xref: /openbmc/linux/fs/ext4/mballoc.c (revision 94c7b6fc)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30 
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33 
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37 
38 /*
39  * MUSTDO:
40  *   - test ext4_ext_search_left() and ext4_ext_search_right()
41  *   - search for metadata in few groups
42  *
43  * TODO v4:
44  *   - normalization should take into account whether file is still open
45  *   - discard preallocations if no free space left (policy?)
46  *   - don't normalize tails
47  *   - quota
48  *   - reservation for superuser
49  *
50  * TODO v3:
51  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
52  *   - track min/max extents in each group for better group selection
53  *   - mb_mark_used() may allocate chunk right after splitting buddy
54  *   - tree of groups sorted by number of free blocks
55  *   - error handling
56  */
57 
58 /*
59  * The allocation request involve request for multiple number of blocks
60  * near to the goal(block) value specified.
61  *
62  * During initialization phase of the allocator we decide to use the
63  * group preallocation or inode preallocation depending on the size of
64  * the file. The size of the file could be the resulting file size we
65  * would have after allocation, or the current file size, which ever
66  * is larger. If the size is less than sbi->s_mb_stream_request we
67  * select to use the group preallocation. The default value of
68  * s_mb_stream_request is 16 blocks. This can also be tuned via
69  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70  * terms of number of blocks.
71  *
72  * The main motivation for having small file use group preallocation is to
73  * ensure that we have small files closer together on the disk.
74  *
75  * First stage the allocator looks at the inode prealloc list,
76  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77  * spaces for this particular inode. The inode prealloc space is
78  * represented as:
79  *
80  * pa_lstart -> the logical start block for this prealloc space
81  * pa_pstart -> the physical start block for this prealloc space
82  * pa_len    -> length for this prealloc space (in clusters)
83  * pa_free   ->  free space available in this prealloc space (in clusters)
84  *
85  * The inode preallocation space is used looking at the _logical_ start
86  * block. If only the logical file block falls within the range of prealloc
87  * space we will consume the particular prealloc space. This makes sure that
88  * we have contiguous physical blocks representing the file blocks
89  *
90  * The important thing to be noted in case of inode prealloc space is that
91  * we don't modify the values associated to inode prealloc space except
92  * pa_free.
93  *
94  * If we are not able to find blocks in the inode prealloc space and if we
95  * have the group allocation flag set then we look at the locality group
96  * prealloc space. These are per CPU prealloc list represented as
97  *
98  * ext4_sb_info.s_locality_groups[smp_processor_id()]
99  *
100  * The reason for having a per cpu locality group is to reduce the contention
101  * between CPUs. It is possible to get scheduled at this point.
102  *
103  * The locality group prealloc space is used looking at whether we have
104  * enough free space (pa_free) within the prealloc space.
105  *
106  * If we can't allocate blocks via inode prealloc or/and locality group
107  * prealloc then we look at the buddy cache. The buddy cache is represented
108  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109  * mapped to the buddy and bitmap information regarding different
110  * groups. The buddy information is attached to buddy cache inode so that
111  * we can access them through the page cache. The information regarding
112  * each group is loaded via ext4_mb_load_buddy.  The information involve
113  * block bitmap and buddy information. The information are stored in the
114  * inode as:
115  *
116  *  {                        page                        }
117  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118  *
119  *
120  * one block each for bitmap and buddy information.  So for each group we
121  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122  * blocksize) blocks.  So it can have information regarding groups_per_page
123  * which is blocks_per_page/2
124  *
125  * The buddy cache inode is not stored on disk. The inode is thrown
126  * away when the filesystem is unmounted.
127  *
128  * We look for count number of blocks in the buddy cache. If we were able
129  * to locate that many free blocks we return with additional information
130  * regarding rest of the contiguous physical block available
131  *
132  * Before allocating blocks via buddy cache we normalize the request
133  * blocks. This ensure we ask for more blocks that we needed. The extra
134  * blocks that we get after allocation is added to the respective prealloc
135  * list. In case of inode preallocation we follow a list of heuristics
136  * based on file size. This can be found in ext4_mb_normalize_request. If
137  * we are doing a group prealloc we try to normalize the request to
138  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
139  * dependent on the cluster size; for non-bigalloc file systems, it is
140  * 512 blocks. This can be tuned via
141  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142  * terms of number of blocks. If we have mounted the file system with -O
143  * stripe=<value> option the group prealloc request is normalized to the
144  * the smallest multiple of the stripe value (sbi->s_stripe) which is
145  * greater than the default mb_group_prealloc.
146  *
147  * The regular allocator (using the buddy cache) supports a few tunables.
148  *
149  * /sys/fs/ext4/<partition>/mb_min_to_scan
150  * /sys/fs/ext4/<partition>/mb_max_to_scan
151  * /sys/fs/ext4/<partition>/mb_order2_req
152  *
153  * The regular allocator uses buddy scan only if the request len is power of
154  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155  * value of s_mb_order2_reqs can be tuned via
156  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
157  * stripe size (sbi->s_stripe), we try to search for contiguous block in
158  * stripe size. This should result in better allocation on RAID setups. If
159  * not, we search in the specific group using bitmap for best extents. The
160  * tunable min_to_scan and max_to_scan control the behaviour here.
161  * min_to_scan indicate how long the mballoc __must__ look for a best
162  * extent and max_to_scan indicates how long the mballoc __can__ look for a
163  * best extent in the found extents. Searching for the blocks starts with
164  * the group specified as the goal value in allocation context via
165  * ac_g_ex. Each group is first checked based on the criteria whether it
166  * can be used for allocation. ext4_mb_good_group explains how the groups are
167  * checked.
168  *
169  * Both the prealloc space are getting populated as above. So for the first
170  * request we will hit the buddy cache which will result in this prealloc
171  * space getting filled. The prealloc space is then later used for the
172  * subsequent request.
173  */
174 
175 /*
176  * mballoc operates on the following data:
177  *  - on-disk bitmap
178  *  - in-core buddy (actually includes buddy and bitmap)
179  *  - preallocation descriptors (PAs)
180  *
181  * there are two types of preallocations:
182  *  - inode
183  *    assiged to specific inode and can be used for this inode only.
184  *    it describes part of inode's space preallocated to specific
185  *    physical blocks. any block from that preallocated can be used
186  *    independent. the descriptor just tracks number of blocks left
187  *    unused. so, before taking some block from descriptor, one must
188  *    make sure corresponded logical block isn't allocated yet. this
189  *    also means that freeing any block within descriptor's range
190  *    must discard all preallocated blocks.
191  *  - locality group
192  *    assigned to specific locality group which does not translate to
193  *    permanent set of inodes: inode can join and leave group. space
194  *    from this type of preallocation can be used for any inode. thus
195  *    it's consumed from the beginning to the end.
196  *
197  * relation between them can be expressed as:
198  *    in-core buddy = on-disk bitmap + preallocation descriptors
199  *
200  * this mean blocks mballoc considers used are:
201  *  - allocated blocks (persistent)
202  *  - preallocated blocks (non-persistent)
203  *
204  * consistency in mballoc world means that at any time a block is either
205  * free or used in ALL structures. notice: "any time" should not be read
206  * literally -- time is discrete and delimited by locks.
207  *
208  *  to keep it simple, we don't use block numbers, instead we count number of
209  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210  *
211  * all operations can be expressed as:
212  *  - init buddy:			buddy = on-disk + PAs
213  *  - new PA:				buddy += N; PA = N
214  *  - use inode PA:			on-disk += N; PA -= N
215  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
216  *  - use locality group PA		on-disk += N; PA -= N
217  *  - discard locality group PA		buddy -= PA; PA = 0
218  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219  *        is used in real operation because we can't know actual used
220  *        bits from PA, only from on-disk bitmap
221  *
222  * if we follow this strict logic, then all operations above should be atomic.
223  * given some of them can block, we'd have to use something like semaphores
224  * killing performance on high-end SMP hardware. let's try to relax it using
225  * the following knowledge:
226  *  1) if buddy is referenced, it's already initialized
227  *  2) while block is used in buddy and the buddy is referenced,
228  *     nobody can re-allocate that block
229  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
231  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232  *     block
233  *
234  * so, now we're building a concurrency table:
235  *  - init buddy vs.
236  *    - new PA
237  *      blocks for PA are allocated in the buddy, buddy must be referenced
238  *      until PA is linked to allocation group to avoid concurrent buddy init
239  *    - use inode PA
240  *      we need to make sure that either on-disk bitmap or PA has uptodate data
241  *      given (3) we care that PA-=N operation doesn't interfere with init
242  *    - discard inode PA
243  *      the simplest way would be to have buddy initialized by the discard
244  *    - use locality group PA
245  *      again PA-=N must be serialized with init
246  *    - discard locality group PA
247  *      the simplest way would be to have buddy initialized by the discard
248  *  - new PA vs.
249  *    - use inode PA
250  *      i_data_sem serializes them
251  *    - discard inode PA
252  *      discard process must wait until PA isn't used by another process
253  *    - use locality group PA
254  *      some mutex should serialize them
255  *    - discard locality group PA
256  *      discard process must wait until PA isn't used by another process
257  *  - use inode PA
258  *    - use inode PA
259  *      i_data_sem or another mutex should serializes them
260  *    - discard inode PA
261  *      discard process must wait until PA isn't used by another process
262  *    - use locality group PA
263  *      nothing wrong here -- they're different PAs covering different blocks
264  *    - discard locality group PA
265  *      discard process must wait until PA isn't used by another process
266  *
267  * now we're ready to make few consequences:
268  *  - PA is referenced and while it is no discard is possible
269  *  - PA is referenced until block isn't marked in on-disk bitmap
270  *  - PA changes only after on-disk bitmap
271  *  - discard must not compete with init. either init is done before
272  *    any discard or they're serialized somehow
273  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
274  *
275  * a special case when we've used PA to emptiness. no need to modify buddy
276  * in this case, but we should care about concurrent init
277  *
278  */
279 
280  /*
281  * Logic in few words:
282  *
283  *  - allocation:
284  *    load group
285  *    find blocks
286  *    mark bits in on-disk bitmap
287  *    release group
288  *
289  *  - use preallocation:
290  *    find proper PA (per-inode or group)
291  *    load group
292  *    mark bits in on-disk bitmap
293  *    release group
294  *    release PA
295  *
296  *  - free:
297  *    load group
298  *    mark bits in on-disk bitmap
299  *    release group
300  *
301  *  - discard preallocations in group:
302  *    mark PAs deleted
303  *    move them onto local list
304  *    load on-disk bitmap
305  *    load group
306  *    remove PA from object (inode or locality group)
307  *    mark free blocks in-core
308  *
309  *  - discard inode's preallocations:
310  */
311 
312 /*
313  * Locking rules
314  *
315  * Locks:
316  *  - bitlock on a group	(group)
317  *  - object (inode/locality)	(object)
318  *  - per-pa lock		(pa)
319  *
320  * Paths:
321  *  - new pa
322  *    object
323  *    group
324  *
325  *  - find and use pa:
326  *    pa
327  *
328  *  - release consumed pa:
329  *    pa
330  *    group
331  *    object
332  *
333  *  - generate in-core bitmap:
334  *    group
335  *        pa
336  *
337  *  - discard all for given object (inode, locality group):
338  *    object
339  *        pa
340  *    group
341  *
342  *  - discard all for given group:
343  *    group
344  *        pa
345  *    group
346  *        object
347  *
348  */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352 
353 /* We create slab caches for groupinfo data structures based on the
354  * superblock block size.  There will be one per mounted filesystem for
355  * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358 
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364 
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 					ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 						ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 				struct ext4_journal_cb_entry *jce, int rc);
371 
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 	*bit += ((unsigned long) addr & 7UL) << 3;
376 	addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 	*bit += ((unsigned long) addr & 3UL) << 3;
379 	addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 	return addr;
384 }
385 
386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 	/*
389 	 * ext4_test_bit on architecture like powerpc
390 	 * needs unsigned long aligned address
391 	 */
392 	addr = mb_correct_addr_and_bit(&bit, addr);
393 	return ext4_test_bit(bit, addr);
394 }
395 
396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 	addr = mb_correct_addr_and_bit(&bit, addr);
399 	ext4_set_bit(bit, addr);
400 }
401 
402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 	addr = mb_correct_addr_and_bit(&bit, addr);
405 	ext4_clear_bit(bit, addr);
406 }
407 
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 	addr = mb_correct_addr_and_bit(&bit, addr);
411 	return ext4_test_and_clear_bit(bit, addr);
412 }
413 
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 	int fix = 0, ret, tmpmax;
417 	addr = mb_correct_addr_and_bit(&fix, addr);
418 	tmpmax = max + fix;
419 	start += fix;
420 
421 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 	if (ret > max)
423 		return max;
424 	return ret;
425 }
426 
427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 	int fix = 0, ret, tmpmax;
430 	addr = mb_correct_addr_and_bit(&fix, addr);
431 	tmpmax = max + fix;
432 	start += fix;
433 
434 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 	if (ret > max)
436 		return max;
437 	return ret;
438 }
439 
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 	char *bb;
443 
444 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 	BUG_ON(max == NULL);
446 
447 	if (order > e4b->bd_blkbits + 1) {
448 		*max = 0;
449 		return NULL;
450 	}
451 
452 	/* at order 0 we see each particular block */
453 	if (order == 0) {
454 		*max = 1 << (e4b->bd_blkbits + 3);
455 		return e4b->bd_bitmap;
456 	}
457 
458 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460 
461 	return bb;
462 }
463 
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 			   int first, int count)
467 {
468 	int i;
469 	struct super_block *sb = e4b->bd_sb;
470 
471 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 		return;
473 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 	for (i = 0; i < count; i++) {
475 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 			ext4_fsblk_t blocknr;
477 
478 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 			ext4_grp_locked_error(sb, e4b->bd_group,
481 					      inode ? inode->i_ino : 0,
482 					      blocknr,
483 					      "freeing block already freed "
484 					      "(bit %u)",
485 					      first + i);
486 		}
487 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 	}
489 }
490 
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 	int i;
494 
495 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 		return;
497 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 	for (i = 0; i < count; i++) {
499 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 	}
502 }
503 
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 		unsigned char *b1, *b2;
508 		int i;
509 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 		b2 = (unsigned char *) bitmap;
511 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 			if (b1[i] != b2[i]) {
513 				ext4_msg(e4b->bd_sb, KERN_ERR,
514 					 "corruption in group %u "
515 					 "at byte %u(%u): %x in copy != %x "
516 					 "on disk/prealloc",
517 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 				BUG();
519 			}
520 		}
521 	}
522 }
523 
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 				struct ext4_buddy *e4b, int first, int count)
527 {
528 	return;
529 }
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 						int first, int count)
532 {
533 	return;
534 }
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 	return;
538 }
539 #endif
540 
541 #ifdef AGGRESSIVE_CHECK
542 
543 #define MB_CHECK_ASSERT(assert)						\
544 do {									\
545 	if (!(assert)) {						\
546 		printk(KERN_EMERG					\
547 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
548 			function, file, line, # assert);		\
549 		BUG();							\
550 	}								\
551 } while (0)
552 
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 				const char *function, int line)
555 {
556 	struct super_block *sb = e4b->bd_sb;
557 	int order = e4b->bd_blkbits + 1;
558 	int max;
559 	int max2;
560 	int i;
561 	int j;
562 	int k;
563 	int count;
564 	struct ext4_group_info *grp;
565 	int fragments = 0;
566 	int fstart;
567 	struct list_head *cur;
568 	void *buddy;
569 	void *buddy2;
570 
571 	{
572 		static int mb_check_counter;
573 		if (mb_check_counter++ % 100 != 0)
574 			return 0;
575 	}
576 
577 	while (order > 1) {
578 		buddy = mb_find_buddy(e4b, order, &max);
579 		MB_CHECK_ASSERT(buddy);
580 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 		MB_CHECK_ASSERT(buddy2);
582 		MB_CHECK_ASSERT(buddy != buddy2);
583 		MB_CHECK_ASSERT(max * 2 == max2);
584 
585 		count = 0;
586 		for (i = 0; i < max; i++) {
587 
588 			if (mb_test_bit(i, buddy)) {
589 				/* only single bit in buddy2 may be 1 */
590 				if (!mb_test_bit(i << 1, buddy2)) {
591 					MB_CHECK_ASSERT(
592 						mb_test_bit((i<<1)+1, buddy2));
593 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 					MB_CHECK_ASSERT(
595 						mb_test_bit(i << 1, buddy2));
596 				}
597 				continue;
598 			}
599 
600 			/* both bits in buddy2 must be 1 */
601 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603 
604 			for (j = 0; j < (1 << order); j++) {
605 				k = (i * (1 << order)) + j;
606 				MB_CHECK_ASSERT(
607 					!mb_test_bit(k, e4b->bd_bitmap));
608 			}
609 			count++;
610 		}
611 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 		order--;
613 	}
614 
615 	fstart = -1;
616 	buddy = mb_find_buddy(e4b, 0, &max);
617 	for (i = 0; i < max; i++) {
618 		if (!mb_test_bit(i, buddy)) {
619 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 			if (fstart == -1) {
621 				fragments++;
622 				fstart = i;
623 			}
624 			continue;
625 		}
626 		fstart = -1;
627 		/* check used bits only */
628 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 			buddy2 = mb_find_buddy(e4b, j, &max2);
630 			k = i >> j;
631 			MB_CHECK_ASSERT(k < max2);
632 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 		}
634 	}
635 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637 
638 	grp = ext4_get_group_info(sb, e4b->bd_group);
639 	list_for_each(cur, &grp->bb_prealloc_list) {
640 		ext4_group_t groupnr;
641 		struct ext4_prealloc_space *pa;
642 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 		for (i = 0; i < pa->pa_len; i++)
646 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 	}
648 	return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
652 					__FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656 
657 /*
658  * Divide blocks started from @first with length @len into
659  * smaller chunks with power of 2 blocks.
660  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661  * then increase bb_counters[] for corresponded chunk size.
662  */
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 					struct ext4_group_info *grp)
666 {
667 	struct ext4_sb_info *sbi = EXT4_SB(sb);
668 	ext4_grpblk_t min;
669 	ext4_grpblk_t max;
670 	ext4_grpblk_t chunk;
671 	unsigned short border;
672 
673 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674 
675 	border = 2 << sb->s_blocksize_bits;
676 
677 	while (len > 0) {
678 		/* find how many blocks can be covered since this position */
679 		max = ffs(first | border) - 1;
680 
681 		/* find how many blocks of power 2 we need to mark */
682 		min = fls(len) - 1;
683 
684 		if (max < min)
685 			min = max;
686 		chunk = 1 << min;
687 
688 		/* mark multiblock chunks only */
689 		grp->bb_counters[min]++;
690 		if (min > 0)
691 			mb_clear_bit(first >> min,
692 				     buddy + sbi->s_mb_offsets[min]);
693 
694 		len -= chunk;
695 		first += chunk;
696 	}
697 }
698 
699 /*
700  * Cache the order of the largest free extent we have available in this block
701  * group.
