1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "mballoc.h" 26 #include <linux/log2.h> 27 #include <linux/module.h> 28 #include <linux/slab.h> 29 #include <linux/backing-dev.h> 30 #include <trace/events/ext4.h> 31 32 #ifdef CONFIG_EXT4_DEBUG 33 ushort ext4_mballoc_debug __read_mostly; 34 35 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644); 36 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc"); 37 #endif 38 39 /* 40 * MUSTDO: 41 * - test ext4_ext_search_left() and ext4_ext_search_right() 42 * - search for metadata in few groups 43 * 44 * TODO v4: 45 * - normalization should take into account whether file is still open 46 * - discard preallocations if no free space left (policy?) 47 * - don't normalize tails 48 * - quota 49 * - reservation for superuser 50 * 51 * TODO v3: 52 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 53 * - track min/max extents in each group for better group selection 54 * - mb_mark_used() may allocate chunk right after splitting buddy 55 * - tree of groups sorted by number of free blocks 56 * - error handling 57 */ 58 59 /* 60 * The allocation request involve request for multiple number of blocks 61 * near to the goal(block) value specified. 62 * 63 * During initialization phase of the allocator we decide to use the 64 * group preallocation or inode preallocation depending on the size of 65 * the file. The size of the file could be the resulting file size we 66 * would have after allocation, or the current file size, which ever 67 * is larger. If the size is less than sbi->s_mb_stream_request we 68 * select to use the group preallocation. The default value of 69 * s_mb_stream_request is 16 blocks. This can also be tuned via 70 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 71 * terms of number of blocks. 72 * 73 * The main motivation for having small file use group preallocation is to 74 * ensure that we have small files closer together on the disk. 75 * 76 * First stage the allocator looks at the inode prealloc list, 77 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 78 * spaces for this particular inode. The inode prealloc space is 79 * represented as: 80 * 81 * pa_lstart -> the logical start block for this prealloc space 82 * pa_pstart -> the physical start block for this prealloc space 83 * pa_len -> length for this prealloc space (in clusters) 84 * pa_free -> free space available in this prealloc space (in clusters) 85 * 86 * The inode preallocation space is used looking at the _logical_ start 87 * block. If only the logical file block falls within the range of prealloc 88 * space we will consume the particular prealloc space. This makes sure that 89 * we have contiguous physical blocks representing the file blocks 90 * 91 * The important thing to be noted in case of inode prealloc space is that 92 * we don't modify the values associated to inode prealloc space except 93 * pa_free. 94 * 95 * If we are not able to find blocks in the inode prealloc space and if we 96 * have the group allocation flag set then we look at the locality group 97 * prealloc space. These are per CPU prealloc list represented as 98 * 99 * ext4_sb_info.s_locality_groups[smp_processor_id()] 100 * 101 * The reason for having a per cpu locality group is to reduce the contention 102 * between CPUs. It is possible to get scheduled at this point. 103 * 104 * The locality group prealloc space is used looking at whether we have 105 * enough free space (pa_free) within the prealloc space. 106 * 107 * If we can't allocate blocks via inode prealloc or/and locality group 108 * prealloc then we look at the buddy cache. The buddy cache is represented 109 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 110 * mapped to the buddy and bitmap information regarding different 111 * groups. The buddy information is attached to buddy cache inode so that 112 * we can access them through the page cache. The information regarding 113 * each group is loaded via ext4_mb_load_buddy. The information involve 114 * block bitmap and buddy information. The information are stored in the 115 * inode as: 116 * 117 * { page } 118 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 119 * 120 * 121 * one block each for bitmap and buddy information. So for each group we 122 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 123 * blocksize) blocks. So it can have information regarding groups_per_page 124 * which is blocks_per_page/2 125 * 126 * The buddy cache inode is not stored on disk. The inode is thrown 127 * away when the filesystem is unmounted. 128 * 129 * We look for count number of blocks in the buddy cache. If we were able 130 * to locate that many free blocks we return with additional information 131 * regarding rest of the contiguous physical block available 132 * 133 * Before allocating blocks via buddy cache we normalize the request 134 * blocks. This ensure we ask for more blocks that we needed. The extra 135 * blocks that we get after allocation is added to the respective prealloc 136 * list. In case of inode preallocation we follow a list of heuristics 137 * based on file size. This can be found in ext4_mb_normalize_request. If 138 * we are doing a group prealloc we try to normalize the request to 139 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 140 * dependent on the cluster size; for non-bigalloc file systems, it is 141 * 512 blocks. This can be tuned via 142 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 143 * terms of number of blocks. If we have mounted the file system with -O 144 * stripe=<value> option the group prealloc request is normalized to the 145 * the smallest multiple of the stripe value (sbi->s_stripe) which is 146 * greater than the default mb_group_prealloc. 147 * 148 * The regular allocator (using the buddy cache) supports a few tunables. 149 * 150 * /sys/fs/ext4/<partition>/mb_min_to_scan 151 * /sys/fs/ext4/<partition>/mb_max_to_scan 152 * /sys/fs/ext4/<partition>/mb_order2_req 153 * 154 * The regular allocator uses buddy scan only if the request len is power of 155 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 156 * value of s_mb_order2_reqs can be tuned via 157 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 158 * stripe size (sbi->s_stripe), we try to search for contiguous block in 159 * stripe size. This should result in better allocation on RAID setups. If 160 * not, we search in the specific group using bitmap for best extents. The 161 * tunable min_to_scan and max_to_scan control the behaviour here. 162 * min_to_scan indicate how long the mballoc __must__ look for a best 163 * extent and max_to_scan indicates how long the mballoc __can__ look for a 164 * best extent in the found extents. Searching for the blocks starts with 165 * the group specified as the goal value in allocation context via 166 * ac_g_ex. Each group is first checked based on the criteria whether it 167 * can be used for allocation. ext4_mb_good_group explains how the groups are 168 * checked. 169 * 170 * Both the prealloc space are getting populated as above. So for the first 171 * request we will hit the buddy cache which will result in this prealloc 172 * space getting filled. The prealloc space is then later used for the 173 * subsequent request. 174 */ 175 176 /* 177 * mballoc operates on the following data: 178 * - on-disk bitmap 179 * - in-core buddy (actually includes buddy and bitmap) 180 * - preallocation descriptors (PAs) 181 * 182 * there are two types of preallocations: 183 * - inode 184 * assiged to specific inode and can be used for this inode only. 185 * it describes part of inode's space preallocated to specific 186 * physical blocks. any block from that preallocated can be used 187 * independent. the descriptor just tracks number of blocks left 188 * unused. so, before taking some block from descriptor, one must 189 * make sure corresponded logical block isn't allocated yet. this 190 * also means that freeing any block within descriptor's range 191 * must discard all preallocated blocks. 192 * - locality group 193 * assigned to specific locality group which does not translate to 194 * permanent set of inodes: inode can join and leave group. space 195 * from this type of preallocation can be used for any inode. thus 196 * it's consumed from the beginning to the end. 197 * 198 * relation between them can be expressed as: 199 * in-core buddy = on-disk bitmap + preallocation descriptors 200 * 201 * this mean blocks mballoc considers used are: 202 * - allocated blocks (persistent) 203 * - preallocated blocks (non-persistent) 204 * 205 * consistency in mballoc world means that at any time a block is either 206 * free or used in ALL structures. notice: "any time" should not be read 207 * literally -- time is discrete and delimited by locks. 208 * 209 * to keep it simple, we don't use block numbers, instead we count number of 210 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 211 * 212 * all operations can be expressed as: 213 * - init buddy: buddy = on-disk + PAs 214 * - new PA: buddy += N; PA = N 215 * - use inode PA: on-disk += N; PA -= N 216 * - discard inode PA buddy -= on-disk - PA; PA = 0 217 * - use locality group PA on-disk += N; PA -= N 218 * - discard locality group PA buddy -= PA; PA = 0 219 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 220 * is used in real operation because we can't know actual used 221 * bits from PA, only from on-disk bitmap 222 * 223 * if we follow this strict logic, then all operations above should be atomic. 224 * given some of them can block, we'd have to use something like semaphores 225 * killing performance on high-end SMP hardware. let's try to relax it using 226 * the following knowledge: 227 * 1) if buddy is referenced, it's already initialized 228 * 2) while block is used in buddy and the buddy is referenced, 229 * nobody can re-allocate that block 230 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 231 * bit set and PA claims same block, it's OK. IOW, one can set bit in 232 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 233 * block 234 * 235 * so, now we're building a concurrency table: 236 * - init buddy vs. 237 * - new PA 238 * blocks for PA are allocated in the buddy, buddy must be referenced 239 * until PA is linked to allocation group to avoid concurrent buddy init 240 * - use inode PA 241 * we need to make sure that either on-disk bitmap or PA has uptodate data 242 * given (3) we care that PA-=N operation doesn't interfere with init 243 * - discard inode PA 244 * the simplest way would be to have buddy initialized by the discard 245 * - use locality group PA 246 * again PA-=N must be serialized with init 247 * - discard locality group PA 248 * the simplest way would be to have buddy initialized by the discard 249 * - new PA vs. 250 * - use inode PA 251 * i_data_sem serializes them 252 * - discard inode PA 253 * discard process must wait until PA isn't used by another process 254 * - use locality group PA 255 * some mutex should serialize them 256 * - discard locality group PA 257 * discard process must wait until PA isn't used by another process 258 * - use inode PA 259 * - use inode PA 260 * i_data_sem or another mutex should serializes them 261 * - discard inode PA 262 * discard process must wait until PA isn't used by another process 263 * - use locality group PA 264 * nothing wrong here -- they're different PAs covering different blocks 265 * - discard locality group PA 266 * discard process must wait until PA isn't used by another process 267 * 268 * now we're ready to make few consequences: 269 * - PA is referenced and while it is no discard is possible 270 * - PA is referenced until block isn't marked in on-disk bitmap 271 * - PA changes only after on-disk bitmap 272 * - discard must not compete with init. either init is done before 273 * any discard or they're serialized somehow 274 * - buddy init as sum of on-disk bitmap and PAs is done atomically 275 * 276 * a special case when we've used PA to emptiness. no need to modify buddy 277 * in this case, but we should care about concurrent init 278 * 279 */ 280 281 /* 282 * Logic in few words: 283 * 284 * - allocation: 285 * load group 286 * find blocks 287 * mark bits in on-disk bitmap 288 * release group 289 * 290 * - use preallocation: 291 * find proper PA (per-inode or group) 292 * load group 293 * mark bits in on-disk bitmap 294 * release group 295 * release PA 296 * 297 * - free: 298 * load group 299 * mark bits in on-disk bitmap 300 * release group 301 * 302 * - discard preallocations in group: 303 * mark PAs deleted 304 * move them onto local list 305 * load on-disk bitmap 306 * load group 307 * remove PA from object (inode or locality group) 308 * mark free blocks in-core 309 * 310 * - discard inode's preallocations: 311 */ 312 313 /* 314 * Locking rules 315 * 316 * Locks: 317 * - bitlock on a group (group) 318 * - object (inode/locality) (object) 319 * - per-pa lock (pa) 320 * 321 * Paths: 322 * - new pa 323 * object 324 * group 325 * 326 * - find and use pa: 327 * pa 328 * 329 * - release consumed pa: 330 * pa 331 * group 332 * object 333 * 334 * - generate in-core bitmap: 335 * group 336 * pa 337 * 338 * - discard all for given object (inode, locality group): 339 * object 340 * pa 341 * group 342 * 343 * - discard all for given group: 344 * group 345 * pa 346 * group 347 * object 348 * 349 */ 350 static struct kmem_cache *ext4_pspace_cachep; 351 static struct kmem_cache *ext4_ac_cachep; 352 static struct kmem_cache *ext4_free_data_cachep; 353 354 /* We create slab caches for groupinfo data structures based on the 355 * superblock block size. There will be one per mounted filesystem for 356 * each unique s_blocksize_bits */ 357 #define NR_GRPINFO_CACHES 8 358 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 359 360 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 361 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 362 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 363 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 364 }; 365 366 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 367 ext4_group_t group); 368 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 369 ext4_group_t group); 370 371 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 372 { 373 #if BITS_PER_LONG == 64 374 *bit += ((unsigned long) addr & 7UL) << 3; 375 addr = (void *) ((unsigned long) addr & ~7UL); 376 #elif BITS_PER_LONG == 32 377 *bit += ((unsigned long) addr & 3UL) << 3; 378 addr = (void *) ((unsigned long) addr & ~3UL); 379 #else 380 #error "how many bits you are?!" 381 #endif 382 return addr; 383 } 384 385 static inline int mb_test_bit(int bit, void *addr) 386 { 387 /* 388 * ext4_test_bit on architecture like powerpc 389 * needs unsigned long aligned address 390 */ 391 addr = mb_correct_addr_and_bit(&bit, addr); 392 return ext4_test_bit(bit, addr); 393 } 394 395 static inline void mb_set_bit(int bit, void *addr) 396 { 397 addr = mb_correct_addr_and_bit(&bit, addr); 398 ext4_set_bit(bit, addr); 399 } 400 401 static inline void mb_clear_bit(int bit, void *addr) 402 { 403 addr = mb_correct_addr_and_bit(&bit, addr); 404 ext4_clear_bit(bit, addr); 405 } 406 407 static inline int mb_test_and_clear_bit(int bit, void *addr) 408 { 409 addr = mb_correct_addr_and_bit(&bit, addr); 410 return ext4_test_and_clear_bit(bit, addr); 411 } 412 413 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 414 { 415 int fix = 0, ret, tmpmax; 416 addr = mb_correct_addr_and_bit(&fix, addr); 417 tmpmax = max + fix; 418 start += fix; 419 420 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 421 if (ret > max) 422 return max; 423 return ret; 424 } 425 426 static inline int mb_find_next_bit(void *addr, int max, int start) 427 { 428 int fix = 0, ret, tmpmax; 429 addr = mb_correct_addr_and_bit(&fix, addr); 430 tmpmax = max + fix; 431 start += fix; 432 433 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 434 if (ret > max) 435 return max; 436 return ret; 437 } 438 439 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 440 { 441 char *bb; 442 443 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 444 BUG_ON(max == NULL); 445 446 if (order > e4b->bd_blkbits + 1) { 447 *max = 0; 448 return NULL; 449 } 450 451 /* at order 0 we see each particular block */ 452 if (order == 0) { 453 *max = 1 << (e4b->bd_blkbits + 3); 454 return e4b->bd_bitmap; 455 } 456 457 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 458 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 459 460 return bb; 461 } 462 463 #ifdef DOUBLE_CHECK 464 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 465 int first, int count) 466 { 467 int i; 468 struct super_block *sb = e4b->bd_sb; 469 470 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 471 return; 472 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 473 for (i = 0; i < count; i++) { 474 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 475 ext4_fsblk_t blocknr; 476 477 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 478 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 479 ext4_grp_locked_error(sb, e4b->bd_group, 480 inode ? inode->i_ino : 0, 481 blocknr, 482 "freeing block already freed " 483 "(bit %u)", 484 first + i); 485 } 486 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 487 } 488 } 489 490 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 491 { 492 int i; 493 494 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 495 return; 496 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 497 for (i = 0; i < count; i++) { 498 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 499 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 500 } 501 } 502 503 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 504 { 505 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 506 unsigned char *b1, *b2; 507 int i; 508 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 509 b2 = (unsigned char *) bitmap; 510 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 511 if (b1[i] != b2[i]) { 512 ext4_msg(e4b->bd_sb, KERN_ERR, 513 "corruption in group %u " 514 "at byte %u(%u): %x in copy != %x " 515 "on disk/prealloc", 516 e4b->bd_group, i, i * 8, b1[i], b2[i]); 517 BUG(); 518 } 519 } 520 } 521 } 522 523 #else 524 static inline void mb_free_blocks_double(struct inode *inode, 525 struct ext4_buddy *e4b, int first, int count) 526 { 527 return; 528 } 529 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 530 int first, int count) 531 { 532 return; 533 } 534 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 535 { 536 return; 537 } 538 #endif 539 540 #ifdef AGGRESSIVE_CHECK 541 542 #define MB_CHECK_ASSERT(assert) \ 543 do { \ 544 if (!(assert)) { \ 545 printk(KERN_EMERG \ 546 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 547 function, file, line, # assert); \ 548 BUG(); \ 549 } \ 550 } while (0) 551 552 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 553 const char *function, int line) 554 { 555 struct super_block *sb = e4b->bd_sb; 556 int order = e4b->bd_blkbits + 1; 557 int max; 558 int max2; 559 int i; 560 int j; 561 int k; 562 int count; 563 struct ext4_group_info *grp; 564 int fragments = 0; 565 int fstart; 566 struct list_head *cur; 567 void *buddy; 568 void *buddy2; 569 570 { 571 static int mb_check_counter; 572 if (mb_check_counter++ % 100 != 0) 573 return 0; 574 } 575 576 while (order > 1) { 577 buddy = mb_find_buddy(e4b, order, &max); 578 MB_CHECK_ASSERT(buddy); 579 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 580 MB_CHECK_ASSERT(buddy2); 581 MB_CHECK_ASSERT(buddy != buddy2); 582 MB_CHECK_ASSERT(max * 2 == max2); 583 584 count = 0; 585 for (i = 0; i < max; i++) { 586 587 if (mb_test_bit(i, buddy)) { 588 /* only single bit in buddy2 may be 1 */ 589 if (!mb_test_bit(i << 1, buddy2)) { 590 MB_CHECK_ASSERT( 591 mb_test_bit((i<<1)+1, buddy2)); 592 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 593 MB_CHECK_ASSERT( 594 mb_test_bit(i << 1, buddy2)); 595 } 596 continue; 597 } 598 599 /* both bits in buddy2 must be 1 */ 600 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 601 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 602 603 for (j = 0; j < (1 << order); j++) { 604 k = (i * (1 << order)) + j; 605 MB_CHECK_ASSERT( 606 !mb_test_bit(k, e4b->bd_bitmap)); 607 } 608 count++; 609 } 610 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 611 order--; 612 } 613 614 fstart = -1; 615 buddy = mb_find_buddy(e4b, 0, &max); 616 for (i = 0; i < max; i++) { 617 if (!mb_test_bit(i, buddy)) { 618 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 619 if (fstart == -1) { 620 fragments++; 621 fstart = i; 622 } 623 continue; 624 } 625 fstart = -1; 626 /* check used bits only */ 627 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 628 buddy2 = mb_find_buddy(e4b, j, &max2); 629 k = i >> j; 630 MB_CHECK_ASSERT(k < max2); 631 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 632 } 633 } 634 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 635 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 636 637 grp = ext4_get_group_info(sb, e4b->bd_group); 638 list_for_each(cur, &grp->bb_prealloc_list) { 639 ext4_group_t groupnr; 640 struct ext4_prealloc_space *pa; 641 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 642 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 643 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 644 for (i = 0; i < pa->pa_len; i++) 645 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 646 } 647 return 0; 648 } 649 #undef MB_CHECK_ASSERT 650 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 651 __FILE__, __func__, __LINE__) 652 #else 653 #define mb_check_buddy(e4b) 654 #endif 655 656 /* 657 * Divide blocks started from @first with length @len into 658 * smaller chunks with power of 2 blocks. 