xref: /openbmc/linux/fs/ext4/mballoc.c (revision 583f12a80dfb7997d59a42e8642019695f5aa15a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20 
21 /*
22  * MUSTDO:
23  *   - test ext4_ext_search_left() and ext4_ext_search_right()
24  *   - search for metadata in few groups
25  *
26  * TODO v4:
27  *   - normalization should take into account whether file is still open
28  *   - discard preallocations if no free space left (policy?)
29  *   - don't normalize tails
30  *   - quota
31  *   - reservation for superuser
32  *
33  * TODO v3:
34  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
35  *   - track min/max extents in each group for better group selection
36  *   - mb_mark_used() may allocate chunk right after splitting buddy
37  *   - tree of groups sorted by number of free blocks
38  *   - error handling
39  */
40 
41 /*
42  * The allocation request involve request for multiple number of blocks
43  * near to the goal(block) value specified.
44  *
45  * During initialization phase of the allocator we decide to use the
46  * group preallocation or inode preallocation depending on the size of
47  * the file. The size of the file could be the resulting file size we
48  * would have after allocation, or the current file size, which ever
49  * is larger. If the size is less than sbi->s_mb_stream_request we
50  * select to use the group preallocation. The default value of
51  * s_mb_stream_request is 16 blocks. This can also be tuned via
52  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53  * terms of number of blocks.
54  *
55  * The main motivation for having small file use group preallocation is to
56  * ensure that we have small files closer together on the disk.
57  *
58  * First stage the allocator looks at the inode prealloc list,
59  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60  * spaces for this particular inode. The inode prealloc space is
61  * represented as:
62  *
63  * pa_lstart -> the logical start block for this prealloc space
64  * pa_pstart -> the physical start block for this prealloc space
65  * pa_len    -> length for this prealloc space (in clusters)
66  * pa_free   ->  free space available in this prealloc space (in clusters)
67  *
68  * The inode preallocation space is used looking at the _logical_ start
69  * block. If only the logical file block falls within the range of prealloc
70  * space we will consume the particular prealloc space. This makes sure that
71  * we have contiguous physical blocks representing the file blocks
72  *
73  * The important thing to be noted in case of inode prealloc space is that
74  * we don't modify the values associated to inode prealloc space except
75  * pa_free.
76  *
77  * If we are not able to find blocks in the inode prealloc space and if we
78  * have the group allocation flag set then we look at the locality group
79  * prealloc space. These are per CPU prealloc list represented as
80  *
81  * ext4_sb_info.s_locality_groups[smp_processor_id()]
82  *
83  * The reason for having a per cpu locality group is to reduce the contention
84  * between CPUs. It is possible to get scheduled at this point.
85  *
86  * The locality group prealloc space is used looking at whether we have
87  * enough free space (pa_free) within the prealloc space.
88  *
89  * If we can't allocate blocks via inode prealloc or/and locality group
90  * prealloc then we look at the buddy cache. The buddy cache is represented
91  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92  * mapped to the buddy and bitmap information regarding different
93  * groups. The buddy information is attached to buddy cache inode so that
94  * we can access them through the page cache. The information regarding
95  * each group is loaded via ext4_mb_load_buddy.  The information involve
96  * block bitmap and buddy information. The information are stored in the
97  * inode as:
98  *
99  *  {                        page                        }
100  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101  *
102  *
103  * one block each for bitmap and buddy information.  So for each group we
104  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105  * blocksize) blocks.  So it can have information regarding groups_per_page
106  * which is blocks_per_page/2
107  *
108  * The buddy cache inode is not stored on disk. The inode is thrown
109  * away when the filesystem is unmounted.
110  *
111  * We look for count number of blocks in the buddy cache. If we were able
112  * to locate that many free blocks we return with additional information
113  * regarding rest of the contiguous physical block available
114  *
115  * Before allocating blocks via buddy cache we normalize the request
116  * blocks. This ensure we ask for more blocks that we needed. The extra
117  * blocks that we get after allocation is added to the respective prealloc
118  * list. In case of inode preallocation we follow a list of heuristics
119  * based on file size. This can be found in ext4_mb_normalize_request. If
120  * we are doing a group prealloc we try to normalize the request to
121  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
122  * dependent on the cluster size; for non-bigalloc file systems, it is
123  * 512 blocks. This can be tuned via
124  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125  * terms of number of blocks. If we have mounted the file system with -O
126  * stripe=<value> option the group prealloc request is normalized to the
127  * smallest multiple of the stripe value (sbi->s_stripe) which is
128  * greater than the default mb_group_prealloc.
129  *
130  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
131  * structures in two data structures:
132  *
133  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
134  *
135  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
136  *
137  *    This is an array of lists where the index in the array represents the
138  *    largest free order in the buddy bitmap of the participating group infos of
139  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
140  *    number of buddy bitmap orders possible) number of lists. Group-infos are
141  *    placed in appropriate lists.
142  *
143  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
144  *
145  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
146  *
147  *    This is an array of lists where in the i-th list there are groups with
148  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
149  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
150  *    Note that we don't bother with a special list for completely empty groups
151  *    so we only have MB_NUM_ORDERS(sb) lists.
152  *
153  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
154  * structures to decide the order in which groups are to be traversed for
155  * fulfilling an allocation request.
156  *
157  * At CR = 0, we look for groups which have the largest_free_order >= the order
158  * of the request. We directly look at the largest free order list in the data
159  * structure (1) above where largest_free_order = order of the request. If that
160  * list is empty, we look at remaining list in the increasing order of
161  * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time.
162  *
163  * At CR = 1, we only consider groups where average fragment size > request
164  * size. So, we lookup a group which has average fragment size just above or
165  * equal to request size using our average fragment size group lists (data
166  * structure 2) in O(1) time.
167  *
168  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
169  * linear order which requires O(N) search time for each CR 0 and CR 1 phase.
170  *
171  * The regular allocator (using the buddy cache) supports a few tunables.
172  *
173  * /sys/fs/ext4/<partition>/mb_min_to_scan
174  * /sys/fs/ext4/<partition>/mb_max_to_scan
175  * /sys/fs/ext4/<partition>/mb_order2_req
176  * /sys/fs/ext4/<partition>/mb_linear_limit
177  *
178  * The regular allocator uses buddy scan only if the request len is power of
179  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
180  * value of s_mb_order2_reqs can be tuned via
181  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
182  * stripe size (sbi->s_stripe), we try to search for contiguous block in
183  * stripe size. This should result in better allocation on RAID setups. If
184  * not, we search in the specific group using bitmap for best extents. The
185  * tunable min_to_scan and max_to_scan control the behaviour here.
186  * min_to_scan indicate how long the mballoc __must__ look for a best
187  * extent and max_to_scan indicates how long the mballoc __can__ look for a
188  * best extent in the found extents. Searching for the blocks starts with
189  * the group specified as the goal value in allocation context via
190  * ac_g_ex. Each group is first checked based on the criteria whether it
191  * can be used for allocation. ext4_mb_good_group explains how the groups are
192  * checked.
193  *
194  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
195  * get traversed linearly. That may result in subsequent allocations being not
196  * close to each other. And so, the underlying device may get filled up in a
197  * non-linear fashion. While that may not matter on non-rotational devices, for
198  * rotational devices that may result in higher seek times. "mb_linear_limit"
199  * tells mballoc how many groups mballoc should search linearly before
200  * performing consulting above data structures for more efficient lookups. For
201  * non rotational devices, this value defaults to 0 and for rotational devices
202  * this is set to MB_DEFAULT_LINEAR_LIMIT.
203  *
204  * Both the prealloc space are getting populated as above. So for the first
205  * request we will hit the buddy cache which will result in this prealloc
206  * space getting filled. The prealloc space is then later used for the
207  * subsequent request.
208  */
209 
210 /*
211  * mballoc operates on the following data:
212  *  - on-disk bitmap
213  *  - in-core buddy (actually includes buddy and bitmap)
214  *  - preallocation descriptors (PAs)
215  *
216  * there are two types of preallocations:
217  *  - inode
218  *    assiged to specific inode and can be used for this inode only.
219  *    it describes part of inode's space preallocated to specific
220  *    physical blocks. any block from that preallocated can be used
221  *    independent. the descriptor just tracks number of blocks left
222  *    unused. so, before taking some block from descriptor, one must
223  *    make sure corresponded logical block isn't allocated yet. this
224  *    also means that freeing any block within descriptor's range
225  *    must discard all preallocated blocks.
226  *  - locality group
227  *    assigned to specific locality group which does not translate to
228  *    permanent set of inodes: inode can join and leave group. space
229  *    from this type of preallocation can be used for any inode. thus
230  *    it's consumed from the beginning to the end.
231  *
232  * relation between them can be expressed as:
233  *    in-core buddy = on-disk bitmap + preallocation descriptors
234  *
235  * this mean blocks mballoc considers used are:
236  *  - allocated blocks (persistent)
237  *  - preallocated blocks (non-persistent)
238  *
239  * consistency in mballoc world means that at any time a block is either
240  * free or used in ALL structures. notice: "any time" should not be read
241  * literally -- time is discrete and delimited by locks.
242  *
243  *  to keep it simple, we don't use block numbers, instead we count number of
244  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
245  *
246  * all operations can be expressed as:
247  *  - init buddy:			buddy = on-disk + PAs
248  *  - new PA:				buddy += N; PA = N
249  *  - use inode PA:			on-disk += N; PA -= N
250  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
251  *  - use locality group PA		on-disk += N; PA -= N
252  *  - discard locality group PA		buddy -= PA; PA = 0
253  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
254  *        is used in real operation because we can't know actual used
255  *        bits from PA, only from on-disk bitmap
256  *
257  * if we follow this strict logic, then all operations above should be atomic.
258  * given some of them can block, we'd have to use something like semaphores
259  * killing performance on high-end SMP hardware. let's try to relax it using
260  * the following knowledge:
261  *  1) if buddy is referenced, it's already initialized
262  *  2) while block is used in buddy and the buddy is referenced,
263  *     nobody can re-allocate that block
264  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
265  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
266  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
267  *     block
268  *
269  * so, now we're building a concurrency table:
270  *  - init buddy vs.
271  *    - new PA
272  *      blocks for PA are allocated in the buddy, buddy must be referenced
273  *      until PA is linked to allocation group to avoid concurrent buddy init
274  *    - use inode PA
275  *      we need to make sure that either on-disk bitmap or PA has uptodate data
276  *      given (3) we care that PA-=N operation doesn't interfere with init
277  *    - discard inode PA
278  *      the simplest way would be to have buddy initialized by the discard
279  *    - use locality group PA
280  *      again PA-=N must be serialized with init
281  *    - discard locality group PA
282  *      the simplest way would be to have buddy initialized by the discard
283  *  - new PA vs.
284  *    - use inode PA
285  *      i_data_sem serializes them
286  *    - discard inode PA
287  *      discard process must wait until PA isn't used by another process
288  *    - use locality group PA
289  *      some mutex should serialize them
290  *    - discard locality group PA
291  *      discard process must wait until PA isn't used by another process
292  *  - use inode PA
293  *    - use inode PA
294  *      i_data_sem or another mutex should serializes them
295  *    - discard inode PA
296  *      discard process must wait until PA isn't used by another process
297  *    - use locality group PA
298  *      nothing wrong here -- they're different PAs covering different blocks
299  *    - discard locality group PA
300  *      discard process must wait until PA isn't used by another process
301  *
302  * now we're ready to make few consequences:
303  *  - PA is referenced and while it is no discard is possible
304  *  - PA is referenced until block isn't marked in on-disk bitmap
305  *  - PA changes only after on-disk bitmap
306  *  - discard must not compete with init. either init is done before
307  *    any discard or they're serialized somehow
308  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
309  *
310  * a special case when we've used PA to emptiness. no need to modify buddy
311  * in this case, but we should care about concurrent init
312  *
313  */
314 
315  /*
316  * Logic in few words:
317  *
318  *  - allocation:
319  *    load group
320  *    find blocks
321  *    mark bits in on-disk bitmap
322  *    release group
323  *
324  *  - use preallocation:
325  *    find proper PA (per-inode or group)
326  *    load group
327  *    mark bits in on-disk bitmap
328  *    release group
329  *    release PA
330  *
331  *  - free:
332  *    load group
333  *    mark bits in on-disk bitmap
334  *    release group
335  *
336  *  - discard preallocations in group:
337  *    mark PAs deleted
338  *    move them onto local list
339  *    load on-disk bitmap
340  *    load group
341  *    remove PA from object (inode or locality group)
342  *    mark free blocks in-core
343  *
344  *  - discard inode's preallocations:
345  */
346 
347 /*
348  * Locking rules
349  *
350  * Locks:
351  *  - bitlock on a group	(group)
352  *  - object (inode/locality)	(object)
353  *  - per-pa lock		(pa)
354  *  - cr0 lists lock		(cr0)
355  *  - cr1 tree lock		(cr1)
356  *
357  * Paths:
358  *  - new pa
359  *    object
360  *    group
361  *
362  *  - find and use pa:
363  *    pa
364  *
365  *  - release consumed pa:
366  *    pa
367  *    group
368  *    object
369  *
370  *  - generate in-core bitmap:
371  *    group
372  *        pa
373  *
374  *  - discard all for given object (inode, locality group):
375  *    object
376  *        pa
377  *    group
378  *
379  *  - discard all for given group:
380  *    group
381  *        pa
382  *    group
383  *        object
384  *
385  *  - allocation path (ext4_mb_regular_allocator)
386  *    group
387  *    cr0/cr1
388  */
389 static struct kmem_cache *ext4_pspace_cachep;
390 static struct kmem_cache *ext4_ac_cachep;
391 static struct kmem_cache *ext4_free_data_cachep;
392 
393 /* We create slab caches for groupinfo data structures based on the
394  * superblock block size.  There will be one per mounted filesystem for
395  * each unique s_blocksize_bits */
396 #define NR_GRPINFO_CACHES 8
397 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
398 
399 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
400 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
401 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
402 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
403 };
404 
405 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
406 					ext4_group_t group);
407 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
408 						ext4_group_t group);
409 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
410 
411 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
412 			       ext4_group_t group, int cr);
413 
414 static int ext4_try_to_trim_range(struct super_block *sb,
415 		struct ext4_buddy *e4b, ext4_grpblk_t start,
416 		ext4_grpblk_t max, ext4_grpblk_t minblocks);
417 
418 /*
419  * The algorithm using this percpu seq counter goes below:
420  * 1. We sample the percpu discard_pa_seq counter before trying for block
421  *    allocation in ext4_mb_new_blocks().
422  * 2. We increment this percpu discard_pa_seq counter when we either allocate
423  *    or free these blocks i.e. while marking those blocks as used/free in
424  *    mb_mark_used()/mb_free_blocks().
425  * 3. We also increment this percpu seq counter when we successfully identify
426  *    that the bb_prealloc_list is not empty and hence proceed for discarding
427  *    of those PAs inside ext4_mb_discard_group_preallocations().
428  *
429  * Now to make sure that the regular fast path of block allocation is not
430  * affected, as a small optimization we only sample the percpu seq counter
431  * on that cpu. Only when the block allocation fails and when freed blocks
432  * found were 0, that is when we sample percpu seq counter for all cpus using
433  * below function ext4_get_discard_pa_seq_sum(). This happens after making
434  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
435  */
436 static DEFINE_PER_CPU(u64, discard_pa_seq);
437 static inline u64 ext4_get_discard_pa_seq_sum(void)
438 {
439 	int __cpu;
440 	u64 __seq = 0;
441 
442 	for_each_possible_cpu(__cpu)
443 		__seq += per_cpu(discard_pa_seq, __cpu);
444 	return __seq;
445 }
446 
447 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
448 {
449 #if BITS_PER_LONG == 64
450 	*bit += ((unsigned long) addr & 7UL) << 3;
451 	addr = (void *) ((unsigned long) addr & ~7UL);
452 #elif BITS_PER_LONG == 32
453 	*bit += ((unsigned long) addr & 3UL) << 3;
454 	addr = (void *) ((unsigned long) addr & ~3UL);
455 #else
456 #error "how many bits you are?!"
457 #endif
458 	return addr;
459 }
460 
461 static inline int mb_test_bit(int bit, void *addr)
462 {
463 	/*
464 	 * ext4_test_bit on architecture like powerpc
465 	 * needs unsigned long aligned address
466 	 */
467 	addr = mb_correct_addr_and_bit(&bit, addr);
468 	return ext4_test_bit(bit, addr);
469 }
470 
471 static inline void mb_set_bit(int bit, void *addr)
472 {
473 	addr = mb_correct_addr_and_bit(&bit, addr);
474 	ext4_set_bit(bit, addr);
475 }
476 
477 static inline void mb_clear_bit(int bit, void *addr)
478 {
479 	addr = mb_correct_addr_and_bit(&bit, addr);
480 	ext4_clear_bit(bit, addr);
481 }
482 
483 static inline int mb_test_and_clear_bit(int bit, void *addr)
484 {
485 	addr = mb_correct_addr_and_bit(&bit, addr);
486 	return ext4_test_and_clear_bit(bit, addr);
487 }
488 
489 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
490 {
491 	int fix = 0, ret, tmpmax;
492 	addr = mb_correct_addr_and_bit(&fix, addr);
493 	tmpmax = max + fix;
494 	start += fix;
495 
496 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
497 	if (ret > max)
498 		return max;
499 	return ret;
500 }
501 
502 static inline int mb_find_next_bit(void *addr, int max, int start)
503 {
504 	int fix = 0, ret, tmpmax;
505 	addr = mb_correct_addr_and_bit(&fix, addr);
506 	tmpmax = max + fix;
507 	start += fix;
508 
509 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
510 	if (ret > max)
511 		return max;
512 	return ret;
513 }
514 
515 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
516 {
517 	char *bb;
518 
519 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
520 	BUG_ON(max == NULL);
521 
522 	if (order > e4b->bd_blkbits + 1) {
523 		*max = 0;
524 		return NULL;
525 	}
526 
527 	/* at order 0 we see each particular block */
528 	if (order == 0) {
529 		*max = 1 << (e4b->bd_blkbits + 3);
530 		return e4b->bd_bitmap;
531 	}
532 
533 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
534 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
535 
536 	return bb;
537 }
538 
539 #ifdef DOUBLE_CHECK
540 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
541 			   int first, int count)
542 {
543 	int i;
544 	struct super_block *sb = e4b->bd_sb;
545 
546 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
547 		return;
548 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
549 	for (i = 0; i < count; i++) {
550 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
551 			ext4_fsblk_t blocknr;
552 
553 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
554 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
555 			ext4_grp_locked_error(sb, e4b->bd_group,
556 					      inode ? inode->i_ino : 0,
557 					      blocknr,
558 					      "freeing block already freed "
559 					      "(bit %u)",
560 					      first + i);
561 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
562 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
563 		}
564 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
565 	}
566 }
567 
568 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
569 {
570 	int i;
571 
572 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
573 		return;
574 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
575 	for (i = 0; i < count; i++) {
576 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
577 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
578 	}
579 }
580 
581 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
582 {
583 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
584 		return;
585 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
586 		unsigned char *b1, *b2;
587 		int i;
588 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
589 		b2 = (unsigned char *) bitmap;
590 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
591 			if (b1[i] != b2[i]) {
592 				ext4_msg(e4b->bd_sb, KERN_ERR,
593 					 "corruption in group %u "
594 					 "at byte %u(%u): %x in copy != %x "
595 					 "on disk/prealloc",
596 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
597 				BUG();
598 			}
599 		}
600 	}
601 }
602 
603 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
604 			struct ext4_group_info *grp, ext4_group_t group)
605 {
606 	struct buffer_head *bh;
607 
608 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
609 	if (!grp->bb_bitmap)
610 		return;
611 
612 	bh = ext4_read_block_bitmap(sb, group);
613 	if (IS_ERR_OR_NULL(bh)) {
614 		kfree(grp->bb_bitmap);
615 		grp->bb_bitmap = NULL;
616 		return;
617 	}
618 
619 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
620 	put_bh(bh);
621 }
622 
623 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
624 {
625 	kfree(grp->bb_bitmap);
626 }
627 
628 #else
629 static inline void mb_free_blocks_double(struct inode *inode,
630 				struct ext4_buddy *e4b, int first, int count)
631 {
632 	return;
633 }
634 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
635 						int first, int count)
636 {
637 	return;
638 }
639 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
640 {
641 	return;
642 }
643 
644 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
645 			struct ext4_group_info *grp, ext4_group_t group)
646 {
647 	return;
648 }
649 
650 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
651 {
652 	return;
653 }
654 #endif
655 
656 #ifdef AGGRESSIVE_CHECK
657 
658 #define MB_CHECK_ASSERT(assert)						\
659 do {									\
660 	if (!(assert)) {						\
661 		printk(KERN_EMERG					\
662 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
663 			function, file, line, # assert);		\
664 		BUG();							\
665 	}								\
666 } while (0)
667 
668 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
669 				const char *function, int line)
670 {
671 	struct super_block *sb = e4b->bd_sb;
672 	int order = e4b->bd_blkbits + 1;
673 	int max;
674 	int max2;
675 	int i;
676 	int j;
677 	int k;
678 	int count;
679 	struct ext4_group_info *grp;
680 	int fragments = 0;
681 	int fstart;
682 	struct list_head *cur;
683 	void *buddy;
684 	void *buddy2;
685 
686 	if (e4b->bd_info->bb_check_counter++ % 10)
687 		return 0;
688 
689 	while (order > 1) {
690 		buddy = mb_find_buddy(e4b, order, &max);
691 		MB_CHECK_ASSERT(buddy);
692 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
693 		MB_CHECK_ASSERT(buddy2);
694 		MB_CHECK_ASSERT(buddy != buddy2);
695 		MB_CHECK_ASSERT(max * 2 == max2);
696 
697 		count = 0;
698 		for (i = 0; i < max; i++) {
699 
700 			if (mb_test_bit(i, buddy)) {
701 				/* only single bit in buddy2 may be 0 */
702 				if (!mb_test_bit(i << 1, buddy2)) {
703 					MB_CHECK_ASSERT(
704 						mb_test_bit((i<<1)+1, buddy2));
705 				}
706 				continue;
707 			}
708 
709 			/* both bits in buddy2 must be 1 */
710 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
711 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
712 
713 			for (j = 0; j < (1 << order); j++) {
714 				k = (i * (1 << order)) + j;
715 				MB_CHECK_ASSERT(
716 					!mb_test_bit(k, e4b->bd_bitmap));
717 			}
718 			count++;
719 		}
720 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
721 		order--;
722 	}
723 
724 	fstart = -1;
725 	buddy = mb_find_buddy(e4b, 0, &max);
726 	for (i = 0; i < max; i++) {
727 		if (!mb_test_bit(i, buddy)) {
728 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
729 			if (fstart == -1) {
730 				fragments++;
731 				fstart = i;
732 			}
733 			continue;
734 		}
735 		fstart = -1;
736 		/* check used bits only */
737 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
738 			buddy2 = mb_find_buddy(e4b, j, &max2);
739 			k = i >> j;
740 			MB_CHECK_ASSERT(k < max2);
741 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
742 		}
743 	}
744 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
745 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
746 
747 	grp = ext4_get_group_info(sb, e4b->bd_group);
748 	if (!grp)
749 		return NULL;
750 	list_for_each(cur, &grp->bb_prealloc_list) {
751 		ext4_group_t groupnr;
752 		struct ext4_prealloc_space *pa;
753 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
754 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
755 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
756 		for (i = 0; i < pa->pa_len; i++)
757 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
758 	}
759 	return 0;
760 }
761 #undef MB_CHECK_ASSERT
762 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
763 					__FILE__, __func__, __LINE__)
764 #else
765 #define mb_check_buddy(e4b)
766 #endif
767 
768 /*
769  * Divide blocks started from @first with length @len into
770  * smaller chunks with power of 2 blocks.
771  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
772  * then increase bb_counters[] for corresponded chunk size.
773  */
774 static void ext4_mb_mark_free_simple(struct super_block *sb,
775 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
776 					struct ext4_group_info *grp)
777 {
778 	struct ext4_sb_info *sbi = EXT4_SB(sb);
779 	ext4_grpblk_t min;
780 	ext4_grpblk_t max;
781 	ext4_grpblk_t chunk;
782 	unsigned int border;
783 
784 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
785 
786 	border = 2 << sb->s_blocksize_bits;
787 
788 	while (len > 0) {
789 		/* find how many blocks can be covered since this position */
790 		max = ffs(first | border) - 1;
791 
792 		/* find how many blocks of power 2 we need to mark */
793 		min = fls(len) - 1;
794 
795 		if (max < min)
796 			min = max;
797 		chunk = 1 << min;
798 
799 		/* mark multiblock chunks only */
800 		grp->bb_counters[min]++;
801 		if (min > 0)
802 			mb_clear_bit(first >> min,
803 				     buddy + sbi->s_mb_offsets[min]);
804 
805 		len -= chunk;
806 		first += chunk;
807 	}
808 }
809 
810 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
811 {
812 	int order;
813 
814 	/*
815 	 * We don't bother with a special lists groups with only 1 block free
816 	 * extents and for completely empty groups.
817 	 */
818 	order = fls(len) - 2;
819 	if (order < 0)
820 		return 0;
821 	if (order == MB_NUM_ORDERS(sb))
822 		order--;
823 	return order;
824 }
825 
826 /* Move group to appropriate avg_fragment_size list */
827 static void
828 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
829 {
830 	struct ext4_sb_info *sbi = EXT4_SB(sb);
831 	int new_order;
832 
833 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
834 		return;
835 
836 	new_order = mb_avg_fragment_size_order(sb,
837 					grp->bb_free / grp->bb_fragments);
838 	if (new_order == grp->bb_avg_fragment_size_order)
839 		return;
840 
841 	if (grp->bb_avg_fragment_size_order != -1) {
842 		write_lock(&sbi->s_mb_avg_fragment_size_locks[
843 					grp->bb_avg_fragment_size_order]);
844 		list_del(&grp->bb_avg_fragment_size_node);
845 		write_unlock(&sbi->s_mb_avg_fragment_size_locks[
846 					grp->bb_avg_fragment_size_order]);
847 	}
848 	grp->bb_avg_fragment_size_order = new_order;
849 	write_lock(&sbi->s_mb_avg_fragment_size_locks[
850 					grp->bb_avg_fragment_size_order]);
851 	list_add_tail(&grp->bb_avg_fragment_size_node,
852 		&sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
853 	write_unlock(&sbi->s_mb_avg_fragment_size_locks[
854 					grp->bb_avg_fragment_size_order]);
855 }
856 
857 /*
858  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
859  * cr level needs an update.
