xref: /openbmc/linux/fs/ext4/mballoc.c (revision 5e2af67d84450903d6a37df72a82e81ecc899eba)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21 
22 /*
23  * MUSTDO:
24  *   - test ext4_ext_search_left() and ext4_ext_search_right()
25  *   - search for metadata in few groups
26  *
27  * TODO v4:
28  *   - normalization should take into account whether file is still open
29  *   - discard preallocations if no free space left (policy?)
30  *   - don't normalize tails
31  *   - quota
32  *   - reservation for superuser
33  *
34  * TODO v3:
35  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
36  *   - track min/max extents in each group for better group selection
37  *   - mb_mark_used() may allocate chunk right after splitting buddy
38  *   - tree of groups sorted by number of free blocks
39  *   - error handling
40  */
41 
42 /*
43  * The allocation request involve request for multiple number of blocks
44  * near to the goal(block) value specified.
45  *
46  * During initialization phase of the allocator we decide to use the
47  * group preallocation or inode preallocation depending on the size of
48  * the file. The size of the file could be the resulting file size we
49  * would have after allocation, or the current file size, which ever
50  * is larger. If the size is less than sbi->s_mb_stream_request we
51  * select to use the group preallocation. The default value of
52  * s_mb_stream_request is 16 blocks. This can also be tuned via
53  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
54  * terms of number of blocks.
55  *
56  * The main motivation for having small file use group preallocation is to
57  * ensure that we have small files closer together on the disk.
58  *
59  * First stage the allocator looks at the inode prealloc list,
60  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
61  * spaces for this particular inode. The inode prealloc space is
62  * represented as:
63  *
64  * pa_lstart -> the logical start block for this prealloc space
65  * pa_pstart -> the physical start block for this prealloc space
66  * pa_len    -> length for this prealloc space (in clusters)
67  * pa_free   ->  free space available in this prealloc space (in clusters)
68  *
69  * The inode preallocation space is used looking at the _logical_ start
70  * block. If only the logical file block falls within the range of prealloc
71  * space we will consume the particular prealloc space. This makes sure that
72  * we have contiguous physical blocks representing the file blocks
73  *
74  * The important thing to be noted in case of inode prealloc space is that
75  * we don't modify the values associated to inode prealloc space except
76  * pa_free.
77  *
78  * If we are not able to find blocks in the inode prealloc space and if we
79  * have the group allocation flag set then we look at the locality group
80  * prealloc space. These are per CPU prealloc list represented as
81  *
82  * ext4_sb_info.s_locality_groups[smp_processor_id()]
83  *
84  * The reason for having a per cpu locality group is to reduce the contention
85  * between CPUs. It is possible to get scheduled at this point.
86  *
87  * The locality group prealloc space is used looking at whether we have
88  * enough free space (pa_free) within the prealloc space.
89  *
90  * If we can't allocate blocks via inode prealloc or/and locality group
91  * prealloc then we look at the buddy cache. The buddy cache is represented
92  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
93  * mapped to the buddy and bitmap information regarding different
94  * groups. The buddy information is attached to buddy cache inode so that
95  * we can access them through the page cache. The information regarding
96  * each group is loaded via ext4_mb_load_buddy.  The information involve
97  * block bitmap and buddy information. The information are stored in the
98  * inode as:
99  *
100  *  {                        page                        }
101  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
102  *
103  *
104  * one block each for bitmap and buddy information.  So for each group we
105  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
106  * blocksize) blocks.  So it can have information regarding groups_per_page
107  * which is blocks_per_page/2
108  *
109  * The buddy cache inode is not stored on disk. The inode is thrown
110  * away when the filesystem is unmounted.
111  *
112  * We look for count number of blocks in the buddy cache. If we were able
113  * to locate that many free blocks we return with additional information
114  * regarding rest of the contiguous physical block available
115  *
116  * Before allocating blocks via buddy cache we normalize the request
117  * blocks. This ensure we ask for more blocks that we needed. The extra
118  * blocks that we get after allocation is added to the respective prealloc
119  * list. In case of inode preallocation we follow a list of heuristics
120  * based on file size. This can be found in ext4_mb_normalize_request. If
121  * we are doing a group prealloc we try to normalize the request to
122  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
123  * dependent on the cluster size; for non-bigalloc file systems, it is
124  * 512 blocks. This can be tuned via
125  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
126  * terms of number of blocks. If we have mounted the file system with -O
127  * stripe=<value> option the group prealloc request is normalized to the
128  * smallest multiple of the stripe value (sbi->s_stripe) which is
129  * greater than the default mb_group_prealloc.
130  *
131  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
132  * structures in two data structures:
133  *
134  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
135  *
136  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
137  *
138  *    This is an array of lists where the index in the array represents the
139  *    largest free order in the buddy bitmap of the participating group infos of
140  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
141  *    number of buddy bitmap orders possible) number of lists. Group-infos are
142  *    placed in appropriate lists.
143  *
144  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
145  *
146  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
147  *
148  *    This is an array of lists where in the i-th list there are groups with
149  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
150  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
151  *    Note that we don't bother with a special list for completely empty groups
152  *    so we only have MB_NUM_ORDERS(sb) lists.
153  *
154  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
155  * structures to decide the order in which groups are to be traversed for
156  * fulfilling an allocation request.
157  *
158  * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
159  * >= the order of the request. We directly look at the largest free order list
160  * in the data structure (1) above where largest_free_order = order of the
161  * request. If that list is empty, we look at remaining list in the increasing
162  * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
163  * lookup in O(1) time.
164  *
165  * At CR_GOAL_LEN_FAST, we only consider groups where
166  * average fragment size > request size. So, we lookup a group which has average
167  * fragment size just above or equal to request size using our average fragment
168  * size group lists (data structure 2) in O(1) time.
169  *
170  * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
171  * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
172  * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
173  * fragment size > goal length. So before falling to the slower
174  * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
175  * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
176  * enough average fragment size. This increases the chances of finding a
177  * suitable block group in O(1) time and results in faster allocation at the
178  * cost of reduced size of allocation.
179  *
180  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
181  * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
182  * CR_GOAL_LEN_FAST phase.
183  *
184  * The regular allocator (using the buddy cache) supports a few tunables.
185  *
186  * /sys/fs/ext4/<partition>/mb_min_to_scan
187  * /sys/fs/ext4/<partition>/mb_max_to_scan
188  * /sys/fs/ext4/<partition>/mb_order2_req
189  * /sys/fs/ext4/<partition>/mb_linear_limit
190  *
191  * The regular allocator uses buddy scan only if the request len is power of
192  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
193  * value of s_mb_order2_reqs can be tuned via
194  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
195  * stripe size (sbi->s_stripe), we try to search for contiguous block in
196  * stripe size. This should result in better allocation on RAID setups. If
197  * not, we search in the specific group using bitmap for best extents. The
198  * tunable min_to_scan and max_to_scan control the behaviour here.
199  * min_to_scan indicate how long the mballoc __must__ look for a best
200  * extent and max_to_scan indicates how long the mballoc __can__ look for a
201  * best extent in the found extents. Searching for the blocks starts with
202  * the group specified as the goal value in allocation context via
203  * ac_g_ex. Each group is first checked based on the criteria whether it
204  * can be used for allocation. ext4_mb_good_group explains how the groups are
205  * checked.
206  *
207  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
208  * get traversed linearly. That may result in subsequent allocations being not
209  * close to each other. And so, the underlying device may get filled up in a
210  * non-linear fashion. While that may not matter on non-rotational devices, for
211  * rotational devices that may result in higher seek times. "mb_linear_limit"
212  * tells mballoc how many groups mballoc should search linearly before
213  * performing consulting above data structures for more efficient lookups. For
214  * non rotational devices, this value defaults to 0 and for rotational devices
215  * this is set to MB_DEFAULT_LINEAR_LIMIT.
216  *
217  * Both the prealloc space are getting populated as above. So for the first
218  * request we will hit the buddy cache which will result in this prealloc
219  * space getting filled. The prealloc space is then later used for the
220  * subsequent request.
221  */
222 
223 /*
224  * mballoc operates on the following data:
225  *  - on-disk bitmap
226  *  - in-core buddy (actually includes buddy and bitmap)
227  *  - preallocation descriptors (PAs)
228  *
229  * there are two types of preallocations:
230  *  - inode
231  *    assiged to specific inode and can be used for this inode only.
232  *    it describes part of inode's space preallocated to specific
233  *    physical blocks. any block from that preallocated can be used
234  *    independent. the descriptor just tracks number of blocks left
235  *    unused. so, before taking some block from descriptor, one must
236  *    make sure corresponded logical block isn't allocated yet. this
237  *    also means that freeing any block within descriptor's range
238  *    must discard all preallocated blocks.
239  *  - locality group
240  *    assigned to specific locality group which does not translate to
241  *    permanent set of inodes: inode can join and leave group. space
242  *    from this type of preallocation can be used for any inode. thus
243  *    it's consumed from the beginning to the end.
244  *
245  * relation between them can be expressed as:
246  *    in-core buddy = on-disk bitmap + preallocation descriptors
247  *
248  * this mean blocks mballoc considers used are:
249  *  - allocated blocks (persistent)
250  *  - preallocated blocks (non-persistent)
251  *
252  * consistency in mballoc world means that at any time a block is either
253  * free or used in ALL structures. notice: "any time" should not be read
254  * literally -- time is discrete and delimited by locks.
255  *
256  *  to keep it simple, we don't use block numbers, instead we count number of
257  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
258  *
259  * all operations can be expressed as:
260  *  - init buddy:			buddy = on-disk + PAs
261  *  - new PA:				buddy += N; PA = N
262  *  - use inode PA:			on-disk += N; PA -= N
263  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
264  *  - use locality group PA		on-disk += N; PA -= N
265  *  - discard locality group PA		buddy -= PA; PA = 0
266  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
267  *        is used in real operation because we can't know actual used
268  *        bits from PA, only from on-disk bitmap
269  *
270  * if we follow this strict logic, then all operations above should be atomic.
271  * given some of them can block, we'd have to use something like semaphores
272  * killing performance on high-end SMP hardware. let's try to relax it using
273  * the following knowledge:
274  *  1) if buddy is referenced, it's already initialized
275  *  2) while block is used in buddy and the buddy is referenced,
276  *     nobody can re-allocate that block
277  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
278  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
279  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
280  *     block
281  *
282  * so, now we're building a concurrency table:
283  *  - init buddy vs.
284  *    - new PA
285  *      blocks for PA are allocated in the buddy, buddy must be referenced
286  *      until PA is linked to allocation group to avoid concurrent buddy init
287  *    - use inode PA
288  *      we need to make sure that either on-disk bitmap or PA has uptodate data
289  *      given (3) we care that PA-=N operation doesn't interfere with init
290  *    - discard inode PA
291  *      the simplest way would be to have buddy initialized by the discard
292  *    - use locality group PA
293  *      again PA-=N must be serialized with init
294  *    - discard locality group PA
295  *      the simplest way would be to have buddy initialized by the discard
296  *  - new PA vs.
297  *    - use inode PA
298  *      i_data_sem serializes them
299  *    - discard inode PA
300  *      discard process must wait until PA isn't used by another process
301  *    - use locality group PA
302  *      some mutex should serialize them
303  *    - discard locality group PA
304  *      discard process must wait until PA isn't used by another process
305  *  - use inode PA
306  *    - use inode PA
307  *      i_data_sem or another mutex should serializes them
308  *    - discard inode PA
309  *      discard process must wait until PA isn't used by another process
310  *    - use locality group PA
311  *      nothing wrong here -- they're different PAs covering different blocks
312  *    - discard locality group PA
313  *      discard process must wait until PA isn't used by another process
314  *
315  * now we're ready to make few consequences:
316  *  - PA is referenced and while it is no discard is possible
317  *  - PA is referenced until block isn't marked in on-disk bitmap
318  *  - PA changes only after on-disk bitmap
319  *  - discard must not compete with init. either init is done before
320  *    any discard or they're serialized somehow
321  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
322  *
323  * a special case when we've used PA to emptiness. no need to modify buddy
324  * in this case, but we should care about concurrent init
325  *
326  */
327 
328  /*
329  * Logic in few words:
330  *
331  *  - allocation:
332  *    load group
333  *    find blocks
334  *    mark bits in on-disk bitmap
335  *    release group
336  *
337  *  - use preallocation:
338  *    find proper PA (per-inode or group)
339  *    load group
340  *    mark bits in on-disk bitmap
341  *    release group
342  *    release PA
343  *
344  *  - free:
345  *    load group
346  *    mark bits in on-disk bitmap
347  *    release group
348  *
349  *  - discard preallocations in group:
350  *    mark PAs deleted
351  *    move them onto local list
352  *    load on-disk bitmap
353  *    load group
354  *    remove PA from object (inode or locality group)
355  *    mark free blocks in-core
356  *
357  *  - discard inode's preallocations:
358  */
359 
360 /*
361  * Locking rules
362  *
363  * Locks:
364  *  - bitlock on a group	(group)
365  *  - object (inode/locality)	(object)
366  *  - per-pa lock		(pa)
367  *  - cr_power2_aligned lists lock	(cr_power2_aligned)
368  *  - cr_goal_len_fast lists lock	(cr_goal_len_fast)
369  *
370  * Paths:
371  *  - new pa
372  *    object
373  *    group
374  *
375  *  - find and use pa:
376  *    pa
377  *
378  *  - release consumed pa:
379  *    pa
380  *    group
381  *    object
382  *
383  *  - generate in-core bitmap:
384  *    group
385  *        pa
386  *
387  *  - discard all for given object (inode, locality group):
388  *    object
389  *        pa
390  *    group
391  *
392  *  - discard all for given group:
393  *    group
394  *        pa
395  *    group
396  *        object
397  *
398  *  - allocation path (ext4_mb_regular_allocator)
399  *    group
400  *    cr_power2_aligned/cr_goal_len_fast
401  */
402 static struct kmem_cache *ext4_pspace_cachep;
403 static struct kmem_cache *ext4_ac_cachep;
404 static struct kmem_cache *ext4_free_data_cachep;
405 
406 /* We create slab caches for groupinfo data structures based on the
407  * superblock block size.  There will be one per mounted filesystem for
408  * each unique s_blocksize_bits */
409 #define NR_GRPINFO_CACHES 8
410 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
411 
412 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
413 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
414 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
415 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
416 };
417 
418 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
419 					ext4_group_t group);
420 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
421 
422 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
423 			       ext4_group_t group, enum criteria cr);
424 
425 static int ext4_try_to_trim_range(struct super_block *sb,
426 		struct ext4_buddy *e4b, ext4_grpblk_t start,
427 		ext4_grpblk_t max, ext4_grpblk_t minblocks);
428 
429 /*
430  * The algorithm using this percpu seq counter goes below:
431  * 1. We sample the percpu discard_pa_seq counter before trying for block
432  *    allocation in ext4_mb_new_blocks().
433  * 2. We increment this percpu discard_pa_seq counter when we either allocate
434  *    or free these blocks i.e. while marking those blocks as used/free in
435  *    mb_mark_used()/mb_free_blocks().
436  * 3. We also increment this percpu seq counter when we successfully identify
437  *    that the bb_prealloc_list is not empty and hence proceed for discarding
438  *    of those PAs inside ext4_mb_discard_group_preallocations().
439  *
440  * Now to make sure that the regular fast path of block allocation is not
441  * affected, as a small optimization we only sample the percpu seq counter
442  * on that cpu. Only when the block allocation fails and when freed blocks
443  * found were 0, that is when we sample percpu seq counter for all cpus using
444  * below function ext4_get_discard_pa_seq_sum(). This happens after making
445  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
446  */
447 static DEFINE_PER_CPU(u64, discard_pa_seq);
448 static inline u64 ext4_get_discard_pa_seq_sum(void)
449 {
450 	int __cpu;
451 	u64 __seq = 0;
452 
453 	for_each_possible_cpu(__cpu)
454 		__seq += per_cpu(discard_pa_seq, __cpu);
455 	return __seq;
456 }
457 
458 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
459 {
460 #if BITS_PER_LONG == 64
461 	*bit += ((unsigned long) addr & 7UL) << 3;
462 	addr = (void *) ((unsigned long) addr & ~7UL);
463 #elif BITS_PER_LONG == 32
464 	*bit += ((unsigned long) addr & 3UL) << 3;
465 	addr = (void *) ((unsigned long) addr & ~3UL);
466 #else
467 #error "how many bits you are?!"
468 #endif
469 	return addr;
470 }
471 
472 static inline int mb_test_bit(int bit, void *addr)
473 {
474 	/*
475 	 * ext4_test_bit on architecture like powerpc
476 	 * needs unsigned long aligned address
477 	 */
478 	addr = mb_correct_addr_and_bit(&bit, addr);
479 	return ext4_test_bit(bit, addr);
480 }
481 
482 static inline void mb_set_bit(int bit, void *addr)
483 {
484 	addr = mb_correct_addr_and_bit(&bit, addr);
485 	ext4_set_bit(bit, addr);
486 }
487 
488 static inline void mb_clear_bit(int bit, void *addr)
489 {
490 	addr = mb_correct_addr_and_bit(&bit, addr);
491 	ext4_clear_bit(bit, addr);
492 }
493 
494 static inline int mb_test_and_clear_bit(int bit, void *addr)
495 {
496 	addr = mb_correct_addr_and_bit(&bit, addr);
497 	return ext4_test_and_clear_bit(bit, addr);
498 }
499 
500 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
501 {
502 	int fix = 0, ret, tmpmax;
503 	addr = mb_correct_addr_and_bit(&fix, addr);
504 	tmpmax = max + fix;
505 	start += fix;
506 
507 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
508 	if (ret > max)
509 		return max;
510 	return ret;
511 }
512 
513 static inline int mb_find_next_bit(void *addr, int max, int start)
514 {
515 	int fix = 0, ret, tmpmax;
516 	addr = mb_correct_addr_and_bit(&fix, addr);
517 	tmpmax = max + fix;
518 	start += fix;
519 
520 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
521 	if (ret > max)
522 		return max;
523 	return ret;
524 }
525 
526 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
527 {
528 	char *bb;
529 
530 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
531 	BUG_ON(max == NULL);
532 
533 	if (order > e4b->bd_blkbits + 1) {
534 		*max = 0;
535 		return NULL;
536 	}
537 
538 	/* at order 0 we see each particular block */
539 	if (order == 0) {
540 		*max = 1 << (e4b->bd_blkbits + 3);
541 		return e4b->bd_bitmap;
542 	}
543 
544 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
545 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
546 
547 	return bb;
548 }
549 
550 #ifdef DOUBLE_CHECK
551 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
552 			   int first, int count)
553 {
554 	int i;
555 	struct super_block *sb = e4b->bd_sb;
556 
557 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
558 		return;
559 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
560 	for (i = 0; i < count; i++) {
561 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
562 			ext4_fsblk_t blocknr;
563 
564 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
565 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
566 			ext4_grp_locked_error(sb, e4b->bd_group,
567 					      inode ? inode->i_ino : 0,
568 					      blocknr,
569 					      "freeing block already freed "
570 					      "(bit %u)",
571 					      first + i);
572 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
573 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
574 		}
575 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
576 	}
577 }
578 
579 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
580 {
581 	int i;
582 
583 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
584 		return;
585 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
586 	for (i = 0; i < count; i++) {
587 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
588 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
589 	}
590 }
591 
592 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
593 {
594 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
595 		return;
596 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
597 		unsigned char *b1, *b2;
598 		int i;
599 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
600 		b2 = (unsigned char *) bitmap;
601 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
602 			if (b1[i] != b2[i]) {
603 				ext4_msg(e4b->bd_sb, KERN_ERR,
604 					 "corruption in group %u "
605 					 "at byte %u(%u): %x in copy != %x "
606 					 "on disk/prealloc",
607 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
608 				BUG();
609 			}
610 		}
611 	}
612 }
613 
614 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
615 			struct ext4_group_info *grp, ext4_group_t group)
616 {
617 	struct buffer_head *bh;
618 
619 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
620 	if (!grp->bb_bitmap)
621 		return;
622 
623 	bh = ext4_read_block_bitmap(sb, group);
624 	if (IS_ERR_OR_NULL(bh)) {
625 		kfree(grp->bb_bitmap);
626 		grp->bb_bitmap = NULL;
627 		return;
628 	}
629 
630 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
631 	put_bh(bh);
632 }
633 
634 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
635 {
636 	kfree(grp->bb_bitmap);
637 }
638 
639 #else
640 static inline void mb_free_blocks_double(struct inode *inode,
641 				struct ext4_buddy *e4b, int first, int count)
642 {
643 	return;
644 }
645 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
646 						int first, int count)
647 {
648 	return;
649 }
650 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
651 {
652 	return;
653 }
654 
655 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
656 			struct ext4_group_info *grp, ext4_group_t group)
657 {
658 	return;
659 }
660 
661 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
662 {
663 	return;
664 }
665 #endif
666 
667 #ifdef AGGRESSIVE_CHECK
668 
669 #define MB_CHECK_ASSERT(assert)						\
670 do {									\
671 	if (!(assert)) {						\
672 		printk(KERN_EMERG					\
673 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
674 			function, file, line, # assert);		\
675 		BUG();							\
676 	}								\
677 } while (0)
678 
679 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
680 				const char *function, int line)
681 {
682 	struct super_block *sb = e4b->bd_sb;
683 	int order = e4b->bd_blkbits + 1;
684 	int max;
685 	int max2;
686 	int i;
687 	int j;
688 	int k;
689 	int count;
690 	struct ext4_group_info *grp;
691 	int fragments = 0;
692 	int fstart;
693 	struct list_head *cur;
694 	void *buddy;
695 	void *buddy2;
696 
697 	if (e4b->bd_info->bb_check_counter++ % 10)
698 		return 0;
699 
700 	while (order > 1) {
701 		buddy = mb_find_buddy(e4b, order, &max);
702 		MB_CHECK_ASSERT(buddy);
703 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
704 		MB_CHECK_ASSERT(buddy2);
705 		MB_CHECK_ASSERT(buddy != buddy2);
706 		MB_CHECK_ASSERT(max * 2 == max2);
707 
708 		count = 0;
709 		for (i = 0; i < max; i++) {
710 
711 			if (mb_test_bit(i, buddy)) {
712 				/* only single bit in buddy2 may be 0 */
713 				if (!mb_test_bit(i << 1, buddy2)) {
714 					MB_CHECK_ASSERT(
715 						mb_test_bit((i<<1)+1, buddy2));
716 				}
717 				continue;
718 			}
719 
720 			/* both bits in buddy2 must be 1 */
721 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
722 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
723 
724 			for (j = 0; j < (1 << order); j++) {
725 				k = (i * (1 << order)) + j;
726 				MB_CHECK_ASSERT(
727 					!mb_test_bit(k, e4b->bd_bitmap));
728 			}
729 			count++;
730 		}
731 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
732 		order--;
733 	}
734 
735 	fstart = -1;
736 	buddy = mb_find_buddy(e4b, 0, &max);
737 	for (i = 0; i < max; i++) {
738 		if (!mb_test_bit(i, buddy)) {
739 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
740 			if (fstart == -1) {
741 				fragments++;
742 				fstart = i;
743 			}
744 			continue;
745 		}
746 		fstart = -1;
747 		/* check used bits only */
748 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
749 			buddy2 = mb_find_buddy(e4b, j, &max2);
750 			k = i >> j;
751 			MB_CHECK_ASSERT(k < max2);
752 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
753 		}
754 	}
755 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
756 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
757 
758 	grp = ext4_get_group_info(sb, e4b->bd_group);
759 	if (!grp)
760 		return NULL;
761 	list_for_each(cur, &grp->bb_prealloc_list) {
762 		ext4_group_t groupnr;
763 		struct ext4_prealloc_space *pa;
764 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
765 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
766 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
767 		for (i = 0; i < pa->pa_len; i++)
768 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
769 	}
770 	return 0;
771 }
772 #undef MB_CHECK_ASSERT
773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
774 					__FILE__, __func__, __LINE__)
775 #else
776 #define mb_check_buddy(e4b)
777 #endif
778 
779 /*
780  * Divide blocks started from @first with length @len into
781  * smaller chunks with power of 2 blocks.
782  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
783  * then increase bb_counters[] for corresponded chunk size.
784  */
785 static void ext4_mb_mark_free_simple(struct super_block *sb,
786 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
787 					struct ext4_group_info *grp)
788 {
789 	struct ext4_sb_info *sbi = EXT4_SB(sb);
790 	ext4_grpblk_t min;
791 	ext4_grpblk_t max;
792 	ext4_grpblk_t chunk;
793 	unsigned int border;
794 
795 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
796 
797 	border = 2 << sb->s_blocksize_bits;
798 
799 	while (len > 0) {
800 		/* find how many blocks can be covered since this position */
801 		max = ffs(first | border) - 1;
802 
803 		/* find how many blocks of power 2 we need to mark */
804 		min = fls(len) - 1;
805 
806 		if (max < min)
807 			min = max;
808 		chunk = 1 << min;
809 
810 		/* mark multiblock chunks only */
811 		grp->bb_counters[min]++;
812 		if (min > 0)
813 			mb_clear_bit(first >> min,
814 				     buddy + sbi->s_mb_offsets[min]);
815 
816 		len -= chunk;
817 		first += chunk;
818 	}
819 }
820 
821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
822 {
823 	int order;
824 
825 	/*
826 	 * We don't bother with a special lists groups with only 1 block free
827 	 * extents and for completely empty groups.
828 	 */
829 	order = fls(len) - 2;
830 	if (order < 0)
831 		return 0;
832 	if (order == MB_NUM_ORDERS(sb))
833 		order--;
834 	return order;
835 }
836 
837 /* Move group to appropriate avg_fragment_size list */
838 static void
839 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
840 {
841 	struct ext4_sb_info *sbi = EXT4_SB(sb);
842 	int new_order;
843 
844 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0)
845 		return;
846 
847 	new_order = mb_avg_fragment_size_order(sb,
848 					grp->bb_free / grp->bb_fragments);
849 	if (new_order == grp->bb_avg_fragment_size_order)
850 		return;
851 
852 	if (grp->bb_avg_fragment_size_order != -1) {
853 		write_lock(&sbi->s_mb_avg_fragment_size_locks[
854 					grp->bb_avg_fragment_size_order]);
855 		list_del(&grp->bb_avg_fragment_size_node);
856 		write_unlock(&sbi->s_mb_avg_fragment_size_locks[
857 					grp->bb_avg_fragment_size_order]);
858 	}
859 	grp->bb_avg_fragment_size_order = new_order;
860 	write_lock(&sbi->s_mb_avg_fragment_size_locks[
861 					grp->bb_avg_fragment_size_order]);
862 	list_add_tail(&grp->bb_avg_fragment_size_node,
863 		&sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
864 	write_unlock(&sbi->s_mb_avg_fragment_size_locks[
865 					grp->bb_avg_fragment_size_order]);
866 }
867 
868 /*
869  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
870  * cr level needs an update.
871  */
872 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
873 			enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
874 {
875 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
876 	struct ext4_group_info *iter;
877 	int i;
878 
879 	if (ac->ac_status == AC_STATUS_FOUND)
880 		return;
881 
882 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
883 		atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
884 
885 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
886 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
887 			continue;
888 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
889 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
890 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
891 			continue;
892 		}
893 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
894 				    bb_largest_free_order_node) {
895 			if (sbi->s_mb_stats)
896 				atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
897 			if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
898 				*group = iter->bb_group;
899 				ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
900 				read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
901 				return;
902 			}
903 		}
904 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
905 	}
906 
907 	/* Increment cr and search again if no group is found */
908 	*new_cr = CR_GOAL_LEN_FAST;
909 }
910 
911 /*
912  * Find a suitable group of given order from the average fragments list.
913  */
914 static struct ext4_group_info *
915 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
916 {
917 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
918 	struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
919 	rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
920 	struct ext4_group_info *grp = NULL, *iter;
921 	enum criteria cr = ac->ac_criteria;
922 
923 	if (list_empty(frag_list))
924 		return NULL;
925 	read_lock(frag_list_lock);
926 	if (list_empty(frag_list)) {
927 		read_unlock(frag_list_lock);
928 		return NULL;
929 	}
930 	list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
931 		if (sbi->s_mb_stats)
932 			atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
933 		if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
934 			grp = iter;
935 			break;
936 		}
937 	}
938 	read_unlock(frag_list_lock);
939 	return grp;
940 }
941 
942 /*
943  * Choose next group by traversing average fragment size list of suitable
944  * order. Updates *new_cr if cr level needs an update.
