1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <trace/events/ext4.h> 20 21 #ifdef CONFIG_EXT4_DEBUG 22 ushort ext4_mballoc_debug __read_mostly; 23 24 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644); 25 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc"); 26 #endif 27 28 /* 29 * MUSTDO: 30 * - test ext4_ext_search_left() and ext4_ext_search_right() 31 * - search for metadata in few groups 32 * 33 * TODO v4: 34 * - normalization should take into account whether file is still open 35 * - discard preallocations if no free space left (policy?) 36 * - don't normalize tails 37 * - quota 38 * - reservation for superuser 39 * 40 * TODO v3: 41 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 42 * - track min/max extents in each group for better group selection 43 * - mb_mark_used() may allocate chunk right after splitting buddy 44 * - tree of groups sorted by number of free blocks 45 * - error handling 46 */ 47 48 /* 49 * The allocation request involve request for multiple number of blocks 50 * near to the goal(block) value specified. 51 * 52 * During initialization phase of the allocator we decide to use the 53 * group preallocation or inode preallocation depending on the size of 54 * the file. The size of the file could be the resulting file size we 55 * would have after allocation, or the current file size, which ever 56 * is larger. If the size is less than sbi->s_mb_stream_request we 57 * select to use the group preallocation. The default value of 58 * s_mb_stream_request is 16 blocks. This can also be tuned via 59 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 60 * terms of number of blocks. 61 * 62 * The main motivation for having small file use group preallocation is to 63 * ensure that we have small files closer together on the disk. 64 * 65 * First stage the allocator looks at the inode prealloc list, 66 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 67 * spaces for this particular inode. The inode prealloc space is 68 * represented as: 69 * 70 * pa_lstart -> the logical start block for this prealloc space 71 * pa_pstart -> the physical start block for this prealloc space 72 * pa_len -> length for this prealloc space (in clusters) 73 * pa_free -> free space available in this prealloc space (in clusters) 74 * 75 * The inode preallocation space is used looking at the _logical_ start 76 * block. If only the logical file block falls within the range of prealloc 77 * space we will consume the particular prealloc space. This makes sure that 78 * we have contiguous physical blocks representing the file blocks 79 * 80 * The important thing to be noted in case of inode prealloc space is that 81 * we don't modify the values associated to inode prealloc space except 82 * pa_free. 83 * 84 * If we are not able to find blocks in the inode prealloc space and if we 85 * have the group allocation flag set then we look at the locality group 86 * prealloc space. These are per CPU prealloc list represented as 87 * 88 * ext4_sb_info.s_locality_groups[smp_processor_id()] 89 * 90 * The reason for having a per cpu locality group is to reduce the contention 91 * between CPUs. It is possible to get scheduled at this point. 92 * 93 * The locality group prealloc space is used looking at whether we have 94 * enough free space (pa_free) within the prealloc space. 95 * 96 * If we can't allocate blocks via inode prealloc or/and locality group 97 * prealloc then we look at the buddy cache. The buddy cache is represented 98 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 99 * mapped to the buddy and bitmap information regarding different 100 * groups. The buddy information is attached to buddy cache inode so that 101 * we can access them through the page cache. The information regarding 102 * each group is loaded via ext4_mb_load_buddy. The information involve 103 * block bitmap and buddy information. The information are stored in the 104 * inode as: 105 * 106 * { page } 107 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 108 * 109 * 110 * one block each for bitmap and buddy information. So for each group we 111 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 112 * blocksize) blocks. So it can have information regarding groups_per_page 113 * which is blocks_per_page/2 114 * 115 * The buddy cache inode is not stored on disk. The inode is thrown 116 * away when the filesystem is unmounted. 117 * 118 * We look for count number of blocks in the buddy cache. If we were able 119 * to locate that many free blocks we return with additional information 120 * regarding rest of the contiguous physical block available 121 * 122 * Before allocating blocks via buddy cache we normalize the request 123 * blocks. This ensure we ask for more blocks that we needed. The extra 124 * blocks that we get after allocation is added to the respective prealloc 125 * list. In case of inode preallocation we follow a list of heuristics 126 * based on file size. This can be found in ext4_mb_normalize_request. If 127 * we are doing a group prealloc we try to normalize the request to 128 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 129 * dependent on the cluster size; for non-bigalloc file systems, it is 130 * 512 blocks. This can be tuned via 131 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 132 * terms of number of blocks. If we have mounted the file system with -O 133 * stripe=<value> option the group prealloc request is normalized to the 134 * the smallest multiple of the stripe value (sbi->s_stripe) which is 135 * greater than the default mb_group_prealloc. 136 * 137 * The regular allocator (using the buddy cache) supports a few tunables. 138 * 139 * /sys/fs/ext4/<partition>/mb_min_to_scan 140 * /sys/fs/ext4/<partition>/mb_max_to_scan 141 * /sys/fs/ext4/<partition>/mb_order2_req 142 * 143 * The regular allocator uses buddy scan only if the request len is power of 144 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 145 * value of s_mb_order2_reqs can be tuned via 146 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 147 * stripe size (sbi->s_stripe), we try to search for contiguous block in 148 * stripe size. This should result in better allocation on RAID setups. If 149 * not, we search in the specific group using bitmap for best extents. The 150 * tunable min_to_scan and max_to_scan control the behaviour here. 151 * min_to_scan indicate how long the mballoc __must__ look for a best 152 * extent and max_to_scan indicates how long the mballoc __can__ look for a 153 * best extent in the found extents. Searching for the blocks starts with 154 * the group specified as the goal value in allocation context via 155 * ac_g_ex. Each group is first checked based on the criteria whether it 156 * can be used for allocation. ext4_mb_good_group explains how the groups are 157 * checked. 158 * 159 * Both the prealloc space are getting populated as above. So for the first 160 * request we will hit the buddy cache which will result in this prealloc 161 * space getting filled. The prealloc space is then later used for the 162 * subsequent request. 163 */ 164 165 /* 166 * mballoc operates on the following data: 167 * - on-disk bitmap 168 * - in-core buddy (actually includes buddy and bitmap) 169 * - preallocation descriptors (PAs) 170 * 171 * there are two types of preallocations: 172 * - inode 173 * assiged to specific inode and can be used for this inode only. 174 * it describes part of inode's space preallocated to specific 175 * physical blocks. any block from that preallocated can be used 176 * independent. the descriptor just tracks number of blocks left 177 * unused. so, before taking some block from descriptor, one must 178 * make sure corresponded logical block isn't allocated yet. this 179 * also means that freeing any block within descriptor's range 180 * must discard all preallocated blocks. 181 * - locality group 182 * assigned to specific locality group which does not translate to 183 * permanent set of inodes: inode can join and leave group. space 184 * from this type of preallocation can be used for any inode. thus 185 * it's consumed from the beginning to the end. 186 * 187 * relation between them can be expressed as: 188 * in-core buddy = on-disk bitmap + preallocation descriptors 189 * 190 * this mean blocks mballoc considers used are: 191 * - allocated blocks (persistent) 192 * - preallocated blocks (non-persistent) 193 * 194 * consistency in mballoc world means that at any time a block is either 195 * free or used in ALL structures. notice: "any time" should not be read 196 * literally -- time is discrete and delimited by locks. 197 * 198 * to keep it simple, we don't use block numbers, instead we count number of 199 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 200 * 201 * all operations can be expressed as: 202 * - init buddy: buddy = on-disk + PAs 203 * - new PA: buddy += N; PA = N 204 * - use inode PA: on-disk += N; PA -= N 205 * - discard inode PA buddy -= on-disk - PA; PA = 0 206 * - use locality group PA on-disk += N; PA -= N 207 * - discard locality group PA buddy -= PA; PA = 0 208 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 209 * is used in real operation because we can't know actual used 210 * bits from PA, only from on-disk bitmap 211 * 212 * if we follow this strict logic, then all operations above should be atomic. 213 * given some of them can block, we'd have to use something like semaphores 214 * killing performance on high-end SMP hardware. let's try to relax it using 215 * the following knowledge: 216 * 1) if buddy is referenced, it's already initialized 217 * 2) while block is used in buddy and the buddy is referenced, 218 * nobody can re-allocate that block 219 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 220 * bit set and PA claims same block, it's OK. IOW, one can set bit in 221 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 222 * block 223 * 224 * so, now we're building a concurrency table: 225 * - init buddy vs. 226 * - new PA 227 * blocks for PA are allocated in the buddy, buddy must be referenced 228 * until PA is linked to allocation group to avoid concurrent buddy init 229 * - use inode PA 230 * we need to make sure that either on-disk bitmap or PA has uptodate data 231 * given (3) we care that PA-=N operation doesn't interfere with init 232 * - discard inode PA 233 * the simplest way would be to have buddy initialized by the discard 234 * - use locality group PA 235 * again PA-=N must be serialized with init 236 * - discard locality group PA 237 * the simplest way would be to have buddy initialized by the discard 238 * - new PA vs. 239 * - use inode PA 240 * i_data_sem serializes them 241 * - discard inode PA 242 * discard process must wait until PA isn't used by another process 243 * - use locality group PA 244 * some mutex should serialize them 245 * - discard locality group PA 246 * discard process must wait until PA isn't used by another process 247 * - use inode PA 248 * - use inode PA 249 * i_data_sem or another mutex should serializes them 250 * - discard inode PA 251 * discard process must wait until PA isn't used by another process 252 * - use locality group PA 253 * nothing wrong here -- they're different PAs covering different blocks 254 * - discard locality group PA 255 * discard process must wait until PA isn't used by another process 256 * 257 * now we're ready to make few consequences: 258 * - PA is referenced and while it is no discard is possible 259 * - PA is referenced until block isn't marked in on-disk bitmap 260 * - PA changes only after on-disk bitmap 261 * - discard must not compete with init. either init is done before 262 * any discard or they're serialized somehow 263 * - buddy init as sum of on-disk bitmap and PAs is done atomically 264 * 265 * a special case when we've used PA to emptiness. no need to modify buddy 266 * in this case, but we should care about concurrent init 267 * 268 */ 269 270 /* 271 * Logic in few words: 272 * 273 * - allocation: 274 * load group 275 * find blocks 276 * mark bits in on-disk bitmap 277 * release group 278 * 279 * - use preallocation: 280 * find proper PA (per-inode or group) 281 * load group 282 * mark bits in on-disk bitmap 283 * release group 284 * release PA 285 * 286 * - free: 287 * load group 288 * mark bits in on-disk bitmap 289 * release group 290 * 291 * - discard preallocations in group: 292 * mark PAs deleted 293 * move them onto local list 294 * load on-disk bitmap 295 * load group 296 * remove PA from object (inode or locality group) 297 * mark free blocks in-core 298 * 299 * - discard inode's preallocations: 300 */ 301 302 /* 303 * Locking rules 304 * 305 * Locks: 306 * - bitlock on a group (group) 307 * - object (inode/locality) (object) 308 * - per-pa lock (pa) 309 * 310 * Paths: 311 * - new pa 312 * object 313 * group 314 * 315 * - find and use pa: 316 * pa 317 * 318 * - release consumed pa: 319 * pa 320 * group 321 * object 322 * 323 * - generate in-core bitmap: 324 * group 325 * pa 326 * 327 * - discard all for given object (inode, locality group): 328 * object 329 * pa 330 * group 331 * 332 * - discard all for given group: 333 * group 334 * pa 335 * group 336 * object 337 * 338 */ 339 static struct kmem_cache *ext4_pspace_cachep; 340 static struct kmem_cache *ext4_ac_cachep; 341 static struct kmem_cache *ext4_free_data_cachep; 342 343 /* We create slab caches for groupinfo data structures based on the 344 * superblock block size. There will be one per mounted filesystem for 345 * each unique s_blocksize_bits */ 346 #define NR_GRPINFO_CACHES 8 347 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 348 349 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 350 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 351 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 352 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 353 }; 354 355 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 356 ext4_group_t group); 357 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 358 ext4_group_t group); 359 360 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 361 { 362 #if BITS_PER_LONG == 64 363 *bit += ((unsigned long) addr & 7UL) << 3; 364 addr = (void *) ((unsigned long) addr & ~7UL); 365 #elif BITS_PER_LONG == 32 366 *bit += ((unsigned long) addr & 3UL) << 3; 367 addr = (void *) ((unsigned long) addr & ~3UL); 368 #else 369 #error "how many bits you are?!" 370 #endif 371 return addr; 372 } 373 374 static inline int mb_test_bit(int bit, void *addr) 375 { 376 /* 377 * ext4_test_bit on architecture like powerpc 378 * needs unsigned long aligned address 379 */ 380 addr = mb_correct_addr_and_bit(&bit, addr); 381 return ext4_test_bit(bit, addr); 382 } 383 384 static inline void mb_set_bit(int bit, void *addr) 385 { 386 addr = mb_correct_addr_and_bit(&bit, addr); 387 ext4_set_bit(bit, addr); 388 } 389 390 static inline void mb_clear_bit(int bit, void *addr) 391 { 392 addr = mb_correct_addr_and_bit(&bit, addr); 393 ext4_clear_bit(bit, addr); 394 } 395 396 static inline int mb_test_and_clear_bit(int bit, void *addr) 397 { 398 addr = mb_correct_addr_and_bit(&bit, addr); 399 return ext4_test_and_clear_bit(bit, addr); 400 } 401 402 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 403 { 404 int fix = 0, ret, tmpmax; 405 addr = mb_correct_addr_and_bit(&fix, addr); 406 tmpmax = max + fix; 407 start += fix; 408 409 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 410 if (ret > max) 411 return max; 412 return ret; 413 } 414 415 static inline int mb_find_next_bit(void *addr, int max, int start) 416 { 417 int fix = 0, ret, tmpmax; 418 addr = mb_correct_addr_and_bit(&fix, addr); 419 tmpmax = max + fix; 420 start += fix; 421 422 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 423 if (ret > max) 424 return max; 425 return ret; 426 } 427 428 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 429 { 430 char *bb; 431 432 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 433 BUG_ON(max == NULL); 434 435 if (order > e4b->bd_blkbits + 1) { 436 *max = 0; 437 return NULL; 438 } 439 440 /* at order 0 we see each particular block */ 441 if (order == 0) { 442 *max = 1 << (e4b->bd_blkbits + 3); 443 return e4b->bd_bitmap; 444 } 445 446 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 447 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 448 449 return bb; 450 } 451 452 #ifdef DOUBLE_CHECK 453 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 454 int first, int count) 455 { 456 int i; 457 struct super_block *sb = e4b->bd_sb; 458 459 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 460 return; 461 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 462 for (i = 0; i < count; i++) { 463 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 464 ext4_fsblk_t blocknr; 465 466 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 467 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 468 ext4_grp_locked_error(sb, e4b->bd_group, 469 inode ? inode->i_ino : 0, 470 blocknr, 471 "freeing block already freed " 472 "(bit %u)", 473 first + i); 474 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 475 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 476 } 477 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 478 } 479 } 480 481 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 482 { 483 int i; 484 485 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 486 return; 487 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 488 for (i = 0; i < count; i++) { 489 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 490 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 491 } 492 } 493 494 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 495 { 496 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 497 unsigned char *b1, *b2; 498 int i; 499 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 500 b2 = (unsigned char *) bitmap; 501 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 502 if (b1[i] != b2[i]) { 503 ext4_msg(e4b->bd_sb, KERN_ERR, 504 "corruption in group %u " 505 "at byte %u(%u): %x in copy != %x " 506 "on disk/prealloc", 507 e4b->bd_group, i, i * 8, b1[i], b2[i]); 508 BUG(); 509 } 510 } 511 } 512 } 513 514 #else 515 static inline void mb_free_blocks_double(struct inode *inode, 516 struct ext4_buddy *e4b, int first, int count) 517 { 518 return; 519 } 520 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 521 int first, int count) 522 { 523 return; 524 } 525 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 526 { 527 return; 528 } 529 #endif 530 531 #ifdef AGGRESSIVE_CHECK 532 533 #define MB_CHECK_ASSERT(assert) \ 534 do { \ 535 if (!(assert)) { \ 536 printk(KERN_EMERG \ 537 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 538 function, file, line, # assert); \ 539 BUG(); \ 540 } \ 541 } while (0) 542 543 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 544 const char *function, int line) 545 { 546 struct super_block *sb = e4b->bd_sb; 547 int order = e4b->bd_blkbits + 1; 548 int max; 549 int max2; 550 int i; 551 int j; 552 int k; 553 int count; 554 struct ext4_group_info *grp; 555 int fragments = 0; 556 int fstart; 557 struct list_head *cur; 558 void *buddy; 559 void *buddy2; 560 561 { 562 static int mb_check_counter; 563 if (mb_check_counter++ % 100 != 0) 564 return 0; 565 } 566 567 while (order > 1) { 568 buddy = mb_find_buddy(e4b, order, &max); 569 MB_CHECK_ASSERT(buddy); 570 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 571 MB_CHECK_ASSERT(buddy2); 572 MB_CHECK_ASSERT(buddy != buddy2); 573 MB_CHECK_ASSERT(max * 2 == max2); 574 575 count = 0; 576 for (i = 0; i < max; i++) { 577 578 if (mb_test_bit(i, buddy)) { 579 /* only single bit in buddy2 may be 1 */ 580 if (!mb_test_bit(i << 1, buddy2)) { 581 MB_CHECK_ASSERT( 582 mb_test_bit((i<<1)+1, buddy2)); 583 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 584 MB_CHECK_ASSERT( 585 mb_test_bit(i << 1, buddy2)); 586 } 587 continue; 588 } 589 590 /* both bits in buddy2 must be 1 */ 591 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 592 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 593 594 for (j = 0; j < (1 << order); j++) { 595 k = (i * (1 << order)) + j; 596 MB_CHECK_ASSERT( 597 !mb_test_bit(k, e4b->bd_bitmap)); 598 } 599 count++; 600 } 601 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 602 order--; 603 } 604 605 fstart = -1; 606 buddy = mb_find_buddy(e4b, 0, &max); 607 for (i = 0; i < max; i++) { 608 if (!mb_test_bit(i, buddy)) { 609 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 610 if (fstart == -1) { 611 fragments++; 612 fstart = i; 613 } 614 continue; 615 } 616 fstart = -1; 617 /* check used bits only */ 618 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 619 buddy2 = mb_find_buddy(e4b, j, &max2); 620 k = i >> j; 621 MB_CHECK_ASSERT(k < max2); 622 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 623 } 624 } 625 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 626 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 627 628 grp = ext4_get_group_info(sb, e4b->bd_group); 629 list_for_each(cur, &grp->bb_prealloc_list) { 630 ext4_group_t groupnr; 631 struct ext4_prealloc_space *pa; 632 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 633 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 634 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 635 for (i = 0; i < pa->pa_len; i++) 636 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 637 } 638 return 0; 639 } 640 #undef MB_CHECK_ASSERT 641 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 642 __FILE__, __func__, __LINE__) 643 #else 644 #define mb_check_buddy(e4b) 645 #endif 646 647 /* 648 * Divide blocks started from @first with length @len into 649 * smaller chunks with power of 2 blocks. 