702  */
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 	int i;
707 	int bits;
708 
709 	grp->bb_largest_free_order = -1; /* uninit */
710 
711 	bits = sb->s_blocksize_bits + 1;
712 	for (i = bits; i >= 0; i--) {
713 		if (grp->bb_counters[i] > 0) {
714 			grp->bb_largest_free_order = i;
715 			break;
716 		}
717 	}
718 }
719 
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 				void *buddy, void *bitmap, ext4_group_t group)
723 {
724 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 	struct ext4_sb_info *sbi = EXT4_SB(sb);
726 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
727 	ext4_grpblk_t i = 0;
728 	ext4_grpblk_t first;
729 	ext4_grpblk_t len;
730 	unsigned free = 0;
731 	unsigned fragments = 0;
732 	unsigned long long period = get_cycles();
733 
734 	/* initialize buddy from bitmap which is aggregation
735 	 * of on-disk bitmap and preallocations */
736 	i = mb_find_next_zero_bit(bitmap, max, 0);
737 	grp->bb_first_free = i;
738 	while (i < max) {
739 		fragments++;
740 		first = i;
741 		i = mb_find_next_bit(bitmap, max, i);
742 		len = i - first;
743 		free += len;
744 		if (len > 1)
745 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
746 		else
747 			grp->bb_counters[0]++;
748 		if (i < max)
749 			i = mb_find_next_zero_bit(bitmap, max, i);
750 	}
751 	grp->bb_fragments = fragments;
752 
753 	if (free != grp->bb_free) {
754 		ext4_grp_locked_error(sb, group, 0, 0,
755 				      "block bitmap and bg descriptor "
756 				      "inconsistent: %u vs %u free clusters",
757 				      free, grp->bb_free);
758 		/*
759 		 * If we intend to continue, we consider group descriptor
760 		 * corrupt and update bb_free using bitmap value
761 		 */
762 		grp->bb_free = free;
763 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
764 			percpu_counter_sub(&sbi->s_freeclusters_counter,
765 					   grp->bb_free);
766 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
767 	}
768 	mb_set_largest_free_order(sb, grp);
769 
770 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
771 
772 	period = get_cycles() - period;
773 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
774 	EXT4_SB(sb)->s_mb_buddies_generated++;
775 	EXT4_SB(sb)->s_mb_generation_time += period;
776 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
777 }
778 
779 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
780 {
781 	int count;
782 	int order = 1;
783 	void *buddy;
784 
785 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
786 		ext4_set_bits(buddy, 0, count);
787 	}
788 	e4b->bd_info->bb_fragments = 0;
789 	memset(e4b->bd_info->bb_counters, 0,
790 		sizeof(*e4b->bd_info->bb_counters) *
791 		(e4b->bd_sb->s_blocksize_bits + 2));
792 
793 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
794 		e4b->bd_bitmap, e4b->bd_group);
795 }
796 
797 /* The buddy information is attached the buddy cache inode
798  * for convenience. The information regarding each group
799  * is loaded via ext4_mb_load_buddy. The information involve
800  * block bitmap and buddy information. The information are
801  * stored in the inode as
802  *
803  * {                        page                        }
804  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
805  *
806  *
807  * one block each for bitmap and buddy information.
808  * So for each group we take up 2 blocks. A page can
809  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
810  * So it can have information regarding groups_per_page which
811  * is blocks_per_page/2
812  *
813  * Locking note:  This routine takes the block group lock of all groups
814  * for this page; do not hold this lock when calling this routine!
815  */
816 
817 static int ext4_mb_init_cache(struct page *page, char *incore)
818 {
819 	ext4_group_t ngroups;
820 	int blocksize;
821 	int blocks_per_page;
822 	int groups_per_page;
823 	int err = 0;
824 	int i;
825 	ext4_group_t first_group, group;
826 	int first_block;
827 	struct super_block *sb;
828 	struct buffer_head *bhs;
829 	struct buffer_head **bh = NULL;
830 	struct inode *inode;
831 	char *data;
832 	char *bitmap;
833 	struct ext4_group_info *grinfo;
834 
835 	mb_debug(1, "init page %lu\n", page->index);
836 
837 	inode = page->mapping->host;
838 	sb = inode->i_sb;
839 	ngroups = ext4_get_groups_count(sb);
840 	blocksize = 1 << inode->i_blkbits;
841 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
842 
843 	groups_per_page = blocks_per_page >> 1;
844 	if (groups_per_page == 0)
845 		groups_per_page = 1;
846 
847 	/* allocate buffer_heads to read bitmaps */
848 	if (groups_per_page > 1) {
849 		i = sizeof(struct buffer_head *) * groups_per_page;
850 		bh = kzalloc(i, GFP_NOFS);
851 		if (bh == NULL) {
852 			err = -ENOMEM;
853 			goto out;
854 		}
855 	} else
856 		bh = &bhs;
857 
858 	first_group = page->index * blocks_per_page / 2;
859 
860 	/* read all groups the page covers into the cache */
861 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
862 		if (group >= ngroups)
863 			break;
864 
865 		grinfo = ext4_get_group_info(sb, group);
866 		/*
867 		 * If page is uptodate then we came here after online resize
868 		 * which added some new uninitialized group info structs, so
869 		 * we must skip all initialized uptodate buddies on the page,
870 		 * which may be currently in use by an allocating task.
871 		 */
872 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
873 			bh[i] = NULL;
874 			continue;
875 		}
876 		if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
877 			err = -ENOMEM;
878 			goto out;
879 		}
880 		mb_debug(1, "read bitmap for group %u\n", group);
881 	}
882 
883 	/* wait for I/O completion */
884 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
885 		if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
886 			err = -EIO;
887 			goto out;
888 		}
889 	}
890 
891 	first_block = page->index * blocks_per_page;
892 	for (i = 0; i < blocks_per_page; i++) {
893 		group = (first_block + i) >> 1;
894 		if (group >= ngroups)
895 			break;
896 
897 		if (!bh[group - first_group])
898 			/* skip initialized uptodate buddy */
899 			continue;
900 
901 		/*
902 		 * data carry information regarding this
903 		 * particular group in the format specified
904 		 * above
905 		 *
906 		 */
907 		data = page_address(page) + (i * blocksize);
908 		bitmap = bh[group - first_group]->b_data;
909 
910 		/*
911 		 * We place the buddy block and bitmap block
912 		 * close together
913 		 */
914 		if ((first_block + i) & 1) {
915 			/* this is block of buddy */
916 			BUG_ON(incore == NULL);
917 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
918 				group, page->index, i * blocksize);
919 			trace_ext4_mb_buddy_bitmap_load(sb, group);
920 			grinfo = ext4_get_group_info(sb, group);
921 			grinfo->bb_fragments = 0;
922 			memset(grinfo->bb_counters, 0,
923 			       sizeof(*grinfo->bb_counters) *
924 				(sb->s_blocksize_bits+2));
925 			/*
926 			 * incore got set to the group block bitmap below
927 			 */
928 			ext4_lock_group(sb, group);
929 			/* init the buddy */
930 			memset(data, 0xff, blocksize);
931 			ext4_mb_generate_buddy(sb, data, incore, group);
932 			ext4_unlock_group(sb, group);
933 			incore = NULL;
934 		} else {
935 			/* this is block of bitmap */
936 			BUG_ON(incore != NULL);
937 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
938 				group, page->index, i * blocksize);
939 			trace_ext4_mb_bitmap_load(sb, group);
940 
941 			/* see comments in ext4_mb_put_pa() */
942 			ext4_lock_group(sb, group);
943 			memcpy(data, bitmap, blocksize);
944 
945 			/* mark all preallocated blks used in in-core bitmap */
946 			ext4_mb_generate_from_pa(sb, data, group);
947 			ext4_mb_generate_from_freelist(sb, data, group);
948 			ext4_unlock_group(sb, group);
949 
950 			/* set incore so that the buddy information can be
951 			 * generated using this
952 			 */
953 			incore = data;
954 		}
955 	}
956 	SetPageUptodate(page);
957 
958 out:
959 	if (bh) {
960 		for (i = 0; i < groups_per_page; i++)
961 			brelse(bh[i]);
962 		if (bh != &bhs)
963 			kfree(bh);
964 	}
965 	return err;
966 }
967 
968 /*
969  * Lock the buddy and bitmap pages. This make sure other parallel init_group
970  * on the same buddy page doesn't happen whild holding the buddy page lock.
971  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
972  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
973  */
974 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
975 		ext4_group_t group, struct ext4_buddy *e4b)
976 {
977 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
978 	int block, pnum, poff;
979 	int blocks_per_page;
980 	struct page *page;
981 
982 	e4b->bd_buddy_page = NULL;
983 	e4b->bd_bitmap_page = NULL;
984 
985 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
986 	/*
987 	 * the buddy cache inode stores the block bitmap
988 	 * and buddy information in consecutive blocks.
989 	 * So for each group we need two blocks.
990 	 */
991 	block = group * 2;
992 	pnum = block / blocks_per_page;
993 	poff = block % blocks_per_page;
994 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
995 	if (!page)
996 		return -ENOMEM;
997 	BUG_ON(page->mapping != inode->i_mapping);
998 	e4b->bd_bitmap_page = page;
999 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1000 
1001 	if (blocks_per_page >= 2) {
1002 		/* buddy and bitmap are on the same page */
1003 		return 0;
1004 	}
1005 
1006 	block++;
1007 	pnum = block / blocks_per_page;
1008 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1009 	if (!page)
1010 		return -ENOMEM;
1011 	BUG_ON(page->mapping != inode->i_mapping);
1012 	e4b->bd_buddy_page = page;
1013 	return 0;
1014 }
1015 
1016 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1017 {
1018 	if (e4b->bd_bitmap_page) {
1019 		unlock_page(e4b->bd_bitmap_page);
1020 		page_cache_release(e4b->bd_bitmap_page);
1021 	}
1022 	if (e4b->bd_buddy_page) {
1023 		unlock_page(e4b->bd_buddy_page);
1024 		page_cache_release(e4b->bd_buddy_page);
1025 	}
1026 }
1027 
1028 /*
1029  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1030  * block group lock of all groups for this page; do not hold the BG lock when
1031  * calling this routine!
1032  */
1033 static noinline_for_stack
1034 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1035 {
1036 
1037 	struct ext4_group_info *this_grp;
1038 	struct ext4_buddy e4b;
1039 	struct page *page;
1040 	int ret = 0;
1041 
1042 	might_sleep();
1043 	mb_debug(1, "init group %u\n", group);
1044 	this_grp = ext4_get_group_info(sb, group);
1045 	/*
1046 	 * This ensures that we don't reinit the buddy cache
1047 	 * page which map to the group from which we are already
1048 	 * allocating. If we are looking at the buddy cache we would
1049 	 * have taken a reference using ext4_mb_load_buddy and that
1050 	 * would have pinned buddy page to page cache.
1051 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1052 	 * page accessed.
1053 	 */
1054 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1055 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1056 		/*
1057 		 * somebody initialized the group
1058 		 * return without doing anything
1059 		 */
1060 		goto err;
1061 	}
1062 
1063 	page = e4b.bd_bitmap_page;
1064 	ret = ext4_mb_init_cache(page, NULL);
1065 	if (ret)
1066 		goto err;
1067 	if (!PageUptodate(page)) {
1068 		ret = -EIO;
1069 		goto err;
1070 	}
1071 
1072 	if (e4b.bd_buddy_page == NULL) {
1073 		/*
1074 		 * If both the bitmap and buddy are in
1075 		 * the same page we don't need to force
1076 		 * init the buddy
1077 		 */
1078 		ret = 0;
1079 		goto err;
1080 	}
1081 	/* init buddy cache */
1082 	page = e4b.bd_buddy_page;
1083 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1084 	if (ret)
1085 		goto err;
1086 	if (!PageUptodate(page)) {
1087 		ret = -EIO;
1088 		goto err;
1089 	}
1090 err:
1091 	ext4_mb_put_buddy_page_lock(&e4b);
1092 	return ret;
1093 }
1094 
1095 /*
1096  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1097  * block group lock of all groups for this page; do not hold the BG lock when
1098  * calling this routine!
1099  */
1100 static noinline_for_stack int
1101 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1102 					struct ext4_buddy *e4b)
1103 {
1104 	int blocks_per_page;
1105 	int block;
1106 	int pnum;
1107 	int poff;
1108 	struct page *page;
1109 	int ret;
1110 	struct ext4_group_info *grp;
1111 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1112 	struct inode *inode = sbi->s_buddy_cache;
1113 
1114 	might_sleep();
1115 	mb_debug(1, "load group %u\n", group);
1116 
1117 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1118 	grp = ext4_get_group_info(sb, group);
1119 
1120 	e4b->bd_blkbits = sb->s_blocksize_bits;
1121 	e4b->bd_info = grp;
1122 	e4b->bd_sb = sb;
1123 	e4b->bd_group = group;
1124 	e4b->bd_buddy_page = NULL;
1125 	e4b->bd_bitmap_page = NULL;
1126 
1127 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1128 		/*
1129 		 * we need full data about the group
1130 		 * to make a good selection
1131 		 */
1132 		ret = ext4_mb_init_group(sb, group);
1133 		if (ret)
1134 			return ret;
1135 	}
1136 
1137 	/*
1138 	 * the buddy cache inode stores the block bitmap
1139 	 * and buddy information in consecutive blocks.
1140 	 * So for each group we need two blocks.
1141 	 */
1142 	block = group * 2;
1143 	pnum = block / blocks_per_page;
1144 	poff = block % blocks_per_page;
1145 
1146 	/* we could use find_or_create_page(), but it locks page
1147 	 * what we'd like to avoid in fast path ... */
1148 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1149 	if (page == NULL || !PageUptodate(page)) {
1150 		if (page)
1151 			/*
1152 			 * drop the page reference and try
1153 			 * to get the page with lock. If we
1154 			 * are not uptodate that implies
1155 			 * somebody just created the page but
1156 			 * is yet to initialize the same. So
1157 			 * wait for it to initialize.
1158 			 */
1159 			page_cache_release(page);
1160 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1161 		if (page) {
1162 			BUG_ON(page->mapping != inode->i_mapping);
1163 			if (!PageUptodate(page)) {
1164 				ret = ext4_mb_init_cache(page, NULL);
1165 				if (ret) {
1166 					unlock_page(page);
1167 					goto err;
1168 				}
1169 				mb_cmp_bitmaps(e4b, page_address(page) +
1170 					       (poff * sb->s_blocksize));
1171 			}
1172 			unlock_page(page);
1173 		}
1174 	}
1175 	if (page == NULL) {
1176 		ret = -ENOMEM;
1177 		goto err;
1178 	}
1179 	if (!PageUptodate(page)) {
1180 		ret = -EIO;
1181 		goto err;
1182 	}
1183 
1184 	/* Pages marked accessed already */
1185 	e4b->bd_bitmap_page = page;
1186 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1187 
1188 	block++;
1189 	pnum = block / blocks_per_page;
1190 	poff = block % blocks_per_page;
1191 
1192 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1193 	if (page == NULL || !PageUptodate(page)) {
1194 		if (page)
1195 			page_cache_release(page);
1196 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1197 		if (page) {
1198 			BUG_ON(page->mapping != inode->i_mapping);
1199 			if (!PageUptodate(page)) {
1200 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1201 				if (ret) {
1202 					unlock_page(page);
1203 					goto err;
1204 				}
1205 			}
1206 			unlock_page(page);
1207 		}
1208 	}
1209 	if (page == NULL) {
1210 		ret = -ENOMEM;
1211 		goto err;
1212 	}
1213 	if (!PageUptodate(page)) {
1214 		ret = -EIO;
1215 		goto err;
1216 	}
1217 
1218 	/* Pages marked accessed already */
1219 	e4b->bd_buddy_page = page;
1220 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1221 
1222 	BUG_ON(e4b->bd_bitmap_page == NULL);
1223 	BUG_ON(e4b->bd_buddy_page == NULL);
1224 
1225 	return 0;
1226 
1227 err:
1228 	if (page)
1229 		page_cache_release(page);
1230 	if (e4b->bd_bitmap_page)
1231 		page_cache_release(e4b->bd_bitmap_page);
1232 	if (e4b->bd_buddy_page)
1233 		page_cache_release(e4b->bd_buddy_page);
1234 	e4b->bd_buddy = NULL;
1235 	e4b->bd_bitmap = NULL;
1236 	return ret;
1237 }
1238 
1239 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1240 {
1241 	if (e4b->bd_bitmap_page)
1242 		page_cache_release(e4b->bd_bitmap_page);
1243 	if (e4b->bd_buddy_page)
1244 		page_cache_release(e4b->bd_buddy_page);
1245 }
1246 
1247 
1248 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1249 {
1250 	int order = 1;
1251 	void *bb;
1252 
1253 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1254 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1255 
1256 	bb = e4b->bd_buddy;
1257 	while (order <= e4b->bd_blkbits + 1) {
1258 		block = block >> 1;
1259 		if (!mb_test_bit(block, bb)) {
1260 			/* this block is part of buddy of order 'order' */
1261 			return order;
1262 		}
1263 		bb += 1 << (e4b->bd_blkbits - order);
1264 		order++;
1265 	}
1266 	return 0;
1267 }
1268 
1269 static void mb_clear_bits(void *bm, int cur, int len)
1270 {
1271 	__u32 *addr;
1272 
1273 	len = cur + len;
1274 	while (cur < len) {
1275 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1276 			/* fast path: clear whole word at once */
1277 			addr = bm + (cur >> 3);
1278 			*addr = 0;
1279 			cur += 32;
1280 			continue;
1281 		}
1282 		mb_clear_bit(cur, bm);
1283 		cur++;
1284 	}
1285 }
1286 
1287 /* clear bits in given range
1288  * will return first found zero bit if any, -1 otherwise
1289  */
1290 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1291 {
1292 	__u32 *addr;
1293 	int zero_bit = -1;
1294 
1295 	len = cur + len;
1296 	while (cur < len) {
1297 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1298 			/* fast path: clear whole word at once */
1299 			addr = bm + (cur >> 3);
1300 			if (*addr != (__u32)(-1) && zero_bit == -1)
1301 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1302 			*addr = 0;
1303 			cur += 32;
1304 			continue;
1305 		}
1306 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1307 			zero_bit = cur;
1308 		cur++;
1309 	}
1310 
1311 	return zero_bit;
1312 }
1313 
1314 void ext4_set_bits(void *bm, int cur, int len)
1315 {
1316 	__u32 *addr;
1317 
1318 	len = cur + len;
1319 	while (cur < len) {
1320 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1321 			/* fast path: set whole word at once */
1322 			addr = bm + (cur >> 3);
1323 			*addr = 0xffffffff;
1324 			cur += 32;
1325 			continue;
1326 		}
1327 		mb_set_bit(cur, bm);
1328 		cur++;
1329 	}
1330 }
1331 
1332 /*
1333  * _________________________________________________________________ */
1334 
1335 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1336 {
1337 	if (mb_test_bit(*bit + side, bitmap)) {
1338 		mb_clear_bit(*bit, bitmap);
1339 		(*bit) -= side;
1340 		return 1;
1341 	}
1342 	else {
1343 		(*bit) += side;
1344 		mb_set_bit(*bit, bitmap);
1345 		return -1;
1346 	}
1347 }
1348 
1349 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1350 {
1351 	int max;
1352 	int order = 1;
1353 	void *buddy = mb_find_buddy(e4b, order, &max);
1354 
1355 	while (buddy) {
1356 		void *buddy2;
1357 
1358 		/* Bits in range [first; last] are known to be set since
1359 		 * corresponding blocks were allocated. Bits in range
1360 		 * (first; last) will stay set because they form buddies on
1361 		 * upper layer. We just deal with borders if they don't
1362 		 * align with upper layer and then go up.
1363 		 * Releasing entire group is all about clearing
1364 		 * single bit of highest order buddy.
1365 		 */
1366 
1367 		/* Example:
1368 		 * ---------------------------------
1369 		 * |   1   |   1   |   1   |   1   |
1370 		 * ---------------------------------
1371 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1372 		 * ---------------------------------
1373 		 *   0   1   2   3   4   5   6   7
1374 		 *      \_____________________/
1375 		 *
1376 		 * Neither [1] nor [6] is aligned to above layer.
1377 		 * Left neighbour [0] is free, so mark it busy,
1378 		 * decrease bb_counters and extend range to
1379 		 * [0; 6]
1380 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1381 		 * mark [6] free, increase bb_counters and shrink range to
1382 		 * [0; 5].
1383 		 * Then shift range to [0; 2], go up and do the same.
