xref: /openbmc/linux/fs/ext4/mballoc.c (revision a5961bed)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20 
21 /*
22  * MUSTDO:
23  *   - test ext4_ext_search_left() and ext4_ext_search_right()
24  *   - search for metadata in few groups
25  *
26  * TODO v4:
27  *   - normalization should take into account whether file is still open
28  *   - discard preallocations if no free space left (policy?)
29  *   - don't normalize tails
30  *   - quota
31  *   - reservation for superuser
32  *
33  * TODO v3:
34  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
35  *   - track min/max extents in each group for better group selection
36  *   - mb_mark_used() may allocate chunk right after splitting buddy
37  *   - tree of groups sorted by number of free blocks
38  *   - error handling
39  */
40 
41 /*
42  * The allocation request involve request for multiple number of blocks
43  * near to the goal(block) value specified.
44  *
45  * During initialization phase of the allocator we decide to use the
46  * group preallocation or inode preallocation depending on the size of
47  * the file. The size of the file could be the resulting file size we
48  * would have after allocation, or the current file size, which ever
49  * is larger. If the size is less than sbi->s_mb_stream_request we
50  * select to use the group preallocation. The default value of
51  * s_mb_stream_request is 16 blocks. This can also be tuned via
52  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53  * terms of number of blocks.
54  *
55  * The main motivation for having small file use group preallocation is to
56  * ensure that we have small files closer together on the disk.
57  *
58  * First stage the allocator looks at the inode prealloc list,
59  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60  * spaces for this particular inode. The inode prealloc space is
61  * represented as:
62  *
63  * pa_lstart -> the logical start block for this prealloc space
64  * pa_pstart -> the physical start block for this prealloc space
65  * pa_len    -> length for this prealloc space (in clusters)
66  * pa_free   ->  free space available in this prealloc space (in clusters)
67  *
68  * The inode preallocation space is used looking at the _logical_ start
69  * block. If only the logical file block falls within the range of prealloc
70  * space we will consume the particular prealloc space. This makes sure that
71  * we have contiguous physical blocks representing the file blocks
72  *
73  * The important thing to be noted in case of inode prealloc space is that
74  * we don't modify the values associated to inode prealloc space except
75  * pa_free.
76  *
77  * If we are not able to find blocks in the inode prealloc space and if we
78  * have the group allocation flag set then we look at the locality group
79  * prealloc space. These are per CPU prealloc list represented as
80  *
81  * ext4_sb_info.s_locality_groups[smp_processor_id()]
82  *
83  * The reason for having a per cpu locality group is to reduce the contention
84  * between CPUs. It is possible to get scheduled at this point.
85  *
86  * The locality group prealloc space is used looking at whether we have
87  * enough free space (pa_free) within the prealloc space.
88  *
89  * If we can't allocate blocks via inode prealloc or/and locality group
90  * prealloc then we look at the buddy cache. The buddy cache is represented
91  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92  * mapped to the buddy and bitmap information regarding different
93  * groups. The buddy information is attached to buddy cache inode so that
94  * we can access them through the page cache. The information regarding
95  * each group is loaded via ext4_mb_load_buddy.  The information involve
96  * block bitmap and buddy information. The information are stored in the
97  * inode as:
98  *
99  *  {                        page                        }
100  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101  *
102  *
103  * one block each for bitmap and buddy information.  So for each group we
104  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105  * blocksize) blocks.  So it can have information regarding groups_per_page
106  * which is blocks_per_page/2
107  *
108  * The buddy cache inode is not stored on disk. The inode is thrown
109  * away when the filesystem is unmounted.
110  *
111  * We look for count number of blocks in the buddy cache. If we were able
112  * to locate that many free blocks we return with additional information
113  * regarding rest of the contiguous physical block available
114  *
115  * Before allocating blocks via buddy cache we normalize the request
116  * blocks. This ensure we ask for more blocks that we needed. The extra
117  * blocks that we get after allocation is added to the respective prealloc
118  * list. In case of inode preallocation we follow a list of heuristics
119  * based on file size. This can be found in ext4_mb_normalize_request. If
120  * we are doing a group prealloc we try to normalize the request to
121  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
122  * dependent on the cluster size; for non-bigalloc file systems, it is
123  * 512 blocks. This can be tuned via
124  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125  * terms of number of blocks. If we have mounted the file system with -O
126  * stripe=<value> option the group prealloc request is normalized to the
127  * smallest multiple of the stripe value (sbi->s_stripe) which is
128  * greater than the default mb_group_prealloc.
129  *
130  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
131  * structures in two data structures:
132  *
133  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
134  *
135  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
136  *
137  *    This is an array of lists where the index in the array represents the
138  *    largest free order in the buddy bitmap of the participating group infos of
139  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
140  *    number of buddy bitmap orders possible) number of lists. Group-infos are
141  *    placed in appropriate lists.
142  *
143  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
144  *
145  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
146  *
147  *    This is an array of lists where in the i-th list there are groups with
148  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
149  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
150  *    Note that we don't bother with a special list for completely empty groups
151  *    so we only have MB_NUM_ORDERS(sb) lists.
152  *
153  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
154  * structures to decide the order in which groups are to be traversed for
155  * fulfilling an allocation request.
156  *
157  * At CR = 0, we look for groups which have the largest_free_order >= the order
158  * of the request. We directly look at the largest free order list in the data
159  * structure (1) above where largest_free_order = order of the request. If that
160  * list is empty, we look at remaining list in the increasing order of
161  * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time.
162  *
163  * At CR = 1, we only consider groups where average fragment size > request
164  * size. So, we lookup a group which has average fragment size just above or
165  * equal to request size using our average fragment size group lists (data
166  * structure 2) in O(1) time.
167  *
168  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
169  * linear order which requires O(N) search time for each CR 0 and CR 1 phase.
170  *
171  * The regular allocator (using the buddy cache) supports a few tunables.
172  *
173  * /sys/fs/ext4/<partition>/mb_min_to_scan
174  * /sys/fs/ext4/<partition>/mb_max_to_scan
175  * /sys/fs/ext4/<partition>/mb_order2_req
176  * /sys/fs/ext4/<partition>/mb_linear_limit
177  *
178  * The regular allocator uses buddy scan only if the request len is power of
179  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
180  * value of s_mb_order2_reqs can be tuned via
181  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
182  * stripe size (sbi->s_stripe), we try to search for contiguous block in
183  * stripe size. This should result in better allocation on RAID setups. If
184  * not, we search in the specific group using bitmap for best extents. The
185  * tunable min_to_scan and max_to_scan control the behaviour here.
186  * min_to_scan indicate how long the mballoc __must__ look for a best
187  * extent and max_to_scan indicates how long the mballoc __can__ look for a
188  * best extent in the found extents. Searching for the blocks starts with
189  * the group specified as the goal value in allocation context via
190  * ac_g_ex. Each group is first checked based on the criteria whether it
191  * can be used for allocation. ext4_mb_good_group explains how the groups are
192  * checked.
193  *
194  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
195  * get traversed linearly. That may result in subsequent allocations being not
196  * close to each other. And so, the underlying device may get filled up in a
197  * non-linear fashion. While that may not matter on non-rotational devices, for
198  * rotational devices that may result in higher seek times. "mb_linear_limit"
199  * tells mballoc how many groups mballoc should search linearly before
200  * performing consulting above data structures for more efficient lookups. For
201  * non rotational devices, this value defaults to 0 and for rotational devices
202  * this is set to MB_DEFAULT_LINEAR_LIMIT.
203  *
204  * Both the prealloc space are getting populated as above. So for the first
205  * request we will hit the buddy cache which will result in this prealloc
206  * space getting filled. The prealloc space is then later used for the
207  * subsequent request.
208  */
209 
210 /*
211  * mballoc operates on the following data:
212  *  - on-disk bitmap
213  *  - in-core buddy (actually includes buddy and bitmap)
214  *  - preallocation descriptors (PAs)
215  *
216  * there are two types of preallocations:
217  *  - inode
218  *    assiged to specific inode and can be used for this inode only.
219  *    it describes part of inode's space preallocated to specific
220  *    physical blocks. any block from that preallocated can be used
221  *    independent. the descriptor just tracks number of blocks left
222  *    unused. so, before taking some block from descriptor, one must
223  *    make sure corresponded logical block isn't allocated yet. this
224  *    also means that freeing any block within descriptor's range
225  *    must discard all preallocated blocks.
226  *  - locality group
227  *    assigned to specific locality group which does not translate to
228  *    permanent set of inodes: inode can join and leave group. space
229  *    from this type of preallocation can be used for any inode. thus
230  *    it's consumed from the beginning to the end.
231  *
232  * relation between them can be expressed as:
233  *    in-core buddy = on-disk bitmap + preallocation descriptors
234  *
235  * this mean blocks mballoc considers used are:
236  *  - allocated blocks (persistent)
237  *  - preallocated blocks (non-persistent)
238  *
239  * consistency in mballoc world means that at any time a block is either
240  * free or used in ALL structures. notice: "any time" should not be read
241  * literally -- time is discrete and delimited by locks.
242  *
243  *  to keep it simple, we don't use block numbers, instead we count number of
244  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
245  *
246  * all operations can be expressed as:
247  *  - init buddy:			buddy = on-disk + PAs
248  *  - new PA:				buddy += N; PA = N
249  *  - use inode PA:			on-disk += N; PA -= N
250  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
251  *  - use locality group PA		on-disk += N; PA -= N
252  *  - discard locality group PA		buddy -= PA; PA = 0
253  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
254  *        is used in real operation because we can't know actual used
255  *        bits from PA, only from on-disk bitmap
256  *
257  * if we follow this strict logic, then all operations above should be atomic.
258  * given some of them can block, we'd have to use something like semaphores
259  * killing performance on high-end SMP hardware. let's try to relax it using
260  * the following knowledge:
261  *  1) if buddy is referenced, it's already initialized
262  *  2) while block is used in buddy and the buddy is referenced,
263  *     nobody can re-allocate that block
264  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
265  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
266  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
267  *     block
268  *
269  * so, now we're building a concurrency table:
270  *  - init buddy vs.
271  *    - new PA
272  *      blocks for PA are allocated in the buddy, buddy must be referenced
273  *      until PA is linked to allocation group to avoid concurrent buddy init
274  *    - use inode PA
275  *      we need to make sure that either on-disk bitmap or PA has uptodate data
276  *      given (3) we care that PA-=N operation doesn't interfere with init
277  *    - discard inode PA
278  *      the simplest way would be to have buddy initialized by the discard
279  *    - use locality group PA
280  *      again PA-=N must be serialized with init
281  *    - discard locality group PA
282  *      the simplest way would be to have buddy initialized by the discard
283  *  - new PA vs.
284  *    - use inode PA
285  *      i_data_sem serializes them
286  *    - discard inode PA
287  *      discard process must wait until PA isn't used by another process
288  *    - use locality group PA
289  *      some mutex should serialize them
290  *    - discard locality group PA
291  *      discard process must wait until PA isn't used by another process
292  *  - use inode PA
293  *    - use inode PA
294  *      i_data_sem or another mutex should serializes them
295  *    - discard inode PA
296  *      discard process must wait until PA isn't used by another process
297  *    - use locality group PA
298  *      nothing wrong here -- they're different PAs covering different blocks
299  *    - discard locality group PA
300  *      discard process must wait until PA isn't used by another process
301  *
302  * now we're ready to make few consequences:
303  *  - PA is referenced and while it is no discard is possible
304  *  - PA is referenced until block isn't marked in on-disk bitmap
305  *  - PA changes only after on-disk bitmap
306  *  - discard must not compete with init. either init is done before
307  *    any discard or they're serialized somehow
308  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
309  *
310  * a special case when we've used PA to emptiness. no need to modify buddy
311  * in this case, but we should care about concurrent init
312  *
313  */
314 
315  /*
316  * Logic in few words:
317  *
318  *  - allocation:
319  *    load group
320  *    find blocks
321  *    mark bits in on-disk bitmap
322  *    release group
323  *
324  *  - use preallocation:
325  *    find proper PA (per-inode or group)
326  *    load group
327  *    mark bits in on-disk bitmap
328  *    release group
329  *    release PA
330  *
331  *  - free:
332  *    load group
333  *    mark bits in on-disk bitmap
334  *    release group
335  *
336  *  - discard preallocations in group:
337  *    mark PAs deleted
338  *    move them onto local list
339  *    load on-disk bitmap
340  *    load group
341  *    remove PA from object (inode or locality group)
342  *    mark free blocks in-core
343  *
344  *  - discard inode's preallocations:
345  */
346 
347 /*
348  * Locking rules
349  *
350  * Locks:
351  *  - bitlock on a group	(group)
352  *  - object (inode/locality)	(object)
353  *  - per-pa lock		(pa)
354  *  - cr0 lists lock		(cr0)
355  *  - cr1 tree lock		(cr1)
356  *
357  * Paths:
358  *  - new pa
359  *    object
360  *    group
361  *
362  *  - find and use pa:
363  *    pa
364  *
365  *  - release consumed pa:
366  *    pa
367  *    group
368  *    object
369  *
370  *  - generate in-core bitmap:
371  *    group
372  *        pa
373  *
374  *  - discard all for given object (inode, locality group):
375  *    object
376  *        pa
377  *    group
378  *
379  *  - discard all for given group:
380  *    group
381  *        pa
382  *    group
383  *        object
384  *
385  *  - allocation path (ext4_mb_regular_allocator)
386  *    group
387  *    cr0/cr1
388  */
389 static struct kmem_cache *ext4_pspace_cachep;
390 static struct kmem_cache *ext4_ac_cachep;
391 static struct kmem_cache *ext4_free_data_cachep;
392 
393 /* We create slab caches for groupinfo data structures based on the
394  * superblock block size.  There will be one per mounted filesystem for
395  * each unique s_blocksize_bits */
396 #define NR_GRPINFO_CACHES 8
397 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
398 
399 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
400 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
401 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
402 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
403 };
404 
405 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
406 					ext4_group_t group);
407 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
408 						ext4_group_t group);
409 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
410 
411 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
412 			       ext4_group_t group, int cr);
413 
414 static int ext4_try_to_trim_range(struct super_block *sb,
415 		struct ext4_buddy *e4b, ext4_grpblk_t start,
416 		ext4_grpblk_t max, ext4_grpblk_t minblocks);
417 
418 /*
419  * The algorithm using this percpu seq counter goes below:
420  * 1. We sample the percpu discard_pa_seq counter before trying for block
421  *    allocation in ext4_mb_new_blocks().
422  * 2. We increment this percpu discard_pa_seq counter when we either allocate
423  *    or free these blocks i.e. while marking those blocks as used/free in
424  *    mb_mark_used()/mb_free_blocks().
425  * 3. We also increment this percpu seq counter when we successfully identify
426  *    that the bb_prealloc_list is not empty and hence proceed for discarding
427  *    of those PAs inside ext4_mb_discard_group_preallocations().
428  *
429  * Now to make sure that the regular fast path of block allocation is not
430  * affected, as a small optimization we only sample the percpu seq counter
431  * on that cpu. Only when the block allocation fails and when freed blocks
432  * found were 0, that is when we sample percpu seq counter for all cpus using
433  * below function ext4_get_discard_pa_seq_sum(). This happens after making
434  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
435  */
436 static DEFINE_PER_CPU(u64, discard_pa_seq);
437 static inline u64 ext4_get_discard_pa_seq_sum(void)
438 {
439 	int __cpu;
440 	u64 __seq = 0;
441 
442 	for_each_possible_cpu(__cpu)
443 		__seq += per_cpu(discard_pa_seq, __cpu);
444 	return __seq;
445 }
446 
447 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
448 {
449 #if BITS_PER_LONG == 64
450 	*bit += ((unsigned long) addr & 7UL) << 3;
451 	addr = (void *) ((unsigned long) addr & ~7UL);
452 #elif BITS_PER_LONG == 32
453 	*bit += ((unsigned long) addr & 3UL) << 3;
454 	addr = (void *) ((unsigned long) addr & ~3UL);
455 #else
456 #error "how many bits you are?!"
457 #endif
458 	return addr;
459 }
460 
461 static inline int mb_test_bit(int bit, void *addr)
462 {
463 	/*
464 	 * ext4_test_bit on architecture like powerpc
465 	 * needs unsigned long aligned address
466 	 */
467 	addr = mb_correct_addr_and_bit(&bit, addr);
468 	return ext4_test_bit(bit, addr);
469 }
470 
471 static inline void mb_set_bit(int bit, void *addr)
472 {
473 	addr = mb_correct_addr_and_bit(&bit, addr);
474 	ext4_set_bit(bit, addr);
475 }
476 
477 static inline void mb_clear_bit(int bit, void *addr)
478 {
479 	addr = mb_correct_addr_and_bit(&bit, addr);
480 	ext4_clear_bit(bit, addr);
481 }
482 
483 static inline int mb_test_and_clear_bit(int bit, void *addr)
484 {
485 	addr = mb_correct_addr_and_bit(&bit, addr);
486 	return ext4_test_and_clear_bit(bit, addr);
487 }
488 
489 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
490 {
491 	int fix = 0, ret, tmpmax;
492 	addr = mb_correct_addr_and_bit(&fix, addr);
493 	tmpmax = max + fix;
494 	start += fix;
495 
496 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
497 	if (ret > max)
498 		return max;
499 	return ret;
500 }
501 
502 static inline int mb_find_next_bit(void *addr, int max, int start)
503 {
504 	int fix = 0, ret, tmpmax;
505 	addr = mb_correct_addr_and_bit(&fix, addr);
506 	tmpmax = max + fix;
507 	start += fix;
508 
509 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
510 	if (ret > max)
511 		return max;
512 	return ret;
513 }
514 
515 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
516 {
517 	char *bb;
518 
519 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
520 	BUG_ON(max == NULL);
521 
522 	if (order > e4b->bd_blkbits + 1) {
523 		*max = 0;
524 		return NULL;
525 	}
526 
527 	/* at order 0 we see each particular block */
528 	if (order == 0) {
529 		*max = 1 << (e4b->bd_blkbits + 3);
530 		return e4b->bd_bitmap;
531 	}
532 
533 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
534 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
535 
536 	return bb;
537 }
538 
539 #ifdef DOUBLE_CHECK
540 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
541 			   int first, int count)
542 {
543 	int i;
544 	struct super_block *sb = e4b->bd_sb;
545 
546 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
547 		return;
548 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
549 	for (i = 0; i < count; i++) {
550 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
551 			ext4_fsblk_t blocknr;
552 
553 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
554 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
555 			ext4_grp_locked_error(sb, e4b->bd_group,
556 					      inode ? inode->i_ino : 0,
557 					      blocknr,
558 					      "freeing block already freed "
559 					      "(bit %u)",
560 					      first + i);
561 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
562 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
563 		}
564 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
565 	}
566 }
567 
568 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
569 {
570 	int i;
571 
572 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
573 		return;
574 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
575 	for (i = 0; i < count; i++) {
576 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
577 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
578 	}
579 }
580 
581 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
582 {
583 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
584 		return;
585 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
586 		unsigned char *b1, *b2;
587 		int i;
588 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
589 		b2 = (unsigned char *) bitmap;
590 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
591 			if (b1[i] != b2[i]) {
592 				ext4_msg(e4b->bd_sb, KERN_ERR,
593 					 "corruption in group %u "
594 					 "at byte %u(%u): %x in copy != %x "
595 					 "on disk/prealloc",
596 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
597 				BUG();
598 			}
599 		}
600 	}
601 }
602 
603 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
604 			struct ext4_group_info *grp, ext4_group_t group)
605 {
606 	struct buffer_head *bh;
607 
608 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
609 	if (!grp->bb_bitmap)
610 		return;
611 
612 	bh = ext4_read_block_bitmap(sb, group);
613 	if (IS_ERR_OR_NULL(bh)) {
614 		kfree(grp->bb_bitmap);
615 		grp->bb_bitmap = NULL;
616 		return;
617 	}
618 
619 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
620 	put_bh(bh);
621 }
622 
623 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
624 {
625 	kfree(grp->bb_bitmap);
626 }
627 
628 #else
629 static inline void mb_free_blocks_double(struct inode *inode,
630 				struct ext4_buddy *e4b, int first, int count)
631 {
632 	return;
633 }
634 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
635 						int first, int count)
636 {
637 	return;
638 }
639 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
640 {
641 	return;
642 }
643 
644 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
645 			struct ext4_group_info *grp, ext4_group_t group)
646 {
647 	return;
648 }
649 
650 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
651 {
652 	return;
653 }
654 #endif
655 
656 #ifdef AGGRESSIVE_CHECK
657 
658 #define MB_CHECK_ASSERT(assert)						\
659 do {									\
660 	if (!(assert)) {						\
661 		printk(KERN_EMERG					\
662 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
663 			function, file, line, # assert);		\
664 		BUG();							\
665 	}								\
666 } while (0)
667 
668 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
669 				const char *function, int line)
670 {
671 	struct super_block *sb = e4b->bd_sb;
672 	int order = e4b->bd_blkbits + 1;
673 	int max;
674 	int max2;
675 	int i;
676 	int j;
677 	int k;
678 	int count;
679 	struct ext4_group_info *grp;
680 	int fragments = 0;
681 	int fstart;
682 	struct list_head *cur;
683 	void *buddy;
684 	void *buddy2;
685 
686 	if (e4b->bd_info->bb_check_counter++ % 10)
687 		return 0;
688 
689 	while (order > 1) {
690 		buddy = mb_find_buddy(e4b, order, &max);
691 		MB_CHECK_ASSERT(buddy);
692 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
693 		MB_CHECK_ASSERT(buddy2);
694 		MB_CHECK_ASSERT(buddy != buddy2);
695 		MB_CHECK_ASSERT(max * 2 == max2);
696 
697 		count = 0;
698 		for (i = 0; i < max; i++) {
699 
700 			if (mb_test_bit(i, buddy)) {
701 				/* only single bit in buddy2 may be 0 */
702 				if (!mb_test_bit(i << 1, buddy2)) {
703 					MB_CHECK_ASSERT(
704 						mb_test_bit((i<<1)+1, buddy2));
705 				}
706 				continue;
707 			}
708 
709 			/* both bits in buddy2 must be 1 */
710 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
711 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
712 
713 			for (j = 0; j < (1 << order); j++) {
714 				k = (i * (1 << order)) + j;
715 				MB_CHECK_ASSERT(
716 					!mb_test_bit(k, e4b->bd_bitmap));
717 			}
718 			count++;
719 		}
720 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
721 		order--;
722 	}
723 
724 	fstart = -1;
725 	buddy = mb_find_buddy(e4b, 0, &max);
726 	for (i = 0; i < max; i++) {
727 		if (!mb_test_bit(i, buddy)) {
728 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
729 			if (fstart == -1) {
730 				fragments++;
731 				fstart = i;
732 			}
733 			continue;
734 		}
735 		fstart = -1;
736 		/* check used bits only */
737 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
738 			buddy2 = mb_find_buddy(e4b, j, &max2);
739 			k = i >> j;
740 			MB_CHECK_ASSERT(k < max2);
741 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
742 		}
743 	}
744 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
745 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
746 
747 	grp = ext4_get_group_info(sb, e4b->bd_group);
748 	list_for_each(cur, &grp->bb_prealloc_list) {
749 		ext4_group_t groupnr;
750 		struct ext4_prealloc_space *pa;
751 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
752 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
753 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
754 		for (i = 0; i < pa->pa_len; i++)
755 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
756 	}
757 	return 0;
758 }
759 #undef MB_CHECK_ASSERT
760 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
761 					__FILE__, __func__, __LINE__)
762 #else
763 #define mb_check_buddy(e4b)
764 #endif
765 
766 /*
767  * Divide blocks started from @first with length @len into
768  * smaller chunks with power of 2 blocks.
769  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
770  * then increase bb_counters[] for corresponded chunk size.
771  */
772 static void ext4_mb_mark_free_simple(struct super_block *sb,
773 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
774 					struct ext4_group_info *grp)
775 {
776 	struct ext4_sb_info *sbi = EXT4_SB(sb);
777 	ext4_grpblk_t min;
778 	ext4_grpblk_t max;
779 	ext4_grpblk_t chunk;
780 	unsigned int border;
781 
782 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
783 
784 	border = 2 << sb->s_blocksize_bits;
785 
786 	while (len > 0) {
787 		/* find how many blocks can be covered since this position */
788 		max = ffs(first | border) - 1;
789 
790 		/* find how many blocks of power 2 we need to mark */
791 		min = fls(len) - 1;
792 
793 		if (max < min)
794 			min = max;
795 		chunk = 1 << min;
796 
797 		/* mark multiblock chunks only */
798 		grp->bb_counters[min]++;
799 		if (min > 0)
800 			mb_clear_bit(first >> min,
801 				     buddy + sbi->s_mb_offsets[min]);
802 
803 		len -= chunk;
804 		first += chunk;
805 	}
806 }
807 
808 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
809 {
810 	int order;
811 
812 	/*
813 	 * We don't bother with a special lists groups with only 1 block free
814 	 * extents and for completely empty groups.
815 	 */
816 	order = fls(len) - 2;
817 	if (order < 0)
818 		return 0;
819 	if (order == MB_NUM_ORDERS(sb))
820 		order--;
821 	return order;
822 }
823 
824 /* Move group to appropriate avg_fragment_size list */
825 static void
826 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
827 {
828 	struct ext4_sb_info *sbi = EXT4_SB(sb);
829 	int new_order;
830 
831 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
832 		return;
833 
834 	new_order = mb_avg_fragment_size_order(sb,
835 					grp->bb_free / grp->bb_fragments);
836 	if (new_order == grp->bb_avg_fragment_size_order)
837 		return;
838 
839 	if (grp->bb_avg_fragment_size_order != -1) {
840 		write_lock(&sbi->s_mb_avg_fragment_size_locks[
841 					grp->bb_avg_fragment_size_order]);
842 		list_del(&grp->bb_avg_fragment_size_node);
843 		write_unlock(&sbi->s_mb_avg_fragment_size_locks[
844 					grp->bb_avg_fragment_size_order]);
845 	}
846 	grp->bb_avg_fragment_size_order = new_order;
847 	write_lock(&sbi->s_mb_avg_fragment_size_locks[
848 					grp->bb_avg_fragment_size_order]);
849 	list_add_tail(&grp->bb_avg_fragment_size_node,
850 		&sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
851 	write_unlock(&sbi->s_mb_avg_fragment_size_locks[
852 					grp->bb_avg_fragment_size_order]);
853 }
854 
855 /*
856  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
857  * cr level needs an update.