659 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 660 * then increase bb_counters[] for corresponded chunk size. 661 */ 662 static void ext4_mb_mark_free_simple(struct super_block *sb, 663 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 664 struct ext4_group_info *grp) 665 { 666 struct ext4_sb_info *sbi = EXT4_SB(sb); 667 ext4_grpblk_t min; 668 ext4_grpblk_t max; 669 ext4_grpblk_t chunk; 670 unsigned int border; 671 672 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 673 674 border = 2 << sb->s_blocksize_bits; 675 676 while (len > 0) { 677 /* find how many blocks can be covered since this position */ 678 max = ffs(first | border) - 1; 679 680 /* find how many blocks of power 2 we need to mark */ 681 min = fls(len) - 1; 682 683 if (max < min) 684 min = max; 685 chunk = 1 << min; 686 687 /* mark multiblock chunks only */ 688 grp->bb_counters[min]++; 689 if (min > 0) 690 mb_clear_bit(first >> min, 691 buddy + sbi->s_mb_offsets[min]); 692 693 len -= chunk; 694 first += chunk; 695 } 696 } 697 698 /* 699 * Cache the order of the largest free extent we have available in this block 700 * group. 701 */ 702 static void 703 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 704 { 705 int i; 706 int bits; 707 708 grp->bb_largest_free_order = -1; /* uninit */ 709 710 bits = sb->s_blocksize_bits + 1; 711 for (i = bits; i >= 0; i--) { 712 if (grp->bb_counters[i] > 0) { 713 grp->bb_largest_free_order = i; 714 break; 715 } 716 } 717 } 718 719 static noinline_for_stack 720 void ext4_mb_generate_buddy(struct super_block *sb, 721 void *buddy, void *bitmap, ext4_group_t group) 722 { 723 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 724 struct ext4_sb_info *sbi = EXT4_SB(sb); 725 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 726 ext4_grpblk_t i = 0; 727 ext4_grpblk_t first; 728 ext4_grpblk_t len; 729 unsigned free = 0; 730 unsigned fragments = 0; 731 unsigned long long period = get_cycles(); 732 733 /* initialize buddy from bitmap which is aggregation 734 * of on-disk bitmap and preallocations */ 735 i = mb_find_next_zero_bit(bitmap, max, 0); 736 grp->bb_first_free = i; 737 while (i < max) { 738 fragments++; 739 first = i; 740 i = mb_find_next_bit(bitmap, max, i); 741 len = i - first; 742 free += len; 743 if (len > 1) 744 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 745 else 746 grp->bb_counters[0]++; 747 if (i < max) 748 i = mb_find_next_zero_bit(bitmap, max, i); 749 } 750 grp->bb_fragments = fragments; 751 752 if (free != grp->bb_free) { 753 ext4_grp_locked_error(sb, group, 0, 0, 754 "block bitmap and bg descriptor " 755 "inconsistent: %u vs %u free clusters", 756 free, grp->bb_free); 757 /* 758 * If we intend to continue, we consider group descriptor 759 * corrupt and update bb_free using bitmap value 760 */ 761 grp->bb_free = free; 762 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) 763 percpu_counter_sub(&sbi->s_freeclusters_counter, 764 grp->bb_free); 765 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); 766 } 767 mb_set_largest_free_order(sb, grp); 768 769 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 770 771 period = get_cycles() - period; 772 spin_lock(&EXT4_SB(sb)->s_bal_lock); 773 EXT4_SB(sb)->s_mb_buddies_generated++; 774 EXT4_SB(sb)->s_mb_generation_time += period; 775 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 776 } 777 778 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 779 { 780 int count; 781 int order = 1; 782 void *buddy; 783 784 while ((buddy = mb_find_buddy(e4b, order++, &count))) { 785 ext4_set_bits(buddy, 0, count); 786 } 787 e4b->bd_info->bb_fragments = 0; 788 memset(e4b->bd_info->bb_counters, 0, 789 sizeof(*e4b->bd_info->bb_counters) * 790 (e4b->bd_sb->s_blocksize_bits + 2)); 791 792 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 793 e4b->bd_bitmap, e4b->bd_group); 794 } 795 796 /* The buddy information is attached the buddy cache inode 797 * for convenience. The information regarding each group 798 * is loaded via ext4_mb_load_buddy. The information involve 799 * block bitmap and buddy information. The information are 800 * stored in the inode as 801 * 802 * { page } 803 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 804 * 805 * 806 * one block each for bitmap and buddy information. 807 * So for each group we take up 2 blocks. A page can 808 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 809 * So it can have information regarding groups_per_page which 810 * is blocks_per_page/2 811 * 812 * Locking note: This routine takes the block group lock of all groups 813 * for this page; do not hold this lock when calling this routine! 814 */ 815 816 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 817 { 818 ext4_group_t ngroups; 819 int blocksize; 820 int blocks_per_page; 821 int groups_per_page; 822 int err = 0; 823 int i; 824 ext4_group_t first_group, group; 825 int first_block; 826 struct super_block *sb; 827 struct buffer_head *bhs; 828 struct buffer_head **bh = NULL; 829 struct inode *inode; 830 char *data; 831 char *bitmap; 832 struct ext4_group_info *grinfo; 833 834 mb_debug(1, "init page %lu\n", page->index); 835 836 inode = page->mapping->host; 837 sb = inode->i_sb; 838 ngroups = ext4_get_groups_count(sb); 839 blocksize = i_blocksize(inode); 840 blocks_per_page = PAGE_SIZE / blocksize; 841 842 groups_per_page = blocks_per_page >> 1; 843 if (groups_per_page == 0) 844 groups_per_page = 1; 845 846 /* allocate buffer_heads to read bitmaps */ 847 if (groups_per_page > 1) { 848 i = sizeof(struct buffer_head *) * groups_per_page; 849 bh = kzalloc(i, gfp); 850 if (bh == NULL) { 851 err = -ENOMEM; 852 goto out; 853 } 854 } else 855 bh = &bhs; 856 857 first_group = page->index * blocks_per_page / 2; 858 859 /* read all groups the page covers into the cache */ 860 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 861 if (group >= ngroups) 862 break; 863 864 grinfo = ext4_get_group_info(sb, group); 865 /* 866 * If page is uptodate then we came here after online resize 867 * which added some new uninitialized group info structs, so 868 * we must skip all initialized uptodate buddies on the page, 869 * which may be currently in use by an allocating task. 870 */ 871 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 872 bh[i] = NULL; 873 continue; 874 } 875 bh[i] = ext4_read_block_bitmap_nowait(sb, group); 876 if (IS_ERR(bh[i])) { 877 err = PTR_ERR(bh[i]); 878 bh[i] = NULL; 879 goto out; 880 } 881 mb_debug(1, "read bitmap for group %u\n", group); 882 } 883 884 /* wait for I/O completion */ 885 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 886 int err2; 887 888 if (!bh[i]) 889 continue; 890 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 891 if (!err) 892 err = err2; 893 } 894 895 first_block = page->index * blocks_per_page; 896 for (i = 0; i < blocks_per_page; i++) { 897 group = (first_block + i) >> 1; 898 if (group >= ngroups) 899 break; 900 901 if (!bh[group - first_group]) 902 /* skip initialized uptodate buddy */ 903 continue; 904 905 if (!buffer_verified(bh[group - first_group])) 906 /* Skip faulty bitmaps */ 907 continue; 908 err = 0; 909 910 /* 911 * data carry information regarding this 912 * particular group in the format specified 913 * above 914 * 915 */ 916 data = page_address(page) + (i * blocksize); 917 bitmap = bh[group - first_group]->b_data; 918 919 /* 920 * We place the buddy block and bitmap block 921 * close together 922 */ 923 if ((first_block + i) & 1) { 924 /* this is block of buddy */ 925 BUG_ON(incore == NULL); 926 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 927 group, page->index, i * blocksize); 928 trace_ext4_mb_buddy_bitmap_load(sb, group); 929 grinfo = ext4_get_group_info(sb, group); 930 grinfo->bb_fragments = 0; 931 memset(grinfo->bb_counters, 0, 932 sizeof(*grinfo->bb_counters) * 933 (sb->s_blocksize_bits+2)); 934 /* 935 * incore got set to the group block bitmap below 936 */ 937 ext4_lock_group(sb, group); 938 /* init the buddy */ 939 memset(data, 0xff, blocksize); 940 ext4_mb_generate_buddy(sb, data, incore, group); 941 ext4_unlock_group(sb, group); 942 incore = NULL; 943 } else { 944 /* this is block of bitmap */ 945 BUG_ON(incore != NULL); 946 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 947 group, page->index, i * blocksize); 948 trace_ext4_mb_bitmap_load(sb, group); 949 950 /* see comments in ext4_mb_put_pa() */ 951 ext4_lock_group(sb, group); 952 memcpy(data, bitmap, blocksize); 953 954 /* mark all preallocated blks used in in-core bitmap */ 955 ext4_mb_generate_from_pa(sb, data, group); 956 ext4_mb_generate_from_freelist(sb, data, group); 957 ext4_unlock_group(sb, group); 958 959 /* set incore so that the buddy information can be 960 * generated using this 961 */ 962 incore = data; 963 } 964 } 965 SetPageUptodate(page); 966 967 out: 968 if (bh) { 969 for (i = 0; i < groups_per_page; i++) 970 brelse(bh[i]); 971 if (bh != &bhs) 972 kfree(bh); 973 } 974 return err; 975 } 976 977 /* 978 * Lock the buddy and bitmap pages. This make sure other parallel init_group 979 * on the same buddy page doesn't happen whild holding the buddy page lock. 980 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 981 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 982 */ 983 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 984 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 985 { 986 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 987 int block, pnum, poff; 988 int blocks_per_page; 989 struct page *page; 990 991 e4b->bd_buddy_page = NULL; 992 e4b->bd_bitmap_page = NULL; 993 994 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 995 /* 996 * the buddy cache inode stores the block bitmap 997 * and buddy information in consecutive blocks. 998 * So for each group we need two blocks. 999 */ 1000 block = group * 2; 1001 pnum = block / blocks_per_page; 1002 poff = block % blocks_per_page; 1003 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1004 if (!page) 1005 return -ENOMEM; 1006 BUG_ON(page->mapping != inode->i_mapping); 1007 e4b->bd_bitmap_page = page; 1008 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1009 1010 if (blocks_per_page >= 2) { 1011 /* buddy and bitmap are on the same page */ 1012 return 0; 1013 } 1014 1015 block++; 1016 pnum = block / blocks_per_page; 1017 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1018 if (!page) 1019 return -ENOMEM; 1020 BUG_ON(page->mapping != inode->i_mapping); 1021 e4b->bd_buddy_page = page; 1022 return 0; 1023 } 1024 1025 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1026 { 1027 if (e4b->bd_bitmap_page) { 1028 unlock_page(e4b->bd_bitmap_page); 1029 put_page(e4b->bd_bitmap_page); 1030 } 1031 if (e4b->bd_buddy_page) { 1032 unlock_page(e4b->bd_buddy_page); 1033 put_page(e4b->bd_buddy_page); 1034 } 1035 } 1036 1037 /* 1038 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1039 * block group lock of all groups for this page; do not hold the BG lock when 1040 * calling this routine! 1041 */ 1042 static noinline_for_stack 1043 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1044 { 1045 1046 struct ext4_group_info *this_grp; 1047 struct ext4_buddy e4b; 1048 struct page *page; 1049 int ret = 0; 1050 1051 might_sleep(); 1052 mb_debug(1, "init group %u\n", group); 1053 this_grp = ext4_get_group_info(sb, group); 1054 /* 1055 * This ensures that we don't reinit the buddy cache 1056 * page which map to the group from which we are already 1057 * allocating. If we are looking at the buddy cache we would 1058 * have taken a reference using ext4_mb_load_buddy and that 1059 * would have pinned buddy page to page cache. 1060 * The call to ext4_mb_get_buddy_page_lock will mark the 1061 * page accessed. 1062 */ 1063 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1064 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1065 /* 1066 * somebody initialized the group 1067 * return without doing anything 1068 */ 1069 goto err; 1070 } 1071 1072 page = e4b.bd_bitmap_page; 1073 ret = ext4_mb_init_cache(page, NULL, gfp); 1074 if (ret) 1075 goto err; 1076 if (!PageUptodate(page)) { 1077 ret = -EIO; 1078 goto err; 1079 } 1080 1081 if (e4b.bd_buddy_page == NULL) { 1082 /* 1083 * If both the bitmap and buddy are in 1084 * the same page we don't need to force 1085 * init the buddy 1086 */ 1087 ret = 0; 1088 goto err; 1089 } 1090 /* init buddy cache */ 1091 page = e4b.bd_buddy_page; 1092 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1093 if (ret) 1094 goto err; 1095 if (!PageUptodate(page)) { 1096 ret = -EIO; 1097 goto err; 1098 } 1099 err: 1100 ext4_mb_put_buddy_page_lock(&e4b); 1101 return ret; 1102 } 1103 1104 /* 1105 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1106 * block group lock of all groups for this page; do not hold the BG lock when 1107 * calling this routine! 1108 */ 1109 static noinline_for_stack int 1110 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1111 struct ext4_buddy *e4b, gfp_t gfp) 1112 { 1113 int blocks_per_page; 1114 int block; 1115 int pnum; 1116 int poff; 1117 struct page *page; 1118 int ret; 1119 struct ext4_group_info *grp; 1120 struct ext4_sb_info *sbi = EXT4_SB(sb); 1121 struct inode *inode = sbi->s_buddy_cache; 1122 1123 might_sleep(); 1124 mb_debug(1, "load group %u\n", group); 1125 1126 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1127 grp = ext4_get_group_info(sb, group); 1128 1129 e4b->bd_blkbits = sb->s_blocksize_bits; 1130 e4b->bd_info = grp; 1131 e4b->bd_sb = sb; 1132 e4b->bd_group = group; 1133 e4b->bd_buddy_page = NULL; 1134 e4b->bd_bitmap_page = NULL; 1135 1136 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1137 /* 1138 * we need full data about the group 1139 * to make a good selection 1140 */ 1141 ret = ext4_mb_init_group(sb, group, gfp); 1142 if (ret) 1143 return ret; 1144 } 1145 1146 /* 1147 * the buddy cache inode stores the block bitmap 1148 * and buddy information in consecutive blocks. 1149 * So for each group we need two blocks. 1150 */ 1151 block = group * 2; 1152 pnum = block / blocks_per_page; 1153 poff = block % blocks_per_page; 1154 1155 /* we could use find_or_create_page(), but it locks page 1156 * what we'd like to avoid in fast path ... */ 1157 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1158 if (page == NULL || !PageUptodate(page)) { 1159 if (page) 1160 /* 1161 * drop the page reference and try 1162 * to get the page with lock. If we 1163 * are not uptodate that implies 1164 * somebody just created the page but 1165 * is yet to initialize the same. So 1166 * wait for it to initialize. 1167 */ 1168 put_page(page); 1169 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1170 if (page) { 1171 BUG_ON(page->mapping != inode->i_mapping); 1172 if (!PageUptodate(page)) { 1173 ret = ext4_mb_init_cache(page, NULL, gfp); 1174 if (ret) { 1175 unlock_page(page); 1176 goto err; 1177 } 1178 mb_cmp_bitmaps(e4b, page_address(page) + 1179 (poff * sb->s_blocksize)); 1180 } 1181 unlock_page(page); 1182 } 1183 } 1184 if (page == NULL) { 1185 ret = -ENOMEM; 1186 goto err; 1187 } 1188 if (!PageUptodate(page)) { 1189 ret = -EIO; 1190 goto err; 1191 } 1192 1193 /* Pages marked accessed already */ 1194 e4b->bd_bitmap_page = page; 1195 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1196 1197 block++; 1198 pnum = block / blocks_per_page; 1199 poff = block % blocks_per_page; 1200 1201 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1202 if (page == NULL || !PageUptodate(page)) { 1203 if (page) 1204 put_page(page); 1205 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1206 if (page) { 1207 BUG_ON(page->mapping != inode->i_mapping); 1208 if (!PageUptodate(page)) { 1209 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1210 gfp); 1211 if (ret) { 1212 unlock_page(page); 1213 goto err; 1214 } 1215 } 1216 unlock_page(page); 1217 } 1218 } 1219 if (page == NULL) { 1220 ret = -ENOMEM; 1221 goto err; 1222 } 1223 if (!PageUptodate(page)) { 1224 ret = -EIO; 1225 goto err; 1226 } 1227 1228 /* Pages marked accessed already */ 1229 e4b->bd_buddy_page = page; 1230 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1231 1232 BUG_ON(e4b->bd_bitmap_page == NULL); 1233 BUG_ON(e4b->bd_buddy_page == NULL); 1234 1235 return 0; 1236 1237 err: 1238 if (page) 1239 put_page(page); 1240 if (e4b->bd_bitmap_page) 1241 put_page(e4b->bd_bitmap_page); 1242 if (e4b->bd_buddy_page) 1243 put_page(e4b->bd_buddy_page); 1244 e4b->bd_buddy = NULL; 1245 e4b->bd_bitmap = NULL; 1246 return ret; 1247 } 1248 1249 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1250 struct ext4_buddy *e4b) 1251 { 1252 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1253 } 1254 1255 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1256 { 1257 if (e4b->bd_bitmap_page) 1258 put_page(e4b->bd_bitmap_page); 1259 if (e4b->bd_buddy_page) 1260 put_page(e4b->bd_buddy_page); 1261 } 1262 1263 1264 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1265 { 1266 int order = 1; 1267 int bb_incr = 1 << (e4b->bd_blkbits - 1); 1268 void *bb; 1269 1270 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1271 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1272 1273 bb = e4b->bd_buddy; 1274 while (order <= e4b->bd_blkbits + 1) { 1275 block = block >> 1; 1276 if (!mb_test_bit(block, bb)) { 1277 /* this block is part of buddy of order 'order' */ 1278 return order; 1279 } 1280 bb += bb_incr; 1281 bb_incr >>= 1; 1282 order++; 1283 } 1284 return 0; 1285 } 1286 1287 static void mb_clear_bits(void *bm, int cur, int len) 1288 { 1289 __u32 *addr; 1290 1291 len = cur + len; 1292 while (cur < len) { 1293 if ((cur & 31) == 0 && (len - cur) >= 32) { 1294 /* fast path: clear whole word at once */ 1295 addr = bm + (cur >> 3); 1296 *addr = 0; 1297 cur += 32; 1298 continue; 1299 } 1300 mb_clear_bit(cur, bm); 1301 cur++; 1302 } 1303 } 1304 1305 /* clear bits in given range 1306 * will return first found zero bit if any, -1 otherwise 1307 */ 1308 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1309 { 1310 __u32 *addr; 1311 int zero_bit = -1; 1312 1313 len = cur + len; 1314 while (cur < len) { 1315 if ((cur & 31) == 0 && (len - cur) >= 32) { 1316 /* fast path: clear whole word at once */ 1317 addr = bm + (cur >> 3); 1318 if (*addr != (__u32)(-1) && zero_bit == -1) 1319 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1320 *addr = 0; 1321 cur += 32; 1322 continue; 1323 } 1324 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1325 zero_bit = cur; 1326 cur++; 1327 } 1328 1329 return zero_bit; 1330 } 1331 1332 void ext4_set_bits(void *bm, int cur, int len) 1333 { 1334 __u32 *addr; 1335 1336 len = cur + len; 1337 while (cur < len) { 1338 if ((cur & 31) == 0 && (len - cur) >= 32) { 1339 /* fast path: set whole word at once */ 1340 addr = bm + (cur >> 3); 1341 *addr = 0xffffffff; 1342 cur += 32; 1343 continue; 1344 } 1345 mb_set_bit(cur, bm); 1346 cur++; 1347 } 1348 } 1349 1350 /* 1351 * _________________________________________________________________ */ 1352 1353 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1354 { 1355 if (mb_test_bit(*bit + side, bitmap)) { 1356 mb_clear_bit(*bit, bitmap); 1357 (*bit) -= side; 1358 return 1; 1359 } 1360 else { 1361 (*bit) += side; 1362 mb_set_bit(*bit, bitmap); 1363 return -1; 1364 } 1365 } 1366 1367 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1368 { 1369 int max; 1370 int order = 1; 1371 void *buddy = mb_find_buddy(e4b, order, &max); 1372 1373 while (buddy) { 1374 void *buddy2; 1375 1376 /* Bits in range [first; last] are known to be set since 1377 * corresponding blocks were allocated. Bits in range 1378 * (first; last) will stay set because they form buddies on 1379 * upper layer. We just deal with borders if they don't 1380 * align with upper layer and then go up. 1381 * Releasing entire group is all about clearing 1382 * single bit of highest order buddy. 