1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <trace/events/ext4.h> 21 22 /* 23 * MUSTDO: 24 * - test ext4_ext_search_left() and ext4_ext_search_right() 25 * - search for metadata in few groups 26 * 27 * TODO v4: 28 * - normalization should take into account whether file is still open 29 * - discard preallocations if no free space left (policy?) 30 * - don't normalize tails 31 * - quota 32 * - reservation for superuser 33 * 34 * TODO v3: 35 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 36 * - track min/max extents in each group for better group selection 37 * - mb_mark_used() may allocate chunk right after splitting buddy 38 * - tree of groups sorted by number of free blocks 39 * - error handling 40 */ 41 42 /* 43 * The allocation request involve request for multiple number of blocks 44 * near to the goal(block) value specified. 45 * 46 * During initialization phase of the allocator we decide to use the 47 * group preallocation or inode preallocation depending on the size of 48 * the file. The size of the file could be the resulting file size we 49 * would have after allocation, or the current file size, which ever 50 * is larger. If the size is less than sbi->s_mb_stream_request we 51 * select to use the group preallocation. The default value of 52 * s_mb_stream_request is 16 blocks. This can also be tuned via 53 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 54 * terms of number of blocks. 55 * 56 * The main motivation for having small file use group preallocation is to 57 * ensure that we have small files closer together on the disk. 58 * 59 * First stage the allocator looks at the inode prealloc list, 60 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 61 * spaces for this particular inode. The inode prealloc space is 62 * represented as: 63 * 64 * pa_lstart -> the logical start block for this prealloc space 65 * pa_pstart -> the physical start block for this prealloc space 66 * pa_len -> length for this prealloc space (in clusters) 67 * pa_free -> free space available in this prealloc space (in clusters) 68 * 69 * The inode preallocation space is used looking at the _logical_ start 70 * block. If only the logical file block falls within the range of prealloc 71 * space we will consume the particular prealloc space. This makes sure that 72 * we have contiguous physical blocks representing the file blocks 73 * 74 * The important thing to be noted in case of inode prealloc space is that 75 * we don't modify the values associated to inode prealloc space except 76 * pa_free. 77 * 78 * If we are not able to find blocks in the inode prealloc space and if we 79 * have the group allocation flag set then we look at the locality group 80 * prealloc space. These are per CPU prealloc list represented as 81 * 82 * ext4_sb_info.s_locality_groups[smp_processor_id()] 83 * 84 * The reason for having a per cpu locality group is to reduce the contention 85 * between CPUs. It is possible to get scheduled at this point. 86 * 87 * The locality group prealloc space is used looking at whether we have 88 * enough free space (pa_free) within the prealloc space. 89 * 90 * If we can't allocate blocks via inode prealloc or/and locality group 91 * prealloc then we look at the buddy cache. The buddy cache is represented 92 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 93 * mapped to the buddy and bitmap information regarding different 94 * groups. The buddy information is attached to buddy cache inode so that 95 * we can access them through the page cache. The information regarding 96 * each group is loaded via ext4_mb_load_buddy. The information involve 97 * block bitmap and buddy information. The information are stored in the 98 * inode as: 99 * 100 * { page } 101 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 102 * 103 * 104 * one block each for bitmap and buddy information. So for each group we 105 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 106 * blocksize) blocks. So it can have information regarding groups_per_page 107 * which is blocks_per_page/2 108 * 109 * The buddy cache inode is not stored on disk. The inode is thrown 110 * away when the filesystem is unmounted. 111 * 112 * We look for count number of blocks in the buddy cache. If we were able 113 * to locate that many free blocks we return with additional information 114 * regarding rest of the contiguous physical block available 115 * 116 * Before allocating blocks via buddy cache we normalize the request 117 * blocks. This ensure we ask for more blocks that we needed. The extra 118 * blocks that we get after allocation is added to the respective prealloc 119 * list. In case of inode preallocation we follow a list of heuristics 120 * based on file size. This can be found in ext4_mb_normalize_request. If 121 * we are doing a group prealloc we try to normalize the request to 122 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 123 * dependent on the cluster size; for non-bigalloc file systems, it is 124 * 512 blocks. This can be tuned via 125 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 126 * terms of number of blocks. If we have mounted the file system with -O 127 * stripe=<value> option the group prealloc request is normalized to the 128 * smallest multiple of the stripe value (sbi->s_stripe) which is 129 * greater than the default mb_group_prealloc. 130 * 131 * If "mb_optimize_scan" mount option is set, we maintain in memory group info 132 * structures in two data structures: 133 * 134 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) 135 * 136 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) 137 * 138 * This is an array of lists where the index in the array represents the 139 * largest free order in the buddy bitmap of the participating group infos of 140 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total 141 * number of buddy bitmap orders possible) number of lists. Group-infos are 142 * placed in appropriate lists. 143 * 144 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size) 145 * 146 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks) 147 * 148 * This is an array of lists where in the i-th list there are groups with 149 * average fragment size >= 2^i and < 2^(i+1). The average fragment size 150 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments. 151 * Note that we don't bother with a special list for completely empty groups 152 * so we only have MB_NUM_ORDERS(sb) lists. 153 * 154 * When "mb_optimize_scan" mount option is set, mballoc consults the above data 155 * structures to decide the order in which groups are to be traversed for 156 * fulfilling an allocation request. 157 * 158 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order 159 * >= the order of the request. We directly look at the largest free order list 160 * in the data structure (1) above where largest_free_order = order of the 161 * request. If that list is empty, we look at remaining list in the increasing 162 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED 163 * lookup in O(1) time. 164 * 165 * At CR_GOAL_LEN_FAST, we only consider groups where 166 * average fragment size > request size. So, we lookup a group which has average 167 * fragment size just above or equal to request size using our average fragment 168 * size group lists (data structure 2) in O(1) time. 169 * 170 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied 171 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in 172 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg 173 * fragment size > goal length. So before falling to the slower 174 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and 175 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big 176 * enough average fragment size. This increases the chances of finding a 177 * suitable block group in O(1) time and results in faster allocation at the 178 * cost of reduced size of allocation. 179 * 180 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in 181 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and 182 * CR_GOAL_LEN_FAST phase. 183 * 184 * The regular allocator (using the buddy cache) supports a few tunables. 185 * 186 * /sys/fs/ext4/<partition>/mb_min_to_scan 187 * /sys/fs/ext4/<partition>/mb_max_to_scan 188 * /sys/fs/ext4/<partition>/mb_order2_req 189 * /sys/fs/ext4/<partition>/mb_linear_limit 190 * 191 * The regular allocator uses buddy scan only if the request len is power of 192 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 193 * value of s_mb_order2_reqs can be tuned via 194 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 195 * stripe size (sbi->s_stripe), we try to search for contiguous block in 196 * stripe size. This should result in better allocation on RAID setups. If 197 * not, we search in the specific group using bitmap for best extents. The 198 * tunable min_to_scan and max_to_scan control the behaviour here. 199 * min_to_scan indicate how long the mballoc __must__ look for a best 200 * extent and max_to_scan indicates how long the mballoc __can__ look for a 201 * best extent in the found extents. Searching for the blocks starts with 202 * the group specified as the goal value in allocation context via 203 * ac_g_ex. Each group is first checked based on the criteria whether it 204 * can be used for allocation. ext4_mb_good_group explains how the groups are 205 * checked. 206 * 207 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not 208 * get traversed linearly. That may result in subsequent allocations being not 209 * close to each other. And so, the underlying device may get filled up in a 210 * non-linear fashion. While that may not matter on non-rotational devices, for 211 * rotational devices that may result in higher seek times. "mb_linear_limit" 212 * tells mballoc how many groups mballoc should search linearly before 213 * performing consulting above data structures for more efficient lookups. For 214 * non rotational devices, this value defaults to 0 and for rotational devices 215 * this is set to MB_DEFAULT_LINEAR_LIMIT. 216 * 217 * Both the prealloc space are getting populated as above. So for the first 218 * request we will hit the buddy cache which will result in this prealloc 219 * space getting filled. The prealloc space is then later used for the 220 * subsequent request. 221 */ 222 223 /* 224 * mballoc operates on the following data: 225 * - on-disk bitmap 226 * - in-core buddy (actually includes buddy and bitmap) 227 * - preallocation descriptors (PAs) 228 * 229 * there are two types of preallocations: 230 * - inode 231 * assiged to specific inode and can be used for this inode only. 232 * it describes part of inode's space preallocated to specific 233 * physical blocks. any block from that preallocated can be used 234 * independent. the descriptor just tracks number of blocks left 235 * unused. so, before taking some block from descriptor, one must 236 * make sure corresponded logical block isn't allocated yet. this 237 * also means that freeing any block within descriptor's range 238 * must discard all preallocated blocks. 239 * - locality group 240 * assigned to specific locality group which does not translate to 241 * permanent set of inodes: inode can join and leave group. space 242 * from this type of preallocation can be used for any inode. thus 243 * it's consumed from the beginning to the end. 244 * 245 * relation between them can be expressed as: 246 * in-core buddy = on-disk bitmap + preallocation descriptors 247 * 248 * this mean blocks mballoc considers used are: 249 * - allocated blocks (persistent) 250 * - preallocated blocks (non-persistent) 251 * 252 * consistency in mballoc world means that at any time a block is either 253 * free or used in ALL structures. notice: "any time" should not be read 254 * literally -- time is discrete and delimited by locks. 255 * 256 * to keep it simple, we don't use block numbers, instead we count number of 257 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 258 * 259 * all operations can be expressed as: 260 * - init buddy: buddy = on-disk + PAs 261 * - new PA: buddy += N; PA = N 262 * - use inode PA: on-disk += N; PA -= N 263 * - discard inode PA buddy -= on-disk - PA; PA = 0 264 * - use locality group PA on-disk += N; PA -= N 265 * - discard locality group PA buddy -= PA; PA = 0 266 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 267 * is used in real operation because we can't know actual used 268 * bits from PA, only from on-disk bitmap 269 * 270 * if we follow this strict logic, then all operations above should be atomic. 271 * given some of them can block, we'd have to use something like semaphores 272 * killing performance on high-end SMP hardware. let's try to relax it using 273 * the following knowledge: 274 * 1) if buddy is referenced, it's already initialized 275 * 2) while block is used in buddy and the buddy is referenced, 276 * nobody can re-allocate that block 277 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 278 * bit set and PA claims same block, it's OK. IOW, one can set bit in 279 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 280 * block 281 * 282 * so, now we're building a concurrency table: 283 * - init buddy vs. 284 * - new PA 285 * blocks for PA are allocated in the buddy, buddy must be referenced 286 * until PA is linked to allocation group to avoid concurrent buddy init 287 * - use inode PA 288 * we need to make sure that either on-disk bitmap or PA has uptodate data 289 * given (3) we care that PA-=N operation doesn't interfere with init 290 * - discard inode PA 291 * the simplest way would be to have buddy initialized by the discard 292 * - use locality group PA 293 * again PA-=N must be serialized with init 294 * - discard locality group PA 295 * the simplest way would be to have buddy initialized by the discard 296 * - new PA vs. 297 * - use inode PA 298 * i_data_sem serializes them 299 * - discard inode PA 300 * discard process must wait until PA isn't used by another process 301 * - use locality group PA 302 * some mutex should serialize them 303 * - discard locality group PA 304 * discard process must wait until PA isn't used by another process 305 * - use inode PA 306 * - use inode PA 307 * i_data_sem or another mutex should serializes them 308 * - discard inode PA 309 * discard process must wait until PA isn't used by another process 310 * - use locality group PA 311 * nothing wrong here -- they're different PAs covering different blocks 312 * - discard locality group PA 313 * discard process must wait until PA isn't used by another process 314 * 315 * now we're ready to make few consequences: 316 * - PA is referenced and while it is no discard is possible 317 * - PA is referenced until block isn't marked in on-disk bitmap 318 * - PA changes only after on-disk bitmap 319 * - discard must not compete with init. either init is done before 320 * any discard or they're serialized somehow 321 * - buddy init as sum of on-disk bitmap and PAs is done atomically 322 * 323 * a special case when we've used PA to emptiness. no need to modify buddy 324 * in this case, but we should care about concurrent init 325 * 326 */ 327 328 /* 329 * Logic in few words: 330 * 331 * - allocation: 332 * load group 333 * find blocks 334 * mark bits in on-disk bitmap 335 * release group 336 * 337 * - use preallocation: 338 * find proper PA (per-inode or group) 339 * load group 340 * mark bits in on-disk bitmap 341 * release group 342 * release PA 343 * 344 * - free: 345 * load group 346 * mark bits in on-disk bitmap 347 * release group 348 * 349 * - discard preallocations in group: 350 * mark PAs deleted 351 * move them onto local list 352 * load on-disk bitmap 353 * load group 354 * remove PA from object (inode or locality group) 355 * mark free blocks in-core 356 * 357 * - discard inode's preallocations: 358 */ 359 360 /* 361 * Locking rules 362 * 363 * Locks: 364 * - bitlock on a group (group) 365 * - object (inode/locality) (object) 366 * - per-pa lock (pa) 367 * - cr_power2_aligned lists lock (cr_power2_aligned) 368 * - cr_goal_len_fast lists lock (cr_goal_len_fast) 369 * 370 * Paths: 371 * - new pa 372 * object 373 * group 374 * 375 * - find and use pa: 376 * pa 377 * 378 * - release consumed pa: 379 * pa 380 * group 381 * object 382 * 383 * - generate in-core bitmap: 384 * group 385 * pa 386 * 387 * - discard all for given object (inode, locality group): 388 * object 389 * pa 390 * group 391 * 392 * - discard all for given group: 393 * group 394 * pa 395 * group 396 * object 397 * 398 * - allocation path (ext4_mb_regular_allocator) 399 * group 400 * cr_power2_aligned/cr_goal_len_fast 401 */ 402 static struct kmem_cache *ext4_pspace_cachep; 403 static struct kmem_cache *ext4_ac_cachep; 404 static struct kmem_cache *ext4_free_data_cachep; 405 406 /* We create slab caches for groupinfo data structures based on the 407 * superblock block size. There will be one per mounted filesystem for 408 * each unique s_blocksize_bits */ 409 #define NR_GRPINFO_CACHES 8 410 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 411 412 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 413 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 414 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 415 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 416 }; 417 418 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 419 ext4_group_t group); 420 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 421 422 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 423 ext4_group_t group, enum criteria cr); 424 425 static int ext4_try_to_trim_range(struct super_block *sb, 426 struct ext4_buddy *e4b, ext4_grpblk_t start, 427 ext4_grpblk_t max, ext4_grpblk_t minblocks); 428 429 /* 430 * The algorithm using this percpu seq counter goes below: 431 * 1. We sample the percpu discard_pa_seq counter before trying for block 432 * allocation in ext4_mb_new_blocks(). 433 * 2. We increment this percpu discard_pa_seq counter when we either allocate 434 * or free these blocks i.e. while marking those blocks as used/free in 435 * mb_mark_used()/mb_free_blocks(). 436 * 3. We also increment this percpu seq counter when we successfully identify 437 * that the bb_prealloc_list is not empty and hence proceed for discarding 438 * of those PAs inside ext4_mb_discard_group_preallocations(). 439 * 440 * Now to make sure that the regular fast path of block allocation is not 441 * affected, as a small optimization we only sample the percpu seq counter 442 * on that cpu. Only when the block allocation fails and when freed blocks 443 * found were 0, that is when we sample percpu seq counter for all cpus using 444 * below function ext4_get_discard_pa_seq_sum(). This happens after making 445 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 446 */ 447 static DEFINE_PER_CPU(u64, discard_pa_seq); 448 static inline u64 ext4_get_discard_pa_seq_sum(void) 449 { 450 int __cpu; 451 u64 __seq = 0; 452 453 for_each_possible_cpu(__cpu) 454 __seq += per_cpu(discard_pa_seq, __cpu); 455 return __seq; 456 } 457 458 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 459 { 460 #if BITS_PER_LONG == 64 461 *bit += ((unsigned long) addr & 7UL) << 3; 462 addr = (void *) ((unsigned long) addr & ~7UL); 463 #elif BITS_PER_LONG == 32 464 *bit += ((unsigned long) addr & 3UL) << 3; 465 addr = (void *) ((unsigned long) addr & ~3UL); 466 #else 467 #error "how many bits you are?!" 468 #endif 469 return addr; 470 } 471 472 static inline int mb_test_bit(int bit, void *addr) 473 { 474 /* 475 * ext4_test_bit on architecture like powerpc 476 * needs unsigned long aligned address 477 */ 478 addr = mb_correct_addr_and_bit(&bit, addr); 479 return ext4_test_bit(bit, addr); 480 } 481 482 static inline void mb_set_bit(int bit, void *addr) 483 { 484 addr = mb_correct_addr_and_bit(&bit, addr); 485 ext4_set_bit(bit, addr); 486 } 487 488 static inline void mb_clear_bit(int bit, void *addr) 489 { 490 addr = mb_correct_addr_and_bit(&bit, addr); 491 ext4_clear_bit(bit, addr); 492 } 493 494 static inline int mb_test_and_clear_bit(int bit, void *addr) 495 { 496 addr = mb_correct_addr_and_bit(&bit, addr); 497 return ext4_test_and_clear_bit(bit, addr); 498 } 499 500 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 501 { 502 int fix = 0, ret, tmpmax; 503 addr = mb_correct_addr_and_bit(&fix, addr); 504 tmpmax = max + fix; 505 start += fix; 506 507 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 508 if (ret > max) 509 return max; 510 return ret; 511 } 512 513 static inline int mb_find_next_bit(void *addr, int max, int start) 514 { 515 int fix = 0, ret, tmpmax; 516 addr = mb_correct_addr_and_bit(&fix, addr); 517 tmpmax = max + fix; 518 start += fix; 519 520 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 521 if (ret > max) 522 return max; 523 return ret; 524 } 525 526 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 527 { 528 char *bb; 529 530 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 531 BUG_ON(max == NULL); 532 533 if (order > e4b->bd_blkbits + 1) { 534 *max = 0; 535 return NULL; 536 } 537 538 /* at order 0 we see each particular block */ 539 if (order == 0) { 540 *max = 1 << (e4b->bd_blkbits + 3); 541 return e4b->bd_bitmap; 542 } 543 544 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 545 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 546 547 return bb; 548 } 549 550 #ifdef DOUBLE_CHECK 551 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 552 int first, int count) 553 { 554 int i; 555 struct super_block *sb = e4b->bd_sb; 556 557 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 558 return; 559 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 560 for (i = 0; i < count; i++) { 561 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 562 ext4_fsblk_t blocknr; 563 564 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 565 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 566 ext4_grp_locked_error(sb, e4b->bd_group, 567 inode ? inode->i_ino : 0, 568 blocknr, 569 "freeing block already freed " 570 "(bit %u)", 571 first + i); 572 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 573 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 574 } 575 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 576 } 577 } 578 579 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 580 { 581 int i; 582 583 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 584 return; 585 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 586 for (i = 0; i < count; i++) { 587 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 588 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 589 } 590 } 591 592 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 593 { 594 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 595 return; 596 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 597 unsigned char *b1, *b2; 598 int i; 599 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 600 b2 = (unsigned char *) bitmap; 601 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 602 if (b1[i] != b2[i]) { 603 ext4_msg(e4b->bd_sb, KERN_ERR, 604 "corruption in group %u " 605 "at byte %u(%u): %x in copy != %x " 606 "on disk/prealloc", 607 e4b->bd_group, i, i * 8, b1[i], b2[i]); 608 BUG(); 609 } 610 } 611 } 612 } 613 614 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 615 struct ext4_group_info *grp, ext4_group_t group) 616 { 617 struct buffer_head *bh; 618 619 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 620 if (!grp->bb_bitmap) 621 return; 622 623 bh = ext4_read_block_bitmap(sb, group); 624 if (IS_ERR_OR_NULL(bh)) { 625 kfree(grp->bb_bitmap); 626 grp->bb_bitmap = NULL; 627 return; 628 } 629 630 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 631 put_bh(bh); 632 } 633 634 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 635 { 636 kfree(grp->bb_bitmap); 637 } 638 639 #else 640 static inline void mb_free_blocks_double(struct inode *inode, 641 struct ext4_buddy *e4b, int first, int count) 642 { 643 return; 644 } 645 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 646 int first, int count) 647 { 648 return; 649 } 650 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 651 { 652 return; 653 } 654 655 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 656 struct ext4_group_info *grp, ext4_group_t group) 657 { 658 return; 659 } 660 661 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 662 { 663 return; 664 } 665 #endif 666 667 #ifdef AGGRESSIVE_CHECK 668 669 #define MB_CHECK_ASSERT(assert) \ 670 do { \ 671 if (!(assert)) { \ 672 printk(KERN_EMERG \ 673 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 674 function, file, line, # assert); \ 675 BUG(); \ 676 } \ 677 } while (0) 678 679 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 680 const char *function, int line) 681 { 682 struct super_block *sb = e4b->bd_sb; 683 int order = e4b->bd_blkbits + 1; 684 int max; 685 int max2; 686 int i; 687 int j; 688 int k; 689 int count; 690 struct ext4_group_info *grp; 691 int fragments = 0; 692 int fstart; 693 struct list_head *cur; 694 void *buddy; 695 void *buddy2; 696 697 if (e4b->bd_info->bb_check_counter++ % 10) 698 return 0; 699 700 while (order > 1) { 701 buddy = mb_find_buddy(e4b, order, &max); 702 MB_CHECK_ASSERT(buddy); 703 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 704 MB_CHECK_ASSERT(buddy2); 705 MB_CHECK_ASSERT(buddy != buddy2); 706 MB_CHECK_ASSERT(max * 2 == max2); 707 708 count = 0; 709 for (i = 0; i < max; i++) { 710 711 if (mb_test_bit(i, buddy)) { 712 /* only single bit in buddy2 may be 0 */ 713 if (!mb_test_bit(i << 1, buddy2)) { 714 MB_CHECK_ASSERT( 715 mb_test_bit((i<<1)+1, buddy2)); 716 } 717 continue; 718 } 719 720 /* both bits in buddy2 must be 1 */ 721 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 722 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 723 724 for (j = 0; j < (1 << order); j++) { 725 k = (i * (1 << order)) + j; 726 MB_CHECK_ASSERT( 727 !mb_test_bit(k, e4b->bd_bitmap)); 728 } 729 count++; 730 } 731 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 732 order--; 733 } 734 735 fstart = -1; 736 buddy = mb_find_buddy(e4b, 0, &max); 737 for (i = 0; i < max; i++) { 738 if (!mb_test_bit(i, buddy)) { 739 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 740 if (fstart == -1) { 741 fragments++; 742 fstart = i; 743 } 744 continue; 745 } 746 fstart = -1; 747 /* check used bits only */ 748 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 749 buddy2 = mb_find_buddy(e4b, j, &max2); 750 k = i >> j; 751 MB_CHECK_ASSERT(k < max2); 752 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 753 } 754 } 755 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 756 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 757 758 grp = ext4_get_group_info(sb, e4b->bd_group); 759 if (!grp) 760 return NULL; 761 list_for_each(cur, &grp->bb_prealloc_list) { 762 ext4_group_t groupnr; 763 struct ext4_prealloc_space *pa; 764 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 765 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 766 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 767 for (i = 0; i < pa->pa_len; i++) 768 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 769 } 770 return 0; 771 } 772 #undef MB_CHECK_ASSERT 773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 774 __FILE__, __func__, __LINE__) 775 #else 776 #define mb_check_buddy(e4b) 777 #endif 778 779 /* 780 * Divide blocks started from @first with length @len into 781 * smaller chunks with power of 2 blocks. 782 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 783 * then increase bb_counters[] for corresponded chunk size. 784 */ 785 static void ext4_mb_mark_free_simple(struct super_block *sb, 786 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 787 struct ext4_group_info *grp) 788 { 789 struct ext4_sb_info *sbi = EXT4_SB(sb); 790 ext4_grpblk_t min; 791 ext4_grpblk_t max; 792 ext4_grpblk_t chunk; 793 unsigned int border; 794 795 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 796 797 border = 2 << sb->s_blocksize_bits; 798 799 while (len > 0) { 800 /* find how many blocks can be covered since this position */ 801 max = ffs(first | border) - 1; 802 803 /* find how many blocks of power 2 we need to mark */ 804 min = fls(len) - 1; 805 806 if (max < min) 807 min = max; 808 chunk = 1 << min; 809 810 /* mark multiblock chunks only */ 811 grp->bb_counters[min]++; 812 if (min > 0) 813 mb_clear_bit(first >> min, 814 buddy + sbi->s_mb_offsets[min]); 815 816 len -= chunk; 817 first += chunk; 818 } 819 } 820 821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len) 822 { 823 int order; 824 825 /* 826 * We don't bother with a special lists groups with only 1 block free 827 * extents and for completely empty groups. 