858  */
859 static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac,
860 			int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
861 {
862 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
863 	struct ext4_group_info *iter, *grp;
864 	int i;
865 
866 	if (ac->ac_status == AC_STATUS_FOUND)
867 		return;
868 
869 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR0_OPTIMIZED))
870 		atomic_inc(&sbi->s_bal_cr0_bad_suggestions);
871 
872 	grp = NULL;
873 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
874 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
875 			continue;
876 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
877 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
878 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
879 			continue;
880 		}
881 		grp = NULL;
882 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
883 				    bb_largest_free_order_node) {
884 			if (sbi->s_mb_stats)
885 				atomic64_inc(&sbi->s_bal_cX_groups_considered[0]);
886 			if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) {
887 				grp = iter;
888 				break;
889 			}
890 		}
891 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
892 		if (grp)
893 			break;
894 	}
895 
896 	if (!grp) {
897 		/* Increment cr and search again */
898 		*new_cr = 1;
899 	} else {
900 		*group = grp->bb_group;
901 		ac->ac_flags |= EXT4_MB_CR0_OPTIMIZED;
902 	}
903 }
904 
905 /*
906  * Choose next group by traversing average fragment size list of suitable
907  * order. Updates *new_cr if cr level needs an update.
908  */
909 static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac,
910 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
911 {
912 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
913 	struct ext4_group_info *grp = NULL, *iter;
914 	int i;
915 
916 	if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) {
917 		if (sbi->s_mb_stats)
918 			atomic_inc(&sbi->s_bal_cr1_bad_suggestions);
919 	}
920 
921 	for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
922 	     i < MB_NUM_ORDERS(ac->ac_sb); i++) {
923 		if (list_empty(&sbi->s_mb_avg_fragment_size[i]))
924 			continue;
925 		read_lock(&sbi->s_mb_avg_fragment_size_locks[i]);
926 		if (list_empty(&sbi->s_mb_avg_fragment_size[i])) {
927 			read_unlock(&sbi->s_mb_avg_fragment_size_locks[i]);
928 			continue;
929 		}
930 		list_for_each_entry(iter, &sbi->s_mb_avg_fragment_size[i],
931 				    bb_avg_fragment_size_node) {
932 			if (sbi->s_mb_stats)
933 				atomic64_inc(&sbi->s_bal_cX_groups_considered[1]);
934 			if (likely(ext4_mb_good_group(ac, iter->bb_group, 1))) {
935 				grp = iter;
936 				break;
937 			}
938 		}
939 		read_unlock(&sbi->s_mb_avg_fragment_size_locks[i]);
940 		if (grp)
941 			break;
942 	}
943 
944 	if (grp) {
945 		*group = grp->bb_group;
946 		ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED;
947 	} else {
948 		*new_cr = 2;
949 	}
950 }
951 
952 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
953 {
954 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
955 		return 0;
956 	if (ac->ac_criteria >= 2)
957 		return 0;
958 	if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
959 		return 0;
960 	return 1;
961 }
962 
963 /*
964  * Return next linear group for allocation. If linear traversal should not be
965  * performed, this function just returns the same group
966  */
967 static int
968 next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups)
969 {
970 	if (!should_optimize_scan(ac))
971 		goto inc_and_return;
972 
973 	if (ac->ac_groups_linear_remaining) {
974 		ac->ac_groups_linear_remaining--;
975 		goto inc_and_return;
976 	}
977 
978 	return group;
979 inc_and_return:
980 	/*
981 	 * Artificially restricted ngroups for non-extent
982 	 * files makes group > ngroups possible on first loop.
983 	 */
984 	return group + 1 >= ngroups ? 0 : group + 1;
985 }
986 
987 /*
988  * ext4_mb_choose_next_group: choose next group for allocation.
989  *
990  * @ac        Allocation Context
991  * @new_cr    This is an output parameter. If the there is no good group
992  *            available at current CR level, this field is updated to indicate
993  *            the new cr level that should be used.
994  * @group     This is an input / output parameter. As an input it indicates the
995  *            next group that the allocator intends to use for allocation. As
996  *            output, this field indicates the next group that should be used as
997  *            determined by the optimization functions.
998  * @ngroups   Total number of groups
999  */
1000 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1001 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1002 {
1003 	*new_cr = ac->ac_criteria;
1004 
1005 	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1006 		*group = next_linear_group(ac, *group, ngroups);
1007 		return;
1008 	}
1009 
1010 	if (*new_cr == 0) {
1011 		ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups);
1012 	} else if (*new_cr == 1) {
1013 		ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups);
1014 	} else {
1015 		/*
1016 		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1017 		 * bb_free. But until that happens, we should never come here.
1018 		 */
1019 		WARN_ON(1);
1020 	}
1021 }
1022 
1023 /*
1024  * Cache the order of the largest free extent we have available in this block
1025  * group.
1026  */
1027 static void
1028 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1029 {
1030 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1031 	int i;
1032 
1033 	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1034 		if (grp->bb_counters[i] > 0)
1035 			break;
1036 	/* No need to move between order lists? */
1037 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1038 	    i == grp->bb_largest_free_order) {
1039 		grp->bb_largest_free_order = i;
1040 		return;
1041 	}
1042 
1043 	if (grp->bb_largest_free_order >= 0) {
1044 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1045 					      grp->bb_largest_free_order]);
1046 		list_del_init(&grp->bb_largest_free_order_node);
1047 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1048 					      grp->bb_largest_free_order]);
1049 	}
1050 	grp->bb_largest_free_order = i;
1051 	if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1052 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1053 					      grp->bb_largest_free_order]);
1054 		list_add_tail(&grp->bb_largest_free_order_node,
1055 		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1056 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1057 					      grp->bb_largest_free_order]);
1058 	}
1059 }
1060 
1061 static noinline_for_stack
1062 void ext4_mb_generate_buddy(struct super_block *sb,
1063 				void *buddy, void *bitmap, ext4_group_t group)
1064 {
1065 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1066 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1067 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1068 	ext4_grpblk_t i = 0;
1069 	ext4_grpblk_t first;
1070 	ext4_grpblk_t len;
1071 	unsigned free = 0;
1072 	unsigned fragments = 0;
1073 	unsigned long long period = get_cycles();
1074 
1075 	/* initialize buddy from bitmap which is aggregation
1076 	 * of on-disk bitmap and preallocations */
1077 	i = mb_find_next_zero_bit(bitmap, max, 0);
1078 	grp->bb_first_free = i;
1079 	while (i < max) {
1080 		fragments++;
1081 		first = i;
1082 		i = mb_find_next_bit(bitmap, max, i);
1083 		len = i - first;
1084 		free += len;
1085 		if (len > 1)
1086 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1087 		else
1088 			grp->bb_counters[0]++;
1089 		if (i < max)
1090 			i = mb_find_next_zero_bit(bitmap, max, i);
1091 	}
1092 	grp->bb_fragments = fragments;
1093 
1094 	if (free != grp->bb_free) {
1095 		ext4_grp_locked_error(sb, group, 0, 0,
1096 				      "block bitmap and bg descriptor "
1097 				      "inconsistent: %u vs %u free clusters",
1098 				      free, grp->bb_free);
1099 		/*
1100 		 * If we intend to continue, we consider group descriptor
1101 		 * corrupt and update bb_free using bitmap value
1102 		 */
1103 		grp->bb_free = free;
1104 		ext4_mark_group_bitmap_corrupted(sb, group,
1105 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1106 	}
1107 	mb_set_largest_free_order(sb, grp);
1108 	mb_update_avg_fragment_size(sb, grp);
1109 
1110 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1111 
1112 	period = get_cycles() - period;
1113 	atomic_inc(&sbi->s_mb_buddies_generated);
1114 	atomic64_add(period, &sbi->s_mb_generation_time);
1115 }
1116 
1117 /* The buddy information is attached the buddy cache inode
1118  * for convenience. The information regarding each group
1119  * is loaded via ext4_mb_load_buddy. The information involve
1120  * block bitmap and buddy information. The information are
1121  * stored in the inode as
1122  *
1123  * {                        page                        }
1124  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1125  *
1126  *
1127  * one block each for bitmap and buddy information.
1128  * So for each group we take up 2 blocks. A page can
1129  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1130  * So it can have information regarding groups_per_page which
1131  * is blocks_per_page/2
1132  *
1133  * Locking note:  This routine takes the block group lock of all groups
1134  * for this page; do not hold this lock when calling this routine!
1135  */
1136 
1137 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1138 {
1139 	ext4_group_t ngroups;
1140 	int blocksize;
1141 	int blocks_per_page;
1142 	int groups_per_page;
1143 	int err = 0;
1144 	int i;
1145 	ext4_group_t first_group, group;
1146 	int first_block;
1147 	struct super_block *sb;
1148 	struct buffer_head *bhs;
1149 	struct buffer_head **bh = NULL;
1150 	struct inode *inode;
1151 	char *data;
1152 	char *bitmap;
1153 	struct ext4_group_info *grinfo;
1154 
1155 	inode = page->mapping->host;
1156 	sb = inode->i_sb;
1157 	ngroups = ext4_get_groups_count(sb);
1158 	blocksize = i_blocksize(inode);
1159 	blocks_per_page = PAGE_SIZE / blocksize;
1160 
1161 	mb_debug(sb, "init page %lu\n", page->index);
1162 
1163 	groups_per_page = blocks_per_page >> 1;
1164 	if (groups_per_page == 0)
1165 		groups_per_page = 1;
1166 
1167 	/* allocate buffer_heads to read bitmaps */
1168 	if (groups_per_page > 1) {
1169 		i = sizeof(struct buffer_head *) * groups_per_page;
1170 		bh = kzalloc(i, gfp);
1171 		if (bh == NULL)
1172 			return -ENOMEM;
1173 	} else
1174 		bh = &bhs;
1175 
1176 	first_group = page->index * blocks_per_page / 2;
1177 
1178 	/* read all groups the page covers into the cache */
1179 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1180 		if (group >= ngroups)
1181 			break;
1182 
1183 		grinfo = ext4_get_group_info(sb, group);
1184 		/*
1185 		 * If page is uptodate then we came here after online resize
1186 		 * which added some new uninitialized group info structs, so
1187 		 * we must skip all initialized uptodate buddies on the page,
1188 		 * which may be currently in use by an allocating task.
1189 		 */
1190 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1191 			bh[i] = NULL;
1192 			continue;
1193 		}
1194 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1195 		if (IS_ERR(bh[i])) {
1196 			err = PTR_ERR(bh[i]);
1197 			bh[i] = NULL;
1198 			goto out;
1199 		}
1200 		mb_debug(sb, "read bitmap for group %u\n", group);
1201 	}
1202 
1203 	/* wait for I/O completion */
1204 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1205 		int err2;
1206 
1207 		if (!bh[i])
1208 			continue;
1209 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1210 		if (!err)
1211 			err = err2;
1212 	}
1213 
1214 	first_block = page->index * blocks_per_page;
1215 	for (i = 0; i < blocks_per_page; i++) {
1216 		group = (first_block + i) >> 1;
1217 		if (group >= ngroups)
1218 			break;
1219 
1220 		if (!bh[group - first_group])
1221 			/* skip initialized uptodate buddy */
1222 			continue;
1223 
1224 		if (!buffer_verified(bh[group - first_group]))
1225 			/* Skip faulty bitmaps */
1226 			continue;
1227 		err = 0;
1228 
1229 		/*
1230 		 * data carry information regarding this
1231 		 * particular group in the format specified
1232 		 * above
1233 		 *
1234 		 */
1235 		data = page_address(page) + (i * blocksize);
1236 		bitmap = bh[group - first_group]->b_data;
1237 
1238 		/*
1239 		 * We place the buddy block and bitmap block
1240 		 * close together
1241 		 */
1242 		if ((first_block + i) & 1) {
1243 			/* this is block of buddy */
1244 			BUG_ON(incore == NULL);
1245 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1246 				group, page->index, i * blocksize);
1247 			trace_ext4_mb_buddy_bitmap_load(sb, group);
1248 			grinfo = ext4_get_group_info(sb, group);
1249 			grinfo->bb_fragments = 0;
1250 			memset(grinfo->bb_counters, 0,
1251 			       sizeof(*grinfo->bb_counters) *
1252 			       (MB_NUM_ORDERS(sb)));
1253 			/*
1254 			 * incore got set to the group block bitmap below
1255 			 */
1256 			ext4_lock_group(sb, group);
1257 			/* init the buddy */
1258 			memset(data, 0xff, blocksize);
1259 			ext4_mb_generate_buddy(sb, data, incore, group);
1260 			ext4_unlock_group(sb, group);
1261 			incore = NULL;
1262 		} else {
1263 			/* this is block of bitmap */
1264 			BUG_ON(incore != NULL);
1265 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1266 				group, page->index, i * blocksize);
1267 			trace_ext4_mb_bitmap_load(sb, group);
1268 
1269 			/* see comments in ext4_mb_put_pa() */
1270 			ext4_lock_group(sb, group);
1271 			memcpy(data, bitmap, blocksize);
1272 
1273 			/* mark all preallocated blks used in in-core bitmap */
1274 			ext4_mb_generate_from_pa(sb, data, group);
1275 			ext4_mb_generate_from_freelist(sb, data, group);
1276 			ext4_unlock_group(sb, group);
1277 
1278 			/* set incore so that the buddy information can be
1279 			 * generated using this
1280 			 */
1281 			incore = data;
1282 		}
1283 	}
1284 	SetPageUptodate(page);
1285 
1286 out:
1287 	if (bh) {
1288 		for (i = 0; i < groups_per_page; i++)
1289 			brelse(bh[i]);
1290 		if (bh != &bhs)
1291 			kfree(bh);
1292 	}
1293 	return err;
1294 }
1295 
1296 /*
1297  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1298  * on the same buddy page doesn't happen whild holding the buddy page lock.
1299  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1300  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1301  */
1302 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1303 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1304 {
1305 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1306 	int block, pnum, poff;
1307 	int blocks_per_page;
1308 	struct page *page;
1309 
1310 	e4b->bd_buddy_page = NULL;
1311 	e4b->bd_bitmap_page = NULL;
1312 
1313 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1314 	/*
1315 	 * the buddy cache inode stores the block bitmap
1316 	 * and buddy information in consecutive blocks.
1317 	 * So for each group we need two blocks.
1318 	 */
1319 	block = group * 2;
1320 	pnum = block / blocks_per_page;
1321 	poff = block % blocks_per_page;
1322 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1323 	if (!page)
1324 		return -ENOMEM;
1325 	BUG_ON(page->mapping != inode->i_mapping);
1326 	e4b->bd_bitmap_page = page;
1327 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1328 
1329 	if (blocks_per_page >= 2) {
1330 		/* buddy and bitmap are on the same page */
1331 		return 0;
1332 	}
1333 
1334 	block++;
1335 	pnum = block / blocks_per_page;
1336 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1337 	if (!page)
1338 		return -ENOMEM;
1339 	BUG_ON(page->mapping != inode->i_mapping);
1340 	e4b->bd_buddy_page = page;
1341 	return 0;
1342 }
1343 
1344 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1345 {
1346 	if (e4b->bd_bitmap_page) {
1347 		unlock_page(e4b->bd_bitmap_page);
1348 		put_page(e4b->bd_bitmap_page);
1349 	}
1350 	if (e4b->bd_buddy_page) {
1351 		unlock_page(e4b->bd_buddy_page);
1352 		put_page(e4b->bd_buddy_page);
1353 	}
1354 }
1355 
1356 /*
1357  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1358  * block group lock of all groups for this page; do not hold the BG lock when
1359  * calling this routine!
1360  */
1361 static noinline_for_stack
1362 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1363 {
1364 
1365 	struct ext4_group_info *this_grp;
1366 	struct ext4_buddy e4b;
1367 	struct page *page;
1368 	int ret = 0;
1369 
1370 	might_sleep();
1371 	mb_debug(sb, "init group %u\n", group);
1372 	this_grp = ext4_get_group_info(sb, group);
1373 	/*
1374 	 * This ensures that we don't reinit the buddy cache
1375 	 * page which map to the group from which we are already
1376 	 * allocating. If we are looking at the buddy cache we would
1377 	 * have taken a reference using ext4_mb_load_buddy and that
1378 	 * would have pinned buddy page to page cache.
1379 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1380 	 * page accessed.
1381 	 */
1382 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1383 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1384 		/*
1385 		 * somebody initialized the group
1386 		 * return without doing anything
1387 		 */
1388 		goto err;
1389 	}
1390 
1391 	page = e4b.bd_bitmap_page;
1392 	ret = ext4_mb_init_cache(page, NULL, gfp);
1393 	if (ret)
1394 		goto err;
1395 	if (!PageUptodate(page)) {
1396 		ret = -EIO;
1397 		goto err;
1398 	}
1399 
1400 	if (e4b.bd_buddy_page == NULL) {
1401 		/*
1402 		 * If both the bitmap and buddy are in
1403 		 * the same page we don't need to force
1404 		 * init the buddy
1405 		 */
1406 		ret = 0;
1407 		goto err;
1408 	}
1409 	/* init buddy cache */
1410 	page = e4b.bd_buddy_page;
1411 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1412 	if (ret)
1413 		goto err;
1414 	if (!PageUptodate(page)) {
1415 		ret = -EIO;
1416 		goto err;
1417 	}
1418 err:
1419 	ext4_mb_put_buddy_page_lock(&e4b);
1420 	return ret;
1421 }
1422 
1423 /*
1424  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1425  * block group lock of all groups for this page; do not hold the BG lock when
1426  * calling this routine!
1427  */
1428 static noinline_for_stack int
1429 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1430 		       struct ext4_buddy *e4b, gfp_t gfp)
1431 {
1432 	int blocks_per_page;
1433 	int block;
1434 	int pnum;
1435 	int poff;
1436 	struct page *page;
1437 	int ret;
1438 	struct ext4_group_info *grp;
1439 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1440 	struct inode *inode = sbi->s_buddy_cache;
1441 
1442 	might_sleep();
1443 	mb_debug(sb, "load group %u\n", group);
1444 
1445 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1446 	grp = ext4_get_group_info(sb, group);
1447 
1448 	e4b->bd_blkbits = sb->s_blocksize_bits;
1449 	e4b->bd_info = grp;
1450 	e4b->bd_sb = sb;
1451 	e4b->bd_group = group;
1452 	e4b->bd_buddy_page = NULL;
1453 	e4b->bd_bitmap_page = NULL;
1454 
1455 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1456 		/*
1457 		 * we need full data about the group
1458 		 * to make a good selection
1459 		 */
1460 		ret = ext4_mb_init_group(sb, group, gfp);
1461 		if (ret)
1462 			return ret;
1463 	}
1464 
1465 	/*
1466 	 * the buddy cache inode stores the block bitmap
1467 	 * and buddy information in consecutive blocks.
1468 	 * So for each group we need two blocks.
1469 	 */
1470 	block = group * 2;
1471 	pnum = block / blocks_per_page;
1472 	poff = block % blocks_per_page;
1473 
1474 	/* we could use find_or_create_page(), but it locks page
1475 	 * what we'd like to avoid in fast path ... */
1476 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1477 	if (page == NULL || !PageUptodate(page)) {
1478 		if (page)
1479 			/*
1480 			 * drop the page reference and try
1481 			 * to get the page with lock. If we
1482 			 * are not uptodate that implies
1483 			 * somebody just created the page but
1484 			 * is yet to initialize the same. So
1485 			 * wait for it to initialize.
1486 			 */
1487 			put_page(page);
1488 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1489 		if (page) {
1490 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1491 	"ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1492 				/* should never happen */
1493 				unlock_page(page);
1494 				ret = -EINVAL;
1495 				goto err;
1496 			}
1497 			if (!PageUptodate(page)) {
1498 				ret = ext4_mb_init_cache(page, NULL, gfp);
1499 				if (ret) {
1500 					unlock_page(page);
1501 					goto err;
1502 				}
1503 				mb_cmp_bitmaps(e4b, page_address(page) +
1504 					       (poff * sb->s_blocksize));
1505 			}
1506 			unlock_page(page);
1507 		}
1508 	}
1509 	if (page == NULL) {
1510 		ret = -ENOMEM;
1511 		goto err;
1512 	}
1513 	if (!PageUptodate(page)) {
1514 		ret = -EIO;
1515 		goto err;
1516 	}
1517 
1518 	/* Pages marked accessed already */
1519 	e4b->bd_bitmap_page = page;
1520 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1521 
1522 	block++;
1523 	pnum = block / blocks_per_page;
1524 	poff = block % blocks_per_page;
1525 
1526 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1527 	if (page == NULL || !PageUptodate(page)) {
1528 		if (page)
1529 			put_page(page);
1530 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1531 		if (page) {
1532 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1533 	"ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1534 				/* should never happen */
1535 				unlock_page(page);
1536 				ret = -EINVAL;
1537 				goto err;
1538 			}
1539 			if (!PageUptodate(page)) {
1540 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1541 							 gfp);
1542 				if (ret) {
1543 					unlock_page(page);
1544 					goto err;
1545 				}
1546 			}
1547 			unlock_page(page);
1548 		}
1549 	}
1550 	if (page == NULL) {
1551 		ret = -ENOMEM;
1552 		goto err;
1553 	}
1554 	if (!PageUptodate(page)) {
1555 		ret = -EIO;
1556 		goto err;
1557 	}
1558 
1559 	/* Pages marked accessed already */
1560 	e4b->bd_buddy_page = page;
1561 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1562 
1563 	return 0;
1564 
1565 err:
1566 	if (page)
1567 		put_page(page);
1568 	if (e4b->bd_bitmap_page)
1569 		put_page(e4b->bd_bitmap_page);
1570 
1571 	e4b->bd_buddy = NULL;
1572 	e4b->bd_bitmap = NULL;
1573 	return ret;
1574 }
1575 
1576 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1577 			      struct ext4_buddy *e4b)
1578 {
1579 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1580 }
1581 
1582 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1583 {
1584 	if (e4b->bd_bitmap_page)
1585 		put_page(e4b->bd_bitmap_page);
1586 	if (e4b->bd_buddy_page)
1587 		put_page(e4b->bd_buddy_page);
1588 }
1589 
1590 
1591 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1592 {
1593 	int order = 1, max;
1594 	void *bb;
1595 
1596 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1597 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1598 
1599 	while (order <= e4b->bd_blkbits + 1) {
1600 		bb = mb_find_buddy(e4b, order, &max);
1601 		if (!mb_test_bit(block >> order, bb)) {
1602 			/* this block is part of buddy of order 'order' */
1603 			return order;
1604 		}
1605 		order++;
1606 	}
1607 	return 0;
1608 }
1609 
1610 static void mb_clear_bits(void *bm, int cur, int len)
1611 {
1612 	__u32 *addr;
1613 
1614 	len = cur + len;
1615 	while (cur < len) {
1616 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1617 			/* fast path: clear whole word at once */
1618 			addr = bm + (cur >> 3);
1619 			*addr = 0;
1620 			cur += 32;
1621 			continue;
1622 		}
1623 		mb_clear_bit(cur, bm);
1624 		cur++;
1625 	}
1626 }
1627 
1628 /* clear bits in given range
1629  * will return first found zero bit if any, -1 otherwise
1630  */
1631 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1632 {
1633 	__u32 *addr;
1634 	int zero_bit = -1;
1635 
1636 	len = cur + len;
1637 	while (cur < len) {
1638 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1639 			/* fast path: clear whole word at once */
1640 			addr = bm + (cur >> 3);
1641 			if (*addr != (__u32)(-1) && zero_bit == -1)
1642 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1643 			*addr = 0;
1644 			cur += 32;
1645 			continue;
1646 		}
1647 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1648 			zero_bit = cur;
1649 		cur++;
1650 	}
1651 
1652 	return zero_bit;
1653 }
1654 
1655 void mb_set_bits(void *bm, int cur, int len)
1656 {
1657 	__u32 *addr;
1658 
1659 	len = cur + len;
1660 	while (cur < len) {
1661 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1662 			/* fast path: set whole word at once */
1663 			addr = bm + (cur >> 3);
1664 			*addr = 0xffffffff;
1665 			cur += 32;
1666 			continue;
1667 		}
1668 		mb_set_bit(cur, bm);
1669 		cur++;
1670 	}
1671 }
1672 
1673 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1674 {
1675 	if (mb_test_bit(*bit + side, bitmap)) {
1676 		mb_clear_bit(*bit, bitmap);
1677 		(*bit) -= side;
1678 		return 1;
1679 	}
1680 	else {
1681 		(*bit) += side;
1682 		mb_set_bit(*bit, bitmap);
1683 		return -1;
1684 	}
1685 }
1686 
1687 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1688 {
1689 	int max;
1690 	int order = 1;
1691 	void *buddy = mb_find_buddy(e4b, order, &max);
1692 
1693 	while (buddy) {
1694 		void *buddy2;
1695 
1696 		/* Bits in range [first; last] are known to be set since
1697 		 * corresponding blocks were allocated. Bits in range
1698 		 * (first; last) will stay set because they form buddies on
1699 		 * upper layer. We just deal with borders if they don't
1700 		 * align with upper layer and then go up.
1701 		 * Releasing entire group is all about clearing
1702 		 * single bit of highest order buddy.
1703 		 */
1704 
1705 		/* Example:
1706 		 * ---------------------------------
1707 		 * |   1   |   1   |   1   |   1   |
1708 		 * ---------------------------------
1709 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1710 		 * ---------------------------------
1711 		 *   0   1   2   3   4   5   6   7
1712 		 *      \_____________________/
1713 		 *
1714 		 * Neither [1] nor [6] is aligned to above layer.
1715 		 * Left neighbour [0] is free, so mark it busy,
1716 		 * decrease bb_counters and extend range to
1717 		 * [0; 6]
1718 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1719 		 * mark [6] free, increase bb_counters and shrink range to
1720 		 * [0; 5].
1721 		 * Then shift range to [0; 2], go up and do the same.
1722 		 */
1723 
1724 
1725 		if (first & 1)
1726 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1727 		if (!(last & 1))
1728 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1729 		if (first > last)
1730 			break;
1731 		order++;
1732 
1733 		buddy2 = mb_find_buddy(e4b, order, &max);
1734 		if (!buddy2) {
1735 			mb_clear_bits(buddy, first, last - first + 1);
1736 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1737 			break;
1738 		}
1739 		first >>= 1;
1740 		last >>= 1;
1741 		buddy = buddy2;
1742 	}
1743 }
1744 
1745 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1746 			   int first, int count)
1747 {
1748 	int left_is_free = 0;
1749 	int right_is_free = 0;
1750 	int block;
1751 	int last = first + count - 1;
1752 	struct super_block *sb = e4b->bd_sb;
1753 
1754 	if (WARN_ON(count == 0))
1755 		return;
1756 	BUG_ON(last >= (sb->s_blocksize << 3));
1757 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1758 	/* Don't bother if the block group is corrupt. */
1759 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1760 		return;
1761 
1762 	mb_check_buddy(e4b);
1763 	mb_free_blocks_double(inode, e4b, first, count);
1764 
1765 	this_cpu_inc(discard_pa_seq);
1766 	e4b->bd_info->bb_free += count;
1767 	if (first < e4b->bd_info->bb_first_free)
1768 		e4b->bd_info->bb_first_free = first;
1769 
1770 	/* access memory sequentially: check left neighbour,
1771 	 * clear range and then check right neighbour
1772 	 */
1773 	if (first != 0)
1774 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1775 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1776 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1777 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1778 
1779 	if (unlikely(block != -1)) {
1780 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1781 		ext4_fsblk_t blocknr;
1782 
1783 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1784 		blocknr += EXT4_C2B(sbi, block);
1785 		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1786 			ext4_grp_locked_error(sb, e4b->bd_group,
1787 					      inode ? inode->i_ino : 0,
1788 					      blocknr,
1789 					      "freeing already freed block (bit %u); block bitmap corrupt.",
1790 					      block);
1791 			ext4_mark_group_bitmap_corrupted(
1792 				sb, e4b->bd_group,
1793 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1794 		}
1795 		goto done;
1796 	}
1797 
1798 	/* let's maintain fragments counter */
1799 	if (left_is_free && right_is_free)
1800 		e4b->bd_info->bb_fragments--;
1801 	else if (!left_is_free && !right_is_free)
1802 		e4b->bd_info->bb_fragments++;
1803 
1804 	/* buddy[0] == bd_bitmap is a special case, so handle
1805 	 * it right away and let mb_buddy_mark_free stay free of
1806 	 * zero order checks.
