1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <trace/events/ext4.h> 20 21 /* 22 * MUSTDO: 23 * - test ext4_ext_search_left() and ext4_ext_search_right() 24 * - search for metadata in few groups 25 * 26 * TODO v4: 27 * - normalization should take into account whether file is still open 28 * - discard preallocations if no free space left (policy?) 29 * - don't normalize tails 30 * - quota 31 * - reservation for superuser 32 * 33 * TODO v3: 34 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 35 * - track min/max extents in each group for better group selection 36 * - mb_mark_used() may allocate chunk right after splitting buddy 37 * - tree of groups sorted by number of free blocks 38 * - error handling 39 */ 40 41 /* 42 * The allocation request involve request for multiple number of blocks 43 * near to the goal(block) value specified. 44 * 45 * During initialization phase of the allocator we decide to use the 46 * group preallocation or inode preallocation depending on the size of 47 * the file. The size of the file could be the resulting file size we 48 * would have after allocation, or the current file size, which ever 49 * is larger. If the size is less than sbi->s_mb_stream_request we 50 * select to use the group preallocation. The default value of 51 * s_mb_stream_request is 16 blocks. This can also be tuned via 52 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 53 * terms of number of blocks. 54 * 55 * The main motivation for having small file use group preallocation is to 56 * ensure that we have small files closer together on the disk. 57 * 58 * First stage the allocator looks at the inode prealloc list, 59 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 60 * spaces for this particular inode. The inode prealloc space is 61 * represented as: 62 * 63 * pa_lstart -> the logical start block for this prealloc space 64 * pa_pstart -> the physical start block for this prealloc space 65 * pa_len -> length for this prealloc space (in clusters) 66 * pa_free -> free space available in this prealloc space (in clusters) 67 * 68 * The inode preallocation space is used looking at the _logical_ start 69 * block. If only the logical file block falls within the range of prealloc 70 * space we will consume the particular prealloc space. This makes sure that 71 * we have contiguous physical blocks representing the file blocks 72 * 73 * The important thing to be noted in case of inode prealloc space is that 74 * we don't modify the values associated to inode prealloc space except 75 * pa_free. 76 * 77 * If we are not able to find blocks in the inode prealloc space and if we 78 * have the group allocation flag set then we look at the locality group 79 * prealloc space. These are per CPU prealloc list represented as 80 * 81 * ext4_sb_info.s_locality_groups[smp_processor_id()] 82 * 83 * The reason for having a per cpu locality group is to reduce the contention 84 * between CPUs. It is possible to get scheduled at this point. 85 * 86 * The locality group prealloc space is used looking at whether we have 87 * enough free space (pa_free) within the prealloc space. 88 * 89 * If we can't allocate blocks via inode prealloc or/and locality group 90 * prealloc then we look at the buddy cache. The buddy cache is represented 91 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 92 * mapped to the buddy and bitmap information regarding different 93 * groups. The buddy information is attached to buddy cache inode so that 94 * we can access them through the page cache. The information regarding 95 * each group is loaded via ext4_mb_load_buddy. The information involve 96 * block bitmap and buddy information. The information are stored in the 97 * inode as: 98 * 99 * { page } 100 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 101 * 102 * 103 * one block each for bitmap and buddy information. So for each group we 104 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 105 * blocksize) blocks. So it can have information regarding groups_per_page 106 * which is blocks_per_page/2 107 * 108 * The buddy cache inode is not stored on disk. The inode is thrown 109 * away when the filesystem is unmounted. 110 * 111 * We look for count number of blocks in the buddy cache. If we were able 112 * to locate that many free blocks we return with additional information 113 * regarding rest of the contiguous physical block available 114 * 115 * Before allocating blocks via buddy cache we normalize the request 116 * blocks. This ensure we ask for more blocks that we needed. The extra 117 * blocks that we get after allocation is added to the respective prealloc 118 * list. In case of inode preallocation we follow a list of heuristics 119 * based on file size. This can be found in ext4_mb_normalize_request. If 120 * we are doing a group prealloc we try to normalize the request to 121 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 122 * dependent on the cluster size; for non-bigalloc file systems, it is 123 * 512 blocks. This can be tuned via 124 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 125 * terms of number of blocks. If we have mounted the file system with -O 126 * stripe=<value> option the group prealloc request is normalized to the 127 * the smallest multiple of the stripe value (sbi->s_stripe) which is 128 * greater than the default mb_group_prealloc. 129 * 130 * The regular allocator (using the buddy cache) supports a few tunables. 131 * 132 * /sys/fs/ext4/<partition>/mb_min_to_scan 133 * /sys/fs/ext4/<partition>/mb_max_to_scan 134 * /sys/fs/ext4/<partition>/mb_order2_req 135 * 136 * The regular allocator uses buddy scan only if the request len is power of 137 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 138 * value of s_mb_order2_reqs can be tuned via 139 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 140 * stripe size (sbi->s_stripe), we try to search for contiguous block in 141 * stripe size. This should result in better allocation on RAID setups. If 142 * not, we search in the specific group using bitmap for best extents. The 143 * tunable min_to_scan and max_to_scan control the behaviour here. 144 * min_to_scan indicate how long the mballoc __must__ look for a best 145 * extent and max_to_scan indicates how long the mballoc __can__ look for a 146 * best extent in the found extents. Searching for the blocks starts with 147 * the group specified as the goal value in allocation context via 148 * ac_g_ex. Each group is first checked based on the criteria whether it 149 * can be used for allocation. ext4_mb_good_group explains how the groups are 150 * checked. 151 * 152 * Both the prealloc space are getting populated as above. So for the first 153 * request we will hit the buddy cache which will result in this prealloc 154 * space getting filled. The prealloc space is then later used for the 155 * subsequent request. 156 */ 157 158 /* 159 * mballoc operates on the following data: 160 * - on-disk bitmap 161 * - in-core buddy (actually includes buddy and bitmap) 162 * - preallocation descriptors (PAs) 163 * 164 * there are two types of preallocations: 165 * - inode 166 * assiged to specific inode and can be used for this inode only. 167 * it describes part of inode's space preallocated to specific 168 * physical blocks. any block from that preallocated can be used 169 * independent. the descriptor just tracks number of blocks left 170 * unused. so, before taking some block from descriptor, one must 171 * make sure corresponded logical block isn't allocated yet. this 172 * also means that freeing any block within descriptor's range 173 * must discard all preallocated blocks. 174 * - locality group 175 * assigned to specific locality group which does not translate to 176 * permanent set of inodes: inode can join and leave group. space 177 * from this type of preallocation can be used for any inode. thus 178 * it's consumed from the beginning to the end. 179 * 180 * relation between them can be expressed as: 181 * in-core buddy = on-disk bitmap + preallocation descriptors 182 * 183 * this mean blocks mballoc considers used are: 184 * - allocated blocks (persistent) 185 * - preallocated blocks (non-persistent) 186 * 187 * consistency in mballoc world means that at any time a block is either 188 * free or used in ALL structures. notice: "any time" should not be read 189 * literally -- time is discrete and delimited by locks. 190 * 191 * to keep it simple, we don't use block numbers, instead we count number of 192 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 193 * 194 * all operations can be expressed as: 195 * - init buddy: buddy = on-disk + PAs 196 * - new PA: buddy += N; PA = N 197 * - use inode PA: on-disk += N; PA -= N 198 * - discard inode PA buddy -= on-disk - PA; PA = 0 199 * - use locality group PA on-disk += N; PA -= N 200 * - discard locality group PA buddy -= PA; PA = 0 201 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 202 * is used in real operation because we can't know actual used 203 * bits from PA, only from on-disk bitmap 204 * 205 * if we follow this strict logic, then all operations above should be atomic. 206 * given some of them can block, we'd have to use something like semaphores 207 * killing performance on high-end SMP hardware. let's try to relax it using 208 * the following knowledge: 209 * 1) if buddy is referenced, it's already initialized 210 * 2) while block is used in buddy and the buddy is referenced, 211 * nobody can re-allocate that block 212 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 213 * bit set and PA claims same block, it's OK. IOW, one can set bit in 214 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 215 * block 216 * 217 * so, now we're building a concurrency table: 218 * - init buddy vs. 219 * - new PA 220 * blocks for PA are allocated in the buddy, buddy must be referenced 221 * until PA is linked to allocation group to avoid concurrent buddy init 222 * - use inode PA 223 * we need to make sure that either on-disk bitmap or PA has uptodate data 224 * given (3) we care that PA-=N operation doesn't interfere with init 225 * - discard inode PA 226 * the simplest way would be to have buddy initialized by the discard 227 * - use locality group PA 228 * again PA-=N must be serialized with init 229 * - discard locality group PA 230 * the simplest way would be to have buddy initialized by the discard 231 * - new PA vs. 232 * - use inode PA 233 * i_data_sem serializes them 234 * - discard inode PA 235 * discard process must wait until PA isn't used by another process 236 * - use locality group PA 237 * some mutex should serialize them 238 * - discard locality group PA 239 * discard process must wait until PA isn't used by another process 240 * - use inode PA 241 * - use inode PA 242 * i_data_sem or another mutex should serializes them 243 * - discard inode PA 244 * discard process must wait until PA isn't used by another process 245 * - use locality group PA 246 * nothing wrong here -- they're different PAs covering different blocks 247 * - discard locality group PA 248 * discard process must wait until PA isn't used by another process 249 * 250 * now we're ready to make few consequences: 251 * - PA is referenced and while it is no discard is possible 252 * - PA is referenced until block isn't marked in on-disk bitmap 253 * - PA changes only after on-disk bitmap 254 * - discard must not compete with init. either init is done before 255 * any discard or they're serialized somehow 256 * - buddy init as sum of on-disk bitmap and PAs is done atomically 257 * 258 * a special case when we've used PA to emptiness. no need to modify buddy 259 * in this case, but we should care about concurrent init 260 * 261 */ 262 263 /* 264 * Logic in few words: 265 * 266 * - allocation: 267 * load group 268 * find blocks 269 * mark bits in on-disk bitmap 270 * release group 271 * 272 * - use preallocation: 273 * find proper PA (per-inode or group) 274 * load group 275 * mark bits in on-disk bitmap 276 * release group 277 * release PA 278 * 279 * - free: 280 * load group 281 * mark bits in on-disk bitmap 282 * release group 283 * 284 * - discard preallocations in group: 285 * mark PAs deleted 286 * move them onto local list 287 * load on-disk bitmap 288 * load group 289 * remove PA from object (inode or locality group) 290 * mark free blocks in-core 291 * 292 * - discard inode's preallocations: 293 */ 294 295 /* 296 * Locking rules 297 * 298 * Locks: 299 * - bitlock on a group (group) 300 * - object (inode/locality) (object) 301 * - per-pa lock (pa) 302 * 303 * Paths: 304 * - new pa 305 * object 306 * group 307 * 308 * - find and use pa: 309 * pa 310 * 311 * - release consumed pa: 312 * pa 313 * group 314 * object 315 * 316 * - generate in-core bitmap: 317 * group 318 * pa 319 * 320 * - discard all for given object (inode, locality group): 321 * object 322 * pa 323 * group 324 * 325 * - discard all for given group: 326 * group 327 * pa 328 * group 329 * object 330 * 331 */ 332 static struct kmem_cache *ext4_pspace_cachep; 333 static struct kmem_cache *ext4_ac_cachep; 334 static struct kmem_cache *ext4_free_data_cachep; 335 336 /* We create slab caches for groupinfo data structures based on the 337 * superblock block size. There will be one per mounted filesystem for 338 * each unique s_blocksize_bits */ 339 #define NR_GRPINFO_CACHES 8 340 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 341 342 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 343 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 344 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 345 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 346 }; 347 348 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 349 ext4_group_t group); 350 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 351 ext4_group_t group); 352 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 353 354 /* 355 * The algorithm using this percpu seq counter goes below: 356 * 1. We sample the percpu discard_pa_seq counter before trying for block 357 * allocation in ext4_mb_new_blocks(). 358 * 2. We increment this percpu discard_pa_seq counter when we either allocate 359 * or free these blocks i.e. while marking those blocks as used/free in 360 * mb_mark_used()/mb_free_blocks(). 361 * 3. We also increment this percpu seq counter when we successfully identify 362 * that the bb_prealloc_list is not empty and hence proceed for discarding 363 * of those PAs inside ext4_mb_discard_group_preallocations(). 364 * 365 * Now to make sure that the regular fast path of block allocation is not 366 * affected, as a small optimization we only sample the percpu seq counter 367 * on that cpu. Only when the block allocation fails and when freed blocks 368 * found were 0, that is when we sample percpu seq counter for all cpus using 369 * below function ext4_get_discard_pa_seq_sum(). This happens after making 370 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 371 */ 372 static DEFINE_PER_CPU(u64, discard_pa_seq); 373 static inline u64 ext4_get_discard_pa_seq_sum(void) 374 { 375 int __cpu; 376 u64 __seq = 0; 377 378 for_each_possible_cpu(__cpu) 379 __seq += per_cpu(discard_pa_seq, __cpu); 380 return __seq; 381 } 382 383 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 384 { 385 #if BITS_PER_LONG == 64 386 *bit += ((unsigned long) addr & 7UL) << 3; 387 addr = (void *) ((unsigned long) addr & ~7UL); 388 #elif BITS_PER_LONG == 32 389 *bit += ((unsigned long) addr & 3UL) << 3; 390 addr = (void *) ((unsigned long) addr & ~3UL); 391 #else 392 #error "how many bits you are?!" 393 #endif 394 return addr; 395 } 396 397 static inline int mb_test_bit(int bit, void *addr) 398 { 399 /* 400 * ext4_test_bit on architecture like powerpc 401 * needs unsigned long aligned address 402 */ 403 addr = mb_correct_addr_and_bit(&bit, addr); 404 return ext4_test_bit(bit, addr); 405 } 406 407 static inline void mb_set_bit(int bit, void *addr) 408 { 409 addr = mb_correct_addr_and_bit(&bit, addr); 410 ext4_set_bit(bit, addr); 411 } 412 413 static inline void mb_clear_bit(int bit, void *addr) 414 { 415 addr = mb_correct_addr_and_bit(&bit, addr); 416 ext4_clear_bit(bit, addr); 417 } 418 419 static inline int mb_test_and_clear_bit(int bit, void *addr) 420 { 421 addr = mb_correct_addr_and_bit(&bit, addr); 422 return ext4_test_and_clear_bit(bit, addr); 423 } 424 425 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 426 { 427 int fix = 0, ret, tmpmax; 428 addr = mb_correct_addr_and_bit(&fix, addr); 429 tmpmax = max + fix; 430 start += fix; 431 432 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 433 if (ret > max) 434 return max; 435 return ret; 436 } 437 438 static inline int mb_find_next_bit(void *addr, int max, int start) 439 { 440 int fix = 0, ret, tmpmax; 441 addr = mb_correct_addr_and_bit(&fix, addr); 442 tmpmax = max + fix; 443 start += fix; 444 445 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 446 if (ret > max) 447 return max; 448 return ret; 449 } 450 451 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 452 { 453 char *bb; 454 455 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 456 BUG_ON(max == NULL); 457 458 if (order > e4b->bd_blkbits + 1) { 459 *max = 0; 460 return NULL; 461 } 462 463 /* at order 0 we see each particular block */ 464 if (order == 0) { 465 *max = 1 << (e4b->bd_blkbits + 3); 466 return e4b->bd_bitmap; 467 } 468 469 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 470 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 471 472 return bb; 473 } 474 475 #ifdef DOUBLE_CHECK 476 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 477 int first, int count) 478 { 479 int i; 480 struct super_block *sb = e4b->bd_sb; 481 482 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 483 return; 484 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 485 for (i = 0; i < count; i++) { 486 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 487 ext4_fsblk_t blocknr; 488 489 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 490 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 491 ext4_grp_locked_error(sb, e4b->bd_group, 492 inode ? inode->i_ino : 0, 493 blocknr, 494 "freeing block already freed " 495 "(bit %u)", 496 first + i); 497 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 498 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 499 } 500 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 501 } 502 } 503 504 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 505 { 506 int i; 507 508 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 509 return; 510 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 511 for (i = 0; i < count; i++) { 512 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 513 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 514 } 515 } 516 517 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 518 { 519 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 520 return; 521 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 522 unsigned char *b1, *b2; 523 int i; 524 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 525 b2 = (unsigned char *) bitmap; 526 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 527 if (b1[i] != b2[i]) { 528 ext4_msg(e4b->bd_sb, KERN_ERR, 529 "corruption in group %u " 530 "at byte %u(%u): %x in copy != %x " 531 "on disk/prealloc", 532 e4b->bd_group, i, i * 8, b1[i], b2[i]); 533 BUG(); 534 } 535 } 536 } 537 } 538 539 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 540 struct ext4_group_info *grp, ext4_group_t group) 541 { 542 struct buffer_head *bh; 543 544 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 545 if (!grp->bb_bitmap) 546 return; 547 548 bh = ext4_read_block_bitmap(sb, group); 549 if (IS_ERR_OR_NULL(bh)) { 550 kfree(grp->bb_bitmap); 551 grp->bb_bitmap = NULL; 552 return; 553 } 554 555 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 556 put_bh(bh); 557 } 558 559 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 560 { 561 kfree(grp->bb_bitmap); 562 } 563 564 #else 565 static inline void mb_free_blocks_double(struct inode *inode, 566 struct ext4_buddy *e4b, int first, int count) 567 { 568 return; 569 } 570 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 571 int first, int count) 572 { 573 return; 574 } 575 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 576 { 577 return; 578 } 579 580 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 581 struct ext4_group_info *grp, ext4_group_t group) 582 { 583 return; 584 } 585 586 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 587 { 588 return; 589 } 590 #endif 591 592 #ifdef AGGRESSIVE_CHECK 593 594 #define MB_CHECK_ASSERT(assert) \ 595 do { \ 596 if (!