xref: /openbmc/linux/fs/ext4/mballoc.c (revision 384740dc)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "mballoc.h"
25 /*
26  * MUSTDO:
27  *   - test ext4_ext_search_left() and ext4_ext_search_right()
28  *   - search for metadata in few groups
29  *
30  * TODO v4:
31  *   - normalization should take into account whether file is still open
32  *   - discard preallocations if no free space left (policy?)
33  *   - don't normalize tails
34  *   - quota
35  *   - reservation for superuser
36  *
37  * TODO v3:
38  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
39  *   - track min/max extents in each group for better group selection
40  *   - mb_mark_used() may allocate chunk right after splitting buddy
41  *   - tree of groups sorted by number of free blocks
42  *   - error handling
43  */
44 
45 /*
46  * The allocation request involve request for multiple number of blocks
47  * near to the goal(block) value specified.
48  *
49  * During initialization phase of the allocator we decide to use the group
50  * preallocation or inode preallocation depending on the size file. The
51  * size of the file could be the resulting file size we would have after
52  * allocation or the current file size which ever is larger. If the size is
53  * less that sbi->s_mb_stream_request we select the group
54  * preallocation. The default value of s_mb_stream_request is 16
55  * blocks. This can also be tuned via
56  * /proc/fs/ext4/<partition>/stream_req. The value is represented in terms
57  * of number of blocks.
58  *
59  * The main motivation for having small file use group preallocation is to
60  * ensure that we have small file closer in the disk.
61  *
62  * First stage the allocator looks at the inode prealloc list
63  * ext4_inode_info->i_prealloc_list contain list of prealloc spaces for
64  * this particular inode. The inode prealloc space is represented as:
65  *
66  * pa_lstart -> the logical start block for this prealloc space
67  * pa_pstart -> the physical start block for this prealloc space
68  * pa_len    -> lenght for this prealloc space
69  * pa_free   ->  free space available in this prealloc space
70  *
71  * The inode preallocation space is used looking at the _logical_ start
72  * block. If only the logical file block falls within the range of prealloc
73  * space we will consume the particular prealloc space. This make sure that
74  * that the we have contiguous physical blocks representing the file blocks
75  *
76  * The important thing to be noted in case of inode prealloc space is that
77  * we don't modify the values associated to inode prealloc space except
78  * pa_free.
79  *
80  * If we are not able to find blocks in the inode prealloc space and if we
81  * have the group allocation flag set then we look at the locality group
82  * prealloc space. These are per CPU prealloc list repreasented as
83  *
84  * ext4_sb_info.s_locality_groups[smp_processor_id()]
85  *
86  * The reason for having a per cpu locality group is to reduce the contention
87  * between CPUs. It is possible to get scheduled at this point.
88  *
89  * The locality group prealloc space is used looking at whether we have
90  * enough free space (pa_free) withing the prealloc space.
91  *
92  * If we can't allocate blocks via inode prealloc or/and locality group
93  * prealloc then we look at the buddy cache. The buddy cache is represented
94  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
95  * mapped to the buddy and bitmap information regarding different
96  * groups. The buddy information is attached to buddy cache inode so that
97  * we can access them through the page cache. The information regarding
98  * each group is loaded via ext4_mb_load_buddy.  The information involve
99  * block bitmap and buddy information. The information are stored in the
100  * inode as:
101  *
102  *  {                        page                        }
103  *  [ group 0 buddy][ group 0 bitmap] [group 1][ group 1]...
104  *
105  *
106  * one block each for bitmap and buddy information.  So for each group we
107  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
108  * blocksize) blocks.  So it can have information regarding groups_per_page
109  * which is blocks_per_page/2
110  *
111  * The buddy cache inode is not stored on disk. The inode is thrown
112  * away when the filesystem is unmounted.
113  *
114  * We look for count number of blocks in the buddy cache. If we were able
115  * to locate that many free blocks we return with additional information
116  * regarding rest of the contiguous physical block available
117  *
118  * Before allocating blocks via buddy cache we normalize the request
119  * blocks. This ensure we ask for more blocks that we needed. The extra
120  * blocks that we get after allocation is added to the respective prealloc
121  * list. In case of inode preallocation we follow a list of heuristics
122  * based on file size. This can be found in ext4_mb_normalize_request. If
123  * we are doing a group prealloc we try to normalize the request to
124  * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is set to
125  * 512 blocks. This can be tuned via
126  * /proc/fs/ext4/<partition/group_prealloc. The value is represented in
127  * terms of number of blocks. If we have mounted the file system with -O
128  * stripe=<value> option the group prealloc request is normalized to the
129  * stripe value (sbi->s_stripe)
130  *
131  * The regular allocator(using the buddy cache) support few tunables.
132  *
133  * /proc/fs/ext4/<partition>/min_to_scan
134  * /proc/fs/ext4/<partition>/max_to_scan
135  * /proc/fs/ext4/<partition>/order2_req
136  *
137  * The regular allocator use buddy scan only if the request len is power of
138  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
139  * value of s_mb_order2_reqs can be tuned via
140  * /proc/fs/ext4/<partition>/order2_req.  If the request len is equal to
141  * stripe size (sbi->s_stripe), we try to search for contigous block in
142  * stripe size. This should result in better allocation on RAID setup. If
143  * not we search in the specific group using bitmap for best extents. The
144  * tunable min_to_scan and max_to_scan controll the behaviour here.
145  * min_to_scan indicate how long the mballoc __must__ look for a best
146  * extent and max_to_scanindicate how long the mballoc __can__ look for a
147  * best extent in the found extents. Searching for the blocks starts with
148  * the group specified as the goal value in allocation context via
149  * ac_g_ex. Each group is first checked based on the criteria whether it
150  * can used for allocation. ext4_mb_good_group explains how the groups are
151  * checked.
152  *
153  * Both the prealloc space are getting populated as above. So for the first
154  * request we will hit the buddy cache which will result in this prealloc
155  * space getting filled. The prealloc space is then later used for the
156  * subsequent request.
157  */
158 
159 /*
160  * mballoc operates on the following data:
161  *  - on-disk bitmap
162  *  - in-core buddy (actually includes buddy and bitmap)
163  *  - preallocation descriptors (PAs)
164  *
165  * there are two types of preallocations:
166  *  - inode
167  *    assiged to specific inode and can be used for this inode only.
168  *    it describes part of inode's space preallocated to specific
169  *    physical blocks. any block from that preallocated can be used
170  *    independent. the descriptor just tracks number of blocks left
171  *    unused. so, before taking some block from descriptor, one must
172  *    make sure corresponded logical block isn't allocated yet. this
173  *    also means that freeing any block within descriptor's range
174  *    must discard all preallocated blocks.
175  *  - locality group
176  *    assigned to specific locality group which does not translate to
177  *    permanent set of inodes: inode can join and leave group. space
178  *    from this type of preallocation can be used for any inode. thus
179  *    it's consumed from the beginning to the end.
180  *
181  * relation between them can be expressed as:
182  *    in-core buddy = on-disk bitmap + preallocation descriptors
183  *
184  * this mean blocks mballoc considers used are:
185  *  - allocated blocks (persistent)
186  *  - preallocated blocks (non-persistent)
187  *
188  * consistency in mballoc world means that at any time a block is either
189  * free or used in ALL structures. notice: "any time" should not be read
190  * literally -- time is discrete and delimited by locks.
191  *
192  *  to keep it simple, we don't use block numbers, instead we count number of
193  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
194  *
195  * all operations can be expressed as:
196  *  - init buddy:			buddy = on-disk + PAs
197  *  - new PA:				buddy += N; PA = N
198  *  - use inode PA:			on-disk += N; PA -= N
199  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
200  *  - use locality group PA		on-disk += N; PA -= N
201  *  - discard locality group PA		buddy -= PA; PA = 0
202  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
203  *        is used in real operation because we can't know actual used
204  *        bits from PA, only from on-disk bitmap
205  *
206  * if we follow this strict logic, then all operations above should be atomic.
207  * given some of them can block, we'd have to use something like semaphores
208  * killing performance on high-end SMP hardware. let's try to relax it using
209  * the following knowledge:
210  *  1) if buddy is referenced, it's already initialized
211  *  2) while block is used in buddy and the buddy is referenced,
212  *     nobody can re-allocate that block
213  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
214  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
215  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
216  *     block
217  *
218  * so, now we're building a concurrency table:
219  *  - init buddy vs.
220  *    - new PA
221  *      blocks for PA are allocated in the buddy, buddy must be referenced
222  *      until PA is linked to allocation group to avoid concurrent buddy init
223  *    - use inode PA
224  *      we need to make sure that either on-disk bitmap or PA has uptodate data
225  *      given (3) we care that PA-=N operation doesn't interfere with init
226  *    - discard inode PA
227  *      the simplest way would be to have buddy initialized by the discard
228  *    - use locality group PA
229  *      again PA-=N must be serialized with init
230  *    - discard locality group PA
231  *      the simplest way would be to have buddy initialized by the discard
232  *  - new PA vs.
233  *    - use inode PA
234  *      i_data_sem serializes them
235  *    - discard inode PA
236  *      discard process must wait until PA isn't used by another process
237  *    - use locality group PA
238  *      some mutex should serialize them
239  *    - discard locality group PA
240  *      discard process must wait until PA isn't used by another process
241  *  - use inode PA
242  *    - use inode PA
243  *      i_data_sem or another mutex should serializes them
244  *    - discard inode PA
245  *      discard process must wait until PA isn't used by another process
246  *    - use locality group PA
247  *      nothing wrong here -- they're different PAs covering different blocks
248  *    - discard locality group PA
249  *      discard process must wait until PA isn't used by another process
250  *
251  * now we're ready to make few consequences:
252  *  - PA is referenced and while it is no discard is possible
253  *  - PA is referenced until block isn't marked in on-disk bitmap
254  *  - PA changes only after on-disk bitmap
255  *  - discard must not compete with init. either init is done before
256  *    any discard or they're serialized somehow
257  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
258  *
259  * a special case when we've used PA to emptiness. no need to modify buddy
260  * in this case, but we should care about concurrent init
261  *
262  */
263 
264  /*
265  * Logic in few words:
266  *
267  *  - allocation:
268  *    load group
269  *    find blocks
270  *    mark bits in on-disk bitmap
271  *    release group
272  *
273  *  - use preallocation:
274  *    find proper PA (per-inode or group)
275  *    load group
276  *    mark bits in on-disk bitmap
277  *    release group
278  *    release PA
279  *
280  *  - free:
281  *    load group
282  *    mark bits in on-disk bitmap
283  *    release group
284  *
285  *  - discard preallocations in group:
286  *    mark PAs deleted
287  *    move them onto local list
288  *    load on-disk bitmap
289  *    load group
290  *    remove PA from object (inode or locality group)
291  *    mark free blocks in-core
292  *
293  *  - discard inode's preallocations:
294  */
295 
296 /*
297  * Locking rules
298  *
299  * Locks:
300  *  - bitlock on a group	(group)
301  *  - object (inode/locality)	(object)
302  *  - per-pa lock		(pa)
303  *
304  * Paths:
305  *  - new pa
306  *    object
307  *    group
308  *
309  *  - find and use pa:
310  *    pa
311  *
312  *  - release consumed pa:
313  *    pa
314  *    group
315  *    object
316  *
317  *  - generate in-core bitmap:
318  *    group
319  *        pa
320  *
321  *  - discard all for given object (inode, locality group):
322  *    object
323  *        pa
324  *    group
325  *
326  *  - discard all for given group:
327  *    group
328  *        pa
329  *    group
330  *        object
331  *
332  */
333 
334 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
335 {
336 #if BITS_PER_LONG == 64
337 	*bit += ((unsigned long) addr & 7UL) << 3;
338 	addr = (void *) ((unsigned long) addr & ~7UL);
339 #elif BITS_PER_LONG == 32
340 	*bit += ((unsigned long) addr & 3UL) << 3;
341 	addr = (void *) ((unsigned long) addr & ~3UL);
342 #else
343 #error "how many bits you are?!"
344 #endif
345 	return addr;
346 }
347 
348 static inline int mb_test_bit(int bit, void *addr)
349 {
350 	/*
351 	 * ext4_test_bit on architecture like powerpc
352 	 * needs unsigned long aligned address
353 	 */
354 	addr = mb_correct_addr_and_bit(&bit, addr);
355 	return ext4_test_bit(bit, addr);
356 }
357 
358 static inline void mb_set_bit(int bit, void *addr)
359 {
360 	addr = mb_correct_addr_and_bit(&bit, addr);
361 	ext4_set_bit(bit, addr);
362 }
363 
364 static inline void mb_set_bit_atomic(spinlock_t *lock, int bit, void *addr)
365 {
366 	addr = mb_correct_addr_and_bit(&bit, addr);
367 	ext4_set_bit_atomic(lock, bit, addr);
368 }
369 
370 static inline void mb_clear_bit(int bit, void *addr)
371 {
372 	addr = mb_correct_addr_and_bit(&bit, addr);
373 	ext4_clear_bit(bit, addr);
374 }
375 
376 static inline void mb_clear_bit_atomic(spinlock_t *lock, int bit, void *addr)
377 {
378 	addr = mb_correct_addr_and_bit(&bit, addr);
379 	ext4_clear_bit_atomic(lock, bit, addr);
380 }
381 
382 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
383 {
384 	int fix = 0, ret, tmpmax;
385 	addr = mb_correct_addr_and_bit(&fix, addr);
386 	tmpmax = max + fix;
387 	start += fix;
388 
389 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
390 	if (ret > max)
391 		return max;
392 	return ret;
393 }
394 
395 static inline int mb_find_next_bit(void *addr, int max, int start)
396 {
397 	int fix = 0, ret, tmpmax;
398 	addr = mb_correct_addr_and_bit(&fix, addr);
399 	tmpmax = max + fix;
400 	start += fix;
401 
402 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
403 	if (ret > max)
404 		return max;
405 	return ret;
406 }
407 
408 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
409 {
410 	char *bb;
411 
412 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
413 	BUG_ON(max == NULL);
414 
415 	if (order > e4b->bd_blkbits + 1) {
416 		*max = 0;
417 		return NULL;
418 	}
419 
420 	/* at order 0 we see each particular block */
421 	*max = 1 << (e4b->bd_blkbits + 3);
422 	if (order == 0)
423 		return EXT4_MB_BITMAP(e4b);
424 
425 	bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
426 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
427 
428 	return bb;
429 }
430 
431 #ifdef DOUBLE_CHECK
432 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
433 			   int first, int count)
434 {
435 	int i;
436 	struct super_block *sb = e4b->bd_sb;
437 
438 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
439 		return;
440 	BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
441 	for (i = 0; i < count; i++) {
442 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
443 			ext4_fsblk_t blocknr;
444 			blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
445 			blocknr += first + i;
446 			blocknr +=
447 			    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
448 
449 			ext4_error(sb, __func__, "double-free of inode"
450 				   " %lu's block %llu(bit %u in group %lu)\n",
451 				   inode ? inode->i_ino : 0, blocknr,
452 				   first + i, e4b->bd_group);
453 		}
454 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
455 	}
456 }
457 
458 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
459 {
460 	int i;
461 
462 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
463 		return;
464 	BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
465 	for (i = 0; i < count; i++) {
466 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
467 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
468 	}
469 }
470 
471 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
472 {
473 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
474 		unsigned char *b1, *b2;
475 		int i;
476 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
477 		b2 = (unsigned char *) bitmap;
478 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
479 			if (b1[i] != b2[i]) {
480 				printk("corruption in group %lu at byte %u(%u):"
481 				       " %x in copy != %x on disk/prealloc\n",
482 					e4b->bd_group, i, i * 8, b1[i], b2[i]);
483 				BUG();
484 			}
485 		}
486 	}
487 }
488 
489 #else
490 static inline void mb_free_blocks_double(struct inode *inode,
491 				struct ext4_buddy *e4b, int first, int count)
492 {
493 	return;
494 }
495 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
496 						int first, int count)
497 {
498 	return;
499 }
500 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
501 {
502 	return;
503 }
504 #endif
505 
506 #ifdef AGGRESSIVE_CHECK
507 
508 #define MB_CHECK_ASSERT(assert)						\
509 do {									\
510 	if (!(assert)) {						\
511 		printk(KERN_EMERG					\
512 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
513 			function, file, line, # assert);		\
514 		BUG();							\
515 	}								\
516 } while (0)
517 
518 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
519 				const char *function, int line)
520 {
521 	struct super_block *sb = e4b->bd_sb;
522 	int order = e4b->bd_blkbits + 1;
523 	int max;
524 	int max2;
525 	int i;
526 	int j;
527 	int k;
528 	int count;
529 	struct ext4_group_info *grp;
530 	int fragments = 0;
531 	int fstart;
532 	struct list_head *cur;
533 	void *buddy;
534 	void *buddy2;
535 
536 	if (!test_opt(sb, MBALLOC))
537 		return 0;
538 
539 	{
540 		static int mb_check_counter;
541 		if (mb_check_counter++ % 100 != 0)
542 			return 0;
543 	}
544 
545 	while (order > 1) {
546 		buddy = mb_find_buddy(e4b, order, &max);
547 		MB_CHECK_ASSERT(buddy);
548 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
549 		MB_CHECK_ASSERT(buddy2);
550 		MB_CHECK_ASSERT(buddy != buddy2);
551 		MB_CHECK_ASSERT(max * 2 == max2);
552 
553 		count = 0;
554 		for (i = 0; i < max; i++) {
555 
556 			if (mb_test_bit(i, buddy)) {
557 				/* only single bit in buddy2 may be 1 */
558 				if (!mb_test_bit(i << 1, buddy2)) {
559 					MB_CHECK_ASSERT(
560 						mb_test_bit((i<<1)+1, buddy2));
561 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
562 					MB_CHECK_ASSERT(
563 						mb_test_bit(i << 1, buddy2));
564 				}
565 				continue;
566 			}
567 
568 			/* both bits in buddy2 must be 0 */
569 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
570 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
571 
572 			for (j = 0; j < (1 << order); j++) {
573 				k = (i * (1 << order)) + j;
574 				MB_CHECK_ASSERT(
575 					!mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
576 			}
577 			count++;
578 		}
579 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
580 		order--;
581 	}
582 
583 	fstart = -1;
584 	buddy = mb_find_buddy(e4b, 0, &max);
585 	for (i = 0; i < max; i++) {
586 		if (!mb_test_bit(i, buddy)) {
587 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
588 			if (fstart == -1) {
589 				fragments++;
590 				fstart = i;
591 			}
592 			continue;
593 		}
594 		fstart = -1;
595 		/* check used bits only */
596 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
597 			buddy2 = mb_find_buddy(e4b, j, &max2);
598 			k = i >> j;
599 			MB_CHECK_ASSERT(k < max2);
600 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
601 		}
602 	}
603 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
604 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
605 
606 	grp = ext4_get_group_info(sb, e4b->bd_group);
607 	buddy = mb_find_buddy(e4b, 0, &max);
608 	list_for_each(cur, &grp->bb_prealloc_list) {
609 		ext4_group_t groupnr;
610 		struct ext4_prealloc_space *pa;
611 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
612 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
613 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
614 		for (i = 0; i < pa->pa_len; i++)
615 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
616 	}
617 	return 0;
618 }
619 #undef MB_CHECK_ASSERT
620 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
621 					__FILE__, __func__, __LINE__)
622 #else
623 #define mb_check_buddy(e4b)
624 #endif
625 
626 /* FIXME!! need more doc */
627 static void ext4_mb_mark_free_simple(struct super_block *sb,
628 				void *buddy, unsigned first, int len,
629 					struct ext4_group_info *grp)
630 {
631 	struct ext4_sb_info *sbi = EXT4_SB(sb);
632 	unsigned short min;
633 	unsigned short max;
634 	unsigned short chunk;
635 	unsigned short border;
636 
637 	BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
638 
639 	border = 2 << sb->s_blocksize_bits;
640 
641 	while (len > 0) {
642 		/* find how many blocks can be covered since this position */
643 		max = ffs(first | border) - 1;
644 
645 		/* find how many blocks of power 2 we need to mark */
646 		min = fls(len) - 1;
647 
648 		if (max < min)
649 			min = max;
650 		chunk = 1 << min;
651 
652 		/* mark multiblock chunks only */
653 		grp->bb_counters[min]++;
654 		if (min > 0)
655 			mb_clear_bit(first >> min,
656 				     buddy + sbi->s_mb_offsets[min]);
657 
658 		len -= chunk;
659 		first += chunk;
660 	}
661 }
662 
663 static void ext4_mb_generate_buddy(struct super_block *sb,
664 				void *buddy, void *bitmap, ext4_group_t group)
665 {
666 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
667 	unsigned short max = EXT4_BLOCKS_PER_GROUP(sb);
668 	unsigned short i = 0;
669 	unsigned short first;
670 	unsigned short len;
671 	unsigned free = 0;
672 	unsigned fragments = 0;
673 	unsigned long long period = get_cycles();
674 
675 	/* initialize buddy from bitmap which is aggregation
676 	 * of on-disk bitmap and preallocations */
677 	i = mb_find_next_zero_bit(bitmap, max, 0);
678 	grp->bb_first_free = i;
679 	while (i < max) {
680 		fragments++;
681 		first = i;
682 		i = mb_find_next_bit(bitmap, max, i);
683 		len = i - first;
684 		free += len;
685 		if (len > 1)
686 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
687 		else
688 			grp->bb_counters[0]++;
689 		if (i < max)
690 			i = mb_find_next_zero_bit(bitmap, max, i);
691 	}
692 	grp->bb_fragments = fragments;
693 
694 	if (free != grp->bb_free) {
695 		ext4_error(sb, __func__,
696 			"EXT4-fs: group %lu: %u blocks in bitmap, %u in gd\n",
697 			group, free, grp->bb_free);
698 		/*
699 		 * If we intent to continue, we consider group descritor
700 		 * corrupt and update bb_free using bitmap value
701 		 */
702 		grp->bb_free = free;
703 	}
704 
705 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
706 
707 	period = get_cycles() - period;
708 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
709 	EXT4_SB(sb)->s_mb_buddies_generated++;
710 	EXT4_SB(sb)->s_mb_generation_time += period;
711 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
712 }
713 
714 /* The buddy information is attached the buddy cache inode
715  * for convenience. The information regarding each group
716  * is loaded via ext4_mb_load_buddy. The information involve
717  * block bitmap and buddy information. The information are
718  * stored in the inode as
719  *
720  * {                        page                        }
721  * [ group 0 buddy][ group 0 bitmap] [group 1][ group 1]...
