xref: /openbmc/linux/fs/ext4/mballoc.c (revision 5038d21d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20 
21 /*
22  * MUSTDO:
23  *   - test ext4_ext_search_left() and ext4_ext_search_right()
24  *   - search for metadata in few groups
25  *
26  * TODO v4:
27  *   - normalization should take into account whether file is still open
28  *   - discard preallocations if no free space left (policy?)
29  *   - don't normalize tails
30  *   - quota
31  *   - reservation for superuser
32  *
33  * TODO v3:
34  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
35  *   - track min/max extents in each group for better group selection
36  *   - mb_mark_used() may allocate chunk right after splitting buddy
37  *   - tree of groups sorted by number of free blocks
38  *   - error handling
39  */
40 
41 /*
42  * The allocation request involve request for multiple number of blocks
43  * near to the goal(block) value specified.
44  *
45  * During initialization phase of the allocator we decide to use the
46  * group preallocation or inode preallocation depending on the size of
47  * the file. The size of the file could be the resulting file size we
48  * would have after allocation, or the current file size, which ever
49  * is larger. If the size is less than sbi->s_mb_stream_request we
50  * select to use the group preallocation. The default value of
51  * s_mb_stream_request is 16 blocks. This can also be tuned via
52  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53  * terms of number of blocks.
54  *
55  * The main motivation for having small file use group preallocation is to
56  * ensure that we have small files closer together on the disk.
57  *
58  * First stage the allocator looks at the inode prealloc list,
59  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60  * spaces for this particular inode. The inode prealloc space is
61  * represented as:
62  *
63  * pa_lstart -> the logical start block for this prealloc space
64  * pa_pstart -> the physical start block for this prealloc space
65  * pa_len    -> length for this prealloc space (in clusters)
66  * pa_free   ->  free space available in this prealloc space (in clusters)
67  *
68  * The inode preallocation space is used looking at the _logical_ start
69  * block. If only the logical file block falls within the range of prealloc
70  * space we will consume the particular prealloc space. This makes sure that
71  * we have contiguous physical blocks representing the file blocks
72  *
73  * The important thing to be noted in case of inode prealloc space is that
74  * we don't modify the values associated to inode prealloc space except
75  * pa_free.
76  *
77  * If we are not able to find blocks in the inode prealloc space and if we
78  * have the group allocation flag set then we look at the locality group
79  * prealloc space. These are per CPU prealloc list represented as
80  *
81  * ext4_sb_info.s_locality_groups[smp_processor_id()]
82  *
83  * The reason for having a per cpu locality group is to reduce the contention
84  * between CPUs. It is possible to get scheduled at this point.
85  *
86  * The locality group prealloc space is used looking at whether we have
87  * enough free space (pa_free) within the prealloc space.
88  *
89  * If we can't allocate blocks via inode prealloc or/and locality group
90  * prealloc then we look at the buddy cache. The buddy cache is represented
91  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92  * mapped to the buddy and bitmap information regarding different
93  * groups. The buddy information is attached to buddy cache inode so that
94  * we can access them through the page cache. The information regarding
95  * each group is loaded via ext4_mb_load_buddy.  The information involve
96  * block bitmap and buddy information. The information are stored in the
97  * inode as:
98  *
99  *  {                        page                        }
100  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101  *
102  *
103  * one block each for bitmap and buddy information.  So for each group we
104  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105  * blocksize) blocks.  So it can have information regarding groups_per_page
106  * which is blocks_per_page/2
107  *
108  * The buddy cache inode is not stored on disk. The inode is thrown
109  * away when the filesystem is unmounted.
110  *
111  * We look for count number of blocks in the buddy cache. If we were able
112  * to locate that many free blocks we return with additional information
113  * regarding rest of the contiguous physical block available
114  *
115  * Before allocating blocks via buddy cache we normalize the request
116  * blocks. This ensure we ask for more blocks that we needed. The extra
117  * blocks that we get after allocation is added to the respective prealloc
118  * list. In case of inode preallocation we follow a list of heuristics
119  * based on file size. This can be found in ext4_mb_normalize_request. If
120  * we are doing a group prealloc we try to normalize the request to
121  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
122  * dependent on the cluster size; for non-bigalloc file systems, it is
123  * 512 blocks. This can be tuned via
124  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125  * terms of number of blocks. If we have mounted the file system with -O
126  * stripe=<value> option the group prealloc request is normalized to the
127  * smallest multiple of the stripe value (sbi->s_stripe) which is
128  * greater than the default mb_group_prealloc.
129  *
130  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
131  * structures in two data structures:
132  *
133  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
134  *
135  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
136  *
137  *    This is an array of lists where the index in the array represents the
138  *    largest free order in the buddy bitmap of the participating group infos of
139  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
140  *    number of buddy bitmap orders possible) number of lists. Group-infos are
141  *    placed in appropriate lists.
142  *
143  * 2) Average fragment size rb tree (sbi->s_mb_avg_fragment_size_root)
144  *
145  *    Locking: sbi->s_mb_rb_lock (rwlock)
146  *
147  *    This is a red black tree consisting of group infos and the tree is sorted
148  *    by average fragment sizes (which is calculated as ext4_group_info->bb_free
149  *    / ext4_group_info->bb_fragments).
150  *
151  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
152  * structures to decide the order in which groups are to be traversed for
153  * fulfilling an allocation request.
154  *
155  * At CR = 0, we look for groups which have the largest_free_order >= the order
156  * of the request. We directly look at the largest free order list in the data
157  * structure (1) above where largest_free_order = order of the request. If that
158  * list is empty, we look at remaining list in the increasing order of
159  * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time.
160  *
161  * At CR = 1, we only consider groups where average fragment size > request
162  * size. So, we lookup a group which has average fragment size just above or
163  * equal to request size using our rb tree (data structure 2) in O(log N) time.
164  *
165  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
166  * linear order which requires O(N) search time for each CR 0 and CR 1 phase.
167  *
168  * The regular allocator (using the buddy cache) supports a few tunables.
169  *
170  * /sys/fs/ext4/<partition>/mb_min_to_scan
171  * /sys/fs/ext4/<partition>/mb_max_to_scan
172  * /sys/fs/ext4/<partition>/mb_order2_req
173  * /sys/fs/ext4/<partition>/mb_linear_limit
174  *
175  * The regular allocator uses buddy scan only if the request len is power of
176  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
177  * value of s_mb_order2_reqs can be tuned via
178  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
179  * stripe size (sbi->s_stripe), we try to search for contiguous block in
180  * stripe size. This should result in better allocation on RAID setups. If
181  * not, we search in the specific group using bitmap for best extents. The
182  * tunable min_to_scan and max_to_scan control the behaviour here.
183  * min_to_scan indicate how long the mballoc __must__ look for a best
184  * extent and max_to_scan indicates how long the mballoc __can__ look for a
185  * best extent in the found extents. Searching for the blocks starts with
186  * the group specified as the goal value in allocation context via
187  * ac_g_ex. Each group is first checked based on the criteria whether it
188  * can be used for allocation. ext4_mb_good_group explains how the groups are
189  * checked.
190  *
191  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
192  * get traversed linearly. That may result in subsequent allocations being not
193  * close to each other. And so, the underlying device may get filled up in a
194  * non-linear fashion. While that may not matter on non-rotational devices, for
195  * rotational devices that may result in higher seek times. "mb_linear_limit"
196  * tells mballoc how many groups mballoc should search linearly before
197  * performing consulting above data structures for more efficient lookups. For
198  * non rotational devices, this value defaults to 0 and for rotational devices
199  * this is set to MB_DEFAULT_LINEAR_LIMIT.
200  *
201  * Both the prealloc space are getting populated as above. So for the first
202  * request we will hit the buddy cache which will result in this prealloc
203  * space getting filled. The prealloc space is then later used for the
204  * subsequent request.
205  */
206 
207 /*
208  * mballoc operates on the following data:
209  *  - on-disk bitmap
210  *  - in-core buddy (actually includes buddy and bitmap)
211  *  - preallocation descriptors (PAs)
212  *
213  * there are two types of preallocations:
214  *  - inode
215  *    assiged to specific inode and can be used for this inode only.
216  *    it describes part of inode's space preallocated to specific
217  *    physical blocks. any block from that preallocated can be used
218  *    independent. the descriptor just tracks number of blocks left
219  *    unused. so, before taking some block from descriptor, one must
220  *    make sure corresponded logical block isn't allocated yet. this
221  *    also means that freeing any block within descriptor's range
222  *    must discard all preallocated blocks.
223  *  - locality group
224  *    assigned to specific locality group which does not translate to
225  *    permanent set of inodes: inode can join and leave group. space
226  *    from this type of preallocation can be used for any inode. thus
227  *    it's consumed from the beginning to the end.
228  *
229  * relation between them can be expressed as:
230  *    in-core buddy = on-disk bitmap + preallocation descriptors
231  *
232  * this mean blocks mballoc considers used are:
233  *  - allocated blocks (persistent)
234  *  - preallocated blocks (non-persistent)
235  *
236  * consistency in mballoc world means that at any time a block is either
237  * free or used in ALL structures. notice: "any time" should not be read
238  * literally -- time is discrete and delimited by locks.
239  *
240  *  to keep it simple, we don't use block numbers, instead we count number of
241  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
242  *
243  * all operations can be expressed as:
244  *  - init buddy:			buddy = on-disk + PAs
245  *  - new PA:				buddy += N; PA = N
246  *  - use inode PA:			on-disk += N; PA -= N
247  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
248  *  - use locality group PA		on-disk += N; PA -= N
249  *  - discard locality group PA		buddy -= PA; PA = 0
250  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
251  *        is used in real operation because we can't know actual used
252  *        bits from PA, only from on-disk bitmap
253  *
254  * if we follow this strict logic, then all operations above should be atomic.
255  * given some of them can block, we'd have to use something like semaphores
256  * killing performance on high-end SMP hardware. let's try to relax it using
257  * the following knowledge:
258  *  1) if buddy is referenced, it's already initialized
259  *  2) while block is used in buddy and the buddy is referenced,
260  *     nobody can re-allocate that block
261  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
262  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
263  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
264  *     block
265  *
266  * so, now we're building a concurrency table:
267  *  - init buddy vs.
268  *    - new PA
269  *      blocks for PA are allocated in the buddy, buddy must be referenced
270  *      until PA is linked to allocation group to avoid concurrent buddy init
271  *    - use inode PA
272  *      we need to make sure that either on-disk bitmap or PA has uptodate data
273  *      given (3) we care that PA-=N operation doesn't interfere with init
274  *    - discard inode PA
275  *      the simplest way would be to have buddy initialized by the discard
276  *    - use locality group PA
277  *      again PA-=N must be serialized with init
278  *    - discard locality group PA
279  *      the simplest way would be to have buddy initialized by the discard
280  *  - new PA vs.
281  *    - use inode PA
282  *      i_data_sem serializes them
283  *    - discard inode PA
284  *      discard process must wait until PA isn't used by another process
285  *    - use locality group PA
286  *      some mutex should serialize them
287  *    - discard locality group PA
288  *      discard process must wait until PA isn't used by another process
289  *  - use inode PA
290  *    - use inode PA
291  *      i_data_sem or another mutex should serializes them
292  *    - discard inode PA
293  *      discard process must wait until PA isn't used by another process
294  *    - use locality group PA
295  *      nothing wrong here -- they're different PAs covering different blocks
296  *    - discard locality group PA
297  *      discard process must wait until PA isn't used by another process
298  *
299  * now we're ready to make few consequences:
300  *  - PA is referenced and while it is no discard is possible
301  *  - PA is referenced until block isn't marked in on-disk bitmap
302  *  - PA changes only after on-disk bitmap
303  *  - discard must not compete with init. either init is done before
304  *    any discard or they're serialized somehow
305  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
306  *
307  * a special case when we've used PA to emptiness. no need to modify buddy
308  * in this case, but we should care about concurrent init
309  *
310  */
311 
312  /*
313  * Logic in few words:
314  *
315  *  - allocation:
316  *    load group
317  *    find blocks
318  *    mark bits in on-disk bitmap
319  *    release group
320  *
321  *  - use preallocation:
322  *    find proper PA (per-inode or group)
323  *    load group
324  *    mark bits in on-disk bitmap
325  *    release group
326  *    release PA
327  *
328  *  - free:
329  *    load group
330  *    mark bits in on-disk bitmap
331  *    release group
332  *
333  *  - discard preallocations in group:
334  *    mark PAs deleted
335  *    move them onto local list
336  *    load on-disk bitmap
337  *    load group
338  *    remove PA from object (inode or locality group)
339  *    mark free blocks in-core
340  *
341  *  - discard inode's preallocations:
342  */
343 
344 /*
345  * Locking rules
346  *
347  * Locks:
348  *  - bitlock on a group	(group)
349  *  - object (inode/locality)	(object)
350  *  - per-pa lock		(pa)
351  *  - cr0 lists lock		(cr0)
352  *  - cr1 tree lock		(cr1)
353  *
354  * Paths:
355  *  - new pa
356  *    object
357  *    group
358  *
359  *  - find and use pa:
360  *    pa
361  *
362  *  - release consumed pa:
363  *    pa
364  *    group
365  *    object
366  *
367  *  - generate in-core bitmap:
368  *    group
369  *        pa
370  *
371  *  - discard all for given object (inode, locality group):
372  *    object
373  *        pa
374  *    group
375  *
376  *  - discard all for given group:
377  *    group
378  *        pa
379  *    group
380  *        object
381  *
382  *  - allocation path (ext4_mb_regular_allocator)
383  *    group
384  *    cr0/cr1
385  */
386 static struct kmem_cache *ext4_pspace_cachep;
387 static struct kmem_cache *ext4_ac_cachep;
388 static struct kmem_cache *ext4_free_data_cachep;
389 
390 /* We create slab caches for groupinfo data structures based on the
391  * superblock block size.  There will be one per mounted filesystem for
392  * each unique s_blocksize_bits */
393 #define NR_GRPINFO_CACHES 8
394 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
395 
396 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
397 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
398 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
399 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
400 };
401 
402 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
403 					ext4_group_t group);
404 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
405 						ext4_group_t group);
406 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
407 
408 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
409 			       ext4_group_t group, int cr);
410 
411 static int ext4_try_to_trim_range(struct super_block *sb,
412 		struct ext4_buddy *e4b, ext4_grpblk_t start,
413 		ext4_grpblk_t max, ext4_grpblk_t minblocks);
414 
415 /*
416  * The algorithm using this percpu seq counter goes below:
417  * 1. We sample the percpu discard_pa_seq counter before trying for block
418  *    allocation in ext4_mb_new_blocks().
419  * 2. We increment this percpu discard_pa_seq counter when we either allocate
420  *    or free these blocks i.e. while marking those blocks as used/free in
421  *    mb_mark_used()/mb_free_blocks().
422  * 3. We also increment this percpu seq counter when we successfully identify
423  *    that the bb_prealloc_list is not empty and hence proceed for discarding
424  *    of those PAs inside ext4_mb_discard_group_preallocations().
425  *
426  * Now to make sure that the regular fast path of block allocation is not
427  * affected, as a small optimization we only sample the percpu seq counter
428  * on that cpu. Only when the block allocation fails and when freed blocks
429  * found were 0, that is when we sample percpu seq counter for all cpus using
430  * below function ext4_get_discard_pa_seq_sum(). This happens after making
431  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
432  */
433 static DEFINE_PER_CPU(u64, discard_pa_seq);
434 static inline u64 ext4_get_discard_pa_seq_sum(void)
435 {
436 	int __cpu;
437 	u64 __seq = 0;
438 
439 	for_each_possible_cpu(__cpu)
440 		__seq += per_cpu(discard_pa_seq, __cpu);
441 	return __seq;
442 }
443 
444 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
445 {
446 #if BITS_PER_LONG == 64
447 	*bit += ((unsigned long) addr & 7UL) << 3;
448 	addr = (void *) ((unsigned long) addr & ~7UL);
449 #elif BITS_PER_LONG == 32
450 	*bit += ((unsigned long) addr & 3UL) << 3;
451 	addr = (void *) ((unsigned long) addr & ~3UL);
452 #else
453 #error "how many bits you are?!"
454 #endif
455 	return addr;
456 }
457 
458 static inline int mb_test_bit(int bit, void *addr)
459 {
460 	/*
461 	 * ext4_test_bit on architecture like powerpc
462 	 * needs unsigned long aligned address
463 	 */
464 	addr = mb_correct_addr_and_bit(&bit, addr);
465 	return ext4_test_bit(bit, addr);
466 }
467 
468 static inline void mb_set_bit(int bit, void *addr)
469 {
470 	addr = mb_correct_addr_and_bit(&bit, addr);
471 	ext4_set_bit(bit, addr);
472 }
473 
474 static inline void mb_clear_bit(int bit, void *addr)
475 {
476 	addr = mb_correct_addr_and_bit(&bit, addr);
477 	ext4_clear_bit(bit, addr);
478 }
479 
480 static inline int mb_test_and_clear_bit(int bit, void *addr)
481 {
482 	addr = mb_correct_addr_and_bit(&bit, addr);
483 	return ext4_test_and_clear_bit(bit, addr);
484 }
485 
486 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
487 {
488 	int fix = 0, ret, tmpmax;
489 	addr = mb_correct_addr_and_bit(&fix, addr);
490 	tmpmax = max + fix;
491 	start += fix;
492 
493 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
494 	if (ret > max)
495 		return max;
496 	return ret;
497 }
498 
499 static inline int mb_find_next_bit(void *addr, int max, int start)
500 {
501 	int fix = 0, ret, tmpmax;
502 	addr = mb_correct_addr_and_bit(&fix, addr);
503 	tmpmax = max + fix;
504 	start += fix;
505 
506 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
507 	if (ret > max)
508 		return max;
509 	return ret;
510 }
511 
512 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
513 {
514 	char *bb;
515 
516 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
517 	BUG_ON(max == NULL);
518 
519 	if (order > e4b->bd_blkbits + 1) {
520 		*max = 0;
521 		return NULL;
522 	}
523 
524 	/* at order 0 we see each particular block */
525 	if (order == 0) {
526 		*max = 1 << (e4b->bd_blkbits + 3);
527 		return e4b->bd_bitmap;
528 	}
529 
530 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
531 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
532 
533 	return bb;
534 }
535 
536 #ifdef DOUBLE_CHECK
537 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
538 			   int first, int count)
539 {
540 	int i;
541 	struct super_block *sb = e4b->bd_sb;
542 
543 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
544 		return;
545 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
546 	for (i = 0; i < count; i++) {
547 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
548 			ext4_fsblk_t blocknr;
549 
550 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
551 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
552 			ext4_grp_locked_error(sb, e4b->bd_group,
553 					      inode ? inode->i_ino : 0,
554 					      blocknr,
555 					      "freeing block already freed "
556 					      "(bit %u)",
557 					      first + i);
558 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
559 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
560 		}
561 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
562 	}
563 }
564 
565 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
566 {
567 	int i;
568 
569 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
570 		return;
571 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
572 	for (i = 0; i < count; i++) {
573 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
574 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
575 	}
576 }
577 
578 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
579 {
580 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
581 		return;
582 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
583 		unsigned char *b1, *b2;
584 		int i;
585 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
586 		b2 = (unsigned char *) bitmap;
587 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
588 			if (b1[i] != b2[i]) {
589 				ext4_msg(e4b->bd_sb, KERN_ERR,
590 					 "corruption in group %u "
591 					 "at byte %u(%u): %x in copy != %x "
592 					 "on disk/prealloc",
593 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
594 				BUG();
595 			}
596 		}
597 	}
598 }
599 
600 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
601 			struct ext4_group_info *grp, ext4_group_t group)
602 {
603 	struct buffer_head *bh;
604 
605 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
606 	if (!grp->bb_bitmap)
607 		return;
608 
609 	bh = ext4_read_block_bitmap(sb, group);
610 	if (IS_ERR_OR_NULL(bh)) {
611 		kfree(grp->bb_bitmap);
612 		grp->bb_bitmap = NULL;
613 		return;
614 	}
615 
616 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
617 	put_bh(bh);
618 }
619 
620 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
621 {
622 	kfree(grp->bb_bitmap);
623 }
624 
625 #else
626 static inline void mb_free_blocks_double(struct inode *inode,
627 				struct ext4_buddy *e4b, int first, int count)
628 {
629 	return;
630 }
631 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
632 						int first, int count)
633 {
634 	return;
635 }
636 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
637 {
638 	return;
639 }
640 
641 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
642 			struct ext4_group_info *grp, ext4_group_t group)
643 {
644 	return;
645 }
646 
647 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
648 {
649 	return;
650 }
651 #endif
652 
653 #ifdef AGGRESSIVE_CHECK
654 
655 #define MB_CHECK_ASSERT(assert)						\
656 do {									\
657 	if (!(assert)) {						\
658 		printk(KERN_EMERG					\
659 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
660 			function, file, line, # assert);		\
661 		BUG();							\
662 	}								\
663 } while (0)
664 
665 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
666 				const char *function, int line)
667 {
668 	struct super_block *sb = e4b->bd_sb;
669 	int order = e4b->bd_blkbits + 1;
670 	int max;
671 	int max2;
672 	int i;
673 	int j;
674 	int k;
675 	int count;
676 	struct ext4_group_info *grp;
677 	int fragments = 0;
678 	int fstart;
679 	struct list_head *cur;
680 	void *buddy;
681 	void *buddy2;
682 
683 	if (e4b->bd_info->bb_check_counter++ % 10)
684 		return 0;
685 
686 	while (order > 1) {
687 		buddy = mb_find_buddy(e4b, order, &max);
688 		MB_CHECK_ASSERT(buddy);
689 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
690 		MB_CHECK_ASSERT(buddy2);
691 		MB_CHECK_ASSERT(buddy != buddy2);
692 		MB_CHECK_ASSERT(max * 2 == max2);
693 
694 		count = 0;
695 		for (i = 0; i < max; i++) {
696 
697 			if (mb_test_bit(i, buddy)) {
698 				/* only single bit in buddy2 may be 0 */
699 				if (!mb_test_bit(i << 1, buddy2)) {
700 					MB_CHECK_ASSERT(
701 						mb_test_bit((i<<1)+1, buddy2));
702 				}
703 				continue;
704 			}
705 
706 			/* both bits in buddy2 must be 1 */
707 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
708 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
709 
710 			for (j = 0; j < (1 << order); j++) {
711 				k = (i * (1 << order)) + j;
712 				MB_CHECK_ASSERT(
713 					!mb_test_bit(k, e4b->bd_bitmap));
714 			}
715 			count++;
716 		}
717 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
718 		order--;
719 	}
720 
721 	fstart = -1;
722 	buddy = mb_find_buddy(e4b, 0, &max);
723 	for (i = 0; i < max; i++) {
724 		if (!mb_test_bit(i, buddy)) {
725 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
726 			if (fstart == -1) {
727 				fragments++;
728 				fstart = i;
729 			}
730 			continue;
731 		}
732 		fstart = -1;
733 		/* check used bits only */
734 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
735 			buddy2 = mb_find_buddy(e4b, j, &max2);
736 			k = i >> j;
737 			MB_CHECK_ASSERT(k < max2);
738 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
739 		}
740 	}
741 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
742 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
743 
744 	grp = ext4_get_group_info(sb, e4b->bd_group);
745 	list_for_each(cur, &grp->bb_prealloc_list) {
746 		ext4_group_t groupnr;
747 		struct ext4_prealloc_space *pa;
748 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
749 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
750 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
751 		for (i = 0; i < pa->pa_len; i++)
752 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
753 	}
754 	return 0;
755 }
756 #undef MB_CHECK_ASSERT
757 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
758 					__FILE__, __func__, __LINE__)
759 #else
760 #define mb_check_buddy(e4b)
761 #endif
762 
763 /*
764  * Divide blocks started from @first with length @len into
765  * smaller chunks with power of 2 blocks.
766  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
767  * then increase bb_counters[] for corresponded chunk size.
768  */
769 static void ext4_mb_mark_free_simple(struct super_block *sb,
770 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
771 					struct ext4_group_info *grp)
772 {
773 	struct ext4_sb_info *sbi = EXT4_SB(sb);
774 	ext4_grpblk_t min;
775 	ext4_grpblk_t max;
776 	ext4_grpblk_t chunk;
777 	unsigned int border;
778 
779 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
780 
781 	border = 2 << sb->s_blocksize_bits;
782 
783 	while (len > 0) {
784 		/* find how many blocks can be covered since this position */
785 		max = ffs(first | border) - 1;
786 
787 		/* find how many blocks of power 2 we need to mark */
788 		min = fls(len) - 1;
789 
790 		if (max < min)
791 			min = max;
792 		chunk = 1 << min;
793 
794 		/* mark multiblock chunks only */
795 		grp->bb_counters[min]++;
796 		if (min > 0)
797 			mb_clear_bit(first >> min,
798 				     buddy + sbi->s_mb_offsets[min]);
799 
800 		len -= chunk;
801 		first += chunk;
802 	}
803 }
804 
805 static void ext4_mb_rb_insert(struct rb_root *root, struct rb_node *new,
806 			int (*cmp)(struct rb_node *, struct rb_node *))
807 {
808 	struct rb_node **iter = &root->rb_node, *parent = NULL;
809 
810 	while (*iter) {
811 		parent = *iter;
812 		if (cmp(new, *iter) > 0)
813 			iter = &((*iter)->rb_left);
814 		else
815 			iter = &((*iter)->rb_right);
816 	}
817 
818 	rb_link_node(new, parent, iter);
819 	rb_insert_color(new, root);
820 }
821 
822 static int
823 ext4_mb_avg_fragment_size_cmp(struct rb_node *rb1, struct rb_node *rb2)
824 {
825 	struct ext4_group_info *grp1 = rb_entry(rb1,
826 						struct ext4_group_info,
827 						bb_avg_fragment_size_rb);
828 	struct ext4_group_info *grp2 = rb_entry(rb2,
829 						struct ext4_group_info,
830 						bb_avg_fragment_size_rb);
831 	int num_frags_1, num_frags_2;
832 
833 	num_frags_1 = grp1->bb_fragments ?
834 		grp1->bb_free / grp1->bb_fragments : 0;
835 	num_frags_2 = grp2->bb_fragments ?
836 		grp2->bb_free / grp2->bb_fragments : 0;
837 
838 	return (num_frags_2 - num_frags_1);
839 }
840 
841 /*
842  * Reinsert grpinfo into the avg_fragment_size tree with new average
843  * fragment size.
