1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <trace/events/ext4.h> 20 21 /* 22 * MUSTDO: 23 * - test ext4_ext_search_left() and ext4_ext_search_right() 24 * - search for metadata in few groups 25 * 26 * TODO v4: 27 * - normalization should take into account whether file is still open 28 * - discard preallocations if no free space left (policy?) 29 * - don't normalize tails 30 * - quota 31 * - reservation for superuser 32 * 33 * TODO v3: 34 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 35 * - track min/max extents in each group for better group selection 36 * - mb_mark_used() may allocate chunk right after splitting buddy 37 * - tree of groups sorted by number of free blocks 38 * - error handling 39 */ 40 41 /* 42 * The allocation request involve request for multiple number of blocks 43 * near to the goal(block) value specified. 44 * 45 * During initialization phase of the allocator we decide to use the 46 * group preallocation or inode preallocation depending on the size of 47 * the file. The size of the file could be the resulting file size we 48 * would have after allocation, or the current file size, which ever 49 * is larger. If the size is less than sbi->s_mb_stream_request we 50 * select to use the group preallocation. The default value of 51 * s_mb_stream_request is 16 blocks. This can also be tuned via 52 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 53 * terms of number of blocks. 54 * 55 * The main motivation for having small file use group preallocation is to 56 * ensure that we have small files closer together on the disk. 57 * 58 * First stage the allocator looks at the inode prealloc list, 59 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 60 * spaces for this particular inode. The inode prealloc space is 61 * represented as: 62 * 63 * pa_lstart -> the logical start block for this prealloc space 64 * pa_pstart -> the physical start block for this prealloc space 65 * pa_len -> length for this prealloc space (in clusters) 66 * pa_free -> free space available in this prealloc space (in clusters) 67 * 68 * The inode preallocation space is used looking at the _logical_ start 69 * block. If only the logical file block falls within the range of prealloc 70 * space we will consume the particular prealloc space. This makes sure that 71 * we have contiguous physical blocks representing the file blocks 72 * 73 * The important thing to be noted in case of inode prealloc space is that 74 * we don't modify the values associated to inode prealloc space except 75 * pa_free. 76 * 77 * If we are not able to find blocks in the inode prealloc space and if we 78 * have the group allocation flag set then we look at the locality group 79 * prealloc space. These are per CPU prealloc list represented as 80 * 81 * ext4_sb_info.s_locality_groups[smp_processor_id()] 82 * 83 * The reason for having a per cpu locality group is to reduce the contention 84 * between CPUs. It is possible to get scheduled at this point. 85 * 86 * The locality group prealloc space is used looking at whether we have 87 * enough free space (pa_free) within the prealloc space. 88 * 89 * If we can't allocate blocks via inode prealloc or/and locality group 90 * prealloc then we look at the buddy cache. The buddy cache is represented 91 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 92 * mapped to the buddy and bitmap information regarding different 93 * groups. The buddy information is attached to buddy cache inode so that 94 * we can access them through the page cache. The information regarding 95 * each group is loaded via ext4_mb_load_buddy. The information involve 96 * block bitmap and buddy information. The information are stored in the 97 * inode as: 98 * 99 * { page } 100 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 101 * 102 * 103 * one block each for bitmap and buddy information. So for each group we 104 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 105 * blocksize) blocks. So it can have information regarding groups_per_page 106 * which is blocks_per_page/2 107 * 108 * The buddy cache inode is not stored on disk. The inode is thrown 109 * away when the filesystem is unmounted. 110 * 111 * We look for count number of blocks in the buddy cache. If we were able 112 * to locate that many free blocks we return with additional information 113 * regarding rest of the contiguous physical block available 114 * 115 * Before allocating blocks via buddy cache we normalize the request 116 * blocks. This ensure we ask for more blocks that we needed. The extra 117 * blocks that we get after allocation is added to the respective prealloc 118 * list. In case of inode preallocation we follow a list of heuristics 119 * based on file size. This can be found in ext4_mb_normalize_request. If 120 * we are doing a group prealloc we try to normalize the request to 121 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 122 * dependent on the cluster size; for non-bigalloc file systems, it is 123 * 512 blocks. This can be tuned via 124 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 125 * terms of number of blocks. If we have mounted the file system with -O 126 * stripe=<value> option the group prealloc request is normalized to the 127 * smallest multiple of the stripe value (sbi->s_stripe) which is 128 * greater than the default mb_group_prealloc. 129 * 130 * If "mb_optimize_scan" mount option is set, we maintain in memory group info 131 * structures in two data structures: 132 * 133 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) 134 * 135 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) 136 * 137 * This is an array of lists where the index in the array represents the 138 * largest free order in the buddy bitmap of the participating group infos of 139 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total 140 * number of buddy bitmap orders possible) number of lists. Group-infos are 141 * placed in appropriate lists. 142 * 143 * 2) Average fragment size rb tree (sbi->s_mb_avg_fragment_size_root) 144 * 145 * Locking: sbi->s_mb_rb_lock (rwlock) 146 * 147 * This is a red black tree consisting of group infos and the tree is sorted 148 * by average fragment sizes (which is calculated as ext4_group_info->bb_free 149 * / ext4_group_info->bb_fragments). 150 * 151 * When "mb_optimize_scan" mount option is set, mballoc consults the above data 152 * structures to decide the order in which groups are to be traversed for 153 * fulfilling an allocation request. 154 * 155 * At CR = 0, we look for groups which have the largest_free_order >= the order 156 * of the request. We directly look at the largest free order list in the data 157 * structure (1) above where largest_free_order = order of the request. If that 158 * list is empty, we look at remaining list in the increasing order of 159 * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time. 160 * 161 * At CR = 1, we only consider groups where average fragment size > request 162 * size. So, we lookup a group which has average fragment size just above or 163 * equal to request size using our rb tree (data structure 2) in O(log N) time. 164 * 165 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in 166 * linear order which requires O(N) search time for each CR 0 and CR 1 phase. 167 * 168 * The regular allocator (using the buddy cache) supports a few tunables. 169 * 170 * /sys/fs/ext4/<partition>/mb_min_to_scan 171 * /sys/fs/ext4/<partition>/mb_max_to_scan 172 * /sys/fs/ext4/<partition>/mb_order2_req 173 * /sys/fs/ext4/<partition>/mb_linear_limit 174 * 175 * The regular allocator uses buddy scan only if the request len is power of 176 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 177 * value of s_mb_order2_reqs can be tuned via 178 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 179 * stripe size (sbi->s_stripe), we try to search for contiguous block in 180 * stripe size. This should result in better allocation on RAID setups. If 181 * not, we search in the specific group using bitmap for best extents. The 182 * tunable min_to_scan and max_to_scan control the behaviour here. 183 * min_to_scan indicate how long the mballoc __must__ look for a best 184 * extent and max_to_scan indicates how long the mballoc __can__ look for a 185 * best extent in the found extents. Searching for the blocks starts with 186 * the group specified as the goal value in allocation context via 187 * ac_g_ex. Each group is first checked based on the criteria whether it 188 * can be used for allocation. ext4_mb_good_group explains how the groups are 189 * checked. 190 * 191 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not 192 * get traversed linearly. That may result in subsequent allocations being not 193 * close to each other. And so, the underlying device may get filled up in a 194 * non-linear fashion. While that may not matter on non-rotational devices, for 195 * rotational devices that may result in higher seek times. "mb_linear_limit" 196 * tells mballoc how many groups mballoc should search linearly before 197 * performing consulting above data structures for more efficient lookups. For 198 * non rotational devices, this value defaults to 0 and for rotational devices 199 * this is set to MB_DEFAULT_LINEAR_LIMIT. 200 * 201 * Both the prealloc space are getting populated as above. So for the first 202 * request we will hit the buddy cache which will result in this prealloc 203 * space getting filled. The prealloc space is then later used for the 204 * subsequent request. 205 */ 206 207 /* 208 * mballoc operates on the following data: 209 * - on-disk bitmap 210 * - in-core buddy (actually includes buddy and bitmap) 211 * - preallocation descriptors (PAs) 212 * 213 * there are two types of preallocations: 214 * - inode 215 * assiged to specific inode and can be used for this inode only. 216 * it describes part of inode's space preallocated to specific 217 * physical blocks. any block from that preallocated can be used 218 * independent. the descriptor just tracks number of blocks left 219 * unused. so, before taking some block from descriptor, one must 220 * make sure corresponded logical block isn't allocated yet. this 221 * also means that freeing any block within descriptor's range 222 * must discard all preallocated blocks. 223 * - locality group 224 * assigned to specific locality group which does not translate to 225 * permanent set of inodes: inode can join and leave group. space 226 * from this type of preallocation can be used for any inode. thus 227 * it's consumed from the beginning to the end. 228 * 229 * relation between them can be expressed as: 230 * in-core buddy = on-disk bitmap + preallocation descriptors 231 * 232 * this mean blocks mballoc considers used are: 233 * - allocated blocks (persistent) 234 * - preallocated blocks (non-persistent) 235 * 236 * consistency in mballoc world means that at any time a block is either 237 * free or used in ALL structures. notice: "any time" should not be read 238 * literally -- time is discrete and delimited by locks. 239 * 240 * to keep it simple, we don't use block numbers, instead we count number of 241 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 242 * 243 * all operations can be expressed as: 244 * - init buddy: buddy = on-disk + PAs 245 * - new PA: buddy += N; PA = N 246 * - use inode PA: on-disk += N; PA -= N 247 * - discard inode PA buddy -= on-disk - PA; PA = 0 248 * - use locality group PA on-disk += N; PA -= N 249 * - discard locality group PA buddy -= PA; PA = 0 250 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 251 * is used in real operation because we can't know actual used 252 * bits from PA, only from on-disk bitmap 253 * 254 * if we follow this strict logic, then all operations above should be atomic. 255 * given some of them can block, we'd have to use something like semaphores 256 * killing performance on high-end SMP hardware. let's try to relax it using 257 * the following knowledge: 258 * 1) if buddy is referenced, it's already initialized 259 * 2) while block is used in buddy and the buddy is referenced, 260 * nobody can re-allocate that block 261 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 262 * bit set and PA claims same block, it's OK. IOW, one can set bit in 263 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 264 * block 265 * 266 * so, now we're building a concurrency table: 267 * - init buddy vs. 268 * - new PA 269 * blocks for PA are allocated in the buddy, buddy must be referenced 270 * until PA is linked to allocation group to avoid concurrent buddy init 271 * - use inode PA 272 * we need to make sure that either on-disk bitmap or PA has uptodate data 273 * given (3) we care that PA-=N operation doesn't interfere with init 274 * - discard inode PA 275 * the simplest way would be to have buddy initialized by the discard 276 * - use locality group PA 277 * again PA-=N must be serialized with init 278 * - discard locality group PA 279 * the simplest way would be to have buddy initialized by the discard 280 * - new PA vs. 281 * - use inode PA 282 * i_data_sem serializes them 283 * - discard inode PA 284 * discard process must wait until PA isn't used by another process 285 * - use locality group PA 286 * some mutex should serialize them 287 * - discard locality group PA 288 * discard process must wait until PA isn't used by another process 289 * - use inode PA 290 * - use inode PA 291 * i_data_sem or another mutex should serializes them 292 * - discard inode PA 293 * discard process must wait until PA isn't used by another process 294 * - use locality group PA 295 * nothing wrong here -- they're different PAs covering different blocks 296 * - discard locality group PA 297 * discard process must wait until PA isn't used by another process 298 * 299 * now we're ready to make few consequences: 300 * - PA is referenced and while it is no discard is possible 301 * - PA is referenced until block isn't marked in on-disk bitmap 302 * - PA changes only after on-disk bitmap 303 * - discard must not compete with init. either init is done before 304 * any discard or they're serialized somehow 305 * - buddy init as sum of on-disk bitmap and PAs is done atomically 306 * 307 * a special case when we've used PA to emptiness. no need to modify buddy 308 * in this case, but we should care about concurrent init 309 * 310 */ 311 312 /* 313 * Logic in few words: 314 * 315 * - allocation: 316 * load group 317 * find blocks 318 * mark bits in on-disk bitmap 319 * release group 320 * 321 * - use preallocation: 322 * find proper PA (per-inode or group) 323 * load group 324 * mark bits in on-disk bitmap 325 * release group 326 * release PA 327 * 328 * - free: 329 * load group 330 * mark bits in on-disk bitmap 331 * release group 332 * 333 * - discard preallocations in group: 334 * mark PAs deleted 335 * move them onto local list 336 * load on-disk bitmap 337 * load group 338 * remove PA from object (inode or locality group) 339 * mark free blocks in-core 340 * 341 * - discard inode's preallocations: 342 */ 343 344 /* 345 * Locking rules 346 * 347 * Locks: 348 * - bitlock on a group (group) 349 * - object (inode/locality) (object) 350 * - per-pa lock (pa) 351 * - cr0 lists lock (cr0) 352 * - cr1 tree lock (cr1) 353 * 354 * Paths: 355 * - new pa 356 * object 357 * group 358 * 359 * - find and use pa: 360 * pa 361 * 362 * - release consumed pa: 363 * pa 364 * group 365 * object 366 * 367 * - generate in-core bitmap: 368 * group 369 * pa 370 * 371 * - discard all for given object (inode, locality group): 372 * object 373 * pa 374 * group 375 * 376 * - discard all for given group: 377 * group 378 * pa 379 * group 380 * object 381 * 382 * - allocation path (ext4_mb_regular_allocator) 383 * group 384 * cr0/cr1 385 */ 386 static struct kmem_cache *ext4_pspace_cachep; 387 static struct kmem_cache *ext4_ac_cachep; 388 static struct kmem_cache *ext4_free_data_cachep; 389 390 /* We create slab caches for groupinfo data structures based on the 391 * superblock block size. There will be one per mounted filesystem for 392 * each unique s_blocksize_bits */ 393 #define NR_GRPINFO_CACHES 8 394 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 395 396 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 397 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 398 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 399 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 400 }; 401 402 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 403 ext4_group_t group); 404 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 405 ext4_group_t group); 406 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 407 408 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 409 ext4_group_t group, int cr); 410 411 /* 412 * The algorithm using this percpu seq counter goes below: 413 * 1. We sample the percpu discard_pa_seq counter before trying for block 414 * allocation in ext4_mb_new_blocks(). 415 * 2. We increment this percpu discard_pa_seq counter when we either allocate 416 * or free these blocks i.e. while marking those blocks as used/free in 417 * mb_mark_used()/mb_free_blocks(). 418 * 3. We also increment this percpu seq counter when we successfully identify 419 * that the bb_prealloc_list is not empty and hence proceed for discarding 420 * of those PAs inside ext4_mb_discard_group_preallocations(). 421 * 422 * Now to make sure that the regular fast path of block allocation is not 423 * affected, as a small optimization we only sample the percpu seq counter 424 * on that cpu. Only when the block allocation fails and when freed blocks 425 * found were 0, that is when we sample percpu seq counter for all cpus using 426 * below function ext4_get_discard_pa_seq_sum(). This happens after making 427 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 428 */ 429 static DEFINE_PER_CPU(u64, discard_pa_seq); 430 static inline u64 ext4_get_discard_pa_seq_sum(void) 431 { 432 int __cpu; 433 u64 __seq = 0; 434 435 for_each_possible_cpu(__cpu) 436 __seq += per_cpu(discard_pa_seq, __cpu); 437 return __seq; 438 } 439 440 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 441 { 442 #if BITS_PER_LONG == 64 443 *bit += ((unsigned long) addr & 7UL) << 3; 444 addr = (void *) ((unsigned long) addr & ~7UL); 445 #elif BITS_PER_LONG == 32 446 *bit += ((unsigned long) addr & 3UL) << 3; 447 addr = (void *) ((unsigned long) addr & ~3UL); 448 #else 449 #error "how many bits you are?!" 450 #endif 451 return addr; 452 } 453 454 static inline int mb_test_bit(int bit, void *addr) 455 { 456 /* 457 * ext4_test_bit on architecture like powerpc 458 * needs unsigned long aligned address 459 */ 460 addr = mb_correct_addr_and_bit(&bit, addr); 461 return ext4_test_bit(bit, addr); 462 } 463 464 static inline void mb_set_bit(int bit, void *addr) 465 { 466 addr = mb_correct_addr_and_bit(&bit, addr); 467 ext4_set_bit(bit, addr); 468 } 469 470 static inline void mb_clear_bit(int bit, void *addr) 471 { 472 addr = mb_correct_addr_and_bit(&bit, addr); 473 ext4_clear_bit(bit, addr); 474 } 475 476 static inline int mb_test_and_clear_bit(int bit, void *addr) 477 { 478 addr = mb_correct_addr_and_bit(&bit, addr); 479 return ext4_test_and_clear_bit(bit, addr); 480 } 481 482 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 483 { 484 int fix = 0, ret, tmpmax; 485 addr = mb_correct_addr_and_bit(&fix, addr); 486 tmpmax = max + fix; 487 start += fix; 488 489 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 490 if (ret > max) 491 return max; 492 return ret; 493 } 494 495 static inline int mb_find_next_bit(void *addr, int max, int start) 496 { 497 int fix = 0, ret, tmpmax; 498 addr = mb_correct_addr_and_bit(&fix, addr); 499 tmpmax = max + fix; 500 start += fix; 501 502 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 503 if (ret > max) 504 return max; 505 return ret; 506 } 507 508 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 509 { 510 char *bb; 511 512 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 513 BUG_ON(max == NULL); 514 515 if (order > e4b->bd_blkbits + 1) { 516 *max = 0; 517 return NULL; 518 } 519 520 /* at order 0 we see each particular block */ 521 if (order == 0) { 522 *max = 1 << (e4b->bd_blkbits + 3); 523 return e4b->bd_bitmap; 524 } 525 526 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 527 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 528 529 return bb; 530 } 531 532 #ifdef DOUBLE_CHECK 533 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 534 int first, int count) 535 { 536 int i; 537 struct super_block *sb = e4b->bd_sb; 538 539 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 540 return; 541 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 542 for (i = 0; i < count; i++) { 543 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 544 ext4_fsblk_t blocknr; 545 546 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 547 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 548 ext4_grp_locked_error(sb, e4b->bd_group, 549 inode ? inode->i_ino : 0, 550 blocknr, 551 "freeing block already freed " 552 "(bit %u)", 553 first + i); 554 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 555 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 556 } 557 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 558 } 559 } 560 561 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 562 { 563 int i; 564 565 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 566 return; 567 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 568 for (i = 0; i < count; i++) { 569 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 570 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 571 } 572 } 573 574 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 575 { 576 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 577 return; 578 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 579 unsigned char *b1, *b2; 580 int i; 581 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 582 b2 = (unsigned char *) bitmap; 583 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 584 if (b1[i] != b2[i]) { 585 ext4_msg(e4b->bd_sb, KERN_ERR, 586 "corruption in group %u " 587 "at byte %u(%u): %x in copy != %x " 588 "on disk/prealloc", 589 e4b->bd_group, i, i * 8, b1[i], b2[i]); 590 BUG(); 591 } 592 } 593 } 594 } 595 596 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 597 struct ext4_group_info *grp, ext4_group_t group) 598 { 599 struct buffer_head *bh; 600 601 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 602 if (!grp->bb_bitmap) 603 return; 604 605 bh = ext4_read_block_bitmap(sb, group); 606 if (IS_ERR_OR_NULL(bh)) { 607 kfree(grp->bb_bitmap); 608 grp->bb_bitmap = NULL; 609 return; 610 } 611 612 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 613 put_bh(bh); 614 } 615 616 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 617 { 618 kfree(grp->bb_bitmap); 619 } 620 621 #else 622 static inline void mb_free_blocks_double(struct inode *inode, 623 struct ext4_buddy *e4b, int first, int count) 624 { 625 return; 626 } 627 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 628 int first, int count) 629 { 630 return; 631 } 632 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 633 { 634 return; 635 } 636 637 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 638 struct ext4_group_info *grp, ext4_group_t group) 639 { 640 return; 641 } 642 643 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 644 { 645 return; 646 } 647 #endif 648 649 #ifdef AGGRESSIVE_CHECK 650 651 #define MB_CHECK_ASSERT(assert) \ 652 do { \ 653 if (!(assert)) { \ 654 printk(KERN_EMERG \ 655 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 656 function, file, line, # assert); \ 657 BUG(); \ 658 } \ 659 } while (0) 660 661 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 662 const char *function, int line) 663 { 664 struct super_block *sb = e4b->bd_sb; 665 int order = e4b->bd_blkbits + 1; 666 int max; 667 int max2; 668 int i; 669 int j; 670 int k; 671 int count; 672 struct ext4_group_info *grp; 673 int fragments = 0; 674 int fstart; 675 struct list_head *cur; 676 void *buddy; 677 void *buddy2; 678 679 if (e4b->bd_info->bb_check_counter++ % 10) 680 return 0; 681 682 while (order > 1) { 683 buddy = mb_find_buddy(e4b, order, &max); 684 MB_CHECK_ASSERT(buddy); 685 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 686 MB_CHECK_ASSERT(buddy2); 687 MB_CHECK_ASSERT(buddy != buddy2); 688 MB_CHECK_ASSERT(max * 2 == max2); 689 690 count = 0; 691 for (i = 0; i < max; i++) { 692 693 if (mb_test_bit(i, buddy)) { 694 /* only single bit in buddy2 may be 1 */ 695 if (!mb_test_bit(i << 1, buddy2)) { 696 MB_CHECK_ASSERT( 697 mb_test_bit((i<<1)+1, buddy2)); 698 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 699 MB_CHECK_ASSERT( 700 mb_test_bit(i << 1, buddy2)); 701 } 702 continue; 703 } 704 705 /* both bits in buddy2 must be 1 */ 706 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 707 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 708 709 for (j = 0; j < (1 << order); j++) { 710 k = (i * (1 << order)) + j; 711 MB_CHECK_ASSERT( 712 !mb_test_bit(k, e4b->bd_bitmap)); 713 } 714 count++; 715 } 716 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 717 order--; 718 } 719 720 fstart = -1; 721 buddy = mb_find_buddy(e4b, 0, &max); 722 for (i = 0; i < max; i++) { 723 if (!mb_test_bit(i, buddy)) { 724 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 725 if (fstart == -1) { 726 fragments++; 727 fstart = i; 728 } 729 continue; 730 } 731 fstart = -1; 732 /* check used bits only */ 733 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 734 buddy2 = mb_find_buddy(e4b, j, &max2); 735 k = i >> j; 736 MB_CHECK_ASSERT(k < max2); 737 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 738 } 739 } 740 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 741 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 742 743 grp = ext4_get_group_info(sb, e4b->bd_group); 744 list_for_each(cur, &grp->bb_prealloc_list) { 745 ext4_group_t groupnr; 746 struct ext4_prealloc_space *pa; 747 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 748 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 749 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 750 for (i = 0; i < pa->pa_len; i++) 751 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 752 } 753 return 0; 754 } 755 #undef MB_CHECK_ASSERT 756 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 757 __FILE__, __func__, __LINE__) 758 #else 759 #define mb_check_buddy(e4b) 760 #endif 761 762 /* 763 * Divide blocks started from @first with length @len into 764 * smaller chunks with power of 2 blocks. 