1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "mballoc.h" 26 #include <linux/log2.h> 27 #include <linux/module.h> 28 #include <linux/slab.h> 29 #include <trace/events/ext4.h> 30 31 #ifdef CONFIG_EXT4_DEBUG 32 ushort ext4_mballoc_debug __read_mostly; 33 34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644); 35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc"); 36 #endif 37 38 /* 39 * MUSTDO: 40 * - test ext4_ext_search_left() and ext4_ext_search_right() 41 * - search for metadata in few groups 42 * 43 * TODO v4: 44 * - normalization should take into account whether file is still open 45 * - discard preallocations if no free space left (policy?) 46 * - don't normalize tails 47 * - quota 48 * - reservation for superuser 49 * 50 * TODO v3: 51 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 52 * - track min/max extents in each group for better group selection 53 * - mb_mark_used() may allocate chunk right after splitting buddy 54 * - tree of groups sorted by number of free blocks 55 * - error handling 56 */ 57 58 /* 59 * The allocation request involve request for multiple number of blocks 60 * near to the goal(block) value specified. 61 * 62 * During initialization phase of the allocator we decide to use the 63 * group preallocation or inode preallocation depending on the size of 64 * the file. The size of the file could be the resulting file size we 65 * would have after allocation, or the current file size, which ever 66 * is larger. If the size is less than sbi->s_mb_stream_request we 67 * select to use the group preallocation. The default value of 68 * s_mb_stream_request is 16 blocks. This can also be tuned via 69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 70 * terms of number of blocks. 71 * 72 * The main motivation for having small file use group preallocation is to 73 * ensure that we have small files closer together on the disk. 74 * 75 * First stage the allocator looks at the inode prealloc list, 76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 77 * spaces for this particular inode. The inode prealloc space is 78 * represented as: 79 * 80 * pa_lstart -> the logical start block for this prealloc space 81 * pa_pstart -> the physical start block for this prealloc space 82 * pa_len -> length for this prealloc space (in clusters) 83 * pa_free -> free space available in this prealloc space (in clusters) 84 * 85 * The inode preallocation space is used looking at the _logical_ start 86 * block. If only the logical file block falls within the range of prealloc 87 * space we will consume the particular prealloc space. This makes sure that 88 * we have contiguous physical blocks representing the file blocks 89 * 90 * The important thing to be noted in case of inode prealloc space is that 91 * we don't modify the values associated to inode prealloc space except 92 * pa_free. 93 * 94 * If we are not able to find blocks in the inode prealloc space and if we 95 * have the group allocation flag set then we look at the locality group 96 * prealloc space. These are per CPU prealloc list represented as 97 * 98 * ext4_sb_info.s_locality_groups[smp_processor_id()] 99 * 100 * The reason for having a per cpu locality group is to reduce the contention 101 * between CPUs. It is possible to get scheduled at this point. 102 * 103 * The locality group prealloc space is used looking at whether we have 104 * enough free space (pa_free) within the prealloc space. 105 * 106 * If we can't allocate blocks via inode prealloc or/and locality group 107 * prealloc then we look at the buddy cache. The buddy cache is represented 108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 109 * mapped to the buddy and bitmap information regarding different 110 * groups. The buddy information is attached to buddy cache inode so that 111 * we can access them through the page cache. The information regarding 112 * each group is loaded via ext4_mb_load_buddy. The information involve 113 * block bitmap and buddy information. The information are stored in the 114 * inode as: 115 * 116 * { page } 117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 118 * 119 * 120 * one block each for bitmap and buddy information. So for each group we 121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 122 * blocksize) blocks. So it can have information regarding groups_per_page 123 * which is blocks_per_page/2 124 * 125 * The buddy cache inode is not stored on disk. The inode is thrown 126 * away when the filesystem is unmounted. 127 * 128 * We look for count number of blocks in the buddy cache. If we were able 129 * to locate that many free blocks we return with additional information 130 * regarding rest of the contiguous physical block available 131 * 132 * Before allocating blocks via buddy cache we normalize the request 133 * blocks. This ensure we ask for more blocks that we needed. The extra 134 * blocks that we get after allocation is added to the respective prealloc 135 * list. In case of inode preallocation we follow a list of heuristics 136 * based on file size. This can be found in ext4_mb_normalize_request. If 137 * we are doing a group prealloc we try to normalize the request to 138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 139 * dependent on the cluster size; for non-bigalloc file systems, it is 140 * 512 blocks. This can be tuned via 141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 142 * terms of number of blocks. If we have mounted the file system with -O 143 * stripe=<value> option the group prealloc request is normalized to the 144 * the smallest multiple of the stripe value (sbi->s_stripe) which is 145 * greater than the default mb_group_prealloc. 146 * 147 * The regular allocator (using the buddy cache) supports a few tunables. 148 * 149 * /sys/fs/ext4/<partition>/mb_min_to_scan 150 * /sys/fs/ext4/<partition>/mb_max_to_scan 151 * /sys/fs/ext4/<partition>/mb_order2_req 152 * 153 * The regular allocator uses buddy scan only if the request len is power of 154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 155 * value of s_mb_order2_reqs can be tuned via 156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 157 * stripe size (sbi->s_stripe), we try to search for contiguous block in 158 * stripe size. This should result in better allocation on RAID setups. If 159 * not, we search in the specific group using bitmap for best extents. The 160 * tunable min_to_scan and max_to_scan control the behaviour here. 161 * min_to_scan indicate how long the mballoc __must__ look for a best 162 * extent and max_to_scan indicates how long the mballoc __can__ look for a 163 * best extent in the found extents. Searching for the blocks starts with 164 * the group specified as the goal value in allocation context via 165 * ac_g_ex. Each group is first checked based on the criteria whether it 166 * can be used for allocation. ext4_mb_good_group explains how the groups are 167 * checked. 168 * 169 * Both the prealloc space are getting populated as above. So for the first 170 * request we will hit the buddy cache which will result in this prealloc 171 * space getting filled. The prealloc space is then later used for the 172 * subsequent request. 173 */ 174 175 /* 176 * mballoc operates on the following data: 177 * - on-disk bitmap 178 * - in-core buddy (actually includes buddy and bitmap) 179 * - preallocation descriptors (PAs) 180 * 181 * there are two types of preallocations: 182 * - inode 183 * assiged to specific inode and can be used for this inode only. 184 * it describes part of inode's space preallocated to specific 185 * physical blocks. any block from that preallocated can be used 186 * independent. the descriptor just tracks number of blocks left 187 * unused. so, before taking some block from descriptor, one must 188 * make sure corresponded logical block isn't allocated yet. this 189 * also means that freeing any block within descriptor's range 190 * must discard all preallocated blocks. 191 * - locality group 192 * assigned to specific locality group which does not translate to 193 * permanent set of inodes: inode can join and leave group. space 194 * from this type of preallocation can be used for any inode. thus 195 * it's consumed from the beginning to the end. 196 * 197 * relation between them can be expressed as: 198 * in-core buddy = on-disk bitmap + preallocation descriptors 199 * 200 * this mean blocks mballoc considers used are: 201 * - allocated blocks (persistent) 202 * - preallocated blocks (non-persistent) 203 * 204 * consistency in mballoc world means that at any time a block is either 205 * free or used in ALL structures. notice: "any time" should not be read 206 * literally -- time is discrete and delimited by locks. 207 * 208 * to keep it simple, we don't use block numbers, instead we count number of 209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 210 * 211 * all operations can be expressed as: 212 * - init buddy: buddy = on-disk + PAs 213 * - new PA: buddy += N; PA = N 214 * - use inode PA: on-disk += N; PA -= N 215 * - discard inode PA buddy -= on-disk - PA; PA = 0 216 * - use locality group PA on-disk += N; PA -= N 217 * - discard locality group PA buddy -= PA; PA = 0 218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 219 * is used in real operation because we can't know actual used 220 * bits from PA, only from on-disk bitmap 221 * 222 * if we follow this strict logic, then all operations above should be atomic. 223 * given some of them can block, we'd have to use something like semaphores 224 * killing performance on high-end SMP hardware. let's try to relax it using 225 * the following knowledge: 226 * 1) if buddy is referenced, it's already initialized 227 * 2) while block is used in buddy and the buddy is referenced, 228 * nobody can re-allocate that block 229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 230 * bit set and PA claims same block, it's OK. IOW, one can set bit in 231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 232 * block 233 * 234 * so, now we're building a concurrency table: 235 * - init buddy vs. 236 * - new PA 237 * blocks for PA are allocated in the buddy, buddy must be referenced 238 * until PA is linked to allocation group to avoid concurrent buddy init 239 * - use inode PA 240 * we need to make sure that either on-disk bitmap or PA has uptodate data 241 * given (3) we care that PA-=N operation doesn't interfere with init 242 * - discard inode PA 243 * the simplest way would be to have buddy initialized by the discard 244 * - use locality group PA 245 * again PA-=N must be serialized with init 246 * - discard locality group PA 247 * the simplest way would be to have buddy initialized by the discard 248 * - new PA vs. 249 * - use inode PA 250 * i_data_sem serializes them 251 * - discard inode PA 252 * discard process must wait until PA isn't used by another process 253 * - use locality group PA 254 * some mutex should serialize them 255 * - discard locality group PA 256 * discard process must wait until PA isn't used by another process 257 * - use inode PA 258 * - use inode PA 259 * i_data_sem or another mutex should serializes them 260 * - discard inode PA 261 * discard process must wait until PA isn't used by another process 262 * - use locality group PA 263 * nothing wrong here -- they're different PAs covering different blocks 264 * - discard locality group PA 265 * discard process must wait until PA isn't used by another process 266 * 267 * now we're ready to make few consequences: 268 * - PA is referenced and while it is no discard is possible 269 * - PA is referenced until block isn't marked in on-disk bitmap 270 * - PA changes only after on-disk bitmap 271 * - discard must not compete with init. either init is done before 272 * any discard or they're serialized somehow 273 * - buddy init as sum of on-disk bitmap and PAs is done atomically 274 * 275 * a special case when we've used PA to emptiness. no need to modify buddy 276 * in this case, but we should care about concurrent init 277 * 278 */ 279 280 /* 281 * Logic in few words: 282 * 283 * - allocation: 284 * load group 285 * find blocks 286 * mark bits in on-disk bitmap 287 * release group 288 * 289 * - use preallocation: 290 * find proper PA (per-inode or group) 291 * load group 292 * mark bits in on-disk bitmap 293 * release group 294 * release PA 295 * 296 * - free: 297 * load group 298 * mark bits in on-disk bitmap 299 * release group 300 * 301 * - discard preallocations in group: 302 * mark PAs deleted 303 * move them onto local list 304 * load on-disk bitmap 305 * load group 306 * remove PA from object (inode or locality group) 307 * mark free blocks in-core 308 * 309 * - discard inode's preallocations: 310 */ 311 312 /* 313 * Locking rules 314 * 315 * Locks: 316 * - bitlock on a group (group) 317 * - object (inode/locality) (object) 318 * - per-pa lock (pa) 319 * 320 * Paths: 321 * - new pa 322 * object 323 * group 324 * 325 * - find and use pa: 326 * pa 327 * 328 * - release consumed pa: 329 * pa 330 * group 331 * object 332 * 333 * - generate in-core bitmap: 334 * group 335 * pa 336 * 337 * - discard all for given object (inode, locality group): 338 * object 339 * pa 340 * group 341 * 342 * - discard all for given group: 343 * group 344 * pa 345 * group 346 * object 347 * 348 */ 349 static struct kmem_cache *ext4_pspace_cachep; 350 static struct kmem_cache *ext4_ac_cachep; 351 static struct kmem_cache *ext4_free_data_cachep; 352 353 /* We create slab caches for groupinfo data structures based on the 354 * superblock block size. There will be one per mounted filesystem for 355 * each unique s_blocksize_bits */ 356 #define NR_GRPINFO_CACHES 8 357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 358 359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 362 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 363 }; 364 365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 366 ext4_group_t group); 367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 368 ext4_group_t group); 369 static void ext4_free_data_callback(struct super_block *sb, 370 struct ext4_journal_cb_entry *jce, int rc); 371 372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 373 { 374 #if BITS_PER_LONG == 64 375 *bit += ((unsigned long) addr & 7UL) << 3; 376 addr = (void *) ((unsigned long) addr & ~7UL); 377 #elif BITS_PER_LONG == 32 378 *bit += ((unsigned long) addr & 3UL) << 3; 379 addr = (void *) ((unsigned long) addr & ~3UL); 380 #else 381 #error "how many bits you are?!" 382 #endif 383 return addr; 384 } 385 386 static inline int mb_test_bit(int bit, void *addr) 387 { 388 /* 389 * ext4_test_bit on architecture like powerpc 390 * needs unsigned long aligned address 391 */ 392 addr = mb_correct_addr_and_bit(&bit, addr); 393 return ext4_test_bit(bit, addr); 394 } 395 396 static inline void mb_set_bit(int bit, void *addr) 397 { 398 addr = mb_correct_addr_and_bit(&bit, addr); 399 ext4_set_bit(bit, addr); 400 } 401 402 static inline void mb_clear_bit(int bit, void *addr) 403 { 404 addr = mb_correct_addr_and_bit(&bit, addr); 405 ext4_clear_bit(bit, addr); 406 } 407 408 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 409 { 410 int fix = 0, ret, tmpmax; 411 addr = mb_correct_addr_and_bit(&fix, addr); 412 tmpmax = max + fix; 413 start += fix; 414 415 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 416 if (ret > max) 417 return max; 418 return ret; 419 } 420 421 static inline int mb_find_next_bit(void *addr, int max, int start) 422 { 423 int fix = 0, ret, tmpmax; 424 addr = mb_correct_addr_and_bit(&fix, addr); 425 tmpmax = max + fix; 426 start += fix; 427 428 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 429 if (ret > max) 430 return max; 431 return ret; 432 } 433 434 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 435 { 436 char *bb; 437 438 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 439 BUG_ON(max == NULL); 440 441 if (order > e4b->bd_blkbits + 1) { 442 *max = 0; 443 return NULL; 444 } 445 446 /* at order 0 we see each particular block */ 447 if (order == 0) { 448 *max = 1 << (e4b->bd_blkbits + 3); 449 return e4b->bd_bitmap; 450 } 451 452 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 453 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 454 455 return bb; 456 } 457 458 #ifdef DOUBLE_CHECK 459 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 460 int first, int count) 461 { 462 int i; 463 struct super_block *sb = e4b->bd_sb; 464 465 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 466 return; 467 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 468 for (i = 0; i < count; i++) { 469 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 470 ext4_fsblk_t blocknr; 471 472 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 473 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 474 ext4_grp_locked_error(sb, e4b->bd_group, 475 inode ? inode->i_ino : 0, 476 blocknr, 477 "freeing block already freed " 478 "(bit %u)", 479 first + i); 480 } 481 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 482 } 483 } 484 485 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 486 { 487 int i; 488 489 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 490 return; 491 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 492 for (i = 0; i < count; i++) { 493 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 494 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 495 } 496 } 497 498 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 499 { 500 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 501 unsigned char *b1, *b2; 502 int i; 503 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 504 b2 = (unsigned char *) bitmap; 505 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 506 if (b1[i] != b2[i]) { 507 ext4_msg(e4b->bd_sb, KERN_ERR, 508 "corruption in group %u " 509 "at byte %u(%u): %x in copy != %x " 510 "on disk/prealloc", 511 e4b->bd_group, i, i * 8, b1[i], b2[i]); 512 BUG(); 513 } 514 } 515 } 516 } 517 518 #else 519 static inline void mb_free_blocks_double(struct inode *inode, 520 struct ext4_buddy *e4b, int first, int count) 521 { 522 return; 523 } 524 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 525 int first, int count) 526 { 527 return; 528 } 529 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 530 { 531 return; 532 } 533 #endif 534 535 #ifdef AGGRESSIVE_CHECK 536 537 #define MB_CHECK_ASSERT(assert) \ 538 do { \ 539 if (!