(assert)) { \ 597 printk(KERN_EMERG \ 598 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 599 function, file, line, # assert); \ 600 BUG(); \ 601 } \ 602 } while (0) 603 604 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 605 const char *function, int line) 606 { 607 struct super_block *sb = e4b->bd_sb; 608 int order = e4b->bd_blkbits + 1; 609 int max; 610 int max2; 611 int i; 612 int j; 613 int k; 614 int count; 615 struct ext4_group_info *grp; 616 int fragments = 0; 617 int fstart; 618 struct list_head *cur; 619 void *buddy; 620 void *buddy2; 621 622 { 623 static int mb_check_counter; 624 if (mb_check_counter++ % 100 != 0) 625 return 0; 626 } 627 628 while (order > 1) { 629 buddy = mb_find_buddy(e4b, order, &max); 630 MB_CHECK_ASSERT(buddy); 631 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 632 MB_CHECK_ASSERT(buddy2); 633 MB_CHECK_ASSERT(buddy != buddy2); 634 MB_CHECK_ASSERT(max * 2 == max2); 635 636 count = 0; 637 for (i = 0; i < max; i++) { 638 639 if (mb_test_bit(i, buddy)) { 640 /* only single bit in buddy2 may be 1 */ 641 if (!mb_test_bit(i << 1, buddy2)) { 642 MB_CHECK_ASSERT( 643 mb_test_bit((i<<1)+1, buddy2)); 644 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 645 MB_CHECK_ASSERT( 646 mb_test_bit(i << 1, buddy2)); 647 } 648 continue; 649 } 650 651 /* both bits in buddy2 must be 1 */ 652 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 653 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 654 655 for (j = 0; j < (1 << order); j++) { 656 k = (i * (1 << order)) + j; 657 MB_CHECK_ASSERT( 658 !mb_test_bit(k, e4b->bd_bitmap)); 659 } 660 count++; 661 } 662 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 663 order--; 664 } 665 666 fstart = -1; 667 buddy = mb_find_buddy(e4b, 0, &max); 668 for (i = 0; i < max; i++) { 669 if (!mb_test_bit(i, buddy)) { 670 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 671 if (fstart == -1) { 672 fragments++; 673 fstart = i; 674 } 675 continue; 676 } 677 fstart = -1; 678 /* check used bits only */ 679 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 680 buddy2 = mb_find_buddy(e4b, j, &max2); 681 k = i >> j; 682 MB_CHECK_ASSERT(k < max2); 683 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 684 } 685 } 686 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 687 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 688 689 grp = ext4_get_group_info(sb, e4b->bd_group); 690 list_for_each(cur, &grp->bb_prealloc_list) { 691 ext4_group_t groupnr; 692 struct ext4_prealloc_space *pa; 693 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 694 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 695 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 696 for (i = 0; i < pa->pa_len; i++) 697 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 698 } 699 return 0; 700 } 701 #undef MB_CHECK_ASSERT 702 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 703 __FILE__, __func__, __LINE__) 704 #else 705 #define mb_check_buddy(e4b) 706 #endif 707 708 /* 709 * Divide blocks started from @first with length @len into 710 * smaller chunks with power of 2 blocks. 711 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 712 * then increase bb_counters[] for corresponded chunk size. 713 */ 714 static void ext4_mb_mark_free_simple(struct super_block *sb, 715 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 716 struct ext4_group_info *grp) 717 { 718 struct ext4_sb_info *sbi = EXT4_SB(sb); 719 ext4_grpblk_t min; 720 ext4_grpblk_t max; 721 ext4_grpblk_t chunk; 722 unsigned int border; 723 724 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 725 726 border = 2 << sb->s_blocksize_bits; 727 728 while (len > 0) { 729 /* find how many blocks can be covered since this position */ 730 max = ffs(first | border) - 1; 731 732 /* find how many blocks of power 2 we need to mark */ 733 min = fls(len) - 1; 734 735 if (max < min) 736 min = max; 737 chunk = 1 << min; 738 739 /* mark multiblock chunks only */ 740 grp->bb_counters[min]++; 741 if (min > 0) 742 mb_clear_bit(first >> min, 743 buddy + sbi->s_mb_offsets[min]); 744 745 len -= chunk; 746 first += chunk; 747 } 748 } 749 750 /* 751 * Cache the order of the largest free extent we have available in this block 752 * group. 753 */ 754 static void 755 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 756 { 757 int i; 758 int bits; 759 760 grp->bb_largest_free_order = -1; /* uninit */ 761 762 bits = sb->s_blocksize_bits + 1; 763 for (i = bits; i >= 0; i--) { 764 if (grp->bb_counters[i] > 0) { 765 grp->bb_largest_free_order = i; 766 break; 767 } 768 } 769 } 770 771 static noinline_for_stack 772 void ext4_mb_generate_buddy(struct super_block *sb, 773 void *buddy, void *bitmap, ext4_group_t group) 774 { 775 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 776 struct ext4_sb_info *sbi = EXT4_SB(sb); 777 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 778 ext4_grpblk_t i = 0; 779 ext4_grpblk_t first; 780 ext4_grpblk_t len; 781 unsigned free = 0; 782 unsigned fragments = 0; 783 unsigned long long period = get_cycles(); 784 785 /* initialize buddy from bitmap which is aggregation 786 * of on-disk bitmap and preallocations */ 787 i = mb_find_next_zero_bit(bitmap, max, 0); 788 grp->bb_first_free = i; 789 while (i < max) { 790 fragments++; 791 first = i; 792 i = mb_find_next_bit(bitmap, max, i); 793 len = i - first; 794 free += len; 795 if (len > 1) 796 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 797 else 798 grp->bb_counters[0]++; 799 if (i < max) 800 i = mb_find_next_zero_bit(bitmap, max, i); 801 } 802 grp->bb_fragments = fragments; 803 804 if (free != grp->bb_free) { 805 ext4_grp_locked_error(sb, group, 0, 0, 806 "block bitmap and bg descriptor " 807 "inconsistent: %u vs %u free clusters", 808 free, grp->bb_free); 809 /* 810 * If we intend to continue, we consider group descriptor 811 * corrupt and update bb_free using bitmap value 812 */ 813 grp->bb_free = free; 814 ext4_mark_group_bitmap_corrupted(sb, group, 815 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 816 } 817 mb_set_largest_free_order(sb, grp); 818 819 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 820 821 period = get_cycles() - period; 822 spin_lock(&sbi->s_bal_lock); 823 sbi->s_mb_buddies_generated++; 824 sbi->s_mb_generation_time += period; 825 spin_unlock(&sbi->s_bal_lock); 826 } 827 828 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 829 { 830 int count; 831 int order = 1; 832 void *buddy; 833 834 while ((buddy = mb_find_buddy(e4b, order++, &count))) { 835 ext4_set_bits(buddy, 0, count); 836 } 837 e4b->bd_info->bb_fragments = 0; 838 memset(e4b->bd_info->bb_counters, 0, 839 sizeof(*e4b->bd_info->bb_counters) * 840 (e4b->bd_sb->s_blocksize_bits + 2)); 841 842 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 843 e4b->bd_bitmap, e4b->bd_group); 844 } 845 846 /* The buddy information is attached the buddy cache inode 847 * for convenience. The information regarding each group 848 * is loaded via ext4_mb_load_buddy. The information involve 849 * block bitmap and buddy information. The information are 850 * stored in the inode as 851 * 852 * { page } 853 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 854 * 855 * 856 * one block each for bitmap and buddy information. 857 * So for each group we take up 2 blocks. A page can 858 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 859 * So it can have information regarding groups_per_page which 860 * is blocks_per_page/2 861 * 862 * Locking note: This routine takes the block group lock of all groups 863 * for this page; do not hold this lock when calling this routine! 864 */ 865 866 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 867 { 868 ext4_group_t ngroups; 869 int blocksize; 870 int blocks_per_page; 871 int groups_per_page; 872 int err = 0; 873 int i; 874 ext4_group_t first_group, group; 875 int first_block; 876 struct super_block *sb; 877 struct buffer_head *bhs; 878 struct buffer_head **bh = NULL; 879 struct inode *inode; 880 char *data; 881 char *bitmap; 882 struct ext4_group_info *grinfo; 883 884 inode = page->mapping->host; 885 sb = inode->i_sb; 886 ngroups = ext4_get_groups_count(sb); 887 blocksize = i_blocksize(inode); 888 blocks_per_page = PAGE_SIZE / blocksize; 889 890 mb_debug(sb, "init page %lu\n", page->index); 891 892 groups_per_page = blocks_per_page >> 1; 893 if (groups_per_page == 0) 894 groups_per_page = 1; 895 896 /* allocate buffer_heads to read bitmaps */ 897 if (groups_per_page > 1) { 898 i = sizeof(struct buffer_head *) * groups_per_page; 899 bh = kzalloc(i, gfp); 900 if (bh == NULL) { 901 err = -ENOMEM; 902 goto out; 903 } 904 } else 905 bh = &bhs; 906 907 first_group = page->index * blocks_per_page / 2; 908 909 /* read all groups the page covers into the cache */ 910 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 911 if (group >= ngroups) 912 break; 913 914 grinfo = ext4_get_group_info(sb, group); 915 /* 916 * If page is uptodate then we came here after online resize 917 * which added some new uninitialized group info structs, so 918 * we must skip all initialized uptodate buddies on the page, 919 * which may be currently in use by an allocating task. 920 */ 921 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 922 bh[i] = NULL; 923 continue; 924 } 925 bh[i] = ext4_read_block_bitmap_nowait(sb, group); 926 if (IS_ERR(bh[i])) { 927 err = PTR_ERR(bh[i]); 928 bh[i] = NULL; 929 goto out; 930 } 931 mb_debug(sb, "read bitmap for group %u\n", group); 932 } 933 934 /* wait for I/O completion */ 935 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 936 int err2; 937 938 if (!bh[i]) 939 continue; 940 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 941 if (!err) 942 err = err2; 943 } 944 945 first_block = page->index * blocks_per_page; 946 for (i = 0; i < blocks_per_page; i++) { 947 group = (first_block + i) >> 1; 948 if (group >= ngroups) 949 break; 950 951 if (!bh[group - first_group]) 952 /* skip initialized uptodate buddy */ 953 continue; 954 955 if (!buffer_verified(bh[group - first_group])) 956 /* Skip faulty bitmaps */ 957 continue; 958 err = 0; 959 960 /* 961 * data carry information regarding this 962 * particular group in the format specified 963 * above 964 * 965 */ 966 data = page_address(page) + (i * blocksize); 967 bitmap = bh[group - first_group]->b_data; 968 969 /* 970 * We place the buddy block and bitmap block 971 * close together 972 */ 973 if ((first_block + i) & 1) { 974 /* this is block of buddy */ 975 BUG_ON(incore == NULL); 976 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 977 group, page->index, i * blocksize); 978 trace_ext4_mb_buddy_bitmap_load(sb, group); 979 grinfo = ext4_get_group_info(sb, group); 980 grinfo->bb_fragments = 0; 981 memset(grinfo->bb_counters, 0, 982 sizeof(*grinfo->bb_counters) * 983 (sb->s_blocksize_bits+2)); 984 /* 985 * incore got set to the group block bitmap below 986 */ 987 ext4_lock_group(sb, group); 988 /* init the buddy */ 989 memset(data, 0xff, blocksize); 990 ext4_mb_generate_buddy(sb, data, incore, group); 991 ext4_unlock_group(sb, group); 992 incore = NULL; 993 } else { 994 /* this is block of bitmap */ 995 BUG_ON(incore != NULL); 996 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 997 group, page->index, i * blocksize); 998 trace_ext4_mb_bitmap_load(sb, group); 999 1000 /* see comments in ext4_mb_put_pa() */ 1001 ext4_lock_group(sb, group); 1002 memcpy(data, bitmap, blocksize); 1003 1004 /* mark all preallocated blks used in in-core bitmap */ 1005 ext4_mb_generate_from_pa(sb, data, group); 1006 ext4_mb_generate_from_freelist(sb, data, group); 1007 ext4_unlock_group(sb, group); 1008 1009 /* set incore so that the buddy information can be 1010 * generated using this 1011 */ 1012 incore = data; 1013 } 1014 } 1015 SetPageUptodate(page); 1016 1017 out: 1018 if (bh) { 1019 for (i = 0; i < groups_per_page; i++) 1020 brelse(bh[i]); 1021 if (bh != &bhs) 1022 kfree(bh); 1023 } 1024 return err; 1025 } 1026 1027 /* 1028 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1029 * on the same buddy page doesn't happen whild holding the buddy page lock. 1030 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1031 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1032 */ 1033 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1034 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1035 { 1036 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1037 int block, pnum, poff; 1038 int blocks_per_page; 1039 struct page *page; 1040 1041 e4b->bd_buddy_page = NULL; 1042 e4b->bd_bitmap_page = NULL; 1043 1044 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1045 /* 1046 * the buddy cache inode stores the block bitmap 1047 * and buddy information in consecutive blocks. 1048 * So for each group we need two blocks. 1049 */ 1050 block = group * 2; 1051 pnum = block / blocks_per_page; 1052 poff = block % blocks_per_page; 1053 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1054 if (!page) 1055 return -ENOMEM; 1056 BUG_ON(page->mapping != inode->i_mapping); 1057 e4b->bd_bitmap_page = page; 1058 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1059 1060 if (blocks_per_page >= 2) { 1061 /* buddy and bitmap are on the same page */ 1062 return 0; 1063 } 1064 1065 block++; 1066 pnum = block / blocks_per_page; 1067 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1068 if (!page) 1069 return -ENOMEM; 1070 BUG_ON(page->mapping != inode->i_mapping); 1071 e4b->bd_buddy_page = page; 1072 return 0; 1073 } 1074 1075 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1076 { 1077 if (e4b->bd_bitmap_page) { 1078 unlock_page(e4b->bd_bitmap_page); 1079 put_page(e4b->bd_bitmap_page); 1080 } 1081 if (e4b->bd_buddy_page) { 1082 unlock_page(e4b->bd_buddy_page); 1083 put_page(e4b->bd_buddy_page); 1084 } 1085 } 1086 1087 /* 1088 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1089 * block group lock of all groups for this page; do not hold the BG lock when 1090 * calling this routine! 1091 */ 1092 static noinline_for_stack 1093 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1094 { 1095 1096 struct ext4_group_info *this_grp; 1097 struct ext4_buddy e4b; 1098 struct page *page; 1099 int ret = 0; 1100 1101 might_sleep(); 1102 mb_debug(sb, "init group %u\n", group); 1103 this_grp = ext4_get_group_info(sb, group); 1104 /* 1105 * This ensures that we don't reinit the buddy cache 1106 * page which map to the group from which we are already 1107 * allocating. If we are looking at the buddy cache we would 1108 * have taken a reference using ext4_mb_load_buddy and that 1109 * would have pinned buddy page to page cache. 1110 * The call to ext4_mb_get_buddy_page_lock will mark the 1111 * page accessed. 1112 */ 1113 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1114 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1115 /* 1116 * somebody initialized the group 1117 * return without doing anything 1118 */ 1119 goto err; 1120 } 1121 1122 page = e4b.bd_bitmap_page; 1123 ret = ext4_mb_init_cache(page, NULL, gfp); 1124 if (ret) 1125 goto err; 1126 if (!PageUptodate(page)) { 1127 ret = -EIO; 1128 goto err; 1129 } 1130 1131 if (e4b.bd_buddy_page == NULL) { 1132 /* 1133 * If both the bitmap and buddy are in 1134 * the same page we don't need to force 1135 * init the buddy 1136 */ 1137 ret = 0; 1138 goto err; 1139 } 1140 /* init buddy cache */ 1141 page = e4b.bd_buddy_page; 1142 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1143 if (ret) 1144 goto err; 1145 if (!PageUptodate(page)) { 1146 ret = -EIO; 1147 goto err; 1148 } 1149 err: 1150 ext4_mb_put_buddy_page_lock(&e4b); 1151 return ret; 1152 } 1153 1154 /* 1155 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1156 * block group lock of all groups for this page; do not hold the BG lock when 1157 * calling this routine! 1158 */ 1159 static noinline_for_stack int 1160 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1161 struct ext4_buddy *e4b, gfp_t gfp) 1162 { 1163 int blocks_per_page; 1164 int block; 1165 int pnum; 1166 int poff; 1167 struct page *page; 1168 int ret; 1169 struct ext4_group_info *grp; 1170 struct ext4_sb_info *sbi = EXT4_SB(sb); 1171 struct inode *inode = sbi->s_buddy_cache; 1172 1173 might_sleep(); 1174 mb_debug(sb, "load group %u\n", group); 1175 1176 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1177 grp = ext4_get_group_info(sb, group); 1178 1179 e4b->bd_blkbits = sb->s_blocksize_bits; 1180 e4b->bd_info = grp; 1181 e4b->bd_sb = sb; 1182 e4b->bd_group = group; 1183 e4b->bd_buddy_page = NULL; 1184 e4b->bd_bitmap_page = NULL; 1185 1186 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1187 /* 1188 * we need full data about the group 1189 * to make a good selection 1190 */ 1191 ret = ext4_mb_init_group(sb, group, gfp); 1192 if (ret) 1193 return ret; 1194 } 1195 1196 /* 1197 * the buddy cache inode stores the block bitmap 1198 * and buddy information in consecutive blocks. 1199 * So for each group we need two blocks. 1200 */ 1201 block = group * 2; 1202 pnum = block / blocks_per_page; 1203 poff = block % blocks_per_page; 1204 1205 /* we could use find_or_create_page(), but it locks page 1206 * what we'd like to avoid in fast path ... */ 1207 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1208 if (page == NULL || !PageUptodate(page)) { 1209 if (page) 1210 /* 1211 * drop the page reference and try 1212 * to get the page with lock. If we 1213 * are not uptodate that implies 1214 * somebody just created the page but 1215 * is yet to initialize the same. So 1216 * wait for it to initialize. 1217 */ 1218 put_page(page); 1219 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1220 if (page) { 1221 BUG_ON(page->mapping != inode->i_mapping); 1222 if (!PageUptodate(page)) { 1223 ret = ext4_mb_init_cache(page, NULL, gfp); 1224 if (ret) { 1225 unlock_page(page); 1226 goto err; 1227 } 1228 mb_cmp_bitmaps(e4b, page_address(page) + 1229 (poff * sb->s_blocksize)); 1230 } 1231 unlock_page(page); 1232 } 1233 } 1234 if (page == NULL) { 1235 ret = -ENOMEM; 1236 goto err; 1237 } 1238 if (!PageUptodate(page)) { 1239 ret = -EIO; 1240 goto err; 1241 } 1242 1243 /* Pages marked accessed already */ 1244 e4b->bd_bitmap_page = page; 1245 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1246 1247 block++; 1248 pnum = block / blocks_per_page; 1249 poff = block % blocks_per_page; 1250 1251 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1252 if (page == NULL || !PageUptodate(page)) { 1253 if (page) 1254 put_page(page); 1255 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1256 if (page) { 1257 BUG_ON(page->mapping != inode->i_mapping); 1258 if (!PageUptodate(page)) { 1259 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1260 gfp); 1261 if (ret) { 1262 unlock_page(page); 1263 goto err; 1264 } 1265 } 1266 unlock_page(page); 1267 } 1268 } 1269 if (page == NULL) { 1270 ret = -ENOMEM; 1271 goto err; 1272 } 1273 if (!PageUptodate(page)) { 1274 ret = -EIO; 1275 goto err; 1276 } 1277 1278 /* Pages marked accessed already */ 1279 e4b->bd_buddy_page = page; 1280 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1281 1282 BUG_ON(e4b->bd_bitmap_page == NULL); 1283 BUG_ON(e4b->bd_buddy_page == NULL); 1284 1285 return 0; 1286 1287 err: 1288 if (page) 1289 put_page(page); 1290 if (e4b->bd_bitmap_page) 1291 put_page(e4b->bd_bitmap_page); 1292 if (e4b->bd_buddy_page) 1293 put_page(e4b->bd_buddy_page); 1294 e4b->bd_buddy = NULL; 1295 e4b->bd_bitmap = NULL; 1296 return ret; 1297 } 1298 1299 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1300 struct ext4_buddy *e4b) 1301 { 1302 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1303 } 1304 1305 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1306 { 1307 if (e4b->bd_bitmap_page) 1308 put_page(e4b->bd_bitmap_page); 1309 if (e4b->bd_buddy_page) 1310 put_page(e4b->bd_buddy_page); 1311 } 1312 1313 1314 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1315 { 1316 int order = 1; 1317 int bb_incr = 1 << (e4b->bd_blkbits - 1); 1318 void *bb; 1319 1320 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1321 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1322 1323 bb = e4b->bd_buddy; 1324 while (order <= e4b->bd_blkbits + 1) { 1325 block = block >> 1; 1326 if (!mb_test_bit(block, bb)) { 1327 /* this block is part of buddy of order 'order' */ 1328 return order; 1329 } 1330 bb += bb_incr; 1331 bb_incr >>= 1; 1332 order++; 1333 } 1334 return 0; 1335 } 1336 1337 static void mb_clear_bits(void *bm, int cur, int len) 1338 { 1339 __u32 *addr; 1340 1341 len = cur + len; 1342 while (cur < len) { 1343 if ((cur & 31) == 0 && (len - cur) >= 32) { 1344 /* fast path: clear whole word at once */ 1345 addr = bm + (cur >> 3); 1346 *addr = 0; 1347 cur += 32; 1348 continue; 1349 } 1350 mb_clear_bit(cur, bm); 1351 cur++; 1352 } 1353 } 1354 1355 /* clear bits in given range 1356 * will return first found zero bit if any, -1 otherwise 1357 */ 1358 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1359 { 1360 __u32 *addr; 1361 int zero_bit = -1; 1362 1363 len = cur + len; 1364 while (cur < len) { 1365 if ((cur & 31) == 0 && (len - cur) >= 32) { 1366 /* fast path: clear whole word at once */ 1367 addr = bm + (cur >> 3); 1368 if (*addr != (__u32)(-1) && zero_bit == -1) 1369 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1370 *addr = 0; 1371 cur += 32; 1372 continue; 1373 } 1374 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1375 zero_bit = cur; 1376 cur++; 1377 } 1378 1379 return zero_bit; 1380 } 1381 1382 void ext4_set_bits(void *bm, int cur, int len) 1383 { 1384 __u32 *addr; 1385 1386 len = cur + len; 1387 while (cur < len) { 1388 if ((cur & 31) == 0 && (len - cur) >= 32) { 1389 /* fast path: set whole word at once */ 1390 addr = bm + (cur >> 3); 1391 *addr = 0xffffffff; 1392 cur += 32; 1393 continue; 1394 } 1395 mb_set_bit(cur, bm); 1396 cur++; 1397 } 1398 } 1399 1400 /* 1401 * _________________________________________________________________ */ 1402 1403 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1404 { 1405 if (mb_test_bit(*bit + side, bitmap)) { 1406 mb_clear_bit(*bit, bitmap); 1407 (*bit) -= side; 1408 return 1; 1409 } 1410 else { 1411 (*bit) += side; 1412 mb_set_bit(*bit, bitmap); 1413 return -1; 1414 } 1415 } 1416 1417 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1418 { 1419 int max; 1420 int order = 1; 1421 void *buddy = mb_find_buddy(e4b, order, &max); 1422 1423 while (buddy) { 1424 void *buddy2; 1425 1426 /* Bits in range [first; last] are known to be set since 1427 * corresponding blocks were allocated. Bits in range 1428 * (first; last) will stay set because they form buddies on 1429 * upper layer. We just deal with borders if they don't 1430 * align with upper layer and then go up. 1431 * Releasing entire group is all about clearing 1432 * single bit of highest order buddy. 