xref: /openbmc/linux/fs/ext4/mballoc.c (revision 45cc842d5b75ba8f9a958f2dd12b95c6dd0452bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/backing-dev.h>
18 #include <trace/events/ext4.h>
19 
20 #ifdef CONFIG_EXT4_DEBUG
21 ushort ext4_mballoc_debug __read_mostly;
22 
23 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
24 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
25 #endif
26 
27 /*
28  * MUSTDO:
29  *   - test ext4_ext_search_left() and ext4_ext_search_right()
30  *   - search for metadata in few groups
31  *
32  * TODO v4:
33  *   - normalization should take into account whether file is still open
34  *   - discard preallocations if no free space left (policy?)
35  *   - don't normalize tails
36  *   - quota
37  *   - reservation for superuser
38  *
39  * TODO v3:
40  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
41  *   - track min/max extents in each group for better group selection
42  *   - mb_mark_used() may allocate chunk right after splitting buddy
43  *   - tree of groups sorted by number of free blocks
44  *   - error handling
45  */
46 
47 /*
48  * The allocation request involve request for multiple number of blocks
49  * near to the goal(block) value specified.
50  *
51  * During initialization phase of the allocator we decide to use the
52  * group preallocation or inode preallocation depending on the size of
53  * the file. The size of the file could be the resulting file size we
54  * would have after allocation, or the current file size, which ever
55  * is larger. If the size is less than sbi->s_mb_stream_request we
56  * select to use the group preallocation. The default value of
57  * s_mb_stream_request is 16 blocks. This can also be tuned via
58  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
59  * terms of number of blocks.
60  *
61  * The main motivation for having small file use group preallocation is to
62  * ensure that we have small files closer together on the disk.
63  *
64  * First stage the allocator looks at the inode prealloc list,
65  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
66  * spaces for this particular inode. The inode prealloc space is
67  * represented as:
68  *
69  * pa_lstart -> the logical start block for this prealloc space
70  * pa_pstart -> the physical start block for this prealloc space
71  * pa_len    -> length for this prealloc space (in clusters)
72  * pa_free   ->  free space available in this prealloc space (in clusters)
73  *
74  * The inode preallocation space is used looking at the _logical_ start
75  * block. If only the logical file block falls within the range of prealloc
76  * space we will consume the particular prealloc space. This makes sure that
77  * we have contiguous physical blocks representing the file blocks
78  *
79  * The important thing to be noted in case of inode prealloc space is that
80  * we don't modify the values associated to inode prealloc space except
81  * pa_free.
82  *
83  * If we are not able to find blocks in the inode prealloc space and if we
84  * have the group allocation flag set then we look at the locality group
85  * prealloc space. These are per CPU prealloc list represented as
86  *
87  * ext4_sb_info.s_locality_groups[smp_processor_id()]
88  *
89  * The reason for having a per cpu locality group is to reduce the contention
90  * between CPUs. It is possible to get scheduled at this point.
91  *
92  * The locality group prealloc space is used looking at whether we have
93  * enough free space (pa_free) within the prealloc space.
94  *
95  * If we can't allocate blocks via inode prealloc or/and locality group
96  * prealloc then we look at the buddy cache. The buddy cache is represented
97  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
98  * mapped to the buddy and bitmap information regarding different
99  * groups. The buddy information is attached to buddy cache inode so that
100  * we can access them through the page cache. The information regarding
101  * each group is loaded via ext4_mb_load_buddy.  The information involve
102  * block bitmap and buddy information. The information are stored in the
103  * inode as:
104  *
105  *  {                        page                        }
106  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
107  *
108  *
109  * one block each for bitmap and buddy information.  So for each group we
110  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
111  * blocksize) blocks.  So it can have information regarding groups_per_page
112  * which is blocks_per_page/2
113  *
114  * The buddy cache inode is not stored on disk. The inode is thrown
115  * away when the filesystem is unmounted.
116  *
117  * We look for count number of blocks in the buddy cache. If we were able
118  * to locate that many free blocks we return with additional information
119  * regarding rest of the contiguous physical block available
120  *
121  * Before allocating blocks via buddy cache we normalize the request
122  * blocks. This ensure we ask for more blocks that we needed. The extra
123  * blocks that we get after allocation is added to the respective prealloc
124  * list. In case of inode preallocation we follow a list of heuristics
125  * based on file size. This can be found in ext4_mb_normalize_request. If
126  * we are doing a group prealloc we try to normalize the request to
127  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
128  * dependent on the cluster size; for non-bigalloc file systems, it is
129  * 512 blocks. This can be tuned via
130  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
131  * terms of number of blocks. If we have mounted the file system with -O
132  * stripe=<value> option the group prealloc request is normalized to the
133  * the smallest multiple of the stripe value (sbi->s_stripe) which is
134  * greater than the default mb_group_prealloc.
135  *
136  * The regular allocator (using the buddy cache) supports a few tunables.
137  *
138  * /sys/fs/ext4/<partition>/mb_min_to_scan
139  * /sys/fs/ext4/<partition>/mb_max_to_scan
140  * /sys/fs/ext4/<partition>/mb_order2_req
141  *
142  * The regular allocator uses buddy scan only if the request len is power of
143  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
144  * value of s_mb_order2_reqs can be tuned via
145  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
146  * stripe size (sbi->s_stripe), we try to search for contiguous block in
147  * stripe size. This should result in better allocation on RAID setups. If
148  * not, we search in the specific group using bitmap for best extents. The
149  * tunable min_to_scan and max_to_scan control the behaviour here.
150  * min_to_scan indicate how long the mballoc __must__ look for a best
151  * extent and max_to_scan indicates how long the mballoc __can__ look for a
152  * best extent in the found extents. Searching for the blocks starts with
153  * the group specified as the goal value in allocation context via
154  * ac_g_ex. Each group is first checked based on the criteria whether it
155  * can be used for allocation. ext4_mb_good_group explains how the groups are
156  * checked.
157  *
158  * Both the prealloc space are getting populated as above. So for the first
159  * request we will hit the buddy cache which will result in this prealloc
160  * space getting filled. The prealloc space is then later used for the
161  * subsequent request.
162  */
163 
164 /*
165  * mballoc operates on the following data:
166  *  - on-disk bitmap
167  *  - in-core buddy (actually includes buddy and bitmap)
168  *  - preallocation descriptors (PAs)
169  *
170  * there are two types of preallocations:
171  *  - inode
172  *    assiged to specific inode and can be used for this inode only.
173  *    it describes part of inode's space preallocated to specific
174  *    physical blocks. any block from that preallocated can be used
175  *    independent. the descriptor just tracks number of blocks left
176  *    unused. so, before taking some block from descriptor, one must
177  *    make sure corresponded logical block isn't allocated yet. this
178  *    also means that freeing any block within descriptor's range
179  *    must discard all preallocated blocks.
180  *  - locality group
181  *    assigned to specific locality group which does not translate to
182  *    permanent set of inodes: inode can join and leave group. space
183  *    from this type of preallocation can be used for any inode. thus
184  *    it's consumed from the beginning to the end.
185  *
186  * relation between them can be expressed as:
187  *    in-core buddy = on-disk bitmap + preallocation descriptors
188  *
189  * this mean blocks mballoc considers used are:
190  *  - allocated blocks (persistent)
191  *  - preallocated blocks (non-persistent)
192  *
193  * consistency in mballoc world means that at any time a block is either
194  * free or used in ALL structures. notice: "any time" should not be read
195  * literally -- time is discrete and delimited by locks.
196  *
197  *  to keep it simple, we don't use block numbers, instead we count number of
198  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
199  *
200  * all operations can be expressed as:
201  *  - init buddy:			buddy = on-disk + PAs
202  *  - new PA:				buddy += N; PA = N
203  *  - use inode PA:			on-disk += N; PA -= N
204  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
205  *  - use locality group PA		on-disk += N; PA -= N
206  *  - discard locality group PA		buddy -= PA; PA = 0
207  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
208  *        is used in real operation because we can't know actual used
209  *        bits from PA, only from on-disk bitmap
210  *
211  * if we follow this strict logic, then all operations above should be atomic.
212  * given some of them can block, we'd have to use something like semaphores
213  * killing performance on high-end SMP hardware. let's try to relax it using
214  * the following knowledge:
215  *  1) if buddy is referenced, it's already initialized
216  *  2) while block is used in buddy and the buddy is referenced,
217  *     nobody can re-allocate that block
218  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
219  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
220  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
221  *     block
222  *
223  * so, now we're building a concurrency table:
224  *  - init buddy vs.
225  *    - new PA
226  *      blocks for PA are allocated in the buddy, buddy must be referenced
227  *      until PA is linked to allocation group to avoid concurrent buddy init
228  *    - use inode PA
229  *      we need to make sure that either on-disk bitmap or PA has uptodate data
230  *      given (3) we care that PA-=N operation doesn't interfere with init
231  *    - discard inode PA
232  *      the simplest way would be to have buddy initialized by the discard
233  *    - use locality group PA
234  *      again PA-=N must be serialized with init
235  *    - discard locality group PA
236  *      the simplest way would be to have buddy initialized by the discard
237  *  - new PA vs.
238  *    - use inode PA
239  *      i_data_sem serializes them
240  *    - discard inode PA
241  *      discard process must wait until PA isn't used by another process
242  *    - use locality group PA
243  *      some mutex should serialize them
244  *    - discard locality group PA
245  *      discard process must wait until PA isn't used by another process
246  *  - use inode PA
247  *    - use inode PA
248  *      i_data_sem or another mutex should serializes them
249  *    - discard inode PA
250  *      discard process must wait until PA isn't used by another process
251  *    - use locality group PA
252  *      nothing wrong here -- they're different PAs covering different blocks
253  *    - discard locality group PA
254  *      discard process must wait until PA isn't used by another process
255  *
256  * now we're ready to make few consequences:
257  *  - PA is referenced and while it is no discard is possible
258  *  - PA is referenced until block isn't marked in on-disk bitmap
259  *  - PA changes only after on-disk bitmap
260  *  - discard must not compete with init. either init is done before
261  *    any discard or they're serialized somehow
262  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
263  *
264  * a special case when we've used PA to emptiness. no need to modify buddy
265  * in this case, but we should care about concurrent init
266  *
267  */
268 
269  /*
270  * Logic in few words:
271  *
272  *  - allocation:
273  *    load group
274  *    find blocks
275  *    mark bits in on-disk bitmap
276  *    release group
277  *
278  *  - use preallocation:
279  *    find proper PA (per-inode or group)
280  *    load group
281  *    mark bits in on-disk bitmap
282  *    release group
283  *    release PA
284  *
285  *  - free:
286  *    load group
287  *    mark bits in on-disk bitmap
288  *    release group
289  *
290  *  - discard preallocations in group:
291  *    mark PAs deleted
292  *    move them onto local list
293  *    load on-disk bitmap
294  *    load group
295  *    remove PA from object (inode or locality group)
296  *    mark free blocks in-core
297  *
298  *  - discard inode's preallocations:
299  */
300 
301 /*
302  * Locking rules
303  *
304  * Locks:
305  *  - bitlock on a group	(group)
306  *  - object (inode/locality)	(object)
307  *  - per-pa lock		(pa)
308  *
309  * Paths:
310  *  - new pa
311  *    object
312  *    group
313  *
314  *  - find and use pa:
315  *    pa
316  *
317  *  - release consumed pa:
318  *    pa
319  *    group
320  *    object
321  *
322  *  - generate in-core bitmap:
323  *    group
324  *        pa
325  *
326  *  - discard all for given object (inode, locality group):
327  *    object
328  *        pa
329  *    group
330  *
331  *  - discard all for given group:
332  *    group
333  *        pa
334  *    group
335  *        object
336  *
337  */
338 static struct kmem_cache *ext4_pspace_cachep;
339 static struct kmem_cache *ext4_ac_cachep;
340 static struct kmem_cache *ext4_free_data_cachep;
341 
342 /* We create slab caches for groupinfo data structures based on the
343  * superblock block size.  There will be one per mounted filesystem for
344  * each unique s_blocksize_bits */
345 #define NR_GRPINFO_CACHES 8
346 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
347 
348 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
349 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
350 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
351 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
352 };
353 
354 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
355 					ext4_group_t group);
356 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
357 						ext4_group_t group);
358 
359 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
360 {
361 #if BITS_PER_LONG == 64
362 	*bit += ((unsigned long) addr & 7UL) << 3;
363 	addr = (void *) ((unsigned long) addr & ~7UL);
364 #elif BITS_PER_LONG == 32
365 	*bit += ((unsigned long) addr & 3UL) << 3;
366 	addr = (void *) ((unsigned long) addr & ~3UL);
367 #else
368 #error "how many bits you are?!"
369 #endif
370 	return addr;
371 }
372 
373 static inline int mb_test_bit(int bit, void *addr)
374 {
375 	/*
376 	 * ext4_test_bit on architecture like powerpc
377 	 * needs unsigned long aligned address
378 	 */
379 	addr = mb_correct_addr_and_bit(&bit, addr);
380 	return ext4_test_bit(bit, addr);
381 }
382 
383 static inline void mb_set_bit(int bit, void *addr)
384 {
385 	addr = mb_correct_addr_and_bit(&bit, addr);
386 	ext4_set_bit(bit, addr);
387 }
388 
389 static inline void mb_clear_bit(int bit, void *addr)
390 {
391 	addr = mb_correct_addr_and_bit(&bit, addr);
392 	ext4_clear_bit(bit, addr);
393 }
394 
395 static inline int mb_test_and_clear_bit(int bit, void *addr)
396 {
397 	addr = mb_correct_addr_and_bit(&bit, addr);
398 	return ext4_test_and_clear_bit(bit, addr);
399 }
400 
401 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
402 {
403 	int fix = 0, ret, tmpmax;
404 	addr = mb_correct_addr_and_bit(&fix, addr);
405 	tmpmax = max + fix;
406 	start += fix;
407 
408 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
409 	if (ret > max)
410 		return max;
411 	return ret;
412 }
413 
414 static inline int mb_find_next_bit(void *addr, int max, int start)
415 {
416 	int fix = 0, ret, tmpmax;
417 	addr = mb_correct_addr_and_bit(&fix, addr);
418 	tmpmax = max + fix;
419 	start += fix;
420 
421 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
422 	if (ret > max)
423 		return max;
424 	return ret;
425 }
426 
427 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
428 {
429 	char *bb;
430 
431 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
432 	BUG_ON(max == NULL);
433 
434 	if (order > e4b->bd_blkbits + 1) {
435 		*max = 0;
436 		return NULL;
437 	}
438 
439 	/* at order 0 we see each particular block */
440 	if (order == 0) {
441 		*max = 1 << (e4b->bd_blkbits + 3);
442 		return e4b->bd_bitmap;
443 	}
444 
445 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
446 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
447 
448 	return bb;
449 }
450 
451 #ifdef DOUBLE_CHECK
452 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
453 			   int first, int count)
454 {
455 	int i;
456 	struct super_block *sb = e4b->bd_sb;
457 
458 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
459 		return;
460 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
461 	for (i = 0; i < count; i++) {
462 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
463 			ext4_fsblk_t blocknr;
464 
465 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
466 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
467 			ext4_grp_locked_error(sb, e4b->bd_group,
468 					      inode ? inode->i_ino : 0,
469 					      blocknr,
470 					      "freeing block already freed "
471 					      "(bit %u)",
472 					      first + i);
473 		}
474 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
475 	}
476 }
477 
478 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
479 {
480 	int i;
481 
482 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
483 		return;
484 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
485 	for (i = 0; i < count; i++) {
486 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
487 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
488 	}
489 }
490 
491 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
492 {
493 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
494 		unsigned char *b1, *b2;
495 		int i;
496 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
497 		b2 = (unsigned char *) bitmap;
498 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
499 			if (b1[i] != b2[i]) {
500 				ext4_msg(e4b->bd_sb, KERN_ERR,
501 					 "corruption in group %u "
502 					 "at byte %u(%u): %x in copy != %x "
503 					 "on disk/prealloc",
504 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
505 				BUG();
506 			}
507 		}
508 	}
509 }
510 
511 #else
512 static inline void mb_free_blocks_double(struct inode *inode,
513 				struct ext4_buddy *e4b, int first, int count)
514 {
515 	return;
516 }
517 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
518 						int first, int count)
519 {
520 	return;
521 }
522 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
523 {
524 	return;
525 }
526 #endif
527 
528 #ifdef AGGRESSIVE_CHECK
529 
530 #define MB_CHECK_ASSERT(assert)						\
531 do {									\
532 	if (!(assert)) {						\
533 		printk(KERN_EMERG					\
534 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
535 			function, file, line, # assert);		\
536 		BUG();							\
537 	}								\
538 } while (0)
539 
540 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
541 				const char *function, int line)
542 {
543 	struct super_block *sb = e4b->bd_sb;
544 	int order = e4b->bd_blkbits + 1;
545 	int max;
546 	int max2;
547 	int i;
548 	int j;
549 	int k;
550 	int count;
551 	struct ext4_group_info *grp;
552 	int fragments = 0;
553 	int fstart;
554 	struct list_head *cur;
555 	void *buddy;
556 	void *buddy2;
557 
558 	{
559 		static int mb_check_counter;
560 		if (mb_check_counter++ % 100 != 0)
561 			return 0;
562 	}
563 
564 	while (order > 1) {
565 		buddy = mb_find_buddy(e4b, order, &max);
566 		MB_CHECK_ASSERT(buddy);
567 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
568 		MB_CHECK_ASSERT(buddy2);
569 		MB_CHECK_ASSERT(buddy != buddy2);
570 		MB_CHECK_ASSERT(max * 2 == max2);
571 
572 		count = 0;
573 		for (i = 0; i < max; i++) {
574 
575 			if (mb_test_bit(i, buddy)) {
576 				/* only single bit in buddy2 may be 1 */
577 				if (!mb_test_bit(i << 1, buddy2)) {
578 					MB_CHECK_ASSERT(
579 						mb_test_bit((i<<1)+1, buddy2));
580 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
581 					MB_CHECK_ASSERT(
582 						mb_test_bit(i << 1, buddy2));
583 				}
584 				continue;
585 			}
586 
587 			/* both bits in buddy2 must be 1 */
588 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
589 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
590 
591 			for (j = 0; j < (1 << order); j++) {
592 				k = (i * (1 << order)) + j;
593 				MB_CHECK_ASSERT(
594 					!mb_test_bit(k, e4b->bd_bitmap));
595 			}
596 			count++;
597 		}
598 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
599 		order--;
600 	}
601 
602 	fstart = -1;
603 	buddy = mb_find_buddy(e4b, 0, &max);
604 	for (i = 0; i < max; i++) {
605 		if (!mb_test_bit(i, buddy)) {
606 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
607 			if (fstart == -1) {
608 				fragments++;
609 				fstart = i;
610 			}
611 			continue;
612 		}
613 		fstart = -1;
614 		/* check used bits only */
615 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
616 			buddy2 = mb_find_buddy(e4b, j, &max2);
617 			k = i >> j;
618 			MB_CHECK_ASSERT(k < max2);
619 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
620 		}
621 	}
622 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
623 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
624 
625 	grp = ext4_get_group_info(sb, e4b->bd_group);
626 	list_for_each(cur, &grp->bb_prealloc_list) {
627 		ext4_group_t groupnr;
628 		struct ext4_prealloc_space *pa;
629 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
630 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
631 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
632 		for (i = 0; i < pa->pa_len; i++)
633 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
634 	}
635 	return 0;
636 }
637 #undef MB_CHECK_ASSERT
638 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
639 					__FILE__, __func__, __LINE__)
640 #else
641 #define mb_check_buddy(e4b)
642 #endif
643 
644 /*
645  * Divide blocks started from @first with length @len into
646  * smaller chunks with power of 2 blocks.
647  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
648  * then increase bb_counters[] for corresponded chunk size.
649  */
650 static void ext4_mb_mark_free_simple(struct super_block *sb,
651 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
652 					struct ext4_group_info *grp)
653 {
654 	struct ext4_sb_info *sbi = EXT4_SB(sb);
655 	ext4_grpblk_t min;
656 	ext4_grpblk_t max;
657 	ext4_grpblk_t chunk;
658 	unsigned int border;
659 
660 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
661 
662 	border = 2 << sb->s_blocksize_bits;
663 
664 	while (len > 0) {
665 		/* find how many blocks can be covered since this position */
666 		max = ffs(first | border) - 1;
667 
668 		/* find how many blocks of power 2 we need to mark */
669 		min = fls(len) - 1;
670 
671 		if (max < min)
672 			min = max;
673 		chunk = 1 << min;
674 
675 		/* mark multiblock chunks only */
676 		grp->bb_counters[min]++;
677 		if (min > 0)
678 			mb_clear_bit(first >> min,
679 				     buddy + sbi->s_mb_offsets[min]);
680 
681 		len -= chunk;
682 		first += chunk;
683 	}
684 }
685 
686 /*
687  * Cache the order of the largest free extent we have available in this block
688  * group.
