1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "mballoc.h" 26 #include <linux/log2.h> 27 #include <linux/module.h> 28 #include <linux/slab.h> 29 #include <trace/events/ext4.h> 30 31 #ifdef CONFIG_EXT4_DEBUG 32 ushort ext4_mballoc_debug __read_mostly; 33 34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644); 35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc"); 36 #endif 37 38 /* 39 * MUSTDO: 40 * - test ext4_ext_search_left() and ext4_ext_search_right() 41 * - search for metadata in few groups 42 * 43 * TODO v4: 44 * - normalization should take into account whether file is still open 45 * - discard preallocations if no free space left (policy?) 46 * - don't normalize tails 47 * - quota 48 * - reservation for superuser 49 * 50 * TODO v3: 51 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 52 * - track min/max extents in each group for better group selection 53 * - mb_mark_used() may allocate chunk right after splitting buddy 54 * - tree of groups sorted by number of free blocks 55 * - error handling 56 */ 57 58 /* 59 * The allocation request involve request for multiple number of blocks 60 * near to the goal(block) value specified. 61 * 62 * During initialization phase of the allocator we decide to use the 63 * group preallocation or inode preallocation depending on the size of 64 * the file. The size of the file could be the resulting file size we 65 * would have after allocation, or the current file size, which ever 66 * is larger. If the size is less than sbi->s_mb_stream_request we 67 * select to use the group preallocation. The default value of 68 * s_mb_stream_request is 16 blocks. This can also be tuned via 69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 70 * terms of number of blocks. 71 * 72 * The main motivation for having small file use group preallocation is to 73 * ensure that we have small files closer together on the disk. 74 * 75 * First stage the allocator looks at the inode prealloc list, 76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 77 * spaces for this particular inode. The inode prealloc space is 78 * represented as: 79 * 80 * pa_lstart -> the logical start block for this prealloc space 81 * pa_pstart -> the physical start block for this prealloc space 82 * pa_len -> length for this prealloc space (in clusters) 83 * pa_free -> free space available in this prealloc space (in clusters) 84 * 85 * The inode preallocation space is used looking at the _logical_ start 86 * block. If only the logical file block falls within the range of prealloc 87 * space we will consume the particular prealloc space. This makes sure that 88 * we have contiguous physical blocks representing the file blocks 89 * 90 * The important thing to be noted in case of inode prealloc space is that 91 * we don't modify the values associated to inode prealloc space except 92 * pa_free. 93 * 94 * If we are not able to find blocks in the inode prealloc space and if we 95 * have the group allocation flag set then we look at the locality group 96 * prealloc space. These are per CPU prealloc list represented as 97 * 98 * ext4_sb_info.s_locality_groups[smp_processor_id()] 99 * 100 * The reason for having a per cpu locality group is to reduce the contention 101 * between CPUs. It is possible to get scheduled at this point. 102 * 103 * The locality group prealloc space is used looking at whether we have 104 * enough free space (pa_free) within the prealloc space. 105 * 106 * If we can't allocate blocks via inode prealloc or/and locality group 107 * prealloc then we look at the buddy cache. The buddy cache is represented 108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 109 * mapped to the buddy and bitmap information regarding different 110 * groups. The buddy information is attached to buddy cache inode so that 111 * we can access them through the page cache. The information regarding 112 * each group is loaded via ext4_mb_load_buddy. The information involve 113 * block bitmap and buddy information. The information are stored in the 114 * inode as: 115 * 116 * { page } 117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 118 * 119 * 120 * one block each for bitmap and buddy information. So for each group we 121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 122 * blocksize) blocks. So it can have information regarding groups_per_page 123 * which is blocks_per_page/2 124 * 125 * The buddy cache inode is not stored on disk. The inode is thrown 126 * away when the filesystem is unmounted. 127 * 128 * We look for count number of blocks in the buddy cache. If we were able 129 * to locate that many free blocks we return with additional information 130 * regarding rest of the contiguous physical block available 131 * 132 * Before allocating blocks via buddy cache we normalize the request 133 * blocks. This ensure we ask for more blocks that we needed. The extra 134 * blocks that we get after allocation is added to the respective prealloc 135 * list. In case of inode preallocation we follow a list of heuristics 136 * based on file size. This can be found in ext4_mb_normalize_request. If 137 * we are doing a group prealloc we try to normalize the request to 138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 139 * dependent on the cluster size; for non-bigalloc file systems, it is 140 * 512 blocks. This can be tuned via 141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 142 * terms of number of blocks. If we have mounted the file system with -O 143 * stripe=<value> option the group prealloc request is normalized to the 144 * the smallest multiple of the stripe value (sbi->s_stripe) which is 145 * greater than the default mb_group_prealloc. 146 * 147 * The regular allocator (using the buddy cache) supports a few tunables. 148 * 149 * /sys/fs/ext4/<partition>/mb_min_to_scan 150 * /sys/fs/ext4/<partition>/mb_max_to_scan 151 * /sys/fs/ext4/<partition>/mb_order2_req 152 * 153 * The regular allocator uses buddy scan only if the request len is power of 154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 155 * value of s_mb_order2_reqs can be tuned via 156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 157 * stripe size (sbi->s_stripe), we try to search for contiguous block in 158 * stripe size. This should result in better allocation on RAID setups. If 159 * not, we search in the specific group using bitmap for best extents. The 160 * tunable min_to_scan and max_to_scan control the behaviour here. 161 * min_to_scan indicate how long the mballoc __must__ look for a best 162 * extent and max_to_scan indicates how long the mballoc __can__ look for a 163 * best extent in the found extents. Searching for the blocks starts with 164 * the group specified as the goal value in allocation context via 165 * ac_g_ex. Each group is first checked based on the criteria whether it 166 * can be used for allocation. ext4_mb_good_group explains how the groups are 167 * checked. 168 * 169 * Both the prealloc space are getting populated as above. So for the first 170 * request we will hit the buddy cache which will result in this prealloc 171 * space getting filled. The prealloc space is then later used for the 172 * subsequent request. 173 */ 174 175 /* 176 * mballoc operates on the following data: 177 * - on-disk bitmap 178 * - in-core buddy (actually includes buddy and bitmap) 179 * - preallocation descriptors (PAs) 180 * 181 * there are two types of preallocations: 182 * - inode 183 * assiged to specific inode and can be used for this inode only. 184 * it describes part of inode's space preallocated to specific 185 * physical blocks. any block from that preallocated can be used 186 * independent. the descriptor just tracks number of blocks left 187 * unused. so, before taking some block from descriptor, one must 188 * make sure corresponded logical block isn't allocated yet. this 189 * also means that freeing any block within descriptor's range 190 * must discard all preallocated blocks. 191 * - locality group 192 * assigned to specific locality group which does not translate to 193 * permanent set of inodes: inode can join and leave group. space 194 * from this type of preallocation can be used for any inode. thus 195 * it's consumed from the beginning to the end. 196 * 197 * relation between them can be expressed as: 198 * in-core buddy = on-disk bitmap + preallocation descriptors 199 * 200 * this mean blocks mballoc considers used are: 201 * - allocated blocks (persistent) 202 * - preallocated blocks (non-persistent) 203 * 204 * consistency in mballoc world means that at any time a block is either 205 * free or used in ALL structures. notice: "any time" should not be read 206 * literally -- time is discrete and delimited by locks. 207 * 208 * to keep it simple, we don't use block numbers, instead we count number of 209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 210 * 211 * all operations can be expressed as: 212 * - init buddy: buddy = on-disk + PAs 213 * - new PA: buddy += N; PA = N 214 * - use inode PA: on-disk += N; PA -= N 215 * - discard inode PA buddy -= on-disk - PA; PA = 0 216 * - use locality group PA on-disk += N; PA -= N 217 * - discard locality group PA buddy -= PA; PA = 0 218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 219 * is used in real operation because we can't know actual used 220 * bits from PA, only from on-disk bitmap 221 * 222 * if we follow this strict logic, then all operations above should be atomic. 223 * given some of them can block, we'd have to use something like semaphores 224 * killing performance on high-end SMP hardware. let's try to relax it using 225 * the following knowledge: 226 * 1) if buddy is referenced, it's already initialized 227 * 2) while block is used in buddy and the buddy is referenced, 228 * nobody can re-allocate that block 229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 230 * bit set and PA claims same block, it's OK. IOW, one can set bit in 231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 232 * block 233 * 234 * so, now we're building a concurrency table: 235 * - init buddy vs. 236 * - new PA 237 * blocks for PA are allocated in the buddy, buddy must be referenced 238 * until PA is linked to allocation group to avoid concurrent buddy init 239 * - use inode PA 240 * we need to make sure that either on-disk bitmap or PA has uptodate data 241 * given (3) we care that PA-=N operation doesn't interfere with init 242 * - discard inode PA 243 * the simplest way would be to have buddy initialized by the discard 244 * - use locality group PA 245 * again PA-=N must be serialized with init 246 * - discard locality group PA 247 * the simplest way would be to have buddy initialized by the discard 248 * - new PA vs. 249 * - use inode PA 250 * i_data_sem serializes them 251 * - discard inode PA 252 * discard process must wait until PA isn't used by another process 253 * - use locality group PA 254 * some mutex should serialize them 255 * - discard locality group PA 256 * discard process must wait until PA isn't used by another process 257 * - use inode PA 258 * - use inode PA 259 * i_data_sem or another mutex should serializes them 260 * - discard inode PA 261 * discard process must wait until PA isn't used by another process 262 * - use locality group PA 263 * nothing wrong here -- they're different PAs covering different blocks 264 * - discard locality group PA 265 * discard process must wait until PA isn't used by another process 266 * 267 * now we're ready to make few consequences: 268 * - PA is referenced and while it is no discard is possible 269 * - PA is referenced until block isn't marked in on-disk bitmap 270 * - PA changes only after on-disk bitmap 271 * - discard must not compete with init. either init is done before 272 * any discard or they're serialized somehow 273 * - buddy init as sum of on-disk bitmap and PAs is done atomically 274 * 275 * a special case when we've used PA to emptiness. no need to modify buddy 276 * in this case, but we should care about concurrent init 277 * 278 */ 279 280 /* 281 * Logic in few words: 282 * 283 * - allocation: 284 * load group 285 * find blocks 286 * mark bits in on-disk bitmap 287 * release group 288 * 289 * - use preallocation: 290 * find proper PA (per-inode or group) 291 * load group 292 * mark bits in on-disk bitmap 293 * release group 294 * release PA 295 * 296 * - free: 297 * load group 298 * mark bits in on-disk bitmap 299 * release group 300 * 301 * - discard preallocations in group: 302 * mark PAs deleted 303 * move them onto local list 304 * load on-disk bitmap 305 * load group 306 * remove PA from object (inode or locality group) 307 * mark free blocks in-core 308 * 309 * - discard inode's preallocations: 310 */ 311 312 /* 313 * Locking rules 314 * 315 * Locks: 316 * - bitlock on a group (group) 317 * - object (inode/locality) (object) 318 * - per-pa lock (pa) 319 * 320 * Paths: 321 * - new pa 322 * object 323 * group 324 * 325 * - find and use pa: 326 * pa 327 * 328 * - release consumed pa: 329 * pa 330 * group 331 * object 332 * 333 * - generate in-core bitmap: 334 * group 335 * pa 336 * 337 * - discard all for given object (inode, locality group): 338 * object 339 * pa 340 * group 341 * 342 * - discard all for given group: 343 * group 344 * pa 345 * group 346 * object 347 * 348 */ 349 static struct kmem_cache *ext4_pspace_cachep; 350 static struct kmem_cache *ext4_ac_cachep; 351 static struct kmem_cache *ext4_free_data_cachep; 352 353 /* We create slab caches for groupinfo data structures based on the 354 * superblock block size. There will be one per mounted filesystem for 355 * each unique s_blocksize_bits */ 356 #define NR_GRPINFO_CACHES 8 357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 358 359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 362 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 363 }; 364 365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 366 ext4_group_t group); 367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 368 ext4_group_t group); 369 static void ext4_free_data_callback(struct super_block *sb, 370 struct ext4_journal_cb_entry *jce, int rc); 371 372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 373 { 374 #if BITS_PER_LONG == 64 375 *bit += ((unsigned long) addr & 7UL) << 3; 376 addr = (void *) ((unsigned long) addr & ~7UL); 377 #elif BITS_PER_LONG == 32 378 *bit += ((unsigned long) addr & 3UL) << 3; 379 addr = (void *) ((unsigned long) addr & ~3UL); 380 #else 381 #error "how many bits you are?!" 382 #endif 383 return addr; 384 } 385 386 static inline int mb_test_bit(int bit, void *addr) 387 { 388 /* 389 * ext4_test_bit on architecture like powerpc 390 * needs unsigned long aligned address 391 */ 392 addr = mb_correct_addr_and_bit(&bit, addr); 393 return ext4_test_bit(bit, addr); 394 } 395 396 static inline void mb_set_bit(int bit, void *addr) 397 { 398 addr = mb_correct_addr_and_bit(&bit, addr); 399 ext4_set_bit(bit, addr); 400 } 401 402 static inline void mb_clear_bit(int bit, void *addr) 403 { 404 addr = mb_correct_addr_and_bit(&bit, addr); 405 ext4_clear_bit(bit, addr); 406 } 407 408 static inline int mb_test_and_clear_bit(int bit, void *addr) 409 { 410 addr = mb_correct_addr_and_bit(&bit, addr); 411 return ext4_test_and_clear_bit(bit, addr); 412 } 413 414 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 415 { 416 int fix = 0, ret, tmpmax; 417 addr = mb_correct_addr_and_bit(&fix, addr); 418 tmpmax = max + fix; 419 start += fix; 420 421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 422 if (ret > max) 423 return max; 424 return ret; 425 } 426 427 static inline int mb_find_next_bit(void *addr, int max, int start) 428 { 429 int fix = 0, ret, tmpmax; 430 addr = mb_correct_addr_and_bit(&fix, addr); 431 tmpmax = max + fix; 432 start += fix; 433 434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 435 if (ret > max) 436 return max; 437 return ret; 438 } 439 440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 441 { 442 char *bb; 443 444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 445 BUG_ON(max == NULL); 446 447 if (order > e4b->bd_blkbits + 1) { 448 *max = 0; 449 return NULL; 450 } 451 452 /* at order 0 we see each particular block */ 453 if (order == 0) { 454 *max = 1 << (e4b->bd_blkbits + 3); 455 return e4b->bd_bitmap; 456 } 457 458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 460 461 return bb; 462 } 463 464 #ifdef DOUBLE_CHECK 465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 466 int first, int count) 467 { 468 int i; 469 struct super_block *sb = e4b->bd_sb; 470 471 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 472 return; 473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 474 for (i = 0; i < count; i++) { 475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 476 ext4_fsblk_t blocknr; 477 478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 480 ext4_grp_locked_error(sb, e4b->bd_group, 481 inode ? inode->i_ino : 0, 482 blocknr, 483 "freeing block already freed " 484 "(bit %u)", 485 first + i); 486 } 487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 488 } 489 } 490 491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 492 { 493 int i; 494 495 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 496 return; 497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 498 for (i = 0; i < count; i++) { 499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 501 } 502 } 503 504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 505 { 506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 507 unsigned char *b1, *b2; 508 int i; 509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 510 b2 = (unsigned char *) bitmap; 511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 512 if (b1[i] != b2[i]) { 513 ext4_msg(e4b->bd_sb, KERN_ERR, 514 "corruption in group %u " 515 "at byte %u(%u): %x in copy != %x " 516 "on disk/prealloc", 517 e4b->bd_group, i, i * 8, b1[i], b2[i]); 518 BUG(); 519 } 520 } 521 } 522 } 523 524 #else 525 static inline void mb_free_blocks_double(struct inode *inode, 526 struct ext4_buddy *e4b, int first, int count) 527 { 528 return; 529 } 530 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 531 int first, int count) 532 { 533 return; 534 } 535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 536 { 537 return; 538 } 539 #endif 540 541 #ifdef AGGRESSIVE_CHECK 542 543 #define MB_CHECK_ASSERT(assert) \ 544 do { \ 545 if (!