xref: /openbmc/linux/fs/ext4/mballoc.c (revision abfbd895)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/backing-dev.h>
30 #include <trace/events/ext4.h>
31 
32 #ifdef CONFIG_EXT4_DEBUG
33 ushort ext4_mballoc_debug __read_mostly;
34 
35 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
36 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
37 #endif
38 
39 /*
40  * MUSTDO:
41  *   - test ext4_ext_search_left() and ext4_ext_search_right()
42  *   - search for metadata in few groups
43  *
44  * TODO v4:
45  *   - normalization should take into account whether file is still open
46  *   - discard preallocations if no free space left (policy?)
47  *   - don't normalize tails
48  *   - quota
49  *   - reservation for superuser
50  *
51  * TODO v3:
52  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
53  *   - track min/max extents in each group for better group selection
54  *   - mb_mark_used() may allocate chunk right after splitting buddy
55  *   - tree of groups sorted by number of free blocks
56  *   - error handling
57  */
58 
59 /*
60  * The allocation request involve request for multiple number of blocks
61  * near to the goal(block) value specified.
62  *
63  * During initialization phase of the allocator we decide to use the
64  * group preallocation or inode preallocation depending on the size of
65  * the file. The size of the file could be the resulting file size we
66  * would have after allocation, or the current file size, which ever
67  * is larger. If the size is less than sbi->s_mb_stream_request we
68  * select to use the group preallocation. The default value of
69  * s_mb_stream_request is 16 blocks. This can also be tuned via
70  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
71  * terms of number of blocks.
72  *
73  * The main motivation for having small file use group preallocation is to
74  * ensure that we have small files closer together on the disk.
75  *
76  * First stage the allocator looks at the inode prealloc list,
77  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
78  * spaces for this particular inode. The inode prealloc space is
79  * represented as:
80  *
81  * pa_lstart -> the logical start block for this prealloc space
82  * pa_pstart -> the physical start block for this prealloc space
83  * pa_len    -> length for this prealloc space (in clusters)
84  * pa_free   ->  free space available in this prealloc space (in clusters)
85  *
86  * The inode preallocation space is used looking at the _logical_ start
87  * block. If only the logical file block falls within the range of prealloc
88  * space we will consume the particular prealloc space. This makes sure that
89  * we have contiguous physical blocks representing the file blocks
90  *
91  * The important thing to be noted in case of inode prealloc space is that
92  * we don't modify the values associated to inode prealloc space except
93  * pa_free.
94  *
95  * If we are not able to find blocks in the inode prealloc space and if we
96  * have the group allocation flag set then we look at the locality group
97  * prealloc space. These are per CPU prealloc list represented as
98  *
99  * ext4_sb_info.s_locality_groups[smp_processor_id()]
100  *
101  * The reason for having a per cpu locality group is to reduce the contention
102  * between CPUs. It is possible to get scheduled at this point.
103  *
104  * The locality group prealloc space is used looking at whether we have
105  * enough free space (pa_free) within the prealloc space.
106  *
107  * If we can't allocate blocks via inode prealloc or/and locality group
108  * prealloc then we look at the buddy cache. The buddy cache is represented
109  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
110  * mapped to the buddy and bitmap information regarding different
111  * groups. The buddy information is attached to buddy cache inode so that
112  * we can access them through the page cache. The information regarding
113  * each group is loaded via ext4_mb_load_buddy.  The information involve
114  * block bitmap and buddy information. The information are stored in the
115  * inode as:
116  *
117  *  {                        page                        }
118  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
119  *
120  *
121  * one block each for bitmap and buddy information.  So for each group we
122  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
123  * blocksize) blocks.  So it can have information regarding groups_per_page
124  * which is blocks_per_page/2
125  *
126  * The buddy cache inode is not stored on disk. The inode is thrown
127  * away when the filesystem is unmounted.
128  *
129  * We look for count number of blocks in the buddy cache. If we were able
130  * to locate that many free blocks we return with additional information
131  * regarding rest of the contiguous physical block available
132  *
133  * Before allocating blocks via buddy cache we normalize the request
134  * blocks. This ensure we ask for more blocks that we needed. The extra
135  * blocks that we get after allocation is added to the respective prealloc
136  * list. In case of inode preallocation we follow a list of heuristics
137  * based on file size. This can be found in ext4_mb_normalize_request. If
138  * we are doing a group prealloc we try to normalize the request to
139  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
140  * dependent on the cluster size; for non-bigalloc file systems, it is
141  * 512 blocks. This can be tuned via
142  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
143  * terms of number of blocks. If we have mounted the file system with -O
144  * stripe=<value> option the group prealloc request is normalized to the
145  * the smallest multiple of the stripe value (sbi->s_stripe) which is
146  * greater than the default mb_group_prealloc.
147  *
148  * The regular allocator (using the buddy cache) supports a few tunables.
149  *
150  * /sys/fs/ext4/<partition>/mb_min_to_scan
151  * /sys/fs/ext4/<partition>/mb_max_to_scan
152  * /sys/fs/ext4/<partition>/mb_order2_req
153  *
154  * The regular allocator uses buddy scan only if the request len is power of
155  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
156  * value of s_mb_order2_reqs can be tuned via
157  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
158  * stripe size (sbi->s_stripe), we try to search for contiguous block in
159  * stripe size. This should result in better allocation on RAID setups. If
160  * not, we search in the specific group using bitmap for best extents. The
161  * tunable min_to_scan and max_to_scan control the behaviour here.
162  * min_to_scan indicate how long the mballoc __must__ look for a best
163  * extent and max_to_scan indicates how long the mballoc __can__ look for a
164  * best extent in the found extents. Searching for the blocks starts with
165  * the group specified as the goal value in allocation context via
166  * ac_g_ex. Each group is first checked based on the criteria whether it
167  * can be used for allocation. ext4_mb_good_group explains how the groups are
168  * checked.
169  *
170  * Both the prealloc space are getting populated as above. So for the first
171  * request we will hit the buddy cache which will result in this prealloc
172  * space getting filled. The prealloc space is then later used for the
173  * subsequent request.
174  */
175 
176 /*
177  * mballoc operates on the following data:
178  *  - on-disk bitmap
179  *  - in-core buddy (actually includes buddy and bitmap)
180  *  - preallocation descriptors (PAs)
181  *
182  * there are two types of preallocations:
183  *  - inode
184  *    assiged to specific inode and can be used for this inode only.
185  *    it describes part of inode's space preallocated to specific
186  *    physical blocks. any block from that preallocated can be used
187  *    independent. the descriptor just tracks number of blocks left
188  *    unused. so, before taking some block from descriptor, one must
189  *    make sure corresponded logical block isn't allocated yet. this
190  *    also means that freeing any block within descriptor's range
191  *    must discard all preallocated blocks.
192  *  - locality group
193  *    assigned to specific locality group which does not translate to
194  *    permanent set of inodes: inode can join and leave group. space
195  *    from this type of preallocation can be used for any inode. thus
196  *    it's consumed from the beginning to the end.
197  *
198  * relation between them can be expressed as:
199  *    in-core buddy = on-disk bitmap + preallocation descriptors
200  *
201  * this mean blocks mballoc considers used are:
202  *  - allocated blocks (persistent)
203  *  - preallocated blocks (non-persistent)
204  *
205  * consistency in mballoc world means that at any time a block is either
206  * free or used in ALL structures. notice: "any time" should not be read
207  * literally -- time is discrete and delimited by locks.
208  *
209  *  to keep it simple, we don't use block numbers, instead we count number of
210  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211  *
212  * all operations can be expressed as:
213  *  - init buddy:			buddy = on-disk + PAs
214  *  - new PA:				buddy += N; PA = N
215  *  - use inode PA:			on-disk += N; PA -= N
216  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
217  *  - use locality group PA		on-disk += N; PA -= N
218  *  - discard locality group PA		buddy -= PA; PA = 0
219  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
220  *        is used in real operation because we can't know actual used
221  *        bits from PA, only from on-disk bitmap
222  *
223  * if we follow this strict logic, then all operations above should be atomic.
224  * given some of them can block, we'd have to use something like semaphores
225  * killing performance on high-end SMP hardware. let's try to relax it using
226  * the following knowledge:
227  *  1) if buddy is referenced, it's already initialized
228  *  2) while block is used in buddy and the buddy is referenced,
229  *     nobody can re-allocate that block
230  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
231  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
232  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
233  *     block
234  *
235  * so, now we're building a concurrency table:
236  *  - init buddy vs.
237  *    - new PA
238  *      blocks for PA are allocated in the buddy, buddy must be referenced
239  *      until PA is linked to allocation group to avoid concurrent buddy init
240  *    - use inode PA
241  *      we need to make sure that either on-disk bitmap or PA has uptodate data
242  *      given (3) we care that PA-=N operation doesn't interfere with init
243  *    - discard inode PA
244  *      the simplest way would be to have buddy initialized by the discard
245  *    - use locality group PA
246  *      again PA-=N must be serialized with init
247  *    - discard locality group PA
248  *      the simplest way would be to have buddy initialized by the discard
249  *  - new PA vs.
250  *    - use inode PA
251  *      i_data_sem serializes them
252  *    - discard inode PA
253  *      discard process must wait until PA isn't used by another process
254  *    - use locality group PA
255  *      some mutex should serialize them
256  *    - discard locality group PA
257  *      discard process must wait until PA isn't used by another process
258  *  - use inode PA
259  *    - use inode PA
260  *      i_data_sem or another mutex should serializes them
261  *    - discard inode PA
262  *      discard process must wait until PA isn't used by another process
263  *    - use locality group PA
264  *      nothing wrong here -- they're different PAs covering different blocks
265  *    - discard locality group PA
266  *      discard process must wait until PA isn't used by another process
267  *
268  * now we're ready to make few consequences:
269  *  - PA is referenced and while it is no discard is possible
270  *  - PA is referenced until block isn't marked in on-disk bitmap
271  *  - PA changes only after on-disk bitmap
272  *  - discard must not compete with init. either init is done before
273  *    any discard or they're serialized somehow
274  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
275  *
276  * a special case when we've used PA to emptiness. no need to modify buddy
277  * in this case, but we should care about concurrent init
278  *
279  */
280 
281  /*
282  * Logic in few words:
283  *
284  *  - allocation:
285  *    load group
286  *    find blocks
287  *    mark bits in on-disk bitmap
288  *    release group
289  *
290  *  - use preallocation:
291  *    find proper PA (per-inode or group)
292  *    load group
293  *    mark bits in on-disk bitmap
294  *    release group
295  *    release PA
296  *
297  *  - free:
298  *    load group
299  *    mark bits in on-disk bitmap
300  *    release group
301  *
302  *  - discard preallocations in group:
303  *    mark PAs deleted
304  *    move them onto local list
305  *    load on-disk bitmap
306  *    load group
307  *    remove PA from object (inode or locality group)
308  *    mark free blocks in-core
309  *
310  *  - discard inode's preallocations:
311  */
312 
313 /*
314  * Locking rules
315  *
316  * Locks:
317  *  - bitlock on a group	(group)
318  *  - object (inode/locality)	(object)
319  *  - per-pa lock		(pa)
320  *
321  * Paths:
322  *  - new pa
323  *    object
324  *    group
325  *
326  *  - find and use pa:
327  *    pa
328  *
329  *  - release consumed pa:
330  *    pa
331  *    group
332  *    object
333  *
334  *  - generate in-core bitmap:
335  *    group
336  *        pa
337  *
338  *  - discard all for given object (inode, locality group):
339  *    object
340  *        pa
341  *    group
342  *
343  *  - discard all for given group:
344  *    group
345  *        pa
346  *    group
347  *        object
348  *
349  */
350 static struct kmem_cache *ext4_pspace_cachep;
351 static struct kmem_cache *ext4_ac_cachep;
352 static struct kmem_cache *ext4_free_data_cachep;
353 
354 /* We create slab caches for groupinfo data structures based on the
355  * superblock block size.  There will be one per mounted filesystem for
356  * each unique s_blocksize_bits */
357 #define NR_GRPINFO_CACHES 8
358 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
359 
360 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
361 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
362 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
363 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
364 };
365 
366 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
367 					ext4_group_t group);
368 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
369 						ext4_group_t group);
370 static void ext4_free_data_callback(struct super_block *sb,
371 				struct ext4_journal_cb_entry *jce, int rc);
372 
373 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
374 {
375 #if BITS_PER_LONG == 64
376 	*bit += ((unsigned long) addr & 7UL) << 3;
377 	addr = (void *) ((unsigned long) addr & ~7UL);
378 #elif BITS_PER_LONG == 32
379 	*bit += ((unsigned long) addr & 3UL) << 3;
380 	addr = (void *) ((unsigned long) addr & ~3UL);
381 #else
382 #error "how many bits you are?!"
383 #endif
384 	return addr;
385 }
386 
387 static inline int mb_test_bit(int bit, void *addr)
388 {
389 	/*
390 	 * ext4_test_bit on architecture like powerpc
391 	 * needs unsigned long aligned address
392 	 */
393 	addr = mb_correct_addr_and_bit(&bit, addr);
394 	return ext4_test_bit(bit, addr);
395 }
396 
397 static inline void mb_set_bit(int bit, void *addr)
398 {
399 	addr = mb_correct_addr_and_bit(&bit, addr);
400 	ext4_set_bit(bit, addr);
401 }
402 
403 static inline void mb_clear_bit(int bit, void *addr)
404 {
405 	addr = mb_correct_addr_and_bit(&bit, addr);
406 	ext4_clear_bit(bit, addr);
407 }
408 
409 static inline int mb_test_and_clear_bit(int bit, void *addr)
410 {
411 	addr = mb_correct_addr_and_bit(&bit, addr);
412 	return ext4_test_and_clear_bit(bit, addr);
413 }
414 
415 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
416 {
417 	int fix = 0, ret, tmpmax;
418 	addr = mb_correct_addr_and_bit(&fix, addr);
419 	tmpmax = max + fix;
420 	start += fix;
421 
422 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
423 	if (ret > max)
424 		return max;
425 	return ret;
426 }
427 
428 static inline int mb_find_next_bit(void *addr, int max, int start)
429 {
430 	int fix = 0, ret, tmpmax;
431 	addr = mb_correct_addr_and_bit(&fix, addr);
432 	tmpmax = max + fix;
433 	start += fix;
434 
435 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
436 	if (ret > max)
437 		return max;
438 	return ret;
439 }
440 
441 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
442 {
443 	char *bb;
444 
445 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
446 	BUG_ON(max == NULL);
447 
448 	if (order > e4b->bd_blkbits + 1) {
449 		*max = 0;
450 		return NULL;
451 	}
452 
453 	/* at order 0 we see each particular block */
454 	if (order == 0) {
455 		*max = 1 << (e4b->bd_blkbits + 3);
456 		return e4b->bd_bitmap;
457 	}
458 
459 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
460 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
461 
462 	return bb;
463 }
464 
465 #ifdef DOUBLE_CHECK
466 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
467 			   int first, int count)
468 {
469 	int i;
470 	struct super_block *sb = e4b->bd_sb;
471 
472 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
473 		return;
474 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
475 	for (i = 0; i < count; i++) {
476 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
477 			ext4_fsblk_t blocknr;
478 
479 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
480 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
481 			ext4_grp_locked_error(sb, e4b->bd_group,
482 					      inode ? inode->i_ino : 0,
483 					      blocknr,
484 					      "freeing block already freed "
485 					      "(bit %u)",
486 					      first + i);
487 		}
488 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
489 	}
490 }
491 
492 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
493 {
494 	int i;
495 
496 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
497 		return;
498 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
499 	for (i = 0; i < count; i++) {
500 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
501 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
502 	}
503 }
504 
505 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
506 {
507 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
508 		unsigned char *b1, *b2;
509 		int i;
510 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
511 		b2 = (unsigned char *) bitmap;
512 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
513 			if (b1[i] != b2[i]) {
514 				ext4_msg(e4b->bd_sb, KERN_ERR,
515 					 "corruption in group %u "
516 					 "at byte %u(%u): %x in copy != %x "
517 					 "on disk/prealloc",
518 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
519 				BUG();
520 			}
521 		}
522 	}
523 }
524 
525 #else
526 static inline void mb_free_blocks_double(struct inode *inode,
527 				struct ext4_buddy *e4b, int first, int count)
528 {
529 	return;
530 }
531 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
532 						int first, int count)
533 {
534 	return;
535 }
536 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
537 {
538 	return;
539 }
540 #endif
541 
542 #ifdef AGGRESSIVE_CHECK
543 
544 #define MB_CHECK_ASSERT(assert)						\
545 do {									\
546 	if (!(assert)) {						\
547 		printk(KERN_EMERG					\
548 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
549 			function, file, line, # assert);		\
550 		BUG();							\
551 	}								\
552 } while (0)
553 
554 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
555 				const char *function, int line)
556 {
557 	struct super_block *sb = e4b->bd_sb;
558 	int order = e4b->bd_blkbits + 1;
559 	int max;
560 	int max2;
561 	int i;
562 	int j;
563 	int k;
564 	int count;
565 	struct ext4_group_info *grp;
566 	int fragments = 0;
567 	int fstart;
568 	struct list_head *cur;
569 	void *buddy;
570 	void *buddy2;
571 
572 	{
573 		static int mb_check_counter;
574 		if (mb_check_counter++ % 100 != 0)
575 			return 0;
576 	}
577 
578 	while (order > 1) {
579 		buddy = mb_find_buddy(e4b, order, &max);
580 		MB_CHECK_ASSERT(buddy);
581 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
582 		MB_CHECK_ASSERT(buddy2);
583 		MB_CHECK_ASSERT(buddy != buddy2);
584 		MB_CHECK_ASSERT(max * 2 == max2);
585 
586 		count = 0;
587 		for (i = 0; i < max; i++) {
588 
589 			if (mb_test_bit(i, buddy)) {
590 				/* only single bit in buddy2 may be 1 */
591 				if (!mb_test_bit(i << 1, buddy2)) {
592 					MB_CHECK_ASSERT(
593 						mb_test_bit((i<<1)+1, buddy2));
594 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
595 					MB_CHECK_ASSERT(
596 						mb_test_bit(i << 1, buddy2));
597 				}
598 				continue;
599 			}
600 
601 			/* both bits in buddy2 must be 1 */
602 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
603 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
604 
605 			for (j = 0; j < (1 << order); j++) {
606 				k = (i * (1 << order)) + j;
607 				MB_CHECK_ASSERT(
608 					!mb_test_bit(k, e4b->bd_bitmap));
609 			}
610 			count++;
611 		}
612 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
613 		order--;
614 	}
615 
616 	fstart = -1;
617 	buddy = mb_find_buddy(e4b, 0, &max);
618 	for (i = 0; i < max; i++) {
619 		if (!mb_test_bit(i, buddy)) {
620 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
621 			if (fstart == -1) {
622 				fragments++;
623 				fstart = i;
624 			}
625 			continue;
626 		}
627 		fstart = -1;
628 		/* check used bits only */
629 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
630 			buddy2 = mb_find_buddy(e4b, j, &max2);
631 			k = i >> j;
632 			MB_CHECK_ASSERT(k < max2);
633 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
634 		}
635 	}
636 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
637 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
638 
639 	grp = ext4_get_group_info(sb, e4b->bd_group);
640 	list_for_each(cur, &grp->bb_prealloc_list) {
641 		ext4_group_t groupnr;
642 		struct ext4_prealloc_space *pa;
643 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
644 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
645 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
646 		for (i = 0; i < pa->pa_len; i++)
647 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
648 	}
649 	return 0;
650 }
651 #undef MB_CHECK_ASSERT
652 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
653 					__FILE__, __func__, __LINE__)
654 #else
655 #define mb_check_buddy(e4b)
656 #endif
657 
658 /*
659  * Divide blocks started from @first with length @len into
660  * smaller chunks with power of 2 blocks.
661  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
662  * then increase bb_counters[] for corresponded chunk size.
663  */
664 static void ext4_mb_mark_free_simple(struct super_block *sb,
665 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
666 					struct ext4_group_info *grp)
667 {
668 	struct ext4_sb_info *sbi = EXT4_SB(sb);
669 	ext4_grpblk_t min;
670 	ext4_grpblk_t max;
671 	ext4_grpblk_t chunk;
672 	unsigned short border;
673 
674 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
675 
676 	border = 2 << sb->s_blocksize_bits;
677 
678 	while (len > 0) {
679 		/* find how many blocks can be covered since this position */
680 		max = ffs(first | border) - 1;
681 
682 		/* find how many blocks of power 2 we need to mark */
683 		min = fls(len) - 1;
684 
685 		if (max < min)
686 			min = max;
687 		chunk = 1 << min;
688 
689 		/* mark multiblock chunks only */
690 		grp->bb_counters[min]++;
691 		if (min > 0)
692 			mb_clear_bit(first >> min,
693 				     buddy + sbi->s_mb_offsets[min]);
694 
695 		len -= chunk;
696 		first += chunk;
697 	}
698 }
699 
700 /*
701  * Cache the order of the largest free extent we have available in this block
702  * group.
