1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "mballoc.h" 26 #include <linux/log2.h> 27 #include <linux/module.h> 28 #include <linux/slab.h> 29 #include <linux/backing-dev.h> 30 #include <trace/events/ext4.h> 31 32 #ifdef CONFIG_EXT4_DEBUG 33 ushort ext4_mballoc_debug __read_mostly; 34 35 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644); 36 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc"); 37 #endif 38 39 /* 40 * MUSTDO: 41 * - test ext4_ext_search_left() and ext4_ext_search_right() 42 * - search for metadata in few groups 43 * 44 * TODO v4: 45 * - normalization should take into account whether file is still open 46 * - discard preallocations if no free space left (policy?) 47 * - don't normalize tails 48 * - quota 49 * - reservation for superuser 50 * 51 * TODO v3: 52 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 53 * - track min/max extents in each group for better group selection 54 * - mb_mark_used() may allocate chunk right after splitting buddy 55 * - tree of groups sorted by number of free blocks 56 * - error handling 57 */ 58 59 /* 60 * The allocation request involve request for multiple number of blocks 61 * near to the goal(block) value specified. 62 * 63 * During initialization phase of the allocator we decide to use the 64 * group preallocation or inode preallocation depending on the size of 65 * the file. The size of the file could be the resulting file size we 66 * would have after allocation, or the current file size, which ever 67 * is larger. If the size is less than sbi->s_mb_stream_request we 68 * select to use the group preallocation. The default value of 69 * s_mb_stream_request is 16 blocks. This can also be tuned via 70 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 71 * terms of number of blocks. 72 * 73 * The main motivation for having small file use group preallocation is to 74 * ensure that we have small files closer together on the disk. 75 * 76 * First stage the allocator looks at the inode prealloc list, 77 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 78 * spaces for this particular inode. The inode prealloc space is 79 * represented as: 80 * 81 * pa_lstart -> the logical start block for this prealloc space 82 * pa_pstart -> the physical start block for this prealloc space 83 * pa_len -> length for this prealloc space (in clusters) 84 * pa_free -> free space available in this prealloc space (in clusters) 85 * 86 * The inode preallocation space is used looking at the _logical_ start 87 * block. If only the logical file block falls within the range of prealloc 88 * space we will consume the particular prealloc space. This makes sure that 89 * we have contiguous physical blocks representing the file blocks 90 * 91 * The important thing to be noted in case of inode prealloc space is that 92 * we don't modify the values associated to inode prealloc space except 93 * pa_free. 94 * 95 * If we are not able to find blocks in the inode prealloc space and if we 96 * have the group allocation flag set then we look at the locality group 97 * prealloc space. These are per CPU prealloc list represented as 98 * 99 * ext4_sb_info.s_locality_groups[smp_processor_id()] 100 * 101 * The reason for having a per cpu locality group is to reduce the contention 102 * between CPUs. It is possible to get scheduled at this point. 103 * 104 * The locality group prealloc space is used looking at whether we have 105 * enough free space (pa_free) within the prealloc space. 106 * 107 * If we can't allocate blocks via inode prealloc or/and locality group 108 * prealloc then we look at the buddy cache. The buddy cache is represented 109 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 110 * mapped to the buddy and bitmap information regarding different 111 * groups. The buddy information is attached to buddy cache inode so that 112 * we can access them through the page cache. The information regarding 113 * each group is loaded via ext4_mb_load_buddy. The information involve 114 * block bitmap and buddy information. The information are stored in the 115 * inode as: 116 * 117 * { page } 118 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 119 * 120 * 121 * one block each for bitmap and buddy information. So for each group we 122 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 123 * blocksize) blocks. So it can have information regarding groups_per_page 124 * which is blocks_per_page/2 125 * 126 * The buddy cache inode is not stored on disk. The inode is thrown 127 * away when the filesystem is unmounted. 128 * 129 * We look for count number of blocks in the buddy cache. If we were able 130 * to locate that many free blocks we return with additional information 131 * regarding rest of the contiguous physical block available 132 * 133 * Before allocating blocks via buddy cache we normalize the request 134 * blocks. This ensure we ask for more blocks that we needed. The extra 135 * blocks that we get after allocation is added to the respective prealloc 136 * list. In case of inode preallocation we follow a list of heuristics 137 * based on file size. This can be found in ext4_mb_normalize_request. If 138 * we are doing a group prealloc we try to normalize the request to 139 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 140 * dependent on the cluster size; for non-bigalloc file systems, it is 141 * 512 blocks. This can be tuned via 142 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 143 * terms of number of blocks. If we have mounted the file system with -O 144 * stripe=<value> option the group prealloc request is normalized to the 145 * the smallest multiple of the stripe value (sbi->s_stripe) which is 146 * greater than the default mb_group_prealloc. 147 * 148 * The regular allocator (using the buddy cache) supports a few tunables. 149 * 150 * /sys/fs/ext4/<partition>/mb_min_to_scan 151 * /sys/fs/ext4/<partition>/mb_max_to_scan 152 * /sys/fs/ext4/<partition>/mb_order2_req 153 * 154 * The regular allocator uses buddy scan only if the request len is power of 155 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 156 * value of s_mb_order2_reqs can be tuned via 157 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 158 * stripe size (sbi->s_stripe), we try to search for contiguous block in 159 * stripe size. This should result in better allocation on RAID setups. If 160 * not, we search in the specific group using bitmap for best extents. The 161 * tunable min_to_scan and max_to_scan control the behaviour here. 162 * min_to_scan indicate how long the mballoc __must__ look for a best 163 * extent and max_to_scan indicates how long the mballoc __can__ look for a 164 * best extent in the found extents. Searching for the blocks starts with 165 * the group specified as the goal value in allocation context via 166 * ac_g_ex. Each group is first checked based on the criteria whether it 167 * can be used for allocation. ext4_mb_good_group explains how the groups are 168 * checked. 169 * 170 * Both the prealloc space are getting populated as above. So for the first 171 * request we will hit the buddy cache which will result in this prealloc 172 * space getting filled. The prealloc space is then later used for the 173 * subsequent request. 174 */ 175 176 /* 177 * mballoc operates on the following data: 178 * - on-disk bitmap 179 * - in-core buddy (actually includes buddy and bitmap) 180 * - preallocation descriptors (PAs) 181 * 182 * there are two types of preallocations: 183 * - inode 184 * assiged to specific inode and can be used for this inode only. 185 * it describes part of inode's space preallocated to specific 186 * physical blocks. any block from that preallocated can be used 187 * independent. the descriptor just tracks number of blocks left 188 * unused. so, before taking some block from descriptor, one must 189 * make sure corresponded logical block isn't allocated yet. this 190 * also means that freeing any block within descriptor's range 191 * must discard all preallocated blocks. 192 * - locality group 193 * assigned to specific locality group which does not translate to 194 * permanent set of inodes: inode can join and leave group. space 195 * from this type of preallocation can be used for any inode. thus 196 * it's consumed from the beginning to the end. 197 * 198 * relation between them can be expressed as: 199 * in-core buddy = on-disk bitmap + preallocation descriptors 200 * 201 * this mean blocks mballoc considers used are: 202 * - allocated blocks (persistent) 203 * - preallocated blocks (non-persistent) 204 * 205 * consistency in mballoc world means that at any time a block is either 206 * free or used in ALL structures. notice: "any time" should not be read 207 * literally -- time is discrete and delimited by locks. 208 * 209 * to keep it simple, we don't use block numbers, instead we count number of 210 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 211 * 212 * all operations can be expressed as: 213 * - init buddy: buddy = on-disk + PAs 214 * - new PA: buddy += N; PA = N 215 * - use inode PA: on-disk += N; PA -= N 216 * - discard inode PA buddy -= on-disk - PA; PA = 0 217 * - use locality group PA on-disk += N; PA -= N 218 * - discard locality group PA buddy -= PA; PA = 0 219 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 220 * is used in real operation because we can't know actual used 221 * bits from PA, only from on-disk bitmap 222 * 223 * if we follow this strict logic, then all operations above should be atomic. 224 * given some of them can block, we'd have to use something like semaphores 225 * killing performance on high-end SMP hardware. let's try to relax it using 226 * the following knowledge: 227 * 1) if buddy is referenced, it's already initialized 228 * 2) while block is used in buddy and the buddy is referenced, 229 * nobody can re-allocate that block 230 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 231 * bit set and PA claims same block, it's OK. IOW, one can set bit in 232 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 233 * block 234 * 235 * so, now we're building a concurrency table: 236 * - init buddy vs. 237 * - new PA 238 * blocks for PA are allocated in the buddy, buddy must be referenced 239 * until PA is linked to allocation group to avoid concurrent buddy init 240 * - use inode PA 241 * we need to make sure that either on-disk bitmap or PA has uptodate data 242 * given (3) we care that PA-=N operation doesn't interfere with init 243 * - discard inode PA 244 * the simplest way would be to have buddy initialized by the discard 245 * - use locality group PA 246 * again PA-=N must be serialized with init 247 * - discard locality group PA 248 * the simplest way would be to have buddy initialized by the discard 249 * - new PA vs. 250 * - use inode PA 251 * i_data_sem serializes them 252 * - discard inode PA 253 * discard process must wait until PA isn't used by another process 254 * - use locality group PA 255 * some mutex should serialize them 256 * - discard locality group PA 257 * discard process must wait until PA isn't used by another process 258 * - use inode PA 259 * - use inode PA 260 * i_data_sem or another mutex should serializes them 261 * - discard inode PA 262 * discard process must wait until PA isn't used by another process 263 * - use locality group PA 264 * nothing wrong here -- they're different PAs covering different blocks 265 * - discard locality group PA 266 * discard process must wait until PA isn't used by another process 267 * 268 * now we're ready to make few consequences: 269 * - PA is referenced and while it is no discard is possible 270 * - PA is referenced until block isn't marked in on-disk bitmap 271 * - PA changes only after on-disk bitmap 272 * - discard must not compete with init. either init is done before 273 * any discard or they're serialized somehow 274 * - buddy init as sum of on-disk bitmap and PAs is done atomically 275 * 276 * a special case when we've used PA to emptiness. no need to modify buddy 277 * in this case, but we should care about concurrent init 278 * 279 */ 280 281 /* 282 * Logic in few words: 283 * 284 * - allocation: 285 * load group 286 * find blocks 287 * mark bits in on-disk bitmap 288 * release group 289 * 290 * - use preallocation: 291 * find proper PA (per-inode or group) 292 * load group 293 * mark bits in on-disk bitmap 294 * release group 295 * release PA 296 * 297 * - free: 298 * load group 299 * mark bits in on-disk bitmap 300 * release group 301 * 302 * - discard preallocations in group: 303 * mark PAs deleted 304 * move them onto local list 305 * load on-disk bitmap 306 * load group 307 * remove PA from object (inode or locality group) 308 * mark free blocks in-core 309 * 310 * - discard inode's preallocations: 311 */ 312 313 /* 314 * Locking rules 315 * 316 * Locks: 317 * - bitlock on a group (group) 318 * - object (inode/locality) (object) 319 * - per-pa lock (pa) 320 * 321 * Paths: 322 * - new pa 323 * object 324 * group 325 * 326 * - find and use pa: 327 * pa 328 * 329 * - release consumed pa: 330 * pa 331 * group 332 * object 333 * 334 * - generate in-core bitmap: 335 * group 336 * pa 337 * 338 * - discard all for given object (inode, locality group): 339 * object 340 * pa 341 * group 342 * 343 * - discard all for given group: 344 * group 345 * pa 346 * group 347 * object 348 * 349 */ 350 static struct kmem_cache *ext4_pspace_cachep; 351 static struct kmem_cache *ext4_ac_cachep; 352 static struct kmem_cache *ext4_free_data_cachep; 353 354 /* We create slab caches for groupinfo data structures based on the 355 * superblock block size. There will be one per mounted filesystem for 356 * each unique s_blocksize_bits */ 357 #define NR_GRPINFO_CACHES 8 358 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 359 360 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 361 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 362 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 363 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 364 }; 365 366 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 367 ext4_group_t group); 368 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 369 ext4_group_t group); 370 static void ext4_free_data_callback(struct super_block *sb, 371 struct ext4_journal_cb_entry *jce, int rc); 372 373 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 374 { 375 #if BITS_PER_LONG == 64 376 *bit += ((unsigned long) addr & 7UL) << 3; 377 addr = (void *) ((unsigned long) addr & ~7UL); 378 #elif BITS_PER_LONG == 32 379 *bit += ((unsigned long) addr & 3UL) << 3; 380 addr = (void *) ((unsigned long) addr & ~3UL); 381 #else 382 #error "how many bits you are?!" 383 #endif 384 return addr; 385 } 386 387 static inline int mb_test_bit(int bit, void *addr) 388 { 389 /* 390 * ext4_test_bit on architecture like powerpc 391 * needs unsigned long aligned address 392 */ 393 addr = mb_correct_addr_and_bit(&bit, addr); 394 return ext4_test_bit(bit, addr); 395 } 396 397 static inline void mb_set_bit(int bit, void *addr) 398 { 399 addr = mb_correct_addr_and_bit(&bit, addr); 400 ext4_set_bit(bit, addr); 401 } 402 403 static inline void mb_clear_bit(int bit, void *addr) 404 { 405 addr = mb_correct_addr_and_bit(&bit, addr); 406 ext4_clear_bit(bit, addr); 407 } 408 409 static inline int mb_test_and_clear_bit(int bit, void *addr) 410 { 411 addr = mb_correct_addr_and_bit(&bit, addr); 412 return ext4_test_and_clear_bit(bit, addr); 413 } 414 415 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 416 { 417 int fix = 0, ret, tmpmax; 418 addr = mb_correct_addr_and_bit(&fix, addr); 419 tmpmax = max + fix; 420 start += fix; 421 422 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 423 if (ret > max) 424 return max; 425 return ret; 426 } 427 428 static inline int mb_find_next_bit(void *addr, int max, int start) 429 { 430 int fix = 0, ret, tmpmax; 431 addr = mb_correct_addr_and_bit(&fix, addr); 432 tmpmax = max + fix; 433 start += fix; 434 435 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 436 if (ret > max) 437 return max; 438 return ret; 439 } 440 441 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 442 { 443 char *bb; 444 445 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 446 BUG_ON(max == NULL); 447 448 if (order > e4b->bd_blkbits + 1) { 449 *max = 0; 450 return NULL; 451 } 452 453 /* at order 0 we see each particular block */ 454 if (order == 0) { 455 *max = 1 << (e4b->bd_blkbits + 3); 456 return e4b->bd_bitmap; 457 } 458 459 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 460 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 461 462 return bb; 463 } 464 465 #ifdef DOUBLE_CHECK 466 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 467 int first, int count) 468 { 469 int i; 470 struct super_block *sb = e4b->bd_sb; 471 472 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 473 return; 474 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 475 for (i = 0; i < count; i++) { 476 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 477 ext4_fsblk_t blocknr; 478 479 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 480 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 481 ext4_grp_locked_error(sb, e4b->bd_group, 482 inode ? inode->i_ino : 0, 483 blocknr, 484 "freeing block already freed " 485 "(bit %u)", 486 first + i); 487 } 488 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 489 } 490 } 491 492 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 493 { 494 int i; 495 496 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 497 return; 498 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 499 for (i = 0; i < count; i++) { 500 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 501 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 502 } 503 } 504 505 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 506 { 507 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 508 unsigned char *b1, *b2; 509 int i; 510 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 511 b2 = (unsigned char *) bitmap; 512 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 513 if (b1[i] != b2[i]) { 514 ext4_msg(e4b->bd_sb, KERN_ERR, 515 "corruption in group %u " 516 "at byte %u(%u): %x in copy != %x " 517 "on disk/prealloc", 518 e4b->bd_group, i, i * 8, b1[i], b2[i]); 519 BUG(); 520 } 521 } 522 } 523 } 524 525 #else 526 static inline void mb_free_blocks_double(struct inode *inode, 527 struct ext4_buddy *e4b, int first, int count) 528 { 529 return; 530 } 531 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 532 int first, int count) 533 { 534 return; 535 } 536 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 537 { 538 return; 539 } 540 #endif 541 542 #ifdef AGGRESSIVE_CHECK 543 544 #define MB_CHECK_ASSERT(assert) \ 545 do { \ 546 if (!