xref: /openbmc/linux/fs/ext4/mballoc.c (revision 9257bd80b917cc7908abd27ed5a5211964563f62)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20 
21 /*
22  * MUSTDO:
23  *   - test ext4_ext_search_left() and ext4_ext_search_right()
24  *   - search for metadata in few groups
25  *
26  * TODO v4:
27  *   - normalization should take into account whether file is still open
28  *   - discard preallocations if no free space left (policy?)
29  *   - don't normalize tails
30  *   - quota
31  *   - reservation for superuser
32  *
33  * TODO v3:
34  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
35  *   - track min/max extents in each group for better group selection
36  *   - mb_mark_used() may allocate chunk right after splitting buddy
37  *   - tree of groups sorted by number of free blocks
38  *   - error handling
39  */
40 
41 /*
42  * The allocation request involve request for multiple number of blocks
43  * near to the goal(block) value specified.
44  *
45  * During initialization phase of the allocator we decide to use the
46  * group preallocation or inode preallocation depending on the size of
47  * the file. The size of the file could be the resulting file size we
48  * would have after allocation, or the current file size, which ever
49  * is larger. If the size is less than sbi->s_mb_stream_request we
50  * select to use the group preallocation. The default value of
51  * s_mb_stream_request is 16 blocks. This can also be tuned via
52  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53  * terms of number of blocks.
54  *
55  * The main motivation for having small file use group preallocation is to
56  * ensure that we have small files closer together on the disk.
57  *
58  * First stage the allocator looks at the inode prealloc list,
59  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60  * spaces for this particular inode. The inode prealloc space is
61  * represented as:
62  *
63  * pa_lstart -> the logical start block for this prealloc space
64  * pa_pstart -> the physical start block for this prealloc space
65  * pa_len    -> length for this prealloc space (in clusters)
66  * pa_free   ->  free space available in this prealloc space (in clusters)
67  *
68  * The inode preallocation space is used looking at the _logical_ start
69  * block. If only the logical file block falls within the range of prealloc
70  * space we will consume the particular prealloc space. This makes sure that
71  * we have contiguous physical blocks representing the file blocks
72  *
73  * The important thing to be noted in case of inode prealloc space is that
74  * we don't modify the values associated to inode prealloc space except
75  * pa_free.
76  *
77  * If we are not able to find blocks in the inode prealloc space and if we
78  * have the group allocation flag set then we look at the locality group
79  * prealloc space. These are per CPU prealloc list represented as
80  *
81  * ext4_sb_info.s_locality_groups[smp_processor_id()]
82  *
83  * The reason for having a per cpu locality group is to reduce the contention
84  * between CPUs. It is possible to get scheduled at this point.
85  *
86  * The locality group prealloc space is used looking at whether we have
87  * enough free space (pa_free) within the prealloc space.
88  *
89  * If we can't allocate blocks via inode prealloc or/and locality group
90  * prealloc then we look at the buddy cache. The buddy cache is represented
91  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92  * mapped to the buddy and bitmap information regarding different
93  * groups. The buddy information is attached to buddy cache inode so that
94  * we can access them through the page cache. The information regarding
95  * each group is loaded via ext4_mb_load_buddy.  The information involve
96  * block bitmap and buddy information. The information are stored in the
97  * inode as:
98  *
99  *  {                        page                        }
100  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101  *
102  *
103  * one block each for bitmap and buddy information.  So for each group we
104  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105  * blocksize) blocks.  So it can have information regarding groups_per_page
106  * which is blocks_per_page/2
107  *
108  * The buddy cache inode is not stored on disk. The inode is thrown
109  * away when the filesystem is unmounted.
110  *
111  * We look for count number of blocks in the buddy cache. If we were able
112  * to locate that many free blocks we return with additional information
113  * regarding rest of the contiguous physical block available
114  *
115  * Before allocating blocks via buddy cache we normalize the request
116  * blocks. This ensure we ask for more blocks that we needed. The extra
117  * blocks that we get after allocation is added to the respective prealloc
118  * list. In case of inode preallocation we follow a list of heuristics
119  * based on file size. This can be found in ext4_mb_normalize_request. If
120  * we are doing a group prealloc we try to normalize the request to
121  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
122  * dependent on the cluster size; for non-bigalloc file systems, it is
123  * 512 blocks. This can be tuned via
124  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125  * terms of number of blocks. If we have mounted the file system with -O
126  * stripe=<value> option the group prealloc request is normalized to the
127  * smallest multiple of the stripe value (sbi->s_stripe) which is
128  * greater than the default mb_group_prealloc.
129  *
130  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
131  * structures in two data structures:
132  *
133  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
134  *
135  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
136  *
137  *    This is an array of lists where the index in the array represents the
138  *    largest free order in the buddy bitmap of the participating group infos of
139  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
140  *    number of buddy bitmap orders possible) number of lists. Group-infos are
141  *    placed in appropriate lists.
142  *
143  * 2) Average fragment size rb tree (sbi->s_mb_avg_fragment_size_root)
144  *
145  *    Locking: sbi->s_mb_rb_lock (rwlock)
146  *
147  *    This is a red black tree consisting of group infos and the tree is sorted
148  *    by average fragment sizes (which is calculated as ext4_group_info->bb_free
149  *    / ext4_group_info->bb_fragments).
150  *
151  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
152  * structures to decide the order in which groups are to be traversed for
153  * fulfilling an allocation request.
154  *
155  * At CR = 0, we look for groups which have the largest_free_order >= the order
156  * of the request. We directly look at the largest free order list in the data
157  * structure (1) above where largest_free_order = order of the request. If that
158  * list is empty, we look at remaining list in the increasing order of
159  * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time.
160  *
161  * At CR = 1, we only consider groups where average fragment size > request
162  * size. So, we lookup a group which has average fragment size just above or
163  * equal to request size using our rb tree (data structure 2) in O(log N) time.
164  *
165  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
166  * linear order which requires O(N) search time for each CR 0 and CR 1 phase.
167  *
168  * The regular allocator (using the buddy cache) supports a few tunables.
169  *
170  * /sys/fs/ext4/<partition>/mb_min_to_scan
171  * /sys/fs/ext4/<partition>/mb_max_to_scan
172  * /sys/fs/ext4/<partition>/mb_order2_req
173  * /sys/fs/ext4/<partition>/mb_linear_limit
174  *
175  * The regular allocator uses buddy scan only if the request len is power of
176  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
177  * value of s_mb_order2_reqs can be tuned via
178  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
179  * stripe size (sbi->s_stripe), we try to search for contiguous block in
180  * stripe size. This should result in better allocation on RAID setups. If
181  * not, we search in the specific group using bitmap for best extents. The
182  * tunable min_to_scan and max_to_scan control the behaviour here.
183  * min_to_scan indicate how long the mballoc __must__ look for a best
184  * extent and max_to_scan indicates how long the mballoc __can__ look for a
185  * best extent in the found extents. Searching for the blocks starts with
186  * the group specified as the goal value in allocation context via
187  * ac_g_ex. Each group is first checked based on the criteria whether it
188  * can be used for allocation. ext4_mb_good_group explains how the groups are
189  * checked.
190  *
191  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
192  * get traversed linearly. That may result in subsequent allocations being not
193  * close to each other. And so, the underlying device may get filled up in a
194  * non-linear fashion. While that may not matter on non-rotational devices, for
195  * rotational devices that may result in higher seek times. "mb_linear_limit"
196  * tells mballoc how many groups mballoc should search linearly before
197  * performing consulting above data structures for more efficient lookups. For
198  * non rotational devices, this value defaults to 0 and for rotational devices
199  * this is set to MB_DEFAULT_LINEAR_LIMIT.
200  *
201  * Both the prealloc space are getting populated as above. So for the first
202  * request we will hit the buddy cache which will result in this prealloc
203  * space getting filled. The prealloc space is then later used for the
204  * subsequent request.
205  */
206 
207 /*
208  * mballoc operates on the following data:
209  *  - on-disk bitmap
210  *  - in-core buddy (actually includes buddy and bitmap)
211  *  - preallocation descriptors (PAs)
212  *
213  * there are two types of preallocations:
214  *  - inode
215  *    assiged to specific inode and can be used for this inode only.
216  *    it describes part of inode's space preallocated to specific
217  *    physical blocks. any block from that preallocated can be used
218  *    independent. the descriptor just tracks number of blocks left
219  *    unused. so, before taking some block from descriptor, one must
220  *    make sure corresponded logical block isn't allocated yet. this
221  *    also means that freeing any block within descriptor's range
222  *    must discard all preallocated blocks.
223  *  - locality group
224  *    assigned to specific locality group which does not translate to
225  *    permanent set of inodes: inode can join and leave group. space
226  *    from this type of preallocation can be used for any inode. thus
227  *    it's consumed from the beginning to the end.
228  *
229  * relation between them can be expressed as:
230  *    in-core buddy = on-disk bitmap + preallocation descriptors
231  *
232  * this mean blocks mballoc considers used are:
233  *  - allocated blocks (persistent)
234  *  - preallocated blocks (non-persistent)
235  *
236  * consistency in mballoc world means that at any time a block is either
237  * free or used in ALL structures. notice: "any time" should not be read
238  * literally -- time is discrete and delimited by locks.
239  *
240  *  to keep it simple, we don't use block numbers, instead we count number of
241  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
242  *
243  * all operations can be expressed as:
244  *  - init buddy:			buddy = on-disk + PAs
245  *  - new PA:				buddy += N; PA = N
246  *  - use inode PA:			on-disk += N; PA -= N
247  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
248  *  - use locality group PA		on-disk += N; PA -= N
249  *  - discard locality group PA		buddy -= PA; PA = 0
250  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
251  *        is used in real operation because we can't know actual used
252  *        bits from PA, only from on-disk bitmap
253  *
254  * if we follow this strict logic, then all operations above should be atomic.
255  * given some of them can block, we'd have to use something like semaphores
256  * killing performance on high-end SMP hardware. let's try to relax it using
257  * the following knowledge:
258  *  1) if buddy is referenced, it's already initialized
259  *  2) while block is used in buddy and the buddy is referenced,
260  *     nobody can re-allocate that block
261  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
262  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
263  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
264  *     block
265  *
266  * so, now we're building a concurrency table:
267  *  - init buddy vs.
268  *    - new PA
269  *      blocks for PA are allocated in the buddy, buddy must be referenced
270  *      until PA is linked to allocation group to avoid concurrent buddy init
271  *    - use inode PA
272  *      we need to make sure that either on-disk bitmap or PA has uptodate data
273  *      given (3) we care that PA-=N operation doesn't interfere with init
274  *    - discard inode PA
275  *      the simplest way would be to have buddy initialized by the discard
276  *    - use locality group PA
277  *      again PA-=N must be serialized with init
278  *    - discard locality group PA
279  *      the simplest way would be to have buddy initialized by the discard
280  *  - new PA vs.
281  *    - use inode PA
282  *      i_data_sem serializes them
283  *    - discard inode PA
284  *      discard process must wait until PA isn't used by another process
285  *    - use locality group PA
286  *      some mutex should serialize them
287  *    - discard locality group PA
288  *      discard process must wait until PA isn't used by another process
289  *  - use inode PA
290  *    - use inode PA
291  *      i_data_sem or another mutex should serializes them
292  *    - discard inode PA
293  *      discard process must wait until PA isn't used by another process
294  *    - use locality group PA
295  *      nothing wrong here -- they're different PAs covering different blocks
296  *    - discard locality group PA
297  *      discard process must wait until PA isn't used by another process
298  *
299  * now we're ready to make few consequences:
300  *  - PA is referenced and while it is no discard is possible
301  *  - PA is referenced until block isn't marked in on-disk bitmap
302  *  - PA changes only after on-disk bitmap
303  *  - discard must not compete with init. either init is done before
304  *    any discard or they're serialized somehow
305  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
306  *
307  * a special case when we've used PA to emptiness. no need to modify buddy
308  * in this case, but we should care about concurrent init
309  *
310  */
311 
312  /*
313  * Logic in few words:
314  *
315  *  - allocation:
316  *    load group
317  *    find blocks
318  *    mark bits in on-disk bitmap
319  *    release group
320  *
321  *  - use preallocation:
322  *    find proper PA (per-inode or group)
323  *    load group
324  *    mark bits in on-disk bitmap
325  *    release group
326  *    release PA
327  *
328  *  - free:
329  *    load group
330  *    mark bits in on-disk bitmap
331  *    release group
332  *
333  *  - discard preallocations in group:
334  *    mark PAs deleted
335  *    move them onto local list
336  *    load on-disk bitmap
337  *    load group
338  *    remove PA from object (inode or locality group)
339  *    mark free blocks in-core
340  *
341  *  - discard inode's preallocations:
342  */
343 
344 /*
345  * Locking rules
346  *
347  * Locks:
348  *  - bitlock on a group	(group)
349  *  - object (inode/locality)	(object)
350  *  - per-pa lock		(pa)
351  *  - cr0 lists lock		(cr0)
352  *  - cr1 tree lock		(cr1)
353  *
354  * Paths:
355  *  - new pa
356  *    object
357  *    group
358  *
359  *  - find and use pa:
360  *    pa
361  *
362  *  - release consumed pa:
363  *    pa
364  *    group
365  *    object
366  *
367  *  - generate in-core bitmap:
368  *    group
369  *        pa
370  *
371  *  - discard all for given object (inode, locality group):
372  *    object
373  *        pa
374  *    group
375  *
376  *  - discard all for given group:
377  *    group
378  *        pa
379  *    group
380  *        object
381  *
382  *  - allocation path (ext4_mb_regular_allocator)
383  *    group
384  *    cr0/cr1
385  */
386 static struct kmem_cache *ext4_pspace_cachep;
387 static struct kmem_cache *ext4_ac_cachep;
388 static struct kmem_cache *ext4_free_data_cachep;
389 
390 /* We create slab caches for groupinfo data structures based on the
391  * superblock block size.  There will be one per mounted filesystem for
392  * each unique s_blocksize_bits */
393 #define NR_GRPINFO_CACHES 8
394 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
395 
396 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
397 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
398 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
399 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
400 };
401 
402 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
403 					ext4_group_t group);
404 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
405 						ext4_group_t group);
406 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
407 
408 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
409 			       ext4_group_t group, int cr);
410 
411 /*
412  * The algorithm using this percpu seq counter goes below:
413  * 1. We sample the percpu discard_pa_seq counter before trying for block
414  *    allocation in ext4_mb_new_blocks().
415  * 2. We increment this percpu discard_pa_seq counter when we either allocate
416  *    or free these blocks i.e. while marking those blocks as used/free in
417  *    mb_mark_used()/mb_free_blocks().
418  * 3. We also increment this percpu seq counter when we successfully identify
419  *    that the bb_prealloc_list is not empty and hence proceed for discarding
420  *    of those PAs inside ext4_mb_discard_group_preallocations().
421  *
422  * Now to make sure that the regular fast path of block allocation is not
423  * affected, as a small optimization we only sample the percpu seq counter
424  * on that cpu. Only when the block allocation fails and when freed blocks
425  * found were 0, that is when we sample percpu seq counter for all cpus using
426  * below function ext4_get_discard_pa_seq_sum(). This happens after making
427  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
428  */
429 static DEFINE_PER_CPU(u64, discard_pa_seq);
430 static inline u64 ext4_get_discard_pa_seq_sum(void)
431 {
432 	int __cpu;
433 	u64 __seq = 0;
434 
435 	for_each_possible_cpu(__cpu)
436 		__seq += per_cpu(discard_pa_seq, __cpu);
437 	return __seq;
438 }
439 
440 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
441 {
442 #if BITS_PER_LONG == 64
443 	*bit += ((unsigned long) addr & 7UL) << 3;
444 	addr = (void *) ((unsigned long) addr & ~7UL);
445 #elif BITS_PER_LONG == 32
446 	*bit += ((unsigned long) addr & 3UL) << 3;
447 	addr = (void *) ((unsigned long) addr & ~3UL);
448 #else
449 #error "how many bits you are?!"
450 #endif
451 	return addr;
452 }
453 
454 static inline int mb_test_bit(int bit, void *addr)
455 {
456 	/*
457 	 * ext4_test_bit on architecture like powerpc
458 	 * needs unsigned long aligned address
459 	 */
460 	addr = mb_correct_addr_and_bit(&bit, addr);
461 	return ext4_test_bit(bit, addr);
462 }
463 
464 static inline void mb_set_bit(int bit, void *addr)
465 {
466 	addr = mb_correct_addr_and_bit(&bit, addr);
467 	ext4_set_bit(bit, addr);
468 }
469 
470 static inline void mb_clear_bit(int bit, void *addr)
471 {
472 	addr = mb_correct_addr_and_bit(&bit, addr);
473 	ext4_clear_bit(bit, addr);
474 }
475 
476 static inline int mb_test_and_clear_bit(int bit, void *addr)
477 {
478 	addr = mb_correct_addr_and_bit(&bit, addr);
479 	return ext4_test_and_clear_bit(bit, addr);
480 }
481 
482 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
483 {
484 	int fix = 0, ret, tmpmax;
485 	addr = mb_correct_addr_and_bit(&fix, addr);
486 	tmpmax = max + fix;
487 	start += fix;
488 
489 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
490 	if (ret > max)
491 		return max;
492 	return ret;
493 }
494 
495 static inline int mb_find_next_bit(void *addr, int max, int start)
496 {
497 	int fix = 0, ret, tmpmax;
498 	addr = mb_correct_addr_and_bit(&fix, addr);
499 	tmpmax = max + fix;
500 	start += fix;
501 
502 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
503 	if (ret > max)
504 		return max;
505 	return ret;
506 }
507 
508 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
509 {
510 	char *bb;
511 
512 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
513 	BUG_ON(max == NULL);
514 
515 	if (order > e4b->bd_blkbits + 1) {
516 		*max = 0;
517 		return NULL;
518 	}
519 
520 	/* at order 0 we see each particular block */
521 	if (order == 0) {
522 		*max = 1 << (e4b->bd_blkbits + 3);
523 		return e4b->bd_bitmap;
524 	}
525 
526 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
527 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
528 
529 	return bb;
530 }
531 
532 #ifdef DOUBLE_CHECK
533 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
534 			   int first, int count)
535 {
536 	int i;
537 	struct super_block *sb = e4b->bd_sb;
538 
539 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
540 		return;
541 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
542 	for (i = 0; i < count; i++) {
543 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
544 			ext4_fsblk_t blocknr;
545 
546 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
547 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
548 			ext4_grp_locked_error(sb, e4b->bd_group,
549 					      inode ? inode->i_ino : 0,
550 					      blocknr,
551 					      "freeing block already freed "
552 					      "(bit %u)",
553 					      first + i);
554 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
555 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
556 		}
557 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
558 	}
559 }
560 
561 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
562 {
563 	int i;
564 
565 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
566 		return;
567 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
568 	for (i = 0; i < count; i++) {
569 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
570 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
571 	}
572 }
573 
574 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
575 {
576 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
577 		return;
578 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
579 		unsigned char *b1, *b2;
580 		int i;
581 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
582 		b2 = (unsigned char *) bitmap;
583 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
584 			if (b1[i] != b2[i]) {
585 				ext4_msg(e4b->bd_sb, KERN_ERR,
586 					 "corruption in group %u "
587 					 "at byte %u(%u): %x in copy != %x "
588 					 "on disk/prealloc",
589 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
590 				BUG();
591 			}
592 		}
593 	}
594 }
595 
596 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
597 			struct ext4_group_info *grp, ext4_group_t group)
598 {
599 	struct buffer_head *bh;
600 
601 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
602 	if (!grp->bb_bitmap)
603 		return;
604 
605 	bh = ext4_read_block_bitmap(sb, group);
606 	if (IS_ERR_OR_NULL(bh)) {
607 		kfree(grp->bb_bitmap);
608 		grp->bb_bitmap = NULL;
609 		return;
610 	}
611 
612 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
613 	put_bh(bh);
614 }
615 
616 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
617 {
618 	kfree(grp->bb_bitmap);
619 }
620 
621 #else
622 static inline void mb_free_blocks_double(struct inode *inode,
623 				struct ext4_buddy *e4b, int first, int count)
624 {
625 	return;
626 }
627 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
628 						int first, int count)
629 {
630 	return;
631 }
632 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
633 {
634 	return;
635 }
636 
637 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
638 			struct ext4_group_info *grp, ext4_group_t group)
639 {
640 	return;
641 }
642 
643 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
644 {
645 	return;
646 }
647 #endif
648 
649 #ifdef AGGRESSIVE_CHECK
650 
651 #define MB_CHECK_ASSERT(assert)						\
652 do {									\
653 	if (!(assert)) {						\
654 		printk(KERN_EMERG					\
655 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
656 			function, file, line, # assert);		\
657 		BUG();							\
658 	}								\
659 } while (0)
660 
661 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
662 				const char *function, int line)
663 {
664 	struct super_block *sb = e4b->bd_sb;
665 	int order = e4b->bd_blkbits + 1;
666 	int max;
667 	int max2;
668 	int i;
669 	int j;
670 	int k;
671 	int count;
672 	struct ext4_group_info *grp;
673 	int fragments = 0;
674 	int fstart;
675 	struct list_head *cur;
676 	void *buddy;
677 	void *buddy2;
678 
679 	if (e4b->bd_info->bb_check_counter++ % 10)
680 		return 0;
681 
682 	while (order > 1) {
683 		buddy = mb_find_buddy(e4b, order, &max);
684 		MB_CHECK_ASSERT(buddy);
685 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
686 		MB_CHECK_ASSERT(buddy2);
687 		MB_CHECK_ASSERT(buddy != buddy2);
688 		MB_CHECK_ASSERT(max * 2 == max2);
689 
690 		count = 0;
691 		for (i = 0; i < max; i++) {
692 
693 			if (mb_test_bit(i, buddy)) {
694 				/* only single bit in buddy2 may be 1 */
695 				if (!mb_test_bit(i << 1, buddy2)) {
696 					MB_CHECK_ASSERT(
697 						mb_test_bit((i<<1)+1, buddy2));
698 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
699 					MB_CHECK_ASSERT(
700 						mb_test_bit(i << 1, buddy2));
701 				}
702 				continue;
703 			}
704 
705 			/* both bits in buddy2 must be 1 */
706 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
707 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
708 
709 			for (j = 0; j < (1 << order); j++) {
710 				k = (i * (1 << order)) + j;
711 				MB_CHECK_ASSERT(
712 					!mb_test_bit(k, e4b->bd_bitmap));
713 			}
714 			count++;
715 		}
716 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
717 		order--;
718 	}
719 
720 	fstart = -1;
721 	buddy = mb_find_buddy(e4b, 0, &max);
722 	for (i = 0; i < max; i++) {
723 		if (!mb_test_bit(i, buddy)) {
724 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
725 			if (fstart == -1) {
726 				fragments++;
727 				fstart = i;
728 			}
729 			continue;
730 		}
731 		fstart = -1;
732 		/* check used bits only */
733 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
734 			buddy2 = mb_find_buddy(e4b, j, &max2);
735 			k = i >> j;
736 			MB_CHECK_ASSERT(k < max2);
737 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
738 		}
739 	}
740 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
741 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
742 
743 	grp = ext4_get_group_info(sb, e4b->bd_group);
744 	list_for_each(cur, &grp->bb_prealloc_list) {
745 		ext4_group_t groupnr;
746 		struct ext4_prealloc_space *pa;
747 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
748 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
749 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
750 		for (i = 0; i < pa->pa_len; i++)
751 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
752 	}
753 	return 0;
754 }
755 #undef MB_CHECK_ASSERT
756 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
757 					__FILE__, __func__, __LINE__)
758 #else
759 #define mb_check_buddy(e4b)
760 #endif
761 
762 /*
763  * Divide blocks started from @first with length @len into
764  * smaller chunks with power of 2 blocks.
765  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
766  * then increase bb_counters[] for corresponded chunk size.
767  */
768 static void ext4_mb_mark_free_simple(struct super_block *sb,
769 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
770 					struct ext4_group_info *grp)
771 {
772 	struct ext4_sb_info *sbi = EXT4_SB(sb);
773 	ext4_grpblk_t min;
774 	ext4_grpblk_t max;
775 	ext4_grpblk_t chunk;
776 	unsigned int border;
777 
778 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
779 
780 	border = 2 << sb->s_blocksize_bits;
781 
782 	while (len > 0) {
783 		/* find how many blocks can be covered since this position */
784 		max = ffs(first | border) - 1;
785 
786 		/* find how many blocks of power 2 we need to mark */
787 		min = fls(len) - 1;
788 
789 		if (max < min)
790 			min = max;
791 		chunk = 1 << min;
792 
793 		/* mark multiblock chunks only */
794 		grp->bb_counters[min]++;
795 		if (min > 0)
796 			mb_clear_bit(first >> min,
797 				     buddy + sbi->s_mb_offsets[min]);
798 
799 		len -= chunk;
800 		first += chunk;
801 	}
802 }
803 
804 static void ext4_mb_rb_insert(struct rb_root *root, struct rb_node *new,
805 			int (*cmp)(struct rb_node *, struct rb_node *))
806 {
807 	struct rb_node **iter = &root->rb_node, *parent = NULL;
808 
809 	while (*iter) {
810 		parent = *iter;
811 		if (cmp(new, *iter) > 0)
812 			iter = &((*iter)->rb_left);
813 		else
814 			iter = &((*iter)->rb_right);
815 	}
816 
817 	rb_link_node(new, parent, iter);
818 	rb_insert_color(new, root);
819 }
820 
821 static int
822 ext4_mb_avg_fragment_size_cmp(struct rb_node *rb1, struct rb_node *rb2)
823 {
824 	struct ext4_group_info *grp1 = rb_entry(rb1,
825 						struct ext4_group_info,
826 						bb_avg_fragment_size_rb);
827 	struct ext4_group_info *grp2 = rb_entry(rb2,
828 						struct ext4_group_info,
829 						bb_avg_fragment_size_rb);
830 	int num_frags_1, num_frags_2;
831 
832 	num_frags_1 = grp1->bb_fragments ?