722  *
723  *
724  * one block each for bitmap and buddy information.
725  * So for each group we take up 2 blocks. A page can
726  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
727  * So it can have information regarding groups_per_page which
728  * is blocks_per_page/2
729  */
730 
731 static int ext4_mb_init_cache(struct page *page, char *incore)
732 {
733 	int blocksize;
734 	int blocks_per_page;
735 	int groups_per_page;
736 	int err = 0;
737 	int i;
738 	ext4_group_t first_group;
739 	int first_block;
740 	struct super_block *sb;
741 	struct buffer_head *bhs;
742 	struct buffer_head **bh;
743 	struct inode *inode;
744 	char *data;
745 	char *bitmap;
746 
747 	mb_debug("init page %lu\n", page->index);
748 
749 	inode = page->mapping->host;
750 	sb = inode->i_sb;
751 	blocksize = 1 << inode->i_blkbits;
752 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
753 
754 	groups_per_page = blocks_per_page >> 1;
755 	if (groups_per_page == 0)
756 		groups_per_page = 1;
757 
758 	/* allocate buffer_heads to read bitmaps */
759 	if (groups_per_page > 1) {
760 		err = -ENOMEM;
761 		i = sizeof(struct buffer_head *) * groups_per_page;
762 		bh = kzalloc(i, GFP_NOFS);
763 		if (bh == NULL)
764 			goto out;
765 	} else
766 		bh = &bhs;
767 
768 	first_group = page->index * blocks_per_page / 2;
769 
770 	/* read all groups the page covers into the cache */
771 	for (i = 0; i < groups_per_page; i++) {
772 		struct ext4_group_desc *desc;
773 
774 		if (first_group + i >= EXT4_SB(sb)->s_groups_count)
775 			break;
776 
777 		err = -EIO;
778 		desc = ext4_get_group_desc(sb, first_group + i, NULL);
779 		if (desc == NULL)
780 			goto out;
781 
782 		err = -ENOMEM;
783 		bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
784 		if (bh[i] == NULL)
785 			goto out;
786 
787 		if (bh_uptodate_or_lock(bh[i]))
788 			continue;
789 
790 		spin_lock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
791 		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
792 			ext4_init_block_bitmap(sb, bh[i],
793 						first_group + i, desc);
794 			set_buffer_uptodate(bh[i]);
795 			unlock_buffer(bh[i]);
796 			spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
797 			continue;
798 		}
799 		spin_unlock(sb_bgl_lock(EXT4_SB(sb), first_group + i));
800 		get_bh(bh[i]);
801 		bh[i]->b_end_io = end_buffer_read_sync;
802 		submit_bh(READ, bh[i]);
803 		mb_debug("read bitmap for group %lu\n", first_group + i);
804 	}
805 
806 	/* wait for I/O completion */
807 	for (i = 0; i < groups_per_page && bh[i]; i++)
808 		wait_on_buffer(bh[i]);
809 
810 	err = -EIO;
811 	for (i = 0; i < groups_per_page && bh[i]; i++)
812 		if (!buffer_uptodate(bh[i]))
813 			goto out;
814 
815 	err = 0;
816 	first_block = page->index * blocks_per_page;
817 	for (i = 0; i < blocks_per_page; i++) {
818 		int group;
819 		struct ext4_group_info *grinfo;
820 
821 		group = (first_block + i) >> 1;
822 		if (group >= EXT4_SB(sb)->s_groups_count)
823 			break;
824 
825 		/*
826 		 * data carry information regarding this
827 		 * particular group in the format specified
828 		 * above
829 		 *
830 		 */
831 		data = page_address(page) + (i * blocksize);
832 		bitmap = bh[group - first_group]->b_data;
833 
834 		/*
835 		 * We place the buddy block and bitmap block
836 		 * close together
837 		 */
838 		if ((first_block + i) & 1) {
839 			/* this is block of buddy */
840 			BUG_ON(incore == NULL);
841 			mb_debug("put buddy for group %u in page %lu/%x\n",
842 				group, page->index, i * blocksize);
843 			memset(data, 0xff, blocksize);
844 			grinfo = ext4_get_group_info(sb, group);
845 			grinfo->bb_fragments = 0;
846 			memset(grinfo->bb_counters, 0,
847 			       sizeof(unsigned short)*(sb->s_blocksize_bits+2));
848 			/*
849 			 * incore got set to the group block bitmap below
850 			 */
851 			ext4_mb_generate_buddy(sb, data, incore, group);
852 			incore = NULL;
853 		} else {
854 			/* this is block of bitmap */
855 			BUG_ON(incore != NULL);
856 			mb_debug("put bitmap for group %u in page %lu/%x\n",
857 				group, page->index, i * blocksize);
858 
859 			/* see comments in ext4_mb_put_pa() */
860 			ext4_lock_group(sb, group);
861 			memcpy(data, bitmap, blocksize);
862 
863 			/* mark all preallocated blks used in in-core bitmap */
864 			ext4_mb_generate_from_pa(sb, data, group);
865 			ext4_unlock_group(sb, group);
866 
867 			/* set incore so that the buddy information can be
868 			 * generated using this
869 			 */
870 			incore = data;
871 		}
872 	}
873 	SetPageUptodate(page);
874 
875 out:
876 	if (bh) {
877 		for (i = 0; i < groups_per_page && bh[i]; i++)
878 			brelse(bh[i]);
879 		if (bh != &bhs)
880 			kfree(bh);
881 	}
882 	return err;
883 }
884 
885 static noinline_for_stack int
886 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
887 					struct ext4_buddy *e4b)
888 {
889 	struct ext4_sb_info *sbi = EXT4_SB(sb);
890 	struct inode *inode = sbi->s_buddy_cache;
891 	int blocks_per_page;
892 	int block;
893 	int pnum;
894 	int poff;
895 	struct page *page;
896 	int ret;
897 
898 	mb_debug("load group %lu\n", group);
899 
900 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
901 
902 	e4b->bd_blkbits = sb->s_blocksize_bits;
903 	e4b->bd_info = ext4_get_group_info(sb, group);
904 	e4b->bd_sb = sb;
905 	e4b->bd_group = group;
906 	e4b->bd_buddy_page = NULL;
907 	e4b->bd_bitmap_page = NULL;
908 
909 	/*
910 	 * the buddy cache inode stores the block bitmap
911 	 * and buddy information in consecutive blocks.
912 	 * So for each group we need two blocks.
913 	 */
914 	block = group * 2;
915 	pnum = block / blocks_per_page;
916 	poff = block % blocks_per_page;
917 
918 	/* we could use find_or_create_page(), but it locks page
919 	 * what we'd like to avoid in fast path ... */
920 	page = find_get_page(inode->i_mapping, pnum);
921 	if (page == NULL || !PageUptodate(page)) {
922 		if (page)
923 			page_cache_release(page);
924 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
925 		if (page) {
926 			BUG_ON(page->mapping != inode->i_mapping);
927 			if (!PageUptodate(page)) {
928 				ret = ext4_mb_init_cache(page, NULL);
929 				if (ret) {
930 					unlock_page(page);
931 					goto err;
932 				}
933 				mb_cmp_bitmaps(e4b, page_address(page) +
934 					       (poff * sb->s_blocksize));
935 			}
936 			unlock_page(page);
937 		}
938 	}
939 	if (page == NULL || !PageUptodate(page)) {
940 		ret = -EIO;
941 		goto err;
942 	}
943 	e4b->bd_bitmap_page = page;
944 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
945 	mark_page_accessed(page);
946 
947 	block++;
948 	pnum = block / blocks_per_page;
949 	poff = block % blocks_per_page;
950 
951 	page = find_get_page(inode->i_mapping, pnum);
952 	if (page == NULL || !PageUptodate(page)) {
953 		if (page)
954 			page_cache_release(page);
955 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
956 		if (page) {
957 			BUG_ON(page->mapping != inode->i_mapping);
958 			if (!PageUptodate(page)) {
959 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
960 				if (ret) {
961 					unlock_page(page);
962 					goto err;
963 				}
964 			}
965 			unlock_page(page);
966 		}
967 	}
968 	if (page == NULL || !PageUptodate(page)) {
969 		ret = -EIO;
970 		goto err;
971 	}
972 	e4b->bd_buddy_page = page;
973 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
974 	mark_page_accessed(page);
975 
976 	BUG_ON(e4b->bd_bitmap_page == NULL);
977 	BUG_ON(e4b->bd_buddy_page == NULL);
978 
979 	return 0;
980 
981 err:
982 	if (e4b->bd_bitmap_page)
983 		page_cache_release(e4b->bd_bitmap_page);
984 	if (e4b->bd_buddy_page)
985 		page_cache_release(e4b->bd_buddy_page);
986 	e4b->bd_buddy = NULL;
987 	e4b->bd_bitmap = NULL;
988 	return ret;
989 }
990 
991 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
992 {
993 	if (e4b->bd_bitmap_page)
994 		page_cache_release(e4b->bd_bitmap_page);
995 	if (e4b->bd_buddy_page)
996 		page_cache_release(e4b->bd_buddy_page);
997 }
998 
999 
1000 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1001 {
1002 	int order = 1;
1003 	void *bb;
1004 
1005 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1006 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1007 
1008 	bb = EXT4_MB_BUDDY(e4b);
1009 	while (order <= e4b->bd_blkbits + 1) {
1010 		block = block >> 1;
1011 		if (!mb_test_bit(block, bb)) {
1012 			/* this block is part of buddy of order 'order' */
1013 			return order;
1014 		}
1015 		bb += 1 << (e4b->bd_blkbits - order);
1016 		order++;
1017 	}
1018 	return 0;
1019 }
1020 
1021 static void mb_clear_bits(spinlock_t *lock, void *bm, int cur, int len)
1022 {
1023 	__u32 *addr;
1024 
1025 	len = cur + len;
1026 	while (cur < len) {
1027 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1028 			/* fast path: clear whole word at once */
1029 			addr = bm + (cur >> 3);
1030 			*addr = 0;
1031 			cur += 32;
1032 			continue;
1033 		}
1034 		mb_clear_bit_atomic(lock, cur, bm);
1035 		cur++;
1036 	}
1037 }
1038 
1039 static void mb_set_bits(spinlock_t *lock, void *bm, int cur, int len)
1040 {
1041 	__u32 *addr;
1042 
1043 	len = cur + len;
1044 	while (cur < len) {
1045 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1046 			/* fast path: set whole word at once */
1047 			addr = bm + (cur >> 3);
1048 			*addr = 0xffffffff;
1049 			cur += 32;
1050 			continue;
1051 		}
1052 		mb_set_bit_atomic(lock, cur, bm);
1053 		cur++;
1054 	}
1055 }
1056 
1057 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1058 			  int first, int count)
1059 {
1060 	int block = 0;
1061 	int max = 0;
1062 	int order;
1063 	void *buddy;
1064 	void *buddy2;
1065 	struct super_block *sb = e4b->bd_sb;
1066 
1067 	BUG_ON(first + count > (sb->s_blocksize << 3));
1068 	BUG_ON(!ext4_is_group_locked(sb, e4b->bd_group));
1069 	mb_check_buddy(e4b);
1070 	mb_free_blocks_double(inode, e4b, first, count);
1071 
1072 	e4b->bd_info->bb_free += count;
1073 	if (first < e4b->bd_info->bb_first_free)
1074 		e4b->bd_info->bb_first_free = first;
1075 
1076 	/* let's maintain fragments counter */
1077 	if (first != 0)
1078 		block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1079 	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1080 		max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1081 	if (block && max)
1082 		e4b->bd_info->bb_fragments--;
1083 	else if (!block && !max)
1084 		e4b->bd_info->bb_fragments++;
1085 
1086 	/* let's maintain buddy itself */
1087 	while (count-- > 0) {
1088 		block = first++;
1089 		order = 0;
1090 
1091 		if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1092 			ext4_fsblk_t blocknr;
1093 			blocknr = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb);
1094 			blocknr += block;
1095 			blocknr +=
1096 			    le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
1097 			ext4_unlock_group(sb, e4b->bd_group);
1098 			ext4_error(sb, __func__, "double-free of inode"
1099 				   " %lu's block %llu(bit %u in group %lu)\n",
1100 				   inode ? inode->i_ino : 0, blocknr, block,
1101 				   e4b->bd_group);
1102 			ext4_lock_group(sb, e4b->bd_group);
1103 		}
1104 		mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1105 		e4b->bd_info->bb_counters[order]++;
1106 
1107 		/* start of the buddy */
1108 		buddy = mb_find_buddy(e4b, order, &max);
1109 
1110 		do {
1111 			block &= ~1UL;
1112 			if (mb_test_bit(block, buddy) ||
1113 					mb_test_bit(block + 1, buddy))
1114 				break;
1115 
1116 			/* both the buddies are free, try to coalesce them */
1117 			buddy2 = mb_find_buddy(e4b, order + 1, &max);
1118 
1119 			if (!buddy2)
1120 				break;
1121 
1122 			if (order > 0) {
1123 				/* for special purposes, we don't set
1124 				 * free bits in bitmap */
1125 				mb_set_bit(block, buddy);
1126 				mb_set_bit(block + 1, buddy);
1127 			}
1128 			e4b->bd_info->bb_counters[order]--;
1129 			e4b->bd_info->bb_counters[order]--;
1130 
1131 			block = block >> 1;
1132 			order++;
1133 			e4b->bd_info->bb_counters[order]++;
1134 
1135 			mb_clear_bit(block, buddy2);
1136 			buddy = buddy2;
1137 		} while (1);
1138 	}
1139 	mb_check_buddy(e4b);
1140 }
1141 
1142 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1143 				int needed, struct ext4_free_extent *ex)
1144 {
1145 	int next = block;
1146 	int max;
1147 	int ord;
1148 	void *buddy;
1149 
1150 	BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1151 	BUG_ON(ex == NULL);
1152 
1153 	buddy = mb_find_buddy(e4b, order, &max);
1154 	BUG_ON(buddy == NULL);
1155 	BUG_ON(block >= max);
1156 	if (mb_test_bit(block, buddy)) {
1157 		ex->fe_len = 0;
1158 		ex->fe_start = 0;
1159 		ex->fe_group = 0;
1160 		return 0;
1161 	}
1162 
1163 	/* FIXME dorp order completely ? */
1164 	if (likely(order == 0)) {
1165 		/* find actual order */
1166 		order = mb_find_order_for_block(e4b, block);
1167 		block = block >> order;
1168 	}
1169 
1170 	ex->fe_len = 1 << order;
1171 	ex->fe_start = block << order;
1172 	ex->fe_group = e4b->bd_group;
1173 
1174 	/* calc difference from given start */
1175 	next = next - ex->fe_start;
1176 	ex->fe_len -= next;
1177 	ex->fe_start += next;
1178 
1179 	while (needed > ex->fe_len &&
1180 	       (buddy = mb_find_buddy(e4b, order, &max))) {
1181 
1182 		if (block + 1 >= max)
1183 			break;
1184 
1185 		next = (block + 1) * (1 << order);
1186 		if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1187 			break;
1188 
1189 		ord = mb_find_order_for_block(e4b, next);
1190 
1191 		order = ord;
1192 		block = next >> order;
1193 		ex->fe_len += 1 << order;
1194 	}
1195 
1196 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1197 	return ex->fe_len;
1198 }
1199 
1200 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1201 {
1202 	int ord;
1203 	int mlen = 0;
1204 	int max = 0;
1205 	int cur;
1206 	int start = ex->fe_start;
1207 	int len = ex->fe_len;
1208 	unsigned ret = 0;
1209 	int len0 = len;
1210 	void *buddy;
1211 
1212 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1213 	BUG_ON(e4b->bd_group != ex->fe_group);
1214 	BUG_ON(!ext4_is_group_locked(e4b->bd_sb, e4b->bd_group));
1215 	mb_check_buddy(e4b);
1216 	mb_mark_used_double(e4b, start, len);
1217 
1218 	e4b->bd_info->bb_free -= len;
1219 	if (e4b->bd_info->bb_first_free == start)
1220 		e4b->bd_info->bb_first_free += len;
1221 
1222 	/* let's maintain fragments counter */
1223 	if (start != 0)
1224 		mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1225 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1226 		max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1227 	if (mlen && max)
1228 		e4b->bd_info->bb_fragments++;
1229 	else if (!mlen && !max)
1230 		e4b->bd_info->bb_fragments--;
1231 
1232 	/* let's maintain buddy itself */
1233 	while (len) {
1234 		ord = mb_find_order_for_block(e4b, start);
1235 
1236 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1237 			/* the whole chunk may be allocated at once! */
1238 			mlen = 1 << ord;
1239 			buddy = mb_find_buddy(e4b, ord, &max);
1240 			BUG_ON((start >> ord) >= max);
1241 			mb_set_bit(start >> ord, buddy);
1242 			e4b->bd_info->bb_counters[ord]--;
1243 			start += mlen;
1244 			len -= mlen;
1245 			BUG_ON(len < 0);
1246 			continue;
1247 		}
1248 
1249 		/* store for history */
1250 		if (ret == 0)
1251 			ret = len | (ord << 16);
1252 
1253 		/* we have to split large buddy */
1254 		BUG_ON(ord <= 0);
1255 		buddy = mb_find_buddy(e4b, ord, &max);
1256 		mb_set_bit(start >> ord, buddy);
1257 		e4b->bd_info->bb_counters[ord]--;
1258 
1259 		ord--;
1260 		cur = (start >> ord) & ~1U;
1261 		buddy = mb_find_buddy(e4b, ord, &max);
1262 		mb_clear_bit(cur, buddy);
1263 		mb_clear_bit(cur + 1, buddy);
1264 		e4b->bd_info->bb_counters[ord]++;
1265 		e4b->bd_info->bb_counters[ord]++;
1266 	}
1267 
1268 	mb_set_bits(sb_bgl_lock(EXT4_SB(e4b->bd_sb), ex->fe_group),
1269 			EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1270 	mb_check_buddy(e4b);
1271 
1272 	return ret;
1273 }
1274 
1275 /*
1276  * Must be called under group lock!