689  */
690 static void
691 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
692 {
693 	int i;
694 	int bits;
695 
696 	grp->bb_largest_free_order = -1; /* uninit */
697 
698 	bits = sb->s_blocksize_bits + 1;
699 	for (i = bits; i >= 0; i--) {
700 		if (grp->bb_counters[i] > 0) {
701 			grp->bb_largest_free_order = i;
702 			break;
703 		}
704 	}
705 }
706 
707 static noinline_for_stack
708 void ext4_mb_generate_buddy(struct super_block *sb,
709 				void *buddy, void *bitmap, ext4_group_t group)
710 {
711 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
712 	struct ext4_sb_info *sbi = EXT4_SB(sb);
713 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
714 	ext4_grpblk_t i = 0;
715 	ext4_grpblk_t first;
716 	ext4_grpblk_t len;
717 	unsigned free = 0;
718 	unsigned fragments = 0;
719 	unsigned long long period = get_cycles();
720 
721 	/* initialize buddy from bitmap which is aggregation
722 	 * of on-disk bitmap and preallocations */
723 	i = mb_find_next_zero_bit(bitmap, max, 0);
724 	grp->bb_first_free = i;
725 	while (i < max) {
726 		fragments++;
727 		first = i;
728 		i = mb_find_next_bit(bitmap, max, i);
729 		len = i - first;
730 		free += len;
731 		if (len > 1)
732 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
733 		else
734 			grp->bb_counters[0]++;
735 		if (i < max)
736 			i = mb_find_next_zero_bit(bitmap, max, i);
737 	}
738 	grp->bb_fragments = fragments;
739 
740 	if (free != grp->bb_free) {
741 		ext4_grp_locked_error(sb, group, 0, 0,
742 				      "block bitmap and bg descriptor "
743 				      "inconsistent: %u vs %u free clusters",
744 				      free, grp->bb_free);
745 		/*
746 		 * If we intend to continue, we consider group descriptor
747 		 * corrupt and update bb_free using bitmap value
748 		 */
749 		grp->bb_free = free;
750 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
751 			percpu_counter_sub(&sbi->s_freeclusters_counter,
752 					   grp->bb_free);
753 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
754 	}
755 	mb_set_largest_free_order(sb, grp);
756 
757 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
758 
759 	period = get_cycles() - period;
760 	spin_lock(&sbi->s_bal_lock);
761 	sbi->s_mb_buddies_generated++;
762 	sbi->s_mb_generation_time += period;
763 	spin_unlock(&sbi->s_bal_lock);
764 }
765 
766 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
767 {
768 	int count;
769 	int order = 1;
770 	void *buddy;
771 
772 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
773 		ext4_set_bits(buddy, 0, count);
774 	}
775 	e4b->bd_info->bb_fragments = 0;
776 	memset(e4b->bd_info->bb_counters, 0,
777 		sizeof(*e4b->bd_info->bb_counters) *
778 		(e4b->bd_sb->s_blocksize_bits + 2));
779 
780 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
781 		e4b->bd_bitmap, e4b->bd_group);
782 }
783 
784 /* The buddy information is attached the buddy cache inode
785  * for convenience. The information regarding each group
786  * is loaded via ext4_mb_load_buddy. The information involve
787  * block bitmap and buddy information. The information are
788  * stored in the inode as
789  *
790  * {                        page                        }
791  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
792  *
793  *
794  * one block each for bitmap and buddy information.
795  * So for each group we take up 2 blocks. A page can
796  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
797  * So it can have information regarding groups_per_page which
798  * is blocks_per_page/2
799  *
800  * Locking note:  This routine takes the block group lock of all groups
801  * for this page; do not hold this lock when calling this routine!
802  */
803 
804 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
805 {
806 	ext4_group_t ngroups;
807 	int blocksize;
808 	int blocks_per_page;
809 	int groups_per_page;
810 	int err = 0;
811 	int i;
812 	ext4_group_t first_group, group;
813 	int first_block;
814 	struct super_block *sb;
815 	struct buffer_head *bhs;
816 	struct buffer_head **bh = NULL;
817 	struct inode *inode;
818 	char *data;
819 	char *bitmap;
820 	struct ext4_group_info *grinfo;
821 
822 	mb_debug(1, "init page %lu\n", page->index);
823 
824 	inode = page->mapping->host;
825 	sb = inode->i_sb;
826 	ngroups = ext4_get_groups_count(sb);
827 	blocksize = i_blocksize(inode);
828 	blocks_per_page = PAGE_SIZE / blocksize;
829 
830 	groups_per_page = blocks_per_page >> 1;
831 	if (groups_per_page == 0)
832 		groups_per_page = 1;
833 
834 	/* allocate buffer_heads to read bitmaps */
835 	if (groups_per_page > 1) {
836 		i = sizeof(struct buffer_head *) * groups_per_page;
837 		bh = kzalloc(i, gfp);
838 		if (bh == NULL) {
839 			err = -ENOMEM;
840 			goto out;
841 		}
842 	} else
843 		bh = &bhs;
844 
845 	first_group = page->index * blocks_per_page / 2;
846 
847 	/* read all groups the page covers into the cache */
848 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
849 		if (group >= ngroups)
850 			break;
851 
852 		grinfo = ext4_get_group_info(sb, group);
853 		/*
854 		 * If page is uptodate then we came here after online resize
855 		 * which added some new uninitialized group info structs, so
856 		 * we must skip all initialized uptodate buddies on the page,
857 		 * which may be currently in use by an allocating task.
858 		 */
859 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
860 			bh[i] = NULL;
861 			continue;
862 		}
863 		bh[i] = ext4_read_block_bitmap_nowait(sb, group);
864 		if (IS_ERR(bh[i])) {
865 			err = PTR_ERR(bh[i]);
866 			bh[i] = NULL;
867 			goto out;
868 		}
869 		mb_debug(1, "read bitmap for group %u\n", group);
870 	}
871 
872 	/* wait for I/O completion */
873 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
874 		int err2;
875 
876 		if (!bh[i])
877 			continue;
878 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
879 		if (!err)
880 			err = err2;
881 	}
882 
883 	first_block = page->index * blocks_per_page;
884 	for (i = 0; i < blocks_per_page; i++) {
885 		group = (first_block + i) >> 1;
886 		if (group >= ngroups)
887 			break;
888 
889 		if (!bh[group - first_group])
890 			/* skip initialized uptodate buddy */
891 			continue;
892 
893 		if (!buffer_verified(bh[group - first_group]))
894 			/* Skip faulty bitmaps */
895 			continue;
896 		err = 0;
897 
898 		/*
899 		 * data carry information regarding this
900 		 * particular group in the format specified
901 		 * above
902 		 *
903 		 */
904 		data = page_address(page) + (i * blocksize);
905 		bitmap = bh[group - first_group]->b_data;
906 
907 		/*
908 		 * We place the buddy block and bitmap block
909 		 * close together
910 		 */
911 		if ((first_block + i) & 1) {
912 			/* this is block of buddy */
913 			BUG_ON(incore == NULL);
914 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
915 				group, page->index, i * blocksize);
916 			trace_ext4_mb_buddy_bitmap_load(sb, group);
917 			grinfo = ext4_get_group_info(sb, group);
918 			grinfo->bb_fragments = 0;
919 			memset(grinfo->bb_counters, 0,
920 			       sizeof(*grinfo->bb_counters) *
921 				(sb->s_blocksize_bits+2));
922 			/*
923 			 * incore got set to the group block bitmap below
924 			 */
925 			ext4_lock_group(sb, group);
926 			/* init the buddy */
927 			memset(data, 0xff, blocksize);
928 			ext4_mb_generate_buddy(sb, data, incore, group);
929 			ext4_unlock_group(sb, group);
930 			incore = NULL;
931 		} else {
932 			/* this is block of bitmap */
933 			BUG_ON(incore != NULL);
934 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
935 				group, page->index, i * blocksize);
936 			trace_ext4_mb_bitmap_load(sb, group);
937 
938 			/* see comments in ext4_mb_put_pa() */
939 			ext4_lock_group(sb, group);
940 			memcpy(data, bitmap, blocksize);
941 
942 			/* mark all preallocated blks used in in-core bitmap */
943 			ext4_mb_generate_from_pa(sb, data, group);
944 			ext4_mb_generate_from_freelist(sb, data, group);
945 			ext4_unlock_group(sb, group);
946 
947 			/* set incore so that the buddy information can be
948 			 * generated using this
949 			 */
950 			incore = data;
951 		}
952 	}
953 	SetPageUptodate(page);
954 
955 out:
956 	if (bh) {
957 		for (i = 0; i < groups_per_page; i++)
958 			brelse(bh[i]);
959 		if (bh != &bhs)
960 			kfree(bh);
961 	}
962 	return err;
963 }
964 
965 /*
966  * Lock the buddy and bitmap pages. This make sure other parallel init_group
967  * on the same buddy page doesn't happen whild holding the buddy page lock.
968  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
969  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
970  */
971 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
972 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
973 {
974 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
975 	int block, pnum, poff;
976 	int blocks_per_page;
977 	struct page *page;
978 
979 	e4b->bd_buddy_page = NULL;
980 	e4b->bd_bitmap_page = NULL;
981 
982 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
983 	/*
984 	 * the buddy cache inode stores the block bitmap
985 	 * and buddy information in consecutive blocks.
986 	 * So for each group we need two blocks.
987 	 */
988 	block = group * 2;
989 	pnum = block / blocks_per_page;
990 	poff = block % blocks_per_page;
991 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
992 	if (!page)
993 		return -ENOMEM;
994 	BUG_ON(page->mapping != inode->i_mapping);
995 	e4b->bd_bitmap_page = page;
996 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
997 
998 	if (blocks_per_page >= 2) {
999 		/* buddy and bitmap are on the same page */
1000 		return 0;
1001 	}
1002 
1003 	block++;
1004 	pnum = block / blocks_per_page;
1005 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1006 	if (!page)
1007 		return -ENOMEM;
1008 	BUG_ON(page->mapping != inode->i_mapping);
1009 	e4b->bd_buddy_page = page;
1010 	return 0;
1011 }
1012 
1013 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1014 {
1015 	if (e4b->bd_bitmap_page) {
1016 		unlock_page(e4b->bd_bitmap_page);
1017 		put_page(e4b->bd_bitmap_page);
1018 	}
1019 	if (e4b->bd_buddy_page) {
1020 		unlock_page(e4b->bd_buddy_page);
1021 		put_page(e4b->bd_buddy_page);
1022 	}
1023 }
1024 
1025 /*
1026  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1027  * block group lock of all groups for this page; do not hold the BG lock when
1028  * calling this routine!
1029  */
1030 static noinline_for_stack
1031 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1032 {
1033 
1034 	struct ext4_group_info *this_grp;
1035 	struct ext4_buddy e4b;
1036 	struct page *page;
1037 	int ret = 0;
1038 
1039 	might_sleep();
1040 	mb_debug(1, "init group %u\n", group);
1041 	this_grp = ext4_get_group_info(sb, group);
1042 	/*
1043 	 * This ensures that we don't reinit the buddy cache
1044 	 * page which map to the group from which we are already
1045 	 * allocating. If we are looking at the buddy cache we would
1046 	 * have taken a reference using ext4_mb_load_buddy and that
1047 	 * would have pinned buddy page to page cache.
1048 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1049 	 * page accessed.
1050 	 */
1051 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1052 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1053 		/*
1054 		 * somebody initialized the group
1055 		 * return without doing anything
1056 		 */
1057 		goto err;
1058 	}
1059 
1060 	page = e4b.bd_bitmap_page;
1061 	ret = ext4_mb_init_cache(page, NULL, gfp);
1062 	if (ret)
1063 		goto err;
1064 	if (!PageUptodate(page)) {
1065 		ret = -EIO;
1066 		goto err;
1067 	}
1068 
1069 	if (e4b.bd_buddy_page == NULL) {
1070 		/*
1071 		 * If both the bitmap and buddy are in
1072 		 * the same page we don't need to force
1073 		 * init the buddy
1074 		 */
1075 		ret = 0;
1076 		goto err;
1077 	}
1078 	/* init buddy cache */
1079 	page = e4b.bd_buddy_page;
1080 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1081 	if (ret)
1082 		goto err;
1083 	if (!PageUptodate(page)) {
1084 		ret = -EIO;
1085 		goto err;
1086 	}
1087 err:
1088 	ext4_mb_put_buddy_page_lock(&e4b);
1089 	return ret;
1090 }
1091 
1092 /*
1093  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1094  * block group lock of all groups for this page; do not hold the BG lock when
1095  * calling this routine!
1096  */
1097 static noinline_for_stack int
1098 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1099 		       struct ext4_buddy *e4b, gfp_t gfp)
1100 {
1101 	int blocks_per_page;
1102 	int block;
1103 	int pnum;
1104 	int poff;
1105 	struct page *page;
1106 	int ret;
1107 	struct ext4_group_info *grp;
1108 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1109 	struct inode *inode = sbi->s_buddy_cache;
1110 
1111 	might_sleep();
1112 	mb_debug(1, "load group %u\n", group);
1113 
1114 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1115 	grp = ext4_get_group_info(sb, group);
1116 
1117 	e4b->bd_blkbits = sb->s_blocksize_bits;
1118 	e4b->bd_info = grp;
1119 	e4b->bd_sb = sb;
1120 	e4b->bd_group = group;
1121 	e4b->bd_buddy_page = NULL;
1122 	e4b->bd_bitmap_page = NULL;
1123 
1124 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1125 		/*
1126 		 * we need full data about the group
1127 		 * to make a good selection
1128 		 */
1129 		ret = ext4_mb_init_group(sb, group, gfp);
1130 		if (ret)
1131 			return ret;
1132 	}
1133 
1134 	/*
1135 	 * the buddy cache inode stores the block bitmap
1136 	 * and buddy information in consecutive blocks.
1137 	 * So for each group we need two blocks.
1138 	 */
1139 	block = group * 2;
1140 	pnum = block / blocks_per_page;
1141 	poff = block % blocks_per_page;
1142 
1143 	/* we could use find_or_create_page(), but it locks page
1144 	 * what we'd like to avoid in fast path ... */
1145 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1146 	if (page == NULL || !PageUptodate(page)) {
1147 		if (page)
1148 			/*
1149 			 * drop the page reference and try
1150 			 * to get the page with lock. If we
1151 			 * are not uptodate that implies
1152 			 * somebody just created the page but
1153 			 * is yet to initialize the same. So
1154 			 * wait for it to initialize.
1155 			 */
1156 			put_page(page);
1157 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1158 		if (page) {
1159 			BUG_ON(page->mapping != inode->i_mapping);
1160 			if (!PageUptodate(page)) {
1161 				ret = ext4_mb_init_cache(page, NULL, gfp);
1162 				if (ret) {
1163 					unlock_page(page);
1164 					goto err;
1165 				}
1166 				mb_cmp_bitmaps(e4b, page_address(page) +
1167 					       (poff * sb->s_blocksize));
1168 			}
1169 			unlock_page(page);
1170 		}
1171 	}
1172 	if (page == NULL) {
1173 		ret = -ENOMEM;
1174 		goto err;
1175 	}
1176 	if (!PageUptodate(page)) {
1177 		ret = -EIO;
1178 		goto err;
1179 	}
1180 
1181 	/* Pages marked accessed already */
1182 	e4b->bd_bitmap_page = page;
1183 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1184 
1185 	block++;
1186 	pnum = block / blocks_per_page;
1187 	poff = block % blocks_per_page;
1188 
1189 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1190 	if (page == NULL || !PageUptodate(page)) {
1191 		if (page)
1192 			put_page(page);
1193 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1194 		if (page) {
1195 			BUG_ON(page->mapping != inode->i_mapping);
1196 			if (!PageUptodate(page)) {
1197 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1198 							 gfp);
1199 				if (ret) {
1200 					unlock_page(page);
1201 					goto err;
1202 				}
1203 			}
1204 			unlock_page(page);
1205 		}
1206 	}
1207 	if (page == NULL) {
1208 		ret = -ENOMEM;
1209 		goto err;
1210 	}
1211 	if (!PageUptodate(page)) {
1212 		ret = -EIO;
1213 		goto err;
1214 	}
1215 
1216 	/* Pages marked accessed already */
1217 	e4b->bd_buddy_page = page;
1218 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1219 
1220 	BUG_ON(e4b->bd_bitmap_page == NULL);
1221 	BUG_ON(e4b->bd_buddy_page == NULL);
1222 
1223 	return 0;
1224 
1225 err:
1226 	if (page)
1227 		put_page(page);
1228 	if (e4b->bd_bitmap_page)
1229 		put_page(e4b->bd_bitmap_page);
1230 	if (e4b->bd_buddy_page)
1231 		put_page(e4b->bd_buddy_page);
1232 	e4b->bd_buddy = NULL;
1233 	e4b->bd_bitmap = NULL;
1234 	return ret;
1235 }
1236 
1237 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1238 			      struct ext4_buddy *e4b)
1239 {
1240 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1241 }
1242 
1243 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1244 {
1245 	if (e4b->bd_bitmap_page)
1246 		put_page(e4b->bd_bitmap_page);
1247 	if (e4b->bd_buddy_page)
1248 		put_page(e4b->bd_buddy_page);
1249 }
1250 
1251 
1252 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1253 {
1254 	int order = 1;
1255 	int bb_incr = 1 << (e4b->bd_blkbits - 1);
1256 	void *bb;
1257 
1258 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1259 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1260 
1261 	bb = e4b->bd_buddy;
1262 	while (order <= e4b->bd_blkbits + 1) {
1263 		block = block >> 1;
1264 		if (!mb_test_bit(block, bb)) {
1265 			/* this block is part of buddy of order 'order' */
1266 			return order;
1267 		}
1268 		bb += bb_incr;
1269 		bb_incr >>= 1;
1270 		order++;
1271 	}
1272 	return 0;
1273 }
1274 
1275 static void mb_clear_bits(void *bm, int cur, int len)
1276 {
1277 	__u32 *addr;
1278 
1279 	len = cur + len;
1280 	while (cur < len) {
1281 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1282 			/* fast path: clear whole word at once */
1283 			addr = bm + (cur >> 3);
1284 			*addr = 0;
1285 			cur += 32;
1286 			continue;
1287 		}
1288 		mb_clear_bit(cur, bm);
1289 		cur++;
1290 	}
1291 }
1292 
1293 /* clear bits in given range
1294  * will return first found zero bit if any, -1 otherwise
1295  */
1296 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1297 {
1298 	__u32 *addr;
1299 	int zero_bit = -1;
1300 
1301 	len = cur + len;
1302 	while (cur < len) {
1303 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1304 			/* fast path: clear whole word at once */
1305 			addr = bm + (cur >> 3);
1306 			if (*addr != (__u32)(-1) && zero_bit == -1)
1307 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1308 			*addr = 0;
1309 			cur += 32;
1310 			continue;
1311 		}
1312 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1313 			zero_bit = cur;
1314 		cur++;
1315 	}
1316 
1317 	return zero_bit;
1318 }
1319 
1320 void ext4_set_bits(void *bm, int cur, int len)
1321 {
1322 	__u32 *addr;
1323 
1324 	len = cur + len;
1325 	while (cur < len) {
1326 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1327 			/* fast path: set whole word at once */
1328 			addr = bm + (cur >> 3);
1329 			*addr = 0xffffffff;
1330 			cur += 32;
1331 			continue;
1332 		}
1333 		mb_set_bit(cur, bm);
1334 		cur++;
1335 	}
1336 }
1337 
1338 /*
1339  * _________________________________________________________________ */
1340 
1341 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1342 {
1343 	if (mb_test_bit(*bit + side, bitmap)) {
1344 		mb_clear_bit(*bit, bitmap);
1345 		(*bit) -= side;
1346 		return 1;
1347 	}
1348 	else {
1349 		(*bit) += side;
1350 		mb_set_bit(*bit, bitmap);
1351 		return -1;
1352 	}
1353 }
1354 
1355 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1356 {
1357 	int max;
1358 	int order = 1;
1359 	void *buddy = mb_find_buddy(e4b, order, &max);
1360 
1361 	while (buddy) {
1362 		void *buddy2;
1363 
1364 		/* Bits in range [first; last] are known to be set since
1365 		 * corresponding blocks were allocated. Bits in range
1366 		 * (first; last) will stay set because they form buddies on
1367 		 * upper layer. We just deal with borders if they don't
1368 		 * align with upper layer and then go up.
1369 		 * Releasing entire group is all about clearing
1370 		 * single bit of highest order buddy.
1371 		 */
1372 
1373 		/* Example:
1374 		 * ---------------------------------
1375 		 * |   1   |   1   |   1   |   1   |
1376 		 * ---------------------------------
1377 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1378 		 * ---------------------------------
1379 		 *   0   1   2   3   4   5   6   7
1380 		 *      \_____________________/
1381 		 *
1382 		 * Neither [1] nor [6] is aligned to above layer.