1807 	 * Check if neighbours are to be coaleasced,
1808 	 * adjust bitmap bb_counters and borders appropriately.
1809 	 */
1810 	if (first & 1) {
1811 		first += !left_is_free;
1812 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1813 	}
1814 	if (!(last & 1)) {
1815 		last -= !right_is_free;
1816 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1817 	}
1818 
1819 	if (first <= last)
1820 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1821 
1822 done:
1823 	mb_set_largest_free_order(sb, e4b->bd_info);
1824 	mb_update_avg_fragment_size(sb, e4b->bd_info);
1825 	mb_check_buddy(e4b);
1826 }
1827 
1828 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1829 				int needed, struct ext4_free_extent *ex)
1830 {
1831 	int next = block;
1832 	int max, order;
1833 	void *buddy;
1834 
1835 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1836 	BUG_ON(ex == NULL);
1837 
1838 	buddy = mb_find_buddy(e4b, 0, &max);
1839 	BUG_ON(buddy == NULL);
1840 	BUG_ON(block >= max);
1841 	if (mb_test_bit(block, buddy)) {
1842 		ex->fe_len = 0;
1843 		ex->fe_start = 0;
1844 		ex->fe_group = 0;
1845 		return 0;
1846 	}
1847 
1848 	/* find actual order */
1849 	order = mb_find_order_for_block(e4b, block);
1850 	block = block >> order;
1851 
1852 	ex->fe_len = 1 << order;
1853 	ex->fe_start = block << order;
1854 	ex->fe_group = e4b->bd_group;
1855 
1856 	/* calc difference from given start */
1857 	next = next - ex->fe_start;
1858 	ex->fe_len -= next;
1859 	ex->fe_start += next;
1860 
1861 	while (needed > ex->fe_len &&
1862 	       mb_find_buddy(e4b, order, &max)) {
1863 
1864 		if (block + 1 >= max)
1865 			break;
1866 
1867 		next = (block + 1) * (1 << order);
1868 		if (mb_test_bit(next, e4b->bd_bitmap))
1869 			break;
1870 
1871 		order = mb_find_order_for_block(e4b, next);
1872 
1873 		block = next >> order;
1874 		ex->fe_len += 1 << order;
1875 	}
1876 
1877 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1878 		/* Should never happen! (but apparently sometimes does?!?) */
1879 		WARN_ON(1);
1880 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
1881 			"corruption or bug in mb_find_extent "
1882 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1883 			block, order, needed, ex->fe_group, ex->fe_start,
1884 			ex->fe_len, ex->fe_logical);
1885 		ex->fe_len = 0;
1886 		ex->fe_start = 0;
1887 		ex->fe_group = 0;
1888 	}
1889 	return ex->fe_len;
1890 }
1891 
1892 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1893 {
1894 	int ord;
1895 	int mlen = 0;
1896 	int max = 0;
1897 	int cur;
1898 	int start = ex->fe_start;
1899 	int len = ex->fe_len;
1900 	unsigned ret = 0;
1901 	int len0 = len;
1902 	void *buddy;
1903 	bool split = false;
1904 
1905 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1906 	BUG_ON(e4b->bd_group != ex->fe_group);
1907 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1908 	mb_check_buddy(e4b);
1909 	mb_mark_used_double(e4b, start, len);
1910 
1911 	this_cpu_inc(discard_pa_seq);
1912 	e4b->bd_info->bb_free -= len;
1913 	if (e4b->bd_info->bb_first_free == start)
1914 		e4b->bd_info->bb_first_free += len;
1915 
1916 	/* let's maintain fragments counter */
1917 	if (start != 0)
1918 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1919 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1920 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1921 	if (mlen && max)
1922 		e4b->bd_info->bb_fragments++;
1923 	else if (!mlen && !max)
1924 		e4b->bd_info->bb_fragments--;
1925 
1926 	/* let's maintain buddy itself */
1927 	while (len) {
1928 		if (!split)
1929 			ord = mb_find_order_for_block(e4b, start);
1930 
1931 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1932 			/* the whole chunk may be allocated at once! */
1933 			mlen = 1 << ord;
1934 			if (!split)
1935 				buddy = mb_find_buddy(e4b, ord, &max);
1936 			else
1937 				split = false;
1938 			BUG_ON((start >> ord) >= max);
1939 			mb_set_bit(start >> ord, buddy);
1940 			e4b->bd_info->bb_counters[ord]--;
1941 			start += mlen;
1942 			len -= mlen;
1943 			BUG_ON(len < 0);
1944 			continue;
1945 		}
1946 
1947 		/* store for history */
1948 		if (ret == 0)
1949 			ret = len | (ord << 16);
1950 
1951 		/* we have to split large buddy */
1952 		BUG_ON(ord <= 0);
1953 		buddy = mb_find_buddy(e4b, ord, &max);
1954 		mb_set_bit(start >> ord, buddy);
1955 		e4b->bd_info->bb_counters[ord]--;
1956 
1957 		ord--;
1958 		cur = (start >> ord) & ~1U;
1959 		buddy = mb_find_buddy(e4b, ord, &max);
1960 		mb_clear_bit(cur, buddy);
1961 		mb_clear_bit(cur + 1, buddy);
1962 		e4b->bd_info->bb_counters[ord]++;
1963 		e4b->bd_info->bb_counters[ord]++;
1964 		split = true;
1965 	}
1966 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1967 
1968 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
1969 	mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1970 	mb_check_buddy(e4b);
1971 
1972 	return ret;
1973 }
1974 
1975 /*
1976  * Must be called under group lock!
1977  */
1978 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1979 					struct ext4_buddy *e4b)
1980 {
1981 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1982 	int ret;
1983 
1984 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1985 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1986 
1987 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1988 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1989 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1990 
1991 	/* preallocation can change ac_b_ex, thus we store actually
1992 	 * allocated blocks for history */
1993 	ac->ac_f_ex = ac->ac_b_ex;
1994 
1995 	ac->ac_status = AC_STATUS_FOUND;
1996 	ac->ac_tail = ret & 0xffff;
1997 	ac->ac_buddy = ret >> 16;
1998 
1999 	/*
2000 	 * take the page reference. We want the page to be pinned
2001 	 * so that we don't get a ext4_mb_init_cache_call for this
2002 	 * group until we update the bitmap. That would mean we
2003 	 * double allocate blocks. The reference is dropped
2004 	 * in ext4_mb_release_context
2005 	 */
2006 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
2007 	get_page(ac->ac_bitmap_page);
2008 	ac->ac_buddy_page = e4b->bd_buddy_page;
2009 	get_page(ac->ac_buddy_page);
2010 	/* store last allocated for subsequent stream allocation */
2011 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2012 		spin_lock(&sbi->s_md_lock);
2013 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2014 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2015 		spin_unlock(&sbi->s_md_lock);
2016 	}
2017 	/*
2018 	 * As we've just preallocated more space than
2019 	 * user requested originally, we store allocated
2020 	 * space in a special descriptor.
2021 	 */
2022 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2023 		ext4_mb_new_preallocation(ac);
2024 
2025 }
2026 
2027 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2028 					struct ext4_buddy *e4b,
2029 					int finish_group)
2030 {
2031 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2032 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2033 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2034 
2035 	if (ac->ac_status == AC_STATUS_FOUND)
2036 		return;
2037 	/*
2038 	 * We don't want to scan for a whole year
2039 	 */
2040 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2041 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2042 		ac->ac_status = AC_STATUS_BREAK;
2043 		return;
2044 	}
2045 
2046 	/*
2047 	 * Haven't found good chunk so far, let's continue
2048 	 */
2049 	if (bex->fe_len < gex->fe_len)
2050 		return;
2051 
2052 	if (finish_group)
2053 		ext4_mb_use_best_found(ac, e4b);
2054 }
2055 
2056 /*
2057  * The routine checks whether found extent is good enough. If it is,
2058  * then the extent gets marked used and flag is set to the context
2059  * to stop scanning. Otherwise, the extent is compared with the
2060  * previous found extent and if new one is better, then it's stored
2061  * in the context. Later, the best found extent will be used, if
2062  * mballoc can't find good enough extent.
2063  *
2064  * FIXME: real allocation policy is to be designed yet!
2065  */
2066 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2067 					struct ext4_free_extent *ex,
2068 					struct ext4_buddy *e4b)
2069 {
2070 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2071 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2072 
2073 	BUG_ON(ex->fe_len <= 0);
2074 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2075 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2076 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2077 
2078 	ac->ac_found++;
2079 
2080 	/*
2081 	 * The special case - take what you catch first
2082 	 */
2083 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2084 		*bex = *ex;
2085 		ext4_mb_use_best_found(ac, e4b);
2086 		return;
2087 	}
2088 
2089 	/*
2090 	 * Let's check whether the chuck is good enough
2091 	 */
2092 	if (ex->fe_len == gex->fe_len) {
2093 		*bex = *ex;
2094 		ext4_mb_use_best_found(ac, e4b);
2095 		return;
2096 	}
2097 
2098 	/*
2099 	 * If this is first found extent, just store it in the context
2100 	 */
2101 	if (bex->fe_len == 0) {
2102 		*bex = *ex;
2103 		return;
2104 	}
2105 
2106 	/*
2107 	 * If new found extent is better, store it in the context
2108 	 */
2109 	if (bex->fe_len < gex->fe_len) {
2110 		/* if the request isn't satisfied, any found extent
2111 		 * larger than previous best one is better */
2112 		if (ex->fe_len > bex->fe_len)
2113 			*bex = *ex;
2114 	} else if (ex->fe_len > gex->fe_len) {
2115 		/* if the request is satisfied, then we try to find
2116 		 * an extent that still satisfy the request, but is
2117 		 * smaller than previous one */
2118 		if (ex->fe_len < bex->fe_len)
2119 			*bex = *ex;
2120 	}
2121 
2122 	ext4_mb_check_limits(ac, e4b, 0);
2123 }
2124 
2125 static noinline_for_stack
2126 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2127 					struct ext4_buddy *e4b)
2128 {
2129 	struct ext4_free_extent ex = ac->ac_b_ex;
2130 	ext4_group_t group = ex.fe_group;
2131 	int max;
2132 	int err;
2133 
2134 	BUG_ON(ex.fe_len <= 0);
2135 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2136 	if (err)
2137 		return;
2138 
2139 	ext4_lock_group(ac->ac_sb, group);
2140 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2141 
2142 	if (max > 0) {
2143 		ac->ac_b_ex = ex;
2144 		ext4_mb_use_best_found(ac, e4b);
2145 	}
2146 
2147 	ext4_unlock_group(ac->ac_sb, group);
2148 	ext4_mb_unload_buddy(e4b);
2149 }
2150 
2151 static noinline_for_stack
2152 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2153 				struct ext4_buddy *e4b)
2154 {
2155 	ext4_group_t group = ac->ac_g_ex.fe_group;
2156 	int max;
2157 	int err;
2158 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2159 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2160 	struct ext4_free_extent ex;
2161 
2162 	if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2163 		return 0;
2164 	if (grp->bb_free == 0)
2165 		return 0;
2166 
2167 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2168 	if (err)
2169 		return err;
2170 
2171 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
2172 		ext4_mb_unload_buddy(e4b);
2173 		return 0;
2174 	}
2175 
2176 	ext4_lock_group(ac->ac_sb, group);
2177 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2178 			     ac->ac_g_ex.fe_len, &ex);
2179 	ex.fe_logical = 0xDEADFA11; /* debug value */
2180 
2181 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
2182 		ext4_fsblk_t start;
2183 
2184 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
2185 			ex.fe_start;
2186 		/* use do_div to get remainder (would be 64-bit modulo) */
2187 		if (do_div(start, sbi->s_stripe) == 0) {
2188 			ac->ac_found++;
2189 			ac->ac_b_ex = ex;
2190 			ext4_mb_use_best_found(ac, e4b);
2191 		}
2192 	} else if (max >= ac->ac_g_ex.fe_len) {
2193 		BUG_ON(ex.fe_len <= 0);
2194 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2195 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2196 		ac->ac_found++;
2197 		ac->ac_b_ex = ex;
2198 		ext4_mb_use_best_found(ac, e4b);
2199 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2200 		/* Sometimes, caller may want to merge even small
2201 		 * number of blocks to an existing extent */
2202 		BUG_ON(ex.fe_len <= 0);
2203 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2204 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2205 		ac->ac_found++;
2206 		ac->ac_b_ex = ex;
2207 		ext4_mb_use_best_found(ac, e4b);
2208 	}
2209 	ext4_unlock_group(ac->ac_sb, group);
2210 	ext4_mb_unload_buddy(e4b);
2211 
2212 	return 0;
2213 }
2214 
2215 /*
2216  * The routine scans buddy structures (not bitmap!) from given order
2217  * to max order and tries to find big enough chunk to satisfy the req
2218  */
2219 static noinline_for_stack
2220 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2221 					struct ext4_buddy *e4b)
2222 {
2223 	struct super_block *sb = ac->ac_sb;
2224 	struct ext4_group_info *grp = e4b->bd_info;
2225 	void *buddy;
2226 	int i;
2227 	int k;
2228 	int max;
2229 
2230 	BUG_ON(ac->ac_2order <= 0);
2231 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2232 		if (grp->bb_counters[i] == 0)
2233 			continue;
2234 
2235 		buddy = mb_find_buddy(e4b, i, &max);
2236 		if (WARN_RATELIMIT(buddy == NULL,
2237 			 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2238 			continue;
2239 
2240 		k = mb_find_next_zero_bit(buddy, max, 0);
2241 		if (k >= max) {
2242 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2243 				"%d free clusters of order %d. But found 0",
2244 				grp->bb_counters[i], i);
2245 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2246 					 e4b->bd_group,
2247 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2248 			break;
2249 		}
2250 		ac->ac_found++;
2251 
2252 		ac->ac_b_ex.fe_len = 1 << i;
2253 		ac->ac_b_ex.fe_start = k << i;
2254 		ac->ac_b_ex.fe_group = e4b->bd_group;
2255 
2256 		ext4_mb_use_best_found(ac, e4b);
2257 
2258 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2259 
2260 		if (EXT4_SB(sb)->s_mb_stats)
2261 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2262 
2263 		break;
2264 	}
2265 }
2266 
2267 /*
2268  * The routine scans the group and measures all found extents.
2269  * In order to optimize scanning, caller must pass number of
2270  * free blocks in the group, so the routine can know upper limit.
2271  */
2272 static noinline_for_stack
2273 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2274 					struct ext4_buddy *e4b)
2275 {
2276 	struct super_block *sb = ac->ac_sb;
2277 	void *bitmap = e4b->bd_bitmap;
2278 	struct ext4_free_extent ex;
2279 	int i;
2280 	int free;
2281 
2282 	free = e4b->bd_info->bb_free;
2283 	if (WARN_ON(free <= 0))
2284 		return;
2285 
2286 	i = e4b->bd_info->bb_first_free;
2287 
2288 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2289 		i = mb_find_next_zero_bit(bitmap,
2290 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2291 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2292 			/*
2293 			 * IF we have corrupt bitmap, we won't find any
2294 			 * free blocks even though group info says we
2295 			 * have free blocks
2296 			 */
2297 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2298 					"%d free clusters as per "
2299 					"group info. But bitmap says 0",
2300 					free);
2301 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2302 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2303 			break;
2304 		}
2305 
2306 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2307 		if (WARN_ON(ex.fe_len <= 0))
2308 			break;
2309 		if (free < ex.fe_len) {
2310 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2311 					"%d free clusters as per "
2312 					"group info. But got %d blocks",
2313 					free, ex.fe_len);
2314 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2315 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2316 			/*
2317 			 * The number of free blocks differs. This mostly
2318 			 * indicate that the bitmap is corrupt. So exit
2319 			 * without claiming the space.
2320 			 */
2321 			break;
2322 		}
2323 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2324 		ext4_mb_measure_extent(ac, &ex, e4b);
2325 
2326 		i += ex.fe_len;
2327 		free -= ex.fe_len;
2328 	}
2329 
2330 	ext4_mb_check_limits(ac, e4b, 1);
2331 }
2332 
2333 /*
2334  * This is a special case for storages like raid5
2335  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2336  */
2337 static noinline_for_stack
2338 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2339 				 struct ext4_buddy *e4b)
2340 {
2341 	struct super_block *sb = ac->ac_sb;
2342 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2343 	void *bitmap = e4b->bd_bitmap;
2344 	struct ext4_free_extent ex;
2345 	ext4_fsblk_t first_group_block;
2346 	ext4_fsblk_t a;
2347 	ext4_grpblk_t i;
2348 	int max;
2349 
2350 	BUG_ON(sbi->s_stripe == 0);
2351 
2352 	/* find first stripe-aligned block in group */
2353 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2354 
2355 	a = first_group_block + sbi->s_stripe - 1;
2356 	do_div(a, sbi->s_stripe);
2357 	i = (a * sbi->s_stripe) - first_group_block;
2358 
2359 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2360 		if (!mb_test_bit(i, bitmap)) {
2361 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2362 			if (max >= sbi->s_stripe) {
2363 				ac->ac_found++;
2364 				ex.fe_logical = 0xDEADF00D; /* debug value */
2365 				ac->ac_b_ex = ex;
2366 				ext4_mb_use_best_found(ac, e4b);
2367 				break;
2368 			}
2369 		}
2370 		i += sbi->s_stripe;
2371 	}
2372 }
2373 
2374 /*
2375  * This is also called BEFORE we load the buddy bitmap.
2376  * Returns either 1 or 0 indicating that the group is either suitable
2377  * for the allocation or not.
2378  */
2379 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2380 				ext4_group_t group, int cr)
2381 {
2382 	ext4_grpblk_t free, fragments;
2383 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2384 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2385 
2386 	BUG_ON(cr < 0 || cr >= 4);
2387 
2388 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2389 		return false;
2390 
2391 	free = grp->bb_free;
2392 	if (free == 0)
2393 		return false;
2394 
2395 	fragments = grp->bb_fragments;
2396 	if (fragments == 0)
2397 		return false;
2398 
2399 	switch (cr) {
2400 	case 0:
2401 		BUG_ON(ac->ac_2order == 0);
2402 
2403 		/* Avoid using the first bg of a flexgroup for data files */
2404 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2405 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2406 		    ((group % flex_size) == 0))
2407 			return false;
2408 
2409 		if (free < ac->ac_g_ex.fe_len)
2410 			return false;
2411 
2412 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2413 			return true;
2414 
2415 		if (grp->bb_largest_free_order < ac->ac_2order)
2416 			return false;
2417 
2418 		return true;
2419 	case 1:
2420 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2421 			return true;
2422 		break;
2423 	case 2:
2424 		if (free >= ac->ac_g_ex.fe_len)
2425 			return true;
2426 		break;
2427 	case 3:
2428 		return true;
2429 	default:
2430 		BUG();
2431 	}
2432 
2433 	return false;
2434 }
2435 
2436 /*
2437  * This could return negative error code if something goes wrong
2438  * during ext4_mb_init_group(). This should not be called with
2439  * ext4_lock_group() held.
2440  *
2441  * Note: because we are conditionally operating with the group lock in
2442  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2443  * function using __acquire and __release.  This means we need to be
2444  * super careful before messing with the error path handling via "goto
2445  * out"!
2446  */
2447 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2448 				     ext4_group_t group, int cr)
2449 {
2450 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2451 	struct super_block *sb = ac->ac_sb;
2452 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2453 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2454 	ext4_grpblk_t free;
2455 	int ret = 0;
2456 
2457 	if (sbi->s_mb_stats)
2458 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2459 	if (should_lock) {
2460 		ext4_lock_group(sb, group);
2461 		__release(ext4_group_lock_ptr(sb, group));
2462 	}
2463 	free = grp->bb_free;
2464 	if (free == 0)
2465 		goto out;
2466 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2467 		goto out;
2468 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2469 		goto out;
2470 	if (should_lock) {
2471 		__acquire(ext4_group_lock_ptr(sb, group));
2472 		ext4_unlock_group(sb, group);
2473 	}
2474 
2475 	/* We only do this if the grp has never been initialized */
2476 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2477 		struct ext4_group_desc *gdp =
2478 			ext4_get_group_desc(sb, group, NULL);
2479 		int ret;
2480 
2481 		/* cr=0/1 is a very optimistic search to find large
2482 		 * good chunks almost for free.  If buddy data is not
2483 		 * ready, then this optimization makes no sense.  But
2484 		 * we never skip the first block group in a flex_bg,
2485 		 * since this gets used for metadata block allocation,
2486 		 * and we want to make sure we locate metadata blocks
2487 		 * in the first block group in the flex_bg if possible.
2488 		 */
2489 		if (cr < 2 &&
2490 		    (!sbi->s_log_groups_per_flex ||
2491 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2492 		    !(ext4_has_group_desc_csum(sb) &&
2493 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2494 			return 0;
2495 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2496 		if (ret)
2497 			return ret;
2498 	}
2499 
2500 	if (should_lock) {
2501 		ext4_lock_group(sb, group);
2502 		__release(ext4_group_lock_ptr(sb, group));
2503 	}
2504 	ret = ext4_mb_good_group(ac, group, cr);
2505 out:
2506 	if (should_lock) {
2507 		__acquire(ext4_group_lock_ptr(sb, group));
2508 		ext4_unlock_group(sb, group);
2509 	}
2510 	return ret;
2511 }
2512 
2513 /*
2514  * Start prefetching @nr block bitmaps starting at @group.
2515  * Return the next group which needs to be prefetched.
2516  */
2517 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2518 			      unsigned int nr, int *cnt)
2519 {
2520 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2521 	struct buffer_head *bh;
2522 	struct blk_plug plug;
2523 
2524 	blk_start_plug(&plug);
2525 	while (nr-- > 0) {
2526 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2527 								  NULL);
2528 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2529 
2530 		/*
2531 		 * Prefetch block groups with free blocks; but don't
2532 		 * bother if it is marked uninitialized on disk, since
2533 		 * it won't require I/O to read.  Also only try to
2534 		 * prefetch once, so we avoid getblk() call, which can
2535 		 * be expensive.
2536 		 */
2537 		if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2538 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2539 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2540 		    !(ext4_has_group_desc_csum(sb) &&
2541 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2542 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2543 			if (bh && !IS_ERR(bh)) {
2544 				if (!buffer_uptodate(bh) && cnt)
2545 					(*cnt)++;
2546 				brelse(bh);
2547 			}
2548 		}
2549 		if (++group >= ngroups)
2550 			group = 0;
2551 	}
2552 	blk_finish_plug(&plug);
2553 	return group;
2554 }
2555 
2556 /*
2557  * Prefetching reads the block bitmap into the buffer cache; but we
2558  * need to make sure that the buddy bitmap in the page cache has been
2559  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2560  * is not yet completed, or indeed if it was not initiated by
2561  * ext4_mb_prefetch did not start the I/O.
2562  *
2563  * TODO: We should actually kick off the buddy bitmap setup in a work
2564  * queue when the buffer I/O is completed, so that we don't block
2565  * waiting for the block allocation bitmap read to finish when
2566  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2567  */
2568 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2569 			   unsigned int nr)
2570 {
2571 	struct ext4_group_desc *gdp;
2572 	struct ext4_group_info *grp;
2573 
2574 	while (nr-- > 0) {
2575 		if (!group)
2576 			group = ext4_get_groups_count(sb);
2577 		group--;
2578 		gdp = ext4_get_group_desc(sb, group, NULL);
2579 		grp = ext4_get_group_info(sb, group);
2580 
2581 		if (EXT4_MB_GRP_NEED_INIT(grp) &&
2582 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2583 		    !(ext4_has_group_desc_csum(sb) &&
2584 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2585 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2586 				break;
2587 		}
2588 	}
2589 }
2590 
2591 static noinline_for_stack int
2592 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2593 {
2594 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2595 	int cr = -1, new_cr;
2596 	int err = 0, first_err = 0;
2597 	unsigned int nr = 0, prefetch_ios = 0;
2598 	struct ext4_sb_info *sbi;
2599 	struct super_block *sb;
2600 	struct ext4_buddy e4b;
2601 	int lost;
2602 
2603 	sb = ac->ac_sb;
2604 	sbi = EXT4_SB(sb);
2605 	ngroups = ext4_get_groups_count(sb);
2606 	/* non-extent files are limited to low blocks/groups */
2607 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2608 		ngroups = sbi->s_blockfile_groups;
2609 
2610 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2611 
2612 	/* first, try the goal */
2613 	err = ext4_mb_find_by_goal(ac, &e4b);
2614 	if (err || ac->ac_status == AC_STATUS_FOUND)
2615 		goto out;
2616 
2617 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2618 		goto out;
2619 
2620 	/*
2621 	 * ac->ac_2order is set only if the fe_len is a power of 2
2622 	 * if ac->ac_2order is set we also set criteria to 0 so that we
2623 	 * try exact allocation using buddy.
2624 	 */
2625 	i = fls(ac->ac_g_ex.fe_len);
2626 	ac->ac_2order = 0;
2627 	/*
2628 	 * We search using buddy data only if the order of the request
2629 	 * is greater than equal to the sbi_s_mb_order2_reqs
2630 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2631 	 * We also support searching for power-of-two requests only for
2632 	 * requests upto maximum buddy size we have constructed.
