1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "mballoc.h" 26 #include <linux/log2.h> 27 #include <linux/module.h> 28 #include <linux/slab.h> 29 #include <trace/events/ext4.h> 30 31 #ifdef CONFIG_EXT4_DEBUG 32 ushort ext4_mballoc_debug __read_mostly; 33 34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644); 35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc"); 36 #endif 37 38 /* 39 * MUSTDO: 40 * - test ext4_ext_search_left() and ext4_ext_search_right() 41 * - search for metadata in few groups 42 * 43 * TODO v4: 44 * - normalization should take into account whether file is still open 45 * - discard preallocations if no free space left (policy?) 46 * - don't normalize tails 47 * - quota 48 * - reservation for superuser 49 * 50 * TODO v3: 51 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 52 * - track min/max extents in each group for better group selection 53 * - mb_mark_used() may allocate chunk right after splitting buddy 54 * - tree of groups sorted by number of free blocks 55 * - error handling 56 */ 57 58 /* 59 * The allocation request involve request for multiple number of blocks 60 * near to the goal(block) value specified. 61 * 62 * During initialization phase of the allocator we decide to use the 63 * group preallocation or inode preallocation depending on the size of 64 * the file. The size of the file could be the resulting file size we 65 * would have after allocation, or the current file size, which ever 66 * is larger. If the size is less than sbi->s_mb_stream_request we 67 * select to use the group preallocation. The default value of 68 * s_mb_stream_request is 16 blocks. This can also be tuned via 69 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 70 * terms of number of blocks. 71 * 72 * The main motivation for having small file use group preallocation is to 73 * ensure that we have small files closer together on the disk. 74 * 75 * First stage the allocator looks at the inode prealloc list, 76 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 77 * spaces for this particular inode. The inode prealloc space is 78 * represented as: 79 * 80 * pa_lstart -> the logical start block for this prealloc space 81 * pa_pstart -> the physical start block for this prealloc space 82 * pa_len -> length for this prealloc space (in clusters) 83 * pa_free -> free space available in this prealloc space (in clusters) 84 * 85 * The inode preallocation space is used looking at the _logical_ start 86 * block. If only the logical file block falls within the range of prealloc 87 * space we will consume the particular prealloc space. This makes sure that 88 * we have contiguous physical blocks representing the file blocks 89 * 90 * The important thing to be noted in case of inode prealloc space is that 91 * we don't modify the values associated to inode prealloc space except 92 * pa_free. 93 * 94 * If we are not able to find blocks in the inode prealloc space and if we 95 * have the group allocation flag set then we look at the locality group 96 * prealloc space. These are per CPU prealloc list represented as 97 * 98 * ext4_sb_info.s_locality_groups[smp_processor_id()] 99 * 100 * The reason for having a per cpu locality group is to reduce the contention 101 * between CPUs. It is possible to get scheduled at this point. 102 * 103 * The locality group prealloc space is used looking at whether we have 104 * enough free space (pa_free) within the prealloc space. 105 * 106 * If we can't allocate blocks via inode prealloc or/and locality group 107 * prealloc then we look at the buddy cache. The buddy cache is represented 108 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 109 * mapped to the buddy and bitmap information regarding different 110 * groups. The buddy information is attached to buddy cache inode so that 111 * we can access them through the page cache. The information regarding 112 * each group is loaded via ext4_mb_load_buddy. The information involve 113 * block bitmap and buddy information. The information are stored in the 114 * inode as: 115 * 116 * { page } 117 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 118 * 119 * 120 * one block each for bitmap and buddy information. So for each group we 121 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 122 * blocksize) blocks. So it can have information regarding groups_per_page 123 * which is blocks_per_page/2 124 * 125 * The buddy cache inode is not stored on disk. The inode is thrown 126 * away when the filesystem is unmounted. 127 * 128 * We look for count number of blocks in the buddy cache. If we were able 129 * to locate that many free blocks we return with additional information 130 * regarding rest of the contiguous physical block available 131 * 132 * Before allocating blocks via buddy cache we normalize the request 133 * blocks. This ensure we ask for more blocks that we needed. The extra 134 * blocks that we get after allocation is added to the respective prealloc 135 * list. In case of inode preallocation we follow a list of heuristics 136 * based on file size. This can be found in ext4_mb_normalize_request. If 137 * we are doing a group prealloc we try to normalize the request to 138 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 139 * dependent on the cluster size; for non-bigalloc file systems, it is 140 * 512 blocks. This can be tuned via 141 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 142 * terms of number of blocks. If we have mounted the file system with -O 143 * stripe=<value> option the group prealloc request is normalized to the 144 * the smallest multiple of the stripe value (sbi->s_stripe) which is 145 * greater than the default mb_group_prealloc. 146 * 147 * The regular allocator (using the buddy cache) supports a few tunables. 148 * 149 * /sys/fs/ext4/<partition>/mb_min_to_scan 150 * /sys/fs/ext4/<partition>/mb_max_to_scan 151 * /sys/fs/ext4/<partition>/mb_order2_req 152 * 153 * The regular allocator uses buddy scan only if the request len is power of 154 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 155 * value of s_mb_order2_reqs can be tuned via 156 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 157 * stripe size (sbi->s_stripe), we try to search for contiguous block in 158 * stripe size. This should result in better allocation on RAID setups. If 159 * not, we search in the specific group using bitmap for best extents. The 160 * tunable min_to_scan and max_to_scan control the behaviour here. 161 * min_to_scan indicate how long the mballoc __must__ look for a best 162 * extent and max_to_scan indicates how long the mballoc __can__ look for a 163 * best extent in the found extents. Searching for the blocks starts with 164 * the group specified as the goal value in allocation context via 165 * ac_g_ex. Each group is first checked based on the criteria whether it 166 * can be used for allocation. ext4_mb_good_group explains how the groups are 167 * checked. 168 * 169 * Both the prealloc space are getting populated as above. So for the first 170 * request we will hit the buddy cache which will result in this prealloc 171 * space getting filled. The prealloc space is then later used for the 172 * subsequent request. 173 */ 174 175 /* 176 * mballoc operates on the following data: 177 * - on-disk bitmap 178 * - in-core buddy (actually includes buddy and bitmap) 179 * - preallocation descriptors (PAs) 180 * 181 * there are two types of preallocations: 182 * - inode 183 * assiged to specific inode and can be used for this inode only. 184 * it describes part of inode's space preallocated to specific 185 * physical blocks. any block from that preallocated can be used 186 * independent. the descriptor just tracks number of blocks left 187 * unused. so, before taking some block from descriptor, one must 188 * make sure corresponded logical block isn't allocated yet. this 189 * also means that freeing any block within descriptor's range 190 * must discard all preallocated blocks. 191 * - locality group 192 * assigned to specific locality group which does not translate to 193 * permanent set of inodes: inode can join and leave group. space 194 * from this type of preallocation can be used for any inode. thus 195 * it's consumed from the beginning to the end. 196 * 197 * relation between them can be expressed as: 198 * in-core buddy = on-disk bitmap + preallocation descriptors 199 * 200 * this mean blocks mballoc considers used are: 201 * - allocated blocks (persistent) 202 * - preallocated blocks (non-persistent) 203 * 204 * consistency in mballoc world means that at any time a block is either 205 * free or used in ALL structures. notice: "any time" should not be read 206 * literally -- time is discrete and delimited by locks. 207 * 208 * to keep it simple, we don't use block numbers, instead we count number of 209 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 210 * 211 * all operations can be expressed as: 212 * - init buddy: buddy = on-disk + PAs 213 * - new PA: buddy += N; PA = N 214 * - use inode PA: on-disk += N; PA -= N 215 * - discard inode PA buddy -= on-disk - PA; PA = 0 216 * - use locality group PA on-disk += N; PA -= N 217 * - discard locality group PA buddy -= PA; PA = 0 218 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 219 * is used in real operation because we can't know actual used 220 * bits from PA, only from on-disk bitmap 221 * 222 * if we follow this strict logic, then all operations above should be atomic. 223 * given some of them can block, we'd have to use something like semaphores 224 * killing performance on high-end SMP hardware. let's try to relax it using 225 * the following knowledge: 226 * 1) if buddy is referenced, it's already initialized 227 * 2) while block is used in buddy and the buddy is referenced, 228 * nobody can re-allocate that block 229 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 230 * bit set and PA claims same block, it's OK. IOW, one can set bit in 231 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 232 * block 233 * 234 * so, now we're building a concurrency table: 235 * - init buddy vs. 236 * - new PA 237 * blocks for PA are allocated in the buddy, buddy must be referenced 238 * until PA is linked to allocation group to avoid concurrent buddy init 239 * - use inode PA 240 * we need to make sure that either on-disk bitmap or PA has uptodate data 241 * given (3) we care that PA-=N operation doesn't interfere with init 242 * - discard inode PA 243 * the simplest way would be to have buddy initialized by the discard 244 * - use locality group PA 245 * again PA-=N must be serialized with init 246 * - discard locality group PA 247 * the simplest way would be to have buddy initialized by the discard 248 * - new PA vs. 249 * - use inode PA 250 * i_data_sem serializes them 251 * - discard inode PA 252 * discard process must wait until PA isn't used by another process 253 * - use locality group PA 254 * some mutex should serialize them 255 * - discard locality group PA 256 * discard process must wait until PA isn't used by another process 257 * - use inode PA 258 * - use inode PA 259 * i_data_sem or another mutex should serializes them 260 * - discard inode PA 261 * discard process must wait until PA isn't used by another process 262 * - use locality group PA 263 * nothing wrong here -- they're different PAs covering different blocks 264 * - discard locality group PA 265 * discard process must wait until PA isn't used by another process 266 * 267 * now we're ready to make few consequences: 268 * - PA is referenced and while it is no discard is possible 269 * - PA is referenced until block isn't marked in on-disk bitmap 270 * - PA changes only after on-disk bitmap 271 * - discard must not compete with init. either init is done before 272 * any discard or they're serialized somehow 273 * - buddy init as sum of on-disk bitmap and PAs is done atomically 274 * 275 * a special case when we've used PA to emptiness. no need to modify buddy 276 * in this case, but we should care about concurrent init 277 * 278 */ 279 280 /* 281 * Logic in few words: 282 * 283 * - allocation: 284 * load group 285 * find blocks 286 * mark bits in on-disk bitmap 287 * release group 288 * 289 * - use preallocation: 290 * find proper PA (per-inode or group) 291 * load group 292 * mark bits in on-disk bitmap 293 * release group 294 * release PA 295 * 296 * - free: 297 * load group 298 * mark bits in on-disk bitmap 299 * release group 300 * 301 * - discard preallocations in group: 302 * mark PAs deleted 303 * move them onto local list 304 * load on-disk bitmap 305 * load group 306 * remove PA from object (inode or locality group) 307 * mark free blocks in-core 308 * 309 * - discard inode's preallocations: 310 */ 311 312 /* 313 * Locking rules 314 * 315 * Locks: 316 * - bitlock on a group (group) 317 * - object (inode/locality) (object) 318 * - per-pa lock (pa) 319 * 320 * Paths: 321 * - new pa 322 * object 323 * group 324 * 325 * - find and use pa: 326 * pa 327 * 328 * - release consumed pa: 329 * pa 330 * group 331 * object 332 * 333 * - generate in-core bitmap: 334 * group 335 * pa 336 * 337 * - discard all for given object (inode, locality group): 338 * object 339 * pa 340 * group 341 * 342 * - discard all for given group: 343 * group 344 * pa 345 * group 346 * object 347 * 348 */ 349 static struct kmem_cache *ext4_pspace_cachep; 350 static struct kmem_cache *ext4_ac_cachep; 351 static struct kmem_cache *ext4_free_data_cachep; 352 353 /* We create slab caches for groupinfo data structures based on the 354 * superblock block size. There will be one per mounted filesystem for 355 * each unique s_blocksize_bits */ 356 #define NR_GRPINFO_CACHES 8 357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 358 359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 360 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 361 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 362 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 363 }; 364 365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 366 ext4_group_t group); 367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 368 ext4_group_t group); 369 static void ext4_free_data_callback(struct super_block *sb, 370 struct ext4_journal_cb_entry *jce, int rc); 371 372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 373 { 374 #if BITS_PER_LONG == 64 375 *bit += ((unsigned long) addr & 7UL) << 3; 376 addr = (void *) ((unsigned long) addr & ~7UL); 377 #elif BITS_PER_LONG == 32 378 *bit += ((unsigned long) addr & 3UL) << 3; 379 addr = (void *) ((unsigned long) addr & ~3UL); 380 #else 381 #error "how many bits you are?!" 382 #endif 383 return addr; 384 } 385 386 static inline int mb_test_bit(int bit, void *addr) 387 { 388 /* 389 * ext4_test_bit on architecture like powerpc 390 * needs unsigned long aligned address 391 */ 392 addr = mb_correct_addr_and_bit(&bit, addr); 393 return ext4_test_bit(bit, addr); 394 } 395 396 static inline void mb_set_bit(int bit, void *addr) 397 { 398 addr = mb_correct_addr_and_bit(&bit, addr); 399 ext4_set_bit(bit, addr); 400 } 401 402 static inline void mb_clear_bit(int bit, void *addr) 403 { 404 addr = mb_correct_addr_and_bit(&bit, addr); 405 ext4_clear_bit(bit, addr); 406 } 407 408 static inline int mb_test_and_clear_bit(int bit, void *addr) 409 { 410 addr = mb_correct_addr_and_bit(&bit, addr); 411 return ext4_test_and_clear_bit(bit, addr); 412 } 413 414 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 415 { 416 int fix = 0, ret, tmpmax; 417 addr = mb_correct_addr_and_bit(&fix, addr); 418 tmpmax = max + fix; 419 start += fix; 420 421 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 422 if (ret > max) 423 return max; 424 return ret; 425 } 426 427 static inline int mb_find_next_bit(void *addr, int max, int start) 428 { 429 int fix = 0, ret, tmpmax; 430 addr = mb_correct_addr_and_bit(&fix, addr); 431 tmpmax = max + fix; 432 start += fix; 433 434 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 435 if (ret > max) 436 return max; 437 return ret; 438 } 439 440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 441 { 442 char *bb; 443 444 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 445 BUG_ON(max == NULL); 446 447 if (order > e4b->bd_blkbits + 1) { 448 *max = 0; 449 return NULL; 450 } 451 452 /* at order 0 we see each particular block */ 453 if (order == 0) { 454 *max = 1 << (e4b->bd_blkbits + 3); 455 return e4b->bd_bitmap; 456 } 457 458 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 459 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 460 461 return bb; 462 } 463 464 #ifdef DOUBLE_CHECK 465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 466 int first, int count) 467 { 468 int i; 469 struct super_block *sb = e4b->bd_sb; 470 471 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 472 return; 473 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 474 for (i = 0; i < count; i++) { 475 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 476 ext4_fsblk_t blocknr; 477 478 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 479 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 480 ext4_grp_locked_error(sb, e4b->bd_group, 481 inode ? inode->i_ino : 0, 482 blocknr, 483 "freeing block already freed " 484 "(bit %u)", 485 first + i); 486 } 487 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 488 } 489 } 490 491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 492 { 493 int i; 494 495 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 496 return; 497 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 498 for (i = 0; i < count; i++) { 499 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 500 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 501 } 502 } 503 504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 505 { 506 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 507 unsigned char *b1, *b2; 508 int i; 509 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 510 b2 = (unsigned char *) bitmap; 511 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 512 if (b1[i] != b2[i]) { 513 ext4_msg(e4b->bd_sb, KERN_ERR, 514 "corruption in group %u " 515 "at byte %u(%u): %x in copy != %x " 516 "on disk/prealloc", 517 e4b->bd_group, i, i * 8, b1[i], b2[i]); 518 BUG(); 519 } 520 } 521 } 522 } 523 524 #else 525 static inline void mb_free_blocks_double(struct inode *inode, 526 struct ext4_buddy *e4b, int first, int count) 527 { 528 return; 529 } 530 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 531 int first, int count) 532 { 533 return; 534 } 535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 536 { 537 return; 538 } 539 #endif 540 541 #ifdef AGGRESSIVE_CHECK 542 543 #define MB_CHECK_ASSERT(assert) \ 544 do { \ 545 if (!