844  */
845 static void
846 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
847 {
848 	struct ext4_sb_info *sbi = EXT4_SB(sb);
849 
850 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
851 		return;
852 
853 	write_lock(&sbi->s_mb_rb_lock);
854 	if (!RB_EMPTY_NODE(&grp->bb_avg_fragment_size_rb)) {
855 		rb_erase(&grp->bb_avg_fragment_size_rb,
856 				&sbi->s_mb_avg_fragment_size_root);
857 		RB_CLEAR_NODE(&grp->bb_avg_fragment_size_rb);
858 	}
859 
860 	ext4_mb_rb_insert(&sbi->s_mb_avg_fragment_size_root,
861 		&grp->bb_avg_fragment_size_rb,
862 		ext4_mb_avg_fragment_size_cmp);
863 	write_unlock(&sbi->s_mb_rb_lock);
864 }
865 
866 /*
867  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
868  * cr level needs an update.
869  */
870 static void ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac,
871 			int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
872 {
873 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
874 	struct ext4_group_info *iter, *grp;
875 	int i;
876 
877 	if (ac->ac_status == AC_STATUS_FOUND)
878 		return;
879 
880 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR0_OPTIMIZED))
881 		atomic_inc(&sbi->s_bal_cr0_bad_suggestions);
882 
883 	grp = NULL;
884 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
885 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
886 			continue;
887 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
888 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
889 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
890 			continue;
891 		}
892 		grp = NULL;
893 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
894 				    bb_largest_free_order_node) {
895 			if (sbi->s_mb_stats)
896 				atomic64_inc(&sbi->s_bal_cX_groups_considered[0]);
897 			if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) {
898 				grp = iter;
899 				break;
900 			}
901 		}
902 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
903 		if (grp)
904 			break;
905 	}
906 
907 	if (!grp) {
908 		/* Increment cr and search again */
909 		*new_cr = 1;
910 	} else {
911 		*group = grp->bb_group;
912 		ac->ac_last_optimal_group = *group;
913 		ac->ac_flags |= EXT4_MB_CR0_OPTIMIZED;
914 	}
915 }
916 
917 /*
918  * Choose next group by traversing average fragment size tree. Updates *new_cr
919  * if cr lvel needs an update. Sets EXT4_MB_SEARCH_NEXT_LINEAR to indicate that
920  * the linear search should continue for one iteration since there's lock
921  * contention on the rb tree lock.
922  */
923 static void ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac,
924 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
925 {
926 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
927 	int avg_fragment_size, best_so_far;
928 	struct rb_node *node, *found;
929 	struct ext4_group_info *grp;
930 
931 	/*
932 	 * If there is contention on the lock, instead of waiting for the lock
933 	 * to become available, just continue searching lineraly. We'll resume
934 	 * our rb tree search later starting at ac->ac_last_optimal_group.
935 	 */
936 	if (!read_trylock(&sbi->s_mb_rb_lock)) {
937 		ac->ac_flags |= EXT4_MB_SEARCH_NEXT_LINEAR;
938 		return;
939 	}
940 
941 	if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) {
942 		if (sbi->s_mb_stats)
943 			atomic_inc(&sbi->s_bal_cr1_bad_suggestions);
944 		/* We have found something at CR 1 in the past */
945 		grp = ext4_get_group_info(ac->ac_sb, ac->ac_last_optimal_group);
946 		for (found = rb_next(&grp->bb_avg_fragment_size_rb); found != NULL;
947 		     found = rb_next(found)) {
948 			grp = rb_entry(found, struct ext4_group_info,
949 				       bb_avg_fragment_size_rb);
950 			if (sbi->s_mb_stats)
951 				atomic64_inc(&sbi->s_bal_cX_groups_considered[1]);
952 			if (likely(ext4_mb_good_group(ac, grp->bb_group, 1)))
953 				break;
954 		}
955 		goto done;
956 	}
957 
958 	node = sbi->s_mb_avg_fragment_size_root.rb_node;
959 	best_so_far = 0;
960 	found = NULL;
961 
962 	while (node) {
963 		grp = rb_entry(node, struct ext4_group_info,
964 			       bb_avg_fragment_size_rb);
965 		avg_fragment_size = 0;
966 		if (ext4_mb_good_group(ac, grp->bb_group, 1)) {
967 			avg_fragment_size = grp->bb_fragments ?
968 				grp->bb_free / grp->bb_fragments : 0;
969 			if (!best_so_far || avg_fragment_size < best_so_far) {
970 				best_so_far = avg_fragment_size;
971 				found = node;
972 			}
973 		}
974 		if (avg_fragment_size > ac->ac_g_ex.fe_len)
975 			node = node->rb_right;
976 		else
977 			node = node->rb_left;
978 	}
979 
980 done:
981 	if (found) {
982 		grp = rb_entry(found, struct ext4_group_info,
983 			       bb_avg_fragment_size_rb);
984 		*group = grp->bb_group;
985 		ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED;
986 	} else {
987 		*new_cr = 2;
988 	}
989 
990 	read_unlock(&sbi->s_mb_rb_lock);
991 	ac->ac_last_optimal_group = *group;
992 }
993 
994 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
995 {
996 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
997 		return 0;
998 	if (ac->ac_criteria >= 2)
999 		return 0;
1000 	if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1001 		return 0;
1002 	return 1;
1003 }
1004 
1005 /*
1006  * Return next linear group for allocation. If linear traversal should not be
1007  * performed, this function just returns the same group
1008  */
1009 static int
1010 next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups)
1011 {
1012 	if (!should_optimize_scan(ac))
1013 		goto inc_and_return;
1014 
1015 	if (ac->ac_groups_linear_remaining) {
1016 		ac->ac_groups_linear_remaining--;
1017 		goto inc_and_return;
1018 	}
1019 
1020 	if (ac->ac_flags & EXT4_MB_SEARCH_NEXT_LINEAR) {
1021 		ac->ac_flags &= ~EXT4_MB_SEARCH_NEXT_LINEAR;
1022 		goto inc_and_return;
1023 	}
1024 
1025 	return group;
1026 inc_and_return:
1027 	/*
1028 	 * Artificially restricted ngroups for non-extent
1029 	 * files makes group > ngroups possible on first loop.
1030 	 */
1031 	return group + 1 >= ngroups ? 0 : group + 1;
1032 }
1033 
1034 /*
1035  * ext4_mb_choose_next_group: choose next group for allocation.
1036  *
1037  * @ac        Allocation Context
1038  * @new_cr    This is an output parameter. If the there is no good group
1039  *            available at current CR level, this field is updated to indicate
1040  *            the new cr level that should be used.
1041  * @group     This is an input / output parameter. As an input it indicates the
1042  *            next group that the allocator intends to use for allocation. As
1043  *            output, this field indicates the next group that should be used as
1044  *            determined by the optimization functions.
1045  * @ngroups   Total number of groups
1046  */
1047 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1048 		int *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1049 {
1050 	*new_cr = ac->ac_criteria;
1051 
1052 	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining)
1053 		return;
1054 
1055 	if (*new_cr == 0) {
1056 		ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups);
1057 	} else if (*new_cr == 1) {
1058 		ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups);
1059 	} else {
1060 		/*
1061 		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1062 		 * bb_free. But until that happens, we should never come here.
1063 		 */
1064 		WARN_ON(1);
1065 	}
1066 }
1067 
1068 /*
1069  * Cache the order of the largest free extent we have available in this block
1070  * group.
1071  */
1072 static void
1073 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1074 {
1075 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1076 	int i;
1077 
1078 	if (test_opt2(sb, MB_OPTIMIZE_SCAN) && grp->bb_largest_free_order >= 0) {
1079 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1080 					      grp->bb_largest_free_order]);
1081 		list_del_init(&grp->bb_largest_free_order_node);
1082 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1083 					      grp->bb_largest_free_order]);
1084 	}
1085 	grp->bb_largest_free_order = -1; /* uninit */
1086 
1087 	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) {
1088 		if (grp->bb_counters[i] > 0) {
1089 			grp->bb_largest_free_order = i;
1090 			break;
1091 		}
1092 	}
1093 	if (test_opt2(sb, MB_OPTIMIZE_SCAN) &&
1094 	    grp->bb_largest_free_order >= 0 && grp->bb_free) {
1095 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1096 					      grp->bb_largest_free_order]);
1097 		list_add_tail(&grp->bb_largest_free_order_node,
1098 		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1099 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1100 					      grp->bb_largest_free_order]);
1101 	}
1102 }
1103 
1104 static noinline_for_stack
1105 void ext4_mb_generate_buddy(struct super_block *sb,
1106 				void *buddy, void *bitmap, ext4_group_t group)
1107 {
1108 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1109 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1110 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1111 	ext4_grpblk_t i = 0;
1112 	ext4_grpblk_t first;
1113 	ext4_grpblk_t len;
1114 	unsigned free = 0;
1115 	unsigned fragments = 0;
1116 	unsigned long long period = get_cycles();
1117 
1118 	/* initialize buddy from bitmap which is aggregation
1119 	 * of on-disk bitmap and preallocations */
1120 	i = mb_find_next_zero_bit(bitmap, max, 0);
1121 	grp->bb_first_free = i;
1122 	while (i < max) {
1123 		fragments++;
1124 		first = i;
1125 		i = mb_find_next_bit(bitmap, max, i);
1126 		len = i - first;
1127 		free += len;
1128 		if (len > 1)
1129 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1130 		else
1131 			grp->bb_counters[0]++;
1132 		if (i < max)
1133 			i = mb_find_next_zero_bit(bitmap, max, i);
1134 	}
1135 	grp->bb_fragments = fragments;
1136 
1137 	if (free != grp->bb_free) {
1138 		ext4_grp_locked_error(sb, group, 0, 0,
1139 				      "block bitmap and bg descriptor "
1140 				      "inconsistent: %u vs %u free clusters",
1141 				      free, grp->bb_free);
1142 		/*
1143 		 * If we intend to continue, we consider group descriptor
1144 		 * corrupt and update bb_free using bitmap value
1145 		 */
1146 		grp->bb_free = free;
1147 		ext4_mark_group_bitmap_corrupted(sb, group,
1148 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1149 	}
1150 	mb_set_largest_free_order(sb, grp);
1151 
1152 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1153 
1154 	period = get_cycles() - period;
1155 	atomic_inc(&sbi->s_mb_buddies_generated);
1156 	atomic64_add(period, &sbi->s_mb_generation_time);
1157 	mb_update_avg_fragment_size(sb, grp);
1158 }
1159 
1160 /* The buddy information is attached the buddy cache inode
1161  * for convenience. The information regarding each group
1162  * is loaded via ext4_mb_load_buddy. The information involve
1163  * block bitmap and buddy information. The information are
1164  * stored in the inode as
1165  *
1166  * {                        page                        }
1167  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1168  *
1169  *
1170  * one block each for bitmap and buddy information.
1171  * So for each group we take up 2 blocks. A page can
1172  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1173  * So it can have information regarding groups_per_page which
1174  * is blocks_per_page/2
1175  *
1176  * Locking note:  This routine takes the block group lock of all groups
1177  * for this page; do not hold this lock when calling this routine!
1178  */
1179 
1180 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1181 {
1182 	ext4_group_t ngroups;
1183 	int blocksize;
1184 	int blocks_per_page;
1185 	int groups_per_page;
1186 	int err = 0;
1187 	int i;
1188 	ext4_group_t first_group, group;
1189 	int first_block;
1190 	struct super_block *sb;
1191 	struct buffer_head *bhs;
1192 	struct buffer_head **bh = NULL;
1193 	struct inode *inode;
1194 	char *data;
1195 	char *bitmap;
1196 	struct ext4_group_info *grinfo;
1197 
1198 	inode = page->mapping->host;
1199 	sb = inode->i_sb;
1200 	ngroups = ext4_get_groups_count(sb);
1201 	blocksize = i_blocksize(inode);
1202 	blocks_per_page = PAGE_SIZE / blocksize;
1203 
1204 	mb_debug(sb, "init page %lu\n", page->index);
1205 
1206 	groups_per_page = blocks_per_page >> 1;
1207 	if (groups_per_page == 0)
1208 		groups_per_page = 1;
1209 
1210 	/* allocate buffer_heads to read bitmaps */
1211 	if (groups_per_page > 1) {
1212 		i = sizeof(struct buffer_head *) * groups_per_page;
1213 		bh = kzalloc(i, gfp);
1214 		if (bh == NULL) {
1215 			err = -ENOMEM;
1216 			goto out;
1217 		}
1218 	} else
1219 		bh = &bhs;
1220 
1221 	first_group = page->index * blocks_per_page / 2;
1222 
1223 	/* read all groups the page covers into the cache */
1224 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1225 		if (group >= ngroups)
1226 			break;
1227 
1228 		grinfo = ext4_get_group_info(sb, group);
1229 		/*
1230 		 * If page is uptodate then we came here after online resize
1231 		 * which added some new uninitialized group info structs, so
1232 		 * we must skip all initialized uptodate buddies on the page,
1233 		 * which may be currently in use by an allocating task.
1234 		 */
1235 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1236 			bh[i] = NULL;
1237 			continue;
1238 		}
1239 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1240 		if (IS_ERR(bh[i])) {
1241 			err = PTR_ERR(bh[i]);
1242 			bh[i] = NULL;
1243 			goto out;
1244 		}
1245 		mb_debug(sb, "read bitmap for group %u\n", group);
1246 	}
1247 
1248 	/* wait for I/O completion */
1249 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1250 		int err2;
1251 
1252 		if (!bh[i])
1253 			continue;
1254 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1255 		if (!err)
1256 			err = err2;
1257 	}
1258 
1259 	first_block = page->index * blocks_per_page;
1260 	for (i = 0; i < blocks_per_page; i++) {
1261 		group = (first_block + i) >> 1;
1262 		if (group >= ngroups)
1263 			break;
1264 
1265 		if (!bh[group - first_group])
1266 			/* skip initialized uptodate buddy */
1267 			continue;
1268 
1269 		if (!buffer_verified(bh[group - first_group]))
1270 			/* Skip faulty bitmaps */
1271 			continue;
1272 		err = 0;
1273 
1274 		/*
1275 		 * data carry information regarding this
1276 		 * particular group in the format specified
1277 		 * above
1278 		 *
1279 		 */
1280 		data = page_address(page) + (i * blocksize);
1281 		bitmap = bh[group - first_group]->b_data;
1282 
1283 		/*
1284 		 * We place the buddy block and bitmap block
1285 		 * close together
1286 		 */
1287 		if ((first_block + i) & 1) {
1288 			/* this is block of buddy */
1289 			BUG_ON(incore == NULL);
1290 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1291 				group, page->index, i * blocksize);
1292 			trace_ext4_mb_buddy_bitmap_load(sb, group);
1293 			grinfo = ext4_get_group_info(sb, group);
1294 			grinfo->bb_fragments = 0;
1295 			memset(grinfo->bb_counters, 0,
1296 			       sizeof(*grinfo->bb_counters) *
1297 			       (MB_NUM_ORDERS(sb)));
1298 			/*
1299 			 * incore got set to the group block bitmap below
1300 			 */
1301 			ext4_lock_group(sb, group);
1302 			/* init the buddy */
1303 			memset(data, 0xff, blocksize);
1304 			ext4_mb_generate_buddy(sb, data, incore, group);
1305 			ext4_unlock_group(sb, group);
1306 			incore = NULL;
1307 		} else {
1308 			/* this is block of bitmap */
1309 			BUG_ON(incore != NULL);
1310 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1311 				group, page->index, i * blocksize);
1312 			trace_ext4_mb_bitmap_load(sb, group);
1313 
1314 			/* see comments in ext4_mb_put_pa() */
1315 			ext4_lock_group(sb, group);
1316 			memcpy(data, bitmap, blocksize);
1317 
1318 			/* mark all preallocated blks used in in-core bitmap */
1319 			ext4_mb_generate_from_pa(sb, data, group);
1320 			ext4_mb_generate_from_freelist(sb, data, group);
1321 			ext4_unlock_group(sb, group);
1322 
1323 			/* set incore so that the buddy information can be
1324 			 * generated using this
1325 			 */
1326 			incore = data;
1327 		}
1328 	}
1329 	SetPageUptodate(page);
1330 
1331 out:
1332 	if (bh) {
1333 		for (i = 0; i < groups_per_page; i++)
1334 			brelse(bh[i]);
1335 		if (bh != &bhs)
1336 			kfree(bh);
1337 	}
1338 	return err;
1339 }
1340 
1341 /*
1342  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1343  * on the same buddy page doesn't happen whild holding the buddy page lock.
1344  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1345  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1346  */
1347 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1348 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1349 {
1350 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1351 	int block, pnum, poff;
1352 	int blocks_per_page;
1353 	struct page *page;
1354 
1355 	e4b->bd_buddy_page = NULL;
1356 	e4b->bd_bitmap_page = NULL;
1357 
1358 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1359 	/*
1360 	 * the buddy cache inode stores the block bitmap
1361 	 * and buddy information in consecutive blocks.
1362 	 * So for each group we need two blocks.
1363 	 */
1364 	block = group * 2;
1365 	pnum = block / blocks_per_page;
1366 	poff = block % blocks_per_page;
1367 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1368 	if (!page)
1369 		return -ENOMEM;
1370 	BUG_ON(page->mapping != inode->i_mapping);
1371 	e4b->bd_bitmap_page = page;
1372 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1373 
1374 	if (blocks_per_page >= 2) {
1375 		/* buddy and bitmap are on the same page */
1376 		return 0;
1377 	}
1378 
1379 	block++;
1380 	pnum = block / blocks_per_page;
1381 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1382 	if (!page)
1383 		return -ENOMEM;
1384 	BUG_ON(page->mapping != inode->i_mapping);
1385 	e4b->bd_buddy_page = page;
1386 	return 0;
1387 }
1388 
1389 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1390 {
1391 	if (e4b->bd_bitmap_page) {
1392 		unlock_page(e4b->bd_bitmap_page);
1393 		put_page(e4b->bd_bitmap_page);
1394 	}
1395 	if (e4b->bd_buddy_page) {
1396 		unlock_page(e4b->bd_buddy_page);
1397 		put_page(e4b->bd_buddy_page);
1398 	}
1399 }
1400 
1401 /*
1402  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1403  * block group lock of all groups for this page; do not hold the BG lock when
1404  * calling this routine!
1405  */
1406 static noinline_for_stack
1407 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1408 {
1409 
1410 	struct ext4_group_info *this_grp;
1411 	struct ext4_buddy e4b;
1412 	struct page *page;
1413 	int ret = 0;
1414 
1415 	might_sleep();
1416 	mb_debug(sb, "init group %u\n", group);
1417 	this_grp = ext4_get_group_info(sb, group);
1418 	/*
1419 	 * This ensures that we don't reinit the buddy cache
1420 	 * page which map to the group from which we are already
1421 	 * allocating. If we are looking at the buddy cache we would
1422 	 * have taken a reference using ext4_mb_load_buddy and that
1423 	 * would have pinned buddy page to page cache.
1424 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1425 	 * page accessed.
1426 	 */
1427 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1428 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1429 		/*
1430 		 * somebody initialized the group
1431 		 * return without doing anything
1432 		 */
1433 		goto err;
1434 	}
1435 
1436 	page = e4b.bd_bitmap_page;
1437 	ret = ext4_mb_init_cache(page, NULL, gfp);
1438 	if (ret)
1439 		goto err;
1440 	if (!PageUptodate(page)) {
1441 		ret = -EIO;
1442 		goto err;
1443 	}
1444 
1445 	if (e4b.bd_buddy_page == NULL) {
1446 		/*
1447 		 * If both the bitmap and buddy are in
1448 		 * the same page we don't need to force
1449 		 * init the buddy
1450 		 */
1451 		ret = 0;
1452 		goto err;
1453 	}
1454 	/* init buddy cache */
1455 	page = e4b.bd_buddy_page;
1456 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1457 	if (ret)
1458 		goto err;
1459 	if (!PageUptodate(page)) {
1460 		ret = -EIO;
1461 		goto err;
1462 	}
1463 err:
1464 	ext4_mb_put_buddy_page_lock(&e4b);
1465 	return ret;
1466 }
1467 
1468 /*
1469  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1470  * block group lock of all groups for this page; do not hold the BG lock when
1471  * calling this routine!
1472  */
1473 static noinline_for_stack int
1474 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1475 		       struct ext4_buddy *e4b, gfp_t gfp)
1476 {
1477 	int blocks_per_page;
1478 	int block;
1479 	int pnum;
1480 	int poff;
1481 	struct page *page;
1482 	int ret;
1483 	struct ext4_group_info *grp;
1484 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1485 	struct inode *inode = sbi->s_buddy_cache;
1486 
1487 	might_sleep();
1488 	mb_debug(sb, "load group %u\n", group);
1489 
1490 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1491 	grp = ext4_get_group_info(sb, group);
1492 
1493 	e4b->bd_blkbits = sb->s_blocksize_bits;
1494 	e4b->bd_info = grp;
1495 	e4b->bd_sb = sb;
1496 	e4b->bd_group = group;
1497 	e4b->bd_buddy_page = NULL;
1498 	e4b->bd_bitmap_page = NULL;
1499 
1500 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1501 		/*
1502 		 * we need full data about the group
1503 		 * to make a good selection
1504 		 */
1505 		ret = ext4_mb_init_group(sb, group, gfp);
1506 		if (ret)
1507 			return ret;
1508 	}
1509 
1510 	/*
1511 	 * the buddy cache inode stores the block bitmap
1512 	 * and buddy information in consecutive blocks.
1513 	 * So for each group we need two blocks.
1514 	 */
1515 	block = group * 2;
1516 	pnum = block / blocks_per_page;
1517 	poff = block % blocks_per_page;
1518 
1519 	/* we could use find_or_create_page(), but it locks page
1520 	 * what we'd like to avoid in fast path ... */
1521 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1522 	if (page == NULL || !PageUptodate(page)) {
1523 		if (page)
1524 			/*
1525 			 * drop the page reference and try
1526 			 * to get the page with lock. If we
1527 			 * are not uptodate that implies
1528 			 * somebody just created the page but
1529 			 * is yet to initialize the same. So
1530 			 * wait for it to initialize.
1531 			 */
1532 			put_page(page);
1533 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1534 		if (page) {
1535 			BUG_ON(page->mapping != inode->i_mapping);
1536 			if (!PageUptodate(page)) {
1537 				ret = ext4_mb_init_cache(page, NULL, gfp);
1538 				if (ret) {
1539 					unlock_page(page);
1540 					goto err;
1541 				}
1542 				mb_cmp_bitmaps(e4b, page_address(page) +
1543 					       (poff * sb->s_blocksize));
1544 			}
1545 			unlock_page(page);
1546 		}
1547 	}
1548 	if (page == NULL) {
1549 		ret = -ENOMEM;
1550 		goto err;
1551 	}
1552 	if (!PageUptodate(page)) {
1553 		ret = -EIO;
1554 		goto err;
1555 	}
1556 
1557 	/* Pages marked accessed already */
1558 	e4b->bd_bitmap_page = page;
1559 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1560 
1561 	block++;
1562 	pnum = block / blocks_per_page;
1563 	poff = block % blocks_per_page;
1564 
1565 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1566 	if (page == NULL || !PageUptodate(page)) {
1567 		if (page)
1568 			put_page(page);
1569 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1570 		if (page) {
1571 			BUG_ON(page->mapping != inode->i_mapping);
1572 			if (!PageUptodate(page)) {
1573 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1574 							 gfp);
1575 				if (ret) {
1576 					unlock_page(page);
1577 					goto err;
1578 				}
1579 			}
1580 			unlock_page(page);
1581 		}
1582 	}
1583 	if (page == NULL) {
1584 		ret = -ENOMEM;
1585 		goto err;
1586 	}
1587 	if (!PageUptodate(page)) {
1588 		ret = -EIO;
1589 		goto err;
1590 	}
1591 
1592 	/* Pages marked accessed already */
1593 	e4b->bd_buddy_page = page;
1594 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1595 
1596 	return 0;
1597 
1598 err:
1599 	if (page)
1600 		put_page(page);
1601 	if (e4b->bd_bitmap_page)
1602 		put_page(e4b->bd_bitmap_page);
1603 	if (e4b->bd_buddy_page)
1604 		put_page(e4b->bd_buddy_page);
1605 	e4b->bd_buddy = NULL;
1606 	e4b->bd_bitmap = NULL;
1607 	return ret;
1608 }
1609 
1610 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1611 			      struct ext4_buddy *e4b)
1612 {
1613 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1614 }
1615 
1616 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1617 {
1618 	if (e4b->bd_bitmap_page)
1619 		put_page(e4b->bd_bitmap_page);
1620 	if (e4b->bd_buddy_page)
1621 		put_page(e4b->bd_buddy_page);
1622 }
1623 
1624 
1625 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1626 {
1627 	int order = 1, max;
1628 	void *bb;
1629 
1630 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1631 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1632 
1633 	while (order <= e4b->bd_blkbits + 1) {
1634 		bb = mb_find_buddy(e4b, order, &max);
1635 		if (!mb_test_bit(block >> order, bb)) {
1636 			/* this block is part of buddy of order 'order' */
1637 			return order;
1638 		}
1639 		order++;
1640 	}
1641 	return 0;
1642 }
1643 
1644 static void mb_clear_bits(void *bm, int cur, int len)
1645 {
1646 	__u32 *addr;
1647 
1648 	len = cur + len;
1649 	while (cur < len) {
1650 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1651 			/* fast path: clear whole word at once */
1652 			addr = bm + (cur >> 3);
1653 			*addr = 0;
1654 			cur += 32;
1655 			continue;
1656 		}
1657 		mb_clear_bit(cur, bm);
1658 		cur++;
1659 	}
1660 }
1661 
1662 /* clear bits in given range
1663  * will return first found zero bit if any, -1 otherwise
1664  */
1665 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1666 {
1667 	__u32 *addr;
1668 	int zero_bit = -1;
1669 
1670 	len = cur + len;
1671 	while (cur < len) {
1672 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1673 			/* fast path: clear whole word at once */
1674 			addr = bm + (cur >> 3);
1675 			if (*addr != (__u32)(-1) && zero_bit == -1)
1676 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1677 			*addr = 0;
1678 			cur += 32;
1679 			continue;
1680 		}
1681 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1682 			zero_bit = cur;
1683 		cur++;
1684 	}
1685 
1686 	return zero_bit;
1687 }
1688 
1689 void mb_set_bits(void *bm, int cur, int len)
1690 {
1691 	__u32 *addr;
1692 
1693 	len = cur + len;
1694 	while (cur < len) {
1695 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1696 			/* fast path: set whole word at once */
1697 			addr = bm + (cur >> 3);
1698 			*addr = 0xffffffff;
1699 			cur += 32;
1700 			continue;
1701 		}
1702 		mb_set_bit(cur, bm);
1703 		cur++;
1704 	}
1705 }
1706 
1707 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1708 {
1709 	if (mb_test_bit(*bit + side, bitmap)) {
1710 		mb_clear_bit(*bit, bitmap);
1711 		(*bit) -= side;
1712 		return 1;
1713 	}
1714 	else {
1715 		(*bit) += side;
1716 		mb_set_bit(*bit, bitmap);
1717 		return -1;
1718 	}
1719 }
1720 
1721 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1722 {
1723 	int max;
1724 	int order = 1;
1725 	void *buddy = mb_find_buddy(e4b, order, &max);
1726 
1727 	while (buddy) {
1728 		void *buddy2;
1729 
1730 		/* Bits in range [first; last] are known to be set since
1731 		 * corresponding blocks were allocated. Bits in range
1732 		 * (first; last) will stay set because they form buddies on
1733 		 * upper layer. We just deal with borders if they don't
1734 		 * align with upper layer and then go up.