703  */
704 static void
705 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
706 {
707 	int i;
708 	int bits;
709 
710 	grp->bb_largest_free_order = -1; /* uninit */
711 
712 	bits = sb->s_blocksize_bits + 1;
713 	for (i = bits; i >= 0; i--) {
714 		if (grp->bb_counters[i] > 0) {
715 			grp->bb_largest_free_order = i;
716 			break;
717 		}
718 	}
719 }
720 
721 static noinline_for_stack
722 void ext4_mb_generate_buddy(struct super_block *sb,
723 				void *buddy, void *bitmap, ext4_group_t group)
724 {
725 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
726 	struct ext4_sb_info *sbi = EXT4_SB(sb);
727 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
728 	ext4_grpblk_t i = 0;
729 	ext4_grpblk_t first;
730 	ext4_grpblk_t len;
731 	unsigned free = 0;
732 	unsigned fragments = 0;
733 	unsigned long long period = get_cycles();
734 
735 	/* initialize buddy from bitmap which is aggregation
736 	 * of on-disk bitmap and preallocations */
737 	i = mb_find_next_zero_bit(bitmap, max, 0);
738 	grp->bb_first_free = i;
739 	while (i < max) {
740 		fragments++;
741 		first = i;
742 		i = mb_find_next_bit(bitmap, max, i);
743 		len = i - first;
744 		free += len;
745 		if (len > 1)
746 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
747 		else
748 			grp->bb_counters[0]++;
749 		if (i < max)
750 			i = mb_find_next_zero_bit(bitmap, max, i);
751 	}
752 	grp->bb_fragments = fragments;
753 
754 	if (free != grp->bb_free) {
755 		ext4_grp_locked_error(sb, group, 0, 0,
756 				      "block bitmap and bg descriptor "
757 				      "inconsistent: %u vs %u free clusters",
758 				      free, grp->bb_free);
759 		/*
760 		 * If we intend to continue, we consider group descriptor
761 		 * corrupt and update bb_free using bitmap value
762 		 */
763 		grp->bb_free = free;
764 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
765 			percpu_counter_sub(&sbi->s_freeclusters_counter,
766 					   grp->bb_free);
767 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
768 	}
769 	mb_set_largest_free_order(sb, grp);
770 
771 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
772 
773 	period = get_cycles() - period;
774 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
775 	EXT4_SB(sb)->s_mb_buddies_generated++;
776 	EXT4_SB(sb)->s_mb_generation_time += period;
777 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
778 }
779 
780 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
781 {
782 	int count;
783 	int order = 1;
784 	void *buddy;
785 
786 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
787 		ext4_set_bits(buddy, 0, count);
788 	}
789 	e4b->bd_info->bb_fragments = 0;
790 	memset(e4b->bd_info->bb_counters, 0,
791 		sizeof(*e4b->bd_info->bb_counters) *
792 		(e4b->bd_sb->s_blocksize_bits + 2));
793 
794 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
795 		e4b->bd_bitmap, e4b->bd_group);
796 }
797 
798 /* The buddy information is attached the buddy cache inode
799  * for convenience. The information regarding each group
800  * is loaded via ext4_mb_load_buddy. The information involve
801  * block bitmap and buddy information. The information are
802  * stored in the inode as
803  *
804  * {                        page                        }
805  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
806  *
807  *
808  * one block each for bitmap and buddy information.
809  * So for each group we take up 2 blocks. A page can
810  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
811  * So it can have information regarding groups_per_page which
812  * is blocks_per_page/2
813  *
814  * Locking note:  This routine takes the block group lock of all groups
815  * for this page; do not hold this lock when calling this routine!
816  */
817 
818 static int ext4_mb_init_cache(struct page *page, char *incore)
819 {
820 	ext4_group_t ngroups;
821 	int blocksize;
822 	int blocks_per_page;
823 	int groups_per_page;
824 	int err = 0;
825 	int i;
826 	ext4_group_t first_group, group;
827 	int first_block;
828 	struct super_block *sb;
829 	struct buffer_head *bhs;
830 	struct buffer_head **bh = NULL;
831 	struct inode *inode;
832 	char *data;
833 	char *bitmap;
834 	struct ext4_group_info *grinfo;
835 
836 	mb_debug(1, "init page %lu\n", page->index);
837 
838 	inode = page->mapping->host;
839 	sb = inode->i_sb;
840 	ngroups = ext4_get_groups_count(sb);
841 	blocksize = 1 << inode->i_blkbits;
842 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
843 
844 	groups_per_page = blocks_per_page >> 1;
845 	if (groups_per_page == 0)
846 		groups_per_page = 1;
847 
848 	/* allocate buffer_heads to read bitmaps */
849 	if (groups_per_page > 1) {
850 		i = sizeof(struct buffer_head *) * groups_per_page;
851 		bh = kzalloc(i, GFP_NOFS);
852 		if (bh == NULL) {
853 			err = -ENOMEM;
854 			goto out;
855 		}
856 	} else
857 		bh = &bhs;
858 
859 	first_group = page->index * blocks_per_page / 2;
860 
861 	/* read all groups the page covers into the cache */
862 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
863 		if (group >= ngroups)
864 			break;
865 
866 		grinfo = ext4_get_group_info(sb, group);
867 		/*
868 		 * If page is uptodate then we came here after online resize
869 		 * which added some new uninitialized group info structs, so
870 		 * we must skip all initialized uptodate buddies on the page,
871 		 * which may be currently in use by an allocating task.
872 		 */
873 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
874 			bh[i] = NULL;
875 			continue;
876 		}
877 		bh[i] = ext4_read_block_bitmap_nowait(sb, group);
878 		if (IS_ERR(bh[i])) {
879 			err = PTR_ERR(bh[i]);
880 			bh[i] = NULL;
881 			goto out;
882 		}
883 		mb_debug(1, "read bitmap for group %u\n", group);
884 	}
885 
886 	/* wait for I/O completion */
887 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
888 		int err2;
889 
890 		if (!bh[i])
891 			continue;
892 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
893 		if (!err)
894 			err = err2;
895 	}
896 
897 	first_block = page->index * blocks_per_page;
898 	for (i = 0; i < blocks_per_page; i++) {
899 		group = (first_block + i) >> 1;
900 		if (group >= ngroups)
901 			break;
902 
903 		if (!bh[group - first_group])
904 			/* skip initialized uptodate buddy */
905 			continue;
906 
907 		if (!buffer_verified(bh[group - first_group]))
908 			/* Skip faulty bitmaps */
909 			continue;
910 		err = 0;
911 
912 		/*
913 		 * data carry information regarding this
914 		 * particular group in the format specified
915 		 * above
916 		 *
917 		 */
918 		data = page_address(page) + (i * blocksize);
919 		bitmap = bh[group - first_group]->b_data;
920 
921 		/*
922 		 * We place the buddy block and bitmap block
923 		 * close together
924 		 */
925 		if ((first_block + i) & 1) {
926 			/* this is block of buddy */
927 			BUG_ON(incore == NULL);
928 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
929 				group, page->index, i * blocksize);
930 			trace_ext4_mb_buddy_bitmap_load(sb, group);
931 			grinfo = ext4_get_group_info(sb, group);
932 			grinfo->bb_fragments = 0;
933 			memset(grinfo->bb_counters, 0,
934 			       sizeof(*grinfo->bb_counters) *
935 				(sb->s_blocksize_bits+2));
936 			/*
937 			 * incore got set to the group block bitmap below
938 			 */
939 			ext4_lock_group(sb, group);
940 			/* init the buddy */
941 			memset(data, 0xff, blocksize);
942 			ext4_mb_generate_buddy(sb, data, incore, group);
943 			ext4_unlock_group(sb, group);
944 			incore = NULL;
945 		} else {
946 			/* this is block of bitmap */
947 			BUG_ON(incore != NULL);
948 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
949 				group, page->index, i * blocksize);
950 			trace_ext4_mb_bitmap_load(sb, group);
951 
952 			/* see comments in ext4_mb_put_pa() */
953 			ext4_lock_group(sb, group);
954 			memcpy(data, bitmap, blocksize);
955 
956 			/* mark all preallocated blks used in in-core bitmap */
957 			ext4_mb_generate_from_pa(sb, data, group);
958 			ext4_mb_generate_from_freelist(sb, data, group);
959 			ext4_unlock_group(sb, group);
960 
961 			/* set incore so that the buddy information can be
962 			 * generated using this
963 			 */
964 			incore = data;
965 		}
966 	}
967 	SetPageUptodate(page);
968 
969 out:
970 	if (bh) {
971 		for (i = 0; i < groups_per_page; i++)
972 			brelse(bh[i]);
973 		if (bh != &bhs)
974 			kfree(bh);
975 	}
976 	return err;
977 }
978 
979 /*
980  * Lock the buddy and bitmap pages. This make sure other parallel init_group
981  * on the same buddy page doesn't happen whild holding the buddy page lock.
982  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
983  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
984  */
985 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
986 		ext4_group_t group, struct ext4_buddy *e4b)
987 {
988 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
989 	int block, pnum, poff;
990 	int blocks_per_page;
991 	struct page *page;
992 
993 	e4b->bd_buddy_page = NULL;
994 	e4b->bd_bitmap_page = NULL;
995 
996 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
997 	/*
998 	 * the buddy cache inode stores the block bitmap
999 	 * and buddy information in consecutive blocks.
1000 	 * So for each group we need two blocks.
1001 	 */
1002 	block = group * 2;
1003 	pnum = block / blocks_per_page;
1004 	poff = block % blocks_per_page;
1005 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1006 	if (!page)
1007 		return -ENOMEM;
1008 	BUG_ON(page->mapping != inode->i_mapping);
1009 	e4b->bd_bitmap_page = page;
1010 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1011 
1012 	if (blocks_per_page >= 2) {
1013 		/* buddy and bitmap are on the same page */
1014 		return 0;
1015 	}
1016 
1017 	block++;
1018 	pnum = block / blocks_per_page;
1019 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1020 	if (!page)
1021 		return -ENOMEM;
1022 	BUG_ON(page->mapping != inode->i_mapping);
1023 	e4b->bd_buddy_page = page;
1024 	return 0;
1025 }
1026 
1027 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1028 {
1029 	if (e4b->bd_bitmap_page) {
1030 		unlock_page(e4b->bd_bitmap_page);
1031 		page_cache_release(e4b->bd_bitmap_page);
1032 	}
1033 	if (e4b->bd_buddy_page) {
1034 		unlock_page(e4b->bd_buddy_page);
1035 		page_cache_release(e4b->bd_buddy_page);
1036 	}
1037 }
1038 
1039 /*
1040  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1041  * block group lock of all groups for this page; do not hold the BG lock when
1042  * calling this routine!
1043  */
1044 static noinline_for_stack
1045 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1046 {
1047 
1048 	struct ext4_group_info *this_grp;
1049 	struct ext4_buddy e4b;
1050 	struct page *page;
1051 	int ret = 0;
1052 
1053 	might_sleep();
1054 	mb_debug(1, "init group %u\n", group);
1055 	this_grp = ext4_get_group_info(sb, group);
1056 	/*
1057 	 * This ensures that we don't reinit the buddy cache
1058 	 * page which map to the group from which we are already
1059 	 * allocating. If we are looking at the buddy cache we would
1060 	 * have taken a reference using ext4_mb_load_buddy and that
1061 	 * would have pinned buddy page to page cache.
1062 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1063 	 * page accessed.
1064 	 */
1065 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1066 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1067 		/*
1068 		 * somebody initialized the group
1069 		 * return without doing anything
1070 		 */
1071 		goto err;
1072 	}
1073 
1074 	page = e4b.bd_bitmap_page;
1075 	ret = ext4_mb_init_cache(page, NULL);
1076 	if (ret)
1077 		goto err;
1078 	if (!PageUptodate(page)) {
1079 		ret = -EIO;
1080 		goto err;
1081 	}
1082 
1083 	if (e4b.bd_buddy_page == NULL) {
1084 		/*
1085 		 * If both the bitmap and buddy are in
1086 		 * the same page we don't need to force
1087 		 * init the buddy
1088 		 */
1089 		ret = 0;
1090 		goto err;
1091 	}
1092 	/* init buddy cache */
1093 	page = e4b.bd_buddy_page;
1094 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1095 	if (ret)
1096 		goto err;
1097 	if (!PageUptodate(page)) {
1098 		ret = -EIO;
1099 		goto err;
1100 	}
1101 err:
1102 	ext4_mb_put_buddy_page_lock(&e4b);
1103 	return ret;
1104 }
1105 
1106 /*
1107  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1108  * block group lock of all groups for this page; do not hold the BG lock when
1109  * calling this routine!
1110  */
1111 static noinline_for_stack int
1112 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1113 					struct ext4_buddy *e4b)
1114 {
1115 	int blocks_per_page;
1116 	int block;
1117 	int pnum;
1118 	int poff;
1119 	struct page *page;
1120 	int ret;
1121 	struct ext4_group_info *grp;
1122 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1123 	struct inode *inode = sbi->s_buddy_cache;
1124 
1125 	might_sleep();
1126 	mb_debug(1, "load group %u\n", group);
1127 
1128 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1129 	grp = ext4_get_group_info(sb, group);
1130 
1131 	e4b->bd_blkbits = sb->s_blocksize_bits;
1132 	e4b->bd_info = grp;
1133 	e4b->bd_sb = sb;
1134 	e4b->bd_group = group;
1135 	e4b->bd_buddy_page = NULL;
1136 	e4b->bd_bitmap_page = NULL;
1137 
1138 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1139 		/*
1140 		 * we need full data about the group
1141 		 * to make a good selection
1142 		 */
1143 		ret = ext4_mb_init_group(sb, group);
1144 		if (ret)
1145 			return ret;
1146 	}
1147 
1148 	/*
1149 	 * the buddy cache inode stores the block bitmap
1150 	 * and buddy information in consecutive blocks.
1151 	 * So for each group we need two blocks.
1152 	 */
1153 	block = group * 2;
1154 	pnum = block / blocks_per_page;
1155 	poff = block % blocks_per_page;
1156 
1157 	/* we could use find_or_create_page(), but it locks page
1158 	 * what we'd like to avoid in fast path ... */
1159 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1160 	if (page == NULL || !PageUptodate(page)) {
1161 		if (page)
1162 			/*
1163 			 * drop the page reference and try
1164 			 * to get the page with lock. If we
1165 			 * are not uptodate that implies
1166 			 * somebody just created the page but
1167 			 * is yet to initialize the same. So
1168 			 * wait for it to initialize.
1169 			 */
1170 			page_cache_release(page);
1171 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1172 		if (page) {
1173 			BUG_ON(page->mapping != inode->i_mapping);
1174 			if (!PageUptodate(page)) {
1175 				ret = ext4_mb_init_cache(page, NULL);
1176 				if (ret) {
1177 					unlock_page(page);
1178 					goto err;
1179 				}
1180 				mb_cmp_bitmaps(e4b, page_address(page) +
1181 					       (poff * sb->s_blocksize));
1182 			}
1183 			unlock_page(page);
1184 		}
1185 	}
1186 	if (page == NULL) {
1187 		ret = -ENOMEM;
1188 		goto err;
1189 	}
1190 	if (!PageUptodate(page)) {
1191 		ret = -EIO;
1192 		goto err;
1193 	}
1194 
1195 	/* Pages marked accessed already */
1196 	e4b->bd_bitmap_page = page;
1197 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1198 
1199 	block++;
1200 	pnum = block / blocks_per_page;
1201 	poff = block % blocks_per_page;
1202 
1203 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1204 	if (page == NULL || !PageUptodate(page)) {
1205 		if (page)
1206 			page_cache_release(page);
1207 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1208 		if (page) {
1209 			BUG_ON(page->mapping != inode->i_mapping);
1210 			if (!PageUptodate(page)) {
1211 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1212 				if (ret) {
1213 					unlock_page(page);
1214 					goto err;
1215 				}
1216 			}
1217 			unlock_page(page);
1218 		}
1219 	}
1220 	if (page == NULL) {
1221 		ret = -ENOMEM;
1222 		goto err;
1223 	}
1224 	if (!PageUptodate(page)) {
1225 		ret = -EIO;
1226 		goto err;
1227 	}
1228 
1229 	/* Pages marked accessed already */
1230 	e4b->bd_buddy_page = page;
1231 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1232 
1233 	BUG_ON(e4b->bd_bitmap_page == NULL);
1234 	BUG_ON(e4b->bd_buddy_page == NULL);
1235 
1236 	return 0;
1237 
1238 err:
1239 	if (page)
1240 		page_cache_release(page);
1241 	if (e4b->bd_bitmap_page)
1242 		page_cache_release(e4b->bd_bitmap_page);
1243 	if (e4b->bd_buddy_page)
1244 		page_cache_release(e4b->bd_buddy_page);
1245 	e4b->bd_buddy = NULL;
1246 	e4b->bd_bitmap = NULL;
1247 	return ret;
1248 }
1249 
1250 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1251 {
1252 	if (e4b->bd_bitmap_page)
1253 		page_cache_release(e4b->bd_bitmap_page);
1254 	if (e4b->bd_buddy_page)
1255 		page_cache_release(e4b->bd_buddy_page);
1256 }
1257 
1258 
1259 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1260 {
1261 	int order = 1;
1262 	void *bb;
1263 
1264 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1265 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1266 
1267 	bb = e4b->bd_buddy;
1268 	while (order <= e4b->bd_blkbits + 1) {
1269 		block = block >> 1;
1270 		if (!mb_test_bit(block, bb)) {
1271 			/* this block is part of buddy of order 'order' */
1272 			return order;
1273 		}
1274 		bb += 1 << (e4b->bd_blkbits - order);
1275 		order++;
1276 	}
1277 	return 0;
1278 }
1279 
1280 static void mb_clear_bits(void *bm, int cur, int len)
1281 {
1282 	__u32 *addr;
1283 
1284 	len = cur + len;
1285 	while (cur < len) {
1286 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1287 			/* fast path: clear whole word at once */
1288 			addr = bm + (cur >> 3);
1289 			*addr = 0;
1290 			cur += 32;
1291 			continue;
1292 		}
1293 		mb_clear_bit(cur, bm);
1294 		cur++;
1295 	}
1296 }
1297 
1298 /* clear bits in given range
1299  * will return first found zero bit if any, -1 otherwise
1300  */
1301 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1302 {
1303 	__u32 *addr;
1304 	int zero_bit = -1;
1305 
1306 	len = cur + len;
1307 	while (cur < len) {
1308 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1309 			/* fast path: clear whole word at once */
1310 			addr = bm + (cur >> 3);
1311 			if (*addr != (__u32)(-1) && zero_bit == -1)
1312 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1313 			*addr = 0;
1314 			cur += 32;
1315 			continue;
1316 		}
1317 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1318 			zero_bit = cur;
1319 		cur++;
1320 	}
1321 
1322 	return zero_bit;
1323 }
1324 
1325 void ext4_set_bits(void *bm, int cur, int len)
1326 {
1327 	__u32 *addr;
1328 
1329 	len = cur + len;
1330 	while (cur < len) {
1331 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1332 			/* fast path: set whole word at once */
1333 			addr = bm + (cur >> 3);
1334 			*addr = 0xffffffff;
1335 			cur += 32;
1336 			continue;
1337 		}
1338 		mb_set_bit(cur, bm);
1339 		cur++;
1340 	}
1341 }
1342 
1343 /*
1344  * _________________________________________________________________ */
1345 
1346 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1347 {
1348 	if (mb_test_bit(*bit + side, bitmap)) {
1349 		mb_clear_bit(*bit, bitmap);
1350 		(*bit) -= side;
1351 		return 1;
1352 	}
1353 	else {
1354 		(*bit) += side;
1355 		mb_set_bit(*bit, bitmap);
1356 		return -1;
1357 	}
1358 }
1359 
1360 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1361 {
1362 	int max;
1363 	int order = 1;
1364 	void *buddy = mb_find_buddy(e4b, order, &max);
1365 
1366 	while (buddy) {
1367 		void *buddy2;
1368 
1369 		/* Bits in range [first; last] are known to be set since
1370 		 * corresponding blocks were allocated. Bits in range
1371 		 * (first; last) will stay set because they form buddies on
1372 		 * upper layer. We just deal with borders if they don't
1373 		 * align with upper layer and then go up.