2633 	 */
2634 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2635 		/*
2636 		 * This should tell if fe_len is exactly power of 2
2637 		 */
2638 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2639 			ac->ac_2order = array_index_nospec(i - 1,
2640 							   MB_NUM_ORDERS(sb));
2641 	}
2642 
2643 	/* if stream allocation is enabled, use global goal */
2644 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2645 		/* TBD: may be hot point */
2646 		spin_lock(&sbi->s_md_lock);
2647 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2648 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2649 		spin_unlock(&sbi->s_md_lock);
2650 	}
2651 
2652 	/* Let's just scan groups to find more-less suitable blocks */
2653 	cr = ac->ac_2order ? 0 : 1;
2654 	/*
2655 	 * cr == 0 try to get exact allocation,
2656 	 * cr == 3  try to get anything
2657 	 */
2658 repeat:
2659 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2660 		ac->ac_criteria = cr;
2661 		/*
2662 		 * searching for the right group start
2663 		 * from the goal value specified
2664 		 */
2665 		group = ac->ac_g_ex.fe_group;
2666 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2667 		prefetch_grp = group;
2668 
2669 		for (i = 0, new_cr = cr; i < ngroups; i++,
2670 		     ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2671 			int ret = 0;
2672 
2673 			cond_resched();
2674 			if (new_cr != cr) {
2675 				cr = new_cr;
2676 				goto repeat;
2677 			}
2678 
2679 			/*
2680 			 * Batch reads of the block allocation bitmaps
2681 			 * to get multiple READs in flight; limit
2682 			 * prefetching at cr=0/1, otherwise mballoc can
2683 			 * spend a lot of time loading imperfect groups
2684 			 */
2685 			if ((prefetch_grp == group) &&
2686 			    (cr > 1 ||
2687 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2688 				unsigned int curr_ios = prefetch_ios;
2689 
2690 				nr = sbi->s_mb_prefetch;
2691 				if (ext4_has_feature_flex_bg(sb)) {
2692 					nr = 1 << sbi->s_log_groups_per_flex;
2693 					nr -= group & (nr - 1);
2694 					nr = min(nr, sbi->s_mb_prefetch);
2695 				}
2696 				prefetch_grp = ext4_mb_prefetch(sb, group,
2697 							nr, &prefetch_ios);
2698 				if (prefetch_ios == curr_ios)
2699 					nr = 0;
2700 			}
2701 
2702 			/* This now checks without needing the buddy page */
2703 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2704 			if (ret <= 0) {
2705 				if (!first_err)
2706 					first_err = ret;
2707 				continue;
2708 			}
2709 
2710 			err = ext4_mb_load_buddy(sb, group, &e4b);
2711 			if (err)
2712 				goto out;
2713 
2714 			ext4_lock_group(sb, group);
2715 
2716 			/*
2717 			 * We need to check again after locking the
2718 			 * block group
2719 			 */
2720 			ret = ext4_mb_good_group(ac, group, cr);
2721 			if (ret == 0) {
2722 				ext4_unlock_group(sb, group);
2723 				ext4_mb_unload_buddy(&e4b);
2724 				continue;
2725 			}
2726 
2727 			ac->ac_groups_scanned++;
2728 			if (cr == 0)
2729 				ext4_mb_simple_scan_group(ac, &e4b);
2730 			else if (cr == 1 && sbi->s_stripe &&
2731 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2732 				ext4_mb_scan_aligned(ac, &e4b);
2733 			else
2734 				ext4_mb_complex_scan_group(ac, &e4b);
2735 
2736 			ext4_unlock_group(sb, group);
2737 			ext4_mb_unload_buddy(&e4b);
2738 
2739 			if (ac->ac_status != AC_STATUS_CONTINUE)
2740 				break;
2741 		}
2742 		/* Processed all groups and haven't found blocks */
2743 		if (sbi->s_mb_stats && i == ngroups)
2744 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2745 	}
2746 
2747 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2748 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2749 		/*
2750 		 * We've been searching too long. Let's try to allocate
2751 		 * the best chunk we've found so far
2752 		 */
2753 		ext4_mb_try_best_found(ac, &e4b);
2754 		if (ac->ac_status != AC_STATUS_FOUND) {
2755 			/*
2756 			 * Someone more lucky has already allocated it.
2757 			 * The only thing we can do is just take first
2758 			 * found block(s)
2759 			 */
2760 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2761 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2762 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2763 				 ac->ac_b_ex.fe_len, lost);
2764 
2765 			ac->ac_b_ex.fe_group = 0;
2766 			ac->ac_b_ex.fe_start = 0;
2767 			ac->ac_b_ex.fe_len = 0;
2768 			ac->ac_status = AC_STATUS_CONTINUE;
2769 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2770 			cr = 3;
2771 			goto repeat;
2772 		}
2773 	}
2774 
2775 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2776 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2777 out:
2778 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2779 		err = first_err;
2780 
2781 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2782 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2783 		 ac->ac_flags, cr, err);
2784 
2785 	if (nr)
2786 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2787 
2788 	return err;
2789 }
2790 
2791 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2792 {
2793 	struct super_block *sb = pde_data(file_inode(seq->file));
2794 	ext4_group_t group;
2795 
2796 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2797 		return NULL;
2798 	group = *pos + 1;
2799 	return (void *) ((unsigned long) group);
2800 }
2801 
2802 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2803 {
2804 	struct super_block *sb = pde_data(file_inode(seq->file));
2805 	ext4_group_t group;
2806 
2807 	++*pos;
2808 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2809 		return NULL;
2810 	group = *pos + 1;
2811 	return (void *) ((unsigned long) group);
2812 }
2813 
2814 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2815 {
2816 	struct super_block *sb = pde_data(file_inode(seq->file));
2817 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2818 	int i;
2819 	int err, buddy_loaded = 0;
2820 	struct ext4_buddy e4b;
2821 	struct ext4_group_info *grinfo;
2822 	unsigned char blocksize_bits = min_t(unsigned char,
2823 					     sb->s_blocksize_bits,
2824 					     EXT4_MAX_BLOCK_LOG_SIZE);
2825 	struct sg {
2826 		struct ext4_group_info info;
2827 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2828 	} sg;
2829 
2830 	group--;
2831 	if (group == 0)
2832 		seq_puts(seq, "#group: free  frags first ["
2833 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2834 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2835 
2836 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2837 		sizeof(struct ext4_group_info);
2838 
2839 	grinfo = ext4_get_group_info(sb, group);
2840 	/* Load the group info in memory only if not already loaded. */
2841 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2842 		err = ext4_mb_load_buddy(sb, group, &e4b);
2843 		if (err) {
2844 			seq_printf(seq, "#%-5u: I/O error\n", group);
2845 			return 0;
2846 		}
2847 		buddy_loaded = 1;
2848 	}
2849 
2850 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2851 
2852 	if (buddy_loaded)
2853 		ext4_mb_unload_buddy(&e4b);
2854 
2855 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2856 			sg.info.bb_fragments, sg.info.bb_first_free);
2857 	for (i = 0; i <= 13; i++)
2858 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2859 				sg.info.bb_counters[i] : 0);
2860 	seq_puts(seq, " ]\n");
2861 
2862 	return 0;
2863 }
2864 
2865 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2866 {
2867 }
2868 
2869 const struct seq_operations ext4_mb_seq_groups_ops = {
2870 	.start  = ext4_mb_seq_groups_start,
2871 	.next   = ext4_mb_seq_groups_next,
2872 	.stop   = ext4_mb_seq_groups_stop,
2873 	.show   = ext4_mb_seq_groups_show,
2874 };
2875 
2876 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
2877 {
2878 	struct super_block *sb = seq->private;
2879 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2880 
2881 	seq_puts(seq, "mballoc:\n");
2882 	if (!sbi->s_mb_stats) {
2883 		seq_puts(seq, "\tmb stats collection turned off.\n");
2884 		seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
2885 		return 0;
2886 	}
2887 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
2888 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
2889 
2890 	seq_printf(seq, "\tgroups_scanned: %u\n",  atomic_read(&sbi->s_bal_groups_scanned));
2891 
2892 	seq_puts(seq, "\tcr0_stats:\n");
2893 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[0]));
2894 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2895 		   atomic64_read(&sbi->s_bal_cX_groups_considered[0]));
2896 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2897 		   atomic64_read(&sbi->s_bal_cX_failed[0]));
2898 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
2899 		   atomic_read(&sbi->s_bal_cr0_bad_suggestions));
2900 
2901 	seq_puts(seq, "\tcr1_stats:\n");
2902 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[1]));
2903 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2904 		   atomic64_read(&sbi->s_bal_cX_groups_considered[1]));
2905 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2906 		   atomic64_read(&sbi->s_bal_cX_failed[1]));
2907 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
2908 		   atomic_read(&sbi->s_bal_cr1_bad_suggestions));
2909 
2910 	seq_puts(seq, "\tcr2_stats:\n");
2911 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[2]));
2912 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2913 		   atomic64_read(&sbi->s_bal_cX_groups_considered[2]));
2914 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2915 		   atomic64_read(&sbi->s_bal_cX_failed[2]));
2916 
2917 	seq_puts(seq, "\tcr3_stats:\n");
2918 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[3]));
2919 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2920 		   atomic64_read(&sbi->s_bal_cX_groups_considered[3]));
2921 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2922 		   atomic64_read(&sbi->s_bal_cX_failed[3]));
2923 	seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned));
2924 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
2925 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
2926 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
2927 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
2928 
2929 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
2930 		   atomic_read(&sbi->s_mb_buddies_generated),
2931 		   ext4_get_groups_count(sb));
2932 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
2933 		   atomic64_read(&sbi->s_mb_generation_time));
2934 	seq_printf(seq, "\tpreallocated: %u\n",
2935 		   atomic_read(&sbi->s_mb_preallocated));
2936 	seq_printf(seq, "\tdiscarded: %u\n",
2937 		   atomic_read(&sbi->s_mb_discarded));
2938 	return 0;
2939 }
2940 
2941 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
2942 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
2943 {
2944 	struct super_block *sb = pde_data(file_inode(seq->file));
2945 	unsigned long position;
2946 
2947 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
2948 		return NULL;
2949 	position = *pos + 1;
2950 	return (void *) ((unsigned long) position);
2951 }
2952 
2953 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
2954 {
2955 	struct super_block *sb = pde_data(file_inode(seq->file));
2956 	unsigned long position;
2957 
2958 	++*pos;
2959 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
2960 		return NULL;
2961 	position = *pos + 1;
2962 	return (void *) ((unsigned long) position);
2963 }
2964 
2965 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
2966 {
2967 	struct super_block *sb = pde_data(file_inode(seq->file));
2968 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2969 	unsigned long position = ((unsigned long) v);
2970 	struct ext4_group_info *grp;
2971 	unsigned int count;
2972 
2973 	position--;
2974 	if (position >= MB_NUM_ORDERS(sb)) {
2975 		position -= MB_NUM_ORDERS(sb);
2976 		if (position == 0)
2977 			seq_puts(seq, "avg_fragment_size_lists:\n");
2978 
2979 		count = 0;
2980 		read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
2981 		list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
2982 				    bb_avg_fragment_size_node)
2983 			count++;
2984 		read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
2985 		seq_printf(seq, "\tlist_order_%u_groups: %u\n",
2986 					(unsigned int)position, count);
2987 		return 0;
2988 	}
2989 
2990 	if (position == 0) {
2991 		seq_printf(seq, "optimize_scan: %d\n",
2992 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
2993 		seq_puts(seq, "max_free_order_lists:\n");
2994 	}
2995 	count = 0;
2996 	read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
2997 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
2998 			    bb_largest_free_order_node)
2999 		count++;
3000 	read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3001 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3002 		   (unsigned int)position, count);
3003 
3004 	return 0;
3005 }
3006 
3007 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3008 {
3009 }
3010 
3011 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3012 	.start  = ext4_mb_seq_structs_summary_start,
3013 	.next   = ext4_mb_seq_structs_summary_next,
3014 	.stop   = ext4_mb_seq_structs_summary_stop,
3015 	.show   = ext4_mb_seq_structs_summary_show,
3016 };
3017 
3018 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3019 {
3020 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3021 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3022 
3023 	BUG_ON(!cachep);
3024 	return cachep;
3025 }
3026 
3027 /*
3028  * Allocate the top-level s_group_info array for the specified number
3029  * of groups
3030  */
3031 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3032 {
3033 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3034 	unsigned size;
3035 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3036 
3037 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3038 		EXT4_DESC_PER_BLOCK_BITS(sb);
3039 	if (size <= sbi->s_group_info_size)
3040 		return 0;
3041 
3042 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3043 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3044 	if (!new_groupinfo) {
3045 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3046 		return -ENOMEM;
3047 	}
3048 	rcu_read_lock();
3049 	old_groupinfo = rcu_dereference(sbi->s_group_info);
3050 	if (old_groupinfo)
3051 		memcpy(new_groupinfo, old_groupinfo,
3052 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3053 	rcu_read_unlock();
3054 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3055 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3056 	if (old_groupinfo)
3057 		ext4_kvfree_array_rcu(old_groupinfo);
3058 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3059 		   sbi->s_group_info_size);
3060 	return 0;
3061 }
3062 
3063 /* Create and initialize ext4_group_info data for the given group. */
3064 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3065 			  struct ext4_group_desc *desc)
3066 {
3067 	int i;
3068 	int metalen = 0;
3069 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3070 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3071 	struct ext4_group_info **meta_group_info;
3072 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3073 
3074 	/*
3075 	 * First check if this group is the first of a reserved block.
3076 	 * If it's true, we have to allocate a new table of pointers
3077 	 * to ext4_group_info structures
3078 	 */
3079 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3080 		metalen = sizeof(*meta_group_info) <<
3081 			EXT4_DESC_PER_BLOCK_BITS(sb);
3082 		meta_group_info = kmalloc(metalen, GFP_NOFS);
3083 		if (meta_group_info == NULL) {
3084 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3085 				 "for a buddy group");
3086 			return -ENOMEM;
3087 		}
3088 		rcu_read_lock();
3089 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3090 		rcu_read_unlock();
3091 	}
3092 
3093 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3094 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3095 
3096 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3097 	if (meta_group_info[i] == NULL) {
3098 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3099 		goto exit_group_info;
3100 	}
3101 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3102 		&(meta_group_info[i]->bb_state));
3103 
3104 	/*
3105 	 * initialize bb_free to be able to skip
3106 	 * empty groups without initialization
3107 	 */
3108 	if (ext4_has_group_desc_csum(sb) &&
3109 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3110 		meta_group_info[i]->bb_free =
3111 			ext4_free_clusters_after_init(sb, group, desc);
3112 	} else {
3113 		meta_group_info[i]->bb_free =
3114 			ext4_free_group_clusters(sb, desc);
3115 	}
3116 
3117 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3118 	init_rwsem(&meta_group_info[i]->alloc_sem);
3119 	meta_group_info[i]->bb_free_root = RB_ROOT;
3120 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3121 	INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3122 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3123 	meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3124 	meta_group_info[i]->bb_group = group;
3125 
3126 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3127 	return 0;
3128 
3129 exit_group_info:
3130 	/* If a meta_group_info table has been allocated, release it now */
3131 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3132 		struct ext4_group_info ***group_info;
3133 
3134 		rcu_read_lock();
3135 		group_info = rcu_dereference(sbi->s_group_info);
3136 		kfree(group_info[idx]);
3137 		group_info[idx] = NULL;
3138 		rcu_read_unlock();
3139 	}
3140 	return -ENOMEM;
3141 } /* ext4_mb_add_groupinfo */
3142 
3143 static int ext4_mb_init_backend(struct super_block *sb)
3144 {
3145 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3146 	ext4_group_t i;
3147 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3148 	int err;
3149 	struct ext4_group_desc *desc;
3150 	struct ext4_group_info ***group_info;
3151 	struct kmem_cache *cachep;
3152 
3153 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3154 	if (err)
3155 		return err;
3156 
3157 	sbi->s_buddy_cache = new_inode(sb);
3158 	if (sbi->s_buddy_cache == NULL) {
3159 		ext4_msg(sb, KERN_ERR, "can't get new inode");
3160 		goto err_freesgi;
3161 	}
3162 	/* To avoid potentially colliding with an valid on-disk inode number,
3163 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3164 	 * not in the inode hash, so it should never be found by iget(), but
3165 	 * this will avoid confusion if it ever shows up during debugging. */
3166 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3167 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3168 	for (i = 0; i < ngroups; i++) {
3169 		cond_resched();
3170 		desc = ext4_get_group_desc(sb, i, NULL);
3171 		if (desc == NULL) {
3172 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3173 			goto err_freebuddy;
3174 		}
3175 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3176 			goto err_freebuddy;
3177 	}
3178 
3179 	if (ext4_has_feature_flex_bg(sb)) {
3180 		/* a single flex group is supposed to be read by a single IO.
3181 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3182 		 * unsigned integer, so the maximum shift is 32.
3183 		 */
3184 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3185 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3186 			goto err_freebuddy;
3187 		}
3188 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3189 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3190 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3191 	} else {
3192 		sbi->s_mb_prefetch = 32;
3193 	}
3194 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3195 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3196 	/* now many real IOs to prefetch within a single allocation at cr=0
3197 	 * given cr=0 is an CPU-related optimization we shouldn't try to
3198 	 * load too many groups, at some point we should start to use what
3199 	 * we've got in memory.
3200 	 * with an average random access time 5ms, it'd take a second to get
3201 	 * 200 groups (* N with flex_bg), so let's make this limit 4
3202 	 */
3203 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3204 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3205 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3206 
3207 	return 0;
3208 
3209 err_freebuddy:
3210 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3211 	while (i-- > 0)
3212 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
3213 	i = sbi->s_group_info_size;
3214 	rcu_read_lock();
3215 	group_info = rcu_dereference(sbi->s_group_info);
3216 	while (i-- > 0)
3217 		kfree(group_info[i]);
3218 	rcu_read_unlock();
3219 	iput(sbi->s_buddy_cache);
3220 err_freesgi:
3221 	rcu_read_lock();
3222 	kvfree(rcu_dereference(sbi->s_group_info));
3223 	rcu_read_unlock();
3224 	return -ENOMEM;
3225 }
3226 
3227 static void ext4_groupinfo_destroy_slabs(void)
3228 {
3229 	int i;
3230 
3231 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3232 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3233 		ext4_groupinfo_caches[i] = NULL;
3234 	}
3235 }
3236 
3237 static int ext4_groupinfo_create_slab(size_t size)
3238 {
3239 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3240 	int slab_size;
3241 	int blocksize_bits = order_base_2(size);
3242 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3243 	struct kmem_cache *cachep;
3244 
3245 	if (cache_index >= NR_GRPINFO_CACHES)
3246 		return -EINVAL;
3247 
3248 	if (unlikely(cache_index < 0))
3249 		cache_index = 0;
3250 
3251 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3252 	if (ext4_groupinfo_caches[cache_index]) {
3253 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3254 		return 0;	/* Already created */
3255 	}
3256 
3257 	slab_size = offsetof(struct ext4_group_info,
3258 				bb_counters[blocksize_bits + 2]);
3259 
3260 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3261 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3262 					NULL);
3263 
3264 	ext4_groupinfo_caches[cache_index] = cachep;
3265 
3266 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3267 	if (!cachep) {
3268 		printk(KERN_EMERG
3269 		       "EXT4-fs: no memory for groupinfo slab cache\n");
3270 		return -ENOMEM;
3271 	}
3272 
3273 	return 0;
3274 }
3275 
3276 static void ext4_discard_work(struct work_struct *work)
3277 {
3278 	struct ext4_sb_info *sbi = container_of(work,
3279 			struct ext4_sb_info, s_discard_work);
3280 	struct super_block *sb = sbi->s_sb;
3281 	struct ext4_free_data *fd, *nfd;
3282 	struct ext4_buddy e4b;
3283 	struct list_head discard_list;
3284 	ext4_group_t grp, load_grp;
3285 	int err = 0;
3286 
3287 	INIT_LIST_HEAD(&discard_list);
3288 	spin_lock(&sbi->s_md_lock);
3289 	list_splice_init(&sbi->s_discard_list, &discard_list);
3290 	spin_unlock(&sbi->s_md_lock);
3291 
3292 	load_grp = UINT_MAX;
3293 	list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3294 		/*
3295 		 * If filesystem is umounting or no memory or suffering
3296 		 * from no space, give up the discard
3297 		 */
3298 		if ((sb->s_flags & SB_ACTIVE) && !err &&
3299 		    !atomic_read(&sbi->s_retry_alloc_pending)) {
3300 			grp = fd->efd_group;
3301 			if (grp != load_grp) {
3302 				if (load_grp != UINT_MAX)
3303 					ext4_mb_unload_buddy(&e4b);
3304 
3305 				err = ext4_mb_load_buddy(sb, grp, &e4b);
3306 				if (err) {
3307 					kmem_cache_free(ext4_free_data_cachep, fd);
3308 					load_grp = UINT_MAX;
3309 					continue;
3310 				} else {
3311 					load_grp = grp;
3312 				}
3313 			}
3314 
3315 			ext4_lock_group(sb, grp);
3316 			ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3317 						fd->efd_start_cluster + fd->efd_count - 1, 1);
3318 			ext4_unlock_group(sb, grp);
3319 		}
3320 		kmem_cache_free(ext4_free_data_cachep, fd);
3321 	}
3322 
3323 	if (load_grp != UINT_MAX)
3324 		ext4_mb_unload_buddy(&e4b);
3325 }
3326 
3327 int ext4_mb_init(struct super_block *sb)
3328 {
3329 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3330 	unsigned i, j;
3331 	unsigned offset, offset_incr;
3332 	unsigned max;
3333 	int ret;
3334 
3335 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3336 
3337 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3338 	if (sbi->s_mb_offsets == NULL) {
3339 		ret = -ENOMEM;
3340 		goto out;
3341 	}
3342 
3343 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3344 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3345 	if (sbi->s_mb_maxs == NULL) {
3346 		ret = -ENOMEM;
3347 		goto out;
3348 	}
3349 
3350 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3351 	if (ret < 0)
3352 		goto out;
3353 
3354 	/* order 0 is regular bitmap */
3355 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3356 	sbi->s_mb_offsets[0] = 0;
3357 
3358 	i = 1;
3359 	offset = 0;
3360 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3361 	max = sb->s_blocksize << 2;
3362 	do {
3363 		sbi->s_mb_offsets[i] = offset;
3364 		sbi->s_mb_maxs[i] = max;
3365 		offset += offset_incr;
3366 		offset_incr = offset_incr >> 1;
3367 		max = max >> 1;
3368 		i++;
3369 	} while (i < MB_NUM_ORDERS(sb));
3370 
3371 	sbi->s_mb_avg_fragment_size =
3372 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3373 			GFP_KERNEL);
3374 	if (!sbi->s_mb_avg_fragment_size) {
3375 		ret = -ENOMEM;
3376 		goto out;
3377 	}
3378 	sbi->s_mb_avg_fragment_size_locks =
3379 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3380 			GFP_KERNEL);
3381 	if (!sbi->s_mb_avg_fragment_size_locks) {
3382 		ret = -ENOMEM;
3383 		goto out;
3384 	}
3385 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3386 		INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3387 		rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3388 	}
3389 	sbi->s_mb_largest_free_orders =
3390 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3391 			GFP_KERNEL);
3392 	if (!sbi->s_mb_largest_free_orders) {
3393 		ret = -ENOMEM;
3394 		goto out;
3395 	}
3396 	sbi->s_mb_largest_free_orders_locks =
3397 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3398 			GFP_KERNEL);
3399 	if (!sbi->s_mb_largest_free_orders_locks) {
3400 		ret = -ENOMEM;
3401 		goto out;
3402 	}
3403 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3404 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3405 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3406 	}
3407 
3408 	spin_lock_init(&sbi->s_md_lock);
3409 	sbi->s_mb_free_pending = 0;
3410 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
3411 	INIT_LIST_HEAD(&sbi->s_discard_list);
3412 	INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3413 	atomic_set(&sbi->s_retry_alloc_pending, 0);
3414 
3415 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3416 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3417 	sbi->s_mb_stats = MB_DEFAULT_STATS;
3418 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3419 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3420 	/*
3421 	 * The default group preallocation is 512, which for 4k block
3422 	 * sizes translates to 2 megabytes.  However for bigalloc file
3423 	 * systems, this is probably too big (i.e, if the cluster size
3424 	 * is 1 megabyte, then group preallocation size becomes half a
3425 	 * gigabyte!).  As a default, we will keep a two megabyte
3426 	 * group pralloc size for cluster sizes up to 64k, and after
3427 	 * that, we will force a minimum group preallocation size of
3428 	 * 32 clusters.  This translates to 8 megs when the cluster
3429 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3430 	 * which seems reasonable as a default.
3431 	 */
3432 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3433 				       sbi->s_cluster_bits, 32);
3434 	/*
3435 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3436 	 * to the lowest multiple of s_stripe which is bigger than
3437 	 * the s_mb_group_prealloc as determined above. We want
3438 	 * the preallocation size to be an exact multiple of the
3439 	 * RAID stripe size so that preallocations don't fragment
3440 	 * the stripes.
