1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "mballoc.h" 25 /* 26 * MUSTDO: 27 * - test ext4_ext_search_left() and ext4_ext_search_right() 28 * - search for metadata in few groups 29 * 30 * TODO v4: 31 * - normalization should take into account whether file is still open 32 * - discard preallocations if no free space left (policy?) 33 * - don't normalize tails 34 * - quota 35 * - reservation for superuser 36 * 37 * TODO v3: 38 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 39 * - track min/max extents in each group for better group selection 40 * - mb_mark_used() may allocate chunk right after splitting buddy 41 * - tree of groups sorted by number of free blocks 42 * - error handling 43 */ 44 45 /* 46 * The allocation request involve request for multiple number of blocks 47 * near to the goal(block) value specified. 48 * 49 * During initialization phase of the allocator we decide to use the 50 * group preallocation or inode preallocation depending on the size of 51 * the file. The size of the file could be the resulting file size we 52 * would have after allocation, or the current file size, which ever 53 * is larger. If the size is less than sbi->s_mb_stream_request we 54 * select to use the group preallocation. The default value of 55 * s_mb_stream_request is 16 blocks. This can also be tuned via 56 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 57 * terms of number of blocks. 58 * 59 * The main motivation for having small file use group preallocation is to 60 * ensure that we have small files closer together on the disk. 61 * 62 * First stage the allocator looks at the inode prealloc list, 63 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 64 * spaces for this particular inode. The inode prealloc space is 65 * represented as: 66 * 67 * pa_lstart -> the logical start block for this prealloc space 68 * pa_pstart -> the physical start block for this prealloc space 69 * pa_len -> lenght for this prealloc space 70 * pa_free -> free space available in this prealloc space 71 * 72 * The inode preallocation space is used looking at the _logical_ start 73 * block. If only the logical file block falls within the range of prealloc 74 * space we will consume the particular prealloc space. This make sure that 75 * that the we have contiguous physical blocks representing the file blocks 76 * 77 * The important thing to be noted in case of inode prealloc space is that 78 * we don't modify the values associated to inode prealloc space except 79 * pa_free. 80 * 81 * If we are not able to find blocks in the inode prealloc space and if we 82 * have the group allocation flag set then we look at the locality group 83 * prealloc space. These are per CPU prealloc list repreasented as 84 * 85 * ext4_sb_info.s_locality_groups[smp_processor_id()] 86 * 87 * The reason for having a per cpu locality group is to reduce the contention 88 * between CPUs. It is possible to get scheduled at this point. 89 * 90 * The locality group prealloc space is used looking at whether we have 91 * enough free space (pa_free) withing the prealloc space. 92 * 93 * If we can't allocate blocks via inode prealloc or/and locality group 94 * prealloc then we look at the buddy cache. The buddy cache is represented 95 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 96 * mapped to the buddy and bitmap information regarding different 97 * groups. The buddy information is attached to buddy cache inode so that 98 * we can access them through the page cache. The information regarding 99 * each group is loaded via ext4_mb_load_buddy. The information involve 100 * block bitmap and buddy information. The information are stored in the 101 * inode as: 102 * 103 * { page } 104 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 105 * 106 * 107 * one block each for bitmap and buddy information. So for each group we 108 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 109 * blocksize) blocks. So it can have information regarding groups_per_page 110 * which is blocks_per_page/2 111 * 112 * The buddy cache inode is not stored on disk. The inode is thrown 113 * away when the filesystem is unmounted. 114 * 115 * We look for count number of blocks in the buddy cache. If we were able 116 * to locate that many free blocks we return with additional information 117 * regarding rest of the contiguous physical block available 118 * 119 * Before allocating blocks via buddy cache we normalize the request 120 * blocks. This ensure we ask for more blocks that we needed. The extra 121 * blocks that we get after allocation is added to the respective prealloc 122 * list. In case of inode preallocation we follow a list of heuristics 123 * based on file size. This can be found in ext4_mb_normalize_request. If 124 * we are doing a group prealloc we try to normalize the request to 125 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is 126 * 512 blocks. This can be tuned via 127 * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in 128 * terms of number of blocks. If we have mounted the file system with -O 129 * stripe=<value> option the group prealloc request is normalized to the 130 * stripe value (sbi->s_stripe) 131 * 132 * The regular allocator(using the buddy cache) supports few tunables. 133 * 134 * /sys/fs/ext4/<partition>/mb_min_to_scan 135 * /sys/fs/ext4/<partition>/mb_max_to_scan 136 * /sys/fs/ext4/<partition>/mb_order2_req 137 * 138 * The regular allocator uses buddy scan only if the request len is power of 139 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 140 * value of s_mb_order2_reqs can be tuned via 141 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 142 * stripe size (sbi->s_stripe), we try to search for contigous block in 143 * stripe size. This should result in better allocation on RAID setups. If 144 * not, we search in the specific group using bitmap for best extents. The 145 * tunable min_to_scan and max_to_scan control the behaviour here. 146 * min_to_scan indicate how long the mballoc __must__ look for a best 147 * extent and max_to_scan indicates how long the mballoc __can__ look for a 148 * best extent in the found extents. Searching for the blocks starts with 149 * the group specified as the goal value in allocation context via 150 * ac_g_ex. Each group is first checked based on the criteria whether it 151 * can used for allocation. ext4_mb_good_group explains how the groups are 152 * checked. 153 * 154 * Both the prealloc space are getting populated as above. So for the first 155 * request we will hit the buddy cache which will result in this prealloc 156 * space getting filled. The prealloc space is then later used for the 157 * subsequent request. 158 */ 159 160 /* 161 * mballoc operates on the following data: 162 * - on-disk bitmap 163 * - in-core buddy (actually includes buddy and bitmap) 164 * - preallocation descriptors (PAs) 165 * 166 * there are two types of preallocations: 167 * - inode 168 * assiged to specific inode and can be used for this inode only. 169 * it describes part of inode's space preallocated to specific 170 * physical blocks. any block from that preallocated can be used 171 * independent. the descriptor just tracks number of blocks left 172 * unused. so, before taking some block from descriptor, one must 173 * make sure corresponded logical block isn't allocated yet. this 174 * also means that freeing any block within descriptor's range 175 * must discard all preallocated blocks. 176 * - locality group 177 * assigned to specific locality group which does not translate to 178 * permanent set of inodes: inode can join and leave group. space 179 * from this type of preallocation can be used for any inode. thus 180 * it's consumed from the beginning to the end. 181 * 182 * relation between them can be expressed as: 183 * in-core buddy = on-disk bitmap + preallocation descriptors 184 * 185 * this mean blocks mballoc considers used are: 186 * - allocated blocks (persistent) 187 * - preallocated blocks (non-persistent) 188 * 189 * consistency in mballoc world means that at any time a block is either 190 * free or used in ALL structures. notice: "any time" should not be read 191 * literally -- time is discrete and delimited by locks. 192 * 193 * to keep it simple, we don't use block numbers, instead we count number of 194 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 195 * 196 * all operations can be expressed as: 197 * - init buddy: buddy = on-disk + PAs 198 * - new PA: buddy += N; PA = N 199 * - use inode PA: on-disk += N; PA -= N 200 * - discard inode PA buddy -= on-disk - PA; PA = 0 201 * - use locality group PA on-disk += N; PA -= N 202 * - discard locality group PA buddy -= PA; PA = 0 203 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 204 * is used in real operation because we can't know actual used 205 * bits from PA, only from on-disk bitmap 206 * 207 * if we follow this strict logic, then all operations above should be atomic. 208 * given some of them can block, we'd have to use something like semaphores 209 * killing performance on high-end SMP hardware. let's try to relax it using 210 * the following knowledge: 211 * 1) if buddy is referenced, it's already initialized 212 * 2) while block is used in buddy and the buddy is referenced, 213 * nobody can re-allocate that block 214 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 215 * bit set and PA claims same block, it's OK. IOW, one can set bit in 216 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 217 * block 218 * 219 * so, now we're building a concurrency table: 220 * - init buddy vs. 221 * - new PA 222 * blocks for PA are allocated in the buddy, buddy must be referenced 223 * until PA is linked to allocation group to avoid concurrent buddy init 224 * - use inode PA 225 * we need to make sure that either on-disk bitmap or PA has uptodate data 226 * given (3) we care that PA-=N operation doesn't interfere with init 227 * - discard inode PA 228 * the simplest way would be to have buddy initialized by the discard 229 * - use locality group PA 230 * again PA-=N must be serialized with init 231 * - discard locality group PA 232 * the simplest way would be to have buddy initialized by the discard 233 * - new PA vs. 234 * - use inode PA 235 * i_data_sem serializes them 236 * - discard inode PA 237 * discard process must wait until PA isn't used by another process 238 * - use locality group PA 239 * some mutex should serialize them 240 * - discard locality group PA 241 * discard process must wait until PA isn't used by another process 242 * - use inode PA 243 * - use inode PA 244 * i_data_sem or another mutex should serializes them 245 * - discard inode PA 246 * discard process must wait until PA isn't used by another process 247 * - use locality group PA 248 * nothing wrong here -- they're different PAs covering different blocks 249 * - discard locality group PA 250 * discard process must wait until PA isn't used by another process 251 * 252 * now we're ready to make few consequences: 253 * - PA is referenced and while it is no discard is possible 254 * - PA is referenced until block isn't marked in on-disk bitmap 255 * - PA changes only after on-disk bitmap 256 * - discard must not compete with init. either init is done before 257 * any discard or they're serialized somehow 258 * - buddy init as sum of on-disk bitmap and PAs is done atomically 259 * 260 * a special case when we've used PA to emptiness. no need to modify buddy 261 * in this case, but we should care about concurrent init 262 * 263 */ 264 265 /* 266 * Logic in few words: 267 * 268 * - allocation: 269 * load group 270 * find blocks 271 * mark bits in on-disk bitmap 272 * release group 273 * 274 * - use preallocation: 275 * find proper PA (per-inode or group) 276 * load group 277 * mark bits in on-disk bitmap 278 * release group 279 * release PA 280 * 281 * - free: 282 * load group 283 * mark bits in on-disk bitmap 284 * release group 285 * 286 * - discard preallocations in group: 287 * mark PAs deleted 288 * move them onto local list 289 * load on-disk bitmap 290 * load group 291 * remove PA from object (inode or locality group) 292 * mark free blocks in-core 293 * 294 * - discard inode's preallocations: 295 */ 296 297 /* 298 * Locking rules 299 * 300 * Locks: 301 * - bitlock on a group (group) 302 * - object (inode/locality) (object) 303 * - per-pa lock (pa) 304 * 305 * Paths: 306 * - new pa 307 * object 308 * group 309 * 310 * - find and use pa: 311 * pa 312 * 313 * - release consumed pa: 314 * pa 315 * group 316 * object 317 * 318 * - generate in-core bitmap: 319 * group 320 * pa 321 * 322 * - discard all for given object (inode, locality group): 323 * object 324 * pa 325 * group 326 * 327 * - discard all for given group: 328 * group 329 * pa 330 * group 331 * object 332 * 333 */ 334 static struct kmem_cache *ext4_pspace_cachep; 335 static struct kmem_cache *ext4_ac_cachep; 336 static struct kmem_cache *ext4_free_ext_cachep; 337 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 338 ext4_group_t group); 339 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 340 ext4_group_t group); 341 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn); 342 343 344 345 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 346 { 347 #if BITS_PER_LONG == 64 348 *bit += ((unsigned long) addr & 7UL) << 3; 349 addr = (void *) ((unsigned long) addr & ~7UL); 350 #elif BITS_PER_LONG == 32 351 *bit += ((unsigned long) addr & 3UL) << 3; 352 addr = (void *) ((unsigned long) addr & ~3UL); 353 #else 354 #error "how many bits you are?!" 355 #endif 356 return addr; 357 } 358 359 static inline int mb_test_bit(int bit, void *addr) 360 { 361 /* 362 * ext4_test_bit on architecture like powerpc 363 * needs unsigned long aligned address 364 */ 365 addr = mb_correct_addr_and_bit(&bit, addr); 366 return ext4_test_bit(bit, addr); 367 } 368 369 static inline void mb_set_bit(int bit, void *addr) 370 { 371 addr = mb_correct_addr_and_bit(&bit, addr); 372 ext4_set_bit(bit, addr); 373 } 374 375 static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr) 376 { 377 addr = mb_correct_addr_and_bit(&bit, addr); 378 ext4_set_bit_atomic(lock, bit, addr); 379 } 380 381 static inline void mb_clear_bit(int bit, void *addr) 382 { 383 addr = mb_correct_addr_and_bit(&bit, addr); 384 ext4_clear_bit(bit, addr); 385 } 386 387 static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr) 388 { 389 addr = mb_correct_addr_and_bit(&bit, addr); 390 ext4_clear_bit_atomic(lock, bit, addr); 391 } 392 393 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 394 { 395 int fix = 0, ret, tmpmax; 396 addr = mb_correct_addr_and_bit(&fix, addr); 397 tmpmax = max + fix; 398 start += fix; 399 400 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 401 if (ret > max) 402 return max; 403 return ret; 404 } 405 406 static inline int mb_find_next_bit(void *addr, int max, int start) 407 { 408 int fix = 0, ret, tmpmax; 409 addr = mb_correct_addr_and_bit(&fix, addr); 410 tmpmax = max + fix; 411 start += fix; 412 413 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 414 if (ret > max) 415 return max; 416 return ret; 417 } 418 419 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 420 { 421 char *bb; 422 423 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b)); 424 BUG_ON(max == NULL); 425 426 if (order > e4b->bd_blkbits + 1) { 427 *max = 0; 428 return NULL; 429 } 430 431 /* at order 0 we see each particular block */ 432 *max = 1 << (e4b->bd_blkbits + 3); 433 if (order == 0) 434 return EXT4_MB_BITMAP(e4b); 435 436 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 437 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 438 439 return bb; 440 } 441 442 #ifdef DOUBLE_CHECK 443 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 444 int first, int count) 445 { 446 int i; 447 struct super_block *sb = e4b->bd_sb; 448 449 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 450 return; 451 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group)); 452 for (i = 0; i < count; i++) { 453 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 454 ext4_fsblk_t blocknr; 455 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb); 456 blocknr += first + i; 457 blocknr += 458 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 459 ext4_grp_locked_error(sb, e4b->bd_group, 460 __func__, "double-free of inode" 461 " %lu's block %llu(bit %u in group %u)", 462 inode ? inode->i_ino : 0, blocknr, 463 first + i, e4b->bd_group); 464 } 465 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 466 } 467 } 468 469 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 470 { 471 int i; 472 473 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 474 return; 475 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group)); 476 for (i = 0; i < count; i++) { 477 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 478 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 479 } 480 } 481 482 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 483 { 484 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 485 unsigned char *b1, *b2; 486 int i; 487 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 488 b2 = (unsigned char *) bitmap; 489 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 490 if (b1[i] != b2[i]) { 491 printk(KERN_ERR "corruption in group %u " 492 "at byte %u(%u): %x in copy != %x " 493 "on disk/prealloc\n", 494 e4b->bd_group, i, i * 8, b1[i], b2[i]); 495 BUG(); 496 } 497 } 498 } 499 } 500 501 #else 502 static inline void mb_free_blocks_double(struct inode *inode, 503 struct ext4_buddy *e4b, int first, int count) 504 { 505 return; 506 } 507 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 508 int first, int count) 509 { 510 return; 511 } 512 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 513 { 514 return; 515 } 516 #endif 517 518 #ifdef AGGRESSIVE_CHECK 519 520 #define MB_CHECK_ASSERT(assert) \ 521 do { \ 522 if (!