945  */
946 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
947 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
948 {
949 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
950 	struct ext4_group_info *grp = NULL;
951 	int i;
952 
953 	if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
954 		if (sbi->s_mb_stats)
955 			atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
956 	}
957 
958 	for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
959 	     i < MB_NUM_ORDERS(ac->ac_sb); i++) {
960 		grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
961 		if (grp) {
962 			*group = grp->bb_group;
963 			ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
964 			return;
965 		}
966 	}
967 
968 	/*
969 	 * CR_BEST_AVAIL_LEN works based on the concept that we have
970 	 * a larger normalized goal len request which can be trimmed to
971 	 * a smaller goal len such that it can still satisfy original
972 	 * request len. However, allocation request for non-regular
973 	 * files never gets normalized.
974 	 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
975 	 */
976 	if (ac->ac_flags & EXT4_MB_HINT_DATA)
977 		*new_cr = CR_BEST_AVAIL_LEN;
978 	else
979 		*new_cr = CR_GOAL_LEN_SLOW;
980 }
981 
982 /*
983  * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
984  * order we have and proactively trim the goal request length to that order to
985  * find a suitable group faster.
986  *
987  * This optimizes allocation speed at the cost of slightly reduced
988  * preallocations. However, we make sure that we don't trim the request too
989  * much and fall to CR_GOAL_LEN_SLOW in that case.
990  */
991 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
992 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
993 {
994 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
995 	struct ext4_group_info *grp = NULL;
996 	int i, order, min_order;
997 	unsigned long num_stripe_clusters = 0;
998 
999 	if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1000 		if (sbi->s_mb_stats)
1001 			atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1002 	}
1003 
1004 	/*
1005 	 * mb_avg_fragment_size_order() returns order in a way that makes
1006 	 * retrieving back the length using (1 << order) inaccurate. Hence, use
1007 	 * fls() instead since we need to know the actual length while modifying
1008 	 * goal length.
1009 	 */
1010 	order = fls(ac->ac_g_ex.fe_len) - 1;
1011 	min_order = order - sbi->s_mb_best_avail_max_trim_order;
1012 	if (min_order < 0)
1013 		min_order = 0;
1014 
1015 	if (sbi->s_stripe > 0) {
1016 		/*
1017 		 * We are assuming that stripe size is always a multiple of
1018 		 * cluster ratio otherwise __ext4_fill_super exists early.
1019 		 */
1020 		num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1021 		if (1 << min_order < num_stripe_clusters)
1022 			/*
1023 			 * We consider 1 order less because later we round
1024 			 * up the goal len to num_stripe_clusters
1025 			 */
1026 			min_order = fls(num_stripe_clusters) - 1;
1027 	}
1028 
1029 	if (1 << min_order < ac->ac_o_ex.fe_len)
1030 		min_order = fls(ac->ac_o_ex.fe_len);
1031 
1032 	for (i = order; i >= min_order; i--) {
1033 		int frag_order;
1034 		/*
1035 		 * Scale down goal len to make sure we find something
1036 		 * in the free fragments list. Basically, reduce
1037 		 * preallocations.
1038 		 */
1039 		ac->ac_g_ex.fe_len = 1 << i;
1040 
1041 		if (num_stripe_clusters > 0) {
1042 			/*
1043 			 * Try to round up the adjusted goal length to
1044 			 * stripe size (in cluster units) multiple for
1045 			 * efficiency.
1046 			 */
1047 			ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1048 						     num_stripe_clusters);
1049 		}
1050 
1051 		frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1052 							ac->ac_g_ex.fe_len);
1053 
1054 		grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1055 		if (grp) {
1056 			*group = grp->bb_group;
1057 			ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1058 			return;
1059 		}
1060 	}
1061 
1062 	/* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1063 	ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1064 	*new_cr = CR_GOAL_LEN_SLOW;
1065 }
1066 
1067 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1068 {
1069 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1070 		return 0;
1071 	if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1072 		return 0;
1073 	if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1074 		return 0;
1075 	return 1;
1076 }
1077 
1078 /*
1079  * Return next linear group for allocation. If linear traversal should not be
1080  * performed, this function just returns the same group
1081  */
1082 static ext4_group_t
1083 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group,
1084 		  ext4_group_t ngroups)
1085 {
1086 	if (!should_optimize_scan(ac))
1087 		goto inc_and_return;
1088 
1089 	if (ac->ac_groups_linear_remaining) {
1090 		ac->ac_groups_linear_remaining--;
1091 		goto inc_and_return;
1092 	}
1093 
1094 	return group;
1095 inc_and_return:
1096 	/*
1097 	 * Artificially restricted ngroups for non-extent
1098 	 * files makes group > ngroups possible on first loop.
1099 	 */
1100 	return group + 1 >= ngroups ? 0 : group + 1;
1101 }
1102 
1103 /*
1104  * ext4_mb_choose_next_group: choose next group for allocation.
1105  *
1106  * @ac        Allocation Context
1107  * @new_cr    This is an output parameter. If the there is no good group
1108  *            available at current CR level, this field is updated to indicate
1109  *            the new cr level that should be used.
1110  * @group     This is an input / output parameter. As an input it indicates the
1111  *            next group that the allocator intends to use for allocation. As
1112  *            output, this field indicates the next group that should be used as
1113  *            determined by the optimization functions.
1114  * @ngroups   Total number of groups
1115  */
1116 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1117 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1118 {
1119 	*new_cr = ac->ac_criteria;
1120 
1121 	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1122 		*group = next_linear_group(ac, *group, ngroups);
1123 		return;
1124 	}
1125 
1126 	if (*new_cr == CR_POWER2_ALIGNED) {
1127 		ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups);
1128 	} else if (*new_cr == CR_GOAL_LEN_FAST) {
1129 		ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups);
1130 	} else if (*new_cr == CR_BEST_AVAIL_LEN) {
1131 		ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups);
1132 	} else {
1133 		/*
1134 		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1135 		 * bb_free. But until that happens, we should never come here.
1136 		 */
1137 		WARN_ON(1);
1138 	}
1139 }
1140 
1141 /*
1142  * Cache the order of the largest free extent we have available in this block
1143  * group.
1144  */
1145 static void
1146 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1147 {
1148 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1149 	int i;
1150 
1151 	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1152 		if (grp->bb_counters[i] > 0)
1153 			break;
1154 	/* No need to move between order lists? */
1155 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1156 	    i == grp->bb_largest_free_order) {
1157 		grp->bb_largest_free_order = i;
1158 		return;
1159 	}
1160 
1161 	if (grp->bb_largest_free_order >= 0) {
1162 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1163 					      grp->bb_largest_free_order]);
1164 		list_del_init(&grp->bb_largest_free_order_node);
1165 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1166 					      grp->bb_largest_free_order]);
1167 	}
1168 	grp->bb_largest_free_order = i;
1169 	if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1170 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1171 					      grp->bb_largest_free_order]);
1172 		list_add_tail(&grp->bb_largest_free_order_node,
1173 		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1174 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1175 					      grp->bb_largest_free_order]);
1176 	}
1177 }
1178 
1179 static noinline_for_stack
1180 void ext4_mb_generate_buddy(struct super_block *sb,
1181 			    void *buddy, void *bitmap, ext4_group_t group,
1182 			    struct ext4_group_info *grp)
1183 {
1184 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1185 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1186 	ext4_grpblk_t i = 0;
1187 	ext4_grpblk_t first;
1188 	ext4_grpblk_t len;
1189 	unsigned free = 0;
1190 	unsigned fragments = 0;
1191 	unsigned long long period = get_cycles();
1192 
1193 	/* initialize buddy from bitmap which is aggregation
1194 	 * of on-disk bitmap and preallocations */
1195 	i = mb_find_next_zero_bit(bitmap, max, 0);
1196 	grp->bb_first_free = i;
1197 	while (i < max) {
1198 		fragments++;
1199 		first = i;
1200 		i = mb_find_next_bit(bitmap, max, i);
1201 		len = i - first;
1202 		free += len;
1203 		if (len > 1)
1204 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1205 		else
1206 			grp->bb_counters[0]++;
1207 		if (i < max)
1208 			i = mb_find_next_zero_bit(bitmap, max, i);
1209 	}
1210 	grp->bb_fragments = fragments;
1211 
1212 	if (free != grp->bb_free) {
1213 		ext4_grp_locked_error(sb, group, 0, 0,
1214 				      "block bitmap and bg descriptor "
1215 				      "inconsistent: %u vs %u free clusters",
1216 				      free, grp->bb_free);
1217 		/*
1218 		 * If we intend to continue, we consider group descriptor
1219 		 * corrupt and update bb_free using bitmap value
1220 		 */
1221 		grp->bb_free = free;
1222 		ext4_mark_group_bitmap_corrupted(sb, group,
1223 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1224 	}
1225 	mb_set_largest_free_order(sb, grp);
1226 	mb_update_avg_fragment_size(sb, grp);
1227 
1228 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1229 
1230 	period = get_cycles() - period;
1231 	atomic_inc(&sbi->s_mb_buddies_generated);
1232 	atomic64_add(period, &sbi->s_mb_generation_time);
1233 }
1234 
1235 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1236 {
1237 	int count;
1238 	int order = 1;
1239 	void *buddy;
1240 
1241 	while ((buddy = mb_find_buddy(e4b, order++, &count)))
1242 		mb_set_bits(buddy, 0, count);
1243 
1244 	e4b->bd_info->bb_fragments = 0;
1245 	memset(e4b->bd_info->bb_counters, 0,
1246 		sizeof(*e4b->bd_info->bb_counters) *
1247 		(e4b->bd_sb->s_blocksize_bits + 2));
1248 
1249 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1250 		e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1251 }
1252 
1253 /* The buddy information is attached the buddy cache inode
1254  * for convenience. The information regarding each group
1255  * is loaded via ext4_mb_load_buddy. The information involve
1256  * block bitmap and buddy information. The information are
1257  * stored in the inode as
1258  *
1259  * {                        page                        }
1260  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1261  *
1262  *
1263  * one block each for bitmap and buddy information.
1264  * So for each group we take up 2 blocks. A page can
1265  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1266  * So it can have information regarding groups_per_page which
1267  * is blocks_per_page/2
1268  *
1269  * Locking note:  This routine takes the block group lock of all groups
1270  * for this page; do not hold this lock when calling this routine!
1271  */
1272 
1273 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1274 {
1275 	ext4_group_t ngroups;
1276 	unsigned int blocksize;
1277 	int blocks_per_page;
1278 	int groups_per_page;
1279 	int err = 0;
1280 	int i;
1281 	ext4_group_t first_group, group;
1282 	int first_block;
1283 	struct super_block *sb;
1284 	struct buffer_head *bhs;
1285 	struct buffer_head **bh = NULL;
1286 	struct inode *inode;
1287 	char *data;
1288 	char *bitmap;
1289 	struct ext4_group_info *grinfo;
1290 
1291 	inode = page->mapping->host;
1292 	sb = inode->i_sb;
1293 	ngroups = ext4_get_groups_count(sb);
1294 	blocksize = i_blocksize(inode);
1295 	blocks_per_page = PAGE_SIZE / blocksize;
1296 
1297 	mb_debug(sb, "init page %lu\n", page->index);
1298 
1299 	groups_per_page = blocks_per_page >> 1;
1300 	if (groups_per_page == 0)
1301 		groups_per_page = 1;
1302 
1303 	/* allocate buffer_heads to read bitmaps */
1304 	if (groups_per_page > 1) {
1305 		i = sizeof(struct buffer_head *) * groups_per_page;
1306 		bh = kzalloc(i, gfp);
1307 		if (bh == NULL)
1308 			return -ENOMEM;
1309 	} else
1310 		bh = &bhs;
1311 
1312 	first_group = page->index * blocks_per_page / 2;
1313 
1314 	/* read all groups the page covers into the cache */
1315 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1316 		if (group >= ngroups)
1317 			break;
1318 
1319 		grinfo = ext4_get_group_info(sb, group);
1320 		if (!grinfo)
1321 			continue;
1322 		/*
1323 		 * If page is uptodate then we came here after online resize
1324 		 * which added some new uninitialized group info structs, so
1325 		 * we must skip all initialized uptodate buddies on the page,
1326 		 * which may be currently in use by an allocating task.
1327 		 */
1328 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1329 			bh[i] = NULL;
1330 			continue;
1331 		}
1332 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1333 		if (IS_ERR(bh[i])) {
1334 			err = PTR_ERR(bh[i]);
1335 			bh[i] = NULL;
1336 			goto out;
1337 		}
1338 		mb_debug(sb, "read bitmap for group %u\n", group);
1339 	}
1340 
1341 	/* wait for I/O completion */
1342 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1343 		int err2;
1344 
1345 		if (!bh[i])
1346 			continue;
1347 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1348 		if (!err)
1349 			err = err2;
1350 	}
1351 
1352 	first_block = page->index * blocks_per_page;
1353 	for (i = 0; i < blocks_per_page; i++) {
1354 		group = (first_block + i) >> 1;
1355 		if (group >= ngroups)
1356 			break;
1357 
1358 		if (!bh[group - first_group])
1359 			/* skip initialized uptodate buddy */
1360 			continue;
1361 
1362 		if (!buffer_verified(bh[group - first_group]))
1363 			/* Skip faulty bitmaps */
1364 			continue;
1365 		err = 0;
1366 
1367 		/*
1368 		 * data carry information regarding this
1369 		 * particular group in the format specified
1370 		 * above
1371 		 *
1372 		 */
1373 		data = page_address(page) + (i * blocksize);
1374 		bitmap = bh[group - first_group]->b_data;
1375 
1376 		/*
1377 		 * We place the buddy block and bitmap block
1378 		 * close together
1379 		 */
1380 		grinfo = ext4_get_group_info(sb, group);
1381 		if (!grinfo) {
1382 			err = -EFSCORRUPTED;
1383 		        goto out;
1384 		}
1385 		if ((first_block + i) & 1) {
1386 			/* this is block of buddy */
1387 			BUG_ON(incore == NULL);
1388 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1389 				group, page->index, i * blocksize);
1390 			trace_ext4_mb_buddy_bitmap_load(sb, group);
1391 			grinfo->bb_fragments = 0;
1392 			memset(grinfo->bb_counters, 0,
1393 			       sizeof(*grinfo->bb_counters) *
1394 			       (MB_NUM_ORDERS(sb)));
1395 			/*
1396 			 * incore got set to the group block bitmap below
1397 			 */
1398 			ext4_lock_group(sb, group);
1399 			/* init the buddy */
1400 			memset(data, 0xff, blocksize);
1401 			ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1402 			ext4_unlock_group(sb, group);
1403 			incore = NULL;
1404 		} else {
1405 			/* this is block of bitmap */
1406 			BUG_ON(incore != NULL);
1407 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1408 				group, page->index, i * blocksize);
1409 			trace_ext4_mb_bitmap_load(sb, group);
1410 
1411 			/* see comments in ext4_mb_put_pa() */
1412 			ext4_lock_group(sb, group);
1413 			memcpy(data, bitmap, blocksize);
1414 
1415 			/* mark all preallocated blks used in in-core bitmap */
1416 			ext4_mb_generate_from_pa(sb, data, group);
1417 			WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1418 			ext4_unlock_group(sb, group);
1419 
1420 			/* set incore so that the buddy information can be
1421 			 * generated using this
1422 			 */
1423 			incore = data;
1424 		}
1425 	}
1426 	SetPageUptodate(page);
1427 
1428 out:
1429 	if (bh) {
1430 		for (i = 0; i < groups_per_page; i++)
1431 			brelse(bh[i]);
1432 		if (bh != &bhs)
1433 			kfree(bh);
1434 	}
1435 	return err;
1436 }
1437 
1438 /*
1439  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1440  * on the same buddy page doesn't happen whild holding the buddy page lock.
1441  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1442  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1443  */
1444 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1445 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1446 {
1447 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1448 	int block, pnum, poff;
1449 	int blocks_per_page;
1450 	struct page *page;
1451 
1452 	e4b->bd_buddy_page = NULL;
1453 	e4b->bd_bitmap_page = NULL;
1454 
1455 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1456 	/*
1457 	 * the buddy cache inode stores the block bitmap
1458 	 * and buddy information in consecutive blocks.
1459 	 * So for each group we need two blocks.
1460 	 */
1461 	block = group * 2;
1462 	pnum = block / blocks_per_page;
1463 	poff = block % blocks_per_page;
1464 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1465 	if (!page)
1466 		return -ENOMEM;
1467 	BUG_ON(page->mapping != inode->i_mapping);
1468 	e4b->bd_bitmap_page = page;
1469 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1470 
1471 	if (blocks_per_page >= 2) {
1472 		/* buddy and bitmap are on the same page */
1473 		return 0;
1474 	}
1475 
1476 	block++;
1477 	pnum = block / blocks_per_page;
1478 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1479 	if (!page)
1480 		return -ENOMEM;
1481 	BUG_ON(page->mapping != inode->i_mapping);
1482 	e4b->bd_buddy_page = page;
1483 	return 0;
1484 }
1485 
1486 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1487 {
1488 	if (e4b->bd_bitmap_page) {
1489 		unlock_page(e4b->bd_bitmap_page);
1490 		put_page(e4b->bd_bitmap_page);
1491 	}
1492 	if (e4b->bd_buddy_page) {
1493 		unlock_page(e4b->bd_buddy_page);
1494 		put_page(e4b->bd_buddy_page);
1495 	}
1496 }
1497 
1498 /*
1499  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1500  * block group lock of all groups for this page; do not hold the BG lock when
1501  * calling this routine!
1502  */
1503 static noinline_for_stack
1504 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1505 {
1506 
1507 	struct ext4_group_info *this_grp;
1508 	struct ext4_buddy e4b;
1509 	struct page *page;
1510 	int ret = 0;
1511 
1512 	might_sleep();
1513 	mb_debug(sb, "init group %u\n", group);
1514 	this_grp = ext4_get_group_info(sb, group);
1515 	if (!this_grp)
1516 		return -EFSCORRUPTED;
1517 
1518 	/*
1519 	 * This ensures that we don't reinit the buddy cache
1520 	 * page which map to the group from which we are already
1521 	 * allocating. If we are looking at the buddy cache we would
1522 	 * have taken a reference using ext4_mb_load_buddy and that
1523 	 * would have pinned buddy page to page cache.
1524 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1525 	 * page accessed.
1526 	 */
1527 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1528 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1529 		/*
1530 		 * somebody initialized the group
1531 		 * return without doing anything
1532 		 */
1533 		goto err;
1534 	}
1535 
1536 	page = e4b.bd_bitmap_page;
1537 	ret = ext4_mb_init_cache(page, NULL, gfp);
1538 	if (ret)
1539 		goto err;
1540 	if (!PageUptodate(page)) {
1541 		ret = -EIO;
1542 		goto err;
1543 	}
1544 
1545 	if (e4b.bd_buddy_page == NULL) {
1546 		/*
1547 		 * If both the bitmap and buddy are in
1548 		 * the same page we don't need to force
1549 		 * init the buddy
1550 		 */
1551 		ret = 0;
1552 		goto err;
1553 	}
1554 	/* init buddy cache */
1555 	page = e4b.bd_buddy_page;
1556 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1557 	if (ret)
1558 		goto err;
1559 	if (!PageUptodate(page)) {
1560 		ret = -EIO;
1561 		goto err;
1562 	}
1563 err:
1564 	ext4_mb_put_buddy_page_lock(&e4b);
1565 	return ret;
1566 }
1567 
1568 /*
1569  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1570  * block group lock of all groups for this page; do not hold the BG lock when
1571  * calling this routine!
1572  */
1573 static noinline_for_stack int
1574 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1575 		       struct ext4_buddy *e4b, gfp_t gfp)
1576 {
1577 	int blocks_per_page;
1578 	int block;
1579 	int pnum;
1580 	int poff;
1581 	struct page *page;
1582 	int ret;
1583 	struct ext4_group_info *grp;
1584 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1585 	struct inode *inode = sbi->s_buddy_cache;
1586 
1587 	might_sleep();
1588 	mb_debug(sb, "load group %u\n", group);
1589 
1590 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1591 	grp = ext4_get_group_info(sb, group);
1592 	if (!grp)
1593 		return -EFSCORRUPTED;
1594 
1595 	e4b->bd_blkbits = sb->s_blocksize_bits;
1596 	e4b->bd_info = grp;
1597 	e4b->bd_sb = sb;
1598 	e4b->bd_group = group;
1599 	e4b->bd_buddy_page = NULL;
1600 	e4b->bd_bitmap_page = NULL;
1601 
1602 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1603 		/*
1604 		 * we need full data about the group
1605 		 * to make a good selection
1606 		 */
1607 		ret = ext4_mb_init_group(sb, group, gfp);
1608 		if (ret)
1609 			return ret;
1610 	}
1611 
1612 	/*
1613 	 * the buddy cache inode stores the block bitmap
1614 	 * and buddy information in consecutive blocks.
1615 	 * So for each group we need two blocks.
1616 	 */
1617 	block = group * 2;
1618 	pnum = block / blocks_per_page;
1619 	poff = block % blocks_per_page;
1620 
1621 	/* we could use find_or_create_page(), but it locks page
1622 	 * what we'd like to avoid in fast path ... */
1623 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1624 	if (page == NULL || !PageUptodate(page)) {
1625 		if (page)
1626 			/*
1627 			 * drop the page reference and try
1628 			 * to get the page with lock. If we
1629 			 * are not uptodate that implies
1630 			 * somebody just created the page but
1631 			 * is yet to initialize the same. So
1632 			 * wait for it to initialize.
1633 			 */
1634 			put_page(page);
1635 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1636 		if (page) {
1637 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1638 	"ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1639 				/* should never happen */
1640 				unlock_page(page);
1641 				ret = -EINVAL;
1642 				goto err;
1643 			}
1644 			if (!PageUptodate(page)) {
1645 				ret = ext4_mb_init_cache(page, NULL, gfp);
1646 				if (ret) {
1647 					unlock_page(page);
1648 					goto err;
1649 				}
1650 				mb_cmp_bitmaps(e4b, page_address(page) +
1651 					       (poff * sb->s_blocksize));
1652 			}
1653 			unlock_page(page);
1654 		}
1655 	}
1656 	if (page == NULL) {
1657 		ret = -ENOMEM;
1658 		goto err;
1659 	}
1660 	if (!PageUptodate(page)) {
1661 		ret = -EIO;
1662 		goto err;
1663 	}
1664 
1665 	/* Pages marked accessed already */
1666 	e4b->bd_bitmap_page = page;
1667 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1668 
1669 	block++;
1670 	pnum = block / blocks_per_page;
1671 	poff = block % blocks_per_page;
1672 
1673 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1674 	if (page == NULL || !PageUptodate(page)) {
1675 		if (page)
1676 			put_page(page);
1677 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1678 		if (page) {
1679 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1680 	"ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1681 				/* should never happen */
1682 				unlock_page(page);
1683 				ret = -EINVAL;
1684 				goto err;
1685 			}
1686 			if (!PageUptodate(page)) {
1687 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1688 							 gfp);
1689 				if (ret) {
1690 					unlock_page(page);
1691 					goto err;
1692 				}
1693 			}
1694 			unlock_page(page);
1695 		}
1696 	}
1697 	if (page == NULL) {
1698 		ret = -ENOMEM;
1699 		goto err;
1700 	}
1701 	if (!PageUptodate(page)) {
1702 		ret = -EIO;
1703 		goto err;
1704 	}
1705 
1706 	/* Pages marked accessed already */
1707 	e4b->bd_buddy_page = page;
1708 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1709 
1710 	return 0;
1711 
1712 err:
1713 	if (page)
1714 		put_page(page);
1715 	if (e4b->bd_bitmap_page)
1716 		put_page(e4b->bd_bitmap_page);
1717 
1718 	e4b->bd_buddy = NULL;
1719 	e4b->bd_bitmap = NULL;
1720 	return ret;
1721 }
1722 
1723 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1724 			      struct ext4_buddy *e4b)
1725 {
1726 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1727 }
1728 
1729 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1730 {
1731 	if (e4b->bd_bitmap_page)
1732 		put_page(e4b->bd_bitmap_page);
1733 	if (e4b->bd_buddy_page)
1734 		put_page(e4b->bd_buddy_page);
1735 }
1736 
1737 
1738 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1739 {
1740 	int order = 1, max;
1741 	void *bb;
1742 
1743 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1744 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1745 
1746 	while (order <= e4b->bd_blkbits + 1) {
1747 		bb = mb_find_buddy(e4b, order, &max);
1748 		if (!mb_test_bit(block >> order, bb)) {
1749 			/* this block is part of buddy of order 'order' */
1750 			return order;
1751 		}
1752 		order++;
1753 	}
1754 	return 0;
1755 }
1756 
1757 static void mb_clear_bits(void *bm, int cur, int len)
1758 {
1759 	__u32 *addr;
1760 
1761 	len = cur + len;
1762 	while (cur < len) {
1763 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1764 			/* fast path: clear whole word at once */
1765 			addr = bm + (cur >> 3);
1766 			*addr = 0;
1767 			cur += 32;
1768 			continue;
1769 		}
1770 		mb_clear_bit(cur, bm);
1771 		cur++;
1772 	}
1773 }
1774 
1775 /* clear bits in given range
1776  * will return first found zero bit if any, -1 otherwise
1777  */
1778 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1779 {
1780 	__u32 *addr;
1781 	int zero_bit = -1;
1782 
1783 	len = cur + len;
1784 	while (cur < len) {
1785 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1786 			/* fast path: clear whole word at once */
1787 			addr = bm + (cur >> 3);
1788 			if (*addr != (__u32)(-1) && zero_bit == -1)
1789 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1790 			*addr = 0;
1791 			cur += 32;
1792 			continue;
1793 		}
1794 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1795 			zero_bit = cur;
1796 		cur++;
1797 	}
1798 
1799 	return zero_bit;
1800 }
1801 
1802 void mb_set_bits(void *bm, int cur, int len)
1803 {
1804 	__u32 *addr;
1805 
1806 	len = cur + len;
1807 	while (cur < len) {
1808 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1809 			/* fast path: set whole word at once */
1810 			addr = bm + (cur >> 3);
1811 			*addr = 0xffffffff;
1812 			cur += 32;
1813 			continue;
1814 		}
1815 		mb_set_bit(cur, bm);
1816 		cur++;
1817 	}
1818 }
1819 
1820 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1821 {
1822 	if (mb_test_bit(*bit + side, bitmap)) {
1823 		mb_clear_bit(*bit, bitmap);
1824 		(*bit) -= side;
1825 		return 1;
1826 	}
1827 	else {
1828 		(*bit) += side;
1829 		mb_set_bit(*bit, bitmap);
1830 		return -1;
1831 	}
1832 }
1833 
1834 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1835 {
1836 	int max;
1837 	int order = 1;
1838 	void *buddy = mb_find_buddy(e4b, order, &max);
1839 
1840 	while (buddy) {
1841 		void *buddy2;
1842 
1843 		/* Bits in range [first; last] are known to be set since
1844 		 * corresponding blocks were allocated. Bits in range
1845 		 * (first; last) will stay set because they form buddies on
1846 		 * upper layer. We just deal with borders if they don't
1847 		 * align with upper layer and then go up.
1848 		 * Releasing entire group is all about clearing
1849 		 * single bit of highest order buddy.
1850 		 */
1851 
1852 		/* Example:
1853 		 * ---------------------------------
1854 		 * |   1   |   1   |   1   |   1   |
1855 		 * ---------------------------------
1856 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1857 		 * ---------------------------------
1858 		 *   0   1   2   3   4   5   6   7
1859 		 *      \_____________________/
1860 		 *
1861 		 * Neither [1] nor [6] is aligned to above layer.
1862 		 * Left neighbour [0] is free, so mark it busy,
1863 		 * decrease bb_counters and extend range to
1864 		 * [0; 6]
1865 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1866 		 * mark [6] free, increase bb_counters and shrink range to
1867 		 * [0; 5].
1868 		 * Then shift range to [0; 2], go up and do the same.
