xref: /openbmc/linux/fs/ext4/mballoc.c (revision 95b384f9)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/backing-dev.h>
30 #include <trace/events/ext4.h>
31 
32 #ifdef CONFIG_EXT4_DEBUG
33 ushort ext4_mballoc_debug __read_mostly;
34 
35 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
36 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
37 #endif
38 
39 /*
40  * MUSTDO:
41  *   - test ext4_ext_search_left() and ext4_ext_search_right()
42  *   - search for metadata in few groups
43  *
44  * TODO v4:
45  *   - normalization should take into account whether file is still open
46  *   - discard preallocations if no free space left (policy?)
47  *   - don't normalize tails
48  *   - quota
49  *   - reservation for superuser
50  *
51  * TODO v3:
52  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
53  *   - track min/max extents in each group for better group selection
54  *   - mb_mark_used() may allocate chunk right after splitting buddy
55  *   - tree of groups sorted by number of free blocks
56  *   - error handling
57  */
58 
59 /*
60  * The allocation request involve request for multiple number of blocks
61  * near to the goal(block) value specified.
62  *
63  * During initialization phase of the allocator we decide to use the
64  * group preallocation or inode preallocation depending on the size of
65  * the file. The size of the file could be the resulting file size we
66  * would have after allocation, or the current file size, which ever
67  * is larger. If the size is less than sbi->s_mb_stream_request we
68  * select to use the group preallocation. The default value of
69  * s_mb_stream_request is 16 blocks. This can also be tuned via
70  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
71  * terms of number of blocks.
72  *
73  * The main motivation for having small file use group preallocation is to
74  * ensure that we have small files closer together on the disk.
75  *
76  * First stage the allocator looks at the inode prealloc list,
77  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
78  * spaces for this particular inode. The inode prealloc space is
79  * represented as:
80  *
81  * pa_lstart -> the logical start block for this prealloc space
82  * pa_pstart -> the physical start block for this prealloc space
83  * pa_len    -> length for this prealloc space (in clusters)
84  * pa_free   ->  free space available in this prealloc space (in clusters)
85  *
86  * The inode preallocation space is used looking at the _logical_ start
87  * block. If only the logical file block falls within the range of prealloc
88  * space we will consume the particular prealloc space. This makes sure that
89  * we have contiguous physical blocks representing the file blocks
90  *
91  * The important thing to be noted in case of inode prealloc space is that
92  * we don't modify the values associated to inode prealloc space except
93  * pa_free.
94  *
95  * If we are not able to find blocks in the inode prealloc space and if we
96  * have the group allocation flag set then we look at the locality group
97  * prealloc space. These are per CPU prealloc list represented as
98  *
99  * ext4_sb_info.s_locality_groups[smp_processor_id()]
100  *
101  * The reason for having a per cpu locality group is to reduce the contention
102  * between CPUs. It is possible to get scheduled at this point.
103  *
104  * The locality group prealloc space is used looking at whether we have
105  * enough free space (pa_free) within the prealloc space.
106  *
107  * If we can't allocate blocks via inode prealloc or/and locality group
108  * prealloc then we look at the buddy cache. The buddy cache is represented
109  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
110  * mapped to the buddy and bitmap information regarding different
111  * groups. The buddy information is attached to buddy cache inode so that
112  * we can access them through the page cache. The information regarding
113  * each group is loaded via ext4_mb_load_buddy.  The information involve
114  * block bitmap and buddy information. The information are stored in the
115  * inode as:
116  *
117  *  {                        page                        }
118  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
119  *
120  *
121  * one block each for bitmap and buddy information.  So for each group we
122  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
123  * blocksize) blocks.  So it can have information regarding groups_per_page
124  * which is blocks_per_page/2
125  *
126  * The buddy cache inode is not stored on disk. The inode is thrown
127  * away when the filesystem is unmounted.
128  *
129  * We look for count number of blocks in the buddy cache. If we were able
130  * to locate that many free blocks we return with additional information
131  * regarding rest of the contiguous physical block available
132  *
133  * Before allocating blocks via buddy cache we normalize the request
134  * blocks. This ensure we ask for more blocks that we needed. The extra
135  * blocks that we get after allocation is added to the respective prealloc
136  * list. In case of inode preallocation we follow a list of heuristics
137  * based on file size. This can be found in ext4_mb_normalize_request. If
138  * we are doing a group prealloc we try to normalize the request to
139  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
140  * dependent on the cluster size; for non-bigalloc file systems, it is
141  * 512 blocks. This can be tuned via
142  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
143  * terms of number of blocks. If we have mounted the file system with -O
144  * stripe=<value> option the group prealloc request is normalized to the
145  * the smallest multiple of the stripe value (sbi->s_stripe) which is
146  * greater than the default mb_group_prealloc.
147  *
148  * The regular allocator (using the buddy cache) supports a few tunables.
149  *
150  * /sys/fs/ext4/<partition>/mb_min_to_scan
151  * /sys/fs/ext4/<partition>/mb_max_to_scan
152  * /sys/fs/ext4/<partition>/mb_order2_req
153  *
154  * The regular allocator uses buddy scan only if the request len is power of
155  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
156  * value of s_mb_order2_reqs can be tuned via
157  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
158  * stripe size (sbi->s_stripe), we try to search for contiguous block in
159  * stripe size. This should result in better allocation on RAID setups. If
160  * not, we search in the specific group using bitmap for best extents. The
161  * tunable min_to_scan and max_to_scan control the behaviour here.
162  * min_to_scan indicate how long the mballoc __must__ look for a best
163  * extent and max_to_scan indicates how long the mballoc __can__ look for a
164  * best extent in the found extents. Searching for the blocks starts with
165  * the group specified as the goal value in allocation context via
166  * ac_g_ex. Each group is first checked based on the criteria whether it
167  * can be used for allocation. ext4_mb_good_group explains how the groups are
168  * checked.
169  *
170  * Both the prealloc space are getting populated as above. So for the first
171  * request we will hit the buddy cache which will result in this prealloc
172  * space getting filled. The prealloc space is then later used for the
173  * subsequent request.
174  */
175 
176 /*
177  * mballoc operates on the following data:
178  *  - on-disk bitmap
179  *  - in-core buddy (actually includes buddy and bitmap)
180  *  - preallocation descriptors (PAs)
181  *
182  * there are two types of preallocations:
183  *  - inode
184  *    assiged to specific inode and can be used for this inode only.
185  *    it describes part of inode's space preallocated to specific
186  *    physical blocks. any block from that preallocated can be used
187  *    independent. the descriptor just tracks number of blocks left
188  *    unused. so, before taking some block from descriptor, one must
189  *    make sure corresponded logical block isn't allocated yet. this
190  *    also means that freeing any block within descriptor's range
191  *    must discard all preallocated blocks.
192  *  - locality group
193  *    assigned to specific locality group which does not translate to
194  *    permanent set of inodes: inode can join and leave group. space
195  *    from this type of preallocation can be used for any inode. thus
196  *    it's consumed from the beginning to the end.
197  *
198  * relation between them can be expressed as:
199  *    in-core buddy = on-disk bitmap + preallocation descriptors
200  *
201  * this mean blocks mballoc considers used are:
202  *  - allocated blocks (persistent)
203  *  - preallocated blocks (non-persistent)
204  *
205  * consistency in mballoc world means that at any time a block is either
206  * free or used in ALL structures. notice: "any time" should not be read
207  * literally -- time is discrete and delimited by locks.
208  *
209  *  to keep it simple, we don't use block numbers, instead we count number of
210  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211  *
212  * all operations can be expressed as:
213  *  - init buddy:			buddy = on-disk + PAs
214  *  - new PA:				buddy += N; PA = N
215  *  - use inode PA:			on-disk += N; PA -= N
216  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
217  *  - use locality group PA		on-disk += N; PA -= N
218  *  - discard locality group PA		buddy -= PA; PA = 0
219  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
220  *        is used in real operation because we can't know actual used
221  *        bits from PA, only from on-disk bitmap
222  *
223  * if we follow this strict logic, then all operations above should be atomic.
224  * given some of them can block, we'd have to use something like semaphores
225  * killing performance on high-end SMP hardware. let's try to relax it using
226  * the following knowledge:
227  *  1) if buddy is referenced, it's already initialized
228  *  2) while block is used in buddy and the buddy is referenced,
229  *     nobody can re-allocate that block
230  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
231  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
232  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
233  *     block
234  *
235  * so, now we're building a concurrency table:
236  *  - init buddy vs.
237  *    - new PA
238  *      blocks for PA are allocated in the buddy, buddy must be referenced
239  *      until PA is linked to allocation group to avoid concurrent buddy init
240  *    - use inode PA
241  *      we need to make sure that either on-disk bitmap or PA has uptodate data
242  *      given (3) we care that PA-=N operation doesn't interfere with init
243  *    - discard inode PA
244  *      the simplest way would be to have buddy initialized by the discard
245  *    - use locality group PA
246  *      again PA-=N must be serialized with init
247  *    - discard locality group PA
248  *      the simplest way would be to have buddy initialized by the discard
249  *  - new PA vs.
250  *    - use inode PA
251  *      i_data_sem serializes them
252  *    - discard inode PA
253  *      discard process must wait until PA isn't used by another process
254  *    - use locality group PA
255  *      some mutex should serialize them
256  *    - discard locality group PA
257  *      discard process must wait until PA isn't used by another process
258  *  - use inode PA
259  *    - use inode PA
260  *      i_data_sem or another mutex should serializes them
261  *    - discard inode PA
262  *      discard process must wait until PA isn't used by another process
263  *    - use locality group PA
264  *      nothing wrong here -- they're different PAs covering different blocks
265  *    - discard locality group PA
266  *      discard process must wait until PA isn't used by another process
267  *
268  * now we're ready to make few consequences:
269  *  - PA is referenced and while it is no discard is possible
270  *  - PA is referenced until block isn't marked in on-disk bitmap
271  *  - PA changes only after on-disk bitmap
272  *  - discard must not compete with init. either init is done before
273  *    any discard or they're serialized somehow
274  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
275  *
276  * a special case when we've used PA to emptiness. no need to modify buddy
277  * in this case, but we should care about concurrent init
278  *
279  */
280 
281  /*
282  * Logic in few words:
283  *
284  *  - allocation:
285  *    load group
286  *    find blocks
287  *    mark bits in on-disk bitmap
288  *    release group
289  *
290  *  - use preallocation:
291  *    find proper PA (per-inode or group)
292  *    load group
293  *    mark bits in on-disk bitmap
294  *    release group
295  *    release PA
296  *
297  *  - free:
298  *    load group
299  *    mark bits in on-disk bitmap
300  *    release group
301  *
302  *  - discard preallocations in group:
303  *    mark PAs deleted
304  *    move them onto local list
305  *    load on-disk bitmap
306  *    load group
307  *    remove PA from object (inode or locality group)
308  *    mark free blocks in-core
309  *
310  *  - discard inode's preallocations:
311  */
312 
313 /*
314  * Locking rules
315  *
316  * Locks:
317  *  - bitlock on a group	(group)
318  *  - object (inode/locality)	(object)
319  *  - per-pa lock		(pa)
320  *
321  * Paths:
322  *  - new pa
323  *    object
324  *    group
325  *
326  *  - find and use pa:
327  *    pa
328  *
329  *  - release consumed pa:
330  *    pa
331  *    group
332  *    object
333  *
334  *  - generate in-core bitmap:
335  *    group
336  *        pa
337  *
338  *  - discard all for given object (inode, locality group):
339  *    object
340  *        pa
341  *    group
342  *
343  *  - discard all for given group:
344  *    group
345  *        pa
346  *    group
347  *        object
348  *
349  */
350 static struct kmem_cache *ext4_pspace_cachep;
351 static struct kmem_cache *ext4_ac_cachep;
352 static struct kmem_cache *ext4_free_data_cachep;
353 
354 /* We create slab caches for groupinfo data structures based on the
355  * superblock block size.  There will be one per mounted filesystem for
356  * each unique s_blocksize_bits */
357 #define NR_GRPINFO_CACHES 8
358 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
359 
360 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
361 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
362 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
363 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
364 };
365 
366 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
367 					ext4_group_t group);
368 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
369 						ext4_group_t group);
370 static void ext4_free_data_callback(struct super_block *sb,
371 				struct ext4_journal_cb_entry *jce, int rc);
372 
373 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
374 {
375 #if BITS_PER_LONG == 64
376 	*bit += ((unsigned long) addr & 7UL) << 3;
377 	addr = (void *) ((unsigned long) addr & ~7UL);
378 #elif BITS_PER_LONG == 32
379 	*bit += ((unsigned long) addr & 3UL) << 3;
380 	addr = (void *) ((unsigned long) addr & ~3UL);
381 #else
382 #error "how many bits you are?!"
383 #endif
384 	return addr;
385 }
386 
387 static inline int mb_test_bit(int bit, void *addr)
388 {
389 	/*
390 	 * ext4_test_bit on architecture like powerpc
391 	 * needs unsigned long aligned address
392 	 */
393 	addr = mb_correct_addr_and_bit(&bit, addr);
394 	return ext4_test_bit(bit, addr);
395 }
396 
397 static inline void mb_set_bit(int bit, void *addr)
398 {
399 	addr = mb_correct_addr_and_bit(&bit, addr);
400 	ext4_set_bit(bit, addr);
401 }
402 
403 static inline void mb_clear_bit(int bit, void *addr)
404 {
405 	addr = mb_correct_addr_and_bit(&bit, addr);
406 	ext4_clear_bit(bit, addr);
407 }
408 
409 static inline int mb_test_and_clear_bit(int bit, void *addr)
410 {
411 	addr = mb_correct_addr_and_bit(&bit, addr);
412 	return ext4_test_and_clear_bit(bit, addr);
413 }
414 
415 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
416 {
417 	int fix = 0, ret, tmpmax;
418 	addr = mb_correct_addr_and_bit(&fix, addr);
419 	tmpmax = max + fix;
420 	start += fix;
421 
422 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
423 	if (ret > max)
424 		return max;
425 	return ret;
426 }
427 
428 static inline int mb_find_next_bit(void *addr, int max, int start)
429 {
430 	int fix = 0, ret, tmpmax;
431 	addr = mb_correct_addr_and_bit(&fix, addr);
432 	tmpmax = max + fix;
433 	start += fix;
434 
435 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
436 	if (ret > max)
437 		return max;
438 	return ret;
439 }
440 
441 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
442 {
443 	char *bb;
444 
445 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
446 	BUG_ON(max == NULL);
447 
448 	if (order > e4b->bd_blkbits + 1) {
449 		*max = 0;
450 		return NULL;
451 	}
452 
453 	/* at order 0 we see each particular block */
454 	if (order == 0) {
455 		*max = 1 << (e4b->bd_blkbits + 3);
456 		return e4b->bd_bitmap;
457 	}
458 
459 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
460 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
461 
462 	return bb;
463 }
464 
465 #ifdef DOUBLE_CHECK
466 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
467 			   int first, int count)
468 {
469 	int i;
470 	struct super_block *sb = e4b->bd_sb;
471 
472 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
473 		return;
474 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
475 	for (i = 0; i < count; i++) {
476 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
477 			ext4_fsblk_t blocknr;
478 
479 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
480 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
481 			ext4_grp_locked_error(sb, e4b->bd_group,
482 					      inode ? inode->i_ino : 0,
483 					      blocknr,
484 					      "freeing block already freed "
485 					      "(bit %u)",
486 					      first + i);
487 		}
488 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
489 	}
490 }
491 
492 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
493 {
494 	int i;
495 
496 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
497 		return;
498 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
499 	for (i = 0; i < count; i++) {
500 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
501 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
502 	}
503 }
504 
505 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
506 {
507 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
508 		unsigned char *b1, *b2;
509 		int i;
510 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
511 		b2 = (unsigned char *) bitmap;
512 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
513 			if (b1[i] != b2[i]) {
514 				ext4_msg(e4b->bd_sb, KERN_ERR,
515 					 "corruption in group %u "
516 					 "at byte %u(%u): %x in copy != %x "
517 					 "on disk/prealloc",
518 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
519 				BUG();
520 			}
521 		}
522 	}
523 }
524 
525 #else
526 static inline void mb_free_blocks_double(struct inode *inode,
527 				struct ext4_buddy *e4b, int first, int count)
528 {
529 	return;
530 }
531 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
532 						int first, int count)
533 {
534 	return;
535 }
536 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
537 {
538 	return;
539 }
540 #endif
541 
542 #ifdef AGGRESSIVE_CHECK
543 
544 #define MB_CHECK_ASSERT(assert)						\
545 do {									\
546 	if (!(assert)) {						\
547 		printk(KERN_EMERG					\
548 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
549 			function, file, line, # assert);		\
550 		BUG();							\
551 	}								\
552 } while (0)
553 
554 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
555 				const char *function, int line)
556 {
557 	struct super_block *sb = e4b->bd_sb;
558 	int order = e4b->bd_blkbits + 1;
559 	int max;
560 	int max2;
561 	int i;
562 	int j;
563 	int k;
564 	int count;
565 	struct ext4_group_info *grp;
566 	int fragments = 0;
567 	int fstart;
568 	struct list_head *cur;
569 	void *buddy;
570 	void *buddy2;
571 
572 	{
573 		static int mb_check_counter;
574 		if (mb_check_counter++ % 100 != 0)
575 			return 0;
576 	}
577 
578 	while (order > 1) {
579 		buddy = mb_find_buddy(e4b, order, &max);
580 		MB_CHECK_ASSERT(buddy);
581 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
582 		MB_CHECK_ASSERT(buddy2);
583 		MB_CHECK_ASSERT(buddy != buddy2);
584 		MB_CHECK_ASSERT(max * 2 == max2);
585 
586 		count = 0;
587 		for (i = 0; i < max; i++) {
588 
589 			if (mb_test_bit(i, buddy)) {
590 				/* only single bit in buddy2 may be 1 */
591 				if (!mb_test_bit(i << 1, buddy2)) {
592 					MB_CHECK_ASSERT(
593 						mb_test_bit((i<<1)+1, buddy2));
594 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
595 					MB_CHECK_ASSERT(
596 						mb_test_bit(i << 1, buddy2));
597 				}
598 				continue;
599 			}
600 
601 			/* both bits in buddy2 must be 1 */
602 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
603 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
604 
605 			for (j = 0; j < (1 << order); j++) {
606 				k = (i * (1 << order)) + j;
607 				MB_CHECK_ASSERT(
608 					!mb_test_bit(k, e4b->bd_bitmap));
609 			}
610 			count++;
611 		}
612 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
613 		order--;
614 	}
615 
616 	fstart = -1;
617 	buddy = mb_find_buddy(e4b, 0, &max);
618 	for (i = 0; i < max; i++) {
619 		if (!mb_test_bit(i, buddy)) {
620 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
621 			if (fstart == -1) {
622 				fragments++;
623 				fstart = i;
624 			}
625 			continue;
626 		}
627 		fstart = -1;
628 		/* check used bits only */
629 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
630 			buddy2 = mb_find_buddy(e4b, j, &max2);
631 			k = i >> j;
632 			MB_CHECK_ASSERT(k < max2);
633 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
634 		}
635 	}
636 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
637 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
638 
639 	grp = ext4_get_group_info(sb, e4b->bd_group);
640 	list_for_each(cur, &grp->bb_prealloc_list) {
641 		ext4_group_t groupnr;
642 		struct ext4_prealloc_space *pa;
643 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
644 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
645 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
646 		for (i = 0; i < pa->pa_len; i++)
647 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
648 	}
649 	return 0;
650 }
651 #undef MB_CHECK_ASSERT
652 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
653 					__FILE__, __func__, __LINE__)
654 #else
655 #define mb_check_buddy(e4b)
656 #endif
657 
658 /*
659  * Divide blocks started from @first with length @len into
660  * smaller chunks with power of 2 blocks.
661  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
662  * then increase bb_counters[] for corresponded chunk size.
663  */
664 static void ext4_mb_mark_free_simple(struct super_block *sb,
665 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
666 					struct ext4_group_info *grp)
667 {
668 	struct ext4_sb_info *sbi = EXT4_SB(sb);
669 	ext4_grpblk_t min;
670 	ext4_grpblk_t max;
671 	ext4_grpblk_t chunk;
672 	unsigned short border;
673 
674 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
675 
676 	border = 2 << sb->s_blocksize_bits;
677 
678 	while (len > 0) {
679 		/* find how many blocks can be covered since this position */
680 		max = ffs(first | border) - 1;
681 
682 		/* find how many blocks of power 2 we need to mark */
683 		min = fls(len) - 1;
684 
685 		if (max < min)
686 			min = max;
687 		chunk = 1 << min;
688 
689 		/* mark multiblock chunks only */
690 		grp->bb_counters[min]++;
691 		if (min > 0)
692 			mb_clear_bit(first >> min,
693 				     buddy + sbi->s_mb_offsets[min]);
694 
695 		len -= chunk;
696 		first += chunk;
697 	}
698 }
699 
700 /*
701  * Cache the order of the largest free extent we have available in this block
702  * group.