1735 		 * Releasing entire group is all about clearing
1736 		 * single bit of highest order buddy.
1737 		 */
1738 
1739 		/* Example:
1740 		 * ---------------------------------
1741 		 * |   1   |   1   |   1   |   1   |
1742 		 * ---------------------------------
1743 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1744 		 * ---------------------------------
1745 		 *   0   1   2   3   4   5   6   7
1746 		 *      \_____________________/
1747 		 *
1748 		 * Neither [1] nor [6] is aligned to above layer.
1749 		 * Left neighbour [0] is free, so mark it busy,
1750 		 * decrease bb_counters and extend range to
1751 		 * [0; 6]
1752 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1753 		 * mark [6] free, increase bb_counters and shrink range to
1754 		 * [0; 5].
1755 		 * Then shift range to [0; 2], go up and do the same.
1756 		 */
1757 
1758 
1759 		if (first & 1)
1760 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1761 		if (!(last & 1))
1762 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1763 		if (first > last)
1764 			break;
1765 		order++;
1766 
1767 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1768 			mb_clear_bits(buddy, first, last - first + 1);
1769 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1770 			break;
1771 		}
1772 		first >>= 1;
1773 		last >>= 1;
1774 		buddy = buddy2;
1775 	}
1776 }
1777 
1778 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1779 			   int first, int count)
1780 {
1781 	int left_is_free = 0;
1782 	int right_is_free = 0;
1783 	int block;
1784 	int last = first + count - 1;
1785 	struct super_block *sb = e4b->bd_sb;
1786 
1787 	if (WARN_ON(count == 0))
1788 		return;
1789 	BUG_ON(last >= (sb->s_blocksize << 3));
1790 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1791 	/* Don't bother if the block group is corrupt. */
1792 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1793 		return;
1794 
1795 	mb_check_buddy(e4b);
1796 	mb_free_blocks_double(inode, e4b, first, count);
1797 
1798 	this_cpu_inc(discard_pa_seq);
1799 	e4b->bd_info->bb_free += count;
1800 	if (first < e4b->bd_info->bb_first_free)
1801 		e4b->bd_info->bb_first_free = first;
1802 
1803 	/* access memory sequentially: check left neighbour,
1804 	 * clear range and then check right neighbour
1805 	 */
1806 	if (first != 0)
1807 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1808 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1809 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1810 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1811 
1812 	if (unlikely(block != -1)) {
1813 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1814 		ext4_fsblk_t blocknr;
1815 
1816 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1817 		blocknr += EXT4_C2B(sbi, block);
1818 		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1819 			ext4_grp_locked_error(sb, e4b->bd_group,
1820 					      inode ? inode->i_ino : 0,
1821 					      blocknr,
1822 					      "freeing already freed block (bit %u); block bitmap corrupt.",
1823 					      block);
1824 			ext4_mark_group_bitmap_corrupted(
1825 				sb, e4b->bd_group,
1826 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1827 		}
1828 		goto done;
1829 	}
1830 
1831 	/* let's maintain fragments counter */
1832 	if (left_is_free && right_is_free)
1833 		e4b->bd_info->bb_fragments--;
1834 	else if (!left_is_free && !right_is_free)
1835 		e4b->bd_info->bb_fragments++;
1836 
1837 	/* buddy[0] == bd_bitmap is a special case, so handle
1838 	 * it right away and let mb_buddy_mark_free stay free of
1839 	 * zero order checks.
1840 	 * Check if neighbours are to be coaleasced,
1841 	 * adjust bitmap bb_counters and borders appropriately.
1842 	 */
1843 	if (first & 1) {
1844 		first += !left_is_free;
1845 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1846 	}
1847 	if (!(last & 1)) {
1848 		last -= !right_is_free;
1849 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1850 	}
1851 
1852 	if (first <= last)
1853 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1854 
1855 done:
1856 	mb_set_largest_free_order(sb, e4b->bd_info);
1857 	mb_update_avg_fragment_size(sb, e4b->bd_info);
1858 	mb_check_buddy(e4b);
1859 }
1860 
1861 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1862 				int needed, struct ext4_free_extent *ex)
1863 {
1864 	int next = block;
1865 	int max, order;
1866 	void *buddy;
1867 
1868 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1869 	BUG_ON(ex == NULL);
1870 
1871 	buddy = mb_find_buddy(e4b, 0, &max);
1872 	BUG_ON(buddy == NULL);
1873 	BUG_ON(block >= max);
1874 	if (mb_test_bit(block, buddy)) {
1875 		ex->fe_len = 0;
1876 		ex->fe_start = 0;
1877 		ex->fe_group = 0;
1878 		return 0;
1879 	}
1880 
1881 	/* find actual order */
1882 	order = mb_find_order_for_block(e4b, block);
1883 	block = block >> order;
1884 
1885 	ex->fe_len = 1 << order;
1886 	ex->fe_start = block << order;
1887 	ex->fe_group = e4b->bd_group;
1888 
1889 	/* calc difference from given start */
1890 	next = next - ex->fe_start;
1891 	ex->fe_len -= next;
1892 	ex->fe_start += next;
1893 
1894 	while (needed > ex->fe_len &&
1895 	       mb_find_buddy(e4b, order, &max)) {
1896 
1897 		if (block + 1 >= max)
1898 			break;
1899 
1900 		next = (block + 1) * (1 << order);
1901 		if (mb_test_bit(next, e4b->bd_bitmap))
1902 			break;
1903 
1904 		order = mb_find_order_for_block(e4b, next);
1905 
1906 		block = next >> order;
1907 		ex->fe_len += 1 << order;
1908 	}
1909 
1910 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1911 		/* Should never happen! (but apparently sometimes does?!?) */
1912 		WARN_ON(1);
1913 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
1914 			"corruption or bug in mb_find_extent "
1915 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1916 			block, order, needed, ex->fe_group, ex->fe_start,
1917 			ex->fe_len, ex->fe_logical);
1918 		ex->fe_len = 0;
1919 		ex->fe_start = 0;
1920 		ex->fe_group = 0;
1921 	}
1922 	return ex->fe_len;
1923 }
1924 
1925 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1926 {
1927 	int ord;
1928 	int mlen = 0;
1929 	int max = 0;
1930 	int cur;
1931 	int start = ex->fe_start;
1932 	int len = ex->fe_len;
1933 	unsigned ret = 0;
1934 	int len0 = len;
1935 	void *buddy;
1936 	bool split = false;
1937 
1938 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1939 	BUG_ON(e4b->bd_group != ex->fe_group);
1940 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1941 	mb_check_buddy(e4b);
1942 	mb_mark_used_double(e4b, start, len);
1943 
1944 	this_cpu_inc(discard_pa_seq);
1945 	e4b->bd_info->bb_free -= len;
1946 	if (e4b->bd_info->bb_first_free == start)
1947 		e4b->bd_info->bb_first_free += len;
1948 
1949 	/* let's maintain fragments counter */
1950 	if (start != 0)
1951 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1952 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1953 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1954 	if (mlen && max)
1955 		e4b->bd_info->bb_fragments++;
1956 	else if (!mlen && !max)
1957 		e4b->bd_info->bb_fragments--;
1958 
1959 	/* let's maintain buddy itself */
1960 	while (len) {
1961 		if (!split)
1962 			ord = mb_find_order_for_block(e4b, start);
1963 
1964 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1965 			/* the whole chunk may be allocated at once! */
1966 			mlen = 1 << ord;
1967 			if (!split)
1968 				buddy = mb_find_buddy(e4b, ord, &max);
1969 			else
1970 				split = false;
1971 			BUG_ON((start >> ord) >= max);
1972 			mb_set_bit(start >> ord, buddy);
1973 			e4b->bd_info->bb_counters[ord]--;
1974 			start += mlen;
1975 			len -= mlen;
1976 			BUG_ON(len < 0);
1977 			continue;
1978 		}
1979 
1980 		/* store for history */
1981 		if (ret == 0)
1982 			ret = len | (ord << 16);
1983 
1984 		/* we have to split large buddy */
1985 		BUG_ON(ord <= 0);
1986 		buddy = mb_find_buddy(e4b, ord, &max);
1987 		mb_set_bit(start >> ord, buddy);
1988 		e4b->bd_info->bb_counters[ord]--;
1989 
1990 		ord--;
1991 		cur = (start >> ord) & ~1U;
1992 		buddy = mb_find_buddy(e4b, ord, &max);
1993 		mb_clear_bit(cur, buddy);
1994 		mb_clear_bit(cur + 1, buddy);
1995 		e4b->bd_info->bb_counters[ord]++;
1996 		e4b->bd_info->bb_counters[ord]++;
1997 		split = true;
1998 	}
1999 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2000 
2001 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2002 	mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2003 	mb_check_buddy(e4b);
2004 
2005 	return ret;
2006 }
2007 
2008 /*
2009  * Must be called under group lock!
2010  */
2011 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2012 					struct ext4_buddy *e4b)
2013 {
2014 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2015 	int ret;
2016 
2017 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2018 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2019 
2020 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2021 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2022 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
2023 
2024 	/* preallocation can change ac_b_ex, thus we store actually
2025 	 * allocated blocks for history */
2026 	ac->ac_f_ex = ac->ac_b_ex;
2027 
2028 	ac->ac_status = AC_STATUS_FOUND;
2029 	ac->ac_tail = ret & 0xffff;
2030 	ac->ac_buddy = ret >> 16;
2031 
2032 	/*
2033 	 * take the page reference. We want the page to be pinned
2034 	 * so that we don't get a ext4_mb_init_cache_call for this
2035 	 * group until we update the bitmap. That would mean we
2036 	 * double allocate blocks. The reference is dropped
2037 	 * in ext4_mb_release_context
2038 	 */
2039 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
2040 	get_page(ac->ac_bitmap_page);
2041 	ac->ac_buddy_page = e4b->bd_buddy_page;
2042 	get_page(ac->ac_buddy_page);
2043 	/* store last allocated for subsequent stream allocation */
2044 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2045 		spin_lock(&sbi->s_md_lock);
2046 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2047 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2048 		spin_unlock(&sbi->s_md_lock);
2049 	}
2050 	/*
2051 	 * As we've just preallocated more space than
2052 	 * user requested originally, we store allocated
2053 	 * space in a special descriptor.
2054 	 */
2055 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2056 		ext4_mb_new_preallocation(ac);
2057 
2058 }
2059 
2060 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2061 					struct ext4_buddy *e4b,
2062 					int finish_group)
2063 {
2064 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2065 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2066 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2067 	struct ext4_free_extent ex;
2068 	int max;
2069 
2070 	if (ac->ac_status == AC_STATUS_FOUND)
2071 		return;
2072 	/*
2073 	 * We don't want to scan for a whole year
2074 	 */
2075 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2076 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2077 		ac->ac_status = AC_STATUS_BREAK;
2078 		return;
2079 	}
2080 
2081 	/*
2082 	 * Haven't found good chunk so far, let's continue
2083 	 */
2084 	if (bex->fe_len < gex->fe_len)
2085 		return;
2086 
2087 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2088 			&& bex->fe_group == e4b->bd_group) {
2089 		/* recheck chunk's availability - we don't know
2090 		 * when it was found (within this lock-unlock
2091 		 * period or not) */
2092 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
2093 		if (max >= gex->fe_len) {
2094 			ext4_mb_use_best_found(ac, e4b);
2095 			return;
2096 		}
2097 	}
2098 }
2099 
2100 /*
2101  * The routine checks whether found extent is good enough. If it is,
2102  * then the extent gets marked used and flag is set to the context
2103  * to stop scanning. Otherwise, the extent is compared with the
2104  * previous found extent and if new one is better, then it's stored
2105  * in the context. Later, the best found extent will be used, if
2106  * mballoc can't find good enough extent.
2107  *
2108  * FIXME: real allocation policy is to be designed yet!
2109  */
2110 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2111 					struct ext4_free_extent *ex,
2112 					struct ext4_buddy *e4b)
2113 {
2114 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2115 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2116 
2117 	BUG_ON(ex->fe_len <= 0);
2118 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2119 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2120 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2121 
2122 	ac->ac_found++;
2123 
2124 	/*
2125 	 * The special case - take what you catch first
2126 	 */
2127 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2128 		*bex = *ex;
2129 		ext4_mb_use_best_found(ac, e4b);
2130 		return;
2131 	}
2132 
2133 	/*
2134 	 * Let's check whether the chuck is good enough
2135 	 */
2136 	if (ex->fe_len == gex->fe_len) {
2137 		*bex = *ex;
2138 		ext4_mb_use_best_found(ac, e4b);
2139 		return;
2140 	}
2141 
2142 	/*
2143 	 * If this is first found extent, just store it in the context
2144 	 */
2145 	if (bex->fe_len == 0) {
2146 		*bex = *ex;
2147 		return;
2148 	}
2149 
2150 	/*
2151 	 * If new found extent is better, store it in the context
2152 	 */
2153 	if (bex->fe_len < gex->fe_len) {
2154 		/* if the request isn't satisfied, any found extent
2155 		 * larger than previous best one is better */
2156 		if (ex->fe_len > bex->fe_len)
2157 			*bex = *ex;
2158 	} else if (ex->fe_len > gex->fe_len) {
2159 		/* if the request is satisfied, then we try to find
2160 		 * an extent that still satisfy the request, but is
2161 		 * smaller than previous one */
2162 		if (ex->fe_len < bex->fe_len)
2163 			*bex = *ex;
2164 	}
2165 
2166 	ext4_mb_check_limits(ac, e4b, 0);
2167 }
2168 
2169 static noinline_for_stack
2170 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2171 					struct ext4_buddy *e4b)
2172 {
2173 	struct ext4_free_extent ex = ac->ac_b_ex;
2174 	ext4_group_t group = ex.fe_group;
2175 	int max;
2176 	int err;
2177 
2178 	BUG_ON(ex.fe_len <= 0);
2179 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2180 	if (err)
2181 		return err;
2182 
2183 	ext4_lock_group(ac->ac_sb, group);
2184 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2185 
2186 	if (max > 0) {
2187 		ac->ac_b_ex = ex;
2188 		ext4_mb_use_best_found(ac, e4b);
2189 	}
2190 
2191 	ext4_unlock_group(ac->ac_sb, group);
2192 	ext4_mb_unload_buddy(e4b);
2193 
2194 	return 0;
2195 }
2196 
2197 static noinline_for_stack
2198 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2199 				struct ext4_buddy *e4b)
2200 {
2201 	ext4_group_t group = ac->ac_g_ex.fe_group;
2202 	int max;
2203 	int err;
2204 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2205 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2206 	struct ext4_free_extent ex;
2207 
2208 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
2209 		return 0;
2210 	if (grp->bb_free == 0)
2211 		return 0;
2212 
2213 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2214 	if (err)
2215 		return err;
2216 
2217 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
2218 		ext4_mb_unload_buddy(e4b);
2219 		return 0;
2220 	}
2221 
2222 	ext4_lock_group(ac->ac_sb, group);
2223 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2224 			     ac->ac_g_ex.fe_len, &ex);
2225 	ex.fe_logical = 0xDEADFA11; /* debug value */
2226 
2227 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
2228 		ext4_fsblk_t start;
2229 
2230 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
2231 			ex.fe_start;
2232 		/* use do_div to get remainder (would be 64-bit modulo) */
2233 		if (do_div(start, sbi->s_stripe) == 0) {
2234 			ac->ac_found++;
2235 			ac->ac_b_ex = ex;
2236 			ext4_mb_use_best_found(ac, e4b);
2237 		}
2238 	} else if (max >= ac->ac_g_ex.fe_len) {
2239 		BUG_ON(ex.fe_len <= 0);
2240 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2241 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2242 		ac->ac_found++;
2243 		ac->ac_b_ex = ex;
2244 		ext4_mb_use_best_found(ac, e4b);
2245 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2246 		/* Sometimes, caller may want to merge even small
2247 		 * number of blocks to an existing extent */
2248 		BUG_ON(ex.fe_len <= 0);
2249 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2250 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2251 		ac->ac_found++;
2252 		ac->ac_b_ex = ex;
2253 		ext4_mb_use_best_found(ac, e4b);
2254 	}
2255 	ext4_unlock_group(ac->ac_sb, group);
2256 	ext4_mb_unload_buddy(e4b);
2257 
2258 	return 0;
2259 }
2260 
2261 /*
2262  * The routine scans buddy structures (not bitmap!) from given order
2263  * to max order and tries to find big enough chunk to satisfy the req
2264  */
2265 static noinline_for_stack
2266 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2267 					struct ext4_buddy *e4b)
2268 {
2269 	struct super_block *sb = ac->ac_sb;
2270 	struct ext4_group_info *grp = e4b->bd_info;
2271 	void *buddy;
2272 	int i;
2273 	int k;
2274 	int max;
2275 
2276 	BUG_ON(ac->ac_2order <= 0);
2277 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2278 		if (grp->bb_counters[i] == 0)
2279 			continue;
2280 
2281 		buddy = mb_find_buddy(e4b, i, &max);
2282 		BUG_ON(buddy == NULL);
2283 
2284 		k = mb_find_next_zero_bit(buddy, max, 0);
2285 		if (k >= max) {
2286 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2287 				"%d free clusters of order %d. But found 0",
2288 				grp->bb_counters[i], i);
2289 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2290 					 e4b->bd_group,
2291 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2292 			break;
2293 		}
2294 		ac->ac_found++;
2295 
2296 		ac->ac_b_ex.fe_len = 1 << i;
2297 		ac->ac_b_ex.fe_start = k << i;
2298 		ac->ac_b_ex.fe_group = e4b->bd_group;
2299 
2300 		ext4_mb_use_best_found(ac, e4b);
2301 
2302 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2303 
2304 		if (EXT4_SB(sb)->s_mb_stats)
2305 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2306 
2307 		break;
2308 	}
2309 }
2310 
2311 /*
2312  * The routine scans the group and measures all found extents.
2313  * In order to optimize scanning, caller must pass number of
2314  * free blocks in the group, so the routine can know upper limit.
2315  */
2316 static noinline_for_stack
2317 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2318 					struct ext4_buddy *e4b)
2319 {
2320 	struct super_block *sb = ac->ac_sb;
2321 	void *bitmap = e4b->bd_bitmap;
2322 	struct ext4_free_extent ex;
2323 	int i;
2324 	int free;
2325 
2326 	free = e4b->bd_info->bb_free;
2327 	if (WARN_ON(free <= 0))
2328 		return;
2329 
2330 	i = e4b->bd_info->bb_first_free;
2331 
2332 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2333 		i = mb_find_next_zero_bit(bitmap,
2334 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2335 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2336 			/*
2337 			 * IF we have corrupt bitmap, we won't find any
2338 			 * free blocks even though group info says we
2339 			 * have free blocks
2340 			 */
2341 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2342 					"%d free clusters as per "
2343 					"group info. But bitmap says 0",
2344 					free);
2345 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2346 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2347 			break;
2348 		}
2349 
2350 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2351 		if (WARN_ON(ex.fe_len <= 0))
2352 			break;
2353 		if (free < ex.fe_len) {
2354 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2355 					"%d free clusters as per "
2356 					"group info. But got %d blocks",
2357 					free, ex.fe_len);
2358 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2359 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2360 			/*
2361 			 * The number of free blocks differs. This mostly
2362 			 * indicate that the bitmap is corrupt. So exit
2363 			 * without claiming the space.
2364 			 */
2365 			break;
2366 		}
2367 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2368 		ext4_mb_measure_extent(ac, &ex, e4b);
2369 
2370 		i += ex.fe_len;
2371 		free -= ex.fe_len;
2372 	}
2373 
2374 	ext4_mb_check_limits(ac, e4b, 1);
2375 }
2376 
2377 /*
2378  * This is a special case for storages like raid5
2379  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2380  */
2381 static noinline_for_stack
2382 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2383 				 struct ext4_buddy *e4b)
2384 {
2385 	struct super_block *sb = ac->ac_sb;
2386 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2387 	void *bitmap = e4b->bd_bitmap;
2388 	struct ext4_free_extent ex;
2389 	ext4_fsblk_t first_group_block;
2390 	ext4_fsblk_t a;
2391 	ext4_grpblk_t i;
2392 	int max;
2393 
2394 	BUG_ON(sbi->s_stripe == 0);
2395 
2396 	/* find first stripe-aligned block in group */
2397 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2398 
2399 	a = first_group_block + sbi->s_stripe - 1;
2400 	do_div(a, sbi->s_stripe);
2401 	i = (a * sbi->s_stripe) - first_group_block;
2402 
2403 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2404 		if (!mb_test_bit(i, bitmap)) {
2405 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2406 			if (max >= sbi->s_stripe) {
2407 				ac->ac_found++;
2408 				ex.fe_logical = 0xDEADF00D; /* debug value */
2409 				ac->ac_b_ex = ex;
2410 				ext4_mb_use_best_found(ac, e4b);
2411 				break;
2412 			}
2413 		}
2414 		i += sbi->s_stripe;
2415 	}
2416 }
2417 
2418 /*
2419  * This is also called BEFORE we load the buddy bitmap.
2420  * Returns either 1 or 0 indicating that the group is either suitable
2421  * for the allocation or not.
2422  */
2423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2424 				ext4_group_t group, int cr)
2425 {
2426 	ext4_grpblk_t free, fragments;
2427 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2428 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2429 
2430 	BUG_ON(cr < 0 || cr >= 4);
2431 
2432 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2433 		return false;
2434 
2435 	free = grp->bb_free;
2436 	if (free == 0)
2437 		return false;
2438 
2439 	fragments = grp->bb_fragments;
2440 	if (fragments == 0)
2441 		return false;
2442 
2443 	switch (cr) {
2444 	case 0:
2445 		BUG_ON(ac->ac_2order == 0);
2446 
2447 		/* Avoid using the first bg of a flexgroup for data files */
2448 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2449 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2450 		    ((group % flex_size) == 0))
2451 			return false;
2452 
2453 		if (free < ac->ac_g_ex.fe_len)
2454 			return false;
2455 
2456 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2457 			return true;
2458 
2459 		if (grp->bb_largest_free_order < ac->ac_2order)
2460 			return false;
2461 
2462 		return true;
2463 	case 1:
2464 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2465 			return true;
2466 		break;
2467 	case 2:
2468 		if (free >= ac->ac_g_ex.fe_len)
2469 			return true;
2470 		break;
2471 	case 3:
2472 		return true;
2473 	default:
2474 		BUG();
2475 	}
2476 
2477 	return false;
2478 }
2479 
2480 /*
2481  * This could return negative error code if something goes wrong
2482  * during ext4_mb_init_group(). This should not be called with
2483  * ext4_lock_group() held.
2484  *
2485  * Note: because we are conditionally operating with the group lock in
2486  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2487  * function using __acquire and __release.  This means we need to be
2488  * super careful before messing with the error path handling via "goto
2489  * out"!
2490  */
2491 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2492 				     ext4_group_t group, int cr)
2493 {
2494 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2495 	struct super_block *sb = ac->ac_sb;
2496 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2497 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2498 	ext4_grpblk_t free;
2499 	int ret = 0;
2500 
2501 	if (sbi->s_mb_stats)
2502 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2503 	if (should_lock) {
2504 		ext4_lock_group(sb, group);
2505 		__release(ext4_group_lock_ptr(sb, group));
2506 	}
2507 	free = grp->bb_free;
2508 	if (free == 0)
2509 		goto out;
2510 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2511 		goto out;
2512 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2513 		goto out;
2514 	if (should_lock) {
2515 		__acquire(ext4_group_lock_ptr(sb, group));
2516 		ext4_unlock_group(sb, group);
2517 	}
2518 
2519 	/* We only do this if the grp has never been initialized */
2520 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2521 		struct ext4_group_desc *gdp =
2522 			ext4_get_group_desc(sb, group, NULL);
2523 		int ret;
2524 
2525 		/* cr=0/1 is a very optimistic search to find large
2526 		 * good chunks almost for free.  If buddy data is not
2527 		 * ready, then this optimization makes no sense.  But
2528 		 * we never skip the first block group in a flex_bg,
2529 		 * since this gets used for metadata block allocation,
2530 		 * and we want to make sure we locate metadata blocks
2531 		 * in the first block group in the flex_bg if possible.
2532 		 */
2533 		if (cr < 2 &&
2534 		    (!sbi->s_log_groups_per_flex ||
2535 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2536 		    !(ext4_has_group_desc_csum(sb) &&
2537 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2538 			return 0;
2539 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2540 		if (ret)
2541 			return ret;
2542 	}
2543 
2544 	if (should_lock) {
2545 		ext4_lock_group(sb, group);
2546 		__release(ext4_group_lock_ptr(sb, group));
2547 	}
2548 	ret = ext4_mb_good_group(ac, group, cr);
2549 out:
2550 	if (should_lock) {
2551 		__acquire(ext4_group_lock_ptr(sb, group));
2552 		ext4_unlock_group(sb, group);
2553 	}
2554 	return ret;
2555 }
2556 
2557 /*
2558  * Start prefetching @nr block bitmaps starting at @group.
2559  * Return the next group which needs to be prefetched.
2560  */
2561 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2562 			      unsigned int nr, int *cnt)
2563 {
2564 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2565 	struct buffer_head *bh;
2566 	struct blk_plug plug;
2567 
2568 	blk_start_plug(&plug);
2569 	while (nr-- > 0) {
2570 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2571 								  NULL);
2572 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2573 
2574 		/*
2575 		 * Prefetch block groups with free blocks; but don't
2576 		 * bother if it is marked uninitialized on disk, since
2577 		 * it won't require I/O to read.  Also only try to
2578 		 * prefetch once, so we avoid getblk() call, which can
2579 		 * be expensive.