1384 		 */
1385 
1386 
1387 		if (first & 1)
1388 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1389 		if (!(last & 1))
1390 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1391 		if (first > last)
1392 			break;
1393 		order++;
1394 
1395 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1396 			mb_clear_bits(buddy, first, last - first + 1);
1397 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1398 			break;
1399 		}
1400 		first >>= 1;
1401 		last >>= 1;
1402 		buddy = buddy2;
1403 	}
1404 }
1405 
1406 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1407 			   int first, int count)
1408 {
1409 	int left_is_free = 0;
1410 	int right_is_free = 0;
1411 	int block;
1412 	int last = first + count - 1;
1413 	struct super_block *sb = e4b->bd_sb;
1414 
1415 	BUG_ON(last >= (sb->s_blocksize << 3));
1416 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1417 	/* Don't bother if the block group is corrupt. */
1418 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1419 		return;
1420 
1421 	mb_check_buddy(e4b);
1422 	mb_free_blocks_double(inode, e4b, first, count);
1423 
1424 	e4b->bd_info->bb_free += count;
1425 	if (first < e4b->bd_info->bb_first_free)
1426 		e4b->bd_info->bb_first_free = first;
1427 
1428 	/* access memory sequentially: check left neighbour,
1429 	 * clear range and then check right neighbour
1430 	 */
1431 	if (first != 0)
1432 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1433 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1434 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1435 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1436 
1437 	if (unlikely(block != -1)) {
1438 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1439 		ext4_fsblk_t blocknr;
1440 
1441 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1442 		blocknr += EXT4_C2B(EXT4_SB(sb), block);
1443 		ext4_grp_locked_error(sb, e4b->bd_group,
1444 				      inode ? inode->i_ino : 0,
1445 				      blocknr,
1446 				      "freeing already freed block "
1447 				      "(bit %u); block bitmap corrupt.",
1448 				      block);
1449 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1450 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1451 					   e4b->bd_info->bb_free);
1452 		/* Mark the block group as corrupt. */
1453 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1454 			&e4b->bd_info->bb_state);
1455 		mb_regenerate_buddy(e4b);
1456 		goto done;
1457 	}
1458 
1459 	/* let's maintain fragments counter */
1460 	if (left_is_free && right_is_free)
1461 		e4b->bd_info->bb_fragments--;
1462 	else if (!left_is_free && !right_is_free)
1463 		e4b->bd_info->bb_fragments++;
1464 
1465 	/* buddy[0] == bd_bitmap is a special case, so handle
1466 	 * it right away and let mb_buddy_mark_free stay free of
1467 	 * zero order checks.
1468 	 * Check if neighbours are to be coaleasced,
1469 	 * adjust bitmap bb_counters and borders appropriately.
1470 	 */
1471 	if (first & 1) {
1472 		first += !left_is_free;
1473 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1474 	}
1475 	if (!(last & 1)) {
1476 		last -= !right_is_free;
1477 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1478 	}
1479 
1480 	if (first <= last)
1481 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1482 
1483 done:
1484 	mb_set_largest_free_order(sb, e4b->bd_info);
1485 	mb_check_buddy(e4b);
1486 }
1487 
1488 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1489 				int needed, struct ext4_free_extent *ex)
1490 {
1491 	int next = block;
1492 	int max, order;
1493 	void *buddy;
1494 
1495 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1496 	BUG_ON(ex == NULL);
1497 
1498 	buddy = mb_find_buddy(e4b, 0, &max);
1499 	BUG_ON(buddy == NULL);
1500 	BUG_ON(block >= max);
1501 	if (mb_test_bit(block, buddy)) {
1502 		ex->fe_len = 0;
1503 		ex->fe_start = 0;
1504 		ex->fe_group = 0;
1505 		return 0;
1506 	}
1507 
1508 	/* find actual order */
1509 	order = mb_find_order_for_block(e4b, block);
1510 	block = block >> order;
1511 
1512 	ex->fe_len = 1 << order;
1513 	ex->fe_start = block << order;
1514 	ex->fe_group = e4b->bd_group;
1515 
1516 	/* calc difference from given start */
1517 	next = next - ex->fe_start;
1518 	ex->fe_len -= next;
1519 	ex->fe_start += next;
1520 
1521 	while (needed > ex->fe_len &&
1522 	       mb_find_buddy(e4b, order, &max)) {
1523 
1524 		if (block + 1 >= max)
1525 			break;
1526 
1527 		next = (block + 1) * (1 << order);
1528 		if (mb_test_bit(next, e4b->bd_bitmap))
1529 			break;
1530 
1531 		order = mb_find_order_for_block(e4b, next);
1532 
1533 		block = next >> order;
1534 		ex->fe_len += 1 << order;
1535 	}
1536 
1537 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1538 	return ex->fe_len;
1539 }
1540 
1541 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1542 {
1543 	int ord;
1544 	int mlen = 0;
1545 	int max = 0;
1546 	int cur;
1547 	int start = ex->fe_start;
1548 	int len = ex->fe_len;
1549 	unsigned ret = 0;
1550 	int len0 = len;
1551 	void *buddy;
1552 
1553 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1554 	BUG_ON(e4b->bd_group != ex->fe_group);
1555 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1556 	mb_check_buddy(e4b);
1557 	mb_mark_used_double(e4b, start, len);
1558 
1559 	e4b->bd_info->bb_free -= len;
1560 	if (e4b->bd_info->bb_first_free == start)
1561 		e4b->bd_info->bb_first_free += len;
1562 
1563 	/* let's maintain fragments counter */
1564 	if (start != 0)
1565 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1566 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1567 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1568 	if (mlen && max)
1569 		e4b->bd_info->bb_fragments++;
1570 	else if (!mlen && !max)
1571 		e4b->bd_info->bb_fragments--;
1572 
1573 	/* let's maintain buddy itself */
1574 	while (len) {
1575 		ord = mb_find_order_for_block(e4b, start);
1576 
1577 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1578 			/* the whole chunk may be allocated at once! */
1579 			mlen = 1 << ord;
1580 			buddy = mb_find_buddy(e4b, ord, &max);
1581 			BUG_ON((start >> ord) >= max);
1582 			mb_set_bit(start >> ord, buddy);
1583 			e4b->bd_info->bb_counters[ord]--;
1584 			start += mlen;
1585 			len -= mlen;
1586 			BUG_ON(len < 0);
1587 			continue;
1588 		}
1589 
1590 		/* store for history */
1591 		if (ret == 0)
1592 			ret = len | (ord << 16);
1593 
1594 		/* we have to split large buddy */
1595 		BUG_ON(ord <= 0);
1596 		buddy = mb_find_buddy(e4b, ord, &max);
1597 		mb_set_bit(start >> ord, buddy);
1598 		e4b->bd_info->bb_counters[ord]--;
1599 
1600 		ord--;
1601 		cur = (start >> ord) & ~1U;
1602 		buddy = mb_find_buddy(e4b, ord, &max);
1603 		mb_clear_bit(cur, buddy);
1604 		mb_clear_bit(cur + 1, buddy);
1605 		e4b->bd_info->bb_counters[ord]++;
1606 		e4b->bd_info->bb_counters[ord]++;
1607 	}
1608 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1609 
1610 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1611 	mb_check_buddy(e4b);
1612 
1613 	return ret;
1614 }
1615 
1616 /*
1617  * Must be called under group lock!
1618  */
1619 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1620 					struct ext4_buddy *e4b)
1621 {
1622 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1623 	int ret;
1624 
1625 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1626 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1627 
1628 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1629 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1630 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1631 
1632 	/* preallocation can change ac_b_ex, thus we store actually
1633 	 * allocated blocks for history */
1634 	ac->ac_f_ex = ac->ac_b_ex;
1635 
1636 	ac->ac_status = AC_STATUS_FOUND;
1637 	ac->ac_tail = ret & 0xffff;
1638 	ac->ac_buddy = ret >> 16;
1639 
1640 	/*
1641 	 * take the page reference. We want the page to be pinned
1642 	 * so that we don't get a ext4_mb_init_cache_call for this
1643 	 * group until we update the bitmap. That would mean we
1644 	 * double allocate blocks. The reference is dropped
1645 	 * in ext4_mb_release_context
1646 	 */
1647 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1648 	get_page(ac->ac_bitmap_page);
1649 	ac->ac_buddy_page = e4b->bd_buddy_page;
1650 	get_page(ac->ac_buddy_page);
1651 	/* store last allocated for subsequent stream allocation */
1652 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1653 		spin_lock(&sbi->s_md_lock);
1654 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1655 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1656 		spin_unlock(&sbi->s_md_lock);
1657 	}
1658 }
1659 
1660 /*
1661  * regular allocator, for general purposes allocation
1662  */
1663 
1664 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1665 					struct ext4_buddy *e4b,
1666 					int finish_group)
1667 {
1668 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1669 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1670 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1671 	struct ext4_free_extent ex;
1672 	int max;
1673 
1674 	if (ac->ac_status == AC_STATUS_FOUND)
1675 		return;
1676 	/*
1677 	 * We don't want to scan for a whole year
1678 	 */
1679 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1680 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1681 		ac->ac_status = AC_STATUS_BREAK;
1682 		return;
1683 	}
1684 
1685 	/*
1686 	 * Haven't found good chunk so far, let's continue
1687 	 */
1688 	if (bex->fe_len < gex->fe_len)
1689 		return;
1690 
1691 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1692 			&& bex->fe_group == e4b->bd_group) {
1693 		/* recheck chunk's availability - we don't know
1694 		 * when it was found (within this lock-unlock
1695 		 * period or not) */
1696 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1697 		if (max >= gex->fe_len) {
1698 			ext4_mb_use_best_found(ac, e4b);
1699 			return;
1700 		}
1701 	}
1702 }
1703 
1704 /*
1705  * The routine checks whether found extent is good enough. If it is,
1706  * then the extent gets marked used and flag is set to the context
1707  * to stop scanning. Otherwise, the extent is compared with the
1708  * previous found extent and if new one is better, then it's stored
1709  * in the context. Later, the best found extent will be used, if
1710  * mballoc can't find good enough extent.
1711  *
1712  * FIXME: real allocation policy is to be designed yet!
1713  */
1714 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1715 					struct ext4_free_extent *ex,
1716 					struct ext4_buddy *e4b)
1717 {
1718 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1719 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1720 
1721 	BUG_ON(ex->fe_len <= 0);
1722 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1723 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1724 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1725 
1726 	ac->ac_found++;
1727 
1728 	/*
1729 	 * The special case - take what you catch first
1730 	 */
1731 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1732 		*bex = *ex;
1733 		ext4_mb_use_best_found(ac, e4b);
1734 		return;
1735 	}
1736 
1737 	/*
1738 	 * Let's check whether the chuck is good enough
1739 	 */
1740 	if (ex->fe_len == gex->fe_len) {
1741 		*bex = *ex;
1742 		ext4_mb_use_best_found(ac, e4b);
1743 		return;
1744 	}
1745 
1746 	/*
1747 	 * If this is first found extent, just store it in the context
1748 	 */
1749 	if (bex->fe_len == 0) {
1750 		*bex = *ex;
1751 		return;
1752 	}
1753 
1754 	/*
1755 	 * If new found extent is better, store it in the context
1756 	 */
1757 	if (bex->fe_len < gex->fe_len) {
1758 		/* if the request isn't satisfied, any found extent
1759 		 * larger than previous best one is better */
1760 		if (ex->fe_len > bex->fe_len)
1761 			*bex = *ex;
1762 	} else if (ex->fe_len > gex->fe_len) {
1763 		/* if the request is satisfied, then we try to find
1764 		 * an extent that still satisfy the request, but is
1765 		 * smaller than previous one */
1766 		if (ex->fe_len < bex->fe_len)
1767 			*bex = *ex;
1768 	}
1769 
1770 	ext4_mb_check_limits(ac, e4b, 0);
1771 }
1772 
1773 static noinline_for_stack
1774 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1775 					struct ext4_buddy *e4b)
1776 {
1777 	struct ext4_free_extent ex = ac->ac_b_ex;
1778 	ext4_group_t group = ex.fe_group;
1779 	int max;
1780 	int err;
1781 
1782 	BUG_ON(ex.fe_len <= 0);
1783 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1784 	if (err)
1785 		return err;
1786 
1787 	ext4_lock_group(ac->ac_sb, group);
1788 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1789 
1790 	if (max > 0) {
1791 		ac->ac_b_ex = ex;
1792 		ext4_mb_use_best_found(ac, e4b);
1793 	}
1794 
1795 	ext4_unlock_group(ac->ac_sb, group);
1796 	ext4_mb_unload_buddy(e4b);
1797 
1798 	return 0;
1799 }
1800 
1801 static noinline_for_stack
1802 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1803 				struct ext4_buddy *e4b)
1804 {
1805 	ext4_group_t group = ac->ac_g_ex.fe_group;
1806 	int max;
1807 	int err;
1808 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1809 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1810 	struct ext4_free_extent ex;
1811 
1812 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1813 		return 0;
1814 	if (grp->bb_free == 0)
1815 		return 0;
1816 
1817 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1818 	if (err)
1819 		return err;
1820 
1821 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1822 		ext4_mb_unload_buddy(e4b);
1823 		return 0;
1824 	}
1825 
1826 	ext4_lock_group(ac->ac_sb, group);
1827 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1828 			     ac->ac_g_ex.fe_len, &ex);
1829 	ex.fe_logical = 0xDEADFA11; /* debug value */
1830 
1831 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1832 		ext4_fsblk_t start;
1833 
1834 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1835 			ex.fe_start;
1836 		/* use do_div to get remainder (would be 64-bit modulo) */
1837 		if (do_div(start, sbi->s_stripe) == 0) {
1838 			ac->ac_found++;
1839 			ac->ac_b_ex = ex;
1840 			ext4_mb_use_best_found(ac, e4b);
1841 		}
1842 	} else if (max >= ac->ac_g_ex.fe_len) {
1843 		BUG_ON(ex.fe_len <= 0);
1844 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1845 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1846 		ac->ac_found++;
1847 		ac->ac_b_ex = ex;
1848 		ext4_mb_use_best_found(ac, e4b);
1849 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1850 		/* Sometimes, caller may want to merge even small
1851 		 * number of blocks to an existing extent */
1852 		BUG_ON(ex.fe_len <= 0);
1853 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1854 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1855 		ac->ac_found++;
1856 		ac->ac_b_ex = ex;
1857 		ext4_mb_use_best_found(ac, e4b);
1858 	}
1859 	ext4_unlock_group(ac->ac_sb, group);
1860 	ext4_mb_unload_buddy(e4b);
1861 
1862 	return 0;
1863 }
1864 
1865 /*
1866  * The routine scans buddy structures (not bitmap!) from given order
1867  * to max order and tries to find big enough chunk to satisfy the req
1868  */
1869 static noinline_for_stack
1870 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1871 					struct ext4_buddy *e4b)
1872 {
1873 	struct super_block *sb = ac->ac_sb;
1874 	struct ext4_group_info *grp = e4b->bd_info;
1875 	void *buddy;
1876 	int i;
1877 	int k;
1878 	int max;
1879 
1880 	BUG_ON(ac->ac_2order <= 0);
1881 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1882 		if (grp->bb_counters[i] == 0)
1883 			continue;
1884 
1885 		buddy = mb_find_buddy(e4b, i, &max);
1886 		BUG_ON(buddy == NULL);
1887 
1888 		k = mb_find_next_zero_bit(buddy, max, 0);
1889 		BUG_ON(k >= max);
1890 
1891 		ac->ac_found++;
1892 
1893 		ac->ac_b_ex.fe_len = 1 << i;
1894 		ac->ac_b_ex.fe_start = k << i;
1895 		ac->ac_b_ex.fe_group = e4b->bd_group;
1896 
1897 		ext4_mb_use_best_found(ac, e4b);
1898 
1899 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1900 
1901 		if (EXT4_SB(sb)->s_mb_stats)
1902 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1903 
1904 		break;
1905 	}
1906 }
1907 
1908 /*
1909  * The routine scans the group and measures all found extents.
1910  * In order to optimize scanning, caller must pass number of
1911  * free blocks in the group, so the routine can know upper limit.
1912  */
1913 static noinline_for_stack
1914 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1915 					struct ext4_buddy *e4b)
1916 {
1917 	struct super_block *sb = ac->ac_sb;
1918 	void *bitmap = e4b->bd_bitmap;
1919 	struct ext4_free_extent ex;
1920 	int i;
1921 	int free;
1922 
1923 	free = e4b->bd_info->bb_free;
1924 	BUG_ON(free <= 0);
1925 
1926 	i = e4b->bd_info->bb_first_free;
1927 
1928 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1929 		i = mb_find_next_zero_bit(bitmap,
1930 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1931 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1932 			/*
1933 			 * IF we have corrupt bitmap, we won't find any
1934 			 * free blocks even though group info says we
1935 			 * we have free blocks
1936 			 */
1937 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1938 					"%d free clusters as per "
1939 					"group info. But bitmap says 0",
1940 					free);
1941 			break;
1942 		}
1943 
1944 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1945 		BUG_ON(ex.fe_len <= 0);
1946 		if (free < ex.fe_len) {
1947 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1948 					"%d free clusters as per "
1949 					"group info. But got %d blocks",
1950 					free, ex.fe_len);
1951 			/*
1952 			 * The number of free blocks differs. This mostly
1953 			 * indicate that the bitmap is corrupt. So exit
1954 			 * without claiming the space.
1955 			 */
1956 			break;
1957 		}
1958 		ex.fe_logical = 0xDEADC0DE; /* debug value */
1959 		ext4_mb_measure_extent(ac, &ex, e4b);
1960 
1961 		i += ex.fe_len;
1962 		free -= ex.fe_len;
1963 	}
1964 
1965 	ext4_mb_check_limits(ac, e4b, 1);
1966 }
1967 
1968 /*
1969  * This is a special case for storages like raid5
1970  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1971  */
1972 static noinline_for_stack
1973 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1974 				 struct ext4_buddy *e4b)
1975 {
1976 	struct super_block *sb = ac->ac_sb;
1977 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1978 	void *bitmap = e4b->bd_bitmap;
1979 	struct ext4_free_extent ex;
1980 	ext4_fsblk_t first_group_block;
1981 	ext4_fsblk_t a;
1982 	ext4_grpblk_t i;
1983 	int max;
1984 
1985 	BUG_ON(sbi->s_stripe == 0);
1986 
1987 	/* find first stripe-aligned block in group */
1988 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1989 
1990 	a = first_group_block + sbi->s_stripe - 1;
1991 	do_div(a, sbi->s_stripe);
1992 	i = (a * sbi->s_stripe) - first_group_block;
1993 
1994 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1995 		if (!mb_test_bit(i, bitmap)) {
1996 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1997 			if (max >= sbi->s_stripe) {
1998 				ac->ac_found++;
1999 				ex.fe_logical = 0xDEADF00D; /* debug value */
2000 				ac->ac_b_ex = ex;
2001 				ext4_mb_use_best_found(ac, e4b);
2002 				break;
2003 			}
2004 		}
2005 		i += sbi->s_stripe;
2006 	}
2007 }
2008 
2009 /* This is now called BEFORE we load the buddy bitmap. */
2010 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2011 				ext4_group_t group, int cr)
2012 {
2013 	unsigned free, fragments;
2014 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2015 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2016 
2017 	BUG_ON(cr < 0 || cr >= 4);
2018 
2019 	free = grp->bb_free;
2020 	if (free == 0)
2021 		return 0;
2022 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2023 		return 0;
2024 
2025 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2026 		return 0;
2027 
2028 	/* We only do this if the grp has never been initialized */
2029 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2030 		int ret = ext4_mb_init_group(ac->ac_sb, group);
2031 		if (ret)
2032 			return 0;
2033 	}
2034 
2035 	fragments = grp->bb_fragments;
2036 	if (fragments == 0)
2037 		return 0;
2038 
2039 	switch (cr) {
2040 	case 0:
2041 		BUG_ON(ac->ac_2order == 0);
2042 
2043 		/* Avoid using the first bg of a flexgroup for data files */
2044 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2045 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2046 		    ((group % flex_size) == 0))
2047 			return 0;
2048 
2049 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2050 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2051 			return 1;
2052 
2053 		if (grp->bb_largest_free_order < ac->ac_2order)
2054 			return 0;
2055 
2056 		return 1;
2057 	case 1:
2058 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2059 			return 1;
2060 		break;
2061 	case 2:
2062 		if (free >= ac->ac_g_ex.fe_len)
2063 			return 1;
2064 		break;
2065 	case 3:
2066 		return 1;
2067 	default:
2068 		BUG();
2069 	}
2070 
2071 	return 0;
2072 }
2073 
2074 static noinline_for_stack int
2075 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2076 {
2077 	ext4_group_t ngroups, group, i;
2078 	int cr;
2079 	int err = 0;
2080 	struct ext4_sb_info *sbi;
2081 	struct super_block *sb;
2082 	struct ext4_buddy e4b;
2083 
2084 	sb = ac->ac_sb;
2085 	sbi = EXT4_SB(sb);
2086 	ngroups = ext4_get_groups_count(sb);
2087 	/* non-extent files are limited to low blocks/groups */
2088 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2089 		ngroups = sbi->s_blockfile_groups;
2090 
2091 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2092 
2093 	/* first, try the goal */
2094 	err = ext4_mb_find_by_goal(ac, &e4b);
2095 	if (err || ac->ac_status == AC_STATUS_FOUND)
2096 		goto out;
2097 
2098 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2099 		goto out;
2100 
2101 	/*
2102 	 * ac->ac2_order is set only if the fe_len is a power of 2
2103 	 * if ac2_order is set we also set criteria to 0 so that we
2104 	 * try exact allocation using buddy.