(assert)) { \ 547 printk(KERN_EMERG \ 548 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 549 function, file, line, # assert); \ 550 BUG(); \ 551 } \ 552 } while (0) 553 554 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 555 const char *function, int line) 556 { 557 struct super_block *sb = e4b->bd_sb; 558 int order = e4b->bd_blkbits + 1; 559 int max; 560 int max2; 561 int i; 562 int j; 563 int k; 564 int count; 565 struct ext4_group_info *grp; 566 int fragments = 0; 567 int fstart; 568 struct list_head *cur; 569 void *buddy; 570 void *buddy2; 571 572 { 573 static int mb_check_counter; 574 if (mb_check_counter++ % 100 != 0) 575 return 0; 576 } 577 578 while (order > 1) { 579 buddy = mb_find_buddy(e4b, order, &max); 580 MB_CHECK_ASSERT(buddy); 581 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 582 MB_CHECK_ASSERT(buddy2); 583 MB_CHECK_ASSERT(buddy != buddy2); 584 MB_CHECK_ASSERT(max * 2 == max2); 585 586 count = 0; 587 for (i = 0; i < max; i++) { 588 589 if (mb_test_bit(i, buddy)) { 590 /* only single bit in buddy2 may be 1 */ 591 if (!mb_test_bit(i << 1, buddy2)) { 592 MB_CHECK_ASSERT( 593 mb_test_bit((i<<1)+1, buddy2)); 594 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 595 MB_CHECK_ASSERT( 596 mb_test_bit(i << 1, buddy2)); 597 } 598 continue; 599 } 600 601 /* both bits in buddy2 must be 1 */ 602 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 603 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 604 605 for (j = 0; j < (1 << order); j++) { 606 k = (i * (1 << order)) + j; 607 MB_CHECK_ASSERT( 608 !mb_test_bit(k, e4b->bd_bitmap)); 609 } 610 count++; 611 } 612 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 613 order--; 614 } 615 616 fstart = -1; 617 buddy = mb_find_buddy(e4b, 0, &max); 618 for (i = 0; i < max; i++) { 619 if (!mb_test_bit(i, buddy)) { 620 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 621 if (fstart == -1) { 622 fragments++; 623 fstart = i; 624 } 625 continue; 626 } 627 fstart = -1; 628 /* check used bits only */ 629 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 630 buddy2 = mb_find_buddy(e4b, j, &max2); 631 k = i >> j; 632 MB_CHECK_ASSERT(k < max2); 633 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 634 } 635 } 636 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 637 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 638 639 grp = ext4_get_group_info(sb, e4b->bd_group); 640 list_for_each(cur, &grp->bb_prealloc_list) { 641 ext4_group_t groupnr; 642 struct ext4_prealloc_space *pa; 643 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 644 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 645 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 646 for (i = 0; i < pa->pa_len; i++) 647 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 648 } 649 return 0; 650 } 651 #undef MB_CHECK_ASSERT 652 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 653 __FILE__, __func__, __LINE__) 654 #else 655 #define mb_check_buddy(e4b) 656 #endif 657 658 /* 659 * Divide blocks started from @first with length @len into 660 * smaller chunks with power of 2 blocks. 661 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 662 * then increase bb_counters[] for corresponded chunk size. 663 */ 664 static void ext4_mb_mark_free_simple(struct super_block *sb, 665 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 666 struct ext4_group_info *grp) 667 { 668 struct ext4_sb_info *sbi = EXT4_SB(sb); 669 ext4_grpblk_t min; 670 ext4_grpblk_t max; 671 ext4_grpblk_t chunk; 672 unsigned short border; 673 674 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 675 676 border = 2 << sb->s_blocksize_bits; 677 678 while (len > 0) { 679 /* find how many blocks can be covered since this position */ 680 max = ffs(first | border) - 1; 681 682 /* find how many blocks of power 2 we need to mark */ 683 min = fls(len) - 1; 684 685 if (max < min) 686 min = max; 687 chunk = 1 << min; 688 689 /* mark multiblock chunks only */ 690 grp->bb_counters[min]++; 691 if (min > 0) 692 mb_clear_bit(first >> min, 693 buddy + sbi->s_mb_offsets[min]); 694 695 len -= chunk; 696 first += chunk; 697 } 698 } 699 700 /* 701 * Cache the order of the largest free extent we have available in this block 702 * group. 703 */ 704 static void 705 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 706 { 707 int i; 708 int bits; 709 710 grp->bb_largest_free_order = -1; /* uninit */ 711 712 bits = sb->s_blocksize_bits + 1; 713 for (i = bits; i >= 0; i--) { 714 if (grp->bb_counters[i] > 0) { 715 grp->bb_largest_free_order = i; 716 break; 717 } 718 } 719 } 720 721 static noinline_for_stack 722 void ext4_mb_generate_buddy(struct super_block *sb, 723 void *buddy, void *bitmap, ext4_group_t group) 724 { 725 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 726 struct ext4_sb_info *sbi = EXT4_SB(sb); 727 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 728 ext4_grpblk_t i = 0; 729 ext4_grpblk_t first; 730 ext4_grpblk_t len; 731 unsigned free = 0; 732 unsigned fragments = 0; 733 unsigned long long period = get_cycles(); 734 735 /* initialize buddy from bitmap which is aggregation 736 * of on-disk bitmap and preallocations */ 737 i = mb_find_next_zero_bit(bitmap, max, 0); 738 grp->bb_first_free = i; 739 while (i < max) { 740 fragments++; 741 first = i; 742 i = mb_find_next_bit(bitmap, max, i); 743 len = i - first; 744 free += len; 745 if (len > 1) 746 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 747 else 748 grp->bb_counters[0]++; 749 if (i < max) 750 i = mb_find_next_zero_bit(bitmap, max, i); 751 } 752 grp->bb_fragments = fragments; 753 754 if (free != grp->bb_free) { 755 ext4_grp_locked_error(sb, group, 0, 0, 756 "block bitmap and bg descriptor " 757 "inconsistent: %u vs %u free clusters", 758 free, grp->bb_free); 759 /* 760 * If we intend to continue, we consider group descriptor 761 * corrupt and update bb_free using bitmap value 762 */ 763 grp->bb_free = free; 764 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp)) 765 percpu_counter_sub(&sbi->s_freeclusters_counter, 766 grp->bb_free); 767 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state); 768 } 769 mb_set_largest_free_order(sb, grp); 770 771 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 772 773 period = get_cycles() - period; 774 spin_lock(&EXT4_SB(sb)->s_bal_lock); 775 EXT4_SB(sb)->s_mb_buddies_generated++; 776 EXT4_SB(sb)->s_mb_generation_time += period; 777 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 778 } 779 780 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 781 { 782 int count; 783 int order = 1; 784 void *buddy; 785 786 while ((buddy = mb_find_buddy(e4b, order++, &count))) { 787 ext4_set_bits(buddy, 0, count); 788 } 789 e4b->bd_info->bb_fragments = 0; 790 memset(e4b->bd_info->bb_counters, 0, 791 sizeof(*e4b->bd_info->bb_counters) * 792 (e4b->bd_sb->s_blocksize_bits + 2)); 793 794 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 795 e4b->bd_bitmap, e4b->bd_group); 796 } 797 798 /* The buddy information is attached the buddy cache inode 799 * for convenience. The information regarding each group 800 * is loaded via ext4_mb_load_buddy. The information involve 801 * block bitmap and buddy information. The information are 802 * stored in the inode as 803 * 804 * { page } 805 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 806 * 807 * 808 * one block each for bitmap and buddy information. 809 * So for each group we take up 2 blocks. A page can 810 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 811 * So it can have information regarding groups_per_page which 812 * is blocks_per_page/2 813 * 814 * Locking note: This routine takes the block group lock of all groups 815 * for this page; do not hold this lock when calling this routine! 816 */ 817 818 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 819 { 820 ext4_group_t ngroups; 821 int blocksize; 822 int blocks_per_page; 823 int groups_per_page; 824 int err = 0; 825 int i; 826 ext4_group_t first_group, group; 827 int first_block; 828 struct super_block *sb; 829 struct buffer_head *bhs; 830 struct buffer_head **bh = NULL; 831 struct inode *inode; 832 char *data; 833 char *bitmap; 834 struct ext4_group_info *grinfo; 835 836 mb_debug(1, "init page %lu\n", page->index); 837 838 inode = page->mapping->host; 839 sb = inode->i_sb; 840 ngroups = ext4_get_groups_count(sb); 841 blocksize = 1 << inode->i_blkbits; 842 blocks_per_page = PAGE_SIZE / blocksize; 843 844 groups_per_page = blocks_per_page >> 1; 845 if (groups_per_page == 0) 846 groups_per_page = 1; 847 848 /* allocate buffer_heads to read bitmaps */ 849 if (groups_per_page > 1) { 850 i = sizeof(struct buffer_head *) * groups_per_page; 851 bh = kzalloc(i, gfp); 852 if (bh == NULL) { 853 err = -ENOMEM; 854 goto out; 855 } 856 } else 857 bh = &bhs; 858 859 first_group = page->index * blocks_per_page / 2; 860 861 /* read all groups the page covers into the cache */ 862 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 863 if (group >= ngroups) 864 break; 865 866 grinfo = ext4_get_group_info(sb, group); 867 /* 868 * If page is uptodate then we came here after online resize 869 * which added some new uninitialized group info structs, so 870 * we must skip all initialized uptodate buddies on the page, 871 * which may be currently in use by an allocating task. 872 */ 873 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 874 bh[i] = NULL; 875 continue; 876 } 877 bh[i] = ext4_read_block_bitmap_nowait(sb, group); 878 if (IS_ERR(bh[i])) { 879 err = PTR_ERR(bh[i]); 880 bh[i] = NULL; 881 goto out; 882 } 883 mb_debug(1, "read bitmap for group %u\n", group); 884 } 885 886 /* wait for I/O completion */ 887 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 888 int err2; 889 890 if (!bh[i]) 891 continue; 892 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 893 if (!err) 894 err = err2; 895 } 896 897 first_block = page->index * blocks_per_page; 898 for (i = 0; i < blocks_per_page; i++) { 899 group = (first_block + i) >> 1; 900 if (group >= ngroups) 901 break; 902 903 if (!bh[group - first_group]) 904 /* skip initialized uptodate buddy */ 905 continue; 906 907 if (!buffer_verified(bh[group - first_group])) 908 /* Skip faulty bitmaps */ 909 continue; 910 err = 0; 911 912 /* 913 * data carry information regarding this 914 * particular group in the format specified 915 * above 916 * 917 */ 918 data = page_address(page) + (i * blocksize); 919 bitmap = bh[group - first_group]->b_data; 920 921 /* 922 * We place the buddy block and bitmap block 923 * close together 924 */ 925 if ((first_block + i) & 1) { 926 /* this is block of buddy */ 927 BUG_ON(incore == NULL); 928 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 929 group, page->index, i * blocksize); 930 trace_ext4_mb_buddy_bitmap_load(sb, group); 931 grinfo = ext4_get_group_info(sb, group); 932 grinfo->bb_fragments = 0; 933 memset(grinfo->bb_counters, 0, 934 sizeof(*grinfo->bb_counters) * 935 (sb->s_blocksize_bits+2)); 936 /* 937 * incore got set to the group block bitmap below 938 */ 939 ext4_lock_group(sb, group); 940 /* init the buddy */ 941 memset(data, 0xff, blocksize); 942 ext4_mb_generate_buddy(sb, data, incore, group); 943 ext4_unlock_group(sb, group); 944 incore = NULL; 945 } else { 946 /* this is block of bitmap */ 947 BUG_ON(incore != NULL); 948 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 949 group, page->index, i * blocksize); 950 trace_ext4_mb_bitmap_load(sb, group); 951 952 /* see comments in ext4_mb_put_pa() */ 953 ext4_lock_group(sb, group); 954 memcpy(data, bitmap, blocksize); 955 956 /* mark all preallocated blks used in in-core bitmap */ 957 ext4_mb_generate_from_pa(sb, data, group); 958 ext4_mb_generate_from_freelist(sb, data, group); 959 ext4_unlock_group(sb, group); 960 961 /* set incore so that the buddy information can be 962 * generated using this 963 */ 964 incore = data; 965 } 966 } 967 SetPageUptodate(page); 968 969 out: 970 if (bh) { 971 for (i = 0; i < groups_per_page; i++) 972 brelse(bh[i]); 973 if (bh != &bhs) 974 kfree(bh); 975 } 976 return err; 977 } 978 979 /* 980 * Lock the buddy and bitmap pages. This make sure other parallel init_group 981 * on the same buddy page doesn't happen whild holding the buddy page lock. 982 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 983 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 984 */ 985 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 986 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 987 { 988 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 989 int block, pnum, poff; 990 int blocks_per_page; 991 struct page *page; 992 993 e4b->bd_buddy_page = NULL; 994 e4b->bd_bitmap_page = NULL; 995 996 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 997 /* 998 * the buddy cache inode stores the block bitmap 999 * and buddy information in consecutive blocks. 1000 * So for each group we need two blocks. 1001 */ 1002 block = group * 2; 1003 pnum = block / blocks_per_page; 1004 poff = block % blocks_per_page; 1005 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1006 if (!page) 1007 return -ENOMEM; 1008 BUG_ON(page->mapping != inode->i_mapping); 1009 e4b->bd_bitmap_page = page; 1010 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1011 1012 if (blocks_per_page >= 2) { 1013 /* buddy and bitmap are on the same page */ 1014 return 0; 1015 } 1016 1017 block++; 1018 pnum = block / blocks_per_page; 1019 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1020 if (!page) 1021 return -ENOMEM; 1022 BUG_ON(page->mapping != inode->i_mapping); 1023 e4b->bd_buddy_page = page; 1024 return 0; 1025 } 1026 1027 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1028 { 1029 if (e4b->bd_bitmap_page) { 1030 unlock_page(e4b->bd_bitmap_page); 1031 put_page(e4b->bd_bitmap_page); 1032 } 1033 if (e4b->bd_buddy_page) { 1034 unlock_page(e4b->bd_buddy_page); 1035 put_page(e4b->bd_buddy_page); 1036 } 1037 } 1038 1039 /* 1040 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1041 * block group lock of all groups for this page; do not hold the BG lock when 1042 * calling this routine! 1043 */ 1044 static noinline_for_stack 1045 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1046 { 1047 1048 struct ext4_group_info *this_grp; 1049 struct ext4_buddy e4b; 1050 struct page *page; 1051 int ret = 0; 1052 1053 might_sleep(); 1054 mb_debug(1, "init group %u\n", group); 1055 this_grp = ext4_get_group_info(sb, group); 1056 /* 1057 * This ensures that we don't reinit the buddy cache 1058 * page which map to the group from which we are already 1059 * allocating. If we are looking at the buddy cache we would 1060 * have taken a reference using ext4_mb_load_buddy and that 1061 * would have pinned buddy page to page cache. 1062 * The call to ext4_mb_get_buddy_page_lock will mark the 1063 * page accessed. 1064 */ 1065 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1066 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1067 /* 1068 * somebody initialized the group 1069 * return without doing anything 1070 */ 1071 goto err; 1072 } 1073 1074 page = e4b.bd_bitmap_page; 1075 ret = ext4_mb_init_cache(page, NULL, gfp); 1076 if (ret) 1077 goto err; 1078 if (!PageUptodate(page)) { 1079 ret = -EIO; 1080 goto err; 1081 } 1082 1083 if (e4b.bd_buddy_page == NULL) { 1084 /* 1085 * If both the bitmap and buddy are in 1086 * the same page we don't need to force 1087 * init the buddy 1088 */ 1089 ret = 0; 1090 goto err; 1091 } 1092 /* init buddy cache */ 1093 page = e4b.bd_buddy_page; 1094 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1095 if (ret) 1096 goto err; 1097 if (!PageUptodate(page)) { 1098 ret = -EIO; 1099 goto err; 1100 } 1101 err: 1102 ext4_mb_put_buddy_page_lock(&e4b); 1103 return ret; 1104 } 1105 1106 /* 1107 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1108 * block group lock of all groups for this page; do not hold the BG lock when 1109 * calling this routine! 1110 */ 1111 static noinline_for_stack int 1112 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1113 struct ext4_buddy *e4b, gfp_t gfp) 1114 { 1115 int blocks_per_page; 1116 int block; 1117 int pnum; 1118 int poff; 1119 struct page *page; 1120 int ret; 1121 struct ext4_group_info *grp; 1122 struct ext4_sb_info *sbi = EXT4_SB(sb); 1123 struct inode *inode = sbi->s_buddy_cache; 1124 1125 might_sleep(); 1126 mb_debug(1, "load group %u\n", group); 1127 1128 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1129 grp = ext4_get_group_info(sb, group); 1130 1131 e4b->bd_blkbits = sb->s_blocksize_bits; 1132 e4b->bd_info = grp; 1133 e4b->bd_sb = sb; 1134 e4b->bd_group = group; 1135 e4b->bd_buddy_page = NULL; 1136 e4b->bd_bitmap_page = NULL; 1137 1138 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1139 /* 1140 * we need full data about the group 1141 * to make a good selection 1142 */ 1143 ret = ext4_mb_init_group(sb, group, gfp); 1144 if (ret) 1145 return ret; 1146 } 1147 1148 /* 1149 * the buddy cache inode stores the block bitmap 1150 * and buddy information in consecutive blocks. 1151 * So for each group we need two blocks. 1152 */ 1153 block = group * 2; 1154 pnum = block / blocks_per_page; 1155 poff = block % blocks_per_page; 1156 1157 /* we could use find_or_create_page(), but it locks page 1158 * what we'd like to avoid in fast path ... */ 1159 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1160 if (page == NULL || !PageUptodate(page)) { 1161 if (page) 1162 /* 1163 * drop the page reference and try 1164 * to get the page with lock. If we 1165 * are not uptodate that implies 1166 * somebody just created the page but 1167 * is yet to initialize the same. So 1168 * wait for it to initialize. 1169 */ 1170 put_page(page); 1171 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1172 if (page) { 1173 BUG_ON(page->mapping != inode->i_mapping); 1174 if (!PageUptodate(page)) { 1175 ret = ext4_mb_init_cache(page, NULL, gfp); 1176 if (ret) { 1177 unlock_page(page); 1178 goto err; 1179 } 1180 mb_cmp_bitmaps(e4b, page_address(page) + 1181 (poff * sb->s_blocksize)); 1182 } 1183 unlock_page(page); 1184 } 1185 } 1186 if (page == NULL) { 1187 ret = -ENOMEM; 1188 goto err; 1189 } 1190 if (!PageUptodate(page)) { 1191 ret = -EIO; 1192 goto err; 1193 } 1194 1195 /* Pages marked accessed already */ 1196 e4b->bd_bitmap_page = page; 1197 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1198 1199 block++; 1200 pnum = block / blocks_per_page; 1201 poff = block % blocks_per_page; 1202 1203 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1204 if (page == NULL || !PageUptodate(page)) { 1205 if (page) 1206 put_page(page); 1207 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1208 if (page) { 1209 BUG_ON(page->mapping != inode->i_mapping); 1210 if (!PageUptodate(page)) { 1211 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1212 gfp); 1213 if (ret) { 1214 unlock_page(page); 1215 goto err; 1216 } 1217 } 1218 unlock_page(page); 1219 } 1220 } 1221 if (page == NULL) { 1222 ret = -ENOMEM; 1223 goto err; 1224 } 1225 if (!PageUptodate(page)) { 1226 ret = -EIO; 1227 goto err; 1228 } 1229 1230 /* Pages marked accessed already */ 1231 e4b->bd_buddy_page = page; 1232 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1233 1234 BUG_ON(e4b->bd_bitmap_page == NULL); 1235 BUG_ON(e4b->bd_buddy_page == NULL); 1236 1237 return 0; 1238 1239 err: 1240 if (page) 1241 put_page(page); 1242 if (e4b->bd_bitmap_page) 1243 put_page(e4b->bd_bitmap_page); 1244 if (e4b->bd_buddy_page) 1245 put_page(e4b->bd_buddy_page); 1246 e4b->bd_buddy = NULL; 1247 e4b->bd_bitmap = NULL; 1248 return ret; 1249 } 1250 1251 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1252 struct ext4_buddy *e4b) 1253 { 1254 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1255 } 1256 1257 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1258 { 1259 if (e4b->bd_bitmap_page) 1260 put_page(e4b->bd_bitmap_page); 1261 if (e4b->bd_buddy_page) 1262 put_page(e4b->bd_buddy_page); 1263 } 1264 1265 1266 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1267 { 1268 int order = 1; 1269 int bb_incr = 1 << (e4b->bd_blkbits - 1); 1270 void *bb; 1271 1272 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1273 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1274 1275 bb = e4b->bd_buddy; 1276 while (order <= e4b->bd_blkbits + 1) { 1277 block = block >> 1; 1278 if (!mb_test_bit(block, bb)) { 1279 /* this block is part of buddy of order 'order' */ 1280 return order; 1281 } 1282 bb += bb_incr; 1283 bb_incr >>= 1; 1284 order++; 1285 } 1286 return 0; 1287 } 1288 1289 static void mb_clear_bits(void *bm, int cur, int len) 1290 { 1291 __u32 *addr; 1292 1293 len = cur + len; 1294 while (cur < len) { 1295 if ((cur & 31) == 0 && (len - cur) >= 32) { 1296 /* fast path: clear whole word at once */ 1297 addr = bm + (cur >> 3); 1298 *addr = 0; 1299 cur += 32; 1300 continue; 1301 } 1302 mb_clear_bit(cur, bm); 1303 cur++; 1304 } 1305 } 1306 1307 /* clear bits in given range 1308 * will return first found zero bit if any, -1 otherwise 1309 */ 1310 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1311 { 1312 __u32 *addr; 1313 int zero_bit = -1; 1314 1315 len = cur + len; 1316 while (cur < len) { 1317 if ((cur & 31) == 0 && (len - cur) >= 32) { 1318 /* fast path: clear whole word at once */ 1319 addr = bm + (cur >> 3); 1320 if (*addr != (__u32)(-1) && zero_bit == -1) 1321 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1322 *addr = 0; 1323 cur += 32; 1324 continue; 1325 } 1326 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1327 zero_bit = cur; 1328 cur++; 1329 } 1330 1331 return zero_bit; 1332 } 1333 1334 void ext4_set_bits(void *bm, int cur, int len) 1335 { 1336 __u32 *addr; 1337 1338 len = cur + len; 1339 while (cur < len) { 1340 if ((cur & 31) == 0 && (len - cur) >= 32) { 1341 /* fast path: set whole word at once */ 1342 addr = bm + (cur >> 3); 1343 *addr = 0xffffffff; 1344 cur += 32; 1345 continue; 1346 } 1347 mb_set_bit(cur, bm); 1348 cur++; 1349 } 1350 } 1351 1352 /* 1353 * _________________________________________________________________ */ 1354 1355 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1356 { 1357 if (mb_test_bit(*bit + side, bitmap)) { 1358 mb_clear_bit(*bit, bitmap); 1359 (*bit) -= side; 1360 return 1; 1361 } 1362 else { 1363 (*bit) += side; 1364 mb_set_bit(*bit, bitmap); 1365 return -1; 1366 } 1367 } 1368 1369 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1370 { 1371 int max; 1372 int order = 1; 1373 void *buddy = mb_find_buddy(e4b, order, &max); 1374 1375 while (buddy) { 1376 void *buddy2; 1377 1378 /* Bits in range [first; last] are known to be set since 1379 * corresponding blocks were allocated. Bits in range 1380 * (first; last) will stay set because they form buddies on 1381 * upper layer. We just deal with borders if they don't 1382 * align with upper layer and then go up. 1383 * Releasing entire group is all about clearing 1384 * single bit of highest order buddy. 