828 */ 829 order = fls(len) - 2; 830 if (order < 0) 831 return 0; 832 if (order == MB_NUM_ORDERS(sb)) 833 order--; 834 return order; 835 } 836 837 /* Move group to appropriate avg_fragment_size list */ 838 static void 839 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) 840 { 841 struct ext4_sb_info *sbi = EXT4_SB(sb); 842 int new_order; 843 844 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0) 845 return; 846 847 new_order = mb_avg_fragment_size_order(sb, 848 grp->bb_free / grp->bb_fragments); 849 if (new_order == grp->bb_avg_fragment_size_order) 850 return; 851 852 if (grp->bb_avg_fragment_size_order != -1) { 853 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 854 grp->bb_avg_fragment_size_order]); 855 list_del(&grp->bb_avg_fragment_size_node); 856 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 857 grp->bb_avg_fragment_size_order]); 858 } 859 grp->bb_avg_fragment_size_order = new_order; 860 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 861 grp->bb_avg_fragment_size_order]); 862 list_add_tail(&grp->bb_avg_fragment_size_node, 863 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]); 864 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 865 grp->bb_avg_fragment_size_order]); 866 } 867 868 /* 869 * Choose next group by traversing largest_free_order lists. Updates *new_cr if 870 * cr level needs an update. 871 */ 872 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac, 873 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 874 { 875 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 876 struct ext4_group_info *iter; 877 int i; 878 879 if (ac->ac_status == AC_STATUS_FOUND) 880 return; 881 882 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED)) 883 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions); 884 885 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 886 if (list_empty(&sbi->s_mb_largest_free_orders[i])) 887 continue; 888 read_lock(&sbi->s_mb_largest_free_orders_locks[i]); 889 if (list_empty(&sbi->s_mb_largest_free_orders[i])) { 890 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 891 continue; 892 } 893 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], 894 bb_largest_free_order_node) { 895 if (sbi->s_mb_stats) 896 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]); 897 if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) { 898 *group = iter->bb_group; 899 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED; 900 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 901 return; 902 } 903 } 904 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 905 } 906 907 /* Increment cr and search again if no group is found */ 908 *new_cr = CR_GOAL_LEN_FAST; 909 } 910 911 /* 912 * Find a suitable group of given order from the average fragments list. 913 */ 914 static struct ext4_group_info * 915 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order) 916 { 917 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 918 struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order]; 919 rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order]; 920 struct ext4_group_info *grp = NULL, *iter; 921 enum criteria cr = ac->ac_criteria; 922 923 if (list_empty(frag_list)) 924 return NULL; 925 read_lock(frag_list_lock); 926 if (list_empty(frag_list)) { 927 read_unlock(frag_list_lock); 928 return NULL; 929 } 930 list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) { 931 if (sbi->s_mb_stats) 932 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]); 933 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) { 934 grp = iter; 935 break; 936 } 937 } 938 read_unlock(frag_list_lock); 939 return grp; 940 } 941 942 /* 943 * Choose next group by traversing average fragment size list of suitable 944 * order. Updates *new_cr if cr level needs an update. 945 */ 946 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac, 947 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 948 { 949 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 950 struct ext4_group_info *grp = NULL; 951 int i; 952 953 if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) { 954 if (sbi->s_mb_stats) 955 atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions); 956 } 957 958 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len); 959 i < MB_NUM_ORDERS(ac->ac_sb); i++) { 960 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i); 961 if (grp) { 962 *group = grp->bb_group; 963 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED; 964 return; 965 } 966 } 967 968 /* 969 * CR_BEST_AVAIL_LEN works based on the concept that we have 970 * a larger normalized goal len request which can be trimmed to 971 * a smaller goal len such that it can still satisfy original 972 * request len. However, allocation request for non-regular 973 * files never gets normalized. 974 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA). 975 */ 976 if (ac->ac_flags & EXT4_MB_HINT_DATA) 977 *new_cr = CR_BEST_AVAIL_LEN; 978 else 979 *new_cr = CR_GOAL_LEN_SLOW; 980 } 981 982 /* 983 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment 984 * order we have and proactively trim the goal request length to that order to 985 * find a suitable group faster. 986 * 987 * This optimizes allocation speed at the cost of slightly reduced 988 * preallocations. However, we make sure that we don't trim the request too 989 * much and fall to CR_GOAL_LEN_SLOW in that case. 990 */ 991 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac, 992 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 993 { 994 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 995 struct ext4_group_info *grp = NULL; 996 int i, order, min_order; 997 unsigned long num_stripe_clusters = 0; 998 999 if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) { 1000 if (sbi->s_mb_stats) 1001 atomic_inc(&sbi->s_bal_best_avail_bad_suggestions); 1002 } 1003 1004 /* 1005 * mb_avg_fragment_size_order() returns order in a way that makes 1006 * retrieving back the length using (1 << order) inaccurate. Hence, use 1007 * fls() instead since we need to know the actual length while modifying 1008 * goal length. 1009 */ 1010 order = fls(ac->ac_g_ex.fe_len) - 1; 1011 min_order = order - sbi->s_mb_best_avail_max_trim_order; 1012 if (min_order < 0) 1013 min_order = 0; 1014 1015 if (sbi->s_stripe > 0) { 1016 /* 1017 * We are assuming that stripe size is always a multiple of 1018 * cluster ratio otherwise __ext4_fill_super exists early. 1019 */ 1020 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe); 1021 if (1 << min_order < num_stripe_clusters) 1022 /* 1023 * We consider 1 order less because later we round 1024 * up the goal len to num_stripe_clusters 1025 */ 1026 min_order = fls(num_stripe_clusters) - 1; 1027 } 1028 1029 if (1 << min_order < ac->ac_o_ex.fe_len) 1030 min_order = fls(ac->ac_o_ex.fe_len); 1031 1032 for (i = order; i >= min_order; i--) { 1033 int frag_order; 1034 /* 1035 * Scale down goal len to make sure we find something 1036 * in the free fragments list. Basically, reduce 1037 * preallocations. 1038 */ 1039 ac->ac_g_ex.fe_len = 1 << i; 1040 1041 if (num_stripe_clusters > 0) { 1042 /* 1043 * Try to round up the adjusted goal length to 1044 * stripe size (in cluster units) multiple for 1045 * efficiency. 1046 */ 1047 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len, 1048 num_stripe_clusters); 1049 } 1050 1051 frag_order = mb_avg_fragment_size_order(ac->ac_sb, 1052 ac->ac_g_ex.fe_len); 1053 1054 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order); 1055 if (grp) { 1056 *group = grp->bb_group; 1057 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED; 1058 return; 1059 } 1060 } 1061 1062 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */ 1063 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 1064 *new_cr = CR_GOAL_LEN_SLOW; 1065 } 1066 1067 static inline int should_optimize_scan(struct ext4_allocation_context *ac) 1068 { 1069 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) 1070 return 0; 1071 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW) 1072 return 0; 1073 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) 1074 return 0; 1075 return 1; 1076 } 1077 1078 /* 1079 * Return next linear group for allocation. If linear traversal should not be 1080 * performed, this function just returns the same group 1081 */ 1082 static ext4_group_t 1083 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group, 1084 ext4_group_t ngroups) 1085 { 1086 if (!should_optimize_scan(ac)) 1087 goto inc_and_return; 1088 1089 if (ac->ac_groups_linear_remaining) { 1090 ac->ac_groups_linear_remaining--; 1091 goto inc_and_return; 1092 } 1093 1094 return group; 1095 inc_and_return: 1096 /* 1097 * Artificially restricted ngroups for non-extent 1098 * files makes group > ngroups possible on first loop. 1099 */ 1100 return group + 1 >= ngroups ? 0 : group + 1; 1101 } 1102 1103 /* 1104 * ext4_mb_choose_next_group: choose next group for allocation. 1105 * 1106 * @ac Allocation Context 1107 * @new_cr This is an output parameter. If the there is no good group 1108 * available at current CR level, this field is updated to indicate 1109 * the new cr level that should be used. 1110 * @group This is an input / output parameter. As an input it indicates the 1111 * next group that the allocator intends to use for allocation. As 1112 * output, this field indicates the next group that should be used as 1113 * determined by the optimization functions. 1114 * @ngroups Total number of groups 1115 */ 1116 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, 1117 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 1118 { 1119 *new_cr = ac->ac_criteria; 1120 1121 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) { 1122 *group = next_linear_group(ac, *group, ngroups); 1123 return; 1124 } 1125 1126 if (*new_cr == CR_POWER2_ALIGNED) { 1127 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups); 1128 } else if (*new_cr == CR_GOAL_LEN_FAST) { 1129 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups); 1130 } else if (*new_cr == CR_BEST_AVAIL_LEN) { 1131 ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups); 1132 } else { 1133 /* 1134 * TODO: For CR=2, we can arrange groups in an rb tree sorted by 1135 * bb_free. But until that happens, we should never come here. 1136 */ 1137 WARN_ON(1); 1138 } 1139 } 1140 1141 /* 1142 * Cache the order of the largest free extent we have available in this block 1143 * group. 1144 */ 1145 static void 1146 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 1147 { 1148 struct ext4_sb_info *sbi = EXT4_SB(sb); 1149 int i; 1150 1151 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) 1152 if (grp->bb_counters[i] > 0) 1153 break; 1154 /* No need to move between order lists? */ 1155 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || 1156 i == grp->bb_largest_free_order) { 1157 grp->bb_largest_free_order = i; 1158 return; 1159 } 1160 1161 if (grp->bb_largest_free_order >= 0) { 1162 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1163 grp->bb_largest_free_order]); 1164 list_del_init(&grp->bb_largest_free_order_node); 1165 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1166 grp->bb_largest_free_order]); 1167 } 1168 grp->bb_largest_free_order = i; 1169 if (grp->bb_largest_free_order >= 0 && grp->bb_free) { 1170 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1171 grp->bb_largest_free_order]); 1172 list_add_tail(&grp->bb_largest_free_order_node, 1173 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); 1174 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1175 grp->bb_largest_free_order]); 1176 } 1177 } 1178 1179 static noinline_for_stack 1180 void ext4_mb_generate_buddy(struct super_block *sb, 1181 void *buddy, void *bitmap, ext4_group_t group, 1182 struct ext4_group_info *grp) 1183 { 1184 struct ext4_sb_info *sbi = EXT4_SB(sb); 1185 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 1186 ext4_grpblk_t i = 0; 1187 ext4_grpblk_t first; 1188 ext4_grpblk_t len; 1189 unsigned free = 0; 1190 unsigned fragments = 0; 1191 unsigned long long period = get_cycles(); 1192 1193 /* initialize buddy from bitmap which is aggregation 1194 * of on-disk bitmap and preallocations */ 1195 i = mb_find_next_zero_bit(bitmap, max, 0); 1196 grp->bb_first_free = i; 1197 while (i < max) { 1198 fragments++; 1199 first = i; 1200 i = mb_find_next_bit(bitmap, max, i); 1201 len = i - first; 1202 free += len; 1203 if (len > 1) 1204 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 1205 else 1206 grp->bb_counters[0]++; 1207 if (i < max) 1208 i = mb_find_next_zero_bit(bitmap, max, i); 1209 } 1210 grp->bb_fragments = fragments; 1211 1212 if (free != grp->bb_free) { 1213 ext4_grp_locked_error(sb, group, 0, 0, 1214 "block bitmap and bg descriptor " 1215 "inconsistent: %u vs %u free clusters", 1216 free, grp->bb_free); 1217 /* 1218 * If we intend to continue, we consider group descriptor 1219 * corrupt and update bb_free using bitmap value 1220 */ 1221 grp->bb_free = free; 1222 ext4_mark_group_bitmap_corrupted(sb, group, 1223 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1224 } 1225 mb_set_largest_free_order(sb, grp); 1226 mb_update_avg_fragment_size(sb, grp); 1227 1228 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 1229 1230 period = get_cycles() - period; 1231 atomic_inc(&sbi->s_mb_buddies_generated); 1232 atomic64_add(period, &sbi->s_mb_generation_time); 1233 } 1234 1235 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 1236 { 1237 int count; 1238 int order = 1; 1239 void *buddy; 1240 1241 while ((buddy = mb_find_buddy(e4b, order++, &count))) 1242 mb_set_bits(buddy, 0, count); 1243 1244 e4b->bd_info->bb_fragments = 0; 1245 memset(e4b->bd_info->bb_counters, 0, 1246 sizeof(*e4b->bd_info->bb_counters) * 1247 (e4b->bd_sb->s_blocksize_bits + 2)); 1248 1249 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 1250 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info); 1251 } 1252 1253 /* The buddy information is attached the buddy cache inode 1254 * for convenience. The information regarding each group 1255 * is loaded via ext4_mb_load_buddy. The information involve 1256 * block bitmap and buddy information. The information are 1257 * stored in the inode as 1258 * 1259 * { page } 1260 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 1261 * 1262 * 1263 * one block each for bitmap and buddy information. 1264 * So for each group we take up 2 blocks. A page can 1265 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 1266 * So it can have information regarding groups_per_page which 1267 * is blocks_per_page/2 1268 * 1269 * Locking note: This routine takes the block group lock of all groups 1270 * for this page; do not hold this lock when calling this routine! 1271 */ 1272 1273 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 1274 { 1275 ext4_group_t ngroups; 1276 unsigned int blocksize; 1277 int blocks_per_page; 1278 int groups_per_page; 1279 int err = 0; 1280 int i; 1281 ext4_group_t first_group, group; 1282 int first_block; 1283 struct super_block *sb; 1284 struct buffer_head *bhs; 1285 struct buffer_head **bh = NULL; 1286 struct inode *inode; 1287 char *data; 1288 char *bitmap; 1289 struct ext4_group_info *grinfo; 1290 1291 inode = page->mapping->host; 1292 sb = inode->i_sb; 1293 ngroups = ext4_get_groups_count(sb); 1294 blocksize = i_blocksize(inode); 1295 blocks_per_page = PAGE_SIZE / blocksize; 1296 1297 mb_debug(sb, "init page %lu\n", page->index); 1298 1299 groups_per_page = blocks_per_page >> 1; 1300 if (groups_per_page == 0) 1301 groups_per_page = 1; 1302 1303 /* allocate buffer_heads to read bitmaps */ 1304 if (groups_per_page > 1) { 1305 i = sizeof(struct buffer_head *) * groups_per_page; 1306 bh = kzalloc(i, gfp); 1307 if (bh == NULL) 1308 return -ENOMEM; 1309 } else 1310 bh = &bhs; 1311 1312 first_group = page->index * blocks_per_page / 2; 1313 1314 /* read all groups the page covers into the cache */ 1315 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1316 if (group >= ngroups) 1317 break; 1318 1319 grinfo = ext4_get_group_info(sb, group); 1320 if (!grinfo) 1321 continue; 1322 /* 1323 * If page is uptodate then we came here after online resize 1324 * which added some new uninitialized group info structs, so 1325 * we must skip all initialized uptodate buddies on the page, 1326 * which may be currently in use by an allocating task. 1327 */ 1328 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 1329 bh[i] = NULL; 1330 continue; 1331 } 1332 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 1333 if (IS_ERR(bh[i])) { 1334 err = PTR_ERR(bh[i]); 1335 bh[i] = NULL; 1336 goto out; 1337 } 1338 mb_debug(sb, "read bitmap for group %u\n", group); 1339 } 1340 1341 /* wait for I/O completion */ 1342 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1343 int err2; 1344 1345 if (!bh[i]) 1346 continue; 1347 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 1348 if (!err) 1349 err = err2; 1350 } 1351 1352 first_block = page->index * blocks_per_page; 1353 for (i = 0; i < blocks_per_page; i++) { 1354 group = (first_block + i) >> 1; 1355 if (group >= ngroups) 1356 break; 1357 1358 if (!bh[group - first_group]) 1359 /* skip initialized uptodate buddy */ 1360 continue; 1361 1362 if (!buffer_verified(bh[group - first_group])) 1363 /* Skip faulty bitmaps */ 1364 continue; 1365 err = 0; 1366 1367 /* 1368 * data carry information regarding this 1369 * particular group in the format specified 1370 * above 1371 * 1372 */ 1373 data = page_address(page) + (i * blocksize); 1374 bitmap = bh[group - first_group]->b_data; 1375 1376 /* 1377 * We place the buddy block and bitmap block 1378 * close together 1379 */ 1380 grinfo = ext4_get_group_info(sb, group); 1381 if (!grinfo) { 1382 err = -EFSCORRUPTED; 1383 goto out; 1384 } 1385 if ((first_block + i) & 1) { 1386 /* this is block of buddy */ 1387 BUG_ON(incore == NULL); 1388 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 1389 group, page->index, i * blocksize); 1390 trace_ext4_mb_buddy_bitmap_load(sb, group); 1391 grinfo->bb_fragments = 0; 1392 memset(grinfo->bb_counters, 0, 1393 sizeof(*grinfo->bb_counters) * 1394 (MB_NUM_ORDERS(sb))); 1395 /* 1396 * incore got set to the group block bitmap below 1397 */ 1398 ext4_lock_group(sb, group); 1399 /* init the buddy */ 1400 memset(data, 0xff, blocksize); 1401 ext4_mb_generate_buddy(sb, data, incore, group, grinfo); 1402 ext4_unlock_group(sb, group); 1403 incore = NULL; 1404 } else { 1405 /* this is block of bitmap */ 1406 BUG_ON(incore != NULL); 1407 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 1408 group, page->index, i * blocksize); 1409 trace_ext4_mb_bitmap_load(sb, group); 1410 1411 /* see comments in ext4_mb_put_pa() */ 1412 ext4_lock_group(sb, group); 1413 memcpy(data, bitmap, blocksize); 1414 1415 /* mark all preallocated blks used in in-core bitmap */ 1416 ext4_mb_generate_from_pa(sb, data, group); 1417 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root)); 1418 ext4_unlock_group(sb, group); 1419 1420 /* set incore so that the buddy information can be 1421 * generated using this 1422 */ 1423 incore = data; 1424 } 1425 } 1426 SetPageUptodate(page); 1427 1428 out: 1429 if (bh) { 1430 for (i = 0; i < groups_per_page; i++) 1431 brelse(bh[i]); 1432 if (bh != &bhs) 1433 kfree(bh); 1434 } 1435 return err; 1436 } 1437 1438 /* 1439 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1440 * on the same buddy page doesn't happen whild holding the buddy page lock. 1441 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1442 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1443 */ 1444 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1445 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1446 { 1447 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1448 int block, pnum, poff; 1449 int blocks_per_page; 1450 struct page *page; 1451 1452 e4b->bd_buddy_page = NULL; 1453 e4b->bd_bitmap_page = NULL; 1454 1455 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1456 /* 1457 * the buddy cache inode stores the block bitmap 1458 * and buddy information in consecutive blocks. 1459 * So for each group we need two blocks. 1460 */ 1461 block = group * 2; 1462 pnum = block / blocks_per_page; 1463 poff = block % blocks_per_page; 1464 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1465 if (!page) 1466 return -ENOMEM; 1467 BUG_ON(page->mapping != inode->i_mapping); 1468 e4b->bd_bitmap_page = page; 1469 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1470 1471 if (blocks_per_page >= 2) { 1472 /* buddy and bitmap are on the same page */ 1473 return 0; 1474 } 1475 1476 block++; 1477 pnum = block / blocks_per_page; 1478 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1479 if (!page) 1480 return -ENOMEM; 1481 BUG_ON(page->mapping != inode->i_mapping); 1482 e4b->bd_buddy_page = page; 1483 return 0; 1484 } 1485 1486 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1487 { 1488 if (e4b->bd_bitmap_page) { 1489 unlock_page(e4b->bd_bitmap_page); 1490 put_page(e4b->bd_bitmap_page); 1491 } 1492 if (e4b->bd_buddy_page) { 1493 unlock_page(e4b->bd_buddy_page); 1494 put_page(e4b->bd_buddy_page); 1495 } 1496 } 1497 1498 /* 1499 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1500 * block group lock of all groups for this page; do not hold the BG lock when 1501 * calling this routine! 1502 */ 1503 static noinline_for_stack 1504 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1505 { 1506 1507 struct ext4_group_info *this_grp; 1508 struct ext4_buddy e4b; 1509 struct page *page; 1510 int ret = 0; 1511 1512 might_sleep(); 1513 mb_debug(sb, "init group %u\n", group); 1514 this_grp = ext4_get_group_info(sb, group); 1515 if (!this_grp) 1516 return -EFSCORRUPTED; 1517 1518 /* 1519 * This ensures that we don't reinit the buddy cache 1520 * page which map to the group from which we are already 1521 * allocating. If we are looking at the buddy cache we would 1522 * have taken a reference using ext4_mb_load_buddy and that 1523 * would have pinned buddy page to page cache. 1524 * The call to ext4_mb_get_buddy_page_lock will mark the 1525 * page accessed. 1526 */ 1527 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1528 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1529 /* 1530 * somebody initialized the group 1531 * return without doing anything 1532 */ 1533 goto err; 1534 } 1535 1536 page = e4b.bd_bitmap_page; 1537 ret = ext4_mb_init_cache(page, NULL, gfp); 1538 if (ret) 1539 goto err; 1540 if (!PageUptodate(page)) { 1541 ret = -EIO; 1542 goto err; 1543 } 1544 1545 if (e4b.bd_buddy_page == NULL) { 1546 /* 1547 * If both the bitmap and buddy are in 1548 * the same page we don't need to force 1549 * init the buddy 1550 */ 1551 ret = 0; 1552 goto err; 1553 } 1554 /* init buddy cache */ 1555 page = e4b.bd_buddy_page; 1556 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1557 if (ret) 1558 goto err; 1559 if (!PageUptodate(page)) { 1560 ret = -EIO; 1561 goto err; 1562 } 1563 err: 1564 ext4_mb_put_buddy_page_lock(&e4b); 1565 return ret; 1566 } 1567 1568 /* 1569 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1570 * block group lock of all groups for this page; do not hold the BG lock when 1571 * calling this routine! 1572 */ 1573 static noinline_for_stack int 1574 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1575 struct ext4_buddy *e4b, gfp_t gfp) 1576 { 1577 int blocks_per_page; 1578 int block; 1579 int pnum; 1580 int poff; 1581 struct page *page; 1582 int ret; 1583 struct ext4_group_info *grp; 1584 struct ext4_sb_info *sbi = EXT4_SB(sb); 1585 struct inode *inode = sbi->s_buddy_cache; 1586 1587 might_sleep(); 1588 mb_debug(sb, "load group %u\n", group); 1589 1590 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1591 grp = ext4_get_group_info(sb, group); 1592 if (!grp) 1593 return -EFSCORRUPTED; 1594 1595 e4b->bd_blkbits = sb->s_blocksize_bits; 1596 e4b->bd_info = grp; 1597 e4b->bd_sb = sb; 1598 e4b->bd_group = group; 1599 e4b->bd_buddy_page = NULL; 1600 e4b->bd_bitmap_page = NULL; 1601 1602 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1603 /* 1604 * we need full data about the group 1605 * to make a good selection 1606 */ 1607 ret = ext4_mb_init_group(sb, group, gfp); 1608 if (ret) 1609 return ret; 1610 } 1611 1612 /* 1613 * the buddy cache inode stores the block bitmap 1614 * and buddy information in consecutive blocks. 1615 * So for each group we need two blocks. 1616 */ 1617 block = group * 2; 1618 pnum = block / blocks_per_page; 1619 poff = block % blocks_per_page; 1620 1621 /* we could use find_or_create_page(), but it locks page 1622 * what we'd like to avoid in fast path ... */ 1623 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1624 if (page == NULL || !PageUptodate(page)) { 1625 if (page) 1626 /* 1627 * drop the page reference and try 1628 * to get the page with lock. If we 1629 * are not uptodate that implies 1630 * somebody just created the page but 1631 * is yet to initialize the same. So 1632 * wait for it to initialize. 1633 */ 1634 put_page(page); 1635 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1636 if (page) { 1637 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1638 "ext4: bitmap's paging->mapping != inode->i_mapping\n")) { 1639 /* should never happen */ 1640 unlock_page(page); 1641 ret = -EINVAL; 1642 goto err; 1643 } 1644 if (!PageUptodate(page)) { 1645 ret = ext4_mb_init_cache(page, NULL, gfp); 1646 if (ret) { 1647 unlock_page(page); 1648 goto err; 1649 } 1650 mb_cmp_bitmaps(e4b, page_address(page) + 1651 (poff * sb->s_blocksize)); 1652 } 1653 unlock_page(page); 1654 } 1655 } 1656 if (page == NULL) { 1657 ret = -ENOMEM; 1658 goto err; 1659 } 1660 if (!PageUptodate(page)) { 1661 ret = -EIO; 1662 goto err; 1663 } 1664 1665 /* Pages marked accessed already */ 1666 e4b->bd_bitmap_page = page; 1667 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1668 1669 block++; 1670 pnum = block / blocks_per_page; 1671 poff = block % blocks_per_page; 1672 1673 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1674 if (page == NULL || !PageUptodate(page)) { 1675 if (page) 1676 put_page(page); 1677 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1678 if (page) { 1679 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1680 "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) { 1681 /* should never happen */ 1682 unlock_page(page); 1683 ret = -EINVAL; 1684 goto err; 1685 } 1686 if (!PageUptodate(page)) { 1687 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1688 gfp); 1689 if (ret) { 1690 unlock_page(page); 1691 goto err; 1692 } 1693 } 1694 unlock_page(page); 1695 } 1696 } 1697 if (page == NULL) { 1698 ret = -ENOMEM; 1699 goto err; 1700 } 1701 if (!PageUptodate(page)) { 1702 ret = -EIO; 1703 goto err; 1704 } 1705 1706 /* Pages marked accessed already */ 1707 e4b->bd_buddy_page = page; 1708 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1709 1710 return 0; 1711 1712 err: 1713 if (page) 1714 put_page(page); 1715 if (e4b->bd_bitmap_page) 1716 put_page(e4b->bd_bitmap_page); 1717 1718 e4b->bd_buddy = NULL; 1719 e4b->bd_bitmap = NULL; 1720 return ret; 1721 } 1722 1723 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1724 struct ext4_buddy *e4b) 1725 { 1726 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1727 } 1728 1729 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1730 { 1731 if (e4b->bd_bitmap_page) 1732 put_page(e4b->bd_bitmap_page); 1733 if (e4b->bd_buddy_page) 1734 put_page(e4b->bd_buddy_page); 1735 } 1736 1737 1738 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1739 { 1740 int order = 1, max; 1741 void *bb; 1742 1743 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1744 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1745 1746 while (order <= e4b->bd_blkbits + 1) { 1747 bb = mb_find_buddy(e4b, order, &max); 1748 if (!mb_test_bit(block >> order, bb)) { 1749 /* this block is part of buddy of order 'order' */ 1750 return order; 1751 } 1752 order++; 1753 } 1754 return 0; 1755 } 1756 1757 static void mb_clear_bits(void *bm, int cur, int len) 1758 { 1759 __u32 *addr; 1760 1761 len = cur + len; 1762 while (cur < len) { 1763 if ((cur & 31) == 0 && (len - cur) >= 32) { 1764 /* fast path: clear whole word at once */ 1765 addr = bm + (cur >> 3); 1766 *addr = 0; 1767 cur += 32; 1768 continue; 1769 } 1770 mb_clear_bit(cur, bm); 1771 cur++; 1772 } 1773 } 1774 1775 /* clear bits in given range 1776 * will return first found zero bit if any, -1 otherwise 1777 */ 1778 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1779 { 1780 __u32 *addr; 1781 int zero_bit = -1; 1782 1783 len = cur + len; 1784 while (cur < len) { 1785 if ((cur & 31) == 0 && (len - cur) >= 32) { 1786 /* fast path: clear whole word at once */ 1787 addr = bm + (cur >> 3); 1788 if (*addr != (__u32)(-1) && zero_bit == -1) 1789 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1790 *addr = 0; 1791 cur += 32; 1792 continue; 1793 } 1794 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1795 zero_bit = cur; 1796 cur++; 1797 } 1798 1799 return zero_bit; 1800 } 1801 1802 void mb_set_bits(void *bm, int cur, int len) 1803 { 1804 __u32 *addr; 1805 1806 len = cur + len; 1807 while (cur < len) { 1808 if ((cur & 31) == 0 && (len - cur) >= 32) { 1809 /* fast path: set whole word at once */ 1810 addr = bm + (cur >> 3); 1811 *addr = 0xffffffff; 1812 cur += 32; 1813 continue; 1814 } 1815 mb_set_bit(cur, bm); 1816 cur++; 1817 } 1818 } 1819 1820 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1821 { 1822 if (mb_test_bit(*bit + side, bitmap)) { 1823 mb_clear_bit(*bit, bitmap); 1824 (*bit) -= side; 1825 return 1; 1826 } 1827 else { 1828 (*bit) += side; 1829 mb_set_bit(*bit, bitmap); 1830 return -1; 1831 } 1832 } 1833 1834 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1835 { 1836 int max; 1837 int order = 1; 1838 void *buddy = mb_find_buddy(e4b, order, &max); 1839 1840 while (buddy) { 1841 void *buddy2; 1842 1843 /* Bits in range [first; last] are known to be set since 1844 * corresponding blocks were allocated. Bits in range 1845 * (first; last) will stay set because they form buddies on 1846 * upper layer. We just deal with borders if they don't 1847 * align with upper layer and then go up. 1848 * Releasing entire group is all about clearing 1849 * single bit of highest order buddy. 