1374 		 * Releasing entire group is all about clearing
1375 		 * single bit of highest order buddy.
1376 		 */
1377 
1378 		/* Example:
1379 		 * ---------------------------------
1380 		 * |   1   |   1   |   1   |   1   |
1381 		 * ---------------------------------
1382 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1383 		 * ---------------------------------
1384 		 *   0   1   2   3   4   5   6   7
1385 		 *      \_____________________/
1386 		 *
1387 		 * Neither [1] nor [6] is aligned to above layer.
1388 		 * Left neighbour [0] is free, so mark it busy,
1389 		 * decrease bb_counters and extend range to
1390 		 * [0; 6]
1391 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1392 		 * mark [6] free, increase bb_counters and shrink range to
1393 		 * [0; 5].
1394 		 * Then shift range to [0; 2], go up and do the same.
1395 		 */
1396 
1397 
1398 		if (first & 1)
1399 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1400 		if (!(last & 1))
1401 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1402 		if (first > last)
1403 			break;
1404 		order++;
1405 
1406 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1407 			mb_clear_bits(buddy, first, last - first + 1);
1408 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1409 			break;
1410 		}
1411 		first >>= 1;
1412 		last >>= 1;
1413 		buddy = buddy2;
1414 	}
1415 }
1416 
1417 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1418 			   int first, int count)
1419 {
1420 	int left_is_free = 0;
1421 	int right_is_free = 0;
1422 	int block;
1423 	int last = first + count - 1;
1424 	struct super_block *sb = e4b->bd_sb;
1425 
1426 	if (WARN_ON(count == 0))
1427 		return;
1428 	BUG_ON(last >= (sb->s_blocksize << 3));
1429 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1430 	/* Don't bother if the block group is corrupt. */
1431 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1432 		return;
1433 
1434 	mb_check_buddy(e4b);
1435 	mb_free_blocks_double(inode, e4b, first, count);
1436 
1437 	e4b->bd_info->bb_free += count;
1438 	if (first < e4b->bd_info->bb_first_free)
1439 		e4b->bd_info->bb_first_free = first;
1440 
1441 	/* access memory sequentially: check left neighbour,
1442 	 * clear range and then check right neighbour
1443 	 */
1444 	if (first != 0)
1445 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1446 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1447 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1448 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1449 
1450 	if (unlikely(block != -1)) {
1451 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1452 		ext4_fsblk_t blocknr;
1453 
1454 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1455 		blocknr += EXT4_C2B(EXT4_SB(sb), block);
1456 		ext4_grp_locked_error(sb, e4b->bd_group,
1457 				      inode ? inode->i_ino : 0,
1458 				      blocknr,
1459 				      "freeing already freed block "
1460 				      "(bit %u); block bitmap corrupt.",
1461 				      block);
1462 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1463 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1464 					   e4b->bd_info->bb_free);
1465 		/* Mark the block group as corrupt. */
1466 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1467 			&e4b->bd_info->bb_state);
1468 		mb_regenerate_buddy(e4b);
1469 		goto done;
1470 	}
1471 
1472 	/* let's maintain fragments counter */
1473 	if (left_is_free && right_is_free)
1474 		e4b->bd_info->bb_fragments--;
1475 	else if (!left_is_free && !right_is_free)
1476 		e4b->bd_info->bb_fragments++;
1477 
1478 	/* buddy[0] == bd_bitmap is a special case, so handle
1479 	 * it right away and let mb_buddy_mark_free stay free of
1480 	 * zero order checks.
1481 	 * Check if neighbours are to be coaleasced,
1482 	 * adjust bitmap bb_counters and borders appropriately.
1483 	 */
1484 	if (first & 1) {
1485 		first += !left_is_free;
1486 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1487 	}
1488 	if (!(last & 1)) {
1489 		last -= !right_is_free;
1490 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1491 	}
1492 
1493 	if (first <= last)
1494 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1495 
1496 done:
1497 	mb_set_largest_free_order(sb, e4b->bd_info);
1498 	mb_check_buddy(e4b);
1499 }
1500 
1501 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1502 				int needed, struct ext4_free_extent *ex)
1503 {
1504 	int next = block;
1505 	int max, order;
1506 	void *buddy;
1507 
1508 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1509 	BUG_ON(ex == NULL);
1510 
1511 	buddy = mb_find_buddy(e4b, 0, &max);
1512 	BUG_ON(buddy == NULL);
1513 	BUG_ON(block >= max);
1514 	if (mb_test_bit(block, buddy)) {
1515 		ex->fe_len = 0;
1516 		ex->fe_start = 0;
1517 		ex->fe_group = 0;
1518 		return 0;
1519 	}
1520 
1521 	/* find actual order */
1522 	order = mb_find_order_for_block(e4b, block);
1523 	block = block >> order;
1524 
1525 	ex->fe_len = 1 << order;
1526 	ex->fe_start = block << order;
1527 	ex->fe_group = e4b->bd_group;
1528 
1529 	/* calc difference from given start */
1530 	next = next - ex->fe_start;
1531 	ex->fe_len -= next;
1532 	ex->fe_start += next;
1533 
1534 	while (needed > ex->fe_len &&
1535 	       mb_find_buddy(e4b, order, &max)) {
1536 
1537 		if (block + 1 >= max)
1538 			break;
1539 
1540 		next = (block + 1) * (1 << order);
1541 		if (mb_test_bit(next, e4b->bd_bitmap))
1542 			break;
1543 
1544 		order = mb_find_order_for_block(e4b, next);
1545 
1546 		block = next >> order;
1547 		ex->fe_len += 1 << order;
1548 	}
1549 
1550 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1551 	return ex->fe_len;
1552 }
1553 
1554 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1555 {
1556 	int ord;
1557 	int mlen = 0;
1558 	int max = 0;
1559 	int cur;
1560 	int start = ex->fe_start;
1561 	int len = ex->fe_len;
1562 	unsigned ret = 0;
1563 	int len0 = len;
1564 	void *buddy;
1565 
1566 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1567 	BUG_ON(e4b->bd_group != ex->fe_group);
1568 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1569 	mb_check_buddy(e4b);
1570 	mb_mark_used_double(e4b, start, len);
1571 
1572 	e4b->bd_info->bb_free -= len;
1573 	if (e4b->bd_info->bb_first_free == start)
1574 		e4b->bd_info->bb_first_free += len;
1575 
1576 	/* let's maintain fragments counter */
1577 	if (start != 0)
1578 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1579 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1580 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1581 	if (mlen && max)
1582 		e4b->bd_info->bb_fragments++;
1583 	else if (!mlen && !max)
1584 		e4b->bd_info->bb_fragments--;
1585 
1586 	/* let's maintain buddy itself */
1587 	while (len) {
1588 		ord = mb_find_order_for_block(e4b, start);
1589 
1590 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1591 			/* the whole chunk may be allocated at once! */
1592 			mlen = 1 << ord;
1593 			buddy = mb_find_buddy(e4b, ord, &max);
1594 			BUG_ON((start >> ord) >= max);
1595 			mb_set_bit(start >> ord, buddy);
1596 			e4b->bd_info->bb_counters[ord]--;
1597 			start += mlen;
1598 			len -= mlen;
1599 			BUG_ON(len < 0);
1600 			continue;
1601 		}
1602 
1603 		/* store for history */
1604 		if (ret == 0)
1605 			ret = len | (ord << 16);
1606 
1607 		/* we have to split large buddy */
1608 		BUG_ON(ord <= 0);
1609 		buddy = mb_find_buddy(e4b, ord, &max);
1610 		mb_set_bit(start >> ord, buddy);
1611 		e4b->bd_info->bb_counters[ord]--;
1612 
1613 		ord--;
1614 		cur = (start >> ord) & ~1U;
1615 		buddy = mb_find_buddy(e4b, ord, &max);
1616 		mb_clear_bit(cur, buddy);
1617 		mb_clear_bit(cur + 1, buddy);
1618 		e4b->bd_info->bb_counters[ord]++;
1619 		e4b->bd_info->bb_counters[ord]++;
1620 	}
1621 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1622 
1623 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1624 	mb_check_buddy(e4b);
1625 
1626 	return ret;
1627 }
1628 
1629 /*
1630  * Must be called under group lock!
1631  */
1632 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1633 					struct ext4_buddy *e4b)
1634 {
1635 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1636 	int ret;
1637 
1638 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1639 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1640 
1641 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1642 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1643 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1644 
1645 	/* preallocation can change ac_b_ex, thus we store actually
1646 	 * allocated blocks for history */
1647 	ac->ac_f_ex = ac->ac_b_ex;
1648 
1649 	ac->ac_status = AC_STATUS_FOUND;
1650 	ac->ac_tail = ret & 0xffff;
1651 	ac->ac_buddy = ret >> 16;
1652 
1653 	/*
1654 	 * take the page reference. We want the page to be pinned
1655 	 * so that we don't get a ext4_mb_init_cache_call for this
1656 	 * group until we update the bitmap. That would mean we
1657 	 * double allocate blocks. The reference is dropped
1658 	 * in ext4_mb_release_context
1659 	 */
1660 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1661 	get_page(ac->ac_bitmap_page);
1662 	ac->ac_buddy_page = e4b->bd_buddy_page;
1663 	get_page(ac->ac_buddy_page);
1664 	/* store last allocated for subsequent stream allocation */
1665 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1666 		spin_lock(&sbi->s_md_lock);
1667 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1668 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1669 		spin_unlock(&sbi->s_md_lock);
1670 	}
1671 }
1672 
1673 /*
1674  * regular allocator, for general purposes allocation
1675  */
1676 
1677 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1678 					struct ext4_buddy *e4b,
1679 					int finish_group)
1680 {
1681 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1682 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1683 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1684 	struct ext4_free_extent ex;
1685 	int max;
1686 
1687 	if (ac->ac_status == AC_STATUS_FOUND)
1688 		return;
1689 	/*
1690 	 * We don't want to scan for a whole year
1691 	 */
1692 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1693 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1694 		ac->ac_status = AC_STATUS_BREAK;
1695 		return;
1696 	}
1697 
1698 	/*
1699 	 * Haven't found good chunk so far, let's continue
1700 	 */
1701 	if (bex->fe_len < gex->fe_len)
1702 		return;
1703 
1704 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1705 			&& bex->fe_group == e4b->bd_group) {
1706 		/* recheck chunk's availability - we don't know
1707 		 * when it was found (within this lock-unlock
1708 		 * period or not) */
1709 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1710 		if (max >= gex->fe_len) {
1711 			ext4_mb_use_best_found(ac, e4b);
1712 			return;
1713 		}
1714 	}
1715 }
1716 
1717 /*
1718  * The routine checks whether found extent is good enough. If it is,
1719  * then the extent gets marked used and flag is set to the context
1720  * to stop scanning. Otherwise, the extent is compared with the
1721  * previous found extent and if new one is better, then it's stored
1722  * in the context. Later, the best found extent will be used, if
1723  * mballoc can't find good enough extent.
1724  *
1725  * FIXME: real allocation policy is to be designed yet!
1726  */
1727 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1728 					struct ext4_free_extent *ex,
1729 					struct ext4_buddy *e4b)
1730 {
1731 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1732 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1733 
1734 	BUG_ON(ex->fe_len <= 0);
1735 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1736 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1737 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1738 
1739 	ac->ac_found++;
1740 
1741 	/*
1742 	 * The special case - take what you catch first
1743 	 */
1744 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1745 		*bex = *ex;
1746 		ext4_mb_use_best_found(ac, e4b);
1747 		return;
1748 	}
1749 
1750 	/*
1751 	 * Let's check whether the chuck is good enough
1752 	 */
1753 	if (ex->fe_len == gex->fe_len) {
1754 		*bex = *ex;
1755 		ext4_mb_use_best_found(ac, e4b);
1756 		return;
1757 	}
1758 
1759 	/*
1760 	 * If this is first found extent, just store it in the context
1761 	 */
1762 	if (bex->fe_len == 0) {
1763 		*bex = *ex;
1764 		return;
1765 	}
1766 
1767 	/*
1768 	 * If new found extent is better, store it in the context
1769 	 */
1770 	if (bex->fe_len < gex->fe_len) {
1771 		/* if the request isn't satisfied, any found extent
1772 		 * larger than previous best one is better */
1773 		if (ex->fe_len > bex->fe_len)
1774 			*bex = *ex;
1775 	} else if (ex->fe_len > gex->fe_len) {
1776 		/* if the request is satisfied, then we try to find
1777 		 * an extent that still satisfy the request, but is
1778 		 * smaller than previous one */
1779 		if (ex->fe_len < bex->fe_len)
1780 			*bex = *ex;
1781 	}
1782 
1783 	ext4_mb_check_limits(ac, e4b, 0);
1784 }
1785 
1786 static noinline_for_stack
1787 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1788 					struct ext4_buddy *e4b)
1789 {
1790 	struct ext4_free_extent ex = ac->ac_b_ex;
1791 	ext4_group_t group = ex.fe_group;
1792 	int max;
1793 	int err;
1794 
1795 	BUG_ON(ex.fe_len <= 0);
1796 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1797 	if (err)
1798 		return err;
1799 
1800 	ext4_lock_group(ac->ac_sb, group);
1801 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1802 
1803 	if (max > 0) {
1804 		ac->ac_b_ex = ex;
1805 		ext4_mb_use_best_found(ac, e4b);
1806 	}
1807 
1808 	ext4_unlock_group(ac->ac_sb, group);
1809 	ext4_mb_unload_buddy(e4b);
1810 
1811 	return 0;
1812 }
1813 
1814 static noinline_for_stack
1815 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1816 				struct ext4_buddy *e4b)
1817 {
1818 	ext4_group_t group = ac->ac_g_ex.fe_group;
1819 	int max;
1820 	int err;
1821 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1822 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1823 	struct ext4_free_extent ex;
1824 
1825 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1826 		return 0;
1827 	if (grp->bb_free == 0)
1828 		return 0;
1829 
1830 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1831 	if (err)
1832 		return err;
1833 
1834 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1835 		ext4_mb_unload_buddy(e4b);
1836 		return 0;
1837 	}
1838 
1839 	ext4_lock_group(ac->ac_sb, group);
1840 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1841 			     ac->ac_g_ex.fe_len, &ex);
1842 	ex.fe_logical = 0xDEADFA11; /* debug value */
1843 
1844 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1845 		ext4_fsblk_t start;
1846 
1847 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1848 			ex.fe_start;
1849 		/* use do_div to get remainder (would be 64-bit modulo) */
1850 		if (do_div(start, sbi->s_stripe) == 0) {
1851 			ac->ac_found++;
1852 			ac->ac_b_ex = ex;
1853 			ext4_mb_use_best_found(ac, e4b);
1854 		}
1855 	} else if (max >= ac->ac_g_ex.fe_len) {
1856 		BUG_ON(ex.fe_len <= 0);
1857 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1858 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1859 		ac->ac_found++;
1860 		ac->ac_b_ex = ex;
1861 		ext4_mb_use_best_found(ac, e4b);
1862 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1863 		/* Sometimes, caller may want to merge even small
1864 		 * number of blocks to an existing extent */
1865 		BUG_ON(ex.fe_len <= 0);
1866 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1867 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1868 		ac->ac_found++;
1869 		ac->ac_b_ex = ex;
1870 		ext4_mb_use_best_found(ac, e4b);
1871 	}
1872 	ext4_unlock_group(ac->ac_sb, group);
1873 	ext4_mb_unload_buddy(e4b);
1874 
1875 	return 0;
1876 }
1877 
1878 /*
1879  * The routine scans buddy structures (not bitmap!) from given order
1880  * to max order and tries to find big enough chunk to satisfy the req
1881  */
1882 static noinline_for_stack
1883 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1884 					struct ext4_buddy *e4b)
1885 {
1886 	struct super_block *sb = ac->ac_sb;
1887 	struct ext4_group_info *grp = e4b->bd_info;
1888 	void *buddy;
1889 	int i;
1890 	int k;
1891 	int max;
1892 
1893 	BUG_ON(ac->ac_2order <= 0);
1894 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1895 		if (grp->bb_counters[i] == 0)
1896 			continue;
1897 
1898 		buddy = mb_find_buddy(e4b, i, &max);
1899 		BUG_ON(buddy == NULL);
1900 
1901 		k = mb_find_next_zero_bit(buddy, max, 0);
1902 		BUG_ON(k >= max);
1903 
1904 		ac->ac_found++;
1905 
1906 		ac->ac_b_ex.fe_len = 1 << i;
1907 		ac->ac_b_ex.fe_start = k << i;
1908 		ac->ac_b_ex.fe_group = e4b->bd_group;
1909 
1910 		ext4_mb_use_best_found(ac, e4b);
1911 
1912 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1913 
1914 		if (EXT4_SB(sb)->s_mb_stats)
1915 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1916 
1917 		break;
1918 	}
1919 }
1920 
1921 /*
1922  * The routine scans the group and measures all found extents.
1923  * In order to optimize scanning, caller must pass number of
1924  * free blocks in the group, so the routine can know upper limit.
1925  */
1926 static noinline_for_stack
1927 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1928 					struct ext4_buddy *e4b)
1929 {
1930 	struct super_block *sb = ac->ac_sb;
1931 	void *bitmap = e4b->bd_bitmap;
1932 	struct ext4_free_extent ex;
1933 	int i;
1934 	int free;
1935 
1936 	free = e4b->bd_info->bb_free;
1937 	BUG_ON(free <= 0);
1938 
1939 	i = e4b->bd_info->bb_first_free;
1940 
1941 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1942 		i = mb_find_next_zero_bit(bitmap,
1943 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1944 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1945 			/*
1946 			 * IF we have corrupt bitmap, we won't find any
1947 			 * free blocks even though group info says we
1948 			 * we have free blocks
1949 			 */
1950 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1951 					"%d free clusters as per "
1952 					"group info. But bitmap says 0",
1953 					free);
1954 			break;
1955 		}
1956 
1957 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1958 		BUG_ON(ex.fe_len <= 0);
1959 		if (free < ex.fe_len) {
1960 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1961 					"%d free clusters as per "
1962 					"group info. But got %d blocks",
1963 					free, ex.fe_len);
1964 			/*
1965 			 * The number of free blocks differs. This mostly
1966 			 * indicate that the bitmap is corrupt. So exit
1967 			 * without claiming the space.
1968 			 */
1969 			break;
1970 		}
1971 		ex.fe_logical = 0xDEADC0DE; /* debug value */
1972 		ext4_mb_measure_extent(ac, &ex, e4b);
1973 
1974 		i += ex.fe_len;
1975 		free -= ex.fe_len;
1976 	}
1977 
1978 	ext4_mb_check_limits(ac, e4b, 1);
1979 }
1980 
1981 /*
1982  * This is a special case for storages like raid5
1983  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1984  */
1985 static noinline_for_stack
1986 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1987 				 struct ext4_buddy *e4b)
1988 {
1989 	struct super_block *sb = ac->ac_sb;
1990 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1991 	void *bitmap = e4b->bd_bitmap;
1992 	struct ext4_free_extent ex;
1993 	ext4_fsblk_t first_group_block;
1994 	ext4_fsblk_t a;
1995 	ext4_grpblk_t i;
1996 	int max;
1997 
1998 	BUG_ON(sbi->s_stripe == 0);
1999 
2000 	/* find first stripe-aligned block in group */
2001 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2002 
2003 	a = first_group_block + sbi->s_stripe - 1;
2004 	do_div(a, sbi->s_stripe);
2005 	i = (a * sbi->s_stripe) - first_group_block;
2006 
2007 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2008 		if (!mb_test_bit(i, bitmap)) {
2009 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2010 			if (max >= sbi->s_stripe) {
2011 				ac->ac_found++;
2012 				ex.fe_logical = 0xDEADF00D; /* debug value */
2013 				ac->ac_b_ex = ex;
2014 				ext4_mb_use_best_found(ac, e4b);
2015 				break;
2016 			}
2017 		}
2018 		i += sbi->s_stripe;
2019 	}
2020 }
2021 
2022 /*
2023  * This is now called BEFORE we load the buddy bitmap.
2024  * Returns either 1 or 0 indicating that the group is either suitable
2025  * for the allocation or not. In addition it can also return negative
2026  * error code when something goes wrong.