2580 		 */
2581 		if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2582 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2583 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2584 		    !(ext4_has_group_desc_csum(sb) &&
2585 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2586 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2587 			if (bh && !IS_ERR(bh)) {
2588 				if (!buffer_uptodate(bh) && cnt)
2589 					(*cnt)++;
2590 				brelse(bh);
2591 			}
2592 		}
2593 		if (++group >= ngroups)
2594 			group = 0;
2595 	}
2596 	blk_finish_plug(&plug);
2597 	return group;
2598 }
2599 
2600 /*
2601  * Prefetching reads the block bitmap into the buffer cache; but we
2602  * need to make sure that the buddy bitmap in the page cache has been
2603  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2604  * is not yet completed, or indeed if it was not initiated by
2605  * ext4_mb_prefetch did not start the I/O.
2606  *
2607  * TODO: We should actually kick off the buddy bitmap setup in a work
2608  * queue when the buffer I/O is completed, so that we don't block
2609  * waiting for the block allocation bitmap read to finish when
2610  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2611  */
2612 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2613 			   unsigned int nr)
2614 {
2615 	while (nr-- > 0) {
2616 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2617 								  NULL);
2618 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2619 
2620 		if (!group)
2621 			group = ext4_get_groups_count(sb);
2622 		group--;
2623 		grp = ext4_get_group_info(sb, group);
2624 
2625 		if (EXT4_MB_GRP_NEED_INIT(grp) &&
2626 		    ext4_free_group_clusters(sb, gdp) > 0 &&
2627 		    !(ext4_has_group_desc_csum(sb) &&
2628 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) {
2629 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2630 				break;
2631 		}
2632 	}
2633 }
2634 
2635 static noinline_for_stack int
2636 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2637 {
2638 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2639 	int cr = -1;
2640 	int err = 0, first_err = 0;
2641 	unsigned int nr = 0, prefetch_ios = 0;
2642 	struct ext4_sb_info *sbi;
2643 	struct super_block *sb;
2644 	struct ext4_buddy e4b;
2645 	int lost;
2646 
2647 	sb = ac->ac_sb;
2648 	sbi = EXT4_SB(sb);
2649 	ngroups = ext4_get_groups_count(sb);
2650 	/* non-extent files are limited to low blocks/groups */
2651 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2652 		ngroups = sbi->s_blockfile_groups;
2653 
2654 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2655 
2656 	/* first, try the goal */
2657 	err = ext4_mb_find_by_goal(ac, &e4b);
2658 	if (err || ac->ac_status == AC_STATUS_FOUND)
2659 		goto out;
2660 
2661 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2662 		goto out;
2663 
2664 	/*
2665 	 * ac->ac_2order is set only if the fe_len is a power of 2
2666 	 * if ac->ac_2order is set we also set criteria to 0 so that we
2667 	 * try exact allocation using buddy.
2668 	 */
2669 	i = fls(ac->ac_g_ex.fe_len);
2670 	ac->ac_2order = 0;
2671 	/*
2672 	 * We search using buddy data only if the order of the request
2673 	 * is greater than equal to the sbi_s_mb_order2_reqs
2674 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2675 	 * We also support searching for power-of-two requests only for
2676 	 * requests upto maximum buddy size we have constructed.
2677 	 */
2678 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2679 		/*
2680 		 * This should tell if fe_len is exactly power of 2
2681 		 */
2682 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2683 			ac->ac_2order = array_index_nospec(i - 1,
2684 							   MB_NUM_ORDERS(sb));
2685 	}
2686 
2687 	/* if stream allocation is enabled, use global goal */
2688 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2689 		/* TBD: may be hot point */
2690 		spin_lock(&sbi->s_md_lock);
2691 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2692 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2693 		spin_unlock(&sbi->s_md_lock);
2694 	}
2695 
2696 	/* Let's just scan groups to find more-less suitable blocks */
2697 	cr = ac->ac_2order ? 0 : 1;
2698 	/*
2699 	 * cr == 0 try to get exact allocation,
2700 	 * cr == 3  try to get anything
2701 	 */
2702 repeat:
2703 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2704 		ac->ac_criteria = cr;
2705 		/*
2706 		 * searching for the right group start
2707 		 * from the goal value specified
2708 		 */
2709 		group = ac->ac_g_ex.fe_group;
2710 		ac->ac_last_optimal_group = group;
2711 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2712 		prefetch_grp = group;
2713 
2714 		for (i = 0; i < ngroups; group = next_linear_group(ac, group, ngroups),
2715 			     i++) {
2716 			int ret = 0, new_cr;
2717 
2718 			cond_resched();
2719 
2720 			ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups);
2721 			if (new_cr != cr) {
2722 				cr = new_cr;
2723 				goto repeat;
2724 			}
2725 
2726 			/*
2727 			 * Batch reads of the block allocation bitmaps
2728 			 * to get multiple READs in flight; limit
2729 			 * prefetching at cr=0/1, otherwise mballoc can
2730 			 * spend a lot of time loading imperfect groups
2731 			 */
2732 			if ((prefetch_grp == group) &&
2733 			    (cr > 1 ||
2734 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2735 				unsigned int curr_ios = prefetch_ios;
2736 
2737 				nr = sbi->s_mb_prefetch;
2738 				if (ext4_has_feature_flex_bg(sb)) {
2739 					nr = 1 << sbi->s_log_groups_per_flex;
2740 					nr -= group & (nr - 1);
2741 					nr = min(nr, sbi->s_mb_prefetch);
2742 				}
2743 				prefetch_grp = ext4_mb_prefetch(sb, group,
2744 							nr, &prefetch_ios);
2745 				if (prefetch_ios == curr_ios)
2746 					nr = 0;
2747 			}
2748 
2749 			/* This now checks without needing the buddy page */
2750 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2751 			if (ret <= 0) {
2752 				if (!first_err)
2753 					first_err = ret;
2754 				continue;
2755 			}
2756 
2757 			err = ext4_mb_load_buddy(sb, group, &e4b);
2758 			if (err)
2759 				goto out;
2760 
2761 			ext4_lock_group(sb, group);
2762 
2763 			/*
2764 			 * We need to check again after locking the
2765 			 * block group
2766 			 */
2767 			ret = ext4_mb_good_group(ac, group, cr);
2768 			if (ret == 0) {
2769 				ext4_unlock_group(sb, group);
2770 				ext4_mb_unload_buddy(&e4b);
2771 				continue;
2772 			}
2773 
2774 			ac->ac_groups_scanned++;
2775 			if (cr == 0)
2776 				ext4_mb_simple_scan_group(ac, &e4b);
2777 			else if (cr == 1 && sbi->s_stripe &&
2778 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2779 				ext4_mb_scan_aligned(ac, &e4b);
2780 			else
2781 				ext4_mb_complex_scan_group(ac, &e4b);
2782 
2783 			ext4_unlock_group(sb, group);
2784 			ext4_mb_unload_buddy(&e4b);
2785 
2786 			if (ac->ac_status != AC_STATUS_CONTINUE)
2787 				break;
2788 		}
2789 		/* Processed all groups and haven't found blocks */
2790 		if (sbi->s_mb_stats && i == ngroups)
2791 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2792 	}
2793 
2794 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2795 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2796 		/*
2797 		 * We've been searching too long. Let's try to allocate
2798 		 * the best chunk we've found so far
2799 		 */
2800 		ext4_mb_try_best_found(ac, &e4b);
2801 		if (ac->ac_status != AC_STATUS_FOUND) {
2802 			/*
2803 			 * Someone more lucky has already allocated it.
2804 			 * The only thing we can do is just take first
2805 			 * found block(s)
2806 			 */
2807 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2808 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2809 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2810 				 ac->ac_b_ex.fe_len, lost);
2811 
2812 			ac->ac_b_ex.fe_group = 0;
2813 			ac->ac_b_ex.fe_start = 0;
2814 			ac->ac_b_ex.fe_len = 0;
2815 			ac->ac_status = AC_STATUS_CONTINUE;
2816 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2817 			cr = 3;
2818 			goto repeat;
2819 		}
2820 	}
2821 
2822 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2823 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2824 out:
2825 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2826 		err = first_err;
2827 
2828 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2829 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2830 		 ac->ac_flags, cr, err);
2831 
2832 	if (nr)
2833 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2834 
2835 	return err;
2836 }
2837 
2838 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2839 {
2840 	struct super_block *sb = pde_data(file_inode(seq->file));
2841 	ext4_group_t group;
2842 
2843 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2844 		return NULL;
2845 	group = *pos + 1;
2846 	return (void *) ((unsigned long) group);
2847 }
2848 
2849 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2850 {
2851 	struct super_block *sb = pde_data(file_inode(seq->file));
2852 	ext4_group_t group;
2853 
2854 	++*pos;
2855 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2856 		return NULL;
2857 	group = *pos + 1;
2858 	return (void *) ((unsigned long) group);
2859 }
2860 
2861 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2862 {
2863 	struct super_block *sb = pde_data(file_inode(seq->file));
2864 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2865 	int i;
2866 	int err, buddy_loaded = 0;
2867 	struct ext4_buddy e4b;
2868 	struct ext4_group_info *grinfo;
2869 	unsigned char blocksize_bits = min_t(unsigned char,
2870 					     sb->s_blocksize_bits,
2871 					     EXT4_MAX_BLOCK_LOG_SIZE);
2872 	struct sg {
2873 		struct ext4_group_info info;
2874 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2875 	} sg;
2876 
2877 	group--;
2878 	if (group == 0)
2879 		seq_puts(seq, "#group: free  frags first ["
2880 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2881 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2882 
2883 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2884 		sizeof(struct ext4_group_info);
2885 
2886 	grinfo = ext4_get_group_info(sb, group);
2887 	/* Load the group info in memory only if not already loaded. */
2888 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2889 		err = ext4_mb_load_buddy(sb, group, &e4b);
2890 		if (err) {
2891 			seq_printf(seq, "#%-5u: I/O error\n", group);
2892 			return 0;
2893 		}
2894 		buddy_loaded = 1;
2895 	}
2896 
2897 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2898 
2899 	if (buddy_loaded)
2900 		ext4_mb_unload_buddy(&e4b);
2901 
2902 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2903 			sg.info.bb_fragments, sg.info.bb_first_free);
2904 	for (i = 0; i <= 13; i++)
2905 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2906 				sg.info.bb_counters[i] : 0);
2907 	seq_puts(seq, " ]\n");
2908 
2909 	return 0;
2910 }
2911 
2912 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2913 {
2914 }
2915 
2916 const struct seq_operations ext4_mb_seq_groups_ops = {
2917 	.start  = ext4_mb_seq_groups_start,
2918 	.next   = ext4_mb_seq_groups_next,
2919 	.stop   = ext4_mb_seq_groups_stop,
2920 	.show   = ext4_mb_seq_groups_show,
2921 };
2922 
2923 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
2924 {
2925 	struct super_block *sb = seq->private;
2926 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2927 
2928 	seq_puts(seq, "mballoc:\n");
2929 	if (!sbi->s_mb_stats) {
2930 		seq_puts(seq, "\tmb stats collection turned off.\n");
2931 		seq_puts(seq, "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
2932 		return 0;
2933 	}
2934 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
2935 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
2936 
2937 	seq_printf(seq, "\tgroups_scanned: %u\n",  atomic_read(&sbi->s_bal_groups_scanned));
2938 
2939 	seq_puts(seq, "\tcr0_stats:\n");
2940 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[0]));
2941 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2942 		   atomic64_read(&sbi->s_bal_cX_groups_considered[0]));
2943 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2944 		   atomic64_read(&sbi->s_bal_cX_failed[0]));
2945 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
2946 		   atomic_read(&sbi->s_bal_cr0_bad_suggestions));
2947 
2948 	seq_puts(seq, "\tcr1_stats:\n");
2949 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[1]));
2950 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2951 		   atomic64_read(&sbi->s_bal_cX_groups_considered[1]));
2952 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2953 		   atomic64_read(&sbi->s_bal_cX_failed[1]));
2954 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
2955 		   atomic_read(&sbi->s_bal_cr1_bad_suggestions));
2956 
2957 	seq_puts(seq, "\tcr2_stats:\n");
2958 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[2]));
2959 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2960 		   atomic64_read(&sbi->s_bal_cX_groups_considered[2]));
2961 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2962 		   atomic64_read(&sbi->s_bal_cX_failed[2]));
2963 
2964 	seq_puts(seq, "\tcr3_stats:\n");
2965 	seq_printf(seq, "\t\thits: %llu\n", atomic64_read(&sbi->s_bal_cX_hits[3]));
2966 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
2967 		   atomic64_read(&sbi->s_bal_cX_groups_considered[3]));
2968 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
2969 		   atomic64_read(&sbi->s_bal_cX_failed[3]));
2970 	seq_printf(seq, "\textents_scanned: %u\n", atomic_read(&sbi->s_bal_ex_scanned));
2971 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
2972 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
2973 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
2974 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
2975 
2976 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
2977 		   atomic_read(&sbi->s_mb_buddies_generated),
2978 		   ext4_get_groups_count(sb));
2979 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
2980 		   atomic64_read(&sbi->s_mb_generation_time));
2981 	seq_printf(seq, "\tpreallocated: %u\n",
2982 		   atomic_read(&sbi->s_mb_preallocated));
2983 	seq_printf(seq, "\tdiscarded: %u\n",
2984 		   atomic_read(&sbi->s_mb_discarded));
2985 	return 0;
2986 }
2987 
2988 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
2989 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
2990 {
2991 	struct super_block *sb = pde_data(file_inode(seq->file));
2992 	unsigned long position;
2993 
2994 	read_lock(&EXT4_SB(sb)->s_mb_rb_lock);
2995 
2996 	if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1)
2997 		return NULL;
2998 	position = *pos + 1;
2999 	return (void *) ((unsigned long) position);
3000 }
3001 
3002 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3003 {
3004 	struct super_block *sb = pde_data(file_inode(seq->file));
3005 	unsigned long position;
3006 
3007 	++*pos;
3008 	if (*pos < 0 || *pos >= MB_NUM_ORDERS(sb) + 1)
3009 		return NULL;
3010 	position = *pos + 1;
3011 	return (void *) ((unsigned long) position);
3012 }
3013 
3014 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3015 {
3016 	struct super_block *sb = pde_data(file_inode(seq->file));
3017 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3018 	unsigned long position = ((unsigned long) v);
3019 	struct ext4_group_info *grp;
3020 	struct rb_node *n;
3021 	unsigned int count, min, max;
3022 
3023 	position--;
3024 	if (position >= MB_NUM_ORDERS(sb)) {
3025 		seq_puts(seq, "fragment_size_tree:\n");
3026 		n = rb_first(&sbi->s_mb_avg_fragment_size_root);
3027 		if (!n) {
3028 			seq_puts(seq, "\ttree_min: 0\n\ttree_max: 0\n\ttree_nodes: 0\n");
3029 			return 0;
3030 		}
3031 		grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb);
3032 		min = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0;
3033 		count = 1;
3034 		while (rb_next(n)) {
3035 			count++;
3036 			n = rb_next(n);
3037 		}
3038 		grp = rb_entry(n, struct ext4_group_info, bb_avg_fragment_size_rb);
3039 		max = grp->bb_fragments ? grp->bb_free / grp->bb_fragments : 0;
3040 
3041 		seq_printf(seq, "\ttree_min: %u\n\ttree_max: %u\n\ttree_nodes: %u\n",
3042 			   min, max, count);
3043 		return 0;
3044 	}
3045 
3046 	if (position == 0) {
3047 		seq_printf(seq, "optimize_scan: %d\n",
3048 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3049 		seq_puts(seq, "max_free_order_lists:\n");
3050 	}
3051 	count = 0;
3052 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3053 			    bb_largest_free_order_node)
3054 		count++;
3055 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3056 		   (unsigned int)position, count);
3057 
3058 	return 0;
3059 }
3060 
3061 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3062 __releases(&EXT4_SB(sb)->s_mb_rb_lock)
3063 {
3064 	struct super_block *sb = pde_data(file_inode(seq->file));
3065 
3066 	read_unlock(&EXT4_SB(sb)->s_mb_rb_lock);
3067 }
3068 
3069 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3070 	.start  = ext4_mb_seq_structs_summary_start,
3071 	.next   = ext4_mb_seq_structs_summary_next,
3072 	.stop   = ext4_mb_seq_structs_summary_stop,
3073 	.show   = ext4_mb_seq_structs_summary_show,
3074 };
3075 
3076 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3077 {
3078 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3079 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3080 
3081 	BUG_ON(!cachep);
3082 	return cachep;
3083 }
3084 
3085 /*
3086  * Allocate the top-level s_group_info array for the specified number
3087  * of groups
3088  */
3089 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3090 {
3091 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3092 	unsigned size;
3093 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3094 
3095 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3096 		EXT4_DESC_PER_BLOCK_BITS(sb);
3097 	if (size <= sbi->s_group_info_size)
3098 		return 0;
3099 
3100 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3101 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3102 	if (!new_groupinfo) {
3103 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3104 		return -ENOMEM;
3105 	}
3106 	rcu_read_lock();
3107 	old_groupinfo = rcu_dereference(sbi->s_group_info);
3108 	if (old_groupinfo)
3109 		memcpy(new_groupinfo, old_groupinfo,
3110 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3111 	rcu_read_unlock();
3112 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3113 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3114 	if (old_groupinfo)
3115 		ext4_kvfree_array_rcu(old_groupinfo);
3116 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3117 		   sbi->s_group_info_size);
3118 	return 0;
3119 }
3120 
3121 /* Create and initialize ext4_group_info data for the given group. */
3122 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3123 			  struct ext4_group_desc *desc)
3124 {
3125 	int i;
3126 	int metalen = 0;
3127 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3128 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3129 	struct ext4_group_info **meta_group_info;
3130 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3131 
3132 	/*
3133 	 * First check if this group is the first of a reserved block.
3134 	 * If it's true, we have to allocate a new table of pointers
3135 	 * to ext4_group_info structures
3136 	 */
3137 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3138 		metalen = sizeof(*meta_group_info) <<
3139 			EXT4_DESC_PER_BLOCK_BITS(sb);
3140 		meta_group_info = kmalloc(metalen, GFP_NOFS);
3141 		if (meta_group_info == NULL) {
3142 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3143 				 "for a buddy group");
3144 			goto exit_meta_group_info;
3145 		}
3146 		rcu_read_lock();
3147 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3148 		rcu_read_unlock();
3149 	}
3150 
3151 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3152 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3153 
3154 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3155 	if (meta_group_info[i] == NULL) {
3156 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3157 		goto exit_group_info;
3158 	}
3159 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3160 		&(meta_group_info[i]->bb_state));
3161 
3162 	/*
3163 	 * initialize bb_free to be able to skip
3164 	 * empty groups without initialization
3165 	 */
3166 	if (ext4_has_group_desc_csum(sb) &&
3167 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3168 		meta_group_info[i]->bb_free =
3169 			ext4_free_clusters_after_init(sb, group, desc);
3170 	} else {
3171 		meta_group_info[i]->bb_free =
3172 			ext4_free_group_clusters(sb, desc);
3173 	}
3174 
3175 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3176 	init_rwsem(&meta_group_info[i]->alloc_sem);
3177 	meta_group_info[i]->bb_free_root = RB_ROOT;
3178 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3179 	RB_CLEAR_NODE(&meta_group_info[i]->bb_avg_fragment_size_rb);
3180 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3181 	meta_group_info[i]->bb_group = group;
3182 
3183 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3184 	return 0;
3185 
3186 exit_group_info:
3187 	/* If a meta_group_info table has been allocated, release it now */
3188 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3189 		struct ext4_group_info ***group_info;
3190 
3191 		rcu_read_lock();
3192 		group_info = rcu_dereference(sbi->s_group_info);
3193 		kfree(group_info[idx]);
3194 		group_info[idx] = NULL;
3195 		rcu_read_unlock();
3196 	}
3197 exit_meta_group_info:
3198 	return -ENOMEM;
3199 } /* ext4_mb_add_groupinfo */
3200 
3201 static int ext4_mb_init_backend(struct super_block *sb)
3202 {
3203 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3204 	ext4_group_t i;
3205 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3206 	int err;
3207 	struct ext4_group_desc *desc;
3208 	struct ext4_group_info ***group_info;
3209 	struct kmem_cache *cachep;
3210 
3211 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3212 	if (err)
3213 		return err;
3214 
3215 	sbi->s_buddy_cache = new_inode(sb);
3216 	if (sbi->s_buddy_cache == NULL) {
3217 		ext4_msg(sb, KERN_ERR, "can't get new inode");
3218 		goto err_freesgi;
3219 	}
3220 	/* To avoid potentially colliding with an valid on-disk inode number,
3221 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3222 	 * not in the inode hash, so it should never be found by iget(), but
3223 	 * this will avoid confusion if it ever shows up during debugging. */
3224 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3225 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3226 	for (i = 0; i < ngroups; i++) {
3227 		cond_resched();
3228 		desc = ext4_get_group_desc(sb, i, NULL);
3229 		if (desc == NULL) {
3230 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3231 			goto err_freebuddy;
3232 		}
3233 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3234 			goto err_freebuddy;
3235 	}
3236 
3237 	if (ext4_has_feature_flex_bg(sb)) {
3238 		/* a single flex group is supposed to be read by a single IO.
3239 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3240 		 * unsigned integer, so the maximum shift is 32.
3241 		 */
3242 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3243 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3244 			goto err_freebuddy;
3245 		}
3246 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3247 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3248 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3249 	} else {
3250 		sbi->s_mb_prefetch = 32;
3251 	}
3252 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3253 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3254 	/* now many real IOs to prefetch within a single allocation at cr=0
3255 	 * given cr=0 is an CPU-related optimization we shouldn't try to
3256 	 * load too many groups, at some point we should start to use what
3257 	 * we've got in memory.
3258 	 * with an average random access time 5ms, it'd take a second to get
3259 	 * 200 groups (* N with flex_bg), so let's make this limit 4
3260 	 */
3261 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3262 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3263 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3264 
3265 	return 0;
3266 
3267 err_freebuddy:
3268 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3269 	while (i-- > 0)
3270 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
3271 	i = sbi->s_group_info_size;
3272 	rcu_read_lock();
3273 	group_info = rcu_dereference(sbi->s_group_info);
3274 	while (i-- > 0)
3275 		kfree(group_info[i]);
3276 	rcu_read_unlock();
3277 	iput(sbi->s_buddy_cache);
3278 err_freesgi:
3279 	rcu_read_lock();
3280 	kvfree(rcu_dereference(sbi->s_group_info));
3281 	rcu_read_unlock();
3282 	return -ENOMEM;
3283 }
3284 
3285 static void ext4_groupinfo_destroy_slabs(void)
3286 {
3287 	int i;
3288 
3289 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3290 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3291 		ext4_groupinfo_caches[i] = NULL;
3292 	}
3293 }
3294 
3295 static int ext4_groupinfo_create_slab(size_t size)
3296 {
3297 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3298 	int slab_size;
3299 	int blocksize_bits = order_base_2(size);
3300 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3301 	struct kmem_cache *cachep;
3302 
3303 	if (cache_index >= NR_GRPINFO_CACHES)
3304 		return -EINVAL;
3305 
3306 	if (unlikely(cache_index < 0))
3307 		cache_index = 0;
3308 
3309 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3310 	if (ext4_groupinfo_caches[cache_index]) {
3311 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3312 		return 0;	/* Already created */
3313 	}
3314 
3315 	slab_size = offsetof(struct ext4_group_info,
3316 				bb_counters[blocksize_bits + 2]);
3317 
3318 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3319 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3320 					NULL);
3321 
3322 	ext4_groupinfo_caches[cache_index] = cachep;
3323 
3324 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3325 	if (!cachep) {
3326 		printk(KERN_EMERG
3327 		       "EXT4-fs: no memory for groupinfo slab cache\n");
3328 		return -ENOMEM;
3329 	}
3330 
3331 	return 0;
3332 }
3333 
3334 static void ext4_discard_work(struct work_struct *work)
3335 {
3336 	struct ext4_sb_info *sbi = container_of(work,
3337 			struct ext4_sb_info, s_discard_work);
3338 	struct super_block *sb = sbi->s_sb;
3339 	struct ext4_free_data *fd, *nfd;
3340 	struct ext4_buddy e4b;
3341 	struct list_head discard_list;
3342 	ext4_group_t grp, load_grp;
3343 	int err = 0;
3344 
3345 	INIT_LIST_HEAD(&discard_list);
3346 	spin_lock(&sbi->s_md_lock);
3347 	list_splice_init(&sbi->s_discard_list, &discard_list);
3348 	spin_unlock(&sbi->s_md_lock);
3349 
3350 	load_grp = UINT_MAX;
3351 	list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3352 		/*
3353 		 * If filesystem is umounting or no memory or suffering
3354 		 * from no space, give up the discard
3355 		 */
3356 		if ((sb->s_flags & SB_ACTIVE) && !err &&
3357 		    !atomic_read(&sbi->s_retry_alloc_pending)) {
3358 			grp = fd->efd_group;
3359 			if (grp != load_grp) {
3360 				if (load_grp != UINT_MAX)
3361 					ext4_mb_unload_buddy(&e4b);
3362 
3363 				err = ext4_mb_load_buddy(sb, grp, &e4b);
3364 				if (err) {
3365 					kmem_cache_free(ext4_free_data_cachep, fd);
3366 					load_grp = UINT_MAX;
3367 					continue;
3368 				} else {
3369 					load_grp = grp;
3370 				}
3371 			}
3372 
3373 			ext4_lock_group(sb, grp);
3374 			ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3375 						fd->efd_start_cluster + fd->efd_count - 1, 1);
3376 			ext4_unlock_group(sb, grp);
3377 		}
3378 		kmem_cache_free(ext4_free_data_cachep, fd);
3379 	}
3380 
3381 	if (load_grp != UINT_MAX)
3382 		ext4_mb_unload_buddy(&e4b);
3383 }
3384 
3385 int ext4_mb_init(struct super_block *sb)
3386 {
3387 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3388 	unsigned i, j;
3389 	unsigned offset, offset_incr;
3390 	unsigned max;
3391 	int ret;
3392 
3393 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3394 
3395 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3396 	if (sbi->s_mb_offsets == NULL) {
3397 		ret = -ENOMEM;
3398 		goto out;
3399 	}
3400 
3401 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3402 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3403 	if (sbi->s_mb_maxs == NULL) {
3404 		ret = -ENOMEM;
3405 		goto out;
3406 	}
3407 
3408 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3409 	if (ret < 0)
3410 		goto out;
3411 
3412 	/* order 0 is regular bitmap */
3413 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3414 	sbi->s_mb_offsets[0] = 0;
3415 
3416 	i = 1;
3417 	offset = 0;
3418 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3419 	max = sb->s_blocksize << 2;
3420 	do {
3421 		sbi->s_mb_offsets[i] = offset;
3422 		sbi->s_mb_maxs[i] = max;
3423 		offset += offset_incr;
3424 		offset_incr = offset_incr >> 1;
3425 		max = max >> 1;
3426 		i++;
3427 	} while (i < MB_NUM_ORDERS(sb));
3428 
3429 	sbi->s_mb_avg_fragment_size_root = RB_ROOT;
3430 	sbi->s_mb_largest_free_orders =
3431 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3432 			GFP_KERNEL);
3433 	if (!sbi->s_mb_largest_free_orders) {
3434 		ret = -ENOMEM;
3435 		goto out;
3436 	}
3437 	sbi->s_mb_largest_free_orders_locks =
3438 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3439 			GFP_KERNEL);
3440 	if (!sbi->s_mb_largest_free_orders_locks) {
3441 		ret = -ENOMEM;
3442 		goto out;
3443 	}
3444 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3445 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3446 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3447 	}
3448 	rwlock_init(&sbi->s_mb_rb_lock);
3449 
3450 	spin_lock_init(&sbi->s_md_lock);
3451 	sbi->s_mb_free_pending = 0;
3452 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
3453 	INIT_LIST_HEAD(&sbi->s_discard_list);
3454 	INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3455 	atomic_set(&sbi->s_retry_alloc_pending, 0);
3456 
3457 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3458 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3459 	sbi->s_mb_stats = MB_DEFAULT_STATS;
3460 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3461 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3462 	sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC;
3463 	/*
3464 	 * The default group preallocation is 512, which for 4k block
3465 	 * sizes translates to 2 megabytes.  However for bigalloc file
3466 	 * systems, this is probably too big (i.e, if the cluster size
3467 	 * is 1 megabyte, then group preallocation size becomes half a
3468 	 * gigabyte!).  As a default, we will keep a two megabyte
3469 	 * group pralloc size for cluster sizes up to 64k, and after
3470 	 * that, we will force a minimum group preallocation size of
3471 	 * 32 clusters.  This translates to 8 megs when the cluster
3472 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3473 	 * which seems reasonable as a default.
