1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <trace/events/ext4.h> 21 22 /* 23 * MUSTDO: 24 * - test ext4_ext_search_left() and ext4_ext_search_right() 25 * - search for metadata in few groups 26 * 27 * TODO v4: 28 * - normalization should take into account whether file is still open 29 * - discard preallocations if no free space left (policy?) 30 * - don't normalize tails 31 * - quota 32 * - reservation for superuser 33 * 34 * TODO v3: 35 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 36 * - track min/max extents in each group for better group selection 37 * - mb_mark_used() may allocate chunk right after splitting buddy 38 * - tree of groups sorted by number of free blocks 39 * - error handling 40 */ 41 42 /* 43 * The allocation request involve request for multiple number of blocks 44 * near to the goal(block) value specified. 45 * 46 * During initialization phase of the allocator we decide to use the 47 * group preallocation or inode preallocation depending on the size of 48 * the file. The size of the file could be the resulting file size we 49 * would have after allocation, or the current file size, which ever 50 * is larger. If the size is less than sbi->s_mb_stream_request we 51 * select to use the group preallocation. The default value of 52 * s_mb_stream_request is 16 blocks. This can also be tuned via 53 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 54 * terms of number of blocks. 55 * 56 * The main motivation for having small file use group preallocation is to 57 * ensure that we have small files closer together on the disk. 58 * 59 * First stage the allocator looks at the inode prealloc list, 60 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 61 * spaces for this particular inode. The inode prealloc space is 62 * represented as: 63 * 64 * pa_lstart -> the logical start block for this prealloc space 65 * pa_pstart -> the physical start block for this prealloc space 66 * pa_len -> length for this prealloc space (in clusters) 67 * pa_free -> free space available in this prealloc space (in clusters) 68 * 69 * The inode preallocation space is used looking at the _logical_ start 70 * block. If only the logical file block falls within the range of prealloc 71 * space we will consume the particular prealloc space. This makes sure that 72 * we have contiguous physical blocks representing the file blocks 73 * 74 * The important thing to be noted in case of inode prealloc space is that 75 * we don't modify the values associated to inode prealloc space except 76 * pa_free. 77 * 78 * If we are not able to find blocks in the inode prealloc space and if we 79 * have the group allocation flag set then we look at the locality group 80 * prealloc space. These are per CPU prealloc list represented as 81 * 82 * ext4_sb_info.s_locality_groups[smp_processor_id()] 83 * 84 * The reason for having a per cpu locality group is to reduce the contention 85 * between CPUs. It is possible to get scheduled at this point. 86 * 87 * The locality group prealloc space is used looking at whether we have 88 * enough free space (pa_free) within the prealloc space. 89 * 90 * If we can't allocate blocks via inode prealloc or/and locality group 91 * prealloc then we look at the buddy cache. The buddy cache is represented 92 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 93 * mapped to the buddy and bitmap information regarding different 94 * groups. The buddy information is attached to buddy cache inode so that 95 * we can access them through the page cache. The information regarding 96 * each group is loaded via ext4_mb_load_buddy. The information involve 97 * block bitmap and buddy information. The information are stored in the 98 * inode as: 99 * 100 * { page } 101 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 102 * 103 * 104 * one block each for bitmap and buddy information. So for each group we 105 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 106 * blocksize) blocks. So it can have information regarding groups_per_page 107 * which is blocks_per_page/2 108 * 109 * The buddy cache inode is not stored on disk. The inode is thrown 110 * away when the filesystem is unmounted. 111 * 112 * We look for count number of blocks in the buddy cache. If we were able 113 * to locate that many free blocks we return with additional information 114 * regarding rest of the contiguous physical block available 115 * 116 * Before allocating blocks via buddy cache we normalize the request 117 * blocks. This ensure we ask for more blocks that we needed. The extra 118 * blocks that we get after allocation is added to the respective prealloc 119 * list. In case of inode preallocation we follow a list of heuristics 120 * based on file size. This can be found in ext4_mb_normalize_request. If 121 * we are doing a group prealloc we try to normalize the request to 122 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 123 * dependent on the cluster size; for non-bigalloc file systems, it is 124 * 512 blocks. This can be tuned via 125 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 126 * terms of number of blocks. If we have mounted the file system with -O 127 * stripe=<value> option the group prealloc request is normalized to the 128 * smallest multiple of the stripe value (sbi->s_stripe) which is 129 * greater than the default mb_group_prealloc. 130 * 131 * If "mb_optimize_scan" mount option is set, we maintain in memory group info 132 * structures in two data structures: 133 * 134 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) 135 * 136 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) 137 * 138 * This is an array of lists where the index in the array represents the 139 * largest free order in the buddy bitmap of the participating group infos of 140 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total 141 * number of buddy bitmap orders possible) number of lists. Group-infos are 142 * placed in appropriate lists. 143 * 144 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size) 145 * 146 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks) 147 * 148 * This is an array of lists where in the i-th list there are groups with 149 * average fragment size >= 2^i and < 2^(i+1). The average fragment size 150 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments. 151 * Note that we don't bother with a special list for completely empty groups 152 * so we only have MB_NUM_ORDERS(sb) lists. 153 * 154 * When "mb_optimize_scan" mount option is set, mballoc consults the above data 155 * structures to decide the order in which groups are to be traversed for 156 * fulfilling an allocation request. 157 * 158 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order 159 * >= the order of the request. We directly look at the largest free order list 160 * in the data structure (1) above where largest_free_order = order of the 161 * request. If that list is empty, we look at remaining list in the increasing 162 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED 163 * lookup in O(1) time. 164 * 165 * At CR_GOAL_LEN_FAST, we only consider groups where 166 * average fragment size > request size. So, we lookup a group which has average 167 * fragment size just above or equal to request size using our average fragment 168 * size group lists (data structure 2) in O(1) time. 169 * 170 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied 171 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in 172 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg 173 * fragment size > goal length. So before falling to the slower 174 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and 175 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big 176 * enough average fragment size. This increases the chances of finding a 177 * suitable block group in O(1) time and results in faster allocation at the 178 * cost of reduced size of allocation. 179 * 180 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in 181 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and 182 * CR_GOAL_LEN_FAST phase. 183 * 184 * The regular allocator (using the buddy cache) supports a few tunables. 185 * 186 * /sys/fs/ext4/<partition>/mb_min_to_scan 187 * /sys/fs/ext4/<partition>/mb_max_to_scan 188 * /sys/fs/ext4/<partition>/mb_order2_req 189 * /sys/fs/ext4/<partition>/mb_linear_limit 190 * 191 * The regular allocator uses buddy scan only if the request len is power of 192 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 193 * value of s_mb_order2_reqs can be tuned via 194 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 195 * stripe size (sbi->s_stripe), we try to search for contiguous block in 196 * stripe size. This should result in better allocation on RAID setups. If 197 * not, we search in the specific group using bitmap for best extents. The 198 * tunable min_to_scan and max_to_scan control the behaviour here. 199 * min_to_scan indicate how long the mballoc __must__ look for a best 200 * extent and max_to_scan indicates how long the mballoc __can__ look for a 201 * best extent in the found extents. Searching for the blocks starts with 202 * the group specified as the goal value in allocation context via 203 * ac_g_ex. Each group is first checked based on the criteria whether it 204 * can be used for allocation. ext4_mb_good_group explains how the groups are 205 * checked. 206 * 207 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not 208 * get traversed linearly. That may result in subsequent allocations being not 209 * close to each other. And so, the underlying device may get filled up in a 210 * non-linear fashion. While that may not matter on non-rotational devices, for 211 * rotational devices that may result in higher seek times. "mb_linear_limit" 212 * tells mballoc how many groups mballoc should search linearly before 213 * performing consulting above data structures for more efficient lookups. For 214 * non rotational devices, this value defaults to 0 and for rotational devices 215 * this is set to MB_DEFAULT_LINEAR_LIMIT. 216 * 217 * Both the prealloc space are getting populated as above. So for the first 218 * request we will hit the buddy cache which will result in this prealloc 219 * space getting filled. The prealloc space is then later used for the 220 * subsequent request. 221 */ 222 223 /* 224 * mballoc operates on the following data: 225 * - on-disk bitmap 226 * - in-core buddy (actually includes buddy and bitmap) 227 * - preallocation descriptors (PAs) 228 * 229 * there are two types of preallocations: 230 * - inode 231 * assiged to specific inode and can be used for this inode only. 232 * it describes part of inode's space preallocated to specific 233 * physical blocks. any block from that preallocated can be used 234 * independent. the descriptor just tracks number of blocks left 235 * unused. so, before taking some block from descriptor, one must 236 * make sure corresponded logical block isn't allocated yet. this 237 * also means that freeing any block within descriptor's range 238 * must discard all preallocated blocks. 239 * - locality group 240 * assigned to specific locality group which does not translate to 241 * permanent set of inodes: inode can join and leave group. space 242 * from this type of preallocation can be used for any inode. thus 243 * it's consumed from the beginning to the end. 244 * 245 * relation between them can be expressed as: 246 * in-core buddy = on-disk bitmap + preallocation descriptors 247 * 248 * this mean blocks mballoc considers used are: 249 * - allocated blocks (persistent) 250 * - preallocated blocks (non-persistent) 251 * 252 * consistency in mballoc world means that at any time a block is either 253 * free or used in ALL structures. notice: "any time" should not be read 254 * literally -- time is discrete and delimited by locks. 255 * 256 * to keep it simple, we don't use block numbers, instead we count number of 257 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 258 * 259 * all operations can be expressed as: 260 * - init buddy: buddy = on-disk + PAs 261 * - new PA: buddy += N; PA = N 262 * - use inode PA: on-disk += N; PA -= N 263 * - discard inode PA buddy -= on-disk - PA; PA = 0 264 * - use locality group PA on-disk += N; PA -= N 265 * - discard locality group PA buddy -= PA; PA = 0 266 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 267 * is used in real operation because we can't know actual used 268 * bits from PA, only from on-disk bitmap 269 * 270 * if we follow this strict logic, then all operations above should be atomic. 271 * given some of them can block, we'd have to use something like semaphores 272 * killing performance on high-end SMP hardware. let's try to relax it using 273 * the following knowledge: 274 * 1) if buddy is referenced, it's already initialized 275 * 2) while block is used in buddy and the buddy is referenced, 276 * nobody can re-allocate that block 277 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 278 * bit set and PA claims same block, it's OK. IOW, one can set bit in 279 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 280 * block 281 * 282 * so, now we're building a concurrency table: 283 * - init buddy vs. 284 * - new PA 285 * blocks for PA are allocated in the buddy, buddy must be referenced 286 * until PA is linked to allocation group to avoid concurrent buddy init 287 * - use inode PA 288 * we need to make sure that either on-disk bitmap or PA has uptodate data 289 * given (3) we care that PA-=N operation doesn't interfere with init 290 * - discard inode PA 291 * the simplest way would be to have buddy initialized by the discard 292 * - use locality group PA 293 * again PA-=N must be serialized with init 294 * - discard locality group PA 295 * the simplest way would be to have buddy initialized by the discard 296 * - new PA vs. 297 * - use inode PA 298 * i_data_sem serializes them 299 * - discard inode PA 300 * discard process must wait until PA isn't used by another process 301 * - use locality group PA 302 * some mutex should serialize them 303 * - discard locality group PA 304 * discard process must wait until PA isn't used by another process 305 * - use inode PA 306 * - use inode PA 307 * i_data_sem or another mutex should serializes them 308 * - discard inode PA 309 * discard process must wait until PA isn't used by another process 310 * - use locality group PA 311 * nothing wrong here -- they're different PAs covering different blocks 312 * - discard locality group PA 313 * discard process must wait until PA isn't used by another process 314 * 315 * now we're ready to make few consequences: 316 * - PA is referenced and while it is no discard is possible 317 * - PA is referenced until block isn't marked in on-disk bitmap 318 * - PA changes only after on-disk bitmap 319 * - discard must not compete with init. either init is done before 320 * any discard or they're serialized somehow 321 * - buddy init as sum of on-disk bitmap and PAs is done atomically 322 * 323 * a special case when we've used PA to emptiness. no need to modify buddy 324 * in this case, but we should care about concurrent init 325 * 326 */ 327 328 /* 329 * Logic in few words: 330 * 331 * - allocation: 332 * load group 333 * find blocks 334 * mark bits in on-disk bitmap 335 * release group 336 * 337 * - use preallocation: 338 * find proper PA (per-inode or group) 339 * load group 340 * mark bits in on-disk bitmap 341 * release group 342 * release PA 343 * 344 * - free: 345 * load group 346 * mark bits in on-disk bitmap 347 * release group 348 * 349 * - discard preallocations in group: 350 * mark PAs deleted 351 * move them onto local list 352 * load on-disk bitmap 353 * load group 354 * remove PA from object (inode or locality group) 355 * mark free blocks in-core 356 * 357 * - discard inode's preallocations: 358 */ 359 360 /* 361 * Locking rules 362 * 363 * Locks: 364 * - bitlock on a group (group) 365 * - object (inode/locality) (object) 366 * - per-pa lock (pa) 367 * - cr_power2_aligned lists lock (cr_power2_aligned) 368 * - cr_goal_len_fast lists lock (cr_goal_len_fast) 369 * 370 * Paths: 371 * - new pa 372 * object 373 * group 374 * 375 * - find and use pa: 376 * pa 377 * 378 * - release consumed pa: 379 * pa 380 * group 381 * object 382 * 383 * - generate in-core bitmap: 384 * group 385 * pa 386 * 387 * - discard all for given object (inode, locality group): 388 * object 389 * pa 390 * group 391 * 392 * - discard all for given group: 393 * group 394 * pa 395 * group 396 * object 397 * 398 * - allocation path (ext4_mb_regular_allocator) 399 * group 400 * cr_power2_aligned/cr_goal_len_fast 401 */ 402 static struct kmem_cache *ext4_pspace_cachep; 403 static struct kmem_cache *ext4_ac_cachep; 404 static struct kmem_cache *ext4_free_data_cachep; 405 406 /* We create slab caches for groupinfo data structures based on the 407 * superblock block size. There will be one per mounted filesystem for 408 * each unique s_blocksize_bits */ 409 #define NR_GRPINFO_CACHES 8 410 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 411 412 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 413 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 414 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 415 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 416 }; 417 418 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 419 ext4_group_t group); 420 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 421 422 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 423 ext4_group_t group, enum criteria cr); 424 425 static int ext4_try_to_trim_range(struct super_block *sb, 426 struct ext4_buddy *e4b, ext4_grpblk_t start, 427 ext4_grpblk_t max, ext4_grpblk_t minblocks); 428 429 /* 430 * The algorithm using this percpu seq counter goes below: 431 * 1. We sample the percpu discard_pa_seq counter before trying for block 432 * allocation in ext4_mb_new_blocks(). 433 * 2. We increment this percpu discard_pa_seq counter when we either allocate 434 * or free these blocks i.e. while marking those blocks as used/free in 435 * mb_mark_used()/mb_free_blocks(). 436 * 3. We also increment this percpu seq counter when we successfully identify 437 * that the bb_prealloc_list is not empty and hence proceed for discarding 438 * of those PAs inside ext4_mb_discard_group_preallocations(). 439 * 440 * Now to make sure that the regular fast path of block allocation is not 441 * affected, as a small optimization we only sample the percpu seq counter 442 * on that cpu. Only when the block allocation fails and when freed blocks 443 * found were 0, that is when we sample percpu seq counter for all cpus using 444 * below function ext4_get_discard_pa_seq_sum(). This happens after making 445 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 446 */ 447 static DEFINE_PER_CPU(u64, discard_pa_seq); 448 static inline u64 ext4_get_discard_pa_seq_sum(void) 449 { 450 int __cpu; 451 u64 __seq = 0; 452 453 for_each_possible_cpu(__cpu) 454 __seq += per_cpu(discard_pa_seq, __cpu); 455 return __seq; 456 } 457 458 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 459 { 460 #if BITS_PER_LONG == 64 461 *bit += ((unsigned long) addr & 7UL) << 3; 462 addr = (void *) ((unsigned long) addr & ~7UL); 463 #elif BITS_PER_LONG == 32 464 *bit += ((unsigned long) addr & 3UL) << 3; 465 addr = (void *) ((unsigned long) addr & ~3UL); 466 #else 467 #error "how many bits you are?!" 468 #endif 469 return addr; 470 } 471 472 static inline int mb_test_bit(int bit, void *addr) 473 { 474 /* 475 * ext4_test_bit on architecture like powerpc 476 * needs unsigned long aligned address 477 */ 478 addr = mb_correct_addr_and_bit(&bit, addr); 479 return ext4_test_bit(bit, addr); 480 } 481 482 static inline void mb_set_bit(int bit, void *addr) 483 { 484 addr = mb_correct_addr_and_bit(&bit, addr); 485 ext4_set_bit(bit, addr); 486 } 487 488 static inline void mb_clear_bit(int bit, void *addr) 489 { 490 addr = mb_correct_addr_and_bit(&bit, addr); 491 ext4_clear_bit(bit, addr); 492 } 493 494 static inline int mb_test_and_clear_bit(int bit, void *addr) 495 { 496 addr = mb_correct_addr_and_bit(&bit, addr); 497 return ext4_test_and_clear_bit(bit, addr); 498 } 499 500 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 501 { 502 int fix = 0, ret, tmpmax; 503 addr = mb_correct_addr_and_bit(&fix, addr); 504 tmpmax = max + fix; 505 start += fix; 506 507 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 508 if (ret > max) 509 return max; 510 return ret; 511 } 512 513 static inline int mb_find_next_bit(void *addr, int max, int start) 514 { 515 int fix = 0, ret, tmpmax; 516 addr = mb_correct_addr_and_bit(&fix, addr); 517 tmpmax = max + fix; 518 start += fix; 519 520 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 521 if (ret > max) 522 return max; 523 return ret; 524 } 525 526 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 527 { 528 char *bb; 529 530 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 531 BUG_ON(max == NULL); 532 533 if (order > e4b->bd_blkbits + 1) { 534 *max = 0; 535 return NULL; 536 } 537 538 /* at order 0 we see each particular block */ 539 if (order == 0) { 540 *max = 1 << (e4b->bd_blkbits + 3); 541 return e4b->bd_bitmap; 542 } 543 544 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 545 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 546 547 return bb; 548 } 549 550 #ifdef DOUBLE_CHECK 551 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 552 int first, int count) 553 { 554 int i; 555 struct super_block *sb = e4b->bd_sb; 556 557 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 558 return; 559 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 560 for (i = 0; i < count; i++) { 561 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 562 ext4_fsblk_t blocknr; 563 564 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 565 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 566 ext4_grp_locked_error(sb, e4b->bd_group, 567 inode ? inode->i_ino : 0, 568 blocknr, 569 "freeing block already freed " 570 "(bit %u)", 571 first + i); 572 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 573 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 574 } 575 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 576 } 577 } 578 579 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 580 { 581 int i; 582 583 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 584 return; 585 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 586 for (i = 0; i < count; i++) { 587 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 588 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 589 } 590 } 591 592 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 593 { 594 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 595 return; 596 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 597 unsigned char *b1, *b2; 598 int i; 599 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 600 b2 = (unsigned char *) bitmap; 601 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 602 if (b1[i] != b2[i]) { 603 ext4_msg(e4b->bd_sb, KERN_ERR, 604 "corruption in group %u " 605 "at byte %u(%u): %x in copy != %x " 606 "on disk/prealloc", 607 e4b->bd_group, i, i * 8, b1[i], b2[i]); 608 BUG(); 609 } 610 } 611 } 612 } 613 614 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 615 struct ext4_group_info *grp, ext4_group_t group) 616 { 617 struct buffer_head *bh; 618 619 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 620 if (!grp->bb_bitmap) 621 return; 622 623 bh = ext4_read_block_bitmap(sb, group); 624 if (IS_ERR_OR_NULL(bh)) { 625 kfree(grp->bb_bitmap); 626 grp->bb_bitmap = NULL; 627 return; 628 } 629 630 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 631 put_bh(bh); 632 } 633 634 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 635 { 636 kfree(grp->bb_bitmap); 637 } 638 639 #else 640 static inline void mb_free_blocks_double(struct inode *inode, 641 struct ext4_buddy *e4b, int first, int count) 642 { 643 return; 644 } 645 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 646 int first, int count) 647 { 648 return; 649 } 650 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 651 { 652 return; 653 } 654 655 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 656 struct ext4_group_info *grp, ext4_group_t group) 657 { 658 return; 659 } 660 661 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 662 { 663 return; 664 } 665 #endif 666 667 #ifdef AGGRESSIVE_CHECK 668 669 #define MB_CHECK_ASSERT(assert) \ 670 do { \ 671 if (!(assert)) { \ 672 printk(KERN_EMERG \ 673 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 674 function, file, line, # assert); \ 675 BUG(); \ 676 } \ 677 } while (0) 678 679 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 680 const char *function, int line) 681 { 682 struct super_block *sb = e4b->bd_sb; 683 int order = e4b->bd_blkbits + 1; 684 int max; 685 int max2; 686 int i; 687 int j; 688 int k; 689 int count; 690 struct ext4_group_info *grp; 691 int fragments = 0; 692 int fstart; 693 struct list_head *cur; 694 void *buddy; 695 void *buddy2; 696 697 if (e4b->bd_info->bb_check_counter++ % 10) 698 return 0; 699 700 while (order > 1) { 701 buddy = mb_find_buddy(e4b, order, &max); 702 MB_CHECK_ASSERT(buddy); 703 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 704 MB_CHECK_ASSERT(buddy2); 705 MB_CHECK_ASSERT(buddy != buddy2); 706 MB_CHECK_ASSERT(max * 2 == max2); 707 708 count = 0; 709 for (i = 0; i < max; i++) { 710 711 if (mb_test_bit(i, buddy)) { 712 /* only single bit in buddy2 may be 0 */ 713 if (!mb_test_bit(i << 1, buddy2)) { 714 MB_CHECK_ASSERT( 715 mb_test_bit((i<<1)+1, buddy2)); 716 } 717 continue; 718 } 719 720 /* both bits in buddy2 must be 1 */ 721 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 722 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 723 724 for (j = 0; j < (1 << order); j++) { 725 k = (i * (1 << order)) + j; 726 MB_CHECK_ASSERT( 727 !mb_test_bit(k, e4b->bd_bitmap)); 728 } 729 count++; 730 } 731 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 732 order--; 733 } 734 735 fstart = -1; 736 buddy = mb_find_buddy(e4b, 0, &max); 737 for (i = 0; i < max; i++) { 738 if (!mb_test_bit(i, buddy)) { 739 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 740 if (fstart == -1) { 741 fragments++; 742 fstart = i; 743 } 744 continue; 745 } 746 fstart = -1; 747 /* check used bits only */ 748 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 749 buddy2 = mb_find_buddy(e4b, j, &max2); 750 k = i >> j; 751 MB_CHECK_ASSERT(k < max2); 752 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 753 } 754 } 755 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 756 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 757 758 grp = ext4_get_group_info(sb, e4b->bd_group); 759 if (!grp) 760 return NULL; 761 list_for_each(cur, &grp->bb_prealloc_list) { 762 ext4_group_t groupnr; 763 struct ext4_prealloc_space *pa; 764 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 765 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 766 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 767 for (i = 0; i < pa->pa_len; i++) 768 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 769 } 770 return 0; 771 } 772 #undef MB_CHECK_ASSERT 773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 774 __FILE__, __func__, __LINE__) 775 #else 776 #define mb_check_buddy(e4b) 777 #endif 778 779 /* 780 * Divide blocks started from @first with length @len into 781 * smaller chunks with power of 2 blocks. 782 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 783 * then increase bb_counters[] for corresponded chunk size. 784 */ 785 static void ext4_mb_mark_free_simple(struct super_block *sb, 786 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 787 struct ext4_group_info *grp) 788 { 789 struct ext4_sb_info *sbi = EXT4_SB(sb); 790 ext4_grpblk_t min; 791 ext4_grpblk_t max; 792 ext4_grpblk_t chunk; 793 unsigned int border; 794 795 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 796 797 border = 2 << sb->s_blocksize_bits; 798 799 while (len > 0) { 800 /* find how many blocks can be covered since this position */ 801 max = ffs(first | border) - 1; 802 803 /* find how many blocks of power 2 we need to mark */ 804 min = fls(len) - 1; 805 806 if (max < min) 807 min = max; 808 chunk = 1 << min; 809 810 /* mark multiblock chunks only */ 811 grp->bb_counters[min]++; 812 if (min > 0) 813 mb_clear_bit(first >> min, 814 buddy + sbi->s_mb_offsets[min]); 815 816 len -= chunk; 817 first += chunk; 818 } 819 } 820 821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len) 822 { 823 int order; 824 825 /* 826 * We don't bother with a special lists groups with only 1 block free 827 * extents and for completely empty groups. 