765 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 766 * then increase bb_counters[] for corresponded chunk size. 767 */ 768 static void ext4_mb_mark_free_simple(struct super_block *sb, 769 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 770 struct ext4_group_info *grp) 771 { 772 struct ext4_sb_info *sbi = EXT4_SB(sb); 773 ext4_grpblk_t min; 774 ext4_grpblk_t max; 775 ext4_grpblk_t chunk; 776 unsigned int border; 777 778 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 779 780 border = 2 << sb->s_blocksize_bits; 781 782 while (len > 0) { 783 /* find how many blocks can be covered since this position */ 784 max = ffs(first | border) - 1; 785 786 /* find how many blocks of power 2 we need to mark */ 787 min = fls(len) - 1; 788 789 if (max < min) 790 min = max; 791 chunk = 1 << min; 792 793 /* mark multiblock chunks only */ 794 grp->bb_counters[min]++; 795 if (min > 0) 796 mb_clear_bit(first >> min, 797 buddy + sbi->s_mb_offsets[min]); 798 799 len -= chunk; 800 first += chunk; 801 } 802 } 803 804 static void ext4_mb_rb_insert(struct rb_root *root, struct rb_node *new, 805 int (*cmp)(struct rb_node *, struct rb_node *)) 806 { 807 struct rb_node **iter = &root->rb_node, *parent = NULL; 808 809 while (*iter) { 810 parent = *iter; 811 if (cmp(new, *iter) > 0) 812 iter = &((*iter)->rb_left); 813 else 814 iter = &((*iter)->rb_right); 815 } 816 817 rb_link_node(new, parent, iter); 818 rb_insert_color(new, root); 819 } 820 821 static int 822 ext4_mb_avg_fragment_size_cmp(struct rb_node *rb1, struct rb_node *rb2) 823 { 824 struct ext4_group_info *grp1 = rb_entry(rb1, 825 struct ext4_group_info, 826 bb_avg_fragment_size_rb); 827 struct ext4_group_info *grp2 = rb_entry(rb2, 828 struct ext4_group_info, 829 bb_avg_fragment_size_rb); 830 int num_frags_1, num_frags_2; 831 832 num_frags_1 = grp1->bb_fragments ? 833 grp1->bb_free / grp1->bb_fragments : 0; 834 num_frags_2 = grp2->bb_fragments ? 835 grp2->bb_free / grp2->bb_fragments : 0; 836 837 return (num_frags_2 - num_frags_1); 838 } 839 840 /* 841 * Reinsert grpinfo into the avg_fragment_size tree with new average 842 * fragment size. 843 */ 844 static void 845 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) 846 { 847 struct ext4_sb_info *sbi = EXT4_SB(sb); 848 849 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0) 850 return; 851 852 write_lock(&sbi->s_mb_rb_lock); 853 if (!RB_EMPTY_NODE(&grp->bb_avg_fragment_size_rb)) { 854 rb_erase(&grp->bb_avg_fragment_size_rb, 855 &sbi->s_mb_avg_fragment_size_root); 856 RB_CLEAR_NODE(&grp->bb_avg_fragment_size_rb); 857 } 858 859 ext4_mb_rb_insert(&sbi->s_mb_avg_fragment_size_root, 860 &grp->bb_avg_fragment_size_rb, 861 ext4_mb_avg_fragment_size_cmp); 862 write_unlock(&sbi->s_mb_rb_lock); 863 } 864 865 /* 866 * Choose next group by traversing largest_free_order lists. Updates *new_cr if 867 * cr level needs an update. 868 */ 869 static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac, 870 int *new_cr, ext4_group_t *group, ext4_group_t ngroups) 871 { 872 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 873 struct ext4_group_info *iter, *grp; 874 int i; 875 876 if (ac->ac_status == AC_STATUS_FOUND) 877 return; 878 879 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR0_OPTIMIZED)) 880 atomic_inc(&sbi->s_bal_cr0_bad_suggestions); 881 882 grp = NULL; 883 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 884 if (list_empty(&sbi->s_mb_largest_free_orders[i])) 885 continue; 886 read_lock(&sbi->s_mb_largest_free_orders_locks[i]); 887 if (list_empty(&sbi->s_mb_largest_free_orders[i])) { 888 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 889 continue; 890 } 891 grp = NULL; 892 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], 893 bb_largest_free_order_node) { 894 if (sbi->s_mb_stats) 895 atomic64_inc(&sbi->s_bal_cX_groups_considered[0]); 896 if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) { 897 grp = iter; 898 break; 899 } 900 } 901 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 902 if (grp) 903 break; 904 } 905 906 if (!grp) { 907 /* Increment cr and search again */ 908 *new_cr = 1; 909 } else { 910 *group = grp->bb_group; 911 ac->ac_last_optimal_group = *group; 912 ac->ac_flags |= EXT4_MB_CR0_OPTIMIZED; 913 } 914 } 915 916 /* 917 * Choose next group by traversing average fragment size tree. Updates *new_cr 918 * if cr lvel needs an update. Sets EXT4_MB_SEARCH_NEXT_LINEAR to indicate that 919 * the linear search should continue for one iteration since there's lock 920 * contention on the rb tree lock. 921 */ 922 static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac, 923 int *new_cr, ext4_group_t *group, ext4_group_t ngroups) 924 { 925 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 926 int avg_fragment_size, best_so_far; 927 struct rb_node *node, *found; 928 struct ext4_group_info *grp; 929 930 /* 931 * If there is contention on the lock, instead of waiting for the lock 932 * to become available, just continue searching lineraly. We'll resume 933 * our rb tree search later starting at ac->ac_last_optimal_group. 934 */ 935 if (!read_trylock(&sbi->s_mb_rb_lock)) { 936 ac->ac_flags |= EXT4_MB_SEARCH_NEXT_LINEAR; 937 return; 938 } 939 940 if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) { 941 if (sbi->s_mb_stats) 942 atomic_inc(&sbi->s_bal_cr1_bad_suggestions); 943 /* We have found something at CR 1 in the past */ 944 grp = ext4_get_group_info(ac->ac_sb, ac->ac_last_optimal_group); 945 for (found = rb_next(&grp->bb_avg_fragment_size_rb); found != NULL; 946 found = rb_next(found)) { 947 grp = rb_entry(found, struct ext4_group_info, 948 bb_avg_fragment_size_rb); 949 if (sbi->s_mb_stats) 950 atomic64_inc(&sbi->s_bal_cX_groups_considered[1]); 951 if (likely(ext4_mb_good_group(ac, grp->bb_group, 1))) 952 break; 953 } 954 goto done; 955 } 956 957 node = sbi->s_mb_avg_fragment_size_root.rb_node; 958 best_so_far = 0; 959 found = NULL; 960 961 while (node) { 962 grp = rb_entry(node, struct ext4_group_info, 963 bb_avg_fragment_size_rb); 964 avg_fragment_size = 0; 965 if (ext4_mb_good_group(ac, grp->bb_group, 1)) { 966 avg_fragment_size = grp->bb_fragments ? 967 grp->bb_free / grp->bb_fragments : 0; 968 if (!best_so_far || avg_fragment_size < best_so_far) { 969 best_so_far = avg_fragment_size; 970 found = node; 971 } 972 } 973 if (avg_fragment_size > ac->ac_g_ex.fe_len) 974 node = node->rb_right; 975 else 976 node = node->rb_left; 977 } 978 979 done: 980 if (found) { 981 grp = rb_entry(found, struct ext4_group_info, 982 bb_avg_fragment_size_rb); 983 *group = grp->bb_group; 984 ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED; 985 } else { 986 *new_cr = 2; 987 } 988 989 read_unlock(&sbi->s_mb_rb_lock); 990 ac->ac_last_optimal_group = *group; 991 } 992 993 static inline int should_optimize_scan(struct ext4_allocation_context *ac) 994 { 995 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) 996 return 0; 997 if (ac->ac_criteria >= 2) 998 return 0; 999 if (ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) 1000 return 0; 1001 return 1; 1002 } 1003 1004 /* 1005 * Return next linear group for allocation. If linear traversal should not be 1006 * performed, this function just returns the same group 1007 */ 1008 static int 1009 next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups) 1010 { 1011 if (!should_optimize_scan(ac)) 1012 goto inc_and_return; 1013 1014 if (ac->ac_groups_linear_remaining) { 1015 ac->ac_groups_linear_remaining--; 1016 goto inc_and_return; 1017 } 1018 1019 if (ac->ac_flags & EXT4_MB_SEARCH_NEXT_LINEAR) { 1020 ac->ac_flags &= ~EXT4_MB_SEARCH_NEXT_LINEAR; 1021 goto inc_and_return; 1022 } 1023 1024 return group; 1025 inc_and_return: 1026 /* 1027 * Artificially restricted ngroups for non-extent 1028 * files makes group > ngroups possible on first loop. 1029 */ 1030 return group + 1 >= ngroups ? 0 : group + 1; 1031 } 1032 1033 /* 1034 * ext4_mb_choose_next_group: choose next group for allocation. 1035 * 1036 * @ac Allocation Context 1037 * @new_cr This is an output parameter. If the there is no good group 1038 * available at current CR level, this field is updated to indicate 1039 * the new cr level that should be used. 1040 * @group This is an input / output parameter. As an input it indicates the 1041 * next group that the allocator intends to use for allocation. As 1042 * output, this field indicates the next group that should be used as 1043 * determined by the optimization functions. 1044 * @ngroups Total number of groups 1045 */ 1046 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, 1047 int *new_cr, ext4_group_t *group, ext4_group_t ngroups) 1048 { 1049 *new_cr = ac->ac_criteria; 1050 1051 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) 1052 return; 1053 1054 if (*new_cr == 0) { 1055 ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups); 1056 } else if (*new_cr == 1) { 1057 ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups); 1058 } else { 1059 /* 1060 * TODO: For CR=2, we can arrange groups in an rb tree sorted by 1061 * bb_free. But until that happens, we should never come here. 1062 */ 1063 WARN_ON(1); 1064 } 1065 } 1066 1067 /* 1068 * Cache the order of the largest free extent we have available in this block 1069 * group. 1070 */ 1071 static void 1072 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 1073 { 1074 struct ext4_sb_info *sbi = EXT4_SB(sb); 1075 int i; 1076 1077 if (test_opt2(sb, MB_OPTIMIZE_SCAN) && grp->bb_largest_free_order >= 0) { 1078 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1079 grp->bb_largest_free_order]); 1080 list_del_init(&grp->bb_largest_free_order_node); 1081 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1082 grp->bb_largest_free_order]); 1083 } 1084 grp->bb_largest_free_order = -1; /* uninit */ 1085 1086 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) { 1087 if (grp->bb_counters[i] > 0) { 1088 grp->bb_largest_free_order = i; 1089 break; 1090 } 1091 } 1092 if (test_opt2(sb, MB_OPTIMIZE_SCAN) && 1093 grp->bb_largest_free_order >= 0 && grp->bb_free) { 1094 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1095 grp->bb_largest_free_order]); 1096 list_add_tail(&grp->bb_largest_free_order_node, 1097 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); 1098 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1099 grp->bb_largest_free_order]); 1100 } 1101 } 1102 1103 static noinline_for_stack 1104 void ext4_mb_generate_buddy(struct super_block *sb, 1105 void *buddy, void *bitmap, ext4_group_t group) 1106 { 1107 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 1108 struct ext4_sb_info *sbi = EXT4_SB(sb); 1109 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 1110 ext4_grpblk_t i = 0; 1111 ext4_grpblk_t first; 1112 ext4_grpblk_t len; 1113 unsigned free = 0; 1114 unsigned fragments = 0; 1115 unsigned long long period = get_cycles(); 1116 1117 /* initialize buddy from bitmap which is aggregation 1118 * of on-disk bitmap and preallocations */ 1119 i = mb_find_next_zero_bit(bitmap, max, 0); 1120 grp->bb_first_free = i; 1121 while (i < max) { 1122 fragments++; 1123 first = i; 1124 i = mb_find_next_bit(bitmap, max, i); 1125 len = i - first; 1126 free += len; 1127 if (len > 1) 1128 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 1129 else 1130 grp->bb_counters[0]++; 1131 if (i < max) 1132 i = mb_find_next_zero_bit(bitmap, max, i); 1133 } 1134 grp->bb_fragments = fragments; 1135 1136 if (free != grp->bb_free) { 1137 ext4_grp_locked_error(sb, group, 0, 0, 1138 "block bitmap and bg descriptor " 1139 "inconsistent: %u vs %u free clusters", 1140 free, grp->bb_free); 1141 /* 1142 * If we intend to continue, we consider group descriptor 1143 * corrupt and update bb_free using bitmap value 1144 */ 1145 grp->bb_free = free; 1146 ext4_mark_group_bitmap_corrupted(sb, group, 1147 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1148 } 1149 mb_set_largest_free_order(sb, grp); 1150 1151 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 1152 1153 period = get_cycles() - period; 1154 atomic_inc(&sbi->s_mb_buddies_generated); 1155 atomic64_add(period, &sbi->s_mb_generation_time); 1156 mb_update_avg_fragment_size(sb, grp); 1157 } 1158 1159 /* The buddy information is attached the buddy cache inode 1160 * for convenience. The information regarding each group 1161 * is loaded via ext4_mb_load_buddy. The information involve 1162 * block bitmap and buddy information. The information are 1163 * stored in the inode as 1164 * 1165 * { page } 1166 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 1167 * 1168 * 1169 * one block each for bitmap and buddy information. 1170 * So for each group we take up 2 blocks. A page can 1171 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 1172 * So it can have information regarding groups_per_page which 1173 * is blocks_per_page/2 1174 * 1175 * Locking note: This routine takes the block group lock of all groups 1176 * for this page; do not hold this lock when calling this routine! 1177 */ 1178 1179 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 1180 { 1181 ext4_group_t ngroups; 1182 int blocksize; 1183 int blocks_per_page; 1184 int groups_per_page; 1185 int err = 0; 1186 int i; 1187 ext4_group_t first_group, group; 1188 int first_block; 1189 struct super_block *sb; 1190 struct buffer_head *bhs; 1191 struct buffer_head **bh = NULL; 1192 struct inode *inode; 1193 char *data; 1194 char *bitmap; 1195 struct ext4_group_info *grinfo; 1196 1197 inode = page->mapping->host; 1198 sb = inode->i_sb; 1199 ngroups = ext4_get_groups_count(sb); 1200 blocksize = i_blocksize(inode); 1201 blocks_per_page = PAGE_SIZE / blocksize; 1202 1203 mb_debug(sb, "init page %lu\n", page->index); 1204 1205 groups_per_page = blocks_per_page >> 1; 1206 if (groups_per_page == 0) 1207 groups_per_page = 1; 1208 1209 /* allocate buffer_heads to read bitmaps */ 1210 if (groups_per_page > 1) { 1211 i = sizeof(struct buffer_head *) * groups_per_page; 1212 bh = kzalloc(i, gfp); 1213 if (bh == NULL) { 1214 err = -ENOMEM; 1215 goto out; 1216 } 1217 } else 1218 bh = &bhs; 1219 1220 first_group = page->index * blocks_per_page / 2; 1221 1222 /* read all groups the page covers into the cache */ 1223 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1224 if (group >= ngroups) 1225 break; 1226 1227 grinfo = ext4_get_group_info(sb, group); 1228 /* 1229 * If page is uptodate then we came here after online resize 1230 * which added some new uninitialized group info structs, so 1231 * we must skip all initialized uptodate buddies on the page, 1232 * which may be currently in use by an allocating task. 1233 */ 1234 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 1235 bh[i] = NULL; 1236 continue; 1237 } 1238 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 1239 if (IS_ERR(bh[i])) { 1240 err = PTR_ERR(bh[i]); 1241 bh[i] = NULL; 1242 goto out; 1243 } 1244 mb_debug(sb, "read bitmap for group %u\n", group); 1245 } 1246 1247 /* wait for I/O completion */ 1248 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1249 int err2; 1250 1251 if (!bh[i]) 1252 continue; 1253 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 1254 if (!err) 1255 err = err2; 1256 } 1257 1258 first_block = page->index * blocks_per_page; 1259 for (i = 0; i < blocks_per_page; i++) { 1260 group = (first_block + i) >> 1; 1261 if (group >= ngroups) 1262 break; 1263 1264 if (!bh[group - first_group]) 1265 /* skip initialized uptodate buddy */ 1266 continue; 1267 1268 if (!buffer_verified(bh[group - first_group])) 1269 /* Skip faulty bitmaps */ 1270 continue; 1271 err = 0; 1272 1273 /* 1274 * data carry information regarding this 1275 * particular group in the format specified 1276 * above 1277 * 1278 */ 1279 data = page_address(page) + (i * blocksize); 1280 bitmap = bh[group - first_group]->b_data; 1281 1282 /* 1283 * We place the buddy block and bitmap block 1284 * close together 1285 */ 1286 if ((first_block + i) & 1) { 1287 /* this is block of buddy */ 1288 BUG_ON(incore == NULL); 1289 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 1290 group, page->index, i * blocksize); 1291 trace_ext4_mb_buddy_bitmap_load(sb, group); 1292 grinfo = ext4_get_group_info(sb, group); 1293 grinfo->bb_fragments = 0; 1294 memset(grinfo->bb_counters, 0, 1295 sizeof(*grinfo->bb_counters) * 1296 (MB_NUM_ORDERS(sb))); 1297 /* 1298 * incore got set to the group block bitmap below 1299 */ 1300 ext4_lock_group(sb, group); 1301 /* init the buddy */ 1302 memset(data, 0xff, blocksize); 1303 ext4_mb_generate_buddy(sb, data, incore, group); 1304 ext4_unlock_group(sb, group); 1305 incore = NULL; 1306 } else { 1307 /* this is block of bitmap */ 1308 BUG_ON(incore != NULL); 1309 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 1310 group, page->index, i * blocksize); 1311 trace_ext4_mb_bitmap_load(sb, group); 1312 1313 /* see comments in ext4_mb_put_pa() */ 1314 ext4_lock_group(sb, group); 1315 memcpy(data, bitmap, blocksize); 1316 1317 /* mark all preallocated blks used in in-core bitmap */ 1318 ext4_mb_generate_from_pa(sb, data, group); 1319 ext4_mb_generate_from_freelist(sb, data, group); 1320 ext4_unlock_group(sb, group); 1321 1322 /* set incore so that the buddy information can be 1323 * generated using this 1324 */ 1325 incore = data; 1326 } 1327 } 1328 SetPageUptodate(page); 1329 1330 out: 1331 if (bh) { 1332 for (i = 0; i < groups_per_page; i++) 1333 brelse(bh[i]); 1334 if (bh != &bhs) 1335 kfree(bh); 1336 } 1337 return err; 1338 } 1339 1340 /* 1341 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1342 * on the same buddy page doesn't happen whild holding the buddy page lock. 1343 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1344 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1345 */ 1346 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1347 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1348 { 1349 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1350 int block, pnum, poff; 1351 int blocks_per_page; 1352 struct page *page; 1353 1354 e4b->bd_buddy_page = NULL; 1355 e4b->bd_bitmap_page = NULL; 1356 1357 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1358 /* 1359 * the buddy cache inode stores the block bitmap 1360 * and buddy information in consecutive blocks. 1361 * So for each group we need two blocks. 1362 */ 1363 block = group * 2; 1364 pnum = block / blocks_per_page; 1365 poff = block % blocks_per_page; 1366 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1367 if (!page) 1368 return -ENOMEM; 1369 BUG_ON(page->mapping != inode->i_mapping); 1370 e4b->bd_bitmap_page = page; 1371 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1372 1373 if (blocks_per_page >= 2) { 1374 /* buddy and bitmap are on the same page */ 1375 return 0; 1376 } 1377 1378 block++; 1379 pnum = block / blocks_per_page; 1380 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1381 if (!page) 1382 return -ENOMEM; 1383 BUG_ON(page->mapping != inode->i_mapping); 1384 e4b->bd_buddy_page = page; 1385 return 0; 1386 } 1387 1388 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1389 { 1390 if (e4b->bd_bitmap_page) { 1391 unlock_page(e4b->bd_bitmap_page); 1392 put_page(e4b->bd_bitmap_page); 1393 } 1394 if (e4b->bd_buddy_page) { 1395 unlock_page(e4b->bd_buddy_page); 1396 put_page(e4b->bd_buddy_page); 1397 } 1398 } 1399 1400 /* 1401 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1402 * block group lock of all groups for this page; do not hold the BG lock when 1403 * calling this routine! 1404 */ 1405 static noinline_for_stack 1406 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1407 { 1408 1409 struct ext4_group_info *this_grp; 1410 struct ext4_buddy e4b; 1411 struct page *page; 1412 int ret = 0; 1413 1414 might_sleep(); 1415 mb_debug(sb, "init group %u\n", group); 1416 this_grp = ext4_get_group_info(sb, group); 1417 /* 1418 * This ensures that we don't reinit the buddy cache 1419 * page which map to the group from which we are already 1420 * allocating. If we are looking at the buddy cache we would 1421 * have taken a reference using ext4_mb_load_buddy and that 1422 * would have pinned buddy page to page cache. 1423 * The call to ext4_mb_get_buddy_page_lock will mark the 1424 * page accessed. 1425 */ 1426 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1427 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1428 /* 1429 * somebody initialized the group 1430 * return without doing anything 1431 */ 1432 goto err; 1433 } 1434 1435 page = e4b.bd_bitmap_page; 1436 ret = ext4_mb_init_cache(page, NULL, gfp); 1437 if (ret) 1438 goto err; 1439 if (!PageUptodate(page)) { 1440 ret = -EIO; 1441 goto err; 1442 } 1443 1444 if (e4b.bd_buddy_page == NULL) { 1445 /* 1446 * If both the bitmap and buddy are in 1447 * the same page we don't need to force 1448 * init the buddy 1449 */ 1450 ret = 0; 1451 goto err; 1452 } 1453 /* init buddy cache */ 1454 page = e4b.bd_buddy_page; 1455 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1456 if (ret) 1457 goto err; 1458 if (!PageUptodate(page)) { 1459 ret = -EIO; 1460 goto err; 1461 } 1462 err: 1463 ext4_mb_put_buddy_page_lock(&e4b); 1464 return ret; 1465 } 1466 1467 /* 1468 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1469 * block group lock of all groups for this page; do not hold the BG lock when 1470 * calling this routine! 1471 */ 1472 static noinline_for_stack int 1473 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1474 struct ext4_buddy *e4b, gfp_t gfp) 1475 { 1476 int blocks_per_page; 1477 int block; 1478 int pnum; 1479 int poff; 1480 struct page *page; 1481 int ret; 1482 struct ext4_group_info *grp; 1483 struct ext4_sb_info *sbi = EXT4_SB(sb); 1484 struct inode *inode = sbi->s_buddy_cache; 1485 1486 might_sleep(); 1487 mb_debug(sb, "load group %u\n", group); 1488 1489 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1490 grp = ext4_get_group_info(sb, group); 1491 1492 e4b->bd_blkbits = sb->s_blocksize_bits; 1493 e4b->bd_info = grp; 1494 e4b->bd_sb = sb; 1495 e4b->bd_group = group; 1496 e4b->bd_buddy_page = NULL; 1497 e4b->bd_bitmap_page = NULL; 1498 1499 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1500 /* 1501 * we need full data about the group 1502 * to make a good selection 1503 */ 1504 ret = ext4_mb_init_group(sb, group, gfp); 1505 if (ret) 1506 return ret; 1507 } 1508 1509 /* 1510 * the buddy cache inode stores the block bitmap 1511 * and buddy information in consecutive blocks. 1512 * So for each group we need two blocks. 1513 */ 1514 block = group * 2; 1515 pnum = block / blocks_per_page; 1516 poff = block % blocks_per_page; 1517 1518 /* we could use find_or_create_page(), but it locks page 1519 * what we'd like to avoid in fast path ... */ 1520 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1521 if (page == NULL || !PageUptodate(page)) { 1522 if (page) 1523 /* 1524 * drop the page reference and try 1525 * to get the page with lock. If we 1526 * are not uptodate that implies 1527 * somebody just created the page but 1528 * is yet to initialize the same. So 1529 * wait for it to initialize. 