(assert)) { \ 546 printk(KERN_EMERG \ 547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 548 function, file, line, # assert); \ 549 BUG(); \ 550 } \ 551 } while (0) 552 553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 554 const char *function, int line) 555 { 556 struct super_block *sb = e4b->bd_sb; 557 int order = e4b->bd_blkbits + 1; 558 int max; 559 int max2; 560 int i; 561 int j; 562 int k; 563 int count; 564 struct ext4_group_info *grp; 565 int fragments = 0; 566 int fstart; 567 struct list_head *cur; 568 void *buddy; 569 void *buddy2; 570 571 { 572 static int mb_check_counter; 573 if (mb_check_counter++ % 100 != 0) 574 return 0; 575 } 576 577 while (order > 1) { 578 buddy = mb_find_buddy(e4b, order, &max); 579 MB_CHECK_ASSERT(buddy); 580 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 581 MB_CHECK_ASSERT(buddy2); 582 MB_CHECK_ASSERT(buddy != buddy2); 583 MB_CHECK_ASSERT(max * 2 == max2); 584 585 count = 0; 586 for (i = 0; i < max; i++) { 587 588 if (mb_test_bit(i, buddy)) { 589 /* only single bit in buddy2 may be 1 */ 590 if (!mb_test_bit(i << 1, buddy2)) { 591 MB_CHECK_ASSERT( 592 mb_test_bit((i<<1)+1, buddy2)); 593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 594 MB_CHECK_ASSERT( 595 mb_test_bit(i << 1, buddy2)); 596 } 597 continue; 598 } 599 600 /* both bits in buddy2 must be 1 */ 601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 603 604 for (j = 0; j < (1 << order); j++) { 605 k = (i * (1 << order)) + j; 606 MB_CHECK_ASSERT( 607 !mb_test_bit(k, e4b->bd_bitmap)); 608 } 609 count++; 610 } 611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 612 order--; 613 } 614 615 fstart = -1; 616 buddy = mb_find_buddy(e4b, 0, &max); 617 for (i = 0; i < max; i++) { 618 if (!mb_test_bit(i, buddy)) { 619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 620 if (fstart == -1) { 621 fragments++; 622 fstart = i; 623 } 624 continue; 625 } 626 fstart = -1; 627 /* check used bits only */ 628 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 629 buddy2 = mb_find_buddy(e4b, j, &max2); 630 k = i >> j; 631 MB_CHECK_ASSERT(k < max2); 632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 633 } 634 } 635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 637 638 grp = ext4_get_group_info(sb, e4b->bd_group); 639 list_for_each(cur, &grp->bb_prealloc_list) { 640 ext4_group_t groupnr; 641 struct ext4_prealloc_space *pa; 642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 644 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 645 for (i = 0; i < pa->pa_len; i++) 646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 647 } 648 return 0; 649 } 650 #undef MB_CHECK_ASSERT 651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 652 __FILE__, __func__, __LINE__) 653 #else 654 #define mb_check_buddy(e4b) 655 #endif 656 657 /* 658 * Divide blocks started from @first with length @len into 659 * smaller chunks with power of 2 blocks. 660 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 661 * then increase bb_counters[] for corresponded chunk size. 662 */ 663 static void ext4_mb_mark_free_simple(struct super_block *sb, 664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 665 struct ext4_group_info *grp) 666 { 667 struct ext4_sb_info *sbi = EXT4_SB(sb); 668 ext4_grpblk_t min; 669 ext4_grpblk_t max; 670 ext4_grpblk_t chunk; 671 unsigned short border; 672 673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 674 675 border = 2 << sb->s_blocksize_bits; 676 677 while (len > 0) { 678 /* find how many blocks can be covered since this position */ 679 max = ffs(first | border) - 1; 680 681 /* find how many blocks of power 2 we need to mark */ 682 min = fls(len) - 1; 683 684 if (max < min) 685 min = max; 686 chunk = 1 << min; 687 688 /* mark multiblock chunks only */ 689 grp->bb_counters[min]++; 690 if (min > 0) 691 mb_clear_bit(first >> min, 692 buddy + sbi->s_mb_offsets[min]); 693 694 len -= chunk; 695 first += chunk; 696 } 697 } 698 699 /* 700 * Cache the order of the largest free extent we have available in this block 701 * group. 702 */ 703 static void 704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 705 { 706 int i; 707 int bits; 708 709 grp->bb_largest_free_order = -1; /* uninit */ 710 711 bits = sb->s_blocksize_bits + 1; 712 for (i = bits; i >= 0; i--) { 713 if (grp->bb_counters[i] > 0) { 714 grp->bb_largest_free_order = i; 715 break; 716 } 717 } 718 } 719 720 static noinline_for_stack 721 void ext4_mb_generate_buddy(struct super_block *sb, 722 void *buddy, void *bitmap, ext4_group_t group) 723 { 724 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 725 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 726 ext4_grpblk_t i = 0; 727 ext4_grpblk_t first; 728 ext4_grpblk_t len; 729 unsigned free = 0; 730 unsigned fragments = 0; 731 unsigned long long period = get_cycles(); 732 733 /* initialize buddy from bitmap which is aggregation 734 * of on-disk bitmap and preallocations */ 735 i = mb_find_next_zero_bit(bitmap, max, 0); 736 grp->bb_first_free = i; 737 while (i < max) { 738 fragments++; 739 first = i; 740 i = mb_find_next_bit(bitmap, max, i); 741 len = i - first; 742 free += len; 743 if (len > 1) 744 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 745 else 746 grp->bb_counters[0]++; 747 if (i < max) 748 i = mb_find_next_zero_bit(bitmap, max, i); 749 } 750 grp->bb_fragments = fragments; 751 752 if (free != grp->bb_free) { 753 ext4_grp_locked_error(sb, group, 0, 0, 754 "%u clusters in bitmap, %u in gd", 755 free, grp->bb_free); 756 /* 757 * If we intent to continue, we consider group descritor 758 * corrupt and update bb_free using bitmap value 759 */ 760 grp->bb_free = free; 761 } 762 mb_set_largest_free_order(sb, grp); 763 764 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 765 766 period = get_cycles() - period; 767 spin_lock(&EXT4_SB(sb)->s_bal_lock); 768 EXT4_SB(sb)->s_mb_buddies_generated++; 769 EXT4_SB(sb)->s_mb_generation_time += period; 770 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 771 } 772 773 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 774 { 775 int count; 776 int order = 1; 777 void *buddy; 778 779 while ((buddy = mb_find_buddy(e4b, order++, &count))) { 780 ext4_set_bits(buddy, 0, count); 781 } 782 e4b->bd_info->bb_fragments = 0; 783 memset(e4b->bd_info->bb_counters, 0, 784 sizeof(*e4b->bd_info->bb_counters) * 785 (e4b->bd_sb->s_blocksize_bits + 2)); 786 787 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 788 e4b->bd_bitmap, e4b->bd_group); 789 } 790 791 /* The buddy information is attached the buddy cache inode 792 * for convenience. The information regarding each group 793 * is loaded via ext4_mb_load_buddy. The information involve 794 * block bitmap and buddy information. The information are 795 * stored in the inode as 796 * 797 * { page } 798 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 799 * 800 * 801 * one block each for bitmap and buddy information. 802 * So for each group we take up 2 blocks. A page can 803 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 804 * So it can have information regarding groups_per_page which 805 * is blocks_per_page/2 806 * 807 * Locking note: This routine takes the block group lock of all groups 808 * for this page; do not hold this lock when calling this routine! 809 */ 810 811 static int ext4_mb_init_cache(struct page *page, char *incore) 812 { 813 ext4_group_t ngroups; 814 int blocksize; 815 int blocks_per_page; 816 int groups_per_page; 817 int err = 0; 818 int i; 819 ext4_group_t first_group, group; 820 int first_block; 821 struct super_block *sb; 822 struct buffer_head *bhs; 823 struct buffer_head **bh = NULL; 824 struct inode *inode; 825 char *data; 826 char *bitmap; 827 struct ext4_group_info *grinfo; 828 829 mb_debug(1, "init page %lu\n", page->index); 830 831 inode = page->mapping->host; 832 sb = inode->i_sb; 833 ngroups = ext4_get_groups_count(sb); 834 blocksize = 1 << inode->i_blkbits; 835 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 836 837 groups_per_page = blocks_per_page >> 1; 838 if (groups_per_page == 0) 839 groups_per_page = 1; 840 841 /* allocate buffer_heads to read bitmaps */ 842 if (groups_per_page > 1) { 843 i = sizeof(struct buffer_head *) * groups_per_page; 844 bh = kzalloc(i, GFP_NOFS); 845 if (bh == NULL) { 846 err = -ENOMEM; 847 goto out; 848 } 849 } else 850 bh = &bhs; 851 852 first_group = page->index * blocks_per_page / 2; 853 854 /* read all groups the page covers into the cache */ 855 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 856 if (group >= ngroups) 857 break; 858 859 grinfo = ext4_get_group_info(sb, group); 860 /* 861 * If page is uptodate then we came here after online resize 862 * which added some new uninitialized group info structs, so 863 * we must skip all initialized uptodate buddies on the page, 864 * which may be currently in use by an allocating task. 865 */ 866 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 867 bh[i] = NULL; 868 continue; 869 } 870 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) { 871 err = -ENOMEM; 872 goto out; 873 } 874 mb_debug(1, "read bitmap for group %u\n", group); 875 } 876 877 /* wait for I/O completion */ 878 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 879 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) { 880 err = -EIO; 881 goto out; 882 } 883 } 884 885 first_block = page->index * blocks_per_page; 886 for (i = 0; i < blocks_per_page; i++) { 887 group = (first_block + i) >> 1; 888 if (group >= ngroups) 889 break; 890 891 if (!bh[group - first_group]) 892 /* skip initialized uptodate buddy */ 893 continue; 894 895 /* 896 * data carry information regarding this 897 * particular group in the format specified 898 * above 899 * 900 */ 901 data = page_address(page) + (i * blocksize); 902 bitmap = bh[group - first_group]->b_data; 903 904 /* 905 * We place the buddy block and bitmap block 906 * close together 907 */ 908 if ((first_block + i) & 1) { 909 /* this is block of buddy */ 910 BUG_ON(incore == NULL); 911 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 912 group, page->index, i * blocksize); 913 trace_ext4_mb_buddy_bitmap_load(sb, group); 914 grinfo = ext4_get_group_info(sb, group); 915 grinfo->bb_fragments = 0; 916 memset(grinfo->bb_counters, 0, 917 sizeof(*grinfo->bb_counters) * 918 (sb->s_blocksize_bits+2)); 919 /* 920 * incore got set to the group block bitmap below 921 */ 922 ext4_lock_group(sb, group); 923 /* init the buddy */ 924 memset(data, 0xff, blocksize); 925 ext4_mb_generate_buddy(sb, data, incore, group); 926 ext4_unlock_group(sb, group); 927 incore = NULL; 928 } else { 929 /* this is block of bitmap */ 930 BUG_ON(incore != NULL); 931 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 932 group, page->index, i * blocksize); 933 trace_ext4_mb_bitmap_load(sb, group); 934 935 /* see comments in ext4_mb_put_pa() */ 936 ext4_lock_group(sb, group); 937 memcpy(data, bitmap, blocksize); 938 939 /* mark all preallocated blks used in in-core bitmap */ 940 ext4_mb_generate_from_pa(sb, data, group); 941 ext4_mb_generate_from_freelist(sb, data, group); 942 ext4_unlock_group(sb, group); 943 944 /* set incore so that the buddy information can be 945 * generated using this 946 */ 947 incore = data; 948 } 949 } 950 SetPageUptodate(page); 951 952 out: 953 if (bh) { 954 for (i = 0; i < groups_per_page; i++) 955 brelse(bh[i]); 956 if (bh != &bhs) 957 kfree(bh); 958 } 959 return err; 960 } 961 962 /* 963 * Lock the buddy and bitmap pages. This make sure other parallel init_group 964 * on the same buddy page doesn't happen whild holding the buddy page lock. 965 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 966 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 967 */ 968 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 969 ext4_group_t group, struct ext4_buddy *e4b) 970 { 971 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 972 int block, pnum, poff; 973 int blocks_per_page; 974 struct page *page; 975 976 e4b->bd_buddy_page = NULL; 977 e4b->bd_bitmap_page = NULL; 978 979 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 980 /* 981 * the buddy cache inode stores the block bitmap 982 * and buddy information in consecutive blocks. 983 * So for each group we need two blocks. 984 */ 985 block = group * 2; 986 pnum = block / blocks_per_page; 987 poff = block % blocks_per_page; 988 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 989 if (!page) 990 return -EIO; 991 BUG_ON(page->mapping != inode->i_mapping); 992 e4b->bd_bitmap_page = page; 993 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 994 995 if (blocks_per_page >= 2) { 996 /* buddy and bitmap are on the same page */ 997 return 0; 998 } 999 1000 block++; 1001 pnum = block / blocks_per_page; 1002 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1003 if (!page) 1004 return -EIO; 1005 BUG_ON(page->mapping != inode->i_mapping); 1006 e4b->bd_buddy_page = page; 1007 return 0; 1008 } 1009 1010 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1011 { 1012 if (e4b->bd_bitmap_page) { 1013 unlock_page(e4b->bd_bitmap_page); 1014 page_cache_release(e4b->bd_bitmap_page); 1015 } 1016 if (e4b->bd_buddy_page) { 1017 unlock_page(e4b->bd_buddy_page); 1018 page_cache_release(e4b->bd_buddy_page); 1019 } 1020 } 1021 1022 /* 1023 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1024 * block group lock of all groups for this page; do not hold the BG lock when 1025 * calling this routine! 1026 */ 1027 static noinline_for_stack 1028 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) 1029 { 1030 1031 struct ext4_group_info *this_grp; 1032 struct ext4_buddy e4b; 1033 struct page *page; 1034 int ret = 0; 1035 1036 might_sleep(); 1037 mb_debug(1, "init group %u\n", group); 1038 this_grp = ext4_get_group_info(sb, group); 1039 /* 1040 * This ensures that we don't reinit the buddy cache 1041 * page which map to the group from which we are already 1042 * allocating. If we are looking at the buddy cache we would 1043 * have taken a reference using ext4_mb_load_buddy and that 1044 * would have pinned buddy page to page cache. 1045 */ 1046 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b); 1047 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1048 /* 1049 * somebody initialized the group 1050 * return without doing anything 1051 */ 1052 goto err; 1053 } 1054 1055 page = e4b.bd_bitmap_page; 1056 ret = ext4_mb_init_cache(page, NULL); 1057 if (ret) 1058 goto err; 1059 if (!PageUptodate(page)) { 1060 ret = -EIO; 1061 goto err; 1062 } 1063 mark_page_accessed(page); 1064 1065 if (e4b.bd_buddy_page == NULL) { 1066 /* 1067 * If both the bitmap and buddy are in 1068 * the same page we don't need to force 1069 * init the buddy 1070 */ 1071 ret = 0; 1072 goto err; 1073 } 1074 /* init buddy cache */ 1075 page = e4b.bd_buddy_page; 1076 ret = ext4_mb_init_cache(page, e4b.bd_bitmap); 1077 if (ret) 1078 goto err; 1079 if (!PageUptodate(page)) { 1080 ret = -EIO; 1081 goto err; 1082 } 1083 mark_page_accessed(page); 1084 err: 1085 ext4_mb_put_buddy_page_lock(&e4b); 1086 return ret; 1087 } 1088 1089 /* 1090 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1091 * block group lock of all groups for this page; do not hold the BG lock when 1092 * calling this routine! 1093 */ 1094 static noinline_for_stack int 1095 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1096 struct ext4_buddy *e4b) 1097 { 1098 int blocks_per_page; 1099 int block; 1100 int pnum; 1101 int poff; 1102 struct page *page; 1103 int ret; 1104 struct ext4_group_info *grp; 1105 struct ext4_sb_info *sbi = EXT4_SB(sb); 1106 struct inode *inode = sbi->s_buddy_cache; 1107 1108 might_sleep(); 1109 mb_debug(1, "load group %u\n", group); 1110 1111 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1112 grp = ext4_get_group_info(sb, group); 1113 1114 e4b->bd_blkbits = sb->s_blocksize_bits; 1115 e4b->bd_info = grp; 1116 e4b->bd_sb = sb; 1117 e4b->bd_group = group; 1118 e4b->bd_buddy_page = NULL; 1119 e4b->bd_bitmap_page = NULL; 1120 1121 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1122 /* 1123 * we need full data about the group 1124 * to make a good selection 1125 */ 1126 ret = ext4_mb_init_group(sb, group); 1127 if (ret) 1128 return ret; 1129 } 1130 1131 /* 1132 * the buddy cache inode stores the block bitmap 1133 * and buddy information in consecutive blocks. 1134 * So for each group we need two blocks. 1135 */ 1136 block = group * 2; 1137 pnum = block / blocks_per_page; 1138 poff = block % blocks_per_page; 1139 1140 /* we could use find_or_create_page(), but it locks page 1141 * what we'd like to avoid in fast path ... */ 1142 page = find_get_page(inode->i_mapping, pnum); 1143 if (page == NULL || !PageUptodate(page)) { 1144 if (page) 1145 /* 1146 * drop the page reference and try 1147 * to get the page with lock. If we 1148 * are not uptodate that implies 1149 * somebody just created the page but 1150 * is yet to initialize the same. So 1151 * wait for it to initialize. 1152 */ 1153 page_cache_release(page); 1154 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1155 if (page) { 1156 BUG_ON(page->mapping != inode->i_mapping); 1157 if (!PageUptodate(page)) { 1158 ret = ext4_mb_init_cache(page, NULL); 1159 if (ret) { 1160 unlock_page(page); 1161 goto err; 1162 } 1163 mb_cmp_bitmaps(e4b, page_address(page) + 1164 (poff * sb->s_blocksize)); 1165 } 1166 unlock_page(page); 1167 } 1168 } 1169 if (page == NULL || !PageUptodate(page)) { 1170 ret = -EIO; 1171 goto err; 1172 } 1173 e4b->bd_bitmap_page = page; 1174 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1175 mark_page_accessed(page); 1176 1177 block++; 1178 pnum = block / blocks_per_page; 1179 poff = block % blocks_per_page; 1180 1181 page = find_get_page(inode->i_mapping, pnum); 1182 if (page == NULL || !PageUptodate(page)) { 1183 if (page) 1184 page_cache_release(page); 1185 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1186 if (page) { 1187 BUG_ON(page->mapping != inode->i_mapping); 1188 if (!PageUptodate(page)) { 1189 ret = ext4_mb_init_cache(page, e4b->bd_bitmap); 1190 if (ret) { 1191 unlock_page(page); 1192 goto err; 1193 } 1194 } 1195 unlock_page(page); 1196 } 1197 } 1198 if (page == NULL || !PageUptodate(page)) { 1199 ret = -EIO; 1200 goto err; 1201 } 1202 e4b->bd_buddy_page = page; 1203 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1204 mark_page_accessed(page); 1205 1206 BUG_ON(e4b->bd_bitmap_page == NULL); 1207 BUG_ON(e4b->bd_buddy_page == NULL); 1208 1209 return 0; 1210 1211 err: 1212 if (page) 1213 page_cache_release(page); 1214 if (e4b->bd_bitmap_page) 1215 page_cache_release(e4b->bd_bitmap_page); 1216 if (e4b->bd_buddy_page) 1217 page_cache_release(e4b->bd_buddy_page); 1218 e4b->bd_buddy = NULL; 1219 e4b->bd_bitmap = NULL; 1220 return ret; 1221 } 1222 1223 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1224 { 1225 if (e4b->bd_bitmap_page) 1226 page_cache_release(e4b->bd_bitmap_page); 1227 if (e4b->bd_buddy_page) 1228 page_cache_release(e4b->bd_buddy_page); 1229 } 1230 1231 1232 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1233 { 1234 int order = 1; 1235 void *bb; 1236 1237 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1238 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1239 1240 bb = e4b->bd_buddy; 1241 while (order <= e4b->bd_blkbits + 1) { 1242 block = block >> 1; 1243 if (!mb_test_bit(block, bb)) { 1244 /* this block is part of buddy of order 'order' */ 1245 return order; 1246 } 1247 bb += 1 << (e4b->bd_blkbits - order); 1248 order++; 1249 } 1250 return 0; 1251 } 1252 1253 static void mb_clear_bits(void *bm, int cur, int len) 1254 { 1255 __u32 *addr; 1256 1257 len = cur + len; 1258 while (cur < len) { 1259 if ((cur & 31) == 0 && (len - cur) >= 32) { 1260 /* fast path: clear whole word at once */ 1261 addr = bm + (cur >> 3); 1262 *addr = 0; 1263 cur += 32; 1264 continue; 1265 } 1266 mb_clear_bit(cur, bm); 1267 cur++; 1268 } 1269 } 1270 1271 /* clear bits in given range 1272 * will return first found zero bit if any, -1 otherwise 1273 */ 1274 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1275 { 1276 __u32 *addr; 1277 int zero_bit = -1; 1278 1279 len = cur + len; 1280 while (cur < len) { 1281 if ((cur & 31) == 0 && (len - cur) >= 32) { 1282 /* fast path: clear whole word at once */ 1283 addr = bm + (cur >> 3); 1284 if (*addr != (__u32)(-1) && zero_bit == -1) 1285 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1286 *addr = 0; 1287 cur += 32; 1288 continue; 1289 } 1290 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1291 zero_bit = cur; 1292 cur++; 1293 } 1294 1295 return zero_bit; 1296 } 1297 1298 void ext4_set_bits(void *bm, int cur, int len) 1299 { 1300 __u32 *addr; 1301 1302 len = cur + len; 1303 while (cur < len) { 1304 if ((cur & 31) == 0 && (len - cur) >= 32) { 1305 /* fast path: set whole word at once */ 1306 addr = bm + (cur >> 3); 1307 *addr = 0xffffffff; 1308 cur += 32; 1309 continue; 1310 } 1311 mb_set_bit(cur, bm); 1312 cur++; 1313 } 1314 } 1315 1316 /* 1317 * _________________________________________________________________ */ 1318 1319 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1320 { 1321 if (mb_test_bit(*bit + side, bitmap)) { 1322 mb_clear_bit(*bit, bitmap); 1323 (*bit) -= side; 1324 return 1; 1325 } 1326 else { 1327 (*bit) += side; 1328 mb_set_bit(*bit, bitmap); 1329 return -1; 1330 } 1331 } 1332 1333 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1334 { 1335 int max; 1336 int order = 1; 1337 void *buddy = mb_find_buddy(e4b, order, &max); 1338 1339 while (buddy) { 1340 void *buddy2; 1341 1342 /* Bits in range [first; last] are known to be set since 1343 * corresponding blocks were allocated. Bits in range 1344 * (first; last) will stay set because they form buddies on 1345 * upper layer. We just deal with borders if they don't 1346 * align with upper layer and then go up. 1347 * Releasing entire group is all about clearing 1348 * single bit of highest order buddy. 