xref: /openbmc/linux/fs/ext4/mballoc.c (revision 5d0e4d78)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/backing-dev.h>
30 #include <trace/events/ext4.h>
31 
32 #ifdef CONFIG_EXT4_DEBUG
33 ushort ext4_mballoc_debug __read_mostly;
34 
35 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
36 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
37 #endif
38 
39 /*
40  * MUSTDO:
41  *   - test ext4_ext_search_left() and ext4_ext_search_right()
42  *   - search for metadata in few groups
43  *
44  * TODO v4:
45  *   - normalization should take into account whether file is still open
46  *   - discard preallocations if no free space left (policy?)
47  *   - don't normalize tails
48  *   - quota
49  *   - reservation for superuser
50  *
51  * TODO v3:
52  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
53  *   - track min/max extents in each group for better group selection
54  *   - mb_mark_used() may allocate chunk right after splitting buddy
55  *   - tree of groups sorted by number of free blocks
56  *   - error handling
57  */
58 
59 /*
60  * The allocation request involve request for multiple number of blocks
61  * near to the goal(block) value specified.
62  *
63  * During initialization phase of the allocator we decide to use the
64  * group preallocation or inode preallocation depending on the size of
65  * the file. The size of the file could be the resulting file size we
66  * would have after allocation, or the current file size, which ever
67  * is larger. If the size is less than sbi->s_mb_stream_request we
68  * select to use the group preallocation. The default value of
69  * s_mb_stream_request is 16 blocks. This can also be tuned via
70  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
71  * terms of number of blocks.
72  *
73  * The main motivation for having small file use group preallocation is to
74  * ensure that we have small files closer together on the disk.
75  *
76  * First stage the allocator looks at the inode prealloc list,
77  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
78  * spaces for this particular inode. The inode prealloc space is
79  * represented as:
80  *
81  * pa_lstart -> the logical start block for this prealloc space
82  * pa_pstart -> the physical start block for this prealloc space
83  * pa_len    -> length for this prealloc space (in clusters)
84  * pa_free   ->  free space available in this prealloc space (in clusters)
85  *
86  * The inode preallocation space is used looking at the _logical_ start
87  * block. If only the logical file block falls within the range of prealloc
88  * space we will consume the particular prealloc space. This makes sure that
89  * we have contiguous physical blocks representing the file blocks
90  *
91  * The important thing to be noted in case of inode prealloc space is that
92  * we don't modify the values associated to inode prealloc space except
93  * pa_free.
94  *
95  * If we are not able to find blocks in the inode prealloc space and if we
96  * have the group allocation flag set then we look at the locality group
97  * prealloc space. These are per CPU prealloc list represented as
98  *
99  * ext4_sb_info.s_locality_groups[smp_processor_id()]
100  *
101  * The reason for having a per cpu locality group is to reduce the contention
102  * between CPUs. It is possible to get scheduled at this point.
103  *
104  * The locality group prealloc space is used looking at whether we have
105  * enough free space (pa_free) within the prealloc space.
106  *
107  * If we can't allocate blocks via inode prealloc or/and locality group
108  * prealloc then we look at the buddy cache. The buddy cache is represented
109  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
110  * mapped to the buddy and bitmap information regarding different
111  * groups. The buddy information is attached to buddy cache inode so that
112  * we can access them through the page cache. The information regarding
113  * each group is loaded via ext4_mb_load_buddy.  The information involve
114  * block bitmap and buddy information. The information are stored in the
115  * inode as:
116  *
117  *  {                        page                        }
118  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
119  *
120  *
121  * one block each for bitmap and buddy information.  So for each group we
122  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
123  * blocksize) blocks.  So it can have information regarding groups_per_page
124  * which is blocks_per_page/2
125  *
126  * The buddy cache inode is not stored on disk. The inode is thrown
127  * away when the filesystem is unmounted.
128  *
129  * We look for count number of blocks in the buddy cache. If we were able
130  * to locate that many free blocks we return with additional information
131  * regarding rest of the contiguous physical block available
132  *
133  * Before allocating blocks via buddy cache we normalize the request
134  * blocks. This ensure we ask for more blocks that we needed. The extra
135  * blocks that we get after allocation is added to the respective prealloc
136  * list. In case of inode preallocation we follow a list of heuristics
137  * based on file size. This can be found in ext4_mb_normalize_request. If
138  * we are doing a group prealloc we try to normalize the request to
139  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
140  * dependent on the cluster size; for non-bigalloc file systems, it is
141  * 512 blocks. This can be tuned via
142  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
143  * terms of number of blocks. If we have mounted the file system with -O
144  * stripe=<value> option the group prealloc request is normalized to the
145  * the smallest multiple of the stripe value (sbi->s_stripe) which is
146  * greater than the default mb_group_prealloc.
147  *
148  * The regular allocator (using the buddy cache) supports a few tunables.
149  *
150  * /sys/fs/ext4/<partition>/mb_min_to_scan
151  * /sys/fs/ext4/<partition>/mb_max_to_scan
152  * /sys/fs/ext4/<partition>/mb_order2_req
153  *
154  * The regular allocator uses buddy scan only if the request len is power of
155  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
156  * value of s_mb_order2_reqs can be tuned via
157  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
158  * stripe size (sbi->s_stripe), we try to search for contiguous block in
159  * stripe size. This should result in better allocation on RAID setups. If
160  * not, we search in the specific group using bitmap for best extents. The
161  * tunable min_to_scan and max_to_scan control the behaviour here.
162  * min_to_scan indicate how long the mballoc __must__ look for a best
163  * extent and max_to_scan indicates how long the mballoc __can__ look for a
164  * best extent in the found extents. Searching for the blocks starts with
165  * the group specified as the goal value in allocation context via
166  * ac_g_ex. Each group is first checked based on the criteria whether it
167  * can be used for allocation. ext4_mb_good_group explains how the groups are
168  * checked.
169  *
170  * Both the prealloc space are getting populated as above. So for the first
171  * request we will hit the buddy cache which will result in this prealloc
172  * space getting filled. The prealloc space is then later used for the
173  * subsequent request.
174  */
175 
176 /*
177  * mballoc operates on the following data:
178  *  - on-disk bitmap
179  *  - in-core buddy (actually includes buddy and bitmap)
180  *  - preallocation descriptors (PAs)
181  *
182  * there are two types of preallocations:
183  *  - inode
184  *    assiged to specific inode and can be used for this inode only.
185  *    it describes part of inode's space preallocated to specific
186  *    physical blocks. any block from that preallocated can be used
187  *    independent. the descriptor just tracks number of blocks left
188  *    unused. so, before taking some block from descriptor, one must
189  *    make sure corresponded logical block isn't allocated yet. this
190  *    also means that freeing any block within descriptor's range
191  *    must discard all preallocated blocks.
192  *  - locality group
193  *    assigned to specific locality group which does not translate to
194  *    permanent set of inodes: inode can join and leave group. space
195  *    from this type of preallocation can be used for any inode. thus
196  *    it's consumed from the beginning to the end.
197  *
198  * relation between them can be expressed as:
199  *    in-core buddy = on-disk bitmap + preallocation descriptors
200  *
201  * this mean blocks mballoc considers used are:
202  *  - allocated blocks (persistent)
203  *  - preallocated blocks (non-persistent)
204  *
205  * consistency in mballoc world means that at any time a block is either
206  * free or used in ALL structures. notice: "any time" should not be read
207  * literally -- time is discrete and delimited by locks.
208  *
209  *  to keep it simple, we don't use block numbers, instead we count number of
210  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
211  *
212  * all operations can be expressed as:
213  *  - init buddy:			buddy = on-disk + PAs
214  *  - new PA:				buddy += N; PA = N
215  *  - use inode PA:			on-disk += N; PA -= N
216  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
217  *  - use locality group PA		on-disk += N; PA -= N
218  *  - discard locality group PA		buddy -= PA; PA = 0
219  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
220  *        is used in real operation because we can't know actual used
221  *        bits from PA, only from on-disk bitmap
222  *
223  * if we follow this strict logic, then all operations above should be atomic.
224  * given some of them can block, we'd have to use something like semaphores
225  * killing performance on high-end SMP hardware. let's try to relax it using
226  * the following knowledge:
227  *  1) if buddy is referenced, it's already initialized
228  *  2) while block is used in buddy and the buddy is referenced,
229  *     nobody can re-allocate that block
230  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
231  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
232  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
233  *     block
234  *
235  * so, now we're building a concurrency table:
236  *  - init buddy vs.
237  *    - new PA
238  *      blocks for PA are allocated in the buddy, buddy must be referenced
239  *      until PA is linked to allocation group to avoid concurrent buddy init
240  *    - use inode PA
241  *      we need to make sure that either on-disk bitmap or PA has uptodate data
242  *      given (3) we care that PA-=N operation doesn't interfere with init
243  *    - discard inode PA
244  *      the simplest way would be to have buddy initialized by the discard
245  *    - use locality group PA
246  *      again PA-=N must be serialized with init
247  *    - discard locality group PA
248  *      the simplest way would be to have buddy initialized by the discard
249  *  - new PA vs.
250  *    - use inode PA
251  *      i_data_sem serializes them
252  *    - discard inode PA
253  *      discard process must wait until PA isn't used by another process
254  *    - use locality group PA
255  *      some mutex should serialize them
256  *    - discard locality group PA
257  *      discard process must wait until PA isn't used by another process
258  *  - use inode PA
259  *    - use inode PA
260  *      i_data_sem or another mutex should serializes them
261  *    - discard inode PA
262  *      discard process must wait until PA isn't used by another process
263  *    - use locality group PA
264  *      nothing wrong here -- they're different PAs covering different blocks
265  *    - discard locality group PA
266  *      discard process must wait until PA isn't used by another process
267  *
268  * now we're ready to make few consequences:
269  *  - PA is referenced and while it is no discard is possible
270  *  - PA is referenced until block isn't marked in on-disk bitmap
271  *  - PA changes only after on-disk bitmap
272  *  - discard must not compete with init. either init is done before
273  *    any discard or they're serialized somehow
274  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
275  *
276  * a special case when we've used PA to emptiness. no need to modify buddy
277  * in this case, but we should care about concurrent init
278  *
279  */
280 
281  /*
282  * Logic in few words:
283  *
284  *  - allocation:
285  *    load group
286  *    find blocks
287  *    mark bits in on-disk bitmap
288  *    release group
289  *
290  *  - use preallocation:
291  *    find proper PA (per-inode or group)
292  *    load group
293  *    mark bits in on-disk bitmap
294  *    release group
295  *    release PA
296  *
297  *  - free:
298  *    load group
299  *    mark bits in on-disk bitmap
300  *    release group
301  *
302  *  - discard preallocations in group:
303  *    mark PAs deleted
304  *    move them onto local list
305  *    load on-disk bitmap
306  *    load group
307  *    remove PA from object (inode or locality group)
308  *    mark free blocks in-core
309  *
310  *  - discard inode's preallocations:
311  */
312 
313 /*
314  * Locking rules
315  *
316  * Locks:
317  *  - bitlock on a group	(group)
318  *  - object (inode/locality)	(object)
319  *  - per-pa lock		(pa)
320  *
321  * Paths:
322  *  - new pa
323  *    object
324  *    group
325  *
326  *  - find and use pa:
327  *    pa
328  *
329  *  - release consumed pa:
330  *    pa
331  *    group
332  *    object
333  *
334  *  - generate in-core bitmap:
335  *    group
336  *        pa
337  *
338  *  - discard all for given object (inode, locality group):
339  *    object
340  *        pa
341  *    group
342  *
343  *  - discard all for given group:
344  *    group
345  *        pa
346  *    group
347  *        object
348  *
349  */
350 static struct kmem_cache *ext4_pspace_cachep;
351 static struct kmem_cache *ext4_ac_cachep;
352 static struct kmem_cache *ext4_free_data_cachep;
353 
354 /* We create slab caches for groupinfo data structures based on the
355  * superblock block size.  There will be one per mounted filesystem for
356  * each unique s_blocksize_bits */
357 #define NR_GRPINFO_CACHES 8
358 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
359 
360 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
361 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
362 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
363 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
364 };
365 
366 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
367 					ext4_group_t group);
368 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
369 						ext4_group_t group);
370 
371 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
372 {
373 #if BITS_PER_LONG == 64
374 	*bit += ((unsigned long) addr & 7UL) << 3;
375 	addr = (void *) ((unsigned long) addr & ~7UL);
376 #elif BITS_PER_LONG == 32
377 	*bit += ((unsigned long) addr & 3UL) << 3;
378 	addr = (void *) ((unsigned long) addr & ~3UL);
379 #else
380 #error "how many bits you are?!"
381 #endif
382 	return addr;
383 }
384 
385 static inline int mb_test_bit(int bit, void *addr)
386 {
387 	/*
388 	 * ext4_test_bit on architecture like powerpc
389 	 * needs unsigned long aligned address
390 	 */
391 	addr = mb_correct_addr_and_bit(&bit, addr);
392 	return ext4_test_bit(bit, addr);
393 }
394 
395 static inline void mb_set_bit(int bit, void *addr)
396 {
397 	addr = mb_correct_addr_and_bit(&bit, addr);
398 	ext4_set_bit(bit, addr);
399 }
400 
401 static inline void mb_clear_bit(int bit, void *addr)
402 {
403 	addr = mb_correct_addr_and_bit(&bit, addr);
404 	ext4_clear_bit(bit, addr);
405 }
406 
407 static inline int mb_test_and_clear_bit(int bit, void *addr)
408 {
409 	addr = mb_correct_addr_and_bit(&bit, addr);
410 	return ext4_test_and_clear_bit(bit, addr);
411 }
412 
413 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
414 {
415 	int fix = 0, ret, tmpmax;
416 	addr = mb_correct_addr_and_bit(&fix, addr);
417 	tmpmax = max + fix;
418 	start += fix;
419 
420 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
421 	if (ret > max)
422 		return max;
423 	return ret;
424 }
425 
426 static inline int mb_find_next_bit(void *addr, int max, int start)
427 {
428 	int fix = 0, ret, tmpmax;
429 	addr = mb_correct_addr_and_bit(&fix, addr);
430 	tmpmax = max + fix;
431 	start += fix;
432 
433 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
434 	if (ret > max)
435 		return max;
436 	return ret;
437 }
438 
439 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
440 {
441 	char *bb;
442 
443 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
444 	BUG_ON(max == NULL);
445 
446 	if (order > e4b->bd_blkbits + 1) {
447 		*max = 0;
448 		return NULL;
449 	}
450 
451 	/* at order 0 we see each particular block */
452 	if (order == 0) {
453 		*max = 1 << (e4b->bd_blkbits + 3);
454 		return e4b->bd_bitmap;
455 	}
456 
457 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
458 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
459 
460 	return bb;
461 }
462 
463 #ifdef DOUBLE_CHECK
464 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
465 			   int first, int count)
466 {
467 	int i;
468 	struct super_block *sb = e4b->bd_sb;
469 
470 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
471 		return;
472 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
473 	for (i = 0; i < count; i++) {
474 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
475 			ext4_fsblk_t blocknr;
476 
477 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
478 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
479 			ext4_grp_locked_error(sb, e4b->bd_group,
480 					      inode ? inode->i_ino : 0,
481 					      blocknr,
482 					      "freeing block already freed "
483 					      "(bit %u)",
484 					      first + i);
485 		}
486 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
487 	}
488 }
489 
490 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
491 {
492 	int i;
493 
494 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
495 		return;
496 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
497 	for (i = 0; i < count; i++) {
498 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
499 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
500 	}
501 }
502 
503 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
504 {
505 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
506 		unsigned char *b1, *b2;
507 		int i;
508 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
509 		b2 = (unsigned char *) bitmap;
510 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
511 			if (b1[i] != b2[i]) {
512 				ext4_msg(e4b->bd_sb, KERN_ERR,
513 					 "corruption in group %u "
514 					 "at byte %u(%u): %x in copy != %x "
515 					 "on disk/prealloc",
516 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
517 				BUG();
518 			}
519 		}
520 	}
521 }
522 
523 #else
524 static inline void mb_free_blocks_double(struct inode *inode,
525 				struct ext4_buddy *e4b, int first, int count)
526 {
527 	return;
528 }
529 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
530 						int first, int count)
531 {
532 	return;
533 }
534 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
535 {
536 	return;
537 }
538 #endif
539 
540 #ifdef AGGRESSIVE_CHECK
541 
542 #define MB_CHECK_ASSERT(assert)						\
543 do {									\
544 	if (!(assert)) {						\
545 		printk(KERN_EMERG					\
546 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
547 			function, file, line, # assert);		\
548 		BUG();							\
549 	}								\
550 } while (0)
551 
552 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
553 				const char *function, int line)
554 {
555 	struct super_block *sb = e4b->bd_sb;
556 	int order = e4b->bd_blkbits + 1;
557 	int max;
558 	int max2;
559 	int i;
560 	int j;
561 	int k;
562 	int count;
563 	struct ext4_group_info *grp;
564 	int fragments = 0;
565 	int fstart;
566 	struct list_head *cur;
567 	void *buddy;
568 	void *buddy2;
569 
570 	{
571 		static int mb_check_counter;
572 		if (mb_check_counter++ % 100 != 0)
573 			return 0;
574 	}
575 
576 	while (order > 1) {
577 		buddy = mb_find_buddy(e4b, order, &max);
578 		MB_CHECK_ASSERT(buddy);
579 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
580 		MB_CHECK_ASSERT(buddy2);
581 		MB_CHECK_ASSERT(buddy != buddy2);
582 		MB_CHECK_ASSERT(max * 2 == max2);
583 
584 		count = 0;
585 		for (i = 0; i < max; i++) {
586 
587 			if (mb_test_bit(i, buddy)) {
588 				/* only single bit in buddy2 may be 1 */
589 				if (!mb_test_bit(i << 1, buddy2)) {
590 					MB_CHECK_ASSERT(
591 						mb_test_bit((i<<1)+1, buddy2));
592 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
593 					MB_CHECK_ASSERT(
594 						mb_test_bit(i << 1, buddy2));
595 				}
596 				continue;
597 			}
598 
599 			/* both bits in buddy2 must be 1 */
600 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
601 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
602 
603 			for (j = 0; j < (1 << order); j++) {
604 				k = (i * (1 << order)) + j;
605 				MB_CHECK_ASSERT(
606 					!mb_test_bit(k, e4b->bd_bitmap));
607 			}
608 			count++;
609 		}
610 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
611 		order--;
612 	}
613 
614 	fstart = -1;
615 	buddy = mb_find_buddy(e4b, 0, &max);
616 	for (i = 0; i < max; i++) {
617 		if (!mb_test_bit(i, buddy)) {
618 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
619 			if (fstart == -1) {
620 				fragments++;
621 				fstart = i;
622 			}
623 			continue;
624 		}
625 		fstart = -1;
626 		/* check used bits only */
627 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
628 			buddy2 = mb_find_buddy(e4b, j, &max2);
629 			k = i >> j;
630 			MB_CHECK_ASSERT(k < max2);
631 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
632 		}
633 	}
634 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
635 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
636 
637 	grp = ext4_get_group_info(sb, e4b->bd_group);
638 	list_for_each(cur, &grp->bb_prealloc_list) {
639 		ext4_group_t groupnr;
640 		struct ext4_prealloc_space *pa;
641 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
642 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
643 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
644 		for (i = 0; i < pa->pa_len; i++)
645 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
646 	}
647 	return 0;
648 }
649 #undef MB_CHECK_ASSERT
650 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
651 					__FILE__, __func__, __LINE__)
652 #else
653 #define mb_check_buddy(e4b)
654 #endif
655 
656 /*
657  * Divide blocks started from @first with length @len into
658  * smaller chunks with power of 2 blocks.
659  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
660  * then increase bb_counters[] for corresponded chunk size.
661  */
662 static void ext4_mb_mark_free_simple(struct super_block *sb,
663 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
664 					struct ext4_group_info *grp)
665 {
666 	struct ext4_sb_info *sbi = EXT4_SB(sb);
667 	ext4_grpblk_t min;
668 	ext4_grpblk_t max;
669 	ext4_grpblk_t chunk;
670 	unsigned int border;
671 
672 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
673 
674 	border = 2 << sb->s_blocksize_bits;
675 
676 	while (len > 0) {
677 		/* find how many blocks can be covered since this position */
678 		max = ffs(first | border) - 1;
679 
680 		/* find how many blocks of power 2 we need to mark */
681 		min = fls(len) - 1;
682 
683 		if (max < min)
684 			min = max;
685 		chunk = 1 << min;
686 
687 		/* mark multiblock chunks only */
688 		grp->bb_counters[min]++;
689 		if (min > 0)
690 			mb_clear_bit(first >> min,
691 				     buddy + sbi->s_mb_offsets[min]);
692 
693 		len -= chunk;
694 		first += chunk;
695 	}
696 }
697 
698 /*
699  * Cache the order of the largest free extent we have available in this block
700  * group.