860  */
861 static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac,
862 			int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
863 {
864 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
865 	struct ext4_group_info *iter, *grp;
866 	int i;
867 
868 	if (ac->ac_status == AC_STATUS_FOUND)
869 		return;
870 
871 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR0_OPTIMIZED))
872 		atomic_inc(&sbi->s_bal_cr0_bad_suggestions);
873 
874 	grp = NULL;
875 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
876 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
877 			continue;
878 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
879 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
880 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
881 			continue;
882 		}
883 		grp = NULL;
884 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
885 				    bb_largest_free_order_node) {
886 			if (sbi->s_mb_stats)
887 				atomic64_inc(&sbi->s_bal_cX_groups_considered[0]);
888 			if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) {
889 				grp = iter;
890 				break;
891 			}
892 		}
893 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
894 		if (grp)
895 			break;
896 	}
897 
898 	if (!grp) {
899 		/* Increment cr and search again */
900 		*new_cr = 1;
901 	} else {
902 		*group = grp->bb_group;
903 		ac->ac_flags |= EXT4_MB_CR0_OPTIMIZED;
904 	}
905 }
906 
907 /*
908  * Choose next group by traversing average fragment size list of suitable
909  * order. Updates *new_cr if cr level needs an update.
910  */
911 static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac,
912 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
913 {
914 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
915 	struct ext4_group_info *grp = NULL, *iter;
916 	int i;
917 
918 	if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) {
919 		if (sbi->s_mb_stats)
920 			atomic_inc(&sbi->s_bal_cr1_bad_suggestions);
921 	}
922 
923 	for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
924 	     i < MB_NUM_ORDERS(ac->ac_sb); i++) {
925 		if (list_empty(&sbi->s_mb_avg_fragment_size[i]))
926 			continue;
927 		read_lock(&sbi->s_mb_avg_fragment_size_locks[i]);
928 		if (list_empty(&sbi->s_mb_avg_fragment_size[i])) {
929 			read_unlock(&sbi->s_mb_avg_fragment_size_locks[i]);
930 			continue;
931 		}
932 		list_for_each_entry(iter, &sbi->s_mb_avg_fragment_size[i],
933 				    bb_avg_fragment_size_node) {
934 			if (sbi->s_mb_stats)
935 				atomic64_inc(&sbi->s_bal_cX_groups_considered[1]);
936 			if (likely(ext4_mb_good_group(ac, iter->bb_group, 1))) {
937 				grp = iter;
938 				break;
939 			}
940 		}
941 		read_unlock(&sbi->s_mb_avg_fragment_size_locks[i]);
942 		if (grp)
943 			break;
944 	}
945 
946 	if (grp) {
947 		*group = grp->bb_group;
948 		ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED;
949 	} else {
950 		*new_cr = 2;
951 	}
952 }
953 
954 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
955 {
956 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
957 		return 0;
958 	if (ac->ac_criteria >= 2)
959 		return 0;
960 	if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
961 		return 0;
962 	return 1;
963 }
964 
965 /*
966  * Return next linear group for allocation. If linear traversal should not be
967  * performed, this function just returns the same group
968  */
969 static int
970 next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups)
971 {
972 	if (!should_optimize_scan(ac))
973 		goto inc_and_return;
974 
975 	if (ac->ac_groups_linear_remaining) {
976 		ac->ac_groups_linear_remaining--;
977 		goto inc_and_return;
978 	}
979 
980 	return group;
981 inc_and_return:
982 	/*
983 	 * Artificially restricted ngroups for non-extent
984 	 * files makes group > ngroups possible on first loop.
985 	 */
986 	return group + 1 >= ngroups ? 0 : group + 1;
987 }
988 
989 /*
990  * ext4_mb_choose_next_group: choose next group for allocation.
991  *
992  * @ac        Allocation Context
993  * @new_cr    This is an output parameter. If the there is no good group
994  *            available at current CR level, this field is updated to indicate
995  *            the new cr level that should be used.
996  * @group     This is an input / output parameter. As an input it indicates the
997  *            next group that the allocator intends to use for allocation. As
998  *            output, this field indicates the next group that should be used as
999  *            determined by the optimization functions.
1000  * @ngroups   Total number of groups
1001  */
1002 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1003 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1004 {
1005 	*new_cr = ac->ac_criteria;
1006 
1007 	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1008 		*group = next_linear_group(ac, *group, ngroups);
1009 		return;
1010 	}
1011 
1012 	if (*new_cr == 0) {
1013 		ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups);
1014 	} else if (*new_cr == 1) {
1015 		ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups);
1016 	} else {
1017 		/*
1018 		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1019 		 * bb_free. But until that happens, we should never come here.
1020 		 */
1021 		WARN_ON(1);
1022 	}
1023 }
1024 
1025 /*
1026  * Cache the order of the largest free extent we have available in this block
1027  * group.
1028  */
1029 static void
1030 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1031 {
1032 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1033 	int i;
1034 
1035 	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1036 		if (grp->bb_counters[i] > 0)
1037 			break;
1038 	/* No need to move between order lists? */
1039 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1040 	    i == grp->bb_largest_free_order) {
1041 		grp->bb_largest_free_order = i;
1042 		return;
1043 	}
1044 
1045 	if (grp->bb_largest_free_order >= 0) {
1046 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1047 					      grp->bb_largest_free_order]);
1048 		list_del_init(&grp->bb_largest_free_order_node);
1049 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1050 					      grp->bb_largest_free_order]);
1051 	}
1052 	grp->bb_largest_free_order = i;
1053 	if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1054 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1055 					      grp->bb_largest_free_order]);
1056 		list_add_tail(&grp->bb_largest_free_order_node,
1057 		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1058 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1059 					      grp->bb_largest_free_order]);
1060 	}
1061 }
1062 
1063 static noinline_for_stack
1064 void ext4_mb_generate_buddy(struct super_block *sb,
1065 			    void *buddy, void *bitmap, ext4_group_t group,
1066 			    struct ext4_group_info *grp)
1067 {
1068 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1069 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1070 	ext4_grpblk_t i = 0;
1071 	ext4_grpblk_t first;
1072 	ext4_grpblk_t len;
1073 	unsigned free = 0;
1074 	unsigned fragments = 0;
1075 	unsigned long long period = get_cycles();
1076 
1077 	/* initialize buddy from bitmap which is aggregation
1078 	 * of on-disk bitmap and preallocations */
1079 	i = mb_find_next_zero_bit(bitmap, max, 0);
1080 	grp->bb_first_free = i;
1081 	while (i < max) {
1082 		fragments++;
1083 		first = i;
1084 		i = mb_find_next_bit(bitmap, max, i);
1085 		len = i - first;
1086 		free += len;
1087 		if (len > 1)
1088 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1089 		else
1090 			grp->bb_counters[0]++;
1091 		if (i < max)
1092 			i = mb_find_next_zero_bit(bitmap, max, i);
1093 	}
1094 	grp->bb_fragments = fragments;
1095 
1096 	if (free != grp->bb_free) {
1097 		ext4_grp_locked_error(sb, group, 0, 0,
1098 				      "block bitmap and bg descriptor "
1099 				      "inconsistent: %u vs %u free clusters",
1100 				      free, grp->bb_free);
1101 		/*
1102 		 * If we intend to continue, we consider group descriptor
1103 		 * corrupt and update bb_free using bitmap value
1104 		 */
1105 		grp->bb_free = free;
1106 		ext4_mark_group_bitmap_corrupted(sb, group,
1107 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1108 	}
1109 	mb_set_largest_free_order(sb, grp);
1110 	mb_update_avg_fragment_size(sb, grp);
1111 
1112 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1113 
1114 	period = get_cycles() - period;
1115 	atomic_inc(&sbi->s_mb_buddies_generated);
1116 	atomic64_add(period, &sbi->s_mb_generation_time);
1117 }
1118 
1119 /* The buddy information is attached the buddy cache inode
1120  * for convenience. The information regarding each group
1121  * is loaded via ext4_mb_load_buddy. The information involve
1122  * block bitmap and buddy information. The information are
1123  * stored in the inode as
1124  *
1125  * {                        page                        }
1126  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1127  *
1128  *
1129  * one block each for bitmap and buddy information.
1130  * So for each group we take up 2 blocks. A page can
1131  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1132  * So it can have information regarding groups_per_page which
1133  * is blocks_per_page/2
1134  *
1135  * Locking note:  This routine takes the block group lock of all groups
1136  * for this page; do not hold this lock when calling this routine!
1137  */
1138 
1139 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1140 {
1141 	ext4_group_t ngroups;
1142 	int blocksize;
1143 	int blocks_per_page;
1144 	int groups_per_page;
1145 	int err = 0;
1146 	int i;
1147 	ext4_group_t first_group, group;
1148 	int first_block;
1149 	struct super_block *sb;
1150 	struct buffer_head *bhs;
1151 	struct buffer_head **bh = NULL;
1152 	struct inode *inode;
1153 	char *data;
1154 	char *bitmap;
1155 	struct ext4_group_info *grinfo;
1156 
1157 	inode = page->mapping->host;
1158 	sb = inode->i_sb;
1159 	ngroups = ext4_get_groups_count(sb);
1160 	blocksize = i_blocksize(inode);
1161 	blocks_per_page = PAGE_SIZE / blocksize;
1162 
1163 	mb_debug(sb, "init page %lu\n", page->index);
1164 
1165 	groups_per_page = blocks_per_page >> 1;
1166 	if (groups_per_page == 0)
1167 		groups_per_page = 1;
1168 
1169 	/* allocate buffer_heads to read bitmaps */
1170 	if (groups_per_page > 1) {
1171 		i = sizeof(struct buffer_head *) * groups_per_page;
1172 		bh = kzalloc(i, gfp);
1173 		if (bh == NULL)
1174 			return -ENOMEM;
1175 	} else
1176 		bh = &bhs;
1177 
1178 	first_group = page->index * blocks_per_page / 2;
1179 
1180 	/* read all groups the page covers into the cache */
1181 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1182 		if (group >= ngroups)
1183 			break;
1184 
1185 		grinfo = ext4_get_group_info(sb, group);
1186 		if (!grinfo)
1187 			continue;
1188 		/*
1189 		 * If page is uptodate then we came here after online resize
1190 		 * which added some new uninitialized group info structs, so
1191 		 * we must skip all initialized uptodate buddies on the page,
1192 		 * which may be currently in use by an allocating task.
1193 		 */
1194 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1195 			bh[i] = NULL;
1196 			continue;
1197 		}
1198 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1199 		if (IS_ERR(bh[i])) {
1200 			err = PTR_ERR(bh[i]);
1201 			bh[i] = NULL;
1202 			goto out;
1203 		}
1204 		mb_debug(sb, "read bitmap for group %u\n", group);
1205 	}
1206 
1207 	/* wait for I/O completion */
1208 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1209 		int err2;
1210 
1211 		if (!bh[i])
1212 			continue;
1213 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1214 		if (!err)
1215 			err = err2;
1216 	}
1217 
1218 	first_block = page->index * blocks_per_page;
1219 	for (i = 0; i < blocks_per_page; i++) {
1220 		group = (first_block + i) >> 1;
1221 		if (group >= ngroups)
1222 			break;
1223 
1224 		if (!bh[group - first_group])
1225 			/* skip initialized uptodate buddy */
1226 			continue;
1227 
1228 		if (!buffer_verified(bh[group - first_group]))
1229 			/* Skip faulty bitmaps */
1230 			continue;
1231 		err = 0;
1232 
1233 		/*
1234 		 * data carry information regarding this
1235 		 * particular group in the format specified
1236 		 * above
1237 		 *
1238 		 */
1239 		data = page_address(page) + (i * blocksize);
1240 		bitmap = bh[group - first_group]->b_data;
1241 
1242 		/*
1243 		 * We place the buddy block and bitmap block
1244 		 * close together
1245 		 */
1246 		if ((first_block + i) & 1) {
1247 			/* this is block of buddy */
1248 			BUG_ON(incore == NULL);
1249 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1250 				group, page->index, i * blocksize);
1251 			trace_ext4_mb_buddy_bitmap_load(sb, group);
1252 			grinfo = ext4_get_group_info(sb, group);
1253 			if (!grinfo) {
1254 				err = -EFSCORRUPTED;
1255 				goto out;
1256 			}
1257 			grinfo->bb_fragments = 0;
1258 			memset(grinfo->bb_counters, 0,
1259 			       sizeof(*grinfo->bb_counters) *
1260 			       (MB_NUM_ORDERS(sb)));
1261 			/*
1262 			 * incore got set to the group block bitmap below
1263 			 */
1264 			ext4_lock_group(sb, group);
1265 			/* init the buddy */
1266 			memset(data, 0xff, blocksize);
1267 			ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1268 			ext4_unlock_group(sb, group);
1269 			incore = NULL;
1270 		} else {
1271 			/* this is block of bitmap */
1272 			BUG_ON(incore != NULL);
1273 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1274 				group, page->index, i * blocksize);
1275 			trace_ext4_mb_bitmap_load(sb, group);
1276 
1277 			/* see comments in ext4_mb_put_pa() */
1278 			ext4_lock_group(sb, group);
1279 			memcpy(data, bitmap, blocksize);
1280 
1281 			/* mark all preallocated blks used in in-core bitmap */
1282 			ext4_mb_generate_from_pa(sb, data, group);
1283 			ext4_mb_generate_from_freelist(sb, data, group);
1284 			ext4_unlock_group(sb, group);
1285 
1286 			/* set incore so that the buddy information can be
1287 			 * generated using this
1288 			 */
1289 			incore = data;
1290 		}
1291 	}
1292 	SetPageUptodate(page);
1293 
1294 out:
1295 	if (bh) {
1296 		for (i = 0; i < groups_per_page; i++)
1297 			brelse(bh[i]);
1298 		if (bh != &bhs)
1299 			kfree(bh);
1300 	}
1301 	return err;
1302 }
1303 
1304 /*
1305  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1306  * on the same buddy page doesn't happen whild holding the buddy page lock.
1307  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1308  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1309  */
1310 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1311 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1312 {
1313 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1314 	int block, pnum, poff;
1315 	int blocks_per_page;
1316 	struct page *page;
1317 
1318 	e4b->bd_buddy_page = NULL;
1319 	e4b->bd_bitmap_page = NULL;
1320 
1321 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1322 	/*
1323 	 * the buddy cache inode stores the block bitmap
1324 	 * and buddy information in consecutive blocks.
1325 	 * So for each group we need two blocks.
1326 	 */
1327 	block = group * 2;
1328 	pnum = block / blocks_per_page;
1329 	poff = block % blocks_per_page;
1330 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1331 	if (!page)
1332 		return -ENOMEM;
1333 	BUG_ON(page->mapping != inode->i_mapping);
1334 	e4b->bd_bitmap_page = page;
1335 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1336 
1337 	if (blocks_per_page >= 2) {
1338 		/* buddy and bitmap are on the same page */
1339 		return 0;
1340 	}
1341 
1342 	block++;
1343 	pnum = block / blocks_per_page;
1344 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1345 	if (!page)
1346 		return -ENOMEM;
1347 	BUG_ON(page->mapping != inode->i_mapping);
1348 	e4b->bd_buddy_page = page;
1349 	return 0;
1350 }
1351 
1352 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1353 {
1354 	if (e4b->bd_bitmap_page) {
1355 		unlock_page(e4b->bd_bitmap_page);
1356 		put_page(e4b->bd_bitmap_page);
1357 	}
1358 	if (e4b->bd_buddy_page) {
1359 		unlock_page(e4b->bd_buddy_page);
1360 		put_page(e4b->bd_buddy_page);
1361 	}
1362 }
1363 
1364 /*
1365  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1366  * block group lock of all groups for this page; do not hold the BG lock when
1367  * calling this routine!
1368  */
1369 static noinline_for_stack
1370 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1371 {
1372 
1373 	struct ext4_group_info *this_grp;
1374 	struct ext4_buddy e4b;
1375 	struct page *page;
1376 	int ret = 0;
1377 
1378 	might_sleep();
1379 	mb_debug(sb, "init group %u\n", group);
1380 	this_grp = ext4_get_group_info(sb, group);
1381 	if (!this_grp)
1382 		return -EFSCORRUPTED;
1383 
1384 	/*
1385 	 * This ensures that we don't reinit the buddy cache
1386 	 * page which map to the group from which we are already
1387 	 * allocating. If we are looking at the buddy cache we would
1388 	 * have taken a reference using ext4_mb_load_buddy and that
1389 	 * would have pinned buddy page to page cache.
1390 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1391 	 * page accessed.
1392 	 */
1393 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1394 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1395 		/*
1396 		 * somebody initialized the group
1397 		 * return without doing anything
1398 		 */
1399 		goto err;
1400 	}
1401 
1402 	page = e4b.bd_bitmap_page;
1403 	ret = ext4_mb_init_cache(page, NULL, gfp);
1404 	if (ret)
1405 		goto err;
1406 	if (!PageUptodate(page)) {
1407 		ret = -EIO;
1408 		goto err;
1409 	}
1410 
1411 	if (e4b.bd_buddy_page == NULL) {
1412 		/*
1413 		 * If both the bitmap and buddy are in
1414 		 * the same page we don't need to force
1415 		 * init the buddy
1416 		 */
1417 		ret = 0;
1418 		goto err;
1419 	}
1420 	/* init buddy cache */
1421 	page = e4b.bd_buddy_page;
1422 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1423 	if (ret)
1424 		goto err;
1425 	if (!PageUptodate(page)) {
1426 		ret = -EIO;
1427 		goto err;
1428 	}
1429 err:
1430 	ext4_mb_put_buddy_page_lock(&e4b);
1431 	return ret;
1432 }
1433 
1434 /*
1435  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1436  * block group lock of all groups for this page; do not hold the BG lock when
1437  * calling this routine!
1438  */
1439 static noinline_for_stack int
1440 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1441 		       struct ext4_buddy *e4b, gfp_t gfp)
1442 {
1443 	int blocks_per_page;
1444 	int block;
1445 	int pnum;
1446 	int poff;
1447 	struct page *page;
1448 	int ret;
1449 	struct ext4_group_info *grp;
1450 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1451 	struct inode *inode = sbi->s_buddy_cache;
1452 
1453 	might_sleep();
1454 	mb_debug(sb, "load group %u\n", group);
1455 
1456 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1457 	grp = ext4_get_group_info(sb, group);
1458 	if (!grp)
1459 		return -EFSCORRUPTED;
1460 
1461 	e4b->bd_blkbits = sb->s_blocksize_bits;
1462 	e4b->bd_info = grp;
1463 	e4b->bd_sb = sb;
1464 	e4b->bd_group = group;
1465 	e4b->bd_buddy_page = NULL;
1466 	e4b->bd_bitmap_page = NULL;
1467 
1468 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1469 		/*
1470 		 * we need full data about the group
1471 		 * to make a good selection
1472 		 */
1473 		ret = ext4_mb_init_group(sb, group, gfp);
1474 		if (ret)
1475 			return ret;
1476 	}
1477 
1478 	/*
1479 	 * the buddy cache inode stores the block bitmap
1480 	 * and buddy information in consecutive blocks.
1481 	 * So for each group we need two blocks.
1482 	 */
1483 	block = group * 2;
1484 	pnum = block / blocks_per_page;
1485 	poff = block % blocks_per_page;
1486 
1487 	/* we could use find_or_create_page(), but it locks page
1488 	 * what we'd like to avoid in fast path ... */
1489 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1490 	if (page == NULL || !PageUptodate(page)) {
1491 		if (page)
1492 			/*
1493 			 * drop the page reference and try
1494 			 * to get the page with lock. If we
1495 			 * are not uptodate that implies
1496 			 * somebody just created the page but
1497 			 * is yet to initialize the same. So
1498 			 * wait for it to initialize.
1499 			 */
1500 			put_page(page);
1501 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1502 		if (page) {
1503 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1504 	"ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1505 				/* should never happen */
1506 				unlock_page(page);
1507 				ret = -EINVAL;
1508 				goto err;
1509 			}
1510 			if (!PageUptodate(page)) {
1511 				ret = ext4_mb_init_cache(page, NULL, gfp);
1512 				if (ret) {
1513 					unlock_page(page);
1514 					goto err;
1515 				}
1516 				mb_cmp_bitmaps(e4b, page_address(page) +
1517 					       (poff * sb->s_blocksize));
1518 			}
1519 			unlock_page(page);
1520 		}
1521 	}
1522 	if (page == NULL) {
1523 		ret = -ENOMEM;
1524 		goto err;
1525 	}
1526 	if (!PageUptodate(page)) {
1527 		ret = -EIO;
1528 		goto err;
1529 	}
1530 
1531 	/* Pages marked accessed already */
1532 	e4b->bd_bitmap_page = page;
1533 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1534 
1535 	block++;
1536 	pnum = block / blocks_per_page;
1537 	poff = block % blocks_per_page;
1538 
1539 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1540 	if (page == NULL || !PageUptodate(page)) {
1541 		if (page)
1542 			put_page(page);
1543 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1544 		if (page) {
1545 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1546 	"ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1547 				/* should never happen */
1548 				unlock_page(page);
1549 				ret = -EINVAL;
1550 				goto err;
1551 			}
1552 			if (!PageUptodate(page)) {
1553 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1554 							 gfp);
1555 				if (ret) {
1556 					unlock_page(page);
1557 					goto err;
1558 				}
1559 			}
1560 			unlock_page(page);
1561 		}
1562 	}
1563 	if (page == NULL) {
1564 		ret = -ENOMEM;
1565 		goto err;
1566 	}
1567 	if (!PageUptodate(page)) {
1568 		ret = -EIO;
1569 		goto err;
1570 	}
1571 
1572 	/* Pages marked accessed already */
1573 	e4b->bd_buddy_page = page;
1574 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1575 
1576 	return 0;
1577 
1578 err:
1579 	if (page)
1580 		put_page(page);
1581 	if (e4b->bd_bitmap_page)
1582 		put_page(e4b->bd_bitmap_page);
1583 
1584 	e4b->bd_buddy = NULL;
1585 	e4b->bd_bitmap = NULL;
1586 	return ret;
1587 }
1588 
1589 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1590 			      struct ext4_buddy *e4b)
1591 {
1592 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1593 }
1594 
1595 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1596 {
1597 	if (e4b->bd_bitmap_page)
1598 		put_page(e4b->bd_bitmap_page);
1599 	if (e4b->bd_buddy_page)
1600 		put_page(e4b->bd_buddy_page);
1601 }
1602 
1603 
1604 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1605 {
1606 	int order = 1, max;
1607 	void *bb;
1608 
1609 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1610 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1611 
1612 	while (order <= e4b->bd_blkbits + 1) {
1613 		bb = mb_find_buddy(e4b, order, &max);
1614 		if (!mb_test_bit(block >> order, bb)) {
1615 			/* this block is part of buddy of order 'order' */
1616 			return order;
1617 		}
1618 		order++;
1619 	}
1620 	return 0;
1621 }
1622 
1623 static void mb_clear_bits(void *bm, int cur, int len)
1624 {
1625 	__u32 *addr;
1626 
1627 	len = cur + len;
1628 	while (cur < len) {
1629 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1630 			/* fast path: clear whole word at once */
1631 			addr = bm + (cur >> 3);
1632 			*addr = 0;
1633 			cur += 32;
1634 			continue;
1635 		}
1636 		mb_clear_bit(cur, bm);
1637 		cur++;
1638 	}
1639 }
1640 
1641 /* clear bits in given range
1642  * will return first found zero bit if any, -1 otherwise
1643  */
1644 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1645 {
1646 	__u32 *addr;
1647 	int zero_bit = -1;
1648 
1649 	len = cur + len;
1650 	while (cur < len) {
1651 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1652 			/* fast path: clear whole word at once */
1653 			addr = bm + (cur >> 3);
1654 			if (*addr != (__u32)(-1) && zero_bit == -1)
1655 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1656 			*addr = 0;
1657 			cur += 32;
1658 			continue;
1659 		}
1660 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1661 			zero_bit = cur;
1662 		cur++;
1663 	}
1664 
1665 	return zero_bit;
1666 }
1667 
1668 void mb_set_bits(void *bm, int cur, int len)
1669 {
1670 	__u32 *addr;
1671 
1672 	len = cur + len;
1673 	while (cur < len) {
1674 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1675 			/* fast path: set whole word at once */
1676 			addr = bm + (cur >> 3);
1677 			*addr = 0xffffffff;
1678 			cur += 32;
1679 			continue;
1680 		}
1681 		mb_set_bit(cur, bm);
1682 		cur++;
1683 	}
1684 }
1685 
1686 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1687 {
1688 	if (mb_test_bit(*bit + side, bitmap)) {
1689 		mb_clear_bit(*bit, bitmap);
1690 		(*bit) -= side;
1691 		return 1;
1692 	}
1693 	else {
1694 		(*bit) += side;
1695 		mb_set_bit(*bit, bitmap);
1696 		return -1;
1697 	}
1698 }
1699 
1700 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1701 {
1702 	int max;
1703 	int order = 1;
1704 	void *buddy = mb_find_buddy(e4b, order, &max);
1705 
1706 	while (buddy) {
1707 		void *buddy2;
1708 
1709 		/* Bits in range [first; last] are known to be set since
1710 		 * corresponding blocks were allocated. Bits in range
1711 		 * (first; last) will stay set because they form buddies on
1712 		 * upper layer. We just deal with borders if they don't
1713 		 * align with upper layer and then go up.
1714 		 * Releasing entire group is all about clearing
1715 		 * single bit of highest order buddy.
1716 		 */
1717 
1718 		/* Example:
1719 		 * ---------------------------------
1720 		 * |   1   |   1   |   1   |   1   |
1721 		 * ---------------------------------
1722 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1723 		 * ---------------------------------
1724 		 *   0   1   2   3   4   5   6   7
1725 		 *      \_____________________/
1726 		 *
1727 		 * Neither [1] nor [6] is aligned to above layer.
1728 		 * Left neighbour [0] is free, so mark it busy,
1729 		 * decrease bb_counters and extend range to
1730 		 * [0; 6]
1731 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1732 		 * mark [6] free, increase bb_counters and shrink range to
1733 		 * [0; 5].
1734 		 * Then shift range to [0; 2], go up and do the same.
1735 		 */
1736 
1737 
1738 		if (first & 1)
1739 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1740 		if (!(last & 1))
1741 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1742 		if (first > last)
1743 			break;
1744 		order++;
1745 
1746 		buddy2 = mb_find_buddy(e4b, order, &max);
1747 		if (!buddy2) {
1748 			mb_clear_bits(buddy, first, last - first + 1);
1749 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1750 			break;
1751 		}
1752 		first >>= 1;
1753 		last >>= 1;
1754 		buddy = buddy2;
1755 	}
1756 }
1757 
1758 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1759 			   int first, int count)
1760 {
1761 	int left_is_free = 0;
1762 	int right_is_free = 0;
1763 	int block;
1764 	int last = first + count - 1;
1765 	struct super_block *sb = e4b->bd_sb;
1766 
1767 	if (WARN_ON(count == 0))
1768 		return;
1769 	BUG_ON(last >= (sb->s_blocksize << 3));
1770 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1771 	/* Don't bother if the block group is corrupt. */
1772 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1773 		return;
1774 
1775 	mb_check_buddy(e4b);
1776 	mb_free_blocks_double(inode, e4b, first, count);
1777 
1778 	this_cpu_inc(discard_pa_seq);
1779 	e4b->bd_info->bb_free += count;
1780 	if (first < e4b->bd_info->bb_first_free)
1781 		e4b->bd_info->bb_first_free = first;
1782 
1783 	/* access memory sequentially: check left neighbour,
1784 	 * clear range and then check right neighbour
1785 	 */
1786 	if (first != 0)
1787 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1788 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1789 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1790 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1791 
1792 	if (unlikely(block != -1)) {
1793 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1794 		ext4_fsblk_t blocknr;
1795 
1796 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1797 		blocknr += EXT4_C2B(sbi, block);
1798 		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1799 			ext4_grp_locked_error(sb, e4b->bd_group,
1800 					      inode ? inode->i_ino : 0,
1801 					      blocknr,
1802 					      "freeing already freed block (bit %u); block bitmap corrupt.",
1803 					      block);
1804 			ext4_mark_group_bitmap_corrupted(
1805 				sb, e4b->bd_group,
1806 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1807 		}
1808 		goto done;
1809 	}
1810 
1811 	/* let's maintain fragments counter */
1812 	if (left_is_free && right_is_free)
1813 		e4b->bd_info->bb_fragments--;
1814 	else if (!left_is_free && !right_is_free)
1815 		e4b->bd_info->bb_fragments++;
1816 
1817 	/* buddy[0] == bd_bitmap is a special case, so handle
1818 	 * it right away and let mb_buddy_mark_free stay free of
1819 	 * zero order checks.