1869 		 */
1870 
1871 
1872 		if (first & 1)
1873 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1874 		if (!(last & 1))
1875 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1876 		if (first > last)
1877 			break;
1878 		order++;
1879 
1880 		buddy2 = mb_find_buddy(e4b, order, &max);
1881 		if (!buddy2) {
1882 			mb_clear_bits(buddy, first, last - first + 1);
1883 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1884 			break;
1885 		}
1886 		first >>= 1;
1887 		last >>= 1;
1888 		buddy = buddy2;
1889 	}
1890 }
1891 
1892 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1893 			   int first, int count)
1894 {
1895 	int left_is_free = 0;
1896 	int right_is_free = 0;
1897 	int block;
1898 	int last = first + count - 1;
1899 	struct super_block *sb = e4b->bd_sb;
1900 
1901 	if (WARN_ON(count == 0))
1902 		return;
1903 	BUG_ON(last >= (sb->s_blocksize << 3));
1904 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1905 	/* Don't bother if the block group is corrupt. */
1906 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1907 		return;
1908 
1909 	mb_check_buddy(e4b);
1910 	mb_free_blocks_double(inode, e4b, first, count);
1911 
1912 	/* access memory sequentially: check left neighbour,
1913 	 * clear range and then check right neighbour
1914 	 */
1915 	if (first != 0)
1916 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1917 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1918 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1919 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1920 
1921 	if (unlikely(block != -1)) {
1922 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1923 		ext4_fsblk_t blocknr;
1924 
1925 		/*
1926 		 * Fastcommit replay can free already freed blocks which
1927 		 * corrupts allocation info. Regenerate it.
1928 		 */
1929 		if (sbi->s_mount_state & EXT4_FC_REPLAY) {
1930 			mb_regenerate_buddy(e4b);
1931 			goto check;
1932 		}
1933 
1934 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1935 		blocknr += EXT4_C2B(sbi, block);
1936 		ext4_grp_locked_error(sb, e4b->bd_group,
1937 				      inode ? inode->i_ino : 0, blocknr,
1938 				      "freeing already freed block (bit %u); block bitmap corrupt.",
1939 				      block);
1940 		ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1941 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1942 		return;
1943 	}
1944 
1945 	this_cpu_inc(discard_pa_seq);
1946 	e4b->bd_info->bb_free += count;
1947 	if (first < e4b->bd_info->bb_first_free)
1948 		e4b->bd_info->bb_first_free = first;
1949 
1950 	/* let's maintain fragments counter */
1951 	if (left_is_free && right_is_free)
1952 		e4b->bd_info->bb_fragments--;
1953 	else if (!left_is_free && !right_is_free)
1954 		e4b->bd_info->bb_fragments++;
1955 
1956 	/* buddy[0] == bd_bitmap is a special case, so handle
1957 	 * it right away and let mb_buddy_mark_free stay free of
1958 	 * zero order checks.
1959 	 * Check if neighbours are to be coaleasced,
1960 	 * adjust bitmap bb_counters and borders appropriately.
1961 	 */
1962 	if (first & 1) {
1963 		first += !left_is_free;
1964 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1965 	}
1966 	if (!(last & 1)) {
1967 		last -= !right_is_free;
1968 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1969 	}
1970 
1971 	if (first <= last)
1972 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1973 
1974 	mb_set_largest_free_order(sb, e4b->bd_info);
1975 	mb_update_avg_fragment_size(sb, e4b->bd_info);
1976 check:
1977 	mb_check_buddy(e4b);
1978 }
1979 
1980 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1981 				int needed, struct ext4_free_extent *ex)
1982 {
1983 	int next = block;
1984 	int max, order;
1985 	void *buddy;
1986 
1987 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1988 	BUG_ON(ex == NULL);
1989 
1990 	buddy = mb_find_buddy(e4b, 0, &max);
1991 	BUG_ON(buddy == NULL);
1992 	BUG_ON(block >= max);
1993 	if (mb_test_bit(block, buddy)) {
1994 		ex->fe_len = 0;
1995 		ex->fe_start = 0;
1996 		ex->fe_group = 0;
1997 		return 0;
1998 	}
1999 
2000 	/* find actual order */
2001 	order = mb_find_order_for_block(e4b, block);
2002 	block = block >> order;
2003 
2004 	ex->fe_len = 1 << order;
2005 	ex->fe_start = block << order;
2006 	ex->fe_group = e4b->bd_group;
2007 
2008 	/* calc difference from given start */
2009 	next = next - ex->fe_start;
2010 	ex->fe_len -= next;
2011 	ex->fe_start += next;
2012 
2013 	while (needed > ex->fe_len &&
2014 	       mb_find_buddy(e4b, order, &max)) {
2015 
2016 		if (block + 1 >= max)
2017 			break;
2018 
2019 		next = (block + 1) * (1 << order);
2020 		if (mb_test_bit(next, e4b->bd_bitmap))
2021 			break;
2022 
2023 		order = mb_find_order_for_block(e4b, next);
2024 
2025 		block = next >> order;
2026 		ex->fe_len += 1 << order;
2027 	}
2028 
2029 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2030 		/* Should never happen! (but apparently sometimes does?!?) */
2031 		WARN_ON(1);
2032 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2033 			"corruption or bug in mb_find_extent "
2034 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2035 			block, order, needed, ex->fe_group, ex->fe_start,
2036 			ex->fe_len, ex->fe_logical);
2037 		ex->fe_len = 0;
2038 		ex->fe_start = 0;
2039 		ex->fe_group = 0;
2040 	}
2041 	return ex->fe_len;
2042 }
2043 
2044 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2045 {
2046 	int ord;
2047 	int mlen = 0;
2048 	int max = 0;
2049 	int cur;
2050 	int start = ex->fe_start;
2051 	int len = ex->fe_len;
2052 	unsigned ret = 0;
2053 	int len0 = len;
2054 	void *buddy;
2055 	bool split = false;
2056 
2057 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2058 	BUG_ON(e4b->bd_group != ex->fe_group);
2059 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2060 	mb_check_buddy(e4b);
2061 	mb_mark_used_double(e4b, start, len);
2062 
2063 	this_cpu_inc(discard_pa_seq);
2064 	e4b->bd_info->bb_free -= len;
2065 	if (e4b->bd_info->bb_first_free == start)
2066 		e4b->bd_info->bb_first_free += len;
2067 
2068 	/* let's maintain fragments counter */
2069 	if (start != 0)
2070 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2071 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2072 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
2073 	if (mlen && max)
2074 		e4b->bd_info->bb_fragments++;
2075 	else if (!mlen && !max)
2076 		e4b->bd_info->bb_fragments--;
2077 
2078 	/* let's maintain buddy itself */
2079 	while (len) {
2080 		if (!split)
2081 			ord = mb_find_order_for_block(e4b, start);
2082 
2083 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2084 			/* the whole chunk may be allocated at once! */
2085 			mlen = 1 << ord;
2086 			if (!split)
2087 				buddy = mb_find_buddy(e4b, ord, &max);
2088 			else
2089 				split = false;
2090 			BUG_ON((start >> ord) >= max);
2091 			mb_set_bit(start >> ord, buddy);
2092 			e4b->bd_info->bb_counters[ord]--;
2093 			start += mlen;
2094 			len -= mlen;
2095 			BUG_ON(len < 0);
2096 			continue;
2097 		}
2098 
2099 		/* store for history */
2100 		if (ret == 0)
2101 			ret = len | (ord << 16);
2102 
2103 		/* we have to split large buddy */
2104 		BUG_ON(ord <= 0);
2105 		buddy = mb_find_buddy(e4b, ord, &max);
2106 		mb_set_bit(start >> ord, buddy);
2107 		e4b->bd_info->bb_counters[ord]--;
2108 
2109 		ord--;
2110 		cur = (start >> ord) & ~1U;
2111 		buddy = mb_find_buddy(e4b, ord, &max);
2112 		mb_clear_bit(cur, buddy);
2113 		mb_clear_bit(cur + 1, buddy);
2114 		e4b->bd_info->bb_counters[ord]++;
2115 		e4b->bd_info->bb_counters[ord]++;
2116 		split = true;
2117 	}
2118 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2119 
2120 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2121 	mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2122 	mb_check_buddy(e4b);
2123 
2124 	return ret;
2125 }
2126 
2127 /*
2128  * Must be called under group lock!
2129  */
2130 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2131 					struct ext4_buddy *e4b)
2132 {
2133 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2134 	int ret;
2135 
2136 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2137 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2138 
2139 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2140 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2141 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
2142 
2143 	/* preallocation can change ac_b_ex, thus we store actually
2144 	 * allocated blocks for history */
2145 	ac->ac_f_ex = ac->ac_b_ex;
2146 
2147 	ac->ac_status = AC_STATUS_FOUND;
2148 	ac->ac_tail = ret & 0xffff;
2149 	ac->ac_buddy = ret >> 16;
2150 
2151 	/*
2152 	 * take the page reference. We want the page to be pinned
2153 	 * so that we don't get a ext4_mb_init_cache_call for this
2154 	 * group until we update the bitmap. That would mean we
2155 	 * double allocate blocks. The reference is dropped
2156 	 * in ext4_mb_release_context
2157 	 */
2158 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
2159 	get_page(ac->ac_bitmap_page);
2160 	ac->ac_buddy_page = e4b->bd_buddy_page;
2161 	get_page(ac->ac_buddy_page);
2162 	/* store last allocated for subsequent stream allocation */
2163 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2164 		spin_lock(&sbi->s_md_lock);
2165 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2166 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2167 		spin_unlock(&sbi->s_md_lock);
2168 	}
2169 	/*
2170 	 * As we've just preallocated more space than
2171 	 * user requested originally, we store allocated
2172 	 * space in a special descriptor.
2173 	 */
2174 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2175 		ext4_mb_new_preallocation(ac);
2176 
2177 }
2178 
2179 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2180 					struct ext4_buddy *e4b,
2181 					int finish_group)
2182 {
2183 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2184 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2185 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2186 
2187 	if (ac->ac_status == AC_STATUS_FOUND)
2188 		return;
2189 	/*
2190 	 * We don't want to scan for a whole year
2191 	 */
2192 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2193 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2194 		ac->ac_status = AC_STATUS_BREAK;
2195 		return;
2196 	}
2197 
2198 	/*
2199 	 * Haven't found good chunk so far, let's continue
2200 	 */
2201 	if (bex->fe_len < gex->fe_len)
2202 		return;
2203 
2204 	if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2205 		ext4_mb_use_best_found(ac, e4b);
2206 }
2207 
2208 /*
2209  * The routine checks whether found extent is good enough. If it is,
2210  * then the extent gets marked used and flag is set to the context
2211  * to stop scanning. Otherwise, the extent is compared with the
2212  * previous found extent and if new one is better, then it's stored
2213  * in the context. Later, the best found extent will be used, if
2214  * mballoc can't find good enough extent.
2215  *
2216  * The algorithm used is roughly as follows:
2217  *
2218  * * If free extent found is exactly as big as goal, then
2219  *   stop the scan and use it immediately
2220  *
2221  * * If free extent found is smaller than goal, then keep retrying
2222  *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2223  *   that stop scanning and use whatever we have.
2224  *
2225  * * If free extent found is bigger than goal, then keep retrying
2226  *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2227  *   stopping the scan and using the extent.
2228  *
2229  *
2230  * FIXME: real allocation policy is to be designed yet!
2231  */
2232 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2233 					struct ext4_free_extent *ex,
2234 					struct ext4_buddy *e4b)
2235 {
2236 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2237 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2238 
2239 	BUG_ON(ex->fe_len <= 0);
2240 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2241 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2242 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2243 
2244 	ac->ac_found++;
2245 	ac->ac_cX_found[ac->ac_criteria]++;
2246 
2247 	/*
2248 	 * The special case - take what you catch first
2249 	 */
2250 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2251 		*bex = *ex;
2252 		ext4_mb_use_best_found(ac, e4b);
2253 		return;
2254 	}
2255 
2256 	/*
2257 	 * Let's check whether the chuck is good enough
2258 	 */
2259 	if (ex->fe_len == gex->fe_len) {
2260 		*bex = *ex;
2261 		ext4_mb_use_best_found(ac, e4b);
2262 		return;
2263 	}
2264 
2265 	/*
2266 	 * If this is first found extent, just store it in the context
2267 	 */
2268 	if (bex->fe_len == 0) {
2269 		*bex = *ex;
2270 		return;
2271 	}
2272 
2273 	/*
2274 	 * If new found extent is better, store it in the context
2275 	 */
2276 	if (bex->fe_len < gex->fe_len) {
2277 		/* if the request isn't satisfied, any found extent
2278 		 * larger than previous best one is better */
2279 		if (ex->fe_len > bex->fe_len)
2280 			*bex = *ex;
2281 	} else if (ex->fe_len > gex->fe_len) {
2282 		/* if the request is satisfied, then we try to find
2283 		 * an extent that still satisfy the request, but is
2284 		 * smaller than previous one */
2285 		if (ex->fe_len < bex->fe_len)
2286 			*bex = *ex;
2287 	}
2288 
2289 	ext4_mb_check_limits(ac, e4b, 0);
2290 }
2291 
2292 static noinline_for_stack
2293 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2294 					struct ext4_buddy *e4b)
2295 {
2296 	struct ext4_free_extent ex = ac->ac_b_ex;
2297 	ext4_group_t group = ex.fe_group;
2298 	int max;
2299 	int err;
2300 
2301 	BUG_ON(ex.fe_len <= 0);
2302 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2303 	if (err)
2304 		return;
2305 
2306 	ext4_lock_group(ac->ac_sb, group);
2307 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2308 		goto out;
2309 
2310 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2311 
2312 	if (max > 0) {
2313 		ac->ac_b_ex = ex;
2314 		ext4_mb_use_best_found(ac, e4b);
2315 	}
2316 
2317 out:
2318 	ext4_unlock_group(ac->ac_sb, group);
2319 	ext4_mb_unload_buddy(e4b);
2320 }
2321 
2322 static noinline_for_stack
2323 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2324 				struct ext4_buddy *e4b)
2325 {
2326 	ext4_group_t group = ac->ac_g_ex.fe_group;
2327 	int max;
2328 	int err;
2329 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2330 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2331 	struct ext4_free_extent ex;
2332 
2333 	if (!grp)
2334 		return -EFSCORRUPTED;
2335 	if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2336 		return 0;
2337 	if (grp->bb_free == 0)
2338 		return 0;
2339 
2340 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2341 	if (err)
2342 		return err;
2343 
2344 	ext4_lock_group(ac->ac_sb, group);
2345 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2346 		goto out;
2347 
2348 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2349 			     ac->ac_g_ex.fe_len, &ex);
2350 	ex.fe_logical = 0xDEADFA11; /* debug value */
2351 
2352 	if (max >= ac->ac_g_ex.fe_len &&
2353 	    ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2354 		ext4_fsblk_t start;
2355 
2356 		start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2357 		/* use do_div to get remainder (would be 64-bit modulo) */
2358 		if (do_div(start, sbi->s_stripe) == 0) {
2359 			ac->ac_found++;
2360 			ac->ac_b_ex = ex;
2361 			ext4_mb_use_best_found(ac, e4b);
2362 		}
2363 	} else if (max >= ac->ac_g_ex.fe_len) {
2364 		BUG_ON(ex.fe_len <= 0);
2365 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2366 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2367 		ac->ac_found++;
2368 		ac->ac_b_ex = ex;
2369 		ext4_mb_use_best_found(ac, e4b);
2370 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2371 		/* Sometimes, caller may want to merge even small
2372 		 * number of blocks to an existing extent */
2373 		BUG_ON(ex.fe_len <= 0);
2374 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2375 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2376 		ac->ac_found++;
2377 		ac->ac_b_ex = ex;
2378 		ext4_mb_use_best_found(ac, e4b);
2379 	}
2380 out:
2381 	ext4_unlock_group(ac->ac_sb, group);
2382 	ext4_mb_unload_buddy(e4b);
2383 
2384 	return 0;
2385 }
2386 
2387 /*
2388  * The routine scans buddy structures (not bitmap!) from given order
2389  * to max order and tries to find big enough chunk to satisfy the req
2390  */
2391 static noinline_for_stack
2392 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2393 					struct ext4_buddy *e4b)
2394 {
2395 	struct super_block *sb = ac->ac_sb;
2396 	struct ext4_group_info *grp = e4b->bd_info;
2397 	void *buddy;
2398 	int i;
2399 	int k;
2400 	int max;
2401 
2402 	BUG_ON(ac->ac_2order <= 0);
2403 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2404 		if (grp->bb_counters[i] == 0)
2405 			continue;
2406 
2407 		buddy = mb_find_buddy(e4b, i, &max);
2408 		if (WARN_RATELIMIT(buddy == NULL,
2409 			 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2410 			continue;
2411 
2412 		k = mb_find_next_zero_bit(buddy, max, 0);
2413 		if (k >= max) {
2414 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2415 				"%d free clusters of order %d. But found 0",
2416 				grp->bb_counters[i], i);
2417 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2418 					 e4b->bd_group,
2419 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2420 			break;
2421 		}
2422 		ac->ac_found++;
2423 		ac->ac_cX_found[ac->ac_criteria]++;
2424 
2425 		ac->ac_b_ex.fe_len = 1 << i;
2426 		ac->ac_b_ex.fe_start = k << i;
2427 		ac->ac_b_ex.fe_group = e4b->bd_group;
2428 
2429 		ext4_mb_use_best_found(ac, e4b);
2430 
2431 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2432 
2433 		if (EXT4_SB(sb)->s_mb_stats)
2434 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2435 
2436 		break;
2437 	}
2438 }
2439 
2440 /*
2441  * The routine scans the group and measures all found extents.
2442  * In order to optimize scanning, caller must pass number of
2443  * free blocks in the group, so the routine can know upper limit.
2444  */
2445 static noinline_for_stack
2446 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2447 					struct ext4_buddy *e4b)
2448 {
2449 	struct super_block *sb = ac->ac_sb;
2450 	void *bitmap = e4b->bd_bitmap;
2451 	struct ext4_free_extent ex;
2452 	int i, j, freelen;
2453 	int free;
2454 
2455 	free = e4b->bd_info->bb_free;
2456 	if (WARN_ON(free <= 0))
2457 		return;
2458 
2459 	i = e4b->bd_info->bb_first_free;
2460 
2461 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2462 		i = mb_find_next_zero_bit(bitmap,
2463 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2464 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2465 			/*
2466 			 * IF we have corrupt bitmap, we won't find any
2467 			 * free blocks even though group info says we
2468 			 * have free blocks
2469 			 */
2470 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2471 					"%d free clusters as per "
2472 					"group info. But bitmap says 0",
2473 					free);
2474 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2475 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2476 			break;
2477 		}
2478 
2479 		if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2480 			/*
2481 			 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2482 			 * sure that this group will have a large enough
2483 			 * continuous free extent, so skip over the smaller free
2484 			 * extents
2485 			 */
2486 			j = mb_find_next_bit(bitmap,
2487 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2488 			freelen = j - i;
2489 
2490 			if (freelen < ac->ac_g_ex.fe_len) {
2491 				i = j;
2492 				free -= freelen;
2493 				continue;
2494 			}
2495 		}
2496 
2497 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2498 		if (WARN_ON(ex.fe_len <= 0))
2499 			break;
2500 		if (free < ex.fe_len) {
2501 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2502 					"%d free clusters as per "
2503 					"group info. But got %d blocks",
2504 					free, ex.fe_len);
2505 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2506 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2507 			/*
2508 			 * The number of free blocks differs. This mostly
2509 			 * indicate that the bitmap is corrupt. So exit
2510 			 * without claiming the space.
2511 			 */
2512 			break;
2513 		}
2514 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2515 		ext4_mb_measure_extent(ac, &ex, e4b);
2516 
2517 		i += ex.fe_len;
2518 		free -= ex.fe_len;
2519 	}
2520 
2521 	ext4_mb_check_limits(ac, e4b, 1);
2522 }
2523 
2524 /*
2525  * This is a special case for storages like raid5
2526  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2527  */
2528 static noinline_for_stack
2529 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2530 				 struct ext4_buddy *e4b)
2531 {
2532 	struct super_block *sb = ac->ac_sb;
2533 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2534 	void *bitmap = e4b->bd_bitmap;
2535 	struct ext4_free_extent ex;
2536 	ext4_fsblk_t first_group_block;
2537 	ext4_fsblk_t a;
2538 	ext4_grpblk_t i, stripe;
2539 	int max;
2540 
2541 	BUG_ON(sbi->s_stripe == 0);
2542 
2543 	/* find first stripe-aligned block in group */
2544 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2545 
2546 	a = first_group_block + sbi->s_stripe - 1;
2547 	do_div(a, sbi->s_stripe);
2548 	i = (a * sbi->s_stripe) - first_group_block;
2549 
2550 	stripe = EXT4_B2C(sbi, sbi->s_stripe);
2551 	i = EXT4_B2C(sbi, i);
2552 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2553 		if (!mb_test_bit(i, bitmap)) {
2554 			max = mb_find_extent(e4b, i, stripe, &ex);
2555 			if (max >= stripe) {
2556 				ac->ac_found++;
2557 				ac->ac_cX_found[ac->ac_criteria]++;
2558 				ex.fe_logical = 0xDEADF00D; /* debug value */
2559 				ac->ac_b_ex = ex;
2560 				ext4_mb_use_best_found(ac, e4b);
2561 				break;
2562 			}
2563 		}
2564 		i += stripe;
2565 	}
2566 }
2567 
2568 /*
2569  * This is also called BEFORE we load the buddy bitmap.
2570  * Returns either 1 or 0 indicating that the group is either suitable
2571  * for the allocation or not.
2572  */
2573 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2574 				ext4_group_t group, enum criteria cr)
2575 {
2576 	ext4_grpblk_t free, fragments;
2577 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2578 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2579 
2580 	BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2581 
2582 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2583 		return false;
2584 
2585 	free = grp->bb_free;
2586 	if (free == 0)
2587 		return false;
2588 
2589 	fragments = grp->bb_fragments;
2590 	if (fragments == 0)
2591 		return false;
2592 
2593 	switch (cr) {
2594 	case CR_POWER2_ALIGNED:
2595 		BUG_ON(ac->ac_2order == 0);
2596 
2597 		/* Avoid using the first bg of a flexgroup for data files */
2598 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2599 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2600 		    ((group % flex_size) == 0))
2601 			return false;
2602 
2603 		if (free < ac->ac_g_ex.fe_len)
2604 			return false;
2605 
2606 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2607 			return true;
2608 
2609 		if (grp->bb_largest_free_order < ac->ac_2order)
2610 			return false;
2611 
2612 		return true;
2613 	case CR_GOAL_LEN_FAST:
2614 	case CR_BEST_AVAIL_LEN:
2615 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2616 			return true;
2617 		break;
2618 	case CR_GOAL_LEN_SLOW:
2619 		if (free >= ac->ac_g_ex.fe_len)
2620 			return true;
2621 		break;
2622 	case CR_ANY_FREE:
2623 		return true;
2624 	default:
2625 		BUG();
2626 	}
2627 
2628 	return false;
2629 }
2630 
2631 /*
2632  * This could return negative error code if something goes wrong
2633  * during ext4_mb_init_group(). This should not be called with
2634  * ext4_lock_group() held.
2635  *
2636  * Note: because we are conditionally operating with the group lock in
2637  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2638  * function using __acquire and __release.  This means we need to be
2639  * super careful before messing with the error path handling via "goto
2640  * out"!
2641  */
2642 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2643 				     ext4_group_t group, enum criteria cr)
2644 {
2645 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2646 	struct super_block *sb = ac->ac_sb;
2647 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2648 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2649 	ext4_grpblk_t free;
2650 	int ret = 0;
2651 
2652 	if (!grp)
2653 		return -EFSCORRUPTED;
2654 	if (sbi->s_mb_stats)
2655 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2656 	if (should_lock) {
2657 		ext4_lock_group(sb, group);
2658 		__release(ext4_group_lock_ptr(sb, group));
2659 	}
2660 	free = grp->bb_free;
2661 	if (free == 0)
2662 		goto out;
2663 	/*
2664 	 * In all criterias except CR_ANY_FREE we try to avoid groups that
2665 	 * can't possibly satisfy the full goal request due to insufficient
2666 	 * free blocks.
2667 	 */
2668 	if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2669 		goto out;
2670 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2671 		goto out;
2672 	if (should_lock) {
2673 		__acquire(ext4_group_lock_ptr(sb, group));
2674 		ext4_unlock_group(sb, group);
2675 	}
2676 
2677 	/* We only do this if the grp has never been initialized */
2678 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2679 		struct ext4_group_desc *gdp =
2680 			ext4_get_group_desc(sb, group, NULL);
2681 		int ret;
2682 
2683 		/*
2684 		 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2685 		 * search to find large good chunks almost for free. If buddy
2686 		 * data is not ready, then this optimization makes no sense. But
2687 		 * we never skip the first block group in a flex_bg, since this
2688 		 * gets used for metadata block allocation, and we want to make
2689 		 * sure we locate metadata blocks in the first block group in
2690 		 * the flex_bg if possible.
2691 		 */
2692 		if (!ext4_mb_cr_expensive(cr) &&
2693 		    (!sbi->s_log_groups_per_flex ||
2694 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2695 		    !(ext4_has_group_desc_csum(sb) &&
2696 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2697 			return 0;
2698 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2699 		if (ret)
2700 			return ret;
2701 	}
2702 
2703 	if (should_lock) {
2704 		ext4_lock_group(sb, group);
2705 		__release(ext4_group_lock_ptr(sb, group));
2706 	}
2707 	ret = ext4_mb_good_group(ac, group, cr);
2708 out:
2709 	if (should_lock) {
2710 		__acquire(ext4_group_lock_ptr(sb, group));
2711 		ext4_unlock_group(sb, group);
2712 	}
2713 	return ret;
2714 }
2715 
2716 /*
2717  * Start prefetching @nr block bitmaps starting at @group.
2718  * Return the next group which needs to be prefetched.
2719  */
2720 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2721 			      unsigned int nr, int *cnt)
2722 {
2723 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2724 	struct buffer_head *bh;
2725 	struct blk_plug plug;
2726 
2727 	blk_start_plug(&plug);
2728 	while (nr-- > 0) {
2729 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2730 								  NULL);
2731 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2732 
2733 		/*
2734 		 * Prefetch block groups with free blocks; but don't
2735 		 * bother if it is marked uninitialized on disk, since
2736 		 * it won't require I/O to read.  Also only try to
2737 		 * prefetch once, so we avoid getblk() call, which can
2738 		 * be expensive.
2739 		 */
2740 		if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2741 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2742 		    ext4_free_group_clusters(sb, gdp) > 0 ) {
2743 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2744 			if (bh && !IS_ERR(bh)) {
2745 				if (!buffer_uptodate(bh) && cnt)
2746 					(*cnt)++;
2747 				brelse(bh);
2748 			}
2749 		}
2750 		if (++group >= ngroups)
2751 			group = 0;
2752 	}
2753 	blk_finish_plug(&plug);
2754 	return group;
2755 }
2756 
2757 /*
2758  * Prefetching reads the block bitmap into the buffer cache; but we
2759  * need to make sure that the buddy bitmap in the page cache has been
2760  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2761  * is not yet completed, or indeed if it was not initiated by
2762  * ext4_mb_prefetch did not start the I/O.
2763  *
2764  * TODO: We should actually kick off the buddy bitmap setup in a work
2765  * queue when the buffer I/O is completed, so that we don't block
2766  * waiting for the block allocation bitmap read to finish when
2767  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2768  */
2769 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2770 			   unsigned int nr)
2771 {
2772 	struct ext4_group_desc *gdp;
2773 	struct ext4_group_info *grp;
2774 
2775 	while (nr-- > 0) {
2776 		if (!group)
2777 			group = ext4_get_groups_count(sb);
2778 		group--;
2779 		gdp = ext4_get_group_desc(sb, group, NULL);
2780 		grp = ext4_get_group_info(sb, group);
2781 
2782 		if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2783 		    ext4_free_group_clusters(sb, gdp) > 0) {
2784 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2785 				break;
2786 		}
2787 	}
2788 }
2789 
2790 static noinline_for_stack int
2791 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2792 {
2793 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2794 	enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2795 	int err = 0, first_err = 0;
2796 	unsigned int nr = 0, prefetch_ios = 0;
2797 	struct ext4_sb_info *sbi;
2798 	struct super_block *sb;
2799 	struct ext4_buddy e4b;
2800 	int lost;
2801 
2802 	sb = ac->ac_sb;
2803 	sbi = EXT4_SB(sb);
2804 	ngroups = ext4_get_groups_count(sb);
2805 	/* non-extent files are limited to low blocks/groups */
2806 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2807 		ngroups = sbi->s_blockfile_groups;
2808 
2809 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2810 
2811 	/* first, try the goal */
2812 	err = ext4_mb_find_by_goal(ac, &e4b);
2813 	if (err || ac->ac_status == AC_STATUS_FOUND)
2814 		goto out;
2815 
2816 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2817 		goto out;
2818 
2819 	/*
2820 	 * ac->ac_2order is set only if the fe_len is a power of 2
2821 	 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2822 	 * so that we try exact allocation using buddy.