701  */
702 static void
703 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
704 {
705 	int i;
706 	int bits;
707 
708 	grp->bb_largest_free_order = -1; /* uninit */
709 
710 	bits = sb->s_blocksize_bits + 1;
711 	for (i = bits; i >= 0; i--) {
712 		if (grp->bb_counters[i] > 0) {
713 			grp->bb_largest_free_order = i;
714 			break;
715 		}
716 	}
717 }
718 
719 static noinline_for_stack
720 void ext4_mb_generate_buddy(struct super_block *sb,
721 				void *buddy, void *bitmap, ext4_group_t group)
722 {
723 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
724 	struct ext4_sb_info *sbi = EXT4_SB(sb);
725 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
726 	ext4_grpblk_t i = 0;
727 	ext4_grpblk_t first;
728 	ext4_grpblk_t len;
729 	unsigned free = 0;
730 	unsigned fragments = 0;
731 	unsigned long long period = get_cycles();
732 
733 	/* initialize buddy from bitmap which is aggregation
734 	 * of on-disk bitmap and preallocations */
735 	i = mb_find_next_zero_bit(bitmap, max, 0);
736 	grp->bb_first_free = i;
737 	while (i < max) {
738 		fragments++;
739 		first = i;
740 		i = mb_find_next_bit(bitmap, max, i);
741 		len = i - first;
742 		free += len;
743 		if (len > 1)
744 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
745 		else
746 			grp->bb_counters[0]++;
747 		if (i < max)
748 			i = mb_find_next_zero_bit(bitmap, max, i);
749 	}
750 	grp->bb_fragments = fragments;
751 
752 	if (free != grp->bb_free) {
753 		ext4_grp_locked_error(sb, group, 0, 0,
754 				      "block bitmap and bg descriptor "
755 				      "inconsistent: %u vs %u free clusters",
756 				      free, grp->bb_free);
757 		/*
758 		 * If we intend to continue, we consider group descriptor
759 		 * corrupt and update bb_free using bitmap value
760 		 */
761 		grp->bb_free = free;
762 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
763 			percpu_counter_sub(&sbi->s_freeclusters_counter,
764 					   grp->bb_free);
765 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
766 	}
767 	mb_set_largest_free_order(sb, grp);
768 
769 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
770 
771 	period = get_cycles() - period;
772 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
773 	EXT4_SB(sb)->s_mb_buddies_generated++;
774 	EXT4_SB(sb)->s_mb_generation_time += period;
775 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
776 }
777 
778 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
779 {
780 	int count;
781 	int order = 1;
782 	void *buddy;
783 
784 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
785 		ext4_set_bits(buddy, 0, count);
786 	}
787 	e4b->bd_info->bb_fragments = 0;
788 	memset(e4b->bd_info->bb_counters, 0,
789 		sizeof(*e4b->bd_info->bb_counters) *
790 		(e4b->bd_sb->s_blocksize_bits + 2));
791 
792 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
793 		e4b->bd_bitmap, e4b->bd_group);
794 }
795 
796 /* The buddy information is attached the buddy cache inode
797  * for convenience. The information regarding each group
798  * is loaded via ext4_mb_load_buddy. The information involve
799  * block bitmap and buddy information. The information are
800  * stored in the inode as
801  *
802  * {                        page                        }
803  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
804  *
805  *
806  * one block each for bitmap and buddy information.
807  * So for each group we take up 2 blocks. A page can
808  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
809  * So it can have information regarding groups_per_page which
810  * is blocks_per_page/2
811  *
812  * Locking note:  This routine takes the block group lock of all groups
813  * for this page; do not hold this lock when calling this routine!
814  */
815 
816 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
817 {
818 	ext4_group_t ngroups;
819 	int blocksize;
820 	int blocks_per_page;
821 	int groups_per_page;
822 	int err = 0;
823 	int i;
824 	ext4_group_t first_group, group;
825 	int first_block;
826 	struct super_block *sb;
827 	struct buffer_head *bhs;
828 	struct buffer_head **bh = NULL;
829 	struct inode *inode;
830 	char *data;
831 	char *bitmap;
832 	struct ext4_group_info *grinfo;
833 
834 	mb_debug(1, "init page %lu\n", page->index);
835 
836 	inode = page->mapping->host;
837 	sb = inode->i_sb;
838 	ngroups = ext4_get_groups_count(sb);
839 	blocksize = i_blocksize(inode);
840 	blocks_per_page = PAGE_SIZE / blocksize;
841 
842 	groups_per_page = blocks_per_page >> 1;
843 	if (groups_per_page == 0)
844 		groups_per_page = 1;
845 
846 	/* allocate buffer_heads to read bitmaps */
847 	if (groups_per_page > 1) {
848 		i = sizeof(struct buffer_head *) * groups_per_page;
849 		bh = kzalloc(i, gfp);
850 		if (bh == NULL) {
851 			err = -ENOMEM;
852 			goto out;
853 		}
854 	} else
855 		bh = &bhs;
856 
857 	first_group = page->index * blocks_per_page / 2;
858 
859 	/* read all groups the page covers into the cache */
860 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
861 		if (group >= ngroups)
862 			break;
863 
864 		grinfo = ext4_get_group_info(sb, group);
865 		/*
866 		 * If page is uptodate then we came here after online resize
867 		 * which added some new uninitialized group info structs, so
868 		 * we must skip all initialized uptodate buddies on the page,
869 		 * which may be currently in use by an allocating task.
870 		 */
871 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
872 			bh[i] = NULL;
873 			continue;
874 		}
875 		bh[i] = ext4_read_block_bitmap_nowait(sb, group);
876 		if (IS_ERR(bh[i])) {
877 			err = PTR_ERR(bh[i]);
878 			bh[i] = NULL;
879 			goto out;
880 		}
881 		mb_debug(1, "read bitmap for group %u\n", group);
882 	}
883 
884 	/* wait for I/O completion */
885 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
886 		int err2;
887 
888 		if (!bh[i])
889 			continue;
890 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
891 		if (!err)
892 			err = err2;
893 	}
894 
895 	first_block = page->index * blocks_per_page;
896 	for (i = 0; i < blocks_per_page; i++) {
897 		group = (first_block + i) >> 1;
898 		if (group >= ngroups)
899 			break;
900 
901 		if (!bh[group - first_group])
902 			/* skip initialized uptodate buddy */
903 			continue;
904 
905 		if (!buffer_verified(bh[group - first_group]))
906 			/* Skip faulty bitmaps */
907 			continue;
908 		err = 0;
909 
910 		/*
911 		 * data carry information regarding this
912 		 * particular group in the format specified
913 		 * above
914 		 *
915 		 */
916 		data = page_address(page) + (i * blocksize);
917 		bitmap = bh[group - first_group]->b_data;
918 
919 		/*
920 		 * We place the buddy block and bitmap block
921 		 * close together
922 		 */
923 		if ((first_block + i) & 1) {
924 			/* this is block of buddy */
925 			BUG_ON(incore == NULL);
926 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
927 				group, page->index, i * blocksize);
928 			trace_ext4_mb_buddy_bitmap_load(sb, group);
929 			grinfo = ext4_get_group_info(sb, group);
930 			grinfo->bb_fragments = 0;
931 			memset(grinfo->bb_counters, 0,
932 			       sizeof(*grinfo->bb_counters) *
933 				(sb->s_blocksize_bits+2));
934 			/*
935 			 * incore got set to the group block bitmap below
936 			 */
937 			ext4_lock_group(sb, group);
938 			/* init the buddy */
939 			memset(data, 0xff, blocksize);
940 			ext4_mb_generate_buddy(sb, data, incore, group);
941 			ext4_unlock_group(sb, group);
942 			incore = NULL;
943 		} else {
944 			/* this is block of bitmap */
945 			BUG_ON(incore != NULL);
946 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
947 				group, page->index, i * blocksize);
948 			trace_ext4_mb_bitmap_load(sb, group);
949 
950 			/* see comments in ext4_mb_put_pa() */
951 			ext4_lock_group(sb, group);
952 			memcpy(data, bitmap, blocksize);
953 
954 			/* mark all preallocated blks used in in-core bitmap */
955 			ext4_mb_generate_from_pa(sb, data, group);
956 			ext4_mb_generate_from_freelist(sb, data, group);
957 			ext4_unlock_group(sb, group);
958 
959 			/* set incore so that the buddy information can be
960 			 * generated using this
961 			 */
962 			incore = data;
963 		}
964 	}
965 	SetPageUptodate(page);
966 
967 out:
968 	if (bh) {
969 		for (i = 0; i < groups_per_page; i++)
970 			brelse(bh[i]);
971 		if (bh != &bhs)
972 			kfree(bh);
973 	}
974 	return err;
975 }
976 
977 /*
978  * Lock the buddy and bitmap pages. This make sure other parallel init_group
979  * on the same buddy page doesn't happen whild holding the buddy page lock.
980  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
981  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
982  */
983 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
984 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
985 {
986 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
987 	int block, pnum, poff;
988 	int blocks_per_page;
989 	struct page *page;
990 
991 	e4b->bd_buddy_page = NULL;
992 	e4b->bd_bitmap_page = NULL;
993 
994 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
995 	/*
996 	 * the buddy cache inode stores the block bitmap
997 	 * and buddy information in consecutive blocks.
998 	 * So for each group we need two blocks.
999 	 */
1000 	block = group * 2;
1001 	pnum = block / blocks_per_page;
1002 	poff = block % blocks_per_page;
1003 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1004 	if (!page)
1005 		return -ENOMEM;
1006 	BUG_ON(page->mapping != inode->i_mapping);
1007 	e4b->bd_bitmap_page = page;
1008 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1009 
1010 	if (blocks_per_page >= 2) {
1011 		/* buddy and bitmap are on the same page */
1012 		return 0;
1013 	}
1014 
1015 	block++;
1016 	pnum = block / blocks_per_page;
1017 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1018 	if (!page)
1019 		return -ENOMEM;
1020 	BUG_ON(page->mapping != inode->i_mapping);
1021 	e4b->bd_buddy_page = page;
1022 	return 0;
1023 }
1024 
1025 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1026 {
1027 	if (e4b->bd_bitmap_page) {
1028 		unlock_page(e4b->bd_bitmap_page);
1029 		put_page(e4b->bd_bitmap_page);
1030 	}
1031 	if (e4b->bd_buddy_page) {
1032 		unlock_page(e4b->bd_buddy_page);
1033 		put_page(e4b->bd_buddy_page);
1034 	}
1035 }
1036 
1037 /*
1038  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1039  * block group lock of all groups for this page; do not hold the BG lock when
1040  * calling this routine!
1041  */
1042 static noinline_for_stack
1043 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1044 {
1045 
1046 	struct ext4_group_info *this_grp;
1047 	struct ext4_buddy e4b;
1048 	struct page *page;
1049 	int ret = 0;
1050 
1051 	might_sleep();
1052 	mb_debug(1, "init group %u\n", group);
1053 	this_grp = ext4_get_group_info(sb, group);
1054 	/*
1055 	 * This ensures that we don't reinit the buddy cache
1056 	 * page which map to the group from which we are already
1057 	 * allocating. If we are looking at the buddy cache we would
1058 	 * have taken a reference using ext4_mb_load_buddy and that
1059 	 * would have pinned buddy page to page cache.
1060 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1061 	 * page accessed.
1062 	 */
1063 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1064 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1065 		/*
1066 		 * somebody initialized the group
1067 		 * return without doing anything
1068 		 */
1069 		goto err;
1070 	}
1071 
1072 	page = e4b.bd_bitmap_page;
1073 	ret = ext4_mb_init_cache(page, NULL, gfp);
1074 	if (ret)
1075 		goto err;
1076 	if (!PageUptodate(page)) {
1077 		ret = -EIO;
1078 		goto err;
1079 	}
1080 
1081 	if (e4b.bd_buddy_page == NULL) {
1082 		/*
1083 		 * If both the bitmap and buddy are in
1084 		 * the same page we don't need to force
1085 		 * init the buddy
1086 		 */
1087 		ret = 0;
1088 		goto err;
1089 	}
1090 	/* init buddy cache */
1091 	page = e4b.bd_buddy_page;
1092 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1093 	if (ret)
1094 		goto err;
1095 	if (!PageUptodate(page)) {
1096 		ret = -EIO;
1097 		goto err;
1098 	}
1099 err:
1100 	ext4_mb_put_buddy_page_lock(&e4b);
1101 	return ret;
1102 }
1103 
1104 /*
1105  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1106  * block group lock of all groups for this page; do not hold the BG lock when
1107  * calling this routine!
1108  */
1109 static noinline_for_stack int
1110 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1111 		       struct ext4_buddy *e4b, gfp_t gfp)
1112 {
1113 	int blocks_per_page;
1114 	int block;
1115 	int pnum;
1116 	int poff;
1117 	struct page *page;
1118 	int ret;
1119 	struct ext4_group_info *grp;
1120 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1121 	struct inode *inode = sbi->s_buddy_cache;
1122 
1123 	might_sleep();
1124 	mb_debug(1, "load group %u\n", group);
1125 
1126 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1127 	grp = ext4_get_group_info(sb, group);
1128 
1129 	e4b->bd_blkbits = sb->s_blocksize_bits;
1130 	e4b->bd_info = grp;
1131 	e4b->bd_sb = sb;
1132 	e4b->bd_group = group;
1133 	e4b->bd_buddy_page = NULL;
1134 	e4b->bd_bitmap_page = NULL;
1135 
1136 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1137 		/*
1138 		 * we need full data about the group
1139 		 * to make a good selection
1140 		 */
1141 		ret = ext4_mb_init_group(sb, group, gfp);
1142 		if (ret)
1143 			return ret;
1144 	}
1145 
1146 	/*
1147 	 * the buddy cache inode stores the block bitmap
1148 	 * and buddy information in consecutive blocks.
1149 	 * So for each group we need two blocks.
1150 	 */
1151 	block = group * 2;
1152 	pnum = block / blocks_per_page;
1153 	poff = block % blocks_per_page;
1154 
1155 	/* we could use find_or_create_page(), but it locks page
1156 	 * what we'd like to avoid in fast path ... */
1157 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1158 	if (page == NULL || !PageUptodate(page)) {
1159 		if (page)
1160 			/*
1161 			 * drop the page reference and try
1162 			 * to get the page with lock. If we
1163 			 * are not uptodate that implies
1164 			 * somebody just created the page but
1165 			 * is yet to initialize the same. So
1166 			 * wait for it to initialize.
1167 			 */
1168 			put_page(page);
1169 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1170 		if (page) {
1171 			BUG_ON(page->mapping != inode->i_mapping);
1172 			if (!PageUptodate(page)) {
1173 				ret = ext4_mb_init_cache(page, NULL, gfp);
1174 				if (ret) {
1175 					unlock_page(page);
1176 					goto err;
1177 				}
1178 				mb_cmp_bitmaps(e4b, page_address(page) +
1179 					       (poff * sb->s_blocksize));
1180 			}
1181 			unlock_page(page);
1182 		}
1183 	}
1184 	if (page == NULL) {
1185 		ret = -ENOMEM;
1186 		goto err;
1187 	}
1188 	if (!PageUptodate(page)) {
1189 		ret = -EIO;
1190 		goto err;
1191 	}
1192 
1193 	/* Pages marked accessed already */
1194 	e4b->bd_bitmap_page = page;
1195 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1196 
1197 	block++;
1198 	pnum = block / blocks_per_page;
1199 	poff = block % blocks_per_page;
1200 
1201 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1202 	if (page == NULL || !PageUptodate(page)) {
1203 		if (page)
1204 			put_page(page);
1205 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1206 		if (page) {
1207 			BUG_ON(page->mapping != inode->i_mapping);
1208 			if (!PageUptodate(page)) {
1209 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1210 							 gfp);
1211 				if (ret) {
1212 					unlock_page(page);
1213 					goto err;
1214 				}
1215 			}
1216 			unlock_page(page);
1217 		}
1218 	}
1219 	if (page == NULL) {
1220 		ret = -ENOMEM;
1221 		goto err;
1222 	}
1223 	if (!PageUptodate(page)) {
1224 		ret = -EIO;
1225 		goto err;
1226 	}
1227 
1228 	/* Pages marked accessed already */
1229 	e4b->bd_buddy_page = page;
1230 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1231 
1232 	BUG_ON(e4b->bd_bitmap_page == NULL);
1233 	BUG_ON(e4b->bd_buddy_page == NULL);
1234 
1235 	return 0;
1236 
1237 err:
1238 	if (page)
1239 		put_page(page);
1240 	if (e4b->bd_bitmap_page)
1241 		put_page(e4b->bd_bitmap_page);
1242 	if (e4b->bd_buddy_page)
1243 		put_page(e4b->bd_buddy_page);
1244 	e4b->bd_buddy = NULL;
1245 	e4b->bd_bitmap = NULL;
1246 	return ret;
1247 }
1248 
1249 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1250 			      struct ext4_buddy *e4b)
1251 {
1252 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1253 }
1254 
1255 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1256 {
1257 	if (e4b->bd_bitmap_page)
1258 		put_page(e4b->bd_bitmap_page);
1259 	if (e4b->bd_buddy_page)
1260 		put_page(e4b->bd_buddy_page);
1261 }
1262 
1263 
1264 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1265 {
1266 	int order = 1;
1267 	int bb_incr = 1 << (e4b->bd_blkbits - 1);
1268 	void *bb;
1269 
1270 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1271 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1272 
1273 	bb = e4b->bd_buddy;
1274 	while (order <= e4b->bd_blkbits + 1) {
1275 		block = block >> 1;
1276 		if (!mb_test_bit(block, bb)) {
1277 			/* this block is part of buddy of order 'order' */
1278 			return order;
1279 		}
1280 		bb += bb_incr;
1281 		bb_incr >>= 1;
1282 		order++;
1283 	}
1284 	return 0;
1285 }
1286 
1287 static void mb_clear_bits(void *bm, int cur, int len)
1288 {
1289 	__u32 *addr;
1290 
1291 	len = cur + len;
1292 	while (cur < len) {
1293 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1294 			/* fast path: clear whole word at once */
1295 			addr = bm + (cur >> 3);
1296 			*addr = 0;
1297 			cur += 32;
1298 			continue;
1299 		}
1300 		mb_clear_bit(cur, bm);
1301 		cur++;
1302 	}
1303 }
1304 
1305 /* clear bits in given range
1306  * will return first found zero bit if any, -1 otherwise
1307  */
1308 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1309 {
1310 	__u32 *addr;
1311 	int zero_bit = -1;
1312 
1313 	len = cur + len;
1314 	while (cur < len) {
1315 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1316 			/* fast path: clear whole word at once */
1317 			addr = bm + (cur >> 3);
1318 			if (*addr != (__u32)(-1) && zero_bit == -1)
1319 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1320 			*addr = 0;
1321 			cur += 32;
1322 			continue;
1323 		}
1324 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1325 			zero_bit = cur;
1326 		cur++;
1327 	}
1328 
1329 	return zero_bit;
1330 }
1331 
1332 void ext4_set_bits(void *bm, int cur, int len)
1333 {
1334 	__u32 *addr;
1335 
1336 	len = cur + len;
1337 	while (cur < len) {
1338 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1339 			/* fast path: set whole word at once */
1340 			addr = bm + (cur >> 3);
1341 			*addr = 0xffffffff;
1342 			cur += 32;
1343 			continue;
1344 		}
1345 		mb_set_bit(cur, bm);
1346 		cur++;
1347 	}
1348 }
1349 
1350 /*
1351  * _________________________________________________________________ */
1352 
1353 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1354 {
1355 	if (mb_test_bit(*bit + side, bitmap)) {
1356 		mb_clear_bit(*bit, bitmap);
1357 		(*bit) -= side;
1358 		return 1;
1359 	}
1360 	else {
1361 		(*bit) += side;
1362 		mb_set_bit(*bit, bitmap);
1363 		return -1;
1364 	}
1365 }
1366 
1367 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1368 {
1369 	int max;
1370 	int order = 1;
1371 	void *buddy = mb_find_buddy(e4b, order, &max);
1372 
1373 	while (buddy) {
1374 		void *buddy2;
1375 
1376 		/* Bits in range [first; last] are known to be set since
1377 		 * corresponding blocks were allocated. Bits in range
1378 		 * (first; last) will stay set because they form buddies on
1379 		 * upper layer. We just deal with borders if they don't
1380 		 * align with upper layer and then go up.
1381 		 * Releasing entire group is all about clearing
1382 		 * single bit of highest order buddy.
1383 		 */
1384 
1385 		/* Example:
1386 		 * ---------------------------------
1387 		 * |   1   |   1   |   1   |   1   |
1388 		 * ---------------------------------
1389 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1390 		 * ---------------------------------
1391 		 *   0   1   2   3   4   5   6   7
1392 		 *      \_____________________/
1393 		 *
1394 		 * Neither [1] nor [6] is aligned to above layer.