1820 	 * Check if neighbours are to be coaleasced,
1821 	 * adjust bitmap bb_counters and borders appropriately.
1822 	 */
1823 	if (first & 1) {
1824 		first += !left_is_free;
1825 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1826 	}
1827 	if (!(last & 1)) {
1828 		last -= !right_is_free;
1829 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1830 	}
1831 
1832 	if (first <= last)
1833 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1834 
1835 done:
1836 	mb_set_largest_free_order(sb, e4b->bd_info);
1837 	mb_update_avg_fragment_size(sb, e4b->bd_info);
1838 	mb_check_buddy(e4b);
1839 }
1840 
1841 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1842 				int needed, struct ext4_free_extent *ex)
1843 {
1844 	int next = block;
1845 	int max, order;
1846 	void *buddy;
1847 
1848 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1849 	BUG_ON(ex == NULL);
1850 
1851 	buddy = mb_find_buddy(e4b, 0, &max);
1852 	BUG_ON(buddy == NULL);
1853 	BUG_ON(block >= max);
1854 	if (mb_test_bit(block, buddy)) {
1855 		ex->fe_len = 0;
1856 		ex->fe_start = 0;
1857 		ex->fe_group = 0;
1858 		return 0;
1859 	}
1860 
1861 	/* find actual order */
1862 	order = mb_find_order_for_block(e4b, block);
1863 	block = block >> order;
1864 
1865 	ex->fe_len = 1 << order;
1866 	ex->fe_start = block << order;
1867 	ex->fe_group = e4b->bd_group;
1868 
1869 	/* calc difference from given start */
1870 	next = next - ex->fe_start;
1871 	ex->fe_len -= next;
1872 	ex->fe_start += next;
1873 
1874 	while (needed > ex->fe_len &&
1875 	       mb_find_buddy(e4b, order, &max)) {
1876 
1877 		if (block + 1 >= max)
1878 			break;
1879 
1880 		next = (block + 1) * (1 << order);
1881 		if (mb_test_bit(next, e4b->bd_bitmap))
1882 			break;
1883 
1884 		order = mb_find_order_for_block(e4b, next);
1885 
1886 		block = next >> order;
1887 		ex->fe_len += 1 << order;
1888 	}
1889 
1890 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1891 		/* Should never happen! (but apparently sometimes does?!?) */
1892 		WARN_ON(1);
1893 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
1894 			"corruption or bug in mb_find_extent "
1895 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1896 			block, order, needed, ex->fe_group, ex->fe_start,
1897 			ex->fe_len, ex->fe_logical);
1898 		ex->fe_len = 0;
1899 		ex->fe_start = 0;
1900 		ex->fe_group = 0;
1901 	}
1902 	return ex->fe_len;
1903 }
1904 
1905 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1906 {
1907 	int ord;
1908 	int mlen = 0;
1909 	int max = 0;
1910 	int cur;
1911 	int start = ex->fe_start;
1912 	int len = ex->fe_len;
1913 	unsigned ret = 0;
1914 	int len0 = len;
1915 	void *buddy;
1916 	bool split = false;
1917 
1918 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1919 	BUG_ON(e4b->bd_group != ex->fe_group);
1920 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1921 	mb_check_buddy(e4b);
1922 	mb_mark_used_double(e4b, start, len);
1923 
1924 	this_cpu_inc(discard_pa_seq);
1925 	e4b->bd_info->bb_free -= len;
1926 	if (e4b->bd_info->bb_first_free == start)
1927 		e4b->bd_info->bb_first_free += len;
1928 
1929 	/* let's maintain fragments counter */
1930 	if (start != 0)
1931 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1932 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1933 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1934 	if (mlen && max)
1935 		e4b->bd_info->bb_fragments++;
1936 	else if (!mlen && !max)
1937 		e4b->bd_info->bb_fragments--;
1938 
1939 	/* let's maintain buddy itself */
1940 	while (len) {
1941 		if (!split)
1942 			ord = mb_find_order_for_block(e4b, start);
1943 
1944 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1945 			/* the whole chunk may be allocated at once! */
1946 			mlen = 1 << ord;
1947 			if (!split)
1948 				buddy = mb_find_buddy(e4b, ord, &max);
1949 			else
1950 				split = false;
1951 			BUG_ON((start >> ord) >= max);
1952 			mb_set_bit(start >> ord, buddy);
1953 			e4b->bd_info->bb_counters[ord]--;
1954 			start += mlen;
1955 			len -= mlen;
1956 			BUG_ON(len < 0);
1957 			continue;
1958 		}
1959 
1960 		/* store for history */
1961 		if (ret == 0)
1962 			ret = len | (ord << 16);
1963 
1964 		/* we have to split large buddy */
1965 		BUG_ON(ord <= 0);
1966 		buddy = mb_find_buddy(e4b, ord, &max);
1967 		mb_set_bit(start >> ord, buddy);
1968 		e4b->bd_info->bb_counters[ord]--;
1969 
1970 		ord--;
1971 		cur = (start >> ord) & ~1U;
1972 		buddy = mb_find_buddy(e4b, ord, &max);
1973 		mb_clear_bit(cur, buddy);
1974 		mb_clear_bit(cur + 1, buddy);
1975 		e4b->bd_info->bb_counters[ord]++;
1976 		e4b->bd_info->bb_counters[ord]++;
1977 		split = true;
1978 	}
1979 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1980 
1981 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
1982 	mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1983 	mb_check_buddy(e4b);
1984 
1985 	return ret;
1986 }
1987 
1988 /*
1989  * Must be called under group lock!
1990  */
1991 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1992 					struct ext4_buddy *e4b)
1993 {
1994 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1995 	int ret;
1996 
1997 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1998 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1999 
2000 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2001 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2002 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
2003 
2004 	/* preallocation can change ac_b_ex, thus we store actually
2005 	 * allocated blocks for history */
2006 	ac->ac_f_ex = ac->ac_b_ex;
2007 
2008 	ac->ac_status = AC_STATUS_FOUND;
2009 	ac->ac_tail = ret & 0xffff;
2010 	ac->ac_buddy = ret >> 16;
2011 
2012 	/*
2013 	 * take the page reference. We want the page to be pinned
2014 	 * so that we don't get a ext4_mb_init_cache_call for this
2015 	 * group until we update the bitmap. That would mean we
2016 	 * double allocate blocks. The reference is dropped
2017 	 * in ext4_mb_release_context
2018 	 */
2019 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
2020 	get_page(ac->ac_bitmap_page);
2021 	ac->ac_buddy_page = e4b->bd_buddy_page;
2022 	get_page(ac->ac_buddy_page);
2023 	/* store last allocated for subsequent stream allocation */
2024 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2025 		spin_lock(&sbi->s_md_lock);
2026 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2027 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2028 		spin_unlock(&sbi->s_md_lock);
2029 	}
2030 	/*
2031 	 * As we've just preallocated more space than
2032 	 * user requested originally, we store allocated
2033 	 * space in a special descriptor.
2034 	 */
2035 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2036 		ext4_mb_new_preallocation(ac);
2037 
2038 }
2039 
2040 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2041 					struct ext4_buddy *e4b,
2042 					int finish_group)
2043 {
2044 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2045 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2046 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2047 
2048 	if (ac->ac_status == AC_STATUS_FOUND)
2049 		return;
2050 	/*
2051 	 * We don't want to scan for a whole year
2052 	 */
2053 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2054 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2055 		ac->ac_status = AC_STATUS_BREAK;
2056 		return;
2057 	}
2058 
2059 	/*
2060 	 * Haven't found good chunk so far, let's continue
2061 	 */
2062 	if (bex->fe_len < gex->fe_len)
2063 		return;
2064 
2065 	if (finish_group)
2066 		ext4_mb_use_best_found(ac, e4b);
2067 }
2068 
2069 /*
2070  * The routine checks whether found extent is good enough. If it is,
2071  * then the extent gets marked used and flag is set to the context
2072  * to stop scanning. Otherwise, the extent is compared with the
2073  * previous found extent and if new one is better, then it's stored
2074  * in the context. Later, the best found extent will be used, if
2075  * mballoc can't find good enough extent.
2076  *
2077  * FIXME: real allocation policy is to be designed yet!
2078  */
2079 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2080 					struct ext4_free_extent *ex,
2081 					struct ext4_buddy *e4b)
2082 {
2083 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2084 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2085 
2086 	BUG_ON(ex->fe_len <= 0);
2087 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2088 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2089 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2090 
2091 	ac->ac_found++;
2092 
2093 	/*
2094 	 * The special case - take what you catch first
2095 	 */
2096 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2097 		*bex = *ex;
2098 		ext4_mb_use_best_found(ac, e4b);
2099 		return;
2100 	}
2101 
2102 	/*
2103 	 * Let's check whether the chuck is good enough
2104 	 */
2105 	if (ex->fe_len == gex->fe_len) {
2106 		*bex = *ex;
2107 		ext4_mb_use_best_found(ac, e4b);
2108 		return;
2109 	}
2110 
2111 	/*
2112 	 * If this is first found extent, just store it in the context
2113 	 */
2114 	if (bex->fe_len == 0) {
2115 		*bex = *ex;
2116 		return;
2117 	}
2118 
2119 	/*
2120 	 * If new found extent is better, store it in the context
2121 	 */
2122 	if (bex->fe_len < gex->fe_len) {
2123 		/* if the request isn't satisfied, any found extent
2124 		 * larger than previous best one is better */
2125 		if (ex->fe_len > bex->fe_len)
2126 			*bex = *ex;
2127 	} else if (ex->fe_len > gex->fe_len) {
2128 		/* if the request is satisfied, then we try to find
2129 		 * an extent that still satisfy the request, but is
2130 		 * smaller than previous one */
2131 		if (ex->fe_len < bex->fe_len)
2132 			*bex = *ex;
2133 	}
2134 
2135 	ext4_mb_check_limits(ac, e4b, 0);
2136 }
2137 
2138 static noinline_for_stack
2139 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2140 					struct ext4_buddy *e4b)
2141 {
2142 	struct ext4_free_extent ex = ac->ac_b_ex;
2143 	ext4_group_t group = ex.fe_group;
2144 	int max;
2145 	int err;
2146 
2147 	BUG_ON(ex.fe_len <= 0);
2148 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2149 	if (err)
2150 		return;
2151 
2152 	ext4_lock_group(ac->ac_sb, group);
2153 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2154 
2155 	if (max > 0) {
2156 		ac->ac_b_ex = ex;
2157 		ext4_mb_use_best_found(ac, e4b);
2158 	}
2159 
2160 	ext4_unlock_group(ac->ac_sb, group);
2161 	ext4_mb_unload_buddy(e4b);
2162 }
2163 
2164 static noinline_for_stack
2165 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2166 				struct ext4_buddy *e4b)
2167 {
2168 	ext4_group_t group = ac->ac_g_ex.fe_group;
2169 	int max;
2170 	int err;
2171 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2172 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2173 	struct ext4_free_extent ex;
2174 
2175 	if (!grp)
2176 		return -EFSCORRUPTED;
2177 	if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2178 		return 0;
2179 	if (grp->bb_free == 0)
2180 		return 0;
2181 
2182 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2183 	if (err)
2184 		return err;
2185 
2186 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
2187 		ext4_mb_unload_buddy(e4b);
2188 		return 0;
2189 	}
2190 
2191 	ext4_lock_group(ac->ac_sb, group);
2192 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2193 			     ac->ac_g_ex.fe_len, &ex);
2194 	ex.fe_logical = 0xDEADFA11; /* debug value */
2195 
2196 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
2197 		ext4_fsblk_t start;
2198 
2199 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
2200 			ex.fe_start;
2201 		/* use do_div to get remainder (would be 64-bit modulo) */
2202 		if (do_div(start, sbi->s_stripe) == 0) {
2203 			ac->ac_found++;
2204 			ac->ac_b_ex = ex;
2205 			ext4_mb_use_best_found(ac, e4b);
2206 		}
2207 	} else if (max >= ac->ac_g_ex.fe_len) {
2208 		BUG_ON(ex.fe_len <= 0);
2209 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2210 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2211 		ac->ac_found++;
2212 		ac->ac_b_ex = ex;
2213 		ext4_mb_use_best_found(ac, e4b);
2214 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2215 		/* Sometimes, caller may want to merge even small
2216 		 * number of blocks to an existing extent */
2217 		BUG_ON(ex.fe_len <= 0);
2218 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2219 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2220 		ac->ac_found++;
2221 		ac->ac_b_ex = ex;
2222 		ext4_mb_use_best_found(ac, e4b);
2223 	}
2224 	ext4_unlock_group(ac->ac_sb, group);
2225 	ext4_mb_unload_buddy(e4b);
2226 
2227 	return 0;
2228 }
2229 
2230 /*
2231  * The routine scans buddy structures (not bitmap!) from given order
2232  * to max order and tries to find big enough chunk to satisfy the req
2233  */
2234 static noinline_for_stack
2235 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2236 					struct ext4_buddy *e4b)
2237 {
2238 	struct super_block *sb = ac->ac_sb;
2239 	struct ext4_group_info *grp = e4b->bd_info;
2240 	void *buddy;
2241 	int i;
2242 	int k;
2243 	int max;
2244 
2245 	BUG_ON(ac->ac_2order <= 0);
2246 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2247 		if (grp->bb_counters[i] == 0)
2248 			continue;
2249 
2250 		buddy = mb_find_buddy(e4b, i, &max);
2251 		if (WARN_RATELIMIT(buddy == NULL,
2252 			 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2253 			continue;
2254 
2255 		k = mb_find_next_zero_bit(buddy, max, 0);
2256 		if (k >= max) {
2257 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2258 				"%d free clusters of order %d. But found 0",
2259 				grp->bb_counters[i], i);
2260 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2261 					 e4b->bd_group,
2262 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2263 			break;
2264 		}
2265 		ac->ac_found++;
2266 
2267 		ac->ac_b_ex.fe_len = 1 << i;
2268 		ac->ac_b_ex.fe_start = k << i;
2269 		ac->ac_b_ex.fe_group = e4b->bd_group;
2270 
2271 		ext4_mb_use_best_found(ac, e4b);
2272 
2273 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2274 
2275 		if (EXT4_SB(sb)->s_mb_stats)
2276 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2277 
2278 		break;
2279 	}
2280 }
2281 
2282 /*
2283  * The routine scans the group and measures all found extents.
2284  * In order to optimize scanning, caller must pass number of
2285  * free blocks in the group, so the routine can know upper limit.
2286  */
2287 static noinline_for_stack
2288 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2289 					struct ext4_buddy *e4b)
2290 {
2291 	struct super_block *sb = ac->ac_sb;
2292 	void *bitmap = e4b->bd_bitmap;
2293 	struct ext4_free_extent ex;
2294 	int i;
2295 	int free;
2296 
2297 	free = e4b->bd_info->bb_free;
2298 	if (WARN_ON(free <= 0))
2299 		return;
2300 
2301 	i = e4b->bd_info->bb_first_free;
2302 
2303 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2304 		i = mb_find_next_zero_bit(bitmap,
2305 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2306 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2307 			/*
2308 			 * IF we have corrupt bitmap, we won't find any
2309 			 * free blocks even though group info says we
2310 			 * have free blocks
2311 			 */
2312 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2313 					"%d free clusters as per "
2314 					"group info. But bitmap says 0",
2315 					free);
2316 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2317 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2318 			break;
2319 		}
2320 
2321 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2322 		if (WARN_ON(ex.fe_len <= 0))
2323 			break;
2324 		if (free < ex.fe_len) {
2325 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2326 					"%d free clusters as per "
2327 					"group info. But got %d blocks",
2328 					free, ex.fe_len);
2329 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2330 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2331 			/*
2332 			 * The number of free blocks differs. This mostly
2333 			 * indicate that the bitmap is corrupt. So exit
2334 			 * without claiming the space.
2335 			 */
2336 			break;
2337 		}
2338 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2339 		ext4_mb_measure_extent(ac, &ex, e4b);
2340 
2341 		i += ex.fe_len;
2342 		free -= ex.fe_len;
2343 	}
2344 
2345 	ext4_mb_check_limits(ac, e4b, 1);
2346 }
2347 
2348 /*
2349  * This is a special case for storages like raid5
2350  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2351  */
2352 static noinline_for_stack
2353 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2354 				 struct ext4_buddy *e4b)
2355 {
2356 	struct super_block *sb = ac->ac_sb;
2357 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2358 	void *bitmap = e4b->bd_bitmap;
2359 	struct ext4_free_extent ex;
2360 	ext4_fsblk_t first_group_block;
2361 	ext4_fsblk_t a;
2362 	ext4_grpblk_t i;
2363 	int max;
2364 
2365 	BUG_ON(sbi->s_stripe == 0);
2366 
2367 	/* find first stripe-aligned block in group */
2368 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2369 
2370 	a = first_group_block + sbi->s_stripe - 1;
2371 	do_div(a, sbi->s_stripe);
2372 	i = (a * sbi->s_stripe) - first_group_block;
2373 
2374 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2375 		if (!mb_test_bit(i, bitmap)) {
2376 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2377 			if (max >= sbi->s_stripe) {
2378 				ac->ac_found++;
2379 				ex.fe_logical = 0xDEADF00D; /* debug value */
2380 				ac->ac_b_ex = ex;
2381 				ext4_mb_use_best_found(ac, e4b);
2382 				break;
2383 			}
2384 		}
2385 		i += sbi->s_stripe;
2386 	}
2387 }
2388 
2389 /*
2390  * This is also called BEFORE we load the buddy bitmap.
2391  * Returns either 1 or 0 indicating that the group is either suitable
2392  * for the allocation or not.
2393  */
2394 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2395 				ext4_group_t group, int cr)
2396 {
2397 	ext4_grpblk_t free, fragments;
2398 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2399 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2400 
2401 	BUG_ON(cr < 0 || cr >= 4);
2402 
2403 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp) || !grp))
2404 		return false;
2405 
2406 	free = grp->bb_free;
2407 	if (free == 0)
2408 		return false;
2409 
2410 	fragments = grp->bb_fragments;
2411 	if (fragments == 0)
2412 		return false;
2413 
2414 	switch (cr) {
2415 	case 0:
2416 		BUG_ON(ac->ac_2order == 0);
2417 
2418 		/* Avoid using the first bg of a flexgroup for data files */
2419 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2420 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2421 		    ((group % flex_size) == 0))
2422 			return false;
2423 
2424 		if (free < ac->ac_g_ex.fe_len)
2425 			return false;
2426 
2427 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2428 			return true;
2429 
2430 		if (grp->bb_largest_free_order < ac->ac_2order)
2431 			return false;
2432 
2433 		return true;
2434 	case 1:
2435 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2436 			return true;
2437 		break;
2438 	case 2:
2439 		if (free >= ac->ac_g_ex.fe_len)
2440 			return true;
2441 		break;
2442 	case 3:
2443 		return true;
2444 	default:
2445 		BUG();
2446 	}
2447 
2448 	return false;
2449 }
2450 
2451 /*
2452  * This could return negative error code if something goes wrong
2453  * during ext4_mb_init_group(). This should not be called with
2454  * ext4_lock_group() held.
2455  *
2456  * Note: because we are conditionally operating with the group lock in
2457  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2458  * function using __acquire and __release.  This means we need to be
2459  * super careful before messing with the error path handling via "goto
2460  * out"!
2461  */
2462 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2463 				     ext4_group_t group, int cr)
2464 {
2465 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2466 	struct super_block *sb = ac->ac_sb;
2467 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2468 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2469 	ext4_grpblk_t free;
2470 	int ret = 0;
2471 
2472 	if (!grp)
2473 		return -EFSCORRUPTED;
2474 	if (sbi->s_mb_stats)
2475 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2476 	if (should_lock) {
2477 		ext4_lock_group(sb, group);
2478 		__release(ext4_group_lock_ptr(sb, group));
2479 	}
2480 	free = grp->bb_free;
2481 	if (free == 0)
2482 		goto out;
2483 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2484 		goto out;
2485 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2486 		goto out;
2487 	if (should_lock) {
2488 		__acquire(ext4_group_lock_ptr(sb, group));
2489 		ext4_unlock_group(sb, group);
2490 	}
2491 
2492 	/* We only do this if the grp has never been initialized */
2493 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2494 		struct ext4_group_desc *gdp =
2495 			ext4_get_group_desc(sb, group, NULL);
2496 		int ret;
2497 
2498 		/* cr=0/1 is a very optimistic search to find large
2499 		 * good chunks almost for free.  If buddy data is not
2500 		 * ready, then this optimization makes no sense.  But
2501 		 * we never skip the first block group in a flex_bg,
2502 		 * since this gets used for metadata block allocation,
2503 		 * and we want to make sure we locate metadata blocks
2504 		 * in the first block group in the flex_bg if possible.
2505 		 */
2506 		if (cr < 2 &&
2507 		    (!sbi->s_log_groups_per_flex ||
2508 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2509 		    !(ext4_has_group_desc_csum(sb) &&
2510 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2511 			return 0;
2512 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2513 		if (ret)
2514 			return ret;
2515 	}
2516 
2517 	if (should_lock) {
2518 		ext4_lock_group(sb, group);
2519 		__release(ext4_group_lock_ptr(sb, group));
2520 	}
2521 	ret = ext4_mb_good_group(ac, group, cr);
2522 out:
2523 	if (should_lock) {
2524 		__acquire(ext4_group_lock_ptr(sb, group));
2525 		ext4_unlock_group(sb, group);
2526 	}
2527 	return ret;
2528 }
2529 
2530 /*
2531  * Start prefetching @nr block bitmaps starting at @group.
2532  * Return the next group which needs to be prefetched.
2533  */
2534 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2535 			      unsigned int nr, int *cnt)
2536 {
2537 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2538 	struct buffer_head *bh;
2539 	struct blk_plug plug;
2540 
2541 	blk_start_plug(&plug);
2542 	while (nr-- > 0) {
2543 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2544 								  NULL);
2545 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2546 
2547 		/*
2548 		 * Prefetch block groups with free blocks; but don't
2549 		 * bother if it is marked uninitialized on disk, since
2550 		 * it won't require I/O to read.  Also only try to
2551 		 * prefetch once, so we avoid getblk() call, which can
2552 		 * be expensive.
2553 		 */
2554 		if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2555 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2556 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2557 		    !(ext4_has_group_desc_csum(sb) &&
2558 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2559 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2560 			if (bh && !IS_ERR(bh)) {
2561 				if (!buffer_uptodate(bh) && cnt)
2562 					(*cnt)++;
2563 				brelse(bh);
2564 			}
2565 		}
2566 		if (++group >= ngroups)
2567 			group = 0;
2568 	}
2569 	blk_finish_plug(&plug);
2570 	return group;
2571 }
2572 
2573 /*
2574  * Prefetching reads the block bitmap into the buffer cache; but we
2575  * need to make sure that the buddy bitmap in the page cache has been
2576  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2577  * is not yet completed, or indeed if it was not initiated by
2578  * ext4_mb_prefetch did not start the I/O.
2579  *
2580  * TODO: We should actually kick off the buddy bitmap setup in a work
2581  * queue when the buffer I/O is completed, so that we don't block
2582  * waiting for the block allocation bitmap read to finish when
2583  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2584  */
2585 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2586 			   unsigned int nr)
2587 {
2588 	struct ext4_group_desc *gdp;
2589 	struct ext4_group_info *grp;
2590 
2591 	while (nr-- > 0) {
2592 		if (!group)
2593 			group = ext4_get_groups_count(sb);
2594 		group--;
2595 		gdp = ext4_get_group_desc(sb, group, NULL);
2596 		grp = ext4_get_group_info(sb, group);
2597 
2598 		if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2599 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2600 		    !(ext4_has_group_desc_csum(sb) &&
2601 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2602 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2603 				break;
2604 		}
2605 	}
2606 }
2607 
2608 static noinline_for_stack int
2609 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2610 {
2611 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2612 	int cr = -1, new_cr;
2613 	int err = 0, first_err = 0;
2614 	unsigned int nr = 0, prefetch_ios = 0;
2615 	struct ext4_sb_info *sbi;
2616 	struct super_block *sb;
2617 	struct ext4_buddy e4b;
2618 	int lost;
2619 
2620 	sb = ac->ac_sb;
2621 	sbi = EXT4_SB(sb);
2622 	ngroups = ext4_get_groups_count(sb);
2623 	/* non-extent files are limited to low blocks/groups */
2624 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2625 		ngroups = sbi->s_blockfile_groups;
2626 
2627 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2628 
2629 	/* first, try the goal */
2630 	err = ext4_mb_find_by_goal(ac, &e4b);
2631 	if (err || ac->ac_status == AC_STATUS_FOUND)
2632 		goto out;
2633 
2634 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2635 		goto out;
2636 
2637 	/*
2638 	 * ac->ac_2order is set only if the fe_len is a power of 2
2639 	 * if ac->ac_2order is set we also set criteria to 0 so that we
2640 	 * try exact allocation using buddy.
2641 	 */
2642 	i = fls(ac->ac_g_ex.fe_len);
2643 	ac->ac_2order = 0;
2644 	/*
2645 	 * We search using buddy data only if the order of the request
2646 	 * is greater than equal to the sbi_s_mb_order2_reqs
2647 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2648 	 * We also support searching for power-of-two requests only for
2649 	 * requests upto maximum buddy size we have constructed.