1349 */ 1350 1351 /* Example: 1352 * --------------------------------- 1353 * | 1 | 1 | 1 | 1 | 1354 * --------------------------------- 1355 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1356 * --------------------------------- 1357 * 0 1 2 3 4 5 6 7 1358 * \_____________________/ 1359 * 1360 * Neither [1] nor [6] is aligned to above layer. 1361 * Left neighbour [0] is free, so mark it busy, 1362 * decrease bb_counters and extend range to 1363 * [0; 6] 1364 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1365 * mark [6] free, increase bb_counters and shrink range to 1366 * [0; 5]. 1367 * Then shift range to [0; 2], go up and do the same. 1368 */ 1369 1370 1371 if (first & 1) 1372 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1373 if (!(last & 1)) 1374 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1375 if (first > last) 1376 break; 1377 order++; 1378 1379 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1380 mb_clear_bits(buddy, first, last - first + 1); 1381 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1382 break; 1383 } 1384 first >>= 1; 1385 last >>= 1; 1386 buddy = buddy2; 1387 } 1388 } 1389 1390 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1391 int first, int count) 1392 { 1393 int left_is_free = 0; 1394 int right_is_free = 0; 1395 int block; 1396 int last = first + count - 1; 1397 struct super_block *sb = e4b->bd_sb; 1398 1399 BUG_ON(last >= (sb->s_blocksize << 3)); 1400 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1401 mb_check_buddy(e4b); 1402 mb_free_blocks_double(inode, e4b, first, count); 1403 1404 e4b->bd_info->bb_free += count; 1405 if (first < e4b->bd_info->bb_first_free) 1406 e4b->bd_info->bb_first_free = first; 1407 1408 /* access memory sequentially: check left neighbour, 1409 * clear range and then check right neighbour 1410 */ 1411 if (first != 0) 1412 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1413 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1414 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1415 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1416 1417 if (unlikely(block != -1)) { 1418 ext4_fsblk_t blocknr; 1419 1420 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1421 blocknr += EXT4_C2B(EXT4_SB(sb), block); 1422 ext4_grp_locked_error(sb, e4b->bd_group, 1423 inode ? inode->i_ino : 0, 1424 blocknr, 1425 "freeing already freed block " 1426 "(bit %u)", block); 1427 mb_regenerate_buddy(e4b); 1428 goto done; 1429 } 1430 1431 /* let's maintain fragments counter */ 1432 if (left_is_free && right_is_free) 1433 e4b->bd_info->bb_fragments--; 1434 else if (!left_is_free && !right_is_free) 1435 e4b->bd_info->bb_fragments++; 1436 1437 /* buddy[0] == bd_bitmap is a special case, so handle 1438 * it right away and let mb_buddy_mark_free stay free of 1439 * zero order checks. 1440 * Check if neighbours are to be coaleasced, 1441 * adjust bitmap bb_counters and borders appropriately. 1442 */ 1443 if (first & 1) { 1444 first += !left_is_free; 1445 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1446 } 1447 if (!(last & 1)) { 1448 last -= !right_is_free; 1449 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1450 } 1451 1452 if (first <= last) 1453 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1454 1455 done: 1456 mb_set_largest_free_order(sb, e4b->bd_info); 1457 mb_check_buddy(e4b); 1458 } 1459 1460 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1461 int needed, struct ext4_free_extent *ex) 1462 { 1463 int next = block; 1464 int max, order; 1465 void *buddy; 1466 1467 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1468 BUG_ON(ex == NULL); 1469 1470 buddy = mb_find_buddy(e4b, 0, &max); 1471 BUG_ON(buddy == NULL); 1472 BUG_ON(block >= max); 1473 if (mb_test_bit(block, buddy)) { 1474 ex->fe_len = 0; 1475 ex->fe_start = 0; 1476 ex->fe_group = 0; 1477 return 0; 1478 } 1479 1480 /* find actual order */ 1481 order = mb_find_order_for_block(e4b, block); 1482 block = block >> order; 1483 1484 ex->fe_len = 1 << order; 1485 ex->fe_start = block << order; 1486 ex->fe_group = e4b->bd_group; 1487 1488 /* calc difference from given start */ 1489 next = next - ex->fe_start; 1490 ex->fe_len -= next; 1491 ex->fe_start += next; 1492 1493 while (needed > ex->fe_len && 1494 mb_find_buddy(e4b, order, &max)) { 1495 1496 if (block + 1 >= max) 1497 break; 1498 1499 next = (block + 1) * (1 << order); 1500 if (mb_test_bit(next, e4b->bd_bitmap)) 1501 break; 1502 1503 order = mb_find_order_for_block(e4b, next); 1504 1505 block = next >> order; 1506 ex->fe_len += 1 << order; 1507 } 1508 1509 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1510 return ex->fe_len; 1511 } 1512 1513 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1514 { 1515 int ord; 1516 int mlen = 0; 1517 int max = 0; 1518 int cur; 1519 int start = ex->fe_start; 1520 int len = ex->fe_len; 1521 unsigned ret = 0; 1522 int len0 = len; 1523 void *buddy; 1524 1525 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1526 BUG_ON(e4b->bd_group != ex->fe_group); 1527 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1528 mb_check_buddy(e4b); 1529 mb_mark_used_double(e4b, start, len); 1530 1531 e4b->bd_info->bb_free -= len; 1532 if (e4b->bd_info->bb_first_free == start) 1533 e4b->bd_info->bb_first_free += len; 1534 1535 /* let's maintain fragments counter */ 1536 if (start != 0) 1537 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1538 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1539 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1540 if (mlen && max) 1541 e4b->bd_info->bb_fragments++; 1542 else if (!mlen && !max) 1543 e4b->bd_info->bb_fragments--; 1544 1545 /* let's maintain buddy itself */ 1546 while (len) { 1547 ord = mb_find_order_for_block(e4b, start); 1548 1549 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1550 /* the whole chunk may be allocated at once! */ 1551 mlen = 1 << ord; 1552 buddy = mb_find_buddy(e4b, ord, &max); 1553 BUG_ON((start >> ord) >= max); 1554 mb_set_bit(start >> ord, buddy); 1555 e4b->bd_info->bb_counters[ord]--; 1556 start += mlen; 1557 len -= mlen; 1558 BUG_ON(len < 0); 1559 continue; 1560 } 1561 1562 /* store for history */ 1563 if (ret == 0) 1564 ret = len | (ord << 16); 1565 1566 /* we have to split large buddy */ 1567 BUG_ON(ord <= 0); 1568 buddy = mb_find_buddy(e4b, ord, &max); 1569 mb_set_bit(start >> ord, buddy); 1570 e4b->bd_info->bb_counters[ord]--; 1571 1572 ord--; 1573 cur = (start >> ord) & ~1U; 1574 buddy = mb_find_buddy(e4b, ord, &max); 1575 mb_clear_bit(cur, buddy); 1576 mb_clear_bit(cur + 1, buddy); 1577 e4b->bd_info->bb_counters[ord]++; 1578 e4b->bd_info->bb_counters[ord]++; 1579 } 1580 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1581 1582 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1583 mb_check_buddy(e4b); 1584 1585 return ret; 1586 } 1587 1588 /* 1589 * Must be called under group lock! 1590 */ 1591 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1592 struct ext4_buddy *e4b) 1593 { 1594 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1595 int ret; 1596 1597 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1598 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1599 1600 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1601 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1602 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1603 1604 /* preallocation can change ac_b_ex, thus we store actually 1605 * allocated blocks for history */ 1606 ac->ac_f_ex = ac->ac_b_ex; 1607 1608 ac->ac_status = AC_STATUS_FOUND; 1609 ac->ac_tail = ret & 0xffff; 1610 ac->ac_buddy = ret >> 16; 1611 1612 /* 1613 * take the page reference. We want the page to be pinned 1614 * so that we don't get a ext4_mb_init_cache_call for this 1615 * group until we update the bitmap. That would mean we 1616 * double allocate blocks. The reference is dropped 1617 * in ext4_mb_release_context 1618 */ 1619 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1620 get_page(ac->ac_bitmap_page); 1621 ac->ac_buddy_page = e4b->bd_buddy_page; 1622 get_page(ac->ac_buddy_page); 1623 /* store last allocated for subsequent stream allocation */ 1624 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1625 spin_lock(&sbi->s_md_lock); 1626 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1627 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1628 spin_unlock(&sbi->s_md_lock); 1629 } 1630 } 1631 1632 /* 1633 * regular allocator, for general purposes allocation 1634 */ 1635 1636 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1637 struct ext4_buddy *e4b, 1638 int finish_group) 1639 { 1640 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1641 struct ext4_free_extent *bex = &ac->ac_b_ex; 1642 struct ext4_free_extent *gex = &ac->ac_g_ex; 1643 struct ext4_free_extent ex; 1644 int max; 1645 1646 if (ac->ac_status == AC_STATUS_FOUND) 1647 return; 1648 /* 1649 * We don't want to scan for a whole year 1650 */ 1651 if (ac->ac_found > sbi->s_mb_max_to_scan && 1652 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1653 ac->ac_status = AC_STATUS_BREAK; 1654 return; 1655 } 1656 1657 /* 1658 * Haven't found good chunk so far, let's continue 1659 */ 1660 if (bex->fe_len < gex->fe_len) 1661 return; 1662 1663 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1664 && bex->fe_group == e4b->bd_group) { 1665 /* recheck chunk's availability - we don't know 1666 * when it was found (within this lock-unlock 1667 * period or not) */ 1668 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1669 if (max >= gex->fe_len) { 1670 ext4_mb_use_best_found(ac, e4b); 1671 return; 1672 } 1673 } 1674 } 1675 1676 /* 1677 * The routine checks whether found extent is good enough. If it is, 1678 * then the extent gets marked used and flag is set to the context 1679 * to stop scanning. Otherwise, the extent is compared with the 1680 * previous found extent and if new one is better, then it's stored 1681 * in the context. Later, the best found extent will be used, if 1682 * mballoc can't find good enough extent. 1683 * 1684 * FIXME: real allocation policy is to be designed yet! 1685 */ 1686 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1687 struct ext4_free_extent *ex, 1688 struct ext4_buddy *e4b) 1689 { 1690 struct ext4_free_extent *bex = &ac->ac_b_ex; 1691 struct ext4_free_extent *gex = &ac->ac_g_ex; 1692 1693 BUG_ON(ex->fe_len <= 0); 1694 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1695 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1696 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1697 1698 ac->ac_found++; 1699 1700 /* 1701 * The special case - take what you catch first 1702 */ 1703 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1704 *bex = *ex; 1705 ext4_mb_use_best_found(ac, e4b); 1706 return; 1707 } 1708 1709 /* 1710 * Let's check whether the chuck is good enough 1711 */ 1712 if (ex->fe_len == gex->fe_len) { 1713 *bex = *ex; 1714 ext4_mb_use_best_found(ac, e4b); 1715 return; 1716 } 1717 1718 /* 1719 * If this is first found extent, just store it in the context 1720 */ 1721 if (bex->fe_len == 0) { 1722 *bex = *ex; 1723 return; 1724 } 1725 1726 /* 1727 * If new found extent is better, store it in the context 1728 */ 1729 if (bex->fe_len < gex->fe_len) { 1730 /* if the request isn't satisfied, any found extent 1731 * larger than previous best one is better */ 1732 if (ex->fe_len > bex->fe_len) 1733 *bex = *ex; 1734 } else if (ex->fe_len > gex->fe_len) { 1735 /* if the request is satisfied, then we try to find 1736 * an extent that still satisfy the request, but is 1737 * smaller than previous one */ 1738 if (ex->fe_len < bex->fe_len) 1739 *bex = *ex; 1740 } 1741 1742 ext4_mb_check_limits(ac, e4b, 0); 1743 } 1744 1745 static noinline_for_stack 1746 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1747 struct ext4_buddy *e4b) 1748 { 1749 struct ext4_free_extent ex = ac->ac_b_ex; 1750 ext4_group_t group = ex.fe_group; 1751 int max; 1752 int err; 1753 1754 BUG_ON(ex.fe_len <= 0); 1755 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1756 if (err) 1757 return err; 1758 1759 ext4_lock_group(ac->ac_sb, group); 1760 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1761 1762 if (max > 0) { 1763 ac->ac_b_ex = ex; 1764 ext4_mb_use_best_found(ac, e4b); 1765 } 1766 1767 ext4_unlock_group(ac->ac_sb, group); 1768 ext4_mb_unload_buddy(e4b); 1769 1770 return 0; 1771 } 1772 1773 static noinline_for_stack 1774 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1775 struct ext4_buddy *e4b) 1776 { 1777 ext4_group_t group = ac->ac_g_ex.fe_group; 1778 int max; 1779 int err; 1780 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1781 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1782 struct ext4_free_extent ex; 1783 1784 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1785 return 0; 1786 if (grp->bb_free == 0) 1787 return 0; 1788 1789 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1790 if (err) 1791 return err; 1792 1793 ext4_lock_group(ac->ac_sb, group); 1794 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1795 ac->ac_g_ex.fe_len, &ex); 1796 1797 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1798 ext4_fsblk_t start; 1799 1800 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1801 ex.fe_start; 1802 /* use do_div to get remainder (would be 64-bit modulo) */ 1803 if (do_div(start, sbi->s_stripe) == 0) { 1804 ac->ac_found++; 1805 ac->ac_b_ex = ex; 1806 ext4_mb_use_best_found(ac, e4b); 1807 } 1808 } else if (max >= ac->ac_g_ex.fe_len) { 1809 BUG_ON(ex.fe_len <= 0); 1810 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1811 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1812 ac->ac_found++; 1813 ac->ac_b_ex = ex; 1814 ext4_mb_use_best_found(ac, e4b); 1815 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1816 /* Sometimes, caller may want to merge even small 1817 * number of blocks to an existing extent */ 1818 BUG_ON(ex.fe_len <= 0); 1819 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1820 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1821 ac->ac_found++; 1822 ac->ac_b_ex = ex; 1823 ext4_mb_use_best_found(ac, e4b); 1824 } 1825 ext4_unlock_group(ac->ac_sb, group); 1826 ext4_mb_unload_buddy(e4b); 1827 1828 return 0; 1829 } 1830 1831 /* 1832 * The routine scans buddy structures (not bitmap!) from given order 1833 * to max order and tries to find big enough chunk to satisfy the req 1834 */ 1835 static noinline_for_stack 1836 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1837 struct ext4_buddy *e4b) 1838 { 1839 struct super_block *sb = ac->ac_sb; 1840 struct ext4_group_info *grp = e4b->bd_info; 1841 void *buddy; 1842 int i; 1843 int k; 1844 int max; 1845 1846 BUG_ON(ac->ac_2order <= 0); 1847 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1848 if (grp->bb_counters[i] == 0) 1849 continue; 1850 1851 buddy = mb_find_buddy(e4b, i, &max); 1852 BUG_ON(buddy == NULL); 1853 1854 k = mb_find_next_zero_bit(buddy, max, 0); 1855 BUG_ON(k >= max); 1856 1857 ac->ac_found++; 1858 1859 ac->ac_b_ex.fe_len = 1 << i; 1860 ac->ac_b_ex.fe_start = k << i; 1861 ac->ac_b_ex.fe_group = e4b->bd_group; 1862 1863 ext4_mb_use_best_found(ac, e4b); 1864 1865 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1866 1867 if (EXT4_SB(sb)->s_mb_stats) 1868 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1869 1870 break; 1871 } 1872 } 1873 1874 /* 1875 * The routine scans the group and measures all found extents. 1876 * In order to optimize scanning, caller must pass number of 1877 * free blocks in the group, so the routine can know upper limit. 1878 */ 1879 static noinline_for_stack 1880 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1881 struct ext4_buddy *e4b) 1882 { 1883 struct super_block *sb = ac->ac_sb; 1884 void *bitmap = e4b->bd_bitmap; 1885 struct ext4_free_extent ex; 1886 int i; 1887 int free; 1888 1889 free = e4b->bd_info->bb_free; 1890 BUG_ON(free <= 0); 1891 1892 i = e4b->bd_info->bb_first_free; 1893 1894 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1895 i = mb_find_next_zero_bit(bitmap, 1896 EXT4_CLUSTERS_PER_GROUP(sb), i); 1897 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1898 /* 1899 * IF we have corrupt bitmap, we won't find any 1900 * free blocks even though group info says we 1901 * we have free blocks 1902 */ 1903 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1904 "%d free clusters as per " 1905 "group info. But bitmap says 0", 1906 free); 1907 break; 1908 } 1909 1910 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1911 BUG_ON(ex.fe_len <= 0); 1912 if (free < ex.fe_len) { 1913 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1914 "%d free clusters as per " 1915 "group info. But got %d blocks", 1916 free, ex.fe_len); 1917 /* 1918 * The number of free blocks differs. This mostly 1919 * indicate that the bitmap is corrupt. So exit 1920 * without claiming the space. 1921 */ 1922 break; 1923 } 1924 1925 ext4_mb_measure_extent(ac, &ex, e4b); 1926 1927 i += ex.fe_len; 1928 free -= ex.fe_len; 1929 } 1930 1931 ext4_mb_check_limits(ac, e4b, 1); 1932 } 1933 1934 /* 1935 * This is a special case for storages like raid5 1936 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1937 */ 1938 static noinline_for_stack 1939 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1940 struct ext4_buddy *e4b) 1941 { 1942 struct super_block *sb = ac->ac_sb; 1943 struct ext4_sb_info *sbi = EXT4_SB(sb); 1944 void *bitmap = e4b->bd_bitmap; 1945 struct ext4_free_extent ex; 1946 ext4_fsblk_t first_group_block; 1947 ext4_fsblk_t a; 1948 ext4_grpblk_t i; 1949 int max; 1950 1951 BUG_ON(sbi->s_stripe == 0); 1952 1953 /* find first stripe-aligned block in group */ 1954 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 1955 1956 a = first_group_block + sbi->s_stripe - 1; 1957 do_div(a, sbi->s_stripe); 1958 i = (a * sbi->s_stripe) - first_group_block; 1959 1960 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 1961 if (!mb_test_bit(i, bitmap)) { 1962 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 1963 if (max >= sbi->s_stripe) { 1964 ac->ac_found++; 1965 ac->ac_b_ex = ex; 1966 ext4_mb_use_best_found(ac, e4b); 1967 break; 1968 } 1969 } 1970 i += sbi->s_stripe; 1971 } 1972 } 1973 1974 /* This is now called BEFORE we load the buddy bitmap. */ 1975 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 1976 ext4_group_t group, int cr) 1977 { 1978 unsigned free, fragments; 1979 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 1980 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1981 1982 BUG_ON(cr < 0 || cr >= 4); 1983 1984 free = grp->bb_free; 1985 if (free == 0) 1986 return 0; 1987 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 1988 return 0; 1989 1990 /* We only do this if the grp has never been initialized */ 1991 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1992 int ret = ext4_mb_init_group(ac->ac_sb, group); 1993 if (ret) 1994 return 0; 1995 } 1996 1997 fragments = grp->bb_fragments; 1998 if (fragments == 0) 1999 return 0; 2000 2001 switch (cr) { 2002 case 0: 2003 BUG_ON(ac->ac_2order == 0); 2004 2005 /* Avoid using the first bg of a flexgroup for data files */ 2006 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2007 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2008 ((group % flex_size) == 0)) 2009 return 0; 2010 2011 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) || 2012 (free / fragments) >= ac->ac_g_ex.fe_len) 2013 return 1; 2014 2015 if (grp->bb_largest_free_order < ac->ac_2order) 2016 return 0; 2017 2018 return 1; 2019 case 1: 2020 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2021 return 1; 2022 break; 2023 case 2: 2024 if (free >= ac->ac_g_ex.fe_len) 2025 return 1; 2026 break; 2027 case 3: 2028 return 1; 2029 default: 2030 BUG(); 2031 } 2032 2033 return 0; 2034 } 2035 2036 static noinline_for_stack int 2037 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2038 { 2039 ext4_group_t ngroups, group, i; 2040 int cr; 2041 int err = 0; 2042 struct ext4_sb_info *sbi; 2043 struct super_block *sb; 2044 struct ext4_buddy e4b; 2045 2046 sb = ac->ac_sb; 2047 sbi = EXT4_SB(sb); 2048 ngroups = ext4_get_groups_count(sb); 2049 /* non-extent files are limited to low blocks/groups */ 2050 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2051 ngroups = sbi->s_blockfile_groups; 2052 2053 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2054 2055 /* first, try the goal */ 2056 err = ext4_mb_find_by_goal(ac, &e4b); 2057 if (err || ac->ac_status == AC_STATUS_FOUND) 2058 goto out; 2059 2060 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2061 goto out; 2062 2063 /* 2064 * ac->ac2_order is set only if the fe_len is a power of 2 2065 * if ac2_order is set we also set criteria to 0 so that we 2066 * try exact allocation using buddy. 