3474 	 */
3475 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3476 				       sbi->s_cluster_bits, 32);
3477 	/*
3478 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3479 	 * to the lowest multiple of s_stripe which is bigger than
3480 	 * the s_mb_group_prealloc as determined above. We want
3481 	 * the preallocation size to be an exact multiple of the
3482 	 * RAID stripe size so that preallocations don't fragment
3483 	 * the stripes.
3484 	 */
3485 	if (sbi->s_stripe > 1) {
3486 		sbi->s_mb_group_prealloc = roundup(
3487 			sbi->s_mb_group_prealloc, sbi->s_stripe);
3488 	}
3489 
3490 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3491 	if (sbi->s_locality_groups == NULL) {
3492 		ret = -ENOMEM;
3493 		goto out;
3494 	}
3495 	for_each_possible_cpu(i) {
3496 		struct ext4_locality_group *lg;
3497 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3498 		mutex_init(&lg->lg_mutex);
3499 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3500 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3501 		spin_lock_init(&lg->lg_prealloc_lock);
3502 	}
3503 
3504 	if (bdev_nonrot(sb->s_bdev))
3505 		sbi->s_mb_max_linear_groups = 0;
3506 	else
3507 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3508 	/* init file for buddy data */
3509 	ret = ext4_mb_init_backend(sb);
3510 	if (ret != 0)
3511 		goto out_free_locality_groups;
3512 
3513 	return 0;
3514 
3515 out_free_locality_groups:
3516 	free_percpu(sbi->s_locality_groups);
3517 	sbi->s_locality_groups = NULL;
3518 out:
3519 	kfree(sbi->s_mb_largest_free_orders);
3520 	kfree(sbi->s_mb_largest_free_orders_locks);
3521 	kfree(sbi->s_mb_offsets);
3522 	sbi->s_mb_offsets = NULL;
3523 	kfree(sbi->s_mb_maxs);
3524 	sbi->s_mb_maxs = NULL;
3525 	return ret;
3526 }
3527 
3528 /* need to called with the ext4 group lock held */
3529 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3530 {
3531 	struct ext4_prealloc_space *pa;
3532 	struct list_head *cur, *tmp;
3533 	int count = 0;
3534 
3535 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3536 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3537 		list_del(&pa->pa_group_list);
3538 		count++;
3539 		kmem_cache_free(ext4_pspace_cachep, pa);
3540 	}
3541 	return count;
3542 }
3543 
3544 int ext4_mb_release(struct super_block *sb)
3545 {
3546 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3547 	ext4_group_t i;
3548 	int num_meta_group_infos;
3549 	struct ext4_group_info *grinfo, ***group_info;
3550 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3551 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3552 	int count;
3553 
3554 	if (test_opt(sb, DISCARD)) {
3555 		/*
3556 		 * wait the discard work to drain all of ext4_free_data
3557 		 */
3558 		flush_work(&sbi->s_discard_work);
3559 		WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3560 	}
3561 
3562 	if (sbi->s_group_info) {
3563 		for (i = 0; i < ngroups; i++) {
3564 			cond_resched();
3565 			grinfo = ext4_get_group_info(sb, i);
3566 			mb_group_bb_bitmap_free(grinfo);
3567 			ext4_lock_group(sb, i);
3568 			count = ext4_mb_cleanup_pa(grinfo);
3569 			if (count)
3570 				mb_debug(sb, "mballoc: %d PAs left\n",
3571 					 count);
3572 			ext4_unlock_group(sb, i);
3573 			kmem_cache_free(cachep, grinfo);
3574 		}
3575 		num_meta_group_infos = (ngroups +
3576 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3577 			EXT4_DESC_PER_BLOCK_BITS(sb);
3578 		rcu_read_lock();
3579 		group_info = rcu_dereference(sbi->s_group_info);
3580 		for (i = 0; i < num_meta_group_infos; i++)
3581 			kfree(group_info[i]);
3582 		kvfree(group_info);
3583 		rcu_read_unlock();
3584 	}
3585 	kfree(sbi->s_mb_largest_free_orders);
3586 	kfree(sbi->s_mb_largest_free_orders_locks);
3587 	kfree(sbi->s_mb_offsets);
3588 	kfree(sbi->s_mb_maxs);
3589 	iput(sbi->s_buddy_cache);
3590 	if (sbi->s_mb_stats) {
3591 		ext4_msg(sb, KERN_INFO,
3592 		       "mballoc: %u blocks %u reqs (%u success)",
3593 				atomic_read(&sbi->s_bal_allocated),
3594 				atomic_read(&sbi->s_bal_reqs),
3595 				atomic_read(&sbi->s_bal_success));
3596 		ext4_msg(sb, KERN_INFO,
3597 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3598 				"%u 2^N hits, %u breaks, %u lost",
3599 				atomic_read(&sbi->s_bal_ex_scanned),
3600 				atomic_read(&sbi->s_bal_groups_scanned),
3601 				atomic_read(&sbi->s_bal_goals),
3602 				atomic_read(&sbi->s_bal_2orders),
3603 				atomic_read(&sbi->s_bal_breaks),
3604 				atomic_read(&sbi->s_mb_lost_chunks));
3605 		ext4_msg(sb, KERN_INFO,
3606 		       "mballoc: %u generated and it took %llu",
3607 				atomic_read(&sbi->s_mb_buddies_generated),
3608 				atomic64_read(&sbi->s_mb_generation_time));
3609 		ext4_msg(sb, KERN_INFO,
3610 		       "mballoc: %u preallocated, %u discarded",
3611 				atomic_read(&sbi->s_mb_preallocated),
3612 				atomic_read(&sbi->s_mb_discarded));
3613 	}
3614 
3615 	free_percpu(sbi->s_locality_groups);
3616 
3617 	return 0;
3618 }
3619 
3620 static inline int ext4_issue_discard(struct super_block *sb,
3621 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3622 		struct bio **biop)
3623 {
3624 	ext4_fsblk_t discard_block;
3625 
3626 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3627 			 ext4_group_first_block_no(sb, block_group));
3628 	count = EXT4_C2B(EXT4_SB(sb), count);
3629 	trace_ext4_discard_blocks(sb,
3630 			(unsigned long long) discard_block, count);
3631 	if (biop) {
3632 		return __blkdev_issue_discard(sb->s_bdev,
3633 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3634 			(sector_t)count << (sb->s_blocksize_bits - 9),
3635 			GFP_NOFS, biop);
3636 	} else
3637 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3638 }
3639 
3640 static void ext4_free_data_in_buddy(struct super_block *sb,
3641 				    struct ext4_free_data *entry)
3642 {
3643 	struct ext4_buddy e4b;
3644 	struct ext4_group_info *db;
3645 	int err, count = 0, count2 = 0;
3646 
3647 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3648 		 entry->efd_count, entry->efd_group, entry);
3649 
3650 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3651 	/* we expect to find existing buddy because it's pinned */
3652 	BUG_ON(err != 0);
3653 
3654 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3655 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3656 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3657 
3658 	db = e4b.bd_info;
3659 	/* there are blocks to put in buddy to make them really free */
3660 	count += entry->efd_count;
3661 	count2++;
3662 	ext4_lock_group(sb, entry->efd_group);
3663 	/* Take it out of per group rb tree */
3664 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3665 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3666 
3667 	/*
3668 	 * Clear the trimmed flag for the group so that the next
3669 	 * ext4_trim_fs can trim it.
3670 	 * If the volume is mounted with -o discard, online discard
3671 	 * is supported and the free blocks will be trimmed online.
3672 	 */
3673 	if (!test_opt(sb, DISCARD))
3674 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3675 
3676 	if (!db->bb_free_root.rb_node) {
3677 		/* No more items in the per group rb tree
3678 		 * balance refcounts from ext4_mb_free_metadata()
3679 		 */
3680 		put_page(e4b.bd_buddy_page);
3681 		put_page(e4b.bd_bitmap_page);
3682 	}
3683 	ext4_unlock_group(sb, entry->efd_group);
3684 	ext4_mb_unload_buddy(&e4b);
3685 
3686 	mb_debug(sb, "freed %d blocks in %d structures\n", count,
3687 		 count2);
3688 }
3689 
3690 /*
3691  * This function is called by the jbd2 layer once the commit has finished,
3692  * so we know we can free the blocks that were released with that commit.
3693  */
3694 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3695 {
3696 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3697 	struct ext4_free_data *entry, *tmp;
3698 	struct list_head freed_data_list;
3699 	struct list_head *cut_pos = NULL;
3700 	bool wake;
3701 
3702 	INIT_LIST_HEAD(&freed_data_list);
3703 
3704 	spin_lock(&sbi->s_md_lock);
3705 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3706 		if (entry->efd_tid != commit_tid)
3707 			break;
3708 		cut_pos = &entry->efd_list;
3709 	}
3710 	if (cut_pos)
3711 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3712 				  cut_pos);
3713 	spin_unlock(&sbi->s_md_lock);
3714 
3715 	list_for_each_entry(entry, &freed_data_list, efd_list)
3716 		ext4_free_data_in_buddy(sb, entry);
3717 
3718 	if (test_opt(sb, DISCARD)) {
3719 		spin_lock(&sbi->s_md_lock);
3720 		wake = list_empty(&sbi->s_discard_list);
3721 		list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3722 		spin_unlock(&sbi->s_md_lock);
3723 		if (wake)
3724 			queue_work(system_unbound_wq, &sbi->s_discard_work);
3725 	} else {
3726 		list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3727 			kmem_cache_free(ext4_free_data_cachep, entry);
3728 	}
3729 }
3730 
3731 int __init ext4_init_mballoc(void)
3732 {
3733 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3734 					SLAB_RECLAIM_ACCOUNT);
3735 	if (ext4_pspace_cachep == NULL)
3736 		goto out;
3737 
3738 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3739 				    SLAB_RECLAIM_ACCOUNT);
3740 	if (ext4_ac_cachep == NULL)
3741 		goto out_pa_free;
3742 
3743 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3744 					   SLAB_RECLAIM_ACCOUNT);
3745 	if (ext4_free_data_cachep == NULL)
3746 		goto out_ac_free;
3747 
3748 	return 0;
3749 
3750 out_ac_free:
3751 	kmem_cache_destroy(ext4_ac_cachep);
3752 out_pa_free:
3753 	kmem_cache_destroy(ext4_pspace_cachep);
3754 out:
3755 	return -ENOMEM;
3756 }
3757 
3758 void ext4_exit_mballoc(void)
3759 {
3760 	/*
3761 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3762 	 * before destroying the slab cache.
3763 	 */
3764 	rcu_barrier();
3765 	kmem_cache_destroy(ext4_pspace_cachep);
3766 	kmem_cache_destroy(ext4_ac_cachep);
3767 	kmem_cache_destroy(ext4_free_data_cachep);
3768 	ext4_groupinfo_destroy_slabs();
3769 }
3770 
3771 
3772 /*
3773  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3774  * Returns 0 if success or error code
3775  */
3776 static noinline_for_stack int
3777 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3778 				handle_t *handle, unsigned int reserv_clstrs)
3779 {
3780 	struct buffer_head *bitmap_bh = NULL;
3781 	struct ext4_group_desc *gdp;
3782 	struct buffer_head *gdp_bh;
3783 	struct ext4_sb_info *sbi;
3784 	struct super_block *sb;
3785 	ext4_fsblk_t block;
3786 	int err, len;
3787 
3788 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3789 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3790 
3791 	sb = ac->ac_sb;
3792 	sbi = EXT4_SB(sb);
3793 
3794 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3795 	if (IS_ERR(bitmap_bh)) {
3796 		err = PTR_ERR(bitmap_bh);
3797 		bitmap_bh = NULL;
3798 		goto out_err;
3799 	}
3800 
3801 	BUFFER_TRACE(bitmap_bh, "getting write access");
3802 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3803 					    EXT4_JTR_NONE);
3804 	if (err)
3805 		goto out_err;
3806 
3807 	err = -EIO;
3808 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3809 	if (!gdp)
3810 		goto out_err;
3811 
3812 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3813 			ext4_free_group_clusters(sb, gdp));
3814 
3815 	BUFFER_TRACE(gdp_bh, "get_write_access");
3816 	err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE);
3817 	if (err)
3818 		goto out_err;
3819 
3820 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3821 
3822 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3823 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
3824 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3825 			   "fs metadata", block, block+len);
3826 		/* File system mounted not to panic on error
3827 		 * Fix the bitmap and return EFSCORRUPTED
3828 		 * We leak some of the blocks here.
3829 		 */
3830 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3831 		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3832 			      ac->ac_b_ex.fe_len);
3833 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3834 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3835 		if (!err)
3836 			err = -EFSCORRUPTED;
3837 		goto out_err;
3838 	}
3839 
3840 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3841 #ifdef AGGRESSIVE_CHECK
3842 	{
3843 		int i;
3844 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3845 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3846 						bitmap_bh->b_data));
3847 		}
3848 	}
3849 #endif
3850 	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3851 		      ac->ac_b_ex.fe_len);
3852 	if (ext4_has_group_desc_csum(sb) &&
3853 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3854 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3855 		ext4_free_group_clusters_set(sb, gdp,
3856 					     ext4_free_clusters_after_init(sb,
3857 						ac->ac_b_ex.fe_group, gdp));
3858 	}
3859 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3860 	ext4_free_group_clusters_set(sb, gdp, len);
3861 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3862 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3863 
3864 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3865 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3866 	/*
3867 	 * Now reduce the dirty block count also. Should not go negative
3868 	 */
3869 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3870 		/* release all the reserved blocks if non delalloc */
3871 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3872 				   reserv_clstrs);
3873 
3874 	if (sbi->s_log_groups_per_flex) {
3875 		ext4_group_t flex_group = ext4_flex_group(sbi,
3876 							  ac->ac_b_ex.fe_group);
3877 		atomic64_sub(ac->ac_b_ex.fe_len,
3878 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3879 						  flex_group)->free_clusters);
3880 	}
3881 
3882 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3883 	if (err)
3884 		goto out_err;
3885 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3886 
3887 out_err:
3888 	brelse(bitmap_bh);
3889 	return err;
3890 }
3891 
3892 /*
3893  * Idempotent helper for Ext4 fast commit replay path to set the state of
3894  * blocks in bitmaps and update counters.
3895  */
3896 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
3897 			int len, int state)
3898 {
3899 	struct buffer_head *bitmap_bh = NULL;
3900 	struct ext4_group_desc *gdp;
3901 	struct buffer_head *gdp_bh;
3902 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3903 	ext4_group_t group;
3904 	ext4_grpblk_t blkoff;
3905 	int i, err;
3906 	int already;
3907 	unsigned int clen, clen_changed, thisgrp_len;
3908 
3909 	while (len > 0) {
3910 		ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
3911 
3912 		/*
3913 		 * Check to see if we are freeing blocks across a group
3914 		 * boundary.
3915 		 * In case of flex_bg, this can happen that (block, len) may
3916 		 * span across more than one group. In that case we need to
3917 		 * get the corresponding group metadata to work with.
3918 		 * For this we have goto again loop.
3919 		 */
3920 		thisgrp_len = min_t(unsigned int, (unsigned int)len,
3921 			EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
3922 		clen = EXT4_NUM_B2C(sbi, thisgrp_len);
3923 
3924 		if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
3925 			ext4_error(sb, "Marking blocks in system zone - "
3926 				   "Block = %llu, len = %u",
3927 				   block, thisgrp_len);
3928 			bitmap_bh = NULL;
3929 			break;
3930 		}
3931 
3932 		bitmap_bh = ext4_read_block_bitmap(sb, group);
3933 		if (IS_ERR(bitmap_bh)) {
3934 			err = PTR_ERR(bitmap_bh);
3935 			bitmap_bh = NULL;
3936 			break;
3937 		}
3938 
3939 		err = -EIO;
3940 		gdp = ext4_get_group_desc(sb, group, &gdp_bh);
3941 		if (!gdp)
3942 			break;
3943 
3944 		ext4_lock_group(sb, group);
3945 		already = 0;
3946 		for (i = 0; i < clen; i++)
3947 			if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
3948 					 !state)
3949 				already++;
3950 
3951 		clen_changed = clen - already;
3952 		if (state)
3953 			mb_set_bits(bitmap_bh->b_data, blkoff, clen);
3954 		else
3955 			mb_clear_bits(bitmap_bh->b_data, blkoff, clen);
3956 		if (ext4_has_group_desc_csum(sb) &&
3957 		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3958 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3959 			ext4_free_group_clusters_set(sb, gdp,
3960 			     ext4_free_clusters_after_init(sb, group, gdp));
3961 		}
3962 		if (state)
3963 			clen = ext4_free_group_clusters(sb, gdp) - clen_changed;
3964 		else
3965 			clen = ext4_free_group_clusters(sb, gdp) + clen_changed;
3966 
3967 		ext4_free_group_clusters_set(sb, gdp, clen);
3968 		ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
3969 		ext4_group_desc_csum_set(sb, group, gdp);
3970 
3971 		ext4_unlock_group(sb, group);
3972 
3973 		if (sbi->s_log_groups_per_flex) {
3974 			ext4_group_t flex_group = ext4_flex_group(sbi, group);
3975 			struct flex_groups *fg = sbi_array_rcu_deref(sbi,
3976 						   s_flex_groups, flex_group);
3977 
3978 			if (state)
3979 				atomic64_sub(clen_changed, &fg->free_clusters);
3980 			else
3981 				atomic64_add(clen_changed, &fg->free_clusters);
3982 
3983 		}
3984 
3985 		err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
3986 		if (err)
3987 			break;
3988 		sync_dirty_buffer(bitmap_bh);
3989 		err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
3990 		sync_dirty_buffer(gdp_bh);
3991 		if (err)
3992 			break;
3993 
3994 		block += thisgrp_len;
3995 		len -= thisgrp_len;
3996 		brelse(bitmap_bh);
3997 		BUG_ON(len < 0);
3998 	}
3999 
4000 	if (err)
4001 		brelse(bitmap_bh);
4002 }
4003 
4004 /*
4005  * here we normalize request for locality group
4006  * Group request are normalized to s_mb_group_prealloc, which goes to
4007  * s_strip if we set the same via mount option.
4008  * s_mb_group_prealloc can be configured via
4009  * /sys/fs/ext4/<partition>/mb_group_prealloc
4010  *
4011  * XXX: should we try to preallocate more than the group has now?
4012  */
4013 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4014 {
4015 	struct super_block *sb = ac->ac_sb;
4016 	struct ext4_locality_group *lg = ac->ac_lg;
4017 
4018 	BUG_ON(lg == NULL);
4019 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4020 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4021 }
4022 
4023 /*
4024  * Normalization means making request better in terms of
4025  * size and alignment
4026  */
4027 static noinline_for_stack void
4028 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4029 				struct ext4_allocation_request *ar)
4030 {
4031 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4032 	int bsbits, max;
4033 	ext4_lblk_t end;
4034 	loff_t size, start_off;
4035 	loff_t orig_size __maybe_unused;
4036 	ext4_lblk_t start;
4037 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4038 	struct ext4_prealloc_space *pa;
4039 
4040 	/* do normalize only data requests, metadata requests
4041 	   do not need preallocation */
4042 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4043 		return;
4044 
4045 	/* sometime caller may want exact blocks */
4046 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4047 		return;
4048 
4049 	/* caller may indicate that preallocation isn't
4050 	 * required (it's a tail, for example) */
4051 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4052 		return;
4053 
4054 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4055 		ext4_mb_normalize_group_request(ac);
4056 		return ;
4057 	}
4058 
4059 	bsbits = ac->ac_sb->s_blocksize_bits;
4060 
4061 	/* first, let's learn actual file size
4062 	 * given current request is allocated */
4063 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4064 	size = size << bsbits;
4065 	if (size < i_size_read(ac->ac_inode))
4066 		size = i_size_read(ac->ac_inode);
4067 	orig_size = size;
4068 
4069 	/* max size of free chunks */
4070 	max = 2 << bsbits;
4071 
4072 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
4073 		(req <= (size) || max <= (chunk_size))
4074 
4075 	/* first, try to predict filesize */
4076 	/* XXX: should this table be tunable? */
4077 	start_off = 0;
4078 	if (size <= 16 * 1024) {
4079 		size = 16 * 1024;
4080 	} else if (size <= 32 * 1024) {
4081 		size = 32 * 1024;
4082 	} else if (size <= 64 * 1024) {
4083 		size = 64 * 1024;
4084 	} else if (size <= 128 * 1024) {
4085 		size = 128 * 1024;
4086 	} else if (size <= 256 * 1024) {
4087 		size = 256 * 1024;
4088 	} else if (size <= 512 * 1024) {
4089 		size = 512 * 1024;
4090 	} else if (size <= 1024 * 1024) {
4091 		size = 1024 * 1024;
4092 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4093 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4094 						(21 - bsbits)) << 21;
4095 		size = 2 * 1024 * 1024;
4096 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4097 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4098 							(22 - bsbits)) << 22;
4099 		size = 4 * 1024 * 1024;
4100 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
4101 					(8<<20)>>bsbits, max, 8 * 1024)) {
4102 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4103 							(23 - bsbits)) << 23;
4104 		size = 8 * 1024 * 1024;
4105 	} else {
4106 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4107 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
4108 					      ac->ac_o_ex.fe_len) << bsbits;
4109 	}
4110 	size = size >> bsbits;
4111 	start = start_off >> bsbits;
4112 
4113 	/*
4114 	 * For tiny groups (smaller than 8MB) the chosen allocation
4115 	 * alignment may be larger than group size. Make sure the
4116 	 * alignment does not move allocation to a different group which
4117 	 * makes mballoc fail assertions later.
4118 	 */
4119 	start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4120 			(ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4121 
4122 	/* don't cover already allocated blocks in selected range */
4123 	if (ar->pleft && start <= ar->lleft) {
4124 		size -= ar->lleft + 1 - start;
4125 		start = ar->lleft + 1;
4126 	}
4127 	if (ar->pright && start + size - 1 >= ar->lright)
4128 		size -= start + size - ar->lright;
4129 
4130 	/*
4131 	 * Trim allocation request for filesystems with artificially small
4132 	 * groups.
4133 	 */
4134 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4135 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4136 
4137 	end = start + size;
4138 
4139 	/* check we don't cross already preallocated blocks */
4140 	rcu_read_lock();
4141 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4142 		ext4_lblk_t pa_end;
4143 
4144 		if (pa->pa_deleted)
4145 			continue;
4146 		spin_lock(&pa->pa_lock);
4147 		if (pa->pa_deleted) {
4148 			spin_unlock(&pa->pa_lock);
4149 			continue;
4150 		}
4151 
4152 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
4153 						  pa->pa_len);
4154 
4155 		/* PA must not overlap original request */
4156 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
4157 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
4158 
4159 		/* skip PAs this normalized request doesn't overlap with */
4160 		if (pa->pa_lstart >= end || pa_end <= start) {
4161 			spin_unlock(&pa->pa_lock);
4162 			continue;
4163 		}
4164 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
4165 
4166 		/* adjust start or end to be adjacent to this pa */
4167 		if (pa_end <= ac->ac_o_ex.fe_logical) {
4168 			BUG_ON(pa_end < start);
4169 			start = pa_end;
4170 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4171 			BUG_ON(pa->pa_lstart > end);
4172 			end = pa->pa_lstart;
4173 		}
4174 		spin_unlock(&pa->pa_lock);
4175 	}
4176 	rcu_read_unlock();
4177 	size = end - start;
4178 
4179 	/* XXX: extra loop to check we really don't overlap preallocations */
4180 	rcu_read_lock();
4181 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4182 		ext4_lblk_t pa_end;
4183 
4184 		spin_lock(&pa->pa_lock);
4185 		if (pa->pa_deleted == 0) {
4186 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
4187 							  pa->pa_len);
4188 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
4189 		}
4190 		spin_unlock(&pa->pa_lock);
4191 	}
4192 	rcu_read_unlock();
4193 
4194 	/*
4195 	 * In this function "start" and "size" are normalized for better
4196 	 * alignment and length such that we could preallocate more blocks.
4197 	 * This normalization is done such that original request of
4198 	 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4199 	 * "size" boundaries.
4200 	 * (Note fe_len can be relaxed since FS block allocation API does not
4201 	 * provide gurantee on number of contiguous blocks allocation since that
4202 	 * depends upon free space left, etc).
