1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <trace/events/ext4.h> 20 21 /* 22 * MUSTDO: 23 * - test ext4_ext_search_left() and ext4_ext_search_right() 24 * - search for metadata in few groups 25 * 26 * TODO v4: 27 * - normalization should take into account whether file is still open 28 * - discard preallocations if no free space left (policy?) 29 * - don't normalize tails 30 * - quota 31 * - reservation for superuser 32 * 33 * TODO v3: 34 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 35 * - track min/max extents in each group for better group selection 36 * - mb_mark_used() may allocate chunk right after splitting buddy 37 * - tree of groups sorted by number of free blocks 38 * - error handling 39 */ 40 41 /* 42 * The allocation request involve request for multiple number of blocks 43 * near to the goal(block) value specified. 44 * 45 * During initialization phase of the allocator we decide to use the 46 * group preallocation or inode preallocation depending on the size of 47 * the file. The size of the file could be the resulting file size we 48 * would have after allocation, or the current file size, which ever 49 * is larger. If the size is less than sbi->s_mb_stream_request we 50 * select to use the group preallocation. The default value of 51 * s_mb_stream_request is 16 blocks. This can also be tuned via 52 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 53 * terms of number of blocks. 54 * 55 * The main motivation for having small file use group preallocation is to 56 * ensure that we have small files closer together on the disk. 57 * 58 * First stage the allocator looks at the inode prealloc list, 59 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 60 * spaces for this particular inode. The inode prealloc space is 61 * represented as: 62 * 63 * pa_lstart -> the logical start block for this prealloc space 64 * pa_pstart -> the physical start block for this prealloc space 65 * pa_len -> length for this prealloc space (in clusters) 66 * pa_free -> free space available in this prealloc space (in clusters) 67 * 68 * The inode preallocation space is used looking at the _logical_ start 69 * block. If only the logical file block falls within the range of prealloc 70 * space we will consume the particular prealloc space. This makes sure that 71 * we have contiguous physical blocks representing the file blocks 72 * 73 * The important thing to be noted in case of inode prealloc space is that 74 * we don't modify the values associated to inode prealloc space except 75 * pa_free. 76 * 77 * If we are not able to find blocks in the inode prealloc space and if we 78 * have the group allocation flag set then we look at the locality group 79 * prealloc space. These are per CPU prealloc list represented as 80 * 81 * ext4_sb_info.s_locality_groups[smp_processor_id()] 82 * 83 * The reason for having a per cpu locality group is to reduce the contention 84 * between CPUs. It is possible to get scheduled at this point. 85 * 86 * The locality group prealloc space is used looking at whether we have 87 * enough free space (pa_free) within the prealloc space. 88 * 89 * If we can't allocate blocks via inode prealloc or/and locality group 90 * prealloc then we look at the buddy cache. The buddy cache is represented 91 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 92 * mapped to the buddy and bitmap information regarding different 93 * groups. The buddy information is attached to buddy cache inode so that 94 * we can access them through the page cache. The information regarding 95 * each group is loaded via ext4_mb_load_buddy. The information involve 96 * block bitmap and buddy information. The information are stored in the 97 * inode as: 98 * 99 * { page } 100 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 101 * 102 * 103 * one block each for bitmap and buddy information. So for each group we 104 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 105 * blocksize) blocks. So it can have information regarding groups_per_page 106 * which is blocks_per_page/2 107 * 108 * The buddy cache inode is not stored on disk. The inode is thrown 109 * away when the filesystem is unmounted. 110 * 111 * We look for count number of blocks in the buddy cache. If we were able 112 * to locate that many free blocks we return with additional information 113 * regarding rest of the contiguous physical block available 114 * 115 * Before allocating blocks via buddy cache we normalize the request 116 * blocks. This ensure we ask for more blocks that we needed. The extra 117 * blocks that we get after allocation is added to the respective prealloc 118 * list. In case of inode preallocation we follow a list of heuristics 119 * based on file size. This can be found in ext4_mb_normalize_request. If 120 * we are doing a group prealloc we try to normalize the request to 121 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 122 * dependent on the cluster size; for non-bigalloc file systems, it is 123 * 512 blocks. This can be tuned via 124 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 125 * terms of number of blocks. If we have mounted the file system with -O 126 * stripe=<value> option the group prealloc request is normalized to the 127 * smallest multiple of the stripe value (sbi->s_stripe) which is 128 * greater than the default mb_group_prealloc. 129 * 130 * If "mb_optimize_scan" mount option is set, we maintain in memory group info 131 * structures in two data structures: 132 * 133 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) 134 * 135 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) 136 * 137 * This is an array of lists where the index in the array represents the 138 * largest free order in the buddy bitmap of the participating group infos of 139 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total 140 * number of buddy bitmap orders possible) number of lists. Group-infos are 141 * placed in appropriate lists. 142 * 143 * 2) Average fragment size rb tree (sbi->s_mb_avg_fragment_size_root) 144 * 145 * Locking: sbi->s_mb_rb_lock (rwlock) 146 * 147 * This is a red black tree consisting of group infos and the tree is sorted 148 * by average fragment sizes (which is calculated as ext4_group_info->bb_free 149 * / ext4_group_info->bb_fragments). 150 * 151 * When "mb_optimize_scan" mount option is set, mballoc consults the above data 152 * structures to decide the order in which groups are to be traversed for 153 * fulfilling an allocation request. 154 * 155 * At CR = 0, we look for groups which have the largest_free_order >= the order 156 * of the request. We directly look at the largest free order list in the data 157 * structure (1) above where largest_free_order = order of the request. If that 158 * list is empty, we look at remaining list in the increasing order of 159 * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time. 160 * 161 * At CR = 1, we only consider groups where average fragment size > request 162 * size. So, we lookup a group which has average fragment size just above or 163 * equal to request size using our rb tree (data structure 2) in O(log N) time. 164 * 165 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in 166 * linear order which requires O(N) search time for each CR 0 and CR 1 phase. 167 * 168 * The regular allocator (using the buddy cache) supports a few tunables. 169 * 170 * /sys/fs/ext4/<partition>/mb_min_to_scan 171 * /sys/fs/ext4/<partition>/mb_max_to_scan 172 * /sys/fs/ext4/<partition>/mb_order2_req 173 * /sys/fs/ext4/<partition>/mb_linear_limit 174 * 175 * The regular allocator uses buddy scan only if the request len is power of 176 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 177 * value of s_mb_order2_reqs can be tuned via 178 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 179 * stripe size (sbi->s_stripe), we try to search for contiguous block in 180 * stripe size. This should result in better allocation on RAID setups. If 181 * not, we search in the specific group using bitmap for best extents. The 182 * tunable min_to_scan and max_to_scan control the behaviour here. 183 * min_to_scan indicate how long the mballoc __must__ look for a best 184 * extent and max_to_scan indicates how long the mballoc __can__ look for a 185 * best extent in the found extents. Searching for the blocks starts with 186 * the group specified as the goal value in allocation context via 187 * ac_g_ex. Each group is first checked based on the criteria whether it 188 * can be used for allocation. ext4_mb_good_group explains how the groups are 189 * checked. 190 * 191 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not 192 * get traversed linearly. That may result in subsequent allocations being not 193 * close to each other. And so, the underlying device may get filled up in a 194 * non-linear fashion. While that may not matter on non-rotational devices, for 195 * rotational devices that may result in higher seek times. "mb_linear_limit" 196 * tells mballoc how many groups mballoc should search linearly before 197 * performing consulting above data structures for more efficient lookups. For 198 * non rotational devices, this value defaults to 0 and for rotational devices 199 * this is set to MB_DEFAULT_LINEAR_LIMIT. 200 * 201 * Both the prealloc space are getting populated as above. So for the first 202 * request we will hit the buddy cache which will result in this prealloc 203 * space getting filled. The prealloc space is then later used for the 204 * subsequent request. 205 */ 206 207 /* 208 * mballoc operates on the following data: 209 * - on-disk bitmap 210 * - in-core buddy (actually includes buddy and bitmap) 211 * - preallocation descriptors (PAs) 212 * 213 * there are two types of preallocations: 214 * - inode 215 * assiged to specific inode and can be used for this inode only. 216 * it describes part of inode's space preallocated to specific 217 * physical blocks. any block from that preallocated can be used 218 * independent. the descriptor just tracks number of blocks left 219 * unused. so, before taking some block from descriptor, one must 220 * make sure corresponded logical block isn't allocated yet. this 221 * also means that freeing any block within descriptor's range 222 * must discard all preallocated blocks. 223 * - locality group 224 * assigned to specific locality group which does not translate to 225 * permanent set of inodes: inode can join and leave group. space 226 * from this type of preallocation can be used for any inode. thus 227 * it's consumed from the beginning to the end. 228 * 229 * relation between them can be expressed as: 230 * in-core buddy = on-disk bitmap + preallocation descriptors 231 * 232 * this mean blocks mballoc considers used are: 233 * - allocated blocks (persistent) 234 * - preallocated blocks (non-persistent) 235 * 236 * consistency in mballoc world means that at any time a block is either 237 * free or used in ALL structures. notice: "any time" should not be read 238 * literally -- time is discrete and delimited by locks. 239 * 240 * to keep it simple, we don't use block numbers, instead we count number of 241 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 242 * 243 * all operations can be expressed as: 244 * - init buddy: buddy = on-disk + PAs 245 * - new PA: buddy += N; PA = N 246 * - use inode PA: on-disk += N; PA -= N 247 * - discard inode PA buddy -= on-disk - PA; PA = 0 248 * - use locality group PA on-disk += N; PA -= N 249 * - discard locality group PA buddy -= PA; PA = 0 250 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 251 * is used in real operation because we can't know actual used 252 * bits from PA, only from on-disk bitmap 253 * 254 * if we follow this strict logic, then all operations above should be atomic. 255 * given some of them can block, we'd have to use something like semaphores 256 * killing performance on high-end SMP hardware. let's try to relax it using 257 * the following knowledge: 258 * 1) if buddy is referenced, it's already initialized 259 * 2) while block is used in buddy and the buddy is referenced, 260 * nobody can re-allocate that block 261 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 262 * bit set and PA claims same block, it's OK. IOW, one can set bit in 263 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 264 * block 265 * 266 * so, now we're building a concurrency table: 267 * - init buddy vs. 268 * - new PA 269 * blocks for PA are allocated in the buddy, buddy must be referenced 270 * until PA is linked to allocation group to avoid concurrent buddy init 271 * - use inode PA 272 * we need to make sure that either on-disk bitmap or PA has uptodate data 273 * given (3) we care that PA-=N operation doesn't interfere with init 274 * - discard inode PA 275 * the simplest way would be to have buddy initialized by the discard 276 * - use locality group PA 277 * again PA-=N must be serialized with init 278 * - discard locality group PA 279 * the simplest way would be to have buddy initialized by the discard 280 * - new PA vs. 281 * - use inode PA 282 * i_data_sem serializes them 283 * - discard inode PA 284 * discard process must wait until PA isn't used by another process 285 * - use locality group PA 286 * some mutex should serialize them 287 * - discard locality group PA 288 * discard process must wait until PA isn't used by another process 289 * - use inode PA 290 * - use inode PA 291 * i_data_sem or another mutex should serializes them 292 * - discard inode PA 293 * discard process must wait until PA isn't used by another process 294 * - use locality group PA 295 * nothing wrong here -- they're different PAs covering different blocks 296 * - discard locality group PA 297 * discard process must wait until PA isn't used by another process 298 * 299 * now we're ready to make few consequences: 300 * - PA is referenced and while it is no discard is possible 301 * - PA is referenced until block isn't marked in on-disk bitmap 302 * - PA changes only after on-disk bitmap 303 * - discard must not compete with init. either init is done before 304 * any discard or they're serialized somehow 305 * - buddy init as sum of on-disk bitmap and PAs is done atomically 306 * 307 * a special case when we've used PA to emptiness. no need to modify buddy 308 * in this case, but we should care about concurrent init 309 * 310 */ 311 312 /* 313 * Logic in few words: 314 * 315 * - allocation: 316 * load group 317 * find blocks 318 * mark bits in on-disk bitmap 319 * release group 320 * 321 * - use preallocation: 322 * find proper PA (per-inode or group) 323 * load group 324 * mark bits in on-disk bitmap 325 * release group 326 * release PA 327 * 328 * - free: 329 * load group 330 * mark bits in on-disk bitmap 331 * release group 332 * 333 * - discard preallocations in group: 334 * mark PAs deleted 335 * move them onto local list 336 * load on-disk bitmap 337 * load group 338 * remove PA from object (inode or locality group) 339 * mark free blocks in-core 340 * 341 * - discard inode's preallocations: 342 */ 343 344 /* 345 * Locking rules 346 * 347 * Locks: 348 * - bitlock on a group (group) 349 * - object (inode/locality) (object) 350 * - per-pa lock (pa) 351 * - cr0 lists lock (cr0) 352 * - cr1 tree lock (cr1) 353 * 354 * Paths: 355 * - new pa 356 * object 357 * group 358 * 359 * - find and use pa: 360 * pa 361 * 362 * - release consumed pa: 363 * pa 364 * group 365 * object 366 * 367 * - generate in-core bitmap: 368 * group 369 * pa 370 * 371 * - discard all for given object (inode, locality group): 372 * object 373 * pa 374 * group 375 * 376 * - discard all for given group: 377 * group 378 * pa 379 * group 380 * object 381 * 382 * - allocation path (ext4_mb_regular_allocator) 383 * group 384 * cr0/cr1 385 */ 386 static struct kmem_cache *ext4_pspace_cachep; 387 static struct kmem_cache *ext4_ac_cachep; 388 static struct kmem_cache *ext4_free_data_cachep; 389 390 /* We create slab caches for groupinfo data structures based on the 391 * superblock block size. There will be one per mounted filesystem for 392 * each unique s_blocksize_bits */ 393 #define NR_GRPINFO_CACHES 8 394 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 395 396 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 397 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 398 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 399 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 400 }; 401 402 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 403 ext4_group_t group); 404 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 405 ext4_group_t group); 406 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 407 408 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 409 ext4_group_t group, int cr); 410 411 static int ext4_try_to_trim_range(struct super_block *sb, 412 struct ext4_buddy *e4b, ext4_grpblk_t start, 413 ext4_grpblk_t max, ext4_grpblk_t minblocks); 414 415 /* 416 * The algorithm using this percpu seq counter goes below: 417 * 1. We sample the percpu discard_pa_seq counter before trying for block 418 * allocation in ext4_mb_new_blocks(). 419 * 2. We increment this percpu discard_pa_seq counter when we either allocate 420 * or free these blocks i.e. while marking those blocks as used/free in 421 * mb_mark_used()/mb_free_blocks(). 422 * 3. We also increment this percpu seq counter when we successfully identify 423 * that the bb_prealloc_list is not empty and hence proceed for discarding 424 * of those PAs inside ext4_mb_discard_group_preallocations(). 425 * 426 * Now to make sure that the regular fast path of block allocation is not 427 * affected, as a small optimization we only sample the percpu seq counter 428 * on that cpu. Only when the block allocation fails and when freed blocks 429 * found were 0, that is when we sample percpu seq counter for all cpus using 430 * below function ext4_get_discard_pa_seq_sum(). This happens after making 431 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 432 */ 433 static DEFINE_PER_CPU(u64, discard_pa_seq); 434 static inline u64 ext4_get_discard_pa_seq_sum(void) 435 { 436 int __cpu; 437 u64 __seq = 0; 438 439 for_each_possible_cpu(__cpu) 440 __seq += per_cpu(discard_pa_seq, __cpu); 441 return __seq; 442 } 443 444 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 445 { 446 #if BITS_PER_LONG == 64 447 *bit += ((unsigned long) addr & 7UL) << 3; 448 addr = (void *) ((unsigned long) addr & ~7UL); 449 #elif BITS_PER_LONG == 32 450 *bit += ((unsigned long) addr & 3UL) << 3; 451 addr = (void *) ((unsigned long) addr & ~3UL); 452 #else 453 #error "how many bits you are?!" 454 #endif 455 return addr; 456 } 457 458 static inline int mb_test_bit(int bit, void *addr) 459 { 460 /* 461 * ext4_test_bit on architecture like powerpc 462 * needs unsigned long aligned address 463 */ 464 addr = mb_correct_addr_and_bit(&bit, addr); 465 return ext4_test_bit(bit, addr); 466 } 467 468 static inline void mb_set_bit(int bit, void *addr) 469 { 470 addr = mb_correct_addr_and_bit(&bit, addr); 471 ext4_set_bit(bit, addr); 472 } 473 474 static inline void mb_clear_bit(int bit, void *addr) 475 { 476 addr = mb_correct_addr_and_bit(&bit, addr); 477 ext4_clear_bit(bit, addr); 478 } 479 480 static inline int mb_test_and_clear_bit(int bit, void *addr) 481 { 482 addr = mb_correct_addr_and_bit(&bit, addr); 483 return ext4_test_and_clear_bit(bit, addr); 484 } 485 486 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 487 { 488 int fix = 0, ret, tmpmax; 489 addr = mb_correct_addr_and_bit(&fix, addr); 490 tmpmax = max + fix; 491 start += fix; 492 493 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 494 if (ret > max) 495 return max; 496 return ret; 497 } 498 499 static inline int mb_find_next_bit(void *addr, int max, int start) 500 { 501 int fix = 0, ret, tmpmax; 502 addr = mb_correct_addr_and_bit(&fix, addr); 503 tmpmax = max + fix; 504 start += fix; 505 506 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 507 if (ret > max) 508 return max; 509 return ret; 510 } 511 512 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 513 { 514 char *bb; 515 516 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 517 BUG_ON(max == NULL); 518 519 if (order > e4b->bd_blkbits + 1) { 520 *max = 0; 521 return NULL; 522 } 523 524 /* at order 0 we see each particular block */ 525 if (order == 0) { 526 *max = 1 << (e4b->bd_blkbits + 3); 527 return e4b->bd_bitmap; 528 } 529 530 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 531 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 532 533 return bb; 534 } 535 536 #ifdef DOUBLE_CHECK 537 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 538 int first, int count) 539 { 540 int i; 541 struct super_block *sb = e4b->bd_sb; 542 543 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 544 return; 545 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 546 for (i = 0; i < count; i++) { 547 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 548 ext4_fsblk_t blocknr; 549 550 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 551 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 552 ext4_grp_locked_error(sb, e4b->bd_group, 553 inode ? inode->i_ino : 0, 554 blocknr, 555 "freeing block already freed " 556 "(bit %u)", 557 first + i); 558 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 559 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 560 } 561 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 562 } 563 } 564 565 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 566 { 567 int i; 568 569 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 570 return; 571 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 572 for (i = 0; i < count; i++) { 573 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 574 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 575 } 576 } 577 578 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 579 { 580 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 581 return; 582 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 583 unsigned char *b1, *b2; 584 int i; 585 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 586 b2 = (unsigned char *) bitmap; 587 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 588 if (b1[i] != b2[i]) { 589 ext4_msg(e4b->bd_sb, KERN_ERR, 590 "corruption in group %u " 591 "at byte %u(%u): %x in copy != %x " 592 "on disk/prealloc", 593 e4b->bd_group, i, i * 8, b1[i], b2[i]); 594 BUG(); 595 } 596 } 597 } 598 } 599 600 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 601 struct ext4_group_info *grp, ext4_group_t group) 602 { 603 struct buffer_head *bh; 604 605 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 606 if (!grp->bb_bitmap) 607 return; 608 609 bh = ext4_read_block_bitmap(sb, group); 610 if (IS_ERR_OR_NULL(bh)) { 611 kfree(grp->bb_bitmap); 612 grp->bb_bitmap = NULL; 613 return; 614 } 615 616 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 617 put_bh(bh); 618 } 619 620 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 621 { 622 kfree(grp->bb_bitmap); 623 } 624 625 #else 626 static inline void mb_free_blocks_double(struct inode *inode, 627 struct ext4_buddy *e4b, int first, int count) 628 { 629 return; 630 } 631 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 632 int first, int count) 633 { 634 return; 635 } 636 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 637 { 638 return; 639 } 640 641 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 642 struct ext4_group_info *grp, ext4_group_t group) 643 { 644 return; 645 } 646 647 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 648 { 649 return; 650 } 651 #endif 652 653 #ifdef AGGRESSIVE_CHECK 654 655 #define MB_CHECK_ASSERT(assert) \ 656 do { \ 657 if (!(assert)) { \ 658 printk(KERN_EMERG \ 659 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 660 function, file, line, # assert); \ 661 BUG(); \ 662 } \ 663 } while (0) 664 665 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 666 const char *function, int line) 667 { 668 struct super_block *sb = e4b->bd_sb; 669 int order = e4b->bd_blkbits + 1; 670 int max; 671 int max2; 672 int i; 673 int j; 674 int k; 675 int count; 676 struct ext4_group_info *grp; 677 int fragments = 0; 678 int fstart; 679 struct list_head *cur; 680 void *buddy; 681 void *buddy2; 682 683 if (e4b->bd_info->bb_check_counter++ % 10) 684 return 0; 685 686 while (order > 1) { 687 buddy = mb_find_buddy(e4b, order, &max); 688 MB_CHECK_ASSERT(buddy); 689 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 690 MB_CHECK_ASSERT(buddy2); 691 MB_CHECK_ASSERT(buddy != buddy2); 692 MB_CHECK_ASSERT(max * 2 == max2); 693 694 count = 0; 695 for (i = 0; i < max; i++) { 696 697 if (mb_test_bit(i, buddy)) { 698 /* only single bit in buddy2 may be 0 */ 699 if (!mb_test_bit(i << 1, buddy2)) { 700 MB_CHECK_ASSERT( 701 mb_test_bit((i<<1)+1, buddy2)); 702 } 703 continue; 704 } 705 706 /* both bits in buddy2 must be 1 */ 707 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 708 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 709 710 for (j = 0; j < (1 << order); j++) { 711 k = (i * (1 << order)) + j; 712 MB_CHECK_ASSERT( 713 !mb_test_bit(k, e4b->bd_bitmap)); 714 } 715 count++; 716 } 717 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 718 order--; 719 } 720 721 fstart = -1; 722 buddy = mb_find_buddy(e4b, 0, &max); 723 for (i = 0; i < max; i++) { 724 if (!mb_test_bit(i, buddy)) { 725 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 726 if (fstart == -1) { 727 fragments++; 728 fstart = i; 729 } 730 continue; 731 } 732 fstart = -1; 733 /* check used bits only */ 734 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 735 buddy2 = mb_find_buddy(e4b, j, &max2); 736 k = i >> j; 737 MB_CHECK_ASSERT(k < max2); 738 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 739 } 740 } 741 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 742 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 743 744 grp = ext4_get_group_info(sb, e4b->bd_group); 745 list_for_each(cur, &grp->bb_prealloc_list) { 746 ext4_group_t groupnr; 747 struct ext4_prealloc_space *pa; 748 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 749 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 750 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 751 for (i = 0; i < pa->pa_len; i++) 752 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 753 } 754 return 0; 755 } 756 #undef MB_CHECK_ASSERT 757 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 758 __FILE__, __func__, __LINE__) 759 #else 760 #define mb_check_buddy(e4b) 761 #endif 762 763 /* 764 * Divide blocks started from @first with length @len into 765 * smaller chunks with power of 2 blocks. 