(assert)) { \ 546 printk(KERN_EMERG \ 547 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 548 function, file, line, # assert); \ 549 BUG(); \ 550 } \ 551 } while (0) 552 553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 554 const char *function, int line) 555 { 556 struct super_block *sb = e4b->bd_sb; 557 int order = e4b->bd_blkbits + 1; 558 int max; 559 int max2; 560 int i; 561 int j; 562 int k; 563 int count; 564 struct ext4_group_info *grp; 565 int fragments = 0; 566 int fstart; 567 struct list_head *cur; 568 void *buddy; 569 void *buddy2; 570 571 { 572 static int mb_check_counter; 573 if (mb_check_counter++ % 100 != 0) 574 return 0; 575 } 576 577 while (order > 1) { 578 buddy = mb_find_buddy(e4b, order, &max); 579 MB_CHECK_ASSERT(buddy); 580 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 581 MB_CHECK_ASSERT(buddy2); 582 MB_CHECK_ASSERT(buddy != buddy2); 583 MB_CHECK_ASSERT(max * 2 == max2); 584 585 count = 0; 586 for (i = 0; i < max; i++) { 587 588 if (mb_test_bit(i, buddy)) { 589 /* only single bit in buddy2 may be 1 */ 590 if (!mb_test_bit(i << 1, buddy2)) { 591 MB_CHECK_ASSERT( 592 mb_test_bit((i<<1)+1, buddy2)); 593 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 594 MB_CHECK_ASSERT( 595 mb_test_bit(i << 1, buddy2)); 596 } 597 continue; 598 } 599 600 /* both bits in buddy2 must be 1 */ 601 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 602 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 603 604 for (j = 0; j < (1 << order); j++) { 605 k = (i * (1 << order)) + j; 606 MB_CHECK_ASSERT( 607 !mb_test_bit(k, e4b->bd_bitmap)); 608 } 609 count++; 610 } 611 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 612 order--; 613 } 614 615 fstart = -1; 616 buddy = mb_find_buddy(e4b, 0, &max); 617 for (i = 0; i < max; i++) { 618 if (!mb_test_bit(i, buddy)) { 619 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 620 if (fstart == -1) { 621 fragments++; 622 fstart = i; 623 } 624 continue; 625 } 626 fstart = -1; 627 /* check used bits only */ 628 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 629 buddy2 = mb_find_buddy(e4b, j, &max2); 630 k = i >> j; 631 MB_CHECK_ASSERT(k < max2); 632 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 633 } 634 } 635 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 636 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 637 638 grp = ext4_get_group_info(sb, e4b->bd_group); 639 list_for_each(cur, &grp->bb_prealloc_list) { 640 ext4_group_t groupnr; 641 struct ext4_prealloc_space *pa; 642 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 643 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 644 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 645 for (i = 0; i < pa->pa_len; i++) 646 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 647 } 648 return 0; 649 } 650 #undef MB_CHECK_ASSERT 651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 652 __FILE__, __func__, __LINE__) 653 #else 654 #define mb_check_buddy(e4b) 655 #endif 656 657 /* 658 * Divide blocks started from @first with length @len into 659 * smaller chunks with power of 2 blocks. 660 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 661 * then increase bb_counters[] for corresponded chunk size. 662 */ 663 static void ext4_mb_mark_free_simple(struct super_block *sb, 664 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 665 struct ext4_group_info *grp) 666 { 667 struct ext4_sb_info *sbi = EXT4_SB(sb); 668 ext4_grpblk_t min; 669 ext4_grpblk_t max; 670 ext4_grpblk_t chunk; 671 unsigned short border; 672 673 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 674 675 border = 2 << sb->s_blocksize_bits; 676 677 while (len > 0) { 678 /* find how many blocks can be covered since this position */ 679 max = ffs(first | border) - 1; 680 681 /* find how many blocks of power 2 we need to mark */ 682 min = fls(len) - 1; 683 684 if (max < min) 685 min = max; 686 chunk = 1 << min; 687 688 /* mark multiblock chunks only */ 689 grp->bb_counters[min]++; 690 if (min > 0) 691 mb_clear_bit(first >> min, 692 buddy + sbi->s_mb_offsets[min]); 693 694 len -= chunk; 695 first += chunk; 696 } 697 } 698 699 /* 700 * Cache the order of the largest free extent we have available in this block 701 * group. 702 */ 703 static void 704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 705 { 706 int i; 707 int bits; 708 709 grp->bb_largest_free_order = -1; /* uninit */ 710 711 bits = sb->s_blocksize_bits + 1; 712 for (i = bits; i >= 0; i--) { 713 if (grp->bb_counters[i] > 0) { 714 grp->bb_largest_free_order = i; 715 break; 716 } 717 } 718 } 719 720 static noinline_for_stack 721 void ext4_mb_generate_buddy(struct super_block *sb, 722 void *buddy, void *bitmap, ext4_group_t group) 723 { 724 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 725 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 726 ext4_grpblk_t i = 0; 727 ext4_grpblk_t first; 728 ext4_grpblk_t len; 729 unsigned free = 0; 730 unsigned fragments = 0; 731 unsigned long long period = get_cycles(); 732 733 /* initialize buddy from bitmap which is aggregation 734 * of on-disk bitmap and preallocations */ 735 i = mb_find_next_zero_bit(bitmap, max, 0); 736 grp->bb_first_free = i; 737 while (i < max) { 738 fragments++; 739 first = i; 740 i = mb_find_next_bit(bitmap, max, i); 741 len = i - first; 742 free += len; 743 if (len > 1) 744 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 745 else 746 grp->bb_counters[0]++; 747 if (i < max) 748 i = mb_find_next_zero_bit(bitmap, max, i); 749 } 750 grp->bb_fragments = fragments; 751 752 if (free != grp->bb_free) { 753 ext4_grp_locked_error(sb, group, 0, 0, 754 "%u clusters in bitmap, %u in gd", 755 free, grp->bb_free); 756 /* 757 * If we intent to continue, we consider group descritor 758 * corrupt and update bb_free using bitmap value 759 */ 760 grp->bb_free = free; 761 } 762 mb_set_largest_free_order(sb, grp); 763 764 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 765 766 period = get_cycles() - period; 767 spin_lock(&EXT4_SB(sb)->s_bal_lock); 768 EXT4_SB(sb)->s_mb_buddies_generated++; 769 EXT4_SB(sb)->s_mb_generation_time += period; 770 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 771 } 772 773 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 774 { 775 int count; 776 int order = 1; 777 void *buddy; 778 779 while ((buddy = mb_find_buddy(e4b, order++, &count))) { 780 ext4_set_bits(buddy, 0, count); 781 } 782 e4b->bd_info->bb_fragments = 0; 783 memset(e4b->bd_info->bb_counters, 0, 784 sizeof(*e4b->bd_info->bb_counters) * 785 (e4b->bd_sb->s_blocksize_bits + 2)); 786 787 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 788 e4b->bd_bitmap, e4b->bd_group); 789 } 790 791 /* The buddy information is attached the buddy cache inode 792 * for convenience. The information regarding each group 793 * is loaded via ext4_mb_load_buddy. The information involve 794 * block bitmap and buddy information. The information are 795 * stored in the inode as 796 * 797 * { page } 798 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 799 * 800 * 801 * one block each for bitmap and buddy information. 802 * So for each group we take up 2 blocks. A page can 803 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 804 * So it can have information regarding groups_per_page which 805 * is blocks_per_page/2 806 * 807 * Locking note: This routine takes the block group lock of all groups 808 * for this page; do not hold this lock when calling this routine! 809 */ 810 811 static int ext4_mb_init_cache(struct page *page, char *incore) 812 { 813 ext4_group_t ngroups; 814 int blocksize; 815 int blocks_per_page; 816 int groups_per_page; 817 int err = 0; 818 int i; 819 ext4_group_t first_group, group; 820 int first_block; 821 struct super_block *sb; 822 struct buffer_head *bhs; 823 struct buffer_head **bh = NULL; 824 struct inode *inode; 825 char *data; 826 char *bitmap; 827 struct ext4_group_info *grinfo; 828 829 mb_debug(1, "init page %lu\n", page->index); 830 831 inode = page->mapping->host; 832 sb = inode->i_sb; 833 ngroups = ext4_get_groups_count(sb); 834 blocksize = 1 << inode->i_blkbits; 835 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 836 837 groups_per_page = blocks_per_page >> 1; 838 if (groups_per_page == 0) 839 groups_per_page = 1; 840 841 /* allocate buffer_heads to read bitmaps */ 842 if (groups_per_page > 1) { 843 i = sizeof(struct buffer_head *) * groups_per_page; 844 bh = kzalloc(i, GFP_NOFS); 845 if (bh == NULL) { 846 err = -ENOMEM; 847 goto out; 848 } 849 } else 850 bh = &bhs; 851 852 first_group = page->index * blocks_per_page / 2; 853 854 /* read all groups the page covers into the cache */ 855 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 856 if (group >= ngroups) 857 break; 858 859 grinfo = ext4_get_group_info(sb, group); 860 /* 861 * If page is uptodate then we came here after online resize 862 * which added some new uninitialized group info structs, so 863 * we must skip all initialized uptodate buddies on the page, 864 * which may be currently in use by an allocating task. 865 */ 866 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 867 bh[i] = NULL; 868 continue; 869 } 870 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) { 871 err = -ENOMEM; 872 goto out; 873 } 874 mb_debug(1, "read bitmap for group %u\n", group); 875 } 876 877 /* wait for I/O completion */ 878 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 879 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) { 880 err = -EIO; 881 goto out; 882 } 883 } 884 885 first_block = page->index * blocks_per_page; 886 for (i = 0; i < blocks_per_page; i++) { 887 group = (first_block + i) >> 1; 888 if (group >= ngroups) 889 break; 890 891 if (!bh[group - first_group]) 892 /* skip initialized uptodate buddy */ 893 continue; 894 895 /* 896 * data carry information regarding this 897 * particular group in the format specified 898 * above 899 * 900 */ 901 data = page_address(page) + (i * blocksize); 902 bitmap = bh[group - first_group]->b_data; 903 904 /* 905 * We place the buddy block and bitmap block 906 * close together 907 */ 908 if ((first_block + i) & 1) { 909 /* this is block of buddy */ 910 BUG_ON(incore == NULL); 911 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 912 group, page->index, i * blocksize); 913 trace_ext4_mb_buddy_bitmap_load(sb, group); 914 grinfo = ext4_get_group_info(sb, group); 915 grinfo->bb_fragments = 0; 916 memset(grinfo->bb_counters, 0, 917 sizeof(*grinfo->bb_counters) * 918 (sb->s_blocksize_bits+2)); 919 /* 920 * incore got set to the group block bitmap below 921 */ 922 ext4_lock_group(sb, group); 923 /* init the buddy */ 924 memset(data, 0xff, blocksize); 925 ext4_mb_generate_buddy(sb, data, incore, group); 926 ext4_unlock_group(sb, group); 927 incore = NULL; 928 } else { 929 /* this is block of bitmap */ 930 BUG_ON(incore != NULL); 931 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 932 group, page->index, i * blocksize); 933 trace_ext4_mb_bitmap_load(sb, group); 934 935 /* see comments in ext4_mb_put_pa() */ 936 ext4_lock_group(sb, group); 937 memcpy(data, bitmap, blocksize); 938 939 /* mark all preallocated blks used in in-core bitmap */ 940 ext4_mb_generate_from_pa(sb, data, group); 941 ext4_mb_generate_from_freelist(sb, data, group); 942 ext4_unlock_group(sb, group); 943 944 /* set incore so that the buddy information can be 945 * generated using this 946 */ 947 incore = data; 948 } 949 } 950 SetPageUptodate(page); 951 952 out: 953 if (bh) { 954 for (i = 0; i < groups_per_page; i++) 955 brelse(bh[i]); 956 if (bh != &bhs) 957 kfree(bh); 958 } 959 return err; 960 } 961 962 /* 963 * Lock the buddy and bitmap pages. This make sure other parallel init_group 964 * on the same buddy page doesn't happen whild holding the buddy page lock. 965 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 966 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 967 */ 968 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 969 ext4_group_t group, struct ext4_buddy *e4b) 970 { 971 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 972 int block, pnum, poff; 973 int blocks_per_page; 974 struct page *page; 975 976 e4b->bd_buddy_page = NULL; 977 e4b->bd_bitmap_page = NULL; 978 979 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 980 /* 981 * the buddy cache inode stores the block bitmap 982 * and buddy information in consecutive blocks. 983 * So for each group we need two blocks. 984 */ 985 block = group * 2; 986 pnum = block / blocks_per_page; 987 poff = block % blocks_per_page; 988 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 989 if (!page) 990 return -EIO; 991 BUG_ON(page->mapping != inode->i_mapping); 992 e4b->bd_bitmap_page = page; 993 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 994 995 if (blocks_per_page >= 2) { 996 /* buddy and bitmap are on the same page */ 997 return 0; 998 } 999 1000 block++; 1001 pnum = block / blocks_per_page; 1002 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1003 if (!page) 1004 return -EIO; 1005 BUG_ON(page->mapping != inode->i_mapping); 1006 e4b->bd_buddy_page = page; 1007 return 0; 1008 } 1009 1010 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1011 { 1012 if (e4b->bd_bitmap_page) { 1013 unlock_page(e4b->bd_bitmap_page); 1014 page_cache_release(e4b->bd_bitmap_page); 1015 } 1016 if (e4b->bd_buddy_page) { 1017 unlock_page(e4b->bd_buddy_page); 1018 page_cache_release(e4b->bd_buddy_page); 1019 } 1020 } 1021 1022 /* 1023 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1024 * block group lock of all groups for this page; do not hold the BG lock when 1025 * calling this routine! 1026 */ 1027 static noinline_for_stack 1028 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) 1029 { 1030 1031 struct ext4_group_info *this_grp; 1032 struct ext4_buddy e4b; 1033 struct page *page; 1034 int ret = 0; 1035 1036 might_sleep(); 1037 mb_debug(1, "init group %u\n", group); 1038 this_grp = ext4_get_group_info(sb, group); 1039 /* 1040 * This ensures that we don't reinit the buddy cache 1041 * page which map to the group from which we are already 1042 * allocating. If we are looking at the buddy cache we would 1043 * have taken a reference using ext4_mb_load_buddy and that 1044 * would have pinned buddy page to page cache. 1045 */ 1046 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b); 1047 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1048 /* 1049 * somebody initialized the group 1050 * return without doing anything 1051 */ 1052 goto err; 1053 } 1054 1055 page = e4b.bd_bitmap_page; 1056 ret = ext4_mb_init_cache(page, NULL); 1057 if (ret) 1058 goto err; 1059 if (!PageUptodate(page)) { 1060 ret = -EIO; 1061 goto err; 1062 } 1063 mark_page_accessed(page); 1064 1065 if (e4b.bd_buddy_page == NULL) { 1066 /* 1067 * If both the bitmap and buddy are in 1068 * the same page we don't need to force 1069 * init the buddy 1070 */ 1071 ret = 0; 1072 goto err; 1073 } 1074 /* init buddy cache */ 1075 page = e4b.bd_buddy_page; 1076 ret = ext4_mb_init_cache(page, e4b.bd_bitmap); 1077 if (ret) 1078 goto err; 1079 if (!PageUptodate(page)) { 1080 ret = -EIO; 1081 goto err; 1082 } 1083 mark_page_accessed(page); 1084 err: 1085 ext4_mb_put_buddy_page_lock(&e4b); 1086 return ret; 1087 } 1088 1089 /* 1090 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1091 * block group lock of all groups for this page; do not hold the BG lock when 1092 * calling this routine! 1093 */ 1094 static noinline_for_stack int 1095 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1096 struct ext4_buddy *e4b) 1097 { 1098 int blocks_per_page; 1099 int block; 1100 int pnum; 1101 int poff; 1102 struct page *page; 1103 int ret; 1104 struct ext4_group_info *grp; 1105 struct ext4_sb_info *sbi = EXT4_SB(sb); 1106 struct inode *inode = sbi->s_buddy_cache; 1107 1108 might_sleep(); 1109 mb_debug(1, "load group %u\n", group); 1110 1111 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1112 grp = ext4_get_group_info(sb, group); 1113 1114 e4b->bd_blkbits = sb->s_blocksize_bits; 1115 e4b->bd_info = grp; 1116 e4b->bd_sb = sb; 1117 e4b->bd_group = group; 1118 e4b->bd_buddy_page = NULL; 1119 e4b->bd_bitmap_page = NULL; 1120 1121 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1122 /* 1123 * we need full data about the group 1124 * to make a good selection 1125 */ 1126 ret = ext4_mb_init_group(sb, group); 1127 if (ret) 1128 return ret; 1129 } 1130 1131 /* 1132 * the buddy cache inode stores the block bitmap 1133 * and buddy information in consecutive blocks. 1134 * So for each group we need two blocks. 1135 */ 1136 block = group * 2; 1137 pnum = block / blocks_per_page; 1138 poff = block % blocks_per_page; 1139 1140 /* we could use find_or_create_page(), but it locks page 1141 * what we'd like to avoid in fast path ... */ 1142 page = find_get_page(inode->i_mapping, pnum); 1143 if (page == NULL || !PageUptodate(page)) { 1144 if (page) 1145 /* 1146 * drop the page reference and try 1147 * to get the page with lock. If we 1148 * are not uptodate that implies 1149 * somebody just created the page but 1150 * is yet to initialize the same. So 1151 * wait for it to initialize. 1152 */ 1153 page_cache_release(page); 1154 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1155 if (page) { 1156 BUG_ON(page->mapping != inode->i_mapping); 1157 if (!PageUptodate(page)) { 1158 ret = ext4_mb_init_cache(page, NULL); 1159 if (ret) { 1160 unlock_page(page); 1161 goto err; 1162 } 1163 mb_cmp_bitmaps(e4b, page_address(page) + 1164 (poff * sb->s_blocksize)); 1165 } 1166 unlock_page(page); 1167 } 1168 } 1169 if (page == NULL || !PageUptodate(page)) { 1170 ret = -EIO; 1171 goto err; 1172 } 1173 e4b->bd_bitmap_page = page; 1174 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1175 mark_page_accessed(page); 1176 1177 block++; 1178 pnum = block / blocks_per_page; 1179 poff = block % blocks_per_page; 1180 1181 page = find_get_page(inode->i_mapping, pnum); 1182 if (page == NULL || !PageUptodate(page)) { 1183 if (page) 1184 page_cache_release(page); 1185 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1186 if (page) { 1187 BUG_ON(page->mapping != inode->i_mapping); 1188 if (!PageUptodate(page)) { 1189 ret = ext4_mb_init_cache(page, e4b->bd_bitmap); 1190 if (ret) { 1191 unlock_page(page); 1192 goto err; 1193 } 1194 } 1195 unlock_page(page); 1196 } 1197 } 1198 if (page == NULL || !PageUptodate(page)) { 1199 ret = -EIO; 1200 goto err; 1201 } 1202 e4b->bd_buddy_page = page; 1203 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1204 mark_page_accessed(page); 1205 1206 BUG_ON(e4b->bd_bitmap_page == NULL); 1207 BUG_ON(e4b->bd_buddy_page == NULL); 1208 1209 return 0; 1210 1211 err: 1212 if (page) 1213 page_cache_release(page); 1214 if (e4b->bd_bitmap_page) 1215 page_cache_release(e4b->bd_bitmap_page); 1216 if (e4b->bd_buddy_page) 1217 page_cache_release(e4b->bd_buddy_page); 1218 e4b->bd_buddy = NULL; 1219 e4b->bd_bitmap = NULL; 1220 return ret; 1221 } 1222 1223 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1224 { 1225 if (e4b->bd_bitmap_page) 1226 page_cache_release(e4b->bd_bitmap_page); 1227 if (e4b->bd_buddy_page) 1228 page_cache_release(e4b->bd_buddy_page); 1229 } 1230 1231 1232 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1233 { 1234 int order = 1; 1235 void *bb; 1236 1237 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1238 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1239 1240 bb = e4b->bd_buddy; 1241 while (order <= e4b->bd_blkbits + 1) { 1242 block = block >> 1; 1243 if (!mb_test_bit(block, bb)) { 1244 /* this block is part of buddy of order 'order' */ 1245 return order; 1246 } 1247 bb += 1 << (e4b->bd_blkbits - order); 1248 order++; 1249 } 1250 return 0; 1251 } 1252 1253 static void mb_clear_bits(void *bm, int cur, int len) 1254 { 1255 __u32 *addr; 1256 1257 len = cur + len; 1258 while (cur < len) { 1259 if ((cur & 31) == 0 && (len - cur) >= 32) { 1260 /* fast path: clear whole word at once */ 1261 addr = bm + (cur >> 3); 1262 *addr = 0; 1263 cur += 32; 1264 continue; 1265 } 1266 mb_clear_bit(cur, bm); 1267 cur++; 1268 } 1269 } 1270 1271 /* clear bits in given range 1272 * will return first found zero bit if any, -1 otherwise 1273 */ 1274 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1275 { 1276 __u32 *addr; 1277 int zero_bit = -1; 1278 1279 len = cur + len; 1280 while (cur < len) { 1281 if ((cur & 31) == 0 && (len - cur) >= 32) { 1282 /* fast path: clear whole word at once */ 1283 addr = bm + (cur >> 3); 1284 if (*addr != (__u32)(-1) && zero_bit == -1) 1285 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1286 *addr = 0; 1287 cur += 32; 1288 continue; 1289 } 1290 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1291 zero_bit = cur; 1292 cur++; 1293 } 1294 1295 return zero_bit; 1296 } 1297 1298 void ext4_set_bits(void *bm, int cur, int len) 1299 { 1300 __u32 *addr; 1301 1302 len = cur + len; 1303 while (cur < len) { 1304 if ((cur & 31) == 0 && (len - cur) >= 32) { 1305 /* fast path: set whole word at once */ 1306 addr = bm + (cur >> 3); 1307 *addr = 0xffffffff; 1308 cur += 32; 1309 continue; 1310 } 1311 mb_set_bit(cur, bm); 1312 cur++; 1313 } 1314 } 1315 1316 /* 1317 * _________________________________________________________________ */ 1318 1319 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1320 { 1321 if (mb_test_bit(*bit + side, bitmap)) { 1322 mb_clear_bit(*bit, bitmap); 1323 (*bit) -= side; 1324 return 1; 1325 } 1326 else { 1327 (*bit) += side; 1328 mb_set_bit(*bit, bitmap); 1329 return -1; 1330 } 1331 } 1332 1333 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1334 { 1335 int max; 1336 int order = 1; 1337 void *buddy = mb_find_buddy(e4b, order, &max); 1338 1339 while (buddy) { 1340 void *buddy2; 1341 1342 /* Bits in range [first; last] are known to be set since 1343 * corresponding blocks were allocated. Bits in range 1344 * (first; last) will stay set because they form buddies on 1345 * upper layer. We just deal with borders if they don't 1346 * align with upper layer and then go up. 1347 * Releasing entire group is all about clearing 1348 * single bit of highest order buddy. 