PageUptodate(page)) {
1209 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1210 							 gfp);
1211 				if (ret) {
1212 					unlock_page(page);
1213 					goto err;
1214 				}
1215 			}
1216 			unlock_page(page);
1217 		}
1218 	}
1219 	if (page == NULL) {
1220 		ret = -ENOMEM;
1221 		goto err;
1222 	}
1223 	if (!PageUptodate(page)) {
1224 		ret = -EIO;
1225 		goto err;
1226 	}
1227 
1228 	/* Pages marked accessed already */
1229 	e4b->bd_buddy_page = page;
1230 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1231 
1232 	BUG_ON(e4b->bd_bitmap_page == NULL);
1233 	BUG_ON(e4b->bd_buddy_page == NULL);
1234 
1235 	return 0;
1236 
1237 err:
1238 	if (page)
1239 		put_page(page);
1240 	if (e4b->bd_bitmap_page)
1241 		put_page(e4b->bd_bitmap_page);
1242 	if (e4b->bd_buddy_page)
1243 		put_page(e4b->bd_buddy_page);
1244 	e4b->bd_buddy = NULL;
1245 	e4b->bd_bitmap = NULL;
1246 	return ret;
1247 }
1248 
1249 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1250 			      struct ext4_buddy *e4b)
1251 {
1252 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1253 }
1254 
1255 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1256 {
1257 	if (e4b->bd_bitmap_page)
1258 		put_page(e4b->bd_bitmap_page);
1259 	if (e4b->bd_buddy_page)
1260 		put_page(e4b->bd_buddy_page);
1261 }
1262 
1263 
1264 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1265 {
1266 	int order = 1;
1267 	int bb_incr = 1 << (e4b->bd_blkbits - 1);
1268 	void *bb;
1269 
1270 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1271 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1272 
1273 	bb = e4b->bd_buddy;
1274 	while (order <= e4b->bd_blkbits + 1) {
1275 		block = block >> 1;
1276 		if (!mb_test_bit(block, bb)) {
1277 			/* this block is part of buddy of order 'order' */
1278 			return order;
1279 		}
1280 		bb += bb_incr;
1281 		bb_incr >>= 1;
1282 		order++;
1283 	}
1284 	return 0;
1285 }
1286 
1287 static void mb_clear_bits(void *bm, int cur, int len)
1288 {
1289 	__u32 *addr;
1290 
1291 	len = cur + len;
1292 	while (cur < len) {
1293 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1294 			/* fast path: clear whole word at once */
1295 			addr = bm + (cur >> 3);
1296 			*addr = 0;
1297 			cur += 32;
1298 			continue;
1299 		}
1300 		mb_clear_bit(cur, bm);
1301 		cur++;
1302 	}
1303 }
1304 
1305 /* clear bits in given range
1306  * will return first found zero bit if any, -1 otherwise
1307  */
1308 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1309 {
1310 	__u32 *addr;
1311 	int zero_bit = -1;
1312 
1313 	len = cur + len;
1314 	while (cur < len) {
1315 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1316 			/* fast path: clear whole word at once */
1317 			addr = bm + (cur >> 3);
1318 			if (*addr != (__u32)(-1) && zero_bit == -1)
1319 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1320 			*addr = 0;
1321 			cur += 32;
1322 			continue;
1323 		}
1324 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1325 			zero_bit = cur;
1326 		cur++;
1327 	}
1328 
1329 	return zero_bit;
1330 }
1331 
1332 void ext4_set_bits(void *bm, int cur, int len)
1333 {
1334 	__u32 *addr;
1335 
1336 	len = cur + len;
1337 	while (cur < len) {
1338 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1339 			/* fast path: set whole word at once */
1340 			addr = bm + (cur >> 3);
1341 			*addr = 0xffffffff;
1342 			cur += 32;
1343 			continue;
1344 		}
1345 		mb_set_bit(cur, bm);
1346 		cur++;
1347 	}
1348 }
1349 
1350 /*
1351  * _________________________________________________________________ */
1352 
1353 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1354 {
1355 	if (mb_test_bit(*bit + side, bitmap)) {
1356 		mb_clear_bit(*bit, bitmap);
1357 		(*bit) -= side;
1358 		return 1;
1359 	}
1360 	else {
1361 		(*bit) += side;
1362 		mb_set_bit(*bit, bitmap);
1363 		return -1;
1364 	}
1365 }
1366 
1367 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1368 {
1369 	int max;
1370 	int order = 1;
1371 	void *buddy = mb_find_buddy(e4b, order, &max);
1372 
1373 	while (buddy) {
1374 		void *buddy2;
1375 
1376 		/* Bits in range [first; last] are known to be set since
1377 		 * corresponding blocks were allocated. Bits in range
1378 		 * (first; last) will stay set because they form buddies on
1379 		 * upper layer. We just deal with borders if they don't
1380 		 * align with upper layer and then go up.
1381 		 * Releasing entire group is all about clearing
1382 		 * single bit of highest order buddy.
1383 		 */
1384 
1385 		/* Example:
1386 		 * ---------------------------------
1387 		 * |   1   |   1   |   1   |   1   |
1388 		 * ---------------------------------
1389 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1390 		 * ---------------------------------
1391 		 *   0   1   2   3   4   5   6   7
1392 		 *      \_____________________/
1393 		 *
1394 		 * Neither [1] nor [6] is aligned to above layer.
1395 		 * Left neighbour [0] is free, so mark it busy,
1396 		 * decrease bb_counters and extend range to
1397 		 * [0; 6]
1398 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1399 		 * mark [6] free, increase bb_counters and shrink range to
1400 		 * [0; 5].
1401 		 * Then shift range to [0; 2], go up and do the same.
1402 		 */
1403 
1404 
1405 		if (first & 1)
1406 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1407 		if (!(last & 1))
1408 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1409 		if (first > last)
1410 			break;
1411 		order++;
1412 
1413 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1414 			mb_clear_bits(buddy, first, last - first + 1);
1415 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1416 			break;
1417 		}
1418 		first >>= 1;
1419 		last >>= 1;
1420 		buddy = buddy2;
1421 	}
1422 }
1423 
1424 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1425 			   int first, int count)
1426 {
1427 	int left_is_free = 0;
1428 	int right_is_free = 0;
1429 	int block;
1430 	int last = first + count - 1;
1431 	struct super_block *sb = e4b->bd_sb;
1432 
1433 	if (WARN_ON(count == 0))
1434 		return;
1435 	BUG_ON(last >= (sb->s_blocksize << 3));
1436 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1437 	/* Don't bother if the block group is corrupt. */
1438 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1439 		return;
1440 
1441 	mb_check_buddy(e4b);
1442 	mb_free_blocks_double(inode, e4b, first, count);
1443 
1444 	e4b->bd_info->bb_free += count;
1445 	if (first < e4b->bd_info->bb_first_free)
1446 		e4b->bd_info->bb_first_free = first;
1447 
1448 	/* access memory sequentially: check left neighbour,
1449 	 * clear range and then check right neighbour
1450 	 */
1451 	if (first != 0)
1452 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1453 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1454 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1455 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1456 
1457 	if (unlikely(block != -1)) {
1458 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1459 		ext4_fsblk_t blocknr;
1460 
1461 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1462 		blocknr += EXT4_C2B(EXT4_SB(sb), block);
1463 		ext4_grp_locked_error(sb, e4b->bd_group,
1464 				      inode ? inode->i_ino : 0,
1465 				      blocknr,
1466 				      "freeing already freed block "
1467 				      "(bit %u); block bitmap corrupt.",
1468 				      block);
1469 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1470 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1471 					   e4b->bd_info->bb_free);
1472 		/* Mark the block group as corrupt. */
1473 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1474 			&e4b->bd_info->bb_state);
1475 		mb_regenerate_buddy(e4b);
1476 		goto done;
1477 	}
1478 
1479 	/* let's maintain fragments counter */
1480 	if (left_is_free && right_is_free)
1481 		e4b->bd_info->bb_fragments--;
1482 	else if (!left_is_free && !right_is_free)
1483 		e4b->bd_info->bb_fragments++;
1484 
1485 	/* buddy[0] == bd_bitmap is a special case, so handle
1486 	 * it right away and let mb_buddy_mark_free stay free of
1487 	 * zero order checks.
1488 	 * Check if neighbours are to be coaleasced,
1489 	 * adjust bitmap bb_counters and borders appropriately.
1490 	 */
1491 	if (first & 1) {
1492 		first += !left_is_free;
1493 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1494 	}
1495 	if (!(last & 1)) {
1496 		last -= !right_is_free;
1497 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1498 	}
1499 
1500 	if (first <= last)
1501 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1502 
1503 done:
1504 	mb_set_largest_free_order(sb, e4b->bd_info);
1505 	mb_check_buddy(e4b);
1506 }
1507 
1508 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1509 				int needed, struct ext4_free_extent *ex)
1510 {
1511 	int next = block;
1512 	int max, order;
1513 	void *buddy;
1514 
1515 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1516 	BUG_ON(ex == NULL);
1517 
1518 	buddy = mb_find_buddy(e4b, 0, &max);
1519 	BUG_ON(buddy == NULL);
1520 	BUG_ON(block >= max);
1521 	if (mb_test_bit(block, buddy)) {
1522 		ex->fe_len = 0;
1523 		ex->fe_start = 0;
1524 		ex->fe_group = 0;
1525 		return 0;
1526 	}
1527 
1528 	/* find actual order */
1529 	order = mb_find_order_for_block(e4b, block);
1530 	block = block >> order;
1531 
1532 	ex->fe_len = 1 << order;
1533 	ex->fe_start = block << order;
1534 	ex->fe_group = e4b->bd_group;
1535 
1536 	/* calc difference from given start */
1537 	next = next - ex->fe_start;
1538 	ex->fe_len -= next;
1539 	ex->fe_start += next;
1540 
1541 	while (needed > ex->fe_len &&
1542 	       mb_find_buddy(e4b, order, &max)) {
1543 
1544 		if (block + 1 >= max)
1545 			break;
1546 
1547 		next = (block + 1) * (1 << order);
1548 		if (mb_test_bit(next, e4b->bd_bitmap))
1549 			break;
1550 
1551 		order = mb_find_order_for_block(e4b, next);
1552 
1553 		block = next >> order;
1554 		ex->fe_len += 1 << order;
1555 	}
1556 
1557 	if (ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))) {
1558 		/* Should never happen! (but apparently sometimes does?!?) */
1559 		WARN_ON(1);
1560 		ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1561 			   "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1562 			   block, order, needed, ex->fe_group, ex->fe_start,
1563 			   ex->fe_len, ex->fe_logical);
1564 		ex->fe_len = 0;
1565 		ex->fe_start = 0;
1566 		ex->fe_group = 0;
1567 	}
1568 	return ex->fe_len;
1569 }
1570 
1571 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1572 {
1573 	int ord;
1574 	int mlen = 0;
1575 	int max = 0;
1576 	int cur;
1577 	int start = ex->fe_start;
1578 	int len = ex->fe_len;
1579 	unsigned ret = 0;
1580 	int len0 = len;
1581 	void *buddy;
1582 
1583 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1584 	BUG_ON(e4b->bd_group != ex->fe_group);
1585 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1586 	mb_check_buddy(e4b);
1587 	mb_mark_used_double(e4b, start, len);
1588 
1589 	e4b->bd_info->bb_free -= len;
1590 	if (e4b->bd_info->bb_first_free == start)
1591 		e4b->bd_info->bb_first_free += len;
1592 
1593 	/* let's maintain fragments counter */
1594 	if (start != 0)
1595 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1596 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1597 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1598 	if (mlen && max)
1599 		e4b->bd_info->bb_fragments++;
1600 	else if (!mlen && !max)
1601 		e4b->bd_info->bb_fragments--;
1602 
1603 	/* let's maintain buddy itself */
1604 	while (len) {
1605 		ord = mb_find_order_for_block(e4b, start);
1606 
1607 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1608 			/* the whole chunk may be allocated at once! */
1609 			mlen = 1 << ord;
1610 			buddy = mb_find_buddy(e4b, ord, &max);
1611 			BUG_ON((start >> ord) >= max);
1612 			mb_set_bit(start >> ord, buddy);
1613 			e4b->bd_info->bb_counters[ord]--;
1614 			start += mlen;
1615 			len -= mlen;
1616 			BUG_ON(len < 0);
1617 			continue;
1618 		}
1619 
1620 		/* store for history */
1621 		if (ret == 0)
1622 			ret = len | (ord << 16);
1623 
1624 		/* we have to split large buddy */
1625 		BUG_ON(ord <= 0);
1626 		buddy = mb_find_buddy(e4b, ord, &max);
1627 		mb_set_bit(start >> ord, buddy);
1628 		e4b->bd_info->bb_counters[ord]--;
1629 
1630 		ord--;
1631 		cur = (start >> ord) & ~1U;
1632 		buddy = mb_find_buddy(e4b, ord, &max);
1633 		mb_clear_bit(cur, buddy);
1634 		mb_clear_bit(cur + 1, buddy);
1635 		e4b->bd_info->bb_counters[ord]++;
1636 		e4b->bd_info->bb_counters[ord]++;
1637 	}
1638 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1639 
1640 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1641 	mb_check_buddy(e4b);
1642 
1643 	return ret;
1644 }
1645 
1646 /*
1647  * Must be called under group lock!
1648  */
1649 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1650 					struct ext4_buddy *e4b)
1651 {
1652 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1653 	int ret;
1654 
1655 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1656 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1657 
1658 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1659 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1660 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1661 
1662 	/* preallocation can change ac_b_ex, thus we store actually
1663 	 * allocated blocks for history */
1664 	ac->ac_f_ex = ac->ac_b_ex;
1665 
1666 	ac->ac_status = AC_STATUS_FOUND;
1667 	ac->ac_tail = ret & 0xffff;
1668 	ac->ac_buddy = ret >> 16;
1669 
1670 	/*
1671 	 * take the page reference. We want the page to be pinned
1672 	 * so that we don't get a ext4_mb_init_cache_call for this
1673 	 * group until we update the bitmap. That would mean we
1674 	 * double allocate blocks. The reference is dropped
1675 	 * in ext4_mb_release_context
1676 	 */
1677 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1678 	get_page(ac->ac_bitmap_page);
1679 	ac->ac_buddy_page = e4b->bd_buddy_page;
1680 	get_page(ac->ac_buddy_page);
1681 	/* store last allocated for subsequent stream allocation */
1682 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1683 		spin_lock(&sbi->s_md_lock);
1684 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1685 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1686 		spin_unlock(&sbi->s_md_lock);
1687 	}
1688 }
1689 
1690 /*
1691  * regular allocator, for general purposes allocation
1692  */
1693 
1694 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1695 					struct ext4_buddy *e4b,
1696 					int finish_group)
1697 {
1698 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1699 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1700 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1701 	struct ext4_free_extent ex;
1702 	int max;
1703 
1704 	if (ac->ac_status == AC_STATUS_FOUND)
1705 		return;
1706 	/*
1707 	 * We don't want to scan for a whole year
1708 	 */
1709 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1710 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1711 		ac->ac_status = AC_STATUS_BREAK;
1712 		return;
1713 	}
1714 
1715 	/*
1716 	 * Haven't found good chunk so far, let's continue
1717 	 */
1718 	if (bex->fe_len < gex->fe_len)
1719 		return;
1720 
1721 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1722 			&& bex->fe_group == e4b->bd_group) {
1723 		/* recheck chunk's availability - we don't know
1724 		 * when it was found (within this lock-unlock
1725 		 * period or not) */
1726 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1727 		if (max >= gex->fe_len) {
1728 			ext4_mb_use_best_found(ac, e4b);
1729 			return;
1730 		}
1731 	}
1732 }
1733 
1734 /*
1735  * The routine checks whether found extent is good enough. If it is,
1736  * then the extent gets marked used and flag is set to the context
1737  * to stop scanning. Otherwise, the extent is compared with the
1738  * previous found extent and if new one is better, then it's stored
1739  * in the context. Later, the best found extent will be used, if
1740  * mballoc can't find good enough extent.
1741  *
1742  * FIXME: real allocation policy is to be designed yet!
