1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <trace/events/ext4.h> 21 22 /* 23 * MUSTDO: 24 * - test ext4_ext_search_left() and ext4_ext_search_right() 25 * - search for metadata in few groups 26 * 27 * TODO v4: 28 * - normalization should take into account whether file is still open 29 * - discard preallocations if no free space left (policy?) 30 * - don't normalize tails 31 * - quota 32 * - reservation for superuser 33 * 34 * TODO v3: 35 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 36 * - track min/max extents in each group for better group selection 37 * - mb_mark_used() may allocate chunk right after splitting buddy 38 * - tree of groups sorted by number of free blocks 39 * - error handling 40 */ 41 42 /* 43 * The allocation request involve request for multiple number of blocks 44 * near to the goal(block) value specified. 45 * 46 * During initialization phase of the allocator we decide to use the 47 * group preallocation or inode preallocation depending on the size of 48 * the file. The size of the file could be the resulting file size we 49 * would have after allocation, or the current file size, which ever 50 * is larger. If the size is less than sbi->s_mb_stream_request we 51 * select to use the group preallocation. The default value of 52 * s_mb_stream_request is 16 blocks. This can also be tuned via 53 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 54 * terms of number of blocks. 55 * 56 * The main motivation for having small file use group preallocation is to 57 * ensure that we have small files closer together on the disk. 58 * 59 * First stage the allocator looks at the inode prealloc list, 60 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 61 * spaces for this particular inode. The inode prealloc space is 62 * represented as: 63 * 64 * pa_lstart -> the logical start block for this prealloc space 65 * pa_pstart -> the physical start block for this prealloc space 66 * pa_len -> length for this prealloc space (in clusters) 67 * pa_free -> free space available in this prealloc space (in clusters) 68 * 69 * The inode preallocation space is used looking at the _logical_ start 70 * block. If only the logical file block falls within the range of prealloc 71 * space we will consume the particular prealloc space. This makes sure that 72 * we have contiguous physical blocks representing the file blocks 73 * 74 * The important thing to be noted in case of inode prealloc space is that 75 * we don't modify the values associated to inode prealloc space except 76 * pa_free. 77 * 78 * If we are not able to find blocks in the inode prealloc space and if we 79 * have the group allocation flag set then we look at the locality group 80 * prealloc space. These are per CPU prealloc list represented as 81 * 82 * ext4_sb_info.s_locality_groups[smp_processor_id()] 83 * 84 * The reason for having a per cpu locality group is to reduce the contention 85 * between CPUs. It is possible to get scheduled at this point. 86 * 87 * The locality group prealloc space is used looking at whether we have 88 * enough free space (pa_free) within the prealloc space. 89 * 90 * If we can't allocate blocks via inode prealloc or/and locality group 91 * prealloc then we look at the buddy cache. The buddy cache is represented 92 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 93 * mapped to the buddy and bitmap information regarding different 94 * groups. The buddy information is attached to buddy cache inode so that 95 * we can access them through the page cache. The information regarding 96 * each group is loaded via ext4_mb_load_buddy. The information involve 97 * block bitmap and buddy information. The information are stored in the 98 * inode as: 99 * 100 * { page } 101 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 102 * 103 * 104 * one block each for bitmap and buddy information. So for each group we 105 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 106 * blocksize) blocks. So it can have information regarding groups_per_page 107 * which is blocks_per_page/2 108 * 109 * The buddy cache inode is not stored on disk. The inode is thrown 110 * away when the filesystem is unmounted. 111 * 112 * We look for count number of blocks in the buddy cache. If we were able 113 * to locate that many free blocks we return with additional information 114 * regarding rest of the contiguous physical block available 115 * 116 * Before allocating blocks via buddy cache we normalize the request 117 * blocks. This ensure we ask for more blocks that we needed. The extra 118 * blocks that we get after allocation is added to the respective prealloc 119 * list. In case of inode preallocation we follow a list of heuristics 120 * based on file size. This can be found in ext4_mb_normalize_request. If 121 * we are doing a group prealloc we try to normalize the request to 122 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 123 * dependent on the cluster size; for non-bigalloc file systems, it is 124 * 512 blocks. This can be tuned via 125 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 126 * terms of number of blocks. If we have mounted the file system with -O 127 * stripe=<value> option the group prealloc request is normalized to the 128 * smallest multiple of the stripe value (sbi->s_stripe) which is 129 * greater than the default mb_group_prealloc. 130 * 131 * If "mb_optimize_scan" mount option is set, we maintain in memory group info 132 * structures in two data structures: 133 * 134 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) 135 * 136 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) 137 * 138 * This is an array of lists where the index in the array represents the 139 * largest free order in the buddy bitmap of the participating group infos of 140 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total 141 * number of buddy bitmap orders possible) number of lists. Group-infos are 142 * placed in appropriate lists. 143 * 144 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size) 145 * 146 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks) 147 * 148 * This is an array of lists where in the i-th list there are groups with 149 * average fragment size >= 2^i and < 2^(i+1). The average fragment size 150 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments. 151 * Note that we don't bother with a special list for completely empty groups 152 * so we only have MB_NUM_ORDERS(sb) lists. 153 * 154 * When "mb_optimize_scan" mount option is set, mballoc consults the above data 155 * structures to decide the order in which groups are to be traversed for 156 * fulfilling an allocation request. 157 * 158 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order 159 * >= the order of the request. We directly look at the largest free order list 160 * in the data structure (1) above where largest_free_order = order of the 161 * request. If that list is empty, we look at remaining list in the increasing 162 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED 163 * lookup in O(1) time. 164 * 165 * At CR_GOAL_LEN_FAST, we only consider groups where 166 * average fragment size > request size. So, we lookup a group which has average 167 * fragment size just above or equal to request size using our average fragment 168 * size group lists (data structure 2) in O(1) time. 169 * 170 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied 171 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in 172 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg 173 * fragment size > goal length. So before falling to the slower 174 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and 175 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big 176 * enough average fragment size. This increases the chances of finding a 177 * suitable block group in O(1) time and results in faster allocation at the 178 * cost of reduced size of allocation. 179 * 180 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in 181 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and 182 * CR_GOAL_LEN_FAST phase. 183 * 184 * The regular allocator (using the buddy cache) supports a few tunables. 185 * 186 * /sys/fs/ext4/<partition>/mb_min_to_scan 187 * /sys/fs/ext4/<partition>/mb_max_to_scan 188 * /sys/fs/ext4/<partition>/mb_order2_req 189 * /sys/fs/ext4/<partition>/mb_linear_limit 190 * 191 * The regular allocator uses buddy scan only if the request len is power of 192 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 193 * value of s_mb_order2_reqs can be tuned via 194 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 195 * stripe size (sbi->s_stripe), we try to search for contiguous block in 196 * stripe size. This should result in better allocation on RAID setups. If 197 * not, we search in the specific group using bitmap for best extents. The 198 * tunable min_to_scan and max_to_scan control the behaviour here. 199 * min_to_scan indicate how long the mballoc __must__ look for a best 200 * extent and max_to_scan indicates how long the mballoc __can__ look for a 201 * best extent in the found extents. Searching for the blocks starts with 202 * the group specified as the goal value in allocation context via 203 * ac_g_ex. Each group is first checked based on the criteria whether it 204 * can be used for allocation. ext4_mb_good_group explains how the groups are 205 * checked. 206 * 207 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not 208 * get traversed linearly. That may result in subsequent allocations being not 209 * close to each other. And so, the underlying device may get filled up in a 210 * non-linear fashion. While that may not matter on non-rotational devices, for 211 * rotational devices that may result in higher seek times. "mb_linear_limit" 212 * tells mballoc how many groups mballoc should search linearly before 213 * performing consulting above data structures for more efficient lookups. For 214 * non rotational devices, this value defaults to 0 and for rotational devices 215 * this is set to MB_DEFAULT_LINEAR_LIMIT. 216 * 217 * Both the prealloc space are getting populated as above. So for the first 218 * request we will hit the buddy cache which will result in this prealloc 219 * space getting filled. The prealloc space is then later used for the 220 * subsequent request. 221 */ 222 223 /* 224 * mballoc operates on the following data: 225 * - on-disk bitmap 226 * - in-core buddy (actually includes buddy and bitmap) 227 * - preallocation descriptors (PAs) 228 * 229 * there are two types of preallocations: 230 * - inode 231 * assiged to specific inode and can be used for this inode only. 232 * it describes part of inode's space preallocated to specific 233 * physical blocks. any block from that preallocated can be used 234 * independent. the descriptor just tracks number of blocks left 235 * unused. so, before taking some block from descriptor, one must 236 * make sure corresponded logical block isn't allocated yet. this 237 * also means that freeing any block within descriptor's range 238 * must discard all preallocated blocks. 239 * - locality group 240 * assigned to specific locality group which does not translate to 241 * permanent set of inodes: inode can join and leave group. space 242 * from this type of preallocation can be used for any inode. thus 243 * it's consumed from the beginning to the end. 244 * 245 * relation between them can be expressed as: 246 * in-core buddy = on-disk bitmap + preallocation descriptors 247 * 248 * this mean blocks mballoc considers used are: 249 * - allocated blocks (persistent) 250 * - preallocated blocks (non-persistent) 251 * 252 * consistency in mballoc world means that at any time a block is either 253 * free or used in ALL structures. notice: "any time" should not be read 254 * literally -- time is discrete and delimited by locks. 255 * 256 * to keep it simple, we don't use block numbers, instead we count number of 257 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 258 * 259 * all operations can be expressed as: 260 * - init buddy: buddy = on-disk + PAs 261 * - new PA: buddy += N; PA = N 262 * - use inode PA: on-disk += N; PA -= N 263 * - discard inode PA buddy -= on-disk - PA; PA = 0 264 * - use locality group PA on-disk += N; PA -= N 265 * - discard locality group PA buddy -= PA; PA = 0 266 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 267 * is used in real operation because we can't know actual used 268 * bits from PA, only from on-disk bitmap 269 * 270 * if we follow this strict logic, then all operations above should be atomic. 271 * given some of them can block, we'd have to use something like semaphores 272 * killing performance on high-end SMP hardware. let's try to relax it using 273 * the following knowledge: 274 * 1) if buddy is referenced, it's already initialized 275 * 2) while block is used in buddy and the buddy is referenced, 276 * nobody can re-allocate that block 277 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 278 * bit set and PA claims same block, it's OK. IOW, one can set bit in 279 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 280 * block 281 * 282 * so, now we're building a concurrency table: 283 * - init buddy vs. 284 * - new PA 285 * blocks for PA are allocated in the buddy, buddy must be referenced 286 * until PA is linked to allocation group to avoid concurrent buddy init 287 * - use inode PA 288 * we need to make sure that either on-disk bitmap or PA has uptodate data 289 * given (3) we care that PA-=N operation doesn't interfere with init 290 * - discard inode PA 291 * the simplest way would be to have buddy initialized by the discard 292 * - use locality group PA 293 * again PA-=N must be serialized with init 294 * - discard locality group PA 295 * the simplest way would be to have buddy initialized by the discard 296 * - new PA vs. 297 * - use inode PA 298 * i_data_sem serializes them 299 * - discard inode PA 300 * discard process must wait until PA isn't used by another process 301 * - use locality group PA 302 * some mutex should serialize them 303 * - discard locality group PA 304 * discard process must wait until PA isn't used by another process 305 * - use inode PA 306 * - use inode PA 307 * i_data_sem or another mutex should serializes them 308 * - discard inode PA 309 * discard process must wait until PA isn't used by another process 310 * - use locality group PA 311 * nothing wrong here -- they're different PAs covering different blocks 312 * - discard locality group PA 313 * discard process must wait until PA isn't used by another process 314 * 315 * now we're ready to make few consequences: 316 * - PA is referenced and while it is no discard is possible 317 * - PA is referenced until block isn't marked in on-disk bitmap 318 * - PA changes only after on-disk bitmap 319 * - discard must not compete with init. either init is done before 320 * any discard or they're serialized somehow 321 * - buddy init as sum of on-disk bitmap and PAs is done atomically 322 * 323 * a special case when we've used PA to emptiness. no need to modify buddy 324 * in this case, but we should care about concurrent init 325 * 326 */ 327 328 /* 329 * Logic in few words: 330 * 331 * - allocation: 332 * load group 333 * find blocks 334 * mark bits in on-disk bitmap 335 * release group 336 * 337 * - use preallocation: 338 * find proper PA (per-inode or group) 339 * load group 340 * mark bits in on-disk bitmap 341 * release group 342 * release PA 343 * 344 * - free: 345 * load group 346 * mark bits in on-disk bitmap 347 * release group 348 * 349 * - discard preallocations in group: 350 * mark PAs deleted 351 * move them onto local list 352 * load on-disk bitmap 353 * load group 354 * remove PA from object (inode or locality group) 355 * mark free blocks in-core 356 * 357 * - discard inode's preallocations: 358 */ 359 360 /* 361 * Locking rules 362 * 363 * Locks: 364 * - bitlock on a group (group) 365 * - object (inode/locality) (object) 366 * - per-pa lock (pa) 367 * - cr_power2_aligned lists lock (cr_power2_aligned) 368 * - cr_goal_len_fast lists lock (cr_goal_len_fast) 369 * 370 * Paths: 371 * - new pa 372 * object 373 * group 374 * 375 * - find and use pa: 376 * pa 377 * 378 * - release consumed pa: 379 * pa 380 * group 381 * object 382 * 383 * - generate in-core bitmap: 384 * group 385 * pa 386 * 387 * - discard all for given object (inode, locality group): 388 * object 389 * pa 390 * group 391 * 392 * - discard all for given group: 393 * group 394 * pa 395 * group 396 * object 397 * 398 * - allocation path (ext4_mb_regular_allocator) 399 * group 400 * cr_power2_aligned/cr_goal_len_fast 401 */ 402 static struct kmem_cache *ext4_pspace_cachep; 403 static struct kmem_cache *ext4_ac_cachep; 404 static struct kmem_cache *ext4_free_data_cachep; 405 406 /* We create slab caches for groupinfo data structures based on the 407 * superblock block size. There will be one per mounted filesystem for 408 * each unique s_blocksize_bits */ 409 #define NR_GRPINFO_CACHES 8 410 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 411 412 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 413 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 414 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 415 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 416 }; 417 418 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 419 ext4_group_t group); 420 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 421 422 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 423 ext4_group_t group, enum criteria cr); 424 425 static int ext4_try_to_trim_range(struct super_block *sb, 426 struct ext4_buddy *e4b, ext4_grpblk_t start, 427 ext4_grpblk_t max, ext4_grpblk_t minblocks); 428 429 /* 430 * The algorithm using this percpu seq counter goes below: 431 * 1. We sample the percpu discard_pa_seq counter before trying for block 432 * allocation in ext4_mb_new_blocks(). 433 * 2. We increment this percpu discard_pa_seq counter when we either allocate 434 * or free these blocks i.e. while marking those blocks as used/free in 435 * mb_mark_used()/mb_free_blocks(). 436 * 3. We also increment this percpu seq counter when we successfully identify 437 * that the bb_prealloc_list is not empty and hence proceed for discarding 438 * of those PAs inside ext4_mb_discard_group_preallocations(). 439 * 440 * Now to make sure that the regular fast path of block allocation is not 441 * affected, as a small optimization we only sample the percpu seq counter 442 * on that cpu. Only when the block allocation fails and when freed blocks 443 * found were 0, that is when we sample percpu seq counter for all cpus using 444 * below function ext4_get_discard_pa_seq_sum(). This happens after making 445 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 446 */ 447 static DEFINE_PER_CPU(u64, discard_pa_seq); 448 static inline u64 ext4_get_discard_pa_seq_sum(void) 449 { 450 int __cpu; 451 u64 __seq = 0; 452 453 for_each_possible_cpu(__cpu) 454 __seq += per_cpu(discard_pa_seq, __cpu); 455 return __seq; 456 } 457 458 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 459 { 460 #if BITS_PER_LONG == 64 461 *bit += ((unsigned long) addr & 7UL) << 3; 462 addr = (void *) ((unsigned long) addr & ~7UL); 463 #elif BITS_PER_LONG == 32 464 *bit += ((unsigned long) addr & 3UL) << 3; 465 addr = (void *) ((unsigned long) addr & ~3UL); 466 #else 467 #error "how many bits you are?!" 468 #endif 469 return addr; 470 } 471 472 static inline int mb_test_bit(int bit, void *addr) 473 { 474 /* 475 * ext4_test_bit on architecture like powerpc 476 * needs unsigned long aligned address 477 */ 478 addr = mb_correct_addr_and_bit(&bit, addr); 479 return ext4_test_bit(bit, addr); 480 } 481 482 static inline void mb_set_bit(int bit, void *addr) 483 { 484 addr = mb_correct_addr_and_bit(&bit, addr); 485 ext4_set_bit(bit, addr); 486 } 487 488 static inline void mb_clear_bit(int bit, void *addr) 489 { 490 addr = mb_correct_addr_and_bit(&bit, addr); 491 ext4_clear_bit(bit, addr); 492 } 493 494 static inline int mb_test_and_clear_bit(int bit, void *addr) 495 { 496 addr = mb_correct_addr_and_bit(&bit, addr); 497 return ext4_test_and_clear_bit(bit, addr); 498 } 499 500 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 501 { 502 int fix = 0, ret, tmpmax; 503 addr = mb_correct_addr_and_bit(&fix, addr); 504 tmpmax = max + fix; 505 start += fix; 506 507 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 508 if (ret > max) 509 return max; 510 return ret; 511 } 512 513 static inline int mb_find_next_bit(void *addr, int max, int start) 514 { 515 int fix = 0, ret, tmpmax; 516 addr = mb_correct_addr_and_bit(&fix, addr); 517 tmpmax = max + fix; 518 start += fix; 519 520 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 521 if (ret > max) 522 return max; 523 return ret; 524 } 525 526 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 527 { 528 char *bb; 529 530 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 531 BUG_ON(max == NULL); 532 533 if (order > e4b->bd_blkbits + 1) { 534 *max = 0; 535 return NULL; 536 } 537 538 /* at order 0 we see each particular block */ 539 if (order == 0) { 540 *max = 1 << (e4b->bd_blkbits + 3); 541 return e4b->bd_bitmap; 542 } 543 544 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 545 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 546 547 return bb; 548 } 549 550 #ifdef DOUBLE_CHECK 551 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 552 int first, int count) 553 { 554 int i; 555 struct super_block *sb = e4b->bd_sb; 556 557 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 558 return; 559 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 560 for (i = 0; i < count; i++) { 561 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 562 ext4_fsblk_t blocknr; 563 564 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 565 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 566 ext4_grp_locked_error(sb, e4b->bd_group, 567 inode ? inode->i_ino : 0, 568 blocknr, 569 "freeing block already freed " 570 "(bit %u)", 571 first + i); 572 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 573 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 574 } 575 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 576 } 577 } 578 579 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 580 { 581 int i; 582 583 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 584 return; 585 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 586 for (i = 0; i < count; i++) { 587 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 588 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 589 } 590 } 591 592 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 593 { 594 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 595 return; 596 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 597 unsigned char *b1, *b2; 598 int i; 599 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 600 b2 = (unsigned char *) bitmap; 601 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 602 if (b1[i] != b2[i]) { 603 ext4_msg(e4b->bd_sb, KERN_ERR, 604 "corruption in group %u " 605 "at byte %u(%u): %x in copy != %x " 606 "on disk/prealloc", 607 e4b->bd_group, i, i * 8, b1[i], b2[i]); 608 BUG(); 609 } 610 } 611 } 612 } 613 614 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 615 struct ext4_group_info *grp, ext4_group_t group) 616 { 617 struct buffer_head *bh; 618 619 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 620 if (!grp->bb_bitmap) 621 return; 622 623 bh = ext4_read_block_bitmap(sb, group); 624 if (IS_ERR_OR_NULL(bh)) { 625 kfree(grp->bb_bitmap); 626 grp->bb_bitmap = NULL; 627 return; 628 } 629 630 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 631 put_bh(bh); 632 } 633 634 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 635 { 636 kfree(grp->bb_bitmap); 637 } 638 639 #else 640 static inline void mb_free_blocks_double(struct inode *inode, 641 struct ext4_buddy *e4b, int first, int count) 642 { 643 return; 644 } 645 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 646 int first, int count) 647 { 648 return; 649 } 650 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 651 { 652 return; 653 } 654 655 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 656 struct ext4_group_info *grp, ext4_group_t group) 657 { 658 return; 659 } 660 661 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 662 { 663 return; 664 } 665 #endif 666 667 #ifdef AGGRESSIVE_CHECK 668 669 #define MB_CHECK_ASSERT(assert) \ 670 do { \ 671 if (!(assert)) { \ 672 printk(KERN_EMERG \ 673 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 674 function, file, line, # assert); \ 675 BUG(); \ 676 } \ 677 } while (0) 678 679 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 680 const char *function, int line) 681 { 682 struct super_block *sb = e4b->bd_sb; 683 int order = e4b->bd_blkbits + 1; 684 int max; 685 int max2; 686 int i; 687 int j; 688 int k; 689 int count; 690 struct ext4_group_info *grp; 691 int fragments = 0; 692 int fstart; 693 struct list_head *cur; 694 void *buddy; 695 void *buddy2; 696 697 if (e4b->bd_info->bb_check_counter++ % 10) 698 return 0; 699 700 while (order > 1) { 701 buddy = mb_find_buddy(e4b, order, &max); 702 MB_CHECK_ASSERT(buddy); 703 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 704 MB_CHECK_ASSERT(buddy2); 705 MB_CHECK_ASSERT(buddy != buddy2); 706 MB_CHECK_ASSERT(max * 2 == max2); 707 708 count = 0; 709 for (i = 0; i < max; i++) { 710 711 if (mb_test_bit(i, buddy)) { 712 /* only single bit in buddy2 may be 0 */ 713 if (!mb_test_bit(i << 1, buddy2)) { 714 MB_CHECK_ASSERT( 715 mb_test_bit((i<<1)+1, buddy2)); 716 } 717 continue; 718 } 719 720 /* both bits in buddy2 must be 1 */ 721 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 722 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 723 724 for (j = 0; j < (1 << order); j++) { 725 k = (i * (1 << order)) + j; 726 MB_CHECK_ASSERT( 727 !mb_test_bit(k, e4b->bd_bitmap)); 728 } 729 count++; 730 } 731 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 732 order--; 733 } 734 735 fstart = -1; 736 buddy = mb_find_buddy(e4b, 0, &max); 737 for (i = 0; i < max; i++) { 738 if (!mb_test_bit(i, buddy)) { 739 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 740 if (fstart == -1) { 741 fragments++; 742 fstart = i; 743 } 744 continue; 745 } 746 fstart = -1; 747 /* check used bits only */ 748 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 749 buddy2 = mb_find_buddy(e4b, j, &max2); 750 k = i >> j; 751 MB_CHECK_ASSERT(k < max2); 752 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 753 } 754 } 755 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 756 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 757 758 grp = ext4_get_group_info(sb, e4b->bd_group); 759 if (!grp) 760 return NULL; 761 list_for_each(cur, &grp->bb_prealloc_list) { 762 ext4_group_t groupnr; 763 struct ext4_prealloc_space *pa; 764 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 765 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 766 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 767 for (i = 0; i < pa->pa_len; i++) 768 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 769 } 770 return 0; 771 } 772 #undef MB_CHECK_ASSERT 773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 774 __FILE__, __func__, __LINE__) 775 #else 776 #define mb_check_buddy(e4b) 777 #endif 778 779 /* 780 * Divide blocks started from @first with length @len into 781 * smaller chunks with power of 2 blocks. 782 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 783 * then increase bb_counters[] for corresponded chunk size. 784 */ 785 static void ext4_mb_mark_free_simple(struct super_block *sb, 786 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 787 struct ext4_group_info *grp) 788 { 789 struct ext4_sb_info *sbi = EXT4_SB(sb); 790 ext4_grpblk_t min; 791 ext4_grpblk_t max; 792 ext4_grpblk_t chunk; 793 unsigned int border; 794 795 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 796 797 border = 2 << sb->s_blocksize_bits; 798 799 while (len > 0) { 800 /* find how many blocks can be covered since this position */ 801 max = ffs(first | border) - 1; 802 803 /* find how many blocks of power 2 we need to mark */ 804 min = fls(len) - 1; 805 806 if (max < min) 807 min = max; 808 chunk = 1 << min; 809 810 /* mark multiblock chunks only */ 811 grp->bb_counters[min]++; 812 if (min > 0) 813 mb_clear_bit(first >> min, 814 buddy + sbi->s_mb_offsets[min]); 815 816 len -= chunk; 817 first += chunk; 818 } 819 } 820 821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len) 822 { 823 int order; 824 825 /* 826 * We don't bother with a special lists groups with only 1 block free 827 * extents and for completely empty groups. 