1383 		 * Left neighbour [0] is free, so mark it busy,
1384 		 * decrease bb_counters and extend range to
1385 		 * [0; 6]
1386 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1387 		 * mark [6] free, increase bb_counters and shrink range to
1388 		 * [0; 5].
1389 		 * Then shift range to [0; 2], go up and do the same.
1390 		 */
1391 
1392 
1393 		if (first & 1)
1394 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1395 		if (!(last & 1))
1396 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1397 		if (first > last)
1398 			break;
1399 		order++;
1400 
1401 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1402 			mb_clear_bits(buddy, first, last - first + 1);
1403 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1404 			break;
1405 		}
1406 		first >>= 1;
1407 		last >>= 1;
1408 		buddy = buddy2;
1409 	}
1410 }
1411 
1412 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1413 			   int first, int count)
1414 {
1415 	int left_is_free = 0;
1416 	int right_is_free = 0;
1417 	int block;
1418 	int last = first + count - 1;
1419 	struct super_block *sb = e4b->bd_sb;
1420 
1421 	if (WARN_ON(count == 0))
1422 		return;
1423 	BUG_ON(last >= (sb->s_blocksize << 3));
1424 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1425 	/* Don't bother if the block group is corrupt. */
1426 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1427 		return;
1428 
1429 	mb_check_buddy(e4b);
1430 	mb_free_blocks_double(inode, e4b, first, count);
1431 
1432 	e4b->bd_info->bb_free += count;
1433 	if (first < e4b->bd_info->bb_first_free)
1434 		e4b->bd_info->bb_first_free = first;
1435 
1436 	/* access memory sequentially: check left neighbour,
1437 	 * clear range and then check right neighbour
1438 	 */
1439 	if (first != 0)
1440 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1441 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1442 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1443 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1444 
1445 	if (unlikely(block != -1)) {
1446 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1447 		ext4_fsblk_t blocknr;
1448 
1449 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1450 		blocknr += EXT4_C2B(sbi, block);
1451 		ext4_grp_locked_error(sb, e4b->bd_group,
1452 				      inode ? inode->i_ino : 0,
1453 				      blocknr,
1454 				      "freeing already freed block "
1455 				      "(bit %u); block bitmap corrupt.",
1456 				      block);
1457 		if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1458 			percpu_counter_sub(&sbi->s_freeclusters_counter,
1459 					   e4b->bd_info->bb_free);
1460 		/* Mark the block group as corrupt. */
1461 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1462 			&e4b->bd_info->bb_state);
1463 		mb_regenerate_buddy(e4b);
1464 		goto done;
1465 	}
1466 
1467 	/* let's maintain fragments counter */
1468 	if (left_is_free && right_is_free)
1469 		e4b->bd_info->bb_fragments--;
1470 	else if (!left_is_free && !right_is_free)
1471 		e4b->bd_info->bb_fragments++;
1472 
1473 	/* buddy[0] == bd_bitmap is a special case, so handle
1474 	 * it right away and let mb_buddy_mark_free stay free of
1475 	 * zero order checks.
1476 	 * Check if neighbours are to be coaleasced,
1477 	 * adjust bitmap bb_counters and borders appropriately.
1478 	 */
1479 	if (first & 1) {
1480 		first += !left_is_free;
1481 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1482 	}
1483 	if (!(last & 1)) {
1484 		last -= !right_is_free;
1485 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1486 	}
1487 
1488 	if (first <= last)
1489 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1490 
1491 done:
1492 	mb_set_largest_free_order(sb, e4b->bd_info);
1493 	mb_check_buddy(e4b);
1494 }
1495 
1496 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1497 				int needed, struct ext4_free_extent *ex)
1498 {
1499 	int next = block;
1500 	int max, order;
1501 	void *buddy;
1502 
1503 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1504 	BUG_ON(ex == NULL);
1505 
1506 	buddy = mb_find_buddy(e4b, 0, &max);
1507 	BUG_ON(buddy == NULL);
1508 	BUG_ON(block >= max);
1509 	if (mb_test_bit(block, buddy)) {
1510 		ex->fe_len = 0;
1511 		ex->fe_start = 0;
1512 		ex->fe_group = 0;
1513 		return 0;
1514 	}
1515 
1516 	/* find actual order */
1517 	order = mb_find_order_for_block(e4b, block);
1518 	block = block >> order;
1519 
1520 	ex->fe_len = 1 << order;
1521 	ex->fe_start = block << order;
1522 	ex->fe_group = e4b->bd_group;
1523 
1524 	/* calc difference from given start */
1525 	next = next - ex->fe_start;
1526 	ex->fe_len -= next;
1527 	ex->fe_start += next;
1528 
1529 	while (needed > ex->fe_len &&
1530 	       mb_find_buddy(e4b, order, &max)) {
1531 
1532 		if (block + 1 >= max)
1533 			break;
1534 
1535 		next = (block + 1) * (1 << order);
1536 		if (mb_test_bit(next, e4b->bd_bitmap))
1537 			break;
1538 
1539 		order = mb_find_order_for_block(e4b, next);
1540 
1541 		block = next >> order;
1542 		ex->fe_len += 1 << order;
1543 	}
1544 
1545 	if (ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))) {
1546 		/* Should never happen! (but apparently sometimes does?!?) */
1547 		WARN_ON(1);
1548 		ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent "
1549 			   "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
1550 			   block, order, needed, ex->fe_group, ex->fe_start,
1551 			   ex->fe_len, ex->fe_logical);
1552 		ex->fe_len = 0;
1553 		ex->fe_start = 0;
1554 		ex->fe_group = 0;
1555 	}
1556 	return ex->fe_len;
1557 }
1558 
1559 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1560 {
1561 	int ord;
1562 	int mlen = 0;
1563 	int max = 0;
1564 	int cur;
1565 	int start = ex->fe_start;
1566 	int len = ex->fe_len;
1567 	unsigned ret = 0;
1568 	int len0 = len;
1569 	void *buddy;
1570 
1571 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1572 	BUG_ON(e4b->bd_group != ex->fe_group);
1573 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1574 	mb_check_buddy(e4b);
1575 	mb_mark_used_double(e4b, start, len);
1576 
1577 	e4b->bd_info->bb_free -= len;
1578 	if (e4b->bd_info->bb_first_free == start)
1579 		e4b->bd_info->bb_first_free += len;
1580 
1581 	/* let's maintain fragments counter */
1582 	if (start != 0)
1583 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1584 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1585 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1586 	if (mlen && max)
1587 		e4b->bd_info->bb_fragments++;
1588 	else if (!mlen && !max)
1589 		e4b->bd_info->bb_fragments--;
1590 
1591 	/* let's maintain buddy itself */
1592 	while (len) {
1593 		ord = mb_find_order_for_block(e4b, start);
1594 
1595 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1596 			/* the whole chunk may be allocated at once! */
1597 			mlen = 1 << ord;
1598 			buddy = mb_find_buddy(e4b, ord, &max);
1599 			BUG_ON((start >> ord) >= max);
1600 			mb_set_bit(start >> ord, buddy);
1601 			e4b->bd_info->bb_counters[ord]--;
1602 			start += mlen;
1603 			len -= mlen;
1604 			BUG_ON(len < 0);
1605 			continue;
1606 		}
1607 
1608 		/* store for history */
1609 		if (ret == 0)
1610 			ret = len | (ord << 16);
1611 
1612 		/* we have to split large buddy */
1613 		BUG_ON(ord <= 0);
1614 		buddy = mb_find_buddy(e4b, ord, &max);
1615 		mb_set_bit(start >> ord, buddy);
1616 		e4b->bd_info->bb_counters[ord]--;
1617 
1618 		ord--;
1619 		cur = (start >> ord) & ~1U;
1620 		buddy = mb_find_buddy(e4b, ord, &max);
1621 		mb_clear_bit(cur, buddy);
1622 		mb_clear_bit(cur + 1, buddy);
1623 		e4b->bd_info->bb_counters[ord]++;
1624 		e4b->bd_info->bb_counters[ord]++;
1625 	}
1626 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1627 
1628 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1629 	mb_check_buddy(e4b);
1630 
1631 	return ret;
1632 }
1633 
1634 /*
1635  * Must be called under group lock!
1636  */
1637 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1638 					struct ext4_buddy *e4b)
1639 {
1640 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1641 	int ret;
1642 
1643 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1644 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1645 
1646 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1647 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1648 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1649 
1650 	/* preallocation can change ac_b_ex, thus we store actually
1651 	 * allocated blocks for history */
1652 	ac->ac_f_ex = ac->ac_b_ex;
1653 
1654 	ac->ac_status = AC_STATUS_FOUND;
1655 	ac->ac_tail = ret & 0xffff;
1656 	ac->ac_buddy = ret >> 16;
1657 
1658 	/*
1659 	 * take the page reference. We want the page to be pinned
1660 	 * so that we don't get a ext4_mb_init_cache_call for this
1661 	 * group until we update the bitmap. That would mean we
1662 	 * double allocate blocks. The reference is dropped
1663 	 * in ext4_mb_release_context
1664 	 */
1665 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1666 	get_page(ac->ac_bitmap_page);
1667 	ac->ac_buddy_page = e4b->bd_buddy_page;
1668 	get_page(ac->ac_buddy_page);
1669 	/* store last allocated for subsequent stream allocation */
1670 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1671 		spin_lock(&sbi->s_md_lock);
1672 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1673 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1674 		spin_unlock(&sbi->s_md_lock);
1675 	}
1676 }
1677 
1678 /*
1679  * regular allocator, for general purposes allocation
1680  */
1681 
1682 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1683 					struct ext4_buddy *e4b,
1684 					int finish_group)
1685 {
1686 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1687 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1688 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1689 	struct ext4_free_extent ex;
1690 	int max;
1691 
1692 	if (ac->ac_status == AC_STATUS_FOUND)
1693 		return;
1694 	/*
1695 	 * We don't want to scan for a whole year
1696 	 */
1697 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1698 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1699 		ac->ac_status = AC_STATUS_BREAK;
1700 		return;
1701 	}
1702 
1703 	/*
1704 	 * Haven't found good chunk so far, let's continue
1705 	 */
1706 	if (bex->fe_len < gex->fe_len)
1707 		return;
1708 
1709 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1710 			&& bex->fe_group == e4b->bd_group) {
1711 		/* recheck chunk's availability - we don't know
1712 		 * when it was found (within this lock-unlock
1713 		 * period or not) */
1714 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1715 		if (max >= gex->fe_len) {
1716 			ext4_mb_use_best_found(ac, e4b);
1717 			return;
1718 		}
1719 	}
1720 }
1721 
1722 /*
1723  * The routine checks whether found extent is good enough. If it is,
1724  * then the extent gets marked used and flag is set to the context
1725  * to stop scanning. Otherwise, the extent is compared with the
1726  * previous found extent and if new one is better, then it's stored
1727  * in the context. Later, the best found extent will be used, if
1728  * mballoc can't find good enough extent.
1729  *
1730  * FIXME: real allocation policy is to be designed yet!
1731  */
1732 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1733 					struct ext4_free_extent *ex,
1734 					struct ext4_buddy *e4b)
1735 {
1736 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1737 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1738 
1739 	BUG_ON(ex->fe_len <= 0);
1740 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1741 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1742 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1743 
1744 	ac->ac_found++;
1745 
1746 	/*
1747 	 * The special case - take what you catch first
1748 	 */
1749 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1750 		*bex = *ex;
1751 		ext4_mb_use_best_found(ac, e4b);
1752 		return;
1753 	}
1754 
1755 	/*
1756 	 * Let's check whether the chuck is good enough
1757 	 */
1758 	if (ex->fe_len == gex->fe_len) {
1759 		*bex = *ex;
1760 		ext4_mb_use_best_found(ac, e4b);
1761 		return;
1762 	}
1763 
1764 	/*
1765 	 * If this is first found extent, just store it in the context
1766 	 */
1767 	if (bex->fe_len == 0) {
1768 		*bex = *ex;
1769 		return;
1770 	}
1771 
1772 	/*
1773 	 * If new found extent is better, store it in the context
1774 	 */
1775 	if (bex->fe_len < gex->fe_len) {
1776 		/* if the request isn't satisfied, any found extent
1777 		 * larger than previous best one is better */
1778 		if (ex->fe_len > bex->fe_len)
1779 			*bex = *ex;
1780 	} else if (ex->fe_len > gex->fe_len) {
1781 		/* if the request is satisfied, then we try to find
1782 		 * an extent that still satisfy the request, but is
1783 		 * smaller than previous one */
1784 		if (ex->fe_len < bex->fe_len)
1785 			*bex = *ex;
1786 	}
1787 
1788 	ext4_mb_check_limits(ac, e4b, 0);
1789 }
1790 
1791 static noinline_for_stack
1792 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1793 					struct ext4_buddy *e4b)
1794 {
1795 	struct ext4_free_extent ex = ac->ac_b_ex;
1796 	ext4_group_t group = ex.fe_group;
1797 	int max;
1798 	int err;
1799 
1800 	BUG_ON(ex.fe_len <= 0);
1801 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1802 	if (err)
1803 		return err;
1804 
1805 	ext4_lock_group(ac->ac_sb, group);
1806 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1807 
1808 	if (max > 0) {
1809 		ac->ac_b_ex = ex;
1810 		ext4_mb_use_best_found(ac, e4b);
1811 	}
1812 
1813 	ext4_unlock_group(ac->ac_sb, group);
1814 	ext4_mb_unload_buddy(e4b);
1815 
1816 	return 0;
1817 }
1818 
1819 static noinline_for_stack
1820 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1821 				struct ext4_buddy *e4b)
1822 {
1823 	ext4_group_t group = ac->ac_g_ex.fe_group;
1824 	int max;
1825 	int err;
1826 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1827 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1828 	struct ext4_free_extent ex;
1829 
1830 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1831 		return 0;
1832 	if (grp->bb_free == 0)
1833 		return 0;
1834 
1835 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1836 	if (err)
1837 		return err;
1838 
1839 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1840 		ext4_mb_unload_buddy(e4b);
1841 		return 0;
1842 	}
1843 
1844 	ext4_lock_group(ac->ac_sb, group);
1845 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1846 			     ac->ac_g_ex.fe_len, &ex);
1847 	ex.fe_logical = 0xDEADFA11; /* debug value */
1848 
1849 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1850 		ext4_fsblk_t start;
1851 
1852 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1853 			ex.fe_start;
1854 		/* use do_div to get remainder (would be 64-bit modulo) */
1855 		if (do_div(start, sbi->s_stripe) == 0) {
1856 			ac->ac_found++;
1857 			ac->ac_b_ex = ex;
1858 			ext4_mb_use_best_found(ac, e4b);
1859 		}
1860 	} else if (max >= ac->ac_g_ex.fe_len) {
1861 		BUG_ON(ex.fe_len <= 0);
1862 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1863 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1864 		ac->ac_found++;
1865 		ac->ac_b_ex = ex;
1866 		ext4_mb_use_best_found(ac, e4b);
1867 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1868 		/* Sometimes, caller may want to merge even small
1869 		 * number of blocks to an existing extent */
1870 		BUG_ON(ex.fe_len <= 0);
1871 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1872 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1873 		ac->ac_found++;
1874 		ac->ac_b_ex = ex;
1875 		ext4_mb_use_best_found(ac, e4b);
1876 	}
1877 	ext4_unlock_group(ac->ac_sb, group);
1878 	ext4_mb_unload_buddy(e4b);
1879 
1880 	return 0;
1881 }
1882 
1883 /*
1884  * The routine scans buddy structures (not bitmap!) from given order
1885  * to max order and tries to find big enough chunk to satisfy the req
1886  */
1887 static noinline_for_stack
1888 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1889 					struct ext4_buddy *e4b)
1890 {
1891 	struct super_block *sb = ac->ac_sb;
1892 	struct ext4_group_info *grp = e4b->bd_info;
1893 	void *buddy;
1894 	int i;
1895 	int k;
1896 	int max;
1897 
1898 	BUG_ON(ac->ac_2order <= 0);
1899 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1900 		if (grp->bb_counters[i] == 0)
1901 			continue;
1902 
1903 		buddy = mb_find_buddy(e4b, i, &max);
1904 		BUG_ON(buddy == NULL);
1905 
1906 		k = mb_find_next_zero_bit(buddy, max, 0);
1907 		BUG_ON(k >= max);
1908 
1909 		ac->ac_found++;
1910 
1911 		ac->ac_b_ex.fe_len = 1 << i;
1912 		ac->ac_b_ex.fe_start = k << i;
1913 		ac->ac_b_ex.fe_group = e4b->bd_group;
1914 
1915 		ext4_mb_use_best_found(ac, e4b);
1916 
1917 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1918 
1919 		if (EXT4_SB(sb)->s_mb_stats)
1920 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1921 
1922 		break;
1923 	}
1924 }
1925 
1926 /*
1927  * The routine scans the group and measures all found extents.
1928  * In order to optimize scanning, caller must pass number of
1929  * free blocks in the group, so the routine can know upper limit.
1930  */
1931 static noinline_for_stack
1932 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1933 					struct ext4_buddy *e4b)
1934 {
1935 	struct super_block *sb = ac->ac_sb;
1936 	void *bitmap = e4b->bd_bitmap;
1937 	struct ext4_free_extent ex;
1938 	int i;
1939 	int free;
1940 
1941 	free = e4b->bd_info->bb_free;
1942 	BUG_ON(free <= 0);
1943 
1944 	i = e4b->bd_info->bb_first_free;
1945 
1946 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1947 		i = mb_find_next_zero_bit(bitmap,
1948 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1949 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1950 			/*
1951 			 * IF we have corrupt bitmap, we won't find any
1952 			 * free blocks even though group info says we
1953 			 * we have free blocks
1954 			 */
1955 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1956 					"%d free clusters as per "
1957 					"group info. But bitmap says 0",
1958 					free);
1959 			break;
1960 		}
1961 
1962 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1963 		BUG_ON(ex.fe_len <= 0);
1964 		if (free < ex.fe_len) {
1965 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1966 					"%d free clusters as per "
1967 					"group info. But got %d blocks",
1968 					free, ex.fe_len);
1969 			/*
1970 			 * The number of free blocks differs. This mostly
1971 			 * indicate that the bitmap is corrupt. So exit
1972 			 * without claiming the space.
1973 			 */
1974 			break;
1975 		}
1976 		ex.fe_logical = 0xDEADC0DE; /* debug value */
1977 		ext4_mb_measure_extent(ac, &ex, e4b);
1978 
1979 		i += ex.fe_len;
1980 		free -= ex.fe_len;
1981 	}
1982 
1983 	ext4_mb_check_limits(ac, e4b, 1);
1984 }
1985 
1986 /*
1987  * This is a special case for storages like raid5
1988  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1989  */
1990 static noinline_for_stack
1991 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1992 				 struct ext4_buddy *e4b)
1993 {
1994 	struct super_block *sb = ac->ac_sb;
1995 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1996 	void *bitmap = e4b->bd_bitmap;
1997 	struct ext4_free_extent ex;
1998 	ext4_fsblk_t first_group_block;
1999 	ext4_fsblk_t a;
2000 	ext4_grpblk_t i;
2001 	int max;
2002 
2003 	BUG_ON(sbi->s_stripe == 0);
2004 
2005 	/* find first stripe-aligned block in group */
2006 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2007 
2008 	a = first_group_block + sbi->s_stripe - 1;
2009 	do_div(a, sbi->s_stripe);
2010 	i = (a * sbi->s_stripe) - first_group_block;
2011 
2012 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2013 		if (!mb_test_bit(i, bitmap)) {
2014 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2015 			if (max >= sbi->s_stripe) {
2016 				ac->ac_found++;
2017 				ex.fe_logical = 0xDEADF00D; /* debug value */
2018 				ac->ac_b_ex = ex;
2019 				ext4_mb_use_best_found(ac, e4b);
2020 				break;
2021 			}
2022 		}
2023 		i += sbi->s_stripe;
2024 	}
2025 }
2026 
2027 /*
2028  * This is now called BEFORE we load the buddy bitmap.
2029  * Returns either 1 or 0 indicating that the group is either suitable
2030  * for the allocation or not. In addition it can also return negative
2031  * error code when something goes wrong.