(assert)) { \ 523 printk(KERN_EMERG \ 524 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 525 function, file, line, # assert); \ 526 BUG(); \ 527 } \ 528 } while (0) 529 530 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 531 const char *function, int line) 532 { 533 struct super_block *sb = e4b->bd_sb; 534 int order = e4b->bd_blkbits + 1; 535 int max; 536 int max2; 537 int i; 538 int j; 539 int k; 540 int count; 541 struct ext4_group_info *grp; 542 int fragments = 0; 543 int fstart; 544 struct list_head *cur; 545 void *buddy; 546 void *buddy2; 547 548 { 549 static int mb_check_counter; 550 if (mb_check_counter++ % 100 != 0) 551 return 0; 552 } 553 554 while (order > 1) { 555 buddy = mb_find_buddy(e4b, order, &max); 556 MB_CHECK_ASSERT(buddy); 557 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 558 MB_CHECK_ASSERT(buddy2); 559 MB_CHECK_ASSERT(buddy != buddy2); 560 MB_CHECK_ASSERT(max * 2 == max2); 561 562 count = 0; 563 for (i = 0; i < max; i++) { 564 565 if (mb_test_bit(i, buddy)) { 566 /* only single bit in buddy2 may be 1 */ 567 if (!mb_test_bit(i << 1, buddy2)) { 568 MB_CHECK_ASSERT( 569 mb_test_bit((i<<1)+1, buddy2)); 570 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 571 MB_CHECK_ASSERT( 572 mb_test_bit(i << 1, buddy2)); 573 } 574 continue; 575 } 576 577 /* both bits in buddy2 must be 0 */ 578 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 579 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 580 581 for (j = 0; j < (1 << order); j++) { 582 k = (i * (1 << order)) + j; 583 MB_CHECK_ASSERT( 584 !mb_test_bit(k, EXT4_MB_BITMAP(e4b))); 585 } 586 count++; 587 } 588 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 589 order--; 590 } 591 592 fstart = -1; 593 buddy = mb_find_buddy(e4b, 0, &max); 594 for (i = 0; i < max; i++) { 595 if (!mb_test_bit(i, buddy)) { 596 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 597 if (fstart == -1) { 598 fragments++; 599 fstart = i; 600 } 601 continue; 602 } 603 fstart = -1; 604 /* check used bits only */ 605 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 606 buddy2 = mb_find_buddy(e4b, j, &max2); 607 k = i >> j; 608 MB_CHECK_ASSERT(k < max2); 609 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 610 } 611 } 612 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 613 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 614 615 grp = ext4_get_group_info(sb, e4b->bd_group); 616 buddy = mb_find_buddy(e4b, 0, &max); 617 list_for_each(cur, &grp->bb_prealloc_list) { 618 ext4_group_t groupnr; 619 struct ext4_prealloc_space *pa; 620 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 621 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 622 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 623 for (i = 0; i < pa->pa_len; i++) 624 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 625 } 626 return 0; 627 } 628 #undef MB_CHECK_ASSERT 629 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 630 __FILE__, __func__, __LINE__) 631 #else 632 #define mb_check_buddy(e4b) 633 #endif 634 635 /* FIXME!! need more doc */ 636 static void ext4_mb_mark_free_simple(struct super_block *sb, 637 void *buddy, unsigned first, int len, 638 struct ext4_group_info *grp) 639 { 640 struct ext4_sb_info *sbi = EXT4_SB(sb); 641 unsigned short min; 642 unsigned short max; 643 unsigned short chunk; 644 unsigned short border; 645 646 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb)); 647 648 border = 2 << sb->s_blocksize_bits; 649 650 while (len > 0) { 651 /* find how many blocks can be covered since this position */ 652 max = ffs(first | border) - 1; 653 654 /* find how many blocks of power 2 we need to mark */ 655 min = fls(len) - 1; 656 657 if (max < min) 658 min = max; 659 chunk = 1 << min; 660 661 /* mark multiblock chunks only */ 662 grp->bb_counters[min]++; 663 if (min > 0) 664 mb_clear_bit(first >> min, 665 buddy + sbi->s_mb_offsets[min]); 666 667 len -= chunk; 668 first += chunk; 669 } 670 } 671 672 static void ext4_mb_generate_buddy(struct super_block *sb, 673 void *buddy, void *bitmap, ext4_group_t group) 674 { 675 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 676 unsigned short max = EXT4_BLOCKS_PER_GROUP(sb); 677 unsigned short i = 0; 678 unsigned short first; 679 unsigned short len; 680 unsigned free = 0; 681 unsigned fragments = 0; 682 unsigned long long period = get_cycles(); 683 684 /* initialize buddy from bitmap which is aggregation 685 * of on-disk bitmap and preallocations */ 686 i = mb_find_next_zero_bit(bitmap, max, 0); 687 grp->bb_first_free = i; 688 while (i < max) { 689 fragments++; 690 first = i; 691 i = mb_find_next_bit(bitmap, max, i); 692 len = i - first; 693 free += len; 694 if (len > 1) 695 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 696 else 697 grp->bb_counters[0]++; 698 if (i < max) 699 i = mb_find_next_zero_bit(bitmap, max, i); 700 } 701 grp->bb_fragments = fragments; 702 703 if (free != grp->bb_free) { 704 ext4_grp_locked_error(sb, group, __func__, 705 "EXT4-fs: group %u: %u blocks in bitmap, %u in gd", 706 group, free, grp->bb_free); 707 /* 708 * If we intent to continue, we consider group descritor 709 * corrupt and update bb_free using bitmap value 710 */ 711 grp->bb_free = free; 712 } 713 714 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 715 716 period = get_cycles() - period; 717 spin_lock(&EXT4_SB(sb)->s_bal_lock); 718 EXT4_SB(sb)->s_mb_buddies_generated++; 719 EXT4_SB(sb)->s_mb_generation_time += period; 720 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 721 } 722 723 /* The buddy information is attached the buddy cache inode 724 * for convenience. The information regarding each group 725 * is loaded via ext4_mb_load_buddy. The information involve 726 * block bitmap and buddy information. The information are 727 * stored in the inode as 728 * 729 * { page } 730 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 731 * 732 * 733 * one block each for bitmap and buddy information. 734 * So for each group we take up 2 blocks. A page can 735 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 736 * So it can have information regarding groups_per_page which 737 * is blocks_per_page/2 738 */ 739 740 static int ext4_mb_init_cache(struct page *page, char *incore) 741 { 742 int blocksize; 743 int blocks_per_page; 744 int groups_per_page; 745 int err = 0; 746 int i; 747 ext4_group_t first_group; 748 int first_block; 749 struct super_block *sb; 750 struct buffer_head *bhs; 751 struct buffer_head **bh; 752 struct inode *inode; 753 char *data; 754 char *bitmap; 755 756 mb_debug("init page %lu\n", page->index); 757 758 inode = page->mapping->host; 759 sb = inode->i_sb; 760 blocksize = 1 << inode->i_blkbits; 761 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 762 763 groups_per_page = blocks_per_page >> 1; 764 if (groups_per_page == 0) 765 groups_per_page = 1; 766 767 /* allocate buffer_heads to read bitmaps */ 768 if (groups_per_page > 1) { 769 err = -ENOMEM; 770 i = sizeof(struct buffer_head *) * groups_per_page; 771 bh = kzalloc(i, GFP_NOFS); 772 if (bh == NULL) 773 goto out; 774 } else 775 bh = &bhs; 776 777 first_group = page->index * blocks_per_page / 2; 778 779 /* read all groups the page covers into the cache */ 780 for (i = 0; i < groups_per_page; i++) { 781 struct ext4_group_desc *desc; 782 783 if (first_group + i >= EXT4_SB(sb)->s_groups_count) 784 break; 785 786 err = -EIO; 787 desc = ext4_get_group_desc(sb, first_group + i, NULL); 788 if (desc == NULL) 789 goto out; 790 791 err = -ENOMEM; 792 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc)); 793 if (bh[i] == NULL) 794 goto out; 795 796 if (bitmap_uptodate(bh[i])) 797 continue; 798 799 lock_buffer(bh[i]); 800 if (bitmap_uptodate(bh[i])) { 801 unlock_buffer(bh[i]); 802 continue; 803 } 804 spin_lock(sb_bgl_lock(EXT4_SB(sb), first_group + i)); 805 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 806 ext4_init_block_bitmap(sb, bh[i], 807 first_group + i, desc); 808 set_bitmap_uptodate(bh[i]); 809 set_buffer_uptodate(bh[i]); 810 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i)); 811 unlock_buffer(bh[i]); 812 continue; 813 } 814 spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i)); 815 if (buffer_uptodate(bh[i])) { 816 /* 817 * if not uninit if bh is uptodate, 818 * bitmap is also uptodate 819 */ 820 set_bitmap_uptodate(bh[i]); 821 unlock_buffer(bh[i]); 822 continue; 823 } 824 get_bh(bh[i]); 825 /* 826 * submit the buffer_head for read. We can 827 * safely mark the bitmap as uptodate now. 828 * We do it here so the bitmap uptodate bit 829 * get set with buffer lock held. 830 */ 831 set_bitmap_uptodate(bh[i]); 832 bh[i]->b_end_io = end_buffer_read_sync; 833 submit_bh(READ, bh[i]); 834 mb_debug("read bitmap for group %u\n", first_group + i); 835 } 836 837 /* wait for I/O completion */ 838 for (i = 0; i < groups_per_page && bh[i]; i++) 839 wait_on_buffer(bh[i]); 840 841 err = -EIO; 842 for (i = 0; i < groups_per_page && bh[i]; i++) 843 if (!buffer_uptodate(bh[i])) 844 goto out; 845 846 err = 0; 847 first_block = page->index * blocks_per_page; 848 /* init the page */ 849 memset(page_address(page), 0xff, PAGE_CACHE_SIZE); 850 for (i = 0; i < blocks_per_page; i++) { 851 int group; 852 struct ext4_group_info *grinfo; 853 854 group = (first_block + i) >> 1; 855 if (group >= EXT4_SB(sb)->s_groups_count) 856 break; 857 858 /* 859 * data carry information regarding this 860 * particular group in the format specified 861 * above 862 * 863 */ 864 data = page_address(page) + (i * blocksize); 865 bitmap = bh[group - first_group]->b_data; 866 867 /* 868 * We place the buddy block and bitmap block 869 * close together 870 */ 871 if ((first_block + i) & 1) { 872 /* this is block of buddy */ 873 BUG_ON(incore == NULL); 874 mb_debug("put buddy for group %u in page %lu/%x\n", 875 group, page->index, i * blocksize); 876 grinfo = ext4_get_group_info(sb, group); 877 grinfo->bb_fragments = 0; 878 memset(grinfo->bb_counters, 0, 879 sizeof(unsigned short)*(sb->s_blocksize_bits+2)); 880 /* 881 * incore got set to the group block bitmap below 882 */ 883 ext4_lock_group(sb, group); 884 ext4_mb_generate_buddy(sb, data, incore, group); 885 ext4_unlock_group(sb, group); 886 incore = NULL; 887 } else { 888 /* this is block of bitmap */ 889 BUG_ON(incore != NULL); 890 mb_debug("put bitmap for group %u in page %lu/%x\n", 891 group, page->index, i * blocksize); 892 893 /* see comments in ext4_mb_put_pa() */ 894 ext4_lock_group(sb, group); 895 memcpy(data, bitmap, blocksize); 896 897 /* mark all preallocated blks used in in-core bitmap */ 898 ext4_mb_generate_from_pa(sb, data, group); 899 ext4_mb_generate_from_freelist(sb, data, group); 900 ext4_unlock_group(sb, group); 901 902 /* set incore so that the buddy information can be 903 * generated using this 904 */ 905 incore = data; 906 } 907 } 908 SetPageUptodate(page); 909 910 out: 911 if (bh) { 912 for (i = 0; i < groups_per_page && bh[i]; i++) 913 brelse(bh[i]); 914 if (bh != &bhs) 915 kfree(bh); 916 } 917 return err; 918 } 919 920 static noinline_for_stack int 921 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 922 struct ext4_buddy *e4b) 923 { 924 int blocks_per_page; 925 int block; 926 int pnum; 927 int poff; 928 struct page *page; 929 int ret; 930 struct ext4_group_info *grp; 931 struct ext4_sb_info *sbi = EXT4_SB(sb); 932 struct inode *inode = sbi->s_buddy_cache; 933 934 mb_debug("load group %u\n", group); 935 936 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 937 grp = ext4_get_group_info(sb, group); 938 939 e4b->bd_blkbits = sb->s_blocksize_bits; 940 e4b->bd_info = ext4_get_group_info(sb, group); 941 e4b->bd_sb = sb; 942 e4b->bd_group = group; 943 e4b->bd_buddy_page = NULL; 944 e4b->bd_bitmap_page = NULL; 945 e4b->alloc_semp = &grp->alloc_sem; 946 947 /* Take the read lock on the group alloc 948 * sem. This would make sure a parallel 949 * ext4_mb_init_group happening on other 950 * groups mapped by the page is blocked 951 * till we are done with allocation 952 */ 953 down_read(e4b->alloc_semp); 954 955 /* 956 * the buddy cache inode stores the block bitmap 957 * and buddy information in consecutive blocks. 958 * So for each group we need two blocks. 959 */ 960 block = group * 2; 961 pnum = block / blocks_per_page; 962 poff = block % blocks_per_page; 963 964 /* we could use find_or_create_page(), but it locks page 965 * what we'd like to avoid in fast path ... */ 966 page = find_get_page(inode->i_mapping, pnum); 967 if (page == NULL || !PageUptodate(page)) { 968 if (page) 969 /* 970 * drop the page reference and try 971 * to get the page with lock. If we 972 * are not uptodate that implies 973 * somebody just created the page but 974 * is yet to initialize the same. So 975 * wait for it to initialize. 976 */ 977 page_cache_release(page); 978 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 979 if (page) { 980 BUG_ON(page->mapping != inode->i_mapping); 981 if (!PageUptodate(page)) { 982 ret = ext4_mb_init_cache(page, NULL); 983 if (ret) { 984 unlock_page(page); 985 goto err; 986 } 987 mb_cmp_bitmaps(e4b, page_address(page) + 988 (poff * sb->s_blocksize)); 989 } 990 unlock_page(page); 991 } 992 } 993 if (page == NULL || !PageUptodate(page)) { 994 ret = -EIO; 995 goto err; 996 } 997 e4b->bd_bitmap_page = page; 998 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 999 mark_page_accessed(page); 1000 1001 block++; 1002 pnum = block / blocks_per_page; 1003 poff = block % blocks_per_page; 1004 1005 page = find_get_page(inode->i_mapping, pnum); 1006 if (page == NULL || !PageUptodate(page)) { 1007 if (page) 1008 page_cache_release(page); 1009 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1010 if (page) { 1011 BUG_ON(page->mapping != inode->i_mapping); 1012 if (!PageUptodate(page)) { 1013 ret = ext4_mb_init_cache(page, e4b->bd_bitmap); 1014 if (ret) { 1015 unlock_page(page); 1016 goto err; 1017 } 1018 } 1019 unlock_page(page); 1020 } 1021 } 1022 if (page == NULL || !PageUptodate(page)) { 1023 ret = -EIO; 1024 goto err; 1025 } 1026 e4b->bd_buddy_page = page; 1027 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1028 mark_page_accessed(page); 1029 1030 BUG_ON(e4b->bd_bitmap_page == NULL); 1031 BUG_ON(e4b->bd_buddy_page == NULL); 1032 1033 return 0; 1034 1035 err: 1036 if (e4b->bd_bitmap_page) 1037 page_cache_release(e4b->bd_bitmap_page); 1038 if (e4b->bd_buddy_page) 1039 page_cache_release(e4b->bd_buddy_page); 1040 e4b->bd_buddy = NULL; 1041 e4b->bd_bitmap = NULL; 1042 1043 /* Done with the buddy cache */ 1044 up_read(e4b->alloc_semp); 1045 return ret; 1046 } 1047 1048 static void ext4_mb_release_desc(struct ext4_buddy *e4b) 1049 { 1050 if (e4b->bd_bitmap_page) 1051 page_cache_release(e4b->bd_bitmap_page); 1052 if (e4b->bd_buddy_page) 1053 page_cache_release(e4b->bd_buddy_page); 1054 /* Done with the buddy cache */ 1055 if (e4b->alloc_semp) 1056 up_read(e4b->alloc_semp); 1057 } 1058 1059 1060 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1061 { 1062 int order = 1; 1063 void *bb; 1064 1065 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b)); 1066 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1067 1068 bb = EXT4_MB_BUDDY(e4b); 1069 while (order <= e4b->bd_blkbits + 1) { 1070 block = block >> 1; 1071 if (!mb_test_bit(block, bb)) { 1072 /* this block is part of buddy of order 'order' */ 1073 return order; 1074 } 1075 bb += 1 << (e4b->bd_blkbits - order); 1076 order++; 1077 } 1078 return 0; 1079 } 1080 1081 static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len) 1082 { 1083 __u32 *addr; 1084 1085 len = cur + len; 1086 while (cur < len) { 1087 if ((cur & 31) == 0 && (len - cur) >= 32) { 1088 /* fast path: clear whole word at once */ 1089 addr = bm + (cur >> 3); 1090 *addr = 0; 1091 cur += 32; 1092 continue; 1093 } 1094 if (lock) 1095 mb_clear_bit_atomic(lock, cur, bm); 1096 else 1097 mb_clear_bit(cur, bm); 1098 cur++; 1099 } 1100 } 1101 1102 static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len) 1103 { 1104 __u32 *addr; 1105 1106 len = cur + len; 1107 while (cur < len) { 1108 if ((cur & 31) == 0 && (len - cur) >= 32) { 1109 /* fast path: set whole word at once */ 1110 addr = bm + (cur >> 3); 1111 *addr = 0xffffffff; 1112 cur += 32; 1113 continue; 1114 } 1115 if (lock) 1116 mb_set_bit_atomic(lock, cur, bm); 1117 else 1118 mb_set_bit(cur, bm); 1119 cur++; 1120 } 1121 } 1122 1123 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1124 int first, int count) 1125 { 1126 int block = 0; 1127 int max = 0; 1128 int order; 1129 void *buddy; 1130 void *buddy2; 1131 struct super_block *sb = e4b->bd_sb; 1132 1133 BUG_ON(first + count > (sb->s_blocksize << 3)); 1134 BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group)); 1135 mb_check_buddy(e4b); 1136 mb_free_blocks_double(inode, e4b, first, count); 1137 1138 e4b->bd_info->bb_free += count; 1139 if (first < e4b->bd_info->bb_first_free) 1140 e4b->bd_info->bb_first_free = first; 1141 1142 /* let's maintain fragments counter */ 1143 if (first != 0) 1144 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b)); 1145 if (first + count < EXT4_SB(sb)->s_mb_maxs[0]) 1146 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b)); 1147 if (block && max) 1148 e4b->bd_info->bb_fragments--; 1149 else if (!block && !max) 1150 e4b->bd_info->bb_fragments++; 1151 1152 /* let's maintain buddy itself */ 1153 while (count-- > 0) { 1154 block = first++; 1155 order = 0; 1156 1157 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) { 1158 ext4_fsblk_t blocknr; 1159 blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb); 1160 blocknr += block; 1161 blocknr += 1162 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 1163 ext4_grp_locked_error(sb, e4b->bd_group, 1164 __func__, "double-free of inode" 1165 " %lu's block %llu(bit %u in group %u)", 1166 inode ? inode->i_ino : 0, blocknr, block, 1167 e4b->bd_group); 1168 } 1169 mb_clear_bit(block, EXT4_MB_BITMAP(e4b)); 1170 e4b->bd_info->bb_counters[order]++; 1171 1172 /* start of the buddy */ 1173 buddy = mb_find_buddy(e4b, order, &max); 1174 1175 do { 1176 block &= ~1UL; 1177 if (mb_test_bit(block, buddy) || 1178 mb_test_bit(block + 1, buddy)) 1179 break; 1180 1181 /* both the buddies are free, try to coalesce them */ 1182 buddy2 = mb_find_buddy(e4b, order + 1, &max); 1183 1184 if (!buddy2) 1185 break; 1186 1187 if (order > 0) { 1188 /* for special purposes, we don't set 1189 * free bits in bitmap */ 1190 mb_set_bit(block, buddy); 1191 mb_set_bit(block + 1, buddy); 1192 } 1193 e4b->bd_info->bb_counters[order]--; 1194 e4b->bd_info->bb_counters[order]--; 1195 1196 block = block >> 1; 1197 order++; 1198 e4b->bd_info->bb_counters[order]++; 1199 1200 mb_clear_bit(block, buddy2); 1201 buddy = buddy2; 1202 } while (1); 1203 } 1204 mb_check_buddy(e4b); 1205 } 1206 1207 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block, 1208 int needed, struct ext4_free_extent *ex) 1209 { 1210 int next = block; 1211 int max; 1212 int ord; 1213 void *buddy; 1214 1215 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group)); 1216 BUG_ON(ex == NULL); 1217 1218 buddy = mb_find_buddy(e4b, order, &max); 1219 BUG_ON(buddy == NULL); 1220 BUG_ON(block >= max); 1221 if (mb_test_bit(block, buddy)) { 1222 ex->fe_len = 0; 1223 ex->fe_start = 0; 1224 ex->fe_group = 0; 1225 return 0; 1226 } 1227 1228 /* FIXME dorp order completely ? */ 1229 if (likely(order == 0)) { 1230 /* find actual order */ 1231 order = mb_find_order_for_block(e4b, block); 1232 block = block >> order; 1233 } 1234 1235 ex->fe_len = 1 << order; 1236 ex->fe_start = block << order; 1237 ex->fe_group = e4b->bd_group; 1238 1239 /* calc difference from given start */ 1240 next = next - ex->fe_start; 1241 ex->fe_len -= next; 1242 ex->fe_start += next; 1243 1244 while (needed > ex->fe_len && 1245 (buddy = mb_find_buddy(e4b, order, &max))) { 1246 1247 if (block + 1 >= max) 1248 break; 1249 1250 