1433 */ 1434 1435 /* Example: 1436 * --------------------------------- 1437 * | 1 | 1 | 1 | 1 | 1438 * --------------------------------- 1439 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1440 * --------------------------------- 1441 * 0 1 2 3 4 5 6 7 1442 * \_____________________/ 1443 * 1444 * Neither [1] nor [6] is aligned to above layer. 1445 * Left neighbour [0] is free, so mark it busy, 1446 * decrease bb_counters and extend range to 1447 * [0; 6] 1448 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1449 * mark [6] free, increase bb_counters and shrink range to 1450 * [0; 5]. 1451 * Then shift range to [0; 2], go up and do the same. 1452 */ 1453 1454 1455 if (first & 1) 1456 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1457 if (!(last & 1)) 1458 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1459 if (first > last) 1460 break; 1461 order++; 1462 1463 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1464 mb_clear_bits(buddy, first, last - first + 1); 1465 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1466 break; 1467 } 1468 first >>= 1; 1469 last >>= 1; 1470 buddy = buddy2; 1471 } 1472 } 1473 1474 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1475 int first, int count) 1476 { 1477 int left_is_free = 0; 1478 int right_is_free = 0; 1479 int block; 1480 int last = first + count - 1; 1481 struct super_block *sb = e4b->bd_sb; 1482 1483 if (WARN_ON(count == 0)) 1484 return; 1485 BUG_ON(last >= (sb->s_blocksize << 3)); 1486 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1487 /* Don't bother if the block group is corrupt. */ 1488 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1489 return; 1490 1491 mb_check_buddy(e4b); 1492 mb_free_blocks_double(inode, e4b, first, count); 1493 1494 this_cpu_inc(discard_pa_seq); 1495 e4b->bd_info->bb_free += count; 1496 if (first < e4b->bd_info->bb_first_free) 1497 e4b->bd_info->bb_first_free = first; 1498 1499 /* access memory sequentially: check left neighbour, 1500 * clear range and then check right neighbour 1501 */ 1502 if (first != 0) 1503 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1504 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1505 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1506 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1507 1508 if (unlikely(block != -1)) { 1509 struct ext4_sb_info *sbi = EXT4_SB(sb); 1510 ext4_fsblk_t blocknr; 1511 1512 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1513 blocknr += EXT4_C2B(sbi, block); 1514 ext4_grp_locked_error(sb, e4b->bd_group, 1515 inode ? inode->i_ino : 0, 1516 blocknr, 1517 "freeing already freed block " 1518 "(bit %u); block bitmap corrupt.", 1519 block); 1520 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1521 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1522 mb_regenerate_buddy(e4b); 1523 goto done; 1524 } 1525 1526 /* let's maintain fragments counter */ 1527 if (left_is_free && right_is_free) 1528 e4b->bd_info->bb_fragments--; 1529 else if (!left_is_free && !right_is_free) 1530 e4b->bd_info->bb_fragments++; 1531 1532 /* buddy[0] == bd_bitmap is a special case, so handle 1533 * it right away and let mb_buddy_mark_free stay free of 1534 * zero order checks. 1535 * Check if neighbours are to be coaleasced, 1536 * adjust bitmap bb_counters and borders appropriately. 1537 */ 1538 if (first & 1) { 1539 first += !left_is_free; 1540 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1541 } 1542 if (!(last & 1)) { 1543 last -= !right_is_free; 1544 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1545 } 1546 1547 if (first <= last) 1548 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1549 1550 done: 1551 mb_set_largest_free_order(sb, e4b->bd_info); 1552 mb_check_buddy(e4b); 1553 } 1554 1555 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1556 int needed, struct ext4_free_extent *ex) 1557 { 1558 int next = block; 1559 int max, order; 1560 void *buddy; 1561 1562 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1563 BUG_ON(ex == NULL); 1564 1565 buddy = mb_find_buddy(e4b, 0, &max); 1566 BUG_ON(buddy == NULL); 1567 BUG_ON(block >= max); 1568 if (mb_test_bit(block, buddy)) { 1569 ex->fe_len = 0; 1570 ex->fe_start = 0; 1571 ex->fe_group = 0; 1572 return 0; 1573 } 1574 1575 /* find actual order */ 1576 order = mb_find_order_for_block(e4b, block); 1577 block = block >> order; 1578 1579 ex->fe_len = 1 << order; 1580 ex->fe_start = block << order; 1581 ex->fe_group = e4b->bd_group; 1582 1583 /* calc difference from given start */ 1584 next = next - ex->fe_start; 1585 ex->fe_len -= next; 1586 ex->fe_start += next; 1587 1588 while (needed > ex->fe_len && 1589 mb_find_buddy(e4b, order, &max)) { 1590 1591 if (block + 1 >= max) 1592 break; 1593 1594 next = (block + 1) * (1 << order); 1595 if (mb_test_bit(next, e4b->bd_bitmap)) 1596 break; 1597 1598 order = mb_find_order_for_block(e4b, next); 1599 1600 block = next >> order; 1601 ex->fe_len += 1 << order; 1602 } 1603 1604 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 1605 /* Should never happen! (but apparently sometimes does?!?) */ 1606 WARN_ON(1); 1607 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent " 1608 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 1609 block, order, needed, ex->fe_group, ex->fe_start, 1610 ex->fe_len, ex->fe_logical); 1611 ex->fe_len = 0; 1612 ex->fe_start = 0; 1613 ex->fe_group = 0; 1614 } 1615 return ex->fe_len; 1616 } 1617 1618 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1619 { 1620 int ord; 1621 int mlen = 0; 1622 int max = 0; 1623 int cur; 1624 int start = ex->fe_start; 1625 int len = ex->fe_len; 1626 unsigned ret = 0; 1627 int len0 = len; 1628 void *buddy; 1629 1630 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1631 BUG_ON(e4b->bd_group != ex->fe_group); 1632 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1633 mb_check_buddy(e4b); 1634 mb_mark_used_double(e4b, start, len); 1635 1636 this_cpu_inc(discard_pa_seq); 1637 e4b->bd_info->bb_free -= len; 1638 if (e4b->bd_info->bb_first_free == start) 1639 e4b->bd_info->bb_first_free += len; 1640 1641 /* let's maintain fragments counter */ 1642 if (start != 0) 1643 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1644 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1645 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1646 if (mlen && max) 1647 e4b->bd_info->bb_fragments++; 1648 else if (!mlen && !max) 1649 e4b->bd_info->bb_fragments--; 1650 1651 /* let's maintain buddy itself */ 1652 while (len) { 1653 ord = mb_find_order_for_block(e4b, start); 1654 1655 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1656 /* the whole chunk may be allocated at once! */ 1657 mlen = 1 << ord; 1658 buddy = mb_find_buddy(e4b, ord, &max); 1659 BUG_ON((start >> ord) >= max); 1660 mb_set_bit(start >> ord, buddy); 1661 e4b->bd_info->bb_counters[ord]--; 1662 start += mlen; 1663 len -= mlen; 1664 BUG_ON(len < 0); 1665 continue; 1666 } 1667 1668 /* store for history */ 1669 if (ret == 0) 1670 ret = len | (ord << 16); 1671 1672 /* we have to split large buddy */ 1673 BUG_ON(ord <= 0); 1674 buddy = mb_find_buddy(e4b, ord, &max); 1675 mb_set_bit(start >> ord, buddy); 1676 e4b->bd_info->bb_counters[ord]--; 1677 1678 ord--; 1679 cur = (start >> ord) & ~1U; 1680 buddy = mb_find_buddy(e4b, ord, &max); 1681 mb_clear_bit(cur, buddy); 1682 mb_clear_bit(cur + 1, buddy); 1683 e4b->bd_info->bb_counters[ord]++; 1684 e4b->bd_info->bb_counters[ord]++; 1685 } 1686 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1687 1688 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1689 mb_check_buddy(e4b); 1690 1691 return ret; 1692 } 1693 1694 /* 1695 * Must be called under group lock! 1696 */ 1697 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1698 struct ext4_buddy *e4b) 1699 { 1700 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1701 int ret; 1702 1703 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1704 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1705 1706 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1707 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1708 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1709 1710 /* preallocation can change ac_b_ex, thus we store actually 1711 * allocated blocks for history */ 1712 ac->ac_f_ex = ac->ac_b_ex; 1713 1714 ac->ac_status = AC_STATUS_FOUND; 1715 ac->ac_tail = ret & 0xffff; 1716 ac->ac_buddy = ret >> 16; 1717 1718 /* 1719 * take the page reference. We want the page to be pinned 1720 * so that we don't get a ext4_mb_init_cache_call for this 1721 * group until we update the bitmap. That would mean we 1722 * double allocate blocks. The reference is dropped 1723 * in ext4_mb_release_context 1724 */ 1725 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1726 get_page(ac->ac_bitmap_page); 1727 ac->ac_buddy_page = e4b->bd_buddy_page; 1728 get_page(ac->ac_buddy_page); 1729 /* store last allocated for subsequent stream allocation */ 1730 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1731 spin_lock(&sbi->s_md_lock); 1732 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1733 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1734 spin_unlock(&sbi->s_md_lock); 1735 } 1736 /* 1737 * As we've just preallocated more space than 1738 * user requested originally, we store allocated 1739 * space in a special descriptor. 1740 */ 1741 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 1742 ext4_mb_new_preallocation(ac); 1743 1744 } 1745 1746 /* 1747 * regular allocator, for general purposes allocation 1748 */ 1749 1750 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1751 struct ext4_buddy *e4b, 1752 int finish_group) 1753 { 1754 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1755 struct ext4_free_extent *bex = &ac->ac_b_ex; 1756 struct ext4_free_extent *gex = &ac->ac_g_ex; 1757 struct ext4_free_extent ex; 1758 int max; 1759 1760 if (ac->ac_status == AC_STATUS_FOUND) 1761 return; 1762 /* 1763 * We don't want to scan for a whole year 1764 */ 1765 if (ac->ac_found > sbi->s_mb_max_to_scan && 1766 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1767 ac->ac_status = AC_STATUS_BREAK; 1768 return; 1769 } 1770 1771 /* 1772 * Haven't found good chunk so far, let's continue 1773 */ 1774 if (bex->fe_len < gex->fe_len) 1775 return; 1776 1777 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1778 && bex->fe_group == e4b->bd_group) { 1779 /* recheck chunk's availability - we don't know 1780 * when it was found (within this lock-unlock 1781 * period or not) */ 1782 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1783 if (max >= gex->fe_len) { 1784 ext4_mb_use_best_found(ac, e4b); 1785 return; 1786 } 1787 } 1788 } 1789 1790 /* 1791 * The routine checks whether found extent is good enough. If it is, 1792 * then the extent gets marked used and flag is set to the context 1793 * to stop scanning. Otherwise, the extent is compared with the 1794 * previous found extent and if new one is better, then it's stored 1795 * in the context. Later, the best found extent will be used, if 1796 * mballoc can't find good enough extent. 1797 * 1798 * FIXME: real allocation policy is to be designed yet! 1799 */ 1800 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1801 struct ext4_free_extent *ex, 1802 struct ext4_buddy *e4b) 1803 { 1804 struct ext4_free_extent *bex = &ac->ac_b_ex; 1805 struct ext4_free_extent *gex = &ac->ac_g_ex; 1806 1807 BUG_ON(ex->fe_len <= 0); 1808 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1809 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1810 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1811 1812 ac->ac_found++; 1813 1814 /* 1815 * The special case - take what you catch first 1816 */ 1817 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1818 *bex = *ex; 1819 ext4_mb_use_best_found(ac, e4b); 1820 return; 1821 } 1822 1823 /* 1824 * Let's check whether the chuck is good enough 1825 */ 1826 if (ex->fe_len == gex->fe_len) { 1827 *bex = *ex; 1828 ext4_mb_use_best_found(ac, e4b); 1829 return; 1830 } 1831 1832 /* 1833 * If this is first found extent, just store it in the context 1834 */ 1835 if (bex->fe_len == 0) { 1836 *bex = *ex; 1837 return; 1838 } 1839 1840 /* 1841 * If new found extent is better, store it in the context 1842 */ 1843 if (bex->fe_len < gex->fe_len) { 1844 /* if the request isn't satisfied, any found extent 1845 * larger than previous best one is better */ 1846 if (ex->fe_len > bex->fe_len) 1847 *bex = *ex; 1848 } else if (ex->fe_len > gex->fe_len) { 1849 /* if the request is satisfied, then we try to find 1850 * an extent that still satisfy the request, but is 1851 * smaller than previous one */ 1852 if (ex->fe_len < bex->fe_len) 1853 *bex = *ex; 1854 } 1855 1856 ext4_mb_check_limits(ac, e4b, 0); 1857 } 1858 1859 static noinline_for_stack 1860 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1861 struct ext4_buddy *e4b) 1862 { 1863 struct ext4_free_extent ex = ac->ac_b_ex; 1864 ext4_group_t group = ex.fe_group; 1865 int max; 1866 int err; 1867 1868 BUG_ON(ex.fe_len <= 0); 1869 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1870 if (err) 1871 return err; 1872 1873 ext4_lock_group(ac->ac_sb, group); 1874 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1875 1876 if (max > 0) { 1877 ac->ac_b_ex = ex; 1878 ext4_mb_use_best_found(ac, e4b); 1879 } 1880 1881 ext4_unlock_group(ac->ac_sb, group); 1882 ext4_mb_unload_buddy(e4b); 1883 1884 return 0; 1885 } 1886 1887 static noinline_for_stack 1888 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1889 struct ext4_buddy *e4b) 1890 { 1891 ext4_group_t group = ac->ac_g_ex.fe_group; 1892 int max; 1893 int err; 1894 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1895 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1896 struct ext4_free_extent ex; 1897 1898 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1899 return 0; 1900 if (grp->bb_free == 0) 1901 return 0; 1902 1903 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1904 if (err) 1905 return err; 1906 1907 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 1908 ext4_mb_unload_buddy(e4b); 1909 return 0; 1910 } 1911 1912 ext4_lock_group(ac->ac_sb, group); 1913 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1914 ac->ac_g_ex.fe_len, &ex); 1915 ex.fe_logical = 0xDEADFA11; /* debug value */ 1916 1917 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1918 ext4_fsblk_t start; 1919 1920 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1921 ex.fe_start; 1922 /* use do_div to get remainder (would be 64-bit modulo) */ 1923 if (do_div(start, sbi->s_stripe) == 0) { 1924 ac->ac_found++; 1925 ac->ac_b_ex = ex; 1926 ext4_mb_use_best_found(ac, e4b); 1927 } 1928 } else if (max >= ac->ac_g_ex.fe_len) { 1929 BUG_ON(ex.fe_len <= 0); 1930 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1931 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1932 ac->ac_found++; 1933 ac->ac_b_ex = ex; 1934 ext4_mb_use_best_found(ac, e4b); 1935 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1936 /* Sometimes, caller may want to merge even small 1937 * number of blocks to an existing extent */ 1938 BUG_ON(ex.fe_len <= 0); 1939 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1940 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1941 ac->ac_found++; 1942 ac->ac_b_ex = ex; 1943 ext4_mb_use_best_found(ac, e4b); 1944 } 1945 ext4_unlock_group(ac->ac_sb, group); 1946 ext4_mb_unload_buddy(e4b); 1947 1948 return 0; 1949 } 1950 1951 /* 1952 * The routine scans buddy structures (not bitmap!) from given order 1953 * to max order and tries to find big enough chunk to satisfy the req 1954 */ 1955 static noinline_for_stack 1956 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1957 struct ext4_buddy *e4b) 1958 { 1959 struct super_block *sb = ac->ac_sb; 1960 struct ext4_group_info *grp = e4b->bd_info; 1961 void *buddy; 1962 int i; 1963 int k; 1964 int max; 1965 1966 BUG_ON(ac->ac_2order <= 0); 1967 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1968 if (grp->bb_counters[i] == 0) 1969 continue; 1970 1971 buddy = mb_find_buddy(e4b, i, &max); 1972 BUG_ON(buddy == NULL); 1973 1974 k = mb_find_next_zero_bit(buddy, max, 0); 1975 if (k >= max) { 1976 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 1977 "%d free clusters of order %d. But found 0", 1978 grp->bb_counters[i], i); 1979 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 1980 e4b->bd_group, 1981 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1982 break; 1983 } 1984 ac->ac_found++; 1985 1986 ac->ac_b_ex.fe_len = 1 << i; 1987 ac->ac_b_ex.fe_start = k << i; 1988 ac->ac_b_ex.fe_group = e4b->bd_group; 1989 1990 ext4_mb_use_best_found(ac, e4b); 1991 1992 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 1993 1994 if (EXT4_SB(sb)->s_mb_stats) 1995 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1996 1997 break; 1998 } 1999 } 2000 2001 /* 2002 * The routine scans the group and measures all found extents. 2003 * In order to optimize scanning, caller must pass number of 2004 * free blocks in the group, so the routine can know upper limit. 2005 */ 2006 static noinline_for_stack 2007 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2008 struct ext4_buddy *e4b) 2009 { 2010 struct super_block *sb = ac->ac_sb; 2011 void *bitmap = e4b->bd_bitmap; 2012 struct ext4_free_extent ex; 2013 int i; 2014 int free; 2015 2016 free = e4b->bd_info->bb_free; 2017 if (WARN_ON(free <= 0)) 2018 return; 2019 2020 i = e4b->bd_info->bb_first_free; 2021 2022 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2023 i = mb_find_next_zero_bit(bitmap, 2024 EXT4_CLUSTERS_PER_GROUP(sb), i); 2025 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2026 /* 2027 * IF we have corrupt bitmap, we won't find any 2028 * free blocks even though group info says we 2029 * we have free blocks 2030 */ 2031 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2032 "%d free clusters as per " 2033 "group info. But bitmap says 0", 2034 free); 2035 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2036 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2037 break; 2038 } 2039 2040 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2041 if (WARN_ON(ex.fe_len <= 0)) 2042 break; 2043 if (free < ex.fe_len) { 2044 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2045 "%d free clusters as per " 2046 "group info. But got %d blocks", 2047 free, ex.fe_len); 2048 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2049 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2050 /* 2051 * The number of free blocks differs. This mostly 2052 * indicate that the bitmap is corrupt. So exit 2053 * without claiming the space. 2054 */ 2055 break; 2056 } 2057 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2058 ext4_mb_measure_extent(ac, &ex, e4b); 2059 2060 i += ex.fe_len; 2061 free -= ex.fe_len; 2062 } 2063 2064 ext4_mb_check_limits(ac, e4b, 1); 2065 } 2066 2067 /* 2068 * This is a special case for storages like raid5 2069 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2070 */ 2071 static noinline_for_stack 2072 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2073 struct ext4_buddy *e4b) 2074 { 2075 struct super_block *sb = ac->ac_sb; 2076 struct ext4_sb_info *sbi = EXT4_SB(sb); 2077 void *bitmap = e4b->bd_bitmap; 2078 struct ext4_free_extent ex; 2079 ext4_fsblk_t first_group_block; 2080 ext4_fsblk_t a; 2081 ext4_grpblk_t i; 2082 int max; 2083 2084 BUG_ON(sbi->s_stripe == 0); 2085 2086 /* find first stripe-aligned block in group */ 2087 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2088 2089 a = first_group_block + sbi->s_stripe - 1; 2090 do_div(a, sbi->s_stripe); 2091 i = (a * sbi->s_stripe) - first_group_block; 2092 2093 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2094 if (!mb_test_bit(i, bitmap)) { 2095 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 2096 if (max >= sbi->s_stripe) { 2097 ac->ac_found++; 2098 ex.fe_logical = 0xDEADF00D; /* debug value */ 2099 ac->ac_b_ex = ex; 2100 ext4_mb_use_best_found(ac, e4b); 2101 break; 2102 } 2103 } 2104 i += sbi->s_stripe; 2105 } 2106 } 2107 2108 /* 2109 * This is also called BEFORE we load the buddy bitmap. 