(assert)) { \ 540 printk(KERN_EMERG \ 541 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 542 function, file, line, # assert); \ 543 BUG(); \ 544 } \ 545 } while (0) 546 547 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 548 const char *function, int line) 549 { 550 struct super_block *sb = e4b->bd_sb; 551 int order = e4b->bd_blkbits + 1; 552 int max; 553 int max2; 554 int i; 555 int j; 556 int k; 557 int count; 558 struct ext4_group_info *grp; 559 int fragments = 0; 560 int fstart; 561 struct list_head *cur; 562 void *buddy; 563 void *buddy2; 564 565 { 566 static int mb_check_counter; 567 if (mb_check_counter++ % 100 != 0) 568 return 0; 569 } 570 571 while (order > 1) { 572 buddy = mb_find_buddy(e4b, order, &max); 573 MB_CHECK_ASSERT(buddy); 574 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 575 MB_CHECK_ASSERT(buddy2); 576 MB_CHECK_ASSERT(buddy != buddy2); 577 MB_CHECK_ASSERT(max * 2 == max2); 578 579 count = 0; 580 for (i = 0; i < max; i++) { 581 582 if (mb_test_bit(i, buddy)) { 583 /* only single bit in buddy2 may be 1 */ 584 if (!mb_test_bit(i << 1, buddy2)) { 585 MB_CHECK_ASSERT( 586 mb_test_bit((i<<1)+1, buddy2)); 587 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 588 MB_CHECK_ASSERT( 589 mb_test_bit(i << 1, buddy2)); 590 } 591 continue; 592 } 593 594 /* both bits in buddy2 must be 1 */ 595 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 596 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 597 598 for (j = 0; j < (1 << order); j++) { 599 k = (i * (1 << order)) + j; 600 MB_CHECK_ASSERT( 601 !mb_test_bit(k, e4b->bd_bitmap)); 602 } 603 count++; 604 } 605 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 606 order--; 607 } 608 609 fstart = -1; 610 buddy = mb_find_buddy(e4b, 0, &max); 611 for (i = 0; i < max; i++) { 612 if (!mb_test_bit(i, buddy)) { 613 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 614 if (fstart == -1) { 615 fragments++; 616 fstart = i; 617 } 618 continue; 619 } 620 fstart = -1; 621 /* check used bits only */ 622 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 623 buddy2 = mb_find_buddy(e4b, j, &max2); 624 k = i >> j; 625 MB_CHECK_ASSERT(k < max2); 626 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 627 } 628 } 629 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 630 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 631 632 grp = ext4_get_group_info(sb, e4b->bd_group); 633 list_for_each(cur, &grp->bb_prealloc_list) { 634 ext4_group_t groupnr; 635 struct ext4_prealloc_space *pa; 636 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 637 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 638 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 639 for (i = 0; i < pa->pa_len; i++) 640 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 641 } 642 return 0; 643 } 644 #undef MB_CHECK_ASSERT 645 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 646 __FILE__, __func__, __LINE__) 647 #else 648 #define mb_check_buddy(e4b) 649 #endif 650 651 /* 652 * Divide blocks started from @first with length @len into 653 * smaller chunks with power of 2 blocks. 654 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 655 * then increase bb_counters[] for corresponded chunk size. 656 */ 657 static void ext4_mb_mark_free_simple(struct super_block *sb, 658 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 659 struct ext4_group_info *grp) 660 { 661 struct ext4_sb_info *sbi = EXT4_SB(sb); 662 ext4_grpblk_t min; 663 ext4_grpblk_t max; 664 ext4_grpblk_t chunk; 665 unsigned short border; 666 667 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 668 669 border = 2 << sb->s_blocksize_bits; 670 671 while (len > 0) { 672 /* find how many blocks can be covered since this position */ 673 max = ffs(first | border) - 1; 674 675 /* find how many blocks of power 2 we need to mark */ 676 min = fls(len) - 1; 677 678 if (max < min) 679 min = max; 680 chunk = 1 << min; 681 682 /* mark multiblock chunks only */ 683 grp->bb_counters[min]++; 684 if (min > 0) 685 mb_clear_bit(first >> min, 686 buddy + sbi->s_mb_offsets[min]); 687 688 len -= chunk; 689 first += chunk; 690 } 691 } 692 693 /* 694 * Cache the order of the largest free extent we have available in this block 695 * group. 696 */ 697 static void 698 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 699 { 700 int i; 701 int bits; 702 703 grp->bb_largest_free_order = -1; /* uninit */ 704 705 bits = sb->s_blocksize_bits + 1; 706 for (i = bits; i >= 0; i--) { 707 if (grp->bb_counters[i] > 0) { 708 grp->bb_largest_free_order = i; 709 break; 710 } 711 } 712 } 713 714 static noinline_for_stack 715 void ext4_mb_generate_buddy(struct super_block *sb, 716 void *buddy, void *bitmap, ext4_group_t group) 717 { 718 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 719 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 720 ext4_grpblk_t i = 0; 721 ext4_grpblk_t first; 722 ext4_grpblk_t len; 723 unsigned free = 0; 724 unsigned fragments = 0; 725 unsigned long long period = get_cycles(); 726 727 /* initialize buddy from bitmap which is aggregation 728 * of on-disk bitmap and preallocations */ 729 i = mb_find_next_zero_bit(bitmap, max, 0); 730 grp->bb_first_free = i; 731 while (i < max) { 732 fragments++; 733 first = i; 734 i = mb_find_next_bit(bitmap, max, i); 735 len = i - first; 736 free += len; 737 if (len > 1) 738 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 739 else 740 grp->bb_counters[0]++; 741 if (i < max) 742 i = mb_find_next_zero_bit(bitmap, max, i); 743 } 744 grp->bb_fragments = fragments; 745 746 if (free != grp->bb_free) { 747 ext4_grp_locked_error(sb, group, 0, 0, 748 "%u clusters in bitmap, %u in gd", 749 free, grp->bb_free); 750 /* 751 * If we intent to continue, we consider group descritor 752 * corrupt and update bb_free using bitmap value 753 */ 754 grp->bb_free = free; 755 } 756 mb_set_largest_free_order(sb, grp); 757 758 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 759 760 period = get_cycles() - period; 761 spin_lock(&EXT4_SB(sb)->s_bal_lock); 762 EXT4_SB(sb)->s_mb_buddies_generated++; 763 EXT4_SB(sb)->s_mb_generation_time += period; 764 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 765 } 766 767 /* The buddy information is attached the buddy cache inode 768 * for convenience. The information regarding each group 769 * is loaded via ext4_mb_load_buddy. The information involve 770 * block bitmap and buddy information. The information are 771 * stored in the inode as 772 * 773 * { page } 774 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 775 * 776 * 777 * one block each for bitmap and buddy information. 778 * So for each group we take up 2 blocks. A page can 779 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 780 * So it can have information regarding groups_per_page which 781 * is blocks_per_page/2 782 * 783 * Locking note: This routine takes the block group lock of all groups 784 * for this page; do not hold this lock when calling this routine! 785 */ 786 787 static int ext4_mb_init_cache(struct page *page, char *incore) 788 { 789 ext4_group_t ngroups; 790 int blocksize; 791 int blocks_per_page; 792 int groups_per_page; 793 int err = 0; 794 int i; 795 ext4_group_t first_group, group; 796 int first_block; 797 struct super_block *sb; 798 struct buffer_head *bhs; 799 struct buffer_head **bh = NULL; 800 struct inode *inode; 801 char *data; 802 char *bitmap; 803 struct ext4_group_info *grinfo; 804 805 mb_debug(1, "init page %lu\n", page->index); 806 807 inode = page->mapping->host; 808 sb = inode->i_sb; 809 ngroups = ext4_get_groups_count(sb); 810 blocksize = 1 << inode->i_blkbits; 811 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 812 813 groups_per_page = blocks_per_page >> 1; 814 if (groups_per_page == 0) 815 groups_per_page = 1; 816 817 /* allocate buffer_heads to read bitmaps */ 818 if (groups_per_page > 1) { 819 i = sizeof(struct buffer_head *) * groups_per_page; 820 bh = kzalloc(i, GFP_NOFS); 821 if (bh == NULL) { 822 err = -ENOMEM; 823 goto out; 824 } 825 } else 826 bh = &bhs; 827 828 first_group = page->index * blocks_per_page / 2; 829 830 /* read all groups the page covers into the cache */ 831 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 832 if (group >= ngroups) 833 break; 834 835 grinfo = ext4_get_group_info(sb, group); 836 /* 837 * If page is uptodate then we came here after online resize 838 * which added some new uninitialized group info structs, so 839 * we must skip all initialized uptodate buddies on the page, 840 * which may be currently in use by an allocating task. 841 */ 842 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 843 bh[i] = NULL; 844 continue; 845 } 846 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) { 847 err = -ENOMEM; 848 goto out; 849 } 850 mb_debug(1, "read bitmap for group %u\n", group); 851 } 852 853 /* wait for I/O completion */ 854 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 855 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) { 856 err = -EIO; 857 goto out; 858 } 859 } 860 861 first_block = page->index * blocks_per_page; 862 for (i = 0; i < blocks_per_page; i++) { 863 int group; 864 865 group = (first_block + i) >> 1; 866 if (group >= ngroups) 867 break; 868 869 if (!bh[group - first_group]) 870 /* skip initialized uptodate buddy */ 871 continue; 872 873 /* 874 * data carry information regarding this 875 * particular group in the format specified 876 * above 877 * 878 */ 879 data = page_address(page) + (i * blocksize); 880 bitmap = bh[group - first_group]->b_data; 881 882 /* 883 * We place the buddy block and bitmap block 884 * close together 885 */ 886 if ((first_block + i) & 1) { 887 /* this is block of buddy */ 888 BUG_ON(incore == NULL); 889 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 890 group, page->index, i * blocksize); 891 trace_ext4_mb_buddy_bitmap_load(sb, group); 892 grinfo = ext4_get_group_info(sb, group); 893 grinfo->bb_fragments = 0; 894 memset(grinfo->bb_counters, 0, 895 sizeof(*grinfo->bb_counters) * 896 (sb->s_blocksize_bits+2)); 897 /* 898 * incore got set to the group block bitmap below 899 */ 900 ext4_lock_group(sb, group); 901 /* init the buddy */ 902 memset(data, 0xff, blocksize); 903 ext4_mb_generate_buddy(sb, data, incore, group); 904 ext4_unlock_group(sb, group); 905 incore = NULL; 906 } else { 907 /* this is block of bitmap */ 908 BUG_ON(incore != NULL); 909 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 910 group, page->index, i * blocksize); 911 trace_ext4_mb_bitmap_load(sb, group); 912 913 /* see comments in ext4_mb_put_pa() */ 914 ext4_lock_group(sb, group); 915 memcpy(data, bitmap, blocksize); 916 917 /* mark all preallocated blks used in in-core bitmap */ 918 ext4_mb_generate_from_pa(sb, data, group); 919 ext4_mb_generate_from_freelist(sb, data, group); 920 ext4_unlock_group(sb, group); 921 922 /* set incore so that the buddy information can be 923 * generated using this 924 */ 925 incore = data; 926 } 927 } 928 SetPageUptodate(page); 929 930 out: 931 if (bh) { 932 for (i = 0; i < groups_per_page; i++) 933 brelse(bh[i]); 934 if (bh != &bhs) 935 kfree(bh); 936 } 937 return err; 938 } 939 940 /* 941 * Lock the buddy and bitmap pages. This make sure other parallel init_group 942 * on the same buddy page doesn't happen whild holding the buddy page lock. 943 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 944 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 945 */ 946 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 947 ext4_group_t group, struct ext4_buddy *e4b) 948 { 949 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 950 int block, pnum, poff; 951 int blocks_per_page; 952 struct page *page; 953 954 e4b->bd_buddy_page = NULL; 955 e4b->bd_bitmap_page = NULL; 956 957 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 958 /* 959 * the buddy cache inode stores the block bitmap 960 * and buddy information in consecutive blocks. 961 * So for each group we need two blocks. 962 */ 963 block = group * 2; 964 pnum = block / blocks_per_page; 965 poff = block % blocks_per_page; 966 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 967 if (!page) 968 return -EIO; 969 BUG_ON(page->mapping != inode->i_mapping); 970 e4b->bd_bitmap_page = page; 971 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 972 973 if (blocks_per_page >= 2) { 974 /* buddy and bitmap are on the same page */ 975 return 0; 976 } 977 978 block++; 979 pnum = block / blocks_per_page; 980 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 981 if (!page) 982 return -EIO; 983 BUG_ON(page->mapping != inode->i_mapping); 984 e4b->bd_buddy_page = page; 985 return 0; 986 } 987 988 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 989 { 990 if (e4b->bd_bitmap_page) { 991 unlock_page(e4b->bd_bitmap_page); 992 page_cache_release(e4b->bd_bitmap_page); 993 } 994 if (e4b->bd_buddy_page) { 995 unlock_page(e4b->bd_buddy_page); 996 page_cache_release(e4b->bd_buddy_page); 997 } 998 } 999 1000 /* 1001 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1002 * block group lock of all groups for this page; do not hold the BG lock when 1003 * calling this routine! 1004 */ 1005 static noinline_for_stack 1006 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) 1007 { 1008 1009 struct ext4_group_info *this_grp; 1010 struct ext4_buddy e4b; 1011 struct page *page; 1012 int ret = 0; 1013 1014 mb_debug(1, "init group %u\n", group); 1015 this_grp = ext4_get_group_info(sb, group); 1016 /* 1017 * This ensures that we don't reinit the buddy cache 1018 * page which map to the group from which we are already 1019 * allocating. If we are looking at the buddy cache we would 1020 * have taken a reference using ext4_mb_load_buddy and that 1021 * would have pinned buddy page to page cache. 1022 */ 1023 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b); 1024 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1025 /* 1026 * somebody initialized the group 1027 * return without doing anything 1028 */ 1029 goto err; 1030 } 1031 1032 page = e4b.bd_bitmap_page; 1033 ret = ext4_mb_init_cache(page, NULL); 1034 if (ret) 1035 goto err; 1036 if (!PageUptodate(page)) { 1037 ret = -EIO; 1038 goto err; 1039 } 1040 mark_page_accessed(page); 1041 1042 if (e4b.bd_buddy_page == NULL) { 1043 /* 1044 * If both the bitmap and buddy are in 1045 * the same page we don't need to force 1046 * init the buddy 1047 */ 1048 ret = 0; 1049 goto err; 1050 } 1051 /* init buddy cache */ 1052 page = e4b.bd_buddy_page; 1053 ret = ext4_mb_init_cache(page, e4b.bd_bitmap); 1054 if (ret) 1055 goto err; 1056 if (!PageUptodate(page)) { 1057 ret = -EIO; 1058 goto err; 1059 } 1060 mark_page_accessed(page); 1061 err: 1062 ext4_mb_put_buddy_page_lock(&e4b); 1063 return ret; 1064 } 1065 1066 /* 1067 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1068 * block group lock of all groups for this page; do not hold the BG lock when 1069 * calling this routine! 1070 */ 1071 static noinline_for_stack int 1072 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1073 struct ext4_buddy *e4b) 1074 { 1075 int blocks_per_page; 1076 int block; 1077 int pnum; 1078 int poff; 1079 struct page *page; 1080 int ret; 1081 struct ext4_group_info *grp; 1082 struct ext4_sb_info *sbi = EXT4_SB(sb); 1083 struct inode *inode = sbi->s_buddy_cache; 1084 1085 mb_debug(1, "load group %u\n", group); 1086 1087 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1088 grp = ext4_get_group_info(sb, group); 1089 1090 e4b->bd_blkbits = sb->s_blocksize_bits; 1091 e4b->bd_info = grp; 1092 e4b->bd_sb = sb; 1093 e4b->bd_group = group; 1094 e4b->bd_buddy_page = NULL; 1095 e4b->bd_bitmap_page = NULL; 1096 1097 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1098 /* 1099 * we need full data about the group 1100 * to make a good selection 1101 */ 1102 ret = ext4_mb_init_group(sb, group); 1103 if (ret) 1104 return ret; 1105 } 1106 1107 /* 1108 * the buddy cache inode stores the block bitmap 1109 * and buddy information in consecutive blocks. 1110 * So for each group we need two blocks. 1111 */ 1112 block = group * 2; 1113 pnum = block / blocks_per_page; 1114 poff = block % blocks_per_page; 1115 1116 /* we could use find_or_create_page(), but it locks page 1117 * what we'd like to avoid in fast path ... */ 1118 page = find_get_page(inode->i_mapping, pnum); 1119 if (page == NULL || !PageUptodate(page)) { 1120 if (page) 1121 /* 1122 * drop the page reference and try 1123 * to get the page with lock. If we 1124 * are not uptodate that implies 1125 * somebody just created the page but 1126 * is yet to initialize the same. So 1127 * wait for it to initialize. 1128 */ 1129 page_cache_release(page); 1130 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1131 if (page) { 1132 BUG_ON(page->mapping != inode->i_mapping); 1133 if (!PageUptodate(page)) { 1134 ret = ext4_mb_init_cache(page, NULL); 1135 if (ret) { 1136 unlock_page(page); 1137 goto err; 1138 } 1139 mb_cmp_bitmaps(e4b, page_address(page) + 1140 (poff * sb->s_blocksize)); 1141 } 1142 unlock_page(page); 1143 } 1144 } 1145 if (page == NULL || !PageUptodate(page)) { 1146 ret = -EIO; 1147 goto err; 1148 } 1149 e4b->bd_bitmap_page = page; 1150 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1151 mark_page_accessed(page); 1152 1153 block++; 1154 pnum = block / blocks_per_page; 1155 poff = block % blocks_per_page; 1156 1157 page = find_get_page(inode->i_mapping, pnum); 1158 if (page == NULL || !PageUptodate(page)) { 1159 if (page) 1160 page_cache_release(page); 1161 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1162 if (page) { 1163 BUG_ON(page->mapping != inode->i_mapping); 1164 if (!PageUptodate(page)) { 1165 ret = ext4_mb_init_cache(page, e4b->bd_bitmap); 1166 if (ret) { 1167 unlock_page(page); 1168 goto err; 1169 } 1170 } 1171 unlock_page(page); 1172 } 1173 } 1174 if (page == NULL || !PageUptodate(page)) { 1175 ret = -EIO; 1176 goto err; 1177 } 1178 e4b->bd_buddy_page = page; 1179 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1180 mark_page_accessed(page); 1181 1182 BUG_ON(e4b->bd_bitmap_page == NULL); 1183 BUG_ON(e4b->bd_buddy_page == NULL); 1184 1185 return 0; 1186 1187 err: 1188 if (page) 1189 page_cache_release(page); 1190 if (e4b->bd_bitmap_page) 1191 page_cache_release(e4b->bd_bitmap_page); 1192 if (e4b->bd_buddy_page) 1193 page_cache_release(e4b->bd_buddy_page); 1194 e4b->bd_buddy = NULL; 1195 e4b->bd_bitmap = NULL; 1196 return ret; 1197 } 1198 1199 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1200 { 1201 if (e4b->bd_bitmap_page) 1202 page_cache_release(e4b->bd_bitmap_page); 1203 if (e4b->bd_buddy_page) 1204 page_cache_release(e4b->bd_buddy_page); 1205 } 1206 1207 1208 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1209 { 1210 int order = 1; 1211 void *bb; 1212 1213 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1214 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1215 1216 bb = e4b->bd_buddy; 1217 while (order <= e4b->bd_blkbits + 1) { 1218 block = block >> 1; 1219 if (!mb_test_bit(block, bb)) { 1220 /* this block is part of buddy of order 'order' */ 1221 return order; 1222 } 1223 bb += 1 << (e4b->bd_blkbits - order); 1224 order++; 1225 } 1226 return 0; 1227 } 1228 1229 static void mb_clear_bits(void *bm, int cur, int len) 1230 { 1231 __u32 *addr; 1232 1233 len = cur + len; 1234 while (cur < len) { 1235 if ((cur & 31) == 0 && (len - cur) >= 32) { 1236 /* fast path: clear whole word at once */ 1237 addr = bm + (cur >> 3); 1238 *addr = 0; 1239 cur += 32; 1240 continue; 1241 } 1242 mb_clear_bit(cur, bm); 1243 cur++; 1244 } 1245 } 1246 1247 void ext4_set_bits(void *bm, int cur, int len) 1248 { 1249 __u32 *addr; 1250 1251 len = cur + len; 1252 while (cur < len) { 1253 if ((cur & 31) == 0 && (len - cur) >= 32) { 1254 /* fast path: set whole word at once */ 1255 addr = bm + (cur >> 3); 1256 *addr = 0xffffffff; 1257 cur += 32; 1258 continue; 1259 } 1260 mb_set_bit(cur, bm); 1261 cur++; 1262 } 1263 } 1264 1265 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1266 int first, int count) 1267 { 1268 int block = 0; 1269 int max = 0; 1270 int order; 1271 void *buddy; 1272 void *buddy2; 1273 struct super_block *sb = e4b->bd_sb; 1274 1275 BUG_ON(first + count > (sb->s_blocksize << 3)); 1276 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1277 mb_check_buddy(e4b); 1278 