1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "mballoc.h" 26 #include <linux/debugfs.h> 27 #include <linux/slab.h> 28 #include <trace/events/ext4.h> 29 30 /* 31 * MUSTDO: 32 * - test ext4_ext_search_left() and ext4_ext_search_right() 33 * - search for metadata in few groups 34 * 35 * TODO v4: 36 * - normalization should take into account whether file is still open 37 * - discard preallocations if no free space left (policy?) 38 * - don't normalize tails 39 * - quota 40 * - reservation for superuser 41 * 42 * TODO v3: 43 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 44 * - track min/max extents in each group for better group selection 45 * - mb_mark_used() may allocate chunk right after splitting buddy 46 * - tree of groups sorted by number of free blocks 47 * - error handling 48 */ 49 50 /* 51 * The allocation request involve request for multiple number of blocks 52 * near to the goal(block) value specified. 53 * 54 * During initialization phase of the allocator we decide to use the 55 * group preallocation or inode preallocation depending on the size of 56 * the file. The size of the file could be the resulting file size we 57 * would have after allocation, or the current file size, which ever 58 * is larger. If the size is less than sbi->s_mb_stream_request we 59 * select to use the group preallocation. The default value of 60 * s_mb_stream_request is 16 blocks. This can also be tuned via 61 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 62 * terms of number of blocks. 63 * 64 * The main motivation for having small file use group preallocation is to 65 * ensure that we have small files closer together on the disk. 66 * 67 * First stage the allocator looks at the inode prealloc list, 68 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 69 * spaces for this particular inode. The inode prealloc space is 70 * represented as: 71 * 72 * pa_lstart -> the logical start block for this prealloc space 73 * pa_pstart -> the physical start block for this prealloc space 74 * pa_len -> length for this prealloc space (in clusters) 75 * pa_free -> free space available in this prealloc space (in clusters) 76 * 77 * The inode preallocation space is used looking at the _logical_ start 78 * block. If only the logical file block falls within the range of prealloc 79 * space we will consume the particular prealloc space. This makes sure that 80 * we have contiguous physical blocks representing the file blocks 81 * 82 * The important thing to be noted in case of inode prealloc space is that 83 * we don't modify the values associated to inode prealloc space except 84 * pa_free. 85 * 86 * If we are not able to find blocks in the inode prealloc space and if we 87 * have the group allocation flag set then we look at the locality group 88 * prealloc space. These are per CPU prealloc list represented as 89 * 90 * ext4_sb_info.s_locality_groups[smp_processor_id()] 91 * 92 * The reason for having a per cpu locality group is to reduce the contention 93 * between CPUs. It is possible to get scheduled at this point. 94 * 95 * The locality group prealloc space is used looking at whether we have 96 * enough free space (pa_free) within the prealloc space. 97 * 98 * If we can't allocate blocks via inode prealloc or/and locality group 99 * prealloc then we look at the buddy cache. The buddy cache is represented 100 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 101 * mapped to the buddy and bitmap information regarding different 102 * groups. The buddy information is attached to buddy cache inode so that 103 * we can access them through the page cache. The information regarding 104 * each group is loaded via ext4_mb_load_buddy. The information involve 105 * block bitmap and buddy information. The information are stored in the 106 * inode as: 107 * 108 * { page } 109 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 110 * 111 * 112 * one block each for bitmap and buddy information. So for each group we 113 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 114 * blocksize) blocks. So it can have information regarding groups_per_page 115 * which is blocks_per_page/2 116 * 117 * The buddy cache inode is not stored on disk. The inode is thrown 118 * away when the filesystem is unmounted. 119 * 120 * We look for count number of blocks in the buddy cache. If we were able 121 * to locate that many free blocks we return with additional information 122 * regarding rest of the contiguous physical block available 123 * 124 * Before allocating blocks via buddy cache we normalize the request 125 * blocks. This ensure we ask for more blocks that we needed. The extra 126 * blocks that we get after allocation is added to the respective prealloc 127 * list. In case of inode preallocation we follow a list of heuristics 128 * based on file size. This can be found in ext4_mb_normalize_request. If 129 * we are doing a group prealloc we try to normalize the request to 130 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 131 * dependent on the cluster size; for non-bigalloc file systems, it is 132 * 512 blocks. This can be tuned via 133 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 134 * terms of number of blocks. If we have mounted the file system with -O 135 * stripe=<value> option the group prealloc request is normalized to the 136 * the smallest multiple of the stripe value (sbi->s_stripe) which is 137 * greater than the default mb_group_prealloc. 138 * 139 * The regular allocator (using the buddy cache) supports a few tunables. 140 * 141 * /sys/fs/ext4/<partition>/mb_min_to_scan 142 * /sys/fs/ext4/<partition>/mb_max_to_scan 143 * /sys/fs/ext4/<partition>/mb_order2_req 144 * 145 * The regular allocator uses buddy scan only if the request len is power of 146 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 147 * value of s_mb_order2_reqs can be tuned via 148 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 149 * stripe size (sbi->s_stripe), we try to search for contiguous block in 150 * stripe size. This should result in better allocation on RAID setups. If 151 * not, we search in the specific group using bitmap for best extents. The 152 * tunable min_to_scan and max_to_scan control the behaviour here. 153 * min_to_scan indicate how long the mballoc __must__ look for a best 154 * extent and max_to_scan indicates how long the mballoc __can__ look for a 155 * best extent in the found extents. Searching for the blocks starts with 156 * the group specified as the goal value in allocation context via 157 * ac_g_ex. Each group is first checked based on the criteria whether it 158 * can be used for allocation. ext4_mb_good_group explains how the groups are 159 * checked. 160 * 161 * Both the prealloc space are getting populated as above. So for the first 162 * request we will hit the buddy cache which will result in this prealloc 163 * space getting filled. The prealloc space is then later used for the 164 * subsequent request. 165 */ 166 167 /* 168 * mballoc operates on the following data: 169 * - on-disk bitmap 170 * - in-core buddy (actually includes buddy and bitmap) 171 * - preallocation descriptors (PAs) 172 * 173 * there are two types of preallocations: 174 * - inode 175 * assiged to specific inode and can be used for this inode only. 176 * it describes part of inode's space preallocated to specific 177 * physical blocks. any block from that preallocated can be used 178 * independent. the descriptor just tracks number of blocks left 179 * unused. so, before taking some block from descriptor, one must 180 * make sure corresponded logical block isn't allocated yet. this 181 * also means that freeing any block within descriptor's range 182 * must discard all preallocated blocks. 183 * - locality group 184 * assigned to specific locality group which does not translate to 185 * permanent set of inodes: inode can join and leave group. space 186 * from this type of preallocation can be used for any inode. thus 187 * it's consumed from the beginning to the end. 188 * 189 * relation between them can be expressed as: 190 * in-core buddy = on-disk bitmap + preallocation descriptors 191 * 192 * this mean blocks mballoc considers used are: 193 * - allocated blocks (persistent) 194 * - preallocated blocks (non-persistent) 195 * 196 * consistency in mballoc world means that at any time a block is either 197 * free or used in ALL structures. notice: "any time" should not be read 198 * literally -- time is discrete and delimited by locks. 199 * 200 * to keep it simple, we don't use block numbers, instead we count number of 201 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 202 * 203 * all operations can be expressed as: 204 * - init buddy: buddy = on-disk + PAs 205 * - new PA: buddy += N; PA = N 206 * - use inode PA: on-disk += N; PA -= N 207 * - discard inode PA buddy -= on-disk - PA; PA = 0 208 * - use locality group PA on-disk += N; PA -= N 209 * - discard locality group PA buddy -= PA; PA = 0 210 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 211 * is used in real operation because we can't know actual used 212 * bits from PA, only from on-disk bitmap 213 * 214 * if we follow this strict logic, then all operations above should be atomic. 215 * given some of them can block, we'd have to use something like semaphores 216 * killing performance on high-end SMP hardware. let's try to relax it using 217 * the following knowledge: 218 * 1) if buddy is referenced, it's already initialized 219 * 2) while block is used in buddy and the buddy is referenced, 220 * nobody can re-allocate that block 221 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 222 * bit set and PA claims same block, it's OK. IOW, one can set bit in 223 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 224 * block 225 * 226 * so, now we're building a concurrency table: 227 * - init buddy vs. 228 * - new PA 229 * blocks for PA are allocated in the buddy, buddy must be referenced 230 * until PA is linked to allocation group to avoid concurrent buddy init 231 * - use inode PA 232 * we need to make sure that either on-disk bitmap or PA has uptodate data 233 * given (3) we care that PA-=N operation doesn't interfere with init 234 * - discard inode PA 235 * the simplest way would be to have buddy initialized by the discard 236 * - use locality group PA 237 * again PA-=N must be serialized with init 238 * - discard locality group PA 239 * the simplest way would be to have buddy initialized by the discard 240 * - new PA vs. 241 * - use inode PA 242 * i_data_sem serializes them 243 * - discard inode PA 244 * discard process must wait until PA isn't used by another process 245 * - use locality group PA 246 * some mutex should serialize them 247 * - discard locality group PA 248 * discard process must wait until PA isn't used by another process 249 * - use inode PA 250 * - use inode PA 251 * i_data_sem or another mutex should serializes them 252 * - discard inode PA 253 * discard process must wait until PA isn't used by another process 254 * - use locality group PA 255 * nothing wrong here -- they're different PAs covering different blocks 256 * - discard locality group PA 257 * discard process must wait until PA isn't used by another process 258 * 259 * now we're ready to make few consequences: 260 * - PA is referenced and while it is no discard is possible 261 * - PA is referenced until block isn't marked in on-disk bitmap 262 * - PA changes only after on-disk bitmap 263 * - discard must not compete with init. either init is done before 264 * any discard or they're serialized somehow 265 * - buddy init as sum of on-disk bitmap and PAs is done atomically 266 * 267 * a special case when we've used PA to emptiness. no need to modify buddy 268 * in this case, but we should care about concurrent init 269 * 270 */ 271 272 /* 273 * Logic in few words: 274 * 275 * - allocation: 276 * load group 277 * find blocks 278 * mark bits in on-disk bitmap 279 * release group 280 * 281 * - use preallocation: 282 * find proper PA (per-inode or group) 283 * load group 284 * mark bits in on-disk bitmap 285 * release group 286 * release PA 287 * 288 * - free: 289 * load group 290 * mark bits in on-disk bitmap 291 * release group 292 * 293 * - discard preallocations in group: 294 * mark PAs deleted 295 * move them onto local list 296 * load on-disk bitmap 297 * load group 298 * remove PA from object (inode or locality group) 299 * mark free blocks in-core 300 * 301 * - discard inode's preallocations: 302 */ 303 304 /* 305 * Locking rules 306 * 307 * Locks: 308 * - bitlock on a group (group) 309 * - object (inode/locality) (object) 310 * - per-pa lock (pa) 311 * 312 * Paths: 313 * - new pa 314 * object 315 * group 316 * 317 * - find and use pa: 318 * pa 319 * 320 * - release consumed pa: 321 * pa 322 * group 323 * object 324 * 325 * - generate in-core bitmap: 326 * group 327 * pa 328 * 329 * - discard all for given object (inode, locality group): 330 * object 331 * pa 332 * group 333 * 334 * - discard all for given group: 335 * group 336 * pa 337 * group 338 * object 339 * 340 */ 341 static struct kmem_cache *ext4_pspace_cachep; 342 static struct kmem_cache *ext4_ac_cachep; 343 static struct kmem_cache *ext4_free_data_cachep; 344 345 /* We create slab caches for groupinfo data structures based on the 346 * superblock block size. There will be one per mounted filesystem for 347 * each unique s_blocksize_bits */ 348 #define NR_GRPINFO_CACHES 8 349 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 350 351 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 352 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 353 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 354 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 355 }; 356 357 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 358 ext4_group_t group); 359 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 360 ext4_group_t group); 361 static void ext4_free_data_callback(struct super_block *sb, 362 struct ext4_journal_cb_entry *jce, int rc); 363 364 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 365 { 366 #if BITS_PER_LONG == 64 367 *bit += ((unsigned long) addr & 7UL) << 3; 368 addr = (void *) ((unsigned long) addr & ~7UL); 369 #elif BITS_PER_LONG == 32 370 *bit += ((unsigned long) addr & 3UL) << 3; 371 addr = (void *) ((unsigned long) addr & ~3UL); 372 #else 373 #error "how many bits you are?!" 374 #endif 375 return addr; 376 } 377 378 static inline int mb_test_bit(int bit, void *addr) 379 { 380 /* 381 * ext4_test_bit on architecture like powerpc 382 * needs unsigned long aligned address 383 */ 384 addr = mb_correct_addr_and_bit(&bit, addr); 385 return ext4_test_bit(bit, addr); 386 } 387 388 static inline void mb_set_bit(int bit, void *addr) 389 { 390 addr = mb_correct_addr_and_bit(&bit, addr); 391 ext4_set_bit(bit, addr); 392 } 393 394 static inline void mb_clear_bit(int bit, void *addr) 395 { 396 addr = mb_correct_addr_and_bit(&bit, addr); 397 ext4_clear_bit(bit, addr); 398 } 399 400 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 401 { 402 int fix = 0, ret, tmpmax; 403 addr = mb_correct_addr_and_bit(&fix, addr); 404 tmpmax = max + fix; 405 start += fix; 406 407 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 408 if (ret > max) 409 return max; 410 return ret; 411 } 412 413 static inline int mb_find_next_bit(void *addr, int max, int start) 414 { 415 int fix = 0, ret, tmpmax; 416 addr = mb_correct_addr_and_bit(&fix, addr); 417 tmpmax = max + fix; 418 start += fix; 419 420 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 421 if (ret > max) 422 return max; 423 return ret; 424 } 425 426 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 427 { 428 char *bb; 429 430 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 431 BUG_ON(max == NULL); 432 433 if (order > e4b->bd_blkbits + 1) { 434 *max = 0; 435 return NULL; 436 } 437 438 /* at order 0 we see each particular block */ 439 if (order == 0) { 440 *max = 1 << (e4b->bd_blkbits + 3); 441 return e4b->bd_bitmap; 442 } 443 444 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 445 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 446 447 return bb; 448 } 449 450 #ifdef DOUBLE_CHECK 451 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 452 int first, int count) 453 { 454 int i; 455 struct super_block *sb = e4b->bd_sb; 456 457 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 458 return; 459 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 460 for (i = 0; i < count; i++) { 461 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 462 ext4_fsblk_t blocknr; 463 464 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 465 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 466 ext4_grp_locked_error(sb, e4b->bd_group, 467 inode ? inode->i_ino : 0, 468 blocknr, 469 "freeing block already freed " 470 "(bit %u)", 471 first + i); 472 } 473 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 474 } 475 } 476 477 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 478 { 479 int i; 480 481 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 482 return; 483 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 484 for (i = 0; i < count; i++) { 485 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 486 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 487 } 488 } 489 490 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 491 { 492 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 493 unsigned char *b1, *b2; 494 int i; 495 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 496 b2 = (unsigned char *) bitmap; 497 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 498 if (b1[i] != b2[i]) { 499 ext4_msg(e4b->bd_sb, KERN_ERR, 500 "corruption in group %u " 501 "at byte %u(%u): %x in copy != %x " 502 "on disk/prealloc", 503 e4b->bd_group, i, i * 8, b1[i], b2[i]); 504 BUG(); 505 } 506 } 507 } 508 } 509 510 #else 511 static inline void mb_free_blocks_double(struct inode *inode, 512 struct ext4_buddy *e4b, int first, int count) 513 { 514 return; 515 } 516 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 517 int first, int count) 518 { 519 return; 520 } 521 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 522 { 523 return; 524 } 525 #endif 526 527 #ifdef AGGRESSIVE_CHECK 528 529 #define MB_CHECK_ASSERT(assert) \ 530 do { \ 531 if (!