828 */ 829 order = fls(len) - 2; 830 if (order < 0) 831 return 0; 832 if (order == MB_NUM_ORDERS(sb)) 833 order--; 834 return order; 835 } 836 837 /* Move group to appropriate avg_fragment_size list */ 838 static void 839 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) 840 { 841 struct ext4_sb_info *sbi = EXT4_SB(sb); 842 int new_order; 843 844 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0) 845 return; 846 847 new_order = mb_avg_fragment_size_order(sb, 848 grp->bb_free / grp->bb_fragments); 849 if (new_order == grp->bb_avg_fragment_size_order) 850 return; 851 852 if (grp->bb_avg_fragment_size_order != -1) { 853 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 854 grp->bb_avg_fragment_size_order]); 855 list_del(&grp->bb_avg_fragment_size_node); 856 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 857 grp->bb_avg_fragment_size_order]); 858 } 859 grp->bb_avg_fragment_size_order = new_order; 860 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 861 grp->bb_avg_fragment_size_order]); 862 list_add_tail(&grp->bb_avg_fragment_size_node, 863 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]); 864 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 865 grp->bb_avg_fragment_size_order]); 866 } 867 868 /* 869 * Choose next group by traversing largest_free_order lists. Updates *new_cr if 870 * cr level needs an update. 871 */ 872 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac, 873 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 874 { 875 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 876 struct ext4_group_info *iter; 877 int i; 878 879 if (ac->ac_status == AC_STATUS_FOUND) 880 return; 881 882 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED)) 883 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions); 884 885 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 886 if (list_empty(&sbi->s_mb_largest_free_orders[i])) 887 continue; 888 read_lock(&sbi->s_mb_largest_free_orders_locks[i]); 889 if (list_empty(&sbi->s_mb_largest_free_orders[i])) { 890 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 891 continue; 892 } 893 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], 894 bb_largest_free_order_node) { 895 if (sbi->s_mb_stats) 896 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]); 897 if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) { 898 *group = iter->bb_group; 899 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED; 900 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 901 return; 902 } 903 } 904 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 905 } 906 907 /* Increment cr and search again if no group is found */ 908 *new_cr = CR_GOAL_LEN_FAST; 909 } 910 911 /* 912 * Find a suitable group of given order from the average fragments list. 913 */ 914 static struct ext4_group_info * 915 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order) 916 { 917 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 918 struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order]; 919 rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order]; 920 struct ext4_group_info *grp = NULL, *iter; 921 enum criteria cr = ac->ac_criteria; 922 923 if (list_empty(frag_list)) 924 return NULL; 925 read_lock(frag_list_lock); 926 if (list_empty(frag_list)) { 927 read_unlock(frag_list_lock); 928 return NULL; 929 } 930 list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) { 931 if (sbi->s_mb_stats) 932 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]); 933 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) { 934 grp = iter; 935 break; 936 } 937 } 938 read_unlock(frag_list_lock); 939 return grp; 940 } 941 942 /* 943 * Choose next group by traversing average fragment size list of suitable 944 * order. Updates *new_cr if cr level needs an update. 945 */ 946 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac, 947 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 948 { 949 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 950 struct ext4_group_info *grp = NULL; 951 int i; 952 953 if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) { 954 if (sbi->s_mb_stats) 955 atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions); 956 } 957 958 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len); 959 i < MB_NUM_ORDERS(ac->ac_sb); i++) { 960 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i); 961 if (grp) { 962 *group = grp->bb_group; 963 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED; 964 return; 965 } 966 } 967 968 /* 969 * CR_BEST_AVAIL_LEN works based on the concept that we have 970 * a larger normalized goal len request which can be trimmed to 971 * a smaller goal len such that it can still satisfy original 972 * request len. However, allocation request for non-regular 973 * files never gets normalized. 974 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA). 975 */ 976 if (ac->ac_flags & EXT4_MB_HINT_DATA) 977 *new_cr = CR_BEST_AVAIL_LEN; 978 else 979 *new_cr = CR_GOAL_LEN_SLOW; 980 } 981 982 /* 983 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment 984 * order we have and proactively trim the goal request length to that order to 985 * find a suitable group faster. 986 * 987 * This optimizes allocation speed at the cost of slightly reduced 988 * preallocations. However, we make sure that we don't trim the request too 989 * much and fall to CR_GOAL_LEN_SLOW in that case. 990 */ 991 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac, 992 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 993 { 994 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 995 struct ext4_group_info *grp = NULL; 996 int i, order, min_order; 997 unsigned long num_stripe_clusters = 0; 998 999 if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) { 1000 if (sbi->s_mb_stats) 1001 atomic_inc(&sbi->s_bal_best_avail_bad_suggestions); 1002 } 1003 1004 /* 1005 * mb_avg_fragment_size_order() returns order in a way that makes 1006 * retrieving back the length using (1 << order) inaccurate. Hence, use 1007 * fls() instead since we need to know the actual length while modifying 1008 * goal length. 1009 */ 1010 order = fls(ac->ac_g_ex.fe_len) - 1; 1011 min_order = order - sbi->s_mb_best_avail_max_trim_order; 1012 if (min_order < 0) 1013 min_order = 0; 1014 1015 if (sbi->s_stripe > 0) { 1016 /* 1017 * We are assuming that stripe size is always a multiple of 1018 * cluster ratio otherwise __ext4_fill_super exists early. 1019 */ 1020 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe); 1021 if (1 << min_order < num_stripe_clusters) 1022 /* 1023 * We consider 1 order less because later we round 1024 * up the goal len to num_stripe_clusters 1025 */ 1026 min_order = fls(num_stripe_clusters) - 1; 1027 } 1028 1029 if (1 << min_order < ac->ac_o_ex.fe_len) 1030 min_order = fls(ac->ac_o_ex.fe_len); 1031 1032 for (i = order; i >= min_order; i--) { 1033 int frag_order; 1034 /* 1035 * Scale down goal len to make sure we find something 1036 * in the free fragments list. Basically, reduce 1037 * preallocations. 1038 */ 1039 ac->ac_g_ex.fe_len = 1 << i; 1040 1041 if (num_stripe_clusters > 0) { 1042 /* 1043 * Try to round up the adjusted goal length to 1044 * stripe size (in cluster units) multiple for 1045 * efficiency. 1046 */ 1047 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len, 1048 num_stripe_clusters); 1049 } 1050 1051 frag_order = mb_avg_fragment_size_order(ac->ac_sb, 1052 ac->ac_g_ex.fe_len); 1053 1054 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order); 1055 if (grp) { 1056 *group = grp->bb_group; 1057 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED; 1058 return; 1059 } 1060 } 1061 1062 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */ 1063 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 1064 *new_cr = CR_GOAL_LEN_SLOW; 1065 } 1066 1067 static inline int should_optimize_scan(struct ext4_allocation_context *ac) 1068 { 1069 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) 1070 return 0; 1071 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW) 1072 return 0; 1073 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) 1074 return 0; 1075 return 1; 1076 } 1077 1078 /* 1079 * Return next linear group for allocation. If linear traversal should not be 1080 * performed, this function just returns the same group 1081 */ 1082 static ext4_group_t 1083 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group, 1084 ext4_group_t ngroups) 1085 { 1086 if (!should_optimize_scan(ac)) 1087 goto inc_and_return; 1088 1089 if (ac->ac_groups_linear_remaining) { 1090 ac->ac_groups_linear_remaining--; 1091 goto inc_and_return; 1092 } 1093 1094 return group; 1095 inc_and_return: 1096 /* 1097 * Artificially restricted ngroups for non-extent 1098 * files makes group > ngroups possible on first loop. 1099 */ 1100 return group + 1 >= ngroups ? 0 : group + 1; 1101 } 1102 1103 /* 1104 * ext4_mb_choose_next_group: choose next group for allocation. 1105 * 1106 * @ac Allocation Context 1107 * @new_cr This is an output parameter. If the there is no good group 1108 * available at current CR level, this field is updated to indicate 1109 * the new cr level that should be used. 1110 * @group This is an input / output parameter. As an input it indicates the 1111 * next group that the allocator intends to use for allocation. As 1112 * output, this field indicates the next group that should be used as 1113 * determined by the optimization functions. 1114 * @ngroups Total number of groups 1115 */ 1116 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, 1117 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 1118 { 1119 *new_cr = ac->ac_criteria; 1120 1121 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) { 1122 *group = next_linear_group(ac, *group, ngroups); 1123 return; 1124 } 1125 1126 if (*new_cr == CR_POWER2_ALIGNED) { 1127 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups); 1128 } else if (*new_cr == CR_GOAL_LEN_FAST) { 1129 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups); 1130 } else if (*new_cr == CR_BEST_AVAIL_LEN) { 1131 ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups); 1132 } else { 1133 /* 1134 * TODO: For CR=2, we can arrange groups in an rb tree sorted by 1135 * bb_free. But until that happens, we should never come here. 1136 */ 1137 WARN_ON(1); 1138 } 1139 } 1140 1141 /* 1142 * Cache the order of the largest free extent we have available in this block 1143 * group. 1144 */ 1145 static void 1146 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 1147 { 1148 struct ext4_sb_info *sbi = EXT4_SB(sb); 1149 int i; 1150 1151 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) 1152 if (grp->bb_counters[i] > 0) 1153 break; 1154 /* No need to move between order lists? */ 1155 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || 1156 i == grp->bb_largest_free_order) { 1157 grp->bb_largest_free_order = i; 1158 return; 1159 } 1160 1161 if (grp->bb_largest_free_order >= 0) { 1162 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1163 grp->bb_largest_free_order]); 1164 list_del_init(&grp->bb_largest_free_order_node); 1165 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1166 grp->bb_largest_free_order]); 1167 } 1168 grp->bb_largest_free_order = i; 1169 if (grp->bb_largest_free_order >= 0 && grp->bb_free) { 1170 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1171 grp->bb_largest_free_order]); 1172 list_add_tail(&grp->bb_largest_free_order_node, 1173 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); 1174 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1175 grp->bb_largest_free_order]); 1176 } 1177 } 1178 1179 static noinline_for_stack 1180 void ext4_mb_generate_buddy(struct super_block *sb, 1181 void *buddy, void *bitmap, ext4_group_t group, 1182 struct ext4_group_info *grp) 1183 { 1184 struct ext4_sb_info *sbi = EXT4_SB(sb); 1185 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 1186 ext4_grpblk_t i = 0; 1187 ext4_grpblk_t first; 1188 ext4_grpblk_t len; 1189 unsigned free = 0; 1190 unsigned fragments = 0; 1191 unsigned long long period = get_cycles(); 1192 1193 /* initialize buddy from bitmap which is aggregation 1194 * of on-disk bitmap and preallocations */ 1195 i = mb_find_next_zero_bit(bitmap, max, 0); 1196 grp->bb_first_free = i; 1197 while (i < max) { 1198 fragments++; 1199 first = i; 1200 i = mb_find_next_bit(bitmap, max, i); 1201 len = i - first; 1202 free += len; 1203 if (len > 1) 1204 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 1205 else 1206 grp->bb_counters[0]++; 1207 if (i < max) 1208 i = mb_find_next_zero_bit(bitmap, max, i); 1209 } 1210 grp->bb_fragments = fragments; 1211 1212 if (free != grp->bb_free) { 1213 ext4_grp_locked_error(sb, group, 0, 0, 1214 "block bitmap and bg descriptor " 1215 "inconsistent: %u vs %u free clusters", 1216 free, grp->bb_free); 1217 /* 1218 * If we intend to continue, we consider group descriptor 1219 * corrupt and update bb_free using bitmap value 1220 */ 1221 grp->bb_free = free; 1222 ext4_mark_group_bitmap_corrupted(sb, group, 1223 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1224 } 1225 mb_set_largest_free_order(sb, grp); 1226 mb_update_avg_fragment_size(sb, grp); 1227 1228 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 1229 1230 period = get_cycles() - period; 1231 atomic_inc(&sbi->s_mb_buddies_generated); 1232 atomic64_add(period, &sbi->s_mb_generation_time); 1233 } 1234 1235 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 1236 { 1237 int count; 1238 int order = 1; 1239 void *buddy; 1240 1241 while ((buddy = mb_find_buddy(e4b, order++, &count))) 1242 mb_set_bits(buddy, 0, count); 1243 1244 e4b->bd_info->bb_fragments = 0; 1245 memset(e4b->bd_info->bb_counters, 0, 1246 sizeof(*e4b->bd_info->bb_counters) * 1247 (e4b->bd_sb->s_blocksize_bits + 2)); 1248 1249 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 1250 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info); 1251 } 1252 1253 /* The buddy information is attached the buddy cache inode 1254 * for convenience. The information regarding each group 1255 * is loaded via ext4_mb_load_buddy. The information involve 1256 * block bitmap and buddy information. The information are 1257 * stored in the inode as 1258 * 1259 * { page } 1260 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 1261 * 1262 * 1263 * one block each for bitmap and buddy information. 1264 * So for each group we take up 2 blocks. A page can 1265 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 1266 * So it can have information regarding groups_per_page which 1267 * is blocks_per_page/2 1268 * 1269 * Locking note: This routine takes the block group lock of all groups 1270 * for this page; do not hold this lock when calling this routine! 1271 */ 1272 1273 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 1274 { 1275 ext4_group_t ngroups; 1276 unsigned int blocksize; 1277 int blocks_per_page; 1278 int groups_per_page; 1279 int err = 0; 1280 int i; 1281 ext4_group_t first_group, group; 1282 int first_block; 1283 struct super_block *sb; 1284 struct buffer_head *bhs; 1285 struct buffer_head **bh = NULL; 1286 struct inode *inode; 1287 char *data; 1288 char *bitmap; 1289 struct ext4_group_info *grinfo; 1290 1291 inode = page->mapping->host; 1292 sb = inode->i_sb; 1293 ngroups = ext4_get_groups_count(sb); 1294 blocksize = i_blocksize(inode); 1295 blocks_per_page = PAGE_SIZE / blocksize; 1296 1297 mb_debug(sb, "init page %lu\n", page->index); 1298 1299 groups_per_page = blocks_per_page >> 1; 1300 if (groups_per_page == 0) 1301 groups_per_page = 1; 1302 1303 /* allocate buffer_heads to read bitmaps */ 1304 if (groups_per_page > 1) { 1305 i = sizeof(struct buffer_head *) * groups_per_page; 1306 bh = kzalloc(i, gfp); 1307 if (bh == NULL) 1308 return -ENOMEM; 1309 } else 1310 bh = &bhs; 1311 1312 first_group = page->index * blocks_per_page / 2; 1313 1314 /* read all groups the page covers into the cache */ 1315 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1316 if (group >= ngroups) 1317 break; 1318 1319 grinfo = ext4_get_group_info(sb, group); 1320 if (!grinfo) 1321 continue; 1322 /* 1323 * If page is uptodate then we came here after online resize 1324 * which added some new uninitialized group info structs, so 1325 * we must skip all initialized uptodate buddies on the page, 1326 * which may be currently in use by an allocating task. 1327 */ 1328 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 1329 bh[i] = NULL; 1330 continue; 1331 } 1332 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 1333 if (IS_ERR(bh[i])) { 1334 err = PTR_ERR(bh[i]); 1335 bh[i] = NULL; 1336 goto out; 1337 } 1338 mb_debug(sb, "read bitmap for group %u\n", group); 1339 } 1340 1341 /* wait for I/O completion */ 1342 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1343 int err2; 1344 1345 if (!bh[i]) 1346 continue; 1347 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 1348 if (!err) 1349 err = err2; 1350 } 1351 1352 first_block = page->index * blocks_per_page; 1353 for (i = 0; i < blocks_per_page; i++) { 1354 group = (first_block + i) >> 1; 1355 if (group >= ngroups) 1356 break; 1357 1358 if (!bh[group - first_group]) 1359 /* skip initialized uptodate buddy */ 1360 continue; 1361 1362 if (!buffer_verified(bh[group - first_group])) 1363 /* Skip faulty bitmaps */ 1364 continue; 1365 err = 0; 1366 1367 /* 1368 * data carry information regarding this 1369 * particular group in the format specified 1370 * above 1371 * 1372 */ 1373 data = page_address(page) + (i * blocksize); 1374 bitmap = bh[group - first_group]->b_data; 1375 1376 /* 1377 * We place the buddy block and bitmap block 1378 * close together 1379 */ 1380 grinfo = ext4_get_group_info(sb, group); 1381 if (!grinfo) { 1382 err = -EFSCORRUPTED; 1383 goto out; 1384 } 1385 if ((first_block + i) & 1) { 1386 /* this is block of buddy */ 1387 BUG_ON(incore == NULL); 1388 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 1389 group, page->index, i * blocksize); 1390 trace_ext4_mb_buddy_bitmap_load(sb, group); 1391 grinfo->bb_fragments = 0; 1392 memset(grinfo->bb_counters, 0, 1393 sizeof(*grinfo->bb_counters) * 1394 (MB_NUM_ORDERS(sb))); 1395 /* 1396 * incore got set to the group block bitmap below 1397 */ 1398 ext4_lock_group(sb, group); 1399 /* init the buddy */ 1400 memset(data, 0xff, blocksize); 1401 ext4_mb_generate_buddy(sb, data, incore, group, grinfo); 1402 ext4_unlock_group(sb, group); 1403 incore = NULL; 1404 } else { 1405 /* this is block of bitmap */ 1406 BUG_ON(incore != NULL); 1407 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 1408 group, page->index, i * blocksize); 1409 trace_ext4_mb_bitmap_load(sb, group); 1410 1411 /* see comments in ext4_mb_put_pa() */ 1412 ext4_lock_group(sb, group); 1413 memcpy(data, bitmap, blocksize); 1414 1415 /* mark all preallocated blks used in in-core bitmap */ 1416 ext4_mb_generate_from_pa(sb, data, group); 1417 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root)); 1418 ext4_unlock_group(sb, group); 1419 1420 /* set incore so that the buddy information can be 1421 * generated using this 1422 */ 1423 incore = data; 1424 } 1425 } 1426 SetPageUptodate(page); 1427 1428 out: 1429 if (bh) { 1430 for (i = 0; i < groups_per_page; i++) 1431 brelse(bh[i]); 1432 if (bh != &bhs) 1433 kfree(bh); 1434 } 1435 return err; 1436 } 1437 1438 /* 1439 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1440 * on the same buddy page doesn't happen whild holding the buddy page lock. 1441 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1442 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1443 */ 1444 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1445 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1446 { 1447 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1448 int block, pnum, poff; 1449 int blocks_per_page; 1450 struct page *page; 1451 1452 e4b->bd_buddy_page = NULL; 1453 e4b->bd_bitmap_page = NULL; 1454 1455 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1456 /* 1457 * the buddy cache inode stores the block bitmap 1458 * and buddy information in consecutive blocks. 1459 * So for each group we need two blocks. 1460 */ 1461 block = group * 2; 1462 pnum = block / blocks_per_page; 1463 poff = block % blocks_per_page; 1464 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1465 if (!page) 1466 return -ENOMEM; 1467 BUG_ON(page->mapping != inode->i_mapping); 1468 e4b->bd_bitmap_page = page; 1469 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1470 1471 if (blocks_per_page >= 2) { 1472 /* buddy and bitmap are on the same page */ 1473 return 0; 1474 } 1475 1476 block++; 1477 pnum = block / blocks_per_page; 1478 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1479 if (!page) 1480 return -ENOMEM; 1481 BUG_ON(page->mapping != inode->i_mapping); 1482 e4b->bd_buddy_page = page; 1483 return 0; 1484 } 1485 1486 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1487 { 1488 if (e4b->bd_bitmap_page) { 1489 unlock_page(e4b->bd_bitmap_page); 1490 put_page(e4b->bd_bitmap_page); 1491 } 1492 if (e4b->bd_buddy_page) { 1493 unlock_page(e4b->bd_buddy_page); 1494 put_page(e4b->bd_buddy_page); 1495 } 1496 } 1497 1498 /* 1499 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1500 * block group lock of all groups for this page; do not hold the BG lock when 1501 * calling this routine! 1502 */ 1503 static noinline_for_stack 1504 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1505 { 1506 1507 struct ext4_group_info *this_grp; 1508 struct ext4_buddy e4b; 1509 struct page *page; 1510 int ret = 0; 1511 1512 might_sleep(); 1513 mb_debug(sb, "init group %u\n", group); 1514 this_grp = ext4_get_group_info(sb, group); 1515 if (!this_grp) 1516 return -EFSCORRUPTED; 1517 1518 /* 1519 * This ensures that we don't reinit the buddy cache 1520 * page which map to the group from which we are already 1521 * allocating. If we are looking at the buddy cache we would 1522 * have taken a reference using ext4_mb_load_buddy and that 1523 * would have pinned buddy page to page cache. 1524 * The call to ext4_mb_get_buddy_page_lock will mark the 1525 * page accessed. 1526 */ 1527 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1528 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1529 /* 1530 * somebody initialized the group 1531 * return without doing anything 1532 */ 1533 goto err; 1534 } 1535 1536 page = e4b.bd_bitmap_page; 1537 ret = ext4_mb_init_cache(page, NULL, gfp); 1538 if (ret) 1539 goto err; 1540 if (!PageUptodate(page)) { 1541 ret = -EIO; 1542 goto err; 1543 } 1544 1545 if (e4b.bd_buddy_page == NULL) { 1546 /* 1547 * If both the bitmap and buddy are in 1548 * the same page we don't need to force 1549 * init the buddy 1550 */ 1551 ret = 0; 1552 goto err; 1553 } 1554 /* init buddy cache */ 1555 page = e4b.bd_buddy_page; 1556 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1557 if (ret) 1558 goto err; 1559 if (!PageUptodate(page)) { 1560 ret = -EIO; 1561 goto err; 1562 } 1563 err: 1564 ext4_mb_put_buddy_page_lock(&e4b); 1565 return ret; 1566 } 1567 1568 /* 1569 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1570 * block group lock of all groups for this page; do not hold the BG lock when 1571 * calling this routine! 1572 */ 1573 static noinline_for_stack int 1574 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1575 struct ext4_buddy *e4b, gfp_t gfp) 1576 { 1577 int blocks_per_page; 1578 int block; 1579 int pnum; 1580 int poff; 1581 struct page *page; 1582 int ret; 1583 struct ext4_group_info *grp; 1584 struct ext4_sb_info *sbi = EXT4_SB(sb); 1585 struct inode *inode = sbi->s_buddy_cache; 1586 1587 might_sleep(); 1588 mb_debug(sb, "load group %u\n", group); 1589 1590 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1591 grp = ext4_get_group_info(sb, group); 1592 if (!grp) 1593 return -EFSCORRUPTED; 1594 1595 e4b->bd_blkbits = sb->s_blocksize_bits; 1596 e4b->bd_info = grp; 1597 e4b->bd_sb = sb; 1598 e4b->bd_group = group; 1599 e4b->bd_buddy_page = NULL; 1600 e4b->bd_bitmap_page = NULL; 1601 1602 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1603 /* 1604 * we need full data about the group 1605 * to make a good selection 1606 */ 1607 ret = ext4_mb_init_group(sb, group, gfp); 1608 if (ret) 1609 return ret; 1610 } 1611 1612 /* 1613 * the buddy cache inode stores the block bitmap 1614 * and buddy information in consecutive blocks. 1615 * So for each group we need two blocks. 1616 */ 1617 block = group * 2; 1618 pnum = block / blocks_per_page; 1619 poff = block % blocks_per_page; 1620 1621 /* we could use find_or_create_page(), but it locks page 1622 * what we'd like to avoid in fast path ... */ 1623 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1624 if (page == NULL || !PageUptodate(page)) { 1625 if (page) 1626 /* 1627 * drop the page reference and try 1628 * to get the page with lock. If we 1629 * are not uptodate that implies 1630 * somebody just created the page but 1631 * is yet to initialize the same. So 1632 * wait for it to initialize. 1633 */ 1634 put_page(page); 1635 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1636 if (page) { 1637 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1638 "ext4: bitmap's paging->mapping != inode->i_mapping\n")) { 1639 /* should never happen */ 1640 unlock_page(page); 1641 ret = -EINVAL; 1642 goto err; 1643 } 1644 if (!PageUptodate(page)) { 1645 ret = ext4_mb_init_cache(page, NULL, gfp); 1646 if (ret) { 1647 unlock_page(page); 1648 goto err; 1649 } 1650 mb_cmp_bitmaps(e4b, page_address(page) + 1651 (poff * sb->s_blocksize)); 1652 } 1653 unlock_page(page); 1654 } 1655 } 1656 if (page == NULL) { 1657 ret = -ENOMEM; 1658 goto err; 1659 } 1660 if (!PageUptodate(page)) { 1661 ret = -EIO; 1662 goto err; 1663 } 1664 1665 /* Pages marked accessed already */ 1666 e4b->bd_bitmap_page = page; 1667 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1668 1669 block++; 1670 pnum = block / blocks_per_page; 1671 poff = block % blocks_per_page; 1672 1673 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1674 if (page == NULL || !PageUptodate(page)) { 1675 if (page) 1676 put_page(page); 1677 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1678 if (page) { 1679 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1680 "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) { 1681 /* should never happen */ 1682 unlock_page(page); 1683 ret = -EINVAL; 1684 goto err; 1685 } 1686 if (!PageUptodate(page)) { 1687 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1688 gfp); 1689 if (ret) { 1690 unlock_page(page); 1691 goto err; 1692 } 1693 } 1694 unlock_page(page); 1695 } 1696 } 1697 if (page == NULL) { 1698 ret = -ENOMEM; 1699 goto err; 1700 } 1701 if (!PageUptodate(page)) { 1702 ret = -EIO; 1703 goto err; 1704 } 1705 1706 /* Pages marked accessed already */ 1707 e4b->bd_buddy_page = page; 1708 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1709 1710 return 0; 1711 1712 err: 1713 if (page) 1714 put_page(page); 1715 if (e4b->bd_bitmap_page) 1716 put_page(e4b->bd_bitmap_page); 1717 1718 e4b->bd_buddy = NULL; 1719 e4b->bd_bitmap = NULL; 1720 return ret; 1721 } 1722 1723 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1724 struct ext4_buddy *e4b) 1725 { 1726 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1727 } 1728 1729 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1730 { 1731 if (e4b->bd_bitmap_page) 1732 put_page(e4b->bd_bitmap_page); 1733 if (e4b->bd_buddy_page) 1734 put_page(e4b->bd_buddy_page); 1735 } 1736 1737 1738 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1739 { 1740 int order = 1, max; 1741 void *bb; 1742 1743 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1744 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1745 1746 while (order <= e4b->bd_blkbits + 1) { 1747 bb = mb_find_buddy(e4b, order, &max); 1748 if (!mb_test_bit(block >> order, bb)) { 1749 /* this block is part of buddy of order 'order' */ 1750 return order; 1751 } 1752 order++; 1753 } 1754 return 0; 1755 } 1756 1757 static void mb_clear_bits(void *bm, int cur, int len) 1758 { 1759 __u32 *addr; 1760 1761 len = cur + len; 1762 while (cur < len) { 1763 if ((cur & 31) == 0 && (len - cur) >= 32) { 1764 /* fast path: clear whole word at once */ 1765 addr = bm + (cur >> 3); 1766 *addr = 0; 1767 cur += 32; 1768 continue; 1769 } 1770 mb_clear_bit(cur, bm); 1771 cur++; 1772 } 1773 } 1774 1775 /* clear bits in given range 1776 * will return first found zero bit if any, -1 otherwise 1777 */ 1778 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1779 { 1780 __u32 *addr; 1781 int zero_bit = -1; 1782 1783 len = cur + len; 1784 while (cur < len) { 1785 if ((cur & 31) == 0 && (len - cur) >= 32) { 1786 /* fast path: clear whole word at once */ 1787 addr = bm + (cur >> 3); 1788 if (*addr != (__u32)(-1) && zero_bit == -1) 1789 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1790 *addr = 0; 1791 cur += 32; 1792 continue; 1793 } 1794 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1795 zero_bit = cur; 1796 cur++; 1797 } 1798 1799 return zero_bit; 1800 } 1801 1802 void mb_set_bits(void *bm, int cur, int len) 1803 { 1804 __u32 *addr; 1805 1806 len = cur + len; 1807 while (cur < len) { 1808 if ((cur & 31) == 0 && (len - cur) >= 32) { 1809 /* fast path: set whole word at once */ 1810 addr = bm + (cur >> 3); 1811 *addr = 0xffffffff; 1812 cur += 32; 1813 continue; 1814 } 1815 mb_set_bit(cur, bm); 1816 cur++; 1817 } 1818 } 1819 1820 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1821 { 1822 if (mb_test_bit(*bit + side, bitmap)) { 1823 mb_clear_bit(*bit, bitmap); 1824 (*bit) -= side; 1825 return 1; 1826 } 1827 else { 1828 (*bit) += side; 1829 mb_set_bit(*bit, bitmap); 1830 return -1; 1831 } 1832 } 1833 1834 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1835 { 1836 int max; 1837 int order = 1; 1838 void *buddy = mb_find_buddy(e4b, order, &max); 1839 1840 while (buddy) { 1841 void *buddy2; 1842 1843 /* Bits in range [first; last] are known to be set since 1844 * corresponding blocks were allocated. Bits in range 1845 * (first; last) will stay set because they form buddies on 1846 * upper layer. We just deal with borders if they don't 1847 * align with upper layer and then go up. 1848 * Releasing entire group is all about clearing 1849 * single bit of highest order buddy. 