1277  */
1278 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1279 					struct ext4_buddy *e4b)
1280 {
1281 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1282 	int ret;
1283 
1284 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1285 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1286 
1287 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1288 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1289 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1290 
1291 	/* preallocation can change ac_b_ex, thus we store actually
1292 	 * allocated blocks for history */
1293 	ac->ac_f_ex = ac->ac_b_ex;
1294 
1295 	ac->ac_status = AC_STATUS_FOUND;
1296 	ac->ac_tail = ret & 0xffff;
1297 	ac->ac_buddy = ret >> 16;
1298 
1299 	/* XXXXXXX: SUCH A HORRIBLE **CK */
1300 	/*FIXME!! Why ? */
1301 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1302 	get_page(ac->ac_bitmap_page);
1303 	ac->ac_buddy_page = e4b->bd_buddy_page;
1304 	get_page(ac->ac_buddy_page);
1305 
1306 	/* store last allocated for subsequent stream allocation */
1307 	if ((ac->ac_flags & EXT4_MB_HINT_DATA)) {
1308 		spin_lock(&sbi->s_md_lock);
1309 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1310 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1311 		spin_unlock(&sbi->s_md_lock);
1312 	}
1313 }
1314 
1315 /*
1316  * regular allocator, for general purposes allocation
1317  */
1318 
1319 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1320 					struct ext4_buddy *e4b,
1321 					int finish_group)
1322 {
1323 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1324 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1325 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1326 	struct ext4_free_extent ex;
1327 	int max;
1328 
1329 	/*
1330 	 * We don't want to scan for a whole year
1331 	 */
1332 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1333 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1334 		ac->ac_status = AC_STATUS_BREAK;
1335 		return;
1336 	}
1337 
1338 	/*
1339 	 * Haven't found good chunk so far, let's continue
1340 	 */
1341 	if (bex->fe_len < gex->fe_len)
1342 		return;
1343 
1344 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1345 			&& bex->fe_group == e4b->bd_group) {
1346 		/* recheck chunk's availability - we don't know
1347 		 * when it was found (within this lock-unlock
1348 		 * period or not) */
1349 		max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1350 		if (max >= gex->fe_len) {
1351 			ext4_mb_use_best_found(ac, e4b);
1352 			return;
1353 		}
1354 	}
1355 }
1356 
1357 /*
1358  * The routine checks whether found extent is good enough. If it is,
1359  * then the extent gets marked used and flag is set to the context
1360  * to stop scanning. Otherwise, the extent is compared with the
1361  * previous found extent and if new one is better, then it's stored
1362  * in the context. Later, the best found extent will be used, if
1363  * mballoc can't find good enough extent.
1364  *
1365  * FIXME: real allocation policy is to be designed yet!
1366  */
1367 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1368 					struct ext4_free_extent *ex,
1369 					struct ext4_buddy *e4b)
1370 {
1371 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1372 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1373 
1374 	BUG_ON(ex->fe_len <= 0);
1375 	BUG_ON(ex->fe_len >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1376 	BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1377 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1378 
1379 	ac->ac_found++;
1380 
1381 	/*
1382 	 * The special case - take what you catch first
1383 	 */
1384 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1385 		*bex = *ex;
1386 		ext4_mb_use_best_found(ac, e4b);
1387 		return;
1388 	}
1389 
1390 	/*
1391 	 * Let's check whether the chuck is good enough
1392 	 */
1393 	if (ex->fe_len == gex->fe_len) {
1394 		*bex = *ex;
1395 		ext4_mb_use_best_found(ac, e4b);
1396 		return;
1397 	}
1398 
1399 	/*
1400 	 * If this is first found extent, just store it in the context
1401 	 */
1402 	if (bex->fe_len == 0) {
1403 		*bex = *ex;
1404 		return;
1405 	}
1406 
1407 	/*
1408 	 * If new found extent is better, store it in the context
1409 	 */
1410 	if (bex->fe_len < gex->fe_len) {
1411 		/* if the request isn't satisfied, any found extent
1412 		 * larger than previous best one is better */
1413 		if (ex->fe_len > bex->fe_len)
1414 			*bex = *ex;
1415 	} else if (ex->fe_len > gex->fe_len) {
1416 		/* if the request is satisfied, then we try to find
1417 		 * an extent that still satisfy the request, but is
1418 		 * smaller than previous one */
1419 		if (ex->fe_len < bex->fe_len)
1420 			*bex = *ex;
1421 	}
1422 
1423 	ext4_mb_check_limits(ac, e4b, 0);
1424 }
1425 
1426 static int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1427 					struct ext4_buddy *e4b)
1428 {
1429 	struct ext4_free_extent ex = ac->ac_b_ex;
1430 	ext4_group_t group = ex.fe_group;
1431 	int max;
1432 	int err;
1433 
1434 	BUG_ON(ex.fe_len <= 0);
1435 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1436 	if (err)
1437 		return err;
1438 
1439 	ext4_lock_group(ac->ac_sb, group);
1440 	max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1441 
1442 	if (max > 0) {
1443 		ac->ac_b_ex = ex;
1444 		ext4_mb_use_best_found(ac, e4b);
1445 	}
1446 
1447 	ext4_unlock_group(ac->ac_sb, group);
1448 	ext4_mb_release_desc(e4b);
1449 
1450 	return 0;
1451 }
1452 
1453 static int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1454 				struct ext4_buddy *e4b)
1455 {
1456 	ext4_group_t group = ac->ac_g_ex.fe_group;
1457 	int max;
1458 	int err;
1459 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1460 	struct ext4_super_block *es = sbi->s_es;
1461 	struct ext4_free_extent ex;
1462 
1463 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1464 		return 0;
1465 
1466 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1467 	if (err)
1468 		return err;
1469 
1470 	ext4_lock_group(ac->ac_sb, group);
1471 	max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1472 			     ac->ac_g_ex.fe_len, &ex);
1473 
1474 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1475 		ext4_fsblk_t start;
1476 
1477 		start = (e4b->bd_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) +
1478 			ex.fe_start + le32_to_cpu(es->s_first_data_block);
1479 		/* use do_div to get remainder (would be 64-bit modulo) */
1480 		if (do_div(start, sbi->s_stripe) == 0) {
1481 			ac->ac_found++;
1482 			ac->ac_b_ex = ex;
1483 			ext4_mb_use_best_found(ac, e4b);
1484 		}
1485 	} else if (max >= ac->ac_g_ex.fe_len) {
1486 		BUG_ON(ex.fe_len <= 0);
1487 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1488 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1489 		ac->ac_found++;
1490 		ac->ac_b_ex = ex;
1491 		ext4_mb_use_best_found(ac, e4b);
1492 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1493 		/* Sometimes, caller may want to merge even small
1494 		 * number of blocks to an existing extent */
1495 		BUG_ON(ex.fe_len <= 0);
1496 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1497 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1498 		ac->ac_found++;
1499 		ac->ac_b_ex = ex;
1500 		ext4_mb_use_best_found(ac, e4b);
1501 	}
1502 	ext4_unlock_group(ac->ac_sb, group);
1503 	ext4_mb_release_desc(e4b);
1504 
1505 	return 0;
1506 }
1507 
1508 /*
1509  * The routine scans buddy structures (not bitmap!) from given order
1510  * to max order and tries to find big enough chunk to satisfy the req
1511  */
1512 static void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1513 					struct ext4_buddy *e4b)
1514 {
1515 	struct super_block *sb = ac->ac_sb;
1516 	struct ext4_group_info *grp = e4b->bd_info;
1517 	void *buddy;
1518 	int i;
1519 	int k;
1520 	int max;
1521 
1522 	BUG_ON(ac->ac_2order <= 0);
1523 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1524 		if (grp->bb_counters[i] == 0)
1525 			continue;
1526 
1527 		buddy = mb_find_buddy(e4b, i, &max);
1528 		BUG_ON(buddy == NULL);
1529 
1530 		k = mb_find_next_zero_bit(buddy, max, 0);
1531 		BUG_ON(k >= max);
1532 
1533 		ac->ac_found++;
1534 
1535 		ac->ac_b_ex.fe_len = 1 << i;
1536 		ac->ac_b_ex.fe_start = k << i;
1537 		ac->ac_b_ex.fe_group = e4b->bd_group;
1538 
1539 		ext4_mb_use_best_found(ac, e4b);
1540 
1541 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1542 
1543 		if (EXT4_SB(sb)->s_mb_stats)
1544 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1545 
1546 		break;
1547 	}
1548 }
1549 
1550 /*
1551  * The routine scans the group and measures all found extents.
1552  * In order to optimize scanning, caller must pass number of
1553  * free blocks in the group, so the routine can know upper limit.
1554  */
1555 static void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1556 					struct ext4_buddy *e4b)
1557 {
1558 	struct super_block *sb = ac->ac_sb;
1559 	void *bitmap = EXT4_MB_BITMAP(e4b);
1560 	struct ext4_free_extent ex;
1561 	int i;
1562 	int free;
1563 
1564 	free = e4b->bd_info->bb_free;
1565 	BUG_ON(free <= 0);
1566 
1567 	i = e4b->bd_info->bb_first_free;
1568 
1569 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1570 		i = mb_find_next_zero_bit(bitmap,
1571 						EXT4_BLOCKS_PER_GROUP(sb), i);
1572 		if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1573 			/*
1574 			 * IF we have corrupt bitmap, we won't find any
1575 			 * free blocks even though group info says we
1576 			 * we have free blocks
1577 			 */
1578 			ext4_error(sb, __func__, "%d free blocks as per "
1579 					"group info. But bitmap says 0\n",
1580 					free);
1581 			break;
1582 		}
1583 
1584 		mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1585 		BUG_ON(ex.fe_len <= 0);
1586 		if (free < ex.fe_len) {
1587 			ext4_error(sb, __func__, "%d free blocks as per "
1588 					"group info. But got %d blocks\n",
1589 					free, ex.fe_len);
1590 			/*
1591 			 * The number of free blocks differs. This mostly
1592 			 * indicate that the bitmap is corrupt. So exit
1593 			 * without claiming the space.
1594 			 */
1595 			break;
1596 		}
1597 
1598 		ext4_mb_measure_extent(ac, &ex, e4b);
1599 
1600 		i += ex.fe_len;
1601 		free -= ex.fe_len;
1602 	}
1603 
1604 	ext4_mb_check_limits(ac, e4b, 1);
1605 }
1606 
1607 /*
1608  * This is a special case for storages like raid5
1609  * we try to find stripe-aligned chunks for stripe-size requests
1610  * XXX should do so at least for multiples of stripe size as well
1611  */
1612 static void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1613 				 struct ext4_buddy *e4b)
1614 {
1615 	struct super_block *sb = ac->ac_sb;
1616 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1617 	void *bitmap = EXT4_MB_BITMAP(e4b);
1618 	struct ext4_free_extent ex;
1619 	ext4_fsblk_t first_group_block;
1620 	ext4_fsblk_t a;
1621 	ext4_grpblk_t i;
1622 	int max;
1623 
1624 	BUG_ON(sbi->s_stripe == 0);
1625 
1626 	/* find first stripe-aligned block in group */
1627 	first_group_block = e4b->bd_group * EXT4_BLOCKS_PER_GROUP(sb)
1628 		+ le32_to_cpu(sbi->s_es->s_first_data_block);
1629 	a = first_group_block + sbi->s_stripe - 1;
1630 	do_div(a, sbi->s_stripe);
1631 	i = (a * sbi->s_stripe) - first_group_block;
1632 
1633 	while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1634 		if (!mb_test_bit(i, bitmap)) {
1635 			max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1636 			if (max >= sbi->s_stripe) {
1637 				ac->ac_found++;
1638 				ac->ac_b_ex = ex;
1639 				ext4_mb_use_best_found(ac, e4b);
1640 				break;
1641 			}
1642 		}
1643 		i += sbi->s_stripe;
1644 	}
1645 }
1646 
1647 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1648 				ext4_group_t group, int cr)
1649 {
1650 	unsigned free, fragments;
1651 	unsigned i, bits;
1652 	struct ext4_group_desc *desc;
1653 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1654 
1655 	BUG_ON(cr < 0 || cr >= 4);
1656 	BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1657 
1658 	free = grp->bb_free;
1659 	fragments = grp->bb_fragments;
1660 	if (free == 0)
1661 		return 0;
1662 	if (fragments == 0)
1663 		return 0;
1664 
1665 	switch (cr) {
1666 	case 0:
1667 		BUG_ON(ac->ac_2order == 0);
1668 		/* If this group is uninitialized, skip it initially */
1669 		desc = ext4_get_group_desc(ac->ac_sb, group, NULL);
1670 		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1671 			return 0;
1672 
1673 		bits = ac->ac_sb->s_blocksize_bits + 1;
1674 		for (i = ac->ac_2order; i <= bits; i++)
1675 			if (grp->bb_counters[i] > 0)
1676 				return 1;
1677 		break;
1678 	case 1:
1679 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
1680 			return 1;
1681 		break;
1682 	case 2:
1683 		if (free >= ac->ac_g_ex.fe_len)
1684 			return 1;
1685 		break;
1686 	case 3:
1687 		return 1;
1688 	default:
1689 		BUG();
1690 	}
1691 
1692 	return 0;
1693 }
1694 
1695 static noinline_for_stack int
1696 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1697 {
1698 	ext4_group_t group;
1699 	ext4_group_t i;
1700 	int cr;
1701 	int err = 0;
1702 	int bsbits;
1703 	struct ext4_sb_info *sbi;
1704 	struct super_block *sb;
1705 	struct ext4_buddy e4b;
1706 	loff_t size, isize;
1707 
1708 	sb = ac->ac_sb;
1709 	sbi = EXT4_SB(sb);
1710 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1711 
1712 	/* first, try the goal */
1713 	err = ext4_mb_find_by_goal(ac, &e4b);
1714 	if (err || ac->ac_status == AC_STATUS_FOUND)
1715 		goto out;
1716 
1717 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1718 		goto out;
1719 
1720 	/*
1721 	 * ac->ac2_order is set only if the fe_len is a power of 2
1722 	 * if ac2_order is set we also set criteria to 0 so that we
1723 	 * try exact allocation using buddy.
1724 	 */
1725 	i = fls(ac->ac_g_ex.fe_len);
1726 	ac->ac_2order = 0;
1727 	/*
1728 	 * We search using buddy data only if the order of the request
1729 	 * is greater than equal to the sbi_s_mb_order2_reqs
1730 	 * You can tune it via /proc/fs/ext4/<partition>/order2_req
1731 	 */
1732 	if (i >= sbi->s_mb_order2_reqs) {
1733 		/*
1734 		 * This should tell if fe_len is exactly power of 2
1735 		 */
1736 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1737 			ac->ac_2order = i - 1;
1738 	}
1739 
1740 	bsbits = ac->ac_sb->s_blocksize_bits;
1741 	/* if stream allocation is enabled, use global goal */
1742 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
1743 	isize = i_size_read(ac->ac_inode) >> bsbits;
1744 	if (size < isize)
1745 		size = isize;
1746 
1747 	if (size < sbi->s_mb_stream_request &&
1748 			(ac->ac_flags & EXT4_MB_HINT_DATA)) {
1749 		/* TBD: may be hot point */
1750 		spin_lock(&sbi->s_md_lock);
1751 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
1752 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
1753 		spin_unlock(&sbi->s_md_lock);
1754 	}
1755 	/* Let's just scan groups to find more-less suitable blocks */
1756 	cr = ac->ac_2order ? 0 : 1;
1757 	/*
1758 	 * cr == 0 try to get exact allocation,
1759 	 * cr == 3  try to get anything
1760 	 */
1761 repeat:
1762 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
1763 		ac->ac_criteria = cr;
1764 		/*
1765 		 * searching for the right group start
1766 		 * from the goal value specified
1767 		 */
1768 		group = ac->ac_g_ex.fe_group;
1769 
1770 		for (i = 0; i < EXT4_SB(sb)->s_groups_count; group++, i++) {
1771 			struct ext4_group_info *grp;
1772 			struct ext4_group_desc *desc;
1773 
1774 			if (group == EXT4_SB(sb)->s_groups_count)
1775 				group = 0;
1776 
1777 			/* quick check to skip empty groups */
1778 			grp = ext4_get_group_info(ac->ac_sb, group);
1779 			if (grp->bb_free == 0)
1780 				continue;
1781 
1782 			/*
1783 			 * if the group is already init we check whether it is
1784 			 * a good group and if not we don't load the buddy
1785 			 */
1786 			if (EXT4_MB_GRP_NEED_INIT(grp)) {
1787 				/*
1788 				 * we need full data about the group
1789 				 * to make a good selection
1790 				 */
1791 				err = ext4_mb_load_buddy(sb, group, &e4b);
1792 				if (err)
1793 					goto out;
1794 				ext4_mb_release_desc(&e4b);
1795 			}
1796 
1797 			/*
1798 			 * If the particular group doesn't satisfy our
1799 			 * criteria we continue with the next group
1800 			 */
1801 			if (!ext4_mb_good_group(ac, group, cr))
1802 				continue;
1803 
1804 			err = ext4_mb_load_buddy(sb, group, &e4b);
1805 			if (err)
1806 				goto out;
1807 
1808 			ext4_lock_group(sb, group);
1809 			if (!ext4_mb_good_group(ac, group, cr)) {
1810 				/* someone did allocation from this group */
1811 				ext4_unlock_group(sb, group);
1812 				ext4_mb_release_desc(&e4b);
1813 				continue;
1814 			}
1815 
1816 			ac->ac_groups_scanned++;
1817 			desc = ext4_get_group_desc(sb, group, NULL);
1818 			if (cr == 0 || (desc->bg_flags &
1819 					cpu_to_le16(EXT4_BG_BLOCK_UNINIT) &&
1820 					ac->ac_2order != 0))
1821 				ext4_mb_simple_scan_group(ac, &e4b);
1822 			else if (cr == 1 &&
1823 					ac->ac_g_ex.fe_len == sbi->s_stripe)
1824 				ext4_mb_scan_aligned(ac, &e4b);
1825 			else
1826 				ext4_mb_complex_scan_group(ac, &e4b);
1827 
1828 			ext4_unlock_group(sb, group);
1829 			ext4_mb_release_desc(&e4b);
1830 
1831 			if (ac->ac_status != AC_STATUS_CONTINUE)
1832 				break;
1833 		}
1834 	}
1835 
1836 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
1837 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1838 		/*
1839 		 * We've been searching too long. Let's try to allocate
1840 		 * the best chunk we've found so far
1841 		 */
1842 
1843 		ext4_mb_try_best_found(ac, &e4b);
1844 		if (ac->ac_status != AC_STATUS_FOUND) {
1845 			/*
1846 			 * Someone more lucky has already allocated it.