1395 		 * Left neighbour [0] is free, so mark it busy,
1396 		 * decrease bb_counters and extend range to
1397 		 * [0; 6]
1398 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1399 		 * mark [6] free, increase bb_counters and shrink range to
1400 		 * [0; 5].
1401 		 * Then shift range to [0; 2], go up and do the same.
1402 		 */
1403 
1404 
1405 		if (first & 1)
1406 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1407 		if (!(last & 1))
1408 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1409 		if (first > last)
1410 			break;
1411 		order++;
1412 
1413 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1414 			mb_clear_bits(buddy, first, last - first + 1);
1415 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1416 			break;
1417 		}
1418 		first >>= 1;
1419 		last >>= 1;
1420 		buddy = buddy2;
1421 	}
1422 }
1423 
1424 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1425 			   int first, int count)
1426 {
1427 	int left_is_free = 0;
1428 	int right_is_free = 0;
1429 	int block;
1430 	int last = first + count - 1;
1431 	struct super_block *sb = e4b->bd_sb;
1432 
1433 	if (WARN_ON(count == 0))
1434 		return;
1435 	BUG_ON(last >= (sb->s_blocksize << 3));
1436 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1437 	/* Don't bother if the block group is corrupt. */
1438 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1439 		return;
1440 
1441 	mb_check_buddy(e4b);
1442 	mb_free_blocks_double(inode, e4b, first, count);
1443 
1444 	e4b->bd_info->bb_free += count;
1445 	if (first < e4b->bd_info->bb_first_free)
1446 		e4b->bd_info->bb_first_free = first;
1447 
1448 	/* access memory sequentially: check left neighbour,
1449 	 * clear range and then check right neighbour
1450 	 */
1451 	if (first != 0)
1452 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1453 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1454 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1455 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1456 
1457 	if (unlikely(block != -1)) {
1458 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1459 		ext4_fsblk_t blocknr;
1460 
1461 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1462 		blocknr += EXT4_C2B(EXT4_SB(sb), block);
1463 		ext4_grp_locked_error(sb, e4b->bd_group,
1464 				      inode ? inode->i_ino : 0,
1465 				      blocknr,
1466 				      "freeing already freed block "
1467 				      "(bit %u); block bitmap corrupt.",
1468 				      block);
1469 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1470 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1471 					   e4b->bd_info->bb_free);
1472 		/* Mark the block group as corrupt. */
1473 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1474 			&e4b->bd_info->bb_state);
1475 		mb_regenerate_buddy(e4b);
1476 		goto done;
1477 	}
1478 
1479 	/* let's maintain fragments counter */
1480 	if (left_is_free && right_is_free)
1481 		e4b->bd_info->bb_fragments--;
1482 	else if (!left_is_free && !right_is_free)
1483 		e4b->bd_info->bb_fragments++;
1484 
1485 	/* buddy[0] == bd_bitmap is a special case, so handle
1486 	 * it right away and let mb_buddy_mark_free stay free of
1487 	 * zero order checks.
1488 	 * Check if neighbours are to be coaleasced,
1489 	 * adjust bitmap bb_counters and borders appropriately.
1490 	 */
1491 	if (first & 1) {
1492 		first += !left_is_free;
1493 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1494 	}
1495 	if (!(last & 1)) {
1496 		last -= !right_is_free;
1497 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1498 	}
1499 
1500 	if (first <= last)
1501 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1502 
1503 done:
1504 	mb_set_largest_free_order(sb, e4b->bd_info);
1505 	mb_check_buddy(e4b);
1506 }
1507 
1508 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1509 				int needed, struct ext4_free_extent *ex)
1510 {
1511 	int next = block;
1512 	int max, order;
1513 	void *buddy;
1514 
1515 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1516 	BUG_ON(ex == NULL);
1517 
1518 	buddy = mb_find_buddy(e4b, 0, &max);
1519 	BUG_ON(buddy == NULL);
1520 	BUG_ON(block >= max);
1521 	if (mb_test_bit(block, buddy)) {
1522 		ex->fe_len = 0;
1523 		ex->fe_start = 0;
1524 		ex->fe_group = 0;
1525 		return 0;
1526 	}
1527 
1528 	/* find actual order */
1529 	order = mb_find_order_for_block(e4b, block);
1530 	block = block >> order;
1531 
1532 	ex->fe_len = 1 << order;
1533 	ex->fe_start = block << order;
1534 	ex->fe_group = e4b->bd_group;
1535 
1536 	/* calc difference from given start */
1537 	next = next - ex->fe_start;
1538 	ex->fe_len -= next;
1539 	ex->fe_start += next;
1540 
1541 	while (needed > ex->fe_len &&
1542 	       mb_find_buddy(e4b, order, &max)) {
1543 
1544 		if (block + 1 >= max)
1545 			break;
1546 
1547 		next = (block + 1) * (1 << order);
1548 		if (mb_test_bit(next, e4b->bd_bitmap))
1549 			break;
1550 
1551 		order = mb_find_order_for_block(e4b, next);
1552 
1553 		block = next >> order;
1554 		ex->fe_len += 1 << order;
1555 	}
1556 
1557 	if (ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))) {
1558 		/* Should never happen! (but apparently sometimes does?!?) */
1559 		WARN_ON(1);
1560 		ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1561 			   "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1562 			   block, order, needed, ex->fe_group, ex->fe_start,
1563 			   ex->fe_len, ex->fe_logical);
1564 		ex->fe_len = 0;
1565 		ex->fe_start = 0;
1566 		ex->fe_group = 0;
1567 	}
1568 	return ex->fe_len;
1569 }
1570 
1571 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1572 {
1573 	int ord;
1574 	int mlen = 0;
1575 	int max = 0;
1576 	int cur;
1577 	int start = ex->fe_start;
1578 	int len = ex->fe_len;
1579 	unsigned ret = 0;
1580 	int len0 = len;
1581 	void *buddy;
1582 
1583 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1584 	BUG_ON(e4b->bd_group != ex->fe_group);
1585 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1586 	mb_check_buddy(e4b);
1587 	mb_mark_used_double(e4b, start, len);
1588 
1589 	e4b->bd_info->bb_free -= len;
1590 	if (e4b->bd_info->bb_first_free == start)
1591 		e4b->bd_info->bb_first_free += len;
1592 
1593 	/* let's maintain fragments counter */
1594 	if (start != 0)
1595 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1596 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1597 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1598 	if (mlen && max)
1599 		e4b->bd_info->bb_fragments++;
1600 	else if (!mlen && !max)
1601 		e4b->bd_info->bb_fragments--;
1602 
1603 	/* let's maintain buddy itself */
1604 	while (len) {
1605 		ord = mb_find_order_for_block(e4b, start);
1606 
1607 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1608 			/* the whole chunk may be allocated at once! */
1609 			mlen = 1 << ord;
1610 			buddy = mb_find_buddy(e4b, ord, &max);
1611 			BUG_ON((start >> ord) >= max);
1612 			mb_set_bit(start >> ord, buddy);
1613 			e4b->bd_info->bb_counters[ord]--;
1614 			start += mlen;
1615 			len -= mlen;
1616 			BUG_ON(len < 0);
1617 			continue;
1618 		}
1619 
1620 		/* store for history */
1621 		if (ret == 0)
1622 			ret = len | (ord << 16);
1623 
1624 		/* we have to split large buddy */
1625 		BUG_ON(ord <= 0);
1626 		buddy = mb_find_buddy(e4b, ord, &max);
1627 		mb_set_bit(start >> ord, buddy);
1628 		e4b->bd_info->bb_counters[ord]--;
1629 
1630 		ord--;
1631 		cur = (start >> ord) & ~1U;
1632 		buddy = mb_find_buddy(e4b, ord, &max);
1633 		mb_clear_bit(cur, buddy);
1634 		mb_clear_bit(cur + 1, buddy);
1635 		e4b->bd_info->bb_counters[ord]++;
1636 		e4b->bd_info->bb_counters[ord]++;
1637 	}
1638 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1639 
1640 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1641 	mb_check_buddy(e4b);
1642 
1643 	return ret;
1644 }
1645 
1646 /*
1647  * Must be called under group lock!
1648  */
1649 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1650 					struct ext4_buddy *e4b)
1651 {
1652 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1653 	int ret;
1654 
1655 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1656 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1657 
1658 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1659 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1660 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1661 
1662 	/* preallocation can change ac_b_ex, thus we store actually
1663 	 * allocated blocks for history */
1664 	ac->ac_f_ex = ac->ac_b_ex;
1665 
1666 	ac->ac_status = AC_STATUS_FOUND;
1667 	ac->ac_tail = ret & 0xffff;
1668 	ac->ac_buddy = ret >> 16;
1669 
1670 	/*
1671 	 * take the page reference. We want the page to be pinned
1672 	 * so that we don't get a ext4_mb_init_cache_call for this
1673 	 * group until we update the bitmap. That would mean we
1674 	 * double allocate blocks. The reference is dropped
1675 	 * in ext4_mb_release_context
1676 	 */
1677 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1678 	get_page(ac->ac_bitmap_page);
1679 	ac->ac_buddy_page = e4b->bd_buddy_page;
1680 	get_page(ac->ac_buddy_page);
1681 	/* store last allocated for subsequent stream allocation */
1682 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1683 		spin_lock(&sbi->s_md_lock);
1684 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1685 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1686 		spin_unlock(&sbi->s_md_lock);
1687 	}
1688 }
1689 
1690 /*
1691  * regular allocator, for general purposes allocation
1692  */
1693 
1694 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1695 					struct ext4_buddy *e4b,
1696 					int finish_group)
1697 {
1698 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1699 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1700 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1701 	struct ext4_free_extent ex;
1702 	int max;
1703 
1704 	if (ac->ac_status == AC_STATUS_FOUND)
1705 		return;
1706 	/*
1707 	 * We don't want to scan for a whole year
1708 	 */
1709 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1710 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1711 		ac->ac_status = AC_STATUS_BREAK;
1712 		return;
1713 	}
1714 
1715 	/*
1716 	 * Haven't found good chunk so far, let's continue
1717 	 */
1718 	if (bex->fe_len < gex->fe_len)
1719 		return;
1720 
1721 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1722 			&& bex->fe_group == e4b->bd_group) {
1723 		/* recheck chunk's availability - we don't know
1724 		 * when it was found (within this lock-unlock
1725 		 * period or not) */
1726 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1727 		if (max >= gex->fe_len) {
1728 			ext4_mb_use_best_found(ac, e4b);
1729 			return;
1730 		}
1731 	}
1732 }
1733 
1734 /*
1735  * The routine checks whether found extent is good enough. If it is,
1736  * then the extent gets marked used and flag is set to the context
1737  * to stop scanning. Otherwise, the extent is compared with the
1738  * previous found extent and if new one is better, then it's stored
1739  * in the context. Later, the best found extent will be used, if
1740  * mballoc can't find good enough extent.
1741  *
1742  * FIXME: real allocation policy is to be designed yet!
1743  */
1744 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1745 					struct ext4_free_extent *ex,
1746 					struct ext4_buddy *e4b)
1747 {
1748 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1749 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1750 
1751 	BUG_ON(ex->fe_len <= 0);
1752 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1753 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1754 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1755 
1756 	ac->ac_found++;
1757 
1758 	/*
1759 	 * The special case - take what you catch first
1760 	 */
1761 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1762 		*bex = *ex;
1763 		ext4_mb_use_best_found(ac, e4b);
1764 		return;
1765 	}
1766 
1767 	/*
1768 	 * Let's check whether the chuck is good enough
1769 	 */
1770 	if (ex->fe_len == gex->fe_len) {
1771 		*bex = *ex;
1772 		ext4_mb_use_best_found(ac, e4b);
1773 		return;
1774 	}
1775 
1776 	/*
1777 	 * If this is first found extent, just store it in the context
1778 	 */
1779 	if (bex->fe_len == 0) {
1780 		*bex = *ex;
1781 		return;
1782 	}
1783 
1784 	/*
1785 	 * If new found extent is better, store it in the context
1786 	 */
1787 	if (bex->fe_len < gex->fe_len) {
1788 		/* if the request isn't satisfied, any found extent
1789 		 * larger than previous best one is better */
1790 		if (ex->fe_len > bex->fe_len)
1791 			*bex = *ex;
1792 	} else if (ex->fe_len > gex->fe_len) {
1793 		/* if the request is satisfied, then we try to find
1794 		 * an extent that still satisfy the request, but is
1795 		 * smaller than previous one */
1796 		if (ex->fe_len < bex->fe_len)
1797 			*bex = *ex;
1798 	}
1799 
1800 	ext4_mb_check_limits(ac, e4b, 0);
1801 }
1802 
1803 static noinline_for_stack
1804 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1805 					struct ext4_buddy *e4b)
1806 {
1807 	struct ext4_free_extent ex = ac->ac_b_ex;
1808 	ext4_group_t group = ex.fe_group;
1809 	int max;
1810 	int err;
1811 
1812 	BUG_ON(ex.fe_len <= 0);
1813 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1814 	if (err)
1815 		return err;
1816 
1817 	ext4_lock_group(ac->ac_sb, group);
1818 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1819 
1820 	if (max > 0) {
1821 		ac->ac_b_ex = ex;
1822 		ext4_mb_use_best_found(ac, e4b);
1823 	}
1824 
1825 	ext4_unlock_group(ac->ac_sb, group);
1826 	ext4_mb_unload_buddy(e4b);
1827 
1828 	return 0;
1829 }
1830 
1831 static noinline_for_stack
1832 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1833 				struct ext4_buddy *e4b)
1834 {
1835 	ext4_group_t group = ac->ac_g_ex.fe_group;
1836 	int max;
1837 	int err;
1838 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1839 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1840 	struct ext4_free_extent ex;
1841 
1842 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1843 		return 0;
1844 	if (grp->bb_free == 0)
1845 		return 0;
1846 
1847 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1848 	if (err)
1849 		return err;
1850 
1851 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1852 		ext4_mb_unload_buddy(e4b);
1853 		return 0;
1854 	}
1855 
1856 	ext4_lock_group(ac->ac_sb, group);
1857 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1858 			     ac->ac_g_ex.fe_len, &ex);
1859 	ex.fe_logical = 0xDEADFA11; /* debug value */
1860 
1861 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1862 		ext4_fsblk_t start;
1863 
1864 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1865 			ex.fe_start;
1866 		/* use do_div to get remainder (would be 64-bit modulo) */
1867 		if (do_div(start, sbi->s_stripe) == 0) {
1868 			ac->ac_found++;
1869 			ac->ac_b_ex = ex;
1870 			ext4_mb_use_best_found(ac, e4b);
1871 		}
1872 	} else if (max >= ac->ac_g_ex.fe_len) {
1873 		BUG_ON(ex.fe_len <= 0);
1874 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1875 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1876 		ac->ac_found++;
1877 		ac->ac_b_ex = ex;
1878 		ext4_mb_use_best_found(ac, e4b);
1879 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1880 		/* Sometimes, caller may want to merge even small
1881 		 * number of blocks to an existing extent */
1882 		BUG_ON(ex.fe_len <= 0);
1883 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1884 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1885 		ac->ac_found++;
1886 		ac->ac_b_ex = ex;
1887 		ext4_mb_use_best_found(ac, e4b);
1888 	}
1889 	ext4_unlock_group(ac->ac_sb, group);
1890 	ext4_mb_unload_buddy(e4b);
1891 
1892 	return 0;
1893 }
1894 
1895 /*
1896  * The routine scans buddy structures (not bitmap!) from given order
1897  * to max order and tries to find big enough chunk to satisfy the req
1898  */
1899 static noinline_for_stack
1900 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1901 					struct ext4_buddy *e4b)
1902 {
1903 	struct super_block *sb = ac->ac_sb;
1904 	struct ext4_group_info *grp = e4b->bd_info;
1905 	void *buddy;
1906 	int i;
1907 	int k;
1908 	int max;
1909 
1910 	BUG_ON(ac->ac_2order <= 0);
1911 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1912 		if (grp->bb_counters[i] == 0)
1913 			continue;
1914 
1915 		buddy = mb_find_buddy(e4b, i, &max);
1916 		BUG_ON(buddy == NULL);
1917 
1918 		k = mb_find_next_zero_bit(buddy, max, 0);
1919 		BUG_ON(k >= max);
1920 
1921 		ac->ac_found++;
1922 
1923 		ac->ac_b_ex.fe_len = 1 << i;
1924 		ac->ac_b_ex.fe_start = k << i;
1925 		ac->ac_b_ex.fe_group = e4b->bd_group;
1926 
1927 		ext4_mb_use_best_found(ac, e4b);
1928 
1929 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1930 
1931 		if (EXT4_SB(sb)->s_mb_stats)
1932 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1933 
1934 		break;
1935 	}
1936 }
1937 
1938 /*
1939  * The routine scans the group and measures all found extents.
1940  * In order to optimize scanning, caller must pass number of
1941  * free blocks in the group, so the routine can know upper limit.
1942  */
1943 static noinline_for_stack
1944 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1945 					struct ext4_buddy *e4b)
1946 {
1947 	struct super_block *sb = ac->ac_sb;
1948 	void *bitmap = e4b->bd_bitmap;
1949 	struct ext4_free_extent ex;
1950 	int i;
1951 	int free;
1952 
1953 	free = e4b->bd_info->bb_free;
1954 	BUG_ON(free <= 0);
1955 
1956 	i = e4b->bd_info->bb_first_free;
1957 
1958 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1959 		i = mb_find_next_zero_bit(bitmap,
1960 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1961 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1962 			/*
1963 			 * IF we have corrupt bitmap, we won't find any
1964 			 * free blocks even though group info says we
1965 			 * we have free blocks
1966 			 */
1967 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1968 					"%d free clusters as per "
1969 					"group info. But bitmap says 0",
1970 					free);
1971 			break;
1972 		}
1973 
1974 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1975 		BUG_ON(ex.fe_len <= 0);
1976 		if (free < ex.fe_len) {
1977 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1978 					"%d free clusters as per "
1979 					"group info. But got %d blocks",
1980 					free, ex.fe_len);
1981 			/*
1982 			 * The number of free blocks differs. This mostly
1983 			 * indicate that the bitmap is corrupt. So exit
1984 			 * without claiming the space.
1985 			 */
1986 			break;
1987 		}
1988 		ex.fe_logical = 0xDEADC0DE; /* debug value */
1989 		ext4_mb_measure_extent(ac, &ex, e4b);
1990 
1991 		i += ex.fe_len;
1992 		free -= ex.fe_len;
1993 	}
1994 
1995 	ext4_mb_check_limits(ac, e4b, 1);
1996 }
1997 
1998 /*
1999  * This is a special case for storages like raid5
2000  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2001  */
2002 static noinline_for_stack
2003 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2004 				 struct ext4_buddy *e4b)
2005 {
2006 	struct super_block *sb = ac->ac_sb;
2007 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2008 	void *bitmap = e4b->bd_bitmap;
2009 	struct ext4_free_extent ex;
2010 	ext4_fsblk_t first_group_block;
2011 	ext4_fsblk_t a;
2012 	ext4_grpblk_t i;
2013 	int max;
2014 
2015 	BUG_ON(sbi->s_stripe == 0);
2016 
2017 	/* find first stripe-aligned block in group */
2018 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2019 
2020 	a = first_group_block + sbi->s_stripe - 1;
2021 	do_div(a, sbi->s_stripe);
2022 	i = (a * sbi->s_stripe) - first_group_block;
2023 
2024 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2025 		if (!mb_test_bit(i, bitmap)) {
2026 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2027 			if (max >= sbi->s_stripe) {
2028 				ac->ac_found++;
2029 				ex.fe_logical = 0xDEADF00D; /* debug value */
2030 				ac->ac_b_ex = ex;
2031 				ext4_mb_use_best_found(ac, e4b);
2032 				break;
2033 			}
2034 		}
2035 		i += sbi->s_stripe;
2036 	}
2037 }
2038 
2039 /*
2040  * This is now called BEFORE we load the buddy bitmap.
2041  * Returns either 1 or 0 indicating that the group is either suitable
2042  * for the allocation or not. In addition it can also return negative
2043  * error code when something goes wrong.