1850 */ 1851 1852 /* Example: 1853 * --------------------------------- 1854 * | 1 | 1 | 1 | 1 | 1855 * --------------------------------- 1856 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1857 * --------------------------------- 1858 * 0 1 2 3 4 5 6 7 1859 * \_____________________/ 1860 * 1861 * Neither [1] nor [6] is aligned to above layer. 1862 * Left neighbour [0] is free, so mark it busy, 1863 * decrease bb_counters and extend range to 1864 * [0; 6] 1865 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1866 * mark [6] free, increase bb_counters and shrink range to 1867 * [0; 5]. 1868 * Then shift range to [0; 2], go up and do the same. 1869 */ 1870 1871 1872 if (first & 1) 1873 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1874 if (!(last & 1)) 1875 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1876 if (first > last) 1877 break; 1878 order++; 1879 1880 buddy2 = mb_find_buddy(e4b, order, &max); 1881 if (!buddy2) { 1882 mb_clear_bits(buddy, first, last - first + 1); 1883 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1884 break; 1885 } 1886 first >>= 1; 1887 last >>= 1; 1888 buddy = buddy2; 1889 } 1890 } 1891 1892 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1893 int first, int count) 1894 { 1895 int left_is_free = 0; 1896 int right_is_free = 0; 1897 int block; 1898 int last = first + count - 1; 1899 struct super_block *sb = e4b->bd_sb; 1900 1901 if (WARN_ON(count == 0)) 1902 return; 1903 BUG_ON(last >= (sb->s_blocksize << 3)); 1904 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1905 /* Don't bother if the block group is corrupt. */ 1906 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1907 return; 1908 1909 mb_check_buddy(e4b); 1910 mb_free_blocks_double(inode, e4b, first, count); 1911 1912 /* access memory sequentially: check left neighbour, 1913 * clear range and then check right neighbour 1914 */ 1915 if (first != 0) 1916 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1917 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1918 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1919 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1920 1921 if (unlikely(block != -1)) { 1922 struct ext4_sb_info *sbi = EXT4_SB(sb); 1923 ext4_fsblk_t blocknr; 1924 1925 /* 1926 * Fastcommit replay can free already freed blocks which 1927 * corrupts allocation info. Regenerate it. 1928 */ 1929 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 1930 mb_regenerate_buddy(e4b); 1931 goto check; 1932 } 1933 1934 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1935 blocknr += EXT4_C2B(sbi, block); 1936 ext4_grp_locked_error(sb, e4b->bd_group, 1937 inode ? inode->i_ino : 0, blocknr, 1938 "freeing already freed block (bit %u); block bitmap corrupt.", 1939 block); 1940 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1941 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1942 return; 1943 } 1944 1945 this_cpu_inc(discard_pa_seq); 1946 e4b->bd_info->bb_free += count; 1947 if (first < e4b->bd_info->bb_first_free) 1948 e4b->bd_info->bb_first_free = first; 1949 1950 /* let's maintain fragments counter */ 1951 if (left_is_free && right_is_free) 1952 e4b->bd_info->bb_fragments--; 1953 else if (!left_is_free && !right_is_free) 1954 e4b->bd_info->bb_fragments++; 1955 1956 /* buddy[0] == bd_bitmap is a special case, so handle 1957 * it right away and let mb_buddy_mark_free stay free of 1958 * zero order checks. 1959 * Check if neighbours are to be coaleasced, 1960 * adjust bitmap bb_counters and borders appropriately. 1961 */ 1962 if (first & 1) { 1963 first += !left_is_free; 1964 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1965 } 1966 if (!(last & 1)) { 1967 last -= !right_is_free; 1968 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1969 } 1970 1971 if (first <= last) 1972 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1973 1974 mb_set_largest_free_order(sb, e4b->bd_info); 1975 mb_update_avg_fragment_size(sb, e4b->bd_info); 1976 check: 1977 mb_check_buddy(e4b); 1978 } 1979 1980 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1981 int needed, struct ext4_free_extent *ex) 1982 { 1983 int next = block; 1984 int max, order; 1985 void *buddy; 1986 1987 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1988 BUG_ON(ex == NULL); 1989 1990 buddy = mb_find_buddy(e4b, 0, &max); 1991 BUG_ON(buddy == NULL); 1992 BUG_ON(block >= max); 1993 if (mb_test_bit(block, buddy)) { 1994 ex->fe_len = 0; 1995 ex->fe_start = 0; 1996 ex->fe_group = 0; 1997 return 0; 1998 } 1999 2000 /* find actual order */ 2001 order = mb_find_order_for_block(e4b, block); 2002 block = block >> order; 2003 2004 ex->fe_len = 1 << order; 2005 ex->fe_start = block << order; 2006 ex->fe_group = e4b->bd_group; 2007 2008 /* calc difference from given start */ 2009 next = next - ex->fe_start; 2010 ex->fe_len -= next; 2011 ex->fe_start += next; 2012 2013 while (needed > ex->fe_len && 2014 mb_find_buddy(e4b, order, &max)) { 2015 2016 if (block + 1 >= max) 2017 break; 2018 2019 next = (block + 1) * (1 << order); 2020 if (mb_test_bit(next, e4b->bd_bitmap)) 2021 break; 2022 2023 order = mb_find_order_for_block(e4b, next); 2024 2025 block = next >> order; 2026 ex->fe_len += 1 << order; 2027 } 2028 2029 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 2030 /* Should never happen! (but apparently sometimes does?!?) */ 2031 WARN_ON(1); 2032 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, 2033 "corruption or bug in mb_find_extent " 2034 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 2035 block, order, needed, ex->fe_group, ex->fe_start, 2036 ex->fe_len, ex->fe_logical); 2037 ex->fe_len = 0; 2038 ex->fe_start = 0; 2039 ex->fe_group = 0; 2040 } 2041 return ex->fe_len; 2042 } 2043 2044 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 2045 { 2046 int ord; 2047 int mlen = 0; 2048 int max = 0; 2049 int cur; 2050 int start = ex->fe_start; 2051 int len = ex->fe_len; 2052 unsigned ret = 0; 2053 int len0 = len; 2054 void *buddy; 2055 bool split = false; 2056 2057 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 2058 BUG_ON(e4b->bd_group != ex->fe_group); 2059 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 2060 mb_check_buddy(e4b); 2061 mb_mark_used_double(e4b, start, len); 2062 2063 this_cpu_inc(discard_pa_seq); 2064 e4b->bd_info->bb_free -= len; 2065 if (e4b->bd_info->bb_first_free == start) 2066 e4b->bd_info->bb_first_free += len; 2067 2068 /* let's maintain fragments counter */ 2069 if (start != 0) 2070 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 2071 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 2072 max = !mb_test_bit(start + len, e4b->bd_bitmap); 2073 if (mlen && max) 2074 e4b->bd_info->bb_fragments++; 2075 else if (!mlen && !max) 2076 e4b->bd_info->bb_fragments--; 2077 2078 /* let's maintain buddy itself */ 2079 while (len) { 2080 if (!split) 2081 ord = mb_find_order_for_block(e4b, start); 2082 2083 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 2084 /* the whole chunk may be allocated at once! */ 2085 mlen = 1 << ord; 2086 if (!split) 2087 buddy = mb_find_buddy(e4b, ord, &max); 2088 else 2089 split = false; 2090 BUG_ON((start >> ord) >= max); 2091 mb_set_bit(start >> ord, buddy); 2092 e4b->bd_info->bb_counters[ord]--; 2093 start += mlen; 2094 len -= mlen; 2095 BUG_ON(len < 0); 2096 continue; 2097 } 2098 2099 /* store for history */ 2100 if (ret == 0) 2101 ret = len | (ord << 16); 2102 2103 /* we have to split large buddy */ 2104 BUG_ON(ord <= 0); 2105 buddy = mb_find_buddy(e4b, ord, &max); 2106 mb_set_bit(start >> ord, buddy); 2107 e4b->bd_info->bb_counters[ord]--; 2108 2109 ord--; 2110 cur = (start >> ord) & ~1U; 2111 buddy = mb_find_buddy(e4b, ord, &max); 2112 mb_clear_bit(cur, buddy); 2113 mb_clear_bit(cur + 1, buddy); 2114 e4b->bd_info->bb_counters[ord]++; 2115 e4b->bd_info->bb_counters[ord]++; 2116 split = true; 2117 } 2118 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 2119 2120 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); 2121 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 2122 mb_check_buddy(e4b); 2123 2124 return ret; 2125 } 2126 2127 /* 2128 * Must be called under group lock! 2129 */ 2130 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 2131 struct ext4_buddy *e4b) 2132 { 2133 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2134 int ret; 2135 2136 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 2137 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2138 2139 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 2140 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 2141 ret = mb_mark_used(e4b, &ac->ac_b_ex); 2142 2143 /* preallocation can change ac_b_ex, thus we store actually 2144 * allocated blocks for history */ 2145 ac->ac_f_ex = ac->ac_b_ex; 2146 2147 ac->ac_status = AC_STATUS_FOUND; 2148 ac->ac_tail = ret & 0xffff; 2149 ac->ac_buddy = ret >> 16; 2150 2151 /* 2152 * take the page reference. We want the page to be pinned 2153 * so that we don't get a ext4_mb_init_cache_call for this 2154 * group until we update the bitmap. That would mean we 2155 * double allocate blocks. The reference is dropped 2156 * in ext4_mb_release_context 2157 */ 2158 ac->ac_bitmap_page = e4b->bd_bitmap_page; 2159 get_page(ac->ac_bitmap_page); 2160 ac->ac_buddy_page = e4b->bd_buddy_page; 2161 get_page(ac->ac_buddy_page); 2162 /* store last allocated for subsequent stream allocation */ 2163 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2164 spin_lock(&sbi->s_md_lock); 2165 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 2166 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 2167 spin_unlock(&sbi->s_md_lock); 2168 } 2169 /* 2170 * As we've just preallocated more space than 2171 * user requested originally, we store allocated 2172 * space in a special descriptor. 2173 */ 2174 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 2175 ext4_mb_new_preallocation(ac); 2176 2177 } 2178 2179 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 2180 struct ext4_buddy *e4b, 2181 int finish_group) 2182 { 2183 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2184 struct ext4_free_extent *bex = &ac->ac_b_ex; 2185 struct ext4_free_extent *gex = &ac->ac_g_ex; 2186 2187 if (ac->ac_status == AC_STATUS_FOUND) 2188 return; 2189 /* 2190 * We don't want to scan for a whole year 2191 */ 2192 if (ac->ac_found > sbi->s_mb_max_to_scan && 2193 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2194 ac->ac_status = AC_STATUS_BREAK; 2195 return; 2196 } 2197 2198 /* 2199 * Haven't found good chunk so far, let's continue 2200 */ 2201 if (bex->fe_len < gex->fe_len) 2202 return; 2203 2204 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 2205 ext4_mb_use_best_found(ac, e4b); 2206 } 2207 2208 /* 2209 * The routine checks whether found extent is good enough. If it is, 2210 * then the extent gets marked used and flag is set to the context 2211 * to stop scanning. Otherwise, the extent is compared with the 2212 * previous found extent and if new one is better, then it's stored 2213 * in the context. Later, the best found extent will be used, if 2214 * mballoc can't find good enough extent. 2215 * 2216 * The algorithm used is roughly as follows: 2217 * 2218 * * If free extent found is exactly as big as goal, then 2219 * stop the scan and use it immediately 2220 * 2221 * * If free extent found is smaller than goal, then keep retrying 2222 * upto a max of sbi->s_mb_max_to_scan times (default 200). After 2223 * that stop scanning and use whatever we have. 2224 * 2225 * * If free extent found is bigger than goal, then keep retrying 2226 * upto a max of sbi->s_mb_min_to_scan times (default 10) before 2227 * stopping the scan and using the extent. 2228 * 2229 * 2230 * FIXME: real allocation policy is to be designed yet! 2231 */ 2232 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 2233 struct ext4_free_extent *ex, 2234 struct ext4_buddy *e4b) 2235 { 2236 struct ext4_free_extent *bex = &ac->ac_b_ex; 2237 struct ext4_free_extent *gex = &ac->ac_g_ex; 2238 2239 BUG_ON(ex->fe_len <= 0); 2240 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2241 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2242 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 2243 2244 ac->ac_found++; 2245 ac->ac_cX_found[ac->ac_criteria]++; 2246 2247 /* 2248 * The special case - take what you catch first 2249 */ 2250 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2251 *bex = *ex; 2252 ext4_mb_use_best_found(ac, e4b); 2253 return; 2254 } 2255 2256 /* 2257 * Let's check whether the chuck is good enough 2258 */ 2259 if (ex->fe_len == gex->fe_len) { 2260 *bex = *ex; 2261 ext4_mb_use_best_found(ac, e4b); 2262 return; 2263 } 2264 2265 /* 2266 * If this is first found extent, just store it in the context 2267 */ 2268 if (bex->fe_len == 0) { 2269 *bex = *ex; 2270 return; 2271 } 2272 2273 /* 2274 * If new found extent is better, store it in the context 2275 */ 2276 if (bex->fe_len < gex->fe_len) { 2277 /* if the request isn't satisfied, any found extent 2278 * larger than previous best one is better */ 2279 if (ex->fe_len > bex->fe_len) 2280 *bex = *ex; 2281 } else if (ex->fe_len > gex->fe_len) { 2282 /* if the request is satisfied, then we try to find 2283 * an extent that still satisfy the request, but is 2284 * smaller than previous one */ 2285 if (ex->fe_len < bex->fe_len) 2286 *bex = *ex; 2287 } 2288 2289 ext4_mb_check_limits(ac, e4b, 0); 2290 } 2291 2292 static noinline_for_stack 2293 void ext4_mb_try_best_found(struct ext4_allocation_context *ac, 2294 struct ext4_buddy *e4b) 2295 { 2296 struct ext4_free_extent ex = ac->ac_b_ex; 2297 ext4_group_t group = ex.fe_group; 2298 int max; 2299 int err; 2300 2301 BUG_ON(ex.fe_len <= 0); 2302 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2303 if (err) 2304 return; 2305 2306 ext4_lock_group(ac->ac_sb, group); 2307 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 2308 goto out; 2309 2310 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 2311 2312 if (max > 0) { 2313 ac->ac_b_ex = ex; 2314 ext4_mb_use_best_found(ac, e4b); 2315 } 2316 2317 out: 2318 ext4_unlock_group(ac->ac_sb, group); 2319 ext4_mb_unload_buddy(e4b); 2320 } 2321 2322 static noinline_for_stack 2323 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 2324 struct ext4_buddy *e4b) 2325 { 2326 ext4_group_t group = ac->ac_g_ex.fe_group; 2327 int max; 2328 int err; 2329 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2330 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2331 struct ext4_free_extent ex; 2332 2333 if (!grp) 2334 return -EFSCORRUPTED; 2335 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY))) 2336 return 0; 2337 if (grp->bb_free == 0) 2338 return 0; 2339 2340 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2341 if (err) 2342 return err; 2343 2344 ext4_lock_group(ac->ac_sb, group); 2345 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 2346 goto out; 2347 2348 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 2349 ac->ac_g_ex.fe_len, &ex); 2350 ex.fe_logical = 0xDEADFA11; /* debug value */ 2351 2352 if (max >= ac->ac_g_ex.fe_len && 2353 ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) { 2354 ext4_fsblk_t start; 2355 2356 start = ext4_grp_offs_to_block(ac->ac_sb, &ex); 2357 /* use do_div to get remainder (would be 64-bit modulo) */ 2358 if (do_div(start, sbi->s_stripe) == 0) { 2359 ac->ac_found++; 2360 ac->ac_b_ex = ex; 2361 ext4_mb_use_best_found(ac, e4b); 2362 } 2363 } else if (max >= ac->ac_g_ex.fe_len) { 2364 BUG_ON(ex.fe_len <= 0); 2365 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2366 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2367 ac->ac_found++; 2368 ac->ac_b_ex = ex; 2369 ext4_mb_use_best_found(ac, e4b); 2370 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 2371 /* Sometimes, caller may want to merge even small 2372 * number of blocks to an existing extent */ 2373 BUG_ON(ex.fe_len <= 0); 2374 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2375 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2376 ac->ac_found++; 2377 ac->ac_b_ex = ex; 2378 ext4_mb_use_best_found(ac, e4b); 2379 } 2380 out: 2381 ext4_unlock_group(ac->ac_sb, group); 2382 ext4_mb_unload_buddy(e4b); 2383 2384 return 0; 2385 } 2386 2387 /* 2388 * The routine scans buddy structures (not bitmap!) from given order 2389 * to max order and tries to find big enough chunk to satisfy the req 2390 */ 2391 static noinline_for_stack 2392 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 2393 struct ext4_buddy *e4b) 2394 { 2395 struct super_block *sb = ac->ac_sb; 2396 struct ext4_group_info *grp = e4b->bd_info; 2397 void *buddy; 2398 int i; 2399 int k; 2400 int max; 2401 2402 BUG_ON(ac->ac_2order <= 0); 2403 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { 2404 if (grp->bb_counters[i] == 0) 2405 continue; 2406 2407 buddy = mb_find_buddy(e4b, i, &max); 2408 if (WARN_RATELIMIT(buddy == NULL, 2409 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i)) 2410 continue; 2411 2412 k = mb_find_next_zero_bit(buddy, max, 0); 2413 if (k >= max) { 2414 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 2415 "%d free clusters of order %d. But found 0", 2416 grp->bb_counters[i], i); 2417 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 2418 e4b->bd_group, 2419 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2420 break; 2421 } 2422 ac->ac_found++; 2423 ac->ac_cX_found[ac->ac_criteria]++; 2424 2425 ac->ac_b_ex.fe_len = 1 << i; 2426 ac->ac_b_ex.fe_start = k << i; 2427 ac->ac_b_ex.fe_group = e4b->bd_group; 2428 2429 ext4_mb_use_best_found(ac, e4b); 2430 2431 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2432 2433 if (EXT4_SB(sb)->s_mb_stats) 2434 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2435 2436 break; 2437 } 2438 } 2439 2440 /* 2441 * The routine scans the group and measures all found extents. 2442 * In order to optimize scanning, caller must pass number of 2443 * free blocks in the group, so the routine can know upper limit. 2444 */ 2445 static noinline_for_stack 2446 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2447 struct ext4_buddy *e4b) 2448 { 2449 struct super_block *sb = ac->ac_sb; 2450 void *bitmap = e4b->bd_bitmap; 2451 struct ext4_free_extent ex; 2452 int i, j, freelen; 2453 int free; 2454 2455 free = e4b->bd_info->bb_free; 2456 if (WARN_ON(free <= 0)) 2457 return; 2458 2459 i = e4b->bd_info->bb_first_free; 2460 2461 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2462 i = mb_find_next_zero_bit(bitmap, 2463 EXT4_CLUSTERS_PER_GROUP(sb), i); 2464 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2465 /* 2466 * IF we have corrupt bitmap, we won't find any 2467 * free blocks even though group info says we 2468 * have free blocks 2469 */ 2470 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2471 "%d free clusters as per " 2472 "group info. But bitmap says 0", 2473 free); 2474 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2475 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2476 break; 2477 } 2478 2479 if (!ext4_mb_cr_expensive(ac->ac_criteria)) { 2480 /* 2481 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are 2482 * sure that this group will have a large enough 2483 * continuous free extent, so skip over the smaller free 2484 * extents 2485 */ 2486 j = mb_find_next_bit(bitmap, 2487 EXT4_CLUSTERS_PER_GROUP(sb), i); 2488 freelen = j - i; 2489 2490 if (freelen < ac->ac_g_ex.fe_len) { 2491 i = j; 2492 free -= freelen; 2493 continue; 2494 } 2495 } 2496 2497 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2498 if (WARN_ON(ex.fe_len <= 0)) 2499 break; 2500 if (free < ex.fe_len) { 2501 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2502 "%d free clusters as per " 2503 "group info. But got %d blocks", 2504 free, ex.fe_len); 2505 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2506 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2507 /* 2508 * The number of free blocks differs. This mostly 2509 * indicate that the bitmap is corrupt. So exit 2510 * without claiming the space. 2511 */ 2512 break; 2513 } 2514 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2515 ext4_mb_measure_extent(ac, &ex, e4b); 2516 2517 i += ex.fe_len; 2518 free -= ex.fe_len; 2519 } 2520 2521 ext4_mb_check_limits(ac, e4b, 1); 2522 } 2523 2524 /* 2525 * This is a special case for storages like raid5 2526 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2527 */ 2528 static noinline_for_stack 2529 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2530 struct ext4_buddy *e4b) 2531 { 2532 struct super_block *sb = ac->ac_sb; 2533 struct ext4_sb_info *sbi = EXT4_SB(sb); 2534 void *bitmap = e4b->bd_bitmap; 2535 struct ext4_free_extent ex; 2536 ext4_fsblk_t first_group_block; 2537 ext4_fsblk_t a; 2538 ext4_grpblk_t i, stripe; 2539 int max; 2540 2541 BUG_ON(sbi->s_stripe == 0); 2542 2543 /* find first stripe-aligned block in group */ 2544 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2545 2546 a = first_group_block + sbi->s_stripe - 1; 2547 do_div(a, sbi->s_stripe); 2548 i = (a * sbi->s_stripe) - first_group_block; 2549 2550 stripe = EXT4_B2C(sbi, sbi->s_stripe); 2551 i = EXT4_B2C(sbi, i); 2552 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2553 if (!mb_test_bit(i, bitmap)) { 2554 max = mb_find_extent(e4b, i, stripe, &ex); 2555 if (max >= stripe) { 2556 ac->ac_found++; 2557 ac->ac_cX_found[ac->ac_criteria]++; 2558 ex.fe_logical = 0xDEADF00D; /* debug value */ 2559 ac->ac_b_ex = ex; 2560 ext4_mb_use_best_found(ac, e4b); 2561 break; 2562 } 2563 } 2564 i += stripe; 2565 } 2566 } 2567 2568 /* 2569 * This is also called BEFORE we load the buddy bitmap. 2570 * Returns either 1 or 0 indicating that the group is either suitable 2571 * for the allocation or not. 2572 */ 2573 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2574 ext4_group_t group, enum criteria cr) 2575 { 2576 ext4_grpblk_t free, fragments; 2577 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2578 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2579 2580 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS); 2581 2582 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2583 return false; 2584 2585 free = grp->bb_free; 2586 if (free == 0) 2587 return false; 2588 2589 fragments = grp->bb_fragments; 2590 if (fragments == 0) 2591 return false; 2592 2593 switch (cr) { 2594 case CR_POWER2_ALIGNED: 2595 BUG_ON(ac->ac_2order == 0); 2596 2597 /* Avoid using the first bg of a flexgroup for data files */ 2598 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2599 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2600 ((group % flex_size) == 0)) 2601 return false; 2602 2603 if (free < ac->ac_g_ex.fe_len) 2604 return false; 2605 2606 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) 2607 return true; 2608 2609 if (grp->bb_largest_free_order < ac->ac_2order) 2610 return false; 2611 2612 return true; 2613 case CR_GOAL_LEN_FAST: 2614 case CR_BEST_AVAIL_LEN: 2615 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2616 return true; 2617 break; 2618 case CR_GOAL_LEN_SLOW: 2619 if (free >= ac->ac_g_ex.fe_len) 2620 return true; 2621 break; 2622 case CR_ANY_FREE: 2623 return true; 2624 default: 2625 BUG(); 2626 } 2627 2628 return false; 2629 } 2630 2631 /* 2632 * This could return negative error code if something goes wrong 2633 * during ext4_mb_init_group(). This should not be called with 2634 * ext4_lock_group() held. 2635 * 2636 * Note: because we are conditionally operating with the group lock in 2637 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this 2638 * function using __acquire and __release. This means we need to be 2639 * super careful before messing with the error path handling via "goto 2640 * out"! 2641 */ 2642 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2643 ext4_group_t group, enum criteria cr) 2644 { 2645 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2646 struct super_block *sb = ac->ac_sb; 2647 struct ext4_sb_info *sbi = EXT4_SB(sb); 2648 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2649 ext4_grpblk_t free; 2650 int ret = 0; 2651 2652 if (!grp) 2653 return -EFSCORRUPTED; 2654 if (sbi->s_mb_stats) 2655 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2656 if (should_lock) { 2657 ext4_lock_group(sb, group); 2658 __release(ext4_group_lock_ptr(sb, group)); 2659 } 2660 free = grp->bb_free; 2661 if (free == 0) 2662 goto out; 2663 /* 2664 * In all criterias except CR_ANY_FREE we try to avoid groups that 2665 * can't possibly satisfy the full goal request due to insufficient 2666 * free blocks. 2667 */ 2668 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len) 2669 goto out; 2670 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2671 goto out; 2672 if (should_lock) { 2673 __acquire(ext4_group_lock_ptr(sb, group)); 2674 ext4_unlock_group(sb, group); 2675 } 2676 2677 /* We only do this if the grp has never been initialized */ 2678 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2679 struct ext4_group_desc *gdp = 2680 ext4_get_group_desc(sb, group, NULL); 2681 int ret; 2682 2683 /* 2684 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic 2685 * search to find large good chunks almost for free. If buddy 2686 * data is not ready, then this optimization makes no sense. But 2687 * we never skip the first block group in a flex_bg, since this 2688 * gets used for metadata block allocation, and we want to make 2689 * sure we locate metadata blocks in the first block group in 2690 * the flex_bg if possible. 2691 */ 2692 if (!ext4_mb_cr_expensive(cr) && 2693 (!sbi->s_log_groups_per_flex || 2694 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2695 !(ext4_has_group_desc_csum(sb) && 2696 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2697 return 0; 2698 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2699 if (ret) 2700 return ret; 2701 } 2702 2703 if (should_lock) { 2704 ext4_lock_group(sb, group); 2705 __release(ext4_group_lock_ptr(sb, group)); 2706 } 2707 ret = ext4_mb_good_group(ac, group, cr); 2708 out: 2709 if (should_lock) { 2710 __acquire(ext4_group_lock_ptr(sb, group)); 2711 ext4_unlock_group(sb, group); 2712 } 2713 return ret; 2714 } 2715 2716 /* 2717 * Start prefetching @nr block bitmaps starting at @group. 2718 * Return the next group which needs to be prefetched. 