766 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 767 * then increase bb_counters[] for corresponded chunk size. 768 */ 769 static void ext4_mb_mark_free_simple(struct super_block *sb, 770 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 771 struct ext4_group_info *grp) 772 { 773 struct ext4_sb_info *sbi = EXT4_SB(sb); 774 ext4_grpblk_t min; 775 ext4_grpblk_t max; 776 ext4_grpblk_t chunk; 777 unsigned int border; 778 779 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 780 781 border = 2 << sb->s_blocksize_bits; 782 783 while (len > 0) { 784 /* find how many blocks can be covered since this position */ 785 max = ffs(first | border) - 1; 786 787 /* find how many blocks of power 2 we need to mark */ 788 min = fls(len) - 1; 789 790 if (max < min) 791 min = max; 792 chunk = 1 << min; 793 794 /* mark multiblock chunks only */ 795 grp->bb_counters[min]++; 796 if (min > 0) 797 mb_clear_bit(first >> min, 798 buddy + sbi->s_mb_offsets[min]); 799 800 len -= chunk; 801 first += chunk; 802 } 803 } 804 805 static void ext4_mb_rb_insert(struct rb_root *root, struct rb_node *new, 806 int (*cmp)(struct rb_node *, struct rb_node *)) 807 { 808 struct rb_node **iter = &root->rb_node, *parent = NULL; 809 810 while (*iter) { 811 parent = *iter; 812 if (cmp(new, *iter) > 0) 813 iter = &((*iter)->rb_left); 814 else 815 iter = &((*iter)->rb_right); 816 } 817 818 rb_link_node(new, parent, iter); 819 rb_insert_color(new, root); 820 } 821 822 static int 823 ext4_mb_avg_fragment_size_cmp(struct rb_node *rb1, struct rb_node *rb2) 824 { 825 struct ext4_group_info *grp1 = rb_entry(rb1, 826 struct ext4_group_info, 827 bb_avg_fragment_size_rb); 828 struct ext4_group_info *grp2 = rb_entry(rb2, 829 struct ext4_group_info, 830 bb_avg_fragment_size_rb); 831 int num_frags_1, num_frags_2; 832 833 num_frags_1 = grp1->bb_fragments ? 834 grp1->bb_free / grp1->bb_fragments : 0; 835 num_frags_2 = grp2->bb_fragments ? 836 grp2->bb_free / grp2->bb_fragments : 0; 837 838 return (num_frags_2 - num_frags_1); 839 } 840 841 /* 842 * Reinsert grpinfo into the avg_fragment_size tree with new average 843 * fragment size. 844 */ 845 static void 846 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) 847 { 848 struct ext4_sb_info *sbi = EXT4_SB(sb); 849 850 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0) 851 return; 852 853 write_lock(&sbi->s_mb_rb_lock); 854 if (!RB_EMPTY_NODE(&grp->bb_avg_fragment_size_rb)) { 855 rb_erase(&grp->bb_avg_fragment_size_rb, 856 &sbi->s_mb_avg_fragment_size_root); 857 RB_CLEAR_NODE(&grp->bb_avg_fragment_size_rb); 858 } 859 860 ext4_mb_rb_insert(&sbi->s_mb_avg_fragment_size_root, 861 &grp->bb_avg_fragment_size_rb, 862 ext4_mb_avg_fragment_size_cmp); 863 write_unlock(&sbi->s_mb_rb_lock); 864 } 865 866 /* 867 * Choose next group by traversing largest_free_order lists. Updates *new_cr if 868 * cr level needs an update. 869 */ 870 static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac, 871 int *new_cr, ext4_group_t *group, ext4_group_t ngroups) 872 { 873 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 874 struct ext4_group_info *iter, *grp; 875 int i; 876 877 if (ac->ac_status == AC_STATUS_FOUND) 878 return; 879 880 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR0_OPTIMIZED)) 881 atomic_inc(&sbi->s_bal_cr0_bad_suggestions); 882 883 grp = NULL; 884 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 885 if (list_empty(&sbi->s_mb_largest_free_orders[i])) 886 continue; 887 read_lock(&sbi->s_mb_largest_free_orders_locks[i]); 888 if (list_empty(&sbi->s_mb_largest_free_orders[i])) { 889 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 890 continue; 891 } 892 grp = NULL; 893 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], 894 bb_largest_free_order_node) { 895 if (sbi->s_mb_stats) 896 atomic64_inc(&sbi->s_bal_cX_groups_considered[0]); 897 if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) { 898 grp = iter; 899 break; 900 } 901 } 902 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 903 if (grp) 904 break; 905 } 906 907 if (!grp) { 908 /* Increment cr and search again */ 909 *new_cr = 1; 910 } else { 911 *group = grp->bb_group; 912 ac->ac_last_optimal_group = *group; 913 ac->ac_flags |= EXT4_MB_CR0_OPTIMIZED; 914 } 915 } 916 917 /* 918 * Choose next group by traversing average fragment size tree. Updates *new_cr 919 * if cr lvel needs an update. Sets EXT4_MB_SEARCH_NEXT_LINEAR to indicate that 920 * the linear search should continue for one iteration since there's lock 921 * contention on the rb tree lock. 922 */ 923 static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac, 924 int *new_cr, ext4_group_t *group, ext4_group_t ngroups) 925 { 926 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 927 int avg_fragment_size, best_so_far; 928 struct rb_node *node, *found; 929 struct ext4_group_info *grp; 930 931 /* 932 * If there is contention on the lock, instead of waiting for the lock 933 * to become available, just continue searching lineraly. We'll resume 934 * our rb tree search later starting at ac->ac_last_optimal_group. 935 */ 936 if (!read_trylock(&sbi->s_mb_rb_lock)) { 937 ac->ac_flags |= EXT4_MB_SEARCH_NEXT_LINEAR; 938 return; 939 } 940 941 if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) { 942 if (sbi->s_mb_stats) 943 atomic_inc(&sbi->s_bal_cr1_bad_suggestions); 944 /* We have found something at CR 1 in the past */ 945 grp = ext4_get_group_info(ac->ac_sb, ac->ac_last_optimal_group); 946 for (found = rb_next(&grp->bb_avg_fragment_size_rb); found != NULL; 947 found = rb_next(found)) { 948 grp = rb_entry(found, struct ext4_group_info, 949 bb_avg_fragment_size_rb); 950 if (sbi->s_mb_stats) 951 atomic64_inc(&sbi->s_bal_cX_groups_considered[1]); 952 if (likely(ext4_mb_good_group(ac, grp->bb_group, 1))) 953 break; 954 } 955 goto done; 956 } 957 958 node = sbi->s_mb_avg_fragment_size_root.rb_node; 959 best_so_far = 0; 960 found = NULL; 961 962 while (node) { 963 grp = rb_entry(node, struct ext4_group_info, 964 bb_avg_fragment_size_rb); 965 avg_fragment_size = 0; 966 if (ext4_mb_good_group(ac, grp->bb_group, 1)) { 967 avg_fragment_size = grp->bb_fragments ? 968 grp->bb_free / grp->bb_fragments : 0; 969 if (!best_so_far || avg_fragment_size < best_so_far) { 970 best_so_far = avg_fragment_size; 971 found = node; 972 } 973 } 974 if (avg_fragment_size > ac->ac_g_ex.fe_len) 975 node = node->rb_right; 976 else 977 node = node->rb_left; 978 } 979 980 done: 981 if (found) { 982 grp = rb_entry(found, struct ext4_group_info, 983 bb_avg_fragment_size_rb); 984 *group = grp->bb_group; 985 ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED; 986 } else { 987 *new_cr = 2; 988 } 989 990 read_unlock(&sbi->s_mb_rb_lock); 991 ac->ac_last_optimal_group = *group; 992 } 993 994 static inline int should_optimize_scan(struct ext4_allocation_context *ac) 995 { 996 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) 997 return 0; 998 if (ac->ac_criteria >= 2) 999 return 0; 1000 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) 1001 return 0; 1002 return 1; 1003 } 1004 1005 /* 1006 * Return next linear group for allocation. If linear traversal should not be 1007 * performed, this function just returns the same group 1008 */ 1009 static int 1010 next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups) 1011 { 1012 if (!should_optimize_scan(ac)) 1013 goto inc_and_return; 1014 1015 if (ac->ac_groups_linear_remaining) { 1016 ac->ac_groups_linear_remaining--; 1017 goto inc_and_return; 1018 } 1019 1020 if (ac->ac_flags & EXT4_MB_SEARCH_NEXT_LINEAR) { 1021 ac->ac_flags &= ~EXT4_MB_SEARCH_NEXT_LINEAR; 1022 goto inc_and_return; 1023 } 1024 1025 return group; 1026 inc_and_return: 1027 /* 1028 * Artificially restricted ngroups for non-extent 1029 * files makes group > ngroups possible on first loop. 1030 */ 1031 return group + 1 >= ngroups ? 0 : group + 1; 1032 } 1033 1034 /* 1035 * ext4_mb_choose_next_group: choose next group for allocation. 1036 * 1037 * @ac Allocation Context 1038 * @new_cr This is an output parameter. If the there is no good group 1039 * available at current CR level, this field is updated to indicate 1040 * the new cr level that should be used. 1041 * @group This is an input / output parameter. As an input it indicates the 1042 * next group that the allocator intends to use for allocation. As 1043 * output, this field indicates the next group that should be used as 1044 * determined by the optimization functions. 1045 * @ngroups Total number of groups 1046 */ 1047 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, 1048 int *new_cr, ext4_group_t *group, ext4_group_t ngroups) 1049 { 1050 *new_cr = ac->ac_criteria; 1051 1052 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) 1053 return; 1054 1055 if (*new_cr == 0) { 1056 ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups); 1057 } else if (*new_cr == 1) { 1058 ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups); 1059 } else { 1060 /* 1061 * TODO: For CR=2, we can arrange groups in an rb tree sorted by 1062 * bb_free. But until that happens, we should never come here. 1063 */ 1064 WARN_ON(1); 1065 } 1066 } 1067 1068 /* 1069 * Cache the order of the largest free extent we have available in this block 1070 * group. 1071 */ 1072 static void 1073 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 1074 { 1075 struct ext4_sb_info *sbi = EXT4_SB(sb); 1076 int i; 1077 1078 if (test_opt2(sb, MB_OPTIMIZE_SCAN) && grp->bb_largest_free_order >= 0) { 1079 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1080 grp->bb_largest_free_order]); 1081 list_del_init(&grp->bb_largest_free_order_node); 1082 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1083 grp->bb_largest_free_order]); 1084 } 1085 grp->bb_largest_free_order = -1; /* uninit */ 1086 1087 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) { 1088 if (grp->bb_counters[i] > 0) { 1089 grp->bb_largest_free_order = i; 1090 break; 1091 } 1092 } 1093 if (test_opt2(sb, MB_OPTIMIZE_SCAN) && 1094 grp->bb_largest_free_order >= 0 && grp->bb_free) { 1095 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1096 grp->bb_largest_free_order]); 1097 list_add_tail(&grp->bb_largest_free_order_node, 1098 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); 1099 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1100 grp->bb_largest_free_order]); 1101 } 1102 } 1103 1104 static noinline_for_stack 1105 void ext4_mb_generate_buddy(struct super_block *sb, 1106 void *buddy, void *bitmap, ext4_group_t group) 1107 { 1108 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1109 struct ext4_sb_info *sbi = EXT4_SB(sb); 1110 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 1111 ext4_grpblk_t i = 0; 1112 ext4_grpblk_t first; 1113 ext4_grpblk_t len; 1114 unsigned free = 0; 1115 unsigned fragments = 0; 1116 unsigned long long period = get_cycles(); 1117 1118 /* initialize buddy from bitmap which is aggregation 1119 * of on-disk bitmap and preallocations */ 1120 i = mb_find_next_zero_bit(bitmap, max, 0); 1121 grp->bb_first_free = i; 1122 while (i < max) { 1123 fragments++; 1124 first = i; 1125 i = mb_find_next_bit(bitmap, max, i); 1126 len = i - first; 1127 free += len; 1128 if (len > 1) 1129 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 1130 else 1131 grp->bb_counters[0]++; 1132 if (i < max) 1133 i = mb_find_next_zero_bit(bitmap, max, i); 1134 } 1135 grp->bb_fragments = fragments; 1136 1137 if (free != grp->bb_free) { 1138 ext4_grp_locked_error(sb, group, 0, 0, 1139 "block bitmap and bg descriptor " 1140 "inconsistent: %u vs %u free clusters", 1141 free, grp->bb_free); 1142 /* 1143 * If we intend to continue, we consider group descriptor 1144 * corrupt and update bb_free using bitmap value 1145 */ 1146 grp->bb_free = free; 1147 ext4_mark_group_bitmap_corrupted(sb, group, 1148 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1149 } 1150 mb_set_largest_free_order(sb, grp); 1151 1152 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 1153 1154 period = get_cycles() - period; 1155 atomic_inc(&sbi->s_mb_buddies_generated); 1156 atomic64_add(period, &sbi->s_mb_generation_time); 1157 mb_update_avg_fragment_size(sb, grp); 1158 } 1159 1160 /* The buddy information is attached the buddy cache inode 1161 * for convenience. The information regarding each group 1162 * is loaded via ext4_mb_load_buddy. The information involve 1163 * block bitmap and buddy information. The information are 1164 * stored in the inode as 1165 * 1166 * { page } 1167 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 1168 * 1169 * 1170 * one block each for bitmap and buddy information. 1171 * So for each group we take up 2 blocks. A page can 1172 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 1173 * So it can have information regarding groups_per_page which 1174 * is blocks_per_page/2 1175 * 1176 * Locking note: This routine takes the block group lock of all groups 1177 * for this page; do not hold this lock when calling this routine! 1178 */ 1179 1180 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 1181 { 1182 ext4_group_t ngroups; 1183 int blocksize; 1184 int blocks_per_page; 1185 int groups_per_page; 1186 int err = 0; 1187 int i; 1188 ext4_group_t first_group, group; 1189 int first_block; 1190 struct super_block *sb; 1191 struct buffer_head *bhs; 1192 struct buffer_head **bh = NULL; 1193 struct inode *inode; 1194 char *data; 1195 char *bitmap; 1196 struct ext4_group_info *grinfo; 1197 1198 inode = page->mapping->host; 1199 sb = inode->i_sb; 1200 ngroups = ext4_get_groups_count(sb); 1201 blocksize = i_blocksize(inode); 1202 blocks_per_page = PAGE_SIZE / blocksize; 1203 1204 mb_debug(sb, "init page %lu\n", page->index); 1205 1206 groups_per_page = blocks_per_page >> 1; 1207 if (groups_per_page == 0) 1208 groups_per_page = 1; 1209 1210 /* allocate buffer_heads to read bitmaps */ 1211 if (groups_per_page > 1) { 1212 i = sizeof(struct buffer_head *) * groups_per_page; 1213 bh = kzalloc(i, gfp); 1214 if (bh == NULL) { 1215 err = -ENOMEM; 1216 goto out; 1217 } 1218 } else 1219 bh = &bhs; 1220 1221 first_group = page->index * blocks_per_page / 2; 1222 1223 /* read all groups the page covers into the cache */ 1224 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1225 if (group >= ngroups) 1226 break; 1227 1228 grinfo = ext4_get_group_info(sb, group); 1229 /* 1230 * If page is uptodate then we came here after online resize 1231 * which added some new uninitialized group info structs, so 1232 * we must skip all initialized uptodate buddies on the page, 1233 * which may be currently in use by an allocating task. 1234 */ 1235 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 1236 bh[i] = NULL; 1237 continue; 1238 } 1239 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 1240 if (IS_ERR(bh[i])) { 1241 err = PTR_ERR(bh[i]); 1242 bh[i] = NULL; 1243 goto out; 1244 } 1245 mb_debug(sb, "read bitmap for group %u\n", group); 1246 } 1247 1248 /* wait for I/O completion */ 1249 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1250 int err2; 1251 1252 if (!bh[i]) 1253 continue; 1254 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 1255 if (!err) 1256 err = err2; 1257 } 1258 1259 first_block = page->index * blocks_per_page; 1260 for (i = 0; i < blocks_per_page; i++) { 1261 group = (first_block + i) >> 1; 1262 if (group >= ngroups) 1263 break; 1264 1265 if (!bh[group - first_group]) 1266 /* skip initialized uptodate buddy */ 1267 continue; 1268 1269 if (!buffer_verified(bh[group - first_group])) 1270 /* Skip faulty bitmaps */ 1271 continue; 1272 err = 0; 1273 1274 /* 1275 * data carry information regarding this 1276 * particular group in the format specified 1277 * above 1278 * 1279 */ 1280 data = page_address(page) + (i * blocksize); 1281 bitmap = bh[group - first_group]->b_data; 1282 1283 /* 1284 * We place the buddy block and bitmap block 1285 * close together 1286 */ 1287 if ((first_block + i) & 1) { 1288 /* this is block of buddy */ 1289 BUG_ON(incore == NULL); 1290 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 1291 group, page->index, i * blocksize); 1292 trace_ext4_mb_buddy_bitmap_load(sb, group); 1293 grinfo = ext4_get_group_info(sb, group); 1294 grinfo->bb_fragments = 0; 1295 memset(grinfo->bb_counters, 0, 1296 sizeof(*grinfo->bb_counters) * 1297 (MB_NUM_ORDERS(sb))); 1298 /* 1299 * incore got set to the group block bitmap below 1300 */ 1301 ext4_lock_group(sb, group); 1302 /* init the buddy */ 1303 memset(data, 0xff, blocksize); 1304 ext4_mb_generate_buddy(sb, data, incore, group); 1305 ext4_unlock_group(sb, group); 1306 incore = NULL; 1307 } else { 1308 /* this is block of bitmap */ 1309 BUG_ON(incore != NULL); 1310 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 1311 group, page->index, i * blocksize); 1312 trace_ext4_mb_bitmap_load(sb, group); 1313 1314 /* see comments in ext4_mb_put_pa() */ 1315 ext4_lock_group(sb, group); 1316 memcpy(data, bitmap, blocksize); 1317 1318 /* mark all preallocated blks used in in-core bitmap */ 1319 ext4_mb_generate_from_pa(sb, data, group); 1320 ext4_mb_generate_from_freelist(sb, data, group); 1321 ext4_unlock_group(sb, group); 1322 1323 /* set incore so that the buddy information can be 1324 * generated using this 1325 */ 1326 incore = data; 1327 } 1328 } 1329 SetPageUptodate(page); 1330 1331 out: 1332 if (bh) { 1333 for (i = 0; i < groups_per_page; i++) 1334 brelse(bh[i]); 1335 if (bh != &bhs) 1336 kfree(bh); 1337 } 1338 return err; 1339 } 1340 1341 /* 1342 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1343 * on the same buddy page doesn't happen whild holding the buddy page lock. 1344 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1345 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1346 */ 1347 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1348 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1349 { 1350 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1351 int block, pnum, poff; 1352 int blocks_per_page; 1353 struct page *page; 1354 1355 e4b->bd_buddy_page = NULL; 1356 e4b->bd_bitmap_page = NULL; 1357 1358 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1359 /* 1360 * the buddy cache inode stores the block bitmap 1361 * and buddy information in consecutive blocks. 1362 * So for each group we need two blocks. 1363 */ 1364 block = group * 2; 1365 pnum = block / blocks_per_page; 1366 poff = block % blocks_per_page; 1367 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1368 if (!page) 1369 return -ENOMEM; 1370 BUG_ON(page->mapping != inode->i_mapping); 1371 e4b->bd_bitmap_page = page; 1372 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1373 1374 if (blocks_per_page >= 2) { 1375 /* buddy and bitmap are on the same page */ 1376 return 0; 1377 } 1378 1379 block++; 1380 pnum = block / blocks_per_page; 1381 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1382 if (!page) 1383 return -ENOMEM; 1384 BUG_ON(page->mapping != inode->i_mapping); 1385 e4b->bd_buddy_page = page; 1386 return 0; 1387 } 1388 1389 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1390 { 1391 if (e4b->bd_bitmap_page) { 1392 unlock_page(e4b->bd_bitmap_page); 1393 put_page(e4b->bd_bitmap_page); 1394 } 1395 if (e4b->bd_buddy_page) { 1396 unlock_page(e4b->bd_buddy_page); 1397 put_page(e4b->bd_buddy_page); 1398 } 1399 } 1400 1401 /* 1402 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1403 * block group lock of all groups for this page; do not hold the BG lock when 1404 * calling this routine! 1405 */ 1406 static noinline_for_stack 1407 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1408 { 1409 1410 struct ext4_group_info *this_grp; 1411 struct ext4_buddy e4b; 1412 struct page *page; 1413 int ret = 0; 1414 1415 might_sleep(); 1416 mb_debug(sb, "init group %u\n", group); 1417 this_grp = ext4_get_group_info(sb, group); 1418 /* 1419 * This ensures that we don't reinit the buddy cache 1420 * page which map to the group from which we are already 1421 * allocating. If we are looking at the buddy cache we would 1422 * have taken a reference using ext4_mb_load_buddy and that 1423 * would have pinned buddy page to page cache. 1424 * The call to ext4_mb_get_buddy_page_lock will mark the 1425 * page accessed. 1426 */ 1427 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1428 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1429 /* 1430 * somebody initialized the group 1431 * return without doing anything 1432 */ 1433 goto err; 1434 } 1435 1436 page = e4b.bd_bitmap_page; 1437 ret = ext4_mb_init_cache(page, NULL, gfp); 1438 if (ret) 1439 goto err; 1440 if (!PageUptodate(page)) { 1441 ret = -EIO; 1442 goto err; 1443 } 1444 1445 if (e4b.bd_buddy_page == NULL) { 1446 /* 1447 * If both the bitmap and buddy are in 1448 * the same page we don't need to force 1449 * init the buddy 1450 */ 1451 ret = 0; 1452 goto err; 1453 } 1454 /* init buddy cache */ 1455 page = e4b.bd_buddy_page; 1456 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1457 if (ret) 1458 goto err; 1459 if (!PageUptodate(page)) { 1460 ret = -EIO; 1461 goto err; 1462 } 1463 err: 1464 ext4_mb_put_buddy_page_lock(&e4b); 1465 return ret; 1466 } 1467 1468 /* 1469 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1470 * block group lock of all groups for this page; do not hold the BG lock when 1471 * calling this routine! 1472 */ 1473 static noinline_for_stack int 1474 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1475 struct ext4_buddy *e4b, gfp_t gfp) 1476 { 1477 int blocks_per_page; 1478 int block; 1479 int pnum; 1480 int poff; 1481 struct page *page; 1482 int ret; 1483 struct ext4_group_info *grp; 1484 struct ext4_sb_info *sbi = EXT4_SB(sb); 1485 struct inode *inode = sbi->s_buddy_cache; 1486 1487 might_sleep(); 1488 mb_debug(sb, "load group %u\n", group); 1489 1490 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1491 grp = ext4_get_group_info(sb, group); 1492 1493 e4b->bd_blkbits = sb->s_blocksize_bits; 1494 e4b->bd_info = grp; 1495 e4b->bd_sb = sb; 1496 e4b->bd_group = group; 1497 e4b->bd_buddy_page = NULL; 1498 e4b->bd_bitmap_page = NULL; 1499 1500 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1501 /* 1502 * we need full data about the group 1503 * to make a good selection 1504 */ 1505 ret = ext4_mb_init_group(sb, group, gfp); 1506 if (ret) 1507 return ret; 1508 } 1509 1510 /* 1511 * the buddy cache inode stores the block bitmap 1512 * and buddy information in consecutive blocks. 1513 * So for each group we need two blocks. 1514 */ 1515 block = group * 2; 1516 pnum = block / blocks_per_page; 1517 poff = block % blocks_per_page; 1518 1519 /* we could use find_or_create_page(), but it locks page 1520 * what we'd like to avoid in fast path ... */ 1521 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1522 if (page == NULL || !PageUptodate(page)) { 1523 if (page) 1524 /* 1525 * drop the page reference and try 1526 * to get the page with lock. If we 1527 * are not uptodate that implies 1528 * somebody just created the page but 1529 * is yet to initialize the same. So 1530 * wait for it to initialize. 1531 */ 1532 put_page(page); 1533 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1534 if (page) { 1535 BUG_ON(page->mapping != inode->i_mapping); 1536 if (!PageUptodate(page)) { 1537 ret = ext4_mb_init_cache(page, NULL, gfp); 1538 if (ret) { 1539 unlock_page(page); 1540 goto err; 1541 } 1542 mb_cmp_bitmaps(e4b, page_address(page) + 1543 (poff * sb->s_blocksize)); 1544 } 1545 unlock_page(page); 1546 } 1547 } 1548 if (page == NULL) { 1549 ret = -ENOMEM; 1550 goto err; 1551 } 1552 if (!PageUptodate(page)) { 1553 ret = -EIO; 1554 goto err; 1555 } 1556 1557 /* Pages marked accessed already */ 1558 e4b->bd_bitmap_page = page; 1559 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1560 1561 block++; 1562 pnum = block / blocks_per_page; 1563 poff = block % blocks_per_page; 1564 1565 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1566 if (page == NULL || !PageUptodate(page)) { 1567 if (page) 1568 put_page(page); 1569 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1570 if (page) { 1571 BUG_ON(page->mapping != inode->i_mapping); 1572 if (!PageUptodate(page)) { 1573 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1574 gfp); 1575 if (ret) { 1576 unlock_page(page); 1577 goto err; 1578 } 1579 } 1580 unlock_page(page); 1581 } 1582 } 1583 if (page == NULL) { 1584 ret = -ENOMEM; 1585 goto err; 1586 } 1587 if (!PageUptodate(page)) { 1588 ret = -EIO; 1589 goto err; 1590 } 1591 1592 /* Pages marked accessed already */ 1593 e4b->bd_buddy_page = page; 1594 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1595 1596 return 0; 1597 1598 err: 1599 if (page) 1600 put_page(page); 1601 if (e4b->bd_bitmap_page) 1602 put_page(e4b->bd_bitmap_page); 1603 if (e4b->bd_buddy_page) 1604 put_page(e4b->bd_buddy_page); 1605 e4b->bd_buddy = NULL; 1606 e4b->bd_bitmap = NULL; 1607 return ret; 1608 } 1609 1610 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1611 struct ext4_buddy *e4b) 1612 { 1613 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1614 } 1615 1616 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1617 { 1618 if (e4b->bd_bitmap_page) 1619 put_page(e4b->bd_bitmap_page); 1620 if (e4b->bd_buddy_page) 1621 put_page(e4b->bd_buddy_page); 1622 } 1623 1624 1625 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1626 { 1627 int order = 1, max; 1628 void *bb; 1629 1630 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1631 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1632 1633 while (order <= e4b->bd_blkbits + 1) { 1634 bb = mb_find_buddy(e4b, order, &max); 1635 if (!mb_test_bit(block >> order, bb)) { 1636 /* this block is part of buddy of order 'order' */ 1637 return order; 1638 } 1639 order++; 1640 } 1641 return 0; 1642 } 1643 1644 static void mb_clear_bits(void *bm, int cur, int len) 1645 { 1646 __u32 *addr; 1647 1648 len = cur + len; 1649 while (cur < len) { 1650 if ((cur & 31) == 0 && (len - cur) >= 32) { 1651 /* fast path: clear whole word at once */ 1652 addr = bm + (cur >> 3); 1653 *addr = 0; 1654 cur += 32; 1655 continue; 1656 } 1657 mb_clear_bit(cur, bm); 1658 cur++; 1659 } 1660 } 1661 1662 /* clear bits in given range 1663 * will return first found zero bit if any, -1 otherwise 1664 */ 1665 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1666 { 1667 __u32 *addr; 1668 int zero_bit = -1; 1669 1670 len = cur + len; 1671 while (cur < len) { 1672 if ((cur & 31) == 0 && (len - cur) >= 32) { 1673 /* fast path: clear whole word at once */ 1674 addr = bm + (cur >> 3); 1675 if (*addr != (__u32)(-1) && zero_bit == -1) 1676 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1677 *addr = 0; 1678 cur += 32; 1679 continue; 1680 } 1681 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1682 zero_bit = cur; 1683 cur++; 1684 } 1685 1686 return zero_bit; 1687 } 1688 1689 void mb_set_bits(void *bm, int cur, int len) 1690 { 1691 __u32 *addr; 1692 1693 len = cur + len; 1694 while (cur < len) { 1695 if ((cur & 31) == 0 && (len - cur) >= 32) { 1696 /* fast path: set whole word at once */ 1697 addr = bm + (cur >> 3); 1698 *addr = 0xffffffff; 1699 cur += 32; 1700 continue; 1701 } 1702 mb_set_bit(cur, bm); 1703 cur++; 1704 } 1705 } 1706 1707 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1708 { 1709 if (mb_test_bit(*bit + side, bitmap)) { 1710 mb_clear_bit(*bit, bitmap); 1711 (*bit) -= side; 1712 return 1; 1713 } 1714 else { 1715 (*bit) += side; 1716 mb_set_bit(*bit, bitmap); 1717 return -1; 1718 } 1719 } 1720 1721 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1722 { 1723 int max; 1724 int order = 1; 1725 void *buddy = mb_find_buddy(e4b, order, &max); 1726 1727 while (buddy) { 1728 void *buddy2; 1729 1730 /* Bits in range [first; last] are known to be set since 1731 * corresponding blocks were allocated. Bits in range 1732 * (first; last) will stay set because they form buddies on 1733 * upper layer. We just deal with borders if they don't 1734 * align with upper layer and then go up. 1735 * Releasing entire group is all about clearing 1736 * single bit of highest order buddy. 