xref: /openbmc/linux/fs/ext4/mballoc.c (revision 4bb1eb3c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20 
21 /*
22  * MUSTDO:
23  *   - test ext4_ext_search_left() and ext4_ext_search_right()
24  *   - search for metadata in few groups
25  *
26  * TODO v4:
27  *   - normalization should take into account whether file is still open
28  *   - discard preallocations if no free space left (policy?)
29  *   - don't normalize tails
30  *   - quota
31  *   - reservation for superuser
32  *
33  * TODO v3:
34  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
35  *   - track min/max extents in each group for better group selection
36  *   - mb_mark_used() may allocate chunk right after splitting buddy
37  *   - tree of groups sorted by number of free blocks
38  *   - error handling
39  */
40 
41 /*
42  * The allocation request involve request for multiple number of blocks
43  * near to the goal(block) value specified.
44  *
45  * During initialization phase of the allocator we decide to use the
46  * group preallocation or inode preallocation depending on the size of
47  * the file. The size of the file could be the resulting file size we
48  * would have after allocation, or the current file size, which ever
49  * is larger. If the size is less than sbi->s_mb_stream_request we
50  * select to use the group preallocation. The default value of
51  * s_mb_stream_request is 16 blocks. This can also be tuned via
52  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53  * terms of number of blocks.
54  *
55  * The main motivation for having small file use group preallocation is to
56  * ensure that we have small files closer together on the disk.
57  *
58  * First stage the allocator looks at the inode prealloc list,
59  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60  * spaces for this particular inode. The inode prealloc space is
61  * represented as:
62  *
63  * pa_lstart -> the logical start block for this prealloc space
64  * pa_pstart -> the physical start block for this prealloc space
65  * pa_len    -> length for this prealloc space (in clusters)
66  * pa_free   ->  free space available in this prealloc space (in clusters)
67  *
68  * The inode preallocation space is used looking at the _logical_ start
69  * block. If only the logical file block falls within the range of prealloc
70  * space we will consume the particular prealloc space. This makes sure that
71  * we have contiguous physical blocks representing the file blocks
72  *
73  * The important thing to be noted in case of inode prealloc space is that
74  * we don't modify the values associated to inode prealloc space except
75  * pa_free.
76  *
77  * If we are not able to find blocks in the inode prealloc space and if we
78  * have the group allocation flag set then we look at the locality group
79  * prealloc space. These are per CPU prealloc list represented as
80  *
81  * ext4_sb_info.s_locality_groups[smp_processor_id()]
82  *
83  * The reason for having a per cpu locality group is to reduce the contention
84  * between CPUs. It is possible to get scheduled at this point.
85  *
86  * The locality group prealloc space is used looking at whether we have
87  * enough free space (pa_free) within the prealloc space.
88  *
89  * If we can't allocate blocks via inode prealloc or/and locality group
90  * prealloc then we look at the buddy cache. The buddy cache is represented
91  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92  * mapped to the buddy and bitmap information regarding different
93  * groups. The buddy information is attached to buddy cache inode so that
94  * we can access them through the page cache. The information regarding
95  * each group is loaded via ext4_mb_load_buddy.  The information involve
96  * block bitmap and buddy information. The information are stored in the
97  * inode as:
98  *
99  *  {                        page                        }
100  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101  *
102  *
103  * one block each for bitmap and buddy information.  So for each group we
104  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105  * blocksize) blocks.  So it can have information regarding groups_per_page
106  * which is blocks_per_page/2
107  *
108  * The buddy cache inode is not stored on disk. The inode is thrown
109  * away when the filesystem is unmounted.
110  *
111  * We look for count number of blocks in the buddy cache. If we were able
112  * to locate that many free blocks we return with additional information
113  * regarding rest of the contiguous physical block available
114  *
115  * Before allocating blocks via buddy cache we normalize the request
116  * blocks. This ensure we ask for more blocks that we needed. The extra
117  * blocks that we get after allocation is added to the respective prealloc
118  * list. In case of inode preallocation we follow a list of heuristics
119  * based on file size. This can be found in ext4_mb_normalize_request. If
120  * we are doing a group prealloc we try to normalize the request to
121  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
122  * dependent on the cluster size; for non-bigalloc file systems, it is
123  * 512 blocks. This can be tuned via
124  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125  * terms of number of blocks. If we have mounted the file system with -O
126  * stripe=<value> option the group prealloc request is normalized to the
127  * the smallest multiple of the stripe value (sbi->s_stripe) which is
128  * greater than the default mb_group_prealloc.
129  *
130  * The regular allocator (using the buddy cache) supports a few tunables.
131  *
132  * /sys/fs/ext4/<partition>/mb_min_to_scan
133  * /sys/fs/ext4/<partition>/mb_max_to_scan
134  * /sys/fs/ext4/<partition>/mb_order2_req
135  *
136  * The regular allocator uses buddy scan only if the request len is power of
137  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
138  * value of s_mb_order2_reqs can be tuned via
139  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
140  * stripe size (sbi->s_stripe), we try to search for contiguous block in
141  * stripe size. This should result in better allocation on RAID setups. If
142  * not, we search in the specific group using bitmap for best extents. The
143  * tunable min_to_scan and max_to_scan control the behaviour here.
144  * min_to_scan indicate how long the mballoc __must__ look for a best
145  * extent and max_to_scan indicates how long the mballoc __can__ look for a
146  * best extent in the found extents. Searching for the blocks starts with
147  * the group specified as the goal value in allocation context via
148  * ac_g_ex. Each group is first checked based on the criteria whether it
149  * can be used for allocation. ext4_mb_good_group explains how the groups are
150  * checked.
151  *
152  * Both the prealloc space are getting populated as above. So for the first
153  * request we will hit the buddy cache which will result in this prealloc
154  * space getting filled. The prealloc space is then later used for the
155  * subsequent request.
156  */
157 
158 /*
159  * mballoc operates on the following data:
160  *  - on-disk bitmap
161  *  - in-core buddy (actually includes buddy and bitmap)
162  *  - preallocation descriptors (PAs)
163  *
164  * there are two types of preallocations:
165  *  - inode
166  *    assiged to specific inode and can be used for this inode only.
167  *    it describes part of inode's space preallocated to specific
168  *    physical blocks. any block from that preallocated can be used
169  *    independent. the descriptor just tracks number of blocks left
170  *    unused. so, before taking some block from descriptor, one must
171  *    make sure corresponded logical block isn't allocated yet. this
172  *    also means that freeing any block within descriptor's range
173  *    must discard all preallocated blocks.
174  *  - locality group
175  *    assigned to specific locality group which does not translate to
176  *    permanent set of inodes: inode can join and leave group. space
177  *    from this type of preallocation can be used for any inode. thus
178  *    it's consumed from the beginning to the end.
179  *
180  * relation between them can be expressed as:
181  *    in-core buddy = on-disk bitmap + preallocation descriptors
182  *
183  * this mean blocks mballoc considers used are:
184  *  - allocated blocks (persistent)
185  *  - preallocated blocks (non-persistent)
186  *
187  * consistency in mballoc world means that at any time a block is either
188  * free or used in ALL structures. notice: "any time" should not be read
189  * literally -- time is discrete and delimited by locks.
190  *
191  *  to keep it simple, we don't use block numbers, instead we count number of
192  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
193  *
194  * all operations can be expressed as:
195  *  - init buddy:			buddy = on-disk + PAs
196  *  - new PA:				buddy += N; PA = N
197  *  - use inode PA:			on-disk += N; PA -= N
198  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
199  *  - use locality group PA		on-disk += N; PA -= N
200  *  - discard locality group PA		buddy -= PA; PA = 0
201  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
202  *        is used in real operation because we can't know actual used
203  *        bits from PA, only from on-disk bitmap
204  *
205  * if we follow this strict logic, then all operations above should be atomic.
206  * given some of them can block, we'd have to use something like semaphores
207  * killing performance on high-end SMP hardware. let's try to relax it using
208  * the following knowledge:
209  *  1) if buddy is referenced, it's already initialized
210  *  2) while block is used in buddy and the buddy is referenced,
211  *     nobody can re-allocate that block
212  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
213  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
214  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
215  *     block
216  *
217  * so, now we're building a concurrency table:
218  *  - init buddy vs.
219  *    - new PA
220  *      blocks for PA are allocated in the buddy, buddy must be referenced
221  *      until PA is linked to allocation group to avoid concurrent buddy init
222  *    - use inode PA
223  *      we need to make sure that either on-disk bitmap or PA has uptodate data
224  *      given (3) we care that PA-=N operation doesn't interfere with init
225  *    - discard inode PA
226  *      the simplest way would be to have buddy initialized by the discard
227  *    - use locality group PA
228  *      again PA-=N must be serialized with init
229  *    - discard locality group PA
230  *      the simplest way would be to have buddy initialized by the discard
231  *  - new PA vs.
232  *    - use inode PA
233  *      i_data_sem serializes them
234  *    - discard inode PA
235  *      discard process must wait until PA isn't used by another process
236  *    - use locality group PA
237  *      some mutex should serialize them
238  *    - discard locality group PA
239  *      discard process must wait until PA isn't used by another process
240  *  - use inode PA
241  *    - use inode PA
242  *      i_data_sem or another mutex should serializes them
243  *    - discard inode PA
244  *      discard process must wait until PA isn't used by another process
245  *    - use locality group PA
246  *      nothing wrong here -- they're different PAs covering different blocks
247  *    - discard locality group PA
248  *      discard process must wait until PA isn't used by another process
249  *
250  * now we're ready to make few consequences:
251  *  - PA is referenced and while it is no discard is possible
252  *  - PA is referenced until block isn't marked in on-disk bitmap
253  *  - PA changes only after on-disk bitmap
254  *  - discard must not compete with init. either init is done before
255  *    any discard or they're serialized somehow
256  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
257  *
258  * a special case when we've used PA to emptiness. no need to modify buddy
259  * in this case, but we should care about concurrent init
260  *
261  */
262 
263  /*
264  * Logic in few words:
265  *
266  *  - allocation:
267  *    load group
268  *    find blocks
269  *    mark bits in on-disk bitmap
270  *    release group
271  *
272  *  - use preallocation:
273  *    find proper PA (per-inode or group)
274  *    load group
275  *    mark bits in on-disk bitmap
276  *    release group
277  *    release PA
278  *
279  *  - free:
280  *    load group
281  *    mark bits in on-disk bitmap
282  *    release group
283  *
284  *  - discard preallocations in group:
285  *    mark PAs deleted
286  *    move them onto local list
287  *    load on-disk bitmap
288  *    load group
289  *    remove PA from object (inode or locality group)
290  *    mark free blocks in-core
291  *
292  *  - discard inode's preallocations:
293  */
294 
295 /*
296  * Locking rules
297  *
298  * Locks:
299  *  - bitlock on a group	(group)
300  *  - object (inode/locality)	(object)
301  *  - per-pa lock		(pa)
302  *
303  * Paths:
304  *  - new pa
305  *    object
306  *    group
307  *
308  *  - find and use pa:
309  *    pa
310  *
311  *  - release consumed pa:
312  *    pa
313  *    group
314  *    object
315  *
316  *  - generate in-core bitmap:
317  *    group
318  *        pa
319  *
320  *  - discard all for given object (inode, locality group):
321  *    object
322  *        pa
323  *    group
324  *
325  *  - discard all for given group:
326  *    group
327  *        pa
328  *    group
329  *        object
330  *
331  */
332 static struct kmem_cache *ext4_pspace_cachep;
333 static struct kmem_cache *ext4_ac_cachep;
334 static struct kmem_cache *ext4_free_data_cachep;
335 
336 /* We create slab caches for groupinfo data structures based on the
337  * superblock block size.  There will be one per mounted filesystem for
338  * each unique s_blocksize_bits */
339 #define NR_GRPINFO_CACHES 8
340 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
341 
342 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
343 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
344 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
345 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
346 };
347 
348 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
349 					ext4_group_t group);
350 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
351 						ext4_group_t group);
352 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
353 
354 /*
355  * The algorithm using this percpu seq counter goes below:
356  * 1. We sample the percpu discard_pa_seq counter before trying for block
357  *    allocation in ext4_mb_new_blocks().
358  * 2. We increment this percpu discard_pa_seq counter when we either allocate
359  *    or free these blocks i.e. while marking those blocks as used/free in
360  *    mb_mark_used()/mb_free_blocks().
361  * 3. We also increment this percpu seq counter when we successfully identify
362  *    that the bb_prealloc_list is not empty and hence proceed for discarding
363  *    of those PAs inside ext4_mb_discard_group_preallocations().
364  *
365  * Now to make sure that the regular fast path of block allocation is not
366  * affected, as a small optimization we only sample the percpu seq counter
367  * on that cpu. Only when the block allocation fails and when freed blocks
368  * found were 0, that is when we sample percpu seq counter for all cpus using
369  * below function ext4_get_discard_pa_seq_sum(). This happens after making
370  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
371  */
372 static DEFINE_PER_CPU(u64, discard_pa_seq);
373 static inline u64 ext4_get_discard_pa_seq_sum(void)
374 {
375 	int __cpu;
376 	u64 __seq = 0;
377 
378 	for_each_possible_cpu(__cpu)
379 		__seq += per_cpu(discard_pa_seq, __cpu);
380 	return __seq;
381 }
382 
383 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
384 {
385 #if BITS_PER_LONG == 64
386 	*bit += ((unsigned long) addr & 7UL) << 3;
387 	addr = (void *) ((unsigned long) addr & ~7UL);
388 #elif BITS_PER_LONG == 32
389 	*bit += ((unsigned long) addr & 3UL) << 3;
390 	addr = (void *) ((unsigned long) addr & ~3UL);
391 #else
392 #error "how many bits you are?!"
393 #endif
394 	return addr;
395 }
396 
397 static inline int mb_test_bit(int bit, void *addr)
398 {
399 	/*
400 	 * ext4_test_bit on architecture like powerpc
401 	 * needs unsigned long aligned address
402 	 */
403 	addr = mb_correct_addr_and_bit(&bit, addr);
404 	return ext4_test_bit(bit, addr);
405 }
406 
407 static inline void mb_set_bit(int bit, void *addr)
408 {
409 	addr = mb_correct_addr_and_bit(&bit, addr);
410 	ext4_set_bit(bit, addr);
411 }
412 
413 static inline void mb_clear_bit(int bit, void *addr)
414 {
415 	addr = mb_correct_addr_and_bit(&bit, addr);
416 	ext4_clear_bit(bit, addr);
417 }
418 
419 static inline int mb_test_and_clear_bit(int bit, void *addr)
420 {
421 	addr = mb_correct_addr_and_bit(&bit, addr);
422 	return ext4_test_and_clear_bit(bit, addr);
423 }
424 
425 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
426 {
427 	int fix = 0, ret, tmpmax;
428 	addr = mb_correct_addr_and_bit(&fix, addr);
429 	tmpmax = max + fix;
430 	start += fix;
431 
432 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
433 	if (ret > max)
434 		return max;
435 	return ret;
436 }
437 
438 static inline int mb_find_next_bit(void *addr, int max, int start)
439 {
440 	int fix = 0, ret, tmpmax;
441 	addr = mb_correct_addr_and_bit(&fix, addr);
442 	tmpmax = max + fix;
443 	start += fix;
444 
445 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
446 	if (ret > max)
447 		return max;
448 	return ret;
449 }
450 
451 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
452 {
453 	char *bb;
454 
455 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
456 	BUG_ON(max == NULL);
457 
458 	if (order > e4b->bd_blkbits + 1) {
459 		*max = 0;
460 		return NULL;
461 	}
462 
463 	/* at order 0 we see each particular block */
464 	if (order == 0) {
465 		*max = 1 << (e4b->bd_blkbits + 3);
466 		return e4b->bd_bitmap;
467 	}
468 
469 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
470 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
471 
472 	return bb;
473 }
474 
475 #ifdef DOUBLE_CHECK
476 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
477 			   int first, int count)
478 {
479 	int i;
480 	struct super_block *sb = e4b->bd_sb;
481 
482 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
483 		return;
484 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
485 	for (i = 0; i < count; i++) {
486 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
487 			ext4_fsblk_t blocknr;
488 
489 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
490 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
491 			ext4_grp_locked_error(sb, e4b->bd_group,
492 					      inode ? inode->i_ino : 0,
493 					      blocknr,
494 					      "freeing block already freed "
495 					      "(bit %u)",
496 					      first + i);
497 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
498 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
499 		}
500 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
501 	}
502 }
503 
504 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
505 {
506 	int i;
507 
508 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
509 		return;
510 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
511 	for (i = 0; i < count; i++) {
512 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
513 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
514 	}
515 }
516 
517 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
518 {
519 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
520 		return;
521 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
522 		unsigned char *b1, *b2;
523 		int i;
524 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
525 		b2 = (unsigned char *) bitmap;
526 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
527 			if (b1[i] != b2[i]) {
528 				ext4_msg(e4b->bd_sb, KERN_ERR,
529 					 "corruption in group %u "
530 					 "at byte %u(%u): %x in copy != %x "
531 					 "on disk/prealloc",
532 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
533 				BUG();
534 			}
535 		}
536 	}
537 }
538 
539 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
540 			struct ext4_group_info *grp, ext4_group_t group)
541 {
542 	struct buffer_head *bh;
543 
544 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
545 	if (!grp->bb_bitmap)
546 		return;
547 
548 	bh = ext4_read_block_bitmap(sb, group);
549 	if (IS_ERR_OR_NULL(bh)) {
550 		kfree(grp->bb_bitmap);
551 		grp->bb_bitmap = NULL;
552 		return;
553 	}
554 
555 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
556 	put_bh(bh);
557 }
558 
559 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
560 {
561 	kfree(grp->bb_bitmap);
562 }
563 
564 #else
565 static inline void mb_free_blocks_double(struct inode *inode,
566 				struct ext4_buddy *e4b, int first, int count)
567 {
568 	return;
569 }
570 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
571 						int first, int count)
572 {
573 	return;
574 }
575 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
576 {
577 	return;
578 }
579 
580 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
581 			struct ext4_group_info *grp, ext4_group_t group)
582 {
583 	return;
584 }
585 
586 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
587 {
588 	return;
589 }
590 #endif
591 
592 #ifdef AGGRESSIVE_CHECK
593 
594 #define MB_CHECK_ASSERT(assert)						\
595 do {									\
596 	if (!(assert)) {						\
597 		printk(KERN_EMERG					\
598 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
599 			function, file, line, # assert);		\
600 		BUG();							\
601 	}								\
602 } while (0)
603 
604 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
605 				const char *function, int line)
606 {
607 	struct super_block *sb = e4b->bd_sb;
608 	int order = e4b->bd_blkbits + 1;
609 	int max;
610 	int max2;
611 	int i;
612 	int j;
613 	int k;
614 	int count;
615 	struct ext4_group_info *grp;
616 	int fragments = 0;
617 	int fstart;
618 	struct list_head *cur;
619 	void *buddy;
620 	void *buddy2;
621 
622 	{
623 		static int mb_check_counter;
624 		if (mb_check_counter++ % 100 != 0)
625 			return 0;
626 	}
627 
628 	while (order > 1) {
629 		buddy = mb_find_buddy(e4b, order, &max);
630 		MB_CHECK_ASSERT(buddy);
631 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
632 		MB_CHECK_ASSERT(buddy2);
633 		MB_CHECK_ASSERT(buddy != buddy2);
634 		MB_CHECK_ASSERT(max * 2 == max2);
635 
636 		count = 0;
637 		for (i = 0; i < max; i++) {
638 
639 			if (mb_test_bit(i, buddy)) {
640 				/* only single bit in buddy2 may be 1 */
641 				if (!mb_test_bit(i << 1, buddy2)) {
642 					MB_CHECK_ASSERT(
643 						mb_test_bit((i<<1)+1, buddy2));
644 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
645 					MB_CHECK_ASSERT(
646 						mb_test_bit(i << 1, buddy2));
647 				}
648 				continue;
649 			}
650 
651 			/* both bits in buddy2 must be 1 */
652 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
653 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
654 
655 			for (j = 0; j < (1 << order); j++) {
656 				k = (i * (1 << order)) + j;
657 				MB_CHECK_ASSERT(
658 					!mb_test_bit(k, e4b->bd_bitmap));
659 			}
660 			count++;
661 		}
662 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
663 		order--;
664 	}
665 
666 	fstart = -1;
667 	buddy = mb_find_buddy(e4b, 0, &max);
668 	for (i = 0; i < max; i++) {
669 		if (!mb_test_bit(i, buddy)) {
670 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
671 			if (fstart == -1) {
672 				fragments++;
673 				fstart = i;
674 			}
675 			continue;
676 		}
677 		fstart = -1;
678 		/* check used bits only */
679 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
680 			buddy2 = mb_find_buddy(e4b, j, &max2);
681 			k = i >> j;
682 			MB_CHECK_ASSERT(k < max2);
683 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
684 		}
685 	}
686 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
687 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
688 
689 	grp = ext4_get_group_info(sb, e4b->bd_group);
690 	list_for_each(cur, &grp->bb_prealloc_list) {
691 		ext4_group_t groupnr;
692 		struct ext4_prealloc_space *pa;
693 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
694 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
695 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
696 		for (i = 0; i < pa->pa_len; i++)
697 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
698 	}
699 	return 0;
700 }
701 #undef MB_CHECK_ASSERT
702 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
703 					__FILE__, __func__, __LINE__)
704 #else
705 #define mb_check_buddy(e4b)
706 #endif
707 
708 /*
709  * Divide blocks started from @first with length @len into
710  * smaller chunks with power of 2 blocks.
711  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
712  * then increase bb_counters[] for corresponded chunk size.
