1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <trace/events/ext4.h> 20 21 #ifdef CONFIG_EXT4_DEBUG 22 ushort ext4_mballoc_debug __read_mostly; 23 24 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644); 25 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc"); 26 #endif 27 28 /* 29 * MUSTDO: 30 * - test ext4_ext_search_left() and ext4_ext_search_right() 31 * - search for metadata in few groups 32 * 33 * TODO v4: 34 * - normalization should take into account whether file is still open 35 * - discard preallocations if no free space left (policy?) 36 * - don't normalize tails 37 * - quota 38 * - reservation for superuser 39 * 40 * TODO v3: 41 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 42 * - track min/max extents in each group for better group selection 43 * - mb_mark_used() may allocate chunk right after splitting buddy 44 * - tree of groups sorted by number of free blocks 45 * - error handling 46 */ 47 48 /* 49 * The allocation request involve request for multiple number of blocks 50 * near to the goal(block) value specified. 51 * 52 * During initialization phase of the allocator we decide to use the 53 * group preallocation or inode preallocation depending on the size of 54 * the file. The size of the file could be the resulting file size we 55 * would have after allocation, or the current file size, which ever 56 * is larger. If the size is less than sbi->s_mb_stream_request we 57 * select to use the group preallocation. The default value of 58 * s_mb_stream_request is 16 blocks. This can also be tuned via 59 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 60 * terms of number of blocks. 61 * 62 * The main motivation for having small file use group preallocation is to 63 * ensure that we have small files closer together on the disk. 64 * 65 * First stage the allocator looks at the inode prealloc list, 66 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 67 * spaces for this particular inode. The inode prealloc space is 68 * represented as: 69 * 70 * pa_lstart -> the logical start block for this prealloc space 71 * pa_pstart -> the physical start block for this prealloc space 72 * pa_len -> length for this prealloc space (in clusters) 73 * pa_free -> free space available in this prealloc space (in clusters) 74 * 75 * The inode preallocation space is used looking at the _logical_ start 76 * block. If only the logical file block falls within the range of prealloc 77 * space we will consume the particular prealloc space. This makes sure that 78 * we have contiguous physical blocks representing the file blocks 79 * 80 * The important thing to be noted in case of inode prealloc space is that 81 * we don't modify the values associated to inode prealloc space except 82 * pa_free. 83 * 84 * If we are not able to find blocks in the inode prealloc space and if we 85 * have the group allocation flag set then we look at the locality group 86 * prealloc space. These are per CPU prealloc list represented as 87 * 88 * ext4_sb_info.s_locality_groups[smp_processor_id()] 89 * 90 * The reason for having a per cpu locality group is to reduce the contention 91 * between CPUs. It is possible to get scheduled at this point. 92 * 93 * The locality group prealloc space is used looking at whether we have 94 * enough free space (pa_free) within the prealloc space. 95 * 96 * If we can't allocate blocks via inode prealloc or/and locality group 97 * prealloc then we look at the buddy cache. The buddy cache is represented 98 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 99 * mapped to the buddy and bitmap information regarding different 100 * groups. The buddy information is attached to buddy cache inode so that 101 * we can access them through the page cache. The information regarding 102 * each group is loaded via ext4_mb_load_buddy. The information involve 103 * block bitmap and buddy information. The information are stored in the 104 * inode as: 105 * 106 * { page } 107 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 108 * 109 * 110 * one block each for bitmap and buddy information. So for each group we 111 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 112 * blocksize) blocks. So it can have information regarding groups_per_page 113 * which is blocks_per_page/2 114 * 115 * The buddy cache inode is not stored on disk. The inode is thrown 