1530 */ 1531 put_page(page); 1532 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1533 if (page) { 1534 BUG_ON(page->mapping != inode->i_mapping); 1535 if (!PageUptodate(page)) { 1536 ret = ext4_mb_init_cache(page, NULL, gfp); 1537 if (ret) { 1538 unlock_page(page); 1539 goto err; 1540 } 1541 mb_cmp_bitmaps(e4b, page_address(page) + 1542 (poff * sb->s_blocksize)); 1543 } 1544 unlock_page(page); 1545 } 1546 } 1547 if (page == NULL) { 1548 ret = -ENOMEM; 1549 goto err; 1550 } 1551 if (!PageUptodate(page)) { 1552 ret = -EIO; 1553 goto err; 1554 } 1555 1556 /* Pages marked accessed already */ 1557 e4b->bd_bitmap_page = page; 1558 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1559 1560 block++; 1561 pnum = block / blocks_per_page; 1562 poff = block % blocks_per_page; 1563 1564 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1565 if (page == NULL || !PageUptodate(page)) { 1566 if (page) 1567 put_page(page); 1568 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1569 if (page) { 1570 BUG_ON(page->mapping != inode->i_mapping); 1571 if (!PageUptodate(page)) { 1572 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1573 gfp); 1574 if (ret) { 1575 unlock_page(page); 1576 goto err; 1577 } 1578 } 1579 unlock_page(page); 1580 } 1581 } 1582 if (page == NULL) { 1583 ret = -ENOMEM; 1584 goto err; 1585 } 1586 if (!PageUptodate(page)) { 1587 ret = -EIO; 1588 goto err; 1589 } 1590 1591 /* Pages marked accessed already */ 1592 e4b->bd_buddy_page = page; 1593 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1594 1595 return 0; 1596 1597 err: 1598 if (page) 1599 put_page(page); 1600 if (e4b->bd_bitmap_page) 1601 put_page(e4b->bd_bitmap_page); 1602 if (e4b->bd_buddy_page) 1603 put_page(e4b->bd_buddy_page); 1604 e4b->bd_buddy = NULL; 1605 e4b->bd_bitmap = NULL; 1606 return ret; 1607 } 1608 1609 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1610 struct ext4_buddy *e4b) 1611 { 1612 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1613 } 1614 1615 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1616 { 1617 if (e4b->bd_bitmap_page) 1618 put_page(e4b->bd_bitmap_page); 1619 if (e4b->bd_buddy_page) 1620 put_page(e4b->bd_buddy_page); 1621 } 1622 1623 1624 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1625 { 1626 int order = 1, max; 1627 void *bb; 1628 1629 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1630 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1631 1632 while (order <= e4b->bd_blkbits + 1) { 1633 bb = mb_find_buddy(e4b, order, &max); 1634 if (!mb_test_bit(block >> order, bb)) { 1635 /* this block is part of buddy of order 'order' */ 1636 return order; 1637 } 1638 order++; 1639 } 1640 return 0; 1641 } 1642 1643 static void mb_clear_bits(void *bm, int cur, int len) 1644 { 1645 __u32 *addr; 1646 1647 len = cur + len; 1648 while (cur < len) { 1649 if ((cur & 31) == 0 && (len - cur) >= 32) { 1650 /* fast path: clear whole word at once */ 1651 addr = bm + (cur >> 3); 1652 *addr = 0; 1653 cur += 32; 1654 continue; 1655 } 1656 mb_clear_bit(cur, bm); 1657 cur++; 1658 } 1659 } 1660 1661 /* clear bits in given range 1662 * will return first found zero bit if any, -1 otherwise 1663 */ 1664 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1665 { 1666 __u32 *addr; 1667 int zero_bit = -1; 1668 1669 len = cur + len; 1670 while (cur < len) { 1671 if ((cur & 31) == 0 && (len - cur) >= 32) { 1672 /* fast path: clear whole word at once */ 1673 addr = bm + (cur >> 3); 1674 if (*addr != (__u32)(-1) && zero_bit == -1) 1675 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1676 *addr = 0; 1677 cur += 32; 1678 continue; 1679 } 1680 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1681 zero_bit = cur; 1682 cur++; 1683 } 1684 1685 return zero_bit; 1686 } 1687 1688 void ext4_set_bits(void *bm, int cur, int len) 1689 { 1690 __u32 *addr; 1691 1692 len = cur + len; 1693 while (cur < len) { 1694 if ((cur & 31) == 0 && (len - cur) >= 32) { 1695 /* fast path: set whole word at once */ 1696 addr = bm + (cur >> 3); 1697 *addr = 0xffffffff; 1698 cur += 32; 1699 continue; 1700 } 1701 mb_set_bit(cur, bm); 1702 cur++; 1703 } 1704 } 1705 1706 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1707 { 1708 if (mb_test_bit(*bit + side, bitmap)) { 1709 mb_clear_bit(*bit, bitmap); 1710 (*bit) -= side; 1711 return 1; 1712 } 1713 else { 1714 (*bit) += side; 1715 mb_set_bit(*bit, bitmap); 1716 return -1; 1717 } 1718 } 1719 1720 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1721 { 1722 int max; 1723 int order = 1; 1724 void *buddy = mb_find_buddy(e4b, order, &max); 1725 1726 while (buddy) { 1727 void *buddy2; 1728 1729 /* Bits in range [first; last] are known to be set since 1730 * corresponding blocks were allocated. Bits in range 1731 * (first; last) will stay set because they form buddies on 1732 * upper layer. We just deal with borders if they don't 1733 * align with upper layer and then go up. 1734 * Releasing entire group is all about clearing 1735 * single bit of highest order buddy. 1736 */ 1737 1738 /* Example: 1739 * --------------------------------- 1740 * | 1 | 1 | 1 | 1 | 1741 * --------------------------------- 1742 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1743 * --------------------------------- 1744 * 0 1 2 3 4 5 6 7 1745 * \_____________________/ 1746 * 1747 * Neither [1] nor [6] is aligned to above layer. 1748 * Left neighbour [0] is free, so mark it busy, 1749 * decrease bb_counters and extend range to 1750 * [0; 6] 1751 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1752 * mark [6] free, increase bb_counters and shrink range to 1753 * [0; 5]. 1754 * Then shift range to [0; 2], go up and do the same. 1755 */ 1756 1757 1758 if (first & 1) 1759 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1760 if (!(last & 1)) 1761 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1762 if (first > last) 1763 break; 1764 order++; 1765 1766 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1767 mb_clear_bits(buddy, first, last - first + 1); 1768 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1769 break; 1770 } 1771 first >>= 1; 1772 last >>= 1; 1773 buddy = buddy2; 1774 } 1775 } 1776 1777 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1778 int first, int count) 1779 { 1780 int left_is_free = 0; 1781 int right_is_free = 0; 1782 int block; 1783 int last = first + count - 1; 1784 struct super_block *sb = e4b->bd_sb; 1785 1786 if (WARN_ON(count == 0)) 1787 return; 1788 BUG_ON(last >= (sb->s_blocksize << 3)); 1789 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1790 /* Don't bother if the block group is corrupt. */ 1791 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1792 return; 1793 1794 mb_check_buddy(e4b); 1795 mb_free_blocks_double(inode, e4b, first, count); 1796 1797 this_cpu_inc(discard_pa_seq); 1798 e4b->bd_info->bb_free += count; 1799 if (first < e4b->bd_info->bb_first_free) 1800 e4b->bd_info->bb_first_free = first; 1801 1802 /* access memory sequentially: check left neighbour, 1803 * clear range and then check right neighbour 1804 */ 1805 if (first != 0) 1806 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1807 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1808 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1809 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1810 1811 if (unlikely(block != -1)) { 1812 struct ext4_sb_info *sbi = EXT4_SB(sb); 1813 ext4_fsblk_t blocknr; 1814 1815 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1816 blocknr += EXT4_C2B(sbi, block); 1817 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1818 ext4_grp_locked_error(sb, e4b->bd_group, 1819 inode ? inode->i_ino : 0, 1820 blocknr, 1821 "freeing already freed block (bit %u); block bitmap corrupt.", 1822 block); 1823 ext4_mark_group_bitmap_corrupted( 1824 sb, e4b->bd_group, 1825 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1826 } 1827 goto done; 1828 } 1829 1830 /* let's maintain fragments counter */ 1831 if (left_is_free && right_is_free) 1832 e4b->bd_info->bb_fragments--; 1833 else if (!left_is_free && !right_is_free) 1834 e4b->bd_info->bb_fragments++; 1835 1836 /* buddy[0] == bd_bitmap is a special case, so handle 1837 * it right away and let mb_buddy_mark_free stay free of 1838 * zero order checks. 1839 * Check if neighbours are to be coaleasced, 1840 * adjust bitmap bb_counters and borders appropriately. 1841 */ 1842 if (first & 1) { 1843 first += !left_is_free; 1844 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1845 } 1846 if (!(last & 1)) { 1847 last -= !right_is_free; 1848 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1849 } 1850 1851 if (first <= last) 1852 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1853 1854 done: 1855 mb_set_largest_free_order(sb, e4b->bd_info); 1856 mb_update_avg_fragment_size(sb, e4b->bd_info); 1857 mb_check_buddy(e4b); 1858 } 1859 1860 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1861 int needed, struct ext4_free_extent *ex) 1862 { 1863 int next = block; 1864 int max, order; 1865 void *buddy; 1866 1867 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1868 BUG_ON(ex == NULL); 1869 1870 buddy = mb_find_buddy(e4b, 0, &max); 1871 BUG_ON(buddy == NULL); 1872 BUG_ON(block >= max); 1873 if (mb_test_bit(block, buddy)) { 1874 ex->fe_len = 0; 1875 ex->fe_start = 0; 1876 ex->fe_group = 0; 1877 return 0; 1878 } 1879 1880 /* find actual order */ 1881 order = mb_find_order_for_block(e4b, block); 1882 block = block >> order; 1883 1884 ex->fe_len = 1 << order; 1885 ex->fe_start = block << order; 1886 ex->fe_group = e4b->bd_group; 1887 1888 /* calc difference from given start */ 1889 next = next - ex->fe_start; 1890 ex->fe_len -= next; 1891 ex->fe_start += next; 1892 1893 while (needed > ex->fe_len && 1894 mb_find_buddy(e4b, order, &max)) { 1895 1896 if (block + 1 >= max) 1897 break; 1898 1899 next = (block + 1) * (1 << order); 1900 if (mb_test_bit(next, e4b->bd_bitmap)) 1901 break; 1902 1903 order = mb_find_order_for_block(e4b, next); 1904 1905 block = next >> order; 1906 ex->fe_len += 1 << order; 1907 } 1908 1909 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 1910 /* Should never happen! (but apparently sometimes does?!?) */ 1911 WARN_ON(1); 1912 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent " 1913 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 1914 block, order, needed, ex->fe_group, ex->fe_start, 1915 ex->fe_len, ex->fe_logical); 1916 ex->fe_len = 0; 1917 ex->fe_start = 0; 1918 ex->fe_group = 0; 1919 } 1920 return ex->fe_len; 1921 } 1922 1923 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1924 { 1925 int ord; 1926 int mlen = 0; 1927 int max = 0; 1928 int cur; 1929 int start = ex->fe_start; 1930 int len = ex->fe_len; 1931 unsigned ret = 0; 1932 int len0 = len; 1933 void *buddy; 1934 1935 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1936 BUG_ON(e4b->bd_group != ex->fe_group); 1937 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1938 mb_check_buddy(e4b); 1939 mb_mark_used_double(e4b, start, len); 1940 1941 this_cpu_inc(discard_pa_seq); 1942 e4b->bd_info->bb_free -= len; 1943 if (e4b->bd_info->bb_first_free == start) 1944 e4b->bd_info->bb_first_free += len; 1945 1946 /* let's maintain fragments counter */ 1947 if (start != 0) 1948 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1949 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1950 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1951 if (mlen && max) 1952 e4b->bd_info->bb_fragments++; 1953 else if (!mlen && !max) 1954 e4b->bd_info->bb_fragments--; 1955 1956 /* let's maintain buddy itself */ 1957 while (len) { 1958 ord = mb_find_order_for_block(e4b, start); 1959 1960 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1961 /* the whole chunk may be allocated at once! */ 1962 mlen = 1 << ord; 1963 buddy = mb_find_buddy(e4b, ord, &max); 1964 BUG_ON((start >> ord) >= max); 1965 mb_set_bit(start >> ord, buddy); 1966 e4b->bd_info->bb_counters[ord]--; 1967 start += mlen; 1968 len -= mlen; 1969 BUG_ON(len < 0); 1970 continue; 1971 } 1972 1973 /* store for history */ 1974 if (ret == 0) 1975 ret = len | (ord << 16); 1976 1977 /* we have to split large buddy */ 1978 BUG_ON(ord <= 0); 1979 buddy = mb_find_buddy(e4b, ord, &max); 1980 mb_set_bit(start >> ord, buddy); 1981 e4b->bd_info->bb_counters[ord]--; 1982 1983 ord--; 1984 cur = (start >> ord) & ~1U; 1985 buddy = mb_find_buddy(e4b, ord, &max); 1986 mb_clear_bit(cur, buddy); 1987 mb_clear_bit(cur + 1, buddy); 1988 e4b->bd_info->bb_counters[ord]++; 1989 e4b->bd_info->bb_counters[ord]++; 1990 } 1991 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1992 1993 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); 1994 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1995 mb_check_buddy(e4b); 1996 1997 return ret; 1998 } 1999 2000 /* 2001 * Must be called under group lock! 2002 */ 2003 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 2004 struct ext4_buddy *e4b) 2005 { 2006 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2007 int ret; 2008 2009 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 2010 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2011 2012 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 2013 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 2014 ret = mb_mark_used(e4b, &ac->ac_b_ex); 2015 2016 /* preallocation can change ac_b_ex, thus we store actually 2017 * allocated blocks for history */ 2018 ac->ac_f_ex = ac->ac_b_ex; 2019 2020 ac->ac_status = AC_STATUS_FOUND; 2021 ac->ac_tail = ret & 0xffff; 2022 ac->ac_buddy = ret >> 16; 2023 2024 /* 2025 * take the page reference. We want the page to be pinned 2026 * so that we don't get a ext4_mb_init_cache_call for this 2027 * group until we update the bitmap. That would mean we 2028 * double allocate blocks. The reference is dropped 2029 * in ext4_mb_release_context 2030 */ 2031 ac->ac_bitmap_page = e4b->bd_bitmap_page; 2032 get_page(ac->ac_bitmap_page); 2033 ac->ac_buddy_page = e4b->bd_buddy_page; 2034 get_page(ac->ac_buddy_page); 2035 /* store last allocated for subsequent stream allocation */ 2036 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2037 spin_lock(&sbi->s_md_lock); 2038 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 2039 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 2040 spin_unlock(&sbi->s_md_lock); 2041 } 2042 /* 2043 * As we've just preallocated more space than 2044 * user requested originally, we store allocated 2045 * space in a special descriptor. 2046 */ 2047 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 2048 ext4_mb_new_preallocation(ac); 2049 2050 } 2051 2052 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 2053 struct ext4_buddy *e4b, 2054 int finish_group) 2055 { 2056 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2057 struct ext4_free_extent *bex = &ac->ac_b_ex; 2058 struct ext4_free_extent *gex = &ac->ac_g_ex; 2059 struct ext4_free_extent ex; 2060 int max; 2061 2062 if (ac->ac_status == AC_STATUS_FOUND) 2063 return; 2064 /* 2065 * We don't want to scan for a whole year 2066 */ 2067 if (ac->ac_found > sbi->s_mb_max_to_scan && 2068 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2069 ac->ac_status = AC_STATUS_BREAK; 2070 return; 2071 } 2072 2073 /* 2074 * Haven't found good chunk so far, let's continue 2075 */ 2076 if (bex->fe_len < gex->fe_len) 2077 return; 2078 2079 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 2080 && bex->fe_group == e4b->bd_group) { 2081 /* recheck chunk's availability - we don't know 2082 * when it was found (within this lock-unlock 2083 * period or not) */ 2084 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 2085 if (max >= gex->fe_len) { 2086 ext4_mb_use_best_found(ac, e4b); 2087 return; 2088 } 2089 } 2090 } 2091 2092 /* 2093 * The routine checks whether found extent is good enough. If it is, 2094 * then the extent gets marked used and flag is set to the context 2095 * to stop scanning. Otherwise, the extent is compared with the 2096 * previous found extent and if new one is better, then it's stored 2097 * in the context. Later, the best found extent will be used, if 2098 * mballoc can't find good enough extent. 2099 * 2100 * FIXME: real allocation policy is to be designed yet! 2101 */ 2102 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 2103 struct ext4_free_extent *ex, 2104 struct ext4_buddy *e4b) 2105 { 2106 struct ext4_free_extent *bex = &ac->ac_b_ex; 2107 struct ext4_free_extent *gex = &ac->ac_g_ex; 2108 2109 BUG_ON(ex->fe_len <= 0); 2110 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2111 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2112 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 2113 2114 ac->ac_found++; 2115 2116 /* 2117 * The special case - take what you catch first 2118 */ 2119 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2120 *bex = *ex; 2121 ext4_mb_use_best_found(ac, e4b); 2122 return; 2123 } 2124 2125 /* 2126 * Let's check whether the chuck is good enough 2127 */ 2128 if (ex->fe_len == gex->fe_len) { 2129 *bex = *ex; 2130 ext4_mb_use_best_found(ac, e4b); 2131 return; 2132 } 2133 2134 /* 2135 * If this is first found extent, just store it in the context 2136 */ 2137 if (bex->fe_len == 0) { 2138 *bex = *ex; 2139 return; 2140 } 2141 2142 /* 2143 * If new found extent is better, store it in the context 2144 */ 2145 if (bex->fe_len < gex->fe_len) { 2146 /* if the request isn't satisfied, any found extent 2147 * larger than previous best one is better */ 2148 if (ex->fe_len > bex->fe_len) 2149 *bex = *ex; 2150 } else if (ex->fe_len > gex->fe_len) { 2151 /* if the request is satisfied, then we try to find 2152 * an extent that still satisfy the request, but is 2153 * smaller than previous one */ 2154 if (ex->fe_len < bex->fe_len) 2155 *bex = *ex; 2156 } 2157 2158 ext4_mb_check_limits(ac, e4b, 0); 2159 } 2160 2161 static noinline_for_stack 2162 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 2163 struct ext4_buddy *e4b) 2164 { 2165 struct ext4_free_extent ex = ac->ac_b_ex; 2166 ext4_group_t group = ex.fe_group; 2167 int max; 2168 int err; 2169 2170 BUG_ON(ex.fe_len <= 0); 2171 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2172 if (err) 2173 return err; 2174 2175 ext4_lock_group(ac->ac_sb, group); 2176 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 2177 2178 if (max > 0) { 2179 ac->ac_b_ex = ex; 2180 ext4_mb_use_best_found(ac, e4b); 2181 } 2182 2183 ext4_unlock_group(ac->ac_sb, group); 2184 ext4_mb_unload_buddy(e4b); 2185 2186 return 0; 2187 } 2188 2189 static noinline_for_stack 2190 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 2191 struct ext4_buddy *e4b) 2192 { 2193 ext4_group_t group = ac->ac_g_ex.fe_group; 2194 int max; 2195 int err; 2196 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2197 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2198 struct ext4_free_extent ex; 2199 2200 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 2201 return 0; 2202 if (grp->bb_free == 0) 2203 return 0; 2204 2205 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2206 if (err) 2207 return err; 2208 2209 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 2210 ext4_mb_unload_buddy(e4b); 2211 return 0; 2212 } 2213 2214 ext4_lock_group(ac->ac_sb, group); 2215 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 2216 ac->ac_g_ex.fe_len, &ex); 2217 ex.fe_logical = 0xDEADFA11; /* debug value */ 2218 2219 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 2220 ext4_fsblk_t start; 2221 2222 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 2223 ex.fe_start; 2224 /* use do_div to get remainder (would be 64-bit modulo) */ 2225 if (do_div(start, sbi->s_stripe) == 0) { 2226 ac->ac_found++; 2227 ac->ac_b_ex = ex; 2228 ext4_mb_use_best_found(ac, e4b); 2229 } 2230 } else if (max >= ac->ac_g_ex.fe_len) { 2231 BUG_ON(ex.fe_len <= 0); 2232 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2233 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2234 ac->ac_found++; 2235 ac->ac_b_ex = ex; 2236 ext4_mb_use_best_found(ac, e4b); 2237 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 2238 /* Sometimes, caller may want to merge even small 2239 * number of blocks to an existing extent */ 2240 BUG_ON(ex.fe_len <= 0); 2241 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2242 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2243 ac->ac_found++; 2244 ac->ac_b_ex = ex; 2245 ext4_mb_use_best_found(ac, e4b); 2246 } 2247 ext4_unlock_group(ac->ac_sb, group); 2248 ext4_mb_unload_buddy(e4b); 2249 2250 return 0; 2251 } 2252 2253 /* 2254 * The routine scans buddy structures (not bitmap!) from given order 2255 * to max order and tries to find big enough chunk to satisfy the req 2256 */ 2257 static noinline_for_stack 2258 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 2259 struct ext4_buddy *e4b) 2260 { 2261 struct super_block *sb = ac->ac_sb; 2262 struct ext4_group_info *grp = e4b->bd_info; 2263 void *buddy; 2264 int i; 2265 int k; 2266 int max; 2267 2268 BUG_ON(ac->ac_2order <= 0); 2269 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { 2270 if (grp->bb_counters[i] == 0) 2271 continue; 2272 2273 buddy = mb_find_buddy(e4b, i, &max); 2274 BUG_ON(buddy == NULL); 2275 2276 k = mb_find_next_zero_bit(buddy, max, 0); 2277 if (k >= max) { 2278 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 2279 "%d free clusters of order %d. But found 0", 2280 grp->bb_counters[i], i); 2281 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 2282 e4b->bd_group, 2283 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2284 break; 2285 } 2286 ac->ac_found++; 2287 2288 ac->ac_b_ex.fe_len = 1 << i; 2289 ac->ac_b_ex.fe_start = k << i; 2290 ac->ac_b_ex.fe_group = e4b->bd_group; 2291 2292 ext4_mb_use_best_found(ac, e4b); 2293 2294 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2295 2296 if (EXT4_SB(sb)->s_mb_stats) 2297 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2298 2299 break; 2300 } 2301 } 2302 2303 /* 2304 * The routine scans the group and measures all found extents. 2305 * In order to optimize scanning, caller must pass number of 2306 * free blocks in the group, so the routine can know upper limit. 2307 */ 2308 static noinline_for_stack 2309 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2310 struct ext4_buddy *e4b) 2311 { 2312 struct super_block *sb = ac->ac_sb; 2313 void *bitmap = e4b->bd_bitmap; 2314 struct ext4_free_extent ex; 2315 int i; 2316 int free; 2317 2318 free = e4b->bd_info->bb_free; 2319 if (WARN_ON(free <= 0)) 2320 return; 2321 2322 i = e4b->bd_info->bb_first_free; 2323 2324 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2325 i = mb_find_next_zero_bit(bitmap, 2326 EXT4_CLUSTERS_PER_GROUP(sb), i); 2327 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2328 /* 2329 * IF we have corrupt bitmap, we won't find any 2330 * free blocks even though group info says we 2331 * have free blocks 2332 */ 2333 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2334 "%d free clusters as per " 2335 "group info. But bitmap says 0", 2336 free); 2337 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2338 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2339 break; 2340 } 2341 2342 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2343 if (WARN_ON(ex.fe_len <= 0)) 2344 break; 2345 if (free < ex.fe_len) { 2346 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2347 "%d free clusters as per " 2348 "group info. But got %d blocks", 2349 free, ex.fe_len); 2350 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2351 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2352 /* 2353 * The number of free blocks differs. This mostly 2354 * indicate that the bitmap is corrupt. So exit 2355 * without claiming the space. 2356 */ 2357 break; 2358 } 2359 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2360 ext4_mb_measure_extent(ac, &ex, e4b); 2361 2362 i += ex.fe_len; 2363 free -= ex.fe_len; 2364 } 2365 2366 ext4_mb_check_limits(ac, e4b, 1); 2367 } 2368 2369 /* 2370 * This is a special case for storages like raid5 2371 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2372 */ 2373 static noinline_for_stack 2374 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2375 struct ext4_buddy *e4b) 2376 { 2377 struct super_block *sb = ac->ac_sb; 2378 struct ext4_sb_info *sbi = EXT4_SB(sb); 2379 void *bitmap = e4b->bd_bitmap; 2380 struct ext4_free_extent ex; 2381 ext4_fsblk_t first_group_block; 2382 ext4_fsblk_t a; 2383 ext4_grpblk_t i; 2384 int max; 2385 2386 BUG_ON(sbi->s_stripe == 0); 2387 2388 /* find first stripe-aligned block in group */ 2389 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2390 2391 a = first_group_block + sbi->s_stripe - 1; 2392 do_div(a, sbi->s_stripe); 2393 i = (a * sbi->s_stripe) - first_group_block; 2394 2395 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2396 if (!mb_test_bit(i, bitmap)) { 2397 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 2398 if (max >= sbi->s_stripe) { 2399 ac->ac_found++; 2400 ex.fe_logical = 0xDEADF00D; /* debug value */ 2401 ac->ac_b_ex = ex; 2402 ext4_mb_use_best_found(ac, e4b); 2403 break; 2404 } 2405 } 2406 i += sbi->s_stripe; 2407 } 2408 } 2409 2410 /* 2411 * This is also called BEFORE we load the buddy bitmap. 