2032  */
2033 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2034 				ext4_group_t group, int cr)
2035 {
2036 	unsigned free, fragments;
2037 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2038 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2039 
2040 	BUG_ON(cr < 0 || cr >= 4);
2041 
2042 	free = grp->bb_free;
2043 	if (free == 0)
2044 		return 0;
2045 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2046 		return 0;
2047 
2048 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2049 		return 0;
2050 
2051 	/* We only do this if the grp has never been initialized */
2052 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2053 		int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2054 		if (ret)
2055 			return ret;
2056 	}
2057 
2058 	fragments = grp->bb_fragments;
2059 	if (fragments == 0)
2060 		return 0;
2061 
2062 	switch (cr) {
2063 	case 0:
2064 		BUG_ON(ac->ac_2order == 0);
2065 
2066 		/* Avoid using the first bg of a flexgroup for data files */
2067 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2068 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2069 		    ((group % flex_size) == 0))
2070 			return 0;
2071 
2072 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2073 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2074 			return 1;
2075 
2076 		if (grp->bb_largest_free_order < ac->ac_2order)
2077 			return 0;
2078 
2079 		return 1;
2080 	case 1:
2081 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2082 			return 1;
2083 		break;
2084 	case 2:
2085 		if (free >= ac->ac_g_ex.fe_len)
2086 			return 1;
2087 		break;
2088 	case 3:
2089 		return 1;
2090 	default:
2091 		BUG();
2092 	}
2093 
2094 	return 0;
2095 }
2096 
2097 static noinline_for_stack int
2098 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2099 {
2100 	ext4_group_t ngroups, group, i;
2101 	int cr;
2102 	int err = 0, first_err = 0;
2103 	struct ext4_sb_info *sbi;
2104 	struct super_block *sb;
2105 	struct ext4_buddy e4b;
2106 
2107 	sb = ac->ac_sb;
2108 	sbi = EXT4_SB(sb);
2109 	ngroups = ext4_get_groups_count(sb);
2110 	/* non-extent files are limited to low blocks/groups */
2111 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2112 		ngroups = sbi->s_blockfile_groups;
2113 
2114 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2115 
2116 	/* first, try the goal */
2117 	err = ext4_mb_find_by_goal(ac, &e4b);
2118 	if (err || ac->ac_status == AC_STATUS_FOUND)
2119 		goto out;
2120 
2121 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2122 		goto out;
2123 
2124 	/*
2125 	 * ac->ac2_order is set only if the fe_len is a power of 2
2126 	 * if ac2_order is set we also set criteria to 0 so that we
2127 	 * try exact allocation using buddy.
2128 	 */
2129 	i = fls(ac->ac_g_ex.fe_len);
2130 	ac->ac_2order = 0;
2131 	/*
2132 	 * We search using buddy data only if the order of the request
2133 	 * is greater than equal to the sbi_s_mb_order2_reqs
2134 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2135 	 * We also support searching for power-of-two requests only for
2136 	 * requests upto maximum buddy size we have constructed.
2137 	 */
2138 	if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2139 		/*
2140 		 * This should tell if fe_len is exactly power of 2
2141 		 */
2142 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2143 			ac->ac_2order = i - 1;
2144 	}
2145 
2146 	/* if stream allocation is enabled, use global goal */
2147 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2148 		/* TBD: may be hot point */
2149 		spin_lock(&sbi->s_md_lock);
2150 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2151 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2152 		spin_unlock(&sbi->s_md_lock);
2153 	}
2154 
2155 	/* Let's just scan groups to find more-less suitable blocks */
2156 	cr = ac->ac_2order ? 0 : 1;
2157 	/*
2158 	 * cr == 0 try to get exact allocation,
2159 	 * cr == 3  try to get anything
2160 	 */
2161 repeat:
2162 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2163 		ac->ac_criteria = cr;
2164 		/*
2165 		 * searching for the right group start
2166 		 * from the goal value specified
2167 		 */
2168 		group = ac->ac_g_ex.fe_group;
2169 
2170 		for (i = 0; i < ngroups; group++, i++) {
2171 			int ret = 0;
2172 			cond_resched();
2173 			/*
2174 			 * Artificially restricted ngroups for non-extent
2175 			 * files makes group > ngroups possible on first loop.
2176 			 */
2177 			if (group >= ngroups)
2178 				group = 0;
2179 
2180 			/* This now checks without needing the buddy page */
2181 			ret = ext4_mb_good_group(ac, group, cr);
2182 			if (ret <= 0) {
2183 				if (!first_err)
2184 					first_err = ret;
2185 				continue;
2186 			}
2187 
2188 			err = ext4_mb_load_buddy(sb, group, &e4b);
2189 			if (err)
2190 				goto out;
2191 
2192 			ext4_lock_group(sb, group);
2193 
2194 			/*
2195 			 * We need to check again after locking the
2196 			 * block group
2197 			 */
2198 			ret = ext4_mb_good_group(ac, group, cr);
2199 			if (ret <= 0) {
2200 				ext4_unlock_group(sb, group);
2201 				ext4_mb_unload_buddy(&e4b);
2202 				if (!first_err)
2203 					first_err = ret;
2204 				continue;
2205 			}
2206 
2207 			ac->ac_groups_scanned++;
2208 			if (cr == 0)
2209 				ext4_mb_simple_scan_group(ac, &e4b);
2210 			else if (cr == 1 && sbi->s_stripe &&
2211 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2212 				ext4_mb_scan_aligned(ac, &e4b);
2213 			else
2214 				ext4_mb_complex_scan_group(ac, &e4b);
2215 
2216 			ext4_unlock_group(sb, group);
2217 			ext4_mb_unload_buddy(&e4b);
2218 
2219 			if (ac->ac_status != AC_STATUS_CONTINUE)
2220 				break;
2221 		}
2222 	}
2223 
2224 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2225 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2226 		/*
2227 		 * We've been searching too long. Let's try to allocate
2228 		 * the best chunk we've found so far
2229 		 */
2230 
2231 		ext4_mb_try_best_found(ac, &e4b);
2232 		if (ac->ac_status != AC_STATUS_FOUND) {
2233 			/*
2234 			 * Someone more lucky has already allocated it.
2235 			 * The only thing we can do is just take first
2236 			 * found block(s)
2237 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2238 			 */
2239 			ac->ac_b_ex.fe_group = 0;
2240 			ac->ac_b_ex.fe_start = 0;
2241 			ac->ac_b_ex.fe_len = 0;
2242 			ac->ac_status = AC_STATUS_CONTINUE;
2243 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2244 			cr = 3;
2245 			atomic_inc(&sbi->s_mb_lost_chunks);
2246 			goto repeat;
2247 		}
2248 	}
2249 out:
2250 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2251 		err = first_err;
2252 	return err;
2253 }
2254 
2255 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2256 {
2257 	struct super_block *sb = seq->private;
2258 	ext4_group_t group;
2259 
2260 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2261 		return NULL;
2262 	group = *pos + 1;
2263 	return (void *) ((unsigned long) group);
2264 }
2265 
2266 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2267 {
2268 	struct super_block *sb = seq->private;
2269 	ext4_group_t group;
2270 
2271 	++*pos;
2272 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2273 		return NULL;
2274 	group = *pos + 1;
2275 	return (void *) ((unsigned long) group);
2276 }
2277 
2278 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2279 {
2280 	struct super_block *sb = seq->private;
2281 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2282 	int i;
2283 	int err, buddy_loaded = 0;
2284 	struct ext4_buddy e4b;
2285 	struct ext4_group_info *grinfo;
2286 	unsigned char blocksize_bits = min_t(unsigned char,
2287 					     sb->s_blocksize_bits,
2288 					     EXT4_MAX_BLOCK_LOG_SIZE);
2289 	struct sg {
2290 		struct ext4_group_info info;
2291 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2292 	} sg;
2293 
2294 	group--;
2295 	if (group == 0)
2296 		seq_puts(seq, "#group: free  frags first ["
2297 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
2298 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
2299 
2300 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2301 		sizeof(struct ext4_group_info);
2302 
2303 	grinfo = ext4_get_group_info(sb, group);
2304 	/* Load the group info in memory only if not already loaded. */
2305 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2306 		err = ext4_mb_load_buddy(sb, group, &e4b);
2307 		if (err) {
2308 			seq_printf(seq, "#%-5u: I/O error\n", group);
2309 			return 0;
2310 		}
2311 		buddy_loaded = 1;
2312 	}
2313 
2314 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2315 
2316 	if (buddy_loaded)
2317 		ext4_mb_unload_buddy(&e4b);
2318 
2319 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2320 			sg.info.bb_fragments, sg.info.bb_first_free);
2321 	for (i = 0; i <= 13; i++)
2322 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
2323 				sg.info.bb_counters[i] : 0);
2324 	seq_printf(seq, " ]\n");
2325 
2326 	return 0;
2327 }
2328 
2329 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2330 {
2331 }
2332 
2333 static const struct seq_operations ext4_mb_seq_groups_ops = {
2334 	.start  = ext4_mb_seq_groups_start,
2335 	.next   = ext4_mb_seq_groups_next,
2336 	.stop   = ext4_mb_seq_groups_stop,
2337 	.show   = ext4_mb_seq_groups_show,
2338 };
2339 
2340 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2341 {
2342 	struct super_block *sb = PDE_DATA(inode);
2343 	int rc;
2344 
2345 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2346 	if (rc == 0) {
2347 		struct seq_file *m = file->private_data;
2348 		m->private = sb;
2349 	}
2350 	return rc;
2351 
2352 }
2353 
2354 const struct file_operations ext4_seq_mb_groups_fops = {
2355 	.open		= ext4_mb_seq_groups_open,
2356 	.read		= seq_read,
2357 	.llseek		= seq_lseek,
2358 	.release	= seq_release,
2359 };
2360 
2361 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2362 {
2363 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2364 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2365 
2366 	BUG_ON(!cachep);
2367 	return cachep;
2368 }
2369 
2370 /*
2371  * Allocate the top-level s_group_info array for the specified number
2372  * of groups
2373  */
2374 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2375 {
2376 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2377 	unsigned size;
2378 	struct ext4_group_info ***new_groupinfo;
2379 
2380 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2381 		EXT4_DESC_PER_BLOCK_BITS(sb);
2382 	if (size <= sbi->s_group_info_size)
2383 		return 0;
2384 
2385 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2386 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
2387 	if (!new_groupinfo) {
2388 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2389 		return -ENOMEM;
2390 	}
2391 	if (sbi->s_group_info) {
2392 		memcpy(new_groupinfo, sbi->s_group_info,
2393 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2394 		kvfree(sbi->s_group_info);
2395 	}
2396 	sbi->s_group_info = new_groupinfo;
2397 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2398 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2399 		   sbi->s_group_info_size);
2400 	return 0;
2401 }
2402 
2403 /* Create and initialize ext4_group_info data for the given group. */
2404 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2405 			  struct ext4_group_desc *desc)
2406 {
2407 	int i;
2408 	int metalen = 0;
2409 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2410 	struct ext4_group_info **meta_group_info;
2411 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2412 
2413 	/*
2414 	 * First check if this group is the first of a reserved block.
2415 	 * If it's true, we have to allocate a new table of pointers
2416 	 * to ext4_group_info structures
2417 	 */
2418 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2419 		metalen = sizeof(*meta_group_info) <<
2420 			EXT4_DESC_PER_BLOCK_BITS(sb);
2421 		meta_group_info = kmalloc(metalen, GFP_NOFS);
2422 		if (meta_group_info == NULL) {
2423 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2424 				 "for a buddy group");
2425 			goto exit_meta_group_info;
2426 		}
2427 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2428 			meta_group_info;
2429 	}
2430 
2431 	meta_group_info =
2432 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2433 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2434 
2435 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2436 	if (meta_group_info[i] == NULL) {
2437 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2438 		goto exit_group_info;
2439 	}
2440 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2441 		&(meta_group_info[i]->bb_state));
2442 
2443 	/*
2444 	 * initialize bb_free to be able to skip
2445 	 * empty groups without initialization
2446 	 */
2447 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2448 		meta_group_info[i]->bb_free =
2449 			ext4_free_clusters_after_init(sb, group, desc);
2450 	} else {
2451 		meta_group_info[i]->bb_free =
2452 			ext4_free_group_clusters(sb, desc);
2453 	}
2454 
2455 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2456 	init_rwsem(&meta_group_info[i]->alloc_sem);
2457 	meta_group_info[i]->bb_free_root = RB_ROOT;
2458 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2459 
2460 #ifdef DOUBLE_CHECK
2461 	{
2462 		struct buffer_head *bh;
2463 		meta_group_info[i]->bb_bitmap =
2464 			kmalloc(sb->s_blocksize, GFP_NOFS);
2465 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2466 		bh = ext4_read_block_bitmap(sb, group);
2467 		BUG_ON(IS_ERR_OR_NULL(bh));
2468 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2469 			sb->s_blocksize);
2470 		put_bh(bh);
2471 	}
2472 #endif
2473 
2474 	return 0;
2475 
2476 exit_group_info:
2477 	/* If a meta_group_info table has been allocated, release it now */
2478 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2479 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2480 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2481 	}
2482 exit_meta_group_info:
2483 	return -ENOMEM;
2484 } /* ext4_mb_add_groupinfo */
2485 
2486 static int ext4_mb_init_backend(struct super_block *sb)
2487 {
2488 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2489 	ext4_group_t i;
2490 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2491 	int err;
2492 	struct ext4_group_desc *desc;
2493 	struct kmem_cache *cachep;
2494 
2495 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2496 	if (err)
2497 		return err;
2498 
2499 	sbi->s_buddy_cache = new_inode(sb);
2500 	if (sbi->s_buddy_cache == NULL) {
2501 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2502 		goto err_freesgi;
2503 	}
2504 	/* To avoid potentially colliding with an valid on-disk inode number,
2505 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2506 	 * not in the inode hash, so it should never be found by iget(), but
2507 	 * this will avoid confusion if it ever shows up during debugging. */
2508 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2509 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2510 	for (i = 0; i < ngroups; i++) {
2511 		desc = ext4_get_group_desc(sb, i, NULL);
2512 		if (desc == NULL) {
2513 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2514 			goto err_freebuddy;
2515 		}
2516 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2517 			goto err_freebuddy;
2518 	}
2519 
2520 	return 0;
2521 
2522 err_freebuddy:
2523 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2524 	while (i-- > 0)
2525 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2526 	i = sbi->s_group_info_size;
2527 	while (i-- > 0)
2528 		kfree(sbi->s_group_info[i]);
2529 	iput(sbi->s_buddy_cache);
2530 err_freesgi:
2531 	kvfree(sbi->s_group_info);
2532 	return -ENOMEM;
2533 }
2534 
2535 static void ext4_groupinfo_destroy_slabs(void)
2536 {
2537 	int i;
2538 
2539 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2540 		if (ext4_groupinfo_caches[i])
2541 			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2542 		ext4_groupinfo_caches[i] = NULL;
2543 	}
2544 }
2545 
2546 static int ext4_groupinfo_create_slab(size_t size)
2547 {
2548 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2549 	int slab_size;
2550 	int blocksize_bits = order_base_2(size);
2551 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2552 	struct kmem_cache *cachep;
2553 
2554 	if (cache_index >= NR_GRPINFO_CACHES)
2555 		return -EINVAL;
2556 
2557 	if (unlikely(cache_index < 0))
2558 		cache_index = 0;
2559 
2560 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2561 	if (ext4_groupinfo_caches[cache_index]) {
2562 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2563 		return 0;	/* Already created */
2564 	}
2565 
2566 	slab_size = offsetof(struct ext4_group_info,
2567 				bb_counters[blocksize_bits + 2]);
2568 
2569 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2570 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2571 					NULL);
2572 
2573 	ext4_groupinfo_caches[cache_index] = cachep;
2574 
2575 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2576 	if (!cachep) {
2577 		printk(KERN_EMERG
2578 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2579 		return -ENOMEM;
2580 	}
2581 
2582 	return 0;
2583 }
2584 
2585 int ext4_mb_init(struct super_block *sb)
2586 {
2587 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2588 	unsigned i, j;
2589 	unsigned offset, offset_incr;
2590 	unsigned max;
2591 	int ret;
2592 
2593 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2594 
2595 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2596 	if (sbi->s_mb_offsets == NULL) {
2597 		ret = -ENOMEM;
2598 		goto out;
2599 	}
2600 
2601 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2602 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2603 	if (sbi->s_mb_maxs == NULL) {
2604 		ret = -ENOMEM;
2605 		goto out;
2606 	}
2607 
2608 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2609 	if (ret < 0)
2610 		goto out;
2611 
2612 	/* order 0 is regular bitmap */
2613 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2614 	sbi->s_mb_offsets[0] = 0;
2615 
2616 	i = 1;
2617 	offset = 0;
2618 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
2619 	max = sb->s_blocksize << 2;
2620 	do {
2621 		sbi->s_mb_offsets[i] = offset;
2622 		sbi->s_mb_maxs[i] = max;
2623 		offset += offset_incr;
2624 		offset_incr = offset_incr >> 1;
2625 		max = max >> 1;
2626 		i++;
2627 	} while (i <= sb->s_blocksize_bits + 1);
2628 
2629 	spin_lock_init(&sbi->s_md_lock);
2630 	spin_lock_init(&sbi->s_bal_lock);
2631 	sbi->s_mb_free_pending = 0;
2632 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
2633 
2634 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2635 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2636 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2637 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2638 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2639 	/*
2640 	 * The default group preallocation is 512, which for 4k block
2641 	 * sizes translates to 2 megabytes.  However for bigalloc file
2642 	 * systems, this is probably too big (i.e, if the cluster size
2643 	 * is 1 megabyte, then group preallocation size becomes half a
2644 	 * gigabyte!).  As a default, we will keep a two megabyte
2645 	 * group pralloc size for cluster sizes up to 64k, and after
2646 	 * that, we will force a minimum group preallocation size of
2647 	 * 32 clusters.  This translates to 8 megs when the cluster
2648 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2649 	 * which seems reasonable as a default.
2650 	 */
2651 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2652 				       sbi->s_cluster_bits, 32);
2653 	/*
2654 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2655 	 * to the lowest multiple of s_stripe which is bigger than
2656 	 * the s_mb_group_prealloc as determined above. We want
2657 	 * the preallocation size to be an exact multiple of the
2658 	 * RAID stripe size so that preallocations don't fragment
2659 	 * the stripes.
2660 	 */
2661 	if (sbi->s_stripe > 1) {
2662 		sbi->s_mb_group_prealloc = roundup(
2663 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2664 	}
2665 
2666 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2667 	if (sbi->s_locality_groups == NULL) {
2668 		ret = -ENOMEM;
2669 		goto out;
2670 	}
2671 	for_each_possible_cpu(i) {
2672 		struct ext4_locality_group *lg;
2673 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2674 		mutex_init(&lg->lg_mutex);
2675 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2676 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2677 		spin_lock_init(&lg->lg_prealloc_lock);
2678 	}
2679 
2680 	/* init file for buddy data */
2681 	ret = ext4_mb_init_backend(sb);
2682 	if (ret != 0)
2683 		goto out_free_locality_groups;
2684 
2685 	return 0;
2686 
2687 out_free_locality_groups:
2688 	free_percpu(sbi->s_locality_groups);
2689 	sbi->s_locality_groups = NULL;
2690 out:
2691 	kfree(sbi->s_mb_offsets);
2692 	sbi->s_mb_offsets = NULL;
2693 	kfree(sbi->s_mb_maxs);
2694 	sbi->s_mb_maxs = NULL;
2695 	return ret;
2696 }
2697 
2698 /* need to called with the ext4 group lock held */
2699 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2700 {
2701 	struct ext4_prealloc_space *pa;
2702 	struct list_head *cur, *tmp;
2703 	int count = 0;
2704 
2705 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2706 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2707 		list_del(&pa->pa_group_list);
2708 		count++;
2709 		kmem_cache_free(ext4_pspace_cachep, pa);
2710 	}
2711 	if (count)
2712 		mb_debug(1, "mballoc: %u PAs left\n", count);
2713 
2714 }
2715 
2716 int ext4_mb_release(struct super_block *sb)
2717 {
2718 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2719 	ext4_group_t i;
2720 	int num_meta_group_infos;
2721 	struct ext4_group_info *grinfo;
2722 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2723 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2724 
2725 	if (sbi->s_group_info) {
2726 		for (i = 0; i < ngroups; i++) {
2727 			grinfo = ext4_get_group_info(sb, i);
2728 #ifdef DOUBLE_CHECK
2729 			kfree(grinfo->bb_bitmap);
2730 #endif
2731 			ext4_lock_group(sb, i);
2732 			ext4_mb_cleanup_pa(grinfo);
2733 			ext4_unlock_group(sb, i);
2734 			kmem_cache_free(cachep, grinfo);
2735 		}
2736 		num_meta_group_infos = (ngroups +
2737 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2738 			EXT4_DESC_PER_BLOCK_BITS(sb);
2739 		for (i = 0; i < num_meta_group_infos; i++)
2740 			kfree(sbi->s_group_info[i]);
2741 		kvfree(sbi->s_group_info);
2742 	}
2743 	kfree(sbi->s_mb_offsets);
2744 	kfree(sbi->s_mb_maxs);
2745 	iput(sbi->s_buddy_cache);
2746 	if (sbi->s_mb_stats) {
2747 		ext4_msg(sb, KERN_INFO,
2748 		       "mballoc: %u blocks %u reqs (%u success)",
2749 				atomic_read(&sbi->s_bal_allocated),
2750 				atomic_read(&sbi->s_bal_reqs),
2751 				atomic_read(&sbi->s_bal_success));
2752 		ext4_msg(sb, KERN_INFO,
2753 		      "mballoc: %u extents scanned, %u goal hits, "
2754 				"%u 2^N hits, %u breaks, %u lost",
2755 				atomic_read(&sbi->s_bal_ex_scanned),
2756 				atomic_read(&sbi->s_bal_goals),
2757 				atomic_read(&sbi->s_bal_2orders),
2758 				atomic_read(&sbi->s_bal_breaks),
2759 				atomic_read(&sbi->s_mb_lost_chunks));
2760 		ext4_msg(sb, KERN_INFO,
2761 		       "mballoc: %lu generated and it took %Lu",
2762 				sbi->s_mb_buddies_generated,
2763 				sbi->s_mb_generation_time);
2764 		ext4_msg(sb, KERN_INFO,
2765 		       "mballoc: %u preallocated, %u discarded",
2766 				atomic_read(&sbi->s_mb_preallocated),
2767 				atomic_read(&sbi->s_mb_discarded));
2768 	}
2769 
2770 	free_percpu(sbi->s_locality_groups);
2771 
2772 	return 0;
2773 }
2774 
2775 static inline int ext4_issue_discard(struct super_block *sb,
2776 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
2777 		struct bio **biop)
2778 {
2779 	ext4_fsblk_t discard_block;
2780 
2781 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2782 			 ext4_group_first_block_no(sb, block_group));
2783 	count = EXT4_C2B(EXT4_SB(sb), count);
2784 	trace_ext4_discard_blocks(sb,
2785 			(unsigned long long) discard_block, count);
2786 	if (biop) {
2787 		return __blkdev_issue_discard(sb->s_bdev,
2788 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
2789 			(sector_t)count << (sb->s_blocksize_bits - 9),
2790 			GFP_NOFS, 0, biop);
2791 	} else
2792 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2793 }
2794 
2795 static void ext4_free_data_in_buddy(struct super_block *sb,
2796 				    struct ext4_free_data *entry)
2797 {
2798 	struct ext4_buddy e4b;
2799 	struct ext4_group_info *db;
2800 	int err, count = 0, count2 = 0;
2801 
2802 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2803 		 entry->efd_count, entry->efd_group, entry);
2804 
2805 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2806 	/* we expect to find existing buddy because it's pinned */
2807 	BUG_ON(err != 0);
2808 
2809 	spin_lock(&EXT4_SB(sb)->s_md_lock);
2810 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2811 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
2812 
2813 	db = e4b.bd_info;
2814 	/* there are blocks to put in buddy to make them really free */
2815 	count += entry->efd_count;
2816 	count2++;
2817 	ext4_lock_group(sb, entry->efd_group);
2818 	/* Take it out of per group rb tree */
2819 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2820 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2821 
2822 	/*
2823 	 * Clear the trimmed flag for the group so that the next
2824 	 * ext4_trim_fs can trim it.