650 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 651 * then increase bb_counters[] for corresponded chunk size. 652 */ 653 static void ext4_mb_mark_free_simple(struct super_block *sb, 654 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 655 struct ext4_group_info *grp) 656 { 657 struct ext4_sb_info *sbi = EXT4_SB(sb); 658 ext4_grpblk_t min; 659 ext4_grpblk_t max; 660 ext4_grpblk_t chunk; 661 unsigned int border; 662 663 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 664 665 border = 2 << sb->s_blocksize_bits; 666 667 while (len > 0) { 668 /* find how many blocks can be covered since this position */ 669 max = ffs(first | border) - 1; 670 671 /* find how many blocks of power 2 we need to mark */ 672 min = fls(len) - 1; 673 674 if (max < min) 675 min = max; 676 chunk = 1 << min; 677 678 /* mark multiblock chunks only */ 679 grp->bb_counters[min]++; 680 if (min > 0) 681 mb_clear_bit(first >> min, 682 buddy + sbi->s_mb_offsets[min]); 683 684 len -= chunk; 685 first += chunk; 686 } 687 } 688 689 /* 690 * Cache the order of the largest free extent we have available in this block 691 * group. 692 */ 693 static void 694 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 695 { 696 int i; 697 int bits; 698 699 grp->bb_largest_free_order = -1; /* uninit */ 700 701 bits = sb->s_blocksize_bits + 1; 702 for (i = bits; i >= 0; i--) { 703 if (grp->bb_counters[i] > 0) { 704 grp->bb_largest_free_order = i; 705 break; 706 } 707 } 708 } 709 710 static noinline_for_stack 711 void ext4_mb_generate_buddy(struct super_block *sb, 712 void *buddy, void *bitmap, ext4_group_t group) 713 { 714 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 715 struct ext4_sb_info *sbi = EXT4_SB(sb); 716 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 717 ext4_grpblk_t i = 0; 718 ext4_grpblk_t first; 719 ext4_grpblk_t len; 720 unsigned free = 0; 721 unsigned fragments = 0; 722 unsigned long long period = get_cycles(); 723 724 /* initialize buddy from bitmap which is aggregation 725 * of on-disk bitmap and preallocations */ 726 i = mb_find_next_zero_bit(bitmap, max, 0); 727 grp->bb_first_free = i; 728 while (i < max) { 729 fragments++; 730 first = i; 731 i = mb_find_next_bit(bitmap, max, i); 732 len = i - first; 733 free += len; 734 if (len > 1) 735 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 736 else 737 grp->bb_counters[0]++; 738 if (i < max) 739 i = mb_find_next_zero_bit(bitmap, max, i); 740 } 741 grp->bb_fragments = fragments; 742 743 if (free != grp->bb_free) { 744 ext4_grp_locked_error(sb, group, 0, 0, 745 "block bitmap and bg descriptor " 746 "inconsistent: %u vs %u free clusters", 747 free, grp->bb_free); 748 /* 749 * If we intend to continue, we consider group descriptor 750 * corrupt and update bb_free using bitmap value 751 */ 752 grp->bb_free = free; 753 ext4_mark_group_bitmap_corrupted(sb, group, 754 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 755 } 756 mb_set_largest_free_order(sb, grp); 757 758 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 759 760 period = get_cycles() - period; 761 spin_lock(&sbi->s_bal_lock); 762 sbi->s_mb_buddies_generated++; 763 sbi->s_mb_generation_time += period; 764 spin_unlock(&sbi->s_bal_lock); 765 } 766 767 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 768 { 769 int count; 770 int order = 1; 771 void *buddy; 772 773 while ((buddy = mb_find_buddy(e4b, order++, &count))) { 774 ext4_set_bits(buddy, 0, count); 775 } 776 e4b->bd_info->bb_fragments = 0; 777 memset(e4b->bd_info->bb_counters, 0, 778 sizeof(*e4b->bd_info->bb_counters) * 779 (e4b->bd_sb->s_blocksize_bits + 2)); 780 781 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 782 e4b->bd_bitmap, e4b->bd_group); 783 } 784 785 /* The buddy information is attached the buddy cache inode 786 * for convenience. The information regarding each group 787 * is loaded via ext4_mb_load_buddy. The information involve 788 * block bitmap and buddy information. The information are 789 * stored in the inode as 790 * 791 * { page } 792 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 793 * 794 * 795 * one block each for bitmap and buddy information. 796 * So for each group we take up 2 blocks. A page can 797 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 798 * So it can have information regarding groups_per_page which 799 * is blocks_per_page/2 800 * 801 * Locking note: This routine takes the block group lock of all groups 802 * for this page; do not hold this lock when calling this routine! 803 */ 804 805 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 806 { 807 ext4_group_t ngroups; 808 int blocksize; 809 int blocks_per_page; 810 int groups_per_page; 811 int err = 0; 812 int i; 813 ext4_group_t first_group, group; 814 int first_block; 815 struct super_block *sb; 816 struct buffer_head *bhs; 817 struct buffer_head **bh = NULL; 818 struct inode *inode; 819 char *data; 820 char *bitmap; 821 struct ext4_group_info *grinfo; 822 823 mb_debug(1, "init page %lu\n", page->index); 824 825 inode = page->mapping->host; 826 sb = inode->i_sb; 827 ngroups = ext4_get_groups_count(sb); 828 blocksize = i_blocksize(inode); 829 blocks_per_page = PAGE_SIZE / blocksize; 830 831 groups_per_page = blocks_per_page >> 1; 832 if (groups_per_page == 0) 833 groups_per_page = 1; 834 835 /* allocate buffer_heads to read bitmaps */ 836 if (groups_per_page > 1) { 837 i = sizeof(struct buffer_head *) * groups_per_page; 838 bh = kzalloc(i, gfp); 839 if (bh == NULL) { 840 err = -ENOMEM; 841 goto out; 842 } 843 } else 844 bh = &bhs; 845 846 first_group = page->index * blocks_per_page / 2; 847 848 /* read all groups the page covers into the cache */ 849 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 850 if (group >= ngroups) 851 break; 852 853 grinfo = ext4_get_group_info(sb, group); 854 /* 855 * If page is uptodate then we came here after online resize 856 * which added some new uninitialized group info structs, so 857 * we must skip all initialized uptodate buddies on the page, 858 * which may be currently in use by an allocating task. 859 */ 860 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 861 bh[i] = NULL; 862 continue; 863 } 864 bh[i] = ext4_read_block_bitmap_nowait(sb, group); 865 if (IS_ERR(bh[i])) { 866 err = PTR_ERR(bh[i]); 867 bh[i] = NULL; 868 goto out; 869 } 870 mb_debug(1, "read bitmap for group %u\n", group); 871 } 872 873 /* wait for I/O completion */ 874 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 875 int err2; 876 877 if (!bh[i]) 878 continue; 879 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 880 if (!err) 881 err = err2; 882 } 883 884 first_block = page->index * blocks_per_page; 885 for (i = 0; i < blocks_per_page; i++) { 886 group = (first_block + i) >> 1; 887 if (group >= ngroups) 888 break; 889 890 if (!bh[group - first_group]) 891 /* skip initialized uptodate buddy */ 892 continue; 893 894 if (!buffer_verified(bh[group - first_group])) 895 /* Skip faulty bitmaps */ 896 continue; 897 err = 0; 898 899 /* 900 * data carry information regarding this 901 * particular group in the format specified 902 * above 903 * 904 */ 905 data = page_address(page) + (i * blocksize); 906 bitmap = bh[group - first_group]->b_data; 907 908 /* 909 * We place the buddy block and bitmap block 910 * close together 911 */ 912 if ((first_block + i) & 1) { 913 /* this is block of buddy */ 914 BUG_ON(incore == NULL); 915 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 916 group, page->index, i * blocksize); 917 trace_ext4_mb_buddy_bitmap_load(sb, group); 918 grinfo = ext4_get_group_info(sb, group); 919 grinfo->bb_fragments = 0; 920 memset(grinfo->bb_counters, 0, 921 sizeof(*grinfo->bb_counters) * 922 (sb->s_blocksize_bits+2)); 923 /* 924 * incore got set to the group block bitmap below 925 */ 926 ext4_lock_group(sb, group); 927 /* init the buddy */ 928 memset(data, 0xff, blocksize); 929 ext4_mb_generate_buddy(sb, data, incore, group); 930 ext4_unlock_group(sb, group); 931 incore = NULL; 932 } else { 933 /* this is block of bitmap */ 934 BUG_ON(incore != NULL); 935 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 936 group, page->index, i * blocksize); 937 trace_ext4_mb_bitmap_load(sb, group); 938 939 /* see comments in ext4_mb_put_pa() */ 940 ext4_lock_group(sb, group); 941 memcpy(data, bitmap, blocksize); 942 943 /* mark all preallocated blks used in in-core bitmap */ 944 ext4_mb_generate_from_pa(sb, data, group); 945 ext4_mb_generate_from_freelist(sb, data, group); 946 ext4_unlock_group(sb, group); 947 948 /* set incore so that the buddy information can be 949 * generated using this 950 */ 951 incore = data; 952 } 953 } 954 SetPageUptodate(page); 955 956 out: 957 if (bh) { 958 for (i = 0; i < groups_per_page; i++) 959 brelse(bh[i]); 960 if (bh != &bhs) 961 kfree(bh); 962 } 963 return err; 964 } 965 966 /* 967 * Lock the buddy and bitmap pages. This make sure other parallel init_group 968 * on the same buddy page doesn't happen whild holding the buddy page lock. 969 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 970 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 971 */ 972 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 973 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 974 { 975 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 976 int block, pnum, poff; 977 int blocks_per_page; 978 struct page *page; 979 980 e4b->bd_buddy_page = NULL; 981 e4b->bd_bitmap_page = NULL; 982 983 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 984 /* 985 * the buddy cache inode stores the block bitmap 986 * and buddy information in consecutive blocks. 987 * So for each group we need two blocks. 988 */ 989 block = group * 2; 990 pnum = block / blocks_per_page; 991 poff = block % blocks_per_page; 992 page = find_or_create_page(inode->i_mapping, pnum, gfp); 993 if (!page) 994 return -ENOMEM; 995 BUG_ON(page->mapping != inode->i_mapping); 996 e4b->bd_bitmap_page = page; 997 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 998 999 if (blocks_per_page >= 2) { 1000 /* buddy and bitmap are on the same page */ 1001 return 0; 1002 } 1003 1004 block++; 1005 pnum = block / blocks_per_page; 1006 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1007 if (!page) 1008 return -ENOMEM; 1009 BUG_ON(page->mapping != inode->i_mapping); 1010 e4b->bd_buddy_page = page; 1011 return 0; 1012 } 1013 1014 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1015 { 1016 if (e4b->bd_bitmap_page) { 1017 unlock_page(e4b->bd_bitmap_page); 1018 put_page(e4b->bd_bitmap_page); 1019 } 1020 if (e4b->bd_buddy_page) { 1021 unlock_page(e4b->bd_buddy_page); 1022 put_page(e4b->bd_buddy_page); 1023 } 1024 } 1025 1026 /* 1027 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1028 * block group lock of all groups for this page; do not hold the BG lock when 1029 * calling this routine! 1030 */ 1031 static noinline_for_stack 1032 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1033 { 1034 1035 struct ext4_group_info *this_grp; 1036 struct ext4_buddy e4b; 1037 struct page *page; 1038 int ret = 0; 1039 1040 might_sleep(); 1041 mb_debug(1, "init group %u\n", group); 1042 this_grp = ext4_get_group_info(sb, group); 1043 /* 1044 * This ensures that we don't reinit the buddy cache 1045 * page which map to the group from which we are already 1046 * allocating. If we are looking at the buddy cache we would 1047 * have taken a reference using ext4_mb_load_buddy and that 1048 * would have pinned buddy page to page cache. 1049 * The call to ext4_mb_get_buddy_page_lock will mark the 1050 * page accessed. 1051 */ 1052 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1053 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1054 /* 1055 * somebody initialized the group 1056 * return without doing anything 1057 */ 1058 goto err; 1059 } 1060 1061 page = e4b.bd_bitmap_page; 1062 ret = ext4_mb_init_cache(page, NULL, gfp); 1063 if (ret) 1064 goto err; 1065 if (!PageUptodate(page)) { 1066 ret = -EIO; 1067 goto err; 1068 } 1069 1070 if (e4b.bd_buddy_page == NULL) { 1071 /* 1072 * If both the bitmap and buddy are in 1073 * the same page we don't need to force 1074 * init the buddy 1075 */ 1076 ret = 0; 1077 goto err; 1078 } 1079 /* init buddy cache */ 1080 page = e4b.bd_buddy_page; 1081 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1082 if (ret) 1083 goto err; 1084 if (!PageUptodate(page)) { 1085 ret = -EIO; 1086 goto err; 1087 } 1088 err: 1089 ext4_mb_put_buddy_page_lock(&e4b); 1090 return ret; 1091 } 1092 1093 /* 1094 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1095 * block group lock of all groups for this page; do not hold the BG lock when 1096 * calling this routine! 1097 */ 1098 static noinline_for_stack int 1099 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1100 struct ext4_buddy *e4b, gfp_t gfp) 1101 { 1102 int blocks_per_page; 1103 int block; 1104 int pnum; 1105 int poff; 1106 struct page *page; 1107 int ret; 1108 struct ext4_group_info *grp; 1109 struct ext4_sb_info *sbi = EXT4_SB(sb); 1110 struct inode *inode = sbi->s_buddy_cache; 1111 1112 might_sleep(); 1113 mb_debug(1, "load group %u\n", group); 1114 1115 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1116 grp = ext4_get_group_info(sb, group); 1117 1118 e4b->bd_blkbits = sb->s_blocksize_bits; 1119 e4b->bd_info = grp; 1120 e4b->bd_sb = sb; 1121 e4b->bd_group = group; 1122 e4b->bd_buddy_page = NULL; 1123 e4b->bd_bitmap_page = NULL; 1124 1125 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1126 /* 1127 * we need full data about the group 1128 * to make a good selection 1129 */ 1130 ret = ext4_mb_init_group(sb, group, gfp); 1131 if (ret) 1132 return ret; 1133 } 1134 1135 /* 1136 * the buddy cache inode stores the block bitmap 1137 * and buddy information in consecutive blocks. 1138 * So for each group we need two blocks. 1139 */ 1140 block = group * 2; 1141 pnum = block / blocks_per_page; 1142 poff = block % blocks_per_page; 1143 1144 /* we could use find_or_create_page(), but it locks page 1145 * what we'd like to avoid in fast path ... */ 1146 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1147 if (page == NULL || !PageUptodate(page)) { 1148 if (page) 1149 /* 1150 * drop the page reference and try 1151 * to get the page with lock. If we 1152 * are not uptodate that implies 1153 * somebody just created the page but 1154 * is yet to initialize the same. So 1155 * wait for it to initialize. 1156 */ 1157 put_page(page); 1158 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1159 if (page) { 1160 BUG_ON(page->mapping != inode->i_mapping); 1161 if (!PageUptodate(page)) { 1162 ret = ext4_mb_init_cache(page, NULL, gfp); 1163 if (ret) { 1164 unlock_page(page); 1165 goto err; 1166 } 1167 mb_cmp_bitmaps(e4b, page_address(page) + 1168 (poff * sb->s_blocksize)); 1169 } 1170 unlock_page(page); 1171 } 1172 } 1173 if (page == NULL) { 1174 ret = -ENOMEM; 1175 goto err; 1176 } 1177 if (!PageUptodate(page)) { 1178 ret = -EIO; 1179 goto err; 1180 } 1181 1182 /* Pages marked accessed already */ 1183 e4b->bd_bitmap_page = page; 1184 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1185 1186 block++; 1187 pnum = block / blocks_per_page; 1188 poff = block % blocks_per_page; 1189 1190 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1191 if (page == NULL || !PageUptodate(page)) { 1192 if (page) 1193 put_page(page); 1194 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1195 if (page) { 1196 BUG_ON(page->mapping != inode->i_mapping); 1197 if (!PageUptodate(page)) { 1198 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1199 gfp); 1200 if (ret) { 1201 unlock_page(page); 1202 goto err; 1203 } 1204 } 1205 unlock_page(page); 1206 } 1207 } 1208 if (page == NULL) { 1209 ret = -ENOMEM; 1210 goto err; 1211 } 1212 if (!PageUptodate(page)) { 1213 ret = -EIO; 1214 goto err; 1215 } 1216 1217 /* Pages marked accessed already */ 1218 e4b->bd_buddy_page = page; 1219 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1220 1221 BUG_ON(e4b->bd_bitmap_page == NULL); 1222 BUG_ON(e4b->bd_buddy_page == NULL); 1223 1224 return 0; 1225 1226 err: 1227 if (page) 1228 put_page(page); 1229 if (e4b->bd_bitmap_page) 1230 put_page(e4b->bd_bitmap_page); 1231 if (e4b->bd_buddy_page) 1232 put_page(e4b->bd_buddy_page); 1233 e4b->bd_buddy = NULL; 1234 e4b->bd_bitmap = NULL; 1235 return ret; 1236 } 1237 1238 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1239 struct ext4_buddy *e4b) 1240 { 1241 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1242 } 1243 1244 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1245 { 1246 if (e4b->bd_bitmap_page) 1247 put_page(e4b->bd_bitmap_page); 1248 if (e4b->bd_buddy_page) 1249 put_page(e4b->bd_buddy_page); 1250 } 1251 1252 1253 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1254 { 1255 int order = 1; 1256 int bb_incr = 1 << (e4b->bd_blkbits - 1); 1257 void *bb; 1258 1259 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1260 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1261 1262 bb = e4b->bd_buddy; 1263 while (order <= e4b->bd_blkbits + 1) { 1264 block = block >> 1; 1265 if (!mb_test_bit(block, bb)) { 1266 /* this block is part of buddy of order 'order' */ 1267 return order; 1268 } 1269 bb += bb_incr; 1270 bb_incr >>= 1; 1271 order++; 1272 } 1273 return 0; 1274 } 1275 1276 static void mb_clear_bits(void *bm, int cur, int len) 1277 { 1278 __u32 *addr; 1279 1280 len = cur + len; 1281 while (cur < len) { 1282 if ((cur & 31) == 0 && (len - cur) >= 32) { 1283 /* fast path: clear whole word at once */ 1284 addr = bm + (cur >> 3); 1285 *addr = 0; 1286 cur += 32; 1287 continue; 1288 } 1289 mb_clear_bit(cur, bm); 1290 cur++; 1291 } 1292 } 1293 1294 /* clear bits in given range 1295 * will return first found zero bit if any, -1 otherwise 1296 */ 1297 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1298 { 1299 __u32 *addr; 1300 int zero_bit = -1; 1301 1302 len = cur + len; 1303 while (cur < len) { 1304 if ((cur & 31) == 0 && (len - cur) >= 32) { 1305 /* fast path: clear whole word at once */ 1306 addr = bm + (cur >> 3); 1307 if (*addr != (__u32)(-1) && zero_bit == -1) 1308 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1309 *addr = 0; 1310 cur += 32; 1311 continue; 1312 } 1313 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1314 zero_bit = cur; 1315 cur++; 1316 } 1317 1318 return zero_bit; 1319 } 1320 1321 void ext4_set_bits(void *bm, int cur, int len) 1322 { 1323 __u32 *addr; 1324 1325 len = cur + len; 1326 while (cur < len) { 1327 if ((cur & 31) == 0 && (len - cur) >= 32) { 1328 /* fast path: set whole word at once */ 1329 addr = bm + (cur >> 3); 1330 *addr = 0xffffffff; 1331 cur += 32; 1332 continue; 1333 } 1334 mb_set_bit(cur, bm); 1335 cur++; 1336 } 1337 } 1338 1339 /* 1340 * _________________________________________________________________ */ 1341 1342 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1343 { 1344 if (mb_test_bit(*bit + side, bitmap)) { 1345 mb_clear_bit(*bit, bitmap); 1346 (*bit) -= side; 1347 return 1; 1348 } 1349 else { 1350 (*bit) += side; 1351 mb_set_bit(*bit, bitmap); 1352 return -1; 1353 } 1354 } 1355 1356 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1357 { 1358 int max; 1359 int order = 1; 1360 void *buddy = mb_find_buddy(e4b, order, &max); 1361 1362 while (buddy) { 1363 void *buddy2; 1364 1365 /* Bits in range [first; last] are known to be set since 1366 * corresponding blocks were allocated. Bits in range 1367 * (first; last) will stay set because they form buddies on 1368 * upper layer. We just deal with borders if they don't 1369 * align with upper layer and then go up. 1370 * Releasing entire group is all about clearing 1371 * single bit of highest order buddy. 