1850 */ 1851 1852 /* Example: 1853 * --------------------------------- 1854 * | 1 | 1 | 1 | 1 | 1855 * --------------------------------- 1856 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1857 * --------------------------------- 1858 * 0 1 2 3 4 5 6 7 1859 * \_____________________/ 1860 * 1861 * Neither [1] nor [6] is aligned to above layer. 1862 * Left neighbour [0] is free, so mark it busy, 1863 * decrease bb_counters and extend range to 1864 * [0; 6] 1865 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1866 * mark [6] free, increase bb_counters and shrink range to 1867 * [0; 5]. 1868 * Then shift range to [0; 2], go up and do the same. 1869 */ 1870 1871 1872 if (first & 1) 1873 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1874 if (!(last & 1)) 1875 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1876 if (first > last) 1877 break; 1878 order++; 1879 1880 buddy2 = mb_find_buddy(e4b, order, &max); 1881 if (!buddy2) { 1882 mb_clear_bits(buddy, first, last - first + 1); 1883 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1884 break; 1885 } 1886 first >>= 1; 1887 last >>= 1; 1888 buddy = buddy2; 1889 } 1890 } 1891 1892 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1893 int first, int count) 1894 { 1895 int left_is_free = 0; 1896 int right_is_free = 0; 1897 int block; 1898 int last = first + count - 1; 1899 struct super_block *sb = e4b->bd_sb; 1900 1901 if (WARN_ON(count == 0)) 1902 return; 1903 BUG_ON(last >= (sb->s_blocksize << 3)); 1904 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1905 /* Don't bother if the block group is corrupt. */ 1906 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1907 return; 1908 1909 mb_check_buddy(e4b); 1910 mb_free_blocks_double(inode, e4b, first, count); 1911 1912 /* access memory sequentially: check left neighbour, 1913 * clear range and then check right neighbour 1914 */ 1915 if (first != 0) 1916 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1917 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1918 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1919 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1920 1921 if (unlikely(block != -1)) { 1922 struct ext4_sb_info *sbi = EXT4_SB(sb); 1923 ext4_fsblk_t blocknr; 1924 1925 /* 1926 * Fastcommit replay can free already freed blocks which 1927 * corrupts allocation info. Regenerate it. 1928 */ 1929 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 1930 mb_regenerate_buddy(e4b); 1931 goto check; 1932 } 1933 1934 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1935 blocknr += EXT4_C2B(sbi, block); 1936 ext4_grp_locked_error(sb, e4b->bd_group, 1937 inode ? inode->i_ino : 0, blocknr, 1938 "freeing already freed block (bit %u); block bitmap corrupt.", 1939 block); 1940 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1941 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1942 return; 1943 } 1944 1945 this_cpu_inc(discard_pa_seq); 1946 e4b->bd_info->bb_free += count; 1947 if (first < e4b->bd_info->bb_first_free) 1948 e4b->bd_info->bb_first_free = first; 1949 1950 /* let's maintain fragments counter */ 1951 if (left_is_free && right_is_free) 1952 e4b->bd_info->bb_fragments--; 1953 else if (!left_is_free && !right_is_free) 1954 e4b->bd_info->bb_fragments++; 1955 1956 /* buddy[0] == bd_bitmap is a special case, so handle 1957 * it right away and let mb_buddy_mark_free stay free of 1958 * zero order checks. 1959 * Check if neighbours are to be coaleasced, 1960 * adjust bitmap bb_counters and borders appropriately. 1961 */ 1962 if (first & 1) { 1963 first += !left_is_free; 1964 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1965 } 1966 if (!(last & 1)) { 1967 last -= !right_is_free; 1968 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1969 } 1970 1971 if (first <= last) 1972 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1973 1974 mb_set_largest_free_order(sb, e4b->bd_info); 1975 mb_update_avg_fragment_size(sb, e4b->bd_info); 1976 check: 1977 mb_check_buddy(e4b); 1978 } 1979 1980 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1981 int needed, struct ext4_free_extent *ex) 1982 { 1983 int next = block; 1984 int max, order; 1985 void *buddy; 1986 1987 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1988 BUG_ON(ex == NULL); 1989 1990 buddy = mb_find_buddy(e4b, 0, &max); 1991 BUG_ON(buddy == NULL); 1992 BUG_ON(block >= max); 1993 if (mb_test_bit(block, buddy)) { 1994 ex->fe_len = 0; 1995 ex->fe_start = 0; 1996 ex->fe_group = 0; 1997 return 0; 1998 } 1999 2000 /* find actual order */ 2001 order = mb_find_order_for_block(e4b, block); 2002 block = block >> order; 2003 2004 ex->fe_len = 1 << order; 2005 ex->fe_start = block << order; 2006 ex->fe_group = e4b->bd_group; 2007 2008 /* calc difference from given start */ 2009 next = next - ex->fe_start; 2010 ex->fe_len -= next; 2011 ex->fe_start += next; 2012 2013 while (needed > ex->fe_len && 2014 mb_find_buddy(e4b, order, &max)) { 2015 2016 if (block + 1 >= max) 2017 break; 2018 2019 next = (block + 1) * (1 << order); 2020 if (mb_test_bit(next, e4b->bd_bitmap)) 2021 break; 2022 2023 order = mb_find_order_for_block(e4b, next); 2024 2025 block = next >> order; 2026 ex->fe_len += 1 << order; 2027 } 2028 2029 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 2030 /* Should never happen! (but apparently sometimes does?!?) */ 2031 WARN_ON(1); 2032 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, 2033 "corruption or bug in mb_find_extent " 2034 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 2035 block, order, needed, ex->fe_group, ex->fe_start, 2036 ex->fe_len, ex->fe_logical); 2037 ex->fe_len = 0; 2038 ex->fe_start = 0; 2039 ex->fe_group = 0; 2040 } 2041 return ex->fe_len; 2042 } 2043 2044 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 2045 { 2046 int ord; 2047 int mlen = 0; 2048 int max = 0; 2049 int cur; 2050 int start = ex->fe_start; 2051 int len = ex->fe_len; 2052 unsigned ret = 0; 2053 int len0 = len; 2054 void *buddy; 2055 bool split = false; 2056 2057 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 2058 BUG_ON(e4b->bd_group != ex->fe_group); 2059 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 2060 mb_check_buddy(e4b); 2061 mb_mark_used_double(e4b, start, len); 2062 2063 this_cpu_inc(discard_pa_seq); 2064 e4b->bd_info->bb_free -= len; 2065 if (e4b->bd_info->bb_first_free == start) 2066 e4b->bd_info->bb_first_free += len; 2067 2068 /* let's maintain fragments counter */ 2069 if (start != 0) 2070 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 2071 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 2072 max = !mb_test_bit(start + len, e4b->bd_bitmap); 2073 if (mlen && max) 2074 e4b->bd_info->bb_fragments++; 2075 else if (!mlen && !max) 2076 e4b->bd_info->bb_fragments--; 2077 2078 /* let's maintain buddy itself */ 2079 while (len) { 2080 if (!split) 2081 ord = mb_find_order_for_block(e4b, start); 2082 2083 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 2084 /* the whole chunk may be allocated at once! */ 2085 mlen = 1 << ord; 2086 if (!split) 2087 buddy = mb_find_buddy(e4b, ord, &max); 2088 else 2089 split = false; 2090 BUG_ON((start >> ord) >= max); 2091 mb_set_bit(start >> ord, buddy); 2092 e4b->bd_info->bb_counters[ord]--; 2093 start += mlen; 2094 len -= mlen; 2095 BUG_ON(len < 0); 2096 continue; 2097 } 2098 2099 /* store for history */ 2100 if (ret == 0) 2101 ret = len | (ord << 16); 2102 2103 /* we have to split large buddy */ 2104 BUG_ON(ord <= 0); 2105 buddy = mb_find_buddy(e4b, ord, &max); 2106 mb_set_bit(start >> ord, buddy); 2107 e4b->bd_info->bb_counters[ord]--; 2108 2109 ord--; 2110 cur = (start >> ord) & ~1U; 2111 buddy = mb_find_buddy(e4b, ord, &max); 2112 mb_clear_bit(cur, buddy); 2113 mb_clear_bit(cur + 1, buddy); 2114 e4b->bd_info->bb_counters[ord]++; 2115 e4b->bd_info->bb_counters[ord]++; 2116 split = true; 2117 } 2118 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 2119 2120 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); 2121 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 2122 mb_check_buddy(e4b); 2123 2124 return ret; 2125 } 2126 2127 /* 2128 * Must be called under group lock! 2129 */ 2130 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 2131 struct ext4_buddy *e4b) 2132 { 2133 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2134 int ret; 2135 2136 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 2137 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2138 2139 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 2140 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 2141 ret = mb_mark_used(e4b, &ac->ac_b_ex); 2142 2143 /* preallocation can change ac_b_ex, thus we store actually 2144 * allocated blocks for history */ 2145 ac->ac_f_ex = ac->ac_b_ex; 2146 2147 ac->ac_status = AC_STATUS_FOUND; 2148 ac->ac_tail = ret & 0xffff; 2149 ac->ac_buddy = ret >> 16; 2150 2151 /* 2152 * take the page reference. We want the page to be pinned 2153 * so that we don't get a ext4_mb_init_cache_call for this 2154 * group until we update the bitmap. That would mean we 2155 * double allocate blocks. The reference is dropped 2156 * in ext4_mb_release_context 2157 */ 2158 ac->ac_bitmap_page = e4b->bd_bitmap_page; 2159 get_page(ac->ac_bitmap_page); 2160 ac->ac_buddy_page = e4b->bd_buddy_page; 2161 get_page(ac->ac_buddy_page); 2162 /* store last allocated for subsequent stream allocation */ 2163 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2164 spin_lock(&sbi->s_md_lock); 2165 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 2166 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 2167 spin_unlock(&sbi->s_md_lock); 2168 } 2169 /* 2170 * As we've just preallocated more space than 2171 * user requested originally, we store allocated 2172 * space in a special descriptor. 2173 */ 2174 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 2175 ext4_mb_new_preallocation(ac); 2176 2177 } 2178 2179 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 2180 struct ext4_buddy *e4b, 2181 int finish_group) 2182 { 2183 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2184 struct ext4_free_extent *bex = &ac->ac_b_ex; 2185 struct ext4_free_extent *gex = &ac->ac_g_ex; 2186 2187 if (ac->ac_status == AC_STATUS_FOUND) 2188 return; 2189 /* 2190 * We don't want to scan for a whole year 2191 */ 2192 if (ac->ac_found > sbi->s_mb_max_to_scan && 2193 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2194 ac->ac_status = AC_STATUS_BREAK; 2195 return; 2196 } 2197 2198 /* 2199 * Haven't found good chunk so far, let's continue 2200 */ 2201 if (bex->fe_len < gex->fe_len) 2202 return; 2203 2204 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 2205 ext4_mb_use_best_found(ac, e4b); 2206 } 2207 2208 /* 2209 * The routine checks whether found extent is good enough. If it is, 2210 * then the extent gets marked used and flag is set to the context 2211 * to stop scanning. Otherwise, the extent is compared with the 2212 * previous found extent and if new one is better, then it's stored 2213 * in the context. Later, the best found extent will be used, if 2214 * mballoc can't find good enough extent. 2215 * 2216 * The algorithm used is roughly as follows: 2217 * 2218 * * If free extent found is exactly as big as goal, then 2219 * stop the scan and use it immediately 2220 * 2221 * * If free extent found is smaller than goal, then keep retrying 2222 * upto a max of sbi->s_mb_max_to_scan times (default 200). After 2223 * that stop scanning and use whatever we have. 2224 * 2225 * * If free extent found is bigger than goal, then keep retrying 2226 * upto a max of sbi->s_mb_min_to_scan times (default 10) before 2227 * stopping the scan and using the extent. 2228 * 2229 * 2230 * FIXME: real allocation policy is to be designed yet! 2231 */ 2232 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 2233 struct ext4_free_extent *ex, 2234 struct ext4_buddy *e4b) 2235 { 2236 struct ext4_free_extent *bex = &ac->ac_b_ex; 2237 struct ext4_free_extent *gex = &ac->ac_g_ex; 2238 2239 BUG_ON(ex->fe_len <= 0); 2240 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2241 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2242 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 2243 2244 ac->ac_found++; 2245 ac->ac_cX_found[ac->ac_criteria]++; 2246 2247 /* 2248 * The special case - take what you catch first 2249 */ 2250 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2251 *bex = *ex; 2252 ext4_mb_use_best_found(ac, e4b); 2253 return; 2254 } 2255 2256 /* 2257 * Let's check whether the chuck is good enough 2258 */ 2259 if (ex->fe_len == gex->fe_len) { 2260 *bex = *ex; 2261 ext4_mb_use_best_found(ac, e4b); 2262 return; 2263 } 2264 2265 /* 2266 * If this is first found extent, just store it in the context 2267 */ 2268 if (bex->fe_len == 0) { 2269 *bex = *ex; 2270 return; 2271 } 2272 2273 /* 2274 * If new found extent is better, store it in the context 2275 */ 2276 if (bex->fe_len < gex->fe_len) { 2277 /* if the request isn't satisfied, any found extent 2278 * larger than previous best one is better */ 2279 if (ex->fe_len > bex->fe_len) 2280 *bex = *ex; 2281 } else if (ex->fe_len > gex->fe_len) { 2282 /* if the request is satisfied, then we try to find 2283 * an extent that still satisfy the request, but is 2284 * smaller than previous one */ 2285 if (ex->fe_len < bex->fe_len) 2286 *bex = *ex; 2287 } 2288 2289 ext4_mb_check_limits(ac, e4b, 0); 2290 } 2291 2292 static noinline_for_stack 2293 void ext4_mb_try_best_found(struct ext4_allocation_context *ac, 2294 struct ext4_buddy *e4b) 2295 { 2296 struct ext4_free_extent ex = ac->ac_b_ex; 2297 ext4_group_t group = ex.fe_group; 2298 int max; 2299 int err; 2300 2301 BUG_ON(ex.fe_len <= 0); 2302 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2303 if (err) 2304 return; 2305 2306 ext4_lock_group(ac->ac_sb, group); 2307 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 2308 goto out; 2309 2310 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 2311 2312 if (max > 0) { 2313 ac->ac_b_ex = ex; 2314 ext4_mb_use_best_found(ac, e4b); 2315 } 2316 2317 out: 2318 ext4_unlock_group(ac->ac_sb, group); 2319 ext4_mb_unload_buddy(e4b); 2320 } 2321 2322 static noinline_for_stack 2323 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 2324 struct ext4_buddy *e4b) 2325 { 2326 ext4_group_t group = ac->ac_g_ex.fe_group; 2327 int max; 2328 int err; 2329 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2330 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2331 struct ext4_free_extent ex; 2332 2333 if (!grp) 2334 return -EFSCORRUPTED; 2335 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY))) 2336 return 0; 2337 if (grp->bb_free == 0) 2338 return 0; 2339 2340 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2341 if (err) 2342 return err; 2343 2344 ext4_lock_group(ac->ac_sb, group); 2345 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 2346 goto out; 2347 2348 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 2349 ac->ac_g_ex.fe_len, &ex); 2350 ex.fe_logical = 0xDEADFA11; /* debug value */ 2351 2352 if (max >= ac->ac_g_ex.fe_len && 2353 ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) { 2354 ext4_fsblk_t start; 2355 2356 start = ext4_grp_offs_to_block(ac->ac_sb, &ex); 2357 /* use do_div to get remainder (would be 64-bit modulo) */ 2358 if (do_div(start, sbi->s_stripe) == 0) { 2359 ac->ac_found++; 2360 ac->ac_b_ex = ex; 2361 ext4_mb_use_best_found(ac, e4b); 2362 } 2363 } else if (max >= ac->ac_g_ex.fe_len) { 2364 BUG_ON(ex.fe_len <= 0); 2365 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2366 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2367 ac->ac_found++; 2368 ac->ac_b_ex = ex; 2369 ext4_mb_use_best_found(ac, e4b); 2370 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 2371 /* Sometimes, caller may want to merge even small 2372 * number of blocks to an existing extent */ 2373 BUG_ON(ex.fe_len <= 0); 2374 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2375 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2376 ac->ac_found++; 2377 ac->ac_b_ex = ex; 2378 ext4_mb_use_best_found(ac, e4b); 2379 } 2380 out: 2381 ext4_unlock_group(ac->ac_sb, group); 2382 ext4_mb_unload_buddy(e4b); 2383 2384 return 0; 2385 } 2386 2387 /* 2388 * The routine scans buddy structures (not bitmap!) from given order 2389 * to max order and tries to find big enough chunk to satisfy the req 2390 */ 2391 static noinline_for_stack 2392 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 2393 struct ext4_buddy *e4b) 2394 { 2395 struct super_block *sb = ac->ac_sb; 2396 struct ext4_group_info *grp = e4b->bd_info; 2397 void *buddy; 2398 int i; 2399 int k; 2400 int max; 2401 2402 BUG_ON(ac->ac_2order <= 0); 2403 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { 2404 if (grp->bb_counters[i] == 0) 2405 continue; 2406 2407 buddy = mb_find_buddy(e4b, i, &max); 2408 if (WARN_RATELIMIT(buddy == NULL, 2409 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i)) 2410 continue; 2411 2412 k = mb_find_next_zero_bit(buddy, max, 0); 2413 if (k >= max) { 2414 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 2415 "%d free clusters of order %d. But found 0", 2416 grp->bb_counters[i], i); 2417 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 2418 e4b->bd_group, 2419 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2420 break; 2421 } 2422 ac->ac_found++; 2423 ac->ac_cX_found[ac->ac_criteria]++; 2424 2425 ac->ac_b_ex.fe_len = 1 << i; 2426 ac->ac_b_ex.fe_start = k << i; 2427 ac->ac_b_ex.fe_group = e4b->bd_group; 2428 2429 ext4_mb_use_best_found(ac, e4b); 2430 2431 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2432 2433 if (EXT4_SB(sb)->s_mb_stats) 2434 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2435 2436 break; 2437 } 2438 } 2439 2440 /* 2441 * The routine scans the group and measures all found extents. 2442 * In order to optimize scanning, caller must pass number of 2443 * free blocks in the group, so the routine can know upper limit. 2444 */ 2445 static noinline_for_stack 2446 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2447 struct ext4_buddy *e4b) 2448 { 2449 struct super_block *sb = ac->ac_sb; 2450 void *bitmap = e4b->bd_bitmap; 2451 struct ext4_free_extent ex; 2452 int i, j, freelen; 2453 int free; 2454 2455 free = e4b->bd_info->bb_free; 2456 if (WARN_ON(free <= 0)) 2457 return; 2458 2459 i = e4b->bd_info->bb_first_free; 2460 2461 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2462 i = mb_find_next_zero_bit(bitmap, 2463 EXT4_CLUSTERS_PER_GROUP(sb), i); 2464 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2465 /* 2466 * IF we have corrupt bitmap, we won't find any 2467 * free blocks even though group info says we 2468 * have free blocks 2469 */ 2470 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2471 "%d free clusters as per " 2472 "group info. But bitmap says 0", 2473 free); 2474 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2475 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2476 break; 2477 } 2478 2479 if (!ext4_mb_cr_expensive(ac->ac_criteria)) { 2480 /* 2481 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are 2482 * sure that this group will have a large enough 2483 * continuous free extent, so skip over the smaller free 2484 * extents 2485 */ 2486 j = mb_find_next_bit(bitmap, 2487 EXT4_CLUSTERS_PER_GROUP(sb), i); 2488 freelen = j - i; 2489 2490 if (freelen < ac->ac_g_ex.fe_len) { 2491 i = j; 2492 free -= freelen; 2493 continue; 2494 } 2495 } 2496 2497 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2498 if (WARN_ON(ex.fe_len <= 0)) 2499 break; 2500 if (free < ex.fe_len) { 2501 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2502 "%d free clusters as per " 2503 "group info. But got %d blocks", 2504 free, ex.fe_len); 2505 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2506 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2507 /* 2508 * The number of free blocks differs. This mostly 2509 * indicate that the bitmap is corrupt. So exit 2510 * without claiming the space. 2511 */ 2512 break; 2513 } 2514 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2515 ext4_mb_measure_extent(ac, &ex, e4b); 2516 2517 i += ex.fe_len; 2518 free -= ex.fe_len; 2519 } 2520 2521 ext4_mb_check_limits(ac, e4b, 1); 2522 } 2523 2524 /* 2525 * This is a special case for storages like raid5 2526 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2527 */ 2528 static noinline_for_stack 2529 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2530 struct ext4_buddy *e4b) 2531 { 2532 struct super_block *sb = ac->ac_sb; 2533 struct ext4_sb_info *sbi = EXT4_SB(sb); 2534 void *bitmap = e4b->bd_bitmap; 2535 struct ext4_free_extent ex; 2536 ext4_fsblk_t first_group_block; 2537 ext4_fsblk_t a; 2538 ext4_grpblk_t i, stripe; 2539 int max; 2540 2541 BUG_ON(sbi->s_stripe == 0); 2542 2543 /* find first stripe-aligned block in group */ 2544 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2545 2546 a = first_group_block + sbi->s_stripe - 1; 2547 do_div(a, sbi->s_stripe); 2548 i = (a * sbi->s_stripe) - first_group_block; 2549 2550 stripe = EXT4_B2C(sbi, sbi->s_stripe); 2551 i = EXT4_B2C(sbi, i); 2552 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2553 if (!mb_test_bit(i, bitmap)) { 2554 max = mb_find_extent(e4b, i, stripe, &ex); 2555 if (max >= stripe) { 2556 ac->ac_found++; 2557 ac->ac_cX_found[ac->ac_criteria]++; 2558 ex.fe_logical = 0xDEADF00D; /* debug value */ 2559 ac->ac_b_ex = ex; 2560 ext4_mb_use_best_found(ac, e4b); 2561 break; 2562 } 2563 } 2564 i += stripe; 2565 } 2566 } 2567 2568 /* 2569 * This is also called BEFORE we load the buddy bitmap. 2570 * Returns either 1 or 0 indicating that the group is either suitable 2571 * for the allocation or not. 2572 */ 2573 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2574 ext4_group_t group, enum criteria cr) 2575 { 2576 ext4_grpblk_t free, fragments; 2577 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2578 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2579 2580 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS); 2581 2582 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2583 return false; 2584 2585 free = grp->bb_free; 2586 if (free == 0) 2587 return false; 2588 2589 fragments = grp->bb_fragments; 2590 if (fragments == 0) 2591 return false; 2592 2593 switch (cr) { 2594 case CR_POWER2_ALIGNED: 2595 BUG_ON(ac->ac_2order == 0); 2596 2597 /* Avoid using the first bg of a flexgroup for data files */ 2598 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2599 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2600 ((group % flex_size) == 0)) 2601 return false; 2602 2603 if (free < ac->ac_g_ex.fe_len) 2604 return false; 2605 2606 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) 2607 return true; 2608 2609 if (grp->bb_largest_free_order < ac->ac_2order) 2610 return false; 2611 2612 return true; 2613 case CR_GOAL_LEN_FAST: 2614 case CR_BEST_AVAIL_LEN: 2615 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2616 return true; 2617 break; 2618 case CR_GOAL_LEN_SLOW: 2619 if (free >= ac->ac_g_ex.fe_len) 2620 return true; 2621 break; 2622 case CR_ANY_FREE: 2623 return true; 2624 default: 2625 BUG(); 2626 } 2627 2628 return false; 2629 } 2630 2631 /* 2632 * This could return negative error code if something goes wrong 2633 * during ext4_mb_init_group(). This should not be called with 2634 * ext4_lock_group() held. 2635 * 2636 * Note: because we are conditionally operating with the group lock in 2637 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this 2638 * function using __acquire and __release. This means we need to be 2639 * super careful before messing with the error path handling via "goto 2640 * out"! 2641 */ 2642 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2643 ext4_group_t group, enum criteria cr) 2644 { 2645 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2646 struct super_block *sb = ac->ac_sb; 2647 struct ext4_sb_info *sbi = EXT4_SB(sb); 2648 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2649 ext4_grpblk_t free; 2650 int ret = 0; 2651 2652 if (!grp) 2653 return -EFSCORRUPTED; 2654 if (sbi->s_mb_stats) 2655 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2656 if (should_lock) { 2657 ext4_lock_group(sb, group); 2658 __release(ext4_group_lock_ptr(sb, group)); 2659 } 2660 free = grp->bb_free; 2661 if (free == 0) 2662 goto out; 2663 /* 2664 * In all criterias except CR_ANY_FREE we try to avoid groups that 2665 * can't possibly satisfy the full goal request due to insufficient 2666 * free blocks. 2667 */ 2668 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len) 2669 goto out; 2670 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2671 goto out; 2672 if (should_lock) { 2673 __acquire(ext4_group_lock_ptr(sb, group)); 2674 ext4_unlock_group(sb, group); 2675 } 2676 2677 /* We only do this if the grp has never been initialized */ 2678 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2679 struct ext4_group_desc *gdp = 2680 ext4_get_group_desc(sb, group, NULL); 2681 int ret; 2682 2683 /* 2684 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic 2685 * search to find large good chunks almost for free. If buddy 2686 * data is not ready, then this optimization makes no sense. But 2687 * we never skip the first block group in a flex_bg, since this 2688 * gets used for metadata block allocation, and we want to make 2689 * sure we locate metadata blocks in the first block group in 2690 * the flex_bg if possible. 2691 */ 2692 if (!ext4_mb_cr_expensive(cr) && 2693 (!sbi->s_log_groups_per_flex || 2694 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2695 !(ext4_has_group_desc_csum(sb) && 2696 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2697 return 0; 2698 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2699 if (ret) 2700 return ret; 2701 } 2702 2703 if (should_lock) { 2704 ext4_lock_group(sb, group); 2705 __release(ext4_group_lock_ptr(sb, group)); 2706 } 2707 ret = ext4_mb_good_group(ac, group, cr); 2708 out: 2709 if (should_lock) { 2710 __acquire(ext4_group_lock_ptr(sb, group)); 2711 ext4_unlock_group(sb, group); 2712 } 2713 return ret; 2714 } 2715 2716 /* 2717 * Start prefetching @nr block bitmaps starting at @group. 2718 * Return the next group which needs to be prefetched. 