2825 	 * If the volume is mounted with -o discard, online discard
2826 	 * is supported and the free blocks will be trimmed online.
2827 	 */
2828 	if (!test_opt(sb, DISCARD))
2829 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2830 
2831 	if (!db->bb_free_root.rb_node) {
2832 		/* No more items in the per group rb tree
2833 		 * balance refcounts from ext4_mb_free_metadata()
2834 		 */
2835 		put_page(e4b.bd_buddy_page);
2836 		put_page(e4b.bd_bitmap_page);
2837 	}
2838 	ext4_unlock_group(sb, entry->efd_group);
2839 	kmem_cache_free(ext4_free_data_cachep, entry);
2840 	ext4_mb_unload_buddy(&e4b);
2841 
2842 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2843 }
2844 
2845 /*
2846  * This function is called by the jbd2 layer once the commit has finished,
2847  * so we know we can free the blocks that were released with that commit.
2848  */
2849 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
2850 {
2851 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2852 	struct ext4_free_data *entry, *tmp;
2853 	struct bio *discard_bio = NULL;
2854 	struct list_head freed_data_list;
2855 	struct list_head *cut_pos = NULL;
2856 	int err;
2857 
2858 	INIT_LIST_HEAD(&freed_data_list);
2859 
2860 	spin_lock(&sbi->s_md_lock);
2861 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
2862 		if (entry->efd_tid != commit_tid)
2863 			break;
2864 		cut_pos = &entry->efd_list;
2865 	}
2866 	if (cut_pos)
2867 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
2868 				  cut_pos);
2869 	spin_unlock(&sbi->s_md_lock);
2870 
2871 	if (test_opt(sb, DISCARD)) {
2872 		list_for_each_entry(entry, &freed_data_list, efd_list) {
2873 			err = ext4_issue_discard(sb, entry->efd_group,
2874 						 entry->efd_start_cluster,
2875 						 entry->efd_count,
2876 						 &discard_bio);
2877 			if (err && err != -EOPNOTSUPP) {
2878 				ext4_msg(sb, KERN_WARNING, "discard request in"
2879 					 " group:%d block:%d count:%d failed"
2880 					 " with %d", entry->efd_group,
2881 					 entry->efd_start_cluster,
2882 					 entry->efd_count, err);
2883 			} else if (err == -EOPNOTSUPP)
2884 				break;
2885 		}
2886 
2887 		if (discard_bio) {
2888 			submit_bio_wait(discard_bio);
2889 			bio_put(discard_bio);
2890 		}
2891 	}
2892 
2893 	list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
2894 		ext4_free_data_in_buddy(sb, entry);
2895 }
2896 
2897 int __init ext4_init_mballoc(void)
2898 {
2899 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2900 					SLAB_RECLAIM_ACCOUNT);
2901 	if (ext4_pspace_cachep == NULL)
2902 		return -ENOMEM;
2903 
2904 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2905 				    SLAB_RECLAIM_ACCOUNT);
2906 	if (ext4_ac_cachep == NULL) {
2907 		kmem_cache_destroy(ext4_pspace_cachep);
2908 		return -ENOMEM;
2909 	}
2910 
2911 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2912 					   SLAB_RECLAIM_ACCOUNT);
2913 	if (ext4_free_data_cachep == NULL) {
2914 		kmem_cache_destroy(ext4_pspace_cachep);
2915 		kmem_cache_destroy(ext4_ac_cachep);
2916 		return -ENOMEM;
2917 	}
2918 	return 0;
2919 }
2920 
2921 void ext4_exit_mballoc(void)
2922 {
2923 	/*
2924 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2925 	 * before destroying the slab cache.
2926 	 */
2927 	rcu_barrier();
2928 	kmem_cache_destroy(ext4_pspace_cachep);
2929 	kmem_cache_destroy(ext4_ac_cachep);
2930 	kmem_cache_destroy(ext4_free_data_cachep);
2931 	ext4_groupinfo_destroy_slabs();
2932 }
2933 
2934 
2935 /*
2936  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2937  * Returns 0 if success or error code
2938  */
2939 static noinline_for_stack int
2940 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2941 				handle_t *handle, unsigned int reserv_clstrs)
2942 {
2943 	struct buffer_head *bitmap_bh = NULL;
2944 	struct ext4_group_desc *gdp;
2945 	struct buffer_head *gdp_bh;
2946 	struct ext4_sb_info *sbi;
2947 	struct super_block *sb;
2948 	ext4_fsblk_t block;
2949 	int err, len;
2950 
2951 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2952 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2953 
2954 	sb = ac->ac_sb;
2955 	sbi = EXT4_SB(sb);
2956 
2957 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2958 	if (IS_ERR(bitmap_bh)) {
2959 		err = PTR_ERR(bitmap_bh);
2960 		bitmap_bh = NULL;
2961 		goto out_err;
2962 	}
2963 
2964 	BUFFER_TRACE(bitmap_bh, "getting write access");
2965 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2966 	if (err)
2967 		goto out_err;
2968 
2969 	err = -EIO;
2970 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2971 	if (!gdp)
2972 		goto out_err;
2973 
2974 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2975 			ext4_free_group_clusters(sb, gdp));
2976 
2977 	BUFFER_TRACE(gdp_bh, "get_write_access");
2978 	err = ext4_journal_get_write_access(handle, gdp_bh);
2979 	if (err)
2980 		goto out_err;
2981 
2982 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2983 
2984 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2985 	if (!ext4_data_block_valid(sbi, block, len)) {
2986 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2987 			   "fs metadata", block, block+len);
2988 		/* File system mounted not to panic on error
2989 		 * Fix the bitmap and return EFSCORRUPTED
2990 		 * We leak some of the blocks here.
2991 		 */
2992 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2993 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2994 			      ac->ac_b_ex.fe_len);
2995 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2996 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2997 		if (!err)
2998 			err = -EFSCORRUPTED;
2999 		goto out_err;
3000 	}
3001 
3002 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3003 #ifdef AGGRESSIVE_CHECK
3004 	{
3005 		int i;
3006 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
3007 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
3008 						bitmap_bh->b_data));
3009 		}
3010 	}
3011 #endif
3012 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
3013 		      ac->ac_b_ex.fe_len);
3014 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
3015 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
3016 		ext4_free_group_clusters_set(sb, gdp,
3017 					     ext4_free_clusters_after_init(sb,
3018 						ac->ac_b_ex.fe_group, gdp));
3019 	}
3020 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3021 	ext4_free_group_clusters_set(sb, gdp, len);
3022 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3023 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3024 
3025 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3026 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3027 	/*
3028 	 * Now reduce the dirty block count also. Should not go negative
3029 	 */
3030 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3031 		/* release all the reserved blocks if non delalloc */
3032 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3033 				   reserv_clstrs);
3034 
3035 	if (sbi->s_log_groups_per_flex) {
3036 		ext4_group_t flex_group = ext4_flex_group(sbi,
3037 							  ac->ac_b_ex.fe_group);
3038 		atomic64_sub(ac->ac_b_ex.fe_len,
3039 			     &sbi->s_flex_groups[flex_group].free_clusters);
3040 	}
3041 
3042 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3043 	if (err)
3044 		goto out_err;
3045 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3046 
3047 out_err:
3048 	brelse(bitmap_bh);
3049 	return err;
3050 }
3051 
3052 /*
3053  * here we normalize request for locality group
3054  * Group request are normalized to s_mb_group_prealloc, which goes to
3055  * s_strip if we set the same via mount option.
3056  * s_mb_group_prealloc can be configured via
3057  * /sys/fs/ext4/<partition>/mb_group_prealloc
3058  *
3059  * XXX: should we try to preallocate more than the group has now?
3060  */
3061 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3062 {
3063 	struct super_block *sb = ac->ac_sb;
3064 	struct ext4_locality_group *lg = ac->ac_lg;
3065 
3066 	BUG_ON(lg == NULL);
3067 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3068 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
3069 		current->pid, ac->ac_g_ex.fe_len);
3070 }
3071 
3072 /*
3073  * Normalization means making request better in terms of
3074  * size and alignment
3075  */
3076 static noinline_for_stack void
3077 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3078 				struct ext4_allocation_request *ar)
3079 {
3080 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3081 	int bsbits, max;
3082 	ext4_lblk_t end;
3083 	loff_t size, start_off;
3084 	loff_t orig_size __maybe_unused;
3085 	ext4_lblk_t start;
3086 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3087 	struct ext4_prealloc_space *pa;
3088 
3089 	/* do normalize only data requests, metadata requests
3090 	   do not need preallocation */
3091 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3092 		return;
3093 
3094 	/* sometime caller may want exact blocks */
3095 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3096 		return;
3097 
3098 	/* caller may indicate that preallocation isn't
3099 	 * required (it's a tail, for example) */
3100 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3101 		return;
3102 
3103 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3104 		ext4_mb_normalize_group_request(ac);
3105 		return ;
3106 	}
3107 
3108 	bsbits = ac->ac_sb->s_blocksize_bits;
3109 
3110 	/* first, let's learn actual file size
3111 	 * given current request is allocated */
3112 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3113 	size = size << bsbits;
3114 	if (size < i_size_read(ac->ac_inode))
3115 		size = i_size_read(ac->ac_inode);
3116 	orig_size = size;
3117 
3118 	/* max size of free chunks */
3119 	max = 2 << bsbits;
3120 
3121 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3122 		(req <= (size) || max <= (chunk_size))
3123 
3124 	/* first, try to predict filesize */
3125 	/* XXX: should this table be tunable? */
3126 	start_off = 0;
3127 	if (size <= 16 * 1024) {
3128 		size = 16 * 1024;
3129 	} else if (size <= 32 * 1024) {
3130 		size = 32 * 1024;
3131 	} else if (size <= 64 * 1024) {
3132 		size = 64 * 1024;
3133 	} else if (size <= 128 * 1024) {
3134 		size = 128 * 1024;
3135 	} else if (size <= 256 * 1024) {
3136 		size = 256 * 1024;
3137 	} else if (size <= 512 * 1024) {
3138 		size = 512 * 1024;
3139 	} else if (size <= 1024 * 1024) {
3140 		size = 1024 * 1024;
3141 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3142 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3143 						(21 - bsbits)) << 21;
3144 		size = 2 * 1024 * 1024;
3145 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3146 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3147 							(22 - bsbits)) << 22;
3148 		size = 4 * 1024 * 1024;
3149 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3150 					(8<<20)>>bsbits, max, 8 * 1024)) {
3151 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3152 							(23 - bsbits)) << 23;
3153 		size = 8 * 1024 * 1024;
3154 	} else {
3155 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3156 		size	  = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3157 					      ac->ac_o_ex.fe_len) << bsbits;
3158 	}
3159 	size = size >> bsbits;
3160 	start = start_off >> bsbits;
3161 
3162 	/* don't cover already allocated blocks in selected range */
3163 	if (ar->pleft && start <= ar->lleft) {
3164 		size -= ar->lleft + 1 - start;
3165 		start = ar->lleft + 1;
3166 	}
3167 	if (ar->pright && start + size - 1 >= ar->lright)
3168 		size -= start + size - ar->lright;
3169 
3170 	/*
3171 	 * Trim allocation request for filesystems with artificially small
3172 	 * groups.
3173 	 */
3174 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3175 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3176 
3177 	end = start + size;
3178 
3179 	/* check we don't cross already preallocated blocks */
3180 	rcu_read_lock();
3181 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3182 		ext4_lblk_t pa_end;
3183 
3184 		if (pa->pa_deleted)
3185 			continue;
3186 		spin_lock(&pa->pa_lock);
3187 		if (pa->pa_deleted) {
3188 			spin_unlock(&pa->pa_lock);
3189 			continue;
3190 		}
3191 
3192 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3193 						  pa->pa_len);
3194 
3195 		/* PA must not overlap original request */
3196 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3197 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3198 
3199 		/* skip PAs this normalized request doesn't overlap with */
3200 		if (pa->pa_lstart >= end || pa_end <= start) {
3201 			spin_unlock(&pa->pa_lock);
3202 			continue;
3203 		}
3204 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3205 
3206 		/* adjust start or end to be adjacent to this pa */
3207 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3208 			BUG_ON(pa_end < start);
3209 			start = pa_end;
3210 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3211 			BUG_ON(pa->pa_lstart > end);
3212 			end = pa->pa_lstart;
3213 		}
3214 		spin_unlock(&pa->pa_lock);
3215 	}
3216 	rcu_read_unlock();
3217 	size = end - start;
3218 
3219 	/* XXX: extra loop to check we really don't overlap preallocations */
3220 	rcu_read_lock();
3221 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3222 		ext4_lblk_t pa_end;
3223 
3224 		spin_lock(&pa->pa_lock);
3225 		if (pa->pa_deleted == 0) {
3226 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3227 							  pa->pa_len);
3228 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3229 		}
3230 		spin_unlock(&pa->pa_lock);
3231 	}
3232 	rcu_read_unlock();
3233 
3234 	if (start + size <= ac->ac_o_ex.fe_logical &&
3235 			start > ac->ac_o_ex.fe_logical) {
3236 		ext4_msg(ac->ac_sb, KERN_ERR,
3237 			 "start %lu, size %lu, fe_logical %lu",
3238 			 (unsigned long) start, (unsigned long) size,
3239 			 (unsigned long) ac->ac_o_ex.fe_logical);
3240 		BUG();
3241 	}
3242 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3243 
3244 	/* now prepare goal request */
3245 
3246 	/* XXX: is it better to align blocks WRT to logical
3247 	 * placement or satisfy big request as is */
3248 	ac->ac_g_ex.fe_logical = start;
3249 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3250 
3251 	/* define goal start in order to merge */
3252 	if (ar->pright && (ar->lright == (start + size))) {
3253 		/* merge to the right */
3254 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3255 						&ac->ac_f_ex.fe_group,
3256 						&ac->ac_f_ex.fe_start);
3257 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3258 	}
3259 	if (ar->pleft && (ar->lleft + 1 == start)) {
3260 		/* merge to the left */
3261 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3262 						&ac->ac_f_ex.fe_group,
3263 						&ac->ac_f_ex.fe_start);
3264 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3265 	}
3266 
3267 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3268 		(unsigned) orig_size, (unsigned) start);
3269 }
3270 
3271 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3272 {
3273 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3274 
3275 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3276 		atomic_inc(&sbi->s_bal_reqs);
3277 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3278 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3279 			atomic_inc(&sbi->s_bal_success);
3280 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3281 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3282 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3283 			atomic_inc(&sbi->s_bal_goals);
3284 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3285 			atomic_inc(&sbi->s_bal_breaks);
3286 	}
3287 
3288 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3289 		trace_ext4_mballoc_alloc(ac);
3290 	else
3291 		trace_ext4_mballoc_prealloc(ac);
3292 }
3293 
3294 /*
3295  * Called on failure; free up any blocks from the inode PA for this
3296  * context.  We don't need this for MB_GROUP_PA because we only change
3297  * pa_free in ext4_mb_release_context(), but on failure, we've already
3298  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3299  */
3300 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3301 {
3302 	struct ext4_prealloc_space *pa = ac->ac_pa;
3303 	struct ext4_buddy e4b;
3304 	int err;
3305 
3306 	if (pa == NULL) {
3307 		if (ac->ac_f_ex.fe_len == 0)
3308 			return;
3309 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3310 		if (err) {
3311 			/*
3312 			 * This should never happen since we pin the
3313 			 * pages in the ext4_allocation_context so
3314 			 * ext4_mb_load_buddy() should never fail.
3315 			 */
3316 			WARN(1, "mb_load_buddy failed (%d)", err);
3317 			return;
3318 		}
3319 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3320 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3321 			       ac->ac_f_ex.fe_len);
3322 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3323 		ext4_mb_unload_buddy(&e4b);
3324 		return;
3325 	}
3326 	if (pa->pa_type == MB_INODE_PA)
3327 		pa->pa_free += ac->ac_b_ex.fe_len;
3328 }
3329 
3330 /*
3331  * use blocks preallocated to inode
3332  */
3333 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3334 				struct ext4_prealloc_space *pa)
3335 {
3336 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3337 	ext4_fsblk_t start;
3338 	ext4_fsblk_t end;
3339 	int len;
3340 
3341 	/* found preallocated blocks, use them */
3342 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3343 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3344 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3345 	len = EXT4_NUM_B2C(sbi, end - start);
3346 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3347 					&ac->ac_b_ex.fe_start);
3348 	ac->ac_b_ex.fe_len = len;
3349 	ac->ac_status = AC_STATUS_FOUND;
3350 	ac->ac_pa = pa;
3351 
3352 	BUG_ON(start < pa->pa_pstart);
3353 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3354 	BUG_ON(pa->pa_free < len);
3355 	pa->pa_free -= len;
3356 
3357 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3358 }
3359 
3360 /*
3361  * use blocks preallocated to locality group
3362  */
3363 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3364 				struct ext4_prealloc_space *pa)
3365 {
3366 	unsigned int len = ac->ac_o_ex.fe_len;
3367 
3368 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3369 					&ac->ac_b_ex.fe_group,
3370 					&ac->ac_b_ex.fe_start);
3371 	ac->ac_b_ex.fe_len = len;
3372 	ac->ac_status = AC_STATUS_FOUND;
3373 	ac->ac_pa = pa;
3374 
3375 	/* we don't correct pa_pstart or pa_plen here to avoid
3376 	 * possible race when the group is being loaded concurrently
3377 	 * instead we correct pa later, after blocks are marked
3378 	 * in on-disk bitmap -- see ext4_mb_release_context()
3379 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3380 	 */
3381 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3382 }
3383 
3384 /*
3385  * Return the prealloc space that have minimal distance
3386  * from the goal block. @cpa is the prealloc
3387  * space that is having currently known minimal distance
3388  * from the goal block.