2823 	 */
2824 	i = fls(ac->ac_g_ex.fe_len);
2825 	ac->ac_2order = 0;
2826 	/*
2827 	 * We search using buddy data only if the order of the request
2828 	 * is greater than equal to the sbi_s_mb_order2_reqs
2829 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2830 	 * We also support searching for power-of-two requests only for
2831 	 * requests upto maximum buddy size we have constructed.
2832 	 */
2833 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2834 		if (is_power_of_2(ac->ac_g_ex.fe_len))
2835 			ac->ac_2order = array_index_nospec(i - 1,
2836 							   MB_NUM_ORDERS(sb));
2837 	}
2838 
2839 	/* if stream allocation is enabled, use global goal */
2840 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2841 		/* TBD: may be hot point */
2842 		spin_lock(&sbi->s_md_lock);
2843 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2844 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2845 		spin_unlock(&sbi->s_md_lock);
2846 	}
2847 
2848 	/*
2849 	 * Let's just scan groups to find more-less suitable blocks We
2850 	 * start with CR_GOAL_LEN_FAST, unless it is power of 2
2851 	 * aligned, in which case let's do that faster approach first.
2852 	 */
2853 	if (ac->ac_2order)
2854 		cr = CR_POWER2_ALIGNED;
2855 repeat:
2856 	for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2857 		ac->ac_criteria = cr;
2858 		/*
2859 		 * searching for the right group start
2860 		 * from the goal value specified
2861 		 */
2862 		group = ac->ac_g_ex.fe_group;
2863 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2864 		prefetch_grp = group;
2865 
2866 		for (i = 0, new_cr = cr; i < ngroups; i++,
2867 		     ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2868 			int ret = 0;
2869 
2870 			cond_resched();
2871 			if (new_cr != cr) {
2872 				cr = new_cr;
2873 				goto repeat;
2874 			}
2875 
2876 			/*
2877 			 * Batch reads of the block allocation bitmaps
2878 			 * to get multiple READs in flight; limit
2879 			 * prefetching at inexpensive CR, otherwise mballoc
2880 			 * can spend a lot of time loading imperfect groups
2881 			 */
2882 			if ((prefetch_grp == group) &&
2883 			    (ext4_mb_cr_expensive(cr) ||
2884 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2885 				nr = sbi->s_mb_prefetch;
2886 				if (ext4_has_feature_flex_bg(sb)) {
2887 					nr = 1 << sbi->s_log_groups_per_flex;
2888 					nr -= group & (nr - 1);
2889 					nr = min(nr, sbi->s_mb_prefetch);
2890 				}
2891 				prefetch_grp = ext4_mb_prefetch(sb, group,
2892 							nr, &prefetch_ios);
2893 			}
2894 
2895 			/* This now checks without needing the buddy page */
2896 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2897 			if (ret <= 0) {
2898 				if (!first_err)
2899 					first_err = ret;
2900 				continue;
2901 			}
2902 
2903 			err = ext4_mb_load_buddy(sb, group, &e4b);
2904 			if (err)
2905 				goto out;
2906 
2907 			ext4_lock_group(sb, group);
2908 
2909 			/*
2910 			 * We need to check again after locking the
2911 			 * block group
2912 			 */
2913 			ret = ext4_mb_good_group(ac, group, cr);
2914 			if (ret == 0) {
2915 				ext4_unlock_group(sb, group);
2916 				ext4_mb_unload_buddy(&e4b);
2917 				continue;
2918 			}
2919 
2920 			ac->ac_groups_scanned++;
2921 			if (cr == CR_POWER2_ALIGNED)
2922 				ext4_mb_simple_scan_group(ac, &e4b);
2923 			else if ((cr == CR_GOAL_LEN_FAST ||
2924 				 cr == CR_BEST_AVAIL_LEN) &&
2925 				 sbi->s_stripe &&
2926 				 !(ac->ac_g_ex.fe_len %
2927 				 EXT4_B2C(sbi, sbi->s_stripe)))
2928 				ext4_mb_scan_aligned(ac, &e4b);
2929 			else
2930 				ext4_mb_complex_scan_group(ac, &e4b);
2931 
2932 			ext4_unlock_group(sb, group);
2933 			ext4_mb_unload_buddy(&e4b);
2934 
2935 			if (ac->ac_status != AC_STATUS_CONTINUE)
2936 				break;
2937 		}
2938 		/* Processed all groups and haven't found blocks */
2939 		if (sbi->s_mb_stats && i == ngroups)
2940 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2941 
2942 		if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2943 			/* Reset goal length to original goal length before
2944 			 * falling into CR_GOAL_LEN_SLOW */
2945 			ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2946 	}
2947 
2948 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2949 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2950 		/*
2951 		 * We've been searching too long. Let's try to allocate
2952 		 * the best chunk we've found so far
2953 		 */
2954 		ext4_mb_try_best_found(ac, &e4b);
2955 		if (ac->ac_status != AC_STATUS_FOUND) {
2956 			/*
2957 			 * Someone more lucky has already allocated it.
2958 			 * The only thing we can do is just take first
2959 			 * found block(s)
2960 			 */
2961 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2962 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2963 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2964 				 ac->ac_b_ex.fe_len, lost);
2965 
2966 			ac->ac_b_ex.fe_group = 0;
2967 			ac->ac_b_ex.fe_start = 0;
2968 			ac->ac_b_ex.fe_len = 0;
2969 			ac->ac_status = AC_STATUS_CONTINUE;
2970 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2971 			cr = CR_ANY_FREE;
2972 			goto repeat;
2973 		}
2974 	}
2975 
2976 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2977 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2978 out:
2979 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2980 		err = first_err;
2981 
2982 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2983 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2984 		 ac->ac_flags, cr, err);
2985 
2986 	if (nr)
2987 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2988 
2989 	return err;
2990 }
2991 
2992 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2993 {
2994 	struct super_block *sb = pde_data(file_inode(seq->file));
2995 	ext4_group_t group;
2996 
2997 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2998 		return NULL;
2999 	group = *pos + 1;
3000 	return (void *) ((unsigned long) group);
3001 }
3002 
3003 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
3004 {
3005 	struct super_block *sb = pde_data(file_inode(seq->file));
3006 	ext4_group_t group;
3007 
3008 	++*pos;
3009 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3010 		return NULL;
3011 	group = *pos + 1;
3012 	return (void *) ((unsigned long) group);
3013 }
3014 
3015 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
3016 {
3017 	struct super_block *sb = pde_data(file_inode(seq->file));
3018 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
3019 	int i;
3020 	int err, buddy_loaded = 0;
3021 	struct ext4_buddy e4b;
3022 	struct ext4_group_info *grinfo;
3023 	unsigned char blocksize_bits = min_t(unsigned char,
3024 					     sb->s_blocksize_bits,
3025 					     EXT4_MAX_BLOCK_LOG_SIZE);
3026 	struct sg {
3027 		struct ext4_group_info info;
3028 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3029 	} sg;
3030 
3031 	group--;
3032 	if (group == 0)
3033 		seq_puts(seq, "#group: free  frags first ["
3034 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3035 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3036 
3037 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3038 		sizeof(struct ext4_group_info);
3039 
3040 	grinfo = ext4_get_group_info(sb, group);
3041 	if (!grinfo)
3042 		return 0;
3043 	/* Load the group info in memory only if not already loaded. */
3044 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3045 		err = ext4_mb_load_buddy(sb, group, &e4b);
3046 		if (err) {
3047 			seq_printf(seq, "#%-5u: I/O error\n", group);
3048 			return 0;
3049 		}
3050 		buddy_loaded = 1;
3051 	}
3052 
3053 	memcpy(&sg, grinfo, i);
3054 
3055 	if (buddy_loaded)
3056 		ext4_mb_unload_buddy(&e4b);
3057 
3058 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3059 			sg.info.bb_fragments, sg.info.bb_first_free);
3060 	for (i = 0; i <= 13; i++)
3061 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3062 				sg.info.bb_counters[i] : 0);
3063 	seq_puts(seq, " ]");
3064 	if (EXT4_MB_GRP_BBITMAP_CORRUPT(&sg.info))
3065 		seq_puts(seq, " Block bitmap corrupted!");
3066 	seq_puts(seq, "\n");
3067 
3068 	return 0;
3069 }
3070 
3071 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3072 {
3073 }
3074 
3075 const struct seq_operations ext4_mb_seq_groups_ops = {
3076 	.start  = ext4_mb_seq_groups_start,
3077 	.next   = ext4_mb_seq_groups_next,
3078 	.stop   = ext4_mb_seq_groups_stop,
3079 	.show   = ext4_mb_seq_groups_show,
3080 };
3081 
3082 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3083 {
3084 	struct super_block *sb = seq->private;
3085 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3086 
3087 	seq_puts(seq, "mballoc:\n");
3088 	if (!sbi->s_mb_stats) {
3089 		seq_puts(seq, "\tmb stats collection turned off.\n");
3090 		seq_puts(
3091 			seq,
3092 			"\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3093 		return 0;
3094 	}
3095 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3096 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3097 
3098 	seq_printf(seq, "\tgroups_scanned: %u\n",
3099 		   atomic_read(&sbi->s_bal_groups_scanned));
3100 
3101 	/* CR_POWER2_ALIGNED stats */
3102 	seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3103 	seq_printf(seq, "\t\thits: %llu\n",
3104 		   atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3105 	seq_printf(
3106 		seq, "\t\tgroups_considered: %llu\n",
3107 		atomic64_read(
3108 			&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3109 	seq_printf(seq, "\t\textents_scanned: %u\n",
3110 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3111 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3112 		   atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3113 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3114 		   atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3115 
3116 	/* CR_GOAL_LEN_FAST stats */
3117 	seq_puts(seq, "\tcr_goal_fast_stats:\n");
3118 	seq_printf(seq, "\t\thits: %llu\n",
3119 		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3120 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3121 		   atomic64_read(
3122 			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3123 	seq_printf(seq, "\t\textents_scanned: %u\n",
3124 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3125 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3126 		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3127 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3128 		   atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3129 
3130 	/* CR_BEST_AVAIL_LEN stats */
3131 	seq_puts(seq, "\tcr_best_avail_stats:\n");
3132 	seq_printf(seq, "\t\thits: %llu\n",
3133 		   atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3134 	seq_printf(
3135 		seq, "\t\tgroups_considered: %llu\n",
3136 		atomic64_read(
3137 			&sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3138 	seq_printf(seq, "\t\textents_scanned: %u\n",
3139 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3140 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3141 		   atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3142 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3143 		   atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3144 
3145 	/* CR_GOAL_LEN_SLOW stats */
3146 	seq_puts(seq, "\tcr_goal_slow_stats:\n");
3147 	seq_printf(seq, "\t\thits: %llu\n",
3148 		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3149 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3150 		   atomic64_read(
3151 			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3152 	seq_printf(seq, "\t\textents_scanned: %u\n",
3153 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3154 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3155 		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3156 
3157 	/* CR_ANY_FREE stats */
3158 	seq_puts(seq, "\tcr_any_free_stats:\n");
3159 	seq_printf(seq, "\t\thits: %llu\n",
3160 		   atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3161 	seq_printf(
3162 		seq, "\t\tgroups_considered: %llu\n",
3163 		atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3164 	seq_printf(seq, "\t\textents_scanned: %u\n",
3165 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3166 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3167 		   atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3168 
3169 	/* Aggregates */
3170 	seq_printf(seq, "\textents_scanned: %u\n",
3171 		   atomic_read(&sbi->s_bal_ex_scanned));
3172 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3173 	seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3174 		   atomic_read(&sbi->s_bal_len_goals));
3175 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3176 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3177 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3178 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3179 		   atomic_read(&sbi->s_mb_buddies_generated),
3180 		   ext4_get_groups_count(sb));
3181 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
3182 		   atomic64_read(&sbi->s_mb_generation_time));
3183 	seq_printf(seq, "\tpreallocated: %u\n",
3184 		   atomic_read(&sbi->s_mb_preallocated));
3185 	seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3186 	return 0;
3187 }
3188 
3189 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3190 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3191 {
3192 	struct super_block *sb = pde_data(file_inode(seq->file));
3193 	unsigned long position;
3194 
3195 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3196 		return NULL;
3197 	position = *pos + 1;
3198 	return (void *) ((unsigned long) position);
3199 }
3200 
3201 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3202 {
3203 	struct super_block *sb = pde_data(file_inode(seq->file));
3204 	unsigned long position;
3205 
3206 	++*pos;
3207 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3208 		return NULL;
3209 	position = *pos + 1;
3210 	return (void *) ((unsigned long) position);
3211 }
3212 
3213 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3214 {
3215 	struct super_block *sb = pde_data(file_inode(seq->file));
3216 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3217 	unsigned long position = ((unsigned long) v);
3218 	struct ext4_group_info *grp;
3219 	unsigned int count;
3220 
3221 	position--;
3222 	if (position >= MB_NUM_ORDERS(sb)) {
3223 		position -= MB_NUM_ORDERS(sb);
3224 		if (position == 0)
3225 			seq_puts(seq, "avg_fragment_size_lists:\n");
3226 
3227 		count = 0;
3228 		read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3229 		list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3230 				    bb_avg_fragment_size_node)
3231 			count++;
3232 		read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3233 		seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3234 					(unsigned int)position, count);
3235 		return 0;
3236 	}
3237 
3238 	if (position == 0) {
3239 		seq_printf(seq, "optimize_scan: %d\n",
3240 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3241 		seq_puts(seq, "max_free_order_lists:\n");
3242 	}
3243 	count = 0;
3244 	read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3245 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3246 			    bb_largest_free_order_node)
3247 		count++;
3248 	read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3249 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3250 		   (unsigned int)position, count);
3251 
3252 	return 0;
3253 }
3254 
3255 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3256 {
3257 }
3258 
3259 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3260 	.start  = ext4_mb_seq_structs_summary_start,
3261 	.next   = ext4_mb_seq_structs_summary_next,
3262 	.stop   = ext4_mb_seq_structs_summary_stop,
3263 	.show   = ext4_mb_seq_structs_summary_show,
3264 };
3265 
3266 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3267 {
3268 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3269 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3270 
3271 	BUG_ON(!cachep);
3272 	return cachep;
3273 }
3274 
3275 /*
3276  * Allocate the top-level s_group_info array for the specified number
3277  * of groups
3278  */
3279 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3280 {
3281 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3282 	unsigned size;
3283 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3284 
3285 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3286 		EXT4_DESC_PER_BLOCK_BITS(sb);
3287 	if (size <= sbi->s_group_info_size)
3288 		return 0;
3289 
3290 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3291 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3292 	if (!new_groupinfo) {
3293 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3294 		return -ENOMEM;
3295 	}
3296 	rcu_read_lock();
3297 	old_groupinfo = rcu_dereference(sbi->s_group_info);
3298 	if (old_groupinfo)
3299 		memcpy(new_groupinfo, old_groupinfo,
3300 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3301 	rcu_read_unlock();
3302 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3303 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3304 	if (old_groupinfo)
3305 		ext4_kvfree_array_rcu(old_groupinfo);
3306 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3307 		   sbi->s_group_info_size);
3308 	return 0;
3309 }
3310 
3311 /* Create and initialize ext4_group_info data for the given group. */
3312 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3313 			  struct ext4_group_desc *desc)
3314 {
3315 	int i;
3316 	int metalen = 0;
3317 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3318 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3319 	struct ext4_group_info **meta_group_info;
3320 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3321 
3322 	/*
3323 	 * First check if this group is the first of a reserved block.
3324 	 * If it's true, we have to allocate a new table of pointers
3325 	 * to ext4_group_info structures
3326 	 */
3327 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3328 		metalen = sizeof(*meta_group_info) <<
3329 			EXT4_DESC_PER_BLOCK_BITS(sb);
3330 		meta_group_info = kmalloc(metalen, GFP_NOFS);
3331 		if (meta_group_info == NULL) {
3332 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3333 				 "for a buddy group");
3334 			return -ENOMEM;
3335 		}
3336 		rcu_read_lock();
3337 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3338 		rcu_read_unlock();
3339 	}
3340 
3341 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3342 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3343 
3344 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3345 	if (meta_group_info[i] == NULL) {
3346 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3347 		goto exit_group_info;
3348 	}
3349 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3350 		&(meta_group_info[i]->bb_state));
3351 
3352 	/*
3353 	 * initialize bb_free to be able to skip
3354 	 * empty groups without initialization
3355 	 */
3356 	if (ext4_has_group_desc_csum(sb) &&
3357 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3358 		meta_group_info[i]->bb_free =
3359 			ext4_free_clusters_after_init(sb, group, desc);
3360 	} else {
3361 		meta_group_info[i]->bb_free =
3362 			ext4_free_group_clusters(sb, desc);
3363 	}
3364 
3365 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3366 	init_rwsem(&meta_group_info[i]->alloc_sem);
3367 	meta_group_info[i]->bb_free_root = RB_ROOT;
3368 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3369 	INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3370 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3371 	meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3372 	meta_group_info[i]->bb_group = group;
3373 
3374 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3375 	return 0;
3376 
3377 exit_group_info:
3378 	/* If a meta_group_info table has been allocated, release it now */
3379 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3380 		struct ext4_group_info ***group_info;
3381 
3382 		rcu_read_lock();
3383 		group_info = rcu_dereference(sbi->s_group_info);
3384 		kfree(group_info[idx]);
3385 		group_info[idx] = NULL;
3386 		rcu_read_unlock();
3387 	}
3388 	return -ENOMEM;
3389 } /* ext4_mb_add_groupinfo */
3390 
3391 static int ext4_mb_init_backend(struct super_block *sb)
3392 {
3393 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3394 	ext4_group_t i;
3395 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3396 	int err;
3397 	struct ext4_group_desc *desc;
3398 	struct ext4_group_info ***group_info;
3399 	struct kmem_cache *cachep;
3400 
3401 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3402 	if (err)
3403 		return err;
3404 
3405 	sbi->s_buddy_cache = new_inode(sb);
3406 	if (sbi->s_buddy_cache == NULL) {
3407 		ext4_msg(sb, KERN_ERR, "can't get new inode");
3408 		goto err_freesgi;
3409 	}
3410 	/* To avoid potentially colliding with an valid on-disk inode number,
3411 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3412 	 * not in the inode hash, so it should never be found by iget(), but
3413 	 * this will avoid confusion if it ever shows up during debugging. */
3414 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3415 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3416 	for (i = 0; i < ngroups; i++) {
3417 		cond_resched();
3418 		desc = ext4_get_group_desc(sb, i, NULL);
3419 		if (desc == NULL) {
3420 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3421 			goto err_freebuddy;
3422 		}
3423 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3424 			goto err_freebuddy;
3425 	}
3426 
3427 	if (ext4_has_feature_flex_bg(sb)) {
3428 		/* a single flex group is supposed to be read by a single IO.
3429 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3430 		 * unsigned integer, so the maximum shift is 32.
3431 		 */
3432 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3433 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3434 			goto err_freebuddy;
3435 		}
3436 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3437 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3438 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3439 	} else {
3440 		sbi->s_mb_prefetch = 32;
3441 	}
3442 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3443 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3444 	/* now many real IOs to prefetch within a single allocation at cr=0
3445 	 * given cr=0 is an CPU-related optimization we shouldn't try to
3446 	 * load too many groups, at some point we should start to use what
3447 	 * we've got in memory.
3448 	 * with an average random access time 5ms, it'd take a second to get
3449 	 * 200 groups (* N with flex_bg), so let's make this limit 4
3450 	 */
3451 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3452 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3453 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3454 
3455 	return 0;
3456 
3457 err_freebuddy:
3458 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3459 	while (i-- > 0) {
3460 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3461 
3462 		if (grp)
3463 			kmem_cache_free(cachep, grp);
3464 	}
3465 	i = sbi->s_group_info_size;
3466 	rcu_read_lock();
3467 	group_info = rcu_dereference(sbi->s_group_info);
3468 	while (i-- > 0)
3469 		kfree(group_info[i]);
3470 	rcu_read_unlock();
3471 	iput(sbi->s_buddy_cache);
3472 err_freesgi:
3473 	rcu_read_lock();
3474 	kvfree(rcu_dereference(sbi->s_group_info));
3475 	rcu_read_unlock();
3476 	return -ENOMEM;
3477 }
3478 
3479 static void ext4_groupinfo_destroy_slabs(void)
3480 {
3481 	int i;
3482 
3483 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3484 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3485 		ext4_groupinfo_caches[i] = NULL;
3486 	}
3487 }
3488 
3489 static int ext4_groupinfo_create_slab(size_t size)
3490 {
3491 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3492 	int slab_size;
3493 	int blocksize_bits = order_base_2(size);
3494 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3495 	struct kmem_cache *cachep;
3496 
3497 	if (cache_index >= NR_GRPINFO_CACHES)
3498 		return -EINVAL;
3499 
3500 	if (unlikely(cache_index < 0))
3501 		cache_index = 0;
3502 
3503 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3504 	if (ext4_groupinfo_caches[cache_index]) {
3505 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3506 		return 0;	/* Already created */
3507 	}
3508 
3509 	slab_size = offsetof(struct ext4_group_info,
3510 				bb_counters[blocksize_bits + 2]);
3511 
3512 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3513 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3514 					NULL);
3515 
3516 	ext4_groupinfo_caches[cache_index] = cachep;
3517 
3518 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3519 	if (!cachep) {
3520 		printk(KERN_EMERG
3521 		       "EXT4-fs: no memory for groupinfo slab cache\n");
3522 		return -ENOMEM;
3523 	}
3524 
3525 	return 0;
3526 }
3527 
3528 static void ext4_discard_work(struct work_struct *work)
3529 {
3530 	struct ext4_sb_info *sbi = container_of(work,
3531 			struct ext4_sb_info, s_discard_work);
3532 	struct super_block *sb = sbi->s_sb;
3533 	struct ext4_free_data *fd, *nfd;
3534 	struct ext4_buddy e4b;
3535 	LIST_HEAD(discard_list);
3536 	ext4_group_t grp, load_grp;
3537 	int err = 0;
3538 
3539 	spin_lock(&sbi->s_md_lock);
3540 	list_splice_init(&sbi->s_discard_list, &discard_list);
3541 	spin_unlock(&sbi->s_md_lock);
3542 
3543 	load_grp = UINT_MAX;
3544 	list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3545 		/*
3546 		 * If filesystem is umounting or no memory or suffering
3547 		 * from no space, give up the discard
3548 		 */
3549 		if ((sb->s_flags & SB_ACTIVE) && !err &&
3550 		    !atomic_read(&sbi->s_retry_alloc_pending)) {
3551 			grp = fd->efd_group;
3552 			if (grp != load_grp) {
3553 				if (load_grp != UINT_MAX)
3554 					ext4_mb_unload_buddy(&e4b);
3555 
3556 				err = ext4_mb_load_buddy(sb, grp, &e4b);
3557 				if (err) {
3558 					kmem_cache_free(ext4_free_data_cachep, fd);
3559 					load_grp = UINT_MAX;
3560 					continue;
3561 				} else {
3562 					load_grp = grp;
3563 				}
3564 			}
3565 
3566 			ext4_lock_group(sb, grp);
3567 			ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3568 						fd->efd_start_cluster + fd->efd_count - 1, 1);
3569 			ext4_unlock_group(sb, grp);
3570 		}
3571 		kmem_cache_free(ext4_free_data_cachep, fd);
3572 	}
3573 
3574 	if (load_grp != UINT_MAX)
3575 		ext4_mb_unload_buddy(&e4b);
3576 }
3577 
3578 int ext4_mb_init(struct super_block *sb)
3579 {
3580 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3581 	unsigned i, j;
3582 	unsigned offset, offset_incr;
3583 	unsigned max;
3584 	int ret;
3585 
3586 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3587 
3588 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3589 	if (sbi->s_mb_offsets == NULL) {
3590 		ret = -ENOMEM;
3591 		goto out;
3592 	}
3593 
3594 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3595 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3596 	if (sbi->s_mb_maxs == NULL) {
3597 		ret = -ENOMEM;
3598 		goto out;
3599 	}
3600 
3601 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3602 	if (ret < 0)
3603 		goto out;
3604 
3605 	/* order 0 is regular bitmap */
3606 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3607 	sbi->s_mb_offsets[0] = 0;
3608 
3609 	i = 1;
3610 	offset = 0;
3611 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3612 	max = sb->s_blocksize << 2;
3613 	do {
3614 		sbi->s_mb_offsets[i] = offset;
3615 		sbi->s_mb_maxs[i] = max;
3616 		offset += offset_incr;
3617 		offset_incr = offset_incr >> 1;
3618 		max = max >> 1;
3619 		i++;
3620 	} while (i < MB_NUM_ORDERS(sb));
3621 
3622 	sbi->s_mb_avg_fragment_size =
3623 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3624 			GFP_KERNEL);
3625 	if (!sbi->s_mb_avg_fragment_size) {
3626 		ret = -ENOMEM;
3627 		goto out;
3628 	}
3629 	sbi->s_mb_avg_fragment_size_locks =
3630 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3631 			GFP_KERNEL);
3632 	if (!sbi->s_mb_avg_fragment_size_locks) {
3633 		ret = -ENOMEM;
3634 		goto out;
3635 	}
3636 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3637 		INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3638 		rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3639 	}
3640 	sbi->s_mb_largest_free_orders =
3641 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3642 			GFP_KERNEL);
3643 	if (!sbi->s_mb_largest_free_orders) {
3644 		ret = -ENOMEM;
3645 		goto out;
3646 	}
3647 	sbi->s_mb_largest_free_orders_locks =
3648 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3649 			GFP_KERNEL);
3650 	if (!sbi->s_mb_largest_free_orders_locks) {
3651 		ret = -ENOMEM;
3652 		goto out;
3653 	}
3654 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3655 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3656 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3657 	}
3658 
3659 	spin_lock_init(&sbi->s_md_lock);
3660 	sbi->s_mb_free_pending = 0;
3661 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
3662 	INIT_LIST_HEAD(&sbi->s_discard_list);
3663 	INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3664 	atomic_set(&sbi->s_retry_alloc_pending, 0);
3665 
3666 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3667 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3668 	sbi->s_mb_stats = MB_DEFAULT_STATS;
3669 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3670 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3671 	sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3672 
3673 	/*
3674 	 * The default group preallocation is 512, which for 4k block
3675 	 * sizes translates to 2 megabytes.  However for bigalloc file
3676 	 * systems, this is probably too big (i.e, if the cluster size
3677 	 * is 1 megabyte, then group preallocation size becomes half a
3678 	 * gigabyte!).  As a default, we will keep a two megabyte
3679 	 * group pralloc size for cluster sizes up to 64k, and after
3680 	 * that, we will force a minimum group preallocation size of
3681 	 * 32 clusters.  This translates to 8 megs when the cluster
3682 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3683 	 * which seems reasonable as a default.
3684 	 */
3685 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3686 				       sbi->s_cluster_bits, 32);
3687 	/*
3688 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3689 	 * to the lowest multiple of s_stripe which is bigger than
3690 	 * the s_mb_group_prealloc as determined above. We want
3691 	 * the preallocation size to be an exact multiple of the
3692 	 * RAID stripe size so that preallocations don't fragment
3693 	 * the stripes.