713  */
714 static void ext4_mb_mark_free_simple(struct super_block *sb,
715 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
716 					struct ext4_group_info *grp)
717 {
718 	struct ext4_sb_info *sbi = EXT4_SB(sb);
719 	ext4_grpblk_t min;
720 	ext4_grpblk_t max;
721 	ext4_grpblk_t chunk;
722 	unsigned int border;
723 
724 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
725 
726 	border = 2 << sb->s_blocksize_bits;
727 
728 	while (len > 0) {
729 		/* find how many blocks can be covered since this position */
730 		max = ffs(first | border) - 1;
731 
732 		/* find how many blocks of power 2 we need to mark */
733 		min = fls(len) - 1;
734 
735 		if (max < min)
736 			min = max;
737 		chunk = 1 << min;
738 
739 		/* mark multiblock chunks only */
740 		grp->bb_counters[min]++;
741 		if (min > 0)
742 			mb_clear_bit(first >> min,
743 				     buddy + sbi->s_mb_offsets[min]);
744 
745 		len -= chunk;
746 		first += chunk;
747 	}
748 }
749 
750 /*
751  * Cache the order of the largest free extent we have available in this block
752  * group.
753  */
754 static void
755 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
756 {
757 	int i;
758 	int bits;
759 
760 	grp->bb_largest_free_order = -1; /* uninit */
761 
762 	bits = sb->s_blocksize_bits + 1;
763 	for (i = bits; i >= 0; i--) {
764 		if (grp->bb_counters[i] > 0) {
765 			grp->bb_largest_free_order = i;
766 			break;
767 		}
768 	}
769 }
770 
771 static noinline_for_stack
772 void ext4_mb_generate_buddy(struct super_block *sb,
773 				void *buddy, void *bitmap, ext4_group_t group)
774 {
775 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
776 	struct ext4_sb_info *sbi = EXT4_SB(sb);
777 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
778 	ext4_grpblk_t i = 0;
779 	ext4_grpblk_t first;
780 	ext4_grpblk_t len;
781 	unsigned free = 0;
782 	unsigned fragments = 0;
783 	unsigned long long period = get_cycles();
784 
785 	/* initialize buddy from bitmap which is aggregation
786 	 * of on-disk bitmap and preallocations */
787 	i = mb_find_next_zero_bit(bitmap, max, 0);
788 	grp->bb_first_free = i;
789 	while (i < max) {
790 		fragments++;
791 		first = i;
792 		i = mb_find_next_bit(bitmap, max, i);
793 		len = i - first;
794 		free += len;
795 		if (len > 1)
796 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
797 		else
798 			grp->bb_counters[0]++;
799 		if (i < max)
800 			i = mb_find_next_zero_bit(bitmap, max, i);
801 	}
802 	grp->bb_fragments = fragments;
803 
804 	if (free != grp->bb_free) {
805 		ext4_grp_locked_error(sb, group, 0, 0,
806 				      "block bitmap and bg descriptor "
807 				      "inconsistent: %u vs %u free clusters",
808 				      free, grp->bb_free);
809 		/*
810 		 * If we intend to continue, we consider group descriptor
811 		 * corrupt and update bb_free using bitmap value
812 		 */
813 		grp->bb_free = free;
814 		ext4_mark_group_bitmap_corrupted(sb, group,
815 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
816 	}
817 	mb_set_largest_free_order(sb, grp);
818 
819 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
820 
821 	period = get_cycles() - period;
822 	spin_lock(&sbi->s_bal_lock);
823 	sbi->s_mb_buddies_generated++;
824 	sbi->s_mb_generation_time += period;
825 	spin_unlock(&sbi->s_bal_lock);
826 }
827 
828 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
829 {
830 	int count;
831 	int order = 1;
832 	void *buddy;
833 
834 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
835 		ext4_set_bits(buddy, 0, count);
836 	}
837 	e4b->bd_info->bb_fragments = 0;
838 	memset(e4b->bd_info->bb_counters, 0,
839 		sizeof(*e4b->bd_info->bb_counters) *
840 		(e4b->bd_sb->s_blocksize_bits + 2));
841 
842 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
843 		e4b->bd_bitmap, e4b->bd_group);
844 }
845 
846 /* The buddy information is attached the buddy cache inode
847  * for convenience. The information regarding each group
848  * is loaded via ext4_mb_load_buddy. The information involve
849  * block bitmap and buddy information. The information are
850  * stored in the inode as
851  *
852  * {                        page                        }
853  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
854  *
855  *
856  * one block each for bitmap and buddy information.
857  * So for each group we take up 2 blocks. A page can
858  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
859  * So it can have information regarding groups_per_page which
860  * is blocks_per_page/2
861  *
862  * Locking note:  This routine takes the block group lock of all groups
863  * for this page; do not hold this lock when calling this routine!
864  */
865 
866 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
867 {
868 	ext4_group_t ngroups;
869 	int blocksize;
870 	int blocks_per_page;
871 	int groups_per_page;
872 	int err = 0;
873 	int i;
874 	ext4_group_t first_group, group;
875 	int first_block;
876 	struct super_block *sb;
877 	struct buffer_head *bhs;
878 	struct buffer_head **bh = NULL;
879 	struct inode *inode;
880 	char *data;
881 	char *bitmap;
882 	struct ext4_group_info *grinfo;
883 
884 	inode = page->mapping->host;
885 	sb = inode->i_sb;
886 	ngroups = ext4_get_groups_count(sb);
887 	blocksize = i_blocksize(inode);
888 	blocks_per_page = PAGE_SIZE / blocksize;
889 
890 	mb_debug(sb, "init page %lu\n", page->index);
891 
892 	groups_per_page = blocks_per_page >> 1;
893 	if (groups_per_page == 0)
894 		groups_per_page = 1;
895 
896 	/* allocate buffer_heads to read bitmaps */
897 	if (groups_per_page > 1) {
898 		i = sizeof(struct buffer_head *) * groups_per_page;
899 		bh = kzalloc(i, gfp);
900 		if (bh == NULL) {
901 			err = -ENOMEM;
902 			goto out;
903 		}
904 	} else
905 		bh = &bhs;
906 
907 	first_group = page->index * blocks_per_page / 2;
908 
909 	/* read all groups the page covers into the cache */
910 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
911 		if (group >= ngroups)
912 			break;
913 
914 		grinfo = ext4_get_group_info(sb, group);
915 		/*
916 		 * If page is uptodate then we came here after online resize
917 		 * which added some new uninitialized group info structs, so
918 		 * we must skip all initialized uptodate buddies on the page,
919 		 * which may be currently in use by an allocating task.
920 		 */
921 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
922 			bh[i] = NULL;
923 			continue;
924 		}
925 		bh[i] = ext4_read_block_bitmap_nowait(sb, group);
926 		if (IS_ERR(bh[i])) {
927 			err = PTR_ERR(bh[i]);
928 			bh[i] = NULL;
929 			goto out;
930 		}
931 		mb_debug(sb, "read bitmap for group %u\n", group);
932 	}
933 
934 	/* wait for I/O completion */
935 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
936 		int err2;
937 
938 		if (!bh[i])
939 			continue;
940 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
941 		if (!err)
942 			err = err2;
943 	}
944 
945 	first_block = page->index * blocks_per_page;
946 	for (i = 0; i < blocks_per_page; i++) {
947 		group = (first_block + i) >> 1;
948 		if (group >= ngroups)
949 			break;
950 
951 		if (!bh[group - first_group])
952 			/* skip initialized uptodate buddy */
953 			continue;
954 
955 		if (!buffer_verified(bh[group - first_group]))
956 			/* Skip faulty bitmaps */
957 			continue;
958 		err = 0;
959 
960 		/*
961 		 * data carry information regarding this
962 		 * particular group in the format specified
963 		 * above
964 		 *
965 		 */
966 		data = page_address(page) + (i * blocksize);
967 		bitmap = bh[group - first_group]->b_data;
968 
969 		/*
970 		 * We place the buddy block and bitmap block
971 		 * close together
972 		 */
973 		if ((first_block + i) & 1) {
974 			/* this is block of buddy */
975 			BUG_ON(incore == NULL);
976 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
977 				group, page->index, i * blocksize);
978 			trace_ext4_mb_buddy_bitmap_load(sb, group);
979 			grinfo = ext4_get_group_info(sb, group);
980 			grinfo->bb_fragments = 0;
981 			memset(grinfo->bb_counters, 0,
982 			       sizeof(*grinfo->bb_counters) *
983 				(sb->s_blocksize_bits+2));
984 			/*
985 			 * incore got set to the group block bitmap below
986 			 */
987 			ext4_lock_group(sb, group);
988 			/* init the buddy */
989 			memset(data, 0xff, blocksize);
990 			ext4_mb_generate_buddy(sb, data, incore, group);
991 			ext4_unlock_group(sb, group);
992 			incore = NULL;
993 		} else {
994 			/* this is block of bitmap */
995 			BUG_ON(incore != NULL);
996 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
997 				group, page->index, i * blocksize);
998 			trace_ext4_mb_bitmap_load(sb, group);
999 
1000 			/* see comments in ext4_mb_put_pa() */
1001 			ext4_lock_group(sb, group);
1002 			memcpy(data, bitmap, blocksize);
1003 
1004 			/* mark all preallocated blks used in in-core bitmap */
1005 			ext4_mb_generate_from_pa(sb, data, group);
1006 			ext4_mb_generate_from_freelist(sb, data, group);
1007 			ext4_unlock_group(sb, group);
1008 
1009 			/* set incore so that the buddy information can be
1010 			 * generated using this
1011 			 */
1012 			incore = data;
1013 		}
1014 	}
1015 	SetPageUptodate(page);
1016 
1017 out:
1018 	if (bh) {
1019 		for (i = 0; i < groups_per_page; i++)
1020 			brelse(bh[i]);
1021 		if (bh != &bhs)
1022 			kfree(bh);
1023 	}
1024 	return err;
1025 }
1026 
1027 /*
1028  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1029  * on the same buddy page doesn't happen whild holding the buddy page lock.
1030  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1031  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1032  */
1033 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1034 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1035 {
1036 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1037 	int block, pnum, poff;
1038 	int blocks_per_page;
1039 	struct page *page;
1040 
1041 	e4b->bd_buddy_page = NULL;
1042 	e4b->bd_bitmap_page = NULL;
1043 
1044 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1045 	/*
1046 	 * the buddy cache inode stores the block bitmap
1047 	 * and buddy information in consecutive blocks.
1048 	 * So for each group we need two blocks.
1049 	 */
1050 	block = group * 2;
1051 	pnum = block / blocks_per_page;
1052 	poff = block % blocks_per_page;
1053 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1054 	if (!page)
1055 		return -ENOMEM;
1056 	BUG_ON(page->mapping != inode->i_mapping);
1057 	e4b->bd_bitmap_page = page;
1058 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1059 
1060 	if (blocks_per_page >= 2) {
1061 		/* buddy and bitmap are on the same page */
1062 		return 0;
1063 	}
1064 
1065 	block++;
1066 	pnum = block / blocks_per_page;
1067 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1068 	if (!page)
1069 		return -ENOMEM;
1070 	BUG_ON(page->mapping != inode->i_mapping);
1071 	e4b->bd_buddy_page = page;
1072 	return 0;
1073 }
1074 
1075 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1076 {
1077 	if (e4b->bd_bitmap_page) {
1078 		unlock_page(e4b->bd_bitmap_page);
1079 		put_page(e4b->bd_bitmap_page);
1080 	}
1081 	if (e4b->bd_buddy_page) {
1082 		unlock_page(e4b->bd_buddy_page);
1083 		put_page(e4b->bd_buddy_page);
1084 	}
1085 }
1086 
1087 /*
1088  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1089  * block group lock of all groups for this page; do not hold the BG lock when
1090  * calling this routine!
1091  */
1092 static noinline_for_stack
1093 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1094 {
1095 
1096 	struct ext4_group_info *this_grp;
1097 	struct ext4_buddy e4b;
1098 	struct page *page;
1099 	int ret = 0;
1100 
1101 	might_sleep();
1102 	mb_debug(sb, "init group %u\n", group);
1103 	this_grp = ext4_get_group_info(sb, group);
1104 	/*
1105 	 * This ensures that we don't reinit the buddy cache
1106 	 * page which map to the group from which we are already
1107 	 * allocating. If we are looking at the buddy cache we would
1108 	 * have taken a reference using ext4_mb_load_buddy and that
1109 	 * would have pinned buddy page to page cache.
1110 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1111 	 * page accessed.
1112 	 */
1113 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1114 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1115 		/*
1116 		 * somebody initialized the group
1117 		 * return without doing anything
1118 		 */
1119 		goto err;
1120 	}
1121 
1122 	page = e4b.bd_bitmap_page;
1123 	ret = ext4_mb_init_cache(page, NULL, gfp);
1124 	if (ret)
1125 		goto err;
1126 	if (!PageUptodate(page)) {
1127 		ret = -EIO;
1128 		goto err;
1129 	}
1130 
1131 	if (e4b.bd_buddy_page == NULL) {
1132 		/*
1133 		 * If both the bitmap and buddy are in
1134 		 * the same page we don't need to force
1135 		 * init the buddy
1136 		 */
1137 		ret = 0;
1138 		goto err;
1139 	}
1140 	/* init buddy cache */
1141 	page = e4b.bd_buddy_page;
1142 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1143 	if (ret)
1144 		goto err;
1145 	if (!PageUptodate(page)) {
1146 		ret = -EIO;
1147 		goto err;
1148 	}
1149 err:
1150 	ext4_mb_put_buddy_page_lock(&e4b);
1151 	return ret;
1152 }
1153 
1154 /*
1155  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1156  * block group lock of all groups for this page; do not hold the BG lock when
1157  * calling this routine!
1158  */
1159 static noinline_for_stack int
1160 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1161 		       struct ext4_buddy *e4b, gfp_t gfp)
1162 {
1163 	int blocks_per_page;
1164 	int block;
1165 	int pnum;
1166 	int poff;
1167 	struct page *page;
1168 	int ret;
1169 	struct ext4_group_info *grp;
1170 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1171 	struct inode *inode = sbi->s_buddy_cache;
1172 
1173 	might_sleep();
1174 	mb_debug(sb, "load group %u\n", group);
1175 
1176 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1177 	grp = ext4_get_group_info(sb, group);
1178 
1179 	e4b->bd_blkbits = sb->s_blocksize_bits;
1180 	e4b->bd_info = grp;
1181 	e4b->bd_sb = sb;
1182 	e4b->bd_group = group;
1183 	e4b->bd_buddy_page = NULL;
1184 	e4b->bd_bitmap_page = NULL;
1185 
1186 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1187 		/*
1188 		 * we need full data about the group
1189 		 * to make a good selection
1190 		 */
1191 		ret = ext4_mb_init_group(sb, group, gfp);
1192 		if (ret)
1193 			return ret;
1194 	}
1195 
1196 	/*
1197 	 * the buddy cache inode stores the block bitmap
1198 	 * and buddy information in consecutive blocks.
1199 	 * So for each group we need two blocks.
1200 	 */
1201 	block = group * 2;
1202 	pnum = block / blocks_per_page;
1203 	poff = block % blocks_per_page;
1204 
1205 	/* we could use find_or_create_page(), but it locks page
1206 	 * what we'd like to avoid in fast path ... */
1207 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1208 	if (page == NULL || !PageUptodate(page)) {
1209 		if (page)
1210 			/*
1211 			 * drop the page reference and try
1212 			 * to get the page with lock. If we
1213 			 * are not uptodate that implies
1214 			 * somebody just created the page but
1215 			 * is yet to initialize the same. So
1216 			 * wait for it to initialize.
1217 			 */
1218 			put_page(page);
1219 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1220 		if (page) {
1221 			BUG_ON(page->mapping != inode->i_mapping);
1222 			if (!PageUptodate(page)) {
1223 				ret = ext4_mb_init_cache(page, NULL, gfp);
1224 				if (ret) {
1225 					unlock_page(page);
1226 					goto err;
1227 				}
1228 				mb_cmp_bitmaps(e4b, page_address(page) +
1229 					       (poff * sb->s_blocksize));
1230 			}
1231 			unlock_page(page);
1232 		}
1233 	}
1234 	if (page == NULL) {
1235 		ret = -ENOMEM;
1236 		goto err;
1237 	}
1238 	if (!PageUptodate(page)) {
1239 		ret = -EIO;
1240 		goto err;
1241 	}
1242 
1243 	/* Pages marked accessed already */
1244 	e4b->bd_bitmap_page = page;
1245 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1246 
1247 	block++;
1248 	pnum = block / blocks_per_page;
1249 	poff = block % blocks_per_page;
1250 
1251 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1252 	if (page == NULL || !PageUptodate(page)) {
1253 		if (page)
1254 			put_page(page);
1255 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1256 		if (page) {
1257 			BUG_ON(page->mapping != inode->i_mapping);
1258 			if (!PageUptodate(page)) {
1259 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1260 							 gfp);
1261 				if (ret) {
1262 					unlock_page(page);
1263 					goto err;
1264 				}
1265 			}
1266 			unlock_page(page);
1267 		}
1268 	}
1269 	if (page == NULL) {
1270 		ret = -ENOMEM;
1271 		goto err;
1272 	}
1273 	if (!PageUptodate(page)) {
1274 		ret = -EIO;
1275 		goto err;
1276 	}
1277 
1278 	/* Pages marked accessed already */
1279 	e4b->bd_buddy_page = page;
1280 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1281 
1282 	BUG_ON(e4b->bd_bitmap_page == NULL);
1283 	BUG_ON(e4b->bd_buddy_page == NULL);
1284 
1285 	return 0;
1286 
1287 err:
1288 	if (page)
1289 		put_page(page);
1290 	if (e4b->bd_bitmap_page)
1291 		put_page(e4b->bd_bitmap_page);
1292 	if (e4b->bd_buddy_page)
1293 		put_page(e4b->bd_buddy_page);
1294 	e4b->bd_buddy = NULL;
1295 	e4b->bd_bitmap = NULL;
1296 	return ret;
1297 }
1298 
1299 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1300 			      struct ext4_buddy *e4b)
1301 {
1302 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1303 }
1304 
1305 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1306 {
1307 	if (e4b->bd_bitmap_page)
1308 		put_page(e4b->bd_bitmap_page);
1309 	if (e4b->bd_buddy_page)
1310 		put_page(e4b->bd_buddy_page);
1311 }
1312 
1313 
1314 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1315 {
1316 	int order = 1;
1317 	int bb_incr = 1 << (e4b->bd_blkbits - 1);
1318 	void *bb;
1319 
1320 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1321 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1322 
1323 	bb = e4b->bd_buddy;
1324 	while (order <= e4b->bd_blkbits + 1) {
1325 		block = block >> 1;
1326 		if (!mb_test_bit(block, bb)) {
1327 			/* this block is part of buddy of order 'order' */
1328 			return order;
1329 		}
1330 		bb += bb_incr;
1331 		bb_incr >>= 1;
1332 		order++;
1333 	}
1334 	return 0;
1335 }
1336 
1337 static void mb_clear_bits(void *bm, int cur, int len)
1338 {
1339 	__u32 *addr;
1340 
1341 	len = cur + len;
1342 	while (cur < len) {
1343 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1344 			/* fast path: clear whole word at once */
1345 			addr = bm + (cur >> 3);
1346 			*addr = 0;
1347 			cur += 32;
1348 			continue;
1349 		}
1350 		mb_clear_bit(cur, bm);
1351 		cur++;
1352 	}
1353 }
1354 
1355 /* clear bits in given range
1356  * will return first found zero bit if any, -1 otherwise
1357  */
1358 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1359 {
1360 	__u32 *addr;
1361 	int zero_bit = -1;
1362 
1363 	len = cur + len;
1364 	while (cur < len) {
1365 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1366 			/* fast path: clear whole word at once */
1367 			addr = bm + (cur >> 3);
1368 			if (*addr != (__u32)(-1) && zero_bit == -1)
1369 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1370 			*addr = 0;
1371 			cur += 32;
1372 			continue;
1373 		}
1374 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1375 			zero_bit = cur;
1376 		cur++;
1377 	}
1378 
1379 	return zero_bit;
1380 }
1381 
1382 void ext4_set_bits(void *bm, int cur, int len)
1383 {
1384 	__u32 *addr;
1385 
1386 	len = cur + len;
1387 	while (cur < len) {
1388 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1389 			/* fast path: set whole word at once */
1390 			addr = bm + (cur >> 3);
1391 			*addr = 0xffffffff;
1392 			cur += 32;
1393 			continue;
1394 		}
1395 		mb_set_bit(cur, bm);
1396 		cur++;
1397 	}
1398 }
1399 
1400 /*
1401  * _________________________________________________________________ */
1402 
1403 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1404 {
1405 	if (mb_test_bit(*bit + side, bitmap)) {
1406 		mb_clear_bit(*bit, bitmap);
1407 		(*bit) -= side;
1408 		return 1;
1409 	}
1410 	else {
1411 		(*bit) += side;
1412 		mb_set_bit(*bit, bitmap);
1413 		return -1;
1414 	}
1415 }
1416 
1417 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1418 {
1419 	int max;
1420 	int order = 1;
1421 	void *buddy = mb_find_buddy(e4b, order, &max);
1422 
1423 	while (buddy) {
1424 		void *buddy2;
1425 
1426 		/* Bits in range [first; last] are known to be set since
1427 		 * corresponding blocks were allocated. Bits in range
1428 		 * (first; last) will stay set because they form buddies on
1429 		 * upper layer. We just deal with borders if they don't
1430 		 * align with upper layer and then go up.
1431 		 * Releasing entire group is all about clearing
1432 		 * single bit of highest order buddy.