mb_free_blocks_double(inode, e4b, first, count); 1279 1280 e4b->bd_info->bb_free += count; 1281 if (first < e4b->bd_info->bb_first_free) 1282 e4b->bd_info->bb_first_free = first; 1283 1284 /* let's maintain fragments counter */ 1285 if (first != 0) 1286 block = !mb_test_bit(first - 1, e4b->bd_bitmap); 1287 if (first + count < EXT4_SB(sb)->s_mb_maxs[0]) 1288 max = !mb_test_bit(first + count, e4b->bd_bitmap); 1289 if (block && max) 1290 e4b->bd_info->bb_fragments--; 1291 else if (!block && !max) 1292 e4b->bd_info->bb_fragments++; 1293 1294 /* let's maintain buddy itself */ 1295 while (count-- > 0) { 1296 block = first++; 1297 order = 0; 1298 1299 if (!mb_test_bit(block, e4b->bd_bitmap)) { 1300 ext4_fsblk_t blocknr; 1301 1302 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1303 blocknr += EXT4_C2B(EXT4_SB(sb), block); 1304 ext4_grp_locked_error(sb, e4b->bd_group, 1305 inode ? inode->i_ino : 0, 1306 blocknr, 1307 "freeing already freed block " 1308 "(bit %u)", block); 1309 } 1310 mb_clear_bit(block, e4b->bd_bitmap); 1311 e4b->bd_info->bb_counters[order]++; 1312 1313 /* start of the buddy */ 1314 buddy = mb_find_buddy(e4b, order, &max); 1315 1316 do { 1317 block &= ~1UL; 1318 if (mb_test_bit(block, buddy) || 1319 mb_test_bit(block + 1, buddy)) 1320 break; 1321 1322 /* both the buddies are free, try to coalesce them */ 1323 buddy2 = mb_find_buddy(e4b, order + 1, &max); 1324 1325 if (!buddy2) 1326 break; 1327 1328 if (order > 0) { 1329 /* for special purposes, we don't set 1330 * free bits in bitmap */ 1331 mb_set_bit(block, buddy); 1332 mb_set_bit(block + 1, buddy); 1333 } 1334 e4b->bd_info->bb_counters[order]--; 1335 e4b->bd_info->bb_counters[order]--; 1336 1337 block = block >> 1; 1338 order++; 1339 e4b->bd_info->bb_counters[order]++; 1340 1341 mb_clear_bit(block, buddy2); 1342 buddy = buddy2; 1343 } while (1); 1344 } 1345 mb_set_largest_free_order(sb, e4b->bd_info); 1346 mb_check_buddy(e4b); 1347 } 1348 1349 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1350 int needed, struct ext4_free_extent *ex) 1351 { 1352 int next = block; 1353 int max, order; 1354 void *buddy; 1355 1356 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1357 BUG_ON(ex == NULL); 1358 1359 buddy = mb_find_buddy(e4b, 0, &max); 1360 BUG_ON(buddy == NULL); 1361 BUG_ON(block >= max); 1362 if (mb_test_bit(block, buddy)) { 1363 ex->fe_len = 0; 1364 ex->fe_start = 0; 1365 ex->fe_group = 0; 1366 return 0; 1367 } 1368 1369 /* find actual order */ 1370 order = mb_find_order_for_block(e4b, block); 1371 block = block >> order; 1372 1373 ex->fe_len = 1 << order; 1374 ex->fe_start = block << order; 1375 ex->fe_group = e4b->bd_group; 1376 1377 /* calc difference from given start */ 1378 next = next - ex->fe_start; 1379 ex->fe_len -= next; 1380 ex->fe_start += next; 1381 1382 while (needed > ex->fe_len && 1383 mb_find_buddy(e4b, order, &max)) { 1384 1385 if (block + 1 >= max) 1386 break; 1387 1388 next = (block + 1) * (1 << order); 1389 if (mb_test_bit(next, e4b->bd_bitmap)) 1390 break; 1391 1392 order = mb_find_order_for_block(e4b, next); 1393 1394 block = next >> order; 1395 ex->fe_len += 1 << order; 1396 } 1397 1398 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1399 return ex->fe_len; 1400 } 1401 1402 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1403 { 1404 int ord; 1405 int mlen = 0; 1406 int max = 0; 1407 int cur; 1408 int start = ex->fe_start; 1409 int len = ex->fe_len; 1410 unsigned ret = 0; 1411 int len0 = len; 1412 void *buddy; 1413 1414 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1415 BUG_ON(e4b->bd_group != ex->fe_group); 1416 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1417 mb_check_buddy(e4b); 1418 mb_mark_used_double(e4b, start, len); 1419 1420 e4b->bd_info->bb_free -= len; 1421 if (e4b->bd_info->bb_first_free == start) 1422 e4b->bd_info->bb_first_free += len; 1423 1424 /* let's maintain fragments counter */ 1425 if (start != 0) 1426 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1427 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1428 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1429 if (mlen && max) 1430 e4b->bd_info->bb_fragments++; 1431 else if (!mlen && !max) 1432 e4b->bd_info->bb_fragments--; 1433 1434 /* let's maintain buddy itself */ 1435 while (len) { 1436 ord = mb_find_order_for_block(e4b, start); 1437 1438 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1439 /* the whole chunk may be allocated at once! */ 1440 mlen = 1 << ord; 1441 buddy = mb_find_buddy(e4b, ord, &max); 1442 BUG_ON((start >> ord) >= max); 1443 mb_set_bit(start >> ord, buddy); 1444 e4b->bd_info->bb_counters[ord]--; 1445 start += mlen; 1446 len -= mlen; 1447 BUG_ON(len < 0); 1448 continue; 1449 } 1450 1451 /* store for history */ 1452 if (ret == 0) 1453 ret = len | (ord << 16); 1454 1455 /* we have to split large buddy */ 1456 BUG_ON(ord <= 0); 1457 buddy = mb_find_buddy(e4b, ord, &max); 1458 mb_set_bit(start >> ord, buddy); 1459 e4b->bd_info->bb_counters[ord]--; 1460 1461 ord--; 1462 cur = (start >> ord) & ~1U; 1463 buddy = mb_find_buddy(e4b, ord, &max); 1464 mb_clear_bit(cur, buddy); 1465 mb_clear_bit(cur + 1, buddy); 1466 e4b->bd_info->bb_counters[ord]++; 1467 e4b->bd_info->bb_counters[ord]++; 1468 } 1469 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1470 1471 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1472 mb_check_buddy(e4b); 1473 1474 return ret; 1475 } 1476 1477 /* 1478 * Must be called under group lock! 1479 */ 1480 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1481 struct ext4_buddy *e4b) 1482 { 1483 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1484 int ret; 1485 1486 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1487 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1488 1489 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1490 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1491 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1492 1493 /* preallocation can change ac_b_ex, thus we store actually 1494 * allocated blocks for history */ 1495 ac->ac_f_ex = ac->ac_b_ex; 1496 1497 ac->ac_status = AC_STATUS_FOUND; 1498 ac->ac_tail = ret & 0xffff; 1499 ac->ac_buddy = ret >> 16; 1500 1501 /* 1502 * take the page reference. We want the page to be pinned 1503 * so that we don't get a ext4_mb_init_cache_call for this 1504 * group until we update the bitmap. That would mean we 1505 * double allocate blocks. The reference is dropped 1506 * in ext4_mb_release_context 1507 */ 1508 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1509 get_page(ac->ac_bitmap_page); 1510 ac->ac_buddy_page = e4b->bd_buddy_page; 1511 get_page(ac->ac_buddy_page); 1512 /* store last allocated for subsequent stream allocation */ 1513 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1514 spin_lock(&sbi->s_md_lock); 1515 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1516 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1517 spin_unlock(&sbi->s_md_lock); 1518 } 1519 } 1520 1521 /* 1522 * regular allocator, for general purposes allocation 1523 */ 1524 1525 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1526 struct ext4_buddy *e4b, 1527 int finish_group) 1528 { 1529 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1530 struct ext4_free_extent *bex = &ac->ac_b_ex; 1531 struct ext4_free_extent *gex = &ac->ac_g_ex; 1532 struct ext4_free_extent ex; 1533 int max; 1534 1535 if (ac->ac_status == AC_STATUS_FOUND) 1536 return; 1537 /* 1538 * We don't want to scan for a whole year 1539 */ 1540 if (ac->ac_found > sbi->s_mb_max_to_scan && 1541 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1542 ac->ac_status = AC_STATUS_BREAK; 1543 return; 1544 } 1545 1546 /* 1547 * Haven't found good chunk so far, let's continue 1548 */ 1549 if (bex->fe_len < gex->fe_len) 1550 return; 1551 1552 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1553 && bex->fe_group == e4b->bd_group) { 1554 /* recheck chunk's availability - we don't know 1555 * when it was found (within this lock-unlock 1556 * period or not) */ 1557 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1558 if (max >= gex->fe_len) { 1559 ext4_mb_use_best_found(ac, e4b); 1560 return; 1561 } 1562 } 1563 } 1564 1565 /* 1566 * The routine checks whether found extent is good enough. If it is, 1567 * then the extent gets marked used and flag is set to the context 1568 * to stop scanning. Otherwise, the extent is compared with the 1569 * previous found extent and if new one is better, then it's stored 1570 * in the context. Later, the best found extent will be used, if 1571 * mballoc can't find good enough extent. 1572 * 1573 * FIXME: real allocation policy is to be designed yet! 1574 */ 1575 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1576 struct ext4_free_extent *ex, 1577 struct ext4_buddy *e4b) 1578 { 1579 struct ext4_free_extent *bex = &ac->ac_b_ex; 1580 struct ext4_free_extent *gex = &ac->ac_g_ex; 1581 1582 BUG_ON(ex->fe_len <= 0); 1583 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1584 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1585 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1586 1587 ac->ac_found++; 1588 1589 /* 1590 * The special case - take what you catch first 1591 */ 1592 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1593 *bex = *ex; 1594 ext4_mb_use_best_found(ac, e4b); 1595 return; 1596 } 1597 1598 /* 1599 * Let's check whether the chuck is good enough 1600 */ 1601 if (ex->fe_len == gex->fe_len) { 1602 *bex = *ex; 1603 ext4_mb_use_best_found(ac, e4b); 1604 return; 1605 } 1606 1607 /* 1608 * If this is first found extent, just store it in the context 1609 */ 1610 if (bex->fe_len == 0) { 1611 *bex = *ex; 1612 return; 1613 } 1614 1615 /* 1616 * If new found extent is better, store it in the context 1617 */ 1618 if (bex->fe_len < gex->fe_len) { 1619 /* if the request isn't satisfied, any found extent 1620 * larger than previous best one is better */ 1621 if (ex->fe_len > bex->fe_len) 1622 *bex = *ex; 1623 } else if (ex->fe_len > gex->fe_len) { 1624 /* if the request is satisfied, then we try to find 1625 * an extent that still satisfy the request, but is 1626 * smaller than previous one */ 1627 if (ex->fe_len < bex->fe_len) 1628 *bex = *ex; 1629 } 1630 1631 ext4_mb_check_limits(ac, e4b, 0); 1632 } 1633 1634 static noinline_for_stack 1635 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1636 struct ext4_buddy *e4b) 1637 { 1638 struct ext4_free_extent ex = ac->ac_b_ex; 1639 ext4_group_t group = ex.fe_group; 1640 int max; 1641 int err; 1642 1643 BUG_ON(ex.fe_len <= 0); 1644 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1645 if (err) 1646 return err; 1647 1648 ext4_lock_group(ac->ac_sb, group); 1649 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1650 1651 if (max > 0) { 1652 ac->ac_b_ex = ex; 1653 ext4_mb_use_best_found(ac, e4b); 1654 } 1655 1656 ext4_unlock_group(ac->ac_sb, group); 1657 ext4_mb_unload_buddy(e4b); 1658 1659 return 0; 1660 } 1661 1662 static noinline_for_stack 1663 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1664 struct ext4_buddy *e4b) 1665 { 1666 ext4_group_t group = ac->ac_g_ex.fe_group; 1667 int max; 1668 int err; 1669 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1670 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1671 struct ext4_free_extent ex; 1672 1673 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1674 return 0; 1675 if (grp->bb_free == 0) 1676 return 0; 1677 1678 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1679 if (err) 1680 return err; 1681 1682 ext4_lock_group(ac->ac_sb, group); 1683 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1684 ac->ac_g_ex.fe_len, &ex); 1685 1686 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1687 ext4_fsblk_t start; 1688 1689 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1690 ex.fe_start; 1691 /* use do_div to get remainder (would be 64-bit modulo) */ 1692 if (do_div(start, sbi->s_stripe) == 0) { 1693 ac->ac_found++; 1694 ac->ac_b_ex = ex; 1695 ext4_mb_use_best_found(ac, e4b); 1696 } 1697 } else if (max >= ac->ac_g_ex.fe_len) { 1698 BUG_ON(ex.fe_len <= 0); 1699 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1700 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1701 ac->ac_found++; 1702 ac->ac_b_ex = ex; 1703 ext4_mb_use_best_found(ac, e4b); 1704 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1705 /* Sometimes, caller may want to merge even small 1706 * number of blocks to an existing extent */ 1707 BUG_ON(ex.fe_len <= 0); 1708 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1709 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1710 ac->ac_found++; 1711 ac->ac_b_ex = ex; 1712 ext4_mb_use_best_found(ac, e4b); 1713 } 1714 ext4_unlock_group(ac->ac_sb, group); 1715 ext4_mb_unload_buddy(e4b); 1716 1717 return 0; 1718 } 1719 1720 /* 1721 * The routine scans buddy structures (not bitmap!) from given order 1722 * to max order and tries to find big enough chunk to satisfy the req 1723 */ 1724 static noinline_for_stack 1725 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1726 struct ext4_buddy *e4b) 1727 { 1728 struct super_block *sb = ac->ac_sb; 1729 struct ext4_group_info *grp = e4b->bd_info; 1730 void *buddy; 1731 int i; 1732 int k; 1733 int max; 1734 1735 BUG_ON(ac->ac_2order <= 0); 1736 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1737 if (grp->bb_counters[i] == 0) 1738 continue; 1739 1740 buddy = mb_find_buddy(e4b, i, &max); 1741 BUG_ON(buddy == NULL); 1742 1743 k = mb_find_next_zero_bit(buddy, max, 0); 1744 BUG_ON(k >= max); 1745 1746 ac->ac_found++; 1747 1748 ac->ac_b_ex.fe_len = 1 << i; 1749 ac->ac_b_ex.fe_start = k << i; 1750 ac->ac_b_ex.fe_group = e4b->bd_group; 1751 1752 ext4_mb_use_best_found(ac, e4b); 1753 1754 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1755 1756 if (EXT4_SB(sb)->s_mb_stats) 1757 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1758 1759 break; 1760 } 1761 } 1762 1763 /* 1764 * The routine scans the group and measures all found extents. 1765 * In order to optimize scanning, caller must pass number of 1766 * free blocks in the group, so the routine can know upper limit. 1767 */ 1768 static noinline_for_stack 1769 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1770 struct ext4_buddy *e4b) 1771 { 1772 struct super_block *sb = ac->ac_sb; 1773 void *bitmap = e4b->bd_bitmap; 1774 struct ext4_free_extent ex; 1775 int i; 1776 int free; 1777 1778 free = e4b->bd_info->bb_free; 1779 BUG_ON(free <= 0); 1780 1781 i = e4b->bd_info->bb_first_free; 1782 1783 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1784 i = mb_find_next_zero_bit(bitmap, 1785 EXT4_CLUSTERS_PER_GROUP(sb), i); 1786 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1787 /* 1788 * IF we have corrupt bitmap, we won't find any 1789 * free blocks even though group info says we 1790 * we have free blocks 1791 */ 1792 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1793 "%d free clusters as per " 1794 "group info. But bitmap says 0", 1795 free); 1796 break; 1797 } 1798 1799 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1800 BUG_ON(ex.fe_len <= 0); 1801 if (free < ex.fe_len) { 1802 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1803 "%d free clusters as per " 1804 "group info. But got %d blocks", 1805 free, ex.fe_len); 1806 /* 1807 * The number of free blocks differs. This mostly 1808 * indicate that the bitmap is corrupt. So exit 1809 * without claiming the space. 1810 */ 1811 break; 1812 } 1813 1814 ext4_mb_measure_extent(ac, &ex, e4b); 1815 1816 i += ex.fe_len; 1817 free -= ex.fe_len; 1818 } 1819 1820 ext4_mb_check_limits(ac, e4b, 1); 1821 } 1822 1823 /* 1824 * This is a special case for storages like raid5 1825 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1826 */ 1827 static noinline_for_stack 1828 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1829 struct ext4_buddy *e4b) 1830 { 1831 struct super_block *sb = ac->ac_sb; 1832 struct ext4_sb_info *sbi = EXT4_SB(sb); 1833 void *bitmap = e4b->bd_bitmap; 1834 struct ext4_free_extent ex; 1835 ext4_fsblk_t first_group_block; 1836 ext4_fsblk_t a; 1837 ext4_grpblk_t i; 1838 int max; 1839 1840 BUG_ON(sbi->s_stripe == 0); 1841 1842 /* find first stripe-aligned block in group */ 1843 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 1844 1845 a = first_group_block + sbi->s_stripe - 1; 1846 do_div(a, sbi->s_stripe); 1847 i = (a * sbi->s_stripe) - first_group_block; 1848 1849 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 1850 if (!mb_test_bit(i, bitmap)) { 1851 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 1852 if (max >= sbi->s_stripe) { 1853 ac->ac_found++; 1854 ac->ac_b_ex = ex; 1855 ext4_mb_use_best_found(ac, e4b); 1856 break; 1857 } 1858 } 1859 i += sbi->s_stripe; 1860 } 1861 } 1862 1863 /* This is now called BEFORE we load the buddy bitmap. */ 1864 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 1865 ext4_group_t group, int cr) 1866 { 1867 unsigned free, fragments; 1868 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 1869 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1870 1871 BUG_ON(cr < 0 || cr >= 4); 1872 1873 free = grp->bb_free; 1874 if (free == 0) 1875 return 0; 1876 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 1877 return 0; 1878 1879 /* We only do this if the grp has never been initialized */ 1880 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1881 int ret = ext4_mb_init_group(ac->ac_sb, group); 1882 if (ret) 1883 return 0; 1884 } 1885 1886 fragments = grp->bb_fragments; 1887 if (fragments == 0) 1888 return 0; 1889 1890 switch (cr) { 1891 case 0: 1892 BUG_ON(ac->ac_2order == 0); 1893 1894 /* Avoid using the first bg of a flexgroup for data files */ 1895 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 1896 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 1897 ((group % flex_size) == 0)) 1898 return 0; 1899 1900 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) || 1901 (free / fragments) >= ac->ac_g_ex.fe_len) 1902 return 1; 1903 1904 if (grp->bb_largest_free_order < ac->ac_2order) 1905 return 0; 1906 1907 return 1; 1908 case 1: 1909 if ((free / fragments) >= ac->ac_g_ex.fe_len) 1910 return 1; 1911 break; 1912 case 2: 1913 if (free >= ac->ac_g_ex.fe_len) 1914 return 1; 1915 break; 1916 case 3: 1917 return 1; 1918 default: 1919 BUG(); 1920 } 1921 1922 return 0; 1923 } 1924 1925 static noinline_for_stack int 1926 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 1927 { 1928 ext4_group_t ngroups, group, i; 1929 int cr; 1930 int err = 0; 1931 struct ext4_sb_info *sbi; 1932 struct super_block *sb; 1933 struct ext4_buddy e4b; 1934 1935 sb = ac->ac_sb; 1936 sbi = EXT4_SB(sb); 1937 ngroups = ext4_get_groups_count(sb); 1938 /* non-extent files are limited to low blocks/groups */ 1939 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 1940 ngroups = sbi->s_blockfile_groups; 1941 1942 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1943 1944 /* first, try the goal */ 1945 err = ext4_mb_find_by_goal(ac, &e4b); 1946 if (err || ac->ac_status == AC_STATUS_FOUND) 1947 goto out; 1948 1949 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 1950 goto out; 1951 1952 /* 1953 * ac->ac2_order is set only if the fe_len is a power of 2 1954 * if ac2_order is set we also set criteria to 0 so that we 1955 * try exact allocation using buddy. 