1383 */ 1384 1385 /* Example: 1386 * --------------------------------- 1387 * | 1 | 1 | 1 | 1 | 1388 * --------------------------------- 1389 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1390 * --------------------------------- 1391 * 0 1 2 3 4 5 6 7 1392 * \_____________________/ 1393 * 1394 * Neither [1] nor [6] is aligned to above layer. 1395 * Left neighbour [0] is free, so mark it busy, 1396 * decrease bb_counters and extend range to 1397 * [0; 6] 1398 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1399 * mark [6] free, increase bb_counters and shrink range to 1400 * [0; 5]. 1401 * Then shift range to [0; 2], go up and do the same. 1402 */ 1403 1404 1405 if (first & 1) 1406 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1407 if (!(last & 1)) 1408 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1409 if (first > last) 1410 break; 1411 order++; 1412 1413 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1414 mb_clear_bits(buddy, first, last - first + 1); 1415 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1416 break; 1417 } 1418 first >>= 1; 1419 last >>= 1; 1420 buddy = buddy2; 1421 } 1422 } 1423 1424 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1425 int first, int count) 1426 { 1427 int left_is_free = 0; 1428 int right_is_free = 0; 1429 int block; 1430 int last = first + count - 1; 1431 struct super_block *sb = e4b->bd_sb; 1432 1433 if (WARN_ON(count == 0)) 1434 return; 1435 BUG_ON(last >= (sb->s_blocksize << 3)); 1436 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1437 /* Don't bother if the block group is corrupt. */ 1438 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1439 return; 1440 1441 mb_check_buddy(e4b); 1442 mb_free_blocks_double(inode, e4b, first, count); 1443 1444 e4b->bd_info->bb_free += count; 1445 if (first < e4b->bd_info->bb_first_free) 1446 e4b->bd_info->bb_first_free = first; 1447 1448 /* access memory sequentially: check left neighbour, 1449 * clear range and then check right neighbour 1450 */ 1451 if (first != 0) 1452 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1453 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1454 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1455 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1456 1457 if (unlikely(block != -1)) { 1458 struct ext4_sb_info *sbi = EXT4_SB(sb); 1459 ext4_fsblk_t blocknr; 1460 1461 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1462 blocknr += EXT4_C2B(EXT4_SB(sb), block); 1463 ext4_grp_locked_error(sb, e4b->bd_group, 1464 inode ? inode->i_ino : 0, 1465 blocknr, 1466 "freeing already freed block " 1467 "(bit %u); block bitmap corrupt.", 1468 block); 1469 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)) 1470 percpu_counter_sub(&sbi->s_freeclusters_counter, 1471 e4b->bd_info->bb_free); 1472 /* Mark the block group as corrupt. */ 1473 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1474 &e4b->bd_info->bb_state); 1475 mb_regenerate_buddy(e4b); 1476 goto done; 1477 } 1478 1479 /* let's maintain fragments counter */ 1480 if (left_is_free && right_is_free) 1481 e4b->bd_info->bb_fragments--; 1482 else if (!left_is_free && !right_is_free) 1483 e4b->bd_info->bb_fragments++; 1484 1485 /* buddy[0] == bd_bitmap is a special case, so handle 1486 * it right away and let mb_buddy_mark_free stay free of 1487 * zero order checks. 1488 * Check if neighbours are to be coaleasced, 1489 * adjust bitmap bb_counters and borders appropriately. 1490 */ 1491 if (first & 1) { 1492 first += !left_is_free; 1493 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1494 } 1495 if (!(last & 1)) { 1496 last -= !right_is_free; 1497 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1498 } 1499 1500 if (first <= last) 1501 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1502 1503 done: 1504 mb_set_largest_free_order(sb, e4b->bd_info); 1505 mb_check_buddy(e4b); 1506 } 1507 1508 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1509 int needed, struct ext4_free_extent *ex) 1510 { 1511 int next = block; 1512 int max, order; 1513 void *buddy; 1514 1515 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1516 BUG_ON(ex == NULL); 1517 1518 buddy = mb_find_buddy(e4b, 0, &max); 1519 BUG_ON(buddy == NULL); 1520 BUG_ON(block >= max); 1521 if (mb_test_bit(block, buddy)) { 1522 ex->fe_len = 0; 1523 ex->fe_start = 0; 1524 ex->fe_group = 0; 1525 return 0; 1526 } 1527 1528 /* find actual order */ 1529 order = mb_find_order_for_block(e4b, block); 1530 block = block >> order; 1531 1532 ex->fe_len = 1 << order; 1533 ex->fe_start = block << order; 1534 ex->fe_group = e4b->bd_group; 1535 1536 /* calc difference from given start */ 1537 next = next - ex->fe_start; 1538 ex->fe_len -= next; 1539 ex->fe_start += next; 1540 1541 while (needed > ex->fe_len && 1542 mb_find_buddy(e4b, order, &max)) { 1543 1544 if (block + 1 >= max) 1545 break; 1546 1547 next = (block + 1) * (1 << order); 1548 if (mb_test_bit(next, e4b->bd_bitmap)) 1549 break; 1550 1551 order = mb_find_order_for_block(e4b, next); 1552 1553 block = next >> order; 1554 ex->fe_len += 1 << order; 1555 } 1556 1557 if (ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))) { 1558 /* Should never happen! (but apparently sometimes does?!?) */ 1559 WARN_ON(1); 1560 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent " 1561 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 1562 block, order, needed, ex->fe_group, ex->fe_start, 1563 ex->fe_len, ex->fe_logical); 1564 ex->fe_len = 0; 1565 ex->fe_start = 0; 1566 ex->fe_group = 0; 1567 } 1568 return ex->fe_len; 1569 } 1570 1571 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1572 { 1573 int ord; 1574 int mlen = 0; 1575 int max = 0; 1576 int cur; 1577 int start = ex->fe_start; 1578 int len = ex->fe_len; 1579 unsigned ret = 0; 1580 int len0 = len; 1581 void *buddy; 1582 1583 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1584 BUG_ON(e4b->bd_group != ex->fe_group); 1585 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1586 mb_check_buddy(e4b); 1587 mb_mark_used_double(e4b, start, len); 1588 1589 e4b->bd_info->bb_free -= len; 1590 if (e4b->bd_info->bb_first_free == start) 1591 e4b->bd_info->bb_first_free += len; 1592 1593 /* let's maintain fragments counter */ 1594 if (start != 0) 1595 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1596 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1597 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1598 if (mlen && max) 1599 e4b->bd_info->bb_fragments++; 1600 else if (!mlen && !max) 1601 e4b->bd_info->bb_fragments--; 1602 1603 /* let's maintain buddy itself */ 1604 while (len) { 1605 ord = mb_find_order_for_block(e4b, start); 1606 1607 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1608 /* the whole chunk may be allocated at once! */ 1609 mlen = 1 << ord; 1610 buddy = mb_find_buddy(e4b, ord, &max); 1611 BUG_ON((start >> ord) >= max); 1612 mb_set_bit(start >> ord, buddy); 1613 e4b->bd_info->bb_counters[ord]--; 1614 start += mlen; 1615 len -= mlen; 1616 BUG_ON(len < 0); 1617 continue; 1618 } 1619 1620 /* store for history */ 1621 if (ret == 0) 1622 ret = len | (ord << 16); 1623 1624 /* we have to split large buddy */ 1625 BUG_ON(ord <= 0); 1626 buddy = mb_find_buddy(e4b, ord, &max); 1627 mb_set_bit(start >> ord, buddy); 1628 e4b->bd_info->bb_counters[ord]--; 1629 1630 ord--; 1631 cur = (start >> ord) & ~1U; 1632 buddy = mb_find_buddy(e4b, ord, &max); 1633 mb_clear_bit(cur, buddy); 1634 mb_clear_bit(cur + 1, buddy); 1635 e4b->bd_info->bb_counters[ord]++; 1636 e4b->bd_info->bb_counters[ord]++; 1637 } 1638 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1639 1640 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1641 mb_check_buddy(e4b); 1642 1643 return ret; 1644 } 1645 1646 /* 1647 * Must be called under group lock! 1648 */ 1649 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1650 struct ext4_buddy *e4b) 1651 { 1652 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1653 int ret; 1654 1655 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1656 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1657 1658 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1659 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1660 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1661 1662 /* preallocation can change ac_b_ex, thus we store actually 1663 * allocated blocks for history */ 1664 ac->ac_f_ex = ac->ac_b_ex; 1665 1666 ac->ac_status = AC_STATUS_FOUND; 1667 ac->ac_tail = ret & 0xffff; 1668 ac->ac_buddy = ret >> 16; 1669 1670 /* 1671 * take the page reference. We want the page to be pinned 1672 * so that we don't get a ext4_mb_init_cache_call for this 1673 * group until we update the bitmap. That would mean we 1674 * double allocate blocks. The reference is dropped 1675 * in ext4_mb_release_context 1676 */ 1677 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1678 get_page(ac->ac_bitmap_page); 1679 ac->ac_buddy_page = e4b->bd_buddy_page; 1680 get_page(ac->ac_buddy_page); 1681 /* store last allocated for subsequent stream allocation */ 1682 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1683 spin_lock(&sbi->s_md_lock); 1684 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1685 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1686 spin_unlock(&sbi->s_md_lock); 1687 } 1688 } 1689 1690 /* 1691 * regular allocator, for general purposes allocation 1692 */ 1693 1694 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1695 struct ext4_buddy *e4b, 1696 int finish_group) 1697 { 1698 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1699 struct ext4_free_extent *bex = &ac->ac_b_ex; 1700 struct ext4_free_extent *gex = &ac->ac_g_ex; 1701 struct ext4_free_extent ex; 1702 int max; 1703 1704 if (ac->ac_status == AC_STATUS_FOUND) 1705 return; 1706 /* 1707 * We don't want to scan for a whole year 1708 */ 1709 if (ac->ac_found > sbi->s_mb_max_to_scan && 1710 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1711 ac->ac_status = AC_STATUS_BREAK; 1712 return; 1713 } 1714 1715 /* 1716 * Haven't found good chunk so far, let's continue 1717 */ 1718 if (bex->fe_len < gex->fe_len) 1719 return; 1720 1721 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1722 && bex->fe_group == e4b->bd_group) { 1723 /* recheck chunk's availability - we don't know 1724 * when it was found (within this lock-unlock 1725 * period or not) */ 1726 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1727 if (max >= gex->fe_len) { 1728 ext4_mb_use_best_found(ac, e4b); 1729 return; 1730 } 1731 } 1732 } 1733 1734 /* 1735 * The routine checks whether found extent is good enough. If it is, 1736 * then the extent gets marked used and flag is set to the context 1737 * to stop scanning. Otherwise, the extent is compared with the 1738 * previous found extent and if new one is better, then it's stored 1739 * in the context. Later, the best found extent will be used, if 1740 * mballoc can't find good enough extent. 1741 * 1742 * FIXME: real allocation policy is to be designed yet! 1743 */ 1744 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1745 struct ext4_free_extent *ex, 1746 struct ext4_buddy *e4b) 1747 { 1748 struct ext4_free_extent *bex = &ac->ac_b_ex; 1749 struct ext4_free_extent *gex = &ac->ac_g_ex; 1750 1751 BUG_ON(ex->fe_len <= 0); 1752 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1753 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1754 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1755 1756 ac->ac_found++; 1757 1758 /* 1759 * The special case - take what you catch first 1760 */ 1761 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1762 *bex = *ex; 1763 ext4_mb_use_best_found(ac, e4b); 1764 return; 1765 } 1766 1767 /* 1768 * Let's check whether the chuck is good enough 1769 */ 1770 if (ex->fe_len == gex->fe_len) { 1771 *bex = *ex; 1772 ext4_mb_use_best_found(ac, e4b); 1773 return; 1774 } 1775 1776 /* 1777 * If this is first found extent, just store it in the context 1778 */ 1779 if (bex->fe_len == 0) { 1780 *bex = *ex; 1781 return; 1782 } 1783 1784 /* 1785 * If new found extent is better, store it in the context 1786 */ 1787 if (bex->fe_len < gex->fe_len) { 1788 /* if the request isn't satisfied, any found extent 1789 * larger than previous best one is better */ 1790 if (ex->fe_len > bex->fe_len) 1791 *bex = *ex; 1792 } else if (ex->fe_len > gex->fe_len) { 1793 /* if the request is satisfied, then we try to find 1794 * an extent that still satisfy the request, but is 1795 * smaller than previous one */ 1796 if (ex->fe_len < bex->fe_len) 1797 *bex = *ex; 1798 } 1799 1800 ext4_mb_check_limits(ac, e4b, 0); 1801 } 1802 1803 static noinline_for_stack 1804 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1805 struct ext4_buddy *e4b) 1806 { 1807 struct ext4_free_extent ex = ac->ac_b_ex; 1808 ext4_group_t group = ex.fe_group; 1809 int max; 1810 int err; 1811 1812 BUG_ON(ex.fe_len <= 0); 1813 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1814 if (err) 1815 return err; 1816 1817 ext4_lock_group(ac->ac_sb, group); 1818 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1819 1820 if (max > 0) { 1821 ac->ac_b_ex = ex; 1822 ext4_mb_use_best_found(ac, e4b); 1823 } 1824 1825 ext4_unlock_group(ac->ac_sb, group); 1826 ext4_mb_unload_buddy(e4b); 1827 1828 return 0; 1829 } 1830 1831 static noinline_for_stack 1832 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1833 struct ext4_buddy *e4b) 1834 { 1835 ext4_group_t group = ac->ac_g_ex.fe_group; 1836 int max; 1837 int err; 1838 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1839 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1840 struct ext4_free_extent ex; 1841 1842 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1843 return 0; 1844 if (grp->bb_free == 0) 1845 return 0; 1846 1847 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1848 if (err) 1849 return err; 1850 1851 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 1852 ext4_mb_unload_buddy(e4b); 1853 return 0; 1854 } 1855 1856 ext4_lock_group(ac->ac_sb, group); 1857 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1858 ac->ac_g_ex.fe_len, &ex); 1859 ex.fe_logical = 0xDEADFA11; /* debug value */ 1860 1861 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1862 ext4_fsblk_t start; 1863 1864 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1865 ex.fe_start; 1866 /* use do_div to get remainder (would be 64-bit modulo) */ 1867 if (do_div(start, sbi->s_stripe) == 0) { 1868 ac->ac_found++; 1869 ac->ac_b_ex = ex; 1870 ext4_mb_use_best_found(ac, e4b); 1871 } 1872 } else if (max >= ac->ac_g_ex.fe_len) { 1873 BUG_ON(ex.fe_len <= 0); 1874 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1875 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1876 ac->ac_found++; 1877 ac->ac_b_ex = ex; 1878 ext4_mb_use_best_found(ac, e4b); 1879 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1880 /* Sometimes, caller may want to merge even small 1881 * number of blocks to an existing extent */ 1882 BUG_ON(ex.fe_len <= 0); 1883 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1884 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1885 ac->ac_found++; 1886 ac->ac_b_ex = ex; 1887 ext4_mb_use_best_found(ac, e4b); 1888 } 1889 ext4_unlock_group(ac->ac_sb, group); 1890 ext4_mb_unload_buddy(e4b); 1891 1892 return 0; 1893 } 1894 1895 /* 1896 * The routine scans buddy structures (not bitmap!) from given order 1897 * to max order and tries to find big enough chunk to satisfy the req 1898 */ 1899 static noinline_for_stack 1900 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1901 struct ext4_buddy *e4b) 1902 { 1903 struct super_block *sb = ac->ac_sb; 1904 struct ext4_group_info *grp = e4b->bd_info; 1905 void *buddy; 1906 int i; 1907 int k; 1908 int max; 1909 1910 BUG_ON(ac->ac_2order <= 0); 1911 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1912 if (grp->bb_counters[i] == 0) 1913 continue; 1914 1915 buddy = mb_find_buddy(e4b, i, &max); 1916 BUG_ON(buddy == NULL); 1917 1918 k = mb_find_next_zero_bit(buddy, max, 0); 1919 BUG_ON(k >= max); 1920 1921 ac->ac_found++; 1922 1923 ac->ac_b_ex.fe_len = 1 << i; 1924 ac->ac_b_ex.fe_start = k << i; 1925 ac->ac_b_ex.fe_group = e4b->bd_group; 1926 1927 ext4_mb_use_best_found(ac, e4b); 1928 1929 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1930 1931 if (EXT4_SB(sb)->s_mb_stats) 1932 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1933 1934 break; 1935 } 1936 } 1937 1938 /* 1939 * The routine scans the group and measures all found extents. 1940 * In order to optimize scanning, caller must pass number of 1941 * free blocks in the group, so the routine can know upper limit. 1942 */ 1943 static noinline_for_stack 1944 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1945 struct ext4_buddy *e4b) 1946 { 1947 struct super_block *sb = ac->ac_sb; 1948 void *bitmap = e4b->bd_bitmap; 1949 struct ext4_free_extent ex; 1950 int i; 1951 int free; 1952 1953 free = e4b->bd_info->bb_free; 1954 BUG_ON(free <= 0); 1955 1956 i = e4b->bd_info->bb_first_free; 1957 1958 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1959 i = mb_find_next_zero_bit(bitmap, 1960 EXT4_CLUSTERS_PER_GROUP(sb), i); 1961 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1962 /* 1963 * IF we have corrupt bitmap, we won't find any 1964 * free blocks even though group info says we 1965 * we have free blocks 1966 */ 1967 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1968 "%d free clusters as per " 1969 "group info. But bitmap says 0", 1970 free); 1971 break; 1972 } 1973 1974 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1975 BUG_ON(ex.fe_len <= 0); 1976 if (free < ex.fe_len) { 1977 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1978 "%d free clusters as per " 1979 "group info. But got %d blocks", 1980 free, ex.fe_len); 1981 /* 1982 * The number of free blocks differs. This mostly 1983 * indicate that the bitmap is corrupt. So exit 1984 * without claiming the space. 1985 */ 1986 break; 1987 } 1988 ex.fe_logical = 0xDEADC0DE; /* debug value */ 1989 ext4_mb_measure_extent(ac, &ex, e4b); 1990 1991 i += ex.fe_len; 1992 free -= ex.fe_len; 1993 } 1994 1995 ext4_mb_check_limits(ac, e4b, 1); 1996 } 1997 1998 /* 1999 * This is a special case for storages like raid5 2000 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2001 */ 2002 static noinline_for_stack 2003 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2004 struct ext4_buddy *e4b) 2005 { 2006 struct super_block *sb = ac->ac_sb; 2007 struct ext4_sb_info *sbi = EXT4_SB(sb); 2008 void *bitmap = e4b->bd_bitmap; 2009 struct ext4_free_extent ex; 2010 ext4_fsblk_t first_group_block; 2011 ext4_fsblk_t a; 2012 ext4_grpblk_t i; 2013 int max; 2014 2015 BUG_ON(sbi->s_stripe == 0); 2016 2017 /* find first stripe-aligned block in group */ 2018 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2019 2020 a = first_group_block + sbi->s_stripe - 1; 2021 do_div(a, sbi->s_stripe); 2022 i = (a * sbi->s_stripe) - first_group_block; 2023 2024 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2025 if (!mb_test_bit(i, bitmap)) { 2026 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 2027 if (max >= sbi->s_stripe) { 2028 ac->ac_found++; 2029 ex.fe_logical = 0xDEADF00D; /* debug value */ 2030 ac->ac_b_ex = ex; 2031 ext4_mb_use_best_found(ac, e4b); 2032 break; 2033 } 2034 } 2035 i += sbi->s_stripe; 2036 } 2037 } 2038 2039 /* 2040 * This is now called BEFORE we load the buddy bitmap. 2041 * Returns either 1 or 0 indicating that the group is either suitable 2042 * for the allocation or not. In addition it can also return negative 2043 * error code when something goes wrong. 