2412 * Returns either 1 or 0 indicating that the group is either suitable 2413 * for the allocation or not. 2414 */ 2415 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2416 ext4_group_t group, int cr) 2417 { 2418 ext4_grpblk_t free, fragments; 2419 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2420 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2421 2422 BUG_ON(cr < 0 || cr >= 4); 2423 2424 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2425 return false; 2426 2427 free = grp->bb_free; 2428 if (free == 0) 2429 return false; 2430 2431 fragments = grp->bb_fragments; 2432 if (fragments == 0) 2433 return false; 2434 2435 switch (cr) { 2436 case 0: 2437 BUG_ON(ac->ac_2order == 0); 2438 2439 /* Avoid using the first bg of a flexgroup for data files */ 2440 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2441 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2442 ((group % flex_size) == 0)) 2443 return false; 2444 2445 if (free < ac->ac_g_ex.fe_len) 2446 return false; 2447 2448 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) 2449 return true; 2450 2451 if (grp->bb_largest_free_order < ac->ac_2order) 2452 return false; 2453 2454 return true; 2455 case 1: 2456 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2457 return true; 2458 break; 2459 case 2: 2460 if (free >= ac->ac_g_ex.fe_len) 2461 return true; 2462 break; 2463 case 3: 2464 return true; 2465 default: 2466 BUG(); 2467 } 2468 2469 return false; 2470 } 2471 2472 /* 2473 * This could return negative error code if something goes wrong 2474 * during ext4_mb_init_group(). This should not be called with 2475 * ext4_lock_group() held. 2476 */ 2477 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2478 ext4_group_t group, int cr) 2479 { 2480 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2481 struct super_block *sb = ac->ac_sb; 2482 struct ext4_sb_info *sbi = EXT4_SB(sb); 2483 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2484 ext4_grpblk_t free; 2485 int ret = 0; 2486 2487 if (sbi->s_mb_stats) 2488 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2489 if (should_lock) 2490 ext4_lock_group(sb, group); 2491 free = grp->bb_free; 2492 if (free == 0) 2493 goto out; 2494 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2495 goto out; 2496 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2497 goto out; 2498 if (should_lock) 2499 ext4_unlock_group(sb, group); 2500 2501 /* We only do this if the grp has never been initialized */ 2502 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2503 struct ext4_group_desc *gdp = 2504 ext4_get_group_desc(sb, group, NULL); 2505 int ret; 2506 2507 /* cr=0/1 is a very optimistic search to find large 2508 * good chunks almost for free. If buddy data is not 2509 * ready, then this optimization makes no sense. But 2510 * we never skip the first block group in a flex_bg, 2511 * since this gets used for metadata block allocation, 2512 * and we want to make sure we locate metadata blocks 2513 * in the first block group in the flex_bg if possible. 2514 */ 2515 if (cr < 2 && 2516 (!sbi->s_log_groups_per_flex || 2517 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2518 !(ext4_has_group_desc_csum(sb) && 2519 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2520 return 0; 2521 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2522 if (ret) 2523 return ret; 2524 } 2525 2526 if (should_lock) 2527 ext4_lock_group(sb, group); 2528 ret = ext4_mb_good_group(ac, group, cr); 2529 out: 2530 if (should_lock) 2531 ext4_unlock_group(sb, group); 2532 return ret; 2533 } 2534 2535 /* 2536 * Start prefetching @nr block bitmaps starting at @group. 2537 * Return the next group which needs to be prefetched. 2538 */ 2539 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2540 unsigned int nr, int *cnt) 2541 { 2542 ext4_group_t ngroups = ext4_get_groups_count(sb); 2543 struct buffer_head *bh; 2544 struct blk_plug plug; 2545 2546 blk_start_plug(&plug); 2547 while (nr-- > 0) { 2548 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2549 NULL); 2550 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2551 2552 /* 2553 * Prefetch block groups with free blocks; but don't 2554 * bother if it is marked uninitialized on disk, since 2555 * it won't require I/O to read. Also only try to 2556 * prefetch once, so we avoid getblk() call, which can 2557 * be expensive. 2558 */ 2559 if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2560 EXT4_MB_GRP_NEED_INIT(grp) && 2561 ext4_free_group_clusters(sb, gdp) > 0 && 2562 !(ext4_has_group_desc_csum(sb) && 2563 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) { 2564 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2565 if (bh && !IS_ERR(bh)) { 2566 if (!buffer_uptodate(bh) && cnt) 2567 (*cnt)++; 2568 brelse(bh); 2569 } 2570 } 2571 if (++group >= ngroups) 2572 group = 0; 2573 } 2574 blk_finish_plug(&plug); 2575 return group; 2576 } 2577 2578 /* 2579 * Prefetching reads the block bitmap into the buffer cache; but we 2580 * need to make sure that the buddy bitmap in the page cache has been 2581 * initialized. Note that ext4_mb_init_group() will block if the I/O 2582 * is not yet completed, or indeed if it was not initiated by 2583 * ext4_mb_prefetch did not start the I/O. 2584 * 2585 * TODO: We should actually kick off the buddy bitmap setup in a work 2586 * queue when the buffer I/O is completed, so that we don't block 2587 * waiting for the block allocation bitmap read to finish when 2588 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2589 */ 2590 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2591 unsigned int nr) 2592 { 2593 while (nr-- > 0) { 2594 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2595 NULL); 2596 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2597 2598 if (!group) 2599 group = ext4_get_groups_count(sb); 2600 group--; 2601 grp = ext4_get_group_info(sb, group); 2602 2603 if (EXT4_MB_GRP_NEED_INIT(grp) && 2604 ext4_free_group_clusters(sb, gdp) > 0 && 2605 !(ext4_has_group_desc_csum(sb) && 2606 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) { 2607 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2608 break; 2609 } 2610 } 2611 } 2612 2613 static noinline_for_stack int 2614 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2615 { 2616 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2617 int cr = -1; 2618 int err = 0, first_err = 0; 2619 unsigned int nr = 0, prefetch_ios = 0; 2620 struct ext4_sb_info *sbi; 2621 struct super_block *sb; 2622 struct ext4_buddy e4b; 2623 int lost; 2624 2625 sb = ac->ac_sb; 2626 sbi = EXT4_SB(sb); 2627 ngroups = ext4_get_groups_count(sb); 2628 /* non-extent files are limited to low blocks/groups */ 2629 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2630 ngroups = sbi->s_blockfile_groups; 2631 2632 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2633 2634 /* first, try the goal */ 2635 err = ext4_mb_find_by_goal(ac, &e4b); 2636 if (err || ac->ac_status == AC_STATUS_FOUND) 2637 goto out; 2638 2639 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2640 goto out; 2641 2642 /* 2643 * ac->ac_2order is set only if the fe_len is a power of 2 2644 * if ac->ac_2order is set we also set criteria to 0 so that we 2645 * try exact allocation using buddy. 2646 */ 2647 i = fls(ac->ac_g_ex.fe_len); 2648 ac->ac_2order = 0; 2649 /* 2650 * We search using buddy data only if the order of the request 2651 * is greater than equal to the sbi_s_mb_order2_reqs 2652 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2653 * We also support searching for power-of-two requests only for 2654 * requests upto maximum buddy size we have constructed. 2655 */ 2656 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { 2657 /* 2658 * This should tell if fe_len is exactly power of 2 2659 */ 2660 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2661 ac->ac_2order = array_index_nospec(i - 1, 2662 MB_NUM_ORDERS(sb)); 2663 } 2664 2665 /* if stream allocation is enabled, use global goal */ 2666 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2667 /* TBD: may be hot point */ 2668 spin_lock(&sbi->s_md_lock); 2669 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2670 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2671 spin_unlock(&sbi->s_md_lock); 2672 } 2673 2674 /* Let's just scan groups to find more-less suitable blocks */ 2675 cr = ac->ac_2order ? 0 : 1; 2676 /* 2677 * cr == 0 try to get exact allocation, 2678 * cr == 3 try to get anything 2679 */ 2680 repeat: 2681 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2682 ac->ac_criteria = cr; 2683 /* 2684 * searching for the right group start 2685 * from the goal value specified 2686 */ 2687 group = ac->ac_g_ex.fe_group; 2688 ac->ac_last_optimal_group = group; 2689 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; 2690 prefetch_grp = group; 2691 2692 for (i = 0; i < ngroups; group = next_linear_group(ac, group, ngroups), 2693 i++) { 2694 int ret = 0, new_cr; 2695 2696 cond_resched(); 2697 2698 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups); 2699 if (new_cr != cr) { 2700 cr = new_cr; 2701 goto repeat; 2702 } 2703 2704 /* 2705 * Batch reads of the block allocation bitmaps 2706 * to get multiple READs in flight; limit 2707 * prefetching at cr=0/1, otherwise mballoc can 2708 * spend a lot of time loading imperfect groups 2709 */ 2710 if ((prefetch_grp == group) && 2711 (cr > 1 || 2712 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2713 unsigned int curr_ios = prefetch_ios; 2714 2715 nr = sbi->s_mb_prefetch; 2716 if (ext4_has_feature_flex_bg(sb)) { 2717 nr = 1 << sbi->s_log_groups_per_flex; 2718 nr -= group & (nr - 1); 2719 nr = min(nr, sbi->s_mb_prefetch); 2720 } 2721 prefetch_grp = ext4_mb_prefetch(sb, group, 2722 nr, &prefetch_ios); 2723 if (prefetch_ios == curr_ios) 2724 nr = 0; 2725 } 2726 2727 /* This now checks without needing the buddy page */ 2728 ret = ext4_mb_good_group_nolock(ac, group, cr); 2729 if (ret <= 0) { 2730 if (!first_err) 2731 first_err = ret; 2732 continue; 2733 } 2734 2735 err = ext4_mb_load_buddy(sb, group, &e4b); 2736 if (err) 2737 goto out; 2738 2739 ext4_lock_group(sb, group); 2740 2741 /* 2742 * We need to check again after locking the 2743 * block group 2744 */ 2745 ret = ext4_mb_good_group(ac, group, cr); 2746 if (ret == 0) { 2747 ext4_unlock_group(sb, group); 2748 ext4_mb_unload_buddy(&e4b); 2749 continue; 2750 } 2751 2752 ac->ac_groups_scanned++; 2753 if (cr == 0) 2754 ext4_mb_simple_scan_group(ac, &e4b); 2755 else if (cr == 1 && sbi->s_stripe && 2756 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2757 ext4_mb_scan_aligned(ac, &e4b); 2758 else 2759 ext4_mb_complex_scan_group(ac, &e4b); 2760 2761 ext4_unlock_group(sb, group); 2762 ext4_mb_unload_buddy(&e4b); 2763 2764 if (ac->ac_status != AC_STATUS_CONTINUE) 2765 break; 2766 } 2767 /* Processed all groups and haven't found blocks */ 2768 if (sbi->s_mb_stats && i == ngroups) 2769 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 2770 } 2771 2772 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2773 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2774 /* 2775 * We've been searching too long. Let's try to allocate 2776 * the best chunk we've found so far 2777 */ 2778 ext4_mb_try_best_found(ac, &e4b); 2779 if (ac->ac_status != AC_STATUS_FOUND) { 2780 /* 2781 * Someone more lucky has already allocated it. 2782 * The only thing we can do is just take first 2783 * found block(s) 2784 */ 2785 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2786 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2787 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2788 ac->ac_b_ex.fe_len, lost); 2789 2790 ac->ac_b_ex.fe_group = 0; 2791 ac->ac_b_ex.fe_start = 0; 2792 ac->ac_b_ex.fe_len = 0; 2793 ac->ac_status = AC_STATUS_CONTINUE; 2794 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2795 cr = 3; 2796 goto repeat; 2797 } 2798 } 2799 2800 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) 2801 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 2802 out: 2803 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2804 err = first_err; 2805 2806 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2807 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2808 ac->ac_flags, cr, err); 2809 2810 if (nr) 2811 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 2812 2813 return err; 2814 } 2815 2816 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2817 { 2818 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2819 ext4_group_t group; 2820 2821 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2822 return NULL; 2823 group = *pos + 1; 2824 return (void *) ((unsigned long) group); 2825 } 2826 2827 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2828 { 2829 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2830 ext4_group_t group; 2831 2832 ++*pos; 2833 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2834 return NULL; 2835 group = *pos + 1; 2836 return (void *) ((unsigned long) group); 2837 } 2838 2839 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2840 { 2841 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2842 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2843 int i; 2844 int err, buddy_loaded = 0; 2845 struct ext4_buddy e4b; 2846 struct ext4_group_info *grinfo; 2847 unsigned char blocksize_bits = min_t(unsigned char, 2848 sb->s_blocksize_bits, 2849 EXT4_MAX_BLOCK_LOG_SIZE); 2850 struct sg { 2851 struct ext4_group_info info; 2852 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 2853 } sg; 2854 2855 group--; 2856 if (group == 0) 2857 seq_puts(seq, "#group: free frags first [" 2858 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 2859 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 2860 2861 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2862 sizeof(struct ext4_group_info); 2863 2864 grinfo = ext4_get_group_info(sb, group); 2865 /* Load the group info in memory only if not already loaded. */ 2866 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2867 err = ext4_mb_load_buddy(sb, group, &e4b); 2868 if (err) { 2869 seq_printf(seq, "#%-5u: I/O error\n", group); 2870 return 0; 2871 } 2872 buddy_loaded = 1; 2873 } 2874 2875 memcpy(&sg, ext4_get_group_info(sb, group), i); 2876 2877 if (buddy_loaded) 2878 ext4_mb_unload_buddy(&e4b); 2879 2880 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2881 sg.info.bb_fragments, sg.info.bb_first_free); 2882 for (i = 0; i <= 13; i++) 2883 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 2884 sg.info.bb_counters[i] : 0); 2885 seq_puts(seq, " ]\n"); 2886 2887 return 0; 2888 } 2889 2890 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2891 { 2892 } 2893 2894 const struct seq_operations ext4_mb_seq_groups_ops = { 2895 .start = ext4_mb_seq_groups_start, 2896 .next = ext4_mb_seq_groups_next, 2897 .stop = ext4_mb_seq_groups_stop, 2898 .show = ext4_mb_seq_groups_show, 2899 }; 2900 2901 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 2902 { 2903 struct super_block *sb = (struct super_block *)seq->private; 2904 struct ext4_sb_info *sbi = EXT4_SB(sb); 2905 2906 seq_puts(seq, "mballoc:\n"); 2907 if (!sbi->s_mb_stats) { 2908 seq_puts(seq, "\tmb stats collection turned off.\n"); 2909 seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 2910 return 0; 2911 } 2912 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 2913 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 2914 2915 seq_printf(seq, "\tgroups_scanned: %u\n", atomic_read(&sbi->s_bal_groups_scanned)); 2916 2917 seq_puts(seq, "\tcr0_stats:\n"); 2918 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[0])); 2919 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2920 atomic64_read(&sbi->s_bal_cX_groups_considered[0])); 2921 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2922 atomic64_read(&sbi->s_bal_cX_failed[0])); 2923 seq_printf(seq, "\t\tbad_suggestions: %u\n", 2924 atomic_read(&sbi->s_bal_cr0_bad_suggestions)); 2925 2926 seq_puts(seq, "\tcr1_stats:\n"); 2927 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[1])); 2928 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2929 atomic64_read(&sbi->s_bal_cX_groups_considered[1])); 2930 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2931 atomic64_read(&sbi->s_bal_cX_failed[1])); 2932 seq_printf(seq, "\t\tbad_suggestions: %u\n", 2933 atomic_read(&sbi->s_bal_cr1_bad_suggestions)); 2934 2935 seq_puts(seq, "\tcr2_stats:\n"); 2936 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[2])); 2937 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2938 atomic64_read(&sbi->s_bal_cX_groups_considered[2])); 2939 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2940 atomic64_read(&sbi->s_bal_cX_failed[2])); 2941 2942 seq_puts(seq, "\tcr3_stats:\n"); 2943 seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[3])); 2944 seq_printf(seq, "\t\tgroups_considered: %llu\n", 2945 atomic64_read(&sbi->s_bal_cX_groups_considered[3])); 2946 seq_printf(seq, "\t\tuseless_loops: %llu\n", 2947 atomic64_read(&sbi->s_bal_cX_failed[3])); 2948 seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned)); 2949 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 2950 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 2951 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 2952 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 2953 2954 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 2955 atomic_read(&sbi->s_mb_buddies_generated), 2956 ext4_get_groups_count(sb)); 2957 seq_printf(seq, "\tbuddies_time_used: %llu\n", 2958 atomic64_read(&sbi->s_mb_generation_time)); 2959 seq_printf(seq, "\tpreallocated: %u\n", 2960 atomic_read(&sbi->s_mb_preallocated)); 2961 seq_printf(seq, "\tdiscarded: %u\n", 2962 atomic_read(&sbi->s_mb_discarded)); 2963 return 0; 2964 } 2965 2966 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) 2967 { 2968 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2969 unsigned long position; 2970 2971 read_lock(&EXT4_SB(sb)->s_mb_rb_lock); 2972 2973 if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1) 2974 return NULL; 2975 position = *pos + 1; 2976 return (void *) ((unsigned long) position); 2977 } 2978 2979 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) 2980 { 2981 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2982 unsigned long position; 2983 2984 ++*pos; 2985 if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1) 2986 return NULL; 2987 position = *pos + 1; 2988 return (void *) ((unsigned long) position); 2989 } 2990 2991 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) 2992 { 2993 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2994 struct ext4_sb_info *sbi = EXT4_SB(sb); 2995 unsigned long position = ((unsigned long) v); 2996 struct ext4_group_info *grp; 2997 struct rb_node *n; 2998 unsigned int count, min, max; 2999 3000 position--; 3001 if (position >= MB_NUM_ORDERS(sb)) { 3002 seq_puts(seq, "fragment_size_tree:\n"); 3003 n = rb_first(&sbi->s_mb_avg_fragment_size_root); 3004 if (!n) { 3005 seq_puts(seq, "\ttree_min: 0\n\ttree_max: 0\n\ttree_nodes: 0\n"); 3006 return 0; 3007 } 3008 grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb); 3009 min = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0; 3010 count = 1; 3011 while (rb_next(n)) { 3012 count++; 3013 n = rb_next(n); 3014 } 3015 grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb); 3016 max = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0; 3017 3018 seq_printf(seq, "\ttree_min: %u\n\ttree_max: %u\n\ttree_nodes: %u\n", 3019 min, max, count); 3020 return 0; 3021 } 3022 3023 if (position == 0) { 3024 seq_printf(seq, "optimize_scan: %d\n", 3025 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); 3026 seq_puts(seq, "max_free_order_lists:\n"); 3027 } 3028 count = 0; 3029 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], 3030 bb_largest_free_order_node) 3031 count++; 3032 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3033 (unsigned int)position, count); 3034 3035 return 0; 3036 } 3037 3038 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) 3039 { 3040 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 3041 3042 read_unlock(&EXT4_SB(sb)->s_mb_rb_lock); 3043 } 3044 3045 const struct seq_operations ext4_mb_seq_structs_summary_ops = { 3046 .start = ext4_mb_seq_structs_summary_start, 3047 .next = ext4_mb_seq_structs_summary_next, 3048 .stop = ext4_mb_seq_structs_summary_stop, 3049 .show = ext4_mb_seq_structs_summary_show, 3050 }; 3051 3052 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 3053 { 3054 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3055 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 3056 3057 BUG_ON(!cachep); 3058 return cachep; 3059 } 3060 3061 /* 3062 * Allocate the top-level s_group_info array for the specified number 3063 * of groups 3064 */ 3065 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 3066 { 3067 struct ext4_sb_info *sbi = EXT4_SB(sb); 3068 unsigned size; 3069 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 3070 3071 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 3072 EXT4_DESC_PER_BLOCK_BITS(sb); 3073 if (size <= sbi->s_group_info_size) 3074 return 0; 3075 3076 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 3077 new_groupinfo = kvzalloc(size, GFP_KERNEL); 3078 if (!new_groupinfo) { 3079 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 3080 return -ENOMEM; 3081 } 3082 rcu_read_lock(); 3083 old_groupinfo = rcu_dereference(sbi->s_group_info); 3084 if (old_groupinfo) 3085 memcpy(new_groupinfo, old_groupinfo, 3086 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 3087 rcu_read_unlock(); 3088 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 3089 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 3090 if (old_groupinfo) 3091 ext4_kvfree_array_rcu(old_groupinfo); 3092 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 3093 sbi->s_group_info_size); 3094 return 0; 3095 } 3096 3097 /* Create and initialize ext4_group_info data for the given group. */ 3098 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 3099 struct ext4_group_desc *desc) 3100 { 3101 int i; 3102 int metalen = 0; 3103 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 3104 struct ext4_sb_info *sbi = EXT4_SB(sb); 3105 struct ext4_group_info **meta_group_info; 3106 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3107 3108 /* 3109 * First check if this group is the first of a reserved block. 3110 * If it's true, we have to allocate a new table of pointers 3111 * to ext4_group_info structures 3112 */ 3113 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3114 metalen = sizeof(*meta_group_info) << 3115 EXT4_DESC_PER_BLOCK_BITS(sb); 3116 meta_group_info = kmalloc(metalen, GFP_NOFS); 3117 if (meta_group_info == NULL) { 3118 ext4_msg(sb, KERN_ERR, "can't allocate mem " 3119 "for a buddy group"); 3120 goto exit_meta_group_info; 3121 } 3122 rcu_read_lock(); 3123 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 3124 rcu_read_unlock(); 3125 } 3126 3127 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 3128 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 3129 3130 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 3131 if (meta_group_info[i] == NULL) { 3132 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 3133 goto exit_group_info; 3134 } 3135 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 3136 &(meta_group_info[i]->bb_state)); 3137 3138 /* 3139 * initialize bb_free to be able to skip 3140 * empty groups without initialization 3141 */ 3142 if (ext4_has_group_desc_csum(sb) && 3143 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3144 meta_group_info[i]->bb_free = 3145 ext4_free_clusters_after_init(sb, group, desc); 3146 } else { 3147 meta_group_info[i]->bb_free = 3148 ext4_free_group_clusters(sb, desc); 3149 } 3150 3151 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 3152 init_rwsem(&meta_group_info[i]->alloc_sem); 3153 meta_group_info[i]->bb_free_root = RB_ROOT; 3154 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); 3155 RB_CLEAR_NODE(&meta_group_info[i]->bb_avg_fragment_size_rb); 3156 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 3157 meta_group_info[i]->bb_group = group; 3158 3159 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 3160 return 0; 3161 3162 exit_group_info: 3163 /* If a meta_group_info table has been allocated, release it now */ 3164 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3165 struct ext4_group_info ***group_info; 3166 3167 rcu_read_lock(); 3168 group_info = rcu_dereference(sbi->s_group_info); 3169 kfree(group_info[idx]); 3170 group_info[idx] = NULL; 3171 rcu_read_unlock(); 3172 } 3173 exit_meta_group_info: 3174 return -ENOMEM; 3175 } /* ext4_mb_add_groupinfo */ 3176 3177 static int ext4_mb_init_backend(struct super_block *sb) 3178 { 3179 ext4_group_t ngroups = ext4_get_groups_count(sb); 3180 ext4_group_t i; 3181 struct ext4_sb_info *sbi = EXT4_SB(sb); 3182 int err; 3183 struct ext4_group_desc *desc; 3184 struct ext4_group_info ***group_info; 3185 struct kmem_cache *cachep; 3186 3187 err = ext4_mb_alloc_groupinfo(sb, ngroups); 3188 if (err) 3189 return err; 3190 3191 sbi->s_buddy_cache = new_inode(sb); 3192 if (sbi->s_buddy_cache == NULL) { 3193 ext4_msg(sb, KERN_ERR, "can't get new inode"); 3194 goto err_freesgi; 3195 } 3196 /* To avoid potentially colliding with an valid on-disk inode number, 3197 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 3198 * not in the inode hash, so it should never be found by iget(), but 3199 * this will avoid confusion if it ever shows up during debugging. */ 3200 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 3201 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 3202 for (i = 0; i < ngroups; i++) { 3203 cond_resched(); 3204 desc = ext4_get_group_desc(sb, i, NULL); 3205 if (desc == NULL) { 3206 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 3207 goto err_freebuddy; 3208 } 3209 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 3210 goto err_freebuddy; 3211 } 3212 3213 if (ext4_has_feature_flex_bg(sb)) { 3214 /* a single flex group is supposed to be read by a single IO. 3215 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 3216 * unsigned integer, so the maximum shift is 32. 