703  */
704 static void
705 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
706 {
707 	int i;
708 	int bits;
709 
710 	grp->bb_largest_free_order = -1; /* uninit */
711 
712 	bits = sb->s_blocksize_bits + 1;
713 	for (i = bits; i >= 0; i--) {
714 		if (grp->bb_counters[i] > 0) {
715 			grp->bb_largest_free_order = i;
716 			break;
717 		}
718 	}
719 }
720 
721 static noinline_for_stack
722 void ext4_mb_generate_buddy(struct super_block *sb,
723 				void *buddy, void *bitmap, ext4_group_t group)
724 {
725 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
726 	struct ext4_sb_info *sbi = EXT4_SB(sb);
727 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
728 	ext4_grpblk_t i = 0;
729 	ext4_grpblk_t first;
730 	ext4_grpblk_t len;
731 	unsigned free = 0;
732 	unsigned fragments = 0;
733 	unsigned long long period = get_cycles();
734 
735 	/* initialize buddy from bitmap which is aggregation
736 	 * of on-disk bitmap and preallocations */
737 	i = mb_find_next_zero_bit(bitmap, max, 0);
738 	grp->bb_first_free = i;
739 	while (i < max) {
740 		fragments++;
741 		first = i;
742 		i = mb_find_next_bit(bitmap, max, i);
743 		len = i - first;
744 		free += len;
745 		if (len > 1)
746 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
747 		else
748 			grp->bb_counters[0]++;
749 		if (i < max)
750 			i = mb_find_next_zero_bit(bitmap, max, i);
751 	}
752 	grp->bb_fragments = fragments;
753 
754 	if (free != grp->bb_free) {
755 		ext4_grp_locked_error(sb, group, 0, 0,
756 				      "block bitmap and bg descriptor "
757 				      "inconsistent: %u vs %u free clusters",
758 				      free, grp->bb_free);
759 		/*
760 		 * If we intend to continue, we consider group descriptor
761 		 * corrupt and update bb_free using bitmap value
762 		 */
763 		grp->bb_free = free;
764 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
765 			percpu_counter_sub(&sbi->s_freeclusters_counter,
766 					   grp->bb_free);
767 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
768 	}
769 	mb_set_largest_free_order(sb, grp);
770 
771 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
772 
773 	period = get_cycles() - period;
774 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
775 	EXT4_SB(sb)->s_mb_buddies_generated++;
776 	EXT4_SB(sb)->s_mb_generation_time += period;
777 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
778 }
779 
780 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
781 {
782 	int count;
783 	int order = 1;
784 	void *buddy;
785 
786 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
787 		ext4_set_bits(buddy, 0, count);
788 	}
789 	e4b->bd_info->bb_fragments = 0;
790 	memset(e4b->bd_info->bb_counters, 0,
791 		sizeof(*e4b->bd_info->bb_counters) *
792 		(e4b->bd_sb->s_blocksize_bits + 2));
793 
794 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
795 		e4b->bd_bitmap, e4b->bd_group);
796 }
797 
798 /* The buddy information is attached the buddy cache inode
799  * for convenience. The information regarding each group
800  * is loaded via ext4_mb_load_buddy. The information involve
801  * block bitmap and buddy information. The information are
802  * stored in the inode as
803  *
804  * {                        page                        }
805  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
806  *
807  *
808  * one block each for bitmap and buddy information.
809  * So for each group we take up 2 blocks. A page can
810  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
811  * So it can have information regarding groups_per_page which
812  * is blocks_per_page/2
813  *
814  * Locking note:  This routine takes the block group lock of all groups
815  * for this page; do not hold this lock when calling this routine!
816  */
817 
818 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
819 {
820 	ext4_group_t ngroups;
821 	int blocksize;
822 	int blocks_per_page;
823 	int groups_per_page;
824 	int err = 0;
825 	int i;
826 	ext4_group_t first_group, group;
827 	int first_block;
828 	struct super_block *sb;
829 	struct buffer_head *bhs;
830 	struct buffer_head **bh = NULL;
831 	struct inode *inode;
832 	char *data;
833 	char *bitmap;
834 	struct ext4_group_info *grinfo;
835 
836 	mb_debug(1, "init page %lu\n", page->index);
837 
838 	inode = page->mapping->host;
839 	sb = inode->i_sb;
840 	ngroups = ext4_get_groups_count(sb);
841 	blocksize = 1 << inode->i_blkbits;
842 	blocks_per_page = PAGE_SIZE / blocksize;
843 
844 	groups_per_page = blocks_per_page >> 1;
845 	if (groups_per_page == 0)
846 		groups_per_page = 1;
847 
848 	/* allocate buffer_heads to read bitmaps */
849 	if (groups_per_page > 1) {
850 		i = sizeof(struct buffer_head *) * groups_per_page;
851 		bh = kzalloc(i, gfp);
852 		if (bh == NULL) {
853 			err = -ENOMEM;
854 			goto out;
855 		}
856 	} else
857 		bh = &bhs;
858 
859 	first_group = page->index * blocks_per_page / 2;
860 
861 	/* read all groups the page covers into the cache */
862 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
863 		if (group >= ngroups)
864 			break;
865 
866 		grinfo = ext4_get_group_info(sb, group);
867 		/*
868 		 * If page is uptodate then we came here after online resize
869 		 * which added some new uninitialized group info structs, so
870 		 * we must skip all initialized uptodate buddies on the page,
871 		 * which may be currently in use by an allocating task.
872 		 */
873 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
874 			bh[i] = NULL;
875 			continue;
876 		}
877 		bh[i] = ext4_read_block_bitmap_nowait(sb, group);
878 		if (IS_ERR(bh[i])) {
879 			err = PTR_ERR(bh[i]);
880 			bh[i] = NULL;
881 			goto out;
882 		}
883 		mb_debug(1, "read bitmap for group %u\n", group);
884 	}
885 
886 	/* wait for I/O completion */
887 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
888 		int err2;
889 
890 		if (!bh[i])
891 			continue;
892 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
893 		if (!err)
894 			err = err2;
895 	}
896 
897 	first_block = page->index * blocks_per_page;
898 	for (i = 0; i < blocks_per_page; i++) {
899 		group = (first_block + i) >> 1;
900 		if (group >= ngroups)
901 			break;
902 
903 		if (!bh[group - first_group])
904 			/* skip initialized uptodate buddy */
905 			continue;
906 
907 		if (!buffer_verified(bh[group - first_group]))
908 			/* Skip faulty bitmaps */
909 			continue;
910 		err = 0;
911 
912 		/*
913 		 * data carry information regarding this
914 		 * particular group in the format specified
915 		 * above
916 		 *
917 		 */
918 		data = page_address(page) + (i * blocksize);
919 		bitmap = bh[group - first_group]->b_data;
920 
921 		/*
922 		 * We place the buddy block and bitmap block
923 		 * close together
924 		 */
925 		if ((first_block + i) & 1) {
926 			/* this is block of buddy */
927 			BUG_ON(incore == NULL);
928 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
929 				group, page->index, i * blocksize);
930 			trace_ext4_mb_buddy_bitmap_load(sb, group);
931 			grinfo = ext4_get_group_info(sb, group);
932 			grinfo->bb_fragments = 0;
933 			memset(grinfo->bb_counters, 0,
934 			       sizeof(*grinfo->bb_counters) *
935 				(sb->s_blocksize_bits+2));
936 			/*
937 			 * incore got set to the group block bitmap below
938 			 */
939 			ext4_lock_group(sb, group);
940 			/* init the buddy */
941 			memset(data, 0xff, blocksize);
942 			ext4_mb_generate_buddy(sb, data, incore, group);
943 			ext4_unlock_group(sb, group);
944 			incore = NULL;
945 		} else {
946 			/* this is block of bitmap */
947 			BUG_ON(incore != NULL);
948 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
949 				group, page->index, i * blocksize);
950 			trace_ext4_mb_bitmap_load(sb, group);
951 
952 			/* see comments in ext4_mb_put_pa() */
953 			ext4_lock_group(sb, group);
954 			memcpy(data, bitmap, blocksize);
955 
956 			/* mark all preallocated blks used in in-core bitmap */
957 			ext4_mb_generate_from_pa(sb, data, group);
958 			ext4_mb_generate_from_freelist(sb, data, group);
959 			ext4_unlock_group(sb, group);
960 
961 			/* set incore so that the buddy information can be
962 			 * generated using this
963 			 */
964 			incore = data;
965 		}
966 	}
967 	SetPageUptodate(page);
968 
969 out:
970 	if (bh) {
971 		for (i = 0; i < groups_per_page; i++)
972 			brelse(bh[i]);
973 		if (bh != &bhs)
974 			kfree(bh);
975 	}
976 	return err;
977 }
978 
979 /*
980  * Lock the buddy and bitmap pages. This make sure other parallel init_group
981  * on the same buddy page doesn't happen whild holding the buddy page lock.
982  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
983  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
984  */
985 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
986 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
987 {
988 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
989 	int block, pnum, poff;
990 	int blocks_per_page;
991 	struct page *page;
992 
993 	e4b->bd_buddy_page = NULL;
994 	e4b->bd_bitmap_page = NULL;
995 
996 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
997 	/*
998 	 * the buddy cache inode stores the block bitmap
999 	 * and buddy information in consecutive blocks.
1000 	 * So for each group we need two blocks.
1001 	 */
1002 	block = group * 2;
1003 	pnum = block / blocks_per_page;
1004 	poff = block % blocks_per_page;
1005 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1006 	if (!page)
1007 		return -ENOMEM;
1008 	BUG_ON(page->mapping != inode->i_mapping);
1009 	e4b->bd_bitmap_page = page;
1010 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1011 
1012 	if (blocks_per_page >= 2) {
1013 		/* buddy and bitmap are on the same page */
1014 		return 0;
1015 	}
1016 
1017 	block++;
1018 	pnum = block / blocks_per_page;
1019 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1020 	if (!page)
1021 		return -ENOMEM;
1022 	BUG_ON(page->mapping != inode->i_mapping);
1023 	e4b->bd_buddy_page = page;
1024 	return 0;
1025 }
1026 
1027 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1028 {
1029 	if (e4b->bd_bitmap_page) {
1030 		unlock_page(e4b->bd_bitmap_page);
1031 		put_page(e4b->bd_bitmap_page);
1032 	}
1033 	if (e4b->bd_buddy_page) {
1034 		unlock_page(e4b->bd_buddy_page);
1035 		put_page(e4b->bd_buddy_page);
1036 	}
1037 }
1038 
1039 /*
1040  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1041  * block group lock of all groups for this page; do not hold the BG lock when
1042  * calling this routine!
1043  */
1044 static noinline_for_stack
1045 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1046 {
1047 
1048 	struct ext4_group_info *this_grp;
1049 	struct ext4_buddy e4b;
1050 	struct page *page;
1051 	int ret = 0;
1052 
1053 	might_sleep();
1054 	mb_debug(1, "init group %u\n", group);
1055 	this_grp = ext4_get_group_info(sb, group);
1056 	/*
1057 	 * This ensures that we don't reinit the buddy cache
1058 	 * page which map to the group from which we are already
1059 	 * allocating. If we are looking at the buddy cache we would
1060 	 * have taken a reference using ext4_mb_load_buddy and that
1061 	 * would have pinned buddy page to page cache.
1062 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1063 	 * page accessed.
1064 	 */
1065 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1066 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1067 		/*
1068 		 * somebody initialized the group
1069 		 * return without doing anything
1070 		 */
1071 		goto err;
1072 	}
1073 
1074 	page = e4b.bd_bitmap_page;
1075 	ret = ext4_mb_init_cache(page, NULL, gfp);
1076 	if (ret)
1077 		goto err;
1078 	if (!PageUptodate(page)) {
1079 		ret = -EIO;
1080 		goto err;
1081 	}
1082 
1083 	if (e4b.bd_buddy_page == NULL) {
1084 		/*
1085 		 * If both the bitmap and buddy are in
1086 		 * the same page we don't need to force
1087 		 * init the buddy
1088 		 */
1089 		ret = 0;
1090 		goto err;
1091 	}
1092 	/* init buddy cache */
1093 	page = e4b.bd_buddy_page;
1094 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1095 	if (ret)
1096 		goto err;
1097 	if (!PageUptodate(page)) {
1098 		ret = -EIO;
1099 		goto err;
1100 	}
1101 err:
1102 	ext4_mb_put_buddy_page_lock(&e4b);
1103 	return ret;
1104 }
1105 
1106 /*
1107  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1108  * block group lock of all groups for this page; do not hold the BG lock when
1109  * calling this routine!
1110  */
1111 static noinline_for_stack int
1112 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1113 		       struct ext4_buddy *e4b, gfp_t gfp)
1114 {
1115 	int blocks_per_page;
1116 	int block;
1117 	int pnum;
1118 	int poff;
1119 	struct page *page;
1120 	int ret;
1121 	struct ext4_group_info *grp;
1122 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1123 	struct inode *inode = sbi->s_buddy_cache;
1124 
1125 	might_sleep();
1126 	mb_debug(1, "load group %u\n", group);
1127 
1128 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1129 	grp = ext4_get_group_info(sb, group);
1130 
1131 	e4b->bd_blkbits = sb->s_blocksize_bits;
1132 	e4b->bd_info = grp;
1133 	e4b->bd_sb = sb;
1134 	e4b->bd_group = group;
1135 	e4b->bd_buddy_page = NULL;
1136 	e4b->bd_bitmap_page = NULL;
1137 
1138 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1139 		/*
1140 		 * we need full data about the group
1141 		 * to make a good selection
1142 		 */
1143 		ret = ext4_mb_init_group(sb, group, gfp);
1144 		if (ret)
1145 			return ret;
1146 	}
1147 
1148 	/*
1149 	 * the buddy cache inode stores the block bitmap
1150 	 * and buddy information in consecutive blocks.
1151 	 * So for each group we need two blocks.
1152 	 */
1153 	block = group * 2;
1154 	pnum = block / blocks_per_page;
1155 	poff = block % blocks_per_page;
1156 
1157 	/* we could use find_or_create_page(), but it locks page
1158 	 * what we'd like to avoid in fast path ... */
1159 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1160 	if (page == NULL || !PageUptodate(page)) {
1161 		if (page)
1162 			/*
1163 			 * drop the page reference and try
1164 			 * to get the page with lock. If we
1165 			 * are not uptodate that implies
1166 			 * somebody just created the page but
1167 			 * is yet to initialize the same. So
1168 			 * wait for it to initialize.
1169 			 */
1170 			put_page(page);
1171 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1172 		if (page) {
1173 			BUG_ON(page->mapping != inode->i_mapping);
1174 			if (!PageUptodate(page)) {
1175 				ret = ext4_mb_init_cache(page, NULL, gfp);
1176 				if (ret) {
1177 					unlock_page(page);
1178 					goto err;
1179 				}
1180 				mb_cmp_bitmaps(e4b, page_address(page) +
1181 					       (poff * sb->s_blocksize));
1182 			}
1183 			unlock_page(page);
1184 		}
1185 	}
1186 	if (page == NULL) {
1187 		ret = -ENOMEM;
1188 		goto err;
1189 	}
1190 	if (!PageUptodate(page)) {
1191 		ret = -EIO;
1192 		goto err;
1193 	}
1194 
1195 	/* Pages marked accessed already */
1196 	e4b->bd_bitmap_page = page;
1197 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1198 
1199 	block++;
1200 	pnum = block / blocks_per_page;
1201 	poff = block % blocks_per_page;
1202 
1203 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1204 	if (page == NULL || !PageUptodate(page)) {
1205 		if (page)
1206 			put_page(page);
1207 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1208 		if (page) {
1209 			BUG_ON(page->mapping != inode->i_mapping);
1210 			if (!PageUptodate(page)) {
1211 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1212 							 gfp);
1213 				if (ret) {
1214 					unlock_page(page);
1215 					goto err;
1216 				}
1217 			}
1218 			unlock_page(page);
1219 		}
1220 	}
1221 	if (page == NULL) {
1222 		ret = -ENOMEM;
1223 		goto err;
1224 	}
1225 	if (!PageUptodate(page)) {
1226 		ret = -EIO;
1227 		goto err;
1228 	}
1229 
1230 	/* Pages marked accessed already */
1231 	e4b->bd_buddy_page = page;
1232 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1233 
1234 	BUG_ON(e4b->bd_bitmap_page == NULL);
1235 	BUG_ON(e4b->bd_buddy_page == NULL);
1236 
1237 	return 0;
1238 
1239 err:
1240 	if (page)
1241 		put_page(page);
1242 	if (e4b->bd_bitmap_page)
1243 		put_page(e4b->bd_bitmap_page);
1244 	if (e4b->bd_buddy_page)
1245 		put_page(e4b->bd_buddy_page);
1246 	e4b->bd_buddy = NULL;
1247 	e4b->bd_bitmap = NULL;
1248 	return ret;
1249 }
1250 
1251 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1252 			      struct ext4_buddy *e4b)
1253 {
1254 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1255 }
1256 
1257 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1258 {
1259 	if (e4b->bd_bitmap_page)
1260 		put_page(e4b->bd_bitmap_page);
1261 	if (e4b->bd_buddy_page)
1262 		put_page(e4b->bd_buddy_page);
1263 }
1264 
1265 
1266 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1267 {
1268 	int order = 1;
1269 	int bb_incr = 1 << (e4b->bd_blkbits - 1);
1270 	void *bb;
1271 
1272 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1273 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1274 
1275 	bb = e4b->bd_buddy;
1276 	while (order <= e4b->bd_blkbits + 1) {
1277 		block = block >> 1;
1278 		if (!mb_test_bit(block, bb)) {
1279 			/* this block is part of buddy of order 'order' */
1280 			return order;
1281 		}
1282 		bb += bb_incr;
1283 		bb_incr >>= 1;
1284 		order++;
1285 	}
1286 	return 0;
1287 }
1288 
1289 static void mb_clear_bits(void *bm, int cur, int len)
1290 {
1291 	__u32 *addr;
1292 
1293 	len = cur + len;
1294 	while (cur < len) {
1295 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1296 			/* fast path: clear whole word at once */
1297 			addr = bm + (cur >> 3);
1298 			*addr = 0;
1299 			cur += 32;
1300 			continue;
1301 		}
1302 		mb_clear_bit(cur, bm);
1303 		cur++;
1304 	}
1305 }
1306 
1307 /* clear bits in given range
1308  * will return first found zero bit if any, -1 otherwise
1309  */
1310 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1311 {
1312 	__u32 *addr;
1313 	int zero_bit = -1;
1314 
1315 	len = cur + len;
1316 	while (cur < len) {
1317 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1318 			/* fast path: clear whole word at once */
1319 			addr = bm + (cur >> 3);
1320 			if (*addr != (__u32)(-1) && zero_bit == -1)
1321 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1322 			*addr = 0;
1323 			cur += 32;
1324 			continue;
1325 		}
1326 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1327 			zero_bit = cur;
1328 		cur++;
1329 	}
1330 
1331 	return zero_bit;
1332 }
1333 
1334 void ext4_set_bits(void *bm, int cur, int len)
1335 {
1336 	__u32 *addr;
1337 
1338 	len = cur + len;
1339 	while (cur < len) {
1340 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1341 			/* fast path: set whole word at once */
1342 			addr = bm + (cur >> 3);
1343 			*addr = 0xffffffff;
1344 			cur += 32;
1345 			continue;
1346 		}
1347 		mb_set_bit(cur, bm);
1348 		cur++;
1349 	}
1350 }
1351 
1352 /*
1353  * _________________________________________________________________ */
1354 
1355 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1356 {
1357 	if (mb_test_bit(*bit + side, bitmap)) {
1358 		mb_clear_bit(*bit, bitmap);
1359 		(*bit) -= side;
1360 		return 1;
1361 	}
1362 	else {
1363 		(*bit) += side;
1364 		mb_set_bit(*bit, bitmap);
1365 		return -1;
1366 	}
1367 }
1368 
1369 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1370 {
1371 	int max;
1372 	int order = 1;
1373 	void *buddy = mb_find_buddy(e4b, order, &max);
1374 
1375 	while (buddy) {
1376 		void *buddy2;
1377 
1378 		/* Bits in range [first; last] are known to be set since
1379 		 * corresponding blocks were allocated. Bits in range
1380 		 * (first; last) will stay set because they form buddies on
1381 		 * upper layer. We just deal with borders if they don't
1382 		 * align with upper layer and then go up.