4203 	 * In case of inode pa, later we use the allocated blocks
4204 	 * [pa_start + fe_logical - pa_lstart, fe_len/size] from the preallocated
4205 	 * range of goal/best blocks [start, size] to put it at the
4206 	 * ac_o_ex.fe_logical extent of this inode.
4207 	 * (See ext4_mb_use_inode_pa() for more details)
4208 	 */
4209 	if (start + size <= ac->ac_o_ex.fe_logical ||
4210 			start > ac->ac_o_ex.fe_logical) {
4211 		ext4_msg(ac->ac_sb, KERN_ERR,
4212 			 "start %lu, size %lu, fe_logical %lu",
4213 			 (unsigned long) start, (unsigned long) size,
4214 			 (unsigned long) ac->ac_o_ex.fe_logical);
4215 		BUG();
4216 	}
4217 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4218 
4219 	/* now prepare goal request */
4220 
4221 	/* XXX: is it better to align blocks WRT to logical
4222 	 * placement or satisfy big request as is */
4223 	ac->ac_g_ex.fe_logical = start;
4224 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4225 
4226 	/* define goal start in order to merge */
4227 	if (ar->pright && (ar->lright == (start + size))) {
4228 		/* merge to the right */
4229 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4230 						&ac->ac_f_ex.fe_group,
4231 						&ac->ac_f_ex.fe_start);
4232 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4233 	}
4234 	if (ar->pleft && (ar->lleft + 1 == start)) {
4235 		/* merge to the left */
4236 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4237 						&ac->ac_f_ex.fe_group,
4238 						&ac->ac_f_ex.fe_start);
4239 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4240 	}
4241 
4242 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4243 		 orig_size, start);
4244 }
4245 
4246 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4247 {
4248 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4249 
4250 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4251 		atomic_inc(&sbi->s_bal_reqs);
4252 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4253 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4254 			atomic_inc(&sbi->s_bal_success);
4255 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4256 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4257 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4258 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4259 			atomic_inc(&sbi->s_bal_goals);
4260 		if (ac->ac_found > sbi->s_mb_max_to_scan)
4261 			atomic_inc(&sbi->s_bal_breaks);
4262 	}
4263 
4264 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4265 		trace_ext4_mballoc_alloc(ac);
4266 	else
4267 		trace_ext4_mballoc_prealloc(ac);
4268 }
4269 
4270 /*
4271  * Called on failure; free up any blocks from the inode PA for this
4272  * context.  We don't need this for MB_GROUP_PA because we only change
4273  * pa_free in ext4_mb_release_context(), but on failure, we've already
4274  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4275  */
4276 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4277 {
4278 	struct ext4_prealloc_space *pa = ac->ac_pa;
4279 	struct ext4_buddy e4b;
4280 	int err;
4281 
4282 	if (pa == NULL) {
4283 		if (ac->ac_f_ex.fe_len == 0)
4284 			return;
4285 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4286 		if (err) {
4287 			/*
4288 			 * This should never happen since we pin the
4289 			 * pages in the ext4_allocation_context so
4290 			 * ext4_mb_load_buddy() should never fail.
4291 			 */
4292 			WARN(1, "mb_load_buddy failed (%d)", err);
4293 			return;
4294 		}
4295 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4296 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4297 			       ac->ac_f_ex.fe_len);
4298 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4299 		ext4_mb_unload_buddy(&e4b);
4300 		return;
4301 	}
4302 	if (pa->pa_type == MB_INODE_PA)
4303 		pa->pa_free += ac->ac_b_ex.fe_len;
4304 }
4305 
4306 /*
4307  * use blocks preallocated to inode
4308  */
4309 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4310 				struct ext4_prealloc_space *pa)
4311 {
4312 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4313 	ext4_fsblk_t start;
4314 	ext4_fsblk_t end;
4315 	int len;
4316 
4317 	/* found preallocated blocks, use them */
4318 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4319 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4320 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4321 	len = EXT4_NUM_B2C(sbi, end - start);
4322 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4323 					&ac->ac_b_ex.fe_start);
4324 	ac->ac_b_ex.fe_len = len;
4325 	ac->ac_status = AC_STATUS_FOUND;
4326 	ac->ac_pa = pa;
4327 
4328 	BUG_ON(start < pa->pa_pstart);
4329 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4330 	BUG_ON(pa->pa_free < len);
4331 	pa->pa_free -= len;
4332 
4333 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4334 }
4335 
4336 /*
4337  * use blocks preallocated to locality group
4338  */
4339 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4340 				struct ext4_prealloc_space *pa)
4341 {
4342 	unsigned int len = ac->ac_o_ex.fe_len;
4343 
4344 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4345 					&ac->ac_b_ex.fe_group,
4346 					&ac->ac_b_ex.fe_start);
4347 	ac->ac_b_ex.fe_len = len;
4348 	ac->ac_status = AC_STATUS_FOUND;
4349 	ac->ac_pa = pa;
4350 
4351 	/* we don't correct pa_pstart or pa_plen here to avoid
4352 	 * possible race when the group is being loaded concurrently
4353 	 * instead we correct pa later, after blocks are marked
4354 	 * in on-disk bitmap -- see ext4_mb_release_context()
4355 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4356 	 */
4357 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4358 		 pa->pa_lstart-len, len, pa);
4359 }
4360 
4361 /*
4362  * Return the prealloc space that have minimal distance
4363  * from the goal block. @cpa is the prealloc
4364  * space that is having currently known minimal distance
4365  * from the goal block.
4366  */
4367 static struct ext4_prealloc_space *
4368 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4369 			struct ext4_prealloc_space *pa,
4370 			struct ext4_prealloc_space *cpa)
4371 {
4372 	ext4_fsblk_t cur_distance, new_distance;
4373 
4374 	if (cpa == NULL) {
4375 		atomic_inc(&pa->pa_count);
4376 		return pa;
4377 	}
4378 	cur_distance = abs(goal_block - cpa->pa_pstart);
4379 	new_distance = abs(goal_block - pa->pa_pstart);
4380 
4381 	if (cur_distance <= new_distance)
4382 		return cpa;
4383 
4384 	/* drop the previous reference */
4385 	atomic_dec(&cpa->pa_count);
4386 	atomic_inc(&pa->pa_count);
4387 	return pa;
4388 }
4389 
4390 /*
4391  * search goal blocks in preallocated space
4392  */
4393 static noinline_for_stack bool
4394 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4395 {
4396 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4397 	int order, i;
4398 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4399 	struct ext4_locality_group *lg;
4400 	struct ext4_prealloc_space *pa, *cpa = NULL;
4401 	ext4_fsblk_t goal_block;
4402 
4403 	/* only data can be preallocated */
4404 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4405 		return false;
4406 
4407 	/* first, try per-file preallocation */
4408 	rcu_read_lock();
4409 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
4410 
4411 		/* all fields in this condition don't change,
4412 		 * so we can skip locking for them */
4413 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
4414 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
4415 					       EXT4_C2B(sbi, pa->pa_len)))
4416 			continue;
4417 
4418 		/* non-extent files can't have physical blocks past 2^32 */
4419 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4420 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
4421 		     EXT4_MAX_BLOCK_FILE_PHYS))
4422 			continue;
4423 
4424 		/* found preallocated blocks, use them */
4425 		spin_lock(&pa->pa_lock);
4426 		if (pa->pa_deleted == 0 && pa->pa_free) {
4427 			atomic_inc(&pa->pa_count);
4428 			ext4_mb_use_inode_pa(ac, pa);
4429 			spin_unlock(&pa->pa_lock);
4430 			ac->ac_criteria = 10;
4431 			rcu_read_unlock();
4432 			return true;
4433 		}
4434 		spin_unlock(&pa->pa_lock);
4435 	}
4436 	rcu_read_unlock();
4437 
4438 	/* can we use group allocation? */
4439 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4440 		return false;
4441 
4442 	/* inode may have no locality group for some reason */
4443 	lg = ac->ac_lg;
4444 	if (lg == NULL)
4445 		return false;
4446 	order  = fls(ac->ac_o_ex.fe_len) - 1;
4447 	if (order > PREALLOC_TB_SIZE - 1)
4448 		/* The max size of hash table is PREALLOC_TB_SIZE */
4449 		order = PREALLOC_TB_SIZE - 1;
4450 
4451 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4452 	/*
4453 	 * search for the prealloc space that is having
4454 	 * minimal distance from the goal block.
4455 	 */
4456 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4457 		rcu_read_lock();
4458 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
4459 					pa_inode_list) {
4460 			spin_lock(&pa->pa_lock);
4461 			if (pa->pa_deleted == 0 &&
4462 					pa->pa_free >= ac->ac_o_ex.fe_len) {
4463 
4464 				cpa = ext4_mb_check_group_pa(goal_block,
4465 								pa, cpa);
4466 			}
4467 			spin_unlock(&pa->pa_lock);
4468 		}
4469 		rcu_read_unlock();
4470 	}
4471 	if (cpa) {
4472 		ext4_mb_use_group_pa(ac, cpa);
4473 		ac->ac_criteria = 20;
4474 		return true;
4475 	}
4476 	return false;
4477 }
4478 
4479 /*
4480  * the function goes through all block freed in the group
4481  * but not yet committed and marks them used in in-core bitmap.
4482  * buddy must be generated from this bitmap
4483  * Need to be called with the ext4 group lock held
4484  */
4485 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
4486 						ext4_group_t group)
4487 {
4488 	struct rb_node *n;
4489 	struct ext4_group_info *grp;
4490 	struct ext4_free_data *entry;
4491 
4492 	grp = ext4_get_group_info(sb, group);
4493 	n = rb_first(&(grp->bb_free_root));
4494 
4495 	while (n) {
4496 		entry = rb_entry(n, struct ext4_free_data, efd_node);
4497 		mb_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
4498 		n = rb_next(n);
4499 	}
4500 	return;
4501 }
4502 
4503 /*
4504  * the function goes through all preallocation in this group and marks them
4505  * used in in-core bitmap. buddy must be generated from this bitmap
4506  * Need to be called with ext4 group lock held
4507  */
4508 static noinline_for_stack
4509 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4510 					ext4_group_t group)
4511 {
4512 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4513 	struct ext4_prealloc_space *pa;
4514 	struct list_head *cur;
4515 	ext4_group_t groupnr;
4516 	ext4_grpblk_t start;
4517 	int preallocated = 0;
4518 	int len;
4519 
4520 	/* all form of preallocation discards first load group,
4521 	 * so the only competing code is preallocation use.
4522 	 * we don't need any locking here
4523 	 * notice we do NOT ignore preallocations with pa_deleted
4524 	 * otherwise we could leave used blocks available for
4525 	 * allocation in buddy when concurrent ext4_mb_put_pa()
4526 	 * is dropping preallocation
4527 	 */
4528 	list_for_each(cur, &grp->bb_prealloc_list) {
4529 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
4530 		spin_lock(&pa->pa_lock);
4531 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4532 					     &groupnr, &start);
4533 		len = pa->pa_len;
4534 		spin_unlock(&pa->pa_lock);
4535 		if (unlikely(len == 0))
4536 			continue;
4537 		BUG_ON(groupnr != group);
4538 		mb_set_bits(bitmap, start, len);
4539 		preallocated += len;
4540 	}
4541 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
4542 }
4543 
4544 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
4545 				    struct ext4_prealloc_space *pa)
4546 {
4547 	struct ext4_inode_info *ei;
4548 
4549 	if (pa->pa_deleted) {
4550 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
4551 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
4552 			     pa->pa_len);
4553 		return;
4554 	}
4555 
4556 	pa->pa_deleted = 1;
4557 
4558 	if (pa->pa_type == MB_INODE_PA) {
4559 		ei = EXT4_I(pa->pa_inode);
4560 		atomic_dec(&ei->i_prealloc_active);
4561 	}
4562 }
4563 
4564 static void ext4_mb_pa_callback(struct rcu_head *head)
4565 {
4566 	struct ext4_prealloc_space *pa;
4567 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
4568 
4569 	BUG_ON(atomic_read(&pa->pa_count));
4570 	BUG_ON(pa->pa_deleted == 0);
4571 	kmem_cache_free(ext4_pspace_cachep, pa);
4572 }
4573 
4574 /*
4575  * drops a reference to preallocated space descriptor
4576  * if this was the last reference and the space is consumed
4577  */
4578 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
4579 			struct super_block *sb, struct ext4_prealloc_space *pa)
4580 {
4581 	ext4_group_t grp;
4582 	ext4_fsblk_t grp_blk;
4583 
4584 	/* in this short window concurrent discard can set pa_deleted */
4585 	spin_lock(&pa->pa_lock);
4586 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
4587 		spin_unlock(&pa->pa_lock);
4588 		return;
4589 	}
4590 
4591 	if (pa->pa_deleted == 1) {
4592 		spin_unlock(&pa->pa_lock);
4593 		return;
4594 	}
4595 
4596 	ext4_mb_mark_pa_deleted(sb, pa);
4597 	spin_unlock(&pa->pa_lock);
4598 
4599 	grp_blk = pa->pa_pstart;
4600 	/*
4601 	 * If doing group-based preallocation, pa_pstart may be in the
4602 	 * next group when pa is used up
4603 	 */
4604 	if (pa->pa_type == MB_GROUP_PA)
4605 		grp_blk--;
4606 
4607 	grp = ext4_get_group_number(sb, grp_blk);
4608 
4609 	/*
4610 	 * possible race:
4611 	 *
4612 	 *  P1 (buddy init)			P2 (regular allocation)
4613 	 *					find block B in PA
4614 	 *  copy on-disk bitmap to buddy
4615 	 *  					mark B in on-disk bitmap
4616 	 *					drop PA from group
4617 	 *  mark all PAs in buddy
4618 	 *
4619 	 * thus, P1 initializes buddy with B available. to prevent this
4620 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
4621 	 * against that pair
4622 	 */
4623 	ext4_lock_group(sb, grp);
4624 	list_del(&pa->pa_group_list);
4625 	ext4_unlock_group(sb, grp);
4626 
4627 	spin_lock(pa->pa_obj_lock);
4628 	list_del_rcu(&pa->pa_inode_list);
4629 	spin_unlock(pa->pa_obj_lock);
4630 
4631 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4632 }
4633 
4634 /*
4635  * creates new preallocated space for given inode
4636  */
4637 static noinline_for_stack void
4638 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
4639 {
4640 	struct super_block *sb = ac->ac_sb;
4641 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4642 	struct ext4_prealloc_space *pa;
4643 	struct ext4_group_info *grp;
4644 	struct ext4_inode_info *ei;
4645 
4646 	/* preallocate only when found space is larger then requested */
4647 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4648 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4649 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4650 	BUG_ON(ac->ac_pa == NULL);
4651 
4652 	pa = ac->ac_pa;
4653 
4654 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
4655 		int winl;
4656 		int wins;
4657 		int win;
4658 		int offs;
4659 
4660 		/* we can't allocate as much as normalizer wants.
4661 		 * so, found space must get proper lstart
4662 		 * to cover original request */
4663 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
4664 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
4665 
4666 		/* we're limited by original request in that
4667 		 * logical block must be covered any way
4668 		 * winl is window we can move our chunk within */
4669 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
4670 
4671 		/* also, we should cover whole original request */
4672 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
4673 
4674 		/* the smallest one defines real window */
4675 		win = min(winl, wins);
4676 
4677 		offs = ac->ac_o_ex.fe_logical %
4678 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4679 		if (offs && offs < win)
4680 			win = offs;
4681 
4682 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
4683 			EXT4_NUM_B2C(sbi, win);
4684 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
4685 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
4686 	}
4687 
4688 	/* preallocation can change ac_b_ex, thus we store actually
4689 	 * allocated blocks for history */
4690 	ac->ac_f_ex = ac->ac_b_ex;
4691 
4692 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
4693 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4694 	pa->pa_len = ac->ac_b_ex.fe_len;
4695 	pa->pa_free = pa->pa_len;
4696 	spin_lock_init(&pa->pa_lock);
4697 	INIT_LIST_HEAD(&pa->pa_inode_list);
4698 	INIT_LIST_HEAD(&pa->pa_group_list);
4699 	pa->pa_deleted = 0;
4700 	pa->pa_type = MB_INODE_PA;
4701 
4702 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4703 		 pa->pa_len, pa->pa_lstart);
4704 	trace_ext4_mb_new_inode_pa(ac, pa);
4705 
4706 	ext4_mb_use_inode_pa(ac, pa);
4707 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
4708 
4709 	ei = EXT4_I(ac->ac_inode);
4710 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4711 
4712 	pa->pa_obj_lock = &ei->i_prealloc_lock;
4713 	pa->pa_inode = ac->ac_inode;
4714 
4715 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4716 
4717 	spin_lock(pa->pa_obj_lock);
4718 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
4719 	spin_unlock(pa->pa_obj_lock);
4720 	atomic_inc(&ei->i_prealloc_active);
4721 }
4722 
4723 /*
4724  * creates new preallocated space for locality group inodes belongs to
4725  */
4726 static noinline_for_stack void
4727 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
4728 {
4729 	struct super_block *sb = ac->ac_sb;
4730 	struct ext4_locality_group *lg;
4731 	struct ext4_prealloc_space *pa;
4732 	struct ext4_group_info *grp;
4733 
4734 	/* preallocate only when found space is larger then requested */
4735 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
4736 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4737 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
4738 	BUG_ON(ac->ac_pa == NULL);
4739 
4740 	pa = ac->ac_pa;
4741 
4742 	/* preallocation can change ac_b_ex, thus we store actually
4743 	 * allocated blocks for history */
4744 	ac->ac_f_ex = ac->ac_b_ex;
4745 
4746 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4747 	pa->pa_lstart = pa->pa_pstart;
4748 	pa->pa_len = ac->ac_b_ex.fe_len;
4749 	pa->pa_free = pa->pa_len;
4750 	spin_lock_init(&pa->pa_lock);
4751 	INIT_LIST_HEAD(&pa->pa_inode_list);
4752 	INIT_LIST_HEAD(&pa->pa_group_list);
4753 	pa->pa_deleted = 0;
4754 	pa->pa_type = MB_GROUP_PA;
4755 
4756 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
4757 		 pa->pa_len, pa->pa_lstart);
4758 	trace_ext4_mb_new_group_pa(ac, pa);
4759 
4760 	ext4_mb_use_group_pa(ac, pa);
4761 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
4762 
4763 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
4764 	lg = ac->ac_lg;
4765 	BUG_ON(lg == NULL);
4766 
4767 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
4768 	pa->pa_inode = NULL;
4769 
4770 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
4771 
4772 	/*
4773 	 * We will later add the new pa to the right bucket
4774 	 * after updating the pa_free in ext4_mb_release_context
4775 	 */
4776 }
4777 
4778 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
4779 {
4780 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4781 		ext4_mb_new_group_pa(ac);
4782 	else
4783 		ext4_mb_new_inode_pa(ac);
4784 }
4785 
4786 /*
4787  * finds all unused blocks in on-disk bitmap, frees them in
4788  * in-core bitmap and buddy.
4789  * @pa must be unlinked from inode and group lists, so that
4790  * nobody else can find/use it.
4791  * the caller MUST hold group/inode locks.
4792  * TODO: optimize the case when there are no in-core structures yet
4793  */
4794 static noinline_for_stack int
4795 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
4796 			struct ext4_prealloc_space *pa)
4797 {
4798 	struct super_block *sb = e4b->bd_sb;
4799 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4800 	unsigned int end;
4801 	unsigned int next;
4802 	ext4_group_t group;
4803 	ext4_grpblk_t bit;
4804 	unsigned long long grp_blk_start;
4805 	int free = 0;
4806 
4807 	BUG_ON(pa->pa_deleted == 0);
4808 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4809 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
4810 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4811 	end = bit + pa->pa_len;
4812 
4813 	while (bit < end) {
4814 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
4815 		if (bit >= end)
4816 			break;
4817 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
4818 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
4819 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
4820 			 (unsigned) next - bit, (unsigned) group);
4821 		free += next - bit;
4822 
4823 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
4824 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
4825 						    EXT4_C2B(sbi, bit)),
4826 					       next - bit);
4827 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
4828 		bit = next + 1;
4829 	}
4830 	if (free != pa->pa_free) {
4831 		ext4_msg(e4b->bd_sb, KERN_CRIT,
4832 			 "pa %p: logic %lu, phys. %lu, len %d",
4833 			 pa, (unsigned long) pa->pa_lstart,
4834 			 (unsigned long) pa->pa_pstart,
4835 			 pa->pa_len);
4836 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
4837 					free, pa->pa_free);
4838 		/*
4839 		 * pa is already deleted so we use the value obtained
4840 		 * from the bitmap and continue.
4841 		 */
4842 	}
4843 	atomic_add(free, &sbi->s_mb_discarded);
4844 
4845 	return 0;
4846 }
4847 
4848 static noinline_for_stack int
4849 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
4850 				struct ext4_prealloc_space *pa)
4851 {
4852 	struct super_block *sb = e4b->bd_sb;
4853 	ext4_group_t group;
4854 	ext4_grpblk_t bit;
4855 
4856 	trace_ext4_mb_release_group_pa(sb, pa);
4857 	BUG_ON(pa->pa_deleted == 0);
4858 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
4859 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
4860 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
4861 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
4862 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
4863 
4864 	return 0;
4865 }
4866 
4867 /*
4868  * releases all preallocations in given group
4869  *
4870  * first, we need to decide discard policy:
4871  * - when do we discard
4872  *   1) ENOSPC
4873  * - how many do we discard
4874  *   1) how many requested
4875  */
4876 static noinline_for_stack int
4877 ext4_mb_discard_group_preallocations(struct super_block *sb,
4878 				     ext4_group_t group, int *busy)
4879 {
4880 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
4881 	struct buffer_head *bitmap_bh = NULL;
4882 	struct ext4_prealloc_space *pa, *tmp;
4883 	struct list_head list;
4884 	struct ext4_buddy e4b;
4885 	int err;
4886 	int free = 0;
4887 
4888 	mb_debug(sb, "discard preallocation for group %u\n", group);
4889 	if (list_empty(&grp->bb_prealloc_list))
4890 		goto out_dbg;
4891 
4892 	bitmap_bh = ext4_read_block_bitmap(sb, group);
4893 	if (IS_ERR(bitmap_bh)) {
4894 		err = PTR_ERR(bitmap_bh);
4895 		ext4_error_err(sb, -err,
4896 			       "Error %d reading block bitmap for %u",
4897 			       err, group);
4898 		goto out_dbg;
4899 	}
4900 
4901 	err = ext4_mb_load_buddy(sb, group, &e4b);
4902 	if (err) {
4903 		ext4_warning(sb, "Error %d loading buddy information for %u",
4904 			     err, group);
4905 		put_bh(bitmap_bh);
4906 		goto out_dbg;
4907 	}
4908 
4909 	INIT_LIST_HEAD(&list);
4910 	ext4_lock_group(sb, group);
4911 	list_for_each_entry_safe(pa, tmp,
4912 				&grp->bb_prealloc_list, pa_group_list) {
4913 		spin_lock(&pa->pa_lock);
4914 		if (atomic_read(&pa->pa_count)) {
4915 			spin_unlock(&pa->pa_lock);
4916 			*busy = 1;
4917 			continue;
4918 		}
4919 		if (pa->pa_deleted) {
4920 			spin_unlock(&pa->pa_lock);
4921 			continue;
4922 		}
4923 
4924 		/* seems this one can be freed ... */
4925 		ext4_mb_mark_pa_deleted(sb, pa);
4926 
4927 		if (!free)
4928 			this_cpu_inc(discard_pa_seq);
4929 
4930 		/* we can trust pa_free ... */
4931 		free += pa->pa_free;
4932 
4933 		spin_unlock(&pa->pa_lock);
4934 
4935 		list_del(&pa->pa_group_list);
4936 		list_add(&pa->u.pa_tmp_list, &list);
4937 	}
4938 
4939 	/* now free all selected PAs */
4940 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4941 
4942 		/* remove from object (inode or locality group) */
4943 		spin_lock(pa->pa_obj_lock);
4944 		list_del_rcu(&pa->pa_inode_list);
4945 		spin_unlock(pa->pa_obj_lock);
4946 
4947 		if (pa->pa_type == MB_GROUP_PA)
4948 			ext4_mb_release_group_pa(&e4b, pa);
4949 		else
4950 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4951 
4952 		list_del(&pa->u.pa_tmp_list);
4953 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4954 	}
4955 
4956 	ext4_unlock_group(sb, group);
4957 	ext4_mb_unload_buddy(&e4b);
4958 	put_bh(bitmap_bh);
4959 out_dbg:
4960 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
4961 		 free, group, grp->bb_free);
4962 	return free;
4963 }
4964 
4965 /*
4966  * releases all non-used preallocated blocks for given inode
4967  *
4968  * It's important to discard preallocations under i_data_sem
4969  * We don't want another block to be served from the prealloc
4970  * space when we are discarding the inode prealloc space.