3217 */ 3218 if (sbi->s_es->s_log_groups_per_flex >= 32) { 3219 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 3220 goto err_freesgi; 3221 } 3222 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 3223 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 3224 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 3225 } else { 3226 sbi->s_mb_prefetch = 32; 3227 } 3228 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 3229 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 3230 /* now many real IOs to prefetch within a single allocation at cr=0 3231 * given cr=0 is an CPU-related optimization we shouldn't try to 3232 * load too many groups, at some point we should start to use what 3233 * we've got in memory. 3234 * with an average random access time 5ms, it'd take a second to get 3235 * 200 groups (* N with flex_bg), so let's make this limit 4 3236 */ 3237 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 3238 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 3239 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 3240 3241 return 0; 3242 3243 err_freebuddy: 3244 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3245 while (i-- > 0) 3246 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 3247 i = sbi->s_group_info_size; 3248 rcu_read_lock(); 3249 group_info = rcu_dereference(sbi->s_group_info); 3250 while (i-- > 0) 3251 kfree(group_info[i]); 3252 rcu_read_unlock(); 3253 iput(sbi->s_buddy_cache); 3254 err_freesgi: 3255 rcu_read_lock(); 3256 kvfree(rcu_dereference(sbi->s_group_info)); 3257 rcu_read_unlock(); 3258 return -ENOMEM; 3259 } 3260 3261 static void ext4_groupinfo_destroy_slabs(void) 3262 { 3263 int i; 3264 3265 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 3266 kmem_cache_destroy(ext4_groupinfo_caches[i]); 3267 ext4_groupinfo_caches[i] = NULL; 3268 } 3269 } 3270 3271 static int ext4_groupinfo_create_slab(size_t size) 3272 { 3273 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 3274 int slab_size; 3275 int blocksize_bits = order_base_2(size); 3276 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3277 struct kmem_cache *cachep; 3278 3279 if (cache_index >= NR_GRPINFO_CACHES) 3280 return -EINVAL; 3281 3282 if (unlikely(cache_index < 0)) 3283 cache_index = 0; 3284 3285 mutex_lock(&ext4_grpinfo_slab_create_mutex); 3286 if (ext4_groupinfo_caches[cache_index]) { 3287 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3288 return 0; /* Already created */ 3289 } 3290 3291 slab_size = offsetof(struct ext4_group_info, 3292 bb_counters[blocksize_bits + 2]); 3293 3294 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 3295 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 3296 NULL); 3297 3298 ext4_groupinfo_caches[cache_index] = cachep; 3299 3300 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3301 if (!cachep) { 3302 printk(KERN_EMERG 3303 "EXT4-fs: no memory for groupinfo slab cache\n"); 3304 return -ENOMEM; 3305 } 3306 3307 return 0; 3308 } 3309 3310 int ext4_mb_init(struct super_block *sb) 3311 { 3312 struct ext4_sb_info *sbi = EXT4_SB(sb); 3313 unsigned i, j; 3314 unsigned offset, offset_incr; 3315 unsigned max; 3316 int ret; 3317 3318 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); 3319 3320 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 3321 if (sbi->s_mb_offsets == NULL) { 3322 ret = -ENOMEM; 3323 goto out; 3324 } 3325 3326 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); 3327 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 3328 if (sbi->s_mb_maxs == NULL) { 3329 ret = -ENOMEM; 3330 goto out; 3331 } 3332 3333 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 3334 if (ret < 0) 3335 goto out; 3336 3337 /* order 0 is regular bitmap */ 3338 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 3339 sbi->s_mb_offsets[0] = 0; 3340 3341 i = 1; 3342 offset = 0; 3343 offset_incr = 1 << (sb->s_blocksize_bits - 1); 3344 max = sb->s_blocksize << 2; 3345 do { 3346 sbi->s_mb_offsets[i] = offset; 3347 sbi->s_mb_maxs[i] = max; 3348 offset += offset_incr; 3349 offset_incr = offset_incr >> 1; 3350 max = max >> 1; 3351 i++; 3352 } while (i < MB_NUM_ORDERS(sb)); 3353 3354 sbi->s_mb_avg_fragment_size_root = RB_ROOT; 3355 sbi->s_mb_largest_free_orders = 3356 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3357 GFP_KERNEL); 3358 if (!sbi->s_mb_largest_free_orders) { 3359 ret = -ENOMEM; 3360 goto out; 3361 } 3362 sbi->s_mb_largest_free_orders_locks = 3363 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3364 GFP_KERNEL); 3365 if (!sbi->s_mb_largest_free_orders_locks) { 3366 ret = -ENOMEM; 3367 goto out; 3368 } 3369 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3370 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); 3371 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); 3372 } 3373 rwlock_init(&sbi->s_mb_rb_lock); 3374 3375 spin_lock_init(&sbi->s_md_lock); 3376 sbi->s_mb_free_pending = 0; 3377 INIT_LIST_HEAD(&sbi->s_freed_data_list); 3378 3379 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 3380 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 3381 sbi->s_mb_stats = MB_DEFAULT_STATS; 3382 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 3383 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 3384 sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC; 3385 /* 3386 * The default group preallocation is 512, which for 4k block 3387 * sizes translates to 2 megabytes. However for bigalloc file 3388 * systems, this is probably too big (i.e, if the cluster size 3389 * is 1 megabyte, then group preallocation size becomes half a 3390 * gigabyte!). As a default, we will keep a two megabyte 3391 * group pralloc size for cluster sizes up to 64k, and after 3392 * that, we will force a minimum group preallocation size of 3393 * 32 clusters. This translates to 8 megs when the cluster 3394 * size is 256k, and 32 megs when the cluster size is 1 meg, 3395 * which seems reasonable as a default. 3396 */ 3397 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 3398 sbi->s_cluster_bits, 32); 3399 /* 3400 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 3401 * to the lowest multiple of s_stripe which is bigger than 3402 * the s_mb_group_prealloc as determined above. We want 3403 * the preallocation size to be an exact multiple of the 3404 * RAID stripe size so that preallocations don't fragment 3405 * the stripes. 3406 */ 3407 if (sbi->s_stripe > 1) { 3408 sbi->s_mb_group_prealloc = roundup( 3409 sbi->s_mb_group_prealloc, sbi->s_stripe); 3410 } 3411 3412 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3413 if (sbi->s_locality_groups == NULL) { 3414 ret = -ENOMEM; 3415 goto out; 3416 } 3417 for_each_possible_cpu(i) { 3418 struct ext4_locality_group *lg; 3419 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3420 mutex_init(&lg->lg_mutex); 3421 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3422 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3423 spin_lock_init(&lg->lg_prealloc_lock); 3424 } 3425 3426 if (blk_queue_nonrot(bdev_get_queue(sb->s_bdev))) 3427 sbi->s_mb_max_linear_groups = 0; 3428 else 3429 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; 3430 /* init file for buddy data */ 3431 ret = ext4_mb_init_backend(sb); 3432 if (ret != 0) 3433 goto out_free_locality_groups; 3434 3435 return 0; 3436 3437 out_free_locality_groups: 3438 free_percpu(sbi->s_locality_groups); 3439 sbi->s_locality_groups = NULL; 3440 out: 3441 kfree(sbi->s_mb_largest_free_orders); 3442 kfree(sbi->s_mb_largest_free_orders_locks); 3443 kfree(sbi->s_mb_offsets); 3444 sbi->s_mb_offsets = NULL; 3445 kfree(sbi->s_mb_maxs); 3446 sbi->s_mb_maxs = NULL; 3447 return ret; 3448 } 3449 3450 /* need to called with the ext4 group lock held */ 3451 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3452 { 3453 struct ext4_prealloc_space *pa; 3454 struct list_head *cur, *tmp; 3455 int count = 0; 3456 3457 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3458 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3459 list_del(&pa->pa_group_list); 3460 count++; 3461 kmem_cache_free(ext4_pspace_cachep, pa); 3462 } 3463 return count; 3464 } 3465 3466 int ext4_mb_release(struct super_block *sb) 3467 { 3468 ext4_group_t ngroups = ext4_get_groups_count(sb); 3469 ext4_group_t i; 3470 int num_meta_group_infos; 3471 struct ext4_group_info *grinfo, ***group_info; 3472 struct ext4_sb_info *sbi = EXT4_SB(sb); 3473 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3474 int count; 3475 3476 if (sbi->s_group_info) { 3477 for (i = 0; i < ngroups; i++) { 3478 cond_resched(); 3479 grinfo = ext4_get_group_info(sb, i); 3480 mb_group_bb_bitmap_free(grinfo); 3481 ext4_lock_group(sb, i); 3482 count = ext4_mb_cleanup_pa(grinfo); 3483 if (count) 3484 mb_debug(sb, "mballoc: %d PAs left\n", 3485 count); 3486 ext4_unlock_group(sb, i); 3487 kmem_cache_free(cachep, grinfo); 3488 } 3489 num_meta_group_infos = (ngroups + 3490 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3491 EXT4_DESC_PER_BLOCK_BITS(sb); 3492 rcu_read_lock(); 3493 group_info = rcu_dereference(sbi->s_group_info); 3494 for (i = 0; i < num_meta_group_infos; i++) 3495 kfree(group_info[i]); 3496 kvfree(group_info); 3497 rcu_read_unlock(); 3498 } 3499 kfree(sbi->s_mb_largest_free_orders); 3500 kfree(sbi->s_mb_largest_free_orders_locks); 3501 kfree(sbi->s_mb_offsets); 3502 kfree(sbi->s_mb_maxs); 3503 iput(sbi->s_buddy_cache); 3504 if (sbi->s_mb_stats) { 3505 ext4_msg(sb, KERN_INFO, 3506 "mballoc: %u blocks %u reqs (%u success)", 3507 atomic_read(&sbi->s_bal_allocated), 3508 atomic_read(&sbi->s_bal_reqs), 3509 atomic_read(&sbi->s_bal_success)); 3510 ext4_msg(sb, KERN_INFO, 3511 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3512 "%u 2^N hits, %u breaks, %u lost", 3513 atomic_read(&sbi->s_bal_ex_scanned), 3514 atomic_read(&sbi->s_bal_groups_scanned), 3515 atomic_read(&sbi->s_bal_goals), 3516 atomic_read(&sbi->s_bal_2orders), 3517 atomic_read(&sbi->s_bal_breaks), 3518 atomic_read(&sbi->s_mb_lost_chunks)); 3519 ext4_msg(sb, KERN_INFO, 3520 "mballoc: %u generated and it took %llu", 3521 atomic_read(&sbi->s_mb_buddies_generated), 3522 atomic64_read(&sbi->s_mb_generation_time)); 3523 ext4_msg(sb, KERN_INFO, 3524 "mballoc: %u preallocated, %u discarded", 3525 atomic_read(&sbi->s_mb_preallocated), 3526 atomic_read(&sbi->s_mb_discarded)); 3527 } 3528 3529 free_percpu(sbi->s_locality_groups); 3530 3531 return 0; 3532 } 3533 3534 static inline int ext4_issue_discard(struct super_block *sb, 3535 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 3536 struct bio **biop) 3537 { 3538 ext4_fsblk_t discard_block; 3539 3540 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3541 ext4_group_first_block_no(sb, block_group)); 3542 count = EXT4_C2B(EXT4_SB(sb), count); 3543 trace_ext4_discard_blocks(sb, 3544 (unsigned long long) discard_block, count); 3545 if (biop) { 3546 return __blkdev_issue_discard(sb->s_bdev, 3547 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 3548 (sector_t)count << (sb->s_blocksize_bits - 9), 3549 GFP_NOFS, 0, biop); 3550 } else 3551 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3552 } 3553 3554 static void ext4_free_data_in_buddy(struct super_block *sb, 3555 struct ext4_free_data *entry) 3556 { 3557 struct ext4_buddy e4b; 3558 struct ext4_group_info *db; 3559 int err, count = 0, count2 = 0; 3560 3561 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3562 entry->efd_count, entry->efd_group, entry); 3563 3564 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3565 /* we expect to find existing buddy because it's pinned */ 3566 BUG_ON(err != 0); 3567 3568 spin_lock(&EXT4_SB(sb)->s_md_lock); 3569 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3570 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3571 3572 db = e4b.bd_info; 3573 /* there are blocks to put in buddy to make them really free */ 3574 count += entry->efd_count; 3575 count2++; 3576 ext4_lock_group(sb, entry->efd_group); 3577 /* Take it out of per group rb tree */ 3578 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3579 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3580 3581 /* 3582 * Clear the trimmed flag for the group so that the next 3583 * ext4_trim_fs can trim it. 3584 * If the volume is mounted with -o discard, online discard 3585 * is supported and the free blocks will be trimmed online. 3586 */ 3587 if (!test_opt(sb, DISCARD)) 3588 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3589 3590 if (!db->bb_free_root.rb_node) { 3591 /* No more items in the per group rb tree 3592 * balance refcounts from ext4_mb_free_metadata() 3593 */ 3594 put_page(e4b.bd_buddy_page); 3595 put_page(e4b.bd_bitmap_page); 3596 } 3597 ext4_unlock_group(sb, entry->efd_group); 3598 kmem_cache_free(ext4_free_data_cachep, entry); 3599 ext4_mb_unload_buddy(&e4b); 3600 3601 mb_debug(sb, "freed %d blocks in %d structures\n", count, 3602 count2); 3603 } 3604 3605 /* 3606 * This function is called by the jbd2 layer once the commit has finished, 3607 * so we know we can free the blocks that were released with that commit. 3608 */ 3609 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3610 { 3611 struct ext4_sb_info *sbi = EXT4_SB(sb); 3612 struct ext4_free_data *entry, *tmp; 3613 struct bio *discard_bio = NULL; 3614 struct list_head freed_data_list; 3615 struct list_head *cut_pos = NULL; 3616 int err; 3617 3618 INIT_LIST_HEAD(&freed_data_list); 3619 3620 spin_lock(&sbi->s_md_lock); 3621 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 3622 if (entry->efd_tid != commit_tid) 3623 break; 3624 cut_pos = &entry->efd_list; 3625 } 3626 if (cut_pos) 3627 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 3628 cut_pos); 3629 spin_unlock(&sbi->s_md_lock); 3630 3631 if (test_opt(sb, DISCARD)) { 3632 list_for_each_entry(entry, &freed_data_list, efd_list) { 3633 err = ext4_issue_discard(sb, entry->efd_group, 3634 entry->efd_start_cluster, 3635 entry->efd_count, 3636 &discard_bio); 3637 if (err && err != -EOPNOTSUPP) { 3638 ext4_msg(sb, KERN_WARNING, "discard request in" 3639 " group:%d block:%d count:%d failed" 3640 " with %d", entry->efd_group, 3641 entry->efd_start_cluster, 3642 entry->efd_count, err); 3643 } else if (err == -EOPNOTSUPP) 3644 break; 3645 } 3646 3647 if (discard_bio) { 3648 submit_bio_wait(discard_bio); 3649 bio_put(discard_bio); 3650 } 3651 } 3652 3653 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3654 ext4_free_data_in_buddy(sb, entry); 3655 } 3656 3657 int __init ext4_init_mballoc(void) 3658 { 3659 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3660 SLAB_RECLAIM_ACCOUNT); 3661 if (ext4_pspace_cachep == NULL) 3662 goto out; 3663 3664 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3665 SLAB_RECLAIM_ACCOUNT); 3666 if (ext4_ac_cachep == NULL) 3667 goto out_pa_free; 3668 3669 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3670 SLAB_RECLAIM_ACCOUNT); 3671 if (ext4_free_data_cachep == NULL) 3672 goto out_ac_free; 3673 3674 return 0; 3675 3676 out_ac_free: 3677 kmem_cache_destroy(ext4_ac_cachep); 3678 out_pa_free: 3679 kmem_cache_destroy(ext4_pspace_cachep); 3680 out: 3681 return -ENOMEM; 3682 } 3683 3684 void ext4_exit_mballoc(void) 3685 { 3686 /* 3687 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3688 * before destroying the slab cache. 3689 */ 3690 rcu_barrier(); 3691 kmem_cache_destroy(ext4_pspace_cachep); 3692 kmem_cache_destroy(ext4_ac_cachep); 3693 kmem_cache_destroy(ext4_free_data_cachep); 3694 ext4_groupinfo_destroy_slabs(); 3695 } 3696 3697 3698 /* 3699 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 3700 * Returns 0 if success or error code 3701 */ 3702 static noinline_for_stack int 3703 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 3704 handle_t *handle, unsigned int reserv_clstrs) 3705 { 3706 struct buffer_head *bitmap_bh = NULL; 3707 struct ext4_group_desc *gdp; 3708 struct buffer_head *gdp_bh; 3709 struct ext4_sb_info *sbi; 3710 struct super_block *sb; 3711 ext4_fsblk_t block; 3712 int err, len; 3713 3714 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3715 BUG_ON(ac->ac_b_ex.fe_len <= 0); 3716 3717 sb = ac->ac_sb; 3718 sbi = EXT4_SB(sb); 3719 3720 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 3721 if (IS_ERR(bitmap_bh)) { 3722 err = PTR_ERR(bitmap_bh); 3723 bitmap_bh = NULL; 3724 goto out_err; 3725 } 3726 3727 BUFFER_TRACE(bitmap_bh, "getting write access"); 3728 err = ext4_journal_get_write_access(handle, bitmap_bh); 3729 if (err) 3730 goto out_err; 3731 3732 err = -EIO; 3733 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 3734 if (!gdp) 3735 goto out_err; 3736 3737 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 3738 ext4_free_group_clusters(sb, gdp)); 3739 3740 BUFFER_TRACE(gdp_bh, "get_write_access"); 3741 err = ext4_journal_get_write_access(handle, gdp_bh); 3742 if (err) 3743 goto out_err; 3744 3745 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3746 3747 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3748 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 3749 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 3750 "fs metadata", block, block+len); 3751 /* File system mounted not to panic on error 3752 * Fix the bitmap and return EFSCORRUPTED 3753 * We leak some of the blocks here. 3754 */ 3755 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3756 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3757 ac->ac_b_ex.fe_len); 3758 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3759 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3760 if (!err) 3761 err = -EFSCORRUPTED; 3762 goto out_err; 3763 } 3764 3765 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3766 #ifdef AGGRESSIVE_CHECK 3767 { 3768 int i; 3769 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 3770 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 3771 bitmap_bh->b_data)); 3772 } 3773 } 3774 #endif 3775 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3776 ac->ac_b_ex.fe_len); 3777 if (ext4_has_group_desc_csum(sb) && 3778 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3779 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3780 ext4_free_group_clusters_set(sb, gdp, 3781 ext4_free_clusters_after_init(sb, 3782 ac->ac_b_ex.fe_group, gdp)); 3783 } 3784 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 3785 ext4_free_group_clusters_set(sb, gdp, len); 3786 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 3787 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 3788 3789 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3790 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 3791 /* 3792 * Now reduce the dirty block count also. Should not go negative 3793 */ 3794 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 3795 /* release all the reserved blocks if non delalloc */ 3796 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 3797 reserv_clstrs); 3798 3799 if (sbi->s_log_groups_per_flex) { 3800 ext4_group_t flex_group = ext4_flex_group(sbi, 3801 ac->ac_b_ex.fe_group); 3802 atomic64_sub(ac->ac_b_ex.fe_len, 3803 &sbi_array_rcu_deref(sbi, s_flex_groups, 3804 flex_group)->free_clusters); 3805 } 3806 3807 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3808 if (err) 3809 goto out_err; 3810 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 3811 3812 out_err: 3813 brelse(bitmap_bh); 3814 return err; 3815 } 3816 3817 /* 3818 * Idempotent helper for Ext4 fast commit replay path to set the state of 3819 * blocks in bitmaps and update counters. 3820 */ 3821 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 3822 int len, int state) 3823 { 3824 struct buffer_head *bitmap_bh = NULL; 3825 struct ext4_group_desc *gdp; 3826 struct buffer_head *gdp_bh; 3827 struct ext4_sb_info *sbi = EXT4_SB(sb); 3828 ext4_group_t group; 3829 ext4_grpblk_t blkoff; 3830 int i, clen, err; 3831 int already; 3832 3833 clen = EXT4_B2C(sbi, len); 3834 3835 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 3836 bitmap_bh = ext4_read_block_bitmap(sb, group); 3837 if (IS_ERR(bitmap_bh)) { 3838 err = PTR_ERR(bitmap_bh); 3839 bitmap_bh = NULL; 3840 goto out_err; 3841 } 3842 3843 err = -EIO; 3844 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 3845 if (!gdp) 3846 goto out_err; 3847 3848 ext4_lock_group(sb, group); 3849 already = 0; 3850 for (i = 0; i < clen; i++) 3851 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == !state) 3852 already++; 3853 3854 if (state) 3855 ext4_set_bits(bitmap_bh->b_data, blkoff, clen); 3856 else 3857 mb_test_and_clear_bits(bitmap_bh->b_data, blkoff, clen); 3858 if (ext4_has_group_desc_csum(sb) && 3859 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3860 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3861 ext4_free_group_clusters_set(sb, gdp, 3862 ext4_free_clusters_after_init(sb, 3863 group, gdp)); 3864 } 3865 if (state) 3866 clen = ext4_free_group_clusters(sb, gdp) - clen + already; 3867 else 3868 clen = ext4_free_group_clusters(sb, gdp) + clen - already; 3869 3870 ext4_free_group_clusters_set(sb, gdp, clen); 3871 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh); 3872 ext4_group_desc_csum_set(sb, group, gdp); 3873 3874 ext4_unlock_group(sb, group); 3875 3876 if (sbi->s_log_groups_per_flex) { 3877 ext4_group_t flex_group = ext4_flex_group(sbi, group); 3878 3879 atomic64_sub(len, 3880 &sbi_array_rcu_deref(sbi, s_flex_groups, 3881 flex_group)->free_clusters); 3882 } 3883 3884 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 3885 if (err) 3886 goto out_err; 3887 sync_dirty_buffer(bitmap_bh); 3888 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 3889 sync_dirty_buffer(gdp_bh); 3890 3891 out_err: 3892 brelse(bitmap_bh); 3893 } 3894 3895 /* 3896 * here we normalize request for locality group 3897 * Group request are normalized to s_mb_group_prealloc, which goes to 3898 * s_strip if we set the same via mount option. 3899 * s_mb_group_prealloc can be configured via 3900 * /sys/fs/ext4/<partition>/mb_group_prealloc 3901 * 3902 * XXX: should we try to preallocate more than the group has now? 3903 */ 3904 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 3905 { 3906 struct super_block *sb = ac->ac_sb; 3907 struct ext4_locality_group *lg = ac->ac_lg; 3908 3909 BUG_ON(lg == NULL); 3910 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 3911 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 3912 } 3913 3914 /* 3915 * Normalization means making request better in terms of 3916 * size and alignment 3917 */ 3918 static noinline_for_stack void 3919 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3920 struct ext4_allocation_request *ar) 3921 { 3922 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3923 int bsbits, max; 3924 ext4_lblk_t end; 3925 loff_t size, start_off; 3926 loff_t orig_size __maybe_unused; 3927 ext4_lblk_t start; 3928 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3929 struct ext4_prealloc_space *pa; 3930 3931 /* do normalize only data requests, metadata requests 3932 do not need preallocation */ 3933 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3934 return; 3935 3936 /* sometime caller may want exact blocks */ 3937 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3938 return; 3939 3940 /* caller may indicate that preallocation isn't 3941 * required (it's a tail, for example) */ 3942 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3943 return; 3944 3945 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3946 ext4_mb_normalize_group_request(ac); 3947 return ; 3948 } 3949 3950 bsbits = ac->ac_sb->s_blocksize_bits; 3951 3952 /* first, let's learn actual file size 3953 * given current request is allocated */ 3954 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3955 size = size << bsbits; 3956 if (size < i_size_read(ac->ac_inode)) 3957 size = i_size_read(ac->ac_inode); 3958 orig_size = size; 3959 3960 /* max size of free chunks */ 3961 max = 2 << bsbits; 3962 3963 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3964 (req <= (size) || max <= (chunk_size)) 3965 3966 /* first, try to predict filesize */ 3967 /* XXX: should this table be tunable? */ 3968 start_off = 0; 3969 if (size <= 16 * 1024) { 3970 size = 16 * 1024; 3971 } else if (size <= 32 * 1024) { 3972 size = 32 * 1024; 3973 } else if (size <= 64 * 1024) { 3974 size = 64 * 1024; 3975 } else if (size <= 128 * 1024) { 3976 size = 128 * 1024; 3977 } else if (size <= 256 * 1024) { 3978 size = 256 * 1024; 3979 } else if (size <= 512 * 1024) { 3980 size = 512 * 1024; 3981 } else if (size <= 1024 * 1024) { 3982 size = 1024 * 1024; 3983 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3984 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3985 (21 - bsbits)) << 21; 3986 size = 2 * 1024 * 1024; 3987 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3988 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3989 (22 - bsbits)) << 22; 3990 size = 4 * 1024 * 1024; 3991 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3992 (8<<20)>>bsbits, max, 8 * 1024)) { 3993 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3994 (23 - bsbits)) << 23; 3995 size = 8 * 1024 * 1024; 3996 } else { 3997 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 3998 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 3999 ac->ac_o_ex.fe_len) << bsbits; 4000 } 4001 size = size >> bsbits; 4002 start = start_off >> bsbits; 4003 4004 /* don't cover already allocated blocks in selected range */ 4005 if (ar->pleft && start <= ar->lleft) { 4006 size -= ar->lleft + 1 - start; 4007 start = ar->lleft + 1; 4008 } 4009 if (ar->pright && start + size - 1 >= ar->lright) 4010 size -= start + size - ar->lright; 4011 4012 /* 4013 * Trim allocation request for filesystems with artificially small 4014 * groups. 