next = (block + 1) * (1 << order); 1251 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b))) 1252 break; 1253 1254 ord = mb_find_order_for_block(e4b, next); 1255 1256 order = ord; 1257 block = next >> order; 1258 ex->fe_len += 1 << order; 1259 } 1260 1261 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1262 return ex->fe_len; 1263 } 1264 1265 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1266 { 1267 int ord; 1268 int mlen = 0; 1269 int max = 0; 1270 int cur; 1271 int start = ex->fe_start; 1272 int len = ex->fe_len; 1273 unsigned ret = 0; 1274 int len0 = len; 1275 void *buddy; 1276 1277 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1278 BUG_ON(e4b->bd_group != ex->fe_group); 1279 BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group)); 1280 mb_check_buddy(e4b); 1281 mb_mark_used_double(e4b, start, len); 1282 1283 e4b->bd_info->bb_free -= len; 1284 if (e4b->bd_info->bb_first_free == start) 1285 e4b->bd_info->bb_first_free += len; 1286 1287 /* let's maintain fragments counter */ 1288 if (start != 0) 1289 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b)); 1290 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1291 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b)); 1292 if (mlen && max) 1293 e4b->bd_info->bb_fragments++; 1294 else if (!mlen && !max) 1295 e4b->bd_info->bb_fragments--; 1296 1297 /* let's maintain buddy itself */ 1298 while (len) { 1299 ord = mb_find_order_for_block(e4b, start); 1300 1301 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1302 /* the whole chunk may be allocated at once! */ 1303 mlen = 1 << ord; 1304 buddy = mb_find_buddy(e4b, ord, &max); 1305 BUG_ON((start >> ord) >= max); 1306 mb_set_bit(start >> ord, buddy); 1307 e4b->bd_info->bb_counters[ord]--; 1308 start += mlen; 1309 len -= mlen; 1310 BUG_ON(len < 0); 1311 continue; 1312 } 1313 1314 /* store for history */ 1315 if (ret == 0) 1316 ret = len | (ord << 16); 1317 1318 /* we have to split large buddy */ 1319 BUG_ON(ord <= 0); 1320 buddy = mb_find_buddy(e4b, ord, &max); 1321 mb_set_bit(start >> ord, buddy); 1322 e4b->bd_info->bb_counters[ord]--; 1323 1324 ord--; 1325 cur = (start >> ord) & ~1U; 1326 buddy = mb_find_buddy(e4b, ord, &max); 1327 mb_clear_bit(cur, buddy); 1328 mb_clear_bit(cur + 1, buddy); 1329 e4b->bd_info->bb_counters[ord]++; 1330 e4b->bd_info->bb_counters[ord]++; 1331 } 1332 1333 mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group), 1334 EXT4_MB_BITMAP(e4b), ex->fe_start, len0); 1335 mb_check_buddy(e4b); 1336 1337 return ret; 1338 } 1339 1340 /* 1341 * Must be called under group lock! 1342 */ 1343 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1344 struct ext4_buddy *e4b) 1345 { 1346 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1347 int ret; 1348 1349 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1350 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1351 1352 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1353 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1354 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1355 1356 /* preallocation can change ac_b_ex, thus we store actually 1357 * allocated blocks for history */ 1358 ac->ac_f_ex = ac->ac_b_ex; 1359 1360 ac->ac_status = AC_STATUS_FOUND; 1361 ac->ac_tail = ret & 0xffff; 1362 ac->ac_buddy = ret >> 16; 1363 1364 /* 1365 * take the page reference. We want the page to be pinned 1366 * so that we don't get a ext4_mb_init_cache_call for this 1367 * group until we update the bitmap. That would mean we 1368 * double allocate blocks. The reference is dropped 1369 * in ext4_mb_release_context 1370 */ 1371 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1372 get_page(ac->ac_bitmap_page); 1373 ac->ac_buddy_page = e4b->bd_buddy_page; 1374 get_page(ac->ac_buddy_page); 1375 /* on allocation we use ac to track the held semaphore */ 1376 ac->alloc_semp = e4b->alloc_semp; 1377 e4b->alloc_semp = NULL; 1378 /* store last allocated for subsequent stream allocation */ 1379 if ((ac->ac_flags & EXT4_MB_HINT_DATA)) { 1380 spin_lock(&sbi->s_md_lock); 1381 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1382 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1383 spin_unlock(&sbi->s_md_lock); 1384 } 1385 } 1386 1387 /* 1388 * regular allocator, for general purposes allocation 1389 */ 1390 1391 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1392 struct ext4_buddy *e4b, 1393 int finish_group) 1394 { 1395 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1396 struct ext4_free_extent *bex = &ac->ac_b_ex; 1397 struct ext4_free_extent *gex = &ac->ac_g_ex; 1398 struct ext4_free_extent ex; 1399 int max; 1400 1401 if (ac->ac_status == AC_STATUS_FOUND) 1402 return; 1403 /* 1404 * We don't want to scan for a whole year 1405 */ 1406 if (ac->ac_found > sbi->s_mb_max_to_scan && 1407 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1408 ac->ac_status = AC_STATUS_BREAK; 1409 return; 1410 } 1411 1412 /* 1413 * Haven't found good chunk so far, let's continue 1414 */ 1415 if (bex->fe_len < gex->fe_len) 1416 return; 1417 1418 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1419 && bex->fe_group == e4b->bd_group) { 1420 /* recheck chunk's availability - we don't know 1421 * when it was found (within this lock-unlock 1422 * period or not) */ 1423 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex); 1424 if (max >= gex->fe_len) { 1425 ext4_mb_use_best_found(ac, e4b); 1426 return; 1427 } 1428 } 1429 } 1430 1431 /* 1432 * The routine checks whether found extent is good enough. If it is, 1433 * then the extent gets marked used and flag is set to the context 1434 * to stop scanning. Otherwise, the extent is compared with the 1435 * previous found extent and if new one is better, then it's stored 1436 * in the context. Later, the best found extent will be used, if 1437 * mballoc can't find good enough extent. 1438 * 1439 * FIXME: real allocation policy is to be designed yet! 1440 */ 1441 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1442 struct ext4_free_extent *ex, 1443 struct ext4_buddy *e4b) 1444 { 1445 struct ext4_free_extent *bex = &ac->ac_b_ex; 1446 struct ext4_free_extent *gex = &ac->ac_g_ex; 1447 1448 BUG_ON(ex->fe_len <= 0); 1449 BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 1450 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 1451 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1452 1453 ac->ac_found++; 1454 1455 /* 1456 * The special case - take what you catch first 1457 */ 1458 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1459 *bex = *ex; 1460 ext4_mb_use_best_found(ac, e4b); 1461 return; 1462 } 1463 1464 /* 1465 * Let's check whether the chuck is good enough 1466 */ 1467 if (ex->fe_len == gex->fe_len) { 1468 *bex = *ex; 1469 ext4_mb_use_best_found(ac, e4b); 1470 return; 1471 } 1472 1473 /* 1474 * If this is first found extent, just store it in the context 1475 */ 1476 if (bex->fe_len == 0) { 1477 *bex = *ex; 1478 return; 1479 } 1480 1481 /* 1482 * If new found extent is better, store it in the context 1483 */ 1484 if (bex->fe_len < gex->fe_len) { 1485 /* if the request isn't satisfied, any found extent 1486 * larger than previous best one is better */ 1487 if (ex->fe_len > bex->fe_len) 1488 *bex = *ex; 1489 } else if (ex->fe_len > gex->fe_len) { 1490 /* if the request is satisfied, then we try to find 1491 * an extent that still satisfy the request, but is 1492 * smaller than previous one */ 1493 if (ex->fe_len < bex->fe_len) 1494 *bex = *ex; 1495 } 1496 1497 ext4_mb_check_limits(ac, e4b, 0); 1498 } 1499 1500 static int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1501 struct ext4_buddy *e4b) 1502 { 1503 struct ext4_free_extent ex = ac->ac_b_ex; 1504 ext4_group_t group = ex.fe_group; 1505 int max; 1506 int err; 1507 1508 BUG_ON(ex.fe_len <= 0); 1509 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1510 if (err) 1511 return err; 1512 1513 ext4_lock_group(ac->ac_sb, group); 1514 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex); 1515 1516 if (max > 0) { 1517 ac->ac_b_ex = ex; 1518 ext4_mb_use_best_found(ac, e4b); 1519 } 1520 1521 ext4_unlock_group(ac->ac_sb, group); 1522 ext4_mb_release_desc(e4b); 1523 1524 return 0; 1525 } 1526 1527 static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1528 struct ext4_buddy *e4b) 1529 { 1530 ext4_group_t group = ac->ac_g_ex.fe_group; 1531 int max; 1532 int err; 1533 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1534 struct ext4_super_block *es = sbi->s_es; 1535 struct ext4_free_extent ex; 1536 1537 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1538 return 0; 1539 1540 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1541 if (err) 1542 return err; 1543 1544 ext4_lock_group(ac->ac_sb, group); 1545 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start, 1546 ac->ac_g_ex.fe_len, &ex); 1547 1548 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1549 ext4_fsblk_t start; 1550 1551 start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) + 1552 ex.fe_start + le32_to_cpu(es->s_first_data_block); 1553 /* use do_div to get remainder (would be 64-bit modulo) */ 1554 if (do_div(start, sbi->s_stripe) == 0) { 1555 ac->ac_found++; 1556 ac->ac_b_ex = ex; 1557 ext4_mb_use_best_found(ac, e4b); 1558 } 1559 } else if (max >= ac->ac_g_ex.fe_len) { 1560 BUG_ON(ex.fe_len <= 0); 1561 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1562 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1563 ac->ac_found++; 1564 ac->ac_b_ex = ex; 1565 ext4_mb_use_best_found(ac, e4b); 1566 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1567 /* Sometimes, caller may want to merge even small 1568 * number of blocks to an existing extent */ 1569 BUG_ON(ex.fe_len <= 0); 1570 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1571 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1572 ac->ac_found++; 1573 ac->ac_b_ex = ex; 1574 ext4_mb_use_best_found(ac, e4b); 1575 } 1576 ext4_unlock_group(ac->ac_sb, group); 1577 ext4_mb_release_desc(e4b); 1578 1579 return 0; 1580 } 1581 1582 /* 1583 * The routine scans buddy structures (not bitmap!) from given order 1584 * to max order and tries to find big enough chunk to satisfy the req 1585 */ 1586 static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1587 struct ext4_buddy *e4b) 1588 { 1589 struct super_block *sb = ac->ac_sb; 1590 struct ext4_group_info *grp = e4b->bd_info; 1591 void *buddy; 1592 int i; 1593 int k; 1594 int max; 1595 1596 BUG_ON(ac->ac_2order <= 0); 1597 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1598 if (grp->bb_counters[i] == 0) 1599 continue; 1600 1601 buddy = mb_find_buddy(e4b, i, &max); 1602 BUG_ON(buddy == NULL); 1603 1604 k = mb_find_next_zero_bit(buddy, max, 0); 1605 BUG_ON(k >= max); 1606 1607 ac->ac_found++; 1608 1609 ac->ac_b_ex.fe_len = 1 << i; 1610 ac->ac_b_ex.fe_start = k << i; 1611 ac->ac_b_ex.fe_group = e4b->bd_group; 1612 1613 ext4_mb_use_best_found(ac, e4b); 1614 1615 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1616 1617 if (EXT4_SB(sb)->s_mb_stats) 1618 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1619 1620 break; 1621 } 1622 } 1623 1624 /* 1625 * The routine scans the group and measures all found extents. 1626 * In order to optimize scanning, caller must pass number of 1627 * free blocks in the group, so the routine can know upper limit. 1628 */ 1629 static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1630 struct ext4_buddy *e4b) 1631 { 1632 struct super_block *sb = ac->ac_sb; 1633 void *bitmap = EXT4_MB_BITMAP(e4b); 1634 struct ext4_free_extent ex; 1635 int i; 1636 int free; 1637 1638 free = e4b->bd_info->bb_free; 1639 BUG_ON(free <= 0); 1640 1641 i = e4b->bd_info->bb_first_free; 1642 1643 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1644 i = mb_find_next_zero_bit(bitmap, 1645 EXT4_BLOCKS_PER_GROUP(sb), i); 1646 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) { 1647 /* 1648 * IF we have corrupt bitmap, we won't find any 1649 * free blocks even though group info says we 1650 * we have free blocks 1651 */ 1652 ext4_grp_locked_error(sb, e4b->bd_group, 1653 __func__, "%d free blocks as per " 1654 "group info. But bitmap says 0", 1655 free); 1656 break; 1657 } 1658 1659 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex); 1660 BUG_ON(ex.fe_len <= 0); 1661 if (free < ex.fe_len) { 1662 ext4_grp_locked_error(sb, e4b->bd_group, 1663 __func__, "%d free blocks as per " 1664 "group info. But got %d blocks", 1665 free, ex.fe_len); 1666 /* 1667 * The number of free blocks differs. This mostly 1668 * indicate that the bitmap is corrupt. So exit 1669 * without claiming the space. 1670 */ 1671 break; 1672 } 1673 1674 ext4_mb_measure_extent(ac, &ex, e4b); 1675 1676 i += ex.fe_len; 1677 free -= ex.fe_len; 1678 } 1679 1680 ext4_mb_check_limits(ac, e4b, 1); 1681 } 1682 1683 /* 1684 * This is a special case for storages like raid5 1685 * we try to find stripe-aligned chunks for stripe-size requests 1686 * XXX should do so at least for multiples of stripe size as well 1687 */ 1688 static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1689 struct ext4_buddy *e4b) 1690 { 1691 struct super_block *sb = ac->ac_sb; 1692 struct ext4_sb_info *sbi = EXT4_SB(sb); 1693 void *bitmap = EXT4_MB_BITMAP(e4b); 1694 struct ext4_free_extent ex; 1695 ext4_fsblk_t first_group_block; 1696 ext4_fsblk_t a; 1697 ext4_grpblk_t i; 1698 int max; 1699 1700 BUG_ON(sbi->s_stripe == 0); 1701 1702 /* find first stripe-aligned block in group */ 1703 first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb) 1704 + le32_to_cpu(sbi->s_es->s_first_data_block); 1705 a = first_group_block + sbi->s_stripe - 1; 1706 do_div(a, sbi->s_stripe); 1707 i = (a * sbi->s_stripe) - first_group_block; 1708 1709 while (i < EXT4_BLOCKS_PER_GROUP(sb)) { 1710 if (!mb_test_bit(i, bitmap)) { 1711 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex); 1712 if (max >= sbi->s_stripe) { 1713 ac->ac_found++; 1714 ac->ac_b_ex = ex; 1715 ext4_mb_use_best_found(ac, e4b); 1716 break; 1717 } 1718 } 1719 i += sbi->s_stripe; 1720 } 1721 } 1722 1723 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 1724 ext4_group_t group, int cr) 1725 { 1726 unsigned free, fragments; 1727 unsigned i, bits; 1728 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 1729 struct ext4_group_desc *desc; 1730 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1731 1732 BUG_ON(cr < 0 || cr >= 4); 1733 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp)); 1734 1735 free = grp->bb_free; 1736 fragments = grp->bb_fragments; 1737 if (free == 0) 1738 return 0; 1739 if (fragments == 0) 1740 return 0; 1741 1742 switch (cr) { 1743 case 0: 1744 BUG_ON(ac->ac_2order == 0); 1745 /* If this group is uninitialized, skip it initially */ 1746 desc = ext4_get_group_desc(ac->ac_sb, group, NULL); 1747 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) 1748 return 0; 1749 1750 /* Avoid using the first bg of a flexgroup for data files */ 1751 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 1752 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 1753 ((group % flex_size) == 0)) 1754 return 0; 1755 1756 bits = ac->ac_sb->s_blocksize_bits + 1; 1757 for (i = ac->ac_2order; i <= bits; i++) 1758 if (grp->bb_counters[i] > 0) 1759 return 1; 1760 break; 1761 case 1: 1762 if ((free / fragments) >= ac->ac_g_ex.fe_len) 1763 return 1; 1764 break; 1765 case 2: 1766 if (free >= ac->ac_g_ex.fe_len) 1767 return 1; 1768 break; 1769 case 3: 1770 return 1; 1771 default: 1772 BUG(); 1773 } 1774 1775 return 0; 1776 } 1777 1778 /* 1779 * lock the group_info alloc_sem of all the groups 1780 * belonging to the same buddy cache page. This 1781 * make sure other parallel operation on the buddy 1782 * cache doesn't happen whild holding the buddy cache 1783 * lock 1784 */ 1785 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group) 1786 { 1787 int i; 1788 int block, pnum; 1789 int blocks_per_page; 1790 int groups_per_page; 1791 ext4_group_t first_group; 1792 struct ext4_group_info *grp; 1793 1794 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1795 /* 1796 * the buddy cache inode stores the block bitmap 1797 * and buddy information in consecutive blocks. 1798 * So for each group we need two blocks. 1799 */ 1800 block = group * 2; 1801 pnum = block / blocks_per_page; 1802 first_group = pnum * blocks_per_page / 2; 1803 1804 groups_per_page = blocks_per_page >> 1; 1805 if (groups_per_page == 0) 1806 groups_per_page = 1; 1807 /* read all groups the page covers into the cache */ 1808 for (i = 0; i < groups_per_page; i++) { 1809 1810 if ((first_group + i) >= EXT4_SB(sb)->s_groups_count) 1811 break; 1812 grp = ext4_get_group_info(sb, first_group + i); 1813 /* take all groups write allocation 1814 * semaphore. This make sure there is 1815 * no block allocation going on in any 1816 * of that groups 1817 */ 1818 down_write_nested(&grp->alloc_sem, i); 1819 } 1820 return i; 1821 } 1822 1823 void ext4_mb_put_buddy_cache_lock(struct super_block *sb, 1824 ext4_group_t group, int locked_group) 1825 { 1826 int i; 1827 int block, pnum; 1828 int blocks_per_page; 1829 ext4_group_t first_group; 1830 struct ext4_group_info *grp; 1831 1832 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1833 /* 1834 * the buddy cache inode stores the block bitmap 1835 * and buddy information in consecutive blocks. 1836 * So for each group we need two blocks. 1837 */ 1838 block = group * 2; 1839 pnum = block / blocks_per_page; 1840 first_group = pnum * blocks_per_page / 2; 1841 /* release locks on all the groups */ 1842 for (i = 0; i < locked_group; i++) { 1843 1844 grp = ext4_get_group_info(sb, first_group + i); 1845 /* take all groups write allocation 1846 * semaphore. This make sure there is 1847 * no block allocation going on in any 1848 * of that groups 1849 */ 1850 up_write(&grp->alloc_sem); 1851 } 1852 1853 } 1854 1855 static int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) 1856 { 1857 1858 int ret; 1859 void *bitmap; 1860 int blocks_per_page; 1861 int block, pnum, poff; 1862 int num_grp_locked = 0; 1863 struct ext4_group_info *this_grp; 1864 struct ext4_sb_info *sbi = EXT4_SB(sb); 1865 struct inode *inode = sbi->s_buddy_cache; 1866 struct page *page = NULL, *bitmap_page = NULL; 1867 1868 mb_debug("init group %lu\n", group); 1869 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1870 this_grp = ext4_get_group_info(sb, group); 1871 /* 1872 * This ensures we don't add group 1873 * to this buddy cache via resize 1874 */ 1875 num_grp_locked = ext4_mb_get_buddy_cache_lock(sb, group); 1876 if (!EXT4_MB_GRP_NEED_INIT(this_grp)) { 1877 /* 1878 * somebody initialized the group 1879 * return without doing anything 1880 */ 1881 ret = 0; 1882 goto err; 1883 } 1884 /* 1885 * the buddy cache inode stores the block bitmap 1886 * and buddy information in consecutive blocks. 1887 * So for each group we need two blocks. 