1383 		 * Releasing entire group is all about clearing
1384 		 * single bit of highest order buddy.
1385 		 */
1386 
1387 		/* Example:
1388 		 * ---------------------------------
1389 		 * |   1   |   1   |   1   |   1   |
1390 		 * ---------------------------------
1391 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1392 		 * ---------------------------------
1393 		 *   0   1   2   3   4   5   6   7
1394 		 *      \_____________________/
1395 		 *
1396 		 * Neither [1] nor [6] is aligned to above layer.
1397 		 * Left neighbour [0] is free, so mark it busy,
1398 		 * decrease bb_counters and extend range to
1399 		 * [0; 6]
1400 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1401 		 * mark [6] free, increase bb_counters and shrink range to
1402 		 * [0; 5].
1403 		 * Then shift range to [0; 2], go up and do the same.
1404 		 */
1405 
1406 
1407 		if (first & 1)
1408 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1409 		if (!(last & 1))
1410 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1411 		if (first > last)
1412 			break;
1413 		order++;
1414 
1415 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1416 			mb_clear_bits(buddy, first, last - first + 1);
1417 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1418 			break;
1419 		}
1420 		first >>= 1;
1421 		last >>= 1;
1422 		buddy = buddy2;
1423 	}
1424 }
1425 
1426 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1427 			   int first, int count)
1428 {
1429 	int left_is_free = 0;
1430 	int right_is_free = 0;
1431 	int block;
1432 	int last = first + count - 1;
1433 	struct super_block *sb = e4b->bd_sb;
1434 
1435 	if (WARN_ON(count == 0))
1436 		return;
1437 	BUG_ON(last >= (sb->s_blocksize << 3));
1438 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1439 	/* Don't bother if the block group is corrupt. */
1440 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1441 		return;
1442 
1443 	mb_check_buddy(e4b);
1444 	mb_free_blocks_double(inode, e4b, first, count);
1445 
1446 	e4b->bd_info->bb_free += count;
1447 	if (first < e4b->bd_info->bb_first_free)
1448 		e4b->bd_info->bb_first_free = first;
1449 
1450 	/* access memory sequentially: check left neighbour,
1451 	 * clear range and then check right neighbour
1452 	 */
1453 	if (first != 0)
1454 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1455 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1456 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1457 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1458 
1459 	if (unlikely(block != -1)) {
1460 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1461 		ext4_fsblk_t blocknr;
1462 
1463 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1464 		blocknr += EXT4_C2B(EXT4_SB(sb), block);
1465 		ext4_grp_locked_error(sb, e4b->bd_group,
1466 				      inode ? inode->i_ino : 0,
1467 				      blocknr,
1468 				      "freeing already freed block "
1469 				      "(bit %u); block bitmap corrupt.",
1470 				      block);
1471 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1472 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1473 					   e4b->bd_info->bb_free);
1474 		/* Mark the block group as corrupt. */
1475 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1476 			&e4b->bd_info->bb_state);
1477 		mb_regenerate_buddy(e4b);
1478 		goto done;
1479 	}
1480 
1481 	/* let's maintain fragments counter */
1482 	if (left_is_free && right_is_free)
1483 		e4b->bd_info->bb_fragments--;
1484 	else if (!left_is_free && !right_is_free)
1485 		e4b->bd_info->bb_fragments++;
1486 
1487 	/* buddy[0] == bd_bitmap is a special case, so handle
1488 	 * it right away and let mb_buddy_mark_free stay free of
1489 	 * zero order checks.
1490 	 * Check if neighbours are to be coaleasced,
1491 	 * adjust bitmap bb_counters and borders appropriately.
1492 	 */
1493 	if (first & 1) {
1494 		first += !left_is_free;
1495 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1496 	}
1497 	if (!(last & 1)) {
1498 		last -= !right_is_free;
1499 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1500 	}
1501 
1502 	if (first <= last)
1503 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1504 
1505 done:
1506 	mb_set_largest_free_order(sb, e4b->bd_info);
1507 	mb_check_buddy(e4b);
1508 }
1509 
1510 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1511 				int needed, struct ext4_free_extent *ex)
1512 {
1513 	int next = block;
1514 	int max, order;
1515 	void *buddy;
1516 
1517 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1518 	BUG_ON(ex == NULL);
1519 
1520 	buddy = mb_find_buddy(e4b, 0, &max);
1521 	BUG_ON(buddy == NULL);
1522 	BUG_ON(block >= max);
1523 	if (mb_test_bit(block, buddy)) {
1524 		ex->fe_len = 0;
1525 		ex->fe_start = 0;
1526 		ex->fe_group = 0;
1527 		return 0;
1528 	}
1529 
1530 	/* find actual order */
1531 	order = mb_find_order_for_block(e4b, block);
1532 	block = block >> order;
1533 
1534 	ex->fe_len = 1 << order;
1535 	ex->fe_start = block << order;
1536 	ex->fe_group = e4b->bd_group;
1537 
1538 	/* calc difference from given start */
1539 	next = next - ex->fe_start;
1540 	ex->fe_len -= next;
1541 	ex->fe_start += next;
1542 
1543 	while (needed > ex->fe_len &&
1544 	       mb_find_buddy(e4b, order, &max)) {
1545 
1546 		if (block + 1 >= max)
1547 			break;
1548 
1549 		next = (block + 1) * (1 << order);
1550 		if (mb_test_bit(next, e4b->bd_bitmap))
1551 			break;
1552 
1553 		order = mb_find_order_for_block(e4b, next);
1554 
1555 		block = next >> order;
1556 		ex->fe_len += 1 << order;
1557 	}
1558 
1559 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1560 	return ex->fe_len;
1561 }
1562 
1563 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1564 {
1565 	int ord;
1566 	int mlen = 0;
1567 	int max = 0;
1568 	int cur;
1569 	int start = ex->fe_start;
1570 	int len = ex->fe_len;
1571 	unsigned ret = 0;
1572 	int len0 = len;
1573 	void *buddy;
1574 
1575 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1576 	BUG_ON(e4b->bd_group != ex->fe_group);
1577 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1578 	mb_check_buddy(e4b);
1579 	mb_mark_used_double(e4b, start, len);
1580 
1581 	e4b->bd_info->bb_free -= len;
1582 	if (e4b->bd_info->bb_first_free == start)
1583 		e4b->bd_info->bb_first_free += len;
1584 
1585 	/* let's maintain fragments counter */
1586 	if (start != 0)
1587 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1588 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1589 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1590 	if (mlen && max)
1591 		e4b->bd_info->bb_fragments++;
1592 	else if (!mlen && !max)
1593 		e4b->bd_info->bb_fragments--;
1594 
1595 	/* let's maintain buddy itself */
1596 	while (len) {
1597 		ord = mb_find_order_for_block(e4b, start);
1598 
1599 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1600 			/* the whole chunk may be allocated at once! */
1601 			mlen = 1 << ord;
1602 			buddy = mb_find_buddy(e4b, ord, &max);
1603 			BUG_ON((start >> ord) >= max);
1604 			mb_set_bit(start >> ord, buddy);
1605 			e4b->bd_info->bb_counters[ord]--;
1606 			start += mlen;
1607 			len -= mlen;
1608 			BUG_ON(len < 0);
1609 			continue;
1610 		}
1611 
1612 		/* store for history */
1613 		if (ret == 0)
1614 			ret = len | (ord << 16);
1615 
1616 		/* we have to split large buddy */
1617 		BUG_ON(ord <= 0);
1618 		buddy = mb_find_buddy(e4b, ord, &max);
1619 		mb_set_bit(start >> ord, buddy);
1620 		e4b->bd_info->bb_counters[ord]--;
1621 
1622 		ord--;
1623 		cur = (start >> ord) & ~1U;
1624 		buddy = mb_find_buddy(e4b, ord, &max);
1625 		mb_clear_bit(cur, buddy);
1626 		mb_clear_bit(cur + 1, buddy);
1627 		e4b->bd_info->bb_counters[ord]++;
1628 		e4b->bd_info->bb_counters[ord]++;
1629 	}
1630 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1631 
1632 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1633 	mb_check_buddy(e4b);
1634 
1635 	return ret;
1636 }
1637 
1638 /*
1639  * Must be called under group lock!
1640  */
1641 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1642 					struct ext4_buddy *e4b)
1643 {
1644 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1645 	int ret;
1646 
1647 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1648 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1649 
1650 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1651 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1652 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1653 
1654 	/* preallocation can change ac_b_ex, thus we store actually
1655 	 * allocated blocks for history */
1656 	ac->ac_f_ex = ac->ac_b_ex;
1657 
1658 	ac->ac_status = AC_STATUS_FOUND;
1659 	ac->ac_tail = ret & 0xffff;
1660 	ac->ac_buddy = ret >> 16;
1661 
1662 	/*
1663 	 * take the page reference. We want the page to be pinned
1664 	 * so that we don't get a ext4_mb_init_cache_call for this
1665 	 * group until we update the bitmap. That would mean we
1666 	 * double allocate blocks. The reference is dropped
1667 	 * in ext4_mb_release_context
1668 	 */
1669 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1670 	get_page(ac->ac_bitmap_page);
1671 	ac->ac_buddy_page = e4b->bd_buddy_page;
1672 	get_page(ac->ac_buddy_page);
1673 	/* store last allocated for subsequent stream allocation */
1674 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1675 		spin_lock(&sbi->s_md_lock);
1676 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1677 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1678 		spin_unlock(&sbi->s_md_lock);
1679 	}
1680 }
1681 
1682 /*
1683  * regular allocator, for general purposes allocation
1684  */
1685 
1686 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1687 					struct ext4_buddy *e4b,
1688 					int finish_group)
1689 {
1690 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1691 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1692 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1693 	struct ext4_free_extent ex;
1694 	int max;
1695 
1696 	if (ac->ac_status == AC_STATUS_FOUND)
1697 		return;
1698 	/*
1699 	 * We don't want to scan for a whole year
1700 	 */
1701 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1702 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1703 		ac->ac_status = AC_STATUS_BREAK;
1704 		return;
1705 	}
1706 
1707 	/*
1708 	 * Haven't found good chunk so far, let's continue
1709 	 */
1710 	if (bex->fe_len < gex->fe_len)
1711 		return;
1712 
1713 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1714 			&& bex->fe_group == e4b->bd_group) {
1715 		/* recheck chunk's availability - we don't know
1716 		 * when it was found (within this lock-unlock
1717 		 * period or not) */
1718 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1719 		if (max >= gex->fe_len) {
1720 			ext4_mb_use_best_found(ac, e4b);
1721 			return;
1722 		}
1723 	}
1724 }
1725 
1726 /*
1727  * The routine checks whether found extent is good enough. If it is,
1728  * then the extent gets marked used and flag is set to the context
1729  * to stop scanning. Otherwise, the extent is compared with the
1730  * previous found extent and if new one is better, then it's stored
1731  * in the context. Later, the best found extent will be used, if
1732  * mballoc can't find good enough extent.
1733  *
1734  * FIXME: real allocation policy is to be designed yet!
1735  */
1736 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1737 					struct ext4_free_extent *ex,
1738 					struct ext4_buddy *e4b)
1739 {
1740 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1741 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1742 
1743 	BUG_ON(ex->fe_len <= 0);
1744 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1745 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1746 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1747 
1748 	ac->ac_found++;
1749 
1750 	/*
1751 	 * The special case - take what you catch first
1752 	 */
1753 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1754 		*bex = *ex;
1755 		ext4_mb_use_best_found(ac, e4b);
1756 		return;
1757 	}
1758 
1759 	/*
1760 	 * Let's check whether the chuck is good enough
1761 	 */
1762 	if (ex->fe_len == gex->fe_len) {
1763 		*bex = *ex;
1764 		ext4_mb_use_best_found(ac, e4b);
1765 		return;
1766 	}
1767 
1768 	/*
1769 	 * If this is first found extent, just store it in the context
1770 	 */
1771 	if (bex->fe_len == 0) {
1772 		*bex = *ex;
1773 		return;
1774 	}
1775 
1776 	/*
1777 	 * If new found extent is better, store it in the context
1778 	 */
1779 	if (bex->fe_len < gex->fe_len) {
1780 		/* if the request isn't satisfied, any found extent
1781 		 * larger than previous best one is better */
1782 		if (ex->fe_len > bex->fe_len)
1783 			*bex = *ex;
1784 	} else if (ex->fe_len > gex->fe_len) {
1785 		/* if the request is satisfied, then we try to find
1786 		 * an extent that still satisfy the request, but is
1787 		 * smaller than previous one */
1788 		if (ex->fe_len < bex->fe_len)
1789 			*bex = *ex;
1790 	}
1791 
1792 	ext4_mb_check_limits(ac, e4b, 0);
1793 }
1794 
1795 static noinline_for_stack
1796 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1797 					struct ext4_buddy *e4b)
1798 {
1799 	struct ext4_free_extent ex = ac->ac_b_ex;
1800 	ext4_group_t group = ex.fe_group;
1801 	int max;
1802 	int err;
1803 
1804 	BUG_ON(ex.fe_len <= 0);
1805 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1806 	if (err)
1807 		return err;
1808 
1809 	ext4_lock_group(ac->ac_sb, group);
1810 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1811 
1812 	if (max > 0) {
1813 		ac->ac_b_ex = ex;
1814 		ext4_mb_use_best_found(ac, e4b);
1815 	}
1816 
1817 	ext4_unlock_group(ac->ac_sb, group);
1818 	ext4_mb_unload_buddy(e4b);
1819 
1820 	return 0;
1821 }
1822 
1823 static noinline_for_stack
1824 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1825 				struct ext4_buddy *e4b)
1826 {
1827 	ext4_group_t group = ac->ac_g_ex.fe_group;
1828 	int max;
1829 	int err;
1830 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1831 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1832 	struct ext4_free_extent ex;
1833 
1834 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1835 		return 0;
1836 	if (grp->bb_free == 0)
1837 		return 0;
1838 
1839 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1840 	if (err)
1841 		return err;
1842 
1843 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1844 		ext4_mb_unload_buddy(e4b);
1845 		return 0;
1846 	}
1847 
1848 	ext4_lock_group(ac->ac_sb, group);
1849 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1850 			     ac->ac_g_ex.fe_len, &ex);
1851 	ex.fe_logical = 0xDEADFA11; /* debug value */
1852 
1853 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1854 		ext4_fsblk_t start;
1855 
1856 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1857 			ex.fe_start;
1858 		/* use do_div to get remainder (would be 64-bit modulo) */
1859 		if (do_div(start, sbi->s_stripe) == 0) {
1860 			ac->ac_found++;
1861 			ac->ac_b_ex = ex;
1862 			ext4_mb_use_best_found(ac, e4b);
1863 		}
1864 	} else if (max >= ac->ac_g_ex.fe_len) {
1865 		BUG_ON(ex.fe_len <= 0);
1866 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1867 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1868 		ac->ac_found++;
1869 		ac->ac_b_ex = ex;
1870 		ext4_mb_use_best_found(ac, e4b);
1871 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1872 		/* Sometimes, caller may want to merge even small
1873 		 * number of blocks to an existing extent */
1874 		BUG_ON(ex.fe_len <= 0);
1875 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1876 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1877 		ac->ac_found++;
1878 		ac->ac_b_ex = ex;
1879 		ext4_mb_use_best_found(ac, e4b);
1880 	}
1881 	ext4_unlock_group(ac->ac_sb, group);
1882 	ext4_mb_unload_buddy(e4b);
1883 
1884 	return 0;
1885 }
1886 
1887 /*
1888  * The routine scans buddy structures (not bitmap!) from given order
1889  * to max order and tries to find big enough chunk to satisfy the req
1890  */
1891 static noinline_for_stack
1892 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1893 					struct ext4_buddy *e4b)
1894 {
1895 	struct super_block *sb = ac->ac_sb;
1896 	struct ext4_group_info *grp = e4b->bd_info;
1897 	void *buddy;
1898 	int i;
1899 	int k;
1900 	int max;
1901 
1902 	BUG_ON(ac->ac_2order <= 0);
1903 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1904 		if (grp->bb_counters[i] == 0)
1905 			continue;
1906 
1907 		buddy = mb_find_buddy(e4b, i, &max);
1908 		BUG_ON(buddy == NULL);
1909 
1910 		k = mb_find_next_zero_bit(buddy, max, 0);
1911 		BUG_ON(k >= max);
1912 
1913 		ac->ac_found++;
1914 
1915 		ac->ac_b_ex.fe_len = 1 << i;
1916 		ac->ac_b_ex.fe_start = k << i;
1917 		ac->ac_b_ex.fe_group = e4b->bd_group;
1918 
1919 		ext4_mb_use_best_found(ac, e4b);
1920 
1921 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1922 
1923 		if (EXT4_SB(sb)->s_mb_stats)
1924 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1925 
1926 		break;
1927 	}
1928 }
1929 
1930 /*
1931  * The routine scans the group and measures all found extents.
1932  * In order to optimize scanning, caller must pass number of
1933  * free blocks in the group, so the routine can know upper limit.
1934  */
1935 static noinline_for_stack
1936 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1937 					struct ext4_buddy *e4b)
1938 {
1939 	struct super_block *sb = ac->ac_sb;
1940 	void *bitmap = e4b->bd_bitmap;
1941 	struct ext4_free_extent ex;
1942 	int i;
1943 	int free;
1944 
1945 	free = e4b->bd_info->bb_free;
1946 	BUG_ON(free <= 0);
1947 
1948 	i = e4b->bd_info->bb_first_free;
1949 
1950 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1951 		i = mb_find_next_zero_bit(bitmap,
1952 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1953 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1954 			/*
1955 			 * IF we have corrupt bitmap, we won't find any
1956 			 * free blocks even though group info says we
1957 			 * we have free blocks
1958 			 */
1959 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1960 					"%d free clusters as per "
1961 					"group info. But bitmap says 0",
1962 					free);
1963 			break;
1964 		}
1965 
1966 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1967 		BUG_ON(ex.fe_len <= 0);
1968 		if (free < ex.fe_len) {
1969 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1970 					"%d free clusters as per "
1971 					"group info. But got %d blocks",
1972 					free, ex.fe_len);
1973 			/*
1974 			 * The number of free blocks differs. This mostly
1975 			 * indicate that the bitmap is corrupt. So exit
1976 			 * without claiming the space.
1977 			 */
1978 			break;
1979 		}
1980 		ex.fe_logical = 0xDEADC0DE; /* debug value */
1981 		ext4_mb_measure_extent(ac, &ex, e4b);
1982 
1983 		i += ex.fe_len;
1984 		free -= ex.fe_len;
1985 	}
1986 
1987 	ext4_mb_check_limits(ac, e4b, 1);
1988 }
1989 
1990 /*
1991  * This is a special case for storages like raid5
1992  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1993  */
1994 static noinline_for_stack
1995 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1996 				 struct ext4_buddy *e4b)
1997 {
1998 	struct super_block *sb = ac->ac_sb;
1999 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2000 	void *bitmap = e4b->bd_bitmap;
2001 	struct ext4_free_extent ex;
2002 	ext4_fsblk_t first_group_block;
2003 	ext4_fsblk_t a;
2004 	ext4_grpblk_t i;
2005 	int max;
2006 
2007 	BUG_ON(sbi->s_stripe == 0);
2008 
2009 	/* find first stripe-aligned block in group */
2010 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2011 
2012 	a = first_group_block + sbi->s_stripe - 1;
2013 	do_div(a, sbi->s_stripe);
2014 	i = (a * sbi->s_stripe) - first_group_block;
2015 
2016 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2017 		if (!mb_test_bit(i, bitmap)) {
2018 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2019 			if (max >= sbi->s_stripe) {
2020 				ac->ac_found++;
2021 				ex.fe_logical = 0xDEADF00D; /* debug value */
2022 				ac->ac_b_ex = ex;
2023 				ext4_mb_use_best_found(ac, e4b);
2024 				break;
2025 			}
2026 		}
2027 		i += sbi->s_stripe;
2028 	}
2029 }
2030 
2031 /*
2032  * This is now called BEFORE we load the buddy bitmap.