2110 * Returns either 1 or 0 indicating that the group is either suitable 2111 * for the allocation or not. 2112 */ 2113 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2114 ext4_group_t group, int cr) 2115 { 2116 ext4_grpblk_t free, fragments; 2117 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2118 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2119 2120 BUG_ON(cr < 0 || cr >= 4); 2121 2122 free = grp->bb_free; 2123 if (free == 0) 2124 return false; 2125 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2126 return false; 2127 2128 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2129 return false; 2130 2131 fragments = grp->bb_fragments; 2132 if (fragments == 0) 2133 return false; 2134 2135 switch (cr) { 2136 case 0: 2137 BUG_ON(ac->ac_2order == 0); 2138 2139 /* Avoid using the first bg of a flexgroup for data files */ 2140 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2141 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2142 ((group % flex_size) == 0)) 2143 return false; 2144 2145 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) || 2146 (free / fragments) >= ac->ac_g_ex.fe_len) 2147 return true; 2148 2149 if (grp->bb_largest_free_order < ac->ac_2order) 2150 return false; 2151 2152 return true; 2153 case 1: 2154 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2155 return true; 2156 break; 2157 case 2: 2158 if (free >= ac->ac_g_ex.fe_len) 2159 return true; 2160 break; 2161 case 3: 2162 return true; 2163 default: 2164 BUG(); 2165 } 2166 2167 return false; 2168 } 2169 2170 /* 2171 * This could return negative error code if something goes wrong 2172 * during ext4_mb_init_group(). This should not be called with 2173 * ext4_lock_group() held. 2174 */ 2175 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2176 ext4_group_t group, int cr) 2177 { 2178 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2179 struct super_block *sb = ac->ac_sb; 2180 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2181 ext4_grpblk_t free; 2182 int ret = 0; 2183 2184 if (should_lock) 2185 ext4_lock_group(sb, group); 2186 free = grp->bb_free; 2187 if (free == 0) 2188 goto out; 2189 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2190 goto out; 2191 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2192 goto out; 2193 if (should_lock) 2194 ext4_unlock_group(sb, group); 2195 2196 /* We only do this if the grp has never been initialized */ 2197 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2198 ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS); 2199 if (ret) 2200 return ret; 2201 } 2202 2203 if (should_lock) 2204 ext4_lock_group(sb, group); 2205 ret = ext4_mb_good_group(ac, group, cr); 2206 out: 2207 if (should_lock) 2208 ext4_unlock_group(sb, group); 2209 return ret; 2210 } 2211 2212 static noinline_for_stack int 2213 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2214 { 2215 ext4_group_t ngroups, group, i; 2216 int cr = -1; 2217 int err = 0, first_err = 0; 2218 struct ext4_sb_info *sbi; 2219 struct super_block *sb; 2220 struct ext4_buddy e4b; 2221 2222 sb = ac->ac_sb; 2223 sbi = EXT4_SB(sb); 2224 ngroups = ext4_get_groups_count(sb); 2225 /* non-extent files are limited to low blocks/groups */ 2226 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2227 ngroups = sbi->s_blockfile_groups; 2228 2229 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2230 2231 /* first, try the goal */ 2232 err = ext4_mb_find_by_goal(ac, &e4b); 2233 if (err || ac->ac_status == AC_STATUS_FOUND) 2234 goto out; 2235 2236 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2237 goto out; 2238 2239 /* 2240 * ac->ac2_order is set only if the fe_len is a power of 2 2241 * if ac2_order is set we also set criteria to 0 so that we 2242 * try exact allocation using buddy. 2243 */ 2244 i = fls(ac->ac_g_ex.fe_len); 2245 ac->ac_2order = 0; 2246 /* 2247 * We search using buddy data only if the order of the request 2248 * is greater than equal to the sbi_s_mb_order2_reqs 2249 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2250 * We also support searching for power-of-two requests only for 2251 * requests upto maximum buddy size we have constructed. 2252 */ 2253 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) { 2254 /* 2255 * This should tell if fe_len is exactly power of 2 2256 */ 2257 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2258 ac->ac_2order = array_index_nospec(i - 1, 2259 sb->s_blocksize_bits + 2); 2260 } 2261 2262 /* if stream allocation is enabled, use global goal */ 2263 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2264 /* TBD: may be hot point */ 2265 spin_lock(&sbi->s_md_lock); 2266 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2267 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2268 spin_unlock(&sbi->s_md_lock); 2269 } 2270 2271 /* Let's just scan groups to find more-less suitable blocks */ 2272 cr = ac->ac_2order ? 0 : 1; 2273 /* 2274 * cr == 0 try to get exact allocation, 2275 * cr == 3 try to get anything 2276 */ 2277 repeat: 2278 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2279 ac->ac_criteria = cr; 2280 /* 2281 * searching for the right group start 2282 * from the goal value specified 2283 */ 2284 group = ac->ac_g_ex.fe_group; 2285 2286 for (i = 0; i < ngroups; group++, i++) { 2287 int ret = 0; 2288 cond_resched(); 2289 /* 2290 * Artificially restricted ngroups for non-extent 2291 * files makes group > ngroups possible on first loop. 2292 */ 2293 if (group >= ngroups) 2294 group = 0; 2295 2296 /* This now checks without needing the buddy page */ 2297 ret = ext4_mb_good_group_nolock(ac, group, cr); 2298 if (ret <= 0) { 2299 if (!first_err) 2300 first_err = ret; 2301 continue; 2302 } 2303 2304 err = ext4_mb_load_buddy(sb, group, &e4b); 2305 if (err) 2306 goto out; 2307 2308 ext4_lock_group(sb, group); 2309 2310 /* 2311 * We need to check again after locking the 2312 * block group 2313 */ 2314 ret = ext4_mb_good_group(ac, group, cr); 2315 if (ret == 0) { 2316 ext4_unlock_group(sb, group); 2317 ext4_mb_unload_buddy(&e4b); 2318 continue; 2319 } 2320 2321 ac->ac_groups_scanned++; 2322 if (cr == 0) 2323 ext4_mb_simple_scan_group(ac, &e4b); 2324 else if (cr == 1 && sbi->s_stripe && 2325 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2326 ext4_mb_scan_aligned(ac, &e4b); 2327 else 2328 ext4_mb_complex_scan_group(ac, &e4b); 2329 2330 ext4_unlock_group(sb, group); 2331 ext4_mb_unload_buddy(&e4b); 2332 2333 if (ac->ac_status != AC_STATUS_CONTINUE) 2334 break; 2335 } 2336 } 2337 2338 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2339 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2340 /* 2341 * We've been searching too long. Let's try to allocate 2342 * the best chunk we've found so far 2343 */ 2344 2345 ext4_mb_try_best_found(ac, &e4b); 2346 if (ac->ac_status != AC_STATUS_FOUND) { 2347 /* 2348 * Someone more lucky has already allocated it. 2349 * The only thing we can do is just take first 2350 * found block(s) 2351 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2352 */ 2353 ac->ac_b_ex.fe_group = 0; 2354 ac->ac_b_ex.fe_start = 0; 2355 ac->ac_b_ex.fe_len = 0; 2356 ac->ac_status = AC_STATUS_CONTINUE; 2357 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2358 cr = 3; 2359 atomic_inc(&sbi->s_mb_lost_chunks); 2360 goto repeat; 2361 } 2362 } 2363 out: 2364 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2365 err = first_err; 2366 2367 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2368 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2369 ac->ac_flags, cr, err); 2370 return err; 2371 } 2372 2373 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2374 { 2375 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2376 ext4_group_t group; 2377 2378 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2379 return NULL; 2380 group = *pos + 1; 2381 return (void *) ((unsigned long) group); 2382 } 2383 2384 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2385 { 2386 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2387 ext4_group_t group; 2388 2389 ++*pos; 2390 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2391 return NULL; 2392 group = *pos + 1; 2393 return (void *) ((unsigned long) group); 2394 } 2395 2396 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2397 { 2398 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2399 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2400 int i; 2401 int err, buddy_loaded = 0; 2402 struct ext4_buddy e4b; 2403 struct ext4_group_info *grinfo; 2404 unsigned char blocksize_bits = min_t(unsigned char, 2405 sb->s_blocksize_bits, 2406 EXT4_MAX_BLOCK_LOG_SIZE); 2407 struct sg { 2408 struct ext4_group_info info; 2409 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 2410 } sg; 2411 2412 group--; 2413 if (group == 0) 2414 seq_puts(seq, "#group: free frags first [" 2415 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 2416 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 2417 2418 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2419 sizeof(struct ext4_group_info); 2420 2421 grinfo = ext4_get_group_info(sb, group); 2422 /* Load the group info in memory only if not already loaded. */ 2423 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2424 err = ext4_mb_load_buddy(sb, group, &e4b); 2425 if (err) { 2426 seq_printf(seq, "#%-5u: I/O error\n", group); 2427 return 0; 2428 } 2429 buddy_loaded = 1; 2430 } 2431 2432 memcpy(&sg, ext4_get_group_info(sb, group), i); 2433 2434 if (buddy_loaded) 2435 ext4_mb_unload_buddy(&e4b); 2436 2437 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2438 sg.info.bb_fragments, sg.info.bb_first_free); 2439 for (i = 0; i <= 13; i++) 2440 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 2441 sg.info.bb_counters[i] : 0); 2442 seq_printf(seq, " ]\n"); 2443 2444 return 0; 2445 } 2446 2447 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2448 { 2449 } 2450 2451 const struct seq_operations ext4_mb_seq_groups_ops = { 2452 .start = ext4_mb_seq_groups_start, 2453 .next = ext4_mb_seq_groups_next, 2454 .stop = ext4_mb_seq_groups_stop, 2455 .show = ext4_mb_seq_groups_show, 2456 }; 2457 2458 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2459 { 2460 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2461 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2462 2463 BUG_ON(!cachep); 2464 return cachep; 2465 } 2466 2467 /* 2468 * Allocate the top-level s_group_info array for the specified number 2469 * of groups 2470 */ 2471 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2472 { 2473 struct ext4_sb_info *sbi = EXT4_SB(sb); 2474 unsigned size; 2475 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 2476 2477 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2478 EXT4_DESC_PER_BLOCK_BITS(sb); 2479 if (size <= sbi->s_group_info_size) 2480 return 0; 2481 2482 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2483 new_groupinfo = kvzalloc(size, GFP_KERNEL); 2484 if (!new_groupinfo) { 2485 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2486 return -ENOMEM; 2487 } 2488 rcu_read_lock(); 2489 old_groupinfo = rcu_dereference(sbi->s_group_info); 2490 if (old_groupinfo) 2491 memcpy(new_groupinfo, old_groupinfo, 2492 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2493 rcu_read_unlock(); 2494 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 2495 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2496 if (old_groupinfo) 2497 ext4_kvfree_array_rcu(old_groupinfo); 2498 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2499 sbi->s_group_info_size); 2500 return 0; 2501 } 2502 2503 /* Create and initialize ext4_group_info data for the given group. */ 2504 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2505 struct ext4_group_desc *desc) 2506 { 2507 int i; 2508 int metalen = 0; 2509 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 2510 struct ext4_sb_info *sbi = EXT4_SB(sb); 2511 struct ext4_group_info **meta_group_info; 2512 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2513 2514 /* 2515 * First check if this group is the first of a reserved block. 2516 * If it's true, we have to allocate a new table of pointers 2517 * to ext4_group_info structures 2518 */ 2519 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2520 metalen = sizeof(*meta_group_info) << 2521 EXT4_DESC_PER_BLOCK_BITS(sb); 2522 meta_group_info = kmalloc(metalen, GFP_NOFS); 2523 if (meta_group_info == NULL) { 2524 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2525 "for a buddy group"); 2526 goto exit_meta_group_info; 2527 } 2528 rcu_read_lock(); 2529 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 2530 rcu_read_unlock(); 2531 } 2532 2533 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 2534 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2535 2536 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 2537 if (meta_group_info[i] == NULL) { 2538 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2539 goto exit_group_info; 2540 } 2541 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2542 &(meta_group_info[i]->bb_state)); 2543 2544 /* 2545 * initialize bb_free to be able to skip 2546 * empty groups without initialization 2547 */ 2548 if (ext4_has_group_desc_csum(sb) && 2549 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 2550 meta_group_info[i]->bb_free = 2551 ext4_free_clusters_after_init(sb, group, desc); 2552 } else { 2553 meta_group_info[i]->bb_free = 2554 ext4_free_group_clusters(sb, desc); 2555 } 2556 2557 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2558 init_rwsem(&meta_group_info[i]->alloc_sem); 2559 meta_group_info[i]->bb_free_root = RB_ROOT; 2560 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2561 2562 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 2563 return 0; 2564 2565 exit_group_info: 2566 /* If a meta_group_info table has been allocated, release it now */ 2567 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2568 struct ext4_group_info ***group_info; 2569 2570 rcu_read_lock(); 2571 group_info = rcu_dereference(sbi->s_group_info); 2572 kfree(group_info[idx]); 2573 group_info[idx] = NULL; 2574 rcu_read_unlock(); 2575 } 2576 exit_meta_group_info: 2577 return -ENOMEM; 2578 } /* ext4_mb_add_groupinfo */ 2579 2580 static int ext4_mb_init_backend(struct super_block *sb) 2581 { 2582 ext4_group_t ngroups = ext4_get_groups_count(sb); 2583 ext4_group_t i; 2584 struct ext4_sb_info *sbi = EXT4_SB(sb); 2585 int err; 2586 struct ext4_group_desc *desc; 2587 struct ext4_group_info ***group_info; 2588 struct kmem_cache *cachep; 2589 2590 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2591 if (err) 2592 return err; 2593 2594 sbi->s_buddy_cache = new_inode(sb); 2595 if (sbi->s_buddy_cache == NULL) { 2596 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2597 goto err_freesgi; 2598 } 2599 /* To avoid potentially colliding with an valid on-disk inode number, 2600 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2601 * not in the inode hash, so it should never be found by iget(), but 2602 * this will avoid confusion if it ever shows up during debugging. */ 2603 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2604 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2605 for (i = 0; i < ngroups; i++) { 2606 cond_resched(); 2607 desc = ext4_get_group_desc(sb, i, NULL); 2608 if (desc == NULL) { 2609 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2610 goto err_freebuddy; 2611 } 2612 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2613 goto err_freebuddy; 2614 } 2615 2616 return 0; 2617 2618 err_freebuddy: 2619 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2620 while (i-- > 0) 2621 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2622 i = sbi->s_group_info_size; 2623 rcu_read_lock(); 2624 group_info = rcu_dereference(sbi->s_group_info); 2625 while (i-- > 0) 2626 kfree(group_info[i]); 2627 rcu_read_unlock(); 2628 iput(sbi->s_buddy_cache); 2629 err_freesgi: 2630 rcu_read_lock(); 2631 kvfree(rcu_dereference(sbi->s_group_info)); 2632 rcu_read_unlock(); 2633 return -ENOMEM; 2634 } 2635 2636 static void ext4_groupinfo_destroy_slabs(void) 2637 { 2638 int i; 2639 2640 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2641 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2642 ext4_groupinfo_caches[i] = NULL; 2643 } 2644 } 2645 2646 static int ext4_groupinfo_create_slab(size_t size) 2647 { 2648 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2649 int slab_size; 2650 int blocksize_bits = order_base_2(size); 2651 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2652 struct kmem_cache *cachep; 2653 2654 if (cache_index >= NR_GRPINFO_CACHES) 2655 return -EINVAL; 2656 2657 if (unlikely(cache_index < 0)) 2658 cache_index = 0; 2659 2660 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2661 if (ext4_groupinfo_caches[cache_index]) { 2662 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2663 return 0; /* Already created */ 2664 } 2665 2666 slab_size = offsetof(struct ext4_group_info, 2667 bb_counters[blocksize_bits + 2]); 2668 2669 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2670 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2671 NULL); 2672 2673 ext4_groupinfo_caches[cache_index] = cachep; 2674 2675 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2676 if (!cachep) { 2677 printk(KERN_EMERG 2678 "EXT4-fs: no memory for groupinfo slab cache\n"); 2679 return -ENOMEM; 2680 } 2681 2682 return 0; 2683 } 2684 2685 int ext4_mb_init(struct super_block *sb) 2686 { 2687 struct ext4_sb_info *sbi = EXT4_SB(sb); 2688 unsigned i, j; 2689 unsigned offset, offset_incr; 2690 unsigned max; 2691 int ret; 2692 2693 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2694 2695 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2696 if (sbi->s_mb_offsets == NULL) { 2697 ret = -ENOMEM; 2698 goto out; 2699 } 2700 2701 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2702 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2703 if (sbi->s_mb_maxs == NULL) { 2704 ret = -ENOMEM; 2705 goto out; 2706 } 2707 2708 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2709 if (ret < 0) 2710 goto out; 2711 2712 /* order 0 is regular bitmap */ 2713 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2714 sbi->s_mb_offsets[0] = 0; 2715 2716 i = 1; 2717 offset = 0; 2718 offset_incr = 1 << (sb->s_blocksize_bits - 1); 2719 max = sb->s_blocksize << 2; 2720 do { 2721 sbi->s_mb_offsets[i] = offset; 2722 sbi->s_mb_maxs[i] = max; 2723 offset += offset_incr; 2724 offset_incr = offset_incr >> 1; 2725 max = max >> 1; 2726 i++; 2727 } while (i <= sb->s_blocksize_bits + 1); 2728 2729 spin_lock_init(&sbi->s_md_lock); 2730 spin_lock_init(&sbi->s_bal_lock); 2731 sbi->s_mb_free_pending = 0; 2732 INIT_LIST_HEAD(&sbi->s_freed_data_list); 2733 2734 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2735 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2736 sbi->s_mb_stats = MB_DEFAULT_STATS; 2737 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2738 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2739 /* 2740 * The default group preallocation is 512, which for 4k block 2741 * sizes translates to 2 megabytes. However for bigalloc file 2742 * systems, this is probably too big (i.e, if the cluster size 2743 * is 1 megabyte, then group preallocation size becomes half a 2744 * gigabyte!). As a default, we will keep a two megabyte 2745 * group pralloc size for cluster sizes up to 64k, and after 2746 * that, we will force a minimum group preallocation size of 2747 * 32 clusters. This translates to 8 megs when the cluster 2748 * size is 256k, and 32 megs when the cluster size is 1 meg, 2749 * which seems reasonable as a default. 2750 */ 2751 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2752 sbi->s_cluster_bits, 32); 2753 /* 2754 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2755 * to the lowest multiple of s_stripe which is bigger than 2756 * the s_mb_group_prealloc as determined above. We want 2757 * the preallocation size to be an exact multiple of the 2758 * RAID stripe size so that preallocations don't fragment 2759 * the stripes. 