2027  */
2028 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2029 				ext4_group_t group, int cr)
2030 {
2031 	unsigned free, fragments;
2032 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2033 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2034 
2035 	BUG_ON(cr < 0 || cr >= 4);
2036 
2037 	free = grp->bb_free;
2038 	if (free == 0)
2039 		return 0;
2040 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2041 		return 0;
2042 
2043 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2044 		return 0;
2045 
2046 	/* We only do this if the grp has never been initialized */
2047 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2048 		int ret = ext4_mb_init_group(ac->ac_sb, group);
2049 		if (ret)
2050 			return ret;
2051 	}
2052 
2053 	fragments = grp->bb_fragments;
2054 	if (fragments == 0)
2055 		return 0;
2056 
2057 	switch (cr) {
2058 	case 0:
2059 		BUG_ON(ac->ac_2order == 0);
2060 
2061 		/* Avoid using the first bg of a flexgroup for data files */
2062 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2063 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2064 		    ((group % flex_size) == 0))
2065 			return 0;
2066 
2067 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2068 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2069 			return 1;
2070 
2071 		if (grp->bb_largest_free_order < ac->ac_2order)
2072 			return 0;
2073 
2074 		return 1;
2075 	case 1:
2076 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2077 			return 1;
2078 		break;
2079 	case 2:
2080 		if (free >= ac->ac_g_ex.fe_len)
2081 			return 1;
2082 		break;
2083 	case 3:
2084 		return 1;
2085 	default:
2086 		BUG();
2087 	}
2088 
2089 	return 0;
2090 }
2091 
2092 static noinline_for_stack int
2093 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2094 {
2095 	ext4_group_t ngroups, group, i;
2096 	int cr;
2097 	int err = 0, first_err = 0;
2098 	struct ext4_sb_info *sbi;
2099 	struct super_block *sb;
2100 	struct ext4_buddy e4b;
2101 
2102 	sb = ac->ac_sb;
2103 	sbi = EXT4_SB(sb);
2104 	ngroups = ext4_get_groups_count(sb);
2105 	/* non-extent files are limited to low blocks/groups */
2106 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2107 		ngroups = sbi->s_blockfile_groups;
2108 
2109 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2110 
2111 	/* first, try the goal */
2112 	err = ext4_mb_find_by_goal(ac, &e4b);
2113 	if (err || ac->ac_status == AC_STATUS_FOUND)
2114 		goto out;
2115 
2116 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2117 		goto out;
2118 
2119 	/*
2120 	 * ac->ac2_order is set only if the fe_len is a power of 2
2121 	 * if ac2_order is set we also set criteria to 0 so that we
2122 	 * try exact allocation using buddy.
2123 	 */
2124 	i = fls(ac->ac_g_ex.fe_len);
2125 	ac->ac_2order = 0;
2126 	/*
2127 	 * We search using buddy data only if the order of the request
2128 	 * is greater than equal to the sbi_s_mb_order2_reqs
2129 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2130 	 */
2131 	if (i >= sbi->s_mb_order2_reqs) {
2132 		/*
2133 		 * This should tell if fe_len is exactly power of 2
2134 		 */
2135 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2136 			ac->ac_2order = i - 1;
2137 	}
2138 
2139 	/* if stream allocation is enabled, use global goal */
2140 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2141 		/* TBD: may be hot point */
2142 		spin_lock(&sbi->s_md_lock);
2143 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2144 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2145 		spin_unlock(&sbi->s_md_lock);
2146 	}
2147 
2148 	/* Let's just scan groups to find more-less suitable blocks */
2149 	cr = ac->ac_2order ? 0 : 1;
2150 	/*
2151 	 * cr == 0 try to get exact allocation,
2152 	 * cr == 3  try to get anything
2153 	 */
2154 repeat:
2155 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2156 		ac->ac_criteria = cr;
2157 		/*
2158 		 * searching for the right group start
2159 		 * from the goal value specified
2160 		 */
2161 		group = ac->ac_g_ex.fe_group;
2162 
2163 		for (i = 0; i < ngroups; group++, i++) {
2164 			int ret = 0;
2165 			cond_resched();
2166 			/*
2167 			 * Artificially restricted ngroups for non-extent
2168 			 * files makes group > ngroups possible on first loop.
2169 			 */
2170 			if (group >= ngroups)
2171 				group = 0;
2172 
2173 			/* This now checks without needing the buddy page */
2174 			ret = ext4_mb_good_group(ac, group, cr);
2175 			if (ret <= 0) {
2176 				if (!first_err)
2177 					first_err = ret;
2178 				continue;
2179 			}
2180 
2181 			err = ext4_mb_load_buddy(sb, group, &e4b);
2182 			if (err)
2183 				goto out;
2184 
2185 			ext4_lock_group(sb, group);
2186 
2187 			/*
2188 			 * We need to check again after locking the
2189 			 * block group
2190 			 */
2191 			ret = ext4_mb_good_group(ac, group, cr);
2192 			if (ret <= 0) {
2193 				ext4_unlock_group(sb, group);
2194 				ext4_mb_unload_buddy(&e4b);
2195 				if (!first_err)
2196 					first_err = ret;
2197 				continue;
2198 			}
2199 
2200 			ac->ac_groups_scanned++;
2201 			if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2202 				ext4_mb_simple_scan_group(ac, &e4b);
2203 			else if (cr == 1 && sbi->s_stripe &&
2204 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2205 				ext4_mb_scan_aligned(ac, &e4b);
2206 			else
2207 				ext4_mb_complex_scan_group(ac, &e4b);
2208 
2209 			ext4_unlock_group(sb, group);
2210 			ext4_mb_unload_buddy(&e4b);
2211 
2212 			if (ac->ac_status != AC_STATUS_CONTINUE)
2213 				break;
2214 		}
2215 	}
2216 
2217 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2218 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2219 		/*
2220 		 * We've been searching too long. Let's try to allocate
2221 		 * the best chunk we've found so far
2222 		 */
2223 
2224 		ext4_mb_try_best_found(ac, &e4b);
2225 		if (ac->ac_status != AC_STATUS_FOUND) {
2226 			/*
2227 			 * Someone more lucky has already allocated it.
2228 			 * The only thing we can do is just take first
2229 			 * found block(s)
2230 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2231 			 */
2232 			ac->ac_b_ex.fe_group = 0;
2233 			ac->ac_b_ex.fe_start = 0;
2234 			ac->ac_b_ex.fe_len = 0;
2235 			ac->ac_status = AC_STATUS_CONTINUE;
2236 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2237 			cr = 3;
2238 			atomic_inc(&sbi->s_mb_lost_chunks);
2239 			goto repeat;
2240 		}
2241 	}
2242 out:
2243 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2244 		err = first_err;
2245 	return err;
2246 }
2247 
2248 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2249 {
2250 	struct super_block *sb = seq->private;
2251 	ext4_group_t group;
2252 
2253 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2254 		return NULL;
2255 	group = *pos + 1;
2256 	return (void *) ((unsigned long) group);
2257 }
2258 
2259 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2260 {
2261 	struct super_block *sb = seq->private;
2262 	ext4_group_t group;
2263 
2264 	++*pos;
2265 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2266 		return NULL;
2267 	group = *pos + 1;
2268 	return (void *) ((unsigned long) group);
2269 }
2270 
2271 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2272 {
2273 	struct super_block *sb = seq->private;
2274 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2275 	int i;
2276 	int err, buddy_loaded = 0;
2277 	struct ext4_buddy e4b;
2278 	struct ext4_group_info *grinfo;
2279 	struct sg {
2280 		struct ext4_group_info info;
2281 		ext4_grpblk_t counters[16];
2282 	} sg;
2283 
2284 	group--;
2285 	if (group == 0)
2286 		seq_puts(seq, "#group: free  frags first ["
2287 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2288 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]");
2289 
2290 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2291 		sizeof(struct ext4_group_info);
2292 	grinfo = ext4_get_group_info(sb, group);
2293 	/* Load the group info in memory only if not already loaded. */
2294 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2295 		err = ext4_mb_load_buddy(sb, group, &e4b);
2296 		if (err) {
2297 			seq_printf(seq, "#%-5u: I/O error\n", group);
2298 			return 0;
2299 		}
2300 		buddy_loaded = 1;
2301 	}
2302 
2303 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2304 
2305 	if (buddy_loaded)
2306 		ext4_mb_unload_buddy(&e4b);
2307 
2308 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2309 			sg.info.bb_fragments, sg.info.bb_first_free);
2310 	for (i = 0; i <= 13; i++)
2311 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2312 				sg.info.bb_counters[i] : 0);
2313 	seq_printf(seq, " ]\n");
2314 
2315 	return 0;
2316 }
2317 
2318 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2319 {
2320 }
2321 
2322 static const struct seq_operations ext4_mb_seq_groups_ops = {
2323 	.start  = ext4_mb_seq_groups_start,
2324 	.next   = ext4_mb_seq_groups_next,
2325 	.stop   = ext4_mb_seq_groups_stop,
2326 	.show   = ext4_mb_seq_groups_show,
2327 };
2328 
2329 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2330 {
2331 	struct super_block *sb = PDE_DATA(inode);
2332 	int rc;
2333 
2334 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2335 	if (rc == 0) {
2336 		struct seq_file *m = file->private_data;
2337 		m->private = sb;
2338 	}
2339 	return rc;
2340 
2341 }
2342 
2343 const struct file_operations ext4_seq_mb_groups_fops = {
2344 	.owner		= THIS_MODULE,
2345 	.open		= ext4_mb_seq_groups_open,
2346 	.read		= seq_read,
2347 	.llseek		= seq_lseek,
2348 	.release	= seq_release,
2349 };
2350 
2351 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2352 {
2353 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2354 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2355 
2356 	BUG_ON(!cachep);
2357 	return cachep;
2358 }
2359 
2360 /*
2361  * Allocate the top-level s_group_info array for the specified number
2362  * of groups
2363  */
2364 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2365 {
2366 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2367 	unsigned size;
2368 	struct ext4_group_info ***new_groupinfo;
2369 
2370 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2371 		EXT4_DESC_PER_BLOCK_BITS(sb);
2372 	if (size <= sbi->s_group_info_size)
2373 		return 0;
2374 
2375 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2376 	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2377 	if (!new_groupinfo) {
2378 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2379 		return -ENOMEM;
2380 	}
2381 	if (sbi->s_group_info) {
2382 		memcpy(new_groupinfo, sbi->s_group_info,
2383 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2384 		kvfree(sbi->s_group_info);
2385 	}
2386 	sbi->s_group_info = new_groupinfo;
2387 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2388 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2389 		   sbi->s_group_info_size);
2390 	return 0;
2391 }
2392 
2393 /* Create and initialize ext4_group_info data for the given group. */
2394 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2395 			  struct ext4_group_desc *desc)
2396 {
2397 	int i;
2398 	int metalen = 0;
2399 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2400 	struct ext4_group_info **meta_group_info;
2401 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2402 
2403 	/*
2404 	 * First check if this group is the first of a reserved block.
2405 	 * If it's true, we have to allocate a new table of pointers
2406 	 * to ext4_group_info structures
2407 	 */
2408 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2409 		metalen = sizeof(*meta_group_info) <<
2410 			EXT4_DESC_PER_BLOCK_BITS(sb);
2411 		meta_group_info = kmalloc(metalen, GFP_NOFS);
2412 		if (meta_group_info == NULL) {
2413 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2414 				 "for a buddy group");
2415 			goto exit_meta_group_info;
2416 		}
2417 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2418 			meta_group_info;
2419 	}
2420 
2421 	meta_group_info =
2422 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2423 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2424 
2425 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2426 	if (meta_group_info[i] == NULL) {
2427 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2428 		goto exit_group_info;
2429 	}
2430 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2431 		&(meta_group_info[i]->bb_state));
2432 
2433 	/*
2434 	 * initialize bb_free to be able to skip
2435 	 * empty groups without initialization
2436 	 */
2437 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2438 		meta_group_info[i]->bb_free =
2439 			ext4_free_clusters_after_init(sb, group, desc);
2440 	} else {
2441 		meta_group_info[i]->bb_free =
2442 			ext4_free_group_clusters(sb, desc);
2443 	}
2444 
2445 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2446 	init_rwsem(&meta_group_info[i]->alloc_sem);
2447 	meta_group_info[i]->bb_free_root = RB_ROOT;
2448 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2449 
2450 #ifdef DOUBLE_CHECK
2451 	{
2452 		struct buffer_head *bh;
2453 		meta_group_info[i]->bb_bitmap =
2454 			kmalloc(sb->s_blocksize, GFP_NOFS);
2455 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2456 		bh = ext4_read_block_bitmap(sb, group);
2457 		BUG_ON(IS_ERR_OR_NULL(bh));
2458 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2459 			sb->s_blocksize);
2460 		put_bh(bh);
2461 	}
2462 #endif
2463 
2464 	return 0;
2465 
2466 exit_group_info:
2467 	/* If a meta_group_info table has been allocated, release it now */
2468 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2469 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2470 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2471 	}
2472 exit_meta_group_info:
2473 	return -ENOMEM;
2474 } /* ext4_mb_add_groupinfo */
2475 
2476 static int ext4_mb_init_backend(struct super_block *sb)
2477 {
2478 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2479 	ext4_group_t i;
2480 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2481 	int err;
2482 	struct ext4_group_desc *desc;
2483 	struct kmem_cache *cachep;
2484 
2485 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2486 	if (err)
2487 		return err;
2488 
2489 	sbi->s_buddy_cache = new_inode(sb);
2490 	if (sbi->s_buddy_cache == NULL) {
2491 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2492 		goto err_freesgi;
2493 	}
2494 	/* To avoid potentially colliding with an valid on-disk inode number,
2495 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2496 	 * not in the inode hash, so it should never be found by iget(), but
2497 	 * this will avoid confusion if it ever shows up during debugging. */
2498 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2499 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2500 	for (i = 0; i < ngroups; i++) {
2501 		desc = ext4_get_group_desc(sb, i, NULL);
2502 		if (desc == NULL) {
2503 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2504 			goto err_freebuddy;
2505 		}
2506 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2507 			goto err_freebuddy;
2508 	}
2509 
2510 	return 0;
2511 
2512 err_freebuddy:
2513 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2514 	while (i-- > 0)
2515 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2516 	i = sbi->s_group_info_size;
2517 	while (i-- > 0)
2518 		kfree(sbi->s_group_info[i]);
2519 	iput(sbi->s_buddy_cache);
2520 err_freesgi:
2521 	kvfree(sbi->s_group_info);
2522 	return -ENOMEM;
2523 }
2524 
2525 static void ext4_groupinfo_destroy_slabs(void)
2526 {
2527 	int i;
2528 
2529 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2530 		if (ext4_groupinfo_caches[i])
2531 			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2532 		ext4_groupinfo_caches[i] = NULL;
2533 	}
2534 }
2535 
2536 static int ext4_groupinfo_create_slab(size_t size)
2537 {
2538 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2539 	int slab_size;
2540 	int blocksize_bits = order_base_2(size);
2541 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2542 	struct kmem_cache *cachep;
2543 
2544 	if (cache_index >= NR_GRPINFO_CACHES)
2545 		return -EINVAL;
2546 
2547 	if (unlikely(cache_index < 0))
2548 		cache_index = 0;
2549 
2550 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2551 	if (ext4_groupinfo_caches[cache_index]) {
2552 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2553 		return 0;	/* Already created */
2554 	}
2555 
2556 	slab_size = offsetof(struct ext4_group_info,
2557 				bb_counters[blocksize_bits + 2]);
2558 
2559 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2560 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2561 					NULL);
2562 
2563 	ext4_groupinfo_caches[cache_index] = cachep;
2564 
2565 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2566 	if (!cachep) {
2567 		printk(KERN_EMERG
2568 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2569 		return -ENOMEM;
2570 	}
2571 
2572 	return 0;
2573 }
2574 
2575 int ext4_mb_init(struct super_block *sb)
2576 {
2577 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2578 	unsigned i, j;
2579 	unsigned offset;
2580 	unsigned max;
2581 	int ret;
2582 
2583 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2584 
2585 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2586 	if (sbi->s_mb_offsets == NULL) {
2587 		ret = -ENOMEM;
2588 		goto out;
2589 	}
2590 
2591 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2592 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2593 	if (sbi->s_mb_maxs == NULL) {
2594 		ret = -ENOMEM;
2595 		goto out;
2596 	}
2597 
2598 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2599 	if (ret < 0)
2600 		goto out;
2601 
2602 	/* order 0 is regular bitmap */
2603 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2604 	sbi->s_mb_offsets[0] = 0;
2605 
2606 	i = 1;
2607 	offset = 0;
2608 	max = sb->s_blocksize << 2;
2609 	do {
2610 		sbi->s_mb_offsets[i] = offset;
2611 		sbi->s_mb_maxs[i] = max;
2612 		offset += 1 << (sb->s_blocksize_bits - i);
2613 		max = max >> 1;
2614 		i++;
2615 	} while (i <= sb->s_blocksize_bits + 1);
2616 
2617 	spin_lock_init(&sbi->s_md_lock);
2618 	spin_lock_init(&sbi->s_bal_lock);
2619 
2620 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2621 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2622 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2623 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2624 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2625 	/*
2626 	 * The default group preallocation is 512, which for 4k block
2627 	 * sizes translates to 2 megabytes.  However for bigalloc file
2628 	 * systems, this is probably too big (i.e, if the cluster size
2629 	 * is 1 megabyte, then group preallocation size becomes half a
2630 	 * gigabyte!).  As a default, we will keep a two megabyte
2631 	 * group pralloc size for cluster sizes up to 64k, and after
2632 	 * that, we will force a minimum group preallocation size of
2633 	 * 32 clusters.  This translates to 8 megs when the cluster
2634 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2635 	 * which seems reasonable as a default.
2636 	 */
2637 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2638 				       sbi->s_cluster_bits, 32);
2639 	/*
2640 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2641 	 * to the lowest multiple of s_stripe which is bigger than
2642 	 * the s_mb_group_prealloc as determined above. We want
2643 	 * the preallocation size to be an exact multiple of the
2644 	 * RAID stripe size so that preallocations don't fragment
2645 	 * the stripes.