1847 			 * The only thing we can do is just take first
1848 			 * found block(s)
1849 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
1850 			 */
1851 			ac->ac_b_ex.fe_group = 0;
1852 			ac->ac_b_ex.fe_start = 0;
1853 			ac->ac_b_ex.fe_len = 0;
1854 			ac->ac_status = AC_STATUS_CONTINUE;
1855 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
1856 			cr = 3;
1857 			atomic_inc(&sbi->s_mb_lost_chunks);
1858 			goto repeat;
1859 		}
1860 	}
1861 out:
1862 	return err;
1863 }
1864 
1865 #ifdef EXT4_MB_HISTORY
1866 struct ext4_mb_proc_session {
1867 	struct ext4_mb_history *history;
1868 	struct super_block *sb;
1869 	int start;
1870 	int max;
1871 };
1872 
1873 static void *ext4_mb_history_skip_empty(struct ext4_mb_proc_session *s,
1874 					struct ext4_mb_history *hs,
1875 					int first)
1876 {
1877 	if (hs == s->history + s->max)
1878 		hs = s->history;
1879 	if (!first && hs == s->history + s->start)
1880 		return NULL;
1881 	while (hs->orig.fe_len == 0) {
1882 		hs++;
1883 		if (hs == s->history + s->max)
1884 			hs = s->history;
1885 		if (hs == s->history + s->start)
1886 			return NULL;
1887 	}
1888 	return hs;
1889 }
1890 
1891 static void *ext4_mb_seq_history_start(struct seq_file *seq, loff_t *pos)
1892 {
1893 	struct ext4_mb_proc_session *s = seq->private;
1894 	struct ext4_mb_history *hs;
1895 	int l = *pos;
1896 
1897 	if (l == 0)
1898 		return SEQ_START_TOKEN;
1899 	hs = ext4_mb_history_skip_empty(s, s->history + s->start, 1);
1900 	if (!hs)
1901 		return NULL;
1902 	while (--l && (hs = ext4_mb_history_skip_empty(s, ++hs, 0)) != NULL);
1903 	return hs;
1904 }
1905 
1906 static void *ext4_mb_seq_history_next(struct seq_file *seq, void *v,
1907 				      loff_t *pos)
1908 {
1909 	struct ext4_mb_proc_session *s = seq->private;
1910 	struct ext4_mb_history *hs = v;
1911 
1912 	++*pos;
1913 	if (v == SEQ_START_TOKEN)
1914 		return ext4_mb_history_skip_empty(s, s->history + s->start, 1);
1915 	else
1916 		return ext4_mb_history_skip_empty(s, ++hs, 0);
1917 }
1918 
1919 static int ext4_mb_seq_history_show(struct seq_file *seq, void *v)
1920 {
1921 	char buf[25], buf2[25], buf3[25], *fmt;
1922 	struct ext4_mb_history *hs = v;
1923 
1924 	if (v == SEQ_START_TOKEN) {
1925 		seq_printf(seq, "%-5s %-8s %-23s %-23s %-23s %-5s "
1926 				"%-5s %-2s %-5s %-5s %-5s %-6s\n",
1927 			  "pid", "inode", "original", "goal", "result", "found",
1928 			   "grps", "cr", "flags", "merge", "tail", "broken");
1929 		return 0;
1930 	}
1931 
1932 	if (hs->op == EXT4_MB_HISTORY_ALLOC) {
1933 		fmt = "%-5u %-8u %-23s %-23s %-23s %-5u %-5u %-2u "
1934 			"%-5u %-5s %-5u %-6u\n";
1935 		sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group,
1936 			hs->result.fe_start, hs->result.fe_len,
1937 			hs->result.fe_logical);
1938 		sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group,
1939 			hs->orig.fe_start, hs->orig.fe_len,
1940 			hs->orig.fe_logical);
1941 		sprintf(buf3, "%lu/%d/%u@%u", hs->goal.fe_group,
1942 			hs->goal.fe_start, hs->goal.fe_len,
1943 			hs->goal.fe_logical);
1944 		seq_printf(seq, fmt, hs->pid, hs->ino, buf, buf3, buf2,
1945 				hs->found, hs->groups, hs->cr, hs->flags,
1946 				hs->merged ? "M" : "", hs->tail,
1947 				hs->buddy ? 1 << hs->buddy : 0);
1948 	} else if (hs->op == EXT4_MB_HISTORY_PREALLOC) {
1949 		fmt = "%-5u %-8u %-23s %-23s %-23s\n";
1950 		sprintf(buf2, "%lu/%d/%u@%u", hs->result.fe_group,
1951 			hs->result.fe_start, hs->result.fe_len,
1952 			hs->result.fe_logical);
1953 		sprintf(buf, "%lu/%d/%u@%u", hs->orig.fe_group,
1954 			hs->orig.fe_start, hs->orig.fe_len,
1955 			hs->orig.fe_logical);
1956 		seq_printf(seq, fmt, hs->pid, hs->ino, buf, "", buf2);
1957 	} else if (hs->op == EXT4_MB_HISTORY_DISCARD) {
1958 		sprintf(buf2, "%lu/%d/%u", hs->result.fe_group,
1959 			hs->result.fe_start, hs->result.fe_len);
1960 		seq_printf(seq, "%-5u %-8u %-23s discard\n",
1961 				hs->pid, hs->ino, buf2);
1962 	} else if (hs->op == EXT4_MB_HISTORY_FREE) {
1963 		sprintf(buf2, "%lu/%d/%u", hs->result.fe_group,
1964 			hs->result.fe_start, hs->result.fe_len);
1965 		seq_printf(seq, "%-5u %-8u %-23s free\n",
1966 				hs->pid, hs->ino, buf2);
1967 	}
1968 	return 0;
1969 }
1970 
1971 static void ext4_mb_seq_history_stop(struct seq_file *seq, void *v)
1972 {
1973 }
1974 
1975 static struct seq_operations ext4_mb_seq_history_ops = {
1976 	.start  = ext4_mb_seq_history_start,
1977 	.next   = ext4_mb_seq_history_next,
1978 	.stop   = ext4_mb_seq_history_stop,
1979 	.show   = ext4_mb_seq_history_show,
1980 };
1981 
1982 static int ext4_mb_seq_history_open(struct inode *inode, struct file *file)
1983 {
1984 	struct super_block *sb = PDE(inode)->data;
1985 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1986 	struct ext4_mb_proc_session *s;
1987 	int rc;
1988 	int size;
1989 
1990 	if (unlikely(sbi->s_mb_history == NULL))
1991 		return -ENOMEM;
1992 	s = kmalloc(sizeof(*s), GFP_KERNEL);
1993 	if (s == NULL)
1994 		return -ENOMEM;
1995 	s->sb = sb;
1996 	size = sizeof(struct ext4_mb_history) * sbi->s_mb_history_max;
1997 	s->history = kmalloc(size, GFP_KERNEL);
1998 	if (s->history == NULL) {
1999 		kfree(s);
2000 		return -ENOMEM;
2001 	}
2002 
2003 	spin_lock(&sbi->s_mb_history_lock);
2004 	memcpy(s->history, sbi->s_mb_history, size);
2005 	s->max = sbi->s_mb_history_max;
2006 	s->start = sbi->s_mb_history_cur % s->max;
2007 	spin_unlock(&sbi->s_mb_history_lock);
2008 
2009 	rc = seq_open(file, &ext4_mb_seq_history_ops);
2010 	if (rc == 0) {
2011 		struct seq_file *m = (struct seq_file *)file->private_data;
2012 		m->private = s;
2013 	} else {
2014 		kfree(s->history);
2015 		kfree(s);
2016 	}
2017 	return rc;
2018 
2019 }
2020 
2021 static int ext4_mb_seq_history_release(struct inode *inode, struct file *file)
2022 {
2023 	struct seq_file *seq = (struct seq_file *)file->private_data;
2024 	struct ext4_mb_proc_session *s = seq->private;
2025 	kfree(s->history);
2026 	kfree(s);
2027 	return seq_release(inode, file);
2028 }
2029 
2030 static ssize_t ext4_mb_seq_history_write(struct file *file,
2031 				const char __user *buffer,
2032 				size_t count, loff_t *ppos)
2033 {
2034 	struct seq_file *seq = (struct seq_file *)file->private_data;
2035 	struct ext4_mb_proc_session *s = seq->private;
2036 	struct super_block *sb = s->sb;
2037 	char str[32];
2038 	int value;
2039 
2040 	if (count >= sizeof(str)) {
2041 		printk(KERN_ERR "EXT4-fs: %s string too long, max %u bytes\n",
2042 				"mb_history", (int)sizeof(str));
2043 		return -EOVERFLOW;
2044 	}
2045 
2046 	if (copy_from_user(str, buffer, count))
2047 		return -EFAULT;
2048 
2049 	value = simple_strtol(str, NULL, 0);
2050 	if (value < 0)
2051 		return -ERANGE;
2052 	EXT4_SB(sb)->s_mb_history_filter = value;
2053 
2054 	return count;
2055 }
2056 
2057 static struct file_operations ext4_mb_seq_history_fops = {
2058 	.owner		= THIS_MODULE,
2059 	.open		= ext4_mb_seq_history_open,
2060 	.read		= seq_read,
2061 	.write		= ext4_mb_seq_history_write,
2062 	.llseek		= seq_lseek,
2063 	.release	= ext4_mb_seq_history_release,
2064 };
2065 
2066 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2067 {
2068 	struct super_block *sb = seq->private;
2069 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2070 	ext4_group_t group;
2071 
2072 	if (*pos < 0 || *pos >= sbi->s_groups_count)
2073 		return NULL;
2074 
2075 	group = *pos + 1;
2076 	return (void *) group;
2077 }
2078 
2079 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2080 {
2081 	struct super_block *sb = seq->private;
2082 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2083 	ext4_group_t group;
2084 
2085 	++*pos;
2086 	if (*pos < 0 || *pos >= sbi->s_groups_count)
2087 		return NULL;
2088 	group = *pos + 1;
2089 	return (void *) group;;
2090 }
2091 
2092 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2093 {
2094 	struct super_block *sb = seq->private;
2095 	long group = (long) v;
2096 	int i;
2097 	int err;
2098 	struct ext4_buddy e4b;
2099 	struct sg {
2100 		struct ext4_group_info info;
2101 		unsigned short counters[16];
2102 	} sg;
2103 
2104 	group--;
2105 	if (group == 0)
2106 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2107 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2108 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2109 			   "group", "free", "frags", "first",
2110 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2111 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2112 
2113 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2114 		sizeof(struct ext4_group_info);
2115 	err = ext4_mb_load_buddy(sb, group, &e4b);
2116 	if (err) {
2117 		seq_printf(seq, "#%-5lu: I/O error\n", group);
2118 		return 0;
2119 	}
2120 	ext4_lock_group(sb, group);
2121 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2122 	ext4_unlock_group(sb, group);
2123 	ext4_mb_release_desc(&e4b);
2124 
2125 	seq_printf(seq, "#%-5lu: %-5u %-5u %-5u [", group, sg.info.bb_free,
2126 			sg.info.bb_fragments, sg.info.bb_first_free);
2127 	for (i = 0; i <= 13; i++)
2128 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2129 				sg.info.bb_counters[i] : 0);
2130 	seq_printf(seq, " ]\n");
2131 
2132 	return 0;
2133 }
2134 
2135 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2136 {
2137 }
2138 
2139 static struct seq_operations ext4_mb_seq_groups_ops = {
2140 	.start  = ext4_mb_seq_groups_start,
2141 	.next   = ext4_mb_seq_groups_next,
2142 	.stop   = ext4_mb_seq_groups_stop,
2143 	.show   = ext4_mb_seq_groups_show,
2144 };
2145 
2146 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2147 {
2148 	struct super_block *sb = PDE(inode)->data;
2149 	int rc;
2150 
2151 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2152 	if (rc == 0) {
2153 		struct seq_file *m = (struct seq_file *)file->private_data;
2154 		m->private = sb;
2155 	}
2156 	return rc;
2157 
2158 }
2159 
2160 static struct file_operations ext4_mb_seq_groups_fops = {
2161 	.owner		= THIS_MODULE,
2162 	.open		= ext4_mb_seq_groups_open,
2163 	.read		= seq_read,
2164 	.llseek		= seq_lseek,
2165 	.release	= seq_release,
2166 };
2167 
2168 static void ext4_mb_history_release(struct super_block *sb)
2169 {
2170 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2171 
2172 	remove_proc_entry("mb_groups", sbi->s_mb_proc);
2173 	remove_proc_entry("mb_history", sbi->s_mb_proc);
2174 
2175 	kfree(sbi->s_mb_history);
2176 }
2177 
2178 static void ext4_mb_history_init(struct super_block *sb)
2179 {
2180 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2181 	int i;
2182 
2183 	if (sbi->s_mb_proc != NULL) {
2184 		proc_create_data("mb_history", S_IRUGO, sbi->s_mb_proc,
2185 				 &ext4_mb_seq_history_fops, sb);
2186 		proc_create_data("mb_groups", S_IRUGO, sbi->s_mb_proc,
2187 				 &ext4_mb_seq_groups_fops, sb);
2188 	}
2189 
2190 	sbi->s_mb_history_max = 1000;
2191 	sbi->s_mb_history_cur = 0;
2192 	spin_lock_init(&sbi->s_mb_history_lock);
2193 	i = sbi->s_mb_history_max * sizeof(struct ext4_mb_history);
2194 	sbi->s_mb_history = kzalloc(i, GFP_KERNEL);
2195 	/* if we can't allocate history, then we simple won't use it */
2196 }
2197 
2198 static noinline_for_stack void
2199 ext4_mb_store_history(struct ext4_allocation_context *ac)
2200 {
2201 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2202 	struct ext4_mb_history h;
2203 
2204 	if (unlikely(sbi->s_mb_history == NULL))
2205 		return;
2206 
2207 	if (!(ac->ac_op & sbi->s_mb_history_filter))
2208 		return;
2209 
2210 	h.op = ac->ac_op;
2211 	h.pid = current->pid;
2212 	h.ino = ac->ac_inode ? ac->ac_inode->i_ino : 0;
2213 	h.orig = ac->ac_o_ex;
2214 	h.result = ac->ac_b_ex;
2215 	h.flags = ac->ac_flags;
2216 	h.found = ac->ac_found;
2217 	h.groups = ac->ac_groups_scanned;
2218 	h.cr = ac->ac_criteria;
2219 	h.tail = ac->ac_tail;
2220 	h.buddy = ac->ac_buddy;
2221 	h.merged = 0;
2222 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) {
2223 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2224 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2225 			h.merged = 1;
2226 		h.goal = ac->ac_g_ex;
2227 		h.result = ac->ac_f_ex;
2228 	}
2229 
2230 	spin_lock(&sbi->s_mb_history_lock);
2231 	memcpy(sbi->s_mb_history + sbi->s_mb_history_cur, &h, sizeof(h));
2232 	if (++sbi->s_mb_history_cur >= sbi->s_mb_history_max)
2233 		sbi->s_mb_history_cur = 0;
2234 	spin_unlock(&sbi->s_mb_history_lock);
2235 }
2236 
2237 #else
2238 #define ext4_mb_history_release(sb)
2239 #define ext4_mb_history_init(sb)
2240 #endif
2241 
2242 
2243 /* Create and initialize ext4_group_info data for the given group. */
2244 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2245 			  struct ext4_group_desc *desc)
2246 {
2247 	int i, len;
2248 	int metalen = 0;
2249 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2250 	struct ext4_group_info **meta_group_info;
2251 
2252 	/*
2253 	 * First check if this group is the first of a reserved block.
2254 	 * If it's true, we have to allocate a new table of pointers
2255 	 * to ext4_group_info structures
2256 	 */
2257 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2258 		metalen = sizeof(*meta_group_info) <<
2259 			EXT4_DESC_PER_BLOCK_BITS(sb);
2260 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2261 		if (meta_group_info == NULL) {
2262 			printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2263 			       "buddy group\n");
2264 			goto exit_meta_group_info;
2265 		}
2266 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2267 			meta_group_info;
2268 	}
2269 
2270 	/*
2271 	 * calculate needed size. if change bb_counters size,
2272 	 * don't forget about ext4_mb_generate_buddy()
2273 	 */
2274 	len = offsetof(typeof(**meta_group_info),
2275 		       bb_counters[sb->s_blocksize_bits + 2]);
2276 
2277 	meta_group_info =
2278 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2279 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2280 
2281 	meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2282 	if (meta_group_info[i] == NULL) {
2283 		printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2284 		goto exit_group_info;
2285 	}
2286 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2287 		&(meta_group_info[i]->bb_state));
2288 
2289 	/*
2290 	 * initialize bb_free to be able to skip
2291 	 * empty groups without initialization
2292 	 */
2293 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2294 		meta_group_info[i]->bb_free =
2295 			ext4_free_blocks_after_init(sb, group, desc);
2296 	} else {
2297 		meta_group_info[i]->bb_free =
2298 			le16_to_cpu(desc->bg_free_blocks_count);
2299 	}
2300 
2301 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2302 
2303 #ifdef DOUBLE_CHECK
2304 	{
2305 		struct buffer_head *bh;
2306 		meta_group_info[i]->bb_bitmap =
2307 			kmalloc(sb->s_blocksize, GFP_KERNEL);
2308 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2309 		bh = ext4_read_block_bitmap(sb, group);
2310 		BUG_ON(bh == NULL);
2311 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2312 			sb->s_blocksize);
2313 		put_bh(bh);
2314 	}
2315 #endif
2316 
2317 	return 0;
2318 
2319 exit_group_info:
2320 	/* If a meta_group_info table has been allocated, release it now */
2321 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2322 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2323 exit_meta_group_info:
2324 	return -ENOMEM;
2325 } /* ext4_mb_add_groupinfo */
2326 
2327 /*
2328  * Add a group to the existing groups.
2329  * This function is used for online resize
2330  */
2331 int ext4_mb_add_more_groupinfo(struct super_block *sb, ext4_group_t group,
2332 			       struct ext4_group_desc *desc)
2333 {
2334 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2335 	struct inode *inode = sbi->s_buddy_cache;
2336 	int blocks_per_page;
2337 	int block;
2338 	int pnum;
2339 	struct page *page;
2340 	int err;
2341 
2342 	/* Add group based on group descriptor*/
2343 	err = ext4_mb_add_groupinfo(sb, group, desc);
2344 	if (err)
2345 		return err;
2346 
2347 	/*
2348 	 * Cache pages containing dynamic mb_alloc datas (buddy and bitmap
2349 	 * datas) are set not up to date so that they will be re-initilaized
2350 	 * during the next call to ext4_mb_load_buddy
2351 	 */
2352 
2353 	/* Set buddy page as not up to date */
2354 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
2355 	block = group * 2;
2356 	pnum = block / blocks_per_page;
2357 	page = find_get_page(inode->i_mapping, pnum);
2358 	if (page != NULL) {
2359 		ClearPageUptodate(page);
2360 		page_cache_release(page);
2361 	}
2362 
2363 	/* Set bitmap page as not up to date */
2364 	block++;
2365 	pnum = block / blocks_per_page;
2366 	page = find_get_page(inode->i_mapping, pnum);
2367 	if (page != NULL) {
2368 		ClearPageUptodate(page);
2369 		page_cache_release(page);
2370 	}
2371 
2372 	return 0;
2373 }
2374 
2375 /*
2376  * Update an existing group.
2377  * This function is used for online resize
2378  */
2379 void ext4_mb_update_group_info(struct ext4_group_info *grp, ext4_grpblk_t add)
2380 {
2381 	grp->bb_free += add;
2382 }
2383 
2384 static int ext4_mb_init_backend(struct super_block *sb)
2385 {
2386 	ext4_group_t i;
2387 	int metalen;
2388 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2389 	struct ext4_super_block *es = sbi->s_es;
2390 	int num_meta_group_infos;
2391 	int num_meta_group_infos_max;
2392 	int array_size;
2393 	struct ext4_group_info **meta_group_info;
2394 	struct ext4_group_desc *desc;
2395 
2396 	/* This is the number of blocks used by GDT */
2397 	num_meta_group_infos = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) -
2398 				1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2399 
2400 	/*
2401 	 * This is the total number of blocks used by GDT including
2402 	 * the number of reserved blocks for GDT.
2403 	 * The s_group_info array is allocated with this value
2404 	 * to allow a clean online resize without a complex
2405 	 * manipulation of pointer.
2406 	 * The drawback is the unused memory when no resize
2407 	 * occurs but it's very low in terms of pages
2408 	 * (see comments below)
2409 	 * Need to handle this properly when META_BG resizing is allowed
2410 	 */
2411 	num_meta_group_infos_max = num_meta_group_infos +
2412 				le16_to_cpu(es->s_reserved_gdt_blocks);
2413 
2414 	/*
2415 	 * array_size is the size of s_group_info array. We round it
2416 	 * to the next power of two because this approximation is done
2417 	 * internally by kmalloc so we can have some more memory
2418 	 * for free here (e.g. may be used for META_BG resize).