2033  * Returns either 1 or 0 indicating that the group is either suitable
2034  * for the allocation or not. In addition it can also return negative
2035  * error code when something goes wrong.
2036  */
2037 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2038 				ext4_group_t group, int cr)
2039 {
2040 	unsigned free, fragments;
2041 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2042 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2043 
2044 	BUG_ON(cr < 0 || cr >= 4);
2045 
2046 	free = grp->bb_free;
2047 	if (free == 0)
2048 		return 0;
2049 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2050 		return 0;
2051 
2052 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2053 		return 0;
2054 
2055 	/* We only do this if the grp has never been initialized */
2056 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2057 		int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2058 		if (ret)
2059 			return ret;
2060 	}
2061 
2062 	fragments = grp->bb_fragments;
2063 	if (fragments == 0)
2064 		return 0;
2065 
2066 	switch (cr) {
2067 	case 0:
2068 		BUG_ON(ac->ac_2order == 0);
2069 
2070 		/* Avoid using the first bg of a flexgroup for data files */
2071 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2072 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2073 		    ((group % flex_size) == 0))
2074 			return 0;
2075 
2076 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2077 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2078 			return 1;
2079 
2080 		if (grp->bb_largest_free_order < ac->ac_2order)
2081 			return 0;
2082 
2083 		return 1;
2084 	case 1:
2085 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2086 			return 1;
2087 		break;
2088 	case 2:
2089 		if (free >= ac->ac_g_ex.fe_len)
2090 			return 1;
2091 		break;
2092 	case 3:
2093 		return 1;
2094 	default:
2095 		BUG();
2096 	}
2097 
2098 	return 0;
2099 }
2100 
2101 static noinline_for_stack int
2102 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2103 {
2104 	ext4_group_t ngroups, group, i;
2105 	int cr;
2106 	int err = 0, first_err = 0;
2107 	struct ext4_sb_info *sbi;
2108 	struct super_block *sb;
2109 	struct ext4_buddy e4b;
2110 
2111 	sb = ac->ac_sb;
2112 	sbi = EXT4_SB(sb);
2113 	ngroups = ext4_get_groups_count(sb);
2114 	/* non-extent files are limited to low blocks/groups */
2115 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2116 		ngroups = sbi->s_blockfile_groups;
2117 
2118 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2119 
2120 	/* first, try the goal */
2121 	err = ext4_mb_find_by_goal(ac, &e4b);
2122 	if (err || ac->ac_status == AC_STATUS_FOUND)
2123 		goto out;
2124 
2125 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2126 		goto out;
2127 
2128 	/*
2129 	 * ac->ac2_order is set only if the fe_len is a power of 2
2130 	 * if ac2_order is set we also set criteria to 0 so that we
2131 	 * try exact allocation using buddy.
2132 	 */
2133 	i = fls(ac->ac_g_ex.fe_len);
2134 	ac->ac_2order = 0;
2135 	/*
2136 	 * We search using buddy data only if the order of the request
2137 	 * is greater than equal to the sbi_s_mb_order2_reqs
2138 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2139 	 */
2140 	if (i >= sbi->s_mb_order2_reqs) {
2141 		/*
2142 		 * This should tell if fe_len is exactly power of 2
2143 		 */
2144 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2145 			ac->ac_2order = i - 1;
2146 	}
2147 
2148 	/* if stream allocation is enabled, use global goal */
2149 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2150 		/* TBD: may be hot point */
2151 		spin_lock(&sbi->s_md_lock);
2152 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2153 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2154 		spin_unlock(&sbi->s_md_lock);
2155 	}
2156 
2157 	/* Let's just scan groups to find more-less suitable blocks */
2158 	cr = ac->ac_2order ? 0 : 1;
2159 	/*
2160 	 * cr == 0 try to get exact allocation,
2161 	 * cr == 3  try to get anything
2162 	 */
2163 repeat:
2164 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2165 		ac->ac_criteria = cr;
2166 		/*
2167 		 * searching for the right group start
2168 		 * from the goal value specified
2169 		 */
2170 		group = ac->ac_g_ex.fe_group;
2171 
2172 		for (i = 0; i < ngroups; group++, i++) {
2173 			int ret = 0;
2174 			cond_resched();
2175 			/*
2176 			 * Artificially restricted ngroups for non-extent
2177 			 * files makes group > ngroups possible on first loop.
2178 			 */
2179 			if (group >= ngroups)
2180 				group = 0;
2181 
2182 			/* This now checks without needing the buddy page */
2183 			ret = ext4_mb_good_group(ac, group, cr);
2184 			if (ret <= 0) {
2185 				if (!first_err)
2186 					first_err = ret;
2187 				continue;
2188 			}
2189 
2190 			err = ext4_mb_load_buddy(sb, group, &e4b);
2191 			if (err)
2192 				goto out;
2193 
2194 			ext4_lock_group(sb, group);
2195 
2196 			/*
2197 			 * We need to check again after locking the
2198 			 * block group
2199 			 */
2200 			ret = ext4_mb_good_group(ac, group, cr);
2201 			if (ret <= 0) {
2202 				ext4_unlock_group(sb, group);
2203 				ext4_mb_unload_buddy(&e4b);
2204 				if (!first_err)
2205 					first_err = ret;
2206 				continue;
2207 			}
2208 
2209 			ac->ac_groups_scanned++;
2210 			if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2211 				ext4_mb_simple_scan_group(ac, &e4b);
2212 			else if (cr == 1 && sbi->s_stripe &&
2213 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2214 				ext4_mb_scan_aligned(ac, &e4b);
2215 			else
2216 				ext4_mb_complex_scan_group(ac, &e4b);
2217 
2218 			ext4_unlock_group(sb, group);
2219 			ext4_mb_unload_buddy(&e4b);
2220 
2221 			if (ac->ac_status != AC_STATUS_CONTINUE)
2222 				break;
2223 		}
2224 	}
2225 
2226 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2227 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2228 		/*
2229 		 * We've been searching too long. Let's try to allocate
2230 		 * the best chunk we've found so far
2231 		 */
2232 
2233 		ext4_mb_try_best_found(ac, &e4b);
2234 		if (ac->ac_status != AC_STATUS_FOUND) {
2235 			/*
2236 			 * Someone more lucky has already allocated it.
2237 			 * The only thing we can do is just take first
2238 			 * found block(s)
2239 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2240 			 */
2241 			ac->ac_b_ex.fe_group = 0;
2242 			ac->ac_b_ex.fe_start = 0;
2243 			ac->ac_b_ex.fe_len = 0;
2244 			ac->ac_status = AC_STATUS_CONTINUE;
2245 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2246 			cr = 3;
2247 			atomic_inc(&sbi->s_mb_lost_chunks);
2248 			goto repeat;
2249 		}
2250 	}
2251 out:
2252 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2253 		err = first_err;
2254 	return err;
2255 }
2256 
2257 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2258 {
2259 	struct super_block *sb = seq->private;
2260 	ext4_group_t group;
2261 
2262 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2263 		return NULL;
2264 	group = *pos + 1;
2265 	return (void *) ((unsigned long) group);
2266 }
2267 
2268 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2269 {
2270 	struct super_block *sb = seq->private;
2271 	ext4_group_t group;
2272 
2273 	++*pos;
2274 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2275 		return NULL;
2276 	group = *pos + 1;
2277 	return (void *) ((unsigned long) group);
2278 }
2279 
2280 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2281 {
2282 	struct super_block *sb = seq->private;
2283 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2284 	int i;
2285 	int err, buddy_loaded = 0;
2286 	struct ext4_buddy e4b;
2287 	struct ext4_group_info *grinfo;
2288 	struct sg {
2289 		struct ext4_group_info info;
2290 		ext4_grpblk_t counters[16];
2291 	} sg;
2292 
2293 	group--;
2294 	if (group == 0)
2295 		seq_puts(seq, "#group: free  frags first ["
2296 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2297 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2298 
2299 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2300 		sizeof(struct ext4_group_info);
2301 	grinfo = ext4_get_group_info(sb, group);
2302 	/* Load the group info in memory only if not already loaded. */
2303 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2304 		err = ext4_mb_load_buddy(sb, group, &e4b);
2305 		if (err) {
2306 			seq_printf(seq, "#%-5u: I/O error\n", group);
2307 			return 0;
2308 		}
2309 		buddy_loaded = 1;
2310 	}
2311 
2312 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2313 
2314 	if (buddy_loaded)
2315 		ext4_mb_unload_buddy(&e4b);
2316 
2317 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2318 			sg.info.bb_fragments, sg.info.bb_first_free);
2319 	for (i = 0; i <= 13; i++)
2320 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2321 				sg.info.bb_counters[i] : 0);
2322 	seq_printf(seq, " ]\n");
2323 
2324 	return 0;
2325 }
2326 
2327 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2328 {
2329 }
2330 
2331 static const struct seq_operations ext4_mb_seq_groups_ops = {
2332 	.start  = ext4_mb_seq_groups_start,
2333 	.next   = ext4_mb_seq_groups_next,
2334 	.stop   = ext4_mb_seq_groups_stop,
2335 	.show   = ext4_mb_seq_groups_show,
2336 };
2337 
2338 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2339 {
2340 	struct super_block *sb = PDE_DATA(inode);
2341 	int rc;
2342 
2343 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2344 	if (rc == 0) {
2345 		struct seq_file *m = file->private_data;
2346 		m->private = sb;
2347 	}
2348 	return rc;
2349 
2350 }
2351 
2352 const struct file_operations ext4_seq_mb_groups_fops = {
2353 	.owner		= THIS_MODULE,
2354 	.open		= ext4_mb_seq_groups_open,
2355 	.read		= seq_read,
2356 	.llseek		= seq_lseek,
2357 	.release	= seq_release,
2358 };
2359 
2360 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2361 {
2362 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2363 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2364 
2365 	BUG_ON(!cachep);
2366 	return cachep;
2367 }
2368 
2369 /*
2370  * Allocate the top-level s_group_info array for the specified number
2371  * of groups
2372  */
2373 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2374 {
2375 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2376 	unsigned size;
2377 	struct ext4_group_info ***new_groupinfo;
2378 
2379 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2380 		EXT4_DESC_PER_BLOCK_BITS(sb);
2381 	if (size <= sbi->s_group_info_size)
2382 		return 0;
2383 
2384 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2385 	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2386 	if (!new_groupinfo) {
2387 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2388 		return -ENOMEM;
2389 	}
2390 	if (sbi->s_group_info) {
2391 		memcpy(new_groupinfo, sbi->s_group_info,
2392 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2393 		kvfree(sbi->s_group_info);
2394 	}
2395 	sbi->s_group_info = new_groupinfo;
2396 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2397 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2398 		   sbi->s_group_info_size);
2399 	return 0;
2400 }
2401 
2402 /* Create and initialize ext4_group_info data for the given group. */
2403 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2404 			  struct ext4_group_desc *desc)
2405 {
2406 	int i;
2407 	int metalen = 0;
2408 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2409 	struct ext4_group_info **meta_group_info;
2410 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2411 
2412 	/*
2413 	 * First check if this group is the first of a reserved block.
2414 	 * If it's true, we have to allocate a new table of pointers
2415 	 * to ext4_group_info structures
2416 	 */
2417 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2418 		metalen = sizeof(*meta_group_info) <<
2419 			EXT4_DESC_PER_BLOCK_BITS(sb);
2420 		meta_group_info = kmalloc(metalen, GFP_NOFS);
2421 		if (meta_group_info == NULL) {
2422 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2423 				 "for a buddy group");
2424 			goto exit_meta_group_info;
2425 		}
2426 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2427 			meta_group_info;
2428 	}
2429 
2430 	meta_group_info =
2431 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2432 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2433 
2434 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2435 	if (meta_group_info[i] == NULL) {
2436 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2437 		goto exit_group_info;
2438 	}
2439 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2440 		&(meta_group_info[i]->bb_state));
2441 
2442 	/*
2443 	 * initialize bb_free to be able to skip
2444 	 * empty groups without initialization
2445 	 */
2446 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2447 		meta_group_info[i]->bb_free =
2448 			ext4_free_clusters_after_init(sb, group, desc);
2449 	} else {
2450 		meta_group_info[i]->bb_free =
2451 			ext4_free_group_clusters(sb, desc);
2452 	}
2453 
2454 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2455 	init_rwsem(&meta_group_info[i]->alloc_sem);
2456 	meta_group_info[i]->bb_free_root = RB_ROOT;
2457 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2458 
2459 #ifdef DOUBLE_CHECK
2460 	{
2461 		struct buffer_head *bh;
2462 		meta_group_info[i]->bb_bitmap =
2463 			kmalloc(sb->s_blocksize, GFP_NOFS);
2464 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2465 		bh = ext4_read_block_bitmap(sb, group);
2466 		BUG_ON(IS_ERR_OR_NULL(bh));
2467 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2468 			sb->s_blocksize);
2469 		put_bh(bh);
2470 	}
2471 #endif
2472 
2473 	return 0;
2474 
2475 exit_group_info:
2476 	/* If a meta_group_info table has been allocated, release it now */
2477 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2478 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2479 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2480 	}
2481 exit_meta_group_info:
2482 	return -ENOMEM;
2483 } /* ext4_mb_add_groupinfo */
2484 
2485 static int ext4_mb_init_backend(struct super_block *sb)
2486 {
2487 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2488 	ext4_group_t i;
2489 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2490 	int err;
2491 	struct ext4_group_desc *desc;
2492 	struct kmem_cache *cachep;
2493 
2494 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2495 	if (err)
2496 		return err;
2497 
2498 	sbi->s_buddy_cache = new_inode(sb);
2499 	if (sbi->s_buddy_cache == NULL) {
2500 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2501 		goto err_freesgi;
2502 	}
2503 	/* To avoid potentially colliding with an valid on-disk inode number,
2504 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2505 	 * not in the inode hash, so it should never be found by iget(), but
2506 	 * this will avoid confusion if it ever shows up during debugging. */
2507 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2508 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2509 	for (i = 0; i < ngroups; i++) {
2510 		desc = ext4_get_group_desc(sb, i, NULL);
2511 		if (desc == NULL) {
2512 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2513 			goto err_freebuddy;
2514 		}
2515 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2516 			goto err_freebuddy;
2517 	}
2518 
2519 	return 0;
2520 
2521 err_freebuddy:
2522 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2523 	while (i-- > 0)
2524 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2525 	i = sbi->s_group_info_size;
2526 	while (i-- > 0)
2527 		kfree(sbi->s_group_info[i]);
2528 	iput(sbi->s_buddy_cache);
2529 err_freesgi:
2530 	kvfree(sbi->s_group_info);
2531 	return -ENOMEM;
2532 }
2533 
2534 static void ext4_groupinfo_destroy_slabs(void)
2535 {
2536 	int i;
2537 
2538 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2539 		if (ext4_groupinfo_caches[i])
2540 			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2541 		ext4_groupinfo_caches[i] = NULL;
2542 	}
2543 }
2544 
2545 static int ext4_groupinfo_create_slab(size_t size)
2546 {
2547 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2548 	int slab_size;
2549 	int blocksize_bits = order_base_2(size);
2550 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2551 	struct kmem_cache *cachep;
2552 
2553 	if (cache_index >= NR_GRPINFO_CACHES)
2554 		return -EINVAL;
2555 
2556 	if (unlikely(cache_index < 0))
2557 		cache_index = 0;
2558 
2559 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2560 	if (ext4_groupinfo_caches[cache_index]) {
2561 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2562 		return 0;	/* Already created */
2563 	}
2564 
2565 	slab_size = offsetof(struct ext4_group_info,
2566 				bb_counters[blocksize_bits + 2]);
2567 
2568 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2569 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2570 					NULL);
2571 
2572 	ext4_groupinfo_caches[cache_index] = cachep;
2573 
2574 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2575 	if (!cachep) {
2576 		printk(KERN_EMERG
2577 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2578 		return -ENOMEM;
2579 	}
2580 
2581 	return 0;
2582 }
2583 
2584 int ext4_mb_init(struct super_block *sb)
2585 {
2586 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2587 	unsigned i, j;
2588 	unsigned offset, offset_incr;
2589 	unsigned max;
2590 	int ret;
2591 
2592 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2593 
2594 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2595 	if (sbi->s_mb_offsets == NULL) {
2596 		ret = -ENOMEM;
2597 		goto out;
2598 	}
2599 
2600 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2601 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2602 	if (sbi->s_mb_maxs == NULL) {
2603 		ret = -ENOMEM;
2604 		goto out;
2605 	}
2606 
2607 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2608 	if (ret < 0)
2609 		goto out;
2610 
2611 	/* order 0 is regular bitmap */
2612 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2613 	sbi->s_mb_offsets[0] = 0;
2614 
2615 	i = 1;
2616 	offset = 0;
2617 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
2618 	max = sb->s_blocksize << 2;
2619 	do {
2620 		sbi->s_mb_offsets[i] = offset;
2621 		sbi->s_mb_maxs[i] = max;
2622 		offset += offset_incr;
2623 		offset_incr = offset_incr >> 1;
2624 		max = max >> 1;
2625 		i++;
2626 	} while (i <= sb->s_blocksize_bits + 1);
2627 
2628 	spin_lock_init(&sbi->s_md_lock);
2629 	spin_lock_init(&sbi->s_bal_lock);
2630 
2631 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2632 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2633 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2634 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2635 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2636 	/*
2637 	 * The default group preallocation is 512, which for 4k block
2638 	 * sizes translates to 2 megabytes.  However for bigalloc file
2639 	 * systems, this is probably too big (i.e, if the cluster size
2640 	 * is 1 megabyte, then group preallocation size becomes half a
2641 	 * gigabyte!).  As a default, we will keep a two megabyte
2642 	 * group pralloc size for cluster sizes up to 64k, and after
2643 	 * that, we will force a minimum group preallocation size of
2644 	 * 32 clusters.  This translates to 8 megs when the cluster
2645 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2646 	 * which seems reasonable as a default.
2647 	 */
2648 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2649 				       sbi->s_cluster_bits, 32);
2650 	/*
2651 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2652 	 * to the lowest multiple of s_stripe which is bigger than
2653 	 * the s_mb_group_prealloc as determined above. We want
2654 	 * the preallocation size to be an exact multiple of the
2655 	 * RAID stripe size so that preallocations don't fragment
2656 	 * the stripes.