1737 */ 1738 1739 /* Example: 1740 * --------------------------------- 1741 * | 1 | 1 | 1 | 1 | 1742 * --------------------------------- 1743 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1744 * --------------------------------- 1745 * 0 1 2 3 4 5 6 7 1746 * \_____________________/ 1747 * 1748 * Neither [1] nor [6] is aligned to above layer. 1749 * Left neighbour [0] is free, so mark it busy, 1750 * decrease bb_counters and extend range to 1751 * [0; 6] 1752 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1753 * mark [6] free, increase bb_counters and shrink range to 1754 * [0; 5]. 1755 * Then shift range to [0; 2], go up and do the same. 1756 */ 1757 1758 1759 if (first & 1) 1760 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1761 if (!(last & 1)) 1762 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1763 if (first > last) 1764 break; 1765 order++; 1766 1767 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1768 mb_clear_bits(buddy, first, last - first + 1); 1769 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1770 break; 1771 } 1772 first >>= 1; 1773 last >>= 1; 1774 buddy = buddy2; 1775 } 1776 } 1777 1778 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1779 int first, int count) 1780 { 1781 int left_is_free = 0; 1782 int right_is_free = 0; 1783 int block; 1784 int last = first + count - 1; 1785 struct super_block *sb = e4b->bd_sb; 1786 1787 if (WARN_ON(count == 0)) 1788 return; 1789 BUG_ON(last >= (sb->s_blocksize << 3)); 1790 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1791 /* Don't bother if the block group is corrupt. */ 1792 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1793 return; 1794 1795 mb_check_buddy(e4b); 1796 mb_free_blocks_double(inode, e4b, first, count); 1797 1798 this_cpu_inc(discard_pa_seq); 1799 e4b->bd_info->bb_free += count; 1800 if (first < e4b->bd_info->bb_first_free) 1801 e4b->bd_info->bb_first_free = first; 1802 1803 /* access memory sequentially: check left neighbour, 1804 * clear range and then check right neighbour 1805 */ 1806 if (first != 0) 1807 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1808 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1809 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1810 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1811 1812 if (unlikely(block != -1)) { 1813 struct ext4_sb_info *sbi = EXT4_SB(sb); 1814 ext4_fsblk_t blocknr; 1815 1816 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1817 blocknr += EXT4_C2B(sbi, block); 1818 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1819 ext4_grp_locked_error(sb, e4b->bd_group, 1820 inode ? inode->i_ino : 0, 1821 blocknr, 1822 "freeing already freed block (bit %u); block bitmap corrupt.", 1823 block); 1824 ext4_mark_group_bitmap_corrupted( 1825 sb, e4b->bd_group, 1826 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1827 } 1828 goto done; 1829 } 1830 1831 /* let's maintain fragments counter */ 1832 if (left_is_free && right_is_free) 1833 e4b->bd_info->bb_fragments--; 1834 else if (!left_is_free && !right_is_free) 1835 e4b->bd_info->bb_fragments++; 1836 1837 /* buddy[0] == bd_bitmap is a special case, so handle 1838 * it right away and let mb_buddy_mark_free stay free of 1839 * zero order checks. 1840 * Check if neighbours are to be coaleasced, 1841 * adjust bitmap bb_counters and borders appropriately. 1842 */ 1843 if (first & 1) { 1844 first += !left_is_free; 1845 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1846 } 1847 if (!(last & 1)) { 1848 last -= !right_is_free; 1849 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1850 } 1851 1852 if (first <= last) 1853 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1854 1855 done: 1856 mb_set_largest_free_order(sb, e4b->bd_info); 1857 mb_update_avg_fragment_size(sb, e4b->bd_info); 1858 mb_check_buddy(e4b); 1859 } 1860 1861 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1862 int needed, struct ext4_free_extent *ex) 1863 { 1864 int next = block; 1865 int max, order; 1866 void *buddy; 1867 1868 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1869 BUG_ON(ex == NULL); 1870 1871 buddy = mb_find_buddy(e4b, 0, &max); 1872 BUG_ON(buddy == NULL); 1873 BUG_ON(block >= max); 1874 if (mb_test_bit(block, buddy)) { 1875 ex->fe_len = 0; 1876 ex->fe_start = 0; 1877 ex->fe_group = 0; 1878 return 0; 1879 } 1880 1881 /* find actual order */ 1882 order = mb_find_order_for_block(e4b, block); 1883 block = block >> order; 1884 1885 ex->fe_len = 1 << order; 1886 ex->fe_start = block << order; 1887 ex->fe_group = e4b->bd_group; 1888 1889 /* calc difference from given start */ 1890 next = next - ex->fe_start; 1891 ex->fe_len -= next; 1892 ex->fe_start += next; 1893 1894 while (needed > ex->fe_len && 1895 mb_find_buddy(e4b, order, &max)) { 1896 1897 if (block + 1 >= max) 1898 break; 1899 1900 next = (block + 1) * (1 << order); 1901 if (mb_test_bit(next, e4b->bd_bitmap)) 1902 break; 1903 1904 order = mb_find_order_for_block(e4b, next); 1905 1906 block = next >> order; 1907 ex->fe_len += 1 << order; 1908 } 1909 1910 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 1911 /* Should never happen! (but apparently sometimes does?!?) */ 1912 WARN_ON(1); 1913 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, 1914 "corruption or bug in mb_find_extent " 1915 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 1916 block, order, needed, ex->fe_group, ex->fe_start, 1917 ex->fe_len, ex->fe_logical); 1918 ex->fe_len = 0; 1919 ex->fe_start = 0; 1920 ex->fe_group = 0; 1921 } 1922 return ex->fe_len; 1923 } 1924 1925 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1926 { 1927 int ord; 1928 int mlen = 0; 1929 int max = 0; 1930 int cur; 1931 int start = ex->fe_start; 1932 int len = ex->fe_len; 1933 unsigned ret = 0; 1934 int len0 = len; 1935 void *buddy; 1936 bool split = false; 1937 1938 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1939 BUG_ON(e4b->bd_group != ex->fe_group); 1940 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1941 mb_check_buddy(e4b); 1942 mb_mark_used_double(e4b, start, len); 1943 1944 this_cpu_inc(discard_pa_seq); 1945 e4b->bd_info->bb_free -= len; 1946 if (e4b->bd_info->bb_first_free == start) 1947 e4b->bd_info->bb_first_free += len; 1948 1949 /* let's maintain fragments counter */ 1950 if (start != 0) 1951 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1952 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1953 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1954 if (mlen && max) 1955 e4b->bd_info->bb_fragments++; 1956 else if (!mlen && !max) 1957 e4b->bd_info->bb_fragments--; 1958 1959 /* let's maintain buddy itself */ 1960 while (len) { 1961 if (!split) 1962 ord = mb_find_order_for_block(e4b, start); 1963 1964 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1965 /* the whole chunk may be allocated at once! */ 1966 mlen = 1 << ord; 1967 if (!split) 1968 buddy = mb_find_buddy(e4b, ord, &max); 1969 else 1970 split = false; 1971 BUG_ON((start >> ord) >= max); 1972 mb_set_bit(start >> ord, buddy); 1973 e4b->bd_info->bb_counters[ord]--; 1974 start += mlen; 1975 len -= mlen; 1976 BUG_ON(len < 0); 1977 continue; 1978 } 1979 1980 /* store for history */ 1981 if (ret == 0) 1982 ret = len | (ord << 16); 1983 1984 /* we have to split large buddy */ 1985 BUG_ON(ord <= 0); 1986 buddy = mb_find_buddy(e4b, ord, &max); 1987 mb_set_bit(start >> ord, buddy); 1988 e4b->bd_info->bb_counters[ord]--; 1989 1990 ord--; 1991 cur = (start >> ord) & ~1U; 1992 buddy = mb_find_buddy(e4b, ord, &max); 1993 mb_clear_bit(cur, buddy); 1994 mb_clear_bit(cur + 1, buddy); 1995 e4b->bd_info->bb_counters[ord]++; 1996 e4b->bd_info->bb_counters[ord]++; 1997 split = true; 1998 } 1999 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 2000 2001 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); 2002 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 2003 mb_check_buddy(e4b); 2004 2005 return ret; 2006 } 2007 2008 /* 2009 * Must be called under group lock! 2010 */ 2011 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 2012 struct ext4_buddy *e4b) 2013 { 2014 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2015 int ret; 2016 2017 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 2018 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2019 2020 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 2021 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 2022 ret = mb_mark_used(e4b, &ac->ac_b_ex); 2023 2024 /* preallocation can change ac_b_ex, thus we store actually 2025 * allocated blocks for history */ 2026 ac->ac_f_ex = ac->ac_b_ex; 2027 2028 ac->ac_status = AC_STATUS_FOUND; 2029 ac->ac_tail = ret & 0xffff; 2030 ac->ac_buddy = ret >> 16; 2031 2032 /* 2033 * take the page reference. We want the page to be pinned 2034 * so that we don't get a ext4_mb_init_cache_call for this 2035 * group until we update the bitmap. That would mean we 2036 * double allocate blocks. The reference is dropped 2037 * in ext4_mb_release_context 2038 */ 2039 ac->ac_bitmap_page = e4b->bd_bitmap_page; 2040 get_page(ac->ac_bitmap_page); 2041 ac->ac_buddy_page = e4b->bd_buddy_page; 2042 get_page(ac->ac_buddy_page); 2043 /* store last allocated for subsequent stream allocation */ 2044 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2045 spin_lock(&sbi->s_md_lock); 2046 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 2047 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 2048 spin_unlock(&sbi->s_md_lock); 2049 } 2050 /* 2051 * As we've just preallocated more space than 2052 * user requested originally, we store allocated 2053 * space in a special descriptor. 2054 */ 2055 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 2056 ext4_mb_new_preallocation(ac); 2057 2058 } 2059 2060 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 2061 struct ext4_buddy *e4b, 2062 int finish_group) 2063 { 2064 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2065 struct ext4_free_extent *bex = &ac->ac_b_ex; 2066 struct ext4_free_extent *gex = &ac->ac_g_ex; 2067 struct ext4_free_extent ex; 2068 int max; 2069 2070 if (ac->ac_status == AC_STATUS_FOUND) 2071 return; 2072 /* 2073 * We don't want to scan for a whole year 2074 */ 2075 if (ac->ac_found > sbi->s_mb_max_to_scan && 2076 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2077 ac->ac_status = AC_STATUS_BREAK; 2078 return; 2079 } 2080 2081 /* 2082 * Haven't found good chunk so far, let's continue 2083 */ 2084 if (bex->fe_len < gex->fe_len) 2085 return; 2086 2087 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 2088 && bex->fe_group == e4b->bd_group) { 2089 /* recheck chunk's availability - we don't know 2090 * when it was found (within this lock-unlock 2091 * period or not) */ 2092 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 2093 if (max >= gex->fe_len) { 2094 ext4_mb_use_best_found(ac, e4b); 2095 return; 2096 } 2097 } 2098 } 2099 2100 /* 2101 * The routine checks whether found extent is good enough. If it is, 2102 * then the extent gets marked used and flag is set to the context 2103 * to stop scanning. Otherwise, the extent is compared with the 2104 * previous found extent and if new one is better, then it's stored 2105 * in the context. Later, the best found extent will be used, if 2106 * mballoc can't find good enough extent. 2107 * 2108 * FIXME: real allocation policy is to be designed yet! 2109 */ 2110 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 2111 struct ext4_free_extent *ex, 2112 struct ext4_buddy *e4b) 2113 { 2114 struct ext4_free_extent *bex = &ac->ac_b_ex; 2115 struct ext4_free_extent *gex = &ac->ac_g_ex; 2116 2117 BUG_ON(ex->fe_len <= 0); 2118 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2119 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2120 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 2121 2122 ac->ac_found++; 2123 2124 /* 2125 * The special case - take what you catch first 2126 */ 2127 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2128 *bex = *ex; 2129 ext4_mb_use_best_found(ac, e4b); 2130 return; 2131 } 2132 2133 /* 2134 * Let's check whether the chuck is good enough 2135 */ 2136 if (ex->fe_len == gex->fe_len) { 2137 *bex = *ex; 2138 ext4_mb_use_best_found(ac, e4b); 2139 return; 2140 } 2141 2142 /* 2143 * If this is first found extent, just store it in the context 2144 */ 2145 if (bex->fe_len == 0) { 2146 *bex = *ex; 2147 return; 2148 } 2149 2150 /* 2151 * If new found extent is better, store it in the context 2152 */ 2153 if (bex->fe_len < gex->fe_len) { 2154 /* if the request isn't satisfied, any found extent 2155 * larger than previous best one is better */ 2156 if (ex->fe_len > bex->fe_len) 2157 *bex = *ex; 2158 } else if (ex->fe_len > gex->fe_len) { 2159 /* if the request is satisfied, then we try to find 2160 * an extent that still satisfy the request, but is 2161 * smaller than previous one */ 2162 if (ex->fe_len < bex->fe_len) 2163 *bex = *ex; 2164 } 2165 2166 ext4_mb_check_limits(ac, e4b, 0); 2167 } 2168 2169 static noinline_for_stack 2170 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 2171 struct ext4_buddy *e4b) 2172 { 2173 struct ext4_free_extent ex = ac->ac_b_ex; 2174 ext4_group_t group = ex.fe_group; 2175 int max; 2176 int err; 2177 2178 BUG_ON(ex.fe_len <= 0); 2179 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2180 if (err) 2181 return err; 2182 2183 ext4_lock_group(ac->ac_sb, group); 2184 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 2185 2186 if (max > 0) { 2187 ac->ac_b_ex = ex; 2188 ext4_mb_use_best_found(ac, e4b); 2189 } 2190 2191 ext4_unlock_group(ac->ac_sb, group); 2192 ext4_mb_unload_buddy(e4b); 2193 2194 return 0; 2195 } 2196 2197 static noinline_for_stack 2198 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 2199 struct ext4_buddy *e4b) 2200 { 2201 ext4_group_t group = ac->ac_g_ex.fe_group; 2202 int max; 2203 int err; 2204 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2205 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2206 struct ext4_free_extent ex; 2207 2208 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 2209 return 0; 2210 if (grp->bb_free == 0) 2211 return 0; 2212 2213 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2214 if (err) 2215 return err; 2216 2217 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 2218 ext4_mb_unload_buddy(e4b); 2219 return 0; 2220 } 2221 2222 ext4_lock_group(ac->ac_sb, group); 2223 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 2224 ac->ac_g_ex.fe_len, &ex); 2225 ex.fe_logical = 0xDEADFA11; /* debug value */ 2226 2227 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 2228 ext4_fsblk_t start; 2229 2230 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 2231 ex.fe_start; 2232 /* use do_div to get remainder (would be 64-bit modulo) */ 2233 if (do_div(start, sbi->s_stripe) == 0) { 2234 ac->ac_found++; 2235 ac->ac_b_ex = ex; 2236 ext4_mb_use_best_found(ac, e4b); 2237 } 2238 } else if (max >= ac->ac_g_ex.fe_len) { 2239 BUG_ON(ex.fe_len <= 0); 2240 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2241 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2242 ac->ac_found++; 2243 ac->ac_b_ex = ex; 2244 ext4_mb_use_best_found(ac, e4b); 2245 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 2246 /* Sometimes, caller may want to merge even small 2247 * number of blocks to an existing extent */ 2248 BUG_ON(ex.fe_len <= 0); 2249 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2250 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2251 ac->ac_found++; 2252 ac->ac_b_ex = ex; 2253 ext4_mb_use_best_found(ac, e4b); 2254 } 2255 ext4_unlock_group(ac->ac_sb, group); 2256 ext4_mb_unload_buddy(e4b); 2257 2258 return 0; 2259 } 2260 2261 /* 2262 * The routine scans buddy structures (not bitmap!) from given order 2263 * to max order and tries to find big enough chunk to satisfy the req 2264 */ 2265 static noinline_for_stack 2266 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 2267 struct ext4_buddy *e4b) 2268 { 2269 struct super_block *sb = ac->ac_sb; 2270 struct ext4_group_info *grp = e4b->bd_info; 2271 void *buddy; 2272 int i; 2273 int k; 2274 int max; 2275 2276 BUG_ON(ac->ac_2order <= 0); 2277 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { 2278 if (grp->bb_counters[i] == 0) 2279 continue; 2280 2281 buddy = mb_find_buddy(e4b, i, &max); 2282 BUG_ON(buddy == NULL); 2283 2284 k = mb_find_next_zero_bit(buddy, max, 0); 2285 if (k >= max) { 2286 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 2287 "%d free clusters of order %d. But found 0", 2288 grp->bb_counters[i], i); 2289 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 2290 e4b->bd_group, 2291 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2292 break; 2293 } 2294 ac->ac_found++; 2295 2296 ac->ac_b_ex.fe_len = 1 << i; 2297 ac->ac_b_ex.fe_start = k << i; 2298 ac->ac_b_ex.fe_group = e4b->bd_group; 2299 2300 ext4_mb_use_best_found(ac, e4b); 2301 2302 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2303 2304 if (EXT4_SB(sb)->s_mb_stats) 2305 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2306 2307 break; 2308 } 2309 } 2310 2311 /* 2312 * The routine scans the group and measures all found extents. 2313 * In order to optimize scanning, caller must pass number of 2314 * free blocks in the group, so the routine can know upper limit. 2315 */ 2316 static noinline_for_stack 2317 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2318 struct ext4_buddy *e4b) 2319 { 2320 struct super_block *sb = ac->ac_sb; 2321 void *bitmap = e4b->bd_bitmap; 2322 struct ext4_free_extent ex; 2323 int i; 2324 int free; 2325 2326 free = e4b->bd_info->bb_free; 2327 if (WARN_ON(free <= 0)) 2328 return; 2329 2330 i = e4b->bd_info->bb_first_free; 2331 2332 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2333 i = mb_find_next_zero_bit(bitmap, 2334 EXT4_CLUSTERS_PER_GROUP(sb), i); 2335 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2336 /* 2337 * IF we have corrupt bitmap, we won't find any 2338 * free blocks even though group info says we 2339 * have free blocks 2340 */ 2341 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2342 "%d free clusters as per " 2343 "group info. But bitmap says 0", 2344 free); 2345 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2346 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2347 break; 2348 } 2349 2350 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2351 if (WARN_ON(ex.fe_len <= 0)) 2352 break; 2353 if (free < ex.fe_len) { 2354 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2355 "%d free clusters as per " 2356 "group info. But got %d blocks", 2357 free, ex.fe_len); 2358 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2359 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2360 /* 2361 * The number of free blocks differs. This mostly 2362 * indicate that the bitmap is corrupt. So exit 2363 * without claiming the space. 2364 */ 2365 break; 2366 } 2367 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2368 ext4_mb_measure_extent(ac, &ex, e4b); 2369 2370 i += ex.fe_len; 2371 free -= ex.fe_len; 2372 } 2373 2374 ext4_mb_check_limits(ac, e4b, 1); 2375 } 2376 2377 /* 2378 * This is a special case for storages like raid5 2379 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2380 */ 2381 static noinline_for_stack 2382 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2383 struct ext4_buddy *e4b) 2384 { 2385 struct super_block *sb = ac->ac_sb; 2386 struct ext4_sb_info *sbi = EXT4_SB(sb); 2387 void *bitmap = e4b->bd_bitmap; 2388 struct ext4_free_extent ex; 2389 ext4_fsblk_t first_group_block; 2390 ext4_fsblk_t a; 2391 ext4_grpblk_t i; 2392 int max; 2393 2394 BUG_ON(sbi->s_stripe == 0); 2395 2396 /* find first stripe-aligned block in group */ 2397 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2398 2399 a = first_group_block + sbi->s_stripe - 1; 2400 do_div(a, sbi->s_stripe); 2401 i = (a * sbi->s_stripe) - first_group_block; 2402 2403 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2404 if (!mb_test_bit(i, bitmap)) { 2405 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 2406 if (max >= sbi->s_stripe) { 2407 ac->ac_found++; 2408 ex.fe_logical = 0xDEADF00D; /* debug value */ 2409 ac->ac_b_ex = ex; 2410 ext4_mb_use_best_found(ac, e4b); 2411 break; 2412 } 2413 } 2414 i += sbi->s_stripe; 2415 } 2416 } 2417 2418 /* 2419 * This is also called BEFORE we load the buddy bitmap. 2420 * Returns either 1 or 0 indicating that the group is either suitable 2421 * for the allocation or not. 2422 */ 2423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2424 ext4_group_t group, int cr) 2425 { 2426 ext4_grpblk_t free, fragments; 2427 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2428 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2429 2430 BUG_ON(cr < 0 || cr >= 4); 2431 2432 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2433 return false; 2434 2435 free = grp->bb_free; 2436 if (free == 0) 2437 return false; 2438 2439 fragments = grp->bb_fragments; 2440 if (fragments == 0) 2441 return false; 2442 2443 switch (cr) { 2444 case 0: 2445 BUG_ON(ac->ac_2order == 0); 2446 2447 /* Avoid using the first bg of a flexgroup for data files */ 2448 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2449 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2450 ((group % flex_size) == 0)) 2451 return false; 2452 2453 if (free < ac->ac_g_ex.fe_len) 2454 return false; 2455 2456 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) 2457 return true; 2458 2459 if (grp->bb_largest_free_order < ac->ac_2order) 2460 return false; 2461 2462 return true; 2463 case 1: 2464 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2465 return true; 2466 break; 2467 case 2: 2468 if (free >= ac->ac_g_ex.fe_len) 2469 return true; 2470 break; 2471 case 3: 2472 return true; 2473 default: 2474 BUG(); 2475 } 2476 2477 return false; 2478 } 2479 2480 /* 2481 * This could return negative error code if something goes wrong 2482 * during ext4_mb_init_group(). This should not be called with 2483 * ext4_lock_group() held. 2484 * 2485 * Note: because we are conditionally operating with the group lock in 2486 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this 2487 * function using __acquire and __release. This means we need to be 2488 * super careful before messing with the error path handling via "goto 2489 * out"! 2490 */ 2491 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2492 ext4_group_t group, int cr) 2493 { 2494 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2495 struct super_block *sb = ac->ac_sb; 2496 struct ext4_sb_info *sbi = EXT4_SB(sb); 2497 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2498 ext4_grpblk_t free; 2499 int ret = 0; 2500 2501 if (sbi->s_mb_stats) 2502 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2503 if (should_lock) { 2504 ext4_lock_group(sb, group); 2505 __release(ext4_group_lock_ptr(sb, group)); 2506 } 2507 free = grp->bb_free; 2508 if (free == 0) 2509 goto out; 2510 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2511 goto out; 2512 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2513 goto out; 2514 if (should_lock) { 2515 __acquire(ext4_group_lock_ptr(sb, group)); 2516 ext4_unlock_group(sb, group); 2517 } 2518 2519 /* We only do this if the grp has never been initialized */ 2520 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2521 struct ext4_group_desc *gdp = 2522 ext4_get_group_desc(sb, group, NULL); 2523 int ret; 2524 2525 /* cr=0/1 is a very optimistic search to find large 2526 * good chunks almost for free. If buddy data is not 2527 * ready, then this optimization makes no sense. But 2528 * we never skip the first block group in a flex_bg, 2529 * since this gets used for metadata block allocation, 2530 * and we want to make sure we locate metadata blocks 2531 * in the first block group in the flex_bg if possible. 