2719 */ 2720 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2721 unsigned int nr, int *cnt) 2722 { 2723 ext4_group_t ngroups = ext4_get_groups_count(sb); 2724 struct buffer_head *bh; 2725 struct blk_plug plug; 2726 2727 blk_start_plug(&plug); 2728 while (nr-- > 0) { 2729 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2730 NULL); 2731 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2732 2733 /* 2734 * Prefetch block groups with free blocks; but don't 2735 * bother if it is marked uninitialized on disk, since 2736 * it won't require I/O to read. Also only try to 2737 * prefetch once, so we avoid getblk() call, which can 2738 * be expensive. 2739 */ 2740 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2741 EXT4_MB_GRP_NEED_INIT(grp) && 2742 ext4_free_group_clusters(sb, gdp) > 0 ) { 2743 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2744 if (bh && !IS_ERR(bh)) { 2745 if (!buffer_uptodate(bh) && cnt) 2746 (*cnt)++; 2747 brelse(bh); 2748 } 2749 } 2750 if (++group >= ngroups) 2751 group = 0; 2752 } 2753 blk_finish_plug(&plug); 2754 return group; 2755 } 2756 2757 /* 2758 * Prefetching reads the block bitmap into the buffer cache; but we 2759 * need to make sure that the buddy bitmap in the page cache has been 2760 * initialized. Note that ext4_mb_init_group() will block if the I/O 2761 * is not yet completed, or indeed if it was not initiated by 2762 * ext4_mb_prefetch did not start the I/O. 2763 * 2764 * TODO: We should actually kick off the buddy bitmap setup in a work 2765 * queue when the buffer I/O is completed, so that we don't block 2766 * waiting for the block allocation bitmap read to finish when 2767 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2768 */ 2769 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2770 unsigned int nr) 2771 { 2772 struct ext4_group_desc *gdp; 2773 struct ext4_group_info *grp; 2774 2775 while (nr-- > 0) { 2776 if (!group) 2777 group = ext4_get_groups_count(sb); 2778 group--; 2779 gdp = ext4_get_group_desc(sb, group, NULL); 2780 grp = ext4_get_group_info(sb, group); 2781 2782 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) && 2783 ext4_free_group_clusters(sb, gdp) > 0) { 2784 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2785 break; 2786 } 2787 } 2788 } 2789 2790 static noinline_for_stack int 2791 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2792 { 2793 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2794 enum criteria new_cr, cr = CR_GOAL_LEN_FAST; 2795 int err = 0, first_err = 0; 2796 unsigned int nr = 0, prefetch_ios = 0; 2797 struct ext4_sb_info *sbi; 2798 struct super_block *sb; 2799 struct ext4_buddy e4b; 2800 int lost; 2801 2802 sb = ac->ac_sb; 2803 sbi = EXT4_SB(sb); 2804 ngroups = ext4_get_groups_count(sb); 2805 /* non-extent files are limited to low blocks/groups */ 2806 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2807 ngroups = sbi->s_blockfile_groups; 2808 2809 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2810 2811 /* first, try the goal */ 2812 err = ext4_mb_find_by_goal(ac, &e4b); 2813 if (err || ac->ac_status == AC_STATUS_FOUND) 2814 goto out; 2815 2816 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2817 goto out; 2818 2819 /* 2820 * ac->ac_2order is set only if the fe_len is a power of 2 2821 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED 2822 * so that we try exact allocation using buddy. 2823 */ 2824 i = fls(ac->ac_g_ex.fe_len); 2825 ac->ac_2order = 0; 2826 /* 2827 * We search using buddy data only if the order of the request 2828 * is greater than equal to the sbi_s_mb_order2_reqs 2829 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2830 * We also support searching for power-of-two requests only for 2831 * requests upto maximum buddy size we have constructed. 2832 */ 2833 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { 2834 if (is_power_of_2(ac->ac_g_ex.fe_len)) 2835 ac->ac_2order = array_index_nospec(i - 1, 2836 MB_NUM_ORDERS(sb)); 2837 } 2838 2839 /* if stream allocation is enabled, use global goal */ 2840 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2841 /* TBD: may be hot point */ 2842 spin_lock(&sbi->s_md_lock); 2843 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2844 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2845 spin_unlock(&sbi->s_md_lock); 2846 } 2847 2848 /* 2849 * Let's just scan groups to find more-less suitable blocks We 2850 * start with CR_GOAL_LEN_FAST, unless it is power of 2 2851 * aligned, in which case let's do that faster approach first. 2852 */ 2853 if (ac->ac_2order) 2854 cr = CR_POWER2_ALIGNED; 2855 repeat: 2856 for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2857 ac->ac_criteria = cr; 2858 /* 2859 * searching for the right group start 2860 * from the goal value specified 2861 */ 2862 group = ac->ac_g_ex.fe_group; 2863 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; 2864 prefetch_grp = group; 2865 2866 for (i = 0, new_cr = cr; i < ngroups; i++, 2867 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) { 2868 int ret = 0; 2869 2870 cond_resched(); 2871 if (new_cr != cr) { 2872 cr = new_cr; 2873 goto repeat; 2874 } 2875 2876 /* 2877 * Batch reads of the block allocation bitmaps 2878 * to get multiple READs in flight; limit 2879 * prefetching at inexpensive CR, otherwise mballoc 2880 * can spend a lot of time loading imperfect groups 2881 */ 2882 if ((prefetch_grp == group) && 2883 (ext4_mb_cr_expensive(cr) || 2884 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2885 nr = sbi->s_mb_prefetch; 2886 if (ext4_has_feature_flex_bg(sb)) { 2887 nr = 1 << sbi->s_log_groups_per_flex; 2888 nr -= group & (nr - 1); 2889 nr = min(nr, sbi->s_mb_prefetch); 2890 } 2891 prefetch_grp = ext4_mb_prefetch(sb, group, 2892 nr, &prefetch_ios); 2893 } 2894 2895 /* This now checks without needing the buddy page */ 2896 ret = ext4_mb_good_group_nolock(ac, group, cr); 2897 if (ret <= 0) { 2898 if (!first_err) 2899 first_err = ret; 2900 continue; 2901 } 2902 2903 err = ext4_mb_load_buddy(sb, group, &e4b); 2904 if (err) 2905 goto out; 2906 2907 ext4_lock_group(sb, group); 2908 2909 /* 2910 * We need to check again after locking the 2911 * block group 2912 */ 2913 ret = ext4_mb_good_group(ac, group, cr); 2914 if (ret == 0) { 2915 ext4_unlock_group(sb, group); 2916 ext4_mb_unload_buddy(&e4b); 2917 continue; 2918 } 2919 2920 ac->ac_groups_scanned++; 2921 if (cr == CR_POWER2_ALIGNED) 2922 ext4_mb_simple_scan_group(ac, &e4b); 2923 else if ((cr == CR_GOAL_LEN_FAST || 2924 cr == CR_BEST_AVAIL_LEN) && 2925 sbi->s_stripe && 2926 !(ac->ac_g_ex.fe_len % 2927 EXT4_B2C(sbi, sbi->s_stripe))) 2928 ext4_mb_scan_aligned(ac, &e4b); 2929 else 2930 ext4_mb_complex_scan_group(ac, &e4b); 2931 2932 ext4_unlock_group(sb, group); 2933 ext4_mb_unload_buddy(&e4b); 2934 2935 if (ac->ac_status != AC_STATUS_CONTINUE) 2936 break; 2937 } 2938 /* Processed all groups and haven't found blocks */ 2939 if (sbi->s_mb_stats && i == ngroups) 2940 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 2941 2942 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN) 2943 /* Reset goal length to original goal length before 2944 * falling into CR_GOAL_LEN_SLOW */ 2945 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 2946 } 2947 2948 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2949 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2950 /* 2951 * We've been searching too long. Let's try to allocate 2952 * the best chunk we've found so far 2953 */ 2954 ext4_mb_try_best_found(ac, &e4b); 2955 if (ac->ac_status != AC_STATUS_FOUND) { 2956 /* 2957 * Someone more lucky has already allocated it. 2958 * The only thing we can do is just take first 2959 * found block(s) 2960 */ 2961 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2962 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2963 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2964 ac->ac_b_ex.fe_len, lost); 2965 2966 ac->ac_b_ex.fe_group = 0; 2967 ac->ac_b_ex.fe_start = 0; 2968 ac->ac_b_ex.fe_len = 0; 2969 ac->ac_status = AC_STATUS_CONTINUE; 2970 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2971 cr = CR_ANY_FREE; 2972 goto repeat; 2973 } 2974 } 2975 2976 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) 2977 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 2978 out: 2979 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2980 err = first_err; 2981 2982 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2983 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2984 ac->ac_flags, cr, err); 2985 2986 if (nr) 2987 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 2988 2989 return err; 2990 } 2991 2992 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2993 { 2994 struct super_block *sb = pde_data(file_inode(seq->file)); 2995 ext4_group_t group; 2996 2997 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2998 return NULL; 2999 group = *pos + 1; 3000 return (void *) ((unsigned long) group); 3001 } 3002 3003 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 3004 { 3005 struct super_block *sb = pde_data(file_inode(seq->file)); 3006 ext4_group_t group; 3007 3008 ++*pos; 3009 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 3010 return NULL; 3011 group = *pos + 1; 3012 return (void *) ((unsigned long) group); 3013 } 3014 3015 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 3016 { 3017 struct super_block *sb = pde_data(file_inode(seq->file)); 3018 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 3019 int i; 3020 int err, buddy_loaded = 0; 3021 struct ext4_buddy e4b; 3022 struct ext4_group_info *grinfo; 3023 unsigned char blocksize_bits = min_t(unsigned char, 3024 sb->s_blocksize_bits, 3025 EXT4_MAX_BLOCK_LOG_SIZE); 3026 struct sg { 3027 struct ext4_group_info info; 3028 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 3029 } sg; 3030 3031 group--; 3032 if (group == 0) 3033 seq_puts(seq, "#group: free frags first [" 3034 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 3035 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 3036 3037 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 3038 sizeof(struct ext4_group_info); 3039 3040 grinfo = ext4_get_group_info(sb, group); 3041 if (!grinfo) 3042 return 0; 3043 /* Load the group info in memory only if not already loaded. */ 3044 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 3045 err = ext4_mb_load_buddy(sb, group, &e4b); 3046 if (err) { 3047 seq_printf(seq, "#%-5u: I/O error\n", group); 3048 return 0; 3049 } 3050 buddy_loaded = 1; 3051 } 3052 3053 memcpy(&sg, grinfo, i); 3054 3055 if (buddy_loaded) 3056 ext4_mb_unload_buddy(&e4b); 3057 3058 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 3059 sg.info.bb_fragments, sg.info.bb_first_free); 3060 for (i = 0; i <= 13; i++) 3061 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 3062 sg.info.bb_counters[i] : 0); 3063 seq_puts(seq, " ]"); 3064 if (EXT4_MB_GRP_BBITMAP_CORRUPT(&sg.info)) 3065 seq_puts(seq, " Block bitmap corrupted!"); 3066 seq_puts(seq, "\n"); 3067 3068 return 0; 3069 } 3070 3071 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 3072 { 3073 } 3074 3075 const struct seq_operations ext4_mb_seq_groups_ops = { 3076 .start = ext4_mb_seq_groups_start, 3077 .next = ext4_mb_seq_groups_next, 3078 .stop = ext4_mb_seq_groups_stop, 3079 .show = ext4_mb_seq_groups_show, 3080 }; 3081 3082 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 3083 { 3084 struct super_block *sb = seq->private; 3085 struct ext4_sb_info *sbi = EXT4_SB(sb); 3086 3087 seq_puts(seq, "mballoc:\n"); 3088 if (!sbi->s_mb_stats) { 3089 seq_puts(seq, "\tmb stats collection turned off.\n"); 3090 seq_puts( 3091 seq, 3092 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 3093 return 0; 3094 } 3095 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 3096 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 3097 3098 seq_printf(seq, "\tgroups_scanned: %u\n", 3099 atomic_read(&sbi->s_bal_groups_scanned)); 3100 3101 /* CR_POWER2_ALIGNED stats */ 3102 seq_puts(seq, "\tcr_p2_aligned_stats:\n"); 3103 seq_printf(seq, "\t\thits: %llu\n", 3104 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED])); 3105 seq_printf( 3106 seq, "\t\tgroups_considered: %llu\n", 3107 atomic64_read( 3108 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED])); 3109 seq_printf(seq, "\t\textents_scanned: %u\n", 3110 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED])); 3111 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3112 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED])); 3113 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3114 atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions)); 3115 3116 /* CR_GOAL_LEN_FAST stats */ 3117 seq_puts(seq, "\tcr_goal_fast_stats:\n"); 3118 seq_printf(seq, "\t\thits: %llu\n", 3119 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST])); 3120 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3121 atomic64_read( 3122 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST])); 3123 seq_printf(seq, "\t\textents_scanned: %u\n", 3124 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST])); 3125 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3126 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST])); 3127 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3128 atomic_read(&sbi->s_bal_goal_fast_bad_suggestions)); 3129 3130 /* CR_BEST_AVAIL_LEN stats */ 3131 seq_puts(seq, "\tcr_best_avail_stats:\n"); 3132 seq_printf(seq, "\t\thits: %llu\n", 3133 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN])); 3134 seq_printf( 3135 seq, "\t\tgroups_considered: %llu\n", 3136 atomic64_read( 3137 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN])); 3138 seq_printf(seq, "\t\textents_scanned: %u\n", 3139 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN])); 3140 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3141 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN])); 3142 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3143 atomic_read(&sbi->s_bal_best_avail_bad_suggestions)); 3144 3145 /* CR_GOAL_LEN_SLOW stats */ 3146 seq_puts(seq, "\tcr_goal_slow_stats:\n"); 3147 seq_printf(seq, "\t\thits: %llu\n", 3148 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW])); 3149 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3150 atomic64_read( 3151 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW])); 3152 seq_printf(seq, "\t\textents_scanned: %u\n", 3153 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW])); 3154 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3155 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW])); 3156 3157 /* CR_ANY_FREE stats */ 3158 seq_puts(seq, "\tcr_any_free_stats:\n"); 3159 seq_printf(seq, "\t\thits: %llu\n", 3160 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE])); 3161 seq_printf( 3162 seq, "\t\tgroups_considered: %llu\n", 3163 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE])); 3164 seq_printf(seq, "\t\textents_scanned: %u\n", 3165 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE])); 3166 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3167 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE])); 3168 3169 /* Aggregates */ 3170 seq_printf(seq, "\textents_scanned: %u\n", 3171 atomic_read(&sbi->s_bal_ex_scanned)); 3172 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 3173 seq_printf(seq, "\t\tlen_goal_hits: %u\n", 3174 atomic_read(&sbi->s_bal_len_goals)); 3175 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 3176 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 3177 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 3178 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 3179 atomic_read(&sbi->s_mb_buddies_generated), 3180 ext4_get_groups_count(sb)); 3181 seq_printf(seq, "\tbuddies_time_used: %llu\n", 3182 atomic64_read(&sbi->s_mb_generation_time)); 3183 seq_printf(seq, "\tpreallocated: %u\n", 3184 atomic_read(&sbi->s_mb_preallocated)); 3185 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded)); 3186 return 0; 3187 } 3188 3189 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) 3190 __acquires(&EXT4_SB(sb)->s_mb_rb_lock) 3191 { 3192 struct super_block *sb = pde_data(file_inode(seq->file)); 3193 unsigned long position; 3194 3195 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3196 return NULL; 3197 position = *pos + 1; 3198 return (void *) ((unsigned long) position); 3199 } 3200 3201 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) 3202 { 3203 struct super_block *sb = pde_data(file_inode(seq->file)); 3204 unsigned long position; 3205 3206 ++*pos; 3207 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3208 return NULL; 3209 position = *pos + 1; 3210 return (void *) ((unsigned long) position); 3211 } 3212 3213 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) 3214 { 3215 struct super_block *sb = pde_data(file_inode(seq->file)); 3216 struct ext4_sb_info *sbi = EXT4_SB(sb); 3217 unsigned long position = ((unsigned long) v); 3218 struct ext4_group_info *grp; 3219 unsigned int count; 3220 3221 position--; 3222 if (position >= MB_NUM_ORDERS(sb)) { 3223 position -= MB_NUM_ORDERS(sb); 3224 if (position == 0) 3225 seq_puts(seq, "avg_fragment_size_lists:\n"); 3226 3227 count = 0; 3228 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]); 3229 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position], 3230 bb_avg_fragment_size_node) 3231 count++; 3232 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]); 3233 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3234 (unsigned int)position, count); 3235 return 0; 3236 } 3237 3238 if (position == 0) { 3239 seq_printf(seq, "optimize_scan: %d\n", 3240 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); 3241 seq_puts(seq, "max_free_order_lists:\n"); 3242 } 3243 count = 0; 3244 read_lock(&sbi->s_mb_largest_free_orders_locks[position]); 3245 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], 3246 bb_largest_free_order_node) 3247 count++; 3248 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]); 3249 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3250 (unsigned int)position, count); 3251 3252 return 0; 3253 } 3254 3255 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) 3256 { 3257 } 3258 3259 const struct seq_operations ext4_mb_seq_structs_summary_ops = { 3260 .start = ext4_mb_seq_structs_summary_start, 3261 .next = ext4_mb_seq_structs_summary_next, 3262 .stop = ext4_mb_seq_structs_summary_stop, 3263 .show = ext4_mb_seq_structs_summary_show, 3264 }; 3265 3266 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 3267 { 3268 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3269 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 3270 3271 BUG_ON(!cachep); 3272 return cachep; 3273 } 3274 3275 /* 3276 * Allocate the top-level s_group_info array for the specified number 3277 * of groups 3278 */ 3279 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 3280 { 3281 struct ext4_sb_info *sbi = EXT4_SB(sb); 3282 unsigned size; 3283 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 3284 3285 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 3286 EXT4_DESC_PER_BLOCK_BITS(sb); 3287 if (size <= sbi->s_group_info_size) 3288 return 0; 3289 3290 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 3291 new_groupinfo = kvzalloc(size, GFP_KERNEL); 3292 if (!new_groupinfo) { 3293 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 3294 return -ENOMEM; 3295 } 3296 rcu_read_lock(); 3297 old_groupinfo = rcu_dereference(sbi->s_group_info); 3298 if (old_groupinfo) 3299 memcpy(new_groupinfo, old_groupinfo, 3300 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 3301 rcu_read_unlock(); 3302 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 3303 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 3304 if (old_groupinfo) 3305 ext4_kvfree_array_rcu(old_groupinfo); 3306 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 3307 sbi->s_group_info_size); 3308 return 0; 3309 } 3310 3311 /* Create and initialize ext4_group_info data for the given group. */ 3312 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 3313 struct ext4_group_desc *desc) 3314 { 3315 int i; 3316 int metalen = 0; 3317 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 3318 struct ext4_sb_info *sbi = EXT4_SB(sb); 3319 struct ext4_group_info **meta_group_info; 3320 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3321 3322 /* 3323 * First check if this group is the first of a reserved block. 3324 * If it's true, we have to allocate a new table of pointers 3325 * to ext4_group_info structures 3326 */ 3327 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3328 metalen = sizeof(*meta_group_info) << 3329 EXT4_DESC_PER_BLOCK_BITS(sb); 3330 meta_group_info = kmalloc(metalen, GFP_NOFS); 3331 if (meta_group_info == NULL) { 3332 ext4_msg(sb, KERN_ERR, "can't allocate mem " 3333 "for a buddy group"); 3334 return -ENOMEM; 3335 } 3336 rcu_read_lock(); 3337 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 3338 rcu_read_unlock(); 3339 } 3340 3341 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 3342 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 3343 3344 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 3345 if (meta_group_info[i] == NULL) { 3346 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 3347 goto exit_group_info; 3348 } 3349 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 3350 &(meta_group_info[i]->bb_state)); 3351 3352 /* 3353 * initialize bb_free to be able to skip 3354 * empty groups without initialization 3355 */ 3356 if (ext4_has_group_desc_csum(sb) && 3357 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3358 meta_group_info[i]->bb_free = 3359 ext4_free_clusters_after_init(sb, group, desc); 3360 } else { 3361 meta_group_info[i]->bb_free = 3362 ext4_free_group_clusters(sb, desc); 3363 } 3364 3365 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 3366 init_rwsem(&meta_group_info[i]->alloc_sem); 3367 meta_group_info[i]->bb_free_root = RB_ROOT; 3368 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); 3369 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node); 3370 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 3371 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */ 3372 meta_group_info[i]->bb_group = group; 3373 3374 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 3375 return 0; 3376 3377 exit_group_info: 3378 /* If a meta_group_info table has been allocated, release it now */ 3379 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3380 struct ext4_group_info ***group_info; 3381 3382 rcu_read_lock(); 3383 group_info = rcu_dereference(sbi->s_group_info); 3384 kfree(group_info[idx]); 3385 group_info[idx] = NULL; 3386 rcu_read_unlock(); 3387 } 3388 return -ENOMEM; 3389 } /* ext4_mb_add_groupinfo */ 3390 3391 static int ext4_mb_init_backend(struct super_block *sb) 3392 { 3393 ext4_group_t ngroups = ext4_get_groups_count(sb); 3394 ext4_group_t i; 3395 struct ext4_sb_info *sbi = EXT4_SB(sb); 3396 int err; 3397 struct ext4_group_desc *desc; 3398 struct ext4_group_info ***group_info; 3399 struct kmem_cache *cachep; 3400 3401 err = ext4_mb_alloc_groupinfo(sb, ngroups); 3402 if (err) 3403 return err; 3404 3405 sbi->s_buddy_cache = new_inode(sb); 3406 if (sbi->s_buddy_cache == NULL) { 3407 ext4_msg(sb, KERN_ERR, "can't get new inode"); 3408 goto err_freesgi; 3409 } 3410 /* To avoid potentially colliding with an valid on-disk inode number, 3411 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 3412 * not in the inode hash, so it should never be found by iget(), but 3413 * this will avoid confusion if it ever shows up during debugging. */ 3414 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 3415 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 3416 for (i = 0; i < ngroups; i++) { 3417 cond_resched(); 3418 desc = ext4_get_group_desc(sb, i, NULL); 3419 if (desc == NULL) { 3420 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 3421 goto err_freebuddy; 3422 } 3423 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 3424 goto err_freebuddy; 3425 } 3426 3427 if (ext4_has_feature_flex_bg(sb)) { 3428 /* a single flex group is supposed to be read by a single IO. 3429 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 3430 * unsigned integer, so the maximum shift is 32. 3431 */ 3432 if (sbi->s_es->s_log_groups_per_flex >= 32) { 3433 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 3434 goto err_freebuddy; 3435 } 3436 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 3437 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 3438 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 3439 } else { 3440 sbi->s_mb_prefetch = 32; 3441 } 3442 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 3443 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 3444 /* now many real IOs to prefetch within a single allocation at cr=0 3445 * given cr=0 is an CPU-related optimization we shouldn't try to 3446 * load too many groups, at some point we should start to use what 3447 * we've got in memory. 3448 * with an average random access time 5ms, it'd take a second to get 3449 * 200 groups (* N with flex_bg), so let's make this limit 4 3450 */ 3451 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 3452 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 3453 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 3454 3455 return 0; 3456 3457 err_freebuddy: 3458 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3459 while (i-- > 0) { 3460 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3461 3462 if (grp) 3463 kmem_cache_free(cachep, grp); 3464 } 3465 i = sbi->s_group_info_size; 3466 rcu_read_lock(); 3467 group_info = rcu_dereference(sbi->s_group_info); 3468 while (i-- > 0) 3469 kfree(group_info[i]); 3470 rcu_read_unlock(); 3471 iput(sbi->s_buddy_cache); 3472 err_freesgi: 3473 rcu_read_lock(); 3474 kvfree(rcu_dereference(sbi->s_group_info)); 3475 rcu_read_unlock(); 3476 return -ENOMEM; 3477 } 3478 3479 static void ext4_groupinfo_destroy_slabs(void) 3480 { 3481 int i; 3482 3483 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 3484 kmem_cache_destroy(ext4_groupinfo_caches[i]); 3485 ext4_groupinfo_caches[i] = NULL; 3486 } 3487 } 3488 3489 static int ext4_groupinfo_create_slab(size_t size) 3490 { 3491 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 3492 int slab_size; 3493 int blocksize_bits = order_base_2(size); 3494 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3495 struct kmem_cache *cachep; 3496 3497 if (cache_index >= NR_GRPINFO_CACHES) 3498 return -EINVAL; 3499 3500 if (unlikely(cache_index < 0)) 3501 cache_index = 0; 3502 3503 mutex_lock(&ext4_grpinfo_slab_create_mutex); 3504 if (ext4_groupinfo_caches[cache_index]) { 3505 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3506 return 0; /* Already created */ 3507 } 3508 3509 slab_size = offsetof(struct ext4_group_info, 3510 bb_counters[blocksize_bits + 2]); 3511 3512 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 3513 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 3514 NULL); 3515 3516 ext4_groupinfo_caches[cache_index] = cachep; 3517 3518 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3519 if (!cachep) { 3520 printk(KERN_EMERG 3521 "EXT4-fs: no memory for groupinfo slab cache\n"); 3522 return -ENOMEM; 3523 } 3524 3525 return 0; 3526 } 3527 3528 static void ext4_discard_work(struct work_struct *work) 3529 { 3530 struct ext4_sb_info *sbi = container_of(work, 3531 struct ext4_sb_info, s_discard_work); 3532 struct super_block *sb = sbi->s_sb; 3533 struct ext4_free_data *fd, *nfd; 3534 struct ext4_buddy e4b; 3535 LIST_HEAD(discard_list); 3536 ext4_group_t grp, load_grp; 3537 int err = 0; 3538 3539 spin_lock(&sbi->s_md_lock); 3540 list_splice_init(&sbi->s_discard_list, &discard_list); 3541 spin_unlock(&sbi->s_md_lock); 3542 3543 load_grp = UINT_MAX; 3544 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { 3545 /* 3546 * If filesystem is umounting or no memory or suffering 3547 * from no space, give up the discard 3548 */ 3549 if ((sb->s_flags & SB_ACTIVE) && !err && 3550 !atomic_read(&sbi->s_retry_alloc_pending)) { 3551 grp = fd->efd_group; 3552 if (grp != load_grp) { 3553 if (load_grp != UINT_MAX) 3554 ext4_mb_unload_buddy(&e4b); 3555 3556 err = ext4_mb_load_buddy(sb, grp, &e4b); 3557 if (err) { 3558 kmem_cache_free(ext4_free_data_cachep, fd); 3559 load_grp = UINT_MAX; 3560 continue; 3561 } else { 3562 load_grp = grp; 3563 } 3564 } 3565 3566 ext4_lock_group(sb, grp); 3567 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster, 3568 fd->efd_start_cluster + fd->efd_count - 1, 1); 3569 ext4_unlock_group(sb, grp); 3570 } 3571 kmem_cache_free(ext4_free_data_cachep, fd); 3572 } 3573 3574 if (load_grp != UINT_MAX) 3575 ext4_mb_unload_buddy(&e4b); 3576 } 3577 3578 int ext4_mb_init(struct super_block *sb) 3579 { 3580 struct ext4_sb_info *sbi = EXT4_SB(sb); 3581 unsigned i, j; 3582 unsigned offset, offset_incr; 3583 unsigned max; 3584 int ret; 3585 3586 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); 3587 3588 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 3589 if (sbi->s_mb_offsets == NULL) { 3590 ret = -ENOMEM; 3591 goto out; 3592 } 3593 3594 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); 3595 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 3596 if (sbi->s_mb_maxs == NULL) { 3597 ret = -ENOMEM; 3598 goto out; 3599 } 3600 3601 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 3602 if (ret < 0) 3603 goto out; 3604 3605 /* order 0 is regular bitmap */ 3606 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 3607 sbi->s_mb_offsets[0] = 0; 3608 3609 i = 1; 3610 offset = 0; 3611 offset_incr = 1 << (sb->s_blocksize_bits - 1); 3612 max = sb->s_blocksize << 2; 3613 do { 3614 sbi->s_mb_offsets[i] = offset; 3615 sbi->s_mb_maxs[i] = max; 3616 offset += offset_incr; 3617 offset_incr = offset_incr >> 1; 3618 max = max >> 1; 3619 i++; 3620 } while (i < MB_NUM_ORDERS(sb)); 3621 3622 sbi->s_mb_avg_fragment_size = 3623 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3624 GFP_KERNEL); 3625 if (!sbi->s_mb_avg_fragment_size) { 3626 ret = -ENOMEM; 3627 goto out; 3628 } 3629 sbi->s_mb_avg_fragment_size_locks = 3630 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3631 GFP_KERNEL); 3632 if (!sbi->s_mb_avg_fragment_size_locks) { 3633 ret = -ENOMEM; 3634 goto out; 3635 } 3636 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3637 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]); 3638 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]); 3639 } 3640 sbi->s_mb_largest_free_orders = 3641 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3642 GFP_KERNEL); 3643 if (!sbi->s_mb_largest_free_orders) { 3644 ret = -ENOMEM; 3645 goto out; 3646 } 3647 sbi->s_mb_largest_free_orders_locks = 3648 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3649 GFP_KERNEL); 3650 if (!sbi->s_mb_largest_free_orders_locks) { 3651 ret = -ENOMEM; 3652 goto out; 3653 } 3654 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3655 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); 3656 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); 3657 } 3658 3659 spin_lock_init(&sbi->s_md_lock); 3660 sbi->s_mb_free_pending = 0; 3661 INIT_LIST_HEAD(&sbi->s_freed_data_list); 3662 INIT_LIST_HEAD(&sbi->s_discard_list); 3663 INIT_WORK(&sbi->s_discard_work, ext4_discard_work); 3664 atomic_set(&sbi->s_retry_alloc_pending, 0); 3665 3666 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 3667 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 3668 sbi->s_mb_stats = MB_DEFAULT_STATS; 3669 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 3670 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 3671 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER; 3672 3673 /* 3674 * The default group preallocation is 512, which for 4k block 3675 * sizes translates to 2 megabytes. However for bigalloc file 3676 * systems, this is probably too big (i.e, if the cluster size 3677 * is 1 megabyte, then group preallocation size becomes half a 3678 * gigabyte!). As a default, we will keep a two megabyte 3679 * group pralloc size for cluster sizes up to 64k, and after 3680 * that, we will force a minimum group preallocation size of 3681 * 32 clusters. This translates to 8 megs when the cluster 3682 * size is 256k, and 32 megs when the cluster size is 1 meg, 3683 * which seems reasonable as a default. 