1372 */ 1373 1374 /* Example: 1375 * --------------------------------- 1376 * | 1 | 1 | 1 | 1 | 1377 * --------------------------------- 1378 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1379 * --------------------------------- 1380 * 0 1 2 3 4 5 6 7 1381 * \_____________________/ 1382 * 1383 * Neither [1] nor [6] is aligned to above layer. 1384 * Left neighbour [0] is free, so mark it busy, 1385 * decrease bb_counters and extend range to 1386 * [0; 6] 1387 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1388 * mark [6] free, increase bb_counters and shrink range to 1389 * [0; 5]. 1390 * Then shift range to [0; 2], go up and do the same. 1391 */ 1392 1393 1394 if (first & 1) 1395 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1396 if (!(last & 1)) 1397 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1398 if (first > last) 1399 break; 1400 order++; 1401 1402 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1403 mb_clear_bits(buddy, first, last - first + 1); 1404 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1405 break; 1406 } 1407 first >>= 1; 1408 last >>= 1; 1409 buddy = buddy2; 1410 } 1411 } 1412 1413 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1414 int first, int count) 1415 { 1416 int left_is_free = 0; 1417 int right_is_free = 0; 1418 int block; 1419 int last = first + count - 1; 1420 struct super_block *sb = e4b->bd_sb; 1421 1422 if (WARN_ON(count == 0)) 1423 return; 1424 BUG_ON(last >= (sb->s_blocksize << 3)); 1425 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1426 /* Don't bother if the block group is corrupt. */ 1427 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1428 return; 1429 1430 mb_check_buddy(e4b); 1431 mb_free_blocks_double(inode, e4b, first, count); 1432 1433 e4b->bd_info->bb_free += count; 1434 if (first < e4b->bd_info->bb_first_free) 1435 e4b->bd_info->bb_first_free = first; 1436 1437 /* access memory sequentially: check left neighbour, 1438 * clear range and then check right neighbour 1439 */ 1440 if (first != 0) 1441 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1442 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1443 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1444 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1445 1446 if (unlikely(block != -1)) { 1447 struct ext4_sb_info *sbi = EXT4_SB(sb); 1448 ext4_fsblk_t blocknr; 1449 1450 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1451 blocknr += EXT4_C2B(sbi, block); 1452 ext4_grp_locked_error(sb, e4b->bd_group, 1453 inode ? inode->i_ino : 0, 1454 blocknr, 1455 "freeing already freed block " 1456 "(bit %u); block bitmap corrupt.", 1457 block); 1458 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1459 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1460 mb_regenerate_buddy(e4b); 1461 goto done; 1462 } 1463 1464 /* let's maintain fragments counter */ 1465 if (left_is_free && right_is_free) 1466 e4b->bd_info->bb_fragments--; 1467 else if (!left_is_free && !right_is_free) 1468 e4b->bd_info->bb_fragments++; 1469 1470 /* buddy[0] == bd_bitmap is a special case, so handle 1471 * it right away and let mb_buddy_mark_free stay free of 1472 * zero order checks. 1473 * Check if neighbours are to be coaleasced, 1474 * adjust bitmap bb_counters and borders appropriately. 1475 */ 1476 if (first & 1) { 1477 first += !left_is_free; 1478 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1479 } 1480 if (!(last & 1)) { 1481 last -= !right_is_free; 1482 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1483 } 1484 1485 if (first <= last) 1486 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1487 1488 done: 1489 mb_set_largest_free_order(sb, e4b->bd_info); 1490 mb_check_buddy(e4b); 1491 } 1492 1493 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1494 int needed, struct ext4_free_extent *ex) 1495 { 1496 int next = block; 1497 int max, order; 1498 void *buddy; 1499 1500 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1501 BUG_ON(ex == NULL); 1502 1503 buddy = mb_find_buddy(e4b, 0, &max); 1504 BUG_ON(buddy == NULL); 1505 BUG_ON(block >= max); 1506 if (mb_test_bit(block, buddy)) { 1507 ex->fe_len = 0; 1508 ex->fe_start = 0; 1509 ex->fe_group = 0; 1510 return 0; 1511 } 1512 1513 /* find actual order */ 1514 order = mb_find_order_for_block(e4b, block); 1515 block = block >> order; 1516 1517 ex->fe_len = 1 << order; 1518 ex->fe_start = block << order; 1519 ex->fe_group = e4b->bd_group; 1520 1521 /* calc difference from given start */ 1522 next = next - ex->fe_start; 1523 ex->fe_len -= next; 1524 ex->fe_start += next; 1525 1526 while (needed > ex->fe_len && 1527 mb_find_buddy(e4b, order, &max)) { 1528 1529 if (block + 1 >= max) 1530 break; 1531 1532 next = (block + 1) * (1 << order); 1533 if (mb_test_bit(next, e4b->bd_bitmap)) 1534 break; 1535 1536 order = mb_find_order_for_block(e4b, next); 1537 1538 block = next >> order; 1539 ex->fe_len += 1 << order; 1540 } 1541 1542 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 1543 /* Should never happen! (but apparently sometimes does?!?) */ 1544 WARN_ON(1); 1545 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent " 1546 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 1547 block, order, needed, ex->fe_group, ex->fe_start, 1548 ex->fe_len, ex->fe_logical); 1549 ex->fe_len = 0; 1550 ex->fe_start = 0; 1551 ex->fe_group = 0; 1552 } 1553 return ex->fe_len; 1554 } 1555 1556 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1557 { 1558 int ord; 1559 int mlen = 0; 1560 int max = 0; 1561 int cur; 1562 int start = ex->fe_start; 1563 int len = ex->fe_len; 1564 unsigned ret = 0; 1565 int len0 = len; 1566 void *buddy; 1567 1568 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1569 BUG_ON(e4b->bd_group != ex->fe_group); 1570 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1571 mb_check_buddy(e4b); 1572 mb_mark_used_double(e4b, start, len); 1573 1574 e4b->bd_info->bb_free -= len; 1575 if (e4b->bd_info->bb_first_free == start) 1576 e4b->bd_info->bb_first_free += len; 1577 1578 /* let's maintain fragments counter */ 1579 if (start != 0) 1580 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1581 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1582 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1583 if (mlen && max) 1584 e4b->bd_info->bb_fragments++; 1585 else if (!mlen && !max) 1586 e4b->bd_info->bb_fragments--; 1587 1588 /* let's maintain buddy itself */ 1589 while (len) { 1590 ord = mb_find_order_for_block(e4b, start); 1591 1592 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1593 /* the whole chunk may be allocated at once! */ 1594 mlen = 1 << ord; 1595 buddy = mb_find_buddy(e4b, ord, &max); 1596 BUG_ON((start >> ord) >= max); 1597 mb_set_bit(start >> ord, buddy); 1598 e4b->bd_info->bb_counters[ord]--; 1599 start += mlen; 1600 len -= mlen; 1601 BUG_ON(len < 0); 1602 continue; 1603 } 1604 1605 /* store for history */ 1606 if (ret == 0) 1607 ret = len | (ord << 16); 1608 1609 /* we have to split large buddy */ 1610 BUG_ON(ord <= 0); 1611 buddy = mb_find_buddy(e4b, ord, &max); 1612 mb_set_bit(start >> ord, buddy); 1613 e4b->bd_info->bb_counters[ord]--; 1614 1615 ord--; 1616 cur = (start >> ord) & ~1U; 1617 buddy = mb_find_buddy(e4b, ord, &max); 1618 mb_clear_bit(cur, buddy); 1619 mb_clear_bit(cur + 1, buddy); 1620 e4b->bd_info->bb_counters[ord]++; 1621 e4b->bd_info->bb_counters[ord]++; 1622 } 1623 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1624 1625 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1626 mb_check_buddy(e4b); 1627 1628 return ret; 1629 } 1630 1631 /* 1632 * Must be called under group lock! 1633 */ 1634 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1635 struct ext4_buddy *e4b) 1636 { 1637 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1638 int ret; 1639 1640 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1641 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1642 1643 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1644 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1645 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1646 1647 /* preallocation can change ac_b_ex, thus we store actually 1648 * allocated blocks for history */ 1649 ac->ac_f_ex = ac->ac_b_ex; 1650 1651 ac->ac_status = AC_STATUS_FOUND; 1652 ac->ac_tail = ret & 0xffff; 1653 ac->ac_buddy = ret >> 16; 1654 1655 /* 1656 * take the page reference. We want the page to be pinned 1657 * so that we don't get a ext4_mb_init_cache_call for this 1658 * group until we update the bitmap. That would mean we 1659 * double allocate blocks. The reference is dropped 1660 * in ext4_mb_release_context 1661 */ 1662 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1663 get_page(ac->ac_bitmap_page); 1664 ac->ac_buddy_page = e4b->bd_buddy_page; 1665 get_page(ac->ac_buddy_page); 1666 /* store last allocated for subsequent stream allocation */ 1667 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1668 spin_lock(&sbi->s_md_lock); 1669 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1670 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1671 spin_unlock(&sbi->s_md_lock); 1672 } 1673 } 1674 1675 /* 1676 * regular allocator, for general purposes allocation 1677 */ 1678 1679 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1680 struct ext4_buddy *e4b, 1681 int finish_group) 1682 { 1683 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1684 struct ext4_free_extent *bex = &ac->ac_b_ex; 1685 struct ext4_free_extent *gex = &ac->ac_g_ex; 1686 struct ext4_free_extent ex; 1687 int max; 1688 1689 if (ac->ac_status == AC_STATUS_FOUND) 1690 return; 1691 /* 1692 * We don't want to scan for a whole year 1693 */ 1694 if (ac->ac_found > sbi->s_mb_max_to_scan && 1695 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1696 ac->ac_status = AC_STATUS_BREAK; 1697 return; 1698 } 1699 1700 /* 1701 * Haven't found good chunk so far, let's continue 1702 */ 1703 if (bex->fe_len < gex->fe_len) 1704 return; 1705 1706 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1707 && bex->fe_group == e4b->bd_group) { 1708 /* recheck chunk's availability - we don't know 1709 * when it was found (within this lock-unlock 1710 * period or not) */ 1711 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1712 if (max >= gex->fe_len) { 1713 ext4_mb_use_best_found(ac, e4b); 1714 return; 1715 } 1716 } 1717 } 1718 1719 /* 1720 * The routine checks whether found extent is good enough. If it is, 1721 * then the extent gets marked used and flag is set to the context 1722 * to stop scanning. Otherwise, the extent is compared with the 1723 * previous found extent and if new one is better, then it's stored 1724 * in the context. Later, the best found extent will be used, if 1725 * mballoc can't find good enough extent. 1726 * 1727 * FIXME: real allocation policy is to be designed yet! 1728 */ 1729 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1730 struct ext4_free_extent *ex, 1731 struct ext4_buddy *e4b) 1732 { 1733 struct ext4_free_extent *bex = &ac->ac_b_ex; 1734 struct ext4_free_extent *gex = &ac->ac_g_ex; 1735 1736 BUG_ON(ex->fe_len <= 0); 1737 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1738 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1739 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1740 1741 ac->ac_found++; 1742 1743 /* 1744 * The special case - take what you catch first 1745 */ 1746 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1747 *bex = *ex; 1748 ext4_mb_use_best_found(ac, e4b); 1749 return; 1750 } 1751 1752 /* 1753 * Let's check whether the chuck is good enough 1754 */ 1755 if (ex->fe_len == gex->fe_len) { 1756 *bex = *ex; 1757 ext4_mb_use_best_found(ac, e4b); 1758 return; 1759 } 1760 1761 /* 1762 * If this is first found extent, just store it in the context 1763 */ 1764 if (bex->fe_len == 0) { 1765 *bex = *ex; 1766 return; 1767 } 1768 1769 /* 1770 * If new found extent is better, store it in the context 1771 */ 1772 if (bex->fe_len < gex->fe_len) { 1773 /* if the request isn't satisfied, any found extent 1774 * larger than previous best one is better */ 1775 if (ex->fe_len > bex->fe_len) 1776 *bex = *ex; 1777 } else if (ex->fe_len > gex->fe_len) { 1778 /* if the request is satisfied, then we try to find 1779 * an extent that still satisfy the request, but is 1780 * smaller than previous one */ 1781 if (ex->fe_len < bex->fe_len) 1782 *bex = *ex; 1783 } 1784 1785 ext4_mb_check_limits(ac, e4b, 0); 1786 } 1787 1788 static noinline_for_stack 1789 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1790 struct ext4_buddy *e4b) 1791 { 1792 struct ext4_free_extent ex = ac->ac_b_ex; 1793 ext4_group_t group = ex.fe_group; 1794 int max; 1795 int err; 1796 1797 BUG_ON(ex.fe_len <= 0); 1798 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1799 if (err) 1800 return err; 1801 1802 ext4_lock_group(ac->ac_sb, group); 1803 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1804 1805 if (max > 0) { 1806 ac->ac_b_ex = ex; 1807 ext4_mb_use_best_found(ac, e4b); 1808 } 1809 1810 ext4_unlock_group(ac->ac_sb, group); 1811 ext4_mb_unload_buddy(e4b); 1812 1813 return 0; 1814 } 1815 1816 static noinline_for_stack 1817 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1818 struct ext4_buddy *e4b) 1819 { 1820 ext4_group_t group = ac->ac_g_ex.fe_group; 1821 int max; 1822 int err; 1823 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1824 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1825 struct ext4_free_extent ex; 1826 1827 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1828 return 0; 1829 if (grp->bb_free == 0) 1830 return 0; 1831 1832 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1833 if (err) 1834 return err; 1835 1836 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 1837 ext4_mb_unload_buddy(e4b); 1838 return 0; 1839 } 1840 1841 ext4_lock_group(ac->ac_sb, group); 1842 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1843 ac->ac_g_ex.fe_len, &ex); 1844 ex.fe_logical = 0xDEADFA11; /* debug value */ 1845 1846 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1847 ext4_fsblk_t start; 1848 1849 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1850 ex.fe_start; 1851 /* use do_div to get remainder (would be 64-bit modulo) */ 1852 if (do_div(start, sbi->s_stripe) == 0) { 1853 ac->ac_found++; 1854 ac->ac_b_ex = ex; 1855 ext4_mb_use_best_found(ac, e4b); 1856 } 1857 } else if (max >= ac->ac_g_ex.fe_len) { 1858 BUG_ON(ex.fe_len <= 0); 1859 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1860 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1861 ac->ac_found++; 1862 ac->ac_b_ex = ex; 1863 ext4_mb_use_best_found(ac, e4b); 1864 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1865 /* Sometimes, caller may want to merge even small 1866 * number of blocks to an existing extent */ 1867 BUG_ON(ex.fe_len <= 0); 1868 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1869 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1870 ac->ac_found++; 1871 ac->ac_b_ex = ex; 1872 ext4_mb_use_best_found(ac, e4b); 1873 } 1874 ext4_unlock_group(ac->ac_sb, group); 1875 ext4_mb_unload_buddy(e4b); 1876 1877 return 0; 1878 } 1879 1880 /* 1881 * The routine scans buddy structures (not bitmap!) from given order 1882 * to max order and tries to find big enough chunk to satisfy the req 1883 */ 1884 static noinline_for_stack 1885 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1886 struct ext4_buddy *e4b) 1887 { 1888 struct super_block *sb = ac->ac_sb; 1889 struct ext4_group_info *grp = e4b->bd_info; 1890 void *buddy; 1891 int i; 1892 int k; 1893 int max; 1894 1895 BUG_ON(ac->ac_2order <= 0); 1896 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1897 if (grp->bb_counters[i] == 0) 1898 continue; 1899 1900 buddy = mb_find_buddy(e4b, i, &max); 1901 BUG_ON(buddy == NULL); 1902 1903 k = mb_find_next_zero_bit(buddy, max, 0); 1904 BUG_ON(k >= max); 1905 1906 ac->ac_found++; 1907 1908 ac->ac_b_ex.fe_len = 1 << i; 1909 ac->ac_b_ex.fe_start = k << i; 1910 ac->ac_b_ex.fe_group = e4b->bd_group; 1911 1912 ext4_mb_use_best_found(ac, e4b); 1913 1914 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1915 1916 if (EXT4_SB(sb)->s_mb_stats) 1917 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1918 1919 break; 1920 } 1921 } 1922 1923 /* 1924 * The routine scans the group and measures all found extents. 1925 * In order to optimize scanning, caller must pass number of 1926 * free blocks in the group, so the routine can know upper limit. 1927 */ 1928 static noinline_for_stack 1929 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1930 struct ext4_buddy *e4b) 1931 { 1932 struct super_block *sb = ac->ac_sb; 1933 void *bitmap = e4b->bd_bitmap; 1934 struct ext4_free_extent ex; 1935 int i; 1936 int free; 1937 1938 free = e4b->bd_info->bb_free; 1939 BUG_ON(free <= 0); 1940 1941 i = e4b->bd_info->bb_first_free; 1942 1943 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1944 i = mb_find_next_zero_bit(bitmap, 1945 EXT4_CLUSTERS_PER_GROUP(sb), i); 1946 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1947 /* 1948 * IF we have corrupt bitmap, we won't find any 1949 * free blocks even though group info says we 1950 * we have free blocks 1951 */ 1952 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1953 "%d free clusters as per " 1954 "group info. But bitmap says 0", 1955 free); 1956 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1957 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1958 break; 1959 } 1960 1961 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1962 BUG_ON(ex.fe_len <= 0); 1963 if (free < ex.fe_len) { 1964 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1965 "%d free clusters as per " 1966 "group info. But got %d blocks", 1967 free, ex.fe_len); 1968 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1969 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1970 /* 1971 * The number of free blocks differs. This mostly 1972 * indicate that the bitmap is corrupt. So exit 1973 * without claiming the space. 1974 */ 1975 break; 1976 } 1977 ex.fe_logical = 0xDEADC0DE; /* debug value */ 1978 ext4_mb_measure_extent(ac, &ex, e4b); 1979 1980 i += ex.fe_len; 1981 free -= ex.fe_len; 1982 } 1983 1984 ext4_mb_check_limits(ac, e4b, 1); 1985 } 1986 1987 /* 1988 * This is a special case for storages like raid5 1989 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1990 */ 1991 static noinline_for_stack 1992 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1993 struct ext4_buddy *e4b) 1994 { 1995 struct super_block *sb = ac->ac_sb; 1996 struct ext4_sb_info *sbi = EXT4_SB(sb); 1997 void *bitmap = e4b->bd_bitmap; 1998 struct ext4_free_extent ex; 1999 ext4_fsblk_t first_group_block; 2000 ext4_fsblk_t a; 2001 ext4_grpblk_t i; 2002 int max; 2003 2004 BUG_ON(sbi->s_stripe == 0); 2005 2006 /* find first stripe-aligned block in group */ 2007 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2008 2009 a = first_group_block + sbi->s_stripe - 1; 2010 do_div(a, sbi->s_stripe); 2011 i = (a * sbi->s_stripe) - first_group_block; 2012 2013 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2014 if (!mb_test_bit(i, bitmap)) { 2015 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 2016 if (max >= sbi->s_stripe) { 2017 ac->ac_found++; 2018 ex.fe_logical = 0xDEADF00D; /* debug value */ 2019 ac->ac_b_ex = ex; 2020 ext4_mb_use_best_found(ac, e4b); 2021 break; 2022 } 2023 } 2024 i += sbi->s_stripe; 2025 } 2026 } 2027 2028 /* 2029 * This is now called BEFORE we load the buddy bitmap. 2030 * Returns either 1 or 0 indicating that the group is either suitable 2031 * for the allocation or not. In addition it can also return negative 2032 * error code when something goes wrong. 