3694 	 */
3695 	if (sbi->s_stripe > 1) {
3696 		sbi->s_mb_group_prealloc = roundup(
3697 			sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3698 	}
3699 
3700 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3701 	if (sbi->s_locality_groups == NULL) {
3702 		ret = -ENOMEM;
3703 		goto out;
3704 	}
3705 	for_each_possible_cpu(i) {
3706 		struct ext4_locality_group *lg;
3707 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3708 		mutex_init(&lg->lg_mutex);
3709 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3710 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3711 		spin_lock_init(&lg->lg_prealloc_lock);
3712 	}
3713 
3714 	if (bdev_nonrot(sb->s_bdev))
3715 		sbi->s_mb_max_linear_groups = 0;
3716 	else
3717 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3718 	/* init file for buddy data */
3719 	ret = ext4_mb_init_backend(sb);
3720 	if (ret != 0)
3721 		goto out_free_locality_groups;
3722 
3723 	return 0;
3724 
3725 out_free_locality_groups:
3726 	free_percpu(sbi->s_locality_groups);
3727 	sbi->s_locality_groups = NULL;
3728 out:
3729 	kfree(sbi->s_mb_avg_fragment_size);
3730 	kfree(sbi->s_mb_avg_fragment_size_locks);
3731 	kfree(sbi->s_mb_largest_free_orders);
3732 	kfree(sbi->s_mb_largest_free_orders_locks);
3733 	kfree(sbi->s_mb_offsets);
3734 	sbi->s_mb_offsets = NULL;
3735 	kfree(sbi->s_mb_maxs);
3736 	sbi->s_mb_maxs = NULL;
3737 	return ret;
3738 }
3739 
3740 /* need to called with the ext4 group lock held */
3741 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3742 {
3743 	struct ext4_prealloc_space *pa;
3744 	struct list_head *cur, *tmp;
3745 	int count = 0;
3746 
3747 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3748 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3749 		list_del(&pa->pa_group_list);
3750 		count++;
3751 		kmem_cache_free(ext4_pspace_cachep, pa);
3752 	}
3753 	return count;
3754 }
3755 
3756 int ext4_mb_release(struct super_block *sb)
3757 {
3758 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3759 	ext4_group_t i;
3760 	int num_meta_group_infos;
3761 	struct ext4_group_info *grinfo, ***group_info;
3762 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3763 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3764 	int count;
3765 
3766 	if (test_opt(sb, DISCARD)) {
3767 		/*
3768 		 * wait the discard work to drain all of ext4_free_data
3769 		 */
3770 		flush_work(&sbi->s_discard_work);
3771 		WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3772 	}
3773 
3774 	if (sbi->s_group_info) {
3775 		for (i = 0; i < ngroups; i++) {
3776 			cond_resched();
3777 			grinfo = ext4_get_group_info(sb, i);
3778 			if (!grinfo)
3779 				continue;
3780 			mb_group_bb_bitmap_free(grinfo);
3781 			ext4_lock_group(sb, i);
3782 			count = ext4_mb_cleanup_pa(grinfo);
3783 			if (count)
3784 				mb_debug(sb, "mballoc: %d PAs left\n",
3785 					 count);
3786 			ext4_unlock_group(sb, i);
3787 			kmem_cache_free(cachep, grinfo);
3788 		}
3789 		num_meta_group_infos = (ngroups +
3790 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3791 			EXT4_DESC_PER_BLOCK_BITS(sb);
3792 		rcu_read_lock();
3793 		group_info = rcu_dereference(sbi->s_group_info);
3794 		for (i = 0; i < num_meta_group_infos; i++)
3795 			kfree(group_info[i]);
3796 		kvfree(group_info);
3797 		rcu_read_unlock();
3798 	}
3799 	kfree(sbi->s_mb_avg_fragment_size);
3800 	kfree(sbi->s_mb_avg_fragment_size_locks);
3801 	kfree(sbi->s_mb_largest_free_orders);
3802 	kfree(sbi->s_mb_largest_free_orders_locks);
3803 	kfree(sbi->s_mb_offsets);
3804 	kfree(sbi->s_mb_maxs);
3805 	iput(sbi->s_buddy_cache);
3806 	if (sbi->s_mb_stats) {
3807 		ext4_msg(sb, KERN_INFO,
3808 		       "mballoc: %u blocks %u reqs (%u success)",
3809 				atomic_read(&sbi->s_bal_allocated),
3810 				atomic_read(&sbi->s_bal_reqs),
3811 				atomic_read(&sbi->s_bal_success));
3812 		ext4_msg(sb, KERN_INFO,
3813 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3814 				"%u 2^N hits, %u breaks, %u lost",
3815 				atomic_read(&sbi->s_bal_ex_scanned),
3816 				atomic_read(&sbi->s_bal_groups_scanned),
3817 				atomic_read(&sbi->s_bal_goals),
3818 				atomic_read(&sbi->s_bal_2orders),
3819 				atomic_read(&sbi->s_bal_breaks),
3820 				atomic_read(&sbi->s_mb_lost_chunks));
3821 		ext4_msg(sb, KERN_INFO,
3822 		       "mballoc: %u generated and it took %llu",
3823 				atomic_read(&sbi->s_mb_buddies_generated),
3824 				atomic64_read(&sbi->s_mb_generation_time));
3825 		ext4_msg(sb, KERN_INFO,
3826 		       "mballoc: %u preallocated, %u discarded",
3827 				atomic_read(&sbi->s_mb_preallocated),
3828 				atomic_read(&sbi->s_mb_discarded));
3829 	}
3830 
3831 	free_percpu(sbi->s_locality_groups);
3832 
3833 	return 0;
3834 }
3835 
3836 static inline int ext4_issue_discard(struct super_block *sb,
3837 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3838 		struct bio **biop)
3839 {
3840 	ext4_fsblk_t discard_block;
3841 
3842 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3843 			 ext4_group_first_block_no(sb, block_group));
3844 	count = EXT4_C2B(EXT4_SB(sb), count);
3845 	trace_ext4_discard_blocks(sb,
3846 			(unsigned long long) discard_block, count);
3847 	if (biop) {
3848 		return __blkdev_issue_discard(sb->s_bdev,
3849 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3850 			(sector_t)count << (sb->s_blocksize_bits - 9),
3851 			GFP_NOFS, biop);
3852 	} else
3853 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3854 }
3855 
3856 static void ext4_free_data_in_buddy(struct super_block *sb,
3857 				    struct ext4_free_data *entry)
3858 {
3859 	struct ext4_buddy e4b;
3860 	struct ext4_group_info *db;
3861 	int err, count = 0;
3862 
3863 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3864 		 entry->efd_count, entry->efd_group, entry);
3865 
3866 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3867 	/* we expect to find existing buddy because it's pinned */
3868 	BUG_ON(err != 0);
3869 
3870 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3871 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3872 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3873 
3874 	db = e4b.bd_info;
3875 	/* there are blocks to put in buddy to make them really free */
3876 	count += entry->efd_count;
3877 	ext4_lock_group(sb, entry->efd_group);
3878 	/* Take it out of per group rb tree */
3879 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3880 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3881 
3882 	/*
3883 	 * Clear the trimmed flag for the group so that the next
3884 	 * ext4_trim_fs can trim it.
3885 	 * If the volume is mounted with -o discard, online discard
3886 	 * is supported and the free blocks will be trimmed online.
3887 	 */
3888 	if (!test_opt(sb, DISCARD))
3889 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3890 
3891 	if (!db->bb_free_root.rb_node) {
3892 		/* No more items in the per group rb tree
3893 		 * balance refcounts from ext4_mb_free_metadata()
3894 		 */
3895 		put_page(e4b.bd_buddy_page);
3896 		put_page(e4b.bd_bitmap_page);
3897 	}
3898 	ext4_unlock_group(sb, entry->efd_group);
3899 	ext4_mb_unload_buddy(&e4b);
3900 
3901 	mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3902 }
3903 
3904 /*
3905  * This function is called by the jbd2 layer once the commit has finished,
3906  * so we know we can free the blocks that were released with that commit.
3907  */
3908 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3909 {
3910 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3911 	struct ext4_free_data *entry, *tmp;
3912 	LIST_HEAD(freed_data_list);
3913 	struct list_head *cut_pos = NULL;
3914 	bool wake;
3915 
3916 	spin_lock(&sbi->s_md_lock);
3917 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3918 		if (entry->efd_tid != commit_tid)
3919 			break;
3920 		cut_pos = &entry->efd_list;
3921 	}
3922 	if (cut_pos)
3923 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3924 				  cut_pos);
3925 	spin_unlock(&sbi->s_md_lock);
3926 
3927 	list_for_each_entry(entry, &freed_data_list, efd_list)
3928 		ext4_free_data_in_buddy(sb, entry);
3929 
3930 	if (test_opt(sb, DISCARD)) {
3931 		spin_lock(&sbi->s_md_lock);
3932 		wake = list_empty(&sbi->s_discard_list);
3933 		list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3934 		spin_unlock(&sbi->s_md_lock);
3935 		if (wake)
3936 			queue_work(system_unbound_wq, &sbi->s_discard_work);
3937 	} else {
3938 		list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3939 			kmem_cache_free(ext4_free_data_cachep, entry);
3940 	}
3941 }
3942 
3943 int __init ext4_init_mballoc(void)
3944 {
3945 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3946 					SLAB_RECLAIM_ACCOUNT);
3947 	if (ext4_pspace_cachep == NULL)
3948 		goto out;
3949 
3950 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3951 				    SLAB_RECLAIM_ACCOUNT);
3952 	if (ext4_ac_cachep == NULL)
3953 		goto out_pa_free;
3954 
3955 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3956 					   SLAB_RECLAIM_ACCOUNT);
3957 	if (ext4_free_data_cachep == NULL)
3958 		goto out_ac_free;
3959 
3960 	return 0;
3961 
3962 out_ac_free:
3963 	kmem_cache_destroy(ext4_ac_cachep);
3964 out_pa_free:
3965 	kmem_cache_destroy(ext4_pspace_cachep);
3966 out:
3967 	return -ENOMEM;
3968 }
3969 
3970 void ext4_exit_mballoc(void)
3971 {
3972 	/*
3973 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3974 	 * before destroying the slab cache.
3975 	 */
3976 	rcu_barrier();
3977 	kmem_cache_destroy(ext4_pspace_cachep);
3978 	kmem_cache_destroy(ext4_ac_cachep);
3979 	kmem_cache_destroy(ext4_free_data_cachep);
3980 	ext4_groupinfo_destroy_slabs();
3981 }
3982 
3983 
3984 /*
3985  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3986  * Returns 0 if success or error code
3987  */
3988 static noinline_for_stack int
3989 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3990 				handle_t *handle, unsigned int reserv_clstrs)
3991 {
3992 	struct buffer_head *bitmap_bh = NULL;
3993 	struct ext4_group_desc *gdp;
3994 	struct buffer_head *gdp_bh;
3995 	struct ext4_sb_info *sbi;
3996 	struct super_block *sb;
3997 	ext4_fsblk_t block;
3998 	int err, len;
3999 
4000 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4001 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4002 
4003 	sb = ac->ac_sb;
4004 	sbi = EXT4_SB(sb);
4005 
4006 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
4007 	if (IS_ERR(bitmap_bh)) {
4008 		return PTR_ERR(bitmap_bh);
4009 	}
4010 
4011 	BUFFER_TRACE(bitmap_bh, "getting write access");
4012 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
4013 					    EXT4_JTR_NONE);
4014 	if (err)
4015 		goto out_err;
4016 
4017 	err = -EIO;
4018 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
4019 	if (!gdp)
4020 		goto out_err;
4021 
4022 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4023 			ext4_free_group_clusters(sb, gdp));
4024 
4025 	BUFFER_TRACE(gdp_bh, "get_write_access");
4026 	err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE);
4027 	if (err)
4028 		goto out_err;
4029 
4030 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4031 
4032 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4033 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4034 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4035 			   "fs metadata", block, block+len);
4036 		/* File system mounted not to panic on error
4037 		 * Fix the bitmap and return EFSCORRUPTED
4038 		 * We leak some of the blocks here.
4039 		 */
4040 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
4041 		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
4042 			      ac->ac_b_ex.fe_len);
4043 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
4044 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4045 		if (!err)
4046 			err = -EFSCORRUPTED;
4047 		goto out_err;
4048 	}
4049 
4050 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
4051 #ifdef AGGRESSIVE_CHECK
4052 	{
4053 		int i;
4054 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
4055 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
4056 						bitmap_bh->b_data));
4057 		}
4058 	}
4059 #endif
4060 	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
4061 		      ac->ac_b_ex.fe_len);
4062 	if (ext4_has_group_desc_csum(sb) &&
4063 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4064 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4065 		ext4_free_group_clusters_set(sb, gdp,
4066 					     ext4_free_clusters_after_init(sb,
4067 						ac->ac_b_ex.fe_group, gdp));
4068 	}
4069 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
4070 	ext4_free_group_clusters_set(sb, gdp, len);
4071 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4072 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
4073 
4074 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
4075 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4076 	/*
4077 	 * Now reduce the dirty block count also. Should not go negative
4078 	 */
4079 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4080 		/* release all the reserved blocks if non delalloc */
4081 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4082 				   reserv_clstrs);
4083 
4084 	if (sbi->s_log_groups_per_flex) {
4085 		ext4_group_t flex_group = ext4_flex_group(sbi,
4086 							  ac->ac_b_ex.fe_group);
4087 		atomic64_sub(ac->ac_b_ex.fe_len,
4088 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
4089 						  flex_group)->free_clusters);
4090 	}
4091 
4092 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4093 	if (err)
4094 		goto out_err;
4095 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4096 
4097 out_err:
4098 	brelse(bitmap_bh);
4099 	return err;
4100 }
4101 
4102 /*
4103  * Idempotent helper for Ext4 fast commit replay path to set the state of
4104  * blocks in bitmaps and update counters.
4105  */
4106 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4107 			int len, int state)
4108 {
4109 	struct buffer_head *bitmap_bh = NULL;
4110 	struct ext4_group_desc *gdp;
4111 	struct buffer_head *gdp_bh;
4112 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4113 	ext4_group_t group;
4114 	ext4_grpblk_t blkoff;
4115 	int i, err = 0;
4116 	int already;
4117 	unsigned int clen, clen_changed, thisgrp_len;
4118 
4119 	while (len > 0) {
4120 		ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4121 
4122 		/*
4123 		 * Check to see if we are freeing blocks across a group
4124 		 * boundary.
4125 		 * In case of flex_bg, this can happen that (block, len) may
4126 		 * span across more than one group. In that case we need to
4127 		 * get the corresponding group metadata to work with.
4128 		 * For this we have goto again loop.
4129 		 */
4130 		thisgrp_len = min_t(unsigned int, (unsigned int)len,
4131 			EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4132 		clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4133 
4134 		if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4135 			ext4_error(sb, "Marking blocks in system zone - "
4136 				   "Block = %llu, len = %u",
4137 				   block, thisgrp_len);
4138 			bitmap_bh = NULL;
4139 			break;
4140 		}
4141 
4142 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4143 		if (IS_ERR(bitmap_bh)) {
4144 			err = PTR_ERR(bitmap_bh);
4145 			bitmap_bh = NULL;
4146 			break;
4147 		}
4148 
4149 		err = -EIO;
4150 		gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4151 		if (!gdp)
4152 			break;
4153 
4154 		ext4_lock_group(sb, group);
4155 		already = 0;
4156 		for (i = 0; i < clen; i++)
4157 			if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4158 					 !state)
4159 				already++;
4160 
4161 		clen_changed = clen - already;
4162 		if (state)
4163 			mb_set_bits(bitmap_bh->b_data, blkoff, clen);
4164 		else
4165 			mb_clear_bits(bitmap_bh->b_data, blkoff, clen);
4166 		if (ext4_has_group_desc_csum(sb) &&
4167 		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4168 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4169 			ext4_free_group_clusters_set(sb, gdp,
4170 			     ext4_free_clusters_after_init(sb, group, gdp));
4171 		}
4172 		if (state)
4173 			clen = ext4_free_group_clusters(sb, gdp) - clen_changed;
4174 		else
4175 			clen = ext4_free_group_clusters(sb, gdp) + clen_changed;
4176 
4177 		ext4_free_group_clusters_set(sb, gdp, clen);
4178 		ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4179 		ext4_group_desc_csum_set(sb, group, gdp);
4180 
4181 		ext4_unlock_group(sb, group);
4182 
4183 		if (sbi->s_log_groups_per_flex) {
4184 			ext4_group_t flex_group = ext4_flex_group(sbi, group);
4185 			struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4186 						   s_flex_groups, flex_group);
4187 
4188 			if (state)
4189 				atomic64_sub(clen_changed, &fg->free_clusters);
4190 			else
4191 				atomic64_add(clen_changed, &fg->free_clusters);
4192 
4193 		}
4194 
4195 		err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
4196 		if (err)
4197 			break;
4198 		sync_dirty_buffer(bitmap_bh);
4199 		err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
4200 		sync_dirty_buffer(gdp_bh);
4201 		if (err)
4202 			break;
4203 
4204 		block += thisgrp_len;
4205 		len -= thisgrp_len;
4206 		brelse(bitmap_bh);
4207 		BUG_ON(len < 0);
4208 	}
4209 
4210 	if (err)
4211 		brelse(bitmap_bh);
4212 }
4213 
4214 /*
4215  * here we normalize request for locality group
4216  * Group request are normalized to s_mb_group_prealloc, which goes to
4217  * s_strip if we set the same via mount option.
4218  * s_mb_group_prealloc can be configured via
4219  * /sys/fs/ext4/<partition>/mb_group_prealloc
4220  *
4221  * XXX: should we try to preallocate more than the group has now?
4222  */
4223 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4224 {
4225 	struct super_block *sb = ac->ac_sb;
4226 	struct ext4_locality_group *lg = ac->ac_lg;
4227 
4228 	BUG_ON(lg == NULL);
4229 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4230 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4231 }
4232 
4233 /*
4234  * This function returns the next element to look at during inode
4235  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4236  * (ei->i_prealloc_lock)
4237  *
4238  * new_start	The start of the range we want to compare
4239  * cur_start	The existing start that we are comparing against
4240  * node	The node of the rb_tree
4241  */
4242 static inline struct rb_node*
4243 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4244 {
4245 	if (new_start < cur_start)
4246 		return node->rb_left;
4247 	else
4248 		return node->rb_right;
4249 }
4250 
4251 static inline void
4252 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4253 			  ext4_lblk_t start, loff_t end)
4254 {
4255 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4256 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4257 	struct ext4_prealloc_space *tmp_pa;
4258 	ext4_lblk_t tmp_pa_start;
4259 	loff_t tmp_pa_end;
4260 	struct rb_node *iter;
4261 
4262 	read_lock(&ei->i_prealloc_lock);
4263 	for (iter = ei->i_prealloc_node.rb_node; iter;
4264 	     iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4265 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4266 				  pa_node.inode_node);
4267 		tmp_pa_start = tmp_pa->pa_lstart;
4268 		tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4269 
4270 		spin_lock(&tmp_pa->pa_lock);
4271 		if (tmp_pa->pa_deleted == 0)
4272 			BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4273 		spin_unlock(&tmp_pa->pa_lock);
4274 	}
4275 	read_unlock(&ei->i_prealloc_lock);
4276 }
4277 
4278 /*
4279  * Given an allocation context "ac" and a range "start", "end", check
4280  * and adjust boundaries if the range overlaps with any of the existing
4281  * preallocatoins stored in the corresponding inode of the allocation context.
4282  *
4283  * Parameters:
4284  *	ac			allocation context
4285  *	start			start of the new range
4286  *	end			end of the new range
4287  */
4288 static inline void
4289 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4290 			  ext4_lblk_t *start, loff_t *end)
4291 {
4292 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4293 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4294 	struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4295 	struct rb_node *iter;
4296 	ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4297 	loff_t new_end, tmp_pa_end, left_pa_end = -1;
4298 
4299 	new_start = *start;
4300 	new_end = *end;
4301 
4302 	/*
4303 	 * Adjust the normalized range so that it doesn't overlap with any
4304 	 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4305 	 * so it doesn't change underneath us.
4306 	 */
4307 	read_lock(&ei->i_prealloc_lock);
4308 
4309 	/* Step 1: find any one immediate neighboring PA of the normalized range */
4310 	for (iter = ei->i_prealloc_node.rb_node; iter;
4311 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4312 					    tmp_pa_start, iter)) {
4313 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4314 				  pa_node.inode_node);
4315 		tmp_pa_start = tmp_pa->pa_lstart;
4316 		tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4317 
4318 		/* PA must not overlap original request */
4319 		spin_lock(&tmp_pa->pa_lock);
4320 		if (tmp_pa->pa_deleted == 0)
4321 			BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4322 				 ac->ac_o_ex.fe_logical < tmp_pa_start));
4323 		spin_unlock(&tmp_pa->pa_lock);
4324 	}
4325 
4326 	/*
4327 	 * Step 2: check if the found PA is left or right neighbor and
4328 	 * get the other neighbor
4329 	 */
4330 	if (tmp_pa) {
4331 		if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4332 			struct rb_node *tmp;
4333 
4334 			left_pa = tmp_pa;
4335 			tmp = rb_next(&left_pa->pa_node.inode_node);
4336 			if (tmp) {
4337 				right_pa = rb_entry(tmp,
4338 						    struct ext4_prealloc_space,
4339 						    pa_node.inode_node);
4340 			}
4341 		} else {
4342 			struct rb_node *tmp;
4343 
4344 			right_pa = tmp_pa;
4345 			tmp = rb_prev(&right_pa->pa_node.inode_node);
4346 			if (tmp) {
4347 				left_pa = rb_entry(tmp,
4348 						   struct ext4_prealloc_space,
4349 						   pa_node.inode_node);
4350 			}
4351 		}
4352 	}
4353 
4354 	/* Step 3: get the non deleted neighbors */
4355 	if (left_pa) {
4356 		for (iter = &left_pa->pa_node.inode_node;;
4357 		     iter = rb_prev(iter)) {
4358 			if (!iter) {
4359 				left_pa = NULL;
4360 				break;
4361 			}
4362 
4363 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4364 					  pa_node.inode_node);
4365 			left_pa = tmp_pa;
4366 			spin_lock(&tmp_pa->pa_lock);
4367 			if (tmp_pa->pa_deleted == 0) {
4368 				spin_unlock(&tmp_pa->pa_lock);
4369 				break;
4370 			}
4371 			spin_unlock(&tmp_pa->pa_lock);
4372 		}
4373 	}
4374 
4375 	if (right_pa) {
4376 		for (iter = &right_pa->pa_node.inode_node;;
4377 		     iter = rb_next(iter)) {
4378 			if (!iter) {
4379 				right_pa = NULL;
4380 				break;
4381 			}
4382 
4383 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4384 					  pa_node.inode_node);
4385 			right_pa = tmp_pa;
4386 			spin_lock(&tmp_pa->pa_lock);
4387 			if (tmp_pa->pa_deleted == 0) {
4388 				spin_unlock(&tmp_pa->pa_lock);
4389 				break;
4390 			}
4391 			spin_unlock(&tmp_pa->pa_lock);
4392 		}
4393 	}
4394 
4395 	if (left_pa) {
4396 		left_pa_end = pa_logical_end(sbi, left_pa);
4397 		BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4398 	}
4399 
4400 	if (right_pa) {
4401 		right_pa_start = right_pa->pa_lstart;
4402 		BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4403 	}
4404 
4405 	/* Step 4: trim our normalized range to not overlap with the neighbors */
4406 	if (left_pa) {
4407 		if (left_pa_end > new_start)
4408 			new_start = left_pa_end;
4409 	}
4410 
4411 	if (right_pa) {
4412 		if (right_pa_start < new_end)
4413 			new_end = right_pa_start;
4414 	}
4415 	read_unlock(&ei->i_prealloc_lock);
4416 
4417 	/* XXX: extra loop to check we really don't overlap preallocations */
4418 	ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4419 
4420 	*start = new_start;
4421 	*end = new_end;
4422 }
4423 
4424 /*
4425  * Normalization means making request better in terms of
4426  * size and alignment
4427  */
4428 static noinline_for_stack void
4429 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4430 				struct ext4_allocation_request *ar)
4431 {
4432 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4433 	struct ext4_super_block *es = sbi->s_es;
4434 	int bsbits, max;
4435 	loff_t size, start_off, end;
4436 	loff_t orig_size __maybe_unused;
4437 	ext4_lblk_t start;
4438 
4439 	/* do normalize only data requests, metadata requests
4440 	   do not need preallocation */
4441 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4442 		return;
4443 
4444 	/* sometime caller may want exact blocks */
4445 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4446 		return;
4447 
4448 	/* caller may indicate that preallocation isn't
4449 	 * required (it's a tail, for example) */
4450 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4451 		return;
4452 
4453 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4454 		ext4_mb_normalize_group_request(ac);
4455 		return ;
4456 	}
4457 
4458 	bsbits = ac->ac_sb->s_blocksize_bits;
4459 
4460 	/* first, let's learn actual file size
4461 	 * given current request is allocated */
4462 	size = extent_logical_end(sbi, &ac->ac_o_ex);
4463 	size = size << bsbits;
4464 	if (size < i_size_read(ac->ac_inode))
4465 		size = i_size_read(ac->ac_inode);
4466 	orig_size = size;
4467 
4468 	/* max size of free chunks */
4469 	max = 2 << bsbits;
4470 
4471 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
4472 		(req <= (size) || max <= (chunk_size))
4473 
4474 	/* first, try to predict filesize */
4475 	/* XXX: should this table be tunable? */
4476 	start_off = 0;
4477 	if (size <= 16 * 1024) {
4478 		size = 16 * 1024;
4479 	} else if (size <= 32 * 1024) {
4480 		size = 32 * 1024;
4481 	} else if (size <= 64 * 1024) {
4482 		size = 64 * 1024;
4483 	} else if (size <= 128 * 1024) {
4484 		size = 128 * 1024;
4485 	} else if (size <= 256 * 1024) {
4486 		size = 256 * 1024;
4487 	} else if (size <= 512 * 1024) {
4488 		size = 512 * 1024;
4489 	} else if (size <= 1024 * 1024) {
4490 		size = 1024 * 1024;
4491 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4492 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4493 						(21 - bsbits)) << 21;
4494 		size = 2 * 1024 * 1024;
4495 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4496 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4497 							(22 - bsbits)) << 22;
4498 		size = 4 * 1024 * 1024;
4499 	} else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4500 					(8<<20)>>bsbits, max, 8 * 1024)) {
4501 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4502 							(23 - bsbits)) << 23;
4503 		size = 8 * 1024 * 1024;
4504 	} else {
4505 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4506 		size	  = (loff_t) EXT4_C2B(sbi,
4507 					      ac->ac_o_ex.fe_len) << bsbits;
4508 	}
4509 	size = size >> bsbits;
4510 	start = start_off >> bsbits;
4511 
4512 	/*
4513 	 * For tiny groups (smaller than 8MB) the chosen allocation
4514 	 * alignment may be larger than group size. Make sure the
4515 	 * alignment does not move allocation to a different group which
4516 	 * makes mballoc fail assertions later.
4517 	 */
4518 	start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4519 			(ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4520 
4521 	/* avoid unnecessary preallocation that may trigger assertions */
4522 	if (start + size > EXT_MAX_BLOCKS)
4523 		size = EXT_MAX_BLOCKS - start;
4524 
4525 	/* don't cover already allocated blocks in selected range */
4526 	if (ar->pleft && start <= ar->lleft) {
4527 		size -= ar->lleft + 1 - start;
4528 		start = ar->lleft + 1;
4529 	}
4530 	if (ar->pright && start + size - 1 >= ar->lright)
4531 		size -= start + size - ar->lright;
4532 
4533 	/*
4534 	 * Trim allocation request for filesystems with artificially small
4535 	 * groups.
4536 	 */
4537 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4538 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4539 
4540 	end = start + size;
4541 
4542 	ext4_mb_pa_adjust_overlap(ac, &start, &end);
4543 
4544 	size = end - start;
4545 
4546 	/*
4547 	 * In this function "start" and "size" are normalized for better
4548 	 * alignment and length such that we could preallocate more blocks.
4549 	 * This normalization is done such that original request of
4550 	 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4551 	 * "size" boundaries.
4552 	 * (Note fe_len can be relaxed since FS block allocation API does not
4553 	 * provide gurantee on number of contiguous blocks allocation since that
4554 	 * depends upon free space left, etc).
4555 	 * In case of inode pa, later we use the allocated blocks
4556 	 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4557 	 * range of goal/best blocks [start, size] to put it at the
4558 	 * ac_o_ex.fe_logical extent of this inode.