1956 */ 1957 i = fls(ac->ac_g_ex.fe_len); 1958 ac->ac_2order = 0; 1959 /* 1960 * We search using buddy data only if the order of the request 1961 * is greater than equal to the sbi_s_mb_order2_reqs 1962 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 1963 */ 1964 if (i >= sbi->s_mb_order2_reqs) { 1965 /* 1966 * This should tell if fe_len is exactly power of 2 1967 */ 1968 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 1969 ac->ac_2order = i - 1; 1970 } 1971 1972 /* if stream allocation is enabled, use global goal */ 1973 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1974 /* TBD: may be hot point */ 1975 spin_lock(&sbi->s_md_lock); 1976 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 1977 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 1978 spin_unlock(&sbi->s_md_lock); 1979 } 1980 1981 /* Let's just scan groups to find more-less suitable blocks */ 1982 cr = ac->ac_2order ? 0 : 1; 1983 /* 1984 * cr == 0 try to get exact allocation, 1985 * cr == 3 try to get anything 1986 */ 1987 repeat: 1988 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 1989 ac->ac_criteria = cr; 1990 /* 1991 * searching for the right group start 1992 * from the goal value specified 1993 */ 1994 group = ac->ac_g_ex.fe_group; 1995 1996 for (i = 0; i < ngroups; group++, i++) { 1997 if (group == ngroups) 1998 group = 0; 1999 2000 /* This now checks without needing the buddy page */ 2001 if (!ext4_mb_good_group(ac, group, cr)) 2002 continue; 2003 2004 err = ext4_mb_load_buddy(sb, group, &e4b); 2005 if (err) 2006 goto out; 2007 2008 ext4_lock_group(sb, group); 2009 2010 /* 2011 * We need to check again after locking the 2012 * block group 2013 */ 2014 if (!ext4_mb_good_group(ac, group, cr)) { 2015 ext4_unlock_group(sb, group); 2016 ext4_mb_unload_buddy(&e4b); 2017 continue; 2018 } 2019 2020 ac->ac_groups_scanned++; 2021 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2) 2022 ext4_mb_simple_scan_group(ac, &e4b); 2023 else if (cr == 1 && sbi->s_stripe && 2024 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2025 ext4_mb_scan_aligned(ac, &e4b); 2026 else 2027 ext4_mb_complex_scan_group(ac, &e4b); 2028 2029 ext4_unlock_group(sb, group); 2030 ext4_mb_unload_buddy(&e4b); 2031 2032 if (ac->ac_status != AC_STATUS_CONTINUE) 2033 break; 2034 } 2035 } 2036 2037 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2038 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2039 /* 2040 * We've been searching too long. Let's try to allocate 2041 * the best chunk we've found so far 2042 */ 2043 2044 ext4_mb_try_best_found(ac, &e4b); 2045 if (ac->ac_status != AC_STATUS_FOUND) { 2046 /* 2047 * Someone more lucky has already allocated it. 2048 * The only thing we can do is just take first 2049 * found block(s) 2050 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2051 */ 2052 ac->ac_b_ex.fe_group = 0; 2053 ac->ac_b_ex.fe_start = 0; 2054 ac->ac_b_ex.fe_len = 0; 2055 ac->ac_status = AC_STATUS_CONTINUE; 2056 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2057 cr = 3; 2058 atomic_inc(&sbi->s_mb_lost_chunks); 2059 goto repeat; 2060 } 2061 } 2062 out: 2063 return err; 2064 } 2065 2066 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2067 { 2068 struct super_block *sb = seq->private; 2069 ext4_group_t group; 2070 2071 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2072 return NULL; 2073 group = *pos + 1; 2074 return (void *) ((unsigned long) group); 2075 } 2076 2077 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2078 { 2079 struct super_block *sb = seq->private; 2080 ext4_group_t group; 2081 2082 ++*pos; 2083 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2084 return NULL; 2085 group = *pos + 1; 2086 return (void *) ((unsigned long) group); 2087 } 2088 2089 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2090 { 2091 struct super_block *sb = seq->private; 2092 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2093 int i; 2094 int err, buddy_loaded = 0; 2095 struct ext4_buddy e4b; 2096 struct ext4_group_info *grinfo; 2097 struct sg { 2098 struct ext4_group_info info; 2099 ext4_grpblk_t counters[16]; 2100 } sg; 2101 2102 group--; 2103 if (group == 0) 2104 seq_printf(seq, "#%-5s: %-5s %-5s %-5s " 2105 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " 2106 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", 2107 "group", "free", "frags", "first", 2108 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", 2109 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); 2110 2111 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2112 sizeof(struct ext4_group_info); 2113 grinfo = ext4_get_group_info(sb, group); 2114 /* Load the group info in memory only if not already loaded. */ 2115 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2116 err = ext4_mb_load_buddy(sb, group, &e4b); 2117 if (err) { 2118 seq_printf(seq, "#%-5u: I/O error\n", group); 2119 return 0; 2120 } 2121 buddy_loaded = 1; 2122 } 2123 2124 memcpy(&sg, ext4_get_group_info(sb, group), i); 2125 2126 if (buddy_loaded) 2127 ext4_mb_unload_buddy(&e4b); 2128 2129 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2130 sg.info.bb_fragments, sg.info.bb_first_free); 2131 for (i = 0; i <= 13; i++) 2132 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2133 sg.info.bb_counters[i] : 0); 2134 seq_printf(seq, " ]\n"); 2135 2136 return 0; 2137 } 2138 2139 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2140 { 2141 } 2142 2143 static const struct seq_operations ext4_mb_seq_groups_ops = { 2144 .start = ext4_mb_seq_groups_start, 2145 .next = ext4_mb_seq_groups_next, 2146 .stop = ext4_mb_seq_groups_stop, 2147 .show = ext4_mb_seq_groups_show, 2148 }; 2149 2150 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2151 { 2152 struct super_block *sb = PDE(inode)->data; 2153 int rc; 2154 2155 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2156 if (rc == 0) { 2157 struct seq_file *m = file->private_data; 2158 m->private = sb; 2159 } 2160 return rc; 2161 2162 } 2163 2164 static const struct file_operations ext4_mb_seq_groups_fops = { 2165 .owner = THIS_MODULE, 2166 .open = ext4_mb_seq_groups_open, 2167 .read = seq_read, 2168 .llseek = seq_lseek, 2169 .release = seq_release, 2170 }; 2171 2172 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2173 { 2174 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2175 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2176 2177 BUG_ON(!cachep); 2178 return cachep; 2179 } 2180 2181 /* 2182 * Allocate the top-level s_group_info array for the specified number 2183 * of groups 2184 */ 2185 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2186 { 2187 struct ext4_sb_info *sbi = EXT4_SB(sb); 2188 unsigned size; 2189 struct ext4_group_info ***new_groupinfo; 2190 2191 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2192 EXT4_DESC_PER_BLOCK_BITS(sb); 2193 if (size <= sbi->s_group_info_size) 2194 return 0; 2195 2196 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2197 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL); 2198 if (!new_groupinfo) { 2199 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2200 return -ENOMEM; 2201 } 2202 if (sbi->s_group_info) { 2203 memcpy(new_groupinfo, sbi->s_group_info, 2204 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2205 ext4_kvfree(sbi->s_group_info); 2206 } 2207 sbi->s_group_info = new_groupinfo; 2208 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2209 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2210 sbi->s_group_info_size); 2211 return 0; 2212 } 2213 2214 /* Create and initialize ext4_group_info data for the given group. */ 2215 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2216 struct ext4_group_desc *desc) 2217 { 2218 int i; 2219 int metalen = 0; 2220 struct ext4_sb_info *sbi = EXT4_SB(sb); 2221 struct ext4_group_info **meta_group_info; 2222 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2223 2224 /* 2225 * First check if this group is the first of a reserved block. 2226 * If it's true, we have to allocate a new table of pointers 2227 * to ext4_group_info structures 2228 */ 2229 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2230 metalen = sizeof(*meta_group_info) << 2231 EXT4_DESC_PER_BLOCK_BITS(sb); 2232 meta_group_info = kmalloc(metalen, GFP_KERNEL); 2233 if (meta_group_info == NULL) { 2234 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2235 "for a buddy group"); 2236 goto exit_meta_group_info; 2237 } 2238 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2239 meta_group_info; 2240 } 2241 2242 meta_group_info = 2243 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2244 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2245 2246 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL); 2247 if (meta_group_info[i] == NULL) { 2248 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2249 goto exit_group_info; 2250 } 2251 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2252 &(meta_group_info[i]->bb_state)); 2253 2254 /* 2255 * initialize bb_free to be able to skip 2256 * empty groups without initialization 2257 */ 2258 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2259 meta_group_info[i]->bb_free = 2260 ext4_free_clusters_after_init(sb, group, desc); 2261 } else { 2262 meta_group_info[i]->bb_free = 2263 ext4_free_group_clusters(sb, desc); 2264 } 2265 2266 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2267 init_rwsem(&meta_group_info[i]->alloc_sem); 2268 meta_group_info[i]->bb_free_root = RB_ROOT; 2269 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2270 2271 #ifdef DOUBLE_CHECK 2272 { 2273 struct buffer_head *bh; 2274 meta_group_info[i]->bb_bitmap = 2275 kmalloc(sb->s_blocksize, GFP_KERNEL); 2276 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2277 bh = ext4_read_block_bitmap(sb, group); 2278 BUG_ON(bh == NULL); 2279 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2280 sb->s_blocksize); 2281 put_bh(bh); 2282 } 2283 #endif 2284 2285 return 0; 2286 2287 exit_group_info: 2288 /* If a meta_group_info table has been allocated, release it now */ 2289 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2290 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2291 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL; 2292 } 2293 exit_meta_group_info: 2294 return -ENOMEM; 2295 } /* ext4_mb_add_groupinfo */ 2296 2297 static int ext4_mb_init_backend(struct super_block *sb) 2298 { 2299 ext4_group_t ngroups = ext4_get_groups_count(sb); 2300 ext4_group_t i; 2301 struct ext4_sb_info *sbi = EXT4_SB(sb); 2302 int err; 2303 struct ext4_group_desc *desc; 2304 struct kmem_cache *cachep; 2305 2306 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2307 if (err) 2308 return err; 2309 2310 sbi->s_buddy_cache = new_inode(sb); 2311 if (sbi->s_buddy_cache == NULL) { 2312 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2313 goto err_freesgi; 2314 } 2315 /* To avoid potentially colliding with an valid on-disk inode number, 2316 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2317 * not in the inode hash, so it should never be found by iget(), but 2318 * this will avoid confusion if it ever shows up during debugging. */ 2319 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2320 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2321 for (i = 0; i < ngroups; i++) { 2322 desc = ext4_get_group_desc(sb, i, NULL); 2323 if (desc == NULL) { 2324 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2325 goto err_freebuddy; 2326 } 2327 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2328 goto err_freebuddy; 2329 } 2330 2331 return 0; 2332 2333 err_freebuddy: 2334 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2335 while (i-- > 0) 2336 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2337 i = sbi->s_group_info_size; 2338 while (i-- > 0) 2339 kfree(sbi->s_group_info[i]); 2340 iput(sbi->s_buddy_cache); 2341 err_freesgi: 2342 ext4_kvfree(sbi->s_group_info); 2343 return -ENOMEM; 2344 } 2345 2346 static void ext4_groupinfo_destroy_slabs(void) 2347 { 2348 int i; 2349 2350 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2351 if (ext4_groupinfo_caches[i]) 2352 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2353 ext4_groupinfo_caches[i] = NULL; 2354 } 2355 } 2356 2357 static int ext4_groupinfo_create_slab(size_t size) 2358 { 2359 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2360 int slab_size; 2361 int blocksize_bits = order_base_2(size); 2362 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2363 struct kmem_cache *cachep; 2364 2365 if (cache_index >= NR_GRPINFO_CACHES) 2366 return -EINVAL; 2367 2368 if (unlikely(cache_index < 0)) 2369 cache_index = 0; 2370 2371 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2372 if (ext4_groupinfo_caches[cache_index]) { 2373 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2374 return 0; /* Already created */ 2375 } 2376 2377 slab_size = offsetof(struct ext4_group_info, 2378 bb_counters[blocksize_bits + 2]); 2379 2380 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2381 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2382 NULL); 2383 2384 ext4_groupinfo_caches[cache_index] = cachep; 2385 2386 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2387 if (!cachep) { 2388 printk(KERN_EMERG 2389 "EXT4-fs: no memory for groupinfo slab cache\n"); 2390 return -ENOMEM; 2391 } 2392 2393 return 0; 2394 } 2395 2396 int ext4_mb_init(struct super_block *sb) 2397 { 2398 struct ext4_sb_info *sbi = EXT4_SB(sb); 2399 unsigned i, j; 2400 unsigned offset; 2401 unsigned max; 2402 int ret; 2403 2404 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2405 2406 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2407 if (sbi->s_mb_offsets == NULL) { 2408 ret = -ENOMEM; 2409 goto out; 2410 } 2411 2412 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2413 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2414 if (sbi->s_mb_maxs == NULL) { 2415 ret = -ENOMEM; 2416 goto out; 2417 } 2418 2419 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2420 if (ret < 0) 2421 goto out; 2422 2423 /* order 0 is regular bitmap */ 2424 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2425 sbi->s_mb_offsets[0] = 0; 2426 2427 i = 1; 2428 offset = 0; 2429 max = sb->s_blocksize << 2; 2430 do { 2431 sbi->s_mb_offsets[i] = offset; 2432 sbi->s_mb_maxs[i] = max; 2433 offset += 1 << (sb->s_blocksize_bits - i); 2434 max = max >> 1; 2435 i++; 2436 } while (i <= sb->s_blocksize_bits + 1); 2437 2438 spin_lock_init(&sbi->s_md_lock); 2439 spin_lock_init(&sbi->s_bal_lock); 2440 2441 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2442 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2443 sbi->s_mb_stats = MB_DEFAULT_STATS; 2444 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2445 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2446 /* 2447 * The default group preallocation is 512, which for 4k block 2448 * sizes translates to 2 megabytes. However for bigalloc file 2449 * systems, this is probably too big (i.e, if the cluster size 2450 * is 1 megabyte, then group preallocation size becomes half a 2451 * gigabyte!). As a default, we will keep a two megabyte 2452 * group pralloc size for cluster sizes up to 64k, and after 2453 * that, we will force a minimum group preallocation size of 2454 * 32 clusters. This translates to 8 megs when the cluster 2455 * size is 256k, and 32 megs when the cluster size is 1 meg, 2456 * which seems reasonable as a default. 2457 */ 2458 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2459 sbi->s_cluster_bits, 32); 2460 /* 2461 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2462 * to the lowest multiple of s_stripe which is bigger than 2463 * the s_mb_group_prealloc as determined above. We want 2464 * the preallocation size to be an exact multiple of the 2465 * RAID stripe size so that preallocations don't fragment 2466 * the stripes. 2467 */ 2468 if (sbi->s_stripe > 1) { 2469 sbi->s_mb_group_prealloc = roundup( 2470 sbi->s_mb_group_prealloc, sbi->s_stripe); 2471 } 2472 2473 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2474 if (sbi->s_locality_groups == NULL) { 2475 ret = -ENOMEM; 2476 goto out_free_groupinfo_slab; 2477 } 2478 for_each_possible_cpu(i) { 2479 struct ext4_locality_group *lg; 2480 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2481 mutex_init(&lg->lg_mutex); 2482 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2483 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2484 spin_lock_init(&lg->lg_prealloc_lock); 2485 } 2486 2487 /* init file for buddy data */ 2488 ret = ext4_mb_init_backend(sb); 2489 if (ret != 0) 2490 goto out_free_locality_groups; 2491 2492 if (sbi->s_proc) 2493 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, 2494 &ext4_mb_seq_groups_fops, sb); 2495 2496 return 0; 2497 2498 out_free_locality_groups: 2499 free_percpu(sbi->s_locality_groups); 2500 sbi->s_locality_groups = NULL; 2501 out_free_groupinfo_slab: 2502 ext4_groupinfo_destroy_slabs(); 2503 out: 2504 kfree(sbi->s_mb_offsets); 2505 sbi->s_mb_offsets = NULL; 2506 kfree(sbi->s_mb_maxs); 2507 sbi->s_mb_maxs = NULL; 2508 return ret; 2509 } 2510 2511 /* need to called with the ext4 group lock held */ 2512 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2513 { 2514 struct ext4_prealloc_space *pa; 2515 struct list_head *cur, *tmp; 2516 int count = 0; 2517 2518 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2519 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2520 list_del(&pa->pa_group_list); 2521 count++; 2522 kmem_cache_free(ext4_pspace_cachep, pa); 2523 } 2524 if (count) 2525 mb_debug(1, "mballoc: %u PAs left\n", count); 2526 2527 } 2528 2529 int ext4_mb_release(struct super_block *sb) 2530 { 2531 ext4_group_t ngroups = ext4_get_groups_count(sb); 2532 ext4_group_t i; 2533 int num_meta_group_infos; 2534 struct ext4_group_info *grinfo; 2535 struct ext4_sb_info *sbi = EXT4_SB(sb); 2536 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2537 2538 if (sbi->s_proc) 2539 remove_proc_entry("mb_groups", sbi->s_proc); 2540 2541 if (sbi->s_group_info) { 2542 for (i = 0; i < ngroups; i++) { 2543 grinfo = ext4_get_group_info(sb, i); 2544 #ifdef DOUBLE_CHECK 2545 kfree(grinfo->bb_bitmap); 2546 #endif 2547 ext4_lock_group(sb, i); 2548 ext4_mb_cleanup_pa(grinfo); 2549 ext4_unlock_group(sb, i); 2550 kmem_cache_free(cachep, grinfo); 2551 } 2552 num_meta_group_infos = (ngroups + 2553 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2554 EXT4_DESC_PER_BLOCK_BITS(sb); 2555 for (i = 0; i < num_meta_group_infos; i++) 2556 kfree(sbi->s_group_info[i]); 2557 ext4_kvfree(sbi->s_group_info); 2558 } 2559 kfree(sbi->s_mb_offsets); 2560 kfree(sbi->s_mb_maxs); 2561 if (sbi->s_buddy_cache) 2562 iput(sbi->s_buddy_cache); 2563 if (sbi->s_mb_stats) { 2564 ext4_msg(sb, KERN_INFO, 2565 "mballoc: %u blocks %u reqs (%u success)", 2566 atomic_read(&sbi->s_bal_allocated), 2567 atomic_read(&sbi->s_bal_reqs), 2568 atomic_read(&sbi->s_bal_success)); 2569 ext4_msg(sb, KERN_INFO, 2570 "mballoc: %u extents scanned, %u goal hits, " 2571 "%u 2^N hits, %u breaks, %u lost", 2572 atomic_read(&sbi->s_bal_ex_scanned), 2573 atomic_read(&sbi->s_bal_goals), 2574 atomic_read(&sbi->s_bal_2orders), 2575 atomic_read(&sbi->s_bal_breaks), 2576 atomic_read(&sbi->s_mb_lost_chunks)); 2577 ext4_msg(sb, KERN_INFO, 2578 "mballoc: %lu generated and it took %Lu", 2579 sbi->s_mb_buddies_generated, 2580 sbi->s_mb_generation_time); 2581 ext4_msg(sb, KERN_INFO, 2582 "mballoc: %u preallocated, %u discarded", 2583 atomic_read(&sbi->s_mb_preallocated), 2584 atomic_read(&sbi->s_mb_discarded)); 2585 } 2586 2587 free_percpu(sbi->s_locality_groups); 2588 2589 return 0; 2590 } 2591 2592 static inline int ext4_issue_discard(struct super_block *sb, 2593 ext4_group_t block_group, ext4_grpblk_t cluster, int count) 2594 { 2595 ext4_fsblk_t discard_block; 2596 2597 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2598 ext4_group_first_block_no(sb, block_group)); 2599 count = EXT4_C2B(EXT4_SB(sb), count); 2600 trace_ext4_discard_blocks(sb, 2601 (unsigned long long) discard_block, count); 2602 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2603 } 2604 2605 /* 2606 * This function is called by the jbd2 layer once the commit has finished, 2607 * so we know we can free the blocks that were released with that commit. 