2033 */ 2034 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 2035 ext4_group_t group, int cr) 2036 { 2037 unsigned free, fragments; 2038 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2039 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2040 2041 BUG_ON(cr < 0 || cr >= 4); 2042 2043 free = grp->bb_free; 2044 if (free == 0) 2045 return 0; 2046 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2047 return 0; 2048 2049 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2050 return 0; 2051 2052 /* We only do this if the grp has never been initialized */ 2053 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2054 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS); 2055 if (ret) 2056 return ret; 2057 } 2058 2059 fragments = grp->bb_fragments; 2060 if (fragments == 0) 2061 return 0; 2062 2063 switch (cr) { 2064 case 0: 2065 BUG_ON(ac->ac_2order == 0); 2066 2067 /* Avoid using the first bg of a flexgroup for data files */ 2068 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2069 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2070 ((group % flex_size) == 0)) 2071 return 0; 2072 2073 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) || 2074 (free / fragments) >= ac->ac_g_ex.fe_len) 2075 return 1; 2076 2077 if (grp->bb_largest_free_order < ac->ac_2order) 2078 return 0; 2079 2080 return 1; 2081 case 1: 2082 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2083 return 1; 2084 break; 2085 case 2: 2086 if (free >= ac->ac_g_ex.fe_len) 2087 return 1; 2088 break; 2089 case 3: 2090 return 1; 2091 default: 2092 BUG(); 2093 } 2094 2095 return 0; 2096 } 2097 2098 static noinline_for_stack int 2099 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2100 { 2101 ext4_group_t ngroups, group, i; 2102 int cr; 2103 int err = 0, first_err = 0; 2104 struct ext4_sb_info *sbi; 2105 struct super_block *sb; 2106 struct ext4_buddy e4b; 2107 2108 sb = ac->ac_sb; 2109 sbi = EXT4_SB(sb); 2110 ngroups = ext4_get_groups_count(sb); 2111 /* non-extent files are limited to low blocks/groups */ 2112 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2113 ngroups = sbi->s_blockfile_groups; 2114 2115 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2116 2117 /* first, try the goal */ 2118 err = ext4_mb_find_by_goal(ac, &e4b); 2119 if (err || ac->ac_status == AC_STATUS_FOUND) 2120 goto out; 2121 2122 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2123 goto out; 2124 2125 /* 2126 * ac->ac2_order is set only if the fe_len is a power of 2 2127 * if ac2_order is set we also set criteria to 0 so that we 2128 * try exact allocation using buddy. 2129 */ 2130 i = fls(ac->ac_g_ex.fe_len); 2131 ac->ac_2order = 0; 2132 /* 2133 * We search using buddy data only if the order of the request 2134 * is greater than equal to the sbi_s_mb_order2_reqs 2135 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2136 * We also support searching for power-of-two requests only for 2137 * requests upto maximum buddy size we have constructed. 2138 */ 2139 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) { 2140 /* 2141 * This should tell if fe_len is exactly power of 2 2142 */ 2143 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2144 ac->ac_2order = array_index_nospec(i - 1, 2145 sb->s_blocksize_bits + 2); 2146 } 2147 2148 /* if stream allocation is enabled, use global goal */ 2149 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2150 /* TBD: may be hot point */ 2151 spin_lock(&sbi->s_md_lock); 2152 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2153 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2154 spin_unlock(&sbi->s_md_lock); 2155 } 2156 2157 /* Let's just scan groups to find more-less suitable blocks */ 2158 cr = ac->ac_2order ? 0 : 1; 2159 /* 2160 * cr == 0 try to get exact allocation, 2161 * cr == 3 try to get anything 2162 */ 2163 repeat: 2164 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2165 ac->ac_criteria = cr; 2166 /* 2167 * searching for the right group start 2168 * from the goal value specified 2169 */ 2170 group = ac->ac_g_ex.fe_group; 2171 2172 for (i = 0; i < ngroups; group++, i++) { 2173 int ret = 0; 2174 cond_resched(); 2175 /* 2176 * Artificially restricted ngroups for non-extent 2177 * files makes group > ngroups possible on first loop. 2178 */ 2179 if (group >= ngroups) 2180 group = 0; 2181 2182 /* This now checks without needing the buddy page */ 2183 ret = ext4_mb_good_group(ac, group, cr); 2184 if (ret <= 0) { 2185 if (!first_err) 2186 first_err = ret; 2187 continue; 2188 } 2189 2190 err = ext4_mb_load_buddy(sb, group, &e4b); 2191 if (err) 2192 goto out; 2193 2194 ext4_lock_group(sb, group); 2195 2196 /* 2197 * We need to check again after locking the 2198 * block group 2199 */ 2200 ret = ext4_mb_good_group(ac, group, cr); 2201 if (ret <= 0) { 2202 ext4_unlock_group(sb, group); 2203 ext4_mb_unload_buddy(&e4b); 2204 if (!first_err) 2205 first_err = ret; 2206 continue; 2207 } 2208 2209 ac->ac_groups_scanned++; 2210 if (cr == 0) 2211 ext4_mb_simple_scan_group(ac, &e4b); 2212 else if (cr == 1 && sbi->s_stripe && 2213 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2214 ext4_mb_scan_aligned(ac, &e4b); 2215 else 2216 ext4_mb_complex_scan_group(ac, &e4b); 2217 2218 ext4_unlock_group(sb, group); 2219 ext4_mb_unload_buddy(&e4b); 2220 2221 if (ac->ac_status != AC_STATUS_CONTINUE) 2222 break; 2223 } 2224 } 2225 2226 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2227 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2228 /* 2229 * We've been searching too long. Let's try to allocate 2230 * the best chunk we've found so far 2231 */ 2232 2233 ext4_mb_try_best_found(ac, &e4b); 2234 if (ac->ac_status != AC_STATUS_FOUND) { 2235 /* 2236 * Someone more lucky has already allocated it. 2237 * The only thing we can do is just take first 2238 * found block(s) 2239 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2240 */ 2241 ac->ac_b_ex.fe_group = 0; 2242 ac->ac_b_ex.fe_start = 0; 2243 ac->ac_b_ex.fe_len = 0; 2244 ac->ac_status = AC_STATUS_CONTINUE; 2245 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2246 cr = 3; 2247 atomic_inc(&sbi->s_mb_lost_chunks); 2248 goto repeat; 2249 } 2250 } 2251 out: 2252 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2253 err = first_err; 2254 return err; 2255 } 2256 2257 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2258 { 2259 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2260 ext4_group_t group; 2261 2262 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2263 return NULL; 2264 group = *pos + 1; 2265 return (void *) ((unsigned long) group); 2266 } 2267 2268 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2269 { 2270 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2271 ext4_group_t group; 2272 2273 ++*pos; 2274 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2275 return NULL; 2276 group = *pos + 1; 2277 return (void *) ((unsigned long) group); 2278 } 2279 2280 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2281 { 2282 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2283 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2284 int i; 2285 int err, buddy_loaded = 0; 2286 struct ext4_buddy e4b; 2287 struct ext4_group_info *grinfo; 2288 unsigned char blocksize_bits = min_t(unsigned char, 2289 sb->s_blocksize_bits, 2290 EXT4_MAX_BLOCK_LOG_SIZE); 2291 struct sg { 2292 struct ext4_group_info info; 2293 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 2294 } sg; 2295 2296 group--; 2297 if (group == 0) 2298 seq_puts(seq, "#group: free frags first [" 2299 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 2300 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 2301 2302 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2303 sizeof(struct ext4_group_info); 2304 2305 grinfo = ext4_get_group_info(sb, group); 2306 /* Load the group info in memory only if not already loaded. */ 2307 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2308 err = ext4_mb_load_buddy(sb, group, &e4b); 2309 if (err) { 2310 seq_printf(seq, "#%-5u: I/O error\n", group); 2311 return 0; 2312 } 2313 buddy_loaded = 1; 2314 } 2315 2316 memcpy(&sg, ext4_get_group_info(sb, group), i); 2317 2318 if (buddy_loaded) 2319 ext4_mb_unload_buddy(&e4b); 2320 2321 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2322 sg.info.bb_fragments, sg.info.bb_first_free); 2323 for (i = 0; i <= 13; i++) 2324 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 2325 sg.info.bb_counters[i] : 0); 2326 seq_printf(seq, " ]\n"); 2327 2328 return 0; 2329 } 2330 2331 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2332 { 2333 } 2334 2335 const struct seq_operations ext4_mb_seq_groups_ops = { 2336 .start = ext4_mb_seq_groups_start, 2337 .next = ext4_mb_seq_groups_next, 2338 .stop = ext4_mb_seq_groups_stop, 2339 .show = ext4_mb_seq_groups_show, 2340 }; 2341 2342 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2343 { 2344 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2345 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2346 2347 BUG_ON(!cachep); 2348 return cachep; 2349 } 2350 2351 /* 2352 * Allocate the top-level s_group_info array for the specified number 2353 * of groups 2354 */ 2355 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2356 { 2357 struct ext4_sb_info *sbi = EXT4_SB(sb); 2358 unsigned size; 2359 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 2360 2361 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2362 EXT4_DESC_PER_BLOCK_BITS(sb); 2363 if (size <= sbi->s_group_info_size) 2364 return 0; 2365 2366 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2367 new_groupinfo = kvzalloc(size, GFP_KERNEL); 2368 if (!new_groupinfo) { 2369 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2370 return -ENOMEM; 2371 } 2372 rcu_read_lock(); 2373 old_groupinfo = rcu_dereference(sbi->s_group_info); 2374 if (old_groupinfo) 2375 memcpy(new_groupinfo, old_groupinfo, 2376 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2377 rcu_read_unlock(); 2378 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 2379 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2380 if (old_groupinfo) 2381 ext4_kvfree_array_rcu(old_groupinfo); 2382 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2383 sbi->s_group_info_size); 2384 return 0; 2385 } 2386 2387 /* Create and initialize ext4_group_info data for the given group. */ 2388 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2389 struct ext4_group_desc *desc) 2390 { 2391 int i; 2392 int metalen = 0; 2393 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 2394 struct ext4_sb_info *sbi = EXT4_SB(sb); 2395 struct ext4_group_info **meta_group_info; 2396 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2397 2398 /* 2399 * First check if this group is the first of a reserved block. 2400 * If it's true, we have to allocate a new table of pointers 2401 * to ext4_group_info structures 2402 */ 2403 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2404 metalen = sizeof(*meta_group_info) << 2405 EXT4_DESC_PER_BLOCK_BITS(sb); 2406 meta_group_info = kmalloc(metalen, GFP_NOFS); 2407 if (meta_group_info == NULL) { 2408 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2409 "for a buddy group"); 2410 goto exit_meta_group_info; 2411 } 2412 rcu_read_lock(); 2413 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 2414 rcu_read_unlock(); 2415 } 2416 2417 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 2418 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2419 2420 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 2421 if (meta_group_info[i] == NULL) { 2422 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2423 goto exit_group_info; 2424 } 2425 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2426 &(meta_group_info[i]->bb_state)); 2427 2428 /* 2429 * initialize bb_free to be able to skip 2430 * empty groups without initialization 2431 */ 2432 if (ext4_has_group_desc_csum(sb) && 2433 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 2434 meta_group_info[i]->bb_free = 2435 ext4_free_clusters_after_init(sb, group, desc); 2436 } else { 2437 meta_group_info[i]->bb_free = 2438 ext4_free_group_clusters(sb, desc); 2439 } 2440 2441 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2442 init_rwsem(&meta_group_info[i]->alloc_sem); 2443 meta_group_info[i]->bb_free_root = RB_ROOT; 2444 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2445 2446 #ifdef DOUBLE_CHECK 2447 { 2448 struct buffer_head *bh; 2449 meta_group_info[i]->bb_bitmap = 2450 kmalloc(sb->s_blocksize, GFP_NOFS); 2451 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2452 bh = ext4_read_block_bitmap(sb, group); 2453 BUG_ON(IS_ERR_OR_NULL(bh)); 2454 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2455 sb->s_blocksize); 2456 put_bh(bh); 2457 } 2458 #endif 2459 2460 return 0; 2461 2462 exit_group_info: 2463 /* If a meta_group_info table has been allocated, release it now */ 2464 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2465 struct ext4_group_info ***group_info; 2466 2467 rcu_read_lock(); 2468 group_info = rcu_dereference(sbi->s_group_info); 2469 kfree(group_info[idx]); 2470 group_info[idx] = NULL; 2471 rcu_read_unlock(); 2472 } 2473 exit_meta_group_info: 2474 return -ENOMEM; 2475 } /* ext4_mb_add_groupinfo */ 2476 2477 static int ext4_mb_init_backend(struct super_block *sb) 2478 { 2479 ext4_group_t ngroups = ext4_get_groups_count(sb); 2480 ext4_group_t i; 2481 struct ext4_sb_info *sbi = EXT4_SB(sb); 2482 int err; 2483 struct ext4_group_desc *desc; 2484 struct ext4_group_info ***group_info; 2485 struct kmem_cache *cachep; 2486 2487 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2488 if (err) 2489 return err; 2490 2491 sbi->s_buddy_cache = new_inode(sb); 2492 if (sbi->s_buddy_cache == NULL) { 2493 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2494 goto err_freesgi; 2495 } 2496 /* To avoid potentially colliding with an valid on-disk inode number, 2497 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2498 * not in the inode hash, so it should never be found by iget(), but 2499 * this will avoid confusion if it ever shows up during debugging. */ 2500 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2501 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2502 for (i = 0; i < ngroups; i++) { 2503 cond_resched(); 2504 desc = ext4_get_group_desc(sb, i, NULL); 2505 if (desc == NULL) { 2506 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2507 goto err_freebuddy; 2508 } 2509 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2510 goto err_freebuddy; 2511 } 2512 2513 return 0; 2514 2515 err_freebuddy: 2516 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2517 while (i-- > 0) 2518 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2519 i = sbi->s_group_info_size; 2520 rcu_read_lock(); 2521 group_info = rcu_dereference(sbi->s_group_info); 2522 while (i-- > 0) 2523 kfree(group_info[i]); 2524 rcu_read_unlock(); 2525 iput(sbi->s_buddy_cache); 2526 err_freesgi: 2527 rcu_read_lock(); 2528 kvfree(rcu_dereference(sbi->s_group_info)); 2529 rcu_read_unlock(); 2530 return -ENOMEM; 2531 } 2532 2533 static void ext4_groupinfo_destroy_slabs(void) 2534 { 2535 int i; 2536 2537 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2538 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2539 ext4_groupinfo_caches[i] = NULL; 2540 } 2541 } 2542 2543 static int ext4_groupinfo_create_slab(size_t size) 2544 { 2545 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2546 int slab_size; 2547 int blocksize_bits = order_base_2(size); 2548 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2549 struct kmem_cache *cachep; 2550 2551 if (cache_index >= NR_GRPINFO_CACHES) 2552 return -EINVAL; 2553 2554 if (unlikely(cache_index < 0)) 2555 cache_index = 0; 2556 2557 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2558 if (ext4_groupinfo_caches[cache_index]) { 2559 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2560 return 0; /* Already created */ 2561 } 2562 2563 slab_size = offsetof(struct ext4_group_info, 2564 bb_counters[blocksize_bits + 2]); 2565 2566 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2567 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2568 NULL); 2569 2570 ext4_groupinfo_caches[cache_index] = cachep; 2571 2572 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2573 if (!cachep) { 2574 printk(KERN_EMERG 2575 "EXT4-fs: no memory for groupinfo slab cache\n"); 2576 return -ENOMEM; 2577 } 2578 2579 return 0; 2580 } 2581 2582 int ext4_mb_init(struct super_block *sb) 2583 { 2584 struct ext4_sb_info *sbi = EXT4_SB(sb); 2585 unsigned i, j; 2586 unsigned offset, offset_incr; 2587 unsigned max; 2588 int ret; 2589 2590 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2591 2592 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2593 if (sbi->s_mb_offsets == NULL) { 2594 ret = -ENOMEM; 2595 goto out; 2596 } 2597 2598 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2599 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2600 if (sbi->s_mb_maxs == NULL) { 2601 ret = -ENOMEM; 2602 goto out; 2603 } 2604 2605 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2606 if (ret < 0) 2607 goto out; 2608 2609 /* order 0 is regular bitmap */ 2610 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2611 sbi->s_mb_offsets[0] = 0; 2612 2613 i = 1; 2614 offset = 0; 2615 offset_incr = 1 << (sb->s_blocksize_bits - 1); 2616 max = sb->s_blocksize << 2; 2617 do { 2618 sbi->s_mb_offsets[i] = offset; 2619 sbi->s_mb_maxs[i] = max; 2620 offset += offset_incr; 2621 offset_incr = offset_incr >> 1; 2622 max = max >> 1; 2623 i++; 2624 } while (i <= sb->s_blocksize_bits + 1); 2625 2626 spin_lock_init(&sbi->s_md_lock); 2627 spin_lock_init(&sbi->s_bal_lock); 2628 sbi->s_mb_free_pending = 0; 2629 INIT_LIST_HEAD(&sbi->s_freed_data_list); 2630 2631 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2632 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2633 sbi->s_mb_stats = MB_DEFAULT_STATS; 2634 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2635 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2636 /* 2637 * The default group preallocation is 512, which for 4k block 2638 * sizes translates to 2 megabytes. However for bigalloc file 2639 * systems, this is probably too big (i.e, if the cluster size 2640 * is 1 megabyte, then group preallocation size becomes half a 2641 * gigabyte!). As a default, we will keep a two megabyte 2642 * group pralloc size for cluster sizes up to 64k, and after 2643 * that, we will force a minimum group preallocation size of 2644 * 32 clusters. This translates to 8 megs when the cluster 2645 * size is 256k, and 32 megs when the cluster size is 1 meg, 2646 * which seems reasonable as a default. 2647 */ 2648 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2649 sbi->s_cluster_bits, 32); 2650 /* 2651 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2652 * to the lowest multiple of s_stripe which is bigger than 2653 * the s_mb_group_prealloc as determined above. We want 2654 * the preallocation size to be an exact multiple of the 2655 * RAID stripe size so that preallocations don't fragment 2656 * the stripes. 