xref: /openbmc/linux/fs/ext4/mballoc.c (revision 83b975b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20 
21 /*
22  * MUSTDO:
23  *   - test ext4_ext_search_left() and ext4_ext_search_right()
24  *   - search for metadata in few groups
25  *
26  * TODO v4:
27  *   - normalization should take into account whether file is still open
28  *   - discard preallocations if no free space left (policy?)
29  *   - don't normalize tails
30  *   - quota
31  *   - reservation for superuser
32  *
33  * TODO v3:
34  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
35  *   - track min/max extents in each group for better group selection
36  *   - mb_mark_used() may allocate chunk right after splitting buddy
37  *   - tree of groups sorted by number of free blocks
38  *   - error handling
39  */
40 
41 /*
42  * The allocation request involve request for multiple number of blocks
43  * near to the goal(block) value specified.
44  *
45  * During initialization phase of the allocator we decide to use the
46  * group preallocation or inode preallocation depending on the size of
47  * the file. The size of the file could be the resulting file size we
48  * would have after allocation, or the current file size, which ever
49  * is larger. If the size is less than sbi->s_mb_stream_request we
50  * select to use the group preallocation. The default value of
51  * s_mb_stream_request is 16 blocks. This can also be tuned via
52  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53  * terms of number of blocks.
54  *
55  * The main motivation for having small file use group preallocation is to
56  * ensure that we have small files closer together on the disk.
57  *
58  * First stage the allocator looks at the inode prealloc list,
59  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60  * spaces for this particular inode. The inode prealloc space is
61  * represented as:
62  *
63  * pa_lstart -> the logical start block for this prealloc space
64  * pa_pstart -> the physical start block for this prealloc space
65  * pa_len    -> length for this prealloc space (in clusters)
66  * pa_free   ->  free space available in this prealloc space (in clusters)
67  *
68  * The inode preallocation space is used looking at the _logical_ start
69  * block. If only the logical file block falls within the range of prealloc
70  * space we will consume the particular prealloc space. This makes sure that
71  * we have contiguous physical blocks representing the file blocks
72  *
73  * The important thing to be noted in case of inode prealloc space is that
74  * we don't modify the values associated to inode prealloc space except
75  * pa_free.
76  *
77  * If we are not able to find blocks in the inode prealloc space and if we
78  * have the group allocation flag set then we look at the locality group
79  * prealloc space. These are per CPU prealloc list represented as
80  *
81  * ext4_sb_info.s_locality_groups[smp_processor_id()]
82  *
83  * The reason for having a per cpu locality group is to reduce the contention
84  * between CPUs. It is possible to get scheduled at this point.
85  *
86  * The locality group prealloc space is used looking at whether we have
87  * enough free space (pa_free) within the prealloc space.
88  *
89  * If we can't allocate blocks via inode prealloc or/and locality group
90  * prealloc then we look at the buddy cache. The buddy cache is represented
91  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92  * mapped to the buddy and bitmap information regarding different
93  * groups. The buddy information is attached to buddy cache inode so that
94  * we can access them through the page cache. The information regarding
95  * each group is loaded via ext4_mb_load_buddy.  The information involve
96  * block bitmap and buddy information. The information are stored in the
97  * inode as:
98  *
99  *  {                        page                        }
100  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101  *
102  *
103  * one block each for bitmap and buddy information.  So for each group we
104  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105  * blocksize) blocks.  So it can have information regarding groups_per_page
106  * which is blocks_per_page/2
107  *
108  * The buddy cache inode is not stored on disk. The inode is thrown
109  * away when the filesystem is unmounted.
110  *
111  * We look for count number of blocks in the buddy cache. If we were able
112  * to locate that many free blocks we return with additional information
113  * regarding rest of the contiguous physical block available
114  *
115  * Before allocating blocks via buddy cache we normalize the request
116  * blocks. This ensure we ask for more blocks that we needed. The extra
117  * blocks that we get after allocation is added to the respective prealloc
118  * list. In case of inode preallocation we follow a list of heuristics
119  * based on file size. This can be found in ext4_mb_normalize_request. If
120  * we are doing a group prealloc we try to normalize the request to
121  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
122  * dependent on the cluster size; for non-bigalloc file systems, it is
123  * 512 blocks. This can be tuned via
124  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125  * terms of number of blocks. If we have mounted the file system with -O
126  * stripe=<value> option the group prealloc request is normalized to the
127  * smallest multiple of the stripe value (sbi->s_stripe) which is
128  * greater than the default mb_group_prealloc.
129  *
130  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
131  * structures in two data structures:
132  *
133  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
134  *
135  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
136  *
137  *    This is an array of lists where the index in the array represents the
138  *    largest free order in the buddy bitmap of the participating group infos of
139  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
140  *    number of buddy bitmap orders possible) number of lists. Group-infos are
141  *    placed in appropriate lists.
142  *
143  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
144  *
145  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
146  *
147  *    This is an array of lists where in the i-th list there are groups with
148  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
149  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
150  *    Note that we don't bother with a special list for completely empty groups
151  *    so we only have MB_NUM_ORDERS(sb) lists.
152  *
153  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
154  * structures to decide the order in which groups are to be traversed for
155  * fulfilling an allocation request.
156  *
157  * At CR = 0, we look for groups which have the largest_free_order >= the order
158  * of the request. We directly look at the largest free order list in the data
159  * structure (1) above where largest_free_order = order of the request. If that
160  * list is empty, we look at remaining list in the increasing order of
161  * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time.
162  *
163  * At CR = 1, we only consider groups where average fragment size > request
164  * size. So, we lookup a group which has average fragment size just above or
165  * equal to request size using our average fragment size group lists (data
166  * structure 2) in O(1) time.
167  *
168  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
169  * linear order which requires O(N) search time for each CR 0 and CR 1 phase.
170  *
171  * The regular allocator (using the buddy cache) supports a few tunables.
172  *
173  * /sys/fs/ext4/<partition>/mb_min_to_scan
174  * /sys/fs/ext4/<partition>/mb_max_to_scan
175  * /sys/fs/ext4/<partition>/mb_order2_req
176  * /sys/fs/ext4/<partition>/mb_linear_limit
177  *
178  * The regular allocator uses buddy scan only if the request len is power of
179  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
180  * value of s_mb_order2_reqs can be tuned via
181  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
182  * stripe size (sbi->s_stripe), we try to search for contiguous block in
183  * stripe size. This should result in better allocation on RAID setups. If
184  * not, we search in the specific group using bitmap for best extents. The
185  * tunable min_to_scan and max_to_scan control the behaviour here.
186  * min_to_scan indicate how long the mballoc __must__ look for a best
187  * extent and max_to_scan indicates how long the mballoc __can__ look for a
188  * best extent in the found extents. Searching for the blocks starts with
189  * the group specified as the goal value in allocation context via
190  * ac_g_ex. Each group is first checked based on the criteria whether it
191  * can be used for allocation. ext4_mb_good_group explains how the groups are
192  * checked.
193  *
194  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
195  * get traversed linearly. That may result in subsequent allocations being not
196  * close to each other. And so, the underlying device may get filled up in a
197  * non-linear fashion. While that may not matter on non-rotational devices, for
198  * rotational devices that may result in higher seek times. "mb_linear_limit"
199  * tells mballoc how many groups mballoc should search linearly before
200  * performing consulting above data structures for more efficient lookups. For
201  * non rotational devices, this value defaults to 0 and for rotational devices
202  * this is set to MB_DEFAULT_LINEAR_LIMIT.
203  *
204  * Both the prealloc space are getting populated as above. So for the first
205  * request we will hit the buddy cache which will result in this prealloc
206  * space getting filled. The prealloc space is then later used for the
207  * subsequent request.
208  */
209 
210 /*
211  * mballoc operates on the following data:
212  *  - on-disk bitmap
213  *  - in-core buddy (actually includes buddy and bitmap)
214  *  - preallocation descriptors (PAs)
215  *
216  * there are two types of preallocations:
217  *  - inode
218  *    assiged to specific inode and can be used for this inode only.
219  *    it describes part of inode's space preallocated to specific
220  *    physical blocks. any block from that preallocated can be used
221  *    independent. the descriptor just tracks number of blocks left
222  *    unused. so, before taking some block from descriptor, one must
223  *    make sure corresponded logical block isn't allocated yet. this
224  *    also means that freeing any block within descriptor's range
225  *    must discard all preallocated blocks.
226  *  - locality group
227  *    assigned to specific locality group which does not translate to
228  *    permanent set of inodes: inode can join and leave group. space
229  *    from this type of preallocation can be used for any inode. thus
230  *    it's consumed from the beginning to the end.
231  *
232  * relation between them can be expressed as:
233  *    in-core buddy = on-disk bitmap + preallocation descriptors
234  *
235  * this mean blocks mballoc considers used are:
236  *  - allocated blocks (persistent)
237  *  - preallocated blocks (non-persistent)
238  *
239  * consistency in mballoc world means that at any time a block is either
240  * free or used in ALL structures. notice: "any time" should not be read
241  * literally -- time is discrete and delimited by locks.
242  *
243  *  to keep it simple, we don't use block numbers, instead we count number of
244  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
245  *
246  * all operations can be expressed as:
247  *  - init buddy:			buddy = on-disk + PAs
248  *  - new PA:				buddy += N; PA = N
249  *  - use inode PA:			on-disk += N; PA -= N
250  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
251  *  - use locality group PA		on-disk += N; PA -= N
252  *  - discard locality group PA		buddy -= PA; PA = 0
253  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
254  *        is used in real operation because we can't know actual used
255  *        bits from PA, only from on-disk bitmap
256  *
257  * if we follow this strict logic, then all operations above should be atomic.
258  * given some of them can block, we'd have to use something like semaphores
259  * killing performance on high-end SMP hardware. let's try to relax it using
260  * the following knowledge:
261  *  1) if buddy is referenced, it's already initialized
262  *  2) while block is used in buddy and the buddy is referenced,
263  *     nobody can re-allocate that block
264  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
265  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
266  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
267  *     block
268  *
269  * so, now we're building a concurrency table:
270  *  - init buddy vs.
271  *    - new PA
272  *      blocks for PA are allocated in the buddy, buddy must be referenced
273  *      until PA is linked to allocation group to avoid concurrent buddy init
274  *    - use inode PA
275  *      we need to make sure that either on-disk bitmap or PA has uptodate data
276  *      given (3) we care that PA-=N operation doesn't interfere with init
277  *    - discard inode PA
278  *      the simplest way would be to have buddy initialized by the discard
279  *    - use locality group PA
280  *      again PA-=N must be serialized with init
281  *    - discard locality group PA
282  *      the simplest way would be to have buddy initialized by the discard
283  *  - new PA vs.
284  *    - use inode PA
285  *      i_data_sem serializes them
286  *    - discard inode PA
287  *      discard process must wait until PA isn't used by another process
288  *    - use locality group PA
289  *      some mutex should serialize them
290  *    - discard locality group PA
291  *      discard process must wait until PA isn't used by another process
292  *  - use inode PA
293  *    - use inode PA
294  *      i_data_sem or another mutex should serializes them
295  *    - discard inode PA
296  *      discard process must wait until PA isn't used by another process
297  *    - use locality group PA
298  *      nothing wrong here -- they're different PAs covering different blocks
299  *    - discard locality group PA
300  *      discard process must wait until PA isn't used by another process
301  *
302  * now we're ready to make few consequences:
303  *  - PA is referenced and while it is no discard is possible
304  *  - PA is referenced until block isn't marked in on-disk bitmap
305  *  - PA changes only after on-disk bitmap
306  *  - discard must not compete with init. either init is done before
307  *    any discard or they're serialized somehow
308  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
309  *
310  * a special case when we've used PA to emptiness. no need to modify buddy
311  * in this case, but we should care about concurrent init
312  *
313  */
314 
315  /*
316  * Logic in few words:
317  *
318  *  - allocation:
319  *    load group
320  *    find blocks
321  *    mark bits in on-disk bitmap
322  *    release group
323  *
324  *  - use preallocation:
325  *    find proper PA (per-inode or group)
326  *    load group
327  *    mark bits in on-disk bitmap
328  *    release group
329  *    release PA
330  *
331  *  - free:
332  *    load group
333  *    mark bits in on-disk bitmap
334  *    release group
335  *
336  *  - discard preallocations in group:
337  *    mark PAs deleted
338  *    move them onto local list
339  *    load on-disk bitmap
340  *    load group
341  *    remove PA from object (inode or locality group)
342  *    mark free blocks in-core
343  *
344  *  - discard inode's preallocations:
345  */
346 
347 /*
348  * Locking rules
349  *
350  * Locks:
351  *  - bitlock on a group	(group)
352  *  - object (inode/locality)	(object)
353  *  - per-pa lock		(pa)
354  *  - cr0 lists lock		(cr0)
355  *  - cr1 tree lock		(cr1)
356  *
357  * Paths:
358  *  - new pa
359  *    object
360  *    group
361  *
362  *  - find and use pa:
363  *    pa
364  *
365  *  - release consumed pa:
366  *    pa
367  *    group
368  *    object
369  *
370  *  - generate in-core bitmap:
371  *    group
372  *        pa
373  *
374  *  - discard all for given object (inode, locality group):
375  *    object
376  *        pa
377  *    group
378  *
379  *  - discard all for given group:
380  *    group
381  *        pa
382  *    group
383  *        object
384  *
385  *  - allocation path (ext4_mb_regular_allocator)
386  *    group
387  *    cr0/cr1
388  */
389 static struct kmem_cache *ext4_pspace_cachep;
390 static struct kmem_cache *ext4_ac_cachep;
391 static struct kmem_cache *ext4_free_data_cachep;
392 
393 /* We create slab caches for groupinfo data structures based on the
394  * superblock block size.  There will be one per mounted filesystem for
395  * each unique s_blocksize_bits */
396 #define NR_GRPINFO_CACHES 8
397 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
398 
399 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
400 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
401 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
402 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
403 };
404 
405 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
406 					ext4_group_t group);
407 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
408 						ext4_group_t group);
409 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
410 
411 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
412 			       ext4_group_t group, int cr);
413 
414 static int ext4_try_to_trim_range(struct super_block *sb,
415 		struct ext4_buddy *e4b, ext4_grpblk_t start,
416 		ext4_grpblk_t max, ext4_grpblk_t minblocks);
417 
418 /*
419  * The algorithm using this percpu seq counter goes below:
420  * 1. We sample the percpu discard_pa_seq counter before trying for block
421  *    allocation in ext4_mb_new_blocks().
422  * 2. We increment this percpu discard_pa_seq counter when we either allocate
423  *    or free these blocks i.e. while marking those blocks as used/free in
424  *    mb_mark_used()/mb_free_blocks().
425  * 3. We also increment this percpu seq counter when we successfully identify
426  *    that the bb_prealloc_list is not empty and hence proceed for discarding
427  *    of those PAs inside ext4_mb_discard_group_preallocations().
428  *
429  * Now to make sure that the regular fast path of block allocation is not
430  * affected, as a small optimization we only sample the percpu seq counter
431  * on that cpu. Only when the block allocation fails and when freed blocks
432  * found were 0, that is when we sample percpu seq counter for all cpus using
433  * below function ext4_get_discard_pa_seq_sum(). This happens after making
434  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
435  */
436 static DEFINE_PER_CPU(u64, discard_pa_seq);
437 static inline u64 ext4_get_discard_pa_seq_sum(void)
438 {
439 	int __cpu;
440 	u64 __seq = 0;
441 
442 	for_each_possible_cpu(__cpu)
443 		__seq += per_cpu(discard_pa_seq, __cpu);
444 	return __seq;
445 }
446 
447 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
448 {
449 #if BITS_PER_LONG == 64
450 	*bit += ((unsigned long) addr & 7UL) << 3;
451 	addr = (void *) ((unsigned long) addr & ~7UL);
452 #elif BITS_PER_LONG == 32
453 	*bit += ((unsigned long) addr & 3UL) << 3;
454 	addr = (void *) ((unsigned long) addr & ~3UL);
455 #else
456 #error "how many bits you are?!"
457 #endif
458 	return addr;
459 }
460 
461 static inline int mb_test_bit(int bit, void *addr)
462 {
463 	/*
464 	 * ext4_test_bit on architecture like powerpc
465 	 * needs unsigned long aligned address
466 	 */
467 	addr = mb_correct_addr_and_bit(&bit, addr);
468 	return ext4_test_bit(bit, addr);
469 }
470 
471 static inline void mb_set_bit(int bit, void *addr)
472 {
473 	addr = mb_correct_addr_and_bit(&bit, addr);
474 	ext4_set_bit(bit, addr);
475 }
476 
477 static inline void mb_clear_bit(int bit, void *addr)
478 {
479 	addr = mb_correct_addr_and_bit(&bit, addr);
480 	ext4_clear_bit(bit, addr);
481 }
482 
483 static inline int mb_test_and_clear_bit(int bit, void *addr)
484 {
485 	addr = mb_correct_addr_and_bit(&bit, addr);
486 	return ext4_test_and_clear_bit(bit, addr);
487 }
488 
489 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
490 {
491 	int fix = 0, ret, tmpmax;
492 	addr = mb_correct_addr_and_bit(&fix, addr);
493 	tmpmax = max + fix;
494 	start += fix;
495 
496 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
497 	if (ret > max)
498 		return max;
499 	return ret;
500 }
501 
502 static inline int mb_find_next_bit(void *addr, int max, int start)
503 {
504 	int fix = 0, ret, tmpmax;
505 	addr = mb_correct_addr_and_bit(&fix, addr);
506 	tmpmax = max + fix;
507 	start += fix;
508 
509 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
510 	if (ret > max)
511 		return max;
512 	return ret;
513 }
514 
515 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
516 {
517 	char *bb;
518 
519 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
520 	BUG_ON(max == NULL);
521 
522 	if (order > e4b->bd_blkbits + 1) {
523 		*max = 0;
524 		return NULL;
525 	}
526 
527 	/* at order 0 we see each particular block */
528 	if (order == 0) {
529 		*max = 1 << (e4b->bd_blkbits + 3);
530 		return e4b->bd_bitmap;
531 	}
532 
533 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
534 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
535 
536 	return bb;
537 }
538 
539 #ifdef DOUBLE_CHECK
540 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
541 			   int first, int count)
542 {
543 	int i;
544 	struct super_block *sb = e4b->bd_sb;
545 
546 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
547 		return;
548 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
549 	for (i = 0; i < count; i++) {
550 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
551 			ext4_fsblk_t blocknr;
552 
553 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
554 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
555 			ext4_grp_locked_error(sb, e4b->bd_group,
556 					      inode ? inode->i_ino : 0,
557 					      blocknr,
558 					      "freeing block already freed "
559 					      "(bit %u)",
560 					      first + i);
561 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
562 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
563 		}
564 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
565 	}
566 }
567 
568 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
569 {
570 	int i;
571 
572 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
573 		return;
574 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
575 	for (i = 0; i < count; i++) {
576 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
577 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
578 	}
579 }
580 
581 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
582 {
583 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
584 		return;
585 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
586 		unsigned char *b1, *b2;
587 		int i;
588 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
589 		b2 = (unsigned char *) bitmap;
590 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
591 			if (b1[i] != b2[i]) {
592 				ext4_msg(e4b->bd_sb, KERN_ERR,
593 					 "corruption in group %u "
594 					 "at byte %u(%u): %x in copy != %x "
595 					 "on disk/prealloc",
596 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
597 				BUG();
598 			}
599 		}
600 	}
601 }
602 
603 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
604 			struct ext4_group_info *grp, ext4_group_t group)
605 {
606 	struct buffer_head *bh;
607 
608 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
609 	if (!grp->bb_bitmap)
610 		return;
611 
612 	bh = ext4_read_block_bitmap(sb, group);
613 	if (IS_ERR_OR_NULL(bh)) {
614 		kfree(grp->bb_bitmap);
615 		grp->bb_bitmap = NULL;
616 		return;
617 	}
618 
619 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
620 	put_bh(bh);
621 }
622 
623 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
624 {
625 	kfree(grp->bb_bitmap);
626 }
627 
628 #else
629 static inline void mb_free_blocks_double(struct inode *inode,
630 				struct ext4_buddy *e4b, int first, int count)
631 {
632 	return;
633 }
634 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
635 						int first, int count)
636 {
637 	return;
638 }
639 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
640 {
641 	return;
642 }
643 
644 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
645 			struct ext4_group_info *grp, ext4_group_t group)
646 {
647 	return;
648 }
649 
650 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
651 {
652 	return;
653 }
654 #endif
655 
656 #ifdef AGGRESSIVE_CHECK
657 
658 #define MB_CHECK_ASSERT(assert)						\
659 do {									\
660 	if (!(assert)) {						\
661 		printk(KERN_EMERG					\
662 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
663 			function, file, line, # assert);		\
664 		BUG();							\
665 	}								\
666 } while (0)
667 
668 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
669 				const char *function, int line)
670 {
671 	struct super_block *sb = e4b->bd_sb;
672 	int order = e4b->bd_blkbits + 1;
673 	int max;
674 	int max2;
675 	int i;
676 	int j;
677 	int k;
678 	int count;
679 	struct ext4_group_info *grp;
680 	int fragments = 0;
681 	int fstart;
682 	struct list_head *cur;
683 	void *buddy;
684 	void *buddy2;
685 
686 	if (e4b->bd_info->bb_check_counter++ % 10)
687 		return 0;
688 
689 	while (order > 1) {
690 		buddy = mb_find_buddy(e4b, order, &max);
691 		MB_CHECK_ASSERT(buddy);
692 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
693 		MB_CHECK_ASSERT(buddy2);
694 		MB_CHECK_ASSERT(buddy != buddy2);
695 		MB_CHECK_ASSERT(max * 2 == max2);
696 
697 		count = 0;
698 		for (i = 0; i < max; i++) {
699 
700 			if (mb_test_bit(i, buddy)) {
701 				/* only single bit in buddy2 may be 0 */
702 				if (!mb_test_bit(i << 1, buddy2)) {
703 					MB_CHECK_ASSERT(
704 						mb_test_bit((i<<1)+1, buddy2));
705 				}
706 				continue;
707 			}
708 
709 			/* both bits in buddy2 must be 1 */
710 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
711 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
712 
713 			for (j = 0; j < (1 << order); j++) {
714 				k = (i * (1 << order)) + j;
715 				MB_CHECK_ASSERT(
716 					!mb_test_bit(k, e4b->bd_bitmap));
717 			}
718 			count++;
719 		}
720 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
721 		order--;
722 	}
723 
724 	fstart = -1;
725 	buddy = mb_find_buddy(e4b, 0, &max);
726 	for (i = 0; i < max; i++) {
727 		if (!mb_test_bit(i, buddy)) {
728 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
729 			if (fstart == -1) {
730 				fragments++;
731 				fstart = i;
732 			}
733 			continue;
734 		}
735 		fstart = -1;
736 		/* check used bits only */
737 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
738 			buddy2 = mb_find_buddy(e4b, j, &max2);
739 			k = i >> j;
740 			MB_CHECK_ASSERT(k < max2);
741 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
742 		}
743 	}
744 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
745 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
746 
747 	grp = ext4_get_group_info(sb, e4b->bd_group);
748 	list_for_each(cur, &grp->bb_prealloc_list) {
749 		ext4_group_t groupnr;
750 		struct ext4_prealloc_space *pa;
751 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
752 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
753 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
754 		for (i = 0; i < pa->pa_len; i++)
755 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
756 	}
757 	return 0;
758 }
759 #undef MB_CHECK_ASSERT
760 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
761 					__FILE__, __func__, __LINE__)
762 #else
763 #define mb_check_buddy(e4b)
764 #endif
765 
766 /*
767  * Divide blocks started from @first with length @len into
768  * smaller chunks with power of 2 blocks.
769  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
770  * then increase bb_counters[] for corresponded chunk size.
771  */
772 static void ext4_mb_mark_free_simple(struct super_block *sb,
773 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
774 					struct ext4_group_info *grp)
775 {
776 	struct ext4_sb_info *sbi = EXT4_SB(sb);
777 	ext4_grpblk_t min;
778 	ext4_grpblk_t max;
779 	ext4_grpblk_t chunk;
780 	unsigned int border;
781 
782 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
783 
784 	border = 2 << sb->s_blocksize_bits;
785 
786 	while (len > 0) {
787 		/* find how many blocks can be covered since this position */
788 		max = ffs(first | border) - 1;
789 
790 		/* find how many blocks of power 2 we need to mark */
791 		min = fls(len) - 1;
792 
793 		if (max < min)
794 			min = max;
795 		chunk = 1 << min;
796 
797 		/* mark multiblock chunks only */
798 		grp->bb_counters[min]++;
799 		if (min > 0)
800 			mb_clear_bit(first >> min,
801 				     buddy + sbi->s_mb_offsets[min]);
802 
803 		len -= chunk;
804 		first += chunk;
805 	}
806 }
807 
808 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
809 {
810 	int order;
811 
812 	/*
813 	 * We don't bother with a special lists groups with only 1 block free
814 	 * extents and for completely empty groups.
815 	 */
816 	order = fls(len) - 2;
817 	if (order < 0)
818 		return 0;
819 	if (order == MB_NUM_ORDERS(sb))
820 		order--;
821 	return order;
822 }
823 
824 /* Move group to appropriate avg_fragment_size list */
825 static void
826 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
827 {
828 	struct ext4_sb_info *sbi = EXT4_SB(sb);
829 	int new_order;
830 
831 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
832 		return;
833 
834 	new_order = mb_avg_fragment_size_order(sb,
835 					grp->bb_free / grp->bb_fragments);
836 	if (new_order == grp->bb_avg_fragment_size_order)
837 		return;
838 
839 	if (grp->bb_avg_fragment_size_order != -1) {
840 		write_lock(&sbi->s_mb_avg_fragment_size_locks[
841 					grp->bb_avg_fragment_size_order]);
842 		list_del(&grp->bb_avg_fragment_size_node);
843 		write_unlock(&sbi->s_mb_avg_fragment_size_locks[
844 					grp->bb_avg_fragment_size_order]);
845 	}
846 	grp->bb_avg_fragment_size_order = new_order;
847 	write_lock(&sbi->s_mb_avg_fragment_size_locks[
848 					grp->bb_avg_fragment_size_order]);
849 	list_add_tail(&grp->bb_avg_fragment_size_node,
850 		&sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
851 	write_unlock(&sbi->s_mb_avg_fragment_size_locks[
852 					grp->bb_avg_fragment_size_order]);
853 }
854 
855 /*
856  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
857  * cr level needs an update.