2044  */
2045 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2046 				ext4_group_t group, int cr)
2047 {
2048 	unsigned free, fragments;
2049 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2050 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2051 
2052 	BUG_ON(cr < 0 || cr >= 4);
2053 
2054 	free = grp->bb_free;
2055 	if (free == 0)
2056 		return 0;
2057 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2058 		return 0;
2059 
2060 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2061 		return 0;
2062 
2063 	/* We only do this if the grp has never been initialized */
2064 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2065 		int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2066 		if (ret)
2067 			return ret;
2068 	}
2069 
2070 	fragments = grp->bb_fragments;
2071 	if (fragments == 0)
2072 		return 0;
2073 
2074 	switch (cr) {
2075 	case 0:
2076 		BUG_ON(ac->ac_2order == 0);
2077 
2078 		/* Avoid using the first bg of a flexgroup for data files */
2079 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2080 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2081 		    ((group % flex_size) == 0))
2082 			return 0;
2083 
2084 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2085 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2086 			return 1;
2087 
2088 		if (grp->bb_largest_free_order < ac->ac_2order)
2089 			return 0;
2090 
2091 		return 1;
2092 	case 1:
2093 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2094 			return 1;
2095 		break;
2096 	case 2:
2097 		if (free >= ac->ac_g_ex.fe_len)
2098 			return 1;
2099 		break;
2100 	case 3:
2101 		return 1;
2102 	default:
2103 		BUG();
2104 	}
2105 
2106 	return 0;
2107 }
2108 
2109 static noinline_for_stack int
2110 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2111 {
2112 	ext4_group_t ngroups, group, i;
2113 	int cr;
2114 	int err = 0, first_err = 0;
2115 	struct ext4_sb_info *sbi;
2116 	struct super_block *sb;
2117 	struct ext4_buddy e4b;
2118 
2119 	sb = ac->ac_sb;
2120 	sbi = EXT4_SB(sb);
2121 	ngroups = ext4_get_groups_count(sb);
2122 	/* non-extent files are limited to low blocks/groups */
2123 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2124 		ngroups = sbi->s_blockfile_groups;
2125 
2126 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2127 
2128 	/* first, try the goal */
2129 	err = ext4_mb_find_by_goal(ac, &e4b);
2130 	if (err || ac->ac_status == AC_STATUS_FOUND)
2131 		goto out;
2132 
2133 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2134 		goto out;
2135 
2136 	/*
2137 	 * ac->ac2_order is set only if the fe_len is a power of 2
2138 	 * if ac2_order is set we also set criteria to 0 so that we
2139 	 * try exact allocation using buddy.
2140 	 */
2141 	i = fls(ac->ac_g_ex.fe_len);
2142 	ac->ac_2order = 0;
2143 	/*
2144 	 * We search using buddy data only if the order of the request
2145 	 * is greater than equal to the sbi_s_mb_order2_reqs
2146 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2147 	 * We also support searching for power-of-two requests only for
2148 	 * requests upto maximum buddy size we have constructed.
2149 	 */
2150 	if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2151 		/*
2152 		 * This should tell if fe_len is exactly power of 2
2153 		 */
2154 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2155 			ac->ac_2order = i - 1;
2156 	}
2157 
2158 	/* if stream allocation is enabled, use global goal */
2159 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2160 		/* TBD: may be hot point */
2161 		spin_lock(&sbi->s_md_lock);
2162 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2163 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2164 		spin_unlock(&sbi->s_md_lock);
2165 	}
2166 
2167 	/* Let's just scan groups to find more-less suitable blocks */
2168 	cr = ac->ac_2order ? 0 : 1;
2169 	/*
2170 	 * cr == 0 try to get exact allocation,
2171 	 * cr == 3  try to get anything
2172 	 */
2173 repeat:
2174 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2175 		ac->ac_criteria = cr;
2176 		/*
2177 		 * searching for the right group start
2178 		 * from the goal value specified
2179 		 */
2180 		group = ac->ac_g_ex.fe_group;
2181 
2182 		for (i = 0; i < ngroups; group++, i++) {
2183 			int ret = 0;
2184 			cond_resched();
2185 			/*
2186 			 * Artificially restricted ngroups for non-extent
2187 			 * files makes group > ngroups possible on first loop.
2188 			 */
2189 			if (group >= ngroups)
2190 				group = 0;
2191 
2192 			/* This now checks without needing the buddy page */
2193 			ret = ext4_mb_good_group(ac, group, cr);
2194 			if (ret <= 0) {
2195 				if (!first_err)
2196 					first_err = ret;
2197 				continue;
2198 			}
2199 
2200 			err = ext4_mb_load_buddy(sb, group, &e4b);
2201 			if (err)
2202 				goto out;
2203 
2204 			ext4_lock_group(sb, group);
2205 
2206 			/*
2207 			 * We need to check again after locking the
2208 			 * block group
2209 			 */
2210 			ret = ext4_mb_good_group(ac, group, cr);
2211 			if (ret <= 0) {
2212 				ext4_unlock_group(sb, group);
2213 				ext4_mb_unload_buddy(&e4b);
2214 				if (!first_err)
2215 					first_err = ret;
2216 				continue;
2217 			}
2218 
2219 			ac->ac_groups_scanned++;
2220 			if (cr == 0)
2221 				ext4_mb_simple_scan_group(ac, &e4b);
2222 			else if (cr == 1 && sbi->s_stripe &&
2223 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2224 				ext4_mb_scan_aligned(ac, &e4b);
2225 			else
2226 				ext4_mb_complex_scan_group(ac, &e4b);
2227 
2228 			ext4_unlock_group(sb, group);
2229 			ext4_mb_unload_buddy(&e4b);
2230 
2231 			if (ac->ac_status != AC_STATUS_CONTINUE)
2232 				break;
2233 		}
2234 	}
2235 
2236 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2237 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2238 		/*
2239 		 * We've been searching too long. Let's try to allocate
2240 		 * the best chunk we've found so far
2241 		 */
2242 
2243 		ext4_mb_try_best_found(ac, &e4b);
2244 		if (ac->ac_status != AC_STATUS_FOUND) {
2245 			/*
2246 			 * Someone more lucky has already allocated it.
2247 			 * The only thing we can do is just take first
2248 			 * found block(s)
2249 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2250 			 */
2251 			ac->ac_b_ex.fe_group = 0;
2252 			ac->ac_b_ex.fe_start = 0;
2253 			ac->ac_b_ex.fe_len = 0;
2254 			ac->ac_status = AC_STATUS_CONTINUE;
2255 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2256 			cr = 3;
2257 			atomic_inc(&sbi->s_mb_lost_chunks);
2258 			goto repeat;
2259 		}
2260 	}
2261 out:
2262 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2263 		err = first_err;
2264 	return err;
2265 }
2266 
2267 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2268 {
2269 	struct super_block *sb = seq->private;
2270 	ext4_group_t group;
2271 
2272 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2273 		return NULL;
2274 	group = *pos + 1;
2275 	return (void *) ((unsigned long) group);
2276 }
2277 
2278 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2279 {
2280 	struct super_block *sb = seq->private;
2281 	ext4_group_t group;
2282 
2283 	++*pos;
2284 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2285 		return NULL;
2286 	group = *pos + 1;
2287 	return (void *) ((unsigned long) group);
2288 }
2289 
2290 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2291 {
2292 	struct super_block *sb = seq->private;
2293 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2294 	int i;
2295 	int err, buddy_loaded = 0;
2296 	struct ext4_buddy e4b;
2297 	struct ext4_group_info *grinfo;
2298 	struct sg {
2299 		struct ext4_group_info info;
2300 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2301 	} sg;
2302 
2303 	group--;
2304 	if (group == 0)
2305 		seq_puts(seq, "#group: free  frags first ["
2306 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2307 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2308 
2309 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2310 		sizeof(struct ext4_group_info);
2311 	grinfo = ext4_get_group_info(sb, group);
2312 	/* Load the group info in memory only if not already loaded. */
2313 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2314 		err = ext4_mb_load_buddy(sb, group, &e4b);
2315 		if (err) {
2316 			seq_printf(seq, "#%-5u: I/O error\n", group);
2317 			return 0;
2318 		}
2319 		buddy_loaded = 1;
2320 	}
2321 
2322 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2323 
2324 	if (buddy_loaded)
2325 		ext4_mb_unload_buddy(&e4b);
2326 
2327 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2328 			sg.info.bb_fragments, sg.info.bb_first_free);
2329 	for (i = 0; i <= 13; i++)
2330 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2331 				sg.info.bb_counters[i] : 0);
2332 	seq_printf(seq, " ]\n");
2333 
2334 	return 0;
2335 }
2336 
2337 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2338 {
2339 }
2340 
2341 static const struct seq_operations ext4_mb_seq_groups_ops = {
2342 	.start  = ext4_mb_seq_groups_start,
2343 	.next   = ext4_mb_seq_groups_next,
2344 	.stop   = ext4_mb_seq_groups_stop,
2345 	.show   = ext4_mb_seq_groups_show,
2346 };
2347 
2348 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2349 {
2350 	struct super_block *sb = PDE_DATA(inode);
2351 	int rc;
2352 
2353 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2354 	if (rc == 0) {
2355 		struct seq_file *m = file->private_data;
2356 		m->private = sb;
2357 	}
2358 	return rc;
2359 
2360 }
2361 
2362 const struct file_operations ext4_seq_mb_groups_fops = {
2363 	.open		= ext4_mb_seq_groups_open,
2364 	.read		= seq_read,
2365 	.llseek		= seq_lseek,
2366 	.release	= seq_release,
2367 };
2368 
2369 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2370 {
2371 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2372 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2373 
2374 	BUG_ON(!cachep);
2375 	return cachep;
2376 }
2377 
2378 /*
2379  * Allocate the top-level s_group_info array for the specified number
2380  * of groups
2381  */
2382 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2383 {
2384 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2385 	unsigned size;
2386 	struct ext4_group_info ***new_groupinfo;
2387 
2388 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2389 		EXT4_DESC_PER_BLOCK_BITS(sb);
2390 	if (size <= sbi->s_group_info_size)
2391 		return 0;
2392 
2393 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2394 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
2395 	if (!new_groupinfo) {
2396 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2397 		return -ENOMEM;
2398 	}
2399 	if (sbi->s_group_info) {
2400 		memcpy(new_groupinfo, sbi->s_group_info,
2401 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2402 		kvfree(sbi->s_group_info);
2403 	}
2404 	sbi->s_group_info = new_groupinfo;
2405 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2406 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2407 		   sbi->s_group_info_size);
2408 	return 0;
2409 }
2410 
2411 /* Create and initialize ext4_group_info data for the given group. */
2412 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2413 			  struct ext4_group_desc *desc)
2414 {
2415 	int i;
2416 	int metalen = 0;
2417 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2418 	struct ext4_group_info **meta_group_info;
2419 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2420 
2421 	/*
2422 	 * First check if this group is the first of a reserved block.
2423 	 * If it's true, we have to allocate a new table of pointers
2424 	 * to ext4_group_info structures
2425 	 */
2426 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2427 		metalen = sizeof(*meta_group_info) <<
2428 			EXT4_DESC_PER_BLOCK_BITS(sb);
2429 		meta_group_info = kmalloc(metalen, GFP_NOFS);
2430 		if (meta_group_info == NULL) {
2431 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2432 				 "for a buddy group");
2433 			goto exit_meta_group_info;
2434 		}
2435 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2436 			meta_group_info;
2437 	}
2438 
2439 	meta_group_info =
2440 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2441 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2442 
2443 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2444 	if (meta_group_info[i] == NULL) {
2445 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2446 		goto exit_group_info;
2447 	}
2448 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2449 		&(meta_group_info[i]->bb_state));
2450 
2451 	/*
2452 	 * initialize bb_free to be able to skip
2453 	 * empty groups without initialization
2454 	 */
2455 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2456 		meta_group_info[i]->bb_free =
2457 			ext4_free_clusters_after_init(sb, group, desc);
2458 	} else {
2459 		meta_group_info[i]->bb_free =
2460 			ext4_free_group_clusters(sb, desc);
2461 	}
2462 
2463 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2464 	init_rwsem(&meta_group_info[i]->alloc_sem);
2465 	meta_group_info[i]->bb_free_root = RB_ROOT;
2466 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2467 
2468 #ifdef DOUBLE_CHECK
2469 	{
2470 		struct buffer_head *bh;
2471 		meta_group_info[i]->bb_bitmap =
2472 			kmalloc(sb->s_blocksize, GFP_NOFS);
2473 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2474 		bh = ext4_read_block_bitmap(sb, group);
2475 		BUG_ON(IS_ERR_OR_NULL(bh));
2476 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2477 			sb->s_blocksize);
2478 		put_bh(bh);
2479 	}
2480 #endif
2481 
2482 	return 0;
2483 
2484 exit_group_info:
2485 	/* If a meta_group_info table has been allocated, release it now */
2486 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2487 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2488 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2489 	}
2490 exit_meta_group_info:
2491 	return -ENOMEM;
2492 } /* ext4_mb_add_groupinfo */
2493 
2494 static int ext4_mb_init_backend(struct super_block *sb)
2495 {
2496 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2497 	ext4_group_t i;
2498 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2499 	int err;
2500 	struct ext4_group_desc *desc;
2501 	struct kmem_cache *cachep;
2502 
2503 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2504 	if (err)
2505 		return err;
2506 
2507 	sbi->s_buddy_cache = new_inode(sb);
2508 	if (sbi->s_buddy_cache == NULL) {
2509 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2510 		goto err_freesgi;
2511 	}
2512 	/* To avoid potentially colliding with an valid on-disk inode number,
2513 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2514 	 * not in the inode hash, so it should never be found by iget(), but
2515 	 * this will avoid confusion if it ever shows up during debugging. */
2516 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2517 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2518 	for (i = 0; i < ngroups; i++) {
2519 		desc = ext4_get_group_desc(sb, i, NULL);
2520 		if (desc == NULL) {
2521 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2522 			goto err_freebuddy;
2523 		}
2524 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2525 			goto err_freebuddy;
2526 	}
2527 
2528 	return 0;
2529 
2530 err_freebuddy:
2531 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2532 	while (i-- > 0)
2533 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2534 	i = sbi->s_group_info_size;
2535 	while (i-- > 0)
2536 		kfree(sbi->s_group_info[i]);
2537 	iput(sbi->s_buddy_cache);
2538 err_freesgi:
2539 	kvfree(sbi->s_group_info);
2540 	return -ENOMEM;
2541 }
2542 
2543 static void ext4_groupinfo_destroy_slabs(void)
2544 {
2545 	int i;
2546 
2547 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2548 		if (ext4_groupinfo_caches[i])
2549 			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2550 		ext4_groupinfo_caches[i] = NULL;
2551 	}
2552 }
2553 
2554 static int ext4_groupinfo_create_slab(size_t size)
2555 {
2556 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2557 	int slab_size;
2558 	int blocksize_bits = order_base_2(size);
2559 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2560 	struct kmem_cache *cachep;
2561 
2562 	if (cache_index >= NR_GRPINFO_CACHES)
2563 		return -EINVAL;
2564 
2565 	if (unlikely(cache_index < 0))
2566 		cache_index = 0;
2567 
2568 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2569 	if (ext4_groupinfo_caches[cache_index]) {
2570 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2571 		return 0;	/* Already created */
2572 	}
2573 
2574 	slab_size = offsetof(struct ext4_group_info,
2575 				bb_counters[blocksize_bits + 2]);
2576 
2577 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2578 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2579 					NULL);
2580 
2581 	ext4_groupinfo_caches[cache_index] = cachep;
2582 
2583 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2584 	if (!cachep) {
2585 		printk(KERN_EMERG
2586 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2587 		return -ENOMEM;
2588 	}
2589 
2590 	return 0;
2591 }
2592 
2593 int ext4_mb_init(struct super_block *sb)
2594 {
2595 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2596 	unsigned i, j;
2597 	unsigned offset, offset_incr;
2598 	unsigned max;
2599 	int ret;
2600 
2601 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2602 
2603 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2604 	if (sbi->s_mb_offsets == NULL) {
2605 		ret = -ENOMEM;
2606 		goto out;
2607 	}
2608 
2609 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2610 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2611 	if (sbi->s_mb_maxs == NULL) {
2612 		ret = -ENOMEM;
2613 		goto out;
2614 	}
2615 
2616 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2617 	if (ret < 0)
2618 		goto out;
2619 
2620 	/* order 0 is regular bitmap */
2621 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2622 	sbi->s_mb_offsets[0] = 0;
2623 
2624 	i = 1;
2625 	offset = 0;
2626 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
2627 	max = sb->s_blocksize << 2;
2628 	do {
2629 		sbi->s_mb_offsets[i] = offset;
2630 		sbi->s_mb_maxs[i] = max;
2631 		offset += offset_incr;
2632 		offset_incr = offset_incr >> 1;
2633 		max = max >> 1;
2634 		i++;
2635 	} while (i <= sb->s_blocksize_bits + 1);
2636 
2637 	spin_lock_init(&sbi->s_md_lock);
2638 	spin_lock_init(&sbi->s_bal_lock);
2639 	sbi->s_mb_free_pending = 0;
2640 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
2641 
2642 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2643 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2644 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2645 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2646 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2647 	/*
2648 	 * The default group preallocation is 512, which for 4k block
2649 	 * sizes translates to 2 megabytes.  However for bigalloc file
2650 	 * systems, this is probably too big (i.e, if the cluster size
2651 	 * is 1 megabyte, then group preallocation size becomes half a
2652 	 * gigabyte!).  As a default, we will keep a two megabyte
2653 	 * group pralloc size for cluster sizes up to 64k, and after
2654 	 * that, we will force a minimum group preallocation size of
2655 	 * 32 clusters.  This translates to 8 megs when the cluster
2656 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2657 	 * which seems reasonable as a default.
2658 	 */
2659 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2660 				       sbi->s_cluster_bits, 32);
2661 	/*
2662 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2663 	 * to the lowest multiple of s_stripe which is bigger than
2664 	 * the s_mb_group_prealloc as determined above. We want
2665 	 * the preallocation size to be an exact multiple of the
2666 	 * RAID stripe size so that preallocations don't fragment
2667 	 * the stripes.
2668 	 */
2669 	if (sbi->s_stripe > 1) {
2670 		sbi->s_mb_group_prealloc = roundup(
2671 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2672 	}
2673 
2674 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2675 	if (sbi->s_locality_groups == NULL) {
2676 		ret = -ENOMEM;
2677 		goto out;
2678 	}
2679 	for_each_possible_cpu(i) {
2680 		struct ext4_locality_group *lg;
2681 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2682 		mutex_init(&lg->lg_mutex);
2683 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2684 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2685 		spin_lock_init(&lg->lg_prealloc_lock);
2686 	}
2687 
2688 	/* init file for buddy data */
2689 	ret = ext4_mb_init_backend(sb);
2690 	if (ret != 0)
2691 		goto out_free_locality_groups;
2692 
2693 	return 0;
2694 
2695 out_free_locality_groups:
2696 	free_percpu(sbi->s_locality_groups);
2697 	sbi->s_locality_groups = NULL;
2698 out:
2699 	kfree(sbi->s_mb_offsets);
2700 	sbi->s_mb_offsets = NULL;
2701 	kfree(sbi->s_mb_maxs);
2702 	sbi->s_mb_maxs = NULL;
2703 	return ret;
2704 }
2705 
2706 /* need to called with the ext4 group lock held */
2707 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2708 {
2709 	struct ext4_prealloc_space *pa;
2710 	struct list_head *cur, *tmp;
2711 	int count = 0;
2712 
2713 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2714 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2715 		list_del(&pa->pa_group_list);
2716 		count++;
2717 		kmem_cache_free(ext4_pspace_cachep, pa);
2718 	}
2719 	if (count)
2720 		mb_debug(1, "mballoc: %u PAs left\n", count);
2721 
2722 }
2723 
2724 int ext4_mb_release(struct super_block *sb)
2725 {
2726 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2727 	ext4_group_t i;
2728 	int num_meta_group_infos;
2729 	struct ext4_group_info *grinfo;
2730 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2731 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2732 
2733 	if (sbi->s_group_info) {
2734 		for (i = 0; i < ngroups; i++) {
2735 			grinfo = ext4_get_group_info(sb, i);
2736 #ifdef DOUBLE_CHECK
2737 			kfree(grinfo->bb_bitmap);
2738 #endif
2739 			ext4_lock_group(sb, i);
2740 			ext4_mb_cleanup_pa(grinfo);
2741 			ext4_unlock_group(sb, i);
2742 			kmem_cache_free(cachep, grinfo);
2743 		}
2744 		num_meta_group_infos = (ngroups +
2745 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2746 			EXT4_DESC_PER_BLOCK_BITS(sb);
2747 		for (i = 0; i < num_meta_group_infos; i++)
2748 			kfree(sbi->s_group_info[i]);
2749 		kvfree(sbi->s_group_info);
2750 	}
2751 	kfree(sbi->s_mb_offsets);
2752 	kfree(sbi->s_mb_maxs);
2753 	iput(sbi->s_buddy_cache);
2754 	if (sbi->s_mb_stats) {
2755 		ext4_msg(sb, KERN_INFO,
2756 		       "mballoc: %u blocks %u reqs (%u success)",
2757 				atomic_read(&sbi->s_bal_allocated),
2758 				atomic_read(&sbi->s_bal_reqs),
2759 				atomic_read(&sbi->s_bal_success));
2760 		ext4_msg(sb, KERN_INFO,
2761 		      "mballoc: %u extents scanned, %u goal hits, "
2762 				"%u 2^N hits, %u breaks, %u lost",
2763 				atomic_read(&sbi->s_bal_ex_scanned),
2764 				atomic_read(&sbi->s_bal_goals),
2765 				atomic_read(&sbi->s_bal_2orders),
2766 				atomic_read(&sbi->s_bal_breaks),
2767 				atomic_read(&sbi->s_mb_lost_chunks));
2768 		ext4_msg(sb, KERN_INFO,
2769 		       "mballoc: %lu generated and it took %Lu",
2770 				sbi->s_mb_buddies_generated,
2771 				sbi->s_mb_generation_time);
2772 		ext4_msg(sb, KERN_INFO,
2773 		       "mballoc: %u preallocated, %u discarded",
2774 				atomic_read(&sbi->s_mb_preallocated),
2775 				atomic_read(&sbi->s_mb_discarded));
2776 	}
2777 
2778 	free_percpu(sbi->s_locality_groups);
2779 
2780 	return 0;
2781 }
2782 
2783 static inline int ext4_issue_discard(struct super_block *sb,
2784 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2785 		struct bio **biop)
2786 {
2787 	ext4_fsblk_t discard_block;
2788 
2789 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2790 			 ext4_group_first_block_no(sb, block_group));
2791 	count = EXT4_C2B(EXT4_SB(sb), count);
2792 	trace_ext4_discard_blocks(sb,
2793 			(unsigned long long) discard_block, count);
2794 	if (biop) {
2795 		return __blkdev_issue_discard(sb->s_bdev,
2796 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
2797 			(sector_t)count << (sb->s_blocksize_bits - 9),
2798 			GFP_NOFS, 0, biop);
2799 	} else
2800 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2801 }
2802 
2803 static void ext4_free_data_in_buddy(struct super_block *sb,
2804 				    struct ext4_free_data *entry)
2805 {
2806 	struct ext4_buddy e4b;
2807 	struct ext4_group_info *db;
2808 	int err, count = 0, count2 = 0;
2809 
2810 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2811 		 entry->efd_count, entry->efd_group, entry);
2812 
2813 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2814 	/* we expect to find existing buddy because it's pinned */
2815 	BUG_ON(err != 0);
2816 
2817 	spin_lock(&EXT4_SB(sb)->s_md_lock);
2818 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2819 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
2820 
2821 	db = e4b.bd_info;
2822 	/* there are blocks to put in buddy to make them really free */
2823 	count += entry->efd_count;
2824 	count2++;
2825 	ext4_lock_group(sb, entry->efd_group);
2826 	/* Take it out of per group rb tree */
2827 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2828 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2829 
2830 	/*
2831 	 * Clear the trimmed flag for the group so that the next
2832 	 * ext4_trim_fs can trim it.