3389  */
3390 static struct ext4_prealloc_space *
3391 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3392 			struct ext4_prealloc_space *pa,
3393 			struct ext4_prealloc_space *cpa)
3394 {
3395 	ext4_fsblk_t cur_distance, new_distance;
3396 
3397 	if (cpa == NULL) {
3398 		atomic_inc(&pa->pa_count);
3399 		return pa;
3400 	}
3401 	cur_distance = abs(goal_block - cpa->pa_pstart);
3402 	new_distance = abs(goal_block - pa->pa_pstart);
3403 
3404 	if (cur_distance <= new_distance)
3405 		return cpa;
3406 
3407 	/* drop the previous reference */
3408 	atomic_dec(&cpa->pa_count);
3409 	atomic_inc(&pa->pa_count);
3410 	return pa;
3411 }
3412 
3413 /*
3414  * search goal blocks in preallocated space
3415  */
3416 static noinline_for_stack int
3417 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3418 {
3419 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3420 	int order, i;
3421 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3422 	struct ext4_locality_group *lg;
3423 	struct ext4_prealloc_space *pa, *cpa = NULL;
3424 	ext4_fsblk_t goal_block;
3425 
3426 	/* only data can be preallocated */
3427 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3428 		return 0;
3429 
3430 	/* first, try per-file preallocation */
3431 	rcu_read_lock();
3432 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3433 
3434 		/* all fields in this condition don't change,
3435 		 * so we can skip locking for them */
3436 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3437 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3438 					       EXT4_C2B(sbi, pa->pa_len)))
3439 			continue;
3440 
3441 		/* non-extent files can't have physical blocks past 2^32 */
3442 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3443 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3444 		     EXT4_MAX_BLOCK_FILE_PHYS))
3445 			continue;
3446 
3447 		/* found preallocated blocks, use them */
3448 		spin_lock(&pa->pa_lock);
3449 		if (pa->pa_deleted == 0 && pa->pa_free) {
3450 			atomic_inc(&pa->pa_count);
3451 			ext4_mb_use_inode_pa(ac, pa);
3452 			spin_unlock(&pa->pa_lock);
3453 			ac->ac_criteria = 10;
3454 			rcu_read_unlock();
3455 			return 1;
3456 		}
3457 		spin_unlock(&pa->pa_lock);
3458 	}
3459 	rcu_read_unlock();
3460 
3461 	/* can we use group allocation? */
3462 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3463 		return 0;
3464 
3465 	/* inode may have no locality group for some reason */
3466 	lg = ac->ac_lg;
3467 	if (lg == NULL)
3468 		return 0;
3469 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3470 	if (order > PREALLOC_TB_SIZE - 1)
3471 		/* The max size of hash table is PREALLOC_TB_SIZE */
3472 		order = PREALLOC_TB_SIZE - 1;
3473 
3474 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3475 	/*
3476 	 * search for the prealloc space that is having
3477 	 * minimal distance from the goal block.
3478 	 */
3479 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3480 		rcu_read_lock();
3481 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3482 					pa_inode_list) {
3483 			spin_lock(&pa->pa_lock);
3484 			if (pa->pa_deleted == 0 &&
3485 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3486 
3487 				cpa = ext4_mb_check_group_pa(goal_block,
3488 								pa, cpa);
3489 			}
3490 			spin_unlock(&pa->pa_lock);
3491 		}
3492 		rcu_read_unlock();
3493 	}
3494 	if (cpa) {
3495 		ext4_mb_use_group_pa(ac, cpa);
3496 		ac->ac_criteria = 20;
3497 		return 1;
3498 	}
3499 	return 0;
3500 }
3501 
3502 /*
3503  * the function goes through all block freed in the group
3504  * but not yet committed and marks them used in in-core bitmap.
3505  * buddy must be generated from this bitmap
3506  * Need to be called with the ext4 group lock held
3507  */
3508 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3509 						ext4_group_t group)
3510 {
3511 	struct rb_node *n;
3512 	struct ext4_group_info *grp;
3513 	struct ext4_free_data *entry;
3514 
3515 	grp = ext4_get_group_info(sb, group);
3516 	n = rb_first(&(grp->bb_free_root));
3517 
3518 	while (n) {
3519 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3520 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3521 		n = rb_next(n);
3522 	}
3523 	return;
3524 }
3525 
3526 /*
3527  * the function goes through all preallocation in this group and marks them
3528  * used in in-core bitmap. buddy must be generated from this bitmap
3529  * Need to be called with ext4 group lock held
3530  */
3531 static noinline_for_stack
3532 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3533 					ext4_group_t group)
3534 {
3535 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3536 	struct ext4_prealloc_space *pa;
3537 	struct list_head *cur;
3538 	ext4_group_t groupnr;
3539 	ext4_grpblk_t start;
3540 	int preallocated = 0;
3541 	int len;
3542 
3543 	/* all form of preallocation discards first load group,
3544 	 * so the only competing code is preallocation use.
3545 	 * we don't need any locking here
3546 	 * notice we do NOT ignore preallocations with pa_deleted
3547 	 * otherwise we could leave used blocks available for
3548 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3549 	 * is dropping preallocation
3550 	 */
3551 	list_for_each(cur, &grp->bb_prealloc_list) {
3552 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3553 		spin_lock(&pa->pa_lock);
3554 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3555 					     &groupnr, &start);
3556 		len = pa->pa_len;
3557 		spin_unlock(&pa->pa_lock);
3558 		if (unlikely(len == 0))
3559 			continue;
3560 		BUG_ON(groupnr != group);
3561 		ext4_set_bits(bitmap, start, len);
3562 		preallocated += len;
3563 	}
3564 	mb_debug(1, "preallocated %u for group %u\n", preallocated, group);
3565 }
3566 
3567 static void ext4_mb_pa_callback(struct rcu_head *head)
3568 {
3569 	struct ext4_prealloc_space *pa;
3570 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3571 
3572 	BUG_ON(atomic_read(&pa->pa_count));
3573 	BUG_ON(pa->pa_deleted == 0);
3574 	kmem_cache_free(ext4_pspace_cachep, pa);
3575 }
3576 
3577 /*
3578  * drops a reference to preallocated space descriptor
3579  * if this was the last reference and the space is consumed
3580  */
3581 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3582 			struct super_block *sb, struct ext4_prealloc_space *pa)
3583 {
3584 	ext4_group_t grp;
3585 	ext4_fsblk_t grp_blk;
3586 
3587 	/* in this short window concurrent discard can set pa_deleted */
3588 	spin_lock(&pa->pa_lock);
3589 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3590 		spin_unlock(&pa->pa_lock);
3591 		return;
3592 	}
3593 
3594 	if (pa->pa_deleted == 1) {
3595 		spin_unlock(&pa->pa_lock);
3596 		return;
3597 	}
3598 
3599 	pa->pa_deleted = 1;
3600 	spin_unlock(&pa->pa_lock);
3601 
3602 	grp_blk = pa->pa_pstart;
3603 	/*
3604 	 * If doing group-based preallocation, pa_pstart may be in the
3605 	 * next group when pa is used up
3606 	 */
3607 	if (pa->pa_type == MB_GROUP_PA)
3608 		grp_blk--;
3609 
3610 	grp = ext4_get_group_number(sb, grp_blk);
3611 
3612 	/*
3613 	 * possible race:
3614 	 *
3615 	 *  P1 (buddy init)			P2 (regular allocation)
3616 	 *					find block B in PA
3617 	 *  copy on-disk bitmap to buddy
3618 	 *  					mark B in on-disk bitmap
3619 	 *					drop PA from group
3620 	 *  mark all PAs in buddy
3621 	 *
3622 	 * thus, P1 initializes buddy with B available. to prevent this
3623 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3624 	 * against that pair
3625 	 */
3626 	ext4_lock_group(sb, grp);
3627 	list_del(&pa->pa_group_list);
3628 	ext4_unlock_group(sb, grp);
3629 
3630 	spin_lock(pa->pa_obj_lock);
3631 	list_del_rcu(&pa->pa_inode_list);
3632 	spin_unlock(pa->pa_obj_lock);
3633 
3634 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3635 }
3636 
3637 /*
3638  * creates new preallocated space for given inode
3639  */
3640 static noinline_for_stack int
3641 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3642 {
3643 	struct super_block *sb = ac->ac_sb;
3644 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3645 	struct ext4_prealloc_space *pa;
3646 	struct ext4_group_info *grp;
3647 	struct ext4_inode_info *ei;
3648 
3649 	/* preallocate only when found space is larger then requested */
3650 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3651 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3652 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3653 
3654 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3655 	if (pa == NULL)
3656 		return -ENOMEM;
3657 
3658 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3659 		int winl;
3660 		int wins;
3661 		int win;
3662 		int offs;
3663 
3664 		/* we can't allocate as much as normalizer wants.
3665 		 * so, found space must get proper lstart
3666 		 * to cover original request */
3667 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3668 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3669 
3670 		/* we're limited by original request in that
3671 		 * logical block must be covered any way
3672 		 * winl is window we can move our chunk within */
3673 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3674 
3675 		/* also, we should cover whole original request */
3676 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3677 
3678 		/* the smallest one defines real window */
3679 		win = min(winl, wins);
3680 
3681 		offs = ac->ac_o_ex.fe_logical %
3682 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3683 		if (offs && offs < win)
3684 			win = offs;
3685 
3686 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3687 			EXT4_NUM_B2C(sbi, win);
3688 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3689 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3690 	}
3691 
3692 	/* preallocation can change ac_b_ex, thus we store actually
3693 	 * allocated blocks for history */
3694 	ac->ac_f_ex = ac->ac_b_ex;
3695 
3696 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3697 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3698 	pa->pa_len = ac->ac_b_ex.fe_len;
3699 	pa->pa_free = pa->pa_len;
3700 	atomic_set(&pa->pa_count, 1);
3701 	spin_lock_init(&pa->pa_lock);
3702 	INIT_LIST_HEAD(&pa->pa_inode_list);
3703 	INIT_LIST_HEAD(&pa->pa_group_list);
3704 	pa->pa_deleted = 0;
3705 	pa->pa_type = MB_INODE_PA;
3706 
3707 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3708 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3709 	trace_ext4_mb_new_inode_pa(ac, pa);
3710 
3711 	ext4_mb_use_inode_pa(ac, pa);
3712 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3713 
3714 	ei = EXT4_I(ac->ac_inode);
3715 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3716 
3717 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3718 	pa->pa_inode = ac->ac_inode;
3719 
3720 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3721 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3722 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3723 
3724 	spin_lock(pa->pa_obj_lock);
3725 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3726 	spin_unlock(pa->pa_obj_lock);
3727 
3728 	return 0;
3729 }
3730 
3731 /*
3732  * creates new preallocated space for locality group inodes belongs to
3733  */
3734 static noinline_for_stack int
3735 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3736 {
3737 	struct super_block *sb = ac->ac_sb;
3738 	struct ext4_locality_group *lg;
3739 	struct ext4_prealloc_space *pa;
3740 	struct ext4_group_info *grp;
3741 
3742 	/* preallocate only when found space is larger then requested */
3743 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3744 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3745 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3746 
3747 	BUG_ON(ext4_pspace_cachep == NULL);
3748 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3749 	if (pa == NULL)
3750 		return -ENOMEM;
3751 
3752 	/* preallocation can change ac_b_ex, thus we store actually
3753 	 * allocated blocks for history */
3754 	ac->ac_f_ex = ac->ac_b_ex;
3755 
3756 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3757 	pa->pa_lstart = pa->pa_pstart;
3758 	pa->pa_len = ac->ac_b_ex.fe_len;
3759 	pa->pa_free = pa->pa_len;
3760 	atomic_set(&pa->pa_count, 1);
3761 	spin_lock_init(&pa->pa_lock);
3762 	INIT_LIST_HEAD(&pa->pa_inode_list);
3763 	INIT_LIST_HEAD(&pa->pa_group_list);
3764 	pa->pa_deleted = 0;
3765 	pa->pa_type = MB_GROUP_PA;
3766 
3767 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3768 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3769 	trace_ext4_mb_new_group_pa(ac, pa);
3770 
3771 	ext4_mb_use_group_pa(ac, pa);
3772 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3773 
3774 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3775 	lg = ac->ac_lg;
3776 	BUG_ON(lg == NULL);
3777 
3778 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3779 	pa->pa_inode = NULL;
3780 
3781 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3782 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3783 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3784 
3785 	/*
3786 	 * We will later add the new pa to the right bucket
3787 	 * after updating the pa_free in ext4_mb_release_context
3788 	 */
3789 	return 0;
3790 }
3791 
3792 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3793 {
3794 	int err;
3795 
3796 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3797 		err = ext4_mb_new_group_pa(ac);
3798 	else
3799 		err = ext4_mb_new_inode_pa(ac);
3800 	return err;
3801 }
3802 
3803 /*
3804  * finds all unused blocks in on-disk bitmap, frees them in
3805  * in-core bitmap and buddy.
3806  * @pa must be unlinked from inode and group lists, so that
3807  * nobody else can find/use it.
3808  * the caller MUST hold group/inode locks.
3809  * TODO: optimize the case when there are no in-core structures yet
3810  */
3811 static noinline_for_stack int
3812 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3813 			struct ext4_prealloc_space *pa)
3814 {
3815 	struct super_block *sb = e4b->bd_sb;
3816 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3817 	unsigned int end;
3818 	unsigned int next;
3819 	ext4_group_t group;
3820 	ext4_grpblk_t bit;
3821 	unsigned long long grp_blk_start;
3822 	int err = 0;
3823 	int free = 0;
3824 
3825 	BUG_ON(pa->pa_deleted == 0);
3826 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3827 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3828 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3829 	end = bit + pa->pa_len;
3830 
3831 	while (bit < end) {
3832 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3833 		if (bit >= end)
3834 			break;
3835 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3836 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3837 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3838 			 (unsigned) next - bit, (unsigned) group);
3839 		free += next - bit;
3840 
3841 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3842 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3843 						    EXT4_C2B(sbi, bit)),
3844 					       next - bit);
3845 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3846 		bit = next + 1;
3847 	}
3848 	if (free != pa->pa_free) {
3849 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3850 			 "pa %p: logic %lu, phys. %lu, len %lu",
3851 			 pa, (unsigned long) pa->pa_lstart,
3852 			 (unsigned long) pa->pa_pstart,
3853 			 (unsigned long) pa->pa_len);
3854 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3855 					free, pa->pa_free);
3856 		/*
3857 		 * pa is already deleted so we use the value obtained
3858 		 * from the bitmap and continue.
3859 		 */
3860 	}
3861 	atomic_add(free, &sbi->s_mb_discarded);
3862 
3863 	return err;
3864 }
3865 
3866 static noinline_for_stack int
3867 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3868 				struct ext4_prealloc_space *pa)
3869 {
3870 	struct super_block *sb = e4b->bd_sb;
3871 	ext4_group_t group;
3872 	ext4_grpblk_t bit;
3873 
3874 	trace_ext4_mb_release_group_pa(sb, pa);
3875 	BUG_ON(pa->pa_deleted == 0);
3876 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3877 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3878 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3879 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3880 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3881 
3882 	return 0;
3883 }
3884 
3885 /*
3886  * releases all preallocations in given group
3887  *
3888  * first, we need to decide discard policy:
3889  * - when do we discard
3890  *   1) ENOSPC
3891  * - how many do we discard
3892  *   1) how many requested
3893  */
3894 static noinline_for_stack int
3895 ext4_mb_discard_group_preallocations(struct super_block *sb,
3896 					ext4_group_t group, int needed)
3897 {
3898 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3899 	struct buffer_head *bitmap_bh = NULL;
3900 	struct ext4_prealloc_space *pa, *tmp;
3901 	struct list_head list;
3902 	struct ext4_buddy e4b;
3903 	int err;
3904 	int busy = 0;
3905 	int free = 0;
3906 
3907 	mb_debug(1, "discard preallocation for group %u\n", group);
3908 
3909 	if (list_empty(&grp->bb_prealloc_list))
3910 		return 0;
3911 
3912 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3913 	if (IS_ERR(bitmap_bh)) {
3914 		err = PTR_ERR(bitmap_bh);
3915 		ext4_error(sb, "Error %d reading block bitmap for %u",
3916 			   err, group);
3917 		return 0;
3918 	}
3919 
3920 	err = ext4_mb_load_buddy(sb, group, &e4b);
3921 	if (err) {
3922 		ext4_warning(sb, "Error %d loading buddy information for %u",
3923 			     err, group);
3924 		put_bh(bitmap_bh);
3925 		return 0;
3926 	}
3927 
3928 	if (needed == 0)
3929 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3930 
3931 	INIT_LIST_HEAD(&list);
3932 repeat:
3933 	ext4_lock_group(sb, group);
3934 	list_for_each_entry_safe(pa, tmp,
3935 				&grp->bb_prealloc_list, pa_group_list) {
3936 		spin_lock(&pa->pa_lock);
3937 		if (atomic_read(&pa->pa_count)) {
3938 			spin_unlock(&pa->pa_lock);
3939 			busy = 1;
3940 			continue;
3941 		}
3942 		if (pa->pa_deleted) {
3943 			spin_unlock(&pa->pa_lock);
3944 			continue;
3945 		}
3946 
3947 		/* seems this one can be freed ... */
3948 		pa->pa_deleted = 1;
3949 
3950 		/* we can trust pa_free ... */
3951 		free += pa->pa_free;
3952 
3953 		spin_unlock(&pa->pa_lock);
3954 
3955 		list_del(&pa->pa_group_list);
3956 		list_add(&pa->u.pa_tmp_list, &list);
3957 	}
3958 
3959 	/* if we still need more blocks and some PAs were used, try again */
3960 	if (free < needed && busy) {
3961 		busy = 0;
3962 		ext4_unlock_group(sb, group);
3963 		cond_resched();
3964 		goto repeat;
3965 	}
3966 
3967 	/* found anything to free? */
3968 	if (list_empty(&list)) {
3969 		BUG_ON(free != 0);
3970 		goto out;
3971 	}
3972 
3973 	/* now free all selected PAs */
3974 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3975 
3976 		/* remove from object (inode or locality group) */
3977 		spin_lock(pa->pa_obj_lock);
3978 		list_del_rcu(&pa->pa_inode_list);
3979 		spin_unlock(pa->pa_obj_lock);
3980 
3981 		if (pa->pa_type == MB_GROUP_PA)
3982 			ext4_mb_release_group_pa(&e4b, pa);
3983 		else
3984 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3985 
3986 		list_del(&pa->u.pa_tmp_list);
3987 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3988 	}
3989 
3990 out:
3991 	ext4_unlock_group(sb, group);
3992 	ext4_mb_unload_buddy(&e4b);
3993 	put_bh(bitmap_bh);
3994 	return free;
3995 }
3996 
3997 /*
3998  * releases all non-used preallocated blocks for given inode
3999  *
4000  * It's important to discard preallocations under i_data_sem
4001  * We don't want another block to be served from the prealloc
4002  * space when we are discarding the inode prealloc space.