858  */
859 static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac,
860 			int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
861 {
862 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
863 	struct ext4_group_info *iter, *grp;
864 	int i;
865 
866 	if (ac->ac_status == AC_STATUS_FOUND)
867 		return;
868 
869 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR0_OPTIMIZED))
870 		atomic_inc(&sbi->s_bal_cr0_bad_suggestions);
871 
872 	grp = NULL;
873 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
874 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
875 			continue;
876 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
877 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
878 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
879 			continue;
880 		}
881 		grp = NULL;
882 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
883 				    bb_largest_free_order_node) {
884 			if (sbi->s_mb_stats)
885 				atomic64_inc(&sbi->s_bal_cX_groups_considered[0]);
886 			if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) {
887 				grp = iter;
888 				break;
889 			}
890 		}
891 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
892 		if (grp)
893 			break;
894 	}
895 
896 	if (!grp) {
897 		/* Increment cr and search again */
898 		*new_cr = 1;
899 	} else {
900 		*group = grp->bb_group;
901 		ac->ac_flags |= EXT4_MB_CR0_OPTIMIZED;
902 	}
903 }
904 
905 /*
906  * Choose next group by traversing average fragment size list of suitable
907  * order. Updates *new_cr if cr level needs an update.
908  */
909 static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac,
910 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
911 {
912 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
913 	struct ext4_group_info *grp = NULL, *iter;
914 	int i;
915 
916 	if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) {
917 		if (sbi->s_mb_stats)
918 			atomic_inc(&sbi->s_bal_cr1_bad_suggestions);
919 	}
920 
921 	for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
922 	     i < MB_NUM_ORDERS(ac->ac_sb); i++) {
923 		if (list_empty(&sbi->s_mb_avg_fragment_size[i]))
924 			continue;
925 		read_lock(&sbi->s_mb_avg_fragment_size_locks[i]);
926 		if (list_empty(&sbi->s_mb_avg_fragment_size[i])) {
927 			read_unlock(&sbi->s_mb_avg_fragment_size_locks[i]);
928 			continue;
929 		}
930 		list_for_each_entry(iter, &sbi->s_mb_avg_fragment_size[i],
931 				    bb_avg_fragment_size_node) {
932 			if (sbi->s_mb_stats)
933 				atomic64_inc(&sbi->s_bal_cX_groups_considered[1]);
934 			if (likely(ext4_mb_good_group(ac, iter->bb_group, 1))) {
935 				grp = iter;
936 				break;
937 			}
938 		}
939 		read_unlock(&sbi->s_mb_avg_fragment_size_locks[i]);
940 		if (grp)
941 			break;
942 	}
943 
944 	if (grp) {
945 		*group = grp->bb_group;
946 		ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED;
947 	} else {
948 		*new_cr = 2;
949 	}
950 }
951 
952 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
953 {
954 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
955 		return 0;
956 	if (ac->ac_criteria >= 2)
957 		return 0;
958 	if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
959 		return 0;
960 	return 1;
961 }
962 
963 /*
964  * Return next linear group for allocation. If linear traversal should not be
965  * performed, this function just returns the same group
966  */
967 static int
968 next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups)
969 {
970 	if (!should_optimize_scan(ac))
971 		goto inc_and_return;
972 
973 	if (ac->ac_groups_linear_remaining) {
974 		ac->ac_groups_linear_remaining--;
975 		goto inc_and_return;
976 	}
977 
978 	return group;
979 inc_and_return:
980 	/*
981 	 * Artificially restricted ngroups for non-extent
982 	 * files makes group > ngroups possible on first loop.
983 	 */
984 	return group + 1 >= ngroups ? 0 : group + 1;
985 }
986 
987 /*
988  * ext4_mb_choose_next_group: choose next group for allocation.
989  *
990  * @ac        Allocation Context
991  * @new_cr    This is an output parameter. If the there is no good group
992  *            available at current CR level, this field is updated to indicate
993  *            the new cr level that should be used.
994  * @group     This is an input / output parameter. As an input it indicates the
995  *            next group that the allocator intends to use for allocation. As
996  *            output, this field indicates the next group that should be used as
997  *            determined by the optimization functions.
998  * @ngroups   Total number of groups
999  */
1000 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1001 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1002 {
1003 	*new_cr = ac->ac_criteria;
1004 
1005 	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1006 		*group = next_linear_group(ac, *group, ngroups);
1007 		return;
1008 	}
1009 
1010 	if (*new_cr == 0) {
1011 		ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups);
1012 	} else if (*new_cr == 1) {
1013 		ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups);
1014 	} else {
1015 		/*
1016 		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1017 		 * bb_free. But until that happens, we should never come here.
1018 		 */
1019 		WARN_ON(1);
1020 	}
1021 }
1022 
1023 /*
1024  * Cache the order of the largest free extent we have available in this block
1025  * group.
1026  */
1027 static void
1028 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1029 {
1030 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1031 	int i;
1032 
1033 	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1034 		if (grp->bb_counters[i] > 0)
1035 			break;
1036 	/* No need to move between order lists? */
1037 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1038 	    i == grp->bb_largest_free_order) {
1039 		grp->bb_largest_free_order = i;
1040 		return;
1041 	}
1042 
1043 	if (grp->bb_largest_free_order >= 0) {
1044 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1045 					      grp->bb_largest_free_order]);
1046 		list_del_init(&grp->bb_largest_free_order_node);
1047 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1048 					      grp->bb_largest_free_order]);
1049 	}
1050 	grp->bb_largest_free_order = i;
1051 	if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1052 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1053 					      grp->bb_largest_free_order]);
1054 		list_add_tail(&grp->bb_largest_free_order_node,
1055 		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1056 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1057 					      grp->bb_largest_free_order]);
1058 	}
1059 }
1060 
1061 static noinline_for_stack
1062 void ext4_mb_generate_buddy(struct super_block *sb,
1063 				void *buddy, void *bitmap, ext4_group_t group)
1064 {
1065 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1066 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1067 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1068 	ext4_grpblk_t i = 0;
1069 	ext4_grpblk_t first;
1070 	ext4_grpblk_t len;
1071 	unsigned free = 0;
1072 	unsigned fragments = 0;
1073 	unsigned long long period = get_cycles();
1074 
1075 	/* initialize buddy from bitmap which is aggregation
1076 	 * of on-disk bitmap and preallocations */
1077 	i = mb_find_next_zero_bit(bitmap, max, 0);
1078 	grp->bb_first_free = i;
1079 	while (i < max) {
1080 		fragments++;
1081 		first = i;
1082 		i = mb_find_next_bit(bitmap, max, i);
1083 		len = i - first;
1084 		free += len;
1085 		if (len > 1)
1086 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1087 		else
1088 			grp->bb_counters[0]++;
1089 		if (i < max)
1090 			i = mb_find_next_zero_bit(bitmap, max, i);
1091 	}
1092 	grp->bb_fragments = fragments;
1093 
1094 	if (free != grp->bb_free) {
1095 		ext4_grp_locked_error(sb, group, 0, 0,
1096 				      "block bitmap and bg descriptor "
1097 				      "inconsistent: %u vs %u free clusters",
1098 				      free, grp->bb_free);
1099 		/*
1100 		 * If we intend to continue, we consider group descriptor
1101 		 * corrupt and update bb_free using bitmap value
1102 		 */
1103 		grp->bb_free = free;
1104 		ext4_mark_group_bitmap_corrupted(sb, group,
1105 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1106 	}
1107 	mb_set_largest_free_order(sb, grp);
1108 	mb_update_avg_fragment_size(sb, grp);
1109 
1110 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1111 
1112 	period = get_cycles() - period;
1113 	atomic_inc(&sbi->s_mb_buddies_generated);
1114 	atomic64_add(period, &sbi->s_mb_generation_time);
1115 }
1116 
1117 /* The buddy information is attached the buddy cache inode
1118  * for convenience. The information regarding each group
1119  * is loaded via ext4_mb_load_buddy. The information involve
1120  * block bitmap and buddy information. The information are
1121  * stored in the inode as
1122  *
1123  * {                        page                        }
1124  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1125  *
1126  *
1127  * one block each for bitmap and buddy information.
1128  * So for each group we take up 2 blocks. A page can
1129  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1130  * So it can have information regarding groups_per_page which
1131  * is blocks_per_page/2
1132  *
1133  * Locking note:  This routine takes the block group lock of all groups
1134  * for this page; do not hold this lock when calling this routine!
1135  */
1136 
1137 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1138 {
1139 	ext4_group_t ngroups;
1140 	int blocksize;
1141 	int blocks_per_page;
1142 	int groups_per_page;
1143 	int err = 0;
1144 	int i;
1145 	ext4_group_t first_group, group;
1146 	int first_block;
1147 	struct super_block *sb;
1148 	struct buffer_head *bhs;
1149 	struct buffer_head **bh = NULL;
1150 	struct inode *inode;
1151 	char *data;
1152 	char *bitmap;
1153 	struct ext4_group_info *grinfo;
1154 
1155 	inode = page->mapping->host;
1156 	sb = inode->i_sb;
1157 	ngroups = ext4_get_groups_count(sb);
1158 	blocksize = i_blocksize(inode);
1159 	blocks_per_page = PAGE_SIZE / blocksize;
1160 
1161 	mb_debug(sb, "init page %lu\n", page->index);
1162 
1163 	groups_per_page = blocks_per_page >> 1;
1164 	if (groups_per_page == 0)
1165 		groups_per_page = 1;
1166 
1167 	/* allocate buffer_heads to read bitmaps */
1168 	if (groups_per_page > 1) {
1169 		i = sizeof(struct buffer_head *) * groups_per_page;
1170 		bh = kzalloc(i, gfp);
1171 		if (bh == NULL) {
1172 			err = -ENOMEM;
1173 			goto out;
1174 		}
1175 	} else
1176 		bh = &bhs;
1177 
1178 	first_group = page->index * blocks_per_page / 2;
1179 
1180 	/* read all groups the page covers into the cache */
1181 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1182 		if (group >= ngroups)
1183 			break;
1184 
1185 		grinfo = ext4_get_group_info(sb, group);
1186 		/*
1187 		 * If page is uptodate then we came here after online resize
1188 		 * which added some new uninitialized group info structs, so
1189 		 * we must skip all initialized uptodate buddies on the page,
1190 		 * which may be currently in use by an allocating task.
1191 		 */
1192 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1193 			bh[i] = NULL;
1194 			continue;
1195 		}
1196 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1197 		if (IS_ERR(bh[i])) {
1198 			err = PTR_ERR(bh[i]);
1199 			bh[i] = NULL;
1200 			goto out;
1201 		}
1202 		mb_debug(sb, "read bitmap for group %u\n", group);
1203 	}
1204 
1205 	/* wait for I/O completion */
1206 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1207 		int err2;
1208 
1209 		if (!bh[i])
1210 			continue;
1211 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1212 		if (!err)
1213 			err = err2;
1214 	}
1215 
1216 	first_block = page->index * blocks_per_page;
1217 	for (i = 0; i < blocks_per_page; i++) {
1218 		group = (first_block + i) >> 1;
1219 		if (group >= ngroups)
1220 			break;
1221 
1222 		if (!bh[group - first_group])
1223 			/* skip initialized uptodate buddy */
1224 			continue;
1225 
1226 		if (!buffer_verified(bh[group - first_group]))
1227 			/* Skip faulty bitmaps */
1228 			continue;
1229 		err = 0;
1230 
1231 		/*
1232 		 * data carry information regarding this
1233 		 * particular group in the format specified
1234 		 * above
1235 		 *
1236 		 */
1237 		data = page_address(page) + (i * blocksize);
1238 		bitmap = bh[group - first_group]->b_data;
1239 
1240 		/*
1241 		 * We place the buddy block and bitmap block
1242 		 * close together
1243 		 */
1244 		if ((first_block + i) & 1) {
1245 			/* this is block of buddy */
1246 			BUG_ON(incore == NULL);
1247 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1248 				group, page->index, i * blocksize);
1249 			trace_ext4_mb_buddy_bitmap_load(sb, group);
1250 			grinfo = ext4_get_group_info(sb, group);
1251 			grinfo->bb_fragments = 0;
1252 			memset(grinfo->bb_counters, 0,
1253 			       sizeof(*grinfo->bb_counters) *
1254 			       (MB_NUM_ORDERS(sb)));
1255 			/*
1256 			 * incore got set to the group block bitmap below
1257 			 */
1258 			ext4_lock_group(sb, group);
1259 			/* init the buddy */
1260 			memset(data, 0xff, blocksize);
1261 			ext4_mb_generate_buddy(sb, data, incore, group);
1262 			ext4_unlock_group(sb, group);
1263 			incore = NULL;
1264 		} else {
1265 			/* this is block of bitmap */
1266 			BUG_ON(incore != NULL);
1267 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1268 				group, page->index, i * blocksize);
1269 			trace_ext4_mb_bitmap_load(sb, group);
1270 
1271 			/* see comments in ext4_mb_put_pa() */
1272 			ext4_lock_group(sb, group);
1273 			memcpy(data, bitmap, blocksize);
1274 
1275 			/* mark all preallocated blks used in in-core bitmap */
1276 			ext4_mb_generate_from_pa(sb, data, group);
1277 			ext4_mb_generate_from_freelist(sb, data, group);
1278 			ext4_unlock_group(sb, group);
1279 
1280 			/* set incore so that the buddy information can be
1281 			 * generated using this
1282 			 */
1283 			incore = data;
1284 		}
1285 	}
1286 	SetPageUptodate(page);
1287 
1288 out:
1289 	if (bh) {
1290 		for (i = 0; i < groups_per_page; i++)
1291 			brelse(bh[i]);
1292 		if (bh != &bhs)
1293 			kfree(bh);
1294 	}
1295 	return err;
1296 }
1297 
1298 /*
1299  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1300  * on the same buddy page doesn't happen whild holding the buddy page lock.
1301  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1302  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1303  */
1304 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1305 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1306 {
1307 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1308 	int block, pnum, poff;
1309 	int blocks_per_page;
1310 	struct page *page;
1311 
1312 	e4b->bd_buddy_page = NULL;
1313 	e4b->bd_bitmap_page = NULL;
1314 
1315 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1316 	/*
1317 	 * the buddy cache inode stores the block bitmap
1318 	 * and buddy information in consecutive blocks.
1319 	 * So for each group we need two blocks.
1320 	 */
1321 	block = group * 2;
1322 	pnum = block / blocks_per_page;
1323 	poff = block % blocks_per_page;
1324 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1325 	if (!page)
1326 		return -ENOMEM;
1327 	BUG_ON(page->mapping != inode->i_mapping);
1328 	e4b->bd_bitmap_page = page;
1329 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1330 
1331 	if (blocks_per_page >= 2) {
1332 		/* buddy and bitmap are on the same page */
1333 		return 0;
1334 	}
1335 
1336 	block++;
1337 	pnum = block / blocks_per_page;
1338 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1339 	if (!page)
1340 		return -ENOMEM;
1341 	BUG_ON(page->mapping != inode->i_mapping);
1342 	e4b->bd_buddy_page = page;
1343 	return 0;
1344 }
1345 
1346 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1347 {
1348 	if (e4b->bd_bitmap_page) {
1349 		unlock_page(e4b->bd_bitmap_page);
1350 		put_page(e4b->bd_bitmap_page);
1351 	}
1352 	if (e4b->bd_buddy_page) {
1353 		unlock_page(e4b->bd_buddy_page);
1354 		put_page(e4b->bd_buddy_page);
1355 	}
1356 }
1357 
1358 /*
1359  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1360  * block group lock of all groups for this page; do not hold the BG lock when
1361  * calling this routine!
1362  */
1363 static noinline_for_stack
1364 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1365 {
1366 
1367 	struct ext4_group_info *this_grp;
1368 	struct ext4_buddy e4b;
1369 	struct page *page;
1370 	int ret = 0;
1371 
1372 	might_sleep();
1373 	mb_debug(sb, "init group %u\n", group);
1374 	this_grp = ext4_get_group_info(sb, group);
1375 	/*
1376 	 * This ensures that we don't reinit the buddy cache
1377 	 * page which map to the group from which we are already
1378 	 * allocating. If we are looking at the buddy cache we would
1379 	 * have taken a reference using ext4_mb_load_buddy and that
1380 	 * would have pinned buddy page to page cache.
1381 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1382 	 * page accessed.
1383 	 */
1384 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1385 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1386 		/*
1387 		 * somebody initialized the group
1388 		 * return without doing anything
1389 		 */
1390 		goto err;
1391 	}
1392 
1393 	page = e4b.bd_bitmap_page;
1394 	ret = ext4_mb_init_cache(page, NULL, gfp);
1395 	if (ret)
1396 		goto err;
1397 	if (!PageUptodate(page)) {
1398 		ret = -EIO;
1399 		goto err;
1400 	}
1401 
1402 	if (e4b.bd_buddy_page == NULL) {
1403 		/*
1404 		 * If both the bitmap and buddy are in
1405 		 * the same page we don't need to force
1406 		 * init the buddy
1407 		 */
1408 		ret = 0;
1409 		goto err;
1410 	}
1411 	/* init buddy cache */
1412 	page = e4b.bd_buddy_page;
1413 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1414 	if (ret)
1415 		goto err;
1416 	if (!PageUptodate(page)) {
1417 		ret = -EIO;
1418 		goto err;
1419 	}
1420 err:
1421 	ext4_mb_put_buddy_page_lock(&e4b);
1422 	return ret;
1423 }
1424 
1425 /*
1426  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1427  * block group lock of all groups for this page; do not hold the BG lock when
1428  * calling this routine!
1429  */
1430 static noinline_for_stack int
1431 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1432 		       struct ext4_buddy *e4b, gfp_t gfp)
1433 {
1434 	int blocks_per_page;
1435 	int block;
1436 	int pnum;
1437 	int poff;
1438 	struct page *page;
1439 	int ret;
1440 	struct ext4_group_info *grp;
1441 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1442 	struct inode *inode = sbi->s_buddy_cache;
1443 
1444 	might_sleep();
1445 	mb_debug(sb, "load group %u\n", group);
1446 
1447 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1448 	grp = ext4_get_group_info(sb, group);
1449 
1450 	e4b->bd_blkbits = sb->s_blocksize_bits;
1451 	e4b->bd_info = grp;
1452 	e4b->bd_sb = sb;
1453 	e4b->bd_group = group;
1454 	e4b->bd_buddy_page = NULL;
1455 	e4b->bd_bitmap_page = NULL;
1456 
1457 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1458 		/*
1459 		 * we need full data about the group
1460 		 * to make a good selection
1461 		 */
1462 		ret = ext4_mb_init_group(sb, group, gfp);
1463 		if (ret)
1464 			return ret;
1465 	}
1466 
1467 	/*
1468 	 * the buddy cache inode stores the block bitmap
1469 	 * and buddy information in consecutive blocks.
1470 	 * So for each group we need two blocks.
1471 	 */
1472 	block = group * 2;
1473 	pnum = block / blocks_per_page;
1474 	poff = block % blocks_per_page;
1475 
1476 	/* we could use find_or_create_page(), but it locks page
1477 	 * what we'd like to avoid in fast path ... */
1478 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1479 	if (page == NULL || !PageUptodate(page)) {
1480 		if (page)
1481 			/*
1482 			 * drop the page reference and try
1483 			 * to get the page with lock. If we
1484 			 * are not uptodate that implies
1485 			 * somebody just created the page but
1486 			 * is yet to initialize the same. So
1487 			 * wait for it to initialize.
1488 			 */
1489 			put_page(page);
1490 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1491 		if (page) {
1492 			BUG_ON(page->mapping != inode->i_mapping);
1493 			if (!PageUptodate(page)) {
1494 				ret = ext4_mb_init_cache(page, NULL, gfp);
1495 				if (ret) {
1496 					unlock_page(page);
1497 					goto err;
1498 				}
1499 				mb_cmp_bitmaps(e4b, page_address(page) +
1500 					       (poff * sb->s_blocksize));
1501 			}
1502 			unlock_page(page);
1503 		}
1504 	}
1505 	if (page == NULL) {
1506 		ret = -ENOMEM;
1507 		goto err;
1508 	}
1509 	if (!PageUptodate(page)) {
1510 		ret = -EIO;
1511 		goto err;
1512 	}
1513 
1514 	/* Pages marked accessed already */
1515 	e4b->bd_bitmap_page = page;
1516 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1517 
1518 	block++;
1519 	pnum = block / blocks_per_page;
1520 	poff = block % blocks_per_page;
1521 
1522 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1523 	if (page == NULL || !PageUptodate(page)) {
1524 		if (page)
1525 			put_page(page);
1526 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1527 		if (page) {
1528 			BUG_ON(page->mapping != inode->i_mapping);
1529 			if (!PageUptodate(page)) {
1530 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1531 							 gfp);
1532 				if (ret) {
1533 					unlock_page(page);
1534 					goto err;
1535 				}
1536 			}
1537 			unlock_page(page);
1538 		}
1539 	}
1540 	if (page == NULL) {
1541 		ret = -ENOMEM;
1542 		goto err;
1543 	}
1544 	if (!PageUptodate(page)) {
1545 		ret = -EIO;
1546 		goto err;
1547 	}
1548 
1549 	/* Pages marked accessed already */
1550 	e4b->bd_buddy_page = page;
1551 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1552 
1553 	return 0;
1554 
1555 err:
1556 	if (page)
1557 		put_page(page);
1558 	if (e4b->bd_bitmap_page)
1559 		put_page(e4b->bd_bitmap_page);
1560 	if (e4b->bd_buddy_page)
1561 		put_page(e4b->bd_buddy_page);
1562 	e4b->bd_buddy = NULL;
1563 	e4b->bd_bitmap = NULL;
1564 	return ret;
1565 }
1566 
1567 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1568 			      struct ext4_buddy *e4b)
1569 {
1570 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1571 }
1572 
1573 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1574 {
1575 	if (e4b->bd_bitmap_page)
1576 		put_page(e4b->bd_bitmap_page);
1577 	if (e4b->bd_buddy_page)
1578 		put_page(e4b->bd_buddy_page);
1579 }
1580 
1581 
1582 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1583 {
1584 	int order = 1, max;
1585 	void *bb;
1586 
1587 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1588 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1589 
1590 	while (order <= e4b->bd_blkbits + 1) {
1591 		bb = mb_find_buddy(e4b, order, &max);
1592 		if (!mb_test_bit(block >> order, bb)) {
1593 			/* this block is part of buddy of order 'order' */
1594 			return order;
1595 		}
1596 		order++;
1597 	}
1598 	return 0;
1599 }
1600 
1601 static void mb_clear_bits(void *bm, int cur, int len)
1602 {
1603 	__u32 *addr;
1604 
1605 	len = cur + len;
1606 	while (cur < len) {
1607 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1608 			/* fast path: clear whole word at once */
1609 			addr = bm + (cur >> 3);
1610 			*addr = 0;
1611 			cur += 32;
1612 			continue;
1613 		}
1614 		mb_clear_bit(cur, bm);
1615 		cur++;
1616 	}
1617 }
1618 
1619 /* clear bits in given range
1620  * will return first found zero bit if any, -1 otherwise
1621  */
1622 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1623 {
1624 	__u32 *addr;
1625 	int zero_bit = -1;
1626 
1627 	len = cur + len;
1628 	while (cur < len) {
1629 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1630 			/* fast path: clear whole word at once */
1631 			addr = bm + (cur >> 3);
1632 			if (*addr != (__u32)(-1) && zero_bit == -1)
1633 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1634 			*addr = 0;
1635 			cur += 32;
1636 			continue;
1637 		}
1638 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1639 			zero_bit = cur;
1640 		cur++;
1641 	}
1642 
1643 	return zero_bit;
1644 }
1645 
1646 void mb_set_bits(void *bm, int cur, int len)
1647 {
1648 	__u32 *addr;
1649 
1650 	len = cur + len;
1651 	while (cur < len) {
1652 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1653 			/* fast path: set whole word at once */
1654 			addr = bm + (cur >> 3);
1655 			*addr = 0xffffffff;
1656 			cur += 32;
1657 			continue;
1658 		}
1659 		mb_set_bit(cur, bm);
1660 		cur++;
1661 	}
1662 }
1663 
1664 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1665 {
1666 	if (mb_test_bit(*bit + side, bitmap)) {
1667 		mb_clear_bit(*bit, bitmap);
1668 		(*bit) -= side;
1669 		return 1;
1670 	}
1671 	else {
1672 		(*bit) += side;
1673 		mb_set_bit(*bit, bitmap);
1674 		return -1;
1675 	}
1676 }
1677 
1678 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1679 {
1680 	int max;
1681 	int order = 1;
1682 	void *buddy = mb_find_buddy(e4b, order, &max);
1683 
1684 	while (buddy) {
1685 		void *buddy2;
1686 
1687 		/* Bits in range [first; last] are known to be set since
1688 		 * corresponding blocks were allocated. Bits in range
1689 		 * (first; last) will stay set because they form buddies on
1690 		 * upper layer. We just deal with borders if they don't
1691 		 * align with upper layer and then go up.
1692 		 * Releasing entire group is all about clearing
1693 		 * single bit of highest order buddy.
1694 		 */
1695 
1696 		/* Example:
1697 		 * ---------------------------------
1698 		 * |   1   |   1   |   1   |   1   |
1699 		 * ---------------------------------
1700 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1701 		 * ---------------------------------
1702 		 *   0   1   2   3   4   5   6   7
1703 		 *      \_____________________/
1704 		 *
1705 		 * Neither [1] nor [6] is aligned to above layer.
1706 		 * Left neighbour [0] is free, so mark it busy,
1707 		 * decrease bb_counters and extend range to
1708 		 * [0; 6]
1709 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1710 		 * mark [6] free, increase bb_counters and shrink range to
1711 		 * [0; 5].
1712 		 * Then shift range to [0; 2], go up and do the same.