833 		grp1->bb_free / grp1->bb_fragments : 0;
834 	num_frags_2 = grp2->bb_fragments ?
835 		grp2->bb_free / grp2->bb_fragments : 0;
836 
837 	return (num_frags_2 - num_frags_1);
838 }
839 
840 /*
841  * Reinsert grpinfo into the avg_fragment_size tree with new average
842  * fragment size.
843  */
844 static void
845 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
846 {
847 	struct ext4_sb_info *sbi = EXT4_SB(sb);
848 
849 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
850 		return;
851 
852 	write_lock(&sbi->s_mb_rb_lock);
853 	if (!RB_EMPTY_NODE(&grp->bb_avg_fragment_size_rb)) {
854 		rb_erase(&grp->bb_avg_fragment_size_rb,
855 				&sbi->s_mb_avg_fragment_size_root);
856 		RB_CLEAR_NODE(&grp->bb_avg_fragment_size_rb);
857 	}
858 
859 	ext4_mb_rb_insert(&sbi->s_mb_avg_fragment_size_root,
860 		&grp->bb_avg_fragment_size_rb,
861 		ext4_mb_avg_fragment_size_cmp);
862 	write_unlock(&sbi->s_mb_rb_lock);
863 }
864 
865 /*
866  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
867  * cr level needs an update.
868  */
869 static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac,
870 			int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
871 {
872 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
873 	struct ext4_group_info *iter, *grp;
874 	int i;
875 
876 	if (ac->ac_status == AC_STATUS_FOUND)
877 		return;
878 
879 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR0_OPTIMIZED))
880 		atomic_inc(&sbi->s_bal_cr0_bad_suggestions);
881 
882 	grp = NULL;
883 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
884 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
885 			continue;
886 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
887 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
888 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
889 			continue;
890 		}
891 		grp = NULL;
892 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
893 				    bb_largest_free_order_node) {
894 			if (sbi->s_mb_stats)
895 				atomic64_inc(&sbi->s_bal_cX_groups_considered[0]);
896 			if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) {
897 				grp = iter;
898 				break;
899 			}
900 		}
901 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
902 		if (grp)
903 			break;
904 	}
905 
906 	if (!grp) {
907 		/* Increment cr and search again */
908 		*new_cr = 1;
909 	} else {
910 		*group = grp->bb_group;
911 		ac->ac_last_optimal_group = *group;
912 		ac->ac_flags |= EXT4_MB_CR0_OPTIMIZED;
913 	}
914 }
915 
916 /*
917  * Choose next group by traversing average fragment size tree. Updates *new_cr
918  * if cr lvel needs an update. Sets EXT4_MB_SEARCH_NEXT_LINEAR to indicate that
919  * the linear search should continue for one iteration since there's lock
920  * contention on the rb tree lock.
921  */
922 static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac,
923 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
924 {
925 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
926 	int avg_fragment_size, best_so_far;
927 	struct rb_node *node, *found;
928 	struct ext4_group_info *grp;
929 
930 	/*
931 	 * If there is contention on the lock, instead of waiting for the lock
932 	 * to become available, just continue searching lineraly. We'll resume
933 	 * our rb tree search later starting at ac->ac_last_optimal_group.
934 	 */
935 	if (!read_trylock(&sbi->s_mb_rb_lock)) {
936 		ac->ac_flags |= EXT4_MB_SEARCH_NEXT_LINEAR;
937 		return;
938 	}
939 
940 	if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) {
941 		if (sbi->s_mb_stats)
942 			atomic_inc(&sbi->s_bal_cr1_bad_suggestions);
943 		/* We have found something at CR 1 in the past */
944 		grp = ext4_get_group_info(ac->ac_sb, ac->ac_last_optimal_group);
945 		for (found = rb_next(&grp->bb_avg_fragment_size_rb); found != NULL;
946 		     found = rb_next(found)) {
947 			grp = rb_entry(found, struct ext4_group_info,
948 				       bb_avg_fragment_size_rb);
949 			if (sbi->s_mb_stats)
950 				atomic64_inc(&sbi->s_bal_cX_groups_considered[1]);
951 			if (likely(ext4_mb_good_group(ac, grp->bb_group, 1)))
952 				break;
953 		}
954 		goto done;
955 	}
956 
957 	node = sbi->s_mb_avg_fragment_size_root.rb_node;
958 	best_so_far = 0;
959 	found = NULL;
960 
961 	while (node) {
962 		grp = rb_entry(node, struct ext4_group_info,
963 			       bb_avg_fragment_size_rb);
964 		avg_fragment_size = 0;
965 		if (ext4_mb_good_group(ac, grp->bb_group, 1)) {
966 			avg_fragment_size = grp->bb_fragments ?
967 				grp->bb_free / grp->bb_fragments : 0;
968 			if (!best_so_far || avg_fragment_size < best_so_far) {
969 				best_so_far = avg_fragment_size;
970 				found = node;
971 			}
972 		}
973 		if (avg_fragment_size > ac->ac_g_ex.fe_len)
974 			node = node->rb_right;
975 		else
976 			node = node->rb_left;
977 	}
978 
979 done:
980 	if (found) {
981 		grp = rb_entry(found, struct ext4_group_info,
982 			       bb_avg_fragment_size_rb);
983 		*group = grp->bb_group;
984 		ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED;
985 	} else {
986 		*new_cr = 2;
987 	}
988 
989 	read_unlock(&sbi->s_mb_rb_lock);
990 	ac->ac_last_optimal_group = *group;
991 }
992 
993 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
994 {
995 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
996 		return 0;
997 	if (ac->ac_criteria >= 2)
998 		return 0;
999 	if (ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1000 		return 0;
1001 	return 1;
1002 }
1003 
1004 /*
1005  * Return next linear group for allocation. If linear traversal should not be
1006  * performed, this function just returns the same group
1007  */
1008 static int
1009 next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups)
1010 {
1011 	if (!should_optimize_scan(ac))
1012 		goto inc_and_return;
1013 
1014 	if (ac->ac_groups_linear_remaining) {
1015 		ac->ac_groups_linear_remaining--;
1016 		goto inc_and_return;
1017 	}
1018 
1019 	if (ac->ac_flags & EXT4_MB_SEARCH_NEXT_LINEAR) {
1020 		ac->ac_flags &= ~EXT4_MB_SEARCH_NEXT_LINEAR;
1021 		goto inc_and_return;
1022 	}
1023 
1024 	return group;
1025 inc_and_return:
1026 	/*
1027 	 * Artificially restricted ngroups for non-extent
1028 	 * files makes group > ngroups possible on first loop.
1029 	 */
1030 	return group + 1 >= ngroups ? 0 : group + 1;
1031 }
1032 
1033 /*
1034  * ext4_mb_choose_next_group: choose next group for allocation.
1035  *
1036  * @ac        Allocation Context
1037  * @new_cr    This is an output parameter. If the there is no good group
1038  *            available at current CR level, this field is updated to indicate
1039  *            the new cr level that should be used.
1040  * @group     This is an input / output parameter. As an input it indicates the
1041  *            next group that the allocator intends to use for allocation. As
1042  *            output, this field indicates the next group that should be used as
1043  *            determined by the optimization functions.
1044  * @ngroups   Total number of groups
1045  */
1046 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1047 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1048 {
1049 	*new_cr = ac->ac_criteria;
1050 
1051 	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining)
1052 		return;
1053 
1054 	if (*new_cr == 0) {
1055 		ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups);
1056 	} else if (*new_cr == 1) {
1057 		ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups);
1058 	} else {
1059 		/*
1060 		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1061 		 * bb_free. But until that happens, we should never come here.
1062 		 */
1063 		WARN_ON(1);
1064 	}
1065 }
1066 
1067 /*
1068  * Cache the order of the largest free extent we have available in this block
1069  * group.
1070  */
1071 static void
1072 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1073 {
1074 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1075 	int i;
1076 
1077 	if (test_opt2(sb, MB_OPTIMIZE_SCAN) && grp->bb_largest_free_order >= 0) {
1078 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1079 					      grp->bb_largest_free_order]);
1080 		list_del_init(&grp->bb_largest_free_order_node);
1081 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1082 					      grp->bb_largest_free_order]);
1083 	}
1084 	grp->bb_largest_free_order = -1; /* uninit */
1085 
1086 	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) {
1087 		if (grp->bb_counters[i] > 0) {
1088 			grp->bb_largest_free_order = i;
1089 			break;
1090 		}
1091 	}
1092 	if (test_opt2(sb, MB_OPTIMIZE_SCAN) &&
1093 	    grp->bb_largest_free_order >= 0 && grp->bb_free) {
1094 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1095 					      grp->bb_largest_free_order]);
1096 		list_add_tail(&grp->bb_largest_free_order_node,
1097 		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1098 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1099 					      grp->bb_largest_free_order]);
1100 	}
1101 }
1102 
1103 static noinline_for_stack
1104 void ext4_mb_generate_buddy(struct super_block *sb,
1105 				void *buddy, void *bitmap, ext4_group_t group)
1106 {
1107 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1108 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1109 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1110 	ext4_grpblk_t i = 0;
1111 	ext4_grpblk_t first;
1112 	ext4_grpblk_t len;
1113 	unsigned free = 0;
1114 	unsigned fragments = 0;
1115 	unsigned long long period = get_cycles();
1116 
1117 	/* initialize buddy from bitmap which is aggregation
1118 	 * of on-disk bitmap and preallocations */
1119 	i = mb_find_next_zero_bit(bitmap, max, 0);
1120 	grp->bb_first_free = i;
1121 	while (i < max) {
1122 		fragments++;
1123 		first = i;
1124 		i = mb_find_next_bit(bitmap, max, i);
1125 		len = i - first;
1126 		free += len;
1127 		if (len > 1)
1128 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1129 		else
1130 			grp->bb_counters[0]++;
1131 		if (i < max)
1132 			i = mb_find_next_zero_bit(bitmap, max, i);
1133 	}
1134 	grp->bb_fragments = fragments;
1135 
1136 	if (free != grp->bb_free) {
1137 		ext4_grp_locked_error(sb, group, 0, 0,
1138 				      "block bitmap and bg descriptor "
1139 				      "inconsistent: %u vs %u free clusters",
1140 				      free, grp->bb_free);
1141 		/*
1142 		 * If we intend to continue, we consider group descriptor
1143 		 * corrupt and update bb_free using bitmap value
1144 		 */
1145 		grp->bb_free = free;
1146 		ext4_mark_group_bitmap_corrupted(sb, group,
1147 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1148 	}
1149 	mb_set_largest_free_order(sb, grp);
1150 
1151 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1152 
1153 	period = get_cycles() - period;
1154 	atomic_inc(&sbi->s_mb_buddies_generated);
1155 	atomic64_add(period, &sbi->s_mb_generation_time);
1156 	mb_update_avg_fragment_size(sb, grp);
1157 }
1158 
1159 /* The buddy information is attached the buddy cache inode
1160  * for convenience. The information regarding each group
1161  * is loaded via ext4_mb_load_buddy. The information involve
1162  * block bitmap and buddy information. The information are
1163  * stored in the inode as
1164  *
1165  * {                        page                        }
1166  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1167  *
1168  *
1169  * one block each for bitmap and buddy information.
1170  * So for each group we take up 2 blocks. A page can
1171  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1172  * So it can have information regarding groups_per_page which
1173  * is blocks_per_page/2
1174  *
1175  * Locking note:  This routine takes the block group lock of all groups
1176  * for this page; do not hold this lock when calling this routine!
1177  */
1178 
1179 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1180 {
1181 	ext4_group_t ngroups;
1182 	int blocksize;
1183 	int blocks_per_page;
1184 	int groups_per_page;
1185 	int err = 0;
1186 	int i;
1187 	ext4_group_t first_group, group;
1188 	int first_block;
1189 	struct super_block *sb;
1190 	struct buffer_head *bhs;
1191 	struct buffer_head **bh = NULL;
1192 	struct inode *inode;
1193 	char *data;
1194 	char *bitmap;
1195 	struct ext4_group_info *grinfo;
1196 
1197 	inode = page->mapping->host;
1198 	sb = inode->i_sb;
1199 	ngroups = ext4_get_groups_count(sb);
1200 	blocksize = i_blocksize(inode);
1201 	blocks_per_page = PAGE_SIZE / blocksize;
1202 
1203 	mb_debug(sb, "init page %lu\n", page->index);
1204 
1205 	groups_per_page = blocks_per_page >> 1;
1206 	if (groups_per_page == 0)
1207 		groups_per_page = 1;
1208 
1209 	/* allocate buffer_heads to read bitmaps */
1210 	if (groups_per_page > 1) {
1211 		i = sizeof(struct buffer_head *) * groups_per_page;
1212 		bh = kzalloc(i, gfp);
1213 		if (bh == NULL) {
1214 			err = -ENOMEM;
1215 			goto out;
1216 		}
1217 	} else
1218 		bh = &bhs;
1219 
1220 	first_group = page->index * blocks_per_page / 2;
1221 
1222 	/* read all groups the page covers into the cache */
1223 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1224 		if (group >= ngroups)
1225 			break;
1226 
1227 		grinfo = ext4_get_group_info(sb, group);
1228 		/*
1229 		 * If page is uptodate then we came here after online resize
1230 		 * which added some new uninitialized group info structs, so
1231 		 * we must skip all initialized uptodate buddies on the page,
1232 		 * which may be currently in use by an allocating task.
1233 		 */
1234 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1235 			bh[i] = NULL;
1236 			continue;
1237 		}
1238 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1239 		if (IS_ERR(bh[i])) {
1240 			err = PTR_ERR(bh[i]);
1241 			bh[i] = NULL;
1242 			goto out;
1243 		}
1244 		mb_debug(sb, "read bitmap for group %u\n", group);
1245 	}
1246 
1247 	/* wait for I/O completion */
1248 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1249 		int err2;
1250 
1251 		if (!bh[i])
1252 			continue;
1253 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1254 		if (!err)
1255 			err = err2;
1256 	}
1257 
1258 	first_block = page->index * blocks_per_page;
1259 	for (i = 0; i < blocks_per_page; i++) {
1260 		group = (first_block + i) >> 1;
1261 		if (group >= ngroups)
1262 			break;
1263 
1264 		if (!bh[group - first_group])
1265 			/* skip initialized uptodate buddy */
1266 			continue;
1267 
1268 		if (!buffer_verified(bh[group - first_group]))
1269 			/* Skip faulty bitmaps */
1270 			continue;
1271 		err = 0;
1272 
1273 		/*
1274 		 * data carry information regarding this
1275 		 * particular group in the format specified
1276 		 * above
1277 		 *
1278 		 */
1279 		data = page_address(page) + (i * blocksize);
1280 		bitmap = bh[group - first_group]->b_data;
1281 
1282 		/*
1283 		 * We place the buddy block and bitmap block
1284 		 * close together
1285 		 */
1286 		if ((first_block + i) & 1) {
1287 			/* this is block of buddy */
1288 			BUG_ON(incore == NULL);
1289 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1290 				group, page->index, i * blocksize);
1291 			trace_ext4_mb_buddy_bitmap_load(sb, group);
1292 			grinfo = ext4_get_group_info(sb, group);
1293 			grinfo->bb_fragments = 0;
1294 			memset(grinfo->bb_counters, 0,
1295 			       sizeof(*grinfo->bb_counters) *
1296 			       (MB_NUM_ORDERS(sb)));
1297 			/*
1298 			 * incore got set to the group block bitmap below
1299 			 */
1300 			ext4_lock_group(sb, group);
1301 			/* init the buddy */
1302 			memset(data, 0xff, blocksize);
1303 			ext4_mb_generate_buddy(sb, data, incore, group);
1304 			ext4_unlock_group(sb, group);
1305 			incore = NULL;
1306 		} else {
1307 			/* this is block of bitmap */
1308 			BUG_ON(incore != NULL);
1309 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1310 				group, page->index, i * blocksize);
1311 			trace_ext4_mb_bitmap_load(sb, group);
1312 
1313 			/* see comments in ext4_mb_put_pa() */
1314 			ext4_lock_group(sb, group);
1315 			memcpy(data, bitmap, blocksize);
1316 
1317 			/* mark all preallocated blks used in in-core bitmap */
1318 			ext4_mb_generate_from_pa(sb, data, group);
1319 			ext4_mb_generate_from_freelist(sb, data, group);
1320 			ext4_unlock_group(sb, group);
1321 
1322 			/* set incore so that the buddy information can be
1323 			 * generated using this
1324 			 */
1325 			incore = data;
1326 		}
1327 	}
1328 	SetPageUptodate(page);
1329 
1330 out:
1331 	if (bh) {
1332 		for (i = 0; i < groups_per_page; i++)
1333 			brelse(bh[i]);
1334 		if (bh != &bhs)
1335 			kfree(bh);
1336 	}
1337 	return err;
1338 }
1339 
1340 /*
1341  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1342  * on the same buddy page doesn't happen whild holding the buddy page lock.
1343  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1344  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1345  */
1346 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1347 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1348 {
1349 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1350 	int block, pnum, poff;
1351 	int blocks_per_page;
1352 	struct page *page;
1353 
1354 	e4b->bd_buddy_page = NULL;
1355 	e4b->bd_bitmap_page = NULL;
1356 
1357 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1358 	/*
1359 	 * the buddy cache inode stores the block bitmap
1360 	 * and buddy information in consecutive blocks.
1361 	 * So for each group we need two blocks.
1362 	 */
1363 	block = group * 2;
1364 	pnum = block / blocks_per_page;
1365 	poff = block % blocks_per_page;
1366 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1367 	if (!page)
1368 		return -ENOMEM;
1369 	BUG_ON(page->mapping != inode->i_mapping);
1370 	e4b->bd_bitmap_page = page;
1371 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1372 
1373 	if (blocks_per_page >= 2) {
1374 		/* buddy and bitmap are on the same page */
1375 		return 0;
1376 	}
1377 
1378 	block++;
1379 	pnum = block / blocks_per_page;
1380 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1381 	if (!page)
1382 		return -ENOMEM;
1383 	BUG_ON(page->mapping != inode->i_mapping);
1384 	e4b->bd_buddy_page = page;
1385 	return 0;
1386 }
1387 
1388 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1389 {
1390 	if (e4b->bd_bitmap_page) {
1391 		unlock_page(e4b->bd_bitmap_page);
1392 		put_page(e4b->bd_bitmap_page);
1393 	}
1394 	if (e4b->bd_buddy_page) {
1395 		unlock_page(e4b->bd_buddy_page);
1396 		put_page(e4b->bd_buddy_page);
1397 	}
1398 }
1399 
1400 /*
1401  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1402  * block group lock of all groups for this page; do not hold the BG lock when
1403  * calling this routine!
1404  */
1405 static noinline_for_stack
1406 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1407 {
1408 
1409 	struct ext4_group_info *this_grp;
1410 	struct ext4_buddy e4b;
1411 	struct page *page;
1412 	int ret = 0;
1413 
1414 	might_sleep();
1415 	mb_debug(sb, "init group %u\n", group);
1416 	this_grp = ext4_get_group_info(sb, group);
1417 	/*
1418 	 * This ensures that we don't reinit the buddy cache
1419 	 * page which map to the group from which we are already
1420 	 * allocating. If we are looking at the buddy cache we would
1421 	 * have taken a reference using ext4_mb_load_buddy and that
1422 	 * would have pinned buddy page to page cache.
1423 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1424 	 * page accessed.
1425 	 */
1426 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1427 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1428 		/*
1429 		 * somebody initialized the group
1430 		 * return without doing anything
1431 		 */
1432 		goto err;
1433 	}
1434 
1435 	page = e4b.bd_bitmap_page;
1436 	ret = ext4_mb_init_cache(page, NULL, gfp);
1437 	if (ret)
1438 		goto err;
1439 	if (!PageUptodate(page)) {
1440 		ret = -EIO;
1441 		goto err;
1442 	}
1443 
1444 	if (e4b.bd_buddy_page == NULL) {
1445 		/*
1446 		 * If both the bitmap and buddy are in
1447 		 * the same page we don't need to force
1448 		 * init the buddy
1449 		 */
1450 		ret = 0;
1451 		goto err;
1452 	}
1453 	/* init buddy cache */
1454 	page = e4b.bd_buddy_page;
1455 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1456 	if (ret)
1457 		goto err;
1458 	if (!PageUptodate(page)) {
1459 		ret = -EIO;
1460 		goto err;
1461 	}
1462 err:
1463 	ext4_mb_put_buddy_page_lock(&e4b);
1464 	return ret;
1465 }
1466 
1467 /*
1468  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1469  * block group lock of all groups for this page; do not hold the BG lock when
1470  * calling this routine!
1471  */
1472 static noinline_for_stack int
1473 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1474 		       struct ext4_buddy *e4b, gfp_t gfp)
1475 {
1476 	int blocks_per_page;
1477 	int block;
1478 	int pnum;
1479 	int poff;
1480 	struct page *page;
1481 	int ret;
1482 	struct ext4_group_info *grp;
1483 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1484 	struct inode *inode = sbi->s_buddy_cache;
1485 
1486 	might_sleep();
1487 	mb_debug(sb, "load group %u\n", group);
1488 
1489 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1490 	grp = ext4_get_group_info(sb, group);
1491 
1492 	e4b->bd_blkbits = sb->s_blocksize_bits;
1493 	e4b->bd_info = grp;
1494 	e4b->bd_sb = sb;
1495 	e4b->bd_group = group;
1496 	e4b->bd_buddy_page = NULL;
1497 	e4b->bd_bitmap_page = NULL;
1498 
1499 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1500 		/*
1501 		 * we need full data about the group
1502 		 * to make a good selection
1503 		 */
1504 		ret = ext4_mb_init_group(sb, group, gfp);
1505 		if (ret)
1506 			return ret;
1507 	}
1508 
1509 	/*
1510 	 * the buddy cache inode stores the block bitmap
1511 	 * and buddy information in consecutive blocks.
1512 	 * So for each group we need two blocks.
1513 	 */
1514 	block = group * 2;
1515 	pnum = block / blocks_per_page;
1516 	poff = block % blocks_per_page;
1517 
1518 	/* we could use find_or_create_page(), but it locks page
1519 	 * what we'd like to avoid in fast path ... */
1520 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1521 	if (page == NULL || !PageUptodate(page)) {
1522 		if (page)
1523 			/*
1524 			 * drop the page reference and try
1525 			 * to get the page with lock. If we
1526 			 * are not uptodate that implies
1527 			 * somebody just created the page but
1528 			 * is yet to initialize the same. So
1529 			 * wait for it to initialize.