2067 */ 2068 i = fls(ac->ac_g_ex.fe_len); 2069 ac->ac_2order = 0; 2070 /* 2071 * We search using buddy data only if the order of the request 2072 * is greater than equal to the sbi_s_mb_order2_reqs 2073 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2074 */ 2075 if (i >= sbi->s_mb_order2_reqs) { 2076 /* 2077 * This should tell if fe_len is exactly power of 2 2078 */ 2079 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2080 ac->ac_2order = i - 1; 2081 } 2082 2083 /* if stream allocation is enabled, use global goal */ 2084 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2085 /* TBD: may be hot point */ 2086 spin_lock(&sbi->s_md_lock); 2087 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2088 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2089 spin_unlock(&sbi->s_md_lock); 2090 } 2091 2092 /* Let's just scan groups to find more-less suitable blocks */ 2093 cr = ac->ac_2order ? 0 : 1; 2094 /* 2095 * cr == 0 try to get exact allocation, 2096 * cr == 3 try to get anything 2097 */ 2098 repeat: 2099 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2100 ac->ac_criteria = cr; 2101 /* 2102 * searching for the right group start 2103 * from the goal value specified 2104 */ 2105 group = ac->ac_g_ex.fe_group; 2106 2107 for (i = 0; i < ngroups; group++, i++) { 2108 cond_resched(); 2109 /* 2110 * Artificially restricted ngroups for non-extent 2111 * files makes group > ngroups possible on first loop. 2112 */ 2113 if (group >= ngroups) 2114 group = 0; 2115 2116 /* This now checks without needing the buddy page */ 2117 if (!ext4_mb_good_group(ac, group, cr)) 2118 continue; 2119 2120 err = ext4_mb_load_buddy(sb, group, &e4b); 2121 if (err) 2122 goto out; 2123 2124 ext4_lock_group(sb, group); 2125 2126 /* 2127 * We need to check again after locking the 2128 * block group 2129 */ 2130 if (!ext4_mb_good_group(ac, group, cr)) { 2131 ext4_unlock_group(sb, group); 2132 ext4_mb_unload_buddy(&e4b); 2133 continue; 2134 } 2135 2136 ac->ac_groups_scanned++; 2137 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2) 2138 ext4_mb_simple_scan_group(ac, &e4b); 2139 else if (cr == 1 && sbi->s_stripe && 2140 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2141 ext4_mb_scan_aligned(ac, &e4b); 2142 else 2143 ext4_mb_complex_scan_group(ac, &e4b); 2144 2145 ext4_unlock_group(sb, group); 2146 ext4_mb_unload_buddy(&e4b); 2147 2148 if (ac->ac_status != AC_STATUS_CONTINUE) 2149 break; 2150 } 2151 } 2152 2153 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2154 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2155 /* 2156 * We've been searching too long. Let's try to allocate 2157 * the best chunk we've found so far 2158 */ 2159 2160 ext4_mb_try_best_found(ac, &e4b); 2161 if (ac->ac_status != AC_STATUS_FOUND) { 2162 /* 2163 * Someone more lucky has already allocated it. 2164 * The only thing we can do is just take first 2165 * found block(s) 2166 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2167 */ 2168 ac->ac_b_ex.fe_group = 0; 2169 ac->ac_b_ex.fe_start = 0; 2170 ac->ac_b_ex.fe_len = 0; 2171 ac->ac_status = AC_STATUS_CONTINUE; 2172 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2173 cr = 3; 2174 atomic_inc(&sbi->s_mb_lost_chunks); 2175 goto repeat; 2176 } 2177 } 2178 out: 2179 return err; 2180 } 2181 2182 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2183 { 2184 struct super_block *sb = seq->private; 2185 ext4_group_t group; 2186 2187 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2188 return NULL; 2189 group = *pos + 1; 2190 return (void *) ((unsigned long) group); 2191 } 2192 2193 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2194 { 2195 struct super_block *sb = seq->private; 2196 ext4_group_t group; 2197 2198 ++*pos; 2199 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2200 return NULL; 2201 group = *pos + 1; 2202 return (void *) ((unsigned long) group); 2203 } 2204 2205 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2206 { 2207 struct super_block *sb = seq->private; 2208 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2209 int i; 2210 int err, buddy_loaded = 0; 2211 struct ext4_buddy e4b; 2212 struct ext4_group_info *grinfo; 2213 struct sg { 2214 struct ext4_group_info info; 2215 ext4_grpblk_t counters[16]; 2216 } sg; 2217 2218 group--; 2219 if (group == 0) 2220 seq_printf(seq, "#%-5s: %-5s %-5s %-5s " 2221 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " 2222 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", 2223 "group", "free", "frags", "first", 2224 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", 2225 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); 2226 2227 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2228 sizeof(struct ext4_group_info); 2229 grinfo = ext4_get_group_info(sb, group); 2230 /* Load the group info in memory only if not already loaded. */ 2231 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2232 err = ext4_mb_load_buddy(sb, group, &e4b); 2233 if (err) { 2234 seq_printf(seq, "#%-5u: I/O error\n", group); 2235 return 0; 2236 } 2237 buddy_loaded = 1; 2238 } 2239 2240 memcpy(&sg, ext4_get_group_info(sb, group), i); 2241 2242 if (buddy_loaded) 2243 ext4_mb_unload_buddy(&e4b); 2244 2245 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2246 sg.info.bb_fragments, sg.info.bb_first_free); 2247 for (i = 0; i <= 13; i++) 2248 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2249 sg.info.bb_counters[i] : 0); 2250 seq_printf(seq, " ]\n"); 2251 2252 return 0; 2253 } 2254 2255 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2256 { 2257 } 2258 2259 static const struct seq_operations ext4_mb_seq_groups_ops = { 2260 .start = ext4_mb_seq_groups_start, 2261 .next = ext4_mb_seq_groups_next, 2262 .stop = ext4_mb_seq_groups_stop, 2263 .show = ext4_mb_seq_groups_show, 2264 }; 2265 2266 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2267 { 2268 struct super_block *sb = PDE_DATA(inode); 2269 int rc; 2270 2271 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2272 if (rc == 0) { 2273 struct seq_file *m = file->private_data; 2274 m->private = sb; 2275 } 2276 return rc; 2277 2278 } 2279 2280 static const struct file_operations ext4_mb_seq_groups_fops = { 2281 .owner = THIS_MODULE, 2282 .open = ext4_mb_seq_groups_open, 2283 .read = seq_read, 2284 .llseek = seq_lseek, 2285 .release = seq_release, 2286 }; 2287 2288 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2289 { 2290 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2291 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2292 2293 BUG_ON(!cachep); 2294 return cachep; 2295 } 2296 2297 /* 2298 * Allocate the top-level s_group_info array for the specified number 2299 * of groups 2300 */ 2301 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2302 { 2303 struct ext4_sb_info *sbi = EXT4_SB(sb); 2304 unsigned size; 2305 struct ext4_group_info ***new_groupinfo; 2306 2307 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2308 EXT4_DESC_PER_BLOCK_BITS(sb); 2309 if (size <= sbi->s_group_info_size) 2310 return 0; 2311 2312 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2313 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL); 2314 if (!new_groupinfo) { 2315 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2316 return -ENOMEM; 2317 } 2318 if (sbi->s_group_info) { 2319 memcpy(new_groupinfo, sbi->s_group_info, 2320 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2321 ext4_kvfree(sbi->s_group_info); 2322 } 2323 sbi->s_group_info = new_groupinfo; 2324 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2325 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2326 sbi->s_group_info_size); 2327 return 0; 2328 } 2329 2330 /* Create and initialize ext4_group_info data for the given group. */ 2331 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2332 struct ext4_group_desc *desc) 2333 { 2334 int i; 2335 int metalen = 0; 2336 struct ext4_sb_info *sbi = EXT4_SB(sb); 2337 struct ext4_group_info **meta_group_info; 2338 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2339 2340 /* 2341 * First check if this group is the first of a reserved block. 2342 * If it's true, we have to allocate a new table of pointers 2343 * to ext4_group_info structures 2344 */ 2345 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2346 metalen = sizeof(*meta_group_info) << 2347 EXT4_DESC_PER_BLOCK_BITS(sb); 2348 meta_group_info = kmalloc(metalen, GFP_KERNEL); 2349 if (meta_group_info == NULL) { 2350 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2351 "for a buddy group"); 2352 goto exit_meta_group_info; 2353 } 2354 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2355 meta_group_info; 2356 } 2357 2358 meta_group_info = 2359 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2360 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2361 2362 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL); 2363 if (meta_group_info[i] == NULL) { 2364 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2365 goto exit_group_info; 2366 } 2367 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2368 &(meta_group_info[i]->bb_state)); 2369 2370 /* 2371 * initialize bb_free to be able to skip 2372 * empty groups without initialization 2373 */ 2374 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2375 meta_group_info[i]->bb_free = 2376 ext4_free_clusters_after_init(sb, group, desc); 2377 } else { 2378 meta_group_info[i]->bb_free = 2379 ext4_free_group_clusters(sb, desc); 2380 } 2381 2382 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2383 init_rwsem(&meta_group_info[i]->alloc_sem); 2384 meta_group_info[i]->bb_free_root = RB_ROOT; 2385 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2386 2387 #ifdef DOUBLE_CHECK 2388 { 2389 struct buffer_head *bh; 2390 meta_group_info[i]->bb_bitmap = 2391 kmalloc(sb->s_blocksize, GFP_KERNEL); 2392 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2393 bh = ext4_read_block_bitmap(sb, group); 2394 BUG_ON(bh == NULL); 2395 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2396 sb->s_blocksize); 2397 put_bh(bh); 2398 } 2399 #endif 2400 2401 return 0; 2402 2403 exit_group_info: 2404 /* If a meta_group_info table has been allocated, release it now */ 2405 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2406 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2407 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL; 2408 } 2409 exit_meta_group_info: 2410 return -ENOMEM; 2411 } /* ext4_mb_add_groupinfo */ 2412 2413 static int ext4_mb_init_backend(struct super_block *sb) 2414 { 2415 ext4_group_t ngroups = ext4_get_groups_count(sb); 2416 ext4_group_t i; 2417 struct ext4_sb_info *sbi = EXT4_SB(sb); 2418 int err; 2419 struct ext4_group_desc *desc; 2420 struct kmem_cache *cachep; 2421 2422 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2423 if (err) 2424 return err; 2425 2426 sbi->s_buddy_cache = new_inode(sb); 2427 if (sbi->s_buddy_cache == NULL) { 2428 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2429 goto err_freesgi; 2430 } 2431 /* To avoid potentially colliding with an valid on-disk inode number, 2432 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2433 * not in the inode hash, so it should never be found by iget(), but 2434 * this will avoid confusion if it ever shows up during debugging. */ 2435 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2436 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2437 for (i = 0; i < ngroups; i++) { 2438 desc = ext4_get_group_desc(sb, i, NULL); 2439 if (desc == NULL) { 2440 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2441 goto err_freebuddy; 2442 } 2443 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2444 goto err_freebuddy; 2445 } 2446 2447 return 0; 2448 2449 err_freebuddy: 2450 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2451 while (i-- > 0) 2452 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2453 i = sbi->s_group_info_size; 2454 while (i-- > 0) 2455 kfree(sbi->s_group_info[i]); 2456 iput(sbi->s_buddy_cache); 2457 err_freesgi: 2458 ext4_kvfree(sbi->s_group_info); 2459 return -ENOMEM; 2460 } 2461 2462 static void ext4_groupinfo_destroy_slabs(void) 2463 { 2464 int i; 2465 2466 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2467 if (ext4_groupinfo_caches[i]) 2468 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2469 ext4_groupinfo_caches[i] = NULL; 2470 } 2471 } 2472 2473 static int ext4_groupinfo_create_slab(size_t size) 2474 { 2475 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2476 int slab_size; 2477 int blocksize_bits = order_base_2(size); 2478 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2479 struct kmem_cache *cachep; 2480 2481 if (cache_index >= NR_GRPINFO_CACHES) 2482 return -EINVAL; 2483 2484 if (unlikely(cache_index < 0)) 2485 cache_index = 0; 2486 2487 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2488 if (ext4_groupinfo_caches[cache_index]) { 2489 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2490 return 0; /* Already created */ 2491 } 2492 2493 slab_size = offsetof(struct ext4_group_info, 2494 bb_counters[blocksize_bits + 2]); 2495 2496 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2497 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2498 NULL); 2499 2500 ext4_groupinfo_caches[cache_index] = cachep; 2501 2502 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2503 if (!cachep) { 2504 printk(KERN_EMERG 2505 "EXT4-fs: no memory for groupinfo slab cache\n"); 2506 return -ENOMEM; 2507 } 2508 2509 return 0; 2510 } 2511 2512 int ext4_mb_init(struct super_block *sb) 2513 { 2514 struct ext4_sb_info *sbi = EXT4_SB(sb); 2515 unsigned i, j; 2516 unsigned offset; 2517 unsigned max; 2518 int ret; 2519 2520 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2521 2522 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2523 if (sbi->s_mb_offsets == NULL) { 2524 ret = -ENOMEM; 2525 goto out; 2526 } 2527 2528 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2529 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2530 if (sbi->s_mb_maxs == NULL) { 2531 ret = -ENOMEM; 2532 goto out; 2533 } 2534 2535 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2536 if (ret < 0) 2537 goto out; 2538 2539 /* order 0 is regular bitmap */ 2540 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2541 sbi->s_mb_offsets[0] = 0; 2542 2543 i = 1; 2544 offset = 0; 2545 max = sb->s_blocksize << 2; 2546 do { 2547 sbi->s_mb_offsets[i] = offset; 2548 sbi->s_mb_maxs[i] = max; 2549 offset += 1 << (sb->s_blocksize_bits - i); 2550 max = max >> 1; 2551 i++; 2552 } while (i <= sb->s_blocksize_bits + 1); 2553 2554 spin_lock_init(&sbi->s_md_lock); 2555 spin_lock_init(&sbi->s_bal_lock); 2556 2557 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2558 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2559 sbi->s_mb_stats = MB_DEFAULT_STATS; 2560 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2561 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2562 /* 2563 * The default group preallocation is 512, which for 4k block 2564 * sizes translates to 2 megabytes. However for bigalloc file 2565 * systems, this is probably too big (i.e, if the cluster size 2566 * is 1 megabyte, then group preallocation size becomes half a 2567 * gigabyte!). As a default, we will keep a two megabyte 2568 * group pralloc size for cluster sizes up to 64k, and after 2569 * that, we will force a minimum group preallocation size of 2570 * 32 clusters. This translates to 8 megs when the cluster 2571 * size is 256k, and 32 megs when the cluster size is 1 meg, 2572 * which seems reasonable as a default. 2573 */ 2574 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2575 sbi->s_cluster_bits, 32); 2576 /* 2577 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2578 * to the lowest multiple of s_stripe which is bigger than 2579 * the s_mb_group_prealloc as determined above. We want 2580 * the preallocation size to be an exact multiple of the 2581 * RAID stripe size so that preallocations don't fragment 2582 * the stripes. 