828 */ 829 order = fls(len) - 2; 830 if (order < 0) 831 return 0; 832 if (order == MB_NUM_ORDERS(sb)) 833 order--; 834 if (WARN_ON_ONCE(order > MB_NUM_ORDERS(sb))) 835 order = MB_NUM_ORDERS(sb) - 1; 836 return order; 837 } 838 839 /* Move group to appropriate avg_fragment_size list */ 840 static void 841 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) 842 { 843 struct ext4_sb_info *sbi = EXT4_SB(sb); 844 int new_order; 845 846 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0) 847 return; 848 849 new_order = mb_avg_fragment_size_order(sb, 850 grp->bb_free / grp->bb_fragments); 851 if (new_order == grp->bb_avg_fragment_size_order) 852 return; 853 854 if (grp->bb_avg_fragment_size_order != -1) { 855 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 856 grp->bb_avg_fragment_size_order]); 857 list_del(&grp->bb_avg_fragment_size_node); 858 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 859 grp->bb_avg_fragment_size_order]); 860 } 861 grp->bb_avg_fragment_size_order = new_order; 862 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 863 grp->bb_avg_fragment_size_order]); 864 list_add_tail(&grp->bb_avg_fragment_size_node, 865 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]); 866 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 867 grp->bb_avg_fragment_size_order]); 868 } 869 870 /* 871 * Choose next group by traversing largest_free_order lists. Updates *new_cr if 872 * cr level needs an update. 873 */ 874 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac, 875 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 876 { 877 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 878 struct ext4_group_info *iter; 879 int i; 880 881 if (ac->ac_status == AC_STATUS_FOUND) 882 return; 883 884 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED)) 885 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions); 886 887 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 888 if (list_empty(&sbi->s_mb_largest_free_orders[i])) 889 continue; 890 read_lock(&sbi->s_mb_largest_free_orders_locks[i]); 891 if (list_empty(&sbi->s_mb_largest_free_orders[i])) { 892 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 893 continue; 894 } 895 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], 896 bb_largest_free_order_node) { 897 if (sbi->s_mb_stats) 898 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]); 899 if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) { 900 *group = iter->bb_group; 901 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED; 902 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 903 return; 904 } 905 } 906 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 907 } 908 909 /* Increment cr and search again if no group is found */ 910 *new_cr = CR_GOAL_LEN_FAST; 911 } 912 913 /* 914 * Find a suitable group of given order from the average fragments list. 915 */ 916 static struct ext4_group_info * 917 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order) 918 { 919 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 920 struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order]; 921 rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order]; 922 struct ext4_group_info *grp = NULL, *iter; 923 enum criteria cr = ac->ac_criteria; 924 925 if (list_empty(frag_list)) 926 return NULL; 927 read_lock(frag_list_lock); 928 if (list_empty(frag_list)) { 929 read_unlock(frag_list_lock); 930 return NULL; 931 } 932 list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) { 933 if (sbi->s_mb_stats) 934 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]); 935 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) { 936 grp = iter; 937 break; 938 } 939 } 940 read_unlock(frag_list_lock); 941 return grp; 942 } 943 944 /* 945 * Choose next group by traversing average fragment size list of suitable 946 * order. Updates *new_cr if cr level needs an update. 947 */ 948 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac, 949 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 950 { 951 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 952 struct ext4_group_info *grp = NULL; 953 int i; 954 955 if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) { 956 if (sbi->s_mb_stats) 957 atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions); 958 } 959 960 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len); 961 i < MB_NUM_ORDERS(ac->ac_sb); i++) { 962 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i); 963 if (grp) { 964 *group = grp->bb_group; 965 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED; 966 return; 967 } 968 } 969 970 /* 971 * CR_BEST_AVAIL_LEN works based on the concept that we have 972 * a larger normalized goal len request which can be trimmed to 973 * a smaller goal len such that it can still satisfy original 974 * request len. However, allocation request for non-regular 975 * files never gets normalized. 976 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA). 977 */ 978 if (ac->ac_flags & EXT4_MB_HINT_DATA) 979 *new_cr = CR_BEST_AVAIL_LEN; 980 else 981 *new_cr = CR_GOAL_LEN_SLOW; 982 } 983 984 /* 985 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment 986 * order we have and proactively trim the goal request length to that order to 987 * find a suitable group faster. 988 * 989 * This optimizes allocation speed at the cost of slightly reduced 990 * preallocations. However, we make sure that we don't trim the request too 991 * much and fall to CR_GOAL_LEN_SLOW in that case. 992 */ 993 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac, 994 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 995 { 996 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 997 struct ext4_group_info *grp = NULL; 998 int i, order, min_order; 999 unsigned long num_stripe_clusters = 0; 1000 1001 if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) { 1002 if (sbi->s_mb_stats) 1003 atomic_inc(&sbi->s_bal_best_avail_bad_suggestions); 1004 } 1005 1006 /* 1007 * mb_avg_fragment_size_order() returns order in a way that makes 1008 * retrieving back the length using (1 << order) inaccurate. Hence, use 1009 * fls() instead since we need to know the actual length while modifying 1010 * goal length. 1011 */ 1012 order = fls(ac->ac_g_ex.fe_len) - 1; 1013 if (WARN_ON_ONCE(order - 1 > MB_NUM_ORDERS(ac->ac_sb))) 1014 order = MB_NUM_ORDERS(ac->ac_sb); 1015 min_order = order - sbi->s_mb_best_avail_max_trim_order; 1016 if (min_order < 0) 1017 min_order = 0; 1018 1019 if (sbi->s_stripe > 0) { 1020 /* 1021 * We are assuming that stripe size is always a multiple of 1022 * cluster ratio otherwise __ext4_fill_super exists early. 1023 */ 1024 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe); 1025 if (1 << min_order < num_stripe_clusters) 1026 /* 1027 * We consider 1 order less because later we round 1028 * up the goal len to num_stripe_clusters 1029 */ 1030 min_order = fls(num_stripe_clusters) - 1; 1031 } 1032 1033 if (1 << min_order < ac->ac_o_ex.fe_len) 1034 min_order = fls(ac->ac_o_ex.fe_len); 1035 1036 for (i = order; i >= min_order; i--) { 1037 int frag_order; 1038 /* 1039 * Scale down goal len to make sure we find something 1040 * in the free fragments list. Basically, reduce 1041 * preallocations. 1042 */ 1043 ac->ac_g_ex.fe_len = 1 << i; 1044 1045 if (num_stripe_clusters > 0) { 1046 /* 1047 * Try to round up the adjusted goal length to 1048 * stripe size (in cluster units) multiple for 1049 * efficiency. 1050 */ 1051 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len, 1052 num_stripe_clusters); 1053 } 1054 1055 frag_order = mb_avg_fragment_size_order(ac->ac_sb, 1056 ac->ac_g_ex.fe_len); 1057 1058 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order); 1059 if (grp) { 1060 *group = grp->bb_group; 1061 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED; 1062 return; 1063 } 1064 } 1065 1066 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */ 1067 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 1068 *new_cr = CR_GOAL_LEN_SLOW; 1069 } 1070 1071 static inline int should_optimize_scan(struct ext4_allocation_context *ac) 1072 { 1073 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) 1074 return 0; 1075 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW) 1076 return 0; 1077 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) 1078 return 0; 1079 return 1; 1080 } 1081 1082 /* 1083 * Return next linear group for allocation. If linear traversal should not be 1084 * performed, this function just returns the same group 1085 */ 1086 static ext4_group_t 1087 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group, 1088 ext4_group_t ngroups) 1089 { 1090 if (!should_optimize_scan(ac)) 1091 goto inc_and_return; 1092 1093 if (ac->ac_groups_linear_remaining) { 1094 ac->ac_groups_linear_remaining--; 1095 goto inc_and_return; 1096 } 1097 1098 return group; 1099 inc_and_return: 1100 /* 1101 * Artificially restricted ngroups for non-extent 1102 * files makes group > ngroups possible on first loop. 1103 */ 1104 return group + 1 >= ngroups ? 0 : group + 1; 1105 } 1106 1107 /* 1108 * ext4_mb_choose_next_group: choose next group for allocation. 1109 * 1110 * @ac Allocation Context 1111 * @new_cr This is an output parameter. If the there is no good group 1112 * available at current CR level, this field is updated to indicate 1113 * the new cr level that should be used. 1114 * @group This is an input / output parameter. As an input it indicates the 1115 * next group that the allocator intends to use for allocation. As 1116 * output, this field indicates the next group that should be used as 1117 * determined by the optimization functions. 1118 * @ngroups Total number of groups 1119 */ 1120 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, 1121 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 1122 { 1123 *new_cr = ac->ac_criteria; 1124 1125 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) { 1126 *group = next_linear_group(ac, *group, ngroups); 1127 return; 1128 } 1129 1130 if (*new_cr == CR_POWER2_ALIGNED) { 1131 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups); 1132 } else if (*new_cr == CR_GOAL_LEN_FAST) { 1133 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups); 1134 } else if (*new_cr == CR_BEST_AVAIL_LEN) { 1135 ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups); 1136 } else { 1137 /* 1138 * TODO: For CR=2, we can arrange groups in an rb tree sorted by 1139 * bb_free. But until that happens, we should never come here. 1140 */ 1141 WARN_ON(1); 1142 } 1143 } 1144 1145 /* 1146 * Cache the order of the largest free extent we have available in this block 1147 * group. 1148 */ 1149 static void 1150 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 1151 { 1152 struct ext4_sb_info *sbi = EXT4_SB(sb); 1153 int i; 1154 1155 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) 1156 if (grp->bb_counters[i] > 0) 1157 break; 1158 /* No need to move between order lists? */ 1159 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || 1160 i == grp->bb_largest_free_order) { 1161 grp->bb_largest_free_order = i; 1162 return; 1163 } 1164 1165 if (grp->bb_largest_free_order >= 0) { 1166 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1167 grp->bb_largest_free_order]); 1168 list_del_init(&grp->bb_largest_free_order_node); 1169 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1170 grp->bb_largest_free_order]); 1171 } 1172 grp->bb_largest_free_order = i; 1173 if (grp->bb_largest_free_order >= 0 && grp->bb_free) { 1174 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1175 grp->bb_largest_free_order]); 1176 list_add_tail(&grp->bb_largest_free_order_node, 1177 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); 1178 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1179 grp->bb_largest_free_order]); 1180 } 1181 } 1182 1183 static noinline_for_stack 1184 void ext4_mb_generate_buddy(struct super_block *sb, 1185 void *buddy, void *bitmap, ext4_group_t group, 1186 struct ext4_group_info *grp) 1187 { 1188 struct ext4_sb_info *sbi = EXT4_SB(sb); 1189 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 1190 ext4_grpblk_t i = 0; 1191 ext4_grpblk_t first; 1192 ext4_grpblk_t len; 1193 unsigned free = 0; 1194 unsigned fragments = 0; 1195 unsigned long long period = get_cycles(); 1196 1197 /* initialize buddy from bitmap which is aggregation 1198 * of on-disk bitmap and preallocations */ 1199 i = mb_find_next_zero_bit(bitmap, max, 0); 1200 grp->bb_first_free = i; 1201 while (i < max) { 1202 fragments++; 1203 first = i; 1204 i = mb_find_next_bit(bitmap, max, i); 1205 len = i - first; 1206 free += len; 1207 if (len > 1) 1208 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 1209 else 1210 grp->bb_counters[0]++; 1211 if (i < max) 1212 i = mb_find_next_zero_bit(bitmap, max, i); 1213 } 1214 grp->bb_fragments = fragments; 1215 1216 if (free != grp->bb_free) { 1217 ext4_grp_locked_error(sb, group, 0, 0, 1218 "block bitmap and bg descriptor " 1219 "inconsistent: %u vs %u free clusters", 1220 free, grp->bb_free); 1221 /* 1222 * If we intend to continue, we consider group descriptor 1223 * corrupt and update bb_free using bitmap value 1224 */ 1225 grp->bb_free = free; 1226 ext4_mark_group_bitmap_corrupted(sb, group, 1227 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1228 } 1229 mb_set_largest_free_order(sb, grp); 1230 mb_update_avg_fragment_size(sb, grp); 1231 1232 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 1233 1234 period = get_cycles() - period; 1235 atomic_inc(&sbi->s_mb_buddies_generated); 1236 atomic64_add(period, &sbi->s_mb_generation_time); 1237 } 1238 1239 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 1240 { 1241 int count; 1242 int order = 1; 1243 void *buddy; 1244 1245 while ((buddy = mb_find_buddy(e4b, order++, &count))) 1246 mb_set_bits(buddy, 0, count); 1247 1248 e4b->bd_info->bb_fragments = 0; 1249 memset(e4b->bd_info->bb_counters, 0, 1250 sizeof(*e4b->bd_info->bb_counters) * 1251 (e4b->bd_sb->s_blocksize_bits + 2)); 1252 1253 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 1254 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info); 1255 } 1256 1257 /* The buddy information is attached the buddy cache inode 1258 * for convenience. The information regarding each group 1259 * is loaded via ext4_mb_load_buddy. The information involve 1260 * block bitmap and buddy information. The information are 1261 * stored in the inode as 1262 * 1263 * { page } 1264 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 1265 * 1266 * 1267 * one block each for bitmap and buddy information. 1268 * So for each group we take up 2 blocks. A page can 1269 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 1270 * So it can have information regarding groups_per_page which 1271 * is blocks_per_page/2 1272 * 1273 * Locking note: This routine takes the block group lock of all groups 1274 * for this page; do not hold this lock when calling this routine! 1275 */ 1276 1277 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 1278 { 1279 ext4_group_t ngroups; 1280 unsigned int blocksize; 1281 int blocks_per_page; 1282 int groups_per_page; 1283 int err = 0; 1284 int i; 1285 ext4_group_t first_group, group; 1286 int first_block; 1287 struct super_block *sb; 1288 struct buffer_head *bhs; 1289 struct buffer_head **bh = NULL; 1290 struct inode *inode; 1291 char *data; 1292 char *bitmap; 1293 struct ext4_group_info *grinfo; 1294 1295 inode = page->mapping->host; 1296 sb = inode->i_sb; 1297 ngroups = ext4_get_groups_count(sb); 1298 blocksize = i_blocksize(inode); 1299 blocks_per_page = PAGE_SIZE / blocksize; 1300 1301 mb_debug(sb, "init page %lu\n", page->index); 1302 1303 groups_per_page = blocks_per_page >> 1; 1304 if (groups_per_page == 0) 1305 groups_per_page = 1; 1306 1307 /* allocate buffer_heads to read bitmaps */ 1308 if (groups_per_page > 1) { 1309 i = sizeof(struct buffer_head *) * groups_per_page; 1310 bh = kzalloc(i, gfp); 1311 if (bh == NULL) 1312 return -ENOMEM; 1313 } else 1314 bh = &bhs; 1315 1316 first_group = page->index * blocks_per_page / 2; 1317 1318 /* read all groups the page covers into the cache */ 1319 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1320 if (group >= ngroups) 1321 break; 1322 1323 grinfo = ext4_get_group_info(sb, group); 1324 if (!grinfo) 1325 continue; 1326 /* 1327 * If page is uptodate then we came here after online resize 1328 * which added some new uninitialized group info structs, so 1329 * we must skip all initialized uptodate buddies on the page, 1330 * which may be currently in use by an allocating task. 1331 */ 1332 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 1333 bh[i] = NULL; 1334 continue; 1335 } 1336 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 1337 if (IS_ERR(bh[i])) { 1338 err = PTR_ERR(bh[i]); 1339 bh[i] = NULL; 1340 goto out; 1341 } 1342 mb_debug(sb, "read bitmap for group %u\n", group); 1343 } 1344 1345 /* wait for I/O completion */ 1346 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1347 int err2; 1348 1349 if (!bh[i]) 1350 continue; 1351 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 1352 if (!err) 1353 err = err2; 1354 } 1355 1356 first_block = page->index * blocks_per_page; 1357 for (i = 0; i < blocks_per_page; i++) { 1358 group = (first_block + i) >> 1; 1359 if (group >= ngroups) 1360 break; 1361 1362 if (!bh[group - first_group]) 1363 /* skip initialized uptodate buddy */ 1364 continue; 1365 1366 if (!buffer_verified(bh[group - first_group])) 1367 /* Skip faulty bitmaps */ 1368 continue; 1369 err = 0; 1370 1371 /* 1372 * data carry information regarding this 1373 * particular group in the format specified 1374 * above 1375 * 1376 */ 1377 data = page_address(page) + (i * blocksize); 1378 bitmap = bh[group - first_group]->b_data; 1379 1380 /* 1381 * We place the buddy block and bitmap block 1382 * close together 1383 */ 1384 grinfo = ext4_get_group_info(sb, group); 1385 if (!grinfo) { 1386 err = -EFSCORRUPTED; 1387 goto out; 1388 } 1389 if ((first_block + i) & 1) { 1390 /* this is block of buddy */ 1391 BUG_ON(incore == NULL); 1392 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 1393 group, page->index, i * blocksize); 1394 trace_ext4_mb_buddy_bitmap_load(sb, group); 1395 grinfo->bb_fragments = 0; 1396 memset(grinfo->bb_counters, 0, 1397 sizeof(*grinfo->bb_counters) * 1398 (MB_NUM_ORDERS(sb))); 1399 /* 1400 * incore got set to the group block bitmap below 1401 */ 1402 ext4_lock_group(sb, group); 1403 /* init the buddy */ 1404 memset(data, 0xff, blocksize); 1405 ext4_mb_generate_buddy(sb, data, incore, group, grinfo); 1406 ext4_unlock_group(sb, group); 1407 incore = NULL; 1408 } else { 1409 /* this is block of bitmap */ 1410 BUG_ON(incore != NULL); 1411 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 1412 group, page->index, i * blocksize); 1413 trace_ext4_mb_bitmap_load(sb, group); 1414 1415 /* see comments in ext4_mb_put_pa() */ 1416 ext4_lock_group(sb, group); 1417 memcpy(data, bitmap, blocksize); 1418 1419 /* mark all preallocated blks used in in-core bitmap */ 1420 ext4_mb_generate_from_pa(sb, data, group); 1421 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root)); 1422 ext4_unlock_group(sb, group); 1423 1424 /* set incore so that the buddy information can be 1425 * generated using this 1426 */ 1427 incore = data; 1428 } 1429 } 1430 SetPageUptodate(page); 1431 1432 out: 1433 if (bh) { 1434 for (i = 0; i < groups_per_page; i++) 1435 brelse(bh[i]); 1436 if (bh != &bhs) 1437 kfree(bh); 1438 } 1439 return err; 1440 } 1441 1442 /* 1443 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1444 * on the same buddy page doesn't happen whild holding the buddy page lock. 1445 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1446 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1447 */ 1448 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1449 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1450 { 1451 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1452 int block, pnum, poff; 1453 int blocks_per_page; 1454 struct page *page; 1455 1456 e4b->bd_buddy_page = NULL; 1457 e4b->bd_bitmap_page = NULL; 1458 1459 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1460 /* 1461 * the buddy cache inode stores the block bitmap 1462 * and buddy information in consecutive blocks. 1463 * So for each group we need two blocks. 1464 */ 1465 block = group * 2; 1466 pnum = block / blocks_per_page; 1467 poff = block % blocks_per_page; 1468 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1469 if (!page) 1470 return -ENOMEM; 1471 BUG_ON(page->mapping != inode->i_mapping); 1472 e4b->bd_bitmap_page = page; 1473 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1474 1475 if (blocks_per_page >= 2) { 1476 /* buddy and bitmap are on the same page */ 1477 return 0; 1478 } 1479 1480 block++; 1481 pnum = block / blocks_per_page; 1482 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1483 if (!page) 1484 return -ENOMEM; 1485 BUG_ON(page->mapping != inode->i_mapping); 1486 e4b->bd_buddy_page = page; 1487 return 0; 1488 } 1489 1490 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1491 { 1492 if (e4b->bd_bitmap_page) { 1493 unlock_page(e4b->bd_bitmap_page); 1494 put_page(e4b->bd_bitmap_page); 1495 } 1496 if (e4b->bd_buddy_page) { 1497 unlock_page(e4b->bd_buddy_page); 1498 put_page(e4b->bd_buddy_page); 1499 } 1500 } 1501 1502 /* 1503 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1504 * block group lock of all groups for this page; do not hold the BG lock when 1505 * calling this routine! 1506 */ 1507 static noinline_for_stack 1508 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1509 { 1510 1511 struct ext4_group_info *this_grp; 1512 struct ext4_buddy e4b; 1513 struct page *page; 1514 int ret = 0; 1515 1516 might_sleep(); 1517 mb_debug(sb, "init group %u\n", group); 1518 this_grp = ext4_get_group_info(sb, group); 1519 if (!this_grp) 1520 return -EFSCORRUPTED; 1521 1522 /* 1523 * This ensures that we don't reinit the buddy cache 1524 * page which map to the group from which we are already 1525 * allocating. If we are looking at the buddy cache we would 1526 * have taken a reference using ext4_mb_load_buddy and that 1527 * would have pinned buddy page to page cache. 1528 * The call to ext4_mb_get_buddy_page_lock will mark the 1529 * page accessed. 1530 */ 1531 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1532 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1533 /* 1534 * somebody initialized the group 1535 * return without doing anything 1536 */ 1537 goto err; 1538 } 1539 1540 page = e4b.bd_bitmap_page; 1541 ret = ext4_mb_init_cache(page, NULL, gfp); 1542 if (ret) 1543 goto err; 1544 if (!PageUptodate(page)) { 1545 ret = -EIO; 1546 goto err; 1547 } 1548 1549 if (e4b.bd_buddy_page == NULL) { 1550 /* 1551 * If both the bitmap and buddy are in 1552 * the same page we don't need to force 1553 * init the buddy 1554 */ 1555 ret = 0; 1556 goto err; 1557 } 1558 /* init buddy cache */ 1559 page = e4b.bd_buddy_page; 1560 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1561 if (ret) 1562 goto err; 1563 if (!PageUptodate(page)) { 1564 ret = -EIO; 1565 goto err; 1566 } 1567 err: 1568 ext4_mb_put_buddy_page_lock(&e4b); 1569 return ret; 1570 } 1571 1572 /* 1573 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1574 * block group lock of all groups for this page; do not hold the BG lock when 1575 * calling this routine! 1576 */ 1577 static noinline_for_stack int 1578 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1579 struct ext4_buddy *e4b, gfp_t gfp) 1580 { 1581 int blocks_per_page; 1582 int block; 1583 int pnum; 1584 int poff; 1585 struct page *page; 1586 int ret; 1587 struct ext4_group_info *grp; 1588 struct ext4_sb_info *sbi = EXT4_SB(sb); 1589 struct inode *inode = sbi->s_buddy_cache; 1590 1591 might_sleep(); 1592 mb_debug(sb, "load group %u\n", group); 1593 1594 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1595 grp = ext4_get_group_info(sb, group); 1596 if (!grp) 1597 return -EFSCORRUPTED; 1598 1599 e4b->bd_blkbits = sb->s_blocksize_bits; 1600 e4b->bd_info = grp; 1601 e4b->bd_sb = sb; 1602 e4b->bd_group = group; 1603 e4b->bd_buddy_page = NULL; 1604 e4b->bd_bitmap_page = NULL; 1605 1606 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1607 /* 1608 * we need full data about the group 1609 * to make a good selection 1610 */ 1611 ret = ext4_mb_init_group(sb, group, gfp); 1612 if (ret) 1613 return ret; 1614 } 1615 1616 /* 1617 * the buddy cache inode stores the block bitmap 1618 * and buddy information in consecutive blocks. 1619 * So for each group we need two blocks. 1620 */ 1621 block = group * 2; 1622 pnum = block / blocks_per_page; 1623 poff = block % blocks_per_page; 1624 1625 /* we could use find_or_create_page(), but it locks page 1626 * what we'd like to avoid in fast path ... */ 1627 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1628 if (page == NULL || !PageUptodate(page)) { 1629 if (page) 1630 /* 1631 * drop the page reference and try 1632 * to get the page with lock. If we 1633 * are not uptodate that implies 1634 * somebody just created the page but 1635 * is yet to initialize the same. So 1636 * wait for it to initialize. 1637 */ 1638 put_page(page); 1639 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1640 if (page) { 1641 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1642 "ext4: bitmap's paging->mapping != inode->i_mapping\n")) { 1643 /* should never happen */ 1644 unlock_page(page); 1645 ret = -EINVAL; 1646 goto err; 1647 } 1648 if (!PageUptodate(page)) { 1649 ret = ext4_mb_init_cache(page, NULL, gfp); 1650 if (ret) { 1651 unlock_page(page); 1652 goto err; 1653 } 1654 mb_cmp_bitmaps(e4b, page_address(page) + 1655 (poff * sb->s_blocksize)); 1656 } 1657 unlock_page(page); 1658 } 1659 } 1660 if (page == NULL) { 1661 ret = -ENOMEM; 1662 goto err; 1663 } 1664 if (!PageUptodate(page)) { 1665 ret = -EIO; 1666 goto err; 1667 } 1668 1669 /* Pages marked accessed already */ 1670 e4b->bd_bitmap_page = page; 1671 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1672 1673 block++; 1674 pnum = block / blocks_per_page; 1675 poff = block % blocks_per_page; 1676 1677 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1678 if (page == NULL || !PageUptodate(page)) { 1679 if (page) 1680 put_page(page); 1681 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1682 if (page) { 1683 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1684 "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) { 1685 /* should never happen */ 1686 unlock_page(page); 1687 ret = -EINVAL; 1688 goto err; 1689 } 1690 if (!PageUptodate(page)) { 1691 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1692 gfp); 1693 if (ret) { 1694 unlock_page(page); 1695 goto err; 1696 } 1697 } 1698 unlock_page(page); 1699 } 1700 } 1701 if (page == NULL) { 1702 ret = -ENOMEM; 1703 goto err; 1704 } 1705 if (!PageUptodate(page)) { 1706 ret = -EIO; 1707 goto err; 1708 } 1709 1710 /* Pages marked accessed already */ 1711 e4b->bd_buddy_page = page; 1712 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1713 1714 return 0; 1715 1716 err: 1717 if (page) 1718 put_page(page); 1719 if (e4b->bd_bitmap_page) 1720 put_page(e4b->bd_bitmap_page); 1721 1722 e4b->bd_buddy = NULL; 1723 e4b->bd_bitmap = NULL; 1724 return ret; 1725 } 1726 1727 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1728 struct ext4_buddy *e4b) 1729 { 1730 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1731 } 1732 1733 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1734 { 1735 if (e4b->bd_bitmap_page) 1736 put_page(e4b->bd_bitmap_page); 1737 if (e4b->bd_buddy_page) 1738 put_page(e4b->bd_buddy_page); 1739 } 1740 1741 1742 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1743 { 1744 int order = 1, max; 1745 void *bb; 1746 1747 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1748 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1749 1750 while (order <= e4b->bd_blkbits + 1) { 1751 bb = mb_find_buddy(e4b, order, &max); 1752 if (!mb_test_bit(block >> order, bb)) { 1753 /* this block is part of buddy of order 'order' */ 1754 return order; 1755 } 1756 order++; 1757 } 1758 return 0; 1759 } 1760 1761 static void mb_clear_bits(void *bm, int cur, int len) 1762 { 1763 __u32 *addr; 1764 1765 len = cur + len; 1766 while (cur < len) { 1767 if ((cur & 31) == 0 && (len - cur) >= 32) { 1768 /* fast path: clear whole word at once */ 1769 addr = bm + (cur >> 3); 1770 *addr = 0; 1771 cur += 32; 1772 continue; 1773 } 1774 mb_clear_bit(cur, bm); 1775 cur++; 1776 } 1777 } 1778 1779 /* clear bits in given range 1780 * will return first found zero bit if any, -1 otherwise 1781 */ 1782 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1783 { 1784 __u32 *addr; 1785 int zero_bit = -1; 1786 1787 len = cur + len; 1788 while (cur < len) { 1789 if ((cur & 31) == 0 && (len - cur) >= 32) { 1790 /* fast path: clear whole word at once */ 1791 addr = bm + (cur >> 3); 1792 if (*addr != (__u32)(-1) && zero_bit == -1) 1793 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1794 *addr = 0; 1795 cur += 32; 1796 continue; 1797 } 1798 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1799 zero_bit = cur; 1800 cur++; 1801 } 1802 1803 return zero_bit; 1804 } 1805 1806 void mb_set_bits(void *bm, int cur, int len) 1807 { 1808 __u32 *addr; 1809 1810 len = cur + len; 1811 while (cur < len) { 1812 if ((cur & 31) == 0 && (len - cur) >= 32) { 1813 /* fast path: set whole word at once */ 1814 addr = bm + (cur >> 3); 1815 *addr = 0xffffffff; 1816 cur += 32; 1817 continue; 1818 } 1819 mb_set_bit(cur, bm); 1820 cur++; 1821 } 1822 } 1823 1824 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1825 { 1826 if (mb_test_bit(*bit + side, bitmap)) { 1827 mb_clear_bit(*bit, bitmap); 1828 (*bit) -= side; 1829 return 1; 1830 } 1831 else { 1832 (*bit) += side; 1833 mb_set_bit(*bit, bitmap); 1834 return -1; 1835 } 1836 } 1837 1838 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1839 { 1840 int max; 1841 int order = 1; 1842 void *buddy = mb_find_buddy(e4b, order, &max); 1843 1844 while (buddy) { 1845 void *buddy2; 1846 1847 /* Bits in range [first; last] are known to be set since 1848 * corresponding blocks were allocated. Bits in range 1849 * (first; last) will stay set because they form buddies on 1850 * upper layer. We just deal with borders if they don't 1851 * align with upper layer and then go up. 1852 * Releasing entire group is all about clearing 1853 * single bit of highest order buddy. 