2719 */ 2720 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2721 unsigned int nr, int *cnt) 2722 { 2723 ext4_group_t ngroups = ext4_get_groups_count(sb); 2724 struct buffer_head *bh; 2725 struct blk_plug plug; 2726 2727 blk_start_plug(&plug); 2728 while (nr-- > 0) { 2729 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2730 NULL); 2731 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2732 2733 /* 2734 * Prefetch block groups with free blocks; but don't 2735 * bother if it is marked uninitialized on disk, since 2736 * it won't require I/O to read. Also only try to 2737 * prefetch once, so we avoid getblk() call, which can 2738 * be expensive. 2739 */ 2740 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2741 EXT4_MB_GRP_NEED_INIT(grp) && 2742 ext4_free_group_clusters(sb, gdp) > 0 ) { 2743 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2744 if (bh && !IS_ERR(bh)) { 2745 if (!buffer_uptodate(bh) && cnt) 2746 (*cnt)++; 2747 brelse(bh); 2748 } 2749 } 2750 if (++group >= ngroups) 2751 group = 0; 2752 } 2753 blk_finish_plug(&plug); 2754 return group; 2755 } 2756 2757 /* 2758 * Prefetching reads the block bitmap into the buffer cache; but we 2759 * need to make sure that the buddy bitmap in the page cache has been 2760 * initialized. Note that ext4_mb_init_group() will block if the I/O 2761 * is not yet completed, or indeed if it was not initiated by 2762 * ext4_mb_prefetch did not start the I/O. 2763 * 2764 * TODO: We should actually kick off the buddy bitmap setup in a work 2765 * queue when the buffer I/O is completed, so that we don't block 2766 * waiting for the block allocation bitmap read to finish when 2767 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2768 */ 2769 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2770 unsigned int nr) 2771 { 2772 struct ext4_group_desc *gdp; 2773 struct ext4_group_info *grp; 2774 2775 while (nr-- > 0) { 2776 if (!group) 2777 group = ext4_get_groups_count(sb); 2778 group--; 2779 gdp = ext4_get_group_desc(sb, group, NULL); 2780 grp = ext4_get_group_info(sb, group); 2781 2782 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) && 2783 ext4_free_group_clusters(sb, gdp) > 0) { 2784 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2785 break; 2786 } 2787 } 2788 } 2789 2790 static noinline_for_stack int 2791 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2792 { 2793 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2794 enum criteria new_cr, cr = CR_GOAL_LEN_FAST; 2795 int err = 0, first_err = 0; 2796 unsigned int nr = 0, prefetch_ios = 0; 2797 struct ext4_sb_info *sbi; 2798 struct super_block *sb; 2799 struct ext4_buddy e4b; 2800 int lost; 2801 2802 sb = ac->ac_sb; 2803 sbi = EXT4_SB(sb); 2804 ngroups = ext4_get_groups_count(sb); 2805 /* non-extent files are limited to low blocks/groups */ 2806 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2807 ngroups = sbi->s_blockfile_groups; 2808 2809 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2810 2811 /* first, try the goal */ 2812 err = ext4_mb_find_by_goal(ac, &e4b); 2813 if (err || ac->ac_status == AC_STATUS_FOUND) 2814 goto out; 2815 2816 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2817 goto out; 2818 2819 /* 2820 * ac->ac_2order is set only if the fe_len is a power of 2 2821 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED 2822 * so that we try exact allocation using buddy. 2823 */ 2824 i = fls(ac->ac_g_ex.fe_len); 2825 ac->ac_2order = 0; 2826 /* 2827 * We search using buddy data only if the order of the request 2828 * is greater than equal to the sbi_s_mb_order2_reqs 2829 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2830 * We also support searching for power-of-two requests only for 2831 * requests upto maximum buddy size we have constructed. 2832 */ 2833 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { 2834 if (is_power_of_2(ac->ac_g_ex.fe_len)) 2835 ac->ac_2order = array_index_nospec(i - 1, 2836 MB_NUM_ORDERS(sb)); 2837 } 2838 2839 /* if stream allocation is enabled, use global goal */ 2840 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2841 /* TBD: may be hot point */ 2842 spin_lock(&sbi->s_md_lock); 2843 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2844 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2845 spin_unlock(&sbi->s_md_lock); 2846 } 2847 2848 /* 2849 * Let's just scan groups to find more-less suitable blocks We 2850 * start with CR_GOAL_LEN_FAST, unless it is power of 2 2851 * aligned, in which case let's do that faster approach first. 2852 */ 2853 if (ac->ac_2order) 2854 cr = CR_POWER2_ALIGNED; 2855 repeat: 2856 for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2857 ac->ac_criteria = cr; 2858 /* 2859 * searching for the right group start 2860 * from the goal value specified 2861 */ 2862 group = ac->ac_g_ex.fe_group; 2863 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; 2864 prefetch_grp = group; 2865 2866 for (i = 0, new_cr = cr; i < ngroups; i++, 2867 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) { 2868 int ret = 0; 2869 2870 cond_resched(); 2871 if (new_cr != cr) { 2872 cr = new_cr; 2873 goto repeat; 2874 } 2875 2876 /* 2877 * Batch reads of the block allocation bitmaps 2878 * to get multiple READs in flight; limit 2879 * prefetching at inexpensive CR, otherwise mballoc 2880 * can spend a lot of time loading imperfect groups 2881 */ 2882 if ((prefetch_grp == group) && 2883 (ext4_mb_cr_expensive(cr) || 2884 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2885 nr = sbi->s_mb_prefetch; 2886 if (ext4_has_feature_flex_bg(sb)) { 2887 nr = 1 << sbi->s_log_groups_per_flex; 2888 nr -= group & (nr - 1); 2889 nr = min(nr, sbi->s_mb_prefetch); 2890 } 2891 prefetch_grp = ext4_mb_prefetch(sb, group, 2892 nr, &prefetch_ios); 2893 } 2894 2895 /* This now checks without needing the buddy page */ 2896 ret = ext4_mb_good_group_nolock(ac, group, cr); 2897 if (ret <= 0) { 2898 if (!first_err) 2899 first_err = ret; 2900 continue; 2901 } 2902 2903 err = ext4_mb_load_buddy(sb, group, &e4b); 2904 if (err) 2905 goto out; 2906 2907 ext4_lock_group(sb, group); 2908 2909 /* 2910 * We need to check again after locking the 2911 * block group 2912 */ 2913 ret = ext4_mb_good_group(ac, group, cr); 2914 if (ret == 0) { 2915 ext4_unlock_group(sb, group); 2916 ext4_mb_unload_buddy(&e4b); 2917 continue; 2918 } 2919 2920 ac->ac_groups_scanned++; 2921 if (cr == CR_POWER2_ALIGNED) 2922 ext4_mb_simple_scan_group(ac, &e4b); 2923 else if ((cr == CR_GOAL_LEN_FAST || 2924 cr == CR_BEST_AVAIL_LEN) && 2925 sbi->s_stripe && 2926 !(ac->ac_g_ex.fe_len % 2927 EXT4_B2C(sbi, sbi->s_stripe))) 2928 ext4_mb_scan_aligned(ac, &e4b); 2929 else 2930 ext4_mb_complex_scan_group(ac, &e4b); 2931 2932 ext4_unlock_group(sb, group); 2933 ext4_mb_unload_buddy(&e4b); 2934 2935 if (ac->ac_status != AC_STATUS_CONTINUE) 2936 break; 2937 } 2938 /* Processed all groups and haven't found blocks */ 2939 if (sbi->s_mb_stats && i == ngroups) 2940 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 2941 2942 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN) 2943 /* Reset goal length to original goal length before 2944 * falling into CR_GOAL_LEN_SLOW */ 2945 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 2946 } 2947 2948 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2949 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2950 /* 2951 * We've been searching too long. Let's try to allocate 2952 * the best chunk we've found so far 2953 */ 2954 ext4_mb_try_best_found(ac, &e4b); 2955 if (ac->ac_status != AC_STATUS_FOUND) { 2956 /* 2957 * Someone more lucky has already allocated it. 2958 * The only thing we can do is just take first 2959 * found block(s) 2960 */ 2961 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2962 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2963 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2964 ac->ac_b_ex.fe_len, lost); 2965 2966 ac->ac_b_ex.fe_group = 0; 2967 ac->ac_b_ex.fe_start = 0; 2968 ac->ac_b_ex.fe_len = 0; 2969 ac->ac_status = AC_STATUS_CONTINUE; 2970 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2971 cr = CR_ANY_FREE; 2972 goto repeat; 2973 } 2974 } 2975 2976 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) 2977 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 2978 out: 2979 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2980 err = first_err; 2981 2982 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2983 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2984 ac->ac_flags, cr, err); 2985 2986 if (nr) 2987 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 2988 2989 return err; 2990 } 2991 2992 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2993 { 2994 struct super_block *sb = pde_data(file_inode(seq->file)); 2995 ext4_group_t group; 2996 2997 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2998 return NULL; 2999 group = *pos + 1; 3000 return (void *) ((unsigned long) group); 3001 } 3002 3003 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 3004 { 3005 struct super_block *sb = pde_data(file_inode(seq->file)); 3006 ext4_group_t group; 3007 3008 ++*pos; 3009 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 3010 return NULL; 3011 group = *pos + 1; 3012 return (void *) ((unsigned long) group); 3013 } 3014 3015 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 3016 { 3017 struct super_block *sb = pde_data(file_inode(seq->file)); 3018 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 3019 int i; 3020 int err, buddy_loaded = 0; 3021 struct ext4_buddy e4b; 3022 struct ext4_group_info *grinfo; 3023 unsigned char blocksize_bits = min_t(unsigned char, 3024 sb->s_blocksize_bits, 3025 EXT4_MAX_BLOCK_LOG_SIZE); 3026 struct sg { 3027 struct ext4_group_info info; 3028 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 3029 } sg; 3030 3031 group--; 3032 if (group == 0) 3033 seq_puts(seq, "#group: free frags first [" 3034 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 3035 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 3036 3037 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 3038 sizeof(struct ext4_group_info); 3039 3040 grinfo = ext4_get_group_info(sb, group); 3041 if (!grinfo) 3042 return 0; 3043 /* Load the group info in memory only if not already loaded. */ 3044 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 3045 err = ext4_mb_load_buddy(sb, group, &e4b); 3046 if (err) { 3047 seq_printf(seq, "#%-5u: I/O error\n", group); 3048 return 0; 3049 } 3050 buddy_loaded = 1; 3051 } 3052 3053 memcpy(&sg, grinfo, i); 3054 3055 if (buddy_loaded) 3056 ext4_mb_unload_buddy(&e4b); 3057 3058 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 3059 sg.info.bb_fragments, sg.info.bb_first_free); 3060 for (i = 0; i <= 13; i++) 3061 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 3062 sg.info.bb_counters[i] : 0); 3063 seq_puts(seq, " ]\n"); 3064 3065 return 0; 3066 } 3067 3068 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 3069 { 3070 } 3071 3072 const struct seq_operations ext4_mb_seq_groups_ops = { 3073 .start = ext4_mb_seq_groups_start, 3074 .next = ext4_mb_seq_groups_next, 3075 .stop = ext4_mb_seq_groups_stop, 3076 .show = ext4_mb_seq_groups_show, 3077 }; 3078 3079 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 3080 { 3081 struct super_block *sb = seq->private; 3082 struct ext4_sb_info *sbi = EXT4_SB(sb); 3083 3084 seq_puts(seq, "mballoc:\n"); 3085 if (!sbi->s_mb_stats) { 3086 seq_puts(seq, "\tmb stats collection turned off.\n"); 3087 seq_puts( 3088 seq, 3089 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 3090 return 0; 3091 } 3092 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 3093 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 3094 3095 seq_printf(seq, "\tgroups_scanned: %u\n", 3096 atomic_read(&sbi->s_bal_groups_scanned)); 3097 3098 /* CR_POWER2_ALIGNED stats */ 3099 seq_puts(seq, "\tcr_p2_aligned_stats:\n"); 3100 seq_printf(seq, "\t\thits: %llu\n", 3101 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED])); 3102 seq_printf( 3103 seq, "\t\tgroups_considered: %llu\n", 3104 atomic64_read( 3105 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED])); 3106 seq_printf(seq, "\t\textents_scanned: %u\n", 3107 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED])); 3108 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3109 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED])); 3110 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3111 atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions)); 3112 3113 /* CR_GOAL_LEN_FAST stats */ 3114 seq_puts(seq, "\tcr_goal_fast_stats:\n"); 3115 seq_printf(seq, "\t\thits: %llu\n", 3116 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST])); 3117 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3118 atomic64_read( 3119 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST])); 3120 seq_printf(seq, "\t\textents_scanned: %u\n", 3121 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST])); 3122 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3123 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST])); 3124 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3125 atomic_read(&sbi->s_bal_goal_fast_bad_suggestions)); 3126 3127 /* CR_BEST_AVAIL_LEN stats */ 3128 seq_puts(seq, "\tcr_best_avail_stats:\n"); 3129 seq_printf(seq, "\t\thits: %llu\n", 3130 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN])); 3131 seq_printf( 3132 seq, "\t\tgroups_considered: %llu\n", 3133 atomic64_read( 3134 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN])); 3135 seq_printf(seq, "\t\textents_scanned: %u\n", 3136 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN])); 3137 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3138 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN])); 3139 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3140 atomic_read(&sbi->s_bal_best_avail_bad_suggestions)); 3141 3142 /* CR_GOAL_LEN_SLOW stats */ 3143 seq_puts(seq, "\tcr_goal_slow_stats:\n"); 3144 seq_printf(seq, "\t\thits: %llu\n", 3145 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW])); 3146 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3147 atomic64_read( 3148 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW])); 3149 seq_printf(seq, "\t\textents_scanned: %u\n", 3150 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW])); 3151 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3152 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW])); 3153 3154 /* CR_ANY_FREE stats */ 3155 seq_puts(seq, "\tcr_any_free_stats:\n"); 3156 seq_printf(seq, "\t\thits: %llu\n", 3157 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE])); 3158 seq_printf( 3159 seq, "\t\tgroups_considered: %llu\n", 3160 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE])); 3161 seq_printf(seq, "\t\textents_scanned: %u\n", 3162 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE])); 3163 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3164 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE])); 3165 3166 /* Aggregates */ 3167 seq_printf(seq, "\textents_scanned: %u\n", 3168 atomic_read(&sbi->s_bal_ex_scanned)); 3169 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 3170 seq_printf(seq, "\t\tlen_goal_hits: %u\n", 3171 atomic_read(&sbi->s_bal_len_goals)); 3172 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 3173 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 3174 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 3175 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 3176 atomic_read(&sbi->s_mb_buddies_generated), 3177 ext4_get_groups_count(sb)); 3178 seq_printf(seq, "\tbuddies_time_used: %llu\n", 3179 atomic64_read(&sbi->s_mb_generation_time)); 3180 seq_printf(seq, "\tpreallocated: %u\n", 3181 atomic_read(&sbi->s_mb_preallocated)); 3182 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded)); 3183 return 0; 3184 } 3185 3186 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) 3187 __acquires(&EXT4_SB(sb)->s_mb_rb_lock) 3188 { 3189 struct super_block *sb = pde_data(file_inode(seq->file)); 3190 unsigned long position; 3191 3192 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3193 return NULL; 3194 position = *pos + 1; 3195 return (void *) ((unsigned long) position); 3196 } 3197 3198 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) 3199 { 3200 struct super_block *sb = pde_data(file_inode(seq->file)); 3201 unsigned long position; 3202 3203 ++*pos; 3204 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3205 return NULL; 3206 position = *pos + 1; 3207 return (void *) ((unsigned long) position); 3208 } 3209 3210 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) 3211 { 3212 struct super_block *sb = pde_data(file_inode(seq->file)); 3213 struct ext4_sb_info *sbi = EXT4_SB(sb); 3214 unsigned long position = ((unsigned long) v); 3215 struct ext4_group_info *grp; 3216 unsigned int count; 3217 3218 position--; 3219 if (position >= MB_NUM_ORDERS(sb)) { 3220 position -= MB_NUM_ORDERS(sb); 3221 if (position == 0) 3222 seq_puts(seq, "avg_fragment_size_lists:\n"); 3223 3224 count = 0; 3225 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]); 3226 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position], 3227 bb_avg_fragment_size_node) 3228 count++; 3229 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]); 3230 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3231 (unsigned int)position, count); 3232 return 0; 3233 } 3234 3235 if (position == 0) { 3236 seq_printf(seq, "optimize_scan: %d\n", 3237 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); 3238 seq_puts(seq, "max_free_order_lists:\n"); 3239 } 3240 count = 0; 3241 read_lock(&sbi->s_mb_largest_free_orders_locks[position]); 3242 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], 3243 bb_largest_free_order_node) 3244 count++; 3245 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]); 3246 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3247 (unsigned int)position, count); 3248 3249 return 0; 3250 } 3251 3252 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) 3253 { 3254 } 3255 3256 const struct seq_operations ext4_mb_seq_structs_summary_ops = { 3257 .start = ext4_mb_seq_structs_summary_start, 3258 .next = ext4_mb_seq_structs_summary_next, 3259 .stop = ext4_mb_seq_structs_summary_stop, 3260 .show = ext4_mb_seq_structs_summary_show, 3261 }; 3262 3263 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 3264 { 3265 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3266 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 3267 3268 BUG_ON(!cachep); 3269 return cachep; 3270 } 3271 3272 /* 3273 * Allocate the top-level s_group_info array for the specified number 3274 * of groups 3275 */ 3276 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 3277 { 3278 struct ext4_sb_info *sbi = EXT4_SB(sb); 3279 unsigned size; 3280 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 3281 3282 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 3283 EXT4_DESC_PER_BLOCK_BITS(sb); 3284 if (size <= sbi->s_group_info_size) 3285 return 0; 3286 3287 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 3288 new_groupinfo = kvzalloc(size, GFP_KERNEL); 3289 if (!new_groupinfo) { 3290 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 3291 return -ENOMEM; 3292 } 3293 rcu_read_lock(); 3294 old_groupinfo = rcu_dereference(sbi->s_group_info); 3295 if (old_groupinfo) 3296 memcpy(new_groupinfo, old_groupinfo, 3297 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 3298 rcu_read_unlock(); 3299 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 3300 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 3301 if (old_groupinfo) 3302 ext4_kvfree_array_rcu(old_groupinfo); 3303 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 3304 sbi->s_group_info_size); 3305 return 0; 3306 } 3307 3308 /* Create and initialize ext4_group_info data for the given group. */ 3309 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 3310 struct ext4_group_desc *desc) 3311 { 3312 int i; 3313 int metalen = 0; 3314 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 3315 struct ext4_sb_info *sbi = EXT4_SB(sb); 3316 struct ext4_group_info **meta_group_info; 3317 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3318 3319 /* 3320 * First check if this group is the first of a reserved block. 3321 * If it's true, we have to allocate a new table of pointers 3322 * to ext4_group_info structures 3323 */ 3324 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3325 metalen = sizeof(*meta_group_info) << 3326 EXT4_DESC_PER_BLOCK_BITS(sb); 3327 meta_group_info = kmalloc(metalen, GFP_NOFS); 3328 if (meta_group_info == NULL) { 3329 ext4_msg(sb, KERN_ERR, "can't allocate mem " 3330 "for a buddy group"); 3331 return -ENOMEM; 3332 } 3333 rcu_read_lock(); 3334 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 3335 rcu_read_unlock(); 3336 } 3337 3338 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 3339 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 3340 3341 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 3342 if (meta_group_info[i] == NULL) { 3343 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 3344 goto exit_group_info; 3345 } 3346 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 3347 &(meta_group_info[i]->bb_state)); 3348 3349 /* 3350 * initialize bb_free to be able to skip 3351 * empty groups without initialization 3352 */ 3353 if (ext4_has_group_desc_csum(sb) && 3354 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3355 meta_group_info[i]->bb_free = 3356 ext4_free_clusters_after_init(sb, group, desc); 3357 } else { 3358 meta_group_info[i]->bb_free = 3359 ext4_free_group_clusters(sb, desc); 3360 } 3361 3362 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 3363 init_rwsem(&meta_group_info[i]->alloc_sem); 3364 meta_group_info[i]->bb_free_root = RB_ROOT; 3365 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); 3366 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node); 3367 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 3368 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */ 3369 meta_group_info[i]->bb_group = group; 3370 3371 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 3372 return 0; 3373 3374 exit_group_info: 3375 /* If a meta_group_info table has been allocated, release it now */ 3376 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3377 struct ext4_group_info ***group_info; 3378 3379 rcu_read_lock(); 3380 group_info = rcu_dereference(sbi->s_group_info); 3381 kfree(group_info[idx]); 3382 group_info[idx] = NULL; 3383 rcu_read_unlock(); 3384 } 3385 return -ENOMEM; 3386 } /* ext4_mb_add_groupinfo */ 3387 3388 static int ext4_mb_init_backend(struct super_block *sb) 3389 { 3390 ext4_group_t ngroups = ext4_get_groups_count(sb); 3391 ext4_group_t i; 3392 struct ext4_sb_info *sbi = EXT4_SB(sb); 3393 int err; 3394 struct ext4_group_desc *desc; 3395 struct ext4_group_info ***group_info; 3396 struct kmem_cache *cachep; 3397 3398 err = ext4_mb_alloc_groupinfo(sb, ngroups); 3399 if (err) 3400 return err; 3401 3402 sbi->s_buddy_cache = new_inode(sb); 3403 if (sbi->s_buddy_cache == NULL) { 3404 ext4_msg(sb, KERN_ERR, "can't get new inode"); 3405 goto err_freesgi; 3406 } 3407 /* To avoid potentially colliding with an valid on-disk inode number, 3408 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 3409 * not in the inode hash, so it should never be found by iget(), but 3410 * this will avoid confusion if it ever shows up during debugging. */ 3411 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 3412 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 3413 for (i = 0; i < ngroups; i++) { 3414 cond_resched(); 3415 desc = ext4_get_group_desc(sb, i, NULL); 3416 if (desc == NULL) { 3417 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 3418 goto err_freebuddy; 3419 } 3420 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 3421 goto err_freebuddy; 3422 } 3423 3424 if (ext4_has_feature_flex_bg(sb)) { 3425 /* a single flex group is supposed to be read by a single IO. 3426 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 3427 * unsigned integer, so the maximum shift is 32. 3428 */ 3429 if (sbi->s_es->s_log_groups_per_flex >= 32) { 3430 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 3431 goto err_freebuddy; 3432 } 3433 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 3434 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 3435 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 3436 } else { 3437 sbi->s_mb_prefetch = 32; 3438 } 3439 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 3440 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 3441 /* now many real IOs to prefetch within a single allocation at cr=0 3442 * given cr=0 is an CPU-related optimization we shouldn't try to 3443 * load too many groups, at some point we should start to use what 3444 * we've got in memory. 3445 * with an average random access time 5ms, it'd take a second to get 3446 * 200 groups (* N with flex_bg), so let's make this limit 4 3447 */ 3448 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 3449 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 3450 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 3451 3452 return 0; 3453 3454 err_freebuddy: 3455 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3456 while (i-- > 0) { 3457 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3458 3459 if (grp) 3460 kmem_cache_free(cachep, grp); 3461 } 3462 i = sbi->s_group_info_size; 3463 rcu_read_lock(); 3464 group_info = rcu_dereference(sbi->s_group_info); 3465 while (i-- > 0) 3466 kfree(group_info[i]); 3467 rcu_read_unlock(); 3468 iput(sbi->s_buddy_cache); 3469 err_freesgi: 3470 rcu_read_lock(); 3471 kvfree(rcu_dereference(sbi->s_group_info)); 3472 rcu_read_unlock(); 3473 return -ENOMEM; 3474 } 3475 3476 static void ext4_groupinfo_destroy_slabs(void) 3477 { 3478 int i; 3479 3480 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 3481 kmem_cache_destroy(ext4_groupinfo_caches[i]); 3482 ext4_groupinfo_caches[i] = NULL; 3483 } 3484 } 3485 3486 static int ext4_groupinfo_create_slab(size_t size) 3487 { 3488 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 3489 int slab_size; 3490 int blocksize_bits = order_base_2(size); 3491 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3492 struct kmem_cache *cachep; 3493 3494 if (cache_index >= NR_GRPINFO_CACHES) 3495 return -EINVAL; 3496 3497 if (unlikely(cache_index < 0)) 3498 cache_index = 0; 3499 3500 mutex_lock(&ext4_grpinfo_slab_create_mutex); 3501 if (ext4_groupinfo_caches[cache_index]) { 3502 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3503 return 0; /* Already created */ 3504 } 3505 3506 slab_size = offsetof(struct ext4_group_info, 3507 bb_counters[blocksize_bits + 2]); 3508 3509 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 3510 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 3511 NULL); 3512 3513 ext4_groupinfo_caches[cache_index] = cachep; 3514 3515 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3516 if (!cachep) { 3517 printk(KERN_EMERG 3518 "EXT4-fs: no memory for groupinfo slab cache\n"); 3519 return -ENOMEM; 3520 } 3521 3522 return 0; 3523 } 3524 3525 static void ext4_discard_work(struct work_struct *work) 3526 { 3527 struct ext4_sb_info *sbi = container_of(work, 3528 struct ext4_sb_info, s_discard_work); 3529 struct super_block *sb = sbi->s_sb; 3530 struct ext4_free_data *fd, *nfd; 3531 struct ext4_buddy e4b; 3532 LIST_HEAD(discard_list); 3533 ext4_group_t grp, load_grp; 3534 int err = 0; 3535 3536 spin_lock(&sbi->s_md_lock); 3537 list_splice_init(&sbi->s_discard_list, &discard_list); 3538 spin_unlock(&sbi->s_md_lock); 3539 3540 load_grp = UINT_MAX; 3541 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { 3542 /* 3543 * If filesystem is umounting or no memory or suffering 3544 * from no space, give up the discard 3545 */ 3546 if ((sb->s_flags & SB_ACTIVE) && !err && 3547 !atomic_read(&sbi->s_retry_alloc_pending)) { 3548 grp = fd->efd_group; 3549 if (grp != load_grp) { 3550 if (load_grp != UINT_MAX) 3551 ext4_mb_unload_buddy(&e4b); 3552 3553 err = ext4_mb_load_buddy(sb, grp, &e4b); 3554 if (err) { 3555 kmem_cache_free(ext4_free_data_cachep, fd); 3556 load_grp = UINT_MAX; 3557 continue; 3558 } else { 3559 load_grp = grp; 3560 } 3561 } 3562 3563 ext4_lock_group(sb, grp); 3564 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster, 3565 fd->efd_start_cluster + fd->efd_count - 1, 1); 3566 ext4_unlock_group(sb, grp); 3567 } 3568 kmem_cache_free(ext4_free_data_cachep, fd); 3569 } 3570 3571 if (load_grp != UINT_MAX) 3572 ext4_mb_unload_buddy(&e4b); 3573 } 3574 3575 int ext4_mb_init(struct super_block *sb) 3576 { 3577 struct ext4_sb_info *sbi = EXT4_SB(sb); 3578 unsigned i, j; 3579 unsigned offset, offset_incr; 3580 unsigned max; 3581 int ret; 3582 3583 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); 3584 3585 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 3586 if (sbi->s_mb_offsets == NULL) { 3587 ret = -ENOMEM; 3588 goto out; 3589 } 3590 3591 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); 3592 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 3593 if (sbi->s_mb_maxs == NULL) { 3594 ret = -ENOMEM; 3595 goto out; 3596 } 3597 3598 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 3599 if (ret < 0) 3600 goto out; 3601 3602 /* order 0 is regular bitmap */ 3603 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 3604 sbi->s_mb_offsets[0] = 0; 3605 3606 i = 1; 3607 offset = 0; 3608 offset_incr = 1 << (sb->s_blocksize_bits - 1); 3609 max = sb->s_blocksize << 2; 3610 do { 3611 sbi->s_mb_offsets[i] = offset; 3612 sbi->s_mb_maxs[i] = max; 3613 offset += offset_incr; 3614 offset_incr = offset_incr >> 1; 3615 max = max >> 1; 3616 i++; 3617 } while (i < MB_NUM_ORDERS(sb)); 3618 3619 sbi->s_mb_avg_fragment_size = 3620 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3621 GFP_KERNEL); 3622 if (!sbi->s_mb_avg_fragment_size) { 3623 ret = -ENOMEM; 3624 goto out; 3625 } 3626 sbi->s_mb_avg_fragment_size_locks = 3627 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3628 GFP_KERNEL); 3629 if (!sbi->s_mb_avg_fragment_size_locks) { 3630 ret = -ENOMEM; 3631 goto out; 3632 } 3633 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3634 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]); 3635 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]); 3636 } 3637 sbi->s_mb_largest_free_orders = 3638 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3639 GFP_KERNEL); 3640 if (!sbi->s_mb_largest_free_orders) { 3641 ret = -ENOMEM; 3642 goto out; 3643 } 3644 sbi->s_mb_largest_free_orders_locks = 3645 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3646 GFP_KERNEL); 3647 if (!sbi->s_mb_largest_free_orders_locks) { 3648 ret = -ENOMEM; 3649 goto out; 3650 } 3651 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3652 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); 3653 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); 3654 } 3655 3656 spin_lock_init(&sbi->s_md_lock); 3657 sbi->s_mb_free_pending = 0; 3658 INIT_LIST_HEAD(&sbi->s_freed_data_list); 3659 INIT_LIST_HEAD(&sbi->s_discard_list); 3660 INIT_WORK(&sbi->s_discard_work, ext4_discard_work); 3661 atomic_set(&sbi->s_retry_alloc_pending, 0); 3662 3663 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 3664 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 3665 sbi->s_mb_stats = MB_DEFAULT_STATS; 3666 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 3667 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 3668 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER; 3669 3670 /* 3671 * The default group preallocation is 512, which for 4k block 3672 * sizes translates to 2 megabytes. However for bigalloc file 3673 * systems, this is probably too big (i.e, if the cluster size 3674 * is 1 megabyte, then group preallocation size becomes half a 3675 * gigabyte!). As a default, we will keep a two megabyte 3676 * group pralloc size for cluster sizes up to 64k, and after 3677 * that, we will force a minimum group preallocation size of 3678 * 32 clusters. This translates to 8 megs when the cluster 3679 * size is 256k, and 32 megs when the cluster size is 1 meg, 3680 * which seems reasonable as a default. 