2105 	 */
2106 	i = fls(ac->ac_g_ex.fe_len);
2107 	ac->ac_2order = 0;
2108 	/*
2109 	 * We search using buddy data only if the order of the request
2110 	 * is greater than equal to the sbi_s_mb_order2_reqs
2111 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2112 	 */
2113 	if (i >= sbi->s_mb_order2_reqs) {
2114 		/*
2115 		 * This should tell if fe_len is exactly power of 2
2116 		 */
2117 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2118 			ac->ac_2order = i - 1;
2119 	}
2120 
2121 	/* if stream allocation is enabled, use global goal */
2122 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2123 		/* TBD: may be hot point */
2124 		spin_lock(&sbi->s_md_lock);
2125 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2126 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2127 		spin_unlock(&sbi->s_md_lock);
2128 	}
2129 
2130 	/* Let's just scan groups to find more-less suitable blocks */
2131 	cr = ac->ac_2order ? 0 : 1;
2132 	/*
2133 	 * cr == 0 try to get exact allocation,
2134 	 * cr == 3  try to get anything
2135 	 */
2136 repeat:
2137 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2138 		ac->ac_criteria = cr;
2139 		/*
2140 		 * searching for the right group start
2141 		 * from the goal value specified
2142 		 */
2143 		group = ac->ac_g_ex.fe_group;
2144 
2145 		for (i = 0; i < ngroups; group++, i++) {
2146 			cond_resched();
2147 			/*
2148 			 * Artificially restricted ngroups for non-extent
2149 			 * files makes group > ngroups possible on first loop.
2150 			 */
2151 			if (group >= ngroups)
2152 				group = 0;
2153 
2154 			/* This now checks without needing the buddy page */
2155 			if (!ext4_mb_good_group(ac, group, cr))
2156 				continue;
2157 
2158 			err = ext4_mb_load_buddy(sb, group, &e4b);
2159 			if (err)
2160 				goto out;
2161 
2162 			ext4_lock_group(sb, group);
2163 
2164 			/*
2165 			 * We need to check again after locking the
2166 			 * block group
2167 			 */
2168 			if (!ext4_mb_good_group(ac, group, cr)) {
2169 				ext4_unlock_group(sb, group);
2170 				ext4_mb_unload_buddy(&e4b);
2171 				continue;
2172 			}
2173 
2174 			ac->ac_groups_scanned++;
2175 			if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2176 				ext4_mb_simple_scan_group(ac, &e4b);
2177 			else if (cr == 1 && sbi->s_stripe &&
2178 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2179 				ext4_mb_scan_aligned(ac, &e4b);
2180 			else
2181 				ext4_mb_complex_scan_group(ac, &e4b);
2182 
2183 			ext4_unlock_group(sb, group);
2184 			ext4_mb_unload_buddy(&e4b);
2185 
2186 			if (ac->ac_status != AC_STATUS_CONTINUE)
2187 				break;
2188 		}
2189 	}
2190 
2191 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2192 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2193 		/*
2194 		 * We've been searching too long. Let's try to allocate
2195 		 * the best chunk we've found so far
2196 		 */
2197 
2198 		ext4_mb_try_best_found(ac, &e4b);
2199 		if (ac->ac_status != AC_STATUS_FOUND) {
2200 			/*
2201 			 * Someone more lucky has already allocated it.
2202 			 * The only thing we can do is just take first
2203 			 * found block(s)
2204 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2205 			 */
2206 			ac->ac_b_ex.fe_group = 0;
2207 			ac->ac_b_ex.fe_start = 0;
2208 			ac->ac_b_ex.fe_len = 0;
2209 			ac->ac_status = AC_STATUS_CONTINUE;
2210 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2211 			cr = 3;
2212 			atomic_inc(&sbi->s_mb_lost_chunks);
2213 			goto repeat;
2214 		}
2215 	}
2216 out:
2217 	return err;
2218 }
2219 
2220 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2221 {
2222 	struct super_block *sb = seq->private;
2223 	ext4_group_t group;
2224 
2225 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2226 		return NULL;
2227 	group = *pos + 1;
2228 	return (void *) ((unsigned long) group);
2229 }
2230 
2231 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2232 {
2233 	struct super_block *sb = seq->private;
2234 	ext4_group_t group;
2235 
2236 	++*pos;
2237 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2238 		return NULL;
2239 	group = *pos + 1;
2240 	return (void *) ((unsigned long) group);
2241 }
2242 
2243 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2244 {
2245 	struct super_block *sb = seq->private;
2246 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2247 	int i;
2248 	int err, buddy_loaded = 0;
2249 	struct ext4_buddy e4b;
2250 	struct ext4_group_info *grinfo;
2251 	struct sg {
2252 		struct ext4_group_info info;
2253 		ext4_grpblk_t counters[16];
2254 	} sg;
2255 
2256 	group--;
2257 	if (group == 0)
2258 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2259 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2260 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2261 			   "group", "free", "frags", "first",
2262 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2263 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2264 
2265 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2266 		sizeof(struct ext4_group_info);
2267 	grinfo = ext4_get_group_info(sb, group);
2268 	/* Load the group info in memory only if not already loaded. */
2269 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2270 		err = ext4_mb_load_buddy(sb, group, &e4b);
2271 		if (err) {
2272 			seq_printf(seq, "#%-5u: I/O error\n", group);
2273 			return 0;
2274 		}
2275 		buddy_loaded = 1;
2276 	}
2277 
2278 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2279 
2280 	if (buddy_loaded)
2281 		ext4_mb_unload_buddy(&e4b);
2282 
2283 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2284 			sg.info.bb_fragments, sg.info.bb_first_free);
2285 	for (i = 0; i <= 13; i++)
2286 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2287 				sg.info.bb_counters[i] : 0);
2288 	seq_printf(seq, " ]\n");
2289 
2290 	return 0;
2291 }
2292 
2293 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2294 {
2295 }
2296 
2297 static const struct seq_operations ext4_mb_seq_groups_ops = {
2298 	.start  = ext4_mb_seq_groups_start,
2299 	.next   = ext4_mb_seq_groups_next,
2300 	.stop   = ext4_mb_seq_groups_stop,
2301 	.show   = ext4_mb_seq_groups_show,
2302 };
2303 
2304 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2305 {
2306 	struct super_block *sb = PDE_DATA(inode);
2307 	int rc;
2308 
2309 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2310 	if (rc == 0) {
2311 		struct seq_file *m = file->private_data;
2312 		m->private = sb;
2313 	}
2314 	return rc;
2315 
2316 }
2317 
2318 static const struct file_operations ext4_mb_seq_groups_fops = {
2319 	.owner		= THIS_MODULE,
2320 	.open		= ext4_mb_seq_groups_open,
2321 	.read		= seq_read,
2322 	.llseek		= seq_lseek,
2323 	.release	= seq_release,
2324 };
2325 
2326 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2327 {
2328 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2329 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2330 
2331 	BUG_ON(!cachep);
2332 	return cachep;
2333 }
2334 
2335 /*
2336  * Allocate the top-level s_group_info array for the specified number
2337  * of groups
2338  */
2339 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2340 {
2341 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2342 	unsigned size;
2343 	struct ext4_group_info ***new_groupinfo;
2344 
2345 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2346 		EXT4_DESC_PER_BLOCK_BITS(sb);
2347 	if (size <= sbi->s_group_info_size)
2348 		return 0;
2349 
2350 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2351 	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2352 	if (!new_groupinfo) {
2353 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2354 		return -ENOMEM;
2355 	}
2356 	if (sbi->s_group_info) {
2357 		memcpy(new_groupinfo, sbi->s_group_info,
2358 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2359 		ext4_kvfree(sbi->s_group_info);
2360 	}
2361 	sbi->s_group_info = new_groupinfo;
2362 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2363 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2364 		   sbi->s_group_info_size);
2365 	return 0;
2366 }
2367 
2368 /* Create and initialize ext4_group_info data for the given group. */
2369 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2370 			  struct ext4_group_desc *desc)
2371 {
2372 	int i;
2373 	int metalen = 0;
2374 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2375 	struct ext4_group_info **meta_group_info;
2376 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2377 
2378 	/*
2379 	 * First check if this group is the first of a reserved block.
2380 	 * If it's true, we have to allocate a new table of pointers
2381 	 * to ext4_group_info structures
2382 	 */
2383 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2384 		metalen = sizeof(*meta_group_info) <<
2385 			EXT4_DESC_PER_BLOCK_BITS(sb);
2386 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2387 		if (meta_group_info == NULL) {
2388 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2389 				 "for a buddy group");
2390 			goto exit_meta_group_info;
2391 		}
2392 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2393 			meta_group_info;
2394 	}
2395 
2396 	meta_group_info =
2397 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2398 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2399 
2400 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2401 	if (meta_group_info[i] == NULL) {
2402 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2403 		goto exit_group_info;
2404 	}
2405 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2406 		&(meta_group_info[i]->bb_state));
2407 
2408 	/*
2409 	 * initialize bb_free to be able to skip
2410 	 * empty groups without initialization
2411 	 */
2412 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2413 		meta_group_info[i]->bb_free =
2414 			ext4_free_clusters_after_init(sb, group, desc);
2415 	} else {
2416 		meta_group_info[i]->bb_free =
2417 			ext4_free_group_clusters(sb, desc);
2418 	}
2419 
2420 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2421 	init_rwsem(&meta_group_info[i]->alloc_sem);
2422 	meta_group_info[i]->bb_free_root = RB_ROOT;
2423 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2424 
2425 #ifdef DOUBLE_CHECK
2426 	{
2427 		struct buffer_head *bh;
2428 		meta_group_info[i]->bb_bitmap =
2429 			kmalloc(sb->s_blocksize, GFP_KERNEL);
2430 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2431 		bh = ext4_read_block_bitmap(sb, group);
2432 		BUG_ON(bh == NULL);
2433 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2434 			sb->s_blocksize);
2435 		put_bh(bh);
2436 	}
2437 #endif
2438 
2439 	return 0;
2440 
2441 exit_group_info:
2442 	/* If a meta_group_info table has been allocated, release it now */
2443 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2444 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2445 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2446 	}
2447 exit_meta_group_info:
2448 	return -ENOMEM;
2449 } /* ext4_mb_add_groupinfo */
2450 
2451 static int ext4_mb_init_backend(struct super_block *sb)
2452 {
2453 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2454 	ext4_group_t i;
2455 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2456 	int err;
2457 	struct ext4_group_desc *desc;
2458 	struct kmem_cache *cachep;
2459 
2460 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2461 	if (err)
2462 		return err;
2463 
2464 	sbi->s_buddy_cache = new_inode(sb);
2465 	if (sbi->s_buddy_cache == NULL) {
2466 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2467 		goto err_freesgi;
2468 	}
2469 	/* To avoid potentially colliding with an valid on-disk inode number,
2470 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2471 	 * not in the inode hash, so it should never be found by iget(), but
2472 	 * this will avoid confusion if it ever shows up during debugging. */
2473 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2474 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2475 	for (i = 0; i < ngroups; i++) {
2476 		desc = ext4_get_group_desc(sb, i, NULL);
2477 		if (desc == NULL) {
2478 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2479 			goto err_freebuddy;
2480 		}
2481 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2482 			goto err_freebuddy;
2483 	}
2484 
2485 	return 0;
2486 
2487 err_freebuddy:
2488 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2489 	while (i-- > 0)
2490 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2491 	i = sbi->s_group_info_size;
2492 	while (i-- > 0)
2493 		kfree(sbi->s_group_info[i]);
2494 	iput(sbi->s_buddy_cache);
2495 err_freesgi:
2496 	ext4_kvfree(sbi->s_group_info);
2497 	return -ENOMEM;
2498 }
2499 
2500 static void ext4_groupinfo_destroy_slabs(void)
2501 {
2502 	int i;
2503 
2504 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2505 		if (ext4_groupinfo_caches[i])
2506 			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2507 		ext4_groupinfo_caches[i] = NULL;
2508 	}
2509 }
2510 
2511 static int ext4_groupinfo_create_slab(size_t size)
2512 {
2513 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2514 	int slab_size;
2515 	int blocksize_bits = order_base_2(size);
2516 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2517 	struct kmem_cache *cachep;
2518 
2519 	if (cache_index >= NR_GRPINFO_CACHES)
2520 		return -EINVAL;
2521 
2522 	if (unlikely(cache_index < 0))
2523 		cache_index = 0;
2524 
2525 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2526 	if (ext4_groupinfo_caches[cache_index]) {
2527 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2528 		return 0;	/* Already created */
2529 	}
2530 
2531 	slab_size = offsetof(struct ext4_group_info,
2532 				bb_counters[blocksize_bits + 2]);
2533 
2534 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2535 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2536 					NULL);
2537 
2538 	ext4_groupinfo_caches[cache_index] = cachep;
2539 
2540 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2541 	if (!cachep) {
2542 		printk(KERN_EMERG
2543 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2544 		return -ENOMEM;
2545 	}
2546 
2547 	return 0;
2548 }
2549 
2550 int ext4_mb_init(struct super_block *sb)
2551 {
2552 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2553 	unsigned i, j;
2554 	unsigned offset;
2555 	unsigned max;
2556 	int ret;
2557 
2558 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2559 
2560 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2561 	if (sbi->s_mb_offsets == NULL) {
2562 		ret = -ENOMEM;
2563 		goto out;
2564 	}
2565 
2566 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2567 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2568 	if (sbi->s_mb_maxs == NULL) {
2569 		ret = -ENOMEM;
2570 		goto out;
2571 	}
2572 
2573 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2574 	if (ret < 0)
2575 		goto out;
2576 
2577 	/* order 0 is regular bitmap */
2578 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2579 	sbi->s_mb_offsets[0] = 0;
2580 
2581 	i = 1;
2582 	offset = 0;
2583 	max = sb->s_blocksize << 2;
2584 	do {
2585 		sbi->s_mb_offsets[i] = offset;
2586 		sbi->s_mb_maxs[i] = max;
2587 		offset += 1 << (sb->s_blocksize_bits - i);
2588 		max = max >> 1;
2589 		i++;
2590 	} while (i <= sb->s_blocksize_bits + 1);
2591 
2592 	spin_lock_init(&sbi->s_md_lock);
2593 	spin_lock_init(&sbi->s_bal_lock);
2594 
2595 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2596 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2597 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2598 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2599 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2600 	/*
2601 	 * The default group preallocation is 512, which for 4k block
2602 	 * sizes translates to 2 megabytes.  However for bigalloc file
2603 	 * systems, this is probably too big (i.e, if the cluster size
2604 	 * is 1 megabyte, then group preallocation size becomes half a
2605 	 * gigabyte!).  As a default, we will keep a two megabyte
2606 	 * group pralloc size for cluster sizes up to 64k, and after
2607 	 * that, we will force a minimum group preallocation size of
2608 	 * 32 clusters.  This translates to 8 megs when the cluster
2609 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2610 	 * which seems reasonable as a default.
2611 	 */
2612 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2613 				       sbi->s_cluster_bits, 32);
2614 	/*
2615 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2616 	 * to the lowest multiple of s_stripe which is bigger than
2617 	 * the s_mb_group_prealloc as determined above. We want
2618 	 * the preallocation size to be an exact multiple of the
2619 	 * RAID stripe size so that preallocations don't fragment
2620 	 * the stripes.
2621 	 */
2622 	if (sbi->s_stripe > 1) {
2623 		sbi->s_mb_group_prealloc = roundup(
2624 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2625 	}
2626 
2627 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2628 	if (sbi->s_locality_groups == NULL) {
2629 		ret = -ENOMEM;
2630 		goto out;
2631 	}
2632 	for_each_possible_cpu(i) {
2633 		struct ext4_locality_group *lg;
2634 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2635 		mutex_init(&lg->lg_mutex);
2636 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2637 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2638 		spin_lock_init(&lg->lg_prealloc_lock);
2639 	}
2640 
2641 	/* init file for buddy data */
2642 	ret = ext4_mb_init_backend(sb);
2643 	if (ret != 0)
2644 		goto out_free_locality_groups;
2645 
2646 	if (sbi->s_proc)
2647 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2648 				 &ext4_mb_seq_groups_fops, sb);
2649 
2650 	return 0;
2651 
2652 out_free_locality_groups:
2653 	free_percpu(sbi->s_locality_groups);
2654 	sbi->s_locality_groups = NULL;
2655 out:
2656 	kfree(sbi->s_mb_offsets);
2657 	sbi->s_mb_offsets = NULL;
2658 	kfree(sbi->s_mb_maxs);
2659 	sbi->s_mb_maxs = NULL;
2660 	return ret;
2661 }
2662 
2663 /* need to called with the ext4 group lock held */
2664 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2665 {
2666 	struct ext4_prealloc_space *pa;
2667 	struct list_head *cur, *tmp;
2668 	int count = 0;
2669 
2670 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2671 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2672 		list_del(&pa->pa_group_list);
2673 		count++;
2674 		kmem_cache_free(ext4_pspace_cachep, pa);
2675 	}
2676 	if (count)
2677 		mb_debug(1, "mballoc: %u PAs left\n", count);
2678 
2679 }
2680 
2681 int ext4_mb_release(struct super_block *sb)
2682 {
2683 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2684 	ext4_group_t i;
2685 	int num_meta_group_infos;
2686 	struct ext4_group_info *grinfo;
2687 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2688 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2689 
2690 	if (sbi->s_proc)
2691 		remove_proc_entry("mb_groups", sbi->s_proc);
2692 
2693 	if (sbi->s_group_info) {
2694 		for (i = 0; i < ngroups; i++) {
2695 			grinfo = ext4_get_group_info(sb, i);
2696 #ifdef DOUBLE_CHECK
2697 			kfree(grinfo->bb_bitmap);
2698 #endif
2699 			ext4_lock_group(sb, i);
2700 			ext4_mb_cleanup_pa(grinfo);
2701 			ext4_unlock_group(sb, i);
2702 			kmem_cache_free(cachep, grinfo);
2703 		}
2704 		num_meta_group_infos = (ngroups +
2705 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2706 			EXT4_DESC_PER_BLOCK_BITS(sb);
2707 		for (i = 0; i < num_meta_group_infos; i++)
2708 			kfree(sbi->s_group_info[i]);
2709 		ext4_kvfree(sbi->s_group_info);
2710 	}
2711 	kfree(sbi->s_mb_offsets);
2712 	kfree(sbi->s_mb_maxs);
2713 	if (sbi->s_buddy_cache)
2714 		iput(sbi->s_buddy_cache);
2715 	if (sbi->s_mb_stats) {
2716 		ext4_msg(sb, KERN_INFO,
2717 		       "mballoc: %u blocks %u reqs (%u success)",
2718 				atomic_read(&sbi->s_bal_allocated),
2719 				atomic_read(&sbi->s_bal_reqs),
2720 				atomic_read(&sbi->s_bal_success));
2721 		ext4_msg(sb, KERN_INFO,
2722 		      "mballoc: %u extents scanned, %u goal hits, "
2723 				"%u 2^N hits, %u breaks, %u lost",
2724 				atomic_read(&sbi->s_bal_ex_scanned),
2725 				atomic_read(&sbi->s_bal_goals),
2726 				atomic_read(&sbi->s_bal_2orders),
2727 				atomic_read(&sbi->s_bal_breaks),
2728 				atomic_read(&sbi->s_mb_lost_chunks));
2729 		ext4_msg(sb, KERN_INFO,
2730 		       "mballoc: %lu generated and it took %Lu",
2731 				sbi->s_mb_buddies_generated,
2732 				sbi->s_mb_generation_time);
2733 		ext4_msg(sb, KERN_INFO,
2734 		       "mballoc: %u preallocated, %u discarded",
2735 				atomic_read(&sbi->s_mb_preallocated),
2736 				atomic_read(&sbi->s_mb_discarded));
2737 	}
2738 
2739 	free_percpu(sbi->s_locality_groups);
2740 
2741 	return 0;
2742 }
2743 
2744 static inline int ext4_issue_discard(struct super_block *sb,
2745 		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2746 {
2747 	ext4_fsblk_t discard_block;
2748 
2749 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2750 			 ext4_group_first_block_no(sb, block_group));
2751 	count = EXT4_C2B(EXT4_SB(sb), count);
2752 	trace_ext4_discard_blocks(sb,
2753 			(unsigned long long) discard_block, count);
2754 	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2755 }
2756 
2757 /*
2758  * This function is called by the jbd2 layer once the commit has finished,
2759  * so we know we can free the blocks that were released with that commit.