1385 */ 1386 1387 /* Example: 1388 * --------------------------------- 1389 * | 1 | 1 | 1 | 1 | 1390 * --------------------------------- 1391 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1392 * --------------------------------- 1393 * 0 1 2 3 4 5 6 7 1394 * \_____________________/ 1395 * 1396 * Neither [1] nor [6] is aligned to above layer. 1397 * Left neighbour [0] is free, so mark it busy, 1398 * decrease bb_counters and extend range to 1399 * [0; 6] 1400 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1401 * mark [6] free, increase bb_counters and shrink range to 1402 * [0; 5]. 1403 * Then shift range to [0; 2], go up and do the same. 1404 */ 1405 1406 1407 if (first & 1) 1408 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1409 if (!(last & 1)) 1410 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1411 if (first > last) 1412 break; 1413 order++; 1414 1415 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1416 mb_clear_bits(buddy, first, last - first + 1); 1417 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1418 break; 1419 } 1420 first >>= 1; 1421 last >>= 1; 1422 buddy = buddy2; 1423 } 1424 } 1425 1426 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1427 int first, int count) 1428 { 1429 int left_is_free = 0; 1430 int right_is_free = 0; 1431 int block; 1432 int last = first + count - 1; 1433 struct super_block *sb = e4b->bd_sb; 1434 1435 if (WARN_ON(count == 0)) 1436 return; 1437 BUG_ON(last >= (sb->s_blocksize << 3)); 1438 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1439 /* Don't bother if the block group is corrupt. */ 1440 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1441 return; 1442 1443 mb_check_buddy(e4b); 1444 mb_free_blocks_double(inode, e4b, first, count); 1445 1446 e4b->bd_info->bb_free += count; 1447 if (first < e4b->bd_info->bb_first_free) 1448 e4b->bd_info->bb_first_free = first; 1449 1450 /* access memory sequentially: check left neighbour, 1451 * clear range and then check right neighbour 1452 */ 1453 if (first != 0) 1454 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1455 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1456 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1457 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1458 1459 if (unlikely(block != -1)) { 1460 struct ext4_sb_info *sbi = EXT4_SB(sb); 1461 ext4_fsblk_t blocknr; 1462 1463 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1464 blocknr += EXT4_C2B(EXT4_SB(sb), block); 1465 ext4_grp_locked_error(sb, e4b->bd_group, 1466 inode ? inode->i_ino : 0, 1467 blocknr, 1468 "freeing already freed block " 1469 "(bit %u); block bitmap corrupt.", 1470 block); 1471 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)) 1472 percpu_counter_sub(&sbi->s_freeclusters_counter, 1473 e4b->bd_info->bb_free); 1474 /* Mark the block group as corrupt. */ 1475 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, 1476 &e4b->bd_info->bb_state); 1477 mb_regenerate_buddy(e4b); 1478 goto done; 1479 } 1480 1481 /* let's maintain fragments counter */ 1482 if (left_is_free && right_is_free) 1483 e4b->bd_info->bb_fragments--; 1484 else if (!left_is_free && !right_is_free) 1485 e4b->bd_info->bb_fragments++; 1486 1487 /* buddy[0] == bd_bitmap is a special case, so handle 1488 * it right away and let mb_buddy_mark_free stay free of 1489 * zero order checks. 1490 * Check if neighbours are to be coaleasced, 1491 * adjust bitmap bb_counters and borders appropriately. 1492 */ 1493 if (first & 1) { 1494 first += !left_is_free; 1495 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1496 } 1497 if (!(last & 1)) { 1498 last -= !right_is_free; 1499 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1500 } 1501 1502 if (first <= last) 1503 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1504 1505 done: 1506 mb_set_largest_free_order(sb, e4b->bd_info); 1507 mb_check_buddy(e4b); 1508 } 1509 1510 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1511 int needed, struct ext4_free_extent *ex) 1512 { 1513 int next = block; 1514 int max, order; 1515 void *buddy; 1516 1517 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1518 BUG_ON(ex == NULL); 1519 1520 buddy = mb_find_buddy(e4b, 0, &max); 1521 BUG_ON(buddy == NULL); 1522 BUG_ON(block >= max); 1523 if (mb_test_bit(block, buddy)) { 1524 ex->fe_len = 0; 1525 ex->fe_start = 0; 1526 ex->fe_group = 0; 1527 return 0; 1528 } 1529 1530 /* find actual order */ 1531 order = mb_find_order_for_block(e4b, block); 1532 block = block >> order; 1533 1534 ex->fe_len = 1 << order; 1535 ex->fe_start = block << order; 1536 ex->fe_group = e4b->bd_group; 1537 1538 /* calc difference from given start */ 1539 next = next - ex->fe_start; 1540 ex->fe_len -= next; 1541 ex->fe_start += next; 1542 1543 while (needed > ex->fe_len && 1544 mb_find_buddy(e4b, order, &max)) { 1545 1546 if (block + 1 >= max) 1547 break; 1548 1549 next = (block + 1) * (1 << order); 1550 if (mb_test_bit(next, e4b->bd_bitmap)) 1551 break; 1552 1553 order = mb_find_order_for_block(e4b, next); 1554 1555 block = next >> order; 1556 ex->fe_len += 1 << order; 1557 } 1558 1559 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1560 return ex->fe_len; 1561 } 1562 1563 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1564 { 1565 int ord; 1566 int mlen = 0; 1567 int max = 0; 1568 int cur; 1569 int start = ex->fe_start; 1570 int len = ex->fe_len; 1571 unsigned ret = 0; 1572 int len0 = len; 1573 void *buddy; 1574 1575 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1576 BUG_ON(e4b->bd_group != ex->fe_group); 1577 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1578 mb_check_buddy(e4b); 1579 mb_mark_used_double(e4b, start, len); 1580 1581 e4b->bd_info->bb_free -= len; 1582 if (e4b->bd_info->bb_first_free == start) 1583 e4b->bd_info->bb_first_free += len; 1584 1585 /* let's maintain fragments counter */ 1586 if (start != 0) 1587 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1588 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1589 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1590 if (mlen && max) 1591 e4b->bd_info->bb_fragments++; 1592 else if (!mlen && !max) 1593 e4b->bd_info->bb_fragments--; 1594 1595 /* let's maintain buddy itself */ 1596 while (len) { 1597 ord = mb_find_order_for_block(e4b, start); 1598 1599 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1600 /* the whole chunk may be allocated at once! */ 1601 mlen = 1 << ord; 1602 buddy = mb_find_buddy(e4b, ord, &max); 1603 BUG_ON((start >> ord) >= max); 1604 mb_set_bit(start >> ord, buddy); 1605 e4b->bd_info->bb_counters[ord]--; 1606 start += mlen; 1607 len -= mlen; 1608 BUG_ON(len < 0); 1609 continue; 1610 } 1611 1612 /* store for history */ 1613 if (ret == 0) 1614 ret = len | (ord << 16); 1615 1616 /* we have to split large buddy */ 1617 BUG_ON(ord <= 0); 1618 buddy = mb_find_buddy(e4b, ord, &max); 1619 mb_set_bit(start >> ord, buddy); 1620 e4b->bd_info->bb_counters[ord]--; 1621 1622 ord--; 1623 cur = (start >> ord) & ~1U; 1624 buddy = mb_find_buddy(e4b, ord, &max); 1625 mb_clear_bit(cur, buddy); 1626 mb_clear_bit(cur + 1, buddy); 1627 e4b->bd_info->bb_counters[ord]++; 1628 e4b->bd_info->bb_counters[ord]++; 1629 } 1630 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1631 1632 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1633 mb_check_buddy(e4b); 1634 1635 return ret; 1636 } 1637 1638 /* 1639 * Must be called under group lock! 1640 */ 1641 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1642 struct ext4_buddy *e4b) 1643 { 1644 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1645 int ret; 1646 1647 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1648 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1649 1650 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1651 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1652 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1653 1654 /* preallocation can change ac_b_ex, thus we store actually 1655 * allocated blocks for history */ 1656 ac->ac_f_ex = ac->ac_b_ex; 1657 1658 ac->ac_status = AC_STATUS_FOUND; 1659 ac->ac_tail = ret & 0xffff; 1660 ac->ac_buddy = ret >> 16; 1661 1662 /* 1663 * take the page reference. We want the page to be pinned 1664 * so that we don't get a ext4_mb_init_cache_call for this 1665 * group until we update the bitmap. That would mean we 1666 * double allocate blocks. The reference is dropped 1667 * in ext4_mb_release_context 1668 */ 1669 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1670 get_page(ac->ac_bitmap_page); 1671 ac->ac_buddy_page = e4b->bd_buddy_page; 1672 get_page(ac->ac_buddy_page); 1673 /* store last allocated for subsequent stream allocation */ 1674 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1675 spin_lock(&sbi->s_md_lock); 1676 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1677 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1678 spin_unlock(&sbi->s_md_lock); 1679 } 1680 } 1681 1682 /* 1683 * regular allocator, for general purposes allocation 1684 */ 1685 1686 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1687 struct ext4_buddy *e4b, 1688 int finish_group) 1689 { 1690 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1691 struct ext4_free_extent *bex = &ac->ac_b_ex; 1692 struct ext4_free_extent *gex = &ac->ac_g_ex; 1693 struct ext4_free_extent ex; 1694 int max; 1695 1696 if (ac->ac_status == AC_STATUS_FOUND) 1697 return; 1698 /* 1699 * We don't want to scan for a whole year 1700 */ 1701 if (ac->ac_found > sbi->s_mb_max_to_scan && 1702 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1703 ac->ac_status = AC_STATUS_BREAK; 1704 return; 1705 } 1706 1707 /* 1708 * Haven't found good chunk so far, let's continue 1709 */ 1710 if (bex->fe_len < gex->fe_len) 1711 return; 1712 1713 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1714 && bex->fe_group == e4b->bd_group) { 1715 /* recheck chunk's availability - we don't know 1716 * when it was found (within this lock-unlock 1717 * period or not) */ 1718 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1719 if (max >= gex->fe_len) { 1720 ext4_mb_use_best_found(ac, e4b); 1721 return; 1722 } 1723 } 1724 } 1725 1726 /* 1727 * The routine checks whether found extent is good enough. If it is, 1728 * then the extent gets marked used and flag is set to the context 1729 * to stop scanning. Otherwise, the extent is compared with the 1730 * previous found extent and if new one is better, then it's stored 1731 * in the context. Later, the best found extent will be used, if 1732 * mballoc can't find good enough extent. 1733 * 1734 * FIXME: real allocation policy is to be designed yet! 1735 */ 1736 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1737 struct ext4_free_extent *ex, 1738 struct ext4_buddy *e4b) 1739 { 1740 struct ext4_free_extent *bex = &ac->ac_b_ex; 1741 struct ext4_free_extent *gex = &ac->ac_g_ex; 1742 1743 BUG_ON(ex->fe_len <= 0); 1744 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1745 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1746 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1747 1748 ac->ac_found++; 1749 1750 /* 1751 * The special case - take what you catch first 1752 */ 1753 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1754 *bex = *ex; 1755 ext4_mb_use_best_found(ac, e4b); 1756 return; 1757 } 1758 1759 /* 1760 * Let's check whether the chuck is good enough 1761 */ 1762 if (ex->fe_len == gex->fe_len) { 1763 *bex = *ex; 1764 ext4_mb_use_best_found(ac, e4b); 1765 return; 1766 } 1767 1768 /* 1769 * If this is first found extent, just store it in the context 1770 */ 1771 if (bex->fe_len == 0) { 1772 *bex = *ex; 1773 return; 1774 } 1775 1776 /* 1777 * If new found extent is better, store it in the context 1778 */ 1779 if (bex->fe_len < gex->fe_len) { 1780 /* if the request isn't satisfied, any found extent 1781 * larger than previous best one is better */ 1782 if (ex->fe_len > bex->fe_len) 1783 *bex = *ex; 1784 } else if (ex->fe_len > gex->fe_len) { 1785 /* if the request is satisfied, then we try to find 1786 * an extent that still satisfy the request, but is 1787 * smaller than previous one */ 1788 if (ex->fe_len < bex->fe_len) 1789 *bex = *ex; 1790 } 1791 1792 ext4_mb_check_limits(ac, e4b, 0); 1793 } 1794 1795 static noinline_for_stack 1796 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1797 struct ext4_buddy *e4b) 1798 { 1799 struct ext4_free_extent ex = ac->ac_b_ex; 1800 ext4_group_t group = ex.fe_group; 1801 int max; 1802 int err; 1803 1804 BUG_ON(ex.fe_len <= 0); 1805 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1806 if (err) 1807 return err; 1808 1809 ext4_lock_group(ac->ac_sb, group); 1810 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1811 1812 if (max > 0) { 1813 ac->ac_b_ex = ex; 1814 ext4_mb_use_best_found(ac, e4b); 1815 } 1816 1817 ext4_unlock_group(ac->ac_sb, group); 1818 ext4_mb_unload_buddy(e4b); 1819 1820 return 0; 1821 } 1822 1823 static noinline_for_stack 1824 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1825 struct ext4_buddy *e4b) 1826 { 1827 ext4_group_t group = ac->ac_g_ex.fe_group; 1828 int max; 1829 int err; 1830 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1831 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1832 struct ext4_free_extent ex; 1833 1834 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1835 return 0; 1836 if (grp->bb_free == 0) 1837 return 0; 1838 1839 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1840 if (err) 1841 return err; 1842 1843 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 1844 ext4_mb_unload_buddy(e4b); 1845 return 0; 1846 } 1847 1848 ext4_lock_group(ac->ac_sb, group); 1849 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1850 ac->ac_g_ex.fe_len, &ex); 1851 ex.fe_logical = 0xDEADFA11; /* debug value */ 1852 1853 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1854 ext4_fsblk_t start; 1855 1856 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1857 ex.fe_start; 1858 /* use do_div to get remainder (would be 64-bit modulo) */ 1859 if (do_div(start, sbi->s_stripe) == 0) { 1860 ac->ac_found++; 1861 ac->ac_b_ex = ex; 1862 ext4_mb_use_best_found(ac, e4b); 1863 } 1864 } else if (max >= ac->ac_g_ex.fe_len) { 1865 BUG_ON(ex.fe_len <= 0); 1866 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1867 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1868 ac->ac_found++; 1869 ac->ac_b_ex = ex; 1870 ext4_mb_use_best_found(ac, e4b); 1871 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1872 /* Sometimes, caller may want to merge even small 1873 * number of blocks to an existing extent */ 1874 BUG_ON(ex.fe_len <= 0); 1875 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1876 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1877 ac->ac_found++; 1878 ac->ac_b_ex = ex; 1879 ext4_mb_use_best_found(ac, e4b); 1880 } 1881 ext4_unlock_group(ac->ac_sb, group); 1882 ext4_mb_unload_buddy(e4b); 1883 1884 return 0; 1885 } 1886 1887 /* 1888 * The routine scans buddy structures (not bitmap!) from given order 1889 * to max order and tries to find big enough chunk to satisfy the req 1890 */ 1891 static noinline_for_stack 1892 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1893 struct ext4_buddy *e4b) 1894 { 1895 struct super_block *sb = ac->ac_sb; 1896 struct ext4_group_info *grp = e4b->bd_info; 1897 void *buddy; 1898 int i; 1899 int k; 1900 int max; 1901 1902 BUG_ON(ac->ac_2order <= 0); 1903 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1904 if (grp->bb_counters[i] == 0) 1905 continue; 1906 1907 buddy = mb_find_buddy(e4b, i, &max); 1908 BUG_ON(buddy == NULL); 1909 1910 k = mb_find_next_zero_bit(buddy, max, 0); 1911 BUG_ON(k >= max); 1912 1913 ac->ac_found++; 1914 1915 ac->ac_b_ex.fe_len = 1 << i; 1916 ac->ac_b_ex.fe_start = k << i; 1917 ac->ac_b_ex.fe_group = e4b->bd_group; 1918 1919 ext4_mb_use_best_found(ac, e4b); 1920 1921 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1922 1923 if (EXT4_SB(sb)->s_mb_stats) 1924 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1925 1926 break; 1927 } 1928 } 1929 1930 /* 1931 * The routine scans the group and measures all found extents. 1932 * In order to optimize scanning, caller must pass number of 1933 * free blocks in the group, so the routine can know upper limit. 1934 */ 1935 static noinline_for_stack 1936 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1937 struct ext4_buddy *e4b) 1938 { 1939 struct super_block *sb = ac->ac_sb; 1940 void *bitmap = e4b->bd_bitmap; 1941 struct ext4_free_extent ex; 1942 int i; 1943 int free; 1944 1945 free = e4b->bd_info->bb_free; 1946 BUG_ON(free <= 0); 1947 1948 i = e4b->bd_info->bb_first_free; 1949 1950 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1951 i = mb_find_next_zero_bit(bitmap, 1952 EXT4_CLUSTERS_PER_GROUP(sb), i); 1953 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1954 /* 1955 * IF we have corrupt bitmap, we won't find any 1956 * free blocks even though group info says we 1957 * we have free blocks 1958 */ 1959 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1960 "%d free clusters as per " 1961 "group info. But bitmap says 0", 1962 free); 1963 break; 1964 } 1965 1966 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1967 BUG_ON(ex.fe_len <= 0); 1968 if (free < ex.fe_len) { 1969 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1970 "%d free clusters as per " 1971 "group info. But got %d blocks", 1972 free, ex.fe_len); 1973 /* 1974 * The number of free blocks differs. This mostly 1975 * indicate that the bitmap is corrupt. So exit 1976 * without claiming the space. 1977 */ 1978 break; 1979 } 1980 ex.fe_logical = 0xDEADC0DE; /* debug value */ 1981 ext4_mb_measure_extent(ac, &ex, e4b); 1982 1983 i += ex.fe_len; 1984 free -= ex.fe_len; 1985 } 1986 1987 ext4_mb_check_limits(ac, e4b, 1); 1988 } 1989 1990 /* 1991 * This is a special case for storages like raid5 1992 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1993 */ 1994 static noinline_for_stack 1995 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1996 struct ext4_buddy *e4b) 1997 { 1998 struct super_block *sb = ac->ac_sb; 1999 struct ext4_sb_info *sbi = EXT4_SB(sb); 2000 void *bitmap = e4b->bd_bitmap; 2001 struct ext4_free_extent ex; 2002 ext4_fsblk_t first_group_block; 2003 ext4_fsblk_t a; 2004 ext4_grpblk_t i; 2005 int max; 2006 2007 BUG_ON(sbi->s_stripe == 0); 2008 2009 /* find first stripe-aligned block in group */ 2010 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2011 2012 a = first_group_block + sbi->s_stripe - 1; 2013 do_div(a, sbi->s_stripe); 2014 i = (a * sbi->s_stripe) - first_group_block; 2015 2016 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2017 if (!mb_test_bit(i, bitmap)) { 2018 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 2019 if (max >= sbi->s_stripe) { 2020 ac->ac_found++; 2021 ex.fe_logical = 0xDEADF00D; /* debug value */ 2022 ac->ac_b_ex = ex; 2023 ext4_mb_use_best_found(ac, e4b); 2024 break; 2025 } 2026 } 2027 i += sbi->s_stripe; 2028 } 2029 } 2030 2031 /* 2032 * This is now called BEFORE we load the buddy bitmap. 