2760 */ 2761 if (sbi->s_stripe > 1) { 2762 sbi->s_mb_group_prealloc = roundup( 2763 sbi->s_mb_group_prealloc, sbi->s_stripe); 2764 } 2765 2766 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2767 if (sbi->s_locality_groups == NULL) { 2768 ret = -ENOMEM; 2769 goto out; 2770 } 2771 for_each_possible_cpu(i) { 2772 struct ext4_locality_group *lg; 2773 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2774 mutex_init(&lg->lg_mutex); 2775 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2776 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2777 spin_lock_init(&lg->lg_prealloc_lock); 2778 } 2779 2780 /* init file for buddy data */ 2781 ret = ext4_mb_init_backend(sb); 2782 if (ret != 0) 2783 goto out_free_locality_groups; 2784 2785 return 0; 2786 2787 out_free_locality_groups: 2788 free_percpu(sbi->s_locality_groups); 2789 sbi->s_locality_groups = NULL; 2790 out: 2791 kfree(sbi->s_mb_offsets); 2792 sbi->s_mb_offsets = NULL; 2793 kfree(sbi->s_mb_maxs); 2794 sbi->s_mb_maxs = NULL; 2795 return ret; 2796 } 2797 2798 /* need to called with the ext4 group lock held */ 2799 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2800 { 2801 struct ext4_prealloc_space *pa; 2802 struct list_head *cur, *tmp; 2803 int count = 0; 2804 2805 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2806 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2807 list_del(&pa->pa_group_list); 2808 count++; 2809 kmem_cache_free(ext4_pspace_cachep, pa); 2810 } 2811 return count; 2812 } 2813 2814 int ext4_mb_release(struct super_block *sb) 2815 { 2816 ext4_group_t ngroups = ext4_get_groups_count(sb); 2817 ext4_group_t i; 2818 int num_meta_group_infos; 2819 struct ext4_group_info *grinfo, ***group_info; 2820 struct ext4_sb_info *sbi = EXT4_SB(sb); 2821 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2822 int count; 2823 2824 if (sbi->s_group_info) { 2825 for (i = 0; i < ngroups; i++) { 2826 cond_resched(); 2827 grinfo = ext4_get_group_info(sb, i); 2828 mb_group_bb_bitmap_free(grinfo); 2829 ext4_lock_group(sb, i); 2830 count = ext4_mb_cleanup_pa(grinfo); 2831 if (count) 2832 mb_debug(sb, "mballoc: %d PAs left\n", 2833 count); 2834 ext4_unlock_group(sb, i); 2835 kmem_cache_free(cachep, grinfo); 2836 } 2837 num_meta_group_infos = (ngroups + 2838 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2839 EXT4_DESC_PER_BLOCK_BITS(sb); 2840 rcu_read_lock(); 2841 group_info = rcu_dereference(sbi->s_group_info); 2842 for (i = 0; i < num_meta_group_infos; i++) 2843 kfree(group_info[i]); 2844 kvfree(group_info); 2845 rcu_read_unlock(); 2846 } 2847 kfree(sbi->s_mb_offsets); 2848 kfree(sbi->s_mb_maxs); 2849 iput(sbi->s_buddy_cache); 2850 if (sbi->s_mb_stats) { 2851 ext4_msg(sb, KERN_INFO, 2852 "mballoc: %u blocks %u reqs (%u success)", 2853 atomic_read(&sbi->s_bal_allocated), 2854 atomic_read(&sbi->s_bal_reqs), 2855 atomic_read(&sbi->s_bal_success)); 2856 ext4_msg(sb, KERN_INFO, 2857 "mballoc: %u extents scanned, %u goal hits, " 2858 "%u 2^N hits, %u breaks, %u lost", 2859 atomic_read(&sbi->s_bal_ex_scanned), 2860 atomic_read(&sbi->s_bal_goals), 2861 atomic_read(&sbi->s_bal_2orders), 2862 atomic_read(&sbi->s_bal_breaks), 2863 atomic_read(&sbi->s_mb_lost_chunks)); 2864 ext4_msg(sb, KERN_INFO, 2865 "mballoc: %lu generated and it took %Lu", 2866 sbi->s_mb_buddies_generated, 2867 sbi->s_mb_generation_time); 2868 ext4_msg(sb, KERN_INFO, 2869 "mballoc: %u preallocated, %u discarded", 2870 atomic_read(&sbi->s_mb_preallocated), 2871 atomic_read(&sbi->s_mb_discarded)); 2872 } 2873 2874 free_percpu(sbi->s_locality_groups); 2875 2876 return 0; 2877 } 2878 2879 static inline int ext4_issue_discard(struct super_block *sb, 2880 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 2881 struct bio **biop) 2882 { 2883 ext4_fsblk_t discard_block; 2884 2885 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2886 ext4_group_first_block_no(sb, block_group)); 2887 count = EXT4_C2B(EXT4_SB(sb), count); 2888 trace_ext4_discard_blocks(sb, 2889 (unsigned long long) discard_block, count); 2890 if (biop) { 2891 return __blkdev_issue_discard(sb->s_bdev, 2892 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 2893 (sector_t)count << (sb->s_blocksize_bits - 9), 2894 GFP_NOFS, 0, biop); 2895 } else 2896 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2897 } 2898 2899 static void ext4_free_data_in_buddy(struct super_block *sb, 2900 struct ext4_free_data *entry) 2901 { 2902 struct ext4_buddy e4b; 2903 struct ext4_group_info *db; 2904 int err, count = 0, count2 = 0; 2905 2906 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 2907 entry->efd_count, entry->efd_group, entry); 2908 2909 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2910 /* we expect to find existing buddy because it's pinned */ 2911 BUG_ON(err != 0); 2912 2913 spin_lock(&EXT4_SB(sb)->s_md_lock); 2914 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 2915 spin_unlock(&EXT4_SB(sb)->s_md_lock); 2916 2917 db = e4b.bd_info; 2918 /* there are blocks to put in buddy to make them really free */ 2919 count += entry->efd_count; 2920 count2++; 2921 ext4_lock_group(sb, entry->efd_group); 2922 /* Take it out of per group rb tree */ 2923 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2924 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2925 2926 /* 2927 * Clear the trimmed flag for the group so that the next 2928 * ext4_trim_fs can trim it. 2929 * If the volume is mounted with -o discard, online discard 2930 * is supported and the free blocks will be trimmed online. 2931 */ 2932 if (!test_opt(sb, DISCARD)) 2933 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2934 2935 if (!db->bb_free_root.rb_node) { 2936 /* No more items in the per group rb tree 2937 * balance refcounts from ext4_mb_free_metadata() 2938 */ 2939 put_page(e4b.bd_buddy_page); 2940 put_page(e4b.bd_bitmap_page); 2941 } 2942 ext4_unlock_group(sb, entry->efd_group); 2943 kmem_cache_free(ext4_free_data_cachep, entry); 2944 ext4_mb_unload_buddy(&e4b); 2945 2946 mb_debug(sb, "freed %d blocks in %d structures\n", count, 2947 count2); 2948 } 2949 2950 /* 2951 * This function is called by the jbd2 layer once the commit has finished, 2952 * so we know we can free the blocks that were released with that commit. 2953 */ 2954 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 2955 { 2956 struct ext4_sb_info *sbi = EXT4_SB(sb); 2957 struct ext4_free_data *entry, *tmp; 2958 struct bio *discard_bio = NULL; 2959 struct list_head freed_data_list; 2960 struct list_head *cut_pos = NULL; 2961 int err; 2962 2963 INIT_LIST_HEAD(&freed_data_list); 2964 2965 spin_lock(&sbi->s_md_lock); 2966 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 2967 if (entry->efd_tid != commit_tid) 2968 break; 2969 cut_pos = &entry->efd_list; 2970 } 2971 if (cut_pos) 2972 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 2973 cut_pos); 2974 spin_unlock(&sbi->s_md_lock); 2975 2976 if (test_opt(sb, DISCARD)) { 2977 list_for_each_entry(entry, &freed_data_list, efd_list) { 2978 err = ext4_issue_discard(sb, entry->efd_group, 2979 entry->efd_start_cluster, 2980 entry->efd_count, 2981 &discard_bio); 2982 if (err && err != -EOPNOTSUPP) { 2983 ext4_msg(sb, KERN_WARNING, "discard request in" 2984 " group:%d block:%d count:%d failed" 2985 " with %d", entry->efd_group, 2986 entry->efd_start_cluster, 2987 entry->efd_count, err); 2988 } else if (err == -EOPNOTSUPP) 2989 break; 2990 } 2991 2992 if (discard_bio) { 2993 submit_bio_wait(discard_bio); 2994 bio_put(discard_bio); 2995 } 2996 } 2997 2998 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 2999 ext4_free_data_in_buddy(sb, entry); 3000 } 3001 3002 int __init ext4_init_mballoc(void) 3003 { 3004 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3005 SLAB_RECLAIM_ACCOUNT); 3006 if (ext4_pspace_cachep == NULL) 3007 goto out; 3008 3009 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3010 SLAB_RECLAIM_ACCOUNT); 3011 if (ext4_ac_cachep == NULL) 3012 goto out_pa_free; 3013 3014 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3015 SLAB_RECLAIM_ACCOUNT); 3016 if (ext4_free_data_cachep == NULL) 3017 goto out_ac_free; 3018 3019 return 0; 3020 3021 out_ac_free: 3022 kmem_cache_destroy(ext4_ac_cachep); 3023 out_pa_free: 3024 kmem_cache_destroy(ext4_pspace_cachep); 3025 out: 3026 return -ENOMEM; 3027 } 3028 3029 void ext4_exit_mballoc(void) 3030 { 3031 /* 3032 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3033 * before destroying the slab cache. 3034 */ 3035 rcu_barrier(); 3036 kmem_cache_destroy(ext4_pspace_cachep); 3037 kmem_cache_destroy(ext4_ac_cachep); 3038 kmem_cache_destroy(ext4_free_data_cachep); 3039 ext4_groupinfo_destroy_slabs(); 3040 } 3041 3042 3043 /* 3044 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 3045 * Returns 0 if success or error code 3046 */ 3047 static noinline_for_stack int 3048 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 3049 handle_t *handle, unsigned int reserv_clstrs) 3050 { 3051 struct buffer_head *bitmap_bh = NULL; 3052 struct ext4_group_desc *gdp; 3053 struct buffer_head *gdp_bh; 3054 struct ext4_sb_info *sbi; 3055 struct super_block *sb; 3056 ext4_fsblk_t block; 3057 int err, len; 3058 3059 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3060 BUG_ON(ac->ac_b_ex.fe_len <= 0); 3061 3062 sb = ac->ac_sb; 3063 sbi = EXT4_SB(sb); 3064 3065 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 3066 if (IS_ERR(bitmap_bh)) { 3067 err = PTR_ERR(bitmap_bh); 3068 bitmap_bh = NULL; 3069 goto out_err; 3070 } 3071 3072 BUFFER_TRACE(bitmap_bh, "getting write access"); 3073 err = ext4_journal_get_write_access(handle, bitmap_bh); 3074 if (err) 3075 goto out_err; 3076 3077 err = -EIO; 3078 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 3079 if (!gdp) 3080 goto out_err; 3081 3082 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 3083 ext4_free_group_clusters(sb, gdp)); 3084 3085 BUFFER_TRACE(gdp_bh, "get_write_access"); 3086 err = ext4_journal_get_write_access(handle, gdp_bh); 3087 if (err) 3088 goto out_err; 3089 3090 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3091 3092 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3093 if (!ext4_data_block_valid(sbi, block, len)) { 3094 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 3095 "fs metadata", block, block+len); 3096 /* File system mounted not to panic on error 3097 * Fix the bitmap and return EFSCORRUPTED 3098 * We leak some of the blocks here. 3099 */ 3100 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3101 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3102 ac->ac_b_ex.fe_len); 3103 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3104 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3105 if (!err) 3106 err = -EFSCORRUPTED; 3107 goto out_err; 3108 } 3109 3110 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3111 #ifdef AGGRESSIVE_CHECK 3112 { 3113 int i; 3114 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 3115 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 3116 bitmap_bh->b_data)); 3117 } 3118 } 3119 #endif 3120 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3121 ac->ac_b_ex.fe_len); 3122 if (ext4_has_group_desc_csum(sb) && 3123 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3124 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3125 ext4_free_group_clusters_set(sb, gdp, 3126 ext4_free_clusters_after_init(sb, 3127 ac->ac_b_ex.fe_group, gdp)); 3128 } 3129 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 3130 ext4_free_group_clusters_set(sb, gdp, len); 3131 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 3132 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 3133 3134 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3135 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 3136 /* 3137 * Now reduce the dirty block count also. Should not go negative 3138 */ 3139 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 3140 /* release all the reserved blocks if non delalloc */ 3141 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 3142 reserv_clstrs); 3143 3144 if (sbi->s_log_groups_per_flex) { 3145 ext4_group_t flex_group = ext4_flex_group(sbi, 3146 ac->ac_b_ex.fe_group); 3147 atomic64_sub(ac->ac_b_ex.fe_len, 3148 &sbi_array_rcu_deref(sbi, s_flex_groups, 3149 flex_group)->free_clusters); 3150 } 3151 3152 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3153 if (err) 3154 goto out_err; 3155 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 3156 3157 out_err: 3158 brelse(bitmap_bh); 3159 return err; 3160 } 3161 3162 /* 3163 * here we normalize request for locality group 3164 * Group request are normalized to s_mb_group_prealloc, which goes to 3165 * s_strip if we set the same via mount option. 3166 * s_mb_group_prealloc can be configured via 3167 * /sys/fs/ext4/<partition>/mb_group_prealloc 3168 * 3169 * XXX: should we try to preallocate more than the group has now? 3170 */ 3171 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 3172 { 3173 struct super_block *sb = ac->ac_sb; 3174 struct ext4_locality_group *lg = ac->ac_lg; 3175 3176 BUG_ON(lg == NULL); 3177 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 3178 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 3179 } 3180 3181 /* 3182 * Normalization means making request better in terms of 3183 * size and alignment 3184 */ 3185 static noinline_for_stack void 3186 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3187 struct ext4_allocation_request *ar) 3188 { 3189 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3190 int bsbits, max; 3191 ext4_lblk_t end; 3192 loff_t size, start_off; 3193 loff_t orig_size __maybe_unused; 3194 ext4_lblk_t start; 3195 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3196 struct ext4_prealloc_space *pa; 3197 3198 /* do normalize only data requests, metadata requests 3199 do not need preallocation */ 3200 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3201 return; 3202 3203 /* sometime caller may want exact blocks */ 3204 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3205 return; 3206 3207 /* caller may indicate that preallocation isn't 3208 * required (it's a tail, for example) */ 3209 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3210 return; 3211 3212 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3213 ext4_mb_normalize_group_request(ac); 3214 return ; 3215 } 3216 3217 bsbits = ac->ac_sb->s_blocksize_bits; 3218 3219 /* first, let's learn actual file size 3220 * given current request is allocated */ 3221 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3222 size = size << bsbits; 3223 if (size < i_size_read(ac->ac_inode)) 3224 size = i_size_read(ac->ac_inode); 3225 orig_size = size; 3226 3227 /* max size of free chunks */ 3228 max = 2 << bsbits; 3229 3230 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3231 (req <= (size) || max <= (chunk_size)) 3232 3233 /* first, try to predict filesize */ 3234 /* XXX: should this table be tunable? */ 3235 start_off = 0; 3236 if (size <= 16 * 1024) { 3237 size = 16 * 1024; 3238 } else if (size <= 32 * 1024) { 3239 size = 32 * 1024; 3240 } else if (size <= 64 * 1024) { 3241 size = 64 * 1024; 3242 } else if (size <= 128 * 1024) { 3243 size = 128 * 1024; 3244 } else if (size <= 256 * 1024) { 3245 size = 256 * 1024; 3246 } else if (size <= 512 * 1024) { 3247 size = 512 * 1024; 3248 } else if (size <= 1024 * 1024) { 3249 size = 1024 * 1024; 3250 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3251 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3252 (21 - bsbits)) << 21; 3253 size = 2 * 1024 * 1024; 3254 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3255 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3256 (22 - bsbits)) << 22; 3257 size = 4 * 1024 * 1024; 3258 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3259 (8<<20)>>bsbits, max, 8 * 1024)) { 3260 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3261 (23 - bsbits)) << 23; 3262 size = 8 * 1024 * 1024; 3263 } else { 3264 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 3265 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 3266 ac->ac_o_ex.fe_len) << bsbits; 3267 } 3268 size = size >> bsbits; 3269 start = start_off >> bsbits; 3270 3271 /* don't cover already allocated blocks in selected range */ 3272 if (ar->pleft && start <= ar->lleft) { 3273 size -= ar->lleft + 1 - start; 3274 start = ar->lleft + 1; 3275 } 3276 if (ar->pright && start + size - 1 >= ar->lright) 3277 size -= start + size - ar->lright; 3278 3279 /* 3280 * Trim allocation request for filesystems with artificially small 3281 * groups. 3282 */ 3283 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 3284 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 3285 3286 end = start + size; 3287 3288 /* check we don't cross already preallocated blocks */ 3289 rcu_read_lock(); 3290 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3291 ext4_lblk_t pa_end; 3292 3293 if (pa->pa_deleted) 3294 continue; 3295 spin_lock(&pa->pa_lock); 3296 if (pa->pa_deleted) { 3297 spin_unlock(&pa->pa_lock); 3298 continue; 3299 } 3300 3301 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3302 pa->pa_len); 3303 3304 /* PA must not overlap original request */ 3305 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3306 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3307 3308 /* skip PAs this normalized request doesn't overlap with */ 3309 if (pa->pa_lstart >= end || pa_end <= start) { 3310 spin_unlock(&pa->pa_lock); 3311 continue; 3312 } 3313 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3314 3315 /* adjust start or end to be adjacent to this pa */ 3316 if (pa_end <= ac->ac_o_ex.fe_logical) { 3317 BUG_ON(pa_end < start); 3318 start = pa_end; 3319 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3320 BUG_ON(pa->pa_lstart > end); 3321 end = pa->pa_lstart; 3322 } 3323 spin_unlock(&pa->pa_lock); 3324 } 3325 rcu_read_unlock(); 3326 size = end - start; 3327 3328 /* XXX: extra loop to check we really don't overlap preallocations */ 3329 rcu_read_lock(); 3330 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3331 ext4_lblk_t pa_end; 3332 3333 spin_lock(&pa->pa_lock); 3334 if (pa->pa_deleted == 0) { 3335 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3336 pa->pa_len); 3337 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3338 } 3339 spin_unlock(&pa->pa_lock); 3340 } 3341 rcu_read_unlock(); 3342 3343 if (start + size <= ac->ac_o_ex.fe_logical && 3344 start > ac->ac_o_ex.fe_logical) { 3345 ext4_msg(ac->ac_sb, KERN_ERR, 3346 "start %lu, size %lu, fe_logical %lu", 3347 (unsigned long) start, (unsigned long) size, 3348 (unsigned long) ac->ac_o_ex.fe_logical); 3349 BUG(); 3350 } 3351 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3352 3353 /* now prepare goal request */ 3354 3355 /* XXX: is it better to align blocks WRT to logical 3356 * placement or satisfy big request as is */ 3357 ac->ac_g_ex.fe_logical = start; 3358 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3359 3360 /* define goal start in order to merge */ 3361 if (ar->pright && (ar->lright == (start + size))) { 3362 /* merge to the right */ 3363 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3364 &ac->ac_f_ex.fe_group, 3365 &ac->ac_f_ex.fe_start); 3366 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3367 } 3368 if (ar->pleft && (ar->lleft + 1 == start)) { 3369 /* merge to the left */ 3370 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3371 &ac->ac_f_ex.fe_group, 3372 &ac->ac_f_ex.fe_start); 3373 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3374 } 3375 3376 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 3377 orig_size, start); 3378 } 3379 3380 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3381 { 3382 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3383 3384 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3385 atomic_inc(&sbi->s_bal_reqs); 3386 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3387 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3388 atomic_inc(&sbi->s_bal_success); 3389 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3390 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3391 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3392 atomic_inc(&sbi->s_bal_goals); 3393 if (ac->ac_found > sbi->s_mb_max_to_scan) 3394 atomic_inc(&sbi->s_bal_breaks); 3395 } 3396 3397 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3398 trace_ext4_mballoc_alloc(ac); 3399 else 3400 trace_ext4_mballoc_prealloc(ac); 3401 } 3402 3403 /* 3404 * Called on failure; free up any blocks from the inode PA for this 3405 * context. We don't need this for MB_GROUP_PA because we only change 3406 * pa_free in ext4_mb_release_context(), but on failure, we've already 3407 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3408 */ 3409 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3410 { 3411 struct ext4_prealloc_space *pa = ac->ac_pa; 3412 struct ext4_buddy e4b; 3413 int err; 3414 3415 if (pa == NULL) { 3416 if (ac->ac_f_ex.fe_len == 0) 3417 return; 3418 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 3419 if (err) { 3420 /* 3421 * This should never happen since we pin the 3422 * pages in the ext4_allocation_context so 3423 * ext4_mb_load_buddy() should never fail. 3424 */ 3425 WARN(1, "mb_load_buddy failed (%d)", err); 3426 return; 3427 } 3428 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3429 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 3430 ac->ac_f_ex.fe_len); 3431 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3432 ext4_mb_unload_buddy(&e4b); 3433 return; 3434 } 3435 if (pa->pa_type == MB_INODE_PA) 3436 pa->pa_free += ac->ac_b_ex.fe_len; 3437 } 3438 3439 /* 3440 * use blocks preallocated to inode 3441 */ 3442 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3443 struct ext4_prealloc_space *pa) 3444 { 3445 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3446 ext4_fsblk_t start; 3447 ext4_fsblk_t end; 3448 int len; 3449 3450 /* found preallocated blocks, use them */ 3451 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3452 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3453 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3454 len = EXT4_NUM_B2C(sbi, end - start); 3455 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3456 &ac->ac_b_ex.fe_start); 3457 ac->ac_b_ex.fe_len = len; 3458 ac->ac_status = AC_STATUS_FOUND; 3459 ac->ac_pa = pa; 3460 3461 BUG_ON(start < pa->pa_pstart); 3462 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3463 BUG_ON(pa->pa_free < len); 3464 pa->pa_free -= len; 3465 3466 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 3467 } 3468 3469 /* 3470 * use blocks preallocated to locality group 3471 */ 3472 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3473 struct ext4_prealloc_space *pa) 3474 { 3475 unsigned int len = ac->ac_o_ex.fe_len; 3476 3477 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3478 &ac->ac_b_ex.fe_group, 3479 &ac->ac_b_ex.fe_start); 3480 ac->ac_b_ex.fe_len = len; 3481 ac->ac_status = AC_STATUS_FOUND; 3482 ac->ac_pa = pa; 3483 3484 /* we don't correct pa_pstart or pa_plen here to avoid 3485 * possible race when the group is being loaded concurrently 3486 * instead we correct pa later, after blocks are marked 3487 * in on-disk bitmap -- see ext4_mb_release_context() 3488 * Other CPUs are prevented from allocating from this pa by lg_mutex 3489 */ 3490 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 3491 pa->pa_lstart-len, len, pa); 3492 } 3493 3494 /* 3495 * Return the prealloc space that have minimal distance 3496 * from the goal block. @cpa is the prealloc 3497 * space that is having currently known minimal distance 3498 * from the goal block. 