1713 		 */
1714 
1715 
1716 		if (first & 1)
1717 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1718 		if (!(last & 1))
1719 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1720 		if (first > last)
1721 			break;
1722 		order++;
1723 
1724 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1725 			mb_clear_bits(buddy, first, last - first + 1);
1726 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1727 			break;
1728 		}
1729 		first >>= 1;
1730 		last >>= 1;
1731 		buddy = buddy2;
1732 	}
1733 }
1734 
1735 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1736 			   int first, int count)
1737 {
1738 	int left_is_free = 0;
1739 	int right_is_free = 0;
1740 	int block;
1741 	int last = first + count - 1;
1742 	struct super_block *sb = e4b->bd_sb;
1743 
1744 	if (WARN_ON(count == 0))
1745 		return;
1746 	BUG_ON(last >= (sb->s_blocksize << 3));
1747 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1748 	/* Don't bother if the block group is corrupt. */
1749 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1750 		return;
1751 
1752 	mb_check_buddy(e4b);
1753 	mb_free_blocks_double(inode, e4b, first, count);
1754 
1755 	this_cpu_inc(discard_pa_seq);
1756 	e4b->bd_info->bb_free += count;
1757 	if (first < e4b->bd_info->bb_first_free)
1758 		e4b->bd_info->bb_first_free = first;
1759 
1760 	/* access memory sequentially: check left neighbour,
1761 	 * clear range and then check right neighbour
1762 	 */
1763 	if (first != 0)
1764 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1765 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1766 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1767 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1768 
1769 	if (unlikely(block != -1)) {
1770 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1771 		ext4_fsblk_t blocknr;
1772 
1773 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1774 		blocknr += EXT4_C2B(sbi, block);
1775 		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1776 			ext4_grp_locked_error(sb, e4b->bd_group,
1777 					      inode ? inode->i_ino : 0,
1778 					      blocknr,
1779 					      "freeing already freed block (bit %u); block bitmap corrupt.",
1780 					      block);
1781 			ext4_mark_group_bitmap_corrupted(
1782 				sb, e4b->bd_group,
1783 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1784 		}
1785 		goto done;
1786 	}
1787 
1788 	/* let's maintain fragments counter */
1789 	if (left_is_free && right_is_free)
1790 		e4b->bd_info->bb_fragments--;
1791 	else if (!left_is_free && !right_is_free)
1792 		e4b->bd_info->bb_fragments++;
1793 
1794 	/* buddy[0] == bd_bitmap is a special case, so handle
1795 	 * it right away and let mb_buddy_mark_free stay free of
1796 	 * zero order checks.
1797 	 * Check if neighbours are to be coaleasced,
1798 	 * adjust bitmap bb_counters and borders appropriately.
1799 	 */
1800 	if (first & 1) {
1801 		first += !left_is_free;
1802 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1803 	}
1804 	if (!(last & 1)) {
1805 		last -= !right_is_free;
1806 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1807 	}
1808 
1809 	if (first <= last)
1810 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1811 
1812 done:
1813 	mb_set_largest_free_order(sb, e4b->bd_info);
1814 	mb_update_avg_fragment_size(sb, e4b->bd_info);
1815 	mb_check_buddy(e4b);
1816 }
1817 
1818 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1819 				int needed, struct ext4_free_extent *ex)
1820 {
1821 	int next = block;
1822 	int max, order;
1823 	void *buddy;
1824 
1825 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1826 	BUG_ON(ex == NULL);
1827 
1828 	buddy = mb_find_buddy(e4b, 0, &max);
1829 	BUG_ON(buddy == NULL);
1830 	BUG_ON(block >= max);
1831 	if (mb_test_bit(block, buddy)) {
1832 		ex->fe_len = 0;
1833 		ex->fe_start = 0;
1834 		ex->fe_group = 0;
1835 		return 0;
1836 	}
1837 
1838 	/* find actual order */
1839 	order = mb_find_order_for_block(e4b, block);
1840 	block = block >> order;
1841 
1842 	ex->fe_len = 1 << order;
1843 	ex->fe_start = block << order;
1844 	ex->fe_group = e4b->bd_group;
1845 
1846 	/* calc difference from given start */
1847 	next = next - ex->fe_start;
1848 	ex->fe_len -= next;
1849 	ex->fe_start += next;
1850 
1851 	while (needed > ex->fe_len &&
1852 	       mb_find_buddy(e4b, order, &max)) {
1853 
1854 		if (block + 1 >= max)
1855 			break;
1856 
1857 		next = (block + 1) * (1 << order);
1858 		if (mb_test_bit(next, e4b->bd_bitmap))
1859 			break;
1860 
1861 		order = mb_find_order_for_block(e4b, next);
1862 
1863 		block = next >> order;
1864 		ex->fe_len += 1 << order;
1865 	}
1866 
1867 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1868 		/* Should never happen! (but apparently sometimes does?!?) */
1869 		WARN_ON(1);
1870 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
1871 			"corruption or bug in mb_find_extent "
1872 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1873 			block, order, needed, ex->fe_group, ex->fe_start,
1874 			ex->fe_len, ex->fe_logical);
1875 		ex->fe_len = 0;
1876 		ex->fe_start = 0;
1877 		ex->fe_group = 0;
1878 	}
1879 	return ex->fe_len;
1880 }
1881 
1882 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1883 {
1884 	int ord;
1885 	int mlen = 0;
1886 	int max = 0;
1887 	int cur;
1888 	int start = ex->fe_start;
1889 	int len = ex->fe_len;
1890 	unsigned ret = 0;
1891 	int len0 = len;
1892 	void *buddy;
1893 	bool split = false;
1894 
1895 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1896 	BUG_ON(e4b->bd_group != ex->fe_group);
1897 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1898 	mb_check_buddy(e4b);
1899 	mb_mark_used_double(e4b, start, len);
1900 
1901 	this_cpu_inc(discard_pa_seq);
1902 	e4b->bd_info->bb_free -= len;
1903 	if (e4b->bd_info->bb_first_free == start)
1904 		e4b->bd_info->bb_first_free += len;
1905 
1906 	/* let's maintain fragments counter */
1907 	if (start != 0)
1908 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1909 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1910 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1911 	if (mlen && max)
1912 		e4b->bd_info->bb_fragments++;
1913 	else if (!mlen && !max)
1914 		e4b->bd_info->bb_fragments--;
1915 
1916 	/* let's maintain buddy itself */
1917 	while (len) {
1918 		if (!split)
1919 			ord = mb_find_order_for_block(e4b, start);
1920 
1921 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1922 			/* the whole chunk may be allocated at once! */
1923 			mlen = 1 << ord;
1924 			if (!split)
1925 				buddy = mb_find_buddy(e4b, ord, &max);
1926 			else
1927 				split = false;
1928 			BUG_ON((start >> ord) >= max);
1929 			mb_set_bit(start >> ord, buddy);
1930 			e4b->bd_info->bb_counters[ord]--;
1931 			start += mlen;
1932 			len -= mlen;
1933 			BUG_ON(len < 0);
1934 			continue;
1935 		}
1936 
1937 		/* store for history */
1938 		if (ret == 0)
1939 			ret = len | (ord << 16);
1940 
1941 		/* we have to split large buddy */
1942 		BUG_ON(ord <= 0);
1943 		buddy = mb_find_buddy(e4b, ord, &max);
1944 		mb_set_bit(start >> ord, buddy);
1945 		e4b->bd_info->bb_counters[ord]--;
1946 
1947 		ord--;
1948 		cur = (start >> ord) & ~1U;
1949 		buddy = mb_find_buddy(e4b, ord, &max);
1950 		mb_clear_bit(cur, buddy);
1951 		mb_clear_bit(cur + 1, buddy);
1952 		e4b->bd_info->bb_counters[ord]++;
1953 		e4b->bd_info->bb_counters[ord]++;
1954 		split = true;
1955 	}
1956 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1957 
1958 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
1959 	mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1960 	mb_check_buddy(e4b);
1961 
1962 	return ret;
1963 }
1964 
1965 /*
1966  * Must be called under group lock!
1967  */
1968 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1969 					struct ext4_buddy *e4b)
1970 {
1971 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1972 	int ret;
1973 
1974 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1975 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1976 
1977 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1978 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1979 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1980 
1981 	/* preallocation can change ac_b_ex, thus we store actually
1982 	 * allocated blocks for history */
1983 	ac->ac_f_ex = ac->ac_b_ex;
1984 
1985 	ac->ac_status = AC_STATUS_FOUND;
1986 	ac->ac_tail = ret & 0xffff;
1987 	ac->ac_buddy = ret >> 16;
1988 
1989 	/*
1990 	 * take the page reference. We want the page to be pinned
1991 	 * so that we don't get a ext4_mb_init_cache_call for this
1992 	 * group until we update the bitmap. That would mean we
1993 	 * double allocate blocks. The reference is dropped
1994 	 * in ext4_mb_release_context
1995 	 */
1996 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1997 	get_page(ac->ac_bitmap_page);
1998 	ac->ac_buddy_page = e4b->bd_buddy_page;
1999 	get_page(ac->ac_buddy_page);
2000 	/* store last allocated for subsequent stream allocation */
2001 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2002 		spin_lock(&sbi->s_md_lock);
2003 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2004 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2005 		spin_unlock(&sbi->s_md_lock);
2006 	}
2007 	/*
2008 	 * As we've just preallocated more space than
2009 	 * user requested originally, we store allocated
2010 	 * space in a special descriptor.
2011 	 */
2012 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2013 		ext4_mb_new_preallocation(ac);
2014 
2015 }
2016 
2017 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2018 					struct ext4_buddy *e4b,
2019 					int finish_group)
2020 {
2021 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2022 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2023 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2024 	struct ext4_free_extent ex;
2025 	int max;
2026 
2027 	if (ac->ac_status == AC_STATUS_FOUND)
2028 		return;
2029 	/*
2030 	 * We don't want to scan for a whole year
2031 	 */
2032 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2033 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2034 		ac->ac_status = AC_STATUS_BREAK;
2035 		return;
2036 	}
2037 
2038 	/*
2039 	 * Haven't found good chunk so far, let's continue
2040 	 */
2041 	if (bex->fe_len < gex->fe_len)
2042 		return;
2043 
2044 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2045 			&& bex->fe_group == e4b->bd_group) {
2046 		/* recheck chunk's availability - we don't know
2047 		 * when it was found (within this lock-unlock
2048 		 * period or not) */
2049 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
2050 		if (max >= gex->fe_len) {
2051 			ext4_mb_use_best_found(ac, e4b);
2052 			return;
2053 		}
2054 	}
2055 }
2056 
2057 /*
2058  * The routine checks whether found extent is good enough. If it is,
2059  * then the extent gets marked used and flag is set to the context
2060  * to stop scanning. Otherwise, the extent is compared with the
2061  * previous found extent and if new one is better, then it's stored
2062  * in the context. Later, the best found extent will be used, if
2063  * mballoc can't find good enough extent.
2064  *
2065  * FIXME: real allocation policy is to be designed yet!
2066  */
2067 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2068 					struct ext4_free_extent *ex,
2069 					struct ext4_buddy *e4b)
2070 {
2071 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2072 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2073 
2074 	BUG_ON(ex->fe_len <= 0);
2075 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2076 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2077 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2078 
2079 	ac->ac_found++;
2080 
2081 	/*
2082 	 * The special case - take what you catch first
2083 	 */
2084 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2085 		*bex = *ex;
2086 		ext4_mb_use_best_found(ac, e4b);
2087 		return;
2088 	}
2089 
2090 	/*
2091 	 * Let's check whether the chuck is good enough
2092 	 */
2093 	if (ex->fe_len == gex->fe_len) {
2094 		*bex = *ex;
2095 		ext4_mb_use_best_found(ac, e4b);
2096 		return;
2097 	}
2098 
2099 	/*
2100 	 * If this is first found extent, just store it in the context
2101 	 */
2102 	if (bex->fe_len == 0) {
2103 		*bex = *ex;
2104 		return;
2105 	}
2106 
2107 	/*
2108 	 * If new found extent is better, store it in the context
2109 	 */
2110 	if (bex->fe_len < gex->fe_len) {
2111 		/* if the request isn't satisfied, any found extent
2112 		 * larger than previous best one is better */
2113 		if (ex->fe_len > bex->fe_len)
2114 			*bex = *ex;
2115 	} else if (ex->fe_len > gex->fe_len) {
2116 		/* if the request is satisfied, then we try to find
2117 		 * an extent that still satisfy the request, but is
2118 		 * smaller than previous one */
2119 		if (ex->fe_len < bex->fe_len)
2120 			*bex = *ex;
2121 	}
2122 
2123 	ext4_mb_check_limits(ac, e4b, 0);
2124 }
2125 
2126 static noinline_for_stack
2127 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2128 					struct ext4_buddy *e4b)
2129 {
2130 	struct ext4_free_extent ex = ac->ac_b_ex;
2131 	ext4_group_t group = ex.fe_group;
2132 	int max;
2133 	int err;
2134 
2135 	BUG_ON(ex.fe_len <= 0);
2136 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2137 	if (err)
2138 		return err;
2139 
2140 	ext4_lock_group(ac->ac_sb, group);
2141 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2142 
2143 	if (max > 0) {
2144 		ac->ac_b_ex = ex;
2145 		ext4_mb_use_best_found(ac, e4b);
2146 	}
2147 
2148 	ext4_unlock_group(ac->ac_sb, group);
2149 	ext4_mb_unload_buddy(e4b);
2150 
2151 	return 0;
2152 }
2153 
2154 static noinline_for_stack
2155 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2156 				struct ext4_buddy *e4b)
2157 {
2158 	ext4_group_t group = ac->ac_g_ex.fe_group;
2159 	int max;
2160 	int err;
2161 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2162 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2163 	struct ext4_free_extent ex;
2164 
2165 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
2166 		return 0;
2167 	if (grp->bb_free == 0)
2168 		return 0;
2169 
2170 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2171 	if (err)
2172 		return err;
2173 
2174 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
2175 		ext4_mb_unload_buddy(e4b);
2176 		return 0;
2177 	}
2178 
2179 	ext4_lock_group(ac->ac_sb, group);
2180 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2181 			     ac->ac_g_ex.fe_len, &ex);
2182 	ex.fe_logical = 0xDEADFA11; /* debug value */
2183 
2184 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
2185 		ext4_fsblk_t start;
2186 
2187 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
2188 			ex.fe_start;
2189 		/* use do_div to get remainder (would be 64-bit modulo) */
2190 		if (do_div(start, sbi->s_stripe) == 0) {
2191 			ac->ac_found++;
2192 			ac->ac_b_ex = ex;
2193 			ext4_mb_use_best_found(ac, e4b);
2194 		}
2195 	} else if (max >= ac->ac_g_ex.fe_len) {
2196 		BUG_ON(ex.fe_len <= 0);
2197 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2198 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2199 		ac->ac_found++;
2200 		ac->ac_b_ex = ex;
2201 		ext4_mb_use_best_found(ac, e4b);
2202 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2203 		/* Sometimes, caller may want to merge even small
2204 		 * number of blocks to an existing extent */
2205 		BUG_ON(ex.fe_len <= 0);
2206 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2207 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2208 		ac->ac_found++;
2209 		ac->ac_b_ex = ex;
2210 		ext4_mb_use_best_found(ac, e4b);
2211 	}
2212 	ext4_unlock_group(ac->ac_sb, group);
2213 	ext4_mb_unload_buddy(e4b);
2214 
2215 	return 0;
2216 }
2217 
2218 /*
2219  * The routine scans buddy structures (not bitmap!) from given order
2220  * to max order and tries to find big enough chunk to satisfy the req
2221  */
2222 static noinline_for_stack
2223 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2224 					struct ext4_buddy *e4b)
2225 {
2226 	struct super_block *sb = ac->ac_sb;
2227 	struct ext4_group_info *grp = e4b->bd_info;
2228 	void *buddy;
2229 	int i;
2230 	int k;
2231 	int max;
2232 
2233 	BUG_ON(ac->ac_2order <= 0);
2234 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2235 		if (grp->bb_counters[i] == 0)
2236 			continue;
2237 
2238 		buddy = mb_find_buddy(e4b, i, &max);
2239 		BUG_ON(buddy == NULL);
2240 
2241 		k = mb_find_next_zero_bit(buddy, max, 0);
2242 		if (k >= max) {
2243 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2244 				"%d free clusters of order %d. But found 0",
2245 				grp->bb_counters[i], i);
2246 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2247 					 e4b->bd_group,
2248 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2249 			break;
2250 		}
2251 		ac->ac_found++;
2252 
2253 		ac->ac_b_ex.fe_len = 1 << i;
2254 		ac->ac_b_ex.fe_start = k << i;
2255 		ac->ac_b_ex.fe_group = e4b->bd_group;
2256 
2257 		ext4_mb_use_best_found(ac, e4b);
2258 
2259 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2260 
2261 		if (EXT4_SB(sb)->s_mb_stats)
2262 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2263 
2264 		break;
2265 	}
2266 }
2267 
2268 /*
2269  * The routine scans the group and measures all found extents.
2270  * In order to optimize scanning, caller must pass number of
2271  * free blocks in the group, so the routine can know upper limit.
2272  */
2273 static noinline_for_stack
2274 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2275 					struct ext4_buddy *e4b)
2276 {
2277 	struct super_block *sb = ac->ac_sb;
2278 	void *bitmap = e4b->bd_bitmap;
2279 	struct ext4_free_extent ex;
2280 	int i;
2281 	int free;
2282 
2283 	free = e4b->bd_info->bb_free;
2284 	if (WARN_ON(free <= 0))
2285 		return;
2286 
2287 	i = e4b->bd_info->bb_first_free;
2288 
2289 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2290 		i = mb_find_next_zero_bit(bitmap,
2291 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2292 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2293 			/*
2294 			 * IF we have corrupt bitmap, we won't find any
2295 			 * free blocks even though group info says we
2296 			 * have free blocks
2297 			 */
2298 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2299 					"%d free clusters as per "
2300 					"group info. But bitmap says 0",
2301 					free);
2302 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2303 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2304 			break;
2305 		}
2306 
2307 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2308 		if (WARN_ON(ex.fe_len <= 0))
2309 			break;
2310 		if (free < ex.fe_len) {
2311 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2312 					"%d free clusters as per "
2313 					"group info. But got %d blocks",
2314 					free, ex.fe_len);
2315 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2316 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2317 			/*
2318 			 * The number of free blocks differs. This mostly
2319 			 * indicate that the bitmap is corrupt. So exit
2320 			 * without claiming the space.
2321 			 */
2322 			break;
2323 		}
2324 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2325 		ext4_mb_measure_extent(ac, &ex, e4b);
2326 
2327 		i += ex.fe_len;
2328 		free -= ex.fe_len;
2329 	}
2330 
2331 	ext4_mb_check_limits(ac, e4b, 1);
2332 }
2333 
2334 /*
2335  * This is a special case for storages like raid5
2336  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2337  */
2338 static noinline_for_stack
2339 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2340 				 struct ext4_buddy *e4b)
2341 {
2342 	struct super_block *sb = ac->ac_sb;
2343 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2344 	void *bitmap = e4b->bd_bitmap;
2345 	struct ext4_free_extent ex;
2346 	ext4_fsblk_t first_group_block;
2347 	ext4_fsblk_t a;
2348 	ext4_grpblk_t i;
2349 	int max;
2350 
2351 	BUG_ON(sbi->s_stripe == 0);
2352 
2353 	/* find first stripe-aligned block in group */
2354 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2355 
2356 	a = first_group_block + sbi->s_stripe - 1;
2357 	do_div(a, sbi->s_stripe);
2358 	i = (a * sbi->s_stripe) - first_group_block;
2359 
2360 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2361 		if (!mb_test_bit(i, bitmap)) {
2362 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2363 			if (max >= sbi->s_stripe) {
2364 				ac->ac_found++;
2365 				ex.fe_logical = 0xDEADF00D; /* debug value */
2366 				ac->ac_b_ex = ex;
2367 				ext4_mb_use_best_found(ac, e4b);
2368 				break;
2369 			}
2370 		}
2371 		i += sbi->s_stripe;
2372 	}
2373 }
2374 
2375 /*
2376  * This is also called BEFORE we load the buddy bitmap.
2377  * Returns either 1 or 0 indicating that the group is either suitable
2378  * for the allocation or not.
2379  */
2380 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2381 				ext4_group_t group, int cr)
2382 {
2383 	ext4_grpblk_t free, fragments;
2384 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2385 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2386 
2387 	BUG_ON(cr < 0 || cr >= 4);
2388 
2389 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2390 		return false;
2391 
2392 	free = grp->bb_free;
2393 	if (free == 0)
2394 		return false;
2395 
2396 	fragments = grp->bb_fragments;
2397 	if (fragments == 0)
2398 		return false;
2399 
2400 	switch (cr) {
2401 	case 0:
2402 		BUG_ON(ac->ac_2order == 0);
2403 
2404 		/* Avoid using the first bg of a flexgroup for data files */
2405 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2406 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2407 		    ((group % flex_size) == 0))
2408 			return false;
2409 
2410 		if (free < ac->ac_g_ex.fe_len)
2411 			return false;
2412 
2413 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2414 			return true;
2415 
2416 		if (grp->bb_largest_free_order < ac->ac_2order)
2417 			return false;
2418 
2419 		return true;
2420 	case 1:
2421 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2422 			return true;
2423 		break;
2424 	case 2:
2425 		if (free >= ac->ac_g_ex.fe_len)
2426 			return true;
2427 		break;
2428 	case 3:
2429 		return true;
2430 	default:
2431 		BUG();
2432 	}
2433 
2434 	return false;
2435 }
2436 
2437 /*
2438  * This could return negative error code if something goes wrong
2439  * during ext4_mb_init_group(). This should not be called with
2440  * ext4_lock_group() held.
2441  *
2442  * Note: because we are conditionally operating with the group lock in
2443  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2444  * function using __acquire and __release.  This means we need to be
2445  * super careful before messing with the error path handling via "goto
2446  * out"!
2447  */
2448 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2449 				     ext4_group_t group, int cr)
2450 {
2451 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2452 	struct super_block *sb = ac->ac_sb;
2453 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2454 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2455 	ext4_grpblk_t free;
2456 	int ret = 0;
2457 
2458 	if (sbi->s_mb_stats)
2459 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2460 	if (should_lock) {
2461 		ext4_lock_group(sb, group);
2462 		__release(ext4_group_lock_ptr(sb, group));
2463 	}
2464 	free = grp->bb_free;
2465 	if (free == 0)
2466 		goto out;
2467 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2468 		goto out;
2469 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2470 		goto out;
2471 	if (should_lock) {
2472 		__acquire(ext4_group_lock_ptr(sb, group));
2473 		ext4_unlock_group(sb, group);
2474 	}
2475 
2476 	/* We only do this if the grp has never been initialized */
2477 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2478 		struct ext4_group_desc *gdp =
2479 			ext4_get_group_desc(sb, group, NULL);
2480 		int ret;
2481 
2482 		/* cr=0/1 is a very optimistic search to find large
2483 		 * good chunks almost for free.  If buddy data is not
2484 		 * ready, then this optimization makes no sense.  But
2485 		 * we never skip the first block group in a flex_bg,
2486 		 * since this gets used for metadata block allocation,
2487 		 * and we want to make sure we locate metadata blocks
2488 		 * in the first block group in the flex_bg if possible.
2489 		 */
2490 		if (cr < 2 &&
2491 		    (!sbi->s_log_groups_per_flex ||
2492 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2493 		    !(ext4_has_group_desc_csum(sb) &&
2494 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2495 			return 0;
2496 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2497 		if (ret)
2498 			return ret;
2499 	}
2500 
2501 	if (should_lock) {
2502 		ext4_lock_group(sb, group);
2503 		__release(ext4_group_lock_ptr(sb, group));
2504 	}
2505 	ret = ext4_mb_good_group(ac, group, cr);
2506 out:
2507 	if (should_lock) {
2508 		__acquire(ext4_group_lock_ptr(sb, group));
2509 		ext4_unlock_group(sb, group);
2510 	}
2511 	return ret;
2512 }
2513 
2514 /*
2515  * Start prefetching @nr block bitmaps starting at @group.
2516  * Return the next group which needs to be prefetched.
2517  */
2518 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2519 			      unsigned int nr, int *cnt)
2520 {
2521 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2522 	struct buffer_head *bh;
2523 	struct blk_plug plug;
2524 
2525 	blk_start_plug(&plug);
2526 	while (nr-- > 0) {
2527 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2528 								  NULL);
2529 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2530 
2531 		/*
2532 		 * Prefetch block groups with free blocks; but don't
2533 		 * bother if it is marked uninitialized on disk, since
2534 		 * it won't require I/O to read.  Also only try to
2535 		 * prefetch once, so we avoid getblk() call, which can
2536 		 * be expensive.
2537 		 */
2538 		if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2539 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2540 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2541 		    !(ext4_has_group_desc_csum(sb) &&
2542 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2543 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2544 			if (bh && !IS_ERR(bh)) {
2545 				if (!buffer_uptodate(bh) && cnt)
2546 					(*cnt)++;
2547 				brelse(bh);
2548 			}
2549 		}
2550 		if (++group >= ngroups)
2551 			group = 0;
2552 	}
2553 	blk_finish_plug(&plug);
2554 	return group;
2555 }
2556 
2557 /*
2558  * Prefetching reads the block bitmap into the buffer cache; but we
2559  * need to make sure that the buddy bitmap in the page cache has been
2560  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2561  * is not yet completed, or indeed if it was not initiated by
2562  * ext4_mb_prefetch did not start the I/O.