1888 */ 1889 block = group * 2; 1890 pnum = block / blocks_per_page; 1891 poff = block % blocks_per_page; 1892 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1893 if (page) { 1894 BUG_ON(page->mapping != inode->i_mapping); 1895 ret = ext4_mb_init_cache(page, NULL); 1896 if (ret) { 1897 unlock_page(page); 1898 goto err; 1899 } 1900 unlock_page(page); 1901 } 1902 if (page == NULL || !PageUptodate(page)) { 1903 ret = -EIO; 1904 goto err; 1905 } 1906 mark_page_accessed(page); 1907 bitmap_page = page; 1908 bitmap = page_address(page) + (poff * sb->s_blocksize); 1909 1910 /* init buddy cache */ 1911 block++; 1912 pnum = block / blocks_per_page; 1913 poff = block % blocks_per_page; 1914 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1915 if (page == bitmap_page) { 1916 /* 1917 * If both the bitmap and buddy are in 1918 * the same page we don't need to force 1919 * init the buddy 1920 */ 1921 unlock_page(page); 1922 } else if (page) { 1923 BUG_ON(page->mapping != inode->i_mapping); 1924 ret = ext4_mb_init_cache(page, bitmap); 1925 if (ret) { 1926 unlock_page(page); 1927 goto err; 1928 } 1929 unlock_page(page); 1930 } 1931 if (page == NULL || !PageUptodate(page)) { 1932 ret = -EIO; 1933 goto err; 1934 } 1935 mark_page_accessed(page); 1936 err: 1937 ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked); 1938 if (bitmap_page) 1939 page_cache_release(bitmap_page); 1940 if (page) 1941 page_cache_release(page); 1942 return ret; 1943 } 1944 1945 static noinline_for_stack int 1946 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 1947 { 1948 ext4_group_t group; 1949 ext4_group_t i; 1950 int cr; 1951 int err = 0; 1952 int bsbits; 1953 struct ext4_sb_info *sbi; 1954 struct super_block *sb; 1955 struct ext4_buddy e4b; 1956 loff_t size, isize; 1957 1958 sb = ac->ac_sb; 1959 sbi = EXT4_SB(sb); 1960 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1961 1962 /* first, try the goal */ 1963 err = ext4_mb_find_by_goal(ac, &e4b); 1964 if (err || ac->ac_status == AC_STATUS_FOUND) 1965 goto out; 1966 1967 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 1968 goto out; 1969 1970 /* 1971 * ac->ac2_order is set only if the fe_len is a power of 2 1972 * if ac2_order is set we also set criteria to 0 so that we 1973 * try exact allocation using buddy. 1974 */ 1975 i = fls(ac->ac_g_ex.fe_len); 1976 ac->ac_2order = 0; 1977 /* 1978 * We search using buddy data only if the order of the request 1979 * is greater than equal to the sbi_s_mb_order2_reqs 1980 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 1981 */ 1982 if (i >= sbi->s_mb_order2_reqs) { 1983 /* 1984 * This should tell if fe_len is exactly power of 2 1985 */ 1986 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 1987 ac->ac_2order = i - 1; 1988 } 1989 1990 bsbits = ac->ac_sb->s_blocksize_bits; 1991 /* if stream allocation is enabled, use global goal */ 1992 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len; 1993 isize = i_size_read(ac->ac_inode) >> bsbits; 1994 if (size < isize) 1995 size = isize; 1996 1997 if (size < sbi->s_mb_stream_request && 1998 (ac->ac_flags & EXT4_MB_HINT_DATA)) { 1999 /* TBD: may be hot point */ 2000 spin_lock(&sbi->s_md_lock); 2001 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2002 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2003 spin_unlock(&sbi->s_md_lock); 2004 } 2005 /* Let's just scan groups to find more-less suitable blocks */ 2006 cr = ac->ac_2order ? 0 : 1; 2007 /* 2008 * cr == 0 try to get exact allocation, 2009 * cr == 3 try to get anything 2010 */ 2011 repeat: 2012 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2013 ac->ac_criteria = cr; 2014 /* 2015 * searching for the right group start 2016 * from the goal value specified 2017 */ 2018 group = ac->ac_g_ex.fe_group; 2019 2020 for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) { 2021 struct ext4_group_info *grp; 2022 struct ext4_group_desc *desc; 2023 2024 if (group == EXT4_SB(sb)->s_groups_count) 2025 group = 0; 2026 2027 /* quick check to skip empty groups */ 2028 grp = ext4_get_group_info(sb, group); 2029 if (grp->bb_free == 0) 2030 continue; 2031 2032 /* 2033 * if the group is already init we check whether it is 2034 * a good group and if not we don't load the buddy 2035 */ 2036 if (EXT4_MB_GRP_NEED_INIT(grp)) { 2037 /* 2038 * we need full data about the group 2039 * to make a good selection 2040 */ 2041 err = ext4_mb_init_group(sb, group); 2042 if (err) 2043 goto out; 2044 } 2045 2046 /* 2047 * If the particular group doesn't satisfy our 2048 * criteria we continue with the next group 2049 */ 2050 if (!ext4_mb_good_group(ac, group, cr)) 2051 continue; 2052 2053 err = ext4_mb_load_buddy(sb, group, &e4b); 2054 if (err) 2055 goto out; 2056 2057 ext4_lock_group(sb, group); 2058 if (!ext4_mb_good_group(ac, group, cr)) { 2059 /* someone did allocation from this group */ 2060 ext4_unlock_group(sb, group); 2061 ext4_mb_release_desc(&e4b); 2062 continue; 2063 } 2064 2065 ac->ac_groups_scanned++; 2066 desc = ext4_get_group_desc(sb, group, NULL); 2067 if (cr == 0 || (desc->bg_flags & 2068 cpu_to_le16(EXT4_BG_BLOCK_UNINIT) && 2069 ac->ac_2order != 0)) 2070 ext4_mb_simple_scan_group(ac, &e4b); 2071 else if (cr == 1 && 2072 ac->ac_g_ex.fe_len == sbi->s_stripe) 2073 ext4_mb_scan_aligned(ac, &e4b); 2074 else 2075 ext4_mb_complex_scan_group(ac, &e4b); 2076 2077 ext4_unlock_group(sb, group); 2078 ext4_mb_release_desc(&e4b); 2079 2080 if (ac->ac_status != AC_STATUS_CONTINUE) 2081 break; 2082 } 2083 } 2084 2085 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2086 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2087 /* 2088 * We've been searching too long. Let's try to allocate 2089 * the best chunk we've found so far 2090 */ 2091 2092 ext4_mb_try_best_found(ac, &e4b); 2093 if (ac->ac_status != AC_STATUS_FOUND) { 2094 /* 2095 * Someone more lucky has already allocated it. 2096 * The only thing we can do is just take first 2097 * found block(s) 2098 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2099 */ 2100 ac->ac_b_ex.fe_group = 0; 2101 ac->ac_b_ex.fe_start = 0; 2102 ac->ac_b_ex.fe_len = 0; 2103 ac->ac_status = AC_STATUS_CONTINUE; 2104 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2105 cr = 3; 2106 atomic_inc(&sbi->s_mb_lost_chunks); 2107 goto repeat; 2108 } 2109 } 2110 out: 2111 return err; 2112 } 2113 2114 #ifdef EXT4_MB_HISTORY 2115 struct ext4_mb_proc_session { 2116 struct ext4_mb_history *history; 2117 struct super_block *sb; 2118 int start; 2119 int max; 2120 }; 2121 2122 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s, 2123 struct ext4_mb_history *hs, 2124 int first) 2125 { 2126 if (hs == s->history + s->max) 2127 hs = s->history; 2128 if (!first && hs == s->history + s->start) 2129 return NULL; 2130 while (hs->orig.fe_len == 0) { 2131 hs++; 2132 if (hs == s->history + s->max) 2133 hs = s->history; 2134 if (hs == s->history + s->start) 2135 return NULL; 2136 } 2137 return hs; 2138 } 2139 2140 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos) 2141 { 2142 struct ext4_mb_proc_session *s = seq->private; 2143 struct ext4_mb_history *hs; 2144 int l = *pos; 2145 2146 if (l == 0) 2147 return SEQ_START_TOKEN; 2148 hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1); 2149 if (!hs) 2150 return NULL; 2151 while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL); 2152 return hs; 2153 } 2154 2155 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v, 2156 loff_t *pos) 2157 { 2158 struct ext4_mb_proc_session *s = seq->private; 2159 struct ext4_mb_history *hs = v; 2160 2161 ++*pos; 2162 if (v == SEQ_START_TOKEN) 2163 return ext4_mb_history_skip_empty(s, s->history + s->start, 1); 2164 else 2165 return ext4_mb_history_skip_empty(s, ++hs, 0); 2166 } 2167 2168 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v) 2169 { 2170 char buf[25], buf2[25], buf3[25], *fmt; 2171 struct ext4_mb_history *hs = v; 2172 2173 if (v == SEQ_START_TOKEN) { 2174 seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s " 2175 "%-5s %-2s %-5s %-5s %-5s %-6s\n", 2176 "pid", "inode", "original", "goal", "result", "found", 2177 "grps", "cr", "flags", "merge", "tail", "broken"); 2178 return 0; 2179 } 2180 2181 if (hs->op == EXT4_MB_HISTORY_ALLOC) { 2182 fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u " 2183 "%-5u %-5s %-5u %-6u\n"; 2184 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group, 2185 hs->result.fe_start, hs->result.fe_len, 2186 hs->result.fe_logical); 2187 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group, 2188 hs->orig.fe_start, hs->orig.fe_len, 2189 hs->orig.fe_logical); 2190 sprintf(buf3, "%u/%d/%u@%u", hs->goal.fe_group, 2191 hs->goal.fe_start, hs->goal.fe_len, 2192 hs->goal.fe_logical); 2193 seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2, 2194 hs->found, hs->groups, hs->cr, hs->flags, 2195 hs->merged ? "M" : "", hs->tail, 2196 hs->buddy ? 1 << hs->buddy : 0); 2197 } else if (hs->op == EXT4_MB_HISTORY_PREALLOC) { 2198 fmt = "%-5u %-8u %-23s %-23s %-23s\n"; 2199 sprintf(buf2, "%u/%d/%u@%u", hs->result.fe_group, 2200 hs->result.fe_start, hs->result.fe_len, 2201 hs->result.fe_logical); 2202 sprintf(buf, "%u/%d/%u@%u", hs->orig.fe_group, 2203 hs->orig.fe_start, hs->orig.fe_len, 2204 hs->orig.fe_logical); 2205 seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2); 2206 } else if (hs->op == EXT4_MB_HISTORY_DISCARD) { 2207 sprintf(buf2, "%u/%d/%u", hs->result.fe_group, 2208 hs->result.fe_start, hs->result.fe_len); 2209 seq_printf(seq, "%-5u %-8u %-23s discard\n", 2210 hs->pid, hs->ino, buf2); 2211 } else if (hs->op == EXT4_MB_HISTORY_FREE) { 2212 sprintf(buf2, "%u/%d/%u", hs->result.fe_group, 2213 hs->result.fe_start, hs->result.fe_len); 2214 seq_printf(seq, "%-5u %-8u %-23s free\n", 2215 hs->pid, hs->ino, buf2); 2216 } 2217 return 0; 2218 } 2219 2220 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v) 2221 { 2222 } 2223 2224 static struct seq_operations ext4_mb_seq_history_ops = { 2225 .start = ext4_mb_seq_history_start, 2226 .next = ext4_mb_seq_history_next, 2227 .stop = ext4_mb_seq_history_stop, 2228 .show = ext4_mb_seq_history_show, 2229 }; 2230 2231 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file) 2232 { 2233 struct super_block *sb = PDE(inode)->data; 2234 struct ext4_sb_info *sbi = EXT4_SB(sb); 2235 struct ext4_mb_proc_session *s; 2236 int rc; 2237 int size; 2238 2239 if (unlikely(sbi->s_mb_history == NULL)) 2240 return -ENOMEM; 2241 s = kmalloc(sizeof(*s), GFP_KERNEL); 2242 if (s == NULL) 2243 return -ENOMEM; 2244 s->sb = sb; 2245 size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max; 2246 s->history = kmalloc(size, GFP_KERNEL); 2247 if (s->history == NULL) { 2248 kfree(s); 2249 return -ENOMEM; 2250 } 2251 2252 spin_lock(&sbi->s_mb_history_lock); 2253 memcpy(s->history, sbi->s_mb_history, size); 2254 s->max = sbi->s_mb_history_max; 2255 s->start = sbi->s_mb_history_cur % s->max; 2256 spin_unlock(&sbi->s_mb_history_lock); 2257 2258 rc = seq_open(file, &ext4_mb_seq_history_ops); 2259 if (rc == 0) { 2260 struct seq_file *m = (struct seq_file *)file->private_data; 2261 m->private = s; 2262 } else { 2263 kfree(s->history); 2264 kfree(s); 2265 } 2266 return rc; 2267 2268 } 2269 2270 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file) 2271 { 2272 struct seq_file *seq = (struct seq_file *)file->private_data; 2273 struct ext4_mb_proc_session *s = seq->private; 2274 kfree(s->history); 2275 kfree(s); 2276 return seq_release(inode, file); 2277 } 2278 2279 static ssize_t ext4_mb_seq_history_write(struct file *file, 2280 const char __user *buffer, 2281 size_t count, loff_t *ppos) 2282 { 2283 struct seq_file *seq = (struct seq_file *)file->private_data; 2284 struct ext4_mb_proc_session *s = seq->private; 2285 struct super_block *sb = s->sb; 2286 char str[32]; 2287 int value; 2288 2289 if (count >= sizeof(str)) { 2290 printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n", 2291 "mb_history", (int)sizeof(str)); 2292 return -EOVERFLOW; 2293 } 2294 2295 if (copy_from_user(str, buffer, count)) 2296 return -EFAULT; 2297 2298 value = simple_strtol(str, NULL, 0); 2299 if (value < 0) 2300 return -ERANGE; 2301 EXT4_SB(sb)->s_mb_history_filter = value; 2302 2303 return count; 2304 } 2305 2306 static struct file_operations ext4_mb_seq_history_fops = { 2307 .owner = THIS_MODULE, 2308 .open = ext4_mb_seq_history_open, 2309 .read = seq_read, 2310 .write = ext4_mb_seq_history_write, 2311 .llseek = seq_lseek, 2312 .release = ext4_mb_seq_history_release, 2313 }; 2314 2315 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2316 { 2317 struct super_block *sb = seq->private; 2318 struct ext4_sb_info *sbi = EXT4_SB(sb); 2319 ext4_group_t group; 2320 2321 if (*pos < 0 || *pos >= sbi->s_groups_count) 2322 return NULL; 2323 2324 group = *pos + 1; 2325 return (void *) ((unsigned long) group); 2326 } 2327 2328 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2329 { 2330 struct super_block *sb = seq->private; 2331 struct ext4_sb_info *sbi = EXT4_SB(sb); 2332 ext4_group_t group; 2333 2334 ++*pos; 2335 if (*pos < 0 || *pos >= sbi->s_groups_count) 2336 return NULL; 2337 group = *pos + 1; 2338 return (void *) ((unsigned long) group); 2339 } 2340 2341 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2342 { 2343 struct super_block *sb = seq->private; 2344 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2345 int i; 2346 int err; 2347 struct ext4_buddy e4b; 2348 struct sg { 2349 struct ext4_group_info info; 2350 unsigned short counters[16]; 2351 } sg; 2352 2353 group--; 2354 if (group == 0) 2355 seq_printf(seq, "#%-5s: %-5s %-5s %-5s " 2356 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " 2357 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", 2358 "group", "free", "frags", "first", 2359 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", 2360 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); 2361 2362 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2363 sizeof(struct ext4_group_info); 2364 err = ext4_mb_load_buddy(sb, group, &e4b); 2365 if (err) { 2366 seq_printf(seq, "#%-5u: I/O error\n", group); 2367 return 0; 2368 } 2369 ext4_lock_group(sb, group); 2370 memcpy(&sg, ext4_get_group_info(sb, group), i); 2371 ext4_unlock_group(sb, group); 2372 ext4_mb_release_desc(&e4b); 2373 2374 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2375 sg.info.bb_fragments, sg.info.bb_first_free); 2376 for (i = 0; i <= 13; i++) 2377 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2378 sg.info.bb_counters[i] : 0); 2379 seq_printf(seq, " ]\n"); 2380 2381 return 0; 2382 } 2383 2384 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2385 { 2386 } 2387 2388 static struct seq_operations ext4_mb_seq_groups_ops = { 2389 .start = ext4_mb_seq_groups_start, 2390 .next = ext4_mb_seq_groups_next, 2391 .stop = ext4_mb_seq_groups_stop, 2392 .show = ext4_mb_seq_groups_show, 2393 }; 2394 2395 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2396 { 2397 struct super_block *sb = PDE(inode)->data; 2398 int rc; 2399 2400 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2401 if (rc == 0) { 2402 struct seq_file *m = (struct seq_file *)file->private_data; 2403 m->private = sb; 2404 } 2405 return rc; 2406 2407 } 2408 2409 static struct file_operations ext4_mb_seq_groups_fops = { 2410 .owner = THIS_MODULE, 2411 .open = ext4_mb_seq_groups_open, 2412 .read = seq_read, 2413 .llseek = seq_lseek, 2414 .release = seq_release, 2415 }; 2416 2417 static void ext4_mb_history_release(struct super_block *sb) 2418 { 2419 struct ext4_sb_info *sbi = EXT4_SB(sb); 2420 2421 if (sbi->s_proc != NULL) { 2422 remove_proc_entry("mb_groups", sbi->s_proc); 2423 remove_proc_entry("mb_history", sbi->s_proc); 2424 } 2425 kfree(sbi->s_mb_history); 2426 } 2427 2428 static void ext4_mb_history_init(struct super_block *sb) 2429 { 2430 struct ext4_sb_info *sbi = EXT4_SB(sb); 2431 int i; 2432 2433 if (sbi->s_proc != NULL) { 2434 proc_create_data("mb_history", S_IRUGO, sbi->s_proc, 2435 &ext4_mb_seq_history_fops, sb); 2436 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, 2437 &ext4_mb_seq_groups_fops, sb); 2438 } 2439 2440 sbi->s_mb_history_max = 1000; 2441 sbi->s_mb_history_cur = 0; 2442 spin_lock_init(&sbi->s_mb_history_lock); 2443 i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history); 2444 sbi->s_mb_history = kzalloc(i, GFP_KERNEL); 2445 /* if we can't allocate history, then we simple won't use it */ 2446 } 2447 2448 static noinline_for_stack void 2449 ext4_mb_store_history(struct ext4_allocation_context *ac) 2450 { 2451 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2452 struct ext4_mb_history h; 2453 2454 if (unlikely(sbi->s_mb_history == NULL)) 2455 return; 2456 2457 if (!(ac->ac_op & sbi->s_mb_history_filter)) 2458 return; 2459 2460 h.op = ac->ac_op; 2461 h.pid = current->pid; 2462 h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0; 2463 h.orig = ac->ac_o_ex; 2464 h.result = ac->ac_b_ex; 2465 h.flags = ac->ac_flags; 2466 h.found = ac->ac_found; 2467 h.groups = ac->ac_groups_scanned; 2468 h.cr = ac->ac_criteria; 2469 h.tail = ac->ac_tail; 2470 h.buddy = ac->ac_buddy; 2471 h.merged = 0; 2472 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) { 2473 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 2474 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 2475 h.merged = 1; 2476 h.goal = ac->ac_g_ex; 2477 h.result = ac->ac_f_ex; 2478 } 2479 2480 spin_lock(&sbi->s_mb_history_lock); 2481 memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h)); 2482 if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max) 2483 sbi->s_mb_history_cur = 0; 2484 spin_unlock(&sbi->s_mb_history_lock); 2485 } 2486 2487 #else 2488 #define ext4_mb_history_release(sb) 2489 #define ext4_mb_history_init(sb) 2490 #endif 2491 2492 2493 /* Create and initialize ext4_group_info data for the given group. */ 2494 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2495 struct ext4_group_desc *desc) 2496 { 2497 int i, len; 2498 int metalen = 0; 2499 struct ext4_sb_info *sbi = EXT4_SB(sb); 2500 struct ext4_group_info **meta_group_info; 2501 2502 /* 2503 * First check if this group is the first of a reserved block. 