1743  */
1744 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1745 					struct ext4_free_extent *ex,
1746 					struct ext4_buddy *e4b)
1747 {
1748 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1749 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1750 
1751 	BUG_ON(ex->fe_len <= 0);
1752 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1753 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1754 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1755 
1756 	ac->ac_found++;
1757 
1758 	/*
1759 	 * The special case - take what you catch first
1760 	 */
1761 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1762 		*bex = *ex;
1763 		ext4_mb_use_best_found(ac, e4b);
1764 		return;
1765 	}
1766 
1767 	/*
1768 	 * Let's check whether the chuck is good enough
1769 	 */
1770 	if (ex->fe_len == gex->fe_len) {
1771 		*bex = *ex;
1772 		ext4_mb_use_best_found(ac, e4b);
1773 		return;
1774 	}
1775 
1776 	/*
1777 	 * If this is first found extent, just store it in the context
1778 	 */
1779 	if (bex->fe_len == 0) {
1780 		*bex = *ex;
1781 		return;
1782 	}
1783 
1784 	/*
1785 	 * If new found extent is better, store it in the context
1786 	 */
1787 	if (bex->fe_len < gex->fe_len) {
1788 		/* if the request isn't satisfied, any found extent
1789 		 * larger than previous best one is better */
1790 		if (ex->fe_len > bex->fe_len)
1791 			*bex = *ex;
1792 	} else if (ex->fe_len > gex->fe_len) {
1793 		/* if the request is satisfied, then we try to find
1794 		 * an extent that still satisfy the request, but is
1795 		 * smaller than previous one */
1796 		if (ex->fe_len < bex->fe_len)
1797 			*bex = *ex;
1798 	}
1799 
1800 	ext4_mb_check_limits(ac, e4b, 0);
1801 }
1802 
1803 static noinline_for_stack
1804 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1805 					struct ext4_buddy *e4b)
1806 {
1807 	struct ext4_free_extent ex = ac->ac_b_ex;
1808 	ext4_group_t group = ex.fe_group;
1809 	int max;
1810 	int err;
1811 
1812 	BUG_ON(ex.fe_len <= 0);
1813 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1814 	if (err)
1815 		return err;
1816 
1817 	ext4_lock_group(ac->ac_sb, group);
1818 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1819 
1820 	if (max > 0) {
1821 		ac->ac_b_ex = ex;
1822 		ext4_mb_use_best_found(ac, e4b);
1823 	}
1824 
1825 	ext4_unlock_group(ac->ac_sb, group);
1826 	ext4_mb_unload_buddy(e4b);
1827 
1828 	return 0;
1829 }
1830 
1831 static noinline_for_stack
1832 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1833 				struct ext4_buddy *e4b)
1834 {
1835 	ext4_group_t group = ac->ac_g_ex.fe_group;
1836 	int max;
1837 	int err;
1838 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1839 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1840 	struct ext4_free_extent ex;
1841 
1842 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1843 		return 0;
1844 	if (grp->bb_free == 0)
1845 		return 0;
1846 
1847 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1848 	if (err)
1849 		return err;
1850 
1851 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1852 		ext4_mb_unload_buddy(e4b);
1853 		return 0;
1854 	}
1855 
1856 	ext4_lock_group(ac->ac_sb, group);
1857 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1858 			     ac->ac_g_ex.fe_len, &ex);
1859 	ex.fe_logical = 0xDEADFA11; /* debug value */
1860 
1861 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1862 		ext4_fsblk_t start;
1863 
1864 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1865 			ex.fe_start;
1866 		/* use do_div to get remainder (would be 64-bit modulo) */
1867 		if (do_div(start, sbi->s_stripe) == 0) {
1868 			ac->ac_found++;
1869 			ac->ac_b_ex = ex;
1870 			ext4_mb_use_best_found(ac, e4b);
1871 		}
1872 	} else if (max >= ac->ac_g_ex.fe_len) {
1873 		BUG_ON(ex.fe_len <= 0);
1874 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1875 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1876 		ac->ac_found++;
1877 		ac->ac_b_ex = ex;
1878 		ext4_mb_use_best_found(ac, e4b);
1879 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1880 		/* Sometimes, caller may want to merge even small
1881 		 * number of blocks to an existing extent */
1882 		BUG_ON(ex.fe_len <= 0);
1883 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1884 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1885 		ac->ac_found++;
1886 		ac->ac_b_ex = ex;
1887 		ext4_mb_use_best_found(ac, e4b);
1888 	}
1889 	ext4_unlock_group(ac->ac_sb, group);
1890 	ext4_mb_unload_buddy(e4b);
1891 
1892 	return 0;
1893 }
1894 
1895 /*
1896  * The routine scans buddy structures (not bitmap!) from given order
1897  * to max order and tries to find big enough chunk to satisfy the req
1898  */
1899 static noinline_for_stack
1900 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1901 					struct ext4_buddy *e4b)
1902 {
1903 	struct super_block *sb = ac->ac_sb;
1904 	struct ext4_group_info *grp = e4b->bd_info;
1905 	void *buddy;
1906 	int i;
1907 	int k;
1908 	int max;
1909 
1910 	BUG_ON(ac->ac_2order <= 0);
1911 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1912 		if (grp->bb_counters[i] == 0)
1913 			continue;
1914 
1915 		buddy = mb_find_buddy(e4b, i, &max);
1916 		BUG_ON(buddy == NULL);
1917 
1918 		k = mb_find_next_zero_bit(buddy, max, 0);
1919 		BUG_ON(k >= max);
1920 
1921 		ac->ac_found++;
1922 
1923 		ac->ac_b_ex.fe_len = 1 << i;
1924 		ac->ac_b_ex.fe_start = k << i;
1925 		ac->ac_b_ex.fe_group = e4b->bd_group;
1926 
1927 		ext4_mb_use_best_found(ac, e4b);
1928 
1929 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1930 
1931 		if (EXT4_SB(sb)->s_mb_stats)
1932 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1933 
1934 		break;
1935 	}
1936 }
1937 
1938 /*
1939  * The routine scans the group and measures all found extents.
1940  * In order to optimize scanning, caller must pass number of
1941  * free blocks in the group, so the routine can know upper limit.
1942  */
1943 static noinline_for_stack
1944 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1945 					struct ext4_buddy *e4b)
1946 {
1947 	struct super_block *sb = ac->ac_sb;
1948 	void *bitmap = e4b->bd_bitmap;
1949 	struct ext4_free_extent ex;
1950 	int i;
1951 	int free;
1952 
1953 	free = e4b->bd_info->bb_free;
1954 	BUG_ON(free <= 0);
1955 
1956 	i = e4b->bd_info->bb_first_free;
1957 
1958 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1959 		i = mb_find_next_zero_bit(bitmap,
1960 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1961 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1962 			/*
1963 			 * IF we have corrupt bitmap, we won't find any
1964 			 * free blocks even though group info says we
1965 			 * we have free blocks
1966 			 */
1967 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1968 					"%d free clusters as per "
1969 					"group info. But bitmap says 0",
1970 					free);
1971 			break;
1972 		}
1973 
1974 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1975 		BUG_ON(ex.fe_len <= 0);
1976 		if (free < ex.fe_len) {
1977 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1978 					"%d free clusters as per "
1979 					"group info. But got %d blocks",
1980 					free, ex.fe_len);
1981 			/*
1982 			 * The number of free blocks differs. This mostly
1983 			 * indicate that the bitmap is corrupt. So exit
1984 			 * without claiming the space.
1985 			 */
1986 			break;
1987 		}
1988 		ex.fe_logical = 0xDEADC0DE; /* debug value */
1989 		ext4_mb_measure_extent(ac, &ex, e4b);
1990 
1991 		i += ex.fe_len;
1992 		free -= ex.fe_len;
1993 	}
1994 
1995 	ext4_mb_check_limits(ac, e4b, 1);
1996 }
1997 
1998 /*
1999  * This is a special case for storages like raid5
2000  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2001  */
2002 static noinline_for_stack
2003 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2004 				 struct ext4_buddy *e4b)
2005 {
2006 	struct super_block *sb = ac->ac_sb;
2007 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2008 	void *bitmap = e4b->bd_bitmap;
2009 	struct ext4_free_extent ex;
2010 	ext4_fsblk_t first_group_block;
2011 	ext4_fsblk_t a;
2012 	ext4_grpblk_t i;
2013 	int max;
2014 
2015 	BUG_ON(sbi->s_stripe == 0);
2016 
2017 	/* find first stripe-aligned block in group */
2018 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2019 
2020 	a = first_group_block + sbi->s_stripe - 1;
2021 	do_div(a, sbi->s_stripe);
2022 	i = (a * sbi->s_stripe) - first_group_block;
2023 
2024 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2025 		if (!mb_test_bit(i, bitmap)) {
2026 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2027 			if (max >= sbi->s_stripe) {
2028 				ac->ac_found++;
2029 				ex.fe_logical = 0xDEADF00D; /* debug value */
2030 				ac->ac_b_ex = ex;
2031 				ext4_mb_use_best_found(ac, e4b);
2032 				break;
2033 			}
2034 		}
2035 		i += sbi->s_stripe;
2036 	}
2037 }
2038 
2039 /*
2040  * This is now called BEFORE we load the buddy bitmap.
2041  * Returns either 1 or 0 indicating that the group is either suitable
2042  * for the allocation or not. In addition it can also return negative
2043  * error code when something goes wrong.
2044  */
2045 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2046 				ext4_group_t group, int cr)
2047 {
2048 	unsigned free, fragments;
2049 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2050 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2051 
2052 	BUG_ON(cr < 0 || cr >= 4);
2053 
2054 	free = grp->bb_free;
2055 	if (free == 0)
2056 		return 0;
2057 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2058 		return 0;
2059 
2060 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2061 		return 0;
2062 
2063 	/* We only do this if the grp has never been initialized */
2064 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2065 		int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2066 		if (ret)
2067 			return ret;
2068 	}
2069 
2070 	fragments = grp->bb_fragments;
2071 	if (fragments == 0)
2072 		return 0;
2073 
2074 	switch (cr) {
2075 	case 0:
2076 		BUG_ON(ac->ac_2order == 0);
2077 
2078 		/* Avoid using the first bg of a flexgroup for data files */
2079 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2080 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2081 		    ((group % flex_size) == 0))
2082 			return 0;
2083 
2084 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2085 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2086 			return 1;
2087 
2088 		if (grp->bb_largest_free_order < ac->ac_2order)
2089 			return 0;
2090 
2091 		return 1;
2092 	case 1:
2093 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2094 			return 1;
2095 		break;
2096 	case 2:
2097 		if (free >= ac->ac_g_ex.fe_len)
2098 			return 1;
2099 		break;
2100 	case 3:
2101 		return 1;
2102 	default:
2103 		BUG();
2104 	}
2105 
2106 	return 0;
2107 }
2108 
2109 static noinline_for_stack int
2110 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2111 {
2112 	ext4_group_t ngroups, group, i;
2113 	int cr;
2114 	int err = 0, first_err = 0;
2115 	struct ext4_sb_info *sbi;
2116 	struct super_block *sb;
2117 	struct ext4_buddy e4b;
2118 
2119 	sb = ac->ac_sb;
2120 	sbi = EXT4_SB(sb);
2121 	ngroups = ext4_get_groups_count(sb);
2122 	/* non-extent files are limited to low blocks/groups */
2123 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2124 		ngroups = sbi->s_blockfile_groups;
2125 
2126 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2127 
2128 	/* first, try the goal */
2129 	err = ext4_mb_find_by_goal(ac, &e4b);
2130 	if (err || ac->ac_status == AC_STATUS_FOUND)
2131 		goto out;
2132 
2133 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2134 		goto out;
2135 
2136 	/*
2137 	 * ac->ac2_order is set only if the fe_len is a power of 2
2138 	 * if ac2_order is set we also set criteria to 0 so that we
2139 	 * try exact allocation using buddy.
2140 	 */
2141 	i = fls(ac->ac_g_ex.fe_len);
2142 	ac->ac_2order = 0;
2143 	/*
2144 	 * We search using buddy data only if the order of the request
2145 	 * is greater than equal to the sbi_s_mb_order2_reqs
2146 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2147 	 * We also support searching for power-of-two requests only for
2148 	 * requests upto maximum buddy size we have constructed.
2149 	 */
2150 	if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2151 		/*
2152 		 * This should tell if fe_len is exactly power of 2
2153 		 */
2154 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2155 			ac->ac_2order = i - 1;
2156 	}
2157 
2158 	/* if stream allocation is enabled, use global goal */
2159 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2160 		/* TBD: may be hot point */
2161 		spin_lock(&sbi->s_md_lock);
2162 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2163 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2164 		spin_unlock(&sbi->s_md_lock);
2165 	}
2166 
2167 	/* Let's just scan groups to find more-less suitable blocks */
2168 	cr = ac->ac_2order ? 0 : 1;
2169 	/*
2170 	 * cr == 0 try to get exact allocation,
2171 	 * cr == 3  try to get anything
2172 	 */
2173 repeat:
2174 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2175 		ac->ac_criteria = cr;
2176 		/*
2177 		 * searching for the right group start
2178 		 * from the goal value specified
2179 		 */
2180 		group = ac->ac_g_ex.fe_group;
2181 
2182 		for (i = 0; i < ngroups; group++, i++) {
2183 			int ret = 0;
2184 			cond_resched();
2185 			/*
2186 			 * Artificially restricted ngroups for non-extent
2187 			 * files makes group > ngroups possible on first loop.
2188 			 */
2189 			if (group >= ngroups)
2190 				group = 0;
2191 
2192 			/* This now checks without needing the buddy page */
2193 			ret = ext4_mb_good_group(ac, group, cr);
2194 			if (ret <= 0) {
2195 				if (!first_err)
2196 					first_err = ret;
2197 				continue;
2198 			}
2199 
2200 			err = ext4_mb_load_buddy(sb, group, &e4b);
2201 			if (err)
2202 				goto out;
2203 
2204 			ext4_lock_group(sb, group);
2205 
2206 			/*
2207 			 * We need to check again after locking the
2208 			 * block group
2209 			 */
2210 			ret = ext4_mb_good_group(ac, group, cr);
2211 			if (ret <= 0) {
2212 				ext4_unlock_group(sb, group);
2213 				ext4_mb_unload_buddy(&e4b);
2214 				if (!first_err)
2215 					first_err = ret;
2216 				continue;
2217 			}
2218 
2219 			ac->ac_groups_scanned++;
2220 			if (cr == 0)
2221 				ext4_mb_simple_scan_group(ac, &e4b);
2222 			else if (cr == 1 && sbi->s_stripe &&
2223 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2224 				ext4_mb_scan_aligned(ac, &e4b);
2225 			else
2226 				ext4_mb_complex_scan_group(ac, &e4b);
2227 
2228 			ext4_unlock_group(sb, group);
2229 			ext4_mb_unload_buddy(&e4b);
2230 
2231 			if (ac->ac_status != AC_STATUS_CONTINUE)
2232 				break;
2233 		}
2234 	}
2235 
2236 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2237 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2238 		/*
2239 		 * We've been searching too long. Let's try to allocate
2240 		 * the best chunk we've found so far
2241 		 */
2242 
2243 		ext4_mb_try_best_found(ac, &e4b);
2244 		if (ac->ac_status != AC_STATUS_FOUND) {
2245 			/*
2246 			 * Someone more lucky has already allocated it.