2657 */ 2658 if (sbi->s_stripe > 1) { 2659 sbi->s_mb_group_prealloc = roundup( 2660 sbi->s_mb_group_prealloc, sbi->s_stripe); 2661 } 2662 2663 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2664 if (sbi->s_locality_groups == NULL) { 2665 ret = -ENOMEM; 2666 goto out; 2667 } 2668 for_each_possible_cpu(i) { 2669 struct ext4_locality_group *lg; 2670 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2671 mutex_init(&lg->lg_mutex); 2672 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2673 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2674 spin_lock_init(&lg->lg_prealloc_lock); 2675 } 2676 2677 /* init file for buddy data */ 2678 ret = ext4_mb_init_backend(sb); 2679 if (ret != 0) 2680 goto out_free_locality_groups; 2681 2682 return 0; 2683 2684 out_free_locality_groups: 2685 free_percpu(sbi->s_locality_groups); 2686 sbi->s_locality_groups = NULL; 2687 out: 2688 kfree(sbi->s_mb_offsets); 2689 sbi->s_mb_offsets = NULL; 2690 kfree(sbi->s_mb_maxs); 2691 sbi->s_mb_maxs = NULL; 2692 return ret; 2693 } 2694 2695 /* need to called with the ext4 group lock held */ 2696 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2697 { 2698 struct ext4_prealloc_space *pa; 2699 struct list_head *cur, *tmp; 2700 int count = 0; 2701 2702 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2703 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2704 list_del(&pa->pa_group_list); 2705 count++; 2706 kmem_cache_free(ext4_pspace_cachep, pa); 2707 } 2708 if (count) 2709 mb_debug(1, "mballoc: %u PAs left\n", count); 2710 2711 } 2712 2713 int ext4_mb_release(struct super_block *sb) 2714 { 2715 ext4_group_t ngroups = ext4_get_groups_count(sb); 2716 ext4_group_t i; 2717 int num_meta_group_infos; 2718 struct ext4_group_info *grinfo, ***group_info; 2719 struct ext4_sb_info *sbi = EXT4_SB(sb); 2720 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2721 2722 if (sbi->s_group_info) { 2723 for (i = 0; i < ngroups; i++) { 2724 cond_resched(); 2725 grinfo = ext4_get_group_info(sb, i); 2726 #ifdef DOUBLE_CHECK 2727 kfree(grinfo->bb_bitmap); 2728 #endif 2729 ext4_lock_group(sb, i); 2730 ext4_mb_cleanup_pa(grinfo); 2731 ext4_unlock_group(sb, i); 2732 kmem_cache_free(cachep, grinfo); 2733 } 2734 num_meta_group_infos = (ngroups + 2735 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2736 EXT4_DESC_PER_BLOCK_BITS(sb); 2737 rcu_read_lock(); 2738 group_info = rcu_dereference(sbi->s_group_info); 2739 for (i = 0; i < num_meta_group_infos; i++) 2740 kfree(group_info[i]); 2741 kvfree(group_info); 2742 rcu_read_unlock(); 2743 } 2744 kfree(sbi->s_mb_offsets); 2745 kfree(sbi->s_mb_maxs); 2746 iput(sbi->s_buddy_cache); 2747 if (sbi->s_mb_stats) { 2748 ext4_msg(sb, KERN_INFO, 2749 "mballoc: %u blocks %u reqs (%u success)", 2750 atomic_read(&sbi->s_bal_allocated), 2751 atomic_read(&sbi->s_bal_reqs), 2752 atomic_read(&sbi->s_bal_success)); 2753 ext4_msg(sb, KERN_INFO, 2754 "mballoc: %u extents scanned, %u goal hits, " 2755 "%u 2^N hits, %u breaks, %u lost", 2756 atomic_read(&sbi->s_bal_ex_scanned), 2757 atomic_read(&sbi->s_bal_goals), 2758 atomic_read(&sbi->s_bal_2orders), 2759 atomic_read(&sbi->s_bal_breaks), 2760 atomic_read(&sbi->s_mb_lost_chunks)); 2761 ext4_msg(sb, KERN_INFO, 2762 "mballoc: %lu generated and it took %Lu", 2763 sbi->s_mb_buddies_generated, 2764 sbi->s_mb_generation_time); 2765 ext4_msg(sb, KERN_INFO, 2766 "mballoc: %u preallocated, %u discarded", 2767 atomic_read(&sbi->s_mb_preallocated), 2768 atomic_read(&sbi->s_mb_discarded)); 2769 } 2770 2771 free_percpu(sbi->s_locality_groups); 2772 2773 return 0; 2774 } 2775 2776 static inline int ext4_issue_discard(struct super_block *sb, 2777 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 2778 struct bio **biop) 2779 { 2780 ext4_fsblk_t discard_block; 2781 2782 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2783 ext4_group_first_block_no(sb, block_group)); 2784 count = EXT4_C2B(EXT4_SB(sb), count); 2785 trace_ext4_discard_blocks(sb, 2786 (unsigned long long) discard_block, count); 2787 if (biop) { 2788 return __blkdev_issue_discard(sb->s_bdev, 2789 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 2790 (sector_t)count << (sb->s_blocksize_bits - 9), 2791 GFP_NOFS, 0, biop); 2792 } else 2793 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2794 } 2795 2796 static void ext4_free_data_in_buddy(struct super_block *sb, 2797 struct ext4_free_data *entry) 2798 { 2799 struct ext4_buddy e4b; 2800 struct ext4_group_info *db; 2801 int err, count = 0, count2 = 0; 2802 2803 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2804 entry->efd_count, entry->efd_group, entry); 2805 2806 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2807 /* we expect to find existing buddy because it's pinned */ 2808 BUG_ON(err != 0); 2809 2810 spin_lock(&EXT4_SB(sb)->s_md_lock); 2811 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 2812 spin_unlock(&EXT4_SB(sb)->s_md_lock); 2813 2814 db = e4b.bd_info; 2815 /* there are blocks to put in buddy to make them really free */ 2816 count += entry->efd_count; 2817 count2++; 2818 ext4_lock_group(sb, entry->efd_group); 2819 /* Take it out of per group rb tree */ 2820 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2821 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2822 2823 /* 2824 * Clear the trimmed flag for the group so that the next 2825 * ext4_trim_fs can trim it. 2826 * If the volume is mounted with -o discard, online discard 2827 * is supported and the free blocks will be trimmed online. 2828 */ 2829 if (!test_opt(sb, DISCARD)) 2830 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2831 2832 if (!db->bb_free_root.rb_node) { 2833 /* No more items in the per group rb tree 2834 * balance refcounts from ext4_mb_free_metadata() 2835 */ 2836 put_page(e4b.bd_buddy_page); 2837 put_page(e4b.bd_bitmap_page); 2838 } 2839 ext4_unlock_group(sb, entry->efd_group); 2840 kmem_cache_free(ext4_free_data_cachep, entry); 2841 ext4_mb_unload_buddy(&e4b); 2842 2843 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2844 } 2845 2846 /* 2847 * This function is called by the jbd2 layer once the commit has finished, 2848 * so we know we can free the blocks that were released with that commit. 2849 */ 2850 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 2851 { 2852 struct ext4_sb_info *sbi = EXT4_SB(sb); 2853 struct ext4_free_data *entry, *tmp; 2854 struct bio *discard_bio = NULL; 2855 struct list_head freed_data_list; 2856 struct list_head *cut_pos = NULL; 2857 int err; 2858 2859 INIT_LIST_HEAD(&freed_data_list); 2860 2861 spin_lock(&sbi->s_md_lock); 2862 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 2863 if (entry->efd_tid != commit_tid) 2864 break; 2865 cut_pos = &entry->efd_list; 2866 } 2867 if (cut_pos) 2868 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 2869 cut_pos); 2870 spin_unlock(&sbi->s_md_lock); 2871 2872 if (test_opt(sb, DISCARD)) { 2873 list_for_each_entry(entry, &freed_data_list, efd_list) { 2874 err = ext4_issue_discard(sb, entry->efd_group, 2875 entry->efd_start_cluster, 2876 entry->efd_count, 2877 &discard_bio); 2878 if (err && err != -EOPNOTSUPP) { 2879 ext4_msg(sb, KERN_WARNING, "discard request in" 2880 " group:%d block:%d count:%d failed" 2881 " with %d", entry->efd_group, 2882 entry->efd_start_cluster, 2883 entry->efd_count, err); 2884 } else if (err == -EOPNOTSUPP) 2885 break; 2886 } 2887 2888 if (discard_bio) { 2889 submit_bio_wait(discard_bio); 2890 bio_put(discard_bio); 2891 } 2892 } 2893 2894 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 2895 ext4_free_data_in_buddy(sb, entry); 2896 } 2897 2898 int __init ext4_init_mballoc(void) 2899 { 2900 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2901 SLAB_RECLAIM_ACCOUNT); 2902 if (ext4_pspace_cachep == NULL) 2903 return -ENOMEM; 2904 2905 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2906 SLAB_RECLAIM_ACCOUNT); 2907 if (ext4_ac_cachep == NULL) { 2908 kmem_cache_destroy(ext4_pspace_cachep); 2909 return -ENOMEM; 2910 } 2911 2912 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2913 SLAB_RECLAIM_ACCOUNT); 2914 if (ext4_free_data_cachep == NULL) { 2915 kmem_cache_destroy(ext4_pspace_cachep); 2916 kmem_cache_destroy(ext4_ac_cachep); 2917 return -ENOMEM; 2918 } 2919 return 0; 2920 } 2921 2922 void ext4_exit_mballoc(void) 2923 { 2924 /* 2925 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2926 * before destroying the slab cache. 2927 */ 2928 rcu_barrier(); 2929 kmem_cache_destroy(ext4_pspace_cachep); 2930 kmem_cache_destroy(ext4_ac_cachep); 2931 kmem_cache_destroy(ext4_free_data_cachep); 2932 ext4_groupinfo_destroy_slabs(); 2933 } 2934 2935 2936 /* 2937 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2938 * Returns 0 if success or error code 2939 */ 2940 static noinline_for_stack int 2941 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2942 handle_t *handle, unsigned int reserv_clstrs) 2943 { 2944 struct buffer_head *bitmap_bh = NULL; 2945 struct ext4_group_desc *gdp; 2946 struct buffer_head *gdp_bh; 2947 struct ext4_sb_info *sbi; 2948 struct super_block *sb; 2949 ext4_fsblk_t block; 2950 int err, len; 2951 2952 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2953 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2954 2955 sb = ac->ac_sb; 2956 sbi = EXT4_SB(sb); 2957 2958 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2959 if (IS_ERR(bitmap_bh)) { 2960 err = PTR_ERR(bitmap_bh); 2961 bitmap_bh = NULL; 2962 goto out_err; 2963 } 2964 2965 BUFFER_TRACE(bitmap_bh, "getting write access"); 2966 err = ext4_journal_get_write_access(handle, bitmap_bh); 2967 if (err) 2968 goto out_err; 2969 2970 err = -EIO; 2971 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2972 if (!gdp) 2973 goto out_err; 2974 2975 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2976 ext4_free_group_clusters(sb, gdp)); 2977 2978 BUFFER_TRACE(gdp_bh, "get_write_access"); 2979 err = ext4_journal_get_write_access(handle, gdp_bh); 2980 if (err) 2981 goto out_err; 2982 2983 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2984 2985 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2986 if (!ext4_data_block_valid(sbi, block, len)) { 2987 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2988 "fs metadata", block, block+len); 2989 /* File system mounted not to panic on error 2990 * Fix the bitmap and return EFSCORRUPTED 2991 * We leak some of the blocks here. 2992 */ 2993 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2994 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2995 ac->ac_b_ex.fe_len); 2996 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2997 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2998 if (!err) 2999 err = -EFSCORRUPTED; 3000 goto out_err; 3001 } 3002 3003 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3004 #ifdef AGGRESSIVE_CHECK 3005 { 3006 int i; 3007 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 3008 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 3009 bitmap_bh->b_data)); 3010 } 3011 } 3012 #endif 3013 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3014 ac->ac_b_ex.fe_len); 3015 if (ext4_has_group_desc_csum(sb) && 3016 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3017 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3018 ext4_free_group_clusters_set(sb, gdp, 3019 ext4_free_clusters_after_init(sb, 3020 ac->ac_b_ex.fe_group, gdp)); 3021 } 3022 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 3023 ext4_free_group_clusters_set(sb, gdp, len); 3024 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 3025 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 3026 3027 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3028 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 3029 /* 3030 * Now reduce the dirty block count also. Should not go negative 3031 */ 3032 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 3033 /* release all the reserved blocks if non delalloc */ 3034 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 3035 reserv_clstrs); 3036 3037 if (sbi->s_log_groups_per_flex) { 3038 ext4_group_t flex_group = ext4_flex_group(sbi, 3039 ac->ac_b_ex.fe_group); 3040 atomic64_sub(ac->ac_b_ex.fe_len, 3041 &sbi_array_rcu_deref(sbi, s_flex_groups, 3042 flex_group)->free_clusters); 3043 } 3044 3045 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3046 if (err) 3047 goto out_err; 3048 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 3049 3050 out_err: 3051 brelse(bitmap_bh); 3052 return err; 3053 } 3054 3055 /* 3056 * here we normalize request for locality group 3057 * Group request are normalized to s_mb_group_prealloc, which goes to 3058 * s_strip if we set the same via mount option. 3059 * s_mb_group_prealloc can be configured via 3060 * /sys/fs/ext4/<partition>/mb_group_prealloc 3061 * 3062 * XXX: should we try to preallocate more than the group has now? 3063 */ 3064 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 3065 { 3066 struct super_block *sb = ac->ac_sb; 3067 struct ext4_locality_group *lg = ac->ac_lg; 3068 3069 BUG_ON(lg == NULL); 3070 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 3071 mb_debug(1, "#%u: goal %u blocks for locality group\n", 3072 current->pid, ac->ac_g_ex.fe_len); 3073 } 3074 3075 /* 3076 * Normalization means making request better in terms of 3077 * size and alignment 3078 */ 3079 static noinline_for_stack void 3080 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3081 struct ext4_allocation_request *ar) 3082 { 3083 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3084 int bsbits, max; 3085 ext4_lblk_t end; 3086 loff_t size, start_off; 3087 loff_t orig_size __maybe_unused; 3088 ext4_lblk_t start; 3089 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3090 struct ext4_prealloc_space *pa; 3091 3092 /* do normalize only data requests, metadata requests 3093 do not need preallocation */ 3094 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3095 return; 3096 3097 /* sometime caller may want exact blocks */ 3098 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3099 return; 3100 3101 /* caller may indicate that preallocation isn't 3102 * required (it's a tail, for example) */ 3103 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3104 return; 3105 3106 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3107 ext4_mb_normalize_group_request(ac); 3108 return ; 3109 } 3110 3111 bsbits = ac->ac_sb->s_blocksize_bits; 3112 3113 /* first, let's learn actual file size 3114 * given current request is allocated */ 3115 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3116 size = size << bsbits; 3117 if (size < i_size_read(ac->ac_inode)) 3118 size = i_size_read(ac->ac_inode); 3119 orig_size = size; 3120 3121 /* max size of free chunks */ 3122 max = 2 << bsbits; 3123 3124 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3125 (req <= (size) || max <= (chunk_size)) 3126 3127 /* first, try to predict filesize */ 3128 /* XXX: should this table be tunable? */ 3129 start_off = 0; 3130 if (size <= 16 * 1024) { 3131 size = 16 * 1024; 3132 } else if (size <= 32 * 1024) { 3133 size = 32 * 1024; 3134 } else if (size <= 64 * 1024) { 3135 size = 64 * 1024; 3136 } else if (size <= 128 * 1024) { 3137 size = 128 * 1024; 3138 } else if (size <= 256 * 1024) { 3139 size = 256 * 1024; 3140 } else if (size <= 512 * 1024) { 3141 size = 512 * 1024; 3142 } else if (size <= 1024 * 1024) { 3143 size = 1024 * 1024; 3144 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3145 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3146 (21 - bsbits)) << 21; 3147 size = 2 * 1024 * 1024; 3148 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3149 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3150 (22 - bsbits)) << 22; 3151 size = 4 * 1024 * 1024; 3152 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3153 (8<<20)>>bsbits, max, 8 * 1024)) { 3154 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3155 (23 - bsbits)) << 23; 3156 size = 8 * 1024 * 1024; 3157 } else { 3158 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 3159 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 3160 ac->ac_o_ex.fe_len) << bsbits; 3161 } 3162 size = size >> bsbits; 3163 start = start_off >> bsbits; 3164 3165 /* don't cover already allocated blocks in selected range */ 3166 if (ar->pleft && start <= ar->lleft) { 3167 size -= ar->lleft + 1 - start; 3168 start = ar->lleft + 1; 3169 } 3170 if (ar->pright && start + size - 1 >= ar->lright) 3171 size -= start + size - ar->lright; 3172 3173 /* 3174 * Trim allocation request for filesystems with artificially small 3175 * groups. 3176 */ 3177 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 3178 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 3179 3180 end = start + size; 3181 3182 /* check we don't cross already preallocated blocks */ 3183 rcu_read_lock(); 3184 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3185 ext4_lblk_t pa_end; 3186 3187 if (pa->pa_deleted) 3188 continue; 3189 spin_lock(&pa->pa_lock); 3190 if (pa->pa_deleted) { 3191 spin_unlock(&pa->pa_lock); 3192 continue; 3193 } 3194 3195 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3196 pa->pa_len); 3197 3198 /* PA must not overlap original request */ 3199 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3200 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3201 3202 /* skip PAs this normalized request doesn't overlap with */ 3203 if (pa->pa_lstart >= end || pa_end <= start) { 3204 spin_unlock(&pa->pa_lock); 3205 continue; 3206 } 3207 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3208 3209 /* adjust start or end to be adjacent to this pa */ 3210 if (pa_end <= ac->ac_o_ex.fe_logical) { 3211 BUG_ON(pa_end < start); 3212 start = pa_end; 3213 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3214 BUG_ON(pa->pa_lstart > end); 3215 end = pa->pa_lstart; 3216 } 3217 spin_unlock(&pa->pa_lock); 3218 } 3219 rcu_read_unlock(); 3220 size = end - start; 3221 3222 /* XXX: extra loop to check we really don't overlap preallocations */ 3223 rcu_read_lock(); 3224 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3225 ext4_lblk_t pa_end; 3226 3227 spin_lock(&pa->pa_lock); 3228 if (pa->pa_deleted == 0) { 3229 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3230 pa->pa_len); 3231 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3232 } 3233 spin_unlock(&pa->pa_lock); 3234 } 3235 rcu_read_unlock(); 3236 3237 if (start + size <= ac->ac_o_ex.fe_logical && 3238 start > ac->ac_o_ex.fe_logical) { 3239 ext4_msg(ac->ac_sb, KERN_ERR, 3240 "start %lu, size %lu, fe_logical %lu", 3241 (unsigned long) start, (unsigned long) size, 3242 (unsigned long) ac->ac_o_ex.fe_logical); 3243 BUG(); 3244 } 3245 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3246 3247 /* now prepare goal request */ 3248 3249 /* XXX: is it better to align blocks WRT to logical 3250 * placement or satisfy big request as is */ 3251 ac->ac_g_ex.fe_logical = start; 3252 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3253 3254 /* define goal start in order to merge */ 3255 if (ar->pright && (ar->lright == (start + size))) { 3256 /* merge to the right */ 3257 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3258 &ac->ac_f_ex.fe_group, 3259 &ac->ac_f_ex.fe_start); 3260 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3261 } 3262 if (ar->pleft && (ar->lleft + 1 == start)) { 3263 /* merge to the left */ 3264 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3265 &ac->ac_f_ex.fe_group, 3266 &ac->ac_f_ex.fe_start); 3267 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3268 } 3269 3270 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3271 (unsigned) orig_size, (unsigned) start); 3272 } 3273 3274 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3275 { 3276 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3277 3278 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3279 atomic_inc(&sbi->s_bal_reqs); 3280 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3281 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3282 atomic_inc(&sbi->s_bal_success); 3283 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3284 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3285 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3286 atomic_inc(&sbi->s_bal_goals); 3287 if (ac->ac_found > sbi->s_mb_max_to_scan) 3288 atomic_inc(&sbi->s_bal_breaks); 3289 } 3290 3291 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3292 trace_ext4_mballoc_alloc(ac); 3293 else 3294 trace_ext4_mballoc_prealloc(ac); 3295 } 3296 3297 /* 3298 * Called on failure; free up any blocks from the inode PA for this 3299 * context. We don't need this for MB_GROUP_PA because we only change 3300 * pa_free in ext4_mb_release_context(), but on failure, we've already 3301 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3302 */ 3303 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3304 { 3305 struct ext4_prealloc_space *pa = ac->ac_pa; 3306 struct ext4_buddy e4b; 3307 int err; 3308 3309 if (pa == NULL) { 3310 if (ac->ac_f_ex.fe_len == 0) 3311 return; 3312 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 3313 if (err) { 3314 /* 3315 * This should never happen since we pin the 3316 * pages in the ext4_allocation_context so 3317 * ext4_mb_load_buddy() should never fail. 3318 */ 3319 WARN(1, "mb_load_buddy failed (%d)", err); 3320 return; 3321 } 3322 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3323 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 3324 ac->ac_f_ex.fe_len); 3325 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3326 ext4_mb_unload_buddy(&e4b); 3327 return; 3328 } 3329 if (pa->pa_type == MB_INODE_PA) 3330 pa->pa_free += ac->ac_b_ex.fe_len; 3331 } 3332 3333 /* 3334 * use blocks preallocated to inode 3335 */ 3336 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3337 struct ext4_prealloc_space *pa) 3338 { 3339 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3340 ext4_fsblk_t start; 3341 ext4_fsblk_t end; 3342 int len; 3343 3344 /* found preallocated blocks, use them */ 3345 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3346 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3347 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3348 len = EXT4_NUM_B2C(sbi, end - start); 3349 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3350 &ac->ac_b_ex.fe_start); 3351 ac->ac_b_ex.fe_len = len; 3352 ac->ac_status = AC_STATUS_FOUND; 3353 ac->ac_pa = pa; 3354 3355 BUG_ON(start < pa->pa_pstart); 3356 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3357 BUG_ON(pa->pa_free < len); 3358 pa->pa_free -= len; 3359 3360 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3361 } 3362 3363 /* 3364 * use blocks preallocated to locality group 3365 */ 3366 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3367 struct ext4_prealloc_space *pa) 3368 { 3369 unsigned int len = ac->ac_o_ex.fe_len; 3370 3371 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3372 &ac->ac_b_ex.fe_group, 3373 &ac->ac_b_ex.fe_start); 3374 ac->ac_b_ex.fe_len = len; 3375 ac->ac_status = AC_STATUS_FOUND; 3376 ac->ac_pa = pa; 3377 3378 /* we don't correct pa_pstart or pa_plen here to avoid 3379 * possible race when the group is being loaded concurrently 3380 * instead we correct pa later, after blocks are marked 3381 * in on-disk bitmap -- see ext4_mb_release_context() 3382 * Other CPUs are prevented from allocating from this pa by lg_mutex 3383 */ 3384 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3385 } 3386 3387 /* 3388 * Return the prealloc space that have minimal distance 3389 * from the goal block. @cpa is the prealloc 3390 * space that is having currently known minimal distance 3391 * from the goal block. 