2504 * If it's true, we have to allocate a new table of pointers 2505 * to ext4_group_info structures 2506 */ 2507 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2508 metalen = sizeof(*meta_group_info) << 2509 EXT4_DESC_PER_BLOCK_BITS(sb); 2510 meta_group_info = kmalloc(metalen, GFP_KERNEL); 2511 if (meta_group_info == NULL) { 2512 printk(KERN_ERR "EXT4-fs: can't allocate mem for a " 2513 "buddy group\n"); 2514 goto exit_meta_group_info; 2515 } 2516 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2517 meta_group_info; 2518 } 2519 2520 /* 2521 * calculate needed size. if change bb_counters size, 2522 * don't forget about ext4_mb_generate_buddy() 2523 */ 2524 len = offsetof(typeof(**meta_group_info), 2525 bb_counters[sb->s_blocksize_bits + 2]); 2526 2527 meta_group_info = 2528 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2529 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2530 2531 meta_group_info[i] = kzalloc(len, GFP_KERNEL); 2532 if (meta_group_info[i] == NULL) { 2533 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n"); 2534 goto exit_group_info; 2535 } 2536 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2537 &(meta_group_info[i]->bb_state)); 2538 2539 /* 2540 * initialize bb_free to be able to skip 2541 * empty groups without initialization 2542 */ 2543 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2544 meta_group_info[i]->bb_free = 2545 ext4_free_blocks_after_init(sb, group, desc); 2546 } else { 2547 meta_group_info[i]->bb_free = 2548 ext4_free_blks_count(sb, desc); 2549 } 2550 2551 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2552 init_rwsem(&meta_group_info[i]->alloc_sem); 2553 meta_group_info[i]->bb_free_root.rb_node = NULL;; 2554 2555 #ifdef DOUBLE_CHECK 2556 { 2557 struct buffer_head *bh; 2558 meta_group_info[i]->bb_bitmap = 2559 kmalloc(sb->s_blocksize, GFP_KERNEL); 2560 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2561 bh = ext4_read_block_bitmap(sb, group); 2562 BUG_ON(bh == NULL); 2563 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2564 sb->s_blocksize); 2565 put_bh(bh); 2566 } 2567 #endif 2568 2569 return 0; 2570 2571 exit_group_info: 2572 /* If a meta_group_info table has been allocated, release it now */ 2573 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) 2574 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2575 exit_meta_group_info: 2576 return -ENOMEM; 2577 } /* ext4_mb_add_groupinfo */ 2578 2579 /* 2580 * Update an existing group. 2581 * This function is used for online resize 2582 */ 2583 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add) 2584 { 2585 grp->bb_free += add; 2586 } 2587 2588 static int ext4_mb_init_backend(struct super_block *sb) 2589 { 2590 ext4_group_t i; 2591 int metalen; 2592 struct ext4_sb_info *sbi = EXT4_SB(sb); 2593 struct ext4_super_block *es = sbi->s_es; 2594 int num_meta_group_infos; 2595 int num_meta_group_infos_max; 2596 int array_size; 2597 struct ext4_group_info **meta_group_info; 2598 struct ext4_group_desc *desc; 2599 2600 /* This is the number of blocks used by GDT */ 2601 num_meta_group_infos = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 2602 1) >> EXT4_DESC_PER_BLOCK_BITS(sb); 2603 2604 /* 2605 * This is the total number of blocks used by GDT including 2606 * the number of reserved blocks for GDT. 2607 * The s_group_info array is allocated with this value 2608 * to allow a clean online resize without a complex 2609 * manipulation of pointer. 2610 * The drawback is the unused memory when no resize 2611 * occurs but it's very low in terms of pages 2612 * (see comments below) 2613 * Need to handle this properly when META_BG resizing is allowed 2614 */ 2615 num_meta_group_infos_max = num_meta_group_infos + 2616 le16_to_cpu(es->s_reserved_gdt_blocks); 2617 2618 /* 2619 * array_size is the size of s_group_info array. We round it 2620 * to the next power of two because this approximation is done 2621 * internally by kmalloc so we can have some more memory 2622 * for free here (e.g. may be used for META_BG resize). 2623 */ 2624 array_size = 1; 2625 while (array_size < sizeof(*sbi->s_group_info) * 2626 num_meta_group_infos_max) 2627 array_size = array_size << 1; 2628 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte 2629 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem. 2630 * So a two level scheme suffices for now. */ 2631 sbi->s_group_info = kmalloc(array_size, GFP_KERNEL); 2632 if (sbi->s_group_info == NULL) { 2633 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n"); 2634 return -ENOMEM; 2635 } 2636 sbi->s_buddy_cache = new_inode(sb); 2637 if (sbi->s_buddy_cache == NULL) { 2638 printk(KERN_ERR "EXT4-fs: can't get new inode\n"); 2639 goto err_freesgi; 2640 } 2641 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2642 2643 metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb); 2644 for (i = 0; i < num_meta_group_infos; i++) { 2645 if ((i + 1) == num_meta_group_infos) 2646 metalen = sizeof(*meta_group_info) * 2647 (sbi->s_groups_count - 2648 (i << EXT4_DESC_PER_BLOCK_BITS(sb))); 2649 meta_group_info = kmalloc(metalen, GFP_KERNEL); 2650 if (meta_group_info == NULL) { 2651 printk(KERN_ERR "EXT4-fs: can't allocate mem for a " 2652 "buddy group\n"); 2653 goto err_freemeta; 2654 } 2655 sbi->s_group_info[i] = meta_group_info; 2656 } 2657 2658 for (i = 0; i < sbi->s_groups_count; i++) { 2659 desc = ext4_get_group_desc(sb, i, NULL); 2660 if (desc == NULL) { 2661 printk(KERN_ERR 2662 "EXT4-fs: can't read descriptor %u\n", i); 2663 goto err_freebuddy; 2664 } 2665 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2666 goto err_freebuddy; 2667 } 2668 2669 return 0; 2670 2671 err_freebuddy: 2672 while (i-- > 0) 2673 kfree(ext4_get_group_info(sb, i)); 2674 i = num_meta_group_infos; 2675 err_freemeta: 2676 while (i-- > 0) 2677 kfree(sbi->s_group_info[i]); 2678 iput(sbi->s_buddy_cache); 2679 err_freesgi: 2680 kfree(sbi->s_group_info); 2681 return -ENOMEM; 2682 } 2683 2684 int ext4_mb_init(struct super_block *sb, int needs_recovery) 2685 { 2686 struct ext4_sb_info *sbi = EXT4_SB(sb); 2687 unsigned i, j; 2688 unsigned offset; 2689 unsigned max; 2690 int ret; 2691 2692 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short); 2693 2694 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2695 if (sbi->s_mb_offsets == NULL) { 2696 return -ENOMEM; 2697 } 2698 2699 i = (sb->s_blocksize_bits + 2) * sizeof(unsigned int); 2700 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2701 if (sbi->s_mb_maxs == NULL) { 2702 kfree(sbi->s_mb_offsets); 2703 return -ENOMEM; 2704 } 2705 2706 /* order 0 is regular bitmap */ 2707 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2708 sbi->s_mb_offsets[0] = 0; 2709 2710 i = 1; 2711 offset = 0; 2712 max = sb->s_blocksize << 2; 2713 do { 2714 sbi->s_mb_offsets[i] = offset; 2715 sbi->s_mb_maxs[i] = max; 2716 offset += 1 << (sb->s_blocksize_bits - i); 2717 max = max >> 1; 2718 i++; 2719 } while (i <= sb->s_blocksize_bits + 1); 2720 2721 /* init file for buddy data */ 2722 ret = ext4_mb_init_backend(sb); 2723 if (ret != 0) { 2724 kfree(sbi->s_mb_offsets); 2725 kfree(sbi->s_mb_maxs); 2726 return ret; 2727 } 2728 2729 spin_lock_init(&sbi->s_md_lock); 2730 spin_lock_init(&sbi->s_bal_lock); 2731 2732 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2733 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2734 sbi->s_mb_stats = MB_DEFAULT_STATS; 2735 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2736 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2737 sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT; 2738 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC; 2739 2740 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2741 if (sbi->s_locality_groups == NULL) { 2742 kfree(sbi->s_mb_offsets); 2743 kfree(sbi->s_mb_maxs); 2744 return -ENOMEM; 2745 } 2746 for_each_possible_cpu(i) { 2747 struct ext4_locality_group *lg; 2748 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2749 mutex_init(&lg->lg_mutex); 2750 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2751 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2752 spin_lock_init(&lg->lg_prealloc_lock); 2753 } 2754 2755 ext4_mb_history_init(sb); 2756 2757 if (sbi->s_journal) 2758 sbi->s_journal->j_commit_callback = release_blocks_on_commit; 2759 2760 printk(KERN_INFO "EXT4-fs: mballoc enabled\n"); 2761 return 0; 2762 } 2763 2764 /* need to called with ext4 group lock (ext4_lock_group) */ 2765 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2766 { 2767 struct ext4_prealloc_space *pa; 2768 struct list_head *cur, *tmp; 2769 int count = 0; 2770 2771 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2772 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2773 list_del(&pa->pa_group_list); 2774 count++; 2775 kmem_cache_free(ext4_pspace_cachep, pa); 2776 } 2777 if (count) 2778 mb_debug("mballoc: %u PAs left\n", count); 2779 2780 } 2781 2782 int ext4_mb_release(struct super_block *sb) 2783 { 2784 ext4_group_t i; 2785 int num_meta_group_infos; 2786 struct ext4_group_info *grinfo; 2787 struct ext4_sb_info *sbi = EXT4_SB(sb); 2788 2789 if (sbi->s_group_info) { 2790 for (i = 0; i < sbi->s_groups_count; i++) { 2791 grinfo = ext4_get_group_info(sb, i); 2792 #ifdef DOUBLE_CHECK 2793 kfree(grinfo->bb_bitmap); 2794 #endif 2795 ext4_lock_group(sb, i); 2796 ext4_mb_cleanup_pa(grinfo); 2797 ext4_unlock_group(sb, i); 2798 kfree(grinfo); 2799 } 2800 num_meta_group_infos = (sbi->s_groups_count + 2801 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2802 EXT4_DESC_PER_BLOCK_BITS(sb); 2803 for (i = 0; i < num_meta_group_infos; i++) 2804 kfree(sbi->s_group_info[i]); 2805 kfree(sbi->s_group_info); 2806 } 2807 kfree(sbi->s_mb_offsets); 2808 kfree(sbi->s_mb_maxs); 2809 if (sbi->s_buddy_cache) 2810 iput(sbi->s_buddy_cache); 2811 if (sbi->s_mb_stats) { 2812 printk(KERN_INFO 2813 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n", 2814 atomic_read(&sbi->s_bal_allocated), 2815 atomic_read(&sbi->s_bal_reqs), 2816 atomic_read(&sbi->s_bal_success)); 2817 printk(KERN_INFO 2818 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, " 2819 "%u 2^N hits, %u breaks, %u lost\n", 2820 atomic_read(&sbi->s_bal_ex_scanned), 2821 atomic_read(&sbi->s_bal_goals), 2822 atomic_read(&sbi->s_bal_2orders), 2823 atomic_read(&sbi->s_bal_breaks), 2824 atomic_read(&sbi->s_mb_lost_chunks)); 2825 printk(KERN_INFO 2826 "EXT4-fs: mballoc: %lu generated and it took %Lu\n", 2827 sbi->s_mb_buddies_generated++, 2828 sbi->s_mb_generation_time); 2829 printk(KERN_INFO 2830 "EXT4-fs: mballoc: %u preallocated, %u discarded\n", 2831 atomic_read(&sbi->s_mb_preallocated), 2832 atomic_read(&sbi->s_mb_discarded)); 2833 } 2834 2835 free_percpu(sbi->s_locality_groups); 2836 ext4_mb_history_release(sb); 2837 2838 return 0; 2839 } 2840 2841 /* 2842 * This function is called by the jbd2 layer once the commit has finished, 2843 * so we know we can free the blocks that were released with that commit. 2844 */ 2845 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn) 2846 { 2847 struct super_block *sb = journal->j_private; 2848 struct ext4_buddy e4b; 2849 struct ext4_group_info *db; 2850 int err, count = 0, count2 = 0; 2851 struct ext4_free_data *entry; 2852 ext4_fsblk_t discard_block; 2853 struct list_head *l, *ltmp; 2854 2855 list_for_each_safe(l, ltmp, &txn->t_private_list) { 2856 entry = list_entry(l, struct ext4_free_data, list); 2857 2858 mb_debug("gonna free %u blocks in group %u (0x%p):", 2859 entry->count, entry->group, entry); 2860 2861 err = ext4_mb_load_buddy(sb, entry->group, &e4b); 2862 /* we expect to find existing buddy because it's pinned */ 2863 BUG_ON(err != 0); 2864 2865 db = e4b.bd_info; 2866 /* there are blocks to put in buddy to make them really free */ 2867 count += entry->count; 2868 count2++; 2869 ext4_lock_group(sb, entry->group); 2870 /* Take it out of per group rb tree */ 2871 rb_erase(&entry->node, &(db->bb_free_root)); 2872 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count); 2873 2874 if (!db->bb_free_root.rb_node) { 2875 /* No more items in the per group rb tree 2876 * balance refcounts from ext4_mb_free_metadata() 2877 */ 2878 page_cache_release(e4b.bd_buddy_page); 2879 page_cache_release(e4b.bd_bitmap_page); 2880 } 2881 ext4_unlock_group(sb, entry->group); 2882 discard_block = (ext4_fsblk_t) entry->group * EXT4_BLOCKS_PER_GROUP(sb) 2883 + entry->start_blk 2884 + le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 2885 trace_mark(ext4_discard_blocks, "dev %s blk %llu count %u", 2886 sb->s_id, (unsigned long long) discard_block, 2887 entry->count); 2888 sb_issue_discard(sb, discard_block, entry->count); 2889 2890 kmem_cache_free(ext4_free_ext_cachep, entry); 2891 ext4_mb_release_desc(&e4b); 2892 } 2893 2894 mb_debug("freed %u blocks in %u structures\n", count, count2); 2895 } 2896 2897 int __init init_ext4_mballoc(void) 2898 { 2899 ext4_pspace_cachep = 2900 kmem_cache_create("ext4_prealloc_space", 2901 sizeof(struct ext4_prealloc_space), 2902 0, SLAB_RECLAIM_ACCOUNT, NULL); 2903 if (ext4_pspace_cachep == NULL) 2904 return -ENOMEM; 2905 2906 ext4_ac_cachep = 2907 kmem_cache_create("ext4_alloc_context", 2908 sizeof(struct ext4_allocation_context), 2909 0, SLAB_RECLAIM_ACCOUNT, NULL); 2910 if (ext4_ac_cachep == NULL) { 2911 kmem_cache_destroy(ext4_pspace_cachep); 2912 return -ENOMEM; 2913 } 2914 2915 ext4_free_ext_cachep = 2916 kmem_cache_create("ext4_free_block_extents", 2917 sizeof(struct ext4_free_data), 2918 0, SLAB_RECLAIM_ACCOUNT, NULL); 2919 if (ext4_free_ext_cachep == NULL) { 2920 kmem_cache_destroy(ext4_pspace_cachep); 2921 kmem_cache_destroy(ext4_ac_cachep); 2922 return -ENOMEM; 2923 } 2924 return 0; 2925 } 2926 2927 void exit_ext4_mballoc(void) 2928 { 2929 /* XXX: synchronize_rcu(); */ 2930 kmem_cache_destroy(ext4_pspace_cachep); 2931 kmem_cache_destroy(ext4_ac_cachep); 2932 kmem_cache_destroy(ext4_free_ext_cachep); 2933 } 2934 2935 2936 /* 2937 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps 2938 * Returns 0 if success or error code 2939 */ 2940 static noinline_for_stack int 2941 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2942 handle_t *handle, unsigned int reserv_blks) 2943 { 2944 struct buffer_head *bitmap_bh = NULL; 2945 struct ext4_super_block *es; 2946 struct ext4_group_desc *gdp; 2947 struct buffer_head *gdp_bh; 2948 struct ext4_sb_info *sbi; 2949 struct super_block *sb; 2950 ext4_fsblk_t block; 2951 int err, len; 2952 2953 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2954 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2955 2956 sb = ac->ac_sb; 2957 sbi = EXT4_SB(sb); 2958 es = sbi->s_es; 2959 2960 2961 err = -EIO; 2962 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2963 if (!bitmap_bh) 2964 goto out_err; 2965 2966 err = ext4_journal_get_write_access(handle, bitmap_bh); 2967 if (err) 2968 goto out_err; 2969 2970 err = -EIO; 2971 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2972 if (!gdp) 2973 goto out_err; 2974 2975 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2976 ext4_free_blks_count(sb, gdp)); 2977 2978 err = ext4_journal_get_write_access(handle, gdp_bh); 2979 if (err) 2980 goto out_err; 2981 2982 block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb) 2983 + ac->ac_b_ex.fe_start 2984 + le32_to_cpu(es->s_first_data_block); 2985 2986 len = ac->ac_b_ex.fe_len; 2987 if (in_range(ext4_block_bitmap(sb, gdp), block, len) || 2988 in_range(ext4_inode_bitmap(sb, gdp), block, len) || 2989 in_range(block, ext4_inode_table(sb, gdp), 2990 EXT4_SB(sb)->s_itb_per_group) || 2991 in_range(block + len - 1, ext4_inode_table(sb, gdp), 2992 EXT4_SB(sb)->s_itb_per_group)) { 2993 ext4_error(sb, __func__, 2994 "Allocating block %llu in system zone of %d group\n", 2995 block, ac->ac_b_ex.fe_group); 2996 /* File system mounted not to panic on error 2997 * Fix the bitmap and repeat the block allocation 2998 * We leak some of the blocks here. 2999 */ 3000 mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group), 3001 bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3002 ac->ac_b_ex.fe_len); 3003 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3004 if (!err) 3005 err = -EAGAIN; 3006 goto out_err; 3007 } 3008 #ifdef AGGRESSIVE_CHECK 3009 { 3010 int i; 3011 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 3012 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 3013 bitmap_bh->b_data)); 3014 } 3015 } 3016 #endif 3017 spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group)); 3018 mb_set_bits(NULL, bitmap_bh->b_data, 3019 ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len); 3020 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 3021 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3022 ext4_free_blks_set(sb, gdp, 3023 ext4_free_blocks_after_init(sb, 3024 ac->ac_b_ex.fe_group, gdp)); 3025 } 3026 len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len; 3027 ext4_free_blks_set(sb, gdp, len); 3028 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp); 3029 spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group)); 3030 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len); 3031 /* 3032 * Now reduce the dirty block count also. Should not go negative 3033 */ 3034 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 3035 /* release all the reserved blocks if non delalloc */ 3036 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks); 3037 else { 3038 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 3039 ac->ac_b_ex.fe_len); 3040 /* convert reserved quota blocks to real quota blocks */ 3041 vfs_dq_claim_block(ac->ac_inode, ac->ac_b_ex.fe_len); 3042 } 3043 3044 if (sbi->s_log_groups_per_flex) { 3045 ext4_group_t flex_group = ext4_flex_group(sbi, 3046 ac->ac_b_ex.fe_group); 3047 atomic_sub(ac->ac_b_ex.fe_len, 3048 &sbi->s_flex_groups[flex_group].free_blocks); 3049 } 3050 3051 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3052 if (err) 3053 goto out_err; 3054 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 3055 3056 out_err: 3057 sb->s_dirt = 1; 3058 brelse(bitmap_bh); 3059 return err; 3060 } 3061 3062 /* 3063 * here we normalize request for locality group 3064 * Group request are normalized to s_strip size if we set the same via mount 3065 * option. If not we set it to s_mb_group_prealloc which can be configured via 3066 * /sys/fs/ext4/<partition>/mb_group_prealloc 3067 * 3068 * XXX: should we try to preallocate more than the group has now? 3069 */ 3070 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 3071 { 3072 struct super_block *sb = ac->ac_sb; 3073 struct ext4_locality_group *lg = ac->ac_lg; 3074 3075 BUG_ON(lg == NULL); 3076 if (EXT4_SB(sb)->s_stripe) 3077 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe; 3078 else 3079 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 3080 mb_debug("#%u: goal %u blocks for locality group\n", 3081 current->pid, ac->ac_g_ex.fe_len); 3082 } 3083 3084 /* 3085 * Normalization means making request better in terms of 3086 * size and alignment 3087 */ 3088 static noinline_for_stack void 3089 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3090 struct ext4_allocation_request *ar) 3091 { 3092 int bsbits, max; 3093 ext4_lblk_t end; 3094 loff_t size, orig_size, start_off; 3095 ext4_lblk_t start, orig_start; 3096 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3097 struct ext4_prealloc_space *pa; 3098 3099 /* do normalize only data requests, metadata requests 3100 do not need preallocation */ 3101 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3102 return; 3103 3104 /* sometime caller may want exact blocks */ 3105 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3106 return; 3107 3108 /* caller may indicate that preallocation isn't 3109 * required (it's