3684 */ 3685 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 3686 sbi->s_cluster_bits, 32); 3687 /* 3688 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 3689 * to the lowest multiple of s_stripe which is bigger than 3690 * the s_mb_group_prealloc as determined above. We want 3691 * the preallocation size to be an exact multiple of the 3692 * RAID stripe size so that preallocations don't fragment 3693 * the stripes. 3694 */ 3695 if (sbi->s_stripe > 1) { 3696 sbi->s_mb_group_prealloc = roundup( 3697 sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe)); 3698 } 3699 3700 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3701 if (sbi->s_locality_groups == NULL) { 3702 ret = -ENOMEM; 3703 goto out; 3704 } 3705 for_each_possible_cpu(i) { 3706 struct ext4_locality_group *lg; 3707 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3708 mutex_init(&lg->lg_mutex); 3709 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3710 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3711 spin_lock_init(&lg->lg_prealloc_lock); 3712 } 3713 3714 if (bdev_nonrot(sb->s_bdev)) 3715 sbi->s_mb_max_linear_groups = 0; 3716 else 3717 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; 3718 /* init file for buddy data */ 3719 ret = ext4_mb_init_backend(sb); 3720 if (ret != 0) 3721 goto out_free_locality_groups; 3722 3723 return 0; 3724 3725 out_free_locality_groups: 3726 free_percpu(sbi->s_locality_groups); 3727 sbi->s_locality_groups = NULL; 3728 out: 3729 kfree(sbi->s_mb_avg_fragment_size); 3730 kfree(sbi->s_mb_avg_fragment_size_locks); 3731 kfree(sbi->s_mb_largest_free_orders); 3732 kfree(sbi->s_mb_largest_free_orders_locks); 3733 kfree(sbi->s_mb_offsets); 3734 sbi->s_mb_offsets = NULL; 3735 kfree(sbi->s_mb_maxs); 3736 sbi->s_mb_maxs = NULL; 3737 return ret; 3738 } 3739 3740 /* need to called with the ext4 group lock held */ 3741 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3742 { 3743 struct ext4_prealloc_space *pa; 3744 struct list_head *cur, *tmp; 3745 int count = 0; 3746 3747 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3748 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3749 list_del(&pa->pa_group_list); 3750 count++; 3751 kmem_cache_free(ext4_pspace_cachep, pa); 3752 } 3753 return count; 3754 } 3755 3756 int ext4_mb_release(struct super_block *sb) 3757 { 3758 ext4_group_t ngroups = ext4_get_groups_count(sb); 3759 ext4_group_t i; 3760 int num_meta_group_infos; 3761 struct ext4_group_info *grinfo, ***group_info; 3762 struct ext4_sb_info *sbi = EXT4_SB(sb); 3763 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3764 int count; 3765 3766 if (test_opt(sb, DISCARD)) { 3767 /* 3768 * wait the discard work to drain all of ext4_free_data 3769 */ 3770 flush_work(&sbi->s_discard_work); 3771 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); 3772 } 3773 3774 if (sbi->s_group_info) { 3775 for (i = 0; i < ngroups; i++) { 3776 cond_resched(); 3777 grinfo = ext4_get_group_info(sb, i); 3778 if (!grinfo) 3779 continue; 3780 mb_group_bb_bitmap_free(grinfo); 3781 ext4_lock_group(sb, i); 3782 count = ext4_mb_cleanup_pa(grinfo); 3783 if (count) 3784 mb_debug(sb, "mballoc: %d PAs left\n", 3785 count); 3786 ext4_unlock_group(sb, i); 3787 kmem_cache_free(cachep, grinfo); 3788 } 3789 num_meta_group_infos = (ngroups + 3790 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3791 EXT4_DESC_PER_BLOCK_BITS(sb); 3792 rcu_read_lock(); 3793 group_info = rcu_dereference(sbi->s_group_info); 3794 for (i = 0; i < num_meta_group_infos; i++) 3795 kfree(group_info[i]); 3796 kvfree(group_info); 3797 rcu_read_unlock(); 3798 } 3799 kfree(sbi->s_mb_avg_fragment_size); 3800 kfree(sbi->s_mb_avg_fragment_size_locks); 3801 kfree(sbi->s_mb_largest_free_orders); 3802 kfree(sbi->s_mb_largest_free_orders_locks); 3803 kfree(sbi->s_mb_offsets); 3804 kfree(sbi->s_mb_maxs); 3805 iput(sbi->s_buddy_cache); 3806 if (sbi->s_mb_stats) { 3807 ext4_msg(sb, KERN_INFO, 3808 "mballoc: %u blocks %u reqs (%u success)", 3809 atomic_read(&sbi->s_bal_allocated), 3810 atomic_read(&sbi->s_bal_reqs), 3811 atomic_read(&sbi->s_bal_success)); 3812 ext4_msg(sb, KERN_INFO, 3813 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3814 "%u 2^N hits, %u breaks, %u lost", 3815 atomic_read(&sbi->s_bal_ex_scanned), 3816 atomic_read(&sbi->s_bal_groups_scanned), 3817 atomic_read(&sbi->s_bal_goals), 3818 atomic_read(&sbi->s_bal_2orders), 3819 atomic_read(&sbi->s_bal_breaks), 3820 atomic_read(&sbi->s_mb_lost_chunks)); 3821 ext4_msg(sb, KERN_INFO, 3822 "mballoc: %u generated and it took %llu", 3823 atomic_read(&sbi->s_mb_buddies_generated), 3824 atomic64_read(&sbi->s_mb_generation_time)); 3825 ext4_msg(sb, KERN_INFO, 3826 "mballoc: %u preallocated, %u discarded", 3827 atomic_read(&sbi->s_mb_preallocated), 3828 atomic_read(&sbi->s_mb_discarded)); 3829 } 3830 3831 free_percpu(sbi->s_locality_groups); 3832 3833 return 0; 3834 } 3835 3836 static inline int ext4_issue_discard(struct super_block *sb, 3837 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 3838 struct bio **biop) 3839 { 3840 ext4_fsblk_t discard_block; 3841 3842 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3843 ext4_group_first_block_no(sb, block_group)); 3844 count = EXT4_C2B(EXT4_SB(sb), count); 3845 trace_ext4_discard_blocks(sb, 3846 (unsigned long long) discard_block, count); 3847 if (biop) { 3848 return __blkdev_issue_discard(sb->s_bdev, 3849 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 3850 (sector_t)count << (sb->s_blocksize_bits - 9), 3851 GFP_NOFS, biop); 3852 } else 3853 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3854 } 3855 3856 static void ext4_free_data_in_buddy(struct super_block *sb, 3857 struct ext4_free_data *entry) 3858 { 3859 struct ext4_buddy e4b; 3860 struct ext4_group_info *db; 3861 int err, count = 0; 3862 3863 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3864 entry->efd_count, entry->efd_group, entry); 3865 3866 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3867 /* we expect to find existing buddy because it's pinned */ 3868 BUG_ON(err != 0); 3869 3870 spin_lock(&EXT4_SB(sb)->s_md_lock); 3871 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3872 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3873 3874 db = e4b.bd_info; 3875 /* there are blocks to put in buddy to make them really free */ 3876 count += entry->efd_count; 3877 ext4_lock_group(sb, entry->efd_group); 3878 /* Take it out of per group rb tree */ 3879 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3880 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3881 3882 /* 3883 * Clear the trimmed flag for the group so that the next 3884 * ext4_trim_fs can trim it. 3885 * If the volume is mounted with -o discard, online discard 3886 * is supported and the free blocks will be trimmed online. 3887 */ 3888 if (!test_opt(sb, DISCARD)) 3889 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3890 3891 if (!db->bb_free_root.rb_node) { 3892 /* No more items in the per group rb tree 3893 * balance refcounts from ext4_mb_free_metadata() 3894 */ 3895 put_page(e4b.bd_buddy_page); 3896 put_page(e4b.bd_bitmap_page); 3897 } 3898 ext4_unlock_group(sb, entry->efd_group); 3899 ext4_mb_unload_buddy(&e4b); 3900 3901 mb_debug(sb, "freed %d blocks in 1 structures\n", count); 3902 } 3903 3904 /* 3905 * This function is called by the jbd2 layer once the commit has finished, 3906 * so we know we can free the blocks that were released with that commit. 3907 */ 3908 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3909 { 3910 struct ext4_sb_info *sbi = EXT4_SB(sb); 3911 struct ext4_free_data *entry, *tmp; 3912 LIST_HEAD(freed_data_list); 3913 struct list_head *cut_pos = NULL; 3914 bool wake; 3915 3916 spin_lock(&sbi->s_md_lock); 3917 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 3918 if (entry->efd_tid != commit_tid) 3919 break; 3920 cut_pos = &entry->efd_list; 3921 } 3922 if (cut_pos) 3923 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 3924 cut_pos); 3925 spin_unlock(&sbi->s_md_lock); 3926 3927 list_for_each_entry(entry, &freed_data_list, efd_list) 3928 ext4_free_data_in_buddy(sb, entry); 3929 3930 if (test_opt(sb, DISCARD)) { 3931 spin_lock(&sbi->s_md_lock); 3932 wake = list_empty(&sbi->s_discard_list); 3933 list_splice_tail(&freed_data_list, &sbi->s_discard_list); 3934 spin_unlock(&sbi->s_md_lock); 3935 if (wake) 3936 queue_work(system_unbound_wq, &sbi->s_discard_work); 3937 } else { 3938 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3939 kmem_cache_free(ext4_free_data_cachep, entry); 3940 } 3941 } 3942 3943 int __init ext4_init_mballoc(void) 3944 { 3945 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3946 SLAB_RECLAIM_ACCOUNT); 3947 if (ext4_pspace_cachep == NULL) 3948 goto out; 3949 3950 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3951 SLAB_RECLAIM_ACCOUNT); 3952 if (ext4_ac_cachep == NULL) 3953 goto out_pa_free; 3954 3955 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3956 SLAB_RECLAIM_ACCOUNT); 3957 if (ext4_free_data_cachep == NULL) 3958 goto out_ac_free; 3959 3960 return 0; 3961 3962 out_ac_free: 3963 kmem_cache_destroy(ext4_ac_cachep); 3964 out_pa_free: 3965 kmem_cache_destroy(ext4_pspace_cachep); 3966 out: 3967 return -ENOMEM; 3968 } 3969 3970 void ext4_exit_mballoc(void) 3971 { 3972 /* 3973 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3974 * before destroying the slab cache. 3975 */ 3976 rcu_barrier(); 3977 kmem_cache_destroy(ext4_pspace_cachep); 3978 kmem_cache_destroy(ext4_ac_cachep); 3979 kmem_cache_destroy(ext4_free_data_cachep); 3980 ext4_groupinfo_destroy_slabs(); 3981 } 3982 3983 3984 /* 3985 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 3986 * Returns 0 if success or error code 3987 */ 3988 static noinline_for_stack int 3989 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 3990 handle_t *handle, unsigned int reserv_clstrs) 3991 { 3992 struct buffer_head *bitmap_bh = NULL; 3993 struct ext4_group_desc *gdp; 3994 struct buffer_head *gdp_bh; 3995 struct ext4_sb_info *sbi; 3996 struct super_block *sb; 3997 ext4_fsblk_t block; 3998 int err, len; 3999 4000 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4001 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4002 4003 sb = ac->ac_sb; 4004 sbi = EXT4_SB(sb); 4005 4006 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 4007 if (IS_ERR(bitmap_bh)) { 4008 return PTR_ERR(bitmap_bh); 4009 } 4010 4011 BUFFER_TRACE(bitmap_bh, "getting write access"); 4012 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 4013 EXT4_JTR_NONE); 4014 if (err) 4015 goto out_err; 4016 4017 err = -EIO; 4018 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 4019 if (!gdp) 4020 goto out_err; 4021 4022 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 4023 ext4_free_group_clusters(sb, gdp)); 4024 4025 BUFFER_TRACE(gdp_bh, "get_write_access"); 4026 err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE); 4027 if (err) 4028 goto out_err; 4029 4030 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4031 4032 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4033 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 4034 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 4035 "fs metadata", block, block+len); 4036 /* File system mounted not to panic on error 4037 * Fix the bitmap and return EFSCORRUPTED 4038 * We leak some of the blocks here. 4039 */ 4040 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 4041 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 4042 ac->ac_b_ex.fe_len); 4043 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 4044 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4045 if (!err) 4046 err = -EFSCORRUPTED; 4047 goto out_err; 4048 } 4049 4050 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 4051 #ifdef AGGRESSIVE_CHECK 4052 { 4053 int i; 4054 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 4055 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 4056 bitmap_bh->b_data)); 4057 } 4058 } 4059 #endif 4060 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 4061 ac->ac_b_ex.fe_len); 4062 if (ext4_has_group_desc_csum(sb) && 4063 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4064 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4065 ext4_free_group_clusters_set(sb, gdp, 4066 ext4_free_clusters_after_init(sb, 4067 ac->ac_b_ex.fe_group, gdp)); 4068 } 4069 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 4070 ext4_free_group_clusters_set(sb, gdp, len); 4071 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4072 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 4073 4074 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 4075 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 4076 /* 4077 * Now reduce the dirty block count also. Should not go negative 4078 */ 4079 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 4080 /* release all the reserved blocks if non delalloc */ 4081 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4082 reserv_clstrs); 4083 4084 if (sbi->s_log_groups_per_flex) { 4085 ext4_group_t flex_group = ext4_flex_group(sbi, 4086 ac->ac_b_ex.fe_group); 4087 atomic64_sub(ac->ac_b_ex.fe_len, 4088 &sbi_array_rcu_deref(sbi, s_flex_groups, 4089 flex_group)->free_clusters); 4090 } 4091 4092 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4093 if (err) 4094 goto out_err; 4095 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 4096 4097 out_err: 4098 brelse(bitmap_bh); 4099 return err; 4100 } 4101 4102 /* 4103 * Idempotent helper for Ext4 fast commit replay path to set the state of 4104 * blocks in bitmaps and update counters. 4105 */ 4106 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 4107 int len, int state) 4108 { 4109 struct buffer_head *bitmap_bh = NULL; 4110 struct ext4_group_desc *gdp; 4111 struct buffer_head *gdp_bh; 4112 struct ext4_sb_info *sbi = EXT4_SB(sb); 4113 ext4_group_t group; 4114 ext4_grpblk_t blkoff; 4115 int i, err = 0; 4116 int already; 4117 unsigned int clen, clen_changed, thisgrp_len; 4118 4119 while (len > 0) { 4120 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 4121 4122 /* 4123 * Check to see if we are freeing blocks across a group 4124 * boundary. 4125 * In case of flex_bg, this can happen that (block, len) may 4126 * span across more than one group. In that case we need to 4127 * get the corresponding group metadata to work with. 4128 * For this we have goto again loop. 4129 */ 4130 thisgrp_len = min_t(unsigned int, (unsigned int)len, 4131 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); 4132 clen = EXT4_NUM_B2C(sbi, thisgrp_len); 4133 4134 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) { 4135 ext4_error(sb, "Marking blocks in system zone - " 4136 "Block = %llu, len = %u", 4137 block, thisgrp_len); 4138 bitmap_bh = NULL; 4139 break; 4140 } 4141 4142 bitmap_bh = ext4_read_block_bitmap(sb, group); 4143 if (IS_ERR(bitmap_bh)) { 4144 err = PTR_ERR(bitmap_bh); 4145 bitmap_bh = NULL; 4146 break; 4147 } 4148 4149 err = -EIO; 4150 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 4151 if (!gdp) 4152 break; 4153 4154 ext4_lock_group(sb, group); 4155 already = 0; 4156 for (i = 0; i < clen; i++) 4157 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == 4158 !state) 4159 already++; 4160 4161 clen_changed = clen - already; 4162 if (state) 4163 mb_set_bits(bitmap_bh->b_data, blkoff, clen); 4164 else 4165 mb_clear_bits(bitmap_bh->b_data, blkoff, clen); 4166 if (ext4_has_group_desc_csum(sb) && 4167 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4168 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4169 ext4_free_group_clusters_set(sb, gdp, 4170 ext4_free_clusters_after_init(sb, group, gdp)); 4171 } 4172 if (state) 4173 clen = ext4_free_group_clusters(sb, gdp) - clen_changed; 4174 else 4175 clen = ext4_free_group_clusters(sb, gdp) + clen_changed; 4176 4177 ext4_free_group_clusters_set(sb, gdp, clen); 4178 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4179 ext4_group_desc_csum_set(sb, group, gdp); 4180 4181 ext4_unlock_group(sb, group); 4182 4183 if (sbi->s_log_groups_per_flex) { 4184 ext4_group_t flex_group = ext4_flex_group(sbi, group); 4185 struct flex_groups *fg = sbi_array_rcu_deref(sbi, 4186 s_flex_groups, flex_group); 4187 4188 if (state) 4189 atomic64_sub(clen_changed, &fg->free_clusters); 4190 else 4191 atomic64_add(clen_changed, &fg->free_clusters); 4192 4193 } 4194 4195 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 4196 if (err) 4197 break; 4198 sync_dirty_buffer(bitmap_bh); 4199 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 4200 sync_dirty_buffer(gdp_bh); 4201 if (err) 4202 break; 4203 4204 block += thisgrp_len; 4205 len -= thisgrp_len; 4206 brelse(bitmap_bh); 4207 BUG_ON(len < 0); 4208 } 4209 4210 if (err) 4211 brelse(bitmap_bh); 4212 } 4213 4214 /* 4215 * here we normalize request for locality group 4216 * Group request are normalized to s_mb_group_prealloc, which goes to 4217 * s_strip if we set the same via mount option. 4218 * s_mb_group_prealloc can be configured via 4219 * /sys/fs/ext4/<partition>/mb_group_prealloc 4220 * 4221 * XXX: should we try to preallocate more than the group has now? 4222 */ 4223 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 4224 { 4225 struct super_block *sb = ac->ac_sb; 4226 struct ext4_locality_group *lg = ac->ac_lg; 4227 4228 BUG_ON(lg == NULL); 4229 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 4230 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 4231 } 4232 4233 /* 4234 * This function returns the next element to look at during inode 4235 * PA rbtree walk. We assume that we have held the inode PA rbtree lock 4236 * (ei->i_prealloc_lock) 4237 * 4238 * new_start The start of the range we want to compare 4239 * cur_start The existing start that we are comparing against 4240 * node The node of the rb_tree 4241 */ 4242 static inline struct rb_node* 4243 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node) 4244 { 4245 if (new_start < cur_start) 4246 return node->rb_left; 4247 else 4248 return node->rb_right; 4249 } 4250 4251 static inline void 4252 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac, 4253 ext4_lblk_t start, loff_t end) 4254 { 4255 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4256 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4257 struct ext4_prealloc_space *tmp_pa; 4258 ext4_lblk_t tmp_pa_start; 4259 loff_t tmp_pa_end; 4260 struct rb_node *iter; 4261 4262 read_lock(&ei->i_prealloc_lock); 4263 for (iter = ei->i_prealloc_node.rb_node; iter; 4264 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) { 4265 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4266 pa_node.inode_node); 4267 tmp_pa_start = tmp_pa->pa_lstart; 4268 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4269 4270 spin_lock(&tmp_pa->pa_lock); 4271 if (tmp_pa->pa_deleted == 0) 4272 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start)); 4273 spin_unlock(&tmp_pa->pa_lock); 4274 } 4275 read_unlock(&ei->i_prealloc_lock); 4276 } 4277 4278 /* 4279 * Given an allocation context "ac" and a range "start", "end", check 4280 * and adjust boundaries if the range overlaps with any of the existing 4281 * preallocatoins stored in the corresponding inode of the allocation context. 4282 * 4283 * Parameters: 4284 * ac allocation context 4285 * start start of the new range 4286 * end end of the new range 4287 */ 4288 static inline void 4289 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac, 4290 ext4_lblk_t *start, loff_t *end) 4291 { 4292 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4293 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4294 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL; 4295 struct rb_node *iter; 4296 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1; 4297 loff_t new_end, tmp_pa_end, left_pa_end = -1; 4298 4299 new_start = *start; 4300 new_end = *end; 4301 4302 /* 4303 * Adjust the normalized range so that it doesn't overlap with any 4304 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock 4305 * so it doesn't change underneath us. 4306 */ 4307 read_lock(&ei->i_prealloc_lock); 4308 4309 /* Step 1: find any one immediate neighboring PA of the normalized range */ 4310 for (iter = ei->i_prealloc_node.rb_node; iter; 4311 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4312 tmp_pa_start, iter)) { 4313 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4314 pa_node.inode_node); 4315 tmp_pa_start = tmp_pa->pa_lstart; 4316 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4317 4318 /* PA must not overlap original request */ 4319 spin_lock(&tmp_pa->pa_lock); 4320 if (tmp_pa->pa_deleted == 0) 4321 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end || 4322 ac->ac_o_ex.fe_logical < tmp_pa_start)); 4323 spin_unlock(&tmp_pa->pa_lock); 4324 } 4325 4326 /* 4327 * Step 2: check if the found PA is left or right neighbor and 4328 * get the other neighbor 4329 */ 4330 if (tmp_pa) { 4331 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) { 4332 struct rb_node *tmp; 4333 4334 left_pa = tmp_pa; 4335 tmp = rb_next(&left_pa->pa_node.inode_node); 4336 if (tmp) { 4337 right_pa = rb_entry(tmp, 4338 struct ext4_prealloc_space, 4339 pa_node.inode_node); 4340 } 4341 } else { 4342 struct rb_node *tmp; 4343 4344 right_pa = tmp_pa; 4345 tmp = rb_prev(&right_pa->pa_node.inode_node); 4346 if (tmp) { 4347 left_pa = rb_entry(tmp, 4348 struct ext4_prealloc_space, 4349 pa_node.inode_node); 4350 } 4351 } 4352 } 4353 4354 /* Step 3: get the non deleted neighbors */ 4355 if (left_pa) { 4356 for (iter = &left_pa->pa_node.inode_node;; 4357 iter = rb_prev(iter)) { 4358 if (!iter) { 4359 left_pa = NULL; 4360 break; 4361 } 4362 4363 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4364 pa_node.inode_node); 4365 left_pa = tmp_pa; 4366 spin_lock(&tmp_pa->pa_lock); 4367 if (tmp_pa->pa_deleted == 0) { 4368 spin_unlock(&tmp_pa->pa_lock); 4369 break; 4370 } 4371 spin_unlock(&tmp_pa->pa_lock); 4372 } 4373 } 4374 4375 if (right_pa) { 4376 for (iter = &right_pa->pa_node.inode_node;; 4377 iter = rb_next(iter)) { 4378 if (!iter) { 4379 right_pa = NULL; 4380 break; 4381 } 4382 4383 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4384 pa_node.inode_node); 4385 right_pa = tmp_pa; 4386 spin_lock(&tmp_pa->pa_lock); 4387 if (tmp_pa->pa_deleted == 0) { 4388 spin_unlock(&tmp_pa->pa_lock); 4389 break; 4390 } 4391 spin_unlock(&tmp_pa->pa_lock); 4392 } 4393 } 4394 4395 if (left_pa) { 4396 left_pa_end = pa_logical_end(sbi, left_pa); 4397 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical); 4398 } 4399 4400 if (right_pa) { 4401 right_pa_start = right_pa->pa_lstart; 4402 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical); 4403 } 4404 4405 /* Step 4: trim our normalized range to not overlap with the neighbors */ 4406 if (left_pa) { 4407 if (left_pa_end > new_start) 4408 new_start = left_pa_end; 4409 } 4410 4411 if (right_pa) { 4412 if (right_pa_start < new_end) 4413 new_end = right_pa_start; 4414 } 4415 read_unlock(&ei->i_prealloc_lock); 4416 4417 /* XXX: extra loop to check we really don't overlap preallocations */ 4418 ext4_mb_pa_assert_overlap(ac, new_start, new_end); 4419 4420 *start = new_start; 4421 *end = new_end; 4422 } 4423 4424 /* 4425 * Normalization means making request better in terms of 4426 * size and alignment 4427 */ 4428 static noinline_for_stack void 4429 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 4430 struct ext4_allocation_request *ar) 4431 { 4432 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4433 struct ext4_super_block *es = sbi->s_es; 4434 int bsbits, max; 4435 loff_t size, start_off, end; 4436 loff_t orig_size __maybe_unused; 4437 ext4_lblk_t start; 4438 4439 /* do normalize only data requests, metadata requests 4440 do not need preallocation */ 4441 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4442 return; 4443 4444 /* sometime caller may want exact blocks */ 4445 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4446 return; 4447 4448 /* caller may indicate that preallocation isn't 4449 * required (it's a tail, for example) */ 4450 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 4451 return; 4452 4453 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 4454 ext4_mb_normalize_group_request(ac); 4455 return ; 4456 } 4457 4458 bsbits = ac->ac_sb->s_blocksize_bits; 4459 4460 /* first, let's learn actual file size 4461 * given current request is allocated */ 4462 size = extent_logical_end(sbi, &ac->ac_o_ex); 4463 size = size << bsbits; 4464 if (size < i_size_read(ac->ac_inode)) 4465 size = i_size_read(ac->ac_inode); 4466 orig_size = size; 4467 4468 /* max size of free chunks */ 4469 max = 2 << bsbits; 4470 4471 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 4472 (req <= (size) || max <= (chunk_size)) 4473 4474 /* first, try to predict filesize */ 4475 /* XXX: should this table be tunable? */ 4476 start_off = 0; 4477 if (size <= 16 * 1024) { 4478 size = 16 * 1024; 4479 } else if (size <= 32 * 1024) { 4480 size = 32 * 1024; 4481 } else if (size <= 64 * 1024) { 4482 size = 64 * 1024; 4483 } else if (size <= 128 * 1024) { 4484 size = 128 * 1024; 4485 } else if (size <= 256 * 1024) { 4486 size = 256 * 1024; 4487 } else if (size <= 512 * 1024) { 4488 size = 512 * 1024; 4489 } else if (size <= 1024 * 1024) { 4490 size = 1024 * 1024; 4491 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 4492 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4493 (21 - bsbits)) << 21; 4494 size = 2 * 1024 * 1024; 4495 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 4496 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4497 (22 - bsbits)) << 22; 4498 size = 4 * 1024 * 1024; 4499 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len), 4500 (8<<20)>>bsbits, max, 8 * 1024)) { 4501 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4502 (23 - bsbits)) << 23; 4503 size = 8 * 1024 * 1024; 4504 } else { 4505 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 4506 size = (loff_t) EXT4_C2B(sbi, 4507 ac->ac_o_ex.fe_len) << bsbits; 4508 } 4509 size = size >> bsbits; 4510 start = start_off >> bsbits; 4511 4512 /* 4513 * For tiny groups (smaller than 8MB) the chosen allocation 4514 * alignment may be larger than group size. Make sure the 4515 * alignment does not move allocation to a different group which 4516 * makes mballoc fail assertions later. 