2608 */ 2609 static void ext4_free_data_callback(struct super_block *sb, 2610 struct ext4_journal_cb_entry *jce, 2611 int rc) 2612 { 2613 struct ext4_free_data *entry = (struct ext4_free_data *)jce; 2614 struct ext4_buddy e4b; 2615 struct ext4_group_info *db; 2616 int err, count = 0, count2 = 0; 2617 2618 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2619 entry->efd_count, entry->efd_group, entry); 2620 2621 if (test_opt(sb, DISCARD)) { 2622 err = ext4_issue_discard(sb, entry->efd_group, 2623 entry->efd_start_cluster, 2624 entry->efd_count); 2625 if (err && err != -EOPNOTSUPP) 2626 ext4_msg(sb, KERN_WARNING, "discard request in" 2627 " group:%d block:%d count:%d failed" 2628 " with %d", entry->efd_group, 2629 entry->efd_start_cluster, 2630 entry->efd_count, err); 2631 } 2632 2633 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2634 /* we expect to find existing buddy because it's pinned */ 2635 BUG_ON(err != 0); 2636 2637 2638 db = e4b.bd_info; 2639 /* there are blocks to put in buddy to make them really free */ 2640 count += entry->efd_count; 2641 count2++; 2642 ext4_lock_group(sb, entry->efd_group); 2643 /* Take it out of per group rb tree */ 2644 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2645 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2646 2647 /* 2648 * Clear the trimmed flag for the group so that the next 2649 * ext4_trim_fs can trim it. 2650 * If the volume is mounted with -o discard, online discard 2651 * is supported and the free blocks will be trimmed online. 2652 */ 2653 if (!test_opt(sb, DISCARD)) 2654 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2655 2656 if (!db->bb_free_root.rb_node) { 2657 /* No more items in the per group rb tree 2658 * balance refcounts from ext4_mb_free_metadata() 2659 */ 2660 page_cache_release(e4b.bd_buddy_page); 2661 page_cache_release(e4b.bd_bitmap_page); 2662 } 2663 ext4_unlock_group(sb, entry->efd_group); 2664 kmem_cache_free(ext4_free_data_cachep, entry); 2665 ext4_mb_unload_buddy(&e4b); 2666 2667 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2668 } 2669 2670 int __init ext4_init_mballoc(void) 2671 { 2672 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2673 SLAB_RECLAIM_ACCOUNT); 2674 if (ext4_pspace_cachep == NULL) 2675 return -ENOMEM; 2676 2677 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2678 SLAB_RECLAIM_ACCOUNT); 2679 if (ext4_ac_cachep == NULL) { 2680 kmem_cache_destroy(ext4_pspace_cachep); 2681 return -ENOMEM; 2682 } 2683 2684 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2685 SLAB_RECLAIM_ACCOUNT); 2686 if (ext4_free_data_cachep == NULL) { 2687 kmem_cache_destroy(ext4_pspace_cachep); 2688 kmem_cache_destroy(ext4_ac_cachep); 2689 return -ENOMEM; 2690 } 2691 return 0; 2692 } 2693 2694 void ext4_exit_mballoc(void) 2695 { 2696 /* 2697 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2698 * before destroying the slab cache. 2699 */ 2700 rcu_barrier(); 2701 kmem_cache_destroy(ext4_pspace_cachep); 2702 kmem_cache_destroy(ext4_ac_cachep); 2703 kmem_cache_destroy(ext4_free_data_cachep); 2704 ext4_groupinfo_destroy_slabs(); 2705 } 2706 2707 2708 /* 2709 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2710 * Returns 0 if success or error code 2711 */ 2712 static noinline_for_stack int 2713 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2714 handle_t *handle, unsigned int reserv_clstrs) 2715 { 2716 struct buffer_head *bitmap_bh = NULL; 2717 struct ext4_group_desc *gdp; 2718 struct buffer_head *gdp_bh; 2719 struct ext4_sb_info *sbi; 2720 struct super_block *sb; 2721 ext4_fsblk_t block; 2722 int err, len; 2723 2724 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2725 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2726 2727 sb = ac->ac_sb; 2728 sbi = EXT4_SB(sb); 2729 2730 err = -EIO; 2731 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2732 if (!bitmap_bh) 2733 goto out_err; 2734 2735 err = ext4_journal_get_write_access(handle, bitmap_bh); 2736 if (err) 2737 goto out_err; 2738 2739 err = -EIO; 2740 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2741 if (!gdp) 2742 goto out_err; 2743 2744 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2745 ext4_free_group_clusters(sb, gdp)); 2746 2747 err = ext4_journal_get_write_access(handle, gdp_bh); 2748 if (err) 2749 goto out_err; 2750 2751 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2752 2753 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2754 if (!ext4_data_block_valid(sbi, block, len)) { 2755 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2756 "fs metadata", block, block+len); 2757 /* File system mounted not to panic on error 2758 * Fix the bitmap and repeat the block allocation 2759 * We leak some of the blocks here. 2760 */ 2761 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2762 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2763 ac->ac_b_ex.fe_len); 2764 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2765 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2766 if (!err) 2767 err = -EAGAIN; 2768 goto out_err; 2769 } 2770 2771 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2772 #ifdef AGGRESSIVE_CHECK 2773 { 2774 int i; 2775 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2776 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2777 bitmap_bh->b_data)); 2778 } 2779 } 2780 #endif 2781 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2782 ac->ac_b_ex.fe_len); 2783 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2784 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2785 ext4_free_group_clusters_set(sb, gdp, 2786 ext4_free_clusters_after_init(sb, 2787 ac->ac_b_ex.fe_group, gdp)); 2788 } 2789 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 2790 ext4_free_group_clusters_set(sb, gdp, len); 2791 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 2792 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 2793 2794 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2795 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 2796 /* 2797 * Now reduce the dirty block count also. Should not go negative 2798 */ 2799 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 2800 /* release all the reserved blocks if non delalloc */ 2801 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 2802 reserv_clstrs); 2803 2804 if (sbi->s_log_groups_per_flex) { 2805 ext4_group_t flex_group = ext4_flex_group(sbi, 2806 ac->ac_b_ex.fe_group); 2807 atomic_sub(ac->ac_b_ex.fe_len, 2808 &sbi->s_flex_groups[flex_group].free_clusters); 2809 } 2810 2811 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2812 if (err) 2813 goto out_err; 2814 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 2815 2816 out_err: 2817 brelse(bitmap_bh); 2818 return err; 2819 } 2820 2821 /* 2822 * here we normalize request for locality group 2823 * Group request are normalized to s_mb_group_prealloc, which goes to 2824 * s_strip if we set the same via mount option. 2825 * s_mb_group_prealloc can be configured via 2826 * /sys/fs/ext4/<partition>/mb_group_prealloc 2827 * 2828 * XXX: should we try to preallocate more than the group has now? 2829 */ 2830 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 2831 { 2832 struct super_block *sb = ac->ac_sb; 2833 struct ext4_locality_group *lg = ac->ac_lg; 2834 2835 BUG_ON(lg == NULL); 2836 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 2837 mb_debug(1, "#%u: goal %u blocks for locality group\n", 2838 current->pid, ac->ac_g_ex.fe_len); 2839 } 2840 2841 /* 2842 * Normalization means making request better in terms of 2843 * size and alignment 2844 */ 2845 static noinline_for_stack void 2846 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 2847 struct ext4_allocation_request *ar) 2848 { 2849 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2850 int bsbits, max; 2851 ext4_lblk_t end; 2852 loff_t size, start_off; 2853 loff_t orig_size __maybe_unused; 2854 ext4_lblk_t start; 2855 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 2856 struct ext4_prealloc_space *pa; 2857 2858 /* do normalize only data requests, metadata requests 2859 do not need preallocation */ 2860 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 2861 return; 2862 2863 /* sometime caller may want exact blocks */ 2864 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2865 return; 2866 2867 /* caller may indicate that preallocation isn't 2868 * required (it's a tail, for example) */ 2869 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 2870 return; 2871 2872 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 2873 ext4_mb_normalize_group_request(ac); 2874 return ; 2875 } 2876 2877 bsbits = ac->ac_sb->s_blocksize_bits; 2878 2879 /* first, let's learn actual file size 2880 * given current request is allocated */ 2881 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 2882 size = size << bsbits; 2883 if (size < i_size_read(ac->ac_inode)) 2884 size = i_size_read(ac->ac_inode); 2885 orig_size = size; 2886 2887 /* max size of free chunks */ 2888 max = 2 << bsbits; 2889 2890 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 2891 (req <= (size) || max <= (chunk_size)) 2892 2893 /* first, try to predict filesize */ 2894 /* XXX: should this table be tunable? */ 2895 start_off = 0; 2896 if (size <= 16 * 1024) { 2897 size = 16 * 1024; 2898 } else if (size <= 32 * 1024) { 2899 size = 32 * 1024; 2900 } else if (size <= 64 * 1024) { 2901 size = 64 * 1024; 2902 } else if (size <= 128 * 1024) { 2903 size = 128 * 1024; 2904 } else if (size <= 256 * 1024) { 2905 size = 256 * 1024; 2906 } else if (size <= 512 * 1024) { 2907 size = 512 * 1024; 2908 } else if (size <= 1024 * 1024) { 2909 size = 1024 * 1024; 2910 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 2911 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2912 (21 - bsbits)) << 21; 2913 size = 2 * 1024 * 1024; 2914 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 2915 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2916 (22 - bsbits)) << 22; 2917 size = 4 * 1024 * 1024; 2918 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 2919 (8<<20)>>bsbits, max, 8 * 1024)) { 2920 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2921 (23 - bsbits)) << 23; 2922 size = 8 * 1024 * 1024; 2923 } else { 2924 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits; 2925 size = ac->ac_o_ex.fe_len << bsbits; 2926 } 2927 size = size >> bsbits; 2928 start = start_off >> bsbits; 2929 2930 /* don't cover already allocated blocks in selected range */ 2931 if (ar->pleft && start <= ar->lleft) { 2932 size -= ar->lleft + 1 - start; 2933 start = ar->lleft + 1; 2934 } 2935 if (ar->pright && start + size - 1 >= ar->lright) 2936 size -= start + size - ar->lright; 2937 2938 end = start + size; 2939 2940 /* check we don't cross already preallocated blocks */ 2941 rcu_read_lock(); 2942 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 2943 ext4_lblk_t pa_end; 2944 2945 if (pa->pa_deleted) 2946 continue; 2947 spin_lock(&pa->pa_lock); 2948 if (pa->pa_deleted) { 2949 spin_unlock(&pa->pa_lock); 2950 continue; 2951 } 2952 2953 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 2954 pa->pa_len); 2955 2956 /* PA must not overlap original request */ 2957 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 2958 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 2959 2960 /* skip PAs this normalized request doesn't overlap with */ 2961 if (pa->pa_lstart >= end || pa_end <= start) { 2962 spin_unlock(&pa->pa_lock); 2963 continue; 2964 } 2965 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 2966 2967 /* adjust start or end to be adjacent to this pa */ 2968 if (pa_end <= ac->ac_o_ex.fe_logical) { 2969 BUG_ON(pa_end < start); 2970 start = pa_end; 2971 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 2972 BUG_ON(pa->pa_lstart > end); 2973 end = pa->pa_lstart; 2974 } 2975 spin_unlock(&pa->pa_lock); 2976 } 2977 rcu_read_unlock(); 2978 size = end - start; 2979 2980 /* XXX: extra loop to check we really don't overlap preallocations */ 2981 rcu_read_lock(); 2982 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 2983 ext4_lblk_t pa_end; 2984 2985 spin_lock(&pa->pa_lock); 2986 if (pa->pa_deleted == 0) { 2987 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 2988 pa->pa_len); 2989 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 2990 } 2991 spin_unlock(&pa->pa_lock); 2992 } 2993 rcu_read_unlock(); 2994 2995 if (start + size <= ac->ac_o_ex.fe_logical && 2996 start > ac->ac_o_ex.fe_logical) { 2997 ext4_msg(ac->ac_sb, KERN_ERR, 2998 "start %lu, size %lu, fe_logical %lu", 2999 (unsigned long) start, (unsigned long) size, 3000 (unsigned long) ac->ac_o_ex.fe_logical); 3001 } 3002 BUG_ON(start + size <= ac->ac_o_ex.fe_logical && 3003 start > ac->ac_o_ex.fe_logical); 3004 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 3005 3006 /* now prepare goal request */ 3007 3008 /* XXX: is it better to align blocks WRT to logical 3009 * placement or satisfy big request as is */ 3010 ac->ac_g_ex.fe_logical = start; 3011 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3012 3013 /* define goal start in order to merge */ 3014 if (ar->pright && (ar->lright == (start + size))) { 3015 /* merge to the right */ 3016 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3017 &ac->ac_f_ex.fe_group, 3018 &ac->ac_f_ex.fe_start); 3019 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3020 } 3021 if (ar->pleft && (ar->lleft + 1 == start)) { 3022 /* merge to the left */ 3023 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3024 &ac->ac_f_ex.fe_group, 3025 &ac->ac_f_ex.fe_start); 3026 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3027 } 3028 3029 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3030 (unsigned) orig_size, (unsigned) start); 3031 } 3032 3033 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3034 { 3035 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3036 3037 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3038 atomic_inc(&sbi->s_bal_reqs); 3039 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3040 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3041 atomic_inc(&sbi->s_bal_success); 3042 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3043 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3044 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3045 atomic_inc(&sbi->s_bal_goals); 3046 if (ac->ac_found > sbi->s_mb_max_to_scan) 3047 atomic_inc(&sbi->s_bal_breaks); 3048 } 3049 3050 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3051 trace_ext4_mballoc_alloc(ac); 3052 else 3053 trace_ext4_mballoc_prealloc(ac); 3054 } 3055 3056 /* 3057 * Called on failure; free up any blocks from the inode PA for this 3058 * context. We don't need this for MB_GROUP_PA because we only change 3059 * pa_free in ext4_mb_release_context(), but on failure, we've already 3060 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3061 */ 3062 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3063 { 3064 struct ext4_prealloc_space *pa = ac->ac_pa; 3065 3066 if (pa && pa->pa_type == MB_INODE_PA) 3067 pa->pa_free += ac->ac_b_ex.fe_len; 3068 } 3069 3070 /* 3071 * use blocks preallocated to inode 3072 */ 3073 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3074 struct ext4_prealloc_space *pa) 3075 { 3076 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3077 ext4_fsblk_t start; 3078 ext4_fsblk_t end; 3079 int len; 3080 3081 /* found preallocated blocks, use them */ 3082 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3083 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3084 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3085 len = EXT4_NUM_B2C(sbi, end - start); 3086 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3087 &ac->ac_b_ex.fe_start); 3088 ac->ac_b_ex.fe_len = len; 3089 ac->ac_status = AC_STATUS_FOUND; 3090 ac->ac_pa = pa; 3091 3092 BUG_ON(start < pa->pa_pstart); 3093 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3094 BUG_ON(pa->pa_free < len); 3095 pa->pa_free -= len; 3096 3097 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3098 } 3099 3100 /* 3101 * use blocks preallocated to locality group 3102 */ 3103 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3104 struct ext4_prealloc_space *pa) 3105 { 3106 unsigned int len = ac->ac_o_ex.fe_len; 3107 3108 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3109 &ac->ac_b_ex.fe_group, 3110 &ac->ac_b_ex.fe_start); 3111 ac->ac_b_ex.fe_len = len; 3112 ac->ac_status = AC_STATUS_FOUND; 3113 ac->ac_pa = pa; 3114 3115 /* we don't correct pa_pstart or pa_plen here to avoid 3116 * possible race when the group is being loaded concurrently 3117 * instead we correct pa later, after blocks are marked 3118 * in on-disk bitmap -- see ext4_mb_release_context() 3119 * Other CPUs are prevented from allocating from this pa by lg_mutex 3120 */ 3121 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3122 } 3123 3124 /* 3125 * Return the prealloc space that have minimal distance 3126 * from the goal block. @cpa is the prealloc 3127 * space that is having currently known minimal distance 3128 * from the goal block. 3129 */ 3130 static struct ext4_prealloc_space * 3131 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3132 struct ext4_prealloc_space *pa, 3133 struct ext4_prealloc_space *cpa) 3134 { 3135 ext4_fsblk_t cur_distance, new_distance; 3136 3137 if (cpa == NULL) { 3138 atomic_inc(&pa->pa_count); 3139 return pa; 3140 } 3141 cur_distance = abs(goal_block - cpa->pa_pstart); 3142 new_distance = abs(goal_block - pa->pa_pstart); 3143 3144 if (cur_distance <= new_distance) 3145 return cpa; 3146 3147 /* drop the previous reference */ 3148 atomic_dec(&cpa->pa_count); 3149 atomic_inc(&pa->pa_count); 3150 return pa; 3151 } 3152 3153 /* 3154 * search goal blocks in preallocated space 3155 */ 3156 static noinline_for_stack int 3157 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3158 { 3159 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3160 int order, i; 3161 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3162 struct ext4_locality_group *lg; 3163 struct ext4_prealloc_space *pa, *cpa = NULL; 3164 ext4_fsblk_t goal_block; 3165 3166 /* only data can be preallocated */ 3167 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3168 return 0; 3169 3170 /* first, try per-file preallocation */ 3171 rcu_read_lock(); 3172 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3173 3174 /* all fields in this condition don't change, 3175 * so we can skip locking for them */ 3176 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3177 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3178 EXT4_C2B(sbi, pa->pa_len))) 3179 continue; 3180 3181 /* non-extent files can't have physical blocks past 2^32 */ 3182 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3183 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3184 EXT4_MAX_BLOCK_FILE_PHYS)) 3185 continue; 3186 3187 /* found preallocated blocks, use them */ 3188 spin_lock(&pa->pa_lock); 3189 if (pa->pa_deleted == 0 && pa->pa_free) { 3190 atomic_inc(&pa->pa_count); 3191 ext4_mb_use_inode_pa(ac, pa); 3192 spin_unlock(&pa->pa_lock); 3193 ac->ac_criteria = 10; 3194 rcu_read_unlock(); 3195 return 1; 3196 } 3197 spin_unlock(&pa->pa_lock); 3198 } 3199 rcu_read_unlock(); 3200 3201 /* can we use group allocation? */ 3202 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3203 return 0; 3204 3205 /* inode may have no locality group for some reason */ 3206 lg = ac->ac_lg; 3207 if (lg == NULL) 3208 return 0; 3209 order = fls(ac->ac_o_ex.fe_len) - 1; 3210 if (order > PREALLOC_TB_SIZE - 1) 3211 /* The max size of hash table is PREALLOC_TB_SIZE */ 3212 order = PREALLOC_TB_SIZE - 1; 3213 3214 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3215 /* 3216 * search for the prealloc space that is having 3217 * minimal distance from the goal block. 