2650 	 */
2651 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2652 		/*
2653 		 * This should tell if fe_len is exactly power of 2
2654 		 */
2655 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2656 			ac->ac_2order = array_index_nospec(i - 1,
2657 							   MB_NUM_ORDERS(sb));
2658 	}
2659 
2660 	/* if stream allocation is enabled, use global goal */
2661 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2662 		/* TBD: may be hot point */
2663 		spin_lock(&sbi->s_md_lock);
2664 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2665 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2666 		spin_unlock(&sbi->s_md_lock);
2667 	}
2668 
2669 	/* Let's just scan groups to find more-less suitable blocks */
2670 	cr = ac->ac_2order ? 0 : 1;
2671 	/*
2672 	 * cr == 0 try to get exact allocation,
2673 	 * cr == 3  try to get anything
2674 	 */
2675 repeat:
2676 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2677 		ac->ac_criteria = cr;
2678 		/*
2679 		 * searching for the right group start
2680 		 * from the goal value specified
2681 		 */
2682 		group = ac->ac_g_ex.fe_group;
2683 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2684 		prefetch_grp = group;
2685 
2686 		for (i = 0, new_cr = cr; i < ngroups; i++,
2687 		     ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2688 			int ret = 0;
2689 
2690 			cond_resched();
2691 			if (new_cr != cr) {
2692 				cr = new_cr;
2693 				goto repeat;
2694 			}
2695 
2696 			/*
2697 			 * Batch reads of the block allocation bitmaps
2698 			 * to get multiple READs in flight; limit
2699 			 * prefetching at cr=0/1, otherwise mballoc can
2700 			 * spend a lot of time loading imperfect groups
2701 			 */
2702 			if ((prefetch_grp == group) &&
2703 			    (cr > 1 ||
2704 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2705 				unsigned int curr_ios = prefetch_ios;
2706 
2707 				nr = sbi->s_mb_prefetch;
2708 				if (ext4_has_feature_flex_bg(sb)) {
2709 					nr = 1 << sbi->s_log_groups_per_flex;
2710 					nr -= group & (nr - 1);
2711 					nr = min(nr, sbi->s_mb_prefetch);
2712 				}
2713 				prefetch_grp = ext4_mb_prefetch(sb, group,
2714 							nr, &prefetch_ios);
2715 				if (prefetch_ios == curr_ios)
2716 					nr = 0;
2717 			}
2718 
2719 			/* This now checks without needing the buddy page */
2720 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2721 			if (ret <= 0) {
2722 				if (!first_err)
2723 					first_err = ret;
2724 				continue;
2725 			}
2726 
2727 			err = ext4_mb_load_buddy(sb, group, &e4b);
2728 			if (err)
2729 				goto out;
2730 
2731 			ext4_lock_group(sb, group);
2732 
2733 			/*
2734 			 * We need to check again after locking the
2735 			 * block group
2736 			 */
2737 			ret = ext4_mb_good_group(ac, group, cr);
2738 			if (ret == 0) {
2739 				ext4_unlock_group(sb, group);
2740 				ext4_mb_unload_buddy(&e4b);
2741 				continue;
2742 			}
2743 
2744 			ac->ac_groups_scanned++;
2745 			if (cr == 0)
2746 				ext4_mb_simple_scan_group(ac, &e4b);
2747 			else if (cr == 1 && sbi->s_stripe &&
2748 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2749 				ext4_mb_scan_aligned(ac, &e4b);
2750 			else
2751 				ext4_mb_complex_scan_group(ac, &e4b);
2752 
2753 			ext4_unlock_group(sb, group);
2754 			ext4_mb_unload_buddy(&e4b);
2755 
2756 			if (ac->ac_status != AC_STATUS_CONTINUE)
2757 				break;
2758 		}
2759 		/* Processed all groups and haven't found blocks */
2760 		if (sbi->s_mb_stats && i == ngroups)
2761 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2762 	}
2763 
2764 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2765 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2766 		/*
2767 		 * We've been searching too long. Let's try to allocate
2768 		 * the best chunk we've found so far
2769 		 */
2770 		ext4_mb_try_best_found(ac, &e4b);
2771 		if (ac->ac_status != AC_STATUS_FOUND) {
2772 			/*
2773 			 * Someone more lucky has already allocated it.
2774 			 * The only thing we can do is just take first
2775 			 * found block(s)
2776 			 */
2777 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2778 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2779 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2780 				 ac->ac_b_ex.fe_len, lost);
2781 
2782 			ac->ac_b_ex.fe_group = 0;
2783 			ac->ac_b_ex.fe_start = 0;
2784 			ac->ac_b_ex.fe_len = 0;
2785 			ac->ac_status = AC_STATUS_CONTINUE;
2786 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2787 			cr = 3;
2788 			goto repeat;
2789 		}
2790 	}
2791 
2792 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2793 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2794 out:
2795 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2796 		err = first_err;
2797 
2798 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2799 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2800 		 ac->ac_flags, cr, err);
2801 
2802 	if (nr)
2803 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2804 
2805 	return err;
2806 }
2807 
2808 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2809 {
2810 	struct super_block *sb = pde_data(file_inode(seq->file));
2811 	ext4_group_t group;
2812 
2813 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2814 		return NULL;
2815 	group = *pos + 1;
2816 	return (void *) ((unsigned long) group);
2817 }
2818 
2819 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2820 {
2821 	struct super_block *sb = pde_data(file_inode(seq->file));
2822 	ext4_group_t group;
2823 
2824 	++*pos;
2825 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2826 		return NULL;
2827 	group = *pos + 1;
2828 	return (void *) ((unsigned long) group);
2829 }
2830 
2831 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2832 {
2833 	struct super_block *sb = pde_data(file_inode(seq->file));
2834 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2835 	int i;
2836 	int err, buddy_loaded = 0;
2837 	struct ext4_buddy e4b;
2838 	struct ext4_group_info *grinfo;
2839 	unsigned char blocksize_bits = min_t(unsigned char,
2840 					     sb->s_blocksize_bits,
2841 					     EXT4_MAX_BLOCK_LOG_SIZE);
2842 	struct sg {
2843 		struct ext4_group_info info;
2844 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2845 	} sg;
2846 
2847 	group--;
2848 	if (group == 0)
2849 		seq_puts(seq, "#group: free  frags first ["
2850 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2851 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2852 
2853 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2854 		sizeof(struct ext4_group_info);
2855 
2856 	grinfo = ext4_get_group_info(sb, group);
2857 	if (!grinfo)
2858 		return 0;
2859 	/* Load the group info in memory only if not already loaded. */
2860 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2861 		err = ext4_mb_load_buddy(sb, group, &e4b);
2862 		if (err) {
2863 			seq_printf(seq, "#%-5u: I/O error\n", group);
2864 			return 0;
2865 		}
2866 		buddy_loaded = 1;
2867 	}
2868 
2869 	memcpy(&sg, grinfo, i);
2870 
2871 	if (buddy_loaded)
2872 		ext4_mb_unload_buddy(&e4b);
2873 
2874 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2875 			sg.info.bb_fragments, sg.info.bb_first_free);
2876 	for (i = 0; i <= 13; i++)
2877 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2878 				sg.info.bb_counters[i] : 0);
2879 	seq_puts(seq, " ]\n");
2880 
2881 	return 0;
2882 }
2883 
2884 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2885 {
2886 }
2887 
2888 const struct seq_operations ext4_mb_seq_groups_ops = {
2889 	.start  = ext4_mb_seq_groups_start,
2890 	.next   = ext4_mb_seq_groups_next,
2891 	.stop   = ext4_mb_seq_groups_stop,
2892 	.show   = ext4_mb_seq_groups_show,
2893 };
2894 
2895 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
2896 {
2897 	struct super_block *sb = seq->private;
2898 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2899 
2900 	seq_puts(seq, "mballoc:\n");
2901 	if (!sbi->s_mb_stats) {
2902 		seq_puts(seq, "\tmb stats collection turned off.\n");
2903 		seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
2904 		return 0;
2905 	}
2906 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
2907 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
2908 
2909 	seq_printf(seq, "\tgroups_scanned: %u\n",  atomic_read(&sbi->s_bal_groups_scanned));
2910 
2911 	seq_puts(seq, "\tcr0_stats:\n");
2912 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[0]));
2913 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2914 		   atomic64_read(&sbi->s_bal_cX_groups_considered[0]));
2915 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2916 		   atomic64_read(&sbi->s_bal_cX_failed[0]));
2917 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
2918 		   atomic_read(&sbi->s_bal_cr0_bad_suggestions));
2919 
2920 	seq_puts(seq, "\tcr1_stats:\n");
2921 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[1]));
2922 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2923 		   atomic64_read(&sbi->s_bal_cX_groups_considered[1]));
2924 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2925 		   atomic64_read(&sbi->s_bal_cX_failed[1]));
2926 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
2927 		   atomic_read(&sbi->s_bal_cr1_bad_suggestions));
2928 
2929 	seq_puts(seq, "\tcr2_stats:\n");
2930 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[2]));
2931 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2932 		   atomic64_read(&sbi->s_bal_cX_groups_considered[2]));
2933 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2934 		   atomic64_read(&sbi->s_bal_cX_failed[2]));
2935 
2936 	seq_puts(seq, "\tcr3_stats:\n");
2937 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[3]));
2938 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2939 		   atomic64_read(&sbi->s_bal_cX_groups_considered[3]));
2940 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2941 		   atomic64_read(&sbi->s_bal_cX_failed[3]));
2942 	seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned));
2943 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
2944 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
2945 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
2946 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
2947 
2948 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
2949 		   atomic_read(&sbi->s_mb_buddies_generated),
2950 		   ext4_get_groups_count(sb));
2951 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
2952 		   atomic64_read(&sbi->s_mb_generation_time));
2953 	seq_printf(seq, "\tpreallocated: %u\n",
2954 		   atomic_read(&sbi->s_mb_preallocated));
2955 	seq_printf(seq, "\tdiscarded: %u\n",
2956 		   atomic_read(&sbi->s_mb_discarded));
2957 	return 0;
2958 }
2959 
2960 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
2961 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
2962 {
2963 	struct super_block *sb = pde_data(file_inode(seq->file));
2964 	unsigned long position;
2965 
2966 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
2967 		return NULL;
2968 	position = *pos + 1;
2969 	return (void *) ((unsigned long) position);
2970 }
2971 
2972 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
2973 {
2974 	struct super_block *sb = pde_data(file_inode(seq->file));
2975 	unsigned long position;
2976 
2977 	++*pos;
2978 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
2979 		return NULL;
2980 	position = *pos + 1;
2981 	return (void *) ((unsigned long) position);
2982 }
2983 
2984 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
2985 {
2986 	struct super_block *sb = pde_data(file_inode(seq->file));
2987 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2988 	unsigned long position = ((unsigned long) v);
2989 	struct ext4_group_info *grp;
2990 	unsigned int count;
2991 
2992 	position--;
2993 	if (position >= MB_NUM_ORDERS(sb)) {
2994 		position -= MB_NUM_ORDERS(sb);
2995 		if (position == 0)
2996 			seq_puts(seq, "avg_fragment_size_lists:\n");
2997 
2998 		count = 0;
2999 		read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3000 		list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3001 				    bb_avg_fragment_size_node)
3002 			count++;
3003 		read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3004 		seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3005 					(unsigned int)position, count);
3006 		return 0;
3007 	}
3008 
3009 	if (position == 0) {
3010 		seq_printf(seq, "optimize_scan: %d\n",
3011 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3012 		seq_puts(seq, "max_free_order_lists:\n");
3013 	}
3014 	count = 0;
3015 	read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3016 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3017 			    bb_largest_free_order_node)
3018 		count++;
3019 	read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3020 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3021 		   (unsigned int)position, count);
3022 
3023 	return 0;
3024 }
3025 
3026 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3027 {
3028 }
3029 
3030 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3031 	.start  = ext4_mb_seq_structs_summary_start,
3032 	.next   = ext4_mb_seq_structs_summary_next,
3033 	.stop   = ext4_mb_seq_structs_summary_stop,
3034 	.show   = ext4_mb_seq_structs_summary_show,
3035 };
3036 
3037 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3038 {
3039 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3040 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3041 
3042 	BUG_ON(!cachep);
3043 	return cachep;
3044 }
3045 
3046 /*
3047  * Allocate the top-level s_group_info array for the specified number
3048  * of groups
3049  */
3050 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3051 {
3052 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3053 	unsigned size;
3054 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3055 
3056 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3057 		EXT4_DESC_PER_BLOCK_BITS(sb);
3058 	if (size <= sbi->s_group_info_size)
3059 		return 0;
3060 
3061 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3062 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3063 	if (!new_groupinfo) {
3064 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3065 		return -ENOMEM;
3066 	}
3067 	rcu_read_lock();
3068 	old_groupinfo = rcu_dereference(sbi->s_group_info);
3069 	if (old_groupinfo)
3070 		memcpy(new_groupinfo, old_groupinfo,
3071 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3072 	rcu_read_unlock();
3073 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3074 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3075 	if (old_groupinfo)
3076 		ext4_kvfree_array_rcu(old_groupinfo);
3077 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3078 		   sbi->s_group_info_size);
3079 	return 0;
3080 }
3081 
3082 /* Create and initialize ext4_group_info data for the given group. */
3083 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3084 			  struct ext4_group_desc *desc)
3085 {
3086 	int i;
3087 	int metalen = 0;
3088 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3089 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3090 	struct ext4_group_info **meta_group_info;
3091 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3092 
3093 	/*
3094 	 * First check if this group is the first of a reserved block.
3095 	 * If it's true, we have to allocate a new table of pointers
3096 	 * to ext4_group_info structures
3097 	 */
3098 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3099 		metalen = sizeof(*meta_group_info) <<
3100 			EXT4_DESC_PER_BLOCK_BITS(sb);
3101 		meta_group_info = kmalloc(metalen, GFP_NOFS);
3102 		if (meta_group_info == NULL) {
3103 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3104 				 "for a buddy group");
3105 			return -ENOMEM;
3106 		}
3107 		rcu_read_lock();
3108 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3109 		rcu_read_unlock();
3110 	}
3111 
3112 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3113 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3114 
3115 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3116 	if (meta_group_info[i] == NULL) {
3117 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3118 		goto exit_group_info;
3119 	}
3120 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3121 		&(meta_group_info[i]->bb_state));
3122 
3123 	/*
3124 	 * initialize bb_free to be able to skip
3125 	 * empty groups without initialization
3126 	 */
3127 	if (ext4_has_group_desc_csum(sb) &&
3128 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3129 		meta_group_info[i]->bb_free =
3130 			ext4_free_clusters_after_init(sb, group, desc);
3131 	} else {
3132 		meta_group_info[i]->bb_free =
3133 			ext4_free_group_clusters(sb, desc);
3134 	}
3135 
3136 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3137 	init_rwsem(&meta_group_info[i]->alloc_sem);
3138 	meta_group_info[i]->bb_free_root = RB_ROOT;
3139 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3140 	INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3141 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3142 	meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3143 	meta_group_info[i]->bb_group = group;
3144 
3145 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3146 	return 0;
3147 
3148 exit_group_info:
3149 	/* If a meta_group_info table has been allocated, release it now */
3150 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3151 		struct ext4_group_info ***group_info;
3152 
3153 		rcu_read_lock();
3154 		group_info = rcu_dereference(sbi->s_group_info);
3155 		kfree(group_info[idx]);
3156 		group_info[idx] = NULL;
3157 		rcu_read_unlock();
3158 	}
3159 	return -ENOMEM;
3160 } /* ext4_mb_add_groupinfo */
3161 
3162 static int ext4_mb_init_backend(struct super_block *sb)
3163 {
3164 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3165 	ext4_group_t i;
3166 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3167 	int err;
3168 	struct ext4_group_desc *desc;
3169 	struct ext4_group_info ***group_info;
3170 	struct kmem_cache *cachep;
3171 
3172 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3173 	if (err)
3174 		return err;
3175 
3176 	sbi->s_buddy_cache = new_inode(sb);
3177 	if (sbi->s_buddy_cache == NULL) {
3178 		ext4_msg(sb, KERN_ERR, "can't get new inode");
3179 		goto err_freesgi;
3180 	}
3181 	/* To avoid potentially colliding with an valid on-disk inode number,
3182 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3183 	 * not in the inode hash, so it should never be found by iget(), but
3184 	 * this will avoid confusion if it ever shows up during debugging. */
3185 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3186 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3187 	for (i = 0; i < ngroups; i++) {
3188 		cond_resched();
3189 		desc = ext4_get_group_desc(sb, i, NULL);
3190 		if (desc == NULL) {
3191 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3192 			goto err_freebuddy;
3193 		}
3194 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3195 			goto err_freebuddy;
3196 	}
3197 
3198 	if (ext4_has_feature_flex_bg(sb)) {
3199 		/* a single flex group is supposed to be read by a single IO.
3200 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3201 		 * unsigned integer, so the maximum shift is 32.
3202 		 */
3203 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3204 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3205 			goto err_freebuddy;
3206 		}
3207 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3208 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3209 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3210 	} else {
3211 		sbi->s_mb_prefetch = 32;
3212 	}
3213 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3214 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3215 	/* now many real IOs to prefetch within a single allocation at cr=0
3216 	 * given cr=0 is an CPU-related optimization we shouldn't try to
3217 	 * load too many groups, at some point we should start to use what
3218 	 * we've got in memory.
3219 	 * with an average random access time 5ms, it'd take a second to get
3220 	 * 200 groups (* N with flex_bg), so let's make this limit 4
3221 	 */
3222 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3223 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3224 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3225 
3226 	return 0;
3227 
3228 err_freebuddy:
3229 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3230 	while (i-- > 0) {
3231 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3232 
3233 		if (grp)
3234 			kmem_cache_free(cachep, grp);
3235 	}
3236 	i = sbi->s_group_info_size;
3237 	rcu_read_lock();
3238 	group_info = rcu_dereference(sbi->s_group_info);
3239 	while (i-- > 0)
3240 		kfree(group_info[i]);
3241 	rcu_read_unlock();
3242 	iput(sbi->s_buddy_cache);
3243 err_freesgi:
3244 	rcu_read_lock();
3245 	kvfree(rcu_dereference(sbi->s_group_info));
3246 	rcu_read_unlock();
3247 	return -ENOMEM;
3248 }
3249 
3250 static void ext4_groupinfo_destroy_slabs(void)
3251 {
3252 	int i;
3253 
3254 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3255 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3256 		ext4_groupinfo_caches[i] = NULL;
3257 	}
3258 }
3259 
3260 static int ext4_groupinfo_create_slab(size_t size)
3261 {
3262 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3263 	int slab_size;
3264 	int blocksize_bits = order_base_2(size);
3265 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3266 	struct kmem_cache *cachep;
3267 
3268 	if (cache_index >= NR_GRPINFO_CACHES)
3269 		return -EINVAL;
3270 
3271 	if (unlikely(cache_index < 0))
3272 		cache_index = 0;
3273 
3274 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3275 	if (ext4_groupinfo_caches[cache_index]) {
3276 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3277 		return 0;	/* Already created */
3278 	}
3279 
3280 	slab_size = offsetof(struct ext4_group_info,
3281 				bb_counters[blocksize_bits + 2]);
3282 
3283 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3284 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3285 					NULL);
3286 
3287 	ext4_groupinfo_caches[cache_index] = cachep;
3288 
3289 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3290 	if (!cachep) {
3291 		printk(KERN_EMERG
3292 		       "EXT4-fs: no memory for groupinfo slab cache\n");
3293 		return -ENOMEM;
3294 	}
3295 
3296 	return 0;
3297 }
3298 
3299 static void ext4_discard_work(struct work_struct *work)
3300 {
3301 	struct ext4_sb_info *sbi = container_of(work,
3302 			struct ext4_sb_info, s_discard_work);
3303 	struct super_block *sb = sbi->s_sb;
3304 	struct ext4_free_data *fd, *nfd;
3305 	struct ext4_buddy e4b;
3306 	struct list_head discard_list;
3307 	ext4_group_t grp, load_grp;
3308 	int err = 0;
3309 
3310 	INIT_LIST_HEAD(&discard_list);
3311 	spin_lock(&sbi->s_md_lock);
3312 	list_splice_init(&sbi->s_discard_list, &discard_list);
3313 	spin_unlock(&sbi->s_md_lock);
3314 
3315 	load_grp = UINT_MAX;
3316 	list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3317 		/*
3318 		 * If filesystem is umounting or no memory or suffering
3319 		 * from no space, give up the discard
3320 		 */
3321 		if ((sb->s_flags & SB_ACTIVE) && !err &&
3322 		    !atomic_read(&sbi->s_retry_alloc_pending)) {
3323 			grp = fd->efd_group;
3324 			if (grp != load_grp) {
3325 				if (load_grp != UINT_MAX)
3326 					ext4_mb_unload_buddy(&e4b);
3327 
3328 				err = ext4_mb_load_buddy(sb, grp, &e4b);
3329 				if (err) {
3330 					kmem_cache_free(ext4_free_data_cachep, fd);
3331 					load_grp = UINT_MAX;
3332 					continue;
3333 				} else {
3334 					load_grp = grp;
3335 				}
3336 			}
3337 
3338 			ext4_lock_group(sb, grp);
3339 			ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3340 						fd->efd_start_cluster + fd->efd_count - 1, 1);
3341 			ext4_unlock_group(sb, grp);
3342 		}
3343 		kmem_cache_free(ext4_free_data_cachep, fd);
3344 	}
3345 
3346 	if (load_grp != UINT_MAX)
3347 		ext4_mb_unload_buddy(&e4b);
3348 }
3349 
3350 int ext4_mb_init(struct super_block *sb)
3351 {
3352 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3353 	unsigned i, j;
3354 	unsigned offset, offset_incr;
3355 	unsigned max;
3356 	int ret;
3357 
3358 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3359 
3360 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3361 	if (sbi->s_mb_offsets == NULL) {
3362 		ret = -ENOMEM;
3363 		goto out;
3364 	}
3365 
3366 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3367 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3368 	if (sbi->s_mb_maxs == NULL) {
3369 		ret = -ENOMEM;
3370 		goto out;
3371 	}
3372 
3373 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3374 	if (ret < 0)
3375 		goto out;
3376 
3377 	/* order 0 is regular bitmap */
3378 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3379 	sbi->s_mb_offsets[0] = 0;
3380 
3381 	i = 1;
3382 	offset = 0;
3383 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3384 	max = sb->s_blocksize << 2;
3385 	do {
3386 		sbi->s_mb_offsets[i] = offset;
3387 		sbi->s_mb_maxs[i] = max;
3388 		offset += offset_incr;
3389 		offset_incr = offset_incr >> 1;
3390 		max = max >> 1;
3391 		i++;
3392 	} while (i < MB_NUM_ORDERS(sb));
3393 
3394 	sbi->s_mb_avg_fragment_size =
3395 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3396 			GFP_KERNEL);
3397 	if (!sbi->s_mb_avg_fragment_size) {
3398 		ret = -ENOMEM;
3399 		goto out;
3400 	}
3401 	sbi->s_mb_avg_fragment_size_locks =
3402 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3403 			GFP_KERNEL);
3404 	if (!sbi->s_mb_avg_fragment_size_locks) {
3405 		ret = -ENOMEM;
3406 		goto out;
3407 	}
3408 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3409 		INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3410 		rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3411 	}
3412 	sbi->s_mb_largest_free_orders =
3413 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3414 			GFP_KERNEL);
3415 	if (!sbi->s_mb_largest_free_orders) {
3416 		ret = -ENOMEM;
3417 		goto out;
3418 	}
3419 	sbi->s_mb_largest_free_orders_locks =
3420 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3421 			GFP_KERNEL);
3422 	if (!sbi->s_mb_largest_free_orders_locks) {
3423 		ret = -ENOMEM;
3424 		goto out;
3425 	}
3426 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3427 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3428 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3429 	}
3430 
3431 	spin_lock_init(&sbi->s_md_lock);
3432 	sbi->s_mb_free_pending = 0;
3433 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
3434 	INIT_LIST_HEAD(&sbi->s_discard_list);
3435 	INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3436 	atomic_set(&sbi->s_retry_alloc_pending, 0);
3437 
3438 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3439 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3440 	sbi->s_mb_stats = MB_DEFAULT_STATS;
3441 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3442 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3443 	/*
3444 	 * The default group preallocation is 512, which for 4k block
3445 	 * sizes translates to 2 megabytes.  However for bigalloc file
3446 	 * systems, this is probably too big (i.e, if the cluster size
3447 	 * is 1 megabyte, then group preallocation size becomes half a
3448 	 * gigabyte!).  As a default, we will keep a two megabyte
3449 	 * group pralloc size for cluster sizes up to 64k, and after
3450 	 * that, we will force a minimum group preallocation size of
3451 	 * 32 clusters.  This translates to 8 megs when the cluster
3452 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3453 	 * which seems reasonable as a default.
3454 	 */
3455 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3456 				       sbi->s_cluster_bits, 32);
3457 	/*
3458 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3459 	 * to the lowest multiple of s_stripe which is bigger than
3460 	 * the s_mb_group_prealloc as determined above. We want
3461 	 * the preallocation size to be an exact multiple of the
3462 	 * RAID stripe size so that preallocations don't fragment
3463 	 * the stripes.