2563  *
2564  * TODO: We should actually kick off the buddy bitmap setup in a work
2565  * queue when the buffer I/O is completed, so that we don't block
2566  * waiting for the block allocation bitmap read to finish when
2567  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2568  */
2569 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2570 			   unsigned int nr)
2571 {
2572 	while (nr-- > 0) {
2573 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2574 								  NULL);
2575 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2576 
2577 		if (!group)
2578 			group = ext4_get_groups_count(sb);
2579 		group--;
2580 		grp = ext4_get_group_info(sb, group);
2581 
2582 		if (EXT4_MB_GRP_NEED_INIT(grp) &&
2583 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2584 		    !(ext4_has_group_desc_csum(sb) &&
2585 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2586 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2587 				break;
2588 		}
2589 	}
2590 }
2591 
2592 static noinline_for_stack int
2593 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2594 {
2595 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2596 	int cr = -1, new_cr;
2597 	int err = 0, first_err = 0;
2598 	unsigned int nr = 0, prefetch_ios = 0;
2599 	struct ext4_sb_info *sbi;
2600 	struct super_block *sb;
2601 	struct ext4_buddy e4b;
2602 	int lost;
2603 
2604 	sb = ac->ac_sb;
2605 	sbi = EXT4_SB(sb);
2606 	ngroups = ext4_get_groups_count(sb);
2607 	/* non-extent files are limited to low blocks/groups */
2608 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2609 		ngroups = sbi->s_blockfile_groups;
2610 
2611 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2612 
2613 	/* first, try the goal */
2614 	err = ext4_mb_find_by_goal(ac, &e4b);
2615 	if (err || ac->ac_status == AC_STATUS_FOUND)
2616 		goto out;
2617 
2618 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2619 		goto out;
2620 
2621 	/*
2622 	 * ac->ac_2order is set only if the fe_len is a power of 2
2623 	 * if ac->ac_2order is set we also set criteria to 0 so that we
2624 	 * try exact allocation using buddy.
2625 	 */
2626 	i = fls(ac->ac_g_ex.fe_len);
2627 	ac->ac_2order = 0;
2628 	/*
2629 	 * We search using buddy data only if the order of the request
2630 	 * is greater than equal to the sbi_s_mb_order2_reqs
2631 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2632 	 * We also support searching for power-of-two requests only for
2633 	 * requests upto maximum buddy size we have constructed.
2634 	 */
2635 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2636 		/*
2637 		 * This should tell if fe_len is exactly power of 2
2638 		 */
2639 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2640 			ac->ac_2order = array_index_nospec(i - 1,
2641 							   MB_NUM_ORDERS(sb));
2642 	}
2643 
2644 	/* if stream allocation is enabled, use global goal */
2645 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2646 		/* TBD: may be hot point */
2647 		spin_lock(&sbi->s_md_lock);
2648 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2649 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2650 		spin_unlock(&sbi->s_md_lock);
2651 	}
2652 
2653 	/* Let's just scan groups to find more-less suitable blocks */
2654 	cr = ac->ac_2order ? 0 : 1;
2655 	/*
2656 	 * cr == 0 try to get exact allocation,
2657 	 * cr == 3  try to get anything
2658 	 */
2659 repeat:
2660 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2661 		ac->ac_criteria = cr;
2662 		/*
2663 		 * searching for the right group start
2664 		 * from the goal value specified
2665 		 */
2666 		group = ac->ac_g_ex.fe_group;
2667 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2668 		prefetch_grp = group;
2669 
2670 		for (i = 0, new_cr = cr; i < ngroups; i++,
2671 		     ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2672 			int ret = 0;
2673 
2674 			cond_resched();
2675 			if (new_cr != cr) {
2676 				cr = new_cr;
2677 				goto repeat;
2678 			}
2679 
2680 			/*
2681 			 * Batch reads of the block allocation bitmaps
2682 			 * to get multiple READs in flight; limit
2683 			 * prefetching at cr=0/1, otherwise mballoc can
2684 			 * spend a lot of time loading imperfect groups
2685 			 */
2686 			if ((prefetch_grp == group) &&
2687 			    (cr > 1 ||
2688 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2689 				unsigned int curr_ios = prefetch_ios;
2690 
2691 				nr = sbi->s_mb_prefetch;
2692 				if (ext4_has_feature_flex_bg(sb)) {
2693 					nr = 1 << sbi->s_log_groups_per_flex;
2694 					nr -= group & (nr - 1);
2695 					nr = min(nr, sbi->s_mb_prefetch);
2696 				}
2697 				prefetch_grp = ext4_mb_prefetch(sb, group,
2698 							nr, &prefetch_ios);
2699 				if (prefetch_ios == curr_ios)
2700 					nr = 0;
2701 			}
2702 
2703 			/* This now checks without needing the buddy page */
2704 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2705 			if (ret <= 0) {
2706 				if (!first_err)
2707 					first_err = ret;
2708 				continue;
2709 			}
2710 
2711 			err = ext4_mb_load_buddy(sb, group, &e4b);
2712 			if (err)
2713 				goto out;
2714 
2715 			ext4_lock_group(sb, group);
2716 
2717 			/*
2718 			 * We need to check again after locking the
2719 			 * block group
2720 			 */
2721 			ret = ext4_mb_good_group(ac, group, cr);
2722 			if (ret == 0) {
2723 				ext4_unlock_group(sb, group);
2724 				ext4_mb_unload_buddy(&e4b);
2725 				continue;
2726 			}
2727 
2728 			ac->ac_groups_scanned++;
2729 			if (cr == 0)
2730 				ext4_mb_simple_scan_group(ac, &e4b);
2731 			else if (cr == 1 && sbi->s_stripe &&
2732 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2733 				ext4_mb_scan_aligned(ac, &e4b);
2734 			else
2735 				ext4_mb_complex_scan_group(ac, &e4b);
2736 
2737 			ext4_unlock_group(sb, group);
2738 			ext4_mb_unload_buddy(&e4b);
2739 
2740 			if (ac->ac_status != AC_STATUS_CONTINUE)
2741 				break;
2742 		}
2743 		/* Processed all groups and haven't found blocks */
2744 		if (sbi->s_mb_stats && i == ngroups)
2745 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2746 	}
2747 
2748 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2749 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2750 		/*
2751 		 * We've been searching too long. Let's try to allocate
2752 		 * the best chunk we've found so far
2753 		 */
2754 		ext4_mb_try_best_found(ac, &e4b);
2755 		if (ac->ac_status != AC_STATUS_FOUND) {
2756 			/*
2757 			 * Someone more lucky has already allocated it.
2758 			 * The only thing we can do is just take first
2759 			 * found block(s)
2760 			 */
2761 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2762 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2763 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2764 				 ac->ac_b_ex.fe_len, lost);
2765 
2766 			ac->ac_b_ex.fe_group = 0;
2767 			ac->ac_b_ex.fe_start = 0;
2768 			ac->ac_b_ex.fe_len = 0;
2769 			ac->ac_status = AC_STATUS_CONTINUE;
2770 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2771 			cr = 3;
2772 			goto repeat;
2773 		}
2774 	}
2775 
2776 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2777 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2778 out:
2779 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2780 		err = first_err;
2781 
2782 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2783 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2784 		 ac->ac_flags, cr, err);
2785 
2786 	if (nr)
2787 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2788 
2789 	return err;
2790 }
2791 
2792 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2793 {
2794 	struct super_block *sb = pde_data(file_inode(seq->file));
2795 	ext4_group_t group;
2796 
2797 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2798 		return NULL;
2799 	group = *pos + 1;
2800 	return (void *) ((unsigned long) group);
2801 }
2802 
2803 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2804 {
2805 	struct super_block *sb = pde_data(file_inode(seq->file));
2806 	ext4_group_t group;
2807 
2808 	++*pos;
2809 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2810 		return NULL;
2811 	group = *pos + 1;
2812 	return (void *) ((unsigned long) group);
2813 }
2814 
2815 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2816 {
2817 	struct super_block *sb = pde_data(file_inode(seq->file));
2818 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2819 	int i;
2820 	int err, buddy_loaded = 0;
2821 	struct ext4_buddy e4b;
2822 	struct ext4_group_info *grinfo;
2823 	unsigned char blocksize_bits = min_t(unsigned char,
2824 					     sb->s_blocksize_bits,
2825 					     EXT4_MAX_BLOCK_LOG_SIZE);
2826 	struct sg {
2827 		struct ext4_group_info info;
2828 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2829 	} sg;
2830 
2831 	group--;
2832 	if (group == 0)
2833 		seq_puts(seq, "#group: free  frags first ["
2834 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2835 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2836 
2837 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2838 		sizeof(struct ext4_group_info);
2839 
2840 	grinfo = ext4_get_group_info(sb, group);
2841 	/* Load the group info in memory only if not already loaded. */
2842 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2843 		err = ext4_mb_load_buddy(sb, group, &e4b);
2844 		if (err) {
2845 			seq_printf(seq, "#%-5u: I/O error\n", group);
2846 			return 0;
2847 		}
2848 		buddy_loaded = 1;
2849 	}
2850 
2851 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2852 
2853 	if (buddy_loaded)
2854 		ext4_mb_unload_buddy(&e4b);
2855 
2856 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2857 			sg.info.bb_fragments, sg.info.bb_first_free);
2858 	for (i = 0; i <= 13; i++)
2859 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2860 				sg.info.bb_counters[i] : 0);
2861 	seq_puts(seq, " ]\n");
2862 
2863 	return 0;
2864 }
2865 
2866 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2867 {
2868 }
2869 
2870 const struct seq_operations ext4_mb_seq_groups_ops = {
2871 	.start  = ext4_mb_seq_groups_start,
2872 	.next   = ext4_mb_seq_groups_next,
2873 	.stop   = ext4_mb_seq_groups_stop,
2874 	.show   = ext4_mb_seq_groups_show,
2875 };
2876 
2877 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
2878 {
2879 	struct super_block *sb = seq->private;
2880 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2881 
2882 	seq_puts(seq, "mballoc:\n");
2883 	if (!sbi->s_mb_stats) {
2884 		seq_puts(seq, "\tmb stats collection turned off.\n");
2885 		seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
2886 		return 0;
2887 	}
2888 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
2889 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
2890 
2891 	seq_printf(seq, "\tgroups_scanned: %u\n",  atomic_read(&sbi->s_bal_groups_scanned));
2892 
2893 	seq_puts(seq, "\tcr0_stats:\n");
2894 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[0]));
2895 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2896 		   atomic64_read(&sbi->s_bal_cX_groups_considered[0]));
2897 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2898 		   atomic64_read(&sbi->s_bal_cX_failed[0]));
2899 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
2900 		   atomic_read(&sbi->s_bal_cr0_bad_suggestions));
2901 
2902 	seq_puts(seq, "\tcr1_stats:\n");
2903 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[1]));
2904 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2905 		   atomic64_read(&sbi->s_bal_cX_groups_considered[1]));
2906 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2907 		   atomic64_read(&sbi->s_bal_cX_failed[1]));
2908 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
2909 		   atomic_read(&sbi->s_bal_cr1_bad_suggestions));
2910 
2911 	seq_puts(seq, "\tcr2_stats:\n");
2912 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[2]));
2913 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2914 		   atomic64_read(&sbi->s_bal_cX_groups_considered[2]));
2915 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2916 		   atomic64_read(&sbi->s_bal_cX_failed[2]));
2917 
2918 	seq_puts(seq, "\tcr3_stats:\n");
2919 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[3]));
2920 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2921 		   atomic64_read(&sbi->s_bal_cX_groups_considered[3]));
2922 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2923 		   atomic64_read(&sbi->s_bal_cX_failed[3]));
2924 	seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned));
2925 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
2926 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
2927 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
2928 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
2929 
2930 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
2931 		   atomic_read(&sbi->s_mb_buddies_generated),
2932 		   ext4_get_groups_count(sb));
2933 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
2934 		   atomic64_read(&sbi->s_mb_generation_time));
2935 	seq_printf(seq, "\tpreallocated: %u\n",
2936 		   atomic_read(&sbi->s_mb_preallocated));
2937 	seq_printf(seq, "\tdiscarded: %u\n",
2938 		   atomic_read(&sbi->s_mb_discarded));
2939 	return 0;
2940 }
2941 
2942 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
2943 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
2944 {
2945 	struct super_block *sb = pde_data(file_inode(seq->file));
2946 	unsigned long position;
2947 
2948 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
2949 		return NULL;
2950 	position = *pos + 1;
2951 	return (void *) ((unsigned long) position);
2952 }
2953 
2954 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
2955 {
2956 	struct super_block *sb = pde_data(file_inode(seq->file));
2957 	unsigned long position;
2958 
2959 	++*pos;
2960 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
2961 		return NULL;
2962 	position = *pos + 1;
2963 	return (void *) ((unsigned long) position);
2964 }
2965 
2966 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
2967 {
2968 	struct super_block *sb = pde_data(file_inode(seq->file));
2969 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2970 	unsigned long position = ((unsigned long) v);
2971 	struct ext4_group_info *grp;
2972 	unsigned int count;
2973 
2974 	position--;
2975 	if (position >= MB_NUM_ORDERS(sb)) {
2976 		position -= MB_NUM_ORDERS(sb);
2977 		if (position == 0)
2978 			seq_puts(seq, "avg_fragment_size_lists:\n");
2979 
2980 		count = 0;
2981 		read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
2982 		list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
2983 				    bb_avg_fragment_size_node)
2984 			count++;
2985 		read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
2986 		seq_printf(seq, "\tlist_order_%u_groups: %u\n",
2987 					(unsigned int)position, count);
2988 		return 0;
2989 	}
2990 
2991 	if (position == 0) {
2992 		seq_printf(seq, "optimize_scan: %d\n",
2993 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
2994 		seq_puts(seq, "max_free_order_lists:\n");
2995 	}
2996 	count = 0;
2997 	read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
2998 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
2999 			    bb_largest_free_order_node)
3000 		count++;
3001 	read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3002 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3003 		   (unsigned int)position, count);
3004 
3005 	return 0;
3006 }
3007 
3008 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3009 {
3010 }
3011 
3012 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3013 	.start  = ext4_mb_seq_structs_summary_start,
3014 	.next   = ext4_mb_seq_structs_summary_next,
3015 	.stop   = ext4_mb_seq_structs_summary_stop,
3016 	.show   = ext4_mb_seq_structs_summary_show,
3017 };
3018 
3019 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3020 {
3021 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3022 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3023 
3024 	BUG_ON(!cachep);
3025 	return cachep;
3026 }
3027 
3028 /*
3029  * Allocate the top-level s_group_info array for the specified number
3030  * of groups
3031  */
3032 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3033 {
3034 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3035 	unsigned size;
3036 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3037 
3038 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3039 		EXT4_DESC_PER_BLOCK_BITS(sb);
3040 	if (size <= sbi->s_group_info_size)
3041 		return 0;
3042 
3043 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3044 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3045 	if (!new_groupinfo) {
3046 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3047 		return -ENOMEM;
3048 	}
3049 	rcu_read_lock();
3050 	old_groupinfo = rcu_dereference(sbi->s_group_info);
3051 	if (old_groupinfo)
3052 		memcpy(new_groupinfo, old_groupinfo,
3053 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3054 	rcu_read_unlock();
3055 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3056 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3057 	if (old_groupinfo)
3058 		ext4_kvfree_array_rcu(old_groupinfo);
3059 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3060 		   sbi->s_group_info_size);
3061 	return 0;
3062 }
3063 
3064 /* Create and initialize ext4_group_info data for the given group. */
3065 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3066 			  struct ext4_group_desc *desc)
3067 {
3068 	int i;
3069 	int metalen = 0;
3070 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3071 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3072 	struct ext4_group_info **meta_group_info;
3073 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3074 
3075 	/*
3076 	 * First check if this group is the first of a reserved block.
3077 	 * If it's true, we have to allocate a new table of pointers
3078 	 * to ext4_group_info structures
3079 	 */
3080 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3081 		metalen = sizeof(*meta_group_info) <<
3082 			EXT4_DESC_PER_BLOCK_BITS(sb);
3083 		meta_group_info = kmalloc(metalen, GFP_NOFS);
3084 		if (meta_group_info == NULL) {
3085 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3086 				 "for a buddy group");
3087 			goto exit_meta_group_info;
3088 		}
3089 		rcu_read_lock();
3090 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3091 		rcu_read_unlock();
3092 	}
3093 
3094 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3095 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3096 
3097 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3098 	if (meta_group_info[i] == NULL) {
3099 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3100 		goto exit_group_info;
3101 	}
3102 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3103 		&(meta_group_info[i]->bb_state));
3104 
3105 	/*
3106 	 * initialize bb_free to be able to skip
3107 	 * empty groups without initialization
3108 	 */
3109 	if (ext4_has_group_desc_csum(sb) &&
3110 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3111 		meta_group_info[i]->bb_free =
3112 			ext4_free_clusters_after_init(sb, group, desc);
3113 	} else {
3114 		meta_group_info[i]->bb_free =
3115 			ext4_free_group_clusters(sb, desc);
3116 	}
3117 
3118 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3119 	init_rwsem(&meta_group_info[i]->alloc_sem);
3120 	meta_group_info[i]->bb_free_root = RB_ROOT;
3121 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3122 	INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3123 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3124 	meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3125 	meta_group_info[i]->bb_group = group;
3126 
3127 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3128 	return 0;
3129 
3130 exit_group_info:
3131 	/* If a meta_group_info table has been allocated, release it now */
3132 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3133 		struct ext4_group_info ***group_info;
3134 
3135 		rcu_read_lock();
3136 		group_info = rcu_dereference(sbi->s_group_info);
3137 		kfree(group_info[idx]);
3138 		group_info[idx] = NULL;
3139 		rcu_read_unlock();
3140 	}
3141 exit_meta_group_info:
3142 	return -ENOMEM;
3143 } /* ext4_mb_add_groupinfo */
3144 
3145 static int ext4_mb_init_backend(struct super_block *sb)
3146 {
3147 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3148 	ext4_group_t i;
3149 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3150 	int err;
3151 	struct ext4_group_desc *desc;
3152 	struct ext4_group_info ***group_info;
3153 	struct kmem_cache *cachep;
3154 
3155 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3156 	if (err)
3157 		return err;
3158 
3159 	sbi->s_buddy_cache = new_inode(sb);
3160 	if (sbi->s_buddy_cache == NULL) {
3161 		ext4_msg(sb, KERN_ERR, "can't get new inode");
3162 		goto err_freesgi;
3163 	}
3164 	/* To avoid potentially colliding with an valid on-disk inode number,
3165 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3166 	 * not in the inode hash, so it should never be found by iget(), but
3167 	 * this will avoid confusion if it ever shows up during debugging. */
3168 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3169 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3170 	for (i = 0; i < ngroups; i++) {
3171 		cond_resched();
3172 		desc = ext4_get_group_desc(sb, i, NULL);
3173 		if (desc == NULL) {
3174 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3175 			goto err_freebuddy;
3176 		}
3177 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3178 			goto err_freebuddy;
3179 	}
3180 
3181 	if (ext4_has_feature_flex_bg(sb)) {
3182 		/* a single flex group is supposed to be read by a single IO.
3183 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3184 		 * unsigned integer, so the maximum shift is 32.
3185 		 */
3186 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3187 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3188 			goto err_freebuddy;
3189 		}
3190 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3191 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3192 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3193 	} else {
3194 		sbi->s_mb_prefetch = 32;
3195 	}
3196 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3197 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3198 	/* now many real IOs to prefetch within a single allocation at cr=0
3199 	 * given cr=0 is an CPU-related optimization we shouldn't try to
3200 	 * load too many groups, at some point we should start to use what
3201 	 * we've got in memory.
3202 	 * with an average random access time 5ms, it'd take a second to get
3203 	 * 200 groups (* N with flex_bg), so let's make this limit 4
3204 	 */
3205 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3206 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3207 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3208 
3209 	return 0;
3210 
3211 err_freebuddy:
3212 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3213 	while (i-- > 0)
3214 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
3215 	i = sbi->s_group_info_size;
3216 	rcu_read_lock();
3217 	group_info = rcu_dereference(sbi->s_group_info);
3218 	while (i-- > 0)
3219 		kfree(group_info[i]);
3220 	rcu_read_unlock();
3221 	iput(sbi->s_buddy_cache);
3222 err_freesgi:
3223 	rcu_read_lock();
3224 	kvfree(rcu_dereference(sbi->s_group_info));
3225 	rcu_read_unlock();
3226 	return -ENOMEM;
3227 }
3228 
3229 static void ext4_groupinfo_destroy_slabs(void)
3230 {
3231 	int i;
3232 
3233 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3234 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3235 		ext4_groupinfo_caches[i] = NULL;
3236 	}
3237 }
3238 
3239 static int ext4_groupinfo_create_slab(size_t size)
3240 {
3241 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3242 	int slab_size;
3243 	int blocksize_bits = order_base_2(size);
3244 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3245 	struct kmem_cache *cachep;
3246 
3247 	if (cache_index >= NR_GRPINFO_CACHES)
3248 		return -EINVAL;
3249 
3250 	if (unlikely(cache_index < 0))
3251 		cache_index = 0;
3252 
3253 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3254 	if (ext4_groupinfo_caches[cache_index]) {
3255 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3256 		return 0;	/* Already created */
3257 	}
3258 
3259 	slab_size = offsetof(struct ext4_group_info,
3260 				bb_counters[blocksize_bits + 2]);
3261 
3262 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3263 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3264 					NULL);
3265 
3266 	ext4_groupinfo_caches[cache_index] = cachep;
3267 
3268 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3269 	if (!cachep) {
3270 		printk(KERN_EMERG
3271 		       "EXT4-fs: no memory for groupinfo slab cache\n");
3272 		return -ENOMEM;
3273 	}
3274 
3275 	return 0;
3276 }
3277 
3278 static void ext4_discard_work(struct work_struct *work)
3279 {
3280 	struct ext4_sb_info *sbi = container_of(work,
3281 			struct ext4_sb_info, s_discard_work);
3282 	struct super_block *sb = sbi->s_sb;
3283 	struct ext4_free_data *fd, *nfd;
3284 	struct ext4_buddy e4b;
3285 	struct list_head discard_list;
3286 	ext4_group_t grp, load_grp;
3287 	int err = 0;
3288 
3289 	INIT_LIST_HEAD(&discard_list);
3290 	spin_lock(&sbi->s_md_lock);
3291 	list_splice_init(&sbi->s_discard_list, &discard_list);
3292 	spin_unlock(&sbi->s_md_lock);
3293 
3294 	load_grp = UINT_MAX;
3295 	list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3296 		/*
3297 		 * If filesystem is umounting or no memory or suffering
3298 		 * from no space, give up the discard
3299 		 */
3300 		if ((sb->s_flags & SB_ACTIVE) && !err &&
3301 		    !atomic_read(&sbi->s_retry_alloc_pending)) {
3302 			grp = fd->efd_group;
3303 			if (grp != load_grp) {
3304 				if (load_grp != UINT_MAX)
3305 					ext4_mb_unload_buddy(&e4b);
3306 
3307 				err = ext4_mb_load_buddy(sb, grp, &e4b);
3308 				if (err) {
3309 					kmem_cache_free(ext4_free_data_cachep, fd);
3310 					load_grp = UINT_MAX;
3311 					continue;
3312 				} else {
3313 					load_grp = grp;
3314 				}
3315 			}
3316 
3317 			ext4_lock_group(sb, grp);
3318 			ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3319 						fd->efd_start_cluster + fd->efd_count - 1, 1);
3320 			ext4_unlock_group(sb, grp);
3321 		}
3322 		kmem_cache_free(ext4_free_data_cachep, fd);
3323 	}
3324 
3325 	if (load_grp != UINT_MAX)
3326 		ext4_mb_unload_buddy(&e4b);
3327 }
3328 
3329 int ext4_mb_init(struct super_block *sb)
3330 {
3331 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3332 	unsigned i, j;
3333 	unsigned offset, offset_incr;
3334 	unsigned max;
3335 	int ret;
3336 
3337 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3338 
3339 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3340 	if (sbi->s_mb_offsets == NULL) {
3341 		ret = -ENOMEM;
3342 		goto out;
3343 	}
3344 
3345 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3346 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3347 	if (sbi->s_mb_maxs == NULL) {
3348 		ret = -ENOMEM;
3349 		goto out;
3350 	}
3351 
3352 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3353 	if (ret < 0)
3354 		goto out;
3355 
3356 	/* order 0 is regular bitmap */
3357 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3358 	sbi->s_mb_offsets[0] = 0;
3359 
3360 	i = 1;
3361 	offset = 0;
3362 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3363 	max = sb->s_blocksize << 2;
3364 	do {
3365 		sbi->s_mb_offsets[i] = offset;
3366 		sbi->s_mb_maxs[i] = max;
3367 		offset += offset_incr;
3368 		offset_incr = offset_incr >> 1;
3369 		max = max >> 1;
3370 		i++;
3371 	} while (i < MB_NUM_ORDERS(sb));
3372 
3373 	sbi->s_mb_avg_fragment_size =
3374 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3375 			GFP_KERNEL);
3376 	if (!sbi->s_mb_avg_fragment_size) {
3377 		ret = -ENOMEM;
3378 		goto out;
3379 	}
3380 	sbi->s_mb_avg_fragment_size_locks =
3381 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3382 			GFP_KERNEL);
3383 	if (!sbi->s_mb_avg_fragment_size_locks) {
3384 		ret = -ENOMEM;
3385 		goto out;
3386 	}
3387 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3388 		INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3389 		rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3390 	}
3391 	sbi->s_mb_largest_free_orders =
3392 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3393 			GFP_KERNEL);
3394 	if (!sbi->s_mb_largest_free_orders) {
3395 		ret = -ENOMEM;
3396 		goto out;
3397 	}
3398 	sbi->s_mb_largest_free_orders_locks =
3399 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3400 			GFP_KERNEL);
3401 	if (!sbi->s_mb_largest_free_orders_locks) {
3402 		ret = -ENOMEM;
3403 		goto out;
3404 	}
3405 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3406 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3407 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3408 	}
3409 
3410 	spin_lock_init(&sbi->s_md_lock);
3411 	sbi->s_mb_free_pending = 0;
3412 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
3413 	INIT_LIST_HEAD(&sbi->s_discard_list);
3414 	INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3415 	atomic_set(&sbi->s_retry_alloc_pending, 0);
3416 
3417 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3418 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3419 	sbi->s_mb_stats = MB_DEFAULT_STATS;
3420 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3421 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3422 	sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC;
3423 	/*
3424 	 * The default group preallocation is 512, which for 4k block
3425 	 * sizes translates to 2 megabytes.  However for bigalloc file
3426 	 * systems, this is probably too big (i.e, if the cluster size
3427 	 * is 1 megabyte, then group preallocation size becomes half a
3428 	 * gigabyte!).  As a default, we will keep a two megabyte
3429 	 * group pralloc size for cluster sizes up to 64k, and after
3430 	 * that, we will force a minimum group preallocation size of
3431 	 * 32 clusters.  This translates to 8 megs when the cluster
3432 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3433 	 * which seems reasonable as a default.