1854 */ 1855 1856 /* Example: 1857 * --------------------------------- 1858 * | 1 | 1 | 1 | 1 | 1859 * --------------------------------- 1860 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1861 * --------------------------------- 1862 * 0 1 2 3 4 5 6 7 1863 * \_____________________/ 1864 * 1865 * Neither [1] nor [6] is aligned to above layer. 1866 * Left neighbour [0] is free, so mark it busy, 1867 * decrease bb_counters and extend range to 1868 * [0; 6] 1869 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1870 * mark [6] free, increase bb_counters and shrink range to 1871 * [0; 5]. 1872 * Then shift range to [0; 2], go up and do the same. 1873 */ 1874 1875 1876 if (first & 1) 1877 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1878 if (!(last & 1)) 1879 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1880 if (first > last) 1881 break; 1882 order++; 1883 1884 buddy2 = mb_find_buddy(e4b, order, &max); 1885 if (!buddy2) { 1886 mb_clear_bits(buddy, first, last - first + 1); 1887 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1888 break; 1889 } 1890 first >>= 1; 1891 last >>= 1; 1892 buddy = buddy2; 1893 } 1894 } 1895 1896 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1897 int first, int count) 1898 { 1899 int left_is_free = 0; 1900 int right_is_free = 0; 1901 int block; 1902 int last = first + count - 1; 1903 struct super_block *sb = e4b->bd_sb; 1904 1905 if (WARN_ON(count == 0)) 1906 return; 1907 BUG_ON(last >= (sb->s_blocksize << 3)); 1908 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1909 /* Don't bother if the block group is corrupt. */ 1910 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1911 return; 1912 1913 mb_check_buddy(e4b); 1914 mb_free_blocks_double(inode, e4b, first, count); 1915 1916 /* access memory sequentially: check left neighbour, 1917 * clear range and then check right neighbour 1918 */ 1919 if (first != 0) 1920 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1921 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1922 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1923 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1924 1925 if (unlikely(block != -1)) { 1926 struct ext4_sb_info *sbi = EXT4_SB(sb); 1927 ext4_fsblk_t blocknr; 1928 1929 /* 1930 * Fastcommit replay can free already freed blocks which 1931 * corrupts allocation info. Regenerate it. 1932 */ 1933 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 1934 mb_regenerate_buddy(e4b); 1935 goto check; 1936 } 1937 1938 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1939 blocknr += EXT4_C2B(sbi, block); 1940 ext4_grp_locked_error(sb, e4b->bd_group, 1941 inode ? inode->i_ino : 0, blocknr, 1942 "freeing already freed block (bit %u); block bitmap corrupt.", 1943 block); 1944 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1945 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1946 return; 1947 } 1948 1949 this_cpu_inc(discard_pa_seq); 1950 e4b->bd_info->bb_free += count; 1951 if (first < e4b->bd_info->bb_first_free) 1952 e4b->bd_info->bb_first_free = first; 1953 1954 /* let's maintain fragments counter */ 1955 if (left_is_free && right_is_free) 1956 e4b->bd_info->bb_fragments--; 1957 else if (!left_is_free && !right_is_free) 1958 e4b->bd_info->bb_fragments++; 1959 1960 /* buddy[0] == bd_bitmap is a special case, so handle 1961 * it right away and let mb_buddy_mark_free stay free of 1962 * zero order checks. 1963 * Check if neighbours are to be coaleasced, 1964 * adjust bitmap bb_counters and borders appropriately. 1965 */ 1966 if (first & 1) { 1967 first += !left_is_free; 1968 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1969 } 1970 if (!(last & 1)) { 1971 last -= !right_is_free; 1972 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1973 } 1974 1975 if (first <= last) 1976 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1977 1978 mb_set_largest_free_order(sb, e4b->bd_info); 1979 mb_update_avg_fragment_size(sb, e4b->bd_info); 1980 check: 1981 mb_check_buddy(e4b); 1982 } 1983 1984 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1985 int needed, struct ext4_free_extent *ex) 1986 { 1987 int next = block; 1988 int max, order; 1989 void *buddy; 1990 1991 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1992 BUG_ON(ex == NULL); 1993 1994 buddy = mb_find_buddy(e4b, 0, &max); 1995 BUG_ON(buddy == NULL); 1996 BUG_ON(block >= max); 1997 if (mb_test_bit(block, buddy)) { 1998 ex->fe_len = 0; 1999 ex->fe_start = 0; 2000 ex->fe_group = 0; 2001 return 0; 2002 } 2003 2004 /* find actual order */ 2005 order = mb_find_order_for_block(e4b, block); 2006 block = block >> order; 2007 2008 ex->fe_len = 1 << order; 2009 ex->fe_start = block << order; 2010 ex->fe_group = e4b->bd_group; 2011 2012 /* calc difference from given start */ 2013 next = next - ex->fe_start; 2014 ex->fe_len -= next; 2015 ex->fe_start += next; 2016 2017 while (needed > ex->fe_len && 2018 mb_find_buddy(e4b, order, &max)) { 2019 2020 if (block + 1 >= max) 2021 break; 2022 2023 next = (block + 1) * (1 << order); 2024 if (mb_test_bit(next, e4b->bd_bitmap)) 2025 break; 2026 2027 order = mb_find_order_for_block(e4b, next); 2028 2029 block = next >> order; 2030 ex->fe_len += 1 << order; 2031 } 2032 2033 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 2034 /* Should never happen! (but apparently sometimes does?!?) */ 2035 WARN_ON(1); 2036 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, 2037 "corruption or bug in mb_find_extent " 2038 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 2039 block, order, needed, ex->fe_group, ex->fe_start, 2040 ex->fe_len, ex->fe_logical); 2041 ex->fe_len = 0; 2042 ex->fe_start = 0; 2043 ex->fe_group = 0; 2044 } 2045 return ex->fe_len; 2046 } 2047 2048 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 2049 { 2050 int ord; 2051 int mlen = 0; 2052 int max = 0; 2053 int cur; 2054 int start = ex->fe_start; 2055 int len = ex->fe_len; 2056 unsigned ret = 0; 2057 int len0 = len; 2058 void *buddy; 2059 bool split = false; 2060 2061 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 2062 BUG_ON(e4b->bd_group != ex->fe_group); 2063 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 2064 mb_check_buddy(e4b); 2065 mb_mark_used_double(e4b, start, len); 2066 2067 this_cpu_inc(discard_pa_seq); 2068 e4b->bd_info->bb_free -= len; 2069 if (e4b->bd_info->bb_first_free == start) 2070 e4b->bd_info->bb_first_free += len; 2071 2072 /* let's maintain fragments counter */ 2073 if (start != 0) 2074 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 2075 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 2076 max = !mb_test_bit(start + len, e4b->bd_bitmap); 2077 if (mlen && max) 2078 e4b->bd_info->bb_fragments++; 2079 else if (!mlen && !max) 2080 e4b->bd_info->bb_fragments--; 2081 2082 /* let's maintain buddy itself */ 2083 while (len) { 2084 if (!split) 2085 ord = mb_find_order_for_block(e4b, start); 2086 2087 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 2088 /* the whole chunk may be allocated at once! */ 2089 mlen = 1 << ord; 2090 if (!split) 2091 buddy = mb_find_buddy(e4b, ord, &max); 2092 else 2093 split = false; 2094 BUG_ON((start >> ord) >= max); 2095 mb_set_bit(start >> ord, buddy); 2096 e4b->bd_info->bb_counters[ord]--; 2097 start += mlen; 2098 len -= mlen; 2099 BUG_ON(len < 0); 2100 continue; 2101 } 2102 2103 /* store for history */ 2104 if (ret == 0) 2105 ret = len | (ord << 16); 2106 2107 /* we have to split large buddy */ 2108 BUG_ON(ord <= 0); 2109 buddy = mb_find_buddy(e4b, ord, &max); 2110 mb_set_bit(start >> ord, buddy); 2111 e4b->bd_info->bb_counters[ord]--; 2112 2113 ord--; 2114 cur = (start >> ord) & ~1U; 2115 buddy = mb_find_buddy(e4b, ord, &max); 2116 mb_clear_bit(cur, buddy); 2117 mb_clear_bit(cur + 1, buddy); 2118 e4b->bd_info->bb_counters[ord]++; 2119 e4b->bd_info->bb_counters[ord]++; 2120 split = true; 2121 } 2122 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 2123 2124 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); 2125 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 2126 mb_check_buddy(e4b); 2127 2128 return ret; 2129 } 2130 2131 /* 2132 * Must be called under group lock! 2133 */ 2134 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 2135 struct ext4_buddy *e4b) 2136 { 2137 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2138 int ret; 2139 2140 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 2141 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2142 2143 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 2144 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 2145 ret = mb_mark_used(e4b, &ac->ac_b_ex); 2146 2147 /* preallocation can change ac_b_ex, thus we store actually 2148 * allocated blocks for history */ 2149 ac->ac_f_ex = ac->ac_b_ex; 2150 2151 ac->ac_status = AC_STATUS_FOUND; 2152 ac->ac_tail = ret & 0xffff; 2153 ac->ac_buddy = ret >> 16; 2154 2155 /* 2156 * take the page reference. We want the page to be pinned 2157 * so that we don't get a ext4_mb_init_cache_call for this 2158 * group until we update the bitmap. That would mean we 2159 * double allocate blocks. The reference is dropped 2160 * in ext4_mb_release_context 2161 */ 2162 ac->ac_bitmap_page = e4b->bd_bitmap_page; 2163 get_page(ac->ac_bitmap_page); 2164 ac->ac_buddy_page = e4b->bd_buddy_page; 2165 get_page(ac->ac_buddy_page); 2166 /* store last allocated for subsequent stream allocation */ 2167 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2168 spin_lock(&sbi->s_md_lock); 2169 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 2170 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 2171 spin_unlock(&sbi->s_md_lock); 2172 } 2173 /* 2174 * As we've just preallocated more space than 2175 * user requested originally, we store allocated 2176 * space in a special descriptor. 2177 */ 2178 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 2179 ext4_mb_new_preallocation(ac); 2180 2181 } 2182 2183 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 2184 struct ext4_buddy *e4b, 2185 int finish_group) 2186 { 2187 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2188 struct ext4_free_extent *bex = &ac->ac_b_ex; 2189 struct ext4_free_extent *gex = &ac->ac_g_ex; 2190 2191 if (ac->ac_status == AC_STATUS_FOUND) 2192 return; 2193 /* 2194 * We don't want to scan for a whole year 2195 */ 2196 if (ac->ac_found > sbi->s_mb_max_to_scan && 2197 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2198 ac->ac_status = AC_STATUS_BREAK; 2199 return; 2200 } 2201 2202 /* 2203 * Haven't found good chunk so far, let's continue 2204 */ 2205 if (bex->fe_len < gex->fe_len) 2206 return; 2207 2208 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 2209 ext4_mb_use_best_found(ac, e4b); 2210 } 2211 2212 /* 2213 * The routine checks whether found extent is good enough. If it is, 2214 * then the extent gets marked used and flag is set to the context 2215 * to stop scanning. Otherwise, the extent is compared with the 2216 * previous found extent and if new one is better, then it's stored 2217 * in the context. Later, the best found extent will be used, if 2218 * mballoc can't find good enough extent. 2219 * 2220 * The algorithm used is roughly as follows: 2221 * 2222 * * If free extent found is exactly as big as goal, then 2223 * stop the scan and use it immediately 2224 * 2225 * * If free extent found is smaller than goal, then keep retrying 2226 * upto a max of sbi->s_mb_max_to_scan times (default 200). After 2227 * that stop scanning and use whatever we have. 2228 * 2229 * * If free extent found is bigger than goal, then keep retrying 2230 * upto a max of sbi->s_mb_min_to_scan times (default 10) before 2231 * stopping the scan and using the extent. 2232 * 2233 * 2234 * FIXME: real allocation policy is to be designed yet! 2235 */ 2236 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 2237 struct ext4_free_extent *ex, 2238 struct ext4_buddy *e4b) 2239 { 2240 struct ext4_free_extent *bex = &ac->ac_b_ex; 2241 struct ext4_free_extent *gex = &ac->ac_g_ex; 2242 2243 BUG_ON(ex->fe_len <= 0); 2244 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2245 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2246 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 2247 2248 ac->ac_found++; 2249 ac->ac_cX_found[ac->ac_criteria]++; 2250 2251 /* 2252 * The special case - take what you catch first 2253 */ 2254 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2255 *bex = *ex; 2256 ext4_mb_use_best_found(ac, e4b); 2257 return; 2258 } 2259 2260 /* 2261 * Let's check whether the chuck is good enough 2262 */ 2263 if (ex->fe_len == gex->fe_len) { 2264 *bex = *ex; 2265 ext4_mb_use_best_found(ac, e4b); 2266 return; 2267 } 2268 2269 /* 2270 * If this is first found extent, just store it in the context 2271 */ 2272 if (bex->fe_len == 0) { 2273 *bex = *ex; 2274 return; 2275 } 2276 2277 /* 2278 * If new found extent is better, store it in the context 2279 */ 2280 if (bex->fe_len < gex->fe_len) { 2281 /* if the request isn't satisfied, any found extent 2282 * larger than previous best one is better */ 2283 if (ex->fe_len > bex->fe_len) 2284 *bex = *ex; 2285 } else if (ex->fe_len > gex->fe_len) { 2286 /* if the request is satisfied, then we try to find 2287 * an extent that still satisfy the request, but is 2288 * smaller than previous one */ 2289 if (ex->fe_len < bex->fe_len) 2290 *bex = *ex; 2291 } 2292 2293 ext4_mb_check_limits(ac, e4b, 0); 2294 } 2295 2296 static noinline_for_stack 2297 void ext4_mb_try_best_found(struct ext4_allocation_context *ac, 2298 struct ext4_buddy *e4b) 2299 { 2300 struct ext4_free_extent ex = ac->ac_b_ex; 2301 ext4_group_t group = ex.fe_group; 2302 int max; 2303 int err; 2304 2305 BUG_ON(ex.fe_len <= 0); 2306 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2307 if (err) 2308 return; 2309 2310 ext4_lock_group(ac->ac_sb, group); 2311 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 2312 goto out; 2313 2314 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 2315 2316 if (max > 0) { 2317 ac->ac_b_ex = ex; 2318 ext4_mb_use_best_found(ac, e4b); 2319 } 2320 2321 out: 2322 ext4_unlock_group(ac->ac_sb, group); 2323 ext4_mb_unload_buddy(e4b); 2324 } 2325 2326 static noinline_for_stack 2327 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 2328 struct ext4_buddy *e4b) 2329 { 2330 ext4_group_t group = ac->ac_g_ex.fe_group; 2331 int max; 2332 int err; 2333 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2334 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2335 struct ext4_free_extent ex; 2336 2337 if (!grp) 2338 return -EFSCORRUPTED; 2339 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY))) 2340 return 0; 2341 if (grp->bb_free == 0) 2342 return 0; 2343 2344 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2345 if (err) 2346 return err; 2347 2348 ext4_lock_group(ac->ac_sb, group); 2349 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 2350 goto out; 2351 2352 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 2353 ac->ac_g_ex.fe_len, &ex); 2354 ex.fe_logical = 0xDEADFA11; /* debug value */ 2355 2356 if (max >= ac->ac_g_ex.fe_len && 2357 ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) { 2358 ext4_fsblk_t start; 2359 2360 start = ext4_grp_offs_to_block(ac->ac_sb, &ex); 2361 /* use do_div to get remainder (would be 64-bit modulo) */ 2362 if (do_div(start, sbi->s_stripe) == 0) { 2363 ac->ac_found++; 2364 ac->ac_b_ex = ex; 2365 ext4_mb_use_best_found(ac, e4b); 2366 } 2367 } else if (max >= ac->ac_g_ex.fe_len) { 2368 BUG_ON(ex.fe_len <= 0); 2369 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2370 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2371 ac->ac_found++; 2372 ac->ac_b_ex = ex; 2373 ext4_mb_use_best_found(ac, e4b); 2374 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 2375 /* Sometimes, caller may want to merge even small 2376 * number of blocks to an existing extent */ 2377 BUG_ON(ex.fe_len <= 0); 2378 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2379 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2380 ac->ac_found++; 2381 ac->ac_b_ex = ex; 2382 ext4_mb_use_best_found(ac, e4b); 2383 } 2384 out: 2385 ext4_unlock_group(ac->ac_sb, group); 2386 ext4_mb_unload_buddy(e4b); 2387 2388 return 0; 2389 } 2390 2391 /* 2392 * The routine scans buddy structures (not bitmap!) from given order 2393 * to max order and tries to find big enough chunk to satisfy the req 2394 */ 2395 static noinline_for_stack 2396 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 2397 struct ext4_buddy *e4b) 2398 { 2399 struct super_block *sb = ac->ac_sb; 2400 struct ext4_group_info *grp = e4b->bd_info; 2401 void *buddy; 2402 int i; 2403 int k; 2404 int max; 2405 2406 BUG_ON(ac->ac_2order <= 0); 2407 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { 2408 if (grp->bb_counters[i] == 0) 2409 continue; 2410 2411 buddy = mb_find_buddy(e4b, i, &max); 2412 if (WARN_RATELIMIT(buddy == NULL, 2413 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i)) 2414 continue; 2415 2416 k = mb_find_next_zero_bit(buddy, max, 0); 2417 if (k >= max) { 2418 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 2419 "%d free clusters of order %d. But found 0", 2420 grp->bb_counters[i], i); 2421 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 2422 e4b->bd_group, 2423 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2424 break; 2425 } 2426 ac->ac_found++; 2427 ac->ac_cX_found[ac->ac_criteria]++; 2428 2429 ac->ac_b_ex.fe_len = 1 << i; 2430 ac->ac_b_ex.fe_start = k << i; 2431 ac->ac_b_ex.fe_group = e4b->bd_group; 2432 2433 ext4_mb_use_best_found(ac, e4b); 2434 2435 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2436 2437 if (EXT4_SB(sb)->s_mb_stats) 2438 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2439 2440 break; 2441 } 2442 } 2443 2444 /* 2445 * The routine scans the group and measures all found extents. 2446 * In order to optimize scanning, caller must pass number of 2447 * free blocks in the group, so the routine can know upper limit. 2448 */ 2449 static noinline_for_stack 2450 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2451 struct ext4_buddy *e4b) 2452 { 2453 struct super_block *sb = ac->ac_sb; 2454 void *bitmap = e4b->bd_bitmap; 2455 struct ext4_free_extent ex; 2456 int i, j, freelen; 2457 int free; 2458 2459 free = e4b->bd_info->bb_free; 2460 if (WARN_ON(free <= 0)) 2461 return; 2462 2463 i = e4b->bd_info->bb_first_free; 2464 2465 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2466 i = mb_find_next_zero_bit(bitmap, 2467 EXT4_CLUSTERS_PER_GROUP(sb), i); 2468 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2469 /* 2470 * IF we have corrupt bitmap, we won't find any 2471 * free blocks even though group info says we 2472 * have free blocks 2473 */ 2474 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2475 "%d free clusters as per " 2476 "group info. But bitmap says 0", 2477 free); 2478 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2479 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2480 break; 2481 } 2482 2483 if (!ext4_mb_cr_expensive(ac->ac_criteria)) { 2484 /* 2485 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are 2486 * sure that this group will have a large enough 2487 * continuous free extent, so skip over the smaller free 2488 * extents 2489 */ 2490 j = mb_find_next_bit(bitmap, 2491 EXT4_CLUSTERS_PER_GROUP(sb), i); 2492 freelen = j - i; 2493 2494 if (freelen < ac->ac_g_ex.fe_len) { 2495 i = j; 2496 free -= freelen; 2497 continue; 2498 } 2499 } 2500 2501 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2502 if (WARN_ON(ex.fe_len <= 0)) 2503 break; 2504 if (free < ex.fe_len) { 2505 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2506 "%d free clusters as per " 2507 "group info. But got %d blocks", 2508 free, ex.fe_len); 2509 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2510 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2511 /* 2512 * The number of free blocks differs. This mostly 2513 * indicate that the bitmap is corrupt. So exit 2514 * without claiming the space. 2515 */ 2516 break; 2517 } 2518 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2519 ext4_mb_measure_extent(ac, &ex, e4b); 2520 2521 i += ex.fe_len; 2522 free -= ex.fe_len; 2523 } 2524 2525 ext4_mb_check_limits(ac, e4b, 1); 2526 } 2527 2528 /* 2529 * This is a special case for storages like raid5 2530 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2531 */ 2532 static noinline_for_stack 2533 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2534 struct ext4_buddy *e4b) 2535 { 2536 struct super_block *sb = ac->ac_sb; 2537 struct ext4_sb_info *sbi = EXT4_SB(sb); 2538 void *bitmap = e4b->bd_bitmap; 2539 struct ext4_free_extent ex; 2540 ext4_fsblk_t first_group_block; 2541 ext4_fsblk_t a; 2542 ext4_grpblk_t i, stripe; 2543 int max; 2544 2545 BUG_ON(sbi->s_stripe == 0); 2546 2547 /* find first stripe-aligned block in group */ 2548 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2549 2550 a = first_group_block + sbi->s_stripe - 1; 2551 do_div(a, sbi->s_stripe); 2552 i = (a * sbi->s_stripe) - first_group_block; 2553 2554 stripe = EXT4_B2C(sbi, sbi->s_stripe); 2555 i = EXT4_B2C(sbi, i); 2556 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2557 if (!mb_test_bit(i, bitmap)) { 2558 max = mb_find_extent(e4b, i, stripe, &ex); 2559 if (max >= stripe) { 2560 ac->ac_found++; 2561 ac->ac_cX_found[ac->ac_criteria]++; 2562 ex.fe_logical = 0xDEADF00D; /* debug value */ 2563 ac->ac_b_ex = ex; 2564 ext4_mb_use_best_found(ac, e4b); 2565 break; 2566 } 2567 } 2568 i += stripe; 2569 } 2570 } 2571 2572 /* 2573 * This is also called BEFORE we load the buddy bitmap. 2574 * Returns either 1 or 0 indicating that the group is either suitable 2575 * for the allocation or not. 2576 */ 2577 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2578 ext4_group_t group, enum criteria cr) 2579 { 2580 ext4_grpblk_t free, fragments; 2581 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2582 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2583 2584 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS); 2585 2586 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2587 return false; 2588 2589 free = grp->bb_free; 2590 if (free == 0) 2591 return false; 2592 2593 fragments = grp->bb_fragments; 2594 if (fragments == 0) 2595 return false; 2596 2597 switch (cr) { 2598 case CR_POWER2_ALIGNED: 2599 BUG_ON(ac->ac_2order == 0); 2600 2601 /* Avoid using the first bg of a flexgroup for data files */ 2602 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2603 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2604 ((group % flex_size) == 0)) 2605 return false; 2606 2607 if (free < ac->ac_g_ex.fe_len) 2608 return false; 2609 2610 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) 2611 return true; 2612 2613 if (grp->bb_largest_free_order < ac->ac_2order) 2614 return false; 2615 2616 return true; 2617 case CR_GOAL_LEN_FAST: 2618 case CR_BEST_AVAIL_LEN: 2619 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2620 return true; 2621 break; 2622 case CR_GOAL_LEN_SLOW: 2623 if (free >= ac->ac_g_ex.fe_len) 2624 return true; 2625 break; 2626 case CR_ANY_FREE: 2627 return true; 2628 default: 2629 BUG(); 2630 } 2631 2632 return false; 2633 } 2634 2635 /* 2636 * This could return negative error code if something goes wrong 2637 * during ext4_mb_init_group(). This should not be called with 2638 * ext4_lock_group() held. 2639 * 2640 * Note: because we are conditionally operating with the group lock in 2641 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this 2642 * function using __acquire and __release. This means we need to be 2643 * super careful before messing with the error path handling via "goto 2644 * out"! 2645 */ 2646 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2647 ext4_group_t group, enum criteria cr) 2648 { 2649 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2650 struct super_block *sb = ac->ac_sb; 2651 struct ext4_sb_info *sbi = EXT4_SB(sb); 2652 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2653 ext4_grpblk_t free; 2654 int ret = 0; 2655 2656 if (!grp) 2657 return -EFSCORRUPTED; 2658 if (sbi->s_mb_stats) 2659 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2660 if (should_lock) { 2661 ext4_lock_group(sb, group); 2662 __release(ext4_group_lock_ptr(sb, group)); 2663 } 2664 free = grp->bb_free; 2665 if (free == 0) 2666 goto out; 2667 /* 2668 * In all criterias except CR_ANY_FREE we try to avoid groups that 2669 * can't possibly satisfy the full goal request due to insufficient 2670 * free blocks. 2671 */ 2672 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len) 2673 goto out; 2674 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2675 goto out; 2676 if (should_lock) { 2677 __acquire(ext4_group_lock_ptr(sb, group)); 2678 ext4_unlock_group(sb, group); 2679 } 2680 2681 /* We only do this if the grp has never been initialized */ 2682 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2683 struct ext4_group_desc *gdp = 2684 ext4_get_group_desc(sb, group, NULL); 2685 int ret; 2686 2687 /* 2688 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic 2689 * search to find large good chunks almost for free. If buddy 2690 * data is not ready, then this optimization makes no sense. But 2691 * we never skip the first block group in a flex_bg, since this 2692 * gets used for metadata block allocation, and we want to make 2693 * sure we locate metadata blocks in the first block group in 2694 * the flex_bg if possible. 2695 */ 2696 if (!ext4_mb_cr_expensive(cr) && 2697 (!sbi->s_log_groups_per_flex || 2698 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2699 !(ext4_has_group_desc_csum(sb) && 2700 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2701 return 0; 2702 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2703 if (ret) 2704 return ret; 2705 } 2706 2707 if (should_lock) { 2708 ext4_lock_group(sb, group); 2709 __release(ext4_group_lock_ptr(sb, group)); 2710 } 2711 ret = ext4_mb_good_group(ac, group, cr); 2712 out: 2713 if (should_lock) { 2714 __acquire(ext4_group_lock_ptr(sb, group)); 2715 ext4_unlock_group(sb, group); 2716 } 2717 return ret; 2718 } 2719 2720 /* 2721 * Start prefetching @nr block bitmaps starting at @group. 2722 * Return the next group which needs to be prefetched. 