2044 */ 2045 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 2046 ext4_group_t group, int cr) 2047 { 2048 unsigned free, fragments; 2049 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2050 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2051 2052 BUG_ON(cr < 0 || cr >= 4); 2053 2054 free = grp->bb_free; 2055 if (free == 0) 2056 return 0; 2057 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2058 return 0; 2059 2060 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2061 return 0; 2062 2063 /* We only do this if the grp has never been initialized */ 2064 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2065 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS); 2066 if (ret) 2067 return ret; 2068 } 2069 2070 fragments = grp->bb_fragments; 2071 if (fragments == 0) 2072 return 0; 2073 2074 switch (cr) { 2075 case 0: 2076 BUG_ON(ac->ac_2order == 0); 2077 2078 /* Avoid using the first bg of a flexgroup for data files */ 2079 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2080 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2081 ((group % flex_size) == 0)) 2082 return 0; 2083 2084 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) || 2085 (free / fragments) >= ac->ac_g_ex.fe_len) 2086 return 1; 2087 2088 if (grp->bb_largest_free_order < ac->ac_2order) 2089 return 0; 2090 2091 return 1; 2092 case 1: 2093 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2094 return 1; 2095 break; 2096 case 2: 2097 if (free >= ac->ac_g_ex.fe_len) 2098 return 1; 2099 break; 2100 case 3: 2101 return 1; 2102 default: 2103 BUG(); 2104 } 2105 2106 return 0; 2107 } 2108 2109 static noinline_for_stack int 2110 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2111 { 2112 ext4_group_t ngroups, group, i; 2113 int cr; 2114 int err = 0, first_err = 0; 2115 struct ext4_sb_info *sbi; 2116 struct super_block *sb; 2117 struct ext4_buddy e4b; 2118 2119 sb = ac->ac_sb; 2120 sbi = EXT4_SB(sb); 2121 ngroups = ext4_get_groups_count(sb); 2122 /* non-extent files are limited to low blocks/groups */ 2123 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2124 ngroups = sbi->s_blockfile_groups; 2125 2126 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2127 2128 /* first, try the goal */ 2129 err = ext4_mb_find_by_goal(ac, &e4b); 2130 if (err || ac->ac_status == AC_STATUS_FOUND) 2131 goto out; 2132 2133 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2134 goto out; 2135 2136 /* 2137 * ac->ac2_order is set only if the fe_len is a power of 2 2138 * if ac2_order is set we also set criteria to 0 so that we 2139 * try exact allocation using buddy. 2140 */ 2141 i = fls(ac->ac_g_ex.fe_len); 2142 ac->ac_2order = 0; 2143 /* 2144 * We search using buddy data only if the order of the request 2145 * is greater than equal to the sbi_s_mb_order2_reqs 2146 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2147 * We also support searching for power-of-two requests only for 2148 * requests upto maximum buddy size we have constructed. 2149 */ 2150 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) { 2151 /* 2152 * This should tell if fe_len is exactly power of 2 2153 */ 2154 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2155 ac->ac_2order = i - 1; 2156 } 2157 2158 /* if stream allocation is enabled, use global goal */ 2159 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2160 /* TBD: may be hot point */ 2161 spin_lock(&sbi->s_md_lock); 2162 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2163 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2164 spin_unlock(&sbi->s_md_lock); 2165 } 2166 2167 /* Let's just scan groups to find more-less suitable blocks */ 2168 cr = ac->ac_2order ? 0 : 1; 2169 /* 2170 * cr == 0 try to get exact allocation, 2171 * cr == 3 try to get anything 2172 */ 2173 repeat: 2174 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2175 ac->ac_criteria = cr; 2176 /* 2177 * searching for the right group start 2178 * from the goal value specified 2179 */ 2180 group = ac->ac_g_ex.fe_group; 2181 2182 for (i = 0; i < ngroups; group++, i++) { 2183 int ret = 0; 2184 cond_resched(); 2185 /* 2186 * Artificially restricted ngroups for non-extent 2187 * files makes group > ngroups possible on first loop. 2188 */ 2189 if (group >= ngroups) 2190 group = 0; 2191 2192 /* This now checks without needing the buddy page */ 2193 ret = ext4_mb_good_group(ac, group, cr); 2194 if (ret <= 0) { 2195 if (!first_err) 2196 first_err = ret; 2197 continue; 2198 } 2199 2200 err = ext4_mb_load_buddy(sb, group, &e4b); 2201 if (err) 2202 goto out; 2203 2204 ext4_lock_group(sb, group); 2205 2206 /* 2207 * We need to check again after locking the 2208 * block group 2209 */ 2210 ret = ext4_mb_good_group(ac, group, cr); 2211 if (ret <= 0) { 2212 ext4_unlock_group(sb, group); 2213 ext4_mb_unload_buddy(&e4b); 2214 if (!first_err) 2215 first_err = ret; 2216 continue; 2217 } 2218 2219 ac->ac_groups_scanned++; 2220 if (cr == 0) 2221 ext4_mb_simple_scan_group(ac, &e4b); 2222 else if (cr == 1 && sbi->s_stripe && 2223 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2224 ext4_mb_scan_aligned(ac, &e4b); 2225 else 2226 ext4_mb_complex_scan_group(ac, &e4b); 2227 2228 ext4_unlock_group(sb, group); 2229 ext4_mb_unload_buddy(&e4b); 2230 2231 if (ac->ac_status != AC_STATUS_CONTINUE) 2232 break; 2233 } 2234 } 2235 2236 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2237 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2238 /* 2239 * We've been searching too long. Let's try to allocate 2240 * the best chunk we've found so far 2241 */ 2242 2243 ext4_mb_try_best_found(ac, &e4b); 2244 if (ac->ac_status != AC_STATUS_FOUND) { 2245 /* 2246 * Someone more lucky has already allocated it. 2247 * The only thing we can do is just take first 2248 * found block(s) 2249 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2250 */ 2251 ac->ac_b_ex.fe_group = 0; 2252 ac->ac_b_ex.fe_start = 0; 2253 ac->ac_b_ex.fe_len = 0; 2254 ac->ac_status = AC_STATUS_CONTINUE; 2255 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2256 cr = 3; 2257 atomic_inc(&sbi->s_mb_lost_chunks); 2258 goto repeat; 2259 } 2260 } 2261 out: 2262 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2263 err = first_err; 2264 return err; 2265 } 2266 2267 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2268 { 2269 struct super_block *sb = seq->private; 2270 ext4_group_t group; 2271 2272 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2273 return NULL; 2274 group = *pos + 1; 2275 return (void *) ((unsigned long) group); 2276 } 2277 2278 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2279 { 2280 struct super_block *sb = seq->private; 2281 ext4_group_t group; 2282 2283 ++*pos; 2284 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2285 return NULL; 2286 group = *pos + 1; 2287 return (void *) ((unsigned long) group); 2288 } 2289 2290 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2291 { 2292 struct super_block *sb = seq->private; 2293 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2294 int i; 2295 int err, buddy_loaded = 0; 2296 struct ext4_buddy e4b; 2297 struct ext4_group_info *grinfo; 2298 unsigned char blocksize_bits = min_t(unsigned char, 2299 sb->s_blocksize_bits, 2300 EXT4_MAX_BLOCK_LOG_SIZE); 2301 struct sg { 2302 struct ext4_group_info info; 2303 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 2304 } sg; 2305 2306 group--; 2307 if (group == 0) 2308 seq_puts(seq, "#group: free frags first [" 2309 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 2310 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 2311 2312 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2313 sizeof(struct ext4_group_info); 2314 2315 grinfo = ext4_get_group_info(sb, group); 2316 /* Load the group info in memory only if not already loaded. */ 2317 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2318 err = ext4_mb_load_buddy(sb, group, &e4b); 2319 if (err) { 2320 seq_printf(seq, "#%-5u: I/O error\n", group); 2321 return 0; 2322 } 2323 buddy_loaded = 1; 2324 } 2325 2326 memcpy(&sg, ext4_get_group_info(sb, group), i); 2327 2328 if (buddy_loaded) 2329 ext4_mb_unload_buddy(&e4b); 2330 2331 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2332 sg.info.bb_fragments, sg.info.bb_first_free); 2333 for (i = 0; i <= 13; i++) 2334 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 2335 sg.info.bb_counters[i] : 0); 2336 seq_printf(seq, " ]\n"); 2337 2338 return 0; 2339 } 2340 2341 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2342 { 2343 } 2344 2345 static const struct seq_operations ext4_mb_seq_groups_ops = { 2346 .start = ext4_mb_seq_groups_start, 2347 .next = ext4_mb_seq_groups_next, 2348 .stop = ext4_mb_seq_groups_stop, 2349 .show = ext4_mb_seq_groups_show, 2350 }; 2351 2352 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2353 { 2354 struct super_block *sb = PDE_DATA(inode); 2355 int rc; 2356 2357 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2358 if (rc == 0) { 2359 struct seq_file *m = file->private_data; 2360 m->private = sb; 2361 } 2362 return rc; 2363 2364 } 2365 2366 const struct file_operations ext4_seq_mb_groups_fops = { 2367 .open = ext4_mb_seq_groups_open, 2368 .read = seq_read, 2369 .llseek = seq_lseek, 2370 .release = seq_release, 2371 }; 2372 2373 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2374 { 2375 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2376 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2377 2378 BUG_ON(!cachep); 2379 return cachep; 2380 } 2381 2382 /* 2383 * Allocate the top-level s_group_info array for the specified number 2384 * of groups 2385 */ 2386 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2387 { 2388 struct ext4_sb_info *sbi = EXT4_SB(sb); 2389 unsigned size; 2390 struct ext4_group_info ***new_groupinfo; 2391 2392 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2393 EXT4_DESC_PER_BLOCK_BITS(sb); 2394 if (size <= sbi->s_group_info_size) 2395 return 0; 2396 2397 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2398 new_groupinfo = kvzalloc(size, GFP_KERNEL); 2399 if (!new_groupinfo) { 2400 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2401 return -ENOMEM; 2402 } 2403 if (sbi->s_group_info) { 2404 memcpy(new_groupinfo, sbi->s_group_info, 2405 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2406 kvfree(sbi->s_group_info); 2407 } 2408 sbi->s_group_info = new_groupinfo; 2409 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2410 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2411 sbi->s_group_info_size); 2412 return 0; 2413 } 2414 2415 /* Create and initialize ext4_group_info data for the given group. */ 2416 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2417 struct ext4_group_desc *desc) 2418 { 2419 int i; 2420 int metalen = 0; 2421 struct ext4_sb_info *sbi = EXT4_SB(sb); 2422 struct ext4_group_info **meta_group_info; 2423 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2424 2425 /* 2426 * First check if this group is the first of a reserved block. 2427 * If it's true, we have to allocate a new table of pointers 2428 * to ext4_group_info structures 2429 */ 2430 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2431 metalen = sizeof(*meta_group_info) << 2432 EXT4_DESC_PER_BLOCK_BITS(sb); 2433 meta_group_info = kmalloc(metalen, GFP_NOFS); 2434 if (meta_group_info == NULL) { 2435 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2436 "for a buddy group"); 2437 goto exit_meta_group_info; 2438 } 2439 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2440 meta_group_info; 2441 } 2442 2443 meta_group_info = 2444 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2445 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2446 2447 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 2448 if (meta_group_info[i] == NULL) { 2449 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2450 goto exit_group_info; 2451 } 2452 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2453 &(meta_group_info[i]->bb_state)); 2454 2455 /* 2456 * initialize bb_free to be able to skip 2457 * empty groups without initialization 2458 */ 2459 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2460 meta_group_info[i]->bb_free = 2461 ext4_free_clusters_after_init(sb, group, desc); 2462 } else { 2463 meta_group_info[i]->bb_free = 2464 ext4_free_group_clusters(sb, desc); 2465 } 2466 2467 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2468 init_rwsem(&meta_group_info[i]->alloc_sem); 2469 meta_group_info[i]->bb_free_root = RB_ROOT; 2470 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2471 2472 #ifdef DOUBLE_CHECK 2473 { 2474 struct buffer_head *bh; 2475 meta_group_info[i]->bb_bitmap = 2476 kmalloc(sb->s_blocksize, GFP_NOFS); 2477 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2478 bh = ext4_read_block_bitmap(sb, group); 2479 BUG_ON(IS_ERR_OR_NULL(bh)); 2480 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2481 sb->s_blocksize); 2482 put_bh(bh); 2483 } 2484 #endif 2485 2486 return 0; 2487 2488 exit_group_info: 2489 /* If a meta_group_info table has been allocated, release it now */ 2490 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2491 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2492 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL; 2493 } 2494 exit_meta_group_info: 2495 return -ENOMEM; 2496 } /* ext4_mb_add_groupinfo */ 2497 2498 static int ext4_mb_init_backend(struct super_block *sb) 2499 { 2500 ext4_group_t ngroups = ext4_get_groups_count(sb); 2501 ext4_group_t i; 2502 struct ext4_sb_info *sbi = EXT4_SB(sb); 2503 int err; 2504 struct ext4_group_desc *desc; 2505 struct kmem_cache *cachep; 2506 2507 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2508 if (err) 2509 return err; 2510 2511 sbi->s_buddy_cache = new_inode(sb); 2512 if (sbi->s_buddy_cache == NULL) { 2513 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2514 goto err_freesgi; 2515 } 2516 /* To avoid potentially colliding with an valid on-disk inode number, 2517 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2518 * not in the inode hash, so it should never be found by iget(), but 2519 * this will avoid confusion if it ever shows up during debugging. */ 2520 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2521 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2522 for (i = 0; i < ngroups; i++) { 2523 desc = ext4_get_group_desc(sb, i, NULL); 2524 if (desc == NULL) { 2525 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2526 goto err_freebuddy; 2527 } 2528 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2529 goto err_freebuddy; 2530 } 2531 2532 return 0; 2533 2534 err_freebuddy: 2535 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2536 while (i-- > 0) 2537 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2538 i = sbi->s_group_info_size; 2539 while (i-- > 0) 2540 kfree(sbi->s_group_info[i]); 2541 iput(sbi->s_buddy_cache); 2542 err_freesgi: 2543 kvfree(sbi->s_group_info); 2544 return -ENOMEM; 2545 } 2546 2547 static void ext4_groupinfo_destroy_slabs(void) 2548 { 2549 int i; 2550 2551 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2552 if (ext4_groupinfo_caches[i]) 2553 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2554 ext4_groupinfo_caches[i] = NULL; 2555 } 2556 } 2557 2558 static int ext4_groupinfo_create_slab(size_t size) 2559 { 2560 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2561 int slab_size; 2562 int blocksize_bits = order_base_2(size); 2563 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2564 struct kmem_cache *cachep; 2565 2566 if (cache_index >= NR_GRPINFO_CACHES) 2567 return -EINVAL; 2568 2569 if (unlikely(cache_index < 0)) 2570 cache_index = 0; 2571 2572 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2573 if (ext4_groupinfo_caches[cache_index]) { 2574 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2575 return 0; /* Already created */ 2576 } 2577 2578 slab_size = offsetof(struct ext4_group_info, 2579 bb_counters[blocksize_bits + 2]); 2580 2581 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2582 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2583 NULL); 2584 2585 ext4_groupinfo_caches[cache_index] = cachep; 2586 2587 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2588 if (!cachep) { 2589 printk(KERN_EMERG 2590 "EXT4-fs: no memory for groupinfo slab cache\n"); 2591 return -ENOMEM; 2592 } 2593 2594 return 0; 2595 } 2596 2597 int ext4_mb_init(struct super_block *sb) 2598 { 2599 struct ext4_sb_info *sbi = EXT4_SB(sb); 2600 unsigned i, j; 2601 unsigned offset, offset_incr; 2602 unsigned max; 2603 int ret; 2604 2605 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2606 2607 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2608 if (sbi->s_mb_offsets == NULL) { 2609 ret = -ENOMEM; 2610 goto out; 2611 } 2612 2613 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2614 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2615 if (sbi->s_mb_maxs == NULL) { 2616 ret = -ENOMEM; 2617 goto out; 2618 } 2619 2620 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2621 if (ret < 0) 2622 goto out; 2623 2624 /* order 0 is regular bitmap */ 2625 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2626 sbi->s_mb_offsets[0] = 0; 2627 2628 i = 1; 2629 offset = 0; 2630 offset_incr = 1 << (sb->s_blocksize_bits - 1); 2631 max = sb->s_blocksize << 2; 2632 do { 2633 sbi->s_mb_offsets[i] = offset; 2634 sbi->s_mb_maxs[i] = max; 2635 offset += offset_incr; 2636 offset_incr = offset_incr >> 1; 2637 max = max >> 1; 2638 i++; 2639 } while (i <= sb->s_blocksize_bits + 1); 2640 2641 spin_lock_init(&sbi->s_md_lock); 2642 spin_lock_init(&sbi->s_bal_lock); 2643 sbi->s_mb_free_pending = 0; 2644 INIT_LIST_HEAD(&sbi->s_freed_data_list); 2645 2646 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2647 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2648 sbi->s_mb_stats = MB_DEFAULT_STATS; 2649 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2650 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2651 /* 2652 * The default group preallocation is 512, which for 4k block 2653 * sizes translates to 2 megabytes. However for bigalloc file 2654 * systems, this is probably too big (i.e, if the cluster size 2655 * is 1 megabyte, then group preallocation size becomes half a 2656 * gigabyte!). As a default, we will keep a two megabyte 2657 * group pralloc size for cluster sizes up to 64k, and after 2658 * that, we will force a minimum group preallocation size of 2659 * 32 clusters. This translates to 8 megs when the cluster 2660 * size is 256k, and 32 megs when the cluster size is 1 meg, 2661 * which seems reasonable as a default. 2662 */ 2663 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2664 sbi->s_cluster_bits, 32); 2665 /* 2666 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2667 * to the lowest multiple of s_stripe which is bigger than 2668 * the s_mb_group_prealloc as determined above. We want 2669 * the preallocation size to be an exact multiple of the 2670 * RAID stripe size so that preallocations don't fragment 2671 * the stripes. 