3392 */ 3393 static struct ext4_prealloc_space * 3394 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3395 struct ext4_prealloc_space *pa, 3396 struct ext4_prealloc_space *cpa) 3397 { 3398 ext4_fsblk_t cur_distance, new_distance; 3399 3400 if (cpa == NULL) { 3401 atomic_inc(&pa->pa_count); 3402 return pa; 3403 } 3404 cur_distance = abs(goal_block - cpa->pa_pstart); 3405 new_distance = abs(goal_block - pa->pa_pstart); 3406 3407 if (cur_distance <= new_distance) 3408 return cpa; 3409 3410 /* drop the previous reference */ 3411 atomic_dec(&cpa->pa_count); 3412 atomic_inc(&pa->pa_count); 3413 return pa; 3414 } 3415 3416 /* 3417 * search goal blocks in preallocated space 3418 */ 3419 static noinline_for_stack int 3420 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3421 { 3422 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3423 int order, i; 3424 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3425 struct ext4_locality_group *lg; 3426 struct ext4_prealloc_space *pa, *cpa = NULL; 3427 ext4_fsblk_t goal_block; 3428 3429 /* only data can be preallocated */ 3430 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3431 return 0; 3432 3433 /* first, try per-file preallocation */ 3434 rcu_read_lock(); 3435 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3436 3437 /* all fields in this condition don't change, 3438 * so we can skip locking for them */ 3439 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3440 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3441 EXT4_C2B(sbi, pa->pa_len))) 3442 continue; 3443 3444 /* non-extent files can't have physical blocks past 2^32 */ 3445 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3446 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3447 EXT4_MAX_BLOCK_FILE_PHYS)) 3448 continue; 3449 3450 /* found preallocated blocks, use them */ 3451 spin_lock(&pa->pa_lock); 3452 if (pa->pa_deleted == 0 && pa->pa_free) { 3453 atomic_inc(&pa->pa_count); 3454 ext4_mb_use_inode_pa(ac, pa); 3455 spin_unlock(&pa->pa_lock); 3456 ac->ac_criteria = 10; 3457 rcu_read_unlock(); 3458 return 1; 3459 } 3460 spin_unlock(&pa->pa_lock); 3461 } 3462 rcu_read_unlock(); 3463 3464 /* can we use group allocation? */ 3465 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3466 return 0; 3467 3468 /* inode may have no locality group for some reason */ 3469 lg = ac->ac_lg; 3470 if (lg == NULL) 3471 return 0; 3472 order = fls(ac->ac_o_ex.fe_len) - 1; 3473 if (order > PREALLOC_TB_SIZE - 1) 3474 /* The max size of hash table is PREALLOC_TB_SIZE */ 3475 order = PREALLOC_TB_SIZE - 1; 3476 3477 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3478 /* 3479 * search for the prealloc space that is having 3480 * minimal distance from the goal block. 3481 */ 3482 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3483 rcu_read_lock(); 3484 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3485 pa_inode_list) { 3486 spin_lock(&pa->pa_lock); 3487 if (pa->pa_deleted == 0 && 3488 pa->pa_free >= ac->ac_o_ex.fe_len) { 3489 3490 cpa = ext4_mb_check_group_pa(goal_block, 3491 pa, cpa); 3492 } 3493 spin_unlock(&pa->pa_lock); 3494 } 3495 rcu_read_unlock(); 3496 } 3497 if (cpa) { 3498 ext4_mb_use_group_pa(ac, cpa); 3499 ac->ac_criteria = 20; 3500 return 1; 3501 } 3502 return 0; 3503 } 3504 3505 /* 3506 * the function goes through all block freed in the group 3507 * but not yet committed and marks them used in in-core bitmap. 3508 * buddy must be generated from this bitmap 3509 * Need to be called with the ext4 group lock held 3510 */ 3511 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3512 ext4_group_t group) 3513 { 3514 struct rb_node *n; 3515 struct ext4_group_info *grp; 3516 struct ext4_free_data *entry; 3517 3518 grp = ext4_get_group_info(sb, group); 3519 n = rb_first(&(grp->bb_free_root)); 3520 3521 while (n) { 3522 entry = rb_entry(n, struct ext4_free_data, efd_node); 3523 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3524 n = rb_next(n); 3525 } 3526 return; 3527 } 3528 3529 /* 3530 * the function goes through all preallocation in this group and marks them 3531 * used in in-core bitmap. buddy must be generated from this bitmap 3532 * Need to be called with ext4 group lock held 3533 */ 3534 static noinline_for_stack 3535 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3536 ext4_group_t group) 3537 { 3538 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3539 struct ext4_prealloc_space *pa; 3540 struct list_head *cur; 3541 ext4_group_t groupnr; 3542 ext4_grpblk_t start; 3543 int preallocated = 0; 3544 int len; 3545 3546 /* all form of preallocation discards first load group, 3547 * so the only competing code is preallocation use. 3548 * we don't need any locking here 3549 * notice we do NOT ignore preallocations with pa_deleted 3550 * otherwise we could leave used blocks available for 3551 * allocation in buddy when concurrent ext4_mb_put_pa() 3552 * is dropping preallocation 3553 */ 3554 list_for_each(cur, &grp->bb_prealloc_list) { 3555 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3556 spin_lock(&pa->pa_lock); 3557 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3558 &groupnr, &start); 3559 len = pa->pa_len; 3560 spin_unlock(&pa->pa_lock); 3561 if (unlikely(len == 0)) 3562 continue; 3563 BUG_ON(groupnr != group); 3564 ext4_set_bits(bitmap, start, len); 3565 preallocated += len; 3566 } 3567 mb_debug(1, "preallocated %u for group %u\n", preallocated, group); 3568 } 3569 3570 static void ext4_mb_pa_callback(struct rcu_head *head) 3571 { 3572 struct ext4_prealloc_space *pa; 3573 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3574 3575 BUG_ON(atomic_read(&pa->pa_count)); 3576 BUG_ON(pa->pa_deleted == 0); 3577 kmem_cache_free(ext4_pspace_cachep, pa); 3578 } 3579 3580 /* 3581 * drops a reference to preallocated space descriptor 3582 * if this was the last reference and the space is consumed 3583 */ 3584 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3585 struct super_block *sb, struct ext4_prealloc_space *pa) 3586 { 3587 ext4_group_t grp; 3588 ext4_fsblk_t grp_blk; 3589 3590 /* in this short window concurrent discard can set pa_deleted */ 3591 spin_lock(&pa->pa_lock); 3592 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 3593 spin_unlock(&pa->pa_lock); 3594 return; 3595 } 3596 3597 if (pa->pa_deleted == 1) { 3598 spin_unlock(&pa->pa_lock); 3599 return; 3600 } 3601 3602 pa->pa_deleted = 1; 3603 spin_unlock(&pa->pa_lock); 3604 3605 grp_blk = pa->pa_pstart; 3606 /* 3607 * If doing group-based preallocation, pa_pstart may be in the 3608 * next group when pa is used up 3609 */ 3610 if (pa->pa_type == MB_GROUP_PA) 3611 grp_blk--; 3612 3613 grp = ext4_get_group_number(sb, grp_blk); 3614 3615 /* 3616 * possible race: 3617 * 3618 * P1 (buddy init) P2 (regular allocation) 3619 * find block B in PA 3620 * copy on-disk bitmap to buddy 3621 * mark B in on-disk bitmap 3622 * drop PA from group 3623 * mark all PAs in buddy 3624 * 3625 * thus, P1 initializes buddy with B available. to prevent this 3626 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3627 * against that pair 3628 */ 3629 ext4_lock_group(sb, grp); 3630 list_del(&pa->pa_group_list); 3631 ext4_unlock_group(sb, grp); 3632 3633 spin_lock(pa->pa_obj_lock); 3634 list_del_rcu(&pa->pa_inode_list); 3635 spin_unlock(pa->pa_obj_lock); 3636 3637 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3638 } 3639 3640 /* 3641 * creates new preallocated space for given inode 3642 */ 3643 static noinline_for_stack int 3644 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3645 { 3646 struct super_block *sb = ac->ac_sb; 3647 struct ext4_sb_info *sbi = EXT4_SB(sb); 3648 struct ext4_prealloc_space *pa; 3649 struct ext4_group_info *grp; 3650 struct ext4_inode_info *ei; 3651 3652 /* preallocate only when found space is larger then requested */ 3653 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3654 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3655 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3656 3657 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3658 if (pa == NULL) 3659 return -ENOMEM; 3660 3661 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3662 int winl; 3663 int wins; 3664 int win; 3665 int offs; 3666 3667 /* we can't allocate as much as normalizer wants. 3668 * so, found space must get proper lstart 3669 * to cover original request */ 3670 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3671 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3672 3673 /* we're limited by original request in that 3674 * logical block must be covered any way 3675 * winl is window we can move our chunk within */ 3676 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3677 3678 /* also, we should cover whole original request */ 3679 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3680 3681 /* the smallest one defines real window */ 3682 win = min(winl, wins); 3683 3684 offs = ac->ac_o_ex.fe_logical % 3685 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3686 if (offs && offs < win) 3687 win = offs; 3688 3689 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3690 EXT4_NUM_B2C(sbi, win); 3691 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3692 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3693 } 3694 3695 /* preallocation can change ac_b_ex, thus we store actually 3696 * allocated blocks for history */ 3697 ac->ac_f_ex = ac->ac_b_ex; 3698 3699 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3700 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3701 pa->pa_len = ac->ac_b_ex.fe_len; 3702 pa->pa_free = pa->pa_len; 3703 atomic_set(&pa->pa_count, 1); 3704 spin_lock_init(&pa->pa_lock); 3705 INIT_LIST_HEAD(&pa->pa_inode_list); 3706 INIT_LIST_HEAD(&pa->pa_group_list); 3707 pa->pa_deleted = 0; 3708 pa->pa_type = MB_INODE_PA; 3709 3710 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3711 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3712 trace_ext4_mb_new_inode_pa(ac, pa); 3713 3714 ext4_mb_use_inode_pa(ac, pa); 3715 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3716 3717 ei = EXT4_I(ac->ac_inode); 3718 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3719 3720 pa->pa_obj_lock = &ei->i_prealloc_lock; 3721 pa->pa_inode = ac->ac_inode; 3722 3723 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3724 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3725 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3726 3727 spin_lock(pa->pa_obj_lock); 3728 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3729 spin_unlock(pa->pa_obj_lock); 3730 3731 return 0; 3732 } 3733 3734 /* 3735 * creates new preallocated space for locality group inodes belongs to 3736 */ 3737 static noinline_for_stack int 3738 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3739 { 3740 struct super_block *sb = ac->ac_sb; 3741 struct ext4_locality_group *lg; 3742 struct ext4_prealloc_space *pa; 3743 struct ext4_group_info *grp; 3744 3745 /* preallocate only when found space is larger then requested */ 3746 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3747 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3748 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3749 3750 BUG_ON(ext4_pspace_cachep == NULL); 3751 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3752 if (pa == NULL) 3753 return -ENOMEM; 3754 3755 /* preallocation can change ac_b_ex, thus we store actually 3756 * allocated blocks for history */ 3757 ac->ac_f_ex = ac->ac_b_ex; 3758 3759 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3760 pa->pa_lstart = pa->pa_pstart; 3761 pa->pa_len = ac->ac_b_ex.fe_len; 3762 pa->pa_free = pa->pa_len; 3763 atomic_set(&pa->pa_count, 1); 3764 spin_lock_init(&pa->pa_lock); 3765 INIT_LIST_HEAD(&pa->pa_inode_list); 3766 INIT_LIST_HEAD(&pa->pa_group_list); 3767 pa->pa_deleted = 0; 3768 pa->pa_type = MB_GROUP_PA; 3769 3770 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3771 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3772 trace_ext4_mb_new_group_pa(ac, pa); 3773 3774 ext4_mb_use_group_pa(ac, pa); 3775 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3776 3777 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3778 lg = ac->ac_lg; 3779 BUG_ON(lg == NULL); 3780 3781 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3782 pa->pa_inode = NULL; 3783 3784 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3785 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3786 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3787 3788 /* 3789 * We will later add the new pa to the right bucket 3790 * after updating the pa_free in ext4_mb_release_context 3791 */ 3792 return 0; 3793 } 3794 3795 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3796 { 3797 int err; 3798 3799 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3800 err = ext4_mb_new_group_pa(ac); 3801 else 3802 err = ext4_mb_new_inode_pa(ac); 3803 return err; 3804 } 3805 3806 /* 3807 * finds all unused blocks in on-disk bitmap, frees them in 3808 * in-core bitmap and buddy. 3809 * @pa must be unlinked from inode and group lists, so that 3810 * nobody else can find/use it. 3811 * the caller MUST hold group/inode locks. 3812 * TODO: optimize the case when there are no in-core structures yet 3813 */ 3814 static noinline_for_stack int 3815 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3816 struct ext4_prealloc_space *pa) 3817 { 3818 struct super_block *sb = e4b->bd_sb; 3819 struct ext4_sb_info *sbi = EXT4_SB(sb); 3820 unsigned int end; 3821 unsigned int next; 3822 ext4_group_t group; 3823 ext4_grpblk_t bit; 3824 unsigned long long grp_blk_start; 3825 int free = 0; 3826 3827 BUG_ON(pa->pa_deleted == 0); 3828 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3829 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3830 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3831 end = bit + pa->pa_len; 3832 3833 while (bit < end) { 3834 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3835 if (bit >= end) 3836 break; 3837 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3838 mb_debug(1, " free preallocated %u/%u in group %u\n", 3839 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3840 (unsigned) next - bit, (unsigned) group); 3841 free += next - bit; 3842 3843 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3844 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3845 EXT4_C2B(sbi, bit)), 3846 next - bit); 3847 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3848 bit = next + 1; 3849 } 3850 if (free != pa->pa_free) { 3851 ext4_msg(e4b->bd_sb, KERN_CRIT, 3852 "pa %p: logic %lu, phys. %lu, len %lu", 3853 pa, (unsigned long) pa->pa_lstart, 3854 (unsigned long) pa->pa_pstart, 3855 (unsigned long) pa->pa_len); 3856 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3857 free, pa->pa_free); 3858 /* 3859 * pa is already deleted so we use the value obtained 3860 * from the bitmap and continue. 3861 */ 3862 } 3863 atomic_add(free, &sbi->s_mb_discarded); 3864 3865 return 0; 3866 } 3867 3868 static noinline_for_stack int 3869 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3870 struct ext4_prealloc_space *pa) 3871 { 3872 struct super_block *sb = e4b->bd_sb; 3873 ext4_group_t group; 3874 ext4_grpblk_t bit; 3875 3876 trace_ext4_mb_release_group_pa(sb, pa); 3877 BUG_ON(pa->pa_deleted == 0); 3878 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3879 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3880 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3881 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3882 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3883 3884 return 0; 3885 } 3886 3887 /* 3888 * releases all preallocations in given group 3889 * 3890 * first, we need to decide discard policy: 3891 * - when do we discard 3892 * 1) ENOSPC 3893 * - how many do we discard 3894 * 1) how many requested 3895 */ 3896 static noinline_for_stack int 3897 ext4_mb_discard_group_preallocations(struct super_block *sb, 3898 ext4_group_t group, int needed) 3899 { 3900 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3901 struct buffer_head *bitmap_bh = NULL; 3902 struct ext4_prealloc_space *pa, *tmp; 3903 struct list_head list; 3904 struct ext4_buddy e4b; 3905 int err; 3906 int busy = 0; 3907 int free = 0; 3908 3909 mb_debug(1, "discard preallocation for group %u\n", group); 3910 3911 if (list_empty(&grp->bb_prealloc_list)) 3912 return 0; 3913 3914 bitmap_bh = ext4_read_block_bitmap(sb, group); 3915 if (IS_ERR(bitmap_bh)) { 3916 err = PTR_ERR(bitmap_bh); 3917 ext4_set_errno(sb, -err); 3918 ext4_error(sb, "Error %d reading block bitmap for %u", 3919 err, group); 3920 return 0; 3921 } 3922 3923 err = ext4_mb_load_buddy(sb, group, &e4b); 3924 if (err) { 3925 ext4_warning(sb, "Error %d loading buddy information for %u", 3926 err, group); 3927 put_bh(bitmap_bh); 3928 return 0; 3929 } 3930 3931 if (needed == 0) 3932 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3933 3934 INIT_LIST_HEAD(&list); 3935 repeat: 3936 ext4_lock_group(sb, group); 3937 list_for_each_entry_safe(pa, tmp, 3938 &grp->bb_prealloc_list, pa_group_list) { 3939 spin_lock(&pa->pa_lock); 3940 if (atomic_read(&pa->pa_count)) { 3941 spin_unlock(&pa->pa_lock); 3942 busy = 1; 3943 continue; 3944 } 3945 if (pa->pa_deleted) { 3946 spin_unlock(&pa->pa_lock); 3947 continue; 3948 } 3949 3950 /* seems this one can be freed ... */ 3951 pa->pa_deleted = 1; 3952 3953 /* we can trust pa_free ... */ 3954 free += pa->pa_free; 3955 3956 spin_unlock(&pa->pa_lock); 3957 3958 list_del(&pa->pa_group_list); 3959 list_add(&pa->u.pa_tmp_list, &list); 3960 } 3961 3962 /* if we still need more blocks and some PAs were used, try again */ 3963 if (free < needed && busy) { 3964 busy = 0; 3965 ext4_unlock_group(sb, group); 3966 cond_resched(); 3967 goto repeat; 3968 } 3969 3970 /* found anything to free? */ 3971 if (list_empty(&list)) { 3972 BUG_ON(free != 0); 3973 goto out; 3974 } 3975 3976 /* now free all selected PAs */ 3977 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3978 3979 /* remove from object (inode or locality group) */ 3980 spin_lock(pa->pa_obj_lock); 3981 list_del_rcu(&pa->pa_inode_list); 3982 spin_unlock(pa->pa_obj_lock); 3983 3984 if (pa->pa_type == MB_GROUP_PA) 3985 ext4_mb_release_group_pa(&e4b, pa); 3986 else 3987 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3988 3989 list_del(&pa->u.pa_tmp_list); 3990 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3991 } 3992 3993 out: 3994 ext4_unlock_group(sb, group); 3995 ext4_mb_unload_buddy(&e4b); 3996 put_bh(bitmap_bh); 3997 return free; 3998 } 3999 4000 /* 4001 * releases all non-used preallocated blocks for given inode 4002 * 4003 * It's important to discard preallocations under i_data_sem 4004 * We don't want another block to be served from the prealloc 4005 * space when we are discarding the inode prealloc space. 