2760  */
2761 static void ext4_free_data_callback(struct super_block *sb,
2762 				    struct ext4_journal_cb_entry *jce,
2763 				    int rc)
2764 {
2765 	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2766 	struct ext4_buddy e4b;
2767 	struct ext4_group_info *db;
2768 	int err, count = 0, count2 = 0;
2769 
2770 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2771 		 entry->efd_count, entry->efd_group, entry);
2772 
2773 	if (test_opt(sb, DISCARD)) {
2774 		err = ext4_issue_discard(sb, entry->efd_group,
2775 					 entry->efd_start_cluster,
2776 					 entry->efd_count);
2777 		if (err && err != -EOPNOTSUPP)
2778 			ext4_msg(sb, KERN_WARNING, "discard request in"
2779 				 " group:%d block:%d count:%d failed"
2780 				 " with %d", entry->efd_group,
2781 				 entry->efd_start_cluster,
2782 				 entry->efd_count, err);
2783 	}
2784 
2785 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2786 	/* we expect to find existing buddy because it's pinned */
2787 	BUG_ON(err != 0);
2788 
2789 
2790 	db = e4b.bd_info;
2791 	/* there are blocks to put in buddy to make them really free */
2792 	count += entry->efd_count;
2793 	count2++;
2794 	ext4_lock_group(sb, entry->efd_group);
2795 	/* Take it out of per group rb tree */
2796 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2797 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2798 
2799 	/*
2800 	 * Clear the trimmed flag for the group so that the next
2801 	 * ext4_trim_fs can trim it.
2802 	 * If the volume is mounted with -o discard, online discard
2803 	 * is supported and the free blocks will be trimmed online.
2804 	 */
2805 	if (!test_opt(sb, DISCARD))
2806 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2807 
2808 	if (!db->bb_free_root.rb_node) {
2809 		/* No more items in the per group rb tree
2810 		 * balance refcounts from ext4_mb_free_metadata()
2811 		 */
2812 		page_cache_release(e4b.bd_buddy_page);
2813 		page_cache_release(e4b.bd_bitmap_page);
2814 	}
2815 	ext4_unlock_group(sb, entry->efd_group);
2816 	kmem_cache_free(ext4_free_data_cachep, entry);
2817 	ext4_mb_unload_buddy(&e4b);
2818 
2819 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2820 }
2821 
2822 int __init ext4_init_mballoc(void)
2823 {
2824 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2825 					SLAB_RECLAIM_ACCOUNT);
2826 	if (ext4_pspace_cachep == NULL)
2827 		return -ENOMEM;
2828 
2829 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2830 				    SLAB_RECLAIM_ACCOUNT);
2831 	if (ext4_ac_cachep == NULL) {
2832 		kmem_cache_destroy(ext4_pspace_cachep);
2833 		return -ENOMEM;
2834 	}
2835 
2836 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2837 					   SLAB_RECLAIM_ACCOUNT);
2838 	if (ext4_free_data_cachep == NULL) {
2839 		kmem_cache_destroy(ext4_pspace_cachep);
2840 		kmem_cache_destroy(ext4_ac_cachep);
2841 		return -ENOMEM;
2842 	}
2843 	return 0;
2844 }
2845 
2846 void ext4_exit_mballoc(void)
2847 {
2848 	/*
2849 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2850 	 * before destroying the slab cache.
2851 	 */
2852 	rcu_barrier();
2853 	kmem_cache_destroy(ext4_pspace_cachep);
2854 	kmem_cache_destroy(ext4_ac_cachep);
2855 	kmem_cache_destroy(ext4_free_data_cachep);
2856 	ext4_groupinfo_destroy_slabs();
2857 }
2858 
2859 
2860 /*
2861  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2862  * Returns 0 if success or error code
2863  */
2864 static noinline_for_stack int
2865 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2866 				handle_t *handle, unsigned int reserv_clstrs)
2867 {
2868 	struct buffer_head *bitmap_bh = NULL;
2869 	struct ext4_group_desc *gdp;
2870 	struct buffer_head *gdp_bh;
2871 	struct ext4_sb_info *sbi;
2872 	struct super_block *sb;
2873 	ext4_fsblk_t block;
2874 	int err, len;
2875 
2876 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2877 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2878 
2879 	sb = ac->ac_sb;
2880 	sbi = EXT4_SB(sb);
2881 
2882 	err = -EIO;
2883 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2884 	if (!bitmap_bh)
2885 		goto out_err;
2886 
2887 	BUFFER_TRACE(bitmap_bh, "getting write access");
2888 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2889 	if (err)
2890 		goto out_err;
2891 
2892 	err = -EIO;
2893 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2894 	if (!gdp)
2895 		goto out_err;
2896 
2897 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2898 			ext4_free_group_clusters(sb, gdp));
2899 
2900 	BUFFER_TRACE(gdp_bh, "get_write_access");
2901 	err = ext4_journal_get_write_access(handle, gdp_bh);
2902 	if (err)
2903 		goto out_err;
2904 
2905 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2906 
2907 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2908 	if (!ext4_data_block_valid(sbi, block, len)) {
2909 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2910 			   "fs metadata", block, block+len);
2911 		/* File system mounted not to panic on error
2912 		 * Fix the bitmap and repeat the block allocation
2913 		 * We leak some of the blocks here.
2914 		 */
2915 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2916 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2917 			      ac->ac_b_ex.fe_len);
2918 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2919 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2920 		if (!err)
2921 			err = -EAGAIN;
2922 		goto out_err;
2923 	}
2924 
2925 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2926 #ifdef AGGRESSIVE_CHECK
2927 	{
2928 		int i;
2929 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2930 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2931 						bitmap_bh->b_data));
2932 		}
2933 	}
2934 #endif
2935 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2936 		      ac->ac_b_ex.fe_len);
2937 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2938 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2939 		ext4_free_group_clusters_set(sb, gdp,
2940 					     ext4_free_clusters_after_init(sb,
2941 						ac->ac_b_ex.fe_group, gdp));
2942 	}
2943 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2944 	ext4_free_group_clusters_set(sb, gdp, len);
2945 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2946 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2947 
2948 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2949 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2950 	/*
2951 	 * Now reduce the dirty block count also. Should not go negative
2952 	 */
2953 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2954 		/* release all the reserved blocks if non delalloc */
2955 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2956 				   reserv_clstrs);
2957 
2958 	if (sbi->s_log_groups_per_flex) {
2959 		ext4_group_t flex_group = ext4_flex_group(sbi,
2960 							  ac->ac_b_ex.fe_group);
2961 		atomic64_sub(ac->ac_b_ex.fe_len,
2962 			     &sbi->s_flex_groups[flex_group].free_clusters);
2963 	}
2964 
2965 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2966 	if (err)
2967 		goto out_err;
2968 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2969 
2970 out_err:
2971 	brelse(bitmap_bh);
2972 	return err;
2973 }
2974 
2975 /*
2976  * here we normalize request for locality group
2977  * Group request are normalized to s_mb_group_prealloc, which goes to
2978  * s_strip if we set the same via mount option.
2979  * s_mb_group_prealloc can be configured via
2980  * /sys/fs/ext4/<partition>/mb_group_prealloc
2981  *
2982  * XXX: should we try to preallocate more than the group has now?
2983  */
2984 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2985 {
2986 	struct super_block *sb = ac->ac_sb;
2987 	struct ext4_locality_group *lg = ac->ac_lg;
2988 
2989 	BUG_ON(lg == NULL);
2990 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2991 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2992 		current->pid, ac->ac_g_ex.fe_len);
2993 }
2994 
2995 /*
2996  * Normalization means making request better in terms of
2997  * size and alignment
2998  */
2999 static noinline_for_stack void
3000 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3001 				struct ext4_allocation_request *ar)
3002 {
3003 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3004 	int bsbits, max;
3005 	ext4_lblk_t end;
3006 	loff_t size, start_off;
3007 	loff_t orig_size __maybe_unused;
3008 	ext4_lblk_t start;
3009 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3010 	struct ext4_prealloc_space *pa;
3011 
3012 	/* do normalize only data requests, metadata requests
3013 	   do not need preallocation */
3014 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3015 		return;
3016 
3017 	/* sometime caller may want exact blocks */
3018 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3019 		return;
3020 
3021 	/* caller may indicate that preallocation isn't
3022 	 * required (it's a tail, for example) */
3023 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3024 		return;
3025 
3026 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3027 		ext4_mb_normalize_group_request(ac);
3028 		return ;
3029 	}
3030 
3031 	bsbits = ac->ac_sb->s_blocksize_bits;
3032 
3033 	/* first, let's learn actual file size
3034 	 * given current request is allocated */
3035 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3036 	size = size << bsbits;
3037 	if (size < i_size_read(ac->ac_inode))
3038 		size = i_size_read(ac->ac_inode);
3039 	orig_size = size;
3040 
3041 	/* max size of free chunks */
3042 	max = 2 << bsbits;
3043 
3044 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3045 		(req <= (size) || max <= (chunk_size))
3046 
3047 	/* first, try to predict filesize */
3048 	/* XXX: should this table be tunable? */
3049 	start_off = 0;
3050 	if (size <= 16 * 1024) {
3051 		size = 16 * 1024;
3052 	} else if (size <= 32 * 1024) {
3053 		size = 32 * 1024;
3054 	} else if (size <= 64 * 1024) {
3055 		size = 64 * 1024;
3056 	} else if (size <= 128 * 1024) {
3057 		size = 128 * 1024;
3058 	} else if (size <= 256 * 1024) {
3059 		size = 256 * 1024;
3060 	} else if (size <= 512 * 1024) {
3061 		size = 512 * 1024;
3062 	} else if (size <= 1024 * 1024) {
3063 		size = 1024 * 1024;
3064 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3065 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3066 						(21 - bsbits)) << 21;
3067 		size = 2 * 1024 * 1024;
3068 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3069 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3070 							(22 - bsbits)) << 22;
3071 		size = 4 * 1024 * 1024;
3072 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3073 					(8<<20)>>bsbits, max, 8 * 1024)) {
3074 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3075 							(23 - bsbits)) << 23;
3076 		size = 8 * 1024 * 1024;
3077 	} else {
3078 		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3079 		size	  = ac->ac_o_ex.fe_len << bsbits;
3080 	}
3081 	size = size >> bsbits;
3082 	start = start_off >> bsbits;
3083 
3084 	/* don't cover already allocated blocks in selected range */
3085 	if (ar->pleft && start <= ar->lleft) {
3086 		size -= ar->lleft + 1 - start;
3087 		start = ar->lleft + 1;
3088 	}
3089 	if (ar->pright && start + size - 1 >= ar->lright)
3090 		size -= start + size - ar->lright;
3091 
3092 	end = start + size;
3093 
3094 	/* check we don't cross already preallocated blocks */
3095 	rcu_read_lock();
3096 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3097 		ext4_lblk_t pa_end;
3098 
3099 		if (pa->pa_deleted)
3100 			continue;
3101 		spin_lock(&pa->pa_lock);
3102 		if (pa->pa_deleted) {
3103 			spin_unlock(&pa->pa_lock);
3104 			continue;
3105 		}
3106 
3107 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3108 						  pa->pa_len);
3109 
3110 		/* PA must not overlap original request */
3111 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3112 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3113 
3114 		/* skip PAs this normalized request doesn't overlap with */
3115 		if (pa->pa_lstart >= end || pa_end <= start) {
3116 			spin_unlock(&pa->pa_lock);
3117 			continue;
3118 		}
3119 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3120 
3121 		/* adjust start or end to be adjacent to this pa */
3122 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3123 			BUG_ON(pa_end < start);
3124 			start = pa_end;
3125 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3126 			BUG_ON(pa->pa_lstart > end);
3127 			end = pa->pa_lstart;
3128 		}
3129 		spin_unlock(&pa->pa_lock);
3130 	}
3131 	rcu_read_unlock();
3132 	size = end - start;
3133 
3134 	/* XXX: extra loop to check we really don't overlap preallocations */
3135 	rcu_read_lock();
3136 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3137 		ext4_lblk_t pa_end;
3138 
3139 		spin_lock(&pa->pa_lock);
3140 		if (pa->pa_deleted == 0) {
3141 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3142 							  pa->pa_len);
3143 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3144 		}
3145 		spin_unlock(&pa->pa_lock);
3146 	}
3147 	rcu_read_unlock();
3148 
3149 	if (start + size <= ac->ac_o_ex.fe_logical &&
3150 			start > ac->ac_o_ex.fe_logical) {
3151 		ext4_msg(ac->ac_sb, KERN_ERR,
3152 			 "start %lu, size %lu, fe_logical %lu",
3153 			 (unsigned long) start, (unsigned long) size,
3154 			 (unsigned long) ac->ac_o_ex.fe_logical);
3155 	}
3156 	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3157 			start > ac->ac_o_ex.fe_logical);
3158 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3159 
3160 	/* now prepare goal request */
3161 
3162 	/* XXX: is it better to align blocks WRT to logical
3163 	 * placement or satisfy big request as is */
3164 	ac->ac_g_ex.fe_logical = start;
3165 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3166 
3167 	/* define goal start in order to merge */
3168 	if (ar->pright && (ar->lright == (start + size))) {
3169 		/* merge to the right */
3170 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3171 						&ac->ac_f_ex.fe_group,
3172 						&ac->ac_f_ex.fe_start);
3173 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3174 	}
3175 	if (ar->pleft && (ar->lleft + 1 == start)) {
3176 		/* merge to the left */
3177 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3178 						&ac->ac_f_ex.fe_group,
3179 						&ac->ac_f_ex.fe_start);
3180 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3181 	}
3182 
3183 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3184 		(unsigned) orig_size, (unsigned) start);
3185 }
3186 
3187 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3188 {
3189 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3190 
3191 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3192 		atomic_inc(&sbi->s_bal_reqs);
3193 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3194 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3195 			atomic_inc(&sbi->s_bal_success);
3196 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3197 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3198 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3199 			atomic_inc(&sbi->s_bal_goals);
3200 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3201 			atomic_inc(&sbi->s_bal_breaks);
3202 	}
3203 
3204 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3205 		trace_ext4_mballoc_alloc(ac);
3206 	else
3207 		trace_ext4_mballoc_prealloc(ac);
3208 }
3209 
3210 /*
3211  * Called on failure; free up any blocks from the inode PA for this
3212  * context.  We don't need this for MB_GROUP_PA because we only change
3213  * pa_free in ext4_mb_release_context(), but on failure, we've already
3214  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3215  */
3216 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3217 {
3218 	struct ext4_prealloc_space *pa = ac->ac_pa;
3219 
3220 	if (pa && pa->pa_type == MB_INODE_PA)
3221 		pa->pa_free += ac->ac_b_ex.fe_len;
3222 }
3223 
3224 /*
3225  * use blocks preallocated to inode
3226  */
3227 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3228 				struct ext4_prealloc_space *pa)
3229 {
3230 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3231 	ext4_fsblk_t start;
3232 	ext4_fsblk_t end;
3233 	int len;
3234 
3235 	/* found preallocated blocks, use them */
3236 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3237 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3238 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3239 	len = EXT4_NUM_B2C(sbi, end - start);
3240 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3241 					&ac->ac_b_ex.fe_start);
3242 	ac->ac_b_ex.fe_len = len;
3243 	ac->ac_status = AC_STATUS_FOUND;
3244 	ac->ac_pa = pa;
3245 
3246 	BUG_ON(start < pa->pa_pstart);
3247 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3248 	BUG_ON(pa->pa_free < len);
3249 	pa->pa_free -= len;
3250 
3251 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3252 }
3253 
3254 /*
3255  * use blocks preallocated to locality group
3256  */
3257 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3258 				struct ext4_prealloc_space *pa)
3259 {
3260 	unsigned int len = ac->ac_o_ex.fe_len;
3261 
3262 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3263 					&ac->ac_b_ex.fe_group,
3264 					&ac->ac_b_ex.fe_start);
3265 	ac->ac_b_ex.fe_len = len;
3266 	ac->ac_status = AC_STATUS_FOUND;
3267 	ac->ac_pa = pa;
3268 
3269 	/* we don't correct pa_pstart or pa_plen here to avoid
3270 	 * possible race when the group is being loaded concurrently
3271 	 * instead we correct pa later, after blocks are marked
3272 	 * in on-disk bitmap -- see ext4_mb_release_context()
3273 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3274 	 */
3275 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3276 }
3277 
3278 /*
3279  * Return the prealloc space that have minimal distance
3280  * from the goal block. @cpa is the prealloc
3281  * space that is having currently known minimal distance
3282  * from the goal block.
3283  */
3284 static struct ext4_prealloc_space *
3285 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3286 			struct ext4_prealloc_space *pa,
3287 			struct ext4_prealloc_space *cpa)
3288 {
3289 	ext4_fsblk_t cur_distance, new_distance;
3290 
3291 	if (cpa == NULL) {
3292 		atomic_inc(&pa->pa_count);
3293 		return pa;
3294 	}
3295 	cur_distance = abs(goal_block - cpa->pa_pstart);
3296 	new_distance = abs(goal_block - pa->pa_pstart);
3297 
3298 	if (cur_distance <= new_distance)
3299 		return cpa;
3300 
3301 	/* drop the previous reference */
3302 	atomic_dec(&cpa->pa_count);
3303 	atomic_inc(&pa->pa_count);
3304 	return pa;
3305 }
3306 
3307 /*
3308  * search goal blocks in preallocated space
3309  */
3310 static noinline_for_stack int
3311 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3312 {
3313 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3314 	int order, i;
3315 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3316 	struct ext4_locality_group *lg;
3317 	struct ext4_prealloc_space *pa, *cpa = NULL;
3318 	ext4_fsblk_t goal_block;
3319 
3320 	/* only data can be preallocated */
3321 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3322 		return 0;
3323 
3324 	/* first, try per-file preallocation */
3325 	rcu_read_lock();
3326 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3327 
3328 		/* all fields in this condition don't change,
3329 		 * so we can skip locking for them */
3330 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3331 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3332 					       EXT4_C2B(sbi, pa->pa_len)))
3333 			continue;
3334 
3335 		/* non-extent files can't have physical blocks past 2^32 */
3336 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3337 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3338 		     EXT4_MAX_BLOCK_FILE_PHYS))
3339 			continue;
3340 
3341 		/* found preallocated blocks, use them */
3342 		spin_lock(&pa->pa_lock);
3343 		if (pa->pa_deleted == 0 && pa->pa_free) {
3344 			atomic_inc(&pa->pa_count);
3345 			ext4_mb_use_inode_pa(ac, pa);
3346 			spin_unlock(&pa->pa_lock);
3347 			ac->ac_criteria = 10;
3348 			rcu_read_unlock();
3349 			return 1;
3350 		}
3351 		spin_unlock(&pa->pa_lock);
3352 	}
3353 	rcu_read_unlock();
3354 
3355 	/* can we use group allocation? */
3356 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3357 		return 0;
3358 
3359 	/* inode may have no locality group for some reason */
3360 	lg = ac->ac_lg;
3361 	if (lg == NULL)
3362 		return 0;
3363 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3364 	if (order > PREALLOC_TB_SIZE - 1)
3365 		/* The max size of hash table is PREALLOC_TB_SIZE */
3366 		order = PREALLOC_TB_SIZE - 1;
3367 
3368 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3369 	/*
3370 	 * search for the prealloc space that is having
3371 	 * minimal distance from the goal block.