4517 */ 4518 start = max(start, rounddown(ac->ac_o_ex.fe_logical, 4519 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); 4520 4521 /* avoid unnecessary preallocation that may trigger assertions */ 4522 if (start + size > EXT_MAX_BLOCKS) 4523 size = EXT_MAX_BLOCKS - start; 4524 4525 /* don't cover already allocated blocks in selected range */ 4526 if (ar->pleft && start <= ar->lleft) { 4527 size -= ar->lleft + 1 - start; 4528 start = ar->lleft + 1; 4529 } 4530 if (ar->pright && start + size - 1 >= ar->lright) 4531 size -= start + size - ar->lright; 4532 4533 /* 4534 * Trim allocation request for filesystems with artificially small 4535 * groups. 4536 */ 4537 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 4538 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 4539 4540 end = start + size; 4541 4542 ext4_mb_pa_adjust_overlap(ac, &start, &end); 4543 4544 size = end - start; 4545 4546 /* 4547 * In this function "start" and "size" are normalized for better 4548 * alignment and length such that we could preallocate more blocks. 4549 * This normalization is done such that original request of 4550 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and 4551 * "size" boundaries. 4552 * (Note fe_len can be relaxed since FS block allocation API does not 4553 * provide gurantee on number of contiguous blocks allocation since that 4554 * depends upon free space left, etc). 4555 * In case of inode pa, later we use the allocated blocks 4556 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated 4557 * range of goal/best blocks [start, size] to put it at the 4558 * ac_o_ex.fe_logical extent of this inode. 4559 * (See ext4_mb_use_inode_pa() for more details) 4560 */ 4561 if (start + size <= ac->ac_o_ex.fe_logical || 4562 start > ac->ac_o_ex.fe_logical) { 4563 ext4_msg(ac->ac_sb, KERN_ERR, 4564 "start %lu, size %lu, fe_logical %lu", 4565 (unsigned long) start, (unsigned long) size, 4566 (unsigned long) ac->ac_o_ex.fe_logical); 4567 BUG(); 4568 } 4569 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 4570 4571 /* now prepare goal request */ 4572 4573 /* XXX: is it better to align blocks WRT to logical 4574 * placement or satisfy big request as is */ 4575 ac->ac_g_ex.fe_logical = start; 4576 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 4577 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 4578 4579 /* define goal start in order to merge */ 4580 if (ar->pright && (ar->lright == (start + size)) && 4581 ar->pright >= size && 4582 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) { 4583 /* merge to the right */ 4584 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 4585 &ac->ac_g_ex.fe_group, 4586 &ac->ac_g_ex.fe_start); 4587 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4588 } 4589 if (ar->pleft && (ar->lleft + 1 == start) && 4590 ar->pleft + 1 < ext4_blocks_count(es)) { 4591 /* merge to the left */ 4592 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 4593 &ac->ac_g_ex.fe_group, 4594 &ac->ac_g_ex.fe_start); 4595 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4596 } 4597 4598 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 4599 orig_size, start); 4600 } 4601 4602 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 4603 { 4604 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4605 4606 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 4607 atomic_inc(&sbi->s_bal_reqs); 4608 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 4609 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 4610 atomic_inc(&sbi->s_bal_success); 4611 4612 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 4613 for (int i=0; i<EXT4_MB_NUM_CRS; i++) { 4614 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]); 4615 } 4616 4617 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 4618 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 4619 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 4620 atomic_inc(&sbi->s_bal_goals); 4621 /* did we allocate as much as normalizer originally wanted? */ 4622 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len) 4623 atomic_inc(&sbi->s_bal_len_goals); 4624 4625 if (ac->ac_found > sbi->s_mb_max_to_scan) 4626 atomic_inc(&sbi->s_bal_breaks); 4627 } 4628 4629 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 4630 trace_ext4_mballoc_alloc(ac); 4631 else 4632 trace_ext4_mballoc_prealloc(ac); 4633 } 4634 4635 /* 4636 * Called on failure; free up any blocks from the inode PA for this 4637 * context. We don't need this for MB_GROUP_PA because we only change 4638 * pa_free in ext4_mb_release_context(), but on failure, we've already 4639 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 4640 */ 4641 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 4642 { 4643 struct ext4_prealloc_space *pa = ac->ac_pa; 4644 struct ext4_buddy e4b; 4645 int err; 4646 4647 if (pa == NULL) { 4648 if (ac->ac_f_ex.fe_len == 0) 4649 return; 4650 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 4651 if (WARN_RATELIMIT(err, 4652 "ext4: mb_load_buddy failed (%d)", err)) 4653 /* 4654 * This should never happen since we pin the 4655 * pages in the ext4_allocation_context so 4656 * ext4_mb_load_buddy() should never fail. 4657 */ 4658 return; 4659 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4660 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 4661 ac->ac_f_ex.fe_len); 4662 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4663 ext4_mb_unload_buddy(&e4b); 4664 return; 4665 } 4666 if (pa->pa_type == MB_INODE_PA) { 4667 spin_lock(&pa->pa_lock); 4668 pa->pa_free += ac->ac_b_ex.fe_len; 4669 spin_unlock(&pa->pa_lock); 4670 } 4671 } 4672 4673 /* 4674 * use blocks preallocated to inode 4675 */ 4676 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 4677 struct ext4_prealloc_space *pa) 4678 { 4679 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4680 ext4_fsblk_t start; 4681 ext4_fsblk_t end; 4682 int len; 4683 4684 /* found preallocated blocks, use them */ 4685 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 4686 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 4687 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 4688 len = EXT4_NUM_B2C(sbi, end - start); 4689 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 4690 &ac->ac_b_ex.fe_start); 4691 ac->ac_b_ex.fe_len = len; 4692 ac->ac_status = AC_STATUS_FOUND; 4693 ac->ac_pa = pa; 4694 4695 BUG_ON(start < pa->pa_pstart); 4696 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 4697 BUG_ON(pa->pa_free < len); 4698 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4699 pa->pa_free -= len; 4700 4701 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 4702 } 4703 4704 /* 4705 * use blocks preallocated to locality group 4706 */ 4707 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 4708 struct ext4_prealloc_space *pa) 4709 { 4710 unsigned int len = ac->ac_o_ex.fe_len; 4711 4712 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 4713 &ac->ac_b_ex.fe_group, 4714 &ac->ac_b_ex.fe_start); 4715 ac->ac_b_ex.fe_len = len; 4716 ac->ac_status = AC_STATUS_FOUND; 4717 ac->ac_pa = pa; 4718 4719 /* we don't correct pa_pstart or pa_len here to avoid 4720 * possible race when the group is being loaded concurrently 4721 * instead we correct pa later, after blocks are marked 4722 * in on-disk bitmap -- see ext4_mb_release_context() 4723 * Other CPUs are prevented from allocating from this pa by lg_mutex 4724 */ 4725 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 4726 pa->pa_lstart, len, pa); 4727 } 4728 4729 /* 4730 * Return the prealloc space that have minimal distance 4731 * from the goal block. @cpa is the prealloc 4732 * space that is having currently known minimal distance 4733 * from the goal block. 4734 */ 4735 static struct ext4_prealloc_space * 4736 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 4737 struct ext4_prealloc_space *pa, 4738 struct ext4_prealloc_space *cpa) 4739 { 4740 ext4_fsblk_t cur_distance, new_distance; 4741 4742 if (cpa == NULL) { 4743 atomic_inc(&pa->pa_count); 4744 return pa; 4745 } 4746 cur_distance = abs(goal_block - cpa->pa_pstart); 4747 new_distance = abs(goal_block - pa->pa_pstart); 4748 4749 if (cur_distance <= new_distance) 4750 return cpa; 4751 4752 /* drop the previous reference */ 4753 atomic_dec(&cpa->pa_count); 4754 atomic_inc(&pa->pa_count); 4755 return pa; 4756 } 4757 4758 /* 4759 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY 4760 */ 4761 static bool 4762 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac, 4763 struct ext4_prealloc_space *pa) 4764 { 4765 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4766 ext4_fsblk_t start; 4767 4768 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))) 4769 return true; 4770 4771 /* 4772 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted 4773 * in ext4_mb_normalize_request and will keep same with ac_o_ex 4774 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep 4775 * consistent with ext4_mb_find_by_goal. 4776 */ 4777 start = pa->pa_pstart + 4778 (ac->ac_g_ex.fe_logical - pa->pa_lstart); 4779 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start) 4780 return false; 4781 4782 if (ac->ac_g_ex.fe_len > pa->pa_len - 4783 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart)) 4784 return false; 4785 4786 return true; 4787 } 4788 4789 /* 4790 * search goal blocks in preallocated space 4791 */ 4792 static noinline_for_stack bool 4793 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 4794 { 4795 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4796 int order, i; 4797 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4798 struct ext4_locality_group *lg; 4799 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL; 4800 struct rb_node *iter; 4801 ext4_fsblk_t goal_block; 4802 4803 /* only data can be preallocated */ 4804 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4805 return false; 4806 4807 /* 4808 * first, try per-file preallocation by searching the inode pa rbtree. 4809 * 4810 * Here, we can't do a direct traversal of the tree because 4811 * ext4_mb_discard_group_preallocation() can paralelly mark the pa 4812 * deleted and that can cause direct traversal to skip some entries. 4813 */ 4814 read_lock(&ei->i_prealloc_lock); 4815 4816 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) { 4817 goto try_group_pa; 4818 } 4819 4820 /* 4821 * Step 1: Find a pa with logical start immediately adjacent to the 4822 * original logical start. This could be on the left or right. 4823 * 4824 * (tmp_pa->pa_lstart never changes so we can skip locking for it). 4825 */ 4826 for (iter = ei->i_prealloc_node.rb_node; iter; 4827 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4828 tmp_pa->pa_lstart, iter)) { 4829 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4830 pa_node.inode_node); 4831 } 4832 4833 /* 4834 * Step 2: The adjacent pa might be to the right of logical start, find 4835 * the left adjacent pa. After this step we'd have a valid tmp_pa whose 4836 * logical start is towards the left of original request's logical start 4837 */ 4838 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) { 4839 struct rb_node *tmp; 4840 tmp = rb_prev(&tmp_pa->pa_node.inode_node); 4841 4842 if (tmp) { 4843 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space, 4844 pa_node.inode_node); 4845 } else { 4846 /* 4847 * If there is no adjacent pa to the left then finding 4848 * an overlapping pa is not possible hence stop searching 4849 * inode pa tree 4850 */ 4851 goto try_group_pa; 4852 } 4853 } 4854 4855 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4856 4857 /* 4858 * Step 3: If the left adjacent pa is deleted, keep moving left to find 4859 * the first non deleted adjacent pa. After this step we should have a 4860 * valid tmp_pa which is guaranteed to be non deleted. 4861 */ 4862 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) { 4863 if (!iter) { 4864 /* 4865 * no non deleted left adjacent pa, so stop searching 4866 * inode pa tree 4867 */ 4868 goto try_group_pa; 4869 } 4870 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4871 pa_node.inode_node); 4872 spin_lock(&tmp_pa->pa_lock); 4873 if (tmp_pa->pa_deleted == 0) { 4874 /* 4875 * We will keep holding the pa_lock from 4876 * this point on because we don't want group discard 4877 * to delete this pa underneath us. Since group 4878 * discard is anyways an ENOSPC operation it 4879 * should be okay for it to wait a few more cycles. 4880 */ 4881 break; 4882 } else { 4883 spin_unlock(&tmp_pa->pa_lock); 4884 } 4885 } 4886 4887 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4888 BUG_ON(tmp_pa->pa_deleted == 1); 4889 4890 /* 4891 * Step 4: We now have the non deleted left adjacent pa. Only this 4892 * pa can possibly satisfy the request hence check if it overlaps 4893 * original logical start and stop searching if it doesn't. 4894 */ 4895 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) { 4896 spin_unlock(&tmp_pa->pa_lock); 4897 goto try_group_pa; 4898 } 4899 4900 /* non-extent files can't have physical blocks past 2^32 */ 4901 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 4902 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) > 4903 EXT4_MAX_BLOCK_FILE_PHYS)) { 4904 /* 4905 * Since PAs don't overlap, we won't find any other PA to 4906 * satisfy this. 4907 */ 4908 spin_unlock(&tmp_pa->pa_lock); 4909 goto try_group_pa; 4910 } 4911 4912 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) { 4913 atomic_inc(&tmp_pa->pa_count); 4914 ext4_mb_use_inode_pa(ac, tmp_pa); 4915 spin_unlock(&tmp_pa->pa_lock); 4916 read_unlock(&ei->i_prealloc_lock); 4917 return true; 4918 } else { 4919 /* 4920 * We found a valid overlapping pa but couldn't use it because 4921 * it had no free blocks. This should ideally never happen 4922 * because: 4923 * 4924 * 1. When a new inode pa is added to rbtree it must have 4925 * pa_free > 0 since otherwise we won't actually need 4926 * preallocation. 4927 * 4928 * 2. An inode pa that is in the rbtree can only have it's 4929 * pa_free become zero when another thread calls: 4930 * ext4_mb_new_blocks 4931 * ext4_mb_use_preallocated 4932 * ext4_mb_use_inode_pa 4933 * 4934 * 3. Further, after the above calls make pa_free == 0, we will 4935 * immediately remove it from the rbtree in: 4936 * ext4_mb_new_blocks 4937 * ext4_mb_release_context 4938 * ext4_mb_put_pa 4939 * 4940 * 4. Since the pa_free becoming 0 and pa_free getting removed 4941 * from tree both happen in ext4_mb_new_blocks, which is always 4942 * called with i_data_sem held for data allocations, we can be 4943 * sure that another process will never see a pa in rbtree with 4944 * pa_free == 0. 4945 */ 4946 WARN_ON_ONCE(tmp_pa->pa_free == 0); 4947 } 4948 spin_unlock(&tmp_pa->pa_lock); 4949 try_group_pa: 4950 read_unlock(&ei->i_prealloc_lock); 4951 4952 /* can we use group allocation? */ 4953 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 4954 return false; 4955 4956 /* inode may have no locality group for some reason */ 4957 lg = ac->ac_lg; 4958 if (lg == NULL) 4959 return false; 4960 order = fls(ac->ac_o_ex.fe_len) - 1; 4961 if (order > PREALLOC_TB_SIZE - 1) 4962 /* The max size of hash table is PREALLOC_TB_SIZE */ 4963 order = PREALLOC_TB_SIZE - 1; 4964 4965 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 4966 /* 4967 * search for the prealloc space that is having 4968 * minimal distance from the goal block. 4969 */ 4970 for (i = order; i < PREALLOC_TB_SIZE; i++) { 4971 rcu_read_lock(); 4972 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i], 4973 pa_node.lg_list) { 4974 spin_lock(&tmp_pa->pa_lock); 4975 if (tmp_pa->pa_deleted == 0 && 4976 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) { 4977 4978 cpa = ext4_mb_check_group_pa(goal_block, 4979 tmp_pa, cpa); 4980 } 4981 spin_unlock(&tmp_pa->pa_lock); 4982 } 4983 rcu_read_unlock(); 4984 } 4985 if (cpa) { 4986 ext4_mb_use_group_pa(ac, cpa); 4987 return true; 4988 } 4989 return false; 4990 } 4991 4992 /* 4993 * the function goes through all preallocation in this group and marks them 4994 * used in in-core bitmap. buddy must be generated from this bitmap 4995 * Need to be called with ext4 group lock held 4996 */ 4997 static noinline_for_stack 4998 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 4999 ext4_group_t group) 5000 { 5001 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5002 struct ext4_prealloc_space *pa; 5003 struct list_head *cur; 5004 ext4_group_t groupnr; 5005 ext4_grpblk_t start; 5006 int preallocated = 0; 5007 int len; 5008 5009 if (!grp) 5010 return; 5011 5012 /* all form of preallocation discards first load group, 5013 * so the only competing code is preallocation use. 5014 * we don't need any locking here 5015 * notice we do NOT ignore preallocations with pa_deleted 5016 * otherwise we could leave used blocks available for 5017 * allocation in buddy when concurrent ext4_mb_put_pa() 5018 * is dropping preallocation 5019 */ 5020 list_for_each(cur, &grp->bb_prealloc_list) { 5021 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 5022 spin_lock(&pa->pa_lock); 5023 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5024 &groupnr, &start); 5025 len = pa->pa_len; 5026 spin_unlock(&pa->pa_lock); 5027 if (unlikely(len == 0)) 5028 continue; 5029 BUG_ON(groupnr != group); 5030 mb_set_bits(bitmap, start, len); 5031 preallocated += len; 5032 } 5033 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 5034 } 5035 5036 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 5037 struct ext4_prealloc_space *pa) 5038 { 5039 struct ext4_inode_info *ei; 5040 5041 if (pa->pa_deleted) { 5042 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 5043 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 5044 pa->pa_len); 5045 return; 5046 } 5047 5048 pa->pa_deleted = 1; 5049 5050 if (pa->pa_type == MB_INODE_PA) { 5051 ei = EXT4_I(pa->pa_inode); 5052 atomic_dec(&ei->i_prealloc_active); 5053 } 5054 } 5055 5056 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa) 5057 { 5058 BUG_ON(!pa); 5059 BUG_ON(atomic_read(&pa->pa_count)); 5060 BUG_ON(pa->pa_deleted == 0); 5061 kmem_cache_free(ext4_pspace_cachep, pa); 5062 } 5063 5064 static void ext4_mb_pa_callback(struct rcu_head *head) 5065 { 5066 struct ext4_prealloc_space *pa; 5067 5068 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 5069 ext4_mb_pa_free(pa); 5070 } 5071 5072 /* 5073 * drops a reference to preallocated space descriptor 5074 * if this was the last reference and the space is consumed 5075 */ 5076 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 5077 struct super_block *sb, struct ext4_prealloc_space *pa) 5078 { 5079 ext4_group_t grp; 5080 ext4_fsblk_t grp_blk; 5081 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 5082 5083 /* in this short window concurrent discard can set pa_deleted */ 5084 spin_lock(&pa->pa_lock); 5085 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 5086 spin_unlock(&pa->pa_lock); 5087 return; 5088 } 5089 5090 if (pa->pa_deleted == 1) { 5091 spin_unlock(&pa->pa_lock); 5092 return; 5093 } 5094 5095 ext4_mb_mark_pa_deleted(sb, pa); 5096 spin_unlock(&pa->pa_lock); 5097 5098 grp_blk = pa->pa_pstart; 5099 /* 5100 * If doing group-based preallocation, pa_pstart may be in the 5101 * next group when pa is used up 5102 */ 5103 if (pa->pa_type == MB_GROUP_PA) 5104 grp_blk--; 5105 5106 grp = ext4_get_group_number(sb, grp_blk); 5107 5108 /* 5109 * possible race: 5110 * 5111 * P1 (buddy init) P2 (regular allocation) 5112 * find block B in PA 5113 * copy on-disk bitmap to buddy 5114 * mark B in on-disk bitmap 5115 * drop PA from group 5116 * mark all PAs in buddy 5117 * 5118 * thus, P1 initializes buddy with B available. to prevent this 5119 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 5120 * against that pair 5121 */ 5122 ext4_lock_group(sb, grp); 5123 list_del(&pa->pa_group_list); 5124 ext4_unlock_group(sb, grp); 5125 5126 if (pa->pa_type == MB_INODE_PA) { 5127 write_lock(pa->pa_node_lock.inode_lock); 5128 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5129 write_unlock(pa->pa_node_lock.inode_lock); 5130 ext4_mb_pa_free(pa); 5131 } else { 5132 spin_lock(pa->pa_node_lock.lg_lock); 5133 list_del_rcu(&pa->pa_node.lg_list); 5134 spin_unlock(pa->pa_node_lock.lg_lock); 5135 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5136 } 5137 } 5138 5139 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new) 5140 { 5141 struct rb_node **iter = &root->rb_node, *parent = NULL; 5142 struct ext4_prealloc_space *iter_pa, *new_pa; 5143 ext4_lblk_t iter_start, new_start; 5144 5145 while (*iter) { 5146 iter_pa = rb_entry(*iter, struct ext4_prealloc_space, 5147 pa_node.inode_node); 5148 new_pa = rb_entry(new, struct ext4_prealloc_space, 5149 pa_node.inode_node); 5150 iter_start = iter_pa->pa_lstart; 5151 new_start = new_pa->pa_lstart; 5152 5153 parent = *iter; 5154 if (new_start < iter_start) 5155 iter = &((*iter)->rb_left); 5156 else 5157 iter = &((*iter)->rb_right); 5158 } 5159 5160 rb_link_node(new, parent, iter); 5161 rb_insert_color(new, root); 5162 } 5163 5164 /* 5165 * creates new preallocated space for given inode 5166 */ 5167 static noinline_for_stack void 5168 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 5169 { 5170 struct super_block *sb = ac->ac_sb; 5171 struct ext4_sb_info *sbi = EXT4_SB(sb); 5172 struct ext4_prealloc_space *pa; 5173 struct ext4_group_info *grp; 5174 struct ext4_inode_info *ei; 5175 5176 /* preallocate only when found space is larger then requested */ 5177 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5178 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5179 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5180 BUG_ON(ac->ac_pa == NULL); 5181 5182 pa = ac->ac_pa; 5183 5184 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) { 5185 struct ext4_free_extent ex = { 5186 .fe_logical = ac->ac_g_ex.fe_logical, 5187 .fe_len = ac->ac_orig_goal_len, 5188 }; 5189 loff_t orig_goal_end = extent_logical_end(sbi, &ex); 5190 loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex); 5191 5192 /* 5193 * We can't allocate as much as normalizer wants, so we try 5194 * to get proper lstart to cover the original request, except 5195 * when the goal doesn't cover the original request as below: 5196 * 5197 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048 5198 * best_ex:0/200(200) -> adjusted: 1848/2048(200) 5199 */ 5200 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 5201 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 5202 5203 /* 5204 * Use the below logic for adjusting best extent as it keeps 5205 * fragmentation in check while ensuring logical range of best 5206 * extent doesn't overflow out of goal extent: 5207 * 5208 * 1. Check if best ex can be kept at end of goal (before 5209 * cr_best_avail trimmed it) and still cover original start 5210 * 2. Else, check if best ex can be kept at start of goal and 5211 * still cover original end 5212 * 3. Else, keep the best ex at start of original request. 5213 */ 5214 ex.fe_len = ac->ac_b_ex.fe_len; 5215 5216 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len); 5217 if (ac->ac_o_ex.fe_logical >= ex.fe_logical) 5218 goto adjust_bex; 5219 5220 ex.fe_logical = ac->ac_g_ex.fe_logical; 5221 if (o_ex_end <= extent_logical_end(sbi, &ex)) 5222 goto adjust_bex; 5223 5224 ex.fe_logical = ac->ac_o_ex.fe_logical; 5225 adjust_bex: 5226 ac->ac_b_ex.fe_logical = ex.fe_logical; 5227 5228 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 5229 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end); 5230 } 5231 5232 pa->pa_lstart = ac->ac_b_ex.fe_logical; 5233 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5234 pa->pa_len = ac->ac_b_ex.fe_len; 5235 pa->pa_free = pa->pa_len; 5236 spin_lock_init(&pa->pa_lock); 5237 INIT_LIST_HEAD(&pa->pa_group_list); 5238 pa->pa_deleted = 0; 5239 pa->pa_type = MB_INODE_PA; 5240 5241 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5242 pa->pa_len, pa->pa_lstart); 5243 trace_ext4_mb_new_inode_pa(ac, pa); 5244 5245 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 5246 ext4_mb_use_inode_pa(ac, pa); 5247 5248 ei = EXT4_I(ac->ac_inode); 5249 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5250 if (!grp) 5251 return; 5252 5253 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock; 5254 pa->pa_inode = ac->ac_inode; 5255 5256 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5257 5258 write_lock(pa->pa_node_lock.inode_lock); 5259 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node); 5260 write_unlock(pa->pa_node_lock.inode_lock); 5261 atomic_inc(&ei->i_prealloc_active); 5262 } 5263 5264 /* 5265 * creates new preallocated space for locality group inodes belongs to 5266 */ 5267 static noinline_for_stack void 5268 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 5269 { 5270 struct super_block *sb = ac->ac_sb; 5271 struct ext4_locality_group *lg; 5272 struct ext4_prealloc_space *pa; 5273 struct ext4_group_info *grp; 5274 5275 /* preallocate only when found space is larger then requested */ 5276 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5277 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5278 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5279 BUG_ON(ac->ac_pa == NULL); 5280 5281 pa = ac->ac_pa; 5282 5283 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5284 pa->pa_lstart = pa->pa_pstart; 5285 pa->pa_len = ac->ac_b_ex.fe_len; 5286 pa->pa_free = pa->pa_len; 5287 spin_lock_init(&pa->pa_lock); 5288 INIT_LIST_HEAD(&pa->pa_node.lg_list); 5289 INIT_LIST_HEAD(&pa->pa_group_list); 5290 pa->pa_deleted = 0; 5291 pa->pa_type = MB_GROUP_PA; 5292 5293 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5294 pa->pa_len, pa->pa_lstart); 5295 trace_ext4_mb_new_group_pa(ac, pa); 5296 5297 ext4_mb_use_group_pa(ac, pa); 5298 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 5299 5300 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5301 if (!grp) 5302 return; 5303 lg = ac->ac_lg; 5304 BUG_ON(lg == NULL); 5305 5306 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock; 5307 pa->pa_inode = NULL; 5308 5309 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5310 5311 /* 5312 * We will later add the new pa to the right bucket 5313 * after updating the pa_free in ext4_mb_release_context 5314 */ 5315 } 5316 5317 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 5318 { 5319 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5320 ext4_mb_new_group_pa(ac); 5321 else 5322 ext4_mb_new_inode_pa(ac); 5323 } 5324 5325 /* 5326 * finds all unused blocks in on-disk bitmap, frees them in 5327 * in-core bitmap and buddy. 5328 * @pa must be unlinked from inode and group lists, so that 5329 * nobody else can find/use it. 5330 * the caller MUST hold group/inode locks. 