3434 	 */
3435 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3436 				       sbi->s_cluster_bits, 32);
3437 	/*
3438 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3439 	 * to the lowest multiple of s_stripe which is bigger than
3440 	 * the s_mb_group_prealloc as determined above. We want
3441 	 * the preallocation size to be an exact multiple of the
3442 	 * RAID stripe size so that preallocations don't fragment
3443 	 * the stripes.
3444 	 */
3445 	if (sbi->s_stripe > 1) {
3446 		sbi->s_mb_group_prealloc = roundup(
3447 			sbi->s_mb_group_prealloc, sbi->s_stripe);
3448 	}
3449 
3450 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3451 	if (sbi->s_locality_groups == NULL) {
3452 		ret = -ENOMEM;
3453 		goto out;
3454 	}
3455 	for_each_possible_cpu(i) {
3456 		struct ext4_locality_group *lg;
3457 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3458 		mutex_init(&lg->lg_mutex);
3459 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3460 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3461 		spin_lock_init(&lg->lg_prealloc_lock);
3462 	}
3463 
3464 	if (bdev_nonrot(sb->s_bdev))
3465 		sbi->s_mb_max_linear_groups = 0;
3466 	else
3467 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3468 	/* init file for buddy data */
3469 	ret = ext4_mb_init_backend(sb);
3470 	if (ret != 0)
3471 		goto out_free_locality_groups;
3472 
3473 	return 0;
3474 
3475 out_free_locality_groups:
3476 	free_percpu(sbi->s_locality_groups);
3477 	sbi->s_locality_groups = NULL;
3478 out:
3479 	kfree(sbi->s_mb_avg_fragment_size);
3480 	kfree(sbi->s_mb_avg_fragment_size_locks);
3481 	kfree(sbi->s_mb_largest_free_orders);
3482 	kfree(sbi->s_mb_largest_free_orders_locks);
3483 	kfree(sbi->s_mb_offsets);
3484 	sbi->s_mb_offsets = NULL;
3485 	kfree(sbi->s_mb_maxs);
3486 	sbi->s_mb_maxs = NULL;
3487 	return ret;
3488 }
3489 
3490 /* need to called with the ext4 group lock held */
3491 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3492 {
3493 	struct ext4_prealloc_space *pa;
3494 	struct list_head *cur, *tmp;
3495 	int count = 0;
3496 
3497 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3498 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3499 		list_del(&pa->pa_group_list);
3500 		count++;
3501 		kmem_cache_free(ext4_pspace_cachep, pa);
3502 	}
3503 	return count;
3504 }
3505 
3506 int ext4_mb_release(struct super_block *sb)
3507 {
3508 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3509 	ext4_group_t i;
3510 	int num_meta_group_infos;
3511 	struct ext4_group_info *grinfo, ***group_info;
3512 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3513 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3514 	int count;
3515 
3516 	if (test_opt(sb, DISCARD)) {
3517 		/*
3518 		 * wait the discard work to drain all of ext4_free_data
3519 		 */
3520 		flush_work(&sbi->s_discard_work);
3521 		WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3522 	}
3523 
3524 	if (sbi->s_group_info) {
3525 		for (i = 0; i < ngroups; i++) {
3526 			cond_resched();
3527 			grinfo = ext4_get_group_info(sb, i);
3528 			mb_group_bb_bitmap_free(grinfo);
3529 			ext4_lock_group(sb, i);
3530 			count = ext4_mb_cleanup_pa(grinfo);
3531 			if (count)
3532 				mb_debug(sb, "mballoc: %d PAs left\n",
3533 					 count);
3534 			ext4_unlock_group(sb, i);
3535 			kmem_cache_free(cachep, grinfo);
3536 		}
3537 		num_meta_group_infos = (ngroups +
3538 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3539 			EXT4_DESC_PER_BLOCK_BITS(sb);
3540 		rcu_read_lock();
3541 		group_info = rcu_dereference(sbi->s_group_info);
3542 		for (i = 0; i < num_meta_group_infos; i++)
3543 			kfree(group_info[i]);
3544 		kvfree(group_info);
3545 		rcu_read_unlock();
3546 	}
3547 	kfree(sbi->s_mb_avg_fragment_size);
3548 	kfree(sbi->s_mb_avg_fragment_size_locks);
3549 	kfree(sbi->s_mb_largest_free_orders);
3550 	kfree(sbi->s_mb_largest_free_orders_locks);
3551 	kfree(sbi->s_mb_offsets);
3552 	kfree(sbi->s_mb_maxs);
3553 	iput(sbi->s_buddy_cache);
3554 	if (sbi->s_mb_stats) {
3555 		ext4_msg(sb, KERN_INFO,
3556 		       "mballoc: %u blocks %u reqs (%u success)",
3557 				atomic_read(&sbi->s_bal_allocated),
3558 				atomic_read(&sbi->s_bal_reqs),
3559 				atomic_read(&sbi->s_bal_success));
3560 		ext4_msg(sb, KERN_INFO,
3561 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3562 				"%u 2^N hits, %u breaks, %u lost",
3563 				atomic_read(&sbi->s_bal_ex_scanned),
3564 				atomic_read(&sbi->s_bal_groups_scanned),
3565 				atomic_read(&sbi->s_bal_goals),
3566 				atomic_read(&sbi->s_bal_2orders),
3567 				atomic_read(&sbi->s_bal_breaks),
3568 				atomic_read(&sbi->s_mb_lost_chunks));
3569 		ext4_msg(sb, KERN_INFO,
3570 		       "mballoc: %u generated and it took %llu",
3571 				atomic_read(&sbi->s_mb_buddies_generated),
3572 				atomic64_read(&sbi->s_mb_generation_time));
3573 		ext4_msg(sb, KERN_INFO,
3574 		       "mballoc: %u preallocated, %u discarded",
3575 				atomic_read(&sbi->s_mb_preallocated),
3576 				atomic_read(&sbi->s_mb_discarded));
3577 	}
3578 
3579 	free_percpu(sbi->s_locality_groups);
3580 
3581 	return 0;
3582 }
3583 
3584 static inline int ext4_issue_discard(struct super_block *sb,
3585 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3586 		struct bio **biop)
3587 {
3588 	ext4_fsblk_t discard_block;
3589 
3590 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3591 			 ext4_group_first_block_no(sb, block_group));
3592 	count = EXT4_C2B(EXT4_SB(sb), count);
3593 	trace_ext4_discard_blocks(sb,
3594 			(unsigned long long) discard_block, count);
3595 	if (biop) {
3596 		return __blkdev_issue_discard(sb->s_bdev,
3597 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3598 			(sector_t)count << (sb->s_blocksize_bits - 9),
3599 			GFP_NOFS, biop);
3600 	} else
3601 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3602 }
3603 
3604 static void ext4_free_data_in_buddy(struct super_block *sb,
3605 				    struct ext4_free_data *entry)
3606 {
3607 	struct ext4_buddy e4b;
3608 	struct ext4_group_info *db;
3609 	int err, count = 0, count2 = 0;
3610 
3611 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3612 		 entry->efd_count, entry->efd_group, entry);
3613 
3614 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3615 	/* we expect to find existing buddy because it's pinned */
3616 	BUG_ON(err != 0);
3617 
3618 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3619 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3620 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3621 
3622 	db = e4b.bd_info;
3623 	/* there are blocks to put in buddy to make them really free */
3624 	count += entry->efd_count;
3625 	count2++;
3626 	ext4_lock_group(sb, entry->efd_group);
3627 	/* Take it out of per group rb tree */
3628 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3629 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3630 
3631 	/*
3632 	 * Clear the trimmed flag for the group so that the next
3633 	 * ext4_trim_fs can trim it.
3634 	 * If the volume is mounted with -o discard, online discard
3635 	 * is supported and the free blocks will be trimmed online.
3636 	 */
3637 	if (!test_opt(sb, DISCARD))
3638 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3639 
3640 	if (!db->bb_free_root.rb_node) {
3641 		/* No more items in the per group rb tree
3642 		 * balance refcounts from ext4_mb_free_metadata()
3643 		 */
3644 		put_page(e4b.bd_buddy_page);
3645 		put_page(e4b.bd_bitmap_page);
3646 	}
3647 	ext4_unlock_group(sb, entry->efd_group);
3648 	ext4_mb_unload_buddy(&e4b);
3649 
3650 	mb_debug(sb, "freed %d blocks in %d structures\n", count,
3651 		 count2);
3652 }
3653 
3654 /*
3655  * This function is called by the jbd2 layer once the commit has finished,
3656  * so we know we can free the blocks that were released with that commit.
3657  */
3658 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3659 {
3660 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3661 	struct ext4_free_data *entry, *tmp;
3662 	struct list_head freed_data_list;
3663 	struct list_head *cut_pos = NULL;
3664 	bool wake;
3665 
3666 	INIT_LIST_HEAD(&freed_data_list);
3667 
3668 	spin_lock(&sbi->s_md_lock);
3669 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3670 		if (entry->efd_tid != commit_tid)
3671 			break;
3672 		cut_pos = &entry->efd_list;
3673 	}
3674 	if (cut_pos)
3675 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3676 				  cut_pos);
3677 	spin_unlock(&sbi->s_md_lock);
3678 
3679 	list_for_each_entry(entry, &freed_data_list, efd_list)
3680 		ext4_free_data_in_buddy(sb, entry);
3681 
3682 	if (test_opt(sb, DISCARD)) {
3683 		spin_lock(&sbi->s_md_lock);
3684 		wake = list_empty(&sbi->s_discard_list);
3685 		list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3686 		spin_unlock(&sbi->s_md_lock);
3687 		if (wake)
3688 			queue_work(system_unbound_wq, &sbi->s_discard_work);
3689 	} else {
3690 		list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3691 			kmem_cache_free(ext4_free_data_cachep, entry);
3692 	}
3693 }
3694 
3695 int __init ext4_init_mballoc(void)
3696 {
3697 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3698 					SLAB_RECLAIM_ACCOUNT);
3699 	if (ext4_pspace_cachep == NULL)
3700 		goto out;
3701 
3702 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3703 				    SLAB_RECLAIM_ACCOUNT);
3704 	if (ext4_ac_cachep == NULL)
3705 		goto out_pa_free;
3706 
3707 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3708 					   SLAB_RECLAIM_ACCOUNT);
3709 	if (ext4_free_data_cachep == NULL)
3710 		goto out_ac_free;
3711 
3712 	return 0;
3713 
3714 out_ac_free:
3715 	kmem_cache_destroy(ext4_ac_cachep);
3716 out_pa_free:
3717 	kmem_cache_destroy(ext4_pspace_cachep);
3718 out:
3719 	return -ENOMEM;
3720 }
3721 
3722 void ext4_exit_mballoc(void)
3723 {
3724 	/*
3725 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3726 	 * before destroying the slab cache.
3727 	 */
3728 	rcu_barrier();
3729 	kmem_cache_destroy(ext4_pspace_cachep);
3730 	kmem_cache_destroy(ext4_ac_cachep);
3731 	kmem_cache_destroy(ext4_free_data_cachep);
3732 	ext4_groupinfo_destroy_slabs();
3733 }
3734 
3735 
3736 /*
3737  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3738  * Returns 0 if success or error code
3739  */
3740 static noinline_for_stack int
3741 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3742 				handle_t *handle, unsigned int reserv_clstrs)
3743 {
3744 	struct buffer_head *bitmap_bh = NULL;
3745 	struct ext4_group_desc *gdp;
3746 	struct buffer_head *gdp_bh;
3747 	struct ext4_sb_info *sbi;
3748 	struct super_block *sb;
3749 	ext4_fsblk_t block;
3750 	int err, len;
3751 
3752 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3753 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3754 
3755 	sb = ac->ac_sb;
3756 	sbi = EXT4_SB(sb);
3757 
3758 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3759 	if (IS_ERR(bitmap_bh)) {
3760 		err = PTR_ERR(bitmap_bh);
3761 		bitmap_bh = NULL;
3762 		goto out_err;
3763 	}
3764 
3765 	BUFFER_TRACE(bitmap_bh, "getting write access");
3766 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3767 					    EXT4_JTR_NONE);
3768 	if (err)
3769 		goto out_err;
3770 
3771 	err = -EIO;
3772 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3773 	if (!gdp)
3774 		goto out_err;
3775 
3776 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3777 			ext4_free_group_clusters(sb, gdp));
3778 
3779 	BUFFER_TRACE(gdp_bh, "get_write_access");
3780 	err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE);
3781 	if (err)
3782 		goto out_err;
3783 
3784 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3785 
3786 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3787 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
3788 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3789 			   "fs metadata", block, block+len);
3790 		/* File system mounted not to panic on error
3791 		 * Fix the bitmap and return EFSCORRUPTED
3792 		 * We leak some of the blocks here.
3793 		 */
3794 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3795 		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3796 			      ac->ac_b_ex.fe_len);
3797 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3798 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3799 		if (!err)
3800 			err = -EFSCORRUPTED;
3801 		goto out_err;
3802 	}
3803 
3804 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3805 #ifdef AGGRESSIVE_CHECK
3806 	{
3807 		int i;
3808 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3809 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3810 						bitmap_bh->b_data));
3811 		}
3812 	}
3813 #endif
3814 	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3815 		      ac->ac_b_ex.fe_len);
3816 	if (ext4_has_group_desc_csum(sb) &&
3817 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3818 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3819 		ext4_free_group_clusters_set(sb, gdp,
3820 					     ext4_free_clusters_after_init(sb,
3821 						ac->ac_b_ex.fe_group, gdp));
3822 	}
3823 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3824 	ext4_free_group_clusters_set(sb, gdp, len);
3825 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3826 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3827 
3828 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3829 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3830 	/*
3831 	 * Now reduce the dirty block count also. Should not go negative
3832 	 */
3833 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3834 		/* release all the reserved blocks if non delalloc */
3835 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3836 				   reserv_clstrs);
3837 
3838 	if (sbi->s_log_groups_per_flex) {
3839 		ext4_group_t flex_group = ext4_flex_group(sbi,
3840 							  ac->ac_b_ex.fe_group);
3841 		atomic64_sub(ac->ac_b_ex.fe_len,
3842 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3843 						  flex_group)->free_clusters);
3844 	}
3845 
3846 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3847 	if (err)
3848 		goto out_err;
3849 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3850 
3851 out_err:
3852 	brelse(bitmap_bh);
3853 	return err;
3854 }
3855 
3856 /*
3857  * Idempotent helper for Ext4 fast commit replay path to set the state of
3858  * blocks in bitmaps and update counters.
3859  */
3860 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
3861 			int len, int state)
3862 {
3863 	struct buffer_head *bitmap_bh = NULL;
3864 	struct ext4_group_desc *gdp;
3865 	struct buffer_head *gdp_bh;
3866 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3867 	ext4_group_t group;
3868 	ext4_grpblk_t blkoff;
3869 	int i, err;
3870 	int already;
3871 	unsigned int clen, clen_changed, thisgrp_len;
3872 
3873 	while (len > 0) {
3874 		ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
3875 
3876 		/*
3877 		 * Check to see if we are freeing blocks across a group
3878 		 * boundary.
3879 		 * In case of flex_bg, this can happen that (block, len) may
3880 		 * span across more than one group. In that case we need to
3881 		 * get the corresponding group metadata to work with.
3882 		 * For this we have goto again loop.
3883 		 */
3884 		thisgrp_len = min_t(unsigned int, (unsigned int)len,
3885 			EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
3886 		clen = EXT4_NUM_B2C(sbi, thisgrp_len);
3887 
3888 		if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
3889 			ext4_error(sb, "Marking blocks in system zone - "
3890 				   "Block = %llu, len = %u",
3891 				   block, thisgrp_len);
3892 			bitmap_bh = NULL;
3893 			break;
3894 		}
3895 
3896 		bitmap_bh = ext4_read_block_bitmap(sb, group);
3897 		if (IS_ERR(bitmap_bh)) {
3898 			err = PTR_ERR(bitmap_bh);
3899 			bitmap_bh = NULL;
3900 			break;
3901 		}
3902 
3903 		err = -EIO;
3904 		gdp = ext4_get_group_desc(sb, group, &gdp_bh);
3905 		if (!gdp)
3906 			break;
3907 
3908 		ext4_lock_group(sb, group);
3909 		already = 0;
3910 		for (i = 0; i < clen; i++)
3911 			if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
3912 					 !state)
3913 				already++;
3914 
3915 		clen_changed = clen - already;
3916 		if (state)
3917 			mb_set_bits(bitmap_bh->b_data, blkoff, clen);
3918 		else
3919 			mb_clear_bits(bitmap_bh->b_data, blkoff, clen);
3920 		if (ext4_has_group_desc_csum(sb) &&
3921 		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3922 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3923 			ext4_free_group_clusters_set(sb, gdp,
3924 			     ext4_free_clusters_after_init(sb, group, gdp));
3925 		}
3926 		if (state)
3927 			clen = ext4_free_group_clusters(sb, gdp) - clen_changed;
3928 		else
3929 			clen = ext4_free_group_clusters(sb, gdp) + clen_changed;
3930 
3931 		ext4_free_group_clusters_set(sb, gdp, clen);
3932 		ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
3933 		ext4_group_desc_csum_set(sb, group, gdp);
3934 
3935 		ext4_unlock_group(sb, group);
3936 
3937 		if (sbi->s_log_groups_per_flex) {
3938 			ext4_group_t flex_group = ext4_flex_group(sbi, group);
3939 			struct flex_groups *fg = sbi_array_rcu_deref(sbi,
3940 						   s_flex_groups, flex_group);
3941 
3942 			if (state)
3943 				atomic64_sub(clen_changed, &fg->free_clusters);
3944 			else
3945 				atomic64_add(clen_changed, &fg->free_clusters);
3946 
3947 		}
3948 
3949 		err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
3950 		if (err)
3951 			break;
3952 		sync_dirty_buffer(bitmap_bh);
3953 		err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
3954 		sync_dirty_buffer(gdp_bh);
3955 		if (err)
3956 			break;
3957 
3958 		block += thisgrp_len;
3959 		len -= thisgrp_len;
3960 		brelse(bitmap_bh);
3961 		BUG_ON(len < 0);
3962 	}
3963 
3964 	if (err)
3965 		brelse(bitmap_bh);
3966 }
3967 
3968 /*
3969  * here we normalize request for locality group
3970  * Group request are normalized to s_mb_group_prealloc, which goes to
3971  * s_strip if we set the same via mount option.
3972  * s_mb_group_prealloc can be configured via
3973  * /sys/fs/ext4/<partition>/mb_group_prealloc
3974  *
3975  * XXX: should we try to preallocate more than the group has now?
3976  */
3977 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3978 {
3979 	struct super_block *sb = ac->ac_sb;
3980 	struct ext4_locality_group *lg = ac->ac_lg;
3981 
3982 	BUG_ON(lg == NULL);
3983 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3984 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
3985 }
3986 
3987 /*
3988  * Normalization means making request better in terms of
3989  * size and alignment
3990  */
3991 static noinline_for_stack void
3992 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3993 				struct ext4_allocation_request *ar)
3994 {
3995 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3996 	int bsbits, max;
3997 	ext4_lblk_t end;
3998 	loff_t size, start_off;
3999 	loff_t orig_size __maybe_unused;
4000 	ext4_lblk_t start;
4001 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4002 	struct ext4_prealloc_space *pa;
4003 
4004 	/* do normalize only data requests, metadata requests
4005 	   do not need preallocation */
4006 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4007 		return;
4008 
4009 	/* sometime caller may want exact blocks */
4010 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4011 		return;
4012 
4013 	/* caller may indicate that preallocation isn't
4014 	 * required (it's a tail, for example) */
4015 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4016 		return;
4017 
4018 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4019 		ext4_mb_normalize_group_request(ac);
4020 		return ;
4021 	}
4022 
4023 	bsbits = ac->ac_sb->s_blocksize_bits;
4024 
4025 	/* first, let's learn actual file size
4026 	 * given current request is allocated */
4027 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4028 	size = size << bsbits;
4029 	if (size < i_size_read(ac->ac_inode))
4030 		size = i_size_read(ac->ac_inode);
4031 	orig_size = size;
4032 
4033 	/* max size of free chunks */
4034 	max = 2 << bsbits;
4035 
4036 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
4037 		(req <= (size) || max <= (chunk_size))
4038 
4039 	/* first, try to predict filesize */
4040 	/* XXX: should this table be tunable? */
4041 	start_off = 0;
4042 	if (size <= 16 * 1024) {
4043 		size = 16 * 1024;
4044 	} else if (size <= 32 * 1024) {
4045 		size = 32 * 1024;
4046 	} else if (size <= 64 * 1024) {
4047 		size = 64 * 1024;
4048 	} else if (size <= 128 * 1024) {
4049 		size = 128 * 1024;
4050 	} else if (size <= 256 * 1024) {
4051 		size = 256 * 1024;
4052 	} else if (size <= 512 * 1024) {
4053 		size = 512 * 1024;
4054 	} else if (size <= 1024 * 1024) {
4055 		size = 1024 * 1024;
4056 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4057 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4058 						(21 - bsbits)) << 21;
4059 		size = 2 * 1024 * 1024;
4060 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4061 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4062 							(22 - bsbits)) << 22;
4063 		size = 4 * 1024 * 1024;
4064 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
4065 					(8<<20)>>bsbits, max, 8 * 1024)) {
4066 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4067 							(23 - bsbits)) << 23;
4068 		size = 8 * 1024 * 1024;
4069 	} else {
4070 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4071 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
4072 					      ac->ac_o_ex.fe_len) << bsbits;
4073 	}
4074 	size = size >> bsbits;
4075 	start = start_off >> bsbits;
4076 
4077 	/*
4078 	 * For tiny groups (smaller than 8MB) the chosen allocation
4079 	 * alignment may be larger than group size. Make sure the
4080 	 * alignment does not move allocation to a different group which
4081 	 * makes mballoc fail assertions later.
4082 	 */
4083 	start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4084 			(ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4085 
4086 	/* don't cover already allocated blocks in selected range */
4087 	if (ar->pleft && start <= ar->lleft) {
4088 		size -= ar->lleft + 1 - start;
4089 		start = ar->lleft + 1;
4090 	}
4091 	if (ar->pright && start + size - 1 >= ar->lright)
4092 		size -= start + size - ar->lright;
4093 
4094 	/*
4095 	 * Trim allocation request for filesystems with artificially small
4096 	 * groups.
4097 	 */
4098 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4099 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4100 
4101 	end = start + size;
4102 
4103 	/* check we don't cross already preallocated blocks */
4104 	rcu_read_lock();
4105 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4106 		ext4_lblk_t pa_end;
4107 
4108 		if (pa->pa_deleted)
4109 			continue;
4110 		spin_lock(&pa->pa_lock);
4111 		if (pa->pa_deleted) {
4112 			spin_unlock(&pa->pa_lock);
4113 			continue;
4114 		}
4115 
4116 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
4117 						  pa->pa_len);
4118 
4119 		/* PA must not overlap original request */
4120 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
4121 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
4122 
4123 		/* skip PAs this normalized request doesn't overlap with */
4124 		if (pa->pa_lstart >= end || pa_end <= start) {
4125 			spin_unlock(&pa->pa_lock);
4126 			continue;
4127 		}
4128 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
4129 
4130 		/* adjust start or end to be adjacent to this pa */
4131 		if (pa_end <= ac->ac_o_ex.fe_logical) {
4132 			BUG_ON(pa_end < start);
4133 			start = pa_end;
4134 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4135 			BUG_ON(pa->pa_lstart > end);
4136 			end = pa->pa_lstart;
4137 		}
4138 		spin_unlock(&pa->pa_lock);
4139 	}
4140 	rcu_read_unlock();
4141 	size = end - start;
4142 
4143 	/* XXX: extra loop to check we really don't overlap preallocations */
4144 	rcu_read_lock();
4145 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4146 		ext4_lblk_t pa_end;
4147 
4148 		spin_lock(&pa->pa_lock);
4149 		if (pa->pa_deleted == 0) {
4150 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
4151 							  pa->pa_len);
4152 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
4153 		}
4154 		spin_unlock(&pa->pa_lock);
4155 	}
4156 	rcu_read_unlock();
4157 
4158 	/*
4159 	 * In this function "start" and "size" are normalized for better
4160 	 * alignment and length such that we could preallocate more blocks.
4161 	 * This normalization is done such that original request of
4162 	 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4163 	 * "size" boundaries.
4164 	 * (Note fe_len can be relaxed since FS block allocation API does not
4165 	 * provide gurantee on number of contiguous blocks allocation since that
4166 	 * depends upon free space left, etc).
4167 	 * In case of inode pa, later we use the allocated blocks
4168 	 * [pa_start + fe_logical - pa_lstart, fe_len/size] from the preallocated
4169 	 * range of goal/best blocks [start, size] to put it at the
4170 	 * ac_o_ex.fe_logical extent of this inode.