1349 */ 1350 1351 /* Example: 1352 * --------------------------------- 1353 * | 1 | 1 | 1 | 1 | 1354 * --------------------------------- 1355 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1356 * --------------------------------- 1357 * 0 1 2 3 4 5 6 7 1358 * \_____________________/ 1359 * 1360 * Neither [1] nor [6] is aligned to above layer. 1361 * Left neighbour [0] is free, so mark it busy, 1362 * decrease bb_counters and extend range to 1363 * [0; 6] 1364 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1365 * mark [6] free, increase bb_counters and shrink range to 1366 * [0; 5]. 1367 * Then shift range to [0; 2], go up and do the same. 1368 */ 1369 1370 1371 if (first & 1) 1372 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1373 if (!(last & 1)) 1374 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1375 if (first > last) 1376 break; 1377 order++; 1378 1379 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1380 mb_clear_bits(buddy, first, last - first + 1); 1381 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1382 break; 1383 } 1384 first >>= 1; 1385 last >>= 1; 1386 buddy = buddy2; 1387 } 1388 } 1389 1390 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1391 int first, int count) 1392 { 1393 int left_is_free = 0; 1394 int right_is_free = 0; 1395 int block; 1396 int last = first + count - 1; 1397 struct super_block *sb = e4b->bd_sb; 1398 1399 BUG_ON(last >= (sb->s_blocksize << 3)); 1400 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1401 mb_check_buddy(e4b); 1402 mb_free_blocks_double(inode, e4b, first, count); 1403 1404 e4b->bd_info->bb_free += count; 1405 if (first < e4b->bd_info->bb_first_free) 1406 e4b->bd_info->bb_first_free = first; 1407 1408 /* access memory sequentially: check left neighbour, 1409 * clear range and then check right neighbour 1410 */ 1411 if (first != 0) 1412 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1413 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1414 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1415 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1416 1417 if (unlikely(block != -1)) { 1418 ext4_fsblk_t blocknr; 1419 1420 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1421 blocknr += EXT4_C2B(EXT4_SB(sb), block); 1422 ext4_grp_locked_error(sb, e4b->bd_group, 1423 inode ? inode->i_ino : 0, 1424 blocknr, 1425 "freeing already freed block " 1426 "(bit %u)", block); 1427 mb_regenerate_buddy(e4b); 1428 goto done; 1429 } 1430 1431 /* let's maintain fragments counter */ 1432 if (left_is_free && right_is_free) 1433 e4b->bd_info->bb_fragments--; 1434 else if (!left_is_free && !right_is_free) 1435 e4b->bd_info->bb_fragments++; 1436 1437 /* buddy[0] == bd_bitmap is a special case, so handle 1438 * it right away and let mb_buddy_mark_free stay free of 1439 * zero order checks. 1440 * Check if neighbours are to be coaleasced, 1441 * adjust bitmap bb_counters and borders appropriately. 1442 */ 1443 if (first & 1) { 1444 first += !left_is_free; 1445 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1446 } 1447 if (!(last & 1)) { 1448 last -= !right_is_free; 1449 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1450 } 1451 1452 if (first <= last) 1453 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1454 1455 done: 1456 mb_set_largest_free_order(sb, e4b->bd_info); 1457 mb_check_buddy(e4b); 1458 } 1459 1460 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1461 int needed, struct ext4_free_extent *ex) 1462 { 1463 int next = block; 1464 int max, order; 1465 void *buddy; 1466 1467 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1468 BUG_ON(ex == NULL); 1469 1470 buddy = mb_find_buddy(e4b, 0, &max); 1471 BUG_ON(buddy == NULL); 1472 BUG_ON(block >= max); 1473 if (mb_test_bit(block, buddy)) { 1474 ex->fe_len = 0; 1475 ex->fe_start = 0; 1476 ex->fe_group = 0; 1477 return 0; 1478 } 1479 1480 /* find actual order */ 1481 order = mb_find_order_for_block(e4b, block); 1482 block = block >> order; 1483 1484 ex->fe_len = 1 << order; 1485 ex->fe_start = block << order; 1486 ex->fe_group = e4b->bd_group; 1487 1488 /* calc difference from given start */ 1489 next = next - ex->fe_start; 1490 ex->fe_len -= next; 1491 ex->fe_start += next; 1492 1493 while (needed > ex->fe_len && 1494 mb_find_buddy(e4b, order, &max)) { 1495 1496 if (block + 1 >= max) 1497 break; 1498 1499 next = (block + 1) * (1 << order); 1500 if (mb_test_bit(next, e4b->bd_bitmap)) 1501 break; 1502 1503 order = mb_find_order_for_block(e4b, next); 1504 1505 block = next >> order; 1506 ex->fe_len += 1 << order; 1507 } 1508 1509 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1510 return ex->fe_len; 1511 } 1512 1513 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1514 { 1515 int ord; 1516 int mlen = 0; 1517 int max = 0; 1518 int cur; 1519 int start = ex->fe_start; 1520 int len = ex->fe_len; 1521 unsigned ret = 0; 1522 int len0 = len; 1523 void *buddy; 1524 1525 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1526 BUG_ON(e4b->bd_group != ex->fe_group); 1527 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1528 mb_check_buddy(e4b); 1529 mb_mark_used_double(e4b, start, len); 1530 1531 e4b->bd_info->bb_free -= len; 1532 if (e4b->bd_info->bb_first_free == start) 1533 e4b->bd_info->bb_first_free += len; 1534 1535 /* let's maintain fragments counter */ 1536 if (start != 0) 1537 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1538 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1539 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1540 if (mlen && max) 1541 e4b->bd_info->bb_fragments++; 1542 else if (!mlen && !max) 1543 e4b->bd_info->bb_fragments--; 1544 1545 /* let's maintain buddy itself */ 1546 while (len) { 1547 ord = mb_find_order_for_block(e4b, start); 1548 1549 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1550 /* the whole chunk may be allocated at once! */ 1551 mlen = 1 << ord; 1552 buddy = mb_find_buddy(e4b, ord, &max); 1553 BUG_ON((start >> ord) >= max); 1554 mb_set_bit(start >> ord, buddy); 1555 e4b->bd_info->bb_counters[ord]--; 1556 start += mlen; 1557 len -= mlen; 1558 BUG_ON(len < 0); 1559 continue; 1560 } 1561 1562 /* store for history */ 1563 if (ret == 0) 1564 ret = len | (ord << 16); 1565 1566 /* we have to split large buddy */ 1567 BUG_ON(ord <= 0); 1568 buddy = mb_find_buddy(e4b, ord, &max); 1569 mb_set_bit(start >> ord, buddy); 1570 e4b->bd_info->bb_counters[ord]--; 1571 1572 ord--; 1573 cur = (start >> ord) & ~1U; 1574 buddy = mb_find_buddy(e4b, ord, &max); 1575 mb_clear_bit(cur, buddy); 1576 mb_clear_bit(cur + 1, buddy); 1577 e4b->bd_info->bb_counters[ord]++; 1578 e4b->bd_info->bb_counters[ord]++; 1579 } 1580 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1581 1582 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1583 mb_check_buddy(e4b); 1584 1585 return ret; 1586 } 1587 1588 /* 1589 * Must be called under group lock! 1590 */ 1591 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1592 struct ext4_buddy *e4b) 1593 { 1594 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1595 int ret; 1596 1597 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1598 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1599 1600 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1601 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1602 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1603 1604 /* preallocation can change ac_b_ex, thus we store actually 1605 * allocated blocks for history */ 1606 ac->ac_f_ex = ac->ac_b_ex; 1607 1608 ac->ac_status = AC_STATUS_FOUND; 1609 ac->ac_tail = ret & 0xffff; 1610 ac->ac_buddy = ret >> 16; 1611 1612 /* 1613 * take the page reference. We want the page to be pinned 1614 * so that we don't get a ext4_mb_init_cache_call for this 1615 * group until we update the bitmap. That would mean we 1616 * double allocate blocks. The reference is dropped 1617 * in ext4_mb_release_context 1618 */ 1619 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1620 get_page(ac->ac_bitmap_page); 1621 ac->ac_buddy_page = e4b->bd_buddy_page; 1622 get_page(ac->ac_buddy_page); 1623 /* store last allocated for subsequent stream allocation */ 1624 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1625 spin_lock(&sbi->s_md_lock); 1626 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1627 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1628 spin_unlock(&sbi->s_md_lock); 1629 } 1630 } 1631 1632 /* 1633 * regular allocator, for general purposes allocation 1634 */ 1635 1636 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1637 struct ext4_buddy *e4b, 1638 int finish_group) 1639 { 1640 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1641 struct ext4_free_extent *bex = &ac->ac_b_ex; 1642 struct ext4_free_extent *gex = &ac->ac_g_ex; 1643 struct ext4_free_extent ex; 1644 int max; 1645 1646 if (ac->ac_status == AC_STATUS_FOUND) 1647 return; 1648 /* 1649 * We don't want to scan for a whole year 1650 */ 1651 if (ac->ac_found > sbi->s_mb_max_to_scan && 1652 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1653 ac->ac_status = AC_STATUS_BREAK; 1654 return; 1655 } 1656 1657 /* 1658 * Haven't found good chunk so far, let's continue 1659 */ 1660 if (bex->fe_len < gex->fe_len) 1661 return; 1662 1663 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1664 && bex->fe_group == e4b->bd_group) { 1665 /* recheck chunk's availability - we don't know 1666 * when it was found (within this lock-unlock 1667 * period or not) */ 1668 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1669 if (max >= gex->fe_len) { 1670 ext4_mb_use_best_found(ac, e4b); 1671 return; 1672 } 1673 } 1674 } 1675 1676 /* 1677 * The routine checks whether found extent is good enough. If it is, 1678 * then the extent gets marked used and flag is set to the context 1679 * to stop scanning. Otherwise, the extent is compared with the 1680 * previous found extent and if new one is better, then it's stored 1681 * in the context. Later, the best found extent will be used, if 1682 * mballoc can't find good enough extent. 1683 * 1684 * FIXME: real allocation policy is to be designed yet! 1685 */ 1686 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1687 struct ext4_free_extent *ex, 1688 struct ext4_buddy *e4b) 1689 { 1690 struct ext4_free_extent *bex = &ac->ac_b_ex; 1691 struct ext4_free_extent *gex = &ac->ac_g_ex; 1692 1693 BUG_ON(ex->fe_len <= 0); 1694 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1695 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1696 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1697 1698 ac->ac_found++; 1699 1700 /* 1701 * The special case - take what you catch first 1702 */ 1703 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1704 *bex = *ex; 1705 ext4_mb_use_best_found(ac, e4b); 1706 return; 1707 } 1708 1709 /* 1710 * Let's check whether the chuck is good enough 1711 */ 1712 if (ex->fe_len == gex->fe_len) { 1713 *bex = *ex; 1714 ext4_mb_use_best_found(ac, e4b); 1715 return; 1716 } 1717 1718 /* 1719 * If this is first found extent, just store it in the context 1720 */ 1721 if (bex->fe_len == 0) { 1722 *bex = *ex; 1723 return; 1724 } 1725 1726 /* 1727 * If new found extent is better, store it in the context 1728 */ 1729 if (bex->fe_len < gex->fe_len) { 1730 /* if the request isn't satisfied, any found extent 1731 * larger than previous best one is better */ 1732 if (ex->fe_len > bex->fe_len) 1733 *bex = *ex; 1734 } else if (ex->fe_len > gex->fe_len) { 1735 /* if the request is satisfied, then we try to find 1736 * an extent that still satisfy the request, but is 1737 * smaller than previous one */ 1738 if (ex->fe_len < bex->fe_len) 1739 *bex = *ex; 1740 } 1741 1742 ext4_mb_check_limits(ac, e4b, 0); 1743 } 1744 1745 static noinline_for_stack 1746 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1747 struct ext4_buddy *e4b) 1748 { 1749 struct ext4_free_extent ex = ac->ac_b_ex; 1750 ext4_group_t group = ex.fe_group; 1751 int max; 1752 int err; 1753 1754 BUG_ON(ex.fe_len <= 0); 1755 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1756 if (err) 1757 return err; 1758 1759 ext4_lock_group(ac->ac_sb, group); 1760 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1761 1762 if (max > 0) { 1763 ac->ac_b_ex = ex; 1764 ext4_mb_use_best_found(ac, e4b); 1765 } 1766 1767 ext4_unlock_group(ac->ac_sb, group); 1768 ext4_mb_unload_buddy(e4b); 1769 1770 return 0; 1771 } 1772 1773 static noinline_for_stack 1774 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1775 struct ext4_buddy *e4b) 1776 { 1777 ext4_group_t group = ac->ac_g_ex.fe_group; 1778 int max; 1779 int err; 1780 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1781 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1782 struct ext4_free_extent ex; 1783 1784 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1785 return 0; 1786 if (grp->bb_free == 0) 1787 return 0; 1788 1789 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1790 if (err) 1791 return err; 1792 1793 ext4_lock_group(ac->ac_sb, group); 1794 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1795 ac->ac_g_ex.fe_len, &ex); 1796 1797 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1798 ext4_fsblk_t start; 1799 1800 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1801 ex.fe_start; 1802 /* use do_div to get remainder (would be 64-bit modulo) */ 1803 if (do_div(start, sbi->s_stripe) == 0) { 1804 ac->ac_found++; 1805 ac->ac_b_ex = ex; 1806 ext4_mb_use_best_found(ac, e4b); 1807 } 1808 } else if (max >= ac->ac_g_ex.fe_len) { 1809 BUG_ON(ex.fe_len <= 0); 1810 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1811 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1812 ac->ac_found++; 1813 ac->ac_b_ex = ex; 1814 ext4_mb_use_best_found(ac, e4b); 1815 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1816 /* Sometimes, caller may want to merge even small 1817 * number of blocks to an existing extent */ 1818 BUG_ON(ex.fe_len <= 0); 1819 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1820 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1821 ac->ac_found++; 1822 ac->ac_b_ex = ex; 1823 ext4_mb_use_best_found(ac, e4b); 1824 } 1825 ext4_unlock_group(ac->ac_sb, group); 1826 ext4_mb_unload_buddy(e4b); 1827 1828 return 0; 1829 } 1830 1831 /* 1832 * The routine scans buddy structures (not bitmap!) from given order 1833 * to max order and tries to find big enough chunk to satisfy the req 1834 */ 1835 static noinline_for_stack 1836 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1837 struct ext4_buddy *e4b) 1838 { 1839 struct super_block *sb = ac->ac_sb; 1840 struct ext4_group_info *grp = e4b->bd_info; 1841 void *buddy; 1842 int i; 1843 int k; 1844 int max; 1845 1846 BUG_ON(ac->ac_2order <= 0); 1847 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1848 if (grp->bb_counters[i] == 0) 1849 continue; 1850 1851 buddy = mb_find_buddy(e4b, i, &max); 1852 BUG_ON(buddy == NULL); 1853 1854 k = mb_find_next_zero_bit(buddy, max, 0); 1855 BUG_ON(k >= max); 1856 1857 ac->ac_found++; 1858 1859 ac->ac_b_ex.fe_len = 1 << i; 1860 ac->ac_b_ex.fe_start = k << i; 1861 ac->ac_b_ex.fe_group = e4b->bd_group; 1862 1863 ext4_mb_use_best_found(ac, e4b); 1864 1865 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1866 1867 if (EXT4_SB(sb)->s_mb_stats) 1868 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1869 1870 break; 1871 } 1872 } 1873 1874 /* 1875 * The routine scans the group and measures all found extents. 1876 * In order to optimize scanning, caller must pass number of 1877 * free blocks in the group, so the routine can know upper limit. 1878 */ 1879 static noinline_for_stack 1880 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1881 struct ext4_buddy *e4b) 1882 { 1883 struct super_block *sb = ac->ac_sb; 1884 void *bitmap = e4b->bd_bitmap; 1885 struct ext4_free_extent ex; 1886 int i; 1887 int free; 1888 1889 free = e4b->bd_info->bb_free; 1890 BUG_ON(free <= 0); 1891 1892 i = e4b->bd_info->bb_first_free; 1893 1894 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1895 i = mb_find_next_zero_bit(bitmap, 1896 EXT4_CLUSTERS_PER_GROUP(sb), i); 1897 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1898 /* 1899 * IF we have corrupt bitmap, we won't find any 1900 * free blocks even though group info says we 1901 * we have free blocks 1902 */ 1903 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1904 "%d free clusters as per " 1905 "group info. But bitmap says 0", 1906 free); 1907 break; 1908 } 1909 1910 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1911 BUG_ON(ex.fe_len <= 0); 1912 if (free < ex.fe_len) { 1913 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1914 "%d free clusters as per " 1915 "group info. But got %d blocks", 1916 free, ex.fe_len); 1917 /* 1918 * The number of free blocks differs. This mostly 1919 * indicate that the bitmap is corrupt. So exit 1920 * without claiming the space. 