3681 */ 3682 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 3683 sbi->s_cluster_bits, 32); 3684 /* 3685 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 3686 * to the lowest multiple of s_stripe which is bigger than 3687 * the s_mb_group_prealloc as determined above. We want 3688 * the preallocation size to be an exact multiple of the 3689 * RAID stripe size so that preallocations don't fragment 3690 * the stripes. 3691 */ 3692 if (sbi->s_stripe > 1) { 3693 sbi->s_mb_group_prealloc = roundup( 3694 sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe)); 3695 } 3696 3697 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3698 if (sbi->s_locality_groups == NULL) { 3699 ret = -ENOMEM; 3700 goto out; 3701 } 3702 for_each_possible_cpu(i) { 3703 struct ext4_locality_group *lg; 3704 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3705 mutex_init(&lg->lg_mutex); 3706 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3707 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3708 spin_lock_init(&lg->lg_prealloc_lock); 3709 } 3710 3711 if (bdev_nonrot(sb->s_bdev)) 3712 sbi->s_mb_max_linear_groups = 0; 3713 else 3714 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; 3715 /* init file for buddy data */ 3716 ret = ext4_mb_init_backend(sb); 3717 if (ret != 0) 3718 goto out_free_locality_groups; 3719 3720 return 0; 3721 3722 out_free_locality_groups: 3723 free_percpu(sbi->s_locality_groups); 3724 sbi->s_locality_groups = NULL; 3725 out: 3726 kfree(sbi->s_mb_avg_fragment_size); 3727 kfree(sbi->s_mb_avg_fragment_size_locks); 3728 kfree(sbi->s_mb_largest_free_orders); 3729 kfree(sbi->s_mb_largest_free_orders_locks); 3730 kfree(sbi->s_mb_offsets); 3731 sbi->s_mb_offsets = NULL; 3732 kfree(sbi->s_mb_maxs); 3733 sbi->s_mb_maxs = NULL; 3734 return ret; 3735 } 3736 3737 /* need to called with the ext4 group lock held */ 3738 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3739 { 3740 struct ext4_prealloc_space *pa; 3741 struct list_head *cur, *tmp; 3742 int count = 0; 3743 3744 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3745 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3746 list_del(&pa->pa_group_list); 3747 count++; 3748 kmem_cache_free(ext4_pspace_cachep, pa); 3749 } 3750 return count; 3751 } 3752 3753 int ext4_mb_release(struct super_block *sb) 3754 { 3755 ext4_group_t ngroups = ext4_get_groups_count(sb); 3756 ext4_group_t i; 3757 int num_meta_group_infos; 3758 struct ext4_group_info *grinfo, ***group_info; 3759 struct ext4_sb_info *sbi = EXT4_SB(sb); 3760 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3761 int count; 3762 3763 if (test_opt(sb, DISCARD)) { 3764 /* 3765 * wait the discard work to drain all of ext4_free_data 3766 */ 3767 flush_work(&sbi->s_discard_work); 3768 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); 3769 } 3770 3771 if (sbi->s_group_info) { 3772 for (i = 0; i < ngroups; i++) { 3773 cond_resched(); 3774 grinfo = ext4_get_group_info(sb, i); 3775 if (!grinfo) 3776 continue; 3777 mb_group_bb_bitmap_free(grinfo); 3778 ext4_lock_group(sb, i); 3779 count = ext4_mb_cleanup_pa(grinfo); 3780 if (count) 3781 mb_debug(sb, "mballoc: %d PAs left\n", 3782 count); 3783 ext4_unlock_group(sb, i); 3784 kmem_cache_free(cachep, grinfo); 3785 } 3786 num_meta_group_infos = (ngroups + 3787 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3788 EXT4_DESC_PER_BLOCK_BITS(sb); 3789 rcu_read_lock(); 3790 group_info = rcu_dereference(sbi->s_group_info); 3791 for (i = 0; i < num_meta_group_infos; i++) 3792 kfree(group_info[i]); 3793 kvfree(group_info); 3794 rcu_read_unlock(); 3795 } 3796 kfree(sbi->s_mb_avg_fragment_size); 3797 kfree(sbi->s_mb_avg_fragment_size_locks); 3798 kfree(sbi->s_mb_largest_free_orders); 3799 kfree(sbi->s_mb_largest_free_orders_locks); 3800 kfree(sbi->s_mb_offsets); 3801 kfree(sbi->s_mb_maxs); 3802 iput(sbi->s_buddy_cache); 3803 if (sbi->s_mb_stats) { 3804 ext4_msg(sb, KERN_INFO, 3805 "mballoc: %u blocks %u reqs (%u success)", 3806 atomic_read(&sbi->s_bal_allocated), 3807 atomic_read(&sbi->s_bal_reqs), 3808 atomic_read(&sbi->s_bal_success)); 3809 ext4_msg(sb, KERN_INFO, 3810 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3811 "%u 2^N hits, %u breaks, %u lost", 3812 atomic_read(&sbi->s_bal_ex_scanned), 3813 atomic_read(&sbi->s_bal_groups_scanned), 3814 atomic_read(&sbi->s_bal_goals), 3815 atomic_read(&sbi->s_bal_2orders), 3816 atomic_read(&sbi->s_bal_breaks), 3817 atomic_read(&sbi->s_mb_lost_chunks)); 3818 ext4_msg(sb, KERN_INFO, 3819 "mballoc: %u generated and it took %llu", 3820 atomic_read(&sbi->s_mb_buddies_generated), 3821 atomic64_read(&sbi->s_mb_generation_time)); 3822 ext4_msg(sb, KERN_INFO, 3823 "mballoc: %u preallocated, %u discarded", 3824 atomic_read(&sbi->s_mb_preallocated), 3825 atomic_read(&sbi->s_mb_discarded)); 3826 } 3827 3828 free_percpu(sbi->s_locality_groups); 3829 3830 return 0; 3831 } 3832 3833 static inline int ext4_issue_discard(struct super_block *sb, 3834 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 3835 struct bio **biop) 3836 { 3837 ext4_fsblk_t discard_block; 3838 3839 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3840 ext4_group_first_block_no(sb, block_group)); 3841 count = EXT4_C2B(EXT4_SB(sb), count); 3842 trace_ext4_discard_blocks(sb, 3843 (unsigned long long) discard_block, count); 3844 if (biop) { 3845 return __blkdev_issue_discard(sb->s_bdev, 3846 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 3847 (sector_t)count << (sb->s_blocksize_bits - 9), 3848 GFP_NOFS, biop); 3849 } else 3850 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3851 } 3852 3853 static void ext4_free_data_in_buddy(struct super_block *sb, 3854 struct ext4_free_data *entry) 3855 { 3856 struct ext4_buddy e4b; 3857 struct ext4_group_info *db; 3858 int err, count = 0; 3859 3860 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3861 entry->efd_count, entry->efd_group, entry); 3862 3863 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3864 /* we expect to find existing buddy because it's pinned */ 3865 BUG_ON(err != 0); 3866 3867 spin_lock(&EXT4_SB(sb)->s_md_lock); 3868 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3869 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3870 3871 db = e4b.bd_info; 3872 /* there are blocks to put in buddy to make them really free */ 3873 count += entry->efd_count; 3874 ext4_lock_group(sb, entry->efd_group); 3875 /* Take it out of per group rb tree */ 3876 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3877 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3878 3879 /* 3880 * Clear the trimmed flag for the group so that the next 3881 * ext4_trim_fs can trim it. 3882 * If the volume is mounted with -o discard, online discard 3883 * is supported and the free blocks will be trimmed online. 3884 */ 3885 if (!test_opt(sb, DISCARD)) 3886 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3887 3888 if (!db->bb_free_root.rb_node) { 3889 /* No more items in the per group rb tree 3890 * balance refcounts from ext4_mb_free_metadata() 3891 */ 3892 put_page(e4b.bd_buddy_page); 3893 put_page(e4b.bd_bitmap_page); 3894 } 3895 ext4_unlock_group(sb, entry->efd_group); 3896 ext4_mb_unload_buddy(&e4b); 3897 3898 mb_debug(sb, "freed %d blocks in 1 structures\n", count); 3899 } 3900 3901 /* 3902 * This function is called by the jbd2 layer once the commit has finished, 3903 * so we know we can free the blocks that were released with that commit. 3904 */ 3905 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3906 { 3907 struct ext4_sb_info *sbi = EXT4_SB(sb); 3908 struct ext4_free_data *entry, *tmp; 3909 LIST_HEAD(freed_data_list); 3910 struct list_head *cut_pos = NULL; 3911 bool wake; 3912 3913 spin_lock(&sbi->s_md_lock); 3914 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 3915 if (entry->efd_tid != commit_tid) 3916 break; 3917 cut_pos = &entry->efd_list; 3918 } 3919 if (cut_pos) 3920 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 3921 cut_pos); 3922 spin_unlock(&sbi->s_md_lock); 3923 3924 list_for_each_entry(entry, &freed_data_list, efd_list) 3925 ext4_free_data_in_buddy(sb, entry); 3926 3927 if (test_opt(sb, DISCARD)) { 3928 spin_lock(&sbi->s_md_lock); 3929 wake = list_empty(&sbi->s_discard_list); 3930 list_splice_tail(&freed_data_list, &sbi->s_discard_list); 3931 spin_unlock(&sbi->s_md_lock); 3932 if (wake) 3933 queue_work(system_unbound_wq, &sbi->s_discard_work); 3934 } else { 3935 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3936 kmem_cache_free(ext4_free_data_cachep, entry); 3937 } 3938 } 3939 3940 int __init ext4_init_mballoc(void) 3941 { 3942 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3943 SLAB_RECLAIM_ACCOUNT); 3944 if (ext4_pspace_cachep == NULL) 3945 goto out; 3946 3947 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3948 SLAB_RECLAIM_ACCOUNT); 3949 if (ext4_ac_cachep == NULL) 3950 goto out_pa_free; 3951 3952 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3953 SLAB_RECLAIM_ACCOUNT); 3954 if (ext4_free_data_cachep == NULL) 3955 goto out_ac_free; 3956 3957 return 0; 3958 3959 out_ac_free: 3960 kmem_cache_destroy(ext4_ac_cachep); 3961 out_pa_free: 3962 kmem_cache_destroy(ext4_pspace_cachep); 3963 out: 3964 return -ENOMEM; 3965 } 3966 3967 void ext4_exit_mballoc(void) 3968 { 3969 /* 3970 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3971 * before destroying the slab cache. 3972 */ 3973 rcu_barrier(); 3974 kmem_cache_destroy(ext4_pspace_cachep); 3975 kmem_cache_destroy(ext4_ac_cachep); 3976 kmem_cache_destroy(ext4_free_data_cachep); 3977 ext4_groupinfo_destroy_slabs(); 3978 } 3979 3980 3981 /* 3982 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 3983 * Returns 0 if success or error code 3984 */ 3985 static noinline_for_stack int 3986 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 3987 handle_t *handle, unsigned int reserv_clstrs) 3988 { 3989 struct buffer_head *bitmap_bh = NULL; 3990 struct ext4_group_desc *gdp; 3991 struct buffer_head *gdp_bh; 3992 struct ext4_sb_info *sbi; 3993 struct super_block *sb; 3994 ext4_fsblk_t block; 3995 int err, len; 3996 3997 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3998 BUG_ON(ac->ac_b_ex.fe_len <= 0); 3999 4000 sb = ac->ac_sb; 4001 sbi = EXT4_SB(sb); 4002 4003 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 4004 if (IS_ERR(bitmap_bh)) { 4005 return PTR_ERR(bitmap_bh); 4006 } 4007 4008 BUFFER_TRACE(bitmap_bh, "getting write access"); 4009 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 4010 EXT4_JTR_NONE); 4011 if (err) 4012 goto out_err; 4013 4014 err = -EIO; 4015 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 4016 if (!gdp) 4017 goto out_err; 4018 4019 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 4020 ext4_free_group_clusters(sb, gdp)); 4021 4022 BUFFER_TRACE(gdp_bh, "get_write_access"); 4023 err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE); 4024 if (err) 4025 goto out_err; 4026 4027 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4028 4029 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4030 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 4031 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 4032 "fs metadata", block, block+len); 4033 /* File system mounted not to panic on error 4034 * Fix the bitmap and return EFSCORRUPTED 4035 * We leak some of the blocks here. 4036 */ 4037 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 4038 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 4039 ac->ac_b_ex.fe_len); 4040 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 4041 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4042 if (!err) 4043 err = -EFSCORRUPTED; 4044 goto out_err; 4045 } 4046 4047 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 4048 #ifdef AGGRESSIVE_CHECK 4049 { 4050 int i; 4051 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 4052 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 4053 bitmap_bh->b_data)); 4054 } 4055 } 4056 #endif 4057 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 4058 ac->ac_b_ex.fe_len); 4059 if (ext4_has_group_desc_csum(sb) && 4060 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4061 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4062 ext4_free_group_clusters_set(sb, gdp, 4063 ext4_free_clusters_after_init(sb, 4064 ac->ac_b_ex.fe_group, gdp)); 4065 } 4066 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 4067 ext4_free_group_clusters_set(sb, gdp, len); 4068 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4069 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 4070 4071 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 4072 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 4073 /* 4074 * Now reduce the dirty block count also. Should not go negative 4075 */ 4076 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 4077 /* release all the reserved blocks if non delalloc */ 4078 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4079 reserv_clstrs); 4080 4081 if (sbi->s_log_groups_per_flex) { 4082 ext4_group_t flex_group = ext4_flex_group(sbi, 4083 ac->ac_b_ex.fe_group); 4084 atomic64_sub(ac->ac_b_ex.fe_len, 4085 &sbi_array_rcu_deref(sbi, s_flex_groups, 4086 flex_group)->free_clusters); 4087 } 4088 4089 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4090 if (err) 4091 goto out_err; 4092 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 4093 4094 out_err: 4095 brelse(bitmap_bh); 4096 return err; 4097 } 4098 4099 /* 4100 * Idempotent helper for Ext4 fast commit replay path to set the state of 4101 * blocks in bitmaps and update counters. 4102 */ 4103 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 4104 int len, int state) 4105 { 4106 struct buffer_head *bitmap_bh = NULL; 4107 struct ext4_group_desc *gdp; 4108 struct buffer_head *gdp_bh; 4109 struct ext4_sb_info *sbi = EXT4_SB(sb); 4110 ext4_group_t group; 4111 ext4_grpblk_t blkoff; 4112 int i, err = 0; 4113 int already; 4114 unsigned int clen, clen_changed, thisgrp_len; 4115 4116 while (len > 0) { 4117 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 4118 4119 /* 4120 * Check to see if we are freeing blocks across a group 4121 * boundary. 4122 * In case of flex_bg, this can happen that (block, len) may 4123 * span across more than one group. In that case we need to 4124 * get the corresponding group metadata to work with. 4125 * For this we have goto again loop. 4126 */ 4127 thisgrp_len = min_t(unsigned int, (unsigned int)len, 4128 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); 4129 clen = EXT4_NUM_B2C(sbi, thisgrp_len); 4130 4131 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) { 4132 ext4_error(sb, "Marking blocks in system zone - " 4133 "Block = %llu, len = %u", 4134 block, thisgrp_len); 4135 bitmap_bh = NULL; 4136 break; 4137 } 4138 4139 bitmap_bh = ext4_read_block_bitmap(sb, group); 4140 if (IS_ERR(bitmap_bh)) { 4141 err = PTR_ERR(bitmap_bh); 4142 bitmap_bh = NULL; 4143 break; 4144 } 4145 4146 err = -EIO; 4147 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 4148 if (!gdp) 4149 break; 4150 4151 ext4_lock_group(sb, group); 4152 already = 0; 4153 for (i = 0; i < clen; i++) 4154 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == 4155 !state) 4156 already++; 4157 4158 clen_changed = clen - already; 4159 if (state) 4160 mb_set_bits(bitmap_bh->b_data, blkoff, clen); 4161 else 4162 mb_clear_bits(bitmap_bh->b_data, blkoff, clen); 4163 if (ext4_has_group_desc_csum(sb) && 4164 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4165 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4166 ext4_free_group_clusters_set(sb, gdp, 4167 ext4_free_clusters_after_init(sb, group, gdp)); 4168 } 4169 if (state) 4170 clen = ext4_free_group_clusters(sb, gdp) - clen_changed; 4171 else 4172 clen = ext4_free_group_clusters(sb, gdp) + clen_changed; 4173 4174 ext4_free_group_clusters_set(sb, gdp, clen); 4175 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4176 ext4_group_desc_csum_set(sb, group, gdp); 4177 4178 ext4_unlock_group(sb, group); 4179 4180 if (sbi->s_log_groups_per_flex) { 4181 ext4_group_t flex_group = ext4_flex_group(sbi, group); 4182 struct flex_groups *fg = sbi_array_rcu_deref(sbi, 4183 s_flex_groups, flex_group); 4184 4185 if (state) 4186 atomic64_sub(clen_changed, &fg->free_clusters); 4187 else 4188 atomic64_add(clen_changed, &fg->free_clusters); 4189 4190 } 4191 4192 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 4193 if (err) 4194 break; 4195 sync_dirty_buffer(bitmap_bh); 4196 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 4197 sync_dirty_buffer(gdp_bh); 4198 if (err) 4199 break; 4200 4201 block += thisgrp_len; 4202 len -= thisgrp_len; 4203 brelse(bitmap_bh); 4204 BUG_ON(len < 0); 4205 } 4206 4207 if (err) 4208 brelse(bitmap_bh); 4209 } 4210 4211 /* 4212 * here we normalize request for locality group 4213 * Group request are normalized to s_mb_group_prealloc, which goes to 4214 * s_strip if we set the same via mount option. 4215 * s_mb_group_prealloc can be configured via 4216 * /sys/fs/ext4/<partition>/mb_group_prealloc 4217 * 4218 * XXX: should we try to preallocate more than the group has now? 4219 */ 4220 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 4221 { 4222 struct super_block *sb = ac->ac_sb; 4223 struct ext4_locality_group *lg = ac->ac_lg; 4224 4225 BUG_ON(lg == NULL); 4226 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 4227 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 4228 } 4229 4230 /* 4231 * This function returns the next element to look at during inode 4232 * PA rbtree walk. We assume that we have held the inode PA rbtree lock 4233 * (ei->i_prealloc_lock) 4234 * 4235 * new_start The start of the range we want to compare 4236 * cur_start The existing start that we are comparing against 4237 * node The node of the rb_tree 4238 */ 4239 static inline struct rb_node* 4240 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node) 4241 { 4242 if (new_start < cur_start) 4243 return node->rb_left; 4244 else 4245 return node->rb_right; 4246 } 4247 4248 static inline void 4249 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac, 4250 ext4_lblk_t start, loff_t end) 4251 { 4252 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4253 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4254 struct ext4_prealloc_space *tmp_pa; 4255 ext4_lblk_t tmp_pa_start; 4256 loff_t tmp_pa_end; 4257 struct rb_node *iter; 4258 4259 read_lock(&ei->i_prealloc_lock); 4260 for (iter = ei->i_prealloc_node.rb_node; iter; 4261 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) { 4262 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4263 pa_node.inode_node); 4264 tmp_pa_start = tmp_pa->pa_lstart; 4265 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4266 4267 spin_lock(&tmp_pa->pa_lock); 4268 if (tmp_pa->pa_deleted == 0) 4269 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start)); 4270 spin_unlock(&tmp_pa->pa_lock); 4271 } 4272 read_unlock(&ei->i_prealloc_lock); 4273 } 4274 4275 /* 4276 * Given an allocation context "ac" and a range "start", "end", check 4277 * and adjust boundaries if the range overlaps with any of the existing 4278 * preallocatoins stored in the corresponding inode of the allocation context. 4279 * 4280 * Parameters: 4281 * ac allocation context 4282 * start start of the new range 4283 * end end of the new range 4284 */ 4285 static inline void 4286 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac, 4287 ext4_lblk_t *start, loff_t *end) 4288 { 4289 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4290 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4291 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL; 4292 struct rb_node *iter; 4293 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1; 4294 loff_t new_end, tmp_pa_end, left_pa_end = -1; 4295 4296 new_start = *start; 4297 new_end = *end; 4298 4299 /* 4300 * Adjust the normalized range so that it doesn't overlap with any 4301 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock 4302 * so it doesn't change underneath us. 4303 */ 4304 read_lock(&ei->i_prealloc_lock); 4305 4306 /* Step 1: find any one immediate neighboring PA of the normalized range */ 4307 for (iter = ei->i_prealloc_node.rb_node; iter; 4308 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4309 tmp_pa_start, iter)) { 4310 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4311 pa_node.inode_node); 4312 tmp_pa_start = tmp_pa->pa_lstart; 4313 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4314 4315 /* PA must not overlap original request */ 4316 spin_lock(&tmp_pa->pa_lock); 4317 if (tmp_pa->pa_deleted == 0) 4318 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end || 4319 ac->ac_o_ex.fe_logical < tmp_pa_start)); 4320 spin_unlock(&tmp_pa->pa_lock); 4321 } 4322 4323 /* 4324 * Step 2: check if the found PA is left or right neighbor and 4325 * get the other neighbor 4326 */ 4327 if (tmp_pa) { 4328 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) { 4329 struct rb_node *tmp; 4330 4331 left_pa = tmp_pa; 4332 tmp = rb_next(&left_pa->pa_node.inode_node); 4333 if (tmp) { 4334 right_pa = rb_entry(tmp, 4335 struct ext4_prealloc_space, 4336 pa_node.inode_node); 4337 } 4338 } else { 4339 struct rb_node *tmp; 4340 4341 right_pa = tmp_pa; 4342 tmp = rb_prev(&right_pa->pa_node.inode_node); 4343 if (tmp) { 4344 left_pa = rb_entry(tmp, 4345 struct ext4_prealloc_space, 4346 pa_node.inode_node); 4347 } 4348 } 4349 } 4350 4351 /* Step 3: get the non deleted neighbors */ 4352 if (left_pa) { 4353 for (iter = &left_pa->pa_node.inode_node;; 4354 iter = rb_prev(iter)) { 4355 if (!iter) { 4356 left_pa = NULL; 4357 break; 4358 } 4359 4360 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4361 pa_node.inode_node); 4362 left_pa = tmp_pa; 4363 spin_lock(&tmp_pa->pa_lock); 4364 if (tmp_pa->pa_deleted == 0) { 4365 spin_unlock(&tmp_pa->pa_lock); 4366 break; 4367 } 4368 spin_unlock(&tmp_pa->pa_lock); 4369 } 4370 } 4371 4372 if (right_pa) { 4373 for (iter = &right_pa->pa_node.inode_node;; 4374 iter = rb_next(iter)) { 4375 if (!iter) { 4376 right_pa = NULL; 4377 break; 4378 } 4379 4380 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4381 pa_node.inode_node); 4382 right_pa = tmp_pa; 4383 spin_lock(&tmp_pa->pa_lock); 4384 if (tmp_pa->pa_deleted == 0) { 4385 spin_unlock(&tmp_pa->pa_lock); 4386 break; 4387 } 4388 spin_unlock(&tmp_pa->pa_lock); 4389 } 4390 } 4391 4392 if (left_pa) { 4393 left_pa_end = pa_logical_end(sbi, left_pa); 4394 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical); 4395 } 4396 4397 if (right_pa) { 4398 right_pa_start = right_pa->pa_lstart; 4399 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical); 4400 } 4401 4402 /* Step 4: trim our normalized range to not overlap with the neighbors */ 4403 if (left_pa) { 4404 if (left_pa_end > new_start) 4405 new_start = left_pa_end; 4406 } 4407 4408 if (right_pa) { 4409 if (right_pa_start < new_end) 4410 new_end = right_pa_start; 4411 } 4412 read_unlock(&ei->i_prealloc_lock); 4413 4414 /* XXX: extra loop to check we really don't overlap preallocations */ 4415 ext4_mb_pa_assert_overlap(ac, new_start, new_end); 4416 4417 *start = new_start; 4418 *end = new_end; 4419 } 4420 4421 /* 4422 * Normalization means making request better in terms of 4423 * size and alignment 4424 */ 4425 static noinline_for_stack void 4426 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 4427 struct ext4_allocation_request *ar) 4428 { 4429 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4430 struct ext4_super_block *es = sbi->s_es; 4431 int bsbits, max; 4432 loff_t size, start_off, end; 4433 loff_t orig_size __maybe_unused; 4434 ext4_lblk_t start; 4435 4436 /* do normalize only data requests, metadata requests 4437 do not need preallocation */ 4438 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4439 return; 4440 4441 /* sometime caller may want exact blocks */ 4442 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4443 return; 4444 4445 /* caller may indicate that preallocation isn't 4446 * required (it's a tail, for example) */ 4447 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 4448 return; 4449 4450 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 4451 ext4_mb_normalize_group_request(ac); 4452 return ; 4453 } 4454 4455 bsbits = ac->ac_sb->s_blocksize_bits; 4456 4457 /* first, let's learn actual file size 4458 * given current request is allocated */ 4459 size = extent_logical_end(sbi, &ac->ac_o_ex); 4460 size = size << bsbits; 4461 if (size < i_size_read(ac->ac_inode)) 4462 size = i_size_read(ac->ac_inode); 4463 orig_size = size; 4464 4465 /* max size of free chunks */ 4466 max = 2 << bsbits; 4467 4468 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 4469 (req <= (size) || max <= (chunk_size)) 4470 4471 /* first, try to predict filesize */ 4472 /* XXX: should this table be tunable? */ 4473 start_off = 0; 4474 if (size <= 16 * 1024) { 4475 size = 16 * 1024; 4476 } else if (size <= 32 * 1024) { 4477 size = 32 * 1024; 4478 } else if (size <= 64 * 1024) { 4479 size = 64 * 1024; 4480 } else if (size <= 128 * 1024) { 4481 size = 128 * 1024; 4482 } else if (size <= 256 * 1024) { 4483 size = 256 * 1024; 4484 } else if (size <= 512 * 1024) { 4485 size = 512 * 1024; 4486 } else if (size <= 1024 * 1024) { 4487 size = 1024 * 1024; 4488 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 4489 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4490 (21 - bsbits)) << 21; 4491 size = 2 * 1024 * 1024; 4492 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 4493 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4494 (22 - bsbits)) << 22; 4495 size = 4 * 1024 * 1024; 4496 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len), 4497 (8<<20)>>bsbits, max, 8 * 1024)) { 4498 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4499 (23 - bsbits)) << 23; 4500 size = 8 * 1024 * 1024; 4501 } else { 4502 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 4503 size = (loff_t) EXT4_C2B(sbi, 4504 ac->ac_o_ex.fe_len) << bsbits; 4505 } 4506 size = size >> bsbits; 4507 start = start_off >> bsbits; 4508 4509 /* 4510 * For tiny groups (smaller than 8MB) the chosen allocation 4511 * alignment may be larger than group size. Make sure the 4512 * alignment does not move allocation to a different group which 4513 * makes mballoc fail assertions later. 