2657 	 */
2658 	if (sbi->s_stripe > 1) {
2659 		sbi->s_mb_group_prealloc = roundup(
2660 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2661 	}
2662 
2663 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2664 	if (sbi->s_locality_groups == NULL) {
2665 		ret = -ENOMEM;
2666 		goto out;
2667 	}
2668 	for_each_possible_cpu(i) {
2669 		struct ext4_locality_group *lg;
2670 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2671 		mutex_init(&lg->lg_mutex);
2672 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2673 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2674 		spin_lock_init(&lg->lg_prealloc_lock);
2675 	}
2676 
2677 	/* init file for buddy data */
2678 	ret = ext4_mb_init_backend(sb);
2679 	if (ret != 0)
2680 		goto out_free_locality_groups;
2681 
2682 	return 0;
2683 
2684 out_free_locality_groups:
2685 	free_percpu(sbi->s_locality_groups);
2686 	sbi->s_locality_groups = NULL;
2687 out:
2688 	kfree(sbi->s_mb_offsets);
2689 	sbi->s_mb_offsets = NULL;
2690 	kfree(sbi->s_mb_maxs);
2691 	sbi->s_mb_maxs = NULL;
2692 	return ret;
2693 }
2694 
2695 /* need to called with the ext4 group lock held */
2696 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2697 {
2698 	struct ext4_prealloc_space *pa;
2699 	struct list_head *cur, *tmp;
2700 	int count = 0;
2701 
2702 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2703 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2704 		list_del(&pa->pa_group_list);
2705 		count++;
2706 		kmem_cache_free(ext4_pspace_cachep, pa);
2707 	}
2708 	if (count)
2709 		mb_debug(1, "mballoc: %u PAs left\n", count);
2710 
2711 }
2712 
2713 int ext4_mb_release(struct super_block *sb)
2714 {
2715 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2716 	ext4_group_t i;
2717 	int num_meta_group_infos;
2718 	struct ext4_group_info *grinfo;
2719 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2720 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2721 
2722 	if (sbi->s_group_info) {
2723 		for (i = 0; i < ngroups; i++) {
2724 			grinfo = ext4_get_group_info(sb, i);
2725 #ifdef DOUBLE_CHECK
2726 			kfree(grinfo->bb_bitmap);
2727 #endif
2728 			ext4_lock_group(sb, i);
2729 			ext4_mb_cleanup_pa(grinfo);
2730 			ext4_unlock_group(sb, i);
2731 			kmem_cache_free(cachep, grinfo);
2732 		}
2733 		num_meta_group_infos = (ngroups +
2734 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2735 			EXT4_DESC_PER_BLOCK_BITS(sb);
2736 		for (i = 0; i < num_meta_group_infos; i++)
2737 			kfree(sbi->s_group_info[i]);
2738 		kvfree(sbi->s_group_info);
2739 	}
2740 	kfree(sbi->s_mb_offsets);
2741 	kfree(sbi->s_mb_maxs);
2742 	iput(sbi->s_buddy_cache);
2743 	if (sbi->s_mb_stats) {
2744 		ext4_msg(sb, KERN_INFO,
2745 		       "mballoc: %u blocks %u reqs (%u success)",
2746 				atomic_read(&sbi->s_bal_allocated),
2747 				atomic_read(&sbi->s_bal_reqs),
2748 				atomic_read(&sbi->s_bal_success));
2749 		ext4_msg(sb, KERN_INFO,
2750 		      "mballoc: %u extents scanned, %u goal hits, "
2751 				"%u 2^N hits, %u breaks, %u lost",
2752 				atomic_read(&sbi->s_bal_ex_scanned),
2753 				atomic_read(&sbi->s_bal_goals),
2754 				atomic_read(&sbi->s_bal_2orders),
2755 				atomic_read(&sbi->s_bal_breaks),
2756 				atomic_read(&sbi->s_mb_lost_chunks));
2757 		ext4_msg(sb, KERN_INFO,
2758 		       "mballoc: %lu generated and it took %Lu",
2759 				sbi->s_mb_buddies_generated,
2760 				sbi->s_mb_generation_time);
2761 		ext4_msg(sb, KERN_INFO,
2762 		       "mballoc: %u preallocated, %u discarded",
2763 				atomic_read(&sbi->s_mb_preallocated),
2764 				atomic_read(&sbi->s_mb_discarded));
2765 	}
2766 
2767 	free_percpu(sbi->s_locality_groups);
2768 
2769 	return 0;
2770 }
2771 
2772 static inline int ext4_issue_discard(struct super_block *sb,
2773 		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2774 {
2775 	ext4_fsblk_t discard_block;
2776 
2777 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2778 			 ext4_group_first_block_no(sb, block_group));
2779 	count = EXT4_C2B(EXT4_SB(sb), count);
2780 	trace_ext4_discard_blocks(sb,
2781 			(unsigned long long) discard_block, count);
2782 	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2783 }
2784 
2785 /*
2786  * This function is called by the jbd2 layer once the commit has finished,
2787  * so we know we can free the blocks that were released with that commit.
2788  */
2789 static void ext4_free_data_callback(struct super_block *sb,
2790 				    struct ext4_journal_cb_entry *jce,
2791 				    int rc)
2792 {
2793 	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2794 	struct ext4_buddy e4b;
2795 	struct ext4_group_info *db;
2796 	int err, count = 0, count2 = 0;
2797 
2798 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2799 		 entry->efd_count, entry->efd_group, entry);
2800 
2801 	if (test_opt(sb, DISCARD)) {
2802 		err = ext4_issue_discard(sb, entry->efd_group,
2803 					 entry->efd_start_cluster,
2804 					 entry->efd_count);
2805 		if (err && err != -EOPNOTSUPP)
2806 			ext4_msg(sb, KERN_WARNING, "discard request in"
2807 				 " group:%d block:%d count:%d failed"
2808 				 " with %d", entry->efd_group,
2809 				 entry->efd_start_cluster,
2810 				 entry->efd_count, err);
2811 	}
2812 
2813 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2814 	/* we expect to find existing buddy because it's pinned */
2815 	BUG_ON(err != 0);
2816 
2817 
2818 	db = e4b.bd_info;
2819 	/* there are blocks to put in buddy to make them really free */
2820 	count += entry->efd_count;
2821 	count2++;
2822 	ext4_lock_group(sb, entry->efd_group);
2823 	/* Take it out of per group rb tree */
2824 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2825 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2826 
2827 	/*
2828 	 * Clear the trimmed flag for the group so that the next
2829 	 * ext4_trim_fs can trim it.
2830 	 * If the volume is mounted with -o discard, online discard
2831 	 * is supported and the free blocks will be trimmed online.
2832 	 */
2833 	if (!test_opt(sb, DISCARD))
2834 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2835 
2836 	if (!db->bb_free_root.rb_node) {
2837 		/* No more items in the per group rb tree
2838 		 * balance refcounts from ext4_mb_free_metadata()
2839 		 */
2840 		put_page(e4b.bd_buddy_page);
2841 		put_page(e4b.bd_bitmap_page);
2842 	}
2843 	ext4_unlock_group(sb, entry->efd_group);
2844 	kmem_cache_free(ext4_free_data_cachep, entry);
2845 	ext4_mb_unload_buddy(&e4b);
2846 
2847 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2848 }
2849 
2850 int __init ext4_init_mballoc(void)
2851 {
2852 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2853 					SLAB_RECLAIM_ACCOUNT);
2854 	if (ext4_pspace_cachep == NULL)
2855 		return -ENOMEM;
2856 
2857 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2858 				    SLAB_RECLAIM_ACCOUNT);
2859 	if (ext4_ac_cachep == NULL) {
2860 		kmem_cache_destroy(ext4_pspace_cachep);
2861 		return -ENOMEM;
2862 	}
2863 
2864 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2865 					   SLAB_RECLAIM_ACCOUNT);
2866 	if (ext4_free_data_cachep == NULL) {
2867 		kmem_cache_destroy(ext4_pspace_cachep);
2868 		kmem_cache_destroy(ext4_ac_cachep);
2869 		return -ENOMEM;
2870 	}
2871 	return 0;
2872 }
2873 
2874 void ext4_exit_mballoc(void)
2875 {
2876 	/*
2877 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2878 	 * before destroying the slab cache.
2879 	 */
2880 	rcu_barrier();
2881 	kmem_cache_destroy(ext4_pspace_cachep);
2882 	kmem_cache_destroy(ext4_ac_cachep);
2883 	kmem_cache_destroy(ext4_free_data_cachep);
2884 	ext4_groupinfo_destroy_slabs();
2885 }
2886 
2887 
2888 /*
2889  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2890  * Returns 0 if success or error code
2891  */
2892 static noinline_for_stack int
2893 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2894 				handle_t *handle, unsigned int reserv_clstrs)
2895 {
2896 	struct buffer_head *bitmap_bh = NULL;
2897 	struct ext4_group_desc *gdp;
2898 	struct buffer_head *gdp_bh;
2899 	struct ext4_sb_info *sbi;
2900 	struct super_block *sb;
2901 	ext4_fsblk_t block;
2902 	int err, len;
2903 
2904 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2905 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2906 
2907 	sb = ac->ac_sb;
2908 	sbi = EXT4_SB(sb);
2909 
2910 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2911 	if (IS_ERR(bitmap_bh)) {
2912 		err = PTR_ERR(bitmap_bh);
2913 		bitmap_bh = NULL;
2914 		goto out_err;
2915 	}
2916 
2917 	BUFFER_TRACE(bitmap_bh, "getting write access");
2918 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2919 	if (err)
2920 		goto out_err;
2921 
2922 	err = -EIO;
2923 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2924 	if (!gdp)
2925 		goto out_err;
2926 
2927 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2928 			ext4_free_group_clusters(sb, gdp));
2929 
2930 	BUFFER_TRACE(gdp_bh, "get_write_access");
2931 	err = ext4_journal_get_write_access(handle, gdp_bh);
2932 	if (err)
2933 		goto out_err;
2934 
2935 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2936 
2937 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2938 	if (!ext4_data_block_valid(sbi, block, len)) {
2939 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2940 			   "fs metadata", block, block+len);
2941 		/* File system mounted not to panic on error
2942 		 * Fix the bitmap and repeat the block allocation
2943 		 * We leak some of the blocks here.
2944 		 */
2945 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2946 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2947 			      ac->ac_b_ex.fe_len);
2948 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2949 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2950 		if (!err)
2951 			err = -EAGAIN;
2952 		goto out_err;
2953 	}
2954 
2955 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2956 #ifdef AGGRESSIVE_CHECK
2957 	{
2958 		int i;
2959 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2960 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2961 						bitmap_bh->b_data));
2962 		}
2963 	}
2964 #endif
2965 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2966 		      ac->ac_b_ex.fe_len);
2967 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2968 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2969 		ext4_free_group_clusters_set(sb, gdp,
2970 					     ext4_free_clusters_after_init(sb,
2971 						ac->ac_b_ex.fe_group, gdp));
2972 	}
2973 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2974 	ext4_free_group_clusters_set(sb, gdp, len);
2975 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2976 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2977 
2978 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2979 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2980 	/*
2981 	 * Now reduce the dirty block count also. Should not go negative
2982 	 */
2983 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2984 		/* release all the reserved blocks if non delalloc */
2985 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2986 				   reserv_clstrs);
2987 
2988 	if (sbi->s_log_groups_per_flex) {
2989 		ext4_group_t flex_group = ext4_flex_group(sbi,
2990 							  ac->ac_b_ex.fe_group);
2991 		atomic64_sub(ac->ac_b_ex.fe_len,
2992 			     &sbi->s_flex_groups[flex_group].free_clusters);
2993 	}
2994 
2995 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2996 	if (err)
2997 		goto out_err;
2998 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2999 
3000 out_err:
3001 	brelse(bitmap_bh);
3002 	return err;
3003 }
3004 
3005 /*
3006  * here we normalize request for locality group
3007  * Group request are normalized to s_mb_group_prealloc, which goes to
3008  * s_strip if we set the same via mount option.
3009  * s_mb_group_prealloc can be configured via
3010  * /sys/fs/ext4/<partition>/mb_group_prealloc
3011  *
3012  * XXX: should we try to preallocate more than the group has now?
3013  */
3014 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3015 {
3016 	struct super_block *sb = ac->ac_sb;
3017 	struct ext4_locality_group *lg = ac->ac_lg;
3018 
3019 	BUG_ON(lg == NULL);
3020 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3021 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
3022 		current->pid, ac->ac_g_ex.fe_len);
3023 }
3024 
3025 /*
3026  * Normalization means making request better in terms of
3027  * size and alignment
3028  */
3029 static noinline_for_stack void
3030 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3031 				struct ext4_allocation_request *ar)
3032 {
3033 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3034 	int bsbits, max;
3035 	ext4_lblk_t end;
3036 	loff_t size, start_off;
3037 	loff_t orig_size __maybe_unused;
3038 	ext4_lblk_t start;
3039 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3040 	struct ext4_prealloc_space *pa;
3041 
3042 	/* do normalize only data requests, metadata requests
3043 	   do not need preallocation */
3044 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3045 		return;
3046 
3047 	/* sometime caller may want exact blocks */
3048 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3049 		return;
3050 
3051 	/* caller may indicate that preallocation isn't
3052 	 * required (it's a tail, for example) */
3053 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3054 		return;
3055 
3056 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3057 		ext4_mb_normalize_group_request(ac);
3058 		return ;
3059 	}
3060 
3061 	bsbits = ac->ac_sb->s_blocksize_bits;
3062 
3063 	/* first, let's learn actual file size
3064 	 * given current request is allocated */
3065 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3066 	size = size << bsbits;
3067 	if (size < i_size_read(ac->ac_inode))
3068 		size = i_size_read(ac->ac_inode);
3069 	orig_size = size;
3070 
3071 	/* max size of free chunks */
3072 	max = 2 << bsbits;
3073 
3074 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3075 		(req <= (size) || max <= (chunk_size))
3076 
3077 	/* first, try to predict filesize */
3078 	/* XXX: should this table be tunable? */
3079 	start_off = 0;
3080 	if (size <= 16 * 1024) {
3081 		size = 16 * 1024;
3082 	} else if (size <= 32 * 1024) {
3083 		size = 32 * 1024;
3084 	} else if (size <= 64 * 1024) {
3085 		size = 64 * 1024;
3086 	} else if (size <= 128 * 1024) {
3087 		size = 128 * 1024;
3088 	} else if (size <= 256 * 1024) {
3089 		size = 256 * 1024;
3090 	} else if (size <= 512 * 1024) {
3091 		size = 512 * 1024;
3092 	} else if (size <= 1024 * 1024) {
3093 		size = 1024 * 1024;
3094 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3095 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3096 						(21 - bsbits)) << 21;
3097 		size = 2 * 1024 * 1024;
3098 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3099 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3100 							(22 - bsbits)) << 22;
3101 		size = 4 * 1024 * 1024;
3102 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3103 					(8<<20)>>bsbits, max, 8 * 1024)) {
3104 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3105 							(23 - bsbits)) << 23;
3106 		size = 8 * 1024 * 1024;
3107 	} else {
3108 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3109 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3110 					      ac->ac_o_ex.fe_len) << bsbits;
3111 	}
3112 	size = size >> bsbits;
3113 	start = start_off >> bsbits;
3114 
3115 	/* don't cover already allocated blocks in selected range */
3116 	if (ar->pleft && start <= ar->lleft) {
3117 		size -= ar->lleft + 1 - start;
3118 		start = ar->lleft + 1;
3119 	}
3120 	if (ar->pright && start + size - 1 >= ar->lright)
3121 		size -= start + size - ar->lright;
3122 
3123 	end = start + size;
3124 
3125 	/* check we don't cross already preallocated blocks */
3126 	rcu_read_lock();
3127 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3128 		ext4_lblk_t pa_end;
3129 
3130 		if (pa->pa_deleted)
3131 			continue;
3132 		spin_lock(&pa->pa_lock);
3133 		if (pa->pa_deleted) {
3134 			spin_unlock(&pa->pa_lock);
3135 			continue;
3136 		}
3137 
3138 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3139 						  pa->pa_len);
3140 
3141 		/* PA must not overlap original request */
3142 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3143 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3144 
3145 		/* skip PAs this normalized request doesn't overlap with */
3146 		if (pa->pa_lstart >= end || pa_end <= start) {
3147 			spin_unlock(&pa->pa_lock);
3148 			continue;
3149 		}
3150 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3151 
3152 		/* adjust start or end to be adjacent to this pa */
3153 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3154 			BUG_ON(pa_end < start);
3155 			start = pa_end;
3156 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3157 			BUG_ON(pa->pa_lstart > end);
3158 			end = pa->pa_lstart;
3159 		}
3160 		spin_unlock(&pa->pa_lock);
3161 	}
3162 	rcu_read_unlock();
3163 	size = end - start;
3164 
3165 	/* XXX: extra loop to check we really don't overlap preallocations */
3166 	rcu_read_lock();
3167 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3168 		ext4_lblk_t pa_end;
3169 
3170 		spin_lock(&pa->pa_lock);
3171 		if (pa->pa_deleted == 0) {
3172 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3173 							  pa->pa_len);
3174 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3175 		}
3176 		spin_unlock(&pa->pa_lock);
3177 	}
3178 	rcu_read_unlock();
3179 
3180 	if (start + size <= ac->ac_o_ex.fe_logical &&
3181 			start > ac->ac_o_ex.fe_logical) {
3182 		ext4_msg(ac->ac_sb, KERN_ERR,
3183 			 "start %lu, size %lu, fe_logical %lu",
3184 			 (unsigned long) start, (unsigned long) size,
3185 			 (unsigned long) ac->ac_o_ex.fe_logical);
3186 		BUG();
3187 	}
3188 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3189 
3190 	/* now prepare goal request */
3191 
3192 	/* XXX: is it better to align blocks WRT to logical
3193 	 * placement or satisfy big request as is */
3194 	ac->ac_g_ex.fe_logical = start;
3195 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3196 
3197 	/* define goal start in order to merge */
3198 	if (ar->pright && (ar->lright == (start + size))) {
3199 		/* merge to the right */
3200 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3201 						&ac->ac_f_ex.fe_group,
3202 						&ac->ac_f_ex.fe_start);
3203 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3204 	}
3205 	if (ar->pleft && (ar->lleft + 1 == start)) {
3206 		/* merge to the left */
3207 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3208 						&ac->ac_f_ex.fe_group,
3209 						&ac->ac_f_ex.fe_start);
3210 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3211 	}
3212 
3213 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3214 		(unsigned) orig_size, (unsigned) start);
3215 }
3216 
3217 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3218 {
3219 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3220 
3221 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3222 		atomic_inc(&sbi->s_bal_reqs);
3223 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3224 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3225 			atomic_inc(&sbi->s_bal_success);
3226 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3227 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3228 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3229 			atomic_inc(&sbi->s_bal_goals);
3230 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3231 			atomic_inc(&sbi->s_bal_breaks);
3232 	}
3233 
3234 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3235 		trace_ext4_mballoc_alloc(ac);
3236 	else
3237 		trace_ext4_mballoc_prealloc(ac);
3238 }
3239 
3240 /*
3241  * Called on failure; free up any blocks from the inode PA for this
3242  * context.  We don't need this for MB_GROUP_PA because we only change
3243  * pa_free in ext4_mb_release_context(), but on failure, we've already
3244  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3245  */
3246 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3247 {
3248 	struct ext4_prealloc_space *pa = ac->ac_pa;
3249 	struct ext4_buddy e4b;
3250 	int err;
3251 
3252 	if (pa == NULL) {
3253 		if (ac->ac_f_ex.fe_len == 0)
3254 			return;
3255 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3256 		if (err) {
3257 			/*
3258 			 * This should never happen since we pin the
3259 			 * pages in the ext4_allocation_context so
3260 			 * ext4_mb_load_buddy() should never fail.
3261 			 */
3262 			WARN(1, "mb_load_buddy failed (%d)", err);
3263 			return;
3264 		}
3265 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3266 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3267 			       ac->ac_f_ex.fe_len);
3268 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3269 		ext4_mb_unload_buddy(&e4b);
3270 		return;
3271 	}
3272 	if (pa->pa_type == MB_INODE_PA)
3273 		pa->pa_free += ac->ac_b_ex.fe_len;
3274 }
3275 
3276 /*
3277  * use blocks preallocated to inode
3278  */
3279 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3280 				struct ext4_prealloc_space *pa)
3281 {
3282 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3283 	ext4_fsblk_t start;
3284 	ext4_fsblk_t end;
3285 	int len;
3286 
3287 	/* found preallocated blocks, use them */
3288 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3289 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3290 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3291 	len = EXT4_NUM_B2C(sbi, end - start);
3292 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3293 					&ac->ac_b_ex.fe_start);
3294 	ac->ac_b_ex.fe_len = len;
3295 	ac->ac_status = AC_STATUS_FOUND;
3296 	ac->ac_pa = pa;
3297 
3298 	BUG_ON(start < pa->pa_pstart);
3299 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3300 	BUG_ON(pa->pa_free < len);
3301 	pa->pa_free -= len;
3302 
3303 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3304 }
3305 
3306 /*
3307  * use blocks preallocated to locality group
3308  */
3309 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3310 				struct ext4_prealloc_space *pa)
3311 {
3312 	unsigned int len = ac->ac_o_ex.fe_len;
3313 
3314 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3315 					&ac->ac_b_ex.fe_group,
3316 					&ac->ac_b_ex.fe_start);
3317 	ac->ac_b_ex.fe_len = len;
3318 	ac->ac_status = AC_STATUS_FOUND;
3319 	ac->ac_pa = pa;
3320 
3321 	/* we don't correct pa_pstart or pa_plen here to avoid
3322 	 * possible race when the group is being loaded concurrently
3323 	 * instead we correct pa later, after blocks are marked
3324 	 * in on-disk bitmap -- see ext4_mb_release_context()
3325 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3326 	 */
3327 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3328 }
3329 
3330 /*
3331  * Return the prealloc space that have minimal distance
3332  * from the goal block. @cpa is the prealloc
3333  * space that is having currently known minimal distance
3334  * from the goal block.