1921 */ 1922 break; 1923 } 1924 1925 ext4_mb_measure_extent(ac, &ex, e4b); 1926 1927 i += ex.fe_len; 1928 free -= ex.fe_len; 1929 } 1930 1931 ext4_mb_check_limits(ac, e4b, 1); 1932 } 1933 1934 /* 1935 * This is a special case for storages like raid5 1936 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1937 */ 1938 static noinline_for_stack 1939 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1940 struct ext4_buddy *e4b) 1941 { 1942 struct super_block *sb = ac->ac_sb; 1943 struct ext4_sb_info *sbi = EXT4_SB(sb); 1944 void *bitmap = e4b->bd_bitmap; 1945 struct ext4_free_extent ex; 1946 ext4_fsblk_t first_group_block; 1947 ext4_fsblk_t a; 1948 ext4_grpblk_t i; 1949 int max; 1950 1951 BUG_ON(sbi->s_stripe == 0); 1952 1953 /* find first stripe-aligned block in group */ 1954 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 1955 1956 a = first_group_block + sbi->s_stripe - 1; 1957 do_div(a, sbi->s_stripe); 1958 i = (a * sbi->s_stripe) - first_group_block; 1959 1960 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 1961 if (!mb_test_bit(i, bitmap)) { 1962 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 1963 if (max >= sbi->s_stripe) { 1964 ac->ac_found++; 1965 ac->ac_b_ex = ex; 1966 ext4_mb_use_best_found(ac, e4b); 1967 break; 1968 } 1969 } 1970 i += sbi->s_stripe; 1971 } 1972 } 1973 1974 /* This is now called BEFORE we load the buddy bitmap. */ 1975 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 1976 ext4_group_t group, int cr) 1977 { 1978 unsigned free, fragments; 1979 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 1980 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1981 1982 BUG_ON(cr < 0 || cr >= 4); 1983 1984 free = grp->bb_free; 1985 if (free == 0) 1986 return 0; 1987 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 1988 return 0; 1989 1990 /* We only do this if the grp has never been initialized */ 1991 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1992 int ret = ext4_mb_init_group(ac->ac_sb, group); 1993 if (ret) 1994 return 0; 1995 } 1996 1997 fragments = grp->bb_fragments; 1998 if (fragments == 0) 1999 return 0; 2000 2001 switch (cr) { 2002 case 0: 2003 BUG_ON(ac->ac_2order == 0); 2004 2005 /* Avoid using the first bg of a flexgroup for data files */ 2006 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2007 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2008 ((group % flex_size) == 0)) 2009 return 0; 2010 2011 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) || 2012 (free / fragments) >= ac->ac_g_ex.fe_len) 2013 return 1; 2014 2015 if (grp->bb_largest_free_order < ac->ac_2order) 2016 return 0; 2017 2018 return 1; 2019 case 1: 2020 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2021 return 1; 2022 break; 2023 case 2: 2024 if (free >= ac->ac_g_ex.fe_len) 2025 return 1; 2026 break; 2027 case 3: 2028 return 1; 2029 default: 2030 BUG(); 2031 } 2032 2033 return 0; 2034 } 2035 2036 static noinline_for_stack int 2037 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2038 { 2039 ext4_group_t ngroups, group, i; 2040 int cr; 2041 int err = 0; 2042 struct ext4_sb_info *sbi; 2043 struct super_block *sb; 2044 struct ext4_buddy e4b; 2045 2046 sb = ac->ac_sb; 2047 sbi = EXT4_SB(sb); 2048 ngroups = ext4_get_groups_count(sb); 2049 /* non-extent files are limited to low blocks/groups */ 2050 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2051 ngroups = sbi->s_blockfile_groups; 2052 2053 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2054 2055 /* first, try the goal */ 2056 err = ext4_mb_find_by_goal(ac, &e4b); 2057 if (err || ac->ac_status == AC_STATUS_FOUND) 2058 goto out; 2059 2060 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2061 goto out; 2062 2063 /* 2064 * ac->ac2_order is set only if the fe_len is a power of 2 2065 * if ac2_order is set we also set criteria to 0 so that we 2066 * try exact allocation using buddy. 2067 */ 2068 i = fls(ac->ac_g_ex.fe_len); 2069 ac->ac_2order = 0; 2070 /* 2071 * We search using buddy data only if the order of the request 2072 * is greater than equal to the sbi_s_mb_order2_reqs 2073 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2074 */ 2075 if (i >= sbi->s_mb_order2_reqs) { 2076 /* 2077 * This should tell if fe_len is exactly power of 2 2078 */ 2079 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2080 ac->ac_2order = i - 1; 2081 } 2082 2083 /* if stream allocation is enabled, use global goal */ 2084 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2085 /* TBD: may be hot point */ 2086 spin_lock(&sbi->s_md_lock); 2087 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2088 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2089 spin_unlock(&sbi->s_md_lock); 2090 } 2091 2092 /* Let's just scan groups to find more-less suitable blocks */ 2093 cr = ac->ac_2order ? 0 : 1; 2094 /* 2095 * cr == 0 try to get exact allocation, 2096 * cr == 3 try to get anything 2097 */ 2098 repeat: 2099 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2100 ac->ac_criteria = cr; 2101 /* 2102 * searching for the right group start 2103 * from the goal value specified 2104 */ 2105 group = ac->ac_g_ex.fe_group; 2106 2107 for (i = 0; i < ngroups; group++, i++) { 2108 /* 2109 * Artificially restricted ngroups for non-extent 2110 * files makes group > ngroups possible on first loop. 2111 */ 2112 if (group >= ngroups) 2113 group = 0; 2114 2115 /* This now checks without needing the buddy page */ 2116 if (!ext4_mb_good_group(ac, group, cr)) 2117 continue; 2118 2119 err = ext4_mb_load_buddy(sb, group, &e4b); 2120 if (err) 2121 goto out; 2122 2123 ext4_lock_group(sb, group); 2124 2125 /* 2126 * We need to check again after locking the 2127 * block group 2128 */ 2129 if (!ext4_mb_good_group(ac, group, cr)) { 2130 ext4_unlock_group(sb, group); 2131 ext4_mb_unload_buddy(&e4b); 2132 continue; 2133 } 2134 2135 ac->ac_groups_scanned++; 2136 if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2) 2137 ext4_mb_simple_scan_group(ac, &e4b); 2138 else if (cr == 1 && sbi->s_stripe && 2139 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2140 ext4_mb_scan_aligned(ac, &e4b); 2141 else 2142 ext4_mb_complex_scan_group(ac, &e4b); 2143 2144 ext4_unlock_group(sb, group); 2145 ext4_mb_unload_buddy(&e4b); 2146 2147 if (ac->ac_status != AC_STATUS_CONTINUE) 2148 break; 2149 } 2150 } 2151 2152 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2153 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2154 /* 2155 * We've been searching too long. Let's try to allocate 2156 * the best chunk we've found so far 2157 */ 2158 2159 ext4_mb_try_best_found(ac, &e4b); 2160 if (ac->ac_status != AC_STATUS_FOUND) { 2161 /* 2162 * Someone more lucky has already allocated it. 2163 * The only thing we can do is just take first 2164 * found block(s) 2165 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2166 */ 2167 ac->ac_b_ex.fe_group = 0; 2168 ac->ac_b_ex.fe_start = 0; 2169 ac->ac_b_ex.fe_len = 0; 2170 ac->ac_status = AC_STATUS_CONTINUE; 2171 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2172 cr = 3; 2173 atomic_inc(&sbi->s_mb_lost_chunks); 2174 goto repeat; 2175 } 2176 } 2177 out: 2178 return err; 2179 } 2180 2181 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2182 { 2183 struct super_block *sb = seq->private; 2184 ext4_group_t group; 2185 2186 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2187 return NULL; 2188 group = *pos + 1; 2189 return (void *) ((unsigned long) group); 2190 } 2191 2192 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2193 { 2194 struct super_block *sb = seq->private; 2195 ext4_group_t group; 2196 2197 ++*pos; 2198 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2199 return NULL; 2200 group = *pos + 1; 2201 return (void *) ((unsigned long) group); 2202 } 2203 2204 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2205 { 2206 struct super_block *sb = seq->private; 2207 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2208 int i; 2209 int err, buddy_loaded = 0; 2210 struct ext4_buddy e4b; 2211 struct ext4_group_info *grinfo; 2212 struct sg { 2213 struct ext4_group_info info; 2214 ext4_grpblk_t counters[16]; 2215 } sg; 2216 2217 group--; 2218 if (group == 0) 2219 seq_printf(seq, "#%-5s: %-5s %-5s %-5s " 2220 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " 2221 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", 2222 "group", "free", "frags", "first", 2223 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", 2224 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); 2225 2226 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2227 sizeof(struct ext4_group_info); 2228 grinfo = ext4_get_group_info(sb, group); 2229 /* Load the group info in memory only if not already loaded. */ 2230 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2231 err = ext4_mb_load_buddy(sb, group, &e4b); 2232 if (err) { 2233 seq_printf(seq, "#%-5u: I/O error\n", group); 2234 return 0; 2235 } 2236 buddy_loaded = 1; 2237 } 2238 2239 memcpy(&sg, ext4_get_group_info(sb, group), i); 2240 2241 if (buddy_loaded) 2242 ext4_mb_unload_buddy(&e4b); 2243 2244 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2245 sg.info.bb_fragments, sg.info.bb_first_free); 2246 for (i = 0; i <= 13; i++) 2247 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2248 sg.info.bb_counters[i] : 0); 2249 seq_printf(seq, " ]\n"); 2250 2251 return 0; 2252 } 2253 2254 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2255 { 2256 } 2257 2258 static const struct seq_operations ext4_mb_seq_groups_ops = { 2259 .start = ext4_mb_seq_groups_start, 2260 .next = ext4_mb_seq_groups_next, 2261 .stop = ext4_mb_seq_groups_stop, 2262 .show = ext4_mb_seq_groups_show, 2263 }; 2264 2265 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2266 { 2267 struct super_block *sb = PDE_DATA(inode); 2268 int rc; 2269 2270 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2271 if (rc == 0) { 2272 struct seq_file *m = file->private_data; 2273 m->private = sb; 2274 } 2275 return rc; 2276 2277 } 2278 2279 static const struct file_operations ext4_mb_seq_groups_fops = { 2280 .owner = THIS_MODULE, 2281 .open = ext4_mb_seq_groups_open, 2282 .read = seq_read, 2283 .llseek = seq_lseek, 2284 .release = seq_release, 2285 }; 2286 2287 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2288 { 2289 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2290 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2291 2292 BUG_ON(!cachep); 2293 return cachep; 2294 } 2295 2296 /* 2297 * Allocate the top-level s_group_info array for the specified number 2298 * of groups 2299 */ 2300 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2301 { 2302 struct ext4_sb_info *sbi = EXT4_SB(sb); 2303 unsigned size; 2304 struct ext4_group_info ***new_groupinfo; 2305 2306 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2307 EXT4_DESC_PER_BLOCK_BITS(sb); 2308 if (size <= sbi->s_group_info_size) 2309 return 0; 2310 2311 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2312 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL); 2313 if (!new_groupinfo) { 2314 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2315 return -ENOMEM; 2316 } 2317 if (sbi->s_group_info) { 2318 memcpy(new_groupinfo, sbi->s_group_info, 2319 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2320 ext4_kvfree(sbi->s_group_info); 2321 } 2322 sbi->s_group_info = new_groupinfo; 2323 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2324 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2325 sbi->s_group_info_size); 2326 return 0; 2327 } 2328 2329 /* Create and initialize ext4_group_info data for the given group. */ 2330 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2331 struct ext4_group_desc *desc) 2332 { 2333 int i; 2334 int metalen = 0; 2335 struct ext4_sb_info *sbi = EXT4_SB(sb); 2336 struct ext4_group_info **meta_group_info; 2337 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2338 2339 /* 2340 * First check if this group is the first of a reserved block. 2341 * If it's true, we have to allocate a new table of pointers 2342 * to ext4_group_info structures 2343 */ 2344 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2345 metalen = sizeof(*meta_group_info) << 2346 EXT4_DESC_PER_BLOCK_BITS(sb); 2347 meta_group_info = kmalloc(metalen, GFP_KERNEL); 2348 if (meta_group_info == NULL) { 2349 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2350 "for a buddy group"); 2351 goto exit_meta_group_info; 2352 } 2353 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2354 meta_group_info; 2355 } 2356 2357 meta_group_info = 2358 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2359 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2360 2361 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL); 2362 if (meta_group_info[i] == NULL) { 2363 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2364 goto exit_group_info; 2365 } 2366 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2367 &(meta_group_info[i]->bb_state)); 2368 2369 /* 2370 * initialize bb_free to be able to skip 2371 * empty groups without initialization 2372 */ 2373 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2374 meta_group_info[i]->bb_free = 2375 ext4_free_clusters_after_init(sb, group, desc); 2376 } else { 2377 meta_group_info[i]->bb_free = 2378 ext4_free_group_clusters(sb, desc); 2379 } 2380 2381 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2382 init_rwsem(&meta_group_info[i]->alloc_sem); 2383 meta_group_info[i]->bb_free_root = RB_ROOT; 2384 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2385 2386 #ifdef DOUBLE_CHECK 2387 { 2388 struct buffer_head *bh; 2389 meta_group_info[i]->bb_bitmap = 2390 kmalloc(sb->s_blocksize, GFP_KERNEL); 2391 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2392 bh = ext4_read_block_bitmap(sb, group); 2393 BUG_ON(bh == NULL); 2394 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2395 sb->s_blocksize); 2396 put_bh(bh); 2397 } 2398 #endif 2399 2400 return 0; 2401 2402 exit_group_info: 2403 /* If a meta_group_info table has been allocated, release it now */ 2404 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2405 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2406 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL; 2407 } 2408 exit_meta_group_info: 2409 return -ENOMEM; 2410 } /* ext4_mb_add_groupinfo */ 2411 2412 static int ext4_mb_init_backend(struct super_block *sb) 2413 { 2414 ext4_group_t ngroups = ext4_get_groups_count(sb); 2415 ext4_group_t i; 2416 struct ext4_sb_info *sbi = EXT4_SB(sb); 2417 int err; 2418 struct ext4_group_desc *desc; 2419 struct kmem_cache *cachep; 2420 2421 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2422 if (err) 2423 return err; 2424 2425 sbi->s_buddy_cache = new_inode(sb); 2426 if (sbi->s_buddy_cache == NULL) { 2427 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2428 goto err_freesgi; 2429 } 2430 /* To avoid potentially colliding with an valid on-disk inode number, 2431 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2432 * not in the inode hash, so it should never be found by iget(), but 2433 * this will avoid confusion if it ever shows up during debugging. */ 2434 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2435 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2436 for (i = 0; i < ngroups; i++) { 2437 desc = ext4_get_group_desc(sb, i, NULL); 2438 if (desc == NULL) { 2439 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2440 goto err_freebuddy; 2441 } 2442 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2443 goto err_freebuddy; 2444 } 2445 2446 return 0; 2447 2448 err_freebuddy: 2449 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2450 while (i-- > 0) 2451 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2452 i = sbi->s_group_info_size; 2453 while (i-- > 0) 2454 kfree(sbi->s_group_info[i]); 2455 iput(sbi->s_buddy_cache); 2456 err_freesgi: 2457 ext4_kvfree(sbi->s_group_info); 2458 return -ENOMEM; 2459 } 2460 2461 static void ext4_groupinfo_destroy_slabs(void) 2462 { 2463 int i; 2464 2465 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2466 if (ext4_groupinfo_caches[i]) 2467 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2468 ext4_groupinfo_caches[i] = NULL; 2469 } 2470 } 2471 2472 static int ext4_groupinfo_create_slab(size_t size) 2473 { 2474 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2475 int slab_size; 2476 int blocksize_bits = order_base_2(size); 2477 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2478 struct kmem_cache *cachep; 2479 2480 if (cache_index >= NR_GRPINFO_CACHES) 2481 return -EINVAL; 2482 2483 if (unlikely(cache_index < 0)) 2484 cache_index = 0; 2485 2486 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2487 if (ext4_groupinfo_caches[cache_index]) { 2488 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2489 return 0; /* Already created */ 2490 } 2491 2492 slab_size = offsetof(struct ext4_group_info, 2493 bb_counters[blocksize_bits + 2]); 2494 2495 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2496 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2497 NULL); 2498 2499 ext4_groupinfo_caches[cache_index] = cachep; 2500 2501 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2502 if (!cachep) { 2503 printk(KERN_EMERG 2504 "EXT4-fs: no memory for groupinfo slab cache\n"); 2505 return -ENOMEM; 2506 } 2507 2508 return 0; 2509 } 2510 2511 int ext4_mb_init(struct super_block *sb) 2512 { 2513 struct ext4_sb_info *sbi = EXT4_SB(sb); 2514 unsigned i, j; 2515 unsigned offset; 2516 unsigned max; 2517 int ret; 2518 2519 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2520 2521 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2522 if (sbi->s_mb_offsets == NULL) { 2523 ret = -ENOMEM; 2524 goto out; 2525 } 2526 2527 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2528 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2529 if (sbi->s_mb_maxs == NULL) { 2530 ret = -ENOMEM; 2531 goto out; 2532 } 2533 2534 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2535 if (ret < 0) 2536 goto out; 2537 2538 /* order 0 is regular bitmap */ 2539 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2540 sbi->s_mb_offsets[0] = 0; 2541 2542 i = 1; 2543 offset = 0; 2544 max = sb->s_blocksize << 2; 2545 do { 2546 sbi->s_mb_offsets[i] = offset; 2547 sbi->s_mb_maxs[i] = max; 2548 offset += 1 << (sb->s_blocksize_bits - i); 2549 max = max >> 1; 2550 i++; 2551 } while (i <= sb->s_blocksize_bits + 1); 2552 2553 spin_lock_init(&sbi->s_md_lock); 2554 spin_lock_init(&sbi->s_bal_lock); 2555 2556 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2557 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2558 sbi->s_mb_stats = MB_DEFAULT_STATS; 2559 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2560 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2561 /* 2562 * The default group preallocation is 512, which for 4k block 2563 * sizes translates to 2 megabytes. However for bigalloc file 2564 * systems, this is probably too big (i.e, if the cluster size 2565 * is 1 megabyte, then group preallocation size becomes half a 2566 * gigabyte!). As a default, we will keep a two megabyte 2567 * group pralloc size for cluster sizes up to 64k, and after 2568 * that, we will force a minimum group preallocation size of 2569 * 32 clusters. This translates to 8 megs when the cluster 2570 * size is 256k, and 32 megs when the cluster size is 1 meg, 2571 * which seems reasonable as a default. 2572 */ 2573 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2574 sbi->s_cluster_bits, 32); 2575 /* 2576 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2577 * to the lowest multiple of s_stripe which is bigger than 2578 * the s_mb_group_prealloc as determined above. We want 2579 * the preallocation size to be an exact multiple of the 2580 * RAID stripe size so that preallocations don't fragment 2581 * the stripes. 