4514 */ 4515 start = max(start, rounddown(ac->ac_o_ex.fe_logical, 4516 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); 4517 4518 /* avoid unnecessary preallocation that may trigger assertions */ 4519 if (start + size > EXT_MAX_BLOCKS) 4520 size = EXT_MAX_BLOCKS - start; 4521 4522 /* don't cover already allocated blocks in selected range */ 4523 if (ar->pleft && start <= ar->lleft) { 4524 size -= ar->lleft + 1 - start; 4525 start = ar->lleft + 1; 4526 } 4527 if (ar->pright && start + size - 1 >= ar->lright) 4528 size -= start + size - ar->lright; 4529 4530 /* 4531 * Trim allocation request for filesystems with artificially small 4532 * groups. 4533 */ 4534 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 4535 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 4536 4537 end = start + size; 4538 4539 ext4_mb_pa_adjust_overlap(ac, &start, &end); 4540 4541 size = end - start; 4542 4543 /* 4544 * In this function "start" and "size" are normalized for better 4545 * alignment and length such that we could preallocate more blocks. 4546 * This normalization is done such that original request of 4547 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and 4548 * "size" boundaries. 4549 * (Note fe_len can be relaxed since FS block allocation API does not 4550 * provide gurantee on number of contiguous blocks allocation since that 4551 * depends upon free space left, etc). 4552 * In case of inode pa, later we use the allocated blocks 4553 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated 4554 * range of goal/best blocks [start, size] to put it at the 4555 * ac_o_ex.fe_logical extent of this inode. 4556 * (See ext4_mb_use_inode_pa() for more details) 4557 */ 4558 if (start + size <= ac->ac_o_ex.fe_logical || 4559 start > ac->ac_o_ex.fe_logical) { 4560 ext4_msg(ac->ac_sb, KERN_ERR, 4561 "start %lu, size %lu, fe_logical %lu", 4562 (unsigned long) start, (unsigned long) size, 4563 (unsigned long) ac->ac_o_ex.fe_logical); 4564 BUG(); 4565 } 4566 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 4567 4568 /* now prepare goal request */ 4569 4570 /* XXX: is it better to align blocks WRT to logical 4571 * placement or satisfy big request as is */ 4572 ac->ac_g_ex.fe_logical = start; 4573 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 4574 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 4575 4576 /* define goal start in order to merge */ 4577 if (ar->pright && (ar->lright == (start + size)) && 4578 ar->pright >= size && 4579 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) { 4580 /* merge to the right */ 4581 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 4582 &ac->ac_g_ex.fe_group, 4583 &ac->ac_g_ex.fe_start); 4584 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4585 } 4586 if (ar->pleft && (ar->lleft + 1 == start) && 4587 ar->pleft + 1 < ext4_blocks_count(es)) { 4588 /* merge to the left */ 4589 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 4590 &ac->ac_g_ex.fe_group, 4591 &ac->ac_g_ex.fe_start); 4592 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4593 } 4594 4595 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 4596 orig_size, start); 4597 } 4598 4599 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 4600 { 4601 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4602 4603 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 4604 atomic_inc(&sbi->s_bal_reqs); 4605 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 4606 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 4607 atomic_inc(&sbi->s_bal_success); 4608 4609 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 4610 for (int i=0; i<EXT4_MB_NUM_CRS; i++) { 4611 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]); 4612 } 4613 4614 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 4615 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 4616 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 4617 atomic_inc(&sbi->s_bal_goals); 4618 /* did we allocate as much as normalizer originally wanted? */ 4619 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len) 4620 atomic_inc(&sbi->s_bal_len_goals); 4621 4622 if (ac->ac_found > sbi->s_mb_max_to_scan) 4623 atomic_inc(&sbi->s_bal_breaks); 4624 } 4625 4626 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 4627 trace_ext4_mballoc_alloc(ac); 4628 else 4629 trace_ext4_mballoc_prealloc(ac); 4630 } 4631 4632 /* 4633 * Called on failure; free up any blocks from the inode PA for this 4634 * context. We don't need this for MB_GROUP_PA because we only change 4635 * pa_free in ext4_mb_release_context(), but on failure, we've already 4636 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 4637 */ 4638 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 4639 { 4640 struct ext4_prealloc_space *pa = ac->ac_pa; 4641 struct ext4_buddy e4b; 4642 int err; 4643 4644 if (pa == NULL) { 4645 if (ac->ac_f_ex.fe_len == 0) 4646 return; 4647 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 4648 if (WARN_RATELIMIT(err, 4649 "ext4: mb_load_buddy failed (%d)", err)) 4650 /* 4651 * This should never happen since we pin the 4652 * pages in the ext4_allocation_context so 4653 * ext4_mb_load_buddy() should never fail. 4654 */ 4655 return; 4656 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4657 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 4658 ac->ac_f_ex.fe_len); 4659 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4660 ext4_mb_unload_buddy(&e4b); 4661 return; 4662 } 4663 if (pa->pa_type == MB_INODE_PA) { 4664 spin_lock(&pa->pa_lock); 4665 pa->pa_free += ac->ac_b_ex.fe_len; 4666 spin_unlock(&pa->pa_lock); 4667 } 4668 } 4669 4670 /* 4671 * use blocks preallocated to inode 4672 */ 4673 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 4674 struct ext4_prealloc_space *pa) 4675 { 4676 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4677 ext4_fsblk_t start; 4678 ext4_fsblk_t end; 4679 int len; 4680 4681 /* found preallocated blocks, use them */ 4682 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 4683 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 4684 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 4685 len = EXT4_NUM_B2C(sbi, end - start); 4686 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 4687 &ac->ac_b_ex.fe_start); 4688 ac->ac_b_ex.fe_len = len; 4689 ac->ac_status = AC_STATUS_FOUND; 4690 ac->ac_pa = pa; 4691 4692 BUG_ON(start < pa->pa_pstart); 4693 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 4694 BUG_ON(pa->pa_free < len); 4695 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4696 pa->pa_free -= len; 4697 4698 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 4699 } 4700 4701 /* 4702 * use blocks preallocated to locality group 4703 */ 4704 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 4705 struct ext4_prealloc_space *pa) 4706 { 4707 unsigned int len = ac->ac_o_ex.fe_len; 4708 4709 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 4710 &ac->ac_b_ex.fe_group, 4711 &ac->ac_b_ex.fe_start); 4712 ac->ac_b_ex.fe_len = len; 4713 ac->ac_status = AC_STATUS_FOUND; 4714 ac->ac_pa = pa; 4715 4716 /* we don't correct pa_pstart or pa_len here to avoid 4717 * possible race when the group is being loaded concurrently 4718 * instead we correct pa later, after blocks are marked 4719 * in on-disk bitmap -- see ext4_mb_release_context() 4720 * Other CPUs are prevented from allocating from this pa by lg_mutex 4721 */ 4722 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 4723 pa->pa_lstart, len, pa); 4724 } 4725 4726 /* 4727 * Return the prealloc space that have minimal distance 4728 * from the goal block. @cpa is the prealloc 4729 * space that is having currently known minimal distance 4730 * from the goal block. 4731 */ 4732 static struct ext4_prealloc_space * 4733 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 4734 struct ext4_prealloc_space *pa, 4735 struct ext4_prealloc_space *cpa) 4736 { 4737 ext4_fsblk_t cur_distance, new_distance; 4738 4739 if (cpa == NULL) { 4740 atomic_inc(&pa->pa_count); 4741 return pa; 4742 } 4743 cur_distance = abs(goal_block - cpa->pa_pstart); 4744 new_distance = abs(goal_block - pa->pa_pstart); 4745 4746 if (cur_distance <= new_distance) 4747 return cpa; 4748 4749 /* drop the previous reference */ 4750 atomic_dec(&cpa->pa_count); 4751 atomic_inc(&pa->pa_count); 4752 return pa; 4753 } 4754 4755 /* 4756 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY 4757 */ 4758 static bool 4759 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac, 4760 struct ext4_prealloc_space *pa) 4761 { 4762 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4763 ext4_fsblk_t start; 4764 4765 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))) 4766 return true; 4767 4768 /* 4769 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted 4770 * in ext4_mb_normalize_request and will keep same with ac_o_ex 4771 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep 4772 * consistent with ext4_mb_find_by_goal. 4773 */ 4774 start = pa->pa_pstart + 4775 (ac->ac_g_ex.fe_logical - pa->pa_lstart); 4776 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start) 4777 return false; 4778 4779 if (ac->ac_g_ex.fe_len > pa->pa_len - 4780 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart)) 4781 return false; 4782 4783 return true; 4784 } 4785 4786 /* 4787 * search goal blocks in preallocated space 4788 */ 4789 static noinline_for_stack bool 4790 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 4791 { 4792 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4793 int order, i; 4794 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4795 struct ext4_locality_group *lg; 4796 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL; 4797 struct rb_node *iter; 4798 ext4_fsblk_t goal_block; 4799 4800 /* only data can be preallocated */ 4801 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4802 return false; 4803 4804 /* 4805 * first, try per-file preallocation by searching the inode pa rbtree. 4806 * 4807 * Here, we can't do a direct traversal of the tree because 4808 * ext4_mb_discard_group_preallocation() can paralelly mark the pa 4809 * deleted and that can cause direct traversal to skip some entries. 4810 */ 4811 read_lock(&ei->i_prealloc_lock); 4812 4813 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) { 4814 goto try_group_pa; 4815 } 4816 4817 /* 4818 * Step 1: Find a pa with logical start immediately adjacent to the 4819 * original logical start. This could be on the left or right. 4820 * 4821 * (tmp_pa->pa_lstart never changes so we can skip locking for it). 4822 */ 4823 for (iter = ei->i_prealloc_node.rb_node; iter; 4824 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4825 tmp_pa->pa_lstart, iter)) { 4826 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4827 pa_node.inode_node); 4828 } 4829 4830 /* 4831 * Step 2: The adjacent pa might be to the right of logical start, find 4832 * the left adjacent pa. After this step we'd have a valid tmp_pa whose 4833 * logical start is towards the left of original request's logical start 4834 */ 4835 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) { 4836 struct rb_node *tmp; 4837 tmp = rb_prev(&tmp_pa->pa_node.inode_node); 4838 4839 if (tmp) { 4840 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space, 4841 pa_node.inode_node); 4842 } else { 4843 /* 4844 * If there is no adjacent pa to the left then finding 4845 * an overlapping pa is not possible hence stop searching 4846 * inode pa tree 4847 */ 4848 goto try_group_pa; 4849 } 4850 } 4851 4852 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4853 4854 /* 4855 * Step 3: If the left adjacent pa is deleted, keep moving left to find 4856 * the first non deleted adjacent pa. After this step we should have a 4857 * valid tmp_pa which is guaranteed to be non deleted. 4858 */ 4859 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) { 4860 if (!iter) { 4861 /* 4862 * no non deleted left adjacent pa, so stop searching 4863 * inode pa tree 4864 */ 4865 goto try_group_pa; 4866 } 4867 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4868 pa_node.inode_node); 4869 spin_lock(&tmp_pa->pa_lock); 4870 if (tmp_pa->pa_deleted == 0) { 4871 /* 4872 * We will keep holding the pa_lock from 4873 * this point on because we don't want group discard 4874 * to delete this pa underneath us. Since group 4875 * discard is anyways an ENOSPC operation it 4876 * should be okay for it to wait a few more cycles. 4877 */ 4878 break; 4879 } else { 4880 spin_unlock(&tmp_pa->pa_lock); 4881 } 4882 } 4883 4884 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4885 BUG_ON(tmp_pa->pa_deleted == 1); 4886 4887 /* 4888 * Step 4: We now have the non deleted left adjacent pa. Only this 4889 * pa can possibly satisfy the request hence check if it overlaps 4890 * original logical start and stop searching if it doesn't. 4891 */ 4892 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) { 4893 spin_unlock(&tmp_pa->pa_lock); 4894 goto try_group_pa; 4895 } 4896 4897 /* non-extent files can't have physical blocks past 2^32 */ 4898 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 4899 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) > 4900 EXT4_MAX_BLOCK_FILE_PHYS)) { 4901 /* 4902 * Since PAs don't overlap, we won't find any other PA to 4903 * satisfy this. 4904 */ 4905 spin_unlock(&tmp_pa->pa_lock); 4906 goto try_group_pa; 4907 } 4908 4909 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) { 4910 atomic_inc(&tmp_pa->pa_count); 4911 ext4_mb_use_inode_pa(ac, tmp_pa); 4912 spin_unlock(&tmp_pa->pa_lock); 4913 read_unlock(&ei->i_prealloc_lock); 4914 return true; 4915 } else { 4916 /* 4917 * We found a valid overlapping pa but couldn't use it because 4918 * it had no free blocks. This should ideally never happen 4919 * because: 4920 * 4921 * 1. When a new inode pa is added to rbtree it must have 4922 * pa_free > 0 since otherwise we won't actually need 4923 * preallocation. 4924 * 4925 * 2. An inode pa that is in the rbtree can only have it's 4926 * pa_free become zero when another thread calls: 4927 * ext4_mb_new_blocks 4928 * ext4_mb_use_preallocated 4929 * ext4_mb_use_inode_pa 4930 * 4931 * 3. Further, after the above calls make pa_free == 0, we will 4932 * immediately remove it from the rbtree in: 4933 * ext4_mb_new_blocks 4934 * ext4_mb_release_context 4935 * ext4_mb_put_pa 4936 * 4937 * 4. Since the pa_free becoming 0 and pa_free getting removed 4938 * from tree both happen in ext4_mb_new_blocks, which is always 4939 * called with i_data_sem held for data allocations, we can be 4940 * sure that another process will never see a pa in rbtree with 4941 * pa_free == 0. 4942 */ 4943 WARN_ON_ONCE(tmp_pa->pa_free == 0); 4944 } 4945 spin_unlock(&tmp_pa->pa_lock); 4946 try_group_pa: 4947 read_unlock(&ei->i_prealloc_lock); 4948 4949 /* can we use group allocation? */ 4950 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 4951 return false; 4952 4953 /* inode may have no locality group for some reason */ 4954 lg = ac->ac_lg; 4955 if (lg == NULL) 4956 return false; 4957 order = fls(ac->ac_o_ex.fe_len) - 1; 4958 if (order > PREALLOC_TB_SIZE - 1) 4959 /* The max size of hash table is PREALLOC_TB_SIZE */ 4960 order = PREALLOC_TB_SIZE - 1; 4961 4962 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 4963 /* 4964 * search for the prealloc space that is having 4965 * minimal distance from the goal block. 4966 */ 4967 for (i = order; i < PREALLOC_TB_SIZE; i++) { 4968 rcu_read_lock(); 4969 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i], 4970 pa_node.lg_list) { 4971 spin_lock(&tmp_pa->pa_lock); 4972 if (tmp_pa->pa_deleted == 0 && 4973 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) { 4974 4975 cpa = ext4_mb_check_group_pa(goal_block, 4976 tmp_pa, cpa); 4977 } 4978 spin_unlock(&tmp_pa->pa_lock); 4979 } 4980 rcu_read_unlock(); 4981 } 4982 if (cpa) { 4983 ext4_mb_use_group_pa(ac, cpa); 4984 return true; 4985 } 4986 return false; 4987 } 4988 4989 /* 4990 * the function goes through all preallocation in this group and marks them 4991 * used in in-core bitmap. buddy must be generated from this bitmap 4992 * Need to be called with ext4 group lock held 4993 */ 4994 static noinline_for_stack 4995 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 4996 ext4_group_t group) 4997 { 4998 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4999 struct ext4_prealloc_space *pa; 5000 struct list_head *cur; 5001 ext4_group_t groupnr; 5002 ext4_grpblk_t start; 5003 int preallocated = 0; 5004 int len; 5005 5006 if (!grp) 5007 return; 5008 5009 /* all form of preallocation discards first load group, 5010 * so the only competing code is preallocation use. 5011 * we don't need any locking here 5012 * notice we do NOT ignore preallocations with pa_deleted 5013 * otherwise we could leave used blocks available for 5014 * allocation in buddy when concurrent ext4_mb_put_pa() 5015 * is dropping preallocation 5016 */ 5017 list_for_each(cur, &grp->bb_prealloc_list) { 5018 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 5019 spin_lock(&pa->pa_lock); 5020 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5021 &groupnr, &start); 5022 len = pa->pa_len; 5023 spin_unlock(&pa->pa_lock); 5024 if (unlikely(len == 0)) 5025 continue; 5026 BUG_ON(groupnr != group); 5027 mb_set_bits(bitmap, start, len); 5028 preallocated += len; 5029 } 5030 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 5031 } 5032 5033 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 5034 struct ext4_prealloc_space *pa) 5035 { 5036 struct ext4_inode_info *ei; 5037 5038 if (pa->pa_deleted) { 5039 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 5040 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 5041 pa->pa_len); 5042 return; 5043 } 5044 5045 pa->pa_deleted = 1; 5046 5047 if (pa->pa_type == MB_INODE_PA) { 5048 ei = EXT4_I(pa->pa_inode); 5049 atomic_dec(&ei->i_prealloc_active); 5050 } 5051 } 5052 5053 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa) 5054 { 5055 BUG_ON(!pa); 5056 BUG_ON(atomic_read(&pa->pa_count)); 5057 BUG_ON(pa->pa_deleted == 0); 5058 kmem_cache_free(ext4_pspace_cachep, pa); 5059 } 5060 5061 static void ext4_mb_pa_callback(struct rcu_head *head) 5062 { 5063 struct ext4_prealloc_space *pa; 5064 5065 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 5066 ext4_mb_pa_free(pa); 5067 } 5068 5069 /* 5070 * drops a reference to preallocated space descriptor 5071 * if this was the last reference and the space is consumed 5072 */ 5073 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 5074 struct super_block *sb, struct ext4_prealloc_space *pa) 5075 { 5076 ext4_group_t grp; 5077 ext4_fsblk_t grp_blk; 5078 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 5079 5080 /* in this short window concurrent discard can set pa_deleted */ 5081 spin_lock(&pa->pa_lock); 5082 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 5083 spin_unlock(&pa->pa_lock); 5084 return; 5085 } 5086 5087 if (pa->pa_deleted == 1) { 5088 spin_unlock(&pa->pa_lock); 5089 return; 5090 } 5091 5092 ext4_mb_mark_pa_deleted(sb, pa); 5093 spin_unlock(&pa->pa_lock); 5094 5095 grp_blk = pa->pa_pstart; 5096 /* 5097 * If doing group-based preallocation, pa_pstart may be in the 5098 * next group when pa is used up 5099 */ 5100 if (pa->pa_type == MB_GROUP_PA) 5101 grp_blk--; 5102 5103 grp = ext4_get_group_number(sb, grp_blk); 5104 5105 /* 5106 * possible race: 5107 * 5108 * P1 (buddy init) P2 (regular allocation) 5109 * find block B in PA 5110 * copy on-disk bitmap to buddy 5111 * mark B in on-disk bitmap 5112 * drop PA from group 5113 * mark all PAs in buddy 5114 * 5115 * thus, P1 initializes buddy with B available. to prevent this 5116 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 5117 * against that pair 5118 */ 5119 ext4_lock_group(sb, grp); 5120 list_del(&pa->pa_group_list); 5121 ext4_unlock_group(sb, grp); 5122 5123 if (pa->pa_type == MB_INODE_PA) { 5124 write_lock(pa->pa_node_lock.inode_lock); 5125 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5126 write_unlock(pa->pa_node_lock.inode_lock); 5127 ext4_mb_pa_free(pa); 5128 } else { 5129 spin_lock(pa->pa_node_lock.lg_lock); 5130 list_del_rcu(&pa->pa_node.lg_list); 5131 spin_unlock(pa->pa_node_lock.lg_lock); 5132 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5133 } 5134 } 5135 5136 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new) 5137 { 5138 struct rb_node **iter = &root->rb_node, *parent = NULL; 5139 struct ext4_prealloc_space *iter_pa, *new_pa; 5140 ext4_lblk_t iter_start, new_start; 5141 5142 while (*iter) { 5143 iter_pa = rb_entry(*iter, struct ext4_prealloc_space, 5144 pa_node.inode_node); 5145 new_pa = rb_entry(new, struct ext4_prealloc_space, 5146 pa_node.inode_node); 5147 iter_start = iter_pa->pa_lstart; 5148 new_start = new_pa->pa_lstart; 5149 5150 parent = *iter; 5151 if (new_start < iter_start) 5152 iter = &((*iter)->rb_left); 5153 else 5154 iter = &((*iter)->rb_right); 5155 } 5156 5157 rb_link_node(new, parent, iter); 5158 rb_insert_color(new, root); 5159 } 5160 5161 /* 5162 * creates new preallocated space for given inode 5163 */ 5164 static noinline_for_stack void 5165 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 5166 { 5167 struct super_block *sb = ac->ac_sb; 5168 struct ext4_sb_info *sbi = EXT4_SB(sb); 5169 struct ext4_prealloc_space *pa; 5170 struct ext4_group_info *grp; 5171 struct ext4_inode_info *ei; 5172 5173 /* preallocate only when found space is larger then requested */ 5174 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5175 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5176 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5177 BUG_ON(ac->ac_pa == NULL); 5178 5179 pa = ac->ac_pa; 5180 5181 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) { 5182 struct ext4_free_extent ex = { 5183 .fe_logical = ac->ac_g_ex.fe_logical, 5184 .fe_len = ac->ac_orig_goal_len, 5185 }; 5186 loff_t orig_goal_end = extent_logical_end(sbi, &ex); 5187 5188 /* we can't allocate as much as normalizer wants. 5189 * so, found space must get proper lstart 5190 * to cover original request */ 5191 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 5192 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 5193 5194 /* 5195 * Use the below logic for adjusting best extent as it keeps 5196 * fragmentation in check while ensuring logical range of best 5197 * extent doesn't overflow out of goal extent: 5198 * 5199 * 1. Check if best ex can be kept at end of goal (before 5200 * cr_best_avail trimmed it) and still cover original start 5201 * 2. Else, check if best ex can be kept at start of goal and 5202 * still cover original start 5203 * 3. Else, keep the best ex at start of original request. 5204 */ 5205 ex.fe_len = ac->ac_b_ex.fe_len; 5206 5207 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len); 5208 if (ac->ac_o_ex.fe_logical >= ex.fe_logical) 5209 goto adjust_bex; 5210 5211 ex.fe_logical = ac->ac_g_ex.fe_logical; 5212 if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex)) 5213 goto adjust_bex; 5214 5215 ex.fe_logical = ac->ac_o_ex.fe_logical; 5216 adjust_bex: 5217 ac->ac_b_ex.fe_logical = ex.fe_logical; 5218 5219 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 5220 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 5221 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end); 5222 } 5223 5224 pa->pa_lstart = ac->ac_b_ex.fe_logical; 5225 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5226 pa->pa_len = ac->ac_b_ex.fe_len; 5227 pa->pa_free = pa->pa_len; 5228 spin_lock_init(&pa->pa_lock); 5229 INIT_LIST_HEAD(&pa->pa_group_list); 5230 pa->pa_deleted = 0; 5231 pa->pa_type = MB_INODE_PA; 5232 5233 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5234 pa->pa_len, pa->pa_lstart); 5235 trace_ext4_mb_new_inode_pa(ac, pa); 5236 5237 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 5238 ext4_mb_use_inode_pa(ac, pa); 5239 5240 ei = EXT4_I(ac->ac_inode); 5241 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5242 if (!grp) 5243 return; 5244 5245 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock; 5246 pa->pa_inode = ac->ac_inode; 5247 5248 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5249 5250 write_lock(pa->pa_node_lock.inode_lock); 5251 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node); 5252 write_unlock(pa->pa_node_lock.inode_lock); 5253 atomic_inc(&ei->i_prealloc_active); 5254 } 5255 5256 /* 5257 * creates new preallocated space for locality group inodes belongs to 5258 */ 5259 static noinline_for_stack void 5260 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 5261 { 5262 struct super_block *sb = ac->ac_sb; 5263 struct ext4_locality_group *lg; 5264 struct ext4_prealloc_space *pa; 5265 struct ext4_group_info *grp; 5266 5267 /* preallocate only when found space is larger then requested */ 5268 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5269 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5270 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5271 BUG_ON(ac->ac_pa == NULL); 5272 5273 pa = ac->ac_pa; 5274 5275 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5276 pa->pa_lstart = pa->pa_pstart; 5277 pa->pa_len = ac->ac_b_ex.fe_len; 5278 pa->pa_free = pa->pa_len; 5279 spin_lock_init(&pa->pa_lock); 5280 INIT_LIST_HEAD(&pa->pa_node.lg_list); 5281 INIT_LIST_HEAD(&pa->pa_group_list); 5282 pa->pa_deleted = 0; 5283 pa->pa_type = MB_GROUP_PA; 5284 5285 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5286 pa->pa_len, pa->pa_lstart); 5287 trace_ext4_mb_new_group_pa(ac, pa); 5288 5289 ext4_mb_use_group_pa(ac, pa); 5290 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 5291 5292 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5293 if (!grp) 5294 return; 5295 lg = ac->ac_lg; 5296 BUG_ON(lg == NULL); 5297 5298 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock; 5299 pa->pa_inode = NULL; 5300 5301 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5302 5303 /* 5304 * We will later add the new pa to the right bucket 5305 * after updating the pa_free in ext4_mb_release_context 5306 */ 5307 } 5308 5309 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 5310 { 5311 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5312 ext4_mb_new_group_pa(ac); 5313 else 5314 ext4_mb_new_inode_pa(ac); 5315 } 5316 5317 /* 5318 * finds all unused blocks in on-disk bitmap, frees them in 5319 * in-core bitmap and buddy. 5320 * @pa must be unlinked from inode and group lists, so that 5321 * nobody else can find/use it. 5322 * the caller MUST hold group/inode locks. 