3499 */ 3500 static struct ext4_prealloc_space * 3501 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3502 struct ext4_prealloc_space *pa, 3503 struct ext4_prealloc_space *cpa) 3504 { 3505 ext4_fsblk_t cur_distance, new_distance; 3506 3507 if (cpa == NULL) { 3508 atomic_inc(&pa->pa_count); 3509 return pa; 3510 } 3511 cur_distance = abs(goal_block - cpa->pa_pstart); 3512 new_distance = abs(goal_block - pa->pa_pstart); 3513 3514 if (cur_distance <= new_distance) 3515 return cpa; 3516 3517 /* drop the previous reference */ 3518 atomic_dec(&cpa->pa_count); 3519 atomic_inc(&pa->pa_count); 3520 return pa; 3521 } 3522 3523 /* 3524 * search goal blocks in preallocated space 3525 */ 3526 static noinline_for_stack bool 3527 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3528 { 3529 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3530 int order, i; 3531 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3532 struct ext4_locality_group *lg; 3533 struct ext4_prealloc_space *pa, *cpa = NULL; 3534 ext4_fsblk_t goal_block; 3535 3536 /* only data can be preallocated */ 3537 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3538 return false; 3539 3540 /* first, try per-file preallocation */ 3541 rcu_read_lock(); 3542 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3543 3544 /* all fields in this condition don't change, 3545 * so we can skip locking for them */ 3546 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3547 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3548 EXT4_C2B(sbi, pa->pa_len))) 3549 continue; 3550 3551 /* non-extent files can't have physical blocks past 2^32 */ 3552 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3553 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3554 EXT4_MAX_BLOCK_FILE_PHYS)) 3555 continue; 3556 3557 /* found preallocated blocks, use them */ 3558 spin_lock(&pa->pa_lock); 3559 if (pa->pa_deleted == 0 && pa->pa_free) { 3560 atomic_inc(&pa->pa_count); 3561 ext4_mb_use_inode_pa(ac, pa); 3562 spin_unlock(&pa->pa_lock); 3563 ac->ac_criteria = 10; 3564 rcu_read_unlock(); 3565 return true; 3566 } 3567 spin_unlock(&pa->pa_lock); 3568 } 3569 rcu_read_unlock(); 3570 3571 /* can we use group allocation? */ 3572 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3573 return false; 3574 3575 /* inode may have no locality group for some reason */ 3576 lg = ac->ac_lg; 3577 if (lg == NULL) 3578 return false; 3579 order = fls(ac->ac_o_ex.fe_len) - 1; 3580 if (order > PREALLOC_TB_SIZE - 1) 3581 /* The max size of hash table is PREALLOC_TB_SIZE */ 3582 order = PREALLOC_TB_SIZE - 1; 3583 3584 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3585 /* 3586 * search for the prealloc space that is having 3587 * minimal distance from the goal block. 3588 */ 3589 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3590 rcu_read_lock(); 3591 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3592 pa_inode_list) { 3593 spin_lock(&pa->pa_lock); 3594 if (pa->pa_deleted == 0 && 3595 pa->pa_free >= ac->ac_o_ex.fe_len) { 3596 3597 cpa = ext4_mb_check_group_pa(goal_block, 3598 pa, cpa); 3599 } 3600 spin_unlock(&pa->pa_lock); 3601 } 3602 rcu_read_unlock(); 3603 } 3604 if (cpa) { 3605 ext4_mb_use_group_pa(ac, cpa); 3606 ac->ac_criteria = 20; 3607 return true; 3608 } 3609 return false; 3610 } 3611 3612 /* 3613 * the function goes through all block freed in the group 3614 * but not yet committed and marks them used in in-core bitmap. 3615 * buddy must be generated from this bitmap 3616 * Need to be called with the ext4 group lock held 3617 */ 3618 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3619 ext4_group_t group) 3620 { 3621 struct rb_node *n; 3622 struct ext4_group_info *grp; 3623 struct ext4_free_data *entry; 3624 3625 grp = ext4_get_group_info(sb, group); 3626 n = rb_first(&(grp->bb_free_root)); 3627 3628 while (n) { 3629 entry = rb_entry(n, struct ext4_free_data, efd_node); 3630 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3631 n = rb_next(n); 3632 } 3633 return; 3634 } 3635 3636 /* 3637 * the function goes through all preallocation in this group and marks them 3638 * used in in-core bitmap. buddy must be generated from this bitmap 3639 * Need to be called with ext4 group lock held 3640 */ 3641 static noinline_for_stack 3642 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3643 ext4_group_t group) 3644 { 3645 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3646 struct ext4_prealloc_space *pa; 3647 struct list_head *cur; 3648 ext4_group_t groupnr; 3649 ext4_grpblk_t start; 3650 int preallocated = 0; 3651 int len; 3652 3653 /* all form of preallocation discards first load group, 3654 * so the only competing code is preallocation use. 3655 * we don't need any locking here 3656 * notice we do NOT ignore preallocations with pa_deleted 3657 * otherwise we could leave used blocks available for 3658 * allocation in buddy when concurrent ext4_mb_put_pa() 3659 * is dropping preallocation 3660 */ 3661 list_for_each(cur, &grp->bb_prealloc_list) { 3662 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3663 spin_lock(&pa->pa_lock); 3664 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3665 &groupnr, &start); 3666 len = pa->pa_len; 3667 spin_unlock(&pa->pa_lock); 3668 if (unlikely(len == 0)) 3669 continue; 3670 BUG_ON(groupnr != group); 3671 ext4_set_bits(bitmap, start, len); 3672 preallocated += len; 3673 } 3674 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 3675 } 3676 3677 static void ext4_mb_pa_callback(struct rcu_head *head) 3678 { 3679 struct ext4_prealloc_space *pa; 3680 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3681 3682 BUG_ON(atomic_read(&pa->pa_count)); 3683 BUG_ON(pa->pa_deleted == 0); 3684 kmem_cache_free(ext4_pspace_cachep, pa); 3685 } 3686 3687 /* 3688 * drops a reference to preallocated space descriptor 3689 * if this was the last reference and the space is consumed 3690 */ 3691 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3692 struct super_block *sb, struct ext4_prealloc_space *pa) 3693 { 3694 ext4_group_t grp; 3695 ext4_fsblk_t grp_blk; 3696 3697 /* in this short window concurrent discard can set pa_deleted */ 3698 spin_lock(&pa->pa_lock); 3699 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 3700 spin_unlock(&pa->pa_lock); 3701 return; 3702 } 3703 3704 if (pa->pa_deleted == 1) { 3705 spin_unlock(&pa->pa_lock); 3706 return; 3707 } 3708 3709 pa->pa_deleted = 1; 3710 spin_unlock(&pa->pa_lock); 3711 3712 grp_blk = pa->pa_pstart; 3713 /* 3714 * If doing group-based preallocation, pa_pstart may be in the 3715 * next group when pa is used up 3716 */ 3717 if (pa->pa_type == MB_GROUP_PA) 3718 grp_blk--; 3719 3720 grp = ext4_get_group_number(sb, grp_blk); 3721 3722 /* 3723 * possible race: 3724 * 3725 * P1 (buddy init) P2 (regular allocation) 3726 * find block B in PA 3727 * copy on-disk bitmap to buddy 3728 * mark B in on-disk bitmap 3729 * drop PA from group 3730 * mark all PAs in buddy 3731 * 3732 * thus, P1 initializes buddy with B available. to prevent this 3733 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3734 * against that pair 3735 */ 3736 ext4_lock_group(sb, grp); 3737 list_del(&pa->pa_group_list); 3738 ext4_unlock_group(sb, grp); 3739 3740 spin_lock(pa->pa_obj_lock); 3741 list_del_rcu(&pa->pa_inode_list); 3742 spin_unlock(pa->pa_obj_lock); 3743 3744 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3745 } 3746 3747 /* 3748 * creates new preallocated space for given inode 3749 */ 3750 static noinline_for_stack void 3751 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3752 { 3753 struct super_block *sb = ac->ac_sb; 3754 struct ext4_sb_info *sbi = EXT4_SB(sb); 3755 struct ext4_prealloc_space *pa; 3756 struct ext4_group_info *grp; 3757 struct ext4_inode_info *ei; 3758 3759 /* preallocate only when found space is larger then requested */ 3760 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3761 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3762 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3763 BUG_ON(ac->ac_pa == NULL); 3764 3765 pa = ac->ac_pa; 3766 3767 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3768 int winl; 3769 int wins; 3770 int win; 3771 int offs; 3772 3773 /* we can't allocate as much as normalizer wants. 3774 * so, found space must get proper lstart 3775 * to cover original request */ 3776 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3777 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3778 3779 /* we're limited by original request in that 3780 * logical block must be covered any way 3781 * winl is window we can move our chunk within */ 3782 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3783 3784 /* also, we should cover whole original request */ 3785 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3786 3787 /* the smallest one defines real window */ 3788 win = min(winl, wins); 3789 3790 offs = ac->ac_o_ex.fe_logical % 3791 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3792 if (offs && offs < win) 3793 win = offs; 3794 3795 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3796 EXT4_NUM_B2C(sbi, win); 3797 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3798 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3799 } 3800 3801 /* preallocation can change ac_b_ex, thus we store actually 3802 * allocated blocks for history */ 3803 ac->ac_f_ex = ac->ac_b_ex; 3804 3805 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3806 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3807 pa->pa_len = ac->ac_b_ex.fe_len; 3808 pa->pa_free = pa->pa_len; 3809 spin_lock_init(&pa->pa_lock); 3810 INIT_LIST_HEAD(&pa->pa_inode_list); 3811 INIT_LIST_HEAD(&pa->pa_group_list); 3812 pa->pa_deleted = 0; 3813 pa->pa_type = MB_INODE_PA; 3814 3815 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 3816 pa->pa_len, pa->pa_lstart); 3817 trace_ext4_mb_new_inode_pa(ac, pa); 3818 3819 ext4_mb_use_inode_pa(ac, pa); 3820 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3821 3822 ei = EXT4_I(ac->ac_inode); 3823 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3824 3825 pa->pa_obj_lock = &ei->i_prealloc_lock; 3826 pa->pa_inode = ac->ac_inode; 3827 3828 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3829 3830 spin_lock(pa->pa_obj_lock); 3831 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3832 spin_unlock(pa->pa_obj_lock); 3833 } 3834 3835 /* 3836 * creates new preallocated space for locality group inodes belongs to 3837 */ 3838 static noinline_for_stack void 3839 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3840 { 3841 struct super_block *sb = ac->ac_sb; 3842 struct ext4_locality_group *lg; 3843 struct ext4_prealloc_space *pa; 3844 struct ext4_group_info *grp; 3845 3846 /* preallocate only when found space is larger then requested */ 3847 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3848 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3849 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3850 BUG_ON(ac->ac_pa == NULL); 3851 3852 pa = ac->ac_pa; 3853 3854 /* preallocation can change ac_b_ex, thus we store actually 3855 * allocated blocks for history */ 3856 ac->ac_f_ex = ac->ac_b_ex; 3857 3858 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3859 pa->pa_lstart = pa->pa_pstart; 3860 pa->pa_len = ac->ac_b_ex.fe_len; 3861 pa->pa_free = pa->pa_len; 3862 spin_lock_init(&pa->pa_lock); 3863 INIT_LIST_HEAD(&pa->pa_inode_list); 3864 INIT_LIST_HEAD(&pa->pa_group_list); 3865 pa->pa_deleted = 0; 3866 pa->pa_type = MB_GROUP_PA; 3867 3868 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 3869 pa->pa_len, pa->pa_lstart); 3870 trace_ext4_mb_new_group_pa(ac, pa); 3871 3872 ext4_mb_use_group_pa(ac, pa); 3873 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3874 3875 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3876 lg = ac->ac_lg; 3877 BUG_ON(lg == NULL); 3878 3879 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3880 pa->pa_inode = NULL; 3881 3882 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3883 3884 /* 3885 * We will later add the new pa to the right bucket 3886 * after updating the pa_free in ext4_mb_release_context 3887 */ 3888 } 3889 3890 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3891 { 3892 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3893 ext4_mb_new_group_pa(ac); 3894 else 3895 ext4_mb_new_inode_pa(ac); 3896 } 3897 3898 /* 3899 * finds all unused blocks in on-disk bitmap, frees them in 3900 * in-core bitmap and buddy. 3901 * @pa must be unlinked from inode and group lists, so that 3902 * nobody else can find/use it. 3903 * the caller MUST hold group/inode locks. 3904 * TODO: optimize the case when there are no in-core structures yet 3905 */ 3906 static noinline_for_stack int 3907 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3908 struct ext4_prealloc_space *pa) 3909 { 3910 struct super_block *sb = e4b->bd_sb; 3911 struct ext4_sb_info *sbi = EXT4_SB(sb); 3912 unsigned int end; 3913 unsigned int next; 3914 ext4_group_t group; 3915 ext4_grpblk_t bit; 3916 unsigned long long grp_blk_start; 3917 int free = 0; 3918 3919 BUG_ON(pa->pa_deleted == 0); 3920 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3921 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3922 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3923 end = bit + pa->pa_len; 3924 3925 while (bit < end) { 3926 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3927 if (bit >= end) 3928 break; 3929 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3930 mb_debug(sb, "free preallocated %u/%u in group %u\n", 3931 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3932 (unsigned) next - bit, (unsigned) group); 3933 free += next - bit; 3934 3935 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3936 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3937 EXT4_C2B(sbi, bit)), 3938 next - bit); 3939 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3940 bit = next + 1; 3941 } 3942 if (free != pa->pa_free) { 3943 ext4_msg(e4b->bd_sb, KERN_CRIT, 3944 "pa %p: logic %lu, phys. %lu, len %d", 3945 pa, (unsigned long) pa->pa_lstart, 3946 (unsigned long) pa->pa_pstart, 3947 pa->pa_len); 3948 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3949 free, pa->pa_free); 3950 /* 3951 * pa is already deleted so we use the value obtained 3952 * from the bitmap and continue. 3953 */ 3954 } 3955 atomic_add(free, &sbi->s_mb_discarded); 3956 3957 return 0; 3958 } 3959 3960 static noinline_for_stack int 3961 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3962 struct ext4_prealloc_space *pa) 3963 { 3964 struct super_block *sb = e4b->bd_sb; 3965 ext4_group_t group; 3966 ext4_grpblk_t bit; 3967 3968 trace_ext4_mb_release_group_pa(sb, pa); 3969 BUG_ON(pa->pa_deleted == 0); 3970 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3971 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3972 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3973 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3974 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3975 3976 return 0; 3977 } 3978 3979 /* 3980 * releases all preallocations in given group 3981 * 3982 * first, we need to decide discard policy: 3983 * - when do we discard 3984 * 1) ENOSPC 3985 * - how many do we discard 3986 * 1) how many requested 3987 */ 3988 static noinline_for_stack int 3989 ext4_mb_discard_group_preallocations(struct super_block *sb, 3990 ext4_group_t group, int needed) 3991 { 3992 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3993 struct buffer_head *bitmap_bh = NULL; 3994 struct ext4_prealloc_space *pa, *tmp; 3995 struct list_head list; 3996 struct ext4_buddy e4b; 3997 int err; 3998 int busy = 0; 3999 int free = 0; 4000 4001 mb_debug(sb, "discard preallocation for group %u\n", group); 4002 if (list_empty(&grp->bb_prealloc_list)) 4003 goto out_dbg; 4004 4005 bitmap_bh = ext4_read_block_bitmap(sb, group); 4006 if (IS_ERR(bitmap_bh)) { 4007 err = PTR_ERR(bitmap_bh); 4008 ext4_error_err(sb, -err, 4009 "Error %d reading block bitmap for %u", 4010 err, group); 4011 goto out_dbg; 4012 } 4013 4014 err = ext4_mb_load_buddy(sb, group, &e4b); 4015 if (err) { 4016 ext4_warning(sb, "Error %d loading buddy information for %u", 4017 err, group); 4018 put_bh(bitmap_bh); 4019 goto out_dbg; 4020 } 4021 4022 if (needed == 0) 4023 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 4024 4025 INIT_LIST_HEAD(&list); 4026 repeat: 4027 ext4_lock_group(sb, group); 4028 this_cpu_inc(discard_pa_seq); 4029 list_for_each_entry_safe(pa, tmp, 4030 &grp->bb_prealloc_list, pa_group_list) { 4031 spin_lock(&pa->pa_lock); 4032 if (atomic_read(&pa->pa_count)) { 4033 spin_unlock(&pa->pa_lock); 4034 busy = 1; 4035 continue; 4036 } 4037 if (pa->pa_deleted) { 4038 spin_unlock(&pa->pa_lock); 4039 continue; 4040 } 4041 4042 /* seems this one can be freed ... */ 4043 pa->pa_deleted = 1; 4044 4045 /* we can trust pa_free ... */ 4046 free += pa->pa_free; 4047 4048 spin_unlock(&pa->pa_lock); 4049 4050 list_del(&pa->pa_group_list); 4051 list_add(&pa->u.pa_tmp_list, &list); 4052 } 4053 4054 /* if we still need more blocks and some PAs were used, try again */ 4055 if (free < needed && busy) { 4056 busy = 0; 4057 ext4_unlock_group(sb, group); 4058 cond_resched(); 4059 goto repeat; 4060 } 4061 4062 /* found anything to free? */ 4063 if (list_empty(&list)) { 4064 BUG_ON(free != 0); 4065 mb_debug(sb, "Someone else may have freed PA for this group %u\n", 4066 group); 4067 goto out; 4068 } 4069 4070 /* now free all selected PAs */ 4071 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4072 4073 /* remove from object (inode or locality group) */ 4074 spin_lock(pa->pa_obj_lock); 4075 list_del_rcu(&pa->pa_inode_list); 4076 spin_unlock(pa->pa_obj_lock); 4077 4078 if (pa->pa_type == MB_GROUP_PA) 4079 ext4_mb_release_group_pa(&e4b, pa); 4080 else 4081 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4082 4083 list_del(&pa->u.pa_tmp_list); 4084 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4085 } 4086 4087 out: 4088 ext4_unlock_group(sb, group); 4089 ext4_mb_unload_buddy(&e4b); 4090 put_bh(bitmap_bh); 4091 out_dbg: 4092 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 4093 free, group, grp->bb_free); 4094 return free; 4095 } 4096 4097 /* 4098 * releases all non-used preallocated blocks for given inode 4099 * 4100 * It's important to discard preallocations under i_data_sem 4101 * We don't want another block to be served from the prealloc 4102 * space when we are discarding the inode prealloc space. 