2033 * Returns either 1 or 0 indicating that the group is either suitable 2034 * for the allocation or not. In addition it can also return negative 2035 * error code when something goes wrong. 2036 */ 2037 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 2038 ext4_group_t group, int cr) 2039 { 2040 unsigned free, fragments; 2041 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2042 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2043 2044 BUG_ON(cr < 0 || cr >= 4); 2045 2046 free = grp->bb_free; 2047 if (free == 0) 2048 return 0; 2049 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2050 return 0; 2051 2052 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2053 return 0; 2054 2055 /* We only do this if the grp has never been initialized */ 2056 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2057 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS); 2058 if (ret) 2059 return ret; 2060 } 2061 2062 fragments = grp->bb_fragments; 2063 if (fragments == 0) 2064 return 0; 2065 2066 switch (cr) { 2067 case 0: 2068 BUG_ON(ac->ac_2order == 0); 2069 2070 /* Avoid using the first bg of a flexgroup for data files */ 2071 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2072 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2073 ((group % flex_size) == 0)) 2074 return 0; 2075 2076 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) || 2077 (free / fragments) >= ac->ac_g_ex.fe_len) 2078 return 1; 2079 2080 if (grp->bb_largest_free_order < ac->ac_2order) 2081 return 0; 2082 2083 return 1; 2084 case 1: 2085 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2086 return 1; 2087 break; 2088 case 2: 2089 if (free >= ac->ac_g_ex.fe_len) 2090 return 1; 2091 break; 2092 case 3: 2093 return 1; 2094 default: 2095 BUG(); 2096 } 2097 2098 return 0; 2099 } 2100 2101 static noinline_for_stack int 2102 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2103 { 2104 ext4_group_t ngroups, group, i; 2105 int cr; 2106 int err = 0, first_err = 0; 2107 struct ext4_sb_info *sbi; 2108 struct super_block *sb; 2109 struct ext4_buddy e4b; 2110 2111 sb = ac->ac_sb; 2112 sbi = EXT4_SB(sb); 2113 ngroups = ext4_get_groups_count(sb); 2114 /* non-extent files are limited to low blocks/groups */ 2115 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2116 ngroups = sbi->s_blockfile_groups; 2117 2118 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2119 2120 /* first, try the goal */ 2121 err = ext4_mb_find_by_goal(ac, &e4b); 2122 if (err || ac->ac_status == AC_STATUS_FOUND) 2123 goto out; 2124 2125 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2126 goto out; 2127 2128 /* 2129 * ac->ac2_order is set only if the fe_len is a power of 2 2130 * if ac2_order is set we also set criteria to 0 so that we 2131 * try exact allocation using buddy. 2132 */ 2133 i = fls(ac->ac_g_ex.fe_len); 2134 ac->ac_2order = 0; 2135 /* 2136 * We search using buddy data only if the order of the request 2137 * is greater than equal to the sbi_s_mb_order2_reqs 2138 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2139 */ 2140 if (i >= sbi->s_mb_order2_reqs) { 2141 /* 2142 * This should tell if fe_len is exactly power of 2 2143 */ 2144 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2145 ac->ac_2order = i - 1; 2146 } 2147 2148 /* if stream allocation is enabled, use global goal */ 2149 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2150 /* TBD: may be hot point */ 2151 spin_lock(&sbi->s_md_lock); 2152 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2153 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2154 spin_unlock(&sbi->s_md_lock); 2155 } 2156 2157 /* Let's just scan groups to find more-less suitable blocks */ 2158 cr = ac->ac_2order ? 0 : 1; 2159 /* 2160 * cr == 0 try to get exact allocation, 2161 * cr == 3 try to get anything 2162 */ 2163 repeat: 2164 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2165 ac->ac_criteria = cr; 2166 /* 2167 * searching for the right group start 2168 * from the goal value specified 2169 */ 2170 group = ac->ac_g_ex.fe_group; 2171 2172 for (i = 0; i < ngroups; group++, i++) { 2173 int ret = 0; 2174 cond_resched(); 2175 /* 2176 * Artificially restricted ngroups for non-extent 2177 * files makes group > ngroups possible on first loop. 2178 */ 2179 if (group >= ngroups) 2180 group = 0; 2181 2182 /* This now checks without needing the buddy page */ 2183 ret = ext4_mb_good_group(ac, group, cr); 2184 if (ret <= 0) { 2185 if (!first_err) 2186 first_err = ret; 2187 continue; 2188 } 2189 2190 err = ext4_mb_load_buddy(sb, group, &e4b); 2191 if (err) 2192 goto out; 2193 2194 ext4_lock_group(sb, group); 2195 2196 /* 2197 * We need to check again after locking the 2198 * block group 2199 */ 2200 ret = ext4_mb_good_group(ac, group, cr); 2201 if (ret <= 0) { 2202 ext4_unlock_group(sb, group); 2203 ext4_mb_unload_buddy(&e4b); 2204 if (!first_err) 2205 first_err = ret; 2206 continue; 2207 } 2208 2209 ac->ac_groups_scanned++; 2210 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2) 2211 ext4_mb_simple_scan_group(ac, &e4b); 2212 else if (cr == 1 && sbi->s_stripe && 2213 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2214 ext4_mb_scan_aligned(ac, &e4b); 2215 else 2216 ext4_mb_complex_scan_group(ac, &e4b); 2217 2218 ext4_unlock_group(sb, group); 2219 ext4_mb_unload_buddy(&e4b); 2220 2221 if (ac->ac_status != AC_STATUS_CONTINUE) 2222 break; 2223 } 2224 } 2225 2226 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2227 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2228 /* 2229 * We've been searching too long. Let's try to allocate 2230 * the best chunk we've found so far 2231 */ 2232 2233 ext4_mb_try_best_found(ac, &e4b); 2234 if (ac->ac_status != AC_STATUS_FOUND) { 2235 /* 2236 * Someone more lucky has already allocated it. 2237 * The only thing we can do is just take first 2238 * found block(s) 2239 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2240 */ 2241 ac->ac_b_ex.fe_group = 0; 2242 ac->ac_b_ex.fe_start = 0; 2243 ac->ac_b_ex.fe_len = 0; 2244 ac->ac_status = AC_STATUS_CONTINUE; 2245 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2246 cr = 3; 2247 atomic_inc(&sbi->s_mb_lost_chunks); 2248 goto repeat; 2249 } 2250 } 2251 out: 2252 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2253 err = first_err; 2254 return err; 2255 } 2256 2257 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2258 { 2259 struct super_block *sb = seq->private; 2260 ext4_group_t group; 2261 2262 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2263 return NULL; 2264 group = *pos + 1; 2265 return (void *) ((unsigned long) group); 2266 } 2267 2268 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2269 { 2270 struct super_block *sb = seq->private; 2271 ext4_group_t group; 2272 2273 ++*pos; 2274 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2275 return NULL; 2276 group = *pos + 1; 2277 return (void *) ((unsigned long) group); 2278 } 2279 2280 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2281 { 2282 struct super_block *sb = seq->private; 2283 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2284 int i; 2285 int err, buddy_loaded = 0; 2286 struct ext4_buddy e4b; 2287 struct ext4_group_info *grinfo; 2288 struct sg { 2289 struct ext4_group_info info; 2290 ext4_grpblk_t counters[16]; 2291 } sg; 2292 2293 group--; 2294 if (group == 0) 2295 seq_puts(seq, "#group: free frags first [" 2296 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 2297 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 2298 2299 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2300 sizeof(struct ext4_group_info); 2301 grinfo = ext4_get_group_info(sb, group); 2302 /* Load the group info in memory only if not already loaded. */ 2303 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2304 err = ext4_mb_load_buddy(sb, group, &e4b); 2305 if (err) { 2306 seq_printf(seq, "#%-5u: I/O error\n", group); 2307 return 0; 2308 } 2309 buddy_loaded = 1; 2310 } 2311 2312 memcpy(&sg, ext4_get_group_info(sb, group), i); 2313 2314 if (buddy_loaded) 2315 ext4_mb_unload_buddy(&e4b); 2316 2317 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2318 sg.info.bb_fragments, sg.info.bb_first_free); 2319 for (i = 0; i <= 13; i++) 2320 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2321 sg.info.bb_counters[i] : 0); 2322 seq_printf(seq, " ]\n"); 2323 2324 return 0; 2325 } 2326 2327 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2328 { 2329 } 2330 2331 static const struct seq_operations ext4_mb_seq_groups_ops = { 2332 .start = ext4_mb_seq_groups_start, 2333 .next = ext4_mb_seq_groups_next, 2334 .stop = ext4_mb_seq_groups_stop, 2335 .show = ext4_mb_seq_groups_show, 2336 }; 2337 2338 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2339 { 2340 struct super_block *sb = PDE_DATA(inode); 2341 int rc; 2342 2343 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2344 if (rc == 0) { 2345 struct seq_file *m = file->private_data; 2346 m->private = sb; 2347 } 2348 return rc; 2349 2350 } 2351 2352 const struct file_operations ext4_seq_mb_groups_fops = { 2353 .open = ext4_mb_seq_groups_open, 2354 .read = seq_read, 2355 .llseek = seq_lseek, 2356 .release = seq_release, 2357 }; 2358 2359 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2360 { 2361 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2362 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2363 2364 BUG_ON(!cachep); 2365 return cachep; 2366 } 2367 2368 /* 2369 * Allocate the top-level s_group_info array for the specified number 2370 * of groups 2371 */ 2372 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2373 { 2374 struct ext4_sb_info *sbi = EXT4_SB(sb); 2375 unsigned size; 2376 struct ext4_group_info ***new_groupinfo; 2377 2378 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2379 EXT4_DESC_PER_BLOCK_BITS(sb); 2380 if (size <= sbi->s_group_info_size) 2381 return 0; 2382 2383 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2384 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL); 2385 if (!new_groupinfo) { 2386 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2387 return -ENOMEM; 2388 } 2389 if (sbi->s_group_info) { 2390 memcpy(new_groupinfo, sbi->s_group_info, 2391 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2392 kvfree(sbi->s_group_info); 2393 } 2394 sbi->s_group_info = new_groupinfo; 2395 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2396 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2397 sbi->s_group_info_size); 2398 return 0; 2399 } 2400 2401 /* Create and initialize ext4_group_info data for the given group. */ 2402 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2403 struct ext4_group_desc *desc) 2404 { 2405 int i; 2406 int metalen = 0; 2407 struct ext4_sb_info *sbi = EXT4_SB(sb); 2408 struct ext4_group_info **meta_group_info; 2409 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2410 2411 /* 2412 * First check if this group is the first of a reserved block. 2413 * If it's true, we have to allocate a new table of pointers 2414 * to ext4_group_info structures 2415 */ 2416 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2417 metalen = sizeof(*meta_group_info) << 2418 EXT4_DESC_PER_BLOCK_BITS(sb); 2419 meta_group_info = kmalloc(metalen, GFP_NOFS); 2420 if (meta_group_info == NULL) { 2421 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2422 "for a buddy group"); 2423 goto exit_meta_group_info; 2424 } 2425 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2426 meta_group_info; 2427 } 2428 2429 meta_group_info = 2430 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2431 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2432 2433 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 2434 if (meta_group_info[i] == NULL) { 2435 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2436 goto exit_group_info; 2437 } 2438 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2439 &(meta_group_info[i]->bb_state)); 2440 2441 /* 2442 * initialize bb_free to be able to skip 2443 * empty groups without initialization 2444 */ 2445 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2446 meta_group_info[i]->bb_free = 2447 ext4_free_clusters_after_init(sb, group, desc); 2448 } else { 2449 meta_group_info[i]->bb_free = 2450 ext4_free_group_clusters(sb, desc); 2451 } 2452 2453 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2454 init_rwsem(&meta_group_info[i]->alloc_sem); 2455 meta_group_info[i]->bb_free_root = RB_ROOT; 2456 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2457 2458 #ifdef DOUBLE_CHECK 2459 { 2460 struct buffer_head *bh; 2461 meta_group_info[i]->bb_bitmap = 2462 kmalloc(sb->s_blocksize, GFP_NOFS); 2463 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2464 bh = ext4_read_block_bitmap(sb, group); 2465 BUG_ON(IS_ERR_OR_NULL(bh)); 2466 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2467 sb->s_blocksize); 2468 put_bh(bh); 2469 } 2470 #endif 2471 2472 return 0; 2473 2474 exit_group_info: 2475 /* If a meta_group_info table has been allocated, release it now */ 2476 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2477 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2478 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL; 2479 } 2480 exit_meta_group_info: 2481 return -ENOMEM; 2482 } /* ext4_mb_add_groupinfo */ 2483 2484 static int ext4_mb_init_backend(struct super_block *sb) 2485 { 2486 ext4_group_t ngroups = ext4_get_groups_count(sb); 2487 ext4_group_t i; 2488 struct ext4_sb_info *sbi = EXT4_SB(sb); 2489 int err; 2490 struct ext4_group_desc *desc; 2491 struct kmem_cache *cachep; 2492 2493 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2494 if (err) 2495 return err; 2496 2497 sbi->s_buddy_cache = new_inode(sb); 2498 if (sbi->s_buddy_cache == NULL) { 2499 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2500 goto err_freesgi; 2501 } 2502 /* To avoid potentially colliding with an valid on-disk inode number, 2503 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2504 * not in the inode hash, so it should never be found by iget(), but 2505 * this will avoid confusion if it ever shows up during debugging. */ 2506 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2507 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2508 for (i = 0; i < ngroups; i++) { 2509 desc = ext4_get_group_desc(sb, i, NULL); 2510 if (desc == NULL) { 2511 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2512 goto err_freebuddy; 2513 } 2514 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2515 goto err_freebuddy; 2516 } 2517 2518 return 0; 2519 2520 err_freebuddy: 2521 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2522 while (i-- > 0) 2523 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2524 i = sbi->s_group_info_size; 2525 while (i-- > 0) 2526 kfree(sbi->s_group_info[i]); 2527 iput(sbi->s_buddy_cache); 2528 err_freesgi: 2529 kvfree(sbi->s_group_info); 2530 return -ENOMEM; 2531 } 2532 2533 static void ext4_groupinfo_destroy_slabs(void) 2534 { 2535 int i; 2536 2537 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2538 if (ext4_groupinfo_caches[i]) 2539 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2540 ext4_groupinfo_caches[i] = NULL; 2541 } 2542 } 2543 2544 static int ext4_groupinfo_create_slab(size_t size) 2545 { 2546 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2547 int slab_size; 2548 int blocksize_bits = order_base_2(size); 2549 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2550 struct kmem_cache *cachep; 2551 2552 if (cache_index >= NR_GRPINFO_CACHES) 2553 return -EINVAL; 2554 2555 if (unlikely(cache_index < 0)) 2556 cache_index = 0; 2557 2558 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2559 if (ext4_groupinfo_caches[cache_index]) { 2560 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2561 return 0; /* Already created */ 2562 } 2563 2564 slab_size = offsetof(struct ext4_group_info, 2565 bb_counters[blocksize_bits + 2]); 2566 2567 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2568 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2569 NULL); 2570 2571 ext4_groupinfo_caches[cache_index] = cachep; 2572 2573 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2574 if (!cachep) { 2575 printk(KERN_EMERG 2576 "EXT4-fs: no memory for groupinfo slab cache\n"); 2577 return -ENOMEM; 2578 } 2579 2580 return 0; 2581 } 2582 2583 int ext4_mb_init(struct super_block *sb) 2584 { 2585 struct ext4_sb_info *sbi = EXT4_SB(sb); 2586 unsigned i, j; 2587 unsigned offset, offset_incr; 2588 unsigned max; 2589 int ret; 2590 2591 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2592 2593 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2594 if (sbi->s_mb_offsets == NULL) { 2595 ret = -ENOMEM; 2596 goto out; 2597 } 2598 2599 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2600 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2601 if (sbi->s_mb_maxs == NULL) { 2602 ret = -ENOMEM; 2603 goto out; 2604 } 2605 2606 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2607 if (ret < 0) 2608 goto out; 2609 2610 /* order 0 is regular bitmap */ 2611 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2612 sbi->s_mb_offsets[0] = 0; 2613 2614 i = 1; 2615 offset = 0; 2616 offset_incr = 1 << (sb->s_blocksize_bits - 1); 2617 max = sb->s_blocksize << 2; 2618 do { 2619 sbi->s_mb_offsets[i] = offset; 2620 sbi->s_mb_maxs[i] = max; 2621 offset += offset_incr; 2622 offset_incr = offset_incr >> 1; 2623 max = max >> 1; 2624 i++; 2625 } while (i <= sb->s_blocksize_bits + 1); 2626 2627 spin_lock_init(&sbi->s_md_lock); 2628 spin_lock_init(&sbi->s_bal_lock); 2629 sbi->s_mb_free_pending = 0; 2630 2631 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2632 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2633 sbi->s_mb_stats = MB_DEFAULT_STATS; 2634 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2635 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2636 /* 2637 * The default group preallocation is 512, which for 4k block 2638 * sizes translates to 2 megabytes. However for bigalloc file 2639 * systems, this is probably too big (i.e, if the cluster size 2640 * is 1 megabyte, then group preallocation size becomes half a 2641 * gigabyte!). As a default, we will keep a two megabyte 2642 * group pralloc size for cluster sizes up to 64k, and after 2643 * that, we will force a minimum group preallocation size of 2644 * 32 clusters. This translates to 8 megs when the cluster 2645 * size is 256k, and 32 megs when the cluster size is 1 meg, 2646 * which seems reasonable as a default. 2647 */ 2648 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2649 sbi->s_cluster_bits, 32); 2650 /* 2651 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2652 * to the lowest multiple of s_stripe which is bigger than 2653 * the s_mb_group_prealloc as determined above. We want 2654 * the preallocation size to be an exact multiple of the 2655 * RAID stripe size so that preallocations don't fragment 2656 * the stripes. 