5323 * TODO: optimize the case when there are no in-core structures yet 5324 */ 5325 static noinline_for_stack int 5326 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 5327 struct ext4_prealloc_space *pa) 5328 { 5329 struct super_block *sb = e4b->bd_sb; 5330 struct ext4_sb_info *sbi = EXT4_SB(sb); 5331 unsigned int end; 5332 unsigned int next; 5333 ext4_group_t group; 5334 ext4_grpblk_t bit; 5335 unsigned long long grp_blk_start; 5336 int free = 0; 5337 5338 BUG_ON(pa->pa_deleted == 0); 5339 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5340 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 5341 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 5342 end = bit + pa->pa_len; 5343 5344 while (bit < end) { 5345 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 5346 if (bit >= end) 5347 break; 5348 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 5349 mb_debug(sb, "free preallocated %u/%u in group %u\n", 5350 (unsigned) ext4_group_first_block_no(sb, group) + bit, 5351 (unsigned) next - bit, (unsigned) group); 5352 free += next - bit; 5353 5354 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 5355 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 5356 EXT4_C2B(sbi, bit)), 5357 next - bit); 5358 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 5359 bit = next + 1; 5360 } 5361 if (free != pa->pa_free) { 5362 ext4_msg(e4b->bd_sb, KERN_CRIT, 5363 "pa %p: logic %lu, phys. %lu, len %d", 5364 pa, (unsigned long) pa->pa_lstart, 5365 (unsigned long) pa->pa_pstart, 5366 pa->pa_len); 5367 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 5368 free, pa->pa_free); 5369 /* 5370 * pa is already deleted so we use the value obtained 5371 * from the bitmap and continue. 5372 */ 5373 } 5374 atomic_add(free, &sbi->s_mb_discarded); 5375 5376 return 0; 5377 } 5378 5379 static noinline_for_stack int 5380 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 5381 struct ext4_prealloc_space *pa) 5382 { 5383 struct super_block *sb = e4b->bd_sb; 5384 ext4_group_t group; 5385 ext4_grpblk_t bit; 5386 5387 trace_ext4_mb_release_group_pa(sb, pa); 5388 BUG_ON(pa->pa_deleted == 0); 5389 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5390 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) { 5391 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu", 5392 e4b->bd_group, group, pa->pa_pstart); 5393 return 0; 5394 } 5395 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 5396 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 5397 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 5398 5399 return 0; 5400 } 5401 5402 /* 5403 * releases all preallocations in given group 5404 * 5405 * first, we need to decide discard policy: 5406 * - when do we discard 5407 * 1) ENOSPC 5408 * - how many do we discard 5409 * 1) how many requested 5410 */ 5411 static noinline_for_stack int 5412 ext4_mb_discard_group_preallocations(struct super_block *sb, 5413 ext4_group_t group, int *busy) 5414 { 5415 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5416 struct buffer_head *bitmap_bh = NULL; 5417 struct ext4_prealloc_space *pa, *tmp; 5418 LIST_HEAD(list); 5419 struct ext4_buddy e4b; 5420 struct ext4_inode_info *ei; 5421 int err; 5422 int free = 0; 5423 5424 if (!grp) 5425 return 0; 5426 mb_debug(sb, "discard preallocation for group %u\n", group); 5427 if (list_empty(&grp->bb_prealloc_list)) 5428 goto out_dbg; 5429 5430 bitmap_bh = ext4_read_block_bitmap(sb, group); 5431 if (IS_ERR(bitmap_bh)) { 5432 err = PTR_ERR(bitmap_bh); 5433 ext4_error_err(sb, -err, 5434 "Error %d reading block bitmap for %u", 5435 err, group); 5436 goto out_dbg; 5437 } 5438 5439 err = ext4_mb_load_buddy(sb, group, &e4b); 5440 if (err) { 5441 ext4_warning(sb, "Error %d loading buddy information for %u", 5442 err, group); 5443 put_bh(bitmap_bh); 5444 goto out_dbg; 5445 } 5446 5447 ext4_lock_group(sb, group); 5448 list_for_each_entry_safe(pa, tmp, 5449 &grp->bb_prealloc_list, pa_group_list) { 5450 spin_lock(&pa->pa_lock); 5451 if (atomic_read(&pa->pa_count)) { 5452 spin_unlock(&pa->pa_lock); 5453 *busy = 1; 5454 continue; 5455 } 5456 if (pa->pa_deleted) { 5457 spin_unlock(&pa->pa_lock); 5458 continue; 5459 } 5460 5461 /* seems this one can be freed ... */ 5462 ext4_mb_mark_pa_deleted(sb, pa); 5463 5464 if (!free) 5465 this_cpu_inc(discard_pa_seq); 5466 5467 /* we can trust pa_free ... */ 5468 free += pa->pa_free; 5469 5470 spin_unlock(&pa->pa_lock); 5471 5472 list_del(&pa->pa_group_list); 5473 list_add(&pa->u.pa_tmp_list, &list); 5474 } 5475 5476 /* now free all selected PAs */ 5477 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5478 5479 /* remove from object (inode or locality group) */ 5480 if (pa->pa_type == MB_GROUP_PA) { 5481 spin_lock(pa->pa_node_lock.lg_lock); 5482 list_del_rcu(&pa->pa_node.lg_list); 5483 spin_unlock(pa->pa_node_lock.lg_lock); 5484 } else { 5485 write_lock(pa->pa_node_lock.inode_lock); 5486 ei = EXT4_I(pa->pa_inode); 5487 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5488 write_unlock(pa->pa_node_lock.inode_lock); 5489 } 5490 5491 list_del(&pa->u.pa_tmp_list); 5492 5493 if (pa->pa_type == MB_GROUP_PA) { 5494 ext4_mb_release_group_pa(&e4b, pa); 5495 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5496 } else { 5497 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5498 ext4_mb_pa_free(pa); 5499 } 5500 } 5501 5502 ext4_unlock_group(sb, group); 5503 ext4_mb_unload_buddy(&e4b); 5504 put_bh(bitmap_bh); 5505 out_dbg: 5506 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 5507 free, group, grp->bb_free); 5508 return free; 5509 } 5510 5511 /* 5512 * releases all non-used preallocated blocks for given inode 5513 * 5514 * It's important to discard preallocations under i_data_sem 5515 * We don't want another block to be served from the prealloc 5516 * space when we are discarding the inode prealloc space. 5517 * 5518 * FIXME!! Make sure it is valid at all the call sites 5519 */ 5520 void ext4_discard_preallocations(struct inode *inode, unsigned int needed) 5521 { 5522 struct ext4_inode_info *ei = EXT4_I(inode); 5523 struct super_block *sb = inode->i_sb; 5524 struct buffer_head *bitmap_bh = NULL; 5525 struct ext4_prealloc_space *pa, *tmp; 5526 ext4_group_t group = 0; 5527 LIST_HEAD(list); 5528 struct ext4_buddy e4b; 5529 struct rb_node *iter; 5530 int err; 5531 5532 if (!S_ISREG(inode->i_mode)) { 5533 return; 5534 } 5535 5536 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 5537 return; 5538 5539 mb_debug(sb, "discard preallocation for inode %lu\n", 5540 inode->i_ino); 5541 trace_ext4_discard_preallocations(inode, 5542 atomic_read(&ei->i_prealloc_active), needed); 5543 5544 if (needed == 0) 5545 needed = UINT_MAX; 5546 5547 repeat: 5548 /* first, collect all pa's in the inode */ 5549 write_lock(&ei->i_prealloc_lock); 5550 for (iter = rb_first(&ei->i_prealloc_node); iter && needed; 5551 iter = rb_next(iter)) { 5552 pa = rb_entry(iter, struct ext4_prealloc_space, 5553 pa_node.inode_node); 5554 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock); 5555 5556 spin_lock(&pa->pa_lock); 5557 if (atomic_read(&pa->pa_count)) { 5558 /* this shouldn't happen often - nobody should 5559 * use preallocation while we're discarding it */ 5560 spin_unlock(&pa->pa_lock); 5561 write_unlock(&ei->i_prealloc_lock); 5562 ext4_msg(sb, KERN_ERR, 5563 "uh-oh! used pa while discarding"); 5564 WARN_ON(1); 5565 schedule_timeout_uninterruptible(HZ); 5566 goto repeat; 5567 5568 } 5569 if (pa->pa_deleted == 0) { 5570 ext4_mb_mark_pa_deleted(sb, pa); 5571 spin_unlock(&pa->pa_lock); 5572 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5573 list_add(&pa->u.pa_tmp_list, &list); 5574 needed--; 5575 continue; 5576 } 5577 5578 /* someone is deleting pa right now */ 5579 spin_unlock(&pa->pa_lock); 5580 write_unlock(&ei->i_prealloc_lock); 5581 5582 /* we have to wait here because pa_deleted 5583 * doesn't mean pa is already unlinked from 5584 * the list. as we might be called from 5585 * ->clear_inode() the inode will get freed 5586 * and concurrent thread which is unlinking 5587 * pa from inode's list may access already 5588 * freed memory, bad-bad-bad */ 5589 5590 /* XXX: if this happens too often, we can 5591 * add a flag to force wait only in case 5592 * of ->clear_inode(), but not in case of 5593 * regular truncate */ 5594 schedule_timeout_uninterruptible(HZ); 5595 goto repeat; 5596 } 5597 write_unlock(&ei->i_prealloc_lock); 5598 5599 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5600 BUG_ON(pa->pa_type != MB_INODE_PA); 5601 group = ext4_get_group_number(sb, pa->pa_pstart); 5602 5603 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5604 GFP_NOFS|__GFP_NOFAIL); 5605 if (err) { 5606 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5607 err, group); 5608 continue; 5609 } 5610 5611 bitmap_bh = ext4_read_block_bitmap(sb, group); 5612 if (IS_ERR(bitmap_bh)) { 5613 err = PTR_ERR(bitmap_bh); 5614 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 5615 err, group); 5616 ext4_mb_unload_buddy(&e4b); 5617 continue; 5618 } 5619 5620 ext4_lock_group(sb, group); 5621 list_del(&pa->pa_group_list); 5622 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5623 ext4_unlock_group(sb, group); 5624 5625 ext4_mb_unload_buddy(&e4b); 5626 put_bh(bitmap_bh); 5627 5628 list_del(&pa->u.pa_tmp_list); 5629 ext4_mb_pa_free(pa); 5630 } 5631 } 5632 5633 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 5634 { 5635 struct ext4_prealloc_space *pa; 5636 5637 BUG_ON(ext4_pspace_cachep == NULL); 5638 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 5639 if (!pa) 5640 return -ENOMEM; 5641 atomic_set(&pa->pa_count, 1); 5642 ac->ac_pa = pa; 5643 return 0; 5644 } 5645 5646 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac) 5647 { 5648 struct ext4_prealloc_space *pa = ac->ac_pa; 5649 5650 BUG_ON(!pa); 5651 ac->ac_pa = NULL; 5652 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 5653 /* 5654 * current function is only called due to an error or due to 5655 * len of found blocks < len of requested blocks hence the PA has not 5656 * been added to grp->bb_prealloc_list. So we don't need to lock it 5657 */ 5658 pa->pa_deleted = 1; 5659 ext4_mb_pa_free(pa); 5660 } 5661 5662 #ifdef CONFIG_EXT4_DEBUG 5663 static inline void ext4_mb_show_pa(struct super_block *sb) 5664 { 5665 ext4_group_t i, ngroups; 5666 5667 if (ext4_forced_shutdown(sb)) 5668 return; 5669 5670 ngroups = ext4_get_groups_count(sb); 5671 mb_debug(sb, "groups: "); 5672 for (i = 0; i < ngroups; i++) { 5673 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 5674 struct ext4_prealloc_space *pa; 5675 ext4_grpblk_t start; 5676 struct list_head *cur; 5677 5678 if (!grp) 5679 continue; 5680 ext4_lock_group(sb, i); 5681 list_for_each(cur, &grp->bb_prealloc_list) { 5682 pa = list_entry(cur, struct ext4_prealloc_space, 5683 pa_group_list); 5684 spin_lock(&pa->pa_lock); 5685 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5686 NULL, &start); 5687 spin_unlock(&pa->pa_lock); 5688 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 5689 pa->pa_len); 5690 } 5691 ext4_unlock_group(sb, i); 5692 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 5693 grp->bb_fragments); 5694 } 5695 } 5696 5697 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5698 { 5699 struct super_block *sb = ac->ac_sb; 5700 5701 if (ext4_forced_shutdown(sb)) 5702 return; 5703 5704 mb_debug(sb, "Can't allocate:" 5705 " Allocation context details:"); 5706 mb_debug(sb, "status %u flags 0x%x", 5707 ac->ac_status, ac->ac_flags); 5708 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 5709 "goal %lu/%lu/%lu@%lu, " 5710 "best %lu/%lu/%lu@%lu cr %d", 5711 (unsigned long)ac->ac_o_ex.fe_group, 5712 (unsigned long)ac->ac_o_ex.fe_start, 5713 (unsigned long)ac->ac_o_ex.fe_len, 5714 (unsigned long)ac->ac_o_ex.fe_logical, 5715 (unsigned long)ac->ac_g_ex.fe_group, 5716 (unsigned long)ac->ac_g_ex.fe_start, 5717 (unsigned long)ac->ac_g_ex.fe_len, 5718 (unsigned long)ac->ac_g_ex.fe_logical, 5719 (unsigned long)ac->ac_b_ex.fe_group, 5720 (unsigned long)ac->ac_b_ex.fe_start, 5721 (unsigned long)ac->ac_b_ex.fe_len, 5722 (unsigned long)ac->ac_b_ex.fe_logical, 5723 (int)ac->ac_criteria); 5724 mb_debug(sb, "%u found", ac->ac_found); 5725 mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no"); 5726 if (ac->ac_pa) 5727 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ? 5728 "group pa" : "inode pa"); 5729 ext4_mb_show_pa(sb); 5730 } 5731 #else 5732 static inline void ext4_mb_show_pa(struct super_block *sb) 5733 { 5734 } 5735 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5736 { 5737 ext4_mb_show_pa(ac->ac_sb); 5738 } 5739 #endif 5740 5741 /* 5742 * We use locality group preallocation for small size file. The size of the 5743 * file is determined by the current size or the resulting size after 5744 * allocation which ever is larger 5745 * 5746 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 5747 */ 5748 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 5749 { 5750 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5751 int bsbits = ac->ac_sb->s_blocksize_bits; 5752 loff_t size, isize; 5753 bool inode_pa_eligible, group_pa_eligible; 5754 5755 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 5756 return; 5757 5758 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 5759 return; 5760 5761 group_pa_eligible = sbi->s_mb_group_prealloc > 0; 5762 inode_pa_eligible = true; 5763 size = extent_logical_end(sbi, &ac->ac_o_ex); 5764 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 5765 >> bsbits; 5766 5767 /* No point in using inode preallocation for closed files */ 5768 if ((size == isize) && !ext4_fs_is_busy(sbi) && 5769 !inode_is_open_for_write(ac->ac_inode)) 5770 inode_pa_eligible = false; 5771 5772 size = max(size, isize); 5773 /* Don't use group allocation for large files */ 5774 if (size > sbi->s_mb_stream_request) 5775 group_pa_eligible = false; 5776 5777 if (!group_pa_eligible) { 5778 if (inode_pa_eligible) 5779 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5780 else 5781 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 5782 return; 5783 } 5784 5785 BUG_ON(ac->ac_lg != NULL); 5786 /* 5787 * locality group prealloc space are per cpu. The reason for having 5788 * per cpu locality group is to reduce the contention between block 5789 * request from multiple CPUs. 5790 */ 5791 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 5792 5793 /* we're going to use group allocation */ 5794 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 5795 5796 /* serialize all allocations in the group */ 5797 mutex_lock(&ac->ac_lg->lg_mutex); 5798 } 5799 5800 static noinline_for_stack void 5801 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 5802 struct ext4_allocation_request *ar) 5803 { 5804 struct super_block *sb = ar->inode->i_sb; 5805 struct ext4_sb_info *sbi = EXT4_SB(sb); 5806 struct ext4_super_block *es = sbi->s_es; 5807 ext4_group_t group; 5808 unsigned int len; 5809 ext4_fsblk_t goal; 5810 ext4_grpblk_t block; 5811 5812 /* we can't allocate > group size */ 5813 len = ar->len; 5814 5815 /* just a dirty hack to filter too big requests */ 5816 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 5817 len = EXT4_CLUSTERS_PER_GROUP(sb); 5818 5819 /* start searching from the goal */ 5820 goal = ar->goal; 5821 if (goal < le32_to_cpu(es->s_first_data_block) || 5822 goal >= ext4_blocks_count(es)) 5823 goal = le32_to_cpu(es->s_first_data_block); 5824 ext4_get_group_no_and_offset(sb, goal, &group, &block); 5825 5826 /* set up allocation goals */ 5827 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 5828 ac->ac_status = AC_STATUS_CONTINUE; 5829 ac->ac_sb = sb; 5830 ac->ac_inode = ar->inode; 5831 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 5832 ac->ac_o_ex.fe_group = group; 5833 ac->ac_o_ex.fe_start = block; 5834 ac->ac_o_ex.fe_len = len; 5835 ac->ac_g_ex = ac->ac_o_ex; 5836 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 5837 ac->ac_flags = ar->flags; 5838 5839 /* we have to define context: we'll work with a file or 5840 * locality group. this is a policy, actually */ 5841 ext4_mb_group_or_file(ac); 5842 5843 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 5844 "left: %u/%u, right %u/%u to %swritable\n", 5845 (unsigned) ar->len, (unsigned) ar->logical, 5846 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 5847 (unsigned) ar->lleft, (unsigned) ar->pleft, 5848 (unsigned) ar->lright, (unsigned) ar->pright, 5849 inode_is_open_for_write(ar->inode) ? "" : "non-"); 5850 } 5851 5852 static noinline_for_stack void 5853 ext4_mb_discard_lg_preallocations(struct super_block *sb, 5854 struct ext4_locality_group *lg, 5855 int order, int total_entries) 5856 { 5857 ext4_group_t group = 0; 5858 struct ext4_buddy e4b; 5859 LIST_HEAD(discard_list); 5860 struct ext4_prealloc_space *pa, *tmp; 5861 5862 mb_debug(sb, "discard locality group preallocation\n"); 5863 5864 spin_lock(&lg->lg_prealloc_lock); 5865 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 5866 pa_node.lg_list, 5867 lockdep_is_held(&lg->lg_prealloc_lock)) { 5868 spin_lock(&pa->pa_lock); 5869 if (atomic_read(&pa->pa_count)) { 5870 /* 5871 * This is the pa that we just used 5872 * for block allocation. So don't 5873 * free that 5874 */ 5875 spin_unlock(&pa->pa_lock); 5876 continue; 5877 } 5878 if (pa->pa_deleted) { 5879 spin_unlock(&pa->pa_lock); 5880 continue; 5881 } 5882 /* only lg prealloc space */ 5883 BUG_ON(pa->pa_type != MB_GROUP_PA); 5884 5885 /* seems this one can be freed ... */ 5886 ext4_mb_mark_pa_deleted(sb, pa); 5887 spin_unlock(&pa->pa_lock); 5888 5889 list_del_rcu(&pa->pa_node.lg_list); 5890 list_add(&pa->u.pa_tmp_list, &discard_list); 5891 5892 total_entries--; 5893 if (total_entries <= 5) { 5894 /* 5895 * we want to keep only 5 entries 5896 * allowing it to grow to 8. This 5897 * mak sure we don't call discard 5898 * soon for this list. 5899 */ 5900 break; 5901 } 5902 } 5903 spin_unlock(&lg->lg_prealloc_lock); 5904 5905 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 5906 int err; 5907 5908 group = ext4_get_group_number(sb, pa->pa_pstart); 5909 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5910 GFP_NOFS|__GFP_NOFAIL); 5911 if (err) { 5912 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5913 err, group); 5914 continue; 5915 } 5916 ext4_lock_group(sb, group); 5917 list_del(&pa->pa_group_list); 5918 ext4_mb_release_group_pa(&e4b, pa); 5919 ext4_unlock_group(sb, group); 5920 5921 ext4_mb_unload_buddy(&e4b); 5922 list_del(&pa->u.pa_tmp_list); 5923 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5924 } 5925 } 5926 5927 /* 5928 * We have incremented pa_count. So it cannot be freed at this 5929 * point. Also we hold lg_mutex. So no parallel allocation is 5930 * possible from this lg. That means pa_free cannot be updated. 5931 * 5932 * A parallel ext4_mb_discard_group_preallocations is possible. 5933 * which can cause the lg_prealloc_list to be updated. 5934 */ 5935 5936 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 5937 { 5938 int order, added = 0, lg_prealloc_count = 1; 5939 struct super_block *sb = ac->ac_sb; 5940 struct ext4_locality_group *lg = ac->ac_lg; 5941 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 5942 5943 order = fls(pa->pa_free) - 1; 5944 if (order > PREALLOC_TB_SIZE - 1) 5945 /* The max size of hash table is PREALLOC_TB_SIZE */ 5946 order = PREALLOC_TB_SIZE - 1; 5947 /* Add the prealloc space to lg */ 5948 spin_lock(&lg->lg_prealloc_lock); 5949 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 5950 pa_node.lg_list, 5951 lockdep_is_held(&lg->lg_prealloc_lock)) { 5952 spin_lock(&tmp_pa->pa_lock); 5953 if (tmp_pa->pa_deleted) { 5954 spin_unlock(&tmp_pa->pa_lock); 5955 continue; 5956 } 5957 if (!added && pa->pa_free < tmp_pa->pa_free) { 5958 /* Add to the tail of the previous entry */ 5959 list_add_tail_rcu(&pa->pa_node.lg_list, 5960 &tmp_pa->pa_node.lg_list); 5961 added = 1; 5962 /* 5963 * we want to count the total 5964 * number of entries in the list 5965 */ 5966 } 5967 spin_unlock(&tmp_pa->pa_lock); 5968 lg_prealloc_count++; 5969 } 5970 if (!added) 5971 list_add_tail_rcu(&pa->pa_node.lg_list, 5972 &lg->lg_prealloc_list[order]); 5973 spin_unlock(&lg->lg_prealloc_lock); 5974 5975 /* Now trim the list to be not more than 8 elements */ 5976 if (lg_prealloc_count > 8) 5977 ext4_mb_discard_lg_preallocations(sb, lg, 5978 order, lg_prealloc_count); 5979 } 5980 5981 /* 5982 * release all resource we used in allocation 5983 */ 5984 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 5985 { 5986 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5987 struct ext4_prealloc_space *pa = ac->ac_pa; 5988 if (pa) { 5989 if (pa->pa_type == MB_GROUP_PA) { 5990 /* see comment in ext4_mb_use_group_pa() */ 5991 spin_lock(&pa->pa_lock); 5992 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5993 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5994 pa->pa_free -= ac->ac_b_ex.fe_len; 5995 pa->pa_len -= ac->ac_b_ex.fe_len; 5996 spin_unlock(&pa->pa_lock); 5997 5998 /* 5999 * We want to add the pa to the right bucket. 6000 * Remove it from the list and while adding 6001 * make sure the list to which we are adding 6002 * doesn't grow big. 6003 */ 6004 if (likely(pa->pa_free)) { 6005 spin_lock(pa->pa_node_lock.lg_lock); 6006 list_del_rcu(&pa->pa_node.lg_list); 6007 spin_unlock(pa->pa_node_lock.lg_lock); 6008 ext4_mb_add_n_trim(ac); 6009 } 6010 } 6011 6012 ext4_mb_put_pa(ac, ac->ac_sb, pa); 6013 } 6014 if (ac->ac_bitmap_page) 6015 put_page(ac->ac_bitmap_page); 6016 if (ac->ac_buddy_page) 6017 put_page(ac->ac_buddy_page); 6018 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 6019 mutex_unlock(&ac->ac_lg->lg_mutex); 6020 ext4_mb_collect_stats(ac); 6021 return 0; 6022 } 6023 6024 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 6025 { 6026 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 6027 int ret; 6028 int freed = 0, busy = 0; 6029 int retry = 0; 6030 6031 trace_ext4_mb_discard_preallocations(sb, needed); 6032 6033 if (needed == 0) 6034 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 6035 repeat: 6036 for (i = 0; i < ngroups && needed > 0; i++) { 6037 ret = ext4_mb_discard_group_preallocations(sb, i, &busy); 6038 freed += ret; 6039 needed -= ret; 6040 cond_resched(); 6041 } 6042 6043 if (needed > 0 && busy && ++retry < 3) { 6044 busy = 0; 6045 goto repeat; 6046 } 6047 6048 return freed; 6049 } 6050 6051 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 6052 struct ext4_allocation_context *ac, u64 *seq) 6053 { 6054 int freed; 6055 u64 seq_retry = 0; 6056 bool ret = false; 6057 6058 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 6059 if (freed) { 6060 ret = true; 6061 goto out_dbg; 6062 } 6063 seq_retry = ext4_get_discard_pa_seq_sum(); 6064 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 6065 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 6066 *seq = seq_retry; 6067 ret = true; 6068 } 6069 6070 out_dbg: 6071 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 6072 return ret; 6073 } 6074 6075 /* 6076 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 6077 * linearly starting at the goal block and also excludes the blocks which 6078 * are going to be in use after fast commit replay. 6079 */ 6080 static ext4_fsblk_t 6081 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp) 6082 { 6083 struct buffer_head *bitmap_bh; 6084 struct super_block *sb = ar->inode->i_sb; 6085 struct ext4_sb_info *sbi = EXT4_SB(sb); 6086 ext4_group_t group, nr; 6087 ext4_grpblk_t blkoff; 6088 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 6089 ext4_grpblk_t i = 0; 6090 ext4_fsblk_t goal, block; 6091 struct ext4_super_block *es = sbi->s_es; 6092 6093 goal = ar->goal; 6094 if (goal < le32_to_cpu(es->s_first_data_block) || 6095 goal >= ext4_blocks_count(es)) 6096 goal = le32_to_cpu(es->s_first_data_block); 6097 6098 ar->len = 0; 6099 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 6100 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) { 6101 bitmap_bh = ext4_read_block_bitmap(sb, group); 6102 if (IS_ERR(bitmap_bh)) { 6103 *errp = PTR_ERR(bitmap_bh); 6104 pr_warn("Failed to read block bitmap\n"); 6105 return 0; 6106 } 6107 6108 while (1) { 6109 i = mb_find_next_zero_bit(bitmap_bh->b_data, max, 6110 blkoff); 6111 if (i >= max) 6112 break; 6113 if (ext4_fc_replay_check_excluded(sb, 6114 ext4_group_first_block_no(sb, group) + 6115 EXT4_C2B(sbi, i))) { 6116 blkoff = i + 1; 6117 } else 6118 break; 6119 } 6120 brelse(bitmap_bh); 6121 if (i < max) 6122 break; 6123 6124 if (++group >= ext4_get_groups_count(sb)) 6125 group = 0; 6126 6127 blkoff = 0; 6128 } 6129 6130 if (i >= max) { 6131 *errp = -ENOSPC; 6132 return 0; 6133 } 6134 6135 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i); 6136 ext4_mb_mark_bb(sb, block, 1, 1); 6137 ar->len = 1; 6138 6139 return block; 6140 } 6141 6142 /* 6143 * Main entry point into mballoc to allocate blocks 6144 * it tries to use preallocation first, then falls back 6145 * to usual allocation 6146 */ 6147 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 6148 struct ext4_allocation_request *ar, int *errp) 6149 { 6150 struct ext4_allocation_context *ac = NULL; 6151 struct ext4_sb_info *sbi; 6152 struct super_block *sb; 6153 ext4_fsblk_t block = 0; 6154 unsigned int inquota = 0; 6155 unsigned int reserv_clstrs = 0; 6156 int retries = 0; 6157 u64 seq; 6158 6159 might_sleep(); 6160 sb = ar->inode->i_sb; 6161 sbi = EXT4_SB(sb); 6162 6163 trace_ext4_request_blocks(ar); 6164 if (sbi->s_mount_state & EXT4_FC_REPLAY) 6165 return ext4_mb_new_blocks_simple(ar, errp); 6166 6167 /* Allow to use superuser reservation for quota file */ 6168 if (ext4_is_quota_file(ar->inode)) 6169 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 6170 6171 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 6172 /* Without delayed allocation we need to verify 6173 * there is enough free blocks to do block allocation 6174 * and verify allocation doesn't exceed the quota limits. 6175 */ 6176 while (ar->len && 6177 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 6178 6179 /* let others to free the space */ 6180 cond_resched(); 6181 ar->len = ar->len >> 1; 6182 } 6183 if (!ar->len) { 6184 ext4_mb_show_pa(sb); 6185 *errp = -ENOSPC; 6186 return 0; 6187 } 6188 reserv_clstrs = ar->len; 6189 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 6190 dquot_alloc_block_nofail(ar->inode, 6191 EXT4_C2B(sbi, ar->len)); 6192 } else { 6193 while (ar->len && 6194 dquot_alloc_block(ar->inode, 6195 EXT4_C2B(sbi, ar->len))) { 6196 6197 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 6198 ar->len--; 6199 } 6200 } 6201 inquota = ar->len; 6202 if (ar->len == 0) { 6203 *errp = -EDQUOT; 6204 goto out; 6205 } 6206 } 6207 6208 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 6209 if (!ac) { 6210 ar->len = 0; 6211 *errp = -ENOMEM; 6212 goto out; 6213 } 6214 6215 ext4_mb_initialize_context(ac, ar); 6216 6217 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 6218 seq = this_cpu_read(discard_pa_seq); 6219 if (!ext4_mb_use_preallocated(ac)) { 6220 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 6221 ext4_mb_normalize_request(ac, ar); 6222 6223 *errp = ext4_mb_pa_alloc(ac); 6224 if (*errp) 6225 goto errout; 6226 repeat: 6227 /* allocate space in core */ 6228 *errp = ext4_mb_regular_allocator(ac); 6229 /* 6230 * pa allocated above is added to grp->bb_prealloc_list only 6231 * when we were able to allocate some block i.e. when 6232 * ac->ac_status == AC_STATUS_FOUND. 6233 * And error from above mean ac->ac_status != AC_STATUS_FOUND 6234 * So we have to free this pa here itself. 6235 */ 6236 if (*errp) { 6237 ext4_mb_pa_put_free(ac); 6238 ext4_discard_allocated_blocks(ac); 6239 goto errout; 6240 } 6241 if (ac->ac_status == AC_STATUS_FOUND && 6242 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 6243 ext4_mb_pa_put_free(ac); 6244 } 6245 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 6246 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 6247 if (*errp) { 6248 ext4_discard_allocated_blocks(ac); 6249 goto errout; 6250 } else { 6251 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 6252 ar->len = ac->ac_b_ex.fe_len; 6253 } 6254 } else { 6255 if (++retries < 3 && 6256 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 6257 goto repeat; 6258 /* 6259 * If block allocation fails then the pa allocated above 6260 * needs to be freed here itself. 6261 */ 6262 ext4_mb_pa_put_free(ac); 6263 *errp = -ENOSPC; 6264 } 6265 6266 if (*errp) { 6267 errout: 6268 ac->ac_b_ex.fe_len = 0; 6269 ar->len = 0; 6270 ext4_mb_show_ac(ac); 6271 } 6272 ext4_mb_release_context(ac); 6273 kmem_cache_free(ext4_ac_cachep, ac); 6274 out: 6275 if (inquota && ar->len < inquota) 6276 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 6277 if (!ar->len) { 6278 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 6279 /* release all the reserved blocks if non delalloc */ 6280 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 6281 reserv_clstrs); 6282 } 6283 6284 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 6285 6286 return block; 6287 } 6288 6289 /* 6290 * We can merge two free data extents only if the physical blocks 6291 * are contiguous, AND the extents were freed by the same transaction, 6292 * AND the blocks are associated with the same group. 