1433 		 */
1434 
1435 		/* Example:
1436 		 * ---------------------------------
1437 		 * |   1   |   1   |   1   |   1   |
1438 		 * ---------------------------------
1439 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1440 		 * ---------------------------------
1441 		 *   0   1   2   3   4   5   6   7
1442 		 *      \_____________________/
1443 		 *
1444 		 * Neither [1] nor [6] is aligned to above layer.
1445 		 * Left neighbour [0] is free, so mark it busy,
1446 		 * decrease bb_counters and extend range to
1447 		 * [0; 6]
1448 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1449 		 * mark [6] free, increase bb_counters and shrink range to
1450 		 * [0; 5].
1451 		 * Then shift range to [0; 2], go up and do the same.
1452 		 */
1453 
1454 
1455 		if (first & 1)
1456 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1457 		if (!(last & 1))
1458 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1459 		if (first > last)
1460 			break;
1461 		order++;
1462 
1463 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1464 			mb_clear_bits(buddy, first, last - first + 1);
1465 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1466 			break;
1467 		}
1468 		first >>= 1;
1469 		last >>= 1;
1470 		buddy = buddy2;
1471 	}
1472 }
1473 
1474 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1475 			   int first, int count)
1476 {
1477 	int left_is_free = 0;
1478 	int right_is_free = 0;
1479 	int block;
1480 	int last = first + count - 1;
1481 	struct super_block *sb = e4b->bd_sb;
1482 
1483 	if (WARN_ON(count == 0))
1484 		return;
1485 	BUG_ON(last >= (sb->s_blocksize << 3));
1486 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1487 	/* Don't bother if the block group is corrupt. */
1488 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1489 		return;
1490 
1491 	mb_check_buddy(e4b);
1492 	mb_free_blocks_double(inode, e4b, first, count);
1493 
1494 	this_cpu_inc(discard_pa_seq);
1495 	e4b->bd_info->bb_free += count;
1496 	if (first < e4b->bd_info->bb_first_free)
1497 		e4b->bd_info->bb_first_free = first;
1498 
1499 	/* access memory sequentially: check left neighbour,
1500 	 * clear range and then check right neighbour
1501 	 */
1502 	if (first != 0)
1503 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1504 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1505 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1506 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1507 
1508 	if (unlikely(block != -1)) {
1509 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1510 		ext4_fsblk_t blocknr;
1511 
1512 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1513 		blocknr += EXT4_C2B(sbi, block);
1514 		ext4_grp_locked_error(sb, e4b->bd_group,
1515 				      inode ? inode->i_ino : 0,
1516 				      blocknr,
1517 				      "freeing already freed block "
1518 				      "(bit %u); block bitmap corrupt.",
1519 				      block);
1520 		ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1521 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1522 		mb_regenerate_buddy(e4b);
1523 		goto done;
1524 	}
1525 
1526 	/* let's maintain fragments counter */
1527 	if (left_is_free && right_is_free)
1528 		e4b->bd_info->bb_fragments--;
1529 	else if (!left_is_free && !right_is_free)
1530 		e4b->bd_info->bb_fragments++;
1531 
1532 	/* buddy[0] == bd_bitmap is a special case, so handle
1533 	 * it right away and let mb_buddy_mark_free stay free of
1534 	 * zero order checks.
1535 	 * Check if neighbours are to be coaleasced,
1536 	 * adjust bitmap bb_counters and borders appropriately.
1537 	 */
1538 	if (first & 1) {
1539 		first += !left_is_free;
1540 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1541 	}
1542 	if (!(last & 1)) {
1543 		last -= !right_is_free;
1544 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1545 	}
1546 
1547 	if (first <= last)
1548 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1549 
1550 done:
1551 	mb_set_largest_free_order(sb, e4b->bd_info);
1552 	mb_check_buddy(e4b);
1553 }
1554 
1555 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1556 				int needed, struct ext4_free_extent *ex)
1557 {
1558 	int next = block;
1559 	int max, order;
1560 	void *buddy;
1561 
1562 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1563 	BUG_ON(ex == NULL);
1564 
1565 	buddy = mb_find_buddy(e4b, 0, &max);
1566 	BUG_ON(buddy == NULL);
1567 	BUG_ON(block >= max);
1568 	if (mb_test_bit(block, buddy)) {
1569 		ex->fe_len = 0;
1570 		ex->fe_start = 0;
1571 		ex->fe_group = 0;
1572 		return 0;
1573 	}
1574 
1575 	/* find actual order */
1576 	order = mb_find_order_for_block(e4b, block);
1577 	block = block >> order;
1578 
1579 	ex->fe_len = 1 << order;
1580 	ex->fe_start = block << order;
1581 	ex->fe_group = e4b->bd_group;
1582 
1583 	/* calc difference from given start */
1584 	next = next - ex->fe_start;
1585 	ex->fe_len -= next;
1586 	ex->fe_start += next;
1587 
1588 	while (needed > ex->fe_len &&
1589 	       mb_find_buddy(e4b, order, &max)) {
1590 
1591 		if (block + 1 >= max)
1592 			break;
1593 
1594 		next = (block + 1) * (1 << order);
1595 		if (mb_test_bit(next, e4b->bd_bitmap))
1596 			break;
1597 
1598 		order = mb_find_order_for_block(e4b, next);
1599 
1600 		block = next >> order;
1601 		ex->fe_len += 1 << order;
1602 	}
1603 
1604 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
1605 		/* Should never happen! (but apparently sometimes does?!?) */
1606 		WARN_ON(1);
1607 		ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1608 			   "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1609 			   block, order, needed, ex->fe_group, ex->fe_start,
1610 			   ex->fe_len, ex->fe_logical);
1611 		ex->fe_len = 0;
1612 		ex->fe_start = 0;
1613 		ex->fe_group = 0;
1614 	}
1615 	return ex->fe_len;
1616 }
1617 
1618 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1619 {
1620 	int ord;
1621 	int mlen = 0;
1622 	int max = 0;
1623 	int cur;
1624 	int start = ex->fe_start;
1625 	int len = ex->fe_len;
1626 	unsigned ret = 0;
1627 	int len0 = len;
1628 	void *buddy;
1629 
1630 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1631 	BUG_ON(e4b->bd_group != ex->fe_group);
1632 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1633 	mb_check_buddy(e4b);
1634 	mb_mark_used_double(e4b, start, len);
1635 
1636 	this_cpu_inc(discard_pa_seq);
1637 	e4b->bd_info->bb_free -= len;
1638 	if (e4b->bd_info->bb_first_free == start)
1639 		e4b->bd_info->bb_first_free += len;
1640 
1641 	/* let's maintain fragments counter */
1642 	if (start != 0)
1643 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1644 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1645 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1646 	if (mlen && max)
1647 		e4b->bd_info->bb_fragments++;
1648 	else if (!mlen && !max)
1649 		e4b->bd_info->bb_fragments--;
1650 
1651 	/* let's maintain buddy itself */
1652 	while (len) {
1653 		ord = mb_find_order_for_block(e4b, start);
1654 
1655 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1656 			/* the whole chunk may be allocated at once! */
1657 			mlen = 1 << ord;
1658 			buddy = mb_find_buddy(e4b, ord, &max);
1659 			BUG_ON((start >> ord) >= max);
1660 			mb_set_bit(start >> ord, buddy);
1661 			e4b->bd_info->bb_counters[ord]--;
1662 			start += mlen;
1663 			len -= mlen;
1664 			BUG_ON(len < 0);
1665 			continue;
1666 		}
1667 
1668 		/* store for history */
1669 		if (ret == 0)
1670 			ret = len | (ord << 16);
1671 
1672 		/* we have to split large buddy */
1673 		BUG_ON(ord <= 0);
1674 		buddy = mb_find_buddy(e4b, ord, &max);
1675 		mb_set_bit(start >> ord, buddy);
1676 		e4b->bd_info->bb_counters[ord]--;
1677 
1678 		ord--;
1679 		cur = (start >> ord) & ~1U;
1680 		buddy = mb_find_buddy(e4b, ord, &max);
1681 		mb_clear_bit(cur, buddy);
1682 		mb_clear_bit(cur + 1, buddy);
1683 		e4b->bd_info->bb_counters[ord]++;
1684 		e4b->bd_info->bb_counters[ord]++;
1685 	}
1686 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1687 
1688 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1689 	mb_check_buddy(e4b);
1690 
1691 	return ret;
1692 }
1693 
1694 /*
1695  * Must be called under group lock!
1696  */
1697 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1698 					struct ext4_buddy *e4b)
1699 {
1700 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1701 	int ret;
1702 
1703 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1704 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1705 
1706 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1707 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1708 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1709 
1710 	/* preallocation can change ac_b_ex, thus we store actually
1711 	 * allocated blocks for history */
1712 	ac->ac_f_ex = ac->ac_b_ex;
1713 
1714 	ac->ac_status = AC_STATUS_FOUND;
1715 	ac->ac_tail = ret & 0xffff;
1716 	ac->ac_buddy = ret >> 16;
1717 
1718 	/*
1719 	 * take the page reference. We want the page to be pinned
1720 	 * so that we don't get a ext4_mb_init_cache_call for this
1721 	 * group until we update the bitmap. That would mean we
1722 	 * double allocate blocks. The reference is dropped
1723 	 * in ext4_mb_release_context
1724 	 */
1725 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1726 	get_page(ac->ac_bitmap_page);
1727 	ac->ac_buddy_page = e4b->bd_buddy_page;
1728 	get_page(ac->ac_buddy_page);
1729 	/* store last allocated for subsequent stream allocation */
1730 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1731 		spin_lock(&sbi->s_md_lock);
1732 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1733 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1734 		spin_unlock(&sbi->s_md_lock);
1735 	}
1736 	/*
1737 	 * As we've just preallocated more space than
1738 	 * user requested originally, we store allocated
1739 	 * space in a special descriptor.
1740 	 */
1741 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
1742 		ext4_mb_new_preallocation(ac);
1743 
1744 }
1745 
1746 /*
1747  * regular allocator, for general purposes allocation
1748  */
1749 
1750 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1751 					struct ext4_buddy *e4b,
1752 					int finish_group)
1753 {
1754 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1755 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1756 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1757 	struct ext4_free_extent ex;
1758 	int max;
1759 
1760 	if (ac->ac_status == AC_STATUS_FOUND)
1761 		return;
1762 	/*
1763 	 * We don't want to scan for a whole year
1764 	 */
1765 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1766 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1767 		ac->ac_status = AC_STATUS_BREAK;
1768 		return;
1769 	}
1770 
1771 	/*
1772 	 * Haven't found good chunk so far, let's continue
1773 	 */
1774 	if (bex->fe_len < gex->fe_len)
1775 		return;
1776 
1777 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1778 			&& bex->fe_group == e4b->bd_group) {
1779 		/* recheck chunk's availability - we don't know
1780 		 * when it was found (within this lock-unlock
1781 		 * period or not) */
1782 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1783 		if (max >= gex->fe_len) {
1784 			ext4_mb_use_best_found(ac, e4b);
1785 			return;
1786 		}
1787 	}
1788 }
1789 
1790 /*
1791  * The routine checks whether found extent is good enough. If it is,
1792  * then the extent gets marked used and flag is set to the context
1793  * to stop scanning. Otherwise, the extent is compared with the
1794  * previous found extent and if new one is better, then it's stored
1795  * in the context. Later, the best found extent will be used, if
1796  * mballoc can't find good enough extent.
1797  *
1798  * FIXME: real allocation policy is to be designed yet!
1799  */
1800 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1801 					struct ext4_free_extent *ex,
1802 					struct ext4_buddy *e4b)
1803 {
1804 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1805 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1806 
1807 	BUG_ON(ex->fe_len <= 0);
1808 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1809 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1810 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1811 
1812 	ac->ac_found++;
1813 
1814 	/*
1815 	 * The special case - take what you catch first
1816 	 */
1817 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1818 		*bex = *ex;
1819 		ext4_mb_use_best_found(ac, e4b);
1820 		return;
1821 	}
1822 
1823 	/*
1824 	 * Let's check whether the chuck is good enough
1825 	 */
1826 	if (ex->fe_len == gex->fe_len) {
1827 		*bex = *ex;
1828 		ext4_mb_use_best_found(ac, e4b);
1829 		return;
1830 	}
1831 
1832 	/*
1833 	 * If this is first found extent, just store it in the context
1834 	 */
1835 	if (bex->fe_len == 0) {
1836 		*bex = *ex;
1837 		return;
1838 	}
1839 
1840 	/*
1841 	 * If new found extent is better, store it in the context
1842 	 */
1843 	if (bex->fe_len < gex->fe_len) {
1844 		/* if the request isn't satisfied, any found extent
1845 		 * larger than previous best one is better */
1846 		if (ex->fe_len > bex->fe_len)
1847 			*bex = *ex;
1848 	} else if (ex->fe_len > gex->fe_len) {
1849 		/* if the request is satisfied, then we try to find
1850 		 * an extent that still satisfy the request, but is
1851 		 * smaller than previous one */
1852 		if (ex->fe_len < bex->fe_len)
1853 			*bex = *ex;
1854 	}
1855 
1856 	ext4_mb_check_limits(ac, e4b, 0);
1857 }
1858 
1859 static noinline_for_stack
1860 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1861 					struct ext4_buddy *e4b)
1862 {
1863 	struct ext4_free_extent ex = ac->ac_b_ex;
1864 	ext4_group_t group = ex.fe_group;
1865 	int max;
1866 	int err;
1867 
1868 	BUG_ON(ex.fe_len <= 0);
1869 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1870 	if (err)
1871 		return err;
1872 
1873 	ext4_lock_group(ac->ac_sb, group);
1874 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1875 
1876 	if (max > 0) {
1877 		ac->ac_b_ex = ex;
1878 		ext4_mb_use_best_found(ac, e4b);
1879 	}
1880 
1881 	ext4_unlock_group(ac->ac_sb, group);
1882 	ext4_mb_unload_buddy(e4b);
1883 
1884 	return 0;
1885 }
1886 
1887 static noinline_for_stack
1888 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1889 				struct ext4_buddy *e4b)
1890 {
1891 	ext4_group_t group = ac->ac_g_ex.fe_group;
1892 	int max;
1893 	int err;
1894 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1895 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1896 	struct ext4_free_extent ex;
1897 
1898 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1899 		return 0;
1900 	if (grp->bb_free == 0)
1901 		return 0;
1902 
1903 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1904 	if (err)
1905 		return err;
1906 
1907 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1908 		ext4_mb_unload_buddy(e4b);
1909 		return 0;
1910 	}
1911 
1912 	ext4_lock_group(ac->ac_sb, group);
1913 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1914 			     ac->ac_g_ex.fe_len, &ex);
1915 	ex.fe_logical = 0xDEADFA11; /* debug value */
1916 
1917 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1918 		ext4_fsblk_t start;
1919 
1920 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1921 			ex.fe_start;
1922 		/* use do_div to get remainder (would be 64-bit modulo) */
1923 		if (do_div(start, sbi->s_stripe) == 0) {
1924 			ac->ac_found++;
1925 			ac->ac_b_ex = ex;
1926 			ext4_mb_use_best_found(ac, e4b);
1927 		}
1928 	} else if (max >= ac->ac_g_ex.fe_len) {
1929 		BUG_ON(ex.fe_len <= 0);
1930 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1931 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1932 		ac->ac_found++;
1933 		ac->ac_b_ex = ex;
1934 		ext4_mb_use_best_found(ac, e4b);
1935 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1936 		/* Sometimes, caller may want to merge even small
1937 		 * number of blocks to an existing extent */
1938 		BUG_ON(ex.fe_len <= 0);
1939 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1940 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1941 		ac->ac_found++;
1942 		ac->ac_b_ex = ex;
1943 		ext4_mb_use_best_found(ac, e4b);
1944 	}
1945 	ext4_unlock_group(ac->ac_sb, group);
1946 	ext4_mb_unload_buddy(e4b);
1947 
1948 	return 0;
1949 }
1950 
1951 /*
1952  * The routine scans buddy structures (not bitmap!) from given order
1953  * to max order and tries to find big enough chunk to satisfy the req
1954  */
1955 static noinline_for_stack
1956 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1957 					struct ext4_buddy *e4b)
1958 {
1959 	struct super_block *sb = ac->ac_sb;
1960 	struct ext4_group_info *grp = e4b->bd_info;
1961 	void *buddy;
1962 	int i;
1963 	int k;
1964 	int max;
1965 
1966 	BUG_ON(ac->ac_2order <= 0);
1967 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1968 		if (grp->bb_counters[i] == 0)
1969 			continue;
1970 
1971 		buddy = mb_find_buddy(e4b, i, &max);
1972 		BUG_ON(buddy == NULL);
1973 
1974 		k = mb_find_next_zero_bit(buddy, max, 0);
1975 		if (k >= max) {
1976 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
1977 				"%d free clusters of order %d. But found 0",
1978 				grp->bb_counters[i], i);
1979 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
1980 					 e4b->bd_group,
1981 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1982 			break;
1983 		}
1984 		ac->ac_found++;
1985 
1986 		ac->ac_b_ex.fe_len = 1 << i;
1987 		ac->ac_b_ex.fe_start = k << i;
1988 		ac->ac_b_ex.fe_group = e4b->bd_group;
1989 
1990 		ext4_mb_use_best_found(ac, e4b);
1991 
1992 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
1993 
1994 		if (EXT4_SB(sb)->s_mb_stats)
1995 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1996 
1997 		break;
1998 	}
1999 }
2000 
2001 /*
2002  * The routine scans the group and measures all found extents.
2003  * In order to optimize scanning, caller must pass number of
2004  * free blocks in the group, so the routine can know upper limit.
2005  */
2006 static noinline_for_stack
2007 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2008 					struct ext4_buddy *e4b)
2009 {
2010 	struct super_block *sb = ac->ac_sb;
2011 	void *bitmap = e4b->bd_bitmap;
2012 	struct ext4_free_extent ex;
2013 	int i;
2014 	int free;
2015 
2016 	free = e4b->bd_info->bb_free;
2017 	if (WARN_ON(free <= 0))
2018 		return;
2019 
2020 	i = e4b->bd_info->bb_first_free;
2021 
2022 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2023 		i = mb_find_next_zero_bit(bitmap,
2024 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2025 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2026 			/*
2027 			 * IF we have corrupt bitmap, we won't find any
2028 			 * free blocks even though group info says we
2029 			 * we have free blocks
2030 			 */
2031 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2032 					"%d free clusters as per "
2033 					"group info. But bitmap says 0",
2034 					free);
2035 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2036 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2037 			break;
2038 		}
2039 
2040 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2041 		if (WARN_ON(ex.fe_len <= 0))
2042 			break;
2043 		if (free < ex.fe_len) {
2044 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2045 					"%d free clusters as per "
2046 					"group info. But got %d blocks",
2047 					free, ex.fe_len);
2048 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2049 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2050 			/*
2051 			 * The number of free blocks differs. This mostly
2052 			 * indicate that the bitmap is corrupt. So exit
2053 			 * without claiming the space.
2054 			 */
2055 			break;
2056 		}
2057 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2058 		ext4_mb_measure_extent(ac, &ex, e4b);
2059 
2060 		i += ex.fe_len;
2061 		free -= ex.fe_len;
2062 	}
2063 
2064 	ext4_mb_check_limits(ac, e4b, 1);
2065 }
2066 
2067 /*
2068  * This is a special case for storages like raid5
2069  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2070  */
2071 static noinline_for_stack
2072 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2073 				 struct ext4_buddy *e4b)
2074 {
2075 	struct super_block *sb = ac->ac_sb;
2076 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2077 	void *bitmap = e4b->bd_bitmap;
2078 	struct ext4_free_extent ex;
2079 	ext4_fsblk_t first_group_block;
2080 	ext4_fsblk_t a;
2081 	ext4_grpblk_t i;
2082 	int max;
2083 
2084 	BUG_ON(sbi->s_stripe == 0);
2085 
2086 	/* find first stripe-aligned block in group */
2087 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2088 
2089 	a = first_group_block + sbi->s_stripe - 1;
2090 	do_div(a, sbi->s_stripe);
2091 	i = (a * sbi->s_stripe) - first_group_block;
2092 
2093 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2094 		if (!mb_test_bit(i, bitmap)) {
2095 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2096 			if (max >= sbi->s_stripe) {
2097 				ac->ac_found++;
2098 				ex.fe_logical = 0xDEADF00D; /* debug value */
2099 				ac->ac_b_ex = ex;
2100 				ext4_mb_use_best_found(ac, e4b);
2101 				break;
2102 			}
2103 		}
2104 		i += sbi->s_stripe;
2105 	}
2106 }
2107 
2108 /*
2109  * This is also called BEFORE we load the buddy bitmap.
2110  * Returns either 1 or 0 indicating that the group is either suitable
2111  * for the allocation or not.
2112  */
2113 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2114 				ext4_group_t group, int cr)
2115 {
2116 	ext4_grpblk_t free, fragments;
2117 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2118 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2119 
2120 	BUG_ON(cr < 0 || cr >= 4);
2121 
2122 	free = grp->bb_free;
2123 	if (free == 0)
2124 		return false;
2125 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2126 		return false;
2127 
2128 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2129 		return false;
2130 
2131 	fragments = grp->bb_fragments;
2132 	if (fragments == 0)
2133 		return false;
2134 
2135 	switch (cr) {
2136 	case 0:
2137 		BUG_ON(ac->ac_2order == 0);
2138 
2139 		/* Avoid using the first bg of a flexgroup for data files */
2140 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2141 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2142 		    ((group % flex_size) == 0))
2143 			return false;
2144 
2145 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2146 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2147 			return true;
2148 
2149 		if (grp->bb_largest_free_order < ac->ac_2order)
2150 			return false;
2151 
2152 		return true;
2153 	case 1:
2154 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2155 			return true;
2156 		break;
2157 	case 2:
2158 		if (free >= ac->ac_g_ex.fe_len)
2159 			return true;
2160 		break;
2161 	case 3:
2162 		return true;
2163 	default:
2164 		BUG();
2165 	}
2166 
2167 	return false;
2168 }
2169 
2170 /*
2171  * This could return negative error code if something goes wrong
2172  * during ext4_mb_init_group(). This should not be called with
2173  * ext4_lock_group() held.