4171 	 * (See ext4_mb_use_inode_pa() for more details)
4172 	 */
4173 	if (start + size <= ac->ac_o_ex.fe_logical ||
4174 			start > ac->ac_o_ex.fe_logical) {
4175 		ext4_msg(ac->ac_sb, KERN_ERR,
4176 			 "start %lu, size %lu, fe_logical %lu",
4177 			 (unsigned long) start, (unsigned long) size,
4178 			 (unsigned long) ac->ac_o_ex.fe_logical);
4179 		BUG();
4180 	}
4181 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4182 
4183 	/* now prepare goal request */
4184 
4185 	/* XXX: is it better to align blocks WRT to logical
4186 	 * placement or satisfy big request as is */
4187 	ac->ac_g_ex.fe_logical = start;
4188 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4189 
4190 	/* define goal start in order to merge */
4191 	if (ar->pright && (ar->lright == (start + size))) {
4192 		/* merge to the right */
4193 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4194 						&ac->ac_f_ex.fe_group,
4195 						&ac->ac_f_ex.fe_start);
4196 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4197 	}
4198 	if (ar->pleft && (ar->lleft + 1 == start)) {
4199 		/* merge to the left */
4200 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4201 						&ac->ac_f_ex.fe_group,
4202 						&ac->ac_f_ex.fe_start);
4203 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4204 	}
4205 
4206 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4207 		 orig_size, start);
4208 }
4209 
4210 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4211 {
4212 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4213 
4214 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4215 		atomic_inc(&sbi->s_bal_reqs);
4216 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4217 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4218 			atomic_inc(&sbi->s_bal_success);
4219 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4220 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4221 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4222 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4223 			atomic_inc(&sbi->s_bal_goals);
4224 		if (ac->ac_found > sbi->s_mb_max_to_scan)
4225 			atomic_inc(&sbi->s_bal_breaks);
4226 	}
4227 
4228 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4229 		trace_ext4_mballoc_alloc(ac);
4230 	else
4231 		trace_ext4_mballoc_prealloc(ac);
4232 }
4233 
4234 /*
4235  * Called on failure; free up any blocks from the inode PA for this
4236  * context.  We don't need this for MB_GROUP_PA because we only change
4237  * pa_free in ext4_mb_release_context(), but on failure, we've already
4238  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4239  */
4240 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4241 {
4242 	struct ext4_prealloc_space *pa = ac->ac_pa;
4243 	struct ext4_buddy e4b;
4244 	int err;
4245 
4246 	if (pa == NULL) {
4247 		if (ac->ac_f_ex.fe_len == 0)
4248 			return;
4249 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4250 		if (err) {
4251 			/*
4252 			 * This should never happen since we pin the
4253 			 * pages in the ext4_allocation_context so
4254 			 * ext4_mb_load_buddy() should never fail.
4255 			 */
4256 			WARN(1, "mb_load_buddy failed (%d)", err);
4257 			return;
4258 		}
4259 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4260 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4261 			       ac->ac_f_ex.fe_len);
4262 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4263 		ext4_mb_unload_buddy(&e4b);
4264 		return;
4265 	}
4266 	if (pa->pa_type == MB_INODE_PA)
4267 		pa->pa_free += ac->ac_b_ex.fe_len;
4268 }
4269 
4270 /*
4271  * use blocks preallocated to inode
4272  */
4273 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4274 				struct ext4_prealloc_space *pa)
4275 {
4276 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4277 	ext4_fsblk_t start;
4278 	ext4_fsblk_t end;
4279 	int len;
4280 
4281 	/* found preallocated blocks, use them */
4282 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4283 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4284 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4285 	len = EXT4_NUM_B2C(sbi, end - start);
4286 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4287 					&ac->ac_b_ex.fe_start);
4288 	ac->ac_b_ex.fe_len = len;
4289 	ac->ac_status = AC_STATUS_FOUND;
4290 	ac->ac_pa = pa;
4291 
4292 	BUG_ON(start < pa->pa_pstart);
4293 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4294 	BUG_ON(pa->pa_free < len);
4295 	pa->pa_free -= len;
4296 
4297 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4298 }
4299 
4300 /*
4301  * use blocks preallocated to locality group
4302  */
4303 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4304 				struct ext4_prealloc_space *pa)
4305 {
4306 	unsigned int len = ac->ac_o_ex.fe_len;
4307 
4308 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4309 					&ac->ac_b_ex.fe_group,
4310 					&ac->ac_b_ex.fe_start);
4311 	ac->ac_b_ex.fe_len = len;
4312 	ac->ac_status = AC_STATUS_FOUND;
4313 	ac->ac_pa = pa;
4314 
4315 	/* we don't correct pa_pstart or pa_plen here to avoid
4316 	 * possible race when the group is being loaded concurrently
4317 	 * instead we correct pa later, after blocks are marked
4318 	 * in on-disk bitmap -- see ext4_mb_release_context()
4319 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4320 	 */
4321 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4322 		 pa->pa_lstart-len, len, pa);
4323 }
4324 
4325 /*
4326  * Return the prealloc space that have minimal distance
4327  * from the goal block. @cpa is the prealloc
4328  * space that is having currently known minimal distance
4329  * from the goal block.
4330  */
4331 static struct ext4_prealloc_space *
4332 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4333 			struct ext4_prealloc_space *pa,
4334 			struct ext4_prealloc_space *cpa)
4335 {
4336 	ext4_fsblk_t cur_distance, new_distance;
4337 
4338 	if (cpa == NULL) {
4339 		atomic_inc(&pa->pa_count);
4340 		return pa;
4341 	}
4342 	cur_distance = abs(goal_block - cpa->pa_pstart);
4343 	new_distance = abs(goal_block - pa->pa_pstart);
4344 
4345 	if (cur_distance <= new_distance)
4346 		return cpa;
4347 
4348 	/* drop the previous reference */
4349 	atomic_dec(&cpa->pa_count);
4350 	atomic_inc(&pa->pa_count);
4351 	return pa;
4352 }
4353 
4354 /*
4355  * search goal blocks in preallocated space
4356  */
4357 static noinline_for_stack bool
4358 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4359 {
4360 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4361 	int order, i;
4362 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4363 	struct ext4_locality_group *lg;
4364 	struct ext4_prealloc_space *pa, *cpa = NULL;
4365 	ext4_fsblk_t goal_block;
4366 
4367 	/* only data can be preallocated */
4368 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4369 		return false;
4370 
4371 	/* first, try per-file preallocation */
4372 	rcu_read_lock();
4373 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4374 
4375 		/* all fields in this condition don't change,
4376 		 * so we can skip locking for them */
4377 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
4378 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
4379 					       EXT4_C2B(sbi, pa->pa_len)))
4380 			continue;
4381 
4382 		/* non-extent files can't have physical blocks past 2^32 */
4383 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4384 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
4385 		     EXT4_MAX_BLOCK_FILE_PHYS))
4386 			continue;
4387 
4388 		/* found preallocated blocks, use them */
4389 		spin_lock(&pa->pa_lock);
4390 		if (pa->pa_deleted == 0 && pa->pa_free) {
4391 			atomic_inc(&pa->pa_count);
4392 			ext4_mb_use_inode_pa(ac, pa);
4393 			spin_unlock(&pa->pa_lock);
4394 			ac->ac_criteria = 10;
4395 			rcu_read_unlock();
4396 			return true;
4397 		}
4398 		spin_unlock(&pa->pa_lock);
4399 	}
4400 	rcu_read_unlock();
4401 
4402 	/* can we use group allocation? */
4403 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4404 		return false;
4405 
4406 	/* inode may have no locality group for some reason */
4407 	lg = ac->ac_lg;
4408 	if (lg == NULL)
4409 		return false;
4410 	order  = fls(ac->ac_o_ex.fe_len) - 1;
4411 	if (order > PREALLOC_TB_SIZE - 1)
4412 		/* The max size of hash table is PREALLOC_TB_SIZE */
4413 		order = PREALLOC_TB_SIZE - 1;
4414 
4415 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4416 	/*
4417 	 * search for the prealloc space that is having
4418 	 * minimal distance from the goal block.
4419 	 */
4420 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4421 		rcu_read_lock();
4422 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
4423 					pa_inode_list) {
4424 			spin_lock(&pa->pa_lock);
4425 			if (pa->pa_deleted == 0 &&
4426 					pa->pa_free >= ac->ac_o_ex.fe_len) {
4427 
4428 				cpa = ext4_mb_check_group_pa(goal_block,
4429 								pa, cpa);
4430 			}
4431 			spin_unlock(&pa->pa_lock);
4432 		}
4433 		rcu_read_unlock();
4434 	}
4435 	if (cpa) {
4436 		ext4_mb_use_group_pa(ac, cpa);
4437 		ac->ac_criteria = 20;
4438 		return true;
4439 	}
4440 	return false;
4441 }
4442 
4443 /*
4444  * the function goes through all block freed in the group
4445  * but not yet committed and marks them used in in-core bitmap.
4446  * buddy must be generated from this bitmap
4447  * Need to be called with the ext4 group lock held
4448  */
4449 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
4450 						ext4_group_t group)
4451 {
4452 	struct rb_node *n;
4453 	struct ext4_group_info *grp;
4454 	struct ext4_free_data *entry;
4455 
4456 	grp = ext4_get_group_info(sb, group);
4457 	n = rb_first(&(grp->bb_free_root));
4458 
4459 	while (n) {
4460 		entry = rb_entry(n, struct ext4_free_data, efd_node);
4461 		mb_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
4462 		n = rb_next(n);
4463 	}
4464 	return;
4465 }
4466 
4467 /*
4468  * the function goes through all preallocation in this group and marks them
4469  * used in in-core bitmap. buddy must be generated from this bitmap
4470  * Need to be called with ext4 group lock held
4471  */
4472 static noinline_for_stack
4473 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4474 					ext4_group_t group)
4475 {
4476 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4477 	struct ext4_prealloc_space *pa;
4478 	struct list_head *cur;
4479 	ext4_group_t groupnr;
4480 	ext4_grpblk_t start;
4481 	int preallocated = 0;
4482 	int len;
4483 
4484 	/* all form of preallocation discards first load group,
4485 	 * so the only competing code is preallocation use.
4486 	 * we don't need any locking here
4487 	 * notice we do NOT ignore preallocations with pa_deleted
4488 	 * otherwise we could leave used blocks available for
4489 	 * allocation in buddy when concurrent ext4_mb_put_pa()
4490 	 * is dropping preallocation
4491 	 */
4492 	list_for_each(cur, &grp->bb_prealloc_list) {
4493 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
4494 		spin_lock(&pa->pa_lock);
4495 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4496 					     &groupnr, &start);
4497 		len = pa->pa_len;
4498 		spin_unlock(&pa->pa_lock);
4499 		if (unlikely(len == 0))
4500 			continue;
4501 		BUG_ON(groupnr != group);
4502 		mb_set_bits(bitmap, start, len);
4503 		preallocated += len;
4504 	}
4505 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
4506 }
4507 
4508 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
4509 				    struct ext4_prealloc_space *pa)
4510 {
4511 	struct ext4_inode_info *ei;
4512 
4513 	if (pa->pa_deleted) {
4514 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
4515 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
4516 			     pa->pa_len);
4517 		return;
4518 	}
4519 
4520 	pa->pa_deleted = 1;
4521 
4522 	if (pa->pa_type == MB_INODE_PA) {
4523 		ei = EXT4_I(pa->pa_inode);
4524 		atomic_dec(&ei->i_prealloc_active);
4525 	}
4526 }
4527 
4528 static void ext4_mb_pa_callback(struct rcu_head *head)
4529 {
4530 	struct ext4_prealloc_space *pa;
4531 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
4532 
4533 	BUG_ON(atomic_read(&pa->pa_count));
4534 	BUG_ON(pa->pa_deleted == 0);
4535 	kmem_cache_free(ext4_pspace_cachep, pa);
4536 }
4537 
4538 /*
4539  * drops a reference to preallocated space descriptor
4540  * if this was the last reference and the space is consumed
4541  */
4542 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
4543 			struct super_block *sb, struct ext4_prealloc_space *pa)
4544 {
4545 	ext4_group_t grp;
4546 	ext4_fsblk_t grp_blk;
4547 
4548 	/* in this short window concurrent discard can set pa_deleted */
4549 	spin_lock(&pa->pa_lock);
4550 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
4551 		spin_unlock(&pa->pa_lock);
4552 		return;
4553 	}
4554 
4555 	if (pa->pa_deleted == 1) {
4556 		spin_unlock(&pa->pa_lock);
4557 		return;
4558 	}
4559 
4560 	ext4_mb_mark_pa_deleted(sb, pa);
4561 	spin_unlock(&pa->pa_lock);
4562 
4563 	grp_blk = pa->pa_pstart;
4564 	/*
4565 	 * If doing group-based preallocation, pa_pstart may be in the
4566 	 * next group when pa is used up
4567 	 */
4568 	if (pa->pa_type == MB_GROUP_PA)
4569 		grp_blk--;
4570 
4571 	grp = ext4_get_group_number(sb, grp_blk);
4572 
4573 	/*
4574 	 * possible race:
4575 	 *
4576 	 *  P1 (buddy init)			P2 (regular allocation)
4577 	 *					find block B in PA
4578 	 *  copy on-disk bitmap to buddy
4579 	 *  					mark B in on-disk bitmap
4580 	 *					drop PA from group
4581 	 *  mark all PAs in buddy
4582 	 *
4583 	 * thus, P1 initializes buddy with B available. to prevent this
4584 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
4585 	 * against that pair
4586 	 */
4587 	ext4_lock_group(sb, grp);
4588 	list_del(&pa->pa_group_list);
4589 	ext4_unlock_group(sb, grp);
4590 
4591 	spin_lock(pa->pa_obj_lock);
4592 	list_del_rcu(&pa->pa_inode_list);
4593 	spin_unlock(pa->pa_obj_lock);
4594 
4595 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4596 }
4597 
4598 /*
4599  * creates new preallocated space for given inode
4600  */
4601 static noinline_for_stack void
4602 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
4603 {
4604 	struct super_block *sb = ac->ac_sb;
4605 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4606 	struct ext4_prealloc_space *pa;
4607 	struct ext4_group_info *grp;
4608 	struct ext4_inode_info *ei;
4609 
4610 	/* preallocate only when found space is larger then requested */
4611 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4612 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4613 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4614 	BUG_ON(ac->ac_pa == NULL);
4615 
4616 	pa = ac->ac_pa;
4617 
4618 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
4619 		int winl;
4620 		int wins;
4621 		int win;
4622 		int offs;
4623 
4624 		/* we can't allocate as much as normalizer wants.
4625 		 * so, found space must get proper lstart
4626 		 * to cover original request */
4627 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
4628 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
4629 
4630 		/* we're limited by original request in that
4631 		 * logical block must be covered any way
4632 		 * winl is window we can move our chunk within */
4633 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
4634 
4635 		/* also, we should cover whole original request */
4636 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
4637 
4638 		/* the smallest one defines real window */
4639 		win = min(winl, wins);
4640 
4641 		offs = ac->ac_o_ex.fe_logical %
4642 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4643 		if (offs && offs < win)
4644 			win = offs;
4645 
4646 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
4647 			EXT4_NUM_B2C(sbi, win);
4648 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
4649 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
4650 	}
4651 
4652 	/* preallocation can change ac_b_ex, thus we store actually
4653 	 * allocated blocks for history */
4654 	ac->ac_f_ex = ac->ac_b_ex;
4655 
4656 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
4657 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4658 	pa->pa_len = ac->ac_b_ex.fe_len;
4659 	pa->pa_free = pa->pa_len;
4660 	spin_lock_init(&pa->pa_lock);
4661 	INIT_LIST_HEAD(&pa->pa_inode_list);
4662 	INIT_LIST_HEAD(&pa->pa_group_list);
4663 	pa->pa_deleted = 0;
4664 	pa->pa_type = MB_INODE_PA;
4665 
4666 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4667 		 pa->pa_len, pa->pa_lstart);
4668 	trace_ext4_mb_new_inode_pa(ac, pa);
4669 
4670 	ext4_mb_use_inode_pa(ac, pa);
4671 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
4672 
4673 	ei = EXT4_I(ac->ac_inode);
4674 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4675 
4676 	pa->pa_obj_lock = &ei->i_prealloc_lock;
4677 	pa->pa_inode = ac->ac_inode;
4678 
4679 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4680 
4681 	spin_lock(pa->pa_obj_lock);
4682 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
4683 	spin_unlock(pa->pa_obj_lock);
4684 	atomic_inc(&ei->i_prealloc_active);
4685 }
4686 
4687 /*
4688  * creates new preallocated space for locality group inodes belongs to
4689  */
4690 static noinline_for_stack void
4691 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
4692 {
4693 	struct super_block *sb = ac->ac_sb;
4694 	struct ext4_locality_group *lg;
4695 	struct ext4_prealloc_space *pa;
4696 	struct ext4_group_info *grp;
4697 
4698 	/* preallocate only when found space is larger then requested */
4699 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4700 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4701 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4702 	BUG_ON(ac->ac_pa == NULL);
4703 
4704 	pa = ac->ac_pa;
4705 
4706 	/* preallocation can change ac_b_ex, thus we store actually
4707 	 * allocated blocks for history */
4708 	ac->ac_f_ex = ac->ac_b_ex;
4709 
4710 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4711 	pa->pa_lstart = pa->pa_pstart;
4712 	pa->pa_len = ac->ac_b_ex.fe_len;
4713 	pa->pa_free = pa->pa_len;
4714 	spin_lock_init(&pa->pa_lock);
4715 	INIT_LIST_HEAD(&pa->pa_inode_list);
4716 	INIT_LIST_HEAD(&pa->pa_group_list);
4717 	pa->pa_deleted = 0;
4718 	pa->pa_type = MB_GROUP_PA;
4719 
4720 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4721 		 pa->pa_len, pa->pa_lstart);
4722 	trace_ext4_mb_new_group_pa(ac, pa);
4723 
4724 	ext4_mb_use_group_pa(ac, pa);
4725 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
4726 
4727 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4728 	lg = ac->ac_lg;
4729 	BUG_ON(lg == NULL);
4730 
4731 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
4732 	pa->pa_inode = NULL;
4733 
4734 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4735 
4736 	/*
4737 	 * We will later add the new pa to the right bucket
4738 	 * after updating the pa_free in ext4_mb_release_context
4739 	 */
4740 }
4741 
4742 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
4743 {
4744 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4745 		ext4_mb_new_group_pa(ac);
4746 	else
4747 		ext4_mb_new_inode_pa(ac);
4748 }
4749 
4750 /*
4751  * finds all unused blocks in on-disk bitmap, frees them in
4752  * in-core bitmap and buddy.
4753  * @pa must be unlinked from inode and group lists, so that
4754  * nobody else can find/use it.
4755  * the caller MUST hold group/inode locks.
4756  * TODO: optimize the case when there are no in-core structures yet
4757  */
4758 static noinline_for_stack int
4759 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
4760 			struct ext4_prealloc_space *pa)
4761 {
4762 	struct super_block *sb = e4b->bd_sb;
4763 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4764 	unsigned int end;
4765 	unsigned int next;
4766 	ext4_group_t group;
4767 	ext4_grpblk_t bit;
4768 	unsigned long long grp_blk_start;
4769 	int free = 0;
4770 
4771 	BUG_ON(pa->pa_deleted == 0);
4772 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4773 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
4774 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4775 	end = bit + pa->pa_len;
4776 
4777 	while (bit < end) {
4778 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
4779 		if (bit >= end)
4780 			break;
4781 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
4782 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
4783 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
4784 			 (unsigned) next - bit, (unsigned) group);
4785 		free += next - bit;
4786 
4787 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
4788 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
4789 						    EXT4_C2B(sbi, bit)),
4790 					       next - bit);
4791 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
4792 		bit = next + 1;
4793 	}
4794 	if (free != pa->pa_free) {
4795 		ext4_msg(e4b->bd_sb, KERN_CRIT,
4796 			 "pa %p: logic %lu, phys. %lu, len %d",
4797 			 pa, (unsigned long) pa->pa_lstart,
4798 			 (unsigned long) pa->pa_pstart,
4799 			 pa->pa_len);
4800 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
4801 					free, pa->pa_free);
4802 		/*
4803 		 * pa is already deleted so we use the value obtained
4804 		 * from the bitmap and continue.
4805 		 */
4806 	}
4807 	atomic_add(free, &sbi->s_mb_discarded);
4808 
4809 	return 0;
4810 }
4811 
4812 static noinline_for_stack int
4813 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
4814 				struct ext4_prealloc_space *pa)
4815 {
4816 	struct super_block *sb = e4b->bd_sb;
4817 	ext4_group_t group;
4818 	ext4_grpblk_t bit;
4819 
4820 	trace_ext4_mb_release_group_pa(sb, pa);
4821 	BUG_ON(pa->pa_deleted == 0);
4822 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4823 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4824 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
4825 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
4826 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
4827 
4828 	return 0;
4829 }
4830 
4831 /*
4832  * releases all preallocations in given group
4833  *
4834  * first, we need to decide discard policy:
4835  * - when do we discard
4836  *   1) ENOSPC
4837  * - how many do we discard
4838  *   1) how many requested
4839  */
4840 static noinline_for_stack int
4841 ext4_mb_discard_group_preallocations(struct super_block *sb,
4842 				     ext4_group_t group, int *busy)
4843 {
4844 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4845 	struct buffer_head *bitmap_bh = NULL;
4846 	struct ext4_prealloc_space *pa, *tmp;
4847 	struct list_head list;
4848 	struct ext4_buddy e4b;
4849 	int err;
4850 	int free = 0;
4851 
4852 	mb_debug(sb, "discard preallocation for group %u\n", group);
4853 	if (list_empty(&grp->bb_prealloc_list))
4854 		goto out_dbg;
4855 
4856 	bitmap_bh = ext4_read_block_bitmap(sb, group);
4857 	if (IS_ERR(bitmap_bh)) {
4858 		err = PTR_ERR(bitmap_bh);
4859 		ext4_error_err(sb, -err,
4860 			       "Error %d reading block bitmap for %u",
4861 			       err, group);
4862 		goto out_dbg;
4863 	}
4864 
4865 	err = ext4_mb_load_buddy(sb, group, &e4b);
4866 	if (err) {
4867 		ext4_warning(sb, "Error %d loading buddy information for %u",
4868 			     err, group);
4869 		put_bh(bitmap_bh);
4870 		goto out_dbg;
4871 	}
4872 
4873 	INIT_LIST_HEAD(&list);
4874 	ext4_lock_group(sb, group);
4875 	list_for_each_entry_safe(pa, tmp,
4876 				&grp->bb_prealloc_list, pa_group_list) {
4877 		spin_lock(&pa->pa_lock);
4878 		if (atomic_read(&pa->pa_count)) {
4879 			spin_unlock(&pa->pa_lock);
4880 			*busy = 1;
4881 			continue;
4882 		}
4883 		if (pa->pa_deleted) {
4884 			spin_unlock(&pa->pa_lock);
4885 			continue;
4886 		}
4887 
4888 		/* seems this one can be freed ... */
4889 		ext4_mb_mark_pa_deleted(sb, pa);
4890 
4891 		if (!free)
4892 			this_cpu_inc(discard_pa_seq);
4893 
4894 		/* we can trust pa_free ... */
4895 		free += pa->pa_free;
4896 
4897 		spin_unlock(&pa->pa_lock);
4898 
4899 		list_del(&pa->pa_group_list);
4900 		list_add(&pa->u.pa_tmp_list, &list);
4901 	}
4902 
4903 	/* now free all selected PAs */
4904 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4905 
4906 		/* remove from object (inode or locality group) */
4907 		spin_lock(pa->pa_obj_lock);
4908 		list_del_rcu(&pa->pa_inode_list);
4909 		spin_unlock(pa->pa_obj_lock);
4910 
4911 		if (pa->pa_type == MB_GROUP_PA)
4912 			ext4_mb_release_group_pa(&e4b, pa);
4913 		else
4914 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4915 
4916 		list_del(&pa->u.pa_tmp_list);
4917 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4918 	}
4919 
4920 	ext4_unlock_group(sb, group);
4921 	ext4_mb_unload_buddy(&e4b);
4922 	put_bh(bitmap_bh);
4923 out_dbg:
4924 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
4925 		 free, group, grp->bb_free);
4926 	return free;
4927 }
4928 
4929 /*
4930  * releases all non-used preallocated blocks for given inode
4931  *
4932  * It's important to discard preallocations under i_data_sem
4933  * We don't want another block to be served from the prealloc
4934  * space when we are discarding the inode prealloc space.