2582 */ 2583 if (sbi->s_stripe > 1) { 2584 sbi->s_mb_group_prealloc = roundup( 2585 sbi->s_mb_group_prealloc, sbi->s_stripe); 2586 } 2587 2588 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2589 if (sbi->s_locality_groups == NULL) { 2590 ret = -ENOMEM; 2591 goto out_free_groupinfo_slab; 2592 } 2593 for_each_possible_cpu(i) { 2594 struct ext4_locality_group *lg; 2595 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2596 mutex_init(&lg->lg_mutex); 2597 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2598 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2599 spin_lock_init(&lg->lg_prealloc_lock); 2600 } 2601 2602 /* init file for buddy data */ 2603 ret = ext4_mb_init_backend(sb); 2604 if (ret != 0) 2605 goto out_free_locality_groups; 2606 2607 if (sbi->s_proc) 2608 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, 2609 &ext4_mb_seq_groups_fops, sb); 2610 2611 return 0; 2612 2613 out_free_locality_groups: 2614 free_percpu(sbi->s_locality_groups); 2615 sbi->s_locality_groups = NULL; 2616 out_free_groupinfo_slab: 2617 ext4_groupinfo_destroy_slabs(); 2618 out: 2619 kfree(sbi->s_mb_offsets); 2620 sbi->s_mb_offsets = NULL; 2621 kfree(sbi->s_mb_maxs); 2622 sbi->s_mb_maxs = NULL; 2623 return ret; 2624 } 2625 2626 /* need to called with the ext4 group lock held */ 2627 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2628 { 2629 struct ext4_prealloc_space *pa; 2630 struct list_head *cur, *tmp; 2631 int count = 0; 2632 2633 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2634 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2635 list_del(&pa->pa_group_list); 2636 count++; 2637 kmem_cache_free(ext4_pspace_cachep, pa); 2638 } 2639 if (count) 2640 mb_debug(1, "mballoc: %u PAs left\n", count); 2641 2642 } 2643 2644 int ext4_mb_release(struct super_block *sb) 2645 { 2646 ext4_group_t ngroups = ext4_get_groups_count(sb); 2647 ext4_group_t i; 2648 int num_meta_group_infos; 2649 struct ext4_group_info *grinfo; 2650 struct ext4_sb_info *sbi = EXT4_SB(sb); 2651 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2652 2653 if (sbi->s_proc) 2654 remove_proc_entry("mb_groups", sbi->s_proc); 2655 2656 if (sbi->s_group_info) { 2657 for (i = 0; i < ngroups; i++) { 2658 grinfo = ext4_get_group_info(sb, i); 2659 #ifdef DOUBLE_CHECK 2660 kfree(grinfo->bb_bitmap); 2661 #endif 2662 ext4_lock_group(sb, i); 2663 ext4_mb_cleanup_pa(grinfo); 2664 ext4_unlock_group(sb, i); 2665 kmem_cache_free(cachep, grinfo); 2666 } 2667 num_meta_group_infos = (ngroups + 2668 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2669 EXT4_DESC_PER_BLOCK_BITS(sb); 2670 for (i = 0; i < num_meta_group_infos; i++) 2671 kfree(sbi->s_group_info[i]); 2672 ext4_kvfree(sbi->s_group_info); 2673 } 2674 kfree(sbi->s_mb_offsets); 2675 kfree(sbi->s_mb_maxs); 2676 if (sbi->s_buddy_cache) 2677 iput(sbi->s_buddy_cache); 2678 if (sbi->s_mb_stats) { 2679 ext4_msg(sb, KERN_INFO, 2680 "mballoc: %u blocks %u reqs (%u success)", 2681 atomic_read(&sbi->s_bal_allocated), 2682 atomic_read(&sbi->s_bal_reqs), 2683 atomic_read(&sbi->s_bal_success)); 2684 ext4_msg(sb, KERN_INFO, 2685 "mballoc: %u extents scanned, %u goal hits, " 2686 "%u 2^N hits, %u breaks, %u lost", 2687 atomic_read(&sbi->s_bal_ex_scanned), 2688 atomic_read(&sbi->s_bal_goals), 2689 atomic_read(&sbi->s_bal_2orders), 2690 atomic_read(&sbi->s_bal_breaks), 2691 atomic_read(&sbi->s_mb_lost_chunks)); 2692 ext4_msg(sb, KERN_INFO, 2693 "mballoc: %lu generated and it took %Lu", 2694 sbi->s_mb_buddies_generated, 2695 sbi->s_mb_generation_time); 2696 ext4_msg(sb, KERN_INFO, 2697 "mballoc: %u preallocated, %u discarded", 2698 atomic_read(&sbi->s_mb_preallocated), 2699 atomic_read(&sbi->s_mb_discarded)); 2700 } 2701 2702 free_percpu(sbi->s_locality_groups); 2703 2704 return 0; 2705 } 2706 2707 static inline int ext4_issue_discard(struct super_block *sb, 2708 ext4_group_t block_group, ext4_grpblk_t cluster, int count) 2709 { 2710 ext4_fsblk_t discard_block; 2711 2712 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2713 ext4_group_first_block_no(sb, block_group)); 2714 count = EXT4_C2B(EXT4_SB(sb), count); 2715 trace_ext4_discard_blocks(sb, 2716 (unsigned long long) discard_block, count); 2717 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2718 } 2719 2720 /* 2721 * This function is called by the jbd2 layer once the commit has finished, 2722 * so we know we can free the blocks that were released with that commit. 2723 */ 2724 static void ext4_free_data_callback(struct super_block *sb, 2725 struct ext4_journal_cb_entry *jce, 2726 int rc) 2727 { 2728 struct ext4_free_data *entry = (struct ext4_free_data *)jce; 2729 struct ext4_buddy e4b; 2730 struct ext4_group_info *db; 2731 int err, count = 0, count2 = 0; 2732 2733 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2734 entry->efd_count, entry->efd_group, entry); 2735 2736 if (test_opt(sb, DISCARD)) { 2737 err = ext4_issue_discard(sb, entry->efd_group, 2738 entry->efd_start_cluster, 2739 entry->efd_count); 2740 if (err && err != -EOPNOTSUPP) 2741 ext4_msg(sb, KERN_WARNING, "discard request in" 2742 " group:%d block:%d count:%d failed" 2743 " with %d", entry->efd_group, 2744 entry->efd_start_cluster, 2745 entry->efd_count, err); 2746 } 2747 2748 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2749 /* we expect to find existing buddy because it's pinned */ 2750 BUG_ON(err != 0); 2751 2752 2753 db = e4b.bd_info; 2754 /* there are blocks to put in buddy to make them really free */ 2755 count += entry->efd_count; 2756 count2++; 2757 ext4_lock_group(sb, entry->efd_group); 2758 /* Take it out of per group rb tree */ 2759 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2760 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2761 2762 /* 2763 * Clear the trimmed flag for the group so that the next 2764 * ext4_trim_fs can trim it. 2765 * If the volume is mounted with -o discard, online discard 2766 * is supported and the free blocks will be trimmed online. 2767 */ 2768 if (!test_opt(sb, DISCARD)) 2769 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2770 2771 if (!db->bb_free_root.rb_node) { 2772 /* No more items in the per group rb tree 2773 * balance refcounts from ext4_mb_free_metadata() 2774 */ 2775 page_cache_release(e4b.bd_buddy_page); 2776 page_cache_release(e4b.bd_bitmap_page); 2777 } 2778 ext4_unlock_group(sb, entry->efd_group); 2779 kmem_cache_free(ext4_free_data_cachep, entry); 2780 ext4_mb_unload_buddy(&e4b); 2781 2782 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2783 } 2784 2785 int __init ext4_init_mballoc(void) 2786 { 2787 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2788 SLAB_RECLAIM_ACCOUNT); 2789 if (ext4_pspace_cachep == NULL) 2790 return -ENOMEM; 2791 2792 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2793 SLAB_RECLAIM_ACCOUNT); 2794 if (ext4_ac_cachep == NULL) { 2795 kmem_cache_destroy(ext4_pspace_cachep); 2796 return -ENOMEM; 2797 } 2798 2799 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2800 SLAB_RECLAIM_ACCOUNT); 2801 if (ext4_free_data_cachep == NULL) { 2802 kmem_cache_destroy(ext4_pspace_cachep); 2803 kmem_cache_destroy(ext4_ac_cachep); 2804 return -ENOMEM; 2805 } 2806 return 0; 2807 } 2808 2809 void ext4_exit_mballoc(void) 2810 { 2811 /* 2812 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2813 * before destroying the slab cache. 2814 */ 2815 rcu_barrier(); 2816 kmem_cache_destroy(ext4_pspace_cachep); 2817 kmem_cache_destroy(ext4_ac_cachep); 2818 kmem_cache_destroy(ext4_free_data_cachep); 2819 ext4_groupinfo_destroy_slabs(); 2820 } 2821 2822 2823 /* 2824 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2825 * Returns 0 if success or error code 2826 */ 2827 static noinline_for_stack int 2828 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2829 handle_t *handle, unsigned int reserv_clstrs) 2830 { 2831 struct buffer_head *bitmap_bh = NULL; 2832 struct ext4_group_desc *gdp; 2833 struct buffer_head *gdp_bh; 2834 struct ext4_sb_info *sbi; 2835 struct super_block *sb; 2836 ext4_fsblk_t block; 2837 int err, len; 2838 2839 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2840 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2841 2842 sb = ac->ac_sb; 2843 sbi = EXT4_SB(sb); 2844 2845 err = -EIO; 2846 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2847 if (!bitmap_bh) 2848 goto out_err; 2849 2850 err = ext4_journal_get_write_access(handle, bitmap_bh); 2851 if (err) 2852 goto out_err; 2853 2854 err = -EIO; 2855 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2856 if (!gdp) 2857 goto out_err; 2858 2859 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2860 ext4_free_group_clusters(sb, gdp)); 2861 2862 err = ext4_journal_get_write_access(handle, gdp_bh); 2863 if (err) 2864 goto out_err; 2865 2866 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2867 2868 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2869 if (!ext4_data_block_valid(sbi, block, len)) { 2870 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2871 "fs metadata", block, block+len); 2872 /* File system mounted not to panic on error 2873 * Fix the bitmap and repeat the block allocation 2874 * We leak some of the blocks here. 2875 */ 2876 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2877 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2878 ac->ac_b_ex.fe_len); 2879 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2880 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2881 if (!err) 2882 err = -EAGAIN; 2883 goto out_err; 2884 } 2885 2886 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2887 #ifdef AGGRESSIVE_CHECK 2888 { 2889 int i; 2890 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2891 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2892 bitmap_bh->b_data)); 2893 } 2894 } 2895 #endif 2896 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2897 ac->ac_b_ex.fe_len); 2898 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2899 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2900 ext4_free_group_clusters_set(sb, gdp, 2901 ext4_free_clusters_after_init(sb, 2902 ac->ac_b_ex.fe_group, gdp)); 2903 } 2904 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 2905 ext4_free_group_clusters_set(sb, gdp, len); 2906 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 2907 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 2908 2909 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2910 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 2911 /* 2912 * Now reduce the dirty block count also. Should not go negative 2913 */ 2914 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 2915 /* release all the reserved blocks if non delalloc */ 2916 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 2917 reserv_clstrs); 2918 2919 if (sbi->s_log_groups_per_flex) { 2920 ext4_group_t flex_group = ext4_flex_group(sbi, 2921 ac->ac_b_ex.fe_group); 2922 atomic64_sub(ac->ac_b_ex.fe_len, 2923 &sbi->s_flex_groups[flex_group].free_clusters); 2924 } 2925 2926 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2927 if (err) 2928 goto out_err; 2929 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 2930 2931 out_err: 2932 brelse(bitmap_bh); 2933 return err; 2934 } 2935 2936 /* 2937 * here we normalize request for locality group 2938 * Group request are normalized to s_mb_group_prealloc, which goes to 2939 * s_strip if we set the same via mount option. 2940 * s_mb_group_prealloc can be configured via 2941 * /sys/fs/ext4/<partition>/mb_group_prealloc 2942 * 2943 * XXX: should we try to preallocate more than the group has now? 2944 */ 2945 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 2946 { 2947 struct super_block *sb = ac->ac_sb; 2948 struct ext4_locality_group *lg = ac->ac_lg; 2949 2950 BUG_ON(lg == NULL); 2951 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 2952 mb_debug(1, "#%u: goal %u blocks for locality group\n", 2953 current->pid, ac->ac_g_ex.fe_len); 2954 } 2955 2956 /* 2957 * Normalization means making request better in terms of 2958 * size and alignment 2959 */ 2960 static noinline_for_stack void 2961 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 2962 struct ext4_allocation_request *ar) 2963 { 2964 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2965 int bsbits, max; 2966 ext4_lblk_t end; 2967 loff_t size, start_off; 2968 loff_t orig_size __maybe_unused; 2969 ext4_lblk_t start; 2970 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 2971 struct ext4_prealloc_space *pa; 2972 2973 /* do normalize only data requests, metadata requests 2974 do not need preallocation */ 2975 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 2976 return; 2977 2978 /* sometime caller may want exact blocks */ 2979 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2980 return; 2981 2982 /* caller may indicate that preallocation isn't 2983 * required (it's a tail, for example) */ 2984 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 2985 return; 2986 2987 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 2988 ext4_mb_normalize_group_request(ac); 2989 return ; 2990 } 2991 2992 bsbits = ac->ac_sb->s_blocksize_bits; 2993 2994 /* first, let's learn actual file size 2995 * given current request is allocated */ 2996 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 2997 size = size << bsbits; 2998 if (size < i_size_read(ac->ac_inode)) 2999 size = i_size_read(ac->ac_inode); 3000 orig_size = size; 3001 3002 /* max size of free chunks */ 3003 max = 2 << bsbits; 3004 3005 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3006 (req <= (size) || max <= (chunk_size)) 3007 3008 /* first, try to predict filesize */ 3009 /* XXX: should this table be tunable? */ 3010 start_off = 0; 3011 if (size <= 16 * 1024) { 3012 size = 16 * 1024; 3013 } else if (size <= 32 * 1024) { 3014 size = 32 * 1024; 3015 } else if (size <= 64 * 1024) { 3016 size = 64 * 1024; 3017 } else if (size <= 128 * 1024) { 3018 size = 128 * 1024; 3019 } else if (size <= 256 * 1024) { 3020 size = 256 * 1024; 3021 } else if (size <= 512 * 1024) { 3022 size = 512 * 1024; 3023 } else if (size <= 1024 * 1024) { 3024 size = 1024 * 1024; 3025 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3026 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3027 (21 - bsbits)) << 21; 3028 size = 2 * 1024 * 1024; 3029 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3030 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3031 (22 - bsbits)) << 22; 3032 size = 4 * 1024 * 1024; 3033 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3034 (8<<20)>>bsbits, max, 8 * 1024)) { 3035 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3036 (23 - bsbits)) << 23; 3037 size = 8 * 1024 * 1024; 3038 } else { 3039 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits; 3040 size = ac->ac_o_ex.fe_len << bsbits; 3041 } 3042 size = size >> bsbits; 3043 start = start_off >> bsbits; 3044 3045 /* don't cover already allocated blocks in selected range */ 3046 if (ar->pleft && start <= ar->lleft) { 3047 size -= ar->lleft + 1 - start; 3048 start = ar->lleft + 1; 3049 } 3050 if (ar->pright && start + size - 1 >= ar->lright) 3051 size -= start + size - ar->lright; 3052 3053 end = start + size; 3054 3055 /* check we don't cross already preallocated blocks */ 3056 rcu_read_lock(); 3057 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3058 ext4_lblk_t pa_end; 3059 3060 if (pa->pa_deleted) 3061 continue; 3062 spin_lock(&pa->pa_lock); 3063 if (pa->pa_deleted) { 3064 spin_unlock(&pa->pa_lock); 3065 continue; 3066 } 3067 3068 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3069 pa->pa_len); 3070 3071 /* PA must not overlap original request */ 3072 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3073 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3074 3075 /* skip PAs this normalized request doesn't overlap with */ 3076 if (pa->pa_lstart >= end || pa_end <= start) { 3077 spin_unlock(&pa->pa_lock); 3078 continue; 3079 } 3080 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3081 3082 /* adjust start or end to be adjacent to this pa */ 3083 if (pa_end <= ac->ac_o_ex.fe_logical) { 3084 BUG_ON(pa_end < start); 3085 start = pa_end; 3086 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3087 BUG_ON(pa->pa_lstart > end); 3088 end = pa->pa_lstart; 3089 } 3090 spin_unlock(&pa->pa_lock); 3091 } 3092 rcu_read_unlock(); 3093 size = end - start; 3094 3095 /* XXX: extra loop to check we really don't overlap preallocations */ 3096 rcu_read_lock(); 3097 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3098 ext4_lblk_t pa_end; 3099 3100 spin_lock(&pa->pa_lock); 3101 if (pa->pa_deleted == 0) { 3102 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3103 pa->pa_len); 3104 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3105 } 3106 spin_unlock(&pa->pa_lock); 3107 } 3108 rcu_read_unlock(); 3109 3110 if (start + size <= ac->ac_o_ex.fe_logical && 3111 start > ac->ac_o_ex.fe_logical) { 3112 ext4_msg(ac->ac_sb, KERN_ERR, 3113 "start %lu, size %lu, fe_logical %lu", 3114 (unsigned long) start, (unsigned long) size, 3115 (unsigned long) ac->ac_o_ex.fe_logical); 3116 } 3117 BUG_ON(start + size <= ac->ac_o_ex.fe_logical && 3118 start > ac->ac_o_ex.fe_logical); 3119 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 3120 3121 /* now prepare goal request */ 3122 3123 /* XXX: is it better to align blocks WRT to logical 3124 * placement or satisfy big request as is */ 3125 ac->ac_g_ex.fe_logical = start; 3126 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3127 3128 /* define goal start in order to merge */ 3129 if (ar->pright && (ar->lright == (start + size))) { 3130 /* merge to the right */ 3131 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3132 &ac->ac_f_ex.fe_group, 3133 &ac->ac_f_ex.fe_start); 3134 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3135 } 3136 if (ar->pleft && (ar->lleft + 1 == start)) { 3137 /* merge to the left */ 3138 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3139 &ac->ac_f_ex.fe_group, 3140 &ac->ac_f_ex.fe_start); 3141 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3142 } 3143 3144 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3145 (unsigned) orig_size, (unsigned) start); 3146 } 3147 3148 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3149 { 3150 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3151 3152 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3153 atomic_inc(&sbi->s_bal_reqs); 3154 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3155 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3156 atomic_inc(&sbi->s_bal_success); 3157 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3158 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3159 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3160 atomic_inc(&sbi->s_bal_goals); 3161 if (ac->ac_found > sbi->s_mb_max_to_scan) 3162 atomic_inc(&sbi->s_bal_breaks); 3163 } 3164 3165 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3166 trace_ext4_mballoc_alloc(ac); 3167 else 3168 trace_ext4_mballoc_prealloc(ac); 3169 } 3170 3171 /* 3172 * Called on failure; free up any blocks from the inode PA for this 3173 * context. We don't need this for MB_GROUP_PA because we only change 3174 * pa_free in ext4_mb_release_context(), but on failure, we've already 3175 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3176 */ 3177 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3178 { 3179 struct ext4_prealloc_space *pa = ac->ac_pa; 3180 3181 if (pa && pa->pa_type == MB_INODE_PA) 3182 pa->pa_free += ac->ac_b_ex.fe_len; 3183 } 3184 3185 /* 3186 * use blocks preallocated to inode 3187 */ 3188 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3189 struct ext4_prealloc_space *pa) 3190 { 3191 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3192 ext4_fsblk_t start; 3193 ext4_fsblk_t end; 3194 int len; 3195 3196 /* found preallocated blocks, use them */ 3197 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3198 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3199 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3200 len = EXT4_NUM_B2C(sbi, end - start); 3201 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3202 &ac->ac_b_ex.fe_start); 3203 ac->ac_b_ex.fe_len = len; 3204 ac->ac_status = AC_STATUS_FOUND; 3205 ac->ac_pa = pa; 3206 3207 BUG_ON(start < pa->pa_pstart); 3208 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3209 BUG_ON(pa->pa_free < len); 3210 pa->pa_free -= len; 3211 3212 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3213 } 3214 3215 /* 3216 * use blocks preallocated to locality group 3217 */ 3218 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3219 struct ext4_prealloc_space *pa) 3220 { 3221 unsigned int len = ac->ac_o_ex.fe_len; 3222 3223 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3224 &ac->ac_b_ex.fe_group, 3225 &ac->ac_b_ex.fe_start); 3226 ac->ac_b_ex.fe_len = len; 3227 ac->ac_status = AC_STATUS_FOUND; 3228 ac->ac_pa = pa; 3229 3230 /* we don't correct pa_pstart or pa_plen here to avoid 3231 * possible race when the group is being loaded concurrently 3232 * instead we correct pa later, after blocks are marked 3233 * in on-disk bitmap -- see ext4_mb_release_context() 3234 * Other CPUs are prevented from allocating from this pa by lg_mutex 3235 */ 3236 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3237 } 3238 3239 /* 3240 * Return the prealloc space that have minimal distance 3241 * from the goal block. @cpa is the prealloc 3242 * space that is having currently known minimal distance 3243 * from the goal block. 