2174  */
2175 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2176 				     ext4_group_t group, int cr)
2177 {
2178 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2179 	struct super_block *sb = ac->ac_sb;
2180 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2181 	ext4_grpblk_t free;
2182 	int ret = 0;
2183 
2184 	if (should_lock)
2185 		ext4_lock_group(sb, group);
2186 	free = grp->bb_free;
2187 	if (free == 0)
2188 		goto out;
2189 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2190 		goto out;
2191 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2192 		goto out;
2193 	if (should_lock)
2194 		ext4_unlock_group(sb, group);
2195 
2196 	/* We only do this if the grp has never been initialized */
2197 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2198 		ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2199 		if (ret)
2200 			return ret;
2201 	}
2202 
2203 	if (should_lock)
2204 		ext4_lock_group(sb, group);
2205 	ret = ext4_mb_good_group(ac, group, cr);
2206 out:
2207 	if (should_lock)
2208 		ext4_unlock_group(sb, group);
2209 	return ret;
2210 }
2211 
2212 static noinline_for_stack int
2213 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2214 {
2215 	ext4_group_t ngroups, group, i;
2216 	int cr = -1;
2217 	int err = 0, first_err = 0;
2218 	struct ext4_sb_info *sbi;
2219 	struct super_block *sb;
2220 	struct ext4_buddy e4b;
2221 
2222 	sb = ac->ac_sb;
2223 	sbi = EXT4_SB(sb);
2224 	ngroups = ext4_get_groups_count(sb);
2225 	/* non-extent files are limited to low blocks/groups */
2226 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2227 		ngroups = sbi->s_blockfile_groups;
2228 
2229 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2230 
2231 	/* first, try the goal */
2232 	err = ext4_mb_find_by_goal(ac, &e4b);
2233 	if (err || ac->ac_status == AC_STATUS_FOUND)
2234 		goto out;
2235 
2236 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2237 		goto out;
2238 
2239 	/*
2240 	 * ac->ac2_order is set only if the fe_len is a power of 2
2241 	 * if ac2_order is set we also set criteria to 0 so that we
2242 	 * try exact allocation using buddy.
2243 	 */
2244 	i = fls(ac->ac_g_ex.fe_len);
2245 	ac->ac_2order = 0;
2246 	/*
2247 	 * We search using buddy data only if the order of the request
2248 	 * is greater than equal to the sbi_s_mb_order2_reqs
2249 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2250 	 * We also support searching for power-of-two requests only for
2251 	 * requests upto maximum buddy size we have constructed.
2252 	 */
2253 	if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2254 		/*
2255 		 * This should tell if fe_len is exactly power of 2
2256 		 */
2257 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2258 			ac->ac_2order = array_index_nospec(i - 1,
2259 							   sb->s_blocksize_bits + 2);
2260 	}
2261 
2262 	/* if stream allocation is enabled, use global goal */
2263 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2264 		/* TBD: may be hot point */
2265 		spin_lock(&sbi->s_md_lock);
2266 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2267 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2268 		spin_unlock(&sbi->s_md_lock);
2269 	}
2270 
2271 	/* Let's just scan groups to find more-less suitable blocks */
2272 	cr = ac->ac_2order ? 0 : 1;
2273 	/*
2274 	 * cr == 0 try to get exact allocation,
2275 	 * cr == 3  try to get anything
2276 	 */
2277 repeat:
2278 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2279 		ac->ac_criteria = cr;
2280 		/*
2281 		 * searching for the right group start
2282 		 * from the goal value specified
2283 		 */
2284 		group = ac->ac_g_ex.fe_group;
2285 
2286 		for (i = 0; i < ngroups; group++, i++) {
2287 			int ret = 0;
2288 			cond_resched();
2289 			/*
2290 			 * Artificially restricted ngroups for non-extent
2291 			 * files makes group > ngroups possible on first loop.
2292 			 */
2293 			if (group >= ngroups)
2294 				group = 0;
2295 
2296 			/* This now checks without needing the buddy page */
2297 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2298 			if (ret <= 0) {
2299 				if (!first_err)
2300 					first_err = ret;
2301 				continue;
2302 			}
2303 
2304 			err = ext4_mb_load_buddy(sb, group, &e4b);
2305 			if (err)
2306 				goto out;
2307 
2308 			ext4_lock_group(sb, group);
2309 
2310 			/*
2311 			 * We need to check again after locking the
2312 			 * block group
2313 			 */
2314 			ret = ext4_mb_good_group(ac, group, cr);
2315 			if (ret == 0) {
2316 				ext4_unlock_group(sb, group);
2317 				ext4_mb_unload_buddy(&e4b);
2318 				continue;
2319 			}
2320 
2321 			ac->ac_groups_scanned++;
2322 			if (cr == 0)
2323 				ext4_mb_simple_scan_group(ac, &e4b);
2324 			else if (cr == 1 && sbi->s_stripe &&
2325 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2326 				ext4_mb_scan_aligned(ac, &e4b);
2327 			else
2328 				ext4_mb_complex_scan_group(ac, &e4b);
2329 
2330 			ext4_unlock_group(sb, group);
2331 			ext4_mb_unload_buddy(&e4b);
2332 
2333 			if (ac->ac_status != AC_STATUS_CONTINUE)
2334 				break;
2335 		}
2336 	}
2337 
2338 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2339 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2340 		/*
2341 		 * We've been searching too long. Let's try to allocate
2342 		 * the best chunk we've found so far
2343 		 */
2344 
2345 		ext4_mb_try_best_found(ac, &e4b);
2346 		if (ac->ac_status != AC_STATUS_FOUND) {
2347 			/*
2348 			 * Someone more lucky has already allocated it.
2349 			 * The only thing we can do is just take first
2350 			 * found block(s)
2351 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2352 			 */
2353 			ac->ac_b_ex.fe_group = 0;
2354 			ac->ac_b_ex.fe_start = 0;
2355 			ac->ac_b_ex.fe_len = 0;
2356 			ac->ac_status = AC_STATUS_CONTINUE;
2357 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2358 			cr = 3;
2359 			atomic_inc(&sbi->s_mb_lost_chunks);
2360 			goto repeat;
2361 		}
2362 	}
2363 out:
2364 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2365 		err = first_err;
2366 
2367 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2368 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2369 		 ac->ac_flags, cr, err);
2370 	return err;
2371 }
2372 
2373 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2374 {
2375 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2376 	ext4_group_t group;
2377 
2378 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2379 		return NULL;
2380 	group = *pos + 1;
2381 	return (void *) ((unsigned long) group);
2382 }
2383 
2384 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2385 {
2386 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2387 	ext4_group_t group;
2388 
2389 	++*pos;
2390 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2391 		return NULL;
2392 	group = *pos + 1;
2393 	return (void *) ((unsigned long) group);
2394 }
2395 
2396 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2397 {
2398 	struct super_block *sb = PDE_DATA(file_inode(seq->file));
2399 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2400 	int i;
2401 	int err, buddy_loaded = 0;
2402 	struct ext4_buddy e4b;
2403 	struct ext4_group_info *grinfo;
2404 	unsigned char blocksize_bits = min_t(unsigned char,
2405 					     sb->s_blocksize_bits,
2406 					     EXT4_MAX_BLOCK_LOG_SIZE);
2407 	struct sg {
2408 		struct ext4_group_info info;
2409 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2410 	} sg;
2411 
2412 	group--;
2413 	if (group == 0)
2414 		seq_puts(seq, "#group: free  frags first ["
2415 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2416 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2417 
2418 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2419 		sizeof(struct ext4_group_info);
2420 
2421 	grinfo = ext4_get_group_info(sb, group);
2422 	/* Load the group info in memory only if not already loaded. */
2423 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2424 		err = ext4_mb_load_buddy(sb, group, &e4b);
2425 		if (err) {
2426 			seq_printf(seq, "#%-5u: I/O error\n", group);
2427 			return 0;
2428 		}
2429 		buddy_loaded = 1;
2430 	}
2431 
2432 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2433 
2434 	if (buddy_loaded)
2435 		ext4_mb_unload_buddy(&e4b);
2436 
2437 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2438 			sg.info.bb_fragments, sg.info.bb_first_free);
2439 	for (i = 0; i <= 13; i++)
2440 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2441 				sg.info.bb_counters[i] : 0);
2442 	seq_printf(seq, " ]\n");
2443 
2444 	return 0;
2445 }
2446 
2447 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2448 {
2449 }
2450 
2451 const struct seq_operations ext4_mb_seq_groups_ops = {
2452 	.start  = ext4_mb_seq_groups_start,
2453 	.next   = ext4_mb_seq_groups_next,
2454 	.stop   = ext4_mb_seq_groups_stop,
2455 	.show   = ext4_mb_seq_groups_show,
2456 };
2457 
2458 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2459 {
2460 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2461 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2462 
2463 	BUG_ON(!cachep);
2464 	return cachep;
2465 }
2466 
2467 /*
2468  * Allocate the top-level s_group_info array for the specified number
2469  * of groups
2470  */
2471 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2472 {
2473 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2474 	unsigned size;
2475 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
2476 
2477 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2478 		EXT4_DESC_PER_BLOCK_BITS(sb);
2479 	if (size <= sbi->s_group_info_size)
2480 		return 0;
2481 
2482 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2483 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
2484 	if (!new_groupinfo) {
2485 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2486 		return -ENOMEM;
2487 	}
2488 	rcu_read_lock();
2489 	old_groupinfo = rcu_dereference(sbi->s_group_info);
2490 	if (old_groupinfo)
2491 		memcpy(new_groupinfo, old_groupinfo,
2492 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2493 	rcu_read_unlock();
2494 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
2495 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2496 	if (old_groupinfo)
2497 		ext4_kvfree_array_rcu(old_groupinfo);
2498 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2499 		   sbi->s_group_info_size);
2500 	return 0;
2501 }
2502 
2503 /* Create and initialize ext4_group_info data for the given group. */
2504 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2505 			  struct ext4_group_desc *desc)
2506 {
2507 	int i;
2508 	int metalen = 0;
2509 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2510 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2511 	struct ext4_group_info **meta_group_info;
2512 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2513 
2514 	/*
2515 	 * First check if this group is the first of a reserved block.
2516 	 * If it's true, we have to allocate a new table of pointers
2517 	 * to ext4_group_info structures
2518 	 */
2519 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2520 		metalen = sizeof(*meta_group_info) <<
2521 			EXT4_DESC_PER_BLOCK_BITS(sb);
2522 		meta_group_info = kmalloc(metalen, GFP_NOFS);
2523 		if (meta_group_info == NULL) {
2524 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2525 				 "for a buddy group");
2526 			goto exit_meta_group_info;
2527 		}
2528 		rcu_read_lock();
2529 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
2530 		rcu_read_unlock();
2531 	}
2532 
2533 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
2534 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2535 
2536 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2537 	if (meta_group_info[i] == NULL) {
2538 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2539 		goto exit_group_info;
2540 	}
2541 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2542 		&(meta_group_info[i]->bb_state));
2543 
2544 	/*
2545 	 * initialize bb_free to be able to skip
2546 	 * empty groups without initialization
2547 	 */
2548 	if (ext4_has_group_desc_csum(sb) &&
2549 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2550 		meta_group_info[i]->bb_free =
2551 			ext4_free_clusters_after_init(sb, group, desc);
2552 	} else {
2553 		meta_group_info[i]->bb_free =
2554 			ext4_free_group_clusters(sb, desc);
2555 	}
2556 
2557 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2558 	init_rwsem(&meta_group_info[i]->alloc_sem);
2559 	meta_group_info[i]->bb_free_root = RB_ROOT;
2560 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2561 
2562 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
2563 	return 0;
2564 
2565 exit_group_info:
2566 	/* If a meta_group_info table has been allocated, release it now */
2567 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2568 		struct ext4_group_info ***group_info;
2569 
2570 		rcu_read_lock();
2571 		group_info = rcu_dereference(sbi->s_group_info);
2572 		kfree(group_info[idx]);
2573 		group_info[idx] = NULL;
2574 		rcu_read_unlock();
2575 	}
2576 exit_meta_group_info:
2577 	return -ENOMEM;
2578 } /* ext4_mb_add_groupinfo */
2579 
2580 static int ext4_mb_init_backend(struct super_block *sb)
2581 {
2582 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2583 	ext4_group_t i;
2584 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2585 	int err;
2586 	struct ext4_group_desc *desc;
2587 	struct ext4_group_info ***group_info;
2588 	struct kmem_cache *cachep;
2589 
2590 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2591 	if (err)
2592 		return err;
2593 
2594 	sbi->s_buddy_cache = new_inode(sb);
2595 	if (sbi->s_buddy_cache == NULL) {
2596 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2597 		goto err_freesgi;
2598 	}
2599 	/* To avoid potentially colliding with an valid on-disk inode number,
2600 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2601 	 * not in the inode hash, so it should never be found by iget(), but
2602 	 * this will avoid confusion if it ever shows up during debugging. */
2603 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2604 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2605 	for (i = 0; i < ngroups; i++) {
2606 		cond_resched();
2607 		desc = ext4_get_group_desc(sb, i, NULL);
2608 		if (desc == NULL) {
2609 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2610 			goto err_freebuddy;
2611 		}
2612 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2613 			goto err_freebuddy;
2614 	}
2615 
2616 	return 0;
2617 
2618 err_freebuddy:
2619 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2620 	while (i-- > 0)
2621 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2622 	i = sbi->s_group_info_size;
2623 	rcu_read_lock();
2624 	group_info = rcu_dereference(sbi->s_group_info);
2625 	while (i-- > 0)
2626 		kfree(group_info[i]);
2627 	rcu_read_unlock();
2628 	iput(sbi->s_buddy_cache);
2629 err_freesgi:
2630 	rcu_read_lock();
2631 	kvfree(rcu_dereference(sbi->s_group_info));
2632 	rcu_read_unlock();
2633 	return -ENOMEM;
2634 }
2635 
2636 static void ext4_groupinfo_destroy_slabs(void)
2637 {
2638 	int i;
2639 
2640 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2641 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
2642 		ext4_groupinfo_caches[i] = NULL;
2643 	}
2644 }
2645 
2646 static int ext4_groupinfo_create_slab(size_t size)
2647 {
2648 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2649 	int slab_size;
2650 	int blocksize_bits = order_base_2(size);
2651 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2652 	struct kmem_cache *cachep;
2653 
2654 	if (cache_index >= NR_GRPINFO_CACHES)
2655 		return -EINVAL;
2656 
2657 	if (unlikely(cache_index < 0))
2658 		cache_index = 0;
2659 
2660 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2661 	if (ext4_groupinfo_caches[cache_index]) {
2662 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2663 		return 0;	/* Already created */
2664 	}
2665 
2666 	slab_size = offsetof(struct ext4_group_info,
2667 				bb_counters[blocksize_bits + 2]);
2668 
2669 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2670 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2671 					NULL);
2672 
2673 	ext4_groupinfo_caches[cache_index] = cachep;
2674 
2675 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2676 	if (!cachep) {
2677 		printk(KERN_EMERG
2678 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2679 		return -ENOMEM;
2680 	}
2681 
2682 	return 0;
2683 }
2684 
2685 int ext4_mb_init(struct super_block *sb)
2686 {
2687 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2688 	unsigned i, j;
2689 	unsigned offset, offset_incr;
2690 	unsigned max;
2691 	int ret;
2692 
2693 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2694 
2695 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2696 	if (sbi->s_mb_offsets == NULL) {
2697 		ret = -ENOMEM;
2698 		goto out;
2699 	}
2700 
2701 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2702 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2703 	if (sbi->s_mb_maxs == NULL) {
2704 		ret = -ENOMEM;
2705 		goto out;
2706 	}
2707 
2708 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2709 	if (ret < 0)
2710 		goto out;
2711 
2712 	/* order 0 is regular bitmap */
2713 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2714 	sbi->s_mb_offsets[0] = 0;
2715 
2716 	i = 1;
2717 	offset = 0;
2718 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
2719 	max = sb->s_blocksize << 2;
2720 	do {
2721 		sbi->s_mb_offsets[i] = offset;
2722 		sbi->s_mb_maxs[i] = max;
2723 		offset += offset_incr;
2724 		offset_incr = offset_incr >> 1;
2725 		max = max >> 1;
2726 		i++;
2727 	} while (i <= sb->s_blocksize_bits + 1);
2728 
2729 	spin_lock_init(&sbi->s_md_lock);
2730 	spin_lock_init(&sbi->s_bal_lock);
2731 	sbi->s_mb_free_pending = 0;
2732 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
2733 
2734 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2735 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2736 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2737 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2738 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2739 	/*
2740 	 * The default group preallocation is 512, which for 4k block
2741 	 * sizes translates to 2 megabytes.  However for bigalloc file
2742 	 * systems, this is probably too big (i.e, if the cluster size
2743 	 * is 1 megabyte, then group preallocation size becomes half a
2744 	 * gigabyte!).  As a default, we will keep a two megabyte
2745 	 * group pralloc size for cluster sizes up to 64k, and after
2746 	 * that, we will force a minimum group preallocation size of
2747 	 * 32 clusters.  This translates to 8 megs when the cluster
2748 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2749 	 * which seems reasonable as a default.
2750 	 */
2751 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2752 				       sbi->s_cluster_bits, 32);
2753 	/*
2754 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2755 	 * to the lowest multiple of s_stripe which is bigger than
2756 	 * the s_mb_group_prealloc as determined above. We want
2757 	 * the preallocation size to be an exact multiple of the
2758 	 * RAID stripe size so that preallocations don't fragment
2759 	 * the stripes.
2760 	 */
2761 	if (sbi->s_stripe > 1) {
2762 		sbi->s_mb_group_prealloc = roundup(
2763 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2764 	}
2765 
2766 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2767 	if (sbi->s_locality_groups == NULL) {
2768 		ret = -ENOMEM;
2769 		goto out;
2770 	}
2771 	for_each_possible_cpu(i) {
2772 		struct ext4_locality_group *lg;
2773 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2774 		mutex_init(&lg->lg_mutex);
2775 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2776 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2777 		spin_lock_init(&lg->lg_prealloc_lock);
2778 	}
2779 
2780 	/* init file for buddy data */
2781 	ret = ext4_mb_init_backend(sb);
2782 	if (ret != 0)
2783 		goto out_free_locality_groups;
2784 
2785 	return 0;
2786 
2787 out_free_locality_groups:
2788 	free_percpu(sbi->s_locality_groups);
2789 	sbi->s_locality_groups = NULL;
2790 out:
2791 	kfree(sbi->s_mb_offsets);
2792 	sbi->s_mb_offsets = NULL;
2793 	kfree(sbi->s_mb_maxs);
2794 	sbi->s_mb_maxs = NULL;
2795 	return ret;
2796 }
2797 
2798 /* need to called with the ext4 group lock held */
2799 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2800 {
2801 	struct ext4_prealloc_space *pa;
2802 	struct list_head *cur, *tmp;
2803 	int count = 0;
2804 
2805 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2806 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2807 		list_del(&pa->pa_group_list);
2808 		count++;
2809 		kmem_cache_free(ext4_pspace_cachep, pa);
2810 	}
2811 	return count;
2812 }
2813 
2814 int ext4_mb_release(struct super_block *sb)
2815 {
2816 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2817 	ext4_group_t i;
2818 	int num_meta_group_infos;
2819 	struct ext4_group_info *grinfo, ***group_info;
2820 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2821 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2822 	int count;
2823 
2824 	if (sbi->s_group_info) {
2825 		for (i = 0; i < ngroups; i++) {
2826 			cond_resched();
2827 			grinfo = ext4_get_group_info(sb, i);
2828 			mb_group_bb_bitmap_free(grinfo);
2829 			ext4_lock_group(sb, i);
2830 			count = ext4_mb_cleanup_pa(grinfo);
2831 			if (count)
2832 				mb_debug(sb, "mballoc: %d PAs left\n",
2833 					 count);
2834 			ext4_unlock_group(sb, i);
2835 			kmem_cache_free(cachep, grinfo);
2836 		}
2837 		num_meta_group_infos = (ngroups +
2838 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2839 			EXT4_DESC_PER_BLOCK_BITS(sb);
2840 		rcu_read_lock();
2841 		group_info = rcu_dereference(sbi->s_group_info);
2842 		for (i = 0; i < num_meta_group_infos; i++)
2843 			kfree(group_info[i]);
2844 		kvfree(group_info);
2845 		rcu_read_unlock();
2846 	}
2847 	kfree(sbi->s_mb_offsets);
2848 	kfree(sbi->s_mb_maxs);
2849 	iput(sbi->s_buddy_cache);
2850 	if (sbi->s_mb_stats) {
2851 		ext4_msg(sb, KERN_INFO,
2852 		       "mballoc: %u blocks %u reqs (%u success)",
2853 				atomic_read(&sbi->s_bal_allocated),
2854 				atomic_read(&sbi->s_bal_reqs),
2855 				atomic_read(&sbi->s_bal_success));
2856 		ext4_msg(sb, KERN_INFO,
2857 		      "mballoc: %u extents scanned, %u goal hits, "
2858 				"%u 2^N hits, %u breaks, %u lost",
2859 				atomic_read(&sbi->s_bal_ex_scanned),
2860 				atomic_read(&sbi->s_bal_goals),
2861 				atomic_read(&sbi->s_bal_2orders),
2862 				atomic_read(&sbi->s_bal_breaks),
2863 				atomic_read(&sbi->s_mb_lost_chunks));
2864 		ext4_msg(sb, KERN_INFO,
2865 		       "mballoc: %lu generated and it took %Lu",
2866 				sbi->s_mb_buddies_generated,
2867 				sbi->s_mb_generation_time);
2868 		ext4_msg(sb, KERN_INFO,
2869 		       "mballoc: %u preallocated, %u discarded",
2870 				atomic_read(&sbi->s_mb_preallocated),
2871 				atomic_read(&sbi->s_mb_discarded));
2872 	}
2873 
2874 	free_percpu(sbi->s_locality_groups);
2875 
2876 	return 0;
2877 }
2878 
2879 static inline int ext4_issue_discard(struct super_block *sb,
2880 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2881 		struct bio **biop)
2882 {
2883 	ext4_fsblk_t discard_block;
2884 
2885 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2886 			 ext4_group_first_block_no(sb, block_group));
2887 	count = EXT4_C2B(EXT4_SB(sb), count);
2888 	trace_ext4_discard_blocks(sb,
2889 			(unsigned long long) discard_block, count);
2890 	if (biop) {
2891 		return __blkdev_issue_discard(sb->s_bdev,
2892 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
2893 			(sector_t)count << (sb->s_blocksize_bits - 9),
2894 			GFP_NOFS, 0, biop);
2895 	} else
2896 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2897 }
2898 
2899 static void ext4_free_data_in_buddy(struct super_block *sb,
2900 				    struct ext4_free_data *entry)
2901 {
2902 	struct ext4_buddy e4b;
2903 	struct ext4_group_info *db;
2904 	int err, count = 0, count2 = 0;
2905 
2906 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
2907 		 entry->efd_count, entry->efd_group, entry);
2908 
2909 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2910 	/* we expect to find existing buddy because it's pinned */
2911 	BUG_ON(err != 0);
2912 
2913 	spin_lock(&EXT4_SB(sb)->s_md_lock);
2914 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2915 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
2916 
2917 	db = e4b.bd_info;
2918 	/* there are blocks to put in buddy to make them really free */
2919 	count += entry->efd_count;
2920 	count2++;
2921 	ext4_lock_group(sb, entry->efd_group);
2922 	/* Take it out of per group rb tree */
2923 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2924 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2925 
2926 	/*
2927 	 * Clear the trimmed flag for the group so that the next
2928 	 * ext4_trim_fs can trim it.