2723 */ 2724 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2725 unsigned int nr, int *cnt) 2726 { 2727 ext4_group_t ngroups = ext4_get_groups_count(sb); 2728 struct buffer_head *bh; 2729 struct blk_plug plug; 2730 2731 blk_start_plug(&plug); 2732 while (nr-- > 0) { 2733 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2734 NULL); 2735 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2736 2737 /* 2738 * Prefetch block groups with free blocks; but don't 2739 * bother if it is marked uninitialized on disk, since 2740 * it won't require I/O to read. Also only try to 2741 * prefetch once, so we avoid getblk() call, which can 2742 * be expensive. 2743 */ 2744 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2745 EXT4_MB_GRP_NEED_INIT(grp) && 2746 ext4_free_group_clusters(sb, gdp) > 0 ) { 2747 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2748 if (bh && !IS_ERR(bh)) { 2749 if (!buffer_uptodate(bh) && cnt) 2750 (*cnt)++; 2751 brelse(bh); 2752 } 2753 } 2754 if (++group >= ngroups) 2755 group = 0; 2756 } 2757 blk_finish_plug(&plug); 2758 return group; 2759 } 2760 2761 /* 2762 * Prefetching reads the block bitmap into the buffer cache; but we 2763 * need to make sure that the buddy bitmap in the page cache has been 2764 * initialized. Note that ext4_mb_init_group() will block if the I/O 2765 * is not yet completed, or indeed if it was not initiated by 2766 * ext4_mb_prefetch did not start the I/O. 2767 * 2768 * TODO: We should actually kick off the buddy bitmap setup in a work 2769 * queue when the buffer I/O is completed, so that we don't block 2770 * waiting for the block allocation bitmap read to finish when 2771 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2772 */ 2773 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2774 unsigned int nr) 2775 { 2776 struct ext4_group_desc *gdp; 2777 struct ext4_group_info *grp; 2778 2779 while (nr-- > 0) { 2780 if (!group) 2781 group = ext4_get_groups_count(sb); 2782 group--; 2783 gdp = ext4_get_group_desc(sb, group, NULL); 2784 grp = ext4_get_group_info(sb, group); 2785 2786 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) && 2787 ext4_free_group_clusters(sb, gdp) > 0) { 2788 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2789 break; 2790 } 2791 } 2792 } 2793 2794 static noinline_for_stack int 2795 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2796 { 2797 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2798 enum criteria new_cr, cr = CR_GOAL_LEN_FAST; 2799 int err = 0, first_err = 0; 2800 unsigned int nr = 0, prefetch_ios = 0; 2801 struct ext4_sb_info *sbi; 2802 struct super_block *sb; 2803 struct ext4_buddy e4b; 2804 int lost; 2805 2806 sb = ac->ac_sb; 2807 sbi = EXT4_SB(sb); 2808 ngroups = ext4_get_groups_count(sb); 2809 /* non-extent files are limited to low blocks/groups */ 2810 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2811 ngroups = sbi->s_blockfile_groups; 2812 2813 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2814 2815 /* first, try the goal */ 2816 err = ext4_mb_find_by_goal(ac, &e4b); 2817 if (err || ac->ac_status == AC_STATUS_FOUND) 2818 goto out; 2819 2820 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2821 goto out; 2822 2823 /* 2824 * ac->ac_2order is set only if the fe_len is a power of 2 2825 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED 2826 * so that we try exact allocation using buddy. 2827 */ 2828 i = fls(ac->ac_g_ex.fe_len); 2829 ac->ac_2order = 0; 2830 /* 2831 * We search using buddy data only if the order of the request 2832 * is greater than equal to the sbi_s_mb_order2_reqs 2833 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2834 * We also support searching for power-of-two requests only for 2835 * requests upto maximum buddy size we have constructed. 2836 */ 2837 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { 2838 if (is_power_of_2(ac->ac_g_ex.fe_len)) 2839 ac->ac_2order = array_index_nospec(i - 1, 2840 MB_NUM_ORDERS(sb)); 2841 } 2842 2843 /* if stream allocation is enabled, use global goal */ 2844 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2845 /* TBD: may be hot point */ 2846 spin_lock(&sbi->s_md_lock); 2847 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2848 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2849 spin_unlock(&sbi->s_md_lock); 2850 } 2851 2852 /* 2853 * Let's just scan groups to find more-less suitable blocks We 2854 * start with CR_GOAL_LEN_FAST, unless it is power of 2 2855 * aligned, in which case let's do that faster approach first. 2856 */ 2857 if (ac->ac_2order) 2858 cr = CR_POWER2_ALIGNED; 2859 repeat: 2860 for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2861 ac->ac_criteria = cr; 2862 /* 2863 * searching for the right group start 2864 * from the goal value specified 2865 */ 2866 group = ac->ac_g_ex.fe_group; 2867 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; 2868 prefetch_grp = group; 2869 2870 for (i = 0, new_cr = cr; i < ngroups; i++, 2871 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) { 2872 int ret = 0; 2873 2874 cond_resched(); 2875 if (new_cr != cr) { 2876 cr = new_cr; 2877 goto repeat; 2878 } 2879 2880 /* 2881 * Batch reads of the block allocation bitmaps 2882 * to get multiple READs in flight; limit 2883 * prefetching at inexpensive CR, otherwise mballoc 2884 * can spend a lot of time loading imperfect groups 2885 */ 2886 if ((prefetch_grp == group) && 2887 (ext4_mb_cr_expensive(cr) || 2888 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2889 nr = sbi->s_mb_prefetch; 2890 if (ext4_has_feature_flex_bg(sb)) { 2891 nr = 1 << sbi->s_log_groups_per_flex; 2892 nr -= group & (nr - 1); 2893 nr = min(nr, sbi->s_mb_prefetch); 2894 } 2895 prefetch_grp = ext4_mb_prefetch(sb, group, 2896 nr, &prefetch_ios); 2897 } 2898 2899 /* This now checks without needing the buddy page */ 2900 ret = ext4_mb_good_group_nolock(ac, group, cr); 2901 if (ret <= 0) { 2902 if (!first_err) 2903 first_err = ret; 2904 continue; 2905 } 2906 2907 err = ext4_mb_load_buddy(sb, group, &e4b); 2908 if (err) 2909 goto out; 2910 2911 ext4_lock_group(sb, group); 2912 2913 /* 2914 * We need to check again after locking the 2915 * block group 2916 */ 2917 ret = ext4_mb_good_group(ac, group, cr); 2918 if (ret == 0) { 2919 ext4_unlock_group(sb, group); 2920 ext4_mb_unload_buddy(&e4b); 2921 continue; 2922 } 2923 2924 ac->ac_groups_scanned++; 2925 if (cr == CR_POWER2_ALIGNED) 2926 ext4_mb_simple_scan_group(ac, &e4b); 2927 else if ((cr == CR_GOAL_LEN_FAST || 2928 cr == CR_BEST_AVAIL_LEN) && 2929 sbi->s_stripe && 2930 !(ac->ac_g_ex.fe_len % 2931 EXT4_B2C(sbi, sbi->s_stripe))) 2932 ext4_mb_scan_aligned(ac, &e4b); 2933 else 2934 ext4_mb_complex_scan_group(ac, &e4b); 2935 2936 ext4_unlock_group(sb, group); 2937 ext4_mb_unload_buddy(&e4b); 2938 2939 if (ac->ac_status != AC_STATUS_CONTINUE) 2940 break; 2941 } 2942 /* Processed all groups and haven't found blocks */ 2943 if (sbi->s_mb_stats && i == ngroups) 2944 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 2945 2946 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN) 2947 /* Reset goal length to original goal length before 2948 * falling into CR_GOAL_LEN_SLOW */ 2949 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 2950 } 2951 2952 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2953 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2954 /* 2955 * We've been searching too long. Let's try to allocate 2956 * the best chunk we've found so far 2957 */ 2958 ext4_mb_try_best_found(ac, &e4b); 2959 if (ac->ac_status != AC_STATUS_FOUND) { 2960 /* 2961 * Someone more lucky has already allocated it. 2962 * The only thing we can do is just take first 2963 * found block(s) 2964 */ 2965 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2966 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2967 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2968 ac->ac_b_ex.fe_len, lost); 2969 2970 ac->ac_b_ex.fe_group = 0; 2971 ac->ac_b_ex.fe_start = 0; 2972 ac->ac_b_ex.fe_len = 0; 2973 ac->ac_status = AC_STATUS_CONTINUE; 2974 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2975 cr = CR_ANY_FREE; 2976 goto repeat; 2977 } 2978 } 2979 2980 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) 2981 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 2982 out: 2983 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2984 err = first_err; 2985 2986 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2987 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2988 ac->ac_flags, cr, err); 2989 2990 if (nr) 2991 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 2992 2993 return err; 2994 } 2995 2996 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2997 { 2998 struct super_block *sb = pde_data(file_inode(seq->file)); 2999 ext4_group_t group; 3000 3001 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 3002 return NULL; 3003 group = *pos + 1; 3004 return (void *) ((unsigned long) group); 3005 } 3006 3007 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 3008 { 3009 struct super_block *sb = pde_data(file_inode(seq->file)); 3010 ext4_group_t group; 3011 3012 ++*pos; 3013 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 3014 return NULL; 3015 group = *pos + 1; 3016 return (void *) ((unsigned long) group); 3017 } 3018 3019 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 3020 { 3021 struct super_block *sb = pde_data(file_inode(seq->file)); 3022 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 3023 int i; 3024 int err, buddy_loaded = 0; 3025 struct ext4_buddy e4b; 3026 struct ext4_group_info *grinfo; 3027 unsigned char blocksize_bits = min_t(unsigned char, 3028 sb->s_blocksize_bits, 3029 EXT4_MAX_BLOCK_LOG_SIZE); 3030 struct sg { 3031 struct ext4_group_info info; 3032 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 3033 } sg; 3034 3035 group--; 3036 if (group == 0) 3037 seq_puts(seq, "#group: free frags first [" 3038 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 3039 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 3040 3041 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 3042 sizeof(struct ext4_group_info); 3043 3044 grinfo = ext4_get_group_info(sb, group); 3045 if (!grinfo) 3046 return 0; 3047 /* Load the group info in memory only if not already loaded. */ 3048 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 3049 err = ext4_mb_load_buddy(sb, group, &e4b); 3050 if (err) { 3051 seq_printf(seq, "#%-5u: I/O error\n", group); 3052 return 0; 3053 } 3054 buddy_loaded = 1; 3055 } 3056 3057 memcpy(&sg, grinfo, i); 3058 3059 if (buddy_loaded) 3060 ext4_mb_unload_buddy(&e4b); 3061 3062 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 3063 sg.info.bb_fragments, sg.info.bb_first_free); 3064 for (i = 0; i <= 13; i++) 3065 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 3066 sg.info.bb_counters[i] : 0); 3067 seq_puts(seq, " ]"); 3068 if (EXT4_MB_GRP_BBITMAP_CORRUPT(&sg.info)) 3069 seq_puts(seq, " Block bitmap corrupted!"); 3070 seq_puts(seq, "\n"); 3071 3072 return 0; 3073 } 3074 3075 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 3076 { 3077 } 3078 3079 const struct seq_operations ext4_mb_seq_groups_ops = { 3080 .start = ext4_mb_seq_groups_start, 3081 .next = ext4_mb_seq_groups_next, 3082 .stop = ext4_mb_seq_groups_stop, 3083 .show = ext4_mb_seq_groups_show, 3084 }; 3085 3086 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 3087 { 3088 struct super_block *sb = seq->private; 3089 struct ext4_sb_info *sbi = EXT4_SB(sb); 3090 3091 seq_puts(seq, "mballoc:\n"); 3092 if (!sbi->s_mb_stats) { 3093 seq_puts(seq, "\tmb stats collection turned off.\n"); 3094 seq_puts( 3095 seq, 3096 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 3097 return 0; 3098 } 3099 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 3100 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 3101 3102 seq_printf(seq, "\tgroups_scanned: %u\n", 3103 atomic_read(&sbi->s_bal_groups_scanned)); 3104 3105 /* CR_POWER2_ALIGNED stats */ 3106 seq_puts(seq, "\tcr_p2_aligned_stats:\n"); 3107 seq_printf(seq, "\t\thits: %llu\n", 3108 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED])); 3109 seq_printf( 3110 seq, "\t\tgroups_considered: %llu\n", 3111 atomic64_read( 3112 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED])); 3113 seq_printf(seq, "\t\textents_scanned: %u\n", 3114 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED])); 3115 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3116 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED])); 3117 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3118 atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions)); 3119 3120 /* CR_GOAL_LEN_FAST stats */ 3121 seq_puts(seq, "\tcr_goal_fast_stats:\n"); 3122 seq_printf(seq, "\t\thits: %llu\n", 3123 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST])); 3124 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3125 atomic64_read( 3126 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST])); 3127 seq_printf(seq, "\t\textents_scanned: %u\n", 3128 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST])); 3129 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3130 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST])); 3131 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3132 atomic_read(&sbi->s_bal_goal_fast_bad_suggestions)); 3133 3134 /* CR_BEST_AVAIL_LEN stats */ 3135 seq_puts(seq, "\tcr_best_avail_stats:\n"); 3136 seq_printf(seq, "\t\thits: %llu\n", 3137 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN])); 3138 seq_printf( 3139 seq, "\t\tgroups_considered: %llu\n", 3140 atomic64_read( 3141 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN])); 3142 seq_printf(seq, "\t\textents_scanned: %u\n", 3143 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN])); 3144 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3145 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN])); 3146 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3147 atomic_read(&sbi->s_bal_best_avail_bad_suggestions)); 3148 3149 /* CR_GOAL_LEN_SLOW stats */ 3150 seq_puts(seq, "\tcr_goal_slow_stats:\n"); 3151 seq_printf(seq, "\t\thits: %llu\n", 3152 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW])); 3153 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3154 atomic64_read( 3155 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW])); 3156 seq_printf(seq, "\t\textents_scanned: %u\n", 3157 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW])); 3158 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3159 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW])); 3160 3161 /* CR_ANY_FREE stats */ 3162 seq_puts(seq, "\tcr_any_free_stats:\n"); 3163 seq_printf(seq, "\t\thits: %llu\n", 3164 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE])); 3165 seq_printf( 3166 seq, "\t\tgroups_considered: %llu\n", 3167 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE])); 3168 seq_printf(seq, "\t\textents_scanned: %u\n", 3169 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE])); 3170 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3171 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE])); 3172 3173 /* Aggregates */ 3174 seq_printf(seq, "\textents_scanned: %u\n", 3175 atomic_read(&sbi->s_bal_ex_scanned)); 3176 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 3177 seq_printf(seq, "\t\tlen_goal_hits: %u\n", 3178 atomic_read(&sbi->s_bal_len_goals)); 3179 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 3180 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 3181 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 3182 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 3183 atomic_read(&sbi->s_mb_buddies_generated), 3184 ext4_get_groups_count(sb)); 3185 seq_printf(seq, "\tbuddies_time_used: %llu\n", 3186 atomic64_read(&sbi->s_mb_generation_time)); 3187 seq_printf(seq, "\tpreallocated: %u\n", 3188 atomic_read(&sbi->s_mb_preallocated)); 3189 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded)); 3190 return 0; 3191 } 3192 3193 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) 3194 __acquires(&EXT4_SB(sb)->s_mb_rb_lock) 3195 { 3196 struct super_block *sb = pde_data(file_inode(seq->file)); 3197 unsigned long position; 3198 3199 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3200 return NULL; 3201 position = *pos + 1; 3202 return (void *) ((unsigned long) position); 3203 } 3204 3205 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) 3206 { 3207 struct super_block *sb = pde_data(file_inode(seq->file)); 3208 unsigned long position; 3209 3210 ++*pos; 3211 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3212 return NULL; 3213 position = *pos + 1; 3214 return (void *) ((unsigned long) position); 3215 } 3216 3217 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) 3218 { 3219 struct super_block *sb = pde_data(file_inode(seq->file)); 3220 struct ext4_sb_info *sbi = EXT4_SB(sb); 3221 unsigned long position = ((unsigned long) v); 3222 struct ext4_group_info *grp; 3223 unsigned int count; 3224 3225 position--; 3226 if (position >= MB_NUM_ORDERS(sb)) { 3227 position -= MB_NUM_ORDERS(sb); 3228 if (position == 0) 3229 seq_puts(seq, "avg_fragment_size_lists:\n"); 3230 3231 count = 0; 3232 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]); 3233 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position], 3234 bb_avg_fragment_size_node) 3235 count++; 3236 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]); 3237 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3238 (unsigned int)position, count); 3239 return 0; 3240 } 3241 3242 if (position == 0) { 3243 seq_printf(seq, "optimize_scan: %d\n", 3244 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); 3245 seq_puts(seq, "max_free_order_lists:\n"); 3246 } 3247 count = 0; 3248 read_lock(&sbi->s_mb_largest_free_orders_locks[position]); 3249 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], 3250 bb_largest_free_order_node) 3251 count++; 3252 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]); 3253 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3254 (unsigned int)position, count); 3255 3256 return 0; 3257 } 3258 3259 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) 3260 { 3261 } 3262 3263 const struct seq_operations ext4_mb_seq_structs_summary_ops = { 3264 .start = ext4_mb_seq_structs_summary_start, 3265 .next = ext4_mb_seq_structs_summary_next, 3266 .stop = ext4_mb_seq_structs_summary_stop, 3267 .show = ext4_mb_seq_structs_summary_show, 3268 }; 3269 3270 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 3271 { 3272 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3273 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 3274 3275 BUG_ON(!cachep); 3276 return cachep; 3277 } 3278 3279 /* 3280 * Allocate the top-level s_group_info array for the specified number 3281 * of groups 3282 */ 3283 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 3284 { 3285 struct ext4_sb_info *sbi = EXT4_SB(sb); 3286 unsigned size; 3287 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 3288 3289 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 3290 EXT4_DESC_PER_BLOCK_BITS(sb); 3291 if (size <= sbi->s_group_info_size) 3292 return 0; 3293 3294 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 3295 new_groupinfo = kvzalloc(size, GFP_KERNEL); 3296 if (!new_groupinfo) { 3297 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 3298 return -ENOMEM; 3299 } 3300 rcu_read_lock(); 3301 old_groupinfo = rcu_dereference(sbi->s_group_info); 3302 if (old_groupinfo) 3303 memcpy(new_groupinfo, old_groupinfo, 3304 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 3305 rcu_read_unlock(); 3306 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 3307 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 3308 if (old_groupinfo) 3309 ext4_kvfree_array_rcu(old_groupinfo); 3310 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 3311 sbi->s_group_info_size); 3312 return 0; 3313 } 3314 3315 /* Create and initialize ext4_group_info data for the given group. */ 3316 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 3317 struct ext4_group_desc *desc) 3318 { 3319 int i; 3320 int metalen = 0; 3321 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 3322 struct ext4_sb_info *sbi = EXT4_SB(sb); 3323 struct ext4_group_info **meta_group_info; 3324 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3325 3326 /* 3327 * First check if this group is the first of a reserved block. 3328 * If it's true, we have to allocate a new table of pointers 3329 * to ext4_group_info structures 3330 */ 3331 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3332 metalen = sizeof(*meta_group_info) << 3333 EXT4_DESC_PER_BLOCK_BITS(sb); 3334 meta_group_info = kmalloc(metalen, GFP_NOFS); 3335 if (meta_group_info == NULL) { 3336 ext4_msg(sb, KERN_ERR, "can't allocate mem " 3337 "for a buddy group"); 3338 return -ENOMEM; 3339 } 3340 rcu_read_lock(); 3341 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 3342 rcu_read_unlock(); 3343 } 3344 3345 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 3346 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 3347 3348 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 3349 if (meta_group_info[i] == NULL) { 3350 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 3351 goto exit_group_info; 3352 } 3353 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 3354 &(meta_group_info[i]->bb_state)); 3355 3356 /* 3357 * initialize bb_free to be able to skip 3358 * empty groups without initialization 3359 */ 3360 if (ext4_has_group_desc_csum(sb) && 3361 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3362 meta_group_info[i]->bb_free = 3363 ext4_free_clusters_after_init(sb, group, desc); 3364 } else { 3365 meta_group_info[i]->bb_free = 3366 ext4_free_group_clusters(sb, desc); 3367 } 3368 3369 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 3370 init_rwsem(&meta_group_info[i]->alloc_sem); 3371 meta_group_info[i]->bb_free_root = RB_ROOT; 3372 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); 3373 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node); 3374 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 3375 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */ 3376 meta_group_info[i]->bb_group = group; 3377 3378 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 3379 return 0; 3380 3381 exit_group_info: 3382 /* If a meta_group_info table has been allocated, release it now */ 3383 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3384 struct ext4_group_info ***group_info; 3385 3386 rcu_read_lock(); 3387 group_info = rcu_dereference(sbi->s_group_info); 3388 kfree(group_info[idx]); 3389 group_info[idx] = NULL; 3390 rcu_read_unlock(); 3391 } 3392 return -ENOMEM; 3393 } /* ext4_mb_add_groupinfo */ 3394 3395 static int ext4_mb_init_backend(struct super_block *sb) 3396 { 3397 ext4_group_t ngroups = ext4_get_groups_count(sb); 3398 ext4_group_t i; 3399 struct ext4_sb_info *sbi = EXT4_SB(sb); 3400 int err; 3401 struct ext4_group_desc *desc; 3402 struct ext4_group_info ***group_info; 3403 struct kmem_cache *cachep; 3404 3405 err = ext4_mb_alloc_groupinfo(sb, ngroups); 3406 if (err) 3407 return err; 3408 3409 sbi->s_buddy_cache = new_inode(sb); 3410 if (sbi->s_buddy_cache == NULL) { 3411 ext4_msg(sb, KERN_ERR, "can't get new inode"); 3412 goto err_freesgi; 3413 } 3414 /* To avoid potentially colliding with an valid on-disk inode number, 3415 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 3416 * not in the inode hash, so it should never be found by iget(), but 3417 * this will avoid confusion if it ever shows up during debugging. */ 3418 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 3419 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 3420 for (i = 0; i < ngroups; i++) { 3421 cond_resched(); 3422 desc = ext4_get_group_desc(sb, i, NULL); 3423 if (desc == NULL) { 3424 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 3425 goto err_freebuddy; 3426 } 3427 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 3428 goto err_freebuddy; 3429 } 3430 3431 if (ext4_has_feature_flex_bg(sb)) { 3432 /* a single flex group is supposed to be read by a single IO. 3433 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 3434 * unsigned integer, so the maximum shift is 32. 3435 */ 3436 if (sbi->s_es->s_log_groups_per_flex >= 32) { 3437 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 3438 goto err_freebuddy; 3439 } 3440 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 3441 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 3442 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 3443 } else { 3444 sbi->s_mb_prefetch = 32; 3445 } 3446 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 3447 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 3448 /* now many real IOs to prefetch within a single allocation at cr=0 3449 * given cr=0 is an CPU-related optimization we shouldn't try to 3450 * load too many groups, at some point we should start to use what 3451 * we've got in memory. 3452 * with an average random access time 5ms, it'd take a second to get 3453 * 200 groups (* N with flex_bg), so let's make this limit 4 3454 */ 3455 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 3456 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 3457 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 3458 3459 return 0; 3460 3461 err_freebuddy: 3462 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3463 while (i-- > 0) { 3464 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3465 3466 if (grp) 3467 kmem_cache_free(cachep, grp); 3468 } 3469 i = sbi->s_group_info_size; 3470 rcu_read_lock(); 3471 group_info = rcu_dereference(sbi->s_group_info); 3472 while (i-- > 0) 3473 kfree(group_info[i]); 3474 rcu_read_unlock(); 3475 iput(sbi->s_buddy_cache); 3476 err_freesgi: 3477 rcu_read_lock(); 3478 kvfree(rcu_dereference(sbi->s_group_info)); 3479 rcu_read_unlock(); 3480 return -ENOMEM; 3481 } 3482 3483 static void ext4_groupinfo_destroy_slabs(void) 3484 { 3485 int i; 3486 3487 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 3488 kmem_cache_destroy(ext4_groupinfo_caches[i]); 3489 ext4_groupinfo_caches[i] = NULL; 3490 } 3491 } 3492 3493 static int ext4_groupinfo_create_slab(size_t size) 3494 { 3495 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 3496 int slab_size; 3497 int blocksize_bits = order_base_2(size); 3498 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3499 struct kmem_cache *cachep; 3500 3501 if (cache_index >= NR_GRPINFO_CACHES) 3502 return -EINVAL; 3503 3504 if (unlikely(cache_index < 0)) 3505 cache_index = 0; 3506 3507 mutex_lock(&ext4_grpinfo_slab_create_mutex); 3508 if (ext4_groupinfo_caches[cache_index]) { 3509 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3510 return 0; /* Already created */ 3511 } 3512 3513 slab_size = offsetof(struct ext4_group_info, 3514 bb_counters[blocksize_bits + 2]); 3515 3516 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 3517 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 3518 NULL); 3519 3520 ext4_groupinfo_caches[cache_index] = cachep; 3521 3522 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3523 if (!cachep) { 3524 printk(KERN_EMERG 3525 "EXT4-fs: no memory for groupinfo slab cache\n"); 3526 return -ENOMEM; 3527 } 3528 3529 return 0; 3530 } 3531 3532 static void ext4_discard_work(struct work_struct *work) 3533 { 3534 struct ext4_sb_info *sbi = container_of(work, 3535 struct ext4_sb_info, s_discard_work); 3536 struct super_block *sb = sbi->s_sb; 3537 struct ext4_free_data *fd, *nfd; 3538 struct ext4_buddy e4b; 3539 LIST_HEAD(discard_list); 3540 ext4_group_t grp, load_grp; 3541 int err = 0; 3542 3543 spin_lock(&sbi->s_md_lock); 3544 list_splice_init(&sbi->s_discard_list, &discard_list); 3545 spin_unlock(&sbi->s_md_lock); 3546 3547 load_grp = UINT_MAX; 3548 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { 3549 /* 3550 * If filesystem is umounting or no memory or suffering 3551 * from no space, give up the discard 3552 */ 3553 if ((sb->s_flags & SB_ACTIVE) && !err && 3554 !atomic_read(&sbi->s_retry_alloc_pending)) { 3555 grp = fd->efd_group; 3556 if (grp != load_grp) { 3557 if (load_grp != UINT_MAX) 3558 ext4_mb_unload_buddy(&e4b); 3559 3560 err = ext4_mb_load_buddy(sb, grp, &e4b); 3561 if (err) { 3562 kmem_cache_free(ext4_free_data_cachep, fd); 3563 load_grp = UINT_MAX; 3564 continue; 3565 } else { 3566 load_grp = grp; 3567 } 3568 } 3569 3570 ext4_lock_group(sb, grp); 3571 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster, 3572 fd->efd_start_cluster + fd->efd_count - 1, 1); 3573 ext4_unlock_group(sb, grp); 3574 } 3575 kmem_cache_free(ext4_free_data_cachep, fd); 3576 } 3577 3578 if (load_grp != UINT_MAX) 3579 ext4_mb_unload_buddy(&e4b); 3580 } 3581 3582 int ext4_mb_init(struct super_block *sb) 3583 { 3584 struct ext4_sb_info *sbi = EXT4_SB(sb); 3585 unsigned i, j; 3586 unsigned offset, offset_incr; 3587 unsigned max; 3588 int ret; 3589 3590 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); 3591 3592 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 3593 if (sbi->s_mb_offsets == NULL) { 3594 ret = -ENOMEM; 3595 goto out; 3596 } 3597 3598 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); 3599 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 3600 if (sbi->s_mb_maxs == NULL) { 3601 ret = -ENOMEM; 3602 goto out; 3603 } 3604 3605 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 3606 if (ret < 0) 3607 goto out; 3608 3609 /* order 0 is regular bitmap */ 3610 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 3611 sbi->s_mb_offsets[0] = 0; 3612 3613 i = 1; 3614 offset = 0; 3615 offset_incr = 1 << (sb->s_blocksize_bits - 1); 3616 max = sb->s_blocksize << 2; 3617 do { 3618 sbi->s_mb_offsets[i] = offset; 3619 sbi->s_mb_maxs[i] = max; 3620 offset += offset_incr; 3621 offset_incr = offset_incr >> 1; 3622 max = max >> 1; 3623 i++; 3624 } while (i < MB_NUM_ORDERS(sb)); 3625 3626 sbi->s_mb_avg_fragment_size = 3627 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3628 GFP_KERNEL); 3629 if (!sbi->s_mb_avg_fragment_size) { 3630 ret = -ENOMEM; 3631 goto out; 3632 } 3633 sbi->s_mb_avg_fragment_size_locks = 3634 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3635 GFP_KERNEL); 3636 if (!sbi->s_mb_avg_fragment_size_locks) { 3637 ret = -ENOMEM; 3638 goto out; 3639 } 3640 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3641 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]); 3642 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]); 3643 } 3644 sbi->s_mb_largest_free_orders = 3645 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3646 GFP_KERNEL); 3647 if (!sbi->s_mb_largest_free_orders) { 3648 ret = -ENOMEM; 3649 goto out; 3650 } 3651 sbi->s_mb_largest_free_orders_locks = 3652 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3653 GFP_KERNEL); 3654 if (!sbi->s_mb_largest_free_orders_locks) { 3655 ret = -ENOMEM; 3656 goto out; 3657 } 3658 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3659 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); 3660 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); 3661 } 3662 3663 spin_lock_init(&sbi->s_md_lock); 3664 sbi->s_mb_free_pending = 0; 3665 INIT_LIST_HEAD(&sbi->s_freed_data_list); 3666 INIT_LIST_HEAD(&sbi->s_discard_list); 3667 INIT_WORK(&sbi->s_discard_work, ext4_discard_work); 3668 atomic_set(&sbi->s_retry_alloc_pending, 0); 3669 3670 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 3671 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 3672 sbi->s_mb_stats = MB_DEFAULT_STATS; 3673 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 3674 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 3675 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER; 3676 3677 /* 3678 * The default group preallocation is 512, which for 4k block 3679 * sizes translates to 2 megabytes. However for bigalloc file 3680 * systems, this is probably too big (i.e, if the cluster size 3681 * is 1 megabyte, then group preallocation size becomes half a 3682 * gigabyte!). As a default, we will keep a two megabyte 3683 * group pralloc size for cluster sizes up to 64k, and after 3684 * that, we will force a minimum group preallocation size of 3685 * 32 clusters. This translates to 8 megs when the cluster 3686 * size is 256k, and 32 megs when the cluster size is 1 meg, 3687 * which seems reasonable as a default. 