3335  */
3336 static struct ext4_prealloc_space *
3337 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3338 			struct ext4_prealloc_space *pa,
3339 			struct ext4_prealloc_space *cpa)
3340 {
3341 	ext4_fsblk_t cur_distance, new_distance;
3342 
3343 	if (cpa == NULL) {
3344 		atomic_inc(&pa->pa_count);
3345 		return pa;
3346 	}
3347 	cur_distance = abs(goal_block - cpa->pa_pstart);
3348 	new_distance = abs(goal_block - pa->pa_pstart);
3349 
3350 	if (cur_distance <= new_distance)
3351 		return cpa;
3352 
3353 	/* drop the previous reference */
3354 	atomic_dec(&cpa->pa_count);
3355 	atomic_inc(&pa->pa_count);
3356 	return pa;
3357 }
3358 
3359 /*
3360  * search goal blocks in preallocated space
3361  */
3362 static noinline_for_stack int
3363 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3364 {
3365 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3366 	int order, i;
3367 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3368 	struct ext4_locality_group *lg;
3369 	struct ext4_prealloc_space *pa, *cpa = NULL;
3370 	ext4_fsblk_t goal_block;
3371 
3372 	/* only data can be preallocated */
3373 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3374 		return 0;
3375 
3376 	/* first, try per-file preallocation */
3377 	rcu_read_lock();
3378 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3379 
3380 		/* all fields in this condition don't change,
3381 		 * so we can skip locking for them */
3382 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3383 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3384 					       EXT4_C2B(sbi, pa->pa_len)))
3385 			continue;
3386 
3387 		/* non-extent files can't have physical blocks past 2^32 */
3388 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3389 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3390 		     EXT4_MAX_BLOCK_FILE_PHYS))
3391 			continue;
3392 
3393 		/* found preallocated blocks, use them */
3394 		spin_lock(&pa->pa_lock);
3395 		if (pa->pa_deleted == 0 && pa->pa_free) {
3396 			atomic_inc(&pa->pa_count);
3397 			ext4_mb_use_inode_pa(ac, pa);
3398 			spin_unlock(&pa->pa_lock);
3399 			ac->ac_criteria = 10;
3400 			rcu_read_unlock();
3401 			return 1;
3402 		}
3403 		spin_unlock(&pa->pa_lock);
3404 	}
3405 	rcu_read_unlock();
3406 
3407 	/* can we use group allocation? */
3408 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3409 		return 0;
3410 
3411 	/* inode may have no locality group for some reason */
3412 	lg = ac->ac_lg;
3413 	if (lg == NULL)
3414 		return 0;
3415 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3416 	if (order > PREALLOC_TB_SIZE - 1)
3417 		/* The max size of hash table is PREALLOC_TB_SIZE */
3418 		order = PREALLOC_TB_SIZE - 1;
3419 
3420 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3421 	/*
3422 	 * search for the prealloc space that is having
3423 	 * minimal distance from the goal block.
3424 	 */
3425 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3426 		rcu_read_lock();
3427 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3428 					pa_inode_list) {
3429 			spin_lock(&pa->pa_lock);
3430 			if (pa->pa_deleted == 0 &&
3431 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3432 
3433 				cpa = ext4_mb_check_group_pa(goal_block,
3434 								pa, cpa);
3435 			}
3436 			spin_unlock(&pa->pa_lock);
3437 		}
3438 		rcu_read_unlock();
3439 	}
3440 	if (cpa) {
3441 		ext4_mb_use_group_pa(ac, cpa);
3442 		ac->ac_criteria = 20;
3443 		return 1;
3444 	}
3445 	return 0;
3446 }
3447 
3448 /*
3449  * the function goes through all block freed in the group
3450  * but not yet committed and marks them used in in-core bitmap.
3451  * buddy must be generated from this bitmap
3452  * Need to be called with the ext4 group lock held
3453  */
3454 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3455 						ext4_group_t group)
3456 {
3457 	struct rb_node *n;
3458 	struct ext4_group_info *grp;
3459 	struct ext4_free_data *entry;
3460 
3461 	grp = ext4_get_group_info(sb, group);
3462 	n = rb_first(&(grp->bb_free_root));
3463 
3464 	while (n) {
3465 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3466 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3467 		n = rb_next(n);
3468 	}
3469 	return;
3470 }
3471 
3472 /*
3473  * the function goes through all preallocation in this group and marks them
3474  * used in in-core bitmap. buddy must be generated from this bitmap
3475  * Need to be called with ext4 group lock held
3476  */
3477 static noinline_for_stack
3478 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3479 					ext4_group_t group)
3480 {
3481 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3482 	struct ext4_prealloc_space *pa;
3483 	struct list_head *cur;
3484 	ext4_group_t groupnr;
3485 	ext4_grpblk_t start;
3486 	int preallocated = 0;
3487 	int len;
3488 
3489 	/* all form of preallocation discards first load group,
3490 	 * so the only competing code is preallocation use.
3491 	 * we don't need any locking here
3492 	 * notice we do NOT ignore preallocations with pa_deleted
3493 	 * otherwise we could leave used blocks available for
3494 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3495 	 * is dropping preallocation
3496 	 */
3497 	list_for_each(cur, &grp->bb_prealloc_list) {
3498 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3499 		spin_lock(&pa->pa_lock);
3500 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3501 					     &groupnr, &start);
3502 		len = pa->pa_len;
3503 		spin_unlock(&pa->pa_lock);
3504 		if (unlikely(len == 0))
3505 			continue;
3506 		BUG_ON(groupnr != group);
3507 		ext4_set_bits(bitmap, start, len);
3508 		preallocated += len;
3509 	}
3510 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3511 }
3512 
3513 static void ext4_mb_pa_callback(struct rcu_head *head)
3514 {
3515 	struct ext4_prealloc_space *pa;
3516 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3517 
3518 	BUG_ON(atomic_read(&pa->pa_count));
3519 	BUG_ON(pa->pa_deleted == 0);
3520 	kmem_cache_free(ext4_pspace_cachep, pa);
3521 }
3522 
3523 /*
3524  * drops a reference to preallocated space descriptor
3525  * if this was the last reference and the space is consumed
3526  */
3527 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3528 			struct super_block *sb, struct ext4_prealloc_space *pa)
3529 {
3530 	ext4_group_t grp;
3531 	ext4_fsblk_t grp_blk;
3532 
3533 	/* in this short window concurrent discard can set pa_deleted */
3534 	spin_lock(&pa->pa_lock);
3535 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3536 		spin_unlock(&pa->pa_lock);
3537 		return;
3538 	}
3539 
3540 	if (pa->pa_deleted == 1) {
3541 		spin_unlock(&pa->pa_lock);
3542 		return;
3543 	}
3544 
3545 	pa->pa_deleted = 1;
3546 	spin_unlock(&pa->pa_lock);
3547 
3548 	grp_blk = pa->pa_pstart;
3549 	/*
3550 	 * If doing group-based preallocation, pa_pstart may be in the
3551 	 * next group when pa is used up
3552 	 */
3553 	if (pa->pa_type == MB_GROUP_PA)
3554 		grp_blk--;
3555 
3556 	grp = ext4_get_group_number(sb, grp_blk);
3557 
3558 	/*
3559 	 * possible race:
3560 	 *
3561 	 *  P1 (buddy init)			P2 (regular allocation)
3562 	 *					find block B in PA
3563 	 *  copy on-disk bitmap to buddy
3564 	 *  					mark B in on-disk bitmap
3565 	 *					drop PA from group
3566 	 *  mark all PAs in buddy
3567 	 *
3568 	 * thus, P1 initializes buddy with B available. to prevent this
3569 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3570 	 * against that pair
3571 	 */
3572 	ext4_lock_group(sb, grp);
3573 	list_del(&pa->pa_group_list);
3574 	ext4_unlock_group(sb, grp);
3575 
3576 	spin_lock(pa->pa_obj_lock);
3577 	list_del_rcu(&pa->pa_inode_list);
3578 	spin_unlock(pa->pa_obj_lock);
3579 
3580 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3581 }
3582 
3583 /*
3584  * creates new preallocated space for given inode
3585  */
3586 static noinline_for_stack int
3587 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3588 {
3589 	struct super_block *sb = ac->ac_sb;
3590 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3591 	struct ext4_prealloc_space *pa;
3592 	struct ext4_group_info *grp;
3593 	struct ext4_inode_info *ei;
3594 
3595 	/* preallocate only when found space is larger then requested */
3596 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3597 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3598 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3599 
3600 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3601 	if (pa == NULL)
3602 		return -ENOMEM;
3603 
3604 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3605 		int winl;
3606 		int wins;
3607 		int win;
3608 		int offs;
3609 
3610 		/* we can't allocate as much as normalizer wants.
3611 		 * so, found space must get proper lstart
3612 		 * to cover original request */
3613 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3614 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3615 
3616 		/* we're limited by original request in that
3617 		 * logical block must be covered any way
3618 		 * winl is window we can move our chunk within */
3619 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3620 
3621 		/* also, we should cover whole original request */
3622 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3623 
3624 		/* the smallest one defines real window */
3625 		win = min(winl, wins);
3626 
3627 		offs = ac->ac_o_ex.fe_logical %
3628 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3629 		if (offs && offs < win)
3630 			win = offs;
3631 
3632 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3633 			EXT4_NUM_B2C(sbi, win);
3634 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3635 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3636 	}
3637 
3638 	/* preallocation can change ac_b_ex, thus we store actually
3639 	 * allocated blocks for history */
3640 	ac->ac_f_ex = ac->ac_b_ex;
3641 
3642 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3643 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3644 	pa->pa_len = ac->ac_b_ex.fe_len;
3645 	pa->pa_free = pa->pa_len;
3646 	atomic_set(&pa->pa_count, 1);
3647 	spin_lock_init(&pa->pa_lock);
3648 	INIT_LIST_HEAD(&pa->pa_inode_list);
3649 	INIT_LIST_HEAD(&pa->pa_group_list);
3650 	pa->pa_deleted = 0;
3651 	pa->pa_type = MB_INODE_PA;
3652 
3653 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3654 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3655 	trace_ext4_mb_new_inode_pa(ac, pa);
3656 
3657 	ext4_mb_use_inode_pa(ac, pa);
3658 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3659 
3660 	ei = EXT4_I(ac->ac_inode);
3661 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3662 
3663 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3664 	pa->pa_inode = ac->ac_inode;
3665 
3666 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3667 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3668 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3669 
3670 	spin_lock(pa->pa_obj_lock);
3671 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3672 	spin_unlock(pa->pa_obj_lock);
3673 
3674 	return 0;
3675 }
3676 
3677 /*
3678  * creates new preallocated space for locality group inodes belongs to
3679  */
3680 static noinline_for_stack int
3681 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3682 {
3683 	struct super_block *sb = ac->ac_sb;
3684 	struct ext4_locality_group *lg;
3685 	struct ext4_prealloc_space *pa;
3686 	struct ext4_group_info *grp;
3687 
3688 	/* preallocate only when found space is larger then requested */
3689 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3690 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3691 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3692 
3693 	BUG_ON(ext4_pspace_cachep == NULL);
3694 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3695 	if (pa == NULL)
3696 		return -ENOMEM;
3697 
3698 	/* preallocation can change ac_b_ex, thus we store actually
3699 	 * allocated blocks for history */
3700 	ac->ac_f_ex = ac->ac_b_ex;
3701 
3702 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3703 	pa->pa_lstart = pa->pa_pstart;
3704 	pa->pa_len = ac->ac_b_ex.fe_len;
3705 	pa->pa_free = pa->pa_len;
3706 	atomic_set(&pa->pa_count, 1);
3707 	spin_lock_init(&pa->pa_lock);
3708 	INIT_LIST_HEAD(&pa->pa_inode_list);
3709 	INIT_LIST_HEAD(&pa->pa_group_list);
3710 	pa->pa_deleted = 0;
3711 	pa->pa_type = MB_GROUP_PA;
3712 
3713 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3714 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3715 	trace_ext4_mb_new_group_pa(ac, pa);
3716 
3717 	ext4_mb_use_group_pa(ac, pa);
3718 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3719 
3720 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3721 	lg = ac->ac_lg;
3722 	BUG_ON(lg == NULL);
3723 
3724 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3725 	pa->pa_inode = NULL;
3726 
3727 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3728 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3729 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3730 
3731 	/*
3732 	 * We will later add the new pa to the right bucket
3733 	 * after updating the pa_free in ext4_mb_release_context
3734 	 */
3735 	return 0;
3736 }
3737 
3738 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3739 {
3740 	int err;
3741 
3742 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3743 		err = ext4_mb_new_group_pa(ac);
3744 	else
3745 		err = ext4_mb_new_inode_pa(ac);
3746 	return err;
3747 }
3748 
3749 /*
3750  * finds all unused blocks in on-disk bitmap, frees them in
3751  * in-core bitmap and buddy.
3752  * @pa must be unlinked from inode and group lists, so that
3753  * nobody else can find/use it.
3754  * the caller MUST hold group/inode locks.
3755  * TODO: optimize the case when there are no in-core structures yet
3756  */
3757 static noinline_for_stack int
3758 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3759 			struct ext4_prealloc_space *pa)
3760 {
3761 	struct super_block *sb = e4b->bd_sb;
3762 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3763 	unsigned int end;
3764 	unsigned int next;
3765 	ext4_group_t group;
3766 	ext4_grpblk_t bit;
3767 	unsigned long long grp_blk_start;
3768 	int err = 0;
3769 	int free = 0;
3770 
3771 	BUG_ON(pa->pa_deleted == 0);
3772 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3773 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3774 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3775 	end = bit + pa->pa_len;
3776 
3777 	while (bit < end) {
3778 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3779 		if (bit >= end)
3780 			break;
3781 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3782 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3783 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3784 			 (unsigned) next - bit, (unsigned) group);
3785 		free += next - bit;
3786 
3787 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3788 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3789 						    EXT4_C2B(sbi, bit)),
3790 					       next - bit);
3791 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3792 		bit = next + 1;
3793 	}
3794 	if (free != pa->pa_free) {
3795 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3796 			 "pa %p: logic %lu, phys. %lu, len %lu",
3797 			 pa, (unsigned long) pa->pa_lstart,
3798 			 (unsigned long) pa->pa_pstart,
3799 			 (unsigned long) pa->pa_len);
3800 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3801 					free, pa->pa_free);
3802 		/*
3803 		 * pa is already deleted so we use the value obtained
3804 		 * from the bitmap and continue.
3805 		 */
3806 	}
3807 	atomic_add(free, &sbi->s_mb_discarded);
3808 
3809 	return err;
3810 }
3811 
3812 static noinline_for_stack int
3813 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3814 				struct ext4_prealloc_space *pa)
3815 {
3816 	struct super_block *sb = e4b->bd_sb;
3817 	ext4_group_t group;
3818 	ext4_grpblk_t bit;
3819 
3820 	trace_ext4_mb_release_group_pa(sb, pa);
3821 	BUG_ON(pa->pa_deleted == 0);
3822 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3823 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3824 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3825 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3826 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3827 
3828 	return 0;
3829 }
3830 
3831 /*
3832  * releases all preallocations in given group
3833  *
3834  * first, we need to decide discard policy:
3835  * - when do we discard
3836  *   1) ENOSPC
3837  * - how many do we discard
3838  *   1) how many requested
3839  */
3840 static noinline_for_stack int
3841 ext4_mb_discard_group_preallocations(struct super_block *sb,
3842 					ext4_group_t group, int needed)
3843 {
3844 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3845 	struct buffer_head *bitmap_bh = NULL;
3846 	struct ext4_prealloc_space *pa, *tmp;
3847 	struct list_head list;
3848 	struct ext4_buddy e4b;
3849 	int err;
3850 	int busy = 0;
3851 	int free = 0;
3852 
3853 	mb_debug(1, "discard preallocation for group %u\n", group);
3854 
3855 	if (list_empty(&grp->bb_prealloc_list))
3856 		return 0;
3857 
3858 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3859 	if (IS_ERR(bitmap_bh)) {
3860 		err = PTR_ERR(bitmap_bh);
3861 		ext4_error(sb, "Error %d reading block bitmap for %u",
3862 			   err, group);
3863 		return 0;
3864 	}
3865 
3866 	err = ext4_mb_load_buddy(sb, group, &e4b);
3867 	if (err) {
3868 		ext4_error(sb, "Error loading buddy information for %u", group);
3869 		put_bh(bitmap_bh);
3870 		return 0;
3871 	}
3872 
3873 	if (needed == 0)
3874 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3875 
3876 	INIT_LIST_HEAD(&list);
3877 repeat:
3878 	ext4_lock_group(sb, group);
3879 	list_for_each_entry_safe(pa, tmp,
3880 				&grp->bb_prealloc_list, pa_group_list) {
3881 		spin_lock(&pa->pa_lock);
3882 		if (atomic_read(&pa->pa_count)) {
3883 			spin_unlock(&pa->pa_lock);
3884 			busy = 1;
3885 			continue;
3886 		}
3887 		if (pa->pa_deleted) {
3888 			spin_unlock(&pa->pa_lock);
3889 			continue;
3890 		}
3891 
3892 		/* seems this one can be freed ... */
3893 		pa->pa_deleted = 1;
3894 
3895 		/* we can trust pa_free ... */
3896 		free += pa->pa_free;
3897 
3898 		spin_unlock(&pa->pa_lock);
3899 
3900 		list_del(&pa->pa_group_list);
3901 		list_add(&pa->u.pa_tmp_list, &list);
3902 	}
3903 
3904 	/* if we still need more blocks and some PAs were used, try again */
3905 	if (free < needed && busy) {
3906 		busy = 0;
3907 		ext4_unlock_group(sb, group);
3908 		cond_resched();
3909 		goto repeat;
3910 	}
3911 
3912 	/* found anything to free? */
3913 	if (list_empty(&list)) {
3914 		BUG_ON(free != 0);
3915 		goto out;
3916 	}
3917 
3918 	/* now free all selected PAs */
3919 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3920 
3921 		/* remove from object (inode or locality group) */
3922 		spin_lock(pa->pa_obj_lock);
3923 		list_del_rcu(&pa->pa_inode_list);
3924 		spin_unlock(pa->pa_obj_lock);
3925 
3926 		if (pa->pa_type == MB_GROUP_PA)
3927 			ext4_mb_release_group_pa(&e4b, pa);
3928 		else
3929 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3930 
3931 		list_del(&pa->u.pa_tmp_list);
3932 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3933 	}
3934 
3935 out:
3936 	ext4_unlock_group(sb, group);
3937 	ext4_mb_unload_buddy(&e4b);
3938 	put_bh(bitmap_bh);
3939 	return free;
3940 }
3941 
3942 /*
3943  * releases all non-used preallocated blocks for given inode
3944  *
3945  * It's important to discard preallocations under i_data_sem
3946  * We don't want another block to be served from the prealloc
3947  * space when we are discarding the inode prealloc space.