2646 	 */
2647 	if (sbi->s_stripe > 1) {
2648 		sbi->s_mb_group_prealloc = roundup(
2649 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2650 	}
2651 
2652 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2653 	if (sbi->s_locality_groups == NULL) {
2654 		ret = -ENOMEM;
2655 		goto out;
2656 	}
2657 	for_each_possible_cpu(i) {
2658 		struct ext4_locality_group *lg;
2659 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2660 		mutex_init(&lg->lg_mutex);
2661 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2662 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2663 		spin_lock_init(&lg->lg_prealloc_lock);
2664 	}
2665 
2666 	/* init file for buddy data */
2667 	ret = ext4_mb_init_backend(sb);
2668 	if (ret != 0)
2669 		goto out_free_locality_groups;
2670 
2671 	return 0;
2672 
2673 out_free_locality_groups:
2674 	free_percpu(sbi->s_locality_groups);
2675 	sbi->s_locality_groups = NULL;
2676 out:
2677 	kfree(sbi->s_mb_offsets);
2678 	sbi->s_mb_offsets = NULL;
2679 	kfree(sbi->s_mb_maxs);
2680 	sbi->s_mb_maxs = NULL;
2681 	return ret;
2682 }
2683 
2684 /* need to called with the ext4 group lock held */
2685 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2686 {
2687 	struct ext4_prealloc_space *pa;
2688 	struct list_head *cur, *tmp;
2689 	int count = 0;
2690 
2691 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2692 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2693 		list_del(&pa->pa_group_list);
2694 		count++;
2695 		kmem_cache_free(ext4_pspace_cachep, pa);
2696 	}
2697 	if (count)
2698 		mb_debug(1, "mballoc: %u PAs left\n", count);
2699 
2700 }
2701 
2702 int ext4_mb_release(struct super_block *sb)
2703 {
2704 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2705 	ext4_group_t i;
2706 	int num_meta_group_infos;
2707 	struct ext4_group_info *grinfo;
2708 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2709 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2710 
2711 	if (sbi->s_group_info) {
2712 		for (i = 0; i < ngroups; i++) {
2713 			grinfo = ext4_get_group_info(sb, i);
2714 #ifdef DOUBLE_CHECK
2715 			kfree(grinfo->bb_bitmap);
2716 #endif
2717 			ext4_lock_group(sb, i);
2718 			ext4_mb_cleanup_pa(grinfo);
2719 			ext4_unlock_group(sb, i);
2720 			kmem_cache_free(cachep, grinfo);
2721 		}
2722 		num_meta_group_infos = (ngroups +
2723 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2724 			EXT4_DESC_PER_BLOCK_BITS(sb);
2725 		for (i = 0; i < num_meta_group_infos; i++)
2726 			kfree(sbi->s_group_info[i]);
2727 		kvfree(sbi->s_group_info);
2728 	}
2729 	kfree(sbi->s_mb_offsets);
2730 	kfree(sbi->s_mb_maxs);
2731 	iput(sbi->s_buddy_cache);
2732 	if (sbi->s_mb_stats) {
2733 		ext4_msg(sb, KERN_INFO,
2734 		       "mballoc: %u blocks %u reqs (%u success)",
2735 				atomic_read(&sbi->s_bal_allocated),
2736 				atomic_read(&sbi->s_bal_reqs),
2737 				atomic_read(&sbi->s_bal_success));
2738 		ext4_msg(sb, KERN_INFO,
2739 		      "mballoc: %u extents scanned, %u goal hits, "
2740 				"%u 2^N hits, %u breaks, %u lost",
2741 				atomic_read(&sbi->s_bal_ex_scanned),
2742 				atomic_read(&sbi->s_bal_goals),
2743 				atomic_read(&sbi->s_bal_2orders),
2744 				atomic_read(&sbi->s_bal_breaks),
2745 				atomic_read(&sbi->s_mb_lost_chunks));
2746 		ext4_msg(sb, KERN_INFO,
2747 		       "mballoc: %lu generated and it took %Lu",
2748 				sbi->s_mb_buddies_generated,
2749 				sbi->s_mb_generation_time);
2750 		ext4_msg(sb, KERN_INFO,
2751 		       "mballoc: %u preallocated, %u discarded",
2752 				atomic_read(&sbi->s_mb_preallocated),
2753 				atomic_read(&sbi->s_mb_discarded));
2754 	}
2755 
2756 	free_percpu(sbi->s_locality_groups);
2757 
2758 	return 0;
2759 }
2760 
2761 static inline int ext4_issue_discard(struct super_block *sb,
2762 		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2763 {
2764 	ext4_fsblk_t discard_block;
2765 
2766 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2767 			 ext4_group_first_block_no(sb, block_group));
2768 	count = EXT4_C2B(EXT4_SB(sb), count);
2769 	trace_ext4_discard_blocks(sb,
2770 			(unsigned long long) discard_block, count);
2771 	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2772 }
2773 
2774 /*
2775  * This function is called by the jbd2 layer once the commit has finished,
2776  * so we know we can free the blocks that were released with that commit.
2777  */
2778 static void ext4_free_data_callback(struct super_block *sb,
2779 				    struct ext4_journal_cb_entry *jce,
2780 				    int rc)
2781 {
2782 	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2783 	struct ext4_buddy e4b;
2784 	struct ext4_group_info *db;
2785 	int err, count = 0, count2 = 0;
2786 
2787 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2788 		 entry->efd_count, entry->efd_group, entry);
2789 
2790 	if (test_opt(sb, DISCARD)) {
2791 		err = ext4_issue_discard(sb, entry->efd_group,
2792 					 entry->efd_start_cluster,
2793 					 entry->efd_count);
2794 		if (err && err != -EOPNOTSUPP)
2795 			ext4_msg(sb, KERN_WARNING, "discard request in"
2796 				 " group:%d block:%d count:%d failed"
2797 				 " with %d", entry->efd_group,
2798 				 entry->efd_start_cluster,
2799 				 entry->efd_count, err);
2800 	}
2801 
2802 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2803 	/* we expect to find existing buddy because it's pinned */
2804 	BUG_ON(err != 0);
2805 
2806 
2807 	db = e4b.bd_info;
2808 	/* there are blocks to put in buddy to make them really free */
2809 	count += entry->efd_count;
2810 	count2++;
2811 	ext4_lock_group(sb, entry->efd_group);
2812 	/* Take it out of per group rb tree */
2813 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2814 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2815 
2816 	/*
2817 	 * Clear the trimmed flag for the group so that the next
2818 	 * ext4_trim_fs can trim it.
2819 	 * If the volume is mounted with -o discard, online discard
2820 	 * is supported and the free blocks will be trimmed online.
2821 	 */
2822 	if (!test_opt(sb, DISCARD))
2823 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2824 
2825 	if (!db->bb_free_root.rb_node) {
2826 		/* No more items in the per group rb tree
2827 		 * balance refcounts from ext4_mb_free_metadata()
2828 		 */
2829 		page_cache_release(e4b.bd_buddy_page);
2830 		page_cache_release(e4b.bd_bitmap_page);
2831 	}
2832 	ext4_unlock_group(sb, entry->efd_group);
2833 	kmem_cache_free(ext4_free_data_cachep, entry);
2834 	ext4_mb_unload_buddy(&e4b);
2835 
2836 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2837 }
2838 
2839 int __init ext4_init_mballoc(void)
2840 {
2841 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2842 					SLAB_RECLAIM_ACCOUNT);
2843 	if (ext4_pspace_cachep == NULL)
2844 		return -ENOMEM;
2845 
2846 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2847 				    SLAB_RECLAIM_ACCOUNT);
2848 	if (ext4_ac_cachep == NULL) {
2849 		kmem_cache_destroy(ext4_pspace_cachep);
2850 		return -ENOMEM;
2851 	}
2852 
2853 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2854 					   SLAB_RECLAIM_ACCOUNT);
2855 	if (ext4_free_data_cachep == NULL) {
2856 		kmem_cache_destroy(ext4_pspace_cachep);
2857 		kmem_cache_destroy(ext4_ac_cachep);
2858 		return -ENOMEM;
2859 	}
2860 	return 0;
2861 }
2862 
2863 void ext4_exit_mballoc(void)
2864 {
2865 	/*
2866 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2867 	 * before destroying the slab cache.
2868 	 */
2869 	rcu_barrier();
2870 	kmem_cache_destroy(ext4_pspace_cachep);
2871 	kmem_cache_destroy(ext4_ac_cachep);
2872 	kmem_cache_destroy(ext4_free_data_cachep);
2873 	ext4_groupinfo_destroy_slabs();
2874 }
2875 
2876 
2877 /*
2878  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2879  * Returns 0 if success or error code
2880  */
2881 static noinline_for_stack int
2882 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2883 				handle_t *handle, unsigned int reserv_clstrs)
2884 {
2885 	struct buffer_head *bitmap_bh = NULL;
2886 	struct ext4_group_desc *gdp;
2887 	struct buffer_head *gdp_bh;
2888 	struct ext4_sb_info *sbi;
2889 	struct super_block *sb;
2890 	ext4_fsblk_t block;
2891 	int err, len;
2892 
2893 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2894 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2895 
2896 	sb = ac->ac_sb;
2897 	sbi = EXT4_SB(sb);
2898 
2899 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2900 	if (IS_ERR(bitmap_bh)) {
2901 		err = PTR_ERR(bitmap_bh);
2902 		bitmap_bh = NULL;
2903 		goto out_err;
2904 	}
2905 
2906 	BUFFER_TRACE(bitmap_bh, "getting write access");
2907 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2908 	if (err)
2909 		goto out_err;
2910 
2911 	err = -EIO;
2912 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2913 	if (!gdp)
2914 		goto out_err;
2915 
2916 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2917 			ext4_free_group_clusters(sb, gdp));
2918 
2919 	BUFFER_TRACE(gdp_bh, "get_write_access");
2920 	err = ext4_journal_get_write_access(handle, gdp_bh);
2921 	if (err)
2922 		goto out_err;
2923 
2924 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2925 
2926 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2927 	if (!ext4_data_block_valid(sbi, block, len)) {
2928 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2929 			   "fs metadata", block, block+len);
2930 		/* File system mounted not to panic on error
2931 		 * Fix the bitmap and repeat the block allocation
2932 		 * We leak some of the blocks here.
2933 		 */
2934 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2935 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2936 			      ac->ac_b_ex.fe_len);
2937 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2938 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2939 		if (!err)
2940 			err = -EAGAIN;
2941 		goto out_err;
2942 	}
2943 
2944 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2945 #ifdef AGGRESSIVE_CHECK
2946 	{
2947 		int i;
2948 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2949 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2950 						bitmap_bh->b_data));
2951 		}
2952 	}
2953 #endif
2954 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2955 		      ac->ac_b_ex.fe_len);
2956 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2957 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2958 		ext4_free_group_clusters_set(sb, gdp,
2959 					     ext4_free_clusters_after_init(sb,
2960 						ac->ac_b_ex.fe_group, gdp));
2961 	}
2962 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2963 	ext4_free_group_clusters_set(sb, gdp, len);
2964 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2965 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2966 
2967 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2968 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2969 	/*
2970 	 * Now reduce the dirty block count also. Should not go negative
2971 	 */
2972 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2973 		/* release all the reserved blocks if non delalloc */
2974 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2975 				   reserv_clstrs);
2976 
2977 	if (sbi->s_log_groups_per_flex) {
2978 		ext4_group_t flex_group = ext4_flex_group(sbi,
2979 							  ac->ac_b_ex.fe_group);
2980 		atomic64_sub(ac->ac_b_ex.fe_len,
2981 			     &sbi->s_flex_groups[flex_group].free_clusters);
2982 	}
2983 
2984 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2985 	if (err)
2986 		goto out_err;
2987 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2988 
2989 out_err:
2990 	brelse(bitmap_bh);
2991 	return err;
2992 }
2993 
2994 /*
2995  * here we normalize request for locality group
2996  * Group request are normalized to s_mb_group_prealloc, which goes to
2997  * s_strip if we set the same via mount option.
2998  * s_mb_group_prealloc can be configured via
2999  * /sys/fs/ext4/<partition>/mb_group_prealloc
3000  *
3001  * XXX: should we try to preallocate more than the group has now?
3002  */
3003 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3004 {
3005 	struct super_block *sb = ac->ac_sb;
3006 	struct ext4_locality_group *lg = ac->ac_lg;
3007 
3008 	BUG_ON(lg == NULL);
3009 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3010 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
3011 		current->pid, ac->ac_g_ex.fe_len);
3012 }
3013 
3014 /*
3015  * Normalization means making request better in terms of
3016  * size and alignment
3017  */
3018 static noinline_for_stack void
3019 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3020 				struct ext4_allocation_request *ar)
3021 {
3022 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3023 	int bsbits, max;
3024 	ext4_lblk_t end;
3025 	loff_t size, start_off;
3026 	loff_t orig_size __maybe_unused;
3027 	ext4_lblk_t start;
3028 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3029 	struct ext4_prealloc_space *pa;
3030 
3031 	/* do normalize only data requests, metadata requests
3032 	   do not need preallocation */
3033 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3034 		return;
3035 
3036 	/* sometime caller may want exact blocks */
3037 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3038 		return;
3039 
3040 	/* caller may indicate that preallocation isn't
3041 	 * required (it's a tail, for example) */
3042 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3043 		return;
3044 
3045 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3046 		ext4_mb_normalize_group_request(ac);
3047 		return ;
3048 	}
3049 
3050 	bsbits = ac->ac_sb->s_blocksize_bits;
3051 
3052 	/* first, let's learn actual file size
3053 	 * given current request is allocated */
3054 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3055 	size = size << bsbits;
3056 	if (size < i_size_read(ac->ac_inode))
3057 		size = i_size_read(ac->ac_inode);
3058 	orig_size = size;
3059 
3060 	/* max size of free chunks */
3061 	max = 2 << bsbits;
3062 
3063 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3064 		(req <= (size) || max <= (chunk_size))
3065 
3066 	/* first, try to predict filesize */
3067 	/* XXX: should this table be tunable? */
3068 	start_off = 0;
3069 	if (size <= 16 * 1024) {
3070 		size = 16 * 1024;
3071 	} else if (size <= 32 * 1024) {
3072 		size = 32 * 1024;
3073 	} else if (size <= 64 * 1024) {
3074 		size = 64 * 1024;
3075 	} else if (size <= 128 * 1024) {
3076 		size = 128 * 1024;
3077 	} else if (size <= 256 * 1024) {
3078 		size = 256 * 1024;
3079 	} else if (size <= 512 * 1024) {
3080 		size = 512 * 1024;
3081 	} else if (size <= 1024 * 1024) {
3082 		size = 1024 * 1024;
3083 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3084 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3085 						(21 - bsbits)) << 21;
3086 		size = 2 * 1024 * 1024;
3087 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3088 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3089 							(22 - bsbits)) << 22;
3090 		size = 4 * 1024 * 1024;
3091 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3092 					(8<<20)>>bsbits, max, 8 * 1024)) {
3093 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3094 							(23 - bsbits)) << 23;
3095 		size = 8 * 1024 * 1024;
3096 	} else {
3097 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3098 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3099 					      ac->ac_o_ex.fe_len) << bsbits;
3100 	}
3101 	size = size >> bsbits;
3102 	start = start_off >> bsbits;
3103 
3104 	/* don't cover already allocated blocks in selected range */
3105 	if (ar->pleft && start <= ar->lleft) {
3106 		size -= ar->lleft + 1 - start;
3107 		start = ar->lleft + 1;
3108 	}
3109 	if (ar->pright && start + size - 1 >= ar->lright)
3110 		size -= start + size - ar->lright;
3111 
3112 	end = start + size;
3113 
3114 	/* check we don't cross already preallocated blocks */
3115 	rcu_read_lock();
3116 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3117 		ext4_lblk_t pa_end;
3118 
3119 		if (pa->pa_deleted)
3120 			continue;
3121 		spin_lock(&pa->pa_lock);
3122 		if (pa->pa_deleted) {
3123 			spin_unlock(&pa->pa_lock);
3124 			continue;
3125 		}
3126 
3127 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3128 						  pa->pa_len);
3129 
3130 		/* PA must not overlap original request */
3131 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3132 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3133 
3134 		/* skip PAs this normalized request doesn't overlap with */
3135 		if (pa->pa_lstart >= end || pa_end <= start) {
3136 			spin_unlock(&pa->pa_lock);
3137 			continue;
3138 		}
3139 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3140 
3141 		/* adjust start or end to be adjacent to this pa */
3142 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3143 			BUG_ON(pa_end < start);
3144 			start = pa_end;
3145 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3146 			BUG_ON(pa->pa_lstart > end);
3147 			end = pa->pa_lstart;
3148 		}
3149 		spin_unlock(&pa->pa_lock);
3150 	}
3151 	rcu_read_unlock();
3152 	size = end - start;
3153 
3154 	/* XXX: extra loop to check we really don't overlap preallocations */
3155 	rcu_read_lock();
3156 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3157 		ext4_lblk_t pa_end;
3158 
3159 		spin_lock(&pa->pa_lock);
3160 		if (pa->pa_deleted == 0) {
3161 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3162 							  pa->pa_len);
3163 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3164 		}
3165 		spin_unlock(&pa->pa_lock);
3166 	}
3167 	rcu_read_unlock();
3168 
3169 	if (start + size <= ac->ac_o_ex.fe_logical &&
3170 			start > ac->ac_o_ex.fe_logical) {
3171 		ext4_msg(ac->ac_sb, KERN_ERR,
3172 			 "start %lu, size %lu, fe_logical %lu",
3173 			 (unsigned long) start, (unsigned long) size,
3174 			 (unsigned long) ac->ac_o_ex.fe_logical);
3175 		BUG();
3176 	}
3177 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3178 
3179 	/* now prepare goal request */
3180 
3181 	/* XXX: is it better to align blocks WRT to logical
3182 	 * placement or satisfy big request as is */
3183 	ac->ac_g_ex.fe_logical = start;
3184 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3185 
3186 	/* define goal start in order to merge */
3187 	if (ar->pright && (ar->lright == (start + size))) {
3188 		/* merge to the right */
3189 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3190 						&ac->ac_f_ex.fe_group,
3191 						&ac->ac_f_ex.fe_start);
3192 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3193 	}
3194 	if (ar->pleft && (ar->lleft + 1 == start)) {
3195 		/* merge to the left */
3196 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3197 						&ac->ac_f_ex.fe_group,
3198 						&ac->ac_f_ex.fe_start);
3199 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3200 	}
3201 
3202 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3203 		(unsigned) orig_size, (unsigned) start);
3204 }
3205 
3206 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3207 {
3208 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3209 
3210 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3211 		atomic_inc(&sbi->s_bal_reqs);
3212 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3213 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3214 			atomic_inc(&sbi->s_bal_success);
3215 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3216 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3217 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3218 			atomic_inc(&sbi->s_bal_goals);
3219 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3220 			atomic_inc(&sbi->s_bal_breaks);
3221 	}
3222 
3223 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3224 		trace_ext4_mballoc_alloc(ac);
3225 	else
3226 		trace_ext4_mballoc_prealloc(ac);
3227 }
3228 
3229 /*
3230  * Called on failure; free up any blocks from the inode PA for this
3231  * context.  We don't need this for MB_GROUP_PA because we only change
3232  * pa_free in ext4_mb_release_context(), but on failure, we've already
3233  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3234  */
3235 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3236 {
3237 	struct ext4_prealloc_space *pa = ac->ac_pa;
3238 	struct ext4_buddy e4b;
3239 	int err;
3240 
3241 	if (pa == NULL) {
3242 		if (ac->ac_f_ex.fe_len == 0)
3243 			return;
3244 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3245 		if (err) {
3246 			/*
3247 			 * This should never happen since we pin the
3248 			 * pages in the ext4_allocation_context so
3249 			 * ext4_mb_load_buddy() should never fail.
3250 			 */
3251 			WARN(1, "mb_load_buddy failed (%d)", err);
3252 			return;
3253 		}
3254 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3255 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3256 			       ac->ac_f_ex.fe_len);
3257 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3258 		ext4_mb_unload_buddy(&e4b);
3259 		return;
3260 	}
3261 	if (pa->pa_type == MB_INODE_PA)
3262 		pa->pa_free += ac->ac_b_ex.fe_len;
3263 }
3264 
3265 /*
3266  * use blocks preallocated to inode
3267  */
3268 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3269 				struct ext4_prealloc_space *pa)
3270 {
3271 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3272 	ext4_fsblk_t start;
3273 	ext4_fsblk_t end;
3274 	int len;
3275 
3276 	/* found preallocated blocks, use them */
3277 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3278 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3279 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3280 	len = EXT4_NUM_B2C(sbi, end - start);
3281 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3282 					&ac->ac_b_ex.fe_start);
3283 	ac->ac_b_ex.fe_len = len;
3284 	ac->ac_status = AC_STATUS_FOUND;
3285 	ac->ac_pa = pa;
3286 
3287 	BUG_ON(start < pa->pa_pstart);
3288 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3289 	BUG_ON(pa->pa_free < len);
3290 	pa->pa_free -= len;
3291 
3292 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3293 }
3294 
3295 /*
3296  * use blocks preallocated to locality group
3297  */
3298 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3299 				struct ext4_prealloc_space *pa)
3300 {
3301 	unsigned int len = ac->ac_o_ex.fe_len;
3302 
3303 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3304 					&ac->ac_b_ex.fe_group,
3305 					&ac->ac_b_ex.fe_start);
3306 	ac->ac_b_ex.fe_len = len;
3307 	ac->ac_status = AC_STATUS_FOUND;
3308 	ac->ac_pa = pa;
3309 
3310 	/* we don't correct pa_pstart or pa_plen here to avoid
3311 	 * possible race when the group is being loaded concurrently
3312 	 * instead we correct pa later, after blocks are marked
3313 	 * in on-disk bitmap -- see ext4_mb_release_context()
3314 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3315 	 */
3316 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3317 }
3318 
3319 /*
3320  * Return the prealloc space that have minimal distance
3321  * from the goal block. @cpa is the prealloc
3322  * space that is having currently known minimal distance
3323  * from the goal block.