3464 	 */
3465 	if (sbi->s_stripe > 1) {
3466 		sbi->s_mb_group_prealloc = roundup(
3467 			sbi->s_mb_group_prealloc, sbi->s_stripe);
3468 	}
3469 
3470 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3471 	if (sbi->s_locality_groups == NULL) {
3472 		ret = -ENOMEM;
3473 		goto out;
3474 	}
3475 	for_each_possible_cpu(i) {
3476 		struct ext4_locality_group *lg;
3477 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3478 		mutex_init(&lg->lg_mutex);
3479 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3480 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3481 		spin_lock_init(&lg->lg_prealloc_lock);
3482 	}
3483 
3484 	if (bdev_nonrot(sb->s_bdev))
3485 		sbi->s_mb_max_linear_groups = 0;
3486 	else
3487 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3488 	/* init file for buddy data */
3489 	ret = ext4_mb_init_backend(sb);
3490 	if (ret != 0)
3491 		goto out_free_locality_groups;
3492 
3493 	return 0;
3494 
3495 out_free_locality_groups:
3496 	free_percpu(sbi->s_locality_groups);
3497 	sbi->s_locality_groups = NULL;
3498 out:
3499 	kfree(sbi->s_mb_avg_fragment_size);
3500 	kfree(sbi->s_mb_avg_fragment_size_locks);
3501 	kfree(sbi->s_mb_largest_free_orders);
3502 	kfree(sbi->s_mb_largest_free_orders_locks);
3503 	kfree(sbi->s_mb_offsets);
3504 	sbi->s_mb_offsets = NULL;
3505 	kfree(sbi->s_mb_maxs);
3506 	sbi->s_mb_maxs = NULL;
3507 	return ret;
3508 }
3509 
3510 /* need to called with the ext4 group lock held */
3511 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3512 {
3513 	struct ext4_prealloc_space *pa;
3514 	struct list_head *cur, *tmp;
3515 	int count = 0;
3516 
3517 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3518 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3519 		list_del(&pa->pa_group_list);
3520 		count++;
3521 		kmem_cache_free(ext4_pspace_cachep, pa);
3522 	}
3523 	return count;
3524 }
3525 
3526 int ext4_mb_release(struct super_block *sb)
3527 {
3528 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3529 	ext4_group_t i;
3530 	int num_meta_group_infos;
3531 	struct ext4_group_info *grinfo, ***group_info;
3532 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3533 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3534 	int count;
3535 
3536 	if (test_opt(sb, DISCARD)) {
3537 		/*
3538 		 * wait the discard work to drain all of ext4_free_data
3539 		 */
3540 		flush_work(&sbi->s_discard_work);
3541 		WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3542 	}
3543 
3544 	if (sbi->s_group_info) {
3545 		for (i = 0; i < ngroups; i++) {
3546 			cond_resched();
3547 			grinfo = ext4_get_group_info(sb, i);
3548 			if (!grinfo)
3549 				continue;
3550 			mb_group_bb_bitmap_free(grinfo);
3551 			ext4_lock_group(sb, i);
3552 			count = ext4_mb_cleanup_pa(grinfo);
3553 			if (count)
3554 				mb_debug(sb, "mballoc: %d PAs left\n",
3555 					 count);
3556 			ext4_unlock_group(sb, i);
3557 			kmem_cache_free(cachep, grinfo);
3558 		}
3559 		num_meta_group_infos = (ngroups +
3560 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3561 			EXT4_DESC_PER_BLOCK_BITS(sb);
3562 		rcu_read_lock();
3563 		group_info = rcu_dereference(sbi->s_group_info);
3564 		for (i = 0; i < num_meta_group_infos; i++)
3565 			kfree(group_info[i]);
3566 		kvfree(group_info);
3567 		rcu_read_unlock();
3568 	}
3569 	kfree(sbi->s_mb_avg_fragment_size);
3570 	kfree(sbi->s_mb_avg_fragment_size_locks);
3571 	kfree(sbi->s_mb_largest_free_orders);
3572 	kfree(sbi->s_mb_largest_free_orders_locks);
3573 	kfree(sbi->s_mb_offsets);
3574 	kfree(sbi->s_mb_maxs);
3575 	iput(sbi->s_buddy_cache);
3576 	if (sbi->s_mb_stats) {
3577 		ext4_msg(sb, KERN_INFO,
3578 		       "mballoc: %u blocks %u reqs (%u success)",
3579 				atomic_read(&sbi->s_bal_allocated),
3580 				atomic_read(&sbi->s_bal_reqs),
3581 				atomic_read(&sbi->s_bal_success));
3582 		ext4_msg(sb, KERN_INFO,
3583 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3584 				"%u 2^N hits, %u breaks, %u lost",
3585 				atomic_read(&sbi->s_bal_ex_scanned),
3586 				atomic_read(&sbi->s_bal_groups_scanned),
3587 				atomic_read(&sbi->s_bal_goals),
3588 				atomic_read(&sbi->s_bal_2orders),
3589 				atomic_read(&sbi->s_bal_breaks),
3590 				atomic_read(&sbi->s_mb_lost_chunks));
3591 		ext4_msg(sb, KERN_INFO,
3592 		       "mballoc: %u generated and it took %llu",
3593 				atomic_read(&sbi->s_mb_buddies_generated),
3594 				atomic64_read(&sbi->s_mb_generation_time));
3595 		ext4_msg(sb, KERN_INFO,
3596 		       "mballoc: %u preallocated, %u discarded",
3597 				atomic_read(&sbi->s_mb_preallocated),
3598 				atomic_read(&sbi->s_mb_discarded));
3599 	}
3600 
3601 	free_percpu(sbi->s_locality_groups);
3602 
3603 	return 0;
3604 }
3605 
3606 static inline int ext4_issue_discard(struct super_block *sb,
3607 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3608 		struct bio **biop)
3609 {
3610 	ext4_fsblk_t discard_block;
3611 
3612 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3613 			 ext4_group_first_block_no(sb, block_group));
3614 	count = EXT4_C2B(EXT4_SB(sb), count);
3615 	trace_ext4_discard_blocks(sb,
3616 			(unsigned long long) discard_block, count);
3617 	if (biop) {
3618 		return __blkdev_issue_discard(sb->s_bdev,
3619 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3620 			(sector_t)count << (sb->s_blocksize_bits - 9),
3621 			GFP_NOFS, biop);
3622 	} else
3623 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3624 }
3625 
3626 static void ext4_free_data_in_buddy(struct super_block *sb,
3627 				    struct ext4_free_data *entry)
3628 {
3629 	struct ext4_buddy e4b;
3630 	struct ext4_group_info *db;
3631 	int err, count = 0;
3632 
3633 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3634 		 entry->efd_count, entry->efd_group, entry);
3635 
3636 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3637 	/* we expect to find existing buddy because it's pinned */
3638 	BUG_ON(err != 0);
3639 
3640 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3641 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3642 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3643 
3644 	db = e4b.bd_info;
3645 	/* there are blocks to put in buddy to make them really free */
3646 	count += entry->efd_count;
3647 	ext4_lock_group(sb, entry->efd_group);
3648 	/* Take it out of per group rb tree */
3649 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3650 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3651 
3652 	/*
3653 	 * Clear the trimmed flag for the group so that the next
3654 	 * ext4_trim_fs can trim it.
3655 	 * If the volume is mounted with -o discard, online discard
3656 	 * is supported and the free blocks will be trimmed online.
3657 	 */
3658 	if (!test_opt(sb, DISCARD))
3659 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3660 
3661 	if (!db->bb_free_root.rb_node) {
3662 		/* No more items in the per group rb tree
3663 		 * balance refcounts from ext4_mb_free_metadata()
3664 		 */
3665 		put_page(e4b.bd_buddy_page);
3666 		put_page(e4b.bd_bitmap_page);
3667 	}
3668 	ext4_unlock_group(sb, entry->efd_group);
3669 	ext4_mb_unload_buddy(&e4b);
3670 
3671 	mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3672 }
3673 
3674 /*
3675  * This function is called by the jbd2 layer once the commit has finished,
3676  * so we know we can free the blocks that were released with that commit.
3677  */
3678 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3679 {
3680 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3681 	struct ext4_free_data *entry, *tmp;
3682 	struct list_head freed_data_list;
3683 	struct list_head *cut_pos = NULL;
3684 	bool wake;
3685 
3686 	INIT_LIST_HEAD(&freed_data_list);
3687 
3688 	spin_lock(&sbi->s_md_lock);
3689 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3690 		if (entry->efd_tid != commit_tid)
3691 			break;
3692 		cut_pos = &entry->efd_list;
3693 	}
3694 	if (cut_pos)
3695 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3696 				  cut_pos);
3697 	spin_unlock(&sbi->s_md_lock);
3698 
3699 	list_for_each_entry(entry, &freed_data_list, efd_list)
3700 		ext4_free_data_in_buddy(sb, entry);
3701 
3702 	if (test_opt(sb, DISCARD)) {
3703 		spin_lock(&sbi->s_md_lock);
3704 		wake = list_empty(&sbi->s_discard_list);
3705 		list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3706 		spin_unlock(&sbi->s_md_lock);
3707 		if (wake)
3708 			queue_work(system_unbound_wq, &sbi->s_discard_work);
3709 	} else {
3710 		list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3711 			kmem_cache_free(ext4_free_data_cachep, entry);
3712 	}
3713 }
3714 
3715 int __init ext4_init_mballoc(void)
3716 {
3717 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3718 					SLAB_RECLAIM_ACCOUNT);
3719 	if (ext4_pspace_cachep == NULL)
3720 		goto out;
3721 
3722 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3723 				    SLAB_RECLAIM_ACCOUNT);
3724 	if (ext4_ac_cachep == NULL)
3725 		goto out_pa_free;
3726 
3727 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3728 					   SLAB_RECLAIM_ACCOUNT);
3729 	if (ext4_free_data_cachep == NULL)
3730 		goto out_ac_free;
3731 
3732 	return 0;
3733 
3734 out_ac_free:
3735 	kmem_cache_destroy(ext4_ac_cachep);
3736 out_pa_free:
3737 	kmem_cache_destroy(ext4_pspace_cachep);
3738 out:
3739 	return -ENOMEM;
3740 }
3741 
3742 void ext4_exit_mballoc(void)
3743 {
3744 	/*
3745 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3746 	 * before destroying the slab cache.
3747 	 */
3748 	rcu_barrier();
3749 	kmem_cache_destroy(ext4_pspace_cachep);
3750 	kmem_cache_destroy(ext4_ac_cachep);
3751 	kmem_cache_destroy(ext4_free_data_cachep);
3752 	ext4_groupinfo_destroy_slabs();
3753 }
3754 
3755 
3756 /*
3757  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3758  * Returns 0 if success or error code
3759  */
3760 static noinline_for_stack int
3761 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3762 				handle_t *handle, unsigned int reserv_clstrs)
3763 {
3764 	struct buffer_head *bitmap_bh = NULL;
3765 	struct ext4_group_desc *gdp;
3766 	struct buffer_head *gdp_bh;
3767 	struct ext4_sb_info *sbi;
3768 	struct super_block *sb;
3769 	ext4_fsblk_t block;
3770 	int err, len;
3771 
3772 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3773 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3774 
3775 	sb = ac->ac_sb;
3776 	sbi = EXT4_SB(sb);
3777 
3778 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3779 	if (IS_ERR(bitmap_bh)) {
3780 		return PTR_ERR(bitmap_bh);
3781 	}
3782 
3783 	BUFFER_TRACE(bitmap_bh, "getting write access");
3784 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3785 					    EXT4_JTR_NONE);
3786 	if (err)
3787 		goto out_err;
3788 
3789 	err = -EIO;
3790 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3791 	if (!gdp)
3792 		goto out_err;
3793 
3794 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3795 			ext4_free_group_clusters(sb, gdp));
3796 
3797 	BUFFER_TRACE(gdp_bh, "get_write_access");
3798 	err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE);
3799 	if (err)
3800 		goto out_err;
3801 
3802 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3803 
3804 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3805 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
3806 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3807 			   "fs metadata", block, block+len);
3808 		/* File system mounted not to panic on error
3809 		 * Fix the bitmap and return EFSCORRUPTED
3810 		 * We leak some of the blocks here.
3811 		 */
3812 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3813 		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3814 			      ac->ac_b_ex.fe_len);
3815 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3816 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3817 		if (!err)
3818 			err = -EFSCORRUPTED;
3819 		goto out_err;
3820 	}
3821 
3822 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3823 #ifdef AGGRESSIVE_CHECK
3824 	{
3825 		int i;
3826 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3827 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3828 						bitmap_bh->b_data));
3829 		}
3830 	}
3831 #endif
3832 	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3833 		      ac->ac_b_ex.fe_len);
3834 	if (ext4_has_group_desc_csum(sb) &&
3835 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3836 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3837 		ext4_free_group_clusters_set(sb, gdp,
3838 					     ext4_free_clusters_after_init(sb,
3839 						ac->ac_b_ex.fe_group, gdp));
3840 	}
3841 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3842 	ext4_free_group_clusters_set(sb, gdp, len);
3843 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
3844 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3845 
3846 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3847 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3848 	/*
3849 	 * Now reduce the dirty block count also. Should not go negative
3850 	 */
3851 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3852 		/* release all the reserved blocks if non delalloc */
3853 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3854 				   reserv_clstrs);
3855 
3856 	if (sbi->s_log_groups_per_flex) {
3857 		ext4_group_t flex_group = ext4_flex_group(sbi,
3858 							  ac->ac_b_ex.fe_group);
3859 		atomic64_sub(ac->ac_b_ex.fe_len,
3860 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3861 						  flex_group)->free_clusters);
3862 	}
3863 
3864 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3865 	if (err)
3866 		goto out_err;
3867 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3868 
3869 out_err:
3870 	brelse(bitmap_bh);
3871 	return err;
3872 }
3873 
3874 /*
3875  * Idempotent helper for Ext4 fast commit replay path to set the state of
3876  * blocks in bitmaps and update counters.
3877  */
3878 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
3879 			int len, int state)
3880 {
3881 	struct buffer_head *bitmap_bh = NULL;
3882 	struct ext4_group_desc *gdp;
3883 	struct buffer_head *gdp_bh;
3884 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3885 	ext4_group_t group;
3886 	ext4_grpblk_t blkoff;
3887 	int i, err;
3888 	int already;
3889 	unsigned int clen, clen_changed, thisgrp_len;
3890 
3891 	while (len > 0) {
3892 		ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
3893 
3894 		/*
3895 		 * Check to see if we are freeing blocks across a group
3896 		 * boundary.
3897 		 * In case of flex_bg, this can happen that (block, len) may
3898 		 * span across more than one group. In that case we need to
3899 		 * get the corresponding group metadata to work with.
3900 		 * For this we have goto again loop.
3901 		 */
3902 		thisgrp_len = min_t(unsigned int, (unsigned int)len,
3903 			EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
3904 		clen = EXT4_NUM_B2C(sbi, thisgrp_len);
3905 
3906 		if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
3907 			ext4_error(sb, "Marking blocks in system zone - "
3908 				   "Block = %llu, len = %u",
3909 				   block, thisgrp_len);
3910 			bitmap_bh = NULL;
3911 			break;
3912 		}
3913 
3914 		bitmap_bh = ext4_read_block_bitmap(sb, group);
3915 		if (IS_ERR(bitmap_bh)) {
3916 			err = PTR_ERR(bitmap_bh);
3917 			bitmap_bh = NULL;
3918 			break;
3919 		}
3920 
3921 		err = -EIO;
3922 		gdp = ext4_get_group_desc(sb, group, &gdp_bh);
3923 		if (!gdp)
3924 			break;
3925 
3926 		ext4_lock_group(sb, group);
3927 		already = 0;
3928 		for (i = 0; i < clen; i++)
3929 			if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
3930 					 !state)
3931 				already++;
3932 
3933 		clen_changed = clen - already;
3934 		if (state)
3935 			mb_set_bits(bitmap_bh->b_data, blkoff, clen);
3936 		else
3937 			mb_clear_bits(bitmap_bh->b_data, blkoff, clen);
3938 		if (ext4_has_group_desc_csum(sb) &&
3939 		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3940 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3941 			ext4_free_group_clusters_set(sb, gdp,
3942 			     ext4_free_clusters_after_init(sb, group, gdp));
3943 		}
3944 		if (state)
3945 			clen = ext4_free_group_clusters(sb, gdp) - clen_changed;
3946 		else
3947 			clen = ext4_free_group_clusters(sb, gdp) + clen_changed;
3948 
3949 		ext4_free_group_clusters_set(sb, gdp, clen);
3950 		ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
3951 		ext4_group_desc_csum_set(sb, group, gdp);
3952 
3953 		ext4_unlock_group(sb, group);
3954 
3955 		if (sbi->s_log_groups_per_flex) {
3956 			ext4_group_t flex_group = ext4_flex_group(sbi, group);
3957 			struct flex_groups *fg = sbi_array_rcu_deref(sbi,
3958 						   s_flex_groups, flex_group);
3959 
3960 			if (state)
3961 				atomic64_sub(clen_changed, &fg->free_clusters);
3962 			else
3963 				atomic64_add(clen_changed, &fg->free_clusters);
3964 
3965 		}
3966 
3967 		err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
3968 		if (err)
3969 			break;
3970 		sync_dirty_buffer(bitmap_bh);
3971 		err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
3972 		sync_dirty_buffer(gdp_bh);
3973 		if (err)
3974 			break;
3975 
3976 		block += thisgrp_len;
3977 		len -= thisgrp_len;
3978 		brelse(bitmap_bh);
3979 		BUG_ON(len < 0);
3980 	}
3981 
3982 	if (err)
3983 		brelse(bitmap_bh);
3984 }
3985 
3986 /*
3987  * here we normalize request for locality group
3988  * Group request are normalized to s_mb_group_prealloc, which goes to
3989  * s_strip if we set the same via mount option.
3990  * s_mb_group_prealloc can be configured via
3991  * /sys/fs/ext4/<partition>/mb_group_prealloc
3992  *
3993  * XXX: should we try to preallocate more than the group has now?
3994  */
3995 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3996 {
3997 	struct super_block *sb = ac->ac_sb;
3998 	struct ext4_locality_group *lg = ac->ac_lg;
3999 
4000 	BUG_ON(lg == NULL);
4001 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4002 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4003 }
4004 
4005 /*
4006  * This function returns the next element to look at during inode
4007  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4008  * (ei->i_prealloc_lock)
4009  *
4010  * new_start	The start of the range we want to compare
4011  * cur_start	The existing start that we are comparing against
4012  * node	The node of the rb_tree
4013  */
4014 static inline struct rb_node*
4015 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4016 {
4017 	if (new_start < cur_start)
4018 		return node->rb_left;
4019 	else
4020 		return node->rb_right;
4021 }
4022 
4023 static inline void
4024 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4025 			  ext4_lblk_t start, ext4_lblk_t end)
4026 {
4027 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4028 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4029 	struct ext4_prealloc_space *tmp_pa;
4030 	ext4_lblk_t tmp_pa_start, tmp_pa_end;
4031 	struct rb_node *iter;
4032 
4033 	read_lock(&ei->i_prealloc_lock);
4034 	for (iter = ei->i_prealloc_node.rb_node; iter;
4035 	     iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4036 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4037 				  pa_node.inode_node);
4038 		tmp_pa_start = tmp_pa->pa_lstart;
4039 		tmp_pa_end = tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len);
4040 
4041 		spin_lock(&tmp_pa->pa_lock);
4042 		if (tmp_pa->pa_deleted == 0)
4043 			BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4044 		spin_unlock(&tmp_pa->pa_lock);
4045 	}
4046 	read_unlock(&ei->i_prealloc_lock);
4047 }
4048 
4049 /*
4050  * Given an allocation context "ac" and a range "start", "end", check
4051  * and adjust boundaries if the range overlaps with any of the existing
4052  * preallocatoins stored in the corresponding inode of the allocation context.
4053  *
4054  * Parameters:
4055  *	ac			allocation context
4056  *	start			start of the new range
4057  *	end			end of the new range
4058  */
4059 static inline void
4060 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4061 			  ext4_lblk_t *start, ext4_lblk_t *end)
4062 {
4063 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4064 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4065 	struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4066 	struct rb_node *iter;
4067 	ext4_lblk_t new_start, new_end;
4068 	ext4_lblk_t tmp_pa_start, tmp_pa_end, left_pa_end = -1, right_pa_start = -1;
4069 
4070 	new_start = *start;
4071 	new_end = *end;
4072 
4073 	/*
4074 	 * Adjust the normalized range so that it doesn't overlap with any
4075 	 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4076 	 * so it doesn't change underneath us.
4077 	 */
4078 	read_lock(&ei->i_prealloc_lock);
4079 
4080 	/* Step 1: find any one immediate neighboring PA of the normalized range */
4081 	for (iter = ei->i_prealloc_node.rb_node; iter;
4082 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4083 					    tmp_pa_start, iter)) {
4084 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4085 				  pa_node.inode_node);
4086 		tmp_pa_start = tmp_pa->pa_lstart;
4087 		tmp_pa_end = tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len);
4088 
4089 		/* PA must not overlap original request */
4090 		spin_lock(&tmp_pa->pa_lock);
4091 		if (tmp_pa->pa_deleted == 0)
4092 			BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4093 				 ac->ac_o_ex.fe_logical < tmp_pa_start));
4094 		spin_unlock(&tmp_pa->pa_lock);
4095 	}
4096 
4097 	/*
4098 	 * Step 2: check if the found PA is left or right neighbor and
4099 	 * get the other neighbor
4100 	 */
4101 	if (tmp_pa) {
4102 		if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4103 			struct rb_node *tmp;
4104 
4105 			left_pa = tmp_pa;
4106 			tmp = rb_next(&left_pa->pa_node.inode_node);
4107 			if (tmp) {
4108 				right_pa = rb_entry(tmp,
4109 						    struct ext4_prealloc_space,
4110 						    pa_node.inode_node);
4111 			}
4112 		} else {
4113 			struct rb_node *tmp;
4114 
4115 			right_pa = tmp_pa;
4116 			tmp = rb_prev(&right_pa->pa_node.inode_node);
4117 			if (tmp) {
4118 				left_pa = rb_entry(tmp,
4119 						   struct ext4_prealloc_space,
4120 						   pa_node.inode_node);
4121 			}
4122 		}
4123 	}
4124 
4125 	/* Step 3: get the non deleted neighbors */
4126 	if (left_pa) {
4127 		for (iter = &left_pa->pa_node.inode_node;;
4128 		     iter = rb_prev(iter)) {
4129 			if (!iter) {
4130 				left_pa = NULL;
4131 				break;
4132 			}
4133 
4134 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4135 					  pa_node.inode_node);
4136 			left_pa = tmp_pa;
4137 			spin_lock(&tmp_pa->pa_lock);
4138 			if (tmp_pa->pa_deleted == 0) {
4139 				spin_unlock(&tmp_pa->pa_lock);
4140 				break;
4141 			}
4142 			spin_unlock(&tmp_pa->pa_lock);
4143 		}
4144 	}
4145 
4146 	if (right_pa) {
4147 		for (iter = &right_pa->pa_node.inode_node;;
4148 		     iter = rb_next(iter)) {
4149 			if (!iter) {
4150 				right_pa = NULL;
4151 				break;
4152 			}
4153 
4154 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4155 					  pa_node.inode_node);
4156 			right_pa = tmp_pa;
4157 			spin_lock(&tmp_pa->pa_lock);
4158 			if (tmp_pa->pa_deleted == 0) {
4159 				spin_unlock(&tmp_pa->pa_lock);
4160 				break;
4161 			}
4162 			spin_unlock(&tmp_pa->pa_lock);
4163 		}
4164 	}
4165 
4166 	if (left_pa) {
4167 		left_pa_end =
4168 			left_pa->pa_lstart + EXT4_C2B(sbi, left_pa->pa_len);
4169 		BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4170 	}
4171 
4172 	if (right_pa) {
4173 		right_pa_start = right_pa->pa_lstart;
4174 		BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4175 	}
4176 
4177 	/* Step 4: trim our normalized range to not overlap with the neighbors */
4178 	if (left_pa) {
4179 		if (left_pa_end > new_start)
4180 			new_start = left_pa_end;
4181 	}
4182 
4183 	if (right_pa) {
4184 		if (right_pa_start < new_end)
4185 			new_end = right_pa_start;
4186 	}
4187 	read_unlock(&ei->i_prealloc_lock);
4188 
4189 	/* XXX: extra loop to check we really don't overlap preallocations */
4190 	ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4191 
4192 	*start = new_start;
4193 	*end = new_end;
4194 }
4195 
4196 /*
4197  * Normalization means making request better in terms of
4198  * size and alignment
4199  */
4200 static noinline_for_stack void
4201 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4202 				struct ext4_allocation_request *ar)
4203 {
4204 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4205 	struct ext4_super_block *es = sbi->s_es;
4206 	int bsbits, max;
4207 	ext4_lblk_t end;
4208 	loff_t size, start_off;
4209 	loff_t orig_size __maybe_unused;
4210 	ext4_lblk_t start;
4211 
4212 	/* do normalize only data requests, metadata requests
4213 	   do not need preallocation */
4214 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4215 		return;
4216 
4217 	/* sometime caller may want exact blocks */
4218 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4219 		return;
4220 
4221 	/* caller may indicate that preallocation isn't
4222 	 * required (it's a tail, for example) */
4223 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4224 		return;
4225 
4226 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4227 		ext4_mb_normalize_group_request(ac);
4228 		return ;
4229 	}
4230 
4231 	bsbits = ac->ac_sb->s_blocksize_bits;
4232 
4233 	/* first, let's learn actual file size
4234 	 * given current request is allocated */
4235 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4236 	size = size << bsbits;
4237 	if (size < i_size_read(ac->ac_inode))
4238 		size = i_size_read(ac->ac_inode);
4239 	orig_size = size;
4240 
4241 	/* max size of free chunks */
4242 	max = 2 << bsbits;
4243 
4244 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
4245 		(req <= (size) || max <= (chunk_size))
4246 
4247 	/* first, try to predict filesize */
4248 	/* XXX: should this table be tunable? */
4249 	start_off = 0;
4250 	if (size <= 16 * 1024) {
4251 		size = 16 * 1024;
4252 	} else if (size <= 32 * 1024) {
4253 		size = 32 * 1024;
4254 	} else if (size <= 64 * 1024) {
4255 		size = 64 * 1024;
4256 	} else if (size <= 128 * 1024) {
4257 		size = 128 * 1024;
4258 	} else if (size <= 256 * 1024) {
4259 		size = 256 * 1024;
4260 	} else if (size <= 512 * 1024) {
4261 		size = 512 * 1024;
4262 	} else if (size <= 1024 * 1024) {
4263 		size = 1024 * 1024;
4264 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4265 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4266 						(21 - bsbits)) << 21;
4267 		size = 2 * 1024 * 1024;
4268 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4269 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4270 							(22 - bsbits)) << 22;
4271 		size = 4 * 1024 * 1024;
4272 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
4273 					(8<<20)>>bsbits, max, 8 * 1024)) {
4274 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4275 							(23 - bsbits)) << 23;
4276 		size = 8 * 1024 * 1024;
4277 	} else {
4278 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4279 		size	  = (loff_t) EXT4_C2B(sbi,
4280 					      ac->ac_o_ex.fe_len) << bsbits;
4281 	}
4282 	size = size >> bsbits;
4283 	start = start_off >> bsbits;
4284 
4285 	/*
4286 	 * For tiny groups (smaller than 8MB) the chosen allocation
4287 	 * alignment may be larger than group size. Make sure the
4288 	 * alignment does not move allocation to a different group which
4289 	 * makes mballoc fail assertions later.
4290 	 */
4291 	start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4292 			(ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4293 
4294 	/* don't cover already allocated blocks in selected range */
4295 	if (ar->pleft && start <= ar->lleft) {
4296 		size -= ar->lleft + 1 - start;
4297 		start = ar->lleft + 1;
4298 	}
4299 	if (ar->pright && start + size - 1 >= ar->lright)
4300 		size -= start + size - ar->lright;
4301 
4302 	/*
4303 	 * Trim allocation request for filesystems with artificially small
4304 	 * groups.
4305 	 */
4306 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4307 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4308 
4309 	end = start + size;
4310 
4311 	ext4_mb_pa_adjust_overlap(ac, &start, &end);
4312 
4313 	size = end - start;
4314 
4315 	/*
4316 	 * In this function "start" and "size" are normalized for better
4317 	 * alignment and length such that we could preallocate more blocks.
4318 	 * This normalization is done such that original request of
4319 	 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4320 	 * "size" boundaries.
4321 	 * (Note fe_len can be relaxed since FS block allocation API does not
4322 	 * provide gurantee on number of contiguous blocks allocation since that
4323 	 * depends upon free space left, etc).
4324 	 * In case of inode pa, later we use the allocated blocks
4325 	 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4326 	 * range of goal/best blocks [start, size] to put it at the
4327 	 * ac_o_ex.fe_logical extent of this inode.