2657 */ 2658 if (sbi->s_stripe > 1) { 2659 sbi->s_mb_group_prealloc = roundup( 2660 sbi->s_mb_group_prealloc, sbi->s_stripe); 2661 } 2662 2663 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2664 if (sbi->s_locality_groups == NULL) { 2665 ret = -ENOMEM; 2666 goto out; 2667 } 2668 for_each_possible_cpu(i) { 2669 struct ext4_locality_group *lg; 2670 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2671 mutex_init(&lg->lg_mutex); 2672 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2673 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2674 spin_lock_init(&lg->lg_prealloc_lock); 2675 } 2676 2677 /* init file for buddy data */ 2678 ret = ext4_mb_init_backend(sb); 2679 if (ret != 0) 2680 goto out_free_locality_groups; 2681 2682 return 0; 2683 2684 out_free_locality_groups: 2685 free_percpu(sbi->s_locality_groups); 2686 sbi->s_locality_groups = NULL; 2687 out: 2688 kfree(sbi->s_mb_offsets); 2689 sbi->s_mb_offsets = NULL; 2690 kfree(sbi->s_mb_maxs); 2691 sbi->s_mb_maxs = NULL; 2692 return ret; 2693 } 2694 2695 /* need to called with the ext4 group lock held */ 2696 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2697 { 2698 struct ext4_prealloc_space *pa; 2699 struct list_head *cur, *tmp; 2700 int count = 0; 2701 2702 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2703 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2704 list_del(&pa->pa_group_list); 2705 count++; 2706 kmem_cache_free(ext4_pspace_cachep, pa); 2707 } 2708 if (count) 2709 mb_debug(1, "mballoc: %u PAs left\n", count); 2710 2711 } 2712 2713 int ext4_mb_release(struct super_block *sb) 2714 { 2715 ext4_group_t ngroups = ext4_get_groups_count(sb); 2716 ext4_group_t i; 2717 int num_meta_group_infos; 2718 struct ext4_group_info *grinfo; 2719 struct ext4_sb_info *sbi = EXT4_SB(sb); 2720 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2721 2722 if (sbi->s_group_info) { 2723 for (i = 0; i < ngroups; i++) { 2724 grinfo = ext4_get_group_info(sb, i); 2725 #ifdef DOUBLE_CHECK 2726 kfree(grinfo->bb_bitmap); 2727 #endif 2728 ext4_lock_group(sb, i); 2729 ext4_mb_cleanup_pa(grinfo); 2730 ext4_unlock_group(sb, i); 2731 kmem_cache_free(cachep, grinfo); 2732 } 2733 num_meta_group_infos = (ngroups + 2734 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2735 EXT4_DESC_PER_BLOCK_BITS(sb); 2736 for (i = 0; i < num_meta_group_infos; i++) 2737 kfree(sbi->s_group_info[i]); 2738 kvfree(sbi->s_group_info); 2739 } 2740 kfree(sbi->s_mb_offsets); 2741 kfree(sbi->s_mb_maxs); 2742 iput(sbi->s_buddy_cache); 2743 if (sbi->s_mb_stats) { 2744 ext4_msg(sb, KERN_INFO, 2745 "mballoc: %u blocks %u reqs (%u success)", 2746 atomic_read(&sbi->s_bal_allocated), 2747 atomic_read(&sbi->s_bal_reqs), 2748 atomic_read(&sbi->s_bal_success)); 2749 ext4_msg(sb, KERN_INFO, 2750 "mballoc: %u extents scanned, %u goal hits, " 2751 "%u 2^N hits, %u breaks, %u lost", 2752 atomic_read(&sbi->s_bal_ex_scanned), 2753 atomic_read(&sbi->s_bal_goals), 2754 atomic_read(&sbi->s_bal_2orders), 2755 atomic_read(&sbi->s_bal_breaks), 2756 atomic_read(&sbi->s_mb_lost_chunks)); 2757 ext4_msg(sb, KERN_INFO, 2758 "mballoc: %lu generated and it took %Lu", 2759 sbi->s_mb_buddies_generated, 2760 sbi->s_mb_generation_time); 2761 ext4_msg(sb, KERN_INFO, 2762 "mballoc: %u preallocated, %u discarded", 2763 atomic_read(&sbi->s_mb_preallocated), 2764 atomic_read(&sbi->s_mb_discarded)); 2765 } 2766 2767 free_percpu(sbi->s_locality_groups); 2768 2769 return 0; 2770 } 2771 2772 static inline int ext4_issue_discard(struct super_block *sb, 2773 ext4_group_t block_group, ext4_grpblk_t cluster, int count) 2774 { 2775 ext4_fsblk_t discard_block; 2776 2777 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2778 ext4_group_first_block_no(sb, block_group)); 2779 count = EXT4_C2B(EXT4_SB(sb), count); 2780 trace_ext4_discard_blocks(sb, 2781 (unsigned long long) discard_block, count); 2782 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2783 } 2784 2785 /* 2786 * This function is called by the jbd2 layer once the commit has finished, 2787 * so we know we can free the blocks that were released with that commit. 2788 */ 2789 static void ext4_free_data_callback(struct super_block *sb, 2790 struct ext4_journal_cb_entry *jce, 2791 int rc) 2792 { 2793 struct ext4_free_data *entry = (struct ext4_free_data *)jce; 2794 struct ext4_buddy e4b; 2795 struct ext4_group_info *db; 2796 int err, count = 0, count2 = 0; 2797 2798 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2799 entry->efd_count, entry->efd_group, entry); 2800 2801 if (test_opt(sb, DISCARD)) { 2802 err = ext4_issue_discard(sb, entry->efd_group, 2803 entry->efd_start_cluster, 2804 entry->efd_count); 2805 if (err && err != -EOPNOTSUPP) 2806 ext4_msg(sb, KERN_WARNING, "discard request in" 2807 " group:%d block:%d count:%d failed" 2808 " with %d", entry->efd_group, 2809 entry->efd_start_cluster, 2810 entry->efd_count, err); 2811 } 2812 2813 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2814 /* we expect to find existing buddy because it's pinned */ 2815 BUG_ON(err != 0); 2816 2817 spin_lock(&EXT4_SB(sb)->s_md_lock); 2818 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 2819 spin_unlock(&EXT4_SB(sb)->s_md_lock); 2820 2821 db = e4b.bd_info; 2822 /* there are blocks to put in buddy to make them really free */ 2823 count += entry->efd_count; 2824 count2++; 2825 ext4_lock_group(sb, entry->efd_group); 2826 /* Take it out of per group rb tree */ 2827 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2828 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2829 2830 /* 2831 * Clear the trimmed flag for the group so that the next 2832 * ext4_trim_fs can trim it. 2833 * If the volume is mounted with -o discard, online discard 2834 * is supported and the free blocks will be trimmed online. 2835 */ 2836 if (!test_opt(sb, DISCARD)) 2837 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2838 2839 if (!db->bb_free_root.rb_node) { 2840 /* No more items in the per group rb tree 2841 * balance refcounts from ext4_mb_free_metadata() 2842 */ 2843 put_page(e4b.bd_buddy_page); 2844 put_page(e4b.bd_bitmap_page); 2845 } 2846 ext4_unlock_group(sb, entry->efd_group); 2847 kmem_cache_free(ext4_free_data_cachep, entry); 2848 ext4_mb_unload_buddy(&e4b); 2849 2850 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2851 } 2852 2853 int __init ext4_init_mballoc(void) 2854 { 2855 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2856 SLAB_RECLAIM_ACCOUNT); 2857 if (ext4_pspace_cachep == NULL) 2858 return -ENOMEM; 2859 2860 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2861 SLAB_RECLAIM_ACCOUNT); 2862 if (ext4_ac_cachep == NULL) { 2863 kmem_cache_destroy(ext4_pspace_cachep); 2864 return -ENOMEM; 2865 } 2866 2867 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2868 SLAB_RECLAIM_ACCOUNT); 2869 if (ext4_free_data_cachep == NULL) { 2870 kmem_cache_destroy(ext4_pspace_cachep); 2871 kmem_cache_destroy(ext4_ac_cachep); 2872 return -ENOMEM; 2873 } 2874 return 0; 2875 } 2876 2877 void ext4_exit_mballoc(void) 2878 { 2879 /* 2880 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2881 * before destroying the slab cache. 2882 */ 2883 rcu_barrier(); 2884 kmem_cache_destroy(ext4_pspace_cachep); 2885 kmem_cache_destroy(ext4_ac_cachep); 2886 kmem_cache_destroy(ext4_free_data_cachep); 2887 ext4_groupinfo_destroy_slabs(); 2888 } 2889 2890 2891 /* 2892 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2893 * Returns 0 if success or error code 2894 */ 2895 static noinline_for_stack int 2896 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2897 handle_t *handle, unsigned int reserv_clstrs) 2898 { 2899 struct buffer_head *bitmap_bh = NULL; 2900 struct ext4_group_desc *gdp; 2901 struct buffer_head *gdp_bh; 2902 struct ext4_sb_info *sbi; 2903 struct super_block *sb; 2904 ext4_fsblk_t block; 2905 int err, len; 2906 2907 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2908 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2909 2910 sb = ac->ac_sb; 2911 sbi = EXT4_SB(sb); 2912 2913 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2914 if (IS_ERR(bitmap_bh)) { 2915 err = PTR_ERR(bitmap_bh); 2916 bitmap_bh = NULL; 2917 goto out_err; 2918 } 2919 2920 BUFFER_TRACE(bitmap_bh, "getting write access"); 2921 err = ext4_journal_get_write_access(handle, bitmap_bh); 2922 if (err) 2923 goto out_err; 2924 2925 err = -EIO; 2926 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2927 if (!gdp) 2928 goto out_err; 2929 2930 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2931 ext4_free_group_clusters(sb, gdp)); 2932 2933 BUFFER_TRACE(gdp_bh, "get_write_access"); 2934 err = ext4_journal_get_write_access(handle, gdp_bh); 2935 if (err) 2936 goto out_err; 2937 2938 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2939 2940 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2941 if (!ext4_data_block_valid(sbi, block, len)) { 2942 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2943 "fs metadata", block, block+len); 2944 /* File system mounted not to panic on error 2945 * Fix the bitmap and return EFSCORRUPTED 2946 * We leak some of the blocks here. 2947 */ 2948 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2949 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2950 ac->ac_b_ex.fe_len); 2951 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2952 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2953 if (!err) 2954 err = -EFSCORRUPTED; 2955 goto out_err; 2956 } 2957 2958 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2959 #ifdef AGGRESSIVE_CHECK 2960 { 2961 int i; 2962 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2963 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2964 bitmap_bh->b_data)); 2965 } 2966 } 2967 #endif 2968 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2969 ac->ac_b_ex.fe_len); 2970 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2971 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2972 ext4_free_group_clusters_set(sb, gdp, 2973 ext4_free_clusters_after_init(sb, 2974 ac->ac_b_ex.fe_group, gdp)); 2975 } 2976 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 2977 ext4_free_group_clusters_set(sb, gdp, len); 2978 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 2979 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 2980 2981 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2982 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 2983 /* 2984 * Now reduce the dirty block count also. Should not go negative 2985 */ 2986 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 2987 /* release all the reserved blocks if non delalloc */ 2988 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 2989 reserv_clstrs); 2990 2991 if (sbi->s_log_groups_per_flex) { 2992 ext4_group_t flex_group = ext4_flex_group(sbi, 2993 ac->ac_b_ex.fe_group); 2994 atomic64_sub(ac->ac_b_ex.fe_len, 2995 &sbi->s_flex_groups[flex_group].free_clusters); 2996 } 2997 2998 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2999 if (err) 3000 goto out_err; 3001 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 3002 3003 out_err: 3004 brelse(bitmap_bh); 3005 return err; 3006 } 3007 3008 /* 3009 * here we normalize request for locality group 3010 * Group request are normalized to s_mb_group_prealloc, which goes to 3011 * s_strip if we set the same via mount option. 3012 * s_mb_group_prealloc can be configured via 3013 * /sys/fs/ext4/<partition>/mb_group_prealloc 3014 * 3015 * XXX: should we try to preallocate more than the group has now? 3016 */ 3017 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 3018 { 3019 struct super_block *sb = ac->ac_sb; 3020 struct ext4_locality_group *lg = ac->ac_lg; 3021 3022 BUG_ON(lg == NULL); 3023 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 3024 mb_debug(1, "#%u: goal %u blocks for locality group\n", 3025 current->pid, ac->ac_g_ex.fe_len); 3026 } 3027 3028 /* 3029 * Normalization means making request better in terms of 3030 * size and alignment 3031 */ 3032 static noinline_for_stack void 3033 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3034 struct ext4_allocation_request *ar) 3035 { 3036 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3037 int bsbits, max; 3038 ext4_lblk_t end; 3039 loff_t size, start_off; 3040 loff_t orig_size __maybe_unused; 3041 ext4_lblk_t start; 3042 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3043 struct ext4_prealloc_space *pa; 3044 3045 /* do normalize only data requests, metadata requests 3046 do not need preallocation */ 3047 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3048 return; 3049 3050 /* sometime caller may want exact blocks */ 3051 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3052 return; 3053 3054 /* caller may indicate that preallocation isn't 3055 * required (it's a tail, for example) */ 3056 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3057 return; 3058 3059 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3060 ext4_mb_normalize_group_request(ac); 3061 return ; 3062 } 3063 3064 bsbits = ac->ac_sb->s_blocksize_bits; 3065 3066 /* first, let's learn actual file size 3067 * given current request is allocated */ 3068 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3069 size = size << bsbits; 3070 if (size < i_size_read(ac->ac_inode)) 3071 size = i_size_read(ac->ac_inode); 3072 orig_size = size; 3073 3074 /* max size of free chunks */ 3075 max = 2 << bsbits; 3076 3077 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3078 (req <= (size) || max <= (chunk_size)) 3079 3080 /* first, try to predict filesize */ 3081 /* XXX: should this table be tunable? */ 3082 start_off = 0; 3083 if (size <= 16 * 1024) { 3084 size = 16 * 1024; 3085 } else if (size <= 32 * 1024) { 3086 size = 32 * 1024; 3087 } else if (size <= 64 * 1024) { 3088 size = 64 * 1024; 3089 } else if (size <= 128 * 1024) { 3090 size = 128 * 1024; 3091 } else if (size <= 256 * 1024) { 3092 size = 256 * 1024; 3093 } else if (size <= 512 * 1024) { 3094 size = 512 * 1024; 3095 } else if (size <= 1024 * 1024) { 3096 size = 1024 * 1024; 3097 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3098 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3099 (21 - bsbits)) << 21; 3100 size = 2 * 1024 * 1024; 3101 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3102 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3103 (22 - bsbits)) << 22; 3104 size = 4 * 1024 * 1024; 3105 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3106 (8<<20)>>bsbits, max, 8 * 1024)) { 3107 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3108 (23 - bsbits)) << 23; 3109 size = 8 * 1024 * 1024; 3110 } else { 3111 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 3112 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 3113 ac->ac_o_ex.fe_len) << bsbits; 3114 } 3115 size = size >> bsbits; 3116 start = start_off >> bsbits; 3117 3118 /* don't cover already allocated blocks in selected range */ 3119 if (ar->pleft && start <= ar->lleft) { 3120 size -= ar->lleft + 1 - start; 3121 start = ar->lleft + 1; 3122 } 3123 if (ar->pright && start + size - 1 >= ar->lright) 3124 size -= start + size - ar->lright; 3125 3126 end = start + size; 3127 3128 /* check we don't cross already preallocated blocks */ 3129 rcu_read_lock(); 3130 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3131 ext4_lblk_t pa_end; 3132 3133 if (pa->pa_deleted) 3134 continue; 3135 spin_lock(&pa->pa_lock); 3136 if (pa->pa_deleted) { 3137 spin_unlock(&pa->pa_lock); 3138 continue; 3139 } 3140 3141 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3142 pa->pa_len); 3143 3144 /* PA must not overlap original request */ 3145 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3146 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3147 3148 /* skip PAs this normalized request doesn't overlap with */ 3149 if (pa->pa_lstart >= end || pa_end <= start) { 3150 spin_unlock(&pa->pa_lock); 3151 continue; 3152 } 3153 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3154 3155 /* adjust start or end to be adjacent to this pa */ 3156 if (pa_end <= ac->ac_o_ex.fe_logical) { 3157 BUG_ON(pa_end < start); 3158 start = pa_end; 3159 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3160 BUG_ON(pa->pa_lstart > end); 3161 end = pa->pa_lstart; 3162 } 3163 spin_unlock(&pa->pa_lock); 3164 } 3165 rcu_read_unlock(); 3166 size = end - start; 3167 3168 /* XXX: extra loop to check we really don't overlap preallocations */ 3169 rcu_read_lock(); 3170 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3171 ext4_lblk_t pa_end; 3172 3173 spin_lock(&pa->pa_lock); 3174 if (pa->pa_deleted == 0) { 3175 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3176 pa->pa_len); 3177 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3178 } 3179 spin_unlock(&pa->pa_lock); 3180 } 3181 rcu_read_unlock(); 3182 3183 if (start + size <= ac->ac_o_ex.fe_logical && 3184 start > ac->ac_o_ex.fe_logical) { 3185 ext4_msg(ac->ac_sb, KERN_ERR, 3186 "start %lu, size %lu, fe_logical %lu", 3187 (unsigned long) start, (unsigned long) size, 3188 (unsigned long) ac->ac_o_ex.fe_logical); 3189 BUG(); 3190 } 3191 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3192 3193 /* now prepare goal request */ 3194 3195 /* XXX: is it better to align blocks WRT to logical 3196 * placement or satisfy big request as is */ 3197 ac->ac_g_ex.fe_logical = start; 3198 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3199 3200 /* define goal start in order to merge */ 3201 if (ar->pright && (ar->lright == (start + size))) { 3202 /* merge to the right */ 3203 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3204 &ac->ac_f_ex.fe_group, 3205 &ac->ac_f_ex.fe_start); 3206 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3207 } 3208 if (ar->pleft && (ar->lleft + 1 == start)) { 3209 /* merge to the left */ 3210 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3211 &ac->ac_f_ex.fe_group, 3212 &ac->ac_f_ex.fe_start); 3213 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3214 } 3215 3216 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3217 (unsigned) orig_size, (unsigned) start); 3218 } 3219 3220 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3221 { 3222 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3223 3224 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3225 atomic_inc(&sbi->s_bal_reqs); 3226 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3227 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3228 atomic_inc(&sbi->s_bal_success); 3229 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3230 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3231 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3232 atomic_inc(&sbi->s_bal_goals); 3233 if (ac->ac_found > sbi->s_mb_max_to_scan) 3234 atomic_inc(&sbi->s_bal_breaks); 3235 } 3236 3237 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3238 trace_ext4_mballoc_alloc(ac); 3239 else 3240 trace_ext4_mballoc_prealloc(ac); 3241 } 3242 3243 /* 3244 * Called on failure; free up any blocks from the inode PA for this 3245 * context. We don't need this for MB_GROUP_PA because we only change 3246 * pa_free in ext4_mb_release_context(), but on failure, we've already 3247 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3248 */ 3249 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3250 { 3251 struct ext4_prealloc_space *pa = ac->ac_pa; 3252 struct ext4_buddy e4b; 3253 int err; 3254 3255 if (pa == NULL) { 3256 if (ac->ac_f_ex.fe_len == 0) 3257 return; 3258 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 3259 if (err) { 3260 /* 3261 * This should never happen since we pin the 3262 * pages in the ext4_allocation_context so 3263 * ext4_mb_load_buddy() should never fail. 3264 */ 3265 WARN(1, "mb_load_buddy failed (%d)", err); 3266 return; 3267 } 3268 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3269 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 3270 ac->ac_f_ex.fe_len); 3271 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3272 ext4_mb_unload_buddy(&e4b); 3273 return; 3274 } 3275 if (pa->pa_type == MB_INODE_PA) 3276 pa->pa_free += ac->ac_b_ex.fe_len; 3277 } 3278 3279 /* 3280 * use blocks preallocated to inode 3281 */ 3282 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3283 struct ext4_prealloc_space *pa) 3284 { 3285 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3286 ext4_fsblk_t start; 3287 ext4_fsblk_t end; 3288 int len; 3289 3290 /* found preallocated blocks, use them */ 3291 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3292 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3293 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3294 len = EXT4_NUM_B2C(sbi, end - start); 3295 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3296 &ac->ac_b_ex.fe_start); 3297 ac->ac_b_ex.fe_len = len; 3298 ac->ac_status = AC_STATUS_FOUND; 3299 ac->ac_pa = pa; 3300 3301 BUG_ON(start < pa->pa_pstart); 3302 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3303 BUG_ON(pa->pa_free < len); 3304 pa->pa_free -= len; 3305 3306 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3307 } 3308 3309 /* 3310 * use blocks preallocated to locality group 3311 */ 3312 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3313 struct ext4_prealloc_space *pa) 3314 { 3315 unsigned int len = ac->ac_o_ex.fe_len; 3316 3317 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3318 &ac->ac_b_ex.fe_group, 3319 &ac->ac_b_ex.fe_start); 3320 ac->ac_b_ex.fe_len = len; 3321 ac->ac_status = AC_STATUS_FOUND; 3322 ac->ac_pa = pa; 3323 3324 /* we don't correct pa_pstart or pa_plen here to avoid 3325 * possible race when the group is being loaded concurrently 3326 * instead we correct pa later, after blocks are marked 3327 * in on-disk bitmap -- see ext4_mb_release_context() 3328 * Other CPUs are prevented from allocating from this pa by lg_mutex 3329 */ 3330 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3331 } 3332 3333 /* 3334 * Return the prealloc space that have minimal distance 3335 * from the goal block. @cpa is the prealloc 3336 * space that is having currently known minimal distance 3337 * from the goal block. 