2247 			 * The only thing we can do is just take first
2248 			 * found block(s)
2249 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2250 			 */
2251 			ac->ac_b_ex.fe_group = 0;
2252 			ac->ac_b_ex.fe_start = 0;
2253 			ac->ac_b_ex.fe_len = 0;
2254 			ac->ac_status = AC_STATUS_CONTINUE;
2255 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2256 			cr = 3;
2257 			atomic_inc(&sbi->s_mb_lost_chunks);
2258 			goto repeat;
2259 		}
2260 	}
2261 out:
2262 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2263 		err = first_err;
2264 	return err;
2265 }
2266 
2267 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2268 {
2269 	struct super_block *sb = seq->private;
2270 	ext4_group_t group;
2271 
2272 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2273 		return NULL;
2274 	group = *pos + 1;
2275 	return (void *) ((unsigned long) group);
2276 }
2277 
2278 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2279 {
2280 	struct super_block *sb = seq->private;
2281 	ext4_group_t group;
2282 
2283 	++*pos;
2284 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2285 		return NULL;
2286 	group = *pos + 1;
2287 	return (void *) ((unsigned long) group);
2288 }
2289 
2290 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2291 {
2292 	struct super_block *sb = seq->private;
2293 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2294 	int i;
2295 	int err, buddy_loaded = 0;
2296 	struct ext4_buddy e4b;
2297 	struct ext4_group_info *grinfo;
2298 	unsigned char blocksize_bits = min_t(unsigned char,
2299 					     sb->s_blocksize_bits,
2300 					     EXT4_MAX_BLOCK_LOG_SIZE);
2301 	struct sg {
2302 		struct ext4_group_info info;
2303 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2304 	} sg;
2305 
2306 	group--;
2307 	if (group == 0)
2308 		seq_puts(seq, "#group: free  frags first ["
2309 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2310 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2311 
2312 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2313 		sizeof(struct ext4_group_info);
2314 
2315 	grinfo = ext4_get_group_info(sb, group);
2316 	/* Load the group info in memory only if not already loaded. */
2317 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2318 		err = ext4_mb_load_buddy(sb, group, &e4b);
2319 		if (err) {
2320 			seq_printf(seq, "#%-5u: I/O error\n", group);
2321 			return 0;
2322 		}
2323 		buddy_loaded = 1;
2324 	}
2325 
2326 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2327 
2328 	if (buddy_loaded)
2329 		ext4_mb_unload_buddy(&e4b);
2330 
2331 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2332 			sg.info.bb_fragments, sg.info.bb_first_free);
2333 	for (i = 0; i <= 13; i++)
2334 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2335 				sg.info.bb_counters[i] : 0);
2336 	seq_printf(seq, " ]\n");
2337 
2338 	return 0;
2339 }
2340 
2341 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2342 {
2343 }
2344 
2345 static const struct seq_operations ext4_mb_seq_groups_ops = {
2346 	.start  = ext4_mb_seq_groups_start,
2347 	.next   = ext4_mb_seq_groups_next,
2348 	.stop   = ext4_mb_seq_groups_stop,
2349 	.show   = ext4_mb_seq_groups_show,
2350 };
2351 
2352 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2353 {
2354 	struct super_block *sb = PDE_DATA(inode);
2355 	int rc;
2356 
2357 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2358 	if (rc == 0) {
2359 		struct seq_file *m = file->private_data;
2360 		m->private = sb;
2361 	}
2362 	return rc;
2363 
2364 }
2365 
2366 const struct file_operations ext4_seq_mb_groups_fops = {
2367 	.open		= ext4_mb_seq_groups_open,
2368 	.read		= seq_read,
2369 	.llseek		= seq_lseek,
2370 	.release	= seq_release,
2371 };
2372 
2373 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2374 {
2375 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2376 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2377 
2378 	BUG_ON(!cachep);
2379 	return cachep;
2380 }
2381 
2382 /*
2383  * Allocate the top-level s_group_info array for the specified number
2384  * of groups
2385  */
2386 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2387 {
2388 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2389 	unsigned size;
2390 	struct ext4_group_info ***new_groupinfo;
2391 
2392 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2393 		EXT4_DESC_PER_BLOCK_BITS(sb);
2394 	if (size <= sbi->s_group_info_size)
2395 		return 0;
2396 
2397 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2398 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
2399 	if (!new_groupinfo) {
2400 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2401 		return -ENOMEM;
2402 	}
2403 	if (sbi->s_group_info) {
2404 		memcpy(new_groupinfo, sbi->s_group_info,
2405 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2406 		kvfree(sbi->s_group_info);
2407 	}
2408 	sbi->s_group_info = new_groupinfo;
2409 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2410 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2411 		   sbi->s_group_info_size);
2412 	return 0;
2413 }
2414 
2415 /* Create and initialize ext4_group_info data for the given group. */
2416 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2417 			  struct ext4_group_desc *desc)
2418 {
2419 	int i;
2420 	int metalen = 0;
2421 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2422 	struct ext4_group_info **meta_group_info;
2423 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2424 
2425 	/*
2426 	 * First check if this group is the first of a reserved block.
2427 	 * If it's true, we have to allocate a new table of pointers
2428 	 * to ext4_group_info structures
2429 	 */
2430 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2431 		metalen = sizeof(*meta_group_info) <<
2432 			EXT4_DESC_PER_BLOCK_BITS(sb);
2433 		meta_group_info = kmalloc(metalen, GFP_NOFS);
2434 		if (meta_group_info == NULL) {
2435 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2436 				 "for a buddy group");
2437 			goto exit_meta_group_info;
2438 		}
2439 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2440 			meta_group_info;
2441 	}
2442 
2443 	meta_group_info =
2444 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2445 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2446 
2447 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2448 	if (meta_group_info[i] == NULL) {
2449 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2450 		goto exit_group_info;
2451 	}
2452 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2453 		&(meta_group_info[i]->bb_state));
2454 
2455 	/*
2456 	 * initialize bb_free to be able to skip
2457 	 * empty groups without initialization
2458 	 */
2459 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2460 		meta_group_info[i]->bb_free =
2461 			ext4_free_clusters_after_init(sb, group, desc);
2462 	} else {
2463 		meta_group_info[i]->bb_free =
2464 			ext4_free_group_clusters(sb, desc);
2465 	}
2466 
2467 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2468 	init_rwsem(&meta_group_info[i]->alloc_sem);
2469 	meta_group_info[i]->bb_free_root = RB_ROOT;
2470 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2471 
2472 #ifdef DOUBLE_CHECK
2473 	{
2474 		struct buffer_head *bh;
2475 		meta_group_info[i]->bb_bitmap =
2476 			kmalloc(sb->s_blocksize, GFP_NOFS);
2477 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2478 		bh = ext4_read_block_bitmap(sb, group);
2479 		BUG_ON(IS_ERR_OR_NULL(bh));
2480 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2481 			sb->s_blocksize);
2482 		put_bh(bh);
2483 	}
2484 #endif
2485 
2486 	return 0;
2487 
2488 exit_group_info:
2489 	/* If a meta_group_info table has been allocated, release it now */
2490 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2491 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2492 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2493 	}
2494 exit_meta_group_info:
2495 	return -ENOMEM;
2496 } /* ext4_mb_add_groupinfo */
2497 
2498 static int ext4_mb_init_backend(struct super_block *sb)
2499 {
2500 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2501 	ext4_group_t i;
2502 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2503 	int err;
2504 	struct ext4_group_desc *desc;
2505 	struct kmem_cache *cachep;
2506 
2507 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2508 	if (err)
2509 		return err;
2510 
2511 	sbi->s_buddy_cache = new_inode(sb);
2512 	if (sbi->s_buddy_cache == NULL) {
2513 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2514 		goto err_freesgi;
2515 	}
2516 	/* To avoid potentially colliding with an valid on-disk inode number,
2517 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2518 	 * not in the inode hash, so it should never be found by iget(), but
2519 	 * this will avoid confusion if it ever shows up during debugging. */
2520 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2521 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2522 	for (i = 0; i < ngroups; i++) {
2523 		desc = ext4_get_group_desc(sb, i, NULL);
2524 		if (desc == NULL) {
2525 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2526 			goto err_freebuddy;
2527 		}
2528 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2529 			goto err_freebuddy;
2530 	}
2531 
2532 	return 0;
2533 
2534 err_freebuddy:
2535 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2536 	while (i-- > 0)
2537 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2538 	i = sbi->s_group_info_size;
2539 	while (i-- > 0)
2540 		kfree(sbi->s_group_info[i]);
2541 	iput(sbi->s_buddy_cache);
2542 err_freesgi:
2543 	kvfree(sbi->s_group_info);
2544 	return -ENOMEM;
2545 }
2546 
2547 static void ext4_groupinfo_destroy_slabs(void)
2548 {
2549 	int i;
2550 
2551 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2552 		if (ext4_groupinfo_caches[i])
2553 			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2554 		ext4_groupinfo_caches[i] = NULL;
2555 	}
2556 }
2557 
2558 static int ext4_groupinfo_create_slab(size_t size)
2559 {
2560 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2561 	int slab_size;
2562 	int blocksize_bits = order_base_2(size);
2563 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2564 	struct kmem_cache *cachep;
2565 
2566 	if (cache_index >= NR_GRPINFO_CACHES)
2567 		return -EINVAL;
2568 
2569 	if (unlikely(cache_index < 0))
2570 		cache_index = 0;
2571 
2572 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2573 	if (ext4_groupinfo_caches[cache_index]) {
2574 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2575 		return 0;	/* Already created */
2576 	}
2577 
2578 	slab_size = offsetof(struct ext4_group_info,
2579 				bb_counters[blocksize_bits + 2]);
2580 
2581 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2582 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2583 					NULL);
2584 
2585 	ext4_groupinfo_caches[cache_index] = cachep;
2586 
2587 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2588 	if (!cachep) {
2589 		printk(KERN_EMERG
2590 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2591 		return -ENOMEM;
2592 	}
2593 
2594 	return 0;
2595 }
2596 
2597 int ext4_mb_init(struct super_block *sb)
2598 {
2599 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2600 	unsigned i, j;
2601 	unsigned offset, offset_incr;
2602 	unsigned max;
2603 	int ret;
2604 
2605 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2606 
2607 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2608 	if (sbi->s_mb_offsets == NULL) {
2609 		ret = -ENOMEM;
2610 		goto out;
2611 	}
2612 
2613 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2614 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2615 	if (sbi->s_mb_maxs == NULL) {
2616 		ret = -ENOMEM;
2617 		goto out;
2618 	}
2619 
2620 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2621 	if (ret < 0)
2622 		goto out;
2623 
2624 	/* order 0 is regular bitmap */
2625 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2626 	sbi->s_mb_offsets[0] = 0;
2627 
2628 	i = 1;
2629 	offset = 0;
2630 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
2631 	max = sb->s_blocksize << 2;
2632 	do {
2633 		sbi->s_mb_offsets[i] = offset;
2634 		sbi->s_mb_maxs[i] = max;
2635 		offset += offset_incr;
2636 		offset_incr = offset_incr >> 1;
2637 		max = max >> 1;
2638 		i++;
2639 	} while (i <= sb->s_blocksize_bits + 1);
2640 
2641 	spin_lock_init(&sbi->s_md_lock);
2642 	spin_lock_init(&sbi->s_bal_lock);
2643 	sbi->s_mb_free_pending = 0;
2644 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
2645 
2646 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2647 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2648 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2649 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2650 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2651 	/*
2652 	 * The default group preallocation is 512, which for 4k block
2653 	 * sizes translates to 2 megabytes.  However for bigalloc file
2654 	 * systems, this is probably too big (i.e, if the cluster size
2655 	 * is 1 megabyte, then group preallocation size becomes half a
2656 	 * gigabyte!).  As a default, we will keep a two megabyte
2657 	 * group pralloc size for cluster sizes up to 64k, and after
2658 	 * that, we will force a minimum group preallocation size of
2659 	 * 32 clusters.  This translates to 8 megs when the cluster
2660 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2661 	 * which seems reasonable as a default.
2662 	 */
2663 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2664 				       sbi->s_cluster_bits, 32);
2665 	/*
2666 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2667 	 * to the lowest multiple of s_stripe which is bigger than
2668 	 * the s_mb_group_prealloc as determined above. We want
2669 	 * the preallocation size to be an exact multiple of the
2670 	 * RAID stripe size so that preallocations don't fragment
2671 	 * the stripes.
2672 	 */
2673 	if (sbi->s_stripe > 1) {
2674 		sbi->s_mb_group_prealloc = roundup(
2675 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2676 	}
2677 
2678 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2679 	if (sbi->s_locality_groups == NULL) {
2680 		ret = -ENOMEM;
2681 		goto out;
2682 	}
2683 	for_each_possible_cpu(i) {
2684 		struct ext4_locality_group *lg;
2685 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2686 		mutex_init(&lg->lg_mutex);
2687 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2688 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2689 		spin_lock_init(&lg->lg_prealloc_lock);
2690 	}
2691 
2692 	/* init file for buddy data */
2693 	ret = ext4_mb_init_backend(sb);
2694 	if (ret != 0)
2695 		goto out_free_locality_groups;
2696 
2697 	return 0;
2698 
2699 out_free_locality_groups:
2700 	free_percpu(sbi->s_locality_groups);
2701 	sbi->s_locality_groups = NULL;
2702 out:
2703 	kfree(sbi->s_mb_offsets);
2704 	sbi->s_mb_offsets = NULL;
2705 	kfree(sbi->s_mb_maxs);
2706 	sbi->s_mb_maxs = NULL;
2707 	return ret;
2708 }
2709 
2710 /* need to called with the ext4 group lock held */
2711 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2712 {
2713 	struct ext4_prealloc_space *pa;
2714 	struct list_head *cur, *tmp;
2715 	int count = 0;
2716 
2717 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2718 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2719 		list_del(&pa->pa_group_list);
2720 		count++;
2721 		kmem_cache_free(ext4_pspace_cachep, pa);
2722 	}
2723 	if (count)
2724 		mb_debug(1, "mballoc: %u PAs left\n", count);
2725 
2726 }
2727 
2728 int ext4_mb_release(struct super_block *sb)
2729 {
2730 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2731 	ext4_group_t i;
2732 	int num_meta_group_infos;
2733 	struct ext4_group_info *grinfo;
2734 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2735 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2736 
2737 	if (sbi->s_group_info) {
2738 		for (i = 0; i < ngroups; i++) {
2739 			grinfo = ext4_get_group_info(sb, i);
2740 #ifdef DOUBLE_CHECK
2741 			kfree(grinfo->bb_bitmap);
2742 #endif
2743 			ext4_lock_group(sb, i);
2744 			ext4_mb_cleanup_pa(grinfo);
2745 			ext4_unlock_group(sb, i);
2746 			kmem_cache_free(cachep, grinfo);
2747 		}
2748 		num_meta_group_infos = (ngroups +
2749 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2750 			EXT4_DESC_PER_BLOCK_BITS(sb);
2751 		for (i = 0; i < num_meta_group_infos; i++)
2752 			kfree(sbi->s_group_info[i]);
2753 		kvfree(sbi->s_group_info);
2754 	}
2755 	kfree(sbi->s_mb_offsets);
2756 	kfree(sbi->s_mb_maxs);
2757 	iput(sbi->s_buddy_cache);
2758 	if (sbi->s_mb_stats) {
2759 		ext4_msg(sb, KERN_INFO,
2760 		       "mballoc: %u blocks %u reqs (%u success)",
2761 				atomic_read(&sbi->s_bal_allocated),
2762 				atomic_read(&sbi->s_bal_reqs),
2763 				atomic_read(&sbi->s_bal_success));
2764 		ext4_msg(sb, KERN_INFO,
2765 		      "mballoc: %u extents scanned, %u goal hits, "
2766 				"%u 2^N hits, %u breaks, %u lost",
2767 				atomic_read(&sbi->s_bal_ex_scanned),
2768 				atomic_read(&sbi->s_bal_goals),
2769 				atomic_read(&sbi->s_bal_2orders),
2770 				atomic_read(&sbi->s_bal_breaks),
2771 				atomic_read(&sbi->s_mb_lost_chunks));
2772 		ext4_msg(sb, KERN_INFO,
2773 		       "mballoc: %lu generated and it took %Lu",
2774 				sbi->s_mb_buddies_generated,
2775 				sbi->s_mb_generation_time);
2776 		ext4_msg(sb, KERN_INFO,
2777 		       "mballoc: %u preallocated, %u discarded",
2778 				atomic_read(&sbi->s_mb_preallocated),
2779 				atomic_read(&sbi->s_mb_discarded));
2780 	}
2781 
2782 	free_percpu(sbi->s_locality_groups);
2783 
2784 	return 0;
2785 }
2786 
2787 static inline int ext4_issue_discard(struct super_block *sb,
2788 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2789 		struct bio **biop)
2790 {
2791 	ext4_fsblk_t discard_block;
2792 
2793 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2794 			 ext4_group_first_block_no(sb, block_group));
2795 	count = EXT4_C2B(EXT4_SB(sb), count);
2796 	trace_ext4_discard_blocks(sb,
2797 			(unsigned long long) discard_block, count);
2798 	if (biop) {
2799 		return __blkdev_issue_discard(sb->s_bdev,
2800 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
2801 			(sector_t)count << (sb->s_blocksize_bits - 9),
2802 			GFP_NOFS, 0, biop);
2803 	} else
2804 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2805 }
2806 
2807 static void ext4_free_data_in_buddy(struct super_block *sb,
2808 				    struct ext4_free_data *entry)
2809 {
2810 	struct ext4_buddy e4b;
2811 	struct ext4_group_info *db;
2812 	int err, count = 0, count2 = 0;
2813 
2814 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2815 		 entry->efd_count, entry->efd_group, entry);
2816 
2817 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2818 	/* we expect to find existing buddy because it's pinned */
2819 	BUG_ON(err != 0);
2820 
2821 	spin_lock(&EXT4_SB(sb)->s_md_lock);
2822 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2823 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
2824 
2825 	db = e4b.bd_info;
2826 	/* there are blocks to put in buddy to make them really free */
2827 	count += entry->efd_count;
2828 	count2++;
2829 	ext4_lock_group(sb, entry->efd_group);
2830 	/* Take it out of per group rb tree */
2831 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2832 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2833 
2834 	/*
2835 	 * Clear the trimmed flag for the group so that the next
2836 	 * ext4_trim_fs can trim it.