2419 	 */
2420 	array_size = 1;
2421 	while (array_size < sizeof(*sbi->s_group_info) *
2422 	       num_meta_group_infos_max)
2423 		array_size = array_size << 1;
2424 	/* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2425 	 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2426 	 * So a two level scheme suffices for now. */
2427 	sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2428 	if (sbi->s_group_info == NULL) {
2429 		printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2430 		return -ENOMEM;
2431 	}
2432 	sbi->s_buddy_cache = new_inode(sb);
2433 	if (sbi->s_buddy_cache == NULL) {
2434 		printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2435 		goto err_freesgi;
2436 	}
2437 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2438 
2439 	metalen = sizeof(*meta_group_info) << EXT4_DESC_PER_BLOCK_BITS(sb);
2440 	for (i = 0; i < num_meta_group_infos; i++) {
2441 		if ((i + 1) == num_meta_group_infos)
2442 			metalen = sizeof(*meta_group_info) *
2443 				(sbi->s_groups_count -
2444 					(i << EXT4_DESC_PER_BLOCK_BITS(sb)));
2445 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2446 		if (meta_group_info == NULL) {
2447 			printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2448 			       "buddy group\n");
2449 			goto err_freemeta;
2450 		}
2451 		sbi->s_group_info[i] = meta_group_info;
2452 	}
2453 
2454 	for (i = 0; i < sbi->s_groups_count; i++) {
2455 		desc = ext4_get_group_desc(sb, i, NULL);
2456 		if (desc == NULL) {
2457 			printk(KERN_ERR
2458 				"EXT4-fs: can't read descriptor %lu\n", i);
2459 			goto err_freebuddy;
2460 		}
2461 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2462 			goto err_freebuddy;
2463 	}
2464 
2465 	return 0;
2466 
2467 err_freebuddy:
2468 	while (i-- > 0)
2469 		kfree(ext4_get_group_info(sb, i));
2470 	i = num_meta_group_infos;
2471 err_freemeta:
2472 	while (i-- > 0)
2473 		kfree(sbi->s_group_info[i]);
2474 	iput(sbi->s_buddy_cache);
2475 err_freesgi:
2476 	kfree(sbi->s_group_info);
2477 	return -ENOMEM;
2478 }
2479 
2480 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2481 {
2482 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2483 	unsigned i, j;
2484 	unsigned offset;
2485 	unsigned max;
2486 	int ret;
2487 
2488 	if (!test_opt(sb, MBALLOC))
2489 		return 0;
2490 
2491 	i = (sb->s_blocksize_bits + 2) * sizeof(unsigned short);
2492 
2493 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2494 	if (sbi->s_mb_offsets == NULL) {
2495 		clear_opt(sbi->s_mount_opt, MBALLOC);
2496 		return -ENOMEM;
2497 	}
2498 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2499 	if (sbi->s_mb_maxs == NULL) {
2500 		clear_opt(sbi->s_mount_opt, MBALLOC);
2501 		kfree(sbi->s_mb_maxs);
2502 		return -ENOMEM;
2503 	}
2504 
2505 	/* order 0 is regular bitmap */
2506 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2507 	sbi->s_mb_offsets[0] = 0;
2508 
2509 	i = 1;
2510 	offset = 0;
2511 	max = sb->s_blocksize << 2;
2512 	do {
2513 		sbi->s_mb_offsets[i] = offset;
2514 		sbi->s_mb_maxs[i] = max;
2515 		offset += 1 << (sb->s_blocksize_bits - i);
2516 		max = max >> 1;
2517 		i++;
2518 	} while (i <= sb->s_blocksize_bits + 1);
2519 
2520 	/* init file for buddy data */
2521 	ret = ext4_mb_init_backend(sb);
2522 	if (ret != 0) {
2523 		clear_opt(sbi->s_mount_opt, MBALLOC);
2524 		kfree(sbi->s_mb_offsets);
2525 		kfree(sbi->s_mb_maxs);
2526 		return ret;
2527 	}
2528 
2529 	spin_lock_init(&sbi->s_md_lock);
2530 	INIT_LIST_HEAD(&sbi->s_active_transaction);
2531 	INIT_LIST_HEAD(&sbi->s_closed_transaction);
2532 	INIT_LIST_HEAD(&sbi->s_committed_transaction);
2533 	spin_lock_init(&sbi->s_bal_lock);
2534 
2535 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2536 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2537 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2538 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2539 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2540 	sbi->s_mb_history_filter = EXT4_MB_HISTORY_DEFAULT;
2541 	sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2542 
2543 	i = sizeof(struct ext4_locality_group) * nr_cpu_ids;
2544 	sbi->s_locality_groups = kmalloc(i, GFP_KERNEL);
2545 	if (sbi->s_locality_groups == NULL) {
2546 		clear_opt(sbi->s_mount_opt, MBALLOC);
2547 		kfree(sbi->s_mb_offsets);
2548 		kfree(sbi->s_mb_maxs);
2549 		return -ENOMEM;
2550 	}
2551 	for (i = 0; i < nr_cpu_ids; i++) {
2552 		struct ext4_locality_group *lg;
2553 		lg = &sbi->s_locality_groups[i];
2554 		mutex_init(&lg->lg_mutex);
2555 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2556 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2557 		spin_lock_init(&lg->lg_prealloc_lock);
2558 	}
2559 
2560 	ext4_mb_init_per_dev_proc(sb);
2561 	ext4_mb_history_init(sb);
2562 
2563 	printk("EXT4-fs: mballoc enabled\n");
2564 	return 0;
2565 }
2566 
2567 /* need to called with ext4 group lock (ext4_lock_group) */
2568 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2569 {
2570 	struct ext4_prealloc_space *pa;
2571 	struct list_head *cur, *tmp;
2572 	int count = 0;
2573 
2574 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2575 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2576 		list_del(&pa->pa_group_list);
2577 		count++;
2578 		kfree(pa);
2579 	}
2580 	if (count)
2581 		mb_debug("mballoc: %u PAs left\n", count);
2582 
2583 }
2584 
2585 int ext4_mb_release(struct super_block *sb)
2586 {
2587 	ext4_group_t i;
2588 	int num_meta_group_infos;
2589 	struct ext4_group_info *grinfo;
2590 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2591 
2592 	if (!test_opt(sb, MBALLOC))
2593 		return 0;
2594 
2595 	/* release freed, non-committed blocks */
2596 	spin_lock(&sbi->s_md_lock);
2597 	list_splice_init(&sbi->s_closed_transaction,
2598 			&sbi->s_committed_transaction);
2599 	list_splice_init(&sbi->s_active_transaction,
2600 			&sbi->s_committed_transaction);
2601 	spin_unlock(&sbi->s_md_lock);
2602 	ext4_mb_free_committed_blocks(sb);
2603 
2604 	if (sbi->s_group_info) {
2605 		for (i = 0; i < sbi->s_groups_count; i++) {
2606 			grinfo = ext4_get_group_info(sb, i);
2607 #ifdef DOUBLE_CHECK
2608 			kfree(grinfo->bb_bitmap);
2609 #endif
2610 			ext4_lock_group(sb, i);
2611 			ext4_mb_cleanup_pa(grinfo);
2612 			ext4_unlock_group(sb, i);
2613 			kfree(grinfo);
2614 		}
2615 		num_meta_group_infos = (sbi->s_groups_count +
2616 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2617 			EXT4_DESC_PER_BLOCK_BITS(sb);
2618 		for (i = 0; i < num_meta_group_infos; i++)
2619 			kfree(sbi->s_group_info[i]);
2620 		kfree(sbi->s_group_info);
2621 	}
2622 	kfree(sbi->s_mb_offsets);
2623 	kfree(sbi->s_mb_maxs);
2624 	if (sbi->s_buddy_cache)
2625 		iput(sbi->s_buddy_cache);
2626 	if (sbi->s_mb_stats) {
2627 		printk(KERN_INFO
2628 		       "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2629 				atomic_read(&sbi->s_bal_allocated),
2630 				atomic_read(&sbi->s_bal_reqs),
2631 				atomic_read(&sbi->s_bal_success));
2632 		printk(KERN_INFO
2633 		      "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2634 				"%u 2^N hits, %u breaks, %u lost\n",
2635 				atomic_read(&sbi->s_bal_ex_scanned),
2636 				atomic_read(&sbi->s_bal_goals),
2637 				atomic_read(&sbi->s_bal_2orders),
2638 				atomic_read(&sbi->s_bal_breaks),
2639 				atomic_read(&sbi->s_mb_lost_chunks));
2640 		printk(KERN_INFO
2641 		       "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2642 				sbi->s_mb_buddies_generated++,
2643 				sbi->s_mb_generation_time);
2644 		printk(KERN_INFO
2645 		       "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2646 				atomic_read(&sbi->s_mb_preallocated),
2647 				atomic_read(&sbi->s_mb_discarded));
2648 	}
2649 
2650 	kfree(sbi->s_locality_groups);
2651 
2652 	ext4_mb_history_release(sb);
2653 	ext4_mb_destroy_per_dev_proc(sb);
2654 
2655 	return 0;
2656 }
2657 
2658 static noinline_for_stack void
2659 ext4_mb_free_committed_blocks(struct super_block *sb)
2660 {
2661 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2662 	int err;
2663 	int i;
2664 	int count = 0;
2665 	int count2 = 0;
2666 	struct ext4_free_metadata *md;
2667 	struct ext4_buddy e4b;
2668 
2669 	if (list_empty(&sbi->s_committed_transaction))
2670 		return;
2671 
2672 	/* there is committed blocks to be freed yet */
2673 	do {
2674 		/* get next array of blocks */
2675 		md = NULL;
2676 		spin_lock(&sbi->s_md_lock);
2677 		if (!list_empty(&sbi->s_committed_transaction)) {
2678 			md = list_entry(sbi->s_committed_transaction.next,
2679 					struct ext4_free_metadata, list);
2680 			list_del(&md->list);
2681 		}
2682 		spin_unlock(&sbi->s_md_lock);
2683 
2684 		if (md == NULL)
2685 			break;
2686 
2687 		mb_debug("gonna free %u blocks in group %lu (0x%p):",
2688 				md->num, md->group, md);
2689 
2690 		err = ext4_mb_load_buddy(sb, md->group, &e4b);
2691 		/* we expect to find existing buddy because it's pinned */
2692 		BUG_ON(err != 0);
2693 
2694 		/* there are blocks to put in buddy to make them really free */
2695 		count += md->num;
2696 		count2++;
2697 		ext4_lock_group(sb, md->group);
2698 		for (i = 0; i < md->num; i++) {
2699 			mb_debug(" %u", md->blocks[i]);
2700 			mb_free_blocks(NULL, &e4b, md->blocks[i], 1);
2701 		}
2702 		mb_debug("\n");
2703 		ext4_unlock_group(sb, md->group);
2704 
2705 		/* balance refcounts from ext4_mb_free_metadata() */
2706 		page_cache_release(e4b.bd_buddy_page);
2707 		page_cache_release(e4b.bd_bitmap_page);
2708 
2709 		kfree(md);
2710 		ext4_mb_release_desc(&e4b);
2711 
2712 	} while (md);
2713 
2714 	mb_debug("freed %u blocks in %u structures\n", count, count2);
2715 }
2716 
2717 #define EXT4_MB_STATS_NAME		"stats"
2718 #define EXT4_MB_MAX_TO_SCAN_NAME	"max_to_scan"
2719 #define EXT4_MB_MIN_TO_SCAN_NAME	"min_to_scan"
2720 #define EXT4_MB_ORDER2_REQ		"order2_req"
2721 #define EXT4_MB_STREAM_REQ		"stream_req"
2722 #define EXT4_MB_GROUP_PREALLOC		"group_prealloc"
2723 
2724 
2725 
2726 #define MB_PROC_FOPS(name)					\
2727 static int ext4_mb_##name##_proc_show(struct seq_file *m, void *v)	\
2728 {								\
2729 	struct ext4_sb_info *sbi = m->private;			\
2730 								\
2731 	seq_printf(m, "%ld\n", sbi->s_mb_##name);		\
2732 	return 0;						\
2733 }								\
2734 								\
2735 static int ext4_mb_##name##_proc_open(struct inode *inode, struct file *file)\
2736 {								\
2737 	return single_open(file, ext4_mb_##name##_proc_show, PDE(inode)->data);\
2738 }								\
2739 								\
2740 static ssize_t ext4_mb_##name##_proc_write(struct file *file,	\
2741 		const char __user *buf, size_t cnt, loff_t *ppos)	\
2742 {								\
2743 	struct ext4_sb_info *sbi = PDE(file->f_path.dentry->d_inode)->data;\
2744 	char str[32];						\
2745 	long value;						\
2746 	if (cnt >= sizeof(str))					\
2747 		return -EINVAL;					\
2748 	if (copy_from_user(str, buf, cnt))			\
2749 		return -EFAULT;					\
2750 	value = simple_strtol(str, NULL, 0);			\
2751 	if (value <= 0)						\
2752 		return -ERANGE;					\
2753 	sbi->s_mb_##name = value;				\
2754 	return cnt;						\
2755 }								\
2756 								\
2757 static const struct file_operations ext4_mb_##name##_proc_fops = {	\
2758 	.owner		= THIS_MODULE,				\
2759 	.open		= ext4_mb_##name##_proc_open,		\
2760 	.read		= seq_read,				\
2761 	.llseek		= seq_lseek,				\
2762 	.release	= single_release,			\
2763 	.write		= ext4_mb_##name##_proc_write,		\
2764 };
2765 
2766 MB_PROC_FOPS(stats);
2767 MB_PROC_FOPS(max_to_scan);
2768 MB_PROC_FOPS(min_to_scan);
2769 MB_PROC_FOPS(order2_reqs);
2770 MB_PROC_FOPS(stream_request);
2771 MB_PROC_FOPS(group_prealloc);
2772 
2773 #define	MB_PROC_HANDLER(name, var)					\
2774 do {									\
2775 	proc = proc_create_data(name, mode, sbi->s_mb_proc,		\
2776 				&ext4_mb_##var##_proc_fops, sbi);	\
2777 	if (proc == NULL) {						\
2778 		printk(KERN_ERR "EXT4-fs: can't to create %s\n", name);	\
2779 		goto err_out;						\
2780 	}								\
2781 } while (0)
2782 
2783 static int ext4_mb_init_per_dev_proc(struct super_block *sb)
2784 {
2785 	mode_t mode = S_IFREG | S_IRUGO | S_IWUSR;
2786 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2787 	struct proc_dir_entry *proc;
2788 	char devname[64];
2789 
2790 	if (proc_root_ext4 == NULL) {
2791 		sbi->s_mb_proc = NULL;
2792 		return -EINVAL;
2793 	}
2794 	bdevname(sb->s_bdev, devname);
2795 	sbi->s_mb_proc = proc_mkdir(devname, proc_root_ext4);
2796 
2797 	MB_PROC_HANDLER(EXT4_MB_STATS_NAME, stats);
2798 	MB_PROC_HANDLER(EXT4_MB_MAX_TO_SCAN_NAME, max_to_scan);
2799 	MB_PROC_HANDLER(EXT4_MB_MIN_TO_SCAN_NAME, min_to_scan);
2800 	MB_PROC_HANDLER(EXT4_MB_ORDER2_REQ, order2_reqs);
2801 	MB_PROC_HANDLER(EXT4_MB_STREAM_REQ, stream_request);
2802 	MB_PROC_HANDLER(EXT4_MB_GROUP_PREALLOC, group_prealloc);
2803 
2804 	return 0;
2805 
2806 err_out:
2807 	printk(KERN_ERR "EXT4-fs: Unable to create %s\n", devname);
2808 	remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_mb_proc);
2809 	remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_mb_proc);
2810 	remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_mb_proc);
2811 	remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_mb_proc);
2812 	remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_mb_proc);
2813 	remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_mb_proc);
2814 	remove_proc_entry(devname, proc_root_ext4);
2815 	sbi->s_mb_proc = NULL;
2816 
2817 	return -ENOMEM;
2818 }
2819 
2820 static int ext4_mb_destroy_per_dev_proc(struct super_block *sb)
2821 {
2822 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2823 	char devname[64];
2824 
2825 	if (sbi->s_mb_proc == NULL)
2826 		return -EINVAL;
2827 
2828 	bdevname(sb->s_bdev, devname);
2829 	remove_proc_entry(EXT4_MB_GROUP_PREALLOC, sbi->s_mb_proc);
2830 	remove_proc_entry(EXT4_MB_STREAM_REQ, sbi->s_mb_proc);
2831 	remove_proc_entry(EXT4_MB_ORDER2_REQ, sbi->s_mb_proc);
2832 	remove_proc_entry(EXT4_MB_MIN_TO_SCAN_NAME, sbi->s_mb_proc);
2833 	remove_proc_entry(EXT4_MB_MAX_TO_SCAN_NAME, sbi->s_mb_proc);
2834 	remove_proc_entry(EXT4_MB_STATS_NAME, sbi->s_mb_proc);
2835 	remove_proc_entry(devname, proc_root_ext4);
2836 
2837 	return 0;
2838 }
2839 
2840 int __init init_ext4_mballoc(void)
2841 {
2842 	ext4_pspace_cachep =
2843 		kmem_cache_create("ext4_prealloc_space",
2844 				     sizeof(struct ext4_prealloc_space),
2845 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2846 	if (ext4_pspace_cachep == NULL)
2847 		return -ENOMEM;
2848 
2849 	ext4_ac_cachep =
2850 		kmem_cache_create("ext4_alloc_context",
2851 				     sizeof(struct ext4_allocation_context),
2852 				     0, SLAB_RECLAIM_ACCOUNT, NULL);
2853 	if (ext4_ac_cachep == NULL) {
2854 		kmem_cache_destroy(ext4_pspace_cachep);
2855 		return -ENOMEM;
2856 	}
2857 #ifdef CONFIG_PROC_FS
2858 	proc_root_ext4 = proc_mkdir("fs/ext4", NULL);
2859 	if (proc_root_ext4 == NULL)
2860 		printk(KERN_ERR "EXT4-fs: Unable to create fs/ext4\n");
2861 #endif
2862 	return 0;
2863 }
2864 
2865 void exit_ext4_mballoc(void)
2866 {
2867 	/* XXX: synchronize_rcu(); */
2868 	kmem_cache_destroy(ext4_pspace_cachep);
2869 	kmem_cache_destroy(ext4_ac_cachep);
2870 #ifdef CONFIG_PROC_FS
2871 	remove_proc_entry("fs/ext4", NULL);
2872 #endif
2873 }
2874 
2875 
2876 /*
2877  * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2878  * Returns 0 if success or error code
2879  */
2880 static noinline_for_stack int
2881 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2882 				handle_t *handle)
2883 {
2884 	struct buffer_head *bitmap_bh = NULL;
2885 	struct ext4_super_block *es;
2886 	struct ext4_group_desc *gdp;
2887 	struct buffer_head *gdp_bh;
2888 	struct ext4_sb_info *sbi;
2889 	struct super_block *sb;
2890 	ext4_fsblk_t block;
2891 	int err, len;
2892 
2893 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2894 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2895 
2896 	sb = ac->ac_sb;
2897 	sbi = EXT4_SB(sb);
2898 	es = sbi->s_es;
2899 
2900 
2901 	err = -EIO;
2902 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2903 	if (!bitmap_bh)
2904 		goto out_err;
2905 
2906 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2907 	if (err)
2908 		goto out_err;
2909 
2910 	err = -EIO;
2911 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2912 	if (!gdp)
2913 		goto out_err;
2914 
2915 	ext4_debug("using block group %lu(%d)\n", ac->ac_b_ex.fe_group,
2916 			gdp->bg_free_blocks_count);
2917 
2918 	err = ext4_journal_get_write_access(handle, gdp_bh);
2919 	if (err)
2920 		goto out_err;
2921 
2922 	block = ac->ac_b_ex.fe_group * EXT4_BLOCKS_PER_GROUP(sb)
2923 		+ ac->ac_b_ex.fe_start
2924 		+ le32_to_cpu(es->s_first_data_block);
2925 
2926 	len = ac->ac_b_ex.fe_len;
2927 	if (in_range(ext4_block_bitmap(sb, gdp), block, len) ||
2928 	    in_range(ext4_inode_bitmap(sb, gdp), block, len) ||
2929 	    in_range(block, ext4_inode_table(sb, gdp),
2930 		     EXT4_SB(sb)->s_itb_per_group) ||
2931 	    in_range(block + len - 1, ext4_inode_table(sb, gdp),
2932 		     EXT4_SB(sb)->s_itb_per_group)) {
2933 		ext4_error(sb, __func__,
2934 			   "Allocating block in system zone - block = %llu",
2935 			   block);
2936 		/* File system mounted not to panic on error
2937 		 * Fix the bitmap and repeat the block allocation
2938 		 * We leak some of the blocks here.