(assert)) { \ 532 printk(KERN_EMERG \ 533 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 534 function, file, line, # assert); \ 535 BUG(); \ 536 } \ 537 } while (0) 538 539 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 540 const char *function, int line) 541 { 542 struct super_block *sb = e4b->bd_sb; 543 int order = e4b->bd_blkbits + 1; 544 int max; 545 int max2; 546 int i; 547 int j; 548 int k; 549 int count; 550 struct ext4_group_info *grp; 551 int fragments = 0; 552 int fstart; 553 struct list_head *cur; 554 void *buddy; 555 void *buddy2; 556 557 { 558 static int mb_check_counter; 559 if (mb_check_counter++ % 100 != 0) 560 return 0; 561 } 562 563 while (order > 1) { 564 buddy = mb_find_buddy(e4b, order, &max); 565 MB_CHECK_ASSERT(buddy); 566 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 567 MB_CHECK_ASSERT(buddy2); 568 MB_CHECK_ASSERT(buddy != buddy2); 569 MB_CHECK_ASSERT(max * 2 == max2); 570 571 count = 0; 572 for (i = 0; i < max; i++) { 573 574 if (mb_test_bit(i, buddy)) { 575 /* only single bit in buddy2 may be 1 */ 576 if (!mb_test_bit(i << 1, buddy2)) { 577 MB_CHECK_ASSERT( 578 mb_test_bit((i<<1)+1, buddy2)); 579 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 580 MB_CHECK_ASSERT( 581 mb_test_bit(i << 1, buddy2)); 582 } 583 continue; 584 } 585 586 /* both bits in buddy2 must be 1 */ 587 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 588 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 589 590 for (j = 0; j < (1 << order); j++) { 591 k = (i * (1 << order)) + j; 592 MB_CHECK_ASSERT( 593 !mb_test_bit(k, e4b->bd_bitmap)); 594 } 595 count++; 596 } 597 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 598 order--; 599 } 600 601 fstart = -1; 602 buddy = mb_find_buddy(e4b, 0, &max); 603 for (i = 0; i < max; i++) { 604 if (!mb_test_bit(i, buddy)) { 605 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 606 if (fstart == -1) { 607 fragments++; 608 fstart = i; 609 } 610 continue; 611 } 612 fstart = -1; 613 /* check used bits only */ 614 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 615 buddy2 = mb_find_buddy(e4b, j, &max2); 616 k = i >> j; 617 MB_CHECK_ASSERT(k < max2); 618 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 619 } 620 } 621 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 622 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 623 624 grp = ext4_get_group_info(sb, e4b->bd_group); 625 list_for_each(cur, &grp->bb_prealloc_list) { 626 ext4_group_t groupnr; 627 struct ext4_prealloc_space *pa; 628 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 629 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 630 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 631 for (i = 0; i < pa->pa_len; i++) 632 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 633 } 634 return 0; 635 } 636 #undef MB_CHECK_ASSERT 637 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 638 __FILE__, __func__, __LINE__) 639 #else 640 #define mb_check_buddy(e4b) 641 #endif 642 643 /* 644 * Divide blocks started from @first with length @len into 645 * smaller chunks with power of 2 blocks. 646 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 647 * then increase bb_counters[] for corresponded chunk size. 648 */ 649 static void ext4_mb_mark_free_simple(struct super_block *sb, 650 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 651 struct ext4_group_info *grp) 652 { 653 struct ext4_sb_info *sbi = EXT4_SB(sb); 654 ext4_grpblk_t min; 655 ext4_grpblk_t max; 656 ext4_grpblk_t chunk; 657 unsigned short border; 658 659 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 660 661 border = 2 << sb->s_blocksize_bits; 662 663 while (len > 0) { 664 /* find how many blocks can be covered since this position */ 665 max = ffs(first | border) - 1; 666 667 /* find how many blocks of power 2 we need to mark */ 668 min = fls(len) - 1; 669 670 if (max < min) 671 min = max; 672 chunk = 1 << min; 673 674 /* mark multiblock chunks only */ 675 grp->bb_counters[min]++; 676 if (min > 0) 677 mb_clear_bit(first >> min, 678 buddy + sbi->s_mb_offsets[min]); 679 680 len -= chunk; 681 first += chunk; 682 } 683 } 684 685 /* 686 * Cache the order of the largest free extent we have available in this block 687 * group. 688 */ 689 static void 690 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 691 { 692 int i; 693 int bits; 694 695 grp->bb_largest_free_order = -1; /* uninit */ 696 697 bits = sb->s_blocksize_bits + 1; 698 for (i = bits; i >= 0; i--) { 699 if (grp->bb_counters[i] > 0) { 700 grp->bb_largest_free_order = i; 701 break; 702 } 703 } 704 } 705 706 static noinline_for_stack 707 void ext4_mb_generate_buddy(struct super_block *sb, 708 void *buddy, void *bitmap, ext4_group_t group) 709 { 710 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 711 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 712 ext4_grpblk_t i = 0; 713 ext4_grpblk_t first; 714 ext4_grpblk_t len; 715 unsigned free = 0; 716 unsigned fragments = 0; 717 unsigned long long period = get_cycles(); 718 719 /* initialize buddy from bitmap which is aggregation 720 * of on-disk bitmap and preallocations */ 721 i = mb_find_next_zero_bit(bitmap, max, 0); 722 grp->bb_first_free = i; 723 while (i < max) { 724 fragments++; 725 first = i; 726 i = mb_find_next_bit(bitmap, max, i); 727 len = i - first; 728 free += len; 729 if (len > 1) 730 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 731 else 732 grp->bb_counters[0]++; 733 if (i < max) 734 i = mb_find_next_zero_bit(bitmap, max, i); 735 } 736 grp->bb_fragments = fragments; 737 738 if (free != grp->bb_free) { 739 ext4_grp_locked_error(sb, group, 0, 0, 740 "%u clusters in bitmap, %u in gd", 741 free, grp->bb_free); 742 /* 743 * If we intent to continue, we consider group descritor 744 * corrupt and update bb_free using bitmap value 745 */ 746 grp->bb_free = free; 747 } 748 mb_set_largest_free_order(sb, grp); 749 750 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 751 752 period = get_cycles() - period; 753 spin_lock(&EXT4_SB(sb)->s_bal_lock); 754 EXT4_SB(sb)->s_mb_buddies_generated++; 755 EXT4_SB(sb)->s_mb_generation_time += period; 756 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 757 } 758 759 /* The buddy information is attached the buddy cache inode 760 * for convenience. The information regarding each group 761 * is loaded via ext4_mb_load_buddy. The information involve 762 * block bitmap and buddy information. The information are 763 * stored in the inode as 764 * 765 * { page } 766 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 767 * 768 * 769 * one block each for bitmap and buddy information. 770 * So for each group we take up 2 blocks. A page can 771 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 772 * So it can have information regarding groups_per_page which 773 * is blocks_per_page/2 774 * 775 * Locking note: This routine takes the block group lock of all groups 776 * for this page; do not hold this lock when calling this routine! 777 */ 778 779 static int ext4_mb_init_cache(struct page *page, char *incore) 780 { 781 ext4_group_t ngroups; 782 int blocksize; 783 int blocks_per_page; 784 int groups_per_page; 785 int err = 0; 786 int i; 787 ext4_group_t first_group, group; 788 int first_block; 789 struct super_block *sb; 790 struct buffer_head *bhs; 791 struct buffer_head **bh = NULL; 792 struct inode *inode; 793 char *data; 794 char *bitmap; 795 struct ext4_group_info *grinfo; 796 797 mb_debug(1, "init page %lu\n", page->index); 798 799 inode = page->mapping->host; 800 sb = inode->i_sb; 801 ngroups = ext4_get_groups_count(sb); 802 blocksize = 1 << inode->i_blkbits; 803 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 804 805 groups_per_page = blocks_per_page >> 1; 806 if (groups_per_page == 0) 807 groups_per_page = 1; 808 809 /* allocate buffer_heads to read bitmaps */ 810 if (groups_per_page > 1) { 811 i = sizeof(struct buffer_head *) * groups_per_page; 812 bh = kzalloc(i, GFP_NOFS); 813 if (bh == NULL) { 814 err = -ENOMEM; 815 goto out; 816 } 817 } else 818 bh = &bhs; 819 820 first_group = page->index * blocks_per_page / 2; 821 822 /* read all groups the page covers into the cache */ 823 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 824 if (group >= ngroups) 825 break; 826 827 grinfo = ext4_get_group_info(sb, group); 828 /* 829 * If page is uptodate then we came here after online resize 830 * which added some new uninitialized group info structs, so 831 * we must skip all initialized uptodate buddies on the page, 832 * which may be currently in use by an allocating task. 833 */ 834 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 835 bh[i] = NULL; 836 continue; 837 } 838 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) { 839 err = -ENOMEM; 840 goto out; 841 } 842 mb_debug(1, "read bitmap for group %u\n", group); 843 } 844 845 /* wait for I/O completion */ 846 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 847 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) { 848 err = -EIO; 849 goto out; 850 } 851 } 852 853 first_block = page->index * blocks_per_page; 854 for (i = 0; i < blocks_per_page; i++) { 855 int group; 856 857 group = (first_block + i) >> 1; 858 if (group >= ngroups) 859 break; 860 861 if (!bh[group - first_group]) 862 /* skip initialized uptodate buddy */ 863 continue; 864 865 /* 866 * data carry information regarding this 867 * particular group in the format specified 868 * above 869 * 870 */ 871 data = page_address(page) + (i * blocksize); 872 bitmap = bh[group - first_group]->b_data; 873 874 /* 875 * We place the buddy block and bitmap block 876 * close together 877 */ 878 if ((first_block + i) & 1) { 879 /* this is block of buddy */ 880 BUG_ON(incore == NULL); 881 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 882 group, page->index, i * blocksize); 883 trace_ext4_mb_buddy_bitmap_load(sb, group); 884 grinfo = ext4_get_group_info(sb, group); 885 grinfo->bb_fragments = 0; 886 memset(grinfo->bb_counters, 0, 887 sizeof(*grinfo->bb_counters) * 888 (sb->s_blocksize_bits+2)); 889 /* 890 * incore got set to the group block bitmap below 891 */ 892 ext4_lock_group(sb, group); 893 /* init the buddy */ 894 memset(data, 0xff, blocksize); 895 ext4_mb_generate_buddy(sb, data, incore, group); 896 ext4_unlock_group(sb, group); 897 incore = NULL; 898 } else { 899 /* this is block of bitmap */ 900 BUG_ON(incore != NULL); 901 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 902 group, page->index, i * blocksize); 903 trace_ext4_mb_bitmap_load(sb, group); 904 905 /* see comments in ext4_mb_put_pa() */ 906 ext4_lock_group(sb, group); 907 memcpy(data, bitmap, blocksize); 908 909 /* mark all preallocated blks used in in-core bitmap */ 910 ext4_mb_generate_from_pa(sb, data, group); 911 ext4_mb_generate_from_freelist(sb, data, group); 912 ext4_unlock_group(sb, group); 913 914 /* set incore so that the buddy information can be 915 * generated using this 916 */ 917 incore = data; 918 } 919 } 920 SetPageUptodate(page); 921 922 out: 923 if (bh) { 924 for (i = 0; i < groups_per_page; i++) 925 brelse(bh[i]); 926 if (bh != &bhs) 927 kfree(bh); 928 } 929 return err; 930 } 931 932 /* 933 * Lock the buddy and bitmap pages. This make sure other parallel init_group 934 * on the same buddy page doesn't happen whild holding the buddy page lock. 935 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 936 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 937 */ 938 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 939 ext4_group_t group, struct ext4_buddy *e4b) 940 { 941 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 942 int block, pnum, poff; 943 int blocks_per_page; 944 struct page *page; 945 946 e4b->bd_buddy_page = NULL; 947 e4b->bd_bitmap_page = NULL; 948 949 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 950 /* 951 * the buddy cache inode stores the block bitmap 952 * and buddy information in consecutive blocks. 953 * So for each group we need two blocks. 954 */ 955 block = group * 2; 956 pnum = block / blocks_per_page; 957 poff = block % blocks_per_page; 958 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 959 if (!page) 960 return -EIO; 961 BUG_ON(page->mapping != inode->i_mapping); 962 e4b->bd_bitmap_page = page; 963 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 964 965 if (blocks_per_page >= 2) { 966 /* buddy and bitmap are on the same page */ 967 return 0; 968 } 969 970 block++; 971 pnum = block / blocks_per_page; 972 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 973 if (!page) 974 return -EIO; 975 BUG_ON(page->mapping != inode->i_mapping); 976 e4b->bd_buddy_page = page; 977 return 0; 978 } 979 980 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 981 { 982 if (e4b->bd_bitmap_page) { 983 unlock_page(e4b->bd_bitmap_page); 984 page_cache_release(e4b->bd_bitmap_page); 985 } 986 if (e4b->bd_buddy_page) { 987 unlock_page(e4b->bd_buddy_page); 988 page_cache_release(e4b->bd_buddy_page); 989 } 990 } 991 992 /* 993 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 994 * block group lock of all groups for this page; do not hold the BG lock when 995 * calling this routine! 996 */ 997 static noinline_for_stack 998 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) 999 { 1000 1001 struct ext4_group_info *this_grp; 1002 struct ext4_buddy e4b; 1003 struct page *page; 1004 int ret = 0; 1005 1006 mb_debug(1, "init group %u\n", group); 1007 this_grp = ext4_get_group_info(sb, group); 1008 /* 1009 * This ensures that we don't reinit the buddy cache 1010 * page which map to the group from which we are already 1011 * allocating. If we are looking at the buddy cache we would 1012 * have taken a reference using ext4_mb_load_buddy and that 1013 * would have pinned buddy page to page cache. 1014 */ 1015 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b); 1016 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1017 /* 1018 * somebody initialized the group 1019 * return without doing anything 1020 */ 1021 goto err; 1022 } 1023 1024 page = e4b.bd_bitmap_page; 1025 ret = ext4_mb_init_cache(page, NULL); 1026 if (ret) 1027 goto err; 1028 if (!PageUptodate(page)) { 1029 ret = -EIO; 1030 goto err; 1031 } 1032 mark_page_accessed(page); 1033 1034 if (e4b.bd_buddy_page == NULL) { 1035 /* 1036 * If both the bitmap and buddy are in 1037 * the same page we don't need to force 1038 * init the buddy 1039 */ 1040 ret = 0; 1041 goto err; 1042 } 1043 /* init buddy cache */ 1044 page = e4b.bd_buddy_page; 1045 ret = ext4_mb_init_cache(page, e4b.bd_bitmap); 1046 if (ret) 1047 goto err; 1048 if (!PageUptodate(page)) { 1049 ret = -EIO; 1050 goto err; 1051 } 1052 mark_page_accessed(page); 1053 err: 1054 ext4_mb_put_buddy_page_lock(&e4b); 1055 return ret; 1056 } 1057 1058 /* 1059 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1060 * block group lock of all groups for this page; do not hold the BG lock when 1061 * calling this routine! 1062 */ 1063 static noinline_for_stack int 1064 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1065 struct ext4_buddy *e4b) 1066 { 1067 int blocks_per_page; 1068 int block; 1069 int pnum; 1070 int poff; 1071 struct page *page; 1072 int ret; 1073 struct ext4_group_info *grp; 1074 struct ext4_sb_info *sbi = EXT4_SB(sb); 1075 struct inode *inode = sbi->s_buddy_cache; 1076 1077 mb_debug(1, "load group %u\n", group); 1078 1079 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1080 grp = ext4_get_group_info(sb, group); 1081 1082 e4b->bd_blkbits = sb->s_blocksize_bits; 1083 e4b->bd_info = grp; 1084 e4b->bd_sb = sb; 1085 e4b->bd_group = group; 1086 e4b->bd_buddy_page = NULL; 1087 e4b->bd_bitmap_page = NULL; 1088 1089 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1090 /* 1091 * we need full data about the group 1092 * to make a good selection 1093 */ 1094 ret = ext4_mb_init_group(sb, group); 1095 if (ret) 1096 return ret; 1097 } 1098 1099 /* 1100 * the buddy cache inode stores the block bitmap 1101 * and buddy information in consecutive blocks. 1102 * So for each group we need two blocks. 1103 */ 1104 block = group * 2; 1105 pnum = block / blocks_per_page; 1106 poff = block % blocks_per_page; 1107 1108 /* we could use find_or_create_page(), but it locks page 1109 * what we'd like to avoid in fast path ... */ 1110 page = find_get_page(inode->i_mapping, pnum); 1111 if (page == NULL || !PageUptodate(page)) { 1112 if (page) 1113 /* 1114 * drop the page reference and try 1115 * to get the page with lock. If we 1116 * are not uptodate that implies 1117 * somebody just created the page but 1118 * is yet to initialize the same. So 1119 * wait for it to initialize. 1120 */ 1121 page_cache_release(page); 1122 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1123 if (page) { 1124 BUG_ON(page->mapping != inode->i_mapping); 1125 if (!PageUptodate(page)) { 1126 ret = ext4_mb_init_cache(page, NULL); 1127 if (ret) { 1128 unlock_page(page); 1129 goto err; 1130 } 1131 mb_cmp_bitmaps(e4b, page_address(page) + 1132 (poff * sb->s_blocksize)); 1133 } 1134 unlock_page(page); 1135 } 1136 } 1137 if (page == NULL || !PageUptodate(page)) { 1138 ret = -EIO; 1139 goto err; 1140 } 1141 e4b->bd_bitmap_page = page; 1142 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1143 mark_page_accessed(page); 1144 1145 block++; 1146 pnum = block / blocks_per_page; 1147 poff = block % blocks_per_page; 1148 1149 page = find_get_page(inode->i_mapping, pnum); 1150 if (page == NULL || !PageUptodate(page)) { 1151 if (page) 1152 page_cache_release(page); 1153 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1154 if (page) { 1155 BUG_ON(page->mapping != inode->i_mapping); 1156 if (!PageUptodate(page)) { 1157 ret = ext4_mb_init_cache(page, e4b->bd_bitmap); 1158 if (ret) { 1159 unlock_page(page); 1160 goto err; 1161 } 1162 } 1163 unlock_page(page); 1164 } 1165 } 1166 if (page == NULL || !PageUptodate(page)) { 1167 ret = -EIO; 1168 goto err; 1169 } 1170 e4b->bd_buddy_page = page; 1171 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1172 mark_page_accessed(page); 1173 1174 BUG_ON(e4b->bd_bitmap_page == NULL); 1175 BUG_ON(e4b->bd_buddy_page == NULL); 1176 1177 return 0; 1178 1179 err: 1180 if (page) 1181 page_cache_release(page); 1182 if (e4b->bd_bitmap_page) 1183 page_cache_release(e4b->bd_bitmap_page); 1184 if (e4b->bd_buddy_page) 1185 page_cache_release(e4b->bd_buddy_page); 1186 e4b->bd_buddy = NULL; 1187 e4b->bd_bitmap = NULL; 1188 return ret; 1189 } 1190 1191 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1192 { 1193 if (e4b->bd_bitmap_page) 1194 page_cache_release(e4b->bd_bitmap_page); 1195 if (e4b->bd_buddy_page) 1196 page_cache_release(e4b->bd_buddy_page); 1197 } 1198 1199 1200 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1201 { 1202 int order = 1; 1203 void *bb; 1204 1205 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1206 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1207 1208 bb = e4b->bd_buddy; 1209 while (order <= e4b->bd_blkbits + 1) { 1210 block = block >> 1; 1211 if (!mb_test_bit(block, bb)) { 1212 /* this block is part of buddy of order 'order' */ 1213 return order; 1214 } 1215 bb += 1 << (e4b->bd_blkbits - order); 1216 order++; 1217 } 1218 return 0; 1219 } 1220 1221 static void mb_clear_bits(void *bm, int cur, int len) 1222 { 1223 __u32 *addr; 1224 1225 len = cur + len; 1226 while (cur < len) { 1227 if ((cur & 31) == 0 && (len - cur) >= 32) { 1228 /* fast path: clear whole word at once */ 1229 addr = bm + (cur >> 3); 1230 *addr = 0; 1231 cur += 32; 1232 continue; 1233 } 1234 mb_clear_bit(cur, bm); 1235 cur++; 1236 } 1237 } 1238 1239 void ext4_set_bits(void *bm, int cur, int len) 1240 { 1241 __u32 *addr; 1242 1243 len = cur + len; 1244 while (cur < len) { 1245 if ((cur & 31) == 0 && (len - cur) >= 32) { 1246 /* fast path: set whole word at once */ 1247 addr = bm + (cur >> 3); 1248 *addr = 0xffffffff; 1249 cur += 32; 1250 continue; 1251 } 1252 mb_set_bit(cur, bm); 1253 cur++; 1254 } 1255 } 1256 1257 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1258 int first, int count) 1259 { 1260 int block = 0; 1261 int max = 0; 1262 int order; 1263 void *buddy; 1264 void *buddy2; 1265 struct super_block *sb = e4b->bd_sb; 1266 1267 BUG_ON(first + count > (sb->s_blocksize << 3)); 1268 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1269 mb_check_buddy(e4b); 1270 mb_free_blocks_double(inode, e4b, first, count); 1271 1272 e4b->bd_info->bb_free += count; 1273 if (first < e4b->bd_info->bb_first_free) 1274 e4b->bd_info->bb_first_free = first; 1275 1276 /* let's maintain