4559 	 * (See ext4_mb_use_inode_pa() for more details)
4560 	 */
4561 	if (start + size <= ac->ac_o_ex.fe_logical ||
4562 			start > ac->ac_o_ex.fe_logical) {
4563 		ext4_msg(ac->ac_sb, KERN_ERR,
4564 			 "start %lu, size %lu, fe_logical %lu",
4565 			 (unsigned long) start, (unsigned long) size,
4566 			 (unsigned long) ac->ac_o_ex.fe_logical);
4567 		BUG();
4568 	}
4569 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4570 
4571 	/* now prepare goal request */
4572 
4573 	/* XXX: is it better to align blocks WRT to logical
4574 	 * placement or satisfy big request as is */
4575 	ac->ac_g_ex.fe_logical = start;
4576 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4577 	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4578 
4579 	/* define goal start in order to merge */
4580 	if (ar->pright && (ar->lright == (start + size)) &&
4581 	    ar->pright >= size &&
4582 	    ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4583 		/* merge to the right */
4584 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4585 						&ac->ac_g_ex.fe_group,
4586 						&ac->ac_g_ex.fe_start);
4587 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4588 	}
4589 	if (ar->pleft && (ar->lleft + 1 == start) &&
4590 	    ar->pleft + 1 < ext4_blocks_count(es)) {
4591 		/* merge to the left */
4592 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4593 						&ac->ac_g_ex.fe_group,
4594 						&ac->ac_g_ex.fe_start);
4595 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4596 	}
4597 
4598 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4599 		 orig_size, start);
4600 }
4601 
4602 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4603 {
4604 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4605 
4606 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4607 		atomic_inc(&sbi->s_bal_reqs);
4608 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4609 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4610 			atomic_inc(&sbi->s_bal_success);
4611 
4612 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4613 		for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4614 			atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4615 		}
4616 
4617 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4618 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4619 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4620 			atomic_inc(&sbi->s_bal_goals);
4621 		/* did we allocate as much as normalizer originally wanted? */
4622 		if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4623 			atomic_inc(&sbi->s_bal_len_goals);
4624 
4625 		if (ac->ac_found > sbi->s_mb_max_to_scan)
4626 			atomic_inc(&sbi->s_bal_breaks);
4627 	}
4628 
4629 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4630 		trace_ext4_mballoc_alloc(ac);
4631 	else
4632 		trace_ext4_mballoc_prealloc(ac);
4633 }
4634 
4635 /*
4636  * Called on failure; free up any blocks from the inode PA for this
4637  * context.  We don't need this for MB_GROUP_PA because we only change
4638  * pa_free in ext4_mb_release_context(), but on failure, we've already
4639  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4640  */
4641 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4642 {
4643 	struct ext4_prealloc_space *pa = ac->ac_pa;
4644 	struct ext4_buddy e4b;
4645 	int err;
4646 
4647 	if (pa == NULL) {
4648 		if (ac->ac_f_ex.fe_len == 0)
4649 			return;
4650 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4651 		if (WARN_RATELIMIT(err,
4652 				   "ext4: mb_load_buddy failed (%d)", err))
4653 			/*
4654 			 * This should never happen since we pin the
4655 			 * pages in the ext4_allocation_context so
4656 			 * ext4_mb_load_buddy() should never fail.
4657 			 */
4658 			return;
4659 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4660 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4661 			       ac->ac_f_ex.fe_len);
4662 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4663 		ext4_mb_unload_buddy(&e4b);
4664 		return;
4665 	}
4666 	if (pa->pa_type == MB_INODE_PA) {
4667 		spin_lock(&pa->pa_lock);
4668 		pa->pa_free += ac->ac_b_ex.fe_len;
4669 		spin_unlock(&pa->pa_lock);
4670 	}
4671 }
4672 
4673 /*
4674  * use blocks preallocated to inode
4675  */
4676 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4677 				struct ext4_prealloc_space *pa)
4678 {
4679 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4680 	ext4_fsblk_t start;
4681 	ext4_fsblk_t end;
4682 	int len;
4683 
4684 	/* found preallocated blocks, use them */
4685 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4686 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4687 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4688 	len = EXT4_NUM_B2C(sbi, end - start);
4689 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4690 					&ac->ac_b_ex.fe_start);
4691 	ac->ac_b_ex.fe_len = len;
4692 	ac->ac_status = AC_STATUS_FOUND;
4693 	ac->ac_pa = pa;
4694 
4695 	BUG_ON(start < pa->pa_pstart);
4696 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4697 	BUG_ON(pa->pa_free < len);
4698 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4699 	pa->pa_free -= len;
4700 
4701 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4702 }
4703 
4704 /*
4705  * use blocks preallocated to locality group
4706  */
4707 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4708 				struct ext4_prealloc_space *pa)
4709 {
4710 	unsigned int len = ac->ac_o_ex.fe_len;
4711 
4712 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4713 					&ac->ac_b_ex.fe_group,
4714 					&ac->ac_b_ex.fe_start);
4715 	ac->ac_b_ex.fe_len = len;
4716 	ac->ac_status = AC_STATUS_FOUND;
4717 	ac->ac_pa = pa;
4718 
4719 	/* we don't correct pa_pstart or pa_len here to avoid
4720 	 * possible race when the group is being loaded concurrently
4721 	 * instead we correct pa later, after blocks are marked
4722 	 * in on-disk bitmap -- see ext4_mb_release_context()
4723 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4724 	 */
4725 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4726 		 pa->pa_lstart, len, pa);
4727 }
4728 
4729 /*
4730  * Return the prealloc space that have minimal distance
4731  * from the goal block. @cpa is the prealloc
4732  * space that is having currently known minimal distance
4733  * from the goal block.
4734  */
4735 static struct ext4_prealloc_space *
4736 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4737 			struct ext4_prealloc_space *pa,
4738 			struct ext4_prealloc_space *cpa)
4739 {
4740 	ext4_fsblk_t cur_distance, new_distance;
4741 
4742 	if (cpa == NULL) {
4743 		atomic_inc(&pa->pa_count);
4744 		return pa;
4745 	}
4746 	cur_distance = abs(goal_block - cpa->pa_pstart);
4747 	new_distance = abs(goal_block - pa->pa_pstart);
4748 
4749 	if (cur_distance <= new_distance)
4750 		return cpa;
4751 
4752 	/* drop the previous reference */
4753 	atomic_dec(&cpa->pa_count);
4754 	atomic_inc(&pa->pa_count);
4755 	return pa;
4756 }
4757 
4758 /*
4759  * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4760  */
4761 static bool
4762 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4763 		      struct ext4_prealloc_space *pa)
4764 {
4765 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4766 	ext4_fsblk_t start;
4767 
4768 	if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4769 		return true;
4770 
4771 	/*
4772 	 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4773 	 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4774 	 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4775 	 * consistent with ext4_mb_find_by_goal.
4776 	 */
4777 	start = pa->pa_pstart +
4778 		(ac->ac_g_ex.fe_logical - pa->pa_lstart);
4779 	if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4780 		return false;
4781 
4782 	if (ac->ac_g_ex.fe_len > pa->pa_len -
4783 	    EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4784 		return false;
4785 
4786 	return true;
4787 }
4788 
4789 /*
4790  * search goal blocks in preallocated space
4791  */
4792 static noinline_for_stack bool
4793 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4794 {
4795 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4796 	int order, i;
4797 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4798 	struct ext4_locality_group *lg;
4799 	struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4800 	struct rb_node *iter;
4801 	ext4_fsblk_t goal_block;
4802 
4803 	/* only data can be preallocated */
4804 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4805 		return false;
4806 
4807 	/*
4808 	 * first, try per-file preallocation by searching the inode pa rbtree.
4809 	 *
4810 	 * Here, we can't do a direct traversal of the tree because
4811 	 * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4812 	 * deleted and that can cause direct traversal to skip some entries.
4813 	 */
4814 	read_lock(&ei->i_prealloc_lock);
4815 
4816 	if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4817 		goto try_group_pa;
4818 	}
4819 
4820 	/*
4821 	 * Step 1: Find a pa with logical start immediately adjacent to the
4822 	 * original logical start. This could be on the left or right.
4823 	 *
4824 	 * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4825 	 */
4826 	for (iter = ei->i_prealloc_node.rb_node; iter;
4827 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4828 					    tmp_pa->pa_lstart, iter)) {
4829 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4830 				  pa_node.inode_node);
4831 	}
4832 
4833 	/*
4834 	 * Step 2: The adjacent pa might be to the right of logical start, find
4835 	 * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4836 	 * logical start is towards the left of original request's logical start
4837 	 */
4838 	if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4839 		struct rb_node *tmp;
4840 		tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4841 
4842 		if (tmp) {
4843 			tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4844 					    pa_node.inode_node);
4845 		} else {
4846 			/*
4847 			 * If there is no adjacent pa to the left then finding
4848 			 * an overlapping pa is not possible hence stop searching
4849 			 * inode pa tree
4850 			 */
4851 			goto try_group_pa;
4852 		}
4853 	}
4854 
4855 	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4856 
4857 	/*
4858 	 * Step 3: If the left adjacent pa is deleted, keep moving left to find
4859 	 * the first non deleted adjacent pa. After this step we should have a
4860 	 * valid tmp_pa which is guaranteed to be non deleted.
4861 	 */
4862 	for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4863 		if (!iter) {
4864 			/*
4865 			 * no non deleted left adjacent pa, so stop searching
4866 			 * inode pa tree
4867 			 */
4868 			goto try_group_pa;
4869 		}
4870 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4871 				  pa_node.inode_node);
4872 		spin_lock(&tmp_pa->pa_lock);
4873 		if (tmp_pa->pa_deleted == 0) {
4874 			/*
4875 			 * We will keep holding the pa_lock from
4876 			 * this point on because we don't want group discard
4877 			 * to delete this pa underneath us. Since group
4878 			 * discard is anyways an ENOSPC operation it
4879 			 * should be okay for it to wait a few more cycles.
4880 			 */
4881 			break;
4882 		} else {
4883 			spin_unlock(&tmp_pa->pa_lock);
4884 		}
4885 	}
4886 
4887 	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4888 	BUG_ON(tmp_pa->pa_deleted == 1);
4889 
4890 	/*
4891 	 * Step 4: We now have the non deleted left adjacent pa. Only this
4892 	 * pa can possibly satisfy the request hence check if it overlaps
4893 	 * original logical start and stop searching if it doesn't.
4894 	 */
4895 	if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4896 		spin_unlock(&tmp_pa->pa_lock);
4897 		goto try_group_pa;
4898 	}
4899 
4900 	/* non-extent files can't have physical blocks past 2^32 */
4901 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4902 	    (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4903 	     EXT4_MAX_BLOCK_FILE_PHYS)) {
4904 		/*
4905 		 * Since PAs don't overlap, we won't find any other PA to
4906 		 * satisfy this.
4907 		 */
4908 		spin_unlock(&tmp_pa->pa_lock);
4909 		goto try_group_pa;
4910 	}
4911 
4912 	if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4913 		atomic_inc(&tmp_pa->pa_count);
4914 		ext4_mb_use_inode_pa(ac, tmp_pa);
4915 		spin_unlock(&tmp_pa->pa_lock);
4916 		read_unlock(&ei->i_prealloc_lock);
4917 		return true;
4918 	} else {
4919 		/*
4920 		 * We found a valid overlapping pa but couldn't use it because
4921 		 * it had no free blocks. This should ideally never happen
4922 		 * because:
4923 		 *
4924 		 * 1. When a new inode pa is added to rbtree it must have
4925 		 *    pa_free > 0 since otherwise we won't actually need
4926 		 *    preallocation.
4927 		 *
4928 		 * 2. An inode pa that is in the rbtree can only have it's
4929 		 *    pa_free become zero when another thread calls:
4930 		 *      ext4_mb_new_blocks
4931 		 *       ext4_mb_use_preallocated
4932 		 *        ext4_mb_use_inode_pa
4933 		 *
4934 		 * 3. Further, after the above calls make pa_free == 0, we will
4935 		 *    immediately remove it from the rbtree in:
4936 		 *      ext4_mb_new_blocks
4937 		 *       ext4_mb_release_context
4938 		 *        ext4_mb_put_pa
4939 		 *
4940 		 * 4. Since the pa_free becoming 0 and pa_free getting removed
4941 		 * from tree both happen in ext4_mb_new_blocks, which is always
4942 		 * called with i_data_sem held for data allocations, we can be
4943 		 * sure that another process will never see a pa in rbtree with
4944 		 * pa_free == 0.
4945 		 */
4946 		WARN_ON_ONCE(tmp_pa->pa_free == 0);
4947 	}
4948 	spin_unlock(&tmp_pa->pa_lock);
4949 try_group_pa:
4950 	read_unlock(&ei->i_prealloc_lock);
4951 
4952 	/* can we use group allocation? */
4953 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4954 		return false;
4955 
4956 	/* inode may have no locality group for some reason */
4957 	lg = ac->ac_lg;
4958 	if (lg == NULL)
4959 		return false;
4960 	order  = fls(ac->ac_o_ex.fe_len) - 1;
4961 	if (order > PREALLOC_TB_SIZE - 1)
4962 		/* The max size of hash table is PREALLOC_TB_SIZE */
4963 		order = PREALLOC_TB_SIZE - 1;
4964 
4965 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4966 	/*
4967 	 * search for the prealloc space that is having
4968 	 * minimal distance from the goal block.
4969 	 */
4970 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4971 		rcu_read_lock();
4972 		list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4973 					pa_node.lg_list) {
4974 			spin_lock(&tmp_pa->pa_lock);
4975 			if (tmp_pa->pa_deleted == 0 &&
4976 					tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4977 
4978 				cpa = ext4_mb_check_group_pa(goal_block,
4979 								tmp_pa, cpa);
4980 			}
4981 			spin_unlock(&tmp_pa->pa_lock);
4982 		}
4983 		rcu_read_unlock();
4984 	}
4985 	if (cpa) {
4986 		ext4_mb_use_group_pa(ac, cpa);
4987 		return true;
4988 	}
4989 	return false;
4990 }
4991 
4992 /*
4993  * the function goes through all preallocation in this group and marks them
4994  * used in in-core bitmap. buddy must be generated from this bitmap
4995  * Need to be called with ext4 group lock held
4996  */
4997 static noinline_for_stack
4998 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4999 					ext4_group_t group)
5000 {
5001 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5002 	struct ext4_prealloc_space *pa;
5003 	struct list_head *cur;
5004 	ext4_group_t groupnr;
5005 	ext4_grpblk_t start;
5006 	int preallocated = 0;
5007 	int len;
5008 
5009 	if (!grp)
5010 		return;
5011 
5012 	/* all form of preallocation discards first load group,
5013 	 * so the only competing code is preallocation use.
5014 	 * we don't need any locking here
5015 	 * notice we do NOT ignore preallocations with pa_deleted
5016 	 * otherwise we could leave used blocks available for
5017 	 * allocation in buddy when concurrent ext4_mb_put_pa()
5018 	 * is dropping preallocation
5019 	 */
5020 	list_for_each(cur, &grp->bb_prealloc_list) {
5021 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5022 		spin_lock(&pa->pa_lock);
5023 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5024 					     &groupnr, &start);
5025 		len = pa->pa_len;
5026 		spin_unlock(&pa->pa_lock);
5027 		if (unlikely(len == 0))
5028 			continue;
5029 		BUG_ON(groupnr != group);
5030 		mb_set_bits(bitmap, start, len);
5031 		preallocated += len;
5032 	}
5033 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5034 }
5035 
5036 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5037 				    struct ext4_prealloc_space *pa)
5038 {
5039 	struct ext4_inode_info *ei;
5040 
5041 	if (pa->pa_deleted) {
5042 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5043 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5044 			     pa->pa_len);
5045 		return;
5046 	}
5047 
5048 	pa->pa_deleted = 1;
5049 
5050 	if (pa->pa_type == MB_INODE_PA) {
5051 		ei = EXT4_I(pa->pa_inode);
5052 		atomic_dec(&ei->i_prealloc_active);
5053 	}
5054 }
5055 
5056 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5057 {
5058 	BUG_ON(!pa);
5059 	BUG_ON(atomic_read(&pa->pa_count));
5060 	BUG_ON(pa->pa_deleted == 0);
5061 	kmem_cache_free(ext4_pspace_cachep, pa);
5062 }
5063 
5064 static void ext4_mb_pa_callback(struct rcu_head *head)
5065 {
5066 	struct ext4_prealloc_space *pa;
5067 
5068 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5069 	ext4_mb_pa_free(pa);
5070 }
5071 
5072 /*
5073  * drops a reference to preallocated space descriptor
5074  * if this was the last reference and the space is consumed
5075  */
5076 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5077 			struct super_block *sb, struct ext4_prealloc_space *pa)
5078 {
5079 	ext4_group_t grp;
5080 	ext4_fsblk_t grp_blk;
5081 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5082 
5083 	/* in this short window concurrent discard can set pa_deleted */
5084 	spin_lock(&pa->pa_lock);
5085 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5086 		spin_unlock(&pa->pa_lock);
5087 		return;
5088 	}
5089 
5090 	if (pa->pa_deleted == 1) {
5091 		spin_unlock(&pa->pa_lock);
5092 		return;
5093 	}
5094 
5095 	ext4_mb_mark_pa_deleted(sb, pa);
5096 	spin_unlock(&pa->pa_lock);
5097 
5098 	grp_blk = pa->pa_pstart;
5099 	/*
5100 	 * If doing group-based preallocation, pa_pstart may be in the
5101 	 * next group when pa is used up
5102 	 */
5103 	if (pa->pa_type == MB_GROUP_PA)
5104 		grp_blk--;
5105 
5106 	grp = ext4_get_group_number(sb, grp_blk);
5107 
5108 	/*
5109 	 * possible race:
5110 	 *
5111 	 *  P1 (buddy init)			P2 (regular allocation)
5112 	 *					find block B in PA
5113 	 *  copy on-disk bitmap to buddy
5114 	 *  					mark B in on-disk bitmap
5115 	 *					drop PA from group
5116 	 *  mark all PAs in buddy
5117 	 *
5118 	 * thus, P1 initializes buddy with B available. to prevent this
5119 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5120 	 * against that pair
5121 	 */
5122 	ext4_lock_group(sb, grp);
5123 	list_del(&pa->pa_group_list);
5124 	ext4_unlock_group(sb, grp);
5125 
5126 	if (pa->pa_type == MB_INODE_PA) {
5127 		write_lock(pa->pa_node_lock.inode_lock);
5128 		rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5129 		write_unlock(pa->pa_node_lock.inode_lock);
5130 		ext4_mb_pa_free(pa);
5131 	} else {
5132 		spin_lock(pa->pa_node_lock.lg_lock);
5133 		list_del_rcu(&pa->pa_node.lg_list);
5134 		spin_unlock(pa->pa_node_lock.lg_lock);
5135 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5136 	}
5137 }
5138 
5139 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5140 {
5141 	struct rb_node **iter = &root->rb_node, *parent = NULL;
5142 	struct ext4_prealloc_space *iter_pa, *new_pa;
5143 	ext4_lblk_t iter_start, new_start;
5144 
5145 	while (*iter) {
5146 		iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5147 				   pa_node.inode_node);
5148 		new_pa = rb_entry(new, struct ext4_prealloc_space,
5149 				   pa_node.inode_node);
5150 		iter_start = iter_pa->pa_lstart;
5151 		new_start = new_pa->pa_lstart;
5152 
5153 		parent = *iter;
5154 		if (new_start < iter_start)
5155 			iter = &((*iter)->rb_left);
5156 		else
5157 			iter = &((*iter)->rb_right);
5158 	}
5159 
5160 	rb_link_node(new, parent, iter);
5161 	rb_insert_color(new, root);
5162 }
5163 
5164 /*
5165  * creates new preallocated space for given inode
5166  */
5167 static noinline_for_stack void
5168 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5169 {
5170 	struct super_block *sb = ac->ac_sb;
5171 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5172 	struct ext4_prealloc_space *pa;
5173 	struct ext4_group_info *grp;
5174 	struct ext4_inode_info *ei;
5175 
5176 	/* preallocate only when found space is larger then requested */
5177 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5178 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5179 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5180 	BUG_ON(ac->ac_pa == NULL);
5181 
5182 	pa = ac->ac_pa;
5183 
5184 	if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5185 		struct ext4_free_extent ex = {
5186 			.fe_logical = ac->ac_g_ex.fe_logical,
5187 			.fe_len = ac->ac_orig_goal_len,
5188 		};
5189 		loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5190 		loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex);
5191 
5192 		/*
5193 		 * We can't allocate as much as normalizer wants, so we try
5194 		 * to get proper lstart to cover the original request, except
5195 		 * when the goal doesn't cover the original request as below:
5196 		 *
5197 		 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048
5198 		 * best_ex:0/200(200) -> adjusted: 1848/2048(200)
5199 		 */
5200 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5201 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5202 
5203 		/*
5204 		 * Use the below logic for adjusting best extent as it keeps
5205 		 * fragmentation in check while ensuring logical range of best
5206 		 * extent doesn't overflow out of goal extent:
5207 		 *
5208 		 * 1. Check if best ex can be kept at end of goal (before
5209 		 *    cr_best_avail trimmed it) and still cover original start
5210 		 * 2. Else, check if best ex can be kept at start of goal and
5211 		 *    still cover original end
5212 		 * 3. Else, keep the best ex at start of original request.
5213 		 */
5214 		ex.fe_len = ac->ac_b_ex.fe_len;
5215 
5216 		ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5217 		if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5218 			goto adjust_bex;
5219 
5220 		ex.fe_logical = ac->ac_g_ex.fe_logical;
5221 		if (o_ex_end <= extent_logical_end(sbi, &ex))
5222 			goto adjust_bex;
5223 
5224 		ex.fe_logical = ac->ac_o_ex.fe_logical;
5225 adjust_bex:
5226 		ac->ac_b_ex.fe_logical = ex.fe_logical;
5227 
5228 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5229 		BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5230 	}
5231 
5232 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
5233 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5234 	pa->pa_len = ac->ac_b_ex.fe_len;
5235 	pa->pa_free = pa->pa_len;
5236 	spin_lock_init(&pa->pa_lock);
5237 	INIT_LIST_HEAD(&pa->pa_group_list);
5238 	pa->pa_deleted = 0;
5239 	pa->pa_type = MB_INODE_PA;
5240 
5241 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5242 		 pa->pa_len, pa->pa_lstart);
5243 	trace_ext4_mb_new_inode_pa(ac, pa);
5244 
5245 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5246 	ext4_mb_use_inode_pa(ac, pa);
5247 
5248 	ei = EXT4_I(ac->ac_inode);
5249 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5250 	if (!grp)
5251 		return;
5252 
5253 	pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5254 	pa->pa_inode = ac->ac_inode;
5255 
5256 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5257 
5258 	write_lock(pa->pa_node_lock.inode_lock);
5259 	ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5260 	write_unlock(pa->pa_node_lock.inode_lock);
5261 	atomic_inc(&ei->i_prealloc_active);
5262 }
5263 
5264 /*
5265  * creates new preallocated space for locality group inodes belongs to
5266  */
5267 static noinline_for_stack void
5268 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5269 {
5270 	struct super_block *sb = ac->ac_sb;
5271 	struct ext4_locality_group *lg;
5272 	struct ext4_prealloc_space *pa;
5273 	struct ext4_group_info *grp;
5274 
5275 	/* preallocate only when found space is larger then requested */
5276 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5277 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5278 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5279 	BUG_ON(ac->ac_pa == NULL);
5280 
5281 	pa = ac->ac_pa;
5282 
5283 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5284 	pa->pa_lstart = pa->pa_pstart;
5285 	pa->pa_len = ac->ac_b_ex.fe_len;
5286 	pa->pa_free = pa->pa_len;
5287 	spin_lock_init(&pa->pa_lock);
5288 	INIT_LIST_HEAD(&pa->pa_node.lg_list);
5289 	INIT_LIST_HEAD(&pa->pa_group_list);
5290 	pa->pa_deleted = 0;
5291 	pa->pa_type = MB_GROUP_PA;
5292 
5293 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5294 		 pa->pa_len, pa->pa_lstart);
5295 	trace_ext4_mb_new_group_pa(ac, pa);
5296 
5297 	ext4_mb_use_group_pa(ac, pa);
5298 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5299 
5300 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5301 	if (!grp)
5302 		return;
5303 	lg = ac->ac_lg;
5304 	BUG_ON(lg == NULL);
5305 
5306 	pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5307 	pa->pa_inode = NULL;
5308 
5309 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5310 
5311 	/*
5312 	 * We will later add the new pa to the right bucket
5313 	 * after updating the pa_free in ext4_mb_release_context
5314 	 */
5315 }
5316 
5317 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5318 {
5319 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5320 		ext4_mb_new_group_pa(ac);
5321 	else
5322 		ext4_mb_new_inode_pa(ac);
5323 }
5324 
5325 /*
5326  * finds all unused blocks in on-disk bitmap, frees them in
5327  * in-core bitmap and buddy.
5328  * @pa must be unlinked from inode and group lists, so that
5329  * nobody else can find/use it.
5330  * the caller MUST hold group/inode locks.
5331  * TODO: optimize the case when there are no in-core structures yet
5332  */
5333 static noinline_for_stack int
5334 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5335 			struct ext4_prealloc_space *pa)
5336 {
5337 	struct super_block *sb = e4b->bd_sb;
5338 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5339 	unsigned int end;
5340 	unsigned int next;
5341 	ext4_group_t group;
5342 	ext4_grpblk_t bit;
5343 	unsigned long long grp_blk_start;
5344 	int free = 0;
5345 
5346 	BUG_ON(pa->pa_deleted == 0);
5347 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5348 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5349 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5350 	end = bit + pa->pa_len;
5351 
5352 	while (bit < end) {
5353 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5354 		if (bit >= end)
5355 			break;
5356 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5357 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
5358 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5359 			 (unsigned) next - bit, (unsigned) group);
5360 		free += next - bit;
5361 
5362 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5363 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5364 						    EXT4_C2B(sbi, bit)),
5365 					       next - bit);
5366 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5367 		bit = next + 1;
5368 	}
5369 	if (free != pa->pa_free) {
5370 		ext4_msg(e4b->bd_sb, KERN_CRIT,
5371 			 "pa %p: logic %lu, phys. %lu, len %d",
5372 			 pa, (unsigned long) pa->pa_lstart,
5373 			 (unsigned long) pa->pa_pstart,
5374 			 pa->pa_len);
5375 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5376 					free, pa->pa_free);
5377 		/*
5378 		 * pa is already deleted so we use the value obtained
5379 		 * from the bitmap and continue.
5380 		 */
5381 	}
5382 	atomic_add(free, &sbi->s_mb_discarded);
5383 
5384 	return 0;
5385 }
5386 
5387 static noinline_for_stack int
5388 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5389 				struct ext4_prealloc_space *pa)
5390 {
5391 	struct super_block *sb = e4b->bd_sb;
5392 	ext4_group_t group;
5393 	ext4_grpblk_t bit;
5394 
5395 	trace_ext4_mb_release_group_pa(sb, pa);
5396 	BUG_ON(pa->pa_deleted == 0);
5397 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5398 	if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5399 		ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5400 			     e4b->bd_group, group, pa->pa_pstart);
5401 		return 0;
5402 	}
5403 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5404 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5405 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5406 
5407 	return 0;
5408 }
5409 
5410 /*
5411  * releases all preallocations in given group
5412  *
5413  * first, we need to decide discard policy:
5414  * - when do we discard
5415  *   1) ENOSPC
5416  * - how many do we discard
5417  *   1) how many requested
5418  */
5419 static noinline_for_stack int
5420 ext4_mb_discard_group_preallocations(struct super_block *sb,
5421 				     ext4_group_t group, int *busy)
5422 {
5423 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5424 	struct buffer_head *bitmap_bh = NULL;
5425 	struct ext4_prealloc_space *pa, *tmp;
5426 	LIST_HEAD(list);
5427 	struct ext4_buddy e4b;
5428 	struct ext4_inode_info *ei;
5429 	int err;
5430 	int free = 0;
5431 
5432 	if (!grp)
5433 		return 0;
5434 	mb_debug(sb, "discard preallocation for group %u\n", group);
5435 	if (list_empty(&grp->bb_prealloc_list))
5436 		goto out_dbg;
5437 
5438 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5439 	if (IS_ERR(bitmap_bh)) {
5440 		err = PTR_ERR(bitmap_bh);
5441 		ext4_error_err(sb, -err,
5442 			       "Error %d reading block bitmap for %u",
5443 			       err, group);
5444 		goto out_dbg;
5445 	}
5446 
5447 	err = ext4_mb_load_buddy(sb, group, &e4b);
5448 	if (err) {
5449 		ext4_warning(sb, "Error %d loading buddy information for %u",
5450 			     err, group);
5451 		put_bh(bitmap_bh);
5452 		goto out_dbg;
5453 	}
5454 
5455 	ext4_lock_group(sb, group);
5456 	list_for_each_entry_safe(pa, tmp,
5457 				&grp->bb_prealloc_list, pa_group_list) {
5458 		spin_lock(&pa->pa_lock);
5459 		if (atomic_read(&pa->pa_count)) {
5460 			spin_unlock(&pa->pa_lock);
5461 			*busy = 1;
5462 			continue;
5463 		}
5464 		if (pa->pa_deleted) {
5465 			spin_unlock(&pa->pa_lock);
5466 			continue;
5467 		}
5468 
5469 		/* seems this one can be freed ... */
5470 		ext4_mb_mark_pa_deleted(sb, pa);
5471 
5472 		if (!free)
5473 			this_cpu_inc(discard_pa_seq);
5474 
5475 		/* we can trust pa_free ... */
5476 		free += pa->pa_free;
5477 
5478 		spin_unlock(&pa->pa_lock);
5479 
5480 		list_del(&pa->pa_group_list);
5481 		list_add(&pa->u.pa_tmp_list, &list);
5482 	}
5483 
5484 	/* now free all selected PAs */
5485 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5486 
5487 		/* remove from object (inode or locality group) */
5488 		if (pa->pa_type == MB_GROUP_PA) {
5489 			spin_lock(pa->pa_node_lock.lg_lock);
5490 			list_del_rcu(&pa->pa_node.lg_list);
5491 			spin_unlock(pa->pa_node_lock.lg_lock);
5492 		} else {
5493 			write_lock(pa->pa_node_lock.inode_lock);
5494 			ei = EXT4_I(pa->pa_inode);
5495 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5496 			write_unlock(pa->pa_node_lock.inode_lock);
5497 		}
5498 
5499 		list_del(&pa->u.pa_tmp_list);
5500 
5501 		if (pa->pa_type == MB_GROUP_PA) {
5502 			ext4_mb_release_group_pa(&e4b, pa);
5503 			call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5504 		} else {
5505 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5506 			ext4_mb_pa_free(pa);
5507 		}
5508 	}
5509 
5510 	ext4_unlock_group(sb, group);
5511 	ext4_mb_unload_buddy(&e4b);
5512 	put_bh(bitmap_bh);
5513 out_dbg:
5514 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5515 		 free, group, grp->bb_free);
5516 	return free;
5517 }
5518 
5519 /*
5520  * releases all non-used preallocated blocks for given inode
5521  *
5522  * It's important to discard preallocations under i_data_sem
5523  * We don't want another block to be served from the prealloc
5524  * space when we are discarding the inode prealloc space.