2939 		 */
2940 		mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group),
2941 				bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2942 				ac->ac_b_ex.fe_len);
2943 		err = ext4_journal_dirty_metadata(handle, bitmap_bh);
2944 		if (!err)
2945 			err = -EAGAIN;
2946 		goto out_err;
2947 	}
2948 #ifdef AGGRESSIVE_CHECK
2949 	{
2950 		int i;
2951 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2952 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2953 						bitmap_bh->b_data));
2954 		}
2955 	}
2956 #endif
2957 	mb_set_bits(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group), bitmap_bh->b_data,
2958 				ac->ac_b_ex.fe_start, ac->ac_b_ex.fe_len);
2959 
2960 	spin_lock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
2961 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2962 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2963 		gdp->bg_free_blocks_count =
2964 			cpu_to_le16(ext4_free_blocks_after_init(sb,
2965 						ac->ac_b_ex.fe_group,
2966 						gdp));
2967 	}
2968 	le16_add_cpu(&gdp->bg_free_blocks_count, -ac->ac_b_ex.fe_len);
2969 	gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2970 	spin_unlock(sb_bgl_lock(sbi, ac->ac_b_ex.fe_group));
2971 
2972 	/*
2973 	 * free blocks account has already be reduced/reserved
2974 	 * at write_begin() time for delayed allocation
2975 	 * do not double accounting
2976 	 */
2977 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2978 		percpu_counter_sub(&sbi->s_freeblocks_counter,
2979 					ac->ac_b_ex.fe_len);
2980 
2981 	if (sbi->s_log_groups_per_flex) {
2982 		ext4_group_t flex_group = ext4_flex_group(sbi,
2983 							  ac->ac_b_ex.fe_group);
2984 		spin_lock(sb_bgl_lock(sbi, flex_group));
2985 		sbi->s_flex_groups[flex_group].free_blocks -= ac->ac_b_ex.fe_len;
2986 		spin_unlock(sb_bgl_lock(sbi, flex_group));
2987 	}
2988 
2989 	err = ext4_journal_dirty_metadata(handle, bitmap_bh);
2990 	if (err)
2991 		goto out_err;
2992 	err = ext4_journal_dirty_metadata(handle, gdp_bh);
2993 
2994 out_err:
2995 	sb->s_dirt = 1;
2996 	brelse(bitmap_bh);
2997 	return err;
2998 }
2999 
3000 /*
3001  * here we normalize request for locality group
3002  * Group request are normalized to s_strip size if we set the same via mount
3003  * option. If not we set it to s_mb_group_prealloc which can be configured via
3004  * /proc/fs/ext4/<partition>/group_prealloc
3005  *
3006  * XXX: should we try to preallocate more than the group has now?
3007  */
3008 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3009 {
3010 	struct super_block *sb = ac->ac_sb;
3011 	struct ext4_locality_group *lg = ac->ac_lg;
3012 
3013 	BUG_ON(lg == NULL);
3014 	if (EXT4_SB(sb)->s_stripe)
3015 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
3016 	else
3017 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3018 	mb_debug("#%u: goal %u blocks for locality group\n",
3019 		current->pid, ac->ac_g_ex.fe_len);
3020 }
3021 
3022 /*
3023  * Normalization means making request better in terms of
3024  * size and alignment
3025  */
3026 static noinline_for_stack void
3027 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3028 				struct ext4_allocation_request *ar)
3029 {
3030 	int bsbits, max;
3031 	ext4_lblk_t end;
3032 	loff_t size, orig_size, start_off;
3033 	ext4_lblk_t start, orig_start;
3034 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3035 	struct ext4_prealloc_space *pa;
3036 
3037 	/* do normalize only data requests, metadata requests
3038 	   do not need preallocation */
3039 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3040 		return;
3041 
3042 	/* sometime caller may want exact blocks */
3043 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3044 		return;
3045 
3046 	/* caller may indicate that preallocation isn't
3047 	 * required (it's a tail, for example) */
3048 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3049 		return;
3050 
3051 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3052 		ext4_mb_normalize_group_request(ac);
3053 		return ;
3054 	}
3055 
3056 	bsbits = ac->ac_sb->s_blocksize_bits;
3057 
3058 	/* first, let's learn actual file size
3059 	 * given current request is allocated */
3060 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3061 	size = size << bsbits;
3062 	if (size < i_size_read(ac->ac_inode))
3063 		size = i_size_read(ac->ac_inode);
3064 
3065 	/* max size of free chunks */
3066 	max = 2 << bsbits;
3067 
3068 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3069 		(req <= (size) || max <= (chunk_size))
3070 
3071 	/* first, try to predict filesize */
3072 	/* XXX: should this table be tunable? */
3073 	start_off = 0;
3074 	if (size <= 16 * 1024) {
3075 		size = 16 * 1024;
3076 	} else if (size <= 32 * 1024) {
3077 		size = 32 * 1024;
3078 	} else if (size <= 64 * 1024) {
3079 		size = 64 * 1024;
3080 	} else if (size <= 128 * 1024) {
3081 		size = 128 * 1024;
3082 	} else if (size <= 256 * 1024) {
3083 		size = 256 * 1024;
3084 	} else if (size <= 512 * 1024) {
3085 		size = 512 * 1024;
3086 	} else if (size <= 1024 * 1024) {
3087 		size = 1024 * 1024;
3088 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3089 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3090 						(21 - bsbits)) << 21;
3091 		size = 2 * 1024 * 1024;
3092 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3093 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3094 							(22 - bsbits)) << 22;
3095 		size = 4 * 1024 * 1024;
3096 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3097 					(8<<20)>>bsbits, max, 8 * 1024)) {
3098 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3099 							(23 - bsbits)) << 23;
3100 		size = 8 * 1024 * 1024;
3101 	} else {
3102 		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3103 		size	  = ac->ac_o_ex.fe_len << bsbits;
3104 	}
3105 	orig_size = size = size >> bsbits;
3106 	orig_start = start = start_off >> bsbits;
3107 
3108 	/* don't cover already allocated blocks in selected range */
3109 	if (ar->pleft && start <= ar->lleft) {
3110 		size -= ar->lleft + 1 - start;
3111 		start = ar->lleft + 1;
3112 	}
3113 	if (ar->pright && start + size - 1 >= ar->lright)
3114 		size -= start + size - ar->lright;
3115 
3116 	end = start + size;
3117 
3118 	/* check we don't cross already preallocated blocks */
3119 	rcu_read_lock();
3120 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3121 		unsigned long pa_end;
3122 
3123 		if (pa->pa_deleted)
3124 			continue;
3125 		spin_lock(&pa->pa_lock);
3126 		if (pa->pa_deleted) {
3127 			spin_unlock(&pa->pa_lock);
3128 			continue;
3129 		}
3130 
3131 		pa_end = pa->pa_lstart + pa->pa_len;
3132 
3133 		/* PA must not overlap original request */
3134 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3135 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3136 
3137 		/* skip PA normalized request doesn't overlap with */
3138 		if (pa->pa_lstart >= end) {
3139 			spin_unlock(&pa->pa_lock);
3140 			continue;
3141 		}
3142 		if (pa_end <= start) {
3143 			spin_unlock(&pa->pa_lock);
3144 			continue;
3145 		}
3146 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3147 
3148 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3149 			BUG_ON(pa_end < start);
3150 			start = pa_end;
3151 		}
3152 
3153 		if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3154 			BUG_ON(pa->pa_lstart > end);
3155 			end = pa->pa_lstart;
3156 		}
3157 		spin_unlock(&pa->pa_lock);
3158 	}
3159 	rcu_read_unlock();
3160 	size = end - start;
3161 
3162 	/* XXX: extra loop to check we really don't overlap preallocations */
3163 	rcu_read_lock();
3164 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3165 		unsigned long pa_end;
3166 		spin_lock(&pa->pa_lock);
3167 		if (pa->pa_deleted == 0) {
3168 			pa_end = pa->pa_lstart + pa->pa_len;
3169 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3170 		}
3171 		spin_unlock(&pa->pa_lock);
3172 	}
3173 	rcu_read_unlock();
3174 
3175 	if (start + size <= ac->ac_o_ex.fe_logical &&
3176 			start > ac->ac_o_ex.fe_logical) {
3177 		printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3178 			(unsigned long) start, (unsigned long) size,
3179 			(unsigned long) ac->ac_o_ex.fe_logical);
3180 	}
3181 	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3182 			start > ac->ac_o_ex.fe_logical);
3183 	BUG_ON(size <= 0 || size >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3184 
3185 	/* now prepare goal request */
3186 
3187 	/* XXX: is it better to align blocks WRT to logical
3188 	 * placement or satisfy big request as is */
3189 	ac->ac_g_ex.fe_logical = start;
3190 	ac->ac_g_ex.fe_len = size;
3191 
3192 	/* define goal start in order to merge */
3193 	if (ar->pright && (ar->lright == (start + size))) {
3194 		/* merge to the right */
3195 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3196 						&ac->ac_f_ex.fe_group,
3197 						&ac->ac_f_ex.fe_start);
3198 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3199 	}
3200 	if (ar->pleft && (ar->lleft + 1 == start)) {
3201 		/* merge to the left */
3202 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3203 						&ac->ac_f_ex.fe_group,
3204 						&ac->ac_f_ex.fe_start);
3205 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3206 	}
3207 
3208 	mb_debug("goal: %u(was %u) blocks at %u\n", (unsigned) size,
3209 		(unsigned) orig_size, (unsigned) start);
3210 }
3211 
3212 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3213 {
3214 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3215 
3216 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3217 		atomic_inc(&sbi->s_bal_reqs);
3218 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3219 		if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
3220 			atomic_inc(&sbi->s_bal_success);
3221 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3222 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3223 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3224 			atomic_inc(&sbi->s_bal_goals);
3225 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3226 			atomic_inc(&sbi->s_bal_breaks);
3227 	}
3228 
3229 	ext4_mb_store_history(ac);
3230 }
3231 
3232 /*
3233  * use blocks preallocated to inode
3234  */
3235 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3236 				struct ext4_prealloc_space *pa)
3237 {
3238 	ext4_fsblk_t start;
3239 	ext4_fsblk_t end;
3240 	int len;
3241 
3242 	/* found preallocated blocks, use them */
3243 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3244 	end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3245 	len = end - start;
3246 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3247 					&ac->ac_b_ex.fe_start);
3248 	ac->ac_b_ex.fe_len = len;
3249 	ac->ac_status = AC_STATUS_FOUND;
3250 	ac->ac_pa = pa;
3251 
3252 	BUG_ON(start < pa->pa_pstart);
3253 	BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3254 	BUG_ON(pa->pa_free < len);
3255 	pa->pa_free -= len;
3256 
3257 	mb_debug("use %llu/%u from inode pa %p\n", start, len, pa);
3258 }
3259 
3260 /*
3261  * use blocks preallocated to locality group
3262  */
3263 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3264 				struct ext4_prealloc_space *pa)
3265 {
3266 	unsigned int len = ac->ac_o_ex.fe_len;
3267 
3268 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3269 					&ac->ac_b_ex.fe_group,
3270 					&ac->ac_b_ex.fe_start);
3271 	ac->ac_b_ex.fe_len = len;
3272 	ac->ac_status = AC_STATUS_FOUND;
3273 	ac->ac_pa = pa;
3274 
3275 	/* we don't correct pa_pstart or pa_plen here to avoid
3276 	 * possible race when the group is being loaded concurrently
3277 	 * instead we correct pa later, after blocks are marked
3278 	 * in on-disk bitmap -- see ext4_mb_release_context()
3279 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3280 	 */
3281 	mb_debug("use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3282 }
3283 
3284 /*
3285  * Return the prealloc space that have minimal distance
3286  * from the goal block. @cpa is the prealloc
3287  * space that is having currently known minimal distance
3288  * from the goal block.
3289  */
3290 static struct ext4_prealloc_space *
3291 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3292 			struct ext4_prealloc_space *pa,
3293 			struct ext4_prealloc_space *cpa)
3294 {
3295 	ext4_fsblk_t cur_distance, new_distance;
3296 
3297 	if (cpa == NULL) {
3298 		atomic_inc(&pa->pa_count);
3299 		return pa;
3300 	}
3301 	cur_distance = abs(goal_block - cpa->pa_pstart);
3302 	new_distance = abs(goal_block - pa->pa_pstart);
3303 
3304 	if (cur_distance < new_distance)
3305 		return cpa;
3306 
3307 	/* drop the previous reference */
3308 	atomic_dec(&cpa->pa_count);
3309 	atomic_inc(&pa->pa_count);
3310 	return pa;
3311 }
3312 
3313 /*
3314  * search goal blocks in preallocated space
3315  */
3316 static noinline_for_stack int
3317 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3318 {
3319 	int order, i;
3320 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3321 	struct ext4_locality_group *lg;
3322 	struct ext4_prealloc_space *pa, *cpa = NULL;
3323 	ext4_fsblk_t goal_block;
3324 
3325 	/* only data can be preallocated */
3326 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3327 		return 0;
3328 
3329 	/* first, try per-file preallocation */
3330 	rcu_read_lock();
3331 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3332 
3333 		/* all fields in this condition don't change,
3334 		 * so we can skip locking for them */
3335 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3336 			ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3337 			continue;
3338 
3339 		/* found preallocated blocks, use them */
3340 		spin_lock(&pa->pa_lock);
3341 		if (pa->pa_deleted == 0 && pa->pa_free) {
3342 			atomic_inc(&pa->pa_count);
3343 			ext4_mb_use_inode_pa(ac, pa);
3344 			spin_unlock(&pa->pa_lock);
3345 			ac->ac_criteria = 10;
3346 			rcu_read_unlock();
3347 			return 1;
3348 		}
3349 		spin_unlock(&pa->pa_lock);
3350 	}
3351 	rcu_read_unlock();
3352 
3353 	/* can we use group allocation? */
3354 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3355 		return 0;
3356 
3357 	/* inode may have no locality group for some reason */
3358 	lg = ac->ac_lg;
3359 	if (lg == NULL)
3360 		return 0;
3361 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3362 	if (order > PREALLOC_TB_SIZE - 1)
3363 		/* The max size of hash table is PREALLOC_TB_SIZE */
3364 		order = PREALLOC_TB_SIZE - 1;
3365 
3366 	goal_block = ac->ac_g_ex.fe_group * EXT4_BLOCKS_PER_GROUP(ac->ac_sb) +
3367 		     ac->ac_g_ex.fe_start +
3368 		     le32_to_cpu(EXT4_SB(ac->ac_sb)->s_es->s_first_data_block);
3369 	/*
3370 	 * search for the prealloc space that is having
3371 	 * minimal distance from the goal block.
3372 	 */
3373 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3374 		rcu_read_lock();
3375 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3376 					pa_inode_list) {
3377 			spin_lock(&pa->pa_lock);
3378 			if (pa->pa_deleted == 0 &&
3379 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3380 
3381 				cpa = ext4_mb_check_group_pa(goal_block,
3382 								pa, cpa);
3383 			}
3384 			spin_unlock(&pa->pa_lock);
3385 		}
3386 		rcu_read_unlock();
3387 	}
3388 	if (cpa) {
3389 		ext4_mb_use_group_pa(ac, cpa);
3390 		ac->ac_criteria = 20;
3391 		return 1;
3392 	}
3393 	return 0;
3394 }
3395 
3396 /*
3397  * the function goes through all preallocation in this group and marks them
3398  * used in in-core bitmap. buddy must be generated from this bitmap
3399  * Need to be called with ext4 group lock (ext4_lock_group)
3400  */
3401 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3402 					ext4_group_t group)
3403 {
3404 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3405 	struct ext4_prealloc_space *pa;
3406 	struct list_head *cur;
3407 	ext4_group_t groupnr;
3408 	ext4_grpblk_t start;
3409 	int preallocated = 0;
3410 	int count = 0;
3411 	int len;
3412 
3413 	/* all form of preallocation discards first load group,
3414 	 * so the only competing code is preallocation use.
3415 	 * we don't need any locking here
3416 	 * notice we do NOT ignore preallocations with pa_deleted
3417 	 * otherwise we could leave used blocks available for
3418 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3419 	 * is dropping preallocation
3420 	 */
3421 	list_for_each(cur, &grp->bb_prealloc_list) {
3422 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3423 		spin_lock(&pa->pa_lock);
3424 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3425 					     &groupnr, &start);
3426 		len = pa->pa_len;
3427 		spin_unlock(&pa->pa_lock);
3428 		if (unlikely(len == 0))
3429 			continue;
3430 		BUG_ON(groupnr != group);
3431 		mb_set_bits(sb_bgl_lock(EXT4_SB(sb), group),
3432 						bitmap, start, len);
3433 		preallocated += len;
3434 		count++;
3435 	}
3436 	mb_debug("prellocated %u for group %lu\n", preallocated, group);
3437 }
3438 
3439 static void ext4_mb_pa_callback(struct rcu_head *head)
3440 {
3441 	struct ext4_prealloc_space *pa;
3442 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3443 	kmem_cache_free(ext4_pspace_cachep, pa);
3444 }
3445 
3446 /*
3447  * drops a reference to preallocated space descriptor
3448  * if this was the last reference and the space is consumed
3449  */
3450 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3451 			struct super_block *sb, struct ext4_prealloc_space *pa)
3452 {
3453 	unsigned long grp;
3454 
3455 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3456 		return;
3457 
3458 	/* in this short window concurrent discard can set pa_deleted */
3459 	spin_lock(&pa->pa_lock);
3460 	if (pa->pa_deleted == 1) {
3461 		spin_unlock(&pa->pa_lock);
3462 		return;
3463 	}
3464 
3465 	pa->pa_deleted = 1;
3466 	spin_unlock(&pa->pa_lock);
3467 
3468 	/* -1 is to protect from crossing allocation group */
3469 	ext4_get_group_no_and_offset(sb, pa->pa_pstart - 1, &grp, NULL);
3470 
3471 	/*
3472 	 * possible race:
3473 	 *
3474 	 *  P1 (buddy init)			P2 (regular allocation)
3475 	 *					find block B in PA
3476 	 *  copy on-disk bitmap to buddy
3477 	 *  					mark B in on-disk bitmap
3478 	 *					drop PA from group
3479 	 *  mark all PAs in buddy
3480 	 *
3481 	 * thus, P1 initializes buddy with B available. to prevent this
3482 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3483 	 * against that pair
3484 	 */
3485 	ext4_lock_group(sb, grp);
3486 	list_del(&pa->pa_group_list);
3487 	ext4_unlock_group(sb, grp);
3488 
3489 	spin_lock(pa->pa_obj_lock);
3490 	list_del_rcu(&pa->pa_inode_list);
3491 	spin_unlock(pa->pa_obj_lock);
3492 
3493 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3494 }
3495 
3496 /*
3497  * creates new preallocated space for given inode
3498  */
3499 static noinline_for_stack int
3500 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3501 {
3502 	struct super_block *sb = ac->ac_sb;
3503 	struct ext4_prealloc_space *pa;
3504 	struct ext4_group_info *grp;
3505 	struct ext4_inode_info *ei;
3506 
3507 	/* preallocate only when found space is larger then requested */
3508 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3509 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3510 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3511 
3512 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3513 	if (pa == NULL)
3514 		return -ENOMEM;
3515 
3516 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3517 		int winl;
3518 		int wins;
3519 		int win;
3520 		int offs;
3521 
3522 		/* we can't allocate as much as normalizer wants.