5331 * TODO: optimize the case when there are no in-core structures yet 5332 */ 5333 static noinline_for_stack int 5334 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 5335 struct ext4_prealloc_space *pa) 5336 { 5337 struct super_block *sb = e4b->bd_sb; 5338 struct ext4_sb_info *sbi = EXT4_SB(sb); 5339 unsigned int end; 5340 unsigned int next; 5341 ext4_group_t group; 5342 ext4_grpblk_t bit; 5343 unsigned long long grp_blk_start; 5344 int free = 0; 5345 5346 BUG_ON(pa->pa_deleted == 0); 5347 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5348 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 5349 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 5350 end = bit + pa->pa_len; 5351 5352 while (bit < end) { 5353 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 5354 if (bit >= end) 5355 break; 5356 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 5357 mb_debug(sb, "free preallocated %u/%u in group %u\n", 5358 (unsigned) ext4_group_first_block_no(sb, group) + bit, 5359 (unsigned) next - bit, (unsigned) group); 5360 free += next - bit; 5361 5362 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 5363 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 5364 EXT4_C2B(sbi, bit)), 5365 next - bit); 5366 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 5367 bit = next + 1; 5368 } 5369 if (free != pa->pa_free) { 5370 ext4_msg(e4b->bd_sb, KERN_CRIT, 5371 "pa %p: logic %lu, phys. %lu, len %d", 5372 pa, (unsigned long) pa->pa_lstart, 5373 (unsigned long) pa->pa_pstart, 5374 pa->pa_len); 5375 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 5376 free, pa->pa_free); 5377 /* 5378 * pa is already deleted so we use the value obtained 5379 * from the bitmap and continue. 5380 */ 5381 } 5382 atomic_add(free, &sbi->s_mb_discarded); 5383 5384 return 0; 5385 } 5386 5387 static noinline_for_stack int 5388 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 5389 struct ext4_prealloc_space *pa) 5390 { 5391 struct super_block *sb = e4b->bd_sb; 5392 ext4_group_t group; 5393 ext4_grpblk_t bit; 5394 5395 trace_ext4_mb_release_group_pa(sb, pa); 5396 BUG_ON(pa->pa_deleted == 0); 5397 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5398 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) { 5399 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu", 5400 e4b->bd_group, group, pa->pa_pstart); 5401 return 0; 5402 } 5403 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 5404 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 5405 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 5406 5407 return 0; 5408 } 5409 5410 /* 5411 * releases all preallocations in given group 5412 * 5413 * first, we need to decide discard policy: 5414 * - when do we discard 5415 * 1) ENOSPC 5416 * - how many do we discard 5417 * 1) how many requested 5418 */ 5419 static noinline_for_stack int 5420 ext4_mb_discard_group_preallocations(struct super_block *sb, 5421 ext4_group_t group, int *busy) 5422 { 5423 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5424 struct buffer_head *bitmap_bh = NULL; 5425 struct ext4_prealloc_space *pa, *tmp; 5426 LIST_HEAD(list); 5427 struct ext4_buddy e4b; 5428 struct ext4_inode_info *ei; 5429 int err; 5430 int free = 0; 5431 5432 if (!grp) 5433 return 0; 5434 mb_debug(sb, "discard preallocation for group %u\n", group); 5435 if (list_empty(&grp->bb_prealloc_list)) 5436 goto out_dbg; 5437 5438 bitmap_bh = ext4_read_block_bitmap(sb, group); 5439 if (IS_ERR(bitmap_bh)) { 5440 err = PTR_ERR(bitmap_bh); 5441 ext4_error_err(sb, -err, 5442 "Error %d reading block bitmap for %u", 5443 err, group); 5444 goto out_dbg; 5445 } 5446 5447 err = ext4_mb_load_buddy(sb, group, &e4b); 5448 if (err) { 5449 ext4_warning(sb, "Error %d loading buddy information for %u", 5450 err, group); 5451 put_bh(bitmap_bh); 5452 goto out_dbg; 5453 } 5454 5455 ext4_lock_group(sb, group); 5456 list_for_each_entry_safe(pa, tmp, 5457 &grp->bb_prealloc_list, pa_group_list) { 5458 spin_lock(&pa->pa_lock); 5459 if (atomic_read(&pa->pa_count)) { 5460 spin_unlock(&pa->pa_lock); 5461 *busy = 1; 5462 continue; 5463 } 5464 if (pa->pa_deleted) { 5465 spin_unlock(&pa->pa_lock); 5466 continue; 5467 } 5468 5469 /* seems this one can be freed ... */ 5470 ext4_mb_mark_pa_deleted(sb, pa); 5471 5472 if (!free) 5473 this_cpu_inc(discard_pa_seq); 5474 5475 /* we can trust pa_free ... */ 5476 free += pa->pa_free; 5477 5478 spin_unlock(&pa->pa_lock); 5479 5480 list_del(&pa->pa_group_list); 5481 list_add(&pa->u.pa_tmp_list, &list); 5482 } 5483 5484 /* now free all selected PAs */ 5485 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5486 5487 /* remove from object (inode or locality group) */ 5488 if (pa->pa_type == MB_GROUP_PA) { 5489 spin_lock(pa->pa_node_lock.lg_lock); 5490 list_del_rcu(&pa->pa_node.lg_list); 5491 spin_unlock(pa->pa_node_lock.lg_lock); 5492 } else { 5493 write_lock(pa->pa_node_lock.inode_lock); 5494 ei = EXT4_I(pa->pa_inode); 5495 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5496 write_unlock(pa->pa_node_lock.inode_lock); 5497 } 5498 5499 list_del(&pa->u.pa_tmp_list); 5500 5501 if (pa->pa_type == MB_GROUP_PA) { 5502 ext4_mb_release_group_pa(&e4b, pa); 5503 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5504 } else { 5505 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5506 ext4_mb_pa_free(pa); 5507 } 5508 } 5509 5510 ext4_unlock_group(sb, group); 5511 ext4_mb_unload_buddy(&e4b); 5512 put_bh(bitmap_bh); 5513 out_dbg: 5514 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 5515 free, group, grp->bb_free); 5516 return free; 5517 } 5518 5519 /* 5520 * releases all non-used preallocated blocks for given inode 5521 * 5522 * It's important to discard preallocations under i_data_sem 5523 * We don't want another block to be served from the prealloc 5524 * space when we are discarding the inode prealloc space. 5525 * 5526 * FIXME!! Make sure it is valid at all the call sites 5527 */ 5528 void ext4_discard_preallocations(struct inode *inode, unsigned int needed) 5529 { 5530 struct ext4_inode_info *ei = EXT4_I(inode); 5531 struct super_block *sb = inode->i_sb; 5532 struct buffer_head *bitmap_bh = NULL; 5533 struct ext4_prealloc_space *pa, *tmp; 5534 ext4_group_t group = 0; 5535 LIST_HEAD(list); 5536 struct ext4_buddy e4b; 5537 struct rb_node *iter; 5538 int err; 5539 5540 if (!S_ISREG(inode->i_mode)) { 5541 return; 5542 } 5543 5544 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 5545 return; 5546 5547 mb_debug(sb, "discard preallocation for inode %lu\n", 5548 inode->i_ino); 5549 trace_ext4_discard_preallocations(inode, 5550 atomic_read(&ei->i_prealloc_active), needed); 5551 5552 if (needed == 0) 5553 needed = UINT_MAX; 5554 5555 repeat: 5556 /* first, collect all pa's in the inode */ 5557 write_lock(&ei->i_prealloc_lock); 5558 for (iter = rb_first(&ei->i_prealloc_node); iter && needed; 5559 iter = rb_next(iter)) { 5560 pa = rb_entry(iter, struct ext4_prealloc_space, 5561 pa_node.inode_node); 5562 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock); 5563 5564 spin_lock(&pa->pa_lock); 5565 if (atomic_read(&pa->pa_count)) { 5566 /* this shouldn't happen often - nobody should 5567 * use preallocation while we're discarding it */ 5568 spin_unlock(&pa->pa_lock); 5569 write_unlock(&ei->i_prealloc_lock); 5570 ext4_msg(sb, KERN_ERR, 5571 "uh-oh! used pa while discarding"); 5572 WARN_ON(1); 5573 schedule_timeout_uninterruptible(HZ); 5574 goto repeat; 5575 5576 } 5577 if (pa->pa_deleted == 0) { 5578 ext4_mb_mark_pa_deleted(sb, pa); 5579 spin_unlock(&pa->pa_lock); 5580 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5581 list_add(&pa->u.pa_tmp_list, &list); 5582 needed--; 5583 continue; 5584 } 5585 5586 /* someone is deleting pa right now */ 5587 spin_unlock(&pa->pa_lock); 5588 write_unlock(&ei->i_prealloc_lock); 5589 5590 /* we have to wait here because pa_deleted 5591 * doesn't mean pa is already unlinked from 5592 * the list. as we might be called from 5593 * ->clear_inode() the inode will get freed 5594 * and concurrent thread which is unlinking 5595 * pa from inode's list may access already 5596 * freed memory, bad-bad-bad */ 5597 5598 /* XXX: if this happens too often, we can 5599 * add a flag to force wait only in case 5600 * of ->clear_inode(), but not in case of 5601 * regular truncate */ 5602 schedule_timeout_uninterruptible(HZ); 5603 goto repeat; 5604 } 5605 write_unlock(&ei->i_prealloc_lock); 5606 5607 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5608 BUG_ON(pa->pa_type != MB_INODE_PA); 5609 group = ext4_get_group_number(sb, pa->pa_pstart); 5610 5611 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5612 GFP_NOFS|__GFP_NOFAIL); 5613 if (err) { 5614 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5615 err, group); 5616 continue; 5617 } 5618 5619 bitmap_bh = ext4_read_block_bitmap(sb, group); 5620 if (IS_ERR(bitmap_bh)) { 5621 err = PTR_ERR(bitmap_bh); 5622 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 5623 err, group); 5624 ext4_mb_unload_buddy(&e4b); 5625 continue; 5626 } 5627 5628 ext4_lock_group(sb, group); 5629 list_del(&pa->pa_group_list); 5630 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5631 ext4_unlock_group(sb, group); 5632 5633 ext4_mb_unload_buddy(&e4b); 5634 put_bh(bitmap_bh); 5635 5636 list_del(&pa->u.pa_tmp_list); 5637 ext4_mb_pa_free(pa); 5638 } 5639 } 5640 5641 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 5642 { 5643 struct ext4_prealloc_space *pa; 5644 5645 BUG_ON(ext4_pspace_cachep == NULL); 5646 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 5647 if (!pa) 5648 return -ENOMEM; 5649 atomic_set(&pa->pa_count, 1); 5650 ac->ac_pa = pa; 5651 return 0; 5652 } 5653 5654 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac) 5655 { 5656 struct ext4_prealloc_space *pa = ac->ac_pa; 5657 5658 BUG_ON(!pa); 5659 ac->ac_pa = NULL; 5660 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 5661 /* 5662 * current function is only called due to an error or due to 5663 * len of found blocks < len of requested blocks hence the PA has not 5664 * been added to grp->bb_prealloc_list. So we don't need to lock it 5665 */ 5666 pa->pa_deleted = 1; 5667 ext4_mb_pa_free(pa); 5668 } 5669 5670 #ifdef CONFIG_EXT4_DEBUG 5671 static inline void ext4_mb_show_pa(struct super_block *sb) 5672 { 5673 ext4_group_t i, ngroups; 5674 5675 if (ext4_forced_shutdown(sb)) 5676 return; 5677 5678 ngroups = ext4_get_groups_count(sb); 5679 mb_debug(sb, "groups: "); 5680 for (i = 0; i < ngroups; i++) { 5681 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 5682 struct ext4_prealloc_space *pa; 5683 ext4_grpblk_t start; 5684 struct list_head *cur; 5685 5686 if (!grp) 5687 continue; 5688 ext4_lock_group(sb, i); 5689 list_for_each(cur, &grp->bb_prealloc_list) { 5690 pa = list_entry(cur, struct ext4_prealloc_space, 5691 pa_group_list); 5692 spin_lock(&pa->pa_lock); 5693 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5694 NULL, &start); 5695 spin_unlock(&pa->pa_lock); 5696 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 5697 pa->pa_len); 5698 } 5699 ext4_unlock_group(sb, i); 5700 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 5701 grp->bb_fragments); 5702 } 5703 } 5704 5705 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5706 { 5707 struct super_block *sb = ac->ac_sb; 5708 5709 if (ext4_forced_shutdown(sb)) 5710 return; 5711 5712 mb_debug(sb, "Can't allocate:" 5713 " Allocation context details:"); 5714 mb_debug(sb, "status %u flags 0x%x", 5715 ac->ac_status, ac->ac_flags); 5716 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 5717 "goal %lu/%lu/%lu@%lu, " 5718 "best %lu/%lu/%lu@%lu cr %d", 5719 (unsigned long)ac->ac_o_ex.fe_group, 5720 (unsigned long)ac->ac_o_ex.fe_start, 5721 (unsigned long)ac->ac_o_ex.fe_len, 5722 (unsigned long)ac->ac_o_ex.fe_logical, 5723 (unsigned long)ac->ac_g_ex.fe_group, 5724 (unsigned long)ac->ac_g_ex.fe_start, 5725 (unsigned long)ac->ac_g_ex.fe_len, 5726 (unsigned long)ac->ac_g_ex.fe_logical, 5727 (unsigned long)ac->ac_b_ex.fe_group, 5728 (unsigned long)ac->ac_b_ex.fe_start, 5729 (unsigned long)ac->ac_b_ex.fe_len, 5730 (unsigned long)ac->ac_b_ex.fe_logical, 5731 (int)ac->ac_criteria); 5732 mb_debug(sb, "%u found", ac->ac_found); 5733 mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no"); 5734 if (ac->ac_pa) 5735 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ? 5736 "group pa" : "inode pa"); 5737 ext4_mb_show_pa(sb); 5738 } 5739 #else 5740 static inline void ext4_mb_show_pa(struct super_block *sb) 5741 { 5742 } 5743 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5744 { 5745 ext4_mb_show_pa(ac->ac_sb); 5746 } 5747 #endif 5748 5749 /* 5750 * We use locality group preallocation for small size file. The size of the 5751 * file is determined by the current size or the resulting size after 5752 * allocation which ever is larger 5753 * 5754 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 5755 */ 5756 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 5757 { 5758 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5759 int bsbits = ac->ac_sb->s_blocksize_bits; 5760 loff_t size, isize; 5761 bool inode_pa_eligible, group_pa_eligible; 5762 5763 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 5764 return; 5765 5766 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 5767 return; 5768 5769 group_pa_eligible = sbi->s_mb_group_prealloc > 0; 5770 inode_pa_eligible = true; 5771 size = extent_logical_end(sbi, &ac->ac_o_ex); 5772 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 5773 >> bsbits; 5774 5775 /* No point in using inode preallocation for closed files */ 5776 if ((size == isize) && !ext4_fs_is_busy(sbi) && 5777 !inode_is_open_for_write(ac->ac_inode)) 5778 inode_pa_eligible = false; 5779 5780 size = max(size, isize); 5781 /* Don't use group allocation for large files */ 5782 if (size > sbi->s_mb_stream_request) 5783 group_pa_eligible = false; 5784 5785 if (!group_pa_eligible) { 5786 if (inode_pa_eligible) 5787 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5788 else 5789 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 5790 return; 5791 } 5792 5793 BUG_ON(ac->ac_lg != NULL); 5794 /* 5795 * locality group prealloc space are per cpu. The reason for having 5796 * per cpu locality group is to reduce the contention between block 5797 * request from multiple CPUs. 5798 */ 5799 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 5800 5801 /* we're going to use group allocation */ 5802 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 5803 5804 /* serialize all allocations in the group */ 5805 mutex_lock(&ac->ac_lg->lg_mutex); 5806 } 5807 5808 static noinline_for_stack void 5809 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 5810 struct ext4_allocation_request *ar) 5811 { 5812 struct super_block *sb = ar->inode->i_sb; 5813 struct ext4_sb_info *sbi = EXT4_SB(sb); 5814 struct ext4_super_block *es = sbi->s_es; 5815 ext4_group_t group; 5816 unsigned int len; 5817 ext4_fsblk_t goal; 5818 ext4_grpblk_t block; 5819 5820 /* we can't allocate > group size */ 5821 len = ar->len; 5822 5823 /* just a dirty hack to filter too big requests */ 5824 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 5825 len = EXT4_CLUSTERS_PER_GROUP(sb); 5826 5827 /* start searching from the goal */ 5828 goal = ar->goal; 5829 if (goal < le32_to_cpu(es->s_first_data_block) || 5830 goal >= ext4_blocks_count(es)) 5831 goal = le32_to_cpu(es->s_first_data_block); 5832 ext4_get_group_no_and_offset(sb, goal, &group, &block); 5833 5834 /* set up allocation goals */ 5835 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 5836 ac->ac_status = AC_STATUS_CONTINUE; 5837 ac->ac_sb = sb; 5838 ac->ac_inode = ar->inode; 5839 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 5840 ac->ac_o_ex.fe_group = group; 5841 ac->ac_o_ex.fe_start = block; 5842 ac->ac_o_ex.fe_len = len; 5843 ac->ac_g_ex = ac->ac_o_ex; 5844 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 5845 ac->ac_flags = ar->flags; 5846 5847 /* we have to define context: we'll work with a file or 5848 * locality group. this is a policy, actually */ 5849 ext4_mb_group_or_file(ac); 5850 5851 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 5852 "left: %u/%u, right %u/%u to %swritable\n", 5853 (unsigned) ar->len, (unsigned) ar->logical, 5854 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 5855 (unsigned) ar->lleft, (unsigned) ar->pleft, 5856 (unsigned) ar->lright, (unsigned) ar->pright, 5857 inode_is_open_for_write(ar->inode) ? "" : "non-"); 5858 } 5859 5860 static noinline_for_stack void 5861 ext4_mb_discard_lg_preallocations(struct super_block *sb, 5862 struct ext4_locality_group *lg, 5863 int order, int total_entries) 5864 { 5865 ext4_group_t group = 0; 5866 struct ext4_buddy e4b; 5867 LIST_HEAD(discard_list); 5868 struct ext4_prealloc_space *pa, *tmp; 5869 5870 mb_debug(sb, "discard locality group preallocation\n"); 5871 5872 spin_lock(&lg->lg_prealloc_lock); 5873 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 5874 pa_node.lg_list, 5875 lockdep_is_held(&lg->lg_prealloc_lock)) { 5876 spin_lock(&pa->pa_lock); 5877 if (atomic_read(&pa->pa_count)) { 5878 /* 5879 * This is the pa that we just used 5880 * for block allocation. So don't 5881 * free that 5882 */ 5883 spin_unlock(&pa->pa_lock); 5884 continue; 5885 } 5886 if (pa->pa_deleted) { 5887 spin_unlock(&pa->pa_lock); 5888 continue; 5889 } 5890 /* only lg prealloc space */ 5891 BUG_ON(pa->pa_type != MB_GROUP_PA); 5892 5893 /* seems this one can be freed ... */ 5894 ext4_mb_mark_pa_deleted(sb, pa); 5895 spin_unlock(&pa->pa_lock); 5896 5897 list_del_rcu(&pa->pa_node.lg_list); 5898 list_add(&pa->u.pa_tmp_list, &discard_list); 5899 5900 total_entries--; 5901 if (total_entries <= 5) { 5902 /* 5903 * we want to keep only 5 entries 5904 * allowing it to grow to 8. This 5905 * mak sure we don't call discard 5906 * soon for this list. 5907 */ 5908 break; 5909 } 5910 } 5911 spin_unlock(&lg->lg_prealloc_lock); 5912 5913 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 5914 int err; 5915 5916 group = ext4_get_group_number(sb, pa->pa_pstart); 5917 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5918 GFP_NOFS|__GFP_NOFAIL); 5919 if (err) { 5920 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5921 err, group); 5922 continue; 5923 } 5924 ext4_lock_group(sb, group); 5925 list_del(&pa->pa_group_list); 5926 ext4_mb_release_group_pa(&e4b, pa); 5927 ext4_unlock_group(sb, group); 5928 5929 ext4_mb_unload_buddy(&e4b); 5930 list_del(&pa->u.pa_tmp_list); 5931 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5932 } 5933 } 5934 5935 /* 5936 * We have incremented pa_count. So it cannot be freed at this 5937 * point. Also we hold lg_mutex. So no parallel allocation is 5938 * possible from this lg. That means pa_free cannot be updated. 5939 * 5940 * A parallel ext4_mb_discard_group_preallocations is possible. 5941 * which can cause the lg_prealloc_list to be updated. 5942 */ 5943 5944 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 5945 { 5946 int order, added = 0, lg_prealloc_count = 1; 5947 struct super_block *sb = ac->ac_sb; 5948 struct ext4_locality_group *lg = ac->ac_lg; 5949 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 5950 5951 order = fls(pa->pa_free) - 1; 5952 if (order > PREALLOC_TB_SIZE - 1) 5953 /* The max size of hash table is PREALLOC_TB_SIZE */ 5954 order = PREALLOC_TB_SIZE - 1; 5955 /* Add the prealloc space to lg */ 5956 spin_lock(&lg->lg_prealloc_lock); 5957 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 5958 pa_node.lg_list, 5959 lockdep_is_held(&lg->lg_prealloc_lock)) { 5960 spin_lock(&tmp_pa->pa_lock); 5961 if (tmp_pa->pa_deleted) { 5962 spin_unlock(&tmp_pa->pa_lock); 5963 continue; 5964 } 5965 if (!added && pa->pa_free < tmp_pa->pa_free) { 5966 /* Add to the tail of the previous entry */ 5967 list_add_tail_rcu(&pa->pa_node.lg_list, 5968 &tmp_pa->pa_node.lg_list); 5969 added = 1; 5970 /* 5971 * we want to count the total 5972 * number of entries in the list 5973 */ 5974 } 5975 spin_unlock(&tmp_pa->pa_lock); 5976 lg_prealloc_count++; 5977 } 5978 if (!added) 5979 list_add_tail_rcu(&pa->pa_node.lg_list, 5980 &lg->lg_prealloc_list[order]); 5981 spin_unlock(&lg->lg_prealloc_lock); 5982 5983 /* Now trim the list to be not more than 8 elements */ 5984 if (lg_prealloc_count > 8) 5985 ext4_mb_discard_lg_preallocations(sb, lg, 5986 order, lg_prealloc_count); 5987 } 5988 5989 /* 5990 * release all resource we used in allocation 5991 */ 5992 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 5993 { 5994 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5995 struct ext4_prealloc_space *pa = ac->ac_pa; 5996 if (pa) { 5997 if (pa->pa_type == MB_GROUP_PA) { 5998 /* see comment in ext4_mb_use_group_pa() */ 5999 spin_lock(&pa->pa_lock); 6000 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 6001 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 6002 pa->pa_free -= ac->ac_b_ex.fe_len; 6003 pa->pa_len -= ac->ac_b_ex.fe_len; 6004 spin_unlock(&pa->pa_lock); 6005 6006 /* 6007 * We want to add the pa to the right bucket. 6008 * Remove it from the list and while adding 6009 * make sure the list to which we are adding 6010 * doesn't grow big. 6011 */ 6012 if (likely(pa->pa_free)) { 6013 spin_lock(pa->pa_node_lock.lg_lock); 6014 list_del_rcu(&pa->pa_node.lg_list); 6015 spin_unlock(pa->pa_node_lock.lg_lock); 6016 ext4_mb_add_n_trim(ac); 6017 } 6018 } 6019 6020 ext4_mb_put_pa(ac, ac->ac_sb, pa); 6021 } 6022 if (ac->ac_bitmap_page) 6023 put_page(ac->ac_bitmap_page); 6024 if (ac->ac_buddy_page) 6025 put_page(ac->ac_buddy_page); 6026 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 6027 mutex_unlock(&ac->ac_lg->lg_mutex); 6028 ext4_mb_collect_stats(ac); 6029 return 0; 6030 } 6031 6032 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 6033 { 6034 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 6035 int ret; 6036 int freed = 0, busy = 0; 6037 int retry = 0; 6038 6039 trace_ext4_mb_discard_preallocations(sb, needed); 6040 6041 if (needed == 0) 6042 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 6043 repeat: 6044 for (i = 0; i < ngroups && needed > 0; i++) { 6045 ret = ext4_mb_discard_group_preallocations(sb, i, &busy); 6046 freed += ret; 6047 needed -= ret; 6048 cond_resched(); 6049 } 6050 6051 if (needed > 0 && busy && ++retry < 3) { 6052 busy = 0; 6053 goto repeat; 6054 } 6055 6056 return freed; 6057 } 6058 6059 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 6060 struct ext4_allocation_context *ac, u64 *seq) 6061 { 6062 int freed; 6063 u64 seq_retry = 0; 6064 bool ret = false; 6065 6066 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 6067 if (freed) { 6068 ret = true; 6069 goto out_dbg; 6070 } 6071 seq_retry = ext4_get_discard_pa_seq_sum(); 6072 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 6073 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 6074 *seq = seq_retry; 6075 ret = true; 6076 } 6077 6078 out_dbg: 6079 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 6080 return ret; 6081 } 6082 6083 /* 6084 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 6085 * linearly starting at the goal block and also excludes the blocks which 6086 * are going to be in use after fast commit replay. 6087 */ 6088 static ext4_fsblk_t 6089 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp) 6090 { 6091 struct buffer_head *bitmap_bh; 6092 struct super_block *sb = ar->inode->i_sb; 6093 struct ext4_sb_info *sbi = EXT4_SB(sb); 6094 ext4_group_t group, nr; 6095 ext4_grpblk_t blkoff; 6096 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 6097 ext4_grpblk_t i = 0; 6098 ext4_fsblk_t goal, block; 6099 struct ext4_super_block *es = sbi->s_es; 6100 6101 goal = ar->goal; 6102 if (goal < le32_to_cpu(es->s_first_data_block) || 6103 goal >= ext4_blocks_count(es)) 6104 goal = le32_to_cpu(es->s_first_data_block); 6105 6106 ar->len = 0; 6107 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 6108 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) { 6109 bitmap_bh = ext4_read_block_bitmap(sb, group); 6110 if (IS_ERR(bitmap_bh)) { 6111 *errp = PTR_ERR(bitmap_bh); 6112 pr_warn("Failed to read block bitmap\n"); 6113 return 0; 6114 } 6115 6116 while (1) { 6117 i = mb_find_next_zero_bit(bitmap_bh->b_data, max, 6118 blkoff); 6119 if (i >= max) 6120 break; 6121 if (ext4_fc_replay_check_excluded(sb, 6122 ext4_group_first_block_no(sb, group) + 6123 EXT4_C2B(sbi, i))) { 6124 blkoff = i + 1; 6125 } else 6126 break; 6127 } 6128 brelse(bitmap_bh); 6129 if (i < max) 6130 break; 6131 6132 if (++group >= ext4_get_groups_count(sb)) 6133 group = 0; 6134 6135 blkoff = 0; 6136 } 6137 6138 if (i >= max) { 6139 *errp = -ENOSPC; 6140 return 0; 6141 } 6142 6143 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i); 6144 ext4_mb_mark_bb(sb, block, 1, 1); 6145 ar->len = 1; 6146 6147 *errp = 0; 6148 return block; 6149 } 6150 6151 /* 6152 * Main entry point into mballoc to allocate blocks 6153 * it tries to use preallocation first, then falls back 6154 * to usual allocation 6155 */ 6156 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 6157 struct ext4_allocation_request *ar, int *errp) 6158 { 6159 struct ext4_allocation_context *ac = NULL; 6160 struct ext4_sb_info *sbi; 6161 struct super_block *sb; 6162 ext4_fsblk_t block = 0; 6163 unsigned int inquota = 0; 6164 unsigned int reserv_clstrs = 0; 6165 int retries = 0; 6166 u64 seq; 6167 6168 might_sleep(); 6169 sb = ar->inode->i_sb; 6170 sbi = EXT4_SB(sb); 6171 6172 trace_ext4_request_blocks(ar); 6173 if (sbi->s_mount_state & EXT4_FC_REPLAY) 6174 return ext4_mb_new_blocks_simple(ar, errp); 6175 6176 /* Allow to use superuser reservation for quota file */ 6177 if (ext4_is_quota_file(ar->inode)) 6178 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 6179 6180 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 6181 /* Without delayed allocation we need to verify 6182 * there is enough free blocks to do block allocation 6183 * and verify allocation doesn't exceed the quota limits. 6184 */ 6185 while (ar->len && 6186 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 6187 6188 /* let others to free the space */ 6189 cond_resched(); 6190 ar->len = ar->len >> 1; 6191 } 6192 if (!ar->len) { 6193 ext4_mb_show_pa(sb); 6194 *errp = -ENOSPC; 6195 return 0; 6196 } 6197 reserv_clstrs = ar->len; 6198 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 6199 dquot_alloc_block_nofail(ar->inode, 6200 EXT4_C2B(sbi, ar->len)); 6201 } else { 6202 while (ar->len && 6203 dquot_alloc_block(ar->inode, 6204 EXT4_C2B(sbi, ar->len))) { 6205 6206 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 6207 ar->len--; 6208 } 6209 } 6210 inquota = ar->len; 6211 if (ar->len == 0) { 6212 *errp = -EDQUOT; 6213 goto out; 6214 } 6215 } 6216 6217 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 6218 if (!ac) { 6219 ar->len = 0; 6220 *errp = -ENOMEM; 6221 goto out; 6222 } 6223 6224 ext4_mb_initialize_context(ac, ar); 6225 6226 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 6227 seq = this_cpu_read(discard_pa_seq); 6228 if (!ext4_mb_use_preallocated(ac)) { 6229 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 6230 ext4_mb_normalize_request(ac, ar); 6231 6232 *errp = ext4_mb_pa_alloc(ac); 6233 if (*errp) 6234 goto errout; 6235 repeat: 6236 /* allocate space in core */ 6237 *errp = ext4_mb_regular_allocator(ac); 6238 /* 6239 * pa allocated above is added to grp->bb_prealloc_list only 6240 * when we were able to allocate some block i.e. when 6241 * ac->ac_status == AC_STATUS_FOUND. 6242 * And error from above mean ac->ac_status != AC_STATUS_FOUND 6243 * So we have to free this pa here itself. 6244 */ 6245 if (*errp) { 6246 ext4_mb_pa_put_free(ac); 6247 ext4_discard_allocated_blocks(ac); 6248 goto errout; 6249 } 6250 if (ac->ac_status == AC_STATUS_FOUND && 6251 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 6252 ext4_mb_pa_put_free(ac); 6253 } 6254 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 6255 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 6256 if (*errp) { 6257 ext4_discard_allocated_blocks(ac); 6258 goto errout; 6259 } else { 6260 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 6261 ar->len = ac->ac_b_ex.fe_len; 6262 } 6263 } else { 6264 if (++retries < 3 && 6265 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 6266 goto repeat; 6267 /* 6268 * If block allocation fails then the pa allocated above 6269 * needs to be freed here itself. 6270 */ 6271 ext4_mb_pa_put_free(ac); 6272 *errp = -ENOSPC; 6273 } 6274 6275 if (*errp) { 6276 errout: 6277 ac->ac_b_ex.fe_len = 0; 6278 ar->len = 0; 6279 ext4_mb_show_ac(ac); 6280 } 6281 ext4_mb_release_context(ac); 6282 kmem_cache_free(ext4_ac_cachep, ac); 6283 out: 6284 if (inquota && ar->len < inquota) 6285 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 6286 if (!ar->len) { 6287 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 6288 /* release all the reserved blocks if non delalloc */ 6289 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 6290 reserv_clstrs); 6291 } 6292 6293 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 6294 6295 return block; 6296 } 6297 6298 /* 6299 * We can merge two free data extents only if the physical blocks 6300 * are contiguous, AND the extents were freed by the same transaction, 6301 * AND the blocks are associated with the same group. 