3948  *
3949  * FIXME!! Make sure it is valid at all the call sites
3950  */
3951 void ext4_discard_preallocations(struct inode *inode)
3952 {
3953 	struct ext4_inode_info *ei = EXT4_I(inode);
3954 	struct super_block *sb = inode->i_sb;
3955 	struct buffer_head *bitmap_bh = NULL;
3956 	struct ext4_prealloc_space *pa, *tmp;
3957 	ext4_group_t group = 0;
3958 	struct list_head list;
3959 	struct ext4_buddy e4b;
3960 	int err;
3961 
3962 	if (!S_ISREG(inode->i_mode)) {
3963 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3964 		return;
3965 	}
3966 
3967 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3968 	trace_ext4_discard_preallocations(inode);
3969 
3970 	INIT_LIST_HEAD(&list);
3971 
3972 repeat:
3973 	/* first, collect all pa's in the inode */
3974 	spin_lock(&ei->i_prealloc_lock);
3975 	while (!list_empty(&ei->i_prealloc_list)) {
3976 		pa = list_entry(ei->i_prealloc_list.next,
3977 				struct ext4_prealloc_space, pa_inode_list);
3978 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3979 		spin_lock(&pa->pa_lock);
3980 		if (atomic_read(&pa->pa_count)) {
3981 			/* this shouldn't happen often - nobody should
3982 			 * use preallocation while we're discarding it */
3983 			spin_unlock(&pa->pa_lock);
3984 			spin_unlock(&ei->i_prealloc_lock);
3985 			ext4_msg(sb, KERN_ERR,
3986 				 "uh-oh! used pa while discarding");
3987 			WARN_ON(1);
3988 			schedule_timeout_uninterruptible(HZ);
3989 			goto repeat;
3990 
3991 		}
3992 		if (pa->pa_deleted == 0) {
3993 			pa->pa_deleted = 1;
3994 			spin_unlock(&pa->pa_lock);
3995 			list_del_rcu(&pa->pa_inode_list);
3996 			list_add(&pa->u.pa_tmp_list, &list);
3997 			continue;
3998 		}
3999 
4000 		/* someone is deleting pa right now */
4001 		spin_unlock(&pa->pa_lock);
4002 		spin_unlock(&ei->i_prealloc_lock);
4003 
4004 		/* we have to wait here because pa_deleted
4005 		 * doesn't mean pa is already unlinked from
4006 		 * the list. as we might be called from
4007 		 * ->clear_inode() the inode will get freed
4008 		 * and concurrent thread which is unlinking
4009 		 * pa from inode's list may access already
4010 		 * freed memory, bad-bad-bad */
4011 
4012 		/* XXX: if this happens too often, we can
4013 		 * add a flag to force wait only in case
4014 		 * of ->clear_inode(), but not in case of
4015 		 * regular truncate */
4016 		schedule_timeout_uninterruptible(HZ);
4017 		goto repeat;
4018 	}
4019 	spin_unlock(&ei->i_prealloc_lock);
4020 
4021 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4022 		BUG_ON(pa->pa_type != MB_INODE_PA);
4023 		group = ext4_get_group_number(sb, pa->pa_pstart);
4024 
4025 		err = ext4_mb_load_buddy(sb, group, &e4b);
4026 		if (err) {
4027 			ext4_error(sb, "Error loading buddy information for %u",
4028 					group);
4029 			continue;
4030 		}
4031 
4032 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4033 		if (IS_ERR(bitmap_bh)) {
4034 			err = PTR_ERR(bitmap_bh);
4035 			ext4_error(sb, "Error %d reading block bitmap for %u",
4036 					err, group);
4037 			ext4_mb_unload_buddy(&e4b);
4038 			continue;
4039 		}
4040 
4041 		ext4_lock_group(sb, group);
4042 		list_del(&pa->pa_group_list);
4043 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4044 		ext4_unlock_group(sb, group);
4045 
4046 		ext4_mb_unload_buddy(&e4b);
4047 		put_bh(bitmap_bh);
4048 
4049 		list_del(&pa->u.pa_tmp_list);
4050 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4051 	}
4052 }
4053 
4054 #ifdef CONFIG_EXT4_DEBUG
4055 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4056 {
4057 	struct super_block *sb = ac->ac_sb;
4058 	ext4_group_t ngroups, i;
4059 
4060 	if (!ext4_mballoc_debug ||
4061 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4062 		return;
4063 
4064 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4065 			" Allocation context details:");
4066 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4067 			ac->ac_status, ac->ac_flags);
4068 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4069 		 	"goal %lu/%lu/%lu@%lu, "
4070 			"best %lu/%lu/%lu@%lu cr %d",
4071 			(unsigned long)ac->ac_o_ex.fe_group,
4072 			(unsigned long)ac->ac_o_ex.fe_start,
4073 			(unsigned long)ac->ac_o_ex.fe_len,
4074 			(unsigned long)ac->ac_o_ex.fe_logical,
4075 			(unsigned long)ac->ac_g_ex.fe_group,
4076 			(unsigned long)ac->ac_g_ex.fe_start,
4077 			(unsigned long)ac->ac_g_ex.fe_len,
4078 			(unsigned long)ac->ac_g_ex.fe_logical,
4079 			(unsigned long)ac->ac_b_ex.fe_group,
4080 			(unsigned long)ac->ac_b_ex.fe_start,
4081 			(unsigned long)ac->ac_b_ex.fe_len,
4082 			(unsigned long)ac->ac_b_ex.fe_logical,
4083 			(int)ac->ac_criteria);
4084 	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4085 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4086 	ngroups = ext4_get_groups_count(sb);
4087 	for (i = 0; i < ngroups; i++) {
4088 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4089 		struct ext4_prealloc_space *pa;
4090 		ext4_grpblk_t start;
4091 		struct list_head *cur;
4092 		ext4_lock_group(sb, i);
4093 		list_for_each(cur, &grp->bb_prealloc_list) {
4094 			pa = list_entry(cur, struct ext4_prealloc_space,
4095 					pa_group_list);
4096 			spin_lock(&pa->pa_lock);
4097 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4098 						     NULL, &start);
4099 			spin_unlock(&pa->pa_lock);
4100 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4101 			       start, pa->pa_len);
4102 		}
4103 		ext4_unlock_group(sb, i);
4104 
4105 		if (grp->bb_free == 0)
4106 			continue;
4107 		printk(KERN_ERR "%u: %d/%d \n",
4108 		       i, grp->bb_free, grp->bb_fragments);
4109 	}
4110 	printk(KERN_ERR "\n");
4111 }
4112 #else
4113 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4114 {
4115 	return;
4116 }
4117 #endif
4118 
4119 /*
4120  * We use locality group preallocation for small size file. The size of the
4121  * file is determined by the current size or the resulting size after
4122  * allocation which ever is larger
4123  *
4124  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4125  */
4126 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4127 {
4128 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4129 	int bsbits = ac->ac_sb->s_blocksize_bits;
4130 	loff_t size, isize;
4131 
4132 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4133 		return;
4134 
4135 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4136 		return;
4137 
4138 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4139 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4140 		>> bsbits;
4141 
4142 	if ((size == isize) &&
4143 	    !ext4_fs_is_busy(sbi) &&
4144 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4145 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4146 		return;
4147 	}
4148 
4149 	if (sbi->s_mb_group_prealloc <= 0) {
4150 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4151 		return;
4152 	}
4153 
4154 	/* don't use group allocation for large files */
4155 	size = max(size, isize);
4156 	if (size > sbi->s_mb_stream_request) {
4157 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4158 		return;
4159 	}
4160 
4161 	BUG_ON(ac->ac_lg != NULL);
4162 	/*
4163 	 * locality group prealloc space are per cpu. The reason for having
4164 	 * per cpu locality group is to reduce the contention between block
4165 	 * request from multiple CPUs.
4166 	 */
4167 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4168 
4169 	/* we're going to use group allocation */
4170 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4171 
4172 	/* serialize all allocations in the group */
4173 	mutex_lock(&ac->ac_lg->lg_mutex);
4174 }
4175 
4176 static noinline_for_stack int
4177 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4178 				struct ext4_allocation_request *ar)
4179 {
4180 	struct super_block *sb = ar->inode->i_sb;
4181 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4182 	struct ext4_super_block *es = sbi->s_es;
4183 	ext4_group_t group;
4184 	unsigned int len;
4185 	ext4_fsblk_t goal;
4186 	ext4_grpblk_t block;
4187 
4188 	/* we can't allocate > group size */
4189 	len = ar->len;
4190 
4191 	/* just a dirty hack to filter too big requests  */
4192 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4193 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4194 
4195 	/* start searching from the goal */
4196 	goal = ar->goal;
4197 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4198 			goal >= ext4_blocks_count(es))
4199 		goal = le32_to_cpu(es->s_first_data_block);
4200 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4201 
4202 	/* set up allocation goals */
4203 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4204 	ac->ac_status = AC_STATUS_CONTINUE;
4205 	ac->ac_sb = sb;
4206 	ac->ac_inode = ar->inode;
4207 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4208 	ac->ac_o_ex.fe_group = group;
4209 	ac->ac_o_ex.fe_start = block;
4210 	ac->ac_o_ex.fe_len = len;
4211 	ac->ac_g_ex = ac->ac_o_ex;
4212 	ac->ac_flags = ar->flags;
4213 
4214 	/* we have to define context: we'll we work with a file or
4215 	 * locality group. this is a policy, actually */
4216 	ext4_mb_group_or_file(ac);
4217 
4218 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4219 			"left: %u/%u, right %u/%u to %swritable\n",
4220 			(unsigned) ar->len, (unsigned) ar->logical,
4221 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4222 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4223 			(unsigned) ar->lright, (unsigned) ar->pright,
4224 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4225 	return 0;
4226 
4227 }
4228 
4229 static noinline_for_stack void
4230 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4231 					struct ext4_locality_group *lg,
4232 					int order, int total_entries)
4233 {
4234 	ext4_group_t group = 0;
4235 	struct ext4_buddy e4b;
4236 	struct list_head discard_list;
4237 	struct ext4_prealloc_space *pa, *tmp;
4238 
4239 	mb_debug(1, "discard locality group preallocation\n");
4240 
4241 	INIT_LIST_HEAD(&discard_list);
4242 
4243 	spin_lock(&lg->lg_prealloc_lock);
4244 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4245 						pa_inode_list) {
4246 		spin_lock(&pa->pa_lock);
4247 		if (atomic_read(&pa->pa_count)) {
4248 			/*
4249 			 * This is the pa that we just used
4250 			 * for block allocation. So don't
4251 			 * free that
4252 			 */
4253 			spin_unlock(&pa->pa_lock);
4254 			continue;
4255 		}
4256 		if (pa->pa_deleted) {
4257 			spin_unlock(&pa->pa_lock);
4258 			continue;
4259 		}
4260 		/* only lg prealloc space */
4261 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4262 
4263 		/* seems this one can be freed ... */
4264 		pa->pa_deleted = 1;
4265 		spin_unlock(&pa->pa_lock);
4266 
4267 		list_del_rcu(&pa->pa_inode_list);
4268 		list_add(&pa->u.pa_tmp_list, &discard_list);
4269 
4270 		total_entries--;
4271 		if (total_entries <= 5) {
4272 			/*
4273 			 * we want to keep only 5 entries
4274 			 * allowing it to grow to 8. This
4275 			 * mak sure we don't call discard
4276 			 * soon for this list.
4277 			 */
4278 			break;
4279 		}
4280 	}
4281 	spin_unlock(&lg->lg_prealloc_lock);
4282 
4283 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4284 
4285 		group = ext4_get_group_number(sb, pa->pa_pstart);
4286 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4287 			ext4_error(sb, "Error loading buddy information for %u",
4288 					group);
4289 			continue;
4290 		}
4291 		ext4_lock_group(sb, group);
4292 		list_del(&pa->pa_group_list);
4293 		ext4_mb_release_group_pa(&e4b, pa);
4294 		ext4_unlock_group(sb, group);
4295 
4296 		ext4_mb_unload_buddy(&e4b);
4297 		list_del(&pa->u.pa_tmp_list);
4298 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4299 	}
4300 }
4301 
4302 /*
4303  * We have incremented pa_count. So it cannot be freed at this
4304  * point. Also we hold lg_mutex. So no parallel allocation is
4305  * possible from this lg. That means pa_free cannot be updated.
4306  *
4307  * A parallel ext4_mb_discard_group_preallocations is possible.
4308  * which can cause the lg_prealloc_list to be updated.
4309  */
4310 
4311 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4312 {
4313 	int order, added = 0, lg_prealloc_count = 1;
4314 	struct super_block *sb = ac->ac_sb;
4315 	struct ext4_locality_group *lg = ac->ac_lg;
4316 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4317 
4318 	order = fls(pa->pa_free) - 1;
4319 	if (order > PREALLOC_TB_SIZE - 1)
4320 		/* The max size of hash table is PREALLOC_TB_SIZE */
4321 		order = PREALLOC_TB_SIZE - 1;
4322 	/* Add the prealloc space to lg */
4323 	spin_lock(&lg->lg_prealloc_lock);
4324 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4325 						pa_inode_list) {
4326 		spin_lock(&tmp_pa->pa_lock);
4327 		if (tmp_pa->pa_deleted) {
4328 			spin_unlock(&tmp_pa->pa_lock);
4329 			continue;
4330 		}
4331 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4332 			/* Add to the tail of the previous entry */
4333 			list_add_tail_rcu(&pa->pa_inode_list,
4334 						&tmp_pa->pa_inode_list);
4335 			added = 1;
4336 			/*
4337 			 * we want to count the total
4338 			 * number of entries in the list
4339 			 */
4340 		}
4341 		spin_unlock(&tmp_pa->pa_lock);
4342 		lg_prealloc_count++;
4343 	}
4344 	if (!added)
4345 		list_add_tail_rcu(&pa->pa_inode_list,
4346 					&lg->lg_prealloc_list[order]);
4347 	spin_unlock(&lg->lg_prealloc_lock);
4348 
4349 	/* Now trim the list to be not more than 8 elements */
4350 	if (lg_prealloc_count > 8) {
4351 		ext4_mb_discard_lg_preallocations(sb, lg,
4352 						  order, lg_prealloc_count);
4353 		return;
4354 	}
4355 	return ;
4356 }
4357 
4358 /*
4359  * release all resource we used in allocation
4360  */
4361 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4362 {
4363 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4364 	struct ext4_prealloc_space *pa = ac->ac_pa;
4365 	if (pa) {
4366 		if (pa->pa_type == MB_GROUP_PA) {
4367 			/* see comment in ext4_mb_use_group_pa() */
4368 			spin_lock(&pa->pa_lock);
4369 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4370 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4371 			pa->pa_free -= ac->ac_b_ex.fe_len;
4372 			pa->pa_len -= ac->ac_b_ex.fe_len;
4373 			spin_unlock(&pa->pa_lock);
4374 		}
4375 	}
4376 	if (pa) {
4377 		/*
4378 		 * We want to add the pa to the right bucket.
4379 		 * Remove it from the list and while adding
4380 		 * make sure the list to which we are adding
4381 		 * doesn't grow big.
4382 		 */
4383 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4384 			spin_lock(pa->pa_obj_lock);
4385 			list_del_rcu(&pa->pa_inode_list);
4386 			spin_unlock(pa->pa_obj_lock);
4387 			ext4_mb_add_n_trim(ac);
4388 		}
4389 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4390 	}
4391 	if (ac->ac_bitmap_page)
4392 		put_page(ac->ac_bitmap_page);
4393 	if (ac->ac_buddy_page)
4394 		put_page(ac->ac_buddy_page);
4395 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4396 		mutex_unlock(&ac->ac_lg->lg_mutex);
4397 	ext4_mb_collect_stats(ac);
4398 	return 0;
4399 }
4400 
4401 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4402 {
4403 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4404 	int ret;
4405 	int freed = 0;
4406 
4407 	trace_ext4_mb_discard_preallocations(sb, needed);
4408 	for (i = 0; i < ngroups && needed > 0; i++) {
4409 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4410 		freed += ret;
4411 		needed -= ret;
4412 	}
4413 
4414 	return freed;
4415 }
4416 
4417 /*
4418  * Main entry point into mballoc to allocate blocks
4419  * it tries to use preallocation first, then falls back
4420  * to usual allocation
4421  */
4422 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4423 				struct ext4_allocation_request *ar, int *errp)
4424 {
4425 	int freed;
4426 	struct ext4_allocation_context *ac = NULL;
4427 	struct ext4_sb_info *sbi;
4428 	struct super_block *sb;
4429 	ext4_fsblk_t block = 0;
4430 	unsigned int inquota = 0;
4431 	unsigned int reserv_clstrs = 0;
4432 
4433 	might_sleep();
4434 	sb = ar->inode->i_sb;
4435 	sbi = EXT4_SB(sb);
4436 
4437 	trace_ext4_request_blocks(ar);
4438 
4439 	/* Allow to use superuser reservation for quota file */
4440 	if (IS_NOQUOTA(ar->inode))
4441 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4442 
4443 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4444 		/* Without delayed allocation we need to verify
4445 		 * there is enough free blocks to do block allocation
4446 		 * and verify allocation doesn't exceed the quota limits.
4447 		 */
4448 		while (ar->len &&
4449 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4450 
4451 			/* let others to free the space */
4452 			cond_resched();
4453 			ar->len = ar->len >> 1;
4454 		}
4455 		if (!ar->len) {
4456 			*errp = -ENOSPC;
4457 			return 0;
4458 		}
4459 		reserv_clstrs = ar->len;
4460 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4461 			dquot_alloc_block_nofail(ar->inode,
4462 						 EXT4_C2B(sbi, ar->len));
4463 		} else {
4464 			while (ar->len &&
4465 				dquot_alloc_block(ar->inode,
4466 						  EXT4_C2B(sbi, ar->len))) {
4467 
4468 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4469 				ar->len--;
4470 			}
4471 		}
4472 		inquota = ar->len;
4473 		if (ar->len == 0) {
4474 			*errp = -EDQUOT;
4475 			goto out;
4476 		}
4477 	}
4478 
4479 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4480 	if (!ac) {
4481 		ar->len = 0;
4482 		*errp = -ENOMEM;
4483 		goto out;
4484 	}
4485 
4486 	*errp = ext4_mb_initialize_context(ac, ar);
4487 	if (*errp) {
4488 		ar->len = 0;
4489 		goto out;
4490 	}
4491 
4492 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4493 	if (!ext4_mb_use_preallocated(ac)) {
4494 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4495 		ext4_mb_normalize_request(ac, ar);
4496 repeat:
4497 		/* allocate space in core */
4498 		*errp = ext4_mb_regular_allocator(ac);
4499 		if (*errp)
4500 			goto discard_and_exit;
4501 
4502 		/* as we've just preallocated more space than
4503 		 * user requested originally, we store allocated
4504 		 * space in a special descriptor */
4505 		if (ac->ac_status == AC_STATUS_FOUND &&
4506 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4507 			*errp = ext4_mb_new_preallocation(ac);
4508 		if (*errp) {
4509 		discard_and_exit:
4510 			ext4_discard_allocated_blocks(ac);
4511 			goto errout;
4512 		}
4513 	}
4514 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4515 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4516 		if (*errp == -EAGAIN) {
4517 			/*
4518 			 * drop the reference that we took
4519 			 * in ext4_mb_use_best_found
4520 			 */
4521 			ext4_mb_release_context(ac);
4522 			ac->ac_b_ex.fe_group = 0;
4523 			ac->ac_b_ex.fe_start = 0;
4524 			ac->ac_b_ex.fe_len = 0;
4525 			ac->ac_status = AC_STATUS_CONTINUE;
4526 			goto repeat;
4527 		} else if (*errp) {
4528 			ext4_discard_allocated_blocks(ac);
4529 			goto errout;
4530 		} else {
4531 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4532 			ar->len = ac->ac_b_ex.fe_len;
4533 		}
4534 	} else {
4535 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4536 		if (freed)
4537 			goto repeat;
4538 		*errp = -ENOSPC;
4539 	}
4540 
4541 errout:
4542 	if (*errp) {
4543 		ac->ac_b_ex.fe_len = 0;
4544 		ar->len = 0;
4545 		ext4_mb_show_ac(ac);
4546 	}
4547 	ext4_mb_release_context(ac);
4548 out:
4549 	if (ac)
4550 		kmem_cache_free(ext4_ac_cachep, ac);
4551 	if (inquota && ar->len < inquota)
4552 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4553 	if (!ar->len) {
4554 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4555 			/* release all the reserved blocks if non delalloc */
4556 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4557 						reserv_clstrs);
4558 	}
4559 
4560 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4561 
4562 	return block;
4563 }
4564 
4565 /*
4566  * We can merge two free data extents only if the physical blocks
4567  * are contiguous, AND the extents were freed by the same transaction,
4568  * AND the blocks are associated with the same group.