4003  *
4004  * FIXME!! Make sure it is valid at all the call sites
4005  */
4006 void ext4_discard_preallocations(struct inode *inode)
4007 {
4008 	struct ext4_inode_info *ei = EXT4_I(inode);
4009 	struct super_block *sb = inode->i_sb;
4010 	struct buffer_head *bitmap_bh = NULL;
4011 	struct ext4_prealloc_space *pa, *tmp;
4012 	ext4_group_t group = 0;
4013 	struct list_head list;
4014 	struct ext4_buddy e4b;
4015 	int err;
4016 
4017 	if (!S_ISREG(inode->i_mode)) {
4018 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4019 		return;
4020 	}
4021 
4022 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4023 	trace_ext4_discard_preallocations(inode);
4024 
4025 	INIT_LIST_HEAD(&list);
4026 
4027 repeat:
4028 	/* first, collect all pa's in the inode */
4029 	spin_lock(&ei->i_prealloc_lock);
4030 	while (!list_empty(&ei->i_prealloc_list)) {
4031 		pa = list_entry(ei->i_prealloc_list.next,
4032 				struct ext4_prealloc_space, pa_inode_list);
4033 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4034 		spin_lock(&pa->pa_lock);
4035 		if (atomic_read(&pa->pa_count)) {
4036 			/* this shouldn't happen often - nobody should
4037 			 * use preallocation while we're discarding it */
4038 			spin_unlock(&pa->pa_lock);
4039 			spin_unlock(&ei->i_prealloc_lock);
4040 			ext4_msg(sb, KERN_ERR,
4041 				 "uh-oh! used pa while discarding");
4042 			WARN_ON(1);
4043 			schedule_timeout_uninterruptible(HZ);
4044 			goto repeat;
4045 
4046 		}
4047 		if (pa->pa_deleted == 0) {
4048 			pa->pa_deleted = 1;
4049 			spin_unlock(&pa->pa_lock);
4050 			list_del_rcu(&pa->pa_inode_list);
4051 			list_add(&pa->u.pa_tmp_list, &list);
4052 			continue;
4053 		}
4054 
4055 		/* someone is deleting pa right now */
4056 		spin_unlock(&pa->pa_lock);
4057 		spin_unlock(&ei->i_prealloc_lock);
4058 
4059 		/* we have to wait here because pa_deleted
4060 		 * doesn't mean pa is already unlinked from
4061 		 * the list. as we might be called from
4062 		 * ->clear_inode() the inode will get freed
4063 		 * and concurrent thread which is unlinking
4064 		 * pa from inode's list may access already
4065 		 * freed memory, bad-bad-bad */
4066 
4067 		/* XXX: if this happens too often, we can
4068 		 * add a flag to force wait only in case
4069 		 * of ->clear_inode(), but not in case of
4070 		 * regular truncate */
4071 		schedule_timeout_uninterruptible(HZ);
4072 		goto repeat;
4073 	}
4074 	spin_unlock(&ei->i_prealloc_lock);
4075 
4076 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4077 		BUG_ON(pa->pa_type != MB_INODE_PA);
4078 		group = ext4_get_group_number(sb, pa->pa_pstart);
4079 
4080 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4081 					     GFP_NOFS|__GFP_NOFAIL);
4082 		if (err) {
4083 			ext4_error(sb, "Error %d loading buddy information for %u",
4084 				   err, group);
4085 			continue;
4086 		}
4087 
4088 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4089 		if (IS_ERR(bitmap_bh)) {
4090 			err = PTR_ERR(bitmap_bh);
4091 			ext4_error(sb, "Error %d reading block bitmap for %u",
4092 					err, group);
4093 			ext4_mb_unload_buddy(&e4b);
4094 			continue;
4095 		}
4096 
4097 		ext4_lock_group(sb, group);
4098 		list_del(&pa->pa_group_list);
4099 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4100 		ext4_unlock_group(sb, group);
4101 
4102 		ext4_mb_unload_buddy(&e4b);
4103 		put_bh(bitmap_bh);
4104 
4105 		list_del(&pa->u.pa_tmp_list);
4106 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4107 	}
4108 }
4109 
4110 #ifdef CONFIG_EXT4_DEBUG
4111 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4112 {
4113 	struct super_block *sb = ac->ac_sb;
4114 	ext4_group_t ngroups, i;
4115 
4116 	if (!ext4_mballoc_debug ||
4117 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4118 		return;
4119 
4120 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4121 			" Allocation context details:");
4122 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4123 			ac->ac_status, ac->ac_flags);
4124 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4125 		 	"goal %lu/%lu/%lu@%lu, "
4126 			"best %lu/%lu/%lu@%lu cr %d",
4127 			(unsigned long)ac->ac_o_ex.fe_group,
4128 			(unsigned long)ac->ac_o_ex.fe_start,
4129 			(unsigned long)ac->ac_o_ex.fe_len,
4130 			(unsigned long)ac->ac_o_ex.fe_logical,
4131 			(unsigned long)ac->ac_g_ex.fe_group,
4132 			(unsigned long)ac->ac_g_ex.fe_start,
4133 			(unsigned long)ac->ac_g_ex.fe_len,
4134 			(unsigned long)ac->ac_g_ex.fe_logical,
4135 			(unsigned long)ac->ac_b_ex.fe_group,
4136 			(unsigned long)ac->ac_b_ex.fe_start,
4137 			(unsigned long)ac->ac_b_ex.fe_len,
4138 			(unsigned long)ac->ac_b_ex.fe_logical,
4139 			(int)ac->ac_criteria);
4140 	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4141 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4142 	ngroups = ext4_get_groups_count(sb);
4143 	for (i = 0; i < ngroups; i++) {
4144 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4145 		struct ext4_prealloc_space *pa;
4146 		ext4_grpblk_t start;
4147 		struct list_head *cur;
4148 		ext4_lock_group(sb, i);
4149 		list_for_each(cur, &grp->bb_prealloc_list) {
4150 			pa = list_entry(cur, struct ext4_prealloc_space,
4151 					pa_group_list);
4152 			spin_lock(&pa->pa_lock);
4153 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4154 						     NULL, &start);
4155 			spin_unlock(&pa->pa_lock);
4156 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4157 			       start, pa->pa_len);
4158 		}
4159 		ext4_unlock_group(sb, i);
4160 
4161 		if (grp->bb_free == 0)
4162 			continue;
4163 		printk(KERN_ERR "%u: %d/%d \n",
4164 		       i, grp->bb_free, grp->bb_fragments);
4165 	}
4166 	printk(KERN_ERR "\n");
4167 }
4168 #else
4169 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4170 {
4171 	return;
4172 }
4173 #endif
4174 
4175 /*
4176  * We use locality group preallocation for small size file. The size of the
4177  * file is determined by the current size or the resulting size after
4178  * allocation which ever is larger
4179  *
4180  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4181  */
4182 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4183 {
4184 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4185 	int bsbits = ac->ac_sb->s_blocksize_bits;
4186 	loff_t size, isize;
4187 
4188 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4189 		return;
4190 
4191 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4192 		return;
4193 
4194 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4195 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4196 		>> bsbits;
4197 
4198 	if ((size == isize) &&
4199 	    !ext4_fs_is_busy(sbi) &&
4200 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4201 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4202 		return;
4203 	}
4204 
4205 	if (sbi->s_mb_group_prealloc <= 0) {
4206 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4207 		return;
4208 	}
4209 
4210 	/* don't use group allocation for large files */
4211 	size = max(size, isize);
4212 	if (size > sbi->s_mb_stream_request) {
4213 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4214 		return;
4215 	}
4216 
4217 	BUG_ON(ac->ac_lg != NULL);
4218 	/*
4219 	 * locality group prealloc space are per cpu. The reason for having
4220 	 * per cpu locality group is to reduce the contention between block
4221 	 * request from multiple CPUs.
4222 	 */
4223 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4224 
4225 	/* we're going to use group allocation */
4226 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4227 
4228 	/* serialize all allocations in the group */
4229 	mutex_lock(&ac->ac_lg->lg_mutex);
4230 }
4231 
4232 static noinline_for_stack int
4233 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4234 				struct ext4_allocation_request *ar)
4235 {
4236 	struct super_block *sb = ar->inode->i_sb;
4237 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4238 	struct ext4_super_block *es = sbi->s_es;
4239 	ext4_group_t group;
4240 	unsigned int len;
4241 	ext4_fsblk_t goal;
4242 	ext4_grpblk_t block;
4243 
4244 	/* we can't allocate > group size */
4245 	len = ar->len;
4246 
4247 	/* just a dirty hack to filter too big requests  */
4248 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4249 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4250 
4251 	/* start searching from the goal */
4252 	goal = ar->goal;
4253 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4254 			goal >= ext4_blocks_count(es))
4255 		goal = le32_to_cpu(es->s_first_data_block);
4256 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4257 
4258 	/* set up allocation goals */
4259 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4260 	ac->ac_status = AC_STATUS_CONTINUE;
4261 	ac->ac_sb = sb;
4262 	ac->ac_inode = ar->inode;
4263 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4264 	ac->ac_o_ex.fe_group = group;
4265 	ac->ac_o_ex.fe_start = block;
4266 	ac->ac_o_ex.fe_len = len;
4267 	ac->ac_g_ex = ac->ac_o_ex;
4268 	ac->ac_flags = ar->flags;
4269 
4270 	/* we have to define context: we'll we work with a file or
4271 	 * locality group. this is a policy, actually */
4272 	ext4_mb_group_or_file(ac);
4273 
4274 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4275 			"left: %u/%u, right %u/%u to %swritable\n",
4276 			(unsigned) ar->len, (unsigned) ar->logical,
4277 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4278 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4279 			(unsigned) ar->lright, (unsigned) ar->pright,
4280 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4281 	return 0;
4282 
4283 }
4284 
4285 static noinline_for_stack void
4286 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4287 					struct ext4_locality_group *lg,
4288 					int order, int total_entries)
4289 {
4290 	ext4_group_t group = 0;
4291 	struct ext4_buddy e4b;
4292 	struct list_head discard_list;
4293 	struct ext4_prealloc_space *pa, *tmp;
4294 
4295 	mb_debug(1, "discard locality group preallocation\n");
4296 
4297 	INIT_LIST_HEAD(&discard_list);
4298 
4299 	spin_lock(&lg->lg_prealloc_lock);
4300 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4301 						pa_inode_list) {
4302 		spin_lock(&pa->pa_lock);
4303 		if (atomic_read(&pa->pa_count)) {
4304 			/*
4305 			 * This is the pa that we just used
4306 			 * for block allocation. So don't
4307 			 * free that
4308 			 */
4309 			spin_unlock(&pa->pa_lock);
4310 			continue;
4311 		}
4312 		if (pa->pa_deleted) {
4313 			spin_unlock(&pa->pa_lock);
4314 			continue;
4315 		}
4316 		/* only lg prealloc space */
4317 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4318 
4319 		/* seems this one can be freed ... */
4320 		pa->pa_deleted = 1;
4321 		spin_unlock(&pa->pa_lock);
4322 
4323 		list_del_rcu(&pa->pa_inode_list);
4324 		list_add(&pa->u.pa_tmp_list, &discard_list);
4325 
4326 		total_entries--;
4327 		if (total_entries <= 5) {
4328 			/*
4329 			 * we want to keep only 5 entries
4330 			 * allowing it to grow to 8. This
4331 			 * mak sure we don't call discard
4332 			 * soon for this list.
4333 			 */
4334 			break;
4335 		}
4336 	}
4337 	spin_unlock(&lg->lg_prealloc_lock);
4338 
4339 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4340 		int err;
4341 
4342 		group = ext4_get_group_number(sb, pa->pa_pstart);
4343 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4344 					     GFP_NOFS|__GFP_NOFAIL);
4345 		if (err) {
4346 			ext4_error(sb, "Error %d loading buddy information for %u",
4347 				   err, group);
4348 			continue;
4349 		}
4350 		ext4_lock_group(sb, group);
4351 		list_del(&pa->pa_group_list);
4352 		ext4_mb_release_group_pa(&e4b, pa);
4353 		ext4_unlock_group(sb, group);
4354 
4355 		ext4_mb_unload_buddy(&e4b);
4356 		list_del(&pa->u.pa_tmp_list);
4357 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4358 	}
4359 }
4360 
4361 /*
4362  * We have incremented pa_count. So it cannot be freed at this
4363  * point. Also we hold lg_mutex. So no parallel allocation is
4364  * possible from this lg. That means pa_free cannot be updated.
4365  *
4366  * A parallel ext4_mb_discard_group_preallocations is possible.
4367  * which can cause the lg_prealloc_list to be updated.
4368  */
4369 
4370 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4371 {
4372 	int order, added = 0, lg_prealloc_count = 1;
4373 	struct super_block *sb = ac->ac_sb;
4374 	struct ext4_locality_group *lg = ac->ac_lg;
4375 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4376 
4377 	order = fls(pa->pa_free) - 1;
4378 	if (order > PREALLOC_TB_SIZE - 1)
4379 		/* The max size of hash table is PREALLOC_TB_SIZE */
4380 		order = PREALLOC_TB_SIZE - 1;
4381 	/* Add the prealloc space to lg */
4382 	spin_lock(&lg->lg_prealloc_lock);
4383 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4384 						pa_inode_list) {
4385 		spin_lock(&tmp_pa->pa_lock);
4386 		if (tmp_pa->pa_deleted) {
4387 			spin_unlock(&tmp_pa->pa_lock);
4388 			continue;
4389 		}
4390 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4391 			/* Add to the tail of the previous entry */
4392 			list_add_tail_rcu(&pa->pa_inode_list,
4393 						&tmp_pa->pa_inode_list);
4394 			added = 1;
4395 			/*
4396 			 * we want to count the total
4397 			 * number of entries in the list
4398 			 */
4399 		}
4400 		spin_unlock(&tmp_pa->pa_lock);
4401 		lg_prealloc_count++;
4402 	}
4403 	if (!added)
4404 		list_add_tail_rcu(&pa->pa_inode_list,
4405 					&lg->lg_prealloc_list[order]);
4406 	spin_unlock(&lg->lg_prealloc_lock);
4407 
4408 	/* Now trim the list to be not more than 8 elements */
4409 	if (lg_prealloc_count > 8) {
4410 		ext4_mb_discard_lg_preallocations(sb, lg,
4411 						  order, lg_prealloc_count);
4412 		return;
4413 	}
4414 	return ;
4415 }
4416 
4417 /*
4418  * release all resource we used in allocation
4419  */
4420 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4421 {
4422 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4423 	struct ext4_prealloc_space *pa = ac->ac_pa;
4424 	if (pa) {
4425 		if (pa->pa_type == MB_GROUP_PA) {
4426 			/* see comment in ext4_mb_use_group_pa() */
4427 			spin_lock(&pa->pa_lock);
4428 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4429 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4430 			pa->pa_free -= ac->ac_b_ex.fe_len;
4431 			pa->pa_len -= ac->ac_b_ex.fe_len;
4432 			spin_unlock(&pa->pa_lock);
4433 		}
4434 	}
4435 	if (pa) {
4436 		/*
4437 		 * We want to add the pa to the right bucket.
4438 		 * Remove it from the list and while adding
4439 		 * make sure the list to which we are adding
4440 		 * doesn't grow big.
4441 		 */
4442 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4443 			spin_lock(pa->pa_obj_lock);
4444 			list_del_rcu(&pa->pa_inode_list);
4445 			spin_unlock(pa->pa_obj_lock);
4446 			ext4_mb_add_n_trim(ac);
4447 		}
4448 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4449 	}
4450 	if (ac->ac_bitmap_page)
4451 		put_page(ac->ac_bitmap_page);
4452 	if (ac->ac_buddy_page)
4453 		put_page(ac->ac_buddy_page);
4454 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4455 		mutex_unlock(&ac->ac_lg->lg_mutex);
4456 	ext4_mb_collect_stats(ac);
4457 	return 0;
4458 }
4459 
4460 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4461 {
4462 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4463 	int ret;
4464 	int freed = 0;
4465 
4466 	trace_ext4_mb_discard_preallocations(sb, needed);
4467 	for (i = 0; i < ngroups && needed > 0; i++) {
4468 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4469 		freed += ret;
4470 		needed -= ret;
4471 	}
4472 
4473 	return freed;
4474 }
4475 
4476 /*
4477  * Main entry point into mballoc to allocate blocks
4478  * it tries to use preallocation first, then falls back
4479  * to usual allocation
4480  */
4481 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4482 				struct ext4_allocation_request *ar, int *errp)
4483 {
4484 	int freed;
4485 	struct ext4_allocation_context *ac = NULL;
4486 	struct ext4_sb_info *sbi;
4487 	struct super_block *sb;
4488 	ext4_fsblk_t block = 0;
4489 	unsigned int inquota = 0;
4490 	unsigned int reserv_clstrs = 0;
4491 
4492 	might_sleep();
4493 	sb = ar->inode->i_sb;
4494 	sbi = EXT4_SB(sb);
4495 
4496 	trace_ext4_request_blocks(ar);
4497 
4498 	/* Allow to use superuser reservation for quota file */
4499 	if (ext4_is_quota_file(ar->inode))
4500 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4501 
4502 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4503 		/* Without delayed allocation we need to verify
4504 		 * there is enough free blocks to do block allocation
4505 		 * and verify allocation doesn't exceed the quota limits.
4506 		 */
4507 		while (ar->len &&
4508 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4509 
4510 			/* let others to free the space */
4511 			cond_resched();
4512 			ar->len = ar->len >> 1;
4513 		}
4514 		if (!ar->len) {
4515 			*errp = -ENOSPC;
4516 			return 0;
4517 		}
4518 		reserv_clstrs = ar->len;
4519 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4520 			dquot_alloc_block_nofail(ar->inode,
4521 						 EXT4_C2B(sbi, ar->len));
4522 		} else {
4523 			while (ar->len &&
4524 				dquot_alloc_block(ar->inode,
4525 						  EXT4_C2B(sbi, ar->len))) {
4526 
4527 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4528 				ar->len--;
4529 			}
4530 		}
4531 		inquota = ar->len;
4532 		if (ar->len == 0) {
4533 			*errp = -EDQUOT;
4534 			goto out;
4535 		}
4536 	}
4537 
4538 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4539 	if (!ac) {
4540 		ar->len = 0;
4541 		*errp = -ENOMEM;
4542 		goto out;
4543 	}
4544 
4545 	*errp = ext4_mb_initialize_context(ac, ar);
4546 	if (*errp) {
4547 		ar->len = 0;
4548 		goto out;
4549 	}
4550 
4551 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4552 	if (!ext4_mb_use_preallocated(ac)) {
4553 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4554 		ext4_mb_normalize_request(ac, ar);
4555 repeat:
4556 		/* allocate space in core */
4557 		*errp = ext4_mb_regular_allocator(ac);
4558 		if (*errp)
4559 			goto discard_and_exit;
4560 
4561 		/* as we've just preallocated more space than
4562 		 * user requested originally, we store allocated
4563 		 * space in a special descriptor */
4564 		if (ac->ac_status == AC_STATUS_FOUND &&
4565 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4566 			*errp = ext4_mb_new_preallocation(ac);
4567 		if (*errp) {
4568 		discard_and_exit:
4569 			ext4_discard_allocated_blocks(ac);
4570 			goto errout;
4571 		}
4572 	}
4573 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4574 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4575 		if (*errp) {
4576 			ext4_discard_allocated_blocks(ac);
4577 			goto errout;
4578 		} else {
4579 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4580 			ar->len = ac->ac_b_ex.fe_len;
4581 		}
4582 	} else {
4583 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4584 		if (freed)
4585 			goto repeat;
4586 		*errp = -ENOSPC;
4587 	}
4588 
4589 errout:
4590 	if (*errp) {
4591 		ac->ac_b_ex.fe_len = 0;
4592 		ar->len = 0;
4593 		ext4_mb_show_ac(ac);
4594 	}
4595 	ext4_mb_release_context(ac);
4596 out:
4597 	if (ac)
4598 		kmem_cache_free(ext4_ac_cachep, ac);
4599 	if (inquota && ar->len < inquota)
4600 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4601 	if (!ar->len) {
4602 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4603 			/* release all the reserved blocks if non delalloc */
4604 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4605 						reserv_clstrs);
4606 	}
4607 
4608 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4609 
4610 	return block;
4611 }
4612 
4613 /*
4614  * We can merge two free data extents only if the physical blocks
4615  * are contiguous, AND the extents were freed by the same transaction,
4616  * AND the blocks are associated with the same group.
4617  */
4618 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
4619 					struct ext4_free_data *entry,
4620 					struct ext4_free_data *new_entry,
4621 					struct rb_root *entry_rb_root)
4622 {
4623 	if ((entry->efd_tid != new_entry->efd_tid) ||
4624 	    (entry->efd_group != new_entry->efd_group))
4625 		return;
4626 	if (entry->efd_start_cluster + entry->efd_count ==
4627 	    new_entry->efd_start_cluster) {
4628 		new_entry->efd_start_cluster = entry->efd_start_cluster;
4629 		new_entry->efd_count += entry->efd_count;
4630 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
4631 		   entry->efd_start_cluster) {
4632 		new_entry->efd_count += entry->efd_count;
4633 	} else
4634 		return;
4635 	spin_lock(&sbi->s_md_lock);
4636 	list_del(&entry->efd_list);
4637 	spin_unlock(&sbi->s_md_lock);
4638 	rb_erase(&entry->efd_node, entry_rb_root);
4639 	kmem_cache_free(ext4_free_data_cachep, entry);
4640 }
4641 
4642 static noinline_for_stack int
4643 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4644 		      struct ext4_free_data *new_entry)
4645 {
4646 	ext4_group_t group = e4b->bd_group;
4647 	ext4_grpblk_t cluster;
4648 	ext4_grpblk_t clusters = new_entry->efd_count;
4649 	struct ext4_free_data *entry;
4650 	struct ext4_group_info *db = e4b->bd_info;
4651 	struct super_block *sb = e4b->bd_sb;
4652 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4653 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4654 	struct rb_node *parent = NULL, *new_node;
4655 
4656 	BUG_ON(!ext4_handle_valid(handle));
4657 	BUG_ON(e4b->bd_bitmap_page == NULL);
4658 	BUG_ON(e4b->bd_buddy_page == NULL);
4659 
4660 	new_node = &new_entry->efd_node;
4661 	cluster = new_entry->efd_start_cluster;
4662 
4663 	if (!*n) {
4664 		/* first free block exent. We need to
4665 		   protect buddy cache from being freed,
4666 		 * otherwise we'll refresh it from
4667 		 * on-disk bitmap and lose not-yet-available
4668 		 * blocks */
4669 		get_page(e4b->bd_buddy_page);
4670 		get_page(e4b->bd_bitmap_page);
4671 	}
4672 	while (*n) {
4673 		parent = *n;
4674 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4675 		if (cluster < entry->efd_start_cluster)
4676 			n = &(*n)->rb_left;
4677 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4678 			n = &(*n)->rb_right;
4679 		else {
4680 			ext4_grp_locked_error(sb, group, 0,
4681 				ext4_group_first_block_no(sb, group) +
4682 				EXT4_C2B(sbi, cluster),
4683 				"Block already on to-be-freed list");
4684 			return 0;
4685 		}
4686 	}
4687 
4688 	rb_link_node(new_node, parent, n);
4689 	rb_insert_color(new_node, &db->bb_free_root);
4690 
4691 	/* Now try to see the extent can be merged to left and right */
4692 	node = rb_prev(new_node);
4693 	if (node) {
4694 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4695 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
4696 					    &(db->bb_free_root));
4697 	}
4698 
4699 	node = rb_next(new_node);
4700 	if (node) {
4701 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4702 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
4703 					    &(db->bb_free_root));
4704 	}
4705 
4706 	spin_lock(&sbi->s_md_lock);
4707 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
4708 	sbi->s_mb_free_pending += clusters;
4709 	spin_unlock(&sbi->s_md_lock);
4710 	return 0;
4711 }
4712 
4713 /**
4714  * ext4_free_blocks() -- Free given blocks and update quota
4715  * @handle:		handle for this transaction
4716  * @inode:		inode
4717  * @block:		start physical block to free
4718  * @count:		number of blocks to count
4719  * @flags:		flags used by ext4_free_blocks
4720  */
4721 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4722 		      struct buffer_head *bh, ext4_fsblk_t block,
4723 		      unsigned long count, int flags)
4724 {
4725 	struct buffer_head *bitmap_bh = NULL;
4726 	struct super_block *sb = inode->i_sb;
4727 	struct ext4_group_desc *gdp;
4728 	unsigned int overflow;
4729 	ext4_grpblk_t bit;
4730 	struct buffer_head *gd_bh;
4731 	ext4_group_t block_group;
4732 	struct ext4_sb_info *sbi;
4733 	struct ext4_buddy e4b;
4734 	unsigned int count_clusters;
4735 	int err = 0;
4736 	int ret;
4737 
4738 	might_sleep();
4739 	if (bh) {
4740 		if (block)
4741 			BUG_ON(block != bh->b_blocknr);
4742 		else
4743 			block = bh->b_blocknr;
4744 	}
4745 
4746 	sbi = EXT4_SB(sb);
4747 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4748 	    !ext4_data_block_valid(sbi, block, count)) {
4749 		ext4_error(sb, "Freeing blocks not in datazone - "
4750 			   "block = %llu, count = %lu", block, count);
4751 		goto error_return;
4752 	}
4753 
4754 	ext4_debug("freeing block %llu\n", block);
4755 	trace_ext4_free_blocks(inode, block, count, flags);
4756 
4757 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4758 		BUG_ON(count > 1);
4759 
4760 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4761 			    inode, bh, block);
4762 	}
4763 
4764 	/*
4765 	 * If the extent to be freed does not begin on a cluster
4766 	 * boundary, we need to deal with partial clusters at the
4767 	 * beginning and end of the extent.  Normally we will free
4768 	 * blocks at the beginning or the end unless we are explicitly
4769 	 * requested to avoid doing so.