3523 		 * so, found space must get proper lstart
3524 		 * to cover original request */
3525 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3526 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3527 
3528 		/* we're limited by original request in that
3529 		 * logical block must be covered any way
3530 		 * winl is window we can move our chunk within */
3531 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3532 
3533 		/* also, we should cover whole original request */
3534 		wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3535 
3536 		/* the smallest one defines real window */
3537 		win = min(winl, wins);
3538 
3539 		offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3540 		if (offs && offs < win)
3541 			win = offs;
3542 
3543 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3544 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3545 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3546 	}
3547 
3548 	/* preallocation can change ac_b_ex, thus we store actually
3549 	 * allocated blocks for history */
3550 	ac->ac_f_ex = ac->ac_b_ex;
3551 
3552 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3553 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3554 	pa->pa_len = ac->ac_b_ex.fe_len;
3555 	pa->pa_free = pa->pa_len;
3556 	atomic_set(&pa->pa_count, 1);
3557 	spin_lock_init(&pa->pa_lock);
3558 	pa->pa_deleted = 0;
3559 	pa->pa_linear = 0;
3560 
3561 	mb_debug("new inode pa %p: %llu/%u for %u\n", pa,
3562 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3563 
3564 	ext4_mb_use_inode_pa(ac, pa);
3565 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3566 
3567 	ei = EXT4_I(ac->ac_inode);
3568 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3569 
3570 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3571 	pa->pa_inode = ac->ac_inode;
3572 
3573 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3574 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3575 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3576 
3577 	spin_lock(pa->pa_obj_lock);
3578 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3579 	spin_unlock(pa->pa_obj_lock);
3580 
3581 	return 0;
3582 }
3583 
3584 /*
3585  * creates new preallocated space for locality group inodes belongs to
3586  */
3587 static noinline_for_stack int
3588 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3589 {
3590 	struct super_block *sb = ac->ac_sb;
3591 	struct ext4_locality_group *lg;
3592 	struct ext4_prealloc_space *pa;
3593 	struct ext4_group_info *grp;
3594 
3595 	/* preallocate only when found space is larger then requested */
3596 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3597 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3598 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3599 
3600 	BUG_ON(ext4_pspace_cachep == NULL);
3601 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3602 	if (pa == NULL)
3603 		return -ENOMEM;
3604 
3605 	/* preallocation can change ac_b_ex, thus we store actually
3606 	 * allocated blocks for history */
3607 	ac->ac_f_ex = ac->ac_b_ex;
3608 
3609 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3610 	pa->pa_lstart = pa->pa_pstart;
3611 	pa->pa_len = ac->ac_b_ex.fe_len;
3612 	pa->pa_free = pa->pa_len;
3613 	atomic_set(&pa->pa_count, 1);
3614 	spin_lock_init(&pa->pa_lock);
3615 	INIT_LIST_HEAD(&pa->pa_inode_list);
3616 	pa->pa_deleted = 0;
3617 	pa->pa_linear = 1;
3618 
3619 	mb_debug("new group pa %p: %llu/%u for %u\n", pa,
3620 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3621 
3622 	ext4_mb_use_group_pa(ac, pa);
3623 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3624 
3625 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3626 	lg = ac->ac_lg;
3627 	BUG_ON(lg == NULL);
3628 
3629 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3630 	pa->pa_inode = NULL;
3631 
3632 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3633 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3634 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3635 
3636 	/*
3637 	 * We will later add the new pa to the right bucket
3638 	 * after updating the pa_free in ext4_mb_release_context
3639 	 */
3640 	return 0;
3641 }
3642 
3643 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3644 {
3645 	int err;
3646 
3647 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3648 		err = ext4_mb_new_group_pa(ac);
3649 	else
3650 		err = ext4_mb_new_inode_pa(ac);
3651 	return err;
3652 }
3653 
3654 /*
3655  * finds all unused blocks in on-disk bitmap, frees them in
3656  * in-core bitmap and buddy.
3657  * @pa must be unlinked from inode and group lists, so that
3658  * nobody else can find/use it.
3659  * the caller MUST hold group/inode locks.
3660  * TODO: optimize the case when there are no in-core structures yet
3661  */
3662 static noinline_for_stack int
3663 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3664 			struct ext4_prealloc_space *pa,
3665 			struct ext4_allocation_context *ac)
3666 {
3667 	struct super_block *sb = e4b->bd_sb;
3668 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3669 	unsigned long end;
3670 	unsigned long next;
3671 	ext4_group_t group;
3672 	ext4_grpblk_t bit;
3673 	sector_t start;
3674 	int err = 0;
3675 	int free = 0;
3676 
3677 	BUG_ON(pa->pa_deleted == 0);
3678 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3679 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3680 	end = bit + pa->pa_len;
3681 
3682 	if (ac) {
3683 		ac->ac_sb = sb;
3684 		ac->ac_inode = pa->pa_inode;
3685 		ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3686 	}
3687 
3688 	while (bit < end) {
3689 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3690 		if (bit >= end)
3691 			break;
3692 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3693 		start = group * EXT4_BLOCKS_PER_GROUP(sb) + bit +
3694 				le32_to_cpu(sbi->s_es->s_first_data_block);
3695 		mb_debug("    free preallocated %u/%u in group %u\n",
3696 				(unsigned) start, (unsigned) next - bit,
3697 				(unsigned) group);
3698 		free += next - bit;
3699 
3700 		if (ac) {
3701 			ac->ac_b_ex.fe_group = group;
3702 			ac->ac_b_ex.fe_start = bit;
3703 			ac->ac_b_ex.fe_len = next - bit;
3704 			ac->ac_b_ex.fe_logical = 0;
3705 			ext4_mb_store_history(ac);
3706 		}
3707 
3708 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3709 		bit = next + 1;
3710 	}
3711 	if (free != pa->pa_free) {
3712 		printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3713 			pa, (unsigned long) pa->pa_lstart,
3714 			(unsigned long) pa->pa_pstart,
3715 			(unsigned long) pa->pa_len);
3716 		ext4_error(sb, __func__, "free %u, pa_free %u\n",
3717 						free, pa->pa_free);
3718 		/*
3719 		 * pa is already deleted so we use the value obtained
3720 		 * from the bitmap and continue.
3721 		 */
3722 	}
3723 	atomic_add(free, &sbi->s_mb_discarded);
3724 
3725 	return err;
3726 }
3727 
3728 static noinline_for_stack int
3729 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3730 				struct ext4_prealloc_space *pa,
3731 				struct ext4_allocation_context *ac)
3732 {
3733 	struct super_block *sb = e4b->bd_sb;
3734 	ext4_group_t group;
3735 	ext4_grpblk_t bit;
3736 
3737 	if (ac)
3738 		ac->ac_op = EXT4_MB_HISTORY_DISCARD;
3739 
3740 	BUG_ON(pa->pa_deleted == 0);
3741 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3742 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3743 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3744 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3745 
3746 	if (ac) {
3747 		ac->ac_sb = sb;
3748 		ac->ac_inode = NULL;
3749 		ac->ac_b_ex.fe_group = group;
3750 		ac->ac_b_ex.fe_start = bit;
3751 		ac->ac_b_ex.fe_len = pa->pa_len;
3752 		ac->ac_b_ex.fe_logical = 0;
3753 		ext4_mb_store_history(ac);
3754 	}
3755 
3756 	return 0;
3757 }
3758 
3759 /*
3760  * releases all preallocations in given group
3761  *
3762  * first, we need to decide discard policy:
3763  * - when do we discard
3764  *   1) ENOSPC
3765  * - how many do we discard
3766  *   1) how many requested
3767  */
3768 static noinline_for_stack int
3769 ext4_mb_discard_group_preallocations(struct super_block *sb,
3770 					ext4_group_t group, int needed)
3771 {
3772 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3773 	struct buffer_head *bitmap_bh = NULL;
3774 	struct ext4_prealloc_space *pa, *tmp;
3775 	struct ext4_allocation_context *ac;
3776 	struct list_head list;
3777 	struct ext4_buddy e4b;
3778 	int err;
3779 	int busy = 0;
3780 	int free = 0;
3781 
3782 	mb_debug("discard preallocation for group %lu\n", group);
3783 
3784 	if (list_empty(&grp->bb_prealloc_list))
3785 		return 0;
3786 
3787 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3788 	if (bitmap_bh == NULL) {
3789 		ext4_error(sb, __func__, "Error in reading block "
3790 				"bitmap for %lu\n", group);
3791 		return 0;
3792 	}
3793 
3794 	err = ext4_mb_load_buddy(sb, group, &e4b);
3795 	if (err) {
3796 		ext4_error(sb, __func__, "Error in loading buddy "
3797 				"information for %lu\n", group);
3798 		put_bh(bitmap_bh);
3799 		return 0;
3800 	}
3801 
3802 	if (needed == 0)
3803 		needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3804 
3805 	INIT_LIST_HEAD(&list);
3806 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3807 repeat:
3808 	ext4_lock_group(sb, group);
3809 	list_for_each_entry_safe(pa, tmp,
3810 				&grp->bb_prealloc_list, pa_group_list) {
3811 		spin_lock(&pa->pa_lock);
3812 		if (atomic_read(&pa->pa_count)) {
3813 			spin_unlock(&pa->pa_lock);
3814 			busy = 1;
3815 			continue;
3816 		}
3817 		if (pa->pa_deleted) {
3818 			spin_unlock(&pa->pa_lock);
3819 			continue;
3820 		}
3821 
3822 		/* seems this one can be freed ... */
3823 		pa->pa_deleted = 1;
3824 
3825 		/* we can trust pa_free ... */
3826 		free += pa->pa_free;
3827 
3828 		spin_unlock(&pa->pa_lock);
3829 
3830 		list_del(&pa->pa_group_list);
3831 		list_add(&pa->u.pa_tmp_list, &list);
3832 	}
3833 
3834 	/* if we still need more blocks and some PAs were used, try again */
3835 	if (free < needed && busy) {
3836 		busy = 0;
3837 		ext4_unlock_group(sb, group);
3838 		/*
3839 		 * Yield the CPU here so that we don't get soft lockup
3840 		 * in non preempt case.
3841 		 */
3842 		yield();
3843 		goto repeat;
3844 	}
3845 
3846 	/* found anything to free? */
3847 	if (list_empty(&list)) {
3848 		BUG_ON(free != 0);
3849 		goto out;
3850 	}
3851 
3852 	/* now free all selected PAs */
3853 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3854 
3855 		/* remove from object (inode or locality group) */
3856 		spin_lock(pa->pa_obj_lock);
3857 		list_del_rcu(&pa->pa_inode_list);
3858 		spin_unlock(pa->pa_obj_lock);
3859 
3860 		if (pa->pa_linear)
3861 			ext4_mb_release_group_pa(&e4b, pa, ac);
3862 		else
3863 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3864 
3865 		list_del(&pa->u.pa_tmp_list);
3866 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3867 	}
3868 
3869 out:
3870 	ext4_unlock_group(sb, group);
3871 	if (ac)
3872 		kmem_cache_free(ext4_ac_cachep, ac);
3873 	ext4_mb_release_desc(&e4b);
3874 	put_bh(bitmap_bh);
3875 	return free;
3876 }
3877 
3878 /*
3879  * releases all non-used preallocated blocks for given inode
3880  *
3881  * It's important to discard preallocations under i_data_sem
3882  * We don't want another block to be served from the prealloc
3883  * space when we are discarding the inode prealloc space.
3884  *
3885  * FIXME!! Make sure it is valid at all the call sites
3886  */
3887 void ext4_mb_discard_inode_preallocations(struct inode *inode)
3888 {
3889 	struct ext4_inode_info *ei = EXT4_I(inode);
3890 	struct super_block *sb = inode->i_sb;
3891 	struct buffer_head *bitmap_bh = NULL;
3892 	struct ext4_prealloc_space *pa, *tmp;
3893 	struct ext4_allocation_context *ac;
3894 	ext4_group_t group = 0;
3895 	struct list_head list;
3896 	struct ext4_buddy e4b;
3897 	int err;
3898 
3899 	if (!test_opt(sb, MBALLOC) || !S_ISREG(inode->i_mode)) {
3900 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3901 		return;
3902 	}
3903 
3904 	mb_debug("discard preallocation for inode %lu\n", inode->i_ino);
3905 
3906 	INIT_LIST_HEAD(&list);
3907 
3908 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3909 repeat:
3910 	/* first, collect all pa's in the inode */
3911 	spin_lock(&ei->i_prealloc_lock);
3912 	while (!list_empty(&ei->i_prealloc_list)) {
3913 		pa = list_entry(ei->i_prealloc_list.next,
3914 				struct ext4_prealloc_space, pa_inode_list);
3915 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3916 		spin_lock(&pa->pa_lock);
3917 		if (atomic_read(&pa->pa_count)) {
3918 			/* this shouldn't happen often - nobody should
3919 			 * use preallocation while we're discarding it */
3920 			spin_unlock(&pa->pa_lock);
3921 			spin_unlock(&ei->i_prealloc_lock);
3922 			printk(KERN_ERR "uh-oh! used pa while discarding\n");
3923 			WARN_ON(1);
3924 			schedule_timeout_uninterruptible(HZ);
3925 			goto repeat;
3926 
3927 		}
3928 		if (pa->pa_deleted == 0) {
3929 			pa->pa_deleted = 1;
3930 			spin_unlock(&pa->pa_lock);
3931 			list_del_rcu(&pa->pa_inode_list);
3932 			list_add(&pa->u.pa_tmp_list, &list);
3933 			continue;
3934 		}
3935 
3936 		/* someone is deleting pa right now */
3937 		spin_unlock(&pa->pa_lock);
3938 		spin_unlock(&ei->i_prealloc_lock);
3939 
3940 		/* we have to wait here because pa_deleted
3941 		 * doesn't mean pa is already unlinked from
3942 		 * the list. as we might be called from
3943 		 * ->clear_inode() the inode will get freed
3944 		 * and concurrent thread which is unlinking
3945 		 * pa from inode's list may access already
3946 		 * freed memory, bad-bad-bad */
3947 
3948 		/* XXX: if this happens too often, we can
3949 		 * add a flag to force wait only in case
3950 		 * of ->clear_inode(), but not in case of
3951 		 * regular truncate */
3952 		schedule_timeout_uninterruptible(HZ);
3953 		goto repeat;
3954 	}
3955 	spin_unlock(&ei->i_prealloc_lock);
3956 
3957 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3958 		BUG_ON(pa->pa_linear != 0);
3959 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3960 
3961 		err = ext4_mb_load_buddy(sb, group, &e4b);
3962 		if (err) {
3963 			ext4_error(sb, __func__, "Error in loading buddy "
3964 					"information for %lu\n", group);
3965 			continue;
3966 		}
3967 
3968 		bitmap_bh = ext4_read_block_bitmap(sb, group);
3969 		if (bitmap_bh == NULL) {
3970 			ext4_error(sb, __func__, "Error in reading block "
3971 					"bitmap for %lu\n", group);
3972 			ext4_mb_release_desc(&e4b);
3973 			continue;
3974 		}
3975 
3976 		ext4_lock_group(sb, group);
3977 		list_del(&pa->pa_group_list);
3978 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3979 		ext4_unlock_group(sb, group);
3980 
3981 		ext4_mb_release_desc(&e4b);
3982 		put_bh(bitmap_bh);
3983 
3984 		list_del(&pa->u.pa_tmp_list);
3985 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3986 	}
3987 	if (ac)
3988 		kmem_cache_free(ext4_ac_cachep, ac);
3989 }
3990 
3991 /*
3992  * finds all preallocated spaces and return blocks being freed to them
3993  * if preallocated space becomes full (no block is used from the space)
3994  * then the function frees space in buddy
3995  * XXX: at the moment, truncate (which is the only way to free blocks)
3996  * discards all preallocations
3997  */
3998 static void ext4_mb_return_to_preallocation(struct inode *inode,
3999 					struct ext4_buddy *e4b,
4000 					sector_t block, int count)
4001 {
4002 	BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
4003 }
4004 #ifdef MB_DEBUG
4005 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4006 {
4007 	struct super_block *sb = ac->ac_sb;
4008 	ext4_group_t i;
4009 
4010 	printk(KERN_ERR "EXT4-fs: Can't allocate:"
4011 			" Allocation context details:\n");
4012 	printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
4013 			ac->ac_status, ac->ac_flags);
4014 	printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
4015 			"best %lu/%lu/%lu@%lu cr %d\n",
4016 			(unsigned long)ac->ac_o_ex.fe_group,
4017 			(unsigned long)ac->ac_o_ex.fe_start,
4018 			(unsigned long)ac->ac_o_ex.fe_len,
4019 			(unsigned long)ac->ac_o_ex.fe_logical,
4020 			(unsigned long)ac->ac_g_ex.fe_group,
4021 			(unsigned long)ac->ac_g_ex.fe_start,
4022 			(unsigned long)ac->ac_g_ex.fe_len,
4023 			(unsigned long)ac->ac_g_ex.fe_logical,
4024 			(unsigned long)ac->ac_b_ex.fe_group,
4025 			(unsigned long)ac->ac_b_ex.fe_start,
4026 			(unsigned long)ac->ac_b_ex.fe_len,
4027 			(unsigned long)ac->ac_b_ex.fe_logical,
4028 			(int)ac->ac_criteria);
4029 	printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
4030 		ac->ac_found);
4031 	printk(KERN_ERR "EXT4-fs: groups: \n");
4032 	for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) {
4033 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4034 		struct ext4_prealloc_space *pa;
4035 		ext4_grpblk_t start;
4036 		struct list_head *cur;
4037 		ext4_lock_group(sb, i);
4038 		list_for_each(cur, &grp->bb_prealloc_list) {
4039 			pa = list_entry(cur, struct ext4_prealloc_space,
4040 					pa_group_list);
4041 			spin_lock(&pa->pa_lock);
4042 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4043 						     NULL, &start);
4044 			spin_unlock(&pa->pa_lock);
4045 			printk(KERN_ERR "PA:%lu:%d:%u \n", i,
4046 							start, pa->pa_len);
4047 		}
4048 		ext4_unlock_group(sb, i);
4049 
4050 		if (grp->bb_free == 0)
4051 			continue;
4052 		printk(KERN_ERR "%lu: %d/%d \n",
4053 		       i, grp->bb_free, grp->bb_fragments);
4054 	}
4055 	printk(KERN_ERR "\n");
4056 }
4057 #else
4058 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4059 {
4060 	return;
4061 }
4062 #endif
4063 
4064 /*
4065  * We use locality group preallocation for small size file. The size of the
4066  * file is determined by the current size or the resulting size after
4067  * allocation which ever is larger
4068  *
4069  * One can tune this size via /proc/fs/ext4/<partition>/stream_req
4070  */
4071 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4072 {
4073 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4074 	int bsbits = ac->ac_sb->s_blocksize_bits;
4075 	loff_t size, isize;
4076 
4077 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4078 		return;
4079 
4080 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
4081 	isize = i_size_read(ac->ac_inode) >> bsbits;
4082 	size = max(size, isize);
4083 
4084 	/* don't use group allocation for large files */
4085 	if (size >= sbi->s_mb_stream_request)
4086 		return;
4087 
4088 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4089 		return;
4090 
4091 	BUG_ON(ac->ac_lg != NULL);
4092 	/*
4093 	 * locality group prealloc space are per cpu. The reason for having
4094 	 * per cpu locality group is to reduce the contention between block
4095 	 * request from multiple CPUs.
4096 	 */
4097 	ac->ac_lg = &sbi->s_locality_groups[get_cpu()];
4098 	put_cpu();
4099 
4100 	/* we're going to use group allocation */
4101 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4102 
4103 	/* serialize all allocations in the group */
4104 	mutex_lock(&ac->ac_lg->lg_mutex);
4105 }
4106 
4107 static noinline_for_stack int
4108 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4109 				struct ext4_allocation_request *ar)
4110 {
4111 	struct super_block *sb = ar->inode->i_sb;
4112 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4113 	struct ext4_super_block *es = sbi->s_es;
4114 	ext4_group_t group;
4115 	unsigned long len;
4116 	unsigned long goal;
4117 	ext4_grpblk_t block;
4118 
4119 	/* we can't allocate > group size */
4120 	len = ar->len;
4121 
4122 	/* just a dirty hack to filter too big requests  */
4123 	if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
4124 		len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
4125 
4126 	/* start searching from the goal */
4127 	goal = ar->goal;
4128 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4129 			goal >= ext4_blocks_count(es))
4130 		goal = le32_to_cpu(es->s_first_data_block);
4131 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4132 
4133 	/* set up allocation goals */
4134 	ac->ac_b_ex.fe_logical = ar->logical;
4135 	ac->ac_b_ex.fe_group = 0;
4136 	ac->ac_b_ex.fe_start = 0;
4137 	ac->ac_b_ex.fe_len = 0;
4138 	ac->ac_status = AC_STATUS_CONTINUE;
4139 	ac->ac_groups_scanned = 0;
4140 	ac->ac_ex_scanned = 0;
4141 	ac->ac_found = 0;
4142 	ac->ac_sb = sb;
4143 	ac->ac_inode = ar->inode;
4144 	ac->ac_o_ex.fe_logical = ar->logical;
4145 	ac->ac_o_ex.fe_group = group;
4146 	ac->ac_o_ex.fe_start = block;
4147 	ac->ac_o_ex.fe_len = len;
4148 	ac->ac_g_ex.fe_logical = ar->logical;
4149 	ac->ac_g_ex.fe_group = group;
4150 	ac->ac_g_ex.fe_start = block;
4151 	ac->ac_g_ex.fe_len = len;
4152 	ac->ac_f_ex.fe_len = 0;
4153 	ac->ac_flags = ar->flags;
4154 	ac->ac_2order = 0;
4155 	ac->ac_criteria = 0;
4156 	ac->ac_pa = NULL;
4157 	ac->ac_bitmap_page = NULL;
4158 	ac->ac_buddy_page = NULL;
4159 	ac->ac_lg = NULL;
4160 
4161 	/* we have to define context: we'll we work with a file or
4162 	 * locality group. this is a policy, actually */
4163 	ext4_mb_group_or_file(ac);
4164 
4165 	mb_debug("init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4166 			"left: %u/%u, right %u/%u to %swritable\n",
4167 			(unsigned) ar->len, (unsigned) ar->logical,
4168 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4169 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4170 			(unsigned) ar->lright, (unsigned) ar->pright,
4171 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4172 	return 0;
4173 
4174 }
4175 
4176 static noinline_for_stack void
4177 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4178 					struct ext4_locality_group *lg,
4179 					int order, int total_entries)
4180 {
4181 	ext4_group_t group = 0;
4182 	struct ext4_buddy e4b;
4183 	struct list_head discard_list;
4184 	struct ext4_prealloc_space *pa, *tmp;
4185 	struct ext4_allocation_context *ac;
4186 
4187 	mb_debug("discard locality group preallocation\n");
4188 
4189 	INIT_LIST_HEAD(&discard_list);
4190 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4191 
4192 	spin_lock(&lg->lg_prealloc_lock);
4193 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4194 						pa_inode_list) {
4195 		spin_lock(&pa->pa_lock);
4196 		if (atomic_read(&pa->pa_count)) {
4197 			/*
4198 			 * This is the pa that we just used
4199 			 * for block allocation. So don't
4200 			 * free that
4201 			 */
4202 			spin_unlock(&pa->pa_lock);
4203 			continue;
4204 		}
4205 		if (pa->pa_deleted) {
4206 			spin_unlock(&pa->pa_lock);
4207 			continue;
4208 		}
4209 		/* only lg prealloc space */
4210 		BUG_ON(!pa->pa_linear);
4211 
4212 		/* seems this one can be freed ... */
4213 		pa->pa_deleted = 1;
4214 		spin_unlock(&pa->pa_lock);
4215 
4216 		list_del_rcu(&pa->pa_inode_list);
4217 		list_add(&pa->u.pa_tmp_list, &discard_list);
4218 
4219 		total_entries--;
4220 		if (total_entries <= 5) {
4221 			/*
4222 			 * we want to keep only 5 entries
4223 			 * allowing it to grow to 8. This
4224 			 * mak sure we don't call discard
4225 			 * soon for this list.