6302 */ 6303 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 6304 struct ext4_free_data *entry, 6305 struct ext4_free_data *new_entry, 6306 struct rb_root *entry_rb_root) 6307 { 6308 if ((entry->efd_tid != new_entry->efd_tid) || 6309 (entry->efd_group != new_entry->efd_group)) 6310 return; 6311 if (entry->efd_start_cluster + entry->efd_count == 6312 new_entry->efd_start_cluster) { 6313 new_entry->efd_start_cluster = entry->efd_start_cluster; 6314 new_entry->efd_count += entry->efd_count; 6315 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 6316 entry->efd_start_cluster) { 6317 new_entry->efd_count += entry->efd_count; 6318 } else 6319 return; 6320 spin_lock(&sbi->s_md_lock); 6321 list_del(&entry->efd_list); 6322 spin_unlock(&sbi->s_md_lock); 6323 rb_erase(&entry->efd_node, entry_rb_root); 6324 kmem_cache_free(ext4_free_data_cachep, entry); 6325 } 6326 6327 static noinline_for_stack void 6328 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 6329 struct ext4_free_data *new_entry) 6330 { 6331 ext4_group_t group = e4b->bd_group; 6332 ext4_grpblk_t cluster; 6333 ext4_grpblk_t clusters = new_entry->efd_count; 6334 struct ext4_free_data *entry; 6335 struct ext4_group_info *db = e4b->bd_info; 6336 struct super_block *sb = e4b->bd_sb; 6337 struct ext4_sb_info *sbi = EXT4_SB(sb); 6338 struct rb_node **n = &db->bb_free_root.rb_node, *node; 6339 struct rb_node *parent = NULL, *new_node; 6340 6341 BUG_ON(!ext4_handle_valid(handle)); 6342 BUG_ON(e4b->bd_bitmap_page == NULL); 6343 BUG_ON(e4b->bd_buddy_page == NULL); 6344 6345 new_node = &new_entry->efd_node; 6346 cluster = new_entry->efd_start_cluster; 6347 6348 if (!*n) { 6349 /* first free block exent. We need to 6350 protect buddy cache from being freed, 6351 * otherwise we'll refresh it from 6352 * on-disk bitmap and lose not-yet-available 6353 * blocks */ 6354 get_page(e4b->bd_buddy_page); 6355 get_page(e4b->bd_bitmap_page); 6356 } 6357 while (*n) { 6358 parent = *n; 6359 entry = rb_entry(parent, struct ext4_free_data, efd_node); 6360 if (cluster < entry->efd_start_cluster) 6361 n = &(*n)->rb_left; 6362 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 6363 n = &(*n)->rb_right; 6364 else { 6365 ext4_grp_locked_error(sb, group, 0, 6366 ext4_group_first_block_no(sb, group) + 6367 EXT4_C2B(sbi, cluster), 6368 "Block already on to-be-freed list"); 6369 kmem_cache_free(ext4_free_data_cachep, new_entry); 6370 return; 6371 } 6372 } 6373 6374 rb_link_node(new_node, parent, n); 6375 rb_insert_color(new_node, &db->bb_free_root); 6376 6377 /* Now try to see the extent can be merged to left and right */ 6378 node = rb_prev(new_node); 6379 if (node) { 6380 entry = rb_entry(node, struct ext4_free_data, efd_node); 6381 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6382 &(db->bb_free_root)); 6383 } 6384 6385 node = rb_next(new_node); 6386 if (node) { 6387 entry = rb_entry(node, struct ext4_free_data, efd_node); 6388 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6389 &(db->bb_free_root)); 6390 } 6391 6392 spin_lock(&sbi->s_md_lock); 6393 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 6394 sbi->s_mb_free_pending += clusters; 6395 spin_unlock(&sbi->s_md_lock); 6396 } 6397 6398 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 6399 unsigned long count) 6400 { 6401 struct buffer_head *bitmap_bh; 6402 struct super_block *sb = inode->i_sb; 6403 struct ext4_group_desc *gdp; 6404 struct buffer_head *gdp_bh; 6405 ext4_group_t group; 6406 ext4_grpblk_t blkoff; 6407 int already_freed = 0, err, i; 6408 6409 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 6410 bitmap_bh = ext4_read_block_bitmap(sb, group); 6411 if (IS_ERR(bitmap_bh)) { 6412 pr_warn("Failed to read block bitmap\n"); 6413 return; 6414 } 6415 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 6416 if (!gdp) 6417 goto err_out; 6418 6419 for (i = 0; i < count; i++) { 6420 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data)) 6421 already_freed++; 6422 } 6423 mb_clear_bits(bitmap_bh->b_data, blkoff, count); 6424 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 6425 if (err) 6426 goto err_out; 6427 ext4_free_group_clusters_set( 6428 sb, gdp, ext4_free_group_clusters(sb, gdp) + 6429 count - already_freed); 6430 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 6431 ext4_group_desc_csum_set(sb, group, gdp); 6432 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 6433 sync_dirty_buffer(bitmap_bh); 6434 sync_dirty_buffer(gdp_bh); 6435 6436 err_out: 6437 brelse(bitmap_bh); 6438 } 6439 6440 /** 6441 * ext4_mb_clear_bb() -- helper function for freeing blocks. 6442 * Used by ext4_free_blocks() 6443 * @handle: handle for this transaction 6444 * @inode: inode 6445 * @block: starting physical block to be freed 6446 * @count: number of blocks to be freed 6447 * @flags: flags used by ext4_free_blocks 6448 */ 6449 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, 6450 ext4_fsblk_t block, unsigned long count, 6451 int flags) 6452 { 6453 struct buffer_head *bitmap_bh = NULL; 6454 struct super_block *sb = inode->i_sb; 6455 struct ext4_group_desc *gdp; 6456 struct ext4_group_info *grp; 6457 unsigned int overflow; 6458 ext4_grpblk_t bit; 6459 struct buffer_head *gd_bh; 6460 ext4_group_t block_group; 6461 struct ext4_sb_info *sbi; 6462 struct ext4_buddy e4b; 6463 unsigned int count_clusters; 6464 int err = 0; 6465 int ret; 6466 6467 sbi = EXT4_SB(sb); 6468 6469 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6470 !ext4_inode_block_valid(inode, block, count)) { 6471 ext4_error(sb, "Freeing blocks in system zone - " 6472 "Block = %llu, count = %lu", block, count); 6473 /* err = 0. ext4_std_error should be a no op */ 6474 goto error_return; 6475 } 6476 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6477 6478 do_more: 6479 overflow = 0; 6480 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6481 6482 grp = ext4_get_group_info(sb, block_group); 6483 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 6484 return; 6485 6486 /* 6487 * Check to see if we are freeing blocks across a group 6488 * boundary. 6489 */ 6490 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 6491 overflow = EXT4_C2B(sbi, bit) + count - 6492 EXT4_BLOCKS_PER_GROUP(sb); 6493 count -= overflow; 6494 /* The range changed so it's no longer validated */ 6495 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6496 } 6497 count_clusters = EXT4_NUM_B2C(sbi, count); 6498 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6499 if (IS_ERR(bitmap_bh)) { 6500 err = PTR_ERR(bitmap_bh); 6501 bitmap_bh = NULL; 6502 goto error_return; 6503 } 6504 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 6505 if (!gdp) { 6506 err = -EIO; 6507 goto error_return; 6508 } 6509 6510 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6511 !ext4_inode_block_valid(inode, block, count)) { 6512 ext4_error(sb, "Freeing blocks in system zone - " 6513 "Block = %llu, count = %lu", block, count); 6514 /* err = 0. ext4_std_error should be a no op */ 6515 goto error_return; 6516 } 6517 6518 BUFFER_TRACE(bitmap_bh, "getting write access"); 6519 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6520 EXT4_JTR_NONE); 6521 if (err) 6522 goto error_return; 6523 6524 /* 6525 * We are about to modify some metadata. Call the journal APIs 6526 * to unshare ->b_data if a currently-committing transaction is 6527 * using it 6528 */ 6529 BUFFER_TRACE(gd_bh, "get_write_access"); 6530 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6531 if (err) 6532 goto error_return; 6533 #ifdef AGGRESSIVE_CHECK 6534 { 6535 int i; 6536 for (i = 0; i < count_clusters; i++) 6537 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 6538 } 6539 #endif 6540 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 6541 6542 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 6543 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 6544 GFP_NOFS|__GFP_NOFAIL); 6545 if (err) 6546 goto error_return; 6547 6548 /* 6549 * We need to make sure we don't reuse the freed block until after the 6550 * transaction is committed. We make an exception if the inode is to be 6551 * written in writeback mode since writeback mode has weak data 6552 * consistency guarantees. 6553 */ 6554 if (ext4_handle_valid(handle) && 6555 ((flags & EXT4_FREE_BLOCKS_METADATA) || 6556 !ext4_should_writeback_data(inode))) { 6557 struct ext4_free_data *new_entry; 6558 /* 6559 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 6560 * to fail. 6561 */ 6562 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 6563 GFP_NOFS|__GFP_NOFAIL); 6564 new_entry->efd_start_cluster = bit; 6565 new_entry->efd_group = block_group; 6566 new_entry->efd_count = count_clusters; 6567 new_entry->efd_tid = handle->h_transaction->t_tid; 6568 6569 ext4_lock_group(sb, block_group); 6570 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6571 ext4_mb_free_metadata(handle, &e4b, new_entry); 6572 } else { 6573 /* need to update group_info->bb_free and bitmap 6574 * with group lock held. generate_buddy look at 6575 * them with group lock_held 6576 */ 6577 if (test_opt(sb, DISCARD)) { 6578 err = ext4_issue_discard(sb, block_group, bit, 6579 count_clusters, NULL); 6580 if (err && err != -EOPNOTSUPP) 6581 ext4_msg(sb, KERN_WARNING, "discard request in" 6582 " group:%u block:%d count:%lu failed" 6583 " with %d", block_group, bit, count, 6584 err); 6585 } else 6586 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 6587 6588 ext4_lock_group(sb, block_group); 6589 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6590 mb_free_blocks(inode, &e4b, bit, count_clusters); 6591 } 6592 6593 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 6594 ext4_free_group_clusters_set(sb, gdp, ret); 6595 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 6596 ext4_group_desc_csum_set(sb, block_group, gdp); 6597 ext4_unlock_group(sb, block_group); 6598 6599 if (sbi->s_log_groups_per_flex) { 6600 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6601 atomic64_add(count_clusters, 6602 &sbi_array_rcu_deref(sbi, s_flex_groups, 6603 flex_group)->free_clusters); 6604 } 6605 6606 /* 6607 * on a bigalloc file system, defer the s_freeclusters_counter 6608 * update to the caller (ext4_remove_space and friends) so they 6609 * can determine if a cluster freed here should be rereserved 6610 */ 6611 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 6612 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 6613 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 6614 percpu_counter_add(&sbi->s_freeclusters_counter, 6615 count_clusters); 6616 } 6617 6618 ext4_mb_unload_buddy(&e4b); 6619 6620 /* We dirtied the bitmap block */ 6621 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6622 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6623 6624 /* And the group descriptor block */ 6625 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6626 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6627 if (!err) 6628 err = ret; 6629 6630 if (overflow && !err) { 6631 block += count; 6632 count = overflow; 6633 put_bh(bitmap_bh); 6634 /* The range changed so it's no longer validated */ 6635 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6636 goto do_more; 6637 } 6638 error_return: 6639 brelse(bitmap_bh); 6640 ext4_std_error(sb, err); 6641 } 6642 6643 /** 6644 * ext4_free_blocks() -- Free given blocks and update quota 6645 * @handle: handle for this transaction 6646 * @inode: inode 6647 * @bh: optional buffer of the block to be freed 6648 * @block: starting physical block to be freed 6649 * @count: number of blocks to be freed 6650 * @flags: flags used by ext4_free_blocks 6651 */ 6652 void ext4_free_blocks(handle_t *handle, struct inode *inode, 6653 struct buffer_head *bh, ext4_fsblk_t block, 6654 unsigned long count, int flags) 6655 { 6656 struct super_block *sb = inode->i_sb; 6657 unsigned int overflow; 6658 struct ext4_sb_info *sbi; 6659 6660 sbi = EXT4_SB(sb); 6661 6662 if (bh) { 6663 if (block) 6664 BUG_ON(block != bh->b_blocknr); 6665 else 6666 block = bh->b_blocknr; 6667 } 6668 6669 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 6670 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count)); 6671 return; 6672 } 6673 6674 might_sleep(); 6675 6676 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6677 !ext4_inode_block_valid(inode, block, count)) { 6678 ext4_error(sb, "Freeing blocks not in datazone - " 6679 "block = %llu, count = %lu", block, count); 6680 return; 6681 } 6682 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6683 6684 ext4_debug("freeing block %llu\n", block); 6685 trace_ext4_free_blocks(inode, block, count, flags); 6686 6687 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6688 BUG_ON(count > 1); 6689 6690 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 6691 inode, bh, block); 6692 } 6693 6694 /* 6695 * If the extent to be freed does not begin on a cluster 6696 * boundary, we need to deal with partial clusters at the 6697 * beginning and end of the extent. Normally we will free 6698 * blocks at the beginning or the end unless we are explicitly 6699 * requested to avoid doing so. 6700 */ 6701 overflow = EXT4_PBLK_COFF(sbi, block); 6702 if (overflow) { 6703 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 6704 overflow = sbi->s_cluster_ratio - overflow; 6705 block += overflow; 6706 if (count > overflow) 6707 count -= overflow; 6708 else 6709 return; 6710 } else { 6711 block -= overflow; 6712 count += overflow; 6713 } 6714 /* The range changed so it's no longer validated */ 6715 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6716 } 6717 overflow = EXT4_LBLK_COFF(sbi, count); 6718 if (overflow) { 6719 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 6720 if (count > overflow) 6721 count -= overflow; 6722 else 6723 return; 6724 } else 6725 count += sbi->s_cluster_ratio - overflow; 6726 /* The range changed so it's no longer validated */ 6727 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6728 } 6729 6730 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6731 int i; 6732 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 6733 6734 for (i = 0; i < count; i++) { 6735 cond_resched(); 6736 if (is_metadata) 6737 bh = sb_find_get_block(inode->i_sb, block + i); 6738 ext4_forget(handle, is_metadata, inode, bh, block + i); 6739 } 6740 } 6741 6742 ext4_mb_clear_bb(handle, inode, block, count, flags); 6743 } 6744 6745 /** 6746 * ext4_group_add_blocks() -- Add given blocks to an existing group 6747 * @handle: handle to this transaction 6748 * @sb: super block 6749 * @block: start physical block to add to the block group 6750 * @count: number of blocks to free 6751 * 6752 * This marks the blocks as free in the bitmap and buddy. 6753 */ 6754 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 6755 ext4_fsblk_t block, unsigned long count) 6756 { 6757 struct buffer_head *bitmap_bh = NULL; 6758 struct buffer_head *gd_bh; 6759 ext4_group_t block_group; 6760 ext4_grpblk_t bit; 6761 unsigned int i; 6762 struct ext4_group_desc *desc; 6763 struct ext4_sb_info *sbi = EXT4_SB(sb); 6764 struct ext4_buddy e4b; 6765 int err = 0, ret, free_clusters_count; 6766 ext4_grpblk_t clusters_freed; 6767 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 6768 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 6769 unsigned long cluster_count = last_cluster - first_cluster + 1; 6770 6771 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 6772 6773 if (count == 0) 6774 return 0; 6775 6776 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6777 /* 6778 * Check to see if we are freeing blocks across a group 6779 * boundary. 6780 */ 6781 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 6782 ext4_warning(sb, "too many blocks added to group %u", 6783 block_group); 6784 err = -EINVAL; 6785 goto error_return; 6786 } 6787 6788 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6789 if (IS_ERR(bitmap_bh)) { 6790 err = PTR_ERR(bitmap_bh); 6791 bitmap_bh = NULL; 6792 goto error_return; 6793 } 6794 6795 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 6796 if (!desc) { 6797 err = -EIO; 6798 goto error_return; 6799 } 6800 6801 if (!ext4_sb_block_valid(sb, NULL, block, count)) { 6802 ext4_error(sb, "Adding blocks in system zones - " 6803 "Block = %llu, count = %lu", 6804 block, count); 6805 err = -EINVAL; 6806 goto error_return; 6807 } 6808 6809 BUFFER_TRACE(bitmap_bh, "getting write access"); 6810 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6811 EXT4_JTR_NONE); 6812 if (err) 6813 goto error_return; 6814 6815 /* 6816 * We are about to modify some metadata. Call the journal APIs 6817 * to unshare ->b_data if a currently-committing transaction is 6818 * using it 6819 */ 6820 BUFFER_TRACE(gd_bh, "get_write_access"); 6821 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6822 if (err) 6823 goto error_return; 6824 6825 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 6826 BUFFER_TRACE(bitmap_bh, "clear bit"); 6827 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 6828 ext4_error(sb, "bit already cleared for block %llu", 6829 (ext4_fsblk_t)(block + i)); 6830 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 6831 } else { 6832 clusters_freed++; 6833 } 6834 } 6835 6836 err = ext4_mb_load_buddy(sb, block_group, &e4b); 6837 if (err) 6838 goto error_return; 6839 6840 /* 6841 * need to update group_info->bb_free and bitmap 6842 * with group lock held. generate_buddy look at 6843 * them with group lock_held 6844 */ 6845 ext4_lock_group(sb, block_group); 6846 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 6847 mb_free_blocks(NULL, &e4b, bit, cluster_count); 6848 free_clusters_count = clusters_freed + 6849 ext4_free_group_clusters(sb, desc); 6850 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 6851 ext4_block_bitmap_csum_set(sb, desc, bitmap_bh); 6852 ext4_group_desc_csum_set(sb, block_group, desc); 6853 ext4_unlock_group(sb, block_group); 6854 percpu_counter_add(&sbi->s_freeclusters_counter, 6855 clusters_freed); 6856 6857 if (sbi->s_log_groups_per_flex) { 6858 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6859 atomic64_add(clusters_freed, 6860 &sbi_array_rcu_deref(sbi, s_flex_groups, 6861 flex_group)->free_clusters); 6862 } 6863 6864 ext4_mb_unload_buddy(&e4b); 6865 6866 /* We dirtied the bitmap block */ 6867 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6868 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6869 6870 /* And the group descriptor block */ 6871 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6872 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6873 if (!err) 6874 err = ret; 6875 6876 error_return: 6877 brelse(bitmap_bh); 6878 ext4_std_error(sb, err); 6879 return err; 6880 } 6881 6882 /** 6883 * ext4_trim_extent -- function to TRIM one single free extent in the group 6884 * @sb: super block for the file system 6885 * @start: starting block of the free extent in the alloc. group 6886 * @count: number of blocks to TRIM 6887 * @e4b: ext4 buddy for the group 6888 * 6889 * Trim "count" blocks starting at "start" in the "group". To assure that no 6890 * one will allocate those blocks, mark it as used in buddy bitmap. This must 6891 * be called with under the group lock. 6892 */ 6893 static int ext4_trim_extent(struct super_block *sb, 6894 int start, int count, struct ext4_buddy *e4b) 6895 __releases(bitlock) 6896 __acquires(bitlock) 6897 { 6898 struct ext4_free_extent ex; 6899 ext4_group_t group = e4b->bd_group; 6900 int ret = 0; 6901 6902 trace_ext4_trim_extent(sb, group, start, count); 6903 6904 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 6905 6906 ex.fe_start = start; 6907 ex.fe_group = group; 6908 ex.fe_len = count; 6909 6910 /* 6911 * Mark blocks used, so no one can reuse them while 6912 * being trimmed. 6913 */ 6914 mb_mark_used(e4b, &ex); 6915 ext4_unlock_group(sb, group); 6916 ret = ext4_issue_discard(sb, group, start, count, NULL); 6917 ext4_lock_group(sb, group); 6918 mb_free_blocks(NULL, e4b, start, ex.fe_len); 6919 return ret; 6920 } 6921 6922 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb, 6923 ext4_group_t grp) 6924 { 6925 unsigned long nr_clusters_in_group; 6926 6927 if (grp < (ext4_get_groups_count(sb) - 1)) 6928 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb); 6929 else 6930 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) - 6931 ext4_group_first_block_no(sb, grp)) 6932 >> EXT4_CLUSTER_BITS(sb); 6933 6934 return nr_clusters_in_group - 1; 6935 } 6936 6937 static bool ext4_trim_interrupted(void) 6938 { 6939 return fatal_signal_pending(current) || freezing(current); 6940 } 6941 6942 static int ext4_try_to_trim_range(struct super_block *sb, 6943 struct ext4_buddy *e4b, ext4_grpblk_t start, 6944 ext4_grpblk_t max, ext4_grpblk_t minblocks) 6945 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) 6946 __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) 6947 { 6948 ext4_grpblk_t next, count, free_count, last, origin_start; 6949 bool set_trimmed = false; 6950 void *bitmap; 6951 6952 last = ext4_last_grp_cluster(sb, e4b->bd_group); 6953 bitmap = e4b->bd_bitmap; 6954 if (start == 0 && max >= last) 6955 set_trimmed = true; 6956 origin_start = start; 6957 start = max(e4b->bd_info->bb_first_free, start); 6958 count = 0; 6959 free_count = 0; 6960 6961 while (start <= max) { 6962 start = mb_find_next_zero_bit(bitmap, max + 1, start); 6963 if (start > max) 6964 break; 6965 6966 next = mb_find_next_bit(bitmap, last + 1, start); 6967 if (origin_start == 0 && next >= last) 6968 set_trimmed = true; 6969 6970 if ((next - start) >= minblocks) { 6971 int ret = ext4_trim_extent(sb, start, next - start, e4b); 6972 6973 if (ret && ret != -EOPNOTSUPP) 6974 return count; 6975 count += next - start; 6976 } 6977 free_count += next - start; 6978 start = next + 1; 6979 6980 if (ext4_trim_interrupted()) 6981 return count; 6982 6983 if (need_resched()) { 6984 ext4_unlock_group(sb, e4b->bd_group); 6985 cond_resched(); 6986 ext4_lock_group(sb, e4b->bd_group); 6987 } 6988 6989 if ((e4b->bd_info->bb_free - free_count) < minblocks) 6990 break; 6991 } 6992 6993 if (set_trimmed) 6994 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info); 6995 6996 return count; 6997 } 6998 6999 /** 7000 * ext4_trim_all_free -- function to trim all free space in alloc. group 7001 * @sb: super block for file system 7002 * @group: group to be trimmed 7003 * @start: first group block to examine 7004 * @max: last group block to examine 7005 * @minblocks: minimum extent block count 7006 * 7007 * ext4_trim_all_free walks through group's block bitmap searching for free 7008 * extents. When the free extent is found, mark it as used in group buddy 7009 * bitmap. Then issue a TRIM command on this extent and free the extent in 7010 * the group buddy bitmap. 7011 */ 7012 static ext4_grpblk_t 7013 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 7014 ext4_grpblk_t start, ext4_grpblk_t max, 7015 ext4_grpblk_t minblocks) 7016 { 7017 struct ext4_buddy e4b; 7018 int ret; 7019 7020 trace_ext4_trim_all_free(sb, group, start, max); 7021 7022 ret = ext4_mb_load_buddy(sb, group, &e4b); 7023 if (ret) { 7024 ext4_warning(sb, "Error %d loading buddy information for %u", 7025 ret, group); 7026 return ret; 7027 } 7028 7029 ext4_lock_group(sb, group); 7030 7031 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || 7032 minblocks < EXT4_SB(sb)->s_last_trim_minblks) 7033 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); 7034 else 7035 ret = 0; 7036 7037 ext4_unlock_group(sb, group); 7038 ext4_mb_unload_buddy(&e4b); 7039 7040 ext4_debug("trimmed %d blocks in the group %d\n", 7041 ret, group); 7042 7043 return ret; 7044 } 7045 7046 /** 7047 * ext4_trim_fs() -- trim ioctl handle function 7048 * @sb: superblock for filesystem 7049 * @range: fstrim_range structure 7050 * 7051 * start: First Byte to trim 7052 * len: number of Bytes to trim from start 7053 * minlen: minimum extent length in Bytes 7054 * ext4_trim_fs goes through all allocation groups containing Bytes from 7055 * start to start+len. For each such a group ext4_trim_all_free function 7056 * is invoked to trim all free space. 7057 */ 7058 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 7059 { 7060 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev); 7061 struct ext4_group_info *grp; 7062 ext4_group_t group, first_group, last_group; 7063 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 7064 uint64_t start, end, minlen, trimmed = 0; 7065 ext4_fsblk_t first_data_blk = 7066 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 7067 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 7068 int ret = 0; 7069 7070 start = range->start >> sb->s_blocksize_bits; 7071 end = start + (range->len >> sb->s_blocksize_bits) - 1; 7072 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7073 range->minlen >> sb->s_blocksize_bits); 7074 7075 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 7076 start >= max_blks || 7077 range->len < sb->s_blocksize) 7078 return -EINVAL; 7079 /* No point to try to trim less than discard granularity */ 7080 if (range->minlen < discard_granularity) { 7081 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7082 discard_granularity >> sb->s_blocksize_bits); 7083 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) 7084 goto out; 7085 } 7086 if (end >= max_blks - 1) 7087 end = max_blks - 1; 7088 if (end <= first_data_blk) 7089 goto out; 7090 if (start < first_data_blk) 7091 start = first_data_blk; 7092 7093 /* Determine first and last group to examine based on start and end */ 7094 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 7095 &first_group, &first_cluster); 7096 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 7097 &last_group, &last_cluster); 7098 7099 /* end now represents the last cluster to discard in this group */ 7100 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7101 7102 for (group = first_group; group <= last_group; group++) { 7103 if (ext4_trim_interrupted()) 7104 break; 7105 grp = ext4_get_group_info(sb, group); 7106 if (!grp) 7107 continue; 7108 /* We only do this if the grp has never been initialized */ 7109 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 7110 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 7111 if (ret) 7112 break; 7113 } 7114 7115 /* 7116 * For all the groups except the last one, last cluster will 7117 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 7118 * change it for the last group, note that last_cluster is 7119 * already computed earlier by ext4_get_group_no_and_offset() 7120 */ 7121 if (group == last_group) 7122 end = last_cluster; 7123 if (grp->bb_free >= minlen) { 7124 cnt = ext4_trim_all_free(sb, group, first_cluster, 7125 end, minlen); 7126 if (cnt < 0) { 7127 ret = cnt; 7128 break; 7129 } 7130 trimmed += cnt; 7131 } 7132 7133 /* 7134 * For every group except the first one, we are sure 7135 * that the first cluster to discard will be cluster #0. 7136 */ 7137 first_cluster = 0; 7138 } 7139 7140 if (!ret) 7141 EXT4_SB(sb)->s_last_trim_minblks = minlen; 7142 7143 out: 7144 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 7145 return ret; 7146 } 7147 7148 /* Iterate all the free extents in the group. */ 7149 int 7150 ext4_mballoc_query_range( 7151 struct super_block *sb, 7152 ext4_group_t group, 7153 ext4_grpblk_t start, 7154 ext4_grpblk_t end, 7155 ext4_mballoc_query_range_fn formatter, 7156 void *priv) 7157 { 7158 void *bitmap; 7159 ext4_grpblk_t next; 7160 struct ext4_buddy e4b; 7161 int error; 7162 7163 error = ext4_mb_load_buddy(sb, group, &e4b); 7164 if (error) 7165 return error; 7166 bitmap = e4b.bd_bitmap; 7167 7168 ext4_lock_group(sb, group); 7169 7170 start = max(e4b.bd_info->bb_first_free, start); 7171 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 7172 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7173 7174 while (start <= end) { 7175 start = mb_find_next_zero_bit(bitmap, end + 1, start); 7176 if (start > end) 7177 break; 7178 next = mb_find_next_bit(bitmap, end + 1, start); 7179 7180 ext4_unlock_group(sb, group); 7181 error = formatter(sb, group, start, next - start, priv); 7182 if (error) 7183 goto out_unload; 7184 ext4_lock_group(sb, group); 7185 7186 start = next + 1; 7187 } 7188 7189 ext4_unlock_group(sb, group); 7190 out_unload: 7191 ext4_mb_unload_buddy(&e4b); 7192 7193 return error; 7194 } 7195