4103 * 4104 * FIXME!! Make sure it is valid at all the call sites 4105 */ 4106 void ext4_discard_preallocations(struct inode *inode) 4107 { 4108 struct ext4_inode_info *ei = EXT4_I(inode); 4109 struct super_block *sb = inode->i_sb; 4110 struct buffer_head *bitmap_bh = NULL; 4111 struct ext4_prealloc_space *pa, *tmp; 4112 ext4_group_t group = 0; 4113 struct list_head list; 4114 struct ext4_buddy e4b; 4115 int err; 4116 4117 if (!S_ISREG(inode->i_mode)) { 4118 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 4119 return; 4120 } 4121 4122 mb_debug(sb, "discard preallocation for inode %lu\n", 4123 inode->i_ino); 4124 trace_ext4_discard_preallocations(inode); 4125 4126 INIT_LIST_HEAD(&list); 4127 4128 repeat: 4129 /* first, collect all pa's in the inode */ 4130 spin_lock(&ei->i_prealloc_lock); 4131 while (!list_empty(&ei->i_prealloc_list)) { 4132 pa = list_entry(ei->i_prealloc_list.next, 4133 struct ext4_prealloc_space, pa_inode_list); 4134 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 4135 spin_lock(&pa->pa_lock); 4136 if (atomic_read(&pa->pa_count)) { 4137 /* this shouldn't happen often - nobody should 4138 * use preallocation while we're discarding it */ 4139 spin_unlock(&pa->pa_lock); 4140 spin_unlock(&ei->i_prealloc_lock); 4141 ext4_msg(sb, KERN_ERR, 4142 "uh-oh! used pa while discarding"); 4143 WARN_ON(1); 4144 schedule_timeout_uninterruptible(HZ); 4145 goto repeat; 4146 4147 } 4148 if (pa->pa_deleted == 0) { 4149 pa->pa_deleted = 1; 4150 spin_unlock(&pa->pa_lock); 4151 list_del_rcu(&pa->pa_inode_list); 4152 list_add(&pa->u.pa_tmp_list, &list); 4153 continue; 4154 } 4155 4156 /* someone is deleting pa right now */ 4157 spin_unlock(&pa->pa_lock); 4158 spin_unlock(&ei->i_prealloc_lock); 4159 4160 /* we have to wait here because pa_deleted 4161 * doesn't mean pa is already unlinked from 4162 * the list. as we might be called from 4163 * ->clear_inode() the inode will get freed 4164 * and concurrent thread which is unlinking 4165 * pa from inode's list may access already 4166 * freed memory, bad-bad-bad */ 4167 4168 /* XXX: if this happens too often, we can 4169 * add a flag to force wait only in case 4170 * of ->clear_inode(), but not in case of 4171 * regular truncate */ 4172 schedule_timeout_uninterruptible(HZ); 4173 goto repeat; 4174 } 4175 spin_unlock(&ei->i_prealloc_lock); 4176 4177 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4178 BUG_ON(pa->pa_type != MB_INODE_PA); 4179 group = ext4_get_group_number(sb, pa->pa_pstart); 4180 4181 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4182 GFP_NOFS|__GFP_NOFAIL); 4183 if (err) { 4184 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 4185 err, group); 4186 continue; 4187 } 4188 4189 bitmap_bh = ext4_read_block_bitmap(sb, group); 4190 if (IS_ERR(bitmap_bh)) { 4191 err = PTR_ERR(bitmap_bh); 4192 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 4193 err, group); 4194 ext4_mb_unload_buddy(&e4b); 4195 continue; 4196 } 4197 4198 ext4_lock_group(sb, group); 4199 list_del(&pa->pa_group_list); 4200 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4201 ext4_unlock_group(sb, group); 4202 4203 ext4_mb_unload_buddy(&e4b); 4204 put_bh(bitmap_bh); 4205 4206 list_del(&pa->u.pa_tmp_list); 4207 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4208 } 4209 } 4210 4211 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 4212 { 4213 struct ext4_prealloc_space *pa; 4214 4215 BUG_ON(ext4_pspace_cachep == NULL); 4216 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 4217 if (!pa) 4218 return -ENOMEM; 4219 atomic_set(&pa->pa_count, 1); 4220 ac->ac_pa = pa; 4221 return 0; 4222 } 4223 4224 static void ext4_mb_pa_free(struct ext4_allocation_context *ac) 4225 { 4226 struct ext4_prealloc_space *pa = ac->ac_pa; 4227 4228 BUG_ON(!pa); 4229 ac->ac_pa = NULL; 4230 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 4231 kmem_cache_free(ext4_pspace_cachep, pa); 4232 } 4233 4234 #ifdef CONFIG_EXT4_DEBUG 4235 static inline void ext4_mb_show_pa(struct super_block *sb) 4236 { 4237 ext4_group_t i, ngroups; 4238 4239 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 4240 return; 4241 4242 ngroups = ext4_get_groups_count(sb); 4243 mb_debug(sb, "groups: "); 4244 for (i = 0; i < ngroups; i++) { 4245 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 4246 struct ext4_prealloc_space *pa; 4247 ext4_grpblk_t start; 4248 struct list_head *cur; 4249 ext4_lock_group(sb, i); 4250 list_for_each(cur, &grp->bb_prealloc_list) { 4251 pa = list_entry(cur, struct ext4_prealloc_space, 4252 pa_group_list); 4253 spin_lock(&pa->pa_lock); 4254 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4255 NULL, &start); 4256 spin_unlock(&pa->pa_lock); 4257 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 4258 pa->pa_len); 4259 } 4260 ext4_unlock_group(sb, i); 4261 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 4262 grp->bb_fragments); 4263 } 4264 } 4265 4266 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4267 { 4268 struct super_block *sb = ac->ac_sb; 4269 4270 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 4271 return; 4272 4273 mb_debug(sb, "Can't allocate:" 4274 " Allocation context details:"); 4275 mb_debug(sb, "status %u flags 0x%x", 4276 ac->ac_status, ac->ac_flags); 4277 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 4278 "goal %lu/%lu/%lu@%lu, " 4279 "best %lu/%lu/%lu@%lu cr %d", 4280 (unsigned long)ac->ac_o_ex.fe_group, 4281 (unsigned long)ac->ac_o_ex.fe_start, 4282 (unsigned long)ac->ac_o_ex.fe_len, 4283 (unsigned long)ac->ac_o_ex.fe_logical, 4284 (unsigned long)ac->ac_g_ex.fe_group, 4285 (unsigned long)ac->ac_g_ex.fe_start, 4286 (unsigned long)ac->ac_g_ex.fe_len, 4287 (unsigned long)ac->ac_g_ex.fe_logical, 4288 (unsigned long)ac->ac_b_ex.fe_group, 4289 (unsigned long)ac->ac_b_ex.fe_start, 4290 (unsigned long)ac->ac_b_ex.fe_len, 4291 (unsigned long)ac->ac_b_ex.fe_logical, 4292 (int)ac->ac_criteria); 4293 mb_debug(sb, "%u found", ac->ac_found); 4294 ext4_mb_show_pa(sb); 4295 } 4296 #else 4297 static inline void ext4_mb_show_pa(struct super_block *sb) 4298 { 4299 return; 4300 } 4301 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4302 { 4303 ext4_mb_show_pa(ac->ac_sb); 4304 return; 4305 } 4306 #endif 4307 4308 /* 4309 * We use locality group preallocation for small size file. The size of the 4310 * file is determined by the current size or the resulting size after 4311 * allocation which ever is larger 4312 * 4313 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4314 */ 4315 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4316 { 4317 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4318 int bsbits = ac->ac_sb->s_blocksize_bits; 4319 loff_t size, isize; 4320 4321 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4322 return; 4323 4324 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4325 return; 4326 4327 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4328 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4329 >> bsbits; 4330 4331 if ((size == isize) && !ext4_fs_is_busy(sbi) && 4332 !inode_is_open_for_write(ac->ac_inode)) { 4333 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4334 return; 4335 } 4336 4337 if (sbi->s_mb_group_prealloc <= 0) { 4338 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4339 return; 4340 } 4341 4342 /* don't use group allocation for large files */ 4343 size = max(size, isize); 4344 if (size > sbi->s_mb_stream_request) { 4345 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4346 return; 4347 } 4348 4349 BUG_ON(ac->ac_lg != NULL); 4350 /* 4351 * locality group prealloc space are per cpu. The reason for having 4352 * per cpu locality group is to reduce the contention between block 4353 * request from multiple CPUs. 4354 */ 4355 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 4356 4357 /* we're going to use group allocation */ 4358 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4359 4360 /* serialize all allocations in the group */ 4361 mutex_lock(&ac->ac_lg->lg_mutex); 4362 } 4363 4364 static noinline_for_stack int 4365 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4366 struct ext4_allocation_request *ar) 4367 { 4368 struct super_block *sb = ar->inode->i_sb; 4369 struct ext4_sb_info *sbi = EXT4_SB(sb); 4370 struct ext4_super_block *es = sbi->s_es; 4371 ext4_group_t group; 4372 unsigned int len; 4373 ext4_fsblk_t goal; 4374 ext4_grpblk_t block; 4375 4376 /* we can't allocate > group size */ 4377 len = ar->len; 4378 4379 /* just a dirty hack to filter too big requests */ 4380 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4381 len = EXT4_CLUSTERS_PER_GROUP(sb); 4382 4383 /* start searching from the goal */ 4384 goal = ar->goal; 4385 if (goal < le32_to_cpu(es->s_first_data_block) || 4386 goal >= ext4_blocks_count(es)) 4387 goal = le32_to_cpu(es->s_first_data_block); 4388 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4389 4390 /* set up allocation goals */ 4391 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 4392 ac->ac_status = AC_STATUS_CONTINUE; 4393 ac->ac_sb = sb; 4394 ac->ac_inode = ar->inode; 4395 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4396 ac->ac_o_ex.fe_group = group; 4397 ac->ac_o_ex.fe_start = block; 4398 ac->ac_o_ex.fe_len = len; 4399 ac->ac_g_ex = ac->ac_o_ex; 4400 ac->ac_flags = ar->flags; 4401 4402 /* we have to define context: we'll we work with a file or 4403 * locality group. this is a policy, actually */ 4404 ext4_mb_group_or_file(ac); 4405 4406 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 4407 "left: %u/%u, right %u/%u to %swritable\n", 4408 (unsigned) ar->len, (unsigned) ar->logical, 4409 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4410 (unsigned) ar->lleft, (unsigned) ar->pleft, 4411 (unsigned) ar->lright, (unsigned) ar->pright, 4412 inode_is_open_for_write(ar->inode) ? "" : "non-"); 4413 return 0; 4414 4415 } 4416 4417 static noinline_for_stack void 4418 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4419 struct ext4_locality_group *lg, 4420 int order, int total_entries) 4421 { 4422 ext4_group_t group = 0; 4423 struct ext4_buddy e4b; 4424 struct list_head discard_list; 4425 struct ext4_prealloc_space *pa, *tmp; 4426 4427 mb_debug(sb, "discard locality group preallocation\n"); 4428 4429 INIT_LIST_HEAD(&discard_list); 4430 4431 spin_lock(&lg->lg_prealloc_lock); 4432 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4433 pa_inode_list, 4434 lockdep_is_held(&lg->lg_prealloc_lock)) { 4435 spin_lock(&pa->pa_lock); 4436 if (atomic_read(&pa->pa_count)) { 4437 /* 4438 * This is the pa that we just used 4439 * for block allocation. So don't 4440 * free that 4441 */ 4442 spin_unlock(&pa->pa_lock); 4443 continue; 4444 } 4445 if (pa->pa_deleted) { 4446 spin_unlock(&pa->pa_lock); 4447 continue; 4448 } 4449 /* only lg prealloc space */ 4450 BUG_ON(pa->pa_type != MB_GROUP_PA); 4451 4452 /* seems this one can be freed ... */ 4453 pa->pa_deleted = 1; 4454 spin_unlock(&pa->pa_lock); 4455 4456 list_del_rcu(&pa->pa_inode_list); 4457 list_add(&pa->u.pa_tmp_list, &discard_list); 4458 4459 total_entries--; 4460 if (total_entries <= 5) { 4461 /* 4462 * we want to keep only 5 entries 4463 * allowing it to grow to 8. This 4464 * mak sure we don't call discard 4465 * soon for this list. 4466 */ 4467 break; 4468 } 4469 } 4470 spin_unlock(&lg->lg_prealloc_lock); 4471 4472 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4473 int err; 4474 4475 group = ext4_get_group_number(sb, pa->pa_pstart); 4476 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4477 GFP_NOFS|__GFP_NOFAIL); 4478 if (err) { 4479 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 4480 err, group); 4481 continue; 4482 } 4483 ext4_lock_group(sb, group); 4484 list_del(&pa->pa_group_list); 4485 ext4_mb_release_group_pa(&e4b, pa); 4486 ext4_unlock_group(sb, group); 4487 4488 ext4_mb_unload_buddy(&e4b); 4489 list_del(&pa->u.pa_tmp_list); 4490 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4491 } 4492 } 4493 4494 /* 4495 * We have incremented pa_count. So it cannot be freed at this 4496 * point. Also we hold lg_mutex. So no parallel allocation is 4497 * possible from this lg. That means pa_free cannot be updated. 4498 * 4499 * A parallel ext4_mb_discard_group_preallocations is possible. 4500 * which can cause the lg_prealloc_list to be updated. 4501 */ 4502 4503 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4504 { 4505 int order, added = 0, lg_prealloc_count = 1; 4506 struct super_block *sb = ac->ac_sb; 4507 struct ext4_locality_group *lg = ac->ac_lg; 4508 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4509 4510 order = fls(pa->pa_free) - 1; 4511 if (order > PREALLOC_TB_SIZE - 1) 4512 /* The max size of hash table is PREALLOC_TB_SIZE */ 4513 order = PREALLOC_TB_SIZE - 1; 4514 /* Add the prealloc space to lg */ 4515 spin_lock(&lg->lg_prealloc_lock); 4516 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4517 pa_inode_list, 4518 lockdep_is_held(&lg->lg_prealloc_lock)) { 4519 spin_lock(&tmp_pa->pa_lock); 4520 if (tmp_pa->pa_deleted) { 4521 spin_unlock(&tmp_pa->pa_lock); 4522 continue; 4523 } 4524 if (!added && pa->pa_free < tmp_pa->pa_free) { 4525 /* Add to the tail of the previous entry */ 4526 list_add_tail_rcu(&pa->pa_inode_list, 4527 &tmp_pa->pa_inode_list); 4528 added = 1; 4529 /* 4530 * we want to count the total 4531 * number of entries in the list 4532 */ 4533 } 4534 spin_unlock(&tmp_pa->pa_lock); 4535 lg_prealloc_count++; 4536 } 4537 if (!added) 4538 list_add_tail_rcu(&pa->pa_inode_list, 4539 &lg->lg_prealloc_list[order]); 4540 spin_unlock(&lg->lg_prealloc_lock); 4541 4542 /* Now trim the list to be not more than 8 elements */ 4543 if (lg_prealloc_count > 8) { 4544 ext4_mb_discard_lg_preallocations(sb, lg, 4545 order, lg_prealloc_count); 4546 return; 4547 } 4548 return ; 4549 } 4550 4551 /* 4552 * release all resource we used in allocation 4553 */ 4554 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4555 { 4556 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4557 struct ext4_prealloc_space *pa = ac->ac_pa; 4558 if (pa) { 4559 if (pa->pa_type == MB_GROUP_PA) { 4560 /* see comment in ext4_mb_use_group_pa() */ 4561 spin_lock(&pa->pa_lock); 4562 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4563 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4564 pa->pa_free -= ac->ac_b_ex.fe_len; 4565 pa->pa_len -= ac->ac_b_ex.fe_len; 4566 spin_unlock(&pa->pa_lock); 4567 } 4568 } 4569 if (pa) { 4570 /* 4571 * We want to add the pa to the right bucket. 4572 * Remove it from the list and while adding 4573 * make sure the list to which we are adding 4574 * doesn't grow big. 4575 */ 4576 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4577 spin_lock(pa->pa_obj_lock); 4578 list_del_rcu(&pa->pa_inode_list); 4579 spin_unlock(pa->pa_obj_lock); 4580 ext4_mb_add_n_trim(ac); 4581 } 4582 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4583 } 4584 if (ac->ac_bitmap_page) 4585 put_page(ac->ac_bitmap_page); 4586 if (ac->ac_buddy_page) 4587 put_page(ac->ac_buddy_page); 4588 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4589 mutex_unlock(&ac->ac_lg->lg_mutex); 4590 ext4_mb_collect_stats(ac); 4591 return 0; 4592 } 4593 4594 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4595 { 4596 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4597 int ret; 4598 int freed = 0; 4599 4600 trace_ext4_mb_discard_preallocations(sb, needed); 4601 for (i = 0; i < ngroups && needed > 0; i++) { 4602 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4603 freed += ret; 4604 needed -= ret; 4605 } 4606 4607 return freed; 4608 } 4609 4610 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 4611 struct ext4_allocation_context *ac, u64 *seq) 4612 { 4613 int freed; 4614 u64 seq_retry = 0; 4615 bool ret = false; 4616 4617 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4618 if (freed) { 4619 ret = true; 4620 goto out_dbg; 4621 } 4622 seq_retry = ext4_get_discard_pa_seq_sum(); 4623 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 4624 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 4625 *seq = seq_retry; 4626 ret = true; 4627 } 4628 4629 out_dbg: 4630 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 4631 return ret; 4632 } 4633 4634 /* 4635 * Main entry point into mballoc to allocate blocks 4636 * it tries to use preallocation first, then falls back 4637 * to usual allocation 4638 */ 4639 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4640 struct ext4_allocation_request *ar, int *errp) 4641 { 4642 struct ext4_allocation_context *ac = NULL; 4643 struct ext4_sb_info *sbi; 4644 struct super_block *sb; 4645 ext4_fsblk_t block = 0; 4646 unsigned int inquota = 0; 4647 unsigned int reserv_clstrs = 0; 4648 u64 seq; 4649 4650 might_sleep(); 4651 sb = ar->inode->i_sb; 4652 sbi = EXT4_SB(sb); 4653 4654 trace_ext4_request_blocks(ar); 4655 4656 /* Allow to use superuser reservation for quota file */ 4657 if (ext4_is_quota_file(ar->inode)) 4658 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4659 4660 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 4661 /* Without delayed allocation we need to verify 4662 * there is enough free blocks to do block allocation 4663 * and verify allocation doesn't exceed the quota limits. 4664 */ 4665 while (ar->len && 4666 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4667 4668 /* let others to free the space */ 4669 cond_resched(); 4670 ar->len = ar->len >> 1; 4671 } 4672 if (!ar->len) { 4673 ext4_mb_show_pa(sb); 4674 *errp = -ENOSPC; 4675 return 0; 4676 } 4677 reserv_clstrs = ar->len; 4678 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4679 dquot_alloc_block_nofail(ar->inode, 4680 EXT4_C2B(sbi, ar->len)); 4681 } else { 4682 while (ar->len && 4683 dquot_alloc_block(ar->inode, 4684 EXT4_C2B(sbi, ar->len))) { 4685 4686 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4687 ar->len--; 4688 } 4689 } 4690 inquota = ar->len; 4691 if (ar->len == 0) { 4692 *errp = -EDQUOT; 4693 goto out; 4694 } 4695 } 4696 4697 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4698 if (!ac) { 4699 ar->len = 0; 4700 *errp = -ENOMEM; 4701 goto out; 4702 } 4703 4704 *errp = ext4_mb_initialize_context(ac, ar); 4705 if (*errp) { 4706 ar->len = 0; 4707 goto out; 4708 } 4709 4710 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4711 seq = this_cpu_read(discard_pa_seq); 4712 if (!ext4_mb_use_preallocated(ac)) { 4713 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4714 ext4_mb_normalize_request(ac, ar); 4715 4716 *errp = ext4_mb_pa_alloc(ac); 4717 if (*errp) 4718 goto errout; 4719 repeat: 4720 /* allocate space in core */ 4721 *errp = ext4_mb_regular_allocator(ac); 4722 /* 4723 * pa allocated above is added to grp->bb_prealloc_list only 4724 * when we were able to allocate some block i.e. when 4725 * ac->ac_status == AC_STATUS_FOUND. 4726 * And error from above mean ac->ac_status != AC_STATUS_FOUND 4727 * So we have to free this pa here itself. 4728 */ 4729 if (*errp) { 4730 ext4_mb_pa_free(ac); 4731 ext4_discard_allocated_blocks(ac); 4732 goto errout; 4733 } 4734 if (ac->ac_status == AC_STATUS_FOUND && 4735 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 4736 ext4_mb_pa_free(ac); 4737 } 4738 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4739 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4740 if (*errp) { 4741 ext4_discard_allocated_blocks(ac); 4742 goto errout; 4743 } else { 4744 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4745 ar->len = ac->ac_b_ex.fe_len; 4746 } 4747 } else { 4748 if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 4749 goto repeat; 4750 /* 4751 * If block allocation fails then the pa allocated above 4752 * needs to be freed here itself. 4753 */ 4754 ext4_mb_pa_free(ac); 4755 *errp = -ENOSPC; 4756 } 4757 4758 errout: 4759 if (*errp) { 4760 ac->ac_b_ex.fe_len = 0; 4761 ar->len = 0; 4762 ext4_mb_show_ac(ac); 4763 } 4764 ext4_mb_release_context(ac); 4765 out: 4766 if (ac) 4767 kmem_cache_free(ext4_ac_cachep, ac); 4768 if (inquota && ar->len < inquota) 4769 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4770 if (!ar->len) { 4771 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 4772 /* release all the reserved blocks if non delalloc */ 4773 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4774 reserv_clstrs); 4775 } 4776 4777 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4778 4779 return block; 4780 } 4781 4782 /* 4783 * We can merge two free data extents only if the physical blocks 4784 * are contiguous, AND the extents were freed by the same transaction, 4785 * AND the blocks are associated with the same group. 4786 */ 4787 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 4788 struct ext4_free_data *entry, 4789 struct ext4_free_data *new_entry, 4790 struct rb_root *entry_rb_root) 4791 { 4792 if ((entry->efd_tid != new_entry->efd_tid) || 4793 (entry->efd_group != new_entry->efd_group)) 4794 return; 4795 if (entry->efd_start_cluster + entry->efd_count == 4796 new_entry->efd_start_cluster) { 4797 new_entry->efd_start_cluster = entry->efd_start_cluster; 4798 new_entry->efd_count += entry->efd_count; 4799 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 4800 entry->efd_start_cluster) { 4801 new_entry->efd_count += entry->efd_count; 4802 } else 4803 return; 4804 spin_lock(&sbi->s_md_lock); 4805 list_del(&entry->efd_list); 4806 spin_unlock(&sbi->s_md_lock); 4807 rb_erase(&entry->efd_node, entry_rb_root); 4808 kmem_cache_free(ext4_free_data_cachep, entry); 4809 } 4810 4811 static noinline_for_stack int 4812 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4813 struct ext4_free_data *new_entry) 4814 { 4815 ext4_group_t group = e4b->bd_group; 4816 ext4_grpblk_t cluster; 4817 ext4_grpblk_t clusters = new_entry->efd_count; 4818 struct ext4_free_data *entry; 4819 struct ext4_group_info *db = e4b->bd_info; 4820 struct super_block *sb = e4b->bd_sb; 4821 struct ext4_sb_info *sbi = EXT4_SB(sb); 4822 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4823 struct rb_node *parent = NULL, *new_node; 4824 4825 BUG_ON(!ext4_handle_valid(handle)); 4826 BUG_ON(e4b->bd_bitmap_page == NULL); 4827 BUG_ON(e4b->bd_buddy_page == NULL); 4828 4829 new_node = &new_entry->efd_node; 4830 cluster = new_entry->efd_start_cluster; 4831 4832 if (!