3338 */ 3339 static struct ext4_prealloc_space * 3340 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3341 struct ext4_prealloc_space *pa, 3342 struct ext4_prealloc_space *cpa) 3343 { 3344 ext4_fsblk_t cur_distance, new_distance; 3345 3346 if (cpa == NULL) { 3347 atomic_inc(&pa->pa_count); 3348 return pa; 3349 } 3350 cur_distance = abs(goal_block - cpa->pa_pstart); 3351 new_distance = abs(goal_block - pa->pa_pstart); 3352 3353 if (cur_distance <= new_distance) 3354 return cpa; 3355 3356 /* drop the previous reference */ 3357 atomic_dec(&cpa->pa_count); 3358 atomic_inc(&pa->pa_count); 3359 return pa; 3360 } 3361 3362 /* 3363 * search goal blocks in preallocated space 3364 */ 3365 static noinline_for_stack int 3366 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3367 { 3368 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3369 int order, i; 3370 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3371 struct ext4_locality_group *lg; 3372 struct ext4_prealloc_space *pa, *cpa = NULL; 3373 ext4_fsblk_t goal_block; 3374 3375 /* only data can be preallocated */ 3376 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3377 return 0; 3378 3379 /* first, try per-file preallocation */ 3380 rcu_read_lock(); 3381 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3382 3383 /* all fields in this condition don't change, 3384 * so we can skip locking for them */ 3385 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3386 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3387 EXT4_C2B(sbi, pa->pa_len))) 3388 continue; 3389 3390 /* non-extent files can't have physical blocks past 2^32 */ 3391 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3392 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3393 EXT4_MAX_BLOCK_FILE_PHYS)) 3394 continue; 3395 3396 /* found preallocated blocks, use them */ 3397 spin_lock(&pa->pa_lock); 3398 if (pa->pa_deleted == 0 && pa->pa_free) { 3399 atomic_inc(&pa->pa_count); 3400 ext4_mb_use_inode_pa(ac, pa); 3401 spin_unlock(&pa->pa_lock); 3402 ac->ac_criteria = 10; 3403 rcu_read_unlock(); 3404 return 1; 3405 } 3406 spin_unlock(&pa->pa_lock); 3407 } 3408 rcu_read_unlock(); 3409 3410 /* can we use group allocation? */ 3411 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3412 return 0; 3413 3414 /* inode may have no locality group for some reason */ 3415 lg = ac->ac_lg; 3416 if (lg == NULL) 3417 return 0; 3418 order = fls(ac->ac_o_ex.fe_len) - 1; 3419 if (order > PREALLOC_TB_SIZE - 1) 3420 /* The max size of hash table is PREALLOC_TB_SIZE */ 3421 order = PREALLOC_TB_SIZE - 1; 3422 3423 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3424 /* 3425 * search for the prealloc space that is having 3426 * minimal distance from the goal block. 3427 */ 3428 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3429 rcu_read_lock(); 3430 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3431 pa_inode_list) { 3432 spin_lock(&pa->pa_lock); 3433 if (pa->pa_deleted == 0 && 3434 pa->pa_free >= ac->ac_o_ex.fe_len) { 3435 3436 cpa = ext4_mb_check_group_pa(goal_block, 3437 pa, cpa); 3438 } 3439 spin_unlock(&pa->pa_lock); 3440 } 3441 rcu_read_unlock(); 3442 } 3443 if (cpa) { 3444 ext4_mb_use_group_pa(ac, cpa); 3445 ac->ac_criteria = 20; 3446 return 1; 3447 } 3448 return 0; 3449 } 3450 3451 /* 3452 * the function goes through all block freed in the group 3453 * but not yet committed and marks them used in in-core bitmap. 3454 * buddy must be generated from this bitmap 3455 * Need to be called with the ext4 group lock held 3456 */ 3457 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3458 ext4_group_t group) 3459 { 3460 struct rb_node *n; 3461 struct ext4_group_info *grp; 3462 struct ext4_free_data *entry; 3463 3464 grp = ext4_get_group_info(sb, group); 3465 n = rb_first(&(grp->bb_free_root)); 3466 3467 while (n) { 3468 entry = rb_entry(n, struct ext4_free_data, efd_node); 3469 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3470 n = rb_next(n); 3471 } 3472 return; 3473 } 3474 3475 /* 3476 * the function goes through all preallocation in this group and marks them 3477 * used in in-core bitmap. buddy must be generated from this bitmap 3478 * Need to be called with ext4 group lock held 3479 */ 3480 static noinline_for_stack 3481 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3482 ext4_group_t group) 3483 { 3484 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3485 struct ext4_prealloc_space *pa; 3486 struct list_head *cur; 3487 ext4_group_t groupnr; 3488 ext4_grpblk_t start; 3489 int preallocated = 0; 3490 int len; 3491 3492 /* all form of preallocation discards first load group, 3493 * so the only competing code is preallocation use. 3494 * we don't need any locking here 3495 * notice we do NOT ignore preallocations with pa_deleted 3496 * otherwise we could leave used blocks available for 3497 * allocation in buddy when concurrent ext4_mb_put_pa() 3498 * is dropping preallocation 3499 */ 3500 list_for_each(cur, &grp->bb_prealloc_list) { 3501 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3502 spin_lock(&pa->pa_lock); 3503 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3504 &groupnr, &start); 3505 len = pa->pa_len; 3506 spin_unlock(&pa->pa_lock); 3507 if (unlikely(len == 0)) 3508 continue; 3509 BUG_ON(groupnr != group); 3510 ext4_set_bits(bitmap, start, len); 3511 preallocated += len; 3512 } 3513 mb_debug(1, "prellocated %u for group %u\n", preallocated, group); 3514 } 3515 3516 static void ext4_mb_pa_callback(struct rcu_head *head) 3517 { 3518 struct ext4_prealloc_space *pa; 3519 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3520 3521 BUG_ON(atomic_read(&pa->pa_count)); 3522 BUG_ON(pa->pa_deleted == 0); 3523 kmem_cache_free(ext4_pspace_cachep, pa); 3524 } 3525 3526 /* 3527 * drops a reference to preallocated space descriptor 3528 * if this was the last reference and the space is consumed 3529 */ 3530 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3531 struct super_block *sb, struct ext4_prealloc_space *pa) 3532 { 3533 ext4_group_t grp; 3534 ext4_fsblk_t grp_blk; 3535 3536 /* in this short window concurrent discard can set pa_deleted */ 3537 spin_lock(&pa->pa_lock); 3538 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 3539 spin_unlock(&pa->pa_lock); 3540 return; 3541 } 3542 3543 if (pa->pa_deleted == 1) { 3544 spin_unlock(&pa->pa_lock); 3545 return; 3546 } 3547 3548 pa->pa_deleted = 1; 3549 spin_unlock(&pa->pa_lock); 3550 3551 grp_blk = pa->pa_pstart; 3552 /* 3553 * If doing group-based preallocation, pa_pstart may be in the 3554 * next group when pa is used up 3555 */ 3556 if (pa->pa_type == MB_GROUP_PA) 3557 grp_blk--; 3558 3559 grp = ext4_get_group_number(sb, grp_blk); 3560 3561 /* 3562 * possible race: 3563 * 3564 * P1 (buddy init) P2 (regular allocation) 3565 * find block B in PA 3566 * copy on-disk bitmap to buddy 3567 * mark B in on-disk bitmap 3568 * drop PA from group 3569 * mark all PAs in buddy 3570 * 3571 * thus, P1 initializes buddy with B available. to prevent this 3572 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3573 * against that pair 3574 */ 3575 ext4_lock_group(sb, grp); 3576 list_del(&pa->pa_group_list); 3577 ext4_unlock_group(sb, grp); 3578 3579 spin_lock(pa->pa_obj_lock); 3580 list_del_rcu(&pa->pa_inode_list); 3581 spin_unlock(pa->pa_obj_lock); 3582 3583 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3584 } 3585 3586 /* 3587 * creates new preallocated space for given inode 3588 */ 3589 static noinline_for_stack int 3590 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3591 { 3592 struct super_block *sb = ac->ac_sb; 3593 struct ext4_sb_info *sbi = EXT4_SB(sb); 3594 struct ext4_prealloc_space *pa; 3595 struct ext4_group_info *grp; 3596 struct ext4_inode_info *ei; 3597 3598 /* preallocate only when found space is larger then requested */ 3599 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3600 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3601 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3602 3603 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3604 if (pa == NULL) 3605 return -ENOMEM; 3606 3607 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3608 int winl; 3609 int wins; 3610 int win; 3611 int offs; 3612 3613 /* we can't allocate as much as normalizer wants. 3614 * so, found space must get proper lstart 3615 * to cover original request */ 3616 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3617 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3618 3619 /* we're limited by original request in that 3620 * logical block must be covered any way 3621 * winl is window we can move our chunk within */ 3622 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3623 3624 /* also, we should cover whole original request */ 3625 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3626 3627 /* the smallest one defines real window */ 3628 win = min(winl, wins); 3629 3630 offs = ac->ac_o_ex.fe_logical % 3631 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3632 if (offs && offs < win) 3633 win = offs; 3634 3635 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3636 EXT4_NUM_B2C(sbi, win); 3637 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3638 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3639 } 3640 3641 /* preallocation can change ac_b_ex, thus we store actually 3642 * allocated blocks for history */ 3643 ac->ac_f_ex = ac->ac_b_ex; 3644 3645 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3646 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3647 pa->pa_len = ac->ac_b_ex.fe_len; 3648 pa->pa_free = pa->pa_len; 3649 atomic_set(&pa->pa_count, 1); 3650 spin_lock_init(&pa->pa_lock); 3651 INIT_LIST_HEAD(&pa->pa_inode_list); 3652 INIT_LIST_HEAD(&pa->pa_group_list); 3653 pa->pa_deleted = 0; 3654 pa->pa_type = MB_INODE_PA; 3655 3656 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3657 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3658 trace_ext4_mb_new_inode_pa(ac, pa); 3659 3660 ext4_mb_use_inode_pa(ac, pa); 3661 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3662 3663 ei = EXT4_I(ac->ac_inode); 3664 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3665 3666 pa->pa_obj_lock = &ei->i_prealloc_lock; 3667 pa->pa_inode = ac->ac_inode; 3668 3669 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3670 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3671 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3672 3673 spin_lock(pa->pa_obj_lock); 3674 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3675 spin_unlock(pa->pa_obj_lock); 3676 3677 return 0; 3678 } 3679 3680 /* 3681 * creates new preallocated space for locality group inodes belongs to 3682 */ 3683 static noinline_for_stack int 3684 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3685 { 3686 struct super_block *sb = ac->ac_sb; 3687 struct ext4_locality_group *lg; 3688 struct ext4_prealloc_space *pa; 3689 struct ext4_group_info *grp; 3690 3691 /* preallocate only when found space is larger then requested */ 3692 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3693 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3694 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3695 3696 BUG_ON(ext4_pspace_cachep == NULL); 3697 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3698 if (pa == NULL) 3699 return -ENOMEM; 3700 3701 /* preallocation can change ac_b_ex, thus we store actually 3702 * allocated blocks for history */ 3703 ac->ac_f_ex = ac->ac_b_ex; 3704 3705 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3706 pa->pa_lstart = pa->pa_pstart; 3707 pa->pa_len = ac->ac_b_ex.fe_len; 3708 pa->pa_free = pa->pa_len; 3709 atomic_set(&pa->pa_count, 1); 3710 spin_lock_init(&pa->pa_lock); 3711 INIT_LIST_HEAD(&pa->pa_inode_list); 3712 INIT_LIST_HEAD(&pa->pa_group_list); 3713 pa->pa_deleted = 0; 3714 pa->pa_type = MB_GROUP_PA; 3715 3716 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3717 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3718 trace_ext4_mb_new_group_pa(ac, pa); 3719 3720 ext4_mb_use_group_pa(ac, pa); 3721 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3722 3723 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3724 lg = ac->ac_lg; 3725 BUG_ON(lg == NULL); 3726 3727 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3728 pa->pa_inode = NULL; 3729 3730 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3731 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3732 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3733 3734 /* 3735 * We will later add the new pa to the right bucket 3736 * after updating the pa_free in ext4_mb_release_context 3737 */ 3738 return 0; 3739 } 3740 3741 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3742 { 3743 int err; 3744 3745 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3746 err = ext4_mb_new_group_pa(ac); 3747 else 3748 err = ext4_mb_new_inode_pa(ac); 3749 return err; 3750 } 3751 3752 /* 3753 * finds all unused blocks in on-disk bitmap, frees them in 3754 * in-core bitmap and buddy. 3755 * @pa must be unlinked from inode and group lists, so that 3756 * nobody else can find/use it. 3757 * the caller MUST hold group/inode locks. 3758 * TODO: optimize the case when there are no in-core structures yet 3759 */ 3760 static noinline_for_stack int 3761 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3762 struct ext4_prealloc_space *pa) 3763 { 3764 struct super_block *sb = e4b->bd_sb; 3765 struct ext4_sb_info *sbi = EXT4_SB(sb); 3766 unsigned int end; 3767 unsigned int next; 3768 ext4_group_t group; 3769 ext4_grpblk_t bit; 3770 unsigned long long grp_blk_start; 3771 int err = 0; 3772 int free = 0; 3773 3774 BUG_ON(pa->pa_deleted == 0); 3775 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3776 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3777 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3778 end = bit + pa->pa_len; 3779 3780 while (bit < end) { 3781 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3782 if (bit >= end) 3783 break; 3784 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3785 mb_debug(1, " free preallocated %u/%u in group %u\n", 3786 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3787 (unsigned) next - bit, (unsigned) group); 3788 free += next - bit; 3789 3790 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3791 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3792 EXT4_C2B(sbi, bit)), 3793 next - bit); 3794 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3795 bit = next + 1; 3796 } 3797 if (free != pa->pa_free) { 3798 ext4_msg(e4b->bd_sb, KERN_CRIT, 3799 "pa %p: logic %lu, phys. %lu, len %lu", 3800 pa, (unsigned long) pa->pa_lstart, 3801 (unsigned long) pa->pa_pstart, 3802 (unsigned long) pa->pa_len); 3803 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3804 free, pa->pa_free); 3805 /* 3806 * pa is already deleted so we use the value obtained 3807 * from the bitmap and continue. 3808 */ 3809 } 3810 atomic_add(free, &sbi->s_mb_discarded); 3811 3812 return err; 3813 } 3814 3815 static noinline_for_stack int 3816 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3817 struct ext4_prealloc_space *pa) 3818 { 3819 struct super_block *sb = e4b->bd_sb; 3820 ext4_group_t group; 3821 ext4_grpblk_t bit; 3822 3823 trace_ext4_mb_release_group_pa(sb, pa); 3824 BUG_ON(pa->pa_deleted == 0); 3825 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3826 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3827 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3828 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3829 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3830 3831 return 0; 3832 } 3833 3834 /* 3835 * releases all preallocations in given group 3836 * 3837 * first, we need to decide discard policy: 3838 * - when do we discard 3839 * 1) ENOSPC 3840 * - how many do we discard 3841 * 1) how many requested 3842 */ 3843 static noinline_for_stack int 3844 ext4_mb_discard_group_preallocations(struct super_block *sb, 3845 ext4_group_t group, int needed) 3846 { 3847 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3848 struct buffer_head *bitmap_bh = NULL; 3849 struct ext4_prealloc_space *pa, *tmp; 3850 struct list_head list; 3851 struct ext4_buddy e4b; 3852 int err; 3853 int busy = 0; 3854 int free = 0; 3855 3856 mb_debug(1, "discard preallocation for group %u\n", group); 3857 3858 if (list_empty(&grp->bb_prealloc_list)) 3859 return 0; 3860 3861 bitmap_bh = ext4_read_block_bitmap(sb, group); 3862 if (IS_ERR(bitmap_bh)) { 3863 err = PTR_ERR(bitmap_bh); 3864 ext4_error(sb, "Error %d reading block bitmap for %u", 3865 err, group); 3866 return 0; 3867 } 3868 3869 err = ext4_mb_load_buddy(sb, group, &e4b); 3870 if (err) { 3871 ext4_error(sb, "Error loading buddy information for %u", group); 3872 put_bh(bitmap_bh); 3873 return 0; 3874 } 3875 3876 if (needed == 0) 3877 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3878 3879 INIT_LIST_HEAD(&list); 3880 repeat: 3881 ext4_lock_group(sb, group); 3882 list_for_each_entry_safe(pa, tmp, 3883 &grp->bb_prealloc_list, pa_group_list) { 3884 spin_lock(&pa->pa_lock); 3885 if (atomic_read(&pa->pa_count)) { 3886 spin_unlock(&pa->pa_lock); 3887 busy = 1; 3888 continue; 3889 } 3890 if (pa->pa_deleted) { 3891 spin_unlock(&pa->pa_lock); 3892 continue; 3893 } 3894 3895 /* seems this one can be freed ... */ 3896 pa->pa_deleted = 1; 3897 3898 /* we can trust pa_free ... */ 3899 free += pa->pa_free; 3900 3901 spin_unlock(&pa->pa_lock); 3902 3903 list_del(&pa->pa_group_list); 3904 list_add(&pa->u.pa_tmp_list, &list); 3905 } 3906 3907 /* if we still need more blocks and some PAs were used, try again */ 3908 if (free < needed && busy) { 3909 busy = 0; 3910 ext4_unlock_group(sb, group); 3911 cond_resched(); 3912 goto repeat; 3913 } 3914 3915 /* found anything to free? */ 3916 if (list_empty(&list)) { 3917 BUG_ON(free != 0); 3918 goto out; 3919 } 3920 3921 /* now free all selected PAs */ 3922 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3923 3924 /* remove from object (inode or locality group) */ 3925 spin_lock(pa->pa_obj_lock); 3926 list_del_rcu(&pa->pa_inode_list); 3927 spin_unlock(pa->pa_obj_lock); 3928 3929 if (pa->pa_type == MB_GROUP_PA) 3930 ext4_mb_release_group_pa(&e4b, pa); 3931 else 3932 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3933 3934 list_del(&pa->u.pa_tmp_list); 3935 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3936 } 3937 3938 out: 3939 ext4_unlock_group(sb, group); 3940 ext4_mb_unload_buddy(&e4b); 3941 put_bh(bitmap_bh); 3942 return free; 3943 } 3944 3945 /* 3946 * releases all non-used preallocated blocks for given inode 3947 * 3948 * It's important to discard preallocations under i_data_sem 3949 * We don't want another block to be served from the prealloc 3950 * space when we are discarding the inode prealloc space. 