fragments counter */ 1277 if (first != 0) 1278 block = !mb_test_bit(first - 1, e4b->bd_bitmap); 1279 if (first + count < EXT4_SB(sb)->s_mb_maxs[0]) 1280 max = !mb_test_bit(first + count, e4b->bd_bitmap); 1281 if (block && max) 1282 e4b->bd_info->bb_fragments--; 1283 else if (!block && !max) 1284 e4b->bd_info->bb_fragments++; 1285 1286 /* let's maintain buddy itself */ 1287 while (count-- > 0) { 1288 block = first++; 1289 order = 0; 1290 1291 if (!mb_test_bit(block, e4b->bd_bitmap)) { 1292 ext4_fsblk_t blocknr; 1293 1294 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1295 blocknr += EXT4_C2B(EXT4_SB(sb), block); 1296 ext4_grp_locked_error(sb, e4b->bd_group, 1297 inode ? inode->i_ino : 0, 1298 blocknr, 1299 "freeing already freed block " 1300 "(bit %u)", block); 1301 } 1302 mb_clear_bit(block, e4b->bd_bitmap); 1303 e4b->bd_info->bb_counters[order]++; 1304 1305 /* start of the buddy */ 1306 buddy = mb_find_buddy(e4b, order, &max); 1307 1308 do { 1309 block &= ~1UL; 1310 if (mb_test_bit(block, buddy) || 1311 mb_test_bit(block + 1, buddy)) 1312 break; 1313 1314 /* both the buddies are free, try to coalesce them */ 1315 buddy2 = mb_find_buddy(e4b, order + 1, &max); 1316 1317 if (!buddy2) 1318 break; 1319 1320 if (order > 0) { 1321 /* for special purposes, we don't set 1322 * free bits in bitmap */ 1323 mb_set_bit(block, buddy); 1324 mb_set_bit(block + 1, buddy); 1325 } 1326 e4b->bd_info->bb_counters[order]--; 1327 e4b->bd_info->bb_counters[order]--; 1328 1329 block = block >> 1; 1330 order++; 1331 e4b->bd_info->bb_counters[order]++; 1332 1333 mb_clear_bit(block, buddy2); 1334 buddy = buddy2; 1335 } while (1); 1336 } 1337 mb_set_largest_free_order(sb, e4b->bd_info); 1338 mb_check_buddy(e4b); 1339 } 1340 1341 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block, 1342 int needed, struct ext4_free_extent *ex) 1343 { 1344 int next = block; 1345 int max; 1346 void *buddy; 1347 1348 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1349 BUG_ON(ex == NULL); 1350 1351 buddy = mb_find_buddy(e4b, order, &max); 1352 BUG_ON(buddy == NULL); 1353 BUG_ON(block >= max); 1354 if (mb_test_bit(block, buddy)) { 1355 ex->fe_len = 0; 1356 ex->fe_start = 0; 1357 ex->fe_group = 0; 1358 return 0; 1359 } 1360 1361 /* FIXME dorp order completely ? */ 1362 if (likely(order == 0)) { 1363 /* find actual order */ 1364 order = mb_find_order_for_block(e4b, block); 1365 block = block >> order; 1366 } 1367 1368 ex->fe_len = 1 << order; 1369 ex->fe_start = block << order; 1370 ex->fe_group = e4b->bd_group; 1371 1372 /* calc difference from given start */ 1373 next = next - ex->fe_start; 1374 ex->fe_len -= next; 1375 ex->fe_start += next; 1376 1377 while (needed > ex->fe_len && 1378 (buddy = mb_find_buddy(e4b, order, &max))) { 1379 1380 if (block + 1 >= max) 1381 break; 1382 1383 next = (block + 1) * (1 << order); 1384 if (mb_test_bit(next, e4b->bd_bitmap)) 1385 break; 1386 1387 order = mb_find_order_for_block(e4b, next); 1388 1389 block = next >> order; 1390 ex->fe_len += 1 << order; 1391 } 1392 1393 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1394 return ex->fe_len; 1395 } 1396 1397 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1398 { 1399 int ord; 1400 int mlen = 0; 1401 int max = 0; 1402 int cur; 1403 int start = ex->fe_start; 1404 int len = ex->fe_len; 1405 unsigned ret = 0; 1406 int len0 = len; 1407 void *buddy; 1408 1409 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1410 BUG_ON(e4b->bd_group != ex->fe_group); 1411 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1412 mb_check_buddy(e4b); 1413 mb_mark_used_double(e4b, start, len); 1414 1415 e4b->bd_info->bb_free -= len; 1416 if (e4b->bd_info->bb_first_free == start) 1417 e4b->bd_info->bb_first_free += len; 1418 1419 /* let's maintain fragments counter */ 1420 if (start != 0) 1421 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1422 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1423 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1424 if (mlen && max) 1425 e4b->bd_info->bb_fragments++; 1426 else if (!mlen && !max) 1427 e4b->bd_info->bb_fragments--; 1428 1429 /* let's maintain buddy itself */ 1430 while (len) { 1431 ord = mb_find_order_for_block(e4b, start); 1432 1433 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1434 /* the whole chunk may be allocated at once! */ 1435 mlen = 1 << ord; 1436 buddy = mb_find_buddy(e4b, ord, &max); 1437 BUG_ON((start >> ord) >= max); 1438 mb_set_bit(start >> ord, buddy); 1439 e4b->bd_info->bb_counters[ord]--; 1440 start += mlen; 1441 len -= mlen; 1442 BUG_ON(len < 0); 1443 continue; 1444 } 1445 1446 /* store for history */ 1447 if (ret == 0) 1448 ret = len | (ord << 16); 1449 1450 /* we have to split large buddy */ 1451 BUG_ON(ord <= 0); 1452 buddy = mb_find_buddy(e4b, ord, &max); 1453 mb_set_bit(start >> ord, buddy); 1454 e4b->bd_info->bb_counters[ord]--; 1455 1456 ord--; 1457 cur = (start >> ord) & ~1U; 1458 buddy = mb_find_buddy(e4b, ord, &max); 1459 mb_clear_bit(cur, buddy); 1460 mb_clear_bit(cur + 1, buddy); 1461 e4b->bd_info->bb_counters[ord]++; 1462 e4b->bd_info->bb_counters[ord]++; 1463 } 1464 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1465 1466 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1467 mb_check_buddy(e4b); 1468 1469 return ret; 1470 } 1471 1472 /* 1473 * Must be called under group lock! 1474 */ 1475 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1476 struct ext4_buddy *e4b) 1477 { 1478 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1479 int ret; 1480 1481 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1482 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1483 1484 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1485 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1486 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1487 1488 /* preallocation can change ac_b_ex, thus we store actually 1489 * allocated blocks for history */ 1490 ac->ac_f_ex = ac->ac_b_ex; 1491 1492 ac->ac_status = AC_STATUS_FOUND; 1493 ac->ac_tail = ret & 0xffff; 1494 ac->ac_buddy = ret >> 16; 1495 1496 /* 1497 * take the page reference. We want the page to be pinned 1498 * so that we don't get a ext4_mb_init_cache_call for this 1499 * group until we update the bitmap. That would mean we 1500 * double allocate blocks. The reference is dropped 1501 * in ext4_mb_release_context 1502 */ 1503 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1504 get_page(ac->ac_bitmap_page); 1505 ac->ac_buddy_page = e4b->bd_buddy_page; 1506 get_page(ac->ac_buddy_page); 1507 /* store last allocated for subsequent stream allocation */ 1508 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1509 spin_lock(&sbi->s_md_lock); 1510 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1511 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1512 spin_unlock(&sbi->s_md_lock); 1513 } 1514 } 1515 1516 /* 1517 * regular allocator, for general purposes allocation 1518 */ 1519 1520 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1521 struct ext4_buddy *e4b, 1522 int finish_group) 1523 { 1524 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1525 struct ext4_free_extent *bex = &ac->ac_b_ex; 1526 struct ext4_free_extent *gex = &ac->ac_g_ex; 1527 struct ext4_free_extent ex; 1528 int max; 1529 1530 if (ac->ac_status == AC_STATUS_FOUND) 1531 return; 1532 /* 1533 * We don't want to scan for a whole year 1534 */ 1535 if (ac->ac_found > sbi->s_mb_max_to_scan && 1536 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1537 ac->ac_status = AC_STATUS_BREAK; 1538 return; 1539 } 1540 1541 /* 1542 * Haven't found good chunk so far, let's continue 1543 */ 1544 if (bex->fe_len < gex->fe_len) 1545 return; 1546 1547 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1548 && bex->fe_group == e4b->bd_group) { 1549 /* recheck chunk's availability - we don't know 1550 * when it was found (within this lock-unlock 1551 * period or not) */ 1552 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex); 1553 if (max >= gex->fe_len) { 1554 ext4_mb_use_best_found(ac, e4b); 1555 return; 1556 } 1557 } 1558 } 1559 1560 /* 1561 * The routine checks whether found extent is good enough. If it is, 1562 * then the extent gets marked used and flag is set to the context 1563 * to stop scanning. Otherwise, the extent is compared with the 1564 * previous found extent and if new one is better, then it's stored 1565 * in the context. Later, the best found extent will be used, if 1566 * mballoc can't find good enough extent. 1567 * 1568 * FIXME: real allocation policy is to be designed yet! 1569 */ 1570 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1571 struct ext4_free_extent *ex, 1572 struct ext4_buddy *e4b) 1573 { 1574 struct ext4_free_extent *bex = &ac->ac_b_ex; 1575 struct ext4_free_extent *gex = &ac->ac_g_ex; 1576 1577 BUG_ON(ex->fe_len <= 0); 1578 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1579 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1580 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1581 1582 ac->ac_found++; 1583 1584 /* 1585 * The special case - take what you catch first 1586 */ 1587 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1588 *bex = *ex; 1589 ext4_mb_use_best_found(ac, e4b); 1590 return; 1591 } 1592 1593 /* 1594 * Let's check whether the chuck is good enough 1595 */ 1596 if (ex->fe_len == gex->fe_len) { 1597 *bex = *ex; 1598 ext4_mb_use_best_found(ac, e4b); 1599 return; 1600 } 1601 1602 /* 1603 * If this is first found extent, just store it in the context 1604 */ 1605 if (bex->fe_len == 0) { 1606 *bex = *ex; 1607 return; 1608 } 1609 1610 /* 1611 * If new found extent is better, store it in the context 1612 */ 1613 if (bex->fe_len < gex->fe_len) { 1614 /* if the request isn't satisfied, any found extent 1615 * larger than previous best one is better */ 1616 if (ex->fe_len > bex->fe_len) 1617 *bex = *ex; 1618 } else if (ex->fe_len > gex->fe_len) { 1619 /* if the request is satisfied, then we try to find 1620 * an extent that still satisfy the request, but is 1621 * smaller than previous one */ 1622 if (ex->fe_len < bex->fe_len) 1623 *bex = *ex; 1624 } 1625 1626 ext4_mb_check_limits(ac, e4b, 0); 1627 } 1628 1629 static noinline_for_stack 1630 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1631 struct ext4_buddy *e4b) 1632 { 1633 struct ext4_free_extent ex = ac->ac_b_ex; 1634 ext4_group_t group = ex.fe_group; 1635 int max; 1636 int err; 1637 1638 BUG_ON(ex.fe_len <= 0); 1639 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1640 if (err) 1641 return err; 1642 1643 ext4_lock_group(ac->ac_sb, group); 1644 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex); 1645 1646 if (max > 0) { 1647 ac->ac_b_ex = ex; 1648 ext4_mb_use_best_found(ac, e4b); 1649 } 1650 1651 ext4_unlock_group(ac->ac_sb, group); 1652 ext4_mb_unload_buddy(e4b); 1653 1654 return 0; 1655 } 1656 1657 static noinline_for_stack 1658 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1659 struct ext4_buddy *e4b) 1660 { 1661 ext4_group_t group = ac->ac_g_ex.fe_group; 1662 int max; 1663 int err; 1664 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1665 struct ext4_free_extent ex; 1666 1667 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1668 return 0; 1669 1670 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1671 if (err) 1672 return err; 1673 1674 ext4_lock_group(ac->ac_sb, group); 1675 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start, 1676 ac->ac_g_ex.fe_len, &ex); 1677 1678 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1679 ext4_fsblk_t start; 1680 1681 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1682 ex.fe_start; 1683 /* use do_div to get remainder (would be 64-bit modulo) */ 1684 if (do_div(start, sbi->s_stripe) == 0) { 1685 ac->ac_found++; 1686 ac->ac_b_ex = ex; 1687 ext4_mb_use_best_found(ac, e4b); 1688 } 1689 } else if (max >= ac->ac_g_ex.fe_len) { 1690 BUG_ON(ex.fe_len <= 0); 1691 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1692 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1693 ac->ac_found++; 1694 ac->ac_b_ex = ex; 1695 ext4_mb_use_best_found(ac, e4b); 1696 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1697 /* Sometimes, caller may want to merge even small 1698 * number of blocks to an existing extent */ 1699 BUG_ON(ex.fe_len <= 0); 1700 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1701 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1702 ac->ac_found++; 1703 ac->ac_b_ex = ex; 1704 ext4_mb_use_best_found(ac, e4b); 1705 } 1706 ext4_unlock_group(ac->ac_sb, group); 1707 ext4_mb_unload_buddy(e4b); 1708 1709 return 0; 1710 } 1711 1712 /* 1713 * The routine scans buddy structures (not bitmap!) from given order 1714 * to max order and tries to find big enough chunk to satisfy the req 1715 */ 1716 static noinline_for_stack 1717 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1718 struct ext4_buddy *e4b) 1719 { 1720 struct super_block *sb = ac->ac_sb; 1721 struct ext4_group_info *grp = e4b->bd_info; 1722 void *buddy; 1723 int i; 1724 int k; 1725 int max; 1726 1727 BUG_ON(ac->ac_2order <= 0); 1728 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1729 if (grp->bb_counters[i] == 0) 1730 continue; 1731 1732 buddy = mb_find_buddy(e4b, i, &max); 1733 BUG_ON(buddy == NULL); 1734 1735 k = mb_find_next_zero_bit(buddy, max, 0); 1736 BUG_ON(k >= max); 1737 1738 ac->ac_found++; 1739 1740 ac->ac_b_ex.fe_len = 1 << i; 1741 ac->ac_b_ex.fe_start = k << i; 1742 ac->ac_b_ex.fe_group = e4b->bd_group; 1743 1744 ext4_mb_use_best_found(ac, e4b); 1745 1746 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1747 1748 if (EXT4_SB(sb)->s_mb_stats) 1749 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1750 1751 break; 1752 } 1753 } 1754 1755 /* 1756 * The routine scans the group and measures all found extents. 1757 * In order to optimize scanning, caller must pass number of 1758 * free blocks in the group, so the routine can know upper limit. 1759 */ 1760 static noinline_for_stack 1761 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1762 struct ext4_buddy *e4b) 1763 { 1764 struct super_block *sb = ac->ac_sb; 1765 void *bitmap = e4b->bd_bitmap; 1766 struct ext4_free_extent ex; 1767 int i; 1768 int free; 1769 1770 free = e4b->bd_info->bb_free; 1771 BUG_ON(free <= 0); 1772 1773 i = e4b->bd_info->bb_first_free; 1774 1775 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1776 i = mb_find_next_zero_bit(bitmap, 1777 EXT4_CLUSTERS_PER_GROUP(sb), i); 1778 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1779 /* 1780 * IF we have corrupt bitmap, we won't find any 1781 * free blocks even though group info says we 1782 * we have free blocks 1783 */ 1784 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1785 "%d free clusters as per " 1786 "group info. But bitmap says 0", 1787 free); 1788 break; 1789 } 1790 1791 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex); 1792 BUG_ON(ex.fe_len <= 0); 1793 if (free < ex.fe_len) { 1794 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1795 "%d free clusters as per " 1796 "group info. But got %d blocks", 1797 free, ex.fe_len); 1798 /* 1799 * The number of free blocks differs. This mostly 1800 * indicate that the bitmap is corrupt. So exit 1801 * without claiming the space. 1802 */ 1803 break; 1804 } 1805 1806 ext4_mb_measure_extent(ac, &ex, e4b); 1807 1808 i += ex.fe_len; 1809 free -= ex.fe_len; 1810 } 1811 1812 ext4_mb_check_limits(ac, e4b, 1); 1813 } 1814 1815 /* 1816 * This is a special case for storages like raid5 1817 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1818 */ 1819 static noinline_for_stack 1820 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1821 struct ext4_buddy *e4b) 1822 { 1823 struct super_block *sb = ac->ac_sb; 1824 struct ext4_sb_info *sbi = EXT4_SB(sb); 1825 void *bitmap = e4b->bd_bitmap; 1826 struct ext4_free_extent ex; 1827 ext4_fsblk_t first_group_block; 1828 ext4_fsblk_t a; 1829 ext4_grpblk_t i; 1830 int max; 1831 1832 BUG_ON(sbi->s_stripe == 0); 1833 1834 /* find first stripe-aligned block in group */ 1835 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 1836 1837 a = first_group_block + sbi->s_stripe - 1; 1838 do_div(a, sbi->s_stripe); 1839 i = (a * sbi->s_stripe) - first_group_block; 1840 1841 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 1842 if (!mb_test_bit(i, bitmap)) { 1843 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex); 1844 if (max >= sbi->s_stripe) { 1845 ac->ac_found++; 1846 ac->ac_b_ex = ex; 1847 ext4_mb_use_best_found(ac, e4b); 1848 break; 1849 } 1850 } 1851 i += sbi->s_stripe; 1852 } 1853 } 1854 1855 /* This is now called BEFORE we load the buddy bitmap. */ 1856 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 1857 ext4_group_t group, int cr) 1858 { 1859 unsigned free, fragments; 1860 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 1861 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1862 1863 BUG_ON(cr < 0 || cr >= 4); 1864 1865 /* We only do this if the grp has never been initialized */ 1866 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1867 int ret = ext4_mb_init_group(ac->ac_sb, group); 1868 if (ret) 1869 return 0; 1870 } 1871 1872 free = grp->bb_free; 1873 fragments = grp->bb_fragments; 1874 if (free == 0) 1875 return 0; 1876 if (fragments == 0) 1877 return 0; 1878 1879 switch (cr) { 1880 case 0: 1881 BUG_ON(ac->ac_2order == 0); 1882 1883 if (grp->bb_largest_free_order < ac->ac_2order) 1884 return 0; 1885 1886 /* Avoid using the first bg of a flexgroup for data files */ 1887 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 1888 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 1889 ((group % flex_size) == 0)) 1890 return 0; 1891 1892 return 1; 1893 case 1: 1894 if ((free / fragments) >= ac->ac_g_ex.fe_len) 1895 return 1; 1896 break; 1897 case 2: 1898 if (free >= ac->ac_g_ex.fe_len) 1899 return 1; 1900 break; 1901 case 3: 1902 return 1; 1903 default: 1904 BUG(); 1905 } 1906 1907 return 0; 1908 } 1909 1910 static noinline_for_stack int 1911 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 1912 { 1913 ext4_group_t ngroups, group, i; 1914 int cr; 1915 int err = 0; 1916 struct ext4_sb_info *sbi; 1917 struct super_block *sb; 1918 struct ext4_buddy e4b; 1919 1920 sb = ac->ac_sb; 1921 sbi = EXT4_SB(sb); 1922 ngroups = ext4_get_groups_count(sb); 1923 /* non-extent files are limited to low blocks/groups */ 1924 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 1925 ngroups = sbi->s_blockfile_groups; 1926 1927 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1928 1929 /* first, try the goal */ 1930 err = ext4_mb_find_by_goal(ac, &e4b); 1931 if (err || ac->ac_status == AC_STATUS_FOUND) 1932 goto out; 1933 1934 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 1935 goto out; 1936 1937 /* 1938 * ac->ac2_order is set only if the fe_len is a power of 2 1939 * if ac2_order is set we also set criteria to 0 so that we 1940 * try exact allocation using buddy. 1941 */ 1942 i = fls(ac->ac_g_ex.fe_len); 1943 ac->ac_2order = 0; 1944 /* 1945 * We search using buddy data only if the order of the request 1946 * is greater than equal to the sbi_s_mb_order2_reqs 1947 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 1948 */ 1949 if (i >= sbi->s_mb_order2_reqs) { 1950 /* 1951 * This should tell if fe_len is exactly power of 2 1952 */ 1953 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 1954 ac->ac_2order = i - 1; 1955 } 1956 1957 /* if stream allocation is enabled, use global goal */ 1958 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1959 /* TBD: may be hot point */ 1960 spin_lock(&sbi->s_md_lock); 1961 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 1962 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 1963 spin_unlock(&sbi->s_md_lock); 1964 } 1965 1966 /* Let's just scan groups to find more-less suitable blocks */ 1967 cr = ac->ac_2order ? 