2833 	 * If the volume is mounted with -o discard, online discard
2834 	 * is supported and the free blocks will be trimmed online.
2835 	 */
2836 	if (!test_opt(sb, DISCARD))
2837 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2838 
2839 	if (!db->bb_free_root.rb_node) {
2840 		/* No more items in the per group rb tree
2841 		 * balance refcounts from ext4_mb_free_metadata()
2842 		 */
2843 		put_page(e4b.bd_buddy_page);
2844 		put_page(e4b.bd_bitmap_page);
2845 	}
2846 	ext4_unlock_group(sb, entry->efd_group);
2847 	kmem_cache_free(ext4_free_data_cachep, entry);
2848 	ext4_mb_unload_buddy(&e4b);
2849 
2850 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2851 }
2852 
2853 /*
2854  * This function is called by the jbd2 layer once the commit has finished,
2855  * so we know we can free the blocks that were released with that commit.
2856  */
2857 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2858 {
2859 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2860 	struct ext4_free_data *entry, *tmp;
2861 	struct bio *discard_bio = NULL;
2862 	struct list_head freed_data_list;
2863 	struct list_head *cut_pos = NULL;
2864 	int err;
2865 
2866 	INIT_LIST_HEAD(&freed_data_list);
2867 
2868 	spin_lock(&sbi->s_md_lock);
2869 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2870 		if (entry->efd_tid != commit_tid)
2871 			break;
2872 		cut_pos = &entry->efd_list;
2873 	}
2874 	if (cut_pos)
2875 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2876 				  cut_pos);
2877 	spin_unlock(&sbi->s_md_lock);
2878 
2879 	if (test_opt(sb, DISCARD)) {
2880 		list_for_each_entry(entry, &freed_data_list, efd_list) {
2881 			err = ext4_issue_discard(sb, entry->efd_group,
2882 						 entry->efd_start_cluster,
2883 						 entry->efd_count,
2884 						 &discard_bio);
2885 			if (err && err != -EOPNOTSUPP) {
2886 				ext4_msg(sb, KERN_WARNING, "discard request in"
2887 					 " group:%d block:%d count:%d failed"
2888 					 " with %d", entry->efd_group,
2889 					 entry->efd_start_cluster,
2890 					 entry->efd_count, err);
2891 			} else if (err == -EOPNOTSUPP)
2892 				break;
2893 		}
2894 
2895 		if (discard_bio)
2896 			submit_bio_wait(discard_bio);
2897 	}
2898 
2899 	list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2900 		ext4_free_data_in_buddy(sb, entry);
2901 }
2902 
2903 int __init ext4_init_mballoc(void)
2904 {
2905 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2906 					SLAB_RECLAIM_ACCOUNT);
2907 	if (ext4_pspace_cachep == NULL)
2908 		return -ENOMEM;
2909 
2910 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2911 				    SLAB_RECLAIM_ACCOUNT);
2912 	if (ext4_ac_cachep == NULL) {
2913 		kmem_cache_destroy(ext4_pspace_cachep);
2914 		return -ENOMEM;
2915 	}
2916 
2917 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2918 					   SLAB_RECLAIM_ACCOUNT);
2919 	if (ext4_free_data_cachep == NULL) {
2920 		kmem_cache_destroy(ext4_pspace_cachep);
2921 		kmem_cache_destroy(ext4_ac_cachep);
2922 		return -ENOMEM;
2923 	}
2924 	return 0;
2925 }
2926 
2927 void ext4_exit_mballoc(void)
2928 {
2929 	/*
2930 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2931 	 * before destroying the slab cache.
2932 	 */
2933 	rcu_barrier();
2934 	kmem_cache_destroy(ext4_pspace_cachep);
2935 	kmem_cache_destroy(ext4_ac_cachep);
2936 	kmem_cache_destroy(ext4_free_data_cachep);
2937 	ext4_groupinfo_destroy_slabs();
2938 }
2939 
2940 
2941 /*
2942  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2943  * Returns 0 if success or error code
2944  */
2945 static noinline_for_stack int
2946 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2947 				handle_t *handle, unsigned int reserv_clstrs)
2948 {
2949 	struct buffer_head *bitmap_bh = NULL;
2950 	struct ext4_group_desc *gdp;
2951 	struct buffer_head *gdp_bh;
2952 	struct ext4_sb_info *sbi;
2953 	struct super_block *sb;
2954 	ext4_fsblk_t block;
2955 	int err, len;
2956 
2957 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2958 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2959 
2960 	sb = ac->ac_sb;
2961 	sbi = EXT4_SB(sb);
2962 
2963 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2964 	if (IS_ERR(bitmap_bh)) {
2965 		err = PTR_ERR(bitmap_bh);
2966 		bitmap_bh = NULL;
2967 		goto out_err;
2968 	}
2969 
2970 	BUFFER_TRACE(bitmap_bh, "getting write access");
2971 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2972 	if (err)
2973 		goto out_err;
2974 
2975 	err = -EIO;
2976 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2977 	if (!gdp)
2978 		goto out_err;
2979 
2980 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2981 			ext4_free_group_clusters(sb, gdp));
2982 
2983 	BUFFER_TRACE(gdp_bh, "get_write_access");
2984 	err = ext4_journal_get_write_access(handle, gdp_bh);
2985 	if (err)
2986 		goto out_err;
2987 
2988 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2989 
2990 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2991 	if (!ext4_data_block_valid(sbi, block, len)) {
2992 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2993 			   "fs metadata", block, block+len);
2994 		/* File system mounted not to panic on error
2995 		 * Fix the bitmap and return EFSCORRUPTED
2996 		 * We leak some of the blocks here.
2997 		 */
2998 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2999 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3000 			      ac->ac_b_ex.fe_len);
3001 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3002 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3003 		if (!err)
3004 			err = -EFSCORRUPTED;
3005 		goto out_err;
3006 	}
3007 
3008 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3009 #ifdef AGGRESSIVE_CHECK
3010 	{
3011 		int i;
3012 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3013 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3014 						bitmap_bh->b_data));
3015 		}
3016 	}
3017 #endif
3018 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3019 		      ac->ac_b_ex.fe_len);
3020 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
3021 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3022 		ext4_free_group_clusters_set(sb, gdp,
3023 					     ext4_free_clusters_after_init(sb,
3024 						ac->ac_b_ex.fe_group, gdp));
3025 	}
3026 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3027 	ext4_free_group_clusters_set(sb, gdp, len);
3028 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3029 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3030 
3031 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3032 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3033 	/*
3034 	 * Now reduce the dirty block count also. Should not go negative
3035 	 */
3036 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3037 		/* release all the reserved blocks if non delalloc */
3038 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3039 				   reserv_clstrs);
3040 
3041 	if (sbi->s_log_groups_per_flex) {
3042 		ext4_group_t flex_group = ext4_flex_group(sbi,
3043 							  ac->ac_b_ex.fe_group);
3044 		atomic64_sub(ac->ac_b_ex.fe_len,
3045 			     &sbi->s_flex_groups[flex_group].free_clusters);
3046 	}
3047 
3048 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3049 	if (err)
3050 		goto out_err;
3051 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3052 
3053 out_err:
3054 	brelse(bitmap_bh);
3055 	return err;
3056 }
3057 
3058 /*
3059  * here we normalize request for locality group
3060  * Group request are normalized to s_mb_group_prealloc, which goes to
3061  * s_strip if we set the same via mount option.
3062  * s_mb_group_prealloc can be configured via
3063  * /sys/fs/ext4/<partition>/mb_group_prealloc
3064  *
3065  * XXX: should we try to preallocate more than the group has now?
3066  */
3067 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3068 {
3069 	struct super_block *sb = ac->ac_sb;
3070 	struct ext4_locality_group *lg = ac->ac_lg;
3071 
3072 	BUG_ON(lg == NULL);
3073 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3074 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
3075 		current->pid, ac->ac_g_ex.fe_len);
3076 }
3077 
3078 /*
3079  * Normalization means making request better in terms of
3080  * size and alignment
3081  */
3082 static noinline_for_stack void
3083 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3084 				struct ext4_allocation_request *ar)
3085 {
3086 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3087 	int bsbits, max;
3088 	ext4_lblk_t end;
3089 	loff_t size, start_off;
3090 	loff_t orig_size __maybe_unused;
3091 	ext4_lblk_t start;
3092 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3093 	struct ext4_prealloc_space *pa;
3094 
3095 	/* do normalize only data requests, metadata requests
3096 	   do not need preallocation */
3097 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3098 		return;
3099 
3100 	/* sometime caller may want exact blocks */
3101 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3102 		return;
3103 
3104 	/* caller may indicate that preallocation isn't
3105 	 * required (it's a tail, for example) */
3106 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3107 		return;
3108 
3109 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3110 		ext4_mb_normalize_group_request(ac);
3111 		return ;
3112 	}
3113 
3114 	bsbits = ac->ac_sb->s_blocksize_bits;
3115 
3116 	/* first, let's learn actual file size
3117 	 * given current request is allocated */
3118 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3119 	size = size << bsbits;
3120 	if (size < i_size_read(ac->ac_inode))
3121 		size = i_size_read(ac->ac_inode);
3122 	orig_size = size;
3123 
3124 	/* max size of free chunks */
3125 	max = 2 << bsbits;
3126 
3127 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3128 		(req <= (size) || max <= (chunk_size))
3129 
3130 	/* first, try to predict filesize */
3131 	/* XXX: should this table be tunable? */
3132 	start_off = 0;
3133 	if (size <= 16 * 1024) {
3134 		size = 16 * 1024;
3135 	} else if (size <= 32 * 1024) {
3136 		size = 32 * 1024;
3137 	} else if (size <= 64 * 1024) {
3138 		size = 64 * 1024;
3139 	} else if (size <= 128 * 1024) {
3140 		size = 128 * 1024;
3141 	} else if (size <= 256 * 1024) {
3142 		size = 256 * 1024;
3143 	} else if (size <= 512 * 1024) {
3144 		size = 512 * 1024;
3145 	} else if (size <= 1024 * 1024) {
3146 		size = 1024 * 1024;
3147 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3148 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3149 						(21 - bsbits)) << 21;
3150 		size = 2 * 1024 * 1024;
3151 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3152 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3153 							(22 - bsbits)) << 22;
3154 		size = 4 * 1024 * 1024;
3155 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3156 					(8<<20)>>bsbits, max, 8 * 1024)) {
3157 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3158 							(23 - bsbits)) << 23;
3159 		size = 8 * 1024 * 1024;
3160 	} else {
3161 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3162 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3163 					      ac->ac_o_ex.fe_len) << bsbits;
3164 	}
3165 	size = size >> bsbits;
3166 	start = start_off >> bsbits;
3167 
3168 	/* don't cover already allocated blocks in selected range */
3169 	if (ar->pleft && start <= ar->lleft) {
3170 		size -= ar->lleft + 1 - start;
3171 		start = ar->lleft + 1;
3172 	}
3173 	if (ar->pright && start + size - 1 >= ar->lright)
3174 		size -= start + size - ar->lright;
3175 
3176 	/*
3177 	 * Trim allocation request for filesystems with artificially small
3178 	 * groups.
3179 	 */
3180 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3181 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3182 
3183 	end = start + size;
3184 
3185 	/* check we don't cross already preallocated blocks */
3186 	rcu_read_lock();
3187 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3188 		ext4_lblk_t pa_end;
3189 
3190 		if (pa->pa_deleted)
3191 			continue;
3192 		spin_lock(&pa->pa_lock);
3193 		if (pa->pa_deleted) {
3194 			spin_unlock(&pa->pa_lock);
3195 			continue;
3196 		}
3197 
3198 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3199 						  pa->pa_len);
3200 
3201 		/* PA must not overlap original request */
3202 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3203 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3204 
3205 		/* skip PAs this normalized request doesn't overlap with */
3206 		if (pa->pa_lstart >= end || pa_end <= start) {
3207 			spin_unlock(&pa->pa_lock);
3208 			continue;
3209 		}
3210 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3211 
3212 		/* adjust start or end to be adjacent to this pa */
3213 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3214 			BUG_ON(pa_end < start);
3215 			start = pa_end;
3216 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3217 			BUG_ON(pa->pa_lstart > end);
3218 			end = pa->pa_lstart;
3219 		}
3220 		spin_unlock(&pa->pa_lock);
3221 	}
3222 	rcu_read_unlock();
3223 	size = end - start;
3224 
3225 	/* XXX: extra loop to check we really don't overlap preallocations */
3226 	rcu_read_lock();
3227 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3228 		ext4_lblk_t pa_end;
3229 
3230 		spin_lock(&pa->pa_lock);
3231 		if (pa->pa_deleted == 0) {
3232 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3233 							  pa->pa_len);
3234 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3235 		}
3236 		spin_unlock(&pa->pa_lock);
3237 	}
3238 	rcu_read_unlock();
3239 
3240 	if (start + size <= ac->ac_o_ex.fe_logical &&
3241 			start > ac->ac_o_ex.fe_logical) {
3242 		ext4_msg(ac->ac_sb, KERN_ERR,
3243 			 "start %lu, size %lu, fe_logical %lu",
3244 			 (unsigned long) start, (unsigned long) size,
3245 			 (unsigned long) ac->ac_o_ex.fe_logical);
3246 		BUG();
3247 	}
3248 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3249 
3250 	/* now prepare goal request */
3251 
3252 	/* XXX: is it better to align blocks WRT to logical
3253 	 * placement or satisfy big request as is */
3254 	ac->ac_g_ex.fe_logical = start;
3255 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3256 
3257 	/* define goal start in order to merge */
3258 	if (ar->pright && (ar->lright == (start + size))) {
3259 		/* merge to the right */
3260 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3261 						&ac->ac_f_ex.fe_group,
3262 						&ac->ac_f_ex.fe_start);
3263 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3264 	}
3265 	if (ar->pleft && (ar->lleft + 1 == start)) {
3266 		/* merge to the left */
3267 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3268 						&ac->ac_f_ex.fe_group,
3269 						&ac->ac_f_ex.fe_start);
3270 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3271 	}
3272 
3273 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3274 		(unsigned) orig_size, (unsigned) start);
3275 }
3276 
3277 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3278 {
3279 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3280 
3281 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3282 		atomic_inc(&sbi->s_bal_reqs);
3283 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3284 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3285 			atomic_inc(&sbi->s_bal_success);
3286 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3287 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3288 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3289 			atomic_inc(&sbi->s_bal_goals);
3290 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3291 			atomic_inc(&sbi->s_bal_breaks);
3292 	}
3293 
3294 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3295 		trace_ext4_mballoc_alloc(ac);
3296 	else
3297 		trace_ext4_mballoc_prealloc(ac);
3298 }
3299 
3300 /*
3301  * Called on failure; free up any blocks from the inode PA for this
3302  * context.  We don't need this for MB_GROUP_PA because we only change
3303  * pa_free in ext4_mb_release_context(), but on failure, we've already
3304  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3305  */
3306 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3307 {
3308 	struct ext4_prealloc_space *pa = ac->ac_pa;
3309 	struct ext4_buddy e4b;
3310 	int err;
3311 
3312 	if (pa == NULL) {
3313 		if (ac->ac_f_ex.fe_len == 0)
3314 			return;
3315 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3316 		if (err) {
3317 			/*
3318 			 * This should never happen since we pin the
3319 			 * pages in the ext4_allocation_context so
3320 			 * ext4_mb_load_buddy() should never fail.
3321 			 */
3322 			WARN(1, "mb_load_buddy failed (%d)", err);
3323 			return;
3324 		}
3325 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3326 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3327 			       ac->ac_f_ex.fe_len);
3328 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3329 		ext4_mb_unload_buddy(&e4b);
3330 		return;
3331 	}
3332 	if (pa->pa_type == MB_INODE_PA)
3333 		pa->pa_free += ac->ac_b_ex.fe_len;
3334 }
3335 
3336 /*
3337  * use blocks preallocated to inode
3338  */
3339 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3340 				struct ext4_prealloc_space *pa)
3341 {
3342 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3343 	ext4_fsblk_t start;
3344 	ext4_fsblk_t end;
3345 	int len;
3346 
3347 	/* found preallocated blocks, use them */
3348 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3349 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3350 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3351 	len = EXT4_NUM_B2C(sbi, end - start);
3352 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3353 					&ac->ac_b_ex.fe_start);
3354 	ac->ac_b_ex.fe_len = len;
3355 	ac->ac_status = AC_STATUS_FOUND;
3356 	ac->ac_pa = pa;
3357 
3358 	BUG_ON(start < pa->pa_pstart);
3359 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3360 	BUG_ON(pa->pa_free < len);
3361 	pa->pa_free -= len;
3362 
3363 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3364 }
3365 
3366 /*
3367  * use blocks preallocated to locality group
3368  */
3369 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3370 				struct ext4_prealloc_space *pa)
3371 {
3372 	unsigned int len = ac->ac_o_ex.fe_len;
3373 
3374 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3375 					&ac->ac_b_ex.fe_group,
3376 					&ac->ac_b_ex.fe_start);
3377 	ac->ac_b_ex.fe_len = len;
3378 	ac->ac_status = AC_STATUS_FOUND;
3379 	ac->ac_pa = pa;
3380 
3381 	/* we don't correct pa_pstart or pa_plen here to avoid
3382 	 * possible race when the group is being loaded concurrently
3383 	 * instead we correct pa later, after blocks are marked
3384 	 * in on-disk bitmap -- see ext4_mb_release_context()
3385 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3386 	 */
3387 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3388 }
3389 
3390 /*
3391  * Return the prealloc space that have minimal distance
3392  * from the goal block. @cpa is the prealloc
3393  * space that is having currently known minimal distance
3394  * from the goal block.