2583 */ 2584 if (sbi->s_stripe > 1) { 2585 sbi->s_mb_group_prealloc = roundup( 2586 sbi->s_mb_group_prealloc, sbi->s_stripe); 2587 } 2588 2589 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2590 if (sbi->s_locality_groups == NULL) { 2591 ret = -ENOMEM; 2592 goto out_free_groupinfo_slab; 2593 } 2594 for_each_possible_cpu(i) { 2595 struct ext4_locality_group *lg; 2596 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2597 mutex_init(&lg->lg_mutex); 2598 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2599 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2600 spin_lock_init(&lg->lg_prealloc_lock); 2601 } 2602 2603 /* init file for buddy data */ 2604 ret = ext4_mb_init_backend(sb); 2605 if (ret != 0) 2606 goto out_free_locality_groups; 2607 2608 if (sbi->s_proc) 2609 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, 2610 &ext4_mb_seq_groups_fops, sb); 2611 2612 return 0; 2613 2614 out_free_locality_groups: 2615 free_percpu(sbi->s_locality_groups); 2616 sbi->s_locality_groups = NULL; 2617 out_free_groupinfo_slab: 2618 ext4_groupinfo_destroy_slabs(); 2619 out: 2620 kfree(sbi->s_mb_offsets); 2621 sbi->s_mb_offsets = NULL; 2622 kfree(sbi->s_mb_maxs); 2623 sbi->s_mb_maxs = NULL; 2624 return ret; 2625 } 2626 2627 /* need to called with the ext4 group lock held */ 2628 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2629 { 2630 struct ext4_prealloc_space *pa; 2631 struct list_head *cur, *tmp; 2632 int count = 0; 2633 2634 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2635 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2636 list_del(&pa->pa_group_list); 2637 count++; 2638 kmem_cache_free(ext4_pspace_cachep, pa); 2639 } 2640 if (count) 2641 mb_debug(1, "mballoc: %u PAs left\n", count); 2642 2643 } 2644 2645 int ext4_mb_release(struct super_block *sb) 2646 { 2647 ext4_group_t ngroups = ext4_get_groups_count(sb); 2648 ext4_group_t i; 2649 int num_meta_group_infos; 2650 struct ext4_group_info *grinfo; 2651 struct ext4_sb_info *sbi = EXT4_SB(sb); 2652 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2653 2654 if (sbi->s_proc) 2655 remove_proc_entry("mb_groups", sbi->s_proc); 2656 2657 if (sbi->s_group_info) { 2658 for (i = 0; i < ngroups; i++) { 2659 grinfo = ext4_get_group_info(sb, i); 2660 #ifdef DOUBLE_CHECK 2661 kfree(grinfo->bb_bitmap); 2662 #endif 2663 ext4_lock_group(sb, i); 2664 ext4_mb_cleanup_pa(grinfo); 2665 ext4_unlock_group(sb, i); 2666 kmem_cache_free(cachep, grinfo); 2667 } 2668 num_meta_group_infos = (ngroups + 2669 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2670 EXT4_DESC_PER_BLOCK_BITS(sb); 2671 for (i = 0; i < num_meta_group_infos; i++) 2672 kfree(sbi->s_group_info[i]); 2673 ext4_kvfree(sbi->s_group_info); 2674 } 2675 kfree(sbi->s_mb_offsets); 2676 kfree(sbi->s_mb_maxs); 2677 if (sbi->s_buddy_cache) 2678 iput(sbi->s_buddy_cache); 2679 if (sbi->s_mb_stats) { 2680 ext4_msg(sb, KERN_INFO, 2681 "mballoc: %u blocks %u reqs (%u success)", 2682 atomic_read(&sbi->s_bal_allocated), 2683 atomic_read(&sbi->s_bal_reqs), 2684 atomic_read(&sbi->s_bal_success)); 2685 ext4_msg(sb, KERN_INFO, 2686 "mballoc: %u extents scanned, %u goal hits, " 2687 "%u 2^N hits, %u breaks, %u lost", 2688 atomic_read(&sbi->s_bal_ex_scanned), 2689 atomic_read(&sbi->s_bal_goals), 2690 atomic_read(&sbi->s_bal_2orders), 2691 atomic_read(&sbi->s_bal_breaks), 2692 atomic_read(&sbi->s_mb_lost_chunks)); 2693 ext4_msg(sb, KERN_INFO, 2694 "mballoc: %lu generated and it took %Lu", 2695 sbi->s_mb_buddies_generated, 2696 sbi->s_mb_generation_time); 2697 ext4_msg(sb, KERN_INFO, 2698 "mballoc: %u preallocated, %u discarded", 2699 atomic_read(&sbi->s_mb_preallocated), 2700 atomic_read(&sbi->s_mb_discarded)); 2701 } 2702 2703 free_percpu(sbi->s_locality_groups); 2704 2705 return 0; 2706 } 2707 2708 static inline int ext4_issue_discard(struct super_block *sb, 2709 ext4_group_t block_group, ext4_grpblk_t cluster, int count) 2710 { 2711 ext4_fsblk_t discard_block; 2712 2713 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2714 ext4_group_first_block_no(sb, block_group)); 2715 count = EXT4_C2B(EXT4_SB(sb), count); 2716 trace_ext4_discard_blocks(sb, 2717 (unsigned long long) discard_block, count); 2718 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2719 } 2720 2721 /* 2722 * This function is called by the jbd2 layer once the commit has finished, 2723 * so we know we can free the blocks that were released with that commit. 2724 */ 2725 static void ext4_free_data_callback(struct super_block *sb, 2726 struct ext4_journal_cb_entry *jce, 2727 int rc) 2728 { 2729 struct ext4_free_data *entry = (struct ext4_free_data *)jce; 2730 struct ext4_buddy e4b; 2731 struct ext4_group_info *db; 2732 int err, count = 0, count2 = 0; 2733 2734 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2735 entry->efd_count, entry->efd_group, entry); 2736 2737 if (test_opt(sb, DISCARD)) { 2738 err = ext4_issue_discard(sb, entry->efd_group, 2739 entry->efd_start_cluster, 2740 entry->efd_count); 2741 if (err && err != -EOPNOTSUPP) 2742 ext4_msg(sb, KERN_WARNING, "discard request in" 2743 " group:%d block:%d count:%d failed" 2744 " with %d", entry->efd_group, 2745 entry->efd_start_cluster, 2746 entry->efd_count, err); 2747 } 2748 2749 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2750 /* we expect to find existing buddy because it's pinned */ 2751 BUG_ON(err != 0); 2752 2753 2754 db = e4b.bd_info; 2755 /* there are blocks to put in buddy to make them really free */ 2756 count += entry->efd_count; 2757 count2++; 2758 ext4_lock_group(sb, entry->efd_group); 2759 /* Take it out of per group rb tree */ 2760 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2761 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2762 2763 /* 2764 * Clear the trimmed flag for the group so that the next 2765 * ext4_trim_fs can trim it. 2766 * If the volume is mounted with -o discard, online discard 2767 * is supported and the free blocks will be trimmed online. 2768 */ 2769 if (!test_opt(sb, DISCARD)) 2770 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2771 2772 if (!db->bb_free_root.rb_node) { 2773 /* No more items in the per group rb tree 2774 * balance refcounts from ext4_mb_free_metadata() 2775 */ 2776 page_cache_release(e4b.bd_buddy_page); 2777 page_cache_release(e4b.bd_bitmap_page); 2778 } 2779 ext4_unlock_group(sb, entry->efd_group); 2780 kmem_cache_free(ext4_free_data_cachep, entry); 2781 ext4_mb_unload_buddy(&e4b); 2782 2783 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2784 } 2785 2786 int __init ext4_init_mballoc(void) 2787 { 2788 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2789 SLAB_RECLAIM_ACCOUNT); 2790 if (ext4_pspace_cachep == NULL) 2791 return -ENOMEM; 2792 2793 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2794 SLAB_RECLAIM_ACCOUNT); 2795 if (ext4_ac_cachep == NULL) { 2796 kmem_cache_destroy(ext4_pspace_cachep); 2797 return -ENOMEM; 2798 } 2799 2800 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2801 SLAB_RECLAIM_ACCOUNT); 2802 if (ext4_free_data_cachep == NULL) { 2803 kmem_cache_destroy(ext4_pspace_cachep); 2804 kmem_cache_destroy(ext4_ac_cachep); 2805 return -ENOMEM; 2806 } 2807 return 0; 2808 } 2809 2810 void ext4_exit_mballoc(void) 2811 { 2812 /* 2813 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2814 * before destroying the slab cache. 2815 */ 2816 rcu_barrier(); 2817 kmem_cache_destroy(ext4_pspace_cachep); 2818 kmem_cache_destroy(ext4_ac_cachep); 2819 kmem_cache_destroy(ext4_free_data_cachep); 2820 ext4_groupinfo_destroy_slabs(); 2821 } 2822 2823 2824 /* 2825 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2826 * Returns 0 if success or error code 2827 */ 2828 static noinline_for_stack int 2829 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2830 handle_t *handle, unsigned int reserv_clstrs) 2831 { 2832 struct buffer_head *bitmap_bh = NULL; 2833 struct ext4_group_desc *gdp; 2834 struct buffer_head *gdp_bh; 2835 struct ext4_sb_info *sbi; 2836 struct super_block *sb; 2837 ext4_fsblk_t block; 2838 int err, len; 2839 2840 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2841 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2842 2843 sb = ac->ac_sb; 2844 sbi = EXT4_SB(sb); 2845 2846 err = -EIO; 2847 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2848 if (!bitmap_bh) 2849 goto out_err; 2850 2851 err = ext4_journal_get_write_access(handle, bitmap_bh); 2852 if (err) 2853 goto out_err; 2854 2855 err = -EIO; 2856 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2857 if (!gdp) 2858 goto out_err; 2859 2860 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2861 ext4_free_group_clusters(sb, gdp)); 2862 2863 err = ext4_journal_get_write_access(handle, gdp_bh); 2864 if (err) 2865 goto out_err; 2866 2867 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2868 2869 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2870 if (!ext4_data_block_valid(sbi, block, len)) { 2871 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2872 "fs metadata", block, block+len); 2873 /* File system mounted not to panic on error 2874 * Fix the bitmap and repeat the block allocation 2875 * We leak some of the blocks here. 2876 */ 2877 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2878 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2879 ac->ac_b_ex.fe_len); 2880 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2881 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2882 if (!err) 2883 err = -EAGAIN; 2884 goto out_err; 2885 } 2886 2887 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2888 #ifdef AGGRESSIVE_CHECK 2889 { 2890 int i; 2891 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2892 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2893 bitmap_bh->b_data)); 2894 } 2895 } 2896 #endif 2897 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2898 ac->ac_b_ex.fe_len); 2899 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2900 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2901 ext4_free_group_clusters_set(sb, gdp, 2902 ext4_free_clusters_after_init(sb, 2903 ac->ac_b_ex.fe_group, gdp)); 2904 } 2905 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 2906 ext4_free_group_clusters_set(sb, gdp, len); 2907 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 2908 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 2909 2910 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2911 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 2912 /* 2913 * Now reduce the dirty block count also. Should not go negative 2914 */ 2915 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 2916 /* release all the reserved blocks if non delalloc */ 2917 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 2918 reserv_clstrs); 2919 2920 if (sbi->s_log_groups_per_flex) { 2921 ext4_group_t flex_group = ext4_flex_group(sbi, 2922 ac->ac_b_ex.fe_group); 2923 atomic64_sub(ac->ac_b_ex.fe_len, 2924 &sbi->s_flex_groups[flex_group].free_clusters); 2925 } 2926 2927 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2928 if (err) 2929 goto out_err; 2930 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 2931 2932 out_err: 2933 brelse(bitmap_bh); 2934 return err; 2935 } 2936 2937 /* 2938 * here we normalize request for locality group 2939 * Group request are normalized to s_mb_group_prealloc, which goes to 2940 * s_strip if we set the same via mount option. 2941 * s_mb_group_prealloc can be configured via 2942 * /sys/fs/ext4/<partition>/mb_group_prealloc 2943 * 2944 * XXX: should we try to preallocate more than the group has now? 2945 */ 2946 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 2947 { 2948 struct super_block *sb = ac->ac_sb; 2949 struct ext4_locality_group *lg = ac->ac_lg; 2950 2951 BUG_ON(lg == NULL); 2952 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 2953 mb_debug(1, "#%u: goal %u blocks for locality group\n", 2954 current->pid, ac->ac_g_ex.fe_len); 2955 } 2956 2957 /* 2958 * Normalization means making request better in terms of 2959 * size and alignment 2960 */ 2961 static noinline_for_stack void 2962 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 2963 struct ext4_allocation_request *ar) 2964 { 2965 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2966 int bsbits, max; 2967 ext4_lblk_t end; 2968 loff_t size, start_off; 2969 loff_t orig_size __maybe_unused; 2970 ext4_lblk_t start; 2971 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 2972 struct ext4_prealloc_space *pa; 2973 2974 /* do normalize only data requests, metadata requests 2975 do not need preallocation */ 2976 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 2977 return; 2978 2979 /* sometime caller may want exact blocks */ 2980 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2981 return; 2982 2983 /* caller may indicate that preallocation isn't 2984 * required (it's a tail, for example) */ 2985 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 2986 return; 2987 2988 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 2989 ext4_mb_normalize_group_request(ac); 2990 return ; 2991 } 2992 2993 bsbits = ac->ac_sb->s_blocksize_bits; 2994 2995 /* first, let's learn actual file size 2996 * given current request is allocated */ 2997 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 2998 size = size << bsbits; 2999 if (size < i_size_read(ac->ac_inode)) 3000 size = i_size_read(ac->ac_inode); 3001 orig_size = size; 3002 3003 /* max size of free chunks */ 3004 max = 2 << bsbits; 3005 3006 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3007 (req <= (size) || max <= (chunk_size)) 3008 3009 /* first, try to predict filesize */ 3010 /* XXX: should this table be tunable? */ 3011 start_off = 0; 3012 if (size <= 16 * 1024) { 3013 size = 16 * 1024; 3014 } else if (size <= 32 * 1024) { 3015 size = 32 * 1024; 3016 } else if (size <= 64 * 1024) { 3017 size = 64 * 1024; 3018 } else if (size <= 128 * 1024) { 3019 size = 128 * 1024; 3020 } else if (size <= 256 * 1024) { 3021 size = 256 * 1024; 3022 } else if (size <= 512 * 1024) { 3023 size = 512 * 1024; 3024 } else if (size <= 1024 * 1024) { 3025 size = 1024 * 1024; 3026 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3027 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3028 (21 - bsbits)) << 21; 3029 size = 2 * 1024 * 1024; 3030 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3031 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3032 (22 - bsbits)) << 22; 3033 size = 4 * 1024 * 1024; 3034 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3035 (8<<20)>>bsbits, max, 8 * 1024)) { 3036 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3037 (23 - bsbits)) << 23; 3038 size = 8 * 1024 * 1024; 3039 } else { 3040 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits; 3041 size = ac->ac_o_ex.fe_len << bsbits; 3042 } 3043 size = size >> bsbits; 3044 start = start_off >> bsbits; 3045 3046 /* don't cover already allocated blocks in selected range */ 3047 if (ar->pleft && start <= ar->lleft) { 3048 size -= ar->lleft + 1 - start; 3049 start = ar->lleft + 1; 3050 } 3051 if (ar->pright && start + size - 1 >= ar->lright) 3052 size -= start + size - ar->lright; 3053 3054 end = start + size; 3055 3056 /* check we don't cross already preallocated blocks */ 3057 rcu_read_lock(); 3058 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3059 ext4_lblk_t pa_end; 3060 3061 if (pa->pa_deleted) 3062 continue; 3063 spin_lock(&pa->pa_lock); 3064 if (pa->pa_deleted) { 3065 spin_unlock(&pa->pa_lock); 3066 continue; 3067 } 3068 3069 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3070 pa->pa_len); 3071 3072 /* PA must not overlap original request */ 3073 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3074 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3075 3076 /* skip PAs this normalized request doesn't overlap with */ 3077 if (pa->pa_lstart >= end || pa_end <= start) { 3078 spin_unlock(&pa->pa_lock); 3079 continue; 3080 } 3081 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3082 3083 /* adjust start or end to be adjacent to this pa */ 3084 if (pa_end <= ac->ac_o_ex.fe_logical) { 3085 BUG_ON(pa_end < start); 3086 start = pa_end; 3087 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3088 BUG_ON(pa->pa_lstart > end); 3089 end = pa->pa_lstart; 3090 } 3091 spin_unlock(&pa->pa_lock); 3092 } 3093 rcu_read_unlock(); 3094 size = end - start; 3095 3096 /* XXX: extra loop to check we really don't overlap preallocations */ 3097 rcu_read_lock(); 3098 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3099 ext4_lblk_t pa_end; 3100 3101 spin_lock(&pa->pa_lock); 3102 if (pa->pa_deleted == 0) { 3103 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3104 pa->pa_len); 3105 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3106 } 3107 spin_unlock(&pa->pa_lock); 3108 } 3109 rcu_read_unlock(); 3110 3111 if (start + size <= ac->ac_o_ex.fe_logical && 3112 start > ac->ac_o_ex.fe_logical) { 3113 ext4_msg(ac->ac_sb, KERN_ERR, 3114 "start %lu, size %lu, fe_logical %lu", 3115 (unsigned long) start, (unsigned long) size, 3116 (unsigned long) ac->ac_o_ex.fe_logical); 3117 } 3118 BUG_ON(start + size <= ac->ac_o_ex.fe_logical && 3119 start > ac->ac_o_ex.fe_logical); 3120 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 3121 3122 /* now prepare goal request */ 3123 3124 /* XXX: is it better to align blocks WRT to logical 3125 * placement or satisfy big request as is */ 3126 ac->ac_g_ex.fe_logical = start; 3127 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3128 3129 /* define goal start in order to merge */ 3130 if (ar->pright && (ar->lright == (start + size))) { 3131 /* merge to the right */ 3132 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3133 &ac->ac_f_ex.fe_group, 3134 &ac->ac_f_ex.fe_start); 3135 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3136 } 3137 if (ar->pleft && (ar->lleft + 1 == start)) { 3138 /* merge to the left */ 3139 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3140 &ac->ac_f_ex.fe_group, 3141 &ac->ac_f_ex.fe_start); 3142 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3143 } 3144 3145 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3146 (unsigned) orig_size, (unsigned) start); 3147 } 3148 3149 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3150 { 3151 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3152 3153 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3154 atomic_inc(&sbi->s_bal_reqs); 3155 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3156 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3157 atomic_inc(&sbi->s_bal_success); 3158 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3159 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3160 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3161 atomic_inc(&sbi->s_bal_goals); 3162 if (ac->ac_found > sbi->s_mb_max_to_scan) 3163 atomic_inc(&sbi->s_bal_breaks); 3164 } 3165 3166 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3167 trace_ext4_mballoc_alloc(ac); 3168 else 3169 trace_ext4_mballoc_prealloc(ac); 3170 } 3171 3172 /* 3173 * Called on failure; free up any blocks from the inode PA for this 3174 * context. We don't need this for MB_GROUP_PA because we only change 3175 * pa_free in ext4_mb_release_context(), but on failure, we've already 3176 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3177 */ 3178 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3179 { 3180 struct ext4_prealloc_space *pa = ac->ac_pa; 3181 3182 if (pa && pa->pa_type == MB_INODE_PA) 3183 pa->pa_free += ac->ac_b_ex.fe_len; 3184 } 3185 3186 /* 3187 * use blocks preallocated to inode 3188 */ 3189 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3190 struct ext4_prealloc_space *pa) 3191 { 3192 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3193 ext4_fsblk_t start; 3194 ext4_fsblk_t end; 3195 int len; 3196 3197 /* found preallocated blocks, use them */ 3198 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3199 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3200 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3201 len = EXT4_NUM_B2C(sbi, end - start); 3202 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3203 &ac->ac_b_ex.fe_start); 3204 ac->ac_b_ex.fe_len = len; 3205 ac->ac_status = AC_STATUS_FOUND; 3206 ac->ac_pa = pa; 3207 3208 BUG_ON(start < pa->pa_pstart); 3209 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3210 BUG_ON(pa->pa_free < len); 3211 pa->pa_free -= len; 3212 3213 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3214 } 3215 3216 /* 3217 * use blocks preallocated to locality group 3218 */ 3219 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3220 struct ext4_prealloc_space *pa) 3221 { 3222 unsigned int len = ac->ac_o_ex.fe_len; 3223 3224 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3225 &ac->ac_b_ex.fe_group, 3226 &ac->ac_b_ex.fe_start); 3227 ac->ac_b_ex.fe_len = len; 3228 ac->ac_status = AC_STATUS_FOUND; 3229 ac->ac_pa = pa; 3230 3231 /* we don't correct pa_pstart or pa_plen here to avoid 3232 * possible race when the group is being loaded concurrently 3233 * instead we correct pa later, after blocks are marked 3234 * in on-disk bitmap -- see ext4_mb_release_context() 3235 * Other CPUs are prevented from allocating from this pa by lg_mutex 3236 */ 3237 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3238 } 3239 3240 /* 3241 * Return the prealloc space that have minimal distance 3242 * from the goal block. @cpa is the prealloc 3243 * space that is having currently known minimal distance 3244 * from the goal block. 