3218 */ 3219 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3220 rcu_read_lock(); 3221 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3222 pa_inode_list) { 3223 spin_lock(&pa->pa_lock); 3224 if (pa->pa_deleted == 0 && 3225 pa->pa_free >= ac->ac_o_ex.fe_len) { 3226 3227 cpa = ext4_mb_check_group_pa(goal_block, 3228 pa, cpa); 3229 } 3230 spin_unlock(&pa->pa_lock); 3231 } 3232 rcu_read_unlock(); 3233 } 3234 if (cpa) { 3235 ext4_mb_use_group_pa(ac, cpa); 3236 ac->ac_criteria = 20; 3237 return 1; 3238 } 3239 return 0; 3240 } 3241 3242 /* 3243 * the function goes through all block freed in the group 3244 * but not yet committed and marks them used in in-core bitmap. 3245 * buddy must be generated from this bitmap 3246 * Need to be called with the ext4 group lock held 3247 */ 3248 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3249 ext4_group_t group) 3250 { 3251 struct rb_node *n; 3252 struct ext4_group_info *grp; 3253 struct ext4_free_data *entry; 3254 3255 grp = ext4_get_group_info(sb, group); 3256 n = rb_first(&(grp->bb_free_root)); 3257 3258 while (n) { 3259 entry = rb_entry(n, struct ext4_free_data, efd_node); 3260 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3261 n = rb_next(n); 3262 } 3263 return; 3264 } 3265 3266 /* 3267 * the function goes through all preallocation in this group and marks them 3268 * used in in-core bitmap. buddy must be generated from this bitmap 3269 * Need to be called with ext4 group lock held 3270 */ 3271 static noinline_for_stack 3272 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3273 ext4_group_t group) 3274 { 3275 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3276 struct ext4_prealloc_space *pa; 3277 struct list_head *cur; 3278 ext4_group_t groupnr; 3279 ext4_grpblk_t start; 3280 int preallocated = 0; 3281 int len; 3282 3283 /* all form of preallocation discards first load group, 3284 * so the only competing code is preallocation use. 3285 * we don't need any locking here 3286 * notice we do NOT ignore preallocations with pa_deleted 3287 * otherwise we could leave used blocks available for 3288 * allocation in buddy when concurrent ext4_mb_put_pa() 3289 * is dropping preallocation 3290 */ 3291 list_for_each(cur, &grp->bb_prealloc_list) { 3292 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3293 spin_lock(&pa->pa_lock); 3294 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3295 &groupnr, &start); 3296 len = pa->pa_len; 3297 spin_unlock(&pa->pa_lock); 3298 if (unlikely(len == 0)) 3299 continue; 3300 BUG_ON(groupnr != group); 3301 ext4_set_bits(bitmap, start, len); 3302 preallocated += len; 3303 } 3304 mb_debug(1, "prellocated %u for group %u\n", preallocated, group); 3305 } 3306 3307 static void ext4_mb_pa_callback(struct rcu_head *head) 3308 { 3309 struct ext4_prealloc_space *pa; 3310 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3311 kmem_cache_free(ext4_pspace_cachep, pa); 3312 } 3313 3314 /* 3315 * drops a reference to preallocated space descriptor 3316 * if this was the last reference and the space is consumed 3317 */ 3318 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3319 struct super_block *sb, struct ext4_prealloc_space *pa) 3320 { 3321 ext4_group_t grp; 3322 ext4_fsblk_t grp_blk; 3323 3324 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) 3325 return; 3326 3327 /* in this short window concurrent discard can set pa_deleted */ 3328 spin_lock(&pa->pa_lock); 3329 if (pa->pa_deleted == 1) { 3330 spin_unlock(&pa->pa_lock); 3331 return; 3332 } 3333 3334 pa->pa_deleted = 1; 3335 spin_unlock(&pa->pa_lock); 3336 3337 grp_blk = pa->pa_pstart; 3338 /* 3339 * If doing group-based preallocation, pa_pstart may be in the 3340 * next group when pa is used up 3341 */ 3342 if (pa->pa_type == MB_GROUP_PA) 3343 grp_blk--; 3344 3345 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL); 3346 3347 /* 3348 * possible race: 3349 * 3350 * P1 (buddy init) P2 (regular allocation) 3351 * find block B in PA 3352 * copy on-disk bitmap to buddy 3353 * mark B in on-disk bitmap 3354 * drop PA from group 3355 * mark all PAs in buddy 3356 * 3357 * thus, P1 initializes buddy with B available. to prevent this 3358 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3359 * against that pair 3360 */ 3361 ext4_lock_group(sb, grp); 3362 list_del(&pa->pa_group_list); 3363 ext4_unlock_group(sb, grp); 3364 3365 spin_lock(pa->pa_obj_lock); 3366 list_del_rcu(&pa->pa_inode_list); 3367 spin_unlock(pa->pa_obj_lock); 3368 3369 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3370 } 3371 3372 /* 3373 * creates new preallocated space for given inode 3374 */ 3375 static noinline_for_stack int 3376 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3377 { 3378 struct super_block *sb = ac->ac_sb; 3379 struct ext4_sb_info *sbi = EXT4_SB(sb); 3380 struct ext4_prealloc_space *pa; 3381 struct ext4_group_info *grp; 3382 struct ext4_inode_info *ei; 3383 3384 /* preallocate only when found space is larger then requested */ 3385 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3386 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3387 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3388 3389 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3390 if (pa == NULL) 3391 return -ENOMEM; 3392 3393 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3394 int winl; 3395 int wins; 3396 int win; 3397 int offs; 3398 3399 /* we can't allocate as much as normalizer wants. 3400 * so, found space must get proper lstart 3401 * to cover original request */ 3402 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3403 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3404 3405 /* we're limited by original request in that 3406 * logical block must be covered any way 3407 * winl is window we can move our chunk within */ 3408 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3409 3410 /* also, we should cover whole original request */ 3411 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3412 3413 /* the smallest one defines real window */ 3414 win = min(winl, wins); 3415 3416 offs = ac->ac_o_ex.fe_logical % 3417 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3418 if (offs && offs < win) 3419 win = offs; 3420 3421 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3422 EXT4_NUM_B2C(sbi, win); 3423 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3424 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3425 } 3426 3427 /* preallocation can change ac_b_ex, thus we store actually 3428 * allocated blocks for history */ 3429 ac->ac_f_ex = ac->ac_b_ex; 3430 3431 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3432 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3433 pa->pa_len = ac->ac_b_ex.fe_len; 3434 pa->pa_free = pa->pa_len; 3435 atomic_set(&pa->pa_count, 1); 3436 spin_lock_init(&pa->pa_lock); 3437 INIT_LIST_HEAD(&pa->pa_inode_list); 3438 INIT_LIST_HEAD(&pa->pa_group_list); 3439 pa->pa_deleted = 0; 3440 pa->pa_type = MB_INODE_PA; 3441 3442 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3443 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3444 trace_ext4_mb_new_inode_pa(ac, pa); 3445 3446 ext4_mb_use_inode_pa(ac, pa); 3447 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3448 3449 ei = EXT4_I(ac->ac_inode); 3450 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3451 3452 pa->pa_obj_lock = &ei->i_prealloc_lock; 3453 pa->pa_inode = ac->ac_inode; 3454 3455 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3456 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3457 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3458 3459 spin_lock(pa->pa_obj_lock); 3460 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3461 spin_unlock(pa->pa_obj_lock); 3462 3463 return 0; 3464 } 3465 3466 /* 3467 * creates new preallocated space for locality group inodes belongs to 3468 */ 3469 static noinline_for_stack int 3470 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3471 { 3472 struct super_block *sb = ac->ac_sb; 3473 struct ext4_locality_group *lg; 3474 struct ext4_prealloc_space *pa; 3475 struct ext4_group_info *grp; 3476 3477 /* preallocate only when found space is larger then requested */ 3478 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3479 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3480 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3481 3482 BUG_ON(ext4_pspace_cachep == NULL); 3483 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3484 if (pa == NULL) 3485 return -ENOMEM; 3486 3487 /* preallocation can change ac_b_ex, thus we store actually 3488 * allocated blocks for history */ 3489 ac->ac_f_ex = ac->ac_b_ex; 3490 3491 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3492 pa->pa_lstart = pa->pa_pstart; 3493 pa->pa_len = ac->ac_b_ex.fe_len; 3494 pa->pa_free = pa->pa_len; 3495 atomic_set(&pa->pa_count, 1); 3496 spin_lock_init(&pa->pa_lock); 3497 INIT_LIST_HEAD(&pa->pa_inode_list); 3498 INIT_LIST_HEAD(&pa->pa_group_list); 3499 pa->pa_deleted = 0; 3500 pa->pa_type = MB_GROUP_PA; 3501 3502 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3503 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3504 trace_ext4_mb_new_group_pa(ac, pa); 3505 3506 ext4_mb_use_group_pa(ac, pa); 3507 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3508 3509 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3510 lg = ac->ac_lg; 3511 BUG_ON(lg == NULL); 3512 3513 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3514 pa->pa_inode = NULL; 3515 3516 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3517 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3518 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3519 3520 /* 3521 * We will later add the new pa to the right bucket 3522 * after updating the pa_free in ext4_mb_release_context 3523 */ 3524 return 0; 3525 } 3526 3527 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3528 { 3529 int err; 3530 3531 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3532 err = ext4_mb_new_group_pa(ac); 3533 else 3534 err = ext4_mb_new_inode_pa(ac); 3535 return err; 3536 } 3537 3538 /* 3539 * finds all unused blocks in on-disk bitmap, frees them in 3540 * in-core bitmap and buddy. 3541 * @pa must be unlinked from inode and group lists, so that 3542 * nobody else can find/use it. 3543 * the caller MUST hold group/inode locks. 3544 * TODO: optimize the case when there are no in-core structures yet 3545 */ 3546 static noinline_for_stack int 3547 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3548 struct ext4_prealloc_space *pa) 3549 { 3550 struct super_block *sb = e4b->bd_sb; 3551 struct ext4_sb_info *sbi = EXT4_SB(sb); 3552 unsigned int end; 3553 unsigned int next; 3554 ext4_group_t group; 3555 ext4_grpblk_t bit; 3556 unsigned long long grp_blk_start; 3557 int err = 0; 3558 int free = 0; 3559 3560 BUG_ON(pa->pa_deleted == 0); 3561 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3562 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3563 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3564 end = bit + pa->pa_len; 3565 3566 while (bit < end) { 3567 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3568 if (bit >= end) 3569 break; 3570 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3571 mb_debug(1, " free preallocated %u/%u in group %u\n", 3572 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3573 (unsigned) next - bit, (unsigned) group); 3574 free += next - bit; 3575 3576 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3577 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3578 EXT4_C2B(sbi, bit)), 3579 next - bit); 3580 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3581 bit = next + 1; 3582 } 3583 if (free != pa->pa_free) { 3584 ext4_msg(e4b->bd_sb, KERN_CRIT, 3585 "pa %p: logic %lu, phys. %lu, len %lu", 3586 pa, (unsigned long) pa->pa_lstart, 3587 (unsigned long) pa->pa_pstart, 3588 (unsigned long) pa->pa_len); 3589 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3590 free, pa->pa_free); 3591 /* 3592 * pa is already deleted so we use the value obtained 3593 * from the bitmap and continue. 3594 */ 3595 } 3596 atomic_add(free, &sbi->s_mb_discarded); 3597 3598 return err; 3599 } 3600 3601 static noinline_for_stack int 3602 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3603 struct ext4_prealloc_space *pa) 3604 { 3605 struct super_block *sb = e4b->bd_sb; 3606 ext4_group_t group; 3607 ext4_grpblk_t bit; 3608 3609 trace_ext4_mb_release_group_pa(sb, pa); 3610 BUG_ON(pa->pa_deleted == 0); 3611 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3612 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3613 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3614 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3615 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3616 3617 return 0; 3618 } 3619 3620 /* 3621 * releases all preallocations in given group 3622 * 3623 * first, we need to decide discard policy: 3624 * - when do we discard 3625 * 1) ENOSPC 3626 * - how many do we discard 3627 * 1) how many requested 3628 */ 3629 static noinline_for_stack int 3630 ext4_mb_discard_group_preallocations(struct super_block *sb, 3631 ext4_group_t group, int needed) 3632 { 3633 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3634 struct buffer_head *bitmap_bh = NULL; 3635 struct ext4_prealloc_space *pa, *tmp; 3636 struct list_head list; 3637 struct ext4_buddy e4b; 3638 int err; 3639 int busy = 0; 3640 int free = 0; 3641 3642 mb_debug(1, "discard preallocation for group %u\n", group); 3643 3644 if (list_empty(&grp->bb_prealloc_list)) 3645 return 0; 3646 3647 bitmap_bh = ext4_read_block_bitmap(sb, group); 3648 if (bitmap_bh == NULL) { 3649 ext4_error(sb, "Error reading block bitmap for %u", group); 3650 return 0; 3651 } 3652 3653 err = ext4_mb_load_buddy(sb, group, &e4b); 3654 if (err) { 3655 ext4_error(sb, "Error loading buddy information for %u", group); 3656 put_bh(bitmap_bh); 3657 return 0; 3658 } 3659 3660 if (needed == 0) 3661 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3662 3663 INIT_LIST_HEAD(&list); 3664 repeat: 3665 ext4_lock_group(sb, group); 3666 list_for_each_entry_safe(pa, tmp, 3667 &grp->bb_prealloc_list, pa_group_list) { 3668 spin_lock(&pa->pa_lock); 3669 if (atomic_read(&pa->pa_count)) { 3670 spin_unlock(&pa->pa_lock); 3671 busy = 1; 3672 continue; 3673 } 3674 if (pa->pa_deleted) { 3675 spin_unlock(&pa->pa_lock); 3676 continue; 3677 } 3678 3679 /* seems this one can be freed ... */ 3680 pa->pa_deleted = 1; 3681 3682 /* we can trust pa_free ... */ 3683 free += pa->pa_free; 3684 3685 spin_unlock(&pa->pa_lock); 3686 3687 list_del(&pa->pa_group_list); 3688 list_add(&pa->u.pa_tmp_list, &list); 3689 } 3690 3691 /* if we still need more blocks and some PAs were used, try again */ 3692 if (free < needed && busy) { 3693 busy = 0; 3694 ext4_unlock_group(sb, group); 3695 /* 3696 * Yield the CPU here so that we don't get soft lockup 3697 * in non preempt case. 3698 */ 3699 yield(); 3700 goto repeat; 3701 } 3702 3703 /* found anything to free? */ 3704 if (list_empty(&list)) { 3705 BUG_ON(free != 0); 3706 goto out; 3707 } 3708 3709 /* now free all selected PAs */ 3710 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3711 3712 /* remove from object (inode or locality group) */ 3713 spin_lock(pa->pa_obj_lock); 3714 list_del_rcu(&pa->pa_inode_list); 3715 spin_unlock(pa->pa_obj_lock); 3716 3717 if (pa->pa_type == MB_GROUP_PA) 3718 ext4_mb_release_group_pa(&e4b, pa); 3719 else 3720 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3721 3722 list_del(&pa->u.pa_tmp_list); 3723 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3724 } 3725 3726 out: 3727 ext4_unlock_group(sb, group); 3728 ext4_mb_unload_buddy(&e4b); 3729 put_bh(bitmap_bh); 3730 return free; 3731 } 3732 3733 /* 3734 * releases all non-used preallocated blocks for given inode 3735 * 3736 * It's important to discard preallocations under i_data_sem 3737 * We don't want another block to be served from the prealloc 3738 * space when we are discarding the inode prealloc space. 