3441 	 */
3442 	if (sbi->s_stripe > 1) {
3443 		sbi->s_mb_group_prealloc = roundup(
3444 			sbi->s_mb_group_prealloc, sbi->s_stripe);
3445 	}
3446 
3447 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3448 	if (sbi->s_locality_groups == NULL) {
3449 		ret = -ENOMEM;
3450 		goto out;
3451 	}
3452 	for_each_possible_cpu(i) {
3453 		struct ext4_locality_group *lg;
3454 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3455 		mutex_init(&lg->lg_mutex);
3456 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3457 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3458 		spin_lock_init(&lg->lg_prealloc_lock);
3459 	}
3460 
3461 	if (bdev_nonrot(sb->s_bdev))
3462 		sbi->s_mb_max_linear_groups = 0;
3463 	else
3464 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3465 	/* init file for buddy data */
3466 	ret = ext4_mb_init_backend(sb);
3467 	if (ret != 0)
3468 		goto out_free_locality_groups;
3469 
3470 	return 0;
3471 
3472 out_free_locality_groups:
3473 	free_percpu(sbi->s_locality_groups);
3474 	sbi->s_locality_groups = NULL;
3475 out:
3476 	kfree(sbi->s_mb_avg_fragment_size);
3477 	kfree(sbi->s_mb_avg_fragment_size_locks);
3478 	kfree(sbi->s_mb_largest_free_orders);
3479 	kfree(sbi->s_mb_largest_free_orders_locks);
3480 	kfree(sbi->s_mb_offsets);
3481 	sbi->s_mb_offsets = NULL;
3482 	kfree(sbi->s_mb_maxs);
3483 	sbi->s_mb_maxs = NULL;
3484 	return ret;
3485 }
3486 
3487 /* need to called with the ext4 group lock held */
3488 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3489 {
3490 	struct ext4_prealloc_space *pa;
3491 	struct list_head *cur, *tmp;
3492 	int count = 0;
3493 
3494 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3495 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3496 		list_del(&pa->pa_group_list);
3497 		count++;
3498 		kmem_cache_free(ext4_pspace_cachep, pa);
3499 	}
3500 	return count;
3501 }
3502 
3503 int ext4_mb_release(struct super_block *sb)
3504 {
3505 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3506 	ext4_group_t i;
3507 	int num_meta_group_infos;
3508 	struct ext4_group_info *grinfo, ***group_info;
3509 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3510 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3511 	int count;
3512 
3513 	if (test_opt(sb, DISCARD)) {
3514 		/*
3515 		 * wait the discard work to drain all of ext4_free_data
3516 		 */
3517 		flush_work(&sbi->s_discard_work);
3518 		WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3519 	}
3520 
3521 	if (sbi->s_group_info) {
3522 		for (i = 0; i < ngroups; i++) {
3523 			cond_resched();
3524 			grinfo = ext4_get_group_info(sb, i);
3525 			mb_group_bb_bitmap_free(grinfo);
3526 			ext4_lock_group(sb, i);
3527 			count = ext4_mb_cleanup_pa(grinfo);
3528 			if (count)
3529 				mb_debug(sb, "mballoc: %d PAs left\n",
3530 					 count);
3531 			ext4_unlock_group(sb, i);
3532 			kmem_cache_free(cachep, grinfo);
3533 		}
3534 		num_meta_group_infos = (ngroups +
3535 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3536 			EXT4_DESC_PER_BLOCK_BITS(sb);
3537 		rcu_read_lock();
3538 		group_info = rcu_dereference(sbi->s_group_info);
3539 		for (i = 0; i < num_meta_group_infos; i++)
3540 			kfree(group_info[i]);
3541 		kvfree(group_info);
3542 		rcu_read_unlock();
3543 	}
3544 	kfree(sbi->s_mb_avg_fragment_size);
3545 	kfree(sbi->s_mb_avg_fragment_size_locks);
3546 	kfree(sbi->s_mb_largest_free_orders);
3547 	kfree(sbi->s_mb_largest_free_orders_locks);
3548 	kfree(sbi->s_mb_offsets);
3549 	kfree(sbi->s_mb_maxs);
3550 	iput(sbi->s_buddy_cache);
3551 	if (sbi->s_mb_stats) {
3552 		ext4_msg(sb, KERN_INFO,
3553 		       "mballoc: %u blocks %u reqs (%u success)",
3554 				atomic_read(&sbi->s_bal_allocated),
3555 				atomic_read(&sbi->s_bal_reqs),
3556 				atomic_read(&sbi->s_bal_success));
3557 		ext4_msg(sb, KERN_INFO,
3558 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3559 				"%u 2^N hits, %u breaks, %u lost",
3560 				atomic_read(&sbi->s_bal_ex_scanned),
3561 				atomic_read(&sbi->s_bal_groups_scanned),
3562 				atomic_read(&sbi->s_bal_goals),
3563 				atomic_read(&sbi->s_bal_2orders),
3564 				atomic_read(&sbi->s_bal_breaks),
3565 				atomic_read(&sbi->s_mb_lost_chunks));
3566 		ext4_msg(sb, KERN_INFO,
3567 		       "mballoc: %u generated and it took %llu",
3568 				atomic_read(&sbi->s_mb_buddies_generated),
3569 				atomic64_read(&sbi->s_mb_generation_time));
3570 		ext4_msg(sb, KERN_INFO,
3571 		       "mballoc: %u preallocated, %u discarded",
3572 				atomic_read(&sbi->s_mb_preallocated),
3573 				atomic_read(&sbi->s_mb_discarded));
3574 	}
3575 
3576 	free_percpu(sbi->s_locality_groups);
3577 
3578 	return 0;
3579 }
3580 
3581 static inline int ext4_issue_discard(struct super_block *sb,
3582 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3583 		struct bio **biop)
3584 {
3585 	ext4_fsblk_t discard_block;
3586 
3587 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3588 			 ext4_group_first_block_no(sb, block_group));
3589 	count = EXT4_C2B(EXT4_SB(sb), count);
3590 	trace_ext4_discard_blocks(sb,
3591 			(unsigned long long) discard_block, count);
3592 	if (biop) {
3593 		return __blkdev_issue_discard(sb->s_bdev,
3594 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3595 			(sector_t)count << (sb->s_blocksize_bits - 9),
3596 			GFP_NOFS, biop);
3597 	} else
3598 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3599 }
3600 
3601 static void ext4_free_data_in_buddy(struct super_block *sb,
3602 				    struct ext4_free_data *entry)
3603 {
3604 	struct ext4_buddy e4b;
3605 	struct ext4_group_info *db;
3606 	int err, count = 0;
3607 
3608 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3609 		 entry->efd_count, entry->efd_group, entry);
3610 
3611 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3612 	/* we expect to find existing buddy because it's pinned */
3613 	BUG_ON(err != 0);
3614 
3615 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3616 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3617 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3618 
3619 	db = e4b.bd_info;
3620 	/* there are blocks to put in buddy to make them really free */
3621 	count += entry->efd_count;
3622 	ext4_lock_group(sb, entry->efd_group);
3623 	/* Take it out of per group rb tree */
3624 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3625 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3626 
3627 	/*
3628 	 * Clear the trimmed flag for the group so that the next
3629 	 * ext4_trim_fs can trim it.
3630 	 * If the volume is mounted with -o discard, online discard
3631 	 * is supported and the free blocks will be trimmed online.
3632 	 */
3633 	if (!test_opt(sb, DISCARD))
3634 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3635 
3636 	if (!db->bb_free_root.rb_node) {
3637 		/* No more items in the per group rb tree
3638 		 * balance refcounts from ext4_mb_free_metadata()
3639 		 */
3640 		put_page(e4b.bd_buddy_page);
3641 		put_page(e4b.bd_bitmap_page);
3642 	}
3643 	ext4_unlock_group(sb, entry->efd_group);
3644 	ext4_mb_unload_buddy(&e4b);
3645 
3646 	mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3647 }
3648 
3649 /*
3650  * This function is called by the jbd2 layer once the commit has finished,
3651  * so we know we can free the blocks that were released with that commit.
3652  */
3653 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3654 {
3655 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3656 	struct ext4_free_data *entry, *tmp;
3657 	struct list_head freed_data_list;
3658 	struct list_head *cut_pos = NULL;
3659 	bool wake;
3660 
3661 	INIT_LIST_HEAD(&freed_data_list);
3662 
3663 	spin_lock(&sbi->s_md_lock);
3664 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3665 		if (entry->efd_tid != commit_tid)
3666 			break;
3667 		cut_pos = &entry->efd_list;
3668 	}
3669 	if (cut_pos)
3670 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3671 				  cut_pos);
3672 	spin_unlock(&sbi->s_md_lock);
3673 
3674 	list_for_each_entry(entry, &freed_data_list, efd_list)
3675 		ext4_free_data_in_buddy(sb, entry);
3676 
3677 	if (test_opt(sb, DISCARD)) {
3678 		spin_lock(&sbi->s_md_lock);
3679 		wake = list_empty(&sbi->s_discard_list);
3680 		list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3681 		spin_unlock(&sbi->s_md_lock);
3682 		if (wake)
3683 			queue_work(system_unbound_wq, &sbi->s_discard_work);
3684 	} else {
3685 		list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3686 			kmem_cache_free(ext4_free_data_cachep, entry);
3687 	}
3688 }
3689 
3690 int __init ext4_init_mballoc(void)
3691 {
3692 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3693 					SLAB_RECLAIM_ACCOUNT);
3694 	if (ext4_pspace_cachep == NULL)
3695 		goto out;
3696 
3697 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3698 				    SLAB_RECLAIM_ACCOUNT);
3699 	if (ext4_ac_cachep == NULL)
3700 		goto out_pa_free;
3701 
3702 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3703 					   SLAB_RECLAIM_ACCOUNT);
3704 	if (ext4_free_data_cachep == NULL)
3705 		goto out_ac_free;
3706 
3707 	return 0;
3708 
3709 out_ac_free:
3710 	kmem_cache_destroy(ext4_ac_cachep);
3711 out_pa_free:
3712 	kmem_cache_destroy(ext4_pspace_cachep);
3713 out:
3714 	return -ENOMEM;
3715 }
3716 
3717 void ext4_exit_mballoc(void)
3718 {
3719 	/*
3720 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3721 	 * before destroying the slab cache.
3722 	 */
3723 	rcu_barrier();
3724 	kmem_cache_destroy(ext4_pspace_cachep);
3725 	kmem_cache_destroy(ext4_ac_cachep);
3726 	kmem_cache_destroy(ext4_free_data_cachep);
3727 	ext4_groupinfo_destroy_slabs();
3728 }
3729 
3730 
3731 /*
3732  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3733  * Returns 0 if success or error code
3734  */
3735 static noinline_for_stack int
3736 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3737 				handle_t *handle, unsigned int reserv_clstrs)
3738 {
3739 	struct buffer_head *bitmap_bh = NULL;
3740 	struct ext4_group_desc *gdp;
3741 	struct buffer_head *gdp_bh;
3742 	struct ext4_sb_info *sbi;
3743 	struct super_block *sb;
3744 	ext4_fsblk_t block;
3745 	int err, len;
3746 
3747 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3748 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3749 
3750 	sb = ac->ac_sb;
3751 	sbi = EXT4_SB(sb);
3752 
3753 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3754 	if (IS_ERR(bitmap_bh)) {
3755 		return PTR_ERR(bitmap_bh);
3756 	}
3757 
3758 	BUFFER_TRACE(bitmap_bh, "getting write access");
3759 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3760 					    EXT4_JTR_NONE);
3761 	if (err)
3762 		goto out_err;
3763 
3764 	err = -EIO;
3765 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3766 	if (!gdp)
3767 		goto out_err;
3768 
3769 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3770 			ext4_free_group_clusters(sb, gdp));
3771 
3772 	BUFFER_TRACE(gdp_bh, "get_write_access");
3773 	err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE);
3774 	if (err)
3775 		goto out_err;
3776 
3777 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3778 
3779 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3780 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
3781 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3782 			   "fs metadata", block, block+len);
3783 		/* File system mounted not to panic on error
3784 		 * Fix the bitmap and return EFSCORRUPTED
3785 		 * We leak some of the blocks here.
3786 		 */
3787 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3788 		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3789 			      ac->ac_b_ex.fe_len);
3790 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3791 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3792 		if (!err)
3793 			err = -EFSCORRUPTED;
3794 		goto out_err;
3795 	}
3796 
3797 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3798 #ifdef AGGRESSIVE_CHECK
3799 	{
3800 		int i;
3801 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3802 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3803 						bitmap_bh->b_data));
3804 		}
3805 	}
3806 #endif
3807 	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3808 		      ac->ac_b_ex.fe_len);
3809 	if (ext4_has_group_desc_csum(sb) &&
3810 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3811 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3812 		ext4_free_group_clusters_set(sb, gdp,
3813 					     ext4_free_clusters_after_init(sb,
3814 						ac->ac_b_ex.fe_group, gdp));
3815 	}
3816 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3817 	ext4_free_group_clusters_set(sb, gdp, len);
3818 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
3819 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3820 
3821 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3822 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3823 	/*
3824 	 * Now reduce the dirty block count also. Should not go negative
3825 	 */
3826 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3827 		/* release all the reserved blocks if non delalloc */
3828 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3829 				   reserv_clstrs);
3830 
3831 	if (sbi->s_log_groups_per_flex) {
3832 		ext4_group_t flex_group = ext4_flex_group(sbi,
3833 							  ac->ac_b_ex.fe_group);
3834 		atomic64_sub(ac->ac_b_ex.fe_len,
3835 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3836 						  flex_group)->free_clusters);
3837 	}
3838 
3839 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3840 	if (err)
3841 		goto out_err;
3842 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3843 
3844 out_err:
3845 	brelse(bitmap_bh);
3846 	return err;
3847 }
3848 
3849 /*
3850  * Idempotent helper for Ext4 fast commit replay path to set the state of
3851  * blocks in bitmaps and update counters.
3852  */
3853 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
3854 			int len, int state)
3855 {
3856 	struct buffer_head *bitmap_bh = NULL;
3857 	struct ext4_group_desc *gdp;
3858 	struct buffer_head *gdp_bh;
3859 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3860 	ext4_group_t group;
3861 	ext4_grpblk_t blkoff;
3862 	int i, err;
3863 	int already;
3864 	unsigned int clen, clen_changed, thisgrp_len;
3865 
3866 	while (len > 0) {
3867 		ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
3868 
3869 		/*
3870 		 * Check to see if we are freeing blocks across a group
3871 		 * boundary.
3872 		 * In case of flex_bg, this can happen that (block, len) may
3873 		 * span across more than one group. In that case we need to
3874 		 * get the corresponding group metadata to work with.
3875 		 * For this we have goto again loop.
3876 		 */
3877 		thisgrp_len = min_t(unsigned int, (unsigned int)len,
3878 			EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
3879 		clen = EXT4_NUM_B2C(sbi, thisgrp_len);
3880 
3881 		if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
3882 			ext4_error(sb, "Marking blocks in system zone - "
3883 				   "Block = %llu, len = %u",
3884 				   block, thisgrp_len);
3885 			bitmap_bh = NULL;
3886 			break;
3887 		}
3888 
3889 		bitmap_bh = ext4_read_block_bitmap(sb, group);
3890 		if (IS_ERR(bitmap_bh)) {
3891 			err = PTR_ERR(bitmap_bh);
3892 			bitmap_bh = NULL;
3893 			break;
3894 		}
3895 
3896 		err = -EIO;
3897 		gdp = ext4_get_group_desc(sb, group, &gdp_bh);
3898 		if (!gdp)
3899 			break;
3900 
3901 		ext4_lock_group(sb, group);
3902 		already = 0;
3903 		for (i = 0; i < clen; i++)
3904 			if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
3905 					 !state)
3906 				already++;
3907 
3908 		clen_changed = clen - already;
3909 		if (state)
3910 			mb_set_bits(bitmap_bh->b_data, blkoff, clen);
3911 		else
3912 			mb_clear_bits(bitmap_bh->b_data, blkoff, clen);
3913 		if (ext4_has_group_desc_csum(sb) &&
3914 		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3915 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3916 			ext4_free_group_clusters_set(sb, gdp,
3917 			     ext4_free_clusters_after_init(sb, group, gdp));
3918 		}
3919 		if (state)
3920 			clen = ext4_free_group_clusters(sb, gdp) - clen_changed;
3921 		else
3922 			clen = ext4_free_group_clusters(sb, gdp) + clen_changed;
3923 
3924 		ext4_free_group_clusters_set(sb, gdp, clen);
3925 		ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
3926 		ext4_group_desc_csum_set(sb, group, gdp);
3927 
3928 		ext4_unlock_group(sb, group);
3929 
3930 		if (sbi->s_log_groups_per_flex) {
3931 			ext4_group_t flex_group = ext4_flex_group(sbi, group);
3932 			struct flex_groups *fg = sbi_array_rcu_deref(sbi,
3933 						   s_flex_groups, flex_group);
3934 
3935 			if (state)
3936 				atomic64_sub(clen_changed, &fg->free_clusters);
3937 			else
3938 				atomic64_add(clen_changed, &fg->free_clusters);
3939 
3940 		}
3941 
3942 		err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
3943 		if (err)
3944 			break;
3945 		sync_dirty_buffer(bitmap_bh);
3946 		err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
3947 		sync_dirty_buffer(gdp_bh);
3948 		if (err)
3949 			break;
3950 
3951 		block += thisgrp_len;
3952 		len -= thisgrp_len;
3953 		brelse(bitmap_bh);
3954 		BUG_ON(len < 0);
3955 	}
3956 
3957 	if (err)
3958 		brelse(bitmap_bh);
3959 }
3960 
3961 /*
3962  * here we normalize request for locality group
3963  * Group request are normalized to s_mb_group_prealloc, which goes to
3964  * s_strip if we set the same via mount option.
3965  * s_mb_group_prealloc can be configured via
3966  * /sys/fs/ext4/<partition>/mb_group_prealloc
3967  *
3968  * XXX: should we try to preallocate more than the group has now?
3969  */
3970 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3971 {
3972 	struct super_block *sb = ac->ac_sb;
3973 	struct ext4_locality_group *lg = ac->ac_lg;
3974 
3975 	BUG_ON(lg == NULL);
3976 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3977 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
3978 }
3979 
3980 /*
3981  * This function returns the next element to look at during inode
3982  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
3983  * (ei->i_prealloc_lock)
3984  *
3985  * new_start	The start of the range we want to compare
3986  * cur_start	The existing start that we are comparing against
3987  * node	The node of the rb_tree
3988  */
3989 static inline struct rb_node*
3990 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
3991 {
3992 	if (new_start < cur_start)
3993 		return node->rb_left;
3994 	else
3995 		return node->rb_right;
3996 }
3997 
3998 static inline void
3999 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4000 			  ext4_lblk_t start, ext4_lblk_t end)
4001 {
4002 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4003 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4004 	struct ext4_prealloc_space *tmp_pa;
4005 	ext4_lblk_t tmp_pa_start, tmp_pa_end;
4006 	struct rb_node *iter;
4007 
4008 	read_lock(&ei->i_prealloc_lock);
4009 	for (iter = ei->i_prealloc_node.rb_node; iter;
4010 	     iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4011 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4012 				  pa_node.inode_node);
4013 		tmp_pa_start = tmp_pa->pa_lstart;
4014 		tmp_pa_end = tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len);
4015 
4016 		spin_lock(&tmp_pa->pa_lock);
4017 		if (tmp_pa->pa_deleted == 0)
4018 			BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4019 		spin_unlock(&tmp_pa->pa_lock);
4020 	}
4021 	read_unlock(&ei->i_prealloc_lock);
4022 }
4023 
4024 /*
4025  * Given an allocation context "ac" and a range "start", "end", check
4026  * and adjust boundaries if the range overlaps with any of the existing
4027  * preallocatoins stored in the corresponding inode of the allocation context.
4028  *
4029  * Parameters:
4030  *	ac			allocation context
4031  *	start			start of the new range
4032  *	end			end of the new range
4033  */
4034 static inline void
4035 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4036 			  ext4_lblk_t *start, ext4_lblk_t *end)
4037 {
4038 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4039 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4040 	struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4041 	struct rb_node *iter;
4042 	ext4_lblk_t new_start, new_end;
4043 	ext4_lblk_t tmp_pa_start, tmp_pa_end, left_pa_end = -1, right_pa_start = -1;
4044 
4045 	new_start = *start;
4046 	new_end = *end;
4047 
4048 	/*
4049 	 * Adjust the normalized range so that it doesn't overlap with any
4050 	 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4051 	 * so it doesn't change underneath us.
4052 	 */
4053 	read_lock(&ei->i_prealloc_lock);
4054 
4055 	/* Step 1: find any one immediate neighboring PA of the normalized range */
4056 	for (iter = ei->i_prealloc_node.rb_node; iter;
4057 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4058 					    tmp_pa_start, iter)) {
4059 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4060 				  pa_node.inode_node);
4061 		tmp_pa_start = tmp_pa->pa_lstart;
4062 		tmp_pa_end = tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len);
4063 
4064 		/* PA must not overlap original request */
4065 		spin_lock(&tmp_pa->pa_lock);
4066 		if (tmp_pa->pa_deleted == 0)
4067 			BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4068 				 ac->ac_o_ex.fe_logical < tmp_pa_start));
4069 		spin_unlock(&tmp_pa->pa_lock);
4070 	}
4071 
4072 	/*
4073 	 * Step 2: check if the found PA is left or right neighbor and
4074 	 * get the other neighbor
4075 	 */
4076 	if (tmp_pa) {
4077 		if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4078 			struct rb_node *tmp;
4079 
4080 			left_pa = tmp_pa;
4081 			tmp = rb_next(&left_pa->pa_node.inode_node);
4082 			if (tmp) {
4083 				right_pa = rb_entry(tmp,
4084 						    struct ext4_prealloc_space,
4085 						    pa_node.inode_node);
4086 			}
4087 		} else {
4088 			struct rb_node *tmp;
4089 
4090 			right_pa = tmp_pa;
4091 			tmp = rb_prev(&right_pa->pa_node.inode_node);
4092 			if (tmp) {
4093 				left_pa = rb_entry(tmp,
4094 						   struct ext4_prealloc_space,
4095 						   pa_node.inode_node);
4096 			}
4097 		}
4098 	}
4099 
4100 	/* Step 3: get the non deleted neighbors */
4101 	if (left_pa) {
4102 		for (iter = &left_pa->pa_node.inode_node;;
4103 		     iter = rb_prev(iter)) {
4104 			if (!iter) {
4105 				left_pa = NULL;
4106 				break;
4107 			}
4108 
4109 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4110 					  pa_node.inode_node);
4111 			left_pa = tmp_pa;
4112 			spin_lock(&tmp_pa->pa_lock);
4113 			if (tmp_pa->pa_deleted == 0) {
4114 				spin_unlock(&tmp_pa->pa_lock);
4115 				break;
4116 			}
4117 			spin_unlock(&tmp_pa->pa_lock);
4118 		}
4119 	}
4120 
4121 	if (right_pa) {
4122 		for (iter = &right_pa->pa_node.inode_node;;
4123 		     iter = rb_next(iter)) {
4124 			if (!iter) {
4125 				right_pa = NULL;
4126 				break;
4127 			}
4128 
4129 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4130 					  pa_node.inode_node);
4131 			right_pa = tmp_pa;
4132 			spin_lock(&tmp_pa->pa_lock);
4133 			if (tmp_pa->pa_deleted == 0) {
4134 				spin_unlock(&tmp_pa->pa_lock);
4135 				break;
4136 			}
4137 			spin_unlock(&tmp_pa->pa_lock);
4138 		}
4139 	}
4140 
4141 	if (left_pa) {
4142 		left_pa_end =
4143 			left_pa->pa_lstart + EXT4_C2B(sbi, left_pa->pa_len);
4144 		BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4145 	}
4146 
4147 	if (right_pa) {
4148 		right_pa_start = right_pa->pa_lstart;
4149 		BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4150 	}
4151 
4152 	/* Step 4: trim our normalized range to not overlap with the neighbors */
4153 	if (left_pa) {
4154 		if (left_pa_end > new_start)
4155 			new_start = left_pa_end;
4156 	}
4157 
4158 	if (right_pa) {
4159 		if (right_pa_start < new_end)
4160 			new_end = right_pa_start;
4161 	}
4162 	read_unlock(&ei->i_prealloc_lock);
4163 
4164 	/* XXX: extra loop to check we really don't overlap preallocations */
4165 	ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4166 
4167 	*start = new_start;
4168 	*end = new_end;
4169 }
4170 
4171 /*
4172  * Normalization means making request better in terms of
4173  * size and alignment
4174  */
4175 static noinline_for_stack void
4176 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4177 				struct ext4_allocation_request *ar)
4178 {
4179 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4180 	struct ext4_super_block *es = sbi->s_es;
4181 	int bsbits, max;
4182 	ext4_lblk_t end;
4183 	loff_t size, start_off;
4184 	loff_t orig_size __maybe_unused;
4185 	ext4_lblk_t start;
4186 
4187 	/* do normalize only data requests, metadata requests
4188 	   do not need preallocation */
4189 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4190 		return;
4191 
4192 	/* sometime caller may want exact blocks */
4193 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4194 		return;
4195 
4196 	/* caller may indicate that preallocation isn't
4197 	 * required (it's a tail, for example) */
4198 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4199 		return;
4200 
4201 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4202 		ext4_mb_normalize_group_request(ac);
4203 		return ;
4204 	}
4205 
4206 	bsbits = ac->ac_sb->s_blocksize_bits;
4207 
4208 	/* first, let's learn actual file size
4209 	 * given current request is allocated */
4210 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4211 	size = size << bsbits;
4212 	if (size < i_size_read(ac->ac_inode))
4213 		size = i_size_read(ac->ac_inode);
4214 	orig_size = size;
4215 
4216 	/* max size of free chunks */
4217 	max = 2 << bsbits;
4218 
4219 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
4220 		(req <= (size) || max <= (chunk_size))
4221 
4222 	/* first, try to predict filesize */
4223 	/* XXX: should this table be tunable? */
4224 	start_off = 0;
4225 	if (size <= 16 * 1024) {
4226 		size = 16 * 1024;
4227 	} else if (size <= 32 * 1024) {
4228 		size = 32 * 1024;
4229 	} else if (size <= 64 * 1024) {
4230 		size = 64 * 1024;
4231 	} else if (size <= 128 * 1024) {
4232 		size = 128 * 1024;
4233 	} else if (size <= 256 * 1024) {
4234 		size = 256 * 1024;
4235 	} else if (size <= 512 * 1024) {
4236 		size = 512 * 1024;
4237 	} else if (size <= 1024 * 1024) {
4238 		size = 1024 * 1024;
4239 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4240 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4241 						(21 - bsbits)) << 21;
4242 		size = 2 * 1024 * 1024;
4243 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4244 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4245 							(22 - bsbits)) << 22;
4246 		size = 4 * 1024 * 1024;
4247 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
4248 					(8<<20)>>bsbits, max, 8 * 1024)) {
4249 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4250 							(23 - bsbits)) << 23;
4251 		size = 8 * 1024 * 1024;
4252 	} else {
4253 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4254 		size	  = (loff_t) EXT4_C2B(sbi,
4255 					      ac->ac_o_ex.fe_len) << bsbits;
4256 	}
4257 	size = size >> bsbits;
4258 	start = start_off >> bsbits;
4259 
4260 	/*
4261 	 * For tiny groups (smaller than 8MB) the chosen allocation
4262 	 * alignment may be larger than group size. Make sure the
4263 	 * alignment does not move allocation to a different group which
4264 	 * makes mballoc fail assertions later.
4265 	 */
4266 	start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4267 			(ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4268 
4269 	/* don't cover already allocated blocks in selected range */
4270 	if (ar->pleft && start <= ar->lleft) {
4271 		size -= ar->lleft + 1 - start;
4272 		start = ar->lleft + 1;
4273 	}
4274 	if (ar->pright && start + size - 1 >= ar->lright)
4275 		size -= start + size - ar->lright;
4276 
4277 	/*
4278 	 * Trim allocation request for filesystems with artificially small
4279 	 * groups.
4280 	 */
4281 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4282 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4283 
4284 	end = start + size;
4285 
4286 	ext4_mb_pa_adjust_overlap(ac, &start, &end);
4287 
4288 	size = end - start;
4289 
4290 	/*
4291 	 * In this function "start" and "size" are normalized for better
4292 	 * alignment and length such that we could preallocate more blocks.
4293 	 * This normalization is done such that original request of
4294 	 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4295 	 * "size" boundaries.
4296 	 * (Note fe_len can be relaxed since FS block allocation API does not
4297 	 * provide gurantee on number of contiguous blocks allocation since that
4298 	 * depends upon free space left, etc).
4299 	 * In case of inode pa, later we use the allocated blocks
4300 	 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4301 	 * range of goal/best blocks [start, size] to put it at the
4302 	 * ac_o_ex.fe_logical extent of this inode.