4971  *
4972  * FIXME!! Make sure it is valid at all the call sites
4973  */
4974 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
4975 {
4976 	struct ext4_inode_info *ei = EXT4_I(inode);
4977 	struct super_block *sb = inode->i_sb;
4978 	struct buffer_head *bitmap_bh = NULL;
4979 	struct ext4_prealloc_space *pa, *tmp;
4980 	ext4_group_t group = 0;
4981 	struct list_head list;
4982 	struct ext4_buddy e4b;
4983 	int err;
4984 
4985 	if (!S_ISREG(inode->i_mode)) {
4986 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4987 		return;
4988 	}
4989 
4990 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
4991 		return;
4992 
4993 	mb_debug(sb, "discard preallocation for inode %lu\n",
4994 		 inode->i_ino);
4995 	trace_ext4_discard_preallocations(inode,
4996 			atomic_read(&ei->i_prealloc_active), needed);
4997 
4998 	INIT_LIST_HEAD(&list);
4999 
5000 	if (needed == 0)
5001 		needed = UINT_MAX;
5002 
5003 repeat:
5004 	/* first, collect all pa's in the inode */
5005 	spin_lock(&ei->i_prealloc_lock);
5006 	while (!list_empty(&ei->i_prealloc_list) && needed) {
5007 		pa = list_entry(ei->i_prealloc_list.prev,
5008 				struct ext4_prealloc_space, pa_inode_list);
5009 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
5010 		spin_lock(&pa->pa_lock);
5011 		if (atomic_read(&pa->pa_count)) {
5012 			/* this shouldn't happen often - nobody should
5013 			 * use preallocation while we're discarding it */
5014 			spin_unlock(&pa->pa_lock);
5015 			spin_unlock(&ei->i_prealloc_lock);
5016 			ext4_msg(sb, KERN_ERR,
5017 				 "uh-oh! used pa while discarding");
5018 			WARN_ON(1);
5019 			schedule_timeout_uninterruptible(HZ);
5020 			goto repeat;
5021 
5022 		}
5023 		if (pa->pa_deleted == 0) {
5024 			ext4_mb_mark_pa_deleted(sb, pa);
5025 			spin_unlock(&pa->pa_lock);
5026 			list_del_rcu(&pa->pa_inode_list);
5027 			list_add(&pa->u.pa_tmp_list, &list);
5028 			needed--;
5029 			continue;
5030 		}
5031 
5032 		/* someone is deleting pa right now */
5033 		spin_unlock(&pa->pa_lock);
5034 		spin_unlock(&ei->i_prealloc_lock);
5035 
5036 		/* we have to wait here because pa_deleted
5037 		 * doesn't mean pa is already unlinked from
5038 		 * the list. as we might be called from
5039 		 * ->clear_inode() the inode will get freed
5040 		 * and concurrent thread which is unlinking
5041 		 * pa from inode's list may access already
5042 		 * freed memory, bad-bad-bad */
5043 
5044 		/* XXX: if this happens too often, we can
5045 		 * add a flag to force wait only in case
5046 		 * of ->clear_inode(), but not in case of
5047 		 * regular truncate */
5048 		schedule_timeout_uninterruptible(HZ);
5049 		goto repeat;
5050 	}
5051 	spin_unlock(&ei->i_prealloc_lock);
5052 
5053 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5054 		BUG_ON(pa->pa_type != MB_INODE_PA);
5055 		group = ext4_get_group_number(sb, pa->pa_pstart);
5056 
5057 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5058 					     GFP_NOFS|__GFP_NOFAIL);
5059 		if (err) {
5060 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5061 				       err, group);
5062 			continue;
5063 		}
5064 
5065 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5066 		if (IS_ERR(bitmap_bh)) {
5067 			err = PTR_ERR(bitmap_bh);
5068 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5069 				       err, group);
5070 			ext4_mb_unload_buddy(&e4b);
5071 			continue;
5072 		}
5073 
5074 		ext4_lock_group(sb, group);
5075 		list_del(&pa->pa_group_list);
5076 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5077 		ext4_unlock_group(sb, group);
5078 
5079 		ext4_mb_unload_buddy(&e4b);
5080 		put_bh(bitmap_bh);
5081 
5082 		list_del(&pa->u.pa_tmp_list);
5083 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5084 	}
5085 }
5086 
5087 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5088 {
5089 	struct ext4_prealloc_space *pa;
5090 
5091 	BUG_ON(ext4_pspace_cachep == NULL);
5092 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5093 	if (!pa)
5094 		return -ENOMEM;
5095 	atomic_set(&pa->pa_count, 1);
5096 	ac->ac_pa = pa;
5097 	return 0;
5098 }
5099 
5100 static void ext4_mb_pa_free(struct ext4_allocation_context *ac)
5101 {
5102 	struct ext4_prealloc_space *pa = ac->ac_pa;
5103 
5104 	BUG_ON(!pa);
5105 	ac->ac_pa = NULL;
5106 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5107 	kmem_cache_free(ext4_pspace_cachep, pa);
5108 }
5109 
5110 #ifdef CONFIG_EXT4_DEBUG
5111 static inline void ext4_mb_show_pa(struct super_block *sb)
5112 {
5113 	ext4_group_t i, ngroups;
5114 
5115 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5116 		return;
5117 
5118 	ngroups = ext4_get_groups_count(sb);
5119 	mb_debug(sb, "groups: ");
5120 	for (i = 0; i < ngroups; i++) {
5121 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5122 		struct ext4_prealloc_space *pa;
5123 		ext4_grpblk_t start;
5124 		struct list_head *cur;
5125 		ext4_lock_group(sb, i);
5126 		list_for_each(cur, &grp->bb_prealloc_list) {
5127 			pa = list_entry(cur, struct ext4_prealloc_space,
5128 					pa_group_list);
5129 			spin_lock(&pa->pa_lock);
5130 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5131 						     NULL, &start);
5132 			spin_unlock(&pa->pa_lock);
5133 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5134 				 pa->pa_len);
5135 		}
5136 		ext4_unlock_group(sb, i);
5137 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5138 			 grp->bb_fragments);
5139 	}
5140 }
5141 
5142 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5143 {
5144 	struct super_block *sb = ac->ac_sb;
5145 
5146 	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5147 		return;
5148 
5149 	mb_debug(sb, "Can't allocate:"
5150 			" Allocation context details:");
5151 	mb_debug(sb, "status %u flags 0x%x",
5152 			ac->ac_status, ac->ac_flags);
5153 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5154 			"goal %lu/%lu/%lu@%lu, "
5155 			"best %lu/%lu/%lu@%lu cr %d",
5156 			(unsigned long)ac->ac_o_ex.fe_group,
5157 			(unsigned long)ac->ac_o_ex.fe_start,
5158 			(unsigned long)ac->ac_o_ex.fe_len,
5159 			(unsigned long)ac->ac_o_ex.fe_logical,
5160 			(unsigned long)ac->ac_g_ex.fe_group,
5161 			(unsigned long)ac->ac_g_ex.fe_start,
5162 			(unsigned long)ac->ac_g_ex.fe_len,
5163 			(unsigned long)ac->ac_g_ex.fe_logical,
5164 			(unsigned long)ac->ac_b_ex.fe_group,
5165 			(unsigned long)ac->ac_b_ex.fe_start,
5166 			(unsigned long)ac->ac_b_ex.fe_len,
5167 			(unsigned long)ac->ac_b_ex.fe_logical,
5168 			(int)ac->ac_criteria);
5169 	mb_debug(sb, "%u found", ac->ac_found);
5170 	ext4_mb_show_pa(sb);
5171 }
5172 #else
5173 static inline void ext4_mb_show_pa(struct super_block *sb)
5174 {
5175 	return;
5176 }
5177 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5178 {
5179 	ext4_mb_show_pa(ac->ac_sb);
5180 	return;
5181 }
5182 #endif
5183 
5184 /*
5185  * We use locality group preallocation for small size file. The size of the
5186  * file is determined by the current size or the resulting size after
5187  * allocation which ever is larger
5188  *
5189  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5190  */
5191 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5192 {
5193 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5194 	int bsbits = ac->ac_sb->s_blocksize_bits;
5195 	loff_t size, isize;
5196 
5197 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5198 		return;
5199 
5200 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5201 		return;
5202 
5203 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
5204 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5205 		>> bsbits;
5206 
5207 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5208 	    !inode_is_open_for_write(ac->ac_inode)) {
5209 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5210 		return;
5211 	}
5212 
5213 	if (sbi->s_mb_group_prealloc <= 0) {
5214 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5215 		return;
5216 	}
5217 
5218 	/* don't use group allocation for large files */
5219 	size = max(size, isize);
5220 	if (size > sbi->s_mb_stream_request) {
5221 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5222 		return;
5223 	}
5224 
5225 	BUG_ON(ac->ac_lg != NULL);
5226 	/*
5227 	 * locality group prealloc space are per cpu. The reason for having
5228 	 * per cpu locality group is to reduce the contention between block
5229 	 * request from multiple CPUs.
5230 	 */
5231 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5232 
5233 	/* we're going to use group allocation */
5234 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5235 
5236 	/* serialize all allocations in the group */
5237 	mutex_lock(&ac->ac_lg->lg_mutex);
5238 }
5239 
5240 static noinline_for_stack int
5241 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5242 				struct ext4_allocation_request *ar)
5243 {
5244 	struct super_block *sb = ar->inode->i_sb;
5245 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5246 	struct ext4_super_block *es = sbi->s_es;
5247 	ext4_group_t group;
5248 	unsigned int len;
5249 	ext4_fsblk_t goal;
5250 	ext4_grpblk_t block;
5251 
5252 	/* we can't allocate > group size */
5253 	len = ar->len;
5254 
5255 	/* just a dirty hack to filter too big requests  */
5256 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5257 		len = EXT4_CLUSTERS_PER_GROUP(sb);
5258 
5259 	/* start searching from the goal */
5260 	goal = ar->goal;
5261 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5262 			goal >= ext4_blocks_count(es))
5263 		goal = le32_to_cpu(es->s_first_data_block);
5264 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5265 
5266 	/* set up allocation goals */
5267 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5268 	ac->ac_status = AC_STATUS_CONTINUE;
5269 	ac->ac_sb = sb;
5270 	ac->ac_inode = ar->inode;
5271 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5272 	ac->ac_o_ex.fe_group = group;
5273 	ac->ac_o_ex.fe_start = block;
5274 	ac->ac_o_ex.fe_len = len;
5275 	ac->ac_g_ex = ac->ac_o_ex;
5276 	ac->ac_flags = ar->flags;
5277 
5278 	/* we have to define context: we'll work with a file or
5279 	 * locality group. this is a policy, actually */
5280 	ext4_mb_group_or_file(ac);
5281 
5282 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5283 			"left: %u/%u, right %u/%u to %swritable\n",
5284 			(unsigned) ar->len, (unsigned) ar->logical,
5285 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5286 			(unsigned) ar->lleft, (unsigned) ar->pleft,
5287 			(unsigned) ar->lright, (unsigned) ar->pright,
5288 			inode_is_open_for_write(ar->inode) ? "" : "non-");
5289 	return 0;
5290 
5291 }
5292 
5293 static noinline_for_stack void
5294 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5295 					struct ext4_locality_group *lg,
5296 					int order, int total_entries)
5297 {
5298 	ext4_group_t group = 0;
5299 	struct ext4_buddy e4b;
5300 	struct list_head discard_list;
5301 	struct ext4_prealloc_space *pa, *tmp;
5302 
5303 	mb_debug(sb, "discard locality group preallocation\n");
5304 
5305 	INIT_LIST_HEAD(&discard_list);
5306 
5307 	spin_lock(&lg->lg_prealloc_lock);
5308 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5309 				pa_inode_list,
5310 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5311 		spin_lock(&pa->pa_lock);
5312 		if (atomic_read(&pa->pa_count)) {
5313 			/*
5314 			 * This is the pa that we just used
5315 			 * for block allocation. So don't
5316 			 * free that
5317 			 */
5318 			spin_unlock(&pa->pa_lock);
5319 			continue;
5320 		}
5321 		if (pa->pa_deleted) {
5322 			spin_unlock(&pa->pa_lock);
5323 			continue;
5324 		}
5325 		/* only lg prealloc space */
5326 		BUG_ON(pa->pa_type != MB_GROUP_PA);
5327 
5328 		/* seems this one can be freed ... */
5329 		ext4_mb_mark_pa_deleted(sb, pa);
5330 		spin_unlock(&pa->pa_lock);
5331 
5332 		list_del_rcu(&pa->pa_inode_list);
5333 		list_add(&pa->u.pa_tmp_list, &discard_list);
5334 
5335 		total_entries--;
5336 		if (total_entries <= 5) {
5337 			/*
5338 			 * we want to keep only 5 entries
5339 			 * allowing it to grow to 8. This
5340 			 * mak sure we don't call discard
5341 			 * soon for this list.
5342 			 */
5343 			break;
5344 		}
5345 	}
5346 	spin_unlock(&lg->lg_prealloc_lock);
5347 
5348 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5349 		int err;
5350 
5351 		group = ext4_get_group_number(sb, pa->pa_pstart);
5352 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5353 					     GFP_NOFS|__GFP_NOFAIL);
5354 		if (err) {
5355 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5356 				       err, group);
5357 			continue;
5358 		}
5359 		ext4_lock_group(sb, group);
5360 		list_del(&pa->pa_group_list);
5361 		ext4_mb_release_group_pa(&e4b, pa);
5362 		ext4_unlock_group(sb, group);
5363 
5364 		ext4_mb_unload_buddy(&e4b);
5365 		list_del(&pa->u.pa_tmp_list);
5366 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5367 	}
5368 }
5369 
5370 /*
5371  * We have incremented pa_count. So it cannot be freed at this
5372  * point. Also we hold lg_mutex. So no parallel allocation is
5373  * possible from this lg. That means pa_free cannot be updated.
5374  *
5375  * A parallel ext4_mb_discard_group_preallocations is possible.
5376  * which can cause the lg_prealloc_list to be updated.
5377  */
5378 
5379 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5380 {
5381 	int order, added = 0, lg_prealloc_count = 1;
5382 	struct super_block *sb = ac->ac_sb;
5383 	struct ext4_locality_group *lg = ac->ac_lg;
5384 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5385 
5386 	order = fls(pa->pa_free) - 1;
5387 	if (order > PREALLOC_TB_SIZE - 1)
5388 		/* The max size of hash table is PREALLOC_TB_SIZE */
5389 		order = PREALLOC_TB_SIZE - 1;
5390 	/* Add the prealloc space to lg */
5391 	spin_lock(&lg->lg_prealloc_lock);
5392 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5393 				pa_inode_list,
5394 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5395 		spin_lock(&tmp_pa->pa_lock);
5396 		if (tmp_pa->pa_deleted) {
5397 			spin_unlock(&tmp_pa->pa_lock);
5398 			continue;
5399 		}
5400 		if (!added && pa->pa_free < tmp_pa->pa_free) {
5401 			/* Add to the tail of the previous entry */
5402 			list_add_tail_rcu(&pa->pa_inode_list,
5403 						&tmp_pa->pa_inode_list);
5404 			added = 1;
5405 			/*
5406 			 * we want to count the total
5407 			 * number of entries in the list
5408 			 */
5409 		}
5410 		spin_unlock(&tmp_pa->pa_lock);
5411 		lg_prealloc_count++;
5412 	}
5413 	if (!added)
5414 		list_add_tail_rcu(&pa->pa_inode_list,
5415 					&lg->lg_prealloc_list[order]);
5416 	spin_unlock(&lg->lg_prealloc_lock);
5417 
5418 	/* Now trim the list to be not more than 8 elements */
5419 	if (lg_prealloc_count > 8) {
5420 		ext4_mb_discard_lg_preallocations(sb, lg,
5421 						  order, lg_prealloc_count);
5422 		return;
5423 	}
5424 	return ;
5425 }
5426 
5427 /*
5428  * if per-inode prealloc list is too long, trim some PA
5429  */
5430 static void ext4_mb_trim_inode_pa(struct inode *inode)
5431 {
5432 	struct ext4_inode_info *ei = EXT4_I(inode);
5433 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5434 	int count, delta;
5435 
5436 	count = atomic_read(&ei->i_prealloc_active);
5437 	delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1;
5438 	if (count > sbi->s_mb_max_inode_prealloc + delta) {
5439 		count -= sbi->s_mb_max_inode_prealloc;
5440 		ext4_discard_preallocations(inode, count);
5441 	}
5442 }
5443 
5444 /*
5445  * release all resource we used in allocation
5446  */
5447 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5448 {
5449 	struct inode *inode = ac->ac_inode;
5450 	struct ext4_inode_info *ei = EXT4_I(inode);
5451 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5452 	struct ext4_prealloc_space *pa = ac->ac_pa;
5453 	if (pa) {
5454 		if (pa->pa_type == MB_GROUP_PA) {
5455 			/* see comment in ext4_mb_use_group_pa() */
5456 			spin_lock(&pa->pa_lock);
5457 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5458 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5459 			pa->pa_free -= ac->ac_b_ex.fe_len;
5460 			pa->pa_len -= ac->ac_b_ex.fe_len;
5461 			spin_unlock(&pa->pa_lock);
5462 
5463 			/*
5464 			 * We want to add the pa to the right bucket.
5465 			 * Remove it from the list and while adding
5466 			 * make sure the list to which we are adding
5467 			 * doesn't grow big.
5468 			 */
5469 			if (likely(pa->pa_free)) {
5470 				spin_lock(pa->pa_obj_lock);
5471 				list_del_rcu(&pa->pa_inode_list);
5472 				spin_unlock(pa->pa_obj_lock);
5473 				ext4_mb_add_n_trim(ac);
5474 			}
5475 		}
5476 
5477 		if (pa->pa_type == MB_INODE_PA) {
5478 			/*
5479 			 * treat per-inode prealloc list as a lru list, then try
5480 			 * to trim the least recently used PA.
5481 			 */
5482 			spin_lock(pa->pa_obj_lock);
5483 			list_move(&pa->pa_inode_list, &ei->i_prealloc_list);
5484 			spin_unlock(pa->pa_obj_lock);
5485 		}
5486 
5487 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
5488 	}
5489 	if (ac->ac_bitmap_page)
5490 		put_page(ac->ac_bitmap_page);
5491 	if (ac->ac_buddy_page)
5492 		put_page(ac->ac_buddy_page);
5493 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5494 		mutex_unlock(&ac->ac_lg->lg_mutex);
5495 	ext4_mb_collect_stats(ac);
5496 	ext4_mb_trim_inode_pa(inode);
5497 	return 0;
5498 }
5499 
5500 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
5501 {
5502 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
5503 	int ret;
5504 	int freed = 0, busy = 0;
5505 	int retry = 0;
5506 
5507 	trace_ext4_mb_discard_preallocations(sb, needed);
5508 
5509 	if (needed == 0)
5510 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
5511  repeat:
5512 	for (i = 0; i < ngroups && needed > 0; i++) {
5513 		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
5514 		freed += ret;
5515 		needed -= ret;
5516 		cond_resched();
5517 	}
5518 
5519 	if (needed > 0 && busy && ++retry < 3) {
5520 		busy = 0;
5521 		goto repeat;
5522 	}
5523 
5524 	return freed;
5525 }
5526 
5527 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
5528 			struct ext4_allocation_context *ac, u64 *seq)
5529 {
5530 	int freed;
5531 	u64 seq_retry = 0;
5532 	bool ret = false;
5533 
5534 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
5535 	if (freed) {
5536 		ret = true;
5537 		goto out_dbg;
5538 	}
5539 	seq_retry = ext4_get_discard_pa_seq_sum();
5540 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
5541 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
5542 		*seq = seq_retry;
5543 		ret = true;
5544 	}
5545 
5546 out_dbg:
5547 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
5548 	return ret;
5549 }
5550 
5551 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5552 				struct ext4_allocation_request *ar, int *errp);
5553 
5554 /*
5555  * Main entry point into mballoc to allocate blocks
5556  * it tries to use preallocation first, then falls back
5557  * to usual allocation
5558  */
5559 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
5560 				struct ext4_allocation_request *ar, int *errp)
5561 {
5562 	struct ext4_allocation_context *ac = NULL;
5563 	struct ext4_sb_info *sbi;
5564 	struct super_block *sb;
5565 	ext4_fsblk_t block = 0;
5566 	unsigned int inquota = 0;
5567 	unsigned int reserv_clstrs = 0;
5568 	u64 seq;
5569 
5570 	might_sleep();
5571 	sb = ar->inode->i_sb;
5572 	sbi = EXT4_SB(sb);
5573 
5574 	trace_ext4_request_blocks(ar);
5575 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
5576 		return ext4_mb_new_blocks_simple(handle, ar, errp);
5577 
5578 	/* Allow to use superuser reservation for quota file */
5579 	if (ext4_is_quota_file(ar->inode))
5580 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
5581 
5582 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
5583 		/* Without delayed allocation we need to verify
5584 		 * there is enough free blocks to do block allocation
5585 		 * and verify allocation doesn't exceed the quota limits.
5586 		 */
5587 		while (ar->len &&
5588 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
5589 
5590 			/* let others to free the space */
5591 			cond_resched();
5592 			ar->len = ar->len >> 1;
5593 		}
5594 		if (!ar->len) {
5595 			ext4_mb_show_pa(sb);
5596 			*errp = -ENOSPC;
5597 			return 0;
5598 		}
5599 		reserv_clstrs = ar->len;
5600 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
5601 			dquot_alloc_block_nofail(ar->inode,
5602 						 EXT4_C2B(sbi, ar->len));
5603 		} else {
5604 			while (ar->len &&
5605 				dquot_alloc_block(ar->inode,
5606 						  EXT4_C2B(sbi, ar->len))) {
5607 
5608 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
5609 				ar->len--;
5610 			}
5611 		}
5612 		inquota = ar->len;
5613 		if (ar->len == 0) {
5614 			*errp = -EDQUOT;
5615 			goto out;
5616 		}
5617 	}
5618 
5619 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
5620 	if (!ac) {
5621 		ar->len = 0;
5622 		*errp = -ENOMEM;
5623 		goto out;
5624 	}
5625 
5626 	*errp = ext4_mb_initialize_context(ac, ar);
5627 	if (*errp) {
5628 		ar->len = 0;
5629 		goto out;
5630 	}
5631 
5632 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
5633 	seq = this_cpu_read(discard_pa_seq);
5634 	if (!ext4_mb_use_preallocated(ac)) {
5635 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
5636 		ext4_mb_normalize_request(ac, ar);
5637 
5638 		*errp = ext4_mb_pa_alloc(ac);
5639 		if (*errp)
5640 			goto errout;
5641 repeat:
5642 		/* allocate space in core */
5643 		*errp = ext4_mb_regular_allocator(ac);
5644 		/*
5645 		 * pa allocated above is added to grp->bb_prealloc_list only
5646 		 * when we were able to allocate some block i.e. when
5647 		 * ac->ac_status == AC_STATUS_FOUND.
5648 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
5649 		 * So we have to free this pa here itself.
5650 		 */
5651 		if (*errp) {
5652 			ext4_mb_pa_free(ac);
5653 			ext4_discard_allocated_blocks(ac);
5654 			goto errout;
5655 		}
5656 		if (ac->ac_status == AC_STATUS_FOUND &&
5657 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
5658 			ext4_mb_pa_free(ac);
5659 	}
5660 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
5661 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
5662 		if (*errp) {
5663 			ext4_discard_allocated_blocks(ac);
5664 			goto errout;
5665 		} else {
5666 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5667 			ar->len = ac->ac_b_ex.fe_len;
5668 		}
5669 	} else {
5670 		if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
5671 			goto repeat;
5672 		/*
5673 		 * If block allocation fails then the pa allocated above
5674 		 * needs to be freed here itself.
5675 		 */
5676 		ext4_mb_pa_free(ac);
5677 		*errp = -ENOSPC;
5678 	}
5679 
5680 errout:
5681 	if (*errp) {
5682 		ac->ac_b_ex.fe_len = 0;
5683 		ar->len = 0;
5684 		ext4_mb_show_ac(ac);
5685 	}
5686 	ext4_mb_release_context(ac);
5687 out:
5688 	if (ac)
5689 		kmem_cache_free(ext4_ac_cachep, ac);
5690 	if (inquota && ar->len < inquota)
5691 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
5692 	if (!ar->len) {
5693 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
5694 			/* release all the reserved blocks if non delalloc */
5695 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
5696 						reserv_clstrs);
5697 	}
5698 
5699 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
5700 
5701 	return block;
5702 }
5703 
5704 /*
5705  * We can merge two free data extents only if the physical blocks
5706  * are contiguous, AND the extents were freed by the same transaction,
5707  * AND the blocks are associated with the same group.
5708  */
5709 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
5710 					struct ext4_free_data *entry,
5711 					struct ext4_free_data *new_entry,
5712 					struct rb_root *entry_rb_root)
5713 {
5714 	if ((entry->efd_tid != new_entry->efd_tid) ||
5715 	    (entry->efd_group != new_entry->efd_group))
5716 		return;
5717 	if (entry->efd_start_cluster + entry->efd_count ==
5718 	    new_entry->efd_start_cluster) {
5719 		new_entry->efd_start_cluster = entry->efd_start_cluster;
5720 		new_entry->efd_count += entry->efd_count;
5721 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
5722 		   entry->efd_start_cluster) {
5723 		new_entry->efd_count += entry->efd_count;
5724 	} else
5725 		return;
5726 	spin_lock(&sbi->s_md_lock);
5727 	list_del(&entry->efd_list);
5728 	spin_unlock(&sbi->s_md_lock);
5729 	rb_erase(&entry->efd_node, entry_rb_root);
5730 	kmem_cache_free(ext4_free_data_cachep, entry);
5731 }
5732 
5733 static noinline_for_stack int
5734 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
5735 		      struct ext4_free_data *new_entry)
5736 {
5737 	ext4_group_t group = e4b->bd_group;
5738 	ext4_grpblk_t cluster;
5739 	ext4_grpblk_t clusters = new_entry->efd_count;
5740 	struct ext4_free_data *entry;
5741 	struct ext4_group_info *db = e4b->bd_info;
5742 	struct super_block *sb = e4b->bd_sb;
5743 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5744 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
5745 	struct rb_node *parent = NULL, *new_node;
5746 
5747 	BUG_ON(!ext4_handle_valid(handle));
5748 	BUG_ON(e4b->bd_bitmap_page == NULL);
5749 	BUG_ON(e4b->bd_buddy_page == NULL);
5750 
5751 	new_node = &new_entry->efd_node;
5752 	cluster = new_entry->efd_start_cluster;
5753 
5754 	if (!*n) {
5755 		/* first free block exent. We need to
5756 		   protect buddy cache from being freed,
5757 		 * otherwise we'll refresh it from
5758 		 * on-disk bitmap and lose not-yet-available
5759 		 * blocks */
5760 		get_page(e4b->bd_buddy_page);
5761 		get_page(e4b->bd_bitmap_page);
5762 	}
5763 	while (*n) {
5764 		parent = *n;
5765 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
5766 		if (cluster < entry->efd_start_cluster)
5767 			n = &(*n)->rb_left;
5768 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
5769 			n = &(*n)->rb_right;
5770 		else {
5771 			ext4_grp_locked_error(sb, group, 0,
5772 				ext4_group_first_block_no(sb, group) +
5773 				EXT4_C2B(sbi, cluster),
5774 				"Block already on to-be-freed list");
5775 			kmem_cache_free(ext4_free_data_cachep, new_entry);
5776 			return 0;
5777 		}
5778 	}
5779 
5780 	rb_link_node(new_node, parent, n);
5781 	rb_insert_color(new_node, &db->bb_free_root);
5782 
5783 	/* Now try to see the extent can be merged to left and right */
5784 	node = rb_prev(new_node);
5785 	if (node) {
5786 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5787 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5788 					    &(db->bb_free_root));
5789 	}
5790 
5791 	node = rb_next(new_node);
5792 	if (node) {
5793 		entry = rb_entry(node, struct ext4_free_data, efd_node);
5794 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
5795 					    &(db->bb_free_root));
5796 	}
5797 
5798 	spin_lock(&sbi->s_md_lock);
5799 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
5800 	sbi->s_mb_free_pending += clusters;
5801 	spin_unlock(&sbi->s_md_lock);
5802 	return 0;
5803 }
5804 
5805 /*
5806  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
5807  * linearly starting at the goal block and also excludes the blocks which
5808  * are going to be in use after fast commit replay.