3395  */
3396 static struct ext4_prealloc_space *
3397 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3398 			struct ext4_prealloc_space *pa,
3399 			struct ext4_prealloc_space *cpa)
3400 {
3401 	ext4_fsblk_t cur_distance, new_distance;
3402 
3403 	if (cpa == NULL) {
3404 		atomic_inc(&pa->pa_count);
3405 		return pa;
3406 	}
3407 	cur_distance = abs(goal_block - cpa->pa_pstart);
3408 	new_distance = abs(goal_block - pa->pa_pstart);
3409 
3410 	if (cur_distance <= new_distance)
3411 		return cpa;
3412 
3413 	/* drop the previous reference */
3414 	atomic_dec(&cpa->pa_count);
3415 	atomic_inc(&pa->pa_count);
3416 	return pa;
3417 }
3418 
3419 /*
3420  * search goal blocks in preallocated space
3421  */
3422 static noinline_for_stack int
3423 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3424 {
3425 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3426 	int order, i;
3427 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3428 	struct ext4_locality_group *lg;
3429 	struct ext4_prealloc_space *pa, *cpa = NULL;
3430 	ext4_fsblk_t goal_block;
3431 
3432 	/* only data can be preallocated */
3433 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3434 		return 0;
3435 
3436 	/* first, try per-file preallocation */
3437 	rcu_read_lock();
3438 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3439 
3440 		/* all fields in this condition don't change,
3441 		 * so we can skip locking for them */
3442 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3443 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3444 					       EXT4_C2B(sbi, pa->pa_len)))
3445 			continue;
3446 
3447 		/* non-extent files can't have physical blocks past 2^32 */
3448 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3449 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3450 		     EXT4_MAX_BLOCK_FILE_PHYS))
3451 			continue;
3452 
3453 		/* found preallocated blocks, use them */
3454 		spin_lock(&pa->pa_lock);
3455 		if (pa->pa_deleted == 0 && pa->pa_free) {
3456 			atomic_inc(&pa->pa_count);
3457 			ext4_mb_use_inode_pa(ac, pa);
3458 			spin_unlock(&pa->pa_lock);
3459 			ac->ac_criteria = 10;
3460 			rcu_read_unlock();
3461 			return 1;
3462 		}
3463 		spin_unlock(&pa->pa_lock);
3464 	}
3465 	rcu_read_unlock();
3466 
3467 	/* can we use group allocation? */
3468 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3469 		return 0;
3470 
3471 	/* inode may have no locality group for some reason */
3472 	lg = ac->ac_lg;
3473 	if (lg == NULL)
3474 		return 0;
3475 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3476 	if (order > PREALLOC_TB_SIZE - 1)
3477 		/* The max size of hash table is PREALLOC_TB_SIZE */
3478 		order = PREALLOC_TB_SIZE - 1;
3479 
3480 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3481 	/*
3482 	 * search for the prealloc space that is having
3483 	 * minimal distance from the goal block.
3484 	 */
3485 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3486 		rcu_read_lock();
3487 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3488 					pa_inode_list) {
3489 			spin_lock(&pa->pa_lock);
3490 			if (pa->pa_deleted == 0 &&
3491 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3492 
3493 				cpa = ext4_mb_check_group_pa(goal_block,
3494 								pa, cpa);
3495 			}
3496 			spin_unlock(&pa->pa_lock);
3497 		}
3498 		rcu_read_unlock();
3499 	}
3500 	if (cpa) {
3501 		ext4_mb_use_group_pa(ac, cpa);
3502 		ac->ac_criteria = 20;
3503 		return 1;
3504 	}
3505 	return 0;
3506 }
3507 
3508 /*
3509  * the function goes through all block freed in the group
3510  * but not yet committed and marks them used in in-core bitmap.
3511  * buddy must be generated from this bitmap
3512  * Need to be called with the ext4 group lock held
3513  */
3514 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3515 						ext4_group_t group)
3516 {
3517 	struct rb_node *n;
3518 	struct ext4_group_info *grp;
3519 	struct ext4_free_data *entry;
3520 
3521 	grp = ext4_get_group_info(sb, group);
3522 	n = rb_first(&(grp->bb_free_root));
3523 
3524 	while (n) {
3525 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3526 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3527 		n = rb_next(n);
3528 	}
3529 	return;
3530 }
3531 
3532 /*
3533  * the function goes through all preallocation in this group and marks them
3534  * used in in-core bitmap. buddy must be generated from this bitmap
3535  * Need to be called with ext4 group lock held
3536  */
3537 static noinline_for_stack
3538 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3539 					ext4_group_t group)
3540 {
3541 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3542 	struct ext4_prealloc_space *pa;
3543 	struct list_head *cur;
3544 	ext4_group_t groupnr;
3545 	ext4_grpblk_t start;
3546 	int preallocated = 0;
3547 	int len;
3548 
3549 	/* all form of preallocation discards first load group,
3550 	 * so the only competing code is preallocation use.
3551 	 * we don't need any locking here
3552 	 * notice we do NOT ignore preallocations with pa_deleted
3553 	 * otherwise we could leave used blocks available for
3554 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3555 	 * is dropping preallocation
3556 	 */
3557 	list_for_each(cur, &grp->bb_prealloc_list) {
3558 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3559 		spin_lock(&pa->pa_lock);
3560 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3561 					     &groupnr, &start);
3562 		len = pa->pa_len;
3563 		spin_unlock(&pa->pa_lock);
3564 		if (unlikely(len == 0))
3565 			continue;
3566 		BUG_ON(groupnr != group);
3567 		ext4_set_bits(bitmap, start, len);
3568 		preallocated += len;
3569 	}
3570 	mb_debug(1, "preallocated %u for group %u\n", preallocated, group);
3571 }
3572 
3573 static void ext4_mb_pa_callback(struct rcu_head *head)
3574 {
3575 	struct ext4_prealloc_space *pa;
3576 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3577 
3578 	BUG_ON(atomic_read(&pa->pa_count));
3579 	BUG_ON(pa->pa_deleted == 0);
3580 	kmem_cache_free(ext4_pspace_cachep, pa);
3581 }
3582 
3583 /*
3584  * drops a reference to preallocated space descriptor
3585  * if this was the last reference and the space is consumed
3586  */
3587 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3588 			struct super_block *sb, struct ext4_prealloc_space *pa)
3589 {
3590 	ext4_group_t grp;
3591 	ext4_fsblk_t grp_blk;
3592 
3593 	/* in this short window concurrent discard can set pa_deleted */
3594 	spin_lock(&pa->pa_lock);
3595 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3596 		spin_unlock(&pa->pa_lock);
3597 		return;
3598 	}
3599 
3600 	if (pa->pa_deleted == 1) {
3601 		spin_unlock(&pa->pa_lock);
3602 		return;
3603 	}
3604 
3605 	pa->pa_deleted = 1;
3606 	spin_unlock(&pa->pa_lock);
3607 
3608 	grp_blk = pa->pa_pstart;
3609 	/*
3610 	 * If doing group-based preallocation, pa_pstart may be in the
3611 	 * next group when pa is used up
3612 	 */
3613 	if (pa->pa_type == MB_GROUP_PA)
3614 		grp_blk--;
3615 
3616 	grp = ext4_get_group_number(sb, grp_blk);
3617 
3618 	/*
3619 	 * possible race:
3620 	 *
3621 	 *  P1 (buddy init)			P2 (regular allocation)
3622 	 *					find block B in PA
3623 	 *  copy on-disk bitmap to buddy
3624 	 *  					mark B in on-disk bitmap
3625 	 *					drop PA from group
3626 	 *  mark all PAs in buddy
3627 	 *
3628 	 * thus, P1 initializes buddy with B available. to prevent this
3629 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3630 	 * against that pair
3631 	 */
3632 	ext4_lock_group(sb, grp);
3633 	list_del(&pa->pa_group_list);
3634 	ext4_unlock_group(sb, grp);
3635 
3636 	spin_lock(pa->pa_obj_lock);
3637 	list_del_rcu(&pa->pa_inode_list);
3638 	spin_unlock(pa->pa_obj_lock);
3639 
3640 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3641 }
3642 
3643 /*
3644  * creates new preallocated space for given inode
3645  */
3646 static noinline_for_stack int
3647 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3648 {
3649 	struct super_block *sb = ac->ac_sb;
3650 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3651 	struct ext4_prealloc_space *pa;
3652 	struct ext4_group_info *grp;
3653 	struct ext4_inode_info *ei;
3654 
3655 	/* preallocate only when found space is larger then requested */
3656 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3657 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3658 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3659 
3660 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3661 	if (pa == NULL)
3662 		return -ENOMEM;
3663 
3664 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3665 		int winl;
3666 		int wins;
3667 		int win;
3668 		int offs;
3669 
3670 		/* we can't allocate as much as normalizer wants.
3671 		 * so, found space must get proper lstart
3672 		 * to cover original request */
3673 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3674 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3675 
3676 		/* we're limited by original request in that
3677 		 * logical block must be covered any way
3678 		 * winl is window we can move our chunk within */
3679 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3680 
3681 		/* also, we should cover whole original request */
3682 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3683 
3684 		/* the smallest one defines real window */
3685 		win = min(winl, wins);
3686 
3687 		offs = ac->ac_o_ex.fe_logical %
3688 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3689 		if (offs && offs < win)
3690 			win = offs;
3691 
3692 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3693 			EXT4_NUM_B2C(sbi, win);
3694 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3695 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3696 	}
3697 
3698 	/* preallocation can change ac_b_ex, thus we store actually
3699 	 * allocated blocks for history */
3700 	ac->ac_f_ex = ac->ac_b_ex;
3701 
3702 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3703 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3704 	pa->pa_len = ac->ac_b_ex.fe_len;
3705 	pa->pa_free = pa->pa_len;
3706 	atomic_set(&pa->pa_count, 1);
3707 	spin_lock_init(&pa->pa_lock);
3708 	INIT_LIST_HEAD(&pa->pa_inode_list);
3709 	INIT_LIST_HEAD(&pa->pa_group_list);
3710 	pa->pa_deleted = 0;
3711 	pa->pa_type = MB_INODE_PA;
3712 
3713 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3714 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3715 	trace_ext4_mb_new_inode_pa(ac, pa);
3716 
3717 	ext4_mb_use_inode_pa(ac, pa);
3718 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3719 
3720 	ei = EXT4_I(ac->ac_inode);
3721 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3722 
3723 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3724 	pa->pa_inode = ac->ac_inode;
3725 
3726 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3727 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3728 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3729 
3730 	spin_lock(pa->pa_obj_lock);
3731 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3732 	spin_unlock(pa->pa_obj_lock);
3733 
3734 	return 0;
3735 }
3736 
3737 /*
3738  * creates new preallocated space for locality group inodes belongs to
3739  */
3740 static noinline_for_stack int
3741 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3742 {
3743 	struct super_block *sb = ac->ac_sb;
3744 	struct ext4_locality_group *lg;
3745 	struct ext4_prealloc_space *pa;
3746 	struct ext4_group_info *grp;
3747 
3748 	/* preallocate only when found space is larger then requested */
3749 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3750 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3751 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3752 
3753 	BUG_ON(ext4_pspace_cachep == NULL);
3754 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3755 	if (pa == NULL)
3756 		return -ENOMEM;
3757 
3758 	/* preallocation can change ac_b_ex, thus we store actually
3759 	 * allocated blocks for history */
3760 	ac->ac_f_ex = ac->ac_b_ex;
3761 
3762 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3763 	pa->pa_lstart = pa->pa_pstart;
3764 	pa->pa_len = ac->ac_b_ex.fe_len;
3765 	pa->pa_free = pa->pa_len;
3766 	atomic_set(&pa->pa_count, 1);
3767 	spin_lock_init(&pa->pa_lock);
3768 	INIT_LIST_HEAD(&pa->pa_inode_list);
3769 	INIT_LIST_HEAD(&pa->pa_group_list);
3770 	pa->pa_deleted = 0;
3771 	pa->pa_type = MB_GROUP_PA;
3772 
3773 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3774 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3775 	trace_ext4_mb_new_group_pa(ac, pa);
3776 
3777 	ext4_mb_use_group_pa(ac, pa);
3778 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3779 
3780 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3781 	lg = ac->ac_lg;
3782 	BUG_ON(lg == NULL);
3783 
3784 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3785 	pa->pa_inode = NULL;
3786 
3787 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3788 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3789 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3790 
3791 	/*
3792 	 * We will later add the new pa to the right bucket
3793 	 * after updating the pa_free in ext4_mb_release_context
3794 	 */
3795 	return 0;
3796 }
3797 
3798 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3799 {
3800 	int err;
3801 
3802 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3803 		err = ext4_mb_new_group_pa(ac);
3804 	else
3805 		err = ext4_mb_new_inode_pa(ac);
3806 	return err;
3807 }
3808 
3809 /*
3810  * finds all unused blocks in on-disk bitmap, frees them in
3811  * in-core bitmap and buddy.
3812  * @pa must be unlinked from inode and group lists, so that
3813  * nobody else can find/use it.
3814  * the caller MUST hold group/inode locks.
3815  * TODO: optimize the case when there are no in-core structures yet
3816  */
3817 static noinline_for_stack int
3818 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3819 			struct ext4_prealloc_space *pa)
3820 {
3821 	struct super_block *sb = e4b->bd_sb;
3822 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3823 	unsigned int end;
3824 	unsigned int next;
3825 	ext4_group_t group;
3826 	ext4_grpblk_t bit;
3827 	unsigned long long grp_blk_start;
3828 	int err = 0;
3829 	int free = 0;
3830 
3831 	BUG_ON(pa->pa_deleted == 0);
3832 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3833 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3834 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3835 	end = bit + pa->pa_len;
3836 
3837 	while (bit < end) {
3838 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3839 		if (bit >= end)
3840 			break;
3841 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3842 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3843 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3844 			 (unsigned) next - bit, (unsigned) group);
3845 		free += next - bit;
3846 
3847 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3848 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3849 						    EXT4_C2B(sbi, bit)),
3850 					       next - bit);
3851 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3852 		bit = next + 1;
3853 	}
3854 	if (free != pa->pa_free) {
3855 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3856 			 "pa %p: logic %lu, phys. %lu, len %lu",
3857 			 pa, (unsigned long) pa->pa_lstart,
3858 			 (unsigned long) pa->pa_pstart,
3859 			 (unsigned long) pa->pa_len);
3860 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3861 					free, pa->pa_free);
3862 		/*
3863 		 * pa is already deleted so we use the value obtained
3864 		 * from the bitmap and continue.
3865 		 */
3866 	}
3867 	atomic_add(free, &sbi->s_mb_discarded);
3868 
3869 	return err;
3870 }
3871 
3872 static noinline_for_stack int
3873 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3874 				struct ext4_prealloc_space *pa)
3875 {
3876 	struct super_block *sb = e4b->bd_sb;
3877 	ext4_group_t group;
3878 	ext4_grpblk_t bit;
3879 
3880 	trace_ext4_mb_release_group_pa(sb, pa);
3881 	BUG_ON(pa->pa_deleted == 0);
3882 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3883 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3884 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3885 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3886 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3887 
3888 	return 0;
3889 }
3890 
3891 /*
3892  * releases all preallocations in given group
3893  *
3894  * first, we need to decide discard policy:
3895  * - when do we discard
3896  *   1) ENOSPC
3897  * - how many do we discard
3898  *   1) how many requested
3899  */
3900 static noinline_for_stack int
3901 ext4_mb_discard_group_preallocations(struct super_block *sb,
3902 					ext4_group_t group, int needed)
3903 {
3904 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3905 	struct buffer_head *bitmap_bh = NULL;
3906 	struct ext4_prealloc_space *pa, *tmp;
3907 	struct list_head list;
3908 	struct ext4_buddy e4b;
3909 	int err;
3910 	int busy = 0;
3911 	int free = 0;
3912 
3913 	mb_debug(1, "discard preallocation for group %u\n", group);
3914 
3915 	if (list_empty(&grp->bb_prealloc_list))
3916 		return 0;
3917 
3918 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3919 	if (IS_ERR(bitmap_bh)) {
3920 		err = PTR_ERR(bitmap_bh);
3921 		ext4_error(sb, "Error %d reading block bitmap for %u",
3922 			   err, group);
3923 		return 0;
3924 	}
3925 
3926 	err = ext4_mb_load_buddy(sb, group, &e4b);
3927 	if (err) {
3928 		ext4_warning(sb, "Error %d loading buddy information for %u",
3929 			     err, group);
3930 		put_bh(bitmap_bh);
3931 		return 0;
3932 	}
3933 
3934 	if (needed == 0)
3935 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3936 
3937 	INIT_LIST_HEAD(&list);
3938 repeat:
3939 	ext4_lock_group(sb, group);
3940 	list_for_each_entry_safe(pa, tmp,
3941 				&grp->bb_prealloc_list, pa_group_list) {
3942 		spin_lock(&pa->pa_lock);
3943 		if (atomic_read(&pa->pa_count)) {
3944 			spin_unlock(&pa->pa_lock);
3945 			busy = 1;
3946 			continue;
3947 		}
3948 		if (pa->pa_deleted) {
3949 			spin_unlock(&pa->pa_lock);
3950 			continue;
3951 		}
3952 
3953 		/* seems this one can be freed ... */
3954 		pa->pa_deleted = 1;
3955 
3956 		/* we can trust pa_free ... */
3957 		free += pa->pa_free;
3958 
3959 		spin_unlock(&pa->pa_lock);
3960 
3961 		list_del(&pa->pa_group_list);
3962 		list_add(&pa->u.pa_tmp_list, &list);
3963 	}
3964 
3965 	/* if we still need more blocks and some PAs were used, try again */
3966 	if (free < needed && busy) {
3967 		busy = 0;
3968 		ext4_unlock_group(sb, group);
3969 		cond_resched();
3970 		goto repeat;
3971 	}
3972 
3973 	/* found anything to free? */
3974 	if (list_empty(&list)) {
3975 		BUG_ON(free != 0);
3976 		goto out;
3977 	}
3978 
3979 	/* now free all selected PAs */
3980 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3981 
3982 		/* remove from object (inode or locality group) */
3983 		spin_lock(pa->pa_obj_lock);
3984 		list_del_rcu(&pa->pa_inode_list);
3985 		spin_unlock(pa->pa_obj_lock);
3986 
3987 		if (pa->pa_type == MB_GROUP_PA)
3988 			ext4_mb_release_group_pa(&e4b, pa);
3989 		else
3990 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3991 
3992 		list_del(&pa->u.pa_tmp_list);
3993 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3994 	}
3995 
3996 out:
3997 	ext4_unlock_group(sb, group);
3998 	ext4_mb_unload_buddy(&e4b);
3999 	put_bh(bitmap_bh);
4000 	return free;
4001 }
4002 
4003 /*
4004  * releases all non-used preallocated blocks for given inode
4005  *
4006  * It's important to discard preallocations under i_data_sem
4007  * We don't want another block to be served from the prealloc
4008  * space when we are discarding the inode prealloc space.