4226 			 */
4227 			break;
4228 		}
4229 	}
4230 	spin_unlock(&lg->lg_prealloc_lock);
4231 
4232 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4233 
4234 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4235 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4236 			ext4_error(sb, __func__, "Error in loading buddy "
4237 					"information for %lu\n", group);
4238 			continue;
4239 		}
4240 		ext4_lock_group(sb, group);
4241 		list_del(&pa->pa_group_list);
4242 		ext4_mb_release_group_pa(&e4b, pa, ac);
4243 		ext4_unlock_group(sb, group);
4244 
4245 		ext4_mb_release_desc(&e4b);
4246 		list_del(&pa->u.pa_tmp_list);
4247 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4248 	}
4249 	if (ac)
4250 		kmem_cache_free(ext4_ac_cachep, ac);
4251 }
4252 
4253 /*
4254  * We have incremented pa_count. So it cannot be freed at this
4255  * point. Also we hold lg_mutex. So no parallel allocation is
4256  * possible from this lg. That means pa_free cannot be updated.
4257  *
4258  * A parallel ext4_mb_discard_group_preallocations is possible.
4259  * which can cause the lg_prealloc_list to be updated.
4260  */
4261 
4262 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4263 {
4264 	int order, added = 0, lg_prealloc_count = 1;
4265 	struct super_block *sb = ac->ac_sb;
4266 	struct ext4_locality_group *lg = ac->ac_lg;
4267 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4268 
4269 	order = fls(pa->pa_free) - 1;
4270 	if (order > PREALLOC_TB_SIZE - 1)
4271 		/* The max size of hash table is PREALLOC_TB_SIZE */
4272 		order = PREALLOC_TB_SIZE - 1;
4273 	/* Add the prealloc space to lg */
4274 	rcu_read_lock();
4275 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4276 						pa_inode_list) {
4277 		spin_lock(&tmp_pa->pa_lock);
4278 		if (tmp_pa->pa_deleted) {
4279 			spin_unlock(&pa->pa_lock);
4280 			continue;
4281 		}
4282 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4283 			/* Add to the tail of the previous entry */
4284 			list_add_tail_rcu(&pa->pa_inode_list,
4285 						&tmp_pa->pa_inode_list);
4286 			added = 1;
4287 			/*
4288 			 * we want to count the total
4289 			 * number of entries in the list
4290 			 */
4291 		}
4292 		spin_unlock(&tmp_pa->pa_lock);
4293 		lg_prealloc_count++;
4294 	}
4295 	if (!added)
4296 		list_add_tail_rcu(&pa->pa_inode_list,
4297 					&lg->lg_prealloc_list[order]);
4298 	rcu_read_unlock();
4299 
4300 	/* Now trim the list to be not more than 8 elements */
4301 	if (lg_prealloc_count > 8) {
4302 		ext4_mb_discard_lg_preallocations(sb, lg,
4303 						order, lg_prealloc_count);
4304 		return;
4305 	}
4306 	return ;
4307 }
4308 
4309 /*
4310  * release all resource we used in allocation
4311  */
4312 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4313 {
4314 	struct ext4_prealloc_space *pa = ac->ac_pa;
4315 	if (pa) {
4316 		if (pa->pa_linear) {
4317 			/* see comment in ext4_mb_use_group_pa() */
4318 			spin_lock(&pa->pa_lock);
4319 			pa->pa_pstart += ac->ac_b_ex.fe_len;
4320 			pa->pa_lstart += ac->ac_b_ex.fe_len;
4321 			pa->pa_free -= ac->ac_b_ex.fe_len;
4322 			pa->pa_len -= ac->ac_b_ex.fe_len;
4323 			spin_unlock(&pa->pa_lock);
4324 			/*
4325 			 * We want to add the pa to the right bucket.
4326 			 * Remove it from the list and while adding
4327 			 * make sure the list to which we are adding
4328 			 * doesn't grow big.
4329 			 */
4330 			if (likely(pa->pa_free)) {
4331 				spin_lock(pa->pa_obj_lock);
4332 				list_del_rcu(&pa->pa_inode_list);
4333 				spin_unlock(pa->pa_obj_lock);
4334 				ext4_mb_add_n_trim(ac);
4335 			}
4336 		}
4337 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4338 	}
4339 	if (ac->ac_bitmap_page)
4340 		page_cache_release(ac->ac_bitmap_page);
4341 	if (ac->ac_buddy_page)
4342 		page_cache_release(ac->ac_buddy_page);
4343 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4344 		mutex_unlock(&ac->ac_lg->lg_mutex);
4345 	ext4_mb_collect_stats(ac);
4346 	return 0;
4347 }
4348 
4349 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4350 {
4351 	ext4_group_t i;
4352 	int ret;
4353 	int freed = 0;
4354 
4355 	for (i = 0; i < EXT4_SB(sb)->s_groups_count && needed > 0; i++) {
4356 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4357 		freed += ret;
4358 		needed -= ret;
4359 	}
4360 
4361 	return freed;
4362 }
4363 
4364 /*
4365  * Main entry point into mballoc to allocate blocks
4366  * it tries to use preallocation first, then falls back
4367  * to usual allocation
4368  */
4369 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4370 				 struct ext4_allocation_request *ar, int *errp)
4371 {
4372 	struct ext4_allocation_context *ac = NULL;
4373 	struct ext4_sb_info *sbi;
4374 	struct super_block *sb;
4375 	ext4_fsblk_t block = 0;
4376 	int freed;
4377 	int inquota;
4378 
4379 	sb = ar->inode->i_sb;
4380 	sbi = EXT4_SB(sb);
4381 
4382 	if (!test_opt(sb, MBALLOC)) {
4383 		block = ext4_old_new_blocks(handle, ar->inode, ar->goal,
4384 					    &(ar->len), errp);
4385 		return block;
4386 	}
4387 	if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag) {
4388 		/*
4389 		 * With delalloc we already reserved the blocks
4390 		 */
4391 		ar->len = ext4_has_free_blocks(sbi, ar->len);
4392 	}
4393 
4394 	if (ar->len == 0) {
4395 		*errp = -ENOSPC;
4396 		return 0;
4397 	}
4398 
4399 	while (ar->len && DQUOT_ALLOC_BLOCK(ar->inode, ar->len)) {
4400 		ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4401 		ar->len--;
4402 	}
4403 	if (ar->len == 0) {
4404 		*errp = -EDQUOT;
4405 		return 0;
4406 	}
4407 	inquota = ar->len;
4408 
4409 	if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4410 		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4411 
4412 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4413 	if (!ac) {
4414 		ar->len = 0;
4415 		*errp = -ENOMEM;
4416 		goto out1;
4417 	}
4418 
4419 	ext4_mb_poll_new_transaction(sb, handle);
4420 
4421 	*errp = ext4_mb_initialize_context(ac, ar);
4422 	if (*errp) {
4423 		ar->len = 0;
4424 		goto out2;
4425 	}
4426 
4427 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4428 	if (!ext4_mb_use_preallocated(ac)) {
4429 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4430 		ext4_mb_normalize_request(ac, ar);
4431 repeat:
4432 		/* allocate space in core */
4433 		ext4_mb_regular_allocator(ac);
4434 
4435 		/* as we've just preallocated more space than
4436 		 * user requested orinally, we store allocated
4437 		 * space in a special descriptor */
4438 		if (ac->ac_status == AC_STATUS_FOUND &&
4439 				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4440 			ext4_mb_new_preallocation(ac);
4441 	}
4442 
4443 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4444 		*errp = ext4_mb_mark_diskspace_used(ac, handle);
4445 		if (*errp ==  -EAGAIN) {
4446 			ac->ac_b_ex.fe_group = 0;
4447 			ac->ac_b_ex.fe_start = 0;
4448 			ac->ac_b_ex.fe_len = 0;
4449 			ac->ac_status = AC_STATUS_CONTINUE;
4450 			goto repeat;
4451 		} else if (*errp) {
4452 			ac->ac_b_ex.fe_len = 0;
4453 			ar->len = 0;
4454 			ext4_mb_show_ac(ac);
4455 		} else {
4456 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4457 			ar->len = ac->ac_b_ex.fe_len;
4458 		}
4459 	} else {
4460 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4461 		if (freed)
4462 			goto repeat;
4463 		*errp = -ENOSPC;
4464 		ac->ac_b_ex.fe_len = 0;
4465 		ar->len = 0;
4466 		ext4_mb_show_ac(ac);
4467 	}
4468 
4469 	ext4_mb_release_context(ac);
4470 
4471 out2:
4472 	kmem_cache_free(ext4_ac_cachep, ac);
4473 out1:
4474 	if (ar->len < inquota)
4475 		DQUOT_FREE_BLOCK(ar->inode, inquota - ar->len);
4476 
4477 	return block;
4478 }
4479 static void ext4_mb_poll_new_transaction(struct super_block *sb,
4480 						handle_t *handle)
4481 {
4482 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4483 
4484 	if (sbi->s_last_transaction == handle->h_transaction->t_tid)
4485 		return;
4486 
4487 	/* new transaction! time to close last one and free blocks for
4488 	 * committed transaction. we know that only transaction can be
4489 	 * active, so previos transaction can be being logged and we
4490 	 * know that transaction before previous is known to be already
4491 	 * logged. this means that now we may free blocks freed in all
4492 	 * transactions before previous one. hope I'm clear enough ... */
4493 
4494 	spin_lock(&sbi->s_md_lock);
4495 	if (sbi->s_last_transaction != handle->h_transaction->t_tid) {
4496 		mb_debug("new transaction %lu, old %lu\n",
4497 				(unsigned long) handle->h_transaction->t_tid,
4498 				(unsigned long) sbi->s_last_transaction);
4499 		list_splice_init(&sbi->s_closed_transaction,
4500 				&sbi->s_committed_transaction);
4501 		list_splice_init(&sbi->s_active_transaction,
4502 				&sbi->s_closed_transaction);
4503 		sbi->s_last_transaction = handle->h_transaction->t_tid;
4504 	}
4505 	spin_unlock(&sbi->s_md_lock);
4506 
4507 	ext4_mb_free_committed_blocks(sb);
4508 }
4509 
4510 static noinline_for_stack int
4511 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4512 			  ext4_group_t group, ext4_grpblk_t block, int count)
4513 {
4514 	struct ext4_group_info *db = e4b->bd_info;
4515 	struct super_block *sb = e4b->bd_sb;
4516 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4517 	struct ext4_free_metadata *md;
4518 	int i;
4519 
4520 	BUG_ON(e4b->bd_bitmap_page == NULL);
4521 	BUG_ON(e4b->bd_buddy_page == NULL);
4522 
4523 	ext4_lock_group(sb, group);
4524 	for (i = 0; i < count; i++) {
4525 		md = db->bb_md_cur;
4526 		if (md && db->bb_tid != handle->h_transaction->t_tid) {
4527 			db->bb_md_cur = NULL;
4528 			md = NULL;
4529 		}
4530 
4531 		if (md == NULL) {
4532 			ext4_unlock_group(sb, group);
4533 			md = kmalloc(sizeof(*md), GFP_NOFS);
4534 			if (md == NULL)
4535 				return -ENOMEM;
4536 			md->num = 0;
4537 			md->group = group;
4538 
4539 			ext4_lock_group(sb, group);
4540 			if (db->bb_md_cur == NULL) {
4541 				spin_lock(&sbi->s_md_lock);
4542 				list_add(&md->list, &sbi->s_active_transaction);
4543 				spin_unlock(&sbi->s_md_lock);
4544 				/* protect buddy cache from being freed,
4545 				 * otherwise we'll refresh it from
4546 				 * on-disk bitmap and lose not-yet-available
4547 				 * blocks */
4548 				page_cache_get(e4b->bd_buddy_page);
4549 				page_cache_get(e4b->bd_bitmap_page);
4550 				db->bb_md_cur = md;
4551 				db->bb_tid = handle->h_transaction->t_tid;
4552 				mb_debug("new md 0x%p for group %lu\n",
4553 						md, md->group);
4554 			} else {
4555 				kfree(md);
4556 				md = db->bb_md_cur;
4557 			}
4558 		}
4559 
4560 		BUG_ON(md->num >= EXT4_BB_MAX_BLOCKS);
4561 		md->blocks[md->num] = block + i;
4562 		md->num++;
4563 		if (md->num == EXT4_BB_MAX_BLOCKS) {
4564 			/* no more space, put full container on a sb's list */
4565 			db->bb_md_cur = NULL;
4566 		}
4567 	}
4568 	ext4_unlock_group(sb, group);
4569 	return 0;
4570 }
4571 
4572 /*
4573  * Main entry point into mballoc to free blocks
4574  */
4575 void ext4_mb_free_blocks(handle_t *handle, struct inode *inode,
4576 			unsigned long block, unsigned long count,
4577 			int metadata, unsigned long *freed)
4578 {
4579 	struct buffer_head *bitmap_bh = NULL;
4580 	struct super_block *sb = inode->i_sb;
4581 	struct ext4_allocation_context *ac = NULL;
4582 	struct ext4_group_desc *gdp;
4583 	struct ext4_super_block *es;
4584 	unsigned long overflow;
4585 	ext4_grpblk_t bit;
4586 	struct buffer_head *gd_bh;
4587 	ext4_group_t block_group;
4588 	struct ext4_sb_info *sbi;
4589 	struct ext4_buddy e4b;
4590 	int err = 0;
4591 	int ret;
4592 
4593 	*freed = 0;
4594 
4595 	ext4_mb_poll_new_transaction(sb, handle);
4596 
4597 	sbi = EXT4_SB(sb);
4598 	es = EXT4_SB(sb)->s_es;
4599 	if (block < le32_to_cpu(es->s_first_data_block) ||
4600 	    block + count < block ||
4601 	    block + count > ext4_blocks_count(es)) {
4602 		ext4_error(sb, __func__,
4603 			    "Freeing blocks not in datazone - "
4604 			    "block = %lu, count = %lu", block, count);
4605 		goto error_return;
4606 	}
4607 
4608 	ext4_debug("freeing block %lu\n", block);
4609 
4610 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4611 	if (ac) {
4612 		ac->ac_op = EXT4_MB_HISTORY_FREE;
4613 		ac->ac_inode = inode;
4614 		ac->ac_sb = sb;
4615 	}
4616 
4617 do_more:
4618 	overflow = 0;
4619 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4620 
4621 	/*
4622 	 * Check to see if we are freeing blocks across a group
4623 	 * boundary.
4624 	 */
4625 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4626 		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4627 		count -= overflow;
4628 	}
4629 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4630 	if (!bitmap_bh) {
4631 		err = -EIO;
4632 		goto error_return;
4633 	}
4634 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4635 	if (!gdp) {
4636 		err = -EIO;
4637 		goto error_return;
4638 	}
4639 
4640 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4641 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4642 	    in_range(block, ext4_inode_table(sb, gdp),
4643 		      EXT4_SB(sb)->s_itb_per_group) ||
4644 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4645 		      EXT4_SB(sb)->s_itb_per_group)) {
4646 
4647 		ext4_error(sb, __func__,
4648 			   "Freeing blocks in system zone - "
4649 			   "Block = %lu, count = %lu", block, count);
4650 		/* err = 0. ext4_std_error should be a no op */
4651 		goto error_return;
4652 	}
4653 
4654 	BUFFER_TRACE(bitmap_bh, "getting write access");
4655 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4656 	if (err)
4657 		goto error_return;
4658 
4659 	/*
4660 	 * We are about to modify some metadata.  Call the journal APIs
4661 	 * to unshare ->b_data if a currently-committing transaction is
4662 	 * using it
4663 	 */
4664 	BUFFER_TRACE(gd_bh, "get_write_access");
4665 	err = ext4_journal_get_write_access(handle, gd_bh);
4666 	if (err)
4667 		goto error_return;
4668 
4669 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4670 	if (err)
4671 		goto error_return;
4672 
4673 #ifdef AGGRESSIVE_CHECK
4674 	{
4675 		int i;
4676 		for (i = 0; i < count; i++)
4677 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4678 	}
4679 #endif
4680 	mb_clear_bits(sb_bgl_lock(sbi, block_group), bitmap_bh->b_data,
4681 			bit, count);
4682 
4683 	/* We dirtied the bitmap block */
4684 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4685 	err = ext4_journal_dirty_metadata(handle, bitmap_bh);
4686 
4687 	if (ac) {
4688 		ac->ac_b_ex.fe_group = block_group;
4689 		ac->ac_b_ex.fe_start = bit;
4690 		ac->ac_b_ex.fe_len = count;
4691 		ext4_mb_store_history(ac);
4692 	}
4693 
4694 	if (metadata) {
4695 		/* blocks being freed are metadata. these blocks shouldn't
4696 		 * be used until this transaction is committed */
4697 		ext4_mb_free_metadata(handle, &e4b, block_group, bit, count);
4698 	} else {
4699 		ext4_lock_group(sb, block_group);
4700 		mb_free_blocks(inode, &e4b, bit, count);
4701 		ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4702 		ext4_unlock_group(sb, block_group);
4703 	}
4704 
4705 	spin_lock(sb_bgl_lock(sbi, block_group));
4706 	le16_add_cpu(&gdp->bg_free_blocks_count, count);
4707 	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4708 	spin_unlock(sb_bgl_lock(sbi, block_group));
4709 	percpu_counter_add(&sbi->s_freeblocks_counter, count);
4710 
4711 	if (sbi->s_log_groups_per_flex) {
4712 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4713 		spin_lock(sb_bgl_lock(sbi, flex_group));
4714 		sbi->s_flex_groups[flex_group].free_blocks += count;
4715 		spin_unlock(sb_bgl_lock(sbi, flex_group));
4716 	}
4717 
4718 	ext4_mb_release_desc(&e4b);
4719 
4720 	*freed += count;
4721 
4722 	/* And the group descriptor block */
4723 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4724 	ret = ext4_journal_dirty_metadata(handle, gd_bh);
4725 	if (!err)
4726 		err = ret;
4727 
4728 	if (overflow && !err) {
4729 		block += count;
4730 		count = overflow;
4731 		put_bh(bitmap_bh);
4732 		goto do_more;
4733 	}
4734 	sb->s_dirt = 1;
4735 error_return:
4736 	brelse(bitmap_bh);
4737 	ext4_std_error(sb, err);
4738 	if (ac)
4739 		kmem_cache_free(ext4_ac_cachep, ac);
4740 	return;
4741 }
4742