2532 */ 2533 if (cr < 2 && 2534 (!sbi->s_log_groups_per_flex || 2535 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2536 !(ext4_has_group_desc_csum(sb) && 2537 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2538 return 0; 2539 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2540 if (ret) 2541 return ret; 2542 } 2543 2544 if (should_lock) { 2545 ext4_lock_group(sb, group); 2546 __release(ext4_group_lock_ptr(sb, group)); 2547 } 2548 ret = ext4_mb_good_group(ac, group, cr); 2549 out: 2550 if (should_lock) { 2551 __acquire(ext4_group_lock_ptr(sb, group)); 2552 ext4_unlock_group(sb, group); 2553 } 2554 return ret; 2555 } 2556 2557 /* 2558 * Start prefetching @nr block bitmaps starting at @group. 2559 * Return the next group which needs to be prefetched. 2560 */ 2561 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2562 unsigned int nr, int *cnt) 2563 { 2564 ext4_group_t ngroups = ext4_get_groups_count(sb); 2565 struct buffer_head *bh; 2566 struct blk_plug plug; 2567 2568 blk_start_plug(&plug); 2569 while (nr-- > 0) { 2570 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2571 NULL); 2572 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2573 2574 /* 2575 * Prefetch block groups with free blocks; but don't 2576 * bother if it is marked uninitialized on disk, since 2577 * it won't require I/O to read. Also only try to 2578 * prefetch once, so we avoid getblk() call, which can 2579 * be expensive. 2580 */ 2581 if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2582 EXT4_MB_GRP_NEED_INIT(grp) && 2583 ext4_free_group_clusters(sb, gdp) > 0 && 2584 !(ext4_has_group_desc_csum(sb) && 2585 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) { 2586 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2587 if (bh && !IS_ERR(bh)) { 2588 if (!buffer_uptodate(bh) && cnt) 2589 (*cnt)++; 2590 brelse(bh); 2591 } 2592 } 2593 if (++group >= ngroups) 2594 group = 0; 2595 } 2596 blk_finish_plug(&plug); 2597 return group; 2598 } 2599 2600 /* 2601 * Prefetching reads the block bitmap into the buffer cache; but we 2602 * need to make sure that the buddy bitmap in the page cache has been 2603 * initialized. Note that ext4_mb_init_group() will block if the I/O 2604 * is not yet completed, or indeed if it was not initiated by 2605 * ext4_mb_prefetch did not start the I/O. 2606 * 2607 * TODO: We should actually kick off the buddy bitmap setup in a work 2608 * queue when the buffer I/O is completed, so that we don't block 2609 * waiting for the block allocation bitmap read to finish when 2610 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2611 */ 2612 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2613 unsigned int nr) 2614 { 2615 while (nr-- > 0) { 2616 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2617 NULL); 2618 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2619 2620 if (!group) 2621 group = ext4_get_groups_count(sb); 2622 group--; 2623 grp = ext4_get_group_info(sb, group); 2624 2625 if (EXT4_MB_GRP_NEED_INIT(grp) && 2626 ext4_free_group_clusters(sb, gdp) > 0 && 2627 !(ext4_has_group_desc_csum(sb) && 2628 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) { 2629 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2630 break; 2631 } 2632 } 2633 } 2634 2635 static noinline_for_stack int 2636 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2637 { 2638 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2639 int cr = -1; 2640 int err = 0, first_err = 0; 2641 unsigned int nr = 0, prefetch_ios = 0; 2642 struct ext4_sb_info *sbi; 2643 struct super_block *sb; 2644 struct ext4_buddy e4b; 2645 int lost; 2646 2647 sb = ac->ac_sb; 2648 sbi = EXT4_SB(sb); 2649 ngroups = ext4_get_groups_count(sb); 2650 /* non-extent files are limited to low blocks/groups */ 2651 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2652 ngroups = sbi->s_blockfile_groups; 2653 2654 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2655 2656 /* first, try the goal */ 2657 err = ext4_mb_find_by_goal(ac, &e4b); 2658 if (err || ac->ac_status == AC_STATUS_FOUND) 2659 goto out; 2660 2661 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2662 goto out; 2663 2664 /* 2665 * ac->ac_2order is set only if the fe_len is a power of 2 2666 * if ac->ac_2order is set we also set criteria to 0 so that we 2667 * try exact allocation using buddy. 2668 */ 2669 i = fls(ac->ac_g_ex.fe_len); 2670 ac->ac_2order = 0; 2671 /* 2672 * We search using buddy data only if the order of the request 2673 * is greater than equal to the sbi_s_mb_order2_reqs 2674 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2675 * We also support searching for power-of-two requests only for 2676 * requests upto maximum buddy size we have constructed. 2677 */ 2678 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { 2679 /* 2680 * This should tell if fe_len is exactly power of 2 2681 */ 2682 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2683 ac->ac_2order = array_index_nospec(i - 1, 2684 MB_NUM_ORDERS(sb)); 2685 } 2686 2687 /* if stream allocation is enabled, use global goal */ 2688 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2689 /* TBD: may be hot point */ 2690 spin_lock(&sbi->s_md_lock); 2691 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2692 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2693 spin_unlock(&sbi->s_md_lock); 2694 } 2695 2696 /* Let's just scan groups to find more-less suitable blocks */ 2697 cr = ac->ac_2order ? 0 : 1; 2698 /* 2699 * cr == 0 try to get exact allocation, 2700 * cr == 3 try to get anything 2701 */ 2702 repeat: 2703 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2704 ac->ac_criteria = cr; 2705 /* 2706 * searching for the right group start 2707 * from the goal value specified 2708 */ 2709 group = ac->ac_g_ex.fe_group; 2710 ac->ac_last_optimal_group = group; 2711 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; 2712 prefetch_grp = group; 2713 2714 for (i = 0; i < ngroups; group = next_linear_group(ac, group, ngroups), 2715 i++) { 2716 int ret = 0, new_cr; 2717 2718 cond_resched(); 2719 2720 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups); 2721 if (new_cr != cr) { 2722 cr = new_cr; 2723 goto repeat; 2724 } 2725 2726 /* 2727 * Batch reads of the block allocation bitmaps 2728 * to get multiple READs in flight; limit 2729 * prefetching at cr=0/1, otherwise mballoc can 2730 * spend a lot of time loading imperfect groups 2731 */ 2732 if ((prefetch_grp == group) && 2733 (cr > 1 || 2734 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2735 unsigned int curr_ios = prefetch_ios; 2736 2737 nr = sbi->s_mb_prefetch; 2738 if (ext4_has_feature_flex_bg(sb)) { 2739 nr = 1 << sbi->s_log_groups_per_flex; 2740 nr -= group & (nr - 1); 2741 nr = min(nr, sbi->s_mb_prefetch); 2742 } 2743 prefetch_grp = ext4_mb_prefetch(sb, group, 2744 nr, &prefetch_ios); 2745 if (prefetch_ios == curr_ios) 2746 nr = 0; 2747 } 2748 2749 /* This now checks without needing the buddy page */ 2750 ret = ext4_mb_good_group_nolock(ac, group, cr); 2751 if (ret <= 0) { 2752 if (!first_err) 2753 first_err = ret; 2754 continue; 2755 } 2756 2757 err = ext4_mb_load_buddy(sb, group, &e4b); 2758 if (err) 2759 goto out; 2760 2761 ext4_lock_group(sb, group); 2762 2763 /* 2764 * We need to check again after locking the 2765 * block group 2766 */ 2767 ret = ext4_mb_good_group(ac, group, cr); 2768 if (ret == 0) { 2769 ext4_unlock_group(sb, group); 2770 ext4_mb_unload_buddy(&e4b); 2771 continue; 2772 } 2773 2774 ac->ac_groups_scanned++; 2775 if (cr == 0) 2776 ext4_mb_simple_scan_group(ac, &e4b); 2777 else if (cr == 1 && sbi->s_stripe && 2778 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2779 ext4_mb_scan_aligned(ac, &e4b); 2780 else 2781 ext4_mb_complex_scan_group(ac, &e4b); 2782 2783 ext4_unlock_group(sb, group); 2784 ext4_mb_unload_buddy(&e4b); 2785 2786 if (ac->ac_status != AC_STATUS_CONTINUE) 2787 break; 2788 } 2789 /* Processed all groups and haven't found blocks */ 2790 if (sbi->s_mb_stats && i == ngroups) 2791 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 2792 } 2793 2794 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2795 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2796 /* 2797 * We've been searching too long. Let's try to allocate 2798 * the best chunk we've found so far 2799 */ 2800 ext4_mb_try_best_found(ac, &e4b); 2801 if (ac->ac_status != AC_STATUS_FOUND) { 2802 /* 2803 * Someone more lucky has already allocated it. 2804 * The only thing we can do is just take first 2805 * found block(s) 2806 */ 2807 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2808 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2809 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2810 ac->ac_b_ex.fe_len, lost); 2811 2812 ac->ac_b_ex.fe_group = 0; 2813 ac->ac_b_ex.fe_start = 0; 2814 ac->ac_b_ex.fe_len = 0; 2815 ac->ac_status = AC_STATUS_CONTINUE; 2816 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2817 cr = 3; 2818 goto repeat; 2819 } 2820 } 2821 2822 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) 2823 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 2824 out: 2825 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2826 err = first_err; 2827 2828 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2829 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2830 ac->ac_flags, cr, err); 2831 2832 if (nr) 2833 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 2834 2835 return err; 2836 } 2837 2838 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2839 { 2840 struct super_block *sb = pde_data(file_inode(seq->file)); 2841 ext4_group_t group; 2842 2843 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2844 return NULL; 2845 group = *pos + 1; 2846 return (void *) ((unsigned long) group); 2847 } 2848 2849 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2850 { 2851 struct super_block *sb = pde_data(file_inode(seq->file)); 2852 ext4_group_t group; 2853 2854 ++*pos; 2855 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2856 return NULL; 2857 group = *pos + 1; 2858 return (void *) ((unsigned long) group); 2859 } 2860 2861 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2862 { 2863 struct super_block *sb = pde_data(file_inode(seq->file)); 2864 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2865 int i; 2866 int err, buddy_loaded = 0; 2867 struct ext4_buddy e4b; 2868 struct ext4_group_info *grinfo; 2869 unsigned char blocksize_bits = min_t(unsigned char, 2870 sb->s_blocksize_bits, 2871 EXT4_MAX_BLOCK_LOG_SIZE); 2872 struct sg { 2873 struct ext4_group_info info; 2874 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 2875 } sg; 2876 2877 group--; 2878 if (group == 0) 2879 seq_puts(seq, "#group: free frags first [" 2880 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 2881 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 2882 2883 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2884 sizeof(struct ext4_group_info); 2885 2886 grinfo = ext4_get_group_info(sb, group); 2887 /* Load the group info in memory only if not already loaded. */ 2888 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2889 err = ext4_mb_load_buddy(sb, group, &e4b); 2890 if (err) { 2891 seq_printf(seq, "#%-5u: I/O error\n", group); 2892 return 0; 2893 } 2894 buddy_loaded = 1; 2895 } 2896 2897 memcpy(&sg, ext4_get_group_info(sb, group), i); 2898 2899 if (buddy_loaded) 2900 ext4_mb_unload_buddy(&e4b); 2901 2902 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2903 sg.info.bb_fragments, sg.info.bb_first_free); 2904 for (i = 0; i <= 13; i++) 2905 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 2906 sg.info.bb_counters[i] : 0); 2907 seq_puts(seq, " ]\n"); 2908 2909 return 0; 2910 } 2911 2912 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2913 { 2914 } 2915 2916 const struct seq_operations ext4_mb_seq_groups_ops = { 2917 .start = ext4_mb_seq_groups_start, 2918 .next = ext4_mb_seq_groups_next, 2919 .stop = ext4_mb_seq_groups_stop, 2920 .show = ext4_mb_seq_groups_show, 2921 }; 2922 2923 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 2924 { 2925 struct super_block *sb = seq->private; 2926 struct ext4_sb_info *sbi = EXT4_SB(sb); 2927 2928 seq_puts(seq, "mballoc:\n"); 2929 if (!sbi->s_mb_stats) { 2930 seq_puts(seq, "\tmb stats collection turned off.\n"); 2931 seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 2932 return 0; 2933 } 2934 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 2935 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 2936 2937 seq_printf(seq, "\tgroups_scanned: %u\n", atomic_read(&sbi->s_bal_groups_scanned)); 2938 2939 seq_puts(seq, "\tcr0_stats:\n"); 2940 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[0])); 2941 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2942 atomic64_read(&sbi->s_bal_cX_groups_considered[0])); 2943 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2944 atomic64_read(&sbi->s_bal_cX_failed[0])); 2945 seq_printf(seq, "\t\tbad_suggestions: %u\n", 2946 atomic_read(&sbi->s_bal_cr0_bad_suggestions)); 2947 2948 seq_puts(seq, "\tcr1_stats:\n"); 2949 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[1])); 2950 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2951 atomic64_read(&sbi->s_bal_cX_groups_considered[1])); 2952 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2953 atomic64_read(&sbi->s_bal_cX_failed[1])); 2954 seq_printf(seq, "\t\tbad_suggestions: %u\n", 2955 atomic_read(&sbi->s_bal_cr1_bad_suggestions)); 2956 2957 seq_puts(seq, "\tcr2_stats:\n"); 2958 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[2])); 2959 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2960 atomic64_read(&sbi->s_bal_cX_groups_considered[2])); 2961 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2962 atomic64_read(&sbi->s_bal_cX_failed[2])); 2963 2964 seq_puts(seq, "\tcr3_stats:\n"); 2965 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[3])); 2966 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2967 atomic64_read(&sbi->s_bal_cX_groups_considered[3])); 2968 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2969 atomic64_read(&sbi->s_bal_cX_failed[3])); 2970 seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned)); 2971 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 2972 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 2973 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 2974 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 2975 2976 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 2977 atomic_read(&sbi->s_mb_buddies_generated), 2978 ext4_get_groups_count(sb)); 2979 seq_printf(seq, "\tbuddies_time_used: %llu\n", 2980 atomic64_read(&sbi->s_mb_generation_time)); 2981 seq_printf(seq, "\tpreallocated: %u\n", 2982 atomic_read(&sbi->s_mb_preallocated)); 2983 seq_printf(seq, "\tdiscarded: %u\n", 2984 atomic_read(&sbi->s_mb_discarded)); 2985 return 0; 2986 } 2987 2988 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) 2989 __acquires(&EXT4_SB(sb)->s_mb_rb_lock) 2990 { 2991 struct super_block *sb = pde_data(file_inode(seq->file)); 2992 unsigned long position; 2993 2994 read_lock(&EXT4_SB(sb)->s_mb_rb_lock); 2995 2996 if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1) 2997 return NULL; 2998 position = *pos + 1; 2999 return (void *) ((unsigned long) position); 3000 } 3001 3002 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) 3003 { 3004 struct super_block *sb = pde_data(file_inode(seq->file)); 3005 unsigned long position; 3006 3007 ++*pos; 3008 if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1) 3009 return NULL; 3010 position = *pos + 1; 3011 return (void *) ((unsigned long) position); 3012 } 3013 3014 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) 3015 { 3016 struct super_block *sb = pde_data(file_inode(seq->file)); 3017 struct ext4_sb_info *sbi = EXT4_SB(sb); 3018 unsigned long position = ((unsigned long) v); 3019 struct ext4_group_info *grp; 3020 struct rb_node *n; 3021 unsigned int count, min, max; 3022 3023 position--; 3024 if (position >= MB_NUM_ORDERS(sb)) { 3025 seq_puts(seq, "fragment_size_tree:\n"); 3026 n = rb_first(&sbi->s_mb_avg_fragment_size_root); 3027 if (!n) { 3028 seq_puts(seq, "\ttree_min: 0\n\ttree_max: 0\n\ttree_nodes: 0\n"); 3029 return 0; 3030 } 3031 grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb); 3032 min = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0; 3033 count = 1; 3034 while (rb_next(n)) { 3035 count++; 3036 n = rb_next(n); 3037 } 3038 grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb); 3039 max = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0; 3040 3041 seq_printf(seq, "\ttree_min: %u\n\ttree_max: %u\n\ttree_nodes: %u\n", 3042 min, max, count); 3043 return 0; 3044 } 3045 3046 if (position == 0) { 3047 seq_printf(seq, "optimize_scan: %d\n", 3048 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); 3049 seq_puts(seq, "max_free_order_lists:\n"); 3050 } 3051 count = 0; 3052 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], 3053 bb_largest_free_order_node) 3054 count++; 3055 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3056 (unsigned int)position, count); 3057 3058 return 0; 3059 } 3060 3061 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) 3062 __releases(&EXT4_SB(sb)->s_mb_rb_lock) 3063 { 3064 struct super_block *sb = pde_data(file_inode(seq->file)); 3065 3066 read_unlock(&EXT4_SB(sb)->s_mb_rb_lock); 3067 } 3068 3069 const struct seq_operations ext4_mb_seq_structs_summary_ops = { 3070 .start = ext4_mb_seq_structs_summary_start, 3071 .next = ext4_mb_seq_structs_summary_next, 3072 .stop = ext4_mb_seq_structs_summary_stop, 3073 .show = ext4_mb_seq_structs_summary_show, 3074 }; 3075 3076 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 3077 { 3078 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3079 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 3080 3081 BUG_ON(!cachep); 3082 return cachep; 3083 } 3084 3085 /* 3086 * Allocate the top-level s_group_info array for the specified number 3087 * of groups 3088 */ 3089 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 3090 { 3091 struct ext4_sb_info *sbi = EXT4_SB(sb); 3092 unsigned size; 3093 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 3094 3095 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 3096 EXT4_DESC_PER_BLOCK_BITS(sb); 3097 if (size <= sbi->s_group_info_size) 3098 return 0; 3099 3100 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 3101 new_groupinfo = kvzalloc(size, GFP_KERNEL); 3102 if (!new_groupinfo) { 3103 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 3104 return -ENOMEM; 3105 } 3106 rcu_read_lock(); 3107 old_groupinfo = rcu_dereference(sbi->s_group_info); 3108 if (old_groupinfo) 3109 memcpy(new_groupinfo, old_groupinfo, 3110 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 3111 rcu_read_unlock(); 3112 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 3113 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 3114 if (old_groupinfo) 3115 ext4_kvfree_array_rcu(old_groupinfo); 3116 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 3117 sbi->s_group_info_size); 3118 return 0; 3119 } 3120 3121 /* Create and initialize ext4_group_info data for the given group. */ 3122 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 3123 struct ext4_group_desc *desc) 3124 { 3125 int i; 3126 int metalen = 0; 3127 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 3128 struct ext4_sb_info *sbi = EXT4_SB(sb); 3129 struct ext4_group_info **meta_group_info; 3130 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3131 3132 /* 3133 * First check if this group is the first of a reserved block. 3134 * If it's true, we have to allocate a new table of pointers 3135 * to ext4_group_info structures 3136 */ 3137 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3138 metalen = sizeof(*meta_group_info) << 3139 EXT4_DESC_PER_BLOCK_BITS(sb); 3140 meta_group_info = kmalloc(metalen, GFP_NOFS); 3141 if (meta_group_info == NULL) { 3142 ext4_msg(sb, KERN_ERR, "can't allocate mem " 3143 "for a buddy group"); 3144 goto exit_meta_group_info; 3145 } 3146 rcu_read_lock(); 3147 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 3148 rcu_read_unlock(); 3149 } 3150 3151 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 3152 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 3153 3154 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 3155 if (meta_group_info[i] == NULL) { 3156 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 3157 goto exit_group_info; 3158 } 3159 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 3160 &(meta_group_info[i]->bb_state)); 3161 3162 /* 3163 * initialize bb_free to be able to skip 3164 * empty groups without initialization 3165 */ 3166 if (ext4_has_group_desc_csum(sb) && 3167 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3168 meta_group_info[i]->bb_free = 3169 ext4_free_clusters_after_init(sb, group, desc); 3170 } else { 3171 meta_group_info[i]->bb_free = 3172 ext4_free_group_clusters(sb, desc); 3173 } 3174 3175 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 3176 init_rwsem(&meta_group_info[i]->alloc_sem); 3177 meta_group_info[i]->bb_free_root = RB_ROOT; 3178 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); 3179 RB_CLEAR_NODE(&meta_group_info[i]->bb_avg_fragment_size_rb); 3180 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 3181 meta_group_info[i]->bb_group = group; 3182 3183 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 3184 return 0; 3185 3186 exit_group_info: 3187 /* If a meta_group_info table has been allocated, release it now */ 3188 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3189 struct ext4_group_info ***group_info; 3190 3191 rcu_read_lock(); 3192 group_info = rcu_dereference(sbi->s_group_info); 3193 kfree(group_info[idx]); 3194 group_info[idx] = NULL; 3195 rcu_read_unlock(); 3196 } 3197 exit_meta_group_info: 3198 return -ENOMEM; 3199 } /* ext4_mb_add_groupinfo */ 3200 3201 static int ext4_mb_init_backend(struct super_block *sb) 3202 { 3203 ext4_group_t ngroups = ext4_get_groups_count(sb); 3204 ext4_group_t i; 3205 struct ext4_sb_info *sbi = EXT4_SB(sb); 3206 int err; 3207 struct ext4_group_desc *desc; 3208 struct ext4_group_info ***group_info; 3209 struct kmem_cache *cachep; 3210 3211 err = ext4_mb_alloc_groupinfo(sb, ngroups); 3212 if (err) 3213 return err; 3214 3215 sbi->s_buddy_cache = new_inode(sb); 3216 if (sbi->s_buddy_cache == NULL) { 3217 ext4_msg(sb, KERN_ERR, "can't get new inode"); 3218 goto err_freesgi; 3219 } 3220 /* To avoid potentially colliding with an valid on-disk inode number, 3221 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 3222 * not in the inode hash, so it should never be found by iget(), but 3223 * this will avoid confusion if it ever shows up during debugging. */ 3224 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 3225 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 3226 for (i = 0; i < ngroups; i++) { 3227 cond_resched(); 3228 desc = ext4_get_group_desc(sb, i, NULL); 3229 if (desc == NULL) { 3230 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 3231 goto err_freebuddy; 3232 } 3233 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 3234 goto err_freebuddy; 3235 } 3236 3237 if (ext4_has_feature_flex_bg(sb)) { 3238 /* a single flex group is supposed to be read by a single IO. 3239 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 3240 * unsigned integer, so the maximum shift is 32. 3241 */ 3242 if (sbi->s_es->s_log_groups_per_flex >= 32) { 3243 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 3244 goto err_freebuddy; 3245 } 3246 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 3247 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 3248 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 3249 } else { 3250 sbi->s_mb_prefetch = 32; 3251 } 3252 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 3253 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 3254 /* now many real IOs to prefetch within a single allocation at cr=0 3255 * given cr=0 is an CPU-related optimization we shouldn't try to 3256 * load too many groups, at some point we should start to use what 3257 * we've got in memory. 