4015 */ 4016 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 4017 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 4018 4019 end = start + size; 4020 4021 /* check we don't cross already preallocated blocks */ 4022 rcu_read_lock(); 4023 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 4024 ext4_lblk_t pa_end; 4025 4026 if (pa->pa_deleted) 4027 continue; 4028 spin_lock(&pa->pa_lock); 4029 if (pa->pa_deleted) { 4030 spin_unlock(&pa->pa_lock); 4031 continue; 4032 } 4033 4034 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 4035 pa->pa_len); 4036 4037 /* PA must not overlap original request */ 4038 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 4039 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 4040 4041 /* skip PAs this normalized request doesn't overlap with */ 4042 if (pa->pa_lstart >= end || pa_end <= start) { 4043 spin_unlock(&pa->pa_lock); 4044 continue; 4045 } 4046 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 4047 4048 /* adjust start or end to be adjacent to this pa */ 4049 if (pa_end <= ac->ac_o_ex.fe_logical) { 4050 BUG_ON(pa_end < start); 4051 start = pa_end; 4052 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 4053 BUG_ON(pa->pa_lstart > end); 4054 end = pa->pa_lstart; 4055 } 4056 spin_unlock(&pa->pa_lock); 4057 } 4058 rcu_read_unlock(); 4059 size = end - start; 4060 4061 /* XXX: extra loop to check we really don't overlap preallocations */ 4062 rcu_read_lock(); 4063 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 4064 ext4_lblk_t pa_end; 4065 4066 spin_lock(&pa->pa_lock); 4067 if (pa->pa_deleted == 0) { 4068 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 4069 pa->pa_len); 4070 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 4071 } 4072 spin_unlock(&pa->pa_lock); 4073 } 4074 rcu_read_unlock(); 4075 4076 if (start + size <= ac->ac_o_ex.fe_logical && 4077 start > ac->ac_o_ex.fe_logical) { 4078 ext4_msg(ac->ac_sb, KERN_ERR, 4079 "start %lu, size %lu, fe_logical %lu", 4080 (unsigned long) start, (unsigned long) size, 4081 (unsigned long) ac->ac_o_ex.fe_logical); 4082 BUG(); 4083 } 4084 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 4085 4086 /* now prepare goal request */ 4087 4088 /* XXX: is it better to align blocks WRT to logical 4089 * placement or satisfy big request as is */ 4090 ac->ac_g_ex.fe_logical = start; 4091 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 4092 4093 /* define goal start in order to merge */ 4094 if (ar->pright && (ar->lright == (start + size))) { 4095 /* merge to the right */ 4096 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 4097 &ac->ac_f_ex.fe_group, 4098 &ac->ac_f_ex.fe_start); 4099 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4100 } 4101 if (ar->pleft && (ar->lleft + 1 == start)) { 4102 /* merge to the left */ 4103 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 4104 &ac->ac_f_ex.fe_group, 4105 &ac->ac_f_ex.fe_start); 4106 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4107 } 4108 4109 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 4110 orig_size, start); 4111 } 4112 4113 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 4114 { 4115 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4116 4117 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 4118 atomic_inc(&sbi->s_bal_reqs); 4119 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 4120 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 4121 atomic_inc(&sbi->s_bal_success); 4122 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 4123 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 4124 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 4125 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 4126 atomic_inc(&sbi->s_bal_goals); 4127 if (ac->ac_found > sbi->s_mb_max_to_scan) 4128 atomic_inc(&sbi->s_bal_breaks); 4129 } 4130 4131 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 4132 trace_ext4_mballoc_alloc(ac); 4133 else 4134 trace_ext4_mballoc_prealloc(ac); 4135 } 4136 4137 /* 4138 * Called on failure; free up any blocks from the inode PA for this 4139 * context. We don't need this for MB_GROUP_PA because we only change 4140 * pa_free in ext4_mb_release_context(), but on failure, we've already 4141 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 4142 */ 4143 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 4144 { 4145 struct ext4_prealloc_space *pa = ac->ac_pa; 4146 struct ext4_buddy e4b; 4147 int err; 4148 4149 if (pa == NULL) { 4150 if (ac->ac_f_ex.fe_len == 0) 4151 return; 4152 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 4153 if (err) { 4154 /* 4155 * This should never happen since we pin the 4156 * pages in the ext4_allocation_context so 4157 * ext4_mb_load_buddy() should never fail. 4158 */ 4159 WARN(1, "mb_load_buddy failed (%d)", err); 4160 return; 4161 } 4162 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4163 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 4164 ac->ac_f_ex.fe_len); 4165 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4166 ext4_mb_unload_buddy(&e4b); 4167 return; 4168 } 4169 if (pa->pa_type == MB_INODE_PA) 4170 pa->pa_free += ac->ac_b_ex.fe_len; 4171 } 4172 4173 /* 4174 * use blocks preallocated to inode 4175 */ 4176 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 4177 struct ext4_prealloc_space *pa) 4178 { 4179 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4180 ext4_fsblk_t start; 4181 ext4_fsblk_t end; 4182 int len; 4183 4184 /* found preallocated blocks, use them */ 4185 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 4186 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 4187 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 4188 len = EXT4_NUM_B2C(sbi, end - start); 4189 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 4190 &ac->ac_b_ex.fe_start); 4191 ac->ac_b_ex.fe_len = len; 4192 ac->ac_status = AC_STATUS_FOUND; 4193 ac->ac_pa = pa; 4194 4195 BUG_ON(start < pa->pa_pstart); 4196 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 4197 BUG_ON(pa->pa_free < len); 4198 pa->pa_free -= len; 4199 4200 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 4201 } 4202 4203 /* 4204 * use blocks preallocated to locality group 4205 */ 4206 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 4207 struct ext4_prealloc_space *pa) 4208 { 4209 unsigned int len = ac->ac_o_ex.fe_len; 4210 4211 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 4212 &ac->ac_b_ex.fe_group, 4213 &ac->ac_b_ex.fe_start); 4214 ac->ac_b_ex.fe_len = len; 4215 ac->ac_status = AC_STATUS_FOUND; 4216 ac->ac_pa = pa; 4217 4218 /* we don't correct pa_pstart or pa_plen here to avoid 4219 * possible race when the group is being loaded concurrently 4220 * instead we correct pa later, after blocks are marked 4221 * in on-disk bitmap -- see ext4_mb_release_context() 4222 * Other CPUs are prevented from allocating from this pa by lg_mutex 4223 */ 4224 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 4225 pa->pa_lstart-len, len, pa); 4226 } 4227 4228 /* 4229 * Return the prealloc space that have minimal distance 4230 * from the goal block. @cpa is the prealloc 4231 * space that is having currently known minimal distance 4232 * from the goal block. 4233 */ 4234 static struct ext4_prealloc_space * 4235 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 4236 struct ext4_prealloc_space *pa, 4237 struct ext4_prealloc_space *cpa) 4238 { 4239 ext4_fsblk_t cur_distance, new_distance; 4240 4241 if (cpa == NULL) { 4242 atomic_inc(&pa->pa_count); 4243 return pa; 4244 } 4245 cur_distance = abs(goal_block - cpa->pa_pstart); 4246 new_distance = abs(goal_block - pa->pa_pstart); 4247 4248 if (cur_distance <= new_distance) 4249 return cpa; 4250 4251 /* drop the previous reference */ 4252 atomic_dec(&cpa->pa_count); 4253 atomic_inc(&pa->pa_count); 4254 return pa; 4255 } 4256 4257 /* 4258 * search goal blocks in preallocated space 4259 */ 4260 static noinline_for_stack bool 4261 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 4262 { 4263 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4264 int order, i; 4265 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4266 struct ext4_locality_group *lg; 4267 struct ext4_prealloc_space *pa, *cpa = NULL; 4268 ext4_fsblk_t goal_block; 4269 4270 /* only data can be preallocated */ 4271 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4272 return false; 4273 4274 /* first, try per-file preallocation */ 4275 rcu_read_lock(); 4276 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 4277 4278 /* all fields in this condition don't change, 4279 * so we can skip locking for them */ 4280 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 4281 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 4282 EXT4_C2B(sbi, pa->pa_len))) 4283 continue; 4284 4285 /* non-extent files can't have physical blocks past 2^32 */ 4286 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 4287 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 4288 EXT4_MAX_BLOCK_FILE_PHYS)) 4289 continue; 4290 4291 /* found preallocated blocks, use them */ 4292 spin_lock(&pa->pa_lock); 4293 if (pa->pa_deleted == 0 && pa->pa_free) { 4294 atomic_inc(&pa->pa_count); 4295 ext4_mb_use_inode_pa(ac, pa); 4296 spin_unlock(&pa->pa_lock); 4297 ac->ac_criteria = 10; 4298 rcu_read_unlock(); 4299 return true; 4300 } 4301 spin_unlock(&pa->pa_lock); 4302 } 4303 rcu_read_unlock(); 4304 4305 /* can we use group allocation? */ 4306 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 4307 return false; 4308 4309 /* inode may have no locality group for some reason */ 4310 lg = ac->ac_lg; 4311 if (lg == NULL) 4312 return false; 4313 order = fls(ac->ac_o_ex.fe_len) - 1; 4314 if (order > PREALLOC_TB_SIZE - 1) 4315 /* The max size of hash table is PREALLOC_TB_SIZE */ 4316 order = PREALLOC_TB_SIZE - 1; 4317 4318 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 4319 /* 4320 * search for the prealloc space that is having 4321 * minimal distance from the goal block. 4322 */ 4323 for (i = order; i < PREALLOC_TB_SIZE; i++) { 4324 rcu_read_lock(); 4325 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 4326 pa_inode_list) { 4327 spin_lock(&pa->pa_lock); 4328 if (pa->pa_deleted == 0 && 4329 pa->pa_free >= ac->ac_o_ex.fe_len) { 4330 4331 cpa = ext4_mb_check_group_pa(goal_block, 4332 pa, cpa); 4333 } 4334 spin_unlock(&pa->pa_lock); 4335 } 4336 rcu_read_unlock(); 4337 } 4338 if (cpa) { 4339 ext4_mb_use_group_pa(ac, cpa); 4340 ac->ac_criteria = 20; 4341 return true; 4342 } 4343 return false; 4344 } 4345 4346 /* 4347 * the function goes through all block freed in the group 4348 * but not yet committed and marks them used in in-core bitmap. 4349 * buddy must be generated from this bitmap 4350 * Need to be called with the ext4 group lock held 4351 */ 4352 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 4353 ext4_group_t group) 4354 { 4355 struct rb_node *n; 4356 struct ext4_group_info *grp; 4357 struct ext4_free_data *entry; 4358 4359 grp = ext4_get_group_info(sb, group); 4360 n = rb_first(&(grp->bb_free_root)); 4361 4362 while (n) { 4363 entry = rb_entry(n, struct ext4_free_data, efd_node); 4364 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 4365 n = rb_next(n); 4366 } 4367 return; 4368 } 4369 4370 /* 4371 * the function goes through all preallocation in this group and marks them 4372 * used in in-core bitmap. buddy must be generated from this bitmap 4373 * Need to be called with ext4 group lock held 4374 */ 4375 static noinline_for_stack 4376 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 4377 ext4_group_t group) 4378 { 4379 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4380 struct ext4_prealloc_space *pa; 4381 struct list_head *cur; 4382 ext4_group_t groupnr; 4383 ext4_grpblk_t start; 4384 int preallocated = 0; 4385 int len; 4386 4387 /* all form of preallocation discards first load group, 4388 * so the only competing code is preallocation use. 4389 * we don't need any locking here 4390 * notice we do NOT ignore preallocations with pa_deleted 4391 * otherwise we could leave used blocks available for 4392 * allocation in buddy when concurrent ext4_mb_put_pa() 4393 * is dropping preallocation 4394 */ 4395 list_for_each(cur, &grp->bb_prealloc_list) { 4396 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 4397 spin_lock(&pa->pa_lock); 4398 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4399 &groupnr, &start); 4400 len = pa->pa_len; 4401 spin_unlock(&pa->pa_lock); 4402 if (unlikely(len == 0)) 4403 continue; 4404 BUG_ON(groupnr != group); 4405 ext4_set_bits(bitmap, start, len); 4406 preallocated += len; 4407 } 4408 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 4409 } 4410 4411 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 4412 struct ext4_prealloc_space *pa) 4413 { 4414 struct ext4_inode_info *ei; 4415 4416 if (pa->pa_deleted) { 4417 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 4418 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 4419 pa->pa_len); 4420 return; 4421 } 4422 4423 pa->pa_deleted = 1; 4424 4425 if (pa->pa_type == MB_INODE_PA) { 4426 ei = EXT4_I(pa->pa_inode); 4427 atomic_dec(&ei->i_prealloc_active); 4428 } 4429 } 4430 4431 static void ext4_mb_pa_callback(struct rcu_head *head) 4432 { 4433 struct ext4_prealloc_space *pa; 4434 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 4435 4436 BUG_ON(atomic_read(&pa->pa_count)); 4437 BUG_ON(pa->pa_deleted == 0); 4438 kmem_cache_free(ext4_pspace_cachep, pa); 4439 } 4440 4441 /* 4442 * drops a reference to preallocated space descriptor 4443 * if this was the last reference and the space is consumed 4444 */ 4445 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 4446 struct super_block *sb, struct ext4_prealloc_space *pa) 4447 { 4448 ext4_group_t grp; 4449 ext4_fsblk_t grp_blk; 4450 4451 /* in this short window concurrent discard can set pa_deleted */ 4452 spin_lock(&pa->pa_lock); 4453 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 4454 spin_unlock(&pa->pa_lock); 4455 return; 4456 } 4457 4458 if (pa->pa_deleted == 1) { 4459 spin_unlock(&pa->pa_lock); 4460 return; 4461 } 4462 4463 ext4_mb_mark_pa_deleted(sb, pa); 4464 spin_unlock(&pa->pa_lock); 4465 4466 grp_blk = pa->pa_pstart; 4467 /* 4468 * If doing group-based preallocation, pa_pstart may be in the 4469 * next group when pa is used up 4470 */ 4471 if (pa->pa_type == MB_GROUP_PA) 4472 grp_blk--; 4473 4474 grp = ext4_get_group_number(sb, grp_blk); 4475 4476 /* 4477 * possible race: 4478 * 4479 * P1 (buddy init) P2 (regular allocation) 4480 * find block B in PA 4481 * copy on-disk bitmap to buddy 4482 * mark B in on-disk bitmap 4483 * drop PA from group 4484 * mark all PAs in buddy 4485 * 4486 * thus, P1 initializes buddy with B available. to prevent this 4487 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 4488 * against that pair 4489 */ 4490 ext4_lock_group(sb, grp); 4491 list_del(&pa->pa_group_list); 4492 ext4_unlock_group(sb, grp); 4493 4494 spin_lock(pa->pa_obj_lock); 4495 list_del_rcu(&pa->pa_inode_list); 4496 spin_unlock(pa->pa_obj_lock); 4497 4498 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4499 } 4500 4501 /* 4502 * creates new preallocated space for given inode 4503 */ 4504 static noinline_for_stack void 4505 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 4506 { 4507 struct super_block *sb = ac->ac_sb; 4508 struct ext4_sb_info *sbi = EXT4_SB(sb); 4509 struct ext4_prealloc_space *pa; 4510 struct ext4_group_info *grp; 4511 struct ext4_inode_info *ei; 4512 4513 /* preallocate only when found space is larger then requested */ 4514 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 4515 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4516 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 4517 BUG_ON(ac->ac_pa == NULL); 4518 4519 pa = ac->ac_pa; 4520 4521 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 4522 int winl; 4523 int wins; 4524 int win; 4525 int offs; 4526 4527 /* we can't allocate as much as normalizer wants. 4528 * so, found space must get proper lstart 4529 * to cover original request */ 4530 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 4531 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 4532 4533 /* we're limited by original request in that 4534 * logical block must be covered any way 4535 * winl is window we can move our chunk within */ 4536 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 4537 4538 /* also, we should cover whole original request */ 4539 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 4540 4541 /* the smallest one defines real window */ 4542 win = min(winl, wins); 4543 4544 offs = ac->ac_o_ex.fe_logical % 4545 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4546 if (offs && offs < win) 4547 win = offs; 4548 4549 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 4550 EXT4_NUM_B2C(sbi, win); 4551 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 4552 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 4553 } 4554 4555 /* preallocation can change ac_b_ex, thus we store actually 4556 * allocated blocks for history */ 4557 ac->ac_f_ex = ac->ac_b_ex; 4558 4559 pa->pa_lstart = ac->ac_b_ex.fe_logical; 4560 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4561 pa->pa_len = ac->ac_b_ex.fe_len; 4562 pa->pa_free = pa->pa_len; 4563 spin_lock_init(&pa->pa_lock); 4564 INIT_LIST_HEAD(&pa->pa_inode_list); 4565 INIT_LIST_HEAD(&pa->pa_group_list); 4566 pa->pa_deleted = 0; 4567 pa->pa_type = MB_INODE_PA; 4568 4569 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 4570 pa->pa_len, pa->pa_lstart); 4571 trace_ext4_mb_new_inode_pa(ac, pa); 4572 4573 ext4_mb_use_inode_pa(ac, pa); 4574 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 4575 4576 ei = EXT4_I(ac->ac_inode); 4577 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 4578 4579 pa->pa_obj_lock = &ei->i_prealloc_lock; 4580 pa->pa_inode = ac->ac_inode; 4581 4582 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 4583 4584 spin_lock(pa->pa_obj_lock); 4585 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 4586 spin_unlock(pa->pa_obj_lock); 4587 atomic_inc(&ei->i_prealloc_active); 4588 } 4589 4590 /* 4591 * creates new preallocated space for locality group inodes belongs to 4592 */ 4593 static noinline_for_stack void 4594 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 4595 { 4596 struct super_block *sb = ac->ac_sb; 4597 struct ext4_locality_group *lg; 4598 struct ext4_prealloc_space *pa; 4599 struct ext4_group_info *grp; 4600 4601 /* preallocate only when found space is larger then requested */ 4602 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 4603 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4604 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 4605 BUG_ON(ac->ac_pa == NULL); 4606 4607 pa = ac->ac_pa; 4608 4609 /* preallocation can change ac_b_ex, thus we store actually 4610 * allocated blocks for history */ 4611 ac->ac_f_ex = ac->ac_b_ex; 4612 4613 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4614 pa->pa_lstart = pa->pa_pstart; 4615 pa->pa_len = ac->ac_b_ex.fe_len; 4616 pa->pa_free = pa->pa_len; 4617 spin_lock_init(&pa->pa_lock); 4618 INIT_LIST_HEAD(&pa->pa_inode_list); 4619 INIT_LIST_HEAD(&pa->pa_group_list); 4620 pa->pa_deleted = 0; 4621 pa->pa_type = MB_GROUP_PA; 4622 4623 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 4624 pa->pa_len, pa->pa_lstart); 4625 trace_ext4_mb_new_group_pa(ac, pa); 4626 4627 ext4_mb_use_group_pa(ac, pa); 4628 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 4629 4630 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 4631 lg = ac->ac_lg; 4632 BUG_ON(lg == NULL); 4633 4634 pa->pa_obj_lock = &lg->lg_prealloc_lock; 4635 pa->pa_inode = NULL; 4636 4637 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 4638 4639 /* 4640 * We will later add the new pa to the right bucket 4641 * after updating the pa_free in ext4_mb_release_context 4642 */ 4643 } 4644 4645 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 4646 { 4647 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4648 ext4_mb_new_group_pa(ac); 4649 else 4650 ext4_mb_new_inode_pa(ac); 4651 } 4652 4653 /* 4654 * finds all unused blocks in on-disk bitmap, frees them in 4655 * in-core bitmap and buddy. 4656 * @pa must be unlinked from inode and group lists, so that 4657 * nobody else can find/use it. 4658 * the caller MUST hold group/inode locks. 4659 * TODO: optimize the case when there are no in-core structures yet 4660 */ 4661 static noinline_for_stack int 4662 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 4663 struct ext4_prealloc_space *pa) 4664 { 4665 struct super_block *sb = e4b->bd_sb; 4666 struct ext4_sb_info *sbi = EXT4_SB(sb); 4667 unsigned int end; 4668 unsigned int next; 4669 ext4_group_t group; 4670 ext4_grpblk_t bit; 4671 unsigned long long grp_blk_start; 4672 int free = 0; 4673 4674 BUG_ON(pa->pa_deleted == 0); 4675 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 4676 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 4677 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 4678 end = bit + pa->pa_len; 4679 4680 while (bit < end) { 4681 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 4682 if (bit >= end) 4683 break; 4684 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 4685 mb_debug(sb, "free preallocated %u/%u in group %u\n", 4686 (unsigned) ext4_group_first_block_no(sb, group) + bit, 4687 (unsigned) next - bit, (unsigned) group); 4688 free += next - bit; 4689 4690 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 4691 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 4692 EXT4_C2B(sbi, bit)), 4693 next - bit); 4694 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 4695 bit = next + 1; 4696 } 4697 if (free != pa->pa_free) { 4698 ext4_msg(e4b->bd_sb, KERN_CRIT, 4699 "pa %p: logic %lu, phys. %lu, len %d", 4700 pa, (unsigned long) pa->pa_lstart, 4701 (unsigned long) pa->pa_pstart, 4702 pa->pa_len); 4703 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 4704 free, pa->pa_free); 4705 /* 4706 * pa is already deleted so we use the value obtained 4707 * from the bitmap and continue. 4708 */ 4709 } 4710 atomic_add(free, &sbi->s_mb_discarded); 4711 4712 return 0; 4713 } 4714 4715 static noinline_for_stack int 4716 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 4717 struct ext4_prealloc_space *pa) 4718 { 4719 struct super_block *sb = e4b->bd_sb; 4720 ext4_group_t group; 4721 ext4_grpblk_t bit; 4722 4723 trace_ext4_mb_release_group_pa(sb, pa); 4724 BUG_ON(pa->pa_deleted == 0); 4725 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 4726 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 4727 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 4728 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 4729 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 4730 4731 return 0; 4732 } 4733 4734 /* 4735 * releases all preallocations in given group 4736 * 4737 * first, we need to decide discard policy: 4738 * - when do we discard 4739 * 1) ENOSPC 4740 * - how many do we discard 4741 * 1) how many requested 4742 */ 4743 static noinline_for_stack int 4744 ext4_mb_discard_group_preallocations(struct super_block *sb, 4745 ext4_group_t group, int needed) 4746 { 4747 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4748 struct buffer_head *bitmap_bh = NULL; 4749 struct ext4_prealloc_space *pa, *tmp; 4750 struct list_head list; 4751 struct ext4_buddy e4b; 4752 int err; 4753 int busy = 0; 4754 int free, free_total = 0; 4755 4756 mb_debug(sb, "discard preallocation for group %u\n", group); 4757 if (list_empty(&grp->bb_prealloc_list)) 4758 goto out_dbg; 4759 4760 bitmap_bh = ext4_read_block_bitmap(sb, group); 4761 if (IS_ERR(bitmap_bh)) { 4762 err = PTR_ERR(bitmap_bh); 4763 ext4_error_err(sb, -err, 4764 "Error %d reading block bitmap for %u", 4765 err, group); 4766 goto out_dbg; 4767 } 4768 4769 err = ext4_mb_load_buddy(sb, group, &e4b); 4770 if (err) { 4771 ext4_warning(sb, "Error %d loading buddy information for %u", 4772 err, group); 4773 put_bh(bitmap_bh); 4774 goto out_dbg; 4775 } 4776 4777 if (needed == 0) 4778 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 4779 4780 INIT_LIST_HEAD(&list); 4781 repeat: 4782 free = 0; 4783 ext4_lock_group(sb, group); 4784 list_for_each_entry_safe(pa, tmp, 4785 &grp->bb_prealloc_list, pa_group_list) { 4786 spin_lock(&pa->pa_lock); 4787 if (atomic_read(&pa->pa_count)) { 4788 spin_unlock(&pa->pa_lock); 4789 busy = 1; 4790 continue; 4791 } 4792 if (pa->pa_deleted) { 4793 spin_unlock(&pa->pa_lock); 4794 continue; 4795 } 4796 4797 /* seems this one can be freed ... */ 4798 ext4_mb_mark_pa_deleted(sb, pa); 4799 4800 if (!free) 4801 this_cpu_inc(discard_pa_seq); 4802 4803 /* we can trust pa_free ... */ 4804 free += pa->pa_free; 4805 4806 spin_unlock(&pa->pa_lock); 4807 4808 list_del(&pa->pa_group_list); 4809 list_add(&pa->u.pa_tmp_list, &list); 4810 } 4811 4812 /* now free all selected PAs */ 4813 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4814 4815 /* remove from object (inode or locality group) */ 4816 spin_lock(pa->pa_obj_lock); 4817 list_del_rcu(&pa->pa_inode_list); 4818 spin_unlock(pa->pa_obj_lock); 4819 4820 if (pa->pa_type == MB_GROUP_PA) 4821 ext4_mb_release_group_pa(&e4b, pa); 4822 else 4823 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4824 4825 list_del(&pa->u.pa_tmp_list); 4826 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4827 } 4828 4829 free_total += free; 4830 4831 /* if we still need more blocks and some PAs were used, try again */ 4832 if (free_total < needed && busy) { 4833 ext4_unlock_group(sb, group); 4834 cond_resched(); 4835 busy = 0; 4836 goto repeat; 4837 } 4838 ext4_unlock_group(sb, group); 4839 ext4_mb_unload_buddy(&e4b); 4840 put_bh(bitmap_bh); 4841 out_dbg: 4842 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 4843 free_total, group, grp->bb_free); 4844 return free_total; 4845 } 4846 4847 /* 4848 * releases all non-used preallocated blocks for given inode 4849 * 4850 * It's important to discard preallocations under i_data_sem 4851 * We don't want another block to be served from the prealloc 4852 * space when we are discarding the inode prealloc space. 