4770 	 */
4771 	overflow = EXT4_PBLK_COFF(sbi, block);
4772 	if (overflow) {
4773 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4774 			overflow = sbi->s_cluster_ratio - overflow;
4775 			block += overflow;
4776 			if (count > overflow)
4777 				count -= overflow;
4778 			else
4779 				return;
4780 		} else {
4781 			block -= overflow;
4782 			count += overflow;
4783 		}
4784 	}
4785 	overflow = EXT4_LBLK_COFF(sbi, count);
4786 	if (overflow) {
4787 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4788 			if (count > overflow)
4789 				count -= overflow;
4790 			else
4791 				return;
4792 		} else
4793 			count += sbi->s_cluster_ratio - overflow;
4794 	}
4795 
4796 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4797 		int i;
4798 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4799 
4800 		for (i = 0; i < count; i++) {
4801 			cond_resched();
4802 			if (is_metadata)
4803 				bh = sb_find_get_block(inode->i_sb, block + i);
4804 			ext4_forget(handle, is_metadata, inode, bh, block + i);
4805 		}
4806 	}
4807 
4808 do_more:
4809 	overflow = 0;
4810 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4811 
4812 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4813 			ext4_get_group_info(sb, block_group))))
4814 		return;
4815 
4816 	/*
4817 	 * Check to see if we are freeing blocks across a group
4818 	 * boundary.
4819 	 */
4820 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4821 		overflow = EXT4_C2B(sbi, bit) + count -
4822 			EXT4_BLOCKS_PER_GROUP(sb);
4823 		count -= overflow;
4824 	}
4825 	count_clusters = EXT4_NUM_B2C(sbi, count);
4826 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4827 	if (IS_ERR(bitmap_bh)) {
4828 		err = PTR_ERR(bitmap_bh);
4829 		bitmap_bh = NULL;
4830 		goto error_return;
4831 	}
4832 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4833 	if (!gdp) {
4834 		err = -EIO;
4835 		goto error_return;
4836 	}
4837 
4838 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4839 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4840 	    in_range(block, ext4_inode_table(sb, gdp),
4841 		     sbi->s_itb_per_group) ||
4842 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4843 		     sbi->s_itb_per_group)) {
4844 
4845 		ext4_error(sb, "Freeing blocks in system zone - "
4846 			   "Block = %llu, count = %lu", block, count);
4847 		/* err = 0. ext4_std_error should be a no op */
4848 		goto error_return;
4849 	}
4850 
4851 	BUFFER_TRACE(bitmap_bh, "getting write access");
4852 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4853 	if (err)
4854 		goto error_return;
4855 
4856 	/*
4857 	 * We are about to modify some metadata.  Call the journal APIs
4858 	 * to unshare ->b_data if a currently-committing transaction is
4859 	 * using it
4860 	 */
4861 	BUFFER_TRACE(gd_bh, "get_write_access");
4862 	err = ext4_journal_get_write_access(handle, gd_bh);
4863 	if (err)
4864 		goto error_return;
4865 #ifdef AGGRESSIVE_CHECK
4866 	{
4867 		int i;
4868 		for (i = 0; i < count_clusters; i++)
4869 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4870 	}
4871 #endif
4872 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4873 
4874 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4875 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4876 				     GFP_NOFS|__GFP_NOFAIL);
4877 	if (err)
4878 		goto error_return;
4879 
4880 	/*
4881 	 * We need to make sure we don't reuse the freed block until after the
4882 	 * transaction is committed. We make an exception if the inode is to be
4883 	 * written in writeback mode since writeback mode has weak data
4884 	 * consistency guarantees.
4885 	 */
4886 	if (ext4_handle_valid(handle) &&
4887 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4888 	     !ext4_should_writeback_data(inode))) {
4889 		struct ext4_free_data *new_entry;
4890 		/*
4891 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4892 		 * to fail.
4893 		 */
4894 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4895 				GFP_NOFS|__GFP_NOFAIL);
4896 		new_entry->efd_start_cluster = bit;
4897 		new_entry->efd_group = block_group;
4898 		new_entry->efd_count = count_clusters;
4899 		new_entry->efd_tid = handle->h_transaction->t_tid;
4900 
4901 		ext4_lock_group(sb, block_group);
4902 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4903 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4904 	} else {
4905 		/* need to update group_info->bb_free and bitmap
4906 		 * with group lock held. generate_buddy look at
4907 		 * them with group lock_held
4908 		 */
4909 		if (test_opt(sb, DISCARD)) {
4910 			err = ext4_issue_discard(sb, block_group, bit, count,
4911 						 NULL);
4912 			if (err && err != -EOPNOTSUPP)
4913 				ext4_msg(sb, KERN_WARNING, "discard request in"
4914 					 " group:%d block:%d count:%lu failed"
4915 					 " with %d", block_group, bit, count,
4916 					 err);
4917 		} else
4918 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4919 
4920 		ext4_lock_group(sb, block_group);
4921 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4922 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4923 	}
4924 
4925 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4926 	ext4_free_group_clusters_set(sb, gdp, ret);
4927 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4928 	ext4_group_desc_csum_set(sb, block_group, gdp);
4929 	ext4_unlock_group(sb, block_group);
4930 
4931 	if (sbi->s_log_groups_per_flex) {
4932 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4933 		atomic64_add(count_clusters,
4934 			     &sbi->s_flex_groups[flex_group].free_clusters);
4935 	}
4936 
4937 	if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4938 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4939 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4940 
4941 	ext4_mb_unload_buddy(&e4b);
4942 
4943 	/* We dirtied the bitmap block */
4944 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4945 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4946 
4947 	/* And the group descriptor block */
4948 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4949 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4950 	if (!err)
4951 		err = ret;
4952 
4953 	if (overflow && !err) {
4954 		block += count;
4955 		count = overflow;
4956 		put_bh(bitmap_bh);
4957 		goto do_more;
4958 	}
4959 error_return:
4960 	brelse(bitmap_bh);
4961 	ext4_std_error(sb, err);
4962 	return;
4963 }
4964 
4965 /**
4966  * ext4_group_add_blocks() -- Add given blocks to an existing group
4967  * @handle:			handle to this transaction
4968  * @sb:				super block
4969  * @block:			start physical block to add to the block group
4970  * @count:			number of blocks to free
4971  *
4972  * This marks the blocks as free in the bitmap and buddy.
4973  */
4974 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4975 			 ext4_fsblk_t block, unsigned long count)
4976 {
4977 	struct buffer_head *bitmap_bh = NULL;
4978 	struct buffer_head *gd_bh;
4979 	ext4_group_t block_group;
4980 	ext4_grpblk_t bit;
4981 	unsigned int i;
4982 	struct ext4_group_desc *desc;
4983 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4984 	struct ext4_buddy e4b;
4985 	int err = 0, ret, free_clusters_count;
4986 	ext4_grpblk_t clusters_freed;
4987 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
4988 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
4989 	unsigned long cluster_count = last_cluster - first_cluster + 1;
4990 
4991 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4992 
4993 	if (count == 0)
4994 		return 0;
4995 
4996 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4997 	/*
4998 	 * Check to see if we are freeing blocks across a group
4999 	 * boundary.
5000 	 */
5001 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
5002 		ext4_warning(sb, "too many blocks added to group %u",
5003 			     block_group);
5004 		err = -EINVAL;
5005 		goto error_return;
5006 	}
5007 
5008 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
5009 	if (IS_ERR(bitmap_bh)) {
5010 		err = PTR_ERR(bitmap_bh);
5011 		bitmap_bh = NULL;
5012 		goto error_return;
5013 	}
5014 
5015 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
5016 	if (!desc) {
5017 		err = -EIO;
5018 		goto error_return;
5019 	}
5020 
5021 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
5022 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
5023 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5024 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
5025 		     sbi->s_itb_per_group)) {
5026 		ext4_error(sb, "Adding blocks in system zones - "
5027 			   "Block = %llu, count = %lu",
5028 			   block, count);
5029 		err = -EINVAL;
5030 		goto error_return;
5031 	}
5032 
5033 	BUFFER_TRACE(bitmap_bh, "getting write access");
5034 	err = ext4_journal_get_write_access(handle, bitmap_bh);
5035 	if (err)
5036 		goto error_return;
5037 
5038 	/*
5039 	 * We are about to modify some metadata.  Call the journal APIs
5040 	 * to unshare ->b_data if a currently-committing transaction is
5041 	 * using it
5042 	 */
5043 	BUFFER_TRACE(gd_bh, "get_write_access");
5044 	err = ext4_journal_get_write_access(handle, gd_bh);
5045 	if (err)
5046 		goto error_return;
5047 
5048 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
5049 		BUFFER_TRACE(bitmap_bh, "clear bit");
5050 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5051 			ext4_error(sb, "bit already cleared for block %llu",
5052 				   (ext4_fsblk_t)(block + i));
5053 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
5054 		} else {
5055 			clusters_freed++;
5056 		}
5057 	}
5058 
5059 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
5060 	if (err)
5061 		goto error_return;
5062 
5063 	/*
5064 	 * need to update group_info->bb_free and bitmap
5065 	 * with group lock held. generate_buddy look at
5066 	 * them with group lock_held
5067 	 */
5068 	ext4_lock_group(sb, block_group);
5069 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
5070 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
5071 	free_clusters_count = clusters_freed +
5072 		ext4_free_group_clusters(sb, desc);
5073 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
5074 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5075 	ext4_group_desc_csum_set(sb, block_group, desc);
5076 	ext4_unlock_group(sb, block_group);
5077 	percpu_counter_add(&sbi->s_freeclusters_counter,
5078 			   clusters_freed);
5079 
5080 	if (sbi->s_log_groups_per_flex) {
5081 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5082 		atomic64_add(clusters_freed,
5083 			     &sbi->s_flex_groups[flex_group].free_clusters);
5084 	}
5085 
5086 	ext4_mb_unload_buddy(&e4b);
5087 
5088 	/* We dirtied the bitmap block */
5089 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5090 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5091 
5092 	/* And the group descriptor block */
5093 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5094 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5095 	if (!err)
5096 		err = ret;
5097 
5098 error_return:
5099 	brelse(bitmap_bh);
5100 	ext4_std_error(sb, err);
5101 	return err;
5102 }
5103 
5104 /**
5105  * ext4_trim_extent -- function to TRIM one single free extent in the group
5106  * @sb:		super block for the file system
5107  * @start:	starting block of the free extent in the alloc. group
5108  * @count:	number of blocks to TRIM
5109  * @group:	alloc. group we are working with
5110  * @e4b:	ext4 buddy for the group
5111  *
5112  * Trim "count" blocks starting at "start" in the "group". To assure that no
5113  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5114  * be called with under the group lock.
5115  */
5116 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5117 			     ext4_group_t group, struct ext4_buddy *e4b)
5118 __releases(bitlock)
5119 __acquires(bitlock)
5120 {
5121 	struct ext4_free_extent ex;
5122 	int ret = 0;
5123 
5124 	trace_ext4_trim_extent(sb, group, start, count);
5125 
5126 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5127 
5128 	ex.fe_start = start;
5129 	ex.fe_group = group;
5130 	ex.fe_len = count;
5131 
5132 	/*
5133 	 * Mark blocks used, so no one can reuse them while
5134 	 * being trimmed.
5135 	 */
5136 	mb_mark_used(e4b, &ex);
5137 	ext4_unlock_group(sb, group);
5138 	ret = ext4_issue_discard(sb, group, start, count, NULL);
5139 	ext4_lock_group(sb, group);
5140 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5141 	return ret;
5142 }
5143 
5144 /**
5145  * ext4_trim_all_free -- function to trim all free space in alloc. group
5146  * @sb:			super block for file system
5147  * @group:		group to be trimmed
5148  * @start:		first group block to examine
5149  * @max:		last group block to examine
5150  * @minblocks:		minimum extent block count
5151  *
5152  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5153  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5154  * the extent.
5155  *
5156  *
5157  * ext4_trim_all_free walks through group's block bitmap searching for free
5158  * extents. When the free extent is found, mark it as used in group buddy
5159  * bitmap. Then issue a TRIM command on this extent and free the extent in
5160  * the group buddy bitmap. This is done until whole group is scanned.
5161  */
5162 static ext4_grpblk_t
5163 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5164 		   ext4_grpblk_t start, ext4_grpblk_t max,
5165 		   ext4_grpblk_t minblocks)
5166 {
5167 	void *bitmap;
5168 	ext4_grpblk_t next, count = 0, free_count = 0;
5169 	struct ext4_buddy e4b;
5170 	int ret = 0;
5171 
5172 	trace_ext4_trim_all_free(sb, group, start, max);
5173 
5174 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5175 	if (ret) {
5176 		ext4_warning(sb, "Error %d loading buddy information for %u",
5177 			     ret, group);
5178 		return ret;
5179 	}
5180 	bitmap = e4b.bd_bitmap;
5181 
5182 	ext4_lock_group(sb, group);
5183 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5184 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5185 		goto out;
5186 
5187 	start = (e4b.bd_info->bb_first_free > start) ?
5188 		e4b.bd_info->bb_first_free : start;
5189 
5190 	while (start <= max) {
5191 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5192 		if (start > max)
5193 			break;
5194 		next = mb_find_next_bit(bitmap, max + 1, start);
5195 
5196 		if ((next - start) >= minblocks) {
5197 			ret = ext4_trim_extent(sb, start,
5198 					       next - start, group, &e4b);
5199 			if (ret && ret != -EOPNOTSUPP)
5200 				break;
5201 			ret = 0;
5202 			count += next - start;
5203 		}
5204 		free_count += next - start;
5205 		start = next + 1;
5206 
5207 		if (fatal_signal_pending(current)) {
5208 			count = -ERESTARTSYS;
5209 			break;
5210 		}
5211 
5212 		if (need_resched()) {
5213 			ext4_unlock_group(sb, group);
5214 			cond_resched();
5215 			ext4_lock_group(sb, group);
5216 		}
5217 
5218 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5219 			break;
5220 	}
5221 
5222 	if (!ret) {
5223 		ret = count;
5224 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5225 	}
5226 out:
5227 	ext4_unlock_group(sb, group);
5228 	ext4_mb_unload_buddy(&e4b);
5229 
5230 	ext4_debug("trimmed %d blocks in the group %d\n",
5231 		count, group);
5232 
5233 	return ret;
5234 }
5235 
5236 /**
5237  * ext4_trim_fs() -- trim ioctl handle function
5238  * @sb:			superblock for filesystem
5239  * @range:		fstrim_range structure
5240  *
5241  * start:	First Byte to trim
5242  * len:		number of Bytes to trim from start
5243  * minlen:	minimum extent length in Bytes
5244  * ext4_trim_fs goes through all allocation groups containing Bytes from
5245  * start to start+len. For each such a group ext4_trim_all_free function
5246  * is invoked to trim all free space.
5247  */
5248 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5249 {
5250 	struct ext4_group_info *grp;
5251 	ext4_group_t group, first_group, last_group;
5252 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5253 	uint64_t start, end, minlen, trimmed = 0;
5254 	ext4_fsblk_t first_data_blk =
5255 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5256 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5257 	int ret = 0;
5258 
5259 	start = range->start >> sb->s_blocksize_bits;
5260 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5261 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5262 			      range->minlen >> sb->s_blocksize_bits);
5263 
5264 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5265 	    start >= max_blks ||
5266 	    range->len < sb->s_blocksize)
5267 		return -EINVAL;
5268 	if (end >= max_blks)
5269 		end = max_blks - 1;
5270 	if (end <= first_data_blk)
5271 		goto out;
5272 	if (start < first_data_blk)
5273 		start = first_data_blk;
5274 
5275 	/* Determine first and last group to examine based on start and end */
5276 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5277 				     &first_group, &first_cluster);
5278 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5279 				     &last_group, &last_cluster);
5280 
5281 	/* end now represents the last cluster to discard in this group */
5282 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5283 
5284 	for (group = first_group; group <= last_group; group++) {
5285 		grp = ext4_get_group_info(sb, group);
5286 		/* We only do this if the grp has never been initialized */
5287 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5288 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5289 			if (ret)
5290 				break;
5291 		}
5292 
5293 		/*
5294 		 * For all the groups except the last one, last cluster will
5295 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5296 		 * change it for the last group, note that last_cluster is
5297 		 * already computed earlier by ext4_get_group_no_and_offset()
5298 		 */
5299 		if (group == last_group)
5300 			end = last_cluster;
5301 
5302 		if (grp->bb_free >= minlen) {
5303 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5304 						end, minlen);
5305 			if (cnt < 0) {
5306 				ret = cnt;
5307 				break;
5308 			}
5309 			trimmed += cnt;
5310 		}
5311 
5312 		/*
5313 		 * For every group except the first one, we are sure
5314 		 * that the first cluster to discard will be cluster #0.
5315 		 */
5316 		first_cluster = 0;
5317 	}
5318 
5319 	if (!ret)
5320 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5321 
5322 out:
5323 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5324 	return ret;
5325 }
5326 
5327 /* Iterate all the free extents in the group. */
5328 int
5329 ext4_mballoc_query_range(
5330 	struct super_block		*sb,
5331 	ext4_group_t			group,
5332 	ext4_grpblk_t			start,
5333 	ext4_grpblk_t			end,
5334 	ext4_mballoc_query_range_fn	formatter,
5335 	void				*priv)
5336 {
5337 	void				*bitmap;
5338 	ext4_grpblk_t			next;
5339 	struct ext4_buddy		e4b;
5340 	int				error;
5341 
5342 	error = ext4_mb_load_buddy(sb, group, &e4b);
5343 	if (error)
5344 		return error;
5345 	bitmap = e4b.bd_bitmap;
5346 
5347 	ext4_lock_group(sb, group);
5348 
5349 	start = (e4b.bd_info->bb_first_free > start) ?
5350 		e4b.bd_info->bb_first_free : start;
5351 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
5352 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5353 
5354 	while (start <= end) {
5355 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
5356 		if (start > end)
5357 			break;
5358 		next = mb_find_next_bit(bitmap, end + 1, start);
5359 
5360 		ext4_unlock_group(sb, group);
5361 		error = formatter(sb, group, start, next - start, priv);
5362 		if (error)
5363 			goto out_unload;
5364 		ext4_lock_group(sb, group);
5365 
5366 		start = next + 1;
5367 	}
5368 
5369 	ext4_unlock_group(sb, group);
5370 out_unload:
5371 	ext4_mb_unload_buddy(&e4b);
5372 
5373 	return error;
5374 }
5375