5809  */
5810 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle,
5811 				struct ext4_allocation_request *ar, int *errp)
5812 {
5813 	struct buffer_head *bitmap_bh;
5814 	struct super_block *sb = ar->inode->i_sb;
5815 	ext4_group_t group;
5816 	ext4_grpblk_t blkoff;
5817 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
5818 	ext4_grpblk_t i = 0;
5819 	ext4_fsblk_t goal, block;
5820 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5821 
5822 	goal = ar->goal;
5823 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5824 			goal >= ext4_blocks_count(es))
5825 		goal = le32_to_cpu(es->s_first_data_block);
5826 
5827 	ar->len = 0;
5828 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
5829 	for (; group < ext4_get_groups_count(sb); group++) {
5830 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5831 		if (IS_ERR(bitmap_bh)) {
5832 			*errp = PTR_ERR(bitmap_bh);
5833 			pr_warn("Failed to read block bitmap\n");
5834 			return 0;
5835 		}
5836 
5837 		ext4_get_group_no_and_offset(sb,
5838 			max(ext4_group_first_block_no(sb, group), goal),
5839 			NULL, &blkoff);
5840 		while (1) {
5841 			i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
5842 						blkoff);
5843 			if (i >= max)
5844 				break;
5845 			if (ext4_fc_replay_check_excluded(sb,
5846 				ext4_group_first_block_no(sb, group) + i)) {
5847 				blkoff = i + 1;
5848 			} else
5849 				break;
5850 		}
5851 		brelse(bitmap_bh);
5852 		if (i < max)
5853 			break;
5854 	}
5855 
5856 	if (group >= ext4_get_groups_count(sb) || i >= max) {
5857 		*errp = -ENOSPC;
5858 		return 0;
5859 	}
5860 
5861 	block = ext4_group_first_block_no(sb, group) + i;
5862 	ext4_mb_mark_bb(sb, block, 1, 1);
5863 	ar->len = 1;
5864 
5865 	return block;
5866 }
5867 
5868 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
5869 					unsigned long count)
5870 {
5871 	struct buffer_head *bitmap_bh;
5872 	struct super_block *sb = inode->i_sb;
5873 	struct ext4_group_desc *gdp;
5874 	struct buffer_head *gdp_bh;
5875 	ext4_group_t group;
5876 	ext4_grpblk_t blkoff;
5877 	int already_freed = 0, err, i;
5878 
5879 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
5880 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5881 	if (IS_ERR(bitmap_bh)) {
5882 		err = PTR_ERR(bitmap_bh);
5883 		pr_warn("Failed to read block bitmap\n");
5884 		return;
5885 	}
5886 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
5887 	if (!gdp)
5888 		return;
5889 
5890 	for (i = 0; i < count; i++) {
5891 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
5892 			already_freed++;
5893 	}
5894 	mb_clear_bits(bitmap_bh->b_data, blkoff, count);
5895 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
5896 	if (err)
5897 		return;
5898 	ext4_free_group_clusters_set(
5899 		sb, gdp, ext4_free_group_clusters(sb, gdp) +
5900 		count - already_freed);
5901 	ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh);
5902 	ext4_group_desc_csum_set(sb, group, gdp);
5903 	ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
5904 	sync_dirty_buffer(bitmap_bh);
5905 	sync_dirty_buffer(gdp_bh);
5906 	brelse(bitmap_bh);
5907 }
5908 
5909 /**
5910  * ext4_mb_clear_bb() -- helper function for freeing blocks.
5911  *			Used by ext4_free_blocks()
5912  * @handle:		handle for this transaction
5913  * @inode:		inode
5914  * @block:		starting physical block to be freed
5915  * @count:		number of blocks to be freed
5916  * @flags:		flags used by ext4_free_blocks
5917  */
5918 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
5919 			       ext4_fsblk_t block, unsigned long count,
5920 			       int flags)
5921 {
5922 	struct buffer_head *bitmap_bh = NULL;
5923 	struct super_block *sb = inode->i_sb;
5924 	struct ext4_group_desc *gdp;
5925 	unsigned int overflow;
5926 	ext4_grpblk_t bit;
5927 	struct buffer_head *gd_bh;
5928 	ext4_group_t block_group;
5929 	struct ext4_sb_info *sbi;
5930 	struct ext4_buddy e4b;
5931 	unsigned int count_clusters;
5932 	int err = 0;
5933 	int ret;
5934 
5935 	sbi = EXT4_SB(sb);
5936 
5937 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
5938 	    !ext4_inode_block_valid(inode, block, count)) {
5939 		ext4_error(sb, "Freeing blocks in system zone - "
5940 			   "Block = %llu, count = %lu", block, count);
5941 		/* err = 0. ext4_std_error should be a no op */
5942 		goto error_return;
5943 	}
5944 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
5945 
5946 do_more:
5947 	overflow = 0;
5948 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5949 
5950 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
5951 			ext4_get_group_info(sb, block_group))))
5952 		return;
5953 
5954 	/*
5955 	 * Check to see if we are freeing blocks across a group
5956 	 * boundary.
5957 	 */
5958 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
5959 		overflow = EXT4_C2B(sbi, bit) + count -
5960 			EXT4_BLOCKS_PER_GROUP(sb);
5961 		count -= overflow;
5962 		/* The range changed so it's no longer validated */
5963 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
5964 	}
5965 	count_clusters = EXT4_NUM_B2C(sbi, count);
5966 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5967 	if (IS_ERR(bitmap_bh)) {
5968 		err = PTR_ERR(bitmap_bh);
5969 		bitmap_bh = NULL;
5970 		goto error_return;
5971 	}
5972 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
5973 	if (!gdp) {
5974 		err = -EIO;
5975 		goto error_return;
5976 	}
5977 
5978 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
5979 	    !ext4_inode_block_valid(inode, block, count)) {
5980 		ext4_error(sb, "Freeing blocks in system zone - "
5981 			   "Block = %llu, count = %lu", block, count);
5982 		/* err = 0. ext4_std_error should be a no op */
5983 		goto error_return;
5984 	}
5985 
5986 	BUFFER_TRACE(bitmap_bh, "getting write access");
5987 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
5988 					    EXT4_JTR_NONE);
5989 	if (err)
5990 		goto error_return;
5991 
5992 	/*
5993 	 * We are about to modify some metadata.  Call the journal APIs
5994 	 * to unshare ->b_data if a currently-committing transaction is
5995 	 * using it
5996 	 */
5997 	BUFFER_TRACE(gd_bh, "get_write_access");
5998 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
5999 	if (err)
6000 		goto error_return;
6001 #ifdef AGGRESSIVE_CHECK
6002 	{
6003 		int i;
6004 		for (i = 0; i < count_clusters; i++)
6005 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
6006 	}
6007 #endif
6008 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6009 
6010 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6011 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6012 				     GFP_NOFS|__GFP_NOFAIL);
6013 	if (err)
6014 		goto error_return;
6015 
6016 	/*
6017 	 * We need to make sure we don't reuse the freed block until after the
6018 	 * transaction is committed. We make an exception if the inode is to be
6019 	 * written in writeback mode since writeback mode has weak data
6020 	 * consistency guarantees.
6021 	 */
6022 	if (ext4_handle_valid(handle) &&
6023 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6024 	     !ext4_should_writeback_data(inode))) {
6025 		struct ext4_free_data *new_entry;
6026 		/*
6027 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6028 		 * to fail.
6029 		 */
6030 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6031 				GFP_NOFS|__GFP_NOFAIL);
6032 		new_entry->efd_start_cluster = bit;
6033 		new_entry->efd_group = block_group;
6034 		new_entry->efd_count = count_clusters;
6035 		new_entry->efd_tid = handle->h_transaction->t_tid;
6036 
6037 		ext4_lock_group(sb, block_group);
6038 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6039 		ext4_mb_free_metadata(handle, &e4b, new_entry);
6040 	} else {
6041 		/* need to update group_info->bb_free and bitmap
6042 		 * with group lock held. generate_buddy look at
6043 		 * them with group lock_held
6044 		 */
6045 		if (test_opt(sb, DISCARD)) {
6046 			err = ext4_issue_discard(sb, block_group, bit, count,
6047 						 NULL);
6048 			if (err && err != -EOPNOTSUPP)
6049 				ext4_msg(sb, KERN_WARNING, "discard request in"
6050 					 " group:%u block:%d count:%lu failed"
6051 					 " with %d", block_group, bit, count,
6052 					 err);
6053 		} else
6054 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6055 
6056 		ext4_lock_group(sb, block_group);
6057 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6058 		mb_free_blocks(inode, &e4b, bit, count_clusters);
6059 	}
6060 
6061 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
6062 	ext4_free_group_clusters_set(sb, gdp, ret);
6063 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
6064 	ext4_group_desc_csum_set(sb, block_group, gdp);
6065 	ext4_unlock_group(sb, block_group);
6066 
6067 	if (sbi->s_log_groups_per_flex) {
6068 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6069 		atomic64_add(count_clusters,
6070 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6071 						  flex_group)->free_clusters);
6072 	}
6073 
6074 	/*
6075 	 * on a bigalloc file system, defer the s_freeclusters_counter
6076 	 * update to the caller (ext4_remove_space and friends) so they
6077 	 * can determine if a cluster freed here should be rereserved
6078 	 */
6079 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6080 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6081 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6082 		percpu_counter_add(&sbi->s_freeclusters_counter,
6083 				   count_clusters);
6084 	}
6085 
6086 	ext4_mb_unload_buddy(&e4b);
6087 
6088 	/* We dirtied the bitmap block */
6089 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6090 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6091 
6092 	/* And the group descriptor block */
6093 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6094 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6095 	if (!err)
6096 		err = ret;
6097 
6098 	if (overflow && !err) {
6099 		block += count;
6100 		count = overflow;
6101 		put_bh(bitmap_bh);
6102 		/* The range changed so it's no longer validated */
6103 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6104 		goto do_more;
6105 	}
6106 error_return:
6107 	brelse(bitmap_bh);
6108 	ext4_std_error(sb, err);
6109 	return;
6110 }
6111 
6112 /**
6113  * ext4_free_blocks() -- Free given blocks and update quota
6114  * @handle:		handle for this transaction
6115  * @inode:		inode
6116  * @bh:			optional buffer of the block to be freed
6117  * @block:		starting physical block to be freed
6118  * @count:		number of blocks to be freed
6119  * @flags:		flags used by ext4_free_blocks
6120  */
6121 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6122 		      struct buffer_head *bh, ext4_fsblk_t block,
6123 		      unsigned long count, int flags)
6124 {
6125 	struct super_block *sb = inode->i_sb;
6126 	unsigned int overflow;
6127 	struct ext4_sb_info *sbi;
6128 
6129 	sbi = EXT4_SB(sb);
6130 
6131 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6132 		ext4_free_blocks_simple(inode, block, count);
6133 		return;
6134 	}
6135 
6136 	might_sleep();
6137 	if (bh) {
6138 		if (block)
6139 			BUG_ON(block != bh->b_blocknr);
6140 		else
6141 			block = bh->b_blocknr;
6142 	}
6143 
6144 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6145 	    !ext4_inode_block_valid(inode, block, count)) {
6146 		ext4_error(sb, "Freeing blocks not in datazone - "
6147 			   "block = %llu, count = %lu", block, count);
6148 		return;
6149 	}
6150 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6151 
6152 	ext4_debug("freeing block %llu\n", block);
6153 	trace_ext4_free_blocks(inode, block, count, flags);
6154 
6155 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6156 		BUG_ON(count > 1);
6157 
6158 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6159 			    inode, bh, block);
6160 	}
6161 
6162 	/*
6163 	 * If the extent to be freed does not begin on a cluster
6164 	 * boundary, we need to deal with partial clusters at the
6165 	 * beginning and end of the extent.  Normally we will free
6166 	 * blocks at the beginning or the end unless we are explicitly
6167 	 * requested to avoid doing so.
6168 	 */
6169 	overflow = EXT4_PBLK_COFF(sbi, block);
6170 	if (overflow) {
6171 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6172 			overflow = sbi->s_cluster_ratio - overflow;
6173 			block += overflow;
6174 			if (count > overflow)
6175 				count -= overflow;
6176 			else
6177 				return;
6178 		} else {
6179 			block -= overflow;
6180 			count += overflow;
6181 		}
6182 		/* The range changed so it's no longer validated */
6183 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6184 	}
6185 	overflow = EXT4_LBLK_COFF(sbi, count);
6186 	if (overflow) {
6187 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6188 			if (count > overflow)
6189 				count -= overflow;
6190 			else
6191 				return;
6192 		} else
6193 			count += sbi->s_cluster_ratio - overflow;
6194 		/* The range changed so it's no longer validated */
6195 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6196 	}
6197 
6198 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6199 		int i;
6200 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6201 
6202 		for (i = 0; i < count; i++) {
6203 			cond_resched();
6204 			if (is_metadata)
6205 				bh = sb_find_get_block(inode->i_sb, block + i);
6206 			ext4_forget(handle, is_metadata, inode, bh, block + i);
6207 		}
6208 	}
6209 
6210 	ext4_mb_clear_bb(handle, inode, block, count, flags);
6211 	return;
6212 }
6213 
6214 /**
6215  * ext4_group_add_blocks() -- Add given blocks to an existing group
6216  * @handle:			handle to this transaction
6217  * @sb:				super block
6218  * @block:			start physical block to add to the block group
6219  * @count:			number of blocks to free
6220  *
6221  * This marks the blocks as free in the bitmap and buddy.
6222  */
6223 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6224 			 ext4_fsblk_t block, unsigned long count)
6225 {
6226 	struct buffer_head *bitmap_bh = NULL;
6227 	struct buffer_head *gd_bh;
6228 	ext4_group_t block_group;
6229 	ext4_grpblk_t bit;
6230 	unsigned int i;
6231 	struct ext4_group_desc *desc;
6232 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6233 	struct ext4_buddy e4b;
6234 	int err = 0, ret, free_clusters_count;
6235 	ext4_grpblk_t clusters_freed;
6236 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6237 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6238 	unsigned long cluster_count = last_cluster - first_cluster + 1;
6239 
6240 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6241 
6242 	if (count == 0)
6243 		return 0;
6244 
6245 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6246 	/*
6247 	 * Check to see if we are freeing blocks across a group
6248 	 * boundary.
6249 	 */
6250 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6251 		ext4_warning(sb, "too many blocks added to group %u",
6252 			     block_group);
6253 		err = -EINVAL;
6254 		goto error_return;
6255 	}
6256 
6257 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6258 	if (IS_ERR(bitmap_bh)) {
6259 		err = PTR_ERR(bitmap_bh);
6260 		bitmap_bh = NULL;
6261 		goto error_return;
6262 	}
6263 
6264 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6265 	if (!desc) {
6266 		err = -EIO;
6267 		goto error_return;
6268 	}
6269 
6270 	if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6271 		ext4_error(sb, "Adding blocks in system zones - "
6272 			   "Block = %llu, count = %lu",
6273 			   block, count);
6274 		err = -EINVAL;
6275 		goto error_return;
6276 	}
6277 
6278 	BUFFER_TRACE(bitmap_bh, "getting write access");
6279 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6280 					    EXT4_JTR_NONE);
6281 	if (err)
6282 		goto error_return;
6283 
6284 	/*
6285 	 * We are about to modify some metadata.  Call the journal APIs
6286 	 * to unshare ->b_data if a currently-committing transaction is
6287 	 * using it
6288 	 */
6289 	BUFFER_TRACE(gd_bh, "get_write_access");
6290 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6291 	if (err)
6292 		goto error_return;
6293 
6294 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6295 		BUFFER_TRACE(bitmap_bh, "clear bit");
6296 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6297 			ext4_error(sb, "bit already cleared for block %llu",
6298 				   (ext4_fsblk_t)(block + i));
6299 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
6300 		} else {
6301 			clusters_freed++;
6302 		}
6303 	}
6304 
6305 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6306 	if (err)
6307 		goto error_return;
6308 
6309 	/*
6310 	 * need to update group_info->bb_free and bitmap
6311 	 * with group lock held. generate_buddy look at
6312 	 * them with group lock_held
6313 	 */
6314 	ext4_lock_group(sb, block_group);
6315 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6316 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6317 	free_clusters_count = clusters_freed +
6318 		ext4_free_group_clusters(sb, desc);
6319 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6320 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
6321 	ext4_group_desc_csum_set(sb, block_group, desc);
6322 	ext4_unlock_group(sb, block_group);
6323 	percpu_counter_add(&sbi->s_freeclusters_counter,
6324 			   clusters_freed);
6325 
6326 	if (sbi->s_log_groups_per_flex) {
6327 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6328 		atomic64_add(clusters_freed,
6329 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6330 						  flex_group)->free_clusters);
6331 	}
6332 
6333 	ext4_mb_unload_buddy(&e4b);
6334 
6335 	/* We dirtied the bitmap block */
6336 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6337 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6338 
6339 	/* And the group descriptor block */
6340 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6341 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6342 	if (!err)
6343 		err = ret;
6344 
6345 error_return:
6346 	brelse(bitmap_bh);
6347 	ext4_std_error(sb, err);
6348 	return err;
6349 }
6350 
6351 /**
6352  * ext4_trim_extent -- function to TRIM one single free extent in the group
6353  * @sb:		super block for the file system
6354  * @start:	starting block of the free extent in the alloc. group
6355  * @count:	number of blocks to TRIM
6356  * @e4b:	ext4 buddy for the group
6357  *
6358  * Trim "count" blocks starting at "start" in the "group". To assure that no
6359  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6360  * be called with under the group lock.
6361  */
6362 static int ext4_trim_extent(struct super_block *sb,
6363 		int start, int count, struct ext4_buddy *e4b)
6364 __releases(bitlock)
6365 __acquires(bitlock)
6366 {
6367 	struct ext4_free_extent ex;
6368 	ext4_group_t group = e4b->bd_group;
6369 	int ret = 0;
6370 
6371 	trace_ext4_trim_extent(sb, group, start, count);
6372 
6373 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6374 
6375 	ex.fe_start = start;
6376 	ex.fe_group = group;
6377 	ex.fe_len = count;
6378 
6379 	/*
6380 	 * Mark blocks used, so no one can reuse them while
6381 	 * being trimmed.
6382 	 */
6383 	mb_mark_used(e4b, &ex);
6384 	ext4_unlock_group(sb, group);
6385 	ret = ext4_issue_discard(sb, group, start, count, NULL);
6386 	ext4_lock_group(sb, group);
6387 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6388 	return ret;
6389 }
6390 
6391 static int ext4_try_to_trim_range(struct super_block *sb,
6392 		struct ext4_buddy *e4b, ext4_grpblk_t start,
6393 		ext4_grpblk_t max, ext4_grpblk_t minblocks)
6394 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6395 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6396 {
6397 	ext4_grpblk_t next, count, free_count;
6398 	void *bitmap;
6399 
6400 	bitmap = e4b->bd_bitmap;
6401 	start = (e4b->bd_info->bb_first_free > start) ?
6402 		e4b->bd_info->bb_first_free : start;
6403 	count = 0;
6404 	free_count = 0;
6405 
6406 	while (start <= max) {
6407 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6408 		if (start > max)
6409 			break;
6410 		next = mb_find_next_bit(bitmap, max + 1, start);
6411 
6412 		if ((next - start) >= minblocks) {
6413 			int ret = ext4_trim_extent(sb, start, next - start, e4b);
6414 
6415 			if (ret && ret != -EOPNOTSUPP)
6416 				break;
6417 			count += next - start;
6418 		}
6419 		free_count += next - start;
6420 		start = next + 1;
6421 
6422 		if (fatal_signal_pending(current)) {
6423 			count = -ERESTARTSYS;
6424 			break;
6425 		}
6426 
6427 		if (need_resched()) {
6428 			ext4_unlock_group(sb, e4b->bd_group);
6429 			cond_resched();
6430 			ext4_lock_group(sb, e4b->bd_group);
6431 		}
6432 
6433 		if ((e4b->bd_info->bb_free - free_count) < minblocks)
6434 			break;
6435 	}
6436 
6437 	return count;
6438 }
6439 
6440 /**
6441  * ext4_trim_all_free -- function to trim all free space in alloc. group
6442  * @sb:			super block for file system
6443  * @group:		group to be trimmed
6444  * @start:		first group block to examine
6445  * @max:		last group block to examine
6446  * @minblocks:		minimum extent block count
6447  * @set_trimmed:	set the trimmed flag if at least one block is trimmed
6448  *
6449  * ext4_trim_all_free walks through group's block bitmap searching for free
6450  * extents. When the free extent is found, mark it as used in group buddy
6451  * bitmap. Then issue a TRIM command on this extent and free the extent in
6452  * the group buddy bitmap.
6453  */
6454 static ext4_grpblk_t
6455 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6456 		   ext4_grpblk_t start, ext4_grpblk_t max,
6457 		   ext4_grpblk_t minblocks, bool set_trimmed)
6458 {
6459 	struct ext4_buddy e4b;
6460 	int ret;
6461 
6462 	trace_ext4_trim_all_free(sb, group, start, max);
6463 
6464 	ret = ext4_mb_load_buddy(sb, group, &e4b);
6465 	if (ret) {
6466 		ext4_warning(sb, "Error %d loading buddy information for %u",
6467 			     ret, group);
6468 		return ret;
6469 	}
6470 
6471 	ext4_lock_group(sb, group);
6472 
6473 	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
6474 	    minblocks < EXT4_SB(sb)->s_last_trim_minblks) {
6475 		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
6476 		if (ret >= 0 && set_trimmed)
6477 			EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
6478 	} else {
6479 		ret = 0;
6480 	}
6481 
6482 	ext4_unlock_group(sb, group);
6483 	ext4_mb_unload_buddy(&e4b);
6484 
6485 	ext4_debug("trimmed %d blocks in the group %d\n",
6486 		ret, group);
6487 
6488 	return ret;
6489 }
6490 
6491 /**
6492  * ext4_trim_fs() -- trim ioctl handle function
6493  * @sb:			superblock for filesystem
6494  * @range:		fstrim_range structure
6495  *
6496  * start:	First Byte to trim
6497  * len:		number of Bytes to trim from start
6498  * minlen:	minimum extent length in Bytes
6499  * ext4_trim_fs goes through all allocation groups containing Bytes from
6500  * start to start+len. For each such a group ext4_trim_all_free function
6501  * is invoked to trim all free space.
6502  */
6503 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
6504 {
6505 	unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
6506 	struct ext4_group_info *grp;
6507 	ext4_group_t group, first_group, last_group;
6508 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
6509 	uint64_t start, end, minlen, trimmed = 0;
6510 	ext4_fsblk_t first_data_blk =
6511 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
6512 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
6513 	bool whole_group, eof = false;
6514 	int ret = 0;
6515 
6516 	start = range->start >> sb->s_blocksize_bits;
6517 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
6518 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6519 			      range->minlen >> sb->s_blocksize_bits);
6520 
6521 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
6522 	    start >= max_blks ||
6523 	    range->len < sb->s_blocksize)
6524 		return -EINVAL;
6525 	/* No point to try to trim less than discard granularity */
6526 	if (range->minlen < discard_granularity) {
6527 		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
6528 				discard_granularity >> sb->s_blocksize_bits);
6529 		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
6530 			goto out;
6531 	}
6532 	if (end >= max_blks - 1) {
6533 		end = max_blks - 1;
6534 		eof = true;
6535 	}
6536 	if (end <= first_data_blk)
6537 		goto out;
6538 	if (start < first_data_blk)
6539 		start = first_data_blk;
6540 
6541 	/* Determine first and last group to examine based on start and end */
6542 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
6543 				     &first_group, &first_cluster);
6544 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
6545 				     &last_group, &last_cluster);
6546 
6547 	/* end now represents the last cluster to discard in this group */
6548 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6549 	whole_group = true;
6550 
6551 	for (group = first_group; group <= last_group; group++) {
6552 		grp = ext4_get_group_info(sb, group);
6553 		/* We only do this if the grp has never been initialized */
6554 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
6555 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
6556 			if (ret)
6557 				break;
6558 		}
6559 
6560 		/*
6561 		 * For all the groups except the last one, last cluster will
6562 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
6563 		 * change it for the last group, note that last_cluster is
6564 		 * already computed earlier by ext4_get_group_no_and_offset()
6565 		 */
6566 		if (group == last_group) {
6567 			end = last_cluster;
6568 			whole_group = eof ? true : end == EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6569 		}
6570 		if (grp->bb_free >= minlen) {
6571 			cnt = ext4_trim_all_free(sb, group, first_cluster,
6572 						 end, minlen, whole_group);
6573 			if (cnt < 0) {
6574 				ret = cnt;
6575 				break;
6576 			}
6577 			trimmed += cnt;
6578 		}
6579 
6580 		/*
6581 		 * For every group except the first one, we are sure
6582 		 * that the first cluster to discard will be cluster #0.
6583 		 */
6584 		first_cluster = 0;
6585 	}
6586 
6587 	if (!ret)
6588 		EXT4_SB(sb)->s_last_trim_minblks = minlen;
6589 
6590 out:
6591 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
6592 	return ret;
6593 }
6594 
6595 /* Iterate all the free extents in the group. */
6596 int
6597 ext4_mballoc_query_range(
6598 	struct super_block		*sb,
6599 	ext4_group_t			group,
6600 	ext4_grpblk_t			start,
6601 	ext4_grpblk_t			end,
6602 	ext4_mballoc_query_range_fn	formatter,
6603 	void				*priv)
6604 {
6605 	void				*bitmap;
6606 	ext4_grpblk_t			next;
6607 	struct ext4_buddy		e4b;
6608 	int				error;
6609 
6610 	error = ext4_mb_load_buddy(sb, group, &e4b);
6611 	if (error)
6612 		return error;
6613 	bitmap = e4b.bd_bitmap;
6614 
6615 	ext4_lock_group(sb, group);
6616 
6617 	start = (e4b.bd_info->bb_first_free > start) ?
6618 		e4b.bd_info->bb_first_free : start;
6619 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
6620 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
6621 
6622 	while (start <= end) {
6623 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
6624 		if (start > end)
6625 			break;
6626 		next = mb_find_next_bit(bitmap, end + 1, start);
6627 
6628 		ext4_unlock_group(sb, group);
6629 		error = formatter(sb, group, start, next - start, priv);
6630 		if (error)
6631 			goto out_unload;
6632 		ext4_lock_group(sb, group);
6633 
6634 		start = next + 1;
6635 	}
6636 
6637 	ext4_unlock_group(sb, group);
6638 out_unload:
6639 	ext4_mb_unload_buddy(&e4b);
6640 
6641 	return error;
6642 }
6643