2837 	 * If the volume is mounted with -o discard, online discard
2838 	 * is supported and the free blocks will be trimmed online.
2839 	 */
2840 	if (!test_opt(sb, DISCARD))
2841 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2842 
2843 	if (!db->bb_free_root.rb_node) {
2844 		/* No more items in the per group rb tree
2845 		 * balance refcounts from ext4_mb_free_metadata()
2846 		 */
2847 		put_page(e4b.bd_buddy_page);
2848 		put_page(e4b.bd_bitmap_page);
2849 	}
2850 	ext4_unlock_group(sb, entry->efd_group);
2851 	kmem_cache_free(ext4_free_data_cachep, entry);
2852 	ext4_mb_unload_buddy(&e4b);
2853 
2854 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2855 }
2856 
2857 /*
2858  * This function is called by the jbd2 layer once the commit has finished,
2859  * so we know we can free the blocks that were released with that commit.
2860  */
2861 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2862 {
2863 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2864 	struct ext4_free_data *entry, *tmp;
2865 	struct bio *discard_bio = NULL;
2866 	struct list_head freed_data_list;
2867 	struct list_head *cut_pos = NULL;
2868 	int err;
2869 
2870 	INIT_LIST_HEAD(&freed_data_list);
2871 
2872 	spin_lock(&sbi->s_md_lock);
2873 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2874 		if (entry->efd_tid != commit_tid)
2875 			break;
2876 		cut_pos = &entry->efd_list;
2877 	}
2878 	if (cut_pos)
2879 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2880 				  cut_pos);
2881 	spin_unlock(&sbi->s_md_lock);
2882 
2883 	if (test_opt(sb, DISCARD)) {
2884 		list_for_each_entry(entry, &freed_data_list, efd_list) {
2885 			err = ext4_issue_discard(sb, entry->efd_group,
2886 						 entry->efd_start_cluster,
2887 						 entry->efd_count,
2888 						 &discard_bio);
2889 			if (err && err != -EOPNOTSUPP) {
2890 				ext4_msg(sb, KERN_WARNING, "discard request in"
2891 					 " group:%d block:%d count:%d failed"
2892 					 " with %d", entry->efd_group,
2893 					 entry->efd_start_cluster,
2894 					 entry->efd_count, err);
2895 			} else if (err == -EOPNOTSUPP)
2896 				break;
2897 		}
2898 
2899 		if (discard_bio) {
2900 			submit_bio_wait(discard_bio);
2901 			bio_put(discard_bio);
2902 		}
2903 	}
2904 
2905 	list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2906 		ext4_free_data_in_buddy(sb, entry);
2907 }
2908 
2909 int __init ext4_init_mballoc(void)
2910 {
2911 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2912 					SLAB_RECLAIM_ACCOUNT);
2913 	if (ext4_pspace_cachep == NULL)
2914 		return -ENOMEM;
2915 
2916 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2917 				    SLAB_RECLAIM_ACCOUNT);
2918 	if (ext4_ac_cachep == NULL) {
2919 		kmem_cache_destroy(ext4_pspace_cachep);
2920 		return -ENOMEM;
2921 	}
2922 
2923 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2924 					   SLAB_RECLAIM_ACCOUNT);
2925 	if (ext4_free_data_cachep == NULL) {
2926 		kmem_cache_destroy(ext4_pspace_cachep);
2927 		kmem_cache_destroy(ext4_ac_cachep);
2928 		return -ENOMEM;
2929 	}
2930 	return 0;
2931 }
2932 
2933 void ext4_exit_mballoc(void)
2934 {
2935 	/*
2936 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2937 	 * before destroying the slab cache.
2938 	 */
2939 	rcu_barrier();
2940 	kmem_cache_destroy(ext4_pspace_cachep);
2941 	kmem_cache_destroy(ext4_ac_cachep);
2942 	kmem_cache_destroy(ext4_free_data_cachep);
2943 	ext4_groupinfo_destroy_slabs();
2944 }
2945 
2946 
2947 /*
2948  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2949  * Returns 0 if success or error code
2950  */
2951 static noinline_for_stack int
2952 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2953 				handle_t *handle, unsigned int reserv_clstrs)
2954 {
2955 	struct buffer_head *bitmap_bh = NULL;
2956 	struct ext4_group_desc *gdp;
2957 	struct buffer_head *gdp_bh;
2958 	struct ext4_sb_info *sbi;
2959 	struct super_block *sb;
2960 	ext4_fsblk_t block;
2961 	int err, len;
2962 
2963 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2964 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2965 
2966 	sb = ac->ac_sb;
2967 	sbi = EXT4_SB(sb);
2968 
2969 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2970 	if (IS_ERR(bitmap_bh)) {
2971 		err = PTR_ERR(bitmap_bh);
2972 		bitmap_bh = NULL;
2973 		goto out_err;
2974 	}
2975 
2976 	BUFFER_TRACE(bitmap_bh, "getting write access");
2977 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2978 	if (err)
2979 		goto out_err;
2980 
2981 	err = -EIO;
2982 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2983 	if (!gdp)
2984 		goto out_err;
2985 
2986 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2987 			ext4_free_group_clusters(sb, gdp));
2988 
2989 	BUFFER_TRACE(gdp_bh, "get_write_access");
2990 	err = ext4_journal_get_write_access(handle, gdp_bh);
2991 	if (err)
2992 		goto out_err;
2993 
2994 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2995 
2996 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2997 	if (!ext4_data_block_valid(sbi, block, len)) {
2998 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2999 			   "fs metadata", block, block+len);
3000 		/* File system mounted not to panic on error
3001 		 * Fix the bitmap and return EFSCORRUPTED
3002 		 * We leak some of the blocks here.
3003 		 */
3004 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3005 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3006 			      ac->ac_b_ex.fe_len);
3007 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3008 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3009 		if (!err)
3010 			err = -EFSCORRUPTED;
3011 		goto out_err;
3012 	}
3013 
3014 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3015 #ifdef AGGRESSIVE_CHECK
3016 	{
3017 		int i;
3018 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3019 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3020 						bitmap_bh->b_data));
3021 		}
3022 	}
3023 #endif
3024 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3025 		      ac->ac_b_ex.fe_len);
3026 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
3027 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3028 		ext4_free_group_clusters_set(sb, gdp,
3029 					     ext4_free_clusters_after_init(sb,
3030 						ac->ac_b_ex.fe_group, gdp));
3031 	}
3032 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3033 	ext4_free_group_clusters_set(sb, gdp, len);
3034 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3035 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3036 
3037 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3038 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3039 	/*
3040 	 * Now reduce the dirty block count also. Should not go negative
3041 	 */
3042 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3043 		/* release all the reserved blocks if non delalloc */
3044 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3045 				   reserv_clstrs);
3046 
3047 	if (sbi->s_log_groups_per_flex) {
3048 		ext4_group_t flex_group = ext4_flex_group(sbi,
3049 							  ac->ac_b_ex.fe_group);
3050 		atomic64_sub(ac->ac_b_ex.fe_len,
3051 			     &sbi->s_flex_groups[flex_group].free_clusters);
3052 	}
3053 
3054 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3055 	if (err)
3056 		goto out_err;
3057 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3058 
3059 out_err:
3060 	brelse(bitmap_bh);
3061 	return err;
3062 }
3063 
3064 /*
3065  * here we normalize request for locality group
3066  * Group request are normalized to s_mb_group_prealloc, which goes to
3067  * s_strip if we set the same via mount option.
3068  * s_mb_group_prealloc can be configured via
3069  * /sys/fs/ext4/<partition>/mb_group_prealloc
3070  *
3071  * XXX: should we try to preallocate more than the group has now?
3072  */
3073 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3074 {
3075 	struct super_block *sb = ac->ac_sb;
3076 	struct ext4_locality_group *lg = ac->ac_lg;
3077 
3078 	BUG_ON(lg == NULL);
3079 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3080 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
3081 		current->pid, ac->ac_g_ex.fe_len);
3082 }
3083 
3084 /*
3085  * Normalization means making request better in terms of
3086  * size and alignment
3087  */
3088 static noinline_for_stack void
3089 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3090 				struct ext4_allocation_request *ar)
3091 {
3092 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3093 	int bsbits, max;
3094 	ext4_lblk_t end;
3095 	loff_t size, start_off;
3096 	loff_t orig_size __maybe_unused;
3097 	ext4_lblk_t start;
3098 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3099 	struct ext4_prealloc_space *pa;
3100 
3101 	/* do normalize only data requests, metadata requests
3102 	   do not need preallocation */
3103 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3104 		return;
3105 
3106 	/* sometime caller may want exact blocks */
3107 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3108 		return;
3109 
3110 	/* caller may indicate that preallocation isn't
3111 	 * required (it's a tail, for example) */
3112 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3113 		return;
3114 
3115 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3116 		ext4_mb_normalize_group_request(ac);
3117 		return ;
3118 	}
3119 
3120 	bsbits = ac->ac_sb->s_blocksize_bits;
3121 
3122 	/* first, let's learn actual file size
3123 	 * given current request is allocated */
3124 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3125 	size = size << bsbits;
3126 	if (size < i_size_read(ac->ac_inode))
3127 		size = i_size_read(ac->ac_inode);
3128 	orig_size = size;
3129 
3130 	/* max size of free chunks */
3131 	max = 2 << bsbits;
3132 
3133 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3134 		(req <= (size) || max <= (chunk_size))
3135 
3136 	/* first, try to predict filesize */
3137 	/* XXX: should this table be tunable? */
3138 	start_off = 0;
3139 	if (size <= 16 * 1024) {
3140 		size = 16 * 1024;
3141 	} else if (size <= 32 * 1024) {
3142 		size = 32 * 1024;
3143 	} else if (size <= 64 * 1024) {
3144 		size = 64 * 1024;
3145 	} else if (size <= 128 * 1024) {
3146 		size = 128 * 1024;
3147 	} else if (size <= 256 * 1024) {
3148 		size = 256 * 1024;
3149 	} else if (size <= 512 * 1024) {
3150 		size = 512 * 1024;
3151 	} else if (size <= 1024 * 1024) {
3152 		size = 1024 * 1024;
3153 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3154 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3155 						(21 - bsbits)) << 21;
3156 		size = 2 * 1024 * 1024;
3157 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3158 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3159 							(22 - bsbits)) << 22;
3160 		size = 4 * 1024 * 1024;
3161 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3162 					(8<<20)>>bsbits, max, 8 * 1024)) {
3163 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3164 							(23 - bsbits)) << 23;
3165 		size = 8 * 1024 * 1024;
3166 	} else {
3167 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3168 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3169 					      ac->ac_o_ex.fe_len) << bsbits;
3170 	}
3171 	size = size >> bsbits;
3172 	start = start_off >> bsbits;
3173 
3174 	/* don't cover already allocated blocks in selected range */
3175 	if (ar->pleft && start <= ar->lleft) {
3176 		size -= ar->lleft + 1 - start;
3177 		start = ar->lleft + 1;
3178 	}
3179 	if (ar->pright && start + size - 1 >= ar->lright)
3180 		size -= start + size - ar->lright;
3181 
3182 	/*
3183 	 * Trim allocation request for filesystems with artificially small
3184 	 * groups.
3185 	 */
3186 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3187 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3188 
3189 	end = start + size;
3190 
3191 	/* check we don't cross already preallocated blocks */
3192 	rcu_read_lock();
3193 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3194 		ext4_lblk_t pa_end;
3195 
3196 		if (pa->pa_deleted)
3197 			continue;
3198 		spin_lock(&pa->pa_lock);
3199 		if (pa->pa_deleted) {
3200 			spin_unlock(&pa->pa_lock);
3201 			continue;
3202 		}
3203 
3204 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3205 						  pa->pa_len);
3206 
3207 		/* PA must not overlap original request */
3208 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3209 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3210 
3211 		/* skip PAs this normalized request doesn't overlap with */
3212 		if (pa->pa_lstart >= end || pa_end <= start) {
3213 			spin_unlock(&pa->pa_lock);
3214 			continue;
3215 		}
3216 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3217 
3218 		/* adjust start or end to be adjacent to this pa */
3219 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3220 			BUG_ON(pa_end < start);
3221 			start = pa_end;
3222 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3223 			BUG_ON(pa->pa_lstart > end);
3224 			end = pa->pa_lstart;
3225 		}
3226 		spin_unlock(&pa->pa_lock);
3227 	}
3228 	rcu_read_unlock();
3229 	size = end - start;
3230 
3231 	/* XXX: extra loop to check we really don't overlap preallocations */
3232 	rcu_read_lock();
3233 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3234 		ext4_lblk_t pa_end;
3235 
3236 		spin_lock(&pa->pa_lock);
3237 		if (pa->pa_deleted == 0) {
3238 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3239 							  pa->pa_len);
3240 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3241 		}
3242 		spin_unlock(&pa->pa_lock);
3243 	}
3244 	rcu_read_unlock();
3245 
3246 	if (start + size <= ac->ac_o_ex.fe_logical &&
3247 			start > ac->ac_o_ex.fe_logical) {
3248 		ext4_msg(ac->ac_sb, KERN_ERR,
3249 			 "start %lu, size %lu, fe_logical %lu",
3250 			 (unsigned long) start, (unsigned long) size,
3251 			 (unsigned long) ac->ac_o_ex.fe_logical);
3252 		BUG();
3253 	}
3254 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3255 
3256 	/* now prepare goal request */
3257 
3258 	/* XXX: is it better to align blocks WRT to logical
3259 	 * placement or satisfy big request as is */
3260 	ac->ac_g_ex.fe_logical = start;
3261 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3262 
3263 	/* define goal start in order to merge */
3264 	if (ar->pright && (ar->lright == (start + size))) {
3265 		/* merge to the right */
3266 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3267 						&ac->ac_f_ex.fe_group,
3268 						&ac->ac_f_ex.fe_start);
3269 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3270 	}
3271 	if (ar->pleft && (ar->lleft + 1 == start)) {
3272 		/* merge to the left */
3273 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3274 						&ac->ac_f_ex.fe_group,
3275 						&ac->ac_f_ex.fe_start);
3276 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3277 	}
3278 
3279 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3280 		(unsigned) orig_size, (unsigned) start);
3281 }
3282 
3283 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3284 {
3285 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3286 
3287 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3288 		atomic_inc(&sbi->s_bal_reqs);
3289 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3290 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3291 			atomic_inc(&sbi->s_bal_success);
3292 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3293 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3294 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3295 			atomic_inc(&sbi->s_bal_goals);
3296 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3297 			atomic_inc(&sbi->s_bal_breaks);
3298 	}
3299 
3300 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3301 		trace_ext4_mballoc_alloc(ac);
3302 	else
3303 		trace_ext4_mballoc_prealloc(ac);
3304 }
3305 
3306 /*
3307  * Called on failure; free up any blocks from the inode PA for this
3308  * context.  We don't need this for MB_GROUP_PA because we only change
3309  * pa_free in ext4_mb_release_context(), but on failure, we've already
3310  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3311  */
3312 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3313 {
3314 	struct ext4_prealloc_space *pa = ac->ac_pa;
3315 	struct ext4_buddy e4b;
3316 	int err;
3317 
3318 	if (pa == NULL) {
3319 		if (ac->ac_f_ex.fe_len == 0)
3320 			return;
3321 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3322 		if (err) {
3323 			/*
3324 			 * This should never happen since we pin the
3325 			 * pages in the ext4_allocation_context so
3326 			 * ext4_mb_load_buddy() should never fail.