3951 * 3952 * FIXME!! Make sure it is valid at all the call sites 3953 */ 3954 void ext4_discard_preallocations(struct inode *inode) 3955 { 3956 struct ext4_inode_info *ei = EXT4_I(inode); 3957 struct super_block *sb = inode->i_sb; 3958 struct buffer_head *bitmap_bh = NULL; 3959 struct ext4_prealloc_space *pa, *tmp; 3960 ext4_group_t group = 0; 3961 struct list_head list; 3962 struct ext4_buddy e4b; 3963 int err; 3964 3965 if (!S_ISREG(inode->i_mode)) { 3966 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 3967 return; 3968 } 3969 3970 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 3971 trace_ext4_discard_preallocations(inode); 3972 3973 INIT_LIST_HEAD(&list); 3974 3975 repeat: 3976 /* first, collect all pa's in the inode */ 3977 spin_lock(&ei->i_prealloc_lock); 3978 while (!list_empty(&ei->i_prealloc_list)) { 3979 pa = list_entry(ei->i_prealloc_list.next, 3980 struct ext4_prealloc_space, pa_inode_list); 3981 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 3982 spin_lock(&pa->pa_lock); 3983 if (atomic_read(&pa->pa_count)) { 3984 /* this shouldn't happen often - nobody should 3985 * use preallocation while we're discarding it */ 3986 spin_unlock(&pa->pa_lock); 3987 spin_unlock(&ei->i_prealloc_lock); 3988 ext4_msg(sb, KERN_ERR, 3989 "uh-oh! used pa while discarding"); 3990 WARN_ON(1); 3991 schedule_timeout_uninterruptible(HZ); 3992 goto repeat; 3993 3994 } 3995 if (pa->pa_deleted == 0) { 3996 pa->pa_deleted = 1; 3997 spin_unlock(&pa->pa_lock); 3998 list_del_rcu(&pa->pa_inode_list); 3999 list_add(&pa->u.pa_tmp_list, &list); 4000 continue; 4001 } 4002 4003 /* someone is deleting pa right now */ 4004 spin_unlock(&pa->pa_lock); 4005 spin_unlock(&ei->i_prealloc_lock); 4006 4007 /* we have to wait here because pa_deleted 4008 * doesn't mean pa is already unlinked from 4009 * the list. as we might be called from 4010 * ->clear_inode() the inode will get freed 4011 * and concurrent thread which is unlinking 4012 * pa from inode's list may access already 4013 * freed memory, bad-bad-bad */ 4014 4015 /* XXX: if this happens too often, we can 4016 * add a flag to force wait only in case 4017 * of ->clear_inode(), but not in case of 4018 * regular truncate */ 4019 schedule_timeout_uninterruptible(HZ); 4020 goto repeat; 4021 } 4022 spin_unlock(&ei->i_prealloc_lock); 4023 4024 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4025 BUG_ON(pa->pa_type != MB_INODE_PA); 4026 group = ext4_get_group_number(sb, pa->pa_pstart); 4027 4028 err = ext4_mb_load_buddy(sb, group, &e4b); 4029 if (err) { 4030 ext4_error(sb, "Error loading buddy information for %u", 4031 group); 4032 continue; 4033 } 4034 4035 bitmap_bh = ext4_read_block_bitmap(sb, group); 4036 if (IS_ERR(bitmap_bh)) { 4037 err = PTR_ERR(bitmap_bh); 4038 ext4_error(sb, "Error %d reading block bitmap for %u", 4039 err, group); 4040 ext4_mb_unload_buddy(&e4b); 4041 continue; 4042 } 4043 4044 ext4_lock_group(sb, group); 4045 list_del(&pa->pa_group_list); 4046 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4047 ext4_unlock_group(sb, group); 4048 4049 ext4_mb_unload_buddy(&e4b); 4050 put_bh(bitmap_bh); 4051 4052 list_del(&pa->u.pa_tmp_list); 4053 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4054 } 4055 } 4056 4057 #ifdef CONFIG_EXT4_DEBUG 4058 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4059 { 4060 struct super_block *sb = ac->ac_sb; 4061 ext4_group_t ngroups, i; 4062 4063 if (!ext4_mballoc_debug || 4064 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 4065 return; 4066 4067 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 4068 " Allocation context details:"); 4069 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 4070 ac->ac_status, ac->ac_flags); 4071 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 4072 "goal %lu/%lu/%lu@%lu, " 4073 "best %lu/%lu/%lu@%lu cr %d", 4074 (unsigned long)ac->ac_o_ex.fe_group, 4075 (unsigned long)ac->ac_o_ex.fe_start, 4076 (unsigned long)ac->ac_o_ex.fe_len, 4077 (unsigned long)ac->ac_o_ex.fe_logical, 4078 (unsigned long)ac->ac_g_ex.fe_group, 4079 (unsigned long)ac->ac_g_ex.fe_start, 4080 (unsigned long)ac->ac_g_ex.fe_len, 4081 (unsigned long)ac->ac_g_ex.fe_logical, 4082 (unsigned long)ac->ac_b_ex.fe_group, 4083 (unsigned long)ac->ac_b_ex.fe_start, 4084 (unsigned long)ac->ac_b_ex.fe_len, 4085 (unsigned long)ac->ac_b_ex.fe_logical, 4086 (int)ac->ac_criteria); 4087 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found); 4088 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 4089 ngroups = ext4_get_groups_count(sb); 4090 for (i = 0; i < ngroups; i++) { 4091 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 4092 struct ext4_prealloc_space *pa; 4093 ext4_grpblk_t start; 4094 struct list_head *cur; 4095 ext4_lock_group(sb, i); 4096 list_for_each(cur, &grp->bb_prealloc_list) { 4097 pa = list_entry(cur, struct ext4_prealloc_space, 4098 pa_group_list); 4099 spin_lock(&pa->pa_lock); 4100 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4101 NULL, &start); 4102 spin_unlock(&pa->pa_lock); 4103 printk(KERN_ERR "PA:%u:%d:%u \n", i, 4104 start, pa->pa_len); 4105 } 4106 ext4_unlock_group(sb, i); 4107 4108 if (grp->bb_free == 0) 4109 continue; 4110 printk(KERN_ERR "%u: %d/%d \n", 4111 i, grp->bb_free, grp->bb_fragments); 4112 } 4113 printk(KERN_ERR "\n"); 4114 } 4115 #else 4116 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4117 { 4118 return; 4119 } 4120 #endif 4121 4122 /* 4123 * We use locality group preallocation for small size file. The size of the 4124 * file is determined by the current size or the resulting size after 4125 * allocation which ever is larger 4126 * 4127 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4128 */ 4129 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4130 { 4131 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4132 int bsbits = ac->ac_sb->s_blocksize_bits; 4133 loff_t size, isize; 4134 4135 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4136 return; 4137 4138 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4139 return; 4140 4141 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4142 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4143 >> bsbits; 4144 4145 if ((size == isize) && 4146 !ext4_fs_is_busy(sbi) && 4147 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 4148 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4149 return; 4150 } 4151 4152 if (sbi->s_mb_group_prealloc <= 0) { 4153 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4154 return; 4155 } 4156 4157 /* don't use group allocation for large files */ 4158 size = max(size, isize); 4159 if (size > sbi->s_mb_stream_request) { 4160 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4161 return; 4162 } 4163 4164 BUG_ON(ac->ac_lg != NULL); 4165 /* 4166 * locality group prealloc space are per cpu. The reason for having 4167 * per cpu locality group is to reduce the contention between block 4168 * request from multiple CPUs. 4169 */ 4170 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 4171 4172 /* we're going to use group allocation */ 4173 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4174 4175 /* serialize all allocations in the group */ 4176 mutex_lock(&ac->ac_lg->lg_mutex); 4177 } 4178 4179 static noinline_for_stack int 4180 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4181 struct ext4_allocation_request *ar) 4182 { 4183 struct super_block *sb = ar->inode->i_sb; 4184 struct ext4_sb_info *sbi = EXT4_SB(sb); 4185 struct ext4_super_block *es = sbi->s_es; 4186 ext4_group_t group; 4187 unsigned int len; 4188 ext4_fsblk_t goal; 4189 ext4_grpblk_t block; 4190 4191 /* we can't allocate > group size */ 4192 len = ar->len; 4193 4194 /* just a dirty hack to filter too big requests */ 4195 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4196 len = EXT4_CLUSTERS_PER_GROUP(sb); 4197 4198 /* start searching from the goal */ 4199 goal = ar->goal; 4200 if (goal < le32_to_cpu(es->s_first_data_block) || 4201 goal >= ext4_blocks_count(es)) 4202 goal = le32_to_cpu(es->s_first_data_block); 4203 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4204 4205 /* set up allocation goals */ 4206 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 4207 ac->ac_status = AC_STATUS_CONTINUE; 4208 ac->ac_sb = sb; 4209 ac->ac_inode = ar->inode; 4210 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4211 ac->ac_o_ex.fe_group = group; 4212 ac->ac_o_ex.fe_start = block; 4213 ac->ac_o_ex.fe_len = len; 4214 ac->ac_g_ex = ac->ac_o_ex; 4215 ac->ac_flags = ar->flags; 4216 4217 /* we have to define context: we'll we work with a file or 4218 * locality group. this is a policy, actually */ 4219 ext4_mb_group_or_file(ac); 4220 4221 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4222 "left: %u/%u, right %u/%u to %swritable\n", 4223 (unsigned) ar->len, (unsigned) ar->logical, 4224 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4225 (unsigned) ar->lleft, (unsigned) ar->pleft, 4226 (unsigned) ar->lright, (unsigned) ar->pright, 4227 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4228 return 0; 4229 4230 } 4231 4232 static noinline_for_stack void 4233 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4234 struct ext4_locality_group *lg, 4235 int order, int total_entries) 4236 { 4237 ext4_group_t group = 0; 4238 struct ext4_buddy e4b; 4239 struct list_head discard_list; 4240 struct ext4_prealloc_space *pa, *tmp; 4241 4242 mb_debug(1, "discard locality group preallocation\n"); 4243 4244 INIT_LIST_HEAD(&discard_list); 4245 4246 spin_lock(&lg->lg_prealloc_lock); 4247 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4248 pa_inode_list) { 4249 spin_lock(&pa->pa_lock); 4250 if (atomic_read(&pa->pa_count)) { 4251 /* 4252 * This is the pa that we just used 4253 * for block allocation. So don't 4254 * free that 4255 */ 4256 spin_unlock(&pa->pa_lock); 4257 continue; 4258 } 4259 if (pa->pa_deleted) { 4260 spin_unlock(&pa->pa_lock); 4261 continue; 4262 } 4263 /* only lg prealloc space */ 4264 BUG_ON(pa->pa_type != MB_GROUP_PA); 4265 4266 /* seems this one can be freed ... */ 4267 pa->pa_deleted = 1; 4268 spin_unlock(&pa->pa_lock); 4269 4270 list_del_rcu(&pa->pa_inode_list); 4271 list_add(&pa->u.pa_tmp_list, &discard_list); 4272 4273 total_entries--; 4274 if (total_entries <= 5) { 4275 /* 4276 * we want to keep only 5 entries 4277 * allowing it to grow to 8. This 4278 * mak sure we don't call discard 4279 * soon for this list. 4280 */ 4281 break; 4282 } 4283 } 4284 spin_unlock(&lg->lg_prealloc_lock); 4285 4286 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4287 4288 group = ext4_get_group_number(sb, pa->pa_pstart); 4289 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4290 ext4_error(sb, "Error loading buddy information for %u", 4291 group); 4292 continue; 4293 } 4294 ext4_lock_group(sb, group); 4295 list_del(&pa->pa_group_list); 4296 ext4_mb_release_group_pa(&e4b, pa); 4297 ext4_unlock_group(sb, group); 4298 4299 ext4_mb_unload_buddy(&e4b); 4300 list_del(&pa->u.pa_tmp_list); 4301 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4302 } 4303 } 4304 4305 /* 4306 * We have incremented pa_count. So it cannot be freed at this 4307 * point. Also we hold lg_mutex. So no parallel allocation is 4308 * possible from this lg. That means pa_free cannot be updated. 4309 * 4310 * A parallel ext4_mb_discard_group_preallocations is possible. 4311 * which can cause the lg_prealloc_list to be updated. 4312 */ 4313 4314 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4315 { 4316 int order, added = 0, lg_prealloc_count = 1; 4317 struct super_block *sb = ac->ac_sb; 4318 struct ext4_locality_group *lg = ac->ac_lg; 4319 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4320 4321 order = fls(pa->pa_free) - 1; 4322 if (order > PREALLOC_TB_SIZE - 1) 4323 /* The max size of hash table is PREALLOC_TB_SIZE */ 4324 order = PREALLOC_TB_SIZE - 1; 4325 /* Add the prealloc space to lg */ 4326 spin_lock(&lg->lg_prealloc_lock); 4327 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4328 pa_inode_list) { 4329 spin_lock(&tmp_pa->pa_lock); 4330 if (tmp_pa->pa_deleted) { 4331 spin_unlock(&tmp_pa->pa_lock); 4332 continue; 4333 } 4334 if (!added && pa->pa_free < tmp_pa->pa_free) { 4335 /* Add to the tail of the previous entry */ 4336 list_add_tail_rcu(&pa->pa_inode_list, 4337 &tmp_pa->pa_inode_list); 4338 added = 1; 4339 /* 4340 * we want to count the total 4341 * number of entries in the list 4342 */ 4343 } 4344 spin_unlock(&tmp_pa->pa_lock); 4345 lg_prealloc_count++; 4346 } 4347 if (!added) 4348 list_add_tail_rcu(&pa->pa_inode_list, 4349 &lg->lg_prealloc_list[order]); 4350 spin_unlock(&lg->lg_prealloc_lock); 4351 4352 /* Now trim the list to be not more than 8 elements */ 4353 if (lg_prealloc_count > 8) { 4354 ext4_mb_discard_lg_preallocations(sb, lg, 4355 order, lg_prealloc_count); 4356 return; 4357 } 4358 return ; 4359 } 4360 4361 /* 4362 * release all resource we used in allocation 4363 */ 4364 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4365 { 4366 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4367 struct ext4_prealloc_space *pa = ac->ac_pa; 4368 if (pa) { 4369 if (pa->pa_type == MB_GROUP_PA) { 4370 /* see comment in ext4_mb_use_group_pa() */ 4371 spin_lock(&pa->pa_lock); 4372 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4373 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4374 pa->pa_free -= ac->ac_b_ex.fe_len; 4375 pa->pa_len -= ac->ac_b_ex.fe_len; 4376 spin_unlock(&pa->pa_lock); 4377 } 4378 } 4379 if (pa) { 4380 /* 4381 * We want to add the pa to the right bucket. 4382 * Remove it from the list and while adding 4383 * make sure the list to which we are adding 4384 * doesn't grow big. 4385 */ 4386 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4387 spin_lock(pa->pa_obj_lock); 4388 list_del_rcu(&pa->pa_inode_list); 4389 spin_unlock(pa->pa_obj_lock); 4390 ext4_mb_add_n_trim(ac); 4391 } 4392 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4393 } 4394 if (ac->ac_bitmap_page) 4395 put_page(ac->ac_bitmap_page); 4396 if (ac->ac_buddy_page) 4397 put_page(ac->ac_buddy_page); 4398 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4399 mutex_unlock(&ac->ac_lg->lg_mutex); 4400 ext4_mb_collect_stats(ac); 4401 return 0; 4402 } 4403 4404 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4405 { 4406 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4407 int ret; 4408 int freed = 0; 4409 4410 trace_ext4_mb_discard_preallocations(sb, needed); 4411 for (i = 0; i < ngroups && needed > 0; i++) { 4412 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4413 freed += ret; 4414 needed -= ret; 4415 } 4416 4417 return freed; 4418 } 4419 4420 /* 4421 * Main entry point into mballoc to allocate blocks 4422 * it tries to use preallocation first, then falls back 4423 * to usual allocation 4424 */ 4425 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4426 struct ext4_allocation_request *ar, int *errp) 4427 { 4428 int freed; 4429 struct ext4_allocation_context *ac = NULL; 4430 struct ext4_sb_info *sbi; 4431 struct super_block *sb; 4432 ext4_fsblk_t block = 0; 4433 unsigned int inquota = 0; 4434 unsigned int reserv_clstrs = 0; 4435 4436 might_sleep(); 4437 sb = ar->inode->i_sb; 4438 sbi = EXT4_SB(sb); 4439 4440 trace_ext4_request_blocks(ar); 4441 4442 /* Allow to use superuser reservation for quota file */ 4443 if (IS_NOQUOTA(ar->inode)) 4444 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4445 4446 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 4447 /* Without delayed allocation we need to verify 4448 * there is enough free blocks to do block allocation 4449 * and verify allocation doesn't exceed the quota limits. 4450 */ 4451 while (ar->len && 4452 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4453 4454 /* let others to free the space */ 4455 cond_resched(); 4456 ar->len = ar->len >> 1; 4457 } 4458 if (!ar->len) { 4459 *errp = -ENOSPC; 4460 return 0; 4461 } 4462 reserv_clstrs = ar->len; 4463 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4464 dquot_alloc_block_nofail(ar->inode, 4465 EXT4_C2B(sbi, ar->len)); 4466 } else { 4467 while (ar->len && 4468 dquot_alloc_block(ar->inode, 4469 EXT4_C2B(sbi, ar->len))) { 4470 4471 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4472 ar->len--; 4473 } 4474 } 4475 inquota = ar->len; 4476 if (ar->len == 0) { 4477 *errp = -EDQUOT; 4478 goto out; 4479 } 4480 } 4481 4482 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4483 if (!ac) { 4484 ar->len = 0; 4485 *errp = -ENOMEM; 4486 goto out; 4487 } 4488 4489 *errp = ext4_mb_initialize_context(ac, ar); 4490 if (*errp) { 4491 ar->len = 0; 4492 goto out; 4493 } 4494 4495 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4496 if (!ext4_mb_use_preallocated(ac)) { 4497 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4498 ext4_mb_normalize_request(ac, ar); 4499 repeat: 4500 /* allocate space in core */ 4501 *errp = ext4_mb_regular_allocator(ac); 4502 if (*errp) 4503 goto discard_and_exit; 4504 4505 /* as we've just preallocated more space than 4506 * user requested originally, we store allocated 4507 * space in a special descriptor */ 4508 if (ac->ac_status == AC_STATUS_FOUND && 4509 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4510 *errp = ext4_mb_new_preallocation(ac); 4511 if (*errp) { 4512 discard_and_exit: 4513 ext4_discard_allocated_blocks(ac); 4514 goto errout; 4515 } 4516 } 4517 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4518 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4519 if (*errp) { 4520 ext4_discard_allocated_blocks(ac); 4521 goto errout; 4522 } else { 4523 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4524 ar->len = ac->ac_b_ex.fe_len; 4525 } 4526 } else { 4527 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4528 if (freed) 4529 goto repeat; 4530 *errp = -ENOSPC; 4531 } 4532 4533 errout: 4534 if (*errp) { 4535 ac->ac_b_ex.fe_len = 0; 4536 ar->len = 0; 4537 ext4_mb_show_ac(ac); 4538 } 4539 ext4_mb_release_context(ac); 4540 out: 4541 if (ac) 4542 kmem_cache_free(ext4_ac_cachep, ac); 4543 if (inquota && ar->len < inquota) 4544 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4545 if (!ar->len) { 4546 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 4547 /* release all the reserved blocks if non delalloc */ 4548 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4549 reserv_clstrs); 4550 } 4551 4552 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4553 4554 return block; 4555 } 4556 4557 /* 4558 * We can merge two free data extents only if the physical blocks 4559 * are contiguous, AND the extents were freed by the same transaction, 4560 * AND the blocks are associated with the same group. 4561 */ 4562 static int can_merge(struct ext4_free_data *entry1, 4563 struct ext4_free_data *entry2) 4564 { 4565 if ((entry1->efd_tid == entry2->efd_tid) && 4566 (entry1->efd_group == entry2->efd_group) && 4567 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster)) 4568 return 1; 4569 return 0; 4570 } 4571 4572 static noinline_for_stack int 4573 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4574 struct ext4_free_data *new_entry) 4575 { 4576 ext4_group_t group = e4b->bd_group; 4577 ext4_grpblk_t cluster; 4578 ext4_grpblk_t clusters = new_entry->efd_count; 4579 struct ext4_free_data *entry; 4580 struct ext4_group_info *db = e4b->bd_info; 4581 struct super_block *sb = e4b->bd_sb; 4582 struct ext4_sb_info *sbi = EXT4_SB(sb); 4583 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4584 struct rb_node *parent = NULL, *new_node; 4585 4586 BUG_ON(!ext4_handle_valid(handle)); 4587 BUG_ON(e4b->bd_bitmap_page == NULL); 4588 BUG_ON(e4b->bd_buddy_page == NULL); 4589 4590 new_node = &new_entry->efd_node; 4591 cluster = new_entry->efd_start_cluster; 4592 4593 if (!