0 : 1; 1968 /* 1969 * cr == 0 try to get exact allocation, 1970 * cr == 3 try to get anything 1971 */ 1972 repeat: 1973 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 1974 ac->ac_criteria = cr; 1975 /* 1976 * searching for the right group start 1977 * from the goal value specified 1978 */ 1979 group = ac->ac_g_ex.fe_group; 1980 1981 for (i = 0; i < ngroups; group++, i++) { 1982 if (group == ngroups) 1983 group = 0; 1984 1985 /* This now checks without needing the buddy page */ 1986 if (!ext4_mb_good_group(ac, group, cr)) 1987 continue; 1988 1989 err = ext4_mb_load_buddy(sb, group, &e4b); 1990 if (err) 1991 goto out; 1992 1993 ext4_lock_group(sb, group); 1994 1995 /* 1996 * We need to check again after locking the 1997 * block group 1998 */ 1999 if (!ext4_mb_good_group(ac, group, cr)) { 2000 ext4_unlock_group(sb, group); 2001 ext4_mb_unload_buddy(&e4b); 2002 continue; 2003 } 2004 2005 ac->ac_groups_scanned++; 2006 if (cr == 0) 2007 ext4_mb_simple_scan_group(ac, &e4b); 2008 else if (cr == 1 && sbi->s_stripe && 2009 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2010 ext4_mb_scan_aligned(ac, &e4b); 2011 else 2012 ext4_mb_complex_scan_group(ac, &e4b); 2013 2014 ext4_unlock_group(sb, group); 2015 ext4_mb_unload_buddy(&e4b); 2016 2017 if (ac->ac_status != AC_STATUS_CONTINUE) 2018 break; 2019 } 2020 } 2021 2022 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2023 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2024 /* 2025 * We've been searching too long. Let's try to allocate 2026 * the best chunk we've found so far 2027 */ 2028 2029 ext4_mb_try_best_found(ac, &e4b); 2030 if (ac->ac_status != AC_STATUS_FOUND) { 2031 /* 2032 * Someone more lucky has already allocated it. 2033 * The only thing we can do is just take first 2034 * found block(s) 2035 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2036 */ 2037 ac->ac_b_ex.fe_group = 0; 2038 ac->ac_b_ex.fe_start = 0; 2039 ac->ac_b_ex.fe_len = 0; 2040 ac->ac_status = AC_STATUS_CONTINUE; 2041 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2042 cr = 3; 2043 atomic_inc(&sbi->s_mb_lost_chunks); 2044 goto repeat; 2045 } 2046 } 2047 out: 2048 return err; 2049 } 2050 2051 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2052 { 2053 struct super_block *sb = seq->private; 2054 ext4_group_t group; 2055 2056 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2057 return NULL; 2058 group = *pos + 1; 2059 return (void *) ((unsigned long) group); 2060 } 2061 2062 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2063 { 2064 struct super_block *sb = seq->private; 2065 ext4_group_t group; 2066 2067 ++*pos; 2068 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2069 return NULL; 2070 group = *pos + 1; 2071 return (void *) ((unsigned long) group); 2072 } 2073 2074 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2075 { 2076 struct super_block *sb = seq->private; 2077 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2078 int i; 2079 int err, buddy_loaded = 0; 2080 struct ext4_buddy e4b; 2081 struct ext4_group_info *grinfo; 2082 struct sg { 2083 struct ext4_group_info info; 2084 ext4_grpblk_t counters[16]; 2085 } sg; 2086 2087 group--; 2088 if (group == 0) 2089 seq_printf(seq, "#%-5s: %-5s %-5s %-5s " 2090 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " 2091 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", 2092 "group", "free", "frags", "first", 2093 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", 2094 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); 2095 2096 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2097 sizeof(struct ext4_group_info); 2098 grinfo = ext4_get_group_info(sb, group); 2099 /* Load the group info in memory only if not already loaded. */ 2100 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2101 err = ext4_mb_load_buddy(sb, group, &e4b); 2102 if (err) { 2103 seq_printf(seq, "#%-5u: I/O error\n", group); 2104 return 0; 2105 } 2106 buddy_loaded = 1; 2107 } 2108 2109 memcpy(&sg, ext4_get_group_info(sb, group), i); 2110 2111 if (buddy_loaded) 2112 ext4_mb_unload_buddy(&e4b); 2113 2114 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2115 sg.info.bb_fragments, sg.info.bb_first_free); 2116 for (i = 0; i <= 13; i++) 2117 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2118 sg.info.bb_counters[i] : 0); 2119 seq_printf(seq, " ]\n"); 2120 2121 return 0; 2122 } 2123 2124 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2125 { 2126 } 2127 2128 static const struct seq_operations ext4_mb_seq_groups_ops = { 2129 .start = ext4_mb_seq_groups_start, 2130 .next = ext4_mb_seq_groups_next, 2131 .stop = ext4_mb_seq_groups_stop, 2132 .show = ext4_mb_seq_groups_show, 2133 }; 2134 2135 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2136 { 2137 struct super_block *sb = PDE(inode)->data; 2138 int rc; 2139 2140 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2141 if (rc == 0) { 2142 struct seq_file *m = file->private_data; 2143 m->private = sb; 2144 } 2145 return rc; 2146 2147 } 2148 2149 static const struct file_operations ext4_mb_seq_groups_fops = { 2150 .owner = THIS_MODULE, 2151 .open = ext4_mb_seq_groups_open, 2152 .read = seq_read, 2153 .llseek = seq_lseek, 2154 .release = seq_release, 2155 }; 2156 2157 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2158 { 2159 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2160 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2161 2162 BUG_ON(!cachep); 2163 return cachep; 2164 } 2165 2166 /* Create and initialize ext4_group_info data for the given group. */ 2167 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2168 struct ext4_group_desc *desc) 2169 { 2170 int i; 2171 int metalen = 0; 2172 struct ext4_sb_info *sbi = EXT4_SB(sb); 2173 struct ext4_group_info **meta_group_info; 2174 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2175 2176 /* 2177 * First check if this group is the first of a reserved block. 2178 * If it's true, we have to allocate a new table of pointers 2179 * to ext4_group_info structures 2180 */ 2181 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2182 metalen = sizeof(*meta_group_info) << 2183 EXT4_DESC_PER_BLOCK_BITS(sb); 2184 meta_group_info = kmalloc(metalen, GFP_KERNEL); 2185 if (meta_group_info == NULL) { 2186 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2187 "for a buddy group"); 2188 goto exit_meta_group_info; 2189 } 2190 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2191 meta_group_info; 2192 } 2193 2194 meta_group_info = 2195 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2196 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2197 2198 meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL); 2199 if (meta_group_info[i] == NULL) { 2200 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2201 goto exit_group_info; 2202 } 2203 memset(meta_group_info[i], 0, kmem_cache_size(cachep)); 2204 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2205 &(meta_group_info[i]->bb_state)); 2206 2207 /* 2208 * initialize bb_free to be able to skip 2209 * empty groups without initialization 2210 */ 2211 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2212 meta_group_info[i]->bb_free = 2213 ext4_free_clusters_after_init(sb, group, desc); 2214 } else { 2215 meta_group_info[i]->bb_free = 2216 ext4_free_group_clusters(sb, desc); 2217 } 2218 2219 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2220 init_rwsem(&meta_group_info[i]->alloc_sem); 2221 meta_group_info[i]->bb_free_root = RB_ROOT; 2222 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2223 2224 #ifdef DOUBLE_CHECK 2225 { 2226 struct buffer_head *bh; 2227 meta_group_info[i]->bb_bitmap = 2228 kmalloc(sb->s_blocksize, GFP_KERNEL); 2229 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2230 bh = ext4_read_block_bitmap(sb, group); 2231 BUG_ON(bh == NULL); 2232 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2233 sb->s_blocksize); 2234 put_bh(bh); 2235 } 2236 #endif 2237 2238 return 0; 2239 2240 exit_group_info: 2241 /* If a meta_group_info table has been allocated, release it now */ 2242 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2243 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2244 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL; 2245 } 2246 exit_meta_group_info: 2247 return -ENOMEM; 2248 } /* ext4_mb_add_groupinfo */ 2249 2250 static int ext4_mb_init_backend(struct super_block *sb) 2251 { 2252 ext4_group_t ngroups = ext4_get_groups_count(sb); 2253 ext4_group_t i; 2254 struct ext4_sb_info *sbi = EXT4_SB(sb); 2255 struct ext4_super_block *es = sbi->s_es; 2256 int num_meta_group_infos; 2257 int num_meta_group_infos_max; 2258 int array_size; 2259 struct ext4_group_desc *desc; 2260 struct kmem_cache *cachep; 2261 2262 /* This is the number of blocks used by GDT */ 2263 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 2264 1) >> EXT4_DESC_PER_BLOCK_BITS(sb); 2265 2266 /* 2267 * This is the total number of blocks used by GDT including 2268 * the number of reserved blocks for GDT. 2269 * The s_group_info array is allocated with this value 2270 * to allow a clean online resize without a complex 2271 * manipulation of pointer. 2272 * The drawback is the unused memory when no resize 2273 * occurs but it's very low in terms of pages 2274 * (see comments below) 2275 * Need to handle this properly when META_BG resizing is allowed 2276 */ 2277 num_meta_group_infos_max = num_meta_group_infos + 2278 le16_to_cpu(es->s_reserved_gdt_blocks); 2279 2280 /* 2281 * array_size is the size of s_group_info array. We round it 2282 * to the next power of two because this approximation is done 2283 * internally by kmalloc so we can have some more memory 2284 * for free here (e.g. may be used for META_BG resize). 2285 */ 2286 array_size = 1; 2287 while (array_size < sizeof(*sbi->s_group_info) * 2288 num_meta_group_infos_max) 2289 array_size = array_size << 1; 2290 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte 2291 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem. 2292 * So a two level scheme suffices for now. */ 2293 sbi->s_group_info = ext4_kvzalloc(array_size, GFP_KERNEL); 2294 if (sbi->s_group_info == NULL) { 2295 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2296 return -ENOMEM; 2297 } 2298 sbi->s_buddy_cache = new_inode(sb); 2299 if (sbi->s_buddy_cache == NULL) { 2300 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2301 goto err_freesgi; 2302 } 2303 /* To avoid potentially colliding with an valid on-disk inode number, 2304 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2305 * not in the inode hash, so it should never be found by iget(), but 2306 * this will avoid confusion if it ever shows up during debugging. */ 2307 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2308 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2309 for (i = 0; i < ngroups; i++) { 2310 desc = ext4_get_group_desc(sb, i, NULL); 2311 if (desc == NULL) { 2312 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2313 goto err_freebuddy; 2314 } 2315 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2316 goto err_freebuddy; 2317 } 2318 2319 return 0; 2320 2321 err_freebuddy: 2322 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2323 while (i-- > 0) 2324 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2325 i = num_meta_group_infos; 2326 while (i-- > 0) 2327 kfree(sbi->s_group_info[i]); 2328 iput(sbi->s_buddy_cache); 2329 err_freesgi: 2330 ext4_kvfree(sbi->s_group_info); 2331 return -ENOMEM; 2332 } 2333 2334 static void ext4_groupinfo_destroy_slabs(void) 2335 { 2336 int i; 2337 2338 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2339 if (ext4_groupinfo_caches[i]) 2340 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2341 ext4_groupinfo_caches[i] = NULL; 2342 } 2343 } 2344 2345 static int ext4_groupinfo_create_slab(size_t size) 2346 { 2347 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2348 int slab_size; 2349 int blocksize_bits = order_base_2(size); 2350 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2351 struct kmem_cache *cachep; 2352 2353 if (cache_index >= NR_GRPINFO_CACHES) 2354 return -EINVAL; 2355 2356 if (unlikely(cache_index < 0)) 2357 cache_index = 0; 2358 2359 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2360 if (ext4_groupinfo_caches[cache_index]) { 2361 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2362 return 0; /* Already created */ 2363 } 2364 2365 slab_size = offsetof(struct ext4_group_info, 2366 bb_counters[blocksize_bits + 2]); 2367 2368 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2369 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2370 NULL); 2371 2372 ext4_groupinfo_caches[cache_index] = cachep; 2373 2374 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2375 if (!cachep) { 2376 printk(KERN_EMERG 2377 "EXT4-fs: no memory for groupinfo slab cache\n"); 2378 return -ENOMEM; 2379 } 2380 2381 return 0; 2382 } 2383 2384 int ext4_mb_init(struct super_block *sb) 2385 { 2386 struct ext4_sb_info *sbi = EXT4_SB(sb); 2387 unsigned i, j; 2388 unsigned offset; 2389 unsigned max; 2390 int ret; 2391 2392 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2393 2394 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2395 if (sbi->s_mb_offsets == NULL) { 2396 ret = -ENOMEM; 2397 goto out; 2398 } 2399 2400 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2401 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2402 if (sbi->s_mb_maxs == NULL) { 2403 ret = -ENOMEM; 2404 goto out; 2405 } 2406 2407 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2408 if (ret < 0) 2409 goto out; 2410 2411 /* order 0 is regular bitmap */ 2412 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2413 sbi->s_mb_offsets[0] = 0; 2414 2415 i = 1; 2416 offset = 0; 2417 max = sb->s_blocksize << 2; 2418 do { 2419 sbi->s_mb_offsets[i] = offset; 2420 sbi->s_mb_maxs[i] = max; 2421 offset += 1 << (sb->s_blocksize_bits - i); 2422 max = max >> 1; 2423 i++; 2424 } while (i <= sb->s_blocksize_bits + 1); 2425 2426 spin_lock_init(&sbi->s_md_lock); 2427 spin_lock_init(&sbi->s_bal_lock); 2428 2429 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2430 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2431 sbi->s_mb_stats = MB_DEFAULT_STATS; 2432 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2433 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2434 /* 2435 * The default group preallocation is 512, which for 4k block 2436 * sizes translates to 2 megabytes. However for bigalloc file 2437 * systems, this is probably too big (i.e, if the cluster size 2438 * is 1 megabyte, then group preallocation size becomes half a 2439 * gigabyte!). As a default, we will keep a two megabyte 2440 * group pralloc size for cluster sizes up to 64k, and after 2441 * that, we will force a minimum group preallocation size of 2442 * 32 clusters. This translates to 8 megs when the cluster 2443 * size is 256k, and 32 megs when the cluster size is 1 meg, 2444 * which seems reasonable as a default. 2445 */ 2446 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2447 sbi->s_cluster_bits, 32); 2448 /* 2449 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2450 * to the lowest multiple of s_stripe which is bigger than 2451 * the s_mb_group_prealloc as determined above. We want 2452 * the preallocation size to be an exact multiple of the 2453 * RAID stripe size so that preallocations don't fragment 2454 * the stripes. 2455 */ 2456 if (sbi->s_stripe > 1) { 2457 sbi->s_mb_group_prealloc = roundup( 2458 sbi->s_mb_group_prealloc, sbi->s_stripe); 2459 } 2460 2461 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2462 if (sbi->s_locality_groups == NULL) { 2463 ret = -ENOMEM; 2464 goto out_free_groupinfo_slab; 2465 } 2466 for_each_possible_cpu(i) { 2467 struct ext4_locality_group *lg; 2468 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2469 mutex_init(&lg->lg_mutex); 2470 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2471 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2472 spin_lock_init(&lg->lg_prealloc_lock); 2473 } 2474 2475 /* init file for buddy data */ 2476 ret = ext4_mb_init_backend(sb); 2477 if (ret != 0) 2478 goto out_free_locality_groups; 2479 2480 if (sbi->s_proc) 2481 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, 2482 &ext4_mb_seq_groups_fops, sb); 2483 2484 return 0; 2485 2486 out_free_locality_groups: 2487 free_percpu(sbi->s_locality_groups); 2488 sbi->s_locality_groups = NULL; 2489 out_free_groupinfo_slab: 2490 ext4_groupinfo_destroy_slabs(); 2491 out: 2492 kfree(sbi->s_mb_offsets); 2493 sbi->s_mb_offsets = NULL; 2494 kfree(sbi->s_mb_maxs); 2495 sbi->s_mb_maxs = NULL; 2496 return ret; 2497 } 2498 2499 /* need to called with the ext4 group lock held */ 2500 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2501 { 2502 struct ext4_prealloc_space *pa; 2503 struct list_head *cur, *tmp; 2504 int count = 0; 2505 2506 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2507 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2508 list_del(&pa->pa_group_list); 2509 count++; 2510 kmem_cache_free(ext4_pspace_cachep, pa); 2511 } 2512 if (count) 2513 mb_debug(1, "mballoc: %u PAs left\n", count); 2514 2515 } 2516 2517 int ext4_mb_release(struct super_block *sb) 2518 { 2519 ext4_group_t ngroups = ext4_get_groups_count(sb); 2520 ext4_group_t i; 2521 int num_meta_group_infos; 2522 struct ext4_group_info *grinfo; 2523 struct ext4_sb_info *sbi = EXT4_SB(sb); 2524 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2525 2526 if (sbi->s_proc) 2527 remove_proc_entry("mb_groups", sbi->s_proc); 2528 2529 if (sbi->s_group_info) { 2530 for (i = 0; i < ngroups; i++) { 2531 grinfo = ext4_get_group_info(sb, i); 2532 #ifdef DOUBLE_CHECK 2533 kfree(grinfo->bb_bitmap); 2534 #endif 2535 ext4_lock_group(sb, i); 2536 ext4_mb_cleanup_pa(grinfo); 2537 ext4_unlock_group(sb, i); 2538 kmem_cache_free(cachep, grinfo); 2539 } 2540 num_meta_group_infos = (ngroups + 2541 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2542 EXT4_DESC_PER_BLOCK_BITS(sb); 2543 for (i = 0; i < num_meta_group_infos; i++) 2544 kfree(sbi->s_group_info[i]); 2545 ext4_kvfree(sbi->s_group_info); 2546 } 2547 kfree(sbi->s_mb_offsets); 2548 kfree(sbi->s_mb_maxs); 2549 if (sbi->s_buddy_cache) 2550 iput(sbi->s_buddy_cache); 2551 if (sbi->s_mb_stats) { 2552 ext4_msg(sb, KERN_INFO, 2553 "mballoc: %u blocks %u reqs (%u success)", 2554 atomic_read(&sbi->s_bal_allocated), 2555 atomic_read(&sbi->s_bal_reqs), 2556 atomic_read(&sbi->s_bal_success)); 2557 ext4_msg(sb, KERN_INFO, 2558 "mballoc: %u extents scanned, %u goal hits, " 2559 "%u 2^N hits, %u breaks, %u lost", 2560 atomic_read(&sbi->s_bal_ex_scanned), 2561 atomic_read(&sbi->s_bal_goals), 2562 atomic_read(&sbi->s_bal_2orders), 2563 atomic_read(&sbi->s_bal_breaks), 2564 atomic_read(&sbi->s_mb_lost_chunks)); 2565 ext4_msg(sb, KERN_INFO, 2566 "mballoc: %lu generated and it took %Lu", 2567 sbi->s_mb_buddies_generated, 2568 sbi->s_mb_generation_time); 2569 ext4_msg(sb, KERN_INFO, 2570 "mballoc: %u preallocated, %u discarded", 2571 atomic_read(&sbi->s_mb_preallocated), 2572 atomic_read(&sbi->s_mb_discarded)); 2573 } 2574 2575 free_percpu(sbi->s_locality_groups); 2576 2577 return 0; 2578 } 2579 2580 static inline int ext4_issue_discard(struct super_block *sb, 2581 ext4_group_t block_group, ext4_grpblk_t cluster, int count) 2582 { 2583 ext4_fsblk_t discard_block; 2584 2585 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2586 ext4_group_first_block_no(sb, block_group)); 2587 count = EXT4_C2B(EXT4_SB(sb), count); 2588 trace_ext4_discard_blocks(sb, 2589 (unsigned long long) discard_block, count); 2590 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2591 } 2592 2593 /* 2594 * This function is called by the jbd2 layer once the commit has finished, 2595 * so we know we can free the blocks that were released with that commit. 