3739 * 3740 * FIXME!! Make sure it is valid at all the call sites 3741 */ 3742 void ext4_discard_preallocations(struct inode *inode) 3743 { 3744 struct ext4_inode_info *ei = EXT4_I(inode); 3745 struct super_block *sb = inode->i_sb; 3746 struct buffer_head *bitmap_bh = NULL; 3747 struct ext4_prealloc_space *pa, *tmp; 3748 ext4_group_t group = 0; 3749 struct list_head list; 3750 struct ext4_buddy e4b; 3751 int err; 3752 3753 if (!S_ISREG(inode->i_mode)) { 3754 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 3755 return; 3756 } 3757 3758 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 3759 trace_ext4_discard_preallocations(inode); 3760 3761 INIT_LIST_HEAD(&list); 3762 3763 repeat: 3764 /* first, collect all pa's in the inode */ 3765 spin_lock(&ei->i_prealloc_lock); 3766 while (!list_empty(&ei->i_prealloc_list)) { 3767 pa = list_entry(ei->i_prealloc_list.next, 3768 struct ext4_prealloc_space, pa_inode_list); 3769 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 3770 spin_lock(&pa->pa_lock); 3771 if (atomic_read(&pa->pa_count)) { 3772 /* this shouldn't happen often - nobody should 3773 * use preallocation while we're discarding it */ 3774 spin_unlock(&pa->pa_lock); 3775 spin_unlock(&ei->i_prealloc_lock); 3776 ext4_msg(sb, KERN_ERR, 3777 "uh-oh! used pa while discarding"); 3778 WARN_ON(1); 3779 schedule_timeout_uninterruptible(HZ); 3780 goto repeat; 3781 3782 } 3783 if (pa->pa_deleted == 0) { 3784 pa->pa_deleted = 1; 3785 spin_unlock(&pa->pa_lock); 3786 list_del_rcu(&pa->pa_inode_list); 3787 list_add(&pa->u.pa_tmp_list, &list); 3788 continue; 3789 } 3790 3791 /* someone is deleting pa right now */ 3792 spin_unlock(&pa->pa_lock); 3793 spin_unlock(&ei->i_prealloc_lock); 3794 3795 /* we have to wait here because pa_deleted 3796 * doesn't mean pa is already unlinked from 3797 * the list. as we might be called from 3798 * ->clear_inode() the inode will get freed 3799 * and concurrent thread which is unlinking 3800 * pa from inode's list may access already 3801 * freed memory, bad-bad-bad */ 3802 3803 /* XXX: if this happens too often, we can 3804 * add a flag to force wait only in case 3805 * of ->clear_inode(), but not in case of 3806 * regular truncate */ 3807 schedule_timeout_uninterruptible(HZ); 3808 goto repeat; 3809 } 3810 spin_unlock(&ei->i_prealloc_lock); 3811 3812 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3813 BUG_ON(pa->pa_type != MB_INODE_PA); 3814 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 3815 3816 err = ext4_mb_load_buddy(sb, group, &e4b); 3817 if (err) { 3818 ext4_error(sb, "Error loading buddy information for %u", 3819 group); 3820 continue; 3821 } 3822 3823 bitmap_bh = ext4_read_block_bitmap(sb, group); 3824 if (bitmap_bh == NULL) { 3825 ext4_error(sb, "Error reading block bitmap for %u", 3826 group); 3827 ext4_mb_unload_buddy(&e4b); 3828 continue; 3829 } 3830 3831 ext4_lock_group(sb, group); 3832 list_del(&pa->pa_group_list); 3833 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3834 ext4_unlock_group(sb, group); 3835 3836 ext4_mb_unload_buddy(&e4b); 3837 put_bh(bitmap_bh); 3838 3839 list_del(&pa->u.pa_tmp_list); 3840 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3841 } 3842 } 3843 3844 #ifdef CONFIG_EXT4_DEBUG 3845 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3846 { 3847 struct super_block *sb = ac->ac_sb; 3848 ext4_group_t ngroups, i; 3849 3850 if (!ext4_mballoc_debug || 3851 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 3852 return; 3853 3854 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 3855 " Allocation context details:"); 3856 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 3857 ac->ac_status, ac->ac_flags); 3858 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 3859 "goal %lu/%lu/%lu@%lu, " 3860 "best %lu/%lu/%lu@%lu cr %d", 3861 (unsigned long)ac->ac_o_ex.fe_group, 3862 (unsigned long)ac->ac_o_ex.fe_start, 3863 (unsigned long)ac->ac_o_ex.fe_len, 3864 (unsigned long)ac->ac_o_ex.fe_logical, 3865 (unsigned long)ac->ac_g_ex.fe_group, 3866 (unsigned long)ac->ac_g_ex.fe_start, 3867 (unsigned long)ac->ac_g_ex.fe_len, 3868 (unsigned long)ac->ac_g_ex.fe_logical, 3869 (unsigned long)ac->ac_b_ex.fe_group, 3870 (unsigned long)ac->ac_b_ex.fe_start, 3871 (unsigned long)ac->ac_b_ex.fe_len, 3872 (unsigned long)ac->ac_b_ex.fe_logical, 3873 (int)ac->ac_criteria); 3874 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found", 3875 ac->ac_ex_scanned, ac->ac_found); 3876 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 3877 ngroups = ext4_get_groups_count(sb); 3878 for (i = 0; i < ngroups; i++) { 3879 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3880 struct ext4_prealloc_space *pa; 3881 ext4_grpblk_t start; 3882 struct list_head *cur; 3883 ext4_lock_group(sb, i); 3884 list_for_each(cur, &grp->bb_prealloc_list) { 3885 pa = list_entry(cur, struct ext4_prealloc_space, 3886 pa_group_list); 3887 spin_lock(&pa->pa_lock); 3888 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3889 NULL, &start); 3890 spin_unlock(&pa->pa_lock); 3891 printk(KERN_ERR "PA:%u:%d:%u \n", i, 3892 start, pa->pa_len); 3893 } 3894 ext4_unlock_group(sb, i); 3895 3896 if (grp->bb_free == 0) 3897 continue; 3898 printk(KERN_ERR "%u: %d/%d \n", 3899 i, grp->bb_free, grp->bb_fragments); 3900 } 3901 printk(KERN_ERR "\n"); 3902 } 3903 #else 3904 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3905 { 3906 return; 3907 } 3908 #endif 3909 3910 /* 3911 * We use locality group preallocation for small size file. The size of the 3912 * file is determined by the current size or the resulting size after 3913 * allocation which ever is larger 3914 * 3915 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 3916 */ 3917 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 3918 { 3919 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3920 int bsbits = ac->ac_sb->s_blocksize_bits; 3921 loff_t size, isize; 3922 3923 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3924 return; 3925 3926 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3927 return; 3928 3929 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3930 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 3931 >> bsbits; 3932 3933 if ((size == isize) && 3934 !ext4_fs_is_busy(sbi) && 3935 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 3936 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 3937 return; 3938 } 3939 3940 if (sbi->s_mb_group_prealloc <= 0) { 3941 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 3942 return; 3943 } 3944 3945 /* don't use group allocation for large files */ 3946 size = max(size, isize); 3947 if (size > sbi->s_mb_stream_request) { 3948 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 3949 return; 3950 } 3951 3952 BUG_ON(ac->ac_lg != NULL); 3953 /* 3954 * locality group prealloc space are per cpu. The reason for having 3955 * per cpu locality group is to reduce the contention between block 3956 * request from multiple CPUs. 3957 */ 3958 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups); 3959 3960 /* we're going to use group allocation */ 3961 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 3962 3963 /* serialize all allocations in the group */ 3964 mutex_lock(&ac->ac_lg->lg_mutex); 3965 } 3966 3967 static noinline_for_stack int 3968 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 3969 struct ext4_allocation_request *ar) 3970 { 3971 struct super_block *sb = ar->inode->i_sb; 3972 struct ext4_sb_info *sbi = EXT4_SB(sb); 3973 struct ext4_super_block *es = sbi->s_es; 3974 ext4_group_t group; 3975 unsigned int len; 3976 ext4_fsblk_t goal; 3977 ext4_grpblk_t block; 3978 3979 /* we can't allocate > group size */ 3980 len = ar->len; 3981 3982 /* just a dirty hack to filter too big requests */ 3983 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 3984 len = EXT4_CLUSTERS_PER_GROUP(sb); 3985 3986 /* start searching from the goal */ 3987 goal = ar->goal; 3988 if (goal < le32_to_cpu(es->s_first_data_block) || 3989 goal >= ext4_blocks_count(es)) 3990 goal = le32_to_cpu(es->s_first_data_block); 3991 ext4_get_group_no_and_offset(sb, goal, &group, &block); 3992 3993 /* set up allocation goals */ 3994 ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1); 3995 ac->ac_status = AC_STATUS_CONTINUE; 3996 ac->ac_sb = sb; 3997 ac->ac_inode = ar->inode; 3998 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 3999 ac->ac_o_ex.fe_group = group; 4000 ac->ac_o_ex.fe_start = block; 4001 ac->ac_o_ex.fe_len = len; 4002 ac->ac_g_ex = ac->ac_o_ex; 4003 ac->ac_flags = ar->flags; 4004 4005 /* we have to define context: we'll we work with a file or 4006 * locality group. this is a policy, actually */ 4007 ext4_mb_group_or_file(ac); 4008 4009 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4010 "left: %u/%u, right %u/%u to %swritable\n", 4011 (unsigned) ar->len, (unsigned) ar->logical, 4012 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4013 (unsigned) ar->lleft, (unsigned) ar->pleft, 4014 (unsigned) ar->lright, (unsigned) ar->pright, 4015 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4016 return 0; 4017 4018 } 4019 4020 static noinline_for_stack void 4021 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4022 struct ext4_locality_group *lg, 4023 int order, int total_entries) 4024 { 4025 ext4_group_t group = 0; 4026 struct ext4_buddy e4b; 4027 struct list_head discard_list; 4028 struct ext4_prealloc_space *pa, *tmp; 4029 4030 mb_debug(1, "discard locality group preallocation\n"); 4031 4032 INIT_LIST_HEAD(&discard_list); 4033 4034 spin_lock(&lg->lg_prealloc_lock); 4035 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4036 pa_inode_list) { 4037 spin_lock(&pa->pa_lock); 4038 if (atomic_read(&pa->pa_count)) { 4039 /* 4040 * This is the pa that we just used 4041 * for block allocation. So don't 4042 * free that 4043 */ 4044 spin_unlock(&pa->pa_lock); 4045 continue; 4046 } 4047 if (pa->pa_deleted) { 4048 spin_unlock(&pa->pa_lock); 4049 continue; 4050 } 4051 /* only lg prealloc space */ 4052 BUG_ON(pa->pa_type != MB_GROUP_PA); 4053 4054 /* seems this one can be freed ... */ 4055 pa->pa_deleted = 1; 4056 spin_unlock(&pa->pa_lock); 4057 4058 list_del_rcu(&pa->pa_inode_list); 4059 list_add(&pa->u.pa_tmp_list, &discard_list); 4060 4061 total_entries--; 4062 if (total_entries <= 5) { 4063 /* 4064 * we want to keep only 5 entries 4065 * allowing it to grow to 8. This 4066 * mak sure we don't call discard 4067 * soon for this list. 4068 */ 4069 break; 4070 } 4071 } 4072 spin_unlock(&lg->lg_prealloc_lock); 4073 4074 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4075 4076 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 4077 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4078 ext4_error(sb, "Error loading buddy information for %u", 4079 group); 4080 continue; 4081 } 4082 ext4_lock_group(sb, group); 4083 list_del(&pa->pa_group_list); 4084 ext4_mb_release_group_pa(&e4b, pa); 4085 ext4_unlock_group(sb, group); 4086 4087 ext4_mb_unload_buddy(&e4b); 4088 list_del(&pa->u.pa_tmp_list); 4089 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4090 } 4091 } 4092 4093 /* 4094 * We have incremented pa_count. So it cannot be freed at this 4095 * point. Also we hold lg_mutex. So no parallel allocation is 4096 * possible from this lg. That means pa_free cannot be updated. 4097 * 4098 * A parallel ext4_mb_discard_group_preallocations is possible. 4099 * which can cause the lg_prealloc_list to be updated. 4100 */ 4101 4102 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4103 { 4104 int order, added = 0, lg_prealloc_count = 1; 4105 struct super_block *sb = ac->ac_sb; 4106 struct ext4_locality_group *lg = ac->ac_lg; 4107 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4108 4109 order = fls(pa->pa_free) - 1; 4110 if (order > PREALLOC_TB_SIZE - 1) 4111 /* The max size of hash table is PREALLOC_TB_SIZE */ 4112 order = PREALLOC_TB_SIZE - 1; 4113 /* Add the prealloc space to lg */ 4114 spin_lock(&lg->lg_prealloc_lock); 4115 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4116 pa_inode_list) { 4117 spin_lock(&tmp_pa->pa_lock); 4118 if (tmp_pa->pa_deleted) { 4119 spin_unlock(&tmp_pa->pa_lock); 4120 continue; 4121 } 4122 if (!added && pa->pa_free < tmp_pa->pa_free) { 4123 /* Add to the tail of the previous entry */ 4124 list_add_tail_rcu(&pa->pa_inode_list, 4125 &tmp_pa->pa_inode_list); 4126 added = 1; 4127 /* 4128 * we want to count the total 4129 * number of entries in the list 4130 */ 4131 } 4132 spin_unlock(&tmp_pa->pa_lock); 4133 lg_prealloc_count++; 4134 } 4135 if (!added) 4136 list_add_tail_rcu(&pa->pa_inode_list, 4137 &lg->lg_prealloc_list[order]); 4138 spin_unlock(&lg->lg_prealloc_lock); 4139 4140 /* Now trim the list to be not more than 8 elements */ 4141 if (lg_prealloc_count > 8) { 4142 ext4_mb_discard_lg_preallocations(sb, lg, 4143 order, lg_prealloc_count); 4144 return; 4145 } 4146 return ; 4147 } 4148 4149 /* 4150 * release all resource we used in allocation 4151 */ 4152 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4153 { 4154 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4155 struct ext4_prealloc_space *pa = ac->ac_pa; 4156 if (pa) { 4157 if (pa->pa_type == MB_GROUP_PA) { 4158 /* see comment in ext4_mb_use_group_pa() */ 4159 spin_lock(&pa->pa_lock); 4160 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4161 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4162 pa->pa_free -= ac->ac_b_ex.fe_len; 4163 pa->pa_len -= ac->ac_b_ex.fe_len; 4164 spin_unlock(&pa->pa_lock); 4165 } 4166 } 4167 if (pa) { 4168 /* 4169 * We want to add the pa to the right bucket. 4170 * Remove it from the list and while adding 4171 * make sure the list to which we are adding 4172 * doesn't grow big. 4173 */ 4174 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4175 spin_lock(pa->pa_obj_lock); 4176 list_del_rcu(&pa->pa_inode_list); 4177 spin_unlock(pa->pa_obj_lock); 4178 ext4_mb_add_n_trim(ac); 4179 } 4180 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4181 } 4182 if (ac->ac_bitmap_page) 4183 page_cache_release(ac->ac_bitmap_page); 4184 if (ac->ac_buddy_page) 4185 page_cache_release(ac->ac_buddy_page); 4186 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4187 mutex_unlock(&ac->ac_lg->lg_mutex); 4188 ext4_mb_collect_stats(ac); 4189 return 0; 4190 } 4191 4192 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4193 { 4194 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4195 int ret; 4196 int freed = 0; 4197 4198 trace_ext4_mb_discard_preallocations(sb, needed); 4199 for (i = 0; i < ngroups && needed > 0; i++) { 4200 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4201 freed += ret; 4202 needed -= ret; 4203 } 4204 4205 return freed; 4206 } 4207 4208 /* 4209 * Main entry point into mballoc to allocate blocks 4210 * it tries to use preallocation first, then falls back 4211 * to usual allocation 4212 */ 4213 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4214 struct ext4_allocation_request *ar, int *errp) 4215 { 4216 int freed; 4217 struct ext4_allocation_context *ac = NULL; 4218 struct ext4_sb_info *sbi; 4219 struct super_block *sb; 4220 ext4_fsblk_t block = 0; 4221 unsigned int inquota = 0; 4222 unsigned int reserv_clstrs = 0; 4223 4224 sb = ar->inode->i_sb; 4225 sbi = EXT4_SB(sb); 4226 4227 trace_ext4_request_blocks(ar); 4228 4229 /* Allow to use superuser reservation for quota file */ 4230 if (IS_NOQUOTA(ar->inode)) 4231 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4232 4233 /* 4234 * For delayed allocation, we could skip the ENOSPC and 4235 * EDQUOT check, as blocks and quotas have been already 4236 * reserved when data being copied into pagecache. 4237 */ 4238 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED)) 4239 ar->flags |= EXT4_MB_DELALLOC_RESERVED; 4240 else { 4241 /* Without delayed allocation we need to verify 4242 * there is enough free blocks to do block allocation 4243 * and verify allocation doesn't exceed the quota limits. 4244 */ 4245 while (ar->len && 4246 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4247 4248 /* let others to free the space */ 4249 yield(); 4250 ar->len = ar->len >> 1; 4251 } 4252 if (!ar->len) { 4253 *errp = -ENOSPC; 4254 return 0; 4255 } 4256 reserv_clstrs = ar->len; 4257 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4258 dquot_alloc_block_nofail(ar->inode, 4259 EXT4_C2B(sbi, ar->len)); 4260 } else { 4261 while (ar->len && 4262 dquot_alloc_block(ar->inode, 4263 EXT4_C2B(sbi, ar->len))) { 4264 4265 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4266 ar->len--; 4267 } 4268 } 4269 inquota = ar->len; 4270 if (ar->len == 0) { 4271 *errp = -EDQUOT; 4272 goto out; 4273 } 4274 } 4275 4276 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4277 if (!ac) { 4278 ar->len = 0; 4279 *errp = -ENOMEM; 4280 goto out; 4281 } 4282 4283 *errp = ext4_mb_initialize_context(ac, ar); 4284 if (*errp) { 4285 ar->len = 0; 4286 goto out; 4287 } 4288 4289 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4290 if (!ext4_mb_use_preallocated(ac)) { 4291 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4292 ext4_mb_normalize_request(ac, ar); 4293 repeat: 4294 /* allocate space in core */ 4295 *errp = ext4_mb_regular_allocator(ac); 4296 if (*errp) { 4297 ext4_discard_allocated_blocks(ac); 4298 goto errout; 4299 } 4300 4301 /* as we've just preallocated more space than 4302 * user requested orinally, we store allocated 4303 * space in a special descriptor */ 4304 if (ac->ac_status == AC_STATUS_FOUND && 4305 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4306 ext4_mb_new_preallocation(ac); 4307 } 4308 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4309 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4310 if (*errp == -EAGAIN) { 4311 /* 4312 * drop the reference that we took 4313 * in ext4_mb_use_best_found 4314 */ 4315 ext4_mb_release_context(ac); 4316 ac->ac_b_ex.fe_group = 0; 4317 ac->ac_b_ex.fe_start = 0; 4318 ac->ac_b_ex.fe_len = 0; 4319 ac->ac_status = AC_STATUS_CONTINUE; 4320 goto repeat; 4321 } else if (*errp) { 4322 ext4_discard_allocated_blocks(ac); 4323 goto errout; 4324 } else { 4325 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4326 ar->len = ac->ac_b_ex.fe_len; 4327 } 4328 } else { 4329 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4330 if (freed) 4331 goto repeat; 4332 *errp = -ENOSPC; 4333 } 4334 4335 errout: 4336 if (*errp) { 4337 ac->ac_b_ex.fe_len = 0; 4338 ar->len = 0; 4339 ext4_mb_show_ac(ac); 4340 } 4341 ext4_mb_release_context(ac); 4342 out: 4343 if (ac) 4344 kmem_cache_free(ext4_ac_cachep, ac); 4345 if (inquota && ar->len < inquota) 4346 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4347 if (!ar->len) { 4348 if (!ext4_test_inode_state(ar->inode, 4349 EXT4_STATE_DELALLOC_RESERVED)) 4350 /* release all the reserved blocks if non delalloc */ 4351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4352 reserv_clstrs); 4353 } 4354 4355 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4356 4357 return block; 4358 } 4359 4360 /* 4361 * We can merge two free data extents only if the physical blocks 4362 * are contiguous, AND the extents were freed by the same transaction, 4363 * AND the blocks are associated with the same group. 4364 */ 4365 static int can_merge(struct ext4_free_data *entry1, 4366 struct ext4_free_data *entry2) 4367 { 4368 if ((entry1->efd_tid == entry2->efd_tid) && 4369 (entry1->efd_group == entry2->efd_group) && 4370 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster)) 4371 return 1; 4372 return 0; 4373 } 4374 4375 static noinline_for_stack int 4376 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4377 struct ext4_free_data *new_entry) 4378 { 4379 ext4_group_t group = e4b->bd_group; 4380 ext4_grpblk_t cluster; 4381 struct ext4_free_data *entry; 4382 struct ext4_group_info *db = e4b->bd_info; 4383 struct super_block *sb = e4b->bd_sb; 4384 struct ext4_sb_info *sbi = EXT4_SB(sb); 4385 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4386 struct rb_node *parent = NULL, *new_node; 4387 4388 BUG_ON(!ext4_handle_valid(handle)); 4389 BUG_ON(e4b->bd_bitmap_page == NULL); 4390 BUG_ON(e4b->bd_buddy_page == NULL); 4391 4392 new_node = &new_entry->efd_node; 4393 cluster = new_entry->efd_start_cluster; 4394 4395 if (!