2929 	 * If the volume is mounted with -o discard, online discard
2930 	 * is supported and the free blocks will be trimmed online.
2931 	 */
2932 	if (!test_opt(sb, DISCARD))
2933 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2934 
2935 	if (!db->bb_free_root.rb_node) {
2936 		/* No more items in the per group rb tree
2937 		 * balance refcounts from ext4_mb_free_metadata()
2938 		 */
2939 		put_page(e4b.bd_buddy_page);
2940 		put_page(e4b.bd_bitmap_page);
2941 	}
2942 	ext4_unlock_group(sb, entry->efd_group);
2943 	kmem_cache_free(ext4_free_data_cachep, entry);
2944 	ext4_mb_unload_buddy(&e4b);
2945 
2946 	mb_debug(sb, "freed %d blocks in %d structures\n", count,
2947 		 count2);
2948 }
2949 
2950 /*
2951  * This function is called by the jbd2 layer once the commit has finished,
2952  * so we know we can free the blocks that were released with that commit.
2953  */
2954 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2955 {
2956 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2957 	struct ext4_free_data *entry, *tmp;
2958 	struct bio *discard_bio = NULL;
2959 	struct list_head freed_data_list;
2960 	struct list_head *cut_pos = NULL;
2961 	int err;
2962 
2963 	INIT_LIST_HEAD(&freed_data_list);
2964 
2965 	spin_lock(&sbi->s_md_lock);
2966 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2967 		if (entry->efd_tid != commit_tid)
2968 			break;
2969 		cut_pos = &entry->efd_list;
2970 	}
2971 	if (cut_pos)
2972 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2973 				  cut_pos);
2974 	spin_unlock(&sbi->s_md_lock);
2975 
2976 	if (test_opt(sb, DISCARD)) {
2977 		list_for_each_entry(entry, &freed_data_list, efd_list) {
2978 			err = ext4_issue_discard(sb, entry->efd_group,
2979 						 entry->efd_start_cluster,
2980 						 entry->efd_count,
2981 						 &discard_bio);
2982 			if (err && err != -EOPNOTSUPP) {
2983 				ext4_msg(sb, KERN_WARNING, "discard request in"
2984 					 " group:%d block:%d count:%d failed"
2985 					 " with %d", entry->efd_group,
2986 					 entry->efd_start_cluster,
2987 					 entry->efd_count, err);
2988 			} else if (err == -EOPNOTSUPP)
2989 				break;
2990 		}
2991 
2992 		if (discard_bio) {
2993 			submit_bio_wait(discard_bio);
2994 			bio_put(discard_bio);
2995 		}
2996 	}
2997 
2998 	list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2999 		ext4_free_data_in_buddy(sb, entry);
3000 }
3001 
3002 int __init ext4_init_mballoc(void)
3003 {
3004 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3005 					SLAB_RECLAIM_ACCOUNT);
3006 	if (ext4_pspace_cachep == NULL)
3007 		goto out;
3008 
3009 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3010 				    SLAB_RECLAIM_ACCOUNT);
3011 	if (ext4_ac_cachep == NULL)
3012 		goto out_pa_free;
3013 
3014 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3015 					   SLAB_RECLAIM_ACCOUNT);
3016 	if (ext4_free_data_cachep == NULL)
3017 		goto out_ac_free;
3018 
3019 	return 0;
3020 
3021 out_ac_free:
3022 	kmem_cache_destroy(ext4_ac_cachep);
3023 out_pa_free:
3024 	kmem_cache_destroy(ext4_pspace_cachep);
3025 out:
3026 	return -ENOMEM;
3027 }
3028 
3029 void ext4_exit_mballoc(void)
3030 {
3031 	/*
3032 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3033 	 * before destroying the slab cache.
3034 	 */
3035 	rcu_barrier();
3036 	kmem_cache_destroy(ext4_pspace_cachep);
3037 	kmem_cache_destroy(ext4_ac_cachep);
3038 	kmem_cache_destroy(ext4_free_data_cachep);
3039 	ext4_groupinfo_destroy_slabs();
3040 }
3041 
3042 
3043 /*
3044  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3045  * Returns 0 if success or error code
3046  */
3047 static noinline_for_stack int
3048 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3049 				handle_t *handle, unsigned int reserv_clstrs)
3050 {
3051 	struct buffer_head *bitmap_bh = NULL;
3052 	struct ext4_group_desc *gdp;
3053 	struct buffer_head *gdp_bh;
3054 	struct ext4_sb_info *sbi;
3055 	struct super_block *sb;
3056 	ext4_fsblk_t block;
3057 	int err, len;
3058 
3059 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3060 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
3061 
3062 	sb = ac->ac_sb;
3063 	sbi = EXT4_SB(sb);
3064 
3065 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3066 	if (IS_ERR(bitmap_bh)) {
3067 		err = PTR_ERR(bitmap_bh);
3068 		bitmap_bh = NULL;
3069 		goto out_err;
3070 	}
3071 
3072 	BUFFER_TRACE(bitmap_bh, "getting write access");
3073 	err = ext4_journal_get_write_access(handle, bitmap_bh);
3074 	if (err)
3075 		goto out_err;
3076 
3077 	err = -EIO;
3078 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3079 	if (!gdp)
3080 		goto out_err;
3081 
3082 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3083 			ext4_free_group_clusters(sb, gdp));
3084 
3085 	BUFFER_TRACE(gdp_bh, "get_write_access");
3086 	err = ext4_journal_get_write_access(handle, gdp_bh);
3087 	if (err)
3088 		goto out_err;
3089 
3090 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3091 
3092 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3093 	if (!ext4_data_block_valid(sbi, block, len)) {
3094 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
3095 			   "fs metadata", block, block+len);
3096 		/* File system mounted not to panic on error
3097 		 * Fix the bitmap and return EFSCORRUPTED
3098 		 * We leak some of the blocks here.
3099 		 */
3100 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3101 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3102 			      ac->ac_b_ex.fe_len);
3103 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3104 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3105 		if (!err)
3106 			err = -EFSCORRUPTED;
3107 		goto out_err;
3108 	}
3109 
3110 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3111 #ifdef AGGRESSIVE_CHECK
3112 	{
3113 		int i;
3114 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3115 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3116 						bitmap_bh->b_data));
3117 		}
3118 	}
3119 #endif
3120 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3121 		      ac->ac_b_ex.fe_len);
3122 	if (ext4_has_group_desc_csum(sb) &&
3123 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3124 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3125 		ext4_free_group_clusters_set(sb, gdp,
3126 					     ext4_free_clusters_after_init(sb,
3127 						ac->ac_b_ex.fe_group, gdp));
3128 	}
3129 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3130 	ext4_free_group_clusters_set(sb, gdp, len);
3131 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3132 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3133 
3134 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3135 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3136 	/*
3137 	 * Now reduce the dirty block count also. Should not go negative
3138 	 */
3139 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3140 		/* release all the reserved blocks if non delalloc */
3141 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3142 				   reserv_clstrs);
3143 
3144 	if (sbi->s_log_groups_per_flex) {
3145 		ext4_group_t flex_group = ext4_flex_group(sbi,
3146 							  ac->ac_b_ex.fe_group);
3147 		atomic64_sub(ac->ac_b_ex.fe_len,
3148 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
3149 						  flex_group)->free_clusters);
3150 	}
3151 
3152 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3153 	if (err)
3154 		goto out_err;
3155 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3156 
3157 out_err:
3158 	brelse(bitmap_bh);
3159 	return err;
3160 }
3161 
3162 /*
3163  * here we normalize request for locality group
3164  * Group request are normalized to s_mb_group_prealloc, which goes to
3165  * s_strip if we set the same via mount option.
3166  * s_mb_group_prealloc can be configured via
3167  * /sys/fs/ext4/<partition>/mb_group_prealloc
3168  *
3169  * XXX: should we try to preallocate more than the group has now?
3170  */
3171 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3172 {
3173 	struct super_block *sb = ac->ac_sb;
3174 	struct ext4_locality_group *lg = ac->ac_lg;
3175 
3176 	BUG_ON(lg == NULL);
3177 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3178 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
3179 }
3180 
3181 /*
3182  * Normalization means making request better in terms of
3183  * size and alignment
3184  */
3185 static noinline_for_stack void
3186 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3187 				struct ext4_allocation_request *ar)
3188 {
3189 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3190 	int bsbits, max;
3191 	ext4_lblk_t end;
3192 	loff_t size, start_off;
3193 	loff_t orig_size __maybe_unused;
3194 	ext4_lblk_t start;
3195 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3196 	struct ext4_prealloc_space *pa;
3197 
3198 	/* do normalize only data requests, metadata requests
3199 	   do not need preallocation */
3200 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3201 		return;
3202 
3203 	/* sometime caller may want exact blocks */
3204 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3205 		return;
3206 
3207 	/* caller may indicate that preallocation isn't
3208 	 * required (it's a tail, for example) */
3209 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3210 		return;
3211 
3212 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3213 		ext4_mb_normalize_group_request(ac);
3214 		return ;
3215 	}
3216 
3217 	bsbits = ac->ac_sb->s_blocksize_bits;
3218 
3219 	/* first, let's learn actual file size
3220 	 * given current request is allocated */
3221 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3222 	size = size << bsbits;
3223 	if (size < i_size_read(ac->ac_inode))
3224 		size = i_size_read(ac->ac_inode);
3225 	orig_size = size;
3226 
3227 	/* max size of free chunks */
3228 	max = 2 << bsbits;
3229 
3230 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3231 		(req <= (size) || max <= (chunk_size))
3232 
3233 	/* first, try to predict filesize */
3234 	/* XXX: should this table be tunable? */
3235 	start_off = 0;
3236 	if (size <= 16 * 1024) {
3237 		size = 16 * 1024;
3238 	} else if (size <= 32 * 1024) {
3239 		size = 32 * 1024;
3240 	} else if (size <= 64 * 1024) {
3241 		size = 64 * 1024;
3242 	} else if (size <= 128 * 1024) {
3243 		size = 128 * 1024;
3244 	} else if (size <= 256 * 1024) {
3245 		size = 256 * 1024;
3246 	} else if (size <= 512 * 1024) {
3247 		size = 512 * 1024;
3248 	} else if (size <= 1024 * 1024) {
3249 		size = 1024 * 1024;
3250 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3251 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3252 						(21 - bsbits)) << 21;
3253 		size = 2 * 1024 * 1024;
3254 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3255 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3256 							(22 - bsbits)) << 22;
3257 		size = 4 * 1024 * 1024;
3258 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3259 					(8<<20)>>bsbits, max, 8 * 1024)) {
3260 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3261 							(23 - bsbits)) << 23;
3262 		size = 8 * 1024 * 1024;
3263 	} else {
3264 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3265 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3266 					      ac->ac_o_ex.fe_len) << bsbits;
3267 	}
3268 	size = size >> bsbits;
3269 	start = start_off >> bsbits;
3270 
3271 	/* don't cover already allocated blocks in selected range */
3272 	if (ar->pleft && start <= ar->lleft) {
3273 		size -= ar->lleft + 1 - start;
3274 		start = ar->lleft + 1;
3275 	}
3276 	if (ar->pright && start + size - 1 >= ar->lright)
3277 		size -= start + size - ar->lright;
3278 
3279 	/*
3280 	 * Trim allocation request for filesystems with artificially small
3281 	 * groups.
3282 	 */
3283 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3284 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3285 
3286 	end = start + size;
3287 
3288 	/* check we don't cross already preallocated blocks */
3289 	rcu_read_lock();
3290 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3291 		ext4_lblk_t pa_end;
3292 
3293 		if (pa->pa_deleted)
3294 			continue;
3295 		spin_lock(&pa->pa_lock);
3296 		if (pa->pa_deleted) {
3297 			spin_unlock(&pa->pa_lock);
3298 			continue;
3299 		}
3300 
3301 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3302 						  pa->pa_len);
3303 
3304 		/* PA must not overlap original request */
3305 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3306 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3307 
3308 		/* skip PAs this normalized request doesn't overlap with */
3309 		if (pa->pa_lstart >= end || pa_end <= start) {
3310 			spin_unlock(&pa->pa_lock);
3311 			continue;
3312 		}
3313 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3314 
3315 		/* adjust start or end to be adjacent to this pa */
3316 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3317 			BUG_ON(pa_end < start);
3318 			start = pa_end;
3319 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3320 			BUG_ON(pa->pa_lstart > end);
3321 			end = pa->pa_lstart;
3322 		}
3323 		spin_unlock(&pa->pa_lock);
3324 	}
3325 	rcu_read_unlock();
3326 	size = end - start;
3327 
3328 	/* XXX: extra loop to check we really don't overlap preallocations */
3329 	rcu_read_lock();
3330 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3331 		ext4_lblk_t pa_end;
3332 
3333 		spin_lock(&pa->pa_lock);
3334 		if (pa->pa_deleted == 0) {
3335 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3336 							  pa->pa_len);
3337 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3338 		}
3339 		spin_unlock(&pa->pa_lock);
3340 	}
3341 	rcu_read_unlock();
3342 
3343 	if (start + size <= ac->ac_o_ex.fe_logical &&
3344 			start > ac->ac_o_ex.fe_logical) {
3345 		ext4_msg(ac->ac_sb, KERN_ERR,
3346 			 "start %lu, size %lu, fe_logical %lu",
3347 			 (unsigned long) start, (unsigned long) size,
3348 			 (unsigned long) ac->ac_o_ex.fe_logical);
3349 		BUG();
3350 	}
3351 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3352 
3353 	/* now prepare goal request */
3354 
3355 	/* XXX: is it better to align blocks WRT to logical
3356 	 * placement or satisfy big request as is */
3357 	ac->ac_g_ex.fe_logical = start;
3358 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3359 
3360 	/* define goal start in order to merge */
3361 	if (ar->pright && (ar->lright == (start + size))) {
3362 		/* merge to the right */
3363 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3364 						&ac->ac_f_ex.fe_group,
3365 						&ac->ac_f_ex.fe_start);
3366 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3367 	}
3368 	if (ar->pleft && (ar->lleft + 1 == start)) {
3369 		/* merge to the left */
3370 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3371 						&ac->ac_f_ex.fe_group,
3372 						&ac->ac_f_ex.fe_start);
3373 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3374 	}
3375 
3376 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
3377 		 orig_size, start);
3378 }
3379 
3380 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3381 {
3382 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3383 
3384 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3385 		atomic_inc(&sbi->s_bal_reqs);
3386 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3387 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3388 			atomic_inc(&sbi->s_bal_success);
3389 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3390 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3391 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3392 			atomic_inc(&sbi->s_bal_goals);
3393 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3394 			atomic_inc(&sbi->s_bal_breaks);
3395 	}
3396 
3397 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3398 		trace_ext4_mballoc_alloc(ac);
3399 	else
3400 		trace_ext4_mballoc_prealloc(ac);
3401 }
3402 
3403 /*
3404  * Called on failure; free up any blocks from the inode PA for this
3405  * context.  We don't need this for MB_GROUP_PA because we only change
3406  * pa_free in ext4_mb_release_context(), but on failure, we've already
3407  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3408  */
3409 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3410 {
3411 	struct ext4_prealloc_space *pa = ac->ac_pa;
3412 	struct ext4_buddy e4b;
3413 	int err;
3414 
3415 	if (pa == NULL) {
3416 		if (ac->ac_f_ex.fe_len == 0)
3417 			return;
3418 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3419 		if (err) {
3420 			/*
3421 			 * This should never happen since we pin the
3422 			 * pages in the ext4_allocation_context so
3423 			 * ext4_mb_load_buddy() should never fail.
3424 			 */
3425 			WARN(1, "mb_load_buddy failed (%d)", err);
3426 			return;
3427 		}
3428 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3429 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3430 			       ac->ac_f_ex.fe_len);
3431 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3432 		ext4_mb_unload_buddy(&e4b);
3433 		return;
3434 	}
3435 	if (pa->pa_type == MB_INODE_PA)
3436 		pa->pa_free += ac->ac_b_ex.fe_len;
3437 }
3438 
3439 /*
3440  * use blocks preallocated to inode
3441  */
3442 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3443 				struct ext4_prealloc_space *pa)
3444 {
3445 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3446 	ext4_fsblk_t start;
3447 	ext4_fsblk_t end;
3448 	int len;
3449 
3450 	/* found preallocated blocks, use them */
3451 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3452 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3453 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3454 	len = EXT4_NUM_B2C(sbi, end - start);
3455 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3456 					&ac->ac_b_ex.fe_start);
3457 	ac->ac_b_ex.fe_len = len;
3458 	ac->ac_status = AC_STATUS_FOUND;
3459 	ac->ac_pa = pa;
3460 
3461 	BUG_ON(start < pa->pa_pstart);
3462 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3463 	BUG_ON(pa->pa_free < len);
3464 	pa->pa_free -= len;
3465 
3466 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
3467 }
3468 
3469 /*
3470  * use blocks preallocated to locality group
3471  */
3472 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3473 				struct ext4_prealloc_space *pa)
3474 {
3475 	unsigned int len = ac->ac_o_ex.fe_len;
3476 
3477 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3478 					&ac->ac_b_ex.fe_group,
3479 					&ac->ac_b_ex.fe_start);
3480 	ac->ac_b_ex.fe_len = len;
3481 	ac->ac_status = AC_STATUS_FOUND;
3482 	ac->ac_pa = pa;
3483 
3484 	/* we don't correct pa_pstart or pa_plen here to avoid
3485 	 * possible race when the group is being loaded concurrently
3486 	 * instead we correct pa later, after blocks are marked
3487 	 * in on-disk bitmap -- see ext4_mb_release_context()
3488 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3489 	 */
3490 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
3491 		 pa->pa_lstart-len, len, pa);
3492 }
3493 
3494 /*
3495  * Return the prealloc space that have minimal distance
3496  * from the goal block. @cpa is the prealloc
3497  * space that is having currently known minimal distance
3498  * from the goal block.