2596 */ 2597 static void ext4_free_data_callback(struct super_block *sb, 2598 struct ext4_journal_cb_entry *jce, 2599 int rc) 2600 { 2601 struct ext4_free_data *entry = (struct ext4_free_data *)jce; 2602 struct ext4_buddy e4b; 2603 struct ext4_group_info *db; 2604 int err, count = 0, count2 = 0; 2605 2606 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2607 entry->efd_count, entry->efd_group, entry); 2608 2609 if (test_opt(sb, DISCARD)) 2610 ext4_issue_discard(sb, entry->efd_group, 2611 entry->efd_start_cluster, entry->efd_count); 2612 2613 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2614 /* we expect to find existing buddy because it's pinned */ 2615 BUG_ON(err != 0); 2616 2617 2618 db = e4b.bd_info; 2619 /* there are blocks to put in buddy to make them really free */ 2620 count += entry->efd_count; 2621 count2++; 2622 ext4_lock_group(sb, entry->efd_group); 2623 /* Take it out of per group rb tree */ 2624 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2625 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2626 2627 /* 2628 * Clear the trimmed flag for the group so that the next 2629 * ext4_trim_fs can trim it. 2630 * If the volume is mounted with -o discard, online discard 2631 * is supported and the free blocks will be trimmed online. 2632 */ 2633 if (!test_opt(sb, DISCARD)) 2634 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2635 2636 if (!db->bb_free_root.rb_node) { 2637 /* No more items in the per group rb tree 2638 * balance refcounts from ext4_mb_free_metadata() 2639 */ 2640 page_cache_release(e4b.bd_buddy_page); 2641 page_cache_release(e4b.bd_bitmap_page); 2642 } 2643 ext4_unlock_group(sb, entry->efd_group); 2644 kmem_cache_free(ext4_free_data_cachep, entry); 2645 ext4_mb_unload_buddy(&e4b); 2646 2647 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2648 } 2649 2650 #ifdef CONFIG_EXT4_DEBUG 2651 u8 mb_enable_debug __read_mostly; 2652 2653 static struct dentry *debugfs_dir; 2654 static struct dentry *debugfs_debug; 2655 2656 static void __init ext4_create_debugfs_entry(void) 2657 { 2658 debugfs_dir = debugfs_create_dir("ext4", NULL); 2659 if (debugfs_dir) 2660 debugfs_debug = debugfs_create_u8("mballoc-debug", 2661 S_IRUGO | S_IWUSR, 2662 debugfs_dir, 2663 &mb_enable_debug); 2664 } 2665 2666 static void ext4_remove_debugfs_entry(void) 2667 { 2668 debugfs_remove(debugfs_debug); 2669 debugfs_remove(debugfs_dir); 2670 } 2671 2672 #else 2673 2674 static void __init ext4_create_debugfs_entry(void) 2675 { 2676 } 2677 2678 static void ext4_remove_debugfs_entry(void) 2679 { 2680 } 2681 2682 #endif 2683 2684 int __init ext4_init_mballoc(void) 2685 { 2686 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2687 SLAB_RECLAIM_ACCOUNT); 2688 if (ext4_pspace_cachep == NULL) 2689 return -ENOMEM; 2690 2691 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2692 SLAB_RECLAIM_ACCOUNT); 2693 if (ext4_ac_cachep == NULL) { 2694 kmem_cache_destroy(ext4_pspace_cachep); 2695 return -ENOMEM; 2696 } 2697 2698 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2699 SLAB_RECLAIM_ACCOUNT); 2700 if (ext4_free_data_cachep == NULL) { 2701 kmem_cache_destroy(ext4_pspace_cachep); 2702 kmem_cache_destroy(ext4_ac_cachep); 2703 return -ENOMEM; 2704 } 2705 ext4_create_debugfs_entry(); 2706 return 0; 2707 } 2708 2709 void ext4_exit_mballoc(void) 2710 { 2711 /* 2712 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2713 * before destroying the slab cache. 2714 */ 2715 rcu_barrier(); 2716 kmem_cache_destroy(ext4_pspace_cachep); 2717 kmem_cache_destroy(ext4_ac_cachep); 2718 kmem_cache_destroy(ext4_free_data_cachep); 2719 ext4_groupinfo_destroy_slabs(); 2720 ext4_remove_debugfs_entry(); 2721 } 2722 2723 2724 /* 2725 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2726 * Returns 0 if success or error code 2727 */ 2728 static noinline_for_stack int 2729 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2730 handle_t *handle, unsigned int reserv_clstrs) 2731 { 2732 struct buffer_head *bitmap_bh = NULL; 2733 struct ext4_group_desc *gdp; 2734 struct buffer_head *gdp_bh; 2735 struct ext4_sb_info *sbi; 2736 struct super_block *sb; 2737 ext4_fsblk_t block; 2738 int err, len; 2739 2740 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2741 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2742 2743 sb = ac->ac_sb; 2744 sbi = EXT4_SB(sb); 2745 2746 err = -EIO; 2747 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2748 if (!bitmap_bh) 2749 goto out_err; 2750 2751 err = ext4_journal_get_write_access(handle, bitmap_bh); 2752 if (err) 2753 goto out_err; 2754 2755 err = -EIO; 2756 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2757 if (!gdp) 2758 goto out_err; 2759 2760 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2761 ext4_free_group_clusters(sb, gdp)); 2762 2763 err = ext4_journal_get_write_access(handle, gdp_bh); 2764 if (err) 2765 goto out_err; 2766 2767 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2768 2769 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2770 if (!ext4_data_block_valid(sbi, block, len)) { 2771 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2772 "fs metadata", block, block+len); 2773 /* File system mounted not to panic on error 2774 * Fix the bitmap and repeat the block allocation 2775 * We leak some of the blocks here. 2776 */ 2777 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2778 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2779 ac->ac_b_ex.fe_len); 2780 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2781 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2782 if (!err) 2783 err = -EAGAIN; 2784 goto out_err; 2785 } 2786 2787 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2788 #ifdef AGGRESSIVE_CHECK 2789 { 2790 int i; 2791 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2792 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2793 bitmap_bh->b_data)); 2794 } 2795 } 2796 #endif 2797 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2798 ac->ac_b_ex.fe_len); 2799 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2800 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2801 ext4_free_group_clusters_set(sb, gdp, 2802 ext4_free_clusters_after_init(sb, 2803 ac->ac_b_ex.fe_group, gdp)); 2804 } 2805 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 2806 ext4_free_group_clusters_set(sb, gdp, len); 2807 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh, 2808 EXT4_BLOCKS_PER_GROUP(sb) / 8); 2809 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 2810 2811 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2812 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 2813 /* 2814 * Now reduce the dirty block count also. Should not go negative 2815 */ 2816 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 2817 /* release all the reserved blocks if non delalloc */ 2818 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 2819 reserv_clstrs); 2820 2821 if (sbi->s_log_groups_per_flex) { 2822 ext4_group_t flex_group = ext4_flex_group(sbi, 2823 ac->ac_b_ex.fe_group); 2824 atomic_sub(ac->ac_b_ex.fe_len, 2825 &sbi->s_flex_groups[flex_group].free_clusters); 2826 } 2827 2828 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2829 if (err) 2830 goto out_err; 2831 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 2832 2833 out_err: 2834 brelse(bitmap_bh); 2835 return err; 2836 } 2837 2838 /* 2839 * here we normalize request for locality group 2840 * Group request are normalized to s_mb_group_prealloc, which goes to 2841 * s_strip if we set the same via mount option. 2842 * s_mb_group_prealloc can be configured via 2843 * /sys/fs/ext4/<partition>/mb_group_prealloc 2844 * 2845 * XXX: should we try to preallocate more than the group has now? 2846 */ 2847 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 2848 { 2849 struct super_block *sb = ac->ac_sb; 2850 struct ext4_locality_group *lg = ac->ac_lg; 2851 2852 BUG_ON(lg == NULL); 2853 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 2854 mb_debug(1, "#%u: goal %u blocks for locality group\n", 2855 current->pid, ac->ac_g_ex.fe_len); 2856 } 2857 2858 /* 2859 * Normalization means making request better in terms of 2860 * size and alignment 2861 */ 2862 static noinline_for_stack void 2863 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 2864 struct ext4_allocation_request *ar) 2865 { 2866 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2867 int bsbits, max; 2868 ext4_lblk_t end; 2869 loff_t size, start_off; 2870 loff_t orig_size __maybe_unused; 2871 ext4_lblk_t start; 2872 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 2873 struct ext4_prealloc_space *pa; 2874 2875 /* do normalize only data requests, metadata requests 2876 do not need preallocation */ 2877 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 2878 return; 2879 2880 /* sometime caller may want exact blocks */ 2881 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2882 return; 2883 2884 /* caller may indicate that preallocation isn't 2885 * required (it's a tail, for example) */ 2886 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 2887 return; 2888 2889 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 2890 ext4_mb_normalize_group_request(ac); 2891 return ; 2892 } 2893 2894 bsbits = ac->ac_sb->s_blocksize_bits; 2895 2896 /* first, let's learn actual file size 2897 * given current request is allocated */ 2898 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 2899 size = size << bsbits; 2900 if (size < i_size_read(ac->ac_inode)) 2901 size = i_size_read(ac->ac_inode); 2902 orig_size = size; 2903 2904 /* max size of free chunks */ 2905 max = 2 << bsbits; 2906 2907 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 2908 (req <= (size) || max <= (chunk_size)) 2909 2910 /* first, try to predict filesize */ 2911 /* XXX: should this table be tunable? */ 2912 start_off = 0; 2913 if (size <= 16 * 1024) { 2914 size = 16 * 1024; 2915 } else if (size <= 32 * 1024) { 2916 size = 32 * 1024; 2917 } else if (size <= 64 * 1024) { 2918 size = 64 * 1024; 2919 } else if (size <= 128 * 1024) { 2920 size = 128 * 1024; 2921 } else if (size <= 256 * 1024) { 2922 size = 256 * 1024; 2923 } else if (size <= 512 * 1024) { 2924 size = 512 * 1024; 2925 } else if (size <= 1024 * 1024) { 2926 size = 1024 * 1024; 2927 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 2928 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2929 (21 - bsbits)) << 21; 2930 size = 2 * 1024 * 1024; 2931 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 2932 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2933 (22 - bsbits)) << 22; 2934 size = 4 * 1024 * 1024; 2935 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 2936 (8<<20)>>bsbits, max, 8 * 1024)) { 2937 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2938 (23 - bsbits)) << 23; 2939 size = 8 * 1024 * 1024; 2940 } else { 2941 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits; 2942 size = ac->ac_o_ex.fe_len << bsbits; 2943 } 2944 size = size >> bsbits; 2945 start = start_off >> bsbits; 2946 2947 /* don't cover already allocated blocks in selected range */ 2948 if (ar->pleft && start <= ar->lleft) { 2949 size -= ar->lleft + 1 - start; 2950 start = ar->lleft + 1; 2951 } 2952 if (ar->pright && start + size - 1 >= ar->lright) 2953 size -= start + size - ar->lright; 2954 2955 end = start + size; 2956 2957 /* check we don't cross already preallocated blocks */ 2958 rcu_read_lock(); 2959 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 2960 ext4_lblk_t pa_end; 2961 2962 if (pa->pa_deleted) 2963 continue; 2964 spin_lock(&pa->pa_lock); 2965 if (pa->pa_deleted) { 2966 spin_unlock(&pa->pa_lock); 2967 continue; 2968 } 2969 2970 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 2971 pa->pa_len); 2972 2973 /* PA must not overlap original request */ 2974 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 2975 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 2976 2977 /* skip PAs this normalized request doesn't overlap with */ 2978 if (pa->pa_lstart >= end || pa_end <= start) { 2979 spin_unlock(&pa->pa_lock); 2980 continue; 2981 } 2982 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 2983 2984 /* adjust start or end to be adjacent to this pa */ 2985 if (pa_end <= ac->ac_o_ex.fe_logical) { 2986 BUG_ON(pa_end < start); 2987 start = pa_end; 2988 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 2989 BUG_ON(pa->pa_lstart > end); 2990 end = pa->pa_lstart; 2991 } 2992 spin_unlock(&pa->pa_lock); 2993 } 2994 rcu_read_unlock(); 2995 size = end - start; 2996 2997 /* XXX: extra loop to check we really don't overlap preallocations */ 2998 rcu_read_lock(); 2999 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3000 ext4_lblk_t pa_end; 3001 3002 spin_lock(&pa->pa_lock); 3003 if (pa->pa_deleted == 0) { 3004 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3005 pa->pa_len); 3006 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3007 } 3008 spin_unlock(&pa->pa_lock); 3009 } 3010 rcu_read_unlock(); 3011 3012 if (start + size <= ac->ac_o_ex.fe_logical && 3013 start > ac->ac_o_ex.fe_logical) { 3014 ext4_msg(ac->ac_sb, KERN_ERR, 3015 "start %lu, size %lu, fe_logical %lu", 3016 (unsigned long) start, (unsigned long) size, 3017 (unsigned long) ac->ac_o_ex.fe_logical); 3018 } 3019 BUG_ON(start + size <= ac->ac_o_ex.fe_logical && 3020 start > ac->ac_o_ex.fe_logical); 3021 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 3022 3023 /* now prepare goal request */ 3024 3025 /* XXX: is it better to align blocks WRT to logical 3026 * placement or satisfy big request as is */ 3027 ac->ac_g_ex.fe_logical = start; 3028 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3029 3030 /* define goal start in order to merge */ 3031 if (ar->pright && (ar->lright == (start + size))) { 3032 /* merge to the right */ 3033 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3034 &ac->ac_f_ex.fe_group, 3035 &ac->ac_f_ex.fe_start); 3036 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3037 } 3038 if (ar->pleft && (ar->lleft + 1 == start)) { 3039 /* merge to the left */ 3040 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3041 &ac->ac_f_ex.fe_group, 3042 &ac->ac_f_ex.fe_start); 3043 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3044 } 3045 3046 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3047 (unsigned) orig_size, (unsigned) start); 3048 } 3049 3050 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3051 { 3052 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3053 3054 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3055 atomic_inc(&sbi->s_bal_reqs); 3056 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3057 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3058 atomic_inc(&sbi->s_bal_success); 3059 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3060 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3061 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3062 atomic_inc(&sbi->s_bal_goals); 3063 if (ac->ac_found > sbi->s_mb_max_to_scan) 3064 atomic_inc(&sbi->s_bal_breaks); 3065 } 3066 3067 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3068 trace_ext4_mballoc_alloc(ac); 3069 else 3070 trace_ext4_mballoc_prealloc(ac); 3071 } 3072 3073 /* 3074 * Called on failure; free up any blocks from the inode PA for this 3075 * context. We don't need this for MB_GROUP_PA because we only change 3076 * pa_free in ext4_mb_release_context(), but on failure, we've already 3077 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3078 */ 3079 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3080 { 3081 struct ext4_prealloc_space *pa = ac->ac_pa; 3082 3083 if (pa && pa->pa_type == MB_INODE_PA) 3084 pa->pa_free += ac->ac_b_ex.fe_len; 3085 } 3086 3087 /* 3088 * use blocks preallocated to inode 3089 */ 3090 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3091 struct ext4_prealloc_space *pa) 3092 { 3093 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3094 ext4_fsblk_t start; 3095 ext4_fsblk_t end; 3096 int len; 3097 3098 /* found preallocated blocks, use them */ 3099 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3100 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3101 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3102 len = EXT4_NUM_B2C(sbi, end - start); 3103 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3104 &ac->ac_b_ex.fe_start); 3105 ac->ac_b_ex.fe_len = len; 3106 ac->ac_status = AC_STATUS_FOUND; 3107 ac->ac_pa = pa; 3108 3109 BUG_ON(start < pa->pa_pstart); 3110 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3111 BUG_ON(pa->pa_free < len); 3112 pa->pa_free -= len; 3113 3114 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3115 } 3116 3117 /* 3118 * use blocks preallocated to locality group 3119 */ 3120 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3121 struct ext4_prealloc_space *pa) 3122 { 3123 unsigned int len = ac->ac_o_ex.fe_len; 3124 3125 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3126 &ac->ac_b_ex.fe_group, 3127 &ac->ac_b_ex.fe_start); 3128 ac->ac_b_ex.fe_len = len; 3129 ac->ac_status = AC_STATUS_FOUND; 3130 ac->ac_pa = pa; 3131 3132 /* we don't correct pa_pstart or pa_plen here to avoid 3133 * possible race when the group is being loaded concurrently 3134 * instead we correct pa later, after blocks are marked 3135 * in on-disk bitmap -- see ext4_mb_release_context() 3136 * Other CPUs are prevented from allocating from this pa by lg_mutex 3137 */ 3138 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3139 } 3140 3141 /* 3142 * Return the prealloc space that have minimal distance 3143 * from the goal block. @cpa is the prealloc 3144 * space that is having currently known minimal distance 3145 * from the goal block. 