3258 * with an average random access time 5ms, it'd take a second to get 3259 * 200 groups (* N with flex_bg), so let's make this limit 4 3260 */ 3261 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 3262 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 3263 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 3264 3265 return 0; 3266 3267 err_freebuddy: 3268 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3269 while (i-- > 0) 3270 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 3271 i = sbi->s_group_info_size; 3272 rcu_read_lock(); 3273 group_info = rcu_dereference(sbi->s_group_info); 3274 while (i-- > 0) 3275 kfree(group_info[i]); 3276 rcu_read_unlock(); 3277 iput(sbi->s_buddy_cache); 3278 err_freesgi: 3279 rcu_read_lock(); 3280 kvfree(rcu_dereference(sbi->s_group_info)); 3281 rcu_read_unlock(); 3282 return -ENOMEM; 3283 } 3284 3285 static void ext4_groupinfo_destroy_slabs(void) 3286 { 3287 int i; 3288 3289 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 3290 kmem_cache_destroy(ext4_groupinfo_caches[i]); 3291 ext4_groupinfo_caches[i] = NULL; 3292 } 3293 } 3294 3295 static int ext4_groupinfo_create_slab(size_t size) 3296 { 3297 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 3298 int slab_size; 3299 int blocksize_bits = order_base_2(size); 3300 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3301 struct kmem_cache *cachep; 3302 3303 if (cache_index >= NR_GRPINFO_CACHES) 3304 return -EINVAL; 3305 3306 if (unlikely(cache_index < 0)) 3307 cache_index = 0; 3308 3309 mutex_lock(&ext4_grpinfo_slab_create_mutex); 3310 if (ext4_groupinfo_caches[cache_index]) { 3311 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3312 return 0; /* Already created */ 3313 } 3314 3315 slab_size = offsetof(struct ext4_group_info, 3316 bb_counters[blocksize_bits + 2]); 3317 3318 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 3319 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 3320 NULL); 3321 3322 ext4_groupinfo_caches[cache_index] = cachep; 3323 3324 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3325 if (!cachep) { 3326 printk(KERN_EMERG 3327 "EXT4-fs: no memory for groupinfo slab cache\n"); 3328 return -ENOMEM; 3329 } 3330 3331 return 0; 3332 } 3333 3334 static void ext4_discard_work(struct work_struct *work) 3335 { 3336 struct ext4_sb_info *sbi = container_of(work, 3337 struct ext4_sb_info, s_discard_work); 3338 struct super_block *sb = sbi->s_sb; 3339 struct ext4_free_data *fd, *nfd; 3340 struct ext4_buddy e4b; 3341 struct list_head discard_list; 3342 ext4_group_t grp, load_grp; 3343 int err = 0; 3344 3345 INIT_LIST_HEAD(&discard_list); 3346 spin_lock(&sbi->s_md_lock); 3347 list_splice_init(&sbi->s_discard_list, &discard_list); 3348 spin_unlock(&sbi->s_md_lock); 3349 3350 load_grp = UINT_MAX; 3351 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { 3352 /* 3353 * If filesystem is umounting or no memory or suffering 3354 * from no space, give up the discard 3355 */ 3356 if ((sb->s_flags & SB_ACTIVE) && !err && 3357 !atomic_read(&sbi->s_retry_alloc_pending)) { 3358 grp = fd->efd_group; 3359 if (grp != load_grp) { 3360 if (load_grp != UINT_MAX) 3361 ext4_mb_unload_buddy(&e4b); 3362 3363 err = ext4_mb_load_buddy(sb, grp, &e4b); 3364 if (err) { 3365 kmem_cache_free(ext4_free_data_cachep, fd); 3366 load_grp = UINT_MAX; 3367 continue; 3368 } else { 3369 load_grp = grp; 3370 } 3371 } 3372 3373 ext4_lock_group(sb, grp); 3374 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster, 3375 fd->efd_start_cluster + fd->efd_count - 1, 1); 3376 ext4_unlock_group(sb, grp); 3377 } 3378 kmem_cache_free(ext4_free_data_cachep, fd); 3379 } 3380 3381 if (load_grp != UINT_MAX) 3382 ext4_mb_unload_buddy(&e4b); 3383 } 3384 3385 int ext4_mb_init(struct super_block *sb) 3386 { 3387 struct ext4_sb_info *sbi = EXT4_SB(sb); 3388 unsigned i, j; 3389 unsigned offset, offset_incr; 3390 unsigned max; 3391 int ret; 3392 3393 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); 3394 3395 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 3396 if (sbi->s_mb_offsets == NULL) { 3397 ret = -ENOMEM; 3398 goto out; 3399 } 3400 3401 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); 3402 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 3403 if (sbi->s_mb_maxs == NULL) { 3404 ret = -ENOMEM; 3405 goto out; 3406 } 3407 3408 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 3409 if (ret < 0) 3410 goto out; 3411 3412 /* order 0 is regular bitmap */ 3413 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 3414 sbi->s_mb_offsets[0] = 0; 3415 3416 i = 1; 3417 offset = 0; 3418 offset_incr = 1 << (sb->s_blocksize_bits - 1); 3419 max = sb->s_blocksize << 2; 3420 do { 3421 sbi->s_mb_offsets[i] = offset; 3422 sbi->s_mb_maxs[i] = max; 3423 offset += offset_incr; 3424 offset_incr = offset_incr >> 1; 3425 max = max >> 1; 3426 i++; 3427 } while (i < MB_NUM_ORDERS(sb)); 3428 3429 sbi->s_mb_avg_fragment_size_root = RB_ROOT; 3430 sbi->s_mb_largest_free_orders = 3431 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3432 GFP_KERNEL); 3433 if (!sbi->s_mb_largest_free_orders) { 3434 ret = -ENOMEM; 3435 goto out; 3436 } 3437 sbi->s_mb_largest_free_orders_locks = 3438 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3439 GFP_KERNEL); 3440 if (!sbi->s_mb_largest_free_orders_locks) { 3441 ret = -ENOMEM; 3442 goto out; 3443 } 3444 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3445 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); 3446 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); 3447 } 3448 rwlock_init(&sbi->s_mb_rb_lock); 3449 3450 spin_lock_init(&sbi->s_md_lock); 3451 sbi->s_mb_free_pending = 0; 3452 INIT_LIST_HEAD(&sbi->s_freed_data_list); 3453 INIT_LIST_HEAD(&sbi->s_discard_list); 3454 INIT_WORK(&sbi->s_discard_work, ext4_discard_work); 3455 atomic_set(&sbi->s_retry_alloc_pending, 0); 3456 3457 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 3458 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 3459 sbi->s_mb_stats = MB_DEFAULT_STATS; 3460 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 3461 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 3462 sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC; 3463 /* 3464 * The default group preallocation is 512, which for 4k block 3465 * sizes translates to 2 megabytes. However for bigalloc file 3466 * systems, this is probably too big (i.e, if the cluster size 3467 * is 1 megabyte, then group preallocation size becomes half a 3468 * gigabyte!). As a default, we will keep a two megabyte 3469 * group pralloc size for cluster sizes up to 64k, and after 3470 * that, we will force a minimum group preallocation size of 3471 * 32 clusters. This translates to 8 megs when the cluster 3472 * size is 256k, and 32 megs when the cluster size is 1 meg, 3473 * which seems reasonable as a default. 3474 */ 3475 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 3476 sbi->s_cluster_bits, 32); 3477 /* 3478 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 3479 * to the lowest multiple of s_stripe which is bigger than 3480 * the s_mb_group_prealloc as determined above. We want 3481 * the preallocation size to be an exact multiple of the 3482 * RAID stripe size so that preallocations don't fragment 3483 * the stripes. 3484 */ 3485 if (sbi->s_stripe > 1) { 3486 sbi->s_mb_group_prealloc = roundup( 3487 sbi->s_mb_group_prealloc, sbi->s_stripe); 3488 } 3489 3490 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3491 if (sbi->s_locality_groups == NULL) { 3492 ret = -ENOMEM; 3493 goto out; 3494 } 3495 for_each_possible_cpu(i) { 3496 struct ext4_locality_group *lg; 3497 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3498 mutex_init(&lg->lg_mutex); 3499 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3500 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3501 spin_lock_init(&lg->lg_prealloc_lock); 3502 } 3503 3504 if (bdev_nonrot(sb->s_bdev)) 3505 sbi->s_mb_max_linear_groups = 0; 3506 else 3507 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; 3508 /* init file for buddy data */ 3509 ret = ext4_mb_init_backend(sb); 3510 if (ret != 0) 3511 goto out_free_locality_groups; 3512 3513 return 0; 3514 3515 out_free_locality_groups: 3516 free_percpu(sbi->s_locality_groups); 3517 sbi->s_locality_groups = NULL; 3518 out: 3519 kfree(sbi->s_mb_largest_free_orders); 3520 kfree(sbi->s_mb_largest_free_orders_locks); 3521 kfree(sbi->s_mb_offsets); 3522 sbi->s_mb_offsets = NULL; 3523 kfree(sbi->s_mb_maxs); 3524 sbi->s_mb_maxs = NULL; 3525 return ret; 3526 } 3527 3528 /* need to called with the ext4 group lock held */ 3529 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3530 { 3531 struct ext4_prealloc_space *pa; 3532 struct list_head *cur, *tmp; 3533 int count = 0; 3534 3535 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3536 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3537 list_del(&pa->pa_group_list); 3538 count++; 3539 kmem_cache_free(ext4_pspace_cachep, pa); 3540 } 3541 return count; 3542 } 3543 3544 int ext4_mb_release(struct super_block *sb) 3545 { 3546 ext4_group_t ngroups = ext4_get_groups_count(sb); 3547 ext4_group_t i; 3548 int num_meta_group_infos; 3549 struct ext4_group_info *grinfo, ***group_info; 3550 struct ext4_sb_info *sbi = EXT4_SB(sb); 3551 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3552 int count; 3553 3554 if (test_opt(sb, DISCARD)) { 3555 /* 3556 * wait the discard work to drain all of ext4_free_data 3557 */ 3558 flush_work(&sbi->s_discard_work); 3559 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); 3560 } 3561 3562 if (sbi->s_group_info) { 3563 for (i = 0; i < ngroups; i++) { 3564 cond_resched(); 3565 grinfo = ext4_get_group_info(sb, i); 3566 mb_group_bb_bitmap_free(grinfo); 3567 ext4_lock_group(sb, i); 3568 count = ext4_mb_cleanup_pa(grinfo); 3569 if (count) 3570 mb_debug(sb, "mballoc: %d PAs left\n", 3571 count); 3572 ext4_unlock_group(sb, i); 3573 kmem_cache_free(cachep, grinfo); 3574 } 3575 num_meta_group_infos = (ngroups + 3576 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3577 EXT4_DESC_PER_BLOCK_BITS(sb); 3578 rcu_read_lock(); 3579 group_info = rcu_dereference(sbi->s_group_info); 3580 for (i = 0; i < num_meta_group_infos; i++) 3581 kfree(group_info[i]); 3582 kvfree(group_info); 3583 rcu_read_unlock(); 3584 } 3585 kfree(sbi->s_mb_largest_free_orders); 3586 kfree(sbi->s_mb_largest_free_orders_locks); 3587 kfree(sbi->s_mb_offsets); 3588 kfree(sbi->s_mb_maxs); 3589 iput(sbi->s_buddy_cache); 3590 if (sbi->s_mb_stats) { 3591 ext4_msg(sb, KERN_INFO, 3592 "mballoc: %u blocks %u reqs (%u success)", 3593 atomic_read(&sbi->s_bal_allocated), 3594 atomic_read(&sbi->s_bal_reqs), 3595 atomic_read(&sbi->s_bal_success)); 3596 ext4_msg(sb, KERN_INFO, 3597 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3598 "%u 2^N hits, %u breaks, %u lost", 3599 atomic_read(&sbi->s_bal_ex_scanned), 3600 atomic_read(&sbi->s_bal_groups_scanned), 3601 atomic_read(&sbi->s_bal_goals), 3602 atomic_read(&sbi->s_bal_2orders), 3603 atomic_read(&sbi->s_bal_breaks), 3604 atomic_read(&sbi->s_mb_lost_chunks)); 3605 ext4_msg(sb, KERN_INFO, 3606 "mballoc: %u generated and it took %llu", 3607 atomic_read(&sbi->s_mb_buddies_generated), 3608 atomic64_read(&sbi->s_mb_generation_time)); 3609 ext4_msg(sb, KERN_INFO, 3610 "mballoc: %u preallocated, %u discarded", 3611 atomic_read(&sbi->s_mb_preallocated), 3612 atomic_read(&sbi->s_mb_discarded)); 3613 } 3614 3615 free_percpu(sbi->s_locality_groups); 3616 3617 return 0; 3618 } 3619 3620 static inline int ext4_issue_discard(struct super_block *sb, 3621 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 3622 struct bio **biop) 3623 { 3624 ext4_fsblk_t discard_block; 3625 3626 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3627 ext4_group_first_block_no(sb, block_group)); 3628 count = EXT4_C2B(EXT4_SB(sb), count); 3629 trace_ext4_discard_blocks(sb, 3630 (unsigned long long) discard_block, count); 3631 if (biop) { 3632 return __blkdev_issue_discard(sb->s_bdev, 3633 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 3634 (sector_t)count << (sb->s_blocksize_bits - 9), 3635 GFP_NOFS, biop); 3636 } else 3637 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3638 } 3639 3640 static void ext4_free_data_in_buddy(struct super_block *sb, 3641 struct ext4_free_data *entry) 3642 { 3643 struct ext4_buddy e4b; 3644 struct ext4_group_info *db; 3645 int err, count = 0, count2 = 0; 3646 3647 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3648 entry->efd_count, entry->efd_group, entry); 3649 3650 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3651 /* we expect to find existing buddy because it's pinned */ 3652 BUG_ON(err != 0); 3653 3654 spin_lock(&EXT4_SB(sb)->s_md_lock); 3655 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3656 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3657 3658 db = e4b.bd_info; 3659 /* there are blocks to put in buddy to make them really free */ 3660 count += entry->efd_count; 3661 count2++; 3662 ext4_lock_group(sb, entry->efd_group); 3663 /* Take it out of per group rb tree */ 3664 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3665 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3666 3667 /* 3668 * Clear the trimmed flag for the group so that the next 3669 * ext4_trim_fs can trim it. 3670 * If the volume is mounted with -o discard, online discard 3671 * is supported and the free blocks will be trimmed online. 3672 */ 3673 if (!test_opt(sb, DISCARD)) 3674 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3675 3676 if (!db->bb_free_root.rb_node) { 3677 /* No more items in the per group rb tree 3678 * balance refcounts from ext4_mb_free_metadata() 3679 */ 3680 put_page(e4b.bd_buddy_page); 3681 put_page(e4b.bd_bitmap_page); 3682 } 3683 ext4_unlock_group(sb, entry->efd_group); 3684 ext4_mb_unload_buddy(&e4b); 3685 3686 mb_debug(sb, "freed %d blocks in %d structures\n", count, 3687 count2); 3688 } 3689 3690 /* 3691 * This function is called by the jbd2 layer once the commit has finished, 3692 * so we know we can free the blocks that were released with that commit. 3693 */ 3694 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3695 { 3696 struct ext4_sb_info *sbi = EXT4_SB(sb); 3697 struct ext4_free_data *entry, *tmp; 3698 struct list_head freed_data_list; 3699 struct list_head *cut_pos = NULL; 3700 bool wake; 3701 3702 INIT_LIST_HEAD(&freed_data_list); 3703 3704 spin_lock(&sbi->s_md_lock); 3705 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 3706 if (entry->efd_tid != commit_tid) 3707 break; 3708 cut_pos = &entry->efd_list; 3709 } 3710 if (cut_pos) 3711 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 3712 cut_pos); 3713 spin_unlock(&sbi->s_md_lock); 3714 3715 list_for_each_entry(entry, &freed_data_list, efd_list) 3716 ext4_free_data_in_buddy(sb, entry); 3717 3718 if (test_opt(sb, DISCARD)) { 3719 spin_lock(&sbi->s_md_lock); 3720 wake = list_empty(&sbi->s_discard_list); 3721 list_splice_tail(&freed_data_list, &sbi->s_discard_list); 3722 spin_unlock(&sbi->s_md_lock); 3723 if (wake) 3724 queue_work(system_unbound_wq, &sbi->s_discard_work); 3725 } else { 3726 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3727 kmem_cache_free(ext4_free_data_cachep, entry); 3728 } 3729 } 3730 3731 int __init ext4_init_mballoc(void) 3732 { 3733 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3734 SLAB_RECLAIM_ACCOUNT); 3735 if (ext4_pspace_cachep == NULL) 3736 goto out; 3737 3738 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3739 SLAB_RECLAIM_ACCOUNT); 3740 if (ext4_ac_cachep == NULL) 3741 goto out_pa_free; 3742 3743 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3744 SLAB_RECLAIM_ACCOUNT); 3745 if (ext4_free_data_cachep == NULL) 3746 goto out_ac_free; 3747 3748 return 0; 3749 3750 out_ac_free: 3751 kmem_cache_destroy(ext4_ac_cachep); 3752 out_pa_free: 3753 kmem_cache_destroy(ext4_pspace_cachep); 3754 out: 3755 return -ENOMEM; 3756 } 3757 3758 void ext4_exit_mballoc(void) 3759 { 3760 /* 3761 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3762 * before destroying the slab cache. 3763 */ 3764 rcu_barrier(); 3765 kmem_cache_destroy(ext4_pspace_cachep); 3766 kmem_cache_destroy(ext4_ac_cachep); 3767 kmem_cache_destroy(ext4_free_data_cachep); 3768 ext4_groupinfo_destroy_slabs(); 3769 } 3770 3771 3772 /* 3773 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 3774 * Returns 0 if success or error code 3775 */ 3776 static noinline_for_stack int 3777 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 3778 handle_t *handle, unsigned int reserv_clstrs) 3779 { 3780 struct buffer_head *bitmap_bh = NULL; 3781 struct ext4_group_desc *gdp; 3782 struct buffer_head *gdp_bh; 3783 struct ext4_sb_info *sbi; 3784 struct super_block *sb; 3785 ext4_fsblk_t block; 3786 int err, len; 3787 3788 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3789 BUG_ON(ac->ac_b_ex.fe_len <= 0); 3790 3791 sb = ac->ac_sb; 3792 sbi = EXT4_SB(sb); 3793 3794 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 3795 if (IS_ERR(bitmap_bh)) { 3796 err = PTR_ERR(bitmap_bh); 3797 bitmap_bh = NULL; 3798 goto out_err; 3799 } 3800 3801 BUFFER_TRACE(bitmap_bh, "getting write access"); 3802 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 3803 EXT4_JTR_NONE); 3804 if (err) 3805 goto out_err; 3806 3807 err = -EIO; 3808 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 3809 if (!gdp) 3810 goto out_err; 3811 3812 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 3813 ext4_free_group_clusters(sb, gdp)); 3814 3815 BUFFER_TRACE(gdp_bh, "get_write_access"); 3816 err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE); 3817 if (err) 3818 goto out_err; 3819 3820 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3821 3822 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3823 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 3824 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 3825 "fs metadata", block, block+len); 3826 /* File system mounted not to panic on error 3827 * Fix the bitmap and return EFSCORRUPTED 3828 * We leak some of the blocks here. 3829 */ 3830 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3831 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3832 ac->ac_b_ex.fe_len); 3833 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3834 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3835 if (!err) 3836 err = -EFSCORRUPTED; 3837 goto out_err; 3838 } 3839 3840 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3841 #ifdef AGGRESSIVE_CHECK 3842 { 3843 int i; 3844 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 3845 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 3846 bitmap_bh->b_data)); 3847 } 3848 } 3849 #endif 3850 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3851 ac->ac_b_ex.fe_len); 3852 if (ext4_has_group_desc_csum(sb) && 3853 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3854 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3855 ext4_free_group_clusters_set(sb, gdp, 3856 ext4_free_clusters_after_init(sb, 3857 ac->ac_b_ex.fe_group, gdp)); 3858 } 3859 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 3860 ext4_free_group_clusters_set(sb, gdp, len); 3861 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 3862 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 3863 3864 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3865 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 3866 /* 3867 * Now reduce the dirty block count also. Should not go negative 3868 */ 3869 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 3870 /* release all the reserved blocks if non delalloc */ 3871 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 3872 reserv_clstrs); 3873 3874 if (sbi->s_log_groups_per_flex) { 3875 ext4_group_t flex_group = ext4_flex_group(sbi, 3876 ac->ac_b_ex.fe_group); 3877 atomic64_sub(ac->ac_b_ex.fe_len, 3878 &sbi_array_rcu_deref(sbi, s_flex_groups, 3879 flex_group)->free_clusters); 3880 } 3881 3882 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3883 if (err) 3884 goto out_err; 3885 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 3886 3887 out_err: 3888 brelse(bitmap_bh); 3889 return err; 3890 } 3891 3892 /* 3893 * Idempotent helper for Ext4 fast commit replay path to set the state of 3894 * blocks in bitmaps and update counters. 3895 */ 3896 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 3897 int len, int state) 3898 { 3899 struct buffer_head *bitmap_bh = NULL; 3900 struct ext4_group_desc *gdp; 3901 struct buffer_head *gdp_bh; 3902 struct ext4_sb_info *sbi = EXT4_SB(sb); 3903 ext4_group_t group; 3904 ext4_grpblk_t blkoff; 3905 int i, err; 3906 int already; 3907 unsigned int clen, clen_changed, thisgrp_len; 3908 3909 while (len > 0) { 3910 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 3911 3912 /* 3913 * Check to see if we are freeing blocks across a group 3914 * boundary. 3915 * In case of flex_bg, this can happen that (block, len) may 3916 * span across more than one group. In that case we need to 3917 * get the corresponding group metadata to work with. 3918 * For this we have goto again loop. 3919 */ 3920 thisgrp_len = min_t(unsigned int, (unsigned int)len, 3921 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); 3922 clen = EXT4_NUM_B2C(sbi, thisgrp_len); 3923 3924 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) { 3925 ext4_error(sb, "Marking blocks in system zone - " 3926 "Block = %llu, len = %u", 3927 block, thisgrp_len); 3928 bitmap_bh = NULL; 3929 break; 3930 } 3931 3932 bitmap_bh = ext4_read_block_bitmap(sb, group); 3933 if (IS_ERR(bitmap_bh)) { 3934 err = PTR_ERR(bitmap_bh); 3935 bitmap_bh = NULL; 3936 break; 3937 } 3938 3939 err = -EIO; 3940 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 3941 if (!gdp) 3942 break; 3943 3944 ext4_lock_group(sb, group); 3945 already = 0; 3946 for (i = 0; i < clen; i++) 3947 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == 3948 !state) 3949 already++; 3950 3951 clen_changed = clen - already; 3952 if (state) 3953 mb_set_bits(bitmap_bh->b_data, blkoff, clen); 3954 else 3955 mb_clear_bits(bitmap_bh->b_data, blkoff, clen); 3956 if (ext4_has_group_desc_csum(sb) && 3957 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3958 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3959 ext4_free_group_clusters_set(sb, gdp, 3960 ext4_free_clusters_after_init(sb, group, gdp)); 3961 } 3962 if (state) 3963 clen = ext4_free_group_clusters(sb, gdp) - clen_changed; 3964 else 3965 clen = ext4_free_group_clusters(sb, gdp) + clen_changed; 3966 3967 ext4_free_group_clusters_set(sb, gdp, clen); 3968 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh); 3969 ext4_group_desc_csum_set(sb, group, gdp); 3970 3971 ext4_unlock_group(sb, group); 3972 3973 if (sbi->s_log_groups_per_flex) { 3974 ext4_group_t flex_group = ext4_flex_group(sbi, group); 3975 struct flex_groups *fg = sbi_array_rcu_deref(sbi, 3976 s_flex_groups, flex_group); 3977 3978 if (state) 3979 atomic64_sub(clen_changed, &fg->free_clusters); 3980 else 3981 atomic64_add(clen_changed, &fg->free_clusters); 3982 3983 } 3984 3985 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 3986 if (err) 3987 break; 3988 sync_dirty_buffer(bitmap_bh); 3989 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 3990 sync_dirty_buffer(gdp_bh); 3991 if (err) 3992 break; 3993 3994 block += thisgrp_len; 3995 len -= thisgrp_len; 3996 brelse(bitmap_bh); 3997 BUG_ON(len < 0); 3998 } 3999 4000 if (err) 4001 brelse(bitmap_bh); 4002 } 4003 4004 /* 4005 * here we normalize request for locality group 4006 * Group request are normalized to s_mb_group_prealloc, which goes to 4007 * s_strip if we set the same via mount option. 4008 * s_mb_group_prealloc can be configured via 4009 * /sys/fs/ext4/<partition>/mb_group_prealloc 4010 * 4011 * XXX: should we try to preallocate more than the group has now? 4012 */ 4013 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 4014 { 4015 struct super_block *sb = ac->ac_sb; 4016 struct ext4_locality_group *lg = ac->ac_lg; 4017 4018 BUG_ON(lg == NULL); 4019 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 4020 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 4021 } 4022 4023 /* 4024 * Normalization means making request better in terms of 4025 * size and alignment 4026 */ 4027 static noinline_for_stack void 4028 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 4029 struct ext4_allocation_request *ar) 4030 { 4031 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4032 int bsbits, max; 4033 ext4_lblk_t end; 4034 loff_t size, start_off; 4035 loff_t orig_size __maybe_unused; 4036 ext4_lblk_t start; 4037 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4038 struct ext4_prealloc_space *pa; 4039 4040 /* do normalize only data requests, metadata requests 4041 do not need preallocation */ 4042 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4043 return; 4044 4045 /* sometime caller may want exact blocks */ 4046 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4047 return; 4048 4049 /* caller may indicate that preallocation isn't 4050 * required (it's a tail, for example) */ 4051 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 4052 return; 4053 4054 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 4055 ext4_mb_normalize_group_request(ac); 4056 return ; 4057 } 4058 4059 bsbits = ac->ac_sb->s_blocksize_bits; 4060 4061 /* first, let's learn actual file size 4062 * given current request is allocated */ 4063 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4064 size = size << bsbits; 4065 if (size < i_size_read(ac->ac_inode)) 4066 size = i_size_read(ac->ac_inode); 4067 orig_size = size; 4068 4069 /* max size of free chunks */ 4070 max = 2 << bsbits; 4071 4072 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 4073 (req <= (size) || max <= (chunk_size)) 4074 4075 /* first, try to predict filesize */ 4076 /* XXX: should this table be tunable? */ 4077 start_off = 0; 4078 if (size <= 16 * 1024) { 4079 size = 16 * 1024; 4080 } else if (size <= 32 * 1024) { 4081 size = 32 * 1024; 4082 } else if (size <= 64 * 1024) { 4083 size = 64 * 1024; 4084 } else if (size <= 128 * 1024) { 4085 size = 128 * 1024; 4086 } else if (size <= 256 * 1024) { 4087 size = 256 * 1024; 4088 } else if (size <= 512 * 1024) { 4089 size = 512 * 1024; 4090 } else if (size <= 1024 * 1024) { 4091 size = 1024 * 1024; 4092 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 4093 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4094 (21 - bsbits)) << 21; 4095 size = 2 * 1024 * 1024; 4096 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 4097 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4098 (22 - bsbits)) << 22; 4099 size = 4 * 1024 * 1024; 4100 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 4101 (8<<20)>>bsbits, max, 8 * 1024)) { 4102 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4103 (23 - bsbits)) << 23; 4104 size = 8 * 1024 * 1024; 4105 } else { 4106 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 4107 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 4108 ac->ac_o_ex.fe_len) << bsbits; 4109 } 4110 size = size >> bsbits; 4111 start = start_off >> bsbits; 4112 4113 /* 4114 * For tiny groups (smaller than 8MB) the chosen allocation 4115 * alignment may be larger than group size. Make sure the 4116 * alignment does not move allocation to a different group which 4117 * makes mballoc fail assertions later. 4118 */ 4119 start = max(start, rounddown(ac->ac_o_ex.fe_logical, 4120 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); 4121 4122 /* don't cover already allocated blocks in selected range */ 4123 if (ar->pleft && start <= ar->lleft) { 4124 size -= ar->lleft + 1 - start; 4125 start = ar->lleft + 1; 4126 } 4127 if (ar->pright && start + size - 1 >= ar->lright) 4128 size -= start + size - ar->lright; 4129 4130 /* 4131 * Trim allocation request for filesystems with artificially small 4132 * groups. 