3245 */ 3246 static struct ext4_prealloc_space * 3247 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3248 struct ext4_prealloc_space *pa, 3249 struct ext4_prealloc_space *cpa) 3250 { 3251 ext4_fsblk_t cur_distance, new_distance; 3252 3253 if (cpa == NULL) { 3254 atomic_inc(&pa->pa_count); 3255 return pa; 3256 } 3257 cur_distance = abs(goal_block - cpa->pa_pstart); 3258 new_distance = abs(goal_block - pa->pa_pstart); 3259 3260 if (cur_distance <= new_distance) 3261 return cpa; 3262 3263 /* drop the previous reference */ 3264 atomic_dec(&cpa->pa_count); 3265 atomic_inc(&pa->pa_count); 3266 return pa; 3267 } 3268 3269 /* 3270 * search goal blocks in preallocated space 3271 */ 3272 static noinline_for_stack int 3273 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3274 { 3275 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3276 int order, i; 3277 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3278 struct ext4_locality_group *lg; 3279 struct ext4_prealloc_space *pa, *cpa = NULL; 3280 ext4_fsblk_t goal_block; 3281 3282 /* only data can be preallocated */ 3283 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3284 return 0; 3285 3286 /* first, try per-file preallocation */ 3287 rcu_read_lock(); 3288 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3289 3290 /* all fields in this condition don't change, 3291 * so we can skip locking for them */ 3292 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3293 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3294 EXT4_C2B(sbi, pa->pa_len))) 3295 continue; 3296 3297 /* non-extent files can't have physical blocks past 2^32 */ 3298 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3299 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3300 EXT4_MAX_BLOCK_FILE_PHYS)) 3301 continue; 3302 3303 /* found preallocated blocks, use them */ 3304 spin_lock(&pa->pa_lock); 3305 if (pa->pa_deleted == 0 && pa->pa_free) { 3306 atomic_inc(&pa->pa_count); 3307 ext4_mb_use_inode_pa(ac, pa); 3308 spin_unlock(&pa->pa_lock); 3309 ac->ac_criteria = 10; 3310 rcu_read_unlock(); 3311 return 1; 3312 } 3313 spin_unlock(&pa->pa_lock); 3314 } 3315 rcu_read_unlock(); 3316 3317 /* can we use group allocation? */ 3318 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3319 return 0; 3320 3321 /* inode may have no locality group for some reason */ 3322 lg = ac->ac_lg; 3323 if (lg == NULL) 3324 return 0; 3325 order = fls(ac->ac_o_ex.fe_len) - 1; 3326 if (order > PREALLOC_TB_SIZE - 1) 3327 /* The max size of hash table is PREALLOC_TB_SIZE */ 3328 order = PREALLOC_TB_SIZE - 1; 3329 3330 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3331 /* 3332 * search for the prealloc space that is having 3333 * minimal distance from the goal block. 3334 */ 3335 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3336 rcu_read_lock(); 3337 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3338 pa_inode_list) { 3339 spin_lock(&pa->pa_lock); 3340 if (pa->pa_deleted == 0 && 3341 pa->pa_free >= ac->ac_o_ex.fe_len) { 3342 3343 cpa = ext4_mb_check_group_pa(goal_block, 3344 pa, cpa); 3345 } 3346 spin_unlock(&pa->pa_lock); 3347 } 3348 rcu_read_unlock(); 3349 } 3350 if (cpa) { 3351 ext4_mb_use_group_pa(ac, cpa); 3352 ac->ac_criteria = 20; 3353 return 1; 3354 } 3355 return 0; 3356 } 3357 3358 /* 3359 * the function goes through all block freed in the group 3360 * but not yet committed and marks them used in in-core bitmap. 3361 * buddy must be generated from this bitmap 3362 * Need to be called with the ext4 group lock held 3363 */ 3364 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3365 ext4_group_t group) 3366 { 3367 struct rb_node *n; 3368 struct ext4_group_info *grp; 3369 struct ext4_free_data *entry; 3370 3371 grp = ext4_get_group_info(sb, group); 3372 n = rb_first(&(grp->bb_free_root)); 3373 3374 while (n) { 3375 entry = rb_entry(n, struct ext4_free_data, efd_node); 3376 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3377 n = rb_next(n); 3378 } 3379 return; 3380 } 3381 3382 /* 3383 * the function goes through all preallocation in this group and marks them 3384 * used in in-core bitmap. buddy must be generated from this bitmap 3385 * Need to be called with ext4 group lock held 3386 */ 3387 static noinline_for_stack 3388 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3389 ext4_group_t group) 3390 { 3391 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3392 struct ext4_prealloc_space *pa; 3393 struct list_head *cur; 3394 ext4_group_t groupnr; 3395 ext4_grpblk_t start; 3396 int preallocated = 0; 3397 int len; 3398 3399 /* all form of preallocation discards first load group, 3400 * so the only competing code is preallocation use. 3401 * we don't need any locking here 3402 * notice we do NOT ignore preallocations with pa_deleted 3403 * otherwise we could leave used blocks available for 3404 * allocation in buddy when concurrent ext4_mb_put_pa() 3405 * is dropping preallocation 3406 */ 3407 list_for_each(cur, &grp->bb_prealloc_list) { 3408 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3409 spin_lock(&pa->pa_lock); 3410 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3411 &groupnr, &start); 3412 len = pa->pa_len; 3413 spin_unlock(&pa->pa_lock); 3414 if (unlikely(len == 0)) 3415 continue; 3416 BUG_ON(groupnr != group); 3417 ext4_set_bits(bitmap, start, len); 3418 preallocated += len; 3419 } 3420 mb_debug(1, "prellocated %u for group %u\n", preallocated, group); 3421 } 3422 3423 static void ext4_mb_pa_callback(struct rcu_head *head) 3424 { 3425 struct ext4_prealloc_space *pa; 3426 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3427 kmem_cache_free(ext4_pspace_cachep, pa); 3428 } 3429 3430 /* 3431 * drops a reference to preallocated space descriptor 3432 * if this was the last reference and the space is consumed 3433 */ 3434 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3435 struct super_block *sb, struct ext4_prealloc_space *pa) 3436 { 3437 ext4_group_t grp; 3438 ext4_fsblk_t grp_blk; 3439 3440 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) 3441 return; 3442 3443 /* in this short window concurrent discard can set pa_deleted */ 3444 spin_lock(&pa->pa_lock); 3445 if (pa->pa_deleted == 1) { 3446 spin_unlock(&pa->pa_lock); 3447 return; 3448 } 3449 3450 pa->pa_deleted = 1; 3451 spin_unlock(&pa->pa_lock); 3452 3453 grp_blk = pa->pa_pstart; 3454 /* 3455 * If doing group-based preallocation, pa_pstart may be in the 3456 * next group when pa is used up 3457 */ 3458 if (pa->pa_type == MB_GROUP_PA) 3459 grp_blk--; 3460 3461 grp = ext4_get_group_number(sb, grp_blk); 3462 3463 /* 3464 * possible race: 3465 * 3466 * P1 (buddy init) P2 (regular allocation) 3467 * find block B in PA 3468 * copy on-disk bitmap to buddy 3469 * mark B in on-disk bitmap 3470 * drop PA from group 3471 * mark all PAs in buddy 3472 * 3473 * thus, P1 initializes buddy with B available. to prevent this 3474 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3475 * against that pair 3476 */ 3477 ext4_lock_group(sb, grp); 3478 list_del(&pa->pa_group_list); 3479 ext4_unlock_group(sb, grp); 3480 3481 spin_lock(pa->pa_obj_lock); 3482 list_del_rcu(&pa->pa_inode_list); 3483 spin_unlock(pa->pa_obj_lock); 3484 3485 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3486 } 3487 3488 /* 3489 * creates new preallocated space for given inode 3490 */ 3491 static noinline_for_stack int 3492 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3493 { 3494 struct super_block *sb = ac->ac_sb; 3495 struct ext4_sb_info *sbi = EXT4_SB(sb); 3496 struct ext4_prealloc_space *pa; 3497 struct ext4_group_info *grp; 3498 struct ext4_inode_info *ei; 3499 3500 /* preallocate only when found space is larger then requested */ 3501 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3502 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3503 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3504 3505 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3506 if (pa == NULL) 3507 return -ENOMEM; 3508 3509 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3510 int winl; 3511 int wins; 3512 int win; 3513 int offs; 3514 3515 /* we can't allocate as much as normalizer wants. 3516 * so, found space must get proper lstart 3517 * to cover original request */ 3518 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3519 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3520 3521 /* we're limited by original request in that 3522 * logical block must be covered any way 3523 * winl is window we can move our chunk within */ 3524 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3525 3526 /* also, we should cover whole original request */ 3527 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3528 3529 /* the smallest one defines real window */ 3530 win = min(winl, wins); 3531 3532 offs = ac->ac_o_ex.fe_logical % 3533 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3534 if (offs && offs < win) 3535 win = offs; 3536 3537 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3538 EXT4_NUM_B2C(sbi, win); 3539 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3540 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3541 } 3542 3543 /* preallocation can change ac_b_ex, thus we store actually 3544 * allocated blocks for history */ 3545 ac->ac_f_ex = ac->ac_b_ex; 3546 3547 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3548 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3549 pa->pa_len = ac->ac_b_ex.fe_len; 3550 pa->pa_free = pa->pa_len; 3551 atomic_set(&pa->pa_count, 1); 3552 spin_lock_init(&pa->pa_lock); 3553 INIT_LIST_HEAD(&pa->pa_inode_list); 3554 INIT_LIST_HEAD(&pa->pa_group_list); 3555 pa->pa_deleted = 0; 3556 pa->pa_type = MB_INODE_PA; 3557 3558 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3559 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3560 trace_ext4_mb_new_inode_pa(ac, pa); 3561 3562 ext4_mb_use_inode_pa(ac, pa); 3563 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3564 3565 ei = EXT4_I(ac->ac_inode); 3566 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3567 3568 pa->pa_obj_lock = &ei->i_prealloc_lock; 3569 pa->pa_inode = ac->ac_inode; 3570 3571 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3572 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3573 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3574 3575 spin_lock(pa->pa_obj_lock); 3576 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3577 spin_unlock(pa->pa_obj_lock); 3578 3579 return 0; 3580 } 3581 3582 /* 3583 * creates new preallocated space for locality group inodes belongs to 3584 */ 3585 static noinline_for_stack int 3586 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3587 { 3588 struct super_block *sb = ac->ac_sb; 3589 struct ext4_locality_group *lg; 3590 struct ext4_prealloc_space *pa; 3591 struct ext4_group_info *grp; 3592 3593 /* preallocate only when found space is larger then requested */ 3594 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3595 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3596 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3597 3598 BUG_ON(ext4_pspace_cachep == NULL); 3599 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3600 if (pa == NULL) 3601 return -ENOMEM; 3602 3603 /* preallocation can change ac_b_ex, thus we store actually 3604 * allocated blocks for history */ 3605 ac->ac_f_ex = ac->ac_b_ex; 3606 3607 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3608 pa->pa_lstart = pa->pa_pstart; 3609 pa->pa_len = ac->ac_b_ex.fe_len; 3610 pa->pa_free = pa->pa_len; 3611 atomic_set(&pa->pa_count, 1); 3612 spin_lock_init(&pa->pa_lock); 3613 INIT_LIST_HEAD(&pa->pa_inode_list); 3614 INIT_LIST_HEAD(&pa->pa_group_list); 3615 pa->pa_deleted = 0; 3616 pa->pa_type = MB_GROUP_PA; 3617 3618 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3619 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3620 trace_ext4_mb_new_group_pa(ac, pa); 3621 3622 ext4_mb_use_group_pa(ac, pa); 3623 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3624 3625 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3626 lg = ac->ac_lg; 3627 BUG_ON(lg == NULL); 3628 3629 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3630 pa->pa_inode = NULL; 3631 3632 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3633 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3634 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3635 3636 /* 3637 * We will later add the new pa to the right bucket 3638 * after updating the pa_free in ext4_mb_release_context 3639 */ 3640 return 0; 3641 } 3642 3643 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3644 { 3645 int err; 3646 3647 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3648 err = ext4_mb_new_group_pa(ac); 3649 else 3650 err = ext4_mb_new_inode_pa(ac); 3651 return err; 3652 } 3653 3654 /* 3655 * finds all unused blocks in on-disk bitmap, frees them in 3656 * in-core bitmap and buddy. 3657 * @pa must be unlinked from inode and group lists, so that 3658 * nobody else can find/use it. 3659 * the caller MUST hold group/inode locks. 3660 * TODO: optimize the case when there are no in-core structures yet 3661 */ 3662 static noinline_for_stack int 3663 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3664 struct ext4_prealloc_space *pa) 3665 { 3666 struct super_block *sb = e4b->bd_sb; 3667 struct ext4_sb_info *sbi = EXT4_SB(sb); 3668 unsigned int end; 3669 unsigned int next; 3670 ext4_group_t group; 3671 ext4_grpblk_t bit; 3672 unsigned long long grp_blk_start; 3673 int err = 0; 3674 int free = 0; 3675 3676 BUG_ON(pa->pa_deleted == 0); 3677 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3678 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3679 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3680 end = bit + pa->pa_len; 3681 3682 while (bit < end) { 3683 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3684 if (bit >= end) 3685 break; 3686 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3687 mb_debug(1, " free preallocated %u/%u in group %u\n", 3688 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3689 (unsigned) next - bit, (unsigned) group); 3690 free += next - bit; 3691 3692 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3693 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3694 EXT4_C2B(sbi, bit)), 3695 next - bit); 3696 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3697 bit = next + 1; 3698 } 3699 if (free != pa->pa_free) { 3700 ext4_msg(e4b->bd_sb, KERN_CRIT, 3701 "pa %p: logic %lu, phys. %lu, len %lu", 3702 pa, (unsigned long) pa->pa_lstart, 3703 (unsigned long) pa->pa_pstart, 3704 (unsigned long) pa->pa_len); 3705 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3706 free, pa->pa_free); 3707 /* 3708 * pa is already deleted so we use the value obtained 3709 * from the bitmap and continue. 3710 */ 3711 } 3712 atomic_add(free, &sbi->s_mb_discarded); 3713 3714 return err; 3715 } 3716 3717 static noinline_for_stack int 3718 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3719 struct ext4_prealloc_space *pa) 3720 { 3721 struct super_block *sb = e4b->bd_sb; 3722 ext4_group_t group; 3723 ext4_grpblk_t bit; 3724 3725 trace_ext4_mb_release_group_pa(sb, pa); 3726 BUG_ON(pa->pa_deleted == 0); 3727 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3728 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3729 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3730 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3731 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3732 3733 return 0; 3734 } 3735 3736 /* 3737 * releases all preallocations in given group 3738 * 3739 * first, we need to decide discard policy: 3740 * - when do we discard 3741 * 1) ENOSPC 3742 * - how many do we discard 3743 * 1) how many requested 3744 */ 3745 static noinline_for_stack int 3746 ext4_mb_discard_group_preallocations(struct super_block *sb, 3747 ext4_group_t group, int needed) 3748 { 3749 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3750 struct buffer_head *bitmap_bh = NULL; 3751 struct ext4_prealloc_space *pa, *tmp; 3752 struct list_head list; 3753 struct ext4_buddy e4b; 3754 int err; 3755 int busy = 0; 3756 int free = 0; 3757 3758 mb_debug(1, "discard preallocation for group %u\n", group); 3759 3760 if (list_empty(&grp->bb_prealloc_list)) 3761 return 0; 3762 3763 bitmap_bh = ext4_read_block_bitmap(sb, group); 3764 if (bitmap_bh == NULL) { 3765 ext4_error(sb, "Error reading block bitmap for %u", group); 3766 return 0; 3767 } 3768 3769 err = ext4_mb_load_buddy(sb, group, &e4b); 3770 if (err) { 3771 ext4_error(sb, "Error loading buddy information for %u", group); 3772 put_bh(bitmap_bh); 3773 return 0; 3774 } 3775 3776 if (needed == 0) 3777 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3778 3779 INIT_LIST_HEAD(&list); 3780 repeat: 3781 ext4_lock_group(sb, group); 3782 list_for_each_entry_safe(pa, tmp, 3783 &grp->bb_prealloc_list, pa_group_list) { 3784 spin_lock(&pa->pa_lock); 3785 if (atomic_read(&pa->pa_count)) { 3786 spin_unlock(&pa->pa_lock); 3787 busy = 1; 3788 continue; 3789 } 3790 if (pa->pa_deleted) { 3791 spin_unlock(&pa->pa_lock); 3792 continue; 3793 } 3794 3795 /* seems this one can be freed ... */ 3796 pa->pa_deleted = 1; 3797 3798 /* we can trust pa_free ... */ 3799 free += pa->pa_free; 3800 3801 spin_unlock(&pa->pa_lock); 3802 3803 list_del(&pa->pa_group_list); 3804 list_add(&pa->u.pa_tmp_list, &list); 3805 } 3806 3807 /* if we still need more blocks and some PAs were used, try again */ 3808 if (free < needed && busy) { 3809 busy = 0; 3810 ext4_unlock_group(sb, group); 3811 cond_resched(); 3812 goto repeat; 3813 } 3814 3815 /* found anything to free? */ 3816 if (list_empty(&list)) { 3817 BUG_ON(free != 0); 3818 goto out; 3819 } 3820 3821 /* now free all selected PAs */ 3822 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3823 3824 /* remove from object (inode or locality group) */ 3825 spin_lock(pa->pa_obj_lock); 3826 list_del_rcu(&pa->pa_inode_list); 3827 spin_unlock(pa->pa_obj_lock); 3828 3829 if (pa->pa_type == MB_GROUP_PA) 3830 ext4_mb_release_group_pa(&e4b, pa); 3831 else 3832 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3833 3834 list_del(&pa->u.pa_tmp_list); 3835 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3836 } 3837 3838 out: 3839 ext4_unlock_group(sb, group); 3840 ext4_mb_unload_buddy(&e4b); 3841 put_bh(bitmap_bh); 3842 return free; 3843 } 3844 3845 /* 3846 * releases all non-used preallocated blocks for given inode 3847 * 3848 * It's important to discard preallocations under i_data_sem 3849 * We don't want another block to be served from the prealloc 3850 * space when we are discarding the inode prealloc space. 