3499  */
3500 static struct ext4_prealloc_space *
3501 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3502 			struct ext4_prealloc_space *pa,
3503 			struct ext4_prealloc_space *cpa)
3504 {
3505 	ext4_fsblk_t cur_distance, new_distance;
3506 
3507 	if (cpa == NULL) {
3508 		atomic_inc(&pa->pa_count);
3509 		return pa;
3510 	}
3511 	cur_distance = abs(goal_block - cpa->pa_pstart);
3512 	new_distance = abs(goal_block - pa->pa_pstart);
3513 
3514 	if (cur_distance <= new_distance)
3515 		return cpa;
3516 
3517 	/* drop the previous reference */
3518 	atomic_dec(&cpa->pa_count);
3519 	atomic_inc(&pa->pa_count);
3520 	return pa;
3521 }
3522 
3523 /*
3524  * search goal blocks in preallocated space
3525  */
3526 static noinline_for_stack bool
3527 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3528 {
3529 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3530 	int order, i;
3531 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3532 	struct ext4_locality_group *lg;
3533 	struct ext4_prealloc_space *pa, *cpa = NULL;
3534 	ext4_fsblk_t goal_block;
3535 
3536 	/* only data can be preallocated */
3537 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3538 		return false;
3539 
3540 	/* first, try per-file preallocation */
3541 	rcu_read_lock();
3542 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3543 
3544 		/* all fields in this condition don't change,
3545 		 * so we can skip locking for them */
3546 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3547 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3548 					       EXT4_C2B(sbi, pa->pa_len)))
3549 			continue;
3550 
3551 		/* non-extent files can't have physical blocks past 2^32 */
3552 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3553 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3554 		     EXT4_MAX_BLOCK_FILE_PHYS))
3555 			continue;
3556 
3557 		/* found preallocated blocks, use them */
3558 		spin_lock(&pa->pa_lock);
3559 		if (pa->pa_deleted == 0 && pa->pa_free) {
3560 			atomic_inc(&pa->pa_count);
3561 			ext4_mb_use_inode_pa(ac, pa);
3562 			spin_unlock(&pa->pa_lock);
3563 			ac->ac_criteria = 10;
3564 			rcu_read_unlock();
3565 			return true;
3566 		}
3567 		spin_unlock(&pa->pa_lock);
3568 	}
3569 	rcu_read_unlock();
3570 
3571 	/* can we use group allocation? */
3572 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3573 		return false;
3574 
3575 	/* inode may have no locality group for some reason */
3576 	lg = ac->ac_lg;
3577 	if (lg == NULL)
3578 		return false;
3579 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3580 	if (order > PREALLOC_TB_SIZE - 1)
3581 		/* The max size of hash table is PREALLOC_TB_SIZE */
3582 		order = PREALLOC_TB_SIZE - 1;
3583 
3584 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3585 	/*
3586 	 * search for the prealloc space that is having
3587 	 * minimal distance from the goal block.
3588 	 */
3589 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3590 		rcu_read_lock();
3591 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3592 					pa_inode_list) {
3593 			spin_lock(&pa->pa_lock);
3594 			if (pa->pa_deleted == 0 &&
3595 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3596 
3597 				cpa = ext4_mb_check_group_pa(goal_block,
3598 								pa, cpa);
3599 			}
3600 			spin_unlock(&pa->pa_lock);
3601 		}
3602 		rcu_read_unlock();
3603 	}
3604 	if (cpa) {
3605 		ext4_mb_use_group_pa(ac, cpa);
3606 		ac->ac_criteria = 20;
3607 		return true;
3608 	}
3609 	return false;
3610 }
3611 
3612 /*
3613  * the function goes through all block freed in the group
3614  * but not yet committed and marks them used in in-core bitmap.
3615  * buddy must be generated from this bitmap
3616  * Need to be called with the ext4 group lock held
3617  */
3618 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3619 						ext4_group_t group)
3620 {
3621 	struct rb_node *n;
3622 	struct ext4_group_info *grp;
3623 	struct ext4_free_data *entry;
3624 
3625 	grp = ext4_get_group_info(sb, group);
3626 	n = rb_first(&(grp->bb_free_root));
3627 
3628 	while (n) {
3629 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3630 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3631 		n = rb_next(n);
3632 	}
3633 	return;
3634 }
3635 
3636 /*
3637  * the function goes through all preallocation in this group and marks them
3638  * used in in-core bitmap. buddy must be generated from this bitmap
3639  * Need to be called with ext4 group lock held
3640  */
3641 static noinline_for_stack
3642 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3643 					ext4_group_t group)
3644 {
3645 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3646 	struct ext4_prealloc_space *pa;
3647 	struct list_head *cur;
3648 	ext4_group_t groupnr;
3649 	ext4_grpblk_t start;
3650 	int preallocated = 0;
3651 	int len;
3652 
3653 	/* all form of preallocation discards first load group,
3654 	 * so the only competing code is preallocation use.
3655 	 * we don't need any locking here
3656 	 * notice we do NOT ignore preallocations with pa_deleted
3657 	 * otherwise we could leave used blocks available for
3658 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3659 	 * is dropping preallocation
3660 	 */
3661 	list_for_each(cur, &grp->bb_prealloc_list) {
3662 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3663 		spin_lock(&pa->pa_lock);
3664 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3665 					     &groupnr, &start);
3666 		len = pa->pa_len;
3667 		spin_unlock(&pa->pa_lock);
3668 		if (unlikely(len == 0))
3669 			continue;
3670 		BUG_ON(groupnr != group);
3671 		ext4_set_bits(bitmap, start, len);
3672 		preallocated += len;
3673 	}
3674 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
3675 }
3676 
3677 static void ext4_mb_pa_callback(struct rcu_head *head)
3678 {
3679 	struct ext4_prealloc_space *pa;
3680 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3681 
3682 	BUG_ON(atomic_read(&pa->pa_count));
3683 	BUG_ON(pa->pa_deleted == 0);
3684 	kmem_cache_free(ext4_pspace_cachep, pa);
3685 }
3686 
3687 /*
3688  * drops a reference to preallocated space descriptor
3689  * if this was the last reference and the space is consumed
3690  */
3691 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3692 			struct super_block *sb, struct ext4_prealloc_space *pa)
3693 {
3694 	ext4_group_t grp;
3695 	ext4_fsblk_t grp_blk;
3696 
3697 	/* in this short window concurrent discard can set pa_deleted */
3698 	spin_lock(&pa->pa_lock);
3699 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3700 		spin_unlock(&pa->pa_lock);
3701 		return;
3702 	}
3703 
3704 	if (pa->pa_deleted == 1) {
3705 		spin_unlock(&pa->pa_lock);
3706 		return;
3707 	}
3708 
3709 	pa->pa_deleted = 1;
3710 	spin_unlock(&pa->pa_lock);
3711 
3712 	grp_blk = pa->pa_pstart;
3713 	/*
3714 	 * If doing group-based preallocation, pa_pstart may be in the
3715 	 * next group when pa is used up
3716 	 */
3717 	if (pa->pa_type == MB_GROUP_PA)
3718 		grp_blk--;
3719 
3720 	grp = ext4_get_group_number(sb, grp_blk);
3721 
3722 	/*
3723 	 * possible race:
3724 	 *
3725 	 *  P1 (buddy init)			P2 (regular allocation)
3726 	 *					find block B in PA
3727 	 *  copy on-disk bitmap to buddy
3728 	 *  					mark B in on-disk bitmap
3729 	 *					drop PA from group
3730 	 *  mark all PAs in buddy
3731 	 *
3732 	 * thus, P1 initializes buddy with B available. to prevent this
3733 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3734 	 * against that pair
3735 	 */
3736 	ext4_lock_group(sb, grp);
3737 	list_del(&pa->pa_group_list);
3738 	ext4_unlock_group(sb, grp);
3739 
3740 	spin_lock(pa->pa_obj_lock);
3741 	list_del_rcu(&pa->pa_inode_list);
3742 	spin_unlock(pa->pa_obj_lock);
3743 
3744 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3745 }
3746 
3747 /*
3748  * creates new preallocated space for given inode
3749  */
3750 static noinline_for_stack void
3751 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3752 {
3753 	struct super_block *sb = ac->ac_sb;
3754 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3755 	struct ext4_prealloc_space *pa;
3756 	struct ext4_group_info *grp;
3757 	struct ext4_inode_info *ei;
3758 
3759 	/* preallocate only when found space is larger then requested */
3760 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3761 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3762 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3763 	BUG_ON(ac->ac_pa == NULL);
3764 
3765 	pa = ac->ac_pa;
3766 
3767 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3768 		int winl;
3769 		int wins;
3770 		int win;
3771 		int offs;
3772 
3773 		/* we can't allocate as much as normalizer wants.
3774 		 * so, found space must get proper lstart
3775 		 * to cover original request */
3776 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3777 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3778 
3779 		/* we're limited by original request in that
3780 		 * logical block must be covered any way
3781 		 * winl is window we can move our chunk within */
3782 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3783 
3784 		/* also, we should cover whole original request */
3785 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3786 
3787 		/* the smallest one defines real window */
3788 		win = min(winl, wins);
3789 
3790 		offs = ac->ac_o_ex.fe_logical %
3791 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3792 		if (offs && offs < win)
3793 			win = offs;
3794 
3795 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3796 			EXT4_NUM_B2C(sbi, win);
3797 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3798 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3799 	}
3800 
3801 	/* preallocation can change ac_b_ex, thus we store actually
3802 	 * allocated blocks for history */
3803 	ac->ac_f_ex = ac->ac_b_ex;
3804 
3805 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3806 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3807 	pa->pa_len = ac->ac_b_ex.fe_len;
3808 	pa->pa_free = pa->pa_len;
3809 	spin_lock_init(&pa->pa_lock);
3810 	INIT_LIST_HEAD(&pa->pa_inode_list);
3811 	INIT_LIST_HEAD(&pa->pa_group_list);
3812 	pa->pa_deleted = 0;
3813 	pa->pa_type = MB_INODE_PA;
3814 
3815 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
3816 		 pa->pa_len, pa->pa_lstart);
3817 	trace_ext4_mb_new_inode_pa(ac, pa);
3818 
3819 	ext4_mb_use_inode_pa(ac, pa);
3820 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3821 
3822 	ei = EXT4_I(ac->ac_inode);
3823 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3824 
3825 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3826 	pa->pa_inode = ac->ac_inode;
3827 
3828 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3829 
3830 	spin_lock(pa->pa_obj_lock);
3831 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3832 	spin_unlock(pa->pa_obj_lock);
3833 }
3834 
3835 /*
3836  * creates new preallocated space for locality group inodes belongs to
3837  */
3838 static noinline_for_stack void
3839 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3840 {
3841 	struct super_block *sb = ac->ac_sb;
3842 	struct ext4_locality_group *lg;
3843 	struct ext4_prealloc_space *pa;
3844 	struct ext4_group_info *grp;
3845 
3846 	/* preallocate only when found space is larger then requested */
3847 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3848 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3849 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3850 	BUG_ON(ac->ac_pa == NULL);
3851 
3852 	pa = ac->ac_pa;
3853 
3854 	/* preallocation can change ac_b_ex, thus we store actually
3855 	 * allocated blocks for history */
3856 	ac->ac_f_ex = ac->ac_b_ex;
3857 
3858 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3859 	pa->pa_lstart = pa->pa_pstart;
3860 	pa->pa_len = ac->ac_b_ex.fe_len;
3861 	pa->pa_free = pa->pa_len;
3862 	spin_lock_init(&pa->pa_lock);
3863 	INIT_LIST_HEAD(&pa->pa_inode_list);
3864 	INIT_LIST_HEAD(&pa->pa_group_list);
3865 	pa->pa_deleted = 0;
3866 	pa->pa_type = MB_GROUP_PA;
3867 
3868 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
3869 		 pa->pa_len, pa->pa_lstart);
3870 	trace_ext4_mb_new_group_pa(ac, pa);
3871 
3872 	ext4_mb_use_group_pa(ac, pa);
3873 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3874 
3875 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3876 	lg = ac->ac_lg;
3877 	BUG_ON(lg == NULL);
3878 
3879 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3880 	pa->pa_inode = NULL;
3881 
3882 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3883 
3884 	/*
3885 	 * We will later add the new pa to the right bucket
3886 	 * after updating the pa_free in ext4_mb_release_context
3887 	 */
3888 }
3889 
3890 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3891 {
3892 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3893 		ext4_mb_new_group_pa(ac);
3894 	else
3895 		ext4_mb_new_inode_pa(ac);
3896 }
3897 
3898 /*
3899  * finds all unused blocks in on-disk bitmap, frees them in
3900  * in-core bitmap and buddy.
3901  * @pa must be unlinked from inode and group lists, so that
3902  * nobody else can find/use it.
3903  * the caller MUST hold group/inode locks.
3904  * TODO: optimize the case when there are no in-core structures yet
3905  */
3906 static noinline_for_stack int
3907 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3908 			struct ext4_prealloc_space *pa)
3909 {
3910 	struct super_block *sb = e4b->bd_sb;
3911 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3912 	unsigned int end;
3913 	unsigned int next;
3914 	ext4_group_t group;
3915 	ext4_grpblk_t bit;
3916 	unsigned long long grp_blk_start;
3917 	int free = 0;
3918 
3919 	BUG_ON(pa->pa_deleted == 0);
3920 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3921 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3922 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3923 	end = bit + pa->pa_len;
3924 
3925 	while (bit < end) {
3926 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3927 		if (bit >= end)
3928 			break;
3929 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3930 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
3931 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3932 			 (unsigned) next - bit, (unsigned) group);
3933 		free += next - bit;
3934 
3935 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3936 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3937 						    EXT4_C2B(sbi, bit)),
3938 					       next - bit);
3939 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3940 		bit = next + 1;
3941 	}
3942 	if (free != pa->pa_free) {
3943 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3944 			 "pa %p: logic %lu, phys. %lu, len %d",
3945 			 pa, (unsigned long) pa->pa_lstart,
3946 			 (unsigned long) pa->pa_pstart,
3947 			 pa->pa_len);
3948 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3949 					free, pa->pa_free);
3950 		/*
3951 		 * pa is already deleted so we use the value obtained
3952 		 * from the bitmap and continue.
3953 		 */
3954 	}
3955 	atomic_add(free, &sbi->s_mb_discarded);
3956 
3957 	return 0;
3958 }
3959 
3960 static noinline_for_stack int
3961 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3962 				struct ext4_prealloc_space *pa)
3963 {
3964 	struct super_block *sb = e4b->bd_sb;
3965 	ext4_group_t group;
3966 	ext4_grpblk_t bit;
3967 
3968 	trace_ext4_mb_release_group_pa(sb, pa);
3969 	BUG_ON(pa->pa_deleted == 0);
3970 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3971 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3972 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3973 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3974 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3975 
3976 	return 0;
3977 }
3978 
3979 /*
3980  * releases all preallocations in given group
3981  *
3982  * first, we need to decide discard policy:
3983  * - when do we discard
3984  *   1) ENOSPC
3985  * - how many do we discard
3986  *   1) how many requested
3987  */
3988 static noinline_for_stack int
3989 ext4_mb_discard_group_preallocations(struct super_block *sb,
3990 					ext4_group_t group, int needed)
3991 {
3992 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3993 	struct buffer_head *bitmap_bh = NULL;
3994 	struct ext4_prealloc_space *pa, *tmp;
3995 	struct list_head list;
3996 	struct ext4_buddy e4b;
3997 	int err;
3998 	int busy = 0;
3999 	int free = 0;
4000 
4001 	mb_debug(sb, "discard preallocation for group %u\n", group);
4002 	if (list_empty(&grp->bb_prealloc_list))
4003 		goto out_dbg;
4004 
4005 	bitmap_bh = ext4_read_block_bitmap(sb, group);
4006 	if (IS_ERR(bitmap_bh)) {
4007 		err = PTR_ERR(bitmap_bh);
4008 		ext4_error_err(sb, -err,
4009 			       "Error %d reading block bitmap for %u",
4010 			       err, group);
4011 		goto out_dbg;
4012 	}
4013 
4014 	err = ext4_mb_load_buddy(sb, group, &e4b);
4015 	if (err) {
4016 		ext4_warning(sb, "Error %d loading buddy information for %u",
4017 			     err, group);
4018 		put_bh(bitmap_bh);
4019 		goto out_dbg;
4020 	}
4021 
4022 	if (needed == 0)
4023 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
4024 
4025 	INIT_LIST_HEAD(&list);
4026 repeat:
4027 	ext4_lock_group(sb, group);
4028 	this_cpu_inc(discard_pa_seq);
4029 	list_for_each_entry_safe(pa, tmp,
4030 				&grp->bb_prealloc_list, pa_group_list) {
4031 		spin_lock(&pa->pa_lock);
4032 		if (atomic_read(&pa->pa_count)) {
4033 			spin_unlock(&pa->pa_lock);
4034 			busy = 1;
4035 			continue;
4036 		}
4037 		if (pa->pa_deleted) {
4038 			spin_unlock(&pa->pa_lock);
4039 			continue;
4040 		}
4041 
4042 		/* seems this one can be freed ... */
4043 		pa->pa_deleted = 1;
4044 
4045 		/* we can trust pa_free ... */
4046 		free += pa->pa_free;
4047 
4048 		spin_unlock(&pa->pa_lock);
4049 
4050 		list_del(&pa->pa_group_list);
4051 		list_add(&pa->u.pa_tmp_list, &list);
4052 	}
4053 
4054 	/* if we still need more blocks and some PAs were used, try again */
4055 	if (free < needed && busy) {
4056 		busy = 0;
4057 		ext4_unlock_group(sb, group);
4058 		cond_resched();
4059 		goto repeat;
4060 	}
4061 
4062 	/* found anything to free? */
4063 	if (list_empty(&list)) {
4064 		BUG_ON(free != 0);
4065 		mb_debug(sb, "Someone else may have freed PA for this group %u\n",
4066 			 group);
4067 		goto out;
4068 	}
4069 
4070 	/* now free all selected PAs */
4071 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4072 
4073 		/* remove from object (inode or locality group) */
4074 		spin_lock(pa->pa_obj_lock);
4075 		list_del_rcu(&pa->pa_inode_list);
4076 		spin_unlock(pa->pa_obj_lock);
4077 
4078 		if (pa->pa_type == MB_GROUP_PA)
4079 			ext4_mb_release_group_pa(&e4b, pa);
4080 		else
4081 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4082 
4083 		list_del(&pa->u.pa_tmp_list);
4084 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4085 	}
4086 
4087 out:
4088 	ext4_unlock_group(sb, group);
4089 	ext4_mb_unload_buddy(&e4b);
4090 	put_bh(bitmap_bh);
4091 out_dbg:
4092 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
4093 		 free, group, grp->bb_free);
4094 	return free;
4095 }
4096 
4097 /*
4098  * releases all non-used preallocated blocks for given inode
4099  *
4100  * It's important to discard preallocations under i_data_sem
4101  * We don't want another block to be served from the prealloc
4102  * space when we are discarding the inode prealloc space.