3688 */ 3689 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 3690 sbi->s_cluster_bits, 32); 3691 /* 3692 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 3693 * to the lowest multiple of s_stripe which is bigger than 3694 * the s_mb_group_prealloc as determined above. We want 3695 * the preallocation size to be an exact multiple of the 3696 * RAID stripe size so that preallocations don't fragment 3697 * the stripes. 3698 */ 3699 if (sbi->s_stripe > 1) { 3700 sbi->s_mb_group_prealloc = roundup( 3701 sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe)); 3702 } 3703 3704 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3705 if (sbi->s_locality_groups == NULL) { 3706 ret = -ENOMEM; 3707 goto out; 3708 } 3709 for_each_possible_cpu(i) { 3710 struct ext4_locality_group *lg; 3711 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3712 mutex_init(&lg->lg_mutex); 3713 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3714 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3715 spin_lock_init(&lg->lg_prealloc_lock); 3716 } 3717 3718 if (bdev_nonrot(sb->s_bdev)) 3719 sbi->s_mb_max_linear_groups = 0; 3720 else 3721 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; 3722 /* init file for buddy data */ 3723 ret = ext4_mb_init_backend(sb); 3724 if (ret != 0) 3725 goto out_free_locality_groups; 3726 3727 return 0; 3728 3729 out_free_locality_groups: 3730 free_percpu(sbi->s_locality_groups); 3731 sbi->s_locality_groups = NULL; 3732 out: 3733 kfree(sbi->s_mb_avg_fragment_size); 3734 kfree(sbi->s_mb_avg_fragment_size_locks); 3735 kfree(sbi->s_mb_largest_free_orders); 3736 kfree(sbi->s_mb_largest_free_orders_locks); 3737 kfree(sbi->s_mb_offsets); 3738 sbi->s_mb_offsets = NULL; 3739 kfree(sbi->s_mb_maxs); 3740 sbi->s_mb_maxs = NULL; 3741 return ret; 3742 } 3743 3744 /* need to called with the ext4 group lock held */ 3745 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3746 { 3747 struct ext4_prealloc_space *pa; 3748 struct list_head *cur, *tmp; 3749 int count = 0; 3750 3751 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3752 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3753 list_del(&pa->pa_group_list); 3754 count++; 3755 kmem_cache_free(ext4_pspace_cachep, pa); 3756 } 3757 return count; 3758 } 3759 3760 int ext4_mb_release(struct super_block *sb) 3761 { 3762 ext4_group_t ngroups = ext4_get_groups_count(sb); 3763 ext4_group_t i; 3764 int num_meta_group_infos; 3765 struct ext4_group_info *grinfo, ***group_info; 3766 struct ext4_sb_info *sbi = EXT4_SB(sb); 3767 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3768 int count; 3769 3770 if (test_opt(sb, DISCARD)) { 3771 /* 3772 * wait the discard work to drain all of ext4_free_data 3773 */ 3774 flush_work(&sbi->s_discard_work); 3775 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); 3776 } 3777 3778 if (sbi->s_group_info) { 3779 for (i = 0; i < ngroups; i++) { 3780 cond_resched(); 3781 grinfo = ext4_get_group_info(sb, i); 3782 if (!grinfo) 3783 continue; 3784 mb_group_bb_bitmap_free(grinfo); 3785 ext4_lock_group(sb, i); 3786 count = ext4_mb_cleanup_pa(grinfo); 3787 if (count) 3788 mb_debug(sb, "mballoc: %d PAs left\n", 3789 count); 3790 ext4_unlock_group(sb, i); 3791 kmem_cache_free(cachep, grinfo); 3792 } 3793 num_meta_group_infos = (ngroups + 3794 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3795 EXT4_DESC_PER_BLOCK_BITS(sb); 3796 rcu_read_lock(); 3797 group_info = rcu_dereference(sbi->s_group_info); 3798 for (i = 0; i < num_meta_group_infos; i++) 3799 kfree(group_info[i]); 3800 kvfree(group_info); 3801 rcu_read_unlock(); 3802 } 3803 kfree(sbi->s_mb_avg_fragment_size); 3804 kfree(sbi->s_mb_avg_fragment_size_locks); 3805 kfree(sbi->s_mb_largest_free_orders); 3806 kfree(sbi->s_mb_largest_free_orders_locks); 3807 kfree(sbi->s_mb_offsets); 3808 kfree(sbi->s_mb_maxs); 3809 iput(sbi->s_buddy_cache); 3810 if (sbi->s_mb_stats) { 3811 ext4_msg(sb, KERN_INFO, 3812 "mballoc: %u blocks %u reqs (%u success)", 3813 atomic_read(&sbi->s_bal_allocated), 3814 atomic_read(&sbi->s_bal_reqs), 3815 atomic_read(&sbi->s_bal_success)); 3816 ext4_msg(sb, KERN_INFO, 3817 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3818 "%u 2^N hits, %u breaks, %u lost", 3819 atomic_read(&sbi->s_bal_ex_scanned), 3820 atomic_read(&sbi->s_bal_groups_scanned), 3821 atomic_read(&sbi->s_bal_goals), 3822 atomic_read(&sbi->s_bal_2orders), 3823 atomic_read(&sbi->s_bal_breaks), 3824 atomic_read(&sbi->s_mb_lost_chunks)); 3825 ext4_msg(sb, KERN_INFO, 3826 "mballoc: %u generated and it took %llu", 3827 atomic_read(&sbi->s_mb_buddies_generated), 3828 atomic64_read(&sbi->s_mb_generation_time)); 3829 ext4_msg(sb, KERN_INFO, 3830 "mballoc: %u preallocated, %u discarded", 3831 atomic_read(&sbi->s_mb_preallocated), 3832 atomic_read(&sbi->s_mb_discarded)); 3833 } 3834 3835 free_percpu(sbi->s_locality_groups); 3836 3837 return 0; 3838 } 3839 3840 static inline int ext4_issue_discard(struct super_block *sb, 3841 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 3842 struct bio **biop) 3843 { 3844 ext4_fsblk_t discard_block; 3845 3846 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3847 ext4_group_first_block_no(sb, block_group)); 3848 count = EXT4_C2B(EXT4_SB(sb), count); 3849 trace_ext4_discard_blocks(sb, 3850 (unsigned long long) discard_block, count); 3851 if (biop) { 3852 return __blkdev_issue_discard(sb->s_bdev, 3853 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 3854 (sector_t)count << (sb->s_blocksize_bits - 9), 3855 GFP_NOFS, biop); 3856 } else 3857 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3858 } 3859 3860 static void ext4_free_data_in_buddy(struct super_block *sb, 3861 struct ext4_free_data *entry) 3862 { 3863 struct ext4_buddy e4b; 3864 struct ext4_group_info *db; 3865 int err, count = 0; 3866 3867 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3868 entry->efd_count, entry->efd_group, entry); 3869 3870 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3871 /* we expect to find existing buddy because it's pinned */ 3872 BUG_ON(err != 0); 3873 3874 spin_lock(&EXT4_SB(sb)->s_md_lock); 3875 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3876 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3877 3878 db = e4b.bd_info; 3879 /* there are blocks to put in buddy to make them really free */ 3880 count += entry->efd_count; 3881 ext4_lock_group(sb, entry->efd_group); 3882 /* Take it out of per group rb tree */ 3883 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3884 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3885 3886 /* 3887 * Clear the trimmed flag for the group so that the next 3888 * ext4_trim_fs can trim it. 3889 * If the volume is mounted with -o discard, online discard 3890 * is supported and the free blocks will be trimmed online. 3891 */ 3892 if (!test_opt(sb, DISCARD)) 3893 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3894 3895 if (!db->bb_free_root.rb_node) { 3896 /* No more items in the per group rb tree 3897 * balance refcounts from ext4_mb_free_metadata() 3898 */ 3899 put_page(e4b.bd_buddy_page); 3900 put_page(e4b.bd_bitmap_page); 3901 } 3902 ext4_unlock_group(sb, entry->efd_group); 3903 ext4_mb_unload_buddy(&e4b); 3904 3905 mb_debug(sb, "freed %d blocks in 1 structures\n", count); 3906 } 3907 3908 /* 3909 * This function is called by the jbd2 layer once the commit has finished, 3910 * so we know we can free the blocks that were released with that commit. 3911 */ 3912 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3913 { 3914 struct ext4_sb_info *sbi = EXT4_SB(sb); 3915 struct ext4_free_data *entry, *tmp; 3916 LIST_HEAD(freed_data_list); 3917 struct list_head *cut_pos = NULL; 3918 bool wake; 3919 3920 spin_lock(&sbi->s_md_lock); 3921 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 3922 if (entry->efd_tid != commit_tid) 3923 break; 3924 cut_pos = &entry->efd_list; 3925 } 3926 if (cut_pos) 3927 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 3928 cut_pos); 3929 spin_unlock(&sbi->s_md_lock); 3930 3931 list_for_each_entry(entry, &freed_data_list, efd_list) 3932 ext4_free_data_in_buddy(sb, entry); 3933 3934 if (test_opt(sb, DISCARD)) { 3935 spin_lock(&sbi->s_md_lock); 3936 wake = list_empty(&sbi->s_discard_list); 3937 list_splice_tail(&freed_data_list, &sbi->s_discard_list); 3938 spin_unlock(&sbi->s_md_lock); 3939 if (wake) 3940 queue_work(system_unbound_wq, &sbi->s_discard_work); 3941 } else { 3942 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3943 kmem_cache_free(ext4_free_data_cachep, entry); 3944 } 3945 } 3946 3947 int __init ext4_init_mballoc(void) 3948 { 3949 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3950 SLAB_RECLAIM_ACCOUNT); 3951 if (ext4_pspace_cachep == NULL) 3952 goto out; 3953 3954 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3955 SLAB_RECLAIM_ACCOUNT); 3956 if (ext4_ac_cachep == NULL) 3957 goto out_pa_free; 3958 3959 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3960 SLAB_RECLAIM_ACCOUNT); 3961 if (ext4_free_data_cachep == NULL) 3962 goto out_ac_free; 3963 3964 return 0; 3965 3966 out_ac_free: 3967 kmem_cache_destroy(ext4_ac_cachep); 3968 out_pa_free: 3969 kmem_cache_destroy(ext4_pspace_cachep); 3970 out: 3971 return -ENOMEM; 3972 } 3973 3974 void ext4_exit_mballoc(void) 3975 { 3976 /* 3977 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3978 * before destroying the slab cache. 3979 */ 3980 rcu_barrier(); 3981 kmem_cache_destroy(ext4_pspace_cachep); 3982 kmem_cache_destroy(ext4_ac_cachep); 3983 kmem_cache_destroy(ext4_free_data_cachep); 3984 ext4_groupinfo_destroy_slabs(); 3985 } 3986 3987 3988 /* 3989 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 3990 * Returns 0 if success or error code 3991 */ 3992 static noinline_for_stack int 3993 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 3994 handle_t *handle, unsigned int reserv_clstrs) 3995 { 3996 struct buffer_head *bitmap_bh = NULL; 3997 struct ext4_group_desc *gdp; 3998 struct buffer_head *gdp_bh; 3999 struct ext4_sb_info *sbi; 4000 struct super_block *sb; 4001 ext4_fsblk_t block; 4002 int err, len; 4003 4004 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4005 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4006 4007 sb = ac->ac_sb; 4008 sbi = EXT4_SB(sb); 4009 4010 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 4011 if (IS_ERR(bitmap_bh)) { 4012 return PTR_ERR(bitmap_bh); 4013 } 4014 4015 BUFFER_TRACE(bitmap_bh, "getting write access"); 4016 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 4017 EXT4_JTR_NONE); 4018 if (err) 4019 goto out_err; 4020 4021 err = -EIO; 4022 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 4023 if (!gdp) 4024 goto out_err; 4025 4026 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 4027 ext4_free_group_clusters(sb, gdp)); 4028 4029 BUFFER_TRACE(gdp_bh, "get_write_access"); 4030 err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE); 4031 if (err) 4032 goto out_err; 4033 4034 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4035 4036 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4037 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 4038 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 4039 "fs metadata", block, block+len); 4040 /* File system mounted not to panic on error 4041 * Fix the bitmap and return EFSCORRUPTED 4042 * We leak some of the blocks here. 4043 */ 4044 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 4045 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 4046 ac->ac_b_ex.fe_len); 4047 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 4048 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4049 if (!err) 4050 err = -EFSCORRUPTED; 4051 goto out_err; 4052 } 4053 4054 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 4055 #ifdef AGGRESSIVE_CHECK 4056 { 4057 int i; 4058 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 4059 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 4060 bitmap_bh->b_data)); 4061 } 4062 } 4063 #endif 4064 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 4065 ac->ac_b_ex.fe_len); 4066 if (ext4_has_group_desc_csum(sb) && 4067 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4068 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4069 ext4_free_group_clusters_set(sb, gdp, 4070 ext4_free_clusters_after_init(sb, 4071 ac->ac_b_ex.fe_group, gdp)); 4072 } 4073 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 4074 ext4_free_group_clusters_set(sb, gdp, len); 4075 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4076 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 4077 4078 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 4079 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 4080 /* 4081 * Now reduce the dirty block count also. Should not go negative 4082 */ 4083 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 4084 /* release all the reserved blocks if non delalloc */ 4085 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4086 reserv_clstrs); 4087 4088 if (sbi->s_log_groups_per_flex) { 4089 ext4_group_t flex_group = ext4_flex_group(sbi, 4090 ac->ac_b_ex.fe_group); 4091 atomic64_sub(ac->ac_b_ex.fe_len, 4092 &sbi_array_rcu_deref(sbi, s_flex_groups, 4093 flex_group)->free_clusters); 4094 } 4095 4096 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4097 if (err) 4098 goto out_err; 4099 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 4100 4101 out_err: 4102 brelse(bitmap_bh); 4103 return err; 4104 } 4105 4106 /* 4107 * Idempotent helper for Ext4 fast commit replay path to set the state of 4108 * blocks in bitmaps and update counters. 4109 */ 4110 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 4111 int len, int state) 4112 { 4113 struct buffer_head *bitmap_bh = NULL; 4114 struct ext4_group_desc *gdp; 4115 struct buffer_head *gdp_bh; 4116 struct ext4_sb_info *sbi = EXT4_SB(sb); 4117 ext4_group_t group; 4118 ext4_grpblk_t blkoff; 4119 int i, err = 0; 4120 int already; 4121 unsigned int clen, clen_changed, thisgrp_len; 4122 4123 while (len > 0) { 4124 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 4125 4126 /* 4127 * Check to see if we are freeing blocks across a group 4128 * boundary. 4129 * In case of flex_bg, this can happen that (block, len) may 4130 * span across more than one group. In that case we need to 4131 * get the corresponding group metadata to work with. 4132 * For this we have goto again loop. 4133 */ 4134 thisgrp_len = min_t(unsigned int, (unsigned int)len, 4135 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); 4136 clen = EXT4_NUM_B2C(sbi, thisgrp_len); 4137 4138 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) { 4139 ext4_error(sb, "Marking blocks in system zone - " 4140 "Block = %llu, len = %u", 4141 block, thisgrp_len); 4142 bitmap_bh = NULL; 4143 break; 4144 } 4145 4146 bitmap_bh = ext4_read_block_bitmap(sb, group); 4147 if (IS_ERR(bitmap_bh)) { 4148 err = PTR_ERR(bitmap_bh); 4149 bitmap_bh = NULL; 4150 break; 4151 } 4152 4153 err = -EIO; 4154 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 4155 if (!gdp) 4156 break; 4157 4158 ext4_lock_group(sb, group); 4159 already = 0; 4160 for (i = 0; i < clen; i++) 4161 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == 4162 !state) 4163 already++; 4164 4165 clen_changed = clen - already; 4166 if (state) 4167 mb_set_bits(bitmap_bh->b_data, blkoff, clen); 4168 else 4169 mb_clear_bits(bitmap_bh->b_data, blkoff, clen); 4170 if (ext4_has_group_desc_csum(sb) && 4171 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4172 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4173 ext4_free_group_clusters_set(sb, gdp, 4174 ext4_free_clusters_after_init(sb, group, gdp)); 4175 } 4176 if (state) 4177 clen = ext4_free_group_clusters(sb, gdp) - clen_changed; 4178 else 4179 clen = ext4_free_group_clusters(sb, gdp) + clen_changed; 4180 4181 ext4_free_group_clusters_set(sb, gdp, clen); 4182 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4183 ext4_group_desc_csum_set(sb, group, gdp); 4184 4185 ext4_unlock_group(sb, group); 4186 4187 if (sbi->s_log_groups_per_flex) { 4188 ext4_group_t flex_group = ext4_flex_group(sbi, group); 4189 struct flex_groups *fg = sbi_array_rcu_deref(sbi, 4190 s_flex_groups, flex_group); 4191 4192 if (state) 4193 atomic64_sub(clen_changed, &fg->free_clusters); 4194 else 4195 atomic64_add(clen_changed, &fg->free_clusters); 4196 4197 } 4198 4199 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 4200 if (err) 4201 break; 4202 sync_dirty_buffer(bitmap_bh); 4203 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 4204 sync_dirty_buffer(gdp_bh); 4205 if (err) 4206 break; 4207 4208 block += thisgrp_len; 4209 len -= thisgrp_len; 4210 brelse(bitmap_bh); 4211 BUG_ON(len < 0); 4212 } 4213 4214 if (err) 4215 brelse(bitmap_bh); 4216 } 4217 4218 /* 4219 * here we normalize request for locality group 4220 * Group request are normalized to s_mb_group_prealloc, which goes to 4221 * s_strip if we set the same via mount option. 4222 * s_mb_group_prealloc can be configured via 4223 * /sys/fs/ext4/<partition>/mb_group_prealloc 4224 * 4225 * XXX: should we try to preallocate more than the group has now? 4226 */ 4227 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 4228 { 4229 struct super_block *sb = ac->ac_sb; 4230 struct ext4_locality_group *lg = ac->ac_lg; 4231 4232 BUG_ON(lg == NULL); 4233 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 4234 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 4235 } 4236 4237 /* 4238 * This function returns the next element to look at during inode 4239 * PA rbtree walk. We assume that we have held the inode PA rbtree lock 4240 * (ei->i_prealloc_lock) 4241 * 4242 * new_start The start of the range we want to compare 4243 * cur_start The existing start that we are comparing against 4244 * node The node of the rb_tree 4245 */ 4246 static inline struct rb_node* 4247 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node) 4248 { 4249 if (new_start < cur_start) 4250 return node->rb_left; 4251 else 4252 return node->rb_right; 4253 } 4254 4255 static inline void 4256 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac, 4257 ext4_lblk_t start, loff_t end) 4258 { 4259 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4260 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4261 struct ext4_prealloc_space *tmp_pa; 4262 ext4_lblk_t tmp_pa_start; 4263 loff_t tmp_pa_end; 4264 struct rb_node *iter; 4265 4266 read_lock(&ei->i_prealloc_lock); 4267 for (iter = ei->i_prealloc_node.rb_node; iter; 4268 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) { 4269 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4270 pa_node.inode_node); 4271 tmp_pa_start = tmp_pa->pa_lstart; 4272 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4273 4274 spin_lock(&tmp_pa->pa_lock); 4275 if (tmp_pa->pa_deleted == 0) 4276 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start)); 4277 spin_unlock(&tmp_pa->pa_lock); 4278 } 4279 read_unlock(&ei->i_prealloc_lock); 4280 } 4281 4282 /* 4283 * Given an allocation context "ac" and a range "start", "end", check 4284 * and adjust boundaries if the range overlaps with any of the existing 4285 * preallocatoins stored in the corresponding inode of the allocation context. 4286 * 4287 * Parameters: 4288 * ac allocation context 4289 * start start of the new range 4290 * end end of the new range 4291 */ 4292 static inline void 4293 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac, 4294 ext4_lblk_t *start, loff_t *end) 4295 { 4296 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4297 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4298 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL; 4299 struct rb_node *iter; 4300 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1; 4301 loff_t new_end, tmp_pa_end, left_pa_end = -1; 4302 4303 new_start = *start; 4304 new_end = *end; 4305 4306 /* 4307 * Adjust the normalized range so that it doesn't overlap with any 4308 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock 4309 * so it doesn't change underneath us. 4310 */ 4311 read_lock(&ei->i_prealloc_lock); 4312 4313 /* Step 1: find any one immediate neighboring PA of the normalized range */ 4314 for (iter = ei->i_prealloc_node.rb_node; iter; 4315 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4316 tmp_pa_start, iter)) { 4317 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4318 pa_node.inode_node); 4319 tmp_pa_start = tmp_pa->pa_lstart; 4320 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4321 4322 /* PA must not overlap original request */ 4323 spin_lock(&tmp_pa->pa_lock); 4324 if (tmp_pa->pa_deleted == 0) 4325 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end || 4326 ac->ac_o_ex.fe_logical < tmp_pa_start)); 4327 spin_unlock(&tmp_pa->pa_lock); 4328 } 4329 4330 /* 4331 * Step 2: check if the found PA is left or right neighbor and 4332 * get the other neighbor 4333 */ 4334 if (tmp_pa) { 4335 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) { 4336 struct rb_node *tmp; 4337 4338 left_pa = tmp_pa; 4339 tmp = rb_next(&left_pa->pa_node.inode_node); 4340 if (tmp) { 4341 right_pa = rb_entry(tmp, 4342 struct ext4_prealloc_space, 4343 pa_node.inode_node); 4344 } 4345 } else { 4346 struct rb_node *tmp; 4347 4348 right_pa = tmp_pa; 4349 tmp = rb_prev(&right_pa->pa_node.inode_node); 4350 if (tmp) { 4351 left_pa = rb_entry(tmp, 4352 struct ext4_prealloc_space, 4353 pa_node.inode_node); 4354 } 4355 } 4356 } 4357 4358 /* Step 3: get the non deleted neighbors */ 4359 if (left_pa) { 4360 for (iter = &left_pa->pa_node.inode_node;; 4361 iter = rb_prev(iter)) { 4362 if (!iter) { 4363 left_pa = NULL; 4364 break; 4365 } 4366 4367 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4368 pa_node.inode_node); 4369 left_pa = tmp_pa; 4370 spin_lock(&tmp_pa->pa_lock); 4371 if (tmp_pa->pa_deleted == 0) { 4372 spin_unlock(&tmp_pa->pa_lock); 4373 break; 4374 } 4375 spin_unlock(&tmp_pa->pa_lock); 4376 } 4377 } 4378 4379 if (right_pa) { 4380 for (iter = &right_pa->pa_node.inode_node;; 4381 iter = rb_next(iter)) { 4382 if (!iter) { 4383 right_pa = NULL; 4384 break; 4385 } 4386 4387 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4388 pa_node.inode_node); 4389 right_pa = tmp_pa; 4390 spin_lock(&tmp_pa->pa_lock); 4391 if (tmp_pa->pa_deleted == 0) { 4392 spin_unlock(&tmp_pa->pa_lock); 4393 break; 4394 } 4395 spin_unlock(&tmp_pa->pa_lock); 4396 } 4397 } 4398 4399 if (left_pa) { 4400 left_pa_end = pa_logical_end(sbi, left_pa); 4401 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical); 4402 } 4403 4404 if (right_pa) { 4405 right_pa_start = right_pa->pa_lstart; 4406 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical); 4407 } 4408 4409 /* Step 4: trim our normalized range to not overlap with the neighbors */ 4410 if (left_pa) { 4411 if (left_pa_end > new_start) 4412 new_start = left_pa_end; 4413 } 4414 4415 if (right_pa) { 4416 if (right_pa_start < new_end) 4417 new_end = right_pa_start; 4418 } 4419 read_unlock(&ei->i_prealloc_lock); 4420 4421 /* XXX: extra loop to check we really don't overlap preallocations */ 4422 ext4_mb_pa_assert_overlap(ac, new_start, new_end); 4423 4424 *start = new_start; 4425 *end = new_end; 4426 } 4427 4428 /* 4429 * Normalization means making request better in terms of 4430 * size and alignment 4431 */ 4432 static noinline_for_stack void 4433 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 4434 struct ext4_allocation_request *ar) 4435 { 4436 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4437 struct ext4_super_block *es = sbi->s_es; 4438 int bsbits, max; 4439 loff_t size, start_off, end; 4440 loff_t orig_size __maybe_unused; 4441 ext4_lblk_t start; 4442 4443 /* do normalize only data requests, metadata requests 4444 do not need preallocation */ 4445 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4446 return; 4447 4448 /* sometime caller may want exact blocks */ 4449 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4450 return; 4451 4452 /* caller may indicate that preallocation isn't 4453 * required (it's a tail, for example) */ 4454 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 4455 return; 4456 4457 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 4458 ext4_mb_normalize_group_request(ac); 4459 return ; 4460 } 4461 4462 bsbits = ac->ac_sb->s_blocksize_bits; 4463 4464 /* first, let's learn actual file size 4465 * given current request is allocated */ 4466 size = extent_logical_end(sbi, &ac->ac_o_ex); 4467 size = size << bsbits; 4468 if (size < i_size_read(ac->ac_inode)) 4469 size = i_size_read(ac->ac_inode); 4470 orig_size = size; 4471 4472 /* max size of free chunks */ 4473 max = 2 << bsbits; 4474 4475 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 4476 (req <= (size) || max <= (chunk_size)) 4477 4478 /* first, try to predict filesize */ 4479 /* XXX: should this table be tunable? */ 4480 start_off = 0; 4481 if (size <= 16 * 1024) { 4482 size = 16 * 1024; 4483 } else if (size <= 32 * 1024) { 4484 size = 32 * 1024; 4485 } else if (size <= 64 * 1024) { 4486 size = 64 * 1024; 4487 } else if (size <= 128 * 1024) { 4488 size = 128 * 1024; 4489 } else if (size <= 256 * 1024) { 4490 size = 256 * 1024; 4491 } else if (size <= 512 * 1024) { 4492 size = 512 * 1024; 4493 } else if (size <= 1024 * 1024) { 4494 size = 1024 * 1024; 4495 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 4496 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4497 (21 - bsbits)) << 21; 4498 size = 2 * 1024 * 1024; 4499 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 4500 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4501 (22 - bsbits)) << 22; 4502 size = 4 * 1024 * 1024; 4503 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len), 4504 (8<<20)>>bsbits, max, 8 * 1024)) { 4505 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4506 (23 - bsbits)) << 23; 4507 size = 8 * 1024 * 1024; 4508 } else { 4509 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 4510 size = (loff_t) EXT4_C2B(sbi, 4511 ac->ac_o_ex.fe_len) << bsbits; 4512 } 4513 size = size >> bsbits; 4514 start = start_off >> bsbits; 4515 4516 /* 4517 * For tiny groups (smaller than 8MB) the chosen allocation 4518 * alignment may be larger than group size. Make sure the 4519 * alignment does not move allocation to a different group which 4520 * makes mballoc fail assertions later. 