6293 */ 6294 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 6295 struct ext4_free_data *entry, 6296 struct ext4_free_data *new_entry, 6297 struct rb_root *entry_rb_root) 6298 { 6299 if ((entry->efd_tid != new_entry->efd_tid) || 6300 (entry->efd_group != new_entry->efd_group)) 6301 return; 6302 if (entry->efd_start_cluster + entry->efd_count == 6303 new_entry->efd_start_cluster) { 6304 new_entry->efd_start_cluster = entry->efd_start_cluster; 6305 new_entry->efd_count += entry->efd_count; 6306 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 6307 entry->efd_start_cluster) { 6308 new_entry->efd_count += entry->efd_count; 6309 } else 6310 return; 6311 spin_lock(&sbi->s_md_lock); 6312 list_del(&entry->efd_list); 6313 spin_unlock(&sbi->s_md_lock); 6314 rb_erase(&entry->efd_node, entry_rb_root); 6315 kmem_cache_free(ext4_free_data_cachep, entry); 6316 } 6317 6318 static noinline_for_stack void 6319 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 6320 struct ext4_free_data *new_entry) 6321 { 6322 ext4_group_t group = e4b->bd_group; 6323 ext4_grpblk_t cluster; 6324 ext4_grpblk_t clusters = new_entry->efd_count; 6325 struct ext4_free_data *entry; 6326 struct ext4_group_info *db = e4b->bd_info; 6327 struct super_block *sb = e4b->bd_sb; 6328 struct ext4_sb_info *sbi = EXT4_SB(sb); 6329 struct rb_node **n = &db->bb_free_root.rb_node, *node; 6330 struct rb_node *parent = NULL, *new_node; 6331 6332 BUG_ON(!ext4_handle_valid(handle)); 6333 BUG_ON(e4b->bd_bitmap_page == NULL); 6334 BUG_ON(e4b->bd_buddy_page == NULL); 6335 6336 new_node = &new_entry->efd_node; 6337 cluster = new_entry->efd_start_cluster; 6338 6339 if (!*n) { 6340 /* first free block exent. We need to 6341 protect buddy cache from being freed, 6342 * otherwise we'll refresh it from 6343 * on-disk bitmap and lose not-yet-available 6344 * blocks */ 6345 get_page(e4b->bd_buddy_page); 6346 get_page(e4b->bd_bitmap_page); 6347 } 6348 while (*n) { 6349 parent = *n; 6350 entry = rb_entry(parent, struct ext4_free_data, efd_node); 6351 if (cluster < entry->efd_start_cluster) 6352 n = &(*n)->rb_left; 6353 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 6354 n = &(*n)->rb_right; 6355 else { 6356 ext4_grp_locked_error(sb, group, 0, 6357 ext4_group_first_block_no(sb, group) + 6358 EXT4_C2B(sbi, cluster), 6359 "Block already on to-be-freed list"); 6360 kmem_cache_free(ext4_free_data_cachep, new_entry); 6361 return; 6362 } 6363 } 6364 6365 rb_link_node(new_node, parent, n); 6366 rb_insert_color(new_node, &db->bb_free_root); 6367 6368 /* Now try to see the extent can be merged to left and right */ 6369 node = rb_prev(new_node); 6370 if (node) { 6371 entry = rb_entry(node, struct ext4_free_data, efd_node); 6372 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6373 &(db->bb_free_root)); 6374 } 6375 6376 node = rb_next(new_node); 6377 if (node) { 6378 entry = rb_entry(node, struct ext4_free_data, efd_node); 6379 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6380 &(db->bb_free_root)); 6381 } 6382 6383 spin_lock(&sbi->s_md_lock); 6384 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 6385 sbi->s_mb_free_pending += clusters; 6386 spin_unlock(&sbi->s_md_lock); 6387 } 6388 6389 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 6390 unsigned long count) 6391 { 6392 struct buffer_head *bitmap_bh; 6393 struct super_block *sb = inode->i_sb; 6394 struct ext4_group_desc *gdp; 6395 struct buffer_head *gdp_bh; 6396 ext4_group_t group; 6397 ext4_grpblk_t blkoff; 6398 int already_freed = 0, err, i; 6399 6400 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 6401 bitmap_bh = ext4_read_block_bitmap(sb, group); 6402 if (IS_ERR(bitmap_bh)) { 6403 pr_warn("Failed to read block bitmap\n"); 6404 return; 6405 } 6406 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 6407 if (!gdp) 6408 goto err_out; 6409 6410 for (i = 0; i < count; i++) { 6411 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data)) 6412 already_freed++; 6413 } 6414 mb_clear_bits(bitmap_bh->b_data, blkoff, count); 6415 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 6416 if (err) 6417 goto err_out; 6418 ext4_free_group_clusters_set( 6419 sb, gdp, ext4_free_group_clusters(sb, gdp) + 6420 count - already_freed); 6421 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 6422 ext4_group_desc_csum_set(sb, group, gdp); 6423 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 6424 sync_dirty_buffer(bitmap_bh); 6425 sync_dirty_buffer(gdp_bh); 6426 6427 err_out: 6428 brelse(bitmap_bh); 6429 } 6430 6431 /** 6432 * ext4_mb_clear_bb() -- helper function for freeing blocks. 6433 * Used by ext4_free_blocks() 6434 * @handle: handle for this transaction 6435 * @inode: inode 6436 * @block: starting physical block to be freed 6437 * @count: number of blocks to be freed 6438 * @flags: flags used by ext4_free_blocks 6439 */ 6440 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, 6441 ext4_fsblk_t block, unsigned long count, 6442 int flags) 6443 { 6444 struct buffer_head *bitmap_bh = NULL; 6445 struct super_block *sb = inode->i_sb; 6446 struct ext4_group_desc *gdp; 6447 struct ext4_group_info *grp; 6448 unsigned int overflow; 6449 ext4_grpblk_t bit; 6450 struct buffer_head *gd_bh; 6451 ext4_group_t block_group; 6452 struct ext4_sb_info *sbi; 6453 struct ext4_buddy e4b; 6454 unsigned int count_clusters; 6455 int err = 0; 6456 int ret; 6457 6458 sbi = EXT4_SB(sb); 6459 6460 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6461 !ext4_inode_block_valid(inode, block, count)) { 6462 ext4_error(sb, "Freeing blocks in system zone - " 6463 "Block = %llu, count = %lu", block, count); 6464 /* err = 0. ext4_std_error should be a no op */ 6465 goto error_return; 6466 } 6467 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6468 6469 do_more: 6470 overflow = 0; 6471 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6472 6473 grp = ext4_get_group_info(sb, block_group); 6474 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 6475 return; 6476 6477 /* 6478 * Check to see if we are freeing blocks across a group 6479 * boundary. 6480 */ 6481 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 6482 overflow = EXT4_C2B(sbi, bit) + count - 6483 EXT4_BLOCKS_PER_GROUP(sb); 6484 count -= overflow; 6485 /* The range changed so it's no longer validated */ 6486 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6487 } 6488 count_clusters = EXT4_NUM_B2C(sbi, count); 6489 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6490 if (IS_ERR(bitmap_bh)) { 6491 err = PTR_ERR(bitmap_bh); 6492 bitmap_bh = NULL; 6493 goto error_return; 6494 } 6495 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 6496 if (!gdp) { 6497 err = -EIO; 6498 goto error_return; 6499 } 6500 6501 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6502 !ext4_inode_block_valid(inode, block, count)) { 6503 ext4_error(sb, "Freeing blocks in system zone - " 6504 "Block = %llu, count = %lu", block, count); 6505 /* err = 0. ext4_std_error should be a no op */ 6506 goto error_return; 6507 } 6508 6509 BUFFER_TRACE(bitmap_bh, "getting write access"); 6510 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6511 EXT4_JTR_NONE); 6512 if (err) 6513 goto error_return; 6514 6515 /* 6516 * We are about to modify some metadata. Call the journal APIs 6517 * to unshare ->b_data if a currently-committing transaction is 6518 * using it 6519 */ 6520 BUFFER_TRACE(gd_bh, "get_write_access"); 6521 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6522 if (err) 6523 goto error_return; 6524 #ifdef AGGRESSIVE_CHECK 6525 { 6526 int i; 6527 for (i = 0; i < count_clusters; i++) 6528 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 6529 } 6530 #endif 6531 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 6532 6533 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 6534 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 6535 GFP_NOFS|__GFP_NOFAIL); 6536 if (err) 6537 goto error_return; 6538 6539 /* 6540 * We need to make sure we don't reuse the freed block until after the 6541 * transaction is committed. We make an exception if the inode is to be 6542 * written in writeback mode since writeback mode has weak data 6543 * consistency guarantees. 6544 */ 6545 if (ext4_handle_valid(handle) && 6546 ((flags & EXT4_FREE_BLOCKS_METADATA) || 6547 !ext4_should_writeback_data(inode))) { 6548 struct ext4_free_data *new_entry; 6549 /* 6550 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 6551 * to fail. 6552 */ 6553 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 6554 GFP_NOFS|__GFP_NOFAIL); 6555 new_entry->efd_start_cluster = bit; 6556 new_entry->efd_group = block_group; 6557 new_entry->efd_count = count_clusters; 6558 new_entry->efd_tid = handle->h_transaction->t_tid; 6559 6560 ext4_lock_group(sb, block_group); 6561 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6562 ext4_mb_free_metadata(handle, &e4b, new_entry); 6563 } else { 6564 /* need to update group_info->bb_free and bitmap 6565 * with group lock held. generate_buddy look at 6566 * them with group lock_held 6567 */ 6568 if (test_opt(sb, DISCARD)) { 6569 err = ext4_issue_discard(sb, block_group, bit, 6570 count_clusters, NULL); 6571 if (err && err != -EOPNOTSUPP) 6572 ext4_msg(sb, KERN_WARNING, "discard request in" 6573 " group:%u block:%d count:%lu failed" 6574 " with %d", block_group, bit, count, 6575 err); 6576 } else 6577 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 6578 6579 ext4_lock_group(sb, block_group); 6580 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6581 mb_free_blocks(inode, &e4b, bit, count_clusters); 6582 } 6583 6584 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 6585 ext4_free_group_clusters_set(sb, gdp, ret); 6586 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 6587 ext4_group_desc_csum_set(sb, block_group, gdp); 6588 ext4_unlock_group(sb, block_group); 6589 6590 if (sbi->s_log_groups_per_flex) { 6591 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6592 atomic64_add(count_clusters, 6593 &sbi_array_rcu_deref(sbi, s_flex_groups, 6594 flex_group)->free_clusters); 6595 } 6596 6597 /* 6598 * on a bigalloc file system, defer the s_freeclusters_counter 6599 * update to the caller (ext4_remove_space and friends) so they 6600 * can determine if a cluster freed here should be rereserved 6601 */ 6602 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 6603 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 6604 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 6605 percpu_counter_add(&sbi->s_freeclusters_counter, 6606 count_clusters); 6607 } 6608 6609 ext4_mb_unload_buddy(&e4b); 6610 6611 /* We dirtied the bitmap block */ 6612 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6613 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6614 6615 /* And the group descriptor block */ 6616 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6617 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6618 if (!err) 6619 err = ret; 6620 6621 if (overflow && !err) { 6622 block += count; 6623 count = overflow; 6624 put_bh(bitmap_bh); 6625 /* The range changed so it's no longer validated */ 6626 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6627 goto do_more; 6628 } 6629 error_return: 6630 brelse(bitmap_bh); 6631 ext4_std_error(sb, err); 6632 } 6633 6634 /** 6635 * ext4_free_blocks() -- Free given blocks and update quota 6636 * @handle: handle for this transaction 6637 * @inode: inode 6638 * @bh: optional buffer of the block to be freed 6639 * @block: starting physical block to be freed 6640 * @count: number of blocks to be freed 6641 * @flags: flags used by ext4_free_blocks 6642 */ 6643 void ext4_free_blocks(handle_t *handle, struct inode *inode, 6644 struct buffer_head *bh, ext4_fsblk_t block, 6645 unsigned long count, int flags) 6646 { 6647 struct super_block *sb = inode->i_sb; 6648 unsigned int overflow; 6649 struct ext4_sb_info *sbi; 6650 6651 sbi = EXT4_SB(sb); 6652 6653 if (bh) { 6654 if (block) 6655 BUG_ON(block != bh->b_blocknr); 6656 else 6657 block = bh->b_blocknr; 6658 } 6659 6660 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 6661 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count)); 6662 return; 6663 } 6664 6665 might_sleep(); 6666 6667 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6668 !ext4_inode_block_valid(inode, block, count)) { 6669 ext4_error(sb, "Freeing blocks not in datazone - " 6670 "block = %llu, count = %lu", block, count); 6671 return; 6672 } 6673 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6674 6675 ext4_debug("freeing block %llu\n", block); 6676 trace_ext4_free_blocks(inode, block, count, flags); 6677 6678 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6679 BUG_ON(count > 1); 6680 6681 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 6682 inode, bh, block); 6683 } 6684 6685 /* 6686 * If the extent to be freed does not begin on a cluster 6687 * boundary, we need to deal with partial clusters at the 6688 * beginning and end of the extent. Normally we will free 6689 * blocks at the beginning or the end unless we are explicitly 6690 * requested to avoid doing so. 6691 */ 6692 overflow = EXT4_PBLK_COFF(sbi, block); 6693 if (overflow) { 6694 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 6695 overflow = sbi->s_cluster_ratio - overflow; 6696 block += overflow; 6697 if (count > overflow) 6698 count -= overflow; 6699 else 6700 return; 6701 } else { 6702 block -= overflow; 6703 count += overflow; 6704 } 6705 /* The range changed so it's no longer validated */ 6706 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6707 } 6708 overflow = EXT4_LBLK_COFF(sbi, count); 6709 if (overflow) { 6710 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 6711 if (count > overflow) 6712 count -= overflow; 6713 else 6714 return; 6715 } else 6716 count += sbi->s_cluster_ratio - overflow; 6717 /* The range changed so it's no longer validated */ 6718 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6719 } 6720 6721 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6722 int i; 6723 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 6724 6725 for (i = 0; i < count; i++) { 6726 cond_resched(); 6727 if (is_metadata) 6728 bh = sb_find_get_block(inode->i_sb, block + i); 6729 ext4_forget(handle, is_metadata, inode, bh, block + i); 6730 } 6731 } 6732 6733 ext4_mb_clear_bb(handle, inode, block, count, flags); 6734 } 6735 6736 /** 6737 * ext4_group_add_blocks() -- Add given blocks to an existing group 6738 * @handle: handle to this transaction 6739 * @sb: super block 6740 * @block: start physical block to add to the block group 6741 * @count: number of blocks to free 6742 * 6743 * This marks the blocks as free in the bitmap and buddy. 6744 */ 6745 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 6746 ext4_fsblk_t block, unsigned long count) 6747 { 6748 struct buffer_head *bitmap_bh = NULL; 6749 struct buffer_head *gd_bh; 6750 ext4_group_t block_group; 6751 ext4_grpblk_t bit; 6752 unsigned int i; 6753 struct ext4_group_desc *desc; 6754 struct ext4_sb_info *sbi = EXT4_SB(sb); 6755 struct ext4_buddy e4b; 6756 int err = 0, ret, free_clusters_count; 6757 ext4_grpblk_t clusters_freed; 6758 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 6759 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 6760 unsigned long cluster_count = last_cluster - first_cluster + 1; 6761 6762 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 6763 6764 if (count == 0) 6765 return 0; 6766 6767 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6768 /* 6769 * Check to see if we are freeing blocks across a group 6770 * boundary. 6771 */ 6772 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 6773 ext4_warning(sb, "too many blocks added to group %u", 6774 block_group); 6775 err = -EINVAL; 6776 goto error_return; 6777 } 6778 6779 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6780 if (IS_ERR(bitmap_bh)) { 6781 err = PTR_ERR(bitmap_bh); 6782 bitmap_bh = NULL; 6783 goto error_return; 6784 } 6785 6786 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 6787 if (!desc) { 6788 err = -EIO; 6789 goto error_return; 6790 } 6791 6792 if (!ext4_sb_block_valid(sb, NULL, block, count)) { 6793 ext4_error(sb, "Adding blocks in system zones - " 6794 "Block = %llu, count = %lu", 6795 block, count); 6796 err = -EINVAL; 6797 goto error_return; 6798 } 6799 6800 BUFFER_TRACE(bitmap_bh, "getting write access"); 6801 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6802 EXT4_JTR_NONE); 6803 if (err) 6804 goto error_return; 6805 6806 /* 6807 * We are about to modify some metadata. Call the journal APIs 6808 * to unshare ->b_data if a currently-committing transaction is 6809 * using it 6810 */ 6811 BUFFER_TRACE(gd_bh, "get_write_access"); 6812 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6813 if (err) 6814 goto error_return; 6815 6816 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 6817 BUFFER_TRACE(bitmap_bh, "clear bit"); 6818 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 6819 ext4_error(sb, "bit already cleared for block %llu", 6820 (ext4_fsblk_t)(block + i)); 6821 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 6822 } else { 6823 clusters_freed++; 6824 } 6825 } 6826 6827 err = ext4_mb_load_buddy(sb, block_group, &e4b); 6828 if (err) 6829 goto error_return; 6830 6831 /* 6832 * need to update group_info->bb_free and bitmap 6833 * with group lock held. generate_buddy look at 6834 * them with group lock_held 6835 */ 6836 ext4_lock_group(sb, block_group); 6837 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 6838 mb_free_blocks(NULL, &e4b, bit, cluster_count); 6839 free_clusters_count = clusters_freed + 6840 ext4_free_group_clusters(sb, desc); 6841 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 6842 ext4_block_bitmap_csum_set(sb, desc, bitmap_bh); 6843 ext4_group_desc_csum_set(sb, block_group, desc); 6844 ext4_unlock_group(sb, block_group); 6845 percpu_counter_add(&sbi->s_freeclusters_counter, 6846 clusters_freed); 6847 6848 if (sbi->s_log_groups_per_flex) { 6849 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6850 atomic64_add(clusters_freed, 6851 &sbi_array_rcu_deref(sbi, s_flex_groups, 6852 flex_group)->free_clusters); 6853 } 6854 6855 ext4_mb_unload_buddy(&e4b); 6856 6857 /* We dirtied the bitmap block */ 6858 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6859 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6860 6861 /* And the group descriptor block */ 6862 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6863 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6864 if (!err) 6865 err = ret; 6866 6867 error_return: 6868 brelse(bitmap_bh); 6869 ext4_std_error(sb, err); 6870 return err; 6871 } 6872 6873 /** 6874 * ext4_trim_extent -- function to TRIM one single free extent in the group 6875 * @sb: super block for the file system 6876 * @start: starting block of the free extent in the alloc. group 6877 * @count: number of blocks to TRIM 6878 * @e4b: ext4 buddy for the group 6879 * 6880 * Trim "count" blocks starting at "start" in the "group". To assure that no 6881 * one will allocate those blocks, mark it as used in buddy bitmap. This must 6882 * be called with under the group lock. 6883 */ 6884 static int ext4_trim_extent(struct super_block *sb, 6885 int start, int count, struct ext4_buddy *e4b) 6886 __releases(bitlock) 6887 __acquires(bitlock) 6888 { 6889 struct ext4_free_extent ex; 6890 ext4_group_t group = e4b->bd_group; 6891 int ret = 0; 6892 6893 trace_ext4_trim_extent(sb, group, start, count); 6894 6895 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 6896 6897 ex.fe_start = start; 6898 ex.fe_group = group; 6899 ex.fe_len = count; 6900 6901 /* 6902 * Mark blocks used, so no one can reuse them while 6903 * being trimmed. 6904 */ 6905 mb_mark_used(e4b, &ex); 6906 ext4_unlock_group(sb, group); 6907 ret = ext4_issue_discard(sb, group, start, count, NULL); 6908 ext4_lock_group(sb, group); 6909 mb_free_blocks(NULL, e4b, start, ex.fe_len); 6910 return ret; 6911 } 6912 6913 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb, 6914 ext4_group_t grp) 6915 { 6916 unsigned long nr_clusters_in_group; 6917 6918 if (grp < (ext4_get_groups_count(sb) - 1)) 6919 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb); 6920 else 6921 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) - 6922 ext4_group_first_block_no(sb, grp)) 6923 >> EXT4_CLUSTER_BITS(sb); 6924 6925 return nr_clusters_in_group - 1; 6926 } 6927 6928 static bool ext4_trim_interrupted(void) 6929 { 6930 return fatal_signal_pending(current) || freezing(current); 6931 } 6932 6933 static int ext4_try_to_trim_range(struct super_block *sb, 6934 struct ext4_buddy *e4b, ext4_grpblk_t start, 6935 ext4_grpblk_t max, ext4_grpblk_t minblocks) 6936 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) 6937 __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) 6938 { 6939 ext4_grpblk_t next, count, free_count, last, origin_start; 6940 bool set_trimmed = false; 6941 void *bitmap; 6942 6943 last = ext4_last_grp_cluster(sb, e4b->bd_group); 6944 bitmap = e4b->bd_bitmap; 6945 if (start == 0 && max >= last) 6946 set_trimmed = true; 6947 origin_start = start; 6948 start = max(e4b->bd_info->bb_first_free, start); 6949 count = 0; 6950 free_count = 0; 6951 6952 while (start <= max) { 6953 start = mb_find_next_zero_bit(bitmap, max + 1, start); 6954 if (start > max) 6955 break; 6956 6957 next = mb_find_next_bit(bitmap, last + 1, start); 6958 if (origin_start == 0 && next >= last) 6959 set_trimmed = true; 6960 6961 if ((next - start) >= minblocks) { 6962 int ret = ext4_trim_extent(sb, start, next - start, e4b); 6963 6964 if (ret && ret != -EOPNOTSUPP) 6965 return count; 6966 count += next - start; 6967 } 6968 free_count += next - start; 6969 start = next + 1; 6970 6971 if (ext4_trim_interrupted()) 6972 return count; 6973 6974 if (need_resched()) { 6975 ext4_unlock_group(sb, e4b->bd_group); 6976 cond_resched(); 6977 ext4_lock_group(sb, e4b->bd_group); 6978 } 6979 6980 if ((e4b->bd_info->bb_free - free_count) < minblocks) 6981 break; 6982 } 6983 6984 if (set_trimmed) 6985 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info); 6986 6987 return count; 6988 } 6989 6990 /** 6991 * ext4_trim_all_free -- function to trim all free space in alloc. group 6992 * @sb: super block for file system 6993 * @group: group to be trimmed 6994 * @start: first group block to examine 6995 * @max: last group block to examine 6996 * @minblocks: minimum extent block count 6997 * 6998 * ext4_trim_all_free walks through group's block bitmap searching for free 6999 * extents. When the free extent is found, mark it as used in group buddy 7000 * bitmap. Then issue a TRIM command on this extent and free the extent in 7001 * the group buddy bitmap. 7002 */ 7003 static ext4_grpblk_t 7004 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 7005 ext4_grpblk_t start, ext4_grpblk_t max, 7006 ext4_grpblk_t minblocks) 7007 { 7008 struct ext4_buddy e4b; 7009 int ret; 7010 7011 trace_ext4_trim_all_free(sb, group, start, max); 7012 7013 ret = ext4_mb_load_buddy(sb, group, &e4b); 7014 if (ret) { 7015 ext4_warning(sb, "Error %d loading buddy information for %u", 7016 ret, group); 7017 return ret; 7018 } 7019 7020 ext4_lock_group(sb, group); 7021 7022 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || 7023 minblocks < EXT4_SB(sb)->s_last_trim_minblks) 7024 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); 7025 else 7026 ret = 0; 7027 7028 ext4_unlock_group(sb, group); 7029 ext4_mb_unload_buddy(&e4b); 7030 7031 ext4_debug("trimmed %d blocks in the group %d\n", 7032 ret, group); 7033 7034 return ret; 7035 } 7036 7037 /** 7038 * ext4_trim_fs() -- trim ioctl handle function 7039 * @sb: superblock for filesystem 7040 * @range: fstrim_range structure 7041 * 7042 * start: First Byte to trim 7043 * len: number of Bytes to trim from start 7044 * minlen: minimum extent length in Bytes 7045 * ext4_trim_fs goes through all allocation groups containing Bytes from 7046 * start to start+len. For each such a group ext4_trim_all_free function 7047 * is invoked to trim all free space. 7048 */ 7049 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 7050 { 7051 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev); 7052 struct ext4_group_info *grp; 7053 ext4_group_t group, first_group, last_group; 7054 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 7055 uint64_t start, end, minlen, trimmed = 0; 7056 ext4_fsblk_t first_data_blk = 7057 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 7058 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 7059 int ret = 0; 7060 7061 start = range->start >> sb->s_blocksize_bits; 7062 end = start + (range->len >> sb->s_blocksize_bits) - 1; 7063 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7064 range->minlen >> sb->s_blocksize_bits); 7065 7066 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 7067 start >= max_blks || 7068 range->len < sb->s_blocksize) 7069 return -EINVAL; 7070 /* No point to try to trim less than discard granularity */ 7071 if (range->minlen < discard_granularity) { 7072 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7073 discard_granularity >> sb->s_blocksize_bits); 7074 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) 7075 goto out; 7076 } 7077 if (end >= max_blks - 1) 7078 end = max_blks - 1; 7079 if (end <= first_data_blk) 7080 goto out; 7081 if (start < first_data_blk) 7082 start = first_data_blk; 7083 7084 /* Determine first and last group to examine based on start and end */ 7085 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 7086 &first_group, &first_cluster); 7087 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 7088 &last_group, &last_cluster); 7089 7090 /* end now represents the last cluster to discard in this group */ 7091 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7092 7093 for (group = first_group; group <= last_group; group++) { 7094 if (ext4_trim_interrupted()) 7095 break; 7096 grp = ext4_get_group_info(sb, group); 7097 if (!grp) 7098 continue; 7099 /* We only do this if the grp has never been initialized */ 7100 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 7101 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 7102 if (ret) 7103 break; 7104 } 7105 7106 /* 7107 * For all the groups except the last one, last cluster will 7108 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 7109 * change it for the last group, note that last_cluster is 7110 * already computed earlier by ext4_get_group_no_and_offset() 7111 */ 7112 if (group == last_group) 7113 end = last_cluster; 7114 if (grp->bb_free >= minlen) { 7115 cnt = ext4_trim_all_free(sb, group, first_cluster, 7116 end, minlen); 7117 if (cnt < 0) { 7118 ret = cnt; 7119 break; 7120 } 7121 trimmed += cnt; 7122 } 7123 7124 /* 7125 * For every group except the first one, we are sure 7126 * that the first cluster to discard will be cluster #0. 7127 */ 7128 first_cluster = 0; 7129 } 7130 7131 if (!ret) 7132 EXT4_SB(sb)->s_last_trim_minblks = minlen; 7133 7134 out: 7135 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 7136 return ret; 7137 } 7138 7139 /* Iterate all the free extents in the group. */ 7140 int 7141 ext4_mballoc_query_range( 7142 struct super_block *sb, 7143 ext4_group_t group, 7144 ext4_grpblk_t start, 7145 ext4_grpblk_t end, 7146 ext4_mballoc_query_range_fn formatter, 7147 void *priv) 7148 { 7149 void *bitmap; 7150 ext4_grpblk_t next; 7151 struct ext4_buddy e4b; 7152 int error; 7153 7154 error = ext4_mb_load_buddy(sb, group, &e4b); 7155 if (error) 7156 return error; 7157 bitmap = e4b.bd_bitmap; 7158 7159 ext4_lock_group(sb, group); 7160 7161 start = max(e4b.bd_info->bb_first_free, start); 7162 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 7163 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7164 7165 while (start <= end) { 7166 start = mb_find_next_zero_bit(bitmap, end + 1, start); 7167 if (start > end) 7168 break; 7169 next = mb_find_next_bit(bitmap, end + 1, start); 7170 7171 ext4_unlock_group(sb, group); 7172 error = formatter(sb, group, start, next - start, priv); 7173 if (error) 7174 goto out_unload; 7175 ext4_lock_group(sb, group); 7176 7177 start = next + 1; 7178 } 7179 7180 ext4_unlock_group(sb, group); 7181 out_unload: 7182 ext4_mb_unload_buddy(&e4b); 7183 7184 return error; 7185 } 7186