4103  *
4104  * FIXME!! Make sure it is valid at all the call sites
4105  */
4106 void ext4_discard_preallocations(struct inode *inode)
4107 {
4108 	struct ext4_inode_info *ei = EXT4_I(inode);
4109 	struct super_block *sb = inode->i_sb;
4110 	struct buffer_head *bitmap_bh = NULL;
4111 	struct ext4_prealloc_space *pa, *tmp;
4112 	ext4_group_t group = 0;
4113 	struct list_head list;
4114 	struct ext4_buddy e4b;
4115 	int err;
4116 
4117 	if (!S_ISREG(inode->i_mode)) {
4118 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4119 		return;
4120 	}
4121 
4122 	mb_debug(sb, "discard preallocation for inode %lu\n",
4123 		 inode->i_ino);
4124 	trace_ext4_discard_preallocations(inode);
4125 
4126 	INIT_LIST_HEAD(&list);
4127 
4128 repeat:
4129 	/* first, collect all pa's in the inode */
4130 	spin_lock(&ei->i_prealloc_lock);
4131 	while (!list_empty(&ei->i_prealloc_list)) {
4132 		pa = list_entry(ei->i_prealloc_list.next,
4133 				struct ext4_prealloc_space, pa_inode_list);
4134 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4135 		spin_lock(&pa->pa_lock);
4136 		if (atomic_read(&pa->pa_count)) {
4137 			/* this shouldn't happen often - nobody should
4138 			 * use preallocation while we're discarding it */
4139 			spin_unlock(&pa->pa_lock);
4140 			spin_unlock(&ei->i_prealloc_lock);
4141 			ext4_msg(sb, KERN_ERR,
4142 				 "uh-oh! used pa while discarding");
4143 			WARN_ON(1);
4144 			schedule_timeout_uninterruptible(HZ);
4145 			goto repeat;
4146 
4147 		}
4148 		if (pa->pa_deleted == 0) {
4149 			pa->pa_deleted = 1;
4150 			spin_unlock(&pa->pa_lock);
4151 			list_del_rcu(&pa->pa_inode_list);
4152 			list_add(&pa->u.pa_tmp_list, &list);
4153 			continue;
4154 		}
4155 
4156 		/* someone is deleting pa right now */
4157 		spin_unlock(&pa->pa_lock);
4158 		spin_unlock(&ei->i_prealloc_lock);
4159 
4160 		/* we have to wait here because pa_deleted
4161 		 * doesn't mean pa is already unlinked from
4162 		 * the list. as we might be called from
4163 		 * ->clear_inode() the inode will get freed
4164 		 * and concurrent thread which is unlinking
4165 		 * pa from inode's list may access already
4166 		 * freed memory, bad-bad-bad */
4167 
4168 		/* XXX: if this happens too often, we can
4169 		 * add a flag to force wait only in case
4170 		 * of ->clear_inode(), but not in case of
4171 		 * regular truncate */
4172 		schedule_timeout_uninterruptible(HZ);
4173 		goto repeat;
4174 	}
4175 	spin_unlock(&ei->i_prealloc_lock);
4176 
4177 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4178 		BUG_ON(pa->pa_type != MB_INODE_PA);
4179 		group = ext4_get_group_number(sb, pa->pa_pstart);
4180 
4181 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4182 					     GFP_NOFS|__GFP_NOFAIL);
4183 		if (err) {
4184 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4185 				       err, group);
4186 			continue;
4187 		}
4188 
4189 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4190 		if (IS_ERR(bitmap_bh)) {
4191 			err = PTR_ERR(bitmap_bh);
4192 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
4193 				       err, group);
4194 			ext4_mb_unload_buddy(&e4b);
4195 			continue;
4196 		}
4197 
4198 		ext4_lock_group(sb, group);
4199 		list_del(&pa->pa_group_list);
4200 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4201 		ext4_unlock_group(sb, group);
4202 
4203 		ext4_mb_unload_buddy(&e4b);
4204 		put_bh(bitmap_bh);
4205 
4206 		list_del(&pa->u.pa_tmp_list);
4207 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4208 	}
4209 }
4210 
4211 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
4212 {
4213 	struct ext4_prealloc_space *pa;
4214 
4215 	BUG_ON(ext4_pspace_cachep == NULL);
4216 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
4217 	if (!pa)
4218 		return -ENOMEM;
4219 	atomic_set(&pa->pa_count, 1);
4220 	ac->ac_pa = pa;
4221 	return 0;
4222 }
4223 
4224 static void ext4_mb_pa_free(struct ext4_allocation_context *ac)
4225 {
4226 	struct ext4_prealloc_space *pa = ac->ac_pa;
4227 
4228 	BUG_ON(!pa);
4229 	ac->ac_pa = NULL;
4230 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
4231 	kmem_cache_free(ext4_pspace_cachep, pa);
4232 }
4233 
4234 #ifdef CONFIG_EXT4_DEBUG
4235 static inline void ext4_mb_show_pa(struct super_block *sb)
4236 {
4237 	ext4_group_t i, ngroups;
4238 
4239 	if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
4240 		return;
4241 
4242 	ngroups = ext4_get_groups_count(sb);
4243 	mb_debug(sb, "groups: ");
4244 	for (i = 0; i < ngroups; i++) {
4245 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4246 		struct ext4_prealloc_space *pa;
4247 		ext4_grpblk_t start;
4248 		struct list_head *cur;
4249 		ext4_lock_group(sb, i);
4250 		list_for_each(cur, &grp->bb_prealloc_list) {
4251 			pa = list_entry(cur, struct ext4_prealloc_space,
4252 					pa_group_list);
4253 			spin_lock(&pa->pa_lock);
4254 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4255 						     NULL, &start);
4256 			spin_unlock(&pa->pa_lock);
4257 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
4258 				 pa->pa_len);
4259 		}
4260 		ext4_unlock_group(sb, i);
4261 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
4262 			 grp->bb_fragments);
4263 	}
4264 }
4265 
4266 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4267 {
4268 	struct super_block *sb = ac->ac_sb;
4269 
4270 	if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
4271 		return;
4272 
4273 	mb_debug(sb, "Can't allocate:"
4274 			" Allocation context details:");
4275 	mb_debug(sb, "status %u flags 0x%x",
4276 			ac->ac_status, ac->ac_flags);
4277 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
4278 			"goal %lu/%lu/%lu@%lu, "
4279 			"best %lu/%lu/%lu@%lu cr %d",
4280 			(unsigned long)ac->ac_o_ex.fe_group,
4281 			(unsigned long)ac->ac_o_ex.fe_start,
4282 			(unsigned long)ac->ac_o_ex.fe_len,
4283 			(unsigned long)ac->ac_o_ex.fe_logical,
4284 			(unsigned long)ac->ac_g_ex.fe_group,
4285 			(unsigned long)ac->ac_g_ex.fe_start,
4286 			(unsigned long)ac->ac_g_ex.fe_len,
4287 			(unsigned long)ac->ac_g_ex.fe_logical,
4288 			(unsigned long)ac->ac_b_ex.fe_group,
4289 			(unsigned long)ac->ac_b_ex.fe_start,
4290 			(unsigned long)ac->ac_b_ex.fe_len,
4291 			(unsigned long)ac->ac_b_ex.fe_logical,
4292 			(int)ac->ac_criteria);
4293 	mb_debug(sb, "%u found", ac->ac_found);
4294 	ext4_mb_show_pa(sb);
4295 }
4296 #else
4297 static inline void ext4_mb_show_pa(struct super_block *sb)
4298 {
4299 	return;
4300 }
4301 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4302 {
4303 	ext4_mb_show_pa(ac->ac_sb);
4304 	return;
4305 }
4306 #endif
4307 
4308 /*
4309  * We use locality group preallocation for small size file. The size of the
4310  * file is determined by the current size or the resulting size after
4311  * allocation which ever is larger
4312  *
4313  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4314  */
4315 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4316 {
4317 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4318 	int bsbits = ac->ac_sb->s_blocksize_bits;
4319 	loff_t size, isize;
4320 
4321 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4322 		return;
4323 
4324 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4325 		return;
4326 
4327 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4328 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4329 		>> bsbits;
4330 
4331 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
4332 	    !inode_is_open_for_write(ac->ac_inode)) {
4333 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4334 		return;
4335 	}
4336 
4337 	if (sbi->s_mb_group_prealloc <= 0) {
4338 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4339 		return;
4340 	}
4341 
4342 	/* don't use group allocation for large files */
4343 	size = max(size, isize);
4344 	if (size > sbi->s_mb_stream_request) {
4345 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4346 		return;
4347 	}
4348 
4349 	BUG_ON(ac->ac_lg != NULL);
4350 	/*
4351 	 * locality group prealloc space are per cpu. The reason for having
4352 	 * per cpu locality group is to reduce the contention between block
4353 	 * request from multiple CPUs.
4354 	 */
4355 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4356 
4357 	/* we're going to use group allocation */
4358 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4359 
4360 	/* serialize all allocations in the group */
4361 	mutex_lock(&ac->ac_lg->lg_mutex);
4362 }
4363 
4364 static noinline_for_stack int
4365 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4366 				struct ext4_allocation_request *ar)
4367 {
4368 	struct super_block *sb = ar->inode->i_sb;
4369 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4370 	struct ext4_super_block *es = sbi->s_es;
4371 	ext4_group_t group;
4372 	unsigned int len;
4373 	ext4_fsblk_t goal;
4374 	ext4_grpblk_t block;
4375 
4376 	/* we can't allocate > group size */
4377 	len = ar->len;
4378 
4379 	/* just a dirty hack to filter too big requests  */
4380 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4381 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4382 
4383 	/* start searching from the goal */
4384 	goal = ar->goal;
4385 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4386 			goal >= ext4_blocks_count(es))
4387 		goal = le32_to_cpu(es->s_first_data_block);
4388 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4389 
4390 	/* set up allocation goals */
4391 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4392 	ac->ac_status = AC_STATUS_CONTINUE;
4393 	ac->ac_sb = sb;
4394 	ac->ac_inode = ar->inode;
4395 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4396 	ac->ac_o_ex.fe_group = group;
4397 	ac->ac_o_ex.fe_start = block;
4398 	ac->ac_o_ex.fe_len = len;
4399 	ac->ac_g_ex = ac->ac_o_ex;
4400 	ac->ac_flags = ar->flags;
4401 
4402 	/* we have to define context: we'll we work with a file or
4403 	 * locality group. this is a policy, actually */
4404 	ext4_mb_group_or_file(ac);
4405 
4406 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
4407 			"left: %u/%u, right %u/%u to %swritable\n",
4408 			(unsigned) ar->len, (unsigned) ar->logical,
4409 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4410 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4411 			(unsigned) ar->lright, (unsigned) ar->pright,
4412 			inode_is_open_for_write(ar->inode) ? "" : "non-");
4413 	return 0;
4414 
4415 }
4416 
4417 static noinline_for_stack void
4418 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4419 					struct ext4_locality_group *lg,
4420 					int order, int total_entries)
4421 {
4422 	ext4_group_t group = 0;
4423 	struct ext4_buddy e4b;
4424 	struct list_head discard_list;
4425 	struct ext4_prealloc_space *pa, *tmp;
4426 
4427 	mb_debug(sb, "discard locality group preallocation\n");
4428 
4429 	INIT_LIST_HEAD(&discard_list);
4430 
4431 	spin_lock(&lg->lg_prealloc_lock);
4432 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4433 				pa_inode_list,
4434 				lockdep_is_held(&lg->lg_prealloc_lock)) {
4435 		spin_lock(&pa->pa_lock);
4436 		if (atomic_read(&pa->pa_count)) {
4437 			/*
4438 			 * This is the pa that we just used
4439 			 * for block allocation. So don't
4440 			 * free that
4441 			 */
4442 			spin_unlock(&pa->pa_lock);
4443 			continue;
4444 		}
4445 		if (pa->pa_deleted) {
4446 			spin_unlock(&pa->pa_lock);
4447 			continue;
4448 		}
4449 		/* only lg prealloc space */
4450 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4451 
4452 		/* seems this one can be freed ... */
4453 		pa->pa_deleted = 1;
4454 		spin_unlock(&pa->pa_lock);
4455 
4456 		list_del_rcu(&pa->pa_inode_list);
4457 		list_add(&pa->u.pa_tmp_list, &discard_list);
4458 
4459 		total_entries--;
4460 		if (total_entries <= 5) {
4461 			/*
4462 			 * we want to keep only 5 entries
4463 			 * allowing it to grow to 8. This
4464 			 * mak sure we don't call discard
4465 			 * soon for this list.
4466 			 */
4467 			break;
4468 		}
4469 	}
4470 	spin_unlock(&lg->lg_prealloc_lock);
4471 
4472 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4473 		int err;
4474 
4475 		group = ext4_get_group_number(sb, pa->pa_pstart);
4476 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4477 					     GFP_NOFS|__GFP_NOFAIL);
4478 		if (err) {
4479 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
4480 				       err, group);
4481 			continue;
4482 		}
4483 		ext4_lock_group(sb, group);
4484 		list_del(&pa->pa_group_list);
4485 		ext4_mb_release_group_pa(&e4b, pa);
4486 		ext4_unlock_group(sb, group);
4487 
4488 		ext4_mb_unload_buddy(&e4b);
4489 		list_del(&pa->u.pa_tmp_list);
4490 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4491 	}
4492 }
4493 
4494 /*
4495  * We have incremented pa_count. So it cannot be freed at this
4496  * point. Also we hold lg_mutex. So no parallel allocation is
4497  * possible from this lg. That means pa_free cannot be updated.
4498  *
4499  * A parallel ext4_mb_discard_group_preallocations is possible.
4500  * which can cause the lg_prealloc_list to be updated.
4501  */
4502 
4503 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4504 {
4505 	int order, added = 0, lg_prealloc_count = 1;
4506 	struct super_block *sb = ac->ac_sb;
4507 	struct ext4_locality_group *lg = ac->ac_lg;
4508 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4509 
4510 	order = fls(pa->pa_free) - 1;
4511 	if (order > PREALLOC_TB_SIZE - 1)
4512 		/* The max size of hash table is PREALLOC_TB_SIZE */
4513 		order = PREALLOC_TB_SIZE - 1;
4514 	/* Add the prealloc space to lg */
4515 	spin_lock(&lg->lg_prealloc_lock);
4516 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4517 				pa_inode_list,
4518 				lockdep_is_held(&lg->lg_prealloc_lock)) {
4519 		spin_lock(&tmp_pa->pa_lock);
4520 		if (tmp_pa->pa_deleted) {
4521 			spin_unlock(&tmp_pa->pa_lock);
4522 			continue;
4523 		}
4524 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4525 			/* Add to the tail of the previous entry */
4526 			list_add_tail_rcu(&pa->pa_inode_list,
4527 						&tmp_pa->pa_inode_list);
4528 			added = 1;
4529 			/*
4530 			 * we want to count the total
4531 			 * number of entries in the list
4532 			 */
4533 		}
4534 		spin_unlock(&tmp_pa->pa_lock);
4535 		lg_prealloc_count++;
4536 	}
4537 	if (!added)
4538 		list_add_tail_rcu(&pa->pa_inode_list,
4539 					&lg->lg_prealloc_list[order]);
4540 	spin_unlock(&lg->lg_prealloc_lock);
4541 
4542 	/* Now trim the list to be not more than 8 elements */
4543 	if (lg_prealloc_count > 8) {
4544 		ext4_mb_discard_lg_preallocations(sb, lg,
4545 						  order, lg_prealloc_count);
4546 		return;
4547 	}
4548 	return ;
4549 }
4550 
4551 /*
4552  * release all resource we used in allocation
4553  */
4554 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4555 {
4556 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4557 	struct ext4_prealloc_space *pa = ac->ac_pa;
4558 	if (pa) {
4559 		if (pa->pa_type == MB_GROUP_PA) {
4560 			/* see comment in ext4_mb_use_group_pa() */
4561 			spin_lock(&pa->pa_lock);
4562 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4563 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4564 			pa->pa_free -= ac->ac_b_ex.fe_len;
4565 			pa->pa_len -= ac->ac_b_ex.fe_len;
4566 			spin_unlock(&pa->pa_lock);
4567 		}
4568 	}
4569 	if (pa) {
4570 		/*
4571 		 * We want to add the pa to the right bucket.
4572 		 * Remove it from the list and while adding
4573 		 * make sure the list to which we are adding
4574 		 * doesn't grow big.
4575 		 */
4576 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4577 			spin_lock(pa->pa_obj_lock);
4578 			list_del_rcu(&pa->pa_inode_list);
4579 			spin_unlock(pa->pa_obj_lock);
4580 			ext4_mb_add_n_trim(ac);
4581 		}
4582 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4583 	}
4584 	if (ac->ac_bitmap_page)
4585 		put_page(ac->ac_bitmap_page);
4586 	if (ac->ac_buddy_page)
4587 		put_page(ac->ac_buddy_page);
4588 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4589 		mutex_unlock(&ac->ac_lg->lg_mutex);
4590 	ext4_mb_collect_stats(ac);
4591 	return 0;
4592 }
4593 
4594 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4595 {
4596 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4597 	int ret;
4598 	int freed = 0;
4599 
4600 	trace_ext4_mb_discard_preallocations(sb, needed);
4601 	for (i = 0; i < ngroups && needed > 0; i++) {
4602 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4603 		freed += ret;
4604 		needed -= ret;
4605 	}
4606 
4607 	return freed;
4608 }
4609 
4610 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
4611 			struct ext4_allocation_context *ac, u64 *seq)
4612 {
4613 	int freed;
4614 	u64 seq_retry = 0;
4615 	bool ret = false;
4616 
4617 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4618 	if (freed) {
4619 		ret = true;
4620 		goto out_dbg;
4621 	}
4622 	seq_retry = ext4_get_discard_pa_seq_sum();
4623 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
4624 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
4625 		*seq = seq_retry;
4626 		ret = true;
4627 	}
4628 
4629 out_dbg:
4630 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
4631 	return ret;
4632 }
4633 
4634 /*
4635  * Main entry point into mballoc to allocate blocks
4636  * it tries to use preallocation first, then falls back
4637  * to usual allocation
4638  */
4639 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4640 				struct ext4_allocation_request *ar, int *errp)
4641 {
4642 	struct ext4_allocation_context *ac = NULL;
4643 	struct ext4_sb_info *sbi;
4644 	struct super_block *sb;
4645 	ext4_fsblk_t block = 0;
4646 	unsigned int inquota = 0;
4647 	unsigned int reserv_clstrs = 0;
4648 	u64 seq;
4649 
4650 	might_sleep();
4651 	sb = ar->inode->i_sb;
4652 	sbi = EXT4_SB(sb);
4653 
4654 	trace_ext4_request_blocks(ar);
4655 
4656 	/* Allow to use superuser reservation for quota file */
4657 	if (ext4_is_quota_file(ar->inode))
4658 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4659 
4660 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4661 		/* Without delayed allocation we need to verify
4662 		 * there is enough free blocks to do block allocation
4663 		 * and verify allocation doesn't exceed the quota limits.
4664 		 */
4665 		while (ar->len &&
4666 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4667 
4668 			/* let others to free the space */
4669 			cond_resched();
4670 			ar->len = ar->len >> 1;
4671 		}
4672 		if (!ar->len) {
4673 			ext4_mb_show_pa(sb);
4674 			*errp = -ENOSPC;
4675 			return 0;
4676 		}
4677 		reserv_clstrs = ar->len;
4678 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4679 			dquot_alloc_block_nofail(ar->inode,
4680 						 EXT4_C2B(sbi, ar->len));
4681 		} else {
4682 			while (ar->len &&
4683 				dquot_alloc_block(ar->inode,
4684 						  EXT4_C2B(sbi, ar->len))) {
4685 
4686 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4687 				ar->len--;
4688 			}
4689 		}
4690 		inquota = ar->len;
4691 		if (ar->len == 0) {
4692 			*errp = -EDQUOT;
4693 			goto out;
4694 		}
4695 	}
4696 
4697 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4698 	if (!ac) {
4699 		ar->len = 0;
4700 		*errp = -ENOMEM;
4701 		goto out;
4702 	}
4703 
4704 	*errp = ext4_mb_initialize_context(ac, ar);
4705 	if (*errp) {
4706 		ar->len = 0;
4707 		goto out;
4708 	}
4709 
4710 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4711 	seq = this_cpu_read(discard_pa_seq);
4712 	if (!ext4_mb_use_preallocated(ac)) {
4713 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4714 		ext4_mb_normalize_request(ac, ar);
4715 
4716 		*errp = ext4_mb_pa_alloc(ac);
4717 		if (*errp)
4718 			goto errout;
4719 repeat:
4720 		/* allocate space in core */
4721 		*errp = ext4_mb_regular_allocator(ac);
4722 		/*
4723 		 * pa allocated above is added to grp->bb_prealloc_list only
4724 		 * when we were able to allocate some block i.e. when
4725 		 * ac->ac_status == AC_STATUS_FOUND.
4726 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
4727 		 * So we have to free this pa here itself.
4728 		 */
4729 		if (*errp) {
4730 			ext4_mb_pa_free(ac);
4731 			ext4_discard_allocated_blocks(ac);
4732 			goto errout;
4733 		}
4734 		if (ac->ac_status == AC_STATUS_FOUND &&
4735 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
4736 			ext4_mb_pa_free(ac);
4737 	}
4738 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4739 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4740 		if (*errp) {
4741 			ext4_discard_allocated_blocks(ac);
4742 			goto errout;
4743 		} else {
4744 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4745 			ar->len = ac->ac_b_ex.fe_len;
4746 		}
4747 	} else {
4748 		if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
4749 			goto repeat;
4750 		/*
4751 		 * If block allocation fails then the pa allocated above
4752 		 * needs to be freed here itself.
4753 		 */
4754 		ext4_mb_pa_free(ac);
4755 		*errp = -ENOSPC;
4756 	}
4757 
4758 errout:
4759 	if (*errp) {
4760 		ac->ac_b_ex.fe_len = 0;
4761 		ar->len = 0;
4762 		ext4_mb_show_ac(ac);
4763 	}
4764 	ext4_mb_release_context(ac);
4765 out:
4766 	if (ac)
4767 		kmem_cache_free(ext4_ac_cachep, ac);
4768 	if (inquota && ar->len < inquota)
4769 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4770 	if (!ar->len) {
4771 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4772 			/* release all the reserved blocks if non delalloc */
4773 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4774 						reserv_clstrs);
4775 	}
4776 
4777 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4778 
4779 	return block;
4780 }
4781 
4782 /*
4783  * We can merge two free data extents only if the physical blocks
4784  * are contiguous, AND the extents were freed by the same transaction,
4785  * AND the blocks are associated with the same group.
4786  */
4787 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4788 					struct ext4_free_data *entry,
4789 					struct ext4_free_data *new_entry,
4790 					struct rb_root *entry_rb_root)
4791 {
4792 	if ((entry->efd_tid != new_entry->efd_tid) ||
4793 	    (entry->efd_group != new_entry->efd_group))
4794 		return;
4795 	if (entry->efd_start_cluster + entry->efd_count ==
4796 	    new_entry->efd_start_cluster) {
4797 		new_entry->efd_start_cluster = entry->efd_start_cluster;
4798 		new_entry->efd_count += entry->efd_count;
4799 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4800 		   entry->efd_start_cluster) {
4801 		new_entry->efd_count += entry->efd_count;
4802 	} else
4803 		return;
4804 	spin_lock(&sbi->s_md_lock);
4805 	list_del(&entry->efd_list);
4806 	spin_unlock(&sbi->s_md_lock);
4807 	rb_erase(&entry->efd_node, entry_rb_root);
4808 	kmem_cache_free(ext4_free_data_cachep, entry);
4809 }
4810 
4811 static noinline_for_stack int
4812 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4813 		      struct ext4_free_data *new_entry)
4814 {
4815 	ext4_group_t group = e4b->bd_group;
4816 	ext4_grpblk_t cluster;
4817 	ext4_grpblk_t clusters = new_entry->efd_count;
4818 	struct ext4_free_data *entry;
4819 	struct ext4_group_info *db = e4b->bd_info;
4820 	struct super_block *sb = e4b->bd_sb;
4821 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4822 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4823 	struct rb_node *parent = NULL, *new_node;
4824 
4825 	BUG_ON(!ext4_handle_valid(handle));
4826 	BUG_ON(e4b->bd_bitmap_page == NULL);
4827 	BUG_ON(e4b->bd_buddy_page == NULL);
4828 
4829 	new_node = &new_entry->efd_node;
4830 	cluster = new_entry->efd_start_cluster;
4831 
4832 	if (!*n) {
4833 		/* first free block exent. We need to
4834 		   protect buddy cache from being freed,
4835 		 * otherwise we'll refresh it from
4836 		 * on-disk bitmap and lose not-yet-available
4837 		 * blocks */
4838 		get_page(e4b->bd_buddy_page);
4839 		get_page(e4b->bd_bitmap_page);
4840 	}
4841 	while (*n) {
4842 		parent = *n;
4843 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4844 		if (cluster < entry->efd_start_cluster)
4845 			n = &(*n)->rb_left;
4846 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4847 			n = &(*n)->rb_right;
4848 		else {
4849 			ext4_grp_locked_error(sb, group, 0,
4850 				ext4_group_first_block_no(sb, group) +
4851 				EXT4_C2B(sbi, cluster),
4852 				"Block already on to-be-freed list");
4853 			return 0;
4854 		}
4855 	}
4856 
4857 	rb_link_node(new_node, parent, n);
4858 	rb_insert_color(new_node, &db->bb_free_root);
4859 
4860 	/* Now try to see the extent can be merged to left and right */
4861 	node = rb_prev(new_node);
4862 	if (node) {
4863 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4864 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
4865 					    &(db->bb_free_root));
4866 	}
4867 
4868 	node = rb_next(new_node);
4869 	if (node) {
4870 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4871 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
4872 					    &(db->bb_free_root));
4873 	}
4874 
4875 	spin_lock(&sbi->s_md_lock);
4876 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4877 	sbi->s_mb_free_pending += clusters;
4878 	spin_unlock(&sbi->s_md_lock);
4879 	return 0;
4880 }
4881 
4882 /**
4883  * ext4_free_blocks() -- Free given blocks and update quota
4884  * @handle:		handle for this transaction
4885  * @inode:		inode
4886  * @bh:			optional buffer of the block to be freed
4887  * @block:		starting physical block to be freed
4888  * @count:		number of blocks to be freed
4889  * @flags:		flags used by ext4_free_blocks
4890  */
4891 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4892 		      struct buffer_head *bh, ext4_fsblk_t block,
4893 		      unsigned long count, int flags)
4894 {
4895 	struct buffer_head *bitmap_bh = NULL;
4896 	struct super_block *sb = inode->i_sb;
4897 	struct ext4_group_desc *gdp;
4898 	unsigned int overflow;
4899 	ext4_grpblk_t bit;
4900 	struct buffer_head *gd_bh;
4901 	ext4_group_t block_group;
4902 	struct ext4_sb_info *sbi;
4903 	struct ext4_buddy e4b;
4904 	unsigned int count_clusters;
4905 	int err = 0;
4906 	int ret;
4907 
4908 	might_sleep();
4909 	if (bh) {
4910 		if (block)
4911 			BUG_ON(block != bh->b_blocknr);
4912 		else
4913 			block = bh->b_blocknr;
4914 	}
4915 
4916 	sbi = EXT4_SB(sb);
4917 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4918 	    !ext4_data_block_valid(sbi, block, count)) {
4919 		ext4_error(sb, "Freeing blocks not in datazone - "
4920 			   "block = %llu, count = %lu", block, count);
4921 		goto error_return;
4922 	}
4923 
4924 	ext4_debug("freeing block %llu\n", block);
4925 	trace_ext4_free_blocks(inode, block, count, flags);
4926 
4927 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4928 		BUG_ON(count > 1);
4929 
4930 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4931 			    inode, bh, block);
4932 	}
4933 
4934 	/*
4935 	 * If the extent to be freed does not begin on a cluster
4936 	 * boundary, we need to deal with partial clusters at the
4937 	 * beginning and end of the extent.  Normally we will free
4938 	 * blocks at the beginning or the end unless we are explicitly
4939 	 * requested to avoid doing so.