4853 * 4854 * FIXME!! Make sure it is valid at all the call sites 4855 */ 4856 void ext4_discard_preallocations(struct inode *inode, unsigned int needed) 4857 { 4858 struct ext4_inode_info *ei = EXT4_I(inode); 4859 struct super_block *sb = inode->i_sb; 4860 struct buffer_head *bitmap_bh = NULL; 4861 struct ext4_prealloc_space *pa, *tmp; 4862 ext4_group_t group = 0; 4863 struct list_head list; 4864 struct ext4_buddy e4b; 4865 int err; 4866 4867 if (!S_ISREG(inode->i_mode)) { 4868 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 4869 return; 4870 } 4871 4872 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 4873 return; 4874 4875 mb_debug(sb, "discard preallocation for inode %lu\n", 4876 inode->i_ino); 4877 trace_ext4_discard_preallocations(inode, 4878 atomic_read(&ei->i_prealloc_active), needed); 4879 4880 INIT_LIST_HEAD(&list); 4881 4882 if (needed == 0) 4883 needed = UINT_MAX; 4884 4885 repeat: 4886 /* first, collect all pa's in the inode */ 4887 spin_lock(&ei->i_prealloc_lock); 4888 while (!list_empty(&ei->i_prealloc_list) && needed) { 4889 pa = list_entry(ei->i_prealloc_list.prev, 4890 struct ext4_prealloc_space, pa_inode_list); 4891 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 4892 spin_lock(&pa->pa_lock); 4893 if (atomic_read(&pa->pa_count)) { 4894 /* this shouldn't happen often - nobody should 4895 * use preallocation while we're discarding it */ 4896 spin_unlock(&pa->pa_lock); 4897 spin_unlock(&ei->i_prealloc_lock); 4898 ext4_msg(sb, KERN_ERR, 4899 "uh-oh! used pa while discarding"); 4900 WARN_ON(1); 4901 schedule_timeout_uninterruptible(HZ); 4902 goto repeat; 4903 4904 } 4905 if (pa->pa_deleted == 0) { 4906 ext4_mb_mark_pa_deleted(sb, pa); 4907 spin_unlock(&pa->pa_lock); 4908 list_del_rcu(&pa->pa_inode_list); 4909 list_add(&pa->u.pa_tmp_list, &list); 4910 needed--; 4911 continue; 4912 } 4913 4914 /* someone is deleting pa right now */ 4915 spin_unlock(&pa->pa_lock); 4916 spin_unlock(&ei->i_prealloc_lock); 4917 4918 /* we have to wait here because pa_deleted 4919 * doesn't mean pa is already unlinked from 4920 * the list. as we might be called from 4921 * ->clear_inode() the inode will get freed 4922 * and concurrent thread which is unlinking 4923 * pa from inode's list may access already 4924 * freed memory, bad-bad-bad */ 4925 4926 /* XXX: if this happens too often, we can 4927 * add a flag to force wait only in case 4928 * of ->clear_inode(), but not in case of 4929 * regular truncate */ 4930 schedule_timeout_uninterruptible(HZ); 4931 goto repeat; 4932 } 4933 spin_unlock(&ei->i_prealloc_lock); 4934 4935 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4936 BUG_ON(pa->pa_type != MB_INODE_PA); 4937 group = ext4_get_group_number(sb, pa->pa_pstart); 4938 4939 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4940 GFP_NOFS|__GFP_NOFAIL); 4941 if (err) { 4942 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 4943 err, group); 4944 continue; 4945 } 4946 4947 bitmap_bh = ext4_read_block_bitmap(sb, group); 4948 if (IS_ERR(bitmap_bh)) { 4949 err = PTR_ERR(bitmap_bh); 4950 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 4951 err, group); 4952 ext4_mb_unload_buddy(&e4b); 4953 continue; 4954 } 4955 4956 ext4_lock_group(sb, group); 4957 list_del(&pa->pa_group_list); 4958 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4959 ext4_unlock_group(sb, group); 4960 4961 ext4_mb_unload_buddy(&e4b); 4962 put_bh(bitmap_bh); 4963 4964 list_del(&pa->u.pa_tmp_list); 4965 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4966 } 4967 } 4968 4969 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 4970 { 4971 struct ext4_prealloc_space *pa; 4972 4973 BUG_ON(ext4_pspace_cachep == NULL); 4974 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 4975 if (!pa) 4976 return -ENOMEM; 4977 atomic_set(&pa->pa_count, 1); 4978 ac->ac_pa = pa; 4979 return 0; 4980 } 4981 4982 static void ext4_mb_pa_free(struct ext4_allocation_context *ac) 4983 { 4984 struct ext4_prealloc_space *pa = ac->ac_pa; 4985 4986 BUG_ON(!pa); 4987 ac->ac_pa = NULL; 4988 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 4989 kmem_cache_free(ext4_pspace_cachep, pa); 4990 } 4991 4992 #ifdef CONFIG_EXT4_DEBUG 4993 static inline void ext4_mb_show_pa(struct super_block *sb) 4994 { 4995 ext4_group_t i, ngroups; 4996 4997 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 4998 return; 4999 5000 ngroups = ext4_get_groups_count(sb); 5001 mb_debug(sb, "groups: "); 5002 for (i = 0; i < ngroups; i++) { 5003 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 5004 struct ext4_prealloc_space *pa; 5005 ext4_grpblk_t start; 5006 struct list_head *cur; 5007 ext4_lock_group(sb, i); 5008 list_for_each(cur, &grp->bb_prealloc_list) { 5009 pa = list_entry(cur, struct ext4_prealloc_space, 5010 pa_group_list); 5011 spin_lock(&pa->pa_lock); 5012 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5013 NULL, &start); 5014 spin_unlock(&pa->pa_lock); 5015 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 5016 pa->pa_len); 5017 } 5018 ext4_unlock_group(sb, i); 5019 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 5020 grp->bb_fragments); 5021 } 5022 } 5023 5024 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5025 { 5026 struct super_block *sb = ac->ac_sb; 5027 5028 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 5029 return; 5030 5031 mb_debug(sb, "Can't allocate:" 5032 " Allocation context details:"); 5033 mb_debug(sb, "status %u flags 0x%x", 5034 ac->ac_status, ac->ac_flags); 5035 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 5036 "goal %lu/%lu/%lu@%lu, " 5037 "best %lu/%lu/%lu@%lu cr %d", 5038 (unsigned long)ac->ac_o_ex.fe_group, 5039 (unsigned long)ac->ac_o_ex.fe_start, 5040 (unsigned long)ac->ac_o_ex.fe_len, 5041 (unsigned long)ac->ac_o_ex.fe_logical, 5042 (unsigned long)ac->ac_g_ex.fe_group, 5043 (unsigned long)ac->ac_g_ex.fe_start, 5044 (unsigned long)ac->ac_g_ex.fe_len, 5045 (unsigned long)ac->ac_g_ex.fe_logical, 5046 (unsigned long)ac->ac_b_ex.fe_group, 5047 (unsigned long)ac->ac_b_ex.fe_start, 5048 (unsigned long)ac->ac_b_ex.fe_len, 5049 (unsigned long)ac->ac_b_ex.fe_logical, 5050 (int)ac->ac_criteria); 5051 mb_debug(sb, "%u found", ac->ac_found); 5052 ext4_mb_show_pa(sb); 5053 } 5054 #else 5055 static inline void ext4_mb_show_pa(struct super_block *sb) 5056 { 5057 return; 5058 } 5059 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5060 { 5061 ext4_mb_show_pa(ac->ac_sb); 5062 return; 5063 } 5064 #endif 5065 5066 /* 5067 * We use locality group preallocation for small size file. The size of the 5068 * file is determined by the current size or the resulting size after 5069 * allocation which ever is larger 5070 * 5071 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 5072 */ 5073 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 5074 { 5075 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5076 int bsbits = ac->ac_sb->s_blocksize_bits; 5077 loff_t size, isize; 5078 5079 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 5080 return; 5081 5082 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 5083 return; 5084 5085 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 5086 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 5087 >> bsbits; 5088 5089 if ((size == isize) && !ext4_fs_is_busy(sbi) && 5090 !inode_is_open_for_write(ac->ac_inode)) { 5091 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 5092 return; 5093 } 5094 5095 if (sbi->s_mb_group_prealloc <= 0) { 5096 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5097 return; 5098 } 5099 5100 /* don't use group allocation for large files */ 5101 size = max(size, isize); 5102 if (size > sbi->s_mb_stream_request) { 5103 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5104 return; 5105 } 5106 5107 BUG_ON(ac->ac_lg != NULL); 5108 /* 5109 * locality group prealloc space are per cpu. The reason for having 5110 * per cpu locality group is to reduce the contention between block 5111 * request from multiple CPUs. 5112 */ 5113 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 5114 5115 /* we're going to use group allocation */ 5116 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 5117 5118 /* serialize all allocations in the group */ 5119 mutex_lock(&ac->ac_lg->lg_mutex); 5120 } 5121 5122 static noinline_for_stack int 5123 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 5124 struct ext4_allocation_request *ar) 5125 { 5126 struct super_block *sb = ar->inode->i_sb; 5127 struct ext4_sb_info *sbi = EXT4_SB(sb); 5128 struct ext4_super_block *es = sbi->s_es; 5129 ext4_group_t group; 5130 unsigned int len; 5131 ext4_fsblk_t goal; 5132 ext4_grpblk_t block; 5133 5134 /* we can't allocate > group size */ 5135 len = ar->len; 5136 5137 /* just a dirty hack to filter too big requests */ 5138 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 5139 len = EXT4_CLUSTERS_PER_GROUP(sb); 5140 5141 /* start searching from the goal */ 5142 goal = ar->goal; 5143 if (goal < le32_to_cpu(es->s_first_data_block) || 5144 goal >= ext4_blocks_count(es)) 5145 goal = le32_to_cpu(es->s_first_data_block); 5146 ext4_get_group_no_and_offset(sb, goal, &group, &block); 5147 5148 /* set up allocation goals */ 5149 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 5150 ac->ac_status = AC_STATUS_CONTINUE; 5151 ac->ac_sb = sb; 5152 ac->ac_inode = ar->inode; 5153 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 5154 ac->ac_o_ex.fe_group = group; 5155 ac->ac_o_ex.fe_start = block; 5156 ac->ac_o_ex.fe_len = len; 5157 ac->ac_g_ex = ac->ac_o_ex; 5158 ac->ac_flags = ar->flags; 5159 5160 /* we have to define context: we'll work with a file or 5161 * locality group. this is a policy, actually */ 5162 ext4_mb_group_or_file(ac); 5163 5164 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 5165 "left: %u/%u, right %u/%u to %swritable\n", 5166 (unsigned) ar->len, (unsigned) ar->logical, 5167 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 5168 (unsigned) ar->lleft, (unsigned) ar->pleft, 5169 (unsigned) ar->lright, (unsigned) ar->pright, 5170 inode_is_open_for_write(ar->inode) ? "" : "non-"); 5171 return 0; 5172 5173 } 5174 5175 static noinline_for_stack void 5176 ext4_mb_discard_lg_preallocations(struct super_block *sb, 5177 struct ext4_locality_group *lg, 5178 int order, int total_entries) 5179 { 5180 ext4_group_t group = 0; 5181 struct ext4_buddy e4b; 5182 struct list_head discard_list; 5183 struct ext4_prealloc_space *pa, *tmp; 5184 5185 mb_debug(sb, "discard locality group preallocation\n"); 5186 5187 INIT_LIST_HEAD(&discard_list); 5188 5189 spin_lock(&lg->lg_prealloc_lock); 5190 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 5191 pa_inode_list, 5192 lockdep_is_held(&lg->lg_prealloc_lock)) { 5193 spin_lock(&pa->pa_lock); 5194 if (atomic_read(&pa->pa_count)) { 5195 /* 5196 * This is the pa that we just used 5197 * for block allocation. So don't 5198 * free that 5199 */ 5200 spin_unlock(&pa->pa_lock); 5201 continue; 5202 } 5203 if (pa->pa_deleted) { 5204 spin_unlock(&pa->pa_lock); 5205 continue; 5206 } 5207 /* only lg prealloc space */ 5208 BUG_ON(pa->pa_type != MB_GROUP_PA); 5209 5210 /* seems this one can be freed ... */ 5211 ext4_mb_mark_pa_deleted(sb, pa); 5212 spin_unlock(&pa->pa_lock); 5213 5214 list_del_rcu(&pa->pa_inode_list); 5215 list_add(&pa->u.pa_tmp_list, &discard_list); 5216 5217 total_entries--; 5218 if (total_entries <= 5) { 5219 /* 5220 * we want to keep only 5 entries 5221 * allowing it to grow to 8. This 5222 * mak sure we don't call discard 5223 * soon for this list. 5224 */ 5225 break; 5226 } 5227 } 5228 spin_unlock(&lg->lg_prealloc_lock); 5229 5230 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 5231 int err; 5232 5233 group = ext4_get_group_number(sb, pa->pa_pstart); 5234 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5235 GFP_NOFS|__GFP_NOFAIL); 5236 if (err) { 5237 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5238 err, group); 5239 continue; 5240 } 5241 ext4_lock_group(sb, group); 5242 list_del(&pa->pa_group_list); 5243 ext4_mb_release_group_pa(&e4b, pa); 5244 ext4_unlock_group(sb, group); 5245 5246 ext4_mb_unload_buddy(&e4b); 5247 list_del(&pa->u.pa_tmp_list); 5248 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5249 } 5250 } 5251 5252 /* 5253 * We have incremented pa_count. So it cannot be freed at this 5254 * point. Also we hold lg_mutex. So no parallel allocation is 5255 * possible from this lg. That means pa_free cannot be updated. 5256 * 5257 * A parallel ext4_mb_discard_group_preallocations is possible. 5258 * which can cause the lg_prealloc_list to be updated. 5259 */ 5260 5261 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 5262 { 5263 int order, added = 0, lg_prealloc_count = 1; 5264 struct super_block *sb = ac->ac_sb; 5265 struct ext4_locality_group *lg = ac->ac_lg; 5266 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 5267 5268 order = fls(pa->pa_free) - 1; 5269 if (order > PREALLOC_TB_SIZE - 1) 5270 /* The max size of hash table is PREALLOC_TB_SIZE */ 5271 order = PREALLOC_TB_SIZE - 1; 5272 /* Add the prealloc space to lg */ 5273 spin_lock(&lg->lg_prealloc_lock); 5274 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 5275 pa_inode_list, 5276 lockdep_is_held(&lg->lg_prealloc_lock)) { 5277 spin_lock(&tmp_pa->pa_lock); 5278 if (tmp_pa->pa_deleted) { 5279 spin_unlock(&tmp_pa->pa_lock); 5280 continue; 5281 } 5282 if (!added && pa->pa_free < tmp_pa->pa_free) { 5283 /* Add to the tail of the previous entry */ 5284 list_add_tail_rcu(&pa->pa_inode_list, 5285 &tmp_pa->pa_inode_list); 5286 added = 1; 5287 /* 5288 * we want to count the total 5289 * number of entries in the list 5290 */ 5291 } 5292 spin_unlock(&tmp_pa->pa_lock); 5293 lg_prealloc_count++; 5294 } 5295 if (!added) 5296 list_add_tail_rcu(&pa->pa_inode_list, 5297 &lg->lg_prealloc_list[order]); 5298 spin_unlock(&lg->lg_prealloc_lock); 5299 5300 /* Now trim the list to be not more than 8 elements */ 5301 if (lg_prealloc_count > 8) { 5302 ext4_mb_discard_lg_preallocations(sb, lg, 5303 order, lg_prealloc_count); 5304 return; 5305 } 5306 return ; 5307 } 5308 5309 /* 5310 * if per-inode prealloc list is too long, trim some PA 5311 */ 5312 static void ext4_mb_trim_inode_pa(struct inode *inode) 5313 { 5314 struct ext4_inode_info *ei = EXT4_I(inode); 5315 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5316 int count, delta; 5317 5318 count = atomic_read(&ei->i_prealloc_active); 5319 delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1; 5320 if (count > sbi->s_mb_max_inode_prealloc + delta) { 5321 count -= sbi->s_mb_max_inode_prealloc; 5322 ext4_discard_preallocations(inode, count); 5323 } 5324 } 5325 5326 /* 5327 * release all resource we used in allocation 5328 */ 5329 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 5330 { 5331 struct inode *inode = ac->ac_inode; 5332 struct ext4_inode_info *ei = EXT4_I(inode); 5333 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5334 struct ext4_prealloc_space *pa = ac->ac_pa; 5335 if (pa) { 5336 if (pa->pa_type == MB_GROUP_PA) { 5337 /* see comment in ext4_mb_use_group_pa() */ 5338 spin_lock(&pa->pa_lock); 5339 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5340 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5341 pa->pa_free -= ac->ac_b_ex.fe_len; 5342 pa->pa_len -= ac->ac_b_ex.fe_len; 5343 spin_unlock(&pa->pa_lock); 5344 5345 /* 5346 * We want to add the pa to the right bucket. 5347 * Remove it from the list and while adding 5348 * make sure the list to which we are adding 5349 * doesn't grow big. 5350 */ 5351 if (likely(pa->pa_free)) { 5352 spin_lock(pa->pa_obj_lock); 5353 list_del_rcu(&pa->pa_inode_list); 5354 spin_unlock(pa->pa_obj_lock); 5355 ext4_mb_add_n_trim(ac); 5356 } 5357 } 5358 5359 if (pa->pa_type == MB_INODE_PA) { 5360 /* 5361 * treat per-inode prealloc list as a lru list, then try 5362 * to trim the least recently used PA. 5363 */ 5364 spin_lock(pa->pa_obj_lock); 5365 list_move(&pa->pa_inode_list, &ei->i_prealloc_list); 5366 spin_unlock(pa->pa_obj_lock); 5367 } 5368 5369 ext4_mb_put_pa(ac, ac->ac_sb, pa); 5370 } 5371 if (ac->ac_bitmap_page) 5372 put_page(ac->ac_bitmap_page); 5373 if (ac->ac_buddy_page) 5374 put_page(ac->ac_buddy_page); 5375 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5376 mutex_unlock(&ac->ac_lg->lg_mutex); 5377 ext4_mb_collect_stats(ac); 5378 ext4_mb_trim_inode_pa(inode); 5379 return 0; 5380 } 5381 5382 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 5383 { 5384 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 5385 int ret; 5386 int freed = 0; 5387 5388 trace_ext4_mb_discard_preallocations(sb, needed); 5389 for (i = 0; i < ngroups && needed > 0; i++) { 5390 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 5391 freed += ret; 5392 needed -= ret; 5393 } 5394 5395 return freed; 5396 } 5397 5398 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 5399 struct ext4_allocation_context *ac, u64 *seq) 5400 { 5401 int freed; 5402 u64 seq_retry = 0; 5403 bool ret = false; 5404 5405 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 5406 if (freed) { 5407 ret = true; 5408 goto out_dbg; 5409 } 5410 seq_retry = ext4_get_discard_pa_seq_sum(); 5411 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 5412 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 5413 *seq = seq_retry; 5414 ret = true; 5415 } 5416 5417 out_dbg: 5418 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 5419 return ret; 5420 } 5421 5422 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle, 5423 struct ext4_allocation_request *ar, int *errp); 5424 5425 /* 5426 * Main entry point into mballoc to allocate blocks 5427 * it tries to use preallocation first, then falls back 5428 * to usual allocation 5429 */ 5430 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 5431 struct ext4_allocation_request *ar, int *errp) 5432 { 5433 struct ext4_allocation_context *ac = NULL; 5434 struct ext4_sb_info *sbi; 5435 struct super_block *sb; 5436 ext4_fsblk_t block = 0; 5437 unsigned int inquota = 0; 5438 unsigned int reserv_clstrs = 0; 5439 u64 seq; 5440 5441 might_sleep(); 5442 sb = ar->inode->i_sb; 5443 sbi = EXT4_SB(sb); 5444 5445 trace_ext4_request_blocks(ar); 5446 if (sbi->s_mount_state & EXT4_FC_REPLAY) 5447 return ext4_mb_new_blocks_simple(handle, ar, errp); 5448 5449 /* Allow to use superuser reservation for quota file */ 5450 if (ext4_is_quota_file(ar->inode)) 5451 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 5452 5453 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 5454 /* Without delayed allocation we need to verify 5455 * there is enough free blocks to do block allocation 5456 * and verify allocation doesn't exceed the quota limits. 5457 */ 5458 while (ar->len && 5459 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 5460 5461 /* let others to free the space */ 5462 cond_resched(); 5463 ar->len = ar->len >> 1; 5464 } 5465 if (!ar->len) { 5466 ext4_mb_show_pa(sb); 5467 *errp = -ENOSPC; 5468 return 0; 5469 } 5470 reserv_clstrs = ar->len; 5471 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 5472 dquot_alloc_block_nofail(ar->inode, 5473 EXT4_C2B(sbi, ar->len)); 5474 } else { 5475 while (ar->len && 5476 dquot_alloc_block(ar->inode, 5477 EXT4_C2B(sbi, ar->len))) { 5478 5479 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 5480 ar->len--; 5481 } 5482 } 5483 inquota = ar->len; 5484 if (ar->len == 0) { 5485 *errp = -EDQUOT; 5486 goto out; 5487 } 5488 } 5489 5490 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 5491 if (!ac) { 5492 ar->len = 0; 5493 *errp = -ENOMEM; 5494 goto out; 5495 } 5496 5497 *errp = ext4_mb_initialize_context(ac, ar); 5498 if (*errp) { 5499 ar->len = 0; 5500 goto out; 5501 } 5502 5503 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 5504 seq = this_cpu_read(discard_pa_seq); 5505 if (!ext4_mb_use_preallocated(ac)) { 5506 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 5507 ext4_mb_normalize_request(ac, ar); 5508 5509 *errp = ext4_mb_pa_alloc(ac); 5510 if (*errp) 5511 goto errout; 5512 repeat: 5513 /* allocate space in core */ 5514 *errp = ext4_mb_regular_allocator(ac); 5515 /* 5516 * pa allocated above is added to grp->bb_prealloc_list only 5517 * when we were able to allocate some block i.e. when 5518 * ac->ac_status == AC_STATUS_FOUND. 5519 * And error from above mean ac->ac_status != AC_STATUS_FOUND 5520 * So we have to free this pa here itself. 5521 */ 5522 if (*errp) { 5523 ext4_mb_pa_free(ac); 5524 ext4_discard_allocated_blocks(ac); 5525 goto errout; 5526 } 5527 if (ac->ac_status == AC_STATUS_FOUND && 5528 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 5529 ext4_mb_pa_free(ac); 5530 } 5531 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 5532 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 5533 if (*errp) { 5534 ext4_discard_allocated_blocks(ac); 5535 goto errout; 5536 } else { 5537 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5538 ar->len = ac->ac_b_ex.fe_len; 5539 } 5540 } else { 5541 if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 5542 goto repeat; 5543 /* 5544 * If block allocation fails then the pa allocated above 5545 * needs to be freed here itself. 5546 */ 5547 ext4_mb_pa_free(ac); 5548 *errp = -ENOSPC; 5549 } 5550 5551 errout: 5552 if (*errp) { 5553 ac->ac_b_ex.fe_len = 0; 5554 ar->len = 0; 5555 ext4_mb_show_ac(ac); 5556 } 5557 ext4_mb_release_context(ac); 5558 out: 5559 if (ac) 5560 kmem_cache_free(ext4_ac_cachep, ac); 5561 if (inquota && ar->len < inquota) 5562 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 5563 if (!ar->len) { 5564 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 5565 /* release all the reserved blocks if non delalloc */ 5566 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 5567 reserv_clstrs); 5568 } 5569 5570 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 5571 5572 return block; 5573 } 5574 5575 /* 5576 * We can merge two free data extents only if the physical blocks 5577 * are contiguous, AND the extents were freed by the same transaction, 5578 * AND the blocks are associated with the same group. 5579 */ 5580 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 5581 struct ext4_free_data *entry, 5582 struct ext4_free_data *new_entry, 5583 struct rb_root *entry_rb_root) 5584 { 5585 if ((entry->efd_tid != new_entry->efd_tid) || 5586 (entry->efd_group != new_entry->efd_group)) 5587 return; 5588 if (entry->efd_start_cluster + entry->efd_count == 5589 new_entry->efd_start_cluster) { 5590 new_entry->efd_start_cluster = entry->efd_start_cluster; 5591 new_entry->efd_count += entry->efd_count; 5592 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 5593 entry->efd_start_cluster) { 5594 new_entry->efd_count += entry->efd_count; 5595 } else 5596 return; 5597 spin_lock(&sbi->s_md_lock); 5598 list_del(&entry->efd_list); 5599 spin_unlock(&sbi->s_md_lock); 5600 rb_erase(&entry->efd_node, entry_rb_root); 5601 kmem_cache_free(ext4_free_data_cachep, entry); 5602 } 5603 5604 static noinline_for_stack int 5605 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 5606 struct ext4_free_data *new_entry) 5607 { 5608 ext4_group_t group = e4b->bd_group; 5609 ext4_grpblk_t cluster; 5610 ext4_grpblk_t clusters = new_entry->efd_count; 5611 struct ext4_free_data *entry; 5612 struct ext4_group_info *db = e4b->bd_info; 5613 struct super_block *sb = e4b->bd_sb; 5614 struct ext4_sb_info *sbi = EXT4_SB(sb); 5615 struct rb_node **n = &db->bb_free_root.rb_node, *node; 5616 struct rb_node *parent = NULL, *new_node; 5617 5618 BUG_ON(!ext4_handle_valid(handle)); 5619 BUG_ON(e4b->bd_bitmap_page == NULL); 5620 BUG_ON(e4b->bd_buddy_page == NULL); 5621 5622 new_node = &new_entry->efd_node; 5623 cluster = new_entry->efd_start_cluster; 5624 5625 if (!