4521 */ 4522 start = max(start, rounddown(ac->ac_o_ex.fe_logical, 4523 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); 4524 4525 /* avoid unnecessary preallocation that may trigger assertions */ 4526 if (start + size > EXT_MAX_BLOCKS) 4527 size = EXT_MAX_BLOCKS - start; 4528 4529 /* don't cover already allocated blocks in selected range */ 4530 if (ar->pleft && start <= ar->lleft) { 4531 size -= ar->lleft + 1 - start; 4532 start = ar->lleft + 1; 4533 } 4534 if (ar->pright && start + size - 1 >= ar->lright) 4535 size -= start + size - ar->lright; 4536 4537 /* 4538 * Trim allocation request for filesystems with artificially small 4539 * groups. 4540 */ 4541 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 4542 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 4543 4544 end = start + size; 4545 4546 ext4_mb_pa_adjust_overlap(ac, &start, &end); 4547 4548 size = end - start; 4549 4550 /* 4551 * In this function "start" and "size" are normalized for better 4552 * alignment and length such that we could preallocate more blocks. 4553 * This normalization is done such that original request of 4554 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and 4555 * "size" boundaries. 4556 * (Note fe_len can be relaxed since FS block allocation API does not 4557 * provide gurantee on number of contiguous blocks allocation since that 4558 * depends upon free space left, etc). 4559 * In case of inode pa, later we use the allocated blocks 4560 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated 4561 * range of goal/best blocks [start, size] to put it at the 4562 * ac_o_ex.fe_logical extent of this inode. 4563 * (See ext4_mb_use_inode_pa() for more details) 4564 */ 4565 if (start + size <= ac->ac_o_ex.fe_logical || 4566 start > ac->ac_o_ex.fe_logical) { 4567 ext4_msg(ac->ac_sb, KERN_ERR, 4568 "start %lu, size %lu, fe_logical %lu", 4569 (unsigned long) start, (unsigned long) size, 4570 (unsigned long) ac->ac_o_ex.fe_logical); 4571 BUG(); 4572 } 4573 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 4574 4575 /* now prepare goal request */ 4576 4577 /* XXX: is it better to align blocks WRT to logical 4578 * placement or satisfy big request as is */ 4579 ac->ac_g_ex.fe_logical = start; 4580 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 4581 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 4582 4583 /* define goal start in order to merge */ 4584 if (ar->pright && (ar->lright == (start + size)) && 4585 ar->pright >= size && 4586 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) { 4587 /* merge to the right */ 4588 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 4589 &ac->ac_g_ex.fe_group, 4590 &ac->ac_g_ex.fe_start); 4591 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4592 } 4593 if (ar->pleft && (ar->lleft + 1 == start) && 4594 ar->pleft + 1 < ext4_blocks_count(es)) { 4595 /* merge to the left */ 4596 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 4597 &ac->ac_g_ex.fe_group, 4598 &ac->ac_g_ex.fe_start); 4599 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4600 } 4601 4602 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 4603 orig_size, start); 4604 } 4605 4606 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 4607 { 4608 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4609 4610 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 4611 atomic_inc(&sbi->s_bal_reqs); 4612 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 4613 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 4614 atomic_inc(&sbi->s_bal_success); 4615 4616 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 4617 for (int i=0; i<EXT4_MB_NUM_CRS; i++) { 4618 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]); 4619 } 4620 4621 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 4622 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 4623 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 4624 atomic_inc(&sbi->s_bal_goals); 4625 /* did we allocate as much as normalizer originally wanted? */ 4626 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len) 4627 atomic_inc(&sbi->s_bal_len_goals); 4628 4629 if (ac->ac_found > sbi->s_mb_max_to_scan) 4630 atomic_inc(&sbi->s_bal_breaks); 4631 } 4632 4633 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 4634 trace_ext4_mballoc_alloc(ac); 4635 else 4636 trace_ext4_mballoc_prealloc(ac); 4637 } 4638 4639 /* 4640 * Called on failure; free up any blocks from the inode PA for this 4641 * context. We don't need this for MB_GROUP_PA because we only change 4642 * pa_free in ext4_mb_release_context(), but on failure, we've already 4643 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 4644 */ 4645 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 4646 { 4647 struct ext4_prealloc_space *pa = ac->ac_pa; 4648 struct ext4_buddy e4b; 4649 int err; 4650 4651 if (pa == NULL) { 4652 if (ac->ac_f_ex.fe_len == 0) 4653 return; 4654 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 4655 if (WARN_RATELIMIT(err, 4656 "ext4: mb_load_buddy failed (%d)", err)) 4657 /* 4658 * This should never happen since we pin the 4659 * pages in the ext4_allocation_context so 4660 * ext4_mb_load_buddy() should never fail. 4661 */ 4662 return; 4663 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4664 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 4665 ac->ac_f_ex.fe_len); 4666 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4667 ext4_mb_unload_buddy(&e4b); 4668 return; 4669 } 4670 if (pa->pa_type == MB_INODE_PA) { 4671 spin_lock(&pa->pa_lock); 4672 pa->pa_free += ac->ac_b_ex.fe_len; 4673 spin_unlock(&pa->pa_lock); 4674 } 4675 } 4676 4677 /* 4678 * use blocks preallocated to inode 4679 */ 4680 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 4681 struct ext4_prealloc_space *pa) 4682 { 4683 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4684 ext4_fsblk_t start; 4685 ext4_fsblk_t end; 4686 int len; 4687 4688 /* found preallocated blocks, use them */ 4689 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 4690 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 4691 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 4692 len = EXT4_NUM_B2C(sbi, end - start); 4693 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 4694 &ac->ac_b_ex.fe_start); 4695 ac->ac_b_ex.fe_len = len; 4696 ac->ac_status = AC_STATUS_FOUND; 4697 ac->ac_pa = pa; 4698 4699 BUG_ON(start < pa->pa_pstart); 4700 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 4701 BUG_ON(pa->pa_free < len); 4702 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4703 pa->pa_free -= len; 4704 4705 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 4706 } 4707 4708 /* 4709 * use blocks preallocated to locality group 4710 */ 4711 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 4712 struct ext4_prealloc_space *pa) 4713 { 4714 unsigned int len = ac->ac_o_ex.fe_len; 4715 4716 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 4717 &ac->ac_b_ex.fe_group, 4718 &ac->ac_b_ex.fe_start); 4719 ac->ac_b_ex.fe_len = len; 4720 ac->ac_status = AC_STATUS_FOUND; 4721 ac->ac_pa = pa; 4722 4723 /* we don't correct pa_pstart or pa_len here to avoid 4724 * possible race when the group is being loaded concurrently 4725 * instead we correct pa later, after blocks are marked 4726 * in on-disk bitmap -- see ext4_mb_release_context() 4727 * Other CPUs are prevented from allocating from this pa by lg_mutex 4728 */ 4729 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 4730 pa->pa_lstart, len, pa); 4731 } 4732 4733 /* 4734 * Return the prealloc space that have minimal distance 4735 * from the goal block. @cpa is the prealloc 4736 * space that is having currently known minimal distance 4737 * from the goal block. 4738 */ 4739 static struct ext4_prealloc_space * 4740 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 4741 struct ext4_prealloc_space *pa, 4742 struct ext4_prealloc_space *cpa) 4743 { 4744 ext4_fsblk_t cur_distance, new_distance; 4745 4746 if (cpa == NULL) { 4747 atomic_inc(&pa->pa_count); 4748 return pa; 4749 } 4750 cur_distance = abs(goal_block - cpa->pa_pstart); 4751 new_distance = abs(goal_block - pa->pa_pstart); 4752 4753 if (cur_distance <= new_distance) 4754 return cpa; 4755 4756 /* drop the previous reference */ 4757 atomic_dec(&cpa->pa_count); 4758 atomic_inc(&pa->pa_count); 4759 return pa; 4760 } 4761 4762 /* 4763 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY 4764 */ 4765 static bool 4766 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac, 4767 struct ext4_prealloc_space *pa) 4768 { 4769 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4770 ext4_fsblk_t start; 4771 4772 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))) 4773 return true; 4774 4775 /* 4776 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted 4777 * in ext4_mb_normalize_request and will keep same with ac_o_ex 4778 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep 4779 * consistent with ext4_mb_find_by_goal. 4780 */ 4781 start = pa->pa_pstart + 4782 (ac->ac_g_ex.fe_logical - pa->pa_lstart); 4783 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start) 4784 return false; 4785 4786 if (ac->ac_g_ex.fe_len > pa->pa_len - 4787 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart)) 4788 return false; 4789 4790 return true; 4791 } 4792 4793 /* 4794 * search goal blocks in preallocated space 4795 */ 4796 static noinline_for_stack bool 4797 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 4798 { 4799 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4800 int order, i; 4801 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4802 struct ext4_locality_group *lg; 4803 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL; 4804 struct rb_node *iter; 4805 ext4_fsblk_t goal_block; 4806 4807 /* only data can be preallocated */ 4808 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4809 return false; 4810 4811 /* 4812 * first, try per-file preallocation by searching the inode pa rbtree. 4813 * 4814 * Here, we can't do a direct traversal of the tree because 4815 * ext4_mb_discard_group_preallocation() can paralelly mark the pa 4816 * deleted and that can cause direct traversal to skip some entries. 4817 */ 4818 read_lock(&ei->i_prealloc_lock); 4819 4820 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) { 4821 goto try_group_pa; 4822 } 4823 4824 /* 4825 * Step 1: Find a pa with logical start immediately adjacent to the 4826 * original logical start. This could be on the left or right. 4827 * 4828 * (tmp_pa->pa_lstart never changes so we can skip locking for it). 4829 */ 4830 for (iter = ei->i_prealloc_node.rb_node; iter; 4831 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4832 tmp_pa->pa_lstart, iter)) { 4833 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4834 pa_node.inode_node); 4835 } 4836 4837 /* 4838 * Step 2: The adjacent pa might be to the right of logical start, find 4839 * the left adjacent pa. After this step we'd have a valid tmp_pa whose 4840 * logical start is towards the left of original request's logical start 4841 */ 4842 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) { 4843 struct rb_node *tmp; 4844 tmp = rb_prev(&tmp_pa->pa_node.inode_node); 4845 4846 if (tmp) { 4847 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space, 4848 pa_node.inode_node); 4849 } else { 4850 /* 4851 * If there is no adjacent pa to the left then finding 4852 * an overlapping pa is not possible hence stop searching 4853 * inode pa tree 4854 */ 4855 goto try_group_pa; 4856 } 4857 } 4858 4859 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4860 4861 /* 4862 * Step 3: If the left adjacent pa is deleted, keep moving left to find 4863 * the first non deleted adjacent pa. After this step we should have a 4864 * valid tmp_pa which is guaranteed to be non deleted. 4865 */ 4866 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) { 4867 if (!iter) { 4868 /* 4869 * no non deleted left adjacent pa, so stop searching 4870 * inode pa tree 4871 */ 4872 goto try_group_pa; 4873 } 4874 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4875 pa_node.inode_node); 4876 spin_lock(&tmp_pa->pa_lock); 4877 if (tmp_pa->pa_deleted == 0) { 4878 /* 4879 * We will keep holding the pa_lock from 4880 * this point on because we don't want group discard 4881 * to delete this pa underneath us. Since group 4882 * discard is anyways an ENOSPC operation it 4883 * should be okay for it to wait a few more cycles. 4884 */ 4885 break; 4886 } else { 4887 spin_unlock(&tmp_pa->pa_lock); 4888 } 4889 } 4890 4891 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4892 BUG_ON(tmp_pa->pa_deleted == 1); 4893 4894 /* 4895 * Step 4: We now have the non deleted left adjacent pa. Only this 4896 * pa can possibly satisfy the request hence check if it overlaps 4897 * original logical start and stop searching if it doesn't. 4898 */ 4899 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) { 4900 spin_unlock(&tmp_pa->pa_lock); 4901 goto try_group_pa; 4902 } 4903 4904 /* non-extent files can't have physical blocks past 2^32 */ 4905 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 4906 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) > 4907 EXT4_MAX_BLOCK_FILE_PHYS)) { 4908 /* 4909 * Since PAs don't overlap, we won't find any other PA to 4910 * satisfy this. 4911 */ 4912 spin_unlock(&tmp_pa->pa_lock); 4913 goto try_group_pa; 4914 } 4915 4916 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) { 4917 atomic_inc(&tmp_pa->pa_count); 4918 ext4_mb_use_inode_pa(ac, tmp_pa); 4919 spin_unlock(&tmp_pa->pa_lock); 4920 read_unlock(&ei->i_prealloc_lock); 4921 return true; 4922 } else { 4923 /* 4924 * We found a valid overlapping pa but couldn't use it because 4925 * it had no free blocks. This should ideally never happen 4926 * because: 4927 * 4928 * 1. When a new inode pa is added to rbtree it must have 4929 * pa_free > 0 since otherwise we won't actually need 4930 * preallocation. 4931 * 4932 * 2. An inode pa that is in the rbtree can only have it's 4933 * pa_free become zero when another thread calls: 4934 * ext4_mb_new_blocks 4935 * ext4_mb_use_preallocated 4936 * ext4_mb_use_inode_pa 4937 * 4938 * 3. Further, after the above calls make pa_free == 0, we will 4939 * immediately remove it from the rbtree in: 4940 * ext4_mb_new_blocks 4941 * ext4_mb_release_context 4942 * ext4_mb_put_pa 4943 * 4944 * 4. Since the pa_free becoming 0 and pa_free getting removed 4945 * from tree both happen in ext4_mb_new_blocks, which is always 4946 * called with i_data_sem held for data allocations, we can be 4947 * sure that another process will never see a pa in rbtree with 4948 * pa_free == 0. 4949 */ 4950 WARN_ON_ONCE(tmp_pa->pa_free == 0); 4951 } 4952 spin_unlock(&tmp_pa->pa_lock); 4953 try_group_pa: 4954 read_unlock(&ei->i_prealloc_lock); 4955 4956 /* can we use group allocation? */ 4957 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 4958 return false; 4959 4960 /* inode may have no locality group for some reason */ 4961 lg = ac->ac_lg; 4962 if (lg == NULL) 4963 return false; 4964 order = fls(ac->ac_o_ex.fe_len) - 1; 4965 if (order > PREALLOC_TB_SIZE - 1) 4966 /* The max size of hash table is PREALLOC_TB_SIZE */ 4967 order = PREALLOC_TB_SIZE - 1; 4968 4969 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 4970 /* 4971 * search for the prealloc space that is having 4972 * minimal distance from the goal block. 4973 */ 4974 for (i = order; i < PREALLOC_TB_SIZE; i++) { 4975 rcu_read_lock(); 4976 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i], 4977 pa_node.lg_list) { 4978 spin_lock(&tmp_pa->pa_lock); 4979 if (tmp_pa->pa_deleted == 0 && 4980 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) { 4981 4982 cpa = ext4_mb_check_group_pa(goal_block, 4983 tmp_pa, cpa); 4984 } 4985 spin_unlock(&tmp_pa->pa_lock); 4986 } 4987 rcu_read_unlock(); 4988 } 4989 if (cpa) { 4990 ext4_mb_use_group_pa(ac, cpa); 4991 return true; 4992 } 4993 return false; 4994 } 4995 4996 /* 4997 * the function goes through all preallocation in this group and marks them 4998 * used in in-core bitmap. buddy must be generated from this bitmap 4999 * Need to be called with ext4 group lock held 5000 */ 5001 static noinline_for_stack 5002 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 5003 ext4_group_t group) 5004 { 5005 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5006 struct ext4_prealloc_space *pa; 5007 struct list_head *cur; 5008 ext4_group_t groupnr; 5009 ext4_grpblk_t start; 5010 int preallocated = 0; 5011 int len; 5012 5013 if (!grp) 5014 return; 5015 5016 /* all form of preallocation discards first load group, 5017 * so the only competing code is preallocation use. 5018 * we don't need any locking here 5019 * notice we do NOT ignore preallocations with pa_deleted 5020 * otherwise we could leave used blocks available for 5021 * allocation in buddy when concurrent ext4_mb_put_pa() 5022 * is dropping preallocation 5023 */ 5024 list_for_each(cur, &grp->bb_prealloc_list) { 5025 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 5026 spin_lock(&pa->pa_lock); 5027 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5028 &groupnr, &start); 5029 len = pa->pa_len; 5030 spin_unlock(&pa->pa_lock); 5031 if (unlikely(len == 0)) 5032 continue; 5033 BUG_ON(groupnr != group); 5034 mb_set_bits(bitmap, start, len); 5035 preallocated += len; 5036 } 5037 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 5038 } 5039 5040 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 5041 struct ext4_prealloc_space *pa) 5042 { 5043 struct ext4_inode_info *ei; 5044 5045 if (pa->pa_deleted) { 5046 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 5047 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 5048 pa->pa_len); 5049 return; 5050 } 5051 5052 pa->pa_deleted = 1; 5053 5054 if (pa->pa_type == MB_INODE_PA) { 5055 ei = EXT4_I(pa->pa_inode); 5056 atomic_dec(&ei->i_prealloc_active); 5057 } 5058 } 5059 5060 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa) 5061 { 5062 BUG_ON(!pa); 5063 BUG_ON(atomic_read(&pa->pa_count)); 5064 BUG_ON(pa->pa_deleted == 0); 5065 kmem_cache_free(ext4_pspace_cachep, pa); 5066 } 5067 5068 static void ext4_mb_pa_callback(struct rcu_head *head) 5069 { 5070 struct ext4_prealloc_space *pa; 5071 5072 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 5073 ext4_mb_pa_free(pa); 5074 } 5075 5076 /* 5077 * drops a reference to preallocated space descriptor 5078 * if this was the last reference and the space is consumed 5079 */ 5080 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 5081 struct super_block *sb, struct ext4_prealloc_space *pa) 5082 { 5083 ext4_group_t grp; 5084 ext4_fsblk_t grp_blk; 5085 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 5086 5087 /* in this short window concurrent discard can set pa_deleted */ 5088 spin_lock(&pa->pa_lock); 5089 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 5090 spin_unlock(&pa->pa_lock); 5091 return; 5092 } 5093 5094 if (pa->pa_deleted == 1) { 5095 spin_unlock(&pa->pa_lock); 5096 return; 5097 } 5098 5099 ext4_mb_mark_pa_deleted(sb, pa); 5100 spin_unlock(&pa->pa_lock); 5101 5102 grp_blk = pa->pa_pstart; 5103 /* 5104 * If doing group-based preallocation, pa_pstart may be in the 5105 * next group when pa is used up 5106 */ 5107 if (pa->pa_type == MB_GROUP_PA) 5108 grp_blk--; 5109 5110 grp = ext4_get_group_number(sb, grp_blk); 5111 5112 /* 5113 * possible race: 5114 * 5115 * P1 (buddy init) P2 (regular allocation) 5116 * find block B in PA 5117 * copy on-disk bitmap to buddy 5118 * mark B in on-disk bitmap 5119 * drop PA from group 5120 * mark all PAs in buddy 5121 * 5122 * thus, P1 initializes buddy with B available. to prevent this 5123 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 5124 * against that pair 5125 */ 5126 ext4_lock_group(sb, grp); 5127 list_del(&pa->pa_group_list); 5128 ext4_unlock_group(sb, grp); 5129 5130 if (pa->pa_type == MB_INODE_PA) { 5131 write_lock(pa->pa_node_lock.inode_lock); 5132 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5133 write_unlock(pa->pa_node_lock.inode_lock); 5134 ext4_mb_pa_free(pa); 5135 } else { 5136 spin_lock(pa->pa_node_lock.lg_lock); 5137 list_del_rcu(&pa->pa_node.lg_list); 5138 spin_unlock(pa->pa_node_lock.lg_lock); 5139 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5140 } 5141 } 5142 5143 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new) 5144 { 5145 struct rb_node **iter = &root->rb_node, *parent = NULL; 5146 struct ext4_prealloc_space *iter_pa, *new_pa; 5147 ext4_lblk_t iter_start, new_start; 5148 5149 while (*iter) { 5150 iter_pa = rb_entry(*iter, struct ext4_prealloc_space, 5151 pa_node.inode_node); 5152 new_pa = rb_entry(new, struct ext4_prealloc_space, 5153 pa_node.inode_node); 5154 iter_start = iter_pa->pa_lstart; 5155 new_start = new_pa->pa_lstart; 5156 5157 parent = *iter; 5158 if (new_start < iter_start) 5159 iter = &((*iter)->rb_left); 5160 else 5161 iter = &((*iter)->rb_right); 5162 } 5163 5164 rb_link_node(new, parent, iter); 5165 rb_insert_color(new, root); 5166 } 5167 5168 /* 5169 * creates new preallocated space for given inode 5170 */ 5171 static noinline_for_stack void 5172 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 5173 { 5174 struct super_block *sb = ac->ac_sb; 5175 struct ext4_sb_info *sbi = EXT4_SB(sb); 5176 struct ext4_prealloc_space *pa; 5177 struct ext4_group_info *grp; 5178 struct ext4_inode_info *ei; 5179 5180 /* preallocate only when found space is larger then requested */ 5181 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5182 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5183 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5184 BUG_ON(ac->ac_pa == NULL); 5185 5186 pa = ac->ac_pa; 5187 5188 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) { 5189 struct ext4_free_extent ex = { 5190 .fe_logical = ac->ac_g_ex.fe_logical, 5191 .fe_len = ac->ac_orig_goal_len, 5192 }; 5193 loff_t orig_goal_end = extent_logical_end(sbi, &ex); 5194 loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex); 5195 5196 /* 5197 * We can't allocate as much as normalizer wants, so we try 5198 * to get proper lstart to cover the original request, except 5199 * when the goal doesn't cover the original request as below: 5200 * 5201 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048 5202 * best_ex:0/200(200) -> adjusted: 1848/2048(200) 5203 */ 5204 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 5205 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 5206 5207 /* 5208 * Use the below logic for adjusting best extent as it keeps 5209 * fragmentation in check while ensuring logical range of best 5210 * extent doesn't overflow out of goal extent: 5211 * 5212 * 1. Check if best ex can be kept at end of goal (before 5213 * cr_best_avail trimmed it) and still cover original start 5214 * 2. Else, check if best ex can be kept at start of goal and 5215 * still cover original end 5216 * 3. Else, keep the best ex at start of original request. 5217 */ 5218 ex.fe_len = ac->ac_b_ex.fe_len; 5219 5220 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len); 5221 if (ac->ac_o_ex.fe_logical >= ex.fe_logical) 5222 goto adjust_bex; 5223 5224 ex.fe_logical = ac->ac_g_ex.fe_logical; 5225 if (o_ex_end <= extent_logical_end(sbi, &ex)) 5226 goto adjust_bex; 5227 5228 ex.fe_logical = ac->ac_o_ex.fe_logical; 5229 adjust_bex: 5230 ac->ac_b_ex.fe_logical = ex.fe_logical; 5231 5232 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 5233 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end); 5234 } 5235 5236 pa->pa_lstart = ac->ac_b_ex.fe_logical; 5237 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5238 pa->pa_len = ac->ac_b_ex.fe_len; 5239 pa->pa_free = pa->pa_len; 5240 spin_lock_init(&pa->pa_lock); 5241 INIT_LIST_HEAD(&pa->pa_group_list); 5242 pa->pa_deleted = 0; 5243 pa->pa_type = MB_INODE_PA; 5244 5245 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5246 pa->pa_len, pa->pa_lstart); 5247 trace_ext4_mb_new_inode_pa(ac, pa); 5248 5249 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 5250 ext4_mb_use_inode_pa(ac, pa); 5251 5252 ei = EXT4_I(ac->ac_inode); 5253 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5254 if (!grp) 5255 return; 5256 5257 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock; 5258 pa->pa_inode = ac->ac_inode; 5259 5260 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5261 5262 write_lock(pa->pa_node_lock.inode_lock); 5263 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node); 5264 write_unlock(pa->pa_node_lock.inode_lock); 5265 atomic_inc(&ei->i_prealloc_active); 5266 } 5267 5268 /* 5269 * creates new preallocated space for locality group inodes belongs to 5270 */ 5271 static noinline_for_stack void 5272 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 5273 { 5274 struct super_block *sb = ac->ac_sb; 5275 struct ext4_locality_group *lg; 5276 struct ext4_prealloc_space *pa; 5277 struct ext4_group_info *grp; 5278 5279 /* preallocate only when found space is larger then requested */ 5280 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5281 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5282 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5283 BUG_ON(ac->ac_pa == NULL); 5284 5285 pa = ac->ac_pa; 5286 5287 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5288 pa->pa_lstart = pa->pa_pstart; 5289 pa->pa_len = ac->ac_b_ex.fe_len; 5290 pa->pa_free = pa->pa_len; 5291 spin_lock_init(&pa->pa_lock); 5292 INIT_LIST_HEAD(&pa->pa_node.lg_list); 5293 INIT_LIST_HEAD(&pa->pa_group_list); 5294 pa->pa_deleted = 0; 5295 pa->pa_type = MB_GROUP_PA; 5296 5297 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5298 pa->pa_len, pa->pa_lstart); 5299 trace_ext4_mb_new_group_pa(ac, pa); 5300 5301 ext4_mb_use_group_pa(ac, pa); 5302 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 5303 5304 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5305 if (!grp) 5306 return; 5307 lg = ac->ac_lg; 5308 BUG_ON(lg == NULL); 5309 5310 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock; 5311 pa->pa_inode = NULL; 5312 5313 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5314 5315 /* 5316 * We will later add the new pa to the right bucket 5317 * after updating the pa_free in ext4_mb_release_context 5318 */ 5319 } 5320 5321 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 5322 { 5323 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5324 ext4_mb_new_group_pa(ac); 5325 else 5326 ext4_mb_new_inode_pa(ac); 5327 } 5328 5329 /* 5330 * finds all unused blocks in on-disk bitmap, frees them in 5331 * in-core bitmap and buddy. 5332 * @pa must be unlinked from inode and group lists, so that 5333 * nobody else can find/use it. 5334 * the caller MUST hold group/inode locks. 