3244 */ 3245 static struct ext4_prealloc_space * 3246 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3247 struct ext4_prealloc_space *pa, 3248 struct ext4_prealloc_space *cpa) 3249 { 3250 ext4_fsblk_t cur_distance, new_distance; 3251 3252 if (cpa == NULL) { 3253 atomic_inc(&pa->pa_count); 3254 return pa; 3255 } 3256 cur_distance = abs(goal_block - cpa->pa_pstart); 3257 new_distance = abs(goal_block - pa->pa_pstart); 3258 3259 if (cur_distance <= new_distance) 3260 return cpa; 3261 3262 /* drop the previous reference */ 3263 atomic_dec(&cpa->pa_count); 3264 atomic_inc(&pa->pa_count); 3265 return pa; 3266 } 3267 3268 /* 3269 * search goal blocks in preallocated space 3270 */ 3271 static noinline_for_stack int 3272 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3273 { 3274 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3275 int order, i; 3276 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3277 struct ext4_locality_group *lg; 3278 struct ext4_prealloc_space *pa, *cpa = NULL; 3279 ext4_fsblk_t goal_block; 3280 3281 /* only data can be preallocated */ 3282 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3283 return 0; 3284 3285 /* first, try per-file preallocation */ 3286 rcu_read_lock(); 3287 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3288 3289 /* all fields in this condition don't change, 3290 * so we can skip locking for them */ 3291 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3292 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3293 EXT4_C2B(sbi, pa->pa_len))) 3294 continue; 3295 3296 /* non-extent files can't have physical blocks past 2^32 */ 3297 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3298 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3299 EXT4_MAX_BLOCK_FILE_PHYS)) 3300 continue; 3301 3302 /* found preallocated blocks, use them */ 3303 spin_lock(&pa->pa_lock); 3304 if (pa->pa_deleted == 0 && pa->pa_free) { 3305 atomic_inc(&pa->pa_count); 3306 ext4_mb_use_inode_pa(ac, pa); 3307 spin_unlock(&pa->pa_lock); 3308 ac->ac_criteria = 10; 3309 rcu_read_unlock(); 3310 return 1; 3311 } 3312 spin_unlock(&pa->pa_lock); 3313 } 3314 rcu_read_unlock(); 3315 3316 /* can we use group allocation? */ 3317 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3318 return 0; 3319 3320 /* inode may have no locality group for some reason */ 3321 lg = ac->ac_lg; 3322 if (lg == NULL) 3323 return 0; 3324 order = fls(ac->ac_o_ex.fe_len) - 1; 3325 if (order > PREALLOC_TB_SIZE - 1) 3326 /* The max size of hash table is PREALLOC_TB_SIZE */ 3327 order = PREALLOC_TB_SIZE - 1; 3328 3329 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3330 /* 3331 * search for the prealloc space that is having 3332 * minimal distance from the goal block. 3333 */ 3334 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3335 rcu_read_lock(); 3336 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3337 pa_inode_list) { 3338 spin_lock(&pa->pa_lock); 3339 if (pa->pa_deleted == 0 && 3340 pa->pa_free >= ac->ac_o_ex.fe_len) { 3341 3342 cpa = ext4_mb_check_group_pa(goal_block, 3343 pa, cpa); 3344 } 3345 spin_unlock(&pa->pa_lock); 3346 } 3347 rcu_read_unlock(); 3348 } 3349 if (cpa) { 3350 ext4_mb_use_group_pa(ac, cpa); 3351 ac->ac_criteria = 20; 3352 return 1; 3353 } 3354 return 0; 3355 } 3356 3357 /* 3358 * the function goes through all block freed in the group 3359 * but not yet committed and marks them used in in-core bitmap. 3360 * buddy must be generated from this bitmap 3361 * Need to be called with the ext4 group lock held 3362 */ 3363 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3364 ext4_group_t group) 3365 { 3366 struct rb_node *n; 3367 struct ext4_group_info *grp; 3368 struct ext4_free_data *entry; 3369 3370 grp = ext4_get_group_info(sb, group); 3371 n = rb_first(&(grp->bb_free_root)); 3372 3373 while (n) { 3374 entry = rb_entry(n, struct ext4_free_data, efd_node); 3375 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3376 n = rb_next(n); 3377 } 3378 return; 3379 } 3380 3381 /* 3382 * the function goes through all preallocation in this group and marks them 3383 * used in in-core bitmap. buddy must be generated from this bitmap 3384 * Need to be called with ext4 group lock held 3385 */ 3386 static noinline_for_stack 3387 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3388 ext4_group_t group) 3389 { 3390 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3391 struct ext4_prealloc_space *pa; 3392 struct list_head *cur; 3393 ext4_group_t groupnr; 3394 ext4_grpblk_t start; 3395 int preallocated = 0; 3396 int len; 3397 3398 /* all form of preallocation discards first load group, 3399 * so the only competing code is preallocation use. 3400 * we don't need any locking here 3401 * notice we do NOT ignore preallocations with pa_deleted 3402 * otherwise we could leave used blocks available for 3403 * allocation in buddy when concurrent ext4_mb_put_pa() 3404 * is dropping preallocation 3405 */ 3406 list_for_each(cur, &grp->bb_prealloc_list) { 3407 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3408 spin_lock(&pa->pa_lock); 3409 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3410 &groupnr, &start); 3411 len = pa->pa_len; 3412 spin_unlock(&pa->pa_lock); 3413 if (unlikely(len == 0)) 3414 continue; 3415 BUG_ON(groupnr != group); 3416 ext4_set_bits(bitmap, start, len); 3417 preallocated += len; 3418 } 3419 mb_debug(1, "prellocated %u for group %u\n", preallocated, group); 3420 } 3421 3422 static void ext4_mb_pa_callback(struct rcu_head *head) 3423 { 3424 struct ext4_prealloc_space *pa; 3425 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3426 kmem_cache_free(ext4_pspace_cachep, pa); 3427 } 3428 3429 /* 3430 * drops a reference to preallocated space descriptor 3431 * if this was the last reference and the space is consumed 3432 */ 3433 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3434 struct super_block *sb, struct ext4_prealloc_space *pa) 3435 { 3436 ext4_group_t grp; 3437 ext4_fsblk_t grp_blk; 3438 3439 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) 3440 return; 3441 3442 /* in this short window concurrent discard can set pa_deleted */ 3443 spin_lock(&pa->pa_lock); 3444 if (pa->pa_deleted == 1) { 3445 spin_unlock(&pa->pa_lock); 3446 return; 3447 } 3448 3449 pa->pa_deleted = 1; 3450 spin_unlock(&pa->pa_lock); 3451 3452 grp_blk = pa->pa_pstart; 3453 /* 3454 * If doing group-based preallocation, pa_pstart may be in the 3455 * next group when pa is used up 3456 */ 3457 if (pa->pa_type == MB_GROUP_PA) 3458 grp_blk--; 3459 3460 grp = ext4_get_group_number(sb, grp_blk); 3461 3462 /* 3463 * possible race: 3464 * 3465 * P1 (buddy init) P2 (regular allocation) 3466 * find block B in PA 3467 * copy on-disk bitmap to buddy 3468 * mark B in on-disk bitmap 3469 * drop PA from group 3470 * mark all PAs in buddy 3471 * 3472 * thus, P1 initializes buddy with B available. to prevent this 3473 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3474 * against that pair 3475 */ 3476 ext4_lock_group(sb, grp); 3477 list_del(&pa->pa_group_list); 3478 ext4_unlock_group(sb, grp); 3479 3480 spin_lock(pa->pa_obj_lock); 3481 list_del_rcu(&pa->pa_inode_list); 3482 spin_unlock(pa->pa_obj_lock); 3483 3484 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3485 } 3486 3487 /* 3488 * creates new preallocated space for given inode 3489 */ 3490 static noinline_for_stack int 3491 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3492 { 3493 struct super_block *sb = ac->ac_sb; 3494 struct ext4_sb_info *sbi = EXT4_SB(sb); 3495 struct ext4_prealloc_space *pa; 3496 struct ext4_group_info *grp; 3497 struct ext4_inode_info *ei; 3498 3499 /* preallocate only when found space is larger then requested */ 3500 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3501 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3502 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3503 3504 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3505 if (pa == NULL) 3506 return -ENOMEM; 3507 3508 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3509 int winl; 3510 int wins; 3511 int win; 3512 int offs; 3513 3514 /* we can't allocate as much as normalizer wants. 3515 * so, found space must get proper lstart 3516 * to cover original request */ 3517 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3518 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3519 3520 /* we're limited by original request in that 3521 * logical block must be covered any way 3522 * winl is window we can move our chunk within */ 3523 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3524 3525 /* also, we should cover whole original request */ 3526 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3527 3528 /* the smallest one defines real window */ 3529 win = min(winl, wins); 3530 3531 offs = ac->ac_o_ex.fe_logical % 3532 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3533 if (offs && offs < win) 3534 win = offs; 3535 3536 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3537 EXT4_NUM_B2C(sbi, win); 3538 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3539 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3540 } 3541 3542 /* preallocation can change ac_b_ex, thus we store actually 3543 * allocated blocks for history */ 3544 ac->ac_f_ex = ac->ac_b_ex; 3545 3546 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3547 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3548 pa->pa_len = ac->ac_b_ex.fe_len; 3549 pa->pa_free = pa->pa_len; 3550 atomic_set(&pa->pa_count, 1); 3551 spin_lock_init(&pa->pa_lock); 3552 INIT_LIST_HEAD(&pa->pa_inode_list); 3553 INIT_LIST_HEAD(&pa->pa_group_list); 3554 pa->pa_deleted = 0; 3555 pa->pa_type = MB_INODE_PA; 3556 3557 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3558 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3559 trace_ext4_mb_new_inode_pa(ac, pa); 3560 3561 ext4_mb_use_inode_pa(ac, pa); 3562 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3563 3564 ei = EXT4_I(ac->ac_inode); 3565 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3566 3567 pa->pa_obj_lock = &ei->i_prealloc_lock; 3568 pa->pa_inode = ac->ac_inode; 3569 3570 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3571 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3572 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3573 3574 spin_lock(pa->pa_obj_lock); 3575 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3576 spin_unlock(pa->pa_obj_lock); 3577 3578 return 0; 3579 } 3580 3581 /* 3582 * creates new preallocated space for locality group inodes belongs to 3583 */ 3584 static noinline_for_stack int 3585 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3586 { 3587 struct super_block *sb = ac->ac_sb; 3588 struct ext4_locality_group *lg; 3589 struct ext4_prealloc_space *pa; 3590 struct ext4_group_info *grp; 3591 3592 /* preallocate only when found space is larger then requested */ 3593 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3594 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3595 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3596 3597 BUG_ON(ext4_pspace_cachep == NULL); 3598 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3599 if (pa == NULL) 3600 return -ENOMEM; 3601 3602 /* preallocation can change ac_b_ex, thus we store actually 3603 * allocated blocks for history */ 3604 ac->ac_f_ex = ac->ac_b_ex; 3605 3606 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3607 pa->pa_lstart = pa->pa_pstart; 3608 pa->pa_len = ac->ac_b_ex.fe_len; 3609 pa->pa_free = pa->pa_len; 3610 atomic_set(&pa->pa_count, 1); 3611 spin_lock_init(&pa->pa_lock); 3612 INIT_LIST_HEAD(&pa->pa_inode_list); 3613 INIT_LIST_HEAD(&pa->pa_group_list); 3614 pa->pa_deleted = 0; 3615 pa->pa_type = MB_GROUP_PA; 3616 3617 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3618 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3619 trace_ext4_mb_new_group_pa(ac, pa); 3620 3621 ext4_mb_use_group_pa(ac, pa); 3622 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3623 3624 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3625 lg = ac->ac_lg; 3626 BUG_ON(lg == NULL); 3627 3628 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3629 pa->pa_inode = NULL; 3630 3631 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3632 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3633 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3634 3635 /* 3636 * We will later add the new pa to the right bucket 3637 * after updating the pa_free in ext4_mb_release_context 3638 */ 3639 return 0; 3640 } 3641 3642 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3643 { 3644 int err; 3645 3646 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3647 err = ext4_mb_new_group_pa(ac); 3648 else 3649 err = ext4_mb_new_inode_pa(ac); 3650 return err; 3651 } 3652 3653 /* 3654 * finds all unused blocks in on-disk bitmap, frees them in 3655 * in-core bitmap and buddy. 3656 * @pa must be unlinked from inode and group lists, so that 3657 * nobody else can find/use it. 3658 * the caller MUST hold group/inode locks. 3659 * TODO: optimize the case when there are no in-core structures yet 3660 */ 3661 static noinline_for_stack int 3662 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3663 struct ext4_prealloc_space *pa) 3664 { 3665 struct super_block *sb = e4b->bd_sb; 3666 struct ext4_sb_info *sbi = EXT4_SB(sb); 3667 unsigned int end; 3668 unsigned int next; 3669 ext4_group_t group; 3670 ext4_grpblk_t bit; 3671 unsigned long long grp_blk_start; 3672 int err = 0; 3673 int free = 0; 3674 3675 BUG_ON(pa->pa_deleted == 0); 3676 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3677 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3678 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3679 end = bit + pa->pa_len; 3680 3681 while (bit < end) { 3682 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3683 if (bit >= end) 3684 break; 3685 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3686 mb_debug(1, " free preallocated %u/%u in group %u\n", 3687 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3688 (unsigned) next - bit, (unsigned) group); 3689 free += next - bit; 3690 3691 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3692 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3693 EXT4_C2B(sbi, bit)), 3694 next - bit); 3695 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3696 bit = next + 1; 3697 } 3698 if (free != pa->pa_free) { 3699 ext4_msg(e4b->bd_sb, KERN_CRIT, 3700 "pa %p: logic %lu, phys. %lu, len %lu", 3701 pa, (unsigned long) pa->pa_lstart, 3702 (unsigned long) pa->pa_pstart, 3703 (unsigned long) pa->pa_len); 3704 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3705 free, pa->pa_free); 3706 /* 3707 * pa is already deleted so we use the value obtained 3708 * from the bitmap and continue. 3709 */ 3710 } 3711 atomic_add(free, &sbi->s_mb_discarded); 3712 3713 return err; 3714 } 3715 3716 static noinline_for_stack int 3717 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3718 struct ext4_prealloc_space *pa) 3719 { 3720 struct super_block *sb = e4b->bd_sb; 3721 ext4_group_t group; 3722 ext4_grpblk_t bit; 3723 3724 trace_ext4_mb_release_group_pa(sb, pa); 3725 BUG_ON(pa->pa_deleted == 0); 3726 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3727 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3728 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3729 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3730 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3731 3732 return 0; 3733 } 3734 3735 /* 3736 * releases all preallocations in given group 3737 * 3738 * first, we need to decide discard policy: 3739 * - when do we discard 3740 * 1) ENOSPC 3741 * - how many do we discard 3742 * 1) how many requested 3743 */ 3744 static noinline_for_stack int 3745 ext4_mb_discard_group_preallocations(struct super_block *sb, 3746 ext4_group_t group, int needed) 3747 { 3748 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3749 struct buffer_head *bitmap_bh = NULL; 3750 struct ext4_prealloc_space *pa, *tmp; 3751 struct list_head list; 3752 struct ext4_buddy e4b; 3753 int err; 3754 int busy = 0; 3755 int free = 0; 3756 3757 mb_debug(1, "discard preallocation for group %u\n", group); 3758 3759 if (list_empty(&grp->bb_prealloc_list)) 3760 return 0; 3761 3762 bitmap_bh = ext4_read_block_bitmap(sb, group); 3763 if (bitmap_bh == NULL) { 3764 ext4_error(sb, "Error reading block bitmap for %u", group); 3765 return 0; 3766 } 3767 3768 err = ext4_mb_load_buddy(sb, group, &e4b); 3769 if (err) { 3770 ext4_error(sb, "Error loading buddy information for %u", group); 3771 put_bh(bitmap_bh); 3772 return 0; 3773 } 3774 3775 if (needed == 0) 3776 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3777 3778 INIT_LIST_HEAD(&list); 3779 repeat: 3780 ext4_lock_group(sb, group); 3781 list_for_each_entry_safe(pa, tmp, 3782 &grp->bb_prealloc_list, pa_group_list) { 3783 spin_lock(&pa->pa_lock); 3784 if (atomic_read(&pa->pa_count)) { 3785 spin_unlock(&pa->pa_lock); 3786 busy = 1; 3787 continue; 3788 } 3789 if (pa->pa_deleted) { 3790 spin_unlock(&pa->pa_lock); 3791 continue; 3792 } 3793 3794 /* seems this one can be freed ... */ 3795 pa->pa_deleted = 1; 3796 3797 /* we can trust pa_free ... */ 3798 free += pa->pa_free; 3799 3800 spin_unlock(&pa->pa_lock); 3801 3802 list_del(&pa->pa_group_list); 3803 list_add(&pa->u.pa_tmp_list, &list); 3804 } 3805 3806 /* if we still need more blocks and some PAs were used, try again */ 3807 if (free < needed && busy) { 3808 busy = 0; 3809 ext4_unlock_group(sb, group); 3810 cond_resched(); 3811 goto repeat; 3812 } 3813 3814 /* found anything to free? */ 3815 if (list_empty(&list)) { 3816 BUG_ON(free != 0); 3817 goto out; 3818 } 3819 3820 /* now free all selected PAs */ 3821 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3822 3823 /* remove from object (inode or locality group) */ 3824 spin_lock(pa->pa_obj_lock); 3825 list_del_rcu(&pa->pa_inode_list); 3826 spin_unlock(pa->pa_obj_lock); 3827 3828 if (pa->pa_type == MB_GROUP_PA) 3829 ext4_mb_release_group_pa(&e4b, pa); 3830 else 3831 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3832 3833 list_del(&pa->u.pa_tmp_list); 3834 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3835 } 3836 3837 out: 3838 ext4_unlock_group(sb, group); 3839 ext4_mb_unload_buddy(&e4b); 3840 put_bh(bitmap_bh); 3841 return free; 3842 } 3843 3844 /* 3845 * releases all non-used preallocated blocks for given inode 3846 * 3847 * It's important to discard preallocations under i_data_sem 3848 * We don't want another block to be served from the prealloc 3849 * space when we are discarding the inode prealloc space. 