4935  *
4936  * FIXME!! Make sure it is valid at all the call sites
4937  */
4938 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
4939 {
4940 	struct ext4_inode_info *ei = EXT4_I(inode);
4941 	struct super_block *sb = inode->i_sb;
4942 	struct buffer_head *bitmap_bh = NULL;
4943 	struct ext4_prealloc_space *pa, *tmp;
4944 	ext4_group_t group = 0;
4945 	struct list_head list;
4946 	struct ext4_buddy e4b;
4947 	int err;
4948 
4949 	if (!S_ISREG(inode->i_mode)) {
4950 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4951 		return;
4952 	}
4953 
4954 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
4955 		return;
4956 
4957 	mb_debug(sb, "discard preallocation for inode %lu\n",
4958 		 inode->i_ino);
4959 	trace_ext4_discard_preallocations(inode,
4960 			atomic_read(&ei->i_prealloc_active), needed);
4961 
4962 	INIT_LIST_HEAD(&list);
4963 
4964 	if (needed == 0)
4965 		needed = UINT_MAX;
4966 
4967 repeat:
4968 	/* first, collect all pa's in the inode */
4969 	spin_lock(&ei->i_prealloc_lock);
4970 	while (!list_empty(&ei->i_prealloc_list) && needed) {
4971 		pa = list_entry(ei->i_prealloc_list.prev,
4972 				struct ext4_prealloc_space, pa_inode_list);
4973 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4974 		spin_lock(&pa->pa_lock);
4975 		if (atomic_read(&pa->pa_count)) {
4976 			/* this shouldn't happen often - nobody should
4977 			 * use preallocation while we're discarding it */
4978 			spin_unlock(&pa->pa_lock);
4979 			spin_unlock(&ei->i_prealloc_lock);
4980 			ext4_msg(sb, KERN_ERR,
4981 				 "uh-oh! used pa while discarding");
4982 			WARN_ON(1);
4983 			schedule_timeout_uninterruptible(HZ);
4984 			goto repeat;
4985 
4986 		}
4987 		if (pa->pa_deleted == 0) {
4988 			ext4_mb_mark_pa_deleted(sb, pa);
4989 			spin_unlock(&pa->pa_lock);
4990 			list_del_rcu(&pa->pa_inode_list);
4991 			list_add(&pa->u.pa_tmp_list, &list);
4992 			needed--;
4993 			continue;
4994 		}
4995 
4996 		/* someone is deleting pa right now */
4997 		spin_unlock(&pa->pa_lock);
4998 		spin_unlock(&ei->i_prealloc_lock);
4999 
5000 		/* we have to wait here because pa_deleted
5001 		 * doesn't mean pa is already unlinked from
5002 		 * the list. as we might be called from
5003 		 * ->clear_inode() the inode will get freed
5004 		 * and concurrent thread which is unlinking
5005 		 * pa from inode's list may access already
5006 		 * freed memory, bad-bad-bad */
5007 
5008 		/* XXX: if this happens too often, we can
5009 		 * add a flag to force wait only in case
5010 		 * of ->clear_inode(), but not in case of
5011 		 * regular truncate */
5012 		schedule_timeout_uninterruptible(HZ);
5013 		goto repeat;
5014 	}
5015 	spin_unlock(&ei->i_prealloc_lock);
5016 
5017 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5018 		BUG_ON(pa->pa_type != MB_INODE_PA);
5019 		group = ext4_get_group_number(sb, pa->pa_pstart);
5020 
5021 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5022 					     GFP_NOFS|__GFP_NOFAIL);
5023 		if (err) {
5024 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5025 				       err, group);
5026 			continue;
5027 		}
5028 
5029 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5030 		if (IS_ERR(bitmap_bh)) {
5031 			err = PTR_ERR(bitmap_bh);
5032 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5033 				       err, group);
5034 			ext4_mb_unload_buddy(&e4b);
5035 			continue;
5036 		}
5037 
5038 		ext4_lock_group(sb, group);
5039 		list_del(&pa->pa_group_list);
5040 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5041 		ext4_unlock_group(sb, group);
5042 
5043 		ext4_mb_unload_buddy(&e4b);
5044 		put_bh(bitmap_bh);
5045 
5046 		list_del(&pa->u.pa_tmp_list);
5047 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5048 	}
5049 }
5050 
5051 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5052 {
5053 	struct ext4_prealloc_space *pa;
5054 
5055 	BUG_ON(ext4_pspace_cachep == NULL);
5056 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5057 	if (!pa)
5058 		return -ENOMEM;
5059 	atomic_set(&pa->pa_count, 1);
5060 	ac->ac_pa = pa;
5061 	return 0;
5062 }
5063 
5064 static void ext4_mb_pa_free(struct ext4_allocation_context *ac)
5065 {
5066 	struct ext4_prealloc_space *pa = ac->ac_pa;
5067 
5068 	BUG_ON(!pa);
5069 	ac->ac_pa = NULL;
5070 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5071 	kmem_cache_free(ext4_pspace_cachep, pa);
5072 }
5073 
5074 #ifdef CONFIG_EXT4_DEBUG
5075 static inline void ext4_mb_show_pa(struct super_block *sb)
5076 {
5077 	ext4_group_t i, ngroups;
5078 
5079 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5080 		return;
5081 
5082 	ngroups = ext4_get_groups_count(sb);
5083 	mb_debug(sb, "groups: ");
5084 	for (i = 0; i < ngroups; i++) {
5085 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5086 		struct ext4_prealloc_space *pa;
5087 		ext4_grpblk_t start;
5088 		struct list_head *cur;
5089 		ext4_lock_group(sb, i);
5090 		list_for_each(cur, &grp->bb_prealloc_list) {
5091 			pa = list_entry(cur, struct ext4_prealloc_space,
5092 					pa_group_list);
5093 			spin_lock(&pa->pa_lock);
5094 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5095 						     NULL, &start);
5096 			spin_unlock(&pa->pa_lock);
5097 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5098 				 pa->pa_len);
5099 		}
5100 		ext4_unlock_group(sb, i);
5101 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5102 			 grp->bb_fragments);
5103 	}
5104 }
5105 
5106 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5107 {
5108 	struct super_block *sb = ac->ac_sb;
5109 
5110 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5111 		return;
5112 
5113 	mb_debug(sb, "Can't allocate:"
5114 			" Allocation context details:");
5115 	mb_debug(sb, "status %u flags 0x%x",
5116 			ac->ac_status, ac->ac_flags);
5117 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5118 			"goal %lu/%lu/%lu@%lu, "
5119 			"best %lu/%lu/%lu@%lu cr %d",
5120 			(unsigned long)ac->ac_o_ex.fe_group,
5121 			(unsigned long)ac->ac_o_ex.fe_start,
5122 			(unsigned long)ac->ac_o_ex.fe_len,
5123 			(unsigned long)ac->ac_o_ex.fe_logical,
5124 			(unsigned long)ac->ac_g_ex.fe_group,
5125 			(unsigned long)ac->ac_g_ex.fe_start,
5126 			(unsigned long)ac->ac_g_ex.fe_len,
5127 			(unsigned long)ac->ac_g_ex.fe_logical,
5128 			(unsigned long)ac->ac_b_ex.fe_group,
5129 			(unsigned long)ac->ac_b_ex.fe_start,
5130 			(unsigned long)ac->ac_b_ex.fe_len,
5131 			(unsigned long)ac->ac_b_ex.fe_logical,
5132 			(int)ac->ac_criteria);
5133 	mb_debug(sb, "%u found", ac->ac_found);
5134 	ext4_mb_show_pa(sb);
5135 }
5136 #else
5137 static inline void ext4_mb_show_pa(struct super_block *sb)
5138 {
5139 	return;
5140 }
5141 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5142 {
5143 	ext4_mb_show_pa(ac->ac_sb);
5144 	return;
5145 }
5146 #endif
5147 
5148 /*
5149  * We use locality group preallocation for small size file. The size of the
5150  * file is determined by the current size or the resulting size after
5151  * allocation which ever is larger
5152  *
5153  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5154  */
5155 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5156 {
5157 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5158 	int bsbits = ac->ac_sb->s_blocksize_bits;
5159 	loff_t size, isize;
5160 	bool inode_pa_eligible, group_pa_eligible;
5161 
5162 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5163 		return;
5164 
5165 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5166 		return;
5167 
5168 	group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5169 	inode_pa_eligible = true;
5170 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
5171 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5172 		>> bsbits;
5173 
5174 	/* No point in using inode preallocation for closed files */
5175 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5176 	    !inode_is_open_for_write(ac->ac_inode))
5177 		inode_pa_eligible = false;
5178 
5179 	size = max(size, isize);
5180 	/* Don't use group allocation for large files */
5181 	if (size > sbi->s_mb_stream_request)
5182 		group_pa_eligible = false;
5183 
5184 	if (!group_pa_eligible) {
5185 		if (inode_pa_eligible)
5186 			ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5187 		else
5188 			ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5189 		return;
5190 	}
5191 
5192 	BUG_ON(ac->ac_lg != NULL);
5193 	/*
5194 	 * locality group prealloc space are per cpu. The reason for having
5195 	 * per cpu locality group is to reduce the contention between block
5196 	 * request from multiple CPUs.
5197 	 */
5198 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5199 
5200 	/* we're going to use group allocation */
5201 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5202 
5203 	/* serialize all allocations in the group */
5204 	mutex_lock(&ac->ac_lg->lg_mutex);
5205 }
5206 
5207 static noinline_for_stack int
5208 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5209 				struct ext4_allocation_request *ar)
5210 {
5211 	struct super_block *sb = ar->inode->i_sb;
5212 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5213 	struct ext4_super_block *es = sbi->s_es;
5214 	ext4_group_t group;
5215 	unsigned int len;
5216 	ext4_fsblk_t goal;
5217 	ext4_grpblk_t block;
5218 
5219 	/* we can't allocate > group size */
5220 	len = ar->len;
5221 
5222 	/* just a dirty hack to filter too big requests  */
5223 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5224 		len = EXT4_CLUSTERS_PER_GROUP(sb);
5225 
5226 	/* start searching from the goal */
5227 	goal = ar->goal;
5228 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5229 			goal >= ext4_blocks_count(es))
5230 		goal = le32_to_cpu(es->s_first_data_block);
5231 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5232 
5233 	/* set up allocation goals */
5234 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5235 	ac->ac_status = AC_STATUS_CONTINUE;
5236 	ac->ac_sb = sb;
5237 	ac->ac_inode = ar->inode;
5238 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5239 	ac->ac_o_ex.fe_group = group;
5240 	ac->ac_o_ex.fe_start = block;
5241 	ac->ac_o_ex.fe_len = len;
5242 	ac->ac_g_ex = ac->ac_o_ex;
5243 	ac->ac_flags = ar->flags;
5244 
5245 	/* we have to define context: we'll work with a file or
5246 	 * locality group. this is a policy, actually */
5247 	ext4_mb_group_or_file(ac);
5248 
5249 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5250 			"left: %u/%u, right %u/%u to %swritable\n",
5251 			(unsigned) ar->len, (unsigned) ar->logical,
5252 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5253 			(unsigned) ar->lleft, (unsigned) ar->pleft,
5254 			(unsigned) ar->lright, (unsigned) ar->pright,
5255 			inode_is_open_for_write(ar->inode) ? "" : "non-");
5256 	return 0;
5257 
5258 }
5259 
5260 static noinline_for_stack void
5261 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5262 					struct ext4_locality_group *lg,
5263 					int order, int total_entries)
5264 {
5265 	ext4_group_t group = 0;
5266 	struct ext4_buddy e4b;
5267 	struct list_head discard_list;
5268 	struct ext4_prealloc_space *pa, *tmp;
5269 
5270 	mb_debug(sb, "discard locality group preallocation\n");
5271 
5272 	INIT_LIST_HEAD(&discard_list);
5273 
5274 	spin_lock(&lg->lg_prealloc_lock);
5275 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5276 				pa_inode_list,
5277 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5278 		spin_lock(&pa->pa_lock);
5279 		if (atomic_read(&pa->pa_count)) {
5280 			/*
5281 			 * This is the pa that we just used
5282 			 * for block allocation. So don't
5283 			 * free that
5284 			 */
5285 			spin_unlock(&pa->pa_lock);
5286 			continue;
5287 		}
5288 		if (pa->pa_deleted) {
5289 			spin_unlock(&pa->pa_lock);
5290 			continue;
5291 		}
5292 		/* only lg prealloc space */
5293 		BUG_ON(pa->pa_type != MB_GROUP_PA);
5294 
5295 		/* seems this one can be freed ... */
5296 		ext4_mb_mark_pa_deleted(sb, pa);
5297 		spin_unlock(&pa->pa_lock);
5298 
5299 		list_del_rcu(&pa->pa_inode_list);
5300 		list_add(&pa->u.pa_tmp_list, &discard_list);
5301 
5302 		total_entries--;
5303 		if (total_entries <= 5) {
5304 			/*
5305 			 * we want to keep only 5 entries
5306 			 * allowing it to grow to 8. This
5307 			 * mak sure we don't call discard
5308 			 * soon for this list.
5309 			 */
5310 			break;
5311 		}
5312 	}
5313 	spin_unlock(&lg->lg_prealloc_lock);
5314 
5315 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5316 		int err;
5317 
5318 		group = ext4_get_group_number(sb, pa->pa_pstart);
5319 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5320 					     GFP_NOFS|__GFP_NOFAIL);
5321 		if (err) {
5322 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5323 				       err, group);
5324 			continue;
5325 		}
5326 		ext4_lock_group(sb, group);
5327 		list_del(&pa->pa_group_list);
5328 		ext4_mb_release_group_pa(&e4b, pa);
5329 		ext4_unlock_group(sb, group);
5330 
5331 		ext4_mb_unload_buddy(&e4b);
5332 		list_del(&pa->u.pa_tmp_list);
5333 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5334 	}
5335 }
5336 
5337 /*
5338  * We have incremented pa_count. So it cannot be freed at this
5339  * point. Also we hold lg_mutex. So no parallel allocation is
5340  * possible from this lg. That means pa_free cannot be updated.
5341  *
5342  * A parallel ext4_mb_discard_group_preallocations is possible.
5343  * which can cause the lg_prealloc_list to be updated.
5344  */
5345 
5346 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5347 {
5348 	int order, added = 0, lg_prealloc_count = 1;
5349 	struct super_block *sb = ac->ac_sb;
5350 	struct ext4_locality_group *lg = ac->ac_lg;
5351 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5352 
5353 	order = fls(pa->pa_free) - 1;
5354 	if (order > PREALLOC_TB_SIZE - 1)
5355 		/* The max size of hash table is PREALLOC_TB_SIZE */
5356 		order = PREALLOC_TB_SIZE - 1;
5357 	/* Add the prealloc space to lg */
5358 	spin_lock(&lg->lg_prealloc_lock);
5359 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5360 				pa_inode_list,
5361 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5362 		spin_lock(&tmp_pa->pa_lock);
5363 		if (tmp_pa->pa_deleted) {
5364 			spin_unlock(&tmp_pa->pa_lock);
5365 			continue;
5366 		}
5367 		if (!added && pa->pa_free < tmp_pa->pa_free) {
5368 			/* Add to the tail of the previous entry */
5369 			list_add_tail_rcu(&pa->pa_inode_list,
5370 						&tmp_pa->pa_inode_list);
5371 			added = 1;
5372 			/*
5373 			 * we want to count the total
5374 			 * number of entries in the list
5375 			 */
5376 		}
5377 		spin_unlock(&tmp_pa->pa_lock);
5378 		lg_prealloc_count++;
5379 	}
5380 	if (!added)
5381 		list_add_tail_rcu(&pa->pa_inode_list,
5382 					&lg->lg_prealloc_list[order]);
5383 	spin_unlock(&lg->lg_prealloc_lock);
5384 
5385 	/* Now trim the list to be not more than 8 elements */
5386 	if (lg_prealloc_count > 8) {
5387 		ext4_mb_discard_lg_preallocations(sb, lg,
5388 						  order, lg_prealloc_count);
5389 		return;
5390 	}
5391 	return ;
5392 }
5393 
5394 /*
5395  * if per-inode prealloc list is too long, trim some PA
5396  */
5397 static void ext4_mb_trim_inode_pa(struct inode *inode)
5398 {
5399 	struct ext4_inode_info *ei = EXT4_I(inode);
5400 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5401 	int count, delta;
5402 
5403 	count = atomic_read(&ei->i_prealloc_active);
5404 	delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1;
5405 	if (count > sbi->s_mb_max_inode_prealloc + delta) {
5406 		count -= sbi->s_mb_max_inode_prealloc;
5407 		ext4_discard_preallocations(inode, count);
5408 	}
5409 }
5410 
5411 /*
5412  * release all resource we used in allocation
5413  */
5414 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5415 {
5416 	struct inode *inode = ac->ac_inode;
5417 	struct ext4_inode_info *ei = EXT4_I(inode);
5418 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5419 	struct ext4_prealloc_space *pa = ac->ac_pa;
5420 	if (pa) {
5421 		if (pa->pa_type == MB_GROUP_PA) {
5422 			/* see comment in ext4_mb_use_group_pa() */
5423 			spin_lock(&pa->pa_lock);
5424 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5425 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5426 			pa->pa_free -= ac->ac_b_ex.fe_len;
5427 			pa->pa_len -= ac->ac_b_ex.fe_len;
5428 			spin_unlock(&pa->pa_lock);
5429 
5430 			/*
5431 			 * We want to add the pa to the right bucket.
5432 			 * Remove it from the list and while adding
5433 			 * make sure the list to which we are adding
5434 			 * doesn't grow big.
5435 			 */
5436 			if (likely(pa->pa_free)) {
5437 				spin_lock(pa->pa_obj_lock);
5438 				list_del_rcu(&pa->pa_inode_list);
5439 				spin_unlock(pa->pa_obj_lock);
5440 				ext4_mb_add_n_trim(ac);
5441 			}
5442 		}
5443 
5444 		if (pa->pa_type == MB_INODE_PA) {
5445 			/*
5446 			 * treat per-inode prealloc list as a lru list, then try
5447 			 * to trim the least recently used PA.
5448 			 */
5449 			spin_lock(pa->pa_obj_lock);
5450 			list_move(&pa->pa_inode_list, &ei->i_prealloc_list);
5451 			spin_unlock(pa->pa_obj_lock);
5452 		}
5453 
5454 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
5455 	}
5456 	if (ac->ac_bitmap_page)
5457 		put_page(ac->ac_bitmap_page);
5458 	if (ac->ac_buddy_page)
5459 		put_page(ac->ac_buddy_page);
5460 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5461 		mutex_unlock(&ac->ac_lg->lg_mutex);
5462 	ext4_mb_collect_stats(ac);
5463 	ext4_mb_trim_inode_pa(inode);
5464 	return 0;
5465 }
5466 
5467 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
5468 {
5469 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
5470 	int ret;
5471 	int freed = 0, busy = 0;
5472 	int retry = 0;
5473 
5474 	trace_ext4_mb_discard_preallocations(sb, needed);
5475 
5476 	if (needed == 0)
5477 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
5478  repeat:
5479 	for (i = 0; i < ngroups && needed > 0; i++) {
5480 		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
5481 		freed += ret;
5482 		needed -= ret;
5483 		cond_resched();
5484 	}
5485 
5486 	if (needed > 0 && busy && ++retry < 3) {
5487 		busy = 0;
5488 		goto repeat;
5489 	}
5490 
5491 	return freed;
5492 }
5493 
5494 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
5495 			struct ext4_allocation_context *ac, u64 *seq)
5496 {
5497 	int freed;
5498 	u64 seq_retry = 0;
5499 	bool ret = false;
5500 
5501 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
5502 	if (freed) {
5503 		ret = true;
5504 		goto out_dbg;
5505 	}
5506 	seq_retry = ext4_get_discard_pa_seq_sum();
5507 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
5508 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
5509 		*seq = seq_retry;
5510 		ret = true;
5511 	}
5512 
5513 out_dbg:
5514 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
5515 	return ret;
5516 }
5517 
5518 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5519 				struct ext4_allocation_request *ar, int *errp);
5520 
5521 /*
5522  * Main entry point into mballoc to allocate blocks
5523  * it tries to use preallocation first, then falls back
5524  * to usual allocation
5525  */
5526 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
5527 				struct ext4_allocation_request *ar, int *errp)
5528 {
5529 	struct ext4_allocation_context *ac = NULL;
5530 	struct ext4_sb_info *sbi;
5531 	struct super_block *sb;
5532 	ext4_fsblk_t block = 0;
5533 	unsigned int inquota = 0;
5534 	unsigned int reserv_clstrs = 0;
5535 	int retries = 0;
5536 	u64 seq;
5537 
5538 	might_sleep();
5539 	sb = ar->inode->i_sb;
5540 	sbi = EXT4_SB(sb);
5541 
5542 	trace_ext4_request_blocks(ar);
5543 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
5544 		return ext4_mb_new_blocks_simple(handle, ar, errp);
5545 
5546 	/* Allow to use superuser reservation for quota file */
5547 	if (ext4_is_quota_file(ar->inode))
5548 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
5549 
5550 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
5551 		/* Without delayed allocation we need to verify
5552 		 * there is enough free blocks to do block allocation
5553 		 * and verify allocation doesn't exceed the quota limits.
5554 		 */
5555 		while (ar->len &&
5556 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
5557 
5558 			/* let others to free the space */
5559 			cond_resched();
5560 			ar->len = ar->len >> 1;
5561 		}
5562 		if (!ar->len) {
5563 			ext4_mb_show_pa(sb);
5564 			*errp = -ENOSPC;
5565 			return 0;
5566 		}
5567 		reserv_clstrs = ar->len;
5568 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
5569 			dquot_alloc_block_nofail(ar->inode,
5570 						 EXT4_C2B(sbi, ar->len));
5571 		} else {
5572 			while (ar->len &&
5573 				dquot_alloc_block(ar->inode,
5574 						  EXT4_C2B(sbi, ar->len))) {
5575 
5576 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
5577 				ar->len--;
5578 			}
5579 		}
5580 		inquota = ar->len;
5581 		if (ar->len == 0) {
5582 			*errp = -EDQUOT;
5583 			goto out;
5584 		}
5585 	}
5586 
5587 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
5588 	if (!ac) {
5589 		ar->len = 0;
5590 		*errp = -ENOMEM;
5591 		goto out;
5592 	}
5593 
5594 	*errp = ext4_mb_initialize_context(ac, ar);
5595 	if (*errp) {
5596 		ar->len = 0;
5597 		goto out;
5598 	}
5599 
5600 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
5601 	seq = this_cpu_read(discard_pa_seq);
5602 	if (!ext4_mb_use_preallocated(ac)) {
5603 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
5604 		ext4_mb_normalize_request(ac, ar);
5605 
5606 		*errp = ext4_mb_pa_alloc(ac);
5607 		if (*errp)
5608 			goto errout;
5609 repeat:
5610 		/* allocate space in core */
5611 		*errp = ext4_mb_regular_allocator(ac);
5612 		/*
5613 		 * pa allocated above is added to grp->bb_prealloc_list only
5614 		 * when we were able to allocate some block i.e. when
5615 		 * ac->ac_status == AC_STATUS_FOUND.
5616 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
5617 		 * So we have to free this pa here itself.
5618 		 */
5619 		if (*errp) {
5620 			ext4_mb_pa_free(ac);
5621 			ext4_discard_allocated_blocks(ac);
5622 			goto errout;
5623 		}
5624 		if (ac->ac_status == AC_STATUS_FOUND &&
5625 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
5626 			ext4_mb_pa_free(ac);
5627 	}
5628 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
5629 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
5630 		if (*errp) {
5631 			ext4_discard_allocated_blocks(ac);
5632 			goto errout;
5633 		} else {
5634 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5635 			ar->len = ac->ac_b_ex.fe_len;
5636 		}
5637 	} else {
5638 		if (++retries < 3 &&
5639 		    ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
5640 			goto repeat;
5641 		/*
5642 		 * If block allocation fails then the pa allocated above
5643 		 * needs to be freed here itself.
5644 		 */
5645 		ext4_mb_pa_free(ac);
5646 		*errp = -ENOSPC;
5647 	}
5648 
5649 errout:
5650 	if (*errp) {
5651 		ac->ac_b_ex.fe_len = 0;
5652 		ar->len = 0;
5653 		ext4_mb_show_ac(ac);
5654 	}
5655 	ext4_mb_release_context(ac);
5656 out:
5657 	if (ac)
5658 		kmem_cache_free(ext4_ac_cachep, ac);
5659 	if (inquota && ar->len < inquota)
5660 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
5661 	if (!ar->len) {
5662 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
5663 			/* release all the reserved blocks if non delalloc */
5664 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
5665 						reserv_clstrs);
5666 	}
5667 
5668 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
5669 
5670 	return block;
5671 }
5672 
5673 /*
5674  * We can merge two free data extents only if the physical blocks
5675  * are contiguous, AND the extents were freed by the same transaction,
5676  * AND the blocks are associated with the same group.
5677  */
5678 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
5679 					struct ext4_free_data *entry,
5680 					struct ext4_free_data *new_entry,
5681 					struct rb_root *entry_rb_root)
5682 {
5683 	if ((entry->efd_tid != new_entry->efd_tid) ||
5684 	    (entry->efd_group != new_entry->efd_group))
5685 		return;
5686 	if (entry->efd_start_cluster + entry->efd_count ==
5687 	    new_entry->efd_start_cluster) {
5688 		new_entry->efd_start_cluster = entry->efd_start_cluster;
5689 		new_entry->efd_count += entry->efd_count;
5690 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
5691 		   entry->efd_start_cluster) {
5692 		new_entry->efd_count += entry->efd_count;
5693 	} else
5694 		return;
5695 	spin_lock(&sbi->s_md_lock);
5696 	list_del(&entry->efd_list);
5697 	spin_unlock(&sbi->s_md_lock);
5698 	rb_erase(&entry->efd_node, entry_rb_root);
5699 	kmem_cache_free(ext4_free_data_cachep, entry);
5700 }
5701 
5702 static noinline_for_stack int
5703 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
5704 		      struct ext4_free_data *new_entry)
5705 {
5706 	ext4_group_t group = e4b->bd_group;
5707 	ext4_grpblk_t cluster;
5708 	ext4_grpblk_t clusters = new_entry->efd_count;
5709 	struct ext4_free_data *entry;
5710 	struct ext4_group_info *db = e4b->bd_info;
5711 	struct super_block *sb = e4b->bd_sb;
5712 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5713 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
5714 	struct rb_node *parent = NULL, *new_node;
5715 
5716 	BUG_ON(!ext4_handle_valid(handle));
5717 	BUG_ON(e4b->bd_bitmap_page == NULL);
5718 	BUG_ON(e4b->bd_buddy_page == NULL);
5719 
5720 	new_node = &new_entry->efd_node;
5721 	cluster = new_entry->efd_start_cluster;
5722 
5723 	if (!*n) {
5724 		/* first free block exent. We need to
5725 		   protect buddy cache from being freed,
5726 		 * otherwise we'll refresh it from
5727 		 * on-disk bitmap and lose not-yet-available
5728 		 * blocks */
5729 		get_page(e4b->bd_buddy_page);
5730 		get_page(e4b->bd_bitmap_page);
5731 	}
5732 	while (*n) {
5733 		parent = *n;
5734 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
5735 		if (cluster < entry->efd_start_cluster)
5736 			n = &(*n)->rb_left;
5737 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
5738 			n = &(*n)->rb_right;
5739 		else {
5740 			ext4_grp_locked_error(sb, group, 0,
5741 				ext4_group_first_block_no(sb, group) +
5742 				EXT4_C2B(sbi, cluster),
5743 				"Block already on to-be-freed list");
5744 			kmem_cache_free(ext4_free_data_cachep, new_entry);
5745 			return 0;
5746 		}
5747 	}
5748 
5749 	rb_link_node(new_node, parent, n);
5750 	rb_insert_color(new_node, &db->bb_free_root);
5751 
5752 	/* Now try to see the extent can be merged to left and right */
5753 	node = rb_prev(new_node);
5754 	if (node) {
5755 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5756 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5757 					    &(db->bb_free_root));
5758 	}
5759 
5760 	node = rb_next(new_node);
5761 	if (node) {
5762 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5763 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5764 					    &(db->bb_free_root));
5765 	}
5766 
5767 	spin_lock(&sbi->s_md_lock);
5768 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
5769 	sbi->s_mb_free_pending += clusters;
5770 	spin_unlock(&sbi->s_md_lock);
5771 	return 0;
5772 }
5773 
5774 /*
5775  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
5776  * linearly starting at the goal block and also excludes the blocks which
5777  * are going to be in use after fast commit replay.