3372 	 */
3373 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3374 		rcu_read_lock();
3375 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3376 					pa_inode_list) {
3377 			spin_lock(&pa->pa_lock);
3378 			if (pa->pa_deleted == 0 &&
3379 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3380 
3381 				cpa = ext4_mb_check_group_pa(goal_block,
3382 								pa, cpa);
3383 			}
3384 			spin_unlock(&pa->pa_lock);
3385 		}
3386 		rcu_read_unlock();
3387 	}
3388 	if (cpa) {
3389 		ext4_mb_use_group_pa(ac, cpa);
3390 		ac->ac_criteria = 20;
3391 		return 1;
3392 	}
3393 	return 0;
3394 }
3395 
3396 /*
3397  * the function goes through all block freed in the group
3398  * but not yet committed and marks them used in in-core bitmap.
3399  * buddy must be generated from this bitmap
3400  * Need to be called with the ext4 group lock held
3401  */
3402 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3403 						ext4_group_t group)
3404 {
3405 	struct rb_node *n;
3406 	struct ext4_group_info *grp;
3407 	struct ext4_free_data *entry;
3408 
3409 	grp = ext4_get_group_info(sb, group);
3410 	n = rb_first(&(grp->bb_free_root));
3411 
3412 	while (n) {
3413 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3414 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3415 		n = rb_next(n);
3416 	}
3417 	return;
3418 }
3419 
3420 /*
3421  * the function goes through all preallocation in this group and marks them
3422  * used in in-core bitmap. buddy must be generated from this bitmap
3423  * Need to be called with ext4 group lock held
3424  */
3425 static noinline_for_stack
3426 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3427 					ext4_group_t group)
3428 {
3429 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3430 	struct ext4_prealloc_space *pa;
3431 	struct list_head *cur;
3432 	ext4_group_t groupnr;
3433 	ext4_grpblk_t start;
3434 	int preallocated = 0;
3435 	int len;
3436 
3437 	/* all form of preallocation discards first load group,
3438 	 * so the only competing code is preallocation use.
3439 	 * we don't need any locking here
3440 	 * notice we do NOT ignore preallocations with pa_deleted
3441 	 * otherwise we could leave used blocks available for
3442 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3443 	 * is dropping preallocation
3444 	 */
3445 	list_for_each(cur, &grp->bb_prealloc_list) {
3446 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3447 		spin_lock(&pa->pa_lock);
3448 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3449 					     &groupnr, &start);
3450 		len = pa->pa_len;
3451 		spin_unlock(&pa->pa_lock);
3452 		if (unlikely(len == 0))
3453 			continue;
3454 		BUG_ON(groupnr != group);
3455 		ext4_set_bits(bitmap, start, len);
3456 		preallocated += len;
3457 	}
3458 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3459 }
3460 
3461 static void ext4_mb_pa_callback(struct rcu_head *head)
3462 {
3463 	struct ext4_prealloc_space *pa;
3464 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3465 
3466 	BUG_ON(atomic_read(&pa->pa_count));
3467 	BUG_ON(pa->pa_deleted == 0);
3468 	kmem_cache_free(ext4_pspace_cachep, pa);
3469 }
3470 
3471 /*
3472  * drops a reference to preallocated space descriptor
3473  * if this was the last reference and the space is consumed
3474  */
3475 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3476 			struct super_block *sb, struct ext4_prealloc_space *pa)
3477 {
3478 	ext4_group_t grp;
3479 	ext4_fsblk_t grp_blk;
3480 
3481 	/* in this short window concurrent discard can set pa_deleted */
3482 	spin_lock(&pa->pa_lock);
3483 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3484 		spin_unlock(&pa->pa_lock);
3485 		return;
3486 	}
3487 
3488 	if (pa->pa_deleted == 1) {
3489 		spin_unlock(&pa->pa_lock);
3490 		return;
3491 	}
3492 
3493 	pa->pa_deleted = 1;
3494 	spin_unlock(&pa->pa_lock);
3495 
3496 	grp_blk = pa->pa_pstart;
3497 	/*
3498 	 * If doing group-based preallocation, pa_pstart may be in the
3499 	 * next group when pa is used up
3500 	 */
3501 	if (pa->pa_type == MB_GROUP_PA)
3502 		grp_blk--;
3503 
3504 	grp = ext4_get_group_number(sb, grp_blk);
3505 
3506 	/*
3507 	 * possible race:
3508 	 *
3509 	 *  P1 (buddy init)			P2 (regular allocation)
3510 	 *					find block B in PA
3511 	 *  copy on-disk bitmap to buddy
3512 	 *  					mark B in on-disk bitmap
3513 	 *					drop PA from group
3514 	 *  mark all PAs in buddy
3515 	 *
3516 	 * thus, P1 initializes buddy with B available. to prevent this
3517 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3518 	 * against that pair
3519 	 */
3520 	ext4_lock_group(sb, grp);
3521 	list_del(&pa->pa_group_list);
3522 	ext4_unlock_group(sb, grp);
3523 
3524 	spin_lock(pa->pa_obj_lock);
3525 	list_del_rcu(&pa->pa_inode_list);
3526 	spin_unlock(pa->pa_obj_lock);
3527 
3528 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3529 }
3530 
3531 /*
3532  * creates new preallocated space for given inode
3533  */
3534 static noinline_for_stack int
3535 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3536 {
3537 	struct super_block *sb = ac->ac_sb;
3538 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3539 	struct ext4_prealloc_space *pa;
3540 	struct ext4_group_info *grp;
3541 	struct ext4_inode_info *ei;
3542 
3543 	/* preallocate only when found space is larger then requested */
3544 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3545 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3546 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3547 
3548 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3549 	if (pa == NULL)
3550 		return -ENOMEM;
3551 
3552 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3553 		int winl;
3554 		int wins;
3555 		int win;
3556 		int offs;
3557 
3558 		/* we can't allocate as much as normalizer wants.
3559 		 * so, found space must get proper lstart
3560 		 * to cover original request */
3561 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3562 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3563 
3564 		/* we're limited by original request in that
3565 		 * logical block must be covered any way
3566 		 * winl is window we can move our chunk within */
3567 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3568 
3569 		/* also, we should cover whole original request */
3570 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3571 
3572 		/* the smallest one defines real window */
3573 		win = min(winl, wins);
3574 
3575 		offs = ac->ac_o_ex.fe_logical %
3576 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3577 		if (offs && offs < win)
3578 			win = offs;
3579 
3580 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3581 			EXT4_NUM_B2C(sbi, win);
3582 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3583 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3584 	}
3585 
3586 	/* preallocation can change ac_b_ex, thus we store actually
3587 	 * allocated blocks for history */
3588 	ac->ac_f_ex = ac->ac_b_ex;
3589 
3590 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3591 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3592 	pa->pa_len = ac->ac_b_ex.fe_len;
3593 	pa->pa_free = pa->pa_len;
3594 	atomic_set(&pa->pa_count, 1);
3595 	spin_lock_init(&pa->pa_lock);
3596 	INIT_LIST_HEAD(&pa->pa_inode_list);
3597 	INIT_LIST_HEAD(&pa->pa_group_list);
3598 	pa->pa_deleted = 0;
3599 	pa->pa_type = MB_INODE_PA;
3600 
3601 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3602 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3603 	trace_ext4_mb_new_inode_pa(ac, pa);
3604 
3605 	ext4_mb_use_inode_pa(ac, pa);
3606 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3607 
3608 	ei = EXT4_I(ac->ac_inode);
3609 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3610 
3611 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3612 	pa->pa_inode = ac->ac_inode;
3613 
3614 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3615 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3616 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3617 
3618 	spin_lock(pa->pa_obj_lock);
3619 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3620 	spin_unlock(pa->pa_obj_lock);
3621 
3622 	return 0;
3623 }
3624 
3625 /*
3626  * creates new preallocated space for locality group inodes belongs to
3627  */
3628 static noinline_for_stack int
3629 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3630 {
3631 	struct super_block *sb = ac->ac_sb;
3632 	struct ext4_locality_group *lg;
3633 	struct ext4_prealloc_space *pa;
3634 	struct ext4_group_info *grp;
3635 
3636 	/* preallocate only when found space is larger then requested */
3637 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3638 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3639 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3640 
3641 	BUG_ON(ext4_pspace_cachep == NULL);
3642 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3643 	if (pa == NULL)
3644 		return -ENOMEM;
3645 
3646 	/* preallocation can change ac_b_ex, thus we store actually
3647 	 * allocated blocks for history */
3648 	ac->ac_f_ex = ac->ac_b_ex;
3649 
3650 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3651 	pa->pa_lstart = pa->pa_pstart;
3652 	pa->pa_len = ac->ac_b_ex.fe_len;
3653 	pa->pa_free = pa->pa_len;
3654 	atomic_set(&pa->pa_count, 1);
3655 	spin_lock_init(&pa->pa_lock);
3656 	INIT_LIST_HEAD(&pa->pa_inode_list);
3657 	INIT_LIST_HEAD(&pa->pa_group_list);
3658 	pa->pa_deleted = 0;
3659 	pa->pa_type = MB_GROUP_PA;
3660 
3661 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3662 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3663 	trace_ext4_mb_new_group_pa(ac, pa);
3664 
3665 	ext4_mb_use_group_pa(ac, pa);
3666 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3667 
3668 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3669 	lg = ac->ac_lg;
3670 	BUG_ON(lg == NULL);
3671 
3672 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3673 	pa->pa_inode = NULL;
3674 
3675 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3676 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3677 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3678 
3679 	/*
3680 	 * We will later add the new pa to the right bucket
3681 	 * after updating the pa_free in ext4_mb_release_context
3682 	 */
3683 	return 0;
3684 }
3685 
3686 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3687 {
3688 	int err;
3689 
3690 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3691 		err = ext4_mb_new_group_pa(ac);
3692 	else
3693 		err = ext4_mb_new_inode_pa(ac);
3694 	return err;
3695 }
3696 
3697 /*
3698  * finds all unused blocks in on-disk bitmap, frees them in
3699  * in-core bitmap and buddy.
3700  * @pa must be unlinked from inode and group lists, so that
3701  * nobody else can find/use it.
3702  * the caller MUST hold group/inode locks.
3703  * TODO: optimize the case when there are no in-core structures yet
3704  */
3705 static noinline_for_stack int
3706 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3707 			struct ext4_prealloc_space *pa)
3708 {
3709 	struct super_block *sb = e4b->bd_sb;
3710 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3711 	unsigned int end;
3712 	unsigned int next;
3713 	ext4_group_t group;
3714 	ext4_grpblk_t bit;
3715 	unsigned long long grp_blk_start;
3716 	int err = 0;
3717 	int free = 0;
3718 
3719 	BUG_ON(pa->pa_deleted == 0);
3720 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3721 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3722 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3723 	end = bit + pa->pa_len;
3724 
3725 	while (bit < end) {
3726 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3727 		if (bit >= end)
3728 			break;
3729 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3730 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3731 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3732 			 (unsigned) next - bit, (unsigned) group);
3733 		free += next - bit;
3734 
3735 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3736 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3737 						    EXT4_C2B(sbi, bit)),
3738 					       next - bit);
3739 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3740 		bit = next + 1;
3741 	}
3742 	if (free != pa->pa_free) {
3743 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3744 			 "pa %p: logic %lu, phys. %lu, len %lu",
3745 			 pa, (unsigned long) pa->pa_lstart,
3746 			 (unsigned long) pa->pa_pstart,
3747 			 (unsigned long) pa->pa_len);
3748 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3749 					free, pa->pa_free);
3750 		/*
3751 		 * pa is already deleted so we use the value obtained
3752 		 * from the bitmap and continue.
3753 		 */
3754 	}
3755 	atomic_add(free, &sbi->s_mb_discarded);
3756 
3757 	return err;
3758 }
3759 
3760 static noinline_for_stack int
3761 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3762 				struct ext4_prealloc_space *pa)
3763 {
3764 	struct super_block *sb = e4b->bd_sb;
3765 	ext4_group_t group;
3766 	ext4_grpblk_t bit;
3767 
3768 	trace_ext4_mb_release_group_pa(sb, pa);
3769 	BUG_ON(pa->pa_deleted == 0);
3770 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3771 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3772 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3773 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3774 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3775 
3776 	return 0;
3777 }
3778 
3779 /*
3780  * releases all preallocations in given group
3781  *
3782  * first, we need to decide discard policy:
3783  * - when do we discard
3784  *   1) ENOSPC
3785  * - how many do we discard
3786  *   1) how many requested
3787  */
3788 static noinline_for_stack int
3789 ext4_mb_discard_group_preallocations(struct super_block *sb,
3790 					ext4_group_t group, int needed)
3791 {
3792 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3793 	struct buffer_head *bitmap_bh = NULL;
3794 	struct ext4_prealloc_space *pa, *tmp;
3795 	struct list_head list;
3796 	struct ext4_buddy e4b;
3797 	int err;
3798 	int busy = 0;
3799 	int free = 0;
3800 
3801 	mb_debug(1, "discard preallocation for group %u\n", group);
3802 
3803 	if (list_empty(&grp->bb_prealloc_list))
3804 		return 0;
3805 
3806 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3807 	if (bitmap_bh == NULL) {
3808 		ext4_error(sb, "Error reading block bitmap for %u", group);
3809 		return 0;
3810 	}
3811 
3812 	err = ext4_mb_load_buddy(sb, group, &e4b);
3813 	if (err) {
3814 		ext4_error(sb, "Error loading buddy information for %u", group);
3815 		put_bh(bitmap_bh);
3816 		return 0;
3817 	}
3818 
3819 	if (needed == 0)
3820 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3821 
3822 	INIT_LIST_HEAD(&list);
3823 repeat:
3824 	ext4_lock_group(sb, group);
3825 	list_for_each_entry_safe(pa, tmp,
3826 				&grp->bb_prealloc_list, pa_group_list) {
3827 		spin_lock(&pa->pa_lock);
3828 		if (atomic_read(&pa->pa_count)) {
3829 			spin_unlock(&pa->pa_lock);
3830 			busy = 1;
3831 			continue;
3832 		}
3833 		if (pa->pa_deleted) {
3834 			spin_unlock(&pa->pa_lock);
3835 			continue;
3836 		}
3837 
3838 		/* seems this one can be freed ... */
3839 		pa->pa_deleted = 1;
3840 
3841 		/* we can trust pa_free ... */
3842 		free += pa->pa_free;
3843 
3844 		spin_unlock(&pa->pa_lock);
3845 
3846 		list_del(&pa->pa_group_list);
3847 		list_add(&pa->u.pa_tmp_list, &list);
3848 	}
3849 
3850 	/* if we still need more blocks and some PAs were used, try again */
3851 	if (free < needed && busy) {
3852 		busy = 0;
3853 		ext4_unlock_group(sb, group);
3854 		cond_resched();
3855 		goto repeat;
3856 	}
3857 
3858 	/* found anything to free? */
3859 	if (list_empty(&list)) {
3860 		BUG_ON(free != 0);
3861 		goto out;
3862 	}
3863 
3864 	/* now free all selected PAs */
3865 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3866 
3867 		/* remove from object (inode or locality group) */
3868 		spin_lock(pa->pa_obj_lock);
3869 		list_del_rcu(&pa->pa_inode_list);
3870 		spin_unlock(pa->pa_obj_lock);
3871 
3872 		if (pa->pa_type == MB_GROUP_PA)
3873 			ext4_mb_release_group_pa(&e4b, pa);
3874 		else
3875 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3876 
3877 		list_del(&pa->u.pa_tmp_list);
3878 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3879 	}
3880 
3881 out:
3882 	ext4_unlock_group(sb, group);
3883 	ext4_mb_unload_buddy(&e4b);
3884 	put_bh(bitmap_bh);
3885 	return free;
3886 }
3887 
3888 /*
3889  * releases all non-used preallocated blocks for given inode
3890  *
3891  * It's important to discard preallocations under i_data_sem
3892  * We don't want another block to be served from the prealloc
3893  * space when we are discarding the inode prealloc space.
3894  *
3895  * FIXME!! Make sure it is valid at all the call sites
3896  */
3897 void ext4_discard_preallocations(struct inode *inode)
3898 {
3899 	struct ext4_inode_info *ei = EXT4_I(inode);
3900 	struct super_block *sb = inode->i_sb;
3901 	struct buffer_head *bitmap_bh = NULL;
3902 	struct ext4_prealloc_space *pa, *tmp;
3903 	ext4_group_t group = 0;
3904 	struct list_head list;
3905 	struct ext4_buddy e4b;
3906 	int err;
3907 
3908 	if (!S_ISREG(inode->i_mode)) {
3909 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3910 		return;
3911 	}
3912 
3913 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3914 	trace_ext4_discard_preallocations(inode);
3915 
3916 	INIT_LIST_HEAD(&list);
3917 
3918 repeat:
3919 	/* first, collect all pa's in the inode */
3920 	spin_lock(&ei->i_prealloc_lock);
3921 	while (!list_empty(&ei->i_prealloc_list)) {
3922 		pa = list_entry(ei->i_prealloc_list.next,
3923 				struct ext4_prealloc_space, pa_inode_list);
3924 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3925 		spin_lock(&pa->pa_lock);
3926 		if (atomic_read(&pa->pa_count)) {
3927 			/* this shouldn't happen often - nobody should
3928 			 * use preallocation while we're discarding it */
3929 			spin_unlock(&pa->pa_lock);
3930 			spin_unlock(&ei->i_prealloc_lock);
3931 			ext4_msg(sb, KERN_ERR,
3932 				 "uh-oh! used pa while discarding");
3933 			WARN_ON(1);
3934 			schedule_timeout_uninterruptible(HZ);
3935 			goto repeat;
3936 
3937 		}
3938 		if (pa->pa_deleted == 0) {
3939 			pa->pa_deleted = 1;
3940 			spin_unlock(&pa->pa_lock);
3941 			list_del_rcu(&pa->pa_inode_list);
3942 			list_add(&pa->u.pa_tmp_list, &list);
3943 			continue;
3944 		}
3945 
3946 		/* someone is deleting pa right now */
3947 		spin_unlock(&pa->pa_lock);
3948 		spin_unlock(&ei->i_prealloc_lock);
3949 
3950 		/* we have to wait here because pa_deleted
3951 		 * doesn't mean pa is already unlinked from
3952 		 * the list. as we might be called from
3953 		 * ->clear_inode() the inode will get freed
3954 		 * and concurrent thread which is unlinking
3955 		 * pa from inode's list may access already
3956 		 * freed memory, bad-bad-bad */
3957 
3958 		/* XXX: if this happens too often, we can
3959 		 * add a flag to force wait only in case
3960 		 * of ->clear_inode(), but not in case of
3961 		 * regular truncate */
3962 		schedule_timeout_uninterruptible(HZ);
3963 		goto repeat;
3964 	}
3965 	spin_unlock(&ei->i_prealloc_lock);
3966 
3967 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3968 		BUG_ON(pa->pa_type != MB_INODE_PA);
3969 		group = ext4_get_group_number(sb, pa->pa_pstart);
3970 
3971 		err = ext4_mb_load_buddy(sb, group, &e4b);
3972 		if (err) {
3973 			ext4_error(sb, "Error loading buddy information for %u",
3974 					group);
3975 			continue;
3976 		}
3977 
3978 		bitmap_bh = ext4_read_block_bitmap(sb, group);
3979 		if (bitmap_bh == NULL) {
3980 			ext4_error(sb, "Error reading block bitmap for %u",
3981 					group);
3982 			ext4_mb_unload_buddy(&e4b);
3983 			continue;
3984 		}
3985 
3986 		ext4_lock_group(sb, group);
3987 		list_del(&pa->pa_group_list);
3988 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3989 		ext4_unlock_group(sb, group);
3990 
3991 		ext4_mb_unload_buddy(&e4b);
3992 		put_bh(bitmap_bh);
3993 
3994 		list_del(&pa->u.pa_tmp_list);
3995 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3996 	}
3997 }
3998 
3999 #ifdef CONFIG_EXT4_DEBUG
4000 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4001 {
4002 	struct super_block *sb = ac->ac_sb;
4003 	ext4_group_t ngroups, i;
4004 
4005 	if (!ext4_mballoc_debug ||
4006 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4007 		return;
4008 
4009 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4010 			" Allocation context details:");
4011 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4012 			ac->ac_status, ac->ac_flags);
4013 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4014 		 	"goal %lu/%lu/%lu@%lu, "
4015 			"best %lu/%lu/%lu@%lu cr %d",
4016 			(unsigned long)ac->ac_o_ex.fe_group,
4017 			(unsigned long)ac->ac_o_ex.fe_start,
4018 			(unsigned long)ac->ac_o_ex.fe_len,
4019 			(unsigned long)ac->ac_o_ex.fe_logical,
4020 			(unsigned long)ac->ac_g_ex.fe_group,
4021 			(unsigned long)ac->ac_g_ex.fe_start,
4022 			(unsigned long)ac->ac_g_ex.fe_len,
4023 			(unsigned long)ac->ac_g_ex.fe_logical,
4024 			(unsigned long)ac->ac_b_ex.fe_group,
4025 			(unsigned long)ac->ac_b_ex.fe_start,
4026 			(unsigned long)ac->ac_b_ex.fe_len,
4027 			(unsigned long)ac->ac_b_ex.fe_logical,
4028 			(int)ac->ac_criteria);
4029 	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4030 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4031 	ngroups = ext4_get_groups_count(sb);
4032 	for (i = 0; i < ngroups; i++) {
4033 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4034 		struct ext4_prealloc_space *pa;
4035 		ext4_grpblk_t start;
4036 		struct list_head *cur;
4037 		ext4_lock_group(sb, i);
4038 		list_for_each(cur, &grp->bb_prealloc_list) {
4039 			pa = list_entry(cur, struct ext4_prealloc_space,
4040 					pa_group_list);
4041 			spin_lock(&pa->pa_lock);
4042 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4043 						     NULL, &start);
4044 			spin_unlock(&pa->pa_lock);
4045 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4046 			       start, pa->pa_len);
4047 		}
4048 		ext4_unlock_group(sb, i);
4049 
4050 		if (grp->bb_free == 0)
4051 			continue;
4052 		printk(KERN_ERR "%u: %d/%d \n",
4053 		       i, grp->bb_free, grp->bb_fragments);
4054 	}
4055 	printk(KERN_ERR "\n");
4056 }
4057 #else
4058 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4059 {
4060 	return;
4061 }
4062 #endif
4063 
4064 /*
4065  * We use locality group preallocation for small size file. The size of the
4066  * file is determined by the current size or the resulting size after
4067  * allocation which ever is larger
4068  *
4069  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4070  */
4071 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4072 {
4073 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4074 	int bsbits = ac->ac_sb->s_blocksize_bits;
4075 	loff_t size, isize;
4076 
4077 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4078 		return;
4079 
4080 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4081 		return;
4082 
4083 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4084 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4085 		>> bsbits;
4086 
4087 	if ((size == isize) &&
4088 	    !ext4_fs_is_busy(sbi) &&
4089 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4090 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4091 		return;
4092 	}
4093 
4094 	if (sbi->s_mb_group_prealloc <= 0) {
4095 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4096 		return;
4097 	}
4098 
4099 	/* don't use group allocation for large files */
4100 	size = max(size, isize);
4101 	if (size > sbi->s_mb_stream_request) {
4102 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4103 		return;
4104 	}
4105 
4106 	BUG_ON(ac->ac_lg != NULL);
4107 	/*
4108 	 * locality group prealloc space are per cpu. The reason for having
4109 	 * per cpu locality group is to reduce the contention between block
4110 	 * request from multiple CPUs.