*n) { 4833 /* first free block exent. We need to 4834 protect buddy cache from being freed, 4835 * otherwise we'll refresh it from 4836 * on-disk bitmap and lose not-yet-available 4837 * blocks */ 4838 get_page(e4b->bd_buddy_page); 4839 get_page(e4b->bd_bitmap_page); 4840 } 4841 while (*n) { 4842 parent = *n; 4843 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4844 if (cluster < entry->efd_start_cluster) 4845 n = &(*n)->rb_left; 4846 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4847 n = &(*n)->rb_right; 4848 else { 4849 ext4_grp_locked_error(sb, group, 0, 4850 ext4_group_first_block_no(sb, group) + 4851 EXT4_C2B(sbi, cluster), 4852 "Block already on to-be-freed list"); 4853 return 0; 4854 } 4855 } 4856 4857 rb_link_node(new_node, parent, n); 4858 rb_insert_color(new_node, &db->bb_free_root); 4859 4860 /* Now try to see the extent can be merged to left and right */ 4861 node = rb_prev(new_node); 4862 if (node) { 4863 entry = rb_entry(node, struct ext4_free_data, efd_node); 4864 ext4_try_merge_freed_extent(sbi, entry, new_entry, 4865 &(db->bb_free_root)); 4866 } 4867 4868 node = rb_next(new_node); 4869 if (node) { 4870 entry = rb_entry(node, struct ext4_free_data, efd_node); 4871 ext4_try_merge_freed_extent(sbi, entry, new_entry, 4872 &(db->bb_free_root)); 4873 } 4874 4875 spin_lock(&sbi->s_md_lock); 4876 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 4877 sbi->s_mb_free_pending += clusters; 4878 spin_unlock(&sbi->s_md_lock); 4879 return 0; 4880 } 4881 4882 /** 4883 * ext4_free_blocks() -- Free given blocks and update quota 4884 * @handle: handle for this transaction 4885 * @inode: inode 4886 * @bh: optional buffer of the block to be freed 4887 * @block: starting physical block to be freed 4888 * @count: number of blocks to be freed 4889 * @flags: flags used by ext4_free_blocks 4890 */ 4891 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4892 struct buffer_head *bh, ext4_fsblk_t block, 4893 unsigned long count, int flags) 4894 { 4895 struct buffer_head *bitmap_bh = NULL; 4896 struct super_block *sb = inode->i_sb; 4897 struct ext4_group_desc *gdp; 4898 unsigned int overflow; 4899 ext4_grpblk_t bit; 4900 struct buffer_head *gd_bh; 4901 ext4_group_t block_group; 4902 struct ext4_sb_info *sbi; 4903 struct ext4_buddy e4b; 4904 unsigned int count_clusters; 4905 int err = 0; 4906 int ret; 4907 4908 might_sleep(); 4909 if (bh) { 4910 if (block) 4911 BUG_ON(block != bh->b_blocknr); 4912 else 4913 block = bh->b_blocknr; 4914 } 4915 4916 sbi = EXT4_SB(sb); 4917 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4918 !ext4_data_block_valid(sbi, block, count)) { 4919 ext4_error(sb, "Freeing blocks not in datazone - " 4920 "block = %llu, count = %lu", block, count); 4921 goto error_return; 4922 } 4923 4924 ext4_debug("freeing block %llu\n", block); 4925 trace_ext4_free_blocks(inode, block, count, flags); 4926 4927 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 4928 BUG_ON(count > 1); 4929 4930 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4931 inode, bh, block); 4932 } 4933 4934 /* 4935 * If the extent to be freed does not begin on a cluster 4936 * boundary, we need to deal with partial clusters at the 4937 * beginning and end of the extent. Normally we will free 4938 * blocks at the beginning or the end unless we are explicitly 4939 * requested to avoid doing so. 4940 */ 4941 overflow = EXT4_PBLK_COFF(sbi, block); 4942 if (overflow) { 4943 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4944 overflow = sbi->s_cluster_ratio - overflow; 4945 block += overflow; 4946 if (count > overflow) 4947 count -= overflow; 4948 else 4949 return; 4950 } else { 4951 block -= overflow; 4952 count += overflow; 4953 } 4954 } 4955 overflow = EXT4_LBLK_COFF(sbi, count); 4956 if (overflow) { 4957 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4958 if (count > overflow) 4959 count -= overflow; 4960 else 4961 return; 4962 } else 4963 count += sbi->s_cluster_ratio - overflow; 4964 } 4965 4966 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 4967 int i; 4968 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 4969 4970 for (i = 0; i < count; i++) { 4971 cond_resched(); 4972 if (is_metadata) 4973 bh = sb_find_get_block(inode->i_sb, block + i); 4974 ext4_forget(handle, is_metadata, inode, bh, block + i); 4975 } 4976 } 4977 4978 do_more: 4979 overflow = 0; 4980 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4981 4982 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 4983 ext4_get_group_info(sb, block_group)))) 4984 return; 4985 4986 /* 4987 * Check to see if we are freeing blocks across a group 4988 * boundary. 4989 */ 4990 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4991 overflow = EXT4_C2B(sbi, bit) + count - 4992 EXT4_BLOCKS_PER_GROUP(sb); 4993 count -= overflow; 4994 } 4995 count_clusters = EXT4_NUM_B2C(sbi, count); 4996 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4997 if (IS_ERR(bitmap_bh)) { 4998 err = PTR_ERR(bitmap_bh); 4999 bitmap_bh = NULL; 5000 goto error_return; 5001 } 5002 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 5003 if (!gdp) { 5004 err = -EIO; 5005 goto error_return; 5006 } 5007 5008 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 5009 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 5010 in_range(block, ext4_inode_table(sb, gdp), 5011 sbi->s_itb_per_group) || 5012 in_range(block + count - 1, ext4_inode_table(sb, gdp), 5013 sbi->s_itb_per_group)) { 5014 5015 ext4_error(sb, "Freeing blocks in system zone - " 5016 "Block = %llu, count = %lu", block, count); 5017 /* err = 0. ext4_std_error should be a no op */ 5018 goto error_return; 5019 } 5020 5021 BUFFER_TRACE(bitmap_bh, "getting write access"); 5022 err = ext4_journal_get_write_access(handle, bitmap_bh); 5023 if (err) 5024 goto error_return; 5025 5026 /* 5027 * We are about to modify some metadata. Call the journal APIs 5028 * to unshare ->b_data if a currently-committing transaction is 5029 * using it 5030 */ 5031 BUFFER_TRACE(gd_bh, "get_write_access"); 5032 err = ext4_journal_get_write_access(handle, gd_bh); 5033 if (err) 5034 goto error_return; 5035 #ifdef AGGRESSIVE_CHECK 5036 { 5037 int i; 5038 for (i = 0; i < count_clusters; i++) 5039 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 5040 } 5041 #endif 5042 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 5043 5044 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 5045 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 5046 GFP_NOFS|__GFP_NOFAIL); 5047 if (err) 5048 goto error_return; 5049 5050 /* 5051 * We need to make sure we don't reuse the freed block until after the 5052 * transaction is committed. We make an exception if the inode is to be 5053 * written in writeback mode since writeback mode has weak data 5054 * consistency guarantees. 5055 */ 5056 if (ext4_handle_valid(handle) && 5057 ((flags & EXT4_FREE_BLOCKS_METADATA) || 5058 !ext4_should_writeback_data(inode))) { 5059 struct ext4_free_data *new_entry; 5060 /* 5061 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 5062 * to fail. 5063 */ 5064 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 5065 GFP_NOFS|__GFP_NOFAIL); 5066 new_entry->efd_start_cluster = bit; 5067 new_entry->efd_group = block_group; 5068 new_entry->efd_count = count_clusters; 5069 new_entry->efd_tid = handle->h_transaction->t_tid; 5070 5071 ext4_lock_group(sb, block_group); 5072 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 5073 ext4_mb_free_metadata(handle, &e4b, new_entry); 5074 } else { 5075 /* need to update group_info->bb_free and bitmap 5076 * with group lock held. generate_buddy look at 5077 * them with group lock_held 5078 */ 5079 if (test_opt(sb, DISCARD)) { 5080 err = ext4_issue_discard(sb, block_group, bit, count, 5081 NULL); 5082 if (err && err != -EOPNOTSUPP) 5083 ext4_msg(sb, KERN_WARNING, "discard request in" 5084 " group:%d block:%d count:%lu failed" 5085 " with %d", block_group, bit, count, 5086 err); 5087 } else 5088 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 5089 5090 ext4_lock_group(sb, block_group); 5091 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 5092 mb_free_blocks(inode, &e4b, bit, count_clusters); 5093 } 5094 5095 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 5096 ext4_free_group_clusters_set(sb, gdp, ret); 5097 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 5098 ext4_group_desc_csum_set(sb, block_group, gdp); 5099 ext4_unlock_group(sb, block_group); 5100 5101 if (sbi->s_log_groups_per_flex) { 5102 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 5103 atomic64_add(count_clusters, 5104 &sbi_array_rcu_deref(sbi, s_flex_groups, 5105 flex_group)->free_clusters); 5106 } 5107 5108 /* 5109 * on a bigalloc file system, defer the s_freeclusters_counter 5110 * update to the caller (ext4_remove_space and friends) so they 5111 * can determine if a cluster freed here should be rereserved 5112 */ 5113 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 5114 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 5115 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 5116 percpu_counter_add(&sbi->s_freeclusters_counter, 5117 count_clusters); 5118 } 5119 5120 ext4_mb_unload_buddy(&e4b); 5121 5122 /* We dirtied the bitmap block */ 5123 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5124 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5125 5126 /* And the group descriptor block */ 5127 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5128 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5129 if (!err) 5130 err = ret; 5131 5132 if (overflow && !err) { 5133 block += count; 5134 count = overflow; 5135 put_bh(bitmap_bh); 5136 goto do_more; 5137 } 5138 error_return: 5139 brelse(bitmap_bh); 5140 ext4_std_error(sb, err); 5141 return; 5142 } 5143 5144 /** 5145 * ext4_group_add_blocks() -- Add given blocks to an existing group 5146 * @handle: handle to this transaction 5147 * @sb: super block 5148 * @block: start physical block to add to the block group 5149 * @count: number of blocks to free 5150 * 5151 * This marks the blocks as free in the bitmap and buddy. 5152 */ 5153 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 5154 ext4_fsblk_t block, unsigned long count) 5155 { 5156 struct buffer_head *bitmap_bh = NULL; 5157 struct buffer_head *gd_bh; 5158 ext4_group_t block_group; 5159 ext4_grpblk_t bit; 5160 unsigned int i; 5161 struct ext4_group_desc *desc; 5162 struct ext4_sb_info *sbi = EXT4_SB(sb); 5163 struct ext4_buddy e4b; 5164 int err = 0, ret, free_clusters_count; 5165 ext4_grpblk_t clusters_freed; 5166 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 5167 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 5168 unsigned long cluster_count = last_cluster - first_cluster + 1; 5169 5170 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 5171 5172 if (count == 0) 5173 return 0; 5174 5175 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 5176 /* 5177 * Check to see if we are freeing blocks across a group 5178 * boundary. 5179 */ 5180 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 5181 ext4_warning(sb, "too many blocks added to group %u", 5182 block_group); 5183 err = -EINVAL; 5184 goto error_return; 5185 } 5186 5187 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 5188 if (IS_ERR(bitmap_bh)) { 5189 err = PTR_ERR(bitmap_bh); 5190 bitmap_bh = NULL; 5191 goto error_return; 5192 } 5193 5194 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 5195 if (!desc) { 5196 err = -EIO; 5197 goto error_return; 5198 } 5199 5200 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 5201 in_range(ext4_inode_bitmap(sb, desc), block, count) || 5202 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 5203 in_range(block + count - 1, ext4_inode_table(sb, desc), 5204 sbi->s_itb_per_group)) { 5205 ext4_error(sb, "Adding blocks in system zones - " 5206 "Block = %llu, count = %lu", 5207 block, count); 5208 err = -EINVAL; 5209 goto error_return; 5210 } 5211 5212 BUFFER_TRACE(bitmap_bh, "getting write access"); 5213 err = ext4_journal_get_write_access(handle, bitmap_bh); 5214 if (err) 5215 goto error_return; 5216 5217 /* 5218 * We are about to modify some metadata. Call the journal APIs 5219 * to unshare ->b_data if a currently-committing transaction is 5220 * using it 5221 */ 5222 BUFFER_TRACE(gd_bh, "get_write_access"); 5223 err = ext4_journal_get_write_access(handle, gd_bh); 5224 if (err) 5225 goto error_return; 5226 5227 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 5228 BUFFER_TRACE(bitmap_bh, "clear bit"); 5229 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 5230 ext4_error(sb, "bit already cleared for block %llu", 5231 (ext4_fsblk_t)(block + i)); 5232 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 5233 } else { 5234 clusters_freed++; 5235 } 5236 } 5237 5238 err = ext4_mb_load_buddy(sb, block_group, &e4b); 5239 if (err) 5240 goto error_return; 5241 5242 /* 5243 * need to update group_info->bb_free and bitmap 5244 * with group lock held. generate_buddy look at 5245 * them with group lock_held 5246 */ 5247 ext4_lock_group(sb, block_group); 5248 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 5249 mb_free_blocks(NULL, &e4b, bit, cluster_count); 5250 free_clusters_count = clusters_freed + 5251 ext4_free_group_clusters(sb, desc); 5252 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 5253 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 5254 ext4_group_desc_csum_set(sb, block_group, desc); 5255 ext4_unlock_group(sb, block_group); 5256 percpu_counter_add(&sbi->s_freeclusters_counter, 5257 clusters_freed); 5258 5259 if (sbi->s_log_groups_per_flex) { 5260 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 5261 atomic64_add(clusters_freed, 5262 &sbi_array_rcu_deref(sbi, s_flex_groups, 5263 flex_group)->free_clusters); 5264 } 5265 5266 ext4_mb_unload_buddy(&e4b); 5267 5268 /* We dirtied the bitmap block */ 5269 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5270 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5271 5272 /* And the group descriptor block */ 5273 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5274 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5275 if (!err) 5276 err = ret; 5277 5278 error_return: 5279 brelse(bitmap_bh); 5280 ext4_std_error(sb, err); 5281 return err; 5282 } 5283 5284 /** 5285 * ext4_trim_extent -- function to TRIM one single free extent in the group 5286 * @sb: super block for the file system 5287 * @start: starting block of the free extent in the alloc. group 5288 * @count: number of blocks to TRIM 5289 * @group: alloc. group we are working with 5290 * @e4b: ext4 buddy for the group 5291 * 5292 * Trim "count" blocks starting at "start" in the "group". To assure that no 5293 * one will allocate those blocks, mark it as used in buddy bitmap. This must 5294 * be called with under the group lock. 5295 */ 5296 static int ext4_trim_extent(struct super_block *sb, int start, int count, 5297 ext4_group_t group, struct ext4_buddy *e4b) 5298 __releases(bitlock) 5299 __acquires(bitlock) 5300 { 5301 struct ext4_free_extent ex; 5302 int ret = 0; 5303 5304 trace_ext4_trim_extent(sb, group, start, count); 5305 5306 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 5307 5308 ex.fe_start = start; 5309 ex.fe_group = group; 5310 ex.fe_len = count; 5311 5312 /* 5313 * Mark blocks used, so no one can reuse them while 5314 * being trimmed. 5315 */ 5316 mb_mark_used(e4b, &ex); 5317 ext4_unlock_group(sb, group); 5318 ret = ext4_issue_discard(sb, group, start, count, NULL); 5319 ext4_lock_group(sb, group); 5320 mb_free_blocks(NULL, e4b, start, ex.fe_len); 5321 return ret; 5322 } 5323 5324 /** 5325 * ext4_trim_all_free -- function to trim all free space in alloc. group 5326 * @sb: super block for file system 5327 * @group: group to be trimmed 5328 * @start: first group block to examine 5329 * @max: last group block to examine 5330 * @minblocks: minimum extent block count 5331 * 5332 * ext4_trim_all_free walks through group's buddy bitmap searching for free 5333 * extents. When the free block is found, ext4_trim_extent is called to TRIM 5334 * the extent. 5335 * 5336 * 5337 * ext4_trim_all_free walks through group's block bitmap searching for free 5338 * extents. When the free extent is found, mark it as used in group buddy 5339 * bitmap. Then issue a TRIM command on this extent and free the extent in 5340 * the group buddy bitmap. This is done until whole group is scanned. 5341 */ 5342 static ext4_grpblk_t 5343 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 5344 ext4_grpblk_t start, ext4_grpblk_t max, 5345 ext4_grpblk_t minblocks) 5346 { 5347 void *bitmap; 5348 ext4_grpblk_t next, count = 0, free_count = 0; 5349 struct ext4_buddy e4b; 5350 int ret = 0; 5351 5352 trace_ext4_trim_all_free(sb, group, start, max); 5353 5354 ret = ext4_mb_load_buddy(sb, group, &e4b); 5355 if (ret) { 5356 ext4_warning(sb, "Error %d loading buddy information for %u", 5357 ret, group); 5358 return ret; 5359 } 5360 bitmap = e4b.bd_bitmap; 5361 5362 ext4_lock_group(sb, group); 5363 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 5364 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 5365 goto out; 5366 5367 start = (e4b.bd_info->bb_first_free > start) ? 5368 e4b.bd_info->bb_first_free : start; 5369 5370 while (start <= max) { 5371 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5372 if (start > max) 5373 break; 5374 next = mb_find_next_bit(bitmap, max + 1, start); 5375 5376 if ((next - start) >= minblocks) { 5377 ret = ext4_trim_extent(sb, start, 5378 next - start, group, &e4b); 5379 if (ret && ret != -EOPNOTSUPP) 5380 break; 5381 ret = 0; 5382 count += next - start; 5383 } 5384 free_count += next - start; 5385 start = next + 1; 5386 5387 if (fatal_signal_pending(current)) { 5388 count = -ERESTARTSYS; 5389 break; 5390 } 5391 5392 if (need_resched()) { 5393 ext4_unlock_group(sb, group); 5394 cond_resched(); 5395 ext4_lock_group(sb, group); 5396 } 5397 5398 if ((e4b.bd_info->bb_free - free_count) < minblocks) 5399 break; 5400 } 5401 5402 if (!ret) { 5403 ret = count; 5404 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 5405 } 5406 out: 5407 ext4_unlock_group(sb, group); 5408 ext4_mb_unload_buddy(&e4b); 5409 5410 ext4_debug("trimmed %d blocks in the group %d\n", 5411 count, group); 5412 5413 return ret; 5414 } 5415 5416 /** 5417 * ext4_trim_fs() -- trim ioctl handle function 5418 * @sb: superblock for filesystem 5419 * @range: fstrim_range structure 5420 * 5421 * start: First Byte to trim 5422 * len: number of Bytes to trim from start 5423 * minlen: minimum extent length in Bytes 5424 * ext4_trim_fs goes through all allocation groups containing Bytes from 5425 * start to start+len. For each such a group ext4_trim_all_free function 5426 * is invoked to trim all free space. 5427 */ 5428 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 5429 { 5430 struct ext4_group_info *grp; 5431 ext4_group_t group, first_group, last_group; 5432 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5433 uint64_t start, end, minlen, trimmed = 0; 5434 ext4_fsblk_t first_data_blk = 5435 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5436 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5437 int ret = 0; 5438 5439 start = range->start >> sb->s_blocksize_bits; 5440 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5441 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5442 range->minlen >> sb->s_blocksize_bits); 5443 5444 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5445 start >= max_blks || 5446 range->len < sb->s_blocksize) 5447 return -EINVAL; 5448 if (end >= max_blks) 5449 end = max_blks - 1; 5450 if (end <= first_data_blk) 5451 goto out; 5452 if (start < first_data_blk) 5453 start = first_data_blk; 5454 5455 /* Determine first and last group to examine based on start and end */ 5456 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5457 &first_group, &first_cluster); 5458 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5459 &last_group, &last_cluster); 5460 5461 /* end now represents the last cluster to discard in this group */ 5462 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5463 5464 for (group = first_group; group <= last_group; group++) { 5465 grp = ext4_get_group_info(sb, group); 5466 /* We only do this if the grp has never been initialized */ 5467 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5468 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 5469 if (ret) 5470 break; 5471 } 5472 5473 /* 5474 * For all the groups except the last one, last cluster will 5475 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5476 * change it for the last group, note that last_cluster is 5477 * already computed earlier by ext4_get_group_no_and_offset() 5478 */ 5479 if (group == last_group) 5480 end = last_cluster; 5481 5482 if (grp->bb_free >= minlen) { 5483 cnt = ext4_trim_all_free(sb, group, first_cluster, 5484 end, minlen); 5485 if (cnt < 0) { 5486 ret = cnt; 5487 break; 5488 } 5489 trimmed += cnt; 5490 } 5491 5492 /* 5493 * For every group except the first one, we are sure 5494 * that the first cluster to discard will be cluster #0. 5495 */ 5496 first_cluster = 0; 5497 } 5498 5499 if (!ret) 5500 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5501 5502 out: 5503 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5504 return ret; 5505 } 5506 5507 /* Iterate all the free extents in the group. */ 5508 int 5509 ext4_mballoc_query_range( 5510 struct super_block *sb, 5511 ext4_group_t group, 5512 ext4_grpblk_t start, 5513 ext4_grpblk_t end, 5514 ext4_mballoc_query_range_fn formatter, 5515 void *priv) 5516 { 5517 void *bitmap; 5518 ext4_grpblk_t next; 5519 struct ext4_buddy e4b; 5520 int error; 5521 5522 error = ext4_mb_load_buddy(sb, group, &e4b); 5523 if (error) 5524 return error; 5525 bitmap = e4b.bd_bitmap; 5526 5527 ext4_lock_group(sb, group); 5528 5529 start = (e4b.bd_info->bb_first_free > start) ? 5530 e4b.bd_info->bb_first_free : start; 5531 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 5532 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5533 5534 while (start <= end) { 5535 start = mb_find_next_zero_bit(bitmap, end + 1, start); 5536 if (start > end) 5537 break; 5538 next = mb_find_next_bit(bitmap, end + 1, start); 5539 5540 ext4_unlock_group(sb, group); 5541 error = formatter(sb, group, start, next - start, priv); 5542 if (error) 5543 goto out_unload; 5544 ext4_lock_group(sb, group); 5545 5546 start = next + 1; 5547 } 5548 5549 ext4_unlock_group(sb, group); 5550 out_unload: 5551 ext4_mb_unload_buddy(&e4b); 5552 5553 return error; 5554 } 5555