4303 	 * (See ext4_mb_use_inode_pa() for more details)
4304 	 */
4305 	if (start + size <= ac->ac_o_ex.fe_logical ||
4306 			start > ac->ac_o_ex.fe_logical) {
4307 		ext4_msg(ac->ac_sb, KERN_ERR,
4308 			 "start %lu, size %lu, fe_logical %lu",
4309 			 (unsigned long) start, (unsigned long) size,
4310 			 (unsigned long) ac->ac_o_ex.fe_logical);
4311 		BUG();
4312 	}
4313 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4314 
4315 	/* now prepare goal request */
4316 
4317 	/* XXX: is it better to align blocks WRT to logical
4318 	 * placement or satisfy big request as is */
4319 	ac->ac_g_ex.fe_logical = start;
4320 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4321 
4322 	/* define goal start in order to merge */
4323 	if (ar->pright && (ar->lright == (start + size)) &&
4324 	    ar->pright >= size &&
4325 	    ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4326 		/* merge to the right */
4327 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4328 						&ac->ac_g_ex.fe_group,
4329 						&ac->ac_g_ex.fe_start);
4330 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4331 	}
4332 	if (ar->pleft && (ar->lleft + 1 == start) &&
4333 	    ar->pleft + 1 < ext4_blocks_count(es)) {
4334 		/* merge to the left */
4335 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4336 						&ac->ac_g_ex.fe_group,
4337 						&ac->ac_g_ex.fe_start);
4338 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4339 	}
4340 
4341 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4342 		 orig_size, start);
4343 }
4344 
4345 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4346 {
4347 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4348 
4349 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4350 		atomic_inc(&sbi->s_bal_reqs);
4351 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4352 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4353 			atomic_inc(&sbi->s_bal_success);
4354 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4355 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4356 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4357 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4358 			atomic_inc(&sbi->s_bal_goals);
4359 		if (ac->ac_found > sbi->s_mb_max_to_scan)
4360 			atomic_inc(&sbi->s_bal_breaks);
4361 	}
4362 
4363 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4364 		trace_ext4_mballoc_alloc(ac);
4365 	else
4366 		trace_ext4_mballoc_prealloc(ac);
4367 }
4368 
4369 /*
4370  * Called on failure; free up any blocks from the inode PA for this
4371  * context.  We don't need this for MB_GROUP_PA because we only change
4372  * pa_free in ext4_mb_release_context(), but on failure, we've already
4373  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4374  */
4375 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4376 {
4377 	struct ext4_prealloc_space *pa = ac->ac_pa;
4378 	struct ext4_buddy e4b;
4379 	int err;
4380 
4381 	if (pa == NULL) {
4382 		if (ac->ac_f_ex.fe_len == 0)
4383 			return;
4384 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4385 		if (WARN_RATELIMIT(err,
4386 				   "ext4: mb_load_buddy failed (%d)", err))
4387 			/*
4388 			 * This should never happen since we pin the
4389 			 * pages in the ext4_allocation_context so
4390 			 * ext4_mb_load_buddy() should never fail.
4391 			 */
4392 			return;
4393 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4394 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4395 			       ac->ac_f_ex.fe_len);
4396 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4397 		ext4_mb_unload_buddy(&e4b);
4398 		return;
4399 	}
4400 	if (pa->pa_type == MB_INODE_PA) {
4401 		spin_lock(&pa->pa_lock);
4402 		pa->pa_free += ac->ac_b_ex.fe_len;
4403 		spin_unlock(&pa->pa_lock);
4404 	}
4405 }
4406 
4407 /*
4408  * use blocks preallocated to inode
4409  */
4410 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4411 				struct ext4_prealloc_space *pa)
4412 {
4413 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4414 	ext4_fsblk_t start;
4415 	ext4_fsblk_t end;
4416 	int len;
4417 
4418 	/* found preallocated blocks, use them */
4419 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4420 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4421 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4422 	len = EXT4_NUM_B2C(sbi, end - start);
4423 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4424 					&ac->ac_b_ex.fe_start);
4425 	ac->ac_b_ex.fe_len = len;
4426 	ac->ac_status = AC_STATUS_FOUND;
4427 	ac->ac_pa = pa;
4428 
4429 	BUG_ON(start < pa->pa_pstart);
4430 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4431 	BUG_ON(pa->pa_free < len);
4432 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4433 	pa->pa_free -= len;
4434 
4435 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4436 }
4437 
4438 /*
4439  * use blocks preallocated to locality group
4440  */
4441 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4442 				struct ext4_prealloc_space *pa)
4443 {
4444 	unsigned int len = ac->ac_o_ex.fe_len;
4445 
4446 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4447 					&ac->ac_b_ex.fe_group,
4448 					&ac->ac_b_ex.fe_start);
4449 	ac->ac_b_ex.fe_len = len;
4450 	ac->ac_status = AC_STATUS_FOUND;
4451 	ac->ac_pa = pa;
4452 
4453 	/* we don't correct pa_pstart or pa_len here to avoid
4454 	 * possible race when the group is being loaded concurrently
4455 	 * instead we correct pa later, after blocks are marked
4456 	 * in on-disk bitmap -- see ext4_mb_release_context()
4457 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4458 	 */
4459 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4460 		 pa->pa_lstart, len, pa);
4461 }
4462 
4463 /*
4464  * Return the prealloc space that have minimal distance
4465  * from the goal block. @cpa is the prealloc
4466  * space that is having currently known minimal distance
4467  * from the goal block.
4468  */
4469 static struct ext4_prealloc_space *
4470 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4471 			struct ext4_prealloc_space *pa,
4472 			struct ext4_prealloc_space *cpa)
4473 {
4474 	ext4_fsblk_t cur_distance, new_distance;
4475 
4476 	if (cpa == NULL) {
4477 		atomic_inc(&pa->pa_count);
4478 		return pa;
4479 	}
4480 	cur_distance = abs(goal_block - cpa->pa_pstart);
4481 	new_distance = abs(goal_block - pa->pa_pstart);
4482 
4483 	if (cur_distance <= new_distance)
4484 		return cpa;
4485 
4486 	/* drop the previous reference */
4487 	atomic_dec(&cpa->pa_count);
4488 	atomic_inc(&pa->pa_count);
4489 	return pa;
4490 }
4491 
4492 /*
4493  * search goal blocks in preallocated space
4494  */
4495 static noinline_for_stack bool
4496 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4497 {
4498 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4499 	int order, i;
4500 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4501 	struct ext4_locality_group *lg;
4502 	struct ext4_prealloc_space *tmp_pa, *cpa = NULL;
4503 	ext4_lblk_t tmp_pa_start, tmp_pa_end;
4504 	struct rb_node *iter;
4505 	ext4_fsblk_t goal_block;
4506 
4507 	/* only data can be preallocated */
4508 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4509 		return false;
4510 
4511 	/* first, try per-file preallocation */
4512 	read_lock(&ei->i_prealloc_lock);
4513 	for (iter = ei->i_prealloc_node.rb_node; iter;
4514 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4515 					    tmp_pa_start, iter)) {
4516 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4517 				  pa_node.inode_node);
4518 
4519 		/* all fields in this condition don't change,
4520 		 * so we can skip locking for them */
4521 		tmp_pa_start = tmp_pa->pa_lstart;
4522 		tmp_pa_end = tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len);
4523 
4524 		/* original request start doesn't lie in this PA */
4525 		if (ac->ac_o_ex.fe_logical < tmp_pa_start ||
4526 		    ac->ac_o_ex.fe_logical >= tmp_pa_end)
4527 			continue;
4528 
4529 		/* non-extent files can't have physical blocks past 2^32 */
4530 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4531 		    (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4532 		     EXT4_MAX_BLOCK_FILE_PHYS)) {
4533 			/*
4534 			 * Since PAs don't overlap, we won't find any
4535 			 * other PA to satisfy this.
4536 			 */
4537 			break;
4538 		}
4539 
4540 		/* found preallocated blocks, use them */
4541 		spin_lock(&tmp_pa->pa_lock);
4542 		if (tmp_pa->pa_deleted == 0 && tmp_pa->pa_free) {
4543 			atomic_inc(&tmp_pa->pa_count);
4544 			ext4_mb_use_inode_pa(ac, tmp_pa);
4545 			spin_unlock(&tmp_pa->pa_lock);
4546 			ac->ac_criteria = 10;
4547 			read_unlock(&ei->i_prealloc_lock);
4548 			return true;
4549 		}
4550 		spin_unlock(&tmp_pa->pa_lock);
4551 	}
4552 	read_unlock(&ei->i_prealloc_lock);
4553 
4554 	/* can we use group allocation? */
4555 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4556 		return false;
4557 
4558 	/* inode may have no locality group for some reason */
4559 	lg = ac->ac_lg;
4560 	if (lg == NULL)
4561 		return false;
4562 	order  = fls(ac->ac_o_ex.fe_len) - 1;
4563 	if (order > PREALLOC_TB_SIZE - 1)
4564 		/* The max size of hash table is PREALLOC_TB_SIZE */
4565 		order = PREALLOC_TB_SIZE - 1;
4566 
4567 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4568 	/*
4569 	 * search for the prealloc space that is having
4570 	 * minimal distance from the goal block.
4571 	 */
4572 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4573 		rcu_read_lock();
4574 		list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4575 					pa_node.lg_list) {
4576 			spin_lock(&tmp_pa->pa_lock);
4577 			if (tmp_pa->pa_deleted == 0 &&
4578 					tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4579 
4580 				cpa = ext4_mb_check_group_pa(goal_block,
4581 								tmp_pa, cpa);
4582 			}
4583 			spin_unlock(&tmp_pa->pa_lock);
4584 		}
4585 		rcu_read_unlock();
4586 	}
4587 	if (cpa) {
4588 		ext4_mb_use_group_pa(ac, cpa);
4589 		ac->ac_criteria = 20;
4590 		return true;
4591 	}
4592 	return false;
4593 }
4594 
4595 /*
4596  * the function goes through all block freed in the group
4597  * but not yet committed and marks them used in in-core bitmap.
4598  * buddy must be generated from this bitmap
4599  * Need to be called with the ext4 group lock held
4600  */
4601 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
4602 						ext4_group_t group)
4603 {
4604 	struct rb_node *n;
4605 	struct ext4_group_info *grp;
4606 	struct ext4_free_data *entry;
4607 
4608 	grp = ext4_get_group_info(sb, group);
4609 	n = rb_first(&(grp->bb_free_root));
4610 
4611 	while (n) {
4612 		entry = rb_entry(n, struct ext4_free_data, efd_node);
4613 		mb_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
4614 		n = rb_next(n);
4615 	}
4616 	return;
4617 }
4618 
4619 /*
4620  * the function goes through all preallocation in this group and marks them
4621  * used in in-core bitmap. buddy must be generated from this bitmap
4622  * Need to be called with ext4 group lock held
4623  */
4624 static noinline_for_stack
4625 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4626 					ext4_group_t group)
4627 {
4628 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4629 	struct ext4_prealloc_space *pa;
4630 	struct list_head *cur;
4631 	ext4_group_t groupnr;
4632 	ext4_grpblk_t start;
4633 	int preallocated = 0;
4634 	int len;
4635 
4636 	/* all form of preallocation discards first load group,
4637 	 * so the only competing code is preallocation use.
4638 	 * we don't need any locking here
4639 	 * notice we do NOT ignore preallocations with pa_deleted
4640 	 * otherwise we could leave used blocks available for
4641 	 * allocation in buddy when concurrent ext4_mb_put_pa()
4642 	 * is dropping preallocation
4643 	 */
4644 	list_for_each(cur, &grp->bb_prealloc_list) {
4645 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
4646 		spin_lock(&pa->pa_lock);
4647 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4648 					     &groupnr, &start);
4649 		len = pa->pa_len;
4650 		spin_unlock(&pa->pa_lock);
4651 		if (unlikely(len == 0))
4652 			continue;
4653 		BUG_ON(groupnr != group);
4654 		mb_set_bits(bitmap, start, len);
4655 		preallocated += len;
4656 	}
4657 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
4658 }
4659 
4660 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
4661 				    struct ext4_prealloc_space *pa)
4662 {
4663 	struct ext4_inode_info *ei;
4664 
4665 	if (pa->pa_deleted) {
4666 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
4667 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
4668 			     pa->pa_len);
4669 		return;
4670 	}
4671 
4672 	pa->pa_deleted = 1;
4673 
4674 	if (pa->pa_type == MB_INODE_PA) {
4675 		ei = EXT4_I(pa->pa_inode);
4676 		atomic_dec(&ei->i_prealloc_active);
4677 	}
4678 }
4679 
4680 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
4681 {
4682 	BUG_ON(!pa);
4683 	BUG_ON(atomic_read(&pa->pa_count));
4684 	BUG_ON(pa->pa_deleted == 0);
4685 	kmem_cache_free(ext4_pspace_cachep, pa);
4686 }
4687 
4688 static void ext4_mb_pa_callback(struct rcu_head *head)
4689 {
4690 	struct ext4_prealloc_space *pa;
4691 
4692 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
4693 	ext4_mb_pa_free(pa);
4694 }
4695 
4696 /*
4697  * drops a reference to preallocated space descriptor
4698  * if this was the last reference and the space is consumed
4699  */
4700 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
4701 			struct super_block *sb, struct ext4_prealloc_space *pa)
4702 {
4703 	ext4_group_t grp;
4704 	ext4_fsblk_t grp_blk;
4705 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4706 
4707 	/* in this short window concurrent discard can set pa_deleted */
4708 	spin_lock(&pa->pa_lock);
4709 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
4710 		spin_unlock(&pa->pa_lock);
4711 		return;
4712 	}
4713 
4714 	if (pa->pa_deleted == 1) {
4715 		spin_unlock(&pa->pa_lock);
4716 		return;
4717 	}
4718 
4719 	ext4_mb_mark_pa_deleted(sb, pa);
4720 	spin_unlock(&pa->pa_lock);
4721 
4722 	grp_blk = pa->pa_pstart;
4723 	/*
4724 	 * If doing group-based preallocation, pa_pstart may be in the
4725 	 * next group when pa is used up
4726 	 */
4727 	if (pa->pa_type == MB_GROUP_PA)
4728 		grp_blk--;
4729 
4730 	grp = ext4_get_group_number(sb, grp_blk);
4731 
4732 	/*
4733 	 * possible race:
4734 	 *
4735 	 *  P1 (buddy init)			P2 (regular allocation)
4736 	 *					find block B in PA
4737 	 *  copy on-disk bitmap to buddy
4738 	 *  					mark B in on-disk bitmap
4739 	 *					drop PA from group
4740 	 *  mark all PAs in buddy
4741 	 *
4742 	 * thus, P1 initializes buddy with B available. to prevent this
4743 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
4744 	 * against that pair
4745 	 */
4746 	ext4_lock_group(sb, grp);
4747 	list_del(&pa->pa_group_list);
4748 	ext4_unlock_group(sb, grp);
4749 
4750 	if (pa->pa_type == MB_INODE_PA) {
4751 		write_lock(pa->pa_node_lock.inode_lock);
4752 		rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
4753 		write_unlock(pa->pa_node_lock.inode_lock);
4754 		ext4_mb_pa_free(pa);
4755 	} else {
4756 		spin_lock(pa->pa_node_lock.lg_lock);
4757 		list_del_rcu(&pa->pa_node.lg_list);
4758 		spin_unlock(pa->pa_node_lock.lg_lock);
4759 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4760 	}
4761 }
4762 
4763 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
4764 {
4765 	struct rb_node **iter = &root->rb_node, *parent = NULL;
4766 	struct ext4_prealloc_space *iter_pa, *new_pa;
4767 	ext4_lblk_t iter_start, new_start;
4768 
4769 	while (*iter) {
4770 		iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
4771 				   pa_node.inode_node);
4772 		new_pa = rb_entry(new, struct ext4_prealloc_space,
4773 				   pa_node.inode_node);
4774 		iter_start = iter_pa->pa_lstart;
4775 		new_start = new_pa->pa_lstart;
4776 
4777 		parent = *iter;
4778 		if (new_start < iter_start)
4779 			iter = &((*iter)->rb_left);
4780 		else
4781 			iter = &((*iter)->rb_right);
4782 	}
4783 
4784 	rb_link_node(new, parent, iter);
4785 	rb_insert_color(new, root);
4786 }
4787 
4788 /*
4789  * creates new preallocated space for given inode
4790  */
4791 static noinline_for_stack void
4792 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
4793 {
4794 	struct super_block *sb = ac->ac_sb;
4795 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4796 	struct ext4_prealloc_space *pa;
4797 	struct ext4_group_info *grp;
4798 	struct ext4_inode_info *ei;
4799 
4800 	/* preallocate only when found space is larger then requested */
4801 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4802 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4803 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4804 	BUG_ON(ac->ac_pa == NULL);
4805 
4806 	pa = ac->ac_pa;
4807 
4808 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
4809 		int new_bex_start;
4810 		int new_bex_end;
4811 
4812 		/* we can't allocate as much as normalizer wants.
4813 		 * so, found space must get proper lstart
4814 		 * to cover original request */
4815 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
4816 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
4817 
4818 		/*
4819 		 * Use the below logic for adjusting best extent as it keeps
4820 		 * fragmentation in check while ensuring logical range of best
4821 		 * extent doesn't overflow out of goal extent:
4822 		 *
4823 		 * 1. Check if best ex can be kept at end of goal and still
4824 		 *    cover original start
4825 		 * 2. Else, check if best ex can be kept at start of goal and
4826 		 *    still cover original start
4827 		 * 3. Else, keep the best ex at start of original request.
4828 		 */
4829 		new_bex_end = ac->ac_g_ex.fe_logical +
4830 			EXT4_C2B(sbi, ac->ac_g_ex.fe_len);
4831 		new_bex_start = new_bex_end - EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4832 		if (ac->ac_o_ex.fe_logical >= new_bex_start)
4833 			goto adjust_bex;
4834 
4835 		new_bex_start = ac->ac_g_ex.fe_logical;
4836 		new_bex_end =
4837 			new_bex_start + EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4838 		if (ac->ac_o_ex.fe_logical < new_bex_end)
4839 			goto adjust_bex;
4840 
4841 		new_bex_start = ac->ac_o_ex.fe_logical;
4842 		new_bex_end =
4843 			new_bex_start + EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4844 
4845 adjust_bex:
4846 		ac->ac_b_ex.fe_logical = new_bex_start;
4847 
4848 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
4849 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
4850 		BUG_ON(new_bex_end > (ac->ac_g_ex.fe_logical +
4851 				      EXT4_C2B(sbi, ac->ac_g_ex.fe_len)));
4852 	}
4853 
4854 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
4855 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4856 	pa->pa_len = ac->ac_b_ex.fe_len;
4857 	pa->pa_free = pa->pa_len;
4858 	spin_lock_init(&pa->pa_lock);
4859 	INIT_LIST_HEAD(&pa->pa_group_list);
4860 	pa->pa_deleted = 0;
4861 	pa->pa_type = MB_INODE_PA;
4862 
4863 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4864 		 pa->pa_len, pa->pa_lstart);
4865 	trace_ext4_mb_new_inode_pa(ac, pa);
4866 
4867 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
4868 	ext4_mb_use_inode_pa(ac, pa);
4869 
4870 	ei = EXT4_I(ac->ac_inode);
4871 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4872 
4873 	pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
4874 	pa->pa_inode = ac->ac_inode;
4875 
4876 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4877 
4878 	write_lock(pa->pa_node_lock.inode_lock);
4879 	ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
4880 	write_unlock(pa->pa_node_lock.inode_lock);
4881 	atomic_inc(&ei->i_prealloc_active);
4882 }
4883 
4884 /*
4885  * creates new preallocated space for locality group inodes belongs to
4886  */
4887 static noinline_for_stack void
4888 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
4889 {
4890 	struct super_block *sb = ac->ac_sb;
4891 	struct ext4_locality_group *lg;
4892 	struct ext4_prealloc_space *pa;
4893 	struct ext4_group_info *grp;
4894 
4895 	/* preallocate only when found space is larger then requested */
4896 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4897 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4898 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4899 	BUG_ON(ac->ac_pa == NULL);
4900 
4901 	pa = ac->ac_pa;
4902 
4903 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4904 	pa->pa_lstart = pa->pa_pstart;
4905 	pa->pa_len = ac->ac_b_ex.fe_len;
4906 	pa->pa_free = pa->pa_len;
4907 	spin_lock_init(&pa->pa_lock);
4908 	INIT_LIST_HEAD(&pa->pa_node.lg_list);
4909 	INIT_LIST_HEAD(&pa->pa_group_list);
4910 	pa->pa_deleted = 0;
4911 	pa->pa_type = MB_GROUP_PA;
4912 
4913 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4914 		 pa->pa_len, pa->pa_lstart);
4915 	trace_ext4_mb_new_group_pa(ac, pa);
4916 
4917 	ext4_mb_use_group_pa(ac, pa);
4918 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
4919 
4920 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4921 	lg = ac->ac_lg;
4922 	BUG_ON(lg == NULL);
4923 
4924 	pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
4925 	pa->pa_inode = NULL;
4926 
4927 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4928 
4929 	/*
4930 	 * We will later add the new pa to the right bucket
4931 	 * after updating the pa_free in ext4_mb_release_context
4932 	 */
4933 }
4934 
4935 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
4936 {
4937 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4938 		ext4_mb_new_group_pa(ac);
4939 	else
4940 		ext4_mb_new_inode_pa(ac);
4941 }
4942 
4943 /*
4944  * finds all unused blocks in on-disk bitmap, frees them in
4945  * in-core bitmap and buddy.
4946  * @pa must be unlinked from inode and group lists, so that
4947  * nobody else can find/use it.
4948  * the caller MUST hold group/inode locks.
4949  * TODO: optimize the case when there are no in-core structures yet
4950  */
4951 static noinline_for_stack int
4952 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
4953 			struct ext4_prealloc_space *pa)
4954 {
4955 	struct super_block *sb = e4b->bd_sb;
4956 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4957 	unsigned int end;
4958 	unsigned int next;
4959 	ext4_group_t group;
4960 	ext4_grpblk_t bit;
4961 	unsigned long long grp_blk_start;
4962 	int free = 0;
4963 
4964 	BUG_ON(pa->pa_deleted == 0);
4965 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4966 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
4967 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4968 	end = bit + pa->pa_len;
4969 
4970 	while (bit < end) {
4971 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
4972 		if (bit >= end)
4973 			break;
4974 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
4975 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
4976 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
4977 			 (unsigned) next - bit, (unsigned) group);
4978 		free += next - bit;
4979 
4980 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
4981 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
4982 						    EXT4_C2B(sbi, bit)),
4983 					       next - bit);
4984 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
4985 		bit = next + 1;
4986 	}
4987 	if (free != pa->pa_free) {
4988 		ext4_msg(e4b->bd_sb, KERN_CRIT,
4989 			 "pa %p: logic %lu, phys. %lu, len %d",
4990 			 pa, (unsigned long) pa->pa_lstart,
4991 			 (unsigned long) pa->pa_pstart,
4992 			 pa->pa_len);
4993 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
4994 					free, pa->pa_free);
4995 		/*
4996 		 * pa is already deleted so we use the value obtained
4997 		 * from the bitmap and continue.
4998 		 */
4999 	}
5000 	atomic_add(free, &sbi->s_mb_discarded);
5001 
5002 	return 0;
5003 }
5004 
5005 static noinline_for_stack int
5006 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5007 				struct ext4_prealloc_space *pa)
5008 {
5009 	struct super_block *sb = e4b->bd_sb;
5010 	ext4_group_t group;
5011 	ext4_grpblk_t bit;
5012 
5013 	trace_ext4_mb_release_group_pa(sb, pa);
5014 	BUG_ON(pa->pa_deleted == 0);
5015 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5016 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5017 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5018 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5019 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5020 
5021 	return 0;
5022 }
5023 
5024 /*
5025  * releases all preallocations in given group
5026  *
5027  * first, we need to decide discard policy:
5028  * - when do we discard
5029  *   1) ENOSPC
5030  * - how many do we discard
5031  *   1) how many requested
5032  */
5033 static noinline_for_stack int
5034 ext4_mb_discard_group_preallocations(struct super_block *sb,
5035 				     ext4_group_t group, int *busy)
5036 {
5037 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5038 	struct buffer_head *bitmap_bh = NULL;
5039 	struct ext4_prealloc_space *pa, *tmp;
5040 	struct list_head list;
5041 	struct ext4_buddy e4b;
5042 	struct ext4_inode_info *ei;
5043 	int err;
5044 	int free = 0;
5045 
5046 	mb_debug(sb, "discard preallocation for group %u\n", group);
5047 	if (list_empty(&grp->bb_prealloc_list))
5048 		goto out_dbg;
5049 
5050 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5051 	if (IS_ERR(bitmap_bh)) {
5052 		err = PTR_ERR(bitmap_bh);
5053 		ext4_error_err(sb, -err,
5054 			       "Error %d reading block bitmap for %u",
5055 			       err, group);
5056 		goto out_dbg;
5057 	}
5058 
5059 	err = ext4_mb_load_buddy(sb, group, &e4b);
5060 	if (err) {
5061 		ext4_warning(sb, "Error %d loading buddy information for %u",
5062 			     err, group);
5063 		put_bh(bitmap_bh);
5064 		goto out_dbg;
5065 	}
5066 
5067 	INIT_LIST_HEAD(&list);
5068 	ext4_lock_group(sb, group);
5069 	list_for_each_entry_safe(pa, tmp,
5070 				&grp->bb_prealloc_list, pa_group_list) {
5071 		spin_lock(&pa->pa_lock);
5072 		if (atomic_read(&pa->pa_count)) {
5073 			spin_unlock(&pa->pa_lock);
5074 			*busy = 1;
5075 			continue;
5076 		}
5077 		if (pa->pa_deleted) {
5078 			spin_unlock(&pa->pa_lock);
5079 			continue;
5080 		}
5081 
5082 		/* seems this one can be freed ... */
5083 		ext4_mb_mark_pa_deleted(sb, pa);
5084 
5085 		if (!free)
5086 			this_cpu_inc(discard_pa_seq);
5087 
5088 		/* we can trust pa_free ... */
5089 		free += pa->pa_free;
5090 
5091 		spin_unlock(&pa->pa_lock);
5092 
5093 		list_del(&pa->pa_group_list);
5094 		list_add(&pa->u.pa_tmp_list, &list);
5095 	}
5096 
5097 	/* now free all selected PAs */
5098 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5099 
5100 		/* remove from object (inode or locality group) */
5101 		if (pa->pa_type == MB_GROUP_PA) {
5102 			spin_lock(pa->pa_node_lock.lg_lock);
5103 			list_del_rcu(&pa->pa_node.lg_list);
5104 			spin_unlock(pa->pa_node_lock.lg_lock);
5105 		} else {
5106 			write_lock(pa->pa_node_lock.inode_lock);
5107 			ei = EXT4_I(pa->pa_inode);
5108 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5109 			write_unlock(pa->pa_node_lock.inode_lock);
5110 		}
5111 
5112 		list_del(&pa->u.pa_tmp_list);
5113 
5114 		if (pa->pa_type == MB_GROUP_PA) {
5115 			ext4_mb_release_group_pa(&e4b, pa);
5116 			call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5117 		} else {
5118 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5119 			ext4_mb_pa_free(pa);
5120 		}
5121 	}
5122 
5123 	ext4_unlock_group(sb, group);
5124 	ext4_mb_unload_buddy(&e4b);
5125 	put_bh(bitmap_bh);
5126 out_dbg:
5127 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5128 		 free, group, grp->bb_free);
5129 	return free;
5130 }
5131 
5132 /*
5133  * releases all non-used preallocated blocks for given inode
5134  *
5135  * It's important to discard preallocations under i_data_sem
5136  * We don't want another block to be served from the prealloc
5137  * space when we are discarding the inode prealloc space.