3324  */
3325 static struct ext4_prealloc_space *
3326 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3327 			struct ext4_prealloc_space *pa,
3328 			struct ext4_prealloc_space *cpa)
3329 {
3330 	ext4_fsblk_t cur_distance, new_distance;
3331 
3332 	if (cpa == NULL) {
3333 		atomic_inc(&pa->pa_count);
3334 		return pa;
3335 	}
3336 	cur_distance = abs(goal_block - cpa->pa_pstart);
3337 	new_distance = abs(goal_block - pa->pa_pstart);
3338 
3339 	if (cur_distance <= new_distance)
3340 		return cpa;
3341 
3342 	/* drop the previous reference */
3343 	atomic_dec(&cpa->pa_count);
3344 	atomic_inc(&pa->pa_count);
3345 	return pa;
3346 }
3347 
3348 /*
3349  * search goal blocks in preallocated space
3350  */
3351 static noinline_for_stack int
3352 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3353 {
3354 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3355 	int order, i;
3356 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3357 	struct ext4_locality_group *lg;
3358 	struct ext4_prealloc_space *pa, *cpa = NULL;
3359 	ext4_fsblk_t goal_block;
3360 
3361 	/* only data can be preallocated */
3362 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3363 		return 0;
3364 
3365 	/* first, try per-file preallocation */
3366 	rcu_read_lock();
3367 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3368 
3369 		/* all fields in this condition don't change,
3370 		 * so we can skip locking for them */
3371 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3372 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3373 					       EXT4_C2B(sbi, pa->pa_len)))
3374 			continue;
3375 
3376 		/* non-extent files can't have physical blocks past 2^32 */
3377 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3378 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3379 		     EXT4_MAX_BLOCK_FILE_PHYS))
3380 			continue;
3381 
3382 		/* found preallocated blocks, use them */
3383 		spin_lock(&pa->pa_lock);
3384 		if (pa->pa_deleted == 0 && pa->pa_free) {
3385 			atomic_inc(&pa->pa_count);
3386 			ext4_mb_use_inode_pa(ac, pa);
3387 			spin_unlock(&pa->pa_lock);
3388 			ac->ac_criteria = 10;
3389 			rcu_read_unlock();
3390 			return 1;
3391 		}
3392 		spin_unlock(&pa->pa_lock);
3393 	}
3394 	rcu_read_unlock();
3395 
3396 	/* can we use group allocation? */
3397 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3398 		return 0;
3399 
3400 	/* inode may have no locality group for some reason */
3401 	lg = ac->ac_lg;
3402 	if (lg == NULL)
3403 		return 0;
3404 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3405 	if (order > PREALLOC_TB_SIZE - 1)
3406 		/* The max size of hash table is PREALLOC_TB_SIZE */
3407 		order = PREALLOC_TB_SIZE - 1;
3408 
3409 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3410 	/*
3411 	 * search for the prealloc space that is having
3412 	 * minimal distance from the goal block.
3413 	 */
3414 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3415 		rcu_read_lock();
3416 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3417 					pa_inode_list) {
3418 			spin_lock(&pa->pa_lock);
3419 			if (pa->pa_deleted == 0 &&
3420 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3421 
3422 				cpa = ext4_mb_check_group_pa(goal_block,
3423 								pa, cpa);
3424 			}
3425 			spin_unlock(&pa->pa_lock);
3426 		}
3427 		rcu_read_unlock();
3428 	}
3429 	if (cpa) {
3430 		ext4_mb_use_group_pa(ac, cpa);
3431 		ac->ac_criteria = 20;
3432 		return 1;
3433 	}
3434 	return 0;
3435 }
3436 
3437 /*
3438  * the function goes through all block freed in the group
3439  * but not yet committed and marks them used in in-core bitmap.
3440  * buddy must be generated from this bitmap
3441  * Need to be called with the ext4 group lock held
3442  */
3443 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3444 						ext4_group_t group)
3445 {
3446 	struct rb_node *n;
3447 	struct ext4_group_info *grp;
3448 	struct ext4_free_data *entry;
3449 
3450 	grp = ext4_get_group_info(sb, group);
3451 	n = rb_first(&(grp->bb_free_root));
3452 
3453 	while (n) {
3454 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3455 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3456 		n = rb_next(n);
3457 	}
3458 	return;
3459 }
3460 
3461 /*
3462  * the function goes through all preallocation in this group and marks them
3463  * used in in-core bitmap. buddy must be generated from this bitmap
3464  * Need to be called with ext4 group lock held
3465  */
3466 static noinline_for_stack
3467 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3468 					ext4_group_t group)
3469 {
3470 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3471 	struct ext4_prealloc_space *pa;
3472 	struct list_head *cur;
3473 	ext4_group_t groupnr;
3474 	ext4_grpblk_t start;
3475 	int preallocated = 0;
3476 	int len;
3477 
3478 	/* all form of preallocation discards first load group,
3479 	 * so the only competing code is preallocation use.
3480 	 * we don't need any locking here
3481 	 * notice we do NOT ignore preallocations with pa_deleted
3482 	 * otherwise we could leave used blocks available for
3483 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3484 	 * is dropping preallocation
3485 	 */
3486 	list_for_each(cur, &grp->bb_prealloc_list) {
3487 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3488 		spin_lock(&pa->pa_lock);
3489 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3490 					     &groupnr, &start);
3491 		len = pa->pa_len;
3492 		spin_unlock(&pa->pa_lock);
3493 		if (unlikely(len == 0))
3494 			continue;
3495 		BUG_ON(groupnr != group);
3496 		ext4_set_bits(bitmap, start, len);
3497 		preallocated += len;
3498 	}
3499 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3500 }
3501 
3502 static void ext4_mb_pa_callback(struct rcu_head *head)
3503 {
3504 	struct ext4_prealloc_space *pa;
3505 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3506 
3507 	BUG_ON(atomic_read(&pa->pa_count));
3508 	BUG_ON(pa->pa_deleted == 0);
3509 	kmem_cache_free(ext4_pspace_cachep, pa);
3510 }
3511 
3512 /*
3513  * drops a reference to preallocated space descriptor
3514  * if this was the last reference and the space is consumed
3515  */
3516 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3517 			struct super_block *sb, struct ext4_prealloc_space *pa)
3518 {
3519 	ext4_group_t grp;
3520 	ext4_fsblk_t grp_blk;
3521 
3522 	/* in this short window concurrent discard can set pa_deleted */
3523 	spin_lock(&pa->pa_lock);
3524 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3525 		spin_unlock(&pa->pa_lock);
3526 		return;
3527 	}
3528 
3529 	if (pa->pa_deleted == 1) {
3530 		spin_unlock(&pa->pa_lock);
3531 		return;
3532 	}
3533 
3534 	pa->pa_deleted = 1;
3535 	spin_unlock(&pa->pa_lock);
3536 
3537 	grp_blk = pa->pa_pstart;
3538 	/*
3539 	 * If doing group-based preallocation, pa_pstart may be in the
3540 	 * next group when pa is used up
3541 	 */
3542 	if (pa->pa_type == MB_GROUP_PA)
3543 		grp_blk--;
3544 
3545 	grp = ext4_get_group_number(sb, grp_blk);
3546 
3547 	/*
3548 	 * possible race:
3549 	 *
3550 	 *  P1 (buddy init)			P2 (regular allocation)
3551 	 *					find block B in PA
3552 	 *  copy on-disk bitmap to buddy
3553 	 *  					mark B in on-disk bitmap
3554 	 *					drop PA from group
3555 	 *  mark all PAs in buddy
3556 	 *
3557 	 * thus, P1 initializes buddy with B available. to prevent this
3558 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3559 	 * against that pair
3560 	 */
3561 	ext4_lock_group(sb, grp);
3562 	list_del(&pa->pa_group_list);
3563 	ext4_unlock_group(sb, grp);
3564 
3565 	spin_lock(pa->pa_obj_lock);
3566 	list_del_rcu(&pa->pa_inode_list);
3567 	spin_unlock(pa->pa_obj_lock);
3568 
3569 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3570 }
3571 
3572 /*
3573  * creates new preallocated space for given inode
3574  */
3575 static noinline_for_stack int
3576 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3577 {
3578 	struct super_block *sb = ac->ac_sb;
3579 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3580 	struct ext4_prealloc_space *pa;
3581 	struct ext4_group_info *grp;
3582 	struct ext4_inode_info *ei;
3583 
3584 	/* preallocate only when found space is larger then requested */
3585 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3586 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3587 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3588 
3589 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3590 	if (pa == NULL)
3591 		return -ENOMEM;
3592 
3593 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3594 		int winl;
3595 		int wins;
3596 		int win;
3597 		int offs;
3598 
3599 		/* we can't allocate as much as normalizer wants.
3600 		 * so, found space must get proper lstart
3601 		 * to cover original request */
3602 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3603 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3604 
3605 		/* we're limited by original request in that
3606 		 * logical block must be covered any way
3607 		 * winl is window we can move our chunk within */
3608 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3609 
3610 		/* also, we should cover whole original request */
3611 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3612 
3613 		/* the smallest one defines real window */
3614 		win = min(winl, wins);
3615 
3616 		offs = ac->ac_o_ex.fe_logical %
3617 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3618 		if (offs && offs < win)
3619 			win = offs;
3620 
3621 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3622 			EXT4_NUM_B2C(sbi, win);
3623 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3624 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3625 	}
3626 
3627 	/* preallocation can change ac_b_ex, thus we store actually
3628 	 * allocated blocks for history */
3629 	ac->ac_f_ex = ac->ac_b_ex;
3630 
3631 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3632 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3633 	pa->pa_len = ac->ac_b_ex.fe_len;
3634 	pa->pa_free = pa->pa_len;
3635 	atomic_set(&pa->pa_count, 1);
3636 	spin_lock_init(&pa->pa_lock);
3637 	INIT_LIST_HEAD(&pa->pa_inode_list);
3638 	INIT_LIST_HEAD(&pa->pa_group_list);
3639 	pa->pa_deleted = 0;
3640 	pa->pa_type = MB_INODE_PA;
3641 
3642 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3643 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3644 	trace_ext4_mb_new_inode_pa(ac, pa);
3645 
3646 	ext4_mb_use_inode_pa(ac, pa);
3647 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3648 
3649 	ei = EXT4_I(ac->ac_inode);
3650 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3651 
3652 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3653 	pa->pa_inode = ac->ac_inode;
3654 
3655 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3656 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3657 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3658 
3659 	spin_lock(pa->pa_obj_lock);
3660 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3661 	spin_unlock(pa->pa_obj_lock);
3662 
3663 	return 0;
3664 }
3665 
3666 /*
3667  * creates new preallocated space for locality group inodes belongs to
3668  */
3669 static noinline_for_stack int
3670 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3671 {
3672 	struct super_block *sb = ac->ac_sb;
3673 	struct ext4_locality_group *lg;
3674 	struct ext4_prealloc_space *pa;
3675 	struct ext4_group_info *grp;
3676 
3677 	/* preallocate only when found space is larger then requested */
3678 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3679 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3680 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3681 
3682 	BUG_ON(ext4_pspace_cachep == NULL);
3683 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3684 	if (pa == NULL)
3685 		return -ENOMEM;
3686 
3687 	/* preallocation can change ac_b_ex, thus we store actually
3688 	 * allocated blocks for history */
3689 	ac->ac_f_ex = ac->ac_b_ex;
3690 
3691 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3692 	pa->pa_lstart = pa->pa_pstart;
3693 	pa->pa_len = ac->ac_b_ex.fe_len;
3694 	pa->pa_free = pa->pa_len;
3695 	atomic_set(&pa->pa_count, 1);
3696 	spin_lock_init(&pa->pa_lock);
3697 	INIT_LIST_HEAD(&pa->pa_inode_list);
3698 	INIT_LIST_HEAD(&pa->pa_group_list);
3699 	pa->pa_deleted = 0;
3700 	pa->pa_type = MB_GROUP_PA;
3701 
3702 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3703 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3704 	trace_ext4_mb_new_group_pa(ac, pa);
3705 
3706 	ext4_mb_use_group_pa(ac, pa);
3707 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3708 
3709 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3710 	lg = ac->ac_lg;
3711 	BUG_ON(lg == NULL);
3712 
3713 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3714 	pa->pa_inode = NULL;
3715 
3716 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3717 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3718 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3719 
3720 	/*
3721 	 * We will later add the new pa to the right bucket
3722 	 * after updating the pa_free in ext4_mb_release_context
3723 	 */
3724 	return 0;
3725 }
3726 
3727 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3728 {
3729 	int err;
3730 
3731 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3732 		err = ext4_mb_new_group_pa(ac);
3733 	else
3734 		err = ext4_mb_new_inode_pa(ac);
3735 	return err;
3736 }
3737 
3738 /*
3739  * finds all unused blocks in on-disk bitmap, frees them in
3740  * in-core bitmap and buddy.
3741  * @pa must be unlinked from inode and group lists, so that
3742  * nobody else can find/use it.
3743  * the caller MUST hold group/inode locks.
3744  * TODO: optimize the case when there are no in-core structures yet
3745  */
3746 static noinline_for_stack int
3747 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3748 			struct ext4_prealloc_space *pa)
3749 {
3750 	struct super_block *sb = e4b->bd_sb;
3751 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3752 	unsigned int end;
3753 	unsigned int next;
3754 	ext4_group_t group;
3755 	ext4_grpblk_t bit;
3756 	unsigned long long grp_blk_start;
3757 	int err = 0;
3758 	int free = 0;
3759 
3760 	BUG_ON(pa->pa_deleted == 0);
3761 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3762 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3763 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3764 	end = bit + pa->pa_len;
3765 
3766 	while (bit < end) {
3767 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3768 		if (bit >= end)
3769 			break;
3770 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3771 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3772 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3773 			 (unsigned) next - bit, (unsigned) group);
3774 		free += next - bit;
3775 
3776 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3777 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3778 						    EXT4_C2B(sbi, bit)),
3779 					       next - bit);
3780 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3781 		bit = next + 1;
3782 	}
3783 	if (free != pa->pa_free) {
3784 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3785 			 "pa %p: logic %lu, phys. %lu, len %lu",
3786 			 pa, (unsigned long) pa->pa_lstart,
3787 			 (unsigned long) pa->pa_pstart,
3788 			 (unsigned long) pa->pa_len);
3789 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3790 					free, pa->pa_free);
3791 		/*
3792 		 * pa is already deleted so we use the value obtained
3793 		 * from the bitmap and continue.
3794 		 */
3795 	}
3796 	atomic_add(free, &sbi->s_mb_discarded);
3797 
3798 	return err;
3799 }
3800 
3801 static noinline_for_stack int
3802 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3803 				struct ext4_prealloc_space *pa)
3804 {
3805 	struct super_block *sb = e4b->bd_sb;
3806 	ext4_group_t group;
3807 	ext4_grpblk_t bit;
3808 
3809 	trace_ext4_mb_release_group_pa(sb, pa);
3810 	BUG_ON(pa->pa_deleted == 0);
3811 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3812 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3813 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3814 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3815 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3816 
3817 	return 0;
3818 }
3819 
3820 /*
3821  * releases all preallocations in given group
3822  *
3823  * first, we need to decide discard policy:
3824  * - when do we discard
3825  *   1) ENOSPC
3826  * - how many do we discard
3827  *   1) how many requested
3828  */
3829 static noinline_for_stack int
3830 ext4_mb_discard_group_preallocations(struct super_block *sb,
3831 					ext4_group_t group, int needed)
3832 {
3833 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3834 	struct buffer_head *bitmap_bh = NULL;
3835 	struct ext4_prealloc_space *pa, *tmp;
3836 	struct list_head list;
3837 	struct ext4_buddy e4b;
3838 	int err;
3839 	int busy = 0;
3840 	int free = 0;
3841 
3842 	mb_debug(1, "discard preallocation for group %u\n", group);
3843 
3844 	if (list_empty(&grp->bb_prealloc_list))
3845 		return 0;
3846 
3847 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3848 	if (IS_ERR(bitmap_bh)) {
3849 		err = PTR_ERR(bitmap_bh);
3850 		ext4_error(sb, "Error %d reading block bitmap for %u",
3851 			   err, group);
3852 		return 0;
3853 	}
3854 
3855 	err = ext4_mb_load_buddy(sb, group, &e4b);
3856 	if (err) {
3857 		ext4_error(sb, "Error loading buddy information for %u", group);
3858 		put_bh(bitmap_bh);
3859 		return 0;
3860 	}
3861 
3862 	if (needed == 0)
3863 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3864 
3865 	INIT_LIST_HEAD(&list);
3866 repeat:
3867 	ext4_lock_group(sb, group);
3868 	list_for_each_entry_safe(pa, tmp,
3869 				&grp->bb_prealloc_list, pa_group_list) {
3870 		spin_lock(&pa->pa_lock);
3871 		if (atomic_read(&pa->pa_count)) {
3872 			spin_unlock(&pa->pa_lock);
3873 			busy = 1;
3874 			continue;
3875 		}
3876 		if (pa->pa_deleted) {
3877 			spin_unlock(&pa->pa_lock);
3878 			continue;
3879 		}
3880 
3881 		/* seems this one can be freed ... */
3882 		pa->pa_deleted = 1;
3883 
3884 		/* we can trust pa_free ... */
3885 		free += pa->pa_free;
3886 
3887 		spin_unlock(&pa->pa_lock);
3888 
3889 		list_del(&pa->pa_group_list);
3890 		list_add(&pa->u.pa_tmp_list, &list);
3891 	}
3892 
3893 	/* if we still need more blocks and some PAs were used, try again */
3894 	if (free < needed && busy) {
3895 		busy = 0;
3896 		ext4_unlock_group(sb, group);
3897 		cond_resched();
3898 		goto repeat;
3899 	}
3900 
3901 	/* found anything to free? */
3902 	if (list_empty(&list)) {
3903 		BUG_ON(free != 0);
3904 		goto out;
3905 	}
3906 
3907 	/* now free all selected PAs */
3908 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3909 
3910 		/* remove from object (inode or locality group) */
3911 		spin_lock(pa->pa_obj_lock);
3912 		list_del_rcu(&pa->pa_inode_list);
3913 		spin_unlock(pa->pa_obj_lock);
3914 
3915 		if (pa->pa_type == MB_GROUP_PA)
3916 			ext4_mb_release_group_pa(&e4b, pa);
3917 		else
3918 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3919 
3920 		list_del(&pa->u.pa_tmp_list);
3921 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3922 	}
3923 
3924 out:
3925 	ext4_unlock_group(sb, group);
3926 	ext4_mb_unload_buddy(&e4b);
3927 	put_bh(bitmap_bh);
3928 	return free;
3929 }
3930 
3931 /*
3932  * releases all non-used preallocated blocks for given inode
3933  *
3934  * It's important to discard preallocations under i_data_sem
3935  * We don't want another block to be served from the prealloc
3936  * space when we are discarding the inode prealloc space.