*n) { 4396 /* first free block exent. We need to 4397 protect buddy cache from being freed, 4398 * otherwise we'll refresh it from 4399 * on-disk bitmap and lose not-yet-available 4400 * blocks */ 4401 page_cache_get(e4b->bd_buddy_page); 4402 page_cache_get(e4b->bd_bitmap_page); 4403 } 4404 while (*n) { 4405 parent = *n; 4406 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4407 if (cluster < entry->efd_start_cluster) 4408 n = &(*n)->rb_left; 4409 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4410 n = &(*n)->rb_right; 4411 else { 4412 ext4_grp_locked_error(sb, group, 0, 4413 ext4_group_first_block_no(sb, group) + 4414 EXT4_C2B(sbi, cluster), 4415 "Block already on to-be-freed list"); 4416 return 0; 4417 } 4418 } 4419 4420 rb_link_node(new_node, parent, n); 4421 rb_insert_color(new_node, &db->bb_free_root); 4422 4423 /* Now try to see the extent can be merged to left and right */ 4424 node = rb_prev(new_node); 4425 if (node) { 4426 entry = rb_entry(node, struct ext4_free_data, efd_node); 4427 if (can_merge(entry, new_entry)) { 4428 new_entry->efd_start_cluster = entry->efd_start_cluster; 4429 new_entry->efd_count += entry->efd_count; 4430 rb_erase(node, &(db->bb_free_root)); 4431 ext4_journal_callback_del(handle, &entry->efd_jce); 4432 kmem_cache_free(ext4_free_data_cachep, entry); 4433 } 4434 } 4435 4436 node = rb_next(new_node); 4437 if (node) { 4438 entry = rb_entry(node, struct ext4_free_data, efd_node); 4439 if (can_merge(new_entry, entry)) { 4440 new_entry->efd_count += entry->efd_count; 4441 rb_erase(node, &(db->bb_free_root)); 4442 ext4_journal_callback_del(handle, &entry->efd_jce); 4443 kmem_cache_free(ext4_free_data_cachep, entry); 4444 } 4445 } 4446 /* Add the extent to transaction's private list */ 4447 ext4_journal_callback_add(handle, ext4_free_data_callback, 4448 &new_entry->efd_jce); 4449 return 0; 4450 } 4451 4452 /** 4453 * ext4_free_blocks() -- Free given blocks and update quota 4454 * @handle: handle for this transaction 4455 * @inode: inode 4456 * @block: start physical block to free 4457 * @count: number of blocks to count 4458 * @flags: flags used by ext4_free_blocks 4459 */ 4460 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4461 struct buffer_head *bh, ext4_fsblk_t block, 4462 unsigned long count, int flags) 4463 { 4464 struct buffer_head *bitmap_bh = NULL; 4465 struct super_block *sb = inode->i_sb; 4466 struct ext4_group_desc *gdp; 4467 unsigned long freed = 0; 4468 unsigned int overflow; 4469 ext4_grpblk_t bit; 4470 struct buffer_head *gd_bh; 4471 ext4_group_t block_group; 4472 struct ext4_sb_info *sbi; 4473 struct ext4_buddy e4b; 4474 unsigned int count_clusters; 4475 int err = 0; 4476 int ret; 4477 4478 if (bh) { 4479 if (block) 4480 BUG_ON(block != bh->b_blocknr); 4481 else 4482 block = bh->b_blocknr; 4483 } 4484 4485 sbi = EXT4_SB(sb); 4486 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4487 !ext4_data_block_valid(sbi, block, count)) { 4488 ext4_error(sb, "Freeing blocks not in datazone - " 4489 "block = %llu, count = %lu", block, count); 4490 goto error_return; 4491 } 4492 4493 ext4_debug("freeing block %llu\n", block); 4494 trace_ext4_free_blocks(inode, block, count, flags); 4495 4496 if (flags & EXT4_FREE_BLOCKS_FORGET) { 4497 struct buffer_head *tbh = bh; 4498 int i; 4499 4500 BUG_ON(bh && (count > 1)); 4501 4502 for (i = 0; i < count; i++) { 4503 if (!bh) 4504 tbh = sb_find_get_block(inode->i_sb, 4505 block + i); 4506 if (unlikely(!tbh)) 4507 continue; 4508 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4509 inode, tbh, block + i); 4510 } 4511 } 4512 4513 /* 4514 * We need to make sure we don't reuse the freed block until 4515 * after the transaction is committed, which we can do by 4516 * treating the block as metadata, below. We make an 4517 * exception if the inode is to be written in writeback mode 4518 * since writeback mode has weak data consistency guarantees. 4519 */ 4520 if (!ext4_should_writeback_data(inode)) 4521 flags |= EXT4_FREE_BLOCKS_METADATA; 4522 4523 /* 4524 * If the extent to be freed does not begin on a cluster 4525 * boundary, we need to deal with partial clusters at the 4526 * beginning and end of the extent. Normally we will free 4527 * blocks at the beginning or the end unless we are explicitly 4528 * requested to avoid doing so. 4529 */ 4530 overflow = block & (sbi->s_cluster_ratio - 1); 4531 if (overflow) { 4532 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4533 overflow = sbi->s_cluster_ratio - overflow; 4534 block += overflow; 4535 if (count > overflow) 4536 count -= overflow; 4537 else 4538 return; 4539 } else { 4540 block -= overflow; 4541 count += overflow; 4542 } 4543 } 4544 overflow = count & (sbi->s_cluster_ratio - 1); 4545 if (overflow) { 4546 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4547 if (count > overflow) 4548 count -= overflow; 4549 else 4550 return; 4551 } else 4552 count += sbi->s_cluster_ratio - overflow; 4553 } 4554 4555 do_more: 4556 overflow = 0; 4557 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4558 4559 /* 4560 * Check to see if we are freeing blocks across a group 4561 * boundary. 4562 */ 4563 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4564 overflow = EXT4_C2B(sbi, bit) + count - 4565 EXT4_BLOCKS_PER_GROUP(sb); 4566 count -= overflow; 4567 } 4568 count_clusters = EXT4_NUM_B2C(sbi, count); 4569 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4570 if (!bitmap_bh) { 4571 err = -EIO; 4572 goto error_return; 4573 } 4574 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4575 if (!gdp) { 4576 err = -EIO; 4577 goto error_return; 4578 } 4579 4580 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4581 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4582 in_range(block, ext4_inode_table(sb, gdp), 4583 EXT4_SB(sb)->s_itb_per_group) || 4584 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4585 EXT4_SB(sb)->s_itb_per_group)) { 4586 4587 ext4_error(sb, "Freeing blocks in system zone - " 4588 "Block = %llu, count = %lu", block, count); 4589 /* err = 0. ext4_std_error should be a no op */ 4590 goto error_return; 4591 } 4592 4593 BUFFER_TRACE(bitmap_bh, "getting write access"); 4594 err = ext4_journal_get_write_access(handle, bitmap_bh); 4595 if (err) 4596 goto error_return; 4597 4598 /* 4599 * We are about to modify some metadata. Call the journal APIs 4600 * to unshare ->b_data if a currently-committing transaction is 4601 * using it 4602 */ 4603 BUFFER_TRACE(gd_bh, "get_write_access"); 4604 err = ext4_journal_get_write_access(handle, gd_bh); 4605 if (err) 4606 goto error_return; 4607 #ifdef AGGRESSIVE_CHECK 4608 { 4609 int i; 4610 for (i = 0; i < count_clusters; i++) 4611 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4612 } 4613 #endif 4614 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4615 4616 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4617 if (err) 4618 goto error_return; 4619 4620 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) { 4621 struct ext4_free_data *new_entry; 4622 /* 4623 * blocks being freed are metadata. these blocks shouldn't 4624 * be used until this transaction is committed 4625 */ 4626 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS); 4627 if (!new_entry) { 4628 ext4_mb_unload_buddy(&e4b); 4629 err = -ENOMEM; 4630 goto error_return; 4631 } 4632 new_entry->efd_start_cluster = bit; 4633 new_entry->efd_group = block_group; 4634 new_entry->efd_count = count_clusters; 4635 new_entry->efd_tid = handle->h_transaction->t_tid; 4636 4637 ext4_lock_group(sb, block_group); 4638 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4639 ext4_mb_free_metadata(handle, &e4b, new_entry); 4640 } else { 4641 /* need to update group_info->bb_free and bitmap 4642 * with group lock held. generate_buddy look at 4643 * them with group lock_held 4644 */ 4645 if (test_opt(sb, DISCARD)) { 4646 err = ext4_issue_discard(sb, block_group, bit, count); 4647 if (err && err != -EOPNOTSUPP) 4648 ext4_msg(sb, KERN_WARNING, "discard request in" 4649 " group:%d block:%d count:%lu failed" 4650 " with %d", block_group, bit, count, 4651 err); 4652 } 4653 4654 4655 ext4_lock_group(sb, block_group); 4656 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4657 mb_free_blocks(inode, &e4b, bit, count_clusters); 4658 } 4659 4660 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4661 ext4_free_group_clusters_set(sb, gdp, ret); 4662 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 4663 ext4_group_desc_csum_set(sb, block_group, gdp); 4664 ext4_unlock_group(sb, block_group); 4665 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); 4666 4667 if (sbi->s_log_groups_per_flex) { 4668 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4669 atomic_add(count_clusters, 4670 &sbi->s_flex_groups[flex_group].free_clusters); 4671 } 4672 4673 ext4_mb_unload_buddy(&e4b); 4674 4675 freed += count; 4676 4677 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4678 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4679 4680 /* We dirtied the bitmap block */ 4681 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4682 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4683 4684 /* And the group descriptor block */ 4685 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4686 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4687 if (!err) 4688 err = ret; 4689 4690 if (overflow && !err) { 4691 block += count; 4692 count = overflow; 4693 put_bh(bitmap_bh); 4694 goto do_more; 4695 } 4696 error_return: 4697 brelse(bitmap_bh); 4698 ext4_std_error(sb, err); 4699 return; 4700 } 4701 4702 /** 4703 * ext4_group_add_blocks() -- Add given blocks to an existing group 4704 * @handle: handle to this transaction 4705 * @sb: super block 4706 * @block: start physical block to add to the block group 4707 * @count: number of blocks to free 4708 * 4709 * This marks the blocks as free in the bitmap and buddy. 4710 */ 4711 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4712 ext4_fsblk_t block, unsigned long count) 4713 { 4714 struct buffer_head *bitmap_bh = NULL; 4715 struct buffer_head *gd_bh; 4716 ext4_group_t block_group; 4717 ext4_grpblk_t bit; 4718 unsigned int i; 4719 struct ext4_group_desc *desc; 4720 struct ext4_sb_info *sbi = EXT4_SB(sb); 4721 struct ext4_buddy e4b; 4722 int err = 0, ret, blk_free_count; 4723 ext4_grpblk_t blocks_freed; 4724 4725 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 4726 4727 if (count == 0) 4728 return 0; 4729 4730 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4731 /* 4732 * Check to see if we are freeing blocks across a group 4733 * boundary. 4734 */ 4735 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4736 ext4_warning(sb, "too much blocks added to group %u\n", 4737 block_group); 4738 err = -EINVAL; 4739 goto error_return; 4740 } 4741 4742 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4743 if (!bitmap_bh) { 4744 err = -EIO; 4745 goto error_return; 4746 } 4747 4748 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 4749 if (!desc) { 4750 err = -EIO; 4751 goto error_return; 4752 } 4753 4754 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 4755 in_range(ext4_inode_bitmap(sb, desc), block, count) || 4756 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 4757 in_range(block + count - 1, ext4_inode_table(sb, desc), 4758 sbi->s_itb_per_group)) { 4759 ext4_error(sb, "Adding blocks in system zones - " 4760 "Block = %llu, count = %lu", 4761 block, count); 4762 err = -EINVAL; 4763 goto error_return; 4764 } 4765 4766 BUFFER_TRACE(bitmap_bh, "getting write access"); 4767 err = ext4_journal_get_write_access(handle, bitmap_bh); 4768 if (err) 4769 goto error_return; 4770 4771 /* 4772 * We are about to modify some metadata. Call the journal APIs 4773 * to unshare ->b_data if a currently-committing transaction is 4774 * using it 4775 */ 4776 BUFFER_TRACE(gd_bh, "get_write_access"); 4777 err = ext4_journal_get_write_access(handle, gd_bh); 4778 if (err) 4779 goto error_return; 4780 4781 for (i = 0, blocks_freed = 0; i < count; i++) { 4782 BUFFER_TRACE(bitmap_bh, "clear bit"); 4783 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 4784 ext4_error(sb, "bit already cleared for block %llu", 4785 (ext4_fsblk_t)(block + i)); 4786 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 4787 } else { 4788 blocks_freed++; 4789 } 4790 } 4791 4792 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4793 if (err) 4794 goto error_return; 4795 4796 /* 4797 * need to update group_info->bb_free and bitmap 4798 * with group lock held. generate_buddy look at 4799 * them with group lock_held 4800 */ 4801 ext4_lock_group(sb, block_group); 4802 mb_clear_bits(bitmap_bh->b_data, bit, count); 4803 mb_free_blocks(NULL, &e4b, bit, count); 4804 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc); 4805 ext4_free_group_clusters_set(sb, desc, blk_free_count); 4806 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 4807 ext4_group_desc_csum_set(sb, block_group, desc); 4808 ext4_unlock_group(sb, block_group); 4809 percpu_counter_add(&sbi->s_freeclusters_counter, 4810 EXT4_NUM_B2C(sbi, blocks_freed)); 4811 4812 if (sbi->s_log_groups_per_flex) { 4813 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4814 atomic_add(EXT4_NUM_B2C(sbi, blocks_freed), 4815 &sbi->s_flex_groups[flex_group].free_clusters); 4816 } 4817 4818 ext4_mb_unload_buddy(&e4b); 4819 4820 /* We dirtied the bitmap block */ 4821 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4822 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4823 4824 /* And the group descriptor block */ 4825 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4826 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4827 if (!err) 4828 err = ret; 4829 4830 error_return: 4831 brelse(bitmap_bh); 4832 ext4_std_error(sb, err); 4833 return err; 4834 } 4835 4836 /** 4837 * ext4_trim_extent -- function to TRIM one single free extent in the group 4838 * @sb: super block for the file system 4839 * @start: starting block of the free extent in the alloc. group 4840 * @count: number of blocks to TRIM 4841 * @group: alloc. group we are working with 4842 * @e4b: ext4 buddy for the group 4843 * 4844 * Trim "count" blocks starting at "start" in the "group". To assure that no 4845 * one will allocate those blocks, mark it as used in buddy bitmap. This must 4846 * be called with under the group lock. 4847 */ 4848 static int ext4_trim_extent(struct super_block *sb, int start, int count, 4849 ext4_group_t group, struct ext4_buddy *e4b) 4850 { 4851 struct ext4_free_extent ex; 4852 int ret = 0; 4853 4854 trace_ext4_trim_extent(sb, group, start, count); 4855 4856 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 4857 4858 ex.fe_start = start; 4859 ex.fe_group = group; 4860 ex.fe_len = count; 4861 4862 /* 4863 * Mark blocks used, so no one can reuse them while 4864 * being trimmed. 4865 */ 4866 mb_mark_used(e4b, &ex); 4867 ext4_unlock_group(sb, group); 4868 ret = ext4_issue_discard(sb, group, start, count); 4869 ext4_lock_group(sb, group); 4870 mb_free_blocks(NULL, e4b, start, ex.fe_len); 4871 return ret; 4872 } 4873 4874 /** 4875 * ext4_trim_all_free -- function to trim all free space in alloc. group 4876 * @sb: super block for file system 4877 * @group: group to be trimmed 4878 * @start: first group block to examine 4879 * @max: last group block to examine 4880 * @minblocks: minimum extent block count 4881 * 4882 * ext4_trim_all_free walks through group's buddy bitmap searching for free 4883 * extents. When the free block is found, ext4_trim_extent is called to TRIM 4884 * the extent. 4885 * 4886 * 4887 * ext4_trim_all_free walks through group's block bitmap searching for free 4888 * extents. When the free extent is found, mark it as used in group buddy 4889 * bitmap. Then issue a TRIM command on this extent and free the extent in 4890 * the group buddy bitmap. This is done until whole group is scanned. 4891 */ 4892 static ext4_grpblk_t 4893 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 4894 ext4_grpblk_t start, ext4_grpblk_t max, 4895 ext4_grpblk_t minblocks) 4896 { 4897 void *bitmap; 4898 ext4_grpblk_t next, count = 0, free_count = 0; 4899 struct ext4_buddy e4b; 4900 int ret = 0; 4901 4902 trace_ext4_trim_all_free(sb, group, start, max); 4903 4904 ret = ext4_mb_load_buddy(sb, group, &e4b); 4905 if (ret) { 4906 ext4_error(sb, "Error in loading buddy " 4907 "information for %u", group); 4908 return ret; 4909 } 4910 bitmap = e4b.bd_bitmap; 4911 4912 ext4_lock_group(sb, group); 4913 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 4914 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 4915 goto out; 4916 4917 start = (e4b.bd_info->bb_first_free > start) ? 4918 e4b.bd_info->bb_first_free : start; 4919 4920 while (start <= max) { 4921 start = mb_find_next_zero_bit(bitmap, max + 1, start); 4922 if (start > max) 4923 break; 4924 next = mb_find_next_bit(bitmap, max + 1, start); 4925 4926 if ((next - start) >= minblocks) { 4927 ret = ext4_trim_extent(sb, start, 4928 next - start, group, &e4b); 4929 if (ret && ret != -EOPNOTSUPP) 4930 break; 4931 ret = 0; 4932 count += next - start; 4933 } 4934 free_count += next - start; 4935 start = next + 1; 4936 4937 if (fatal_signal_pending(current)) { 4938 count = -ERESTARTSYS; 4939 break; 4940 } 4941 4942 if (need_resched()) { 4943 ext4_unlock_group(sb, group); 4944 cond_resched(); 4945 ext4_lock_group(sb, group); 4946 } 4947 4948 if ((e4b.bd_info->bb_free - free_count) < minblocks) 4949 break; 4950 } 4951 4952 if (!ret) { 4953 ret = count; 4954 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 4955 } 4956 out: 4957 ext4_unlock_group(sb, group); 4958 ext4_mb_unload_buddy(&e4b); 4959 4960 ext4_debug("trimmed %d blocks in the group %d\n", 4961 count, group); 4962 4963 return ret; 4964 } 4965 4966 /** 4967 * ext4_trim_fs() -- trim ioctl handle function 4968 * @sb: superblock for filesystem 4969 * @range: fstrim_range structure 4970 * 4971 * start: First Byte to trim 4972 * len: number of Bytes to trim from start 4973 * minlen: minimum extent length in Bytes 4974 * ext4_trim_fs goes through all allocation groups containing Bytes from 4975 * start to start+len. For each such a group ext4_trim_all_free function 4976 * is invoked to trim all free space. 4977 */ 4978 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 4979 { 4980 struct ext4_group_info *grp; 4981 ext4_group_t group, first_group, last_group; 4982 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 4983 uint64_t start, end, minlen, trimmed = 0; 4984 ext4_fsblk_t first_data_blk = 4985 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 4986 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 4987 int ret = 0; 4988 4989 start = range->start >> sb->s_blocksize_bits; 4990 end = start + (range->len >> sb->s_blocksize_bits) - 1; 4991 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 4992 range->minlen >> sb->s_blocksize_bits); 4993 4994 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 4995 start >= max_blks || 4996 range->len < sb->s_blocksize) 4997 return -EINVAL; 4998 if (end >= max_blks) 4999 end = max_blks - 1; 5000 if (end <= first_data_blk) 5001 goto out; 5002 if (start < first_data_blk) 5003 start = first_data_blk; 5004 5005 /* Determine first and last group to examine based on start and end */ 5006 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5007 &first_group, &first_cluster); 5008 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5009 &last_group, &last_cluster); 5010 5011 /* end now represents the last cluster to discard in this group */ 5012 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5013 5014 for (group = first_group; group <= last_group; group++) { 5015 grp = ext4_get_group_info(sb, group); 5016 /* We only do this if the grp has never been initialized */ 5017 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5018 ret = ext4_mb_init_group(sb, group); 5019 if (ret) 5020 break; 5021 } 5022 5023 /* 5024 * For all the groups except the last one, last cluster will 5025 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5026 * change it for the last group, note that last_cluster is 5027 * already computed earlier by ext4_get_group_no_and_offset() 5028 */ 5029 if (group == last_group) 5030 end = last_cluster; 5031 5032 if (grp->bb_free >= minlen) { 5033 cnt = ext4_trim_all_free(sb, group, first_cluster, 5034 end, minlen); 5035 if (cnt < 0) { 5036 ret = cnt; 5037 break; 5038 } 5039 trimmed += cnt; 5040 } 5041 5042 /* 5043 * For every group except the first one, we are sure 5044 * that the first cluster to discard will be cluster #0. 5045 */ 5046 first_cluster = 0; 5047 } 5048 5049 if (!ret) 5050 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5051 5052 out: 5053 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5054 return ret; 5055 } 5056