5335 * TODO: optimize the case when there are no in-core structures yet 5336 */ 5337 static noinline_for_stack int 5338 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 5339 struct ext4_prealloc_space *pa) 5340 { 5341 struct super_block *sb = e4b->bd_sb; 5342 struct ext4_sb_info *sbi = EXT4_SB(sb); 5343 unsigned int end; 5344 unsigned int next; 5345 ext4_group_t group; 5346 ext4_grpblk_t bit; 5347 unsigned long long grp_blk_start; 5348 int free = 0; 5349 5350 BUG_ON(pa->pa_deleted == 0); 5351 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5352 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 5353 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 5354 end = bit + pa->pa_len; 5355 5356 while (bit < end) { 5357 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 5358 if (bit >= end) 5359 break; 5360 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 5361 mb_debug(sb, "free preallocated %u/%u in group %u\n", 5362 (unsigned) ext4_group_first_block_no(sb, group) + bit, 5363 (unsigned) next - bit, (unsigned) group); 5364 free += next - bit; 5365 5366 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 5367 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 5368 EXT4_C2B(sbi, bit)), 5369 next - bit); 5370 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 5371 bit = next + 1; 5372 } 5373 if (free != pa->pa_free) { 5374 ext4_msg(e4b->bd_sb, KERN_CRIT, 5375 "pa %p: logic %lu, phys. %lu, len %d", 5376 pa, (unsigned long) pa->pa_lstart, 5377 (unsigned long) pa->pa_pstart, 5378 pa->pa_len); 5379 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 5380 free, pa->pa_free); 5381 /* 5382 * pa is already deleted so we use the value obtained 5383 * from the bitmap and continue. 5384 */ 5385 } 5386 atomic_add(free, &sbi->s_mb_discarded); 5387 5388 return 0; 5389 } 5390 5391 static noinline_for_stack int 5392 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 5393 struct ext4_prealloc_space *pa) 5394 { 5395 struct super_block *sb = e4b->bd_sb; 5396 ext4_group_t group; 5397 ext4_grpblk_t bit; 5398 5399 trace_ext4_mb_release_group_pa(sb, pa); 5400 BUG_ON(pa->pa_deleted == 0); 5401 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5402 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) { 5403 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu", 5404 e4b->bd_group, group, pa->pa_pstart); 5405 return 0; 5406 } 5407 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 5408 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 5409 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 5410 5411 return 0; 5412 } 5413 5414 /* 5415 * releases all preallocations in given group 5416 * 5417 * first, we need to decide discard policy: 5418 * - when do we discard 5419 * 1) ENOSPC 5420 * - how many do we discard 5421 * 1) how many requested 5422 */ 5423 static noinline_for_stack int 5424 ext4_mb_discard_group_preallocations(struct super_block *sb, 5425 ext4_group_t group, int *busy) 5426 { 5427 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5428 struct buffer_head *bitmap_bh = NULL; 5429 struct ext4_prealloc_space *pa, *tmp; 5430 LIST_HEAD(list); 5431 struct ext4_buddy e4b; 5432 struct ext4_inode_info *ei; 5433 int err; 5434 int free = 0; 5435 5436 if (!grp) 5437 return 0; 5438 mb_debug(sb, "discard preallocation for group %u\n", group); 5439 if (list_empty(&grp->bb_prealloc_list)) 5440 goto out_dbg; 5441 5442 bitmap_bh = ext4_read_block_bitmap(sb, group); 5443 if (IS_ERR(bitmap_bh)) { 5444 err = PTR_ERR(bitmap_bh); 5445 ext4_error_err(sb, -err, 5446 "Error %d reading block bitmap for %u", 5447 err, group); 5448 goto out_dbg; 5449 } 5450 5451 err = ext4_mb_load_buddy(sb, group, &e4b); 5452 if (err) { 5453 ext4_warning(sb, "Error %d loading buddy information for %u", 5454 err, group); 5455 put_bh(bitmap_bh); 5456 goto out_dbg; 5457 } 5458 5459 ext4_lock_group(sb, group); 5460 list_for_each_entry_safe(pa, tmp, 5461 &grp->bb_prealloc_list, pa_group_list) { 5462 spin_lock(&pa->pa_lock); 5463 if (atomic_read(&pa->pa_count)) { 5464 spin_unlock(&pa->pa_lock); 5465 *busy = 1; 5466 continue; 5467 } 5468 if (pa->pa_deleted) { 5469 spin_unlock(&pa->pa_lock); 5470 continue; 5471 } 5472 5473 /* seems this one can be freed ... */ 5474 ext4_mb_mark_pa_deleted(sb, pa); 5475 5476 if (!free) 5477 this_cpu_inc(discard_pa_seq); 5478 5479 /* we can trust pa_free ... */ 5480 free += pa->pa_free; 5481 5482 spin_unlock(&pa->pa_lock); 5483 5484 list_del(&pa->pa_group_list); 5485 list_add(&pa->u.pa_tmp_list, &list); 5486 } 5487 5488 /* now free all selected PAs */ 5489 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5490 5491 /* remove from object (inode or locality group) */ 5492 if (pa->pa_type == MB_GROUP_PA) { 5493 spin_lock(pa->pa_node_lock.lg_lock); 5494 list_del_rcu(&pa->pa_node.lg_list); 5495 spin_unlock(pa->pa_node_lock.lg_lock); 5496 } else { 5497 write_lock(pa->pa_node_lock.inode_lock); 5498 ei = EXT4_I(pa->pa_inode); 5499 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5500 write_unlock(pa->pa_node_lock.inode_lock); 5501 } 5502 5503 list_del(&pa->u.pa_tmp_list); 5504 5505 if (pa->pa_type == MB_GROUP_PA) { 5506 ext4_mb_release_group_pa(&e4b, pa); 5507 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5508 } else { 5509 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5510 ext4_mb_pa_free(pa); 5511 } 5512 } 5513 5514 ext4_unlock_group(sb, group); 5515 ext4_mb_unload_buddy(&e4b); 5516 put_bh(bitmap_bh); 5517 out_dbg: 5518 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 5519 free, group, grp->bb_free); 5520 return free; 5521 } 5522 5523 /* 5524 * releases all non-used preallocated blocks for given inode 5525 * 5526 * It's important to discard preallocations under i_data_sem 5527 * We don't want another block to be served from the prealloc 5528 * space when we are discarding the inode prealloc space. 5529 * 5530 * FIXME!! Make sure it is valid at all the call sites 5531 */ 5532 void ext4_discard_preallocations(struct inode *inode, unsigned int needed) 5533 { 5534 struct ext4_inode_info *ei = EXT4_I(inode); 5535 struct super_block *sb = inode->i_sb; 5536 struct buffer_head *bitmap_bh = NULL; 5537 struct ext4_prealloc_space *pa, *tmp; 5538 ext4_group_t group = 0; 5539 LIST_HEAD(list); 5540 struct ext4_buddy e4b; 5541 struct rb_node *iter; 5542 int err; 5543 5544 if (!S_ISREG(inode->i_mode)) { 5545 return; 5546 } 5547 5548 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 5549 return; 5550 5551 mb_debug(sb, "discard preallocation for inode %lu\n", 5552 inode->i_ino); 5553 trace_ext4_discard_preallocations(inode, 5554 atomic_read(&ei->i_prealloc_active), needed); 5555 5556 if (needed == 0) 5557 needed = UINT_MAX; 5558 5559 repeat: 5560 /* first, collect all pa's in the inode */ 5561 write_lock(&ei->i_prealloc_lock); 5562 for (iter = rb_first(&ei->i_prealloc_node); iter && needed; 5563 iter = rb_next(iter)) { 5564 pa = rb_entry(iter, struct ext4_prealloc_space, 5565 pa_node.inode_node); 5566 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock); 5567 5568 spin_lock(&pa->pa_lock); 5569 if (atomic_read(&pa->pa_count)) { 5570 /* this shouldn't happen often - nobody should 5571 * use preallocation while we're discarding it */ 5572 spin_unlock(&pa->pa_lock); 5573 write_unlock(&ei->i_prealloc_lock); 5574 ext4_msg(sb, KERN_ERR, 5575 "uh-oh! used pa while discarding"); 5576 WARN_ON(1); 5577 schedule_timeout_uninterruptible(HZ); 5578 goto repeat; 5579 5580 } 5581 if (pa->pa_deleted == 0) { 5582 ext4_mb_mark_pa_deleted(sb, pa); 5583 spin_unlock(&pa->pa_lock); 5584 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5585 list_add(&pa->u.pa_tmp_list, &list); 5586 needed--; 5587 continue; 5588 } 5589 5590 /* someone is deleting pa right now */ 5591 spin_unlock(&pa->pa_lock); 5592 write_unlock(&ei->i_prealloc_lock); 5593 5594 /* we have to wait here because pa_deleted 5595 * doesn't mean pa is already unlinked from 5596 * the list. as we might be called from 5597 * ->clear_inode() the inode will get freed 5598 * and concurrent thread which is unlinking 5599 * pa from inode's list may access already 5600 * freed memory, bad-bad-bad */ 5601 5602 /* XXX: if this happens too often, we can 5603 * add a flag to force wait only in case 5604 * of ->clear_inode(), but not in case of 5605 * regular truncate */ 5606 schedule_timeout_uninterruptible(HZ); 5607 goto repeat; 5608 } 5609 write_unlock(&ei->i_prealloc_lock); 5610 5611 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5612 BUG_ON(pa->pa_type != MB_INODE_PA); 5613 group = ext4_get_group_number(sb, pa->pa_pstart); 5614 5615 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5616 GFP_NOFS|__GFP_NOFAIL); 5617 if (err) { 5618 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5619 err, group); 5620 continue; 5621 } 5622 5623 bitmap_bh = ext4_read_block_bitmap(sb, group); 5624 if (IS_ERR(bitmap_bh)) { 5625 err = PTR_ERR(bitmap_bh); 5626 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 5627 err, group); 5628 ext4_mb_unload_buddy(&e4b); 5629 continue; 5630 } 5631 5632 ext4_lock_group(sb, group); 5633 list_del(&pa->pa_group_list); 5634 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5635 ext4_unlock_group(sb, group); 5636 5637 ext4_mb_unload_buddy(&e4b); 5638 put_bh(bitmap_bh); 5639 5640 list_del(&pa->u.pa_tmp_list); 5641 ext4_mb_pa_free(pa); 5642 } 5643 } 5644 5645 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 5646 { 5647 struct ext4_prealloc_space *pa; 5648 5649 BUG_ON(ext4_pspace_cachep == NULL); 5650 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 5651 if (!pa) 5652 return -ENOMEM; 5653 atomic_set(&pa->pa_count, 1); 5654 ac->ac_pa = pa; 5655 return 0; 5656 } 5657 5658 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac) 5659 { 5660 struct ext4_prealloc_space *pa = ac->ac_pa; 5661 5662 BUG_ON(!pa); 5663 ac->ac_pa = NULL; 5664 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 5665 /* 5666 * current function is only called due to an error or due to 5667 * len of found blocks < len of requested blocks hence the PA has not 5668 * been added to grp->bb_prealloc_list. So we don't need to lock it 5669 */ 5670 pa->pa_deleted = 1; 5671 ext4_mb_pa_free(pa); 5672 } 5673 5674 #ifdef CONFIG_EXT4_DEBUG 5675 static inline void ext4_mb_show_pa(struct super_block *sb) 5676 { 5677 ext4_group_t i, ngroups; 5678 5679 if (ext4_forced_shutdown(sb)) 5680 return; 5681 5682 ngroups = ext4_get_groups_count(sb); 5683 mb_debug(sb, "groups: "); 5684 for (i = 0; i < ngroups; i++) { 5685 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 5686 struct ext4_prealloc_space *pa; 5687 ext4_grpblk_t start; 5688 struct list_head *cur; 5689 5690 if (!grp) 5691 continue; 5692 ext4_lock_group(sb, i); 5693 list_for_each(cur, &grp->bb_prealloc_list) { 5694 pa = list_entry(cur, struct ext4_prealloc_space, 5695 pa_group_list); 5696 spin_lock(&pa->pa_lock); 5697 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5698 NULL, &start); 5699 spin_unlock(&pa->pa_lock); 5700 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 5701 pa->pa_len); 5702 } 5703 ext4_unlock_group(sb, i); 5704 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 5705 grp->bb_fragments); 5706 } 5707 } 5708 5709 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5710 { 5711 struct super_block *sb = ac->ac_sb; 5712 5713 if (ext4_forced_shutdown(sb)) 5714 return; 5715 5716 mb_debug(sb, "Can't allocate:" 5717 " Allocation context details:"); 5718 mb_debug(sb, "status %u flags 0x%x", 5719 ac->ac_status, ac->ac_flags); 5720 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 5721 "goal %lu/%lu/%lu@%lu, " 5722 "best %lu/%lu/%lu@%lu cr %d", 5723 (unsigned long)ac->ac_o_ex.fe_group, 5724 (unsigned long)ac->ac_o_ex.fe_start, 5725 (unsigned long)ac->ac_o_ex.fe_len, 5726 (unsigned long)ac->ac_o_ex.fe_logical, 5727 (unsigned long)ac->ac_g_ex.fe_group, 5728 (unsigned long)ac->ac_g_ex.fe_start, 5729 (unsigned long)ac->ac_g_ex.fe_len, 5730 (unsigned long)ac->ac_g_ex.fe_logical, 5731 (unsigned long)ac->ac_b_ex.fe_group, 5732 (unsigned long)ac->ac_b_ex.fe_start, 5733 (unsigned long)ac->ac_b_ex.fe_len, 5734 (unsigned long)ac->ac_b_ex.fe_logical, 5735 (int)ac->ac_criteria); 5736 mb_debug(sb, "%u found", ac->ac_found); 5737 mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no"); 5738 if (ac->ac_pa) 5739 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ? 5740 "group pa" : "inode pa"); 5741 ext4_mb_show_pa(sb); 5742 } 5743 #else 5744 static inline void ext4_mb_show_pa(struct super_block *sb) 5745 { 5746 } 5747 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5748 { 5749 ext4_mb_show_pa(ac->ac_sb); 5750 } 5751 #endif 5752 5753 /* 5754 * We use locality group preallocation for small size file. The size of the 5755 * file is determined by the current size or the resulting size after 5756 * allocation which ever is larger 5757 * 5758 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 5759 */ 5760 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 5761 { 5762 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5763 int bsbits = ac->ac_sb->s_blocksize_bits; 5764 loff_t size, isize; 5765 bool inode_pa_eligible, group_pa_eligible; 5766 5767 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 5768 return; 5769 5770 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 5771 return; 5772 5773 group_pa_eligible = sbi->s_mb_group_prealloc > 0; 5774 inode_pa_eligible = true; 5775 size = extent_logical_end(sbi, &ac->ac_o_ex); 5776 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 5777 >> bsbits; 5778 5779 /* No point in using inode preallocation for closed files */ 5780 if ((size == isize) && !ext4_fs_is_busy(sbi) && 5781 !inode_is_open_for_write(ac->ac_inode)) 5782 inode_pa_eligible = false; 5783 5784 size = max(size, isize); 5785 /* Don't use group allocation for large files */ 5786 if (size > sbi->s_mb_stream_request) 5787 group_pa_eligible = false; 5788 5789 if (!group_pa_eligible) { 5790 if (inode_pa_eligible) 5791 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5792 else 5793 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 5794 return; 5795 } 5796 5797 BUG_ON(ac->ac_lg != NULL); 5798 /* 5799 * locality group prealloc space are per cpu. The reason for having 5800 * per cpu locality group is to reduce the contention between block 5801 * request from multiple CPUs. 5802 */ 5803 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 5804 5805 /* we're going to use group allocation */ 5806 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 5807 5808 /* serialize all allocations in the group */ 5809 mutex_lock(&ac->ac_lg->lg_mutex); 5810 } 5811 5812 static noinline_for_stack void 5813 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 5814 struct ext4_allocation_request *ar) 5815 { 5816 struct super_block *sb = ar->inode->i_sb; 5817 struct ext4_sb_info *sbi = EXT4_SB(sb); 5818 struct ext4_super_block *es = sbi->s_es; 5819 ext4_group_t group; 5820 unsigned int len; 5821 ext4_fsblk_t goal; 5822 ext4_grpblk_t block; 5823 5824 /* we can't allocate > group size */ 5825 len = ar->len; 5826 5827 /* just a dirty hack to filter too big requests */ 5828 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 5829 len = EXT4_CLUSTERS_PER_GROUP(sb); 5830 5831 /* start searching from the goal */ 5832 goal = ar->goal; 5833 if (goal < le32_to_cpu(es->s_first_data_block) || 5834 goal >= ext4_blocks_count(es)) 5835 goal = le32_to_cpu(es->s_first_data_block); 5836 ext4_get_group_no_and_offset(sb, goal, &group, &block); 5837 5838 /* set up allocation goals */ 5839 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 5840 ac->ac_status = AC_STATUS_CONTINUE; 5841 ac->ac_sb = sb; 5842 ac->ac_inode = ar->inode; 5843 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 5844 ac->ac_o_ex.fe_group = group; 5845 ac->ac_o_ex.fe_start = block; 5846 ac->ac_o_ex.fe_len = len; 5847 ac->ac_g_ex = ac->ac_o_ex; 5848 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 5849 ac->ac_flags = ar->flags; 5850 5851 /* we have to define context: we'll work with a file or 5852 * locality group. this is a policy, actually */ 5853 ext4_mb_group_or_file(ac); 5854 5855 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 5856 "left: %u/%u, right %u/%u to %swritable\n", 5857 (unsigned) ar->len, (unsigned) ar->logical, 5858 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 5859 (unsigned) ar->lleft, (unsigned) ar->pleft, 5860 (unsigned) ar->lright, (unsigned) ar->pright, 5861 inode_is_open_for_write(ar->inode) ? "" : "non-"); 5862 } 5863 5864 static noinline_for_stack void 5865 ext4_mb_discard_lg_preallocations(struct super_block *sb, 5866 struct ext4_locality_group *lg, 5867 int order, int total_entries) 5868 { 5869 ext4_group_t group = 0; 5870 struct ext4_buddy e4b; 5871 LIST_HEAD(discard_list); 5872 struct ext4_prealloc_space *pa, *tmp; 5873 5874 mb_debug(sb, "discard locality group preallocation\n"); 5875 5876 spin_lock(&lg->lg_prealloc_lock); 5877 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 5878 pa_node.lg_list, 5879 lockdep_is_held(&lg->lg_prealloc_lock)) { 5880 spin_lock(&pa->pa_lock); 5881 if (atomic_read(&pa->pa_count)) { 5882 /* 5883 * This is the pa that we just used 5884 * for block allocation. So don't 5885 * free that 5886 */ 5887 spin_unlock(&pa->pa_lock); 5888 continue; 5889 } 5890 if (pa->pa_deleted) { 5891 spin_unlock(&pa->pa_lock); 5892 continue; 5893 } 5894 /* only lg prealloc space */ 5895 BUG_ON(pa->pa_type != MB_GROUP_PA); 5896 5897 /* seems this one can be freed ... */ 5898 ext4_mb_mark_pa_deleted(sb, pa); 5899 spin_unlock(&pa->pa_lock); 5900 5901 list_del_rcu(&pa->pa_node.lg_list); 5902 list_add(&pa->u.pa_tmp_list, &discard_list); 5903 5904 total_entries--; 5905 if (total_entries <= 5) { 5906 /* 5907 * we want to keep only 5 entries 5908 * allowing it to grow to 8. This 5909 * mak sure we don't call discard 5910 * soon for this list. 5911 */ 5912 break; 5913 } 5914 } 5915 spin_unlock(&lg->lg_prealloc_lock); 5916 5917 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 5918 int err; 5919 5920 group = ext4_get_group_number(sb, pa->pa_pstart); 5921 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5922 GFP_NOFS|__GFP_NOFAIL); 5923 if (err) { 5924 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5925 err, group); 5926 continue; 5927 } 5928 ext4_lock_group(sb, group); 5929 list_del(&pa->pa_group_list); 5930 ext4_mb_release_group_pa(&e4b, pa); 5931 ext4_unlock_group(sb, group); 5932 5933 ext4_mb_unload_buddy(&e4b); 5934 list_del(&pa->u.pa_tmp_list); 5935 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5936 } 5937 } 5938 5939 /* 5940 * We have incremented pa_count. So it cannot be freed at this 5941 * point. Also we hold lg_mutex. So no parallel allocation is 5942 * possible from this lg. That means pa_free cannot be updated. 5943 * 5944 * A parallel ext4_mb_discard_group_preallocations is possible. 5945 * which can cause the lg_prealloc_list to be updated. 5946 */ 5947 5948 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 5949 { 5950 int order, added = 0, lg_prealloc_count = 1; 5951 struct super_block *sb = ac->ac_sb; 5952 struct ext4_locality_group *lg = ac->ac_lg; 5953 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 5954 5955 order = fls(pa->pa_free) - 1; 5956 if (order > PREALLOC_TB_SIZE - 1) 5957 /* The max size of hash table is PREALLOC_TB_SIZE */ 5958 order = PREALLOC_TB_SIZE - 1; 5959 /* Add the prealloc space to lg */ 5960 spin_lock(&lg->lg_prealloc_lock); 5961 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 5962 pa_node.lg_list, 5963 lockdep_is_held(&lg->lg_prealloc_lock)) { 5964 spin_lock(&tmp_pa->pa_lock); 5965 if (tmp_pa->pa_deleted) { 5966 spin_unlock(&tmp_pa->pa_lock); 5967 continue; 5968 } 5969 if (!added && pa->pa_free < tmp_pa->pa_free) { 5970 /* Add to the tail of the previous entry */ 5971 list_add_tail_rcu(&pa->pa_node.lg_list, 5972 &tmp_pa->pa_node.lg_list); 5973 added = 1; 5974 /* 5975 * we want to count the total 5976 * number of entries in the list 5977 */ 5978 } 5979 spin_unlock(&tmp_pa->pa_lock); 5980 lg_prealloc_count++; 5981 } 5982 if (!added) 5983 list_add_tail_rcu(&pa->pa_node.lg_list, 5984 &lg->lg_prealloc_list[order]); 5985 spin_unlock(&lg->lg_prealloc_lock); 5986 5987 /* Now trim the list to be not more than 8 elements */ 5988 if (lg_prealloc_count > 8) 5989 ext4_mb_discard_lg_preallocations(sb, lg, 5990 order, lg_prealloc_count); 5991 } 5992 5993 /* 5994 * release all resource we used in allocation 5995 */ 5996 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 5997 { 5998 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5999 struct ext4_prealloc_space *pa = ac->ac_pa; 6000 if (pa) { 6001 if (pa->pa_type == MB_GROUP_PA) { 6002 /* see comment in ext4_mb_use_group_pa() */ 6003 spin_lock(&pa->pa_lock); 6004 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 6005 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 6006 pa->pa_free -= ac->ac_b_ex.fe_len; 6007 pa->pa_len -= ac->ac_b_ex.fe_len; 6008 spin_unlock(&pa->pa_lock); 6009 6010 /* 6011 * We want to add the pa to the right bucket. 6012 * Remove it from the list and while adding 6013 * make sure the list to which we are adding 6014 * doesn't grow big. 6015 */ 6016 if (likely(pa->pa_free)) { 6017 spin_lock(pa->pa_node_lock.lg_lock); 6018 list_del_rcu(&pa->pa_node.lg_list); 6019 spin_unlock(pa->pa_node_lock.lg_lock); 6020 ext4_mb_add_n_trim(ac); 6021 } 6022 } 6023 6024 ext4_mb_put_pa(ac, ac->ac_sb, pa); 6025 } 6026 if (ac->ac_bitmap_page) 6027 put_page(ac->ac_bitmap_page); 6028 if (ac->ac_buddy_page) 6029 put_page(ac->ac_buddy_page); 6030 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 6031 mutex_unlock(&ac->ac_lg->lg_mutex); 6032 ext4_mb_collect_stats(ac); 6033 return 0; 6034 } 6035 6036 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 6037 { 6038 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 6039 int ret; 6040 int freed = 0, busy = 0; 6041 int retry = 0; 6042 6043 trace_ext4_mb_discard_preallocations(sb, needed); 6044 6045 if (needed == 0) 6046 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 6047 repeat: 6048 for (i = 0; i < ngroups && needed > 0; i++) { 6049 ret = ext4_mb_discard_group_preallocations(sb, i, &busy); 6050 freed += ret; 6051 needed -= ret; 6052 cond_resched(); 6053 } 6054 6055 if (needed > 0 && busy && ++retry < 3) { 6056 busy = 0; 6057 goto repeat; 6058 } 6059 6060 return freed; 6061 } 6062 6063 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 6064 struct ext4_allocation_context *ac, u64 *seq) 6065 { 6066 int freed; 6067 u64 seq_retry = 0; 6068 bool ret = false; 6069 6070 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 6071 if (freed) { 6072 ret = true; 6073 goto out_dbg; 6074 } 6075 seq_retry = ext4_get_discard_pa_seq_sum(); 6076 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 6077 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 6078 *seq = seq_retry; 6079 ret = true; 6080 } 6081 6082 out_dbg: 6083 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 6084 return ret; 6085 } 6086 6087 /* 6088 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 6089 * linearly starting at the goal block and also excludes the blocks which 6090 * are going to be in use after fast commit replay. 6091 */ 6092 static ext4_fsblk_t 6093 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp) 6094 { 6095 struct buffer_head *bitmap_bh; 6096 struct super_block *sb = ar->inode->i_sb; 6097 struct ext4_sb_info *sbi = EXT4_SB(sb); 6098 ext4_group_t group, nr; 6099 ext4_grpblk_t blkoff; 6100 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 6101 ext4_grpblk_t i = 0; 6102 ext4_fsblk_t goal, block; 6103 struct ext4_super_block *es = sbi->s_es; 6104 6105 goal = ar->goal; 6106 if (goal < le32_to_cpu(es->s_first_data_block) || 6107 goal >= ext4_blocks_count(es)) 6108 goal = le32_to_cpu(es->s_first_data_block); 6109 6110 ar->len = 0; 6111 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 6112 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) { 6113 bitmap_bh = ext4_read_block_bitmap(sb, group); 6114 if (IS_ERR(bitmap_bh)) { 6115 *errp = PTR_ERR(bitmap_bh); 6116 pr_warn("Failed to read block bitmap\n"); 6117 return 0; 6118 } 6119 6120 while (1) { 6121 i = mb_find_next_zero_bit(bitmap_bh->b_data, max, 6122 blkoff); 6123 if (i >= max) 6124 break; 6125 if (ext4_fc_replay_check_excluded(sb, 6126 ext4_group_first_block_no(sb, group) + 6127 EXT4_C2B(sbi, i))) { 6128 blkoff = i + 1; 6129 } else 6130 break; 6131 } 6132 brelse(bitmap_bh); 6133 if (i < max) 6134 break; 6135 6136 if (++group >= ext4_get_groups_count(sb)) 6137 group = 0; 6138 6139 blkoff = 0; 6140 } 6141 6142 if (i >= max) { 6143 *errp = -ENOSPC; 6144 return 0; 6145 } 6146 6147 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i); 6148 ext4_mb_mark_bb(sb, block, 1, 1); 6149 ar->len = 1; 6150 6151 *errp = 0; 6152 return block; 6153 } 6154 6155 /* 6156 * Main entry point into mballoc to allocate blocks 6157 * it tries to use preallocation first, then falls back 6158 * to usual allocation 6159 */ 6160 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 6161 struct ext4_allocation_request *ar, int *errp) 6162 { 6163 struct ext4_allocation_context *ac = NULL; 6164 struct ext4_sb_info *sbi; 6165 struct super_block *sb; 6166 ext4_fsblk_t block = 0; 6167 unsigned int inquota = 0; 6168 unsigned int reserv_clstrs = 0; 6169 int retries = 0; 6170 u64 seq; 6171 6172 might_sleep(); 6173 sb = ar->inode->i_sb; 6174 sbi = EXT4_SB(sb); 6175 6176 trace_ext4_request_blocks(ar); 6177 if (sbi->s_mount_state & EXT4_FC_REPLAY) 6178 return ext4_mb_new_blocks_simple(ar, errp); 6179 6180 /* Allow to use superuser reservation for quota file */ 6181 if (ext4_is_quota_file(ar->inode)) 6182 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 6183 6184 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 6185 /* Without delayed allocation we need to verify 6186 * there is enough free blocks to do block allocation 6187 * and verify allocation doesn't exceed the quota limits. 6188 */ 6189 while (ar->len && 6190 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 6191 6192 /* let others to free the space */ 6193 cond_resched(); 6194 ar->len = ar->len >> 1; 6195 } 6196 if (!ar->len) { 6197 ext4_mb_show_pa(sb); 6198 *errp = -ENOSPC; 6199 return 0; 6200 } 6201 reserv_clstrs = ar->len; 6202 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 6203 dquot_alloc_block_nofail(ar->inode, 6204 EXT4_C2B(sbi, ar->len)); 6205 } else { 6206 while (ar->len && 6207 dquot_alloc_block(ar->inode, 6208 EXT4_C2B(sbi, ar->len))) { 6209 6210 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 6211 ar->len--; 6212 } 6213 } 6214 inquota = ar->len; 6215 if (ar->len == 0) { 6216 *errp = -EDQUOT; 6217 goto out; 6218 } 6219 } 6220 6221 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 6222 if (!ac) { 6223 ar->len = 0; 6224 *errp = -ENOMEM; 6225 goto out; 6226 } 6227 6228 ext4_mb_initialize_context(ac, ar); 6229 6230 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 6231 seq = this_cpu_read(discard_pa_seq); 6232 if (!ext4_mb_use_preallocated(ac)) { 6233 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 6234 ext4_mb_normalize_request(ac, ar); 6235 6236 *errp = ext4_mb_pa_alloc(ac); 6237 if (*errp) 6238 goto errout; 6239 repeat: 6240 /* allocate space in core */ 6241 *errp = ext4_mb_regular_allocator(ac); 6242 /* 6243 * pa allocated above is added to grp->bb_prealloc_list only 6244 * when we were able to allocate some block i.e. when 6245 * ac->ac_status == AC_STATUS_FOUND. 6246 * And error from above mean ac->ac_status != AC_STATUS_FOUND 6247 * So we have to free this pa here itself. 6248 */ 6249 if (*errp) { 6250 ext4_mb_pa_put_free(ac); 6251 ext4_discard_allocated_blocks(ac); 6252 goto errout; 6253 } 6254 if (ac->ac_status == AC_STATUS_FOUND && 6255 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 6256 ext4_mb_pa_put_free(ac); 6257 } 6258 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 6259 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 6260 if (*errp) { 6261 ext4_discard_allocated_blocks(ac); 6262 goto errout; 6263 } else { 6264 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 6265 ar->len = ac->ac_b_ex.fe_len; 6266 } 6267 } else { 6268 if (++retries < 3 && 6269 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 6270 goto repeat; 6271 /* 6272 * If block allocation fails then the pa allocated above 6273 * needs to be freed here itself. 6274 */ 6275 ext4_mb_pa_put_free(ac); 6276 *errp = -ENOSPC; 6277 } 6278 6279 if (*errp) { 6280 errout: 6281 ac->ac_b_ex.fe_len = 0; 6282 ar->len = 0; 6283 ext4_mb_show_ac(ac); 6284 } 6285 ext4_mb_release_context(ac); 6286 kmem_cache_free(ext4_ac_cachep, ac); 6287 out: 6288 if (inquota && ar->len < inquota) 6289 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 6290 if (!ar->len) { 6291 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 6292 /* release all the reserved blocks if non delalloc */ 6293 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 6294 reserv_clstrs); 6295 } 6296 6297 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 6298 6299 return block; 6300 } 6301 6302 /* 6303 * We can merge two free data extents only if the physical blocks 6304 * are contiguous, AND the extents were freed by the same transaction, 6305 * AND the blocks are associated with the same group. 