5525  *
5526  * FIXME!! Make sure it is valid at all the call sites
5527  */
5528 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
5529 {
5530 	struct ext4_inode_info *ei = EXT4_I(inode);
5531 	struct super_block *sb = inode->i_sb;
5532 	struct buffer_head *bitmap_bh = NULL;
5533 	struct ext4_prealloc_space *pa, *tmp;
5534 	ext4_group_t group = 0;
5535 	LIST_HEAD(list);
5536 	struct ext4_buddy e4b;
5537 	struct rb_node *iter;
5538 	int err;
5539 
5540 	if (!S_ISREG(inode->i_mode)) {
5541 		return;
5542 	}
5543 
5544 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5545 		return;
5546 
5547 	mb_debug(sb, "discard preallocation for inode %lu\n",
5548 		 inode->i_ino);
5549 	trace_ext4_discard_preallocations(inode,
5550 			atomic_read(&ei->i_prealloc_active), needed);
5551 
5552 	if (needed == 0)
5553 		needed = UINT_MAX;
5554 
5555 repeat:
5556 	/* first, collect all pa's in the inode */
5557 	write_lock(&ei->i_prealloc_lock);
5558 	for (iter = rb_first(&ei->i_prealloc_node); iter && needed;
5559 	     iter = rb_next(iter)) {
5560 		pa = rb_entry(iter, struct ext4_prealloc_space,
5561 			      pa_node.inode_node);
5562 		BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5563 
5564 		spin_lock(&pa->pa_lock);
5565 		if (atomic_read(&pa->pa_count)) {
5566 			/* this shouldn't happen often - nobody should
5567 			 * use preallocation while we're discarding it */
5568 			spin_unlock(&pa->pa_lock);
5569 			write_unlock(&ei->i_prealloc_lock);
5570 			ext4_msg(sb, KERN_ERR,
5571 				 "uh-oh! used pa while discarding");
5572 			WARN_ON(1);
5573 			schedule_timeout_uninterruptible(HZ);
5574 			goto repeat;
5575 
5576 		}
5577 		if (pa->pa_deleted == 0) {
5578 			ext4_mb_mark_pa_deleted(sb, pa);
5579 			spin_unlock(&pa->pa_lock);
5580 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5581 			list_add(&pa->u.pa_tmp_list, &list);
5582 			needed--;
5583 			continue;
5584 		}
5585 
5586 		/* someone is deleting pa right now */
5587 		spin_unlock(&pa->pa_lock);
5588 		write_unlock(&ei->i_prealloc_lock);
5589 
5590 		/* we have to wait here because pa_deleted
5591 		 * doesn't mean pa is already unlinked from
5592 		 * the list. as we might be called from
5593 		 * ->clear_inode() the inode will get freed
5594 		 * and concurrent thread which is unlinking
5595 		 * pa from inode's list may access already
5596 		 * freed memory, bad-bad-bad */
5597 
5598 		/* XXX: if this happens too often, we can
5599 		 * add a flag to force wait only in case
5600 		 * of ->clear_inode(), but not in case of
5601 		 * regular truncate */
5602 		schedule_timeout_uninterruptible(HZ);
5603 		goto repeat;
5604 	}
5605 	write_unlock(&ei->i_prealloc_lock);
5606 
5607 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5608 		BUG_ON(pa->pa_type != MB_INODE_PA);
5609 		group = ext4_get_group_number(sb, pa->pa_pstart);
5610 
5611 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5612 					     GFP_NOFS|__GFP_NOFAIL);
5613 		if (err) {
5614 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5615 				       err, group);
5616 			continue;
5617 		}
5618 
5619 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5620 		if (IS_ERR(bitmap_bh)) {
5621 			err = PTR_ERR(bitmap_bh);
5622 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5623 				       err, group);
5624 			ext4_mb_unload_buddy(&e4b);
5625 			continue;
5626 		}
5627 
5628 		ext4_lock_group(sb, group);
5629 		list_del(&pa->pa_group_list);
5630 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5631 		ext4_unlock_group(sb, group);
5632 
5633 		ext4_mb_unload_buddy(&e4b);
5634 		put_bh(bitmap_bh);
5635 
5636 		list_del(&pa->u.pa_tmp_list);
5637 		ext4_mb_pa_free(pa);
5638 	}
5639 }
5640 
5641 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5642 {
5643 	struct ext4_prealloc_space *pa;
5644 
5645 	BUG_ON(ext4_pspace_cachep == NULL);
5646 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5647 	if (!pa)
5648 		return -ENOMEM;
5649 	atomic_set(&pa->pa_count, 1);
5650 	ac->ac_pa = pa;
5651 	return 0;
5652 }
5653 
5654 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5655 {
5656 	struct ext4_prealloc_space *pa = ac->ac_pa;
5657 
5658 	BUG_ON(!pa);
5659 	ac->ac_pa = NULL;
5660 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5661 	/*
5662 	 * current function is only called due to an error or due to
5663 	 * len of found blocks < len of requested blocks hence the PA has not
5664 	 * been added to grp->bb_prealloc_list. So we don't need to lock it
5665 	 */
5666 	pa->pa_deleted = 1;
5667 	ext4_mb_pa_free(pa);
5668 }
5669 
5670 #ifdef CONFIG_EXT4_DEBUG
5671 static inline void ext4_mb_show_pa(struct super_block *sb)
5672 {
5673 	ext4_group_t i, ngroups;
5674 
5675 	if (ext4_forced_shutdown(sb))
5676 		return;
5677 
5678 	ngroups = ext4_get_groups_count(sb);
5679 	mb_debug(sb, "groups: ");
5680 	for (i = 0; i < ngroups; i++) {
5681 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5682 		struct ext4_prealloc_space *pa;
5683 		ext4_grpblk_t start;
5684 		struct list_head *cur;
5685 
5686 		if (!grp)
5687 			continue;
5688 		ext4_lock_group(sb, i);
5689 		list_for_each(cur, &grp->bb_prealloc_list) {
5690 			pa = list_entry(cur, struct ext4_prealloc_space,
5691 					pa_group_list);
5692 			spin_lock(&pa->pa_lock);
5693 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5694 						     NULL, &start);
5695 			spin_unlock(&pa->pa_lock);
5696 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5697 				 pa->pa_len);
5698 		}
5699 		ext4_unlock_group(sb, i);
5700 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5701 			 grp->bb_fragments);
5702 	}
5703 }
5704 
5705 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5706 {
5707 	struct super_block *sb = ac->ac_sb;
5708 
5709 	if (ext4_forced_shutdown(sb))
5710 		return;
5711 
5712 	mb_debug(sb, "Can't allocate:"
5713 			" Allocation context details:");
5714 	mb_debug(sb, "status %u flags 0x%x",
5715 			ac->ac_status, ac->ac_flags);
5716 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5717 			"goal %lu/%lu/%lu@%lu, "
5718 			"best %lu/%lu/%lu@%lu cr %d",
5719 			(unsigned long)ac->ac_o_ex.fe_group,
5720 			(unsigned long)ac->ac_o_ex.fe_start,
5721 			(unsigned long)ac->ac_o_ex.fe_len,
5722 			(unsigned long)ac->ac_o_ex.fe_logical,
5723 			(unsigned long)ac->ac_g_ex.fe_group,
5724 			(unsigned long)ac->ac_g_ex.fe_start,
5725 			(unsigned long)ac->ac_g_ex.fe_len,
5726 			(unsigned long)ac->ac_g_ex.fe_logical,
5727 			(unsigned long)ac->ac_b_ex.fe_group,
5728 			(unsigned long)ac->ac_b_ex.fe_start,
5729 			(unsigned long)ac->ac_b_ex.fe_len,
5730 			(unsigned long)ac->ac_b_ex.fe_logical,
5731 			(int)ac->ac_criteria);
5732 	mb_debug(sb, "%u found", ac->ac_found);
5733 	mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5734 	if (ac->ac_pa)
5735 		mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5736 			 "group pa" : "inode pa");
5737 	ext4_mb_show_pa(sb);
5738 }
5739 #else
5740 static inline void ext4_mb_show_pa(struct super_block *sb)
5741 {
5742 }
5743 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5744 {
5745 	ext4_mb_show_pa(ac->ac_sb);
5746 }
5747 #endif
5748 
5749 /*
5750  * We use locality group preallocation for small size file. The size of the
5751  * file is determined by the current size or the resulting size after
5752  * allocation which ever is larger
5753  *
5754  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5755  */
5756 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5757 {
5758 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5759 	int bsbits = ac->ac_sb->s_blocksize_bits;
5760 	loff_t size, isize;
5761 	bool inode_pa_eligible, group_pa_eligible;
5762 
5763 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5764 		return;
5765 
5766 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5767 		return;
5768 
5769 	group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5770 	inode_pa_eligible = true;
5771 	size = extent_logical_end(sbi, &ac->ac_o_ex);
5772 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5773 		>> bsbits;
5774 
5775 	/* No point in using inode preallocation for closed files */
5776 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5777 	    !inode_is_open_for_write(ac->ac_inode))
5778 		inode_pa_eligible = false;
5779 
5780 	size = max(size, isize);
5781 	/* Don't use group allocation for large files */
5782 	if (size > sbi->s_mb_stream_request)
5783 		group_pa_eligible = false;
5784 
5785 	if (!group_pa_eligible) {
5786 		if (inode_pa_eligible)
5787 			ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5788 		else
5789 			ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5790 		return;
5791 	}
5792 
5793 	BUG_ON(ac->ac_lg != NULL);
5794 	/*
5795 	 * locality group prealloc space are per cpu. The reason for having
5796 	 * per cpu locality group is to reduce the contention between block
5797 	 * request from multiple CPUs.
5798 	 */
5799 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5800 
5801 	/* we're going to use group allocation */
5802 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5803 
5804 	/* serialize all allocations in the group */
5805 	mutex_lock(&ac->ac_lg->lg_mutex);
5806 }
5807 
5808 static noinline_for_stack void
5809 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5810 				struct ext4_allocation_request *ar)
5811 {
5812 	struct super_block *sb = ar->inode->i_sb;
5813 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5814 	struct ext4_super_block *es = sbi->s_es;
5815 	ext4_group_t group;
5816 	unsigned int len;
5817 	ext4_fsblk_t goal;
5818 	ext4_grpblk_t block;
5819 
5820 	/* we can't allocate > group size */
5821 	len = ar->len;
5822 
5823 	/* just a dirty hack to filter too big requests  */
5824 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5825 		len = EXT4_CLUSTERS_PER_GROUP(sb);
5826 
5827 	/* start searching from the goal */
5828 	goal = ar->goal;
5829 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5830 			goal >= ext4_blocks_count(es))
5831 		goal = le32_to_cpu(es->s_first_data_block);
5832 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5833 
5834 	/* set up allocation goals */
5835 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5836 	ac->ac_status = AC_STATUS_CONTINUE;
5837 	ac->ac_sb = sb;
5838 	ac->ac_inode = ar->inode;
5839 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5840 	ac->ac_o_ex.fe_group = group;
5841 	ac->ac_o_ex.fe_start = block;
5842 	ac->ac_o_ex.fe_len = len;
5843 	ac->ac_g_ex = ac->ac_o_ex;
5844 	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5845 	ac->ac_flags = ar->flags;
5846 
5847 	/* we have to define context: we'll work with a file or
5848 	 * locality group. this is a policy, actually */
5849 	ext4_mb_group_or_file(ac);
5850 
5851 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5852 			"left: %u/%u, right %u/%u to %swritable\n",
5853 			(unsigned) ar->len, (unsigned) ar->logical,
5854 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5855 			(unsigned) ar->lleft, (unsigned) ar->pleft,
5856 			(unsigned) ar->lright, (unsigned) ar->pright,
5857 			inode_is_open_for_write(ar->inode) ? "" : "non-");
5858 }
5859 
5860 static noinline_for_stack void
5861 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5862 					struct ext4_locality_group *lg,
5863 					int order, int total_entries)
5864 {
5865 	ext4_group_t group = 0;
5866 	struct ext4_buddy e4b;
5867 	LIST_HEAD(discard_list);
5868 	struct ext4_prealloc_space *pa, *tmp;
5869 
5870 	mb_debug(sb, "discard locality group preallocation\n");
5871 
5872 	spin_lock(&lg->lg_prealloc_lock);
5873 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5874 				pa_node.lg_list,
5875 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5876 		spin_lock(&pa->pa_lock);
5877 		if (atomic_read(&pa->pa_count)) {
5878 			/*
5879 			 * This is the pa that we just used
5880 			 * for block allocation. So don't
5881 			 * free that
5882 			 */
5883 			spin_unlock(&pa->pa_lock);
5884 			continue;
5885 		}
5886 		if (pa->pa_deleted) {
5887 			spin_unlock(&pa->pa_lock);
5888 			continue;
5889 		}
5890 		/* only lg prealloc space */
5891 		BUG_ON(pa->pa_type != MB_GROUP_PA);
5892 
5893 		/* seems this one can be freed ... */
5894 		ext4_mb_mark_pa_deleted(sb, pa);
5895 		spin_unlock(&pa->pa_lock);
5896 
5897 		list_del_rcu(&pa->pa_node.lg_list);
5898 		list_add(&pa->u.pa_tmp_list, &discard_list);
5899 
5900 		total_entries--;
5901 		if (total_entries <= 5) {
5902 			/*
5903 			 * we want to keep only 5 entries
5904 			 * allowing it to grow to 8. This
5905 			 * mak sure we don't call discard
5906 			 * soon for this list.
5907 			 */
5908 			break;
5909 		}
5910 	}
5911 	spin_unlock(&lg->lg_prealloc_lock);
5912 
5913 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5914 		int err;
5915 
5916 		group = ext4_get_group_number(sb, pa->pa_pstart);
5917 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5918 					     GFP_NOFS|__GFP_NOFAIL);
5919 		if (err) {
5920 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5921 				       err, group);
5922 			continue;
5923 		}
5924 		ext4_lock_group(sb, group);
5925 		list_del(&pa->pa_group_list);
5926 		ext4_mb_release_group_pa(&e4b, pa);
5927 		ext4_unlock_group(sb, group);
5928 
5929 		ext4_mb_unload_buddy(&e4b);
5930 		list_del(&pa->u.pa_tmp_list);
5931 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5932 	}
5933 }
5934 
5935 /*
5936  * We have incremented pa_count. So it cannot be freed at this
5937  * point. Also we hold lg_mutex. So no parallel allocation is
5938  * possible from this lg. That means pa_free cannot be updated.
5939  *
5940  * A parallel ext4_mb_discard_group_preallocations is possible.
5941  * which can cause the lg_prealloc_list to be updated.
5942  */
5943 
5944 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5945 {
5946 	int order, added = 0, lg_prealloc_count = 1;
5947 	struct super_block *sb = ac->ac_sb;
5948 	struct ext4_locality_group *lg = ac->ac_lg;
5949 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5950 
5951 	order = fls(pa->pa_free) - 1;
5952 	if (order > PREALLOC_TB_SIZE - 1)
5953 		/* The max size of hash table is PREALLOC_TB_SIZE */
5954 		order = PREALLOC_TB_SIZE - 1;
5955 	/* Add the prealloc space to lg */
5956 	spin_lock(&lg->lg_prealloc_lock);
5957 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5958 				pa_node.lg_list,
5959 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5960 		spin_lock(&tmp_pa->pa_lock);
5961 		if (tmp_pa->pa_deleted) {
5962 			spin_unlock(&tmp_pa->pa_lock);
5963 			continue;
5964 		}
5965 		if (!added && pa->pa_free < tmp_pa->pa_free) {
5966 			/* Add to the tail of the previous entry */
5967 			list_add_tail_rcu(&pa->pa_node.lg_list,
5968 						&tmp_pa->pa_node.lg_list);
5969 			added = 1;
5970 			/*
5971 			 * we want to count the total
5972 			 * number of entries in the list
5973 			 */
5974 		}
5975 		spin_unlock(&tmp_pa->pa_lock);
5976 		lg_prealloc_count++;
5977 	}
5978 	if (!added)
5979 		list_add_tail_rcu(&pa->pa_node.lg_list,
5980 					&lg->lg_prealloc_list[order]);
5981 	spin_unlock(&lg->lg_prealloc_lock);
5982 
5983 	/* Now trim the list to be not more than 8 elements */
5984 	if (lg_prealloc_count > 8)
5985 		ext4_mb_discard_lg_preallocations(sb, lg,
5986 						  order, lg_prealloc_count);
5987 }
5988 
5989 /*
5990  * release all resource we used in allocation
5991  */
5992 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5993 {
5994 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5995 	struct ext4_prealloc_space *pa = ac->ac_pa;
5996 	if (pa) {
5997 		if (pa->pa_type == MB_GROUP_PA) {
5998 			/* see comment in ext4_mb_use_group_pa() */
5999 			spin_lock(&pa->pa_lock);
6000 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
6001 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
6002 			pa->pa_free -= ac->ac_b_ex.fe_len;
6003 			pa->pa_len -= ac->ac_b_ex.fe_len;
6004 			spin_unlock(&pa->pa_lock);
6005 
6006 			/*
6007 			 * We want to add the pa to the right bucket.
6008 			 * Remove it from the list and while adding
6009 			 * make sure the list to which we are adding
6010 			 * doesn't grow big.
6011 			 */
6012 			if (likely(pa->pa_free)) {
6013 				spin_lock(pa->pa_node_lock.lg_lock);
6014 				list_del_rcu(&pa->pa_node.lg_list);
6015 				spin_unlock(pa->pa_node_lock.lg_lock);
6016 				ext4_mb_add_n_trim(ac);
6017 			}
6018 		}
6019 
6020 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
6021 	}
6022 	if (ac->ac_bitmap_page)
6023 		put_page(ac->ac_bitmap_page);
6024 	if (ac->ac_buddy_page)
6025 		put_page(ac->ac_buddy_page);
6026 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
6027 		mutex_unlock(&ac->ac_lg->lg_mutex);
6028 	ext4_mb_collect_stats(ac);
6029 	return 0;
6030 }
6031 
6032 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6033 {
6034 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6035 	int ret;
6036 	int freed = 0, busy = 0;
6037 	int retry = 0;
6038 
6039 	trace_ext4_mb_discard_preallocations(sb, needed);
6040 
6041 	if (needed == 0)
6042 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6043  repeat:
6044 	for (i = 0; i < ngroups && needed > 0; i++) {
6045 		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6046 		freed += ret;
6047 		needed -= ret;
6048 		cond_resched();
6049 	}
6050 
6051 	if (needed > 0 && busy && ++retry < 3) {
6052 		busy = 0;
6053 		goto repeat;
6054 	}
6055 
6056 	return freed;
6057 }
6058 
6059 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6060 			struct ext4_allocation_context *ac, u64 *seq)
6061 {
6062 	int freed;
6063 	u64 seq_retry = 0;
6064 	bool ret = false;
6065 
6066 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6067 	if (freed) {
6068 		ret = true;
6069 		goto out_dbg;
6070 	}
6071 	seq_retry = ext4_get_discard_pa_seq_sum();
6072 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6073 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6074 		*seq = seq_retry;
6075 		ret = true;
6076 	}
6077 
6078 out_dbg:
6079 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6080 	return ret;
6081 }
6082 
6083 /*
6084  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6085  * linearly starting at the goal block and also excludes the blocks which
6086  * are going to be in use after fast commit replay.
6087  */
6088 static ext4_fsblk_t
6089 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6090 {
6091 	struct buffer_head *bitmap_bh;
6092 	struct super_block *sb = ar->inode->i_sb;
6093 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6094 	ext4_group_t group, nr;
6095 	ext4_grpblk_t blkoff;
6096 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6097 	ext4_grpblk_t i = 0;
6098 	ext4_fsblk_t goal, block;
6099 	struct ext4_super_block *es = sbi->s_es;
6100 
6101 	goal = ar->goal;
6102 	if (goal < le32_to_cpu(es->s_first_data_block) ||
6103 			goal >= ext4_blocks_count(es))
6104 		goal = le32_to_cpu(es->s_first_data_block);
6105 
6106 	ar->len = 0;
6107 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6108 	for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6109 		bitmap_bh = ext4_read_block_bitmap(sb, group);
6110 		if (IS_ERR(bitmap_bh)) {
6111 			*errp = PTR_ERR(bitmap_bh);
6112 			pr_warn("Failed to read block bitmap\n");
6113 			return 0;
6114 		}
6115 
6116 		while (1) {
6117 			i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6118 						blkoff);
6119 			if (i >= max)
6120 				break;
6121 			if (ext4_fc_replay_check_excluded(sb,
6122 				ext4_group_first_block_no(sb, group) +
6123 				EXT4_C2B(sbi, i))) {
6124 				blkoff = i + 1;
6125 			} else
6126 				break;
6127 		}
6128 		brelse(bitmap_bh);
6129 		if (i < max)
6130 			break;
6131 
6132 		if (++group >= ext4_get_groups_count(sb))
6133 			group = 0;
6134 
6135 		blkoff = 0;
6136 	}
6137 
6138 	if (i >= max) {
6139 		*errp = -ENOSPC;
6140 		return 0;
6141 	}
6142 
6143 	block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6144 	ext4_mb_mark_bb(sb, block, 1, 1);
6145 	ar->len = 1;
6146 
6147 	return block;
6148 }
6149 
6150 /*
6151  * Main entry point into mballoc to allocate blocks
6152  * it tries to use preallocation first, then falls back
6153  * to usual allocation
6154  */
6155 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6156 				struct ext4_allocation_request *ar, int *errp)
6157 {
6158 	struct ext4_allocation_context *ac = NULL;
6159 	struct ext4_sb_info *sbi;
6160 	struct super_block *sb;
6161 	ext4_fsblk_t block = 0;
6162 	unsigned int inquota = 0;
6163 	unsigned int reserv_clstrs = 0;
6164 	int retries = 0;
6165 	u64 seq;
6166 
6167 	might_sleep();
6168 	sb = ar->inode->i_sb;
6169 	sbi = EXT4_SB(sb);
6170 
6171 	trace_ext4_request_blocks(ar);
6172 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
6173 		return ext4_mb_new_blocks_simple(ar, errp);
6174 
6175 	/* Allow to use superuser reservation for quota file */
6176 	if (ext4_is_quota_file(ar->inode))
6177 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6178 
6179 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6180 		/* Without delayed allocation we need to verify
6181 		 * there is enough free blocks to do block allocation
6182 		 * and verify allocation doesn't exceed the quota limits.
6183 		 */
6184 		while (ar->len &&
6185 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6186 
6187 			/* let others to free the space */
6188 			cond_resched();
6189 			ar->len = ar->len >> 1;
6190 		}
6191 		if (!ar->len) {
6192 			ext4_mb_show_pa(sb);
6193 			*errp = -ENOSPC;
6194 			return 0;
6195 		}
6196 		reserv_clstrs = ar->len;
6197 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6198 			dquot_alloc_block_nofail(ar->inode,
6199 						 EXT4_C2B(sbi, ar->len));
6200 		} else {
6201 			while (ar->len &&
6202 				dquot_alloc_block(ar->inode,
6203 						  EXT4_C2B(sbi, ar->len))) {
6204 
6205 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6206 				ar->len--;
6207 			}
6208 		}
6209 		inquota = ar->len;
6210 		if (ar->len == 0) {
6211 			*errp = -EDQUOT;
6212 			goto out;
6213 		}
6214 	}
6215 
6216 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6217 	if (!ac) {
6218 		ar->len = 0;
6219 		*errp = -ENOMEM;
6220 		goto out;
6221 	}
6222 
6223 	ext4_mb_initialize_context(ac, ar);
6224 
6225 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6226 	seq = this_cpu_read(discard_pa_seq);
6227 	if (!ext4_mb_use_preallocated(ac)) {
6228 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6229 		ext4_mb_normalize_request(ac, ar);
6230 
6231 		*errp = ext4_mb_pa_alloc(ac);
6232 		if (*errp)
6233 			goto errout;
6234 repeat:
6235 		/* allocate space in core */
6236 		*errp = ext4_mb_regular_allocator(ac);
6237 		/*
6238 		 * pa allocated above is added to grp->bb_prealloc_list only
6239 		 * when we were able to allocate some block i.e. when
6240 		 * ac->ac_status == AC_STATUS_FOUND.
6241 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6242 		 * So we have to free this pa here itself.
6243 		 */
6244 		if (*errp) {
6245 			ext4_mb_pa_put_free(ac);
6246 			ext4_discard_allocated_blocks(ac);
6247 			goto errout;
6248 		}
6249 		if (ac->ac_status == AC_STATUS_FOUND &&
6250 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6251 			ext4_mb_pa_put_free(ac);
6252 	}
6253 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6254 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6255 		if (*errp) {
6256 			ext4_discard_allocated_blocks(ac);
6257 			goto errout;
6258 		} else {
6259 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6260 			ar->len = ac->ac_b_ex.fe_len;
6261 		}
6262 	} else {
6263 		if (++retries < 3 &&
6264 		    ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6265 			goto repeat;
6266 		/*
6267 		 * If block allocation fails then the pa allocated above
6268 		 * needs to be freed here itself.
6269 		 */
6270 		ext4_mb_pa_put_free(ac);
6271 		*errp = -ENOSPC;
6272 	}
6273 
6274 	if (*errp) {
6275 errout:
6276 		ac->ac_b_ex.fe_len = 0;
6277 		ar->len = 0;
6278 		ext4_mb_show_ac(ac);
6279 	}
6280 	ext4_mb_release_context(ac);
6281 	kmem_cache_free(ext4_ac_cachep, ac);
6282 out:
6283 	if (inquota && ar->len < inquota)
6284 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6285 	if (!ar->len) {
6286 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6287 			/* release all the reserved blocks if non delalloc */
6288 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6289 						reserv_clstrs);
6290 	}
6291 
6292 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6293 
6294 	return block;
6295 }
6296 
6297 /*
6298  * We can merge two free data extents only if the physical blocks
6299  * are contiguous, AND the extents were freed by the same transaction,
6300  * AND the blocks are associated with the same group.