4328 	 * (See ext4_mb_use_inode_pa() for more details)
4329 	 */
4330 	if (start + size <= ac->ac_o_ex.fe_logical ||
4331 			start > ac->ac_o_ex.fe_logical) {
4332 		ext4_msg(ac->ac_sb, KERN_ERR,
4333 			 "start %lu, size %lu, fe_logical %lu",
4334 			 (unsigned long) start, (unsigned long) size,
4335 			 (unsigned long) ac->ac_o_ex.fe_logical);
4336 		BUG();
4337 	}
4338 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4339 
4340 	/* now prepare goal request */
4341 
4342 	/* XXX: is it better to align blocks WRT to logical
4343 	 * placement or satisfy big request as is */
4344 	ac->ac_g_ex.fe_logical = start;
4345 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4346 
4347 	/* define goal start in order to merge */
4348 	if (ar->pright && (ar->lright == (start + size)) &&
4349 	    ar->pright >= size &&
4350 	    ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4351 		/* merge to the right */
4352 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4353 						&ac->ac_g_ex.fe_group,
4354 						&ac->ac_g_ex.fe_start);
4355 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4356 	}
4357 	if (ar->pleft && (ar->lleft + 1 == start) &&
4358 	    ar->pleft + 1 < ext4_blocks_count(es)) {
4359 		/* merge to the left */
4360 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4361 						&ac->ac_g_ex.fe_group,
4362 						&ac->ac_g_ex.fe_start);
4363 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4364 	}
4365 
4366 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4367 		 orig_size, start);
4368 }
4369 
4370 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4371 {
4372 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4373 
4374 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4375 		atomic_inc(&sbi->s_bal_reqs);
4376 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4377 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4378 			atomic_inc(&sbi->s_bal_success);
4379 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4380 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4381 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4382 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4383 			atomic_inc(&sbi->s_bal_goals);
4384 		if (ac->ac_found > sbi->s_mb_max_to_scan)
4385 			atomic_inc(&sbi->s_bal_breaks);
4386 	}
4387 
4388 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4389 		trace_ext4_mballoc_alloc(ac);
4390 	else
4391 		trace_ext4_mballoc_prealloc(ac);
4392 }
4393 
4394 /*
4395  * Called on failure; free up any blocks from the inode PA for this
4396  * context.  We don't need this for MB_GROUP_PA because we only change
4397  * pa_free in ext4_mb_release_context(), but on failure, we've already
4398  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4399  */
4400 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4401 {
4402 	struct ext4_prealloc_space *pa = ac->ac_pa;
4403 	struct ext4_buddy e4b;
4404 	int err;
4405 
4406 	if (pa == NULL) {
4407 		if (ac->ac_f_ex.fe_len == 0)
4408 			return;
4409 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4410 		if (WARN_RATELIMIT(err,
4411 				   "ext4: mb_load_buddy failed (%d)", err))
4412 			/*
4413 			 * This should never happen since we pin the
4414 			 * pages in the ext4_allocation_context so
4415 			 * ext4_mb_load_buddy() should never fail.
4416 			 */
4417 			return;
4418 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4419 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4420 			       ac->ac_f_ex.fe_len);
4421 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4422 		ext4_mb_unload_buddy(&e4b);
4423 		return;
4424 	}
4425 	if (pa->pa_type == MB_INODE_PA) {
4426 		spin_lock(&pa->pa_lock);
4427 		pa->pa_free += ac->ac_b_ex.fe_len;
4428 		spin_unlock(&pa->pa_lock);
4429 	}
4430 }
4431 
4432 /*
4433  * use blocks preallocated to inode
4434  */
4435 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4436 				struct ext4_prealloc_space *pa)
4437 {
4438 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4439 	ext4_fsblk_t start;
4440 	ext4_fsblk_t end;
4441 	int len;
4442 
4443 	/* found preallocated blocks, use them */
4444 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4445 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4446 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4447 	len = EXT4_NUM_B2C(sbi, end - start);
4448 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4449 					&ac->ac_b_ex.fe_start);
4450 	ac->ac_b_ex.fe_len = len;
4451 	ac->ac_status = AC_STATUS_FOUND;
4452 	ac->ac_pa = pa;
4453 
4454 	BUG_ON(start < pa->pa_pstart);
4455 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4456 	BUG_ON(pa->pa_free < len);
4457 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4458 	pa->pa_free -= len;
4459 
4460 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4461 }
4462 
4463 /*
4464  * use blocks preallocated to locality group
4465  */
4466 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4467 				struct ext4_prealloc_space *pa)
4468 {
4469 	unsigned int len = ac->ac_o_ex.fe_len;
4470 
4471 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4472 					&ac->ac_b_ex.fe_group,
4473 					&ac->ac_b_ex.fe_start);
4474 	ac->ac_b_ex.fe_len = len;
4475 	ac->ac_status = AC_STATUS_FOUND;
4476 	ac->ac_pa = pa;
4477 
4478 	/* we don't correct pa_pstart or pa_len here to avoid
4479 	 * possible race when the group is being loaded concurrently
4480 	 * instead we correct pa later, after blocks are marked
4481 	 * in on-disk bitmap -- see ext4_mb_release_context()
4482 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4483 	 */
4484 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4485 		 pa->pa_lstart, len, pa);
4486 }
4487 
4488 /*
4489  * Return the prealloc space that have minimal distance
4490  * from the goal block. @cpa is the prealloc
4491  * space that is having currently known minimal distance
4492  * from the goal block.
4493  */
4494 static struct ext4_prealloc_space *
4495 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4496 			struct ext4_prealloc_space *pa,
4497 			struct ext4_prealloc_space *cpa)
4498 {
4499 	ext4_fsblk_t cur_distance, new_distance;
4500 
4501 	if (cpa == NULL) {
4502 		atomic_inc(&pa->pa_count);
4503 		return pa;
4504 	}
4505 	cur_distance = abs(goal_block - cpa->pa_pstart);
4506 	new_distance = abs(goal_block - pa->pa_pstart);
4507 
4508 	if (cur_distance <= new_distance)
4509 		return cpa;
4510 
4511 	/* drop the previous reference */
4512 	atomic_dec(&cpa->pa_count);
4513 	atomic_inc(&pa->pa_count);
4514 	return pa;
4515 }
4516 
4517 /*
4518  * search goal blocks in preallocated space
4519  */
4520 static noinline_for_stack bool
4521 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4522 {
4523 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4524 	int order, i;
4525 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4526 	struct ext4_locality_group *lg;
4527 	struct ext4_prealloc_space *tmp_pa, *cpa = NULL;
4528 	ext4_lblk_t tmp_pa_start, tmp_pa_end;
4529 	struct rb_node *iter;
4530 	ext4_fsblk_t goal_block;
4531 
4532 	/* only data can be preallocated */
4533 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4534 		return false;
4535 
4536 	/* first, try per-file preallocation */
4537 	read_lock(&ei->i_prealloc_lock);
4538 	for (iter = ei->i_prealloc_node.rb_node; iter;
4539 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4540 					    tmp_pa_start, iter)) {
4541 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4542 				  pa_node.inode_node);
4543 
4544 		/* all fields in this condition don't change,
4545 		 * so we can skip locking for them */
4546 		tmp_pa_start = tmp_pa->pa_lstart;
4547 		tmp_pa_end = tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len);
4548 
4549 		/* original request start doesn't lie in this PA */
4550 		if (ac->ac_o_ex.fe_logical < tmp_pa_start ||
4551 		    ac->ac_o_ex.fe_logical >= tmp_pa_end)
4552 			continue;
4553 
4554 		/* non-extent files can't have physical blocks past 2^32 */
4555 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4556 		    (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4557 		     EXT4_MAX_BLOCK_FILE_PHYS)) {
4558 			/*
4559 			 * Since PAs don't overlap, we won't find any
4560 			 * other PA to satisfy this.
4561 			 */
4562 			break;
4563 		}
4564 
4565 		/* found preallocated blocks, use them */
4566 		spin_lock(&tmp_pa->pa_lock);
4567 		if (tmp_pa->pa_deleted == 0 && tmp_pa->pa_free) {
4568 			atomic_inc(&tmp_pa->pa_count);
4569 			ext4_mb_use_inode_pa(ac, tmp_pa);
4570 			spin_unlock(&tmp_pa->pa_lock);
4571 			ac->ac_criteria = 10;
4572 			read_unlock(&ei->i_prealloc_lock);
4573 			return true;
4574 		}
4575 		spin_unlock(&tmp_pa->pa_lock);
4576 	}
4577 	read_unlock(&ei->i_prealloc_lock);
4578 
4579 	/* can we use group allocation? */
4580 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4581 		return false;
4582 
4583 	/* inode may have no locality group for some reason */
4584 	lg = ac->ac_lg;
4585 	if (lg == NULL)
4586 		return false;
4587 	order  = fls(ac->ac_o_ex.fe_len) - 1;
4588 	if (order > PREALLOC_TB_SIZE - 1)
4589 		/* The max size of hash table is PREALLOC_TB_SIZE */
4590 		order = PREALLOC_TB_SIZE - 1;
4591 
4592 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4593 	/*
4594 	 * search for the prealloc space that is having
4595 	 * minimal distance from the goal block.
4596 	 */
4597 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4598 		rcu_read_lock();
4599 		list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4600 					pa_node.lg_list) {
4601 			spin_lock(&tmp_pa->pa_lock);
4602 			if (tmp_pa->pa_deleted == 0 &&
4603 					tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4604 
4605 				cpa = ext4_mb_check_group_pa(goal_block,
4606 								tmp_pa, cpa);
4607 			}
4608 			spin_unlock(&tmp_pa->pa_lock);
4609 		}
4610 		rcu_read_unlock();
4611 	}
4612 	if (cpa) {
4613 		ext4_mb_use_group_pa(ac, cpa);
4614 		ac->ac_criteria = 20;
4615 		return true;
4616 	}
4617 	return false;
4618 }
4619 
4620 /*
4621  * the function goes through all block freed in the group
4622  * but not yet committed and marks them used in in-core bitmap.
4623  * buddy must be generated from this bitmap
4624  * Need to be called with the ext4 group lock held
4625  */
4626 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
4627 						ext4_group_t group)
4628 {
4629 	struct rb_node *n;
4630 	struct ext4_group_info *grp;
4631 	struct ext4_free_data *entry;
4632 
4633 	grp = ext4_get_group_info(sb, group);
4634 	if (!grp)
4635 		return;
4636 	n = rb_first(&(grp->bb_free_root));
4637 
4638 	while (n) {
4639 		entry = rb_entry(n, struct ext4_free_data, efd_node);
4640 		mb_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
4641 		n = rb_next(n);
4642 	}
4643 	return;
4644 }
4645 
4646 /*
4647  * the function goes through all preallocation in this group and marks them
4648  * used in in-core bitmap. buddy must be generated from this bitmap
4649  * Need to be called with ext4 group lock held
4650  */
4651 static noinline_for_stack
4652 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4653 					ext4_group_t group)
4654 {
4655 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4656 	struct ext4_prealloc_space *pa;
4657 	struct list_head *cur;
4658 	ext4_group_t groupnr;
4659 	ext4_grpblk_t start;
4660 	int preallocated = 0;
4661 	int len;
4662 
4663 	if (!grp)
4664 		return;
4665 
4666 	/* all form of preallocation discards first load group,
4667 	 * so the only competing code is preallocation use.
4668 	 * we don't need any locking here
4669 	 * notice we do NOT ignore preallocations with pa_deleted
4670 	 * otherwise we could leave used blocks available for
4671 	 * allocation in buddy when concurrent ext4_mb_put_pa()
4672 	 * is dropping preallocation
4673 	 */
4674 	list_for_each(cur, &grp->bb_prealloc_list) {
4675 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
4676 		spin_lock(&pa->pa_lock);
4677 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4678 					     &groupnr, &start);
4679 		len = pa->pa_len;
4680 		spin_unlock(&pa->pa_lock);
4681 		if (unlikely(len == 0))
4682 			continue;
4683 		BUG_ON(groupnr != group);
4684 		mb_set_bits(bitmap, start, len);
4685 		preallocated += len;
4686 	}
4687 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
4688 }
4689 
4690 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
4691 				    struct ext4_prealloc_space *pa)
4692 {
4693 	struct ext4_inode_info *ei;
4694 
4695 	if (pa->pa_deleted) {
4696 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
4697 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
4698 			     pa->pa_len);
4699 		return;
4700 	}
4701 
4702 	pa->pa_deleted = 1;
4703 
4704 	if (pa->pa_type == MB_INODE_PA) {
4705 		ei = EXT4_I(pa->pa_inode);
4706 		atomic_dec(&ei->i_prealloc_active);
4707 	}
4708 }
4709 
4710 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
4711 {
4712 	BUG_ON(!pa);
4713 	BUG_ON(atomic_read(&pa->pa_count));
4714 	BUG_ON(pa->pa_deleted == 0);
4715 	kmem_cache_free(ext4_pspace_cachep, pa);
4716 }
4717 
4718 static void ext4_mb_pa_callback(struct rcu_head *head)
4719 {
4720 	struct ext4_prealloc_space *pa;
4721 
4722 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
4723 	ext4_mb_pa_free(pa);
4724 }
4725 
4726 /*
4727  * drops a reference to preallocated space descriptor
4728  * if this was the last reference and the space is consumed
4729  */
4730 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
4731 			struct super_block *sb, struct ext4_prealloc_space *pa)
4732 {
4733 	ext4_group_t grp;
4734 	ext4_fsblk_t grp_blk;
4735 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4736 
4737 	/* in this short window concurrent discard can set pa_deleted */
4738 	spin_lock(&pa->pa_lock);
4739 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
4740 		spin_unlock(&pa->pa_lock);
4741 		return;
4742 	}
4743 
4744 	if (pa->pa_deleted == 1) {
4745 		spin_unlock(&pa->pa_lock);
4746 		return;
4747 	}
4748 
4749 	ext4_mb_mark_pa_deleted(sb, pa);
4750 	spin_unlock(&pa->pa_lock);
4751 
4752 	grp_blk = pa->pa_pstart;
4753 	/*
4754 	 * If doing group-based preallocation, pa_pstart may be in the
4755 	 * next group when pa is used up
4756 	 */
4757 	if (pa->pa_type == MB_GROUP_PA)
4758 		grp_blk--;
4759 
4760 	grp = ext4_get_group_number(sb, grp_blk);
4761 
4762 	/*
4763 	 * possible race:
4764 	 *
4765 	 *  P1 (buddy init)			P2 (regular allocation)
4766 	 *					find block B in PA
4767 	 *  copy on-disk bitmap to buddy
4768 	 *  					mark B in on-disk bitmap
4769 	 *					drop PA from group
4770 	 *  mark all PAs in buddy
4771 	 *
4772 	 * thus, P1 initializes buddy with B available. to prevent this
4773 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
4774 	 * against that pair
4775 	 */
4776 	ext4_lock_group(sb, grp);
4777 	list_del(&pa->pa_group_list);
4778 	ext4_unlock_group(sb, grp);
4779 
4780 	if (pa->pa_type == MB_INODE_PA) {
4781 		write_lock(pa->pa_node_lock.inode_lock);
4782 		rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
4783 		write_unlock(pa->pa_node_lock.inode_lock);
4784 		ext4_mb_pa_free(pa);
4785 	} else {
4786 		spin_lock(pa->pa_node_lock.lg_lock);
4787 		list_del_rcu(&pa->pa_node.lg_list);
4788 		spin_unlock(pa->pa_node_lock.lg_lock);
4789 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4790 	}
4791 }
4792 
4793 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
4794 {
4795 	struct rb_node **iter = &root->rb_node, *parent = NULL;
4796 	struct ext4_prealloc_space *iter_pa, *new_pa;
4797 	ext4_lblk_t iter_start, new_start;
4798 
4799 	while (*iter) {
4800 		iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
4801 				   pa_node.inode_node);
4802 		new_pa = rb_entry(new, struct ext4_prealloc_space,
4803 				   pa_node.inode_node);
4804 		iter_start = iter_pa->pa_lstart;
4805 		new_start = new_pa->pa_lstart;
4806 
4807 		parent = *iter;
4808 		if (new_start < iter_start)
4809 			iter = &((*iter)->rb_left);
4810 		else
4811 			iter = &((*iter)->rb_right);
4812 	}
4813 
4814 	rb_link_node(new, parent, iter);
4815 	rb_insert_color(new, root);
4816 }
4817 
4818 /*
4819  * creates new preallocated space for given inode
4820  */
4821 static noinline_for_stack void
4822 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
4823 {
4824 	struct super_block *sb = ac->ac_sb;
4825 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4826 	struct ext4_prealloc_space *pa;
4827 	struct ext4_group_info *grp;
4828 	struct ext4_inode_info *ei;
4829 
4830 	/* preallocate only when found space is larger then requested */
4831 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4832 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4833 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4834 	BUG_ON(ac->ac_pa == NULL);
4835 
4836 	pa = ac->ac_pa;
4837 
4838 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
4839 		int new_bex_start;
4840 		int new_bex_end;
4841 
4842 		/* we can't allocate as much as normalizer wants.
4843 		 * so, found space must get proper lstart
4844 		 * to cover original request */
4845 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
4846 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
4847 
4848 		/*
4849 		 * Use the below logic for adjusting best extent as it keeps
4850 		 * fragmentation in check while ensuring logical range of best
4851 		 * extent doesn't overflow out of goal extent:
4852 		 *
4853 		 * 1. Check if best ex can be kept at end of goal and still
4854 		 *    cover original start
4855 		 * 2. Else, check if best ex can be kept at start of goal and
4856 		 *    still cover original start
4857 		 * 3. Else, keep the best ex at start of original request.
4858 		 */
4859 		new_bex_end = ac->ac_g_ex.fe_logical +
4860 			EXT4_C2B(sbi, ac->ac_g_ex.fe_len);
4861 		new_bex_start = new_bex_end - EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4862 		if (ac->ac_o_ex.fe_logical >= new_bex_start)
4863 			goto adjust_bex;
4864 
4865 		new_bex_start = ac->ac_g_ex.fe_logical;
4866 		new_bex_end =
4867 			new_bex_start + EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4868 		if (ac->ac_o_ex.fe_logical < new_bex_end)
4869 			goto adjust_bex;
4870 
4871 		new_bex_start = ac->ac_o_ex.fe_logical;
4872 		new_bex_end =
4873 			new_bex_start + EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4874 
4875 adjust_bex:
4876 		ac->ac_b_ex.fe_logical = new_bex_start;
4877 
4878 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
4879 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
4880 		BUG_ON(new_bex_end > (ac->ac_g_ex.fe_logical +
4881 				      EXT4_C2B(sbi, ac->ac_g_ex.fe_len)));
4882 	}
4883 
4884 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
4885 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4886 	pa->pa_len = ac->ac_b_ex.fe_len;
4887 	pa->pa_free = pa->pa_len;
4888 	spin_lock_init(&pa->pa_lock);
4889 	INIT_LIST_HEAD(&pa->pa_group_list);
4890 	pa->pa_deleted = 0;
4891 	pa->pa_type = MB_INODE_PA;
4892 
4893 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4894 		 pa->pa_len, pa->pa_lstart);
4895 	trace_ext4_mb_new_inode_pa(ac, pa);
4896 
4897 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
4898 	ext4_mb_use_inode_pa(ac, pa);
4899 
4900 	ei = EXT4_I(ac->ac_inode);
4901 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4902 	if (!grp)
4903 		return;
4904 
4905 	pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
4906 	pa->pa_inode = ac->ac_inode;
4907 
4908 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4909 
4910 	write_lock(pa->pa_node_lock.inode_lock);
4911 	ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
4912 	write_unlock(pa->pa_node_lock.inode_lock);
4913 	atomic_inc(&ei->i_prealloc_active);
4914 }
4915 
4916 /*
4917  * creates new preallocated space for locality group inodes belongs to
4918  */
4919 static noinline_for_stack void
4920 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
4921 {
4922 	struct super_block *sb = ac->ac_sb;
4923 	struct ext4_locality_group *lg;
4924 	struct ext4_prealloc_space *pa;
4925 	struct ext4_group_info *grp;
4926 
4927 	/* preallocate only when found space is larger then requested */
4928 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4929 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4930 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4931 	BUG_ON(ac->ac_pa == NULL);
4932 
4933 	pa = ac->ac_pa;
4934 
4935 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4936 	pa->pa_lstart = pa->pa_pstart;
4937 	pa->pa_len = ac->ac_b_ex.fe_len;
4938 	pa->pa_free = pa->pa_len;
4939 	spin_lock_init(&pa->pa_lock);
4940 	INIT_LIST_HEAD(&pa->pa_node.lg_list);
4941 	INIT_LIST_HEAD(&pa->pa_group_list);
4942 	pa->pa_deleted = 0;
4943 	pa->pa_type = MB_GROUP_PA;
4944 
4945 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4946 		 pa->pa_len, pa->pa_lstart);
4947 	trace_ext4_mb_new_group_pa(ac, pa);
4948 
4949 	ext4_mb_use_group_pa(ac, pa);
4950 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
4951 
4952 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4953 	if (!grp)
4954 		return;
4955 	lg = ac->ac_lg;
4956 	BUG_ON(lg == NULL);
4957 
4958 	pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
4959 	pa->pa_inode = NULL;
4960 
4961 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4962 
4963 	/*
4964 	 * We will later add the new pa to the right bucket
4965 	 * after updating the pa_free in ext4_mb_release_context
4966 	 */
4967 }
4968 
4969 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
4970 {
4971 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4972 		ext4_mb_new_group_pa(ac);
4973 	else
4974 		ext4_mb_new_inode_pa(ac);
4975 }
4976 
4977 /*
4978  * finds all unused blocks in on-disk bitmap, frees them in
4979  * in-core bitmap and buddy.
4980  * @pa must be unlinked from inode and group lists, so that
4981  * nobody else can find/use it.
4982  * the caller MUST hold group/inode locks.
4983  * TODO: optimize the case when there are no in-core structures yet
4984  */
4985 static noinline_for_stack int
4986 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
4987 			struct ext4_prealloc_space *pa)
4988 {
4989 	struct super_block *sb = e4b->bd_sb;
4990 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4991 	unsigned int end;
4992 	unsigned int next;
4993 	ext4_group_t group;
4994 	ext4_grpblk_t bit;
4995 	unsigned long long grp_blk_start;
4996 	int free = 0;
4997 
4998 	BUG_ON(pa->pa_deleted == 0);
4999 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5000 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5001 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5002 	end = bit + pa->pa_len;
5003 
5004 	while (bit < end) {
5005 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5006 		if (bit >= end)
5007 			break;
5008 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5009 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
5010 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5011 			 (unsigned) next - bit, (unsigned) group);
5012 		free += next - bit;
5013 
5014 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5015 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5016 						    EXT4_C2B(sbi, bit)),
5017 					       next - bit);
5018 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5019 		bit = next + 1;
5020 	}
5021 	if (free != pa->pa_free) {
5022 		ext4_msg(e4b->bd_sb, KERN_CRIT,
5023 			 "pa %p: logic %lu, phys. %lu, len %d",
5024 			 pa, (unsigned long) pa->pa_lstart,
5025 			 (unsigned long) pa->pa_pstart,
5026 			 pa->pa_len);
5027 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5028 					free, pa->pa_free);
5029 		/*
5030 		 * pa is already deleted so we use the value obtained
5031 		 * from the bitmap and continue.
5032 		 */
5033 	}
5034 	atomic_add(free, &sbi->s_mb_discarded);
5035 
5036 	return 0;
5037 }
5038 
5039 static noinline_for_stack int
5040 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5041 				struct ext4_prealloc_space *pa)
5042 {
5043 	struct super_block *sb = e4b->bd_sb;
5044 	ext4_group_t group;
5045 	ext4_grpblk_t bit;
5046 
5047 	trace_ext4_mb_release_group_pa(sb, pa);
5048 	BUG_ON(pa->pa_deleted == 0);
5049 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5050 	if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5051 		ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5052 			     e4b->bd_group, group, pa->pa_pstart);
5053 		return 0;
5054 	}
5055 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5056 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5057 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5058 
5059 	return 0;
5060 }
5061 
5062 /*
5063  * releases all preallocations in given group
5064  *
5065  * first, we need to decide discard policy:
5066  * - when do we discard
5067  *   1) ENOSPC
5068  * - how many do we discard
5069  *   1) how many requested
5070  */
5071 static noinline_for_stack int
5072 ext4_mb_discard_group_preallocations(struct super_block *sb,
5073 				     ext4_group_t group, int *busy)
5074 {
5075 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5076 	struct buffer_head *bitmap_bh = NULL;
5077 	struct ext4_prealloc_space *pa, *tmp;
5078 	struct list_head list;
5079 	struct ext4_buddy e4b;
5080 	struct ext4_inode_info *ei;
5081 	int err;
5082 	int free = 0;
5083 
5084 	if (!grp)
5085 		return 0;
5086 	mb_debug(sb, "discard preallocation for group %u\n", group);
5087 	if (list_empty(&grp->bb_prealloc_list))
5088 		goto out_dbg;
5089 
5090 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5091 	if (IS_ERR(bitmap_bh)) {
5092 		err = PTR_ERR(bitmap_bh);
5093 		ext4_error_err(sb, -err,
5094 			       "Error %d reading block bitmap for %u",
5095 			       err, group);
5096 		goto out_dbg;
5097 	}
5098 
5099 	err = ext4_mb_load_buddy(sb, group, &e4b);
5100 	if (err) {
5101 		ext4_warning(sb, "Error %d loading buddy information for %u",
5102 			     err, group);
5103 		put_bh(bitmap_bh);
5104 		goto out_dbg;
5105 	}
5106 
5107 	INIT_LIST_HEAD(&list);
5108 	ext4_lock_group(sb, group);
5109 	list_for_each_entry_safe(pa, tmp,
5110 				&grp->bb_prealloc_list, pa_group_list) {
5111 		spin_lock(&pa->pa_lock);
5112 		if (atomic_read(&pa->pa_count)) {
5113 			spin_unlock(&pa->pa_lock);
5114 			*busy = 1;
5115 			continue;
5116 		}
5117 		if (pa->pa_deleted) {
5118 			spin_unlock(&pa->pa_lock);
5119 			continue;
5120 		}
5121 
5122 		/* seems this one can be freed ... */
5123 		ext4_mb_mark_pa_deleted(sb, pa);
5124 
5125 		if (!free)
5126 			this_cpu_inc(discard_pa_seq);
5127 
5128 		/* we can trust pa_free ... */
5129 		free += pa->pa_free;
5130 
5131 		spin_unlock(&pa->pa_lock);
5132 
5133 		list_del(&pa->pa_group_list);
5134 		list_add(&pa->u.pa_tmp_list, &list);
5135 	}
5136 
5137 	/* now free all selected PAs */
5138 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5139 
5140 		/* remove from object (inode or locality group) */
5141 		if (pa->pa_type == MB_GROUP_PA) {
5142 			spin_lock(pa->pa_node_lock.lg_lock);
5143 			list_del_rcu(&pa->pa_node.lg_list);
5144 			spin_unlock(pa->pa_node_lock.lg_lock);
5145 		} else {
5146 			write_lock(pa->pa_node_lock.inode_lock);
5147 			ei = EXT4_I(pa->pa_inode);
5148 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5149 			write_unlock(pa->pa_node_lock.inode_lock);
5150 		}
5151 
5152 		list_del(&pa->u.pa_tmp_list);
5153 
5154 		if (pa->pa_type == MB_GROUP_PA) {
5155 			ext4_mb_release_group_pa(&e4b, pa);
5156 			call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5157 		} else {
5158 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5159 			ext4_mb_pa_free(pa);
5160 		}
5161 	}
5162 
5163 	ext4_unlock_group(sb, group);
5164 	ext4_mb_unload_buddy(&e4b);
5165 	put_bh(bitmap_bh);
5166 out_dbg:
5167 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5168 		 free, group, grp->bb_free);
5169 	return free;
5170 }
5171 
5172 /*
5173  * releases all non-used preallocated blocks for given inode
5174  *
5175  * It's important to discard preallocations under i_data_sem
5176  * We don't want another block to be served from the prealloc
5177  * space when we are discarding the inode prealloc space.