4133 */ 4134 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 4135 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 4136 4137 end = start + size; 4138 4139 /* check we don't cross already preallocated blocks */ 4140 rcu_read_lock(); 4141 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 4142 ext4_lblk_t pa_end; 4143 4144 if (pa->pa_deleted) 4145 continue; 4146 spin_lock(&pa->pa_lock); 4147 if (pa->pa_deleted) { 4148 spin_unlock(&pa->pa_lock); 4149 continue; 4150 } 4151 4152 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 4153 pa->pa_len); 4154 4155 /* PA must not overlap original request */ 4156 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 4157 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 4158 4159 /* skip PAs this normalized request doesn't overlap with */ 4160 if (pa->pa_lstart >= end || pa_end <= start) { 4161 spin_unlock(&pa->pa_lock); 4162 continue; 4163 } 4164 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 4165 4166 /* adjust start or end to be adjacent to this pa */ 4167 if (pa_end <= ac->ac_o_ex.fe_logical) { 4168 BUG_ON(pa_end < start); 4169 start = pa_end; 4170 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 4171 BUG_ON(pa->pa_lstart > end); 4172 end = pa->pa_lstart; 4173 } 4174 spin_unlock(&pa->pa_lock); 4175 } 4176 rcu_read_unlock(); 4177 size = end - start; 4178 4179 /* XXX: extra loop to check we really don't overlap preallocations */ 4180 rcu_read_lock(); 4181 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 4182 ext4_lblk_t pa_end; 4183 4184 spin_lock(&pa->pa_lock); 4185 if (pa->pa_deleted == 0) { 4186 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 4187 pa->pa_len); 4188 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 4189 } 4190 spin_unlock(&pa->pa_lock); 4191 } 4192 rcu_read_unlock(); 4193 4194 /* 4195 * In this function "start" and "size" are normalized for better 4196 * alignment and length such that we could preallocate more blocks. 4197 * This normalization is done such that original request of 4198 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and 4199 * "size" boundaries. 4200 * (Note fe_len can be relaxed since FS block allocation API does not 4201 * provide gurantee on number of contiguous blocks allocation since that 4202 * depends upon free space left, etc). 4203 * In case of inode pa, later we use the allocated blocks 4204 * [pa_start + fe_logical - pa_lstart, fe_len/size] from the preallocated 4205 * range of goal/best blocks [start, size] to put it at the 4206 * ac_o_ex.fe_logical extent of this inode. 4207 * (See ext4_mb_use_inode_pa() for more details) 4208 */ 4209 if (start + size <= ac->ac_o_ex.fe_logical || 4210 start > ac->ac_o_ex.fe_logical) { 4211 ext4_msg(ac->ac_sb, KERN_ERR, 4212 "start %lu, size %lu, fe_logical %lu", 4213 (unsigned long) start, (unsigned long) size, 4214 (unsigned long) ac->ac_o_ex.fe_logical); 4215 BUG(); 4216 } 4217 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 4218 4219 /* now prepare goal request */ 4220 4221 /* XXX: is it better to align blocks WRT to logical 4222 * placement or satisfy big request as is */ 4223 ac->ac_g_ex.fe_logical = start; 4224 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 4225 4226 /* define goal start in order to merge */ 4227 if (ar->pright && (ar->lright == (start + size))) { 4228 /* merge to the right */ 4229 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 4230 &ac->ac_f_ex.fe_group, 4231 &ac->ac_f_ex.fe_start); 4232 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4233 } 4234 if (ar->pleft && (ar->lleft + 1 == start)) { 4235 /* merge to the left */ 4236 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 4237 &ac->ac_f_ex.fe_group, 4238 &ac->ac_f_ex.fe_start); 4239 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4240 } 4241 4242 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 4243 orig_size, start); 4244 } 4245 4246 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 4247 { 4248 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4249 4250 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 4251 atomic_inc(&sbi->s_bal_reqs); 4252 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 4253 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 4254 atomic_inc(&sbi->s_bal_success); 4255 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 4256 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 4257 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 4258 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 4259 atomic_inc(&sbi->s_bal_goals); 4260 if (ac->ac_found > sbi->s_mb_max_to_scan) 4261 atomic_inc(&sbi->s_bal_breaks); 4262 } 4263 4264 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 4265 trace_ext4_mballoc_alloc(ac); 4266 else 4267 trace_ext4_mballoc_prealloc(ac); 4268 } 4269 4270 /* 4271 * Called on failure; free up any blocks from the inode PA for this 4272 * context. We don't need this for MB_GROUP_PA because we only change 4273 * pa_free in ext4_mb_release_context(), but on failure, we've already 4274 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 4275 */ 4276 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 4277 { 4278 struct ext4_prealloc_space *pa = ac->ac_pa; 4279 struct ext4_buddy e4b; 4280 int err; 4281 4282 if (pa == NULL) { 4283 if (ac->ac_f_ex.fe_len == 0) 4284 return; 4285 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 4286 if (err) { 4287 /* 4288 * This should never happen since we pin the 4289 * pages in the ext4_allocation_context so 4290 * ext4_mb_load_buddy() should never fail. 4291 */ 4292 WARN(1, "mb_load_buddy failed (%d)", err); 4293 return; 4294 } 4295 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4296 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 4297 ac->ac_f_ex.fe_len); 4298 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4299 ext4_mb_unload_buddy(&e4b); 4300 return; 4301 } 4302 if (pa->pa_type == MB_INODE_PA) 4303 pa->pa_free += ac->ac_b_ex.fe_len; 4304 } 4305 4306 /* 4307 * use blocks preallocated to inode 4308 */ 4309 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 4310 struct ext4_prealloc_space *pa) 4311 { 4312 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4313 ext4_fsblk_t start; 4314 ext4_fsblk_t end; 4315 int len; 4316 4317 /* found preallocated blocks, use them */ 4318 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 4319 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 4320 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 4321 len = EXT4_NUM_B2C(sbi, end - start); 4322 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 4323 &ac->ac_b_ex.fe_start); 4324 ac->ac_b_ex.fe_len = len; 4325 ac->ac_status = AC_STATUS_FOUND; 4326 ac->ac_pa = pa; 4327 4328 BUG_ON(start < pa->pa_pstart); 4329 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 4330 BUG_ON(pa->pa_free < len); 4331 pa->pa_free -= len; 4332 4333 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 4334 } 4335 4336 /* 4337 * use blocks preallocated to locality group 4338 */ 4339 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 4340 struct ext4_prealloc_space *pa) 4341 { 4342 unsigned int len = ac->ac_o_ex.fe_len; 4343 4344 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 4345 &ac->ac_b_ex.fe_group, 4346 &ac->ac_b_ex.fe_start); 4347 ac->ac_b_ex.fe_len = len; 4348 ac->ac_status = AC_STATUS_FOUND; 4349 ac->ac_pa = pa; 4350 4351 /* we don't correct pa_pstart or pa_plen here to avoid 4352 * possible race when the group is being loaded concurrently 4353 * instead we correct pa later, after blocks are marked 4354 * in on-disk bitmap -- see ext4_mb_release_context() 4355 * Other CPUs are prevented from allocating from this pa by lg_mutex 4356 */ 4357 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 4358 pa->pa_lstart-len, len, pa); 4359 } 4360 4361 /* 4362 * Return the prealloc space that have minimal distance 4363 * from the goal block. @cpa is the prealloc 4364 * space that is having currently known minimal distance 4365 * from the goal block. 4366 */ 4367 static struct ext4_prealloc_space * 4368 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 4369 struct ext4_prealloc_space *pa, 4370 struct ext4_prealloc_space *cpa) 4371 { 4372 ext4_fsblk_t cur_distance, new_distance; 4373 4374 if (cpa == NULL) { 4375 atomic_inc(&pa->pa_count); 4376 return pa; 4377 } 4378 cur_distance = abs(goal_block - cpa->pa_pstart); 4379 new_distance = abs(goal_block - pa->pa_pstart); 4380 4381 if (cur_distance <= new_distance) 4382 return cpa; 4383 4384 /* drop the previous reference */ 4385 atomic_dec(&cpa->pa_count); 4386 atomic_inc(&pa->pa_count); 4387 return pa; 4388 } 4389 4390 /* 4391 * search goal blocks in preallocated space 4392 */ 4393 static noinline_for_stack bool 4394 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 4395 { 4396 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4397 int order, i; 4398 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4399 struct ext4_locality_group *lg; 4400 struct ext4_prealloc_space *pa, *cpa = NULL; 4401 ext4_fsblk_t goal_block; 4402 4403 /* only data can be preallocated */ 4404 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4405 return false; 4406 4407 /* first, try per-file preallocation */ 4408 rcu_read_lock(); 4409 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 4410 4411 /* all fields in this condition don't change, 4412 * so we can skip locking for them */ 4413 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 4414 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 4415 EXT4_C2B(sbi, pa->pa_len))) 4416 continue; 4417 4418 /* non-extent files can't have physical blocks past 2^32 */ 4419 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 4420 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 4421 EXT4_MAX_BLOCK_FILE_PHYS)) 4422 continue; 4423 4424 /* found preallocated blocks, use them */ 4425 spin_lock(&pa->pa_lock); 4426 if (pa->pa_deleted == 0 && pa->pa_free) { 4427 atomic_inc(&pa->pa_count); 4428 ext4_mb_use_inode_pa(ac, pa); 4429 spin_unlock(&pa->pa_lock); 4430 ac->ac_criteria = 10; 4431 rcu_read_unlock(); 4432 return true; 4433 } 4434 spin_unlock(&pa->pa_lock); 4435 } 4436 rcu_read_unlock(); 4437 4438 /* can we use group allocation? */ 4439 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 4440 return false; 4441 4442 /* inode may have no locality group for some reason */ 4443 lg = ac->ac_lg; 4444 if (lg == NULL) 4445 return false; 4446 order = fls(ac->ac_o_ex.fe_len) - 1; 4447 if (order > PREALLOC_TB_SIZE - 1) 4448 /* The max size of hash table is PREALLOC_TB_SIZE */ 4449 order = PREALLOC_TB_SIZE - 1; 4450 4451 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 4452 /* 4453 * search for the prealloc space that is having 4454 * minimal distance from the goal block. 4455 */ 4456 for (i = order; i < PREALLOC_TB_SIZE; i++) { 4457 rcu_read_lock(); 4458 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 4459 pa_inode_list) { 4460 spin_lock(&pa->pa_lock); 4461 if (pa->pa_deleted == 0 && 4462 pa->pa_free >= ac->ac_o_ex.fe_len) { 4463 4464 cpa = ext4_mb_check_group_pa(goal_block, 4465 pa, cpa); 4466 } 4467 spin_unlock(&pa->pa_lock); 4468 } 4469 rcu_read_unlock(); 4470 } 4471 if (cpa) { 4472 ext4_mb_use_group_pa(ac, cpa); 4473 ac->ac_criteria = 20; 4474 return true; 4475 } 4476 return false; 4477 } 4478 4479 /* 4480 * the function goes through all block freed in the group 4481 * but not yet committed and marks them used in in-core bitmap. 4482 * buddy must be generated from this bitmap 4483 * Need to be called with the ext4 group lock held 4484 */ 4485 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 4486 ext4_group_t group) 4487 { 4488 struct rb_node *n; 4489 struct ext4_group_info *grp; 4490 struct ext4_free_data *entry; 4491 4492 grp = ext4_get_group_info(sb, group); 4493 n = rb_first(&(grp->bb_free_root)); 4494 4495 while (n) { 4496 entry = rb_entry(n, struct ext4_free_data, efd_node); 4497 mb_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 4498 n = rb_next(n); 4499 } 4500 return; 4501 } 4502 4503 /* 4504 * the function goes through all preallocation in this group and marks them 4505 * used in in-core bitmap. buddy must be generated from this bitmap 4506 * Need to be called with ext4 group lock held 4507 */ 4508 static noinline_for_stack 4509 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 4510 ext4_group_t group) 4511 { 4512 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4513 struct ext4_prealloc_space *pa; 4514 struct list_head *cur; 4515 ext4_group_t groupnr; 4516 ext4_grpblk_t start; 4517 int preallocated = 0; 4518 int len; 4519 4520 /* all form of preallocation discards first load group, 4521 * so the only competing code is preallocation use. 4522 * we don't need any locking here 4523 * notice we do NOT ignore preallocations with pa_deleted 4524 * otherwise we could leave used blocks available for 4525 * allocation in buddy when concurrent ext4_mb_put_pa() 4526 * is dropping preallocation 4527 */ 4528 list_for_each(cur, &grp->bb_prealloc_list) { 4529 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 4530 spin_lock(&pa->pa_lock); 4531 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4532 &groupnr, &start); 4533 len = pa->pa_len; 4534 spin_unlock(&pa->pa_lock); 4535 if (unlikely(len == 0)) 4536 continue; 4537 BUG_ON(groupnr != group); 4538 mb_set_bits(bitmap, start, len); 4539 preallocated += len; 4540 } 4541 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 4542 } 4543 4544 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 4545 struct ext4_prealloc_space *pa) 4546 { 4547 struct ext4_inode_info *ei; 4548 4549 if (pa->pa_deleted) { 4550 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 4551 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 4552 pa->pa_len); 4553 return; 4554 } 4555 4556 pa->pa_deleted = 1; 4557 4558 if (pa->pa_type == MB_INODE_PA) { 4559 ei = EXT4_I(pa->pa_inode); 4560 atomic_dec(&ei->i_prealloc_active); 4561 } 4562 } 4563 4564 static void ext4_mb_pa_callback(struct rcu_head *head) 4565 { 4566 struct ext4_prealloc_space *pa; 4567 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 4568 4569 BUG_ON(atomic_read(&pa->pa_count)); 4570 BUG_ON(pa->pa_deleted == 0); 4571 kmem_cache_free(ext4_pspace_cachep, pa); 4572 } 4573 4574 /* 4575 * drops a reference to preallocated space descriptor 4576 * if this was the last reference and the space is consumed 4577 */ 4578 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 4579 struct super_block *sb, struct ext4_prealloc_space *pa) 4580 { 4581 ext4_group_t grp; 4582 ext4_fsblk_t grp_blk; 4583 4584 /* in this short window concurrent discard can set pa_deleted */ 4585 spin_lock(&pa->pa_lock); 4586 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 4587 spin_unlock(&pa->pa_lock); 4588 return; 4589 } 4590 4591 if (pa->pa_deleted == 1) { 4592 spin_unlock(&pa->pa_lock); 4593 return; 4594 } 4595 4596 ext4_mb_mark_pa_deleted(sb, pa); 4597 spin_unlock(&pa->pa_lock); 4598 4599 grp_blk = pa->pa_pstart; 4600 /* 4601 * If doing group-based preallocation, pa_pstart may be in the 4602 * next group when pa is used up 4603 */ 4604 if (pa->pa_type == MB_GROUP_PA) 4605 grp_blk--; 4606 4607 grp = ext4_get_group_number(sb, grp_blk); 4608 4609 /* 4610 * possible race: 4611 * 4612 * P1 (buddy init) P2 (regular allocation) 4613 * find block B in PA 4614 * copy on-disk bitmap to buddy 4615 * mark B in on-disk bitmap 4616 * drop PA from group 4617 * mark all PAs in buddy 4618 * 4619 * thus, P1 initializes buddy with B available. to prevent this 4620 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 4621 * against that pair 4622 */ 4623 ext4_lock_group(sb, grp); 4624 list_del(&pa->pa_group_list); 4625 ext4_unlock_group(sb, grp); 4626 4627 spin_lock(pa->pa_obj_lock); 4628 list_del_rcu(&pa->pa_inode_list); 4629 spin_unlock(pa->pa_obj_lock); 4630 4631 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4632 } 4633 4634 /* 4635 * creates new preallocated space for given inode 4636 */ 4637 static noinline_for_stack void 4638 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 4639 { 4640 struct super_block *sb = ac->ac_sb; 4641 struct ext4_sb_info *sbi = EXT4_SB(sb); 4642 struct ext4_prealloc_space *pa; 4643 struct ext4_group_info *grp; 4644 struct ext4_inode_info *ei; 4645 4646 /* preallocate only when found space is larger then requested */ 4647 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 4648 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4649 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 4650 BUG_ON(ac->ac_pa == NULL); 4651 4652 pa = ac->ac_pa; 4653 4654 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 4655 int winl; 4656 int wins; 4657 int win; 4658 int offs; 4659 4660 /* we can't allocate as much as normalizer wants. 4661 * so, found space must get proper lstart 4662 * to cover original request */ 4663 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 4664 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 4665 4666 /* we're limited by original request in that 4667 * logical block must be covered any way 4668 * winl is window we can move our chunk within */ 4669 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 4670 4671 /* also, we should cover whole original request */ 4672 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 4673 4674 /* the smallest one defines real window */ 4675 win = min(winl, wins); 4676 4677 offs = ac->ac_o_ex.fe_logical % 4678 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4679 if (offs && offs < win) 4680 win = offs; 4681 4682 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 4683 EXT4_NUM_B2C(sbi, win); 4684 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 4685 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 4686 } 4687 4688 /* preallocation can change ac_b_ex, thus we store actually 4689 * allocated blocks for history */ 4690 ac->ac_f_ex = ac->ac_b_ex; 4691 4692 pa->pa_lstart = ac->ac_b_ex.fe_logical; 4693 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4694 pa->pa_len = ac->ac_b_ex.fe_len; 4695 pa->pa_free = pa->pa_len; 4696 spin_lock_init(&pa->pa_lock); 4697 INIT_LIST_HEAD(&pa->pa_inode_list); 4698 INIT_LIST_HEAD(&pa->pa_group_list); 4699 pa->pa_deleted = 0; 4700 pa->pa_type = MB_INODE_PA; 4701 4702 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 4703 pa->pa_len, pa->pa_lstart); 4704 trace_ext4_mb_new_inode_pa(ac, pa); 4705 4706 ext4_mb_use_inode_pa(ac, pa); 4707 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 4708 4709 ei = EXT4_I(ac->ac_inode); 4710 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 4711 4712 pa->pa_obj_lock = &ei->i_prealloc_lock; 4713 pa->pa_inode = ac->ac_inode; 4714 4715 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 4716 4717 spin_lock(pa->pa_obj_lock); 4718 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 4719 spin_unlock(pa->pa_obj_lock); 4720 atomic_inc(&ei->i_prealloc_active); 4721 } 4722 4723 /* 4724 * creates new preallocated space for locality group inodes belongs to 4725 */ 4726 static noinline_for_stack void 4727 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 4728 { 4729 struct super_block *sb = ac->ac_sb; 4730 struct ext4_locality_group *lg; 4731 struct ext4_prealloc_space *pa; 4732 struct ext4_group_info *grp; 4733 4734 /* preallocate only when found space is larger then requested */ 4735 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 4736 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4737 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 4738 BUG_ON(ac->ac_pa == NULL); 4739 4740 pa = ac->ac_pa; 4741 4742 /* preallocation can change ac_b_ex, thus we store actually 4743 * allocated blocks for history */ 4744 ac->ac_f_ex = ac->ac_b_ex; 4745 4746 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4747 pa->pa_lstart = pa->pa_pstart; 4748 pa->pa_len = ac->ac_b_ex.fe_len; 4749 pa->pa_free = pa->pa_len; 4750 spin_lock_init(&pa->pa_lock); 4751 INIT_LIST_HEAD(&pa->pa_inode_list); 4752 INIT_LIST_HEAD(&pa->pa_group_list); 4753 pa->pa_deleted = 0; 4754 pa->pa_type = MB_GROUP_PA; 4755 4756 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 4757 pa->pa_len, pa->pa_lstart); 4758 trace_ext4_mb_new_group_pa(ac, pa); 4759 4760 ext4_mb_use_group_pa(ac, pa); 4761 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 4762 4763 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 4764 lg = ac->ac_lg; 4765 BUG_ON(lg == NULL); 4766 4767 pa->pa_obj_lock = &lg->lg_prealloc_lock; 4768 pa->pa_inode = NULL; 4769 4770 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 4771 4772 /* 4773 * We will later add the new pa to the right bucket 4774 * after updating the pa_free in ext4_mb_release_context 4775 */ 4776 } 4777 4778 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 4779 { 4780 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4781 ext4_mb_new_group_pa(ac); 4782 else 4783 ext4_mb_new_inode_pa(ac); 4784 } 4785 4786 /* 4787 * finds all unused blocks in on-disk bitmap, frees them in 4788 * in-core bitmap and buddy. 4789 * @pa must be unlinked from inode and group lists, so that 4790 * nobody else can find/use it. 4791 * the caller MUST hold group/inode locks. 4792 * TODO: optimize the case when there are no in-core structures yet 4793 */ 4794 static noinline_for_stack int 4795 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 4796 struct ext4_prealloc_space *pa) 4797 { 4798 struct super_block *sb = e4b->bd_sb; 4799 struct ext4_sb_info *sbi = EXT4_SB(sb); 4800 unsigned int end; 4801 unsigned int next; 4802 ext4_group_t group; 4803 ext4_grpblk_t bit; 4804 unsigned long long grp_blk_start; 4805 int free = 0; 4806 4807 BUG_ON(pa->pa_deleted == 0); 4808 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 4809 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 4810 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 4811 end = bit + pa->pa_len; 4812 4813 while (bit < end) { 4814 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 4815 if (bit >= end) 4816 break; 4817 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 4818 mb_debug(sb, "free preallocated %u/%u in group %u\n", 4819 (unsigned) ext4_group_first_block_no(sb, group) + bit, 4820 (unsigned) next - bit, (unsigned) group); 4821 free += next - bit; 4822 4823 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 4824 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 4825 EXT4_C2B(sbi, bit)), 4826 next - bit); 4827 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 4828 bit = next + 1; 4829 } 4830 if (free != pa->pa_free) { 4831 ext4_msg(e4b->bd_sb, KERN_CRIT, 4832 "pa %p: logic %lu, phys. %lu, len %d", 4833 pa, (unsigned long) pa->pa_lstart, 4834 (unsigned long) pa->pa_pstart, 4835 pa->pa_len); 4836 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 4837 free, pa->pa_free); 4838 /* 4839 * pa is already deleted so we use the value obtained 4840 * from the bitmap and continue. 4841 */ 4842 } 4843 atomic_add(free, &sbi->s_mb_discarded); 4844 4845 return 0; 4846 } 4847 4848 static noinline_for_stack int 4849 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 4850 struct ext4_prealloc_space *pa) 4851 { 4852 struct super_block *sb = e4b->bd_sb; 4853 ext4_group_t group; 4854 ext4_grpblk_t bit; 4855 4856 trace_ext4_mb_release_group_pa(sb, pa); 4857 BUG_ON(pa->pa_deleted == 0); 4858 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 4859 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 4860 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 4861 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 4862 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 4863 4864 return 0; 4865 } 4866 4867 /* 4868 * releases all preallocations in given group 4869 * 4870 * first, we need to decide discard policy: 4871 * - when do we discard 4872 * 1) ENOSPC 4873 * - how many do we discard 4874 * 1) how many requested 4875 */ 4876 static noinline_for_stack int 4877 ext4_mb_discard_group_preallocations(struct super_block *sb, 4878 ext4_group_t group, int *busy) 4879 { 4880 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4881 struct buffer_head *bitmap_bh = NULL; 4882 struct ext4_prealloc_space *pa, *tmp; 4883 struct list_head list; 4884 struct ext4_buddy e4b; 4885 int err; 4886 int free = 0; 4887 4888 mb_debug(sb, "discard preallocation for group %u\n", group); 4889 if (list_empty(&grp->bb_prealloc_list)) 4890 goto out_dbg; 4891 4892 bitmap_bh = ext4_read_block_bitmap(sb, group); 4893 if (IS_ERR(bitmap_bh)) { 4894 err = PTR_ERR(bitmap_bh); 4895 ext4_error_err(sb, -err, 4896 "Error %d reading block bitmap for %u", 4897 err, group); 4898 goto out_dbg; 4899 } 4900 4901 err = ext4_mb_load_buddy(sb, group, &e4b); 4902 if (err) { 4903 ext4_warning(sb, "Error %d loading buddy information for %u", 4904 err, group); 4905 put_bh(bitmap_bh); 4906 goto out_dbg; 4907 } 4908 4909 INIT_LIST_HEAD(&list); 4910 ext4_lock_group(sb, group); 4911 list_for_each_entry_safe(pa, tmp, 4912 &grp->bb_prealloc_list, pa_group_list) { 4913 spin_lock(&pa->pa_lock); 4914 if (atomic_read(&pa->pa_count)) { 4915 spin_unlock(&pa->pa_lock); 4916 *busy = 1; 4917 continue; 4918 } 4919 if (pa->pa_deleted) { 4920 spin_unlock(&pa->pa_lock); 4921 continue; 4922 } 4923 4924 /* seems this one can be freed ... */ 4925 ext4_mb_mark_pa_deleted(sb, pa); 4926 4927 if (!free) 4928 this_cpu_inc(discard_pa_seq); 4929 4930 /* we can trust pa_free ... */ 4931 free += pa->pa_free; 4932 4933 spin_unlock(&pa->pa_lock); 4934 4935 list_del(&pa->pa_group_list); 4936 list_add(&pa->u.pa_tmp_list, &list); 4937 } 4938 4939 /* now free all selected PAs */ 4940 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4941 4942 /* remove from object (inode or locality group) */ 4943 spin_lock(pa->pa_obj_lock); 4944 list_del_rcu(&pa->pa_inode_list); 4945 spin_unlock(pa->pa_obj_lock); 4946 4947 if (pa->pa_type == MB_GROUP_PA) 4948 ext4_mb_release_group_pa(&e4b, pa); 4949 else 4950 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4951 4952 list_del(&pa->u.pa_tmp_list); 4953 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4954 } 4955 4956 ext4_unlock_group(sb, group); 4957 ext4_mb_unload_buddy(&e4b); 4958 put_bh(bitmap_bh); 4959 out_dbg: 4960 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 4961 free, group, grp->bb_free); 4962 return free; 4963 } 4964 4965 /* 4966 * releases all non-used preallocated blocks for given inode 4967 * 4968 * It's important to discard preallocations under i_data_sem 4969 * We don't want another block to be served from the prealloc 4970 * space when we are discarding the inode prealloc space. 