4940 	 */
4941 	overflow = EXT4_PBLK_COFF(sbi, block);
4942 	if (overflow) {
4943 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4944 			overflow = sbi->s_cluster_ratio - overflow;
4945 			block += overflow;
4946 			if (count > overflow)
4947 				count -= overflow;
4948 			else
4949 				return;
4950 		} else {
4951 			block -= overflow;
4952 			count += overflow;
4953 		}
4954 	}
4955 	overflow = EXT4_LBLK_COFF(sbi, count);
4956 	if (overflow) {
4957 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4958 			if (count > overflow)
4959 				count -= overflow;
4960 			else
4961 				return;
4962 		} else
4963 			count += sbi->s_cluster_ratio - overflow;
4964 	}
4965 
4966 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4967 		int i;
4968 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4969 
4970 		for (i = 0; i < count; i++) {
4971 			cond_resched();
4972 			if (is_metadata)
4973 				bh = sb_find_get_block(inode->i_sb, block + i);
4974 			ext4_forget(handle, is_metadata, inode, bh, block + i);
4975 		}
4976 	}
4977 
4978 do_more:
4979 	overflow = 0;
4980 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4981 
4982 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4983 			ext4_get_group_info(sb, block_group))))
4984 		return;
4985 
4986 	/*
4987 	 * Check to see if we are freeing blocks across a group
4988 	 * boundary.
4989 	 */
4990 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4991 		overflow = EXT4_C2B(sbi, bit) + count -
4992 			EXT4_BLOCKS_PER_GROUP(sb);
4993 		count -= overflow;
4994 	}
4995 	count_clusters = EXT4_NUM_B2C(sbi, count);
4996 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4997 	if (IS_ERR(bitmap_bh)) {
4998 		err = PTR_ERR(bitmap_bh);
4999 		bitmap_bh = NULL;
5000 		goto error_return;
5001 	}
5002 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
5003 	if (!gdp) {
5004 		err = -EIO;
5005 		goto error_return;
5006 	}
5007 
5008 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
5009 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
5010 	    in_range(block, ext4_inode_table(sb, gdp),
5011 		     sbi->s_itb_per_group) ||
5012 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
5013 		     sbi->s_itb_per_group)) {
5014 
5015 		ext4_error(sb, "Freeing blocks in system zone - "
5016 			   "Block = %llu, count = %lu", block, count);
5017 		/* err = 0. ext4_std_error should be a no op */
5018 		goto error_return;
5019 	}
5020 
5021 	BUFFER_TRACE(bitmap_bh, "getting write access");
5022 	err = ext4_journal_get_write_access(handle, bitmap_bh);
5023 	if (err)
5024 		goto error_return;
5025 
5026 	/*
5027 	 * We are about to modify some metadata.  Call the journal APIs
5028 	 * to unshare ->b_data if a currently-committing transaction is
5029 	 * using it
5030 	 */
5031 	BUFFER_TRACE(gd_bh, "get_write_access");
5032 	err = ext4_journal_get_write_access(handle, gd_bh);
5033 	if (err)
5034 		goto error_return;
5035 #ifdef AGGRESSIVE_CHECK
5036 	{
5037 		int i;
5038 		for (i = 0; i < count_clusters; i++)
5039 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
5040 	}
5041 #endif
5042 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
5043 
5044 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
5045 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
5046 				     GFP_NOFS|__GFP_NOFAIL);
5047 	if (err)
5048 		goto error_return;
5049 
5050 	/*
5051 	 * We need to make sure we don't reuse the freed block until after the
5052 	 * transaction is committed. We make an exception if the inode is to be
5053 	 * written in writeback mode since writeback mode has weak data
5054 	 * consistency guarantees.
5055 	 */
5056 	if (ext4_handle_valid(handle) &&
5057 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
5058 	     !ext4_should_writeback_data(inode))) {
5059 		struct ext4_free_data *new_entry;
5060 		/*
5061 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
5062 		 * to fail.
5063 		 */
5064 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
5065 				GFP_NOFS|__GFP_NOFAIL);
5066 		new_entry->efd_start_cluster = bit;
5067 		new_entry->efd_group = block_group;
5068 		new_entry->efd_count = count_clusters;
5069 		new_entry->efd_tid = handle->h_transaction->t_tid;
5070 
5071 		ext4_lock_group(sb, block_group);
5072 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5073 		ext4_mb_free_metadata(handle, &e4b, new_entry);
5074 	} else {
5075 		/* need to update group_info->bb_free and bitmap
5076 		 * with group lock held. generate_buddy look at
5077 		 * them with group lock_held
5078 		 */
5079 		if (test_opt(sb, DISCARD)) {
5080 			err = ext4_issue_discard(sb, block_group, bit, count,
5081 						 NULL);
5082 			if (err && err != -EOPNOTSUPP)
5083 				ext4_msg(sb, KERN_WARNING, "discard request in"
5084 					 " group:%d block:%d count:%lu failed"
5085 					 " with %d", block_group, bit, count,
5086 					 err);
5087 		} else
5088 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
5089 
5090 		ext4_lock_group(sb, block_group);
5091 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
5092 		mb_free_blocks(inode, &e4b, bit, count_clusters);
5093 	}
5094 
5095 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
5096 	ext4_free_group_clusters_set(sb, gdp, ret);
5097 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
5098 	ext4_group_desc_csum_set(sb, block_group, gdp);
5099 	ext4_unlock_group(sb, block_group);
5100 
5101 	if (sbi->s_log_groups_per_flex) {
5102 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5103 		atomic64_add(count_clusters,
5104 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
5105 						  flex_group)->free_clusters);
5106 	}
5107 
5108 	/*
5109 	 * on a bigalloc file system, defer the s_freeclusters_counter
5110 	 * update to the caller (ext4_remove_space and friends) so they
5111 	 * can determine if a cluster freed here should be rereserved
5112 	 */
5113 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
5114 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
5115 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
5116 		percpu_counter_add(&sbi->s_freeclusters_counter,
5117 				   count_clusters);
5118 	}
5119 
5120 	ext4_mb_unload_buddy(&e4b);
5121 
5122 	/* We dirtied the bitmap block */
5123 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5124 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5125 
5126 	/* And the group descriptor block */
5127 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5128 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5129 	if (!err)
5130 		err = ret;
5131 
5132 	if (overflow && !err) {
5133 		block += count;
5134 		count = overflow;
5135 		put_bh(bitmap_bh);
5136 		goto do_more;
5137 	}
5138 error_return:
5139 	brelse(bitmap_bh);
5140 	ext4_std_error(sb, err);
5141 	return;
5142 }
5143 
5144 /**
5145  * ext4_group_add_blocks() -- Add given blocks to an existing group
5146  * @handle:			handle to this transaction
5147  * @sb:				super block
5148  * @block:			start physical block to add to the block group
5149  * @count:			number of blocks to free
5150  *
5151  * This marks the blocks as free in the bitmap and buddy.
5152  */
5153 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
5154 			 ext4_fsblk_t block, unsigned long count)
5155 {
5156 	struct buffer_head *bitmap_bh = NULL;
5157 	struct buffer_head *gd_bh;
5158 	ext4_group_t block_group;
5159 	ext4_grpblk_t bit;
5160 	unsigned int i;
5161 	struct ext4_group_desc *desc;
5162 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5163 	struct ext4_buddy e4b;
5164 	int err = 0, ret, free_clusters_count;
5165 	ext4_grpblk_t clusters_freed;
5166 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
5167 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
5168 	unsigned long cluster_count = last_cluster - first_cluster + 1;
5169 
5170 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
5171 
5172 	if (count == 0)
5173 		return 0;
5174 
5175 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
5176 	/*
5177 	 * Check to see if we are freeing blocks across a group
5178 	 * boundary.
5179 	 */
5180 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
5181 		ext4_warning(sb, "too many blocks added to group %u",
5182 			     block_group);
5183 		err = -EINVAL;
5184 		goto error_return;
5185 	}
5186 
5187 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5188 	if (IS_ERR(bitmap_bh)) {
5189 		err = PTR_ERR(bitmap_bh);
5190 		bitmap_bh = NULL;
5191 		goto error_return;
5192 	}
5193 
5194 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5195 	if (!desc) {
5196 		err = -EIO;
5197 		goto error_return;
5198 	}
5199 
5200 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5201 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5202 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5203 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
5204 		     sbi->s_itb_per_group)) {
5205 		ext4_error(sb, "Adding blocks in system zones - "
5206 			   "Block = %llu, count = %lu",
5207 			   block, count);
5208 		err = -EINVAL;
5209 		goto error_return;
5210 	}
5211 
5212 	BUFFER_TRACE(bitmap_bh, "getting write access");
5213 	err = ext4_journal_get_write_access(handle, bitmap_bh);
5214 	if (err)
5215 		goto error_return;
5216 
5217 	/*
5218 	 * We are about to modify some metadata.  Call the journal APIs
5219 	 * to unshare ->b_data if a currently-committing transaction is
5220 	 * using it
5221 	 */
5222 	BUFFER_TRACE(gd_bh, "get_write_access");
5223 	err = ext4_journal_get_write_access(handle, gd_bh);
5224 	if (err)
5225 		goto error_return;
5226 
5227 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5228 		BUFFER_TRACE(bitmap_bh, "clear bit");
5229 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5230 			ext4_error(sb, "bit already cleared for block %llu",
5231 				   (ext4_fsblk_t)(block + i));
5232 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
5233 		} else {
5234 			clusters_freed++;
5235 		}
5236 	}
5237 
5238 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
5239 	if (err)
5240 		goto error_return;
5241 
5242 	/*
5243 	 * need to update group_info->bb_free and bitmap
5244 	 * with group lock held. generate_buddy look at
5245 	 * them with group lock_held
5246 	 */
5247 	ext4_lock_group(sb, block_group);
5248 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5249 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
5250 	free_clusters_count = clusters_freed +
5251 		ext4_free_group_clusters(sb, desc);
5252 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5253 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5254 	ext4_group_desc_csum_set(sb, block_group, desc);
5255 	ext4_unlock_group(sb, block_group);
5256 	percpu_counter_add(&sbi->s_freeclusters_counter,
5257 			   clusters_freed);
5258 
5259 	if (sbi->s_log_groups_per_flex) {
5260 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5261 		atomic64_add(clusters_freed,
5262 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
5263 						  flex_group)->free_clusters);
5264 	}
5265 
5266 	ext4_mb_unload_buddy(&e4b);
5267 
5268 	/* We dirtied the bitmap block */
5269 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5270 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5271 
5272 	/* And the group descriptor block */
5273 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5274 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5275 	if (!err)
5276 		err = ret;
5277 
5278 error_return:
5279 	brelse(bitmap_bh);
5280 	ext4_std_error(sb, err);
5281 	return err;
5282 }
5283 
5284 /**
5285  * ext4_trim_extent -- function to TRIM one single free extent in the group
5286  * @sb:		super block for the file system
5287  * @start:	starting block of the free extent in the alloc. group
5288  * @count:	number of blocks to TRIM
5289  * @group:	alloc. group we are working with
5290  * @e4b:	ext4 buddy for the group
5291  *
5292  * Trim "count" blocks starting at "start" in the "group". To assure that no
5293  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5294  * be called with under the group lock.
5295  */
5296 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5297 			     ext4_group_t group, struct ext4_buddy *e4b)
5298 __releases(bitlock)
5299 __acquires(bitlock)
5300 {
5301 	struct ext4_free_extent ex;
5302 	int ret = 0;
5303 
5304 	trace_ext4_trim_extent(sb, group, start, count);
5305 
5306 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5307 
5308 	ex.fe_start = start;
5309 	ex.fe_group = group;
5310 	ex.fe_len = count;
5311 
5312 	/*
5313 	 * Mark blocks used, so no one can reuse them while
5314 	 * being trimmed.
5315 	 */
5316 	mb_mark_used(e4b, &ex);
5317 	ext4_unlock_group(sb, group);
5318 	ret = ext4_issue_discard(sb, group, start, count, NULL);
5319 	ext4_lock_group(sb, group);
5320 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5321 	return ret;
5322 }
5323 
5324 /**
5325  * ext4_trim_all_free -- function to trim all free space in alloc. group
5326  * @sb:			super block for file system
5327  * @group:		group to be trimmed
5328  * @start:		first group block to examine
5329  * @max:		last group block to examine
5330  * @minblocks:		minimum extent block count
5331  *
5332  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5333  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5334  * the extent.
5335  *
5336  *
5337  * ext4_trim_all_free walks through group's block bitmap searching for free
5338  * extents. When the free extent is found, mark it as used in group buddy
5339  * bitmap. Then issue a TRIM command on this extent and free the extent in
5340  * the group buddy bitmap. This is done until whole group is scanned.
5341  */
5342 static ext4_grpblk_t
5343 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5344 		   ext4_grpblk_t start, ext4_grpblk_t max,
5345 		   ext4_grpblk_t minblocks)
5346 {
5347 	void *bitmap;
5348 	ext4_grpblk_t next, count = 0, free_count = 0;
5349 	struct ext4_buddy e4b;
5350 	int ret = 0;
5351 
5352 	trace_ext4_trim_all_free(sb, group, start, max);
5353 
5354 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5355 	if (ret) {
5356 		ext4_warning(sb, "Error %d loading buddy information for %u",
5357 			     ret, group);
5358 		return ret;
5359 	}
5360 	bitmap = e4b.bd_bitmap;
5361 
5362 	ext4_lock_group(sb, group);
5363 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5364 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5365 		goto out;
5366 
5367 	start = (e4b.bd_info->bb_first_free > start) ?
5368 		e4b.bd_info->bb_first_free : start;
5369 
5370 	while (start <= max) {
5371 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5372 		if (start > max)
5373 			break;
5374 		next = mb_find_next_bit(bitmap, max + 1, start);
5375 
5376 		if ((next - start) >= minblocks) {
5377 			ret = ext4_trim_extent(sb, start,
5378 					       next - start, group, &e4b);
5379 			if (ret && ret != -EOPNOTSUPP)
5380 				break;
5381 			ret = 0;
5382 			count += next - start;
5383 		}
5384 		free_count += next - start;
5385 		start = next + 1;
5386 
5387 		if (fatal_signal_pending(current)) {
5388 			count = -ERESTARTSYS;
5389 			break;
5390 		}
5391 
5392 		if (need_resched()) {
5393 			ext4_unlock_group(sb, group);
5394 			cond_resched();
5395 			ext4_lock_group(sb, group);
5396 		}
5397 
5398 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5399 			break;
5400 	}
5401 
5402 	if (!ret) {
5403 		ret = count;
5404 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5405 	}
5406 out:
5407 	ext4_unlock_group(sb, group);
5408 	ext4_mb_unload_buddy(&e4b);
5409 
5410 	ext4_debug("trimmed %d blocks in the group %d\n",
5411 		count, group);
5412 
5413 	return ret;
5414 }
5415 
5416 /**
5417  * ext4_trim_fs() -- trim ioctl handle function
5418  * @sb:			superblock for filesystem
5419  * @range:		fstrim_range structure
5420  *
5421  * start:	First Byte to trim
5422  * len:		number of Bytes to trim from start
5423  * minlen:	minimum extent length in Bytes
5424  * ext4_trim_fs goes through all allocation groups containing Bytes from
5425  * start to start+len. For each such a group ext4_trim_all_free function
5426  * is invoked to trim all free space.
5427  */
5428 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5429 {
5430 	struct ext4_group_info *grp;
5431 	ext4_group_t group, first_group, last_group;
5432 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5433 	uint64_t start, end, minlen, trimmed = 0;
5434 	ext4_fsblk_t first_data_blk =
5435 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5436 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5437 	int ret = 0;
5438 
5439 	start = range->start >> sb->s_blocksize_bits;
5440 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5441 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5442 			      range->minlen >> sb->s_blocksize_bits);
5443 
5444 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5445 	    start >= max_blks ||
5446 	    range->len < sb->s_blocksize)
5447 		return -EINVAL;
5448 	if (end >= max_blks)
5449 		end = max_blks - 1;
5450 	if (end <= first_data_blk)
5451 		goto out;
5452 	if (start < first_data_blk)
5453 		start = first_data_blk;
5454 
5455 	/* Determine first and last group to examine based on start and end */
5456 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5457 				     &first_group, &first_cluster);
5458 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5459 				     &last_group, &last_cluster);
5460 
5461 	/* end now represents the last cluster to discard in this group */
5462 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5463 
5464 	for (group = first_group; group <= last_group; group++) {
5465 		grp = ext4_get_group_info(sb, group);
5466 		/* We only do this if the grp has never been initialized */
5467 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5468 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5469 			if (ret)
5470 				break;
5471 		}
5472 
5473 		/*
5474 		 * For all the groups except the last one, last cluster will
5475 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5476 		 * change it for the last group, note that last_cluster is
5477 		 * already computed earlier by ext4_get_group_no_and_offset()
5478 		 */
5479 		if (group == last_group)
5480 			end = last_cluster;
5481 
5482 		if (grp->bb_free >= minlen) {
5483 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5484 						end, minlen);
5485 			if (cnt < 0) {
5486 				ret = cnt;
5487 				break;
5488 			}
5489 			trimmed += cnt;
5490 		}
5491 
5492 		/*
5493 		 * For every group except the first one, we are sure
5494 		 * that the first cluster to discard will be cluster #0.
5495 		 */
5496 		first_cluster = 0;
5497 	}
5498 
5499 	if (!ret)
5500 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5501 
5502 out:
5503 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5504 	return ret;
5505 }
5506 
5507 /* Iterate all the free extents in the group. */
5508 int
5509 ext4_mballoc_query_range(
5510 	struct super_block		*sb,
5511 	ext4_group_t			group,
5512 	ext4_grpblk_t			start,
5513 	ext4_grpblk_t			end,
5514 	ext4_mballoc_query_range_fn	formatter,
5515 	void				*priv)
5516 {
5517 	void				*bitmap;
5518 	ext4_grpblk_t			next;
5519 	struct ext4_buddy		e4b;
5520 	int				error;
5521 
5522 	error = ext4_mb_load_buddy(sb, group, &e4b);
5523 	if (error)
5524 		return error;
5525 	bitmap = e4b.bd_bitmap;
5526 
5527 	ext4_lock_group(sb, group);
5528 
5529 	start = (e4b.bd_info->bb_first_free > start) ?
5530 		e4b.bd_info->bb_first_free : start;
5531 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5532 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5533 
5534 	while (start <= end) {
5535 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
5536 		if (start > end)
5537 			break;
5538 		next = mb_find_next_bit(bitmap, end + 1, start);
5539 
5540 		ext4_unlock_group(sb, group);
5541 		error = formatter(sb, group, start, next - start, priv);
5542 		if (error)
5543 			goto out_unload;
5544 		ext4_lock_group(sb, group);
5545 
5546 		start = next + 1;
5547 	}
5548 
5549 	ext4_unlock_group(sb, group);
5550 out_unload:
5551 	ext4_mb_unload_buddy(&e4b);
5552 
5553 	return error;
5554 }
5555