4569  */
4570 static int can_merge(struct ext4_free_data *entry1,
4571 			struct ext4_free_data *entry2)
4572 {
4573 	if ((entry1->efd_tid == entry2->efd_tid) &&
4574 	    (entry1->efd_group == entry2->efd_group) &&
4575 	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4576 		return 1;
4577 	return 0;
4578 }
4579 
4580 static noinline_for_stack int
4581 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4582 		      struct ext4_free_data *new_entry)
4583 {
4584 	ext4_group_t group = e4b->bd_group;
4585 	ext4_grpblk_t cluster;
4586 	struct ext4_free_data *entry;
4587 	struct ext4_group_info *db = e4b->bd_info;
4588 	struct super_block *sb = e4b->bd_sb;
4589 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4590 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4591 	struct rb_node *parent = NULL, *new_node;
4592 
4593 	BUG_ON(!ext4_handle_valid(handle));
4594 	BUG_ON(e4b->bd_bitmap_page == NULL);
4595 	BUG_ON(e4b->bd_buddy_page == NULL);
4596 
4597 	new_node = &new_entry->efd_node;
4598 	cluster = new_entry->efd_start_cluster;
4599 
4600 	if (!*n) {
4601 		/* first free block exent. We need to
4602 		   protect buddy cache from being freed,
4603 		 * otherwise we'll refresh it from
4604 		 * on-disk bitmap and lose not-yet-available
4605 		 * blocks */
4606 		get_page(e4b->bd_buddy_page);
4607 		get_page(e4b->bd_bitmap_page);
4608 	}
4609 	while (*n) {
4610 		parent = *n;
4611 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4612 		if (cluster < entry->efd_start_cluster)
4613 			n = &(*n)->rb_left;
4614 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4615 			n = &(*n)->rb_right;
4616 		else {
4617 			ext4_grp_locked_error(sb, group, 0,
4618 				ext4_group_first_block_no(sb, group) +
4619 				EXT4_C2B(sbi, cluster),
4620 				"Block already on to-be-freed list");
4621 			return 0;
4622 		}
4623 	}
4624 
4625 	rb_link_node(new_node, parent, n);
4626 	rb_insert_color(new_node, &db->bb_free_root);
4627 
4628 	/* Now try to see the extent can be merged to left and right */
4629 	node = rb_prev(new_node);
4630 	if (node) {
4631 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4632 		if (can_merge(entry, new_entry) &&
4633 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4634 			new_entry->efd_start_cluster = entry->efd_start_cluster;
4635 			new_entry->efd_count += entry->efd_count;
4636 			rb_erase(node, &(db->bb_free_root));
4637 			kmem_cache_free(ext4_free_data_cachep, entry);
4638 		}
4639 	}
4640 
4641 	node = rb_next(new_node);
4642 	if (node) {
4643 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4644 		if (can_merge(new_entry, entry) &&
4645 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4646 			new_entry->efd_count += entry->efd_count;
4647 			rb_erase(node, &(db->bb_free_root));
4648 			kmem_cache_free(ext4_free_data_cachep, entry);
4649 		}
4650 	}
4651 	/* Add the extent to transaction's private list */
4652 	ext4_journal_callback_add(handle, ext4_free_data_callback,
4653 				  &new_entry->efd_jce);
4654 	return 0;
4655 }
4656 
4657 /**
4658  * ext4_free_blocks() -- Free given blocks and update quota
4659  * @handle:		handle for this transaction
4660  * @inode:		inode
4661  * @block:		start physical block to free
4662  * @count:		number of blocks to count
4663  * @flags:		flags used by ext4_free_blocks
4664  */
4665 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4666 		      struct buffer_head *bh, ext4_fsblk_t block,
4667 		      unsigned long count, int flags)
4668 {
4669 	struct buffer_head *bitmap_bh = NULL;
4670 	struct super_block *sb = inode->i_sb;
4671 	struct ext4_group_desc *gdp;
4672 	unsigned int overflow;
4673 	ext4_grpblk_t bit;
4674 	struct buffer_head *gd_bh;
4675 	ext4_group_t block_group;
4676 	struct ext4_sb_info *sbi;
4677 	struct ext4_buddy e4b;
4678 	unsigned int count_clusters;
4679 	int err = 0;
4680 	int ret;
4681 
4682 	might_sleep();
4683 	if (bh) {
4684 		if (block)
4685 			BUG_ON(block != bh->b_blocknr);
4686 		else
4687 			block = bh->b_blocknr;
4688 	}
4689 
4690 	sbi = EXT4_SB(sb);
4691 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4692 	    !ext4_data_block_valid(sbi, block, count)) {
4693 		ext4_error(sb, "Freeing blocks not in datazone - "
4694 			   "block = %llu, count = %lu", block, count);
4695 		goto error_return;
4696 	}
4697 
4698 	ext4_debug("freeing block %llu\n", block);
4699 	trace_ext4_free_blocks(inode, block, count, flags);
4700 
4701 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4702 		BUG_ON(count > 1);
4703 
4704 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4705 			    inode, bh, block);
4706 	}
4707 
4708 	/*
4709 	 * If the extent to be freed does not begin on a cluster
4710 	 * boundary, we need to deal with partial clusters at the
4711 	 * beginning and end of the extent.  Normally we will free
4712 	 * blocks at the beginning or the end unless we are explicitly
4713 	 * requested to avoid doing so.
4714 	 */
4715 	overflow = EXT4_PBLK_COFF(sbi, block);
4716 	if (overflow) {
4717 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4718 			overflow = sbi->s_cluster_ratio - overflow;
4719 			block += overflow;
4720 			if (count > overflow)
4721 				count -= overflow;
4722 			else
4723 				return;
4724 		} else {
4725 			block -= overflow;
4726 			count += overflow;
4727 		}
4728 	}
4729 	overflow = EXT4_LBLK_COFF(sbi, count);
4730 	if (overflow) {
4731 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4732 			if (count > overflow)
4733 				count -= overflow;
4734 			else
4735 				return;
4736 		} else
4737 			count += sbi->s_cluster_ratio - overflow;
4738 	}
4739 
4740 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4741 		int i;
4742 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4743 
4744 		for (i = 0; i < count; i++) {
4745 			cond_resched();
4746 			if (is_metadata)
4747 				bh = sb_find_get_block(inode->i_sb, block + i);
4748 			ext4_forget(handle, is_metadata, inode, bh, block + i);
4749 		}
4750 	}
4751 
4752 do_more:
4753 	overflow = 0;
4754 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4755 
4756 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4757 			ext4_get_group_info(sb, block_group))))
4758 		return;
4759 
4760 	/*
4761 	 * Check to see if we are freeing blocks across a group
4762 	 * boundary.
4763 	 */
4764 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4765 		overflow = EXT4_C2B(sbi, bit) + count -
4766 			EXT4_BLOCKS_PER_GROUP(sb);
4767 		count -= overflow;
4768 	}
4769 	count_clusters = EXT4_NUM_B2C(sbi, count);
4770 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4771 	if (IS_ERR(bitmap_bh)) {
4772 		err = PTR_ERR(bitmap_bh);
4773 		bitmap_bh = NULL;
4774 		goto error_return;
4775 	}
4776 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4777 	if (!gdp) {
4778 		err = -EIO;
4779 		goto error_return;
4780 	}
4781 
4782 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4783 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4784 	    in_range(block, ext4_inode_table(sb, gdp),
4785 		     EXT4_SB(sb)->s_itb_per_group) ||
4786 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4787 		     EXT4_SB(sb)->s_itb_per_group)) {
4788 
4789 		ext4_error(sb, "Freeing blocks in system zone - "
4790 			   "Block = %llu, count = %lu", block, count);
4791 		/* err = 0. ext4_std_error should be a no op */
4792 		goto error_return;
4793 	}
4794 
4795 	BUFFER_TRACE(bitmap_bh, "getting write access");
4796 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4797 	if (err)
4798 		goto error_return;
4799 
4800 	/*
4801 	 * We are about to modify some metadata.  Call the journal APIs
4802 	 * to unshare ->b_data if a currently-committing transaction is
4803 	 * using it
4804 	 */
4805 	BUFFER_TRACE(gd_bh, "get_write_access");
4806 	err = ext4_journal_get_write_access(handle, gd_bh);
4807 	if (err)
4808 		goto error_return;
4809 #ifdef AGGRESSIVE_CHECK
4810 	{
4811 		int i;
4812 		for (i = 0; i < count_clusters; i++)
4813 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4814 	}
4815 #endif
4816 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4817 
4818 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4819 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4820 				     GFP_NOFS|__GFP_NOFAIL);
4821 	if (err)
4822 		goto error_return;
4823 
4824 	/*
4825 	 * We need to make sure we don't reuse the freed block until after the
4826 	 * transaction is committed. We make an exception if the inode is to be
4827 	 * written in writeback mode since writeback mode has weak data
4828 	 * consistency guarantees.
4829 	 */
4830 	if (ext4_handle_valid(handle) &&
4831 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4832 	     !ext4_should_writeback_data(inode))) {
4833 		struct ext4_free_data *new_entry;
4834 		/*
4835 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4836 		 * to fail.
4837 		 */
4838 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4839 				GFP_NOFS|__GFP_NOFAIL);
4840 		new_entry->efd_start_cluster = bit;
4841 		new_entry->efd_group = block_group;
4842 		new_entry->efd_count = count_clusters;
4843 		new_entry->efd_tid = handle->h_transaction->t_tid;
4844 
4845 		ext4_lock_group(sb, block_group);
4846 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4847 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4848 	} else {
4849 		/* need to update group_info->bb_free and bitmap
4850 		 * with group lock held. generate_buddy look at
4851 		 * them with group lock_held
4852 		 */
4853 		if (test_opt(sb, DISCARD)) {
4854 			err = ext4_issue_discard(sb, block_group, bit, count);
4855 			if (err && err != -EOPNOTSUPP)
4856 				ext4_msg(sb, KERN_WARNING, "discard request in"
4857 					 " group:%d block:%d count:%lu failed"
4858 					 " with %d", block_group, bit, count,
4859 					 err);
4860 		} else
4861 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4862 
4863 		ext4_lock_group(sb, block_group);
4864 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4865 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4866 	}
4867 
4868 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4869 	ext4_free_group_clusters_set(sb, gdp, ret);
4870 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4871 	ext4_group_desc_csum_set(sb, block_group, gdp);
4872 	ext4_unlock_group(sb, block_group);
4873 
4874 	if (sbi->s_log_groups_per_flex) {
4875 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4876 		atomic64_add(count_clusters,
4877 			     &sbi->s_flex_groups[flex_group].free_clusters);
4878 	}
4879 
4880 	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4881 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4882 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4883 
4884 	ext4_mb_unload_buddy(&e4b);
4885 
4886 	/* We dirtied the bitmap block */
4887 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4888 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4889 
4890 	/* And the group descriptor block */
4891 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4892 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4893 	if (!err)
4894 		err = ret;
4895 
4896 	if (overflow && !err) {
4897 		block += count;
4898 		count = overflow;
4899 		put_bh(bitmap_bh);
4900 		goto do_more;
4901 	}
4902 error_return:
4903 	brelse(bitmap_bh);
4904 	ext4_std_error(sb, err);
4905 	return;
4906 }
4907 
4908 /**
4909  * ext4_group_add_blocks() -- Add given blocks to an existing group
4910  * @handle:			handle to this transaction
4911  * @sb:				super block
4912  * @block:			start physical block to add to the block group
4913  * @count:			number of blocks to free
4914  *
4915  * This marks the blocks as free in the bitmap and buddy.
4916  */
4917 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4918 			 ext4_fsblk_t block, unsigned long count)
4919 {
4920 	struct buffer_head *bitmap_bh = NULL;
4921 	struct buffer_head *gd_bh;
4922 	ext4_group_t block_group;
4923 	ext4_grpblk_t bit;
4924 	unsigned int i;
4925 	struct ext4_group_desc *desc;
4926 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4927 	struct ext4_buddy e4b;
4928 	int err = 0, ret, blk_free_count;
4929 	ext4_grpblk_t blocks_freed;
4930 
4931 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4932 
4933 	if (count == 0)
4934 		return 0;
4935 
4936 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4937 	/*
4938 	 * Check to see if we are freeing blocks across a group
4939 	 * boundary.
4940 	 */
4941 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4942 		ext4_warning(sb, "too much blocks added to group %u",
4943 			     block_group);
4944 		err = -EINVAL;
4945 		goto error_return;
4946 	}
4947 
4948 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4949 	if (IS_ERR(bitmap_bh)) {
4950 		err = PTR_ERR(bitmap_bh);
4951 		bitmap_bh = NULL;
4952 		goto error_return;
4953 	}
4954 
4955 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4956 	if (!desc) {
4957 		err = -EIO;
4958 		goto error_return;
4959 	}
4960 
4961 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4962 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4963 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4964 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4965 		     sbi->s_itb_per_group)) {
4966 		ext4_error(sb, "Adding blocks in system zones - "
4967 			   "Block = %llu, count = %lu",
4968 			   block, count);
4969 		err = -EINVAL;
4970 		goto error_return;
4971 	}
4972 
4973 	BUFFER_TRACE(bitmap_bh, "getting write access");
4974 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4975 	if (err)
4976 		goto error_return;
4977 
4978 	/*
4979 	 * We are about to modify some metadata.  Call the journal APIs
4980 	 * to unshare ->b_data if a currently-committing transaction is
4981 	 * using it
4982 	 */
4983 	BUFFER_TRACE(gd_bh, "get_write_access");
4984 	err = ext4_journal_get_write_access(handle, gd_bh);
4985 	if (err)
4986 		goto error_return;
4987 
4988 	for (i = 0, blocks_freed = 0; i < count; i++) {
4989 		BUFFER_TRACE(bitmap_bh, "clear bit");
4990 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4991 			ext4_error(sb, "bit already cleared for block %llu",
4992 				   (ext4_fsblk_t)(block + i));
4993 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4994 		} else {
4995 			blocks_freed++;
4996 		}
4997 	}
4998 
4999 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
5000 	if (err)
5001 		goto error_return;
5002 
5003 	/*
5004 	 * need to update group_info->bb_free and bitmap
5005 	 * with group lock held. generate_buddy look at
5006 	 * them with group lock_held
5007 	 */
5008 	ext4_lock_group(sb, block_group);
5009 	mb_clear_bits(bitmap_bh->b_data, bit, count);
5010 	mb_free_blocks(NULL, &e4b, bit, count);
5011 	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
5012 	ext4_free_group_clusters_set(sb, desc, blk_free_count);
5013 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5014 	ext4_group_desc_csum_set(sb, block_group, desc);
5015 	ext4_unlock_group(sb, block_group);
5016 	percpu_counter_add(&sbi->s_freeclusters_counter,
5017 			   EXT4_NUM_B2C(sbi, blocks_freed));
5018 
5019 	if (sbi->s_log_groups_per_flex) {
5020 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5021 		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5022 			     &sbi->s_flex_groups[flex_group].free_clusters);
5023 	}
5024 
5025 	ext4_mb_unload_buddy(&e4b);
5026 
5027 	/* We dirtied the bitmap block */
5028 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5029 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5030 
5031 	/* And the group descriptor block */
5032 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5033 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5034 	if (!err)
5035 		err = ret;
5036 
5037 error_return:
5038 	brelse(bitmap_bh);
5039 	ext4_std_error(sb, err);
5040 	return err;
5041 }
5042 
5043 /**
5044  * ext4_trim_extent -- function to TRIM one single free extent in the group
5045  * @sb:		super block for the file system
5046  * @start:	starting block of the free extent in the alloc. group
5047  * @count:	number of blocks to TRIM
5048  * @group:	alloc. group we are working with
5049  * @e4b:	ext4 buddy for the group
5050  *
5051  * Trim "count" blocks starting at "start" in the "group". To assure that no
5052  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5053  * be called with under the group lock.
5054  */
5055 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5056 			     ext4_group_t group, struct ext4_buddy *e4b)
5057 __releases(bitlock)
5058 __acquires(bitlock)
5059 {
5060 	struct ext4_free_extent ex;
5061 	int ret = 0;
5062 
5063 	trace_ext4_trim_extent(sb, group, start, count);
5064 
5065 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5066 
5067 	ex.fe_start = start;
5068 	ex.fe_group = group;
5069 	ex.fe_len = count;
5070 
5071 	/*
5072 	 * Mark blocks used, so no one can reuse them while
5073 	 * being trimmed.
5074 	 */
5075 	mb_mark_used(e4b, &ex);
5076 	ext4_unlock_group(sb, group);
5077 	ret = ext4_issue_discard(sb, group, start, count);
5078 	ext4_lock_group(sb, group);
5079 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5080 	return ret;
5081 }
5082 
5083 /**
5084  * ext4_trim_all_free -- function to trim all free space in alloc. group
5085  * @sb:			super block for file system
5086  * @group:		group to be trimmed
5087  * @start:		first group block to examine
5088  * @max:		last group block to examine
5089  * @minblocks:		minimum extent block count
5090  *
5091  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5092  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5093  * the extent.
5094  *
5095  *
5096  * ext4_trim_all_free walks through group's block bitmap searching for free
5097  * extents. When the free extent is found, mark it as used in group buddy
5098  * bitmap. Then issue a TRIM command on this extent and free the extent in
5099  * the group buddy bitmap. This is done until whole group is scanned.
5100  */
5101 static ext4_grpblk_t
5102 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5103 		   ext4_grpblk_t start, ext4_grpblk_t max,
5104 		   ext4_grpblk_t minblocks)
5105 {
5106 	void *bitmap;
5107 	ext4_grpblk_t next, count = 0, free_count = 0;
5108 	struct ext4_buddy e4b;
5109 	int ret = 0;
5110 
5111 	trace_ext4_trim_all_free(sb, group, start, max);
5112 
5113 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5114 	if (ret) {
5115 		ext4_error(sb, "Error in loading buddy "
5116 				"information for %u", group);
5117 		return ret;
5118 	}
5119 	bitmap = e4b.bd_bitmap;
5120 
5121 	ext4_lock_group(sb, group);
5122 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5123 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5124 		goto out;
5125 
5126 	start = (e4b.bd_info->bb_first_free > start) ?
5127 		e4b.bd_info->bb_first_free : start;
5128 
5129 	while (start <= max) {
5130 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5131 		if (start > max)
5132 			break;
5133 		next = mb_find_next_bit(bitmap, max + 1, start);
5134 
5135 		if ((next - start) >= minblocks) {
5136 			ret = ext4_trim_extent(sb, start,
5137 					       next - start, group, &e4b);
5138 			if (ret && ret != -EOPNOTSUPP)
5139 				break;
5140 			ret = 0;
5141 			count += next - start;
5142 		}
5143 		free_count += next - start;
5144 		start = next + 1;
5145 
5146 		if (fatal_signal_pending(current)) {
5147 			count = -ERESTARTSYS;
5148 			break;
5149 		}
5150 
5151 		if (need_resched()) {
5152 			ext4_unlock_group(sb, group);
5153 			cond_resched();
5154 			ext4_lock_group(sb, group);
5155 		}
5156 
5157 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5158 			break;
5159 	}
5160 
5161 	if (!ret) {
5162 		ret = count;
5163 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5164 	}
5165 out:
5166 	ext4_unlock_group(sb, group);
5167 	ext4_mb_unload_buddy(&e4b);
5168 
5169 	ext4_debug("trimmed %d blocks in the group %d\n",
5170 		count, group);
5171 
5172 	return ret;
5173 }
5174 
5175 /**
5176  * ext4_trim_fs() -- trim ioctl handle function
5177  * @sb:			superblock for filesystem
5178  * @range:		fstrim_range structure
5179  *
5180  * start:	First Byte to trim
5181  * len:		number of Bytes to trim from start
5182  * minlen:	minimum extent length in Bytes
5183  * ext4_trim_fs goes through all allocation groups containing Bytes from
5184  * start to start+len. For each such a group ext4_trim_all_free function
5185  * is invoked to trim all free space.
5186  */
5187 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5188 {
5189 	struct ext4_group_info *grp;
5190 	ext4_group_t group, first_group, last_group;
5191 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5192 	uint64_t start, end, minlen, trimmed = 0;
5193 	ext4_fsblk_t first_data_blk =
5194 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5195 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5196 	int ret = 0;
5197 
5198 	start = range->start >> sb->s_blocksize_bits;
5199 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5200 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5201 			      range->minlen >> sb->s_blocksize_bits);
5202 
5203 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5204 	    start >= max_blks ||
5205 	    range->len < sb->s_blocksize)
5206 		return -EINVAL;
5207 	if (end >= max_blks)
5208 		end = max_blks - 1;
5209 	if (end <= first_data_blk)
5210 		goto out;
5211 	if (start < first_data_blk)
5212 		start = first_data_blk;
5213 
5214 	/* Determine first and last group to examine based on start and end */
5215 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5216 				     &first_group, &first_cluster);
5217 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5218 				     &last_group, &last_cluster);
5219 
5220 	/* end now represents the last cluster to discard in this group */
5221 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5222 
5223 	for (group = first_group; group <= last_group; group++) {
5224 		grp = ext4_get_group_info(sb, group);
5225 		/* We only do this if the grp has never been initialized */
5226 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5227 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5228 			if (ret)
5229 				break;
5230 		}
5231 
5232 		/*
5233 		 * For all the groups except the last one, last cluster will
5234 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5235 		 * change it for the last group, note that last_cluster is
5236 		 * already computed earlier by ext4_get_group_no_and_offset()
5237 		 */
5238 		if (group == last_group)
5239 			end = last_cluster;
5240 
5241 		if (grp->bb_free >= minlen) {
5242 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5243 						end, minlen);
5244 			if (cnt < 0) {
5245 				ret = cnt;
5246 				break;
5247 			}
5248 			trimmed += cnt;
5249 		}
5250 
5251 		/*
5252 		 * For every group except the first one, we are sure
5253 		 * that the first cluster to discard will be cluster #0.
5254 		 */
5255 		first_cluster = 0;
5256 	}
5257 
5258 	if (!ret)
5259 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5260 
5261 out:
5262 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5263 	return ret;
5264 }
5265