2672 */ 2673 if (sbi->s_stripe > 1) { 2674 sbi->s_mb_group_prealloc = roundup( 2675 sbi->s_mb_group_prealloc, sbi->s_stripe); 2676 } 2677 2678 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2679 if (sbi->s_locality_groups == NULL) { 2680 ret = -ENOMEM; 2681 goto out; 2682 } 2683 for_each_possible_cpu(i) { 2684 struct ext4_locality_group *lg; 2685 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2686 mutex_init(&lg->lg_mutex); 2687 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2688 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2689 spin_lock_init(&lg->lg_prealloc_lock); 2690 } 2691 2692 /* init file for buddy data */ 2693 ret = ext4_mb_init_backend(sb); 2694 if (ret != 0) 2695 goto out_free_locality_groups; 2696 2697 return 0; 2698 2699 out_free_locality_groups: 2700 free_percpu(sbi->s_locality_groups); 2701 sbi->s_locality_groups = NULL; 2702 out: 2703 kfree(sbi->s_mb_offsets); 2704 sbi->s_mb_offsets = NULL; 2705 kfree(sbi->s_mb_maxs); 2706 sbi->s_mb_maxs = NULL; 2707 return ret; 2708 } 2709 2710 /* need to called with the ext4 group lock held */ 2711 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2712 { 2713 struct ext4_prealloc_space *pa; 2714 struct list_head *cur, *tmp; 2715 int count = 0; 2716 2717 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2718 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2719 list_del(&pa->pa_group_list); 2720 count++; 2721 kmem_cache_free(ext4_pspace_cachep, pa); 2722 } 2723 if (count) 2724 mb_debug(1, "mballoc: %u PAs left\n", count); 2725 2726 } 2727 2728 int ext4_mb_release(struct super_block *sb) 2729 { 2730 ext4_group_t ngroups = ext4_get_groups_count(sb); 2731 ext4_group_t i; 2732 int num_meta_group_infos; 2733 struct ext4_group_info *grinfo; 2734 struct ext4_sb_info *sbi = EXT4_SB(sb); 2735 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2736 2737 if (sbi->s_group_info) { 2738 for (i = 0; i < ngroups; i++) { 2739 grinfo = ext4_get_group_info(sb, i); 2740 #ifdef DOUBLE_CHECK 2741 kfree(grinfo->bb_bitmap); 2742 #endif 2743 ext4_lock_group(sb, i); 2744 ext4_mb_cleanup_pa(grinfo); 2745 ext4_unlock_group(sb, i); 2746 kmem_cache_free(cachep, grinfo); 2747 } 2748 num_meta_group_infos = (ngroups + 2749 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2750 EXT4_DESC_PER_BLOCK_BITS(sb); 2751 for (i = 0; i < num_meta_group_infos; i++) 2752 kfree(sbi->s_group_info[i]); 2753 kvfree(sbi->s_group_info); 2754 } 2755 kfree(sbi->s_mb_offsets); 2756 kfree(sbi->s_mb_maxs); 2757 iput(sbi->s_buddy_cache); 2758 if (sbi->s_mb_stats) { 2759 ext4_msg(sb, KERN_INFO, 2760 "mballoc: %u blocks %u reqs (%u success)", 2761 atomic_read(&sbi->s_bal_allocated), 2762 atomic_read(&sbi->s_bal_reqs), 2763 atomic_read(&sbi->s_bal_success)); 2764 ext4_msg(sb, KERN_INFO, 2765 "mballoc: %u extents scanned, %u goal hits, " 2766 "%u 2^N hits, %u breaks, %u lost", 2767 atomic_read(&sbi->s_bal_ex_scanned), 2768 atomic_read(&sbi->s_bal_goals), 2769 atomic_read(&sbi->s_bal_2orders), 2770 atomic_read(&sbi->s_bal_breaks), 2771 atomic_read(&sbi->s_mb_lost_chunks)); 2772 ext4_msg(sb, KERN_INFO, 2773 "mballoc: %lu generated and it took %Lu", 2774 sbi->s_mb_buddies_generated, 2775 sbi->s_mb_generation_time); 2776 ext4_msg(sb, KERN_INFO, 2777 "mballoc: %u preallocated, %u discarded", 2778 atomic_read(&sbi->s_mb_preallocated), 2779 atomic_read(&sbi->s_mb_discarded)); 2780 } 2781 2782 free_percpu(sbi->s_locality_groups); 2783 2784 return 0; 2785 } 2786 2787 static inline int ext4_issue_discard(struct super_block *sb, 2788 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 2789 struct bio **biop) 2790 { 2791 ext4_fsblk_t discard_block; 2792 2793 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2794 ext4_group_first_block_no(sb, block_group)); 2795 count = EXT4_C2B(EXT4_SB(sb), count); 2796 trace_ext4_discard_blocks(sb, 2797 (unsigned long long) discard_block, count); 2798 if (biop) { 2799 return __blkdev_issue_discard(sb->s_bdev, 2800 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 2801 (sector_t)count << (sb->s_blocksize_bits - 9), 2802 GFP_NOFS, 0, biop); 2803 } else 2804 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2805 } 2806 2807 static void ext4_free_data_in_buddy(struct super_block *sb, 2808 struct ext4_free_data *entry) 2809 { 2810 struct ext4_buddy e4b; 2811 struct ext4_group_info *db; 2812 int err, count = 0, count2 = 0; 2813 2814 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2815 entry->efd_count, entry->efd_group, entry); 2816 2817 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2818 /* we expect to find existing buddy because it's pinned */ 2819 BUG_ON(err != 0); 2820 2821 spin_lock(&EXT4_SB(sb)->s_md_lock); 2822 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 2823 spin_unlock(&EXT4_SB(sb)->s_md_lock); 2824 2825 db = e4b.bd_info; 2826 /* there are blocks to put in buddy to make them really free */ 2827 count += entry->efd_count; 2828 count2++; 2829 ext4_lock_group(sb, entry->efd_group); 2830 /* Take it out of per group rb tree */ 2831 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2832 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2833 2834 /* 2835 * Clear the trimmed flag for the group so that the next 2836 * ext4_trim_fs can trim it. 2837 * If the volume is mounted with -o discard, online discard 2838 * is supported and the free blocks will be trimmed online. 2839 */ 2840 if (!test_opt(sb, DISCARD)) 2841 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2842 2843 if (!db->bb_free_root.rb_node) { 2844 /* No more items in the per group rb tree 2845 * balance refcounts from ext4_mb_free_metadata() 2846 */ 2847 put_page(e4b.bd_buddy_page); 2848 put_page(e4b.bd_bitmap_page); 2849 } 2850 ext4_unlock_group(sb, entry->efd_group); 2851 kmem_cache_free(ext4_free_data_cachep, entry); 2852 ext4_mb_unload_buddy(&e4b); 2853 2854 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2855 } 2856 2857 /* 2858 * This function is called by the jbd2 layer once the commit has finished, 2859 * so we know we can free the blocks that were released with that commit. 2860 */ 2861 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 2862 { 2863 struct ext4_sb_info *sbi = EXT4_SB(sb); 2864 struct ext4_free_data *entry, *tmp; 2865 struct bio *discard_bio = NULL; 2866 struct list_head freed_data_list; 2867 struct list_head *cut_pos = NULL; 2868 int err; 2869 2870 INIT_LIST_HEAD(&freed_data_list); 2871 2872 spin_lock(&sbi->s_md_lock); 2873 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 2874 if (entry->efd_tid != commit_tid) 2875 break; 2876 cut_pos = &entry->efd_list; 2877 } 2878 if (cut_pos) 2879 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 2880 cut_pos); 2881 spin_unlock(&sbi->s_md_lock); 2882 2883 if (test_opt(sb, DISCARD)) { 2884 list_for_each_entry(entry, &freed_data_list, efd_list) { 2885 err = ext4_issue_discard(sb, entry->efd_group, 2886 entry->efd_start_cluster, 2887 entry->efd_count, 2888 &discard_bio); 2889 if (err && err != -EOPNOTSUPP) { 2890 ext4_msg(sb, KERN_WARNING, "discard request in" 2891 " group:%d block:%d count:%d failed" 2892 " with %d", entry->efd_group, 2893 entry->efd_start_cluster, 2894 entry->efd_count, err); 2895 } else if (err == -EOPNOTSUPP) 2896 break; 2897 } 2898 2899 if (discard_bio) { 2900 submit_bio_wait(discard_bio); 2901 bio_put(discard_bio); 2902 } 2903 } 2904 2905 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 2906 ext4_free_data_in_buddy(sb, entry); 2907 } 2908 2909 int __init ext4_init_mballoc(void) 2910 { 2911 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2912 SLAB_RECLAIM_ACCOUNT); 2913 if (ext4_pspace_cachep == NULL) 2914 return -ENOMEM; 2915 2916 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2917 SLAB_RECLAIM_ACCOUNT); 2918 if (ext4_ac_cachep == NULL) { 2919 kmem_cache_destroy(ext4_pspace_cachep); 2920 return -ENOMEM; 2921 } 2922 2923 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2924 SLAB_RECLAIM_ACCOUNT); 2925 if (ext4_free_data_cachep == NULL) { 2926 kmem_cache_destroy(ext4_pspace_cachep); 2927 kmem_cache_destroy(ext4_ac_cachep); 2928 return -ENOMEM; 2929 } 2930 return 0; 2931 } 2932 2933 void ext4_exit_mballoc(void) 2934 { 2935 /* 2936 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2937 * before destroying the slab cache. 2938 */ 2939 rcu_barrier(); 2940 kmem_cache_destroy(ext4_pspace_cachep); 2941 kmem_cache_destroy(ext4_ac_cachep); 2942 kmem_cache_destroy(ext4_free_data_cachep); 2943 ext4_groupinfo_destroy_slabs(); 2944 } 2945 2946 2947 /* 2948 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2949 * Returns 0 if success or error code 2950 */ 2951 static noinline_for_stack int 2952 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2953 handle_t *handle, unsigned int reserv_clstrs) 2954 { 2955 struct buffer_head *bitmap_bh = NULL; 2956 struct ext4_group_desc *gdp; 2957 struct buffer_head *gdp_bh; 2958 struct ext4_sb_info *sbi; 2959 struct super_block *sb; 2960 ext4_fsblk_t block; 2961 int err, len; 2962 2963 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2964 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2965 2966 sb = ac->ac_sb; 2967 sbi = EXT4_SB(sb); 2968 2969 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2970 if (IS_ERR(bitmap_bh)) { 2971 err = PTR_ERR(bitmap_bh); 2972 bitmap_bh = NULL; 2973 goto out_err; 2974 } 2975 2976 BUFFER_TRACE(bitmap_bh, "getting write access"); 2977 err = ext4_journal_get_write_access(handle, bitmap_bh); 2978 if (err) 2979 goto out_err; 2980 2981 err = -EIO; 2982 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2983 if (!gdp) 2984 goto out_err; 2985 2986 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2987 ext4_free_group_clusters(sb, gdp)); 2988 2989 BUFFER_TRACE(gdp_bh, "get_write_access"); 2990 err = ext4_journal_get_write_access(handle, gdp_bh); 2991 if (err) 2992 goto out_err; 2993 2994 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2995 2996 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2997 if (!ext4_data_block_valid(sbi, block, len)) { 2998 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2999 "fs metadata", block, block+len); 3000 /* File system mounted not to panic on error 3001 * Fix the bitmap and return EFSCORRUPTED 3002 * We leak some of the blocks here. 3003 */ 3004 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3005 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3006 ac->ac_b_ex.fe_len); 3007 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3008 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3009 if (!err) 3010 err = -EFSCORRUPTED; 3011 goto out_err; 3012 } 3013 3014 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3015 #ifdef AGGRESSIVE_CHECK 3016 { 3017 int i; 3018 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 3019 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 3020 bitmap_bh->b_data)); 3021 } 3022 } 3023 #endif 3024 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3025 ac->ac_b_ex.fe_len); 3026 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 3027 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3028 ext4_free_group_clusters_set(sb, gdp, 3029 ext4_free_clusters_after_init(sb, 3030 ac->ac_b_ex.fe_group, gdp)); 3031 } 3032 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 3033 ext4_free_group_clusters_set(sb, gdp, len); 3034 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 3035 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 3036 3037 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3038 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 3039 /* 3040 * Now reduce the dirty block count also. Should not go negative 3041 */ 3042 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 3043 /* release all the reserved blocks if non delalloc */ 3044 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 3045 reserv_clstrs); 3046 3047 if (sbi->s_log_groups_per_flex) { 3048 ext4_group_t flex_group = ext4_flex_group(sbi, 3049 ac->ac_b_ex.fe_group); 3050 atomic64_sub(ac->ac_b_ex.fe_len, 3051 &sbi->s_flex_groups[flex_group].free_clusters); 3052 } 3053 3054 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3055 if (err) 3056 goto out_err; 3057 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 3058 3059 out_err: 3060 brelse(bitmap_bh); 3061 return err; 3062 } 3063 3064 /* 3065 * here we normalize request for locality group 3066 * Group request are normalized to s_mb_group_prealloc, which goes to 3067 * s_strip if we set the same via mount option. 3068 * s_mb_group_prealloc can be configured via 3069 * /sys/fs/ext4/<partition>/mb_group_prealloc 3070 * 3071 * XXX: should we try to preallocate more than the group has now? 3072 */ 3073 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 3074 { 3075 struct super_block *sb = ac->ac_sb; 3076 struct ext4_locality_group *lg = ac->ac_lg; 3077 3078 BUG_ON(lg == NULL); 3079 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 3080 mb_debug(1, "#%u: goal %u blocks for locality group\n", 3081 current->pid, ac->ac_g_ex.fe_len); 3082 } 3083 3084 /* 3085 * Normalization means making request better in terms of 3086 * size and alignment 3087 */ 3088 static noinline_for_stack void 3089 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3090 struct ext4_allocation_request *ar) 3091 { 3092 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3093 int bsbits, max; 3094 ext4_lblk_t end; 3095 loff_t size, start_off; 3096 loff_t orig_size __maybe_unused; 3097 ext4_lblk_t start; 3098 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3099 struct ext4_prealloc_space *pa; 3100 3101 /* do normalize only data requests, metadata requests 3102 do not need preallocation */ 3103 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3104 return; 3105 3106 /* sometime caller may want exact blocks */ 3107 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3108 return; 3109 3110 /* caller may indicate that preallocation isn't 3111 * required (it's a tail, for example) */ 3112 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3113 return; 3114 3115 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3116 ext4_mb_normalize_group_request(ac); 3117 return ; 3118 } 3119 3120 bsbits = ac->ac_sb->s_blocksize_bits; 3121 3122 /* first, let's learn actual file size 3123 * given current request is allocated */ 3124 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3125 size = size << bsbits; 3126 if (size < i_size_read(ac->ac_inode)) 3127 size = i_size_read(ac->ac_inode); 3128 orig_size = size; 3129 3130 /* max size of free chunks */ 3131 max = 2 << bsbits; 3132 3133 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3134 (req <= (size) || max <= (chunk_size)) 3135 3136 /* first, try to predict filesize */ 3137 /* XXX: should this table be tunable? */ 3138 start_off = 0; 3139 if (size <= 16 * 1024) { 3140 size = 16 * 1024; 3141 } else if (size <= 32 * 1024) { 3142 size = 32 * 1024; 3143 } else if (size <= 64 * 1024) { 3144 size = 64 * 1024; 3145 } else if (size <= 128 * 1024) { 3146 size = 128 * 1024; 3147 } else if (size <= 256 * 1024) { 3148 size = 256 * 1024; 3149 } else if (size <= 512 * 1024) { 3150 size = 512 * 1024; 3151 } else if (size <= 1024 * 1024) { 3152 size = 1024 * 1024; 3153 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3154 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3155 (21 - bsbits)) << 21; 3156 size = 2 * 1024 * 1024; 3157 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3158 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3159 (22 - bsbits)) << 22; 3160 size = 4 * 1024 * 1024; 3161 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3162 (8<<20)>>bsbits, max, 8 * 1024)) { 3163 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3164 (23 - bsbits)) << 23; 3165 size = 8 * 1024 * 1024; 3166 } else { 3167 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 3168 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 3169 ac->ac_o_ex.fe_len) << bsbits; 3170 } 3171 size = size >> bsbits; 3172 start = start_off >> bsbits; 3173 3174 /* don't cover already allocated blocks in selected range */ 3175 if (ar->pleft && start <= ar->lleft) { 3176 size -= ar->lleft + 1 - start; 3177 start = ar->lleft + 1; 3178 } 3179 if (ar->pright && start + size - 1 >= ar->lright) 3180 size -= start + size - ar->lright; 3181 3182 /* 3183 * Trim allocation request for filesystems with artificially small 3184 * groups. 3185 */ 3186 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 3187 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 3188 3189 end = start + size; 3190 3191 /* check we don't cross already preallocated blocks */ 3192 rcu_read_lock(); 3193 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3194 ext4_lblk_t pa_end; 3195 3196 if (pa->pa_deleted) 3197 continue; 3198 spin_lock(&pa->pa_lock); 3199 if (pa->pa_deleted) { 3200 spin_unlock(&pa->pa_lock); 3201 continue; 3202 } 3203 3204 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3205 pa->pa_len); 3206 3207 /* PA must not overlap original request */ 3208 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3209 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3210 3211 /* skip PAs this normalized request doesn't overlap with */ 3212 if (pa->pa_lstart >= end || pa_end <= start) { 3213 spin_unlock(&pa->pa_lock); 3214 continue; 3215 } 3216 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3217 3218 /* adjust start or end to be adjacent to this pa */ 3219 if (pa_end <= ac->ac_o_ex.fe_logical) { 3220 BUG_ON(pa_end < start); 3221 start = pa_end; 3222 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3223 BUG_ON(pa->pa_lstart > end); 3224 end = pa->pa_lstart; 3225 } 3226 spin_unlock(&pa->pa_lock); 3227 } 3228 rcu_read_unlock(); 3229 size = end - start; 3230 3231 /* XXX: extra loop to check we really don't overlap preallocations */ 3232 rcu_read_lock(); 3233 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3234 ext4_lblk_t pa_end; 3235 3236 spin_lock(&pa->pa_lock); 3237 if (pa->pa_deleted == 0) { 3238 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3239 pa->pa_len); 3240 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3241 } 3242 spin_unlock(&pa->pa_lock); 3243 } 3244 rcu_read_unlock(); 3245 3246 if (start + size <= ac->ac_o_ex.fe_logical && 3247 start > ac->ac_o_ex.fe_logical) { 3248 ext4_msg(ac->ac_sb, KERN_ERR, 3249 "start %lu, size %lu, fe_logical %lu", 3250 (unsigned long) start, (unsigned long) size, 3251 (unsigned long) ac->ac_o_ex.fe_logical); 3252 BUG(); 3253 } 3254 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3255 3256 /* now prepare goal request */ 3257 3258 /* XXX: is it better to align blocks WRT to logical 3259 * placement or satisfy big request as is */ 3260 ac->ac_g_ex.fe_logical = start; 3261 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3262 3263 /* define goal start in order to merge */ 3264 if (ar->pright && (ar->lright == (start + size))) { 3265 /* merge to the right */ 3266 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3267 &ac->ac_f_ex.fe_group, 3268 &ac->ac_f_ex.fe_start); 3269 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3270 } 3271 if (ar->pleft && (ar->lleft + 1 == start)) { 3272 /* merge to the left */ 3273 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3274 &ac->ac_f_ex.fe_group, 3275 &ac->ac_f_ex.fe_start); 3276 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3277 } 3278 3279 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3280 (unsigned) orig_size, (unsigned) start); 3281 } 3282 3283 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3284 { 3285 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3286 3287 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3288 atomic_inc(&sbi->s_bal_reqs); 3289 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3290 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3291 atomic_inc(&sbi->s_bal_success); 3292 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3293 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3294 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3295 atomic_inc(&sbi->s_bal_goals); 3296 if (ac->ac_found > sbi->s_mb_max_to_scan) 3297 atomic_inc(&sbi->s_bal_breaks); 3298 } 3299 3300 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3301 trace_ext4_mballoc_alloc(ac); 3302 else 3303 trace_ext4_mballoc_prealloc(ac); 3304 } 3305 3306 /* 3307 * Called on failure; free up any blocks from the inode PA for this 3308 * context. We don't need this for MB_GROUP_PA because we only change 3309 * pa_free in ext4_mb_release_context(), but on failure, we've already 3310 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3311 */ 3312 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3313 { 3314 struct ext4_prealloc_space *pa = ac->ac_pa; 3315 struct ext4_buddy e4b; 3316 int err; 3317 3318 if (pa == NULL) { 3319 if (ac->ac_f_ex.fe_len == 0) 3320 return; 3321 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 3322 if (err) { 3323 /* 3324 * This should never happen since we pin the 3325 * pages in the ext4_allocation_context so 3326 * ext4_mb_load_buddy() should never fail. 3327 */ 3328 WARN(1, "mb_load_buddy failed (%d)", err); 3329 return; 3330 } 3331 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3332 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 3333 ac->ac_f_ex.fe_len); 3334 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3335 ext4_mb_unload_buddy(&e4b); 3336 return; 3337 } 3338 if (pa->pa_type == MB_INODE_PA) 3339 pa->pa_free += ac->ac_b_ex.fe_len; 3340 } 3341 3342 /* 3343 * use blocks preallocated to inode 3344 */ 3345 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3346 struct ext4_prealloc_space *pa) 3347 { 3348 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3349 ext4_fsblk_t start; 3350 ext4_fsblk_t end; 3351 int len; 3352 3353 /* found preallocated blocks, use them */ 3354 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3355 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3356 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3357 len = EXT4_NUM_B2C(sbi, end - start); 3358 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3359 &ac->ac_b_ex.fe_start); 3360 ac->ac_b_ex.fe_len = len; 3361 ac->ac_status = AC_STATUS_FOUND; 3362 ac->ac_pa = pa; 3363 3364 BUG_ON(start < pa->pa_pstart); 3365 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3366 BUG_ON(pa->pa_free < len); 3367 pa->pa_free -= len; 3368 3369 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3370 } 3371 3372 /* 3373 * use blocks preallocated to locality group 3374 */ 3375 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3376 struct ext4_prealloc_space *pa) 3377 { 3378 unsigned int len = ac->ac_o_ex.fe_len; 3379 3380 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3381 &ac->ac_b_ex.fe_group, 3382 &ac->ac_b_ex.fe_start); 3383 ac->ac_b_ex.fe_len = len; 3384 ac->ac_status = AC_STATUS_FOUND; 3385 ac->ac_pa = pa; 3386 3387 /* we don't correct pa_pstart or pa_plen here to avoid 3388 * possible race when the group is being loaded concurrently 3389 * instead we correct pa later, after blocks are marked 3390 * in on-disk bitmap -- see ext4_mb_release_context() 3391 * Other CPUs are prevented from allocating from this pa by lg_mutex 3392 */ 3393 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3394 } 3395 3396 /* 3397 * Return the prealloc space that have minimal distance 3398 * from the goal block. @cpa is the prealloc 3399 * space that is having currently known minimal distance 3400 * from the goal block. 