3937  *
3938  * FIXME!! Make sure it is valid at all the call sites
3939  */
3940 void ext4_discard_preallocations(struct inode *inode)
3941 {
3942 	struct ext4_inode_info *ei = EXT4_I(inode);
3943 	struct super_block *sb = inode->i_sb;
3944 	struct buffer_head *bitmap_bh = NULL;
3945 	struct ext4_prealloc_space *pa, *tmp;
3946 	ext4_group_t group = 0;
3947 	struct list_head list;
3948 	struct ext4_buddy e4b;
3949 	int err;
3950 
3951 	if (!S_ISREG(inode->i_mode)) {
3952 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3953 		return;
3954 	}
3955 
3956 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3957 	trace_ext4_discard_preallocations(inode);
3958 
3959 	INIT_LIST_HEAD(&list);
3960 
3961 repeat:
3962 	/* first, collect all pa's in the inode */
3963 	spin_lock(&ei->i_prealloc_lock);
3964 	while (!list_empty(&ei->i_prealloc_list)) {
3965 		pa = list_entry(ei->i_prealloc_list.next,
3966 				struct ext4_prealloc_space, pa_inode_list);
3967 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3968 		spin_lock(&pa->pa_lock);
3969 		if (atomic_read(&pa->pa_count)) {
3970 			/* this shouldn't happen often - nobody should
3971 			 * use preallocation while we're discarding it */
3972 			spin_unlock(&pa->pa_lock);
3973 			spin_unlock(&ei->i_prealloc_lock);
3974 			ext4_msg(sb, KERN_ERR,
3975 				 "uh-oh! used pa while discarding");
3976 			WARN_ON(1);
3977 			schedule_timeout_uninterruptible(HZ);
3978 			goto repeat;
3979 
3980 		}
3981 		if (pa->pa_deleted == 0) {
3982 			pa->pa_deleted = 1;
3983 			spin_unlock(&pa->pa_lock);
3984 			list_del_rcu(&pa->pa_inode_list);
3985 			list_add(&pa->u.pa_tmp_list, &list);
3986 			continue;
3987 		}
3988 
3989 		/* someone is deleting pa right now */
3990 		spin_unlock(&pa->pa_lock);
3991 		spin_unlock(&ei->i_prealloc_lock);
3992 
3993 		/* we have to wait here because pa_deleted
3994 		 * doesn't mean pa is already unlinked from
3995 		 * the list. as we might be called from
3996 		 * ->clear_inode() the inode will get freed
3997 		 * and concurrent thread which is unlinking
3998 		 * pa from inode's list may access already
3999 		 * freed memory, bad-bad-bad */
4000 
4001 		/* XXX: if this happens too often, we can
4002 		 * add a flag to force wait only in case
4003 		 * of ->clear_inode(), but not in case of
4004 		 * regular truncate */
4005 		schedule_timeout_uninterruptible(HZ);
4006 		goto repeat;
4007 	}
4008 	spin_unlock(&ei->i_prealloc_lock);
4009 
4010 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4011 		BUG_ON(pa->pa_type != MB_INODE_PA);
4012 		group = ext4_get_group_number(sb, pa->pa_pstart);
4013 
4014 		err = ext4_mb_load_buddy(sb, group, &e4b);
4015 		if (err) {
4016 			ext4_error(sb, "Error loading buddy information for %u",
4017 					group);
4018 			continue;
4019 		}
4020 
4021 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4022 		if (IS_ERR(bitmap_bh)) {
4023 			err = PTR_ERR(bitmap_bh);
4024 			ext4_error(sb, "Error %d reading block bitmap for %u",
4025 					err, group);
4026 			ext4_mb_unload_buddy(&e4b);
4027 			continue;
4028 		}
4029 
4030 		ext4_lock_group(sb, group);
4031 		list_del(&pa->pa_group_list);
4032 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4033 		ext4_unlock_group(sb, group);
4034 
4035 		ext4_mb_unload_buddy(&e4b);
4036 		put_bh(bitmap_bh);
4037 
4038 		list_del(&pa->u.pa_tmp_list);
4039 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4040 	}
4041 }
4042 
4043 #ifdef CONFIG_EXT4_DEBUG
4044 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4045 {
4046 	struct super_block *sb = ac->ac_sb;
4047 	ext4_group_t ngroups, i;
4048 
4049 	if (!ext4_mballoc_debug ||
4050 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4051 		return;
4052 
4053 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4054 			" Allocation context details:");
4055 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4056 			ac->ac_status, ac->ac_flags);
4057 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4058 		 	"goal %lu/%lu/%lu@%lu, "
4059 			"best %lu/%lu/%lu@%lu cr %d",
4060 			(unsigned long)ac->ac_o_ex.fe_group,
4061 			(unsigned long)ac->ac_o_ex.fe_start,
4062 			(unsigned long)ac->ac_o_ex.fe_len,
4063 			(unsigned long)ac->ac_o_ex.fe_logical,
4064 			(unsigned long)ac->ac_g_ex.fe_group,
4065 			(unsigned long)ac->ac_g_ex.fe_start,
4066 			(unsigned long)ac->ac_g_ex.fe_len,
4067 			(unsigned long)ac->ac_g_ex.fe_logical,
4068 			(unsigned long)ac->ac_b_ex.fe_group,
4069 			(unsigned long)ac->ac_b_ex.fe_start,
4070 			(unsigned long)ac->ac_b_ex.fe_len,
4071 			(unsigned long)ac->ac_b_ex.fe_logical,
4072 			(int)ac->ac_criteria);
4073 	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4074 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4075 	ngroups = ext4_get_groups_count(sb);
4076 	for (i = 0; i < ngroups; i++) {
4077 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4078 		struct ext4_prealloc_space *pa;
4079 		ext4_grpblk_t start;
4080 		struct list_head *cur;
4081 		ext4_lock_group(sb, i);
4082 		list_for_each(cur, &grp->bb_prealloc_list) {
4083 			pa = list_entry(cur, struct ext4_prealloc_space,
4084 					pa_group_list);
4085 			spin_lock(&pa->pa_lock);
4086 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4087 						     NULL, &start);
4088 			spin_unlock(&pa->pa_lock);
4089 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4090 			       start, pa->pa_len);
4091 		}
4092 		ext4_unlock_group(sb, i);
4093 
4094 		if (grp->bb_free == 0)
4095 			continue;
4096 		printk(KERN_ERR "%u: %d/%d \n",
4097 		       i, grp->bb_free, grp->bb_fragments);
4098 	}
4099 	printk(KERN_ERR "\n");
4100 }
4101 #else
4102 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4103 {
4104 	return;
4105 }
4106 #endif
4107 
4108 /*
4109  * We use locality group preallocation for small size file. The size of the
4110  * file is determined by the current size or the resulting size after
4111  * allocation which ever is larger
4112  *
4113  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4114  */
4115 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4116 {
4117 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4118 	int bsbits = ac->ac_sb->s_blocksize_bits;
4119 	loff_t size, isize;
4120 
4121 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4122 		return;
4123 
4124 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4125 		return;
4126 
4127 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4128 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4129 		>> bsbits;
4130 
4131 	if ((size == isize) &&
4132 	    !ext4_fs_is_busy(sbi) &&
4133 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4134 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4135 		return;
4136 	}
4137 
4138 	if (sbi->s_mb_group_prealloc <= 0) {
4139 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4140 		return;
4141 	}
4142 
4143 	/* don't use group allocation for large files */
4144 	size = max(size, isize);
4145 	if (size > sbi->s_mb_stream_request) {
4146 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4147 		return;
4148 	}
4149 
4150 	BUG_ON(ac->ac_lg != NULL);
4151 	/*
4152 	 * locality group prealloc space are per cpu. The reason for having
4153 	 * per cpu locality group is to reduce the contention between block
4154 	 * request from multiple CPUs.
4155 	 */
4156 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4157 
4158 	/* we're going to use group allocation */
4159 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4160 
4161 	/* serialize all allocations in the group */
4162 	mutex_lock(&ac->ac_lg->lg_mutex);
4163 }
4164 
4165 static noinline_for_stack int
4166 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4167 				struct ext4_allocation_request *ar)
4168 {
4169 	struct super_block *sb = ar->inode->i_sb;
4170 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4171 	struct ext4_super_block *es = sbi->s_es;
4172 	ext4_group_t group;
4173 	unsigned int len;
4174 	ext4_fsblk_t goal;
4175 	ext4_grpblk_t block;
4176 
4177 	/* we can't allocate > group size */
4178 	len = ar->len;
4179 
4180 	/* just a dirty hack to filter too big requests  */
4181 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4182 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4183 
4184 	/* start searching from the goal */
4185 	goal = ar->goal;
4186 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4187 			goal >= ext4_blocks_count(es))
4188 		goal = le32_to_cpu(es->s_first_data_block);
4189 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4190 
4191 	/* set up allocation goals */
4192 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4193 	ac->ac_status = AC_STATUS_CONTINUE;
4194 	ac->ac_sb = sb;
4195 	ac->ac_inode = ar->inode;
4196 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4197 	ac->ac_o_ex.fe_group = group;
4198 	ac->ac_o_ex.fe_start = block;
4199 	ac->ac_o_ex.fe_len = len;
4200 	ac->ac_g_ex = ac->ac_o_ex;
4201 	ac->ac_flags = ar->flags;
4202 
4203 	/* we have to define context: we'll we work with a file or
4204 	 * locality group. this is a policy, actually */
4205 	ext4_mb_group_or_file(ac);
4206 
4207 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4208 			"left: %u/%u, right %u/%u to %swritable\n",
4209 			(unsigned) ar->len, (unsigned) ar->logical,
4210 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4211 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4212 			(unsigned) ar->lright, (unsigned) ar->pright,
4213 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4214 	return 0;
4215 
4216 }
4217 
4218 static noinline_for_stack void
4219 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4220 					struct ext4_locality_group *lg,
4221 					int order, int total_entries)
4222 {
4223 	ext4_group_t group = 0;
4224 	struct ext4_buddy e4b;
4225 	struct list_head discard_list;
4226 	struct ext4_prealloc_space *pa, *tmp;
4227 
4228 	mb_debug(1, "discard locality group preallocation\n");
4229 
4230 	INIT_LIST_HEAD(&discard_list);
4231 
4232 	spin_lock(&lg->lg_prealloc_lock);
4233 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4234 						pa_inode_list) {
4235 		spin_lock(&pa->pa_lock);
4236 		if (atomic_read(&pa->pa_count)) {
4237 			/*
4238 			 * This is the pa that we just used
4239 			 * for block allocation. So don't
4240 			 * free that
4241 			 */
4242 			spin_unlock(&pa->pa_lock);
4243 			continue;
4244 		}
4245 		if (pa->pa_deleted) {
4246 			spin_unlock(&pa->pa_lock);
4247 			continue;
4248 		}
4249 		/* only lg prealloc space */
4250 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4251 
4252 		/* seems this one can be freed ... */
4253 		pa->pa_deleted = 1;
4254 		spin_unlock(&pa->pa_lock);
4255 
4256 		list_del_rcu(&pa->pa_inode_list);
4257 		list_add(&pa->u.pa_tmp_list, &discard_list);
4258 
4259 		total_entries--;
4260 		if (total_entries <= 5) {
4261 			/*
4262 			 * we want to keep only 5 entries
4263 			 * allowing it to grow to 8. This
4264 			 * mak sure we don't call discard
4265 			 * soon for this list.
4266 			 */
4267 			break;
4268 		}
4269 	}
4270 	spin_unlock(&lg->lg_prealloc_lock);
4271 
4272 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4273 
4274 		group = ext4_get_group_number(sb, pa->pa_pstart);
4275 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4276 			ext4_error(sb, "Error loading buddy information for %u",
4277 					group);
4278 			continue;
4279 		}
4280 		ext4_lock_group(sb, group);
4281 		list_del(&pa->pa_group_list);
4282 		ext4_mb_release_group_pa(&e4b, pa);
4283 		ext4_unlock_group(sb, group);
4284 
4285 		ext4_mb_unload_buddy(&e4b);
4286 		list_del(&pa->u.pa_tmp_list);
4287 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4288 	}
4289 }
4290 
4291 /*
4292  * We have incremented pa_count. So it cannot be freed at this
4293  * point. Also we hold lg_mutex. So no parallel allocation is
4294  * possible from this lg. That means pa_free cannot be updated.
4295  *
4296  * A parallel ext4_mb_discard_group_preallocations is possible.
4297  * which can cause the lg_prealloc_list to be updated.
4298  */
4299 
4300 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4301 {
4302 	int order, added = 0, lg_prealloc_count = 1;
4303 	struct super_block *sb = ac->ac_sb;
4304 	struct ext4_locality_group *lg = ac->ac_lg;
4305 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4306 
4307 	order = fls(pa->pa_free) - 1;
4308 	if (order > PREALLOC_TB_SIZE - 1)
4309 		/* The max size of hash table is PREALLOC_TB_SIZE */
4310 		order = PREALLOC_TB_SIZE - 1;
4311 	/* Add the prealloc space to lg */
4312 	spin_lock(&lg->lg_prealloc_lock);
4313 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4314 						pa_inode_list) {
4315 		spin_lock(&tmp_pa->pa_lock);
4316 		if (tmp_pa->pa_deleted) {
4317 			spin_unlock(&tmp_pa->pa_lock);
4318 			continue;
4319 		}
4320 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4321 			/* Add to the tail of the previous entry */
4322 			list_add_tail_rcu(&pa->pa_inode_list,
4323 						&tmp_pa->pa_inode_list);
4324 			added = 1;
4325 			/*
4326 			 * we want to count the total
4327 			 * number of entries in the list
4328 			 */
4329 		}
4330 		spin_unlock(&tmp_pa->pa_lock);
4331 		lg_prealloc_count++;
4332 	}
4333 	if (!added)
4334 		list_add_tail_rcu(&pa->pa_inode_list,
4335 					&lg->lg_prealloc_list[order]);
4336 	spin_unlock(&lg->lg_prealloc_lock);
4337 
4338 	/* Now trim the list to be not more than 8 elements */
4339 	if (lg_prealloc_count > 8) {
4340 		ext4_mb_discard_lg_preallocations(sb, lg,
4341 						  order, lg_prealloc_count);
4342 		return;
4343 	}
4344 	return ;
4345 }
4346 
4347 /*
4348  * release all resource we used in allocation
4349  */
4350 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4351 {
4352 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4353 	struct ext4_prealloc_space *pa = ac->ac_pa;
4354 	if (pa) {
4355 		if (pa->pa_type == MB_GROUP_PA) {
4356 			/* see comment in ext4_mb_use_group_pa() */
4357 			spin_lock(&pa->pa_lock);
4358 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4359 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4360 			pa->pa_free -= ac->ac_b_ex.fe_len;
4361 			pa->pa_len -= ac->ac_b_ex.fe_len;
4362 			spin_unlock(&pa->pa_lock);
4363 		}
4364 	}
4365 	if (pa) {
4366 		/*
4367 		 * We want to add the pa to the right bucket.
4368 		 * Remove it from the list and while adding
4369 		 * make sure the list to which we are adding
4370 		 * doesn't grow big.
4371 		 */
4372 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4373 			spin_lock(pa->pa_obj_lock);
4374 			list_del_rcu(&pa->pa_inode_list);
4375 			spin_unlock(pa->pa_obj_lock);
4376 			ext4_mb_add_n_trim(ac);
4377 		}
4378 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4379 	}
4380 	if (ac->ac_bitmap_page)
4381 		page_cache_release(ac->ac_bitmap_page);
4382 	if (ac->ac_buddy_page)
4383 		page_cache_release(ac->ac_buddy_page);
4384 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4385 		mutex_unlock(&ac->ac_lg->lg_mutex);
4386 	ext4_mb_collect_stats(ac);
4387 	return 0;
4388 }
4389 
4390 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4391 {
4392 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4393 	int ret;
4394 	int freed = 0;
4395 
4396 	trace_ext4_mb_discard_preallocations(sb, needed);
4397 	for (i = 0; i < ngroups && needed > 0; i++) {
4398 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4399 		freed += ret;
4400 		needed -= ret;
4401 	}
4402 
4403 	return freed;
4404 }
4405 
4406 /*
4407  * Main entry point into mballoc to allocate blocks
4408  * it tries to use preallocation first, then falls back
4409  * to usual allocation
4410  */
4411 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4412 				struct ext4_allocation_request *ar, int *errp)
4413 {
4414 	int freed;
4415 	struct ext4_allocation_context *ac = NULL;
4416 	struct ext4_sb_info *sbi;
4417 	struct super_block *sb;
4418 	ext4_fsblk_t block = 0;
4419 	unsigned int inquota = 0;
4420 	unsigned int reserv_clstrs = 0;
4421 
4422 	might_sleep();
4423 	sb = ar->inode->i_sb;
4424 	sbi = EXT4_SB(sb);
4425 
4426 	trace_ext4_request_blocks(ar);
4427 
4428 	/* Allow to use superuser reservation for quota file */
4429 	if (IS_NOQUOTA(ar->inode))
4430 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4431 
4432 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4433 		/* Without delayed allocation we need to verify
4434 		 * there is enough free blocks to do block allocation
4435 		 * and verify allocation doesn't exceed the quota limits.
4436 		 */
4437 		while (ar->len &&
4438 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4439 
4440 			/* let others to free the space */
4441 			cond_resched();
4442 			ar->len = ar->len >> 1;
4443 		}
4444 		if (!ar->len) {
4445 			*errp = -ENOSPC;
4446 			return 0;
4447 		}
4448 		reserv_clstrs = ar->len;
4449 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4450 			dquot_alloc_block_nofail(ar->inode,
4451 						 EXT4_C2B(sbi, ar->len));
4452 		} else {
4453 			while (ar->len &&
4454 				dquot_alloc_block(ar->inode,
4455 						  EXT4_C2B(sbi, ar->len))) {
4456 
4457 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4458 				ar->len--;
4459 			}
4460 		}
4461 		inquota = ar->len;
4462 		if (ar->len == 0) {
4463 			*errp = -EDQUOT;
4464 			goto out;
4465 		}
4466 	}
4467 
4468 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4469 	if (!ac) {
4470 		ar->len = 0;
4471 		*errp = -ENOMEM;
4472 		goto out;
4473 	}
4474 
4475 	*errp = ext4_mb_initialize_context(ac, ar);
4476 	if (*errp) {
4477 		ar->len = 0;
4478 		goto out;
4479 	}
4480 
4481 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4482 	if (!ext4_mb_use_preallocated(ac)) {
4483 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4484 		ext4_mb_normalize_request(ac, ar);
4485 repeat:
4486 		/* allocate space in core */
4487 		*errp = ext4_mb_regular_allocator(ac);
4488 		if (*errp)
4489 			goto discard_and_exit;
4490 
4491 		/* as we've just preallocated more space than
4492 		 * user requested originally, we store allocated
4493 		 * space in a special descriptor */
4494 		if (ac->ac_status == AC_STATUS_FOUND &&
4495 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4496 			*errp = ext4_mb_new_preallocation(ac);
4497 		if (*errp) {
4498 		discard_and_exit:
4499 			ext4_discard_allocated_blocks(ac);
4500 			goto errout;
4501 		}
4502 	}
4503 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4504 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4505 		if (*errp == -EAGAIN) {
4506 			/*
4507 			 * drop the reference that we took
4508 			 * in ext4_mb_use_best_found
4509 			 */
4510 			ext4_mb_release_context(ac);
4511 			ac->ac_b_ex.fe_group = 0;
4512 			ac->ac_b_ex.fe_start = 0;
4513 			ac->ac_b_ex.fe_len = 0;
4514 			ac->ac_status = AC_STATUS_CONTINUE;
4515 			goto repeat;
4516 		} else if (*errp) {
4517 			ext4_discard_allocated_blocks(ac);
4518 			goto errout;
4519 		} else {
4520 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4521 			ar->len = ac->ac_b_ex.fe_len;
4522 		}
4523 	} else {
4524 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4525 		if (freed)
4526 			goto repeat;
4527 		*errp = -ENOSPC;
4528 	}
4529 
4530 errout:
4531 	if (*errp) {
4532 		ac->ac_b_ex.fe_len = 0;
4533 		ar->len = 0;
4534 		ext4_mb_show_ac(ac);
4535 	}
4536 	ext4_mb_release_context(ac);
4537 out:
4538 	if (ac)
4539 		kmem_cache_free(ext4_ac_cachep, ac);
4540 	if (inquota && ar->len < inquota)
4541 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4542 	if (!ar->len) {
4543 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4544 			/* release all the reserved blocks if non delalloc */
4545 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4546 						reserv_clstrs);
4547 	}
4548 
4549 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4550 
4551 	return block;
4552 }
4553 
4554 /*
4555  * We can merge two free data extents only if the physical blocks
4556  * are contiguous, AND the extents were freed by the same transaction,
4557  * AND the blocks are associated with the same group.