4971 * 4972 * FIXME!! Make sure it is valid at all the call sites 4973 */ 4974 void ext4_discard_preallocations(struct inode *inode, unsigned int needed) 4975 { 4976 struct ext4_inode_info *ei = EXT4_I(inode); 4977 struct super_block *sb = inode->i_sb; 4978 struct buffer_head *bitmap_bh = NULL; 4979 struct ext4_prealloc_space *pa, *tmp; 4980 ext4_group_t group = 0; 4981 struct list_head list; 4982 struct ext4_buddy e4b; 4983 int err; 4984 4985 if (!S_ISREG(inode->i_mode)) { 4986 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 4987 return; 4988 } 4989 4990 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 4991 return; 4992 4993 mb_debug(sb, "discard preallocation for inode %lu\n", 4994 inode->i_ino); 4995 trace_ext4_discard_preallocations(inode, 4996 atomic_read(&ei->i_prealloc_active), needed); 4997 4998 INIT_LIST_HEAD(&list); 4999 5000 if (needed == 0) 5001 needed = UINT_MAX; 5002 5003 repeat: 5004 /* first, collect all pa's in the inode */ 5005 spin_lock(&ei->i_prealloc_lock); 5006 while (!list_empty(&ei->i_prealloc_list) && needed) { 5007 pa = list_entry(ei->i_prealloc_list.prev, 5008 struct ext4_prealloc_space, pa_inode_list); 5009 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 5010 spin_lock(&pa->pa_lock); 5011 if (atomic_read(&pa->pa_count)) { 5012 /* this shouldn't happen often - nobody should 5013 * use preallocation while we're discarding it */ 5014 spin_unlock(&pa->pa_lock); 5015 spin_unlock(&ei->i_prealloc_lock); 5016 ext4_msg(sb, KERN_ERR, 5017 "uh-oh! used pa while discarding"); 5018 WARN_ON(1); 5019 schedule_timeout_uninterruptible(HZ); 5020 goto repeat; 5021 5022 } 5023 if (pa->pa_deleted == 0) { 5024 ext4_mb_mark_pa_deleted(sb, pa); 5025 spin_unlock(&pa->pa_lock); 5026 list_del_rcu(&pa->pa_inode_list); 5027 list_add(&pa->u.pa_tmp_list, &list); 5028 needed--; 5029 continue; 5030 } 5031 5032 /* someone is deleting pa right now */ 5033 spin_unlock(&pa->pa_lock); 5034 spin_unlock(&ei->i_prealloc_lock); 5035 5036 /* we have to wait here because pa_deleted 5037 * doesn't mean pa is already unlinked from 5038 * the list. as we might be called from 5039 * ->clear_inode() the inode will get freed 5040 * and concurrent thread which is unlinking 5041 * pa from inode's list may access already 5042 * freed memory, bad-bad-bad */ 5043 5044 /* XXX: if this happens too often, we can 5045 * add a flag to force wait only in case 5046 * of ->clear_inode(), but not in case of 5047 * regular truncate */ 5048 schedule_timeout_uninterruptible(HZ); 5049 goto repeat; 5050 } 5051 spin_unlock(&ei->i_prealloc_lock); 5052 5053 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5054 BUG_ON(pa->pa_type != MB_INODE_PA); 5055 group = ext4_get_group_number(sb, pa->pa_pstart); 5056 5057 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5058 GFP_NOFS|__GFP_NOFAIL); 5059 if (err) { 5060 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5061 err, group); 5062 continue; 5063 } 5064 5065 bitmap_bh = ext4_read_block_bitmap(sb, group); 5066 if (IS_ERR(bitmap_bh)) { 5067 err = PTR_ERR(bitmap_bh); 5068 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 5069 err, group); 5070 ext4_mb_unload_buddy(&e4b); 5071 continue; 5072 } 5073 5074 ext4_lock_group(sb, group); 5075 list_del(&pa->pa_group_list); 5076 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5077 ext4_unlock_group(sb, group); 5078 5079 ext4_mb_unload_buddy(&e4b); 5080 put_bh(bitmap_bh); 5081 5082 list_del(&pa->u.pa_tmp_list); 5083 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5084 } 5085 } 5086 5087 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 5088 { 5089 struct ext4_prealloc_space *pa; 5090 5091 BUG_ON(ext4_pspace_cachep == NULL); 5092 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 5093 if (!pa) 5094 return -ENOMEM; 5095 atomic_set(&pa->pa_count, 1); 5096 ac->ac_pa = pa; 5097 return 0; 5098 } 5099 5100 static void ext4_mb_pa_free(struct ext4_allocation_context *ac) 5101 { 5102 struct ext4_prealloc_space *pa = ac->ac_pa; 5103 5104 BUG_ON(!pa); 5105 ac->ac_pa = NULL; 5106 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 5107 kmem_cache_free(ext4_pspace_cachep, pa); 5108 } 5109 5110 #ifdef CONFIG_EXT4_DEBUG 5111 static inline void ext4_mb_show_pa(struct super_block *sb) 5112 { 5113 ext4_group_t i, ngroups; 5114 5115 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 5116 return; 5117 5118 ngroups = ext4_get_groups_count(sb); 5119 mb_debug(sb, "groups: "); 5120 for (i = 0; i < ngroups; i++) { 5121 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 5122 struct ext4_prealloc_space *pa; 5123 ext4_grpblk_t start; 5124 struct list_head *cur; 5125 ext4_lock_group(sb, i); 5126 list_for_each(cur, &grp->bb_prealloc_list) { 5127 pa = list_entry(cur, struct ext4_prealloc_space, 5128 pa_group_list); 5129 spin_lock(&pa->pa_lock); 5130 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5131 NULL, &start); 5132 spin_unlock(&pa->pa_lock); 5133 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 5134 pa->pa_len); 5135 } 5136 ext4_unlock_group(sb, i); 5137 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 5138 grp->bb_fragments); 5139 } 5140 } 5141 5142 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5143 { 5144 struct super_block *sb = ac->ac_sb; 5145 5146 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 5147 return; 5148 5149 mb_debug(sb, "Can't allocate:" 5150 " Allocation context details:"); 5151 mb_debug(sb, "status %u flags 0x%x", 5152 ac->ac_status, ac->ac_flags); 5153 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 5154 "goal %lu/%lu/%lu@%lu, " 5155 "best %lu/%lu/%lu@%lu cr %d", 5156 (unsigned long)ac->ac_o_ex.fe_group, 5157 (unsigned long)ac->ac_o_ex.fe_start, 5158 (unsigned long)ac->ac_o_ex.fe_len, 5159 (unsigned long)ac->ac_o_ex.fe_logical, 5160 (unsigned long)ac->ac_g_ex.fe_group, 5161 (unsigned long)ac->ac_g_ex.fe_start, 5162 (unsigned long)ac->ac_g_ex.fe_len, 5163 (unsigned long)ac->ac_g_ex.fe_logical, 5164 (unsigned long)ac->ac_b_ex.fe_group, 5165 (unsigned long)ac->ac_b_ex.fe_start, 5166 (unsigned long)ac->ac_b_ex.fe_len, 5167 (unsigned long)ac->ac_b_ex.fe_logical, 5168 (int)ac->ac_criteria); 5169 mb_debug(sb, "%u found", ac->ac_found); 5170 ext4_mb_show_pa(sb); 5171 } 5172 #else 5173 static inline void ext4_mb_show_pa(struct super_block *sb) 5174 { 5175 return; 5176 } 5177 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5178 { 5179 ext4_mb_show_pa(ac->ac_sb); 5180 return; 5181 } 5182 #endif 5183 5184 /* 5185 * We use locality group preallocation for small size file. The size of the 5186 * file is determined by the current size or the resulting size after 5187 * allocation which ever is larger 5188 * 5189 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 5190 */ 5191 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 5192 { 5193 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5194 int bsbits = ac->ac_sb->s_blocksize_bits; 5195 loff_t size, isize; 5196 5197 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 5198 return; 5199 5200 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 5201 return; 5202 5203 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 5204 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 5205 >> bsbits; 5206 5207 if ((size == isize) && !ext4_fs_is_busy(sbi) && 5208 !inode_is_open_for_write(ac->ac_inode)) { 5209 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 5210 return; 5211 } 5212 5213 if (sbi->s_mb_group_prealloc <= 0) { 5214 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5215 return; 5216 } 5217 5218 /* don't use group allocation for large files */ 5219 size = max(size, isize); 5220 if (size > sbi->s_mb_stream_request) { 5221 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5222 return; 5223 } 5224 5225 BUG_ON(ac->ac_lg != NULL); 5226 /* 5227 * locality group prealloc space are per cpu. The reason for having 5228 * per cpu locality group is to reduce the contention between block 5229 * request from multiple CPUs. 5230 */ 5231 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 5232 5233 /* we're going to use group allocation */ 5234 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 5235 5236 /* serialize all allocations in the group */ 5237 mutex_lock(&ac->ac_lg->lg_mutex); 5238 } 5239 5240 static noinline_for_stack int 5241 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 5242 struct ext4_allocation_request *ar) 5243 { 5244 struct super_block *sb = ar->inode->i_sb; 5245 struct ext4_sb_info *sbi = EXT4_SB(sb); 5246 struct ext4_super_block *es = sbi->s_es; 5247 ext4_group_t group; 5248 unsigned int len; 5249 ext4_fsblk_t goal; 5250 ext4_grpblk_t block; 5251 5252 /* we can't allocate > group size */ 5253 len = ar->len; 5254 5255 /* just a dirty hack to filter too big requests */ 5256 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 5257 len = EXT4_CLUSTERS_PER_GROUP(sb); 5258 5259 /* start searching from the goal */ 5260 goal = ar->goal; 5261 if (goal < le32_to_cpu(es->s_first_data_block) || 5262 goal >= ext4_blocks_count(es)) 5263 goal = le32_to_cpu(es->s_first_data_block); 5264 ext4_get_group_no_and_offset(sb, goal, &group, &block); 5265 5266 /* set up allocation goals */ 5267 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 5268 ac->ac_status = AC_STATUS_CONTINUE; 5269 ac->ac_sb = sb; 5270 ac->ac_inode = ar->inode; 5271 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 5272 ac->ac_o_ex.fe_group = group; 5273 ac->ac_o_ex.fe_start = block; 5274 ac->ac_o_ex.fe_len = len; 5275 ac->ac_g_ex = ac->ac_o_ex; 5276 ac->ac_flags = ar->flags; 5277 5278 /* we have to define context: we'll work with a file or 5279 * locality group. this is a policy, actually */ 5280 ext4_mb_group_or_file(ac); 5281 5282 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 5283 "left: %u/%u, right %u/%u to %swritable\n", 5284 (unsigned) ar->len, (unsigned) ar->logical, 5285 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 5286 (unsigned) ar->lleft, (unsigned) ar->pleft, 5287 (unsigned) ar->lright, (unsigned) ar->pright, 5288 inode_is_open_for_write(ar->inode) ? "" : "non-"); 5289 return 0; 5290 5291 } 5292 5293 static noinline_for_stack void 5294 ext4_mb_discard_lg_preallocations(struct super_block *sb, 5295 struct ext4_locality_group *lg, 5296 int order, int total_entries) 5297 { 5298 ext4_group_t group = 0; 5299 struct ext4_buddy e4b; 5300 struct list_head discard_list; 5301 struct ext4_prealloc_space *pa, *tmp; 5302 5303 mb_debug(sb, "discard locality group preallocation\n"); 5304 5305 INIT_LIST_HEAD(&discard_list); 5306 5307 spin_lock(&lg->lg_prealloc_lock); 5308 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 5309 pa_inode_list, 5310 lockdep_is_held(&lg->lg_prealloc_lock)) { 5311 spin_lock(&pa->pa_lock); 5312 if (atomic_read(&pa->pa_count)) { 5313 /* 5314 * This is the pa that we just used 5315 * for block allocation. So don't 5316 * free that 5317 */ 5318 spin_unlock(&pa->pa_lock); 5319 continue; 5320 } 5321 if (pa->pa_deleted) { 5322 spin_unlock(&pa->pa_lock); 5323 continue; 5324 } 5325 /* only lg prealloc space */ 5326 BUG_ON(pa->pa_type != MB_GROUP_PA); 5327 5328 /* seems this one can be freed ... */ 5329 ext4_mb_mark_pa_deleted(sb, pa); 5330 spin_unlock(&pa->pa_lock); 5331 5332 list_del_rcu(&pa->pa_inode_list); 5333 list_add(&pa->u.pa_tmp_list, &discard_list); 5334 5335 total_entries--; 5336 if (total_entries <= 5) { 5337 /* 5338 * we want to keep only 5 entries 5339 * allowing it to grow to 8. This 5340 * mak sure we don't call discard 5341 * soon for this list. 5342 */ 5343 break; 5344 } 5345 } 5346 spin_unlock(&lg->lg_prealloc_lock); 5347 5348 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 5349 int err; 5350 5351 group = ext4_get_group_number(sb, pa->pa_pstart); 5352 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5353 GFP_NOFS|__GFP_NOFAIL); 5354 if (err) { 5355 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5356 err, group); 5357 continue; 5358 } 5359 ext4_lock_group(sb, group); 5360 list_del(&pa->pa_group_list); 5361 ext4_mb_release_group_pa(&e4b, pa); 5362 ext4_unlock_group(sb, group); 5363 5364 ext4_mb_unload_buddy(&e4b); 5365 list_del(&pa->u.pa_tmp_list); 5366 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5367 } 5368 } 5369 5370 /* 5371 * We have incremented pa_count. So it cannot be freed at this 5372 * point. Also we hold lg_mutex. So no parallel allocation is 5373 * possible from this lg. That means pa_free cannot be updated. 5374 * 5375 * A parallel ext4_mb_discard_group_preallocations is possible. 5376 * which can cause the lg_prealloc_list to be updated. 5377 */ 5378 5379 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 5380 { 5381 int order, added = 0, lg_prealloc_count = 1; 5382 struct super_block *sb = ac->ac_sb; 5383 struct ext4_locality_group *lg = ac->ac_lg; 5384 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 5385 5386 order = fls(pa->pa_free) - 1; 5387 if (order > PREALLOC_TB_SIZE - 1) 5388 /* The max size of hash table is PREALLOC_TB_SIZE */ 5389 order = PREALLOC_TB_SIZE - 1; 5390 /* Add the prealloc space to lg */ 5391 spin_lock(&lg->lg_prealloc_lock); 5392 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 5393 pa_inode_list, 5394 lockdep_is_held(&lg->lg_prealloc_lock)) { 5395 spin_lock(&tmp_pa->pa_lock); 5396 if (tmp_pa->pa_deleted) { 5397 spin_unlock(&tmp_pa->pa_lock); 5398 continue; 5399 } 5400 if (!added && pa->pa_free < tmp_pa->pa_free) { 5401 /* Add to the tail of the previous entry */ 5402 list_add_tail_rcu(&pa->pa_inode_list, 5403 &tmp_pa->pa_inode_list); 5404 added = 1; 5405 /* 5406 * we want to count the total 5407 * number of entries in the list 5408 */ 5409 } 5410 spin_unlock(&tmp_pa->pa_lock); 5411 lg_prealloc_count++; 5412 } 5413 if (!added) 5414 list_add_tail_rcu(&pa->pa_inode_list, 5415 &lg->lg_prealloc_list[order]); 5416 spin_unlock(&lg->lg_prealloc_lock); 5417 5418 /* Now trim the list to be not more than 8 elements */ 5419 if (lg_prealloc_count > 8) { 5420 ext4_mb_discard_lg_preallocations(sb, lg, 5421 order, lg_prealloc_count); 5422 return; 5423 } 5424 return ; 5425 } 5426 5427 /* 5428 * if per-inode prealloc list is too long, trim some PA 5429 */ 5430 static void ext4_mb_trim_inode_pa(struct inode *inode) 5431 { 5432 struct ext4_inode_info *ei = EXT4_I(inode); 5433 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5434 int count, delta; 5435 5436 count = atomic_read(&ei->i_prealloc_active); 5437 delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1; 5438 if (count > sbi->s_mb_max_inode_prealloc + delta) { 5439 count -= sbi->s_mb_max_inode_prealloc; 5440 ext4_discard_preallocations(inode, count); 5441 } 5442 } 5443 5444 /* 5445 * release all resource we used in allocation 5446 */ 5447 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 5448 { 5449 struct inode *inode = ac->ac_inode; 5450 struct ext4_inode_info *ei = EXT4_I(inode); 5451 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5452 struct ext4_prealloc_space *pa = ac->ac_pa; 5453 if (pa) { 5454 if (pa->pa_type == MB_GROUP_PA) { 5455 /* see comment in ext4_mb_use_group_pa() */ 5456 spin_lock(&pa->pa_lock); 5457 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5458 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5459 pa->pa_free -= ac->ac_b_ex.fe_len; 5460 pa->pa_len -= ac->ac_b_ex.fe_len; 5461 spin_unlock(&pa->pa_lock); 5462 5463 /* 5464 * We want to add the pa to the right bucket. 5465 * Remove it from the list and while adding 5466 * make sure the list to which we are adding 5467 * doesn't grow big. 5468 */ 5469 if (likely(pa->pa_free)) { 5470 spin_lock(pa->pa_obj_lock); 5471 list_del_rcu(&pa->pa_inode_list); 5472 spin_unlock(pa->pa_obj_lock); 5473 ext4_mb_add_n_trim(ac); 5474 } 5475 } 5476 5477 if (pa->pa_type == MB_INODE_PA) { 5478 /* 5479 * treat per-inode prealloc list as a lru list, then try 5480 * to trim the least recently used PA. 5481 */ 5482 spin_lock(pa->pa_obj_lock); 5483 list_move(&pa->pa_inode_list, &ei->i_prealloc_list); 5484 spin_unlock(pa->pa_obj_lock); 5485 } 5486 5487 ext4_mb_put_pa(ac, ac->ac_sb, pa); 5488 } 5489 if (ac->ac_bitmap_page) 5490 put_page(ac->ac_bitmap_page); 5491 if (ac->ac_buddy_page) 5492 put_page(ac->ac_buddy_page); 5493 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5494 mutex_unlock(&ac->ac_lg->lg_mutex); 5495 ext4_mb_collect_stats(ac); 5496 ext4_mb_trim_inode_pa(inode); 5497 return 0; 5498 } 5499 5500 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 5501 { 5502 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 5503 int ret; 5504 int freed = 0, busy = 0; 5505 int retry = 0; 5506 5507 trace_ext4_mb_discard_preallocations(sb, needed); 5508 5509 if (needed == 0) 5510 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 5511 repeat: 5512 for (i = 0; i < ngroups && needed > 0; i++) { 5513 ret = ext4_mb_discard_group_preallocations(sb, i, &busy); 5514 freed += ret; 5515 needed -= ret; 5516 cond_resched(); 5517 } 5518 5519 if (needed > 0 && busy && ++retry < 3) { 5520 busy = 0; 5521 goto repeat; 5522 } 5523 5524 return freed; 5525 } 5526 5527 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 5528 struct ext4_allocation_context *ac, u64 *seq) 5529 { 5530 int freed; 5531 u64 seq_retry = 0; 5532 bool ret = false; 5533 5534 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 5535 if (freed) { 5536 ret = true; 5537 goto out_dbg; 5538 } 5539 seq_retry = ext4_get_discard_pa_seq_sum(); 5540 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 5541 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 5542 *seq = seq_retry; 5543 ret = true; 5544 } 5545 5546 out_dbg: 5547 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 5548 return ret; 5549 } 5550 5551 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle, 5552 struct ext4_allocation_request *ar, int *errp); 5553 5554 /* 5555 * Main entry point into mballoc to allocate blocks 5556 * it tries to use preallocation first, then falls back 5557 * to usual allocation 5558 */ 5559 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 5560 struct ext4_allocation_request *ar, int *errp) 5561 { 5562 struct ext4_allocation_context *ac = NULL; 5563 struct ext4_sb_info *sbi; 5564 struct super_block *sb; 5565 ext4_fsblk_t block = 0; 5566 unsigned int inquota = 0; 5567 unsigned int reserv_clstrs = 0; 5568 u64 seq; 5569 5570 might_sleep(); 5571 sb = ar->inode->i_sb; 5572 sbi = EXT4_SB(sb); 5573 5574 trace_ext4_request_blocks(ar); 5575 if (sbi->s_mount_state & EXT4_FC_REPLAY) 5576 return ext4_mb_new_blocks_simple(handle, ar, errp); 5577 5578 /* Allow to use superuser reservation for quota file */ 5579 if (ext4_is_quota_file(ar->inode)) 5580 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 5581 5582 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 5583 /* Without delayed allocation we need to verify 5584 * there is enough free blocks to do block allocation 5585 * and verify allocation doesn't exceed the quota limits. 5586 */ 5587 while (ar->len && 5588 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 5589 5590 /* let others to free the space */ 5591 cond_resched(); 5592 ar->len = ar->len >> 1; 5593 } 5594 if (!ar->len) { 5595 ext4_mb_show_pa(sb); 5596 *errp = -ENOSPC; 5597 return 0; 5598 } 5599 reserv_clstrs = ar->len; 5600 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 5601 dquot_alloc_block_nofail(ar->inode, 5602 EXT4_C2B(sbi, ar->len)); 5603 } else { 5604 while (ar->len && 5605 dquot_alloc_block(ar->inode, 5606 EXT4_C2B(sbi, ar->len))) { 5607 5608 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 5609 ar->len--; 5610 } 5611 } 5612 inquota = ar->len; 5613 if (ar->len == 0) { 5614 *errp = -EDQUOT; 5615 goto out; 5616 } 5617 } 5618 5619 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 5620 if (!ac) { 5621 ar->len = 0; 5622 *errp = -ENOMEM; 5623 goto out; 5624 } 5625 5626 *errp = ext4_mb_initialize_context(ac, ar); 5627 if (*errp) { 5628 ar->len = 0; 5629 goto out; 5630 } 5631 5632 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 5633 seq = this_cpu_read(discard_pa_seq); 5634 if (!ext4_mb_use_preallocated(ac)) { 5635 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 5636 ext4_mb_normalize_request(ac, ar); 5637 5638 *errp = ext4_mb_pa_alloc(ac); 5639 if (*errp) 5640 goto errout; 5641 repeat: 5642 /* allocate space in core */ 5643 *errp = ext4_mb_regular_allocator(ac); 5644 /* 5645 * pa allocated above is added to grp->bb_prealloc_list only 5646 * when we were able to allocate some block i.e. when 5647 * ac->ac_status == AC_STATUS_FOUND. 5648 * And error from above mean ac->ac_status != AC_STATUS_FOUND 5649 * So we have to free this pa here itself. 5650 */ 5651 if (*errp) { 5652 ext4_mb_pa_free(ac); 5653 ext4_discard_allocated_blocks(ac); 5654 goto errout; 5655 } 5656 if (ac->ac_status == AC_STATUS_FOUND && 5657 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 5658 ext4_mb_pa_free(ac); 5659 } 5660 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 5661 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 5662 if (*errp) { 5663 ext4_discard_allocated_blocks(ac); 5664 goto errout; 5665 } else { 5666 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5667 ar->len = ac->ac_b_ex.fe_len; 5668 } 5669 } else { 5670 if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 5671 goto repeat; 5672 /* 5673 * If block allocation fails then the pa allocated above 5674 * needs to be freed here itself. 5675 */ 5676 ext4_mb_pa_free(ac); 5677 *errp = -ENOSPC; 5678 } 5679 5680 errout: 5681 if (*errp) { 5682 ac->ac_b_ex.fe_len = 0; 5683 ar->len = 0; 5684 ext4_mb_show_ac(ac); 5685 } 5686 ext4_mb_release_context(ac); 5687 out: 5688 if (ac) 5689 kmem_cache_free(ext4_ac_cachep, ac); 5690 if (inquota && ar->len < inquota) 5691 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 5692 if (!ar->len) { 5693 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 5694 /* release all the reserved blocks if non delalloc */ 5695 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 5696 reserv_clstrs); 5697 } 5698 5699 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 5700 5701 return block; 5702 } 5703 5704 /* 5705 * We can merge two free data extents only if the physical blocks 5706 * are contiguous, AND the extents were freed by the same transaction, 5707 * AND the blocks are associated with the same group. 5708 */ 5709 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 5710 struct ext4_free_data *entry, 5711 struct ext4_free_data *new_entry, 5712 struct rb_root *entry_rb_root) 5713 { 5714 if ((entry->efd_tid != new_entry->efd_tid) || 5715 (entry->efd_group != new_entry->efd_group)) 5716 return; 5717 if (entry->efd_start_cluster + entry->efd_count == 5718 new_entry->efd_start_cluster) { 5719 new_entry->efd_start_cluster = entry->efd_start_cluster; 5720 new_entry->efd_count += entry->efd_count; 5721 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 5722 entry->efd_start_cluster) { 5723 new_entry->efd_count += entry->efd_count; 5724 } else 5725 return; 5726 spin_lock(&sbi->s_md_lock); 5727 list_del(&entry->efd_list); 5728 spin_unlock(&sbi->s_md_lock); 5729 rb_erase(&entry->efd_node, entry_rb_root); 5730 kmem_cache_free(ext4_free_data_cachep, entry); 5731 } 5732 5733 static noinline_for_stack int 5734 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 5735 struct ext4_free_data *new_entry) 5736 { 5737 ext4_group_t group = e4b->bd_group; 5738 ext4_grpblk_t cluster; 5739 ext4_grpblk_t clusters = new_entry->efd_count; 5740 struct ext4_free_data *entry; 5741 struct ext4_group_info *db = e4b->bd_info; 5742 struct super_block *sb = e4b->bd_sb; 5743 struct ext4_sb_info *sbi = EXT4_SB(sb); 5744 struct rb_node **n = &db->bb_free_root.rb_node, *node; 5745 struct rb_node *parent = NULL, *new_node; 5746 5747 BUG_ON(!ext4_handle_valid(handle)); 5748 BUG_ON(e4b->bd_bitmap_page == NULL); 5749 BUG_ON(e4b->bd_buddy_page == NULL); 5750 5751 new_node = &new_entry->efd_node; 5752 cluster = new_entry->efd_start_cluster; 5753 5754 if (!*n) { 5755 /* first free block exent. We need to 5756 protect buddy cache from being freed, 5757 * otherwise we'll refresh it from 5758 * on-disk bitmap and lose not-yet-available 5759 * blocks */ 5760 get_page(e4b->bd_buddy_page); 5761 get_page(e4b->bd_bitmap_page); 5762 } 5763 while (*n) { 5764 parent = *n; 5765 entry = rb_entry(parent, struct ext4_free_data, efd_node); 5766 if (cluster < entry->efd_start_cluster) 5767 n = &(*n)->rb_left; 5768 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 5769 n = &(*n)->rb_right; 5770 else { 5771 ext4_grp_locked_error(sb, group, 0, 5772 ext4_group_first_block_no(sb, group) + 5773 EXT4_C2B(sbi, cluster), 5774 "Block already on to-be-freed list"); 5775 kmem_cache_free(ext4_free_data_cachep, new_entry); 5776 return 0; 5777 } 5778 } 5779 5780 rb_link_node(new_node, parent, n); 5781 rb_insert_color(new_node, &db->bb_free_root); 5782 5783 /* Now try to see the extent can be merged to left and right */ 5784 node = rb_prev(new_node); 5785 if (node) { 5786 entry = rb_entry(node, struct ext4_free_data, efd_node); 5787 ext4_try_merge_freed_extent(sbi, entry, new_entry, 5788 &(db->bb_free_root)); 5789 } 5790 5791 node = rb_next(new_node); 5792 if (node) { 5793 entry = rb_entry(node, struct ext4_free_data, efd_node); 5794 ext4_try_merge_freed_extent(sbi, entry, new_entry, 5795 &(db->bb_free_root)); 5796 } 5797 5798 spin_lock(&sbi->s_md_lock); 5799 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 5800 sbi->s_mb_free_pending += clusters; 5801 spin_unlock(&sbi->s_md_lock); 5802 return 0; 5803 } 5804 5805 /* 5806 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 5807 * linearly starting at the goal block and also excludes the blocks which 5808 * are going to be in use after fast commit replay. 