3327 			 */
3328 			WARN(1, "mb_load_buddy failed (%d)", err);
3329 			return;
3330 		}
3331 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3332 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3333 			       ac->ac_f_ex.fe_len);
3334 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3335 		ext4_mb_unload_buddy(&e4b);
3336 		return;
3337 	}
3338 	if (pa->pa_type == MB_INODE_PA)
3339 		pa->pa_free += ac->ac_b_ex.fe_len;
3340 }
3341 
3342 /*
3343  * use blocks preallocated to inode
3344  */
3345 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3346 				struct ext4_prealloc_space *pa)
3347 {
3348 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3349 	ext4_fsblk_t start;
3350 	ext4_fsblk_t end;
3351 	int len;
3352 
3353 	/* found preallocated blocks, use them */
3354 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3355 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3356 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3357 	len = EXT4_NUM_B2C(sbi, end - start);
3358 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3359 					&ac->ac_b_ex.fe_start);
3360 	ac->ac_b_ex.fe_len = len;
3361 	ac->ac_status = AC_STATUS_FOUND;
3362 	ac->ac_pa = pa;
3363 
3364 	BUG_ON(start < pa->pa_pstart);
3365 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3366 	BUG_ON(pa->pa_free < len);
3367 	pa->pa_free -= len;
3368 
3369 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3370 }
3371 
3372 /*
3373  * use blocks preallocated to locality group
3374  */
3375 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3376 				struct ext4_prealloc_space *pa)
3377 {
3378 	unsigned int len = ac->ac_o_ex.fe_len;
3379 
3380 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3381 					&ac->ac_b_ex.fe_group,
3382 					&ac->ac_b_ex.fe_start);
3383 	ac->ac_b_ex.fe_len = len;
3384 	ac->ac_status = AC_STATUS_FOUND;
3385 	ac->ac_pa = pa;
3386 
3387 	/* we don't correct pa_pstart or pa_plen here to avoid
3388 	 * possible race when the group is being loaded concurrently
3389 	 * instead we correct pa later, after blocks are marked
3390 	 * in on-disk bitmap -- see ext4_mb_release_context()
3391 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3392 	 */
3393 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3394 }
3395 
3396 /*
3397  * Return the prealloc space that have minimal distance
3398  * from the goal block. @cpa is the prealloc
3399  * space that is having currently known minimal distance
3400  * from the goal block.
3401  */
3402 static struct ext4_prealloc_space *
3403 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3404 			struct ext4_prealloc_space *pa,
3405 			struct ext4_prealloc_space *cpa)
3406 {
3407 	ext4_fsblk_t cur_distance, new_distance;
3408 
3409 	if (cpa == NULL) {
3410 		atomic_inc(&pa->pa_count);
3411 		return pa;
3412 	}
3413 	cur_distance = abs(goal_block - cpa->pa_pstart);
3414 	new_distance = abs(goal_block - pa->pa_pstart);
3415 
3416 	if (cur_distance <= new_distance)
3417 		return cpa;
3418 
3419 	/* drop the previous reference */
3420 	atomic_dec(&cpa->pa_count);
3421 	atomic_inc(&pa->pa_count);
3422 	return pa;
3423 }
3424 
3425 /*
3426  * search goal blocks in preallocated space
3427  */
3428 static noinline_for_stack int
3429 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3430 {
3431 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3432 	int order, i;
3433 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3434 	struct ext4_locality_group *lg;
3435 	struct ext4_prealloc_space *pa, *cpa = NULL;
3436 	ext4_fsblk_t goal_block;
3437 
3438 	/* only data can be preallocated */
3439 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3440 		return 0;
3441 
3442 	/* first, try per-file preallocation */
3443 	rcu_read_lock();
3444 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3445 
3446 		/* all fields in this condition don't change,
3447 		 * so we can skip locking for them */
3448 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3449 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3450 					       EXT4_C2B(sbi, pa->pa_len)))
3451 			continue;
3452 
3453 		/* non-extent files can't have physical blocks past 2^32 */
3454 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3455 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3456 		     EXT4_MAX_BLOCK_FILE_PHYS))
3457 			continue;
3458 
3459 		/* found preallocated blocks, use them */
3460 		spin_lock(&pa->pa_lock);
3461 		if (pa->pa_deleted == 0 && pa->pa_free) {
3462 			atomic_inc(&pa->pa_count);
3463 			ext4_mb_use_inode_pa(ac, pa);
3464 			spin_unlock(&pa->pa_lock);
3465 			ac->ac_criteria = 10;
3466 			rcu_read_unlock();
3467 			return 1;
3468 		}
3469 		spin_unlock(&pa->pa_lock);
3470 	}
3471 	rcu_read_unlock();
3472 
3473 	/* can we use group allocation? */
3474 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3475 		return 0;
3476 
3477 	/* inode may have no locality group for some reason */
3478 	lg = ac->ac_lg;
3479 	if (lg == NULL)
3480 		return 0;
3481 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3482 	if (order > PREALLOC_TB_SIZE - 1)
3483 		/* The max size of hash table is PREALLOC_TB_SIZE */
3484 		order = PREALLOC_TB_SIZE - 1;
3485 
3486 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3487 	/*
3488 	 * search for the prealloc space that is having
3489 	 * minimal distance from the goal block.
3490 	 */
3491 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3492 		rcu_read_lock();
3493 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3494 					pa_inode_list) {
3495 			spin_lock(&pa->pa_lock);
3496 			if (pa->pa_deleted == 0 &&
3497 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3498 
3499 				cpa = ext4_mb_check_group_pa(goal_block,
3500 								pa, cpa);
3501 			}
3502 			spin_unlock(&pa->pa_lock);
3503 		}
3504 		rcu_read_unlock();
3505 	}
3506 	if (cpa) {
3507 		ext4_mb_use_group_pa(ac, cpa);
3508 		ac->ac_criteria = 20;
3509 		return 1;
3510 	}
3511 	return 0;
3512 }
3513 
3514 /*
3515  * the function goes through all block freed in the group
3516  * but not yet committed and marks them used in in-core bitmap.
3517  * buddy must be generated from this bitmap
3518  * Need to be called with the ext4 group lock held
3519  */
3520 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3521 						ext4_group_t group)
3522 {
3523 	struct rb_node *n;
3524 	struct ext4_group_info *grp;
3525 	struct ext4_free_data *entry;
3526 
3527 	grp = ext4_get_group_info(sb, group);
3528 	n = rb_first(&(grp->bb_free_root));
3529 
3530 	while (n) {
3531 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3532 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3533 		n = rb_next(n);
3534 	}
3535 	return;
3536 }
3537 
3538 /*
3539  * the function goes through all preallocation in this group and marks them
3540  * used in in-core bitmap. buddy must be generated from this bitmap
3541  * Need to be called with ext4 group lock held
3542  */
3543 static noinline_for_stack
3544 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3545 					ext4_group_t group)
3546 {
3547 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3548 	struct ext4_prealloc_space *pa;
3549 	struct list_head *cur;
3550 	ext4_group_t groupnr;
3551 	ext4_grpblk_t start;
3552 	int preallocated = 0;
3553 	int len;
3554 
3555 	/* all form of preallocation discards first load group,
3556 	 * so the only competing code is preallocation use.
3557 	 * we don't need any locking here
3558 	 * notice we do NOT ignore preallocations with pa_deleted
3559 	 * otherwise we could leave used blocks available for
3560 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3561 	 * is dropping preallocation
3562 	 */
3563 	list_for_each(cur, &grp->bb_prealloc_list) {
3564 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3565 		spin_lock(&pa->pa_lock);
3566 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3567 					     &groupnr, &start);
3568 		len = pa->pa_len;
3569 		spin_unlock(&pa->pa_lock);
3570 		if (unlikely(len == 0))
3571 			continue;
3572 		BUG_ON(groupnr != group);
3573 		ext4_set_bits(bitmap, start, len);
3574 		preallocated += len;
3575 	}
3576 	mb_debug(1, "preallocated %u for group %u\n", preallocated, group);
3577 }
3578 
3579 static void ext4_mb_pa_callback(struct rcu_head *head)
3580 {
3581 	struct ext4_prealloc_space *pa;
3582 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3583 
3584 	BUG_ON(atomic_read(&pa->pa_count));
3585 	BUG_ON(pa->pa_deleted == 0);
3586 	kmem_cache_free(ext4_pspace_cachep, pa);
3587 }
3588 
3589 /*
3590  * drops a reference to preallocated space descriptor
3591  * if this was the last reference and the space is consumed
3592  */
3593 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3594 			struct super_block *sb, struct ext4_prealloc_space *pa)
3595 {
3596 	ext4_group_t grp;
3597 	ext4_fsblk_t grp_blk;
3598 
3599 	/* in this short window concurrent discard can set pa_deleted */
3600 	spin_lock(&pa->pa_lock);
3601 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3602 		spin_unlock(&pa->pa_lock);
3603 		return;
3604 	}
3605 
3606 	if (pa->pa_deleted == 1) {
3607 		spin_unlock(&pa->pa_lock);
3608 		return;
3609 	}
3610 
3611 	pa->pa_deleted = 1;
3612 	spin_unlock(&pa->pa_lock);
3613 
3614 	grp_blk = pa->pa_pstart;
3615 	/*
3616 	 * If doing group-based preallocation, pa_pstart may be in the
3617 	 * next group when pa is used up
3618 	 */
3619 	if (pa->pa_type == MB_GROUP_PA)
3620 		grp_blk--;
3621 
3622 	grp = ext4_get_group_number(sb, grp_blk);
3623 
3624 	/*
3625 	 * possible race:
3626 	 *
3627 	 *  P1 (buddy init)			P2 (regular allocation)
3628 	 *					find block B in PA
3629 	 *  copy on-disk bitmap to buddy
3630 	 *  					mark B in on-disk bitmap
3631 	 *					drop PA from group
3632 	 *  mark all PAs in buddy
3633 	 *
3634 	 * thus, P1 initializes buddy with B available. to prevent this
3635 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3636 	 * against that pair
3637 	 */
3638 	ext4_lock_group(sb, grp);
3639 	list_del(&pa->pa_group_list);
3640 	ext4_unlock_group(sb, grp);
3641 
3642 	spin_lock(pa->pa_obj_lock);
3643 	list_del_rcu(&pa->pa_inode_list);
3644 	spin_unlock(pa->pa_obj_lock);
3645 
3646 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3647 }
3648 
3649 /*
3650  * creates new preallocated space for given inode
3651  */
3652 static noinline_for_stack int
3653 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3654 {
3655 	struct super_block *sb = ac->ac_sb;
3656 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3657 	struct ext4_prealloc_space *pa;
3658 	struct ext4_group_info *grp;
3659 	struct ext4_inode_info *ei;
3660 
3661 	/* preallocate only when found space is larger then requested */
3662 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3663 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3664 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3665 
3666 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3667 	if (pa == NULL)
3668 		return -ENOMEM;
3669 
3670 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3671 		int winl;
3672 		int wins;
3673 		int win;
3674 		int offs;
3675 
3676 		/* we can't allocate as much as normalizer wants.
3677 		 * so, found space must get proper lstart
3678 		 * to cover original request */
3679 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3680 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3681 
3682 		/* we're limited by original request in that
3683 		 * logical block must be covered any way
3684 		 * winl is window we can move our chunk within */
3685 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3686 
3687 		/* also, we should cover whole original request */
3688 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3689 
3690 		/* the smallest one defines real window */
3691 		win = min(winl, wins);
3692 
3693 		offs = ac->ac_o_ex.fe_logical %
3694 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3695 		if (offs && offs < win)
3696 			win = offs;
3697 
3698 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3699 			EXT4_NUM_B2C(sbi, win);
3700 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3701 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3702 	}
3703 
3704 	/* preallocation can change ac_b_ex, thus we store actually
3705 	 * allocated blocks for history */
3706 	ac->ac_f_ex = ac->ac_b_ex;
3707 
3708 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3709 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3710 	pa->pa_len = ac->ac_b_ex.fe_len;
3711 	pa->pa_free = pa->pa_len;
3712 	atomic_set(&pa->pa_count, 1);
3713 	spin_lock_init(&pa->pa_lock);
3714 	INIT_LIST_HEAD(&pa->pa_inode_list);
3715 	INIT_LIST_HEAD(&pa->pa_group_list);
3716 	pa->pa_deleted = 0;
3717 	pa->pa_type = MB_INODE_PA;
3718 
3719 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3720 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3721 	trace_ext4_mb_new_inode_pa(ac, pa);
3722 
3723 	ext4_mb_use_inode_pa(ac, pa);
3724 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3725 
3726 	ei = EXT4_I(ac->ac_inode);
3727 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3728 
3729 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3730 	pa->pa_inode = ac->ac_inode;
3731 
3732 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3733 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3734 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3735 
3736 	spin_lock(pa->pa_obj_lock);
3737 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3738 	spin_unlock(pa->pa_obj_lock);
3739 
3740 	return 0;
3741 }
3742 
3743 /*
3744  * creates new preallocated space for locality group inodes belongs to
3745  */
3746 static noinline_for_stack int
3747 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3748 {
3749 	struct super_block *sb = ac->ac_sb;
3750 	struct ext4_locality_group *lg;
3751 	struct ext4_prealloc_space *pa;
3752 	struct ext4_group_info *grp;
3753 
3754 	/* preallocate only when found space is larger then requested */
3755 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3756 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3757 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3758 
3759 	BUG_ON(ext4_pspace_cachep == NULL);
3760 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3761 	if (pa == NULL)
3762 		return -ENOMEM;
3763 
3764 	/* preallocation can change ac_b_ex, thus we store actually
3765 	 * allocated blocks for history */
3766 	ac->ac_f_ex = ac->ac_b_ex;
3767 
3768 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3769 	pa->pa_lstart = pa->pa_pstart;
3770 	pa->pa_len = ac->ac_b_ex.fe_len;
3771 	pa->pa_free = pa->pa_len;
3772 	atomic_set(&pa->pa_count, 1);
3773 	spin_lock_init(&pa->pa_lock);
3774 	INIT_LIST_HEAD(&pa->pa_inode_list);
3775 	INIT_LIST_HEAD(&pa->pa_group_list);
3776 	pa->pa_deleted = 0;
3777 	pa->pa_type = MB_GROUP_PA;
3778 
3779 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3780 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3781 	trace_ext4_mb_new_group_pa(ac, pa);
3782 
3783 	ext4_mb_use_group_pa(ac, pa);
3784 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3785 
3786 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3787 	lg = ac->ac_lg;
3788 	BUG_ON(lg == NULL);
3789 
3790 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3791 	pa->pa_inode = NULL;
3792 
3793 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3794 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3795 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3796 
3797 	/*
3798 	 * We will later add the new pa to the right bucket
3799 	 * after updating the pa_free in ext4_mb_release_context
3800 	 */
3801 	return 0;
3802 }
3803 
3804 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3805 {
3806 	int err;
3807 
3808 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3809 		err = ext4_mb_new_group_pa(ac);
3810 	else
3811 		err = ext4_mb_new_inode_pa(ac);
3812 	return err;
3813 }
3814 
3815 /*
3816  * finds all unused blocks in on-disk bitmap, frees them in
3817  * in-core bitmap and buddy.
3818  * @pa must be unlinked from inode and group lists, so that
3819  * nobody else can find/use it.
3820  * the caller MUST hold group/inode locks.
3821  * TODO: optimize the case when there are no in-core structures yet
3822  */
3823 static noinline_for_stack int
3824 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3825 			struct ext4_prealloc_space *pa)
3826 {
3827 	struct super_block *sb = e4b->bd_sb;
3828 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3829 	unsigned int end;
3830 	unsigned int next;
3831 	ext4_group_t group;
3832 	ext4_grpblk_t bit;
3833 	unsigned long long grp_blk_start;
3834 	int err = 0;
3835 	int free = 0;
3836 
3837 	BUG_ON(pa->pa_deleted == 0);
3838 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3839 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3840 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3841 	end = bit + pa->pa_len;
3842 
3843 	while (bit < end) {
3844 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3845 		if (bit >= end)
3846 			break;
3847 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3848 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3849 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3850 			 (unsigned) next - bit, (unsigned) group);
3851 		free += next - bit;
3852 
3853 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3854 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3855 						    EXT4_C2B(sbi, bit)),
3856 					       next - bit);
3857 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3858 		bit = next + 1;
3859 	}
3860 	if (free != pa->pa_free) {
3861 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3862 			 "pa %p: logic %lu, phys. %lu, len %lu",
3863 			 pa, (unsigned long) pa->pa_lstart,
3864 			 (unsigned long) pa->pa_pstart,
3865 			 (unsigned long) pa->pa_len);
3866 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3867 					free, pa->pa_free);
3868 		/*
3869 		 * pa is already deleted so we use the value obtained
3870 		 * from the bitmap and continue.