1530 			 */
1531 			put_page(page);
1532 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1533 		if (page) {
1534 			BUG_ON(page->mapping != inode->i_mapping);
1535 			if (!PageUptodate(page)) {
1536 				ret = ext4_mb_init_cache(page, NULL, gfp);
1537 				if (ret) {
1538 					unlock_page(page);
1539 					goto err;
1540 				}
1541 				mb_cmp_bitmaps(e4b, page_address(page) +
1542 					       (poff * sb->s_blocksize));
1543 			}
1544 			unlock_page(page);
1545 		}
1546 	}
1547 	if (page == NULL) {
1548 		ret = -ENOMEM;
1549 		goto err;
1550 	}
1551 	if (!PageUptodate(page)) {
1552 		ret = -EIO;
1553 		goto err;
1554 	}
1555 
1556 	/* Pages marked accessed already */
1557 	e4b->bd_bitmap_page = page;
1558 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1559 
1560 	block++;
1561 	pnum = block / blocks_per_page;
1562 	poff = block % blocks_per_page;
1563 
1564 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1565 	if (page == NULL || !PageUptodate(page)) {
1566 		if (page)
1567 			put_page(page);
1568 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1569 		if (page) {
1570 			BUG_ON(page->mapping != inode->i_mapping);
1571 			if (!PageUptodate(page)) {
1572 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1573 							 gfp);
1574 				if (ret) {
1575 					unlock_page(page);
1576 					goto err;
1577 				}
1578 			}
1579 			unlock_page(page);
1580 		}
1581 	}
1582 	if (page == NULL) {
1583 		ret = -ENOMEM;
1584 		goto err;
1585 	}
1586 	if (!PageUptodate(page)) {
1587 		ret = -EIO;
1588 		goto err;
1589 	}
1590 
1591 	/* Pages marked accessed already */
1592 	e4b->bd_buddy_page = page;
1593 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1594 
1595 	return 0;
1596 
1597 err:
1598 	if (page)
1599 		put_page(page);
1600 	if (e4b->bd_bitmap_page)
1601 		put_page(e4b->bd_bitmap_page);
1602 	if (e4b->bd_buddy_page)
1603 		put_page(e4b->bd_buddy_page);
1604 	e4b->bd_buddy = NULL;
1605 	e4b->bd_bitmap = NULL;
1606 	return ret;
1607 }
1608 
1609 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1610 			      struct ext4_buddy *e4b)
1611 {
1612 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1613 }
1614 
1615 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1616 {
1617 	if (e4b->bd_bitmap_page)
1618 		put_page(e4b->bd_bitmap_page);
1619 	if (e4b->bd_buddy_page)
1620 		put_page(e4b->bd_buddy_page);
1621 }
1622 
1623 
1624 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1625 {
1626 	int order = 1, max;
1627 	void *bb;
1628 
1629 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1630 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1631 
1632 	while (order <= e4b->bd_blkbits + 1) {
1633 		bb = mb_find_buddy(e4b, order, &max);
1634 		if (!mb_test_bit(block >> order, bb)) {
1635 			/* this block is part of buddy of order 'order' */
1636 			return order;
1637 		}
1638 		order++;
1639 	}
1640 	return 0;
1641 }
1642 
1643 static void mb_clear_bits(void *bm, int cur, int len)
1644 {
1645 	__u32 *addr;
1646 
1647 	len = cur + len;
1648 	while (cur < len) {
1649 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1650 			/* fast path: clear whole word at once */
1651 			addr = bm + (cur >> 3);
1652 			*addr = 0;
1653 			cur += 32;
1654 			continue;
1655 		}
1656 		mb_clear_bit(cur, bm);
1657 		cur++;
1658 	}
1659 }
1660 
1661 /* clear bits in given range
1662  * will return first found zero bit if any, -1 otherwise
1663  */
1664 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1665 {
1666 	__u32 *addr;
1667 	int zero_bit = -1;
1668 
1669 	len = cur + len;
1670 	while (cur < len) {
1671 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1672 			/* fast path: clear whole word at once */
1673 			addr = bm + (cur >> 3);
1674 			if (*addr != (__u32)(-1) && zero_bit == -1)
1675 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1676 			*addr = 0;
1677 			cur += 32;
1678 			continue;
1679 		}
1680 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1681 			zero_bit = cur;
1682 		cur++;
1683 	}
1684 
1685 	return zero_bit;
1686 }
1687 
1688 void ext4_set_bits(void *bm, int cur, int len)
1689 {
1690 	__u32 *addr;
1691 
1692 	len = cur + len;
1693 	while (cur < len) {
1694 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1695 			/* fast path: set whole word at once */
1696 			addr = bm + (cur >> 3);
1697 			*addr = 0xffffffff;
1698 			cur += 32;
1699 			continue;
1700 		}
1701 		mb_set_bit(cur, bm);
1702 		cur++;
1703 	}
1704 }
1705 
1706 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1707 {
1708 	if (mb_test_bit(*bit + side, bitmap)) {
1709 		mb_clear_bit(*bit, bitmap);
1710 		(*bit) -= side;
1711 		return 1;
1712 	}
1713 	else {
1714 		(*bit) += side;
1715 		mb_set_bit(*bit, bitmap);
1716 		return -1;
1717 	}
1718 }
1719 
1720 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1721 {
1722 	int max;
1723 	int order = 1;
1724 	void *buddy = mb_find_buddy(e4b, order, &max);
1725 
1726 	while (buddy) {
1727 		void *buddy2;
1728 
1729 		/* Bits in range [first; last] are known to be set since
1730 		 * corresponding blocks were allocated. Bits in range
1731 		 * (first; last) will stay set because they form buddies on
1732 		 * upper layer. We just deal with borders if they don't
1733 		 * align with upper layer and then go up.
1734 		 * Releasing entire group is all about clearing
1735 		 * single bit of highest order buddy.
1736 		 */
1737 
1738 		/* Example:
1739 		 * ---------------------------------
1740 		 * |   1   |   1   |   1   |   1   |
1741 		 * ---------------------------------
1742 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1743 		 * ---------------------------------
1744 		 *   0   1   2   3   4   5   6   7
1745 		 *      \_____________________/
1746 		 *
1747 		 * Neither [1] nor [6] is aligned to above layer.
1748 		 * Left neighbour [0] is free, so mark it busy,
1749 		 * decrease bb_counters and extend range to
1750 		 * [0; 6]
1751 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1752 		 * mark [6] free, increase bb_counters and shrink range to
1753 		 * [0; 5].
1754 		 * Then shift range to [0; 2], go up and do the same.
1755 		 */
1756 
1757 
1758 		if (first & 1)
1759 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1760 		if (!(last & 1))
1761 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1762 		if (first > last)
1763 			break;
1764 		order++;
1765 
1766 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1767 			mb_clear_bits(buddy, first, last - first + 1);
1768 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1769 			break;
1770 		}
1771 		first >>= 1;
1772 		last >>= 1;
1773 		buddy = buddy2;
1774 	}
1775 }
1776 
1777 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1778 			   int first, int count)
1779 {
1780 	int left_is_free = 0;
1781 	int right_is_free = 0;
1782 	int block;
1783 	int last = first + count - 1;
1784 	struct super_block *sb = e4b->bd_sb;
1785 
1786 	if (WARN_ON(count == 0))
1787 		return;
1788 	BUG_ON(last >= (sb->s_blocksize << 3));
1789 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1790 	/* Don't bother if the block group is corrupt. */
1791 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1792 		return;
1793 
1794 	mb_check_buddy(e4b);
1795 	mb_free_blocks_double(inode, e4b, first, count);
1796 
1797 	this_cpu_inc(discard_pa_seq);
1798 	e4b->bd_info->bb_free += count;
1799 	if (first < e4b->bd_info->bb_first_free)
1800 		e4b->bd_info->bb_first_free = first;
1801 
1802 	/* access memory sequentially: check left neighbour,
1803 	 * clear range and then check right neighbour
1804 	 */
1805 	if (first != 0)
1806 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1807 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1808 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1809 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1810 
1811 	if (unlikely(block != -1)) {
1812 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1813 		ext4_fsblk_t blocknr;
1814 
1815 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1816 		blocknr += EXT4_C2B(sbi, block);
1817 		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1818 			ext4_grp_locked_error(sb, e4b->bd_group,
1819 					      inode ? inode->i_ino : 0,
1820 					      blocknr,
1821 					      "freeing already freed block (bit %u); block bitmap corrupt.",
1822 					      block);
1823 			ext4_mark_group_bitmap_corrupted(
1824 				sb, e4b->bd_group,
1825 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1826 		}
1827 		goto done;
1828 	}
1829 
1830 	/* let's maintain fragments counter */
1831 	if (left_is_free && right_is_free)
1832 		e4b->bd_info->bb_fragments--;
1833 	else if (!left_is_free && !right_is_free)
1834 		e4b->bd_info->bb_fragments++;
1835 
1836 	/* buddy[0] == bd_bitmap is a special case, so handle
1837 	 * it right away and let mb_buddy_mark_free stay free of
1838 	 * zero order checks.
1839 	 * Check if neighbours are to be coaleasced,
1840 	 * adjust bitmap bb_counters and borders appropriately.
1841 	 */
1842 	if (first & 1) {
1843 		first += !left_is_free;
1844 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1845 	}
1846 	if (!(last & 1)) {
1847 		last -= !right_is_free;
1848 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1849 	}
1850 
1851 	if (first <= last)
1852 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1853 
1854 done:
1855 	mb_set_largest_free_order(sb, e4b->bd_info);
1856 	mb_update_avg_fragment_size(sb, e4b->bd_info);
1857 	mb_check_buddy(e4b);
1858 }
1859 
1860 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1861 				int needed, struct ext4_free_extent *ex)
1862 {
1863 	int next = block;
1864 	int max, order;
1865 	void *buddy;
1866 
1867 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1868 	BUG_ON(ex == NULL);
1869 
1870 	buddy = mb_find_buddy(e4b, 0, &max);
1871 	BUG_ON(buddy == NULL);
1872 	BUG_ON(block >= max);
1873 	if (mb_test_bit(block, buddy)) {
1874 		ex->fe_len = 0;
1875 		ex->fe_start = 0;
1876 		ex->fe_group = 0;
1877 		return 0;
1878 	}
1879 
1880 	/* find actual order */
1881 	order = mb_find_order_for_block(e4b, block);
1882 	block = block >> order;
1883 
1884 	ex->fe_len = 1 << order;
1885 	ex->fe_start = block << order;
1886 	ex->fe_group = e4b->bd_group;
1887 
1888 	/* calc difference from given start */
1889 	next = next - ex->fe_start;
1890 	ex->fe_len -= next;
1891 	ex->fe_start += next;
1892 
1893 	while (needed > ex->fe_len &&
1894 	       mb_find_buddy(e4b, order, &max)) {
1895 
1896 		if (block + 1 >= max)
1897 			break;
1898 
1899 		next = (block + 1) * (1 << order);
1900 		if (mb_test_bit(next, e4b->bd_bitmap))
1901 			break;
1902 
1903 		order = mb_find_order_for_block(e4b, next);
1904 
1905 		block = next >> order;
1906 		ex->fe_len += 1 << order;
1907 	}
1908 
1909 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1910 		/* Should never happen! (but apparently sometimes does?!?) */
1911 		WARN_ON(1);
1912 		ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1913 			   "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1914 			   block, order, needed, ex->fe_group, ex->fe_start,
1915 			   ex->fe_len, ex->fe_logical);
1916 		ex->fe_len = 0;
1917 		ex->fe_start = 0;
1918 		ex->fe_group = 0;
1919 	}
1920 	return ex->fe_len;
1921 }
1922 
1923 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1924 {
1925 	int ord;
1926 	int mlen = 0;
1927 	int max = 0;
1928 	int cur;
1929 	int start = ex->fe_start;
1930 	int len = ex->fe_len;
1931 	unsigned ret = 0;
1932 	int len0 = len;
1933 	void *buddy;
1934 
1935 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1936 	BUG_ON(e4b->bd_group != ex->fe_group);
1937 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1938 	mb_check_buddy(e4b);
1939 	mb_mark_used_double(e4b, start, len);
1940 
1941 	this_cpu_inc(discard_pa_seq);
1942 	e4b->bd_info->bb_free -= len;
1943 	if (e4b->bd_info->bb_first_free == start)
1944 		e4b->bd_info->bb_first_free += len;
1945 
1946 	/* let's maintain fragments counter */
1947 	if (start != 0)
1948 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1949 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1950 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1951 	if (mlen && max)
1952 		e4b->bd_info->bb_fragments++;
1953 	else if (!mlen && !max)
1954 		e4b->bd_info->bb_fragments--;
1955 
1956 	/* let's maintain buddy itself */
1957 	while (len) {
1958 		ord = mb_find_order_for_block(e4b, start);
1959 
1960 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1961 			/* the whole chunk may be allocated at once! */
1962 			mlen = 1 << ord;
1963 			buddy = mb_find_buddy(e4b, ord, &max);
1964 			BUG_ON((start >> ord) >= max);
1965 			mb_set_bit(start >> ord, buddy);
1966 			e4b->bd_info->bb_counters[ord]--;
1967 			start += mlen;
1968 			len -= mlen;
1969 			BUG_ON(len < 0);
1970 			continue;
1971 		}
1972 
1973 		/* store for history */
1974 		if (ret == 0)
1975 			ret = len | (ord << 16);
1976 
1977 		/* we have to split large buddy */
1978 		BUG_ON(ord <= 0);
1979 		buddy = mb_find_buddy(e4b, ord, &max);
1980 		mb_set_bit(start >> ord, buddy);
1981 		e4b->bd_info->bb_counters[ord]--;
1982 
1983 		ord--;
1984 		cur = (start >> ord) & ~1U;
1985 		buddy = mb_find_buddy(e4b, ord, &max);
1986 		mb_clear_bit(cur, buddy);
1987 		mb_clear_bit(cur + 1, buddy);
1988 		e4b->bd_info->bb_counters[ord]++;
1989 		e4b->bd_info->bb_counters[ord]++;
1990 	}
1991 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1992 
1993 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
1994 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1995 	mb_check_buddy(e4b);
1996 
1997 	return ret;
1998 }
1999 
2000 /*
2001  * Must be called under group lock!
2002  */
2003 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2004 					struct ext4_buddy *e4b)
2005 {
2006 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2007 	int ret;
2008 
2009 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2010 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2011 
2012 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2013 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2014 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
2015 
2016 	/* preallocation can change ac_b_ex, thus we store actually
2017 	 * allocated blocks for history */
2018 	ac->ac_f_ex = ac->ac_b_ex;
2019 
2020 	ac->ac_status = AC_STATUS_FOUND;
2021 	ac->ac_tail = ret & 0xffff;
2022 	ac->ac_buddy = ret >> 16;
2023 
2024 	/*
2025 	 * take the page reference. We want the page to be pinned
2026 	 * so that we don't get a ext4_mb_init_cache_call for this
2027 	 * group until we update the bitmap. That would mean we
2028 	 * double allocate blocks. The reference is dropped
2029 	 * in ext4_mb_release_context
2030 	 */
2031 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
2032 	get_page(ac->ac_bitmap_page);
2033 	ac->ac_buddy_page = e4b->bd_buddy_page;
2034 	get_page(ac->ac_buddy_page);
2035 	/* store last allocated for subsequent stream allocation */
2036 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2037 		spin_lock(&sbi->s_md_lock);
2038 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2039 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2040 		spin_unlock(&sbi->s_md_lock);
2041 	}
2042 	/*
2043 	 * As we've just preallocated more space than
2044 	 * user requested originally, we store allocated
2045 	 * space in a special descriptor.
2046 	 */
2047 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2048 		ext4_mb_new_preallocation(ac);
2049 
2050 }
2051 
2052 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2053 					struct ext4_buddy *e4b,
2054 					int finish_group)
2055 {
2056 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2057 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2058 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2059 	struct ext4_free_extent ex;
2060 	int max;
2061 
2062 	if (ac->ac_status == AC_STATUS_FOUND)
2063 		return;
2064 	/*
2065 	 * We don't want to scan for a whole year
2066 	 */
2067 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2068 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2069 		ac->ac_status = AC_STATUS_BREAK;
2070 		return;
2071 	}
2072 
2073 	/*
2074 	 * Haven't found good chunk so far, let's continue
2075 	 */
2076 	if (bex->fe_len < gex->fe_len)
2077 		return;
2078 
2079 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2080 			&& bex->fe_group == e4b->bd_group) {
2081 		/* recheck chunk's availability - we don't know
2082 		 * when it was found (within this lock-unlock
2083 		 * period or not) */
2084 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
2085 		if (max >= gex->fe_len) {
2086 			ext4_mb_use_best_found(ac, e4b);
2087 			return;
2088 		}
2089 	}
2090 }
2091 
2092 /*
2093  * The routine checks whether found extent is good enough. If it is,
2094  * then the extent gets marked used and flag is set to the context
2095  * to stop scanning. Otherwise, the extent is compared with the
2096  * previous found extent and if new one is better, then it's stored
2097  * in the context. Later, the best found extent will be used, if
2098  * mballoc can't find good enough extent.
2099  *
2100  * FIXME: real allocation policy is to be designed yet!
2101  */
2102 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2103 					struct ext4_free_extent *ex,
2104 					struct ext4_buddy *e4b)
2105 {
2106 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2107 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2108 
2109 	BUG_ON(ex->fe_len <= 0);
2110 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2111 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2112 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2113 
2114 	ac->ac_found++;
2115 
2116 	/*
2117 	 * The special case - take what you catch first
2118 	 */
2119 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2120 		*bex = *ex;
2121 		ext4_mb_use_best_found(ac, e4b);
2122 		return;
2123 	}
2124 
2125 	/*
2126 	 * Let's check whether the chuck is good enough
2127 	 */
2128 	if (ex->fe_len == gex->fe_len) {
2129 		*bex = *ex;
2130 		ext4_mb_use_best_found(ac, e4b);
2131 		return;
2132 	}
2133 
2134 	/*
2135 	 * If this is first found extent, just store it in the context
2136 	 */
2137 	if (bex->fe_len == 0) {
2138 		*bex = *ex;
2139 		return;
2140 	}
2141 
2142 	/*
2143 	 * If new found extent is better, store it in the context
2144 	 */
2145 	if (bex->fe_len < gex->fe_len) {
2146 		/* if the request isn't satisfied, any found extent
2147 		 * larger than previous best one is better */
2148 		if (ex->fe_len > bex->fe_len)
2149 			*bex = *ex;
2150 	} else if (ex->fe_len > gex->fe_len) {
2151 		/* if the request is satisfied, then we try to find
2152 		 * an extent that still satisfy the request, but is
2153 		 * smaller than previous one */
2154 		if (ex->fe_len < bex->fe_len)
2155 			*bex = *ex;
2156 	}
2157 
2158 	ext4_mb_check_limits(ac, e4b, 0);
2159 }
2160 
2161 static noinline_for_stack
2162 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2163 					struct ext4_buddy *e4b)
2164 {
2165 	struct ext4_free_extent ex = ac->ac_b_ex;
2166 	ext4_group_t group = ex.fe_group;
2167 	int max;
2168 	int err;
2169 
2170 	BUG_ON(ex.fe_len <= 0);
2171 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2172 	if (err)
2173 		return err;
2174 
2175 	ext4_lock_group(ac->ac_sb, group);
2176 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2177 
2178 	if (max > 0) {
2179 		ac->ac_b_ex = ex;
2180 		ext4_mb_use_best_found(ac, e4b);
2181 	}
2182 
2183 	ext4_unlock_group(ac->ac_sb, group);
2184 	ext4_mb_unload_buddy(e4b);
2185 
2186 	return 0;
2187 }
2188 
2189 static noinline_for_stack
2190 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2191 				struct ext4_buddy *e4b)
2192 {
2193 	ext4_group_t group = ac->ac_g_ex.fe_group;
2194 	int max;
2195 	int err;
2196 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2197 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2198 	struct ext4_free_extent ex;
2199 
2200 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
2201 		return 0;
2202 	if (grp->bb_free == 0)
2203 		return 0;
2204 
2205 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2206 	if (err)
2207 		return err;
2208 
2209 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
2210 		ext4_mb_unload_buddy(e4b);
2211 		return 0;
2212 	}
2213 
2214 	ext4_lock_group(ac->ac_sb, group);
2215 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2216 			     ac->ac_g_ex.fe_len, &ex);
2217 	ex.fe_logical = 0xDEADFA11; /* debug value */
2218 
2219 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
2220 		ext4_fsblk_t start;
2221 
2222 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
2223 			ex.fe_start;
2224 		/* use do_div to get remainder (would be 64-bit modulo) */
2225 		if (do_div(start, sbi->s_stripe) == 0) {
2226 			ac->ac_found++;
2227 			ac->ac_b_ex = ex;
2228 			ext4_mb_use_best_found(ac, e4b);
2229 		}
2230 	} else if (max >= ac->ac_g_ex.fe_len) {
2231 		BUG_ON(ex.fe_len <= 0);
2232 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2233 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2234 		ac->ac_found++;
2235 		ac->ac_b_ex = ex;
2236 		ext4_mb_use_best_found(ac, e4b);
2237 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2238 		/* Sometimes, caller may want to merge even small
2239 		 * number of blocks to an existing extent */
2240 		BUG_ON(ex.fe_len <= 0);
2241 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2242 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2243 		ac->ac_found++;
2244 		ac->ac_b_ex = ex;
2245 		ext4_mb_use_best_found(ac, e4b);
2246 	}
2247 	ext4_unlock_group(ac->ac_sb, group);
2248 	ext4_mb_unload_buddy(e4b);
2249 
2250 	return 0;
2251 }
2252 
2253 /*
2254  * The routine scans buddy structures (not bitmap!) from given order
2255  * to max order and tries to find big enough chunk to satisfy the req
2256  */
2257 static noinline_for_stack
2258 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2259 					struct ext4_buddy *e4b)
2260 {
2261 	struct super_block *sb = ac->ac_sb;
2262 	struct ext4_group_info *grp = e4b->bd_info;
2263 	void *buddy;
2264 	int i;
2265 	int k;
2266 	int max;
2267 
2268 	BUG_ON(ac->ac_2order <= 0);
2269 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2270 		if (grp->bb_counters[i] == 0)
2271 			continue;
2272 
2273 		buddy = mb_find_buddy(e4b, i, &max);
2274 		BUG_ON(buddy == NULL);
2275 
2276 		k = mb_find_next_zero_bit(buddy, max, 0);
2277 		if (k >= max) {
2278 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2279 				"%d free clusters of order %d. But found 0",
2280 				grp->bb_counters[i], i);
2281 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2282 					 e4b->bd_group,
2283 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2284 			break;
2285 		}
2286 		ac->ac_found++;
2287 
2288 		ac->ac_b_ex.fe_len = 1 << i;
2289 		ac->ac_b_ex.fe_start = k << i;
2290 		ac->ac_b_ex.fe_group = e4b->bd_group;
2291 
2292 		ext4_mb_use_best_found(ac, e4b);
2293 
2294 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2295 
2296 		if (EXT4_SB(sb)->s_mb_stats)
2297 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2298 
2299 		break;
2300 	}
2301 }
2302 
2303 /*
2304  * The routine scans the group and measures all found extents.
2305  * In order to optimize scanning, caller must pass number of
2306  * free blocks in the group, so the routine can know upper limit.
2307  */
2308 static noinline_for_stack
2309 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2310 					struct ext4_buddy *e4b)
2311 {
2312 	struct super_block *sb = ac->ac_sb;
2313 	void *bitmap = e4b->bd_bitmap;
2314 	struct ext4_free_extent ex;
2315 	int i;
2316 	int free;
2317 
2318 	free = e4b->bd_info->bb_free;
2319 	if (WARN_ON(free <= 0))
2320 		return;
2321 
2322 	i = e4b->bd_info->bb_first_free;
2323 
2324 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2325 		i = mb_find_next_zero_bit(bitmap,
2326 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2327 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2328 			/*
2329 			 * IF we have corrupt bitmap, we won't find any
2330 			 * free blocks even though group info says we
2331 			 * have free blocks
2332 			 */
2333 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2334 					"%d free clusters as per "
2335 					"group info. But bitmap says 0",
2336 					free);
2337 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2338 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2339 			break;
2340 		}
2341 
2342 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2343 		if (WARN_ON(ex.fe_len <= 0))
2344 			break;
2345 		if (free < ex.fe_len) {
2346 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2347 					"%d free clusters as per "
2348 					"group info. But got %d blocks",
2349 					free, ex.fe_len);
2350 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2351 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2352 			/*
2353 			 * The number of free blocks differs. This mostly
2354 			 * indicate that the bitmap is corrupt. So exit
2355 			 * without claiming the space.
2356 			 */
2357 			break;
2358 		}
2359 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2360 		ext4_mb_measure_extent(ac, &ex, e4b);
2361 
2362 		i += ex.fe_len;
2363 		free -= ex.fe_len;
2364 	}
2365 
2366 	ext4_mb_check_limits(ac, e4b, 1);
2367 }
2368 
2369 /*
2370  * This is a special case for storages like raid5
2371  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2372  */
2373 static noinline_for_stack
2374 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2375 				 struct ext4_buddy *e4b)
2376 {
2377 	struct super_block *sb = ac->ac_sb;
2378 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2379 	void *bitmap = e4b->bd_bitmap;
2380 	struct ext4_free_extent ex;
2381 	ext4_fsblk_t first_group_block;
2382 	ext4_fsblk_t a;
2383 	ext4_grpblk_t i;
2384 	int max;
2385 
2386 	BUG_ON(sbi->s_stripe == 0);
2387 
2388 	/* find first stripe-aligned block in group */
2389 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2390 
2391 	a = first_group_block + sbi->s_stripe - 1;
2392 	do_div(a, sbi->s_stripe);
2393 	i = (a * sbi->s_stripe) - first_group_block;
2394 
2395 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2396 		if (!mb_test_bit(i, bitmap)) {
2397 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2398 			if (max >= sbi->s_stripe) {
2399 				ac->ac_found++;
2400 				ex.fe_logical = 0xDEADF00D; /* debug value */
2401 				ac->ac_b_ex = ex;
2402 				ext4_mb_use_best_found(ac, e4b);
2403 				break;
2404 			}
2405 		}
2406 		i += sbi->s_stripe;
2407 	}
2408 }
2409 
2410 /*
2411  * This is also called BEFORE we load the buddy bitmap.
2412  * Returns either 1 or 0 indicating that the group is either suitable
2413  * for the allocation or not.
2414  */
2415 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2416 				ext4_group_t group, int cr)
2417 {
2418 	ext4_grpblk_t free, fragments;
2419 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2420 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2421 
2422 	BUG_ON(cr < 0 || cr >= 4);
2423 
2424 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2425 		return false;
2426 
2427 	free = grp->bb_free;
2428 	if (free == 0)
2429 		return false;
2430 
2431 	fragments = grp->bb_fragments;
2432 	if (fragments == 0)
2433 		return false;
2434 
2435 	switch (cr) {
2436 	case 0:
2437 		BUG_ON(ac->ac_2order == 0);
2438 
2439 		/* Avoid using the first bg of a flexgroup for data files */
2440 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2441 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2442 		    ((group % flex_size) == 0))
2443 			return false;
2444 
2445 		if (free < ac->ac_g_ex.fe_len)
2446 			return false;
2447 
2448 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2449 			return true;
2450 
2451 		if (grp->bb_largest_free_order < ac->ac_2order)
2452 			return false;
2453 
2454 		return true;
2455 	case 1:
2456 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2457 			return true;
2458 		break;
2459 	case 2:
2460 		if (free >= ac->ac_g_ex.fe_len)
2461 			return true;
2462 		break;
2463 	case 3:
2464 		return true;
2465 	default:
2466 		BUG();
2467 	}
2468 
2469 	return false;
2470 }
2471 
2472 /*
2473  * This could return negative error code if something goes wrong
2474  * during ext4_mb_init_group(). This should not be called with
2475  * ext4_lock_group() held.