a tail, for example) */ 3110 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3111 return; 3112 3113 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3114 ext4_mb_normalize_group_request(ac); 3115 return ; 3116 } 3117 3118 bsbits = ac->ac_sb->s_blocksize_bits; 3119 3120 /* first, let's learn actual file size 3121 * given current request is allocated */ 3122 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len; 3123 size = size << bsbits; 3124 if (size < i_size_read(ac->ac_inode)) 3125 size = i_size_read(ac->ac_inode); 3126 3127 /* max size of free chunks */ 3128 max = 2 << bsbits; 3129 3130 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3131 (req <= (size) || max <= (chunk_size)) 3132 3133 /* first, try to predict filesize */ 3134 /* XXX: should this table be tunable? */ 3135 start_off = 0; 3136 if (size <= 16 * 1024) { 3137 size = 16 * 1024; 3138 } else if (size <= 32 * 1024) { 3139 size = 32 * 1024; 3140 } else if (size <= 64 * 1024) { 3141 size = 64 * 1024; 3142 } else if (size <= 128 * 1024) { 3143 size = 128 * 1024; 3144 } else if (size <= 256 * 1024) { 3145 size = 256 * 1024; 3146 } else if (size <= 512 * 1024) { 3147 size = 512 * 1024; 3148 } else if (size <= 1024 * 1024) { 3149 size = 1024 * 1024; 3150 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3151 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3152 (21 - bsbits)) << 21; 3153 size = 2 * 1024 * 1024; 3154 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3155 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3156 (22 - bsbits)) << 22; 3157 size = 4 * 1024 * 1024; 3158 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3159 (8<<20)>>bsbits, max, 8 * 1024)) { 3160 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3161 (23 - bsbits)) << 23; 3162 size = 8 * 1024 * 1024; 3163 } else { 3164 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits; 3165 size = ac->ac_o_ex.fe_len << bsbits; 3166 } 3167 orig_size = size = size >> bsbits; 3168 orig_start = start = start_off >> bsbits; 3169 3170 /* don't cover already allocated blocks in selected range */ 3171 if (ar->pleft && start <= ar->lleft) { 3172 size -= ar->lleft + 1 - start; 3173 start = ar->lleft + 1; 3174 } 3175 if (ar->pright && start + size - 1 >= ar->lright) 3176 size -= start + size - ar->lright; 3177 3178 end = start + size; 3179 3180 /* check we don't cross already preallocated blocks */ 3181 rcu_read_lock(); 3182 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3183 ext4_lblk_t pa_end; 3184 3185 if (pa->pa_deleted) 3186 continue; 3187 spin_lock(&pa->pa_lock); 3188 if (pa->pa_deleted) { 3189 spin_unlock(&pa->pa_lock); 3190 continue; 3191 } 3192 3193 pa_end = pa->pa_lstart + pa->pa_len; 3194 3195 /* PA must not overlap original request */ 3196 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3197 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3198 3199 /* skip PA normalized request doesn't overlap with */ 3200 if (pa->pa_lstart >= end) { 3201 spin_unlock(&pa->pa_lock); 3202 continue; 3203 } 3204 if (pa_end <= start) { 3205 spin_unlock(&pa->pa_lock); 3206 continue; 3207 } 3208 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3209 3210 if (pa_end <= ac->ac_o_ex.fe_logical) { 3211 BUG_ON(pa_end < start); 3212 start = pa_end; 3213 } 3214 3215 if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3216 BUG_ON(pa->pa_lstart > end); 3217 end = pa->pa_lstart; 3218 } 3219 spin_unlock(&pa->pa_lock); 3220 } 3221 rcu_read_unlock(); 3222 size = end - start; 3223 3224 /* XXX: extra loop to check we really don't overlap preallocations */ 3225 rcu_read_lock(); 3226 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3227 ext4_lblk_t pa_end; 3228 spin_lock(&pa->pa_lock); 3229 if (pa->pa_deleted == 0) { 3230 pa_end = pa->pa_lstart + pa->pa_len; 3231 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3232 } 3233 spin_unlock(&pa->pa_lock); 3234 } 3235 rcu_read_unlock(); 3236 3237 if (start + size <= ac->ac_o_ex.fe_logical && 3238 start > ac->ac_o_ex.fe_logical) { 3239 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n", 3240 (unsigned long) start, (unsigned long) size, 3241 (unsigned long) ac->ac_o_ex.fe_logical); 3242 } 3243 BUG_ON(start + size <= ac->ac_o_ex.fe_logical && 3244 start > ac->ac_o_ex.fe_logical); 3245 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3246 3247 /* now prepare goal request */ 3248 3249 /* XXX: is it better to align blocks WRT to logical 3250 * placement or satisfy big request as is */ 3251 ac->ac_g_ex.fe_logical = start; 3252 ac->ac_g_ex.fe_len = size; 3253 3254 /* define goal start in order to merge */ 3255 if (ar->pright && (ar->lright == (start + size))) { 3256 /* merge to the right */ 3257 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3258 &ac->ac_f_ex.fe_group, 3259 &ac->ac_f_ex.fe_start); 3260 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3261 } 3262 if (ar->pleft && (ar->lleft + 1 == start)) { 3263 /* merge to the left */ 3264 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3265 &ac->ac_f_ex.fe_group, 3266 &ac->ac_f_ex.fe_start); 3267 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3268 } 3269 3270 mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size, 3271 (unsigned) orig_size, (unsigned) start); 3272 } 3273 3274 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3275 { 3276 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3277 3278 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3279 atomic_inc(&sbi->s_bal_reqs); 3280 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3281 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len) 3282 atomic_inc(&sbi->s_bal_success); 3283 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3284 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3285 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3286 atomic_inc(&sbi->s_bal_goals); 3287 if (ac->ac_found > sbi->s_mb_max_to_scan) 3288 atomic_inc(&sbi->s_bal_breaks); 3289 } 3290 3291 ext4_mb_store_history(ac); 3292 } 3293 3294 /* 3295 * use blocks preallocated to inode 3296 */ 3297 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3298 struct ext4_prealloc_space *pa) 3299 { 3300 ext4_fsblk_t start; 3301 ext4_fsblk_t end; 3302 int len; 3303 3304 /* found preallocated blocks, use them */ 3305 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3306 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len); 3307 len = end - start; 3308 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3309 &ac->ac_b_ex.fe_start); 3310 ac->ac_b_ex.fe_len = len; 3311 ac->ac_status = AC_STATUS_FOUND; 3312 ac->ac_pa = pa; 3313 3314 BUG_ON(start < pa->pa_pstart); 3315 BUG_ON(start + len > pa->pa_pstart + pa->pa_len); 3316 BUG_ON(pa->pa_free < len); 3317 pa->pa_free -= len; 3318 3319 mb_debug("use %llu/%u from inode pa %p\n", start, len, pa); 3320 } 3321 3322 /* 3323 * use blocks preallocated to locality group 3324 */ 3325 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3326 struct ext4_prealloc_space *pa) 3327 { 3328 unsigned int len = ac->ac_o_ex.fe_len; 3329 3330 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3331 &ac->ac_b_ex.fe_group, 3332 &ac->ac_b_ex.fe_start); 3333 ac->ac_b_ex.fe_len = len; 3334 ac->ac_status = AC_STATUS_FOUND; 3335 ac->ac_pa = pa; 3336 3337 /* we don't correct pa_pstart or pa_plen here to avoid 3338 * possible race when the group is being loaded concurrently 3339 * instead we correct pa later, after blocks are marked 3340 * in on-disk bitmap -- see ext4_mb_release_context() 3341 * Other CPUs are prevented from allocating from this pa by lg_mutex 3342 */ 3343 mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3344 } 3345 3346 /* 3347 * Return the prealloc space that have minimal distance 3348 * from the goal block. @cpa is the prealloc 3349 * space that is having currently known minimal distance 3350 * from the goal block. 3351 */ 3352 static struct ext4_prealloc_space * 3353 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3354 struct ext4_prealloc_space *pa, 3355 struct ext4_prealloc_space *cpa) 3356 { 3357 ext4_fsblk_t cur_distance, new_distance; 3358 3359 if (cpa == NULL) { 3360 atomic_inc(&pa->pa_count); 3361 return pa; 3362 } 3363 cur_distance = abs(goal_block - cpa->pa_pstart); 3364 new_distance = abs(goal_block - pa->pa_pstart); 3365 3366 if (cur_distance < new_distance) 3367 return cpa; 3368 3369 /* drop the previous reference */ 3370 atomic_dec(&cpa->pa_count); 3371 atomic_inc(&pa->pa_count); 3372 return pa; 3373 } 3374 3375 /* 3376 * search goal blocks in preallocated space 3377 */ 3378 static noinline_for_stack int 3379 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3380 { 3381 int order, i; 3382 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3383 struct ext4_locality_group *lg; 3384 struct ext4_prealloc_space *pa, *cpa = NULL; 3385 ext4_fsblk_t goal_block; 3386 3387 /* only data can be preallocated */ 3388 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3389 return 0; 3390 3391 /* first, try per-file preallocation */ 3392 rcu_read_lock(); 3393 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3394 3395 /* all fields in this condition don't change, 3396 * so we can skip locking for them */ 3397 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3398 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len) 3399 continue; 3400 3401 /* found preallocated blocks, use them */ 3402 spin_lock(&pa->pa_lock); 3403 if (pa->pa_deleted == 0 && pa->pa_free) { 3404 atomic_inc(&pa->pa_count); 3405 ext4_mb_use_inode_pa(ac, pa); 3406 spin_unlock(&pa->pa_lock); 3407 ac->ac_criteria = 10; 3408 rcu_read_unlock(); 3409 return 1; 3410 } 3411 spin_unlock(&pa->pa_lock); 3412 } 3413 rcu_read_unlock(); 3414 3415 /* can we use group allocation? */ 3416 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3417 return 0; 3418 3419 /* inode may have no locality group for some reason */ 3420 lg = ac->ac_lg; 3421 if (lg == NULL) 3422 return 0; 3423 order = fls(ac->ac_o_ex.fe_len) - 1; 3424 if (order > PREALLOC_TB_SIZE - 1) 3425 /* The max size of hash table is PREALLOC_TB_SIZE */ 3426 order = PREALLOC_TB_SIZE - 1; 3427 3428 goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) + 3429 ac->ac_g_ex.fe_start + 3430 le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block); 3431 /* 3432 * search for the prealloc space that is having 3433 * minimal distance from the goal block. 3434 */ 3435 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3436 rcu_read_lock(); 3437 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3438 pa_inode_list) { 3439 spin_lock(&pa->pa_lock); 3440 if (pa->pa_deleted == 0 && 3441 pa->pa_free >= ac->ac_o_ex.fe_len) { 3442 3443 cpa = ext4_mb_check_group_pa(goal_block, 3444 pa, cpa); 3445 } 3446 spin_unlock(&pa->pa_lock); 3447 } 3448 rcu_read_unlock(); 3449 } 3450 if (cpa) { 3451 ext4_mb_use_group_pa(ac, cpa); 3452 ac->ac_criteria = 20; 3453 return 1; 3454 } 3455 return 0; 3456 } 3457 3458 /* 3459 * the function goes through all block freed in the group 3460 * but not yet committed and marks them used in in-core bitmap. 3461 * buddy must be generated from this bitmap 3462 * Need to be called with ext4 group lock (ext4_lock_group) 3463 */ 3464 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3465 ext4_group_t group) 3466 { 3467 struct rb_node *n; 3468 struct ext4_group_info *grp; 3469 struct ext4_free_data *entry; 3470 3471 grp = ext4_get_group_info(sb, group); 3472 n = rb_first(&(grp->bb_free_root)); 3473 3474 while (n) { 3475 entry = rb_entry(n, struct ext4_free_data, node); 3476 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group), 3477 bitmap, entry->start_blk, 3478 entry->count); 3479 n = rb_next(n); 3480 } 3481 return; 3482 } 3483 3484 /* 3485 * the function goes through all preallocation in this group and marks them 3486 * used in in-core bitmap. buddy must be generated from this bitmap 3487 * Need to be called with ext4 group lock (ext4_lock_group) 3488 */ 3489 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3490 ext4_group_t group) 3491 { 3492 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3493 struct ext4_prealloc_space *pa; 3494 struct list_head *cur; 3495 ext4_group_t groupnr; 3496 ext4_grpblk_t start; 3497 int preallocated = 0; 3498 int count = 0; 3499 int len; 3500 3501 /* all form of preallocation discards first load group, 3502 * so the only competing code is preallocation use. 3503 * we don't need any locking here 3504 * notice we do NOT ignore preallocations with pa_deleted 3505 * otherwise we could leave used blocks available for 3506 * allocation in buddy when concurrent ext4_mb_put_pa() 3507 * is dropping preallocation 3508 */ 3509 list_for_each(cur, &grp->bb_prealloc_list) { 3510 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3511 spin_lock(&pa->pa_lock); 3512 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3513 &groupnr, &start); 3514 len = pa->pa_len; 3515 spin_unlock(&pa->pa_lock); 3516 if (unlikely(len == 0)) 3517 continue; 3518 BUG_ON(groupnr != group); 3519 mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group), 3520 bitmap, start, len); 3521 preallocated += len; 3522 count++; 3523 } 3524 mb_debug("prellocated %u for group %u\n", preallocated, group); 3525 } 3526 3527 static void ext4_mb_pa_callback(struct rcu_head *head) 3528 { 3529 struct ext4_prealloc_space *pa; 3530 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3531 kmem_cache_free(ext4_pspace_cachep, pa); 3532 } 3533 3534 /* 3535 * drops a reference to preallocated space descriptor 3536 * if this was the last reference and the space is consumed 3537 */ 3538 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3539 struct super_block *sb, struct ext4_prealloc_space *pa) 3540 { 3541 ext4_group_t grp; 3542 ext4_fsblk_t grp_blk; 3543 3544 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) 3545 return; 3546 3547 /* in this short window concurrent discard can set pa_deleted */ 3548 spin_lock(&pa->pa_lock); 3549 if (pa->pa_deleted == 1) { 3550 spin_unlock(&pa->pa_lock); 3551 return; 3552 } 3553 3554 pa->pa_deleted = 1; 3555 spin_unlock(&pa->pa_lock); 3556 3557 grp_blk = pa->pa_pstart; 3558 /* 3559 * If doing group-based preallocation, pa_pstart may be in the 3560 * next group when pa is used up 3561 */ 3562 if (pa->pa_type == MB_GROUP_PA) 3563 grp_blk--; 3564 3565 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL); 3566 3567 /* 3568 * possible race: 3569 * 3570 * P1 (buddy init) P2 (regular allocation) 3571 * find block B in PA 3572 * copy on-disk bitmap to buddy 3573 * mark B in on-disk bitmap 3574 * drop PA from group 3575 * mark all PAs in buddy 3576 * 3577 * thus, P1 initializes buddy with B available. to prevent this 3578 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3579 * against that pair 3580 */ 3581 ext4_lock_group(sb, grp); 3582 list_del(&pa->pa_group_list); 3583 ext4_unlock_group(sb, grp); 3584 3585 spin_lock(pa->pa_obj_lock); 3586 list_del_rcu(&pa->pa_inode_list); 3587 spin_unlock(pa->pa_obj_lock); 3588 3589 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3590 } 3591 3592 /* 3593 * creates new preallocated space for given inode 3594 */ 3595 static noinline_for_stack int 3596 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3597 { 3598 struct super_block *sb = ac->ac_sb; 3599 struct ext4_prealloc_space *pa; 3600 struct ext4_group_info *grp; 3601 struct ext4_inode_info *ei; 3602 3603 /* preallocate only when found space is larger then requested */ 3604 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3605 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3606 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3607 3608 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3609 if (pa == NULL) 3610 return -ENOMEM; 3611 3612 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3613 int winl; 3614 int wins; 3615 int win; 3616 int offs; 3617 3618 /* we can't allocate as much as normalizer wants. 3619 * so, found space must get proper lstart 3620 * to cover original request */ 3621 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3622 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3623 3624 /* we're limited by original request in that 3625 * logical block must be covered any way 3626 * winl is window we can move our chunk within */ 3627 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3628 3629 /* also, we should cover whole original request */ 3630 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len; 3631 3632 /* the smallest one defines real window */ 3633 win = min(winl, wins); 3634 3635 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len; 3636 if (offs && offs < win) 3637 win = offs; 3638 3639 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win; 3640 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3641 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3642 } 3643 3644 /* preallocation can change ac_b_ex, thus we store actually 3645 * allocated blocks for history */ 3646 ac->ac_f_ex = ac->ac_b_ex; 3647 3648 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3649 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3650 pa->pa_len = ac->ac_b_ex.fe_len; 3651 pa->pa_free = pa->pa_len; 3652 atomic_set(&pa->pa_count, 1); 3653 spin_lock_init(&pa->pa_lock); 3654 INIT_LIST_HEAD(&pa->pa_inode_list); 3655 INIT_LIST_HEAD(&pa->pa_group_list); 3656 pa->pa_deleted = 0; 3657 pa->pa_type = MB_INODE_PA; 3658 3659 mb_debug("new inode pa %p: %llu/%u for %u\n", pa, 3660 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3661 trace_mark(ext4_mb_new_inode_pa, 3662 "dev %s ino %lu pstart %llu len %u lstart %u", 3663 sb->s_id, ac->ac_inode->i_ino, 3664 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3665 3666 ext4_mb_use_inode_pa(ac, pa); 3667 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3668 3669 ei = EXT4_I(ac->ac_inode); 3670 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3671 3672 pa->pa_obj_lock = &ei->i_prealloc_lock; 3673 pa->pa_inode = ac->ac_inode; 3674 3675 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3676 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3677 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3678 3679 spin_lock(pa->pa_obj_lock); 3680 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3681 spin_unlock(pa->pa_obj_lock); 3682 3683 return 0; 3684 } 3685 3686 /* 3687 * creates new preallocated space for locality group inodes belongs to 3688 */ 3689 static noinline_for_stack int 3690 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3691 { 3692 struct super_block *sb = ac->ac_sb; 3693 struct ext4_locality_group *lg; 3694 struct ext4_prealloc_space *pa; 3695 struct ext4_group_info *grp; 3696 3697 /* preallocate only when found space is larger then requested */ 3698 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3699 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3700 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3701 3702 BUG_ON(ext4_pspace_cachep == NULL); 3703 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3704 if (pa == NULL) 3705 return -ENOMEM; 3706 3707 /* preallocation can change ac_b_ex, thus we store actually 3708 * allocated blocks for history */ 3709 ac->ac_f_ex = ac->ac_b_ex; 3710 3711 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3712 pa->pa_lstart = pa->pa_pstart; 3713 pa->pa_len = ac->ac_b_ex.fe_len; 3714 pa->pa_free = pa->pa_len; 3715 atomic_set(&pa->pa_count, 1); 3716 spin_lock_init(&pa->pa_lock); 3717 INIT_LIST_HEAD(&pa->pa_inode_list); 3718 INIT_LIST_HEAD(&pa->pa_group_list); 3719 pa->pa_deleted = 0; 3720 pa->pa_type = MB_GROUP_PA; 3721 3722 mb_debug("new group pa %p: %llu/%u for %u\n", pa, 3723 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3724 trace_mark(ext4_mb_new_group_pa, "dev %s pstart %llu len %u lstart %u", 3725 sb->s_id, pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3726 3727 ext4_mb_use_group_pa(ac, pa); 3728 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3729 3730 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3731 lg = ac->ac_lg; 3732 BUG_ON(lg == NULL); 3733 3734 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3735 pa->pa_inode = NULL; 3736 3737 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3738 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3739 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3740 3741 /* 3742 * We will later add the new pa to the right bucket 3743 * after updating the pa_free in ext4_mb_release_context 3744 */ 3745 return 0; 3746 } 3747 3748 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3749 { 3750 int err; 3751 3752 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3753 err = ext4_mb_new_group_pa(ac); 3754 else 3755 err = ext4_mb_new_inode_pa(ac); 3756 return err; 3757 } 3758 3759 /* 3760 * finds all unused blocks in on-disk bitmap, frees them in 3761 * in-core bitmap and buddy. 