6301  */
6302 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6303 					struct ext4_free_data *entry,
6304 					struct ext4_free_data *new_entry,
6305 					struct rb_root *entry_rb_root)
6306 {
6307 	if ((entry->efd_tid != new_entry->efd_tid) ||
6308 	    (entry->efd_group != new_entry->efd_group))
6309 		return;
6310 	if (entry->efd_start_cluster + entry->efd_count ==
6311 	    new_entry->efd_start_cluster) {
6312 		new_entry->efd_start_cluster = entry->efd_start_cluster;
6313 		new_entry->efd_count += entry->efd_count;
6314 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6315 		   entry->efd_start_cluster) {
6316 		new_entry->efd_count += entry->efd_count;
6317 	} else
6318 		return;
6319 	spin_lock(&sbi->s_md_lock);
6320 	list_del(&entry->efd_list);
6321 	spin_unlock(&sbi->s_md_lock);
6322 	rb_erase(&entry->efd_node, entry_rb_root);
6323 	kmem_cache_free(ext4_free_data_cachep, entry);
6324 }
6325 
6326 static noinline_for_stack void
6327 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6328 		      struct ext4_free_data *new_entry)
6329 {
6330 	ext4_group_t group = e4b->bd_group;
6331 	ext4_grpblk_t cluster;
6332 	ext4_grpblk_t clusters = new_entry->efd_count;
6333 	struct ext4_free_data *entry;
6334 	struct ext4_group_info *db = e4b->bd_info;
6335 	struct super_block *sb = e4b->bd_sb;
6336 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6337 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
6338 	struct rb_node *parent = NULL, *new_node;
6339 
6340 	BUG_ON(!ext4_handle_valid(handle));
6341 	BUG_ON(e4b->bd_bitmap_page == NULL);
6342 	BUG_ON(e4b->bd_buddy_page == NULL);
6343 
6344 	new_node = &new_entry->efd_node;
6345 	cluster = new_entry->efd_start_cluster;
6346 
6347 	if (!*n) {
6348 		/* first free block exent. We need to
6349 		   protect buddy cache from being freed,
6350 		 * otherwise we'll refresh it from
6351 		 * on-disk bitmap and lose not-yet-available
6352 		 * blocks */
6353 		get_page(e4b->bd_buddy_page);
6354 		get_page(e4b->bd_bitmap_page);
6355 	}
6356 	while (*n) {
6357 		parent = *n;
6358 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
6359 		if (cluster < entry->efd_start_cluster)
6360 			n = &(*n)->rb_left;
6361 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6362 			n = &(*n)->rb_right;
6363 		else {
6364 			ext4_grp_locked_error(sb, group, 0,
6365 				ext4_group_first_block_no(sb, group) +
6366 				EXT4_C2B(sbi, cluster),
6367 				"Block already on to-be-freed list");
6368 			kmem_cache_free(ext4_free_data_cachep, new_entry);
6369 			return;
6370 		}
6371 	}
6372 
6373 	rb_link_node(new_node, parent, n);
6374 	rb_insert_color(new_node, &db->bb_free_root);
6375 
6376 	/* Now try to see the extent can be merged to left and right */
6377 	node = rb_prev(new_node);
6378 	if (node) {
6379 		entry = rb_entry(node, struct ext4_free_data, efd_node);
6380 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6381 					    &(db->bb_free_root));
6382 	}
6383 
6384 	node = rb_next(new_node);
6385 	if (node) {
6386 		entry = rb_entry(node, struct ext4_free_data, efd_node);
6387 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6388 					    &(db->bb_free_root));
6389 	}
6390 
6391 	spin_lock(&sbi->s_md_lock);
6392 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
6393 	sbi->s_mb_free_pending += clusters;
6394 	spin_unlock(&sbi->s_md_lock);
6395 }
6396 
6397 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6398 					unsigned long count)
6399 {
6400 	struct buffer_head *bitmap_bh;
6401 	struct super_block *sb = inode->i_sb;
6402 	struct ext4_group_desc *gdp;
6403 	struct buffer_head *gdp_bh;
6404 	ext4_group_t group;
6405 	ext4_grpblk_t blkoff;
6406 	int already_freed = 0, err, i;
6407 
6408 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6409 	bitmap_bh = ext4_read_block_bitmap(sb, group);
6410 	if (IS_ERR(bitmap_bh)) {
6411 		pr_warn("Failed to read block bitmap\n");
6412 		return;
6413 	}
6414 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
6415 	if (!gdp)
6416 		goto err_out;
6417 
6418 	for (i = 0; i < count; i++) {
6419 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
6420 			already_freed++;
6421 	}
6422 	mb_clear_bits(bitmap_bh->b_data, blkoff, count);
6423 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
6424 	if (err)
6425 		goto err_out;
6426 	ext4_free_group_clusters_set(
6427 		sb, gdp, ext4_free_group_clusters(sb, gdp) +
6428 		count - already_freed);
6429 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6430 	ext4_group_desc_csum_set(sb, group, gdp);
6431 	ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
6432 	sync_dirty_buffer(bitmap_bh);
6433 	sync_dirty_buffer(gdp_bh);
6434 
6435 err_out:
6436 	brelse(bitmap_bh);
6437 }
6438 
6439 /**
6440  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6441  *			Used by ext4_free_blocks()
6442  * @handle:		handle for this transaction
6443  * @inode:		inode
6444  * @block:		starting physical block to be freed
6445  * @count:		number of blocks to be freed
6446  * @flags:		flags used by ext4_free_blocks
6447  */
6448 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6449 			       ext4_fsblk_t block, unsigned long count,
6450 			       int flags)
6451 {
6452 	struct buffer_head *bitmap_bh = NULL;
6453 	struct super_block *sb = inode->i_sb;
6454 	struct ext4_group_desc *gdp;
6455 	struct ext4_group_info *grp;
6456 	unsigned int overflow;
6457 	ext4_grpblk_t bit;
6458 	struct buffer_head *gd_bh;
6459 	ext4_group_t block_group;
6460 	struct ext4_sb_info *sbi;
6461 	struct ext4_buddy e4b;
6462 	unsigned int count_clusters;
6463 	int err = 0;
6464 	int ret;
6465 
6466 	sbi = EXT4_SB(sb);
6467 
6468 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6469 	    !ext4_inode_block_valid(inode, block, count)) {
6470 		ext4_error(sb, "Freeing blocks in system zone - "
6471 			   "Block = %llu, count = %lu", block, count);
6472 		/* err = 0. ext4_std_error should be a no op */
6473 		goto error_return;
6474 	}
6475 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6476 
6477 do_more:
6478 	overflow = 0;
6479 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6480 
6481 	grp = ext4_get_group_info(sb, block_group);
6482 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6483 		return;
6484 
6485 	/*
6486 	 * Check to see if we are freeing blocks across a group
6487 	 * boundary.
6488 	 */
6489 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6490 		overflow = EXT4_C2B(sbi, bit) + count -
6491 			EXT4_BLOCKS_PER_GROUP(sb);
6492 		count -= overflow;
6493 		/* The range changed so it's no longer validated */
6494 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6495 	}
6496 	count_clusters = EXT4_NUM_B2C(sbi, count);
6497 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6498 	if (IS_ERR(bitmap_bh)) {
6499 		err = PTR_ERR(bitmap_bh);
6500 		bitmap_bh = NULL;
6501 		goto error_return;
6502 	}
6503 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
6504 	if (!gdp) {
6505 		err = -EIO;
6506 		goto error_return;
6507 	}
6508 
6509 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6510 	    !ext4_inode_block_valid(inode, block, count)) {
6511 		ext4_error(sb, "Freeing blocks in system zone - "
6512 			   "Block = %llu, count = %lu", block, count);
6513 		/* err = 0. ext4_std_error should be a no op */
6514 		goto error_return;
6515 	}
6516 
6517 	BUFFER_TRACE(bitmap_bh, "getting write access");
6518 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6519 					    EXT4_JTR_NONE);
6520 	if (err)
6521 		goto error_return;
6522 
6523 	/*
6524 	 * We are about to modify some metadata.  Call the journal APIs
6525 	 * to unshare ->b_data if a currently-committing transaction is
6526 	 * using it
6527 	 */
6528 	BUFFER_TRACE(gd_bh, "get_write_access");
6529 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6530 	if (err)
6531 		goto error_return;
6532 #ifdef AGGRESSIVE_CHECK
6533 	{
6534 		int i;
6535 		for (i = 0; i < count_clusters; i++)
6536 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
6537 	}
6538 #endif
6539 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6540 
6541 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6542 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6543 				     GFP_NOFS|__GFP_NOFAIL);
6544 	if (err)
6545 		goto error_return;
6546 
6547 	/*
6548 	 * We need to make sure we don't reuse the freed block until after the
6549 	 * transaction is committed. We make an exception if the inode is to be
6550 	 * written in writeback mode since writeback mode has weak data
6551 	 * consistency guarantees.
6552 	 */
6553 	if (ext4_handle_valid(handle) &&
6554 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6555 	     !ext4_should_writeback_data(inode))) {
6556 		struct ext4_free_data *new_entry;
6557 		/*
6558 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6559 		 * to fail.
6560 		 */
6561 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6562 				GFP_NOFS|__GFP_NOFAIL);
6563 		new_entry->efd_start_cluster = bit;
6564 		new_entry->efd_group = block_group;
6565 		new_entry->efd_count = count_clusters;
6566 		new_entry->efd_tid = handle->h_transaction->t_tid;
6567 
6568 		ext4_lock_group(sb, block_group);
6569 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6570 		ext4_mb_free_metadata(handle, &e4b, new_entry);
6571 	} else {
6572 		/* need to update group_info->bb_free and bitmap
6573 		 * with group lock held. generate_buddy look at
6574 		 * them with group lock_held
6575 		 */
6576 		if (test_opt(sb, DISCARD)) {
6577 			err = ext4_issue_discard(sb, block_group, bit,
6578 						 count_clusters, NULL);
6579 			if (err && err != -EOPNOTSUPP)
6580 				ext4_msg(sb, KERN_WARNING, "discard request in"
6581 					 " group:%u block:%d count:%lu failed"
6582 					 " with %d", block_group, bit, count,
6583 					 err);
6584 		} else
6585 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6586 
6587 		ext4_lock_group(sb, block_group);
6588 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6589 		mb_free_blocks(inode, &e4b, bit, count_clusters);
6590 	}
6591 
6592 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
6593 	ext4_free_group_clusters_set(sb, gdp, ret);
6594 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6595 	ext4_group_desc_csum_set(sb, block_group, gdp);
6596 	ext4_unlock_group(sb, block_group);
6597 
6598 	if (sbi->s_log_groups_per_flex) {
6599 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6600 		atomic64_add(count_clusters,
6601 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6602 						  flex_group)->free_clusters);
6603 	}
6604 
6605 	/*
6606 	 * on a bigalloc file system, defer the s_freeclusters_counter
6607 	 * update to the caller (ext4_remove_space and friends) so they
6608 	 * can determine if a cluster freed here should be rereserved
6609 	 */
6610 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6611 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6612 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6613 		percpu_counter_add(&sbi->s_freeclusters_counter,
6614 				   count_clusters);
6615 	}
6616 
6617 	ext4_mb_unload_buddy(&e4b);
6618 
6619 	/* We dirtied the bitmap block */
6620 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6621 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6622 
6623 	/* And the group descriptor block */
6624 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6625 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6626 	if (!err)
6627 		err = ret;
6628 
6629 	if (overflow && !err) {
6630 		block += count;
6631 		count = overflow;
6632 		put_bh(bitmap_bh);
6633 		/* The range changed so it's no longer validated */
6634 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6635 		goto do_more;
6636 	}
6637 error_return:
6638 	brelse(bitmap_bh);
6639 	ext4_std_error(sb, err);
6640 }
6641 
6642 /**
6643  * ext4_free_blocks() -- Free given blocks and update quota
6644  * @handle:		handle for this transaction
6645  * @inode:		inode
6646  * @bh:			optional buffer of the block to be freed
6647  * @block:		starting physical block to be freed
6648  * @count:		number of blocks to be freed
6649  * @flags:		flags used by ext4_free_blocks
6650  */
6651 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6652 		      struct buffer_head *bh, ext4_fsblk_t block,
6653 		      unsigned long count, int flags)
6654 {
6655 	struct super_block *sb = inode->i_sb;
6656 	unsigned int overflow;
6657 	struct ext4_sb_info *sbi;
6658 
6659 	sbi = EXT4_SB(sb);
6660 
6661 	if (bh) {
6662 		if (block)
6663 			BUG_ON(block != bh->b_blocknr);
6664 		else
6665 			block = bh->b_blocknr;
6666 	}
6667 
6668 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6669 		ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6670 		return;
6671 	}
6672 
6673 	might_sleep();
6674 
6675 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6676 	    !ext4_inode_block_valid(inode, block, count)) {
6677 		ext4_error(sb, "Freeing blocks not in datazone - "
6678 			   "block = %llu, count = %lu", block, count);
6679 		return;
6680 	}
6681 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6682 
6683 	ext4_debug("freeing block %llu\n", block);
6684 	trace_ext4_free_blocks(inode, block, count, flags);
6685 
6686 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6687 		BUG_ON(count > 1);
6688 
6689 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6690 			    inode, bh, block);
6691 	}
6692 
6693 	/*
6694 	 * If the extent to be freed does not begin on a cluster
6695 	 * boundary, we need to deal with partial clusters at the
6696 	 * beginning and end of the extent.  Normally we will free
6697 	 * blocks at the beginning or the end unless we are explicitly
6698 	 * requested to avoid doing so.
6699 	 */
6700 	overflow = EXT4_PBLK_COFF(sbi, block);
6701 	if (overflow) {
6702 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6703 			overflow = sbi->s_cluster_ratio - overflow;
6704 			block += overflow;
6705 			if (count > overflow)
6706 				count -= overflow;
6707 			else
6708 				return;
6709 		} else {
6710 			block -= overflow;
6711 			count += overflow;
6712 		}
6713 		/* The range changed so it's no longer validated */
6714 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6715 	}
6716 	overflow = EXT4_LBLK_COFF(sbi, count);
6717 	if (overflow) {
6718 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6719 			if (count > overflow)
6720 				count -= overflow;
6721 			else
6722 				return;
6723 		} else
6724 			count += sbi->s_cluster_ratio - overflow;
6725 		/* The range changed so it's no longer validated */
6726 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6727 	}
6728 
6729 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6730 		int i;
6731 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6732 
6733 		for (i = 0; i < count; i++) {
6734 			cond_resched();
6735 			if (is_metadata)
6736 				bh = sb_find_get_block(inode->i_sb, block + i);
6737 			ext4_forget(handle, is_metadata, inode, bh, block + i);
6738 		}
6739 	}
6740 
6741 	ext4_mb_clear_bb(handle, inode, block, count, flags);
6742 }
6743 
6744 /**
6745  * ext4_group_add_blocks() -- Add given blocks to an existing group
6746  * @handle:			handle to this transaction
6747  * @sb:				super block
6748  * @block:			start physical block to add to the block group
6749  * @count:			number of blocks to free
6750  *
6751  * This marks the blocks as free in the bitmap and buddy.
6752  */
6753 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6754 			 ext4_fsblk_t block, unsigned long count)
6755 {
6756 	struct buffer_head *bitmap_bh = NULL;
6757 	struct buffer_head *gd_bh;
6758 	ext4_group_t block_group;
6759 	ext4_grpblk_t bit;
6760 	unsigned int i;
6761 	struct ext4_group_desc *desc;
6762 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6763 	struct ext4_buddy e4b;
6764 	int err = 0, ret, free_clusters_count;
6765 	ext4_grpblk_t clusters_freed;
6766 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6767 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6768 	unsigned long cluster_count = last_cluster - first_cluster + 1;
6769 
6770 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6771 
6772 	if (count == 0)
6773 		return 0;
6774 
6775 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6776 	/*
6777 	 * Check to see if we are freeing blocks across a group
6778 	 * boundary.
6779 	 */
6780 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6781 		ext4_warning(sb, "too many blocks added to group %u",
6782 			     block_group);
6783 		err = -EINVAL;
6784 		goto error_return;
6785 	}
6786 
6787 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6788 	if (IS_ERR(bitmap_bh)) {
6789 		err = PTR_ERR(bitmap_bh);
6790 		bitmap_bh = NULL;
6791 		goto error_return;
6792 	}
6793 
6794 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6795 	if (!desc) {
6796 		err = -EIO;
6797 		goto error_return;
6798 	}
6799 
6800 	if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6801 		ext4_error(sb, "Adding blocks in system zones - "
6802 			   "Block = %llu, count = %lu",
6803 			   block, count);
6804 		err = -EINVAL;
6805 		goto error_return;
6806 	}
6807 
6808 	BUFFER_TRACE(bitmap_bh, "getting write access");
6809 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6810 					    EXT4_JTR_NONE);
6811 	if (err)
6812 		goto error_return;
6813 
6814 	/*
6815 	 * We are about to modify some metadata.  Call the journal APIs
6816 	 * to unshare ->b_data if a currently-committing transaction is
6817 	 * using it
6818 	 */
6819 	BUFFER_TRACE(gd_bh, "get_write_access");
6820 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6821 	if (err)
6822 		goto error_return;
6823 
6824 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6825 		BUFFER_TRACE(bitmap_bh, "clear bit");
6826 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6827 			ext4_error(sb, "bit already cleared for block %llu",
6828 				   (ext4_fsblk_t)(block + i));
6829 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
6830 		} else {
6831 			clusters_freed++;
6832 		}
6833 	}
6834 
6835 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6836 	if (err)
6837 		goto error_return;
6838 
6839 	/*
6840 	 * need to update group_info->bb_free and bitmap
6841 	 * with group lock held. generate_buddy look at
6842 	 * them with group lock_held
6843 	 */
6844 	ext4_lock_group(sb, block_group);
6845 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6846 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6847 	free_clusters_count = clusters_freed +
6848 		ext4_free_group_clusters(sb, desc);
6849 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6850 	ext4_block_bitmap_csum_set(sb, desc, bitmap_bh);
6851 	ext4_group_desc_csum_set(sb, block_group, desc);
6852 	ext4_unlock_group(sb, block_group);
6853 	percpu_counter_add(&sbi->s_freeclusters_counter,
6854 			   clusters_freed);
6855 
6856 	if (sbi->s_log_groups_per_flex) {
6857 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6858 		atomic64_add(clusters_freed,
6859 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6860 						  flex_group)->free_clusters);
6861 	}
6862 
6863 	ext4_mb_unload_buddy(&e4b);
6864 
6865 	/* We dirtied the bitmap block */
6866 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6867 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6868 
6869 	/* And the group descriptor block */
6870 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6871 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6872 	if (!err)
6873 		err = ret;
6874 
6875 error_return:
6876 	brelse(bitmap_bh);
6877 	ext4_std_error(sb, err);
6878 	return err;
6879 }
6880 
6881 /**
6882  * ext4_trim_extent -- function to TRIM one single free extent in the group
6883  * @sb:		super block for the file system
6884  * @start:	starting block of the free extent in the alloc. group
6885  * @count:	number of blocks to TRIM
6886  * @e4b:	ext4 buddy for the group
6887  *
6888  * Trim "count" blocks starting at "start" in the "group". To assure that no
6889  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6890  * be called with under the group lock.
6891  */
6892 static int ext4_trim_extent(struct super_block *sb,
6893 		int start, int count, struct ext4_buddy *e4b)
6894 __releases(bitlock)
6895 __acquires(bitlock)
6896 {
6897 	struct ext4_free_extent ex;
6898 	ext4_group_t group = e4b->bd_group;
6899 	int ret = 0;
6900 
6901 	trace_ext4_trim_extent(sb, group, start, count);
6902 
6903 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6904 
6905 	ex.fe_start = start;
6906 	ex.fe_group = group;
6907 	ex.fe_len = count;
6908 
6909 	/*
6910 	 * Mark blocks used, so no one can reuse them while
6911 	 * being trimmed.
6912 	 */
6913 	mb_mark_used(e4b, &ex);
6914 	ext4_unlock_group(sb, group);
6915 	ret = ext4_issue_discard(sb, group, start, count, NULL);
6916 	ext4_lock_group(sb, group);
6917 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6918 	return ret;
6919 }
6920 
6921 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6922 					   ext4_group_t grp)
6923 {
6924 	unsigned long nr_clusters_in_group;
6925 
6926 	if (grp < (ext4_get_groups_count(sb) - 1))
6927 		nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6928 	else
6929 		nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6930 					ext4_group_first_block_no(sb, grp))
6931 				       >> EXT4_CLUSTER_BITS(sb);
6932 
6933 	return nr_clusters_in_group - 1;
6934 }
6935 
6936 static bool ext4_trim_interrupted(void)
6937 {
6938 	return fatal_signal_pending(current) || freezing(current);
6939 }
6940 
6941 static int ext4_try_to_trim_range(struct super_block *sb,
6942 		struct ext4_buddy *e4b, ext4_grpblk_t start,
6943 		ext4_grpblk_t max, ext4_grpblk_t minblocks)
6944 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6945 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6946 {
6947 	ext4_grpblk_t next, count, free_count, last, origin_start;
6948 	bool set_trimmed = false;
6949 	void *bitmap;
6950 
6951 	last = ext4_last_grp_cluster(sb, e4b->bd_group);
6952 	bitmap = e4b->bd_bitmap;
6953 	if (start == 0 && max >= last)
6954 		set_trimmed = true;
6955 	origin_start = start;
6956 	start = max(e4b->bd_info->bb_first_free, start);
6957 	count = 0;
6958 	free_count = 0;
6959 
6960 	while (start <= max) {
6961 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6962 		if (start > max)
6963 			break;
6964 
6965 		next = mb_find_next_bit(bitmap, last + 1, start);
6966 		if (origin_start == 0 && next >= last)
6967 			set_trimmed = true;
6968 
6969 		if ((next - start) >= minblocks) {
6970 			int ret = ext4_trim_extent(sb, start, next - start, e4b);
6971 
6972 			if (ret && ret != -EOPNOTSUPP)
6973 				return count;
6974 			count += next - start;
6975 		}
6976 		free_count += next - start;
6977 		start = next + 1;
6978 
6979 		if (ext4_trim_interrupted())
6980 			return count;
6981 
6982 		if (need_resched()) {
6983 			ext4_unlock_group(sb, e4b->bd_group);
6984 			cond_resched();
6985 			ext4_lock_group(sb, e4b->bd_group);
6986 		}
6987 
6988 		if ((e4b->bd_info->bb_free - free_count) < minblocks)
6989 			break;
6990 	}
6991 
6992 	if (set_trimmed)
6993 		EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
6994 
6995 	return count;
6996 }
6997 
6998 /**
6999  * ext4_trim_all_free -- function to trim all free space in alloc. group
7000  * @sb:			super block for file system
7001  * @group:		group to be trimmed
7002  * @start:		first group block to examine
7003  * @max:		last group block to examine
7004  * @minblocks:		minimum extent block count
7005  *
7006  * ext4_trim_all_free walks through group's block bitmap searching for free
7007  * extents. When the free extent is found, mark it as used in group buddy
7008  * bitmap. Then issue a TRIM command on this extent and free the extent in
7009  * the group buddy bitmap.
7010  */
7011 static ext4_grpblk_t
7012 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
7013 		   ext4_grpblk_t start, ext4_grpblk_t max,
7014 		   ext4_grpblk_t minblocks)
7015 {
7016 	struct ext4_buddy e4b;
7017 	int ret;
7018 
7019 	trace_ext4_trim_all_free(sb, group, start, max);
7020 
7021 	ret = ext4_mb_load_buddy(sb, group, &e4b);
7022 	if (ret) {
7023 		ext4_warning(sb, "Error %d loading buddy information for %u",
7024 			     ret, group);
7025 		return ret;
7026 	}
7027 
7028 	ext4_lock_group(sb, group);
7029 
7030 	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
7031 	    minblocks < EXT4_SB(sb)->s_last_trim_minblks)
7032 		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
7033 	else
7034 		ret = 0;
7035 
7036 	ext4_unlock_group(sb, group);
7037 	ext4_mb_unload_buddy(&e4b);
7038 
7039 	ext4_debug("trimmed %d blocks in the group %d\n",
7040 		ret, group);
7041 
7042 	return ret;
7043 }
7044 
7045 /**
7046  * ext4_trim_fs() -- trim ioctl handle function
7047  * @sb:			superblock for filesystem
7048  * @range:		fstrim_range structure
7049  *
7050  * start:	First Byte to trim
7051  * len:		number of Bytes to trim from start
7052  * minlen:	minimum extent length in Bytes
7053  * ext4_trim_fs goes through all allocation groups containing Bytes from
7054  * start to start+len. For each such a group ext4_trim_all_free function
7055  * is invoked to trim all free space.
7056  */
7057 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
7058 {
7059 	unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
7060 	struct ext4_group_info *grp;
7061 	ext4_group_t group, first_group, last_group;
7062 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
7063 	uint64_t start, end, minlen, trimmed = 0;
7064 	ext4_fsblk_t first_data_blk =
7065 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
7066 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
7067 	int ret = 0;
7068 
7069 	start = range->start >> sb->s_blocksize_bits;
7070 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
7071 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7072 			      range->minlen >> sb->s_blocksize_bits);
7073 
7074 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
7075 	    start >= max_blks ||
7076 	    range->len < sb->s_blocksize)
7077 		return -EINVAL;
7078 	/* No point to try to trim less than discard granularity */
7079 	if (range->minlen < discard_granularity) {
7080 		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7081 				discard_granularity >> sb->s_blocksize_bits);
7082 		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
7083 			goto out;
7084 	}
7085 	if (end >= max_blks - 1)
7086 		end = max_blks - 1;
7087 	if (end <= first_data_blk)
7088 		goto out;
7089 	if (start < first_data_blk)
7090 		start = first_data_blk;
7091 
7092 	/* Determine first and last group to examine based on start and end */
7093 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
7094 				     &first_group, &first_cluster);
7095 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
7096 				     &last_group, &last_cluster);
7097 
7098 	/* end now represents the last cluster to discard in this group */
7099 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7100 
7101 	for (group = first_group; group <= last_group; group++) {
7102 		if (ext4_trim_interrupted())
7103 			break;
7104 		grp = ext4_get_group_info(sb, group);
7105 		if (!grp)
7106 			continue;
7107 		/* We only do this if the grp has never been initialized */
7108 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
7109 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
7110 			if (ret)
7111 				break;
7112 		}
7113 
7114 		/*
7115 		 * For all the groups except the last one, last cluster will
7116 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
7117 		 * change it for the last group, note that last_cluster is
7118 		 * already computed earlier by ext4_get_group_no_and_offset()
7119 		 */
7120 		if (group == last_group)
7121 			end = last_cluster;
7122 		if (grp->bb_free >= minlen) {
7123 			cnt = ext4_trim_all_free(sb, group, first_cluster,
7124 						 end, minlen);
7125 			if (cnt < 0) {
7126 				ret = cnt;
7127 				break;
7128 			}
7129 			trimmed += cnt;
7130 		}
7131 
7132 		/*
7133 		 * For every group except the first one, we are sure
7134 		 * that the first cluster to discard will be cluster #0.
7135 		 */
7136 		first_cluster = 0;
7137 	}
7138 
7139 	if (!ret)
7140 		EXT4_SB(sb)->s_last_trim_minblks = minlen;
7141 
7142 out:
7143 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
7144 	return ret;
7145 }
7146 
7147 /* Iterate all the free extents in the group. */
7148 int
7149 ext4_mballoc_query_range(
7150 	struct super_block		*sb,
7151 	ext4_group_t			group,
7152 	ext4_grpblk_t			start,
7153 	ext4_grpblk_t			end,
7154 	ext4_mballoc_query_range_fn	formatter,
7155 	void				*priv)
7156 {
7157 	void				*bitmap;
7158 	ext4_grpblk_t			next;
7159 	struct ext4_buddy		e4b;
7160 	int				error;
7161 
7162 	error = ext4_mb_load_buddy(sb, group, &e4b);
7163 	if (error)
7164 		return error;
7165 	bitmap = e4b.bd_bitmap;
7166 
7167 	ext4_lock_group(sb, group);
7168 
7169 	start = max(e4b.bd_info->bb_first_free, start);
7170 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7171 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7172 
7173 	while (start <= end) {
7174 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
7175 		if (start > end)
7176 			break;
7177 		next = mb_find_next_bit(bitmap, end + 1, start);
7178 
7179 		ext4_unlock_group(sb, group);
7180 		error = formatter(sb, group, start, next - start, priv);
7181 		if (error)
7182 			goto out_unload;
7183 		ext4_lock_group(sb, group);
7184 
7185 		start = next + 1;
7186 	}
7187 
7188 	ext4_unlock_group(sb, group);
7189 out_unload:
7190 	ext4_mb_unload_buddy(&e4b);
7191 
7192 	return error;
7193 }
7194