2476  */
2477 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2478 				     ext4_group_t group, int cr)
2479 {
2480 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2481 	struct super_block *sb = ac->ac_sb;
2482 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2483 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2484 	ext4_grpblk_t free;
2485 	int ret = 0;
2486 
2487 	if (sbi->s_mb_stats)
2488 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2489 	if (should_lock)
2490 		ext4_lock_group(sb, group);
2491 	free = grp->bb_free;
2492 	if (free == 0)
2493 		goto out;
2494 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2495 		goto out;
2496 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2497 		goto out;
2498 	if (should_lock)
2499 		ext4_unlock_group(sb, group);
2500 
2501 	/* We only do this if the grp has never been initialized */
2502 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2503 		struct ext4_group_desc *gdp =
2504 			ext4_get_group_desc(sb, group, NULL);
2505 		int ret;
2506 
2507 		/* cr=0/1 is a very optimistic search to find large
2508 		 * good chunks almost for free.  If buddy data is not
2509 		 * ready, then this optimization makes no sense.  But
2510 		 * we never skip the first block group in a flex_bg,
2511 		 * since this gets used for metadata block allocation,
2512 		 * and we want to make sure we locate metadata blocks
2513 		 * in the first block group in the flex_bg if possible.
2514 		 */
2515 		if (cr < 2 &&
2516 		    (!sbi->s_log_groups_per_flex ||
2517 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2518 		    !(ext4_has_group_desc_csum(sb) &&
2519 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2520 			return 0;
2521 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2522 		if (ret)
2523 			return ret;
2524 	}
2525 
2526 	if (should_lock)
2527 		ext4_lock_group(sb, group);
2528 	ret = ext4_mb_good_group(ac, group, cr);
2529 out:
2530 	if (should_lock)
2531 		ext4_unlock_group(sb, group);
2532 	return ret;
2533 }
2534 
2535 /*
2536  * Start prefetching @nr block bitmaps starting at @group.
2537  * Return the next group which needs to be prefetched.
2538  */
2539 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2540 			      unsigned int nr, int *cnt)
2541 {
2542 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2543 	struct buffer_head *bh;
2544 	struct blk_plug plug;
2545 
2546 	blk_start_plug(&plug);
2547 	while (nr-- > 0) {
2548 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2549 								  NULL);
2550 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2551 
2552 		/*
2553 		 * Prefetch block groups with free blocks; but don't
2554 		 * bother if it is marked uninitialized on disk, since
2555 		 * it won't require I/O to read.  Also only try to
2556 		 * prefetch once, so we avoid getblk() call, which can
2557 		 * be expensive.
2558 		 */
2559 		if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2560 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2561 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2562 		    !(ext4_has_group_desc_csum(sb) &&
2563 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2564 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2565 			if (bh && !IS_ERR(bh)) {
2566 				if (!buffer_uptodate(bh) && cnt)
2567 					(*cnt)++;
2568 				brelse(bh);
2569 			}
2570 		}
2571 		if (++group >= ngroups)
2572 			group = 0;
2573 	}
2574 	blk_finish_plug(&plug);
2575 	return group;
2576 }
2577 
2578 /*
2579  * Prefetching reads the block bitmap into the buffer cache; but we
2580  * need to make sure that the buddy bitmap in the page cache has been
2581  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2582  * is not yet completed, or indeed if it was not initiated by
2583  * ext4_mb_prefetch did not start the I/O.
2584  *
2585  * TODO: We should actually kick off the buddy bitmap setup in a work
2586  * queue when the buffer I/O is completed, so that we don't block
2587  * waiting for the block allocation bitmap read to finish when
2588  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2589  */
2590 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2591 			   unsigned int nr)
2592 {
2593 	while (nr-- > 0) {
2594 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2595 								  NULL);
2596 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2597 
2598 		if (!group)
2599 			group = ext4_get_groups_count(sb);
2600 		group--;
2601 		grp = ext4_get_group_info(sb, group);
2602 
2603 		if (EXT4_MB_GRP_NEED_INIT(grp) &&
2604 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2605 		    !(ext4_has_group_desc_csum(sb) &&
2606 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2607 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2608 				break;
2609 		}
2610 	}
2611 }
2612 
2613 static noinline_for_stack int
2614 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2615 {
2616 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2617 	int cr = -1;
2618 	int err = 0, first_err = 0;
2619 	unsigned int nr = 0, prefetch_ios = 0;
2620 	struct ext4_sb_info *sbi;
2621 	struct super_block *sb;
2622 	struct ext4_buddy e4b;
2623 	int lost;
2624 
2625 	sb = ac->ac_sb;
2626 	sbi = EXT4_SB(sb);
2627 	ngroups = ext4_get_groups_count(sb);
2628 	/* non-extent files are limited to low blocks/groups */
2629 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2630 		ngroups = sbi->s_blockfile_groups;
2631 
2632 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2633 
2634 	/* first, try the goal */
2635 	err = ext4_mb_find_by_goal(ac, &e4b);
2636 	if (err || ac->ac_status == AC_STATUS_FOUND)
2637 		goto out;
2638 
2639 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2640 		goto out;
2641 
2642 	/*
2643 	 * ac->ac_2order is set only if the fe_len is a power of 2
2644 	 * if ac->ac_2order is set we also set criteria to 0 so that we
2645 	 * try exact allocation using buddy.
2646 	 */
2647 	i = fls(ac->ac_g_ex.fe_len);
2648 	ac->ac_2order = 0;
2649 	/*
2650 	 * We search using buddy data only if the order of the request
2651 	 * is greater than equal to the sbi_s_mb_order2_reqs
2652 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2653 	 * We also support searching for power-of-two requests only for
2654 	 * requests upto maximum buddy size we have constructed.
2655 	 */
2656 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2657 		/*
2658 		 * This should tell if fe_len is exactly power of 2
2659 		 */
2660 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2661 			ac->ac_2order = array_index_nospec(i - 1,
2662 							   MB_NUM_ORDERS(sb));
2663 	}
2664 
2665 	/* if stream allocation is enabled, use global goal */
2666 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2667 		/* TBD: may be hot point */
2668 		spin_lock(&sbi->s_md_lock);
2669 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2670 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2671 		spin_unlock(&sbi->s_md_lock);
2672 	}
2673 
2674 	/* Let's just scan groups to find more-less suitable blocks */
2675 	cr = ac->ac_2order ? 0 : 1;
2676 	/*
2677 	 * cr == 0 try to get exact allocation,
2678 	 * cr == 3  try to get anything
2679 	 */
2680 repeat:
2681 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2682 		ac->ac_criteria = cr;
2683 		/*
2684 		 * searching for the right group start
2685 		 * from the goal value specified
2686 		 */
2687 		group = ac->ac_g_ex.fe_group;
2688 		ac->ac_last_optimal_group = group;
2689 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2690 		prefetch_grp = group;
2691 
2692 		for (i = 0; i < ngroups; group = next_linear_group(ac, group, ngroups),
2693 			     i++) {
2694 			int ret = 0, new_cr;
2695 
2696 			cond_resched();
2697 
2698 			ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups);
2699 			if (new_cr != cr) {
2700 				cr = new_cr;
2701 				goto repeat;
2702 			}
2703 
2704 			/*
2705 			 * Batch reads of the block allocation bitmaps
2706 			 * to get multiple READs in flight; limit
2707 			 * prefetching at cr=0/1, otherwise mballoc can
2708 			 * spend a lot of time loading imperfect groups
2709 			 */
2710 			if ((prefetch_grp == group) &&
2711 			    (cr > 1 ||
2712 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2713 				unsigned int curr_ios = prefetch_ios;
2714 
2715 				nr = sbi->s_mb_prefetch;
2716 				if (ext4_has_feature_flex_bg(sb)) {
2717 					nr = 1 << sbi->s_log_groups_per_flex;
2718 					nr -= group & (nr - 1);
2719 					nr = min(nr, sbi->s_mb_prefetch);
2720 				}
2721 				prefetch_grp = ext4_mb_prefetch(sb, group,
2722 							nr, &prefetch_ios);
2723 				if (prefetch_ios == curr_ios)
2724 					nr = 0;
2725 			}
2726 
2727 			/* This now checks without needing the buddy page */
2728 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2729 			if (ret <= 0) {
2730 				if (!first_err)
2731 					first_err = ret;
2732 				continue;
2733 			}
2734 
2735 			err = ext4_mb_load_buddy(sb, group, &e4b);
2736 			if (err)
2737 				goto out;
2738 
2739 			ext4_lock_group(sb, group);
2740 
2741 			/*
2742 			 * We need to check again after locking the
2743 			 * block group
2744 			 */
2745 			ret = ext4_mb_good_group(ac, group, cr);
2746 			if (ret == 0) {
2747 				ext4_unlock_group(sb, group);
2748 				ext4_mb_unload_buddy(&e4b);
2749 				continue;
2750 			}
2751 
2752 			ac->ac_groups_scanned++;
2753 			if (cr == 0)
2754 				ext4_mb_simple_scan_group(ac, &e4b);
2755 			else if (cr == 1 && sbi->s_stripe &&
2756 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2757 				ext4_mb_scan_aligned(ac, &e4b);
2758 			else
2759 				ext4_mb_complex_scan_group(ac, &e4b);
2760 
2761 			ext4_unlock_group(sb, group);
2762 			ext4_mb_unload_buddy(&e4b);
2763 
2764 			if (ac->ac_status != AC_STATUS_CONTINUE)
2765 				break;
2766 		}
2767 		/* Processed all groups and haven't found blocks */
2768 		if (sbi->s_mb_stats && i == ngroups)
2769 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2770 	}
2771 
2772 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2773 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2774 		/*
2775 		 * We've been searching too long. Let's try to allocate
2776 		 * the best chunk we've found so far
2777 		 */
2778 		ext4_mb_try_best_found(ac, &e4b);
2779 		if (ac->ac_status != AC_STATUS_FOUND) {
2780 			/*
2781 			 * Someone more lucky has already allocated it.
2782 			 * The only thing we can do is just take first
2783 			 * found block(s)
2784 			 */
2785 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2786 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2787 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2788 				 ac->ac_b_ex.fe_len, lost);
2789 
2790 			ac->ac_b_ex.fe_group = 0;
2791 			ac->ac_b_ex.fe_start = 0;
2792 			ac->ac_b_ex.fe_len = 0;
2793 			ac->ac_status = AC_STATUS_CONTINUE;
2794 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2795 			cr = 3;
2796 			goto repeat;
2797 		}
2798 	}
2799 
2800 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2801 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2802 out:
2803 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2804 		err = first_err;
2805 
2806 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2807 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2808 		 ac->ac_flags, cr, err);
2809 
2810 	if (nr)
2811 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2812 
2813 	return err;
2814 }
2815 
2816 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2817 {
2818 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2819 	ext4_group_t group;
2820 
2821 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2822 		return NULL;
2823 	group = *pos + 1;
2824 	return (void *) ((unsigned long) group);
2825 }
2826 
2827 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2828 {
2829 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2830 	ext4_group_t group;
2831 
2832 	++*pos;
2833 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2834 		return NULL;
2835 	group = *pos + 1;
2836 	return (void *) ((unsigned long) group);
2837 }
2838 
2839 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2840 {
2841 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2842 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2843 	int i;
2844 	int err, buddy_loaded = 0;
2845 	struct ext4_buddy e4b;
2846 	struct ext4_group_info *grinfo;
2847 	unsigned char blocksize_bits = min_t(unsigned char,
2848 					     sb->s_blocksize_bits,
2849 					     EXT4_MAX_BLOCK_LOG_SIZE);
2850 	struct sg {
2851 		struct ext4_group_info info;
2852 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2853 	} sg;
2854 
2855 	group--;
2856 	if (group == 0)
2857 		seq_puts(seq, "#group: free  frags first ["
2858 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2859 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2860 
2861 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2862 		sizeof(struct ext4_group_info);
2863 
2864 	grinfo = ext4_get_group_info(sb, group);
2865 	/* Load the group info in memory only if not already loaded. */
2866 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2867 		err = ext4_mb_load_buddy(sb, group, &e4b);
2868 		if (err) {
2869 			seq_printf(seq, "#%-5u: I/O error\n", group);
2870 			return 0;
2871 		}
2872 		buddy_loaded = 1;
2873 	}
2874 
2875 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2876 
2877 	if (buddy_loaded)
2878 		ext4_mb_unload_buddy(&e4b);
2879 
2880 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2881 			sg.info.bb_fragments, sg.info.bb_first_free);
2882 	for (i = 0; i <= 13; i++)
2883 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2884 				sg.info.bb_counters[i] : 0);
2885 	seq_puts(seq, " ]\n");
2886 
2887 	return 0;
2888 }
2889 
2890 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2891 {
2892 }
2893 
2894 const struct seq_operations ext4_mb_seq_groups_ops = {
2895 	.start  = ext4_mb_seq_groups_start,
2896 	.next   = ext4_mb_seq_groups_next,
2897 	.stop   = ext4_mb_seq_groups_stop,
2898 	.show   = ext4_mb_seq_groups_show,
2899 };
2900 
2901 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
2902 {
2903 	struct super_block *sb = (struct super_block *)seq->private;
2904 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2905 
2906 	seq_puts(seq, "mballoc:\n");
2907 	if (!sbi->s_mb_stats) {
2908 		seq_puts(seq, "\tmb stats collection turned off.\n");
2909 		seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
2910 		return 0;
2911 	}
2912 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
2913 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
2914 
2915 	seq_printf(seq, "\tgroups_scanned: %u\n",  atomic_read(&sbi->s_bal_groups_scanned));
2916 
2917 	seq_puts(seq, "\tcr0_stats:\n");
2918 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[0]));
2919 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2920 		   atomic64_read(&sbi->s_bal_cX_groups_considered[0]));
2921 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2922 		   atomic64_read(&sbi->s_bal_cX_failed[0]));
2923 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
2924 		   atomic_read(&sbi->s_bal_cr0_bad_suggestions));
2925 
2926 	seq_puts(seq, "\tcr1_stats:\n");
2927 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[1]));
2928 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2929 		   atomic64_read(&sbi->s_bal_cX_groups_considered[1]));
2930 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2931 		   atomic64_read(&sbi->s_bal_cX_failed[1]));
2932 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
2933 		   atomic_read(&sbi->s_bal_cr1_bad_suggestions));
2934 
2935 	seq_puts(seq, "\tcr2_stats:\n");
2936 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[2]));
2937 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2938 		   atomic64_read(&sbi->s_bal_cX_groups_considered[2]));
2939 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2940 		   atomic64_read(&sbi->s_bal_cX_failed[2]));
2941 
2942 	seq_puts(seq, "\tcr3_stats:\n");
2943 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[3]));
2944 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2945 		   atomic64_read(&sbi->s_bal_cX_groups_considered[3]));
2946 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2947 		   atomic64_read(&sbi->s_bal_cX_failed[3]));
2948 	seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned));
2949 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
2950 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
2951 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
2952 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
2953 
2954 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
2955 		   atomic_read(&sbi->s_mb_buddies_generated),
2956 		   ext4_get_groups_count(sb));
2957 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
2958 		   atomic64_read(&sbi->s_mb_generation_time));
2959 	seq_printf(seq, "\tpreallocated: %u\n",
2960 		   atomic_read(&sbi->s_mb_preallocated));
2961 	seq_printf(seq, "\tdiscarded: %u\n",
2962 		   atomic_read(&sbi->s_mb_discarded));
2963 	return 0;
2964 }
2965 
2966 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
2967 {
2968 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2969 	unsigned long position;
2970 
2971 	read_lock(&EXT4_SB(sb)->s_mb_rb_lock);
2972 
2973 	if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1)
2974 		return NULL;
2975 	position = *pos + 1;
2976 	return (void *) ((unsigned long) position);
2977 }
2978 
2979 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
2980 {
2981 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2982 	unsigned long position;
2983 
2984 	++*pos;
2985 	if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1)
2986 		return NULL;
2987 	position = *pos + 1;
2988 	return (void *) ((unsigned long) position);
2989 }
2990 
2991 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
2992 {
2993 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2994 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2995 	unsigned long position = ((unsigned long) v);
2996 	struct ext4_group_info *grp;
2997 	struct rb_node *n;
2998 	unsigned int count, min, max;
2999 
3000 	position--;
3001 	if (position >= MB_NUM_ORDERS(sb)) {
3002 		seq_puts(seq, "fragment_size_tree:\n");
3003 		n = rb_first(&sbi->s_mb_avg_fragment_size_root);
3004 		if (!n) {
3005 			seq_puts(seq, "\ttree_min: 0\n\ttree_max: 0\n\ttree_nodes: 0\n");
3006 			return 0;
3007 		}
3008 		grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb);
3009 		min = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0;
3010 		count = 1;
3011 		while (rb_next(n)) {
3012 			count++;
3013 			n = rb_next(n);
3014 		}
3015 		grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb);
3016 		max = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0;
3017 
3018 		seq_printf(seq, "\ttree_min: %u\n\ttree_max: %u\n\ttree_nodes: %u\n",
3019 			   min, max, count);
3020 		return 0;
3021 	}
3022 
3023 	if (position == 0) {
3024 		seq_printf(seq, "optimize_scan: %d\n",
3025 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3026 		seq_puts(seq, "max_free_order_lists:\n");
3027 	}
3028 	count = 0;
3029 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3030 			    bb_largest_free_order_node)
3031 		count++;
3032 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3033 		   (unsigned int)position, count);
3034 
3035 	return 0;
3036 }
3037 
3038 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3039 {
3040 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
3041 
3042 	read_unlock(&EXT4_SB(sb)->s_mb_rb_lock);
3043 }
3044 
3045 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3046 	.start  = ext4_mb_seq_structs_summary_start,
3047 	.next   = ext4_mb_seq_structs_summary_next,
3048 	.stop   = ext4_mb_seq_structs_summary_stop,
3049 	.show   = ext4_mb_seq_structs_summary_show,
3050 };
3051 
3052 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3053 {
3054 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3055 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3056 
3057 	BUG_ON(!cachep);
3058 	return cachep;
3059 }
3060 
3061 /*
3062  * Allocate the top-level s_group_info array for the specified number
3063  * of groups
3064  */
3065 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3066 {
3067 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3068 	unsigned size;
3069 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3070 
3071 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3072 		EXT4_DESC_PER_BLOCK_BITS(sb);
3073 	if (size <= sbi->s_group_info_size)
3074 		return 0;
3075 
3076 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3077 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3078 	if (!new_groupinfo) {
3079 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3080 		return -ENOMEM;
3081 	}
3082 	rcu_read_lock();
3083 	old_groupinfo = rcu_dereference(sbi->s_group_info);
3084 	if (old_groupinfo)
3085 		memcpy(new_groupinfo, old_groupinfo,
3086 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3087 	rcu_read_unlock();
3088 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3089 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3090 	if (old_groupinfo)
3091 		ext4_kvfree_array_rcu(old_groupinfo);
3092 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3093 		   sbi->s_group_info_size);
3094 	return 0;
3095 }
3096 
3097 /* Create and initialize ext4_group_info data for the given group. */
3098 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3099 			  struct ext4_group_desc *desc)
3100 {
3101 	int i;
3102 	int metalen = 0;
3103 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3104 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3105 	struct ext4_group_info **meta_group_info;
3106 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3107 
3108 	/*
3109 	 * First check if this group is the first of a reserved block.
3110 	 * If it's true, we have to allocate a new table of pointers
3111 	 * to ext4_group_info structures
3112 	 */
3113 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3114 		metalen = sizeof(*meta_group_info) <<
3115 			EXT4_DESC_PER_BLOCK_BITS(sb);
3116 		meta_group_info = kmalloc(metalen, GFP_NOFS);
3117 		if (meta_group_info == NULL) {
3118 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3119 				 "for a buddy group");
3120 			goto exit_meta_group_info;
3121 		}
3122 		rcu_read_lock();
3123 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3124 		rcu_read_unlock();
3125 	}
3126 
3127 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3128 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3129 
3130 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3131 	if (meta_group_info[i] == NULL) {
3132 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3133 		goto exit_group_info;
3134 	}
3135 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3136 		&(meta_group_info[i]->bb_state));
3137 
3138 	/*
3139 	 * initialize bb_free to be able to skip
3140 	 * empty groups without initialization
3141 	 */
3142 	if (ext4_has_group_desc_csum(sb) &&
3143 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3144 		meta_group_info[i]->bb_free =
3145 			ext4_free_clusters_after_init(sb, group, desc);
3146 	} else {
3147 		meta_group_info[i]->bb_free =
3148 			ext4_free_group_clusters(sb, desc);
3149 	}
3150 
3151 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3152 	init_rwsem(&meta_group_info[i]->alloc_sem);
3153 	meta_group_info[i]->bb_free_root = RB_ROOT;
3154 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3155 	RB_CLEAR_NODE(&meta_group_info[i]->bb_avg_fragment_size_rb);
3156 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3157 	meta_group_info[i]->bb_group = group;
3158 
3159 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3160 	return 0;
3161 
3162 exit_group_info:
3163 	/* If a meta_group_info table has been allocated, release it now */
3164 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3165 		struct ext4_group_info ***group_info;
3166 
3167 		rcu_read_lock();
3168 		group_info = rcu_dereference(sbi->s_group_info);
3169 		kfree(group_info[idx]);
3170 		group_info[idx] = NULL;
3171 		rcu_read_unlock();
3172 	}
3173 exit_meta_group_info:
3174 	return -ENOMEM;
3175 } /* ext4_mb_add_groupinfo */
3176 
3177 static int ext4_mb_init_backend(struct super_block *sb)
3178 {
3179 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3180 	ext4_group_t i;
3181 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3182 	int err;
3183 	struct ext4_group_desc *desc;
3184 	struct ext4_group_info ***group_info;
3185 	struct kmem_cache *cachep;
3186 
3187 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3188 	if (err)
3189 		return err;
3190 
3191 	sbi->s_buddy_cache = new_inode(sb);
3192 	if (sbi->s_buddy_cache == NULL) {
3193 		ext4_msg(sb, KERN_ERR, "can't get new inode");
3194 		goto err_freesgi;
3195 	}
3196 	/* To avoid potentially colliding with an valid on-disk inode number,
3197 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3198 	 * not in the inode hash, so it should never be found by iget(), but
3199 	 * this will avoid confusion if it ever shows up during debugging. */
3200 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3201 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3202 	for (i = 0; i < ngroups; i++) {
3203 		cond_resched();
3204 		desc = ext4_get_group_desc(sb, i, NULL);
3205 		if (desc == NULL) {
3206 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3207 			goto err_freebuddy;
3208 		}
3209 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3210 			goto err_freebuddy;
3211 	}
3212 
3213 	if (ext4_has_feature_flex_bg(sb)) {
3214 		/* a single flex group is supposed to be read by a single IO.
3215 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3216 		 * unsigned integer, so the maximum shift is 32.
3217 		 */
3218 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3219 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3220 			goto err_freesgi;
3221 		}
3222 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3223 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3224 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3225 	} else {
3226 		sbi->s_mb_prefetch = 32;
3227 	}
3228 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3229 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3230 	/* now many real IOs to prefetch within a single allocation at cr=0
3231 	 * given cr=0 is an CPU-related optimization we shouldn't try to
3232 	 * load too many groups, at some point we should start to use what
3233 	 * we've got in memory.
3234 	 * with an average random access time 5ms, it'd take a second to get
3235 	 * 200 groups (* N with flex_bg), so let's make this limit 4
3236 	 */
3237 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3238 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3239 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3240 
3241 	return 0;
3242 
3243 err_freebuddy:
3244 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3245 	while (i-- > 0)
3246 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
3247 	i = sbi->s_group_info_size;
3248 	rcu_read_lock();
3249 	group_info = rcu_dereference(sbi->s_group_info);
3250 	while (i-- > 0)
3251 		kfree(group_info[i]);
3252 	rcu_read_unlock();
3253 	iput(sbi->s_buddy_cache);
3254 err_freesgi:
3255 	rcu_read_lock();
3256 	kvfree(rcu_dereference(sbi->s_group_info));
3257 	rcu_read_unlock();
3258 	return -ENOMEM;
3259 }
3260 
3261 static void ext4_groupinfo_destroy_slabs(void)
3262 {
3263 	int i;
3264 
3265 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3266 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3267 		ext4_groupinfo_caches[i] = NULL;
3268 	}
3269 }
3270 
3271 static int ext4_groupinfo_create_slab(size_t size)
3272 {
3273 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3274 	int slab_size;
3275 	int blocksize_bits = order_base_2(size);
3276 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3277 	struct kmem_cache *cachep;
3278 
3279 	if (cache_index >= NR_GRPINFO_CACHES)
3280 		return -EINVAL;
3281 
3282 	if (unlikely(cache_index < 0))
3283 		cache_index = 0;
3284 
3285 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3286 	if (ext4_groupinfo_caches[cache_index]) {
3287 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3288 		return 0;	/* Already created */
3289 	}
3290 
3291 	slab_size = offsetof(struct ext4_group_info,
3292 				bb_counters[blocksize_bits + 2]);
3293 
3294 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3295 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3296 					NULL);
3297 
3298 	ext4_groupinfo_caches[cache_index] = cachep;
3299 
3300 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3301 	if (!cachep) {
3302 		printk(KERN_EMERG
3303 		       "EXT4-fs: no memory for groupinfo slab cache\n");
3304 		return -ENOMEM;
3305 	}
3306 
3307 	return 0;
3308 }
3309 
3310 int ext4_mb_init(struct super_block *sb)
3311 {
3312 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3313 	unsigned i, j;
3314 	unsigned offset, offset_incr;
3315 	unsigned max;
3316 	int ret;
3317 
3318 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3319 
3320 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3321 	if (sbi->s_mb_offsets == NULL) {
3322 		ret = -ENOMEM;
3323 		goto out;
3324 	}
3325 
3326 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3327 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3328 	if (sbi->s_mb_maxs == NULL) {
3329 		ret = -ENOMEM;
3330 		goto out;
3331 	}
3332 
3333 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3334 	if (ret < 0)
3335 		goto out;
3336 
3337 	/* order 0 is regular bitmap */
3338 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3339 	sbi->s_mb_offsets[0] = 0;
3340 
3341 	i = 1;
3342 	offset = 0;
3343 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3344 	max = sb->s_blocksize << 2;
3345 	do {
3346 		sbi->s_mb_offsets[i] = offset;
3347 		sbi->s_mb_maxs[i] = max;
3348 		offset += offset_incr;
3349 		offset_incr = offset_incr >> 1;
3350 		max = max >> 1;
3351 		i++;
3352 	} while (i < MB_NUM_ORDERS(sb));
3353 
3354 	sbi->s_mb_avg_fragment_size_root = RB_ROOT;
3355 	sbi->s_mb_largest_free_orders =
3356 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3357 			GFP_KERNEL);
3358 	if (!sbi->s_mb_largest_free_orders) {
3359 		ret = -ENOMEM;
3360 		goto out;
3361 	}
3362 	sbi->s_mb_largest_free_orders_locks =
3363 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3364 			GFP_KERNEL);
3365 	if (!sbi->s_mb_largest_free_orders_locks) {
3366 		ret = -ENOMEM;
3367 		goto out;
3368 	}
3369 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3370 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3371 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3372 	}
3373 	rwlock_init(&sbi->s_mb_rb_lock);
3374 
3375 	spin_lock_init(&sbi->s_md_lock);
3376 	sbi->s_mb_free_pending = 0;
3377 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
3378 
3379 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3380 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3381 	sbi->s_mb_stats = MB_DEFAULT_STATS;
3382 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3383 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3384 	sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC;
3385 	/*
3386 	 * The default group preallocation is 512, which for 4k block
3387 	 * sizes translates to 2 megabytes.  However for bigalloc file
3388 	 * systems, this is probably too big (i.e, if the cluster size
3389 	 * is 1 megabyte, then group preallocation size becomes half a
3390 	 * gigabyte!).  As a default, we will keep a two megabyte
3391 	 * group pralloc size for cluster sizes up to 64k, and after
3392 	 * that, we will force a minimum group preallocation size of
3393 	 * 32 clusters.  This translates to 8 megs when the cluster
3394 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3395 	 * which seems reasonable as a default.