5809 */ 5810 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle, 5811 struct ext4_allocation_request *ar, int *errp) 5812 { 5813 struct buffer_head *bitmap_bh; 5814 struct super_block *sb = ar->inode->i_sb; 5815 ext4_group_t group; 5816 ext4_grpblk_t blkoff; 5817 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 5818 ext4_grpblk_t i = 0; 5819 ext4_fsblk_t goal, block; 5820 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5821 5822 goal = ar->goal; 5823 if (goal < le32_to_cpu(es->s_first_data_block) || 5824 goal >= ext4_blocks_count(es)) 5825 goal = le32_to_cpu(es->s_first_data_block); 5826 5827 ar->len = 0; 5828 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 5829 for (; group < ext4_get_groups_count(sb); group++) { 5830 bitmap_bh = ext4_read_block_bitmap(sb, group); 5831 if (IS_ERR(bitmap_bh)) { 5832 *errp = PTR_ERR(bitmap_bh); 5833 pr_warn("Failed to read block bitmap\n"); 5834 return 0; 5835 } 5836 5837 ext4_get_group_no_and_offset(sb, 5838 max(ext4_group_first_block_no(sb, group), goal), 5839 NULL, &blkoff); 5840 while (1) { 5841 i = mb_find_next_zero_bit(bitmap_bh->b_data, max, 5842 blkoff); 5843 if (i >= max) 5844 break; 5845 if (ext4_fc_replay_check_excluded(sb, 5846 ext4_group_first_block_no(sb, group) + i)) { 5847 blkoff = i + 1; 5848 } else 5849 break; 5850 } 5851 brelse(bitmap_bh); 5852 if (i < max) 5853 break; 5854 } 5855 5856 if (group >= ext4_get_groups_count(sb) || i >= max) { 5857 *errp = -ENOSPC; 5858 return 0; 5859 } 5860 5861 block = ext4_group_first_block_no(sb, group) + i; 5862 ext4_mb_mark_bb(sb, block, 1, 1); 5863 ar->len = 1; 5864 5865 return block; 5866 } 5867 5868 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 5869 unsigned long count) 5870 { 5871 struct buffer_head *bitmap_bh; 5872 struct super_block *sb = inode->i_sb; 5873 struct ext4_group_desc *gdp; 5874 struct buffer_head *gdp_bh; 5875 ext4_group_t group; 5876 ext4_grpblk_t blkoff; 5877 int already_freed = 0, err, i; 5878 5879 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 5880 bitmap_bh = ext4_read_block_bitmap(sb, group); 5881 if (IS_ERR(bitmap_bh)) { 5882 err = PTR_ERR(bitmap_bh); 5883 pr_warn("Failed to read block bitmap\n"); 5884 return; 5885 } 5886 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 5887 if (!gdp) 5888 return; 5889 5890 for (i = 0; i < count; i++) { 5891 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data)) 5892 already_freed++; 5893 } 5894 mb_clear_bits(bitmap_bh->b_data, blkoff, count); 5895 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 5896 if (err) 5897 return; 5898 ext4_free_group_clusters_set( 5899 sb, gdp, ext4_free_group_clusters(sb, gdp) + 5900 count - already_freed); 5901 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh); 5902 ext4_group_desc_csum_set(sb, group, gdp); 5903 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 5904 sync_dirty_buffer(bitmap_bh); 5905 sync_dirty_buffer(gdp_bh); 5906 brelse(bitmap_bh); 5907 } 5908 5909 /** 5910 * ext4_mb_clear_bb() -- helper function for freeing blocks. 5911 * Used by ext4_free_blocks() 5912 * @handle: handle for this transaction 5913 * @inode: inode 5914 * @block: starting physical block to be freed 5915 * @count: number of blocks to be freed 5916 * @flags: flags used by ext4_free_blocks 5917 */ 5918 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, 5919 ext4_fsblk_t block, unsigned long count, 5920 int flags) 5921 { 5922 struct buffer_head *bitmap_bh = NULL; 5923 struct super_block *sb = inode->i_sb; 5924 struct ext4_group_desc *gdp; 5925 unsigned int overflow; 5926 ext4_grpblk_t bit; 5927 struct buffer_head *gd_bh; 5928 ext4_group_t block_group; 5929 struct ext4_sb_info *sbi; 5930 struct ext4_buddy e4b; 5931 unsigned int count_clusters; 5932 int err = 0; 5933 int ret; 5934 5935 sbi = EXT4_SB(sb); 5936 5937 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 5938 !ext4_inode_block_valid(inode, block, count)) { 5939 ext4_error(sb, "Freeing blocks in system zone - " 5940 "Block = %llu, count = %lu", block, count); 5941 /* err = 0. ext4_std_error should be a no op */ 5942 goto error_return; 5943 } 5944 flags |= EXT4_FREE_BLOCKS_VALIDATED; 5945 5946 do_more: 5947 overflow = 0; 5948 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 5949 5950 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 5951 ext4_get_group_info(sb, block_group)))) 5952 return; 5953 5954 /* 5955 * Check to see if we are freeing blocks across a group 5956 * boundary. 5957 */ 5958 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 5959 overflow = EXT4_C2B(sbi, bit) + count - 5960 EXT4_BLOCKS_PER_GROUP(sb); 5961 count -= overflow; 5962 /* The range changed so it's no longer validated */ 5963 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 5964 } 5965 count_clusters = EXT4_NUM_B2C(sbi, count); 5966 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 5967 if (IS_ERR(bitmap_bh)) { 5968 err = PTR_ERR(bitmap_bh); 5969 bitmap_bh = NULL; 5970 goto error_return; 5971 } 5972 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 5973 if (!gdp) { 5974 err = -EIO; 5975 goto error_return; 5976 } 5977 5978 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 5979 !ext4_inode_block_valid(inode, block, count)) { 5980 ext4_error(sb, "Freeing blocks in system zone - " 5981 "Block = %llu, count = %lu", block, count); 5982 /* err = 0. ext4_std_error should be a no op */ 5983 goto error_return; 5984 } 5985 5986 BUFFER_TRACE(bitmap_bh, "getting write access"); 5987 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 5988 EXT4_JTR_NONE); 5989 if (err) 5990 goto error_return; 5991 5992 /* 5993 * We are about to modify some metadata. Call the journal APIs 5994 * to unshare ->b_data if a currently-committing transaction is 5995 * using it 5996 */ 5997 BUFFER_TRACE(gd_bh, "get_write_access"); 5998 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 5999 if (err) 6000 goto error_return; 6001 #ifdef AGGRESSIVE_CHECK 6002 { 6003 int i; 6004 for (i = 0; i < count_clusters; i++) 6005 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 6006 } 6007 #endif 6008 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 6009 6010 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 6011 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 6012 GFP_NOFS|__GFP_NOFAIL); 6013 if (err) 6014 goto error_return; 6015 6016 /* 6017 * We need to make sure we don't reuse the freed block until after the 6018 * transaction is committed. We make an exception if the inode is to be 6019 * written in writeback mode since writeback mode has weak data 6020 * consistency guarantees. 6021 */ 6022 if (ext4_handle_valid(handle) && 6023 ((flags & EXT4_FREE_BLOCKS_METADATA) || 6024 !ext4_should_writeback_data(inode))) { 6025 struct ext4_free_data *new_entry; 6026 /* 6027 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 6028 * to fail. 6029 */ 6030 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 6031 GFP_NOFS|__GFP_NOFAIL); 6032 new_entry->efd_start_cluster = bit; 6033 new_entry->efd_group = block_group; 6034 new_entry->efd_count = count_clusters; 6035 new_entry->efd_tid = handle->h_transaction->t_tid; 6036 6037 ext4_lock_group(sb, block_group); 6038 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6039 ext4_mb_free_metadata(handle, &e4b, new_entry); 6040 } else { 6041 /* need to update group_info->bb_free and bitmap 6042 * with group lock held. generate_buddy look at 6043 * them with group lock_held 6044 */ 6045 if (test_opt(sb, DISCARD)) { 6046 err = ext4_issue_discard(sb, block_group, bit, count, 6047 NULL); 6048 if (err && err != -EOPNOTSUPP) 6049 ext4_msg(sb, KERN_WARNING, "discard request in" 6050 " group:%u block:%d count:%lu failed" 6051 " with %d", block_group, bit, count, 6052 err); 6053 } else 6054 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 6055 6056 ext4_lock_group(sb, block_group); 6057 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6058 mb_free_blocks(inode, &e4b, bit, count_clusters); 6059 } 6060 6061 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 6062 ext4_free_group_clusters_set(sb, gdp, ret); 6063 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 6064 ext4_group_desc_csum_set(sb, block_group, gdp); 6065 ext4_unlock_group(sb, block_group); 6066 6067 if (sbi->s_log_groups_per_flex) { 6068 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6069 atomic64_add(count_clusters, 6070 &sbi_array_rcu_deref(sbi, s_flex_groups, 6071 flex_group)->free_clusters); 6072 } 6073 6074 /* 6075 * on a bigalloc file system, defer the s_freeclusters_counter 6076 * update to the caller (ext4_remove_space and friends) so they 6077 * can determine if a cluster freed here should be rereserved 6078 */ 6079 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 6080 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 6081 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 6082 percpu_counter_add(&sbi->s_freeclusters_counter, 6083 count_clusters); 6084 } 6085 6086 ext4_mb_unload_buddy(&e4b); 6087 6088 /* We dirtied the bitmap block */ 6089 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6090 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6091 6092 /* And the group descriptor block */ 6093 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6094 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6095 if (!err) 6096 err = ret; 6097 6098 if (overflow && !err) { 6099 block += count; 6100 count = overflow; 6101 put_bh(bitmap_bh); 6102 /* The range changed so it's no longer validated */ 6103 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6104 goto do_more; 6105 } 6106 error_return: 6107 brelse(bitmap_bh); 6108 ext4_std_error(sb, err); 6109 return; 6110 } 6111 6112 /** 6113 * ext4_free_blocks() -- Free given blocks and update quota 6114 * @handle: handle for this transaction 6115 * @inode: inode 6116 * @bh: optional buffer of the block to be freed 6117 * @block: starting physical block to be freed 6118 * @count: number of blocks to be freed 6119 * @flags: flags used by ext4_free_blocks 6120 */ 6121 void ext4_free_blocks(handle_t *handle, struct inode *inode, 6122 struct buffer_head *bh, ext4_fsblk_t block, 6123 unsigned long count, int flags) 6124 { 6125 struct super_block *sb = inode->i_sb; 6126 unsigned int overflow; 6127 struct ext4_sb_info *sbi; 6128 6129 sbi = EXT4_SB(sb); 6130 6131 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 6132 ext4_free_blocks_simple(inode, block, count); 6133 return; 6134 } 6135 6136 might_sleep(); 6137 if (bh) { 6138 if (block) 6139 BUG_ON(block != bh->b_blocknr); 6140 else 6141 block = bh->b_blocknr; 6142 } 6143 6144 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6145 !ext4_inode_block_valid(inode, block, count)) { 6146 ext4_error(sb, "Freeing blocks not in datazone - " 6147 "block = %llu, count = %lu", block, count); 6148 return; 6149 } 6150 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6151 6152 ext4_debug("freeing block %llu\n", block); 6153 trace_ext4_free_blocks(inode, block, count, flags); 6154 6155 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6156 BUG_ON(count > 1); 6157 6158 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 6159 inode, bh, block); 6160 } 6161 6162 /* 6163 * If the extent to be freed does not begin on a cluster 6164 * boundary, we need to deal with partial clusters at the 6165 * beginning and end of the extent. Normally we will free 6166 * blocks at the beginning or the end unless we are explicitly 6167 * requested to avoid doing so. 6168 */ 6169 overflow = EXT4_PBLK_COFF(sbi, block); 6170 if (overflow) { 6171 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 6172 overflow = sbi->s_cluster_ratio - overflow; 6173 block += overflow; 6174 if (count > overflow) 6175 count -= overflow; 6176 else 6177 return; 6178 } else { 6179 block -= overflow; 6180 count += overflow; 6181 } 6182 /* The range changed so it's no longer validated */ 6183 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6184 } 6185 overflow = EXT4_LBLK_COFF(sbi, count); 6186 if (overflow) { 6187 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 6188 if (count > overflow) 6189 count -= overflow; 6190 else 6191 return; 6192 } else 6193 count += sbi->s_cluster_ratio - overflow; 6194 /* The range changed so it's no longer validated */ 6195 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6196 } 6197 6198 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6199 int i; 6200 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 6201 6202 for (i = 0; i < count; i++) { 6203 cond_resched(); 6204 if (is_metadata) 6205 bh = sb_find_get_block(inode->i_sb, block + i); 6206 ext4_forget(handle, is_metadata, inode, bh, block + i); 6207 } 6208 } 6209 6210 ext4_mb_clear_bb(handle, inode, block, count, flags); 6211 return; 6212 } 6213 6214 /** 6215 * ext4_group_add_blocks() -- Add given blocks to an existing group 6216 * @handle: handle to this transaction 6217 * @sb: super block 6218 * @block: start physical block to add to the block group 6219 * @count: number of blocks to free 6220 * 6221 * This marks the blocks as free in the bitmap and buddy. 6222 */ 6223 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 6224 ext4_fsblk_t block, unsigned long count) 6225 { 6226 struct buffer_head *bitmap_bh = NULL; 6227 struct buffer_head *gd_bh; 6228 ext4_group_t block_group; 6229 ext4_grpblk_t bit; 6230 unsigned int i; 6231 struct ext4_group_desc *desc; 6232 struct ext4_sb_info *sbi = EXT4_SB(sb); 6233 struct ext4_buddy e4b; 6234 int err = 0, ret, free_clusters_count; 6235 ext4_grpblk_t clusters_freed; 6236 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 6237 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 6238 unsigned long cluster_count = last_cluster - first_cluster + 1; 6239 6240 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 6241 6242 if (count == 0) 6243 return 0; 6244 6245 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6246 /* 6247 * Check to see if we are freeing blocks across a group 6248 * boundary. 6249 */ 6250 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 6251 ext4_warning(sb, "too many blocks added to group %u", 6252 block_group); 6253 err = -EINVAL; 6254 goto error_return; 6255 } 6256 6257 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6258 if (IS_ERR(bitmap_bh)) { 6259 err = PTR_ERR(bitmap_bh); 6260 bitmap_bh = NULL; 6261 goto error_return; 6262 } 6263 6264 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 6265 if (!desc) { 6266 err = -EIO; 6267 goto error_return; 6268 } 6269 6270 if (!ext4_sb_block_valid(sb, NULL, block, count)) { 6271 ext4_error(sb, "Adding blocks in system zones - " 6272 "Block = %llu, count = %lu", 6273 block, count); 6274 err = -EINVAL; 6275 goto error_return; 6276 } 6277 6278 BUFFER_TRACE(bitmap_bh, "getting write access"); 6279 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6280 EXT4_JTR_NONE); 6281 if (err) 6282 goto error_return; 6283 6284 /* 6285 * We are about to modify some metadata. Call the journal APIs 6286 * to unshare ->b_data if a currently-committing transaction is 6287 * using it 6288 */ 6289 BUFFER_TRACE(gd_bh, "get_write_access"); 6290 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6291 if (err) 6292 goto error_return; 6293 6294 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 6295 BUFFER_TRACE(bitmap_bh, "clear bit"); 6296 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 6297 ext4_error(sb, "bit already cleared for block %llu", 6298 (ext4_fsblk_t)(block + i)); 6299 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 6300 } else { 6301 clusters_freed++; 6302 } 6303 } 6304 6305 err = ext4_mb_load_buddy(sb, block_group, &e4b); 6306 if (err) 6307 goto error_return; 6308 6309 /* 6310 * need to update group_info->bb_free and bitmap 6311 * with group lock held. generate_buddy look at 6312 * them with group lock_held 6313 */ 6314 ext4_lock_group(sb, block_group); 6315 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 6316 mb_free_blocks(NULL, &e4b, bit, cluster_count); 6317 free_clusters_count = clusters_freed + 6318 ext4_free_group_clusters(sb, desc); 6319 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 6320 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 6321 ext4_group_desc_csum_set(sb, block_group, desc); 6322 ext4_unlock_group(sb, block_group); 6323 percpu_counter_add(&sbi->s_freeclusters_counter, 6324 clusters_freed); 6325 6326 if (sbi->s_log_groups_per_flex) { 6327 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6328 atomic64_add(clusters_freed, 6329 &sbi_array_rcu_deref(sbi, s_flex_groups, 6330 flex_group)->free_clusters); 6331 } 6332 6333 ext4_mb_unload_buddy(&e4b); 6334 6335 /* We dirtied the bitmap block */ 6336 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6337 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6338 6339 /* And the group descriptor block */ 6340 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6341 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6342 if (!err) 6343 err = ret; 6344 6345 error_return: 6346 brelse(bitmap_bh); 6347 ext4_std_error(sb, err); 6348 return err; 6349 } 6350 6351 /** 6352 * ext4_trim_extent -- function to TRIM one single free extent in the group 6353 * @sb: super block for the file system 6354 * @start: starting block of the free extent in the alloc. group 6355 * @count: number of blocks to TRIM 6356 * @e4b: ext4 buddy for the group 6357 * 6358 * Trim "count" blocks starting at "start" in the "group". To assure that no 6359 * one will allocate those blocks, mark it as used in buddy bitmap. This must 6360 * be called with under the group lock. 6361 */ 6362 static int ext4_trim_extent(struct super_block *sb, 6363 int start, int count, struct ext4_buddy *e4b) 6364 __releases(bitlock) 6365 __acquires(bitlock) 6366 { 6367 struct ext4_free_extent ex; 6368 ext4_group_t group = e4b->bd_group; 6369 int ret = 0; 6370 6371 trace_ext4_trim_extent(sb, group, start, count); 6372 6373 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 6374 6375 ex.fe_start = start; 6376 ex.fe_group = group; 6377 ex.fe_len = count; 6378 6379 /* 6380 * Mark blocks used, so no one can reuse them while 6381 * being trimmed. 6382 */ 6383 mb_mark_used(e4b, &ex); 6384 ext4_unlock_group(sb, group); 6385 ret = ext4_issue_discard(sb, group, start, count, NULL); 6386 ext4_lock_group(sb, group); 6387 mb_free_blocks(NULL, e4b, start, ex.fe_len); 6388 return ret; 6389 } 6390 6391 static int ext4_try_to_trim_range(struct super_block *sb, 6392 struct ext4_buddy *e4b, ext4_grpblk_t start, 6393 ext4_grpblk_t max, ext4_grpblk_t minblocks) 6394 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) 6395 __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) 6396 { 6397 ext4_grpblk_t next, count, free_count; 6398 void *bitmap; 6399 6400 bitmap = e4b->bd_bitmap; 6401 start = (e4b->bd_info->bb_first_free > start) ? 6402 e4b->bd_info->bb_first_free : start; 6403 count = 0; 6404 free_count = 0; 6405 6406 while (start <= max) { 6407 start = mb_find_next_zero_bit(bitmap, max + 1, start); 6408 if (start > max) 6409 break; 6410 next = mb_find_next_bit(bitmap, max + 1, start); 6411 6412 if ((next - start) >= minblocks) { 6413 int ret = ext4_trim_extent(sb, start, next - start, e4b); 6414 6415 if (ret && ret != -EOPNOTSUPP) 6416 break; 6417 count += next - start; 6418 } 6419 free_count += next - start; 6420 start = next + 1; 6421 6422 if (fatal_signal_pending(current)) { 6423 count = -ERESTARTSYS; 6424 break; 6425 } 6426 6427 if (need_resched()) { 6428 ext4_unlock_group(sb, e4b->bd_group); 6429 cond_resched(); 6430 ext4_lock_group(sb, e4b->bd_group); 6431 } 6432 6433 if ((e4b->bd_info->bb_free - free_count) < minblocks) 6434 break; 6435 } 6436 6437 return count; 6438 } 6439 6440 /** 6441 * ext4_trim_all_free -- function to trim all free space in alloc. group 6442 * @sb: super block for file system 6443 * @group: group to be trimmed 6444 * @start: first group block to examine 6445 * @max: last group block to examine 6446 * @minblocks: minimum extent block count 6447 * @set_trimmed: set the trimmed flag if at least one block is trimmed 6448 * 6449 * ext4_trim_all_free walks through group's block bitmap searching for free 6450 * extents. When the free extent is found, mark it as used in group buddy 6451 * bitmap. Then issue a TRIM command on this extent and free the extent in 6452 * the group buddy bitmap. 6453 */ 6454 static ext4_grpblk_t 6455 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 6456 ext4_grpblk_t start, ext4_grpblk_t max, 6457 ext4_grpblk_t minblocks, bool set_trimmed) 6458 { 6459 struct ext4_buddy e4b; 6460 int ret; 6461 6462 trace_ext4_trim_all_free(sb, group, start, max); 6463 6464 ret = ext4_mb_load_buddy(sb, group, &e4b); 6465 if (ret) { 6466 ext4_warning(sb, "Error %d loading buddy information for %u", 6467 ret, group); 6468 return ret; 6469 } 6470 6471 ext4_lock_group(sb, group); 6472 6473 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || 6474 minblocks < EXT4_SB(sb)->s_last_trim_minblks) { 6475 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); 6476 if (ret >= 0 && set_trimmed) 6477 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 6478 } else { 6479 ret = 0; 6480 } 6481 6482 ext4_unlock_group(sb, group); 6483 ext4_mb_unload_buddy(&e4b); 6484 6485 ext4_debug("trimmed %d blocks in the group %d\n", 6486 ret, group); 6487 6488 return ret; 6489 } 6490 6491 /** 6492 * ext4_trim_fs() -- trim ioctl handle function 6493 * @sb: superblock for filesystem 6494 * @range: fstrim_range structure 6495 * 6496 * start: First Byte to trim 6497 * len: number of Bytes to trim from start 6498 * minlen: minimum extent length in Bytes 6499 * ext4_trim_fs goes through all allocation groups containing Bytes from 6500 * start to start+len. For each such a group ext4_trim_all_free function 6501 * is invoked to trim all free space. 6502 */ 6503 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 6504 { 6505 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev); 6506 struct ext4_group_info *grp; 6507 ext4_group_t group, first_group, last_group; 6508 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 6509 uint64_t start, end, minlen, trimmed = 0; 6510 ext4_fsblk_t first_data_blk = 6511 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 6512 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 6513 bool whole_group, eof = false; 6514 int ret = 0; 6515 6516 start = range->start >> sb->s_blocksize_bits; 6517 end = start + (range->len >> sb->s_blocksize_bits) - 1; 6518 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 6519 range->minlen >> sb->s_blocksize_bits); 6520 6521 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 6522 start >= max_blks || 6523 range->len < sb->s_blocksize) 6524 return -EINVAL; 6525 /* No point to try to trim less than discard granularity */ 6526 if (range->minlen < discard_granularity) { 6527 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 6528 discard_granularity >> sb->s_blocksize_bits); 6529 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) 6530 goto out; 6531 } 6532 if (end >= max_blks - 1) { 6533 end = max_blks - 1; 6534 eof = true; 6535 } 6536 if (end <= first_data_blk) 6537 goto out; 6538 if (start < first_data_blk) 6539 start = first_data_blk; 6540 6541 /* Determine first and last group to examine based on start and end */ 6542 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 6543 &first_group, &first_cluster); 6544 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 6545 &last_group, &last_cluster); 6546 6547 /* end now represents the last cluster to discard in this group */ 6548 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 6549 whole_group = true; 6550 6551 for (group = first_group; group <= last_group; group++) { 6552 grp = ext4_get_group_info(sb, group); 6553 /* We only do this if the grp has never been initialized */ 6554 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 6555 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 6556 if (ret) 6557 break; 6558 } 6559 6560 /* 6561 * For all the groups except the last one, last cluster will 6562 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 6563 * change it for the last group, note that last_cluster is 6564 * already computed earlier by ext4_get_group_no_and_offset() 6565 */ 6566 if (group == last_group) { 6567 end = last_cluster; 6568 whole_group = eof ? true : end == EXT4_CLUSTERS_PER_GROUP(sb) - 1; 6569 } 6570 if (grp->bb_free >= minlen) { 6571 cnt = ext4_trim_all_free(sb, group, first_cluster, 6572 end, minlen, whole_group); 6573 if (cnt < 0) { 6574 ret = cnt; 6575 break; 6576 } 6577 trimmed += cnt; 6578 } 6579 6580 /* 6581 * For every group except the first one, we are sure 6582 * that the first cluster to discard will be cluster #0. 6583 */ 6584 first_cluster = 0; 6585 } 6586 6587 if (!ret) 6588 EXT4_SB(sb)->s_last_trim_minblks = minlen; 6589 6590 out: 6591 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 6592 return ret; 6593 } 6594 6595 /* Iterate all the free extents in the group. */ 6596 int 6597 ext4_mballoc_query_range( 6598 struct super_block *sb, 6599 ext4_group_t group, 6600 ext4_grpblk_t start, 6601 ext4_grpblk_t end, 6602 ext4_mballoc_query_range_fn formatter, 6603 void *priv) 6604 { 6605 void *bitmap; 6606 ext4_grpblk_t next; 6607 struct ext4_buddy e4b; 6608 int error; 6609 6610 error = ext4_mb_load_buddy(sb, group, &e4b); 6611 if (error) 6612 return error; 6613 bitmap = e4b.bd_bitmap; 6614 6615 ext4_lock_group(sb, group); 6616 6617 start = (e4b.bd_info->bb_first_free > start) ? 6618 e4b.bd_info->bb_first_free : start; 6619 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 6620 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 6621 6622 while (start <= end) { 6623 start = mb_find_next_zero_bit(bitmap, end + 1, start); 6624 if (start > end) 6625 break; 6626 next = mb_find_next_bit(bitmap, end + 1, start); 6627 6628 ext4_unlock_group(sb, group); 6629 error = formatter(sb, group, start, next - start, priv); 6630 if (error) 6631 goto out_unload; 6632 ext4_lock_group(sb, group); 6633 6634 start = next + 1; 6635 } 6636 6637 ext4_unlock_group(sb, group); 6638 out_unload: 6639 ext4_mb_unload_buddy(&e4b); 6640 6641 return error; 6642 } 6643