4111 	 */
4112 	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4113 
4114 	/* we're going to use group allocation */
4115 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4116 
4117 	/* serialize all allocations in the group */
4118 	mutex_lock(&ac->ac_lg->lg_mutex);
4119 }
4120 
4121 static noinline_for_stack int
4122 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4123 				struct ext4_allocation_request *ar)
4124 {
4125 	struct super_block *sb = ar->inode->i_sb;
4126 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4127 	struct ext4_super_block *es = sbi->s_es;
4128 	ext4_group_t group;
4129 	unsigned int len;
4130 	ext4_fsblk_t goal;
4131 	ext4_grpblk_t block;
4132 
4133 	/* we can't allocate > group size */
4134 	len = ar->len;
4135 
4136 	/* just a dirty hack to filter too big requests  */
4137 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4138 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4139 
4140 	/* start searching from the goal */
4141 	goal = ar->goal;
4142 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4143 			goal >= ext4_blocks_count(es))
4144 		goal = le32_to_cpu(es->s_first_data_block);
4145 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4146 
4147 	/* set up allocation goals */
4148 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4149 	ac->ac_status = AC_STATUS_CONTINUE;
4150 	ac->ac_sb = sb;
4151 	ac->ac_inode = ar->inode;
4152 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4153 	ac->ac_o_ex.fe_group = group;
4154 	ac->ac_o_ex.fe_start = block;
4155 	ac->ac_o_ex.fe_len = len;
4156 	ac->ac_g_ex = ac->ac_o_ex;
4157 	ac->ac_flags = ar->flags;
4158 
4159 	/* we have to define context: we'll we work with a file or
4160 	 * locality group. this is a policy, actually */
4161 	ext4_mb_group_or_file(ac);
4162 
4163 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4164 			"left: %u/%u, right %u/%u to %swritable\n",
4165 			(unsigned) ar->len, (unsigned) ar->logical,
4166 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4167 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4168 			(unsigned) ar->lright, (unsigned) ar->pright,
4169 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4170 	return 0;
4171 
4172 }
4173 
4174 static noinline_for_stack void
4175 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4176 					struct ext4_locality_group *lg,
4177 					int order, int total_entries)
4178 {
4179 	ext4_group_t group = 0;
4180 	struct ext4_buddy e4b;
4181 	struct list_head discard_list;
4182 	struct ext4_prealloc_space *pa, *tmp;
4183 
4184 	mb_debug(1, "discard locality group preallocation\n");
4185 
4186 	INIT_LIST_HEAD(&discard_list);
4187 
4188 	spin_lock(&lg->lg_prealloc_lock);
4189 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4190 						pa_inode_list) {
4191 		spin_lock(&pa->pa_lock);
4192 		if (atomic_read(&pa->pa_count)) {
4193 			/*
4194 			 * This is the pa that we just used
4195 			 * for block allocation. So don't
4196 			 * free that
4197 			 */
4198 			spin_unlock(&pa->pa_lock);
4199 			continue;
4200 		}
4201 		if (pa->pa_deleted) {
4202 			spin_unlock(&pa->pa_lock);
4203 			continue;
4204 		}
4205 		/* only lg prealloc space */
4206 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4207 
4208 		/* seems this one can be freed ... */
4209 		pa->pa_deleted = 1;
4210 		spin_unlock(&pa->pa_lock);
4211 
4212 		list_del_rcu(&pa->pa_inode_list);
4213 		list_add(&pa->u.pa_tmp_list, &discard_list);
4214 
4215 		total_entries--;
4216 		if (total_entries <= 5) {
4217 			/*
4218 			 * we want to keep only 5 entries
4219 			 * allowing it to grow to 8. This
4220 			 * mak sure we don't call discard
4221 			 * soon for this list.
4222 			 */
4223 			break;
4224 		}
4225 	}
4226 	spin_unlock(&lg->lg_prealloc_lock);
4227 
4228 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4229 
4230 		group = ext4_get_group_number(sb, pa->pa_pstart);
4231 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4232 			ext4_error(sb, "Error loading buddy information for %u",
4233 					group);
4234 			continue;
4235 		}
4236 		ext4_lock_group(sb, group);
4237 		list_del(&pa->pa_group_list);
4238 		ext4_mb_release_group_pa(&e4b, pa);
4239 		ext4_unlock_group(sb, group);
4240 
4241 		ext4_mb_unload_buddy(&e4b);
4242 		list_del(&pa->u.pa_tmp_list);
4243 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4244 	}
4245 }
4246 
4247 /*
4248  * We have incremented pa_count. So it cannot be freed at this
4249  * point. Also we hold lg_mutex. So no parallel allocation is
4250  * possible from this lg. That means pa_free cannot be updated.
4251  *
4252  * A parallel ext4_mb_discard_group_preallocations is possible.
4253  * which can cause the lg_prealloc_list to be updated.
4254  */
4255 
4256 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4257 {
4258 	int order, added = 0, lg_prealloc_count = 1;
4259 	struct super_block *sb = ac->ac_sb;
4260 	struct ext4_locality_group *lg = ac->ac_lg;
4261 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4262 
4263 	order = fls(pa->pa_free) - 1;
4264 	if (order > PREALLOC_TB_SIZE - 1)
4265 		/* The max size of hash table is PREALLOC_TB_SIZE */
4266 		order = PREALLOC_TB_SIZE - 1;
4267 	/* Add the prealloc space to lg */
4268 	spin_lock(&lg->lg_prealloc_lock);
4269 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4270 						pa_inode_list) {
4271 		spin_lock(&tmp_pa->pa_lock);
4272 		if (tmp_pa->pa_deleted) {
4273 			spin_unlock(&tmp_pa->pa_lock);
4274 			continue;
4275 		}
4276 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4277 			/* Add to the tail of the previous entry */
4278 			list_add_tail_rcu(&pa->pa_inode_list,
4279 						&tmp_pa->pa_inode_list);
4280 			added = 1;
4281 			/*
4282 			 * we want to count the total
4283 			 * number of entries in the list
4284 			 */
4285 		}
4286 		spin_unlock(&tmp_pa->pa_lock);
4287 		lg_prealloc_count++;
4288 	}
4289 	if (!added)
4290 		list_add_tail_rcu(&pa->pa_inode_list,
4291 					&lg->lg_prealloc_list[order]);
4292 	spin_unlock(&lg->lg_prealloc_lock);
4293 
4294 	/* Now trim the list to be not more than 8 elements */
4295 	if (lg_prealloc_count > 8) {
4296 		ext4_mb_discard_lg_preallocations(sb, lg,
4297 						  order, lg_prealloc_count);
4298 		return;
4299 	}
4300 	return ;
4301 }
4302 
4303 /*
4304  * release all resource we used in allocation
4305  */
4306 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4307 {
4308 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4309 	struct ext4_prealloc_space *pa = ac->ac_pa;
4310 	if (pa) {
4311 		if (pa->pa_type == MB_GROUP_PA) {
4312 			/* see comment in ext4_mb_use_group_pa() */
4313 			spin_lock(&pa->pa_lock);
4314 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4315 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4316 			pa->pa_free -= ac->ac_b_ex.fe_len;
4317 			pa->pa_len -= ac->ac_b_ex.fe_len;
4318 			spin_unlock(&pa->pa_lock);
4319 		}
4320 	}
4321 	if (pa) {
4322 		/*
4323 		 * We want to add the pa to the right bucket.
4324 		 * Remove it from the list and while adding
4325 		 * make sure the list to which we are adding
4326 		 * doesn't grow big.
4327 		 */
4328 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4329 			spin_lock(pa->pa_obj_lock);
4330 			list_del_rcu(&pa->pa_inode_list);
4331 			spin_unlock(pa->pa_obj_lock);
4332 			ext4_mb_add_n_trim(ac);
4333 		}
4334 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4335 	}
4336 	if (ac->ac_bitmap_page)
4337 		page_cache_release(ac->ac_bitmap_page);
4338 	if (ac->ac_buddy_page)
4339 		page_cache_release(ac->ac_buddy_page);
4340 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4341 		mutex_unlock(&ac->ac_lg->lg_mutex);
4342 	ext4_mb_collect_stats(ac);
4343 	return 0;
4344 }
4345 
4346 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4347 {
4348 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4349 	int ret;
4350 	int freed = 0;
4351 
4352 	trace_ext4_mb_discard_preallocations(sb, needed);
4353 	for (i = 0; i < ngroups && needed > 0; i++) {
4354 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4355 		freed += ret;
4356 		needed -= ret;
4357 	}
4358 
4359 	return freed;
4360 }
4361 
4362 /*
4363  * Main entry point into mballoc to allocate blocks
4364  * it tries to use preallocation first, then falls back
4365  * to usual allocation
4366  */
4367 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4368 				struct ext4_allocation_request *ar, int *errp)
4369 {
4370 	int freed;
4371 	struct ext4_allocation_context *ac = NULL;
4372 	struct ext4_sb_info *sbi;
4373 	struct super_block *sb;
4374 	ext4_fsblk_t block = 0;
4375 	unsigned int inquota = 0;
4376 	unsigned int reserv_clstrs = 0;
4377 
4378 	might_sleep();
4379 	sb = ar->inode->i_sb;
4380 	sbi = EXT4_SB(sb);
4381 
4382 	trace_ext4_request_blocks(ar);
4383 
4384 	/* Allow to use superuser reservation for quota file */
4385 	if (IS_NOQUOTA(ar->inode))
4386 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4387 
4388 	/*
4389 	 * For delayed allocation, we could skip the ENOSPC and
4390 	 * EDQUOT check, as blocks and quotas have been already
4391 	 * reserved when data being copied into pagecache.
4392 	 */
4393 	if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4394 		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4395 	else {
4396 		/* Without delayed allocation we need to verify
4397 		 * there is enough free blocks to do block allocation
4398 		 * and verify allocation doesn't exceed the quota limits.
4399 		 */
4400 		while (ar->len &&
4401 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4402 
4403 			/* let others to free the space */
4404 			cond_resched();
4405 			ar->len = ar->len >> 1;
4406 		}
4407 		if (!ar->len) {
4408 			*errp = -ENOSPC;
4409 			return 0;
4410 		}
4411 		reserv_clstrs = ar->len;
4412 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4413 			dquot_alloc_block_nofail(ar->inode,
4414 						 EXT4_C2B(sbi, ar->len));
4415 		} else {
4416 			while (ar->len &&
4417 				dquot_alloc_block(ar->inode,
4418 						  EXT4_C2B(sbi, ar->len))) {
4419 
4420 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4421 				ar->len--;
4422 			}
4423 		}
4424 		inquota = ar->len;
4425 		if (ar->len == 0) {
4426 			*errp = -EDQUOT;
4427 			goto out;
4428 		}
4429 	}
4430 
4431 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4432 	if (!ac) {
4433 		ar->len = 0;
4434 		*errp = -ENOMEM;
4435 		goto out;
4436 	}
4437 
4438 	*errp = ext4_mb_initialize_context(ac, ar);
4439 	if (*errp) {
4440 		ar->len = 0;
4441 		goto out;
4442 	}
4443 
4444 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4445 	if (!ext4_mb_use_preallocated(ac)) {
4446 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4447 		ext4_mb_normalize_request(ac, ar);
4448 repeat:
4449 		/* allocate space in core */
4450 		*errp = ext4_mb_regular_allocator(ac);
4451 		if (*errp)
4452 			goto discard_and_exit;
4453 
4454 		/* as we've just preallocated more space than
4455 		 * user requested originally, we store allocated
4456 		 * space in a special descriptor */
4457 		if (ac->ac_status == AC_STATUS_FOUND &&
4458 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4459 			*errp = ext4_mb_new_preallocation(ac);
4460 		if (*errp) {
4461 		discard_and_exit:
4462 			ext4_discard_allocated_blocks(ac);
4463 			goto errout;
4464 		}
4465 	}
4466 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4467 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4468 		if (*errp == -EAGAIN) {
4469 			/*
4470 			 * drop the reference that we took
4471 			 * in ext4_mb_use_best_found
4472 			 */
4473 			ext4_mb_release_context(ac);
4474 			ac->ac_b_ex.fe_group = 0;
4475 			ac->ac_b_ex.fe_start = 0;
4476 			ac->ac_b_ex.fe_len = 0;
4477 			ac->ac_status = AC_STATUS_CONTINUE;
4478 			goto repeat;
4479 		} else if (*errp) {
4480 			ext4_discard_allocated_blocks(ac);
4481 			goto errout;
4482 		} else {
4483 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4484 			ar->len = ac->ac_b_ex.fe_len;
4485 		}
4486 	} else {
4487 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4488 		if (freed)
4489 			goto repeat;
4490 		*errp = -ENOSPC;
4491 	}
4492 
4493 errout:
4494 	if (*errp) {
4495 		ac->ac_b_ex.fe_len = 0;
4496 		ar->len = 0;
4497 		ext4_mb_show_ac(ac);
4498 	}
4499 	ext4_mb_release_context(ac);
4500 out:
4501 	if (ac)
4502 		kmem_cache_free(ext4_ac_cachep, ac);
4503 	if (inquota && ar->len < inquota)
4504 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4505 	if (!ar->len) {
4506 		if (!ext4_test_inode_state(ar->inode,
4507 					   EXT4_STATE_DELALLOC_RESERVED))
4508 			/* release all the reserved blocks if non delalloc */
4509 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4510 						reserv_clstrs);
4511 	}
4512 
4513 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4514 
4515 	return block;
4516 }
4517 
4518 /*
4519  * We can merge two free data extents only if the physical blocks
4520  * are contiguous, AND the extents were freed by the same transaction,
4521  * AND the blocks are associated with the same group.
4522  */
4523 static int can_merge(struct ext4_free_data *entry1,
4524 			struct ext4_free_data *entry2)
4525 {
4526 	if ((entry1->efd_tid == entry2->efd_tid) &&
4527 	    (entry1->efd_group == entry2->efd_group) &&
4528 	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4529 		return 1;
4530 	return 0;
4531 }
4532 
4533 static noinline_for_stack int
4534 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4535 		      struct ext4_free_data *new_entry)
4536 {
4537 	ext4_group_t group = e4b->bd_group;
4538 	ext4_grpblk_t cluster;
4539 	struct ext4_free_data *entry;
4540 	struct ext4_group_info *db = e4b->bd_info;
4541 	struct super_block *sb = e4b->bd_sb;
4542 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4543 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4544 	struct rb_node *parent = NULL, *new_node;
4545 
4546 	BUG_ON(!ext4_handle_valid(handle));
4547 	BUG_ON(e4b->bd_bitmap_page == NULL);
4548 	BUG_ON(e4b->bd_buddy_page == NULL);
4549 
4550 	new_node = &new_entry->efd_node;
4551 	cluster = new_entry->efd_start_cluster;
4552 
4553 	if (!*n) {
4554 		/* first free block exent. We need to
4555 		   protect buddy cache from being freed,
4556 		 * otherwise we'll refresh it from
4557 		 * on-disk bitmap and lose not-yet-available
4558 		 * blocks */
4559 		page_cache_get(e4b->bd_buddy_page);
4560 		page_cache_get(e4b->bd_bitmap_page);
4561 	}
4562 	while (*n) {
4563 		parent = *n;
4564 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4565 		if (cluster < entry->efd_start_cluster)
4566 			n = &(*n)->rb_left;
4567 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4568 			n = &(*n)->rb_right;
4569 		else {
4570 			ext4_grp_locked_error(sb, group, 0,
4571 				ext4_group_first_block_no(sb, group) +
4572 				EXT4_C2B(sbi, cluster),
4573 				"Block already on to-be-freed list");
4574 			return 0;
4575 		}
4576 	}
4577 
4578 	rb_link_node(new_node, parent, n);
4579 	rb_insert_color(new_node, &db->bb_free_root);
4580 
4581 	/* Now try to see the extent can be merged to left and right */
4582 	node = rb_prev(new_node);
4583 	if (node) {
4584 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4585 		if (can_merge(entry, new_entry) &&
4586 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4587 			new_entry->efd_start_cluster = entry->efd_start_cluster;
4588 			new_entry->efd_count += entry->efd_count;
4589 			rb_erase(node, &(db->bb_free_root));
4590 			kmem_cache_free(ext4_free_data_cachep, entry);
4591 		}
4592 	}
4593 
4594 	node = rb_next(new_node);
4595 	if (node) {
4596 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4597 		if (can_merge(new_entry, entry) &&
4598 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4599 			new_entry->efd_count += entry->efd_count;
4600 			rb_erase(node, &(db->bb_free_root));
4601 			kmem_cache_free(ext4_free_data_cachep, entry);
4602 		}
4603 	}
4604 	/* Add the extent to transaction's private list */
4605 	ext4_journal_callback_add(handle, ext4_free_data_callback,
4606 				  &new_entry->efd_jce);
4607 	return 0;
4608 }
4609 
4610 /**
4611  * ext4_free_blocks() -- Free given blocks and update quota
4612  * @handle:		handle for this transaction
4613  * @inode:		inode
4614  * @block:		start physical block to free
4615  * @count:		number of blocks to count
4616  * @flags:		flags used by ext4_free_blocks
4617  */
4618 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4619 		      struct buffer_head *bh, ext4_fsblk_t block,
4620 		      unsigned long count, int flags)
4621 {
4622 	struct buffer_head *bitmap_bh = NULL;
4623 	struct super_block *sb = inode->i_sb;
4624 	struct ext4_group_desc *gdp;
4625 	unsigned int overflow;
4626 	ext4_grpblk_t bit;
4627 	struct buffer_head *gd_bh;
4628 	ext4_group_t block_group;
4629 	struct ext4_sb_info *sbi;
4630 	struct ext4_inode_info *ei = EXT4_I(inode);
4631 	struct ext4_buddy e4b;
4632 	unsigned int count_clusters;
4633 	int err = 0;
4634 	int ret;
4635 
4636 	might_sleep();
4637 	if (bh) {
4638 		if (block)
4639 			BUG_ON(block != bh->b_blocknr);
4640 		else
4641 			block = bh->b_blocknr;
4642 	}
4643 
4644 	sbi = EXT4_SB(sb);
4645 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4646 	    !ext4_data_block_valid(sbi, block, count)) {
4647 		ext4_error(sb, "Freeing blocks not in datazone - "
4648 			   "block = %llu, count = %lu", block, count);
4649 		goto error_return;
4650 	}
4651 
4652 	ext4_debug("freeing block %llu\n", block);
4653 	trace_ext4_free_blocks(inode, block, count, flags);
4654 
4655 	if (flags & EXT4_FREE_BLOCKS_FORGET) {
4656 		struct buffer_head *tbh = bh;
4657 		int i;
4658 
4659 		BUG_ON(bh && (count > 1));
4660 
4661 		for (i = 0; i < count; i++) {
4662 			cond_resched();
4663 			if (!bh)
4664 				tbh = sb_find_get_block(inode->i_sb,
4665 							block + i);
4666 			if (!tbh)
4667 				continue;
4668 			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4669 				    inode, tbh, block + i);
4670 		}
4671 	}
4672 
4673 	/*
4674 	 * We need to make sure we don't reuse the freed block until
4675 	 * after the transaction is committed, which we can do by
4676 	 * treating the block as metadata, below.  We make an
4677 	 * exception if the inode is to be written in writeback mode
4678 	 * since writeback mode has weak data consistency guarantees.