3396 	 */
3397 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3398 				       sbi->s_cluster_bits, 32);
3399 	/*
3400 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3401 	 * to the lowest multiple of s_stripe which is bigger than
3402 	 * the s_mb_group_prealloc as determined above. We want
3403 	 * the preallocation size to be an exact multiple of the
3404 	 * RAID stripe size so that preallocations don't fragment
3405 	 * the stripes.
3406 	 */
3407 	if (sbi->s_stripe > 1) {
3408 		sbi->s_mb_group_prealloc = roundup(
3409 			sbi->s_mb_group_prealloc, sbi->s_stripe);
3410 	}
3411 
3412 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3413 	if (sbi->s_locality_groups == NULL) {
3414 		ret = -ENOMEM;
3415 		goto out;
3416 	}
3417 	for_each_possible_cpu(i) {
3418 		struct ext4_locality_group *lg;
3419 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3420 		mutex_init(&lg->lg_mutex);
3421 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3422 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3423 		spin_lock_init(&lg->lg_prealloc_lock);
3424 	}
3425 
3426 	if (blk_queue_nonrot(bdev_get_queue(sb->s_bdev)))
3427 		sbi->s_mb_max_linear_groups = 0;
3428 	else
3429 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3430 	/* init file for buddy data */
3431 	ret = ext4_mb_init_backend(sb);
3432 	if (ret != 0)
3433 		goto out_free_locality_groups;
3434 
3435 	return 0;
3436 
3437 out_free_locality_groups:
3438 	free_percpu(sbi->s_locality_groups);
3439 	sbi->s_locality_groups = NULL;
3440 out:
3441 	kfree(sbi->s_mb_largest_free_orders);
3442 	kfree(sbi->s_mb_largest_free_orders_locks);
3443 	kfree(sbi->s_mb_offsets);
3444 	sbi->s_mb_offsets = NULL;
3445 	kfree(sbi->s_mb_maxs);
3446 	sbi->s_mb_maxs = NULL;
3447 	return ret;
3448 }
3449 
3450 /* need to called with the ext4 group lock held */
3451 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3452 {
3453 	struct ext4_prealloc_space *pa;
3454 	struct list_head *cur, *tmp;
3455 	int count = 0;
3456 
3457 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3458 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3459 		list_del(&pa->pa_group_list);
3460 		count++;
3461 		kmem_cache_free(ext4_pspace_cachep, pa);
3462 	}
3463 	return count;
3464 }
3465 
3466 int ext4_mb_release(struct super_block *sb)
3467 {
3468 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3469 	ext4_group_t i;
3470 	int num_meta_group_infos;
3471 	struct ext4_group_info *grinfo, ***group_info;
3472 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3473 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3474 	int count;
3475 
3476 	if (sbi->s_group_info) {
3477 		for (i = 0; i < ngroups; i++) {
3478 			cond_resched();
3479 			grinfo = ext4_get_group_info(sb, i);
3480 			mb_group_bb_bitmap_free(grinfo);
3481 			ext4_lock_group(sb, i);
3482 			count = ext4_mb_cleanup_pa(grinfo);
3483 			if (count)
3484 				mb_debug(sb, "mballoc: %d PAs left\n",
3485 					 count);
3486 			ext4_unlock_group(sb, i);
3487 			kmem_cache_free(cachep, grinfo);
3488 		}
3489 		num_meta_group_infos = (ngroups +
3490 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3491 			EXT4_DESC_PER_BLOCK_BITS(sb);
3492 		rcu_read_lock();
3493 		group_info = rcu_dereference(sbi->s_group_info);
3494 		for (i = 0; i < num_meta_group_infos; i++)
3495 			kfree(group_info[i]);
3496 		kvfree(group_info);
3497 		rcu_read_unlock();
3498 	}
3499 	kfree(sbi->s_mb_largest_free_orders);
3500 	kfree(sbi->s_mb_largest_free_orders_locks);
3501 	kfree(sbi->s_mb_offsets);
3502 	kfree(sbi->s_mb_maxs);
3503 	iput(sbi->s_buddy_cache);
3504 	if (sbi->s_mb_stats) {
3505 		ext4_msg(sb, KERN_INFO,
3506 		       "mballoc: %u blocks %u reqs (%u success)",
3507 				atomic_read(&sbi->s_bal_allocated),
3508 				atomic_read(&sbi->s_bal_reqs),
3509 				atomic_read(&sbi->s_bal_success));
3510 		ext4_msg(sb, KERN_INFO,
3511 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3512 				"%u 2^N hits, %u breaks, %u lost",
3513 				atomic_read(&sbi->s_bal_ex_scanned),
3514 				atomic_read(&sbi->s_bal_groups_scanned),
3515 				atomic_read(&sbi->s_bal_goals),
3516 				atomic_read(&sbi->s_bal_2orders),
3517 				atomic_read(&sbi->s_bal_breaks),
3518 				atomic_read(&sbi->s_mb_lost_chunks));
3519 		ext4_msg(sb, KERN_INFO,
3520 		       "mballoc: %u generated and it took %llu",
3521 				atomic_read(&sbi->s_mb_buddies_generated),
3522 				atomic64_read(&sbi->s_mb_generation_time));
3523 		ext4_msg(sb, KERN_INFO,
3524 		       "mballoc: %u preallocated, %u discarded",
3525 				atomic_read(&sbi->s_mb_preallocated),
3526 				atomic_read(&sbi->s_mb_discarded));
3527 	}
3528 
3529 	free_percpu(sbi->s_locality_groups);
3530 
3531 	return 0;
3532 }
3533 
3534 static inline int ext4_issue_discard(struct super_block *sb,
3535 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3536 		struct bio **biop)
3537 {
3538 	ext4_fsblk_t discard_block;
3539 
3540 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3541 			 ext4_group_first_block_no(sb, block_group));
3542 	count = EXT4_C2B(EXT4_SB(sb), count);
3543 	trace_ext4_discard_blocks(sb,
3544 			(unsigned long long) discard_block, count);
3545 	if (biop) {
3546 		return __blkdev_issue_discard(sb->s_bdev,
3547 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3548 			(sector_t)count << (sb->s_blocksize_bits - 9),
3549 			GFP_NOFS, 0, biop);
3550 	} else
3551 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3552 }
3553 
3554 static void ext4_free_data_in_buddy(struct super_block *sb,
3555 				    struct ext4_free_data *entry)
3556 {
3557 	struct ext4_buddy e4b;
3558 	struct ext4_group_info *db;
3559 	int err, count = 0, count2 = 0;
3560 
3561 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3562 		 entry->efd_count, entry->efd_group, entry);
3563 
3564 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3565 	/* we expect to find existing buddy because it's pinned */
3566 	BUG_ON(err != 0);
3567 
3568 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3569 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3570 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3571 
3572 	db = e4b.bd_info;
3573 	/* there are blocks to put in buddy to make them really free */
3574 	count += entry->efd_count;
3575 	count2++;
3576 	ext4_lock_group(sb, entry->efd_group);
3577 	/* Take it out of per group rb tree */
3578 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3579 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3580 
3581 	/*
3582 	 * Clear the trimmed flag for the group so that the next
3583 	 * ext4_trim_fs can trim it.
3584 	 * If the volume is mounted with -o discard, online discard
3585 	 * is supported and the free blocks will be trimmed online.
3586 	 */
3587 	if (!test_opt(sb, DISCARD))
3588 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3589 
3590 	if (!db->bb_free_root.rb_node) {
3591 		/* No more items in the per group rb tree
3592 		 * balance refcounts from ext4_mb_free_metadata()
3593 		 */
3594 		put_page(e4b.bd_buddy_page);
3595 		put_page(e4b.bd_bitmap_page);
3596 	}
3597 	ext4_unlock_group(sb, entry->efd_group);
3598 	kmem_cache_free(ext4_free_data_cachep, entry);
3599 	ext4_mb_unload_buddy(&e4b);
3600 
3601 	mb_debug(sb, "freed %d blocks in %d structures\n", count,
3602 		 count2);
3603 }
3604 
3605 /*
3606  * This function is called by the jbd2 layer once the commit has finished,
3607  * so we know we can free the blocks that were released with that commit.
3608  */
3609 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3610 {
3611 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3612 	struct ext4_free_data *entry, *tmp;
3613 	struct bio *discard_bio = NULL;
3614 	struct list_head freed_data_list;
3615 	struct list_head *cut_pos = NULL;
3616 	int err;
3617 
3618 	INIT_LIST_HEAD(&freed_data_list);
3619 
3620 	spin_lock(&sbi->s_md_lock);
3621 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3622 		if (entry->efd_tid != commit_tid)
3623 			break;
3624 		cut_pos = &entry->efd_list;
3625 	}
3626 	if (cut_pos)
3627 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3628 				  cut_pos);
3629 	spin_unlock(&sbi->s_md_lock);
3630 
3631 	if (test_opt(sb, DISCARD)) {
3632 		list_for_each_entry(entry, &freed_data_list, efd_list) {
3633 			err = ext4_issue_discard(sb, entry->efd_group,
3634 						 entry->efd_start_cluster,
3635 						 entry->efd_count,
3636 						 &discard_bio);
3637 			if (err && err != -EOPNOTSUPP) {
3638 				ext4_msg(sb, KERN_WARNING, "discard request in"
3639 					 " group:%d block:%d count:%d failed"
3640 					 " with %d", entry->efd_group,
3641 					 entry->efd_start_cluster,
3642 					 entry->efd_count, err);
3643 			} else if (err == -EOPNOTSUPP)
3644 				break;
3645 		}
3646 
3647 		if (discard_bio) {
3648 			submit_bio_wait(discard_bio);
3649 			bio_put(discard_bio);
3650 		}
3651 	}
3652 
3653 	list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3654 		ext4_free_data_in_buddy(sb, entry);
3655 }
3656 
3657 int __init ext4_init_mballoc(void)
3658 {
3659 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3660 					SLAB_RECLAIM_ACCOUNT);
3661 	if (ext4_pspace_cachep == NULL)
3662 		goto out;
3663 
3664 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3665 				    SLAB_RECLAIM_ACCOUNT);
3666 	if (ext4_ac_cachep == NULL)
3667 		goto out_pa_free;
3668 
3669 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3670 					   SLAB_RECLAIM_ACCOUNT);
3671 	if (ext4_free_data_cachep == NULL)
3672 		goto out_ac_free;
3673 
3674 	return 0;
3675 
3676 out_ac_free:
3677 	kmem_cache_destroy(ext4_ac_cachep);
3678 out_pa_free:
3679 	kmem_cache_destroy(ext4_pspace_cachep);
3680 out:
3681 	return -ENOMEM;
3682 }
3683 
3684 void ext4_exit_mballoc(void)
3685 {
3686 	/*
3687 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3688 	 * before destroying the slab cache.
3689 	 */
3690 	rcu_barrier();
3691 	kmem_cache_destroy(ext4_pspace_cachep);
3692 	kmem_cache_destroy(ext4_ac_cachep);
3693 	kmem_cache_destroy(ext4_free_data_cachep);
3694 	ext4_groupinfo_destroy_slabs();
3695 }
3696 
3697 
3698 /*
3699  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3700  * Returns 0 if success or error code
3701  */
3702 static noinline_for_stack int
3703 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3704 				handle_t *handle, unsigned int reserv_clstrs)
3705 {
3706 	struct buffer_head *bitmap_bh = NULL;
3707 	struct ext4_group_desc *gdp;
3708 	struct buffer_head *gdp_bh;
3709 	struct ext4_sb_info *sbi;
3710 	struct super_block *sb;
3711 	ext4_fsblk_t block;
3712 	int err, len;
3713 
3714 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3715 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3716 
3717 	sb = ac->ac_sb;
3718 	sbi = EXT4_SB(sb);
3719 
3720 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3721 	if (IS_ERR(bitmap_bh)) {
3722 		err = PTR_ERR(bitmap_bh);
3723 		bitmap_bh = NULL;
3724 		goto out_err;
3725 	}
3726 
3727 	BUFFER_TRACE(bitmap_bh, "getting write access");
3728 	err = ext4_journal_get_write_access(handle, bitmap_bh);
3729 	if (err)
3730 		goto out_err;
3731 
3732 	err = -EIO;
3733 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3734 	if (!gdp)
3735 		goto out_err;
3736 
3737 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3738 			ext4_free_group_clusters(sb, gdp));
3739 
3740 	BUFFER_TRACE(gdp_bh, "get_write_access");
3741 	err = ext4_journal_get_write_access(handle, gdp_bh);
3742 	if (err)
3743 		goto out_err;
3744 
3745 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3746 
3747 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3748 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
3749 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3750 			   "fs metadata", block, block+len);
3751 		/* File system mounted not to panic on error
3752 		 * Fix the bitmap and return EFSCORRUPTED
3753 		 * We leak some of the blocks here.
3754 		 */
3755 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3756 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3757 			      ac->ac_b_ex.fe_len);
3758 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3759 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3760 		if (!err)
3761 			err = -EFSCORRUPTED;
3762 		goto out_err;
3763 	}
3764 
3765 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3766 #ifdef AGGRESSIVE_CHECK
3767 	{
3768 		int i;
3769 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3770 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3771 						bitmap_bh->b_data));
3772 		}
3773 	}
3774 #endif
3775 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3776 		      ac->ac_b_ex.fe_len);
3777 	if (ext4_has_group_desc_csum(sb) &&
3778 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3779 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3780 		ext4_free_group_clusters_set(sb, gdp,
3781 					     ext4_free_clusters_after_init(sb,
3782 						ac->ac_b_ex.fe_group, gdp));
3783 	}
3784 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3785 	ext4_free_group_clusters_set(sb, gdp, len);
3786 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3787 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3788 
3789 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3790 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3791 	/*
3792 	 * Now reduce the dirty block count also. Should not go negative
3793 	 */
3794 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3795 		/* release all the reserved blocks if non delalloc */
3796 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3797 				   reserv_clstrs);
3798 
3799 	if (sbi->s_log_groups_per_flex) {
3800 		ext4_group_t flex_group = ext4_flex_group(sbi,
3801 							  ac->ac_b_ex.fe_group);
3802 		atomic64_sub(ac->ac_b_ex.fe_len,
3803 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3804 						  flex_group)->free_clusters);
3805 	}
3806 
3807 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3808 	if (err)
3809 		goto out_err;
3810 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3811 
3812 out_err:
3813 	brelse(bitmap_bh);
3814 	return err;
3815 }
3816 
3817 /*
3818  * Idempotent helper for Ext4 fast commit replay path to set the state of
3819  * blocks in bitmaps and update counters.
3820  */
3821 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
3822 			int len, int state)
3823 {
3824 	struct buffer_head *bitmap_bh = NULL;
3825 	struct ext4_group_desc *gdp;
3826 	struct buffer_head *gdp_bh;
3827 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3828 	ext4_group_t group;
3829 	ext4_grpblk_t blkoff;
3830 	int i, clen, err;
3831 	int already;
3832 
3833 	clen = EXT4_B2C(sbi, len);
3834 
3835 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
3836 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3837 	if (IS_ERR(bitmap_bh)) {
3838 		err = PTR_ERR(bitmap_bh);
3839 		bitmap_bh = NULL;
3840 		goto out_err;
3841 	}
3842 
3843 	err = -EIO;
3844 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
3845 	if (!gdp)
3846 		goto out_err;
3847 
3848 	ext4_lock_group(sb, group);
3849 	already = 0;
3850 	for (i = 0; i < clen; i++)
3851 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == !state)
3852 			already++;
3853 
3854 	if (state)
3855 		ext4_set_bits(bitmap_bh->b_data, blkoff, clen);
3856 	else
3857 		mb_test_and_clear_bits(bitmap_bh->b_data, blkoff, clen);
3858 	if (ext4_has_group_desc_csum(sb) &&
3859 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3860 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3861 		ext4_free_group_clusters_set(sb, gdp,
3862 					     ext4_free_clusters_after_init(sb,
3863 						group, gdp));
3864 	}
3865 	if (state)
3866 		clen = ext4_free_group_clusters(sb, gdp) - clen + already;
3867 	else
3868 		clen = ext4_free_group_clusters(sb, gdp) + clen - already;
3869 
3870 	ext4_free_group_clusters_set(sb, gdp, clen);
3871 	ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
3872 	ext4_group_desc_csum_set(sb, group, gdp);
3873 
3874 	ext4_unlock_group(sb, group);
3875 
3876 	if (sbi->s_log_groups_per_flex) {
3877 		ext4_group_t flex_group = ext4_flex_group(sbi, group);
3878 
3879 		atomic64_sub(len,
3880 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3881 						  flex_group)->free_clusters);
3882 	}
3883 
3884 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
3885 	if (err)
3886 		goto out_err;
3887 	sync_dirty_buffer(bitmap_bh);
3888 	err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
3889 	sync_dirty_buffer(gdp_bh);
3890 
3891 out_err:
3892 	brelse(bitmap_bh);
3893 }
3894 
3895 /*
3896  * here we normalize request for locality group
3897  * Group request are normalized to s_mb_group_prealloc, which goes to
3898  * s_strip if we set the same via mount option.
3899  * s_mb_group_prealloc can be configured via
3900  * /sys/fs/ext4/<partition>/mb_group_prealloc
3901  *
3902  * XXX: should we try to preallocate more than the group has now?
3903  */
3904 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3905 {
3906 	struct super_block *sb = ac->ac_sb;
3907 	struct ext4_locality_group *lg = ac->ac_lg;
3908 
3909 	BUG_ON(lg == NULL);
3910 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3911 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
3912 }
3913 
3914 /*
3915  * Normalization means making request better in terms of
3916  * size and alignment
3917  */
3918 static noinline_for_stack void
3919 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3920 				struct ext4_allocation_request *ar)
3921 {
3922 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3923 	int bsbits, max;
3924 	ext4_lblk_t end;
3925 	loff_t size, start_off;
3926 	loff_t orig_size __maybe_unused;
3927 	ext4_lblk_t start;
3928 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3929 	struct ext4_prealloc_space *pa;
3930 
3931 	/* do normalize only data requests, metadata requests
3932 	   do not need preallocation */
3933 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3934 		return;
3935 
3936 	/* sometime caller may want exact blocks */
3937 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3938 		return;
3939 
3940 	/* caller may indicate that preallocation isn't
3941 	 * required (it's a tail, for example) */
3942 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3943 		return;
3944 
3945 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3946 		ext4_mb_normalize_group_request(ac);
3947 		return ;
3948 	}
3949 
3950 	bsbits = ac->ac_sb->s_blocksize_bits;
3951 
3952 	/* first, let's learn actual file size
3953 	 * given current request is allocated */
3954 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3955 	size = size << bsbits;
3956 	if (size < i_size_read(ac->ac_inode))
3957 		size = i_size_read(ac->ac_inode);
3958 	orig_size = size;
3959 
3960 	/* max size of free chunks */
3961 	max = 2 << bsbits;
3962 
3963 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3964 		(req <= (size) || max <= (chunk_size))
3965 
3966 	/* first, try to predict filesize */
3967 	/* XXX: should this table be tunable? */
3968 	start_off = 0;
3969 	if (size <= 16 * 1024) {
3970 		size = 16 * 1024;
3971 	} else if (size <= 32 * 1024) {
3972 		size = 32 * 1024;
3973 	} else if (size <= 64 * 1024) {
3974 		size = 64 * 1024;
3975 	} else if (size <= 128 * 1024) {
3976 		size = 128 * 1024;
3977 	} else if (size <= 256 * 1024) {
3978 		size = 256 * 1024;
3979 	} else if (size <= 512 * 1024) {
3980 		size = 512 * 1024;
3981 	} else if (size <= 1024 * 1024) {
3982 		size = 1024 * 1024;
3983 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3984 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3985 						(21 - bsbits)) << 21;
3986 		size = 2 * 1024 * 1024;
3987 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3988 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3989 							(22 - bsbits)) << 22;
3990 		size = 4 * 1024 * 1024;
3991 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3992 					(8<<20)>>bsbits, max, 8 * 1024)) {
3993 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3994 							(23 - bsbits)) << 23;
3995 		size = 8 * 1024 * 1024;
3996 	} else {
3997 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3998 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3999 					      ac->ac_o_ex.fe_len) << bsbits;
4000 	}
4001 	size = size >> bsbits;
4002 	start = start_off >> bsbits;
4003 
4004 	/* don't cover already allocated blocks in selected range */
4005 	if (ar->pleft && start <= ar->lleft) {
4006 		size -= ar->lleft + 1 - start;
4007 		start = ar->lleft + 1;
4008 	}
4009 	if (ar->pright && start + size - 1 >= ar->lright)
4010 		size -= start + size - ar->lright;
4011 
4012 	/*
4013 	 * Trim allocation request for filesystems with artificially small
4014 	 * groups.
4015 	 */
4016 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4017 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4018 
4019 	end = start + size;
4020 
4021 	/* check we don't cross already preallocated blocks */
4022 	rcu_read_lock();
4023 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4024 		ext4_lblk_t pa_end;
4025 
4026 		if (pa->pa_deleted)
4027 			continue;
4028 		spin_lock(&pa->pa_lock);
4029 		if (pa->pa_deleted) {
4030 			spin_unlock(&pa->pa_lock);
4031 			continue;
4032 		}
4033 
4034 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
4035 						  pa->pa_len);
4036 
4037 		/* PA must not overlap original request */
4038 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
4039 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
4040 
4041 		/* skip PAs this normalized request doesn't overlap with */
4042 		if (pa->pa_lstart >= end || pa_end <= start) {
4043 			spin_unlock(&pa->pa_lock);
4044 			continue;
4045 		}
4046 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
4047 
4048 		/* adjust start or end to be adjacent to this pa */
4049 		if (pa_end <= ac->ac_o_ex.fe_logical) {
4050 			BUG_ON(pa_end < start);
4051 			start = pa_end;
4052 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4053 			BUG_ON(pa->pa_lstart > end);
4054 			end = pa->pa_lstart;
4055 		}
4056 		spin_unlock(&pa->pa_lock);
4057 	}
4058 	rcu_read_unlock();
4059 	size = end - start;
4060 
4061 	/* XXX: extra loop to check we really don't overlap preallocations */
4062 	rcu_read_lock();
4063 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4064 		ext4_lblk_t pa_end;
4065 
4066 		spin_lock(&pa->pa_lock);
4067 		if (pa->pa_deleted == 0) {
4068 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
4069 							  pa->pa_len);
4070 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
4071 		}
4072 		spin_unlock(&pa->pa_lock);
4073 	}
4074 	rcu_read_unlock();
4075 
4076 	if (start + size <= ac->ac_o_ex.fe_logical &&
4077 			start > ac->ac_o_ex.fe_logical) {
4078 		ext4_msg(ac->ac_sb, KERN_ERR,
4079 			 "start %lu, size %lu, fe_logical %lu",
4080 			 (unsigned long) start, (unsigned long) size,
4081 			 (unsigned long) ac->ac_o_ex.fe_logical);
4082 		BUG();
4083 	}
4084 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4085 
4086 	/* now prepare goal request */
4087 
4088 	/* XXX: is it better to align blocks WRT to logical
4089 	 * placement or satisfy big request as is */
4090 	ac->ac_g_ex.fe_logical = start;
4091 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4092 
4093 	/* define goal start in order to merge */
4094 	if (ar->pright && (ar->lright == (start + size))) {
4095 		/* merge to the right */
4096 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4097 						&ac->ac_f_ex.fe_group,
4098 						&ac->ac_f_ex.fe_start);
4099 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4100 	}
4101 	if (ar->pleft && (ar->lleft + 1 == start)) {
4102 		/* merge to the left */
4103 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4104 						&ac->ac_f_ex.fe_group,
4105 						&ac->ac_f_ex.fe_start);
4106 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4107 	}
4108 
4109 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4110 		 orig_size, start);
4111 }
4112 
4113 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4114 {
4115 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4116 
4117 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4118 		atomic_inc(&sbi->s_bal_reqs);
4119 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4120 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4121 			atomic_inc(&sbi->s_bal_success);
4122 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4123 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4124 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4125 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4126 			atomic_inc(&sbi->s_bal_goals);
4127 		if (ac->ac_found > sbi->s_mb_max_to_scan)
4128 			atomic_inc(&sbi->s_bal_breaks);
4129 	}
4130 
4131 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4132 		trace_ext4_mballoc_alloc(ac);
4133 	else
4134 		trace_ext4_mballoc_prealloc(ac);
4135 }
4136 
4137 /*
4138  * Called on failure; free up any blocks from the inode PA for this
4139  * context.  We don't need this for MB_GROUP_PA because we only change
4140  * pa_free in ext4_mb_release_context(), but on failure, we've already
4141  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4142  */
4143 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4144 {
4145 	struct ext4_prealloc_space *pa = ac->ac_pa;
4146 	struct ext4_buddy e4b;
4147 	int err;
4148 
4149 	if (pa == NULL) {
4150 		if (ac->ac_f_ex.fe_len == 0)
4151 			return;
4152 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4153 		if (err) {
4154 			/*
4155 			 * This should never happen since we pin the
4156 			 * pages in the ext4_allocation_context so
4157 			 * ext4_mb_load_buddy() should never fail.