3850 * 3851 * FIXME!! Make sure it is valid at all the call sites 3852 */ 3853 void ext4_discard_preallocations(struct inode *inode) 3854 { 3855 struct ext4_inode_info *ei = EXT4_I(inode); 3856 struct super_block *sb = inode->i_sb; 3857 struct buffer_head *bitmap_bh = NULL; 3858 struct ext4_prealloc_space *pa, *tmp; 3859 ext4_group_t group = 0; 3860 struct list_head list; 3861 struct ext4_buddy e4b; 3862 int err; 3863 3864 if (!S_ISREG(inode->i_mode)) { 3865 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 3866 return; 3867 } 3868 3869 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 3870 trace_ext4_discard_preallocations(inode); 3871 3872 INIT_LIST_HEAD(&list); 3873 3874 repeat: 3875 /* first, collect all pa's in the inode */ 3876 spin_lock(&ei->i_prealloc_lock); 3877 while (!list_empty(&ei->i_prealloc_list)) { 3878 pa = list_entry(ei->i_prealloc_list.next, 3879 struct ext4_prealloc_space, pa_inode_list); 3880 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 3881 spin_lock(&pa->pa_lock); 3882 if (atomic_read(&pa->pa_count)) { 3883 /* this shouldn't happen often - nobody should 3884 * use preallocation while we're discarding it */ 3885 spin_unlock(&pa->pa_lock); 3886 spin_unlock(&ei->i_prealloc_lock); 3887 ext4_msg(sb, KERN_ERR, 3888 "uh-oh! used pa while discarding"); 3889 WARN_ON(1); 3890 schedule_timeout_uninterruptible(HZ); 3891 goto repeat; 3892 3893 } 3894 if (pa->pa_deleted == 0) { 3895 pa->pa_deleted = 1; 3896 spin_unlock(&pa->pa_lock); 3897 list_del_rcu(&pa->pa_inode_list); 3898 list_add(&pa->u.pa_tmp_list, &list); 3899 continue; 3900 } 3901 3902 /* someone is deleting pa right now */ 3903 spin_unlock(&pa->pa_lock); 3904 spin_unlock(&ei->i_prealloc_lock); 3905 3906 /* we have to wait here because pa_deleted 3907 * doesn't mean pa is already unlinked from 3908 * the list. as we might be called from 3909 * ->clear_inode() the inode will get freed 3910 * and concurrent thread which is unlinking 3911 * pa from inode's list may access already 3912 * freed memory, bad-bad-bad */ 3913 3914 /* XXX: if this happens too often, we can 3915 * add a flag to force wait only in case 3916 * of ->clear_inode(), but not in case of 3917 * regular truncate */ 3918 schedule_timeout_uninterruptible(HZ); 3919 goto repeat; 3920 } 3921 spin_unlock(&ei->i_prealloc_lock); 3922 3923 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3924 BUG_ON(pa->pa_type != MB_INODE_PA); 3925 group = ext4_get_group_number(sb, pa->pa_pstart); 3926 3927 err = ext4_mb_load_buddy(sb, group, &e4b); 3928 if (err) { 3929 ext4_error(sb, "Error loading buddy information for %u", 3930 group); 3931 continue; 3932 } 3933 3934 bitmap_bh = ext4_read_block_bitmap(sb, group); 3935 if (bitmap_bh == NULL) { 3936 ext4_error(sb, "Error reading block bitmap for %u", 3937 group); 3938 ext4_mb_unload_buddy(&e4b); 3939 continue; 3940 } 3941 3942 ext4_lock_group(sb, group); 3943 list_del(&pa->pa_group_list); 3944 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3945 ext4_unlock_group(sb, group); 3946 3947 ext4_mb_unload_buddy(&e4b); 3948 put_bh(bitmap_bh); 3949 3950 list_del(&pa->u.pa_tmp_list); 3951 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3952 } 3953 } 3954 3955 #ifdef CONFIG_EXT4_DEBUG 3956 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3957 { 3958 struct super_block *sb = ac->ac_sb; 3959 ext4_group_t ngroups, i; 3960 3961 if (!ext4_mballoc_debug || 3962 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 3963 return; 3964 3965 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 3966 " Allocation context details:"); 3967 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 3968 ac->ac_status, ac->ac_flags); 3969 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 3970 "goal %lu/%lu/%lu@%lu, " 3971 "best %lu/%lu/%lu@%lu cr %d", 3972 (unsigned long)ac->ac_o_ex.fe_group, 3973 (unsigned long)ac->ac_o_ex.fe_start, 3974 (unsigned long)ac->ac_o_ex.fe_len, 3975 (unsigned long)ac->ac_o_ex.fe_logical, 3976 (unsigned long)ac->ac_g_ex.fe_group, 3977 (unsigned long)ac->ac_g_ex.fe_start, 3978 (unsigned long)ac->ac_g_ex.fe_len, 3979 (unsigned long)ac->ac_g_ex.fe_logical, 3980 (unsigned long)ac->ac_b_ex.fe_group, 3981 (unsigned long)ac->ac_b_ex.fe_start, 3982 (unsigned long)ac->ac_b_ex.fe_len, 3983 (unsigned long)ac->ac_b_ex.fe_logical, 3984 (int)ac->ac_criteria); 3985 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found", 3986 ac->ac_ex_scanned, ac->ac_found); 3987 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 3988 ngroups = ext4_get_groups_count(sb); 3989 for (i = 0; i < ngroups; i++) { 3990 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3991 struct ext4_prealloc_space *pa; 3992 ext4_grpblk_t start; 3993 struct list_head *cur; 3994 ext4_lock_group(sb, i); 3995 list_for_each(cur, &grp->bb_prealloc_list) { 3996 pa = list_entry(cur, struct ext4_prealloc_space, 3997 pa_group_list); 3998 spin_lock(&pa->pa_lock); 3999 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4000 NULL, &start); 4001 spin_unlock(&pa->pa_lock); 4002 printk(KERN_ERR "PA:%u:%d:%u \n", i, 4003 start, pa->pa_len); 4004 } 4005 ext4_unlock_group(sb, i); 4006 4007 if (grp->bb_free == 0) 4008 continue; 4009 printk(KERN_ERR "%u: %d/%d \n", 4010 i, grp->bb_free, grp->bb_fragments); 4011 } 4012 printk(KERN_ERR "\n"); 4013 } 4014 #else 4015 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4016 { 4017 return; 4018 } 4019 #endif 4020 4021 /* 4022 * We use locality group preallocation for small size file. The size of the 4023 * file is determined by the current size or the resulting size after 4024 * allocation which ever is larger 4025 * 4026 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4027 */ 4028 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4029 { 4030 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4031 int bsbits = ac->ac_sb->s_blocksize_bits; 4032 loff_t size, isize; 4033 4034 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4035 return; 4036 4037 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4038 return; 4039 4040 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4041 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4042 >> bsbits; 4043 4044 if ((size == isize) && 4045 !ext4_fs_is_busy(sbi) && 4046 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 4047 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4048 return; 4049 } 4050 4051 if (sbi->s_mb_group_prealloc <= 0) { 4052 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4053 return; 4054 } 4055 4056 /* don't use group allocation for large files */ 4057 size = max(size, isize); 4058 if (size > sbi->s_mb_stream_request) { 4059 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4060 return; 4061 } 4062 4063 BUG_ON(ac->ac_lg != NULL); 4064 /* 4065 * locality group prealloc space are per cpu. The reason for having 4066 * per cpu locality group is to reduce the contention between block 4067 * request from multiple CPUs. 4068 */ 4069 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups); 4070 4071 /* we're going to use group allocation */ 4072 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4073 4074 /* serialize all allocations in the group */ 4075 mutex_lock(&ac->ac_lg->lg_mutex); 4076 } 4077 4078 static noinline_for_stack int 4079 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4080 struct ext4_allocation_request *ar) 4081 { 4082 struct super_block *sb = ar->inode->i_sb; 4083 struct ext4_sb_info *sbi = EXT4_SB(sb); 4084 struct ext4_super_block *es = sbi->s_es; 4085 ext4_group_t group; 4086 unsigned int len; 4087 ext4_fsblk_t goal; 4088 ext4_grpblk_t block; 4089 4090 /* we can't allocate > group size */ 4091 len = ar->len; 4092 4093 /* just a dirty hack to filter too big requests */ 4094 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4095 len = EXT4_CLUSTERS_PER_GROUP(sb); 4096 4097 /* start searching from the goal */ 4098 goal = ar->goal; 4099 if (goal < le32_to_cpu(es->s_first_data_block) || 4100 goal >= ext4_blocks_count(es)) 4101 goal = le32_to_cpu(es->s_first_data_block); 4102 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4103 4104 /* set up allocation goals */ 4105 ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1); 4106 ac->ac_status = AC_STATUS_CONTINUE; 4107 ac->ac_sb = sb; 4108 ac->ac_inode = ar->inode; 4109 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4110 ac->ac_o_ex.fe_group = group; 4111 ac->ac_o_ex.fe_start = block; 4112 ac->ac_o_ex.fe_len = len; 4113 ac->ac_g_ex = ac->ac_o_ex; 4114 ac->ac_flags = ar->flags; 4115 4116 /* we have to define context: we'll we work with a file or 4117 * locality group. this is a policy, actually */ 4118 ext4_mb_group_or_file(ac); 4119 4120 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4121 "left: %u/%u, right %u/%u to %swritable\n", 4122 (unsigned) ar->len, (unsigned) ar->logical, 4123 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4124 (unsigned) ar->lleft, (unsigned) ar->pleft, 4125 (unsigned) ar->lright, (unsigned) ar->pright, 4126 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4127 return 0; 4128 4129 } 4130 4131 static noinline_for_stack void 4132 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4133 struct ext4_locality_group *lg, 4134 int order, int total_entries) 4135 { 4136 ext4_group_t group = 0; 4137 struct ext4_buddy e4b; 4138 struct list_head discard_list; 4139 struct ext4_prealloc_space *pa, *tmp; 4140 4141 mb_debug(1, "discard locality group preallocation\n"); 4142 4143 INIT_LIST_HEAD(&discard_list); 4144 4145 spin_lock(&lg->lg_prealloc_lock); 4146 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4147 pa_inode_list) { 4148 spin_lock(&pa->pa_lock); 4149 if (atomic_read(&pa->pa_count)) { 4150 /* 4151 * This is the pa that we just used 4152 * for block allocation. So don't 4153 * free that 4154 */ 4155 spin_unlock(&pa->pa_lock); 4156 continue; 4157 } 4158 if (pa->pa_deleted) { 4159 spin_unlock(&pa->pa_lock); 4160 continue; 4161 } 4162 /* only lg prealloc space */ 4163 BUG_ON(pa->pa_type != MB_GROUP_PA); 4164 4165 /* seems this one can be freed ... */ 4166 pa->pa_deleted = 1; 4167 spin_unlock(&pa->pa_lock); 4168 4169 list_del_rcu(&pa->pa_inode_list); 4170 list_add(&pa->u.pa_tmp_list, &discard_list); 4171 4172 total_entries--; 4173 if (total_entries <= 5) { 4174 /* 4175 * we want to keep only 5 entries 4176 * allowing it to grow to 8. This 4177 * mak sure we don't call discard 4178 * soon for this list. 4179 */ 4180 break; 4181 } 4182 } 4183 spin_unlock(&lg->lg_prealloc_lock); 4184 4185 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4186 4187 group = ext4_get_group_number(sb, pa->pa_pstart); 4188 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4189 ext4_error(sb, "Error loading buddy information for %u", 4190 group); 4191 continue; 4192 } 4193 ext4_lock_group(sb, group); 4194 list_del(&pa->pa_group_list); 4195 ext4_mb_release_group_pa(&e4b, pa); 4196 ext4_unlock_group(sb, group); 4197 4198 ext4_mb_unload_buddy(&e4b); 4199 list_del(&pa->u.pa_tmp_list); 4200 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4201 } 4202 } 4203 4204 /* 4205 * We have incremented pa_count. So it cannot be freed at this 4206 * point. Also we hold lg_mutex. So no parallel allocation is 4207 * possible from this lg. That means pa_free cannot be updated. 4208 * 4209 * A parallel ext4_mb_discard_group_preallocations is possible. 4210 * which can cause the lg_prealloc_list to be updated. 4211 */ 4212 4213 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4214 { 4215 int order, added = 0, lg_prealloc_count = 1; 4216 struct super_block *sb = ac->ac_sb; 4217 struct ext4_locality_group *lg = ac->ac_lg; 4218 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4219 4220 order = fls(pa->pa_free) - 1; 4221 if (order > PREALLOC_TB_SIZE - 1) 4222 /* The max size of hash table is PREALLOC_TB_SIZE */ 4223 order = PREALLOC_TB_SIZE - 1; 4224 /* Add the prealloc space to lg */ 4225 spin_lock(&lg->lg_prealloc_lock); 4226 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4227 pa_inode_list) { 4228 spin_lock(&tmp_pa->pa_lock); 4229 if (tmp_pa->pa_deleted) { 4230 spin_unlock(&tmp_pa->pa_lock); 4231 continue; 4232 } 4233 if (!added && pa->pa_free < tmp_pa->pa_free) { 4234 /* Add to the tail of the previous entry */ 4235 list_add_tail_rcu(&pa->pa_inode_list, 4236 &tmp_pa->pa_inode_list); 4237 added = 1; 4238 /* 4239 * we want to count the total 4240 * number of entries in the list 4241 */ 4242 } 4243 spin_unlock(&tmp_pa->pa_lock); 4244 lg_prealloc_count++; 4245 } 4246 if (!added) 4247 list_add_tail_rcu(&pa->pa_inode_list, 4248 &lg->lg_prealloc_list[order]); 4249 spin_unlock(&lg->lg_prealloc_lock); 4250 4251 /* Now trim the list to be not more than 8 elements */ 4252 if (lg_prealloc_count > 8) { 4253 ext4_mb_discard_lg_preallocations(sb, lg, 4254 order, lg_prealloc_count); 4255 return; 4256 } 4257 return ; 4258 } 4259 4260 /* 4261 * release all resource we used in allocation 4262 */ 4263 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4264 { 4265 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4266 struct ext4_prealloc_space *pa = ac->ac_pa; 4267 if (pa) { 4268 if (pa->pa_type == MB_GROUP_PA) { 4269 /* see comment in ext4_mb_use_group_pa() */ 4270 spin_lock(&pa->pa_lock); 4271 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4272 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4273 pa->pa_free -= ac->ac_b_ex.fe_len; 4274 pa->pa_len -= ac->ac_b_ex.fe_len; 4275 spin_unlock(&pa->pa_lock); 4276 } 4277 } 4278 if (pa) { 4279 /* 4280 * We want to add the pa to the right bucket. 4281 * Remove it from the list and while adding 4282 * make sure the list to which we are adding 4283 * doesn't grow big. 4284 */ 4285 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4286 spin_lock(pa->pa_obj_lock); 4287 list_del_rcu(&pa->pa_inode_list); 4288 spin_unlock(pa->pa_obj_lock); 4289 ext4_mb_add_n_trim(ac); 4290 } 4291 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4292 } 4293 if (ac->ac_bitmap_page) 4294 page_cache_release(ac->ac_bitmap_page); 4295 if (ac->ac_buddy_page) 4296 page_cache_release(ac->ac_buddy_page); 4297 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4298 mutex_unlock(&ac->ac_lg->lg_mutex); 4299 ext4_mb_collect_stats(ac); 4300 return 0; 4301 } 4302 4303 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4304 { 4305 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4306 int ret; 4307 int freed = 0; 4308 4309 trace_ext4_mb_discard_preallocations(sb, needed); 4310 for (i = 0; i < ngroups && needed > 0; i++) { 4311 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4312 freed += ret; 4313 needed -= ret; 4314 } 4315 4316 return freed; 4317 } 4318 4319 /* 4320 * Main entry point into mballoc to allocate blocks 4321 * it tries to use preallocation first, then falls back 4322 * to usual allocation 4323 */ 4324 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4325 struct ext4_allocation_request *ar, int *errp) 4326 { 4327 int freed; 4328 struct ext4_allocation_context *ac = NULL; 4329 struct ext4_sb_info *sbi; 4330 struct super_block *sb; 4331 ext4_fsblk_t block = 0; 4332 unsigned int inquota = 0; 4333 unsigned int reserv_clstrs = 0; 4334 4335 might_sleep(); 4336 sb = ar->inode->i_sb; 4337 sbi = EXT4_SB(sb); 4338 4339 trace_ext4_request_blocks(ar); 4340 4341 /* Allow to use superuser reservation for quota file */ 4342 if (IS_NOQUOTA(ar->inode)) 4343 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4344 4345 /* 4346 * For delayed allocation, we could skip the ENOSPC and 4347 * EDQUOT check, as blocks and quotas have been already 4348 * reserved when data being copied into pagecache. 4349 */ 4350 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED)) 4351 ar->flags |= EXT4_MB_DELALLOC_RESERVED; 4352 else { 4353 /* Without delayed allocation we need to verify 4354 * there is enough free blocks to do block allocation 4355 * and verify allocation doesn't exceed the quota limits. 4356 */ 4357 while (ar->len && 4358 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4359 4360 /* let others to free the space */ 4361 cond_resched(); 4362 ar->len = ar->len >> 1; 4363 } 4364 if (!ar->len) { 4365 *errp = -ENOSPC; 4366 return 0; 4367 } 4368 reserv_clstrs = ar->len; 4369 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4370 dquot_alloc_block_nofail(ar->inode, 4371 EXT4_C2B(sbi, ar->len)); 4372 } else { 4373 while (ar->len && 4374 dquot_alloc_block(ar->inode, 4375 EXT4_C2B(sbi, ar->len))) { 4376 4377 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4378 ar->len--; 4379 } 4380 } 4381 inquota = ar->len; 4382 if (ar->len == 0) { 4383 *errp = -EDQUOT; 4384 goto out; 4385 } 4386 } 4387 4388 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4389 if (!ac) { 4390 ar->len = 0; 4391 *errp = -ENOMEM; 4392 goto out; 4393 } 4394 4395 *errp = ext4_mb_initialize_context(ac, ar); 4396 if (*errp) { 4397 ar->len = 0; 4398 goto out; 4399 } 4400 4401 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4402 if (!ext4_mb_use_preallocated(ac)) { 4403 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4404 ext4_mb_normalize_request(ac, ar); 4405 repeat: 4406 /* allocate space in core */ 4407 *errp = ext4_mb_regular_allocator(ac); 4408 if (*errp) { 4409 ext4_discard_allocated_blocks(ac); 4410 goto errout; 4411 } 4412 4413 /* as we've just preallocated more space than 4414 * user requested orinally, we store allocated 4415 * space in a special descriptor */ 4416 if (ac->ac_status == AC_STATUS_FOUND && 4417 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4418 ext4_mb_new_preallocation(ac); 4419 } 4420 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4421 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4422 if (*errp == -EAGAIN) { 4423 /* 4424 * drop the reference that we took 4425 * in ext4_mb_use_best_found 4426 */ 4427 ext4_mb_release_context(ac); 4428 ac->ac_b_ex.fe_group = 0; 4429 ac->ac_b_ex.fe_start = 0; 4430 ac->ac_b_ex.fe_len = 0; 4431 ac->ac_status = AC_STATUS_CONTINUE; 4432 goto repeat; 4433 } else if (*errp) { 4434 ext4_discard_allocated_blocks(ac); 4435 goto errout; 4436 } else { 4437 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4438 ar->len = ac->ac_b_ex.fe_len; 4439 } 4440 } else { 4441 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4442 if (freed) 4443 goto repeat; 4444 *errp = -ENOSPC; 4445 } 4446 4447 errout: 4448 if (*errp) { 4449 ac->ac_b_ex.fe_len = 0; 4450 ar->len = 0; 4451 ext4_mb_show_ac(ac); 4452 } 4453 ext4_mb_release_context(ac); 4454 out: 4455 if (ac) 4456 kmem_cache_free(ext4_ac_cachep, ac); 4457 if (inquota && ar->len < inquota) 4458 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4459 if (!ar->len) { 4460 if (!ext4_test_inode_state(ar->inode, 4461 EXT4_STATE_DELALLOC_RESERVED)) 4462 /* release all the reserved blocks if non delalloc */ 4463 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4464 reserv_clstrs); 4465 } 4466 4467 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4468 4469 return block; 4470 } 4471 4472 /* 4473 * We can merge two free data extents only if the physical blocks 4474 * are contiguous, AND the extents were freed by the same transaction, 4475 * AND the blocks are associated with the same group. 4476 */ 4477 static int can_merge(struct ext4_free_data *entry1, 4478 struct ext4_free_data *entry2) 4479 { 4480 if ((entry1->efd_tid == entry2->efd_tid) && 4481 (entry1->efd_group == entry2->efd_group) && 4482 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster)) 4483 return 1; 4484 return 0; 4485 } 4486 4487 static noinline_for_stack int 4488 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4489 struct ext4_free_data *new_entry) 4490 { 4491 ext4_group_t group = e4b->bd_group; 4492 ext4_grpblk_t cluster; 4493 struct ext4_free_data *entry; 4494 struct ext4_group_info *db = e4b->bd_info; 4495 struct super_block *sb = e4b->bd_sb; 4496 struct ext4_sb_info *sbi = EXT4_SB(sb); 4497 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4498 struct rb_node *parent = NULL, *new_node; 4499 4500 BUG_ON(!ext4_handle_valid(handle)); 4501 BUG_ON(e4b->bd_bitmap_page == NULL); 4502 BUG_ON(e4b->bd_buddy_page == NULL); 4503 4504 new_node = &new_entry->efd_node; 4505 cluster = new_entry->efd_start_cluster; 4506 4507 if (!