4009  *
4010  * FIXME!! Make sure it is valid at all the call sites
4011  */
4012 void ext4_discard_preallocations(struct inode *inode)
4013 {
4014 	struct ext4_inode_info *ei = EXT4_I(inode);
4015 	struct super_block *sb = inode->i_sb;
4016 	struct buffer_head *bitmap_bh = NULL;
4017 	struct ext4_prealloc_space *pa, *tmp;
4018 	ext4_group_t group = 0;
4019 	struct list_head list;
4020 	struct ext4_buddy e4b;
4021 	int err;
4022 
4023 	if (!S_ISREG(inode->i_mode)) {
4024 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4025 		return;
4026 	}
4027 
4028 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4029 	trace_ext4_discard_preallocations(inode);
4030 
4031 	INIT_LIST_HEAD(&list);
4032 
4033 repeat:
4034 	/* first, collect all pa's in the inode */
4035 	spin_lock(&ei->i_prealloc_lock);
4036 	while (!list_empty(&ei->i_prealloc_list)) {
4037 		pa = list_entry(ei->i_prealloc_list.next,
4038 				struct ext4_prealloc_space, pa_inode_list);
4039 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4040 		spin_lock(&pa->pa_lock);
4041 		if (atomic_read(&pa->pa_count)) {
4042 			/* this shouldn't happen often - nobody should
4043 			 * use preallocation while we're discarding it */
4044 			spin_unlock(&pa->pa_lock);
4045 			spin_unlock(&ei->i_prealloc_lock);
4046 			ext4_msg(sb, KERN_ERR,
4047 				 "uh-oh! used pa while discarding");
4048 			WARN_ON(1);
4049 			schedule_timeout_uninterruptible(HZ);
4050 			goto repeat;
4051 
4052 		}
4053 		if (pa->pa_deleted == 0) {
4054 			pa->pa_deleted = 1;
4055 			spin_unlock(&pa->pa_lock);
4056 			list_del_rcu(&pa->pa_inode_list);
4057 			list_add(&pa->u.pa_tmp_list, &list);
4058 			continue;
4059 		}
4060 
4061 		/* someone is deleting pa right now */
4062 		spin_unlock(&pa->pa_lock);
4063 		spin_unlock(&ei->i_prealloc_lock);
4064 
4065 		/* we have to wait here because pa_deleted
4066 		 * doesn't mean pa is already unlinked from
4067 		 * the list. as we might be called from
4068 		 * ->clear_inode() the inode will get freed
4069 		 * and concurrent thread which is unlinking
4070 		 * pa from inode's list may access already
4071 		 * freed memory, bad-bad-bad */
4072 
4073 		/* XXX: if this happens too often, we can
4074 		 * add a flag to force wait only in case
4075 		 * of ->clear_inode(), but not in case of
4076 		 * regular truncate */
4077 		schedule_timeout_uninterruptible(HZ);
4078 		goto repeat;
4079 	}
4080 	spin_unlock(&ei->i_prealloc_lock);
4081 
4082 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4083 		BUG_ON(pa->pa_type != MB_INODE_PA);
4084 		group = ext4_get_group_number(sb, pa->pa_pstart);
4085 
4086 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4087 					     GFP_NOFS|__GFP_NOFAIL);
4088 		if (err) {
4089 			ext4_error(sb, "Error %d loading buddy information for %u",
4090 				   err, group);
4091 			continue;
4092 		}
4093 
4094 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4095 		if (IS_ERR(bitmap_bh)) {
4096 			err = PTR_ERR(bitmap_bh);
4097 			ext4_error(sb, "Error %d reading block bitmap for %u",
4098 					err, group);
4099 			ext4_mb_unload_buddy(&e4b);
4100 			continue;
4101 		}
4102 
4103 		ext4_lock_group(sb, group);
4104 		list_del(&pa->pa_group_list);
4105 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4106 		ext4_unlock_group(sb, group);
4107 
4108 		ext4_mb_unload_buddy(&e4b);
4109 		put_bh(bitmap_bh);
4110 
4111 		list_del(&pa->u.pa_tmp_list);
4112 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4113 	}
4114 }
4115 
4116 #ifdef CONFIG_EXT4_DEBUG
4117 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4118 {
4119 	struct super_block *sb = ac->ac_sb;
4120 	ext4_group_t ngroups, i;
4121 
4122 	if (!ext4_mballoc_debug ||
4123 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4124 		return;
4125 
4126 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4127 			" Allocation context details:");
4128 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4129 			ac->ac_status, ac->ac_flags);
4130 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4131 		 	"goal %lu/%lu/%lu@%lu, "
4132 			"best %lu/%lu/%lu@%lu cr %d",
4133 			(unsigned long)ac->ac_o_ex.fe_group,
4134 			(unsigned long)ac->ac_o_ex.fe_start,
4135 			(unsigned long)ac->ac_o_ex.fe_len,
4136 			(unsigned long)ac->ac_o_ex.fe_logical,
4137 			(unsigned long)ac->ac_g_ex.fe_group,
4138 			(unsigned long)ac->ac_g_ex.fe_start,
4139 			(unsigned long)ac->ac_g_ex.fe_len,
4140 			(unsigned long)ac->ac_g_ex.fe_logical,
4141 			(unsigned long)ac->ac_b_ex.fe_group,
4142 			(unsigned long)ac->ac_b_ex.fe_start,
4143 			(unsigned long)ac->ac_b_ex.fe_len,
4144 			(unsigned long)ac->ac_b_ex.fe_logical,
4145 			(int)ac->ac_criteria);
4146 	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4147 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4148 	ngroups = ext4_get_groups_count(sb);
4149 	for (i = 0; i < ngroups; i++) {
4150 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4151 		struct ext4_prealloc_space *pa;
4152 		ext4_grpblk_t start;
4153 		struct list_head *cur;
4154 		ext4_lock_group(sb, i);
4155 		list_for_each(cur, &grp->bb_prealloc_list) {
4156 			pa = list_entry(cur, struct ext4_prealloc_space,
4157 					pa_group_list);
4158 			spin_lock(&pa->pa_lock);
4159 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4160 						     NULL, &start);
4161 			spin_unlock(&pa->pa_lock);
4162 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4163 			       start, pa->pa_len);
4164 		}
4165 		ext4_unlock_group(sb, i);
4166 
4167 		if (grp->bb_free == 0)
4168 			continue;
4169 		printk(KERN_ERR "%u: %d/%d \n",
4170 		       i, grp->bb_free, grp->bb_fragments);
4171 	}
4172 	printk(KERN_ERR "\n");
4173 }
4174 #else
4175 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4176 {
4177 	return;
4178 }
4179 #endif
4180 
4181 /*
4182  * We use locality group preallocation for small size file. The size of the
4183  * file is determined by the current size or the resulting size after
4184  * allocation which ever is larger
4185  *
4186  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4187  */
4188 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4189 {
4190 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4191 	int bsbits = ac->ac_sb->s_blocksize_bits;
4192 	loff_t size, isize;
4193 
4194 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4195 		return;
4196 
4197 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4198 		return;
4199 
4200 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4201 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4202 		>> bsbits;
4203 
4204 	if ((size == isize) &&
4205 	    !ext4_fs_is_busy(sbi) &&
4206 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4207 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4208 		return;
4209 	}
4210 
4211 	if (sbi->s_mb_group_prealloc <= 0) {
4212 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4213 		return;
4214 	}
4215 
4216 	/* don't use group allocation for large files */
4217 	size = max(size, isize);
4218 	if (size > sbi->s_mb_stream_request) {
4219 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4220 		return;
4221 	}
4222 
4223 	BUG_ON(ac->ac_lg != NULL);
4224 	/*
4225 	 * locality group prealloc space are per cpu. The reason for having
4226 	 * per cpu locality group is to reduce the contention between block
4227 	 * request from multiple CPUs.
4228 	 */
4229 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4230 
4231 	/* we're going to use group allocation */
4232 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4233 
4234 	/* serialize all allocations in the group */
4235 	mutex_lock(&ac->ac_lg->lg_mutex);
4236 }
4237 
4238 static noinline_for_stack int
4239 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4240 				struct ext4_allocation_request *ar)
4241 {
4242 	struct super_block *sb = ar->inode->i_sb;
4243 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4244 	struct ext4_super_block *es = sbi->s_es;
4245 	ext4_group_t group;
4246 	unsigned int len;
4247 	ext4_fsblk_t goal;
4248 	ext4_grpblk_t block;
4249 
4250 	/* we can't allocate > group size */
4251 	len = ar->len;
4252 
4253 	/* just a dirty hack to filter too big requests  */
4254 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4255 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4256 
4257 	/* start searching from the goal */
4258 	goal = ar->goal;
4259 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4260 			goal >= ext4_blocks_count(es))
4261 		goal = le32_to_cpu(es->s_first_data_block);
4262 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4263 
4264 	/* set up allocation goals */
4265 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4266 	ac->ac_status = AC_STATUS_CONTINUE;
4267 	ac->ac_sb = sb;
4268 	ac->ac_inode = ar->inode;
4269 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4270 	ac->ac_o_ex.fe_group = group;
4271 	ac->ac_o_ex.fe_start = block;
4272 	ac->ac_o_ex.fe_len = len;
4273 	ac->ac_g_ex = ac->ac_o_ex;
4274 	ac->ac_flags = ar->flags;
4275 
4276 	/* we have to define context: we'll we work with a file or
4277 	 * locality group. this is a policy, actually */
4278 	ext4_mb_group_or_file(ac);
4279 
4280 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4281 			"left: %u/%u, right %u/%u to %swritable\n",
4282 			(unsigned) ar->len, (unsigned) ar->logical,
4283 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4284 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4285 			(unsigned) ar->lright, (unsigned) ar->pright,
4286 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4287 	return 0;
4288 
4289 }
4290 
4291 static noinline_for_stack void
4292 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4293 					struct ext4_locality_group *lg,
4294 					int order, int total_entries)
4295 {
4296 	ext4_group_t group = 0;
4297 	struct ext4_buddy e4b;
4298 	struct list_head discard_list;
4299 	struct ext4_prealloc_space *pa, *tmp;
4300 
4301 	mb_debug(1, "discard locality group preallocation\n");
4302 
4303 	INIT_LIST_HEAD(&discard_list);
4304 
4305 	spin_lock(&lg->lg_prealloc_lock);
4306 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4307 						pa_inode_list) {
4308 		spin_lock(&pa->pa_lock);
4309 		if (atomic_read(&pa->pa_count)) {
4310 			/*
4311 			 * This is the pa that we just used
4312 			 * for block allocation. So don't
4313 			 * free that
4314 			 */
4315 			spin_unlock(&pa->pa_lock);
4316 			continue;
4317 		}
4318 		if (pa->pa_deleted) {
4319 			spin_unlock(&pa->pa_lock);
4320 			continue;
4321 		}
4322 		/* only lg prealloc space */
4323 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4324 
4325 		/* seems this one can be freed ... */
4326 		pa->pa_deleted = 1;
4327 		spin_unlock(&pa->pa_lock);
4328 
4329 		list_del_rcu(&pa->pa_inode_list);
4330 		list_add(&pa->u.pa_tmp_list, &discard_list);
4331 
4332 		total_entries--;
4333 		if (total_entries <= 5) {
4334 			/*
4335 			 * we want to keep only 5 entries
4336 			 * allowing it to grow to 8. This
4337 			 * mak sure we don't call discard
4338 			 * soon for this list.
4339 			 */
4340 			break;
4341 		}
4342 	}
4343 	spin_unlock(&lg->lg_prealloc_lock);
4344 
4345 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4346 		int err;
4347 
4348 		group = ext4_get_group_number(sb, pa->pa_pstart);
4349 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4350 					     GFP_NOFS|__GFP_NOFAIL);
4351 		if (err) {
4352 			ext4_error(sb, "Error %d loading buddy information for %u",
4353 				   err, group);
4354 			continue;
4355 		}
4356 		ext4_lock_group(sb, group);
4357 		list_del(&pa->pa_group_list);
4358 		ext4_mb_release_group_pa(&e4b, pa);
4359 		ext4_unlock_group(sb, group);
4360 
4361 		ext4_mb_unload_buddy(&e4b);
4362 		list_del(&pa->u.pa_tmp_list);
4363 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4364 	}
4365 }
4366 
4367 /*
4368  * We have incremented pa_count. So it cannot be freed at this
4369  * point. Also we hold lg_mutex. So no parallel allocation is
4370  * possible from this lg. That means pa_free cannot be updated.
4371  *
4372  * A parallel ext4_mb_discard_group_preallocations is possible.
4373  * which can cause the lg_prealloc_list to be updated.
4374  */
4375 
4376 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4377 {
4378 	int order, added = 0, lg_prealloc_count = 1;
4379 	struct super_block *sb = ac->ac_sb;
4380 	struct ext4_locality_group *lg = ac->ac_lg;
4381 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4382 
4383 	order = fls(pa->pa_free) - 1;
4384 	if (order > PREALLOC_TB_SIZE - 1)
4385 		/* The max size of hash table is PREALLOC_TB_SIZE */
4386 		order = PREALLOC_TB_SIZE - 1;
4387 	/* Add the prealloc space to lg */
4388 	spin_lock(&lg->lg_prealloc_lock);
4389 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4390 						pa_inode_list) {
4391 		spin_lock(&tmp_pa->pa_lock);
4392 		if (tmp_pa->pa_deleted) {
4393 			spin_unlock(&tmp_pa->pa_lock);
4394 			continue;
4395 		}
4396 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4397 			/* Add to the tail of the previous entry */
4398 			list_add_tail_rcu(&pa->pa_inode_list,
4399 						&tmp_pa->pa_inode_list);
4400 			added = 1;
4401 			/*
4402 			 * we want to count the total
4403 			 * number of entries in the list
4404 			 */
4405 		}
4406 		spin_unlock(&tmp_pa->pa_lock);
4407 		lg_prealloc_count++;
4408 	}
4409 	if (!added)
4410 		list_add_tail_rcu(&pa->pa_inode_list,
4411 					&lg->lg_prealloc_list[order]);
4412 	spin_unlock(&lg->lg_prealloc_lock);
4413 
4414 	/* Now trim the list to be not more than 8 elements */
4415 	if (lg_prealloc_count > 8) {
4416 		ext4_mb_discard_lg_preallocations(sb, lg,
4417 						  order, lg_prealloc_count);
4418 		return;
4419 	}
4420 	return ;
4421 }
4422 
4423 /*
4424  * release all resource we used in allocation
4425  */
4426 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4427 {
4428 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4429 	struct ext4_prealloc_space *pa = ac->ac_pa;
4430 	if (pa) {
4431 		if (pa->pa_type == MB_GROUP_PA) {
4432 			/* see comment in ext4_mb_use_group_pa() */
4433 			spin_lock(&pa->pa_lock);
4434 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4435 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4436 			pa->pa_free -= ac->ac_b_ex.fe_len;
4437 			pa->pa_len -= ac->ac_b_ex.fe_len;
4438 			spin_unlock(&pa->pa_lock);
4439 		}
4440 	}
4441 	if (pa) {
4442 		/*
4443 		 * We want to add the pa to the right bucket.
4444 		 * Remove it from the list and while adding
4445 		 * make sure the list to which we are adding
4446 		 * doesn't grow big.
4447 		 */
4448 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4449 			spin_lock(pa->pa_obj_lock);
4450 			list_del_rcu(&pa->pa_inode_list);
4451 			spin_unlock(pa->pa_obj_lock);
4452 			ext4_mb_add_n_trim(ac);
4453 		}
4454 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4455 	}
4456 	if (ac->ac_bitmap_page)
4457 		put_page(ac->ac_bitmap_page);
4458 	if (ac->ac_buddy_page)
4459 		put_page(ac->ac_buddy_page);
4460 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4461 		mutex_unlock(&ac->ac_lg->lg_mutex);
4462 	ext4_mb_collect_stats(ac);
4463 	return 0;
4464 }
4465 
4466 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4467 {
4468 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4469 	int ret;
4470 	int freed = 0;
4471 
4472 	trace_ext4_mb_discard_preallocations(sb, needed);
4473 	for (i = 0; i < ngroups && needed > 0; i++) {
4474 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4475 		freed += ret;
4476 		needed -= ret;
4477 	}
4478 
4479 	return freed;
4480 }
4481 
4482 /*
4483  * Main entry point into mballoc to allocate blocks
4484  * it tries to use preallocation first, then falls back
4485  * to usual allocation
4486  */
4487 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4488 				struct ext4_allocation_request *ar, int *errp)
4489 {
4490 	int freed;
4491 	struct ext4_allocation_context *ac = NULL;
4492 	struct ext4_sb_info *sbi;
4493 	struct super_block *sb;
4494 	ext4_fsblk_t block = 0;
4495 	unsigned int inquota = 0;
4496 	unsigned int reserv_clstrs = 0;
4497 
4498 	might_sleep();
4499 	sb = ar->inode->i_sb;
4500 	sbi = EXT4_SB(sb);
4501 
4502 	trace_ext4_request_blocks(ar);
4503 
4504 	/* Allow to use superuser reservation for quota file */
4505 	if (ext4_is_quota_file(ar->inode))
4506 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4507 
4508 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4509 		/* Without delayed allocation we need to verify
4510 		 * there is enough free blocks to do block allocation
4511 		 * and verify allocation doesn't exceed the quota limits.
4512 		 */
4513 		while (ar->len &&
4514 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4515 
4516 			/* let others to free the space */
4517 			cond_resched();
4518 			ar->len = ar->len >> 1;
4519 		}
4520 		if (!ar->len) {
4521 			*errp = -ENOSPC;
4522 			return 0;
4523 		}
4524 		reserv_clstrs = ar->len;
4525 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4526 			dquot_alloc_block_nofail(ar->inode,
4527 						 EXT4_C2B(sbi, ar->len));
4528 		} else {
4529 			while (ar->len &&
4530 				dquot_alloc_block(ar->inode,
4531 						  EXT4_C2B(sbi, ar->len))) {
4532 
4533 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4534 				ar->len--;
4535 			}
4536 		}
4537 		inquota = ar->len;
4538 		if (ar->len == 0) {
4539 			*errp = -EDQUOT;
4540 			goto out;
4541 		}
4542 	}
4543 
4544 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4545 	if (!ac) {
4546 		ar->len = 0;
4547 		*errp = -ENOMEM;
4548 		goto out;
4549 	}
4550 
4551 	*errp = ext4_mb_initialize_context(ac, ar);
4552 	if (*errp) {
4553 		ar->len = 0;
4554 		goto out;
4555 	}
4556 
4557 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4558 	if (!ext4_mb_use_preallocated(ac)) {
4559 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4560 		ext4_mb_normalize_request(ac, ar);
4561 repeat:
4562 		/* allocate space in core */
4563 		*errp = ext4_mb_regular_allocator(ac);
4564 		if (*errp)
4565 			goto discard_and_exit;
4566 
4567 		/* as we've just preallocated more space than
4568 		 * user requested originally, we store allocated
4569 		 * space in a special descriptor */
4570 		if (ac->ac_status == AC_STATUS_FOUND &&
4571 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4572 			*errp = ext4_mb_new_preallocation(ac);
4573 		if (*errp) {
4574 		discard_and_exit:
4575 			ext4_discard_allocated_blocks(ac);
4576 			goto errout;
4577 		}
4578 	}
4579 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4580 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4581 		if (*errp) {
4582 			ext4_discard_allocated_blocks(ac);
4583 			goto errout;
4584 		} else {
4585 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4586 			ar->len = ac->ac_b_ex.fe_len;
4587 		}
4588 	} else {
4589 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4590 		if (freed)
4591 			goto repeat;
4592 		*errp = -ENOSPC;
4593 	}
4594 
4595 errout:
4596 	if (*errp) {
4597 		ac->ac_b_ex.fe_len = 0;
4598 		ar->len = 0;
4599 		ext4_mb_show_ac(ac);
4600 	}
4601 	ext4_mb_release_context(ac);
4602 out:
4603 	if (ac)
4604 		kmem_cache_free(ext4_ac_cachep, ac);
4605 	if (inquota && ar->len < inquota)
4606 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4607 	if (!ar->len) {
4608 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4609 			/* release all the reserved blocks if non delalloc */
4610 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4611 						reserv_clstrs);
4612 	}
4613 
4614 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4615 
4616 	return block;
4617 }
4618 
4619 /*
4620  * We can merge two free data extents only if the physical blocks
4621  * are contiguous, AND the extents were freed by the same transaction,
4622  * AND the blocks are associated with the same group.
4623  */
4624 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4625 					struct ext4_free_data *entry,
4626 					struct ext4_free_data *new_entry,
4627 					struct rb_root *entry_rb_root)
4628 {
4629 	if ((entry->efd_tid != new_entry->efd_tid) ||
4630 	    (entry->efd_group != new_entry->efd_group))
4631 		return;
4632 	if (entry->efd_start_cluster + entry->efd_count ==
4633 	    new_entry->efd_start_cluster) {
4634 		new_entry->efd_start_cluster = entry->efd_start_cluster;
4635 		new_entry->efd_count += entry->efd_count;
4636 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4637 		   entry->efd_start_cluster) {
4638 		new_entry->efd_count += entry->efd_count;
4639 	} else
4640 		return;
4641 	spin_lock(&sbi->s_md_lock);
4642 	list_del(&entry->efd_list);
4643 	spin_unlock(&sbi->s_md_lock);
4644 	rb_erase(&entry->efd_node, entry_rb_root);
4645 	kmem_cache_free(ext4_free_data_cachep, entry);
4646 }
4647 
4648 static noinline_for_stack int
4649 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4650 		      struct ext4_free_data *new_entry)
4651 {
4652 	ext4_group_t group = e4b->bd_group;
4653 	ext4_grpblk_t cluster;
4654 	ext4_grpblk_t clusters = new_entry->efd_count;
4655 	struct ext4_free_data *entry;
4656 	struct ext4_group_info *db = e4b->bd_info;
4657 	struct super_block *sb = e4b->bd_sb;
4658 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4659 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4660 	struct rb_node *parent = NULL, *new_node;
4661 
4662 	BUG_ON(!ext4_handle_valid(handle));
4663 	BUG_ON(e4b->bd_bitmap_page == NULL);
4664 	BUG_ON(e4b->bd_buddy_page == NULL);
4665 
4666 	new_node = &new_entry->efd_node;
4667 	cluster = new_entry->efd_start_cluster;
4668 
4669 	if (!*n) {
4670 		/* first free block exent. We need to
4671 		   protect buddy cache from being freed,
4672 		 * otherwise we'll refresh it from
4673 		 * on-disk bitmap and lose not-yet-available
4674 		 * blocks */
4675 		get_page(e4b->bd_buddy_page);
4676 		get_page(e4b->bd_bitmap_page);
4677 	}
4678 	while (*n) {
4679 		parent = *n;
4680 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4681 		if (cluster < entry->efd_start_cluster)
4682 			n = &(*n)->rb_left;
4683 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4684 			n = &(*n)->rb_right;
4685 		else {
4686 			ext4_grp_locked_error(sb, group, 0,
4687 				ext4_group_first_block_no(sb, group) +
4688 				EXT4_C2B(sbi, cluster),
4689 				"Block already on to-be-freed list");
4690 			return 0;
4691 		}
4692 	}
4693 
4694 	rb_link_node(new_node, parent, n);
4695 	rb_insert_color(new_node, &db->bb_free_root);
4696 
4697 	/* Now try to see the extent can be merged to left and right */
4698 	node = rb_prev(new_node);
4699 	if (node) {
4700 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4701 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
4702 					    &(db->bb_free_root));
4703 	}
4704 
4705 	node = rb_next(new_node);
4706 	if (node) {
4707 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4708 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
4709 					    &(db->bb_free_root));
4710 	}
4711 
4712 	spin_lock(&sbi->s_md_lock);
4713 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4714 	sbi->s_mb_free_pending += clusters;
4715 	spin_unlock(&sbi->s_md_lock);
4716 	return 0;
4717 }
4718 
4719 /**
4720  * ext4_free_blocks() -- Free given blocks and update quota
4721  * @handle:		handle for this transaction
4722  * @inode:		inode
4723  * @block:		start physical block to free
4724  * @count:		number of blocks to count
4725  * @flags:		flags used by ext4_free_blocks
4726  */
4727 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4728 		      struct buffer_head *bh, ext4_fsblk_t block,
4729 		      unsigned long count, int flags)
4730 {
4731 	struct buffer_head *bitmap_bh = NULL;
4732 	struct super_block *sb = inode->i_sb;
4733 	struct ext4_group_desc *gdp;
4734 	unsigned int overflow;
4735 	ext4_grpblk_t bit;
4736 	struct buffer_head *gd_bh;
4737 	ext4_group_t block_group;
4738 	struct ext4_sb_info *sbi;
4739 	struct ext4_buddy e4b;
4740 	unsigned int count_clusters;
4741 	int err = 0;
4742 	int ret;
4743 
4744 	might_sleep();
4745 	if (bh) {
4746 		if (block)
4747 			BUG_ON(block != bh->b_blocknr);
4748 		else
4749 			block = bh->b_blocknr;
4750 	}
4751 
4752 	sbi = EXT4_SB(sb);
4753 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4754 	    !ext4_data_block_valid(sbi, block, count)) {
4755 		ext4_error(sb, "Freeing blocks not in datazone - "
4756 			   "block = %llu, count = %lu", block, count);
4757 		goto error_return;
4758 	}
4759 
4760 	ext4_debug("freeing block %llu\n", block);
4761 	trace_ext4_free_blocks(inode, block, count, flags);
4762 
4763 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4764 		BUG_ON(count > 1);
4765 
4766 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4767 			    inode, bh, block);
4768 	}
4769 
4770 	/*
4771 	 * If the extent to be freed does not begin on a cluster
4772 	 * boundary, we need to deal with partial clusters at the
4773 	 * beginning and end of the extent.  Normally we will free
4774 	 * blocks at the beginning or the end unless we are explicitly
4775 	 * requested to avoid doing so.