4158 			 */
4159 			WARN(1, "mb_load_buddy failed (%d)", err);
4160 			return;
4161 		}
4162 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4163 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4164 			       ac->ac_f_ex.fe_len);
4165 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4166 		ext4_mb_unload_buddy(&e4b);
4167 		return;
4168 	}
4169 	if (pa->pa_type == MB_INODE_PA)
4170 		pa->pa_free += ac->ac_b_ex.fe_len;
4171 }
4172 
4173 /*
4174  * use blocks preallocated to inode
4175  */
4176 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4177 				struct ext4_prealloc_space *pa)
4178 {
4179 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4180 	ext4_fsblk_t start;
4181 	ext4_fsblk_t end;
4182 	int len;
4183 
4184 	/* found preallocated blocks, use them */
4185 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4186 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4187 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4188 	len = EXT4_NUM_B2C(sbi, end - start);
4189 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4190 					&ac->ac_b_ex.fe_start);
4191 	ac->ac_b_ex.fe_len = len;
4192 	ac->ac_status = AC_STATUS_FOUND;
4193 	ac->ac_pa = pa;
4194 
4195 	BUG_ON(start < pa->pa_pstart);
4196 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4197 	BUG_ON(pa->pa_free < len);
4198 	pa->pa_free -= len;
4199 
4200 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4201 }
4202 
4203 /*
4204  * use blocks preallocated to locality group
4205  */
4206 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4207 				struct ext4_prealloc_space *pa)
4208 {
4209 	unsigned int len = ac->ac_o_ex.fe_len;
4210 
4211 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4212 					&ac->ac_b_ex.fe_group,
4213 					&ac->ac_b_ex.fe_start);
4214 	ac->ac_b_ex.fe_len = len;
4215 	ac->ac_status = AC_STATUS_FOUND;
4216 	ac->ac_pa = pa;
4217 
4218 	/* we don't correct pa_pstart or pa_plen here to avoid
4219 	 * possible race when the group is being loaded concurrently
4220 	 * instead we correct pa later, after blocks are marked
4221 	 * in on-disk bitmap -- see ext4_mb_release_context()
4222 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4223 	 */
4224 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4225 		 pa->pa_lstart-len, len, pa);
4226 }
4227 
4228 /*
4229  * Return the prealloc space that have minimal distance
4230  * from the goal block. @cpa is the prealloc
4231  * space that is having currently known minimal distance
4232  * from the goal block.
4233  */
4234 static struct ext4_prealloc_space *
4235 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4236 			struct ext4_prealloc_space *pa,
4237 			struct ext4_prealloc_space *cpa)
4238 {
4239 	ext4_fsblk_t cur_distance, new_distance;
4240 
4241 	if (cpa == NULL) {
4242 		atomic_inc(&pa->pa_count);
4243 		return pa;
4244 	}
4245 	cur_distance = abs(goal_block - cpa->pa_pstart);
4246 	new_distance = abs(goal_block - pa->pa_pstart);
4247 
4248 	if (cur_distance <= new_distance)
4249 		return cpa;
4250 
4251 	/* drop the previous reference */
4252 	atomic_dec(&cpa->pa_count);
4253 	atomic_inc(&pa->pa_count);
4254 	return pa;
4255 }
4256 
4257 /*
4258  * search goal blocks in preallocated space
4259  */
4260 static noinline_for_stack bool
4261 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4262 {
4263 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4264 	int order, i;
4265 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4266 	struct ext4_locality_group *lg;
4267 	struct ext4_prealloc_space *pa, *cpa = NULL;
4268 	ext4_fsblk_t goal_block;
4269 
4270 	/* only data can be preallocated */
4271 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4272 		return false;
4273 
4274 	/* first, try per-file preallocation */
4275 	rcu_read_lock();
4276 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4277 
4278 		/* all fields in this condition don't change,
4279 		 * so we can skip locking for them */
4280 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
4281 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
4282 					       EXT4_C2B(sbi, pa->pa_len)))
4283 			continue;
4284 
4285 		/* non-extent files can't have physical blocks past 2^32 */
4286 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4287 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
4288 		     EXT4_MAX_BLOCK_FILE_PHYS))
4289 			continue;
4290 
4291 		/* found preallocated blocks, use them */
4292 		spin_lock(&pa->pa_lock);
4293 		if (pa->pa_deleted == 0 && pa->pa_free) {
4294 			atomic_inc(&pa->pa_count);
4295 			ext4_mb_use_inode_pa(ac, pa);
4296 			spin_unlock(&pa->pa_lock);
4297 			ac->ac_criteria = 10;
4298 			rcu_read_unlock();
4299 			return true;
4300 		}
4301 		spin_unlock(&pa->pa_lock);
4302 	}
4303 	rcu_read_unlock();
4304 
4305 	/* can we use group allocation? */
4306 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4307 		return false;
4308 
4309 	/* inode may have no locality group for some reason */
4310 	lg = ac->ac_lg;
4311 	if (lg == NULL)
4312 		return false;
4313 	order  = fls(ac->ac_o_ex.fe_len) - 1;
4314 	if (order > PREALLOC_TB_SIZE - 1)
4315 		/* The max size of hash table is PREALLOC_TB_SIZE */
4316 		order = PREALLOC_TB_SIZE - 1;
4317 
4318 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4319 	/*
4320 	 * search for the prealloc space that is having
4321 	 * minimal distance from the goal block.
4322 	 */
4323 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4324 		rcu_read_lock();
4325 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
4326 					pa_inode_list) {
4327 			spin_lock(&pa->pa_lock);
4328 			if (pa->pa_deleted == 0 &&
4329 					pa->pa_free >= ac->ac_o_ex.fe_len) {
4330 
4331 				cpa = ext4_mb_check_group_pa(goal_block,
4332 								pa, cpa);
4333 			}
4334 			spin_unlock(&pa->pa_lock);
4335 		}
4336 		rcu_read_unlock();
4337 	}
4338 	if (cpa) {
4339 		ext4_mb_use_group_pa(ac, cpa);
4340 		ac->ac_criteria = 20;
4341 		return true;
4342 	}
4343 	return false;
4344 }
4345 
4346 /*
4347  * the function goes through all block freed in the group
4348  * but not yet committed and marks them used in in-core bitmap.
4349  * buddy must be generated from this bitmap
4350  * Need to be called with the ext4 group lock held
4351  */
4352 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
4353 						ext4_group_t group)
4354 {
4355 	struct rb_node *n;
4356 	struct ext4_group_info *grp;
4357 	struct ext4_free_data *entry;
4358 
4359 	grp = ext4_get_group_info(sb, group);
4360 	n = rb_first(&(grp->bb_free_root));
4361 
4362 	while (n) {
4363 		entry = rb_entry(n, struct ext4_free_data, efd_node);
4364 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
4365 		n = rb_next(n);
4366 	}
4367 	return;
4368 }
4369 
4370 /*
4371  * the function goes through all preallocation in this group and marks them
4372  * used in in-core bitmap. buddy must be generated from this bitmap
4373  * Need to be called with ext4 group lock held
4374  */
4375 static noinline_for_stack
4376 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4377 					ext4_group_t group)
4378 {
4379 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4380 	struct ext4_prealloc_space *pa;
4381 	struct list_head *cur;
4382 	ext4_group_t groupnr;
4383 	ext4_grpblk_t start;
4384 	int preallocated = 0;
4385 	int len;
4386 
4387 	/* all form of preallocation discards first load group,
4388 	 * so the only competing code is preallocation use.
4389 	 * we don't need any locking here
4390 	 * notice we do NOT ignore preallocations with pa_deleted
4391 	 * otherwise we could leave used blocks available for
4392 	 * allocation in buddy when concurrent ext4_mb_put_pa()
4393 	 * is dropping preallocation
4394 	 */
4395 	list_for_each(cur, &grp->bb_prealloc_list) {
4396 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
4397 		spin_lock(&pa->pa_lock);
4398 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4399 					     &groupnr, &start);
4400 		len = pa->pa_len;
4401 		spin_unlock(&pa->pa_lock);
4402 		if (unlikely(len == 0))
4403 			continue;
4404 		BUG_ON(groupnr != group);
4405 		ext4_set_bits(bitmap, start, len);
4406 		preallocated += len;
4407 	}
4408 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
4409 }
4410 
4411 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
4412 				    struct ext4_prealloc_space *pa)
4413 {
4414 	struct ext4_inode_info *ei;
4415 
4416 	if (pa->pa_deleted) {
4417 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
4418 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
4419 			     pa->pa_len);
4420 		return;
4421 	}
4422 
4423 	pa->pa_deleted = 1;
4424 
4425 	if (pa->pa_type == MB_INODE_PA) {
4426 		ei = EXT4_I(pa->pa_inode);
4427 		atomic_dec(&ei->i_prealloc_active);
4428 	}
4429 }
4430 
4431 static void ext4_mb_pa_callback(struct rcu_head *head)
4432 {
4433 	struct ext4_prealloc_space *pa;
4434 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
4435 
4436 	BUG_ON(atomic_read(&pa->pa_count));
4437 	BUG_ON(pa->pa_deleted == 0);
4438 	kmem_cache_free(ext4_pspace_cachep, pa);
4439 }
4440 
4441 /*
4442  * drops a reference to preallocated space descriptor
4443  * if this was the last reference and the space is consumed
4444  */
4445 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
4446 			struct super_block *sb, struct ext4_prealloc_space *pa)
4447 {
4448 	ext4_group_t grp;
4449 	ext4_fsblk_t grp_blk;
4450 
4451 	/* in this short window concurrent discard can set pa_deleted */
4452 	spin_lock(&pa->pa_lock);
4453 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
4454 		spin_unlock(&pa->pa_lock);
4455 		return;
4456 	}
4457 
4458 	if (pa->pa_deleted == 1) {
4459 		spin_unlock(&pa->pa_lock);
4460 		return;
4461 	}
4462 
4463 	ext4_mb_mark_pa_deleted(sb, pa);
4464 	spin_unlock(&pa->pa_lock);
4465 
4466 	grp_blk = pa->pa_pstart;
4467 	/*
4468 	 * If doing group-based preallocation, pa_pstart may be in the
4469 	 * next group when pa is used up
4470 	 */
4471 	if (pa->pa_type == MB_GROUP_PA)
4472 		grp_blk--;
4473 
4474 	grp = ext4_get_group_number(sb, grp_blk);
4475 
4476 	/*
4477 	 * possible race:
4478 	 *
4479 	 *  P1 (buddy init)			P2 (regular allocation)
4480 	 *					find block B in PA
4481 	 *  copy on-disk bitmap to buddy
4482 	 *  					mark B in on-disk bitmap
4483 	 *					drop PA from group
4484 	 *  mark all PAs in buddy
4485 	 *
4486 	 * thus, P1 initializes buddy with B available. to prevent this
4487 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
4488 	 * against that pair
4489 	 */
4490 	ext4_lock_group(sb, grp);
4491 	list_del(&pa->pa_group_list);
4492 	ext4_unlock_group(sb, grp);
4493 
4494 	spin_lock(pa->pa_obj_lock);
4495 	list_del_rcu(&pa->pa_inode_list);
4496 	spin_unlock(pa->pa_obj_lock);
4497 
4498 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4499 }
4500 
4501 /*
4502  * creates new preallocated space for given inode
4503  */
4504 static noinline_for_stack void
4505 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
4506 {
4507 	struct super_block *sb = ac->ac_sb;
4508 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4509 	struct ext4_prealloc_space *pa;
4510 	struct ext4_group_info *grp;
4511 	struct ext4_inode_info *ei;
4512 
4513 	/* preallocate only when found space is larger then requested */
4514 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4515 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4516 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4517 	BUG_ON(ac->ac_pa == NULL);
4518 
4519 	pa = ac->ac_pa;
4520 
4521 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
4522 		int winl;
4523 		int wins;
4524 		int win;
4525 		int offs;
4526 
4527 		/* we can't allocate as much as normalizer wants.
4528 		 * so, found space must get proper lstart
4529 		 * to cover original request */
4530 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
4531 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
4532 
4533 		/* we're limited by original request in that
4534 		 * logical block must be covered any way
4535 		 * winl is window we can move our chunk within */
4536 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
4537 
4538 		/* also, we should cover whole original request */
4539 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
4540 
4541 		/* the smallest one defines real window */
4542 		win = min(winl, wins);
4543 
4544 		offs = ac->ac_o_ex.fe_logical %
4545 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4546 		if (offs && offs < win)
4547 			win = offs;
4548 
4549 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
4550 			EXT4_NUM_B2C(sbi, win);
4551 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
4552 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
4553 	}
4554 
4555 	/* preallocation can change ac_b_ex, thus we store actually
4556 	 * allocated blocks for history */
4557 	ac->ac_f_ex = ac->ac_b_ex;
4558 
4559 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
4560 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4561 	pa->pa_len = ac->ac_b_ex.fe_len;
4562 	pa->pa_free = pa->pa_len;
4563 	spin_lock_init(&pa->pa_lock);
4564 	INIT_LIST_HEAD(&pa->pa_inode_list);
4565 	INIT_LIST_HEAD(&pa->pa_group_list);
4566 	pa->pa_deleted = 0;
4567 	pa->pa_type = MB_INODE_PA;
4568 
4569 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4570 		 pa->pa_len, pa->pa_lstart);
4571 	trace_ext4_mb_new_inode_pa(ac, pa);
4572 
4573 	ext4_mb_use_inode_pa(ac, pa);
4574 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
4575 
4576 	ei = EXT4_I(ac->ac_inode);
4577 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4578 
4579 	pa->pa_obj_lock = &ei->i_prealloc_lock;
4580 	pa->pa_inode = ac->ac_inode;
4581 
4582 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4583 
4584 	spin_lock(pa->pa_obj_lock);
4585 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
4586 	spin_unlock(pa->pa_obj_lock);
4587 	atomic_inc(&ei->i_prealloc_active);
4588 }
4589 
4590 /*
4591  * creates new preallocated space for locality group inodes belongs to
4592  */
4593 static noinline_for_stack void
4594 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
4595 {
4596 	struct super_block *sb = ac->ac_sb;
4597 	struct ext4_locality_group *lg;
4598 	struct ext4_prealloc_space *pa;
4599 	struct ext4_group_info *grp;
4600 
4601 	/* preallocate only when found space is larger then requested */
4602 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4603 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4604 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4605 	BUG_ON(ac->ac_pa == NULL);
4606 
4607 	pa = ac->ac_pa;
4608 
4609 	/* preallocation can change ac_b_ex, thus we store actually
4610 	 * allocated blocks for history */
4611 	ac->ac_f_ex = ac->ac_b_ex;
4612 
4613 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4614 	pa->pa_lstart = pa->pa_pstart;
4615 	pa->pa_len = ac->ac_b_ex.fe_len;
4616 	pa->pa_free = pa->pa_len;
4617 	spin_lock_init(&pa->pa_lock);
4618 	INIT_LIST_HEAD(&pa->pa_inode_list);
4619 	INIT_LIST_HEAD(&pa->pa_group_list);
4620 	pa->pa_deleted = 0;
4621 	pa->pa_type = MB_GROUP_PA;
4622 
4623 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4624 		 pa->pa_len, pa->pa_lstart);
4625 	trace_ext4_mb_new_group_pa(ac, pa);
4626 
4627 	ext4_mb_use_group_pa(ac, pa);
4628 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
4629 
4630 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4631 	lg = ac->ac_lg;
4632 	BUG_ON(lg == NULL);
4633 
4634 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
4635 	pa->pa_inode = NULL;
4636 
4637 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4638 
4639 	/*
4640 	 * We will later add the new pa to the right bucket
4641 	 * after updating the pa_free in ext4_mb_release_context
4642 	 */
4643 }
4644 
4645 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
4646 {
4647 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4648 		ext4_mb_new_group_pa(ac);
4649 	else
4650 		ext4_mb_new_inode_pa(ac);
4651 }
4652 
4653 /*
4654  * finds all unused blocks in on-disk bitmap, frees them in
4655  * in-core bitmap and buddy.
4656  * @pa must be unlinked from inode and group lists, so that
4657  * nobody else can find/use it.
4658  * the caller MUST hold group/inode locks.
4659  * TODO: optimize the case when there are no in-core structures yet
4660  */
4661 static noinline_for_stack int
4662 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
4663 			struct ext4_prealloc_space *pa)
4664 {
4665 	struct super_block *sb = e4b->bd_sb;
4666 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4667 	unsigned int end;
4668 	unsigned int next;
4669 	ext4_group_t group;
4670 	ext4_grpblk_t bit;
4671 	unsigned long long grp_blk_start;
4672 	int free = 0;
4673 
4674 	BUG_ON(pa->pa_deleted == 0);
4675 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4676 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
4677 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4678 	end = bit + pa->pa_len;
4679 
4680 	while (bit < end) {
4681 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
4682 		if (bit >= end)
4683 			break;
4684 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
4685 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
4686 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
4687 			 (unsigned) next - bit, (unsigned) group);
4688 		free += next - bit;
4689 
4690 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
4691 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
4692 						    EXT4_C2B(sbi, bit)),
4693 					       next - bit);
4694 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
4695 		bit = next + 1;
4696 	}
4697 	if (free != pa->pa_free) {
4698 		ext4_msg(e4b->bd_sb, KERN_CRIT,
4699 			 "pa %p: logic %lu, phys. %lu, len %d",
4700 			 pa, (unsigned long) pa->pa_lstart,
4701 			 (unsigned long) pa->pa_pstart,
4702 			 pa->pa_len);
4703 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
4704 					free, pa->pa_free);
4705 		/*
4706 		 * pa is already deleted so we use the value obtained
4707 		 * from the bitmap and continue.
4708 		 */
4709 	}
4710 	atomic_add(free, &sbi->s_mb_discarded);
4711 
4712 	return 0;
4713 }
4714 
4715 static noinline_for_stack int
4716 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
4717 				struct ext4_prealloc_space *pa)
4718 {
4719 	struct super_block *sb = e4b->bd_sb;
4720 	ext4_group_t group;
4721 	ext4_grpblk_t bit;
4722 
4723 	trace_ext4_mb_release_group_pa(sb, pa);
4724 	BUG_ON(pa->pa_deleted == 0);
4725 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4726 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4727 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
4728 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
4729 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
4730 
4731 	return 0;
4732 }
4733 
4734 /*
4735  * releases all preallocations in given group
4736  *
4737  * first, we need to decide discard policy:
4738  * - when do we discard
4739  *   1) ENOSPC
4740  * - how many do we discard
4741  *   1) how many requested
4742  */
4743 static noinline_for_stack int
4744 ext4_mb_discard_group_preallocations(struct super_block *sb,
4745 					ext4_group_t group, int needed)
4746 {
4747 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4748 	struct buffer_head *bitmap_bh = NULL;
4749 	struct ext4_prealloc_space *pa, *tmp;
4750 	struct list_head list;
4751 	struct ext4_buddy e4b;
4752 	int err;
4753 	int busy = 0;
4754 	int free, free_total = 0;
4755 
4756 	mb_debug(sb, "discard preallocation for group %u\n", group);
4757 	if (list_empty(&grp->bb_prealloc_list))
4758 		goto out_dbg;
4759 
4760 	bitmap_bh = ext4_read_block_bitmap(sb, group);
4761 	if (IS_ERR(bitmap_bh)) {
4762 		err = PTR_ERR(bitmap_bh);
4763 		ext4_error_err(sb, -err,
4764 			       "Error %d reading block bitmap for %u",
4765 			       err, group);
4766 		goto out_dbg;
4767 	}
4768 
4769 	err = ext4_mb_load_buddy(sb, group, &e4b);
4770 	if (err) {
4771 		ext4_warning(sb, "Error %d loading buddy information for %u",
4772 			     err, group);
4773 		put_bh(bitmap_bh);
4774 		goto out_dbg;
4775 	}
4776 
4777 	if (needed == 0)
4778 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
4779 
4780 	INIT_LIST_HEAD(&list);
4781 repeat:
4782 	free = 0;
4783 	ext4_lock_group(sb, group);
4784 	list_for_each_entry_safe(pa, tmp,
4785 				&grp->bb_prealloc_list, pa_group_list) {
4786 		spin_lock(&pa->pa_lock);
4787 		if (atomic_read(&pa->pa_count)) {
4788 			spin_unlock(&pa->pa_lock);
4789 			busy = 1;
4790 			continue;
4791 		}
4792 		if (pa->pa_deleted) {
4793 			spin_unlock(&pa->pa_lock);
4794 			continue;
4795 		}
4796 
4797 		/* seems this one can be freed ... */
4798 		ext4_mb_mark_pa_deleted(sb, pa);
4799 
4800 		if (!free)
4801 			this_cpu_inc(discard_pa_seq);
4802 
4803 		/* we can trust pa_free ... */
4804 		free += pa->pa_free;
4805 
4806 		spin_unlock(&pa->pa_lock);
4807 
4808 		list_del(&pa->pa_group_list);
4809 		list_add(&pa->u.pa_tmp_list, &list);
4810 	}
4811 
4812 	/* now free all selected PAs */
4813 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4814 
4815 		/* remove from object (inode or locality group) */
4816 		spin_lock(pa->pa_obj_lock);
4817 		list_del_rcu(&pa->pa_inode_list);
4818 		spin_unlock(pa->pa_obj_lock);
4819 
4820 		if (pa->pa_type == MB_GROUP_PA)
4821 			ext4_mb_release_group_pa(&e4b, pa);
4822 		else
4823 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4824 
4825 		list_del(&pa->u.pa_tmp_list);
4826 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4827 	}
4828 
4829 	free_total += free;
4830 
4831 	/* if we still need more blocks and some PAs were used, try again */
4832 	if (free_total < needed && busy) {
4833 		ext4_unlock_group(sb, group);
4834 		cond_resched();
4835 		busy = 0;
4836 		goto repeat;
4837 	}
4838 	ext4_unlock_group(sb, group);
4839 	ext4_mb_unload_buddy(&e4b);
4840 	put_bh(bitmap_bh);
4841 out_dbg:
4842 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
4843 		 free_total, group, grp->bb_free);
4844 	return free_total;
4845 }
4846 
4847 /*
4848  * releases all non-used preallocated blocks for given inode
4849  *
4850  * It's important to discard preallocations under i_data_sem
4851  * We don't want another block to be served from the prealloc
4852  * space when we are discarding the inode prealloc space.