*n) { 5626 /* first free block exent. We need to 5627 protect buddy cache from being freed, 5628 * otherwise we'll refresh it from 5629 * on-disk bitmap and lose not-yet-available 5630 * blocks */ 5631 get_page(e4b->bd_buddy_page); 5632 get_page(e4b->bd_bitmap_page); 5633 } 5634 while (*n) { 5635 parent = *n; 5636 entry = rb_entry(parent, struct ext4_free_data, efd_node); 5637 if (cluster < entry->efd_start_cluster) 5638 n = &(*n)->rb_left; 5639 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 5640 n = &(*n)->rb_right; 5641 else { 5642 ext4_grp_locked_error(sb, group, 0, 5643 ext4_group_first_block_no(sb, group) + 5644 EXT4_C2B(sbi, cluster), 5645 "Block already on to-be-freed list"); 5646 kmem_cache_free(ext4_free_data_cachep, new_entry); 5647 return 0; 5648 } 5649 } 5650 5651 rb_link_node(new_node, parent, n); 5652 rb_insert_color(new_node, &db->bb_free_root); 5653 5654 /* Now try to see the extent can be merged to left and right */ 5655 node = rb_prev(new_node); 5656 if (node) { 5657 entry = rb_entry(node, struct ext4_free_data, efd_node); 5658 ext4_try_merge_freed_extent(sbi, entry, new_entry, 5659 &(db->bb_free_root)); 5660 } 5661 5662 node = rb_next(new_node); 5663 if (node) { 5664 entry = rb_entry(node, struct ext4_free_data, efd_node); 5665 ext4_try_merge_freed_extent(sbi, entry, new_entry, 5666 &(db->bb_free_root)); 5667 } 5668 5669 spin_lock(&sbi->s_md_lock); 5670 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 5671 sbi->s_mb_free_pending += clusters; 5672 spin_unlock(&sbi->s_md_lock); 5673 return 0; 5674 } 5675 5676 /* 5677 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 5678 * linearly starting at the goal block and also excludes the blocks which 5679 * are going to be in use after fast commit replay. 5680 */ 5681 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle, 5682 struct ext4_allocation_request *ar, int *errp) 5683 { 5684 struct buffer_head *bitmap_bh; 5685 struct super_block *sb = ar->inode->i_sb; 5686 ext4_group_t group; 5687 ext4_grpblk_t blkoff; 5688 int i = sb->s_blocksize; 5689 ext4_fsblk_t goal, block; 5690 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5691 5692 goal = ar->goal; 5693 if (goal < le32_to_cpu(es->s_first_data_block) || 5694 goal >= ext4_blocks_count(es)) 5695 goal = le32_to_cpu(es->s_first_data_block); 5696 5697 ar->len = 0; 5698 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 5699 for (; group < ext4_get_groups_count(sb); group++) { 5700 bitmap_bh = ext4_read_block_bitmap(sb, group); 5701 if (IS_ERR(bitmap_bh)) { 5702 *errp = PTR_ERR(bitmap_bh); 5703 pr_warn("Failed to read block bitmap\n"); 5704 return 0; 5705 } 5706 5707 ext4_get_group_no_and_offset(sb, 5708 max(ext4_group_first_block_no(sb, group), goal), 5709 NULL, &blkoff); 5710 i = mb_find_next_zero_bit(bitmap_bh->b_data, sb->s_blocksize, 5711 blkoff); 5712 brelse(bitmap_bh); 5713 if (i >= sb->s_blocksize) 5714 continue; 5715 if (ext4_fc_replay_check_excluded(sb, 5716 ext4_group_first_block_no(sb, group) + i)) 5717 continue; 5718 break; 5719 } 5720 5721 if (group >= ext4_get_groups_count(sb) && i >= sb->s_blocksize) 5722 return 0; 5723 5724 block = ext4_group_first_block_no(sb, group) + i; 5725 ext4_mb_mark_bb(sb, block, 1, 1); 5726 ar->len = 1; 5727 5728 return block; 5729 } 5730 5731 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 5732 unsigned long count) 5733 { 5734 struct buffer_head *bitmap_bh; 5735 struct super_block *sb = inode->i_sb; 5736 struct ext4_group_desc *gdp; 5737 struct buffer_head *gdp_bh; 5738 ext4_group_t group; 5739 ext4_grpblk_t blkoff; 5740 int already_freed = 0, err, i; 5741 5742 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 5743 bitmap_bh = ext4_read_block_bitmap(sb, group); 5744 if (IS_ERR(bitmap_bh)) { 5745 err = PTR_ERR(bitmap_bh); 5746 pr_warn("Failed to read block bitmap\n"); 5747 return; 5748 } 5749 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 5750 if (!gdp) 5751 return; 5752 5753 for (i = 0; i < count; i++) { 5754 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data)) 5755 already_freed++; 5756 } 5757 mb_clear_bits(bitmap_bh->b_data, blkoff, count); 5758 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 5759 if (err) 5760 return; 5761 ext4_free_group_clusters_set( 5762 sb, gdp, ext4_free_group_clusters(sb, gdp) + 5763 count - already_freed); 5764 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh); 5765 ext4_group_desc_csum_set(sb, group, gdp); 5766 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 5767 sync_dirty_buffer(bitmap_bh); 5768 sync_dirty_buffer(gdp_bh); 5769 brelse(bitmap_bh); 5770 } 5771 5772 /** 5773 * ext4_free_blocks() -- Free given blocks and update quota 5774 * @handle: handle for this transaction 5775 * @inode: inode 5776 * @bh: optional buffer of the block to be freed 5777 * @block: starting physical block to be freed 5778 * @count: number of blocks to be freed 5779 * @flags: flags used by ext4_free_blocks 5780 */ 5781 void ext4_free_blocks(handle_t *handle, struct inode *inode, 5782 struct buffer_head *bh, ext4_fsblk_t block, 5783 unsigned long count, int flags) 5784 { 5785 struct buffer_head *bitmap_bh = NULL; 5786 struct super_block *sb = inode->i_sb; 5787 struct ext4_group_desc *gdp; 5788 unsigned int overflow; 5789 ext4_grpblk_t bit; 5790 struct buffer_head *gd_bh; 5791 ext4_group_t block_group; 5792 struct ext4_sb_info *sbi; 5793 struct ext4_buddy e4b; 5794 unsigned int count_clusters; 5795 int err = 0; 5796 int ret; 5797 5798 sbi = EXT4_SB(sb); 5799 5800 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 5801 ext4_free_blocks_simple(inode, block, count); 5802 return; 5803 } 5804 5805 might_sleep(); 5806 if (bh) { 5807 if (block) 5808 BUG_ON(block != bh->b_blocknr); 5809 else 5810 block = bh->b_blocknr; 5811 } 5812 5813 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 5814 !ext4_inode_block_valid(inode, block, count)) { 5815 ext4_error(sb, "Freeing blocks not in datazone - " 5816 "block = %llu, count = %lu", block, count); 5817 goto error_return; 5818 } 5819 5820 ext4_debug("freeing block %llu\n", block); 5821 trace_ext4_free_blocks(inode, block, count, flags); 5822 5823 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 5824 BUG_ON(count > 1); 5825 5826 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 5827 inode, bh, block); 5828 } 5829 5830 /* 5831 * If the extent to be freed does not begin on a cluster 5832 * boundary, we need to deal with partial clusters at the 5833 * beginning and end of the extent. Normally we will free 5834 * blocks at the beginning or the end unless we are explicitly 5835 * requested to avoid doing so. 5836 */ 5837 overflow = EXT4_PBLK_COFF(sbi, block); 5838 if (overflow) { 5839 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 5840 overflow = sbi->s_cluster_ratio - overflow; 5841 block += overflow; 5842 if (count > overflow) 5843 count -= overflow; 5844 else 5845 return; 5846 } else { 5847 block -= overflow; 5848 count += overflow; 5849 } 5850 } 5851 overflow = EXT4_LBLK_COFF(sbi, count); 5852 if (overflow) { 5853 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 5854 if (count > overflow) 5855 count -= overflow; 5856 else 5857 return; 5858 } else 5859 count += sbi->s_cluster_ratio - overflow; 5860 } 5861 5862 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 5863 int i; 5864 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 5865 5866 for (i = 0; i < count; i++) { 5867 cond_resched(); 5868 if (is_metadata) 5869 bh = sb_find_get_block(inode->i_sb, block + i); 5870 ext4_forget(handle, is_metadata, inode, bh, block + i); 5871 } 5872 } 5873 5874 do_more: 5875 overflow = 0; 5876 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 5877 5878 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 5879 ext4_get_group_info(sb, block_group)))) 5880 return; 5881 5882 /* 5883 * Check to see if we are freeing blocks across a group 5884 * boundary. 5885 */ 5886 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 5887 overflow = EXT4_C2B(sbi, bit) + count - 5888 EXT4_BLOCKS_PER_GROUP(sb); 5889 count -= overflow; 5890 } 5891 count_clusters = EXT4_NUM_B2C(sbi, count); 5892 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 5893 if (IS_ERR(bitmap_bh)) { 5894 err = PTR_ERR(bitmap_bh); 5895 bitmap_bh = NULL; 5896 goto error_return; 5897 } 5898 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 5899 if (!gdp) { 5900 err = -EIO; 5901 goto error_return; 5902 } 5903 5904 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 5905 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 5906 in_range(block, ext4_inode_table(sb, gdp), 5907 sbi->s_itb_per_group) || 5908 in_range(block + count - 1, ext4_inode_table(sb, gdp), 5909 sbi->s_itb_per_group)) { 5910 5911 ext4_error(sb, "Freeing blocks in system zone - " 5912 "Block = %llu, count = %lu", block, count); 5913 /* err = 0. ext4_std_error should be a no op */ 5914 goto error_return; 5915 } 5916 5917 BUFFER_TRACE(bitmap_bh, "getting write access"); 5918 err = ext4_journal_get_write_access(handle, bitmap_bh); 5919 if (err) 5920 goto error_return; 5921 5922 /* 5923 * We are about to modify some metadata. Call the journal APIs 5924 * to unshare ->b_data if a currently-committing transaction is 5925 * using it 5926 */ 5927 BUFFER_TRACE(gd_bh, "get_write_access"); 5928 err = ext4_journal_get_write_access(handle, gd_bh); 5929 if (err) 5930 goto error_return; 5931 #ifdef AGGRESSIVE_CHECK 5932 { 5933 int i; 5934 for (i = 0; i < count_clusters; i++) 5935 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 5936 } 5937 #endif 5938 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 5939 5940 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 5941 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 5942 GFP_NOFS|__GFP_NOFAIL); 5943 if (err) 5944 goto error_return; 5945 5946 /* 5947 * We need to make sure we don't reuse the freed block until after the 5948 * transaction is committed. We make an exception if the inode is to be 5949 * written in writeback mode since writeback mode has weak data 5950 * consistency guarantees. 5951 */ 5952 if (ext4_handle_valid(handle) && 5953 ((flags & EXT4_FREE_BLOCKS_METADATA) || 5954 !ext4_should_writeback_data(inode))) { 5955 struct ext4_free_data *new_entry; 5956 /* 5957 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 5958 * to fail. 5959 */ 5960 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 5961 GFP_NOFS|__GFP_NOFAIL); 5962 new_entry->efd_start_cluster = bit; 5963 new_entry->efd_group = block_group; 5964 new_entry->efd_count = count_clusters; 5965 new_entry->efd_tid = handle->h_transaction->t_tid; 5966 5967 ext4_lock_group(sb, block_group); 5968 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 5969 ext4_mb_free_metadata(handle, &e4b, new_entry); 5970 } else { 5971 /* need to update group_info->bb_free and bitmap 5972 * with group lock held. generate_buddy look at 5973 * them with group lock_held 5974 */ 5975 if (test_opt(sb, DISCARD)) { 5976 err = ext4_issue_discard(sb, block_group, bit, count, 5977 NULL); 5978 if (err && err != -EOPNOTSUPP) 5979 ext4_msg(sb, KERN_WARNING, "discard request in" 5980 " group:%d block:%d count:%lu failed" 5981 " with %d", block_group, bit, count, 5982 err); 5983 } else 5984 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 5985 5986 ext4_lock_group(sb, block_group); 5987 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 5988 mb_free_blocks(inode, &e4b, bit, count_clusters); 5989 } 5990 5991 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 5992 ext4_free_group_clusters_set(sb, gdp, ret); 5993 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 5994 ext4_group_desc_csum_set(sb, block_group, gdp); 5995 ext4_unlock_group(sb, block_group); 5996 5997 if (sbi->s_log_groups_per_flex) { 5998 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 5999 atomic64_add(count_clusters, 6000 &sbi_array_rcu_deref(sbi, s_flex_groups, 6001 flex_group)->free_clusters); 6002 } 6003 6004 /* 6005 * on a bigalloc file system, defer the s_freeclusters_counter 6006 * update to the caller (ext4_remove_space and friends) so they 6007 * can determine if a cluster freed here should be rereserved 6008 */ 6009 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 6010 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 6011 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 6012 percpu_counter_add(&sbi->s_freeclusters_counter, 6013 count_clusters); 6014 } 6015 6016 ext4_mb_unload_buddy(&e4b); 6017 6018 /* We dirtied the bitmap block */ 6019 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6020 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6021 6022 /* And the group descriptor block */ 6023 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6024 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6025 if (!err) 6026 err = ret; 6027 6028 if (overflow && !err) { 6029 block += count; 6030 count = overflow; 6031 put_bh(bitmap_bh); 6032 goto do_more; 6033 } 6034 error_return: 6035 brelse(bitmap_bh); 6036 ext4_std_error(sb, err); 6037 return; 6038 } 6039 6040 /** 6041 * ext4_group_add_blocks() -- Add given blocks to an existing group 6042 * @handle: handle to this transaction 6043 * @sb: super block 6044 * @block: start physical block to add to the block group 6045 * @count: number of blocks to free 6046 * 6047 * This marks the blocks as free in the bitmap and buddy. 6048 */ 6049 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 6050 ext4_fsblk_t block, unsigned long count) 6051 { 6052 struct buffer_head *bitmap_bh = NULL; 6053 struct buffer_head *gd_bh; 6054 ext4_group_t block_group; 6055 ext4_grpblk_t bit; 6056 unsigned int i; 6057 struct ext4_group_desc *desc; 6058 struct ext4_sb_info *sbi = EXT4_SB(sb); 6059 struct ext4_buddy e4b; 6060 int err = 0, ret, free_clusters_count; 6061 ext4_grpblk_t clusters_freed; 6062 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 6063 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 6064 unsigned long cluster_count = last_cluster - first_cluster + 1; 6065 6066 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 6067 6068 if (count == 0) 6069 return 0; 6070 6071 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6072 /* 6073 * Check to see if we are freeing blocks across a group 6074 * boundary. 6075 */ 6076 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 6077 ext4_warning(sb, "too many blocks added to group %u", 6078 block_group); 6079 err = -EINVAL; 6080 goto error_return; 6081 } 6082 6083 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6084 if (IS_ERR(bitmap_bh)) { 6085 err = PTR_ERR(bitmap_bh); 6086 bitmap_bh = NULL; 6087 goto error_return; 6088 } 6089 6090 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 6091 if (!desc) { 6092 err = -EIO; 6093 goto error_return; 6094 } 6095 6096 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 6097 in_range(ext4_inode_bitmap(sb, desc), block, count) || 6098 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 6099 in_range(block + count - 1, ext4_inode_table(sb, desc), 6100 sbi->s_itb_per_group)) { 6101 ext4_error(sb, "Adding blocks in system zones - " 6102 "Block = %llu, count = %lu", 6103 block, count); 6104 err = -EINVAL; 6105 goto error_return; 6106 } 6107 6108 BUFFER_TRACE(bitmap_bh, "getting write access"); 6109 err = ext4_journal_get_write_access(handle, bitmap_bh); 6110 if (err) 6111 goto error_return; 6112 6113 /* 6114 * We are about to modify some metadata. Call the journal APIs 6115 * to unshare ->b_data if a currently-committing transaction is 6116 * using it 6117 */ 6118 BUFFER_TRACE(gd_bh, "get_write_access"); 6119 err = ext4_journal_get_write_access(handle, gd_bh); 6120 if (err) 6121 goto error_return; 6122 6123 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 6124 BUFFER_TRACE(bitmap_bh, "clear bit"); 6125 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 6126 ext4_error(sb, "bit already cleared for block %llu", 6127 (ext4_fsblk_t)(block + i)); 6128 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 6129 } else { 6130 clusters_freed++; 6131 } 6132 } 6133 6134 err = ext4_mb_load_buddy(sb, block_group, &e4b); 6135 if (err) 6136 goto error_return; 6137 6138 /* 6139 * need to update group_info->bb_free and bitmap 6140 * with group lock held. generate_buddy look at 6141 * them with group lock_held 6142 */ 6143 ext4_lock_group(sb, block_group); 6144 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 6145 mb_free_blocks(NULL, &e4b, bit, cluster_count); 6146 free_clusters_count = clusters_freed + 6147 ext4_free_group_clusters(sb, desc); 6148 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 6149 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 6150 ext4_group_desc_csum_set(sb, block_group, desc); 6151 ext4_unlock_group(sb, block_group); 6152 percpu_counter_add(&sbi->s_freeclusters_counter, 6153 clusters_freed); 6154 6155 if (sbi->s_log_groups_per_flex) { 6156 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6157 atomic64_add(clusters_freed, 6158 &sbi_array_rcu_deref(sbi, s_flex_groups, 6159 flex_group)->free_clusters); 6160 } 6161 6162 ext4_mb_unload_buddy(&e4b); 6163 6164 /* We dirtied the bitmap block */ 6165 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6166 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6167 6168 /* And the group descriptor block */ 6169 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6170 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6171 if (!err) 6172 err = ret; 6173 6174 error_return: 6175 brelse(bitmap_bh); 6176 ext4_std_error(sb, err); 6177 return err; 6178 } 6179 6180 /** 6181 * ext4_trim_extent -- function to TRIM one single free extent in the group 6182 * @sb: super block for the file system 6183 * @start: starting block of the free extent in the alloc. group 6184 * @count: number of blocks to TRIM 6185 * @group: alloc. group we are working with 6186 * @e4b: ext4 buddy for the group 6187 * 6188 * Trim "count" blocks starting at "start" in the "group". To assure that no 6189 * one will allocate those blocks, mark it as used in buddy bitmap. This must 6190 * be called with under the group lock. 6191 */ 6192 static int ext4_trim_extent(struct super_block *sb, int start, int count, 6193 ext4_group_t group, struct ext4_buddy *e4b) 6194 __releases(bitlock) 6195 __acquires(bitlock) 6196 { 6197 struct ext4_free_extent ex; 6198 int ret = 0; 6199 6200 trace_ext4_trim_extent(sb, group, start, count); 6201 6202 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 6203 6204 ex.fe_start = start; 6205 ex.fe_group = group; 6206 ex.fe_len = count; 6207 6208 /* 6209 * Mark blocks used, so no one can reuse them while 6210 * being trimmed. 6211 */ 6212 mb_mark_used(e4b, &ex); 6213 ext4_unlock_group(sb, group); 6214 ret = ext4_issue_discard(sb, group, start, count, NULL); 6215 ext4_lock_group(sb, group); 6216 mb_free_blocks(NULL, e4b, start, ex.fe_len); 6217 return ret; 6218 } 6219 6220 /** 6221 * ext4_trim_all_free -- function to trim all free space in alloc. group 6222 * @sb: super block for file system 6223 * @group: group to be trimmed 6224 * @start: first group block to examine 6225 * @max: last group block to examine 6226 * @minblocks: minimum extent block count 6227 * 6228 * ext4_trim_all_free walks through group's buddy bitmap searching for free 6229 * extents. When the free block is found, ext4_trim_extent is called to TRIM 6230 * the extent. 6231 * 6232 * 6233 * ext4_trim_all_free walks through group's block bitmap searching for free 6234 * extents. When the free extent is found, mark it as used in group buddy 6235 * bitmap. Then issue a TRIM command on this extent and free the extent in 6236 * the group buddy bitmap. This is done until whole group is scanned. 6237 */ 6238 static ext4_grpblk_t 6239 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 6240 ext4_grpblk_t start, ext4_grpblk_t max, 6241 ext4_grpblk_t minblocks) 6242 { 6243 void *bitmap; 6244 ext4_grpblk_t next, count = 0, free_count = 0; 6245 struct ext4_buddy e4b; 6246 int ret = 0; 6247 6248 trace_ext4_trim_all_free(sb, group, start, max); 6249 6250 ret = ext4_mb_load_buddy(sb, group, &e4b); 6251 if (ret) { 6252 ext4_warning(sb, "Error %d loading buddy information for %u", 6253 ret, group); 6254 return ret; 6255 } 6256 bitmap = e4b.bd_bitmap; 6257 6258 ext4_lock_group(sb, group); 6259 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 6260 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 6261 goto out; 6262 6263 start = (e4b.bd_info->bb_first_free > start) ? 6264 e4b.bd_info->bb_first_free : start; 6265 6266 while (start <= max) { 6267 start = mb_find_next_zero_bit(bitmap, max + 1, start); 6268 if (start > max) 6269 break; 6270 next = mb_find_next_bit(bitmap, max + 1, start); 6271 6272 if ((next - start) >= minblocks) { 6273 ret = ext4_trim_extent(sb, start, 6274 next - start, group, &e4b); 6275 if (ret && ret != -EOPNOTSUPP) 6276 break; 6277 ret = 0; 6278 count += next - start; 6279 } 6280 free_count += next - start; 6281 start = next + 1; 6282 6283 if (fatal_signal_pending(current)) { 6284 count = -ERESTARTSYS; 6285 break; 6286 } 6287 6288 if (need_resched()) { 6289 ext4_unlock_group(sb, group); 6290 cond_resched(); 6291 ext4_lock_group(sb, group); 6292 } 6293 6294 if ((e4b.bd_info->bb_free - free_count) < minblocks) 6295 break; 6296 } 6297 6298 if (!ret) { 6299 ret = count; 6300 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 6301 } 6302 out: 6303 ext4_unlock_group(sb, group); 6304 ext4_mb_unload_buddy(&e4b); 6305 6306 ext4_debug("trimmed %d blocks in the group %d\n", 6307 count, group); 6308 6309 return ret; 6310 } 6311 6312 /** 6313 * ext4_trim_fs() -- trim ioctl handle function 6314 * @sb: superblock for filesystem 6315 * @range: fstrim_range structure 6316 * 6317 * start: First Byte to trim 6318 * len: number of Bytes to trim from start 6319 * minlen: minimum extent length in Bytes 6320 * ext4_trim_fs goes through all allocation groups containing Bytes from 6321 * start to start+len. For each such a group ext4_trim_all_free function 6322 * is invoked to trim all free space. 6323 */ 6324 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 6325 { 6326 struct ext4_group_info *grp; 6327 ext4_group_t group, first_group, last_group; 6328 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 6329 uint64_t start, end, minlen, trimmed = 0; 6330 ext4_fsblk_t first_data_blk = 6331 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 6332 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 6333 int ret = 0; 6334 6335 start = range->start >> sb->s_blocksize_bits; 6336 end = start + (range->len >> sb->s_blocksize_bits) - 1; 6337 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 6338 range->minlen >> sb->s_blocksize_bits); 6339 6340 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 6341 start >= max_blks || 6342 range->len < sb->s_blocksize) 6343 return -EINVAL; 6344 if (end >= max_blks) 6345 end = max_blks - 1; 6346 if (end <= first_data_blk) 6347 goto out; 6348 if (start < first_data_blk) 6349 start = first_data_blk; 6350 6351 /* Determine first and last group to examine based on start and end */ 6352 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 6353 &first_group, &first_cluster); 6354 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 6355 &last_group, &last_cluster); 6356 6357 /* end now represents the last cluster to discard in this group */ 6358 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 6359 6360 for (group = first_group; group <= last_group; group++) { 6361 grp = ext4_get_group_info(sb, group); 6362 /* We only do this if the grp has never been initialized */ 6363 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 6364 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 6365 if (ret) 6366 break; 6367 } 6368 6369 /* 6370 * For all the groups except the last one, last cluster will 6371 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 6372 * change it for the last group, note that last_cluster is 6373 * already computed earlier by ext4_get_group_no_and_offset() 6374 */ 6375 if (group == last_group) 6376 end = last_cluster; 6377 6378 if (grp->bb_free >= minlen) { 6379 cnt = ext4_trim_all_free(sb, group, first_cluster, 6380 end, minlen); 6381 if (cnt < 0) { 6382 ret = cnt; 6383 break; 6384 } 6385 trimmed += cnt; 6386 } 6387 6388 /* 6389 * For every group except the first one, we are sure 6390 * that the first cluster to discard will be cluster #0. 6391 */ 6392 first_cluster = 0; 6393 } 6394 6395 if (!ret) 6396 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 6397 6398 out: 6399 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 6400 return ret; 6401 } 6402 6403 /* Iterate all the free extents in the group. */ 6404 int 6405 ext4_mballoc_query_range( 6406 struct super_block *sb, 6407 ext4_group_t group, 6408 ext4_grpblk_t start, 6409 ext4_grpblk_t end, 6410 ext4_mballoc_query_range_fn formatter, 6411 void *priv) 6412 { 6413 void *bitmap; 6414 ext4_grpblk_t next; 6415 struct ext4_buddy e4b; 6416 int error; 6417 6418 error = ext4_mb_load_buddy(sb, group, &e4b); 6419 if (error) 6420 return error; 6421 bitmap = e4b.bd_bitmap; 6422 6423 ext4_lock_group(sb, group); 6424 6425 start = (e4b.bd_info->bb_first_free > start) ? 6426 e4b.bd_info->bb_first_free : start; 6427 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 6428 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 6429 6430 while (start <= end) { 6431 start = mb_find_next_zero_bit(bitmap, end + 1, start); 6432 if (start > end) 6433 break; 6434 next = mb_find_next_bit(bitmap, end + 1, start); 6435 6436 ext4_unlock_group(sb, group); 6437 error = formatter(sb, group, start, next - start, priv); 6438 if (error) 6439 goto out_unload; 6440 ext4_lock_group(sb, group); 6441 6442 start = next + 1; 6443 } 6444 6445 ext4_unlock_group(sb, group); 6446 out_unload: 6447 ext4_mb_unload_buddy(&e4b); 6448 6449 return error; 6450 } 6451