3146 */ 3147 static struct ext4_prealloc_space * 3148 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3149 struct ext4_prealloc_space *pa, 3150 struct ext4_prealloc_space *cpa) 3151 { 3152 ext4_fsblk_t cur_distance, new_distance; 3153 3154 if (cpa == NULL) { 3155 atomic_inc(&pa->pa_count); 3156 return pa; 3157 } 3158 cur_distance = abs(goal_block - cpa->pa_pstart); 3159 new_distance = abs(goal_block - pa->pa_pstart); 3160 3161 if (cur_distance <= new_distance) 3162 return cpa; 3163 3164 /* drop the previous reference */ 3165 atomic_dec(&cpa->pa_count); 3166 atomic_inc(&pa->pa_count); 3167 return pa; 3168 } 3169 3170 /* 3171 * search goal blocks in preallocated space 3172 */ 3173 static noinline_for_stack int 3174 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3175 { 3176 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3177 int order, i; 3178 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3179 struct ext4_locality_group *lg; 3180 struct ext4_prealloc_space *pa, *cpa = NULL; 3181 ext4_fsblk_t goal_block; 3182 3183 /* only data can be preallocated */ 3184 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3185 return 0; 3186 3187 /* first, try per-file preallocation */ 3188 rcu_read_lock(); 3189 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3190 3191 /* all fields in this condition don't change, 3192 * so we can skip locking for them */ 3193 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3194 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3195 EXT4_C2B(sbi, pa->pa_len))) 3196 continue; 3197 3198 /* non-extent files can't have physical blocks past 2^32 */ 3199 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3200 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3201 EXT4_MAX_BLOCK_FILE_PHYS)) 3202 continue; 3203 3204 /* found preallocated blocks, use them */ 3205 spin_lock(&pa->pa_lock); 3206 if (pa->pa_deleted == 0 && pa->pa_free) { 3207 atomic_inc(&pa->pa_count); 3208 ext4_mb_use_inode_pa(ac, pa); 3209 spin_unlock(&pa->pa_lock); 3210 ac->ac_criteria = 10; 3211 rcu_read_unlock(); 3212 return 1; 3213 } 3214 spin_unlock(&pa->pa_lock); 3215 } 3216 rcu_read_unlock(); 3217 3218 /* can we use group allocation? */ 3219 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3220 return 0; 3221 3222 /* inode may have no locality group for some reason */ 3223 lg = ac->ac_lg; 3224 if (lg == NULL) 3225 return 0; 3226 order = fls(ac->ac_o_ex.fe_len) - 1; 3227 if (order > PREALLOC_TB_SIZE - 1) 3228 /* The max size of hash table is PREALLOC_TB_SIZE */ 3229 order = PREALLOC_TB_SIZE - 1; 3230 3231 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3232 /* 3233 * search for the prealloc space that is having 3234 * minimal distance from the goal block. 3235 */ 3236 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3237 rcu_read_lock(); 3238 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3239 pa_inode_list) { 3240 spin_lock(&pa->pa_lock); 3241 if (pa->pa_deleted == 0 && 3242 pa->pa_free >= ac->ac_o_ex.fe_len) { 3243 3244 cpa = ext4_mb_check_group_pa(goal_block, 3245 pa, cpa); 3246 } 3247 spin_unlock(&pa->pa_lock); 3248 } 3249 rcu_read_unlock(); 3250 } 3251 if (cpa) { 3252 ext4_mb_use_group_pa(ac, cpa); 3253 ac->ac_criteria = 20; 3254 return 1; 3255 } 3256 return 0; 3257 } 3258 3259 /* 3260 * the function goes through all block freed in the group 3261 * but not yet committed and marks them used in in-core bitmap. 3262 * buddy must be generated from this bitmap 3263 * Need to be called with the ext4 group lock held 3264 */ 3265 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3266 ext4_group_t group) 3267 { 3268 struct rb_node *n; 3269 struct ext4_group_info *grp; 3270 struct ext4_free_data *entry; 3271 3272 grp = ext4_get_group_info(sb, group); 3273 n = rb_first(&(grp->bb_free_root)); 3274 3275 while (n) { 3276 entry = rb_entry(n, struct ext4_free_data, efd_node); 3277 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3278 n = rb_next(n); 3279 } 3280 return; 3281 } 3282 3283 /* 3284 * the function goes through all preallocation in this group and marks them 3285 * used in in-core bitmap. buddy must be generated from this bitmap 3286 * Need to be called with ext4 group lock held 3287 */ 3288 static noinline_for_stack 3289 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3290 ext4_group_t group) 3291 { 3292 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3293 struct ext4_prealloc_space *pa; 3294 struct list_head *cur; 3295 ext4_group_t groupnr; 3296 ext4_grpblk_t start; 3297 int preallocated = 0; 3298 int len; 3299 3300 /* all form of preallocation discards first load group, 3301 * so the only competing code is preallocation use. 3302 * we don't need any locking here 3303 * notice we do NOT ignore preallocations with pa_deleted 3304 * otherwise we could leave used blocks available for 3305 * allocation in buddy when concurrent ext4_mb_put_pa() 3306 * is dropping preallocation 3307 */ 3308 list_for_each(cur, &grp->bb_prealloc_list) { 3309 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3310 spin_lock(&pa->pa_lock); 3311 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3312 &groupnr, &start); 3313 len = pa->pa_len; 3314 spin_unlock(&pa->pa_lock); 3315 if (unlikely(len == 0)) 3316 continue; 3317 BUG_ON(groupnr != group); 3318 ext4_set_bits(bitmap, start, len); 3319 preallocated += len; 3320 } 3321 mb_debug(1, "prellocated %u for group %u\n", preallocated, group); 3322 } 3323 3324 static void ext4_mb_pa_callback(struct rcu_head *head) 3325 { 3326 struct ext4_prealloc_space *pa; 3327 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3328 kmem_cache_free(ext4_pspace_cachep, pa); 3329 } 3330 3331 /* 3332 * drops a reference to preallocated space descriptor 3333 * if this was the last reference and the space is consumed 3334 */ 3335 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3336 struct super_block *sb, struct ext4_prealloc_space *pa) 3337 { 3338 ext4_group_t grp; 3339 ext4_fsblk_t grp_blk; 3340 3341 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) 3342 return; 3343 3344 /* in this short window concurrent discard can set pa_deleted */ 3345 spin_lock(&pa->pa_lock); 3346 if (pa->pa_deleted == 1) { 3347 spin_unlock(&pa->pa_lock); 3348 return; 3349 } 3350 3351 pa->pa_deleted = 1; 3352 spin_unlock(&pa->pa_lock); 3353 3354 grp_blk = pa->pa_pstart; 3355 /* 3356 * If doing group-based preallocation, pa_pstart may be in the 3357 * next group when pa is used up 3358 */ 3359 if (pa->pa_type == MB_GROUP_PA) 3360 grp_blk--; 3361 3362 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL); 3363 3364 /* 3365 * possible race: 3366 * 3367 * P1 (buddy init) P2 (regular allocation) 3368 * find block B in PA 3369 * copy on-disk bitmap to buddy 3370 * mark B in on-disk bitmap 3371 * drop PA from group 3372 * mark all PAs in buddy 3373 * 3374 * thus, P1 initializes buddy with B available. to prevent this 3375 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3376 * against that pair 3377 */ 3378 ext4_lock_group(sb, grp); 3379 list_del(&pa->pa_group_list); 3380 ext4_unlock_group(sb, grp); 3381 3382 spin_lock(pa->pa_obj_lock); 3383 list_del_rcu(&pa->pa_inode_list); 3384 spin_unlock(pa->pa_obj_lock); 3385 3386 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3387 } 3388 3389 /* 3390 * creates new preallocated space for given inode 3391 */ 3392 static noinline_for_stack int 3393 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3394 { 3395 struct super_block *sb = ac->ac_sb; 3396 struct ext4_sb_info *sbi = EXT4_SB(sb); 3397 struct ext4_prealloc_space *pa; 3398 struct ext4_group_info *grp; 3399 struct ext4_inode_info *ei; 3400 3401 /* preallocate only when found space is larger then requested */ 3402 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3403 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3404 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3405 3406 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3407 if (pa == NULL) 3408 return -ENOMEM; 3409 3410 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3411 int winl; 3412 int wins; 3413 int win; 3414 int offs; 3415 3416 /* we can't allocate as much as normalizer wants. 3417 * so, found space must get proper lstart 3418 * to cover original request */ 3419 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3420 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3421 3422 /* we're limited by original request in that 3423 * logical block must be covered any way 3424 * winl is window we can move our chunk within */ 3425 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3426 3427 /* also, we should cover whole original request */ 3428 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3429 3430 /* the smallest one defines real window */ 3431 win = min(winl, wins); 3432 3433 offs = ac->ac_o_ex.fe_logical % 3434 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3435 if (offs && offs < win) 3436 win = offs; 3437 3438 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3439 EXT4_B2C(sbi, win); 3440 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3441 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3442 } 3443 3444 /* preallocation can change ac_b_ex, thus we store actually 3445 * allocated blocks for history */ 3446 ac->ac_f_ex = ac->ac_b_ex; 3447 3448 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3449 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3450 pa->pa_len = ac->ac_b_ex.fe_len; 3451 pa->pa_free = pa->pa_len; 3452 atomic_set(&pa->pa_count, 1); 3453 spin_lock_init(&pa->pa_lock); 3454 INIT_LIST_HEAD(&pa->pa_inode_list); 3455 INIT_LIST_HEAD(&pa->pa_group_list); 3456 pa->pa_deleted = 0; 3457 pa->pa_type = MB_INODE_PA; 3458 3459 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3460 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3461 trace_ext4_mb_new_inode_pa(ac, pa); 3462 3463 ext4_mb_use_inode_pa(ac, pa); 3464 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3465 3466 ei = EXT4_I(ac->ac_inode); 3467 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3468 3469 pa->pa_obj_lock = &ei->i_prealloc_lock; 3470 pa->pa_inode = ac->ac_inode; 3471 3472 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3473 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3474 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3475 3476 spin_lock(pa->pa_obj_lock); 3477 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3478 spin_unlock(pa->pa_obj_lock); 3479 3480 return 0; 3481 } 3482 3483 /* 3484 * creates new preallocated space for locality group inodes belongs to 3485 */ 3486 static noinline_for_stack int 3487 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3488 { 3489 struct super_block *sb = ac->ac_sb; 3490 struct ext4_locality_group *lg; 3491 struct ext4_prealloc_space *pa; 3492 struct ext4_group_info *grp; 3493 3494 /* preallocate only when found space is larger then requested */ 3495 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3496 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3497 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3498 3499 BUG_ON(ext4_pspace_cachep == NULL); 3500 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3501 if (pa == NULL) 3502 return -ENOMEM; 3503 3504 /* preallocation can change ac_b_ex, thus we store actually 3505 * allocated blocks for history */ 3506 ac->ac_f_ex = ac->ac_b_ex; 3507 3508 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3509 pa->pa_lstart = pa->pa_pstart; 3510 pa->pa_len = ac->ac_b_ex.fe_len; 3511 pa->pa_free = pa->pa_len; 3512 atomic_set(&pa->pa_count, 1); 3513 spin_lock_init(&pa->pa_lock); 3514 INIT_LIST_HEAD(&pa->pa_inode_list); 3515 INIT_LIST_HEAD(&pa->pa_group_list); 3516 pa->pa_deleted = 0; 3517 pa->pa_type = MB_GROUP_PA; 3518 3519 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3520 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3521 trace_ext4_mb_new_group_pa(ac, pa); 3522 3523 ext4_mb_use_group_pa(ac, pa); 3524 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3525 3526 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3527 lg = ac->ac_lg; 3528 BUG_ON(lg == NULL); 3529 3530 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3531 pa->pa_inode = NULL; 3532 3533 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3534 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3535 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3536 3537 /* 3538 * We will later add the new pa to the right bucket 3539 * after updating the pa_free in ext4_mb_release_context 3540 */ 3541 return 0; 3542 } 3543 3544 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3545 { 3546 int err; 3547 3548 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3549 err = ext4_mb_new_group_pa(ac); 3550 else 3551 err = ext4_mb_new_inode_pa(ac); 3552 return err; 3553 } 3554 3555 /* 3556 * finds all unused blocks in on-disk bitmap, frees them in 3557 * in-core bitmap and buddy. 3558 * @pa must be unlinked from inode and group lists, so that 3559 * nobody else can find/use it. 3560 * the caller MUST hold group/inode locks. 3561 * TODO: optimize the case when there are no in-core structures yet 3562 */ 3563 static noinline_for_stack int 3564 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3565 struct ext4_prealloc_space *pa) 3566 { 3567 struct super_block *sb = e4b->bd_sb; 3568 struct ext4_sb_info *sbi = EXT4_SB(sb); 3569 unsigned int end; 3570 unsigned int next; 3571 ext4_group_t group; 3572 ext4_grpblk_t bit; 3573 unsigned long long grp_blk_start; 3574 int err = 0; 3575 int free = 0; 3576 3577 BUG_ON(pa->pa_deleted == 0); 3578 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3579 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3580 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3581 end = bit + pa->pa_len; 3582 3583 while (bit < end) { 3584 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3585 if (bit >= end) 3586 break; 3587 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3588 mb_debug(1, " free preallocated %u/%u in group %u\n", 3589 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3590 (unsigned) next - bit, (unsigned) group); 3591 free += next - bit; 3592 3593 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3594 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3595 EXT4_C2B(sbi, bit)), 3596 next - bit); 3597 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3598 bit = next + 1; 3599 } 3600 if (free != pa->pa_free) { 3601 ext4_msg(e4b->bd_sb, KERN_CRIT, 3602 "pa %p: logic %lu, phys. %lu, len %lu", 3603 pa, (unsigned long) pa->pa_lstart, 3604 (unsigned long) pa->pa_pstart, 3605 (unsigned long) pa->pa_len); 3606 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3607 free, pa->pa_free); 3608 /* 3609 * pa is already deleted so we use the value obtained 3610 * from the bitmap and continue. 3611 */ 3612 } 3613 atomic_add(free, &sbi->s_mb_discarded); 3614 3615 return err; 3616 } 3617 3618 static noinline_for_stack int 3619 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3620 struct ext4_prealloc_space *pa) 3621 { 3622 struct super_block *sb = e4b->bd_sb; 3623 ext4_group_t group; 3624 ext4_grpblk_t bit; 3625 3626 trace_ext4_mb_release_group_pa(sb, pa); 3627 BUG_ON(pa->pa_deleted == 0); 3628 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3629 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3630 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3631 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3632 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3633 3634 return 0; 3635 } 3636 3637 /* 3638 * releases all preallocations in given group 3639 * 3640 * first, we need to decide discard policy: 3641 * - when do we discard 3642 * 1) ENOSPC 3643 * - how many do we discard 3644 * 1) how many requested 3645 */ 3646 static noinline_for_stack int 3647 ext4_mb_discard_group_preallocations(struct super_block *sb, 3648 ext4_group_t group, int needed) 3649 { 3650 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3651 struct buffer_head *bitmap_bh = NULL; 3652 struct ext4_prealloc_space *pa, *tmp; 3653 struct list_head list; 3654 struct ext4_buddy e4b; 3655 int err; 3656 int busy = 0; 3657 int free = 0; 3658 3659 mb_debug(1, "discard preallocation for group %u\n", group); 3660 3661 if (list_empty(&grp->bb_prealloc_list)) 3662 return 0; 3663 3664 bitmap_bh = ext4_read_block_bitmap(sb, group); 3665 if (bitmap_bh == NULL) { 3666 ext4_error(sb, "Error reading block bitmap for %u", group); 3667 return 0; 3668 } 3669 3670 err = ext4_mb_load_buddy(sb, group, &e4b); 3671 if (err) { 3672 ext4_error(sb, "Error loading buddy information for %u", group); 3673 put_bh(bitmap_bh); 3674 return 0; 3675 } 3676 3677 if (needed == 0) 3678 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3679 3680 INIT_LIST_HEAD(&list); 3681 repeat: 3682 ext4_lock_group(sb, group); 3683 list_for_each_entry_safe(pa, tmp, 3684 &grp->bb_prealloc_list, pa_group_list) { 3685 spin_lock(&pa->pa_lock); 3686 if (atomic_read(&pa->pa_count)) { 3687 spin_unlock(&pa->pa_lock); 3688 busy = 1; 3689 continue; 3690 } 3691 if (pa->pa_deleted) { 3692 spin_unlock(&pa->pa_lock); 3693 continue; 3694 } 3695 3696 /* seems this one can be freed ... */ 3697 pa->pa_deleted = 1; 3698 3699 /* we can trust pa_free ... */ 3700 free += pa->pa_free; 3701 3702 spin_unlock(&pa->pa_lock); 3703 3704 list_del(&pa->pa_group_list); 3705 list_add(&pa->u.pa_tmp_list, &list); 3706 } 3707 3708 /* if we still need more blocks and some PAs were used, try again */ 3709 if (free < needed && busy) { 3710 busy = 0; 3711 ext4_unlock_group(sb, group); 3712 /* 3713 * Yield the CPU here so that we don't get soft lockup 3714 * in non preempt case. 3715 */ 3716 yield(); 3717 goto repeat; 3718 } 3719 3720 /* found anything to free? */ 3721 if (list_empty(&list)) { 3722 BUG_ON(free != 0); 3723 goto out; 3724 } 3725 3726 /* now free all selected PAs */ 3727 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3728 3729 /* remove from object (inode or locality group) */ 3730 spin_lock(pa->pa_obj_lock); 3731 list_del_rcu(&pa->pa_inode_list); 3732 spin_unlock(pa->pa_obj_lock); 3733 3734 if (pa->pa_type == MB_GROUP_PA) 3735 ext4_mb_release_group_pa(&e4b, pa); 3736 else 3737 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3738 3739 list_del(&pa->u.pa_tmp_list); 3740 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3741 } 3742 3743 out: 3744 ext4_unlock_group(sb, group); 3745 ext4_mb_unload_buddy(&e4b); 3746 put_bh(bitmap_bh); 3747 return free; 3748 } 3749 3750 /* 3751 * releases all non-used preallocated blocks for given inode 3752 * 3753 * It's important to discard preallocations under i_data_sem 3754 * We don't want another block to be served from the prealloc 3755 * space when we are discarding the inode prealloc space. 