5178  *
5179  * FIXME!! Make sure it is valid at all the call sites
5180  */
5181 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
5182 {
5183 	struct ext4_inode_info *ei = EXT4_I(inode);
5184 	struct super_block *sb = inode->i_sb;
5185 	struct buffer_head *bitmap_bh = NULL;
5186 	struct ext4_prealloc_space *pa, *tmp;
5187 	ext4_group_t group = 0;
5188 	struct list_head list;
5189 	struct ext4_buddy e4b;
5190 	struct rb_node *iter;
5191 	int err;
5192 
5193 	if (!S_ISREG(inode->i_mode)) {
5194 		return;
5195 	}
5196 
5197 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5198 		return;
5199 
5200 	mb_debug(sb, "discard preallocation for inode %lu\n",
5201 		 inode->i_ino);
5202 	trace_ext4_discard_preallocations(inode,
5203 			atomic_read(&ei->i_prealloc_active), needed);
5204 
5205 	INIT_LIST_HEAD(&list);
5206 
5207 	if (needed == 0)
5208 		needed = UINT_MAX;
5209 
5210 repeat:
5211 	/* first, collect all pa's in the inode */
5212 	write_lock(&ei->i_prealloc_lock);
5213 	for (iter = rb_first(&ei->i_prealloc_node); iter && needed;
5214 	     iter = rb_next(iter)) {
5215 		pa = rb_entry(iter, struct ext4_prealloc_space,
5216 			      pa_node.inode_node);
5217 		BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5218 
5219 		spin_lock(&pa->pa_lock);
5220 		if (atomic_read(&pa->pa_count)) {
5221 			/* this shouldn't happen often - nobody should
5222 			 * use preallocation while we're discarding it */
5223 			spin_unlock(&pa->pa_lock);
5224 			write_unlock(&ei->i_prealloc_lock);
5225 			ext4_msg(sb, KERN_ERR,
5226 				 "uh-oh! used pa while discarding");
5227 			WARN_ON(1);
5228 			schedule_timeout_uninterruptible(HZ);
5229 			goto repeat;
5230 
5231 		}
5232 		if (pa->pa_deleted == 0) {
5233 			ext4_mb_mark_pa_deleted(sb, pa);
5234 			spin_unlock(&pa->pa_lock);
5235 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5236 			list_add(&pa->u.pa_tmp_list, &list);
5237 			needed--;
5238 			continue;
5239 		}
5240 
5241 		/* someone is deleting pa right now */
5242 		spin_unlock(&pa->pa_lock);
5243 		write_unlock(&ei->i_prealloc_lock);
5244 
5245 		/* we have to wait here because pa_deleted
5246 		 * doesn't mean pa is already unlinked from
5247 		 * the list. as we might be called from
5248 		 * ->clear_inode() the inode will get freed
5249 		 * and concurrent thread which is unlinking
5250 		 * pa from inode's list may access already
5251 		 * freed memory, bad-bad-bad */
5252 
5253 		/* XXX: if this happens too often, we can
5254 		 * add a flag to force wait only in case
5255 		 * of ->clear_inode(), but not in case of
5256 		 * regular truncate */
5257 		schedule_timeout_uninterruptible(HZ);
5258 		goto repeat;
5259 	}
5260 	write_unlock(&ei->i_prealloc_lock);
5261 
5262 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5263 		BUG_ON(pa->pa_type != MB_INODE_PA);
5264 		group = ext4_get_group_number(sb, pa->pa_pstart);
5265 
5266 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5267 					     GFP_NOFS|__GFP_NOFAIL);
5268 		if (err) {
5269 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5270 				       err, group);
5271 			continue;
5272 		}
5273 
5274 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5275 		if (IS_ERR(bitmap_bh)) {
5276 			err = PTR_ERR(bitmap_bh);
5277 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5278 				       err, group);
5279 			ext4_mb_unload_buddy(&e4b);
5280 			continue;
5281 		}
5282 
5283 		ext4_lock_group(sb, group);
5284 		list_del(&pa->pa_group_list);
5285 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5286 		ext4_unlock_group(sb, group);
5287 
5288 		ext4_mb_unload_buddy(&e4b);
5289 		put_bh(bitmap_bh);
5290 
5291 		list_del(&pa->u.pa_tmp_list);
5292 		ext4_mb_pa_free(pa);
5293 	}
5294 }
5295 
5296 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5297 {
5298 	struct ext4_prealloc_space *pa;
5299 
5300 	BUG_ON(ext4_pspace_cachep == NULL);
5301 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5302 	if (!pa)
5303 		return -ENOMEM;
5304 	atomic_set(&pa->pa_count, 1);
5305 	ac->ac_pa = pa;
5306 	return 0;
5307 }
5308 
5309 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5310 {
5311 	struct ext4_prealloc_space *pa = ac->ac_pa;
5312 
5313 	BUG_ON(!pa);
5314 	ac->ac_pa = NULL;
5315 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5316 	/*
5317 	 * current function is only called due to an error or due to
5318 	 * len of found blocks < len of requested blocks hence the PA has not
5319 	 * been added to grp->bb_prealloc_list. So we don't need to lock it
5320 	 */
5321 	pa->pa_deleted = 1;
5322 	ext4_mb_pa_free(pa);
5323 }
5324 
5325 #ifdef CONFIG_EXT4_DEBUG
5326 static inline void ext4_mb_show_pa(struct super_block *sb)
5327 {
5328 	ext4_group_t i, ngroups;
5329 
5330 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5331 		return;
5332 
5333 	ngroups = ext4_get_groups_count(sb);
5334 	mb_debug(sb, "groups: ");
5335 	for (i = 0; i < ngroups; i++) {
5336 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5337 		struct ext4_prealloc_space *pa;
5338 		ext4_grpblk_t start;
5339 		struct list_head *cur;
5340 
5341 		if (!grp)
5342 			continue;
5343 		ext4_lock_group(sb, i);
5344 		list_for_each(cur, &grp->bb_prealloc_list) {
5345 			pa = list_entry(cur, struct ext4_prealloc_space,
5346 					pa_group_list);
5347 			spin_lock(&pa->pa_lock);
5348 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5349 						     NULL, &start);
5350 			spin_unlock(&pa->pa_lock);
5351 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5352 				 pa->pa_len);
5353 		}
5354 		ext4_unlock_group(sb, i);
5355 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5356 			 grp->bb_fragments);
5357 	}
5358 }
5359 
5360 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5361 {
5362 	struct super_block *sb = ac->ac_sb;
5363 
5364 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5365 		return;
5366 
5367 	mb_debug(sb, "Can't allocate:"
5368 			" Allocation context details:");
5369 	mb_debug(sb, "status %u flags 0x%x",
5370 			ac->ac_status, ac->ac_flags);
5371 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5372 			"goal %lu/%lu/%lu@%lu, "
5373 			"best %lu/%lu/%lu@%lu cr %d",
5374 			(unsigned long)ac->ac_o_ex.fe_group,
5375 			(unsigned long)ac->ac_o_ex.fe_start,
5376 			(unsigned long)ac->ac_o_ex.fe_len,
5377 			(unsigned long)ac->ac_o_ex.fe_logical,
5378 			(unsigned long)ac->ac_g_ex.fe_group,
5379 			(unsigned long)ac->ac_g_ex.fe_start,
5380 			(unsigned long)ac->ac_g_ex.fe_len,
5381 			(unsigned long)ac->ac_g_ex.fe_logical,
5382 			(unsigned long)ac->ac_b_ex.fe_group,
5383 			(unsigned long)ac->ac_b_ex.fe_start,
5384 			(unsigned long)ac->ac_b_ex.fe_len,
5385 			(unsigned long)ac->ac_b_ex.fe_logical,
5386 			(int)ac->ac_criteria);
5387 	mb_debug(sb, "%u found", ac->ac_found);
5388 	ext4_mb_show_pa(sb);
5389 }
5390 #else
5391 static inline void ext4_mb_show_pa(struct super_block *sb)
5392 {
5393 	return;
5394 }
5395 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5396 {
5397 	ext4_mb_show_pa(ac->ac_sb);
5398 	return;
5399 }
5400 #endif
5401 
5402 /*
5403  * We use locality group preallocation for small size file. The size of the
5404  * file is determined by the current size or the resulting size after
5405  * allocation which ever is larger
5406  *
5407  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5408  */
5409 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5410 {
5411 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5412 	int bsbits = ac->ac_sb->s_blocksize_bits;
5413 	loff_t size, isize;
5414 	bool inode_pa_eligible, group_pa_eligible;
5415 
5416 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5417 		return;
5418 
5419 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5420 		return;
5421 
5422 	group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5423 	inode_pa_eligible = true;
5424 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
5425 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5426 		>> bsbits;
5427 
5428 	/* No point in using inode preallocation for closed files */
5429 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5430 	    !inode_is_open_for_write(ac->ac_inode))
5431 		inode_pa_eligible = false;
5432 
5433 	size = max(size, isize);
5434 	/* Don't use group allocation for large files */
5435 	if (size > sbi->s_mb_stream_request)
5436 		group_pa_eligible = false;
5437 
5438 	if (!group_pa_eligible) {
5439 		if (inode_pa_eligible)
5440 			ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5441 		else
5442 			ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5443 		return;
5444 	}
5445 
5446 	BUG_ON(ac->ac_lg != NULL);
5447 	/*
5448 	 * locality group prealloc space are per cpu. The reason for having
5449 	 * per cpu locality group is to reduce the contention between block
5450 	 * request from multiple CPUs.
5451 	 */
5452 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5453 
5454 	/* we're going to use group allocation */
5455 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5456 
5457 	/* serialize all allocations in the group */
5458 	mutex_lock(&ac->ac_lg->lg_mutex);
5459 }
5460 
5461 static noinline_for_stack void
5462 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5463 				struct ext4_allocation_request *ar)
5464 {
5465 	struct super_block *sb = ar->inode->i_sb;
5466 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5467 	struct ext4_super_block *es = sbi->s_es;
5468 	ext4_group_t group;
5469 	unsigned int len;
5470 	ext4_fsblk_t goal;
5471 	ext4_grpblk_t block;
5472 
5473 	/* we can't allocate > group size */
5474 	len = ar->len;
5475 
5476 	/* just a dirty hack to filter too big requests  */
5477 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5478 		len = EXT4_CLUSTERS_PER_GROUP(sb);
5479 
5480 	/* start searching from the goal */
5481 	goal = ar->goal;
5482 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5483 			goal >= ext4_blocks_count(es))
5484 		goal = le32_to_cpu(es->s_first_data_block);
5485 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5486 
5487 	/* set up allocation goals */
5488 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5489 	ac->ac_status = AC_STATUS_CONTINUE;
5490 	ac->ac_sb = sb;
5491 	ac->ac_inode = ar->inode;
5492 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5493 	ac->ac_o_ex.fe_group = group;
5494 	ac->ac_o_ex.fe_start = block;
5495 	ac->ac_o_ex.fe_len = len;
5496 	ac->ac_g_ex = ac->ac_o_ex;
5497 	ac->ac_flags = ar->flags;
5498 
5499 	/* we have to define context: we'll work with a file or
5500 	 * locality group. this is a policy, actually */
5501 	ext4_mb_group_or_file(ac);
5502 
5503 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5504 			"left: %u/%u, right %u/%u to %swritable\n",
5505 			(unsigned) ar->len, (unsigned) ar->logical,
5506 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5507 			(unsigned) ar->lleft, (unsigned) ar->pleft,
5508 			(unsigned) ar->lright, (unsigned) ar->pright,
5509 			inode_is_open_for_write(ar->inode) ? "" : "non-");
5510 }
5511 
5512 static noinline_for_stack void
5513 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5514 					struct ext4_locality_group *lg,
5515 					int order, int total_entries)
5516 {
5517 	ext4_group_t group = 0;
5518 	struct ext4_buddy e4b;
5519 	struct list_head discard_list;
5520 	struct ext4_prealloc_space *pa, *tmp;
5521 
5522 	mb_debug(sb, "discard locality group preallocation\n");
5523 
5524 	INIT_LIST_HEAD(&discard_list);
5525 
5526 	spin_lock(&lg->lg_prealloc_lock);
5527 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5528 				pa_node.lg_list,
5529 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5530 		spin_lock(&pa->pa_lock);
5531 		if (atomic_read(&pa->pa_count)) {
5532 			/*
5533 			 * This is the pa that we just used
5534 			 * for block allocation. So don't
5535 			 * free that
5536 			 */
5537 			spin_unlock(&pa->pa_lock);
5538 			continue;
5539 		}
5540 		if (pa->pa_deleted) {
5541 			spin_unlock(&pa->pa_lock);
5542 			continue;
5543 		}
5544 		/* only lg prealloc space */
5545 		BUG_ON(pa->pa_type != MB_GROUP_PA);
5546 
5547 		/* seems this one can be freed ... */
5548 		ext4_mb_mark_pa_deleted(sb, pa);
5549 		spin_unlock(&pa->pa_lock);
5550 
5551 		list_del_rcu(&pa->pa_node.lg_list);
5552 		list_add(&pa->u.pa_tmp_list, &discard_list);
5553 
5554 		total_entries--;
5555 		if (total_entries <= 5) {
5556 			/*
5557 			 * we want to keep only 5 entries
5558 			 * allowing it to grow to 8. This
5559 			 * mak sure we don't call discard
5560 			 * soon for this list.
5561 			 */
5562 			break;
5563 		}
5564 	}
5565 	spin_unlock(&lg->lg_prealloc_lock);
5566 
5567 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5568 		int err;
5569 
5570 		group = ext4_get_group_number(sb, pa->pa_pstart);
5571 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5572 					     GFP_NOFS|__GFP_NOFAIL);
5573 		if (err) {
5574 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5575 				       err, group);
5576 			continue;
5577 		}
5578 		ext4_lock_group(sb, group);
5579 		list_del(&pa->pa_group_list);
5580 		ext4_mb_release_group_pa(&e4b, pa);
5581 		ext4_unlock_group(sb, group);
5582 
5583 		ext4_mb_unload_buddy(&e4b);
5584 		list_del(&pa->u.pa_tmp_list);
5585 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5586 	}
5587 }
5588 
5589 /*
5590  * We have incremented pa_count. So it cannot be freed at this
5591  * point. Also we hold lg_mutex. So no parallel allocation is
5592  * possible from this lg. That means pa_free cannot be updated.
5593  *
5594  * A parallel ext4_mb_discard_group_preallocations is possible.
5595  * which can cause the lg_prealloc_list to be updated.
5596  */
5597 
5598 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5599 {
5600 	int order, added = 0, lg_prealloc_count = 1;
5601 	struct super_block *sb = ac->ac_sb;
5602 	struct ext4_locality_group *lg = ac->ac_lg;
5603 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5604 
5605 	order = fls(pa->pa_free) - 1;
5606 	if (order > PREALLOC_TB_SIZE - 1)
5607 		/* The max size of hash table is PREALLOC_TB_SIZE */
5608 		order = PREALLOC_TB_SIZE - 1;
5609 	/* Add the prealloc space to lg */
5610 	spin_lock(&lg->lg_prealloc_lock);
5611 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5612 				pa_node.lg_list,
5613 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5614 		spin_lock(&tmp_pa->pa_lock);
5615 		if (tmp_pa->pa_deleted) {
5616 			spin_unlock(&tmp_pa->pa_lock);
5617 			continue;
5618 		}
5619 		if (!added && pa->pa_free < tmp_pa->pa_free) {
5620 			/* Add to the tail of the previous entry */
5621 			list_add_tail_rcu(&pa->pa_node.lg_list,
5622 						&tmp_pa->pa_node.lg_list);
5623 			added = 1;
5624 			/*
5625 			 * we want to count the total
5626 			 * number of entries in the list
5627 			 */
5628 		}
5629 		spin_unlock(&tmp_pa->pa_lock);
5630 		lg_prealloc_count++;
5631 	}
5632 	if (!added)
5633 		list_add_tail_rcu(&pa->pa_node.lg_list,
5634 					&lg->lg_prealloc_list[order]);
5635 	spin_unlock(&lg->lg_prealloc_lock);
5636 
5637 	/* Now trim the list to be not more than 8 elements */
5638 	if (lg_prealloc_count > 8) {
5639 		ext4_mb_discard_lg_preallocations(sb, lg,
5640 						  order, lg_prealloc_count);
5641 		return;
5642 	}
5643 	return ;
5644 }
5645 
5646 /*
5647  * release all resource we used in allocation
5648  */
5649 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5650 {
5651 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5652 	struct ext4_prealloc_space *pa = ac->ac_pa;
5653 	if (pa) {
5654 		if (pa->pa_type == MB_GROUP_PA) {
5655 			/* see comment in ext4_mb_use_group_pa() */
5656 			spin_lock(&pa->pa_lock);
5657 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5658 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5659 			pa->pa_free -= ac->ac_b_ex.fe_len;
5660 			pa->pa_len -= ac->ac_b_ex.fe_len;
5661 			spin_unlock(&pa->pa_lock);
5662 
5663 			/*
5664 			 * We want to add the pa to the right bucket.
5665 			 * Remove it from the list and while adding
5666 			 * make sure the list to which we are adding
5667 			 * doesn't grow big.
5668 			 */
5669 			if (likely(pa->pa_free)) {
5670 				spin_lock(pa->pa_node_lock.lg_lock);
5671 				list_del_rcu(&pa->pa_node.lg_list);
5672 				spin_unlock(pa->pa_node_lock.lg_lock);
5673 				ext4_mb_add_n_trim(ac);
5674 			}
5675 		}
5676 
5677 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
5678 	}
5679 	if (ac->ac_bitmap_page)
5680 		put_page(ac->ac_bitmap_page);
5681 	if (ac->ac_buddy_page)
5682 		put_page(ac->ac_buddy_page);
5683 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5684 		mutex_unlock(&ac->ac_lg->lg_mutex);
5685 	ext4_mb_collect_stats(ac);
5686 	return 0;
5687 }
5688 
5689 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
5690 {
5691 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
5692 	int ret;
5693 	int freed = 0, busy = 0;
5694 	int retry = 0;
5695 
5696 	trace_ext4_mb_discard_preallocations(sb, needed);
5697 
5698 	if (needed == 0)
5699 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
5700  repeat:
5701 	for (i = 0; i < ngroups && needed > 0; i++) {
5702 		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
5703 		freed += ret;
5704 		needed -= ret;
5705 		cond_resched();
5706 	}
5707 
5708 	if (needed > 0 && busy && ++retry < 3) {
5709 		busy = 0;
5710 		goto repeat;
5711 	}
5712 
5713 	return freed;
5714 }
5715 
5716 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
5717 			struct ext4_allocation_context *ac, u64 *seq)
5718 {
5719 	int freed;
5720 	u64 seq_retry = 0;
5721 	bool ret = false;
5722 
5723 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
5724 	if (freed) {
5725 		ret = true;
5726 		goto out_dbg;
5727 	}
5728 	seq_retry = ext4_get_discard_pa_seq_sum();
5729 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
5730 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
5731 		*seq = seq_retry;
5732 		ret = true;
5733 	}
5734 
5735 out_dbg:
5736 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
5737 	return ret;
5738 }
5739 
5740 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5741 				struct ext4_allocation_request *ar, int *errp);
5742 
5743 /*
5744  * Main entry point into mballoc to allocate blocks
5745  * it tries to use preallocation first, then falls back
5746  * to usual allocation
5747  */
5748 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
5749 				struct ext4_allocation_request *ar, int *errp)
5750 {
5751 	struct ext4_allocation_context *ac = NULL;
5752 	struct ext4_sb_info *sbi;
5753 	struct super_block *sb;
5754 	ext4_fsblk_t block = 0;
5755 	unsigned int inquota = 0;
5756 	unsigned int reserv_clstrs = 0;
5757 	int retries = 0;
5758 	u64 seq;
5759 
5760 	might_sleep();
5761 	sb = ar->inode->i_sb;
5762 	sbi = EXT4_SB(sb);
5763 
5764 	trace_ext4_request_blocks(ar);
5765 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
5766 		return ext4_mb_new_blocks_simple(handle, ar, errp);
5767 
5768 	/* Allow to use superuser reservation for quota file */
5769 	if (ext4_is_quota_file(ar->inode))
5770 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
5771 
5772 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
5773 		/* Without delayed allocation we need to verify
5774 		 * there is enough free blocks to do block allocation
5775 		 * and verify allocation doesn't exceed the quota limits.
5776 		 */
5777 		while (ar->len &&
5778 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
5779 
5780 			/* let others to free the space */
5781 			cond_resched();
5782 			ar->len = ar->len >> 1;
5783 		}
5784 		if (!ar->len) {
5785 			ext4_mb_show_pa(sb);
5786 			*errp = -ENOSPC;
5787 			return 0;
5788 		}
5789 		reserv_clstrs = ar->len;
5790 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
5791 			dquot_alloc_block_nofail(ar->inode,
5792 						 EXT4_C2B(sbi, ar->len));
5793 		} else {
5794 			while (ar->len &&
5795 				dquot_alloc_block(ar->inode,
5796 						  EXT4_C2B(sbi, ar->len))) {
5797 
5798 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
5799 				ar->len--;
5800 			}
5801 		}
5802 		inquota = ar->len;
5803 		if (ar->len == 0) {
5804 			*errp = -EDQUOT;
5805 			goto out;
5806 		}
5807 	}
5808 
5809 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
5810 	if (!ac) {
5811 		ar->len = 0;
5812 		*errp = -ENOMEM;
5813 		goto out;
5814 	}
5815 
5816 	ext4_mb_initialize_context(ac, ar);
5817 
5818 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
5819 	seq = this_cpu_read(discard_pa_seq);
5820 	if (!ext4_mb_use_preallocated(ac)) {
5821 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
5822 		ext4_mb_normalize_request(ac, ar);
5823 
5824 		*errp = ext4_mb_pa_alloc(ac);
5825 		if (*errp)
5826 			goto errout;
5827 repeat:
5828 		/* allocate space in core */
5829 		*errp = ext4_mb_regular_allocator(ac);
5830 		/*
5831 		 * pa allocated above is added to grp->bb_prealloc_list only
5832 		 * when we were able to allocate some block i.e. when
5833 		 * ac->ac_status == AC_STATUS_FOUND.
5834 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
5835 		 * So we have to free this pa here itself.
5836 		 */
5837 		if (*errp) {
5838 			ext4_mb_pa_put_free(ac);
5839 			ext4_discard_allocated_blocks(ac);
5840 			goto errout;
5841 		}
5842 		if (ac->ac_status == AC_STATUS_FOUND &&
5843 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
5844 			ext4_mb_pa_put_free(ac);
5845 	}
5846 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
5847 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
5848 		if (*errp) {
5849 			ext4_discard_allocated_blocks(ac);
5850 			goto errout;
5851 		} else {
5852 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5853 			ar->len = ac->ac_b_ex.fe_len;
5854 		}
5855 	} else {
5856 		if (++retries < 3 &&
5857 		    ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
5858 			goto repeat;
5859 		/*
5860 		 * If block allocation fails then the pa allocated above
5861 		 * needs to be freed here itself.
5862 		 */
5863 		ext4_mb_pa_put_free(ac);
5864 		*errp = -ENOSPC;
5865 	}
5866 
5867 	if (*errp) {
5868 errout:
5869 		ac->ac_b_ex.fe_len = 0;
5870 		ar->len = 0;
5871 		ext4_mb_show_ac(ac);
5872 	}
5873 	ext4_mb_release_context(ac);
5874 	kmem_cache_free(ext4_ac_cachep, ac);
5875 out:
5876 	if (inquota && ar->len < inquota)
5877 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
5878 	if (!ar->len) {
5879 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
5880 			/* release all the reserved blocks if non delalloc */
5881 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
5882 						reserv_clstrs);
5883 	}
5884 
5885 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
5886 
5887 	return block;
5888 }
5889 
5890 /*
5891  * We can merge two free data extents only if the physical blocks
5892  * are contiguous, AND the extents were freed by the same transaction,
5893  * AND the blocks are associated with the same group.
5894  */
5895 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
5896 					struct ext4_free_data *entry,
5897 					struct ext4_free_data *new_entry,
5898 					struct rb_root *entry_rb_root)
5899 {
5900 	if ((entry->efd_tid != new_entry->efd_tid) ||
5901 	    (entry->efd_group != new_entry->efd_group))
5902 		return;
5903 	if (entry->efd_start_cluster + entry->efd_count ==
5904 	    new_entry->efd_start_cluster) {
5905 		new_entry->efd_start_cluster = entry->efd_start_cluster;
5906 		new_entry->efd_count += entry->efd_count;
5907 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
5908 		   entry->efd_start_cluster) {
5909 		new_entry->efd_count += entry->efd_count;
5910 	} else
5911 		return;
5912 	spin_lock(&sbi->s_md_lock);
5913 	list_del(&entry->efd_list);
5914 	spin_unlock(&sbi->s_md_lock);
5915 	rb_erase(&entry->efd_node, entry_rb_root);
5916 	kmem_cache_free(ext4_free_data_cachep, entry);
5917 }
5918 
5919 static noinline_for_stack void
5920 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
5921 		      struct ext4_free_data *new_entry)
5922 {
5923 	ext4_group_t group = e4b->bd_group;
5924 	ext4_grpblk_t cluster;
5925 	ext4_grpblk_t clusters = new_entry->efd_count;
5926 	struct ext4_free_data *entry;
5927 	struct ext4_group_info *db = e4b->bd_info;
5928 	struct super_block *sb = e4b->bd_sb;
5929 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5930 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
5931 	struct rb_node *parent = NULL, *new_node;
5932 
5933 	BUG_ON(!ext4_handle_valid(handle));
5934 	BUG_ON(e4b->bd_bitmap_page == NULL);
5935 	BUG_ON(e4b->bd_buddy_page == NULL);
5936 
5937 	new_node = &new_entry->efd_node;
5938 	cluster = new_entry->efd_start_cluster;
5939 
5940 	if (!*n) {
5941 		/* first free block exent. We need to
5942 		   protect buddy cache from being freed,
5943 		 * otherwise we'll refresh it from
5944 		 * on-disk bitmap and lose not-yet-available
5945 		 * blocks */
5946 		get_page(e4b->bd_buddy_page);
5947 		get_page(e4b->bd_bitmap_page);
5948 	}
5949 	while (*n) {
5950 		parent = *n;
5951 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
5952 		if (cluster < entry->efd_start_cluster)
5953 			n = &(*n)->rb_left;
5954 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
5955 			n = &(*n)->rb_right;
5956 		else {
5957 			ext4_grp_locked_error(sb, group, 0,
5958 				ext4_group_first_block_no(sb, group) +
5959 				EXT4_C2B(sbi, cluster),
5960 				"Block already on to-be-freed list");
5961 			kmem_cache_free(ext4_free_data_cachep, new_entry);
5962 			return;
5963 		}
5964 	}
5965 
5966 	rb_link_node(new_node, parent, n);
5967 	rb_insert_color(new_node, &db->bb_free_root);
5968 
5969 	/* Now try to see the extent can be merged to left and right */
5970 	node = rb_prev(new_node);
5971 	if (node) {
5972 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5973 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5974 					    &(db->bb_free_root));
5975 	}
5976 
5977 	node = rb_next(new_node);
5978 	if (node) {
5979 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5980 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5981 					    &(db->bb_free_root));
5982 	}
5983 
5984 	spin_lock(&sbi->s_md_lock);
5985 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
5986 	sbi->s_mb_free_pending += clusters;
5987 	spin_unlock(&sbi->s_md_lock);
5988 }
5989 
5990 /*
5991  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
5992  * linearly starting at the goal block and also excludes the blocks which
5993  * are going to be in use after fast commit replay.