5138  *
5139  * FIXME!! Make sure it is valid at all the call sites
5140  */
5141 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
5142 {
5143 	struct ext4_inode_info *ei = EXT4_I(inode);
5144 	struct super_block *sb = inode->i_sb;
5145 	struct buffer_head *bitmap_bh = NULL;
5146 	struct ext4_prealloc_space *pa, *tmp;
5147 	ext4_group_t group = 0;
5148 	struct list_head list;
5149 	struct ext4_buddy e4b;
5150 	struct rb_node *iter;
5151 	int err;
5152 
5153 	if (!S_ISREG(inode->i_mode)) {
5154 		return;
5155 	}
5156 
5157 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5158 		return;
5159 
5160 	mb_debug(sb, "discard preallocation for inode %lu\n",
5161 		 inode->i_ino);
5162 	trace_ext4_discard_preallocations(inode,
5163 			atomic_read(&ei->i_prealloc_active), needed);
5164 
5165 	INIT_LIST_HEAD(&list);
5166 
5167 	if (needed == 0)
5168 		needed = UINT_MAX;
5169 
5170 repeat:
5171 	/* first, collect all pa's in the inode */
5172 	write_lock(&ei->i_prealloc_lock);
5173 	for (iter = rb_first(&ei->i_prealloc_node); iter && needed;
5174 	     iter = rb_next(iter)) {
5175 		pa = rb_entry(iter, struct ext4_prealloc_space,
5176 			      pa_node.inode_node);
5177 		BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5178 
5179 		spin_lock(&pa->pa_lock);
5180 		if (atomic_read(&pa->pa_count)) {
5181 			/* this shouldn't happen often - nobody should
5182 			 * use preallocation while we're discarding it */
5183 			spin_unlock(&pa->pa_lock);
5184 			write_unlock(&ei->i_prealloc_lock);
5185 			ext4_msg(sb, KERN_ERR,
5186 				 "uh-oh! used pa while discarding");
5187 			WARN_ON(1);
5188 			schedule_timeout_uninterruptible(HZ);
5189 			goto repeat;
5190 
5191 		}
5192 		if (pa->pa_deleted == 0) {
5193 			ext4_mb_mark_pa_deleted(sb, pa);
5194 			spin_unlock(&pa->pa_lock);
5195 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5196 			list_add(&pa->u.pa_tmp_list, &list);
5197 			needed--;
5198 			continue;
5199 		}
5200 
5201 		/* someone is deleting pa right now */
5202 		spin_unlock(&pa->pa_lock);
5203 		write_unlock(&ei->i_prealloc_lock);
5204 
5205 		/* we have to wait here because pa_deleted
5206 		 * doesn't mean pa is already unlinked from
5207 		 * the list. as we might be called from
5208 		 * ->clear_inode() the inode will get freed
5209 		 * and concurrent thread which is unlinking
5210 		 * pa from inode's list may access already
5211 		 * freed memory, bad-bad-bad */
5212 
5213 		/* XXX: if this happens too often, we can
5214 		 * add a flag to force wait only in case
5215 		 * of ->clear_inode(), but not in case of
5216 		 * regular truncate */
5217 		schedule_timeout_uninterruptible(HZ);
5218 		goto repeat;
5219 	}
5220 	write_unlock(&ei->i_prealloc_lock);
5221 
5222 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5223 		BUG_ON(pa->pa_type != MB_INODE_PA);
5224 		group = ext4_get_group_number(sb, pa->pa_pstart);
5225 
5226 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5227 					     GFP_NOFS|__GFP_NOFAIL);
5228 		if (err) {
5229 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5230 				       err, group);
5231 			continue;
5232 		}
5233 
5234 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5235 		if (IS_ERR(bitmap_bh)) {
5236 			err = PTR_ERR(bitmap_bh);
5237 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5238 				       err, group);
5239 			ext4_mb_unload_buddy(&e4b);
5240 			continue;
5241 		}
5242 
5243 		ext4_lock_group(sb, group);
5244 		list_del(&pa->pa_group_list);
5245 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5246 		ext4_unlock_group(sb, group);
5247 
5248 		ext4_mb_unload_buddy(&e4b);
5249 		put_bh(bitmap_bh);
5250 
5251 		list_del(&pa->u.pa_tmp_list);
5252 		ext4_mb_pa_free(pa);
5253 	}
5254 }
5255 
5256 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5257 {
5258 	struct ext4_prealloc_space *pa;
5259 
5260 	BUG_ON(ext4_pspace_cachep == NULL);
5261 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5262 	if (!pa)
5263 		return -ENOMEM;
5264 	atomic_set(&pa->pa_count, 1);
5265 	ac->ac_pa = pa;
5266 	return 0;
5267 }
5268 
5269 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5270 {
5271 	struct ext4_prealloc_space *pa = ac->ac_pa;
5272 
5273 	BUG_ON(!pa);
5274 	ac->ac_pa = NULL;
5275 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5276 	/*
5277 	 * current function is only called due to an error or due to
5278 	 * len of found blocks < len of requested blocks hence the PA has not
5279 	 * been added to grp->bb_prealloc_list. So we don't need to lock it
5280 	 */
5281 	pa->pa_deleted = 1;
5282 	ext4_mb_pa_free(pa);
5283 }
5284 
5285 #ifdef CONFIG_EXT4_DEBUG
5286 static inline void ext4_mb_show_pa(struct super_block *sb)
5287 {
5288 	ext4_group_t i, ngroups;
5289 
5290 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5291 		return;
5292 
5293 	ngroups = ext4_get_groups_count(sb);
5294 	mb_debug(sb, "groups: ");
5295 	for (i = 0; i < ngroups; i++) {
5296 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5297 		struct ext4_prealloc_space *pa;
5298 		ext4_grpblk_t start;
5299 		struct list_head *cur;
5300 		ext4_lock_group(sb, i);
5301 		list_for_each(cur, &grp->bb_prealloc_list) {
5302 			pa = list_entry(cur, struct ext4_prealloc_space,
5303 					pa_group_list);
5304 			spin_lock(&pa->pa_lock);
5305 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5306 						     NULL, &start);
5307 			spin_unlock(&pa->pa_lock);
5308 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5309 				 pa->pa_len);
5310 		}
5311 		ext4_unlock_group(sb, i);
5312 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5313 			 grp->bb_fragments);
5314 	}
5315 }
5316 
5317 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5318 {
5319 	struct super_block *sb = ac->ac_sb;
5320 
5321 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5322 		return;
5323 
5324 	mb_debug(sb, "Can't allocate:"
5325 			" Allocation context details:");
5326 	mb_debug(sb, "status %u flags 0x%x",
5327 			ac->ac_status, ac->ac_flags);
5328 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5329 			"goal %lu/%lu/%lu@%lu, "
5330 			"best %lu/%lu/%lu@%lu cr %d",
5331 			(unsigned long)ac->ac_o_ex.fe_group,
5332 			(unsigned long)ac->ac_o_ex.fe_start,
5333 			(unsigned long)ac->ac_o_ex.fe_len,
5334 			(unsigned long)ac->ac_o_ex.fe_logical,
5335 			(unsigned long)ac->ac_g_ex.fe_group,
5336 			(unsigned long)ac->ac_g_ex.fe_start,
5337 			(unsigned long)ac->ac_g_ex.fe_len,
5338 			(unsigned long)ac->ac_g_ex.fe_logical,
5339 			(unsigned long)ac->ac_b_ex.fe_group,
5340 			(unsigned long)ac->ac_b_ex.fe_start,
5341 			(unsigned long)ac->ac_b_ex.fe_len,
5342 			(unsigned long)ac->ac_b_ex.fe_logical,
5343 			(int)ac->ac_criteria);
5344 	mb_debug(sb, "%u found", ac->ac_found);
5345 	ext4_mb_show_pa(sb);
5346 }
5347 #else
5348 static inline void ext4_mb_show_pa(struct super_block *sb)
5349 {
5350 	return;
5351 }
5352 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5353 {
5354 	ext4_mb_show_pa(ac->ac_sb);
5355 	return;
5356 }
5357 #endif
5358 
5359 /*
5360  * We use locality group preallocation for small size file. The size of the
5361  * file is determined by the current size or the resulting size after
5362  * allocation which ever is larger
5363  *
5364  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5365  */
5366 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5367 {
5368 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5369 	int bsbits = ac->ac_sb->s_blocksize_bits;
5370 	loff_t size, isize;
5371 	bool inode_pa_eligible, group_pa_eligible;
5372 
5373 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5374 		return;
5375 
5376 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5377 		return;
5378 
5379 	group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5380 	inode_pa_eligible = true;
5381 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
5382 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5383 		>> bsbits;
5384 
5385 	/* No point in using inode preallocation for closed files */
5386 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5387 	    !inode_is_open_for_write(ac->ac_inode))
5388 		inode_pa_eligible = false;
5389 
5390 	size = max(size, isize);
5391 	/* Don't use group allocation for large files */
5392 	if (size > sbi->s_mb_stream_request)
5393 		group_pa_eligible = false;
5394 
5395 	if (!group_pa_eligible) {
5396 		if (inode_pa_eligible)
5397 			ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5398 		else
5399 			ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5400 		return;
5401 	}
5402 
5403 	BUG_ON(ac->ac_lg != NULL);
5404 	/*
5405 	 * locality group prealloc space are per cpu. The reason for having
5406 	 * per cpu locality group is to reduce the contention between block
5407 	 * request from multiple CPUs.
5408 	 */
5409 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5410 
5411 	/* we're going to use group allocation */
5412 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5413 
5414 	/* serialize all allocations in the group */
5415 	mutex_lock(&ac->ac_lg->lg_mutex);
5416 }
5417 
5418 static noinline_for_stack void
5419 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5420 				struct ext4_allocation_request *ar)
5421 {
5422 	struct super_block *sb = ar->inode->i_sb;
5423 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5424 	struct ext4_super_block *es = sbi->s_es;
5425 	ext4_group_t group;
5426 	unsigned int len;
5427 	ext4_fsblk_t goal;
5428 	ext4_grpblk_t block;
5429 
5430 	/* we can't allocate > group size */
5431 	len = ar->len;
5432 
5433 	/* just a dirty hack to filter too big requests  */
5434 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5435 		len = EXT4_CLUSTERS_PER_GROUP(sb);
5436 
5437 	/* start searching from the goal */
5438 	goal = ar->goal;
5439 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5440 			goal >= ext4_blocks_count(es))
5441 		goal = le32_to_cpu(es->s_first_data_block);
5442 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5443 
5444 	/* set up allocation goals */
5445 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5446 	ac->ac_status = AC_STATUS_CONTINUE;
5447 	ac->ac_sb = sb;
5448 	ac->ac_inode = ar->inode;
5449 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5450 	ac->ac_o_ex.fe_group = group;
5451 	ac->ac_o_ex.fe_start = block;
5452 	ac->ac_o_ex.fe_len = len;
5453 	ac->ac_g_ex = ac->ac_o_ex;
5454 	ac->ac_flags = ar->flags;
5455 
5456 	/* we have to define context: we'll work with a file or
5457 	 * locality group. this is a policy, actually */
5458 	ext4_mb_group_or_file(ac);
5459 
5460 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5461 			"left: %u/%u, right %u/%u to %swritable\n",
5462 			(unsigned) ar->len, (unsigned) ar->logical,
5463 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5464 			(unsigned) ar->lleft, (unsigned) ar->pleft,
5465 			(unsigned) ar->lright, (unsigned) ar->pright,
5466 			inode_is_open_for_write(ar->inode) ? "" : "non-");
5467 }
5468 
5469 static noinline_for_stack void
5470 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5471 					struct ext4_locality_group *lg,
5472 					int order, int total_entries)
5473 {
5474 	ext4_group_t group = 0;
5475 	struct ext4_buddy e4b;
5476 	struct list_head discard_list;
5477 	struct ext4_prealloc_space *pa, *tmp;
5478 
5479 	mb_debug(sb, "discard locality group preallocation\n");
5480 
5481 	INIT_LIST_HEAD(&discard_list);
5482 
5483 	spin_lock(&lg->lg_prealloc_lock);
5484 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5485 				pa_node.lg_list,
5486 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5487 		spin_lock(&pa->pa_lock);
5488 		if (atomic_read(&pa->pa_count)) {
5489 			/*
5490 			 * This is the pa that we just used
5491 			 * for block allocation. So don't
5492 			 * free that
5493 			 */
5494 			spin_unlock(&pa->pa_lock);
5495 			continue;
5496 		}
5497 		if (pa->pa_deleted) {
5498 			spin_unlock(&pa->pa_lock);
5499 			continue;
5500 		}
5501 		/* only lg prealloc space */
5502 		BUG_ON(pa->pa_type != MB_GROUP_PA);
5503 
5504 		/* seems this one can be freed ... */
5505 		ext4_mb_mark_pa_deleted(sb, pa);
5506 		spin_unlock(&pa->pa_lock);
5507 
5508 		list_del_rcu(&pa->pa_node.lg_list);
5509 		list_add(&pa->u.pa_tmp_list, &discard_list);
5510 
5511 		total_entries--;
5512 		if (total_entries <= 5) {
5513 			/*
5514 			 * we want to keep only 5 entries
5515 			 * allowing it to grow to 8. This
5516 			 * mak sure we don't call discard
5517 			 * soon for this list.
5518 			 */
5519 			break;
5520 		}
5521 	}
5522 	spin_unlock(&lg->lg_prealloc_lock);
5523 
5524 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5525 		int err;
5526 
5527 		group = ext4_get_group_number(sb, pa->pa_pstart);
5528 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5529 					     GFP_NOFS|__GFP_NOFAIL);
5530 		if (err) {
5531 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5532 				       err, group);
5533 			continue;
5534 		}
5535 		ext4_lock_group(sb, group);
5536 		list_del(&pa->pa_group_list);
5537 		ext4_mb_release_group_pa(&e4b, pa);
5538 		ext4_unlock_group(sb, group);
5539 
5540 		ext4_mb_unload_buddy(&e4b);
5541 		list_del(&pa->u.pa_tmp_list);
5542 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5543 	}
5544 }
5545 
5546 /*
5547  * We have incremented pa_count. So it cannot be freed at this
5548  * point. Also we hold lg_mutex. So no parallel allocation is
5549  * possible from this lg. That means pa_free cannot be updated.
5550  *
5551  * A parallel ext4_mb_discard_group_preallocations is possible.
5552  * which can cause the lg_prealloc_list to be updated.
5553  */
5554 
5555 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5556 {
5557 	int order, added = 0, lg_prealloc_count = 1;
5558 	struct super_block *sb = ac->ac_sb;
5559 	struct ext4_locality_group *lg = ac->ac_lg;
5560 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5561 
5562 	order = fls(pa->pa_free) - 1;
5563 	if (order > PREALLOC_TB_SIZE - 1)
5564 		/* The max size of hash table is PREALLOC_TB_SIZE */
5565 		order = PREALLOC_TB_SIZE - 1;
5566 	/* Add the prealloc space to lg */
5567 	spin_lock(&lg->lg_prealloc_lock);
5568 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5569 				pa_node.lg_list,
5570 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5571 		spin_lock(&tmp_pa->pa_lock);
5572 		if (tmp_pa->pa_deleted) {
5573 			spin_unlock(&tmp_pa->pa_lock);
5574 			continue;
5575 		}
5576 		if (!added && pa->pa_free < tmp_pa->pa_free) {
5577 			/* Add to the tail of the previous entry */
5578 			list_add_tail_rcu(&pa->pa_node.lg_list,
5579 						&tmp_pa->pa_node.lg_list);
5580 			added = 1;
5581 			/*
5582 			 * we want to count the total
5583 			 * number of entries in the list
5584 			 */
5585 		}
5586 		spin_unlock(&tmp_pa->pa_lock);
5587 		lg_prealloc_count++;
5588 	}
5589 	if (!added)
5590 		list_add_tail_rcu(&pa->pa_node.lg_list,
5591 					&lg->lg_prealloc_list[order]);
5592 	spin_unlock(&lg->lg_prealloc_lock);
5593 
5594 	/* Now trim the list to be not more than 8 elements */
5595 	if (lg_prealloc_count > 8) {
5596 		ext4_mb_discard_lg_preallocations(sb, lg,
5597 						  order, lg_prealloc_count);
5598 		return;
5599 	}
5600 	return ;
5601 }
5602 
5603 /*
5604  * release all resource we used in allocation
5605  */
5606 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5607 {
5608 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5609 	struct ext4_prealloc_space *pa = ac->ac_pa;
5610 	if (pa) {
5611 		if (pa->pa_type == MB_GROUP_PA) {
5612 			/* see comment in ext4_mb_use_group_pa() */
5613 			spin_lock(&pa->pa_lock);
5614 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5615 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5616 			pa->pa_free -= ac->ac_b_ex.fe_len;
5617 			pa->pa_len -= ac->ac_b_ex.fe_len;
5618 			spin_unlock(&pa->pa_lock);
5619 
5620 			/*
5621 			 * We want to add the pa to the right bucket.
5622 			 * Remove it from the list and while adding
5623 			 * make sure the list to which we are adding
5624 			 * doesn't grow big.
5625 			 */
5626 			if (likely(pa->pa_free)) {
5627 				spin_lock(pa->pa_node_lock.lg_lock);
5628 				list_del_rcu(&pa->pa_node.lg_list);
5629 				spin_unlock(pa->pa_node_lock.lg_lock);
5630 				ext4_mb_add_n_trim(ac);
5631 			}
5632 		}
5633 
5634 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
5635 	}
5636 	if (ac->ac_bitmap_page)
5637 		put_page(ac->ac_bitmap_page);
5638 	if (ac->ac_buddy_page)
5639 		put_page(ac->ac_buddy_page);
5640 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5641 		mutex_unlock(&ac->ac_lg->lg_mutex);
5642 	ext4_mb_collect_stats(ac);
5643 	return 0;
5644 }
5645 
5646 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
5647 {
5648 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
5649 	int ret;
5650 	int freed = 0, busy = 0;
5651 	int retry = 0;
5652 
5653 	trace_ext4_mb_discard_preallocations(sb, needed);
5654 
5655 	if (needed == 0)
5656 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
5657  repeat:
5658 	for (i = 0; i < ngroups && needed > 0; i++) {
5659 		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
5660 		freed += ret;
5661 		needed -= ret;
5662 		cond_resched();
5663 	}
5664 
5665 	if (needed > 0 && busy && ++retry < 3) {
5666 		busy = 0;
5667 		goto repeat;
5668 	}
5669 
5670 	return freed;
5671 }
5672 
5673 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
5674 			struct ext4_allocation_context *ac, u64 *seq)
5675 {
5676 	int freed;
5677 	u64 seq_retry = 0;
5678 	bool ret = false;
5679 
5680 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
5681 	if (freed) {
5682 		ret = true;
5683 		goto out_dbg;
5684 	}
5685 	seq_retry = ext4_get_discard_pa_seq_sum();
5686 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
5687 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
5688 		*seq = seq_retry;
5689 		ret = true;
5690 	}
5691 
5692 out_dbg:
5693 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
5694 	return ret;
5695 }
5696 
5697 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5698 				struct ext4_allocation_request *ar, int *errp);
5699 
5700 /*
5701  * Main entry point into mballoc to allocate blocks
5702  * it tries to use preallocation first, then falls back
5703  * to usual allocation
5704  */
5705 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
5706 				struct ext4_allocation_request *ar, int *errp)
5707 {
5708 	struct ext4_allocation_context *ac = NULL;
5709 	struct ext4_sb_info *sbi;
5710 	struct super_block *sb;
5711 	ext4_fsblk_t block = 0;
5712 	unsigned int inquota = 0;
5713 	unsigned int reserv_clstrs = 0;
5714 	int retries = 0;
5715 	u64 seq;
5716 
5717 	might_sleep();
5718 	sb = ar->inode->i_sb;
5719 	sbi = EXT4_SB(sb);
5720 
5721 	trace_ext4_request_blocks(ar);
5722 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
5723 		return ext4_mb_new_blocks_simple(handle, ar, errp);
5724 
5725 	/* Allow to use superuser reservation for quota file */
5726 	if (ext4_is_quota_file(ar->inode))
5727 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
5728 
5729 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
5730 		/* Without delayed allocation we need to verify
5731 		 * there is enough free blocks to do block allocation
5732 		 * and verify allocation doesn't exceed the quota limits.
5733 		 */
5734 		while (ar->len &&
5735 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
5736 
5737 			/* let others to free the space */
5738 			cond_resched();
5739 			ar->len = ar->len >> 1;
5740 		}
5741 		if (!ar->len) {
5742 			ext4_mb_show_pa(sb);
5743 			*errp = -ENOSPC;
5744 			return 0;
5745 		}
5746 		reserv_clstrs = ar->len;
5747 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
5748 			dquot_alloc_block_nofail(ar->inode,
5749 						 EXT4_C2B(sbi, ar->len));
5750 		} else {
5751 			while (ar->len &&
5752 				dquot_alloc_block(ar->inode,
5753 						  EXT4_C2B(sbi, ar->len))) {
5754 
5755 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
5756 				ar->len--;
5757 			}
5758 		}
5759 		inquota = ar->len;
5760 		if (ar->len == 0) {
5761 			*errp = -EDQUOT;
5762 			goto out;
5763 		}
5764 	}
5765 
5766 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
5767 	if (!ac) {
5768 		ar->len = 0;
5769 		*errp = -ENOMEM;
5770 		goto out;
5771 	}
5772 
5773 	ext4_mb_initialize_context(ac, ar);
5774 
5775 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
5776 	seq = this_cpu_read(discard_pa_seq);
5777 	if (!ext4_mb_use_preallocated(ac)) {
5778 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
5779 		ext4_mb_normalize_request(ac, ar);
5780 
5781 		*errp = ext4_mb_pa_alloc(ac);
5782 		if (*errp)
5783 			goto errout;
5784 repeat:
5785 		/* allocate space in core */
5786 		*errp = ext4_mb_regular_allocator(ac);
5787 		/*
5788 		 * pa allocated above is added to grp->bb_prealloc_list only
5789 		 * when we were able to allocate some block i.e. when
5790 		 * ac->ac_status == AC_STATUS_FOUND.
5791 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
5792 		 * So we have to free this pa here itself.
5793 		 */
5794 		if (*errp) {
5795 			ext4_mb_pa_put_free(ac);
5796 			ext4_discard_allocated_blocks(ac);
5797 			goto errout;
5798 		}
5799 		if (ac->ac_status == AC_STATUS_FOUND &&
5800 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
5801 			ext4_mb_pa_put_free(ac);
5802 	}
5803 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
5804 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
5805 		if (*errp) {
5806 			ext4_discard_allocated_blocks(ac);
5807 			goto errout;
5808 		} else {
5809 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5810 			ar->len = ac->ac_b_ex.fe_len;
5811 		}
5812 	} else {
5813 		if (++retries < 3 &&
5814 		    ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
5815 			goto repeat;
5816 		/*
5817 		 * If block allocation fails then the pa allocated above
5818 		 * needs to be freed here itself.
5819 		 */
5820 		ext4_mb_pa_put_free(ac);
5821 		*errp = -ENOSPC;
5822 	}
5823 
5824 	if (*errp) {
5825 errout:
5826 		ac->ac_b_ex.fe_len = 0;
5827 		ar->len = 0;
5828 		ext4_mb_show_ac(ac);
5829 	}
5830 	ext4_mb_release_context(ac);
5831 	kmem_cache_free(ext4_ac_cachep, ac);
5832 out:
5833 	if (inquota && ar->len < inquota)
5834 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
5835 	if (!ar->len) {
5836 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
5837 			/* release all the reserved blocks if non delalloc */
5838 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
5839 						reserv_clstrs);
5840 	}
5841 
5842 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
5843 
5844 	return block;
5845 }
5846 
5847 /*
5848  * We can merge two free data extents only if the physical blocks
5849  * are contiguous, AND the extents were freed by the same transaction,
5850  * AND the blocks are associated with the same group.
5851  */
5852 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
5853 					struct ext4_free_data *entry,
5854 					struct ext4_free_data *new_entry,
5855 					struct rb_root *entry_rb_root)
5856 {
5857 	if ((entry->efd_tid != new_entry->efd_tid) ||
5858 	    (entry->efd_group != new_entry->efd_group))
5859 		return;
5860 	if (entry->efd_start_cluster + entry->efd_count ==
5861 	    new_entry->efd_start_cluster) {
5862 		new_entry->efd_start_cluster = entry->efd_start_cluster;
5863 		new_entry->efd_count += entry->efd_count;
5864 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
5865 		   entry->efd_start_cluster) {
5866 		new_entry->efd_count += entry->efd_count;
5867 	} else
5868 		return;
5869 	spin_lock(&sbi->s_md_lock);
5870 	list_del(&entry->efd_list);
5871 	spin_unlock(&sbi->s_md_lock);
5872 	rb_erase(&entry->efd_node, entry_rb_root);
5873 	kmem_cache_free(ext4_free_data_cachep, entry);
5874 }
5875 
5876 static noinline_for_stack void
5877 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
5878 		      struct ext4_free_data *new_entry)
5879 {
5880 	ext4_group_t group = e4b->bd_group;
5881 	ext4_grpblk_t cluster;
5882 	ext4_grpblk_t clusters = new_entry->efd_count;
5883 	struct ext4_free_data *entry;
5884 	struct ext4_group_info *db = e4b->bd_info;
5885 	struct super_block *sb = e4b->bd_sb;
5886 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5887 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
5888 	struct rb_node *parent = NULL, *new_node;
5889 
5890 	BUG_ON(!ext4_handle_valid(handle));
5891 	BUG_ON(e4b->bd_bitmap_page == NULL);
5892 	BUG_ON(e4b->bd_buddy_page == NULL);
5893 
5894 	new_node = &new_entry->efd_node;
5895 	cluster = new_entry->efd_start_cluster;
5896 
5897 	if (!*n) {
5898 		/* first free block exent. We need to
5899 		   protect buddy cache from being freed,
5900 		 * otherwise we'll refresh it from
5901 		 * on-disk bitmap and lose not-yet-available
5902 		 * blocks */
5903 		get_page(e4b->bd_buddy_page);
5904 		get_page(e4b->bd_bitmap_page);
5905 	}
5906 	while (*n) {
5907 		parent = *n;
5908 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
5909 		if (cluster < entry->efd_start_cluster)
5910 			n = &(*n)->rb_left;
5911 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
5912 			n = &(*n)->rb_right;
5913 		else {
5914 			ext4_grp_locked_error(sb, group, 0,
5915 				ext4_group_first_block_no(sb, group) +
5916 				EXT4_C2B(sbi, cluster),
5917 				"Block already on to-be-freed list");
5918 			kmem_cache_free(ext4_free_data_cachep, new_entry);
5919 			return;
5920 		}
5921 	}
5922 
5923 	rb_link_node(new_node, parent, n);
5924 	rb_insert_color(new_node, &db->bb_free_root);
5925 
5926 	/* Now try to see the extent can be merged to left and right */
5927 	node = rb_prev(new_node);
5928 	if (node) {
5929 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5930 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5931 					    &(db->bb_free_root));
5932 	}
5933 
5934 	node = rb_next(new_node);
5935 	if (node) {
5936 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5937 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5938 					    &(db->bb_free_root));
5939 	}
5940 
5941 	spin_lock(&sbi->s_md_lock);
5942 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
5943 	sbi->s_mb_free_pending += clusters;
5944 	spin_unlock(&sbi->s_md_lock);
5945 }
5946 
5947 /*
5948  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
5949  * linearly starting at the goal block and also excludes the blocks which
5950  * are going to be in use after fast commit replay.