4853  *
4854  * FIXME!! Make sure it is valid at all the call sites
4855  */
4856 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
4857 {
4858 	struct ext4_inode_info *ei = EXT4_I(inode);
4859 	struct super_block *sb = inode->i_sb;
4860 	struct buffer_head *bitmap_bh = NULL;
4861 	struct ext4_prealloc_space *pa, *tmp;
4862 	ext4_group_t group = 0;
4863 	struct list_head list;
4864 	struct ext4_buddy e4b;
4865 	int err;
4866 
4867 	if (!S_ISREG(inode->i_mode)) {
4868 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4869 		return;
4870 	}
4871 
4872 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
4873 		return;
4874 
4875 	mb_debug(sb, "discard preallocation for inode %lu\n",
4876 		 inode->i_ino);
4877 	trace_ext4_discard_preallocations(inode,
4878 			atomic_read(&ei->i_prealloc_active), needed);
4879 
4880 	INIT_LIST_HEAD(&list);
4881 
4882 	if (needed == 0)
4883 		needed = UINT_MAX;
4884 
4885 repeat:
4886 	/* first, collect all pa's in the inode */
4887 	spin_lock(&ei->i_prealloc_lock);
4888 	while (!list_empty(&ei->i_prealloc_list) && needed) {
4889 		pa = list_entry(ei->i_prealloc_list.prev,
4890 				struct ext4_prealloc_space, pa_inode_list);
4891 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4892 		spin_lock(&pa->pa_lock);
4893 		if (atomic_read(&pa->pa_count)) {
4894 			/* this shouldn't happen often - nobody should
4895 			 * use preallocation while we're discarding it */
4896 			spin_unlock(&pa->pa_lock);
4897 			spin_unlock(&ei->i_prealloc_lock);
4898 			ext4_msg(sb, KERN_ERR,
4899 				 "uh-oh! used pa while discarding");
4900 			WARN_ON(1);
4901 			schedule_timeout_uninterruptible(HZ);
4902 			goto repeat;
4903 
4904 		}
4905 		if (pa->pa_deleted == 0) {
4906 			ext4_mb_mark_pa_deleted(sb, pa);
4907 			spin_unlock(&pa->pa_lock);
4908 			list_del_rcu(&pa->pa_inode_list);
4909 			list_add(&pa->u.pa_tmp_list, &list);
4910 			needed--;
4911 			continue;
4912 		}
4913 
4914 		/* someone is deleting pa right now */
4915 		spin_unlock(&pa->pa_lock);
4916 		spin_unlock(&ei->i_prealloc_lock);
4917 
4918 		/* we have to wait here because pa_deleted
4919 		 * doesn't mean pa is already unlinked from
4920 		 * the list. as we might be called from
4921 		 * ->clear_inode() the inode will get freed
4922 		 * and concurrent thread which is unlinking
4923 		 * pa from inode's list may access already
4924 		 * freed memory, bad-bad-bad */
4925 
4926 		/* XXX: if this happens too often, we can
4927 		 * add a flag to force wait only in case
4928 		 * of ->clear_inode(), but not in case of
4929 		 * regular truncate */
4930 		schedule_timeout_uninterruptible(HZ);
4931 		goto repeat;
4932 	}
4933 	spin_unlock(&ei->i_prealloc_lock);
4934 
4935 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4936 		BUG_ON(pa->pa_type != MB_INODE_PA);
4937 		group = ext4_get_group_number(sb, pa->pa_pstart);
4938 
4939 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4940 					     GFP_NOFS|__GFP_NOFAIL);
4941 		if (err) {
4942 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4943 				       err, group);
4944 			continue;
4945 		}
4946 
4947 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4948 		if (IS_ERR(bitmap_bh)) {
4949 			err = PTR_ERR(bitmap_bh);
4950 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
4951 				       err, group);
4952 			ext4_mb_unload_buddy(&e4b);
4953 			continue;
4954 		}
4955 
4956 		ext4_lock_group(sb, group);
4957 		list_del(&pa->pa_group_list);
4958 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4959 		ext4_unlock_group(sb, group);
4960 
4961 		ext4_mb_unload_buddy(&e4b);
4962 		put_bh(bitmap_bh);
4963 
4964 		list_del(&pa->u.pa_tmp_list);
4965 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4966 	}
4967 }
4968 
4969 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
4970 {
4971 	struct ext4_prealloc_space *pa;
4972 
4973 	BUG_ON(ext4_pspace_cachep == NULL);
4974 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
4975 	if (!pa)
4976 		return -ENOMEM;
4977 	atomic_set(&pa->pa_count, 1);
4978 	ac->ac_pa = pa;
4979 	return 0;
4980 }
4981 
4982 static void ext4_mb_pa_free(struct ext4_allocation_context *ac)
4983 {
4984 	struct ext4_prealloc_space *pa = ac->ac_pa;
4985 
4986 	BUG_ON(!pa);
4987 	ac->ac_pa = NULL;
4988 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
4989 	kmem_cache_free(ext4_pspace_cachep, pa);
4990 }
4991 
4992 #ifdef CONFIG_EXT4_DEBUG
4993 static inline void ext4_mb_show_pa(struct super_block *sb)
4994 {
4995 	ext4_group_t i, ngroups;
4996 
4997 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
4998 		return;
4999 
5000 	ngroups = ext4_get_groups_count(sb);
5001 	mb_debug(sb, "groups: ");
5002 	for (i = 0; i < ngroups; i++) {
5003 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5004 		struct ext4_prealloc_space *pa;
5005 		ext4_grpblk_t start;
5006 		struct list_head *cur;
5007 		ext4_lock_group(sb, i);
5008 		list_for_each(cur, &grp->bb_prealloc_list) {
5009 			pa = list_entry(cur, struct ext4_prealloc_space,
5010 					pa_group_list);
5011 			spin_lock(&pa->pa_lock);
5012 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5013 						     NULL, &start);
5014 			spin_unlock(&pa->pa_lock);
5015 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5016 				 pa->pa_len);
5017 		}
5018 		ext4_unlock_group(sb, i);
5019 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5020 			 grp->bb_fragments);
5021 	}
5022 }
5023 
5024 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5025 {
5026 	struct super_block *sb = ac->ac_sb;
5027 
5028 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5029 		return;
5030 
5031 	mb_debug(sb, "Can't allocate:"
5032 			" Allocation context details:");
5033 	mb_debug(sb, "status %u flags 0x%x",
5034 			ac->ac_status, ac->ac_flags);
5035 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5036 			"goal %lu/%lu/%lu@%lu, "
5037 			"best %lu/%lu/%lu@%lu cr %d",
5038 			(unsigned long)ac->ac_o_ex.fe_group,
5039 			(unsigned long)ac->ac_o_ex.fe_start,
5040 			(unsigned long)ac->ac_o_ex.fe_len,
5041 			(unsigned long)ac->ac_o_ex.fe_logical,
5042 			(unsigned long)ac->ac_g_ex.fe_group,
5043 			(unsigned long)ac->ac_g_ex.fe_start,
5044 			(unsigned long)ac->ac_g_ex.fe_len,
5045 			(unsigned long)ac->ac_g_ex.fe_logical,
5046 			(unsigned long)ac->ac_b_ex.fe_group,
5047 			(unsigned long)ac->ac_b_ex.fe_start,
5048 			(unsigned long)ac->ac_b_ex.fe_len,
5049 			(unsigned long)ac->ac_b_ex.fe_logical,
5050 			(int)ac->ac_criteria);
5051 	mb_debug(sb, "%u found", ac->ac_found);
5052 	ext4_mb_show_pa(sb);
5053 }
5054 #else
5055 static inline void ext4_mb_show_pa(struct super_block *sb)
5056 {
5057 	return;
5058 }
5059 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5060 {
5061 	ext4_mb_show_pa(ac->ac_sb);
5062 	return;
5063 }
5064 #endif
5065 
5066 /*
5067  * We use locality group preallocation for small size file. The size of the
5068  * file is determined by the current size or the resulting size after
5069  * allocation which ever is larger
5070  *
5071  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5072  */
5073 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5074 {
5075 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5076 	int bsbits = ac->ac_sb->s_blocksize_bits;
5077 	loff_t size, isize;
5078 
5079 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5080 		return;
5081 
5082 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5083 		return;
5084 
5085 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
5086 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5087 		>> bsbits;
5088 
5089 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5090 	    !inode_is_open_for_write(ac->ac_inode)) {
5091 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5092 		return;
5093 	}
5094 
5095 	if (sbi->s_mb_group_prealloc <= 0) {
5096 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5097 		return;
5098 	}
5099 
5100 	/* don't use group allocation for large files */
5101 	size = max(size, isize);
5102 	if (size > sbi->s_mb_stream_request) {
5103 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5104 		return;
5105 	}
5106 
5107 	BUG_ON(ac->ac_lg != NULL);
5108 	/*
5109 	 * locality group prealloc space are per cpu. The reason for having
5110 	 * per cpu locality group is to reduce the contention between block
5111 	 * request from multiple CPUs.
5112 	 */
5113 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5114 
5115 	/* we're going to use group allocation */
5116 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5117 
5118 	/* serialize all allocations in the group */
5119 	mutex_lock(&ac->ac_lg->lg_mutex);
5120 }
5121 
5122 static noinline_for_stack int
5123 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5124 				struct ext4_allocation_request *ar)
5125 {
5126 	struct super_block *sb = ar->inode->i_sb;
5127 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5128 	struct ext4_super_block *es = sbi->s_es;
5129 	ext4_group_t group;
5130 	unsigned int len;
5131 	ext4_fsblk_t goal;
5132 	ext4_grpblk_t block;
5133 
5134 	/* we can't allocate > group size */
5135 	len = ar->len;
5136 
5137 	/* just a dirty hack to filter too big requests  */
5138 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5139 		len = EXT4_CLUSTERS_PER_GROUP(sb);
5140 
5141 	/* start searching from the goal */
5142 	goal = ar->goal;
5143 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5144 			goal >= ext4_blocks_count(es))
5145 		goal = le32_to_cpu(es->s_first_data_block);
5146 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5147 
5148 	/* set up allocation goals */
5149 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5150 	ac->ac_status = AC_STATUS_CONTINUE;
5151 	ac->ac_sb = sb;
5152 	ac->ac_inode = ar->inode;
5153 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5154 	ac->ac_o_ex.fe_group = group;
5155 	ac->ac_o_ex.fe_start = block;
5156 	ac->ac_o_ex.fe_len = len;
5157 	ac->ac_g_ex = ac->ac_o_ex;
5158 	ac->ac_flags = ar->flags;
5159 
5160 	/* we have to define context: we'll work with a file or
5161 	 * locality group. this is a policy, actually */
5162 	ext4_mb_group_or_file(ac);
5163 
5164 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5165 			"left: %u/%u, right %u/%u to %swritable\n",
5166 			(unsigned) ar->len, (unsigned) ar->logical,
5167 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5168 			(unsigned) ar->lleft, (unsigned) ar->pleft,
5169 			(unsigned) ar->lright, (unsigned) ar->pright,
5170 			inode_is_open_for_write(ar->inode) ? "" : "non-");
5171 	return 0;
5172 
5173 }
5174 
5175 static noinline_for_stack void
5176 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5177 					struct ext4_locality_group *lg,
5178 					int order, int total_entries)
5179 {
5180 	ext4_group_t group = 0;
5181 	struct ext4_buddy e4b;
5182 	struct list_head discard_list;
5183 	struct ext4_prealloc_space *pa, *tmp;
5184 
5185 	mb_debug(sb, "discard locality group preallocation\n");
5186 
5187 	INIT_LIST_HEAD(&discard_list);
5188 
5189 	spin_lock(&lg->lg_prealloc_lock);
5190 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5191 				pa_inode_list,
5192 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5193 		spin_lock(&pa->pa_lock);
5194 		if (atomic_read(&pa->pa_count)) {
5195 			/*
5196 			 * This is the pa that we just used
5197 			 * for block allocation. So don't
5198 			 * free that
5199 			 */
5200 			spin_unlock(&pa->pa_lock);
5201 			continue;
5202 		}
5203 		if (pa->pa_deleted) {
5204 			spin_unlock(&pa->pa_lock);
5205 			continue;
5206 		}
5207 		/* only lg prealloc space */
5208 		BUG_ON(pa->pa_type != MB_GROUP_PA);
5209 
5210 		/* seems this one can be freed ... */
5211 		ext4_mb_mark_pa_deleted(sb, pa);
5212 		spin_unlock(&pa->pa_lock);
5213 
5214 		list_del_rcu(&pa->pa_inode_list);
5215 		list_add(&pa->u.pa_tmp_list, &discard_list);
5216 
5217 		total_entries--;
5218 		if (total_entries <= 5) {
5219 			/*
5220 			 * we want to keep only 5 entries
5221 			 * allowing it to grow to 8. This
5222 			 * mak sure we don't call discard
5223 			 * soon for this list.
5224 			 */
5225 			break;
5226 		}
5227 	}
5228 	spin_unlock(&lg->lg_prealloc_lock);
5229 
5230 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5231 		int err;
5232 
5233 		group = ext4_get_group_number(sb, pa->pa_pstart);
5234 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5235 					     GFP_NOFS|__GFP_NOFAIL);
5236 		if (err) {
5237 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5238 				       err, group);
5239 			continue;
5240 		}
5241 		ext4_lock_group(sb, group);
5242 		list_del(&pa->pa_group_list);
5243 		ext4_mb_release_group_pa(&e4b, pa);
5244 		ext4_unlock_group(sb, group);
5245 
5246 		ext4_mb_unload_buddy(&e4b);
5247 		list_del(&pa->u.pa_tmp_list);
5248 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5249 	}
5250 }
5251 
5252 /*
5253  * We have incremented pa_count. So it cannot be freed at this
5254  * point. Also we hold lg_mutex. So no parallel allocation is
5255  * possible from this lg. That means pa_free cannot be updated.
5256  *
5257  * A parallel ext4_mb_discard_group_preallocations is possible.
5258  * which can cause the lg_prealloc_list to be updated.
5259  */
5260 
5261 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5262 {
5263 	int order, added = 0, lg_prealloc_count = 1;
5264 	struct super_block *sb = ac->ac_sb;
5265 	struct ext4_locality_group *lg = ac->ac_lg;
5266 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5267 
5268 	order = fls(pa->pa_free) - 1;
5269 	if (order > PREALLOC_TB_SIZE - 1)
5270 		/* The max size of hash table is PREALLOC_TB_SIZE */
5271 		order = PREALLOC_TB_SIZE - 1;
5272 	/* Add the prealloc space to lg */
5273 	spin_lock(&lg->lg_prealloc_lock);
5274 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5275 				pa_inode_list,
5276 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5277 		spin_lock(&tmp_pa->pa_lock);
5278 		if (tmp_pa->pa_deleted) {
5279 			spin_unlock(&tmp_pa->pa_lock);
5280 			continue;
5281 		}
5282 		if (!added && pa->pa_free < tmp_pa->pa_free) {
5283 			/* Add to the tail of the previous entry */
5284 			list_add_tail_rcu(&pa->pa_inode_list,
5285 						&tmp_pa->pa_inode_list);
5286 			added = 1;
5287 			/*
5288 			 * we want to count the total
5289 			 * number of entries in the list
5290 			 */
5291 		}
5292 		spin_unlock(&tmp_pa->pa_lock);
5293 		lg_prealloc_count++;
5294 	}
5295 	if (!added)
5296 		list_add_tail_rcu(&pa->pa_inode_list,
5297 					&lg->lg_prealloc_list[order]);
5298 	spin_unlock(&lg->lg_prealloc_lock);
5299 
5300 	/* Now trim the list to be not more than 8 elements */
5301 	if (lg_prealloc_count > 8) {
5302 		ext4_mb_discard_lg_preallocations(sb, lg,
5303 						  order, lg_prealloc_count);
5304 		return;
5305 	}
5306 	return ;
5307 }
5308 
5309 /*
5310  * if per-inode prealloc list is too long, trim some PA
5311  */
5312 static void ext4_mb_trim_inode_pa(struct inode *inode)
5313 {
5314 	struct ext4_inode_info *ei = EXT4_I(inode);
5315 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5316 	int count, delta;
5317 
5318 	count = atomic_read(&ei->i_prealloc_active);
5319 	delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1;
5320 	if (count > sbi->s_mb_max_inode_prealloc + delta) {
5321 		count -= sbi->s_mb_max_inode_prealloc;
5322 		ext4_discard_preallocations(inode, count);
5323 	}
5324 }
5325 
5326 /*
5327  * release all resource we used in allocation
5328  */
5329 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5330 {
5331 	struct inode *inode = ac->ac_inode;
5332 	struct ext4_inode_info *ei = EXT4_I(inode);
5333 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5334 	struct ext4_prealloc_space *pa = ac->ac_pa;
5335 	if (pa) {
5336 		if (pa->pa_type == MB_GROUP_PA) {
5337 			/* see comment in ext4_mb_use_group_pa() */
5338 			spin_lock(&pa->pa_lock);
5339 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5340 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5341 			pa->pa_free -= ac->ac_b_ex.fe_len;
5342 			pa->pa_len -= ac->ac_b_ex.fe_len;
5343 			spin_unlock(&pa->pa_lock);
5344 
5345 			/*
5346 			 * We want to add the pa to the right bucket.
5347 			 * Remove it from the list and while adding
5348 			 * make sure the list to which we are adding
5349 			 * doesn't grow big.
5350 			 */
5351 			if (likely(pa->pa_free)) {
5352 				spin_lock(pa->pa_obj_lock);
5353 				list_del_rcu(&pa->pa_inode_list);
5354 				spin_unlock(pa->pa_obj_lock);
5355 				ext4_mb_add_n_trim(ac);
5356 			}
5357 		}
5358 
5359 		if (pa->pa_type == MB_INODE_PA) {
5360 			/*
5361 			 * treat per-inode prealloc list as a lru list, then try
5362 			 * to trim the least recently used PA.
5363 			 */
5364 			spin_lock(pa->pa_obj_lock);
5365 			list_move(&pa->pa_inode_list, &ei->i_prealloc_list);
5366 			spin_unlock(pa->pa_obj_lock);
5367 		}
5368 
5369 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
5370 	}
5371 	if (ac->ac_bitmap_page)
5372 		put_page(ac->ac_bitmap_page);
5373 	if (ac->ac_buddy_page)
5374 		put_page(ac->ac_buddy_page);
5375 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5376 		mutex_unlock(&ac->ac_lg->lg_mutex);
5377 	ext4_mb_collect_stats(ac);
5378 	ext4_mb_trim_inode_pa(inode);
5379 	return 0;
5380 }
5381 
5382 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
5383 {
5384 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
5385 	int ret;
5386 	int freed = 0;
5387 
5388 	trace_ext4_mb_discard_preallocations(sb, needed);
5389 	for (i = 0; i < ngroups && needed > 0; i++) {
5390 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
5391 		freed += ret;
5392 		needed -= ret;
5393 	}
5394 
5395 	return freed;
5396 }
5397 
5398 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
5399 			struct ext4_allocation_context *ac, u64 *seq)
5400 {
5401 	int freed;
5402 	u64 seq_retry = 0;
5403 	bool ret = false;
5404 
5405 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
5406 	if (freed) {
5407 		ret = true;
5408 		goto out_dbg;
5409 	}
5410 	seq_retry = ext4_get_discard_pa_seq_sum();
5411 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
5412 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
5413 		*seq = seq_retry;
5414 		ret = true;
5415 	}
5416 
5417 out_dbg:
5418 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
5419 	return ret;
5420 }
5421 
5422 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5423 				struct ext4_allocation_request *ar, int *errp);
5424 
5425 /*
5426  * Main entry point into mballoc to allocate blocks
5427  * it tries to use preallocation first, then falls back
5428  * to usual allocation
5429  */
5430 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
5431 				struct ext4_allocation_request *ar, int *errp)
5432 {
5433 	struct ext4_allocation_context *ac = NULL;
5434 	struct ext4_sb_info *sbi;
5435 	struct super_block *sb;
5436 	ext4_fsblk_t block = 0;
5437 	unsigned int inquota = 0;
5438 	unsigned int reserv_clstrs = 0;
5439 	u64 seq;
5440 
5441 	might_sleep();
5442 	sb = ar->inode->i_sb;
5443 	sbi = EXT4_SB(sb);
5444 
5445 	trace_ext4_request_blocks(ar);
5446 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
5447 		return ext4_mb_new_blocks_simple(handle, ar, errp);
5448 
5449 	/* Allow to use superuser reservation for quota file */
5450 	if (ext4_is_quota_file(ar->inode))
5451 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
5452 
5453 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
5454 		/* Without delayed allocation we need to verify
5455 		 * there is enough free blocks to do block allocation
5456 		 * and verify allocation doesn't exceed the quota limits.
5457 		 */
5458 		while (ar->len &&
5459 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
5460 
5461 			/* let others to free the space */
5462 			cond_resched();
5463 			ar->len = ar->len >> 1;
5464 		}
5465 		if (!ar->len) {
5466 			ext4_mb_show_pa(sb);
5467 			*errp = -ENOSPC;
5468 			return 0;
5469 		}
5470 		reserv_clstrs = ar->len;
5471 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
5472 			dquot_alloc_block_nofail(ar->inode,
5473 						 EXT4_C2B(sbi, ar->len));
5474 		} else {
5475 			while (ar->len &&
5476 				dquot_alloc_block(ar->inode,
5477 						  EXT4_C2B(sbi, ar->len))) {
5478 
5479 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
5480 				ar->len--;
5481 			}
5482 		}
5483 		inquota = ar->len;
5484 		if (ar->len == 0) {
5485 			*errp = -EDQUOT;
5486 			goto out;
5487 		}
5488 	}
5489 
5490 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
5491 	if (!ac) {
5492 		ar->len = 0;
5493 		*errp = -ENOMEM;
5494 		goto out;
5495 	}
5496 
5497 	*errp = ext4_mb_initialize_context(ac, ar);
5498 	if (*errp) {
5499 		ar->len = 0;
5500 		goto out;
5501 	}
5502 
5503 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
5504 	seq = this_cpu_read(discard_pa_seq);
5505 	if (!ext4_mb_use_preallocated(ac)) {
5506 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
5507 		ext4_mb_normalize_request(ac, ar);
5508 
5509 		*errp = ext4_mb_pa_alloc(ac);
5510 		if (*errp)
5511 			goto errout;
5512 repeat:
5513 		/* allocate space in core */
5514 		*errp = ext4_mb_regular_allocator(ac);
5515 		/*
5516 		 * pa allocated above is added to grp->bb_prealloc_list only
5517 		 * when we were able to allocate some block i.e. when
5518 		 * ac->ac_status == AC_STATUS_FOUND.
5519 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
5520 		 * So we have to free this pa here itself.
5521 		 */
5522 		if (*errp) {
5523 			ext4_mb_pa_free(ac);
5524 			ext4_discard_allocated_blocks(ac);
5525 			goto errout;
5526 		}
5527 		if (ac->ac_status == AC_STATUS_FOUND &&
5528 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
5529 			ext4_mb_pa_free(ac);
5530 	}
5531 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
5532 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
5533 		if (*errp) {
5534 			ext4_discard_allocated_blocks(ac);
5535 			goto errout;
5536 		} else {
5537 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5538 			ar->len = ac->ac_b_ex.fe_len;
5539 		}
5540 	} else {
5541 		if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
5542 			goto repeat;
5543 		/*
5544 		 * If block allocation fails then the pa allocated above
5545 		 * needs to be freed here itself.
5546 		 */
5547 		ext4_mb_pa_free(ac);
5548 		*errp = -ENOSPC;
5549 	}
5550 
5551 errout:
5552 	if (*errp) {
5553 		ac->ac_b_ex.fe_len = 0;
5554 		ar->len = 0;
5555 		ext4_mb_show_ac(ac);
5556 	}
5557 	ext4_mb_release_context(ac);
5558 out:
5559 	if (ac)
5560 		kmem_cache_free(ext4_ac_cachep, ac);
5561 	if (inquota && ar->len < inquota)
5562 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
5563 	if (!ar->len) {
5564 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
5565 			/* release all the reserved blocks if non delalloc */
5566 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
5567 						reserv_clstrs);
5568 	}
5569 
5570 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
5571 
5572 	return block;
5573 }
5574 
5575 /*
5576  * We can merge two free data extents only if the physical blocks
5577  * are contiguous, AND the extents were freed by the same transaction,
5578  * AND the blocks are associated with the same group.
5579  */
5580 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
5581 					struct ext4_free_data *entry,
5582 					struct ext4_free_data *new_entry,
5583 					struct rb_root *entry_rb_root)
5584 {
5585 	if ((entry->efd_tid != new_entry->efd_tid) ||
5586 	    (entry->efd_group != new_entry->efd_group))
5587 		return;
5588 	if (entry->efd_start_cluster + entry->efd_count ==
5589 	    new_entry->efd_start_cluster) {
5590 		new_entry->efd_start_cluster = entry->efd_start_cluster;
5591 		new_entry->efd_count += entry->efd_count;
5592 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
5593 		   entry->efd_start_cluster) {
5594 		new_entry->efd_count += entry->efd_count;
5595 	} else
5596 		return;
5597 	spin_lock(&sbi->s_md_lock);
5598 	list_del(&entry->efd_list);
5599 	spin_unlock(&sbi->s_md_lock);
5600 	rb_erase(&entry->efd_node, entry_rb_root);
5601 	kmem_cache_free(ext4_free_data_cachep, entry);
5602 }
5603 
5604 static noinline_for_stack int
5605 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
5606 		      struct ext4_free_data *new_entry)
5607 {
5608 	ext4_group_t group = e4b->bd_group;
5609 	ext4_grpblk_t cluster;
5610 	ext4_grpblk_t clusters = new_entry->efd_count;
5611 	struct ext4_free_data *entry;
5612 	struct ext4_group_info *db = e4b->bd_info;
5613 	struct super_block *sb = e4b->bd_sb;
5614 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5615 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
5616 	struct rb_node *parent = NULL, *new_node;
5617 
5618 	BUG_ON(!ext4_handle_valid(handle));
5619 	BUG_ON(e4b->bd_bitmap_page == NULL);
5620 	BUG_ON(e4b->bd_buddy_page == NULL);
5621 
5622 	new_node = &new_entry->efd_node;
5623 	cluster = new_entry->efd_start_cluster;
5624 
5625 	if (!*n) {
5626 		/* first free block exent. We need to
5627 		   protect buddy cache from being freed,
5628 		 * otherwise we'll refresh it from
5629 		 * on-disk bitmap and lose not-yet-available
5630 		 * blocks */
5631 		get_page(e4b->bd_buddy_page);
5632 		get_page(e4b->bd_bitmap_page);
5633 	}
5634 	while (*n) {
5635 		parent = *n;
5636 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
5637 		if (cluster < entry->efd_start_cluster)
5638 			n = &(*n)->rb_left;
5639 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
5640 			n = &(*n)->rb_right;
5641 		else {
5642 			ext4_grp_locked_error(sb, group, 0,
5643 				ext4_group_first_block_no(sb, group) +
5644 				EXT4_C2B(sbi, cluster),
5645 				"Block already on to-be-freed list");
5646 			kmem_cache_free(ext4_free_data_cachep, new_entry);
5647 			return 0;
5648 		}
5649 	}
5650 
5651 	rb_link_node(new_node, parent, n);
5652 	rb_insert_color(new_node, &db->bb_free_root);
5653 
5654 	/* Now try to see the extent can be merged to left and right */
5655 	node = rb_prev(new_node);
5656 	if (node) {
5657 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5658 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5659 					    &(db->bb_free_root));
5660 	}
5661 
5662 	node = rb_next(new_node);
5663 	if (node) {
5664 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5665 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5666 					    &(db->bb_free_root));
5667 	}
5668 
5669 	spin_lock(&sbi->s_md_lock);
5670 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
5671 	sbi->s_mb_free_pending += clusters;
5672 	spin_unlock(&sbi->s_md_lock);
5673 	return 0;
5674 }
5675 
5676 /*
5677  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
5678  * linearly starting at the goal block and also excludes the blocks which
5679  * are going to be in use after fast commit replay.