3401 */ 3402 static struct ext4_prealloc_space * 3403 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3404 struct ext4_prealloc_space *pa, 3405 struct ext4_prealloc_space *cpa) 3406 { 3407 ext4_fsblk_t cur_distance, new_distance; 3408 3409 if (cpa == NULL) { 3410 atomic_inc(&pa->pa_count); 3411 return pa; 3412 } 3413 cur_distance = abs(goal_block - cpa->pa_pstart); 3414 new_distance = abs(goal_block - pa->pa_pstart); 3415 3416 if (cur_distance <= new_distance) 3417 return cpa; 3418 3419 /* drop the previous reference */ 3420 atomic_dec(&cpa->pa_count); 3421 atomic_inc(&pa->pa_count); 3422 return pa; 3423 } 3424 3425 /* 3426 * search goal blocks in preallocated space 3427 */ 3428 static noinline_for_stack int 3429 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3430 { 3431 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3432 int order, i; 3433 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3434 struct ext4_locality_group *lg; 3435 struct ext4_prealloc_space *pa, *cpa = NULL; 3436 ext4_fsblk_t goal_block; 3437 3438 /* only data can be preallocated */ 3439 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3440 return 0; 3441 3442 /* first, try per-file preallocation */ 3443 rcu_read_lock(); 3444 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3445 3446 /* all fields in this condition don't change, 3447 * so we can skip locking for them */ 3448 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3449 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3450 EXT4_C2B(sbi, pa->pa_len))) 3451 continue; 3452 3453 /* non-extent files can't have physical blocks past 2^32 */ 3454 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3455 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3456 EXT4_MAX_BLOCK_FILE_PHYS)) 3457 continue; 3458 3459 /* found preallocated blocks, use them */ 3460 spin_lock(&pa->pa_lock); 3461 if (pa->pa_deleted == 0 && pa->pa_free) { 3462 atomic_inc(&pa->pa_count); 3463 ext4_mb_use_inode_pa(ac, pa); 3464 spin_unlock(&pa->pa_lock); 3465 ac->ac_criteria = 10; 3466 rcu_read_unlock(); 3467 return 1; 3468 } 3469 spin_unlock(&pa->pa_lock); 3470 } 3471 rcu_read_unlock(); 3472 3473 /* can we use group allocation? */ 3474 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3475 return 0; 3476 3477 /* inode may have no locality group for some reason */ 3478 lg = ac->ac_lg; 3479 if (lg == NULL) 3480 return 0; 3481 order = fls(ac->ac_o_ex.fe_len) - 1; 3482 if (order > PREALLOC_TB_SIZE - 1) 3483 /* The max size of hash table is PREALLOC_TB_SIZE */ 3484 order = PREALLOC_TB_SIZE - 1; 3485 3486 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3487 /* 3488 * search for the prealloc space that is having 3489 * minimal distance from the goal block. 3490 */ 3491 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3492 rcu_read_lock(); 3493 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3494 pa_inode_list) { 3495 spin_lock(&pa->pa_lock); 3496 if (pa->pa_deleted == 0 && 3497 pa->pa_free >= ac->ac_o_ex.fe_len) { 3498 3499 cpa = ext4_mb_check_group_pa(goal_block, 3500 pa, cpa); 3501 } 3502 spin_unlock(&pa->pa_lock); 3503 } 3504 rcu_read_unlock(); 3505 } 3506 if (cpa) { 3507 ext4_mb_use_group_pa(ac, cpa); 3508 ac->ac_criteria = 20; 3509 return 1; 3510 } 3511 return 0; 3512 } 3513 3514 /* 3515 * the function goes through all block freed in the group 3516 * but not yet committed and marks them used in in-core bitmap. 3517 * buddy must be generated from this bitmap 3518 * Need to be called with the ext4 group lock held 3519 */ 3520 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3521 ext4_group_t group) 3522 { 3523 struct rb_node *n; 3524 struct ext4_group_info *grp; 3525 struct ext4_free_data *entry; 3526 3527 grp = ext4_get_group_info(sb, group); 3528 n = rb_first(&(grp->bb_free_root)); 3529 3530 while (n) { 3531 entry = rb_entry(n, struct ext4_free_data, efd_node); 3532 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3533 n = rb_next(n); 3534 } 3535 return; 3536 } 3537 3538 /* 3539 * the function goes through all preallocation in this group and marks them 3540 * used in in-core bitmap. buddy must be generated from this bitmap 3541 * Need to be called with ext4 group lock held 3542 */ 3543 static noinline_for_stack 3544 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3545 ext4_group_t group) 3546 { 3547 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3548 struct ext4_prealloc_space *pa; 3549 struct list_head *cur; 3550 ext4_group_t groupnr; 3551 ext4_grpblk_t start; 3552 int preallocated = 0; 3553 int len; 3554 3555 /* all form of preallocation discards first load group, 3556 * so the only competing code is preallocation use. 3557 * we don't need any locking here 3558 * notice we do NOT ignore preallocations with pa_deleted 3559 * otherwise we could leave used blocks available for 3560 * allocation in buddy when concurrent ext4_mb_put_pa() 3561 * is dropping preallocation 3562 */ 3563 list_for_each(cur, &grp->bb_prealloc_list) { 3564 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3565 spin_lock(&pa->pa_lock); 3566 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3567 &groupnr, &start); 3568 len = pa->pa_len; 3569 spin_unlock(&pa->pa_lock); 3570 if (unlikely(len == 0)) 3571 continue; 3572 BUG_ON(groupnr != group); 3573 ext4_set_bits(bitmap, start, len); 3574 preallocated += len; 3575 } 3576 mb_debug(1, "preallocated %u for group %u\n", preallocated, group); 3577 } 3578 3579 static void ext4_mb_pa_callback(struct rcu_head *head) 3580 { 3581 struct ext4_prealloc_space *pa; 3582 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3583 3584 BUG_ON(atomic_read(&pa->pa_count)); 3585 BUG_ON(pa->pa_deleted == 0); 3586 kmem_cache_free(ext4_pspace_cachep, pa); 3587 } 3588 3589 /* 3590 * drops a reference to preallocated space descriptor 3591 * if this was the last reference and the space is consumed 3592 */ 3593 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3594 struct super_block *sb, struct ext4_prealloc_space *pa) 3595 { 3596 ext4_group_t grp; 3597 ext4_fsblk_t grp_blk; 3598 3599 /* in this short window concurrent discard can set pa_deleted */ 3600 spin_lock(&pa->pa_lock); 3601 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 3602 spin_unlock(&pa->pa_lock); 3603 return; 3604 } 3605 3606 if (pa->pa_deleted == 1) { 3607 spin_unlock(&pa->pa_lock); 3608 return; 3609 } 3610 3611 pa->pa_deleted = 1; 3612 spin_unlock(&pa->pa_lock); 3613 3614 grp_blk = pa->pa_pstart; 3615 /* 3616 * If doing group-based preallocation, pa_pstart may be in the 3617 * next group when pa is used up 3618 */ 3619 if (pa->pa_type == MB_GROUP_PA) 3620 grp_blk--; 3621 3622 grp = ext4_get_group_number(sb, grp_blk); 3623 3624 /* 3625 * possible race: 3626 * 3627 * P1 (buddy init) P2 (regular allocation) 3628 * find block B in PA 3629 * copy on-disk bitmap to buddy 3630 * mark B in on-disk bitmap 3631 * drop PA from group 3632 * mark all PAs in buddy 3633 * 3634 * thus, P1 initializes buddy with B available. to prevent this 3635 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3636 * against that pair 3637 */ 3638 ext4_lock_group(sb, grp); 3639 list_del(&pa->pa_group_list); 3640 ext4_unlock_group(sb, grp); 3641 3642 spin_lock(pa->pa_obj_lock); 3643 list_del_rcu(&pa->pa_inode_list); 3644 spin_unlock(pa->pa_obj_lock); 3645 3646 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3647 } 3648 3649 /* 3650 * creates new preallocated space for given inode 3651 */ 3652 static noinline_for_stack int 3653 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3654 { 3655 struct super_block *sb = ac->ac_sb; 3656 struct ext4_sb_info *sbi = EXT4_SB(sb); 3657 struct ext4_prealloc_space *pa; 3658 struct ext4_group_info *grp; 3659 struct ext4_inode_info *ei; 3660 3661 /* preallocate only when found space is larger then requested */ 3662 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3663 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3664 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3665 3666 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3667 if (pa == NULL) 3668 return -ENOMEM; 3669 3670 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3671 int winl; 3672 int wins; 3673 int win; 3674 int offs; 3675 3676 /* we can't allocate as much as normalizer wants. 3677 * so, found space must get proper lstart 3678 * to cover original request */ 3679 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3680 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3681 3682 /* we're limited by original request in that 3683 * logical block must be covered any way 3684 * winl is window we can move our chunk within */ 3685 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3686 3687 /* also, we should cover whole original request */ 3688 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3689 3690 /* the smallest one defines real window */ 3691 win = min(winl, wins); 3692 3693 offs = ac->ac_o_ex.fe_logical % 3694 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3695 if (offs && offs < win) 3696 win = offs; 3697 3698 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3699 EXT4_NUM_B2C(sbi, win); 3700 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3701 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3702 } 3703 3704 /* preallocation can change ac_b_ex, thus we store actually 3705 * allocated blocks for history */ 3706 ac->ac_f_ex = ac->ac_b_ex; 3707 3708 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3709 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3710 pa->pa_len = ac->ac_b_ex.fe_len; 3711 pa->pa_free = pa->pa_len; 3712 atomic_set(&pa->pa_count, 1); 3713 spin_lock_init(&pa->pa_lock); 3714 INIT_LIST_HEAD(&pa->pa_inode_list); 3715 INIT_LIST_HEAD(&pa->pa_group_list); 3716 pa->pa_deleted = 0; 3717 pa->pa_type = MB_INODE_PA; 3718 3719 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3720 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3721 trace_ext4_mb_new_inode_pa(ac, pa); 3722 3723 ext4_mb_use_inode_pa(ac, pa); 3724 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3725 3726 ei = EXT4_I(ac->ac_inode); 3727 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3728 3729 pa->pa_obj_lock = &ei->i_prealloc_lock; 3730 pa->pa_inode = ac->ac_inode; 3731 3732 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3733 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3734 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3735 3736 spin_lock(pa->pa_obj_lock); 3737 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3738 spin_unlock(pa->pa_obj_lock); 3739 3740 return 0; 3741 } 3742 3743 /* 3744 * creates new preallocated space for locality group inodes belongs to 3745 */ 3746 static noinline_for_stack int 3747 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3748 { 3749 struct super_block *sb = ac->ac_sb; 3750 struct ext4_locality_group *lg; 3751 struct ext4_prealloc_space *pa; 3752 struct ext4_group_info *grp; 3753 3754 /* preallocate only when found space is larger then requested */ 3755 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3756 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3757 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3758 3759 BUG_ON(ext4_pspace_cachep == NULL); 3760 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3761 if (pa == NULL) 3762 return -ENOMEM; 3763 3764 /* preallocation can change ac_b_ex, thus we store actually 3765 * allocated blocks for history */ 3766 ac->ac_f_ex = ac->ac_b_ex; 3767 3768 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3769 pa->pa_lstart = pa->pa_pstart; 3770 pa->pa_len = ac->ac_b_ex.fe_len; 3771 pa->pa_free = pa->pa_len; 3772 atomic_set(&pa->pa_count, 1); 3773 spin_lock_init(&pa->pa_lock); 3774 INIT_LIST_HEAD(&pa->pa_inode_list); 3775 INIT_LIST_HEAD(&pa->pa_group_list); 3776 pa->pa_deleted = 0; 3777 pa->pa_type = MB_GROUP_PA; 3778 3779 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3780 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3781 trace_ext4_mb_new_group_pa(ac, pa); 3782 3783 ext4_mb_use_group_pa(ac, pa); 3784 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3785 3786 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3787 lg = ac->ac_lg; 3788 BUG_ON(lg == NULL); 3789 3790 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3791 pa->pa_inode = NULL; 3792 3793 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3794 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3795 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3796 3797 /* 3798 * We will later add the new pa to the right bucket 3799 * after updating the pa_free in ext4_mb_release_context 3800 */ 3801 return 0; 3802 } 3803 3804 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3805 { 3806 int err; 3807 3808 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3809 err = ext4_mb_new_group_pa(ac); 3810 else 3811 err = ext4_mb_new_inode_pa(ac); 3812 return err; 3813 } 3814 3815 /* 3816 * finds all unused blocks in on-disk bitmap, frees them in 3817 * in-core bitmap and buddy. 3818 * @pa must be unlinked from inode and group lists, so that 3819 * nobody else can find/use it. 3820 * the caller MUST hold group/inode locks. 3821 * TODO: optimize the case when there are no in-core structures yet 3822 */ 3823 static noinline_for_stack int 3824 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3825 struct ext4_prealloc_space *pa) 3826 { 3827 struct super_block *sb = e4b->bd_sb; 3828 struct ext4_sb_info *sbi = EXT4_SB(sb); 3829 unsigned int end; 3830 unsigned int next; 3831 ext4_group_t group; 3832 ext4_grpblk_t bit; 3833 unsigned long long grp_blk_start; 3834 int err = 0; 3835 int free = 0; 3836 3837 BUG_ON(pa->pa_deleted == 0); 3838 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3839 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3840 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3841 end = bit + pa->pa_len; 3842 3843 while (bit < end) { 3844 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3845 if (bit >= end) 3846 break; 3847 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3848 mb_debug(1, " free preallocated %u/%u in group %u\n", 3849 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3850 (unsigned) next - bit, (unsigned) group); 3851 free += next - bit; 3852 3853 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3854 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3855 EXT4_C2B(sbi, bit)), 3856 next - bit); 3857 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3858 bit = next + 1; 3859 } 3860 if (free != pa->pa_free) { 3861 ext4_msg(e4b->bd_sb, KERN_CRIT, 3862 "pa %p: logic %lu, phys. %lu, len %lu", 3863 pa, (unsigned long) pa->pa_lstart, 3864 (unsigned long) pa->pa_pstart, 3865 (unsigned long) pa->pa_len); 3866 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3867 free, pa->pa_free); 3868 /* 3869 * pa is already deleted so we use the value obtained 3870 * from the bitmap and continue. 3871 */ 3872 } 3873 atomic_add(free, &sbi->s_mb_discarded); 3874 3875 return err; 3876 } 3877 3878 static noinline_for_stack int 3879 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3880 struct ext4_prealloc_space *pa) 3881 { 3882 struct super_block *sb = e4b->bd_sb; 3883 ext4_group_t group; 3884 ext4_grpblk_t bit; 3885 3886 trace_ext4_mb_release_group_pa(sb, pa); 3887 BUG_ON(pa->pa_deleted == 0); 3888 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3889 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3890 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3891 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3892 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3893 3894 return 0; 3895 } 3896 3897 /* 3898 * releases all preallocations in given group 3899 * 3900 * first, we need to decide discard policy: 3901 * - when do we discard 3902 * 1) ENOSPC 3903 * - how many do we discard 3904 * 1) how many requested 3905 */ 3906 static noinline_for_stack int 3907 ext4_mb_discard_group_preallocations(struct super_block *sb, 3908 ext4_group_t group, int needed) 3909 { 3910 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3911 struct buffer_head *bitmap_bh = NULL; 3912 struct ext4_prealloc_space *pa, *tmp; 3913 struct list_head list; 3914 struct ext4_buddy e4b; 3915 int err; 3916 int busy = 0; 3917 int free = 0; 3918 3919 mb_debug(1, "discard preallocation for group %u\n", group); 3920 3921 if (list_empty(&grp->bb_prealloc_list)) 3922 return 0; 3923 3924 bitmap_bh = ext4_read_block_bitmap(sb, group); 3925 if (IS_ERR(bitmap_bh)) { 3926 err = PTR_ERR(bitmap_bh); 3927 ext4_error(sb, "Error %d reading block bitmap for %u", 3928 err, group); 3929 return 0; 3930 } 3931 3932 err = ext4_mb_load_buddy(sb, group, &e4b); 3933 if (err) { 3934 ext4_warning(sb, "Error %d loading buddy information for %u", 3935 err, group); 3936 put_bh(bitmap_bh); 3937 return 0; 3938 } 3939 3940 if (needed == 0) 3941 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3942 3943 INIT_LIST_HEAD(&list); 3944 repeat: 3945 ext4_lock_group(sb, group); 3946 list_for_each_entry_safe(pa, tmp, 3947 &grp->bb_prealloc_list, pa_group_list) { 3948 spin_lock(&pa->pa_lock); 3949 if (atomic_read(&pa->pa_count)) { 3950 spin_unlock(&pa->pa_lock); 3951 busy = 1; 3952 continue; 3953 } 3954 if (pa->pa_deleted) { 3955 spin_unlock(&pa->pa_lock); 3956 continue; 3957 } 3958 3959 /* seems this one can be freed ... */ 3960 pa->pa_deleted = 1; 3961 3962 /* we can trust pa_free ... */ 3963 free += pa->pa_free; 3964 3965 spin_unlock(&pa->pa_lock); 3966 3967 list_del(&pa->pa_group_list); 3968 list_add(&pa->u.pa_tmp_list, &list); 3969 } 3970 3971 /* if we still need more blocks and some PAs were used, try again */ 3972 if (free < needed && busy) { 3973 busy = 0; 3974 ext4_unlock_group(sb, group); 3975 cond_resched(); 3976 goto repeat; 3977 } 3978 3979 /* found anything to free? */ 3980 if (list_empty(&list)) { 3981 BUG_ON(free != 0); 3982 goto out; 3983 } 3984 3985 /* now free all selected PAs */ 3986 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3987 3988 /* remove from object (inode or locality group) */ 3989 spin_lock(pa->pa_obj_lock); 3990 list_del_rcu(&pa->pa_inode_list); 3991 spin_unlock(pa->pa_obj_lock); 3992 3993 if (pa->pa_type == MB_GROUP_PA) 3994 ext4_mb_release_group_pa(&e4b, pa); 3995 else 3996 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3997 3998 list_del(&pa->u.pa_tmp_list); 3999 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4000 } 4001 4002 out: 4003 ext4_unlock_group(sb, group); 4004 ext4_mb_unload_buddy(&e4b); 4005 put_bh(bitmap_bh); 4006 return free; 4007 } 4008 4009 /* 4010 * releases all non-used preallocated blocks for given inode 4011 * 4012 * It's important to discard preallocations under i_data_sem 4013 * We don't want another block to be served from the prealloc 4014 * space when we are discarding the inode prealloc space. 