*n) { 4594 /* first free block exent. We need to 4595 protect buddy cache from being freed, 4596 * otherwise we'll refresh it from 4597 * on-disk bitmap and lose not-yet-available 4598 * blocks */ 4599 get_page(e4b->bd_buddy_page); 4600 get_page(e4b->bd_bitmap_page); 4601 } 4602 while (*n) { 4603 parent = *n; 4604 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4605 if (cluster < entry->efd_start_cluster) 4606 n = &(*n)->rb_left; 4607 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4608 n = &(*n)->rb_right; 4609 else { 4610 ext4_grp_locked_error(sb, group, 0, 4611 ext4_group_first_block_no(sb, group) + 4612 EXT4_C2B(sbi, cluster), 4613 "Block already on to-be-freed list"); 4614 return 0; 4615 } 4616 } 4617 4618 rb_link_node(new_node, parent, n); 4619 rb_insert_color(new_node, &db->bb_free_root); 4620 4621 /* Now try to see the extent can be merged to left and right */ 4622 node = rb_prev(new_node); 4623 if (node) { 4624 entry = rb_entry(node, struct ext4_free_data, efd_node); 4625 if (can_merge(entry, new_entry) && 4626 ext4_journal_callback_try_del(handle, &entry->efd_jce)) { 4627 new_entry->efd_start_cluster = entry->efd_start_cluster; 4628 new_entry->efd_count += entry->efd_count; 4629 rb_erase(node, &(db->bb_free_root)); 4630 kmem_cache_free(ext4_free_data_cachep, entry); 4631 } 4632 } 4633 4634 node = rb_next(new_node); 4635 if (node) { 4636 entry = rb_entry(node, struct ext4_free_data, efd_node); 4637 if (can_merge(new_entry, entry) && 4638 ext4_journal_callback_try_del(handle, &entry->efd_jce)) { 4639 new_entry->efd_count += entry->efd_count; 4640 rb_erase(node, &(db->bb_free_root)); 4641 kmem_cache_free(ext4_free_data_cachep, entry); 4642 } 4643 } 4644 /* Add the extent to transaction's private list */ 4645 new_entry->efd_jce.jce_func = ext4_free_data_callback; 4646 spin_lock(&sbi->s_md_lock); 4647 _ext4_journal_callback_add(handle, &new_entry->efd_jce); 4648 sbi->s_mb_free_pending += clusters; 4649 spin_unlock(&sbi->s_md_lock); 4650 return 0; 4651 } 4652 4653 /** 4654 * ext4_free_blocks() -- Free given blocks and update quota 4655 * @handle: handle for this transaction 4656 * @inode: inode 4657 * @block: start physical block to free 4658 * @count: number of blocks to count 4659 * @flags: flags used by ext4_free_blocks 4660 */ 4661 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4662 struct buffer_head *bh, ext4_fsblk_t block, 4663 unsigned long count, int flags) 4664 { 4665 struct buffer_head *bitmap_bh = NULL; 4666 struct super_block *sb = inode->i_sb; 4667 struct ext4_group_desc *gdp; 4668 unsigned int overflow; 4669 ext4_grpblk_t bit; 4670 struct buffer_head *gd_bh; 4671 ext4_group_t block_group; 4672 struct ext4_sb_info *sbi; 4673 struct ext4_buddy e4b; 4674 unsigned int count_clusters; 4675 int err = 0; 4676 int ret; 4677 4678 might_sleep(); 4679 if (bh) { 4680 if (block) 4681 BUG_ON(block != bh->b_blocknr); 4682 else 4683 block = bh->b_blocknr; 4684 } 4685 4686 sbi = EXT4_SB(sb); 4687 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4688 !ext4_data_block_valid(sbi, block, count)) { 4689 ext4_error(sb, "Freeing blocks not in datazone - " 4690 "block = %llu, count = %lu", block, count); 4691 goto error_return; 4692 } 4693 4694 ext4_debug("freeing block %llu\n", block); 4695 trace_ext4_free_blocks(inode, block, count, flags); 4696 4697 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 4698 BUG_ON(count > 1); 4699 4700 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4701 inode, bh, block); 4702 } 4703 4704 /* 4705 * If the extent to be freed does not begin on a cluster 4706 * boundary, we need to deal with partial clusters at the 4707 * beginning and end of the extent. Normally we will free 4708 * blocks at the beginning or the end unless we are explicitly 4709 * requested to avoid doing so. 4710 */ 4711 overflow = EXT4_PBLK_COFF(sbi, block); 4712 if (overflow) { 4713 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4714 overflow = sbi->s_cluster_ratio - overflow; 4715 block += overflow; 4716 if (count > overflow) 4717 count -= overflow; 4718 else 4719 return; 4720 } else { 4721 block -= overflow; 4722 count += overflow; 4723 } 4724 } 4725 overflow = EXT4_LBLK_COFF(sbi, count); 4726 if (overflow) { 4727 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4728 if (count > overflow) 4729 count -= overflow; 4730 else 4731 return; 4732 } else 4733 count += sbi->s_cluster_ratio - overflow; 4734 } 4735 4736 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 4737 int i; 4738 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 4739 4740 for (i = 0; i < count; i++) { 4741 cond_resched(); 4742 if (is_metadata) 4743 bh = sb_find_get_block(inode->i_sb, block + i); 4744 ext4_forget(handle, is_metadata, inode, bh, block + i); 4745 } 4746 } 4747 4748 do_more: 4749 overflow = 0; 4750 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4751 4752 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 4753 ext4_get_group_info(sb, block_group)))) 4754 return; 4755 4756 /* 4757 * Check to see if we are freeing blocks across a group 4758 * boundary. 4759 */ 4760 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4761 overflow = EXT4_C2B(sbi, bit) + count - 4762 EXT4_BLOCKS_PER_GROUP(sb); 4763 count -= overflow; 4764 } 4765 count_clusters = EXT4_NUM_B2C(sbi, count); 4766 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4767 if (IS_ERR(bitmap_bh)) { 4768 err = PTR_ERR(bitmap_bh); 4769 bitmap_bh = NULL; 4770 goto error_return; 4771 } 4772 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4773 if (!gdp) { 4774 err = -EIO; 4775 goto error_return; 4776 } 4777 4778 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4779 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4780 in_range(block, ext4_inode_table(sb, gdp), 4781 EXT4_SB(sb)->s_itb_per_group) || 4782 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4783 EXT4_SB(sb)->s_itb_per_group)) { 4784 4785 ext4_error(sb, "Freeing blocks in system zone - " 4786 "Block = %llu, count = %lu", block, count); 4787 /* err = 0. ext4_std_error should be a no op */ 4788 goto error_return; 4789 } 4790 4791 BUFFER_TRACE(bitmap_bh, "getting write access"); 4792 err = ext4_journal_get_write_access(handle, bitmap_bh); 4793 if (err) 4794 goto error_return; 4795 4796 /* 4797 * We are about to modify some metadata. Call the journal APIs 4798 * to unshare ->b_data if a currently-committing transaction is 4799 * using it 4800 */ 4801 BUFFER_TRACE(gd_bh, "get_write_access"); 4802 err = ext4_journal_get_write_access(handle, gd_bh); 4803 if (err) 4804 goto error_return; 4805 #ifdef AGGRESSIVE_CHECK 4806 { 4807 int i; 4808 for (i = 0; i < count_clusters; i++) 4809 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4810 } 4811 #endif 4812 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4813 4814 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 4815 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 4816 GFP_NOFS|__GFP_NOFAIL); 4817 if (err) 4818 goto error_return; 4819 4820 /* 4821 * We need to make sure we don't reuse the freed block until after the 4822 * transaction is committed. We make an exception if the inode is to be 4823 * written in writeback mode since writeback mode has weak data 4824 * consistency guarantees. 4825 */ 4826 if (ext4_handle_valid(handle) && 4827 ((flags & EXT4_FREE_BLOCKS_METADATA) || 4828 !ext4_should_writeback_data(inode))) { 4829 struct ext4_free_data *new_entry; 4830 /* 4831 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 4832 * to fail. 4833 */ 4834 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 4835 GFP_NOFS|__GFP_NOFAIL); 4836 new_entry->efd_start_cluster = bit; 4837 new_entry->efd_group = block_group; 4838 new_entry->efd_count = count_clusters; 4839 new_entry->efd_tid = handle->h_transaction->t_tid; 4840 4841 ext4_lock_group(sb, block_group); 4842 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4843 ext4_mb_free_metadata(handle, &e4b, new_entry); 4844 } else { 4845 /* need to update group_info->bb_free and bitmap 4846 * with group lock held. generate_buddy look at 4847 * them with group lock_held 4848 */ 4849 if (test_opt(sb, DISCARD)) { 4850 err = ext4_issue_discard(sb, block_group, bit, count); 4851 if (err && err != -EOPNOTSUPP) 4852 ext4_msg(sb, KERN_WARNING, "discard request in" 4853 " group:%d block:%d count:%lu failed" 4854 " with %d", block_group, bit, count, 4855 err); 4856 } else 4857 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 4858 4859 ext4_lock_group(sb, block_group); 4860 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4861 mb_free_blocks(inode, &e4b, bit, count_clusters); 4862 } 4863 4864 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4865 ext4_free_group_clusters_set(sb, gdp, ret); 4866 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 4867 ext4_group_desc_csum_set(sb, block_group, gdp); 4868 ext4_unlock_group(sb, block_group); 4869 4870 if (sbi->s_log_groups_per_flex) { 4871 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4872 atomic64_add(count_clusters, 4873 &sbi->s_flex_groups[flex_group].free_clusters); 4874 } 4875 4876 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4877 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4878 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); 4879 4880 ext4_mb_unload_buddy(&e4b); 4881 4882 /* We dirtied the bitmap block */ 4883 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4884 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4885 4886 /* And the group descriptor block */ 4887 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4888 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4889 if (!err) 4890 err = ret; 4891 4892 if (overflow && !err) { 4893 block += count; 4894 count = overflow; 4895 put_bh(bitmap_bh); 4896 goto do_more; 4897 } 4898 error_return: 4899 brelse(bitmap_bh); 4900 ext4_std_error(sb, err); 4901 return; 4902 } 4903 4904 /** 4905 * ext4_group_add_blocks() -- Add given blocks to an existing group 4906 * @handle: handle to this transaction 4907 * @sb: super block 4908 * @block: start physical block to add to the block group 4909 * @count: number of blocks to free 4910 * 4911 * This marks the blocks as free in the bitmap and buddy. 4912 */ 4913 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4914 ext4_fsblk_t block, unsigned long count) 4915 { 4916 struct buffer_head *bitmap_bh = NULL; 4917 struct buffer_head *gd_bh; 4918 ext4_group_t block_group; 4919 ext4_grpblk_t bit; 4920 unsigned int i; 4921 struct ext4_group_desc *desc; 4922 struct ext4_sb_info *sbi = EXT4_SB(sb); 4923 struct ext4_buddy e4b; 4924 int err = 0, ret, blk_free_count; 4925 ext4_grpblk_t blocks_freed; 4926 4927 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 4928 4929 if (count == 0) 4930 return 0; 4931 4932 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4933 /* 4934 * Check to see if we are freeing blocks across a group 4935 * boundary. 4936 */ 4937 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4938 ext4_warning(sb, "too much blocks added to group %u", 4939 block_group); 4940 err = -EINVAL; 4941 goto error_return; 4942 } 4943 4944 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4945 if (IS_ERR(bitmap_bh)) { 4946 err = PTR_ERR(bitmap_bh); 4947 bitmap_bh = NULL; 4948 goto error_return; 4949 } 4950 4951 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 4952 if (!desc) { 4953 err = -EIO; 4954 goto error_return; 4955 } 4956 4957 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 4958 in_range(ext4_inode_bitmap(sb, desc), block, count) || 4959 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 4960 in_range(block + count - 1, ext4_inode_table(sb, desc), 4961 sbi->s_itb_per_group)) { 4962 ext4_error(sb, "Adding blocks in system zones - " 4963 "Block = %llu, count = %lu", 4964 block, count); 4965 err = -EINVAL; 4966 goto error_return; 4967 } 4968 4969 BUFFER_TRACE(bitmap_bh, "getting write access"); 4970 err = ext4_journal_get_write_access(handle, bitmap_bh); 4971 if (err) 4972 goto error_return; 4973 4974 /* 4975 * We are about to modify some metadata. Call the journal APIs 4976 * to unshare ->b_data if a currently-committing transaction is 4977 * using it 4978 */ 4979 BUFFER_TRACE(gd_bh, "get_write_access"); 4980 err = ext4_journal_get_write_access(handle, gd_bh); 4981 if (err) 4982 goto error_return; 4983 4984 for (i = 0, blocks_freed = 0; i < count; i++) { 4985 BUFFER_TRACE(bitmap_bh, "clear bit"); 4986 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 4987 ext4_error(sb, "bit already cleared for block %llu", 4988 (ext4_fsblk_t)(block + i)); 4989 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 4990 } else { 4991 blocks_freed++; 4992 } 4993 } 4994 4995 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4996 if (err) 4997 goto error_return; 4998 4999 /* 5000 * need to update group_info->bb_free and bitmap 5001 * with group lock held. generate_buddy look at 5002 * them with group lock_held 5003 */ 5004 ext4_lock_group(sb, block_group); 5005 mb_clear_bits(bitmap_bh->b_data, bit, count); 5006 mb_free_blocks(NULL, &e4b, bit, count); 5007 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc); 5008 ext4_free_group_clusters_set(sb, desc, blk_free_count); 5009 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 5010 ext4_group_desc_csum_set(sb, block_group, desc); 5011 ext4_unlock_group(sb, block_group); 5012 percpu_counter_add(&sbi->s_freeclusters_counter, 5013 EXT4_NUM_B2C(sbi, blocks_freed)); 5014 5015 if (sbi->s_log_groups_per_flex) { 5016 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 5017 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed), 5018 &sbi->s_flex_groups[flex_group].free_clusters); 5019 } 5020 5021 ext4_mb_unload_buddy(&e4b); 5022 5023 /* We dirtied the bitmap block */ 5024 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5025 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5026 5027 /* And the group descriptor block */ 5028 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5029 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5030 if (!err) 5031 err = ret; 5032 5033 error_return: 5034 brelse(bitmap_bh); 5035 ext4_std_error(sb, err); 5036 return err; 5037 } 5038 5039 /** 5040 * ext4_trim_extent -- function to TRIM one single free extent in the group 5041 * @sb: super block for the file system 5042 * @start: starting block of the free extent in the alloc. group 5043 * @count: number of blocks to TRIM 5044 * @group: alloc. group we are working with 5045 * @e4b: ext4 buddy for the group 5046 * 5047 * Trim "count" blocks starting at "start" in the "group". To assure that no 5048 * one will allocate those blocks, mark it as used in buddy bitmap. This must 5049 * be called with under the group lock. 5050 */ 5051 static int ext4_trim_extent(struct super_block *sb, int start, int count, 5052 ext4_group_t group, struct ext4_buddy *e4b) 5053 __releases(bitlock) 5054 __acquires(bitlock) 5055 { 5056 struct ext4_free_extent ex; 5057 int ret = 0; 5058 5059 trace_ext4_trim_extent(sb, group, start, count); 5060 5061 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 5062 5063 ex.fe_start = start; 5064 ex.fe_group = group; 5065 ex.fe_len = count; 5066 5067 /* 5068 * Mark blocks used, so no one can reuse them while 5069 * being trimmed. 5070 */ 5071 mb_mark_used(e4b, &ex); 5072 ext4_unlock_group(sb, group); 5073 ret = ext4_issue_discard(sb, group, start, count); 5074 ext4_lock_group(sb, group); 5075 mb_free_blocks(NULL, e4b, start, ex.fe_len); 5076 return ret; 5077 } 5078 5079 /** 5080 * ext4_trim_all_free -- function to trim all free space in alloc. group 5081 * @sb: super block for file system 5082 * @group: group to be trimmed 5083 * @start: first group block to examine 5084 * @max: last group block to examine 5085 * @minblocks: minimum extent block count 5086 * 5087 * ext4_trim_all_free walks through group's buddy bitmap searching for free 5088 * extents. When the free block is found, ext4_trim_extent is called to TRIM 5089 * the extent. 5090 * 5091 * 5092 * ext4_trim_all_free walks through group's block bitmap searching for free 5093 * extents. When the free extent is found, mark it as used in group buddy 5094 * bitmap. Then issue a TRIM command on this extent and free the extent in 5095 * the group buddy bitmap. This is done until whole group is scanned. 5096 */ 5097 static ext4_grpblk_t 5098 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 5099 ext4_grpblk_t start, ext4_grpblk_t max, 5100 ext4_grpblk_t minblocks) 5101 { 5102 void *bitmap; 5103 ext4_grpblk_t next, count = 0, free_count = 0; 5104 struct ext4_buddy e4b; 5105 int ret = 0; 5106 5107 trace_ext4_trim_all_free(sb, group, start, max); 5108 5109 ret = ext4_mb_load_buddy(sb, group, &e4b); 5110 if (ret) { 5111 ext4_error(sb, "Error in loading buddy " 5112 "information for %u", group); 5113 return ret; 5114 } 5115 bitmap = e4b.bd_bitmap; 5116 5117 ext4_lock_group(sb, group); 5118 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 5119 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 5120 goto out; 5121 5122 start = (e4b.bd_info->bb_first_free > start) ? 5123 e4b.bd_info->bb_first_free : start; 5124 5125 while (start <= max) { 5126 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5127 if (start > max) 5128 break; 5129 next = mb_find_next_bit(bitmap, max + 1, start); 5130 5131 if ((next - start) >= minblocks) { 5132 ret = ext4_trim_extent(sb, start, 5133 next - start, group, &e4b); 5134 if (ret && ret != -EOPNOTSUPP) 5135 break; 5136 ret = 0; 5137 count += next - start; 5138 } 5139 free_count += next - start; 5140 start = next + 1; 5141 5142 if (fatal_signal_pending(current)) { 5143 count = -ERESTARTSYS; 5144 break; 5145 } 5146 5147 if (need_resched()) { 5148 ext4_unlock_group(sb, group); 5149 cond_resched(); 5150 ext4_lock_group(sb, group); 5151 } 5152 5153 if ((e4b.bd_info->bb_free - free_count) < minblocks) 5154 break; 5155 } 5156 5157 if (!ret) { 5158 ret = count; 5159 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 5160 } 5161 out: 5162 ext4_unlock_group(sb, group); 5163 ext4_mb_unload_buddy(&e4b); 5164 5165 ext4_debug("trimmed %d blocks in the group %d\n", 5166 count, group); 5167 5168 return ret; 5169 } 5170 5171 /** 5172 * ext4_trim_fs() -- trim ioctl handle function 5173 * @sb: superblock for filesystem 5174 * @range: fstrim_range structure 5175 * 5176 * start: First Byte to trim 5177 * len: number of Bytes to trim from start 5178 * minlen: minimum extent length in Bytes 5179 * ext4_trim_fs goes through all allocation groups containing Bytes from 5180 * start to start+len. For each such a group ext4_trim_all_free function 5181 * is invoked to trim all free space. 5182 */ 5183 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 5184 { 5185 struct ext4_group_info *grp; 5186 ext4_group_t group, first_group, last_group; 5187 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5188 uint64_t start, end, minlen, trimmed = 0; 5189 ext4_fsblk_t first_data_blk = 5190 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5191 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5192 int ret = 0; 5193 5194 start = range->start >> sb->s_blocksize_bits; 5195 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5196 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5197 range->minlen >> sb->s_blocksize_bits); 5198 5199 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5200 start >= max_blks || 5201 range->len < sb->s_blocksize) 5202 return -EINVAL; 5203 if (end >= max_blks) 5204 end = max_blks - 1; 5205 if (end <= first_data_blk) 5206 goto out; 5207 if (start < first_data_blk) 5208 start = first_data_blk; 5209 5210 /* Determine first and last group to examine based on start and end */ 5211 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5212 &first_group, &first_cluster); 5213 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5214 &last_group, &last_cluster); 5215 5216 /* end now represents the last cluster to discard in this group */ 5217 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5218 5219 for (group = first_group; group <= last_group; group++) { 5220 grp = ext4_get_group_info(sb, group); 5221 /* We only do this if the grp has never been initialized */ 5222 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5223 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 5224 if (ret) 5225 break; 5226 } 5227 5228 /* 5229 * For all the groups except the last one, last cluster will 5230 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5231 * change it for the last group, note that last_cluster is 5232 * already computed earlier by ext4_get_group_no_and_offset() 5233 */ 5234 if (group == last_group) 5235 end = last_cluster; 5236 5237 if (grp->bb_free >= minlen) { 5238 cnt = ext4_trim_all_free(sb, group, first_cluster, 5239 end, minlen); 5240 if (cnt < 0) { 5241 ret = cnt; 5242 break; 5243 } 5244 trimmed += cnt; 5245 } 5246 5247 /* 5248 * For every group except the first one, we are sure 5249 * that the first cluster to discard will be cluster #0. 5250 */ 5251 first_cluster = 0; 5252 } 5253 5254 if (!ret) 5255 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5256 5257 out: 5258 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5259 return ret; 5260 } 5261