3756 * 3757 * FIXME!! Make sure it is valid at all the call sites 3758 */ 3759 void ext4_discard_preallocations(struct inode *inode) 3760 { 3761 struct ext4_inode_info *ei = EXT4_I(inode); 3762 struct super_block *sb = inode->i_sb; 3763 struct buffer_head *bitmap_bh = NULL; 3764 struct ext4_prealloc_space *pa, *tmp; 3765 ext4_group_t group = 0; 3766 struct list_head list; 3767 struct ext4_buddy e4b; 3768 int err; 3769 3770 if (!S_ISREG(inode->i_mode)) { 3771 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 3772 return; 3773 } 3774 3775 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 3776 trace_ext4_discard_preallocations(inode); 3777 3778 INIT_LIST_HEAD(&list); 3779 3780 repeat: 3781 /* first, collect all pa's in the inode */ 3782 spin_lock(&ei->i_prealloc_lock); 3783 while (!list_empty(&ei->i_prealloc_list)) { 3784 pa = list_entry(ei->i_prealloc_list.next, 3785 struct ext4_prealloc_space, pa_inode_list); 3786 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 3787 spin_lock(&pa->pa_lock); 3788 if (atomic_read(&pa->pa_count)) { 3789 /* this shouldn't happen often - nobody should 3790 * use preallocation while we're discarding it */ 3791 spin_unlock(&pa->pa_lock); 3792 spin_unlock(&ei->i_prealloc_lock); 3793 ext4_msg(sb, KERN_ERR, 3794 "uh-oh! used pa while discarding"); 3795 WARN_ON(1); 3796 schedule_timeout_uninterruptible(HZ); 3797 goto repeat; 3798 3799 } 3800 if (pa->pa_deleted == 0) { 3801 pa->pa_deleted = 1; 3802 spin_unlock(&pa->pa_lock); 3803 list_del_rcu(&pa->pa_inode_list); 3804 list_add(&pa->u.pa_tmp_list, &list); 3805 continue; 3806 } 3807 3808 /* someone is deleting pa right now */ 3809 spin_unlock(&pa->pa_lock); 3810 spin_unlock(&ei->i_prealloc_lock); 3811 3812 /* we have to wait here because pa_deleted 3813 * doesn't mean pa is already unlinked from 3814 * the list. as we might be called from 3815 * ->clear_inode() the inode will get freed 3816 * and concurrent thread which is unlinking 3817 * pa from inode's list may access already 3818 * freed memory, bad-bad-bad */ 3819 3820 /* XXX: if this happens too often, we can 3821 * add a flag to force wait only in case 3822 * of ->clear_inode(), but not in case of 3823 * regular truncate */ 3824 schedule_timeout_uninterruptible(HZ); 3825 goto repeat; 3826 } 3827 spin_unlock(&ei->i_prealloc_lock); 3828 3829 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3830 BUG_ON(pa->pa_type != MB_INODE_PA); 3831 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 3832 3833 err = ext4_mb_load_buddy(sb, group, &e4b); 3834 if (err) { 3835 ext4_error(sb, "Error loading buddy information for %u", 3836 group); 3837 continue; 3838 } 3839 3840 bitmap_bh = ext4_read_block_bitmap(sb, group); 3841 if (bitmap_bh == NULL) { 3842 ext4_error(sb, "Error reading block bitmap for %u", 3843 group); 3844 ext4_mb_unload_buddy(&e4b); 3845 continue; 3846 } 3847 3848 ext4_lock_group(sb, group); 3849 list_del(&pa->pa_group_list); 3850 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3851 ext4_unlock_group(sb, group); 3852 3853 ext4_mb_unload_buddy(&e4b); 3854 put_bh(bitmap_bh); 3855 3856 list_del(&pa->u.pa_tmp_list); 3857 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3858 } 3859 } 3860 3861 #ifdef CONFIG_EXT4_DEBUG 3862 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3863 { 3864 struct super_block *sb = ac->ac_sb; 3865 ext4_group_t ngroups, i; 3866 3867 if (!mb_enable_debug || 3868 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 3869 return; 3870 3871 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 3872 " Allocation context details:"); 3873 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 3874 ac->ac_status, ac->ac_flags); 3875 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 3876 "goal %lu/%lu/%lu@%lu, " 3877 "best %lu/%lu/%lu@%lu cr %d", 3878 (unsigned long)ac->ac_o_ex.fe_group, 3879 (unsigned long)ac->ac_o_ex.fe_start, 3880 (unsigned long)ac->ac_o_ex.fe_len, 3881 (unsigned long)ac->ac_o_ex.fe_logical, 3882 (unsigned long)ac->ac_g_ex.fe_group, 3883 (unsigned long)ac->ac_g_ex.fe_start, 3884 (unsigned long)ac->ac_g_ex.fe_len, 3885 (unsigned long)ac->ac_g_ex.fe_logical, 3886 (unsigned long)ac->ac_b_ex.fe_group, 3887 (unsigned long)ac->ac_b_ex.fe_start, 3888 (unsigned long)ac->ac_b_ex.fe_len, 3889 (unsigned long)ac->ac_b_ex.fe_logical, 3890 (int)ac->ac_criteria); 3891 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found", 3892 ac->ac_ex_scanned, ac->ac_found); 3893 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 3894 ngroups = ext4_get_groups_count(sb); 3895 for (i = 0; i < ngroups; i++) { 3896 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3897 struct ext4_prealloc_space *pa; 3898 ext4_grpblk_t start; 3899 struct list_head *cur; 3900 ext4_lock_group(sb, i); 3901 list_for_each(cur, &grp->bb_prealloc_list) { 3902 pa = list_entry(cur, struct ext4_prealloc_space, 3903 pa_group_list); 3904 spin_lock(&pa->pa_lock); 3905 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3906 NULL, &start); 3907 spin_unlock(&pa->pa_lock); 3908 printk(KERN_ERR "PA:%u:%d:%u \n", i, 3909 start, pa->pa_len); 3910 } 3911 ext4_unlock_group(sb, i); 3912 3913 if (grp->bb_free == 0) 3914 continue; 3915 printk(KERN_ERR "%u: %d/%d \n", 3916 i, grp->bb_free, grp->bb_fragments); 3917 } 3918 printk(KERN_ERR "\n"); 3919 } 3920 #else 3921 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3922 { 3923 return; 3924 } 3925 #endif 3926 3927 /* 3928 * We use locality group preallocation for small size file. The size of the 3929 * file is determined by the current size or the resulting size after 3930 * allocation which ever is larger 3931 * 3932 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 3933 */ 3934 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 3935 { 3936 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3937 int bsbits = ac->ac_sb->s_blocksize_bits; 3938 loff_t size, isize; 3939 3940 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3941 return; 3942 3943 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3944 return; 3945 3946 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3947 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 3948 >> bsbits; 3949 3950 if ((size == isize) && 3951 !ext4_fs_is_busy(sbi) && 3952 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 3953 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 3954 return; 3955 } 3956 3957 if (sbi->s_mb_group_prealloc <= 0) { 3958 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 3959 return; 3960 } 3961 3962 /* don't use group allocation for large files */ 3963 size = max(size, isize); 3964 if (size > sbi->s_mb_stream_request) { 3965 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 3966 return; 3967 } 3968 3969 BUG_ON(ac->ac_lg != NULL); 3970 /* 3971 * locality group prealloc space are per cpu. The reason for having 3972 * per cpu locality group is to reduce the contention between block 3973 * request from multiple CPUs. 3974 */ 3975 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups); 3976 3977 /* we're going to use group allocation */ 3978 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 3979 3980 /* serialize all allocations in the group */ 3981 mutex_lock(&ac->ac_lg->lg_mutex); 3982 } 3983 3984 static noinline_for_stack int 3985 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 3986 struct ext4_allocation_request *ar) 3987 { 3988 struct super_block *sb = ar->inode->i_sb; 3989 struct ext4_sb_info *sbi = EXT4_SB(sb); 3990 struct ext4_super_block *es = sbi->s_es; 3991 ext4_group_t group; 3992 unsigned int len; 3993 ext4_fsblk_t goal; 3994 ext4_grpblk_t block; 3995 3996 /* we can't allocate > group size */ 3997 len = ar->len; 3998 3999 /* just a dirty hack to filter too big requests */ 4000 if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10) 4001 len = EXT4_CLUSTERS_PER_GROUP(sb) - 10; 4002 4003 /* start searching from the goal */ 4004 goal = ar->goal; 4005 if (goal < le32_to_cpu(es->s_first_data_block) || 4006 goal >= ext4_blocks_count(es)) 4007 goal = le32_to_cpu(es->s_first_data_block); 4008 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4009 4010 /* set up allocation goals */ 4011 memset(ac, 0, sizeof(struct ext4_allocation_context)); 4012 ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1); 4013 ac->ac_status = AC_STATUS_CONTINUE; 4014 ac->ac_sb = sb; 4015 ac->ac_inode = ar->inode; 4016 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4017 ac->ac_o_ex.fe_group = group; 4018 ac->ac_o_ex.fe_start = block; 4019 ac->ac_o_ex.fe_len = len; 4020 ac->ac_g_ex = ac->ac_o_ex; 4021 ac->ac_flags = ar->flags; 4022 4023 /* we have to define context: we'll we work with a file or 4024 * locality group. this is a policy, actually */ 4025 ext4_mb_group_or_file(ac); 4026 4027 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4028 "left: %u/%u, right %u/%u to %swritable\n", 4029 (unsigned) ar->len, (unsigned) ar->logical, 4030 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4031 (unsigned) ar->lleft, (unsigned) ar->pleft, 4032 (unsigned) ar->lright, (unsigned) ar->pright, 4033 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4034 return 0; 4035 4036 } 4037 4038 static noinline_for_stack void 4039 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4040 struct ext4_locality_group *lg, 4041 int order, int total_entries) 4042 { 4043 ext4_group_t group = 0; 4044 struct ext4_buddy e4b; 4045 struct list_head discard_list; 4046 struct ext4_prealloc_space *pa, *tmp; 4047 4048 mb_debug(1, "discard locality group preallocation\n"); 4049 4050 INIT_LIST_HEAD(&discard_list); 4051 4052 spin_lock(&lg->lg_prealloc_lock); 4053 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4054 pa_inode_list) { 4055 spin_lock(&pa->pa_lock); 4056 if (atomic_read(&pa->pa_count)) { 4057 /* 4058 * This is the pa that we just used 4059 * for block allocation. So don't 4060 * free that 4061 */ 4062 spin_unlock(&pa->pa_lock); 4063 continue; 4064 } 4065 if (pa->pa_deleted) { 4066 spin_unlock(&pa->pa_lock); 4067 continue; 4068 } 4069 /* only lg prealloc space */ 4070 BUG_ON(pa->pa_type != MB_GROUP_PA); 4071 4072 /* seems this one can be freed ... */ 4073 pa->pa_deleted = 1; 4074 spin_unlock(&pa->pa_lock); 4075 4076 list_del_rcu(&pa->pa_inode_list); 4077 list_add(&pa->u.pa_tmp_list, &discard_list); 4078 4079 total_entries--; 4080 if (total_entries <= 5) { 4081 /* 4082 * we want to keep only 5 entries 4083 * allowing it to grow to 8. This 4084 * mak sure we don't call discard 4085 * soon for this list. 4086 */ 4087 break; 4088 } 4089 } 4090 spin_unlock(&lg->lg_prealloc_lock); 4091 4092 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4093 4094 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 4095 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4096 ext4_error(sb, "Error loading buddy information for %u", 4097 group); 4098 continue; 4099 } 4100 ext4_lock_group(sb, group); 4101 list_del(&pa->pa_group_list); 4102 ext4_mb_release_group_pa(&e4b, pa); 4103 ext4_unlock_group(sb, group); 4104 4105 ext4_mb_unload_buddy(&e4b); 4106 list_del(&pa->u.pa_tmp_list); 4107 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4108 } 4109 } 4110 4111 /* 4112 * We have incremented pa_count. So it cannot be freed at this 4113 * point. Also we hold lg_mutex. So no parallel allocation is 4114 * possible from this lg. That means pa_free cannot be updated. 4115 * 4116 * A parallel ext4_mb_discard_group_preallocations is possible. 4117 * which can cause the lg_prealloc_list to be updated. 4118 */ 4119 4120 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4121 { 4122 int order, added = 0, lg_prealloc_count = 1; 4123 struct super_block *sb = ac->ac_sb; 4124 struct ext4_locality_group *lg = ac->ac_lg; 4125 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4126 4127 order = fls(pa->pa_free) - 1; 4128 if (order > PREALLOC_TB_SIZE - 1) 4129 /* The max size of hash table is PREALLOC_TB_SIZE */ 4130 order = PREALLOC_TB_SIZE - 1; 4131 /* Add the prealloc space to lg */ 4132 rcu_read_lock(); 4133 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4134 pa_inode_list) { 4135 spin_lock(&tmp_pa->pa_lock); 4136 if (tmp_pa->pa_deleted) { 4137 spin_unlock(&tmp_pa->pa_lock); 4138 continue; 4139 } 4140 if (!added && pa->pa_free < tmp_pa->pa_free) { 4141 /* Add to the tail of the previous entry */ 4142 list_add_tail_rcu(&pa->pa_inode_list, 4143 &tmp_pa->pa_inode_list); 4144 added = 1; 4145 /* 4146 * we want to count the total 4147 * number of entries in the list 4148 */ 4149 } 4150 spin_unlock(&tmp_pa->pa_lock); 4151 lg_prealloc_count++; 4152 } 4153 if (!added) 4154 list_add_tail_rcu(&pa->pa_inode_list, 4155 &lg->lg_prealloc_list[order]); 4156 rcu_read_unlock(); 4157 4158 /* Now trim the list to be not more than 8 elements */ 4159 if (lg_prealloc_count > 8) { 4160 ext4_mb_discard_lg_preallocations(sb, lg, 4161 order, lg_prealloc_count); 4162 return; 4163 } 4164 return ; 4165 } 4166 4167 /* 4168 * release all resource we used in allocation 4169 */ 4170 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4171 { 4172 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4173 struct ext4_prealloc_space *pa = ac->ac_pa; 4174 if (pa) { 4175 if (pa->pa_type == MB_GROUP_PA) { 4176 /* see comment in ext4_mb_use_group_pa() */ 4177 spin_lock(&pa->pa_lock); 4178 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4179 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4180 pa->pa_free -= ac->ac_b_ex.fe_len; 4181 pa->pa_len -= ac->ac_b_ex.fe_len; 4182 spin_unlock(&pa->pa_lock); 4183 } 4184 } 4185 if (pa) { 4186 /* 4187 * We want to add the pa to the right bucket. 4188 * Remove it from the list and while adding 4189 * make sure the list to which we are adding 4190 * doesn't grow big. 4191 */ 4192 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4193 spin_lock(pa->pa_obj_lock); 4194 list_del_rcu(&pa->pa_inode_list); 4195 spin_unlock(pa->pa_obj_lock); 4196 ext4_mb_add_n_trim(ac); 4197 } 4198 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4199 } 4200 if (ac->ac_bitmap_page) 4201 page_cache_release(ac->ac_bitmap_page); 4202 if (ac->ac_buddy_page) 4203 page_cache_release(ac->ac_buddy_page); 4204 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4205 mutex_unlock(&ac->ac_lg->lg_mutex); 4206 ext4_mb_collect_stats(ac); 4207 return 0; 4208 } 4209 4210 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4211 { 4212 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4213 int ret; 4214 int freed = 0; 4215 4216 trace_ext4_mb_discard_preallocations(sb, needed); 4217 for (i = 0; i < ngroups && needed > 0; i++) { 4218 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4219 freed += ret; 4220 needed -= ret; 4221 } 4222 4223 return freed; 4224 } 4225 4226 /* 4227 * Main entry point into mballoc to allocate blocks 4228 * it tries to use preallocation first, then falls back 4229 * to usual allocation 4230 */ 4231 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4232 struct ext4_allocation_request *ar, int *errp) 4233 { 4234 int freed; 4235 struct ext4_allocation_context *ac = NULL; 4236 struct ext4_sb_info *sbi; 4237 struct super_block *sb; 4238 ext4_fsblk_t block = 0; 4239 unsigned int inquota = 0; 4240 unsigned int reserv_clstrs = 0; 4241 4242 sb = ar->inode->i_sb; 4243 sbi = EXT4_SB(sb); 4244 4245 trace_ext4_request_blocks(ar); 4246 4247 /* Allow to use superuser reservation for quota file */ 4248 if (IS_NOQUOTA(ar->inode)) 4249 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4250 4251 /* 4252 * For delayed allocation, we could skip the ENOSPC and 4253 * EDQUOT check, as blocks and quotas have been already 4254 * reserved when data being copied into pagecache. 4255 */ 4256 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED)) 4257 ar->flags |= EXT4_MB_DELALLOC_RESERVED; 4258 else { 4259 /* Without delayed allocation we need to verify 4260 * there is enough free blocks to do block allocation 4261 * and verify allocation doesn't exceed the quota limits. 4262 */ 4263 while (ar->len && 4264 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4265 4266 /* let others to free the space */ 4267 yield(); 4268 ar->len = ar->len >> 1; 4269 } 4270 if (!ar->len) { 4271 *errp = -ENOSPC; 4272 return 0; 4273 } 4274 reserv_clstrs = ar->len; 4275 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4276 dquot_alloc_block_nofail(ar->inode, 4277 EXT4_C2B(sbi, ar->len)); 4278 } else { 4279 while (ar->len && 4280 dquot_alloc_block(ar->inode, 4281 EXT4_C2B(sbi, ar->len))) { 4282 4283 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4284 ar->len--; 4285 } 4286 } 4287 inquota = ar->len; 4288 if (ar->len == 0) { 4289 *errp = -EDQUOT; 4290 goto out; 4291 } 4292 } 4293 4294 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 4295 if (!ac) { 4296 ar->len = 0; 4297 *errp = -ENOMEM; 4298 goto out; 4299 } 4300 4301 *errp = ext4_mb_initialize_context(ac, ar); 4302 if (*errp) { 4303 ar->len = 0; 4304 goto out; 4305 } 4306 4307 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4308 if (!ext4_mb_use_preallocated(ac)) { 4309 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4310 ext4_mb_normalize_request(ac, ar); 4311 repeat: 4312 /* allocate space in core */ 4313 *errp = ext4_mb_regular_allocator(ac); 4314 if (*errp) 4315 goto errout; 4316 4317 /* as we've just preallocated more space than 4318 * user requested orinally, we store allocated 4319 * space in a special descriptor */ 4320 if (ac->ac_status == AC_STATUS_FOUND && 4321 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4322 ext4_mb_new_preallocation(ac); 4323 } 4324 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4325 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4326 if (*errp == -EAGAIN) { 4327 /* 4328 * drop the reference that we took 4329 * in ext4_mb_use_best_found 4330 */ 4331 ext4_mb_release_context(ac); 4332 ac->ac_b_ex.fe_group = 0; 4333 ac->ac_b_ex.fe_start = 0; 4334 ac->ac_b_ex.fe_len = 0; 4335 ac->ac_status = AC_STATUS_CONTINUE; 4336 goto repeat; 4337 } else if (*errp) 4338 errout: 4339 ext4_discard_allocated_blocks(ac); 4340 else { 4341 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4342 ar->len = ac->ac_b_ex.fe_len; 4343 } 4344 } else { 4345 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4346 if (freed) 4347 goto repeat; 4348 *errp = -ENOSPC; 4349 } 4350 4351 if (*errp) { 4352 ac->ac_b_ex.fe_len = 0; 4353 ar->len = 0; 4354 ext4_mb_show_ac(ac); 4355 } 4356 ext4_mb_release_context(ac); 4357 out: 4358 if (ac) 4359 kmem_cache_free(ext4_ac_cachep, ac); 4360 if (inquota && ar->len < inquota) 4361 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4362 if (!ar->len) { 4363 if (!ext4_test_inode_state(ar->inode, 4364 EXT4_STATE_DELALLOC_RESERVED)) 4365 /* release all the reserved blocks if non delalloc */ 4366 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4367 reserv_clstrs); 4368 } 4369 4370 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4371 4372 return block; 4373 } 4374 4375 /* 4376 * We can merge two free data extents only if the physical blocks 4377 * are contiguous, AND the extents were freed by the same transaction, 4378 * AND the blocks are associated with the same group. 4379 */ 4380 static int can_merge(struct ext4_free_data *entry1, 4381 struct ext4_free_data *entry2) 4382 { 4383 if ((entry1->efd_tid == entry2->efd_tid) && 4384 (entry1->efd_group == entry2->efd_group) && 4385 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster)) 4386 return 1; 4387 return 0; 4388 } 4389 4390 static noinline_for_stack int 4391 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4392 struct ext4_free_data *new_entry) 4393 { 4394 ext4_group_t group = e4b->bd_group; 4395 ext4_grpblk_t cluster; 4396 struct ext4_free_data *entry; 4397 struct ext4_group_info *db = e4b->bd_info; 4398 struct super_block *sb = e4b->bd_sb; 4399 struct ext4_sb_info *sbi = EXT4_SB(sb); 4400 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4401 struct rb_node *parent = NULL, *new_node; 4402 4403 BUG_ON(!ext4_handle_valid(handle)); 4404 BUG_ON(e4b->bd_bitmap_page == NULL); 4405 BUG_ON(e4b->bd_buddy_page == NULL); 4406 4407 new_node = &new_entry->efd_node; 4408 cluster = new_entry->efd_start_cluster; 4409 4410 if (!