4776 	 */
4777 	overflow = EXT4_PBLK_COFF(sbi, block);
4778 	if (overflow) {
4779 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4780 			overflow = sbi->s_cluster_ratio - overflow;
4781 			block += overflow;
4782 			if (count > overflow)
4783 				count -= overflow;
4784 			else
4785 				return;
4786 		} else {
4787 			block -= overflow;
4788 			count += overflow;
4789 		}
4790 	}
4791 	overflow = EXT4_LBLK_COFF(sbi, count);
4792 	if (overflow) {
4793 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4794 			if (count > overflow)
4795 				count -= overflow;
4796 			else
4797 				return;
4798 		} else
4799 			count += sbi->s_cluster_ratio - overflow;
4800 	}
4801 
4802 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4803 		int i;
4804 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4805 
4806 		for (i = 0; i < count; i++) {
4807 			cond_resched();
4808 			if (is_metadata)
4809 				bh = sb_find_get_block(inode->i_sb, block + i);
4810 			ext4_forget(handle, is_metadata, inode, bh, block + i);
4811 		}
4812 	}
4813 
4814 do_more:
4815 	overflow = 0;
4816 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4817 
4818 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4819 			ext4_get_group_info(sb, block_group))))
4820 		return;
4821 
4822 	/*
4823 	 * Check to see if we are freeing blocks across a group
4824 	 * boundary.
4825 	 */
4826 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4827 		overflow = EXT4_C2B(sbi, bit) + count -
4828 			EXT4_BLOCKS_PER_GROUP(sb);
4829 		count -= overflow;
4830 	}
4831 	count_clusters = EXT4_NUM_B2C(sbi, count);
4832 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4833 	if (IS_ERR(bitmap_bh)) {
4834 		err = PTR_ERR(bitmap_bh);
4835 		bitmap_bh = NULL;
4836 		goto error_return;
4837 	}
4838 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4839 	if (!gdp) {
4840 		err = -EIO;
4841 		goto error_return;
4842 	}
4843 
4844 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4845 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4846 	    in_range(block, ext4_inode_table(sb, gdp),
4847 		     EXT4_SB(sb)->s_itb_per_group) ||
4848 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4849 		     EXT4_SB(sb)->s_itb_per_group)) {
4850 
4851 		ext4_error(sb, "Freeing blocks in system zone - "
4852 			   "Block = %llu, count = %lu", block, count);
4853 		/* err = 0. ext4_std_error should be a no op */
4854 		goto error_return;
4855 	}
4856 
4857 	BUFFER_TRACE(bitmap_bh, "getting write access");
4858 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4859 	if (err)
4860 		goto error_return;
4861 
4862 	/*
4863 	 * We are about to modify some metadata.  Call the journal APIs
4864 	 * to unshare ->b_data if a currently-committing transaction is
4865 	 * using it
4866 	 */
4867 	BUFFER_TRACE(gd_bh, "get_write_access");
4868 	err = ext4_journal_get_write_access(handle, gd_bh);
4869 	if (err)
4870 		goto error_return;
4871 #ifdef AGGRESSIVE_CHECK
4872 	{
4873 		int i;
4874 		for (i = 0; i < count_clusters; i++)
4875 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4876 	}
4877 #endif
4878 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4879 
4880 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4881 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4882 				     GFP_NOFS|__GFP_NOFAIL);
4883 	if (err)
4884 		goto error_return;
4885 
4886 	/*
4887 	 * We need to make sure we don't reuse the freed block until after the
4888 	 * transaction is committed. We make an exception if the inode is to be
4889 	 * written in writeback mode since writeback mode has weak data
4890 	 * consistency guarantees.
4891 	 */
4892 	if (ext4_handle_valid(handle) &&
4893 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4894 	     !ext4_should_writeback_data(inode))) {
4895 		struct ext4_free_data *new_entry;
4896 		/*
4897 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4898 		 * to fail.
4899 		 */
4900 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4901 				GFP_NOFS|__GFP_NOFAIL);
4902 		new_entry->efd_start_cluster = bit;
4903 		new_entry->efd_group = block_group;
4904 		new_entry->efd_count = count_clusters;
4905 		new_entry->efd_tid = handle->h_transaction->t_tid;
4906 
4907 		ext4_lock_group(sb, block_group);
4908 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4909 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4910 	} else {
4911 		/* need to update group_info->bb_free and bitmap
4912 		 * with group lock held. generate_buddy look at
4913 		 * them with group lock_held
4914 		 */
4915 		if (test_opt(sb, DISCARD)) {
4916 			err = ext4_issue_discard(sb, block_group, bit, count,
4917 						 NULL);
4918 			if (err && err != -EOPNOTSUPP)
4919 				ext4_msg(sb, KERN_WARNING, "discard request in"
4920 					 " group:%d block:%d count:%lu failed"
4921 					 " with %d", block_group, bit, count,
4922 					 err);
4923 		} else
4924 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4925 
4926 		ext4_lock_group(sb, block_group);
4927 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4928 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4929 	}
4930 
4931 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4932 	ext4_free_group_clusters_set(sb, gdp, ret);
4933 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4934 	ext4_group_desc_csum_set(sb, block_group, gdp);
4935 	ext4_unlock_group(sb, block_group);
4936 
4937 	if (sbi->s_log_groups_per_flex) {
4938 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4939 		atomic64_add(count_clusters,
4940 			     &sbi->s_flex_groups[flex_group].free_clusters);
4941 	}
4942 
4943 	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4944 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4945 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4946 
4947 	ext4_mb_unload_buddy(&e4b);
4948 
4949 	/* We dirtied the bitmap block */
4950 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4951 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4952 
4953 	/* And the group descriptor block */
4954 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4955 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4956 	if (!err)
4957 		err = ret;
4958 
4959 	if (overflow && !err) {
4960 		block += count;
4961 		count = overflow;
4962 		put_bh(bitmap_bh);
4963 		goto do_more;
4964 	}
4965 error_return:
4966 	brelse(bitmap_bh);
4967 	ext4_std_error(sb, err);
4968 	return;
4969 }
4970 
4971 /**
4972  * ext4_group_add_blocks() -- Add given blocks to an existing group
4973  * @handle:			handle to this transaction
4974  * @sb:				super block
4975  * @block:			start physical block to add to the block group
4976  * @count:			number of blocks to free
4977  *
4978  * This marks the blocks as free in the bitmap and buddy.
4979  */
4980 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4981 			 ext4_fsblk_t block, unsigned long count)
4982 {
4983 	struct buffer_head *bitmap_bh = NULL;
4984 	struct buffer_head *gd_bh;
4985 	ext4_group_t block_group;
4986 	ext4_grpblk_t bit;
4987 	unsigned int i;
4988 	struct ext4_group_desc *desc;
4989 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4990 	struct ext4_buddy e4b;
4991 	int err = 0, ret, blk_free_count;
4992 	ext4_grpblk_t blocks_freed;
4993 
4994 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4995 
4996 	if (count == 0)
4997 		return 0;
4998 
4999 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5000 	/*
5001 	 * Check to see if we are freeing blocks across a group
5002 	 * boundary.
5003 	 */
5004 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
5005 		ext4_warning(sb, "too much blocks added to group %u",
5006 			     block_group);
5007 		err = -EINVAL;
5008 		goto error_return;
5009 	}
5010 
5011 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5012 	if (IS_ERR(bitmap_bh)) {
5013 		err = PTR_ERR(bitmap_bh);
5014 		bitmap_bh = NULL;
5015 		goto error_return;
5016 	}
5017 
5018 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5019 	if (!desc) {
5020 		err = -EIO;
5021 		goto error_return;
5022 	}
5023 
5024 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5025 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5026 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5027 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
5028 		     sbi->s_itb_per_group)) {
5029 		ext4_error(sb, "Adding blocks in system zones - "
5030 			   "Block = %llu, count = %lu",
5031 			   block, count);
5032 		err = -EINVAL;
5033 		goto error_return;
5034 	}
5035 
5036 	BUFFER_TRACE(bitmap_bh, "getting write access");
5037 	err = ext4_journal_get_write_access(handle, bitmap_bh);
5038 	if (err)
5039 		goto error_return;
5040 
5041 	/*
5042 	 * We are about to modify some metadata.  Call the journal APIs
5043 	 * to unshare ->b_data if a currently-committing transaction is
5044 	 * using it
5045 	 */
5046 	BUFFER_TRACE(gd_bh, "get_write_access");
5047 	err = ext4_journal_get_write_access(handle, gd_bh);
5048 	if (err)
5049 		goto error_return;
5050 
5051 	for (i = 0, blocks_freed = 0; i < count; i++) {
5052 		BUFFER_TRACE(bitmap_bh, "clear bit");
5053 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5054 			ext4_error(sb, "bit already cleared for block %llu",
5055 				   (ext4_fsblk_t)(block + i));
5056 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
5057 		} else {
5058 			blocks_freed++;
5059 		}
5060 	}
5061 
5062 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
5063 	if (err)
5064 		goto error_return;
5065 
5066 	/*
5067 	 * need to update group_info->bb_free and bitmap
5068 	 * with group lock held. generate_buddy look at
5069 	 * them with group lock_held
5070 	 */
5071 	ext4_lock_group(sb, block_group);
5072 	mb_clear_bits(bitmap_bh->b_data, bit, count);
5073 	mb_free_blocks(NULL, &e4b, bit, count);
5074 	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
5075 	ext4_free_group_clusters_set(sb, desc, blk_free_count);
5076 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5077 	ext4_group_desc_csum_set(sb, block_group, desc);
5078 	ext4_unlock_group(sb, block_group);
5079 	percpu_counter_add(&sbi->s_freeclusters_counter,
5080 			   EXT4_NUM_B2C(sbi, blocks_freed));
5081 
5082 	if (sbi->s_log_groups_per_flex) {
5083 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5084 		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5085 			     &sbi->s_flex_groups[flex_group].free_clusters);
5086 	}
5087 
5088 	ext4_mb_unload_buddy(&e4b);
5089 
5090 	/* We dirtied the bitmap block */
5091 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5092 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5093 
5094 	/* And the group descriptor block */
5095 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5096 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5097 	if (!err)
5098 		err = ret;
5099 
5100 error_return:
5101 	brelse(bitmap_bh);
5102 	ext4_std_error(sb, err);
5103 	return err;
5104 }
5105 
5106 /**
5107  * ext4_trim_extent -- function to TRIM one single free extent in the group
5108  * @sb:		super block for the file system
5109  * @start:	starting block of the free extent in the alloc. group
5110  * @count:	number of blocks to TRIM
5111  * @group:	alloc. group we are working with
5112  * @e4b:	ext4 buddy for the group
5113  *
5114  * Trim "count" blocks starting at "start" in the "group". To assure that no
5115  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5116  * be called with under the group lock.
5117  */
5118 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5119 			     ext4_group_t group, struct ext4_buddy *e4b)
5120 __releases(bitlock)
5121 __acquires(bitlock)
5122 {
5123 	struct ext4_free_extent ex;
5124 	int ret = 0;
5125 
5126 	trace_ext4_trim_extent(sb, group, start, count);
5127 
5128 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5129 
5130 	ex.fe_start = start;
5131 	ex.fe_group = group;
5132 	ex.fe_len = count;
5133 
5134 	/*
5135 	 * Mark blocks used, so no one can reuse them while
5136 	 * being trimmed.
5137 	 */
5138 	mb_mark_used(e4b, &ex);
5139 	ext4_unlock_group(sb, group);
5140 	ret = ext4_issue_discard(sb, group, start, count, NULL);
5141 	ext4_lock_group(sb, group);
5142 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5143 	return ret;
5144 }
5145 
5146 /**
5147  * ext4_trim_all_free -- function to trim all free space in alloc. group
5148  * @sb:			super block for file system
5149  * @group:		group to be trimmed
5150  * @start:		first group block to examine
5151  * @max:		last group block to examine
5152  * @minblocks:		minimum extent block count
5153  *
5154  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5155  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5156  * the extent.
5157  *
5158  *
5159  * ext4_trim_all_free walks through group's block bitmap searching for free
5160  * extents. When the free extent is found, mark it as used in group buddy
5161  * bitmap. Then issue a TRIM command on this extent and free the extent in
5162  * the group buddy bitmap. This is done until whole group is scanned.
5163  */
5164 static ext4_grpblk_t
5165 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5166 		   ext4_grpblk_t start, ext4_grpblk_t max,
5167 		   ext4_grpblk_t minblocks)
5168 {
5169 	void *bitmap;
5170 	ext4_grpblk_t next, count = 0, free_count = 0;
5171 	struct ext4_buddy e4b;
5172 	int ret = 0;
5173 
5174 	trace_ext4_trim_all_free(sb, group, start, max);
5175 
5176 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5177 	if (ret) {
5178 		ext4_warning(sb, "Error %d loading buddy information for %u",
5179 			     ret, group);
5180 		return ret;
5181 	}
5182 	bitmap = e4b.bd_bitmap;
5183 
5184 	ext4_lock_group(sb, group);
5185 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5186 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5187 		goto out;
5188 
5189 	start = (e4b.bd_info->bb_first_free > start) ?
5190 		e4b.bd_info->bb_first_free : start;
5191 
5192 	while (start <= max) {
5193 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5194 		if (start > max)
5195 			break;
5196 		next = mb_find_next_bit(bitmap, max + 1, start);
5197 
5198 		if ((next - start) >= minblocks) {
5199 			ret = ext4_trim_extent(sb, start,
5200 					       next - start, group, &e4b);
5201 			if (ret && ret != -EOPNOTSUPP)
5202 				break;
5203 			ret = 0;
5204 			count += next - start;
5205 		}
5206 		free_count += next - start;
5207 		start = next + 1;
5208 
5209 		if (fatal_signal_pending(current)) {
5210 			count = -ERESTARTSYS;
5211 			break;
5212 		}
5213 
5214 		if (need_resched()) {
5215 			ext4_unlock_group(sb, group);
5216 			cond_resched();
5217 			ext4_lock_group(sb, group);
5218 		}
5219 
5220 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5221 			break;
5222 	}
5223 
5224 	if (!ret) {
5225 		ret = count;
5226 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5227 	}
5228 out:
5229 	ext4_unlock_group(sb, group);
5230 	ext4_mb_unload_buddy(&e4b);
5231 
5232 	ext4_debug("trimmed %d blocks in the group %d\n",
5233 		count, group);
5234 
5235 	return ret;
5236 }
5237 
5238 /**
5239  * ext4_trim_fs() -- trim ioctl handle function
5240  * @sb:			superblock for filesystem
5241  * @range:		fstrim_range structure
5242  *
5243  * start:	First Byte to trim
5244  * len:		number of Bytes to trim from start
5245  * minlen:	minimum extent length in Bytes
5246  * ext4_trim_fs goes through all allocation groups containing Bytes from
5247  * start to start+len. For each such a group ext4_trim_all_free function
5248  * is invoked to trim all free space.
5249  */
5250 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5251 {
5252 	struct ext4_group_info *grp;
5253 	ext4_group_t group, first_group, last_group;
5254 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5255 	uint64_t start, end, minlen, trimmed = 0;
5256 	ext4_fsblk_t first_data_blk =
5257 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5258 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5259 	int ret = 0;
5260 
5261 	start = range->start >> sb->s_blocksize_bits;
5262 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5263 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5264 			      range->minlen >> sb->s_blocksize_bits);
5265 
5266 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5267 	    start >= max_blks ||
5268 	    range->len < sb->s_blocksize)
5269 		return -EINVAL;
5270 	if (end >= max_blks)
5271 		end = max_blks - 1;
5272 	if (end <= first_data_blk)
5273 		goto out;
5274 	if (start < first_data_blk)
5275 		start = first_data_blk;
5276 
5277 	/* Determine first and last group to examine based on start and end */
5278 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5279 				     &first_group, &first_cluster);
5280 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5281 				     &last_group, &last_cluster);
5282 
5283 	/* end now represents the last cluster to discard in this group */
5284 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5285 
5286 	for (group = first_group; group <= last_group; group++) {
5287 		grp = ext4_get_group_info(sb, group);
5288 		/* We only do this if the grp has never been initialized */
5289 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5290 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5291 			if (ret)
5292 				break;
5293 		}
5294 
5295 		/*
5296 		 * For all the groups except the last one, last cluster will
5297 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5298 		 * change it for the last group, note that last_cluster is
5299 		 * already computed earlier by ext4_get_group_no_and_offset()
5300 		 */
5301 		if (group == last_group)
5302 			end = last_cluster;
5303 
5304 		if (grp->bb_free >= minlen) {
5305 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5306 						end, minlen);
5307 			if (cnt < 0) {
5308 				ret = cnt;
5309 				break;
5310 			}
5311 			trimmed += cnt;
5312 		}
5313 
5314 		/*
5315 		 * For every group except the first one, we are sure
5316 		 * that the first cluster to discard will be cluster #0.
5317 		 */
5318 		first_cluster = 0;
5319 	}
5320 
5321 	if (!ret)
5322 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5323 
5324 out:
5325 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5326 	return ret;
5327 }
5328 
5329 /* Iterate all the free extents in the group. */
5330 int
5331 ext4_mballoc_query_range(
5332 	struct super_block		*sb,
5333 	ext4_group_t			group,
5334 	ext4_grpblk_t			start,
5335 	ext4_grpblk_t			end,
5336 	ext4_mballoc_query_range_fn	formatter,
5337 	void				*priv)
5338 {
5339 	void				*bitmap;
5340 	ext4_grpblk_t			next;
5341 	struct ext4_buddy		e4b;
5342 	int				error;
5343 
5344 	error = ext4_mb_load_buddy(sb, group, &e4b);
5345 	if (error)
5346 		return error;
5347 	bitmap = e4b.bd_bitmap;
5348 
5349 	ext4_lock_group(sb, group);
5350 
5351 	start = (e4b.bd_info->bb_first_free > start) ?
5352 		e4b.bd_info->bb_first_free : start;
5353 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5354 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5355 
5356 	while (start <= end) {
5357 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
5358 		if (start > end)
5359 			break;
5360 		next = mb_find_next_bit(bitmap, end + 1, start);
5361 
5362 		ext4_unlock_group(sb, group);
5363 		error = formatter(sb, group, start, next - start, priv);
5364 		if (error)
5365 			goto out_unload;
5366 		ext4_lock_group(sb, group);
5367 
5368 		start = next + 1;
5369 	}
5370 
5371 	ext4_unlock_group(sb, group);
5372 out_unload:
5373 	ext4_mb_unload_buddy(&e4b);
5374 
5375 	return error;
5376 }
5377