3851 * 3852 * FIXME!! Make sure it is valid at all the call sites 3853 */ 3854 void ext4_discard_preallocations(struct inode *inode) 3855 { 3856 struct ext4_inode_info *ei = EXT4_I(inode); 3857 struct super_block *sb = inode->i_sb; 3858 struct buffer_head *bitmap_bh = NULL; 3859 struct ext4_prealloc_space *pa, *tmp; 3860 ext4_group_t group = 0; 3861 struct list_head list; 3862 struct ext4_buddy e4b; 3863 int err; 3864 3865 if (!S_ISREG(inode->i_mode)) { 3866 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 3867 return; 3868 } 3869 3870 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 3871 trace_ext4_discard_preallocations(inode); 3872 3873 INIT_LIST_HEAD(&list); 3874 3875 repeat: 3876 /* first, collect all pa's in the inode */ 3877 spin_lock(&ei->i_prealloc_lock); 3878 while (!list_empty(&ei->i_prealloc_list)) { 3879 pa = list_entry(ei->i_prealloc_list.next, 3880 struct ext4_prealloc_space, pa_inode_list); 3881 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 3882 spin_lock(&pa->pa_lock); 3883 if (atomic_read(&pa->pa_count)) { 3884 /* this shouldn't happen often - nobody should 3885 * use preallocation while we're discarding it */ 3886 spin_unlock(&pa->pa_lock); 3887 spin_unlock(&ei->i_prealloc_lock); 3888 ext4_msg(sb, KERN_ERR, 3889 "uh-oh! used pa while discarding"); 3890 WARN_ON(1); 3891 schedule_timeout_uninterruptible(HZ); 3892 goto repeat; 3893 3894 } 3895 if (pa->pa_deleted == 0) { 3896 pa->pa_deleted = 1; 3897 spin_unlock(&pa->pa_lock); 3898 list_del_rcu(&pa->pa_inode_list); 3899 list_add(&pa->u.pa_tmp_list, &list); 3900 continue; 3901 } 3902 3903 /* someone is deleting pa right now */ 3904 spin_unlock(&pa->pa_lock); 3905 spin_unlock(&ei->i_prealloc_lock); 3906 3907 /* we have to wait here because pa_deleted 3908 * doesn't mean pa is already unlinked from 3909 * the list. as we might be called from 3910 * ->clear_inode() the inode will get freed 3911 * and concurrent thread which is unlinking 3912 * pa from inode's list may access already 3913 * freed memory, bad-bad-bad */ 3914 3915 /* XXX: if this happens too often, we can 3916 * add a flag to force wait only in case 3917 * of ->clear_inode(), but not in case of 3918 * regular truncate */ 3919 schedule_timeout_uninterruptible(HZ); 3920 goto repeat; 3921 } 3922 spin_unlock(&ei->i_prealloc_lock); 3923 3924 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3925 BUG_ON(pa->pa_type != MB_INODE_PA); 3926 group = ext4_get_group_number(sb, pa->pa_pstart); 3927 3928 err = ext4_mb_load_buddy(sb, group, &e4b); 3929 if (err) { 3930 ext4_error(sb, "Error loading buddy information for %u", 3931 group); 3932 continue; 3933 } 3934 3935 bitmap_bh = ext4_read_block_bitmap(sb, group); 3936 if (bitmap_bh == NULL) { 3937 ext4_error(sb, "Error reading block bitmap for %u", 3938 group); 3939 ext4_mb_unload_buddy(&e4b); 3940 continue; 3941 } 3942 3943 ext4_lock_group(sb, group); 3944 list_del(&pa->pa_group_list); 3945 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3946 ext4_unlock_group(sb, group); 3947 3948 ext4_mb_unload_buddy(&e4b); 3949 put_bh(bitmap_bh); 3950 3951 list_del(&pa->u.pa_tmp_list); 3952 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3953 } 3954 } 3955 3956 #ifdef CONFIG_EXT4_DEBUG 3957 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3958 { 3959 struct super_block *sb = ac->ac_sb; 3960 ext4_group_t ngroups, i; 3961 3962 if (!ext4_mballoc_debug || 3963 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 3964 return; 3965 3966 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 3967 " Allocation context details:"); 3968 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 3969 ac->ac_status, ac->ac_flags); 3970 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 3971 "goal %lu/%lu/%lu@%lu, " 3972 "best %lu/%lu/%lu@%lu cr %d", 3973 (unsigned long)ac->ac_o_ex.fe_group, 3974 (unsigned long)ac->ac_o_ex.fe_start, 3975 (unsigned long)ac->ac_o_ex.fe_len, 3976 (unsigned long)ac->ac_o_ex.fe_logical, 3977 (unsigned long)ac->ac_g_ex.fe_group, 3978 (unsigned long)ac->ac_g_ex.fe_start, 3979 (unsigned long)ac->ac_g_ex.fe_len, 3980 (unsigned long)ac->ac_g_ex.fe_logical, 3981 (unsigned long)ac->ac_b_ex.fe_group, 3982 (unsigned long)ac->ac_b_ex.fe_start, 3983 (unsigned long)ac->ac_b_ex.fe_len, 3984 (unsigned long)ac->ac_b_ex.fe_logical, 3985 (int)ac->ac_criteria); 3986 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found", 3987 ac->ac_ex_scanned, ac->ac_found); 3988 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 3989 ngroups = ext4_get_groups_count(sb); 3990 for (i = 0; i < ngroups; i++) { 3991 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3992 struct ext4_prealloc_space *pa; 3993 ext4_grpblk_t start; 3994 struct list_head *cur; 3995 ext4_lock_group(sb, i); 3996 list_for_each(cur, &grp->bb_prealloc_list) { 3997 pa = list_entry(cur, struct ext4_prealloc_space, 3998 pa_group_list); 3999 spin_lock(&pa->pa_lock); 4000 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4001 NULL, &start); 4002 spin_unlock(&pa->pa_lock); 4003 printk(KERN_ERR "PA:%u:%d:%u \n", i, 4004 start, pa->pa_len); 4005 } 4006 ext4_unlock_group(sb, i); 4007 4008 if (grp->bb_free == 0) 4009 continue; 4010 printk(KERN_ERR "%u: %d/%d \n", 4011 i, grp->bb_free, grp->bb_fragments); 4012 } 4013 printk(KERN_ERR "\n"); 4014 } 4015 #else 4016 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4017 { 4018 return; 4019 } 4020 #endif 4021 4022 /* 4023 * We use locality group preallocation for small size file. The size of the 4024 * file is determined by the current size or the resulting size after 4025 * allocation which ever is larger 4026 * 4027 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4028 */ 4029 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4030 { 4031 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4032 int bsbits = ac->ac_sb->s_blocksize_bits; 4033 loff_t size, isize; 4034 4035 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4036 return; 4037 4038 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4039 return; 4040 4041 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4042 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4043 >> bsbits; 4044 4045 if ((size == isize) && 4046 !ext4_fs_is_busy(sbi) && 4047 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 4048 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4049 return; 4050 } 4051 4052 if (sbi->s_mb_group_prealloc <= 0) { 4053 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4054 return; 4055 } 4056 4057 /* don't use group allocation for large files */ 4058 size = max(size, isize); 4059 if (size > sbi->s_mb_stream_request) { 4060 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4061 return; 4062 } 4063 4064 BUG_ON(ac->ac_lg != NULL); 4065 /* 4066 * locality group prealloc space are per cpu. The reason for having 4067 * per cpu locality group is to reduce the contention between block 4068 * request from multiple CPUs. 4069 */ 4070 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups); 4071 4072 /* we're going to use group allocation */ 4073 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4074 4075 /* serialize all allocations in the group */ 4076 mutex_lock(&ac->ac_lg->lg_mutex); 4077 } 4078 4079 static noinline_for_stack int 4080 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4081 struct ext4_allocation_request *ar) 4082 { 4083 struct super_block *sb = ar->inode->i_sb; 4084 struct ext4_sb_info *sbi = EXT4_SB(sb); 4085 struct ext4_super_block *es = sbi->s_es; 4086 ext4_group_t group; 4087 unsigned int len; 4088 ext4_fsblk_t goal; 4089 ext4_grpblk_t block; 4090 4091 /* we can't allocate > group size */ 4092 len = ar->len; 4093 4094 /* just a dirty hack to filter too big requests */ 4095 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4096 len = EXT4_CLUSTERS_PER_GROUP(sb); 4097 4098 /* start searching from the goal */ 4099 goal = ar->goal; 4100 if (goal < le32_to_cpu(es->s_first_data_block) || 4101 goal >= ext4_blocks_count(es)) 4102 goal = le32_to_cpu(es->s_first_data_block); 4103 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4104 4105 /* set up allocation goals */ 4106 ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1); 4107 ac->ac_status = AC_STATUS_CONTINUE; 4108 ac->ac_sb = sb; 4109 ac->ac_inode = ar->inode; 4110 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4111 ac->ac_o_ex.fe_group = group; 4112 ac->ac_o_ex.fe_start = block; 4113 ac->ac_o_ex.fe_len = len; 4114 ac->ac_g_ex = ac->ac_o_ex; 4115 ac->ac_flags = ar->flags; 4116 4117 /* we have to define context: we'll we work with a file or 4118 * locality group. this is a policy, actually */ 4119 ext4_mb_group_or_file(ac); 4120 4121 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4122 "left: %u/%u, right %u/%u to %swritable\n", 4123 (unsigned) ar->len, (unsigned) ar->logical, 4124 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4125 (unsigned) ar->lleft, (unsigned) ar->pleft, 4126 (unsigned) ar->lright, (unsigned) ar->pright, 4127 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4128 return 0; 4129 4130 } 4131 4132 static noinline_for_stack void 4133 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4134 struct ext4_locality_group *lg, 4135 int order, int total_entries) 4136 { 4137 ext4_group_t group = 0; 4138 struct ext4_buddy e4b; 4139 struct list_head discard_list; 4140 struct ext4_prealloc_space *pa, *tmp; 4141 4142 mb_debug(1, "discard locality group preallocation\n"); 4143 4144 INIT_LIST_HEAD(&discard_list); 4145 4146 spin_lock(&lg->lg_prealloc_lock); 4147 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4148 pa_inode_list) { 4149 spin_lock(&pa->pa_lock); 4150 if (atomic_read(&pa->pa_count)) { 4151 /* 4152 * This is the pa that we just used 4153 * for block allocation. So don't 4154 * free that 4155 */ 4156 spin_unlock(&pa->pa_lock); 4157 continue; 4158 } 4159 if (pa->pa_deleted) { 4160 spin_unlock(&pa->pa_lock); 4161 continue; 4162 } 4163 /* only lg prealloc space */ 4164 BUG_ON(pa->pa_type != MB_GROUP_PA); 4165 4166 /* seems this one can be freed ... */ 4167 pa->pa_deleted = 1; 4168 spin_unlock(&pa->pa_lock); 4169 4170 list_del_rcu(&pa->pa_inode_list); 4171 list_add(&pa->u.pa_tmp_list, &discard_list); 4172 4173 total_entries--; 4174 if (total_entries <= 5) { 4175 /* 4176 * we want to keep only 5 entries 4177 * allowing it to grow to 8. This 4178 * mak sure we don't call discard 4179 * soon for this list. 4180 */ 4181 break; 4182 } 4183 } 4184 spin_unlock(&lg->lg_prealloc_lock); 4185 4186 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4187 4188 group = ext4_get_group_number(sb, pa->pa_pstart); 4189 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4190 ext4_error(sb, "Error loading buddy information for %u", 4191 group); 4192 continue; 4193 } 4194 ext4_lock_group(sb, group); 4195 list_del(&pa->pa_group_list); 4196 ext4_mb_release_group_pa(&e4b, pa); 4197 ext4_unlock_group(sb, group); 4198 4199 ext4_mb_unload_buddy(&e4b); 4200 list_del(&pa->u.pa_tmp_list); 4201 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4202 } 4203 } 4204 4205 /* 4206 * We have incremented pa_count. So it cannot be freed at this 4207 * point. Also we hold lg_mutex. So no parallel allocation is 4208 * possible from this lg. That means pa_free cannot be updated. 4209 * 4210 * A parallel ext4_mb_discard_group_preallocations is possible. 4211 * which can cause the lg_prealloc_list to be updated. 4212 */ 4213 4214 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4215 { 4216 int order, added = 0, lg_prealloc_count = 1; 4217 struct super_block *sb = ac->ac_sb; 4218 struct ext4_locality_group *lg = ac->ac_lg; 4219 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4220 4221 order = fls(pa->pa_free) - 1; 4222 if (order > PREALLOC_TB_SIZE - 1) 4223 /* The max size of hash table is PREALLOC_TB_SIZE */ 4224 order = PREALLOC_TB_SIZE - 1; 4225 /* Add the prealloc space to lg */ 4226 spin_lock(&lg->lg_prealloc_lock); 4227 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4228 pa_inode_list) { 4229 spin_lock(&tmp_pa->pa_lock); 4230 if (tmp_pa->pa_deleted) { 4231 spin_unlock(&tmp_pa->pa_lock); 4232 continue; 4233 } 4234 if (!added && pa->pa_free < tmp_pa->pa_free) { 4235 /* Add to the tail of the previous entry */ 4236 list_add_tail_rcu(&pa->pa_inode_list, 4237 &tmp_pa->pa_inode_list); 4238 added = 1; 4239 /* 4240 * we want to count the total 4241 * number of entries in the list 4242 */ 4243 } 4244 spin_unlock(&tmp_pa->pa_lock); 4245 lg_prealloc_count++; 4246 } 4247 if (!added) 4248 list_add_tail_rcu(&pa->pa_inode_list, 4249 &lg->lg_prealloc_list[order]); 4250 spin_unlock(&lg->lg_prealloc_lock); 4251 4252 /* Now trim the list to be not more than 8 elements */ 4253 if (lg_prealloc_count > 8) { 4254 ext4_mb_discard_lg_preallocations(sb, lg, 4255 order, lg_prealloc_count); 4256 return; 4257 } 4258 return ; 4259 } 4260 4261 /* 4262 * release all resource we used in allocation 4263 */ 4264 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4265 { 4266 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4267 struct ext4_prealloc_space *pa = ac->ac_pa; 4268 if (pa) { 4269 if (pa->pa_type == MB_GROUP_PA) { 4270 /* see comment in ext4_mb_use_group_pa() */ 4271 spin_lock(&pa->pa_lock); 4272 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4273 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4274 pa->pa_free -= ac->ac_b_ex.fe_len; 4275 pa->pa_len -= ac->ac_b_ex.fe_len; 4276 spin_unlock(&pa->pa_lock); 4277 } 4278 } 4279 if (pa) { 4280 /* 4281 * We want to add the pa to the right bucket. 4282 * Remove it from the list and while adding 4283 * make sure the list to which we are adding 4284 * doesn't grow big. 4285 */ 4286 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4287 spin_lock(pa->pa_obj_lock); 4288 list_del_rcu(&pa->pa_inode_list); 4289 spin_unlock(pa->pa_obj_lock); 4290 ext4_mb_add_n_trim(ac); 4291 } 4292 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4293 } 4294 if (ac->ac_bitmap_page) 4295 page_cache_release(ac->ac_bitmap_page); 4296 if (ac->ac_buddy_page) 4297 page_cache_release(ac->ac_buddy_page); 4298 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4299 mutex_unlock(&ac->ac_lg->lg_mutex); 4300 ext4_mb_collect_stats(ac); 4301 return 0; 4302 } 4303 4304 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4305 { 4306 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4307 int ret; 4308 int freed = 0; 4309 4310 trace_ext4_mb_discard_preallocations(sb, needed); 4311 for (i = 0; i < ngroups && needed > 0; i++) { 4312 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4313 freed += ret; 4314 needed -= ret; 4315 } 4316 4317 return freed; 4318 } 4319 4320 /* 4321 * Main entry point into mballoc to allocate blocks 4322 * it tries to use preallocation first, then falls back 4323 * to usual allocation 4324 */ 4325 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4326 struct ext4_allocation_request *ar, int *errp) 4327 { 4328 int freed; 4329 struct ext4_allocation_context *ac = NULL; 4330 struct ext4_sb_info *sbi; 4331 struct super_block *sb; 4332 ext4_fsblk_t block = 0; 4333 unsigned int inquota = 0; 4334 unsigned int reserv_clstrs = 0; 4335 4336 might_sleep(); 4337 sb = ar->inode->i_sb; 4338 sbi = EXT4_SB(sb); 4339 4340 trace_ext4_request_blocks(ar); 4341 4342 /* Allow to use superuser reservation for quota file */ 4343 if (IS_NOQUOTA(ar->inode)) 4344 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4345 4346 /* 4347 * For delayed allocation, we could skip the ENOSPC and 4348 * EDQUOT check, as blocks and quotas have been already 4349 * reserved when data being copied into pagecache. 4350 */ 4351 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED)) 4352 ar->flags |= EXT4_MB_DELALLOC_RESERVED; 4353 else { 4354 /* Without delayed allocation we need to verify 4355 * there is enough free blocks to do block allocation 4356 * and verify allocation doesn't exceed the quota limits. 4357 */ 4358 while (ar->len && 4359 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4360 4361 /* let others to free the space */ 4362 cond_resched(); 4363 ar->len = ar->len >> 1; 4364 } 4365 if (!ar->len) { 4366 *errp = -ENOSPC; 4367 return 0; 4368 } 4369 reserv_clstrs = ar->len; 4370 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4371 dquot_alloc_block_nofail(ar->inode, 4372 EXT4_C2B(sbi, ar->len)); 4373 } else { 4374 while (ar->len && 4375 dquot_alloc_block(ar->inode, 4376 EXT4_C2B(sbi, ar->len))) { 4377 4378 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4379 ar->len--; 4380 } 4381 } 4382 inquota = ar->len; 4383 if (ar->len == 0) { 4384 *errp = -EDQUOT; 4385 goto out; 4386 } 4387 } 4388 4389 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4390 if (!ac) { 4391 ar->len = 0; 4392 *errp = -ENOMEM; 4393 goto out; 4394 } 4395 4396 *errp = ext4_mb_initialize_context(ac, ar); 4397 if (*errp) { 4398 ar->len = 0; 4399 goto out; 4400 } 4401 4402 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4403 if (!ext4_mb_use_preallocated(ac)) { 4404 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4405 ext4_mb_normalize_request(ac, ar); 4406 repeat: 4407 /* allocate space in core */ 4408 *errp = ext4_mb_regular_allocator(ac); 4409 if (*errp) 4410 goto discard_and_exit; 4411 4412 /* as we've just preallocated more space than 4413 * user requested originally, we store allocated 4414 * space in a special descriptor */ 4415 if (ac->ac_status == AC_STATUS_FOUND && 4416 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4417 *errp = ext4_mb_new_preallocation(ac); 4418 if (*errp) { 4419 discard_and_exit: 4420 ext4_discard_allocated_blocks(ac); 4421 goto errout; 4422 } 4423 } 4424 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4425 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4426 if (*errp == -EAGAIN) { 4427 /* 4428 * drop the reference that we took 4429 * in ext4_mb_use_best_found 4430 */ 4431 ext4_mb_release_context(ac); 4432 ac->ac_b_ex.fe_group = 0; 4433 ac->ac_b_ex.fe_start = 0; 4434 ac->ac_b_ex.fe_len = 0; 4435 ac->ac_status = AC_STATUS_CONTINUE; 4436 goto repeat; 4437 } else if (*errp) { 4438 ext4_discard_allocated_blocks(ac); 4439 goto errout; 4440 } else { 4441 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4442 ar->len = ac->ac_b_ex.fe_len; 4443 } 4444 } else { 4445 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4446 if (freed) 4447 goto repeat; 4448 *errp = -ENOSPC; 4449 } 4450 4451 errout: 4452 if (*errp) { 4453 ac->ac_b_ex.fe_len = 0; 4454 ar->len = 0; 4455 ext4_mb_show_ac(ac); 4456 } 4457 ext4_mb_release_context(ac); 4458 out: 4459 if (ac) 4460 kmem_cache_free(ext4_ac_cachep, ac); 4461 if (inquota && ar->len < inquota) 4462 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4463 if (!ar->len) { 4464 if (!ext4_test_inode_state(ar->inode, 4465 EXT4_STATE_DELALLOC_RESERVED)) 4466 /* release all the reserved blocks if non delalloc */ 4467 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4468 reserv_clstrs); 4469 } 4470 4471 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4472 4473 return block; 4474 } 4475 4476 /* 4477 * We can merge two free data extents only if the physical blocks 4478 * are contiguous, AND the extents were freed by the same transaction, 4479 * AND the blocks are associated with the same group. 4480 */ 4481 static int can_merge(struct ext4_free_data *entry1, 4482 struct ext4_free_data *entry2) 4483 { 4484 if ((entry1->efd_tid == entry2->efd_tid) && 4485 (entry1->efd_group == entry2->efd_group) && 4486 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster)) 4487 return 1; 4488 return 0; 4489 } 4490 4491 static noinline_for_stack int 4492 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4493 struct ext4_free_data *new_entry) 4494 { 4495 ext4_group_t group = e4b->bd_group; 4496 ext4_grpblk_t cluster; 4497 struct ext4_free_data *entry; 4498 struct ext4_group_info *db = e4b->bd_info; 4499 struct super_block *sb = e4b->bd_sb; 4500 struct ext4_sb_info *sbi = EXT4_SB(sb); 4501 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4502 struct rb_node *parent = NULL, *new_node; 4503 4504 BUG_ON(!ext4_handle_valid(handle)); 4505 BUG_ON(e4b->bd_bitmap_page == NULL); 4506 BUG_ON(e4b->bd_buddy_page == NULL); 4507 4508 new_node = &new_entry->efd_node; 4509 cluster = new_entry->efd_start_cluster; 4510 4511 if (!