4558  */
4559 static int can_merge(struct ext4_free_data *entry1,
4560 			struct ext4_free_data *entry2)
4561 {
4562 	if ((entry1->efd_tid == entry2->efd_tid) &&
4563 	    (entry1->efd_group == entry2->efd_group) &&
4564 	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4565 		return 1;
4566 	return 0;
4567 }
4568 
4569 static noinline_for_stack int
4570 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4571 		      struct ext4_free_data *new_entry)
4572 {
4573 	ext4_group_t group = e4b->bd_group;
4574 	ext4_grpblk_t cluster;
4575 	struct ext4_free_data *entry;
4576 	struct ext4_group_info *db = e4b->bd_info;
4577 	struct super_block *sb = e4b->bd_sb;
4578 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4579 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4580 	struct rb_node *parent = NULL, *new_node;
4581 
4582 	BUG_ON(!ext4_handle_valid(handle));
4583 	BUG_ON(e4b->bd_bitmap_page == NULL);
4584 	BUG_ON(e4b->bd_buddy_page == NULL);
4585 
4586 	new_node = &new_entry->efd_node;
4587 	cluster = new_entry->efd_start_cluster;
4588 
4589 	if (!*n) {
4590 		/* first free block exent. We need to
4591 		   protect buddy cache from being freed,
4592 		 * otherwise we'll refresh it from
4593 		 * on-disk bitmap and lose not-yet-available
4594 		 * blocks */
4595 		page_cache_get(e4b->bd_buddy_page);
4596 		page_cache_get(e4b->bd_bitmap_page);
4597 	}
4598 	while (*n) {
4599 		parent = *n;
4600 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4601 		if (cluster < entry->efd_start_cluster)
4602 			n = &(*n)->rb_left;
4603 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4604 			n = &(*n)->rb_right;
4605 		else {
4606 			ext4_grp_locked_error(sb, group, 0,
4607 				ext4_group_first_block_no(sb, group) +
4608 				EXT4_C2B(sbi, cluster),
4609 				"Block already on to-be-freed list");
4610 			return 0;
4611 		}
4612 	}
4613 
4614 	rb_link_node(new_node, parent, n);
4615 	rb_insert_color(new_node, &db->bb_free_root);
4616 
4617 	/* Now try to see the extent can be merged to left and right */
4618 	node = rb_prev(new_node);
4619 	if (node) {
4620 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4621 		if (can_merge(entry, new_entry) &&
4622 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4623 			new_entry->efd_start_cluster = entry->efd_start_cluster;
4624 			new_entry->efd_count += entry->efd_count;
4625 			rb_erase(node, &(db->bb_free_root));
4626 			kmem_cache_free(ext4_free_data_cachep, entry);
4627 		}
4628 	}
4629 
4630 	node = rb_next(new_node);
4631 	if (node) {
4632 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4633 		if (can_merge(new_entry, entry) &&
4634 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4635 			new_entry->efd_count += entry->efd_count;
4636 			rb_erase(node, &(db->bb_free_root));
4637 			kmem_cache_free(ext4_free_data_cachep, entry);
4638 		}
4639 	}
4640 	/* Add the extent to transaction's private list */
4641 	ext4_journal_callback_add(handle, ext4_free_data_callback,
4642 				  &new_entry->efd_jce);
4643 	return 0;
4644 }
4645 
4646 /**
4647  * ext4_free_blocks() -- Free given blocks and update quota
4648  * @handle:		handle for this transaction
4649  * @inode:		inode
4650  * @block:		start physical block to free
4651  * @count:		number of blocks to count
4652  * @flags:		flags used by ext4_free_blocks
4653  */
4654 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4655 		      struct buffer_head *bh, ext4_fsblk_t block,
4656 		      unsigned long count, int flags)
4657 {
4658 	struct buffer_head *bitmap_bh = NULL;
4659 	struct super_block *sb = inode->i_sb;
4660 	struct ext4_group_desc *gdp;
4661 	unsigned int overflow;
4662 	ext4_grpblk_t bit;
4663 	struct buffer_head *gd_bh;
4664 	ext4_group_t block_group;
4665 	struct ext4_sb_info *sbi;
4666 	struct ext4_buddy e4b;
4667 	unsigned int count_clusters;
4668 	int err = 0;
4669 	int ret;
4670 
4671 	might_sleep();
4672 	if (bh) {
4673 		if (block)
4674 			BUG_ON(block != bh->b_blocknr);
4675 		else
4676 			block = bh->b_blocknr;
4677 	}
4678 
4679 	sbi = EXT4_SB(sb);
4680 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4681 	    !ext4_data_block_valid(sbi, block, count)) {
4682 		ext4_error(sb, "Freeing blocks not in datazone - "
4683 			   "block = %llu, count = %lu", block, count);
4684 		goto error_return;
4685 	}
4686 
4687 	ext4_debug("freeing block %llu\n", block);
4688 	trace_ext4_free_blocks(inode, block, count, flags);
4689 
4690 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4691 		BUG_ON(count > 1);
4692 
4693 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4694 			    inode, bh, block);
4695 	}
4696 
4697 	/*
4698 	 * We need to make sure we don't reuse the freed block until
4699 	 * after the transaction is committed, which we can do by
4700 	 * treating the block as metadata, below.  We make an
4701 	 * exception if the inode is to be written in writeback mode
4702 	 * since writeback mode has weak data consistency guarantees.
4703 	 */
4704 	if (!ext4_should_writeback_data(inode))
4705 		flags |= EXT4_FREE_BLOCKS_METADATA;
4706 
4707 	/*
4708 	 * If the extent to be freed does not begin on a cluster
4709 	 * boundary, we need to deal with partial clusters at the
4710 	 * beginning and end of the extent.  Normally we will free
4711 	 * blocks at the beginning or the end unless we are explicitly
4712 	 * requested to avoid doing so.
4713 	 */
4714 	overflow = EXT4_PBLK_COFF(sbi, block);
4715 	if (overflow) {
4716 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4717 			overflow = sbi->s_cluster_ratio - overflow;
4718 			block += overflow;
4719 			if (count > overflow)
4720 				count -= overflow;
4721 			else
4722 				return;
4723 		} else {
4724 			block -= overflow;
4725 			count += overflow;
4726 		}
4727 	}
4728 	overflow = EXT4_LBLK_COFF(sbi, count);
4729 	if (overflow) {
4730 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4731 			if (count > overflow)
4732 				count -= overflow;
4733 			else
4734 				return;
4735 		} else
4736 			count += sbi->s_cluster_ratio - overflow;
4737 	}
4738 
4739 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4740 		int i;
4741 
4742 		for (i = 0; i < count; i++) {
4743 			cond_resched();
4744 			bh = sb_find_get_block(inode->i_sb, block + i);
4745 			if (!bh)
4746 				continue;
4747 			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4748 				    inode, bh, block + i);
4749 		}
4750 	}
4751 
4752 do_more:
4753 	overflow = 0;
4754 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4755 
4756 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4757 			ext4_get_group_info(sb, block_group))))
4758 		return;
4759 
4760 	/*
4761 	 * Check to see if we are freeing blocks across a group
4762 	 * boundary.
4763 	 */
4764 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4765 		overflow = EXT4_C2B(sbi, bit) + count -
4766 			EXT4_BLOCKS_PER_GROUP(sb);
4767 		count -= overflow;
4768 	}
4769 	count_clusters = EXT4_NUM_B2C(sbi, count);
4770 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4771 	if (IS_ERR(bitmap_bh)) {
4772 		err = PTR_ERR(bitmap_bh);
4773 		bitmap_bh = NULL;
4774 		goto error_return;
4775 	}
4776 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4777 	if (!gdp) {
4778 		err = -EIO;
4779 		goto error_return;
4780 	}
4781 
4782 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4783 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4784 	    in_range(block, ext4_inode_table(sb, gdp),
4785 		     EXT4_SB(sb)->s_itb_per_group) ||
4786 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4787 		     EXT4_SB(sb)->s_itb_per_group)) {
4788 
4789 		ext4_error(sb, "Freeing blocks in system zone - "
4790 			   "Block = %llu, count = %lu", block, count);
4791 		/* err = 0. ext4_std_error should be a no op */
4792 		goto error_return;
4793 	}
4794 
4795 	BUFFER_TRACE(bitmap_bh, "getting write access");
4796 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4797 	if (err)
4798 		goto error_return;
4799 
4800 	/*
4801 	 * We are about to modify some metadata.  Call the journal APIs
4802 	 * to unshare ->b_data if a currently-committing transaction is
4803 	 * using it
4804 	 */
4805 	BUFFER_TRACE(gd_bh, "get_write_access");
4806 	err = ext4_journal_get_write_access(handle, gd_bh);
4807 	if (err)
4808 		goto error_return;
4809 #ifdef AGGRESSIVE_CHECK
4810 	{
4811 		int i;
4812 		for (i = 0; i < count_clusters; i++)
4813 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4814 	}
4815 #endif
4816 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4817 
4818 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4819 	if (err)
4820 		goto error_return;
4821 
4822 	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4823 		struct ext4_free_data *new_entry;
4824 		/*
4825 		 * blocks being freed are metadata. these blocks shouldn't
4826 		 * be used until this transaction is committed
4827 		 *
4828 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4829 		 * to fail.
4830 		 */
4831 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4832 				GFP_NOFS|__GFP_NOFAIL);
4833 		new_entry->efd_start_cluster = bit;
4834 		new_entry->efd_group = block_group;
4835 		new_entry->efd_count = count_clusters;
4836 		new_entry->efd_tid = handle->h_transaction->t_tid;
4837 
4838 		ext4_lock_group(sb, block_group);
4839 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4840 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4841 	} else {
4842 		/* need to update group_info->bb_free and bitmap
4843 		 * with group lock held. generate_buddy look at
4844 		 * them with group lock_held
4845 		 */
4846 		if (test_opt(sb, DISCARD)) {
4847 			err = ext4_issue_discard(sb, block_group, bit, count);
4848 			if (err && err != -EOPNOTSUPP)
4849 				ext4_msg(sb, KERN_WARNING, "discard request in"
4850 					 " group:%d block:%d count:%lu failed"
4851 					 " with %d", block_group, bit, count,
4852 					 err);
4853 		} else
4854 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4855 
4856 		ext4_lock_group(sb, block_group);
4857 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4858 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4859 	}
4860 
4861 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4862 	ext4_free_group_clusters_set(sb, gdp, ret);
4863 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4864 	ext4_group_desc_csum_set(sb, block_group, gdp);
4865 	ext4_unlock_group(sb, block_group);
4866 
4867 	if (sbi->s_log_groups_per_flex) {
4868 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4869 		atomic64_add(count_clusters,
4870 			     &sbi->s_flex_groups[flex_group].free_clusters);
4871 	}
4872 
4873 	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4874 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4875 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4876 
4877 	ext4_mb_unload_buddy(&e4b);
4878 
4879 	/* We dirtied the bitmap block */
4880 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4881 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4882 
4883 	/* And the group descriptor block */
4884 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4885 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4886 	if (!err)
4887 		err = ret;
4888 
4889 	if (overflow && !err) {
4890 		block += count;
4891 		count = overflow;
4892 		put_bh(bitmap_bh);
4893 		goto do_more;
4894 	}
4895 error_return:
4896 	brelse(bitmap_bh);
4897 	ext4_std_error(sb, err);
4898 	return;
4899 }
4900 
4901 /**
4902  * ext4_group_add_blocks() -- Add given blocks to an existing group
4903  * @handle:			handle to this transaction
4904  * @sb:				super block
4905  * @block:			start physical block to add to the block group
4906  * @count:			number of blocks to free
4907  *
4908  * This marks the blocks as free in the bitmap and buddy.
4909  */
4910 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4911 			 ext4_fsblk_t block, unsigned long count)
4912 {
4913 	struct buffer_head *bitmap_bh = NULL;
4914 	struct buffer_head *gd_bh;
4915 	ext4_group_t block_group;
4916 	ext4_grpblk_t bit;
4917 	unsigned int i;
4918 	struct ext4_group_desc *desc;
4919 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4920 	struct ext4_buddy e4b;
4921 	int err = 0, ret, blk_free_count;
4922 	ext4_grpblk_t blocks_freed;
4923 
4924 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4925 
4926 	if (count == 0)
4927 		return 0;
4928 
4929 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4930 	/*
4931 	 * Check to see if we are freeing blocks across a group
4932 	 * boundary.
4933 	 */
4934 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4935 		ext4_warning(sb, "too much blocks added to group %u\n",
4936 			     block_group);
4937 		err = -EINVAL;
4938 		goto error_return;
4939 	}
4940 
4941 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4942 	if (IS_ERR(bitmap_bh)) {
4943 		err = PTR_ERR(bitmap_bh);
4944 		bitmap_bh = NULL;
4945 		goto error_return;
4946 	}
4947 
4948 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4949 	if (!desc) {
4950 		err = -EIO;
4951 		goto error_return;
4952 	}
4953 
4954 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4955 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4956 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4957 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4958 		     sbi->s_itb_per_group)) {
4959 		ext4_error(sb, "Adding blocks in system zones - "
4960 			   "Block = %llu, count = %lu",
4961 			   block, count);
4962 		err = -EINVAL;
4963 		goto error_return;
4964 	}
4965 
4966 	BUFFER_TRACE(bitmap_bh, "getting write access");
4967 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4968 	if (err)
4969 		goto error_return;
4970 
4971 	/*
4972 	 * We are about to modify some metadata.  Call the journal APIs
4973 	 * to unshare ->b_data if a currently-committing transaction is
4974 	 * using it
4975 	 */
4976 	BUFFER_TRACE(gd_bh, "get_write_access");
4977 	err = ext4_journal_get_write_access(handle, gd_bh);
4978 	if (err)
4979 		goto error_return;
4980 
4981 	for (i = 0, blocks_freed = 0; i < count; i++) {
4982 		BUFFER_TRACE(bitmap_bh, "clear bit");
4983 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4984 			ext4_error(sb, "bit already cleared for block %llu",
4985 				   (ext4_fsblk_t)(block + i));
4986 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4987 		} else {
4988 			blocks_freed++;
4989 		}
4990 	}
4991 
4992 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4993 	if (err)
4994 		goto error_return;
4995 
4996 	/*
4997 	 * need to update group_info->bb_free and bitmap
4998 	 * with group lock held. generate_buddy look at
4999 	 * them with group lock_held
5000 	 */
5001 	ext4_lock_group(sb, block_group);
5002 	mb_clear_bits(bitmap_bh->b_data, bit, count);
5003 	mb_free_blocks(NULL, &e4b, bit, count);
5004 	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
5005 	ext4_free_group_clusters_set(sb, desc, blk_free_count);
5006 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5007 	ext4_group_desc_csum_set(sb, block_group, desc);
5008 	ext4_unlock_group(sb, block_group);
5009 	percpu_counter_add(&sbi->s_freeclusters_counter,
5010 			   EXT4_NUM_B2C(sbi, blocks_freed));
5011 
5012 	if (sbi->s_log_groups_per_flex) {
5013 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5014 		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5015 			     &sbi->s_flex_groups[flex_group].free_clusters);
5016 	}
5017 
5018 	ext4_mb_unload_buddy(&e4b);
5019 
5020 	/* We dirtied the bitmap block */
5021 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5022 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5023 
5024 	/* And the group descriptor block */
5025 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5026 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5027 	if (!err)
5028 		err = ret;
5029 
5030 error_return:
5031 	brelse(bitmap_bh);
5032 	ext4_std_error(sb, err);
5033 	return err;
5034 }
5035 
5036 /**
5037  * ext4_trim_extent -- function to TRIM one single free extent in the group
5038  * @sb:		super block for the file system
5039  * @start:	starting block of the free extent in the alloc. group
5040  * @count:	number of blocks to TRIM
5041  * @group:	alloc. group we are working with
5042  * @e4b:	ext4 buddy for the group
5043  *
5044  * Trim "count" blocks starting at "start" in the "group". To assure that no
5045  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5046  * be called with under the group lock.
5047  */
5048 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5049 			     ext4_group_t group, struct ext4_buddy *e4b)
5050 __releases(bitlock)
5051 __acquires(bitlock)
5052 {
5053 	struct ext4_free_extent ex;
5054 	int ret = 0;
5055 
5056 	trace_ext4_trim_extent(sb, group, start, count);
5057 
5058 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5059 
5060 	ex.fe_start = start;
5061 	ex.fe_group = group;
5062 	ex.fe_len = count;
5063 
5064 	/*
5065 	 * Mark blocks used, so no one can reuse them while
5066 	 * being trimmed.
5067 	 */
5068 	mb_mark_used(e4b, &ex);
5069 	ext4_unlock_group(sb, group);
5070 	ret = ext4_issue_discard(sb, group, start, count);
5071 	ext4_lock_group(sb, group);
5072 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5073 	return ret;
5074 }
5075 
5076 /**
5077  * ext4_trim_all_free -- function to trim all free space in alloc. group
5078  * @sb:			super block for file system
5079  * @group:		group to be trimmed
5080  * @start:		first group block to examine
5081  * @max:		last group block to examine
5082  * @minblocks:		minimum extent block count
5083  *
5084  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5085  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5086  * the extent.
5087  *
5088  *
5089  * ext4_trim_all_free walks through group's block bitmap searching for free
5090  * extents. When the free extent is found, mark it as used in group buddy
5091  * bitmap. Then issue a TRIM command on this extent and free the extent in
5092  * the group buddy bitmap. This is done until whole group is scanned.
5093  */
5094 static ext4_grpblk_t
5095 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5096 		   ext4_grpblk_t start, ext4_grpblk_t max,
5097 		   ext4_grpblk_t minblocks)
5098 {
5099 	void *bitmap;
5100 	ext4_grpblk_t next, count = 0, free_count = 0;
5101 	struct ext4_buddy e4b;
5102 	int ret = 0;
5103 
5104 	trace_ext4_trim_all_free(sb, group, start, max);
5105 
5106 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5107 	if (ret) {
5108 		ext4_error(sb, "Error in loading buddy "
5109 				"information for %u", group);
5110 		return ret;
5111 	}
5112 	bitmap = e4b.bd_bitmap;
5113 
5114 	ext4_lock_group(sb, group);
5115 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5116 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5117 		goto out;
5118 
5119 	start = (e4b.bd_info->bb_first_free > start) ?
5120 		e4b.bd_info->bb_first_free : start;
5121 
5122 	while (start <= max) {
5123 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5124 		if (start > max)
5125 			break;
5126 		next = mb_find_next_bit(bitmap, max + 1, start);
5127 
5128 		if ((next - start) >= minblocks) {
5129 			ret = ext4_trim_extent(sb, start,
5130 					       next - start, group, &e4b);
5131 			if (ret && ret != -EOPNOTSUPP)
5132 				break;
5133 			ret = 0;
5134 			count += next - start;
5135 		}
5136 		free_count += next - start;
5137 		start = next + 1;
5138 
5139 		if (fatal_signal_pending(current)) {
5140 			count = -ERESTARTSYS;
5141 			break;
5142 		}
5143 
5144 		if (need_resched()) {
5145 			ext4_unlock_group(sb, group);
5146 			cond_resched();
5147 			ext4_lock_group(sb, group);
5148 		}
5149 
5150 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5151 			break;
5152 	}
5153 
5154 	if (!ret) {
5155 		ret = count;
5156 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5157 	}
5158 out:
5159 	ext4_unlock_group(sb, group);
5160 	ext4_mb_unload_buddy(&e4b);
5161 
5162 	ext4_debug("trimmed %d blocks in the group %d\n",
5163 		count, group);
5164 
5165 	return ret;
5166 }
5167 
5168 /**
5169  * ext4_trim_fs() -- trim ioctl handle function
5170  * @sb:			superblock for filesystem
5171  * @range:		fstrim_range structure
5172  *
5173  * start:	First Byte to trim
5174  * len:		number of Bytes to trim from start
5175  * minlen:	minimum extent length in Bytes
5176  * ext4_trim_fs goes through all allocation groups containing Bytes from
5177  * start to start+len. For each such a group ext4_trim_all_free function
5178  * is invoked to trim all free space.
5179  */
5180 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5181 {
5182 	struct ext4_group_info *grp;
5183 	ext4_group_t group, first_group, last_group;
5184 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5185 	uint64_t start, end, minlen, trimmed = 0;
5186 	ext4_fsblk_t first_data_blk =
5187 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5188 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5189 	int ret = 0;
5190 
5191 	start = range->start >> sb->s_blocksize_bits;
5192 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5193 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5194 			      range->minlen >> sb->s_blocksize_bits);
5195 
5196 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5197 	    start >= max_blks ||
5198 	    range->len < sb->s_blocksize)
5199 		return -EINVAL;
5200 	if (end >= max_blks)
5201 		end = max_blks - 1;
5202 	if (end <= first_data_blk)
5203 		goto out;
5204 	if (start < first_data_blk)
5205 		start = first_data_blk;
5206 
5207 	/* Determine first and last group to examine based on start and end */
5208 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5209 				     &first_group, &first_cluster);
5210 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5211 				     &last_group, &last_cluster);
5212 
5213 	/* end now represents the last cluster to discard in this group */
5214 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5215 
5216 	for (group = first_group; group <= last_group; group++) {
5217 		grp = ext4_get_group_info(sb, group);
5218 		/* We only do this if the grp has never been initialized */
5219 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5220 			ret = ext4_mb_init_group(sb, group);
5221 			if (ret)
5222 				break;
5223 		}
5224 
5225 		/*
5226 		 * For all the groups except the last one, last cluster will
5227 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5228 		 * change it for the last group, note that last_cluster is
5229 		 * already computed earlier by ext4_get_group_no_and_offset()
5230 		 */
5231 		if (group == last_group)
5232 			end = last_cluster;
5233 
5234 		if (grp->bb_free >= minlen) {
5235 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5236 						end, minlen);
5237 			if (cnt < 0) {
5238 				ret = cnt;
5239 				break;
5240 			}
5241 			trimmed += cnt;
5242 		}
5243 
5244 		/*
5245 		 * For every group except the first one, we are sure
5246 		 * that the first cluster to discard will be cluster #0.
5247 		 */
5248 		first_cluster = 0;
5249 	}
5250 
5251 	if (!ret)
5252 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5253 
5254 out:
5255 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5256 	return ret;
5257 }
5258