4015 * 4016 * FIXME!! Make sure it is valid at all the call sites 4017 */ 4018 void ext4_discard_preallocations(struct inode *inode) 4019 { 4020 struct ext4_inode_info *ei = EXT4_I(inode); 4021 struct super_block *sb = inode->i_sb; 4022 struct buffer_head *bitmap_bh = NULL; 4023 struct ext4_prealloc_space *pa, *tmp; 4024 ext4_group_t group = 0; 4025 struct list_head list; 4026 struct ext4_buddy e4b; 4027 int err; 4028 4029 if (!S_ISREG(inode->i_mode)) { 4030 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 4031 return; 4032 } 4033 4034 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 4035 trace_ext4_discard_preallocations(inode); 4036 4037 INIT_LIST_HEAD(&list); 4038 4039 repeat: 4040 /* first, collect all pa's in the inode */ 4041 spin_lock(&ei->i_prealloc_lock); 4042 while (!list_empty(&ei->i_prealloc_list)) { 4043 pa = list_entry(ei->i_prealloc_list.next, 4044 struct ext4_prealloc_space, pa_inode_list); 4045 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 4046 spin_lock(&pa->pa_lock); 4047 if (atomic_read(&pa->pa_count)) { 4048 /* this shouldn't happen often - nobody should 4049 * use preallocation while we're discarding it */ 4050 spin_unlock(&pa->pa_lock); 4051 spin_unlock(&ei->i_prealloc_lock); 4052 ext4_msg(sb, KERN_ERR, 4053 "uh-oh! used pa while discarding"); 4054 WARN_ON(1); 4055 schedule_timeout_uninterruptible(HZ); 4056 goto repeat; 4057 4058 } 4059 if (pa->pa_deleted == 0) { 4060 pa->pa_deleted = 1; 4061 spin_unlock(&pa->pa_lock); 4062 list_del_rcu(&pa->pa_inode_list); 4063 list_add(&pa->u.pa_tmp_list, &list); 4064 continue; 4065 } 4066 4067 /* someone is deleting pa right now */ 4068 spin_unlock(&pa->pa_lock); 4069 spin_unlock(&ei->i_prealloc_lock); 4070 4071 /* we have to wait here because pa_deleted 4072 * doesn't mean pa is already unlinked from 4073 * the list. as we might be called from 4074 * ->clear_inode() the inode will get freed 4075 * and concurrent thread which is unlinking 4076 * pa from inode's list may access already 4077 * freed memory, bad-bad-bad */ 4078 4079 /* XXX: if this happens too often, we can 4080 * add a flag to force wait only in case 4081 * of ->clear_inode(), but not in case of 4082 * regular truncate */ 4083 schedule_timeout_uninterruptible(HZ); 4084 goto repeat; 4085 } 4086 spin_unlock(&ei->i_prealloc_lock); 4087 4088 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4089 BUG_ON(pa->pa_type != MB_INODE_PA); 4090 group = ext4_get_group_number(sb, pa->pa_pstart); 4091 4092 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4093 GFP_NOFS|__GFP_NOFAIL); 4094 if (err) { 4095 ext4_error(sb, "Error %d loading buddy information for %u", 4096 err, group); 4097 continue; 4098 } 4099 4100 bitmap_bh = ext4_read_block_bitmap(sb, group); 4101 if (IS_ERR(bitmap_bh)) { 4102 err = PTR_ERR(bitmap_bh); 4103 ext4_error(sb, "Error %d reading block bitmap for %u", 4104 err, group); 4105 ext4_mb_unload_buddy(&e4b); 4106 continue; 4107 } 4108 4109 ext4_lock_group(sb, group); 4110 list_del(&pa->pa_group_list); 4111 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4112 ext4_unlock_group(sb, group); 4113 4114 ext4_mb_unload_buddy(&e4b); 4115 put_bh(bitmap_bh); 4116 4117 list_del(&pa->u.pa_tmp_list); 4118 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4119 } 4120 } 4121 4122 #ifdef CONFIG_EXT4_DEBUG 4123 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4124 { 4125 struct super_block *sb = ac->ac_sb; 4126 ext4_group_t ngroups, i; 4127 4128 if (!ext4_mballoc_debug || 4129 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 4130 return; 4131 4132 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 4133 " Allocation context details:"); 4134 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 4135 ac->ac_status, ac->ac_flags); 4136 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 4137 "goal %lu/%lu/%lu@%lu, " 4138 "best %lu/%lu/%lu@%lu cr %d", 4139 (unsigned long)ac->ac_o_ex.fe_group, 4140 (unsigned long)ac->ac_o_ex.fe_start, 4141 (unsigned long)ac->ac_o_ex.fe_len, 4142 (unsigned long)ac->ac_o_ex.fe_logical, 4143 (unsigned long)ac->ac_g_ex.fe_group, 4144 (unsigned long)ac->ac_g_ex.fe_start, 4145 (unsigned long)ac->ac_g_ex.fe_len, 4146 (unsigned long)ac->ac_g_ex.fe_logical, 4147 (unsigned long)ac->ac_b_ex.fe_group, 4148 (unsigned long)ac->ac_b_ex.fe_start, 4149 (unsigned long)ac->ac_b_ex.fe_len, 4150 (unsigned long)ac->ac_b_ex.fe_logical, 4151 (int)ac->ac_criteria); 4152 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found); 4153 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 4154 ngroups = ext4_get_groups_count(sb); 4155 for (i = 0; i < ngroups; i++) { 4156 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 4157 struct ext4_prealloc_space *pa; 4158 ext4_grpblk_t start; 4159 struct list_head *cur; 4160 ext4_lock_group(sb, i); 4161 list_for_each(cur, &grp->bb_prealloc_list) { 4162 pa = list_entry(cur, struct ext4_prealloc_space, 4163 pa_group_list); 4164 spin_lock(&pa->pa_lock); 4165 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4166 NULL, &start); 4167 spin_unlock(&pa->pa_lock); 4168 printk(KERN_ERR "PA:%u:%d:%u \n", i, 4169 start, pa->pa_len); 4170 } 4171 ext4_unlock_group(sb, i); 4172 4173 if (grp->bb_free == 0) 4174 continue; 4175 printk(KERN_ERR "%u: %d/%d \n", 4176 i, grp->bb_free, grp->bb_fragments); 4177 } 4178 printk(KERN_ERR "\n"); 4179 } 4180 #else 4181 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4182 { 4183 return; 4184 } 4185 #endif 4186 4187 /* 4188 * We use locality group preallocation for small size file. The size of the 4189 * file is determined by the current size or the resulting size after 4190 * allocation which ever is larger 4191 * 4192 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4193 */ 4194 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4195 { 4196 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4197 int bsbits = ac->ac_sb->s_blocksize_bits; 4198 loff_t size, isize; 4199 4200 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4201 return; 4202 4203 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4204 return; 4205 4206 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4207 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4208 >> bsbits; 4209 4210 if ((size == isize) && 4211 !ext4_fs_is_busy(sbi) && 4212 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 4213 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4214 return; 4215 } 4216 4217 if (sbi->s_mb_group_prealloc <= 0) { 4218 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4219 return; 4220 } 4221 4222 /* don't use group allocation for large files */ 4223 size = max(size, isize); 4224 if (size > sbi->s_mb_stream_request) { 4225 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4226 return; 4227 } 4228 4229 BUG_ON(ac->ac_lg != NULL); 4230 /* 4231 * locality group prealloc space are per cpu. The reason for having 4232 * per cpu locality group is to reduce the contention between block 4233 * request from multiple CPUs. 4234 */ 4235 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 4236 4237 /* we're going to use group allocation */ 4238 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4239 4240 /* serialize all allocations in the group */ 4241 mutex_lock(&ac->ac_lg->lg_mutex); 4242 } 4243 4244 static noinline_for_stack int 4245 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4246 struct ext4_allocation_request *ar) 4247 { 4248 struct super_block *sb = ar->inode->i_sb; 4249 struct ext4_sb_info *sbi = EXT4_SB(sb); 4250 struct ext4_super_block *es = sbi->s_es; 4251 ext4_group_t group; 4252 unsigned int len; 4253 ext4_fsblk_t goal; 4254 ext4_grpblk_t block; 4255 4256 /* we can't allocate > group size */ 4257 len = ar->len; 4258 4259 /* just a dirty hack to filter too big requests */ 4260 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4261 len = EXT4_CLUSTERS_PER_GROUP(sb); 4262 4263 /* start searching from the goal */ 4264 goal = ar->goal; 4265 if (goal < le32_to_cpu(es->s_first_data_block) || 4266 goal >= ext4_blocks_count(es)) 4267 goal = le32_to_cpu(es->s_first_data_block); 4268 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4269 4270 /* set up allocation goals */ 4271 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 4272 ac->ac_status = AC_STATUS_CONTINUE; 4273 ac->ac_sb = sb; 4274 ac->ac_inode = ar->inode; 4275 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4276 ac->ac_o_ex.fe_group = group; 4277 ac->ac_o_ex.fe_start = block; 4278 ac->ac_o_ex.fe_len = len; 4279 ac->ac_g_ex = ac->ac_o_ex; 4280 ac->ac_flags = ar->flags; 4281 4282 /* we have to define context: we'll we work with a file or 4283 * locality group. this is a policy, actually */ 4284 ext4_mb_group_or_file(ac); 4285 4286 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4287 "left: %u/%u, right %u/%u to %swritable\n", 4288 (unsigned) ar->len, (unsigned) ar->logical, 4289 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4290 (unsigned) ar->lleft, (unsigned) ar->pleft, 4291 (unsigned) ar->lright, (unsigned) ar->pright, 4292 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4293 return 0; 4294 4295 } 4296 4297 static noinline_for_stack void 4298 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4299 struct ext4_locality_group *lg, 4300 int order, int total_entries) 4301 { 4302 ext4_group_t group = 0; 4303 struct ext4_buddy e4b; 4304 struct list_head discard_list; 4305 struct ext4_prealloc_space *pa, *tmp; 4306 4307 mb_debug(1, "discard locality group preallocation\n"); 4308 4309 INIT_LIST_HEAD(&discard_list); 4310 4311 spin_lock(&lg->lg_prealloc_lock); 4312 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4313 pa_inode_list) { 4314 spin_lock(&pa->pa_lock); 4315 if (atomic_read(&pa->pa_count)) { 4316 /* 4317 * This is the pa that we just used 4318 * for block allocation. So don't 4319 * free that 4320 */ 4321 spin_unlock(&pa->pa_lock); 4322 continue; 4323 } 4324 if (pa->pa_deleted) { 4325 spin_unlock(&pa->pa_lock); 4326 continue; 4327 } 4328 /* only lg prealloc space */ 4329 BUG_ON(pa->pa_type != MB_GROUP_PA); 4330 4331 /* seems this one can be freed ... */ 4332 pa->pa_deleted = 1; 4333 spin_unlock(&pa->pa_lock); 4334 4335 list_del_rcu(&pa->pa_inode_list); 4336 list_add(&pa->u.pa_tmp_list, &discard_list); 4337 4338 total_entries--; 4339 if (total_entries <= 5) { 4340 /* 4341 * we want to keep only 5 entries 4342 * allowing it to grow to 8. This 4343 * mak sure we don't call discard 4344 * soon for this list. 4345 */ 4346 break; 4347 } 4348 } 4349 spin_unlock(&lg->lg_prealloc_lock); 4350 4351 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4352 int err; 4353 4354 group = ext4_get_group_number(sb, pa->pa_pstart); 4355 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4356 GFP_NOFS|__GFP_NOFAIL); 4357 if (err) { 4358 ext4_error(sb, "Error %d loading buddy information for %u", 4359 err, group); 4360 continue; 4361 } 4362 ext4_lock_group(sb, group); 4363 list_del(&pa->pa_group_list); 4364 ext4_mb_release_group_pa(&e4b, pa); 4365 ext4_unlock_group(sb, group); 4366 4367 ext4_mb_unload_buddy(&e4b); 4368 list_del(&pa->u.pa_tmp_list); 4369 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4370 } 4371 } 4372 4373 /* 4374 * We have incremented pa_count. So it cannot be freed at this 4375 * point. Also we hold lg_mutex. So no parallel allocation is 4376 * possible from this lg. That means pa_free cannot be updated. 4377 * 4378 * A parallel ext4_mb_discard_group_preallocations is possible. 4379 * which can cause the lg_prealloc_list to be updated. 4380 */ 4381 4382 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4383 { 4384 int order, added = 0, lg_prealloc_count = 1; 4385 struct super_block *sb = ac->ac_sb; 4386 struct ext4_locality_group *lg = ac->ac_lg; 4387 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4388 4389 order = fls(pa->pa_free) - 1; 4390 if (order > PREALLOC_TB_SIZE - 1) 4391 /* The max size of hash table is PREALLOC_TB_SIZE */ 4392 order = PREALLOC_TB_SIZE - 1; 4393 /* Add the prealloc space to lg */ 4394 spin_lock(&lg->lg_prealloc_lock); 4395 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4396 pa_inode_list) { 4397 spin_lock(&tmp_pa->pa_lock); 4398 if (tmp_pa->pa_deleted) { 4399 spin_unlock(&tmp_pa->pa_lock); 4400 continue; 4401 } 4402 if (!added && pa->pa_free < tmp_pa->pa_free) { 4403 /* Add to the tail of the previous entry */ 4404 list_add_tail_rcu(&pa->pa_inode_list, 4405 &tmp_pa->pa_inode_list); 4406 added = 1; 4407 /* 4408 * we want to count the total 4409 * number of entries in the list 4410 */ 4411 } 4412 spin_unlock(&tmp_pa->pa_lock); 4413 lg_prealloc_count++; 4414 } 4415 if (!added) 4416 list_add_tail_rcu(&pa->pa_inode_list, 4417 &lg->lg_prealloc_list[order]); 4418 spin_unlock(&lg->lg_prealloc_lock); 4419 4420 /* Now trim the list to be not more than 8 elements */ 4421 if (lg_prealloc_count > 8) { 4422 ext4_mb_discard_lg_preallocations(sb, lg, 4423 order, lg_prealloc_count); 4424 return; 4425 } 4426 return ; 4427 } 4428 4429 /* 4430 * release all resource we used in allocation 4431 */ 4432 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4433 { 4434 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4435 struct ext4_prealloc_space *pa = ac->ac_pa; 4436 if (pa) { 4437 if (pa->pa_type == MB_GROUP_PA) { 4438 /* see comment in ext4_mb_use_group_pa() */ 4439 spin_lock(&pa->pa_lock); 4440 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4441 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4442 pa->pa_free -= ac->ac_b_ex.fe_len; 4443 pa->pa_len -= ac->ac_b_ex.fe_len; 4444 spin_unlock(&pa->pa_lock); 4445 } 4446 } 4447 if (pa) { 4448 /* 4449 * We want to add the pa to the right bucket. 4450 * Remove it from the list and while adding 4451 * make sure the list to which we are adding 4452 * doesn't grow big. 4453 */ 4454 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4455 spin_lock(pa->pa_obj_lock); 4456 list_del_rcu(&pa->pa_inode_list); 4457 spin_unlock(pa->pa_obj_lock); 4458 ext4_mb_add_n_trim(ac); 4459 } 4460 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4461 } 4462 if (ac->ac_bitmap_page) 4463 put_page(ac->ac_bitmap_page); 4464 if (ac->ac_buddy_page) 4465 put_page(ac->ac_buddy_page); 4466 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4467 mutex_unlock(&ac->ac_lg->lg_mutex); 4468 ext4_mb_collect_stats(ac); 4469 return 0; 4470 } 4471 4472 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4473 { 4474 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4475 int ret; 4476 int freed = 0; 4477 4478 trace_ext4_mb_discard_preallocations(sb, needed); 4479 for (i = 0; i < ngroups && needed > 0; i++) { 4480 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4481 freed += ret; 4482 needed -= ret; 4483 } 4484 4485 return freed; 4486 } 4487 4488 /* 4489 * Main entry point into mballoc to allocate blocks 4490 * it tries to use preallocation first, then falls back 4491 * to usual allocation 4492 */ 4493 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4494 struct ext4_allocation_request *ar, int *errp) 4495 { 4496 int freed; 4497 struct ext4_allocation_context *ac = NULL; 4498 struct ext4_sb_info *sbi; 4499 struct super_block *sb; 4500 ext4_fsblk_t block = 0; 4501 unsigned int inquota = 0; 4502 unsigned int reserv_clstrs = 0; 4503 4504 might_sleep(); 4505 sb = ar->inode->i_sb; 4506 sbi = EXT4_SB(sb); 4507 4508 trace_ext4_request_blocks(ar); 4509 4510 /* Allow to use superuser reservation for quota file */ 4511 if (ext4_is_quota_file(ar->inode)) 4512 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4513 4514 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 4515 /* Without delayed allocation we need to verify 4516 * there is enough free blocks to do block allocation 4517 * and verify allocation doesn't exceed the quota limits. 4518 */ 4519 while (ar->len && 4520 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4521 4522 /* let others to free the space */ 4523 cond_resched(); 4524 ar->len = ar->len >> 1; 4525 } 4526 if (!ar->len) { 4527 *errp = -ENOSPC; 4528 return 0; 4529 } 4530 reserv_clstrs = ar->len; 4531 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4532 dquot_alloc_block_nofail(ar->inode, 4533 EXT4_C2B(sbi, ar->len)); 4534 } else { 4535 while (ar->len && 4536 dquot_alloc_block(ar->inode, 4537 EXT4_C2B(sbi, ar->len))) { 4538 4539 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4540 ar->len--; 4541 } 4542 } 4543 inquota = ar->len; 4544 if (ar->len == 0) { 4545 *errp = -EDQUOT; 4546 goto out; 4547 } 4548 } 4549 4550 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4551 if (!ac) { 4552 ar->len = 0; 4553 *errp = -ENOMEM; 4554 goto out; 4555 } 4556 4557 *errp = ext4_mb_initialize_context(ac, ar); 4558 if (*errp) { 4559 ar->len = 0; 4560 goto out; 4561 } 4562 4563 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4564 if (!ext4_mb_use_preallocated(ac)) { 4565 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4566 ext4_mb_normalize_request(ac, ar); 4567 repeat: 4568 /* allocate space in core */ 4569 *errp = ext4_mb_regular_allocator(ac); 4570 if (*errp) 4571 goto discard_and_exit; 4572 4573 /* as we've just preallocated more space than 4574 * user requested originally, we store allocated 4575 * space in a special descriptor */ 4576 if (ac->ac_status == AC_STATUS_FOUND && 4577 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4578 *errp = ext4_mb_new_preallocation(ac); 4579 if (*errp) { 4580 discard_and_exit: 4581 ext4_discard_allocated_blocks(ac); 4582 goto errout; 4583 } 4584 } 4585 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4586 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4587 if (*errp) { 4588 ext4_discard_allocated_blocks(ac); 4589 goto errout; 4590 } else { 4591 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4592 ar->len = ac->ac_b_ex.fe_len; 4593 } 4594 } else { 4595 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4596 if (freed) 4597 goto repeat; 4598 *errp = -ENOSPC; 4599 } 4600 4601 errout: 4602 if (*errp) { 4603 ac->ac_b_ex.fe_len = 0; 4604 ar->len = 0; 4605 ext4_mb_show_ac(ac); 4606 } 4607 ext4_mb_release_context(ac); 4608 out: 4609 if (ac) 4610 kmem_cache_free(ext4_ac_cachep, ac); 4611 if (inquota && ar->len < inquota) 4612 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4613 if (!ar->len) { 4614 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 4615 /* release all the reserved blocks if non delalloc */ 4616 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4617 reserv_clstrs); 4618 } 4619 4620 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4621 4622 return block; 4623 } 4624 4625 /* 4626 * We can merge two free data extents only if the physical blocks 4627 * are contiguous, AND the extents were freed by the same transaction, 4628 * AND the blocks are associated with the same group. 4629 */ 4630 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 4631 struct ext4_free_data *entry, 4632 struct ext4_free_data *new_entry, 4633 struct rb_root *entry_rb_root) 4634 { 4635 if ((entry->efd_tid != new_entry->efd_tid) || 4636 (entry->efd_group != new_entry->efd_group)) 4637 return; 4638 if (entry->efd_start_cluster + entry->efd_count == 4639 new_entry->efd_start_cluster) { 4640 new_entry->efd_start_cluster = entry->efd_start_cluster; 4641 new_entry->efd_count += entry->efd_count; 4642 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 4643 entry->efd_start_cluster) { 4644 new_entry->efd_count += entry->efd_count; 4645 } else 4646 return; 4647 spin_lock(&sbi->s_md_lock); 4648 list_del(&entry->efd_list); 4649 spin_unlock(&sbi->s_md_lock); 4650 rb_erase(&entry->efd_node, entry_rb_root); 4651 kmem_cache_free(ext4_free_data_cachep, entry); 4652 } 4653 4654 static noinline_for_stack int 4655 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4656 struct ext4_free_data *new_entry) 4657 { 4658 ext4_group_t group = e4b->bd_group; 4659 ext4_grpblk_t cluster; 4660 ext4_grpblk_t clusters = new_entry->efd_count; 4661 struct ext4_free_data *entry; 4662 struct ext4_group_info *db = e4b->bd_info; 4663 struct super_block *sb = e4b->bd_sb; 4664 struct ext4_sb_info *sbi = EXT4_SB(sb); 4665 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4666 struct rb_node *parent = NULL, *new_node; 4667 4668 BUG_ON(!ext4_handle_valid(handle)); 4669 BUG_ON(e4b->bd_bitmap_page == NULL); 4670 BUG_ON(e4b->bd_buddy_page == NULL); 4671 4672 new_node = &new_entry->efd_node; 4673 cluster = new_entry->efd_start_cluster; 4674 4675 if (!