3871 		 */
3872 	}
3873 	atomic_add(free, &sbi->s_mb_discarded);
3874 
3875 	return err;
3876 }
3877 
3878 static noinline_for_stack int
3879 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3880 				struct ext4_prealloc_space *pa)
3881 {
3882 	struct super_block *sb = e4b->bd_sb;
3883 	ext4_group_t group;
3884 	ext4_grpblk_t bit;
3885 
3886 	trace_ext4_mb_release_group_pa(sb, pa);
3887 	BUG_ON(pa->pa_deleted == 0);
3888 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3889 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3890 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3891 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3892 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3893 
3894 	return 0;
3895 }
3896 
3897 /*
3898  * releases all preallocations in given group
3899  *
3900  * first, we need to decide discard policy:
3901  * - when do we discard
3902  *   1) ENOSPC
3903  * - how many do we discard
3904  *   1) how many requested
3905  */
3906 static noinline_for_stack int
3907 ext4_mb_discard_group_preallocations(struct super_block *sb,
3908 					ext4_group_t group, int needed)
3909 {
3910 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3911 	struct buffer_head *bitmap_bh = NULL;
3912 	struct ext4_prealloc_space *pa, *tmp;
3913 	struct list_head list;
3914 	struct ext4_buddy e4b;
3915 	int err;
3916 	int busy = 0;
3917 	int free = 0;
3918 
3919 	mb_debug(1, "discard preallocation for group %u\n", group);
3920 
3921 	if (list_empty(&grp->bb_prealloc_list))
3922 		return 0;
3923 
3924 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3925 	if (IS_ERR(bitmap_bh)) {
3926 		err = PTR_ERR(bitmap_bh);
3927 		ext4_error(sb, "Error %d reading block bitmap for %u",
3928 			   err, group);
3929 		return 0;
3930 	}
3931 
3932 	err = ext4_mb_load_buddy(sb, group, &e4b);
3933 	if (err) {
3934 		ext4_warning(sb, "Error %d loading buddy information for %u",
3935 			     err, group);
3936 		put_bh(bitmap_bh);
3937 		return 0;
3938 	}
3939 
3940 	if (needed == 0)
3941 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3942 
3943 	INIT_LIST_HEAD(&list);
3944 repeat:
3945 	ext4_lock_group(sb, group);
3946 	list_for_each_entry_safe(pa, tmp,
3947 				&grp->bb_prealloc_list, pa_group_list) {
3948 		spin_lock(&pa->pa_lock);
3949 		if (atomic_read(&pa->pa_count)) {
3950 			spin_unlock(&pa->pa_lock);
3951 			busy = 1;
3952 			continue;
3953 		}
3954 		if (pa->pa_deleted) {
3955 			spin_unlock(&pa->pa_lock);
3956 			continue;
3957 		}
3958 
3959 		/* seems this one can be freed ... */
3960 		pa->pa_deleted = 1;
3961 
3962 		/* we can trust pa_free ... */
3963 		free += pa->pa_free;
3964 
3965 		spin_unlock(&pa->pa_lock);
3966 
3967 		list_del(&pa->pa_group_list);
3968 		list_add(&pa->u.pa_tmp_list, &list);
3969 	}
3970 
3971 	/* if we still need more blocks and some PAs were used, try again */
3972 	if (free < needed && busy) {
3973 		busy = 0;
3974 		ext4_unlock_group(sb, group);
3975 		cond_resched();
3976 		goto repeat;
3977 	}
3978 
3979 	/* found anything to free? */
3980 	if (list_empty(&list)) {
3981 		BUG_ON(free != 0);
3982 		goto out;
3983 	}
3984 
3985 	/* now free all selected PAs */
3986 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3987 
3988 		/* remove from object (inode or locality group) */
3989 		spin_lock(pa->pa_obj_lock);
3990 		list_del_rcu(&pa->pa_inode_list);
3991 		spin_unlock(pa->pa_obj_lock);
3992 
3993 		if (pa->pa_type == MB_GROUP_PA)
3994 			ext4_mb_release_group_pa(&e4b, pa);
3995 		else
3996 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3997 
3998 		list_del(&pa->u.pa_tmp_list);
3999 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4000 	}
4001 
4002 out:
4003 	ext4_unlock_group(sb, group);
4004 	ext4_mb_unload_buddy(&e4b);
4005 	put_bh(bitmap_bh);
4006 	return free;
4007 }
4008 
4009 /*
4010  * releases all non-used preallocated blocks for given inode
4011  *
4012  * It's important to discard preallocations under i_data_sem
4013  * We don't want another block to be served from the prealloc
4014  * space when we are discarding the inode prealloc space.
4015  *
4016  * FIXME!! Make sure it is valid at all the call sites
4017  */
4018 void ext4_discard_preallocations(struct inode *inode)
4019 {
4020 	struct ext4_inode_info *ei = EXT4_I(inode);
4021 	struct super_block *sb = inode->i_sb;
4022 	struct buffer_head *bitmap_bh = NULL;
4023 	struct ext4_prealloc_space *pa, *tmp;
4024 	ext4_group_t group = 0;
4025 	struct list_head list;
4026 	struct ext4_buddy e4b;
4027 	int err;
4028 
4029 	if (!S_ISREG(inode->i_mode)) {
4030 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4031 		return;
4032 	}
4033 
4034 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4035 	trace_ext4_discard_preallocations(inode);
4036 
4037 	INIT_LIST_HEAD(&list);
4038 
4039 repeat:
4040 	/* first, collect all pa's in the inode */
4041 	spin_lock(&ei->i_prealloc_lock);
4042 	while (!list_empty(&ei->i_prealloc_list)) {
4043 		pa = list_entry(ei->i_prealloc_list.next,
4044 				struct ext4_prealloc_space, pa_inode_list);
4045 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4046 		spin_lock(&pa->pa_lock);
4047 		if (atomic_read(&pa->pa_count)) {
4048 			/* this shouldn't happen often - nobody should
4049 			 * use preallocation while we're discarding it */
4050 			spin_unlock(&pa->pa_lock);
4051 			spin_unlock(&ei->i_prealloc_lock);
4052 			ext4_msg(sb, KERN_ERR,
4053 				 "uh-oh! used pa while discarding");
4054 			WARN_ON(1);
4055 			schedule_timeout_uninterruptible(HZ);
4056 			goto repeat;
4057 
4058 		}
4059 		if (pa->pa_deleted == 0) {
4060 			pa->pa_deleted = 1;
4061 			spin_unlock(&pa->pa_lock);
4062 			list_del_rcu(&pa->pa_inode_list);
4063 			list_add(&pa->u.pa_tmp_list, &list);
4064 			continue;
4065 		}
4066 
4067 		/* someone is deleting pa right now */
4068 		spin_unlock(&pa->pa_lock);
4069 		spin_unlock(&ei->i_prealloc_lock);
4070 
4071 		/* we have to wait here because pa_deleted
4072 		 * doesn't mean pa is already unlinked from
4073 		 * the list. as we might be called from
4074 		 * ->clear_inode() the inode will get freed
4075 		 * and concurrent thread which is unlinking
4076 		 * pa from inode's list may access already
4077 		 * freed memory, bad-bad-bad */
4078 
4079 		/* XXX: if this happens too often, we can
4080 		 * add a flag to force wait only in case
4081 		 * of ->clear_inode(), but not in case of
4082 		 * regular truncate */
4083 		schedule_timeout_uninterruptible(HZ);
4084 		goto repeat;
4085 	}
4086 	spin_unlock(&ei->i_prealloc_lock);
4087 
4088 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4089 		BUG_ON(pa->pa_type != MB_INODE_PA);
4090 		group = ext4_get_group_number(sb, pa->pa_pstart);
4091 
4092 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4093 					     GFP_NOFS|__GFP_NOFAIL);
4094 		if (err) {
4095 			ext4_error(sb, "Error %d loading buddy information for %u",
4096 				   err, group);
4097 			continue;
4098 		}
4099 
4100 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4101 		if (IS_ERR(bitmap_bh)) {
4102 			err = PTR_ERR(bitmap_bh);
4103 			ext4_error(sb, "Error %d reading block bitmap for %u",
4104 					err, group);
4105 			ext4_mb_unload_buddy(&e4b);
4106 			continue;
4107 		}
4108 
4109 		ext4_lock_group(sb, group);
4110 		list_del(&pa->pa_group_list);
4111 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4112 		ext4_unlock_group(sb, group);
4113 
4114 		ext4_mb_unload_buddy(&e4b);
4115 		put_bh(bitmap_bh);
4116 
4117 		list_del(&pa->u.pa_tmp_list);
4118 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4119 	}
4120 }
4121 
4122 #ifdef CONFIG_EXT4_DEBUG
4123 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4124 {
4125 	struct super_block *sb = ac->ac_sb;
4126 	ext4_group_t ngroups, i;
4127 
4128 	if (!ext4_mballoc_debug ||
4129 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4130 		return;
4131 
4132 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4133 			" Allocation context details:");
4134 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4135 			ac->ac_status, ac->ac_flags);
4136 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4137 		 	"goal %lu/%lu/%lu@%lu, "
4138 			"best %lu/%lu/%lu@%lu cr %d",
4139 			(unsigned long)ac->ac_o_ex.fe_group,
4140 			(unsigned long)ac->ac_o_ex.fe_start,
4141 			(unsigned long)ac->ac_o_ex.fe_len,
4142 			(unsigned long)ac->ac_o_ex.fe_logical,
4143 			(unsigned long)ac->ac_g_ex.fe_group,
4144 			(unsigned long)ac->ac_g_ex.fe_start,
4145 			(unsigned long)ac->ac_g_ex.fe_len,
4146 			(unsigned long)ac->ac_g_ex.fe_logical,
4147 			(unsigned long)ac->ac_b_ex.fe_group,
4148 			(unsigned long)ac->ac_b_ex.fe_start,
4149 			(unsigned long)ac->ac_b_ex.fe_len,
4150 			(unsigned long)ac->ac_b_ex.fe_logical,
4151 			(int)ac->ac_criteria);
4152 	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4153 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4154 	ngroups = ext4_get_groups_count(sb);
4155 	for (i = 0; i < ngroups; i++) {
4156 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4157 		struct ext4_prealloc_space *pa;
4158 		ext4_grpblk_t start;
4159 		struct list_head *cur;
4160 		ext4_lock_group(sb, i);
4161 		list_for_each(cur, &grp->bb_prealloc_list) {
4162 			pa = list_entry(cur, struct ext4_prealloc_space,
4163 					pa_group_list);
4164 			spin_lock(&pa->pa_lock);
4165 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4166 						     NULL, &start);
4167 			spin_unlock(&pa->pa_lock);
4168 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4169 			       start, pa->pa_len);
4170 		}
4171 		ext4_unlock_group(sb, i);
4172 
4173 		if (grp->bb_free == 0)
4174 			continue;
4175 		printk(KERN_ERR "%u: %d/%d \n",
4176 		       i, grp->bb_free, grp->bb_fragments);
4177 	}
4178 	printk(KERN_ERR "\n");
4179 }
4180 #else
4181 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4182 {
4183 	return;
4184 }
4185 #endif
4186 
4187 /*
4188  * We use locality group preallocation for small size file. The size of the
4189  * file is determined by the current size or the resulting size after
4190  * allocation which ever is larger
4191  *
4192  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4193  */
4194 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4195 {
4196 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4197 	int bsbits = ac->ac_sb->s_blocksize_bits;
4198 	loff_t size, isize;
4199 
4200 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4201 		return;
4202 
4203 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4204 		return;
4205 
4206 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4207 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4208 		>> bsbits;
4209 
4210 	if ((size == isize) &&
4211 	    !ext4_fs_is_busy(sbi) &&
4212 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4213 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4214 		return;
4215 	}
4216 
4217 	if (sbi->s_mb_group_prealloc <= 0) {
4218 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4219 		return;
4220 	}
4221 
4222 	/* don't use group allocation for large files */
4223 	size = max(size, isize);
4224 	if (size > sbi->s_mb_stream_request) {
4225 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4226 		return;
4227 	}
4228 
4229 	BUG_ON(ac->ac_lg != NULL);
4230 	/*
4231 	 * locality group prealloc space are per cpu. The reason for having
4232 	 * per cpu locality group is to reduce the contention between block
4233 	 * request from multiple CPUs.
4234 	 */
4235 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4236 
4237 	/* we're going to use group allocation */
4238 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4239 
4240 	/* serialize all allocations in the group */
4241 	mutex_lock(&ac->ac_lg->lg_mutex);
4242 }
4243 
4244 static noinline_for_stack int
4245 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4246 				struct ext4_allocation_request *ar)
4247 {
4248 	struct super_block *sb = ar->inode->i_sb;
4249 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4250 	struct ext4_super_block *es = sbi->s_es;
4251 	ext4_group_t group;
4252 	unsigned int len;
4253 	ext4_fsblk_t goal;
4254 	ext4_grpblk_t block;
4255 
4256 	/* we can't allocate > group size */
4257 	len = ar->len;
4258 
4259 	/* just a dirty hack to filter too big requests  */
4260 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4261 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4262 
4263 	/* start searching from the goal */
4264 	goal = ar->goal;
4265 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4266 			goal >= ext4_blocks_count(es))
4267 		goal = le32_to_cpu(es->s_first_data_block);
4268 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4269 
4270 	/* set up allocation goals */
4271 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4272 	ac->ac_status = AC_STATUS_CONTINUE;
4273 	ac->ac_sb = sb;
4274 	ac->ac_inode = ar->inode;
4275 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4276 	ac->ac_o_ex.fe_group = group;
4277 	ac->ac_o_ex.fe_start = block;
4278 	ac->ac_o_ex.fe_len = len;
4279 	ac->ac_g_ex = ac->ac_o_ex;
4280 	ac->ac_flags = ar->flags;
4281 
4282 	/* we have to define context: we'll we work with a file or
4283 	 * locality group. this is a policy, actually */
4284 	ext4_mb_group_or_file(ac);
4285 
4286 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4287 			"left: %u/%u, right %u/%u to %swritable\n",
4288 			(unsigned) ar->len, (unsigned) ar->logical,
4289 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4290 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4291 			(unsigned) ar->lright, (unsigned) ar->pright,
4292 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4293 	return 0;
4294 
4295 }
4296 
4297 static noinline_for_stack void
4298 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4299 					struct ext4_locality_group *lg,
4300 					int order, int total_entries)
4301 {
4302 	ext4_group_t group = 0;
4303 	struct ext4_buddy e4b;
4304 	struct list_head discard_list;
4305 	struct ext4_prealloc_space *pa, *tmp;
4306 
4307 	mb_debug(1, "discard locality group preallocation\n");
4308 
4309 	INIT_LIST_HEAD(&discard_list);
4310 
4311 	spin_lock(&lg->lg_prealloc_lock);
4312 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4313 						pa_inode_list) {
4314 		spin_lock(&pa->pa_lock);
4315 		if (atomic_read(&pa->pa_count)) {
4316 			/*
4317 			 * This is the pa that we just used
4318 			 * for block allocation. So don't
4319 			 * free that
4320 			 */
4321 			spin_unlock(&pa->pa_lock);
4322 			continue;
4323 		}
4324 		if (pa->pa_deleted) {
4325 			spin_unlock(&pa->pa_lock);
4326 			continue;
4327 		}
4328 		/* only lg prealloc space */
4329 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4330 
4331 		/* seems this one can be freed ... */
4332 		pa->pa_deleted = 1;
4333 		spin_unlock(&pa->pa_lock);
4334 
4335 		list_del_rcu(&pa->pa_inode_list);
4336 		list_add(&pa->u.pa_tmp_list, &discard_list);
4337 
4338 		total_entries--;
4339 		if (total_entries <= 5) {
4340 			/*
4341 			 * we want to keep only 5 entries
4342 			 * allowing it to grow to 8. This
4343 			 * mak sure we don't call discard
4344 			 * soon for this list.