4006 * 4007 * FIXME!! Make sure it is valid at all the call sites 4008 */ 4009 void ext4_discard_preallocations(struct inode *inode) 4010 { 4011 struct ext4_inode_info *ei = EXT4_I(inode); 4012 struct super_block *sb = inode->i_sb; 4013 struct buffer_head *bitmap_bh = NULL; 4014 struct ext4_prealloc_space *pa, *tmp; 4015 ext4_group_t group = 0; 4016 struct list_head list; 4017 struct ext4_buddy e4b; 4018 int err; 4019 4020 if (!S_ISREG(inode->i_mode)) { 4021 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 4022 return; 4023 } 4024 4025 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 4026 trace_ext4_discard_preallocations(inode); 4027 4028 INIT_LIST_HEAD(&list); 4029 4030 repeat: 4031 /* first, collect all pa's in the inode */ 4032 spin_lock(&ei->i_prealloc_lock); 4033 while (!list_empty(&ei->i_prealloc_list)) { 4034 pa = list_entry(ei->i_prealloc_list.next, 4035 struct ext4_prealloc_space, pa_inode_list); 4036 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 4037 spin_lock(&pa->pa_lock); 4038 if (atomic_read(&pa->pa_count)) { 4039 /* this shouldn't happen often - nobody should 4040 * use preallocation while we're discarding it */ 4041 spin_unlock(&pa->pa_lock); 4042 spin_unlock(&ei->i_prealloc_lock); 4043 ext4_msg(sb, KERN_ERR, 4044 "uh-oh! used pa while discarding"); 4045 WARN_ON(1); 4046 schedule_timeout_uninterruptible(HZ); 4047 goto repeat; 4048 4049 } 4050 if (pa->pa_deleted == 0) { 4051 pa->pa_deleted = 1; 4052 spin_unlock(&pa->pa_lock); 4053 list_del_rcu(&pa->pa_inode_list); 4054 list_add(&pa->u.pa_tmp_list, &list); 4055 continue; 4056 } 4057 4058 /* someone is deleting pa right now */ 4059 spin_unlock(&pa->pa_lock); 4060 spin_unlock(&ei->i_prealloc_lock); 4061 4062 /* we have to wait here because pa_deleted 4063 * doesn't mean pa is already unlinked from 4064 * the list. as we might be called from 4065 * ->clear_inode() the inode will get freed 4066 * and concurrent thread which is unlinking 4067 * pa from inode's list may access already 4068 * freed memory, bad-bad-bad */ 4069 4070 /* XXX: if this happens too often, we can 4071 * add a flag to force wait only in case 4072 * of ->clear_inode(), but not in case of 4073 * regular truncate */ 4074 schedule_timeout_uninterruptible(HZ); 4075 goto repeat; 4076 } 4077 spin_unlock(&ei->i_prealloc_lock); 4078 4079 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4080 BUG_ON(pa->pa_type != MB_INODE_PA); 4081 group = ext4_get_group_number(sb, pa->pa_pstart); 4082 4083 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4084 GFP_NOFS|__GFP_NOFAIL); 4085 if (err) { 4086 ext4_set_errno(sb, -err); 4087 ext4_error(sb, "Error %d loading buddy information for %u", 4088 err, group); 4089 continue; 4090 } 4091 4092 bitmap_bh = ext4_read_block_bitmap(sb, group); 4093 if (IS_ERR(bitmap_bh)) { 4094 err = PTR_ERR(bitmap_bh); 4095 ext4_set_errno(sb, -err); 4096 ext4_error(sb, "Error %d reading block bitmap for %u", 4097 err, group); 4098 ext4_mb_unload_buddy(&e4b); 4099 continue; 4100 } 4101 4102 ext4_lock_group(sb, group); 4103 list_del(&pa->pa_group_list); 4104 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4105 ext4_unlock_group(sb, group); 4106 4107 ext4_mb_unload_buddy(&e4b); 4108 put_bh(bitmap_bh); 4109 4110 list_del(&pa->u.pa_tmp_list); 4111 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4112 } 4113 } 4114 4115 #ifdef CONFIG_EXT4_DEBUG 4116 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4117 { 4118 struct super_block *sb = ac->ac_sb; 4119 ext4_group_t ngroups, i; 4120 4121 if (!ext4_mballoc_debug || 4122 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 4123 return; 4124 4125 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 4126 " Allocation context details:"); 4127 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 4128 ac->ac_status, ac->ac_flags); 4129 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 4130 "goal %lu/%lu/%lu@%lu, " 4131 "best %lu/%lu/%lu@%lu cr %d", 4132 (unsigned long)ac->ac_o_ex.fe_group, 4133 (unsigned long)ac->ac_o_ex.fe_start, 4134 (unsigned long)ac->ac_o_ex.fe_len, 4135 (unsigned long)ac->ac_o_ex.fe_logical, 4136 (unsigned long)ac->ac_g_ex.fe_group, 4137 (unsigned long)ac->ac_g_ex.fe_start, 4138 (unsigned long)ac->ac_g_ex.fe_len, 4139 (unsigned long)ac->ac_g_ex.fe_logical, 4140 (unsigned long)ac->ac_b_ex.fe_group, 4141 (unsigned long)ac->ac_b_ex.fe_start, 4142 (unsigned long)ac->ac_b_ex.fe_len, 4143 (unsigned long)ac->ac_b_ex.fe_logical, 4144 (int)ac->ac_criteria); 4145 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found); 4146 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 4147 ngroups = ext4_get_groups_count(sb); 4148 for (i = 0; i < ngroups; i++) { 4149 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 4150 struct ext4_prealloc_space *pa; 4151 ext4_grpblk_t start; 4152 struct list_head *cur; 4153 ext4_lock_group(sb, i); 4154 list_for_each(cur, &grp->bb_prealloc_list) { 4155 pa = list_entry(cur, struct ext4_prealloc_space, 4156 pa_group_list); 4157 spin_lock(&pa->pa_lock); 4158 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4159 NULL, &start); 4160 spin_unlock(&pa->pa_lock); 4161 printk(KERN_ERR "PA:%u:%d:%u \n", i, 4162 start, pa->pa_len); 4163 } 4164 ext4_unlock_group(sb, i); 4165 4166 if (grp->bb_free == 0) 4167 continue; 4168 printk(KERN_ERR "%u: %d/%d \n", 4169 i, grp->bb_free, grp->bb_fragments); 4170 } 4171 printk(KERN_ERR "\n"); 4172 } 4173 #else 4174 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4175 { 4176 return; 4177 } 4178 #endif 4179 4180 /* 4181 * We use locality group preallocation for small size file. The size of the 4182 * file is determined by the current size or the resulting size after 4183 * allocation which ever is larger 4184 * 4185 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4186 */ 4187 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4188 { 4189 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4190 int bsbits = ac->ac_sb->s_blocksize_bits; 4191 loff_t size, isize; 4192 4193 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4194 return; 4195 4196 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4197 return; 4198 4199 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4200 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4201 >> bsbits; 4202 4203 if ((size == isize) && !ext4_fs_is_busy(sbi) && 4204 !inode_is_open_for_write(ac->ac_inode)) { 4205 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4206 return; 4207 } 4208 4209 if (sbi->s_mb_group_prealloc <= 0) { 4210 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4211 return; 4212 } 4213 4214 /* don't use group allocation for large files */ 4215 size = max(size, isize); 4216 if (size > sbi->s_mb_stream_request) { 4217 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4218 return; 4219 } 4220 4221 BUG_ON(ac->ac_lg != NULL); 4222 /* 4223 * locality group prealloc space are per cpu. The reason for having 4224 * per cpu locality group is to reduce the contention between block 4225 * request from multiple CPUs. 4226 */ 4227 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 4228 4229 /* we're going to use group allocation */ 4230 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4231 4232 /* serialize all allocations in the group */ 4233 mutex_lock(&ac->ac_lg->lg_mutex); 4234 } 4235 4236 static noinline_for_stack int 4237 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4238 struct ext4_allocation_request *ar) 4239 { 4240 struct super_block *sb = ar->inode->i_sb; 4241 struct ext4_sb_info *sbi = EXT4_SB(sb); 4242 struct ext4_super_block *es = sbi->s_es; 4243 ext4_group_t group; 4244 unsigned int len; 4245 ext4_fsblk_t goal; 4246 ext4_grpblk_t block; 4247 4248 /* we can't allocate > group size */ 4249 len = ar->len; 4250 4251 /* just a dirty hack to filter too big requests */ 4252 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4253 len = EXT4_CLUSTERS_PER_GROUP(sb); 4254 4255 /* start searching from the goal */ 4256 goal = ar->goal; 4257 if (goal < le32_to_cpu(es->s_first_data_block) || 4258 goal >= ext4_blocks_count(es)) 4259 goal = le32_to_cpu(es->s_first_data_block); 4260 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4261 4262 /* set up allocation goals */ 4263 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 4264 ac->ac_status = AC_STATUS_CONTINUE; 4265 ac->ac_sb = sb; 4266 ac->ac_inode = ar->inode; 4267 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4268 ac->ac_o_ex.fe_group = group; 4269 ac->ac_o_ex.fe_start = block; 4270 ac->ac_o_ex.fe_len = len; 4271 ac->ac_g_ex = ac->ac_o_ex; 4272 ac->ac_flags = ar->flags; 4273 4274 /* we have to define context: we'll we work with a file or 4275 * locality group. this is a policy, actually */ 4276 ext4_mb_group_or_file(ac); 4277 4278 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4279 "left: %u/%u, right %u/%u to %swritable\n", 4280 (unsigned) ar->len, (unsigned) ar->logical, 4281 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4282 (unsigned) ar->lleft, (unsigned) ar->pleft, 4283 (unsigned) ar->lright, (unsigned) ar->pright, 4284 inode_is_open_for_write(ar->inode) ? "" : "non-"); 4285 return 0; 4286 4287 } 4288 4289 static noinline_for_stack void 4290 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4291 struct ext4_locality_group *lg, 4292 int order, int total_entries) 4293 { 4294 ext4_group_t group = 0; 4295 struct ext4_buddy e4b; 4296 struct list_head discard_list; 4297 struct ext4_prealloc_space *pa, *tmp; 4298 4299 mb_debug(1, "discard locality group preallocation\n"); 4300 4301 INIT_LIST_HEAD(&discard_list); 4302 4303 spin_lock(&lg->lg_prealloc_lock); 4304 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4305 pa_inode_list) { 4306 spin_lock(&pa->pa_lock); 4307 if (atomic_read(&pa->pa_count)) { 4308 /* 4309 * This is the pa that we just used 4310 * for block allocation. So don't 4311 * free that 4312 */ 4313 spin_unlock(&pa->pa_lock); 4314 continue; 4315 } 4316 if (pa->pa_deleted) { 4317 spin_unlock(&pa->pa_lock); 4318 continue; 4319 } 4320 /* only lg prealloc space */ 4321 BUG_ON(pa->pa_type != MB_GROUP_PA); 4322 4323 /* seems this one can be freed ... */ 4324 pa->pa_deleted = 1; 4325 spin_unlock(&pa->pa_lock); 4326 4327 list_del_rcu(&pa->pa_inode_list); 4328 list_add(&pa->u.pa_tmp_list, &discard_list); 4329 4330 total_entries--; 4331 if (total_entries <= 5) { 4332 /* 4333 * we want to keep only 5 entries 4334 * allowing it to grow to 8. This 4335 * mak sure we don't call discard 4336 * soon for this list. 4337 */ 4338 break; 4339 } 4340 } 4341 spin_unlock(&lg->lg_prealloc_lock); 4342 4343 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4344 int err; 4345 4346 group = ext4_get_group_number(sb, pa->pa_pstart); 4347 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4348 GFP_NOFS|__GFP_NOFAIL); 4349 if (err) { 4350 ext4_set_errno(sb, -err); 4351 ext4_error(sb, "Error %d loading buddy information for %u", 4352 err, group); 4353 continue; 4354 } 4355 ext4_lock_group(sb, group); 4356 list_del(&pa->pa_group_list); 4357 ext4_mb_release_group_pa(&e4b, pa); 4358 ext4_unlock_group(sb, group); 4359 4360 ext4_mb_unload_buddy(&e4b); 4361 list_del(&pa->u.pa_tmp_list); 4362 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4363 } 4364 } 4365 4366 /* 4367 * We have incremented pa_count. So it cannot be freed at this 4368 * point. Also we hold lg_mutex. So no parallel allocation is 4369 * possible from this lg. That means pa_free cannot be updated. 4370 * 4371 * A parallel ext4_mb_discard_group_preallocations is possible. 4372 * which can cause the lg_prealloc_list to be updated. 4373 */ 4374 4375 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4376 { 4377 int order, added = 0, lg_prealloc_count = 1; 4378 struct super_block *sb = ac->ac_sb; 4379 struct ext4_locality_group *lg = ac->ac_lg; 4380 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4381 4382 order = fls(pa->pa_free) - 1; 4383 if (order > PREALLOC_TB_SIZE - 1) 4384 /* The max size of hash table is PREALLOC_TB_SIZE */ 4385 order = PREALLOC_TB_SIZE - 1; 4386 /* Add the prealloc space to lg */ 4387 spin_lock(&lg->lg_prealloc_lock); 4388 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4389 pa_inode_list) { 4390 spin_lock(&tmp_pa->pa_lock); 4391 if (tmp_pa->pa_deleted) { 4392 spin_unlock(&tmp_pa->pa_lock); 4393 continue; 4394 } 4395 if (!added && pa->pa_free < tmp_pa->pa_free) { 4396 /* Add to the tail of the previous entry */ 4397 list_add_tail_rcu(&pa->pa_inode_list, 4398 &tmp_pa->pa_inode_list); 4399 added = 1; 4400 /* 4401 * we want to count the total 4402 * number of entries in the list 4403 */ 4404 } 4405 spin_unlock(&tmp_pa->pa_lock); 4406 lg_prealloc_count++; 4407 } 4408 if (!added) 4409 list_add_tail_rcu(&pa->pa_inode_list, 4410 &lg->lg_prealloc_list[order]); 4411 spin_unlock(&lg->lg_prealloc_lock); 4412 4413 /* Now trim the list to be not more than 8 elements */ 4414 if (lg_prealloc_count > 8) { 4415 ext4_mb_discard_lg_preallocations(sb, lg, 4416 order, lg_prealloc_count); 4417 return; 4418 } 4419 return ; 4420 } 4421 4422 /* 4423 * release all resource we used in allocation 4424 */ 4425 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4426 { 4427 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4428 struct ext4_prealloc_space *pa = ac->ac_pa; 4429 if (pa) { 4430 if (pa->pa_type == MB_GROUP_PA) { 4431 /* see comment in ext4_mb_use_group_pa() */ 4432 spin_lock(&pa->pa_lock); 4433 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4434 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4435 pa->pa_free -= ac->ac_b_ex.fe_len; 4436 pa->pa_len -= ac->ac_b_ex.fe_len; 4437 spin_unlock(&pa->pa_lock); 4438 } 4439 } 4440 if (pa) { 4441 /* 4442 * We want to add the pa to the right bucket. 4443 * Remove it from the list and while adding 4444 * make sure the list to which we are adding 4445 * doesn't grow big. 4446 */ 4447 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4448 spin_lock(pa->pa_obj_lock); 4449 list_del_rcu(&pa->pa_inode_list); 4450 spin_unlock(pa->pa_obj_lock); 4451 ext4_mb_add_n_trim(ac); 4452 } 4453 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4454 } 4455 if (ac->ac_bitmap_page) 4456 put_page(ac->ac_bitmap_page); 4457 if (ac->ac_buddy_page) 4458 put_page(ac->ac_buddy_page); 4459 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4460 mutex_unlock(&ac->ac_lg->lg_mutex); 4461 ext4_mb_collect_stats(ac); 4462 return 0; 4463 } 4464 4465 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4466 { 4467 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4468 int ret; 4469 int freed = 0; 4470 4471 trace_ext4_mb_discard_preallocations(sb, needed); 4472 for (i = 0; i < ngroups && needed > 0; i++) { 4473 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4474 freed += ret; 4475 needed -= ret; 4476 } 4477 4478 return freed; 4479 } 4480 4481 /* 4482 * Main entry point into mballoc to allocate blocks 4483 * it tries to use preallocation first, then falls back 4484 * to usual allocation 4485 */ 4486 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4487 struct ext4_allocation_request *ar, int *errp) 4488 { 4489 int freed; 4490 struct ext4_allocation_context *ac = NULL; 4491 struct ext4_sb_info *sbi; 4492 struct super_block *sb; 4493 ext4_fsblk_t block = 0; 4494 unsigned int inquota = 0; 4495 unsigned int reserv_clstrs = 0; 4496 4497 might_sleep(); 4498 sb = ar->inode->i_sb; 4499 sbi = EXT4_SB(sb); 4500 4501 trace_ext4_request_blocks(ar); 4502 4503 /* Allow to use superuser reservation for quota file */ 4504 if (ext4_is_quota_file(ar->inode)) 4505 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4506 4507 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 4508 /* Without delayed allocation we need to verify 4509 * there is enough free blocks to do block allocation 4510 * and verify allocation doesn't exceed the quota limits. 4511 */ 4512 while (ar->len && 4513 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4514 4515 /* let others to free the space */ 4516 cond_resched(); 4517 ar->len = ar->len >> 1; 4518 } 4519 if (!ar->len) { 4520 *errp = -ENOSPC; 4521 return 0; 4522 } 4523 reserv_clstrs = ar->len; 4524 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4525 dquot_alloc_block_nofail(ar->inode, 4526 EXT4_C2B(sbi, ar->len)); 4527 } else { 4528 while (ar->len && 4529 dquot_alloc_block(ar->inode, 4530 EXT4_C2B(sbi, ar->len))) { 4531 4532 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4533 ar->len--; 4534 } 4535 } 4536 inquota = ar->len; 4537 if (ar->len == 0) { 4538 *errp = -EDQUOT; 4539 goto out; 4540 } 4541 } 4542 4543 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4544 if (!ac) { 4545 ar->len = 0; 4546 *errp = -ENOMEM; 4547 goto out; 4548 } 4549 4550 *errp = ext4_mb_initialize_context(ac, ar); 4551 if (*errp) { 4552 ar->len = 0; 4553 goto out; 4554 } 4555 4556 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4557 if (!ext4_mb_use_preallocated(ac)) { 4558 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4559 ext4_mb_normalize_request(ac, ar); 4560 repeat: 4561 /* allocate space in core */ 4562 *errp = ext4_mb_regular_allocator(ac); 4563 if (*errp) 4564 goto discard_and_exit; 4565 4566 /* as we've just preallocated more space than 4567 * user requested originally, we store allocated 4568 * space in a special descriptor */ 4569 if (ac->ac_status == AC_STATUS_FOUND && 4570 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4571 *errp = ext4_mb_new_preallocation(ac); 4572 if (*errp) { 4573 discard_and_exit: 4574 ext4_discard_allocated_blocks(ac); 4575 goto errout; 4576 } 4577 } 4578 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4579 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4580 if (*errp) { 4581 ext4_discard_allocated_blocks(ac); 4582 goto errout; 4583 } else { 4584 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4585 ar->len = ac->ac_b_ex.fe_len; 4586 } 4587 } else { 4588 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4589 if (freed) 4590 goto repeat; 4591 *errp = -ENOSPC; 4592 } 4593 4594 errout: 4595 if (*errp) { 4596 ac->ac_b_ex.fe_len = 0; 4597 ar->len = 0; 4598 ext4_mb_show_ac(ac); 4599 } 4600 ext4_mb_release_context(ac); 4601 out: 4602 if (ac) 4603 kmem_cache_free(ext4_ac_cachep, ac); 4604 if (inquota && ar->len < inquota) 4605 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4606 if (!ar->len) { 4607 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 4608 /* release all the reserved blocks if non delalloc */ 4609 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4610 reserv_clstrs); 4611 } 4612 4613 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4614 4615 return block; 4616 } 4617 4618 /* 4619 * We can merge two free data extents only if the physical blocks 4620 * are contiguous, AND the extents were freed by the same transaction, 4621 * AND the blocks are associated with the same group. 4622 */ 4623 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 4624 struct ext4_free_data *entry, 4625 struct ext4_free_data *new_entry, 4626 struct rb_root *entry_rb_root) 4627 { 4628 if ((entry->efd_tid != new_entry->efd_tid) || 4629 (entry->efd_group != new_entry->efd_group)) 4630 return; 4631 if (entry->efd_start_cluster + entry->efd_count == 4632 new_entry->efd_start_cluster) { 4633 new_entry->efd_start_cluster = entry->efd_start_cluster; 4634 new_entry->efd_count += entry->efd_count; 4635 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 4636 entry->efd_start_cluster) { 4637 new_entry->efd_count += entry->efd_count; 4638 } else 4639 return; 4640 spin_lock(&sbi->s_md_lock); 4641 list_del(&entry->efd_list); 4642 spin_unlock(&sbi->s_md_lock); 4643 rb_erase(&entry->efd_node, entry_rb_root); 4644 kmem_cache_free(ext4_free_data_cachep, entry); 4645 } 4646 4647 static noinline_for_stack int 4648 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4649 struct ext4_free_data *new_entry) 4650 { 4651 ext4_group_t group = e4b->bd_group; 4652 ext4_grpblk_t cluster; 4653 ext4_grpblk_t clusters = new_entry->efd_count; 4654 struct ext4_free_data *entry; 4655 struct ext4_group_info *db = e4b->bd_info; 4656 struct super_block *sb = e4b->bd_sb; 4657 struct ext4_sb_info *sbi = EXT4_SB(sb); 4658 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4659 struct rb_node *parent = NULL, *new_node; 4660 4661 BUG_ON(!ext4_handle_valid(handle)); 4662 BUG_ON(e4b->bd_bitmap_page == NULL); 4663 BUG_ON(e4b->bd_buddy_page == NULL); 4664 4665 new_node = &new_entry->efd_node; 4666 cluster = new_entry->efd_start_cluster; 4667 4668 if (!