5778  */
5779 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5780 				struct ext4_allocation_request *ar, int *errp)
5781 {
5782 	struct buffer_head *bitmap_bh;
5783 	struct super_block *sb = ar->inode->i_sb;
5784 	ext4_group_t group;
5785 	ext4_grpblk_t blkoff;
5786 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
5787 	ext4_grpblk_t i = 0;
5788 	ext4_fsblk_t goal, block;
5789 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5790 
5791 	goal = ar->goal;
5792 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5793 			goal >= ext4_blocks_count(es))
5794 		goal = le32_to_cpu(es->s_first_data_block);
5795 
5796 	ar->len = 0;
5797 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
5798 	for (; group < ext4_get_groups_count(sb); group++) {
5799 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5800 		if (IS_ERR(bitmap_bh)) {
5801 			*errp = PTR_ERR(bitmap_bh);
5802 			pr_warn("Failed to read block bitmap\n");
5803 			return 0;
5804 		}
5805 
5806 		ext4_get_group_no_and_offset(sb,
5807 			max(ext4_group_first_block_no(sb, group), goal),
5808 			NULL, &blkoff);
5809 		while (1) {
5810 			i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
5811 						blkoff);
5812 			if (i >= max)
5813 				break;
5814 			if (ext4_fc_replay_check_excluded(sb,
5815 				ext4_group_first_block_no(sb, group) + i)) {
5816 				blkoff = i + 1;
5817 			} else
5818 				break;
5819 		}
5820 		brelse(bitmap_bh);
5821 		if (i < max)
5822 			break;
5823 	}
5824 
5825 	if (group >= ext4_get_groups_count(sb) || i >= max) {
5826 		*errp = -ENOSPC;
5827 		return 0;
5828 	}
5829 
5830 	block = ext4_group_first_block_no(sb, group) + i;
5831 	ext4_mb_mark_bb(sb, block, 1, 1);
5832 	ar->len = 1;
5833 
5834 	return block;
5835 }
5836 
5837 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
5838 					unsigned long count)
5839 {
5840 	struct buffer_head *bitmap_bh;
5841 	struct super_block *sb = inode->i_sb;
5842 	struct ext4_group_desc *gdp;
5843 	struct buffer_head *gdp_bh;
5844 	ext4_group_t group;
5845 	ext4_grpblk_t blkoff;
5846 	int already_freed = 0, err, i;
5847 
5848 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
5849 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5850 	if (IS_ERR(bitmap_bh)) {
5851 		err = PTR_ERR(bitmap_bh);
5852 		pr_warn("Failed to read block bitmap\n");
5853 		return;
5854 	}
5855 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
5856 	if (!gdp)
5857 		return;
5858 
5859 	for (i = 0; i < count; i++) {
5860 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
5861 			already_freed++;
5862 	}
5863 	mb_clear_bits(bitmap_bh->b_data, blkoff, count);
5864 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
5865 	if (err)
5866 		return;
5867 	ext4_free_group_clusters_set(
5868 		sb, gdp, ext4_free_group_clusters(sb, gdp) +
5869 		count - already_freed);
5870 	ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
5871 	ext4_group_desc_csum_set(sb, group, gdp);
5872 	ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
5873 	sync_dirty_buffer(bitmap_bh);
5874 	sync_dirty_buffer(gdp_bh);
5875 	brelse(bitmap_bh);
5876 }
5877 
5878 /**
5879  * ext4_mb_clear_bb() -- helper function for freeing blocks.
5880  *			Used by ext4_free_blocks()
5881  * @handle:		handle for this transaction
5882  * @inode:		inode
5883  * @block:		starting physical block to be freed
5884  * @count:		number of blocks to be freed
5885  * @flags:		flags used by ext4_free_blocks
5886  */
5887 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
5888 			       ext4_fsblk_t block, unsigned long count,
5889 			       int flags)
5890 {
5891 	struct buffer_head *bitmap_bh = NULL;
5892 	struct super_block *sb = inode->i_sb;
5893 	struct ext4_group_desc *gdp;
5894 	unsigned int overflow;
5895 	ext4_grpblk_t bit;
5896 	struct buffer_head *gd_bh;
5897 	ext4_group_t block_group;
5898 	struct ext4_sb_info *sbi;
5899 	struct ext4_buddy e4b;
5900 	unsigned int count_clusters;
5901 	int err = 0;
5902 	int ret;
5903 
5904 	sbi = EXT4_SB(sb);
5905 
5906 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
5907 	    !ext4_inode_block_valid(inode, block, count)) {
5908 		ext4_error(sb, "Freeing blocks in system zone - "
5909 			   "Block = %llu, count = %lu", block, count);
5910 		/* err = 0. ext4_std_error should be a no op */
5911 		goto error_return;
5912 	}
5913 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
5914 
5915 do_more:
5916 	overflow = 0;
5917 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5918 
5919 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
5920 			ext4_get_group_info(sb, block_group))))
5921 		return;
5922 
5923 	/*
5924 	 * Check to see if we are freeing blocks across a group
5925 	 * boundary.
5926 	 */
5927 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
5928 		overflow = EXT4_C2B(sbi, bit) + count -
5929 			EXT4_BLOCKS_PER_GROUP(sb);
5930 		count -= overflow;
5931 		/* The range changed so it's no longer validated */
5932 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
5933 	}
5934 	count_clusters = EXT4_NUM_B2C(sbi, count);
5935 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5936 	if (IS_ERR(bitmap_bh)) {
5937 		err = PTR_ERR(bitmap_bh);
5938 		bitmap_bh = NULL;
5939 		goto error_return;
5940 	}
5941 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
5942 	if (!gdp) {
5943 		err = -EIO;
5944 		goto error_return;
5945 	}
5946 
5947 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
5948 	    !ext4_inode_block_valid(inode, block, count)) {
5949 		ext4_error(sb, "Freeing blocks in system zone - "
5950 			   "Block = %llu, count = %lu", block, count);
5951 		/* err = 0. ext4_std_error should be a no op */
5952 		goto error_return;
5953 	}
5954 
5955 	BUFFER_TRACE(bitmap_bh, "getting write access");
5956 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
5957 					    EXT4_JTR_NONE);
5958 	if (err)
5959 		goto error_return;
5960 
5961 	/*
5962 	 * We are about to modify some metadata.  Call the journal APIs
5963 	 * to unshare ->b_data if a currently-committing transaction is
5964 	 * using it
5965 	 */
5966 	BUFFER_TRACE(gd_bh, "get_write_access");
5967 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
5968 	if (err)
5969 		goto error_return;
5970 #ifdef AGGRESSIVE_CHECK
5971 	{
5972 		int i;
5973 		for (i = 0; i < count_clusters; i++)
5974 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
5975 	}
5976 #endif
5977 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
5978 
5979 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
5980 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
5981 				     GFP_NOFS|__GFP_NOFAIL);
5982 	if (err)
5983 		goto error_return;
5984 
5985 	/*
5986 	 * We need to make sure we don't reuse the freed block until after the
5987 	 * transaction is committed. We make an exception if the inode is to be
5988 	 * written in writeback mode since writeback mode has weak data
5989 	 * consistency guarantees.
5990 	 */
5991 	if (ext4_handle_valid(handle) &&
5992 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
5993 	     !ext4_should_writeback_data(inode))) {
5994 		struct ext4_free_data *new_entry;
5995 		/*
5996 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
5997 		 * to fail.
5998 		 */
5999 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6000 				GFP_NOFS|__GFP_NOFAIL);
6001 		new_entry->efd_start_cluster = bit;
6002 		new_entry->efd_group = block_group;
6003 		new_entry->efd_count = count_clusters;
6004 		new_entry->efd_tid = handle->h_transaction->t_tid;
6005 
6006 		ext4_lock_group(sb, block_group);
6007 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6008 		ext4_mb_free_metadata(handle, &e4b, new_entry);
6009 	} else {
6010 		/* need to update group_info->bb_free and bitmap
6011 		 * with group lock held. generate_buddy look at
6012 		 * them with group lock_held
6013 		 */
6014 		if (test_opt(sb, DISCARD)) {
6015 			err = ext4_issue_discard(sb, block_group, bit, count,
6016 						 NULL);
6017 			if (err && err != -EOPNOTSUPP)
6018 				ext4_msg(sb, KERN_WARNING, "discard request in"
6019 					 " group:%u block:%d count:%lu failed"
6020 					 " with %d", block_group, bit, count,
6021 					 err);
6022 		} else
6023 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6024 
6025 		ext4_lock_group(sb, block_group);
6026 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6027 		mb_free_blocks(inode, &e4b, bit, count_clusters);
6028 	}
6029 
6030 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
6031 	ext4_free_group_clusters_set(sb, gdp, ret);
6032 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
6033 	ext4_group_desc_csum_set(sb, block_group, gdp);
6034 	ext4_unlock_group(sb, block_group);
6035 
6036 	if (sbi->s_log_groups_per_flex) {
6037 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6038 		atomic64_add(count_clusters,
6039 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6040 						  flex_group)->free_clusters);
6041 	}
6042 
6043 	/*
6044 	 * on a bigalloc file system, defer the s_freeclusters_counter
6045 	 * update to the caller (ext4_remove_space and friends) so they
6046 	 * can determine if a cluster freed here should be rereserved
6047 	 */
6048 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6049 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6050 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6051 		percpu_counter_add(&sbi->s_freeclusters_counter,
6052 				   count_clusters);
6053 	}
6054 
6055 	ext4_mb_unload_buddy(&e4b);
6056 
6057 	/* We dirtied the bitmap block */
6058 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6059 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6060 
6061 	/* And the group descriptor block */
6062 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6063 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6064 	if (!err)
6065 		err = ret;
6066 
6067 	if (overflow && !err) {
6068 		block += count;
6069 		count = overflow;
6070 		put_bh(bitmap_bh);
6071 		/* The range changed so it's no longer validated */
6072 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6073 		goto do_more;
6074 	}
6075 error_return:
6076 	brelse(bitmap_bh);
6077 	ext4_std_error(sb, err);
6078 	return;
6079 }
6080 
6081 /**
6082  * ext4_free_blocks() -- Free given blocks and update quota
6083  * @handle:		handle for this transaction
6084  * @inode:		inode
6085  * @bh:			optional buffer of the block to be freed
6086  * @block:		starting physical block to be freed
6087  * @count:		number of blocks to be freed
6088  * @flags:		flags used by ext4_free_blocks
6089  */
6090 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6091 		      struct buffer_head *bh, ext4_fsblk_t block,
6092 		      unsigned long count, int flags)
6093 {
6094 	struct super_block *sb = inode->i_sb;
6095 	unsigned int overflow;
6096 	struct ext4_sb_info *sbi;
6097 
6098 	sbi = EXT4_SB(sb);
6099 
6100 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6101 		ext4_free_blocks_simple(inode, block, count);
6102 		return;
6103 	}
6104 
6105 	might_sleep();
6106 	if (bh) {
6107 		if (block)
6108 			BUG_ON(block != bh->b_blocknr);
6109 		else
6110 			block = bh->b_blocknr;
6111 	}
6112 
6113 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6114 	    !ext4_inode_block_valid(inode, block, count)) {
6115 		ext4_error(sb, "Freeing blocks not in datazone - "
6116 			   "block = %llu, count = %lu", block, count);
6117 		return;
6118 	}
6119 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6120 
6121 	ext4_debug("freeing block %llu\n", block);
6122 	trace_ext4_free_blocks(inode, block, count, flags);
6123 
6124 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6125 		BUG_ON(count > 1);
6126 
6127 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6128 			    inode, bh, block);
6129 	}
6130 
6131 	/*
6132 	 * If the extent to be freed does not begin on a cluster
6133 	 * boundary, we need to deal with partial clusters at the
6134 	 * beginning and end of the extent.  Normally we will free
6135 	 * blocks at the beginning or the end unless we are explicitly
6136 	 * requested to avoid doing so.
6137 	 */
6138 	overflow = EXT4_PBLK_COFF(sbi, block);
6139 	if (overflow) {
6140 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6141 			overflow = sbi->s_cluster_ratio - overflow;
6142 			block += overflow;
6143 			if (count > overflow)
6144 				count -= overflow;
6145 			else
6146 				return;
6147 		} else {
6148 			block -= overflow;
6149 			count += overflow;
6150 		}
6151 		/* The range changed so it's no longer validated */
6152 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6153 	}
6154 	overflow = EXT4_LBLK_COFF(sbi, count);
6155 	if (overflow) {
6156 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6157 			if (count > overflow)
6158 				count -= overflow;
6159 			else
6160 				return;
6161 		} else
6162 			count += sbi->s_cluster_ratio - overflow;
6163 		/* The range changed so it's no longer validated */
6164 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6165 	}
6166 
6167 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6168 		int i;
6169 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6170 
6171 		for (i = 0; i < count; i++) {
6172 			cond_resched();
6173 			if (is_metadata)
6174 				bh = sb_find_get_block(inode->i_sb, block + i);
6175 			ext4_forget(handle, is_metadata, inode, bh, block + i);
6176 		}
6177 	}
6178 
6179 	ext4_mb_clear_bb(handle, inode, block, count, flags);
6180 	return;
6181 }
6182 
6183 /**
6184  * ext4_group_add_blocks() -- Add given blocks to an existing group
6185  * @handle:			handle to this transaction
6186  * @sb:				super block
6187  * @block:			start physical block to add to the block group
6188  * @count:			number of blocks to free
6189  *
6190  * This marks the blocks as free in the bitmap and buddy.
6191  */
6192 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6193 			 ext4_fsblk_t block, unsigned long count)
6194 {
6195 	struct buffer_head *bitmap_bh = NULL;
6196 	struct buffer_head *gd_bh;
6197 	ext4_group_t block_group;
6198 	ext4_grpblk_t bit;
6199 	unsigned int i;
6200 	struct ext4_group_desc *desc;
6201 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6202 	struct ext4_buddy e4b;
6203 	int err = 0, ret, free_clusters_count;
6204 	ext4_grpblk_t clusters_freed;
6205 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6206 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6207 	unsigned long cluster_count = last_cluster - first_cluster + 1;
6208 
6209 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6210 
6211 	if (count == 0)
6212 		return 0;
6213 
6214 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6215 	/*
6216 	 * Check to see if we are freeing blocks across a group
6217 	 * boundary.
6218 	 */
6219 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6220 		ext4_warning(sb, "too many blocks added to group %u",
6221 			     block_group);
6222 		err = -EINVAL;
6223 		goto error_return;
6224 	}
6225 
6226 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6227 	if (IS_ERR(bitmap_bh)) {
6228 		err = PTR_ERR(bitmap_bh);
6229 		bitmap_bh = NULL;
6230 		goto error_return;
6231 	}
6232 
6233 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6234 	if (!desc) {
6235 		err = -EIO;
6236 		goto error_return;
6237 	}
6238 
6239 	if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6240 		ext4_error(sb, "Adding blocks in system zones - "
6241 			   "Block = %llu, count = %lu",
6242 			   block, count);
6243 		err = -EINVAL;
6244 		goto error_return;
6245 	}
6246 
6247 	BUFFER_TRACE(bitmap_bh, "getting write access");
6248 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6249 					    EXT4_JTR_NONE);
6250 	if (err)
6251 		goto error_return;
6252 
6253 	/*
6254 	 * We are about to modify some metadata.  Call the journal APIs
6255 	 * to unshare ->b_data if a currently-committing transaction is
6256 	 * using it
6257 	 */
6258 	BUFFER_TRACE(gd_bh, "get_write_access");
6259 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6260 	if (err)
6261 		goto error_return;
6262 
6263 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6264 		BUFFER_TRACE(bitmap_bh, "clear bit");
6265 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6266 			ext4_error(sb, "bit already cleared for block %llu",
6267 				   (ext4_fsblk_t)(block + i));
6268 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
6269 		} else {
6270 			clusters_freed++;
6271 		}
6272 	}
6273 
6274 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6275 	if (err)
6276 		goto error_return;
6277 
6278 	/*
6279 	 * need to update group_info->bb_free and bitmap
6280 	 * with group lock held. generate_buddy look at
6281 	 * them with group lock_held
6282 	 */
6283 	ext4_lock_group(sb, block_group);
6284 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6285 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6286 	free_clusters_count = clusters_freed +
6287 		ext4_free_group_clusters(sb, desc);
6288 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6289 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
6290 	ext4_group_desc_csum_set(sb, block_group, desc);
6291 	ext4_unlock_group(sb, block_group);
6292 	percpu_counter_add(&sbi->s_freeclusters_counter,
6293 			   clusters_freed);
6294 
6295 	if (sbi->s_log_groups_per_flex) {
6296 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6297 		atomic64_add(clusters_freed,
6298 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6299 						  flex_group)->free_clusters);
6300 	}
6301 
6302 	ext4_mb_unload_buddy(&e4b);
6303 
6304 	/* We dirtied the bitmap block */
6305 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6306 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6307 
6308 	/* And the group descriptor block */
6309 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6310 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6311 	if (!err)
6312 		err = ret;
6313 
6314 error_return:
6315 	brelse(bitmap_bh);
6316 	ext4_std_error(sb, err);
6317 	return err;
6318 }
6319 
6320 /**
6321  * ext4_trim_extent -- function to TRIM one single free extent in the group
6322  * @sb:		super block for the file system
6323  * @start:	starting block of the free extent in the alloc. group
6324  * @count:	number of blocks to TRIM
6325  * @e4b:	ext4 buddy for the group
6326  *
6327  * Trim "count" blocks starting at "start" in the "group". To assure that no
6328  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6329  * be called with under the group lock.
6330  */
6331 static int ext4_trim_extent(struct super_block *sb,
6332 		int start, int count, struct ext4_buddy *e4b)
6333 __releases(bitlock)
6334 __acquires(bitlock)
6335 {
6336 	struct ext4_free_extent ex;
6337 	ext4_group_t group = e4b->bd_group;
6338 	int ret = 0;
6339 
6340 	trace_ext4_trim_extent(sb, group, start, count);
6341 
6342 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6343 
6344 	ex.fe_start = start;
6345 	ex.fe_group = group;
6346 	ex.fe_len = count;
6347 
6348 	/*
6349 	 * Mark blocks used, so no one can reuse them while
6350 	 * being trimmed.
6351 	 */
6352 	mb_mark_used(e4b, &ex);
6353 	ext4_unlock_group(sb, group);
6354 	ret = ext4_issue_discard(sb, group, start, count, NULL);
6355 	ext4_lock_group(sb, group);
6356 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6357 	return ret;
6358 }
6359 
6360 static int ext4_try_to_trim_range(struct super_block *sb,
6361 		struct ext4_buddy *e4b, ext4_grpblk_t start,
6362 		ext4_grpblk_t max, ext4_grpblk_t minblocks)
6363 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6364 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6365 {
6366 	ext4_grpblk_t next, count, free_count;
6367 	void *bitmap;
6368 
6369 	bitmap = e4b->bd_bitmap;
6370 	start = (e4b->bd_info->bb_first_free > start) ?
6371 		e4b->bd_info->bb_first_free : start;
6372 	count = 0;
6373 	free_count = 0;
6374 
6375 	while (start <= max) {
6376 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6377 		if (start > max)
6378 			break;
6379 		next = mb_find_next_bit(bitmap, max + 1, start);
6380 
6381 		if ((next - start) >= minblocks) {
6382 			int ret = ext4_trim_extent(sb, start, next - start, e4b);
6383 
6384 			if (ret && ret != -EOPNOTSUPP)
6385 				break;
6386 			count += next - start;
6387 		}
6388 		free_count += next - start;
6389 		start = next + 1;
6390 
6391 		if (fatal_signal_pending(current)) {
6392 			count = -ERESTARTSYS;
6393 			break;
6394 		}
6395 
6396 		if (need_resched()) {
6397 			ext4_unlock_group(sb, e4b->bd_group);
6398 			cond_resched();
6399 			ext4_lock_group(sb, e4b->bd_group);
6400 		}
6401 
6402 		if ((e4b->bd_info->bb_free - free_count) < minblocks)
6403 			break;
6404 	}
6405 
6406 	return count;
6407 }
6408 
6409 /**
6410  * ext4_trim_all_free -- function to trim all free space in alloc. group
6411  * @sb:			super block for file system
6412  * @group:		group to be trimmed
6413  * @start:		first group block to examine
6414  * @max:		last group block to examine
6415  * @minblocks:		minimum extent block count
6416  * @set_trimmed:	set the trimmed flag if at least one block is trimmed
6417  *
6418  * ext4_trim_all_free walks through group's block bitmap searching for free
6419  * extents. When the free extent is found, mark it as used in group buddy
6420  * bitmap. Then issue a TRIM command on this extent and free the extent in
6421  * the group buddy bitmap.
6422  */
6423 static ext4_grpblk_t
6424 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6425 		   ext4_grpblk_t start, ext4_grpblk_t max,
6426 		   ext4_grpblk_t minblocks, bool set_trimmed)
6427 {
6428 	struct ext4_buddy e4b;
6429 	int ret;
6430 
6431 	trace_ext4_trim_all_free(sb, group, start, max);
6432 
6433 	ret = ext4_mb_load_buddy(sb, group, &e4b);
6434 	if (ret) {
6435 		ext4_warning(sb, "Error %d loading buddy information for %u",
6436 			     ret, group);
6437 		return ret;
6438 	}
6439 
6440 	ext4_lock_group(sb, group);
6441 
6442 	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6443 	    minblocks < EXT4_SB(sb)->s_last_trim_minblks) {
6444 		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6445 		if (ret >= 0 && set_trimmed)
6446 			EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
6447 	} else {
6448 		ret = 0;
6449 	}
6450 
6451 	ext4_unlock_group(sb, group);
6452 	ext4_mb_unload_buddy(&e4b);
6453 
6454 	ext4_debug("trimmed %d blocks in the group %d\n",
6455 		ret, group);
6456 
6457 	return ret;
6458 }
6459 
6460 /**
6461  * ext4_trim_fs() -- trim ioctl handle function
6462  * @sb:			superblock for filesystem
6463  * @range:		fstrim_range structure
6464  *
6465  * start:	First Byte to trim
6466  * len:		number of Bytes to trim from start
6467  * minlen:	minimum extent length in Bytes
6468  * ext4_trim_fs goes through all allocation groups containing Bytes from
6469  * start to start+len. For each such a group ext4_trim_all_free function
6470  * is invoked to trim all free space.
6471  */
6472 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6473 {
6474 	unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6475 	struct ext4_group_info *grp;
6476 	ext4_group_t group, first_group, last_group;
6477 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6478 	uint64_t start, end, minlen, trimmed = 0;
6479 	ext4_fsblk_t first_data_blk =
6480 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6481 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6482 	bool whole_group, eof = false;
6483 	int ret = 0;
6484 
6485 	start = range->start >> sb->s_blocksize_bits;
6486 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
6487 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6488 			      range->minlen >> sb->s_blocksize_bits);
6489 
6490 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6491 	    start >= max_blks ||
6492 	    range->len < sb->s_blocksize)
6493 		return -EINVAL;
6494 	/* No point to try to trim less than discard granularity */
6495 	if (range->minlen < discard_granularity) {
6496 		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6497 				discard_granularity >> sb->s_blocksize_bits);
6498 		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6499 			goto out;
6500 	}
6501 	if (end >= max_blks - 1) {
6502 		end = max_blks - 1;
6503 		eof = true;
6504 	}
6505 	if (end <= first_data_blk)
6506 		goto out;
6507 	if (start < first_data_blk)
6508 		start = first_data_blk;
6509 
6510 	/* Determine first and last group to examine based on start and end */
6511 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6512 				     &first_group, &first_cluster);
6513 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6514 				     &last_group, &last_cluster);
6515 
6516 	/* end now represents the last cluster to discard in this group */
6517 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6518 	whole_group = true;
6519 
6520 	for (group = first_group; group <= last_group; group++) {
6521 		grp = ext4_get_group_info(sb, group);
6522 		/* We only do this if the grp has never been initialized */
6523 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6524 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6525 			if (ret)
6526 				break;
6527 		}
6528 
6529 		/*
6530 		 * For all the groups except the last one, last cluster will
6531 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6532 		 * change it for the last group, note that last_cluster is
6533 		 * already computed earlier by ext4_get_group_no_and_offset()
6534 		 */
6535 		if (group == last_group) {
6536 			end = last_cluster;
6537 			whole_group = eof ? true : end == EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6538 		}
6539 		if (grp->bb_free >= minlen) {
6540 			cnt = ext4_trim_all_free(sb, group, first_cluster,
6541 						 end, minlen, whole_group);
6542 			if (cnt < 0) {
6543 				ret = cnt;
6544 				break;
6545 			}
6546 			trimmed += cnt;
6547 		}
6548 
6549 		/*
6550 		 * For every group except the first one, we are sure
6551 		 * that the first cluster to discard will be cluster #0.
6552 		 */
6553 		first_cluster = 0;
6554 	}
6555 
6556 	if (!ret)
6557 		EXT4_SB(sb)->s_last_trim_minblks = minlen;
6558 
6559 out:
6560 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6561 	return ret;
6562 }
6563 
6564 /* Iterate all the free extents in the group. */
6565 int
6566 ext4_mballoc_query_range(
6567 	struct super_block		*sb,
6568 	ext4_group_t			group,
6569 	ext4_grpblk_t			start,
6570 	ext4_grpblk_t			end,
6571 	ext4_mballoc_query_range_fn	formatter,
6572 	void				*priv)
6573 {
6574 	void				*bitmap;
6575 	ext4_grpblk_t			next;
6576 	struct ext4_buddy		e4b;
6577 	int				error;
6578 
6579 	error = ext4_mb_load_buddy(sb, group, &e4b);
6580 	if (error)
6581 		return error;
6582 	bitmap = e4b.bd_bitmap;
6583 
6584 	ext4_lock_group(sb, group);
6585 
6586 	start = (e4b.bd_info->bb_first_free > start) ?
6587 		e4b.bd_info->bb_first_free : start;
6588 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
6589 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6590 
6591 	while (start <= end) {
6592 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
6593 		if (start > end)
6594 			break;
6595 		next = mb_find_next_bit(bitmap, end + 1, start);
6596 
6597 		ext4_unlock_group(sb, group);
6598 		error = formatter(sb, group, start, next - start, priv);
6599 		if (error)
6600 			goto out_unload;
6601 		ext4_lock_group(sb, group);
6602 
6603 		start = next + 1;
6604 	}
6605 
6606 	ext4_unlock_group(sb, group);
6607 out_unload:
6608 	ext4_mb_unload_buddy(&e4b);
6609 
6610 	return error;
6611 }
6612