*n) { 4508 /* first free block exent. We need to 4509 protect buddy cache from being freed, 4510 * otherwise we'll refresh it from 4511 * on-disk bitmap and lose not-yet-available 4512 * blocks */ 4513 page_cache_get(e4b->bd_buddy_page); 4514 page_cache_get(e4b->bd_bitmap_page); 4515 } 4516 while (*n) { 4517 parent = *n; 4518 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4519 if (cluster < entry->efd_start_cluster) 4520 n = &(*n)->rb_left; 4521 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4522 n = &(*n)->rb_right; 4523 else { 4524 ext4_grp_locked_error(sb, group, 0, 4525 ext4_group_first_block_no(sb, group) + 4526 EXT4_C2B(sbi, cluster), 4527 "Block already on to-be-freed list"); 4528 return 0; 4529 } 4530 } 4531 4532 rb_link_node(new_node, parent, n); 4533 rb_insert_color(new_node, &db->bb_free_root); 4534 4535 /* Now try to see the extent can be merged to left and right */ 4536 node = rb_prev(new_node); 4537 if (node) { 4538 entry = rb_entry(node, struct ext4_free_data, efd_node); 4539 if (can_merge(entry, new_entry) && 4540 ext4_journal_callback_try_del(handle, &entry->efd_jce)) { 4541 new_entry->efd_start_cluster = entry->efd_start_cluster; 4542 new_entry->efd_count += entry->efd_count; 4543 rb_erase(node, &(db->bb_free_root)); 4544 kmem_cache_free(ext4_free_data_cachep, entry); 4545 } 4546 } 4547 4548 node = rb_next(new_node); 4549 if (node) { 4550 entry = rb_entry(node, struct ext4_free_data, efd_node); 4551 if (can_merge(new_entry, entry) && 4552 ext4_journal_callback_try_del(handle, &entry->efd_jce)) { 4553 new_entry->efd_count += entry->efd_count; 4554 rb_erase(node, &(db->bb_free_root)); 4555 kmem_cache_free(ext4_free_data_cachep, entry); 4556 } 4557 } 4558 /* Add the extent to transaction's private list */ 4559 ext4_journal_callback_add(handle, ext4_free_data_callback, 4560 &new_entry->efd_jce); 4561 return 0; 4562 } 4563 4564 /** 4565 * ext4_free_blocks() -- Free given blocks and update quota 4566 * @handle: handle for this transaction 4567 * @inode: inode 4568 * @block: start physical block to free 4569 * @count: number of blocks to count 4570 * @flags: flags used by ext4_free_blocks 4571 */ 4572 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4573 struct buffer_head *bh, ext4_fsblk_t block, 4574 unsigned long count, int flags) 4575 { 4576 struct buffer_head *bitmap_bh = NULL; 4577 struct super_block *sb = inode->i_sb; 4578 struct ext4_group_desc *gdp; 4579 unsigned int overflow; 4580 ext4_grpblk_t bit; 4581 struct buffer_head *gd_bh; 4582 ext4_group_t block_group; 4583 struct ext4_sb_info *sbi; 4584 struct ext4_buddy e4b; 4585 unsigned int count_clusters; 4586 int err = 0; 4587 int ret; 4588 4589 might_sleep(); 4590 if (bh) { 4591 if (block) 4592 BUG_ON(block != bh->b_blocknr); 4593 else 4594 block = bh->b_blocknr; 4595 } 4596 4597 sbi = EXT4_SB(sb); 4598 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4599 !ext4_data_block_valid(sbi, block, count)) { 4600 ext4_error(sb, "Freeing blocks not in datazone - " 4601 "block = %llu, count = %lu", block, count); 4602 goto error_return; 4603 } 4604 4605 ext4_debug("freeing block %llu\n", block); 4606 trace_ext4_free_blocks(inode, block, count, flags); 4607 4608 if (flags & EXT4_FREE_BLOCKS_FORGET) { 4609 struct buffer_head *tbh = bh; 4610 int i; 4611 4612 BUG_ON(bh && (count > 1)); 4613 4614 for (i = 0; i < count; i++) { 4615 if (!bh) 4616 tbh = sb_find_get_block(inode->i_sb, 4617 block + i); 4618 if (unlikely(!tbh)) 4619 continue; 4620 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4621 inode, tbh, block + i); 4622 } 4623 } 4624 4625 /* 4626 * We need to make sure we don't reuse the freed block until 4627 * after the transaction is committed, which we can do by 4628 * treating the block as metadata, below. We make an 4629 * exception if the inode is to be written in writeback mode 4630 * since writeback mode has weak data consistency guarantees. 4631 */ 4632 if (!ext4_should_writeback_data(inode)) 4633 flags |= EXT4_FREE_BLOCKS_METADATA; 4634 4635 /* 4636 * If the extent to be freed does not begin on a cluster 4637 * boundary, we need to deal with partial clusters at the 4638 * beginning and end of the extent. Normally we will free 4639 * blocks at the beginning or the end unless we are explicitly 4640 * requested to avoid doing so. 4641 */ 4642 overflow = block & (sbi->s_cluster_ratio - 1); 4643 if (overflow) { 4644 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4645 overflow = sbi->s_cluster_ratio - overflow; 4646 block += overflow; 4647 if (count > overflow) 4648 count -= overflow; 4649 else 4650 return; 4651 } else { 4652 block -= overflow; 4653 count += overflow; 4654 } 4655 } 4656 overflow = count & (sbi->s_cluster_ratio - 1); 4657 if (overflow) { 4658 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4659 if (count > overflow) 4660 count -= overflow; 4661 else 4662 return; 4663 } else 4664 count += sbi->s_cluster_ratio - overflow; 4665 } 4666 4667 do_more: 4668 overflow = 0; 4669 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4670 4671 /* 4672 * Check to see if we are freeing blocks across a group 4673 * boundary. 4674 */ 4675 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4676 overflow = EXT4_C2B(sbi, bit) + count - 4677 EXT4_BLOCKS_PER_GROUP(sb); 4678 count -= overflow; 4679 } 4680 count_clusters = EXT4_NUM_B2C(sbi, count); 4681 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4682 if (!bitmap_bh) { 4683 err = -EIO; 4684 goto error_return; 4685 } 4686 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4687 if (!gdp) { 4688 err = -EIO; 4689 goto error_return; 4690 } 4691 4692 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4693 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4694 in_range(block, ext4_inode_table(sb, gdp), 4695 EXT4_SB(sb)->s_itb_per_group) || 4696 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4697 EXT4_SB(sb)->s_itb_per_group)) { 4698 4699 ext4_error(sb, "Freeing blocks in system zone - " 4700 "Block = %llu, count = %lu", block, count); 4701 /* err = 0. ext4_std_error should be a no op */ 4702 goto error_return; 4703 } 4704 4705 BUFFER_TRACE(bitmap_bh, "getting write access"); 4706 err = ext4_journal_get_write_access(handle, bitmap_bh); 4707 if (err) 4708 goto error_return; 4709 4710 /* 4711 * We are about to modify some metadata. Call the journal APIs 4712 * to unshare ->b_data if a currently-committing transaction is 4713 * using it 4714 */ 4715 BUFFER_TRACE(gd_bh, "get_write_access"); 4716 err = ext4_journal_get_write_access(handle, gd_bh); 4717 if (err) 4718 goto error_return; 4719 #ifdef AGGRESSIVE_CHECK 4720 { 4721 int i; 4722 for (i = 0; i < count_clusters; i++) 4723 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4724 } 4725 #endif 4726 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4727 4728 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4729 if (err) 4730 goto error_return; 4731 4732 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) { 4733 struct ext4_free_data *new_entry; 4734 /* 4735 * blocks being freed are metadata. these blocks shouldn't 4736 * be used until this transaction is committed 4737 */ 4738 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS); 4739 if (!new_entry) { 4740 ext4_mb_unload_buddy(&e4b); 4741 err = -ENOMEM; 4742 goto error_return; 4743 } 4744 new_entry->efd_start_cluster = bit; 4745 new_entry->efd_group = block_group; 4746 new_entry->efd_count = count_clusters; 4747 new_entry->efd_tid = handle->h_transaction->t_tid; 4748 4749 ext4_lock_group(sb, block_group); 4750 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4751 ext4_mb_free_metadata(handle, &e4b, new_entry); 4752 } else { 4753 /* need to update group_info->bb_free and bitmap 4754 * with group lock held. generate_buddy look at 4755 * them with group lock_held 4756 */ 4757 if (test_opt(sb, DISCARD)) { 4758 err = ext4_issue_discard(sb, block_group, bit, count); 4759 if (err && err != -EOPNOTSUPP) 4760 ext4_msg(sb, KERN_WARNING, "discard request in" 4761 " group:%d block:%d count:%lu failed" 4762 " with %d", block_group, bit, count, 4763 err); 4764 } 4765 4766 4767 ext4_lock_group(sb, block_group); 4768 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4769 mb_free_blocks(inode, &e4b, bit, count_clusters); 4770 } 4771 4772 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4773 ext4_free_group_clusters_set(sb, gdp, ret); 4774 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 4775 ext4_group_desc_csum_set(sb, block_group, gdp); 4776 ext4_unlock_group(sb, block_group); 4777 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); 4778 4779 if (sbi->s_log_groups_per_flex) { 4780 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4781 atomic64_add(count_clusters, 4782 &sbi->s_flex_groups[flex_group].free_clusters); 4783 } 4784 4785 ext4_mb_unload_buddy(&e4b); 4786 4787 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4788 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4789 4790 /* We dirtied the bitmap block */ 4791 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4792 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4793 4794 /* And the group descriptor block */ 4795 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4796 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4797 if (!err) 4798 err = ret; 4799 4800 if (overflow && !err) { 4801 block += count; 4802 count = overflow; 4803 put_bh(bitmap_bh); 4804 goto do_more; 4805 } 4806 error_return: 4807 brelse(bitmap_bh); 4808 ext4_std_error(sb, err); 4809 return; 4810 } 4811 4812 /** 4813 * ext4_group_add_blocks() -- Add given blocks to an existing group 4814 * @handle: handle to this transaction 4815 * @sb: super block 4816 * @block: start physical block to add to the block group 4817 * @count: number of blocks to free 4818 * 4819 * This marks the blocks as free in the bitmap and buddy. 4820 */ 4821 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4822 ext4_fsblk_t block, unsigned long count) 4823 { 4824 struct buffer_head *bitmap_bh = NULL; 4825 struct buffer_head *gd_bh; 4826 ext4_group_t block_group; 4827 ext4_grpblk_t bit; 4828 unsigned int i; 4829 struct ext4_group_desc *desc; 4830 struct ext4_sb_info *sbi = EXT4_SB(sb); 4831 struct ext4_buddy e4b; 4832 int err = 0, ret, blk_free_count; 4833 ext4_grpblk_t blocks_freed; 4834 4835 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 4836 4837 if (count == 0) 4838 return 0; 4839 4840 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4841 /* 4842 * Check to see if we are freeing blocks across a group 4843 * boundary. 4844 */ 4845 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4846 ext4_warning(sb, "too much blocks added to group %u\n", 4847 block_group); 4848 err = -EINVAL; 4849 goto error_return; 4850 } 4851 4852 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4853 if (!bitmap_bh) { 4854 err = -EIO; 4855 goto error_return; 4856 } 4857 4858 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 4859 if (!desc) { 4860 err = -EIO; 4861 goto error_return; 4862 } 4863 4864 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 4865 in_range(ext4_inode_bitmap(sb, desc), block, count) || 4866 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 4867 in_range(block + count - 1, ext4_inode_table(sb, desc), 4868 sbi->s_itb_per_group)) { 4869 ext4_error(sb, "Adding blocks in system zones - " 4870 "Block = %llu, count = %lu", 4871 block, count); 4872 err = -EINVAL; 4873 goto error_return; 4874 } 4875 4876 BUFFER_TRACE(bitmap_bh, "getting write access"); 4877 err = ext4_journal_get_write_access(handle, bitmap_bh); 4878 if (err) 4879 goto error_return; 4880 4881 /* 4882 * We are about to modify some metadata. Call the journal APIs 4883 * to unshare ->b_data if a currently-committing transaction is 4884 * using it 4885 */ 4886 BUFFER_TRACE(gd_bh, "get_write_access"); 4887 err = ext4_journal_get_write_access(handle, gd_bh); 4888 if (err) 4889 goto error_return; 4890 4891 for (i = 0, blocks_freed = 0; i < count; i++) { 4892 BUFFER_TRACE(bitmap_bh, "clear bit"); 4893 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 4894 ext4_error(sb, "bit already cleared for block %llu", 4895 (ext4_fsblk_t)(block + i)); 4896 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 4897 } else { 4898 blocks_freed++; 4899 } 4900 } 4901 4902 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4903 if (err) 4904 goto error_return; 4905 4906 /* 4907 * need to update group_info->bb_free and bitmap 4908 * with group lock held. generate_buddy look at 4909 * them with group lock_held 4910 */ 4911 ext4_lock_group(sb, block_group); 4912 mb_clear_bits(bitmap_bh->b_data, bit, count); 4913 mb_free_blocks(NULL, &e4b, bit, count); 4914 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc); 4915 ext4_free_group_clusters_set(sb, desc, blk_free_count); 4916 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 4917 ext4_group_desc_csum_set(sb, block_group, desc); 4918 ext4_unlock_group(sb, block_group); 4919 percpu_counter_add(&sbi->s_freeclusters_counter, 4920 EXT4_NUM_B2C(sbi, blocks_freed)); 4921 4922 if (sbi->s_log_groups_per_flex) { 4923 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4924 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed), 4925 &sbi->s_flex_groups[flex_group].free_clusters); 4926 } 4927 4928 ext4_mb_unload_buddy(&e4b); 4929 4930 /* We dirtied the bitmap block */ 4931 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4932 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4933 4934 /* And the group descriptor block */ 4935 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4936 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4937 if (!err) 4938 err = ret; 4939 4940 error_return: 4941 brelse(bitmap_bh); 4942 ext4_std_error(sb, err); 4943 return err; 4944 } 4945 4946 /** 4947 * ext4_trim_extent -- function to TRIM one single free extent in the group 4948 * @sb: super block for the file system 4949 * @start: starting block of the free extent in the alloc. group 4950 * @count: number of blocks to TRIM 4951 * @group: alloc. group we are working with 4952 * @e4b: ext4 buddy for the group 4953 * 4954 * Trim "count" blocks starting at "start" in the "group". To assure that no 4955 * one will allocate those blocks, mark it as used in buddy bitmap. This must 4956 * be called with under the group lock. 4957 */ 4958 static int ext4_trim_extent(struct super_block *sb, int start, int count, 4959 ext4_group_t group, struct ext4_buddy *e4b) 4960 { 4961 struct ext4_free_extent ex; 4962 int ret = 0; 4963 4964 trace_ext4_trim_extent(sb, group, start, count); 4965 4966 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 4967 4968 ex.fe_start = start; 4969 ex.fe_group = group; 4970 ex.fe_len = count; 4971 4972 /* 4973 * Mark blocks used, so no one can reuse them while 4974 * being trimmed. 4975 */ 4976 mb_mark_used(e4b, &ex); 4977 ext4_unlock_group(sb, group); 4978 ret = ext4_issue_discard(sb, group, start, count); 4979 ext4_lock_group(sb, group); 4980 mb_free_blocks(NULL, e4b, start, ex.fe_len); 4981 return ret; 4982 } 4983 4984 /** 4985 * ext4_trim_all_free -- function to trim all free space in alloc. group 4986 * @sb: super block for file system 4987 * @group: group to be trimmed 4988 * @start: first group block to examine 4989 * @max: last group block to examine 4990 * @minblocks: minimum extent block count 4991 * 4992 * ext4_trim_all_free walks through group's buddy bitmap searching for free 4993 * extents. When the free block is found, ext4_trim_extent is called to TRIM 4994 * the extent. 4995 * 4996 * 4997 * ext4_trim_all_free walks through group's block bitmap searching for free 4998 * extents. When the free extent is found, mark it as used in group buddy 4999 * bitmap. Then issue a TRIM command on this extent and free the extent in 5000 * the group buddy bitmap. This is done until whole group is scanned. 5001 */ 5002 static ext4_grpblk_t 5003 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 5004 ext4_grpblk_t start, ext4_grpblk_t max, 5005 ext4_grpblk_t minblocks) 5006 { 5007 void *bitmap; 5008 ext4_grpblk_t next, count = 0, free_count = 0; 5009 struct ext4_buddy e4b; 5010 int ret = 0; 5011 5012 trace_ext4_trim_all_free(sb, group, start, max); 5013 5014 ret = ext4_mb_load_buddy(sb, group, &e4b); 5015 if (ret) { 5016 ext4_error(sb, "Error in loading buddy " 5017 "information for %u", group); 5018 return ret; 5019 } 5020 bitmap = e4b.bd_bitmap; 5021 5022 ext4_lock_group(sb, group); 5023 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 5024 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 5025 goto out; 5026 5027 start = (e4b.bd_info->bb_first_free > start) ? 5028 e4b.bd_info->bb_first_free : start; 5029 5030 while (start <= max) { 5031 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5032 if (start > max) 5033 break; 5034 next = mb_find_next_bit(bitmap, max + 1, start); 5035 5036 if ((next - start) >= minblocks) { 5037 ret = ext4_trim_extent(sb, start, 5038 next - start, group, &e4b); 5039 if (ret && ret != -EOPNOTSUPP) 5040 break; 5041 ret = 0; 5042 count += next - start; 5043 } 5044 free_count += next - start; 5045 start = next + 1; 5046 5047 if (fatal_signal_pending(current)) { 5048 count = -ERESTARTSYS; 5049 break; 5050 } 5051 5052 if (need_resched()) { 5053 ext4_unlock_group(sb, group); 5054 cond_resched(); 5055 ext4_lock_group(sb, group); 5056 } 5057 5058 if ((e4b.bd_info->bb_free - free_count) < minblocks) 5059 break; 5060 } 5061 5062 if (!ret) { 5063 ret = count; 5064 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 5065 } 5066 out: 5067 ext4_unlock_group(sb, group); 5068 ext4_mb_unload_buddy(&e4b); 5069 5070 ext4_debug("trimmed %d blocks in the group %d\n", 5071 count, group); 5072 5073 return ret; 5074 } 5075 5076 /** 5077 * ext4_trim_fs() -- trim ioctl handle function 5078 * @sb: superblock for filesystem 5079 * @range: fstrim_range structure 5080 * 5081 * start: First Byte to trim 5082 * len: number of Bytes to trim from start 5083 * minlen: minimum extent length in Bytes 5084 * ext4_trim_fs goes through all allocation groups containing Bytes from 5085 * start to start+len. For each such a group ext4_trim_all_free function 5086 * is invoked to trim all free space. 5087 */ 5088 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 5089 { 5090 struct ext4_group_info *grp; 5091 ext4_group_t group, first_group, last_group; 5092 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5093 uint64_t start, end, minlen, trimmed = 0; 5094 ext4_fsblk_t first_data_blk = 5095 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5096 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5097 int ret = 0; 5098 5099 start = range->start >> sb->s_blocksize_bits; 5100 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5101 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5102 range->minlen >> sb->s_blocksize_bits); 5103 5104 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5105 start >= max_blks || 5106 range->len < sb->s_blocksize) 5107 return -EINVAL; 5108 if (end >= max_blks) 5109 end = max_blks - 1; 5110 if (end <= first_data_blk) 5111 goto out; 5112 if (start < first_data_blk) 5113 start = first_data_blk; 5114 5115 /* Determine first and last group to examine based on start and end */ 5116 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5117 &first_group, &first_cluster); 5118 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5119 &last_group, &last_cluster); 5120 5121 /* end now represents the last cluster to discard in this group */ 5122 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5123 5124 for (group = first_group; group <= last_group; group++) { 5125 grp = ext4_get_group_info(sb, group); 5126 /* We only do this if the grp has never been initialized */ 5127 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5128 ret = ext4_mb_init_group(sb, group); 5129 if (ret) 5130 break; 5131 } 5132 5133 /* 5134 * For all the groups except the last one, last cluster will 5135 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5136 * change it for the last group, note that last_cluster is 5137 * already computed earlier by ext4_get_group_no_and_offset() 5138 */ 5139 if (group == last_group) 5140 end = last_cluster; 5141 5142 if (grp->bb_free >= minlen) { 5143 cnt = ext4_trim_all_free(sb, group, first_cluster, 5144 end, minlen); 5145 if (cnt < 0) { 5146 ret = cnt; 5147 break; 5148 } 5149 trimmed += cnt; 5150 } 5151 5152 /* 5153 * For every group except the first one, we are sure 5154 * that the first cluster to discard will be cluster #0. 5155 */ 5156 first_cluster = 0; 5157 } 5158 5159 if (!ret) 5160 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5161 5162 out: 5163 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5164 return ret; 5165 } 5166