5994  */
5995 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5996 				struct ext4_allocation_request *ar, int *errp)
5997 {
5998 	struct buffer_head *bitmap_bh;
5999 	struct super_block *sb = ar->inode->i_sb;
6000 	ext4_group_t group;
6001 	ext4_grpblk_t blkoff;
6002 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6003 	ext4_grpblk_t i = 0;
6004 	ext4_fsblk_t goal, block;
6005 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
6006 
6007 	goal = ar->goal;
6008 	if (goal < le32_to_cpu(es->s_first_data_block) ||
6009 			goal >= ext4_blocks_count(es))
6010 		goal = le32_to_cpu(es->s_first_data_block);
6011 
6012 	ar->len = 0;
6013 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6014 	for (; group < ext4_get_groups_count(sb); group++) {
6015 		bitmap_bh = ext4_read_block_bitmap(sb, group);
6016 		if (IS_ERR(bitmap_bh)) {
6017 			*errp = PTR_ERR(bitmap_bh);
6018 			pr_warn("Failed to read block bitmap\n");
6019 			return 0;
6020 		}
6021 
6022 		while (1) {
6023 			i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6024 						blkoff);
6025 			if (i >= max)
6026 				break;
6027 			if (ext4_fc_replay_check_excluded(sb,
6028 				ext4_group_first_block_no(sb, group) + i)) {
6029 				blkoff = i + 1;
6030 			} else
6031 				break;
6032 		}
6033 		brelse(bitmap_bh);
6034 		if (i < max)
6035 			break;
6036 
6037 		blkoff = 0;
6038 	}
6039 
6040 	if (group >= ext4_get_groups_count(sb) || i >= max) {
6041 		*errp = -ENOSPC;
6042 		return 0;
6043 	}
6044 
6045 	block = ext4_group_first_block_no(sb, group) + i;
6046 	ext4_mb_mark_bb(sb, block, 1, 1);
6047 	ar->len = 1;
6048 
6049 	return block;
6050 }
6051 
6052 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6053 					unsigned long count)
6054 {
6055 	struct buffer_head *bitmap_bh;
6056 	struct super_block *sb = inode->i_sb;
6057 	struct ext4_group_desc *gdp;
6058 	struct buffer_head *gdp_bh;
6059 	ext4_group_t group;
6060 	ext4_grpblk_t blkoff;
6061 	int already_freed = 0, err, i;
6062 
6063 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6064 	bitmap_bh = ext4_read_block_bitmap(sb, group);
6065 	if (IS_ERR(bitmap_bh)) {
6066 		pr_warn("Failed to read block bitmap\n");
6067 		return;
6068 	}
6069 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
6070 	if (!gdp)
6071 		goto err_out;
6072 
6073 	for (i = 0; i < count; i++) {
6074 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
6075 			already_freed++;
6076 	}
6077 	mb_clear_bits(bitmap_bh->b_data, blkoff, count);
6078 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
6079 	if (err)
6080 		goto err_out;
6081 	ext4_free_group_clusters_set(
6082 		sb, gdp, ext4_free_group_clusters(sb, gdp) +
6083 		count - already_freed);
6084 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6085 	ext4_group_desc_csum_set(sb, group, gdp);
6086 	ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
6087 	sync_dirty_buffer(bitmap_bh);
6088 	sync_dirty_buffer(gdp_bh);
6089 
6090 err_out:
6091 	brelse(bitmap_bh);
6092 }
6093 
6094 /**
6095  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6096  *			Used by ext4_free_blocks()
6097  * @handle:		handle for this transaction
6098  * @inode:		inode
6099  * @block:		starting physical block to be freed
6100  * @count:		number of blocks to be freed
6101  * @flags:		flags used by ext4_free_blocks
6102  */
6103 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6104 			       ext4_fsblk_t block, unsigned long count,
6105 			       int flags)
6106 {
6107 	struct buffer_head *bitmap_bh = NULL;
6108 	struct super_block *sb = inode->i_sb;
6109 	struct ext4_group_desc *gdp;
6110 	struct ext4_group_info *grp;
6111 	unsigned int overflow;
6112 	ext4_grpblk_t bit;
6113 	struct buffer_head *gd_bh;
6114 	ext4_group_t block_group;
6115 	struct ext4_sb_info *sbi;
6116 	struct ext4_buddy e4b;
6117 	unsigned int count_clusters;
6118 	int err = 0;
6119 	int ret;
6120 
6121 	sbi = EXT4_SB(sb);
6122 
6123 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6124 	    !ext4_inode_block_valid(inode, block, count)) {
6125 		ext4_error(sb, "Freeing blocks in system zone - "
6126 			   "Block = %llu, count = %lu", block, count);
6127 		/* err = 0. ext4_std_error should be a no op */
6128 		goto error_return;
6129 	}
6130 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6131 
6132 do_more:
6133 	overflow = 0;
6134 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6135 
6136 	grp = ext4_get_group_info(sb, block_group);
6137 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6138 		return;
6139 
6140 	/*
6141 	 * Check to see if we are freeing blocks across a group
6142 	 * boundary.
6143 	 */
6144 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6145 		overflow = EXT4_C2B(sbi, bit) + count -
6146 			EXT4_BLOCKS_PER_GROUP(sb);
6147 		count -= overflow;
6148 		/* The range changed so it's no longer validated */
6149 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6150 	}
6151 	count_clusters = EXT4_NUM_B2C(sbi, count);
6152 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6153 	if (IS_ERR(bitmap_bh)) {
6154 		err = PTR_ERR(bitmap_bh);
6155 		bitmap_bh = NULL;
6156 		goto error_return;
6157 	}
6158 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
6159 	if (!gdp) {
6160 		err = -EIO;
6161 		goto error_return;
6162 	}
6163 
6164 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6165 	    !ext4_inode_block_valid(inode, block, count)) {
6166 		ext4_error(sb, "Freeing blocks in system zone - "
6167 			   "Block = %llu, count = %lu", block, count);
6168 		/* err = 0. ext4_std_error should be a no op */
6169 		goto error_return;
6170 	}
6171 
6172 	BUFFER_TRACE(bitmap_bh, "getting write access");
6173 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6174 					    EXT4_JTR_NONE);
6175 	if (err)
6176 		goto error_return;
6177 
6178 	/*
6179 	 * We are about to modify some metadata.  Call the journal APIs
6180 	 * to unshare ->b_data if a currently-committing transaction is
6181 	 * using it
6182 	 */
6183 	BUFFER_TRACE(gd_bh, "get_write_access");
6184 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6185 	if (err)
6186 		goto error_return;
6187 #ifdef AGGRESSIVE_CHECK
6188 	{
6189 		int i;
6190 		for (i = 0; i < count_clusters; i++)
6191 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
6192 	}
6193 #endif
6194 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6195 
6196 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6197 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6198 				     GFP_NOFS|__GFP_NOFAIL);
6199 	if (err)
6200 		goto error_return;
6201 
6202 	/*
6203 	 * We need to make sure we don't reuse the freed block until after the
6204 	 * transaction is committed. We make an exception if the inode is to be
6205 	 * written in writeback mode since writeback mode has weak data
6206 	 * consistency guarantees.
6207 	 */
6208 	if (ext4_handle_valid(handle) &&
6209 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6210 	     !ext4_should_writeback_data(inode))) {
6211 		struct ext4_free_data *new_entry;
6212 		/*
6213 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6214 		 * to fail.
6215 		 */
6216 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6217 				GFP_NOFS|__GFP_NOFAIL);
6218 		new_entry->efd_start_cluster = bit;
6219 		new_entry->efd_group = block_group;
6220 		new_entry->efd_count = count_clusters;
6221 		new_entry->efd_tid = handle->h_transaction->t_tid;
6222 
6223 		ext4_lock_group(sb, block_group);
6224 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6225 		ext4_mb_free_metadata(handle, &e4b, new_entry);
6226 	} else {
6227 		/* need to update group_info->bb_free and bitmap
6228 		 * with group lock held. generate_buddy look at
6229 		 * them with group lock_held
6230 		 */
6231 		if (test_opt(sb, DISCARD)) {
6232 			err = ext4_issue_discard(sb, block_group, bit, count,
6233 						 NULL);
6234 			if (err && err != -EOPNOTSUPP)
6235 				ext4_msg(sb, KERN_WARNING, "discard request in"
6236 					 " group:%u block:%d count:%lu failed"
6237 					 " with %d", block_group, bit, count,
6238 					 err);
6239 		} else
6240 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6241 
6242 		ext4_lock_group(sb, block_group);
6243 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6244 		mb_free_blocks(inode, &e4b, bit, count_clusters);
6245 	}
6246 
6247 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
6248 	ext4_free_group_clusters_set(sb, gdp, ret);
6249 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6250 	ext4_group_desc_csum_set(sb, block_group, gdp);
6251 	ext4_unlock_group(sb, block_group);
6252 
6253 	if (sbi->s_log_groups_per_flex) {
6254 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6255 		atomic64_add(count_clusters,
6256 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6257 						  flex_group)->free_clusters);
6258 	}
6259 
6260 	/*
6261 	 * on a bigalloc file system, defer the s_freeclusters_counter
6262 	 * update to the caller (ext4_remove_space and friends) so they
6263 	 * can determine if a cluster freed here should be rereserved
6264 	 */
6265 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6266 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6267 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6268 		percpu_counter_add(&sbi->s_freeclusters_counter,
6269 				   count_clusters);
6270 	}
6271 
6272 	ext4_mb_unload_buddy(&e4b);
6273 
6274 	/* We dirtied the bitmap block */
6275 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6276 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6277 
6278 	/* And the group descriptor block */
6279 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6280 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6281 	if (!err)
6282 		err = ret;
6283 
6284 	if (overflow && !err) {
6285 		block += count;
6286 		count = overflow;
6287 		put_bh(bitmap_bh);
6288 		/* The range changed so it's no longer validated */
6289 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6290 		goto do_more;
6291 	}
6292 error_return:
6293 	brelse(bitmap_bh);
6294 	ext4_std_error(sb, err);
6295 	return;
6296 }
6297 
6298 /**
6299  * ext4_free_blocks() -- Free given blocks and update quota
6300  * @handle:		handle for this transaction
6301  * @inode:		inode
6302  * @bh:			optional buffer of the block to be freed
6303  * @block:		starting physical block to be freed
6304  * @count:		number of blocks to be freed
6305  * @flags:		flags used by ext4_free_blocks
6306  */
6307 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6308 		      struct buffer_head *bh, ext4_fsblk_t block,
6309 		      unsigned long count, int flags)
6310 {
6311 	struct super_block *sb = inode->i_sb;
6312 	unsigned int overflow;
6313 	struct ext4_sb_info *sbi;
6314 
6315 	sbi = EXT4_SB(sb);
6316 
6317 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6318 		ext4_free_blocks_simple(inode, block, count);
6319 		return;
6320 	}
6321 
6322 	might_sleep();
6323 	if (bh) {
6324 		if (block)
6325 			BUG_ON(block != bh->b_blocknr);
6326 		else
6327 			block = bh->b_blocknr;
6328 	}
6329 
6330 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6331 	    !ext4_inode_block_valid(inode, block, count)) {
6332 		ext4_error(sb, "Freeing blocks not in datazone - "
6333 			   "block = %llu, count = %lu", block, count);
6334 		return;
6335 	}
6336 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6337 
6338 	ext4_debug("freeing block %llu\n", block);
6339 	trace_ext4_free_blocks(inode, block, count, flags);
6340 
6341 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6342 		BUG_ON(count > 1);
6343 
6344 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6345 			    inode, bh, block);
6346 	}
6347 
6348 	/*
6349 	 * If the extent to be freed does not begin on a cluster
6350 	 * boundary, we need to deal with partial clusters at the
6351 	 * beginning and end of the extent.  Normally we will free
6352 	 * blocks at the beginning or the end unless we are explicitly
6353 	 * requested to avoid doing so.
6354 	 */
6355 	overflow = EXT4_PBLK_COFF(sbi, block);
6356 	if (overflow) {
6357 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6358 			overflow = sbi->s_cluster_ratio - overflow;
6359 			block += overflow;
6360 			if (count > overflow)
6361 				count -= overflow;
6362 			else
6363 				return;
6364 		} else {
6365 			block -= overflow;
6366 			count += overflow;
6367 		}
6368 		/* The range changed so it's no longer validated */
6369 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6370 	}
6371 	overflow = EXT4_LBLK_COFF(sbi, count);
6372 	if (overflow) {
6373 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6374 			if (count > overflow)
6375 				count -= overflow;
6376 			else
6377 				return;
6378 		} else
6379 			count += sbi->s_cluster_ratio - overflow;
6380 		/* The range changed so it's no longer validated */
6381 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6382 	}
6383 
6384 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6385 		int i;
6386 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6387 
6388 		for (i = 0; i < count; i++) {
6389 			cond_resched();
6390 			if (is_metadata)
6391 				bh = sb_find_get_block(inode->i_sb, block + i);
6392 			ext4_forget(handle, is_metadata, inode, bh, block + i);
6393 		}
6394 	}
6395 
6396 	ext4_mb_clear_bb(handle, inode, block, count, flags);
6397 	return;
6398 }
6399 
6400 /**
6401  * ext4_group_add_blocks() -- Add given blocks to an existing group
6402  * @handle:			handle to this transaction
6403  * @sb:				super block
6404  * @block:			start physical block to add to the block group
6405  * @count:			number of blocks to free
6406  *
6407  * This marks the blocks as free in the bitmap and buddy.
6408  */
6409 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6410 			 ext4_fsblk_t block, unsigned long count)
6411 {
6412 	struct buffer_head *bitmap_bh = NULL;
6413 	struct buffer_head *gd_bh;
6414 	ext4_group_t block_group;
6415 	ext4_grpblk_t bit;
6416 	unsigned int i;
6417 	struct ext4_group_desc *desc;
6418 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6419 	struct ext4_buddy e4b;
6420 	int err = 0, ret, free_clusters_count;
6421 	ext4_grpblk_t clusters_freed;
6422 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6423 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6424 	unsigned long cluster_count = last_cluster - first_cluster + 1;
6425 
6426 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6427 
6428 	if (count == 0)
6429 		return 0;
6430 
6431 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6432 	/*
6433 	 * Check to see if we are freeing blocks across a group
6434 	 * boundary.
6435 	 */
6436 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6437 		ext4_warning(sb, "too many blocks added to group %u",
6438 			     block_group);
6439 		err = -EINVAL;
6440 		goto error_return;
6441 	}
6442 
6443 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6444 	if (IS_ERR(bitmap_bh)) {
6445 		err = PTR_ERR(bitmap_bh);
6446 		bitmap_bh = NULL;
6447 		goto error_return;
6448 	}
6449 
6450 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6451 	if (!desc) {
6452 		err = -EIO;
6453 		goto error_return;
6454 	}
6455 
6456 	if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6457 		ext4_error(sb, "Adding blocks in system zones - "
6458 			   "Block = %llu, count = %lu",
6459 			   block, count);
6460 		err = -EINVAL;
6461 		goto error_return;
6462 	}
6463 
6464 	BUFFER_TRACE(bitmap_bh, "getting write access");
6465 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6466 					    EXT4_JTR_NONE);
6467 	if (err)
6468 		goto error_return;
6469 
6470 	/*
6471 	 * We are about to modify some metadata.  Call the journal APIs
6472 	 * to unshare ->b_data if a currently-committing transaction is
6473 	 * using it
6474 	 */
6475 	BUFFER_TRACE(gd_bh, "get_write_access");
6476 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6477 	if (err)
6478 		goto error_return;
6479 
6480 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6481 		BUFFER_TRACE(bitmap_bh, "clear bit");
6482 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6483 			ext4_error(sb, "bit already cleared for block %llu",
6484 				   (ext4_fsblk_t)(block + i));
6485 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
6486 		} else {
6487 			clusters_freed++;
6488 		}
6489 	}
6490 
6491 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6492 	if (err)
6493 		goto error_return;
6494 
6495 	/*
6496 	 * need to update group_info->bb_free and bitmap
6497 	 * with group lock held. generate_buddy look at
6498 	 * them with group lock_held
6499 	 */
6500 	ext4_lock_group(sb, block_group);
6501 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6502 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6503 	free_clusters_count = clusters_freed +
6504 		ext4_free_group_clusters(sb, desc);
6505 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6506 	ext4_block_bitmap_csum_set(sb, desc, bitmap_bh);
6507 	ext4_group_desc_csum_set(sb, block_group, desc);
6508 	ext4_unlock_group(sb, block_group);
6509 	percpu_counter_add(&sbi->s_freeclusters_counter,
6510 			   clusters_freed);
6511 
6512 	if (sbi->s_log_groups_per_flex) {
6513 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6514 		atomic64_add(clusters_freed,
6515 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6516 						  flex_group)->free_clusters);
6517 	}
6518 
6519 	ext4_mb_unload_buddy(&e4b);
6520 
6521 	/* We dirtied the bitmap block */
6522 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6523 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6524 
6525 	/* And the group descriptor block */
6526 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6527 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6528 	if (!err)
6529 		err = ret;
6530 
6531 error_return:
6532 	brelse(bitmap_bh);
6533 	ext4_std_error(sb, err);
6534 	return err;
6535 }
6536 
6537 /**
6538  * ext4_trim_extent -- function to TRIM one single free extent in the group
6539  * @sb:		super block for the file system
6540  * @start:	starting block of the free extent in the alloc. group
6541  * @count:	number of blocks to TRIM
6542  * @e4b:	ext4 buddy for the group
6543  *
6544  * Trim "count" blocks starting at "start" in the "group". To assure that no
6545  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6546  * be called with under the group lock.
6547  */
6548 static int ext4_trim_extent(struct super_block *sb,
6549 		int start, int count, struct ext4_buddy *e4b)
6550 __releases(bitlock)
6551 __acquires(bitlock)
6552 {
6553 	struct ext4_free_extent ex;
6554 	ext4_group_t group = e4b->bd_group;
6555 	int ret = 0;
6556 
6557 	trace_ext4_trim_extent(sb, group, start, count);
6558 
6559 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6560 
6561 	ex.fe_start = start;
6562 	ex.fe_group = group;
6563 	ex.fe_len = count;
6564 
6565 	/*
6566 	 * Mark blocks used, so no one can reuse them while
6567 	 * being trimmed.
6568 	 */
6569 	mb_mark_used(e4b, &ex);
6570 	ext4_unlock_group(sb, group);
6571 	ret = ext4_issue_discard(sb, group, start, count, NULL);
6572 	ext4_lock_group(sb, group);
6573 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6574 	return ret;
6575 }
6576 
6577 static int ext4_try_to_trim_range(struct super_block *sb,
6578 		struct ext4_buddy *e4b, ext4_grpblk_t start,
6579 		ext4_grpblk_t max, ext4_grpblk_t minblocks)
6580 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6581 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6582 {
6583 	ext4_grpblk_t next, count, free_count;
6584 	void *bitmap;
6585 
6586 	bitmap = e4b->bd_bitmap;
6587 	start = (e4b->bd_info->bb_first_free > start) ?
6588 		e4b->bd_info->bb_first_free : start;
6589 	count = 0;
6590 	free_count = 0;
6591 
6592 	while (start <= max) {
6593 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6594 		if (start > max)
6595 			break;
6596 		next = mb_find_next_bit(bitmap, max + 1, start);
6597 
6598 		if ((next - start) >= minblocks) {
6599 			int ret = ext4_trim_extent(sb, start, next - start, e4b);
6600 
6601 			if (ret && ret != -EOPNOTSUPP)
6602 				break;
6603 			count += next - start;
6604 		}
6605 		free_count += next - start;
6606 		start = next + 1;
6607 
6608 		if (fatal_signal_pending(current)) {
6609 			count = -ERESTARTSYS;
6610 			break;
6611 		}
6612 
6613 		if (need_resched()) {
6614 			ext4_unlock_group(sb, e4b->bd_group);
6615 			cond_resched();
6616 			ext4_lock_group(sb, e4b->bd_group);
6617 		}
6618 
6619 		if ((e4b->bd_info->bb_free - free_count) < minblocks)
6620 			break;
6621 	}
6622 
6623 	return count;
6624 }
6625 
6626 /**
6627  * ext4_trim_all_free -- function to trim all free space in alloc. group
6628  * @sb:			super block for file system
6629  * @group:		group to be trimmed
6630  * @start:		first group block to examine
6631  * @max:		last group block to examine
6632  * @minblocks:		minimum extent block count
6633  * @set_trimmed:	set the trimmed flag if at least one block is trimmed
6634  *
6635  * ext4_trim_all_free walks through group's block bitmap searching for free
6636  * extents. When the free extent is found, mark it as used in group buddy
6637  * bitmap. Then issue a TRIM command on this extent and free the extent in
6638  * the group buddy bitmap.
6639  */
6640 static ext4_grpblk_t
6641 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6642 		   ext4_grpblk_t start, ext4_grpblk_t max,
6643 		   ext4_grpblk_t minblocks, bool set_trimmed)
6644 {
6645 	struct ext4_buddy e4b;
6646 	int ret;
6647 
6648 	trace_ext4_trim_all_free(sb, group, start, max);
6649 
6650 	ret = ext4_mb_load_buddy(sb, group, &e4b);
6651 	if (ret) {
6652 		ext4_warning(sb, "Error %d loading buddy information for %u",
6653 			     ret, group);
6654 		return ret;
6655 	}
6656 
6657 	ext4_lock_group(sb, group);
6658 
6659 	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6660 	    minblocks < EXT4_SB(sb)->s_last_trim_minblks) {
6661 		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6662 		if (ret >= 0 && set_trimmed)
6663 			EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
6664 	} else {
6665 		ret = 0;
6666 	}
6667 
6668 	ext4_unlock_group(sb, group);
6669 	ext4_mb_unload_buddy(&e4b);
6670 
6671 	ext4_debug("trimmed %d blocks in the group %d\n",
6672 		ret, group);
6673 
6674 	return ret;
6675 }
6676 
6677 /**
6678  * ext4_trim_fs() -- trim ioctl handle function
6679  * @sb:			superblock for filesystem
6680  * @range:		fstrim_range structure
6681  *
6682  * start:	First Byte to trim
6683  * len:		number of Bytes to trim from start
6684  * minlen:	minimum extent length in Bytes
6685  * ext4_trim_fs goes through all allocation groups containing Bytes from
6686  * start to start+len. For each such a group ext4_trim_all_free function
6687  * is invoked to trim all free space.
6688  */
6689 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6690 {
6691 	unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6692 	struct ext4_group_info *grp;
6693 	ext4_group_t group, first_group, last_group;
6694 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6695 	uint64_t start, end, minlen, trimmed = 0;
6696 	ext4_fsblk_t first_data_blk =
6697 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6698 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6699 	bool whole_group, eof = false;
6700 	int ret = 0;
6701 
6702 	start = range->start >> sb->s_blocksize_bits;
6703 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
6704 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6705 			      range->minlen >> sb->s_blocksize_bits);
6706 
6707 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6708 	    start >= max_blks ||
6709 	    range->len < sb->s_blocksize)
6710 		return -EINVAL;
6711 	/* No point to try to trim less than discard granularity */
6712 	if (range->minlen < discard_granularity) {
6713 		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6714 				discard_granularity >> sb->s_blocksize_bits);
6715 		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6716 			goto out;
6717 	}
6718 	if (end >= max_blks - 1) {
6719 		end = max_blks - 1;
6720 		eof = true;
6721 	}
6722 	if (end <= first_data_blk)
6723 		goto out;
6724 	if (start < first_data_blk)
6725 		start = first_data_blk;
6726 
6727 	/* Determine first and last group to examine based on start and end */
6728 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6729 				     &first_group, &first_cluster);
6730 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6731 				     &last_group, &last_cluster);
6732 
6733 	/* end now represents the last cluster to discard in this group */
6734 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6735 	whole_group = true;
6736 
6737 	for (group = first_group; group <= last_group; group++) {
6738 		grp = ext4_get_group_info(sb, group);
6739 		if (!grp)
6740 			continue;
6741 		/* We only do this if the grp has never been initialized */
6742 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6743 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6744 			if (ret)
6745 				break;
6746 		}
6747 
6748 		/*
6749 		 * For all the groups except the last one, last cluster will
6750 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6751 		 * change it for the last group, note that last_cluster is
6752 		 * already computed earlier by ext4_get_group_no_and_offset()
6753 		 */
6754 		if (group == last_group) {
6755 			end = last_cluster;
6756 			whole_group = eof ? true : end == EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6757 		}
6758 		if (grp->bb_free >= minlen) {
6759 			cnt = ext4_trim_all_free(sb, group, first_cluster,
6760 						 end, minlen, whole_group);
6761 			if (cnt < 0) {
6762 				ret = cnt;
6763 				break;
6764 			}
6765 			trimmed += cnt;
6766 		}
6767 
6768 		/*
6769 		 * For every group except the first one, we are sure
6770 		 * that the first cluster to discard will be cluster #0.
6771 		 */
6772 		first_cluster = 0;
6773 	}
6774 
6775 	if (!ret)
6776 		EXT4_SB(sb)->s_last_trim_minblks = minlen;
6777 
6778 out:
6779 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6780 	return ret;
6781 }
6782 
6783 /* Iterate all the free extents in the group. */
6784 int
6785 ext4_mballoc_query_range(
6786 	struct super_block		*sb,
6787 	ext4_group_t			group,
6788 	ext4_grpblk_t			start,
6789 	ext4_grpblk_t			end,
6790 	ext4_mballoc_query_range_fn	formatter,
6791 	void				*priv)
6792 {
6793 	void				*bitmap;
6794 	ext4_grpblk_t			next;
6795 	struct ext4_buddy		e4b;
6796 	int				error;
6797 
6798 	error = ext4_mb_load_buddy(sb, group, &e4b);
6799 	if (error)
6800 		return error;
6801 	bitmap = e4b.bd_bitmap;
6802 
6803 	ext4_lock_group(sb, group);
6804 
6805 	start = (e4b.bd_info->bb_first_free > start) ?
6806 		e4b.bd_info->bb_first_free : start;
6807 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
6808 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6809 
6810 	while (start <= end) {
6811 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
6812 		if (start > end)
6813 			break;
6814 		next = mb_find_next_bit(bitmap, end + 1, start);
6815 
6816 		ext4_unlock_group(sb, group);
6817 		error = formatter(sb, group, start, next - start, priv);
6818 		if (error)
6819 			goto out_unload;
6820 		ext4_lock_group(sb, group);
6821 
6822 		start = next + 1;
6823 	}
6824 
6825 	ext4_unlock_group(sb, group);
6826 out_unload:
6827 	ext4_mb_unload_buddy(&e4b);
6828 
6829 	return error;
6830 }
6831