3762 * @pa must be unlinked from inode and group lists, so that 3763 * nobody else can find/use it. 3764 * the caller MUST hold group/inode locks. 3765 * TODO: optimize the case when there are no in-core structures yet 3766 */ 3767 static noinline_for_stack int 3768 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3769 struct ext4_prealloc_space *pa, 3770 struct ext4_allocation_context *ac) 3771 { 3772 struct super_block *sb = e4b->bd_sb; 3773 struct ext4_sb_info *sbi = EXT4_SB(sb); 3774 unsigned int end; 3775 unsigned int next; 3776 ext4_group_t group; 3777 ext4_grpblk_t bit; 3778 unsigned long long grp_blk_start; 3779 sector_t start; 3780 int err = 0; 3781 int free = 0; 3782 3783 BUG_ON(pa->pa_deleted == 0); 3784 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3785 grp_blk_start = pa->pa_pstart - bit; 3786 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3787 end = bit + pa->pa_len; 3788 3789 if (ac) { 3790 ac->ac_sb = sb; 3791 ac->ac_inode = pa->pa_inode; 3792 ac->ac_op = EXT4_MB_HISTORY_DISCARD; 3793 } 3794 3795 while (bit < end) { 3796 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3797 if (bit >= end) 3798 break; 3799 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3800 start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit + 3801 le32_to_cpu(sbi->s_es->s_first_data_block); 3802 mb_debug(" free preallocated %u/%u in group %u\n", 3803 (unsigned) start, (unsigned) next - bit, 3804 (unsigned) group); 3805 free += next - bit; 3806 3807 if (ac) { 3808 ac->ac_b_ex.fe_group = group; 3809 ac->ac_b_ex.fe_start = bit; 3810 ac->ac_b_ex.fe_len = next - bit; 3811 ac->ac_b_ex.fe_logical = 0; 3812 ext4_mb_store_history(ac); 3813 } 3814 3815 trace_mark(ext4_mb_release_inode_pa, 3816 "dev %s ino %lu block %llu count %u", 3817 sb->s_id, pa->pa_inode->i_ino, grp_blk_start + bit, 3818 next - bit); 3819 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3820 bit = next + 1; 3821 } 3822 if (free != pa->pa_free) { 3823 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n", 3824 pa, (unsigned long) pa->pa_lstart, 3825 (unsigned long) pa->pa_pstart, 3826 (unsigned long) pa->pa_len); 3827 ext4_grp_locked_error(sb, group, 3828 __func__, "free %u, pa_free %u", 3829 free, pa->pa_free); 3830 /* 3831 * pa is already deleted so we use the value obtained 3832 * from the bitmap and continue. 3833 */ 3834 } 3835 atomic_add(free, &sbi->s_mb_discarded); 3836 3837 return err; 3838 } 3839 3840 static noinline_for_stack int 3841 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3842 struct ext4_prealloc_space *pa, 3843 struct ext4_allocation_context *ac) 3844 { 3845 struct super_block *sb = e4b->bd_sb; 3846 ext4_group_t group; 3847 ext4_grpblk_t bit; 3848 3849 if (ac) 3850 ac->ac_op = EXT4_MB_HISTORY_DISCARD; 3851 3852 trace_mark(ext4_mb_release_group_pa, "dev %s pstart %llu len %d", 3853 sb->s_id, pa->pa_pstart, pa->pa_len); 3854 BUG_ON(pa->pa_deleted == 0); 3855 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3856 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3857 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3858 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3859 3860 if (ac) { 3861 ac->ac_sb = sb; 3862 ac->ac_inode = NULL; 3863 ac->ac_b_ex.fe_group = group; 3864 ac->ac_b_ex.fe_start = bit; 3865 ac->ac_b_ex.fe_len = pa->pa_len; 3866 ac->ac_b_ex.fe_logical = 0; 3867 ext4_mb_store_history(ac); 3868 } 3869 3870 return 0; 3871 } 3872 3873 /* 3874 * releases all preallocations in given group 3875 * 3876 * first, we need to decide discard policy: 3877 * - when do we discard 3878 * 1) ENOSPC 3879 * - how many do we discard 3880 * 1) how many requested 3881 */ 3882 static noinline_for_stack int 3883 ext4_mb_discard_group_preallocations(struct super_block *sb, 3884 ext4_group_t group, int needed) 3885 { 3886 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3887 struct buffer_head *bitmap_bh = NULL; 3888 struct ext4_prealloc_space *pa, *tmp; 3889 struct ext4_allocation_context *ac; 3890 struct list_head list; 3891 struct ext4_buddy e4b; 3892 int err; 3893 int busy = 0; 3894 int free = 0; 3895 3896 mb_debug("discard preallocation for group %u\n", group); 3897 3898 if (list_empty(&grp->bb_prealloc_list)) 3899 return 0; 3900 3901 bitmap_bh = ext4_read_block_bitmap(sb, group); 3902 if (bitmap_bh == NULL) { 3903 ext4_error(sb, __func__, "Error in reading block " 3904 "bitmap for %u", group); 3905 return 0; 3906 } 3907 3908 err = ext4_mb_load_buddy(sb, group, &e4b); 3909 if (err) { 3910 ext4_error(sb, __func__, "Error in loading buddy " 3911 "information for %u", group); 3912 put_bh(bitmap_bh); 3913 return 0; 3914 } 3915 3916 if (needed == 0) 3917 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1; 3918 3919 INIT_LIST_HEAD(&list); 3920 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 3921 repeat: 3922 ext4_lock_group(sb, group); 3923 list_for_each_entry_safe(pa, tmp, 3924 &grp->bb_prealloc_list, pa_group_list) { 3925 spin_lock(&pa->pa_lock); 3926 if (atomic_read(&pa->pa_count)) { 3927 spin_unlock(&pa->pa_lock); 3928 busy = 1; 3929 continue; 3930 } 3931 if (pa->pa_deleted) { 3932 spin_unlock(&pa->pa_lock); 3933 continue; 3934 } 3935 3936 /* seems this one can be freed ... */ 3937 pa->pa_deleted = 1; 3938 3939 /* we can trust pa_free ... */ 3940 free += pa->pa_free; 3941 3942 spin_unlock(&pa->pa_lock); 3943 3944 list_del(&pa->pa_group_list); 3945 list_add(&pa->u.pa_tmp_list, &list); 3946 } 3947 3948 /* if we still need more blocks and some PAs were used, try again */ 3949 if (free < needed && busy) { 3950 busy = 0; 3951 ext4_unlock_group(sb, group); 3952 /* 3953 * Yield the CPU here so that we don't get soft lockup 3954 * in non preempt case. 3955 */ 3956 yield(); 3957 goto repeat; 3958 } 3959 3960 /* found anything to free? */ 3961 if (list_empty(&list)) { 3962 BUG_ON(free != 0); 3963 goto out; 3964 } 3965 3966 /* now free all selected PAs */ 3967 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3968 3969 /* remove from object (inode or locality group) */ 3970 spin_lock(pa->pa_obj_lock); 3971 list_del_rcu(&pa->pa_inode_list); 3972 spin_unlock(pa->pa_obj_lock); 3973 3974 if (pa->pa_type == MB_GROUP_PA) 3975 ext4_mb_release_group_pa(&e4b, pa, ac); 3976 else 3977 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac); 3978 3979 list_del(&pa->u.pa_tmp_list); 3980 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3981 } 3982 3983 out: 3984 ext4_unlock_group(sb, group); 3985 if (ac) 3986 kmem_cache_free(ext4_ac_cachep, ac); 3987 ext4_mb_release_desc(&e4b); 3988 put_bh(bitmap_bh); 3989 return free; 3990 } 3991 3992 /* 3993 * releases all non-used preallocated blocks for given inode 3994 * 3995 * It's important to discard preallocations under i_data_sem 3996 * We don't want another block to be served from the prealloc 3997 * space when we are discarding the inode prealloc space. 3998 * 3999 * FIXME!! Make sure it is valid at all the call sites 4000 */ 4001 void ext4_discard_preallocations(struct inode *inode) 4002 { 4003 struct ext4_inode_info *ei = EXT4_I(inode); 4004 struct super_block *sb = inode->i_sb; 4005 struct buffer_head *bitmap_bh = NULL; 4006 struct ext4_prealloc_space *pa, *tmp; 4007 struct ext4_allocation_context *ac; 4008 ext4_group_t group = 0; 4009 struct list_head list; 4010 struct ext4_buddy e4b; 4011 int err; 4012 4013 if (!S_ISREG(inode->i_mode)) { 4014 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 4015 return; 4016 } 4017 4018 mb_debug("discard preallocation for inode %lu\n", inode->i_ino); 4019 trace_mark(ext4_discard_preallocations, "dev %s ino %lu", sb->s_id, 4020 inode->i_ino); 4021 4022 INIT_LIST_HEAD(&list); 4023 4024 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 4025 repeat: 4026 /* first, collect all pa's in the inode */ 4027 spin_lock(&ei->i_prealloc_lock); 4028 while (!list_empty(&ei->i_prealloc_list)) { 4029 pa = list_entry(ei->i_prealloc_list.next, 4030 struct ext4_prealloc_space, pa_inode_list); 4031 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 4032 spin_lock(&pa->pa_lock); 4033 if (atomic_read(&pa->pa_count)) { 4034 /* this shouldn't happen often - nobody should 4035 * use preallocation while we're discarding it */ 4036 spin_unlock(&pa->pa_lock); 4037 spin_unlock(&ei->i_prealloc_lock); 4038 printk(KERN_ERR "uh-oh! used pa while discarding\n"); 4039 WARN_ON(1); 4040 schedule_timeout_uninterruptible(HZ); 4041 goto repeat; 4042 4043 } 4044 if (pa->pa_deleted == 0) { 4045 pa->pa_deleted = 1; 4046 spin_unlock(&pa->pa_lock); 4047 list_del_rcu(&pa->pa_inode_list); 4048 list_add(&pa->u.pa_tmp_list, &list); 4049 continue; 4050 } 4051 4052 /* someone is deleting pa right now */ 4053 spin_unlock(&pa->pa_lock); 4054 spin_unlock(&ei->i_prealloc_lock); 4055 4056 /* we have to wait here because pa_deleted 4057 * doesn't mean pa is already unlinked from 4058 * the list. as we might be called from 4059 * ->clear_inode() the inode will get freed 4060 * and concurrent thread which is unlinking 4061 * pa from inode's list may access already 4062 * freed memory, bad-bad-bad */ 4063 4064 /* XXX: if this happens too often, we can 4065 * add a flag to force wait only in case 4066 * of ->clear_inode(), but not in case of 4067 * regular truncate */ 4068 schedule_timeout_uninterruptible(HZ); 4069 goto repeat; 4070 } 4071 spin_unlock(&ei->i_prealloc_lock); 4072 4073 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4074 BUG_ON(pa->pa_type != MB_INODE_PA); 4075 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 4076 4077 err = ext4_mb_load_buddy(sb, group, &e4b); 4078 if (err) { 4079 ext4_error(sb, __func__, "Error in loading buddy " 4080 "information for %u", group); 4081 continue; 4082 } 4083 4084 bitmap_bh = ext4_read_block_bitmap(sb, group); 4085 if (bitmap_bh == NULL) { 4086 ext4_error(sb, __func__, "Error in reading block " 4087 "bitmap for %u", group); 4088 ext4_mb_release_desc(&e4b); 4089 continue; 4090 } 4091 4092 ext4_lock_group(sb, group); 4093 list_del(&pa->pa_group_list); 4094 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac); 4095 ext4_unlock_group(sb, group); 4096 4097 ext4_mb_release_desc(&e4b); 4098 put_bh(bitmap_bh); 4099 4100 list_del(&pa->u.pa_tmp_list); 4101 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4102 } 4103 if (ac) 4104 kmem_cache_free(ext4_ac_cachep, ac); 4105 } 4106 4107 /* 4108 * finds all preallocated spaces and return blocks being freed to them 4109 * if preallocated space becomes full (no block is used from the space) 4110 * then the function frees space in buddy 4111 * XXX: at the moment, truncate (which is the only way to free blocks) 4112 * discards all preallocations 4113 */ 4114 static void ext4_mb_return_to_preallocation(struct inode *inode, 4115 struct ext4_buddy *e4b, 4116 sector_t block, int count) 4117 { 4118 BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list)); 4119 } 4120 #ifdef MB_DEBUG 4121 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4122 { 4123 struct super_block *sb = ac->ac_sb; 4124 ext4_group_t i; 4125 4126 printk(KERN_ERR "EXT4-fs: Can't allocate:" 4127 " Allocation context details:\n"); 4128 printk(KERN_ERR "EXT4-fs: status %d flags %d\n", 4129 ac->ac_status, ac->ac_flags); 4130 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, " 4131 "best %lu/%lu/%lu@%lu cr %d\n", 4132 (unsigned long)ac->ac_o_ex.fe_group, 4133 (unsigned long)ac->ac_o_ex.fe_start, 4134 (unsigned long)ac->ac_o_ex.fe_len, 4135 (unsigned long)ac->ac_o_ex.fe_logical, 4136 (unsigned long)ac->ac_g_ex.fe_group, 4137 (unsigned long)ac->ac_g_ex.fe_start, 4138 (unsigned long)ac->ac_g_ex.fe_len, 4139 (unsigned long)ac->ac_g_ex.fe_logical, 4140 (unsigned long)ac->ac_b_ex.fe_group, 4141 (unsigned long)ac->ac_b_ex.fe_start, 4142 (unsigned long)ac->ac_b_ex.fe_len, 4143 (unsigned long)ac->ac_b_ex.fe_logical, 4144 (int)ac->ac_criteria); 4145 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned, 4146 ac->ac_found); 4147 printk(KERN_ERR "EXT4-fs: groups: \n"); 4148 for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) { 4149 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 4150 struct ext4_prealloc_space *pa; 4151 ext4_grpblk_t start; 4152 struct list_head *cur; 4153 ext4_lock_group(sb, i); 4154 list_for_each(cur, &grp->bb_prealloc_list) { 4155 pa = list_entry(cur, struct ext4_prealloc_space, 4156 pa_group_list); 4157 spin_lock(&pa->pa_lock); 4158 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4159 NULL, &start); 4160 spin_unlock(&pa->pa_lock); 4161 printk(KERN_ERR "PA:%lu:%d:%u \n", i, 4162 start, pa->pa_len); 4163 } 4164 ext4_unlock_group(sb, i); 4165 4166 if (grp->bb_free == 0) 4167 continue; 4168 printk(KERN_ERR "%lu: %d/%d \n", 4169 i, grp->bb_free, grp->bb_fragments); 4170 } 4171 printk(KERN_ERR "\n"); 4172 } 4173 #else 4174 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4175 { 4176 return; 4177 } 4178 #endif 4179 4180 /* 4181 * We use locality group preallocation for small size file. The size of the 4182 * file is determined by the current size or the resulting size after 4183 * allocation which ever is larger 4184 * 4185 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4186 */ 4187 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4188 { 4189 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4190 int bsbits = ac->ac_sb->s_blocksize_bits; 4191 loff_t size, isize; 4192 4193 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4194 return; 4195 4196 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len; 4197 isize = i_size_read(ac->ac_inode) >> bsbits; 4198 size = max(size, isize); 4199 4200 /* don't use group allocation for large files */ 4201 if (size >= sbi->s_mb_stream_request) 4202 return; 4203 4204 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4205 return; 4206 4207 BUG_ON(ac->ac_lg != NULL); 4208 /* 4209 * locality group prealloc space are per cpu. The reason for having 4210 * per cpu locality group is to reduce the contention between block 4211 * request from multiple CPUs. 4212 */ 4213 ac->ac_lg = per_cpu_ptr(sbi->s_locality_groups, raw_smp_processor_id()); 4214 4215 /* we're going to use group allocation */ 4216 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4217 4218 /* serialize all allocations in the group */ 4219 mutex_lock(&ac->ac_lg->lg_mutex); 4220 } 4221 4222 static noinline_for_stack int 4223 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4224 struct ext4_allocation_request *ar) 4225 { 4226 struct super_block *sb = ar->inode->i_sb; 4227 struct ext4_sb_info *sbi = EXT4_SB(sb); 4228 struct ext4_super_block *es = sbi->s_es; 4229 ext4_group_t group; 4230 unsigned int len; 4231 ext4_fsblk_t goal; 4232 ext4_grpblk_t block; 4233 4234 /* we can't allocate > group size */ 4235 len = ar->len; 4236 4237 /* just a dirty hack to filter too big requests */ 4238 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10) 4239 len = EXT4_BLOCKS_PER_GROUP(sb) - 10; 4240 4241 /* start searching from the goal */ 4242 goal = ar->goal; 4243 if (goal < le32_to_cpu(es->s_first_data_block) || 4244 goal >= ext4_blocks_count(es)) 4245 goal = le32_to_cpu(es->s_first_data_block); 4246 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4247 4248 /* set up allocation goals */ 4249 ac->ac_b_ex.fe_logical = ar->logical; 4250 ac->ac_b_ex.fe_group = 0; 4251 ac->ac_b_ex.fe_start = 0; 4252 ac->ac_b_ex.fe_len = 0; 4253 ac->ac_status = AC_STATUS_CONTINUE; 4254 ac->ac_groups_scanned = 0; 4255 ac->ac_ex_scanned = 0; 4256 ac->ac_found = 0; 4257 ac->ac_sb = sb; 4258 ac->ac_inode = ar->inode; 4259 ac->ac_o_ex.fe_logical = ar->logical; 4260 ac->ac_o_ex.fe_group = group; 4261 ac->ac_o_ex.fe_start = block; 4262 ac->ac_o_ex.fe_len = len; 4263 ac->ac_g_ex.fe_logical = ar->logical; 4264 ac->ac_g_ex.fe_group = group; 4265 ac->ac_g_ex.fe_start = block; 4266 ac->ac_g_ex.fe_len = len; 4267 ac->ac_f_ex.fe_len = 0; 4268 ac->ac_flags = ar->flags; 4269 ac->ac_2order = 0; 4270 ac->ac_criteria = 0; 4271 ac->ac_pa = NULL; 4272 ac->ac_bitmap_page = NULL; 4273 ac->ac_buddy_page = NULL; 4274 ac->alloc_semp = NULL; 4275 ac->ac_lg = NULL; 4276 4277 /* we have to define context: we'll we work with a file or 4278 * locality group. this is a policy, actually */ 4279 ext4_mb_group_or_file(ac); 4280 4281 mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4282 "left: %u/%u, right %u/%u to %swritable\n", 4283 (unsigned) ar->len, (unsigned) ar->logical, 4284 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4285 (unsigned) ar->lleft, (unsigned) ar->pleft, 4286 (unsigned) ar->lright, (unsigned) ar->pright, 4287 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4288 return 0; 4289 4290 } 4291 4292 static noinline_for_stack void 4293 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4294 struct ext4_locality_group *lg, 4295 int order, int total_entries) 4296 { 4297 ext4_group_t group = 0; 4298 struct ext4_buddy e4b; 4299 struct list_head discard_list; 4300 struct ext4_prealloc_space *pa, *tmp; 4301 struct ext4_allocation_context *ac; 4302 4303 mb_debug("discard locality group preallocation\n"); 4304 4305 INIT_LIST_HEAD(&discard_list); 4306 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 4307 4308 spin_lock(&lg->lg_prealloc_lock); 4309 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4310 pa_inode_list) { 4311 spin_lock(&pa->pa_lock); 4312 if (atomic_read(&pa->pa_count)) { 4313 /* 4314 * This is the pa that we just used 4315 * for block allocation. So don't 4316 * free that 4317 */ 4318 spin_unlock(&pa->pa_lock); 4319 continue; 4320 } 4321 if (pa->pa_deleted) { 4322 spin_unlock(&pa->pa_lock); 4323 continue; 4324 } 4325 /* only lg prealloc space */ 4326 BUG_ON(pa->pa_type != MB_GROUP_PA); 4327 4328 /* seems this one can be freed ... */ 4329 pa->pa_deleted = 1; 4330 spin_unlock(&pa->pa_lock); 4331 4332 list_del_rcu(&pa->pa_inode_list); 4333 list_add(&pa->u.pa_tmp_list, &discard_list); 4334 4335 total_entries--; 4336 if (total_entries <= 5) { 4337 /* 4338 * we want to keep only 5 entries 4339 * allowing it to grow to 8. This 4340 * mak sure we don't call discard 4341 * soon for this list. 4342 */ 4343 break; 4344 } 4345 } 4346 spin_unlock(&lg->lg_prealloc_lock); 4347 4348 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4349 4350 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 4351 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4352 ext4_error(sb, __func__, "Error in loading buddy " 4353 "information for %u", group); 4354 continue; 4355 } 4356 ext4_lock_group(sb, group); 4357 list_del(&pa->pa_group_list); 4358 ext4_mb_release_group_pa(&e4b, pa, ac); 4359 ext4_unlock_group(sb, group); 4360 4361 ext4_mb_release_desc(&e4b); 4362 list_del(&pa->u.pa_tmp_list); 4363 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4364 } 4365 if (ac) 4366 kmem_cache_free(ext4_ac_cachep, ac); 4367 } 4368 4369 /* 4370 * We have incremented pa_count. So it cannot be freed at this 4371 * point. Also we hold lg_mutex. So no parallel allocation is 4372 * possible from this lg. That means pa_free cannot be updated. 