*n) { 4669 /* first free block exent. We need to 4670 protect buddy cache from being freed, 4671 * otherwise we'll refresh it from 4672 * on-disk bitmap and lose not-yet-available 4673 * blocks */ 4674 get_page(e4b->bd_buddy_page); 4675 get_page(e4b->bd_bitmap_page); 4676 } 4677 while (*n) { 4678 parent = *n; 4679 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4680 if (cluster < entry->efd_start_cluster) 4681 n = &(*n)->rb_left; 4682 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4683 n = &(*n)->rb_right; 4684 else { 4685 ext4_grp_locked_error(sb, group, 0, 4686 ext4_group_first_block_no(sb, group) + 4687 EXT4_C2B(sbi, cluster), 4688 "Block already on to-be-freed list"); 4689 return 0; 4690 } 4691 } 4692 4693 rb_link_node(new_node, parent, n); 4694 rb_insert_color(new_node, &db->bb_free_root); 4695 4696 /* Now try to see the extent can be merged to left and right */ 4697 node = rb_prev(new_node); 4698 if (node) { 4699 entry = rb_entry(node, struct ext4_free_data, efd_node); 4700 ext4_try_merge_freed_extent(sbi, entry, new_entry, 4701 &(db->bb_free_root)); 4702 } 4703 4704 node = rb_next(new_node); 4705 if (node) { 4706 entry = rb_entry(node, struct ext4_free_data, efd_node); 4707 ext4_try_merge_freed_extent(sbi, entry, new_entry, 4708 &(db->bb_free_root)); 4709 } 4710 4711 spin_lock(&sbi->s_md_lock); 4712 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 4713 sbi->s_mb_free_pending += clusters; 4714 spin_unlock(&sbi->s_md_lock); 4715 return 0; 4716 } 4717 4718 /** 4719 * ext4_free_blocks() -- Free given blocks and update quota 4720 * @handle: handle for this transaction 4721 * @inode: inode 4722 * @bh: optional buffer of the block to be freed 4723 * @block: starting physical block to be freed 4724 * @count: number of blocks to be freed 4725 * @flags: flags used by ext4_free_blocks 4726 */ 4727 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4728 struct buffer_head *bh, ext4_fsblk_t block, 4729 unsigned long count, int flags) 4730 { 4731 struct buffer_head *bitmap_bh = NULL; 4732 struct super_block *sb = inode->i_sb; 4733 struct ext4_group_desc *gdp; 4734 unsigned int overflow; 4735 ext4_grpblk_t bit; 4736 struct buffer_head *gd_bh; 4737 ext4_group_t block_group; 4738 struct ext4_sb_info *sbi; 4739 struct ext4_buddy e4b; 4740 unsigned int count_clusters; 4741 int err = 0; 4742 int ret; 4743 4744 might_sleep(); 4745 if (bh) { 4746 if (block) 4747 BUG_ON(block != bh->b_blocknr); 4748 else 4749 block = bh->b_blocknr; 4750 } 4751 4752 sbi = EXT4_SB(sb); 4753 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4754 !ext4_data_block_valid(sbi, block, count)) { 4755 ext4_error(sb, "Freeing blocks not in datazone - " 4756 "block = %llu, count = %lu", block, count); 4757 goto error_return; 4758 } 4759 4760 ext4_debug("freeing block %llu\n", block); 4761 trace_ext4_free_blocks(inode, block, count, flags); 4762 4763 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 4764 BUG_ON(count > 1); 4765 4766 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4767 inode, bh, block); 4768 } 4769 4770 /* 4771 * If the extent to be freed does not begin on a cluster 4772 * boundary, we need to deal with partial clusters at the 4773 * beginning and end of the extent. Normally we will free 4774 * blocks at the beginning or the end unless we are explicitly 4775 * requested to avoid doing so. 4776 */ 4777 overflow = EXT4_PBLK_COFF(sbi, block); 4778 if (overflow) { 4779 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4780 overflow = sbi->s_cluster_ratio - overflow; 4781 block += overflow; 4782 if (count > overflow) 4783 count -= overflow; 4784 else 4785 return; 4786 } else { 4787 block -= overflow; 4788 count += overflow; 4789 } 4790 } 4791 overflow = EXT4_LBLK_COFF(sbi, count); 4792 if (overflow) { 4793 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4794 if (count > overflow) 4795 count -= overflow; 4796 else 4797 return; 4798 } else 4799 count += sbi->s_cluster_ratio - overflow; 4800 } 4801 4802 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 4803 int i; 4804 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 4805 4806 for (i = 0; i < count; i++) { 4807 cond_resched(); 4808 if (is_metadata) 4809 bh = sb_find_get_block(inode->i_sb, block + i); 4810 ext4_forget(handle, is_metadata, inode, bh, block + i); 4811 } 4812 } 4813 4814 do_more: 4815 overflow = 0; 4816 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4817 4818 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 4819 ext4_get_group_info(sb, block_group)))) 4820 return; 4821 4822 /* 4823 * Check to see if we are freeing blocks across a group 4824 * boundary. 4825 */ 4826 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4827 overflow = EXT4_C2B(sbi, bit) + count - 4828 EXT4_BLOCKS_PER_GROUP(sb); 4829 count -= overflow; 4830 } 4831 count_clusters = EXT4_NUM_B2C(sbi, count); 4832 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4833 if (IS_ERR(bitmap_bh)) { 4834 err = PTR_ERR(bitmap_bh); 4835 bitmap_bh = NULL; 4836 goto error_return; 4837 } 4838 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4839 if (!gdp) { 4840 err = -EIO; 4841 goto error_return; 4842 } 4843 4844 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4845 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4846 in_range(block, ext4_inode_table(sb, gdp), 4847 sbi->s_itb_per_group) || 4848 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4849 sbi->s_itb_per_group)) { 4850 4851 ext4_error(sb, "Freeing blocks in system zone - " 4852 "Block = %llu, count = %lu", block, count); 4853 /* err = 0. ext4_std_error should be a no op */ 4854 goto error_return; 4855 } 4856 4857 BUFFER_TRACE(bitmap_bh, "getting write access"); 4858 err = ext4_journal_get_write_access(handle, bitmap_bh); 4859 if (err) 4860 goto error_return; 4861 4862 /* 4863 * We are about to modify some metadata. Call the journal APIs 4864 * to unshare ->b_data if a currently-committing transaction is 4865 * using it 4866 */ 4867 BUFFER_TRACE(gd_bh, "get_write_access"); 4868 err = ext4_journal_get_write_access(handle, gd_bh); 4869 if (err) 4870 goto error_return; 4871 #ifdef AGGRESSIVE_CHECK 4872 { 4873 int i; 4874 for (i = 0; i < count_clusters; i++) 4875 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4876 } 4877 #endif 4878 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4879 4880 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 4881 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 4882 GFP_NOFS|__GFP_NOFAIL); 4883 if (err) 4884 goto error_return; 4885 4886 /* 4887 * We need to make sure we don't reuse the freed block until after the 4888 * transaction is committed. We make an exception if the inode is to be 4889 * written in writeback mode since writeback mode has weak data 4890 * consistency guarantees. 4891 */ 4892 if (ext4_handle_valid(handle) && 4893 ((flags & EXT4_FREE_BLOCKS_METADATA) || 4894 !ext4_should_writeback_data(inode))) { 4895 struct ext4_free_data *new_entry; 4896 /* 4897 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 4898 * to fail. 4899 */ 4900 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 4901 GFP_NOFS|__GFP_NOFAIL); 4902 new_entry->efd_start_cluster = bit; 4903 new_entry->efd_group = block_group; 4904 new_entry->efd_count = count_clusters; 4905 new_entry->efd_tid = handle->h_transaction->t_tid; 4906 4907 ext4_lock_group(sb, block_group); 4908 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4909 ext4_mb_free_metadata(handle, &e4b, new_entry); 4910 } else { 4911 /* need to update group_info->bb_free and bitmap 4912 * with group lock held. generate_buddy look at 4913 * them with group lock_held 4914 */ 4915 if (test_opt(sb, DISCARD)) { 4916 err = ext4_issue_discard(sb, block_group, bit, count, 4917 NULL); 4918 if (err && err != -EOPNOTSUPP) 4919 ext4_msg(sb, KERN_WARNING, "discard request in" 4920 " group:%d block:%d count:%lu failed" 4921 " with %d", block_group, bit, count, 4922 err); 4923 } else 4924 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 4925 4926 ext4_lock_group(sb, block_group); 4927 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4928 mb_free_blocks(inode, &e4b, bit, count_clusters); 4929 } 4930 4931 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4932 ext4_free_group_clusters_set(sb, gdp, ret); 4933 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 4934 ext4_group_desc_csum_set(sb, block_group, gdp); 4935 ext4_unlock_group(sb, block_group); 4936 4937 if (sbi->s_log_groups_per_flex) { 4938 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4939 atomic64_add(count_clusters, 4940 &sbi_array_rcu_deref(sbi, s_flex_groups, 4941 flex_group)->free_clusters); 4942 } 4943 4944 /* 4945 * on a bigalloc file system, defer the s_freeclusters_counter 4946 * update to the caller (ext4_remove_space and friends) so they 4947 * can determine if a cluster freed here should be rereserved 4948 */ 4949 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 4950 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4951 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4952 percpu_counter_add(&sbi->s_freeclusters_counter, 4953 count_clusters); 4954 } 4955 4956 ext4_mb_unload_buddy(&e4b); 4957 4958 /* We dirtied the bitmap block */ 4959 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4960 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4961 4962 /* And the group descriptor block */ 4963 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4964 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4965 if (!err) 4966 err = ret; 4967 4968 if (overflow && !err) { 4969 block += count; 4970 count = overflow; 4971 put_bh(bitmap_bh); 4972 goto do_more; 4973 } 4974 error_return: 4975 brelse(bitmap_bh); 4976 ext4_std_error(sb, err); 4977 return; 4978 } 4979 4980 /** 4981 * ext4_group_add_blocks() -- Add given blocks to an existing group 4982 * @handle: handle to this transaction 4983 * @sb: super block 4984 * @block: start physical block to add to the block group 4985 * @count: number of blocks to free 4986 * 4987 * This marks the blocks as free in the bitmap and buddy. 4988 */ 4989 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4990 ext4_fsblk_t block, unsigned long count) 4991 { 4992 struct buffer_head *bitmap_bh = NULL; 4993 struct buffer_head *gd_bh; 4994 ext4_group_t block_group; 4995 ext4_grpblk_t bit; 4996 unsigned int i; 4997 struct ext4_group_desc *desc; 4998 struct ext4_sb_info *sbi = EXT4_SB(sb); 4999 struct ext4_buddy e4b; 5000 int err = 0, ret, free_clusters_count; 5001 ext4_grpblk_t clusters_freed; 5002 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 5003 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 5004 unsigned long cluster_count = last_cluster - first_cluster + 1; 5005 5006 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 5007 5008 if (count == 0) 5009 return 0; 5010 5011 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 5012 /* 5013 * Check to see if we are freeing blocks across a group 5014 * boundary. 5015 */ 5016 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 5017 ext4_warning(sb, "too many blocks added to group %u", 5018 block_group); 5019 err = -EINVAL; 5020 goto error_return; 5021 } 5022 5023 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 5024 if (IS_ERR(bitmap_bh)) { 5025 err = PTR_ERR(bitmap_bh); 5026 bitmap_bh = NULL; 5027 goto error_return; 5028 } 5029 5030 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 5031 if (!desc) { 5032 err = -EIO; 5033 goto error_return; 5034 } 5035 5036 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 5037 in_range(ext4_inode_bitmap(sb, desc), block, count) || 5038 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 5039 in_range(block + count - 1, ext4_inode_table(sb, desc), 5040 sbi->s_itb_per_group)) { 5041 ext4_error(sb, "Adding blocks in system zones - " 5042 "Block = %llu, count = %lu", 5043 block, count); 5044 err = -EINVAL; 5045 goto error_return; 5046 } 5047 5048 BUFFER_TRACE(bitmap_bh, "getting write access"); 5049 err = ext4_journal_get_write_access(handle, bitmap_bh); 5050 if (err) 5051 goto error_return; 5052 5053 /* 5054 * We are about to modify some metadata. Call the journal APIs 5055 * to unshare ->b_data if a currently-committing transaction is 5056 * using it 5057 */ 5058 BUFFER_TRACE(gd_bh, "get_write_access"); 5059 err = ext4_journal_get_write_access(handle, gd_bh); 5060 if (err) 5061 goto error_return; 5062 5063 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 5064 BUFFER_TRACE(bitmap_bh, "clear bit"); 5065 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 5066 ext4_error(sb, "bit already cleared for block %llu", 5067 (ext4_fsblk_t)(block + i)); 5068 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 5069 } else { 5070 clusters_freed++; 5071 } 5072 } 5073 5074 err = ext4_mb_load_buddy(sb, block_group, &e4b); 5075 if (err) 5076 goto error_return; 5077 5078 /* 5079 * need to update group_info->bb_free and bitmap 5080 * with group lock held. generate_buddy look at 5081 * them with group lock_held 5082 */ 5083 ext4_lock_group(sb, block_group); 5084 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 5085 mb_free_blocks(NULL, &e4b, bit, cluster_count); 5086 free_clusters_count = clusters_freed + 5087 ext4_free_group_clusters(sb, desc); 5088 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 5089 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 5090 ext4_group_desc_csum_set(sb, block_group, desc); 5091 ext4_unlock_group(sb, block_group); 5092 percpu_counter_add(&sbi->s_freeclusters_counter, 5093 clusters_freed); 5094 5095 if (sbi->s_log_groups_per_flex) { 5096 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 5097 atomic64_add(clusters_freed, 5098 &sbi_array_rcu_deref(sbi, s_flex_groups, 5099 flex_group)->free_clusters); 5100 } 5101 5102 ext4_mb_unload_buddy(&e4b); 5103 5104 /* We dirtied the bitmap block */ 5105 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5106 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5107 5108 /* And the group descriptor block */ 5109 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5110 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5111 if (!err) 5112 err = ret; 5113 5114 error_return: 5115 brelse(bitmap_bh); 5116 ext4_std_error(sb, err); 5117 return err; 5118 } 5119 5120 /** 5121 * ext4_trim_extent -- function to TRIM one single free extent in the group 5122 * @sb: super block for the file system 5123 * @start: starting block of the free extent in the alloc. group 5124 * @count: number of blocks to TRIM 5125 * @group: alloc. group we are working with 5126 * @e4b: ext4 buddy for the group 5127 * 5128 * Trim "count" blocks starting at "start" in the "group". To assure that no 5129 * one will allocate those blocks, mark it as used in buddy bitmap. This must 5130 * be called with under the group lock. 5131 */ 5132 static int ext4_trim_extent(struct super_block *sb, int start, int count, 5133 ext4_group_t group, struct ext4_buddy *e4b) 5134 __releases(bitlock) 5135 __acquires(bitlock) 5136 { 5137 struct ext4_free_extent ex; 5138 int ret = 0; 5139 5140 trace_ext4_trim_extent(sb, group, start, count); 5141 5142 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 5143 5144 ex.fe_start = start; 5145 ex.fe_group = group; 5146 ex.fe_len = count; 5147 5148 /* 5149 * Mark blocks used, so no one can reuse them while 5150 * being trimmed. 5151 */ 5152 mb_mark_used(e4b, &ex); 5153 ext4_unlock_group(sb, group); 5154 ret = ext4_issue_discard(sb, group, start, count, NULL); 5155 ext4_lock_group(sb, group); 5156 mb_free_blocks(NULL, e4b, start, ex.fe_len); 5157 return ret; 5158 } 5159 5160 /** 5161 * ext4_trim_all_free -- function to trim all free space in alloc. group 5162 * @sb: super block for file system 5163 * @group: group to be trimmed 5164 * @start: first group block to examine 5165 * @max: last group block to examine 5166 * @minblocks: minimum extent block count 5167 * 5168 * ext4_trim_all_free walks through group's buddy bitmap searching for free 5169 * extents. When the free block is found, ext4_trim_extent is called to TRIM 5170 * the extent. 5171 * 5172 * 5173 * ext4_trim_all_free walks through group's block bitmap searching for free 5174 * extents. When the free extent is found, mark it as used in group buddy 5175 * bitmap. Then issue a TRIM command on this extent and free the extent in 5176 * the group buddy bitmap. This is done until whole group is scanned. 5177 */ 5178 static ext4_grpblk_t 5179 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 5180 ext4_grpblk_t start, ext4_grpblk_t max, 5181 ext4_grpblk_t minblocks) 5182 { 5183 void *bitmap; 5184 ext4_grpblk_t next, count = 0, free_count = 0; 5185 struct ext4_buddy e4b; 5186 int ret = 0; 5187 5188 trace_ext4_trim_all_free(sb, group, start, max); 5189 5190 ret = ext4_mb_load_buddy(sb, group, &e4b); 5191 if (ret) { 5192 ext4_warning(sb, "Error %d loading buddy information for %u", 5193 ret, group); 5194 return ret; 5195 } 5196 bitmap = e4b.bd_bitmap; 5197 5198 ext4_lock_group(sb, group); 5199 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 5200 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 5201 goto out; 5202 5203 start = (e4b.bd_info->bb_first_free > start) ? 5204 e4b.bd_info->bb_first_free : start; 5205 5206 while (start <= max) { 5207 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5208 if (start > max) 5209 break; 5210 next = mb_find_next_bit(bitmap, max + 1, start); 5211 5212 if ((next - start) >= minblocks) { 5213 ret = ext4_trim_extent(sb, start, 5214 next - start, group, &e4b); 5215 if (ret && ret != -EOPNOTSUPP) 5216 break; 5217 ret = 0; 5218 count += next - start; 5219 } 5220 free_count += next - start; 5221 start = next + 1; 5222 5223 if (fatal_signal_pending(current)) { 5224 count = -ERESTARTSYS; 5225 break; 5226 } 5227 5228 if (need_resched()) { 5229 ext4_unlock_group(sb, group); 5230 cond_resched(); 5231 ext4_lock_group(sb, group); 5232 } 5233 5234 if ((e4b.bd_info->bb_free - free_count) < minblocks) 5235 break; 5236 } 5237 5238 if (!ret) { 5239 ret = count; 5240 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 5241 } 5242 out: 5243 ext4_unlock_group(sb, group); 5244 ext4_mb_unload_buddy(&e4b); 5245 5246 ext4_debug("trimmed %d blocks in the group %d\n", 5247 count, group); 5248 5249 return ret; 5250 } 5251 5252 /** 5253 * ext4_trim_fs() -- trim ioctl handle function 5254 * @sb: superblock for filesystem 5255 * @range: fstrim_range structure 5256 * 5257 * start: First Byte to trim 5258 * len: number of Bytes to trim from start 5259 * minlen: minimum extent length in Bytes 5260 * ext4_trim_fs goes through all allocation groups containing Bytes from 5261 * start to start+len. For each such a group ext4_trim_all_free function 5262 * is invoked to trim all free space. 5263 */ 5264 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 5265 { 5266 struct ext4_group_info *grp; 5267 ext4_group_t group, first_group, last_group; 5268 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5269 uint64_t start, end, minlen, trimmed = 0; 5270 ext4_fsblk_t first_data_blk = 5271 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5272 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5273 int ret = 0; 5274 5275 start = range->start >> sb->s_blocksize_bits; 5276 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5277 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5278 range->minlen >> sb->s_blocksize_bits); 5279 5280 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5281 start >= max_blks || 5282 range->len < sb->s_blocksize) 5283 return -EINVAL; 5284 if (end >= max_blks) 5285 end = max_blks - 1; 5286 if (end <= first_data_blk) 5287 goto out; 5288 if (start < first_data_blk) 5289 start = first_data_blk; 5290 5291 /* Determine first and last group to examine based on start and end */ 5292 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5293 &first_group, &first_cluster); 5294 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5295 &last_group, &last_cluster); 5296 5297 /* end now represents the last cluster to discard in this group */ 5298 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5299 5300 for (group = first_group; group <= last_group; group++) { 5301 grp = ext4_get_group_info(sb, group); 5302 /* We only do this if the grp has never been initialized */ 5303 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5304 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 5305 if (ret) 5306 break; 5307 } 5308 5309 /* 5310 * For all the groups except the last one, last cluster will 5311 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5312 * change it for the last group, note that last_cluster is 5313 * already computed earlier by ext4_get_group_no_and_offset() 5314 */ 5315 if (group == last_group) 5316 end = last_cluster; 5317 5318 if (grp->bb_free >= minlen) { 5319 cnt = ext4_trim_all_free(sb, group, first_cluster, 5320 end, minlen); 5321 if (cnt < 0) { 5322 ret = cnt; 5323 break; 5324 } 5325 trimmed += cnt; 5326 } 5327 5328 /* 5329 * For every group except the first one, we are sure 5330 * that the first cluster to discard will be cluster #0. 5331 */ 5332 first_cluster = 0; 5333 } 5334 5335 if (!ret) 5336 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5337 5338 out: 5339 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5340 return ret; 5341 } 5342 5343 /* Iterate all the free extents in the group. */ 5344 int 5345 ext4_mballoc_query_range( 5346 struct super_block *sb, 5347 ext4_group_t group, 5348 ext4_grpblk_t start, 5349 ext4_grpblk_t end, 5350 ext4_mballoc_query_range_fn formatter, 5351 void *priv) 5352 { 5353 void *bitmap; 5354 ext4_grpblk_t next; 5355 struct ext4_buddy e4b; 5356 int error; 5357 5358 error = ext4_mb_load_buddy(sb, group, &e4b); 5359 if (error) 5360 return error; 5361 bitmap = e4b.bd_bitmap; 5362 5363 ext4_lock_group(sb, group); 5364 5365 start = (e4b.bd_info->bb_first_free > start) ? 5366 e4b.bd_info->bb_first_free : start; 5367 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 5368 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5369 5370 while (start <= end) { 5371 start = mb_find_next_zero_bit(bitmap, end + 1, start); 5372 if (start > end) 5373 break; 5374 next = mb_find_next_bit(bitmap, end + 1, start); 5375 5376 ext4_unlock_group(sb, group); 5377 error = formatter(sb, group, start, next - start, priv); 5378 if (error) 5379 goto out_unload; 5380 ext4_lock_group(sb, group); 5381 5382 start = next + 1; 5383 } 5384 5385 ext4_unlock_group(sb, group); 5386 out_unload: 5387 ext4_mb_unload_buddy(&e4b); 5388 5389 return error; 5390 } 5391