5680  */
5681 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5682 				struct ext4_allocation_request *ar, int *errp)
5683 {
5684 	struct buffer_head *bitmap_bh;
5685 	struct super_block *sb = ar->inode->i_sb;
5686 	ext4_group_t group;
5687 	ext4_grpblk_t blkoff;
5688 	int i = sb->s_blocksize;
5689 	ext4_fsblk_t goal, block;
5690 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5691 
5692 	goal = ar->goal;
5693 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5694 			goal >= ext4_blocks_count(es))
5695 		goal = le32_to_cpu(es->s_first_data_block);
5696 
5697 	ar->len = 0;
5698 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
5699 	for (; group < ext4_get_groups_count(sb); group++) {
5700 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5701 		if (IS_ERR(bitmap_bh)) {
5702 			*errp = PTR_ERR(bitmap_bh);
5703 			pr_warn("Failed to read block bitmap\n");
5704 			return 0;
5705 		}
5706 
5707 		ext4_get_group_no_and_offset(sb,
5708 			max(ext4_group_first_block_no(sb, group), goal),
5709 			NULL, &blkoff);
5710 		i = mb_find_next_zero_bit(bitmap_bh->b_data, sb->s_blocksize,
5711 						blkoff);
5712 		brelse(bitmap_bh);
5713 		if (i >= sb->s_blocksize)
5714 			continue;
5715 		if (ext4_fc_replay_check_excluded(sb,
5716 			ext4_group_first_block_no(sb, group) + i))
5717 			continue;
5718 		break;
5719 	}
5720 
5721 	if (group >= ext4_get_groups_count(sb) && i >= sb->s_blocksize)
5722 		return 0;
5723 
5724 	block = ext4_group_first_block_no(sb, group) + i;
5725 	ext4_mb_mark_bb(sb, block, 1, 1);
5726 	ar->len = 1;
5727 
5728 	return block;
5729 }
5730 
5731 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
5732 					unsigned long count)
5733 {
5734 	struct buffer_head *bitmap_bh;
5735 	struct super_block *sb = inode->i_sb;
5736 	struct ext4_group_desc *gdp;
5737 	struct buffer_head *gdp_bh;
5738 	ext4_group_t group;
5739 	ext4_grpblk_t blkoff;
5740 	int already_freed = 0, err, i;
5741 
5742 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
5743 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5744 	if (IS_ERR(bitmap_bh)) {
5745 		err = PTR_ERR(bitmap_bh);
5746 		pr_warn("Failed to read block bitmap\n");
5747 		return;
5748 	}
5749 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
5750 	if (!gdp)
5751 		return;
5752 
5753 	for (i = 0; i < count; i++) {
5754 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
5755 			already_freed++;
5756 	}
5757 	mb_clear_bits(bitmap_bh->b_data, blkoff, count);
5758 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
5759 	if (err)
5760 		return;
5761 	ext4_free_group_clusters_set(
5762 		sb, gdp, ext4_free_group_clusters(sb, gdp) +
5763 		count - already_freed);
5764 	ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
5765 	ext4_group_desc_csum_set(sb, group, gdp);
5766 	ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
5767 	sync_dirty_buffer(bitmap_bh);
5768 	sync_dirty_buffer(gdp_bh);
5769 	brelse(bitmap_bh);
5770 }
5771 
5772 /**
5773  * ext4_free_blocks() -- Free given blocks and update quota
5774  * @handle:		handle for this transaction
5775  * @inode:		inode
5776  * @bh:			optional buffer of the block to be freed
5777  * @block:		starting physical block to be freed
5778  * @count:		number of blocks to be freed
5779  * @flags:		flags used by ext4_free_blocks
5780  */
5781 void ext4_free_blocks(handle_t *handle, struct inode *inode,
5782 		      struct buffer_head *bh, ext4_fsblk_t block,
5783 		      unsigned long count, int flags)
5784 {
5785 	struct buffer_head *bitmap_bh = NULL;
5786 	struct super_block *sb = inode->i_sb;
5787 	struct ext4_group_desc *gdp;
5788 	unsigned int overflow;
5789 	ext4_grpblk_t bit;
5790 	struct buffer_head *gd_bh;
5791 	ext4_group_t block_group;
5792 	struct ext4_sb_info *sbi;
5793 	struct ext4_buddy e4b;
5794 	unsigned int count_clusters;
5795 	int err = 0;
5796 	int ret;
5797 
5798 	sbi = EXT4_SB(sb);
5799 
5800 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
5801 		ext4_free_blocks_simple(inode, block, count);
5802 		return;
5803 	}
5804 
5805 	might_sleep();
5806 	if (bh) {
5807 		if (block)
5808 			BUG_ON(block != bh->b_blocknr);
5809 		else
5810 			block = bh->b_blocknr;
5811 	}
5812 
5813 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
5814 	    !ext4_inode_block_valid(inode, block, count)) {
5815 		ext4_error(sb, "Freeing blocks not in datazone - "
5816 			   "block = %llu, count = %lu", block, count);
5817 		goto error_return;
5818 	}
5819 
5820 	ext4_debug("freeing block %llu\n", block);
5821 	trace_ext4_free_blocks(inode, block, count, flags);
5822 
5823 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5824 		BUG_ON(count > 1);
5825 
5826 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
5827 			    inode, bh, block);
5828 	}
5829 
5830 	/*
5831 	 * If the extent to be freed does not begin on a cluster
5832 	 * boundary, we need to deal with partial clusters at the
5833 	 * beginning and end of the extent.  Normally we will free
5834 	 * blocks at the beginning or the end unless we are explicitly
5835 	 * requested to avoid doing so.
5836 	 */
5837 	overflow = EXT4_PBLK_COFF(sbi, block);
5838 	if (overflow) {
5839 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
5840 			overflow = sbi->s_cluster_ratio - overflow;
5841 			block += overflow;
5842 			if (count > overflow)
5843 				count -= overflow;
5844 			else
5845 				return;
5846 		} else {
5847 			block -= overflow;
5848 			count += overflow;
5849 		}
5850 	}
5851 	overflow = EXT4_LBLK_COFF(sbi, count);
5852 	if (overflow) {
5853 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
5854 			if (count > overflow)
5855 				count -= overflow;
5856 			else
5857 				return;
5858 		} else
5859 			count += sbi->s_cluster_ratio - overflow;
5860 	}
5861 
5862 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
5863 		int i;
5864 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
5865 
5866 		for (i = 0; i < count; i++) {
5867 			cond_resched();
5868 			if (is_metadata)
5869 				bh = sb_find_get_block(inode->i_sb, block + i);
5870 			ext4_forget(handle, is_metadata, inode, bh, block + i);
5871 		}
5872 	}
5873 
5874 do_more:
5875 	overflow = 0;
5876 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5877 
5878 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
5879 			ext4_get_group_info(sb, block_group))))
5880 		return;
5881 
5882 	/*
5883 	 * Check to see if we are freeing blocks across a group
5884 	 * boundary.
5885 	 */
5886 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
5887 		overflow = EXT4_C2B(sbi, bit) + count -
5888 			EXT4_BLOCKS_PER_GROUP(sb);
5889 		count -= overflow;
5890 	}
5891 	count_clusters = EXT4_NUM_B2C(sbi, count);
5892 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5893 	if (IS_ERR(bitmap_bh)) {
5894 		err = PTR_ERR(bitmap_bh);
5895 		bitmap_bh = NULL;
5896 		goto error_return;
5897 	}
5898 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
5899 	if (!gdp) {
5900 		err = -EIO;
5901 		goto error_return;
5902 	}
5903 
5904 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
5905 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
5906 	    in_range(block, ext4_inode_table(sb, gdp),
5907 		     sbi->s_itb_per_group) ||
5908 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
5909 		     sbi->s_itb_per_group)) {
5910 
5911 		ext4_error(sb, "Freeing blocks in system zone - "
5912 			   "Block = %llu, count = %lu", block, count);
5913 		/* err = 0. ext4_std_error should be a no op */
5914 		goto error_return;
5915 	}
5916 
5917 	BUFFER_TRACE(bitmap_bh, "getting write access");
5918 	err = ext4_journal_get_write_access(handle, bitmap_bh);
5919 	if (err)
5920 		goto error_return;
5921 
5922 	/*
5923 	 * We are about to modify some metadata.  Call the journal APIs
5924 	 * to unshare ->b_data if a currently-committing transaction is
5925 	 * using it
5926 	 */
5927 	BUFFER_TRACE(gd_bh, "get_write_access");
5928 	err = ext4_journal_get_write_access(handle, gd_bh);
5929 	if (err)
5930 		goto error_return;
5931 #ifdef AGGRESSIVE_CHECK
5932 	{
5933 		int i;
5934 		for (i = 0; i < count_clusters; i++)
5935 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
5936 	}
5937 #endif
5938 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
5939 
5940 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
5941 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
5942 				     GFP_NOFS|__GFP_NOFAIL);
5943 	if (err)
5944 		goto error_return;
5945 
5946 	/*
5947 	 * We need to make sure we don't reuse the freed block until after the
5948 	 * transaction is committed. We make an exception if the inode is to be
5949 	 * written in writeback mode since writeback mode has weak data
5950 	 * consistency guarantees.
5951 	 */
5952 	if (ext4_handle_valid(handle) &&
5953 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
5954 	     !ext4_should_writeback_data(inode))) {
5955 		struct ext4_free_data *new_entry;
5956 		/*
5957 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
5958 		 * to fail.
5959 		 */
5960 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
5961 				GFP_NOFS|__GFP_NOFAIL);
5962 		new_entry->efd_start_cluster = bit;
5963 		new_entry->efd_group = block_group;
5964 		new_entry->efd_count = count_clusters;
5965 		new_entry->efd_tid = handle->h_transaction->t_tid;
5966 
5967 		ext4_lock_group(sb, block_group);
5968 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5969 		ext4_mb_free_metadata(handle, &e4b, new_entry);
5970 	} else {
5971 		/* need to update group_info->bb_free and bitmap
5972 		 * with group lock held. generate_buddy look at
5973 		 * them with group lock_held
5974 		 */
5975 		if (test_opt(sb, DISCARD)) {
5976 			err = ext4_issue_discard(sb, block_group, bit, count,
5977 						 NULL);
5978 			if (err && err != -EOPNOTSUPP)
5979 				ext4_msg(sb, KERN_WARNING, "discard request in"
5980 					 " group:%d block:%d count:%lu failed"
5981 					 " with %d", block_group, bit, count,
5982 					 err);
5983 		} else
5984 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
5985 
5986 		ext4_lock_group(sb, block_group);
5987 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5988 		mb_free_blocks(inode, &e4b, bit, count_clusters);
5989 	}
5990 
5991 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
5992 	ext4_free_group_clusters_set(sb, gdp, ret);
5993 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
5994 	ext4_group_desc_csum_set(sb, block_group, gdp);
5995 	ext4_unlock_group(sb, block_group);
5996 
5997 	if (sbi->s_log_groups_per_flex) {
5998 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5999 		atomic64_add(count_clusters,
6000 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6001 						  flex_group)->free_clusters);
6002 	}
6003 
6004 	/*
6005 	 * on a bigalloc file system, defer the s_freeclusters_counter
6006 	 * update to the caller (ext4_remove_space and friends) so they
6007 	 * can determine if a cluster freed here should be rereserved
6008 	 */
6009 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6010 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6011 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6012 		percpu_counter_add(&sbi->s_freeclusters_counter,
6013 				   count_clusters);
6014 	}
6015 
6016 	ext4_mb_unload_buddy(&e4b);
6017 
6018 	/* We dirtied the bitmap block */
6019 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6020 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6021 
6022 	/* And the group descriptor block */
6023 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6024 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6025 	if (!err)
6026 		err = ret;
6027 
6028 	if (overflow && !err) {
6029 		block += count;
6030 		count = overflow;
6031 		put_bh(bitmap_bh);
6032 		goto do_more;
6033 	}
6034 error_return:
6035 	brelse(bitmap_bh);
6036 	ext4_std_error(sb, err);
6037 	return;
6038 }
6039 
6040 /**
6041  * ext4_group_add_blocks() -- Add given blocks to an existing group
6042  * @handle:			handle to this transaction
6043  * @sb:				super block
6044  * @block:			start physical block to add to the block group
6045  * @count:			number of blocks to free
6046  *
6047  * This marks the blocks as free in the bitmap and buddy.
6048  */
6049 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6050 			 ext4_fsblk_t block, unsigned long count)
6051 {
6052 	struct buffer_head *bitmap_bh = NULL;
6053 	struct buffer_head *gd_bh;
6054 	ext4_group_t block_group;
6055 	ext4_grpblk_t bit;
6056 	unsigned int i;
6057 	struct ext4_group_desc *desc;
6058 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6059 	struct ext4_buddy e4b;
6060 	int err = 0, ret, free_clusters_count;
6061 	ext4_grpblk_t clusters_freed;
6062 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6063 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6064 	unsigned long cluster_count = last_cluster - first_cluster + 1;
6065 
6066 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6067 
6068 	if (count == 0)
6069 		return 0;
6070 
6071 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6072 	/*
6073 	 * Check to see if we are freeing blocks across a group
6074 	 * boundary.
6075 	 */
6076 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6077 		ext4_warning(sb, "too many blocks added to group %u",
6078 			     block_group);
6079 		err = -EINVAL;
6080 		goto error_return;
6081 	}
6082 
6083 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6084 	if (IS_ERR(bitmap_bh)) {
6085 		err = PTR_ERR(bitmap_bh);
6086 		bitmap_bh = NULL;
6087 		goto error_return;
6088 	}
6089 
6090 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6091 	if (!desc) {
6092 		err = -EIO;
6093 		goto error_return;
6094 	}
6095 
6096 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
6097 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
6098 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
6099 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
6100 		     sbi->s_itb_per_group)) {
6101 		ext4_error(sb, "Adding blocks in system zones - "
6102 			   "Block = %llu, count = %lu",
6103 			   block, count);
6104 		err = -EINVAL;
6105 		goto error_return;
6106 	}
6107 
6108 	BUFFER_TRACE(bitmap_bh, "getting write access");
6109 	err = ext4_journal_get_write_access(handle, bitmap_bh);
6110 	if (err)
6111 		goto error_return;
6112 
6113 	/*
6114 	 * We are about to modify some metadata.  Call the journal APIs
6115 	 * to unshare ->b_data if a currently-committing transaction is
6116 	 * using it
6117 	 */
6118 	BUFFER_TRACE(gd_bh, "get_write_access");
6119 	err = ext4_journal_get_write_access(handle, gd_bh);
6120 	if (err)
6121 		goto error_return;
6122 
6123 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6124 		BUFFER_TRACE(bitmap_bh, "clear bit");
6125 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6126 			ext4_error(sb, "bit already cleared for block %llu",
6127 				   (ext4_fsblk_t)(block + i));
6128 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
6129 		} else {
6130 			clusters_freed++;
6131 		}
6132 	}
6133 
6134 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6135 	if (err)
6136 		goto error_return;
6137 
6138 	/*
6139 	 * need to update group_info->bb_free and bitmap
6140 	 * with group lock held. generate_buddy look at
6141 	 * them with group lock_held
6142 	 */
6143 	ext4_lock_group(sb, block_group);
6144 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6145 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6146 	free_clusters_count = clusters_freed +
6147 		ext4_free_group_clusters(sb, desc);
6148 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6149 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
6150 	ext4_group_desc_csum_set(sb, block_group, desc);
6151 	ext4_unlock_group(sb, block_group);
6152 	percpu_counter_add(&sbi->s_freeclusters_counter,
6153 			   clusters_freed);
6154 
6155 	if (sbi->s_log_groups_per_flex) {
6156 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6157 		atomic64_add(clusters_freed,
6158 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6159 						  flex_group)->free_clusters);
6160 	}
6161 
6162 	ext4_mb_unload_buddy(&e4b);
6163 
6164 	/* We dirtied the bitmap block */
6165 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6166 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6167 
6168 	/* And the group descriptor block */
6169 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6170 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6171 	if (!err)
6172 		err = ret;
6173 
6174 error_return:
6175 	brelse(bitmap_bh);
6176 	ext4_std_error(sb, err);
6177 	return err;
6178 }
6179 
6180 /**
6181  * ext4_trim_extent -- function to TRIM one single free extent in the group
6182  * @sb:		super block for the file system
6183  * @start:	starting block of the free extent in the alloc. group
6184  * @count:	number of blocks to TRIM
6185  * @group:	alloc. group we are working with
6186  * @e4b:	ext4 buddy for the group
6187  *
6188  * Trim "count" blocks starting at "start" in the "group". To assure that no
6189  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6190  * be called with under the group lock.
6191  */
6192 static int ext4_trim_extent(struct super_block *sb, int start, int count,
6193 			     ext4_group_t group, struct ext4_buddy *e4b)
6194 __releases(bitlock)
6195 __acquires(bitlock)
6196 {
6197 	struct ext4_free_extent ex;
6198 	int ret = 0;
6199 
6200 	trace_ext4_trim_extent(sb, group, start, count);
6201 
6202 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6203 
6204 	ex.fe_start = start;
6205 	ex.fe_group = group;
6206 	ex.fe_len = count;
6207 
6208 	/*
6209 	 * Mark blocks used, so no one can reuse them while
6210 	 * being trimmed.
6211 	 */
6212 	mb_mark_used(e4b, &ex);
6213 	ext4_unlock_group(sb, group);
6214 	ret = ext4_issue_discard(sb, group, start, count, NULL);
6215 	ext4_lock_group(sb, group);
6216 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6217 	return ret;
6218 }
6219 
6220 /**
6221  * ext4_trim_all_free -- function to trim all free space in alloc. group
6222  * @sb:			super block for file system
6223  * @group:		group to be trimmed
6224  * @start:		first group block to examine
6225  * @max:		last group block to examine
6226  * @minblocks:		minimum extent block count
6227  *
6228  * ext4_trim_all_free walks through group's buddy bitmap searching for free
6229  * extents. When the free block is found, ext4_trim_extent is called to TRIM
6230  * the extent.
6231  *
6232  *
6233  * ext4_trim_all_free walks through group's block bitmap searching for free
6234  * extents. When the free extent is found, mark it as used in group buddy
6235  * bitmap. Then issue a TRIM command on this extent and free the extent in
6236  * the group buddy bitmap. This is done until whole group is scanned.
6237  */
6238 static ext4_grpblk_t
6239 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6240 		   ext4_grpblk_t start, ext4_grpblk_t max,
6241 		   ext4_grpblk_t minblocks)
6242 {
6243 	void *bitmap;
6244 	ext4_grpblk_t next, count = 0, free_count = 0;
6245 	struct ext4_buddy e4b;
6246 	int ret = 0;
6247 
6248 	trace_ext4_trim_all_free(sb, group, start, max);
6249 
6250 	ret = ext4_mb_load_buddy(sb, group, &e4b);
6251 	if (ret) {
6252 		ext4_warning(sb, "Error %d loading buddy information for %u",
6253 			     ret, group);
6254 		return ret;
6255 	}
6256 	bitmap = e4b.bd_bitmap;
6257 
6258 	ext4_lock_group(sb, group);
6259 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
6260 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
6261 		goto out;
6262 
6263 	start = (e4b.bd_info->bb_first_free > start) ?
6264 		e4b.bd_info->bb_first_free : start;
6265 
6266 	while (start <= max) {
6267 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6268 		if (start > max)
6269 			break;
6270 		next = mb_find_next_bit(bitmap, max + 1, start);
6271 
6272 		if ((next - start) >= minblocks) {
6273 			ret = ext4_trim_extent(sb, start,
6274 					       next - start, group, &e4b);
6275 			if (ret && ret != -EOPNOTSUPP)
6276 				break;
6277 			ret = 0;
6278 			count += next - start;
6279 		}
6280 		free_count += next - start;
6281 		start = next + 1;
6282 
6283 		if (fatal_signal_pending(current)) {
6284 			count = -ERESTARTSYS;
6285 			break;
6286 		}
6287 
6288 		if (need_resched()) {
6289 			ext4_unlock_group(sb, group);
6290 			cond_resched();
6291 			ext4_lock_group(sb, group);
6292 		}
6293 
6294 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
6295 			break;
6296 	}
6297 
6298 	if (!ret) {
6299 		ret = count;
6300 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
6301 	}
6302 out:
6303 	ext4_unlock_group(sb, group);
6304 	ext4_mb_unload_buddy(&e4b);
6305 
6306 	ext4_debug("trimmed %d blocks in the group %d\n",
6307 		count, group);
6308 
6309 	return ret;
6310 }
6311 
6312 /**
6313  * ext4_trim_fs() -- trim ioctl handle function
6314  * @sb:			superblock for filesystem
6315  * @range:		fstrim_range structure
6316  *
6317  * start:	First Byte to trim
6318  * len:		number of Bytes to trim from start
6319  * minlen:	minimum extent length in Bytes
6320  * ext4_trim_fs goes through all allocation groups containing Bytes from
6321  * start to start+len. For each such a group ext4_trim_all_free function
6322  * is invoked to trim all free space.
6323  */
6324 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6325 {
6326 	struct ext4_group_info *grp;
6327 	ext4_group_t group, first_group, last_group;
6328 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6329 	uint64_t start, end, minlen, trimmed = 0;
6330 	ext4_fsblk_t first_data_blk =
6331 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6332 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6333 	int ret = 0;
6334 
6335 	start = range->start >> sb->s_blocksize_bits;
6336 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
6337 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6338 			      range->minlen >> sb->s_blocksize_bits);
6339 
6340 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6341 	    start >= max_blks ||
6342 	    range->len < sb->s_blocksize)
6343 		return -EINVAL;
6344 	if (end >= max_blks)
6345 		end = max_blks - 1;
6346 	if (end <= first_data_blk)
6347 		goto out;
6348 	if (start < first_data_blk)
6349 		start = first_data_blk;
6350 
6351 	/* Determine first and last group to examine based on start and end */
6352 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6353 				     &first_group, &first_cluster);
6354 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6355 				     &last_group, &last_cluster);
6356 
6357 	/* end now represents the last cluster to discard in this group */
6358 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6359 
6360 	for (group = first_group; group <= last_group; group++) {
6361 		grp = ext4_get_group_info(sb, group);
6362 		/* We only do this if the grp has never been initialized */
6363 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6364 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6365 			if (ret)
6366 				break;
6367 		}
6368 
6369 		/*
6370 		 * For all the groups except the last one, last cluster will
6371 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6372 		 * change it for the last group, note that last_cluster is
6373 		 * already computed earlier by ext4_get_group_no_and_offset()
6374 		 */
6375 		if (group == last_group)
6376 			end = last_cluster;
6377 
6378 		if (grp->bb_free >= minlen) {
6379 			cnt = ext4_trim_all_free(sb, group, first_cluster,
6380 						end, minlen);
6381 			if (cnt < 0) {
6382 				ret = cnt;
6383 				break;
6384 			}
6385 			trimmed += cnt;
6386 		}
6387 
6388 		/*
6389 		 * For every group except the first one, we are sure
6390 		 * that the first cluster to discard will be cluster #0.
6391 		 */
6392 		first_cluster = 0;
6393 	}
6394 
6395 	if (!ret)
6396 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
6397 
6398 out:
6399 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6400 	return ret;
6401 }
6402 
6403 /* Iterate all the free extents in the group. */
6404 int
6405 ext4_mballoc_query_range(
6406 	struct super_block		*sb,
6407 	ext4_group_t			group,
6408 	ext4_grpblk_t			start,
6409 	ext4_grpblk_t			end,
6410 	ext4_mballoc_query_range_fn	formatter,
6411 	void				*priv)
6412 {
6413 	void				*bitmap;
6414 	ext4_grpblk_t			next;
6415 	struct ext4_buddy		e4b;
6416 	int				error;
6417 
6418 	error = ext4_mb_load_buddy(sb, group, &e4b);
6419 	if (error)
6420 		return error;
6421 	bitmap = e4b.bd_bitmap;
6422 
6423 	ext4_lock_group(sb, group);
6424 
6425 	start = (e4b.bd_info->bb_first_free > start) ?
6426 		e4b.bd_info->bb_first_free : start;
6427 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
6428 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6429 
6430 	while (start <= end) {
6431 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
6432 		if (start > end)
6433 			break;
6434 		next = mb_find_next_bit(bitmap, end + 1, start);
6435 
6436 		ext4_unlock_group(sb, group);
6437 		error = formatter(sb, group, start, next - start, priv);
6438 		if (error)
6439 			goto out_unload;
6440 		ext4_lock_group(sb, group);
6441 
6442 		start = next + 1;
6443 	}
6444 
6445 	ext4_unlock_group(sb, group);
6446 out_unload:
6447 	ext4_mb_unload_buddy(&e4b);
6448 
6449 	return error;
6450 }
6451