6306 */ 6307 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 6308 struct ext4_free_data *entry, 6309 struct ext4_free_data *new_entry, 6310 struct rb_root *entry_rb_root) 6311 { 6312 if ((entry->efd_tid != new_entry->efd_tid) || 6313 (entry->efd_group != new_entry->efd_group)) 6314 return; 6315 if (entry->efd_start_cluster + entry->efd_count == 6316 new_entry->efd_start_cluster) { 6317 new_entry->efd_start_cluster = entry->efd_start_cluster; 6318 new_entry->efd_count += entry->efd_count; 6319 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 6320 entry->efd_start_cluster) { 6321 new_entry->efd_count += entry->efd_count; 6322 } else 6323 return; 6324 spin_lock(&sbi->s_md_lock); 6325 list_del(&entry->efd_list); 6326 spin_unlock(&sbi->s_md_lock); 6327 rb_erase(&entry->efd_node, entry_rb_root); 6328 kmem_cache_free(ext4_free_data_cachep, entry); 6329 } 6330 6331 static noinline_for_stack void 6332 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 6333 struct ext4_free_data *new_entry) 6334 { 6335 ext4_group_t group = e4b->bd_group; 6336 ext4_grpblk_t cluster; 6337 ext4_grpblk_t clusters = new_entry->efd_count; 6338 struct ext4_free_data *entry; 6339 struct ext4_group_info *db = e4b->bd_info; 6340 struct super_block *sb = e4b->bd_sb; 6341 struct ext4_sb_info *sbi = EXT4_SB(sb); 6342 struct rb_node **n = &db->bb_free_root.rb_node, *node; 6343 struct rb_node *parent = NULL, *new_node; 6344 6345 BUG_ON(!ext4_handle_valid(handle)); 6346 BUG_ON(e4b->bd_bitmap_page == NULL); 6347 BUG_ON(e4b->bd_buddy_page == NULL); 6348 6349 new_node = &new_entry->efd_node; 6350 cluster = new_entry->efd_start_cluster; 6351 6352 if (!*n) { 6353 /* first free block exent. We need to 6354 protect buddy cache from being freed, 6355 * otherwise we'll refresh it from 6356 * on-disk bitmap and lose not-yet-available 6357 * blocks */ 6358 get_page(e4b->bd_buddy_page); 6359 get_page(e4b->bd_bitmap_page); 6360 } 6361 while (*n) { 6362 parent = *n; 6363 entry = rb_entry(parent, struct ext4_free_data, efd_node); 6364 if (cluster < entry->efd_start_cluster) 6365 n = &(*n)->rb_left; 6366 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 6367 n = &(*n)->rb_right; 6368 else { 6369 ext4_grp_locked_error(sb, group, 0, 6370 ext4_group_first_block_no(sb, group) + 6371 EXT4_C2B(sbi, cluster), 6372 "Block already on to-be-freed list"); 6373 kmem_cache_free(ext4_free_data_cachep, new_entry); 6374 return; 6375 } 6376 } 6377 6378 rb_link_node(new_node, parent, n); 6379 rb_insert_color(new_node, &db->bb_free_root); 6380 6381 /* Now try to see the extent can be merged to left and right */ 6382 node = rb_prev(new_node); 6383 if (node) { 6384 entry = rb_entry(node, struct ext4_free_data, efd_node); 6385 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6386 &(db->bb_free_root)); 6387 } 6388 6389 node = rb_next(new_node); 6390 if (node) { 6391 entry = rb_entry(node, struct ext4_free_data, efd_node); 6392 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6393 &(db->bb_free_root)); 6394 } 6395 6396 spin_lock(&sbi->s_md_lock); 6397 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 6398 sbi->s_mb_free_pending += clusters; 6399 spin_unlock(&sbi->s_md_lock); 6400 } 6401 6402 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 6403 unsigned long count) 6404 { 6405 struct buffer_head *bitmap_bh; 6406 struct super_block *sb = inode->i_sb; 6407 struct ext4_group_desc *gdp; 6408 struct buffer_head *gdp_bh; 6409 ext4_group_t group; 6410 ext4_grpblk_t blkoff; 6411 int already_freed = 0, err, i; 6412 6413 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 6414 bitmap_bh = ext4_read_block_bitmap(sb, group); 6415 if (IS_ERR(bitmap_bh)) { 6416 pr_warn("Failed to read block bitmap\n"); 6417 return; 6418 } 6419 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 6420 if (!gdp) 6421 goto err_out; 6422 6423 for (i = 0; i < count; i++) { 6424 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data)) 6425 already_freed++; 6426 } 6427 mb_clear_bits(bitmap_bh->b_data, blkoff, count); 6428 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 6429 if (err) 6430 goto err_out; 6431 ext4_free_group_clusters_set( 6432 sb, gdp, ext4_free_group_clusters(sb, gdp) + 6433 count - already_freed); 6434 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 6435 ext4_group_desc_csum_set(sb, group, gdp); 6436 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 6437 sync_dirty_buffer(bitmap_bh); 6438 sync_dirty_buffer(gdp_bh); 6439 6440 err_out: 6441 brelse(bitmap_bh); 6442 } 6443 6444 /** 6445 * ext4_mb_clear_bb() -- helper function for freeing blocks. 6446 * Used by ext4_free_blocks() 6447 * @handle: handle for this transaction 6448 * @inode: inode 6449 * @block: starting physical block to be freed 6450 * @count: number of blocks to be freed 6451 * @flags: flags used by ext4_free_blocks 6452 */ 6453 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, 6454 ext4_fsblk_t block, unsigned long count, 6455 int flags) 6456 { 6457 struct buffer_head *bitmap_bh = NULL; 6458 struct super_block *sb = inode->i_sb; 6459 struct ext4_group_desc *gdp; 6460 struct ext4_group_info *grp; 6461 unsigned int overflow; 6462 ext4_grpblk_t bit; 6463 struct buffer_head *gd_bh; 6464 ext4_group_t block_group; 6465 struct ext4_sb_info *sbi; 6466 struct ext4_buddy e4b; 6467 unsigned int count_clusters; 6468 int err = 0; 6469 int ret; 6470 6471 sbi = EXT4_SB(sb); 6472 6473 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6474 !ext4_inode_block_valid(inode, block, count)) { 6475 ext4_error(sb, "Freeing blocks in system zone - " 6476 "Block = %llu, count = %lu", block, count); 6477 /* err = 0. ext4_std_error should be a no op */ 6478 goto error_return; 6479 } 6480 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6481 6482 do_more: 6483 overflow = 0; 6484 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6485 6486 grp = ext4_get_group_info(sb, block_group); 6487 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 6488 return; 6489 6490 /* 6491 * Check to see if we are freeing blocks across a group 6492 * boundary. 6493 */ 6494 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 6495 overflow = EXT4_C2B(sbi, bit) + count - 6496 EXT4_BLOCKS_PER_GROUP(sb); 6497 count -= overflow; 6498 /* The range changed so it's no longer validated */ 6499 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6500 } 6501 count_clusters = EXT4_NUM_B2C(sbi, count); 6502 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6503 if (IS_ERR(bitmap_bh)) { 6504 err = PTR_ERR(bitmap_bh); 6505 bitmap_bh = NULL; 6506 goto error_return; 6507 } 6508 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 6509 if (!gdp) { 6510 err = -EIO; 6511 goto error_return; 6512 } 6513 6514 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6515 !ext4_inode_block_valid(inode, block, count)) { 6516 ext4_error(sb, "Freeing blocks in system zone - " 6517 "Block = %llu, count = %lu", block, count); 6518 /* err = 0. ext4_std_error should be a no op */ 6519 goto error_return; 6520 } 6521 6522 BUFFER_TRACE(bitmap_bh, "getting write access"); 6523 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6524 EXT4_JTR_NONE); 6525 if (err) 6526 goto error_return; 6527 6528 /* 6529 * We are about to modify some metadata. Call the journal APIs 6530 * to unshare ->b_data if a currently-committing transaction is 6531 * using it 6532 */ 6533 BUFFER_TRACE(gd_bh, "get_write_access"); 6534 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6535 if (err) 6536 goto error_return; 6537 #ifdef AGGRESSIVE_CHECK 6538 { 6539 int i; 6540 for (i = 0; i < count_clusters; i++) 6541 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 6542 } 6543 #endif 6544 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 6545 6546 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 6547 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 6548 GFP_NOFS|__GFP_NOFAIL); 6549 if (err) 6550 goto error_return; 6551 6552 /* 6553 * We need to make sure we don't reuse the freed block until after the 6554 * transaction is committed. We make an exception if the inode is to be 6555 * written in writeback mode since writeback mode has weak data 6556 * consistency guarantees. 6557 */ 6558 if (ext4_handle_valid(handle) && 6559 ((flags & EXT4_FREE_BLOCKS_METADATA) || 6560 !ext4_should_writeback_data(inode))) { 6561 struct ext4_free_data *new_entry; 6562 /* 6563 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 6564 * to fail. 6565 */ 6566 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 6567 GFP_NOFS|__GFP_NOFAIL); 6568 new_entry->efd_start_cluster = bit; 6569 new_entry->efd_group = block_group; 6570 new_entry->efd_count = count_clusters; 6571 new_entry->efd_tid = handle->h_transaction->t_tid; 6572 6573 ext4_lock_group(sb, block_group); 6574 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6575 ext4_mb_free_metadata(handle, &e4b, new_entry); 6576 } else { 6577 /* need to update group_info->bb_free and bitmap 6578 * with group lock held. generate_buddy look at 6579 * them with group lock_held 6580 */ 6581 if (test_opt(sb, DISCARD)) { 6582 err = ext4_issue_discard(sb, block_group, bit, 6583 count_clusters, NULL); 6584 if (err && err != -EOPNOTSUPP) 6585 ext4_msg(sb, KERN_WARNING, "discard request in" 6586 " group:%u block:%d count:%lu failed" 6587 " with %d", block_group, bit, count, 6588 err); 6589 } else 6590 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 6591 6592 ext4_lock_group(sb, block_group); 6593 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6594 mb_free_blocks(inode, &e4b, bit, count_clusters); 6595 } 6596 6597 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 6598 ext4_free_group_clusters_set(sb, gdp, ret); 6599 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 6600 ext4_group_desc_csum_set(sb, block_group, gdp); 6601 ext4_unlock_group(sb, block_group); 6602 6603 if (sbi->s_log_groups_per_flex) { 6604 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6605 atomic64_add(count_clusters, 6606 &sbi_array_rcu_deref(sbi, s_flex_groups, 6607 flex_group)->free_clusters); 6608 } 6609 6610 /* 6611 * on a bigalloc file system, defer the s_freeclusters_counter 6612 * update to the caller (ext4_remove_space and friends) so they 6613 * can determine if a cluster freed here should be rereserved 6614 */ 6615 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 6616 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 6617 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 6618 percpu_counter_add(&sbi->s_freeclusters_counter, 6619 count_clusters); 6620 } 6621 6622 ext4_mb_unload_buddy(&e4b); 6623 6624 /* We dirtied the bitmap block */ 6625 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6626 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6627 6628 /* And the group descriptor block */ 6629 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6630 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6631 if (!err) 6632 err = ret; 6633 6634 if (overflow && !err) { 6635 block += count; 6636 count = overflow; 6637 put_bh(bitmap_bh); 6638 /* The range changed so it's no longer validated */ 6639 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6640 goto do_more; 6641 } 6642 error_return: 6643 brelse(bitmap_bh); 6644 ext4_std_error(sb, err); 6645 } 6646 6647 /** 6648 * ext4_free_blocks() -- Free given blocks and update quota 6649 * @handle: handle for this transaction 6650 * @inode: inode 6651 * @bh: optional buffer of the block to be freed 6652 * @block: starting physical block to be freed 6653 * @count: number of blocks to be freed 6654 * @flags: flags used by ext4_free_blocks 6655 */ 6656 void ext4_free_blocks(handle_t *handle, struct inode *inode, 6657 struct buffer_head *bh, ext4_fsblk_t block, 6658 unsigned long count, int flags) 6659 { 6660 struct super_block *sb = inode->i_sb; 6661 unsigned int overflow; 6662 struct ext4_sb_info *sbi; 6663 6664 sbi = EXT4_SB(sb); 6665 6666 if (bh) { 6667 if (block) 6668 BUG_ON(block != bh->b_blocknr); 6669 else 6670 block = bh->b_blocknr; 6671 } 6672 6673 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 6674 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count)); 6675 return; 6676 } 6677 6678 might_sleep(); 6679 6680 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6681 !ext4_inode_block_valid(inode, block, count)) { 6682 ext4_error(sb, "Freeing blocks not in datazone - " 6683 "block = %llu, count = %lu", block, count); 6684 return; 6685 } 6686 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6687 6688 ext4_debug("freeing block %llu\n", block); 6689 trace_ext4_free_blocks(inode, block, count, flags); 6690 6691 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6692 BUG_ON(count > 1); 6693 6694 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 6695 inode, bh, block); 6696 } 6697 6698 /* 6699 * If the extent to be freed does not begin on a cluster 6700 * boundary, we need to deal with partial clusters at the 6701 * beginning and end of the extent. Normally we will free 6702 * blocks at the beginning or the end unless we are explicitly 6703 * requested to avoid doing so. 6704 */ 6705 overflow = EXT4_PBLK_COFF(sbi, block); 6706 if (overflow) { 6707 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 6708 overflow = sbi->s_cluster_ratio - overflow; 6709 block += overflow; 6710 if (count > overflow) 6711 count -= overflow; 6712 else 6713 return; 6714 } else { 6715 block -= overflow; 6716 count += overflow; 6717 } 6718 /* The range changed so it's no longer validated */ 6719 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6720 } 6721 overflow = EXT4_LBLK_COFF(sbi, count); 6722 if (overflow) { 6723 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 6724 if (count > overflow) 6725 count -= overflow; 6726 else 6727 return; 6728 } else 6729 count += sbi->s_cluster_ratio - overflow; 6730 /* The range changed so it's no longer validated */ 6731 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6732 } 6733 6734 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6735 int i; 6736 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 6737 6738 for (i = 0; i < count; i++) { 6739 cond_resched(); 6740 if (is_metadata) 6741 bh = sb_find_get_block(inode->i_sb, block + i); 6742 ext4_forget(handle, is_metadata, inode, bh, block + i); 6743 } 6744 } 6745 6746 ext4_mb_clear_bb(handle, inode, block, count, flags); 6747 } 6748 6749 /** 6750 * ext4_group_add_blocks() -- Add given blocks to an existing group 6751 * @handle: handle to this transaction 6752 * @sb: super block 6753 * @block: start physical block to add to the block group 6754 * @count: number of blocks to free 6755 * 6756 * This marks the blocks as free in the bitmap and buddy. 6757 */ 6758 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 6759 ext4_fsblk_t block, unsigned long count) 6760 { 6761 struct buffer_head *bitmap_bh = NULL; 6762 struct buffer_head *gd_bh; 6763 ext4_group_t block_group; 6764 ext4_grpblk_t bit; 6765 unsigned int i; 6766 struct ext4_group_desc *desc; 6767 struct ext4_sb_info *sbi = EXT4_SB(sb); 6768 struct ext4_buddy e4b; 6769 int err = 0, ret, free_clusters_count; 6770 ext4_grpblk_t clusters_freed; 6771 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 6772 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 6773 unsigned long cluster_count = last_cluster - first_cluster + 1; 6774 6775 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 6776 6777 if (count == 0) 6778 return 0; 6779 6780 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6781 /* 6782 * Check to see if we are freeing blocks across a group 6783 * boundary. 6784 */ 6785 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 6786 ext4_warning(sb, "too many blocks added to group %u", 6787 block_group); 6788 err = -EINVAL; 6789 goto error_return; 6790 } 6791 6792 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6793 if (IS_ERR(bitmap_bh)) { 6794 err = PTR_ERR(bitmap_bh); 6795 bitmap_bh = NULL; 6796 goto error_return; 6797 } 6798 6799 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 6800 if (!desc) { 6801 err = -EIO; 6802 goto error_return; 6803 } 6804 6805 if (!ext4_sb_block_valid(sb, NULL, block, count)) { 6806 ext4_error(sb, "Adding blocks in system zones - " 6807 "Block = %llu, count = %lu", 6808 block, count); 6809 err = -EINVAL; 6810 goto error_return; 6811 } 6812 6813 BUFFER_TRACE(bitmap_bh, "getting write access"); 6814 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6815 EXT4_JTR_NONE); 6816 if (err) 6817 goto error_return; 6818 6819 /* 6820 * We are about to modify some metadata. Call the journal APIs 6821 * to unshare ->b_data if a currently-committing transaction is 6822 * using it 6823 */ 6824 BUFFER_TRACE(gd_bh, "get_write_access"); 6825 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6826 if (err) 6827 goto error_return; 6828 6829 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 6830 BUFFER_TRACE(bitmap_bh, "clear bit"); 6831 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 6832 ext4_error(sb, "bit already cleared for block %llu", 6833 (ext4_fsblk_t)(block + i)); 6834 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 6835 } else { 6836 clusters_freed++; 6837 } 6838 } 6839 6840 err = ext4_mb_load_buddy(sb, block_group, &e4b); 6841 if (err) 6842 goto error_return; 6843 6844 /* 6845 * need to update group_info->bb_free and bitmap 6846 * with group lock held. generate_buddy look at 6847 * them with group lock_held 6848 */ 6849 ext4_lock_group(sb, block_group); 6850 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 6851 mb_free_blocks(NULL, &e4b, bit, cluster_count); 6852 free_clusters_count = clusters_freed + 6853 ext4_free_group_clusters(sb, desc); 6854 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 6855 ext4_block_bitmap_csum_set(sb, desc, bitmap_bh); 6856 ext4_group_desc_csum_set(sb, block_group, desc); 6857 ext4_unlock_group(sb, block_group); 6858 percpu_counter_add(&sbi->s_freeclusters_counter, 6859 clusters_freed); 6860 6861 if (sbi->s_log_groups_per_flex) { 6862 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6863 atomic64_add(clusters_freed, 6864 &sbi_array_rcu_deref(sbi, s_flex_groups, 6865 flex_group)->free_clusters); 6866 } 6867 6868 ext4_mb_unload_buddy(&e4b); 6869 6870 /* We dirtied the bitmap block */ 6871 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6872 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6873 6874 /* And the group descriptor block */ 6875 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6876 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6877 if (!err) 6878 err = ret; 6879 6880 error_return: 6881 brelse(bitmap_bh); 6882 ext4_std_error(sb, err); 6883 return err; 6884 } 6885 6886 /** 6887 * ext4_trim_extent -- function to TRIM one single free extent in the group 6888 * @sb: super block for the file system 6889 * @start: starting block of the free extent in the alloc. group 6890 * @count: number of blocks to TRIM 6891 * @e4b: ext4 buddy for the group 6892 * 6893 * Trim "count" blocks starting at "start" in the "group". To assure that no 6894 * one will allocate those blocks, mark it as used in buddy bitmap. This must 6895 * be called with under the group lock. 6896 */ 6897 static int ext4_trim_extent(struct super_block *sb, 6898 int start, int count, struct ext4_buddy *e4b) 6899 __releases(bitlock) 6900 __acquires(bitlock) 6901 { 6902 struct ext4_free_extent ex; 6903 ext4_group_t group = e4b->bd_group; 6904 int ret = 0; 6905 6906 trace_ext4_trim_extent(sb, group, start, count); 6907 6908 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 6909 6910 ex.fe_start = start; 6911 ex.fe_group = group; 6912 ex.fe_len = count; 6913 6914 /* 6915 * Mark blocks used, so no one can reuse them while 6916 * being trimmed. 6917 */ 6918 mb_mark_used(e4b, &ex); 6919 ext4_unlock_group(sb, group); 6920 ret = ext4_issue_discard(sb, group, start, count, NULL); 6921 ext4_lock_group(sb, group); 6922 mb_free_blocks(NULL, e4b, start, ex.fe_len); 6923 return ret; 6924 } 6925 6926 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb, 6927 ext4_group_t grp) 6928 { 6929 unsigned long nr_clusters_in_group; 6930 6931 if (grp < (ext4_get_groups_count(sb) - 1)) 6932 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb); 6933 else 6934 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) - 6935 ext4_group_first_block_no(sb, grp)) 6936 >> EXT4_CLUSTER_BITS(sb); 6937 6938 return nr_clusters_in_group - 1; 6939 } 6940 6941 static bool ext4_trim_interrupted(void) 6942 { 6943 return fatal_signal_pending(current) || freezing(current); 6944 } 6945 6946 static int ext4_try_to_trim_range(struct super_block *sb, 6947 struct ext4_buddy *e4b, ext4_grpblk_t start, 6948 ext4_grpblk_t max, ext4_grpblk_t minblocks) 6949 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) 6950 __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) 6951 { 6952 ext4_grpblk_t next, count, free_count, last, origin_start; 6953 bool set_trimmed = false; 6954 void *bitmap; 6955 6956 last = ext4_last_grp_cluster(sb, e4b->bd_group); 6957 bitmap = e4b->bd_bitmap; 6958 if (start == 0 && max >= last) 6959 set_trimmed = true; 6960 origin_start = start; 6961 start = max(e4b->bd_info->bb_first_free, start); 6962 count = 0; 6963 free_count = 0; 6964 6965 while (start <= max) { 6966 start = mb_find_next_zero_bit(bitmap, max + 1, start); 6967 if (start > max) 6968 break; 6969 6970 next = mb_find_next_bit(bitmap, last + 1, start); 6971 if (origin_start == 0 && next >= last) 6972 set_trimmed = true; 6973 6974 if ((next - start) >= minblocks) { 6975 int ret = ext4_trim_extent(sb, start, next - start, e4b); 6976 6977 if (ret && ret != -EOPNOTSUPP) 6978 return count; 6979 count += next - start; 6980 } 6981 free_count += next - start; 6982 start = next + 1; 6983 6984 if (ext4_trim_interrupted()) 6985 return count; 6986 6987 if (need_resched()) { 6988 ext4_unlock_group(sb, e4b->bd_group); 6989 cond_resched(); 6990 ext4_lock_group(sb, e4b->bd_group); 6991 } 6992 6993 if ((e4b->bd_info->bb_free - free_count) < minblocks) 6994 break; 6995 } 6996 6997 if (set_trimmed) 6998 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info); 6999 7000 return count; 7001 } 7002 7003 /** 7004 * ext4_trim_all_free -- function to trim all free space in alloc. group 7005 * @sb: super block for file system 7006 * @group: group to be trimmed 7007 * @start: first group block to examine 7008 * @max: last group block to examine 7009 * @minblocks: minimum extent block count 7010 * 7011 * ext4_trim_all_free walks through group's block bitmap searching for free 7012 * extents. When the free extent is found, mark it as used in group buddy 7013 * bitmap. Then issue a TRIM command on this extent and free the extent in 7014 * the group buddy bitmap. 7015 */ 7016 static ext4_grpblk_t 7017 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 7018 ext4_grpblk_t start, ext4_grpblk_t max, 7019 ext4_grpblk_t minblocks) 7020 { 7021 struct ext4_buddy e4b; 7022 int ret; 7023 7024 trace_ext4_trim_all_free(sb, group, start, max); 7025 7026 ret = ext4_mb_load_buddy(sb, group, &e4b); 7027 if (ret) { 7028 ext4_warning(sb, "Error %d loading buddy information for %u", 7029 ret, group); 7030 return ret; 7031 } 7032 7033 ext4_lock_group(sb, group); 7034 7035 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || 7036 minblocks < EXT4_SB(sb)->s_last_trim_minblks) 7037 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); 7038 else 7039 ret = 0; 7040 7041 ext4_unlock_group(sb, group); 7042 ext4_mb_unload_buddy(&e4b); 7043 7044 ext4_debug("trimmed %d blocks in the group %d\n", 7045 ret, group); 7046 7047 return ret; 7048 } 7049 7050 /** 7051 * ext4_trim_fs() -- trim ioctl handle function 7052 * @sb: superblock for filesystem 7053 * @range: fstrim_range structure 7054 * 7055 * start: First Byte to trim 7056 * len: number of Bytes to trim from start 7057 * minlen: minimum extent length in Bytes 7058 * ext4_trim_fs goes through all allocation groups containing Bytes from 7059 * start to start+len. For each such a group ext4_trim_all_free function 7060 * is invoked to trim all free space. 7061 */ 7062 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 7063 { 7064 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev); 7065 struct ext4_group_info *grp; 7066 ext4_group_t group, first_group, last_group; 7067 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 7068 uint64_t start, end, minlen, trimmed = 0; 7069 ext4_fsblk_t first_data_blk = 7070 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 7071 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 7072 int ret = 0; 7073 7074 start = range->start >> sb->s_blocksize_bits; 7075 end = start + (range->len >> sb->s_blocksize_bits) - 1; 7076 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7077 range->minlen >> sb->s_blocksize_bits); 7078 7079 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 7080 start >= max_blks || 7081 range->len < sb->s_blocksize) 7082 return -EINVAL; 7083 /* No point to try to trim less than discard granularity */ 7084 if (range->minlen < discard_granularity) { 7085 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7086 discard_granularity >> sb->s_blocksize_bits); 7087 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) 7088 goto out; 7089 } 7090 if (end >= max_blks - 1) 7091 end = max_blks - 1; 7092 if (end <= first_data_blk) 7093 goto out; 7094 if (start < first_data_blk) 7095 start = first_data_blk; 7096 7097 /* Determine first and last group to examine based on start and end */ 7098 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 7099 &first_group, &first_cluster); 7100 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 7101 &last_group, &last_cluster); 7102 7103 /* end now represents the last cluster to discard in this group */ 7104 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7105 7106 for (group = first_group; group <= last_group; group++) { 7107 if (ext4_trim_interrupted()) 7108 break; 7109 grp = ext4_get_group_info(sb, group); 7110 if (!grp) 7111 continue; 7112 /* We only do this if the grp has never been initialized */ 7113 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 7114 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 7115 if (ret) 7116 break; 7117 } 7118 7119 /* 7120 * For all the groups except the last one, last cluster will 7121 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 7122 * change it for the last group, note that last_cluster is 7123 * already computed earlier by ext4_get_group_no_and_offset() 7124 */ 7125 if (group == last_group) 7126 end = last_cluster; 7127 if (grp->bb_free >= minlen) { 7128 cnt = ext4_trim_all_free(sb, group, first_cluster, 7129 end, minlen); 7130 if (cnt < 0) { 7131 ret = cnt; 7132 break; 7133 } 7134 trimmed += cnt; 7135 } 7136 7137 /* 7138 * For every group except the first one, we are sure 7139 * that the first cluster to discard will be cluster #0. 7140 */ 7141 first_cluster = 0; 7142 } 7143 7144 if (!ret) 7145 EXT4_SB(sb)->s_last_trim_minblks = minlen; 7146 7147 out: 7148 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 7149 return ret; 7150 } 7151 7152 /* Iterate all the free extents in the group. */ 7153 int 7154 ext4_mballoc_query_range( 7155 struct super_block *sb, 7156 ext4_group_t group, 7157 ext4_grpblk_t start, 7158 ext4_grpblk_t end, 7159 ext4_mballoc_query_range_fn formatter, 7160 void *priv) 7161 { 7162 void *bitmap; 7163 ext4_grpblk_t next; 7164 struct ext4_buddy e4b; 7165 int error; 7166 7167 error = ext4_mb_load_buddy(sb, group, &e4b); 7168 if (error) 7169 return error; 7170 bitmap = e4b.bd_bitmap; 7171 7172 ext4_lock_group(sb, group); 7173 7174 start = max(e4b.bd_info->bb_first_free, start); 7175 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 7176 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7177 7178 while (start <= end) { 7179 start = mb_find_next_zero_bit(bitmap, end + 1, start); 7180 if (start > end) 7181 break; 7182 next = mb_find_next_bit(bitmap, end + 1, start); 7183 7184 ext4_unlock_group(sb, group); 7185 error = formatter(sb, group, start, next - start, priv); 7186 if (error) 7187 goto out_unload; 7188 ext4_lock_group(sb, group); 7189 7190 start = next + 1; 7191 } 7192 7193 ext4_unlock_group(sb, group); 7194 out_unload: 7195 ext4_mb_unload_buddy(&e4b); 7196 7197 return error; 7198 } 7199