5951  */
5952 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5953 				struct ext4_allocation_request *ar, int *errp)
5954 {
5955 	struct buffer_head *bitmap_bh;
5956 	struct super_block *sb = ar->inode->i_sb;
5957 	ext4_group_t group;
5958 	ext4_grpblk_t blkoff;
5959 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
5960 	ext4_grpblk_t i = 0;
5961 	ext4_fsblk_t goal, block;
5962 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5963 
5964 	goal = ar->goal;
5965 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5966 			goal >= ext4_blocks_count(es))
5967 		goal = le32_to_cpu(es->s_first_data_block);
5968 
5969 	ar->len = 0;
5970 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
5971 	for (; group < ext4_get_groups_count(sb); group++) {
5972 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5973 		if (IS_ERR(bitmap_bh)) {
5974 			*errp = PTR_ERR(bitmap_bh);
5975 			pr_warn("Failed to read block bitmap\n");
5976 			return 0;
5977 		}
5978 
5979 		while (1) {
5980 			i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
5981 						blkoff);
5982 			if (i >= max)
5983 				break;
5984 			if (ext4_fc_replay_check_excluded(sb,
5985 				ext4_group_first_block_no(sb, group) + i)) {
5986 				blkoff = i + 1;
5987 			} else
5988 				break;
5989 		}
5990 		brelse(bitmap_bh);
5991 		if (i < max)
5992 			break;
5993 
5994 		blkoff = 0;
5995 	}
5996 
5997 	if (group >= ext4_get_groups_count(sb) || i >= max) {
5998 		*errp = -ENOSPC;
5999 		return 0;
6000 	}
6001 
6002 	block = ext4_group_first_block_no(sb, group) + i;
6003 	ext4_mb_mark_bb(sb, block, 1, 1);
6004 	ar->len = 1;
6005 
6006 	return block;
6007 }
6008 
6009 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6010 					unsigned long count)
6011 {
6012 	struct buffer_head *bitmap_bh;
6013 	struct super_block *sb = inode->i_sb;
6014 	struct ext4_group_desc *gdp;
6015 	struct buffer_head *gdp_bh;
6016 	ext4_group_t group;
6017 	ext4_grpblk_t blkoff;
6018 	int already_freed = 0, err, i;
6019 
6020 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6021 	bitmap_bh = ext4_read_block_bitmap(sb, group);
6022 	if (IS_ERR(bitmap_bh)) {
6023 		pr_warn("Failed to read block bitmap\n");
6024 		return;
6025 	}
6026 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
6027 	if (!gdp)
6028 		goto err_out;
6029 
6030 	for (i = 0; i < count; i++) {
6031 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
6032 			already_freed++;
6033 	}
6034 	mb_clear_bits(bitmap_bh->b_data, blkoff, count);
6035 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
6036 	if (err)
6037 		goto err_out;
6038 	ext4_free_group_clusters_set(
6039 		sb, gdp, ext4_free_group_clusters(sb, gdp) +
6040 		count - already_freed);
6041 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6042 	ext4_group_desc_csum_set(sb, group, gdp);
6043 	ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
6044 	sync_dirty_buffer(bitmap_bh);
6045 	sync_dirty_buffer(gdp_bh);
6046 
6047 err_out:
6048 	brelse(bitmap_bh);
6049 }
6050 
6051 /**
6052  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6053  *			Used by ext4_free_blocks()
6054  * @handle:		handle for this transaction
6055  * @inode:		inode
6056  * @block:		starting physical block to be freed
6057  * @count:		number of blocks to be freed
6058  * @flags:		flags used by ext4_free_blocks
6059  */
6060 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6061 			       ext4_fsblk_t block, unsigned long count,
6062 			       int flags)
6063 {
6064 	struct buffer_head *bitmap_bh = NULL;
6065 	struct super_block *sb = inode->i_sb;
6066 	struct ext4_group_desc *gdp;
6067 	unsigned int overflow;
6068 	ext4_grpblk_t bit;
6069 	struct buffer_head *gd_bh;
6070 	ext4_group_t block_group;
6071 	struct ext4_sb_info *sbi;
6072 	struct ext4_buddy e4b;
6073 	unsigned int count_clusters;
6074 	int err = 0;
6075 	int ret;
6076 
6077 	sbi = EXT4_SB(sb);
6078 
6079 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6080 	    !ext4_inode_block_valid(inode, block, count)) {
6081 		ext4_error(sb, "Freeing blocks in system zone - "
6082 			   "Block = %llu, count = %lu", block, count);
6083 		/* err = 0. ext4_std_error should be a no op */
6084 		goto error_return;
6085 	}
6086 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6087 
6088 do_more:
6089 	overflow = 0;
6090 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6091 
6092 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
6093 			ext4_get_group_info(sb, block_group))))
6094 		return;
6095 
6096 	/*
6097 	 * Check to see if we are freeing blocks across a group
6098 	 * boundary.
6099 	 */
6100 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6101 		overflow = EXT4_C2B(sbi, bit) + count -
6102 			EXT4_BLOCKS_PER_GROUP(sb);
6103 		count -= overflow;
6104 		/* The range changed so it's no longer validated */
6105 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6106 	}
6107 	count_clusters = EXT4_NUM_B2C(sbi, count);
6108 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6109 	if (IS_ERR(bitmap_bh)) {
6110 		err = PTR_ERR(bitmap_bh);
6111 		bitmap_bh = NULL;
6112 		goto error_return;
6113 	}
6114 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
6115 	if (!gdp) {
6116 		err = -EIO;
6117 		goto error_return;
6118 	}
6119 
6120 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6121 	    !ext4_inode_block_valid(inode, block, count)) {
6122 		ext4_error(sb, "Freeing blocks in system zone - "
6123 			   "Block = %llu, count = %lu", block, count);
6124 		/* err = 0. ext4_std_error should be a no op */
6125 		goto error_return;
6126 	}
6127 
6128 	BUFFER_TRACE(bitmap_bh, "getting write access");
6129 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6130 					    EXT4_JTR_NONE);
6131 	if (err)
6132 		goto error_return;
6133 
6134 	/*
6135 	 * We are about to modify some metadata.  Call the journal APIs
6136 	 * to unshare ->b_data if a currently-committing transaction is
6137 	 * using it
6138 	 */
6139 	BUFFER_TRACE(gd_bh, "get_write_access");
6140 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6141 	if (err)
6142 		goto error_return;
6143 #ifdef AGGRESSIVE_CHECK
6144 	{
6145 		int i;
6146 		for (i = 0; i < count_clusters; i++)
6147 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
6148 	}
6149 #endif
6150 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6151 
6152 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6153 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6154 				     GFP_NOFS|__GFP_NOFAIL);
6155 	if (err)
6156 		goto error_return;
6157 
6158 	/*
6159 	 * We need to make sure we don't reuse the freed block until after the
6160 	 * transaction is committed. We make an exception if the inode is to be
6161 	 * written in writeback mode since writeback mode has weak data
6162 	 * consistency guarantees.
6163 	 */
6164 	if (ext4_handle_valid(handle) &&
6165 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6166 	     !ext4_should_writeback_data(inode))) {
6167 		struct ext4_free_data *new_entry;
6168 		/*
6169 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6170 		 * to fail.
6171 		 */
6172 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6173 				GFP_NOFS|__GFP_NOFAIL);
6174 		new_entry->efd_start_cluster = bit;
6175 		new_entry->efd_group = block_group;
6176 		new_entry->efd_count = count_clusters;
6177 		new_entry->efd_tid = handle->h_transaction->t_tid;
6178 
6179 		ext4_lock_group(sb, block_group);
6180 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6181 		ext4_mb_free_metadata(handle, &e4b, new_entry);
6182 	} else {
6183 		/* need to update group_info->bb_free and bitmap
6184 		 * with group lock held. generate_buddy look at
6185 		 * them with group lock_held
6186 		 */
6187 		if (test_opt(sb, DISCARD)) {
6188 			err = ext4_issue_discard(sb, block_group, bit, count,
6189 						 NULL);
6190 			if (err && err != -EOPNOTSUPP)
6191 				ext4_msg(sb, KERN_WARNING, "discard request in"
6192 					 " group:%u block:%d count:%lu failed"
6193 					 " with %d", block_group, bit, count,
6194 					 err);
6195 		} else
6196 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6197 
6198 		ext4_lock_group(sb, block_group);
6199 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6200 		mb_free_blocks(inode, &e4b, bit, count_clusters);
6201 	}
6202 
6203 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
6204 	ext4_free_group_clusters_set(sb, gdp, ret);
6205 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6206 	ext4_group_desc_csum_set(sb, block_group, gdp);
6207 	ext4_unlock_group(sb, block_group);
6208 
6209 	if (sbi->s_log_groups_per_flex) {
6210 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6211 		atomic64_add(count_clusters,
6212 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6213 						  flex_group)->free_clusters);
6214 	}
6215 
6216 	/*
6217 	 * on a bigalloc file system, defer the s_freeclusters_counter
6218 	 * update to the caller (ext4_remove_space and friends) so they
6219 	 * can determine if a cluster freed here should be rereserved
6220 	 */
6221 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6222 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6223 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6224 		percpu_counter_add(&sbi->s_freeclusters_counter,
6225 				   count_clusters);
6226 	}
6227 
6228 	ext4_mb_unload_buddy(&e4b);
6229 
6230 	/* We dirtied the bitmap block */
6231 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6232 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6233 
6234 	/* And the group descriptor block */
6235 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6236 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6237 	if (!err)
6238 		err = ret;
6239 
6240 	if (overflow && !err) {
6241 		block += count;
6242 		count = overflow;
6243 		put_bh(bitmap_bh);
6244 		/* The range changed so it's no longer validated */
6245 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6246 		goto do_more;
6247 	}
6248 error_return:
6249 	brelse(bitmap_bh);
6250 	ext4_std_error(sb, err);
6251 	return;
6252 }
6253 
6254 /**
6255  * ext4_free_blocks() -- Free given blocks and update quota
6256  * @handle:		handle for this transaction
6257  * @inode:		inode
6258  * @bh:			optional buffer of the block to be freed
6259  * @block:		starting physical block to be freed
6260  * @count:		number of blocks to be freed
6261  * @flags:		flags used by ext4_free_blocks
6262  */
6263 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6264 		      struct buffer_head *bh, ext4_fsblk_t block,
6265 		      unsigned long count, int flags)
6266 {
6267 	struct super_block *sb = inode->i_sb;
6268 	unsigned int overflow;
6269 	struct ext4_sb_info *sbi;
6270 
6271 	sbi = EXT4_SB(sb);
6272 
6273 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6274 		ext4_free_blocks_simple(inode, block, count);
6275 		return;
6276 	}
6277 
6278 	might_sleep();
6279 	if (bh) {
6280 		if (block)
6281 			BUG_ON(block != bh->b_blocknr);
6282 		else
6283 			block = bh->b_blocknr;
6284 	}
6285 
6286 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6287 	    !ext4_inode_block_valid(inode, block, count)) {
6288 		ext4_error(sb, "Freeing blocks not in datazone - "
6289 			   "block = %llu, count = %lu", block, count);
6290 		return;
6291 	}
6292 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6293 
6294 	ext4_debug("freeing block %llu\n", block);
6295 	trace_ext4_free_blocks(inode, block, count, flags);
6296 
6297 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6298 		BUG_ON(count > 1);
6299 
6300 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6301 			    inode, bh, block);
6302 	}
6303 
6304 	/*
6305 	 * If the extent to be freed does not begin on a cluster
6306 	 * boundary, we need to deal with partial clusters at the
6307 	 * beginning and end of the extent.  Normally we will free
6308 	 * blocks at the beginning or the end unless we are explicitly
6309 	 * requested to avoid doing so.
6310 	 */
6311 	overflow = EXT4_PBLK_COFF(sbi, block);
6312 	if (overflow) {
6313 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6314 			overflow = sbi->s_cluster_ratio - overflow;
6315 			block += overflow;
6316 			if (count > overflow)
6317 				count -= overflow;
6318 			else
6319 				return;
6320 		} else {
6321 			block -= overflow;
6322 			count += overflow;
6323 		}
6324 		/* The range changed so it's no longer validated */
6325 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6326 	}
6327 	overflow = EXT4_LBLK_COFF(sbi, count);
6328 	if (overflow) {
6329 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6330 			if (count > overflow)
6331 				count -= overflow;
6332 			else
6333 				return;
6334 		} else
6335 			count += sbi->s_cluster_ratio - overflow;
6336 		/* The range changed so it's no longer validated */
6337 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6338 	}
6339 
6340 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6341 		int i;
6342 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6343 
6344 		for (i = 0; i < count; i++) {
6345 			cond_resched();
6346 			if (is_metadata)
6347 				bh = sb_find_get_block(inode->i_sb, block + i);
6348 			ext4_forget(handle, is_metadata, inode, bh, block + i);
6349 		}
6350 	}
6351 
6352 	ext4_mb_clear_bb(handle, inode, block, count, flags);
6353 	return;
6354 }
6355 
6356 /**
6357  * ext4_group_add_blocks() -- Add given blocks to an existing group
6358  * @handle:			handle to this transaction
6359  * @sb:				super block
6360  * @block:			start physical block to add to the block group
6361  * @count:			number of blocks to free
6362  *
6363  * This marks the blocks as free in the bitmap and buddy.
6364  */
6365 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6366 			 ext4_fsblk_t block, unsigned long count)
6367 {
6368 	struct buffer_head *bitmap_bh = NULL;
6369 	struct buffer_head *gd_bh;
6370 	ext4_group_t block_group;
6371 	ext4_grpblk_t bit;
6372 	unsigned int i;
6373 	struct ext4_group_desc *desc;
6374 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6375 	struct ext4_buddy e4b;
6376 	int err = 0, ret, free_clusters_count;
6377 	ext4_grpblk_t clusters_freed;
6378 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6379 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6380 	unsigned long cluster_count = last_cluster - first_cluster + 1;
6381 
6382 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6383 
6384 	if (count == 0)
6385 		return 0;
6386 
6387 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6388 	/*
6389 	 * Check to see if we are freeing blocks across a group
6390 	 * boundary.
6391 	 */
6392 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6393 		ext4_warning(sb, "too many blocks added to group %u",
6394 			     block_group);
6395 		err = -EINVAL;
6396 		goto error_return;
6397 	}
6398 
6399 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6400 	if (IS_ERR(bitmap_bh)) {
6401 		err = PTR_ERR(bitmap_bh);
6402 		bitmap_bh = NULL;
6403 		goto error_return;
6404 	}
6405 
6406 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6407 	if (!desc) {
6408 		err = -EIO;
6409 		goto error_return;
6410 	}
6411 
6412 	if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6413 		ext4_error(sb, "Adding blocks in system zones - "
6414 			   "Block = %llu, count = %lu",
6415 			   block, count);
6416 		err = -EINVAL;
6417 		goto error_return;
6418 	}
6419 
6420 	BUFFER_TRACE(bitmap_bh, "getting write access");
6421 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6422 					    EXT4_JTR_NONE);
6423 	if (err)
6424 		goto error_return;
6425 
6426 	/*
6427 	 * We are about to modify some metadata.  Call the journal APIs
6428 	 * to unshare ->b_data if a currently-committing transaction is
6429 	 * using it
6430 	 */
6431 	BUFFER_TRACE(gd_bh, "get_write_access");
6432 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6433 	if (err)
6434 		goto error_return;
6435 
6436 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6437 		BUFFER_TRACE(bitmap_bh, "clear bit");
6438 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6439 			ext4_error(sb, "bit already cleared for block %llu",
6440 				   (ext4_fsblk_t)(block + i));
6441 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
6442 		} else {
6443 			clusters_freed++;
6444 		}
6445 	}
6446 
6447 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6448 	if (err)
6449 		goto error_return;
6450 
6451 	/*
6452 	 * need to update group_info->bb_free and bitmap
6453 	 * with group lock held. generate_buddy look at
6454 	 * them with group lock_held
6455 	 */
6456 	ext4_lock_group(sb, block_group);
6457 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6458 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6459 	free_clusters_count = clusters_freed +
6460 		ext4_free_group_clusters(sb, desc);
6461 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6462 	ext4_block_bitmap_csum_set(sb, desc, bitmap_bh);
6463 	ext4_group_desc_csum_set(sb, block_group, desc);
6464 	ext4_unlock_group(sb, block_group);
6465 	percpu_counter_add(&sbi->s_freeclusters_counter,
6466 			   clusters_freed);
6467 
6468 	if (sbi->s_log_groups_per_flex) {
6469 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6470 		atomic64_add(clusters_freed,
6471 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6472 						  flex_group)->free_clusters);
6473 	}
6474 
6475 	ext4_mb_unload_buddy(&e4b);
6476 
6477 	/* We dirtied the bitmap block */
6478 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6479 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6480 
6481 	/* And the group descriptor block */
6482 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6483 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6484 	if (!err)
6485 		err = ret;
6486 
6487 error_return:
6488 	brelse(bitmap_bh);
6489 	ext4_std_error(sb, err);
6490 	return err;
6491 }
6492 
6493 /**
6494  * ext4_trim_extent -- function to TRIM one single free extent in the group
6495  * @sb:		super block for the file system
6496  * @start:	starting block of the free extent in the alloc. group
6497  * @count:	number of blocks to TRIM
6498  * @e4b:	ext4 buddy for the group
6499  *
6500  * Trim "count" blocks starting at "start" in the "group". To assure that no
6501  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6502  * be called with under the group lock.
6503  */
6504 static int ext4_trim_extent(struct super_block *sb,
6505 		int start, int count, struct ext4_buddy *e4b)
6506 __releases(bitlock)
6507 __acquires(bitlock)
6508 {
6509 	struct ext4_free_extent ex;
6510 	ext4_group_t group = e4b->bd_group;
6511 	int ret = 0;
6512 
6513 	trace_ext4_trim_extent(sb, group, start, count);
6514 
6515 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6516 
6517 	ex.fe_start = start;
6518 	ex.fe_group = group;
6519 	ex.fe_len = count;
6520 
6521 	/*
6522 	 * Mark blocks used, so no one can reuse them while
6523 	 * being trimmed.
6524 	 */
6525 	mb_mark_used(e4b, &ex);
6526 	ext4_unlock_group(sb, group);
6527 	ret = ext4_issue_discard(sb, group, start, count, NULL);
6528 	ext4_lock_group(sb, group);
6529 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6530 	return ret;
6531 }
6532 
6533 static int ext4_try_to_trim_range(struct super_block *sb,
6534 		struct ext4_buddy *e4b, ext4_grpblk_t start,
6535 		ext4_grpblk_t max, ext4_grpblk_t minblocks)
6536 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6537 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6538 {
6539 	ext4_grpblk_t next, count, free_count;
6540 	void *bitmap;
6541 
6542 	bitmap = e4b->bd_bitmap;
6543 	start = (e4b->bd_info->bb_first_free > start) ?
6544 		e4b->bd_info->bb_first_free : start;
6545 	count = 0;
6546 	free_count = 0;
6547 
6548 	while (start <= max) {
6549 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6550 		if (start > max)
6551 			break;
6552 		next = mb_find_next_bit(bitmap, max + 1, start);
6553 
6554 		if ((next - start) >= minblocks) {
6555 			int ret = ext4_trim_extent(sb, start, next - start, e4b);
6556 
6557 			if (ret && ret != -EOPNOTSUPP)
6558 				break;
6559 			count += next - start;
6560 		}
6561 		free_count += next - start;
6562 		start = next + 1;
6563 
6564 		if (fatal_signal_pending(current)) {
6565 			count = -ERESTARTSYS;
6566 			break;
6567 		}
6568 
6569 		if (need_resched()) {
6570 			ext4_unlock_group(sb, e4b->bd_group);
6571 			cond_resched();
6572 			ext4_lock_group(sb, e4b->bd_group);
6573 		}
6574 
6575 		if ((e4b->bd_info->bb_free - free_count) < minblocks)
6576 			break;
6577 	}
6578 
6579 	return count;
6580 }
6581 
6582 /**
6583  * ext4_trim_all_free -- function to trim all free space in alloc. group
6584  * @sb:			super block for file system
6585  * @group:		group to be trimmed
6586  * @start:		first group block to examine
6587  * @max:		last group block to examine
6588  * @minblocks:		minimum extent block count
6589  * @set_trimmed:	set the trimmed flag if at least one block is trimmed
6590  *
6591  * ext4_trim_all_free walks through group's block bitmap searching for free
6592  * extents. When the free extent is found, mark it as used in group buddy
6593  * bitmap. Then issue a TRIM command on this extent and free the extent in
6594  * the group buddy bitmap.
6595  */
6596 static ext4_grpblk_t
6597 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6598 		   ext4_grpblk_t start, ext4_grpblk_t max,
6599 		   ext4_grpblk_t minblocks, bool set_trimmed)
6600 {
6601 	struct ext4_buddy e4b;
6602 	int ret;
6603 
6604 	trace_ext4_trim_all_free(sb, group, start, max);
6605 
6606 	ret = ext4_mb_load_buddy(sb, group, &e4b);
6607 	if (ret) {
6608 		ext4_warning(sb, "Error %d loading buddy information for %u",
6609 			     ret, group);
6610 		return ret;
6611 	}
6612 
6613 	ext4_lock_group(sb, group);
6614 
6615 	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6616 	    minblocks < EXT4_SB(sb)->s_last_trim_minblks) {
6617 		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6618 		if (ret >= 0 && set_trimmed)
6619 			EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
6620 	} else {
6621 		ret = 0;
6622 	}
6623 
6624 	ext4_unlock_group(sb, group);
6625 	ext4_mb_unload_buddy(&e4b);
6626 
6627 	ext4_debug("trimmed %d blocks in the group %d\n",
6628 		ret, group);
6629 
6630 	return ret;
6631 }
6632 
6633 /**
6634  * ext4_trim_fs() -- trim ioctl handle function
6635  * @sb:			superblock for filesystem
6636  * @range:		fstrim_range structure
6637  *
6638  * start:	First Byte to trim
6639  * len:		number of Bytes to trim from start
6640  * minlen:	minimum extent length in Bytes
6641  * ext4_trim_fs goes through all allocation groups containing Bytes from
6642  * start to start+len. For each such a group ext4_trim_all_free function
6643  * is invoked to trim all free space.
6644  */
6645 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6646 {
6647 	unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6648 	struct ext4_group_info *grp;
6649 	ext4_group_t group, first_group, last_group;
6650 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6651 	uint64_t start, end, minlen, trimmed = 0;
6652 	ext4_fsblk_t first_data_blk =
6653 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6654 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6655 	bool whole_group, eof = false;
6656 	int ret = 0;
6657 
6658 	start = range->start >> sb->s_blocksize_bits;
6659 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
6660 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6661 			      range->minlen >> sb->s_blocksize_bits);
6662 
6663 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6664 	    start >= max_blks ||
6665 	    range->len < sb->s_blocksize)
6666 		return -EINVAL;
6667 	/* No point to try to trim less than discard granularity */
6668 	if (range->minlen < discard_granularity) {
6669 		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6670 				discard_granularity >> sb->s_blocksize_bits);
6671 		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6672 			goto out;
6673 	}
6674 	if (end >= max_blks - 1) {
6675 		end = max_blks - 1;
6676 		eof = true;
6677 	}
6678 	if (end <= first_data_blk)
6679 		goto out;
6680 	if (start < first_data_blk)
6681 		start = first_data_blk;
6682 
6683 	/* Determine first and last group to examine based on start and end */
6684 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6685 				     &first_group, &first_cluster);
6686 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6687 				     &last_group, &last_cluster);
6688 
6689 	/* end now represents the last cluster to discard in this group */
6690 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6691 	whole_group = true;
6692 
6693 	for (group = first_group; group <= last_group; group++) {
6694 		grp = ext4_get_group_info(sb, group);
6695 		/* We only do this if the grp has never been initialized */
6696 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6697 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6698 			if (ret)
6699 				break;
6700 		}
6701 
6702 		/*
6703 		 * For all the groups except the last one, last cluster will
6704 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6705 		 * change it for the last group, note that last_cluster is
6706 		 * already computed earlier by ext4_get_group_no_and_offset()
6707 		 */
6708 		if (group == last_group) {
6709 			end = last_cluster;
6710 			whole_group = eof ? true : end == EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6711 		}
6712 		if (grp->bb_free >= minlen) {
6713 			cnt = ext4_trim_all_free(sb, group, first_cluster,
6714 						 end, minlen, whole_group);
6715 			if (cnt < 0) {
6716 				ret = cnt;
6717 				break;
6718 			}
6719 			trimmed += cnt;
6720 		}
6721 
6722 		/*
6723 		 * For every group except the first one, we are sure
6724 		 * that the first cluster to discard will be cluster #0.
6725 		 */
6726 		first_cluster = 0;
6727 	}
6728 
6729 	if (!ret)
6730 		EXT4_SB(sb)->s_last_trim_minblks = minlen;
6731 
6732 out:
6733 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6734 	return ret;
6735 }
6736 
6737 /* Iterate all the free extents in the group. */
6738 int
6739 ext4_mballoc_query_range(
6740 	struct super_block		*sb,
6741 	ext4_group_t			group,
6742 	ext4_grpblk_t			start,
6743 	ext4_grpblk_t			end,
6744 	ext4_mballoc_query_range_fn	formatter,
6745 	void				*priv)
6746 {
6747 	void				*bitmap;
6748 	ext4_grpblk_t			next;
6749 	struct ext4_buddy		e4b;
6750 	int				error;
6751 
6752 	error = ext4_mb_load_buddy(sb, group, &e4b);
6753 	if (error)
6754 		return error;
6755 	bitmap = e4b.bd_bitmap;
6756 
6757 	ext4_lock_group(sb, group);
6758 
6759 	start = (e4b.bd_info->bb_first_free > start) ?
6760 		e4b.bd_info->bb_first_free : start;
6761 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
6762 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6763 
6764 	while (start <= end) {
6765 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
6766 		if (start > end)
6767 			break;
6768 		next = mb_find_next_bit(bitmap, end + 1, start);
6769 
6770 		ext4_unlock_group(sb, group);
6771 		error = formatter(sb, group, start, next - start, priv);
6772 		if (error)
6773 			goto out_unload;
6774 		ext4_lock_group(sb, group);
6775 
6776 		start = next + 1;
6777 	}
6778 
6779 	ext4_unlock_group(sb, group);
6780 out_unload:
6781 	ext4_mb_unload_buddy(&e4b);
6782 
6783 	return error;
6784 }
6785