*n) { 4512 /* first free block exent. We need to 4513 protect buddy cache from being freed, 4514 * otherwise we'll refresh it from 4515 * on-disk bitmap and lose not-yet-available 4516 * blocks */ 4517 page_cache_get(e4b->bd_buddy_page); 4518 page_cache_get(e4b->bd_bitmap_page); 4519 } 4520 while (*n) { 4521 parent = *n; 4522 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4523 if (cluster < entry->efd_start_cluster) 4524 n = &(*n)->rb_left; 4525 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4526 n = &(*n)->rb_right; 4527 else { 4528 ext4_grp_locked_error(sb, group, 0, 4529 ext4_group_first_block_no(sb, group) + 4530 EXT4_C2B(sbi, cluster), 4531 "Block already on to-be-freed list"); 4532 return 0; 4533 } 4534 } 4535 4536 rb_link_node(new_node, parent, n); 4537 rb_insert_color(new_node, &db->bb_free_root); 4538 4539 /* Now try to see the extent can be merged to left and right */ 4540 node = rb_prev(new_node); 4541 if (node) { 4542 entry = rb_entry(node, struct ext4_free_data, efd_node); 4543 if (can_merge(entry, new_entry) && 4544 ext4_journal_callback_try_del(handle, &entry->efd_jce)) { 4545 new_entry->efd_start_cluster = entry->efd_start_cluster; 4546 new_entry->efd_count += entry->efd_count; 4547 rb_erase(node, &(db->bb_free_root)); 4548 kmem_cache_free(ext4_free_data_cachep, entry); 4549 } 4550 } 4551 4552 node = rb_next(new_node); 4553 if (node) { 4554 entry = rb_entry(node, struct ext4_free_data, efd_node); 4555 if (can_merge(new_entry, entry) && 4556 ext4_journal_callback_try_del(handle, &entry->efd_jce)) { 4557 new_entry->efd_count += entry->efd_count; 4558 rb_erase(node, &(db->bb_free_root)); 4559 kmem_cache_free(ext4_free_data_cachep, entry); 4560 } 4561 } 4562 /* Add the extent to transaction's private list */ 4563 ext4_journal_callback_add(handle, ext4_free_data_callback, 4564 &new_entry->efd_jce); 4565 return 0; 4566 } 4567 4568 /** 4569 * ext4_free_blocks() -- Free given blocks and update quota 4570 * @handle: handle for this transaction 4571 * @inode: inode 4572 * @block: start physical block to free 4573 * @count: number of blocks to count 4574 * @flags: flags used by ext4_free_blocks 4575 */ 4576 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4577 struct buffer_head *bh, ext4_fsblk_t block, 4578 unsigned long count, int flags) 4579 { 4580 struct buffer_head *bitmap_bh = NULL; 4581 struct super_block *sb = inode->i_sb; 4582 struct ext4_group_desc *gdp; 4583 unsigned int overflow; 4584 ext4_grpblk_t bit; 4585 struct buffer_head *gd_bh; 4586 ext4_group_t block_group; 4587 struct ext4_sb_info *sbi; 4588 struct ext4_buddy e4b; 4589 unsigned int count_clusters; 4590 int err = 0; 4591 int ret; 4592 4593 might_sleep(); 4594 if (bh) { 4595 if (block) 4596 BUG_ON(block != bh->b_blocknr); 4597 else 4598 block = bh->b_blocknr; 4599 } 4600 4601 sbi = EXT4_SB(sb); 4602 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4603 !ext4_data_block_valid(sbi, block, count)) { 4604 ext4_error(sb, "Freeing blocks not in datazone - " 4605 "block = %llu, count = %lu", block, count); 4606 goto error_return; 4607 } 4608 4609 ext4_debug("freeing block %llu\n", block); 4610 trace_ext4_free_blocks(inode, block, count, flags); 4611 4612 if (flags & EXT4_FREE_BLOCKS_FORGET) { 4613 struct buffer_head *tbh = bh; 4614 int i; 4615 4616 BUG_ON(bh && (count > 1)); 4617 4618 for (i = 0; i < count; i++) { 4619 cond_resched(); 4620 if (!bh) 4621 tbh = sb_find_get_block(inode->i_sb, 4622 block + i); 4623 if (!tbh) 4624 continue; 4625 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4626 inode, tbh, block + i); 4627 } 4628 } 4629 4630 /* 4631 * We need to make sure we don't reuse the freed block until 4632 * after the transaction is committed, which we can do by 4633 * treating the block as metadata, below. We make an 4634 * exception if the inode is to be written in writeback mode 4635 * since writeback mode has weak data consistency guarantees. 4636 */ 4637 if (!ext4_should_writeback_data(inode)) 4638 flags |= EXT4_FREE_BLOCKS_METADATA; 4639 4640 /* 4641 * If the extent to be freed does not begin on a cluster 4642 * boundary, we need to deal with partial clusters at the 4643 * beginning and end of the extent. Normally we will free 4644 * blocks at the beginning or the end unless we are explicitly 4645 * requested to avoid doing so. 4646 */ 4647 overflow = block & (sbi->s_cluster_ratio - 1); 4648 if (overflow) { 4649 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4650 overflow = sbi->s_cluster_ratio - overflow; 4651 block += overflow; 4652 if (count > overflow) 4653 count -= overflow; 4654 else 4655 return; 4656 } else { 4657 block -= overflow; 4658 count += overflow; 4659 } 4660 } 4661 overflow = count & (sbi->s_cluster_ratio - 1); 4662 if (overflow) { 4663 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4664 if (count > overflow) 4665 count -= overflow; 4666 else 4667 return; 4668 } else 4669 count += sbi->s_cluster_ratio - overflow; 4670 } 4671 4672 do_more: 4673 overflow = 0; 4674 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4675 4676 /* 4677 * Check to see if we are freeing blocks across a group 4678 * boundary. 4679 */ 4680 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4681 overflow = EXT4_C2B(sbi, bit) + count - 4682 EXT4_BLOCKS_PER_GROUP(sb); 4683 count -= overflow; 4684 } 4685 count_clusters = EXT4_NUM_B2C(sbi, count); 4686 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4687 if (!bitmap_bh) { 4688 err = -EIO; 4689 goto error_return; 4690 } 4691 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4692 if (!gdp) { 4693 err = -EIO; 4694 goto error_return; 4695 } 4696 4697 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4698 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4699 in_range(block, ext4_inode_table(sb, gdp), 4700 EXT4_SB(sb)->s_itb_per_group) || 4701 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4702 EXT4_SB(sb)->s_itb_per_group)) { 4703 4704 ext4_error(sb, "Freeing blocks in system zone - " 4705 "Block = %llu, count = %lu", block, count); 4706 /* err = 0. ext4_std_error should be a no op */ 4707 goto error_return; 4708 } 4709 4710 BUFFER_TRACE(bitmap_bh, "getting write access"); 4711 err = ext4_journal_get_write_access(handle, bitmap_bh); 4712 if (err) 4713 goto error_return; 4714 4715 /* 4716 * We are about to modify some metadata. Call the journal APIs 4717 * to unshare ->b_data if a currently-committing transaction is 4718 * using it 4719 */ 4720 BUFFER_TRACE(gd_bh, "get_write_access"); 4721 err = ext4_journal_get_write_access(handle, gd_bh); 4722 if (err) 4723 goto error_return; 4724 #ifdef AGGRESSIVE_CHECK 4725 { 4726 int i; 4727 for (i = 0; i < count_clusters; i++) 4728 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4729 } 4730 #endif 4731 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4732 4733 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4734 if (err) 4735 goto error_return; 4736 4737 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) { 4738 struct ext4_free_data *new_entry; 4739 /* 4740 * blocks being freed are metadata. these blocks shouldn't 4741 * be used until this transaction is committed 4742 */ 4743 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS); 4744 if (!new_entry) { 4745 ext4_mb_unload_buddy(&e4b); 4746 err = -ENOMEM; 4747 goto error_return; 4748 } 4749 new_entry->efd_start_cluster = bit; 4750 new_entry->efd_group = block_group; 4751 new_entry->efd_count = count_clusters; 4752 new_entry->efd_tid = handle->h_transaction->t_tid; 4753 4754 ext4_lock_group(sb, block_group); 4755 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4756 ext4_mb_free_metadata(handle, &e4b, new_entry); 4757 } else { 4758 /* need to update group_info->bb_free and bitmap 4759 * with group lock held. generate_buddy look at 4760 * them with group lock_held 4761 */ 4762 if (test_opt(sb, DISCARD)) { 4763 err = ext4_issue_discard(sb, block_group, bit, count); 4764 if (err && err != -EOPNOTSUPP) 4765 ext4_msg(sb, KERN_WARNING, "discard request in" 4766 " group:%d block:%d count:%lu failed" 4767 " with %d", block_group, bit, count, 4768 err); 4769 } 4770 4771 4772 ext4_lock_group(sb, block_group); 4773 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4774 mb_free_blocks(inode, &e4b, bit, count_clusters); 4775 } 4776 4777 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4778 ext4_free_group_clusters_set(sb, gdp, ret); 4779 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 4780 ext4_group_desc_csum_set(sb, block_group, gdp); 4781 ext4_unlock_group(sb, block_group); 4782 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); 4783 4784 if (sbi->s_log_groups_per_flex) { 4785 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4786 atomic64_add(count_clusters, 4787 &sbi->s_flex_groups[flex_group].free_clusters); 4788 } 4789 4790 ext4_mb_unload_buddy(&e4b); 4791 4792 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4793 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4794 4795 /* We dirtied the bitmap block */ 4796 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4797 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4798 4799 /* And the group descriptor block */ 4800 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4801 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4802 if (!err) 4803 err = ret; 4804 4805 if (overflow && !err) { 4806 block += count; 4807 count = overflow; 4808 put_bh(bitmap_bh); 4809 goto do_more; 4810 } 4811 error_return: 4812 brelse(bitmap_bh); 4813 ext4_std_error(sb, err); 4814 return; 4815 } 4816 4817 /** 4818 * ext4_group_add_blocks() -- Add given blocks to an existing group 4819 * @handle: handle to this transaction 4820 * @sb: super block 4821 * @block: start physical block to add to the block group 4822 * @count: number of blocks to free 4823 * 4824 * This marks the blocks as free in the bitmap and buddy. 4825 */ 4826 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4827 ext4_fsblk_t block, unsigned long count) 4828 { 4829 struct buffer_head *bitmap_bh = NULL; 4830 struct buffer_head *gd_bh; 4831 ext4_group_t block_group; 4832 ext4_grpblk_t bit; 4833 unsigned int i; 4834 struct ext4_group_desc *desc; 4835 struct ext4_sb_info *sbi = EXT4_SB(sb); 4836 struct ext4_buddy e4b; 4837 int err = 0, ret, blk_free_count; 4838 ext4_grpblk_t blocks_freed; 4839 4840 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 4841 4842 if (count == 0) 4843 return 0; 4844 4845 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4846 /* 4847 * Check to see if we are freeing blocks across a group 4848 * boundary. 4849 */ 4850 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4851 ext4_warning(sb, "too much blocks added to group %u\n", 4852 block_group); 4853 err = -EINVAL; 4854 goto error_return; 4855 } 4856 4857 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4858 if (!bitmap_bh) { 4859 err = -EIO; 4860 goto error_return; 4861 } 4862 4863 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 4864 if (!desc) { 4865 err = -EIO; 4866 goto error_return; 4867 } 4868 4869 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 4870 in_range(ext4_inode_bitmap(sb, desc), block, count) || 4871 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 4872 in_range(block + count - 1, ext4_inode_table(sb, desc), 4873 sbi->s_itb_per_group)) { 4874 ext4_error(sb, "Adding blocks in system zones - " 4875 "Block = %llu, count = %lu", 4876 block, count); 4877 err = -EINVAL; 4878 goto error_return; 4879 } 4880 4881 BUFFER_TRACE(bitmap_bh, "getting write access"); 4882 err = ext4_journal_get_write_access(handle, bitmap_bh); 4883 if (err) 4884 goto error_return; 4885 4886 /* 4887 * We are about to modify some metadata. Call the journal APIs 4888 * to unshare ->b_data if a currently-committing transaction is 4889 * using it 4890 */ 4891 BUFFER_TRACE(gd_bh, "get_write_access"); 4892 err = ext4_journal_get_write_access(handle, gd_bh); 4893 if (err) 4894 goto error_return; 4895 4896 for (i = 0, blocks_freed = 0; i < count; i++) { 4897 BUFFER_TRACE(bitmap_bh, "clear bit"); 4898 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 4899 ext4_error(sb, "bit already cleared for block %llu", 4900 (ext4_fsblk_t)(block + i)); 4901 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 4902 } else { 4903 blocks_freed++; 4904 } 4905 } 4906 4907 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4908 if (err) 4909 goto error_return; 4910 4911 /* 4912 * need to update group_info->bb_free and bitmap 4913 * with group lock held. generate_buddy look at 4914 * them with group lock_held 4915 */ 4916 ext4_lock_group(sb, block_group); 4917 mb_clear_bits(bitmap_bh->b_data, bit, count); 4918 mb_free_blocks(NULL, &e4b, bit, count); 4919 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc); 4920 ext4_free_group_clusters_set(sb, desc, blk_free_count); 4921 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 4922 ext4_group_desc_csum_set(sb, block_group, desc); 4923 ext4_unlock_group(sb, block_group); 4924 percpu_counter_add(&sbi->s_freeclusters_counter, 4925 EXT4_NUM_B2C(sbi, blocks_freed)); 4926 4927 if (sbi->s_log_groups_per_flex) { 4928 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4929 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed), 4930 &sbi->s_flex_groups[flex_group].free_clusters); 4931 } 4932 4933 ext4_mb_unload_buddy(&e4b); 4934 4935 /* We dirtied the bitmap block */ 4936 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4937 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4938 4939 /* And the group descriptor block */ 4940 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4941 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4942 if (!err) 4943 err = ret; 4944 4945 error_return: 4946 brelse(bitmap_bh); 4947 ext4_std_error(sb, err); 4948 return err; 4949 } 4950 4951 /** 4952 * ext4_trim_extent -- function to TRIM one single free extent in the group 4953 * @sb: super block for the file system 4954 * @start: starting block of the free extent in the alloc. group 4955 * @count: number of blocks to TRIM 4956 * @group: alloc. group we are working with 4957 * @e4b: ext4 buddy for the group 4958 * 4959 * Trim "count" blocks starting at "start" in the "group". To assure that no 4960 * one will allocate those blocks, mark it as used in buddy bitmap. This must 4961 * be called with under the group lock. 4962 */ 4963 static int ext4_trim_extent(struct super_block *sb, int start, int count, 4964 ext4_group_t group, struct ext4_buddy *e4b) 4965 { 4966 struct ext4_free_extent ex; 4967 int ret = 0; 4968 4969 trace_ext4_trim_extent(sb, group, start, count); 4970 4971 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 4972 4973 ex.fe_start = start; 4974 ex.fe_group = group; 4975 ex.fe_len = count; 4976 4977 /* 4978 * Mark blocks used, so no one can reuse them while 4979 * being trimmed. 4980 */ 4981 mb_mark_used(e4b, &ex); 4982 ext4_unlock_group(sb, group); 4983 ret = ext4_issue_discard(sb, group, start, count); 4984 ext4_lock_group(sb, group); 4985 mb_free_blocks(NULL, e4b, start, ex.fe_len); 4986 return ret; 4987 } 4988 4989 /** 4990 * ext4_trim_all_free -- function to trim all free space in alloc. group 4991 * @sb: super block for file system 4992 * @group: group to be trimmed 4993 * @start: first group block to examine 4994 * @max: last group block to examine 4995 * @minblocks: minimum extent block count 4996 * 4997 * ext4_trim_all_free walks through group's buddy bitmap searching for free 4998 * extents. When the free block is found, ext4_trim_extent is called to TRIM 4999 * the extent. 5000 * 5001 * 5002 * ext4_trim_all_free walks through group's block bitmap searching for free 5003 * extents. When the free extent is found, mark it as used in group buddy 5004 * bitmap. Then issue a TRIM command on this extent and free the extent in 5005 * the group buddy bitmap. This is done until whole group is scanned. 5006 */ 5007 static ext4_grpblk_t 5008 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 5009 ext4_grpblk_t start, ext4_grpblk_t max, 5010 ext4_grpblk_t minblocks) 5011 { 5012 void *bitmap; 5013 ext4_grpblk_t next, count = 0, free_count = 0; 5014 struct ext4_buddy e4b; 5015 int ret = 0; 5016 5017 trace_ext4_trim_all_free(sb, group, start, max); 5018 5019 ret = ext4_mb_load_buddy(sb, group, &e4b); 5020 if (ret) { 5021 ext4_error(sb, "Error in loading buddy " 5022 "information for %u", group); 5023 return ret; 5024 } 5025 bitmap = e4b.bd_bitmap; 5026 5027 ext4_lock_group(sb, group); 5028 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 5029 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 5030 goto out; 5031 5032 start = (e4b.bd_info->bb_first_free > start) ? 5033 e4b.bd_info->bb_first_free : start; 5034 5035 while (start <= max) { 5036 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5037 if (start > max) 5038 break; 5039 next = mb_find_next_bit(bitmap, max + 1, start); 5040 5041 if ((next - start) >= minblocks) { 5042 ret = ext4_trim_extent(sb, start, 5043 next - start, group, &e4b); 5044 if (ret && ret != -EOPNOTSUPP) 5045 break; 5046 ret = 0; 5047 count += next - start; 5048 } 5049 free_count += next - start; 5050 start = next + 1; 5051 5052 if (fatal_signal_pending(current)) { 5053 count = -ERESTARTSYS; 5054 break; 5055 } 5056 5057 if (need_resched()) { 5058 ext4_unlock_group(sb, group); 5059 cond_resched(); 5060 ext4_lock_group(sb, group); 5061 } 5062 5063 if ((e4b.bd_info->bb_free - free_count) < minblocks) 5064 break; 5065 } 5066 5067 if (!ret) { 5068 ret = count; 5069 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 5070 } 5071 out: 5072 ext4_unlock_group(sb, group); 5073 ext4_mb_unload_buddy(&e4b); 5074 5075 ext4_debug("trimmed %d blocks in the group %d\n", 5076 count, group); 5077 5078 return ret; 5079 } 5080 5081 /** 5082 * ext4_trim_fs() -- trim ioctl handle function 5083 * @sb: superblock for filesystem 5084 * @range: fstrim_range structure 5085 * 5086 * start: First Byte to trim 5087 * len: number of Bytes to trim from start 5088 * minlen: minimum extent length in Bytes 5089 * ext4_trim_fs goes through all allocation groups containing Bytes from 5090 * start to start+len. For each such a group ext4_trim_all_free function 5091 * is invoked to trim all free space. 5092 */ 5093 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 5094 { 5095 struct ext4_group_info *grp; 5096 ext4_group_t group, first_group, last_group; 5097 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5098 uint64_t start, end, minlen, trimmed = 0; 5099 ext4_fsblk_t first_data_blk = 5100 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5101 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5102 int ret = 0; 5103 5104 start = range->start >> sb->s_blocksize_bits; 5105 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5106 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5107 range->minlen >> sb->s_blocksize_bits); 5108 5109 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5110 start >= max_blks || 5111 range->len < sb->s_blocksize) 5112 return -EINVAL; 5113 if (end >= max_blks) 5114 end = max_blks - 1; 5115 if (end <= first_data_blk) 5116 goto out; 5117 if (start < first_data_blk) 5118 start = first_data_blk; 5119 5120 /* Determine first and last group to examine based on start and end */ 5121 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5122 &first_group, &first_cluster); 5123 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5124 &last_group, &last_cluster); 5125 5126 /* end now represents the last cluster to discard in this group */ 5127 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5128 5129 for (group = first_group; group <= last_group; group++) { 5130 grp = ext4_get_group_info(sb, group); 5131 /* We only do this if the grp has never been initialized */ 5132 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5133 ret = ext4_mb_init_group(sb, group); 5134 if (ret) 5135 break; 5136 } 5137 5138 /* 5139 * For all the groups except the last one, last cluster will 5140 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5141 * change it for the last group, note that last_cluster is 5142 * already computed earlier by ext4_get_group_no_and_offset() 5143 */ 5144 if (group == last_group) 5145 end = last_cluster; 5146 5147 if (grp->bb_free >= minlen) { 5148 cnt = ext4_trim_all_free(sb, group, first_cluster, 5149 end, minlen); 5150 if (cnt < 0) { 5151 ret = cnt; 5152 break; 5153 } 5154 trimmed += cnt; 5155 } 5156 5157 /* 5158 * For every group except the first one, we are sure 5159 * that the first cluster to discard will be cluster #0. 5160 */ 5161 first_cluster = 0; 5162 } 5163 5164 if (!ret) 5165 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5166 5167 out: 5168 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5169 return ret; 5170 } 5171