4679 	 */
4680 	if (!ext4_should_writeback_data(inode))
4681 		flags |= EXT4_FREE_BLOCKS_METADATA;
4682 
4683 	/*
4684 	 * If the extent to be freed does not begin on a cluster
4685 	 * boundary, we need to deal with partial clusters at the
4686 	 * beginning and end of the extent.  Normally we will free
4687 	 * blocks at the beginning or the end unless we are explicitly
4688 	 * requested to avoid doing so.
4689 	 */
4690 	overflow = EXT4_PBLK_COFF(sbi, block);
4691 	if (overflow) {
4692 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4693 			overflow = sbi->s_cluster_ratio - overflow;
4694 			block += overflow;
4695 			if (count > overflow)
4696 				count -= overflow;
4697 			else
4698 				return;
4699 		} else {
4700 			block -= overflow;
4701 			count += overflow;
4702 		}
4703 	}
4704 	overflow = EXT4_LBLK_COFF(sbi, count);
4705 	if (overflow) {
4706 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4707 			if (count > overflow)
4708 				count -= overflow;
4709 			else
4710 				return;
4711 		} else
4712 			count += sbi->s_cluster_ratio - overflow;
4713 	}
4714 
4715 do_more:
4716 	overflow = 0;
4717 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4718 
4719 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4720 			ext4_get_group_info(sb, block_group))))
4721 		return;
4722 
4723 	/*
4724 	 * Check to see if we are freeing blocks across a group
4725 	 * boundary.
4726 	 */
4727 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4728 		overflow = EXT4_C2B(sbi, bit) + count -
4729 			EXT4_BLOCKS_PER_GROUP(sb);
4730 		count -= overflow;
4731 	}
4732 	count_clusters = EXT4_NUM_B2C(sbi, count);
4733 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4734 	if (!bitmap_bh) {
4735 		err = -EIO;
4736 		goto error_return;
4737 	}
4738 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4739 	if (!gdp) {
4740 		err = -EIO;
4741 		goto error_return;
4742 	}
4743 
4744 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4745 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4746 	    in_range(block, ext4_inode_table(sb, gdp),
4747 		     EXT4_SB(sb)->s_itb_per_group) ||
4748 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4749 		     EXT4_SB(sb)->s_itb_per_group)) {
4750 
4751 		ext4_error(sb, "Freeing blocks in system zone - "
4752 			   "Block = %llu, count = %lu", block, count);
4753 		/* err = 0. ext4_std_error should be a no op */
4754 		goto error_return;
4755 	}
4756 
4757 	BUFFER_TRACE(bitmap_bh, "getting write access");
4758 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4759 	if (err)
4760 		goto error_return;
4761 
4762 	/*
4763 	 * We are about to modify some metadata.  Call the journal APIs
4764 	 * to unshare ->b_data if a currently-committing transaction is
4765 	 * using it
4766 	 */
4767 	BUFFER_TRACE(gd_bh, "get_write_access");
4768 	err = ext4_journal_get_write_access(handle, gd_bh);
4769 	if (err)
4770 		goto error_return;
4771 #ifdef AGGRESSIVE_CHECK
4772 	{
4773 		int i;
4774 		for (i = 0; i < count_clusters; i++)
4775 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4776 	}
4777 #endif
4778 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4779 
4780 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4781 	if (err)
4782 		goto error_return;
4783 
4784 	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4785 		struct ext4_free_data *new_entry;
4786 		/*
4787 		 * blocks being freed are metadata. these blocks shouldn't
4788 		 * be used until this transaction is committed
4789 		 */
4790 	retry:
4791 		new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4792 		if (!new_entry) {
4793 			/*
4794 			 * We use a retry loop because
4795 			 * ext4_free_blocks() is not allowed to fail.
4796 			 */
4797 			cond_resched();
4798 			congestion_wait(BLK_RW_ASYNC, HZ/50);
4799 			goto retry;
4800 		}
4801 		new_entry->efd_start_cluster = bit;
4802 		new_entry->efd_group = block_group;
4803 		new_entry->efd_count = count_clusters;
4804 		new_entry->efd_tid = handle->h_transaction->t_tid;
4805 
4806 		ext4_lock_group(sb, block_group);
4807 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4808 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4809 	} else {
4810 		/* need to update group_info->bb_free and bitmap
4811 		 * with group lock held. generate_buddy look at
4812 		 * them with group lock_held
4813 		 */
4814 		if (test_opt(sb, DISCARD)) {
4815 			err = ext4_issue_discard(sb, block_group, bit, count);
4816 			if (err && err != -EOPNOTSUPP)
4817 				ext4_msg(sb, KERN_WARNING, "discard request in"
4818 					 " group:%d block:%d count:%lu failed"
4819 					 " with %d", block_group, bit, count,
4820 					 err);
4821 		} else
4822 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4823 
4824 		ext4_lock_group(sb, block_group);
4825 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4826 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4827 	}
4828 
4829 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4830 	ext4_free_group_clusters_set(sb, gdp, ret);
4831 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4832 	ext4_group_desc_csum_set(sb, block_group, gdp);
4833 	ext4_unlock_group(sb, block_group);
4834 
4835 	if (sbi->s_log_groups_per_flex) {
4836 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4837 		atomic64_add(count_clusters,
4838 			     &sbi->s_flex_groups[flex_group].free_clusters);
4839 	}
4840 
4841 	if (flags & EXT4_FREE_BLOCKS_RESERVE && ei->i_reserved_data_blocks) {
4842 		percpu_counter_add(&sbi->s_dirtyclusters_counter,
4843 				   count_clusters);
4844 		spin_lock(&ei->i_block_reservation_lock);
4845 		if (flags & EXT4_FREE_BLOCKS_METADATA)
4846 			ei->i_reserved_meta_blocks += count_clusters;
4847 		else
4848 			ei->i_reserved_data_blocks += count_clusters;
4849 		spin_unlock(&ei->i_block_reservation_lock);
4850 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4851 			dquot_reclaim_block(inode,
4852 					EXT4_C2B(sbi, count_clusters));
4853 	} else if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4854 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4855 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4856 
4857 	ext4_mb_unload_buddy(&e4b);
4858 
4859 	/* We dirtied the bitmap block */
4860 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4861 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4862 
4863 	/* And the group descriptor block */
4864 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4865 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4866 	if (!err)
4867 		err = ret;
4868 
4869 	if (overflow && !err) {
4870 		block += count;
4871 		count = overflow;
4872 		put_bh(bitmap_bh);
4873 		goto do_more;
4874 	}
4875 error_return:
4876 	brelse(bitmap_bh);
4877 	ext4_std_error(sb, err);
4878 	return;
4879 }
4880 
4881 /**
4882  * ext4_group_add_blocks() -- Add given blocks to an existing group
4883  * @handle:			handle to this transaction
4884  * @sb:				super block
4885  * @block:			start physical block to add to the block group
4886  * @count:			number of blocks to free
4887  *
4888  * This marks the blocks as free in the bitmap and buddy.
4889  */
4890 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4891 			 ext4_fsblk_t block, unsigned long count)
4892 {
4893 	struct buffer_head *bitmap_bh = NULL;
4894 	struct buffer_head *gd_bh;
4895 	ext4_group_t block_group;
4896 	ext4_grpblk_t bit;
4897 	unsigned int i;
4898 	struct ext4_group_desc *desc;
4899 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4900 	struct ext4_buddy e4b;
4901 	int err = 0, ret, blk_free_count;
4902 	ext4_grpblk_t blocks_freed;
4903 
4904 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4905 
4906 	if (count == 0)
4907 		return 0;
4908 
4909 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4910 	/*
4911 	 * Check to see if we are freeing blocks across a group
4912 	 * boundary.
4913 	 */
4914 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4915 		ext4_warning(sb, "too much blocks added to group %u\n",
4916 			     block_group);
4917 		err = -EINVAL;
4918 		goto error_return;
4919 	}
4920 
4921 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4922 	if (!bitmap_bh) {
4923 		err = -EIO;
4924 		goto error_return;
4925 	}
4926 
4927 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4928 	if (!desc) {
4929 		err = -EIO;
4930 		goto error_return;
4931 	}
4932 
4933 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4934 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4935 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4936 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4937 		     sbi->s_itb_per_group)) {
4938 		ext4_error(sb, "Adding blocks in system zones - "
4939 			   "Block = %llu, count = %lu",
4940 			   block, count);
4941 		err = -EINVAL;
4942 		goto error_return;
4943 	}
4944 
4945 	BUFFER_TRACE(bitmap_bh, "getting write access");
4946 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4947 	if (err)
4948 		goto error_return;
4949 
4950 	/*
4951 	 * We are about to modify some metadata.  Call the journal APIs
4952 	 * to unshare ->b_data if a currently-committing transaction is
4953 	 * using it
4954 	 */
4955 	BUFFER_TRACE(gd_bh, "get_write_access");
4956 	err = ext4_journal_get_write_access(handle, gd_bh);
4957 	if (err)
4958 		goto error_return;
4959 
4960 	for (i = 0, blocks_freed = 0; i < count; i++) {
4961 		BUFFER_TRACE(bitmap_bh, "clear bit");
4962 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4963 			ext4_error(sb, "bit already cleared for block %llu",
4964 				   (ext4_fsblk_t)(block + i));
4965 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4966 		} else {
4967 			blocks_freed++;
4968 		}
4969 	}
4970 
4971 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4972 	if (err)
4973 		goto error_return;
4974 
4975 	/*
4976 	 * need to update group_info->bb_free and bitmap
4977 	 * with group lock held. generate_buddy look at
4978 	 * them with group lock_held
4979 	 */
4980 	ext4_lock_group(sb, block_group);
4981 	mb_clear_bits(bitmap_bh->b_data, bit, count);
4982 	mb_free_blocks(NULL, &e4b, bit, count);
4983 	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4984 	ext4_free_group_clusters_set(sb, desc, blk_free_count);
4985 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4986 	ext4_group_desc_csum_set(sb, block_group, desc);
4987 	ext4_unlock_group(sb, block_group);
4988 	percpu_counter_add(&sbi->s_freeclusters_counter,
4989 			   EXT4_NUM_B2C(sbi, blocks_freed));
4990 
4991 	if (sbi->s_log_groups_per_flex) {
4992 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4993 		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4994 			     &sbi->s_flex_groups[flex_group].free_clusters);
4995 	}
4996 
4997 	ext4_mb_unload_buddy(&e4b);
4998 
4999 	/* We dirtied the bitmap block */
5000 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5001 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5002 
5003 	/* And the group descriptor block */
5004 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5005 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5006 	if (!err)
5007 		err = ret;
5008 
5009 error_return:
5010 	brelse(bitmap_bh);
5011 	ext4_std_error(sb, err);
5012 	return err;
5013 }
5014 
5015 /**
5016  * ext4_trim_extent -- function to TRIM one single free extent in the group
5017  * @sb:		super block for the file system
5018  * @start:	starting block of the free extent in the alloc. group
5019  * @count:	number of blocks to TRIM
5020  * @group:	alloc. group we are working with
5021  * @e4b:	ext4 buddy for the group
5022  *
5023  * Trim "count" blocks starting at "start" in the "group". To assure that no
5024  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5025  * be called with under the group lock.
5026  */
5027 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5028 			     ext4_group_t group, struct ext4_buddy *e4b)
5029 __releases(bitlock)
5030 __acquires(bitlock)
5031 {
5032 	struct ext4_free_extent ex;
5033 	int ret = 0;
5034 
5035 	trace_ext4_trim_extent(sb, group, start, count);
5036 
5037 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5038 
5039 	ex.fe_start = start;
5040 	ex.fe_group = group;
5041 	ex.fe_len = count;
5042 
5043 	/*
5044 	 * Mark blocks used, so no one can reuse them while
5045 	 * being trimmed.
5046 	 */
5047 	mb_mark_used(e4b, &ex);
5048 	ext4_unlock_group(sb, group);
5049 	ret = ext4_issue_discard(sb, group, start, count);
5050 	ext4_lock_group(sb, group);
5051 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5052 	return ret;
5053 }
5054 
5055 /**
5056  * ext4_trim_all_free -- function to trim all free space in alloc. group
5057  * @sb:			super block for file system
5058  * @group:		group to be trimmed
5059  * @start:		first group block to examine
5060  * @max:		last group block to examine
5061  * @minblocks:		minimum extent block count
5062  *
5063  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5064  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5065  * the extent.
5066  *
5067  *
5068  * ext4_trim_all_free walks through group's block bitmap searching for free
5069  * extents. When the free extent is found, mark it as used in group buddy
5070  * bitmap. Then issue a TRIM command on this extent and free the extent in
5071  * the group buddy bitmap. This is done until whole group is scanned.
5072  */
5073 static ext4_grpblk_t
5074 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5075 		   ext4_grpblk_t start, ext4_grpblk_t max,
5076 		   ext4_grpblk_t minblocks)
5077 {
5078 	void *bitmap;
5079 	ext4_grpblk_t next, count = 0, free_count = 0;
5080 	struct ext4_buddy e4b;
5081 	int ret = 0;
5082 
5083 	trace_ext4_trim_all_free(sb, group, start, max);
5084 
5085 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5086 	if (ret) {
5087 		ext4_error(sb, "Error in loading buddy "
5088 				"information for %u", group);
5089 		return ret;
5090 	}
5091 	bitmap = e4b.bd_bitmap;
5092 
5093 	ext4_lock_group(sb, group);
5094 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5095 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5096 		goto out;
5097 
5098 	start = (e4b.bd_info->bb_first_free > start) ?
5099 		e4b.bd_info->bb_first_free : start;
5100 
5101 	while (start <= max) {
5102 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5103 		if (start > max)
5104 			break;
5105 		next = mb_find_next_bit(bitmap, max + 1, start);
5106 
5107 		if ((next - start) >= minblocks) {
5108 			ret = ext4_trim_extent(sb, start,
5109 					       next - start, group, &e4b);
5110 			if (ret && ret != -EOPNOTSUPP)
5111 				break;
5112 			ret = 0;
5113 			count += next - start;
5114 		}
5115 		free_count += next - start;
5116 		start = next + 1;
5117 
5118 		if (fatal_signal_pending(current)) {
5119 			count = -ERESTARTSYS;
5120 			break;
5121 		}
5122 
5123 		if (need_resched()) {
5124 			ext4_unlock_group(sb, group);
5125 			cond_resched();
5126 			ext4_lock_group(sb, group);
5127 		}
5128 
5129 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5130 			break;
5131 	}
5132 
5133 	if (!ret) {
5134 		ret = count;
5135 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5136 	}
5137 out:
5138 	ext4_unlock_group(sb, group);
5139 	ext4_mb_unload_buddy(&e4b);
5140 
5141 	ext4_debug("trimmed %d blocks in the group %d\n",
5142 		count, group);
5143 
5144 	return ret;
5145 }
5146 
5147 /**
5148  * ext4_trim_fs() -- trim ioctl handle function
5149  * @sb:			superblock for filesystem
5150  * @range:		fstrim_range structure
5151  *
5152  * start:	First Byte to trim
5153  * len:		number of Bytes to trim from start
5154  * minlen:	minimum extent length in Bytes
5155  * ext4_trim_fs goes through all allocation groups containing Bytes from
5156  * start to start+len. For each such a group ext4_trim_all_free function
5157  * is invoked to trim all free space.
5158  */
5159 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5160 {
5161 	struct ext4_group_info *grp;
5162 	ext4_group_t group, first_group, last_group;
5163 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5164 	uint64_t start, end, minlen, trimmed = 0;
5165 	ext4_fsblk_t first_data_blk =
5166 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5167 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5168 	int ret = 0;
5169 
5170 	start = range->start >> sb->s_blocksize_bits;
5171 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5172 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5173 			      range->minlen >> sb->s_blocksize_bits);
5174 
5175 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5176 	    start >= max_blks ||
5177 	    range->len < sb->s_blocksize)
5178 		return -EINVAL;
5179 	if (end >= max_blks)
5180 		end = max_blks - 1;
5181 	if (end <= first_data_blk)
5182 		goto out;
5183 	if (start < first_data_blk)
5184 		start = first_data_blk;
5185 
5186 	/* Determine first and last group to examine based on start and end */
5187 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5188 				     &first_group, &first_cluster);
5189 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5190 				     &last_group, &last_cluster);
5191 
5192 	/* end now represents the last cluster to discard in this group */
5193 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5194 
5195 	for (group = first_group; group <= last_group; group++) {
5196 		grp = ext4_get_group_info(sb, group);
5197 		/* We only do this if the grp has never been initialized */
5198 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5199 			ret = ext4_mb_init_group(sb, group);
5200 			if (ret)
5201 				break;
5202 		}
5203 
5204 		/*
5205 		 * For all the groups except the last one, last cluster will
5206 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5207 		 * change it for the last group, note that last_cluster is
5208 		 * already computed earlier by ext4_get_group_no_and_offset()
5209 		 */
5210 		if (group == last_group)
5211 			end = last_cluster;
5212 
5213 		if (grp->bb_free >= minlen) {
5214 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5215 						end, minlen);
5216 			if (cnt < 0) {
5217 				ret = cnt;
5218 				break;
5219 			}
5220 			trimmed += cnt;
5221 		}
5222 
5223 		/*
5224 		 * For every group except the first one, we are sure
5225 		 * that the first cluster to discard will be cluster #0.
5226 		 */
5227 		first_cluster = 0;
5228 	}
5229 
5230 	if (!ret)
5231 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5232 
5233 out:
5234 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5235 	return ret;
5236 }
5237