4373 * 4374 * A parallel ext4_mb_discard_group_preallocations is possible. 4375 * which can cause the lg_prealloc_list to be updated. 4376 */ 4377 4378 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4379 { 4380 int order, added = 0, lg_prealloc_count = 1; 4381 struct super_block *sb = ac->ac_sb; 4382 struct ext4_locality_group *lg = ac->ac_lg; 4383 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4384 4385 order = fls(pa->pa_free) - 1; 4386 if (order > PREALLOC_TB_SIZE - 1) 4387 /* The max size of hash table is PREALLOC_TB_SIZE */ 4388 order = PREALLOC_TB_SIZE - 1; 4389 /* Add the prealloc space to lg */ 4390 rcu_read_lock(); 4391 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4392 pa_inode_list) { 4393 spin_lock(&tmp_pa->pa_lock); 4394 if (tmp_pa->pa_deleted) { 4395 spin_unlock(&tmp_pa->pa_lock); 4396 continue; 4397 } 4398 if (!added && pa->pa_free < tmp_pa->pa_free) { 4399 /* Add to the tail of the previous entry */ 4400 list_add_tail_rcu(&pa->pa_inode_list, 4401 &tmp_pa->pa_inode_list); 4402 added = 1; 4403 /* 4404 * we want to count the total 4405 * number of entries in the list 4406 */ 4407 } 4408 spin_unlock(&tmp_pa->pa_lock); 4409 lg_prealloc_count++; 4410 } 4411 if (!added) 4412 list_add_tail_rcu(&pa->pa_inode_list, 4413 &lg->lg_prealloc_list[order]); 4414 rcu_read_unlock(); 4415 4416 /* Now trim the list to be not more than 8 elements */ 4417 if (lg_prealloc_count > 8) { 4418 ext4_mb_discard_lg_preallocations(sb, lg, 4419 order, lg_prealloc_count); 4420 return; 4421 } 4422 return ; 4423 } 4424 4425 /* 4426 * release all resource we used in allocation 4427 */ 4428 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4429 { 4430 struct ext4_prealloc_space *pa = ac->ac_pa; 4431 if (pa) { 4432 if (pa->pa_type == MB_GROUP_PA) { 4433 /* see comment in ext4_mb_use_group_pa() */ 4434 spin_lock(&pa->pa_lock); 4435 pa->pa_pstart += ac->ac_b_ex.fe_len; 4436 pa->pa_lstart += ac->ac_b_ex.fe_len; 4437 pa->pa_free -= ac->ac_b_ex.fe_len; 4438 pa->pa_len -= ac->ac_b_ex.fe_len; 4439 spin_unlock(&pa->pa_lock); 4440 } 4441 } 4442 if (ac->alloc_semp) 4443 up_read(ac->alloc_semp); 4444 if (pa) { 4445 /* 4446 * We want to add the pa to the right bucket. 4447 * Remove it from the list and while adding 4448 * make sure the list to which we are adding 4449 * doesn't grow big. We need to release 4450 * alloc_semp before calling ext4_mb_add_n_trim() 4451 */ 4452 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4453 spin_lock(pa->pa_obj_lock); 4454 list_del_rcu(&pa->pa_inode_list); 4455 spin_unlock(pa->pa_obj_lock); 4456 ext4_mb_add_n_trim(ac); 4457 } 4458 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4459 } 4460 if (ac->ac_bitmap_page) 4461 page_cache_release(ac->ac_bitmap_page); 4462 if (ac->ac_buddy_page) 4463 page_cache_release(ac->ac_buddy_page); 4464 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4465 mutex_unlock(&ac->ac_lg->lg_mutex); 4466 ext4_mb_collect_stats(ac); 4467 return 0; 4468 } 4469 4470 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4471 { 4472 ext4_group_t i; 4473 int ret; 4474 int freed = 0; 4475 4476 trace_mark(ext4_mb_discard_preallocations, "dev %s needed %d", 4477 sb->s_id, needed); 4478 for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) { 4479 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4480 freed += ret; 4481 needed -= ret; 4482 } 4483 4484 return freed; 4485 } 4486 4487 /* 4488 * Main entry point into mballoc to allocate blocks 4489 * it tries to use preallocation first, then falls back 4490 * to usual allocation 4491 */ 4492 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4493 struct ext4_allocation_request *ar, int *errp) 4494 { 4495 int freed; 4496 struct ext4_allocation_context *ac = NULL; 4497 struct ext4_sb_info *sbi; 4498 struct super_block *sb; 4499 ext4_fsblk_t block = 0; 4500 unsigned int inquota = 0; 4501 unsigned int reserv_blks = 0; 4502 4503 sb = ar->inode->i_sb; 4504 sbi = EXT4_SB(sb); 4505 4506 trace_mark(ext4_request_blocks, "dev %s flags %u len %u ino %lu " 4507 "lblk %llu goal %llu lleft %llu lright %llu " 4508 "pleft %llu pright %llu ", 4509 sb->s_id, ar->flags, ar->len, 4510 ar->inode ? ar->inode->i_ino : 0, 4511 (unsigned long long) ar->logical, 4512 (unsigned long long) ar->goal, 4513 (unsigned long long) ar->lleft, 4514 (unsigned long long) ar->lright, 4515 (unsigned long long) ar->pleft, 4516 (unsigned long long) ar->pright); 4517 4518 /* 4519 * For delayed allocation, we could skip the ENOSPC and 4520 * EDQUOT check, as blocks and quotas have been already 4521 * reserved when data being copied into pagecache. 4522 */ 4523 if (EXT4_I(ar->inode)->i_delalloc_reserved_flag) 4524 ar->flags |= EXT4_MB_DELALLOC_RESERVED; 4525 else { 4526 /* Without delayed allocation we need to verify 4527 * there is enough free blocks to do block allocation 4528 * and verify allocation doesn't exceed the quota limits. 4529 */ 4530 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) { 4531 /* let others to free the space */ 4532 yield(); 4533 ar->len = ar->len >> 1; 4534 } 4535 if (!ar->len) { 4536 *errp = -ENOSPC; 4537 return 0; 4538 } 4539 reserv_blks = ar->len; 4540 while (ar->len && vfs_dq_alloc_block(ar->inode, ar->len)) { 4541 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4542 ar->len--; 4543 } 4544 inquota = ar->len; 4545 if (ar->len == 0) { 4546 *errp = -EDQUOT; 4547 goto out3; 4548 } 4549 } 4550 4551 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 4552 if (!ac) { 4553 ar->len = 0; 4554 *errp = -ENOMEM; 4555 goto out1; 4556 } 4557 4558 *errp = ext4_mb_initialize_context(ac, ar); 4559 if (*errp) { 4560 ar->len = 0; 4561 goto out2; 4562 } 4563 4564 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4565 if (!ext4_mb_use_preallocated(ac)) { 4566 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4567 ext4_mb_normalize_request(ac, ar); 4568 repeat: 4569 /* allocate space in core */ 4570 ext4_mb_regular_allocator(ac); 4571 4572 /* as we've just preallocated more space than 4573 * user requested orinally, we store allocated 4574 * space in a special descriptor */ 4575 if (ac->ac_status == AC_STATUS_FOUND && 4576 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4577 ext4_mb_new_preallocation(ac); 4578 } 4579 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4580 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks); 4581 if (*errp == -EAGAIN) { 4582 /* 4583 * drop the reference that we took 4584 * in ext4_mb_use_best_found 4585 */ 4586 ext4_mb_release_context(ac); 4587 ac->ac_b_ex.fe_group = 0; 4588 ac->ac_b_ex.fe_start = 0; 4589 ac->ac_b_ex.fe_len = 0; 4590 ac->ac_status = AC_STATUS_CONTINUE; 4591 goto repeat; 4592 } else if (*errp) { 4593 ac->ac_b_ex.fe_len = 0; 4594 ar->len = 0; 4595 ext4_mb_show_ac(ac); 4596 } else { 4597 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4598 ar->len = ac->ac_b_ex.fe_len; 4599 } 4600 } else { 4601 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4602 if (freed) 4603 goto repeat; 4604 *errp = -ENOSPC; 4605 ac->ac_b_ex.fe_len = 0; 4606 ar->len = 0; 4607 ext4_mb_show_ac(ac); 4608 } 4609 4610 ext4_mb_release_context(ac); 4611 4612 out2: 4613 kmem_cache_free(ext4_ac_cachep, ac); 4614 out1: 4615 if (inquota && ar->len < inquota) 4616 vfs_dq_free_block(ar->inode, inquota - ar->len); 4617 out3: 4618 if (!ar->len) { 4619 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag) 4620 /* release all the reserved blocks if non delalloc */ 4621 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 4622 reserv_blks); 4623 } 4624 4625 trace_mark(ext4_allocate_blocks, 4626 "dev %s block %llu flags %u len %u ino %lu " 4627 "logical %llu goal %llu lleft %llu lright %llu " 4628 "pleft %llu pright %llu ", 4629 sb->s_id, (unsigned long long) block, 4630 ar->flags, ar->len, ar->inode ? ar->inode->i_ino : 0, 4631 (unsigned long long) ar->logical, 4632 (unsigned long long) ar->goal, 4633 (unsigned long long) ar->lleft, 4634 (unsigned long long) ar->lright, 4635 (unsigned long long) ar->pleft, 4636 (unsigned long long) ar->pright); 4637 4638 return block; 4639 } 4640 4641 /* 4642 * We can merge two free data extents only if the physical blocks 4643 * are contiguous, AND the extents were freed by the same transaction, 4644 * AND the blocks are associated with the same group. 4645 */ 4646 static int can_merge(struct ext4_free_data *entry1, 4647 struct ext4_free_data *entry2) 4648 { 4649 if ((entry1->t_tid == entry2->t_tid) && 4650 (entry1->group == entry2->group) && 4651 ((entry1->start_blk + entry1->count) == entry2->start_blk)) 4652 return 1; 4653 return 0; 4654 } 4655 4656 static noinline_for_stack int 4657 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4658 struct ext4_free_data *new_entry) 4659 { 4660 ext4_grpblk_t block; 4661 struct ext4_free_data *entry; 4662 struct ext4_group_info *db = e4b->bd_info; 4663 struct super_block *sb = e4b->bd_sb; 4664 struct ext4_sb_info *sbi = EXT4_SB(sb); 4665 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4666 struct rb_node *parent = NULL, *new_node; 4667 4668 BUG_ON(!ext4_handle_valid(handle)); 4669 BUG_ON(e4b->bd_bitmap_page == NULL); 4670 BUG_ON(e4b->bd_buddy_page == NULL); 4671 4672 new_node = &new_entry->node; 4673 block = new_entry->start_blk; 4674 4675 if (!*n) { 4676 /* first free block exent. We need to 4677 protect buddy cache from being freed, 4678 * otherwise we'll refresh it from 4679 * on-disk bitmap and lose not-yet-available 4680 * blocks */ 4681 page_cache_get(e4b->bd_buddy_page); 4682 page_cache_get(e4b->bd_bitmap_page); 4683 } 4684 while (*n) { 4685 parent = *n; 4686 entry = rb_entry(parent, struct ext4_free_data, node); 4687 if (block < entry->start_blk) 4688 n = &(*n)->rb_left; 4689 else if (block >= (entry->start_blk + entry->count)) 4690 n = &(*n)->rb_right; 4691 else { 4692 ext4_grp_locked_error(sb, e4b->bd_group, __func__, 4693 "Double free of blocks %d (%d %d)", 4694 block, entry->start_blk, entry->count); 4695 return 0; 4696 } 4697 } 4698 4699 rb_link_node(new_node, parent, n); 4700 rb_insert_color(new_node, &db->bb_free_root); 4701 4702 /* Now try to see the extent can be merged to left and right */ 4703 node = rb_prev(new_node); 4704 if (node) { 4705 entry = rb_entry(node, struct ext4_free_data, node); 4706 if (can_merge(entry, new_entry)) { 4707 new_entry->start_blk = entry->start_blk; 4708 new_entry->count += entry->count; 4709 rb_erase(node, &(db->bb_free_root)); 4710 spin_lock(&sbi->s_md_lock); 4711 list_del(&entry->list); 4712 spin_unlock(&sbi->s_md_lock); 4713 kmem_cache_free(ext4_free_ext_cachep, entry); 4714 } 4715 } 4716 4717 node = rb_next(new_node); 4718 if (node) { 4719 entry = rb_entry(node, struct ext4_free_data, node); 4720 if (can_merge(new_entry, entry)) { 4721 new_entry->count += entry->count; 4722 rb_erase(node, &(db->bb_free_root)); 4723 spin_lock(&sbi->s_md_lock); 4724 list_del(&entry->list); 4725 spin_unlock(&sbi->s_md_lock); 4726 kmem_cache_free(ext4_free_ext_cachep, entry); 4727 } 4728 } 4729 /* Add the extent to transaction's private list */ 4730 spin_lock(&sbi->s_md_lock); 4731 list_add(&new_entry->list, &handle->h_transaction->t_private_list); 4732 spin_unlock(&sbi->s_md_lock); 4733 return 0; 4734 } 4735 4736 /* 4737 * Main entry point into mballoc to free blocks 4738 */ 4739 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode, 4740 unsigned long block, unsigned long count, 4741 int metadata, unsigned long *freed) 4742 { 4743 struct buffer_head *bitmap_bh = NULL; 4744 struct super_block *sb = inode->i_sb; 4745 struct ext4_allocation_context *ac = NULL; 4746 struct ext4_group_desc *gdp; 4747 struct ext4_super_block *es; 4748 unsigned int overflow; 4749 ext4_grpblk_t bit; 4750 struct buffer_head *gd_bh; 4751 ext4_group_t block_group; 4752 struct ext4_sb_info *sbi; 4753 struct ext4_buddy e4b; 4754 int err = 0; 4755 int ret; 4756 4757 *freed = 0; 4758 4759 sbi = EXT4_SB(sb); 4760 es = EXT4_SB(sb)->s_es; 4761 if (block < le32_to_cpu(es->s_first_data_block) || 4762 block + count < block || 4763 block + count > ext4_blocks_count(es)) { 4764 ext4_error(sb, __func__, 4765 "Freeing blocks not in datazone - " 4766 "block = %lu, count = %lu", block, count); 4767 goto error_return; 4768 } 4769 4770 ext4_debug("freeing block %lu\n", block); 4771 trace_mark(ext4_free_blocks, 4772 "dev %s block %llu count %lu metadata %d ino %lu", 4773 sb->s_id, (unsigned long long) block, count, metadata, 4774 inode ? inode->i_ino : 0); 4775 4776 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 4777 if (ac) { 4778 ac->ac_op = EXT4_MB_HISTORY_FREE; 4779 ac->ac_inode = inode; 4780 ac->ac_sb = sb; 4781 } 4782 4783 do_more: 4784 overflow = 0; 4785 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4786 4787 /* 4788 * Check to see if we are freeing blocks across a group 4789 * boundary. 4790 */ 4791 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4792 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb); 4793 count -= overflow; 4794 } 4795 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4796 if (!bitmap_bh) { 4797 err = -EIO; 4798 goto error_return; 4799 } 4800 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4801 if (!gdp) { 4802 err = -EIO; 4803 goto error_return; 4804 } 4805 4806 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4807 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4808 in_range(block, ext4_inode_table(sb, gdp), 4809 EXT4_SB(sb)->s_itb_per_group) || 4810 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4811 EXT4_SB(sb)->s_itb_per_group)) { 4812 4813 ext4_error(sb, __func__, 4814 "Freeing blocks in system zone - " 4815 "Block = %lu, count = %lu", block, count); 4816 /* err = 0. ext4_std_error should be a no op */ 4817 goto error_return; 4818 } 4819 4820 BUFFER_TRACE(bitmap_bh, "getting write access"); 4821 err = ext4_journal_get_write_access(handle, bitmap_bh); 4822 if (err) 4823 goto error_return; 4824 4825 /* 4826 * We are about to modify some metadata. Call the journal APIs 4827 * to unshare ->b_data if a currently-committing transaction is 4828 * using it 4829 */ 4830 BUFFER_TRACE(gd_bh, "get_write_access"); 4831 err = ext4_journal_get_write_access(handle, gd_bh); 4832 if (err) 4833 goto error_return; 4834 #ifdef AGGRESSIVE_CHECK 4835 { 4836 int i; 4837 for (i = 0; i < count; i++) 4838 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4839 } 4840 #endif 4841 if (ac) { 4842 ac->ac_b_ex.fe_group = block_group; 4843 ac->ac_b_ex.fe_start = bit; 4844 ac->ac_b_ex.fe_len = count; 4845 ext4_mb_store_history(ac); 4846 } 4847 4848 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4849 if (err) 4850 goto error_return; 4851 if (metadata && ext4_handle_valid(handle)) { 4852 struct ext4_free_data *new_entry; 4853 /* 4854 * blocks being freed are metadata. these blocks shouldn't 4855 * be used until this transaction is committed 4856 */ 4857 new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS); 4858 new_entry->start_blk = bit; 4859 new_entry->group = block_group; 4860 new_entry->count = count; 4861 new_entry->t_tid = handle->h_transaction->t_tid; 4862 ext4_lock_group(sb, block_group); 4863 mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data, 4864 bit, count); 4865 ext4_mb_free_metadata(handle, &e4b, new_entry); 4866 ext4_unlock_group(sb, block_group); 4867 } else { 4868 ext4_lock_group(sb, block_group); 4869 /* need to update group_info->bb_free and bitmap 4870 * with group lock held. generate_buddy look at 4871 * them with group lock_held 4872 */ 4873 mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data, 4874 bit, count); 4875 mb_free_blocks(inode, &e4b, bit, count); 4876 ext4_mb_return_to_preallocation(inode, &e4b, block, count); 4877 ext4_unlock_group(sb, block_group); 4878 } 4879 4880 spin_lock(sb_bgl_lock(sbi, block_group)); 4881 ret = ext4_free_blks_count(sb, gdp) + count; 4882 ext4_free_blks_set(sb, gdp, ret); 4883 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp); 4884 spin_unlock(sb_bgl_lock(sbi, block_group)); 4885 percpu_counter_add(&sbi->s_freeblocks_counter, count); 4886 4887 if (sbi->s_log_groups_per_flex) { 4888 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4889 atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks); 4890 } 4891 4892 ext4_mb_release_desc(&e4b); 4893 4894 *freed += count; 4895 4896 /* We dirtied the bitmap block */ 4897 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4898 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4899 4900 /* And the group descriptor block */ 4901 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4902 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4903 if (!err) 4904 err = ret; 4905 4906 if (overflow && !err) { 4907 block += count; 4908 count = overflow; 4909 put_bh(bitmap_bh); 4910 goto do_more; 4911 } 4912 sb->s_dirt = 1; 4913 error_return: 4914 brelse(bitmap_bh); 4915 ext4_std_error(sb, err); 4916 if (ac) 4917 kmem_cache_free(ext4_ac_cachep, ac); 4918 return; 4919 } 4920