*n) { 4676 /* first free block exent. We need to 4677 protect buddy cache from being freed, 4678 * otherwise we'll refresh it from 4679 * on-disk bitmap and lose not-yet-available 4680 * blocks */ 4681 get_page(e4b->bd_buddy_page); 4682 get_page(e4b->bd_bitmap_page); 4683 } 4684 while (*n) { 4685 parent = *n; 4686 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4687 if (cluster < entry->efd_start_cluster) 4688 n = &(*n)->rb_left; 4689 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4690 n = &(*n)->rb_right; 4691 else { 4692 ext4_grp_locked_error(sb, group, 0, 4693 ext4_group_first_block_no(sb, group) + 4694 EXT4_C2B(sbi, cluster), 4695 "Block already on to-be-freed list"); 4696 return 0; 4697 } 4698 } 4699 4700 rb_link_node(new_node, parent, n); 4701 rb_insert_color(new_node, &db->bb_free_root); 4702 4703 /* Now try to see the extent can be merged to left and right */ 4704 node = rb_prev(new_node); 4705 if (node) { 4706 entry = rb_entry(node, struct ext4_free_data, efd_node); 4707 ext4_try_merge_freed_extent(sbi, entry, new_entry, 4708 &(db->bb_free_root)); 4709 } 4710 4711 node = rb_next(new_node); 4712 if (node) { 4713 entry = rb_entry(node, struct ext4_free_data, efd_node); 4714 ext4_try_merge_freed_extent(sbi, entry, new_entry, 4715 &(db->bb_free_root)); 4716 } 4717 4718 spin_lock(&sbi->s_md_lock); 4719 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 4720 sbi->s_mb_free_pending += clusters; 4721 spin_unlock(&sbi->s_md_lock); 4722 return 0; 4723 } 4724 4725 /** 4726 * ext4_free_blocks() -- Free given blocks and update quota 4727 * @handle: handle for this transaction 4728 * @inode: inode 4729 * @block: start physical block to free 4730 * @count: number of blocks to count 4731 * @flags: flags used by ext4_free_blocks 4732 */ 4733 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4734 struct buffer_head *bh, ext4_fsblk_t block, 4735 unsigned long count, int flags) 4736 { 4737 struct buffer_head *bitmap_bh = NULL; 4738 struct super_block *sb = inode->i_sb; 4739 struct ext4_group_desc *gdp; 4740 unsigned int overflow; 4741 ext4_grpblk_t bit; 4742 struct buffer_head *gd_bh; 4743 ext4_group_t block_group; 4744 struct ext4_sb_info *sbi; 4745 struct ext4_buddy e4b; 4746 unsigned int count_clusters; 4747 int err = 0; 4748 int ret; 4749 4750 might_sleep(); 4751 if (bh) { 4752 if (block) 4753 BUG_ON(block != bh->b_blocknr); 4754 else 4755 block = bh->b_blocknr; 4756 } 4757 4758 sbi = EXT4_SB(sb); 4759 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4760 !ext4_data_block_valid(sbi, block, count)) { 4761 ext4_error(sb, "Freeing blocks not in datazone - " 4762 "block = %llu, count = %lu", block, count); 4763 goto error_return; 4764 } 4765 4766 ext4_debug("freeing block %llu\n", block); 4767 trace_ext4_free_blocks(inode, block, count, flags); 4768 4769 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 4770 BUG_ON(count > 1); 4771 4772 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4773 inode, bh, block); 4774 } 4775 4776 /* 4777 * If the extent to be freed does not begin on a cluster 4778 * boundary, we need to deal with partial clusters at the 4779 * beginning and end of the extent. Normally we will free 4780 * blocks at the beginning or the end unless we are explicitly 4781 * requested to avoid doing so. 4782 */ 4783 overflow = EXT4_PBLK_COFF(sbi, block); 4784 if (overflow) { 4785 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4786 overflow = sbi->s_cluster_ratio - overflow; 4787 block += overflow; 4788 if (count > overflow) 4789 count -= overflow; 4790 else 4791 return; 4792 } else { 4793 block -= overflow; 4794 count += overflow; 4795 } 4796 } 4797 overflow = EXT4_LBLK_COFF(sbi, count); 4798 if (overflow) { 4799 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4800 if (count > overflow) 4801 count -= overflow; 4802 else 4803 return; 4804 } else 4805 count += sbi->s_cluster_ratio - overflow; 4806 } 4807 4808 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 4809 int i; 4810 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 4811 4812 for (i = 0; i < count; i++) { 4813 cond_resched(); 4814 if (is_metadata) 4815 bh = sb_find_get_block(inode->i_sb, block + i); 4816 ext4_forget(handle, is_metadata, inode, bh, block + i); 4817 } 4818 } 4819 4820 do_more: 4821 overflow = 0; 4822 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4823 4824 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 4825 ext4_get_group_info(sb, block_group)))) 4826 return; 4827 4828 /* 4829 * Check to see if we are freeing blocks across a group 4830 * boundary. 4831 */ 4832 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4833 overflow = EXT4_C2B(sbi, bit) + count - 4834 EXT4_BLOCKS_PER_GROUP(sb); 4835 count -= overflow; 4836 } 4837 count_clusters = EXT4_NUM_B2C(sbi, count); 4838 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4839 if (IS_ERR(bitmap_bh)) { 4840 err = PTR_ERR(bitmap_bh); 4841 bitmap_bh = NULL; 4842 goto error_return; 4843 } 4844 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4845 if (!gdp) { 4846 err = -EIO; 4847 goto error_return; 4848 } 4849 4850 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4851 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4852 in_range(block, ext4_inode_table(sb, gdp), 4853 EXT4_SB(sb)->s_itb_per_group) || 4854 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4855 EXT4_SB(sb)->s_itb_per_group)) { 4856 4857 ext4_error(sb, "Freeing blocks in system zone - " 4858 "Block = %llu, count = %lu", block, count); 4859 /* err = 0. ext4_std_error should be a no op */ 4860 goto error_return; 4861 } 4862 4863 BUFFER_TRACE(bitmap_bh, "getting write access"); 4864 err = ext4_journal_get_write_access(handle, bitmap_bh); 4865 if (err) 4866 goto error_return; 4867 4868 /* 4869 * We are about to modify some metadata. Call the journal APIs 4870 * to unshare ->b_data if a currently-committing transaction is 4871 * using it 4872 */ 4873 BUFFER_TRACE(gd_bh, "get_write_access"); 4874 err = ext4_journal_get_write_access(handle, gd_bh); 4875 if (err) 4876 goto error_return; 4877 #ifdef AGGRESSIVE_CHECK 4878 { 4879 int i; 4880 for (i = 0; i < count_clusters; i++) 4881 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4882 } 4883 #endif 4884 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4885 4886 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 4887 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 4888 GFP_NOFS|__GFP_NOFAIL); 4889 if (err) 4890 goto error_return; 4891 4892 /* 4893 * We need to make sure we don't reuse the freed block until after the 4894 * transaction is committed. We make an exception if the inode is to be 4895 * written in writeback mode since writeback mode has weak data 4896 * consistency guarantees. 4897 */ 4898 if (ext4_handle_valid(handle) && 4899 ((flags & EXT4_FREE_BLOCKS_METADATA) || 4900 !ext4_should_writeback_data(inode))) { 4901 struct ext4_free_data *new_entry; 4902 /* 4903 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 4904 * to fail. 4905 */ 4906 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 4907 GFP_NOFS|__GFP_NOFAIL); 4908 new_entry->efd_start_cluster = bit; 4909 new_entry->efd_group = block_group; 4910 new_entry->efd_count = count_clusters; 4911 new_entry->efd_tid = handle->h_transaction->t_tid; 4912 4913 ext4_lock_group(sb, block_group); 4914 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4915 ext4_mb_free_metadata(handle, &e4b, new_entry); 4916 } else { 4917 /* need to update group_info->bb_free and bitmap 4918 * with group lock held. generate_buddy look at 4919 * them with group lock_held 4920 */ 4921 if (test_opt(sb, DISCARD)) { 4922 err = ext4_issue_discard(sb, block_group, bit, count, 4923 NULL); 4924 if (err && err != -EOPNOTSUPP) 4925 ext4_msg(sb, KERN_WARNING, "discard request in" 4926 " group:%d block:%d count:%lu failed" 4927 " with %d", block_group, bit, count, 4928 err); 4929 } else 4930 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 4931 4932 ext4_lock_group(sb, block_group); 4933 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4934 mb_free_blocks(inode, &e4b, bit, count_clusters); 4935 } 4936 4937 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4938 ext4_free_group_clusters_set(sb, gdp, ret); 4939 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 4940 ext4_group_desc_csum_set(sb, block_group, gdp); 4941 ext4_unlock_group(sb, block_group); 4942 4943 if (sbi->s_log_groups_per_flex) { 4944 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4945 atomic64_add(count_clusters, 4946 &sbi->s_flex_groups[flex_group].free_clusters); 4947 } 4948 4949 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4950 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4951 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); 4952 4953 ext4_mb_unload_buddy(&e4b); 4954 4955 /* We dirtied the bitmap block */ 4956 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4957 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4958 4959 /* And the group descriptor block */ 4960 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4961 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4962 if (!err) 4963 err = ret; 4964 4965 if (overflow && !err) { 4966 block += count; 4967 count = overflow; 4968 put_bh(bitmap_bh); 4969 goto do_more; 4970 } 4971 error_return: 4972 brelse(bitmap_bh); 4973 ext4_std_error(sb, err); 4974 return; 4975 } 4976 4977 /** 4978 * ext4_group_add_blocks() -- Add given blocks to an existing group 4979 * @handle: handle to this transaction 4980 * @sb: super block 4981 * @block: start physical block to add to the block group 4982 * @count: number of blocks to free 4983 * 4984 * This marks the blocks as free in the bitmap and buddy. 4985 */ 4986 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4987 ext4_fsblk_t block, unsigned long count) 4988 { 4989 struct buffer_head *bitmap_bh = NULL; 4990 struct buffer_head *gd_bh; 4991 ext4_group_t block_group; 4992 ext4_grpblk_t bit; 4993 unsigned int i; 4994 struct ext4_group_desc *desc; 4995 struct ext4_sb_info *sbi = EXT4_SB(sb); 4996 struct ext4_buddy e4b; 4997 int err = 0, ret, blk_free_count; 4998 ext4_grpblk_t blocks_freed; 4999 5000 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 5001 5002 if (count == 0) 5003 return 0; 5004 5005 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 5006 /* 5007 * Check to see if we are freeing blocks across a group 5008 * boundary. 5009 */ 5010 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 5011 ext4_warning(sb, "too much blocks added to group %u", 5012 block_group); 5013 err = -EINVAL; 5014 goto error_return; 5015 } 5016 5017 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 5018 if (IS_ERR(bitmap_bh)) { 5019 err = PTR_ERR(bitmap_bh); 5020 bitmap_bh = NULL; 5021 goto error_return; 5022 } 5023 5024 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 5025 if (!desc) { 5026 err = -EIO; 5027 goto error_return; 5028 } 5029 5030 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 5031 in_range(ext4_inode_bitmap(sb, desc), block, count) || 5032 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 5033 in_range(block + count - 1, ext4_inode_table(sb, desc), 5034 sbi->s_itb_per_group)) { 5035 ext4_error(sb, "Adding blocks in system zones - " 5036 "Block = %llu, count = %lu", 5037 block, count); 5038 err = -EINVAL; 5039 goto error_return; 5040 } 5041 5042 BUFFER_TRACE(bitmap_bh, "getting write access"); 5043 err = ext4_journal_get_write_access(handle, bitmap_bh); 5044 if (err) 5045 goto error_return; 5046 5047 /* 5048 * We are about to modify some metadata. Call the journal APIs 5049 * to unshare ->b_data if a currently-committing transaction is 5050 * using it 5051 */ 5052 BUFFER_TRACE(gd_bh, "get_write_access"); 5053 err = ext4_journal_get_write_access(handle, gd_bh); 5054 if (err) 5055 goto error_return; 5056 5057 for (i = 0, blocks_freed = 0; i < count; i++) { 5058 BUFFER_TRACE(bitmap_bh, "clear bit"); 5059 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 5060 ext4_error(sb, "bit already cleared for block %llu", 5061 (ext4_fsblk_t)(block + i)); 5062 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 5063 } else { 5064 blocks_freed++; 5065 } 5066 } 5067 5068 err = ext4_mb_load_buddy(sb, block_group, &e4b); 5069 if (err) 5070 goto error_return; 5071 5072 /* 5073 * need to update group_info->bb_free and bitmap 5074 * with group lock held. generate_buddy look at 5075 * them with group lock_held 5076 */ 5077 ext4_lock_group(sb, block_group); 5078 mb_clear_bits(bitmap_bh->b_data, bit, count); 5079 mb_free_blocks(NULL, &e4b, bit, count); 5080 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc); 5081 ext4_free_group_clusters_set(sb, desc, blk_free_count); 5082 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 5083 ext4_group_desc_csum_set(sb, block_group, desc); 5084 ext4_unlock_group(sb, block_group); 5085 percpu_counter_add(&sbi->s_freeclusters_counter, 5086 EXT4_NUM_B2C(sbi, blocks_freed)); 5087 5088 if (sbi->s_log_groups_per_flex) { 5089 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 5090 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed), 5091 &sbi->s_flex_groups[flex_group].free_clusters); 5092 } 5093 5094 ext4_mb_unload_buddy(&e4b); 5095 5096 /* We dirtied the bitmap block */ 5097 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5098 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5099 5100 /* And the group descriptor block */ 5101 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5102 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5103 if (!err) 5104 err = ret; 5105 5106 error_return: 5107 brelse(bitmap_bh); 5108 ext4_std_error(sb, err); 5109 return err; 5110 } 5111 5112 /** 5113 * ext4_trim_extent -- function to TRIM one single free extent in the group 5114 * @sb: super block for the file system 5115 * @start: starting block of the free extent in the alloc. group 5116 * @count: number of blocks to TRIM 5117 * @group: alloc. group we are working with 5118 * @e4b: ext4 buddy for the group 5119 * 5120 * Trim "count" blocks starting at "start" in the "group". To assure that no 5121 * one will allocate those blocks, mark it as used in buddy bitmap. This must 5122 * be called with under the group lock. 5123 */ 5124 static int ext4_trim_extent(struct super_block *sb, int start, int count, 5125 ext4_group_t group, struct ext4_buddy *e4b) 5126 __releases(bitlock) 5127 __acquires(bitlock) 5128 { 5129 struct ext4_free_extent ex; 5130 int ret = 0; 5131 5132 trace_ext4_trim_extent(sb, group, start, count); 5133 5134 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 5135 5136 ex.fe_start = start; 5137 ex.fe_group = group; 5138 ex.fe_len = count; 5139 5140 /* 5141 * Mark blocks used, so no one can reuse them while 5142 * being trimmed. 5143 */ 5144 mb_mark_used(e4b, &ex); 5145 ext4_unlock_group(sb, group); 5146 ret = ext4_issue_discard(sb, group, start, count, NULL); 5147 ext4_lock_group(sb, group); 5148 mb_free_blocks(NULL, e4b, start, ex.fe_len); 5149 return ret; 5150 } 5151 5152 /** 5153 * ext4_trim_all_free -- function to trim all free space in alloc. group 5154 * @sb: super block for file system 5155 * @group: group to be trimmed 5156 * @start: first group block to examine 5157 * @max: last group block to examine 5158 * @minblocks: minimum extent block count 5159 * 5160 * ext4_trim_all_free walks through group's buddy bitmap searching for free 5161 * extents. When the free block is found, ext4_trim_extent is called to TRIM 5162 * the extent. 5163 * 5164 * 5165 * ext4_trim_all_free walks through group's block bitmap searching for free 5166 * extents. When the free extent is found, mark it as used in group buddy 5167 * bitmap. Then issue a TRIM command on this extent and free the extent in 5168 * the group buddy bitmap. This is done until whole group is scanned. 5169 */ 5170 static ext4_grpblk_t 5171 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 5172 ext4_grpblk_t start, ext4_grpblk_t max, 5173 ext4_grpblk_t minblocks) 5174 { 5175 void *bitmap; 5176 ext4_grpblk_t next, count = 0, free_count = 0; 5177 struct ext4_buddy e4b; 5178 int ret = 0; 5179 5180 trace_ext4_trim_all_free(sb, group, start, max); 5181 5182 ret = ext4_mb_load_buddy(sb, group, &e4b); 5183 if (ret) { 5184 ext4_warning(sb, "Error %d loading buddy information for %u", 5185 ret, group); 5186 return ret; 5187 } 5188 bitmap = e4b.bd_bitmap; 5189 5190 ext4_lock_group(sb, group); 5191 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 5192 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 5193 goto out; 5194 5195 start = (e4b.bd_info->bb_first_free > start) ? 5196 e4b.bd_info->bb_first_free : start; 5197 5198 while (start <= max) { 5199 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5200 if (start > max) 5201 break; 5202 next = mb_find_next_bit(bitmap, max + 1, start); 5203 5204 if ((next - start) >= minblocks) { 5205 ret = ext4_trim_extent(sb, start, 5206 next - start, group, &e4b); 5207 if (ret && ret != -EOPNOTSUPP) 5208 break; 5209 ret = 0; 5210 count += next - start; 5211 } 5212 free_count += next - start; 5213 start = next + 1; 5214 5215 if (fatal_signal_pending(current)) { 5216 count = -ERESTARTSYS; 5217 break; 5218 } 5219 5220 if (need_resched()) { 5221 ext4_unlock_group(sb, group); 5222 cond_resched(); 5223 ext4_lock_group(sb, group); 5224 } 5225 5226 if ((e4b.bd_info->bb_free - free_count) < minblocks) 5227 break; 5228 } 5229 5230 if (!ret) { 5231 ret = count; 5232 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 5233 } 5234 out: 5235 ext4_unlock_group(sb, group); 5236 ext4_mb_unload_buddy(&e4b); 5237 5238 ext4_debug("trimmed %d blocks in the group %d\n", 5239 count, group); 5240 5241 return ret; 5242 } 5243 5244 /** 5245 * ext4_trim_fs() -- trim ioctl handle function 5246 * @sb: superblock for filesystem 5247 * @range: fstrim_range structure 5248 * 5249 * start: First Byte to trim 5250 * len: number of Bytes to trim from start 5251 * minlen: minimum extent length in Bytes 5252 * ext4_trim_fs goes through all allocation groups containing Bytes from 5253 * start to start+len. For each such a group ext4_trim_all_free function 5254 * is invoked to trim all free space. 5255 */ 5256 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 5257 { 5258 struct ext4_group_info *grp; 5259 ext4_group_t group, first_group, last_group; 5260 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5261 uint64_t start, end, minlen, trimmed = 0; 5262 ext4_fsblk_t first_data_blk = 5263 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5264 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5265 int ret = 0; 5266 5267 start = range->start >> sb->s_blocksize_bits; 5268 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5269 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5270 range->minlen >> sb->s_blocksize_bits); 5271 5272 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5273 start >= max_blks || 5274 range->len < sb->s_blocksize) 5275 return -EINVAL; 5276 if (end >= max_blks) 5277 end = max_blks - 1; 5278 if (end <= first_data_blk) 5279 goto out; 5280 if (start < first_data_blk) 5281 start = first_data_blk; 5282 5283 /* Determine first and last group to examine based on start and end */ 5284 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5285 &first_group, &first_cluster); 5286 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5287 &last_group, &last_cluster); 5288 5289 /* end now represents the last cluster to discard in this group */ 5290 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5291 5292 for (group = first_group; group <= last_group; group++) { 5293 grp = ext4_get_group_info(sb, group); 5294 /* We only do this if the grp has never been initialized */ 5295 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5296 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 5297 if (ret) 5298 break; 5299 } 5300 5301 /* 5302 * For all the groups except the last one, last cluster will 5303 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5304 * change it for the last group, note that last_cluster is 5305 * already computed earlier by ext4_get_group_no_and_offset() 5306 */ 5307 if (group == last_group) 5308 end = last_cluster; 5309 5310 if (grp->bb_free >= minlen) { 5311 cnt = ext4_trim_all_free(sb, group, first_cluster, 5312 end, minlen); 5313 if (cnt < 0) { 5314 ret = cnt; 5315 break; 5316 } 5317 trimmed += cnt; 5318 } 5319 5320 /* 5321 * For every group except the first one, we are sure 5322 * that the first cluster to discard will be cluster #0. 5323 */ 5324 first_cluster = 0; 5325 } 5326 5327 if (!ret) 5328 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5329 5330 out: 5331 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5332 return ret; 5333 } 5334 5335 /* Iterate all the free extents in the group. */ 5336 int 5337 ext4_mballoc_query_range( 5338 struct super_block *sb, 5339 ext4_group_t group, 5340 ext4_grpblk_t start, 5341 ext4_grpblk_t end, 5342 ext4_mballoc_query_range_fn formatter, 5343 void *priv) 5344 { 5345 void *bitmap; 5346 ext4_grpblk_t next; 5347 struct ext4_buddy e4b; 5348 int error; 5349 5350 error = ext4_mb_load_buddy(sb, group, &e4b); 5351 if (error) 5352 return error; 5353 bitmap = e4b.bd_bitmap; 5354 5355 ext4_lock_group(sb, group); 5356 5357 start = (e4b.bd_info->bb_first_free > start) ? 5358 e4b.bd_info->bb_first_free : start; 5359 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 5360 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5361 5362 while (start <= end) { 5363 start = mb_find_next_zero_bit(bitmap, end + 1, start); 5364 if (start > end) 5365 break; 5366 next = mb_find_next_bit(bitmap, end + 1, start); 5367 5368 ext4_unlock_group(sb, group); 5369 error = formatter(sb, group, start, next - start, priv); 5370 if (error) 5371 goto out_unload; 5372 ext4_lock_group(sb, group); 5373 5374 start = next + 1; 5375 } 5376 5377 ext4_unlock_group(sb, group); 5378 out_unload: 5379 ext4_mb_unload_buddy(&e4b); 5380 5381 return error; 5382 } 5383