*n) { 4411 /* first free block exent. We need to 4412 protect buddy cache from being freed, 4413 * otherwise we'll refresh it from 4414 * on-disk bitmap and lose not-yet-available 4415 * blocks */ 4416 page_cache_get(e4b->bd_buddy_page); 4417 page_cache_get(e4b->bd_bitmap_page); 4418 } 4419 while (*n) { 4420 parent = *n; 4421 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4422 if (cluster < entry->efd_start_cluster) 4423 n = &(*n)->rb_left; 4424 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4425 n = &(*n)->rb_right; 4426 else { 4427 ext4_grp_locked_error(sb, group, 0, 4428 ext4_group_first_block_no(sb, group) + 4429 EXT4_C2B(sbi, cluster), 4430 "Block already on to-be-freed list"); 4431 return 0; 4432 } 4433 } 4434 4435 rb_link_node(new_node, parent, n); 4436 rb_insert_color(new_node, &db->bb_free_root); 4437 4438 /* Now try to see the extent can be merged to left and right */ 4439 node = rb_prev(new_node); 4440 if (node) { 4441 entry = rb_entry(node, struct ext4_free_data, efd_node); 4442 if (can_merge(entry, new_entry)) { 4443 new_entry->efd_start_cluster = entry->efd_start_cluster; 4444 new_entry->efd_count += entry->efd_count; 4445 rb_erase(node, &(db->bb_free_root)); 4446 ext4_journal_callback_del(handle, &entry->efd_jce); 4447 kmem_cache_free(ext4_free_data_cachep, entry); 4448 } 4449 } 4450 4451 node = rb_next(new_node); 4452 if (node) { 4453 entry = rb_entry(node, struct ext4_free_data, efd_node); 4454 if (can_merge(new_entry, entry)) { 4455 new_entry->efd_count += entry->efd_count; 4456 rb_erase(node, &(db->bb_free_root)); 4457 ext4_journal_callback_del(handle, &entry->efd_jce); 4458 kmem_cache_free(ext4_free_data_cachep, entry); 4459 } 4460 } 4461 /* Add the extent to transaction's private list */ 4462 ext4_journal_callback_add(handle, ext4_free_data_callback, 4463 &new_entry->efd_jce); 4464 return 0; 4465 } 4466 4467 /** 4468 * ext4_free_blocks() -- Free given blocks and update quota 4469 * @handle: handle for this transaction 4470 * @inode: inode 4471 * @block: start physical block to free 4472 * @count: number of blocks to count 4473 * @flags: flags used by ext4_free_blocks 4474 */ 4475 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4476 struct buffer_head *bh, ext4_fsblk_t block, 4477 unsigned long count, int flags) 4478 { 4479 struct buffer_head *bitmap_bh = NULL; 4480 struct super_block *sb = inode->i_sb; 4481 struct ext4_group_desc *gdp; 4482 unsigned long freed = 0; 4483 unsigned int overflow; 4484 ext4_grpblk_t bit; 4485 struct buffer_head *gd_bh; 4486 ext4_group_t block_group; 4487 struct ext4_sb_info *sbi; 4488 struct ext4_buddy e4b; 4489 unsigned int count_clusters; 4490 int err = 0; 4491 int ret; 4492 4493 if (bh) { 4494 if (block) 4495 BUG_ON(block != bh->b_blocknr); 4496 else 4497 block = bh->b_blocknr; 4498 } 4499 4500 sbi = EXT4_SB(sb); 4501 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4502 !ext4_data_block_valid(sbi, block, count)) { 4503 ext4_error(sb, "Freeing blocks not in datazone - " 4504 "block = %llu, count = %lu", block, count); 4505 goto error_return; 4506 } 4507 4508 ext4_debug("freeing block %llu\n", block); 4509 trace_ext4_free_blocks(inode, block, count, flags); 4510 4511 if (flags & EXT4_FREE_BLOCKS_FORGET) { 4512 struct buffer_head *tbh = bh; 4513 int i; 4514 4515 BUG_ON(bh && (count > 1)); 4516 4517 for (i = 0; i < count; i++) { 4518 if (!bh) 4519 tbh = sb_find_get_block(inode->i_sb, 4520 block + i); 4521 if (unlikely(!tbh)) 4522 continue; 4523 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4524 inode, tbh, block + i); 4525 } 4526 } 4527 4528 /* 4529 * We need to make sure we don't reuse the freed block until 4530 * after the transaction is committed, which we can do by 4531 * treating the block as metadata, below. We make an 4532 * exception if the inode is to be written in writeback mode 4533 * since writeback mode has weak data consistency guarantees. 4534 */ 4535 if (!ext4_should_writeback_data(inode)) 4536 flags |= EXT4_FREE_BLOCKS_METADATA; 4537 4538 /* 4539 * If the extent to be freed does not begin on a cluster 4540 * boundary, we need to deal with partial clusters at the 4541 * beginning and end of the extent. Normally we will free 4542 * blocks at the beginning or the end unless we are explicitly 4543 * requested to avoid doing so. 4544 */ 4545 overflow = block & (sbi->s_cluster_ratio - 1); 4546 if (overflow) { 4547 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4548 overflow = sbi->s_cluster_ratio - overflow; 4549 block += overflow; 4550 if (count > overflow) 4551 count -= overflow; 4552 else 4553 return; 4554 } else { 4555 block -= overflow; 4556 count += overflow; 4557 } 4558 } 4559 overflow = count & (sbi->s_cluster_ratio - 1); 4560 if (overflow) { 4561 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4562 if (count > overflow) 4563 count -= overflow; 4564 else 4565 return; 4566 } else 4567 count += sbi->s_cluster_ratio - overflow; 4568 } 4569 4570 do_more: 4571 overflow = 0; 4572 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4573 4574 /* 4575 * Check to see if we are freeing blocks across a group 4576 * boundary. 4577 */ 4578 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4579 overflow = EXT4_C2B(sbi, bit) + count - 4580 EXT4_BLOCKS_PER_GROUP(sb); 4581 count -= overflow; 4582 } 4583 count_clusters = EXT4_B2C(sbi, count); 4584 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4585 if (!bitmap_bh) { 4586 err = -EIO; 4587 goto error_return; 4588 } 4589 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4590 if (!gdp) { 4591 err = -EIO; 4592 goto error_return; 4593 } 4594 4595 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4596 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4597 in_range(block, ext4_inode_table(sb, gdp), 4598 EXT4_SB(sb)->s_itb_per_group) || 4599 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4600 EXT4_SB(sb)->s_itb_per_group)) { 4601 4602 ext4_error(sb, "Freeing blocks in system zone - " 4603 "Block = %llu, count = %lu", block, count); 4604 /* err = 0. ext4_std_error should be a no op */ 4605 goto error_return; 4606 } 4607 4608 BUFFER_TRACE(bitmap_bh, "getting write access"); 4609 err = ext4_journal_get_write_access(handle, bitmap_bh); 4610 if (err) 4611 goto error_return; 4612 4613 /* 4614 * We are about to modify some metadata. Call the journal APIs 4615 * to unshare ->b_data if a currently-committing transaction is 4616 * using it 4617 */ 4618 BUFFER_TRACE(gd_bh, "get_write_access"); 4619 err = ext4_journal_get_write_access(handle, gd_bh); 4620 if (err) 4621 goto error_return; 4622 #ifdef AGGRESSIVE_CHECK 4623 { 4624 int i; 4625 for (i = 0; i < count_clusters; i++) 4626 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4627 } 4628 #endif 4629 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4630 4631 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4632 if (err) 4633 goto error_return; 4634 4635 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) { 4636 struct ext4_free_data *new_entry; 4637 /* 4638 * blocks being freed are metadata. these blocks shouldn't 4639 * be used until this transaction is committed 4640 */ 4641 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS); 4642 if (!new_entry) { 4643 ext4_mb_unload_buddy(&e4b); 4644 err = -ENOMEM; 4645 goto error_return; 4646 } 4647 new_entry->efd_start_cluster = bit; 4648 new_entry->efd_group = block_group; 4649 new_entry->efd_count = count_clusters; 4650 new_entry->efd_tid = handle->h_transaction->t_tid; 4651 4652 ext4_lock_group(sb, block_group); 4653 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4654 ext4_mb_free_metadata(handle, &e4b, new_entry); 4655 } else { 4656 /* need to update group_info->bb_free and bitmap 4657 * with group lock held. generate_buddy look at 4658 * them with group lock_held 4659 */ 4660 ext4_lock_group(sb, block_group); 4661 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4662 mb_free_blocks(inode, &e4b, bit, count_clusters); 4663 } 4664 4665 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4666 ext4_free_group_clusters_set(sb, gdp, ret); 4667 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh, 4668 EXT4_BLOCKS_PER_GROUP(sb) / 8); 4669 ext4_group_desc_csum_set(sb, block_group, gdp); 4670 ext4_unlock_group(sb, block_group); 4671 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); 4672 4673 if (sbi->s_log_groups_per_flex) { 4674 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4675 atomic_add(count_clusters, 4676 &sbi->s_flex_groups[flex_group].free_clusters); 4677 } 4678 4679 ext4_mb_unload_buddy(&e4b); 4680 4681 freed += count; 4682 4683 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4684 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4685 4686 /* We dirtied the bitmap block */ 4687 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4688 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4689 4690 /* And the group descriptor block */ 4691 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4692 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4693 if (!err) 4694 err = ret; 4695 4696 if (overflow && !err) { 4697 block += count; 4698 count = overflow; 4699 put_bh(bitmap_bh); 4700 goto do_more; 4701 } 4702 error_return: 4703 brelse(bitmap_bh); 4704 ext4_std_error(sb, err); 4705 return; 4706 } 4707 4708 /** 4709 * ext4_group_add_blocks() -- Add given blocks to an existing group 4710 * @handle: handle to this transaction 4711 * @sb: super block 4712 * @block: start physcial block to add to the block group 4713 * @count: number of blocks to free 4714 * 4715 * This marks the blocks as free in the bitmap and buddy. 4716 */ 4717 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4718 ext4_fsblk_t block, unsigned long count) 4719 { 4720 struct buffer_head *bitmap_bh = NULL; 4721 struct buffer_head *gd_bh; 4722 ext4_group_t block_group; 4723 ext4_grpblk_t bit; 4724 unsigned int i; 4725 struct ext4_group_desc *desc; 4726 struct ext4_sb_info *sbi = EXT4_SB(sb); 4727 struct ext4_buddy e4b; 4728 int err = 0, ret, blk_free_count; 4729 ext4_grpblk_t blocks_freed; 4730 4731 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 4732 4733 if (count == 0) 4734 return 0; 4735 4736 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4737 /* 4738 * Check to see if we are freeing blocks across a group 4739 * boundary. 4740 */ 4741 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4742 ext4_warning(sb, "too much blocks added to group %u\n", 4743 block_group); 4744 err = -EINVAL; 4745 goto error_return; 4746 } 4747 4748 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4749 if (!bitmap_bh) { 4750 err = -EIO; 4751 goto error_return; 4752 } 4753 4754 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 4755 if (!desc) { 4756 err = -EIO; 4757 goto error_return; 4758 } 4759 4760 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 4761 in_range(ext4_inode_bitmap(sb, desc), block, count) || 4762 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 4763 in_range(block + count - 1, ext4_inode_table(sb, desc), 4764 sbi->s_itb_per_group)) { 4765 ext4_error(sb, "Adding blocks in system zones - " 4766 "Block = %llu, count = %lu", 4767 block, count); 4768 err = -EINVAL; 4769 goto error_return; 4770 } 4771 4772 BUFFER_TRACE(bitmap_bh, "getting write access"); 4773 err = ext4_journal_get_write_access(handle, bitmap_bh); 4774 if (err) 4775 goto error_return; 4776 4777 /* 4778 * We are about to modify some metadata. Call the journal APIs 4779 * to unshare ->b_data if a currently-committing transaction is 4780 * using it 4781 */ 4782 BUFFER_TRACE(gd_bh, "get_write_access"); 4783 err = ext4_journal_get_write_access(handle, gd_bh); 4784 if (err) 4785 goto error_return; 4786 4787 for (i = 0, blocks_freed = 0; i < count; i++) { 4788 BUFFER_TRACE(bitmap_bh, "clear bit"); 4789 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 4790 ext4_error(sb, "bit already cleared for block %llu", 4791 (ext4_fsblk_t)(block + i)); 4792 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 4793 } else { 4794 blocks_freed++; 4795 } 4796 } 4797 4798 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4799 if (err) 4800 goto error_return; 4801 4802 /* 4803 * need to update group_info->bb_free and bitmap 4804 * with group lock held. generate_buddy look at 4805 * them with group lock_held 4806 */ 4807 ext4_lock_group(sb, block_group); 4808 mb_clear_bits(bitmap_bh->b_data, bit, count); 4809 mb_free_blocks(NULL, &e4b, bit, count); 4810 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc); 4811 ext4_free_group_clusters_set(sb, desc, blk_free_count); 4812 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh, 4813 EXT4_BLOCKS_PER_GROUP(sb) / 8); 4814 ext4_group_desc_csum_set(sb, block_group, desc); 4815 ext4_unlock_group(sb, block_group); 4816 percpu_counter_add(&sbi->s_freeclusters_counter, 4817 EXT4_B2C(sbi, blocks_freed)); 4818 4819 if (sbi->s_log_groups_per_flex) { 4820 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4821 atomic_add(EXT4_B2C(sbi, blocks_freed), 4822 &sbi->s_flex_groups[flex_group].free_clusters); 4823 } 4824 4825 ext4_mb_unload_buddy(&e4b); 4826 4827 /* We dirtied the bitmap block */ 4828 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4829 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4830 4831 /* And the group descriptor block */ 4832 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4833 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4834 if (!err) 4835 err = ret; 4836 4837 error_return: 4838 brelse(bitmap_bh); 4839 ext4_std_error(sb, err); 4840 return err; 4841 } 4842 4843 /** 4844 * ext4_trim_extent -- function to TRIM one single free extent in the group 4845 * @sb: super block for the file system 4846 * @start: starting block of the free extent in the alloc. group 4847 * @count: number of blocks to TRIM 4848 * @group: alloc. group we are working with 4849 * @e4b: ext4 buddy for the group 4850 * 4851 * Trim "count" blocks starting at "start" in the "group". To assure that no 4852 * one will allocate those blocks, mark it as used in buddy bitmap. This must 4853 * be called with under the group lock. 4854 */ 4855 static void ext4_trim_extent(struct super_block *sb, int start, int count, 4856 ext4_group_t group, struct ext4_buddy *e4b) 4857 { 4858 struct ext4_free_extent ex; 4859 4860 trace_ext4_trim_extent(sb, group, start, count); 4861 4862 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 4863 4864 ex.fe_start = start; 4865 ex.fe_group = group; 4866 ex.fe_len = count; 4867 4868 /* 4869 * Mark blocks used, so no one can reuse them while 4870 * being trimmed. 4871 */ 4872 mb_mark_used(e4b, &ex); 4873 ext4_unlock_group(sb, group); 4874 ext4_issue_discard(sb, group, start, count); 4875 ext4_lock_group(sb, group); 4876 mb_free_blocks(NULL, e4b, start, ex.fe_len); 4877 } 4878 4879 /** 4880 * ext4_trim_all_free -- function to trim all free space in alloc. group 4881 * @sb: super block for file system 4882 * @group: group to be trimmed 4883 * @start: first group block to examine 4884 * @max: last group block to examine 4885 * @minblocks: minimum extent block count 4886 * 4887 * ext4_trim_all_free walks through group's buddy bitmap searching for free 4888 * extents. When the free block is found, ext4_trim_extent is called to TRIM 4889 * the extent. 4890 * 4891 * 4892 * ext4_trim_all_free walks through group's block bitmap searching for free 4893 * extents. When the free extent is found, mark it as used in group buddy 4894 * bitmap. Then issue a TRIM command on this extent and free the extent in 4895 * the group buddy bitmap. This is done until whole group is scanned. 4896 */ 4897 static ext4_grpblk_t 4898 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 4899 ext4_grpblk_t start, ext4_grpblk_t max, 4900 ext4_grpblk_t minblocks) 4901 { 4902 void *bitmap; 4903 ext4_grpblk_t next, count = 0, free_count = 0; 4904 struct ext4_buddy e4b; 4905 int ret; 4906 4907 trace_ext4_trim_all_free(sb, group, start, max); 4908 4909 ret = ext4_mb_load_buddy(sb, group, &e4b); 4910 if (ret) { 4911 ext4_error(sb, "Error in loading buddy " 4912 "information for %u", group); 4913 return ret; 4914 } 4915 bitmap = e4b.bd_bitmap; 4916 4917 ext4_lock_group(sb, group); 4918 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 4919 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 4920 goto out; 4921 4922 start = (e4b.bd_info->bb_first_free > start) ? 4923 e4b.bd_info->bb_first_free : start; 4924 4925 while (start <= max) { 4926 start = mb_find_next_zero_bit(bitmap, max + 1, start); 4927 if (start > max) 4928 break; 4929 next = mb_find_next_bit(bitmap, max + 1, start); 4930 4931 if ((next - start) >= minblocks) { 4932 ext4_trim_extent(sb, start, 4933 next - start, group, &e4b); 4934 count += next - start; 4935 } 4936 free_count += next - start; 4937 start = next + 1; 4938 4939 if (fatal_signal_pending(current)) { 4940 count = -ERESTARTSYS; 4941 break; 4942 } 4943 4944 if (need_resched()) { 4945 ext4_unlock_group(sb, group); 4946 cond_resched(); 4947 ext4_lock_group(sb, group); 4948 } 4949 4950 if ((e4b.bd_info->bb_free - free_count) < minblocks) 4951 break; 4952 } 4953 4954 if (!ret) 4955 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 4956 out: 4957 ext4_unlock_group(sb, group); 4958 ext4_mb_unload_buddy(&e4b); 4959 4960 ext4_debug("trimmed %d blocks in the group %d\n", 4961 count, group); 4962 4963 return count; 4964 } 4965 4966 /** 4967 * ext4_trim_fs() -- trim ioctl handle function 4968 * @sb: superblock for filesystem 4969 * @range: fstrim_range structure 4970 * 4971 * start: First Byte to trim 4972 * len: number of Bytes to trim from start 4973 * minlen: minimum extent length in Bytes 4974 * ext4_trim_fs goes through all allocation groups containing Bytes from 4975 * start to start+len. For each such a group ext4_trim_all_free function 4976 * is invoked to trim all free space. 4977 */ 4978 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 4979 { 4980 struct ext4_group_info *grp; 4981 ext4_group_t group, first_group, last_group; 4982 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 4983 uint64_t start, end, minlen, trimmed = 0; 4984 ext4_fsblk_t first_data_blk = 4985 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 4986 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 4987 int ret = 0; 4988 4989 start = range->start >> sb->s_blocksize_bits; 4990 end = start + (range->len >> sb->s_blocksize_bits) - 1; 4991 minlen = range->minlen >> sb->s_blocksize_bits; 4992 4993 if (unlikely(minlen > EXT4_CLUSTERS_PER_GROUP(sb)) || 4994 unlikely(start >= max_blks)) 4995 return -EINVAL; 4996 if (end >= max_blks) 4997 end = max_blks - 1; 4998 if (end <= first_data_blk) 4999 goto out; 5000 if (start < first_data_blk) 5001 start = first_data_blk; 5002 5003 /* Determine first and last group to examine based on start and end */ 5004 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5005 &first_group, &first_cluster); 5006 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5007 &last_group, &last_cluster); 5008 5009 /* end now represents the last cluster to discard in this group */ 5010 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5011 5012 for (group = first_group; group <= last_group; group++) { 5013 grp = ext4_get_group_info(sb, group); 5014 /* We only do this if the grp has never been initialized */ 5015 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5016 ret = ext4_mb_init_group(sb, group); 5017 if (ret) 5018 break; 5019 } 5020 5021 /* 5022 * For all the groups except the last one, last cluster will 5023 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5024 * change it for the last group, note that last_cluster is 5025 * already computed earlier by ext4_get_group_no_and_offset() 5026 */ 5027 if (group == last_group) 5028 end = last_cluster; 5029 5030 if (grp->bb_free >= minlen) { 5031 cnt = ext4_trim_all_free(sb, group, first_cluster, 5032 end, minlen); 5033 if (cnt < 0) { 5034 ret = cnt; 5035 break; 5036 } 5037 trimmed += cnt; 5038 } 5039 5040 /* 5041 * For every group except the first one, we are sure 5042 * that the first cluster to discard will be cluster #0. 5043 */ 5044 first_cluster = 0; 5045 } 5046 5047 if (!ret) 5048 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5049 5050 out: 5051 range->len = trimmed * sb->s_blocksize; 5052 return ret; 5053 } 5054