4345 			 */
4346 			break;
4347 		}
4348 	}
4349 	spin_unlock(&lg->lg_prealloc_lock);
4350 
4351 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4352 		int err;
4353 
4354 		group = ext4_get_group_number(sb, pa->pa_pstart);
4355 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4356 					     GFP_NOFS|__GFP_NOFAIL);
4357 		if (err) {
4358 			ext4_error(sb, "Error %d loading buddy information for %u",
4359 				   err, group);
4360 			continue;
4361 		}
4362 		ext4_lock_group(sb, group);
4363 		list_del(&pa->pa_group_list);
4364 		ext4_mb_release_group_pa(&e4b, pa);
4365 		ext4_unlock_group(sb, group);
4366 
4367 		ext4_mb_unload_buddy(&e4b);
4368 		list_del(&pa->u.pa_tmp_list);
4369 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4370 	}
4371 }
4372 
4373 /*
4374  * We have incremented pa_count. So it cannot be freed at this
4375  * point. Also we hold lg_mutex. So no parallel allocation is
4376  * possible from this lg. That means pa_free cannot be updated.
4377  *
4378  * A parallel ext4_mb_discard_group_preallocations is possible.
4379  * which can cause the lg_prealloc_list to be updated.
4380  */
4381 
4382 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4383 {
4384 	int order, added = 0, lg_prealloc_count = 1;
4385 	struct super_block *sb = ac->ac_sb;
4386 	struct ext4_locality_group *lg = ac->ac_lg;
4387 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4388 
4389 	order = fls(pa->pa_free) - 1;
4390 	if (order > PREALLOC_TB_SIZE - 1)
4391 		/* The max size of hash table is PREALLOC_TB_SIZE */
4392 		order = PREALLOC_TB_SIZE - 1;
4393 	/* Add the prealloc space to lg */
4394 	spin_lock(&lg->lg_prealloc_lock);
4395 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4396 						pa_inode_list) {
4397 		spin_lock(&tmp_pa->pa_lock);
4398 		if (tmp_pa->pa_deleted) {
4399 			spin_unlock(&tmp_pa->pa_lock);
4400 			continue;
4401 		}
4402 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4403 			/* Add to the tail of the previous entry */
4404 			list_add_tail_rcu(&pa->pa_inode_list,
4405 						&tmp_pa->pa_inode_list);
4406 			added = 1;
4407 			/*
4408 			 * we want to count the total
4409 			 * number of entries in the list
4410 			 */
4411 		}
4412 		spin_unlock(&tmp_pa->pa_lock);
4413 		lg_prealloc_count++;
4414 	}
4415 	if (!added)
4416 		list_add_tail_rcu(&pa->pa_inode_list,
4417 					&lg->lg_prealloc_list[order]);
4418 	spin_unlock(&lg->lg_prealloc_lock);
4419 
4420 	/* Now trim the list to be not more than 8 elements */
4421 	if (lg_prealloc_count > 8) {
4422 		ext4_mb_discard_lg_preallocations(sb, lg,
4423 						  order, lg_prealloc_count);
4424 		return;
4425 	}
4426 	return ;
4427 }
4428 
4429 /*
4430  * release all resource we used in allocation
4431  */
4432 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4433 {
4434 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4435 	struct ext4_prealloc_space *pa = ac->ac_pa;
4436 	if (pa) {
4437 		if (pa->pa_type == MB_GROUP_PA) {
4438 			/* see comment in ext4_mb_use_group_pa() */
4439 			spin_lock(&pa->pa_lock);
4440 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4441 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4442 			pa->pa_free -= ac->ac_b_ex.fe_len;
4443 			pa->pa_len -= ac->ac_b_ex.fe_len;
4444 			spin_unlock(&pa->pa_lock);
4445 		}
4446 	}
4447 	if (pa) {
4448 		/*
4449 		 * We want to add the pa to the right bucket.
4450 		 * Remove it from the list and while adding
4451 		 * make sure the list to which we are adding
4452 		 * doesn't grow big.
4453 		 */
4454 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4455 			spin_lock(pa->pa_obj_lock);
4456 			list_del_rcu(&pa->pa_inode_list);
4457 			spin_unlock(pa->pa_obj_lock);
4458 			ext4_mb_add_n_trim(ac);
4459 		}
4460 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4461 	}
4462 	if (ac->ac_bitmap_page)
4463 		put_page(ac->ac_bitmap_page);
4464 	if (ac->ac_buddy_page)
4465 		put_page(ac->ac_buddy_page);
4466 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4467 		mutex_unlock(&ac->ac_lg->lg_mutex);
4468 	ext4_mb_collect_stats(ac);
4469 	return 0;
4470 }
4471 
4472 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4473 {
4474 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4475 	int ret;
4476 	int freed = 0;
4477 
4478 	trace_ext4_mb_discard_preallocations(sb, needed);
4479 	for (i = 0; i < ngroups && needed > 0; i++) {
4480 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4481 		freed += ret;
4482 		needed -= ret;
4483 	}
4484 
4485 	return freed;
4486 }
4487 
4488 /*
4489  * Main entry point into mballoc to allocate blocks
4490  * it tries to use preallocation first, then falls back
4491  * to usual allocation
4492  */
4493 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4494 				struct ext4_allocation_request *ar, int *errp)
4495 {
4496 	int freed;
4497 	struct ext4_allocation_context *ac = NULL;
4498 	struct ext4_sb_info *sbi;
4499 	struct super_block *sb;
4500 	ext4_fsblk_t block = 0;
4501 	unsigned int inquota = 0;
4502 	unsigned int reserv_clstrs = 0;
4503 
4504 	might_sleep();
4505 	sb = ar->inode->i_sb;
4506 	sbi = EXT4_SB(sb);
4507 
4508 	trace_ext4_request_blocks(ar);
4509 
4510 	/* Allow to use superuser reservation for quota file */
4511 	if (ext4_is_quota_file(ar->inode))
4512 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4513 
4514 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4515 		/* Without delayed allocation we need to verify
4516 		 * there is enough free blocks to do block allocation
4517 		 * and verify allocation doesn't exceed the quota limits.
4518 		 */
4519 		while (ar->len &&
4520 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4521 
4522 			/* let others to free the space */
4523 			cond_resched();
4524 			ar->len = ar->len >> 1;
4525 		}
4526 		if (!ar->len) {
4527 			*errp = -ENOSPC;
4528 			return 0;
4529 		}
4530 		reserv_clstrs = ar->len;
4531 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4532 			dquot_alloc_block_nofail(ar->inode,
4533 						 EXT4_C2B(sbi, ar->len));
4534 		} else {
4535 			while (ar->len &&
4536 				dquot_alloc_block(ar->inode,
4537 						  EXT4_C2B(sbi, ar->len))) {
4538 
4539 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4540 				ar->len--;
4541 			}
4542 		}
4543 		inquota = ar->len;
4544 		if (ar->len == 0) {
4545 			*errp = -EDQUOT;
4546 			goto out;
4547 		}
4548 	}
4549 
4550 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4551 	if (!ac) {
4552 		ar->len = 0;
4553 		*errp = -ENOMEM;
4554 		goto out;
4555 	}
4556 
4557 	*errp = ext4_mb_initialize_context(ac, ar);
4558 	if (*errp) {
4559 		ar->len = 0;
4560 		goto out;
4561 	}
4562 
4563 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4564 	if (!ext4_mb_use_preallocated(ac)) {
4565 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4566 		ext4_mb_normalize_request(ac, ar);
4567 repeat:
4568 		/* allocate space in core */
4569 		*errp = ext4_mb_regular_allocator(ac);
4570 		if (*errp)
4571 			goto discard_and_exit;
4572 
4573 		/* as we've just preallocated more space than
4574 		 * user requested originally, we store allocated
4575 		 * space in a special descriptor */
4576 		if (ac->ac_status == AC_STATUS_FOUND &&
4577 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4578 			*errp = ext4_mb_new_preallocation(ac);
4579 		if (*errp) {
4580 		discard_and_exit:
4581 			ext4_discard_allocated_blocks(ac);
4582 			goto errout;
4583 		}
4584 	}
4585 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4586 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4587 		if (*errp) {
4588 			ext4_discard_allocated_blocks(ac);
4589 			goto errout;
4590 		} else {
4591 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4592 			ar->len = ac->ac_b_ex.fe_len;
4593 		}
4594 	} else {
4595 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4596 		if (freed)
4597 			goto repeat;
4598 		*errp = -ENOSPC;
4599 	}
4600 
4601 errout:
4602 	if (*errp) {
4603 		ac->ac_b_ex.fe_len = 0;
4604 		ar->len = 0;
4605 		ext4_mb_show_ac(ac);
4606 	}
4607 	ext4_mb_release_context(ac);
4608 out:
4609 	if (ac)
4610 		kmem_cache_free(ext4_ac_cachep, ac);
4611 	if (inquota && ar->len < inquota)
4612 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4613 	if (!ar->len) {
4614 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4615 			/* release all the reserved blocks if non delalloc */
4616 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4617 						reserv_clstrs);
4618 	}
4619 
4620 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4621 
4622 	return block;
4623 }
4624 
4625 /*
4626  * We can merge two free data extents only if the physical blocks
4627  * are contiguous, AND the extents were freed by the same transaction,
4628  * AND the blocks are associated with the same group.
4629  */
4630 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4631 					struct ext4_free_data *entry,
4632 					struct ext4_free_data *new_entry,
4633 					struct rb_root *entry_rb_root)
4634 {
4635 	if ((entry->efd_tid != new_entry->efd_tid) ||
4636 	    (entry->efd_group != new_entry->efd_group))
4637 		return;
4638 	if (entry->efd_start_cluster + entry->efd_count ==
4639 	    new_entry->efd_start_cluster) {
4640 		new_entry->efd_start_cluster = entry->efd_start_cluster;
4641 		new_entry->efd_count += entry->efd_count;
4642 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4643 		   entry->efd_start_cluster) {
4644 		new_entry->efd_count += entry->efd_count;
4645 	} else
4646 		return;
4647 	spin_lock(&sbi->s_md_lock);
4648 	list_del(&entry->efd_list);
4649 	spin_unlock(&sbi->s_md_lock);
4650 	rb_erase(&entry->efd_node, entry_rb_root);
4651 	kmem_cache_free(ext4_free_data_cachep, entry);
4652 }
4653 
4654 static noinline_for_stack int
4655 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4656 		      struct ext4_free_data *new_entry)
4657 {
4658 	ext4_group_t group = e4b->bd_group;
4659 	ext4_grpblk_t cluster;
4660 	ext4_grpblk_t clusters = new_entry->efd_count;
4661 	struct ext4_free_data *entry;
4662 	struct ext4_group_info *db = e4b->bd_info;
4663 	struct super_block *sb = e4b->bd_sb;
4664 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4665 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4666 	struct rb_node *parent = NULL, *new_node;
4667 
4668 	BUG_ON(!ext4_handle_valid(handle));
4669 	BUG_ON(e4b->bd_bitmap_page == NULL);
4670 	BUG_ON(e4b->bd_buddy_page == NULL);
4671 
4672 	new_node = &new_entry->efd_node;
4673 	cluster = new_entry->efd_start_cluster;
4674 
4675 	if (!*n) {
4676 		/* first free block exent. We need to
4677 		   protect buddy cache from being freed,
4678 		 * otherwise we'll refresh it from
4679 		 * on-disk bitmap and lose not-yet-available
4680 		 * blocks */
4681 		get_page(e4b->bd_buddy_page);
4682 		get_page(e4b->bd_bitmap_page);
4683 	}
4684 	while (*n) {
4685 		parent = *n;
4686 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4687 		if (cluster < entry->efd_start_cluster)
4688 			n = &(*n)->rb_left;
4689 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4690 			n = &(*n)->rb_right;
4691 		else {
4692 			ext4_grp_locked_error(sb, group, 0,
4693 				ext4_group_first_block_no(sb, group) +
4694 				EXT4_C2B(sbi, cluster),
4695 				"Block already on to-be-freed list");
4696 			return 0;
4697 		}
4698 	}
4699 
4700 	rb_link_node(new_node, parent, n);
4701 	rb_insert_color(new_node, &db->bb_free_root);
4702 
4703 	/* Now try to see the extent can be merged to left and right */
4704 	node = rb_prev(new_node);
4705 	if (node) {
4706 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4707 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
4708 					    &(db->bb_free_root));
4709 	}
4710 
4711 	node = rb_next(new_node);
4712 	if (node) {
4713 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4714 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
4715 					    &(db->bb_free_root));
4716 	}
4717 
4718 	spin_lock(&sbi->s_md_lock);
4719 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4720 	sbi->s_mb_free_pending += clusters;
4721 	spin_unlock(&sbi->s_md_lock);
4722 	return 0;
4723 }
4724 
4725 /**
4726  * ext4_free_blocks() -- Free given blocks and update quota
4727  * @handle:		handle for this transaction
4728  * @inode:		inode
4729  * @block:		start physical block to free
4730  * @count:		number of blocks to count
4731  * @flags:		flags used by ext4_free_blocks
4732  */
4733 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4734 		      struct buffer_head *bh, ext4_fsblk_t block,
4735 		      unsigned long count, int flags)
4736 {
4737 	struct buffer_head *bitmap_bh = NULL;
4738 	struct super_block *sb = inode->i_sb;
4739 	struct ext4_group_desc *gdp;
4740 	unsigned int overflow;
4741 	ext4_grpblk_t bit;
4742 	struct buffer_head *gd_bh;
4743 	ext4_group_t block_group;
4744 	struct ext4_sb_info *sbi;
4745 	struct ext4_buddy e4b;
4746 	unsigned int count_clusters;
4747 	int err = 0;
4748 	int ret;
4749 
4750 	might_sleep();
4751 	if (bh) {
4752 		if (block)
4753 			BUG_ON(block != bh->b_blocknr);
4754 		else
4755 			block = bh->b_blocknr;
4756 	}
4757 
4758 	sbi = EXT4_SB(sb);
4759 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4760 	    !ext4_data_block_valid(sbi, block, count)) {
4761 		ext4_error(sb, "Freeing blocks not in datazone - "
4762 			   "block = %llu, count = %lu", block, count);
4763 		goto error_return;
4764 	}
4765 
4766 	ext4_debug("freeing block %llu\n", block);
4767 	trace_ext4_free_blocks(inode, block, count, flags);
4768 
4769 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4770 		BUG_ON(count > 1);
4771 
4772 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4773 			    inode, bh, block);
4774 	}
4775 
4776 	/*
4777 	 * If the extent to be freed does not begin on a cluster
4778 	 * boundary, we need to deal with partial clusters at the
4779 	 * beginning and end of the extent.  Normally we will free
4780 	 * blocks at the beginning or the end unless we are explicitly
4781 	 * requested to avoid doing so.
4782 	 */
4783 	overflow = EXT4_PBLK_COFF(sbi, block);
4784 	if (overflow) {
4785 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4786 			overflow = sbi->s_cluster_ratio - overflow;
4787 			block += overflow;
4788 			if (count > overflow)
4789 				count -= overflow;
4790 			else
4791 				return;
4792 		} else {
4793 			block -= overflow;
4794 			count += overflow;
4795 		}
4796 	}
4797 	overflow = EXT4_LBLK_COFF(sbi, count);
4798 	if (overflow) {
4799 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4800 			if (count > overflow)
4801 				count -= overflow;
4802 			else
4803 				return;
4804 		} else
4805 			count += sbi->s_cluster_ratio - overflow;
4806 	}
4807 
4808 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4809 		int i;
4810 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4811 
4812 		for (i = 0; i < count; i++) {
4813 			cond_resched();
4814 			if (is_metadata)
4815 				bh = sb_find_get_block(inode->i_sb, block + i);
4816 			ext4_forget(handle, is_metadata, inode, bh, block + i);
4817 		}
4818 	}
4819 
4820 do_more:
4821 	overflow = 0;
4822 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4823 
4824 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4825 			ext4_get_group_info(sb, block_group))))
4826 		return;
4827 
4828 	/*
4829 	 * Check to see if we are freeing blocks across a group
4830 	 * boundary.
4831 	 */
4832 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4833 		overflow = EXT4_C2B(sbi, bit) + count -
4834 			EXT4_BLOCKS_PER_GROUP(sb);
4835 		count -= overflow;
4836 	}
4837 	count_clusters = EXT4_NUM_B2C(sbi, count);
4838 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4839 	if (IS_ERR(bitmap_bh)) {
4840 		err = PTR_ERR(bitmap_bh);
4841 		bitmap_bh = NULL;
4842 		goto error_return;
4843 	}
4844 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4845 	if (!gdp) {
4846 		err = -EIO;
4847 		goto error_return;
4848 	}
4849 
4850 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4851 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4852 	    in_range(block, ext4_inode_table(sb, gdp),
4853 		     EXT4_SB(sb)->s_itb_per_group) ||
4854 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4855 		     EXT4_SB(sb)->s_itb_per_group)) {
4856 
4857 		ext4_error(sb, "Freeing blocks in system zone - "
4858 			   "Block = %llu, count = %lu", block, count);
4859 		/* err = 0. ext4_std_error should be a no op */
4860 		goto error_return;
4861 	}
4862 
4863 	BUFFER_TRACE(bitmap_bh, "getting write access");
4864 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4865 	if (err)
4866 		goto error_return;
4867 
4868 	/*
4869 	 * We are about to modify some metadata.  Call the journal APIs
4870 	 * to unshare ->b_data if a currently-committing transaction is
4871 	 * using it
4872 	 */
4873 	BUFFER_TRACE(gd_bh, "get_write_access");
4874 	err = ext4_journal_get_write_access(handle, gd_bh);
4875 	if (err)
4876 		goto error_return;
4877 #ifdef AGGRESSIVE_CHECK
4878 	{
4879 		int i;
4880 		for (i = 0; i < count_clusters; i++)
4881 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4882 	}
4883 #endif
4884 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4885 
4886 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4887 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4888 				     GFP_NOFS|__GFP_NOFAIL);
4889 	if (err)
4890 		goto error_return;
4891 
4892 	/*
4893 	 * We need to make sure we don't reuse the freed block until after the
4894 	 * transaction is committed. We make an exception if the inode is to be
4895 	 * written in writeback mode since writeback mode has weak data
4896 	 * consistency guarantees.
4897 	 */
4898 	if (ext4_handle_valid(handle) &&
4899 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4900 	     !ext4_should_writeback_data(inode))) {
4901 		struct ext4_free_data *new_entry;
4902 		/*
4903 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4904 		 * to fail.
4905 		 */
4906 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4907 				GFP_NOFS|__GFP_NOFAIL);
4908 		new_entry->efd_start_cluster = bit;
4909 		new_entry->efd_group = block_group;
4910 		new_entry->efd_count = count_clusters;
4911 		new_entry->efd_tid = handle->h_transaction->t_tid;
4912 
4913 		ext4_lock_group(sb, block_group);
4914 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4915 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4916 	} else {
4917 		/* need to update group_info->bb_free and bitmap
4918 		 * with group lock held. generate_buddy look at
4919 		 * them with group lock_held
4920 		 */
4921 		if (test_opt(sb, DISCARD)) {
4922 			err = ext4_issue_discard(sb, block_group, bit, count,
4923 						 NULL);
4924 			if (err && err != -EOPNOTSUPP)
4925 				ext4_msg(sb, KERN_WARNING, "discard request in"
4926 					 " group:%d block:%d count:%lu failed"
4927 					 " with %d", block_group, bit, count,
4928 					 err);
4929 		} else
4930 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4931 
4932 		ext4_lock_group(sb, block_group);
4933 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4934 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4935 	}
4936 
4937 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4938 	ext4_free_group_clusters_set(sb, gdp, ret);
4939 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4940 	ext4_group_desc_csum_set(sb, block_group, gdp);
4941 	ext4_unlock_group(sb, block_group);
4942 
4943 	if (sbi->s_log_groups_per_flex) {
4944 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4945 		atomic64_add(count_clusters,
4946 			     &sbi->s_flex_groups[flex_group].free_clusters);
4947 	}
4948 
4949 	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4950 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4951 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4952 
4953 	ext4_mb_unload_buddy(&e4b);
4954 
4955 	/* We dirtied the bitmap block */
4956 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4957 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4958 
4959 	/* And the group descriptor block */
4960 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4961 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4962 	if (!err)
4963 		err = ret;
4964 
4965 	if (overflow && !err) {
4966 		block += count;
4967 		count = overflow;
4968 		put_bh(bitmap_bh);
4969 		goto do_more;
4970 	}
4971 error_return:
4972 	brelse(bitmap_bh);
4973 	ext4_std_error(sb, err);
4974 	return;
4975 }
4976 
4977 /**
4978  * ext4_group_add_blocks() -- Add given blocks to an existing group
4979  * @handle:			handle to this transaction
4980  * @sb:				super block
4981  * @block:			start physical block to add to the block group
4982  * @count:			number of blocks to free
4983  *
4984  * This marks the blocks as free in the bitmap and buddy.
4985  */
4986 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4987 			 ext4_fsblk_t block, unsigned long count)
4988 {
4989 	struct buffer_head *bitmap_bh = NULL;
4990 	struct buffer_head *gd_bh;
4991 	ext4_group_t block_group;
4992 	ext4_grpblk_t bit;
4993 	unsigned int i;
4994 	struct ext4_group_desc *desc;
4995 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4996 	struct ext4_buddy e4b;
4997 	int err = 0, ret, blk_free_count;
4998 	ext4_grpblk_t blocks_freed;
4999 
5000 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
5001 
5002 	if (count == 0)
5003 		return 0;
5004 
5005 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5006 	/*
5007 	 * Check to see if we are freeing blocks across a group
5008 	 * boundary.
5009 	 */
5010 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
5011 		ext4_warning(sb, "too much blocks added to group %u",
5012 			     block_group);
5013 		err = -EINVAL;
5014 		goto error_return;
5015 	}
5016 
5017 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5018 	if (IS_ERR(bitmap_bh)) {
5019 		err = PTR_ERR(bitmap_bh);
5020 		bitmap_bh = NULL;
5021 		goto error_return;
5022 	}
5023 
5024 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5025 	if (!desc) {
5026 		err = -EIO;
5027 		goto error_return;
5028 	}
5029 
5030 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5031 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5032 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5033 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
5034 		     sbi->s_itb_per_group)) {
5035 		ext4_error(sb, "Adding blocks in system zones - "
5036 			   "Block = %llu, count = %lu",
5037 			   block, count);
5038 		err = -EINVAL;
5039 		goto error_return;
5040 	}
5041 
5042 	BUFFER_TRACE(bitmap_bh, "getting write access");
5043 	err = ext4_journal_get_write_access(handle, bitmap_bh);
5044 	if (err)
5045 		goto error_return;
5046 
5047 	/*
5048 	 * We are about to modify some metadata.  Call the journal APIs
5049 	 * to unshare ->b_data if a currently-committing transaction is
5050 	 * using it
5051 	 */
5052 	BUFFER_TRACE(gd_bh, "get_write_access");
5053 	err = ext4_journal_get_write_access(handle, gd_bh);
5054 	if (err)
5055 		goto error_return;
5056 
5057 	for (i = 0, blocks_freed = 0; i < count; i++) {
5058 		BUFFER_TRACE(bitmap_bh, "clear bit");
5059 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5060 			ext4_error(sb, "bit already cleared for block %llu",
5061 				   (ext4_fsblk_t)(block + i));
5062 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
5063 		} else {
5064 			blocks_freed++;
5065 		}
5066 	}
5067 
5068 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
5069 	if (err)
5070 		goto error_return;
5071 
5072 	/*
5073 	 * need to update group_info->bb_free and bitmap
5074 	 * with group lock held. generate_buddy look at
5075 	 * them with group lock_held
5076 	 */
5077 	ext4_lock_group(sb, block_group);
5078 	mb_clear_bits(bitmap_bh->b_data, bit, count);
5079 	mb_free_blocks(NULL, &e4b, bit, count);
5080 	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
5081 	ext4_free_group_clusters_set(sb, desc, blk_free_count);
5082 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5083 	ext4_group_desc_csum_set(sb, block_group, desc);
5084 	ext4_unlock_group(sb, block_group);
5085 	percpu_counter_add(&sbi->s_freeclusters_counter,
5086 			   EXT4_NUM_B2C(sbi, blocks_freed));
5087 
5088 	if (sbi->s_log_groups_per_flex) {
5089 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5090 		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5091 			     &sbi->s_flex_groups[flex_group].free_clusters);
5092 	}
5093 
5094 	ext4_mb_unload_buddy(&e4b);
5095 
5096 	/* We dirtied the bitmap block */
5097 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5098 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5099 
5100 	/* And the group descriptor block */
5101 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5102 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5103 	if (!err)
5104 		err = ret;
5105 
5106 error_return:
5107 	brelse(bitmap_bh);
5108 	ext4_std_error(sb, err);
5109 	return err;
5110 }
5111 
5112 /**
5113  * ext4_trim_extent -- function to TRIM one single free extent in the group
5114  * @sb:		super block for the file system
5115  * @start:	starting block of the free extent in the alloc. group
5116  * @count:	number of blocks to TRIM
5117  * @group:	alloc. group we are working with
5118  * @e4b:	ext4 buddy for the group
5119  *
5120  * Trim "count" blocks starting at "start" in the "group". To assure that no
5121  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5122  * be called with under the group lock.
5123  */
5124 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5125 			     ext4_group_t group, struct ext4_buddy *e4b)
5126 __releases(bitlock)
5127 __acquires(bitlock)
5128 {
5129 	struct ext4_free_extent ex;
5130 	int ret = 0;
5131 
5132 	trace_ext4_trim_extent(sb, group, start, count);
5133 
5134 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5135 
5136 	ex.fe_start = start;
5137 	ex.fe_group = group;
5138 	ex.fe_len = count;
5139 
5140 	/*
5141 	 * Mark blocks used, so no one can reuse them while
5142 	 * being trimmed.
5143 	 */
5144 	mb_mark_used(e4b, &ex);
5145 	ext4_unlock_group(sb, group);
5146 	ret = ext4_issue_discard(sb, group, start, count, NULL);
5147 	ext4_lock_group(sb, group);
5148 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5149 	return ret;
5150 }
5151 
5152 /**
5153  * ext4_trim_all_free -- function to trim all free space in alloc. group
5154  * @sb:			super block for file system
5155  * @group:		group to be trimmed
5156  * @start:		first group block to examine
5157  * @max:		last group block to examine
5158  * @minblocks:		minimum extent block count
5159  *
5160  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5161  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5162  * the extent.
5163  *
5164  *
5165  * ext4_trim_all_free walks through group's block bitmap searching for free
5166  * extents. When the free extent is found, mark it as used in group buddy
5167  * bitmap. Then issue a TRIM command on this extent and free the extent in
5168  * the group buddy bitmap. This is done until whole group is scanned.
5169  */
5170 static ext4_grpblk_t
5171 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5172 		   ext4_grpblk_t start, ext4_grpblk_t max,
5173 		   ext4_grpblk_t minblocks)
5174 {
5175 	void *bitmap;
5176 	ext4_grpblk_t next, count = 0, free_count = 0;
5177 	struct ext4_buddy e4b;
5178 	int ret = 0;
5179 
5180 	trace_ext4_trim_all_free(sb, group, start, max);
5181 
5182 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5183 	if (ret) {
5184 		ext4_warning(sb, "Error %d loading buddy information for %u",
5185 			     ret, group);
5186 		return ret;
5187 	}
5188 	bitmap = e4b.bd_bitmap;
5189 
5190 	ext4_lock_group(sb, group);
5191 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5192 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5193 		goto out;
5194 
5195 	start = (e4b.bd_info->bb_first_free > start) ?
5196 		e4b.bd_info->bb_first_free : start;
5197 
5198 	while (start <= max) {
5199 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5200 		if (start > max)
5201 			break;
5202 		next = mb_find_next_bit(bitmap, max + 1, start);
5203 
5204 		if ((next - start) >= minblocks) {
5205 			ret = ext4_trim_extent(sb, start,
5206 					       next - start, group, &e4b);
5207 			if (ret && ret != -EOPNOTSUPP)
5208 				break;
5209 			ret = 0;
5210 			count += next - start;
5211 		}
5212 		free_count += next - start;
5213 		start = next + 1;
5214 
5215 		if (fatal_signal_pending(current)) {
5216 			count = -ERESTARTSYS;
5217 			break;
5218 		}
5219 
5220 		if (need_resched()) {
5221 			ext4_unlock_group(sb, group);
5222 			cond_resched();
5223 			ext4_lock_group(sb, group);
5224 		}
5225 
5226 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5227 			break;
5228 	}
5229 
5230 	if (!ret) {
5231 		ret = count;
5232 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5233 	}
5234 out:
5235 	ext4_unlock_group(sb, group);
5236 	ext4_mb_unload_buddy(&e4b);
5237 
5238 	ext4_debug("trimmed %d blocks in the group %d\n",
5239 		count, group);
5240 
5241 	return ret;
5242 }
5243 
5244 /**
5245  * ext4_trim_fs() -- trim ioctl handle function
5246  * @sb:			superblock for filesystem
5247  * @range:		fstrim_range structure
5248  *
5249  * start:	First Byte to trim
5250  * len:		number of Bytes to trim from start
5251  * minlen:	minimum extent length in Bytes
5252  * ext4_trim_fs goes through all allocation groups containing Bytes from
5253  * start to start+len. For each such a group ext4_trim_all_free function
5254  * is invoked to trim all free space.
5255  */
5256 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5257 {
5258 	struct ext4_group_info *grp;
5259 	ext4_group_t group, first_group, last_group;
5260 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5261 	uint64_t start, end, minlen, trimmed = 0;
5262 	ext4_fsblk_t first_data_blk =
5263 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5264 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5265 	int ret = 0;
5266 
5267 	start = range->start >> sb->s_blocksize_bits;
5268 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5269 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5270 			      range->minlen >> sb->s_blocksize_bits);
5271 
5272 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5273 	    start >= max_blks ||
5274 	    range->len < sb->s_blocksize)
5275 		return -EINVAL;
5276 	if (end >= max_blks)
5277 		end = max_blks - 1;
5278 	if (end <= first_data_blk)
5279 		goto out;
5280 	if (start < first_data_blk)
5281 		start = first_data_blk;
5282 
5283 	/* Determine first and last group to examine based on start and end */
5284 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5285 				     &first_group, &first_cluster);
5286 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5287 				     &last_group, &last_cluster);
5288 
5289 	/* end now represents the last cluster to discard in this group */
5290 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5291 
5292 	for (group = first_group; group <= last_group; group++) {
5293 		grp = ext4_get_group_info(sb, group);
5294 		/* We only do this if the grp has never been initialized */
5295 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5296 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5297 			if (ret)
5298 				break;
5299 		}
5300 
5301 		/*
5302 		 * For all the groups except the last one, last cluster will
5303 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5304 		 * change it for the last group, note that last_cluster is
5305 		 * already computed earlier by ext4_get_group_no_and_offset()
5306 		 */
5307 		if (group == last_group)
5308 			end = last_cluster;
5309 
5310 		if (grp->bb_free >= minlen) {
5311 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5312 						end, minlen);
5313 			if (cnt < 0) {
5314 				ret = cnt;
5315 				break;
5316 			}
5317 			trimmed += cnt;
5318 		}
5319 
5320 		/*
5321 		 * For every group except the first one, we are sure
5322 		 * that the first cluster to discard will be cluster #0.
5323 		 */
5324 		first_cluster = 0;
5325 	}
5326 
5327 	if (!ret)
5328 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5329 
5330 out:
5331 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5332 	return ret;
5333 }
5334 
5335 /* Iterate all the free extents in the group. */
5336 int
5337 ext4_mballoc_query_range(
5338 	struct super_block		*sb,
5339 	ext4_group_t			group,
5340 	ext4_grpblk_t			start,
5341 	ext4_grpblk_t			end,
5342 	ext4_mballoc_query_range_fn	formatter,
5343 	void				*priv)
5344 {
5345 	void				*bitmap;
5346 	ext4_grpblk_t			next;
5347 	struct ext4_buddy		e4b;
5348 	int				error;
5349 
5350 	error = ext4_mb_load_buddy(sb, group, &e4b);
5351 	if (error)
5352 		return error;
5353 	bitmap = e4b.bd_bitmap;
5354 
5355 	ext4_lock_group(sb, group);
5356 
5357 	start = (e4b.bd_info->bb_first_free > start) ?
5358 		e4b.bd_info->bb_first_free : start;
5359 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5360 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5361 
5362 	while (start <= end) {
5363 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
5364 		if (start > end)
5365 			break;
5366 		next = mb_find_next_bit(bitmap, end + 1, start);
5367 
5368 		ext4_unlock_group(sb, group);
5369 		error = formatter(sb, group, start, next - start, priv);
5370 		if (error)
5371 			goto out_unload;
5372 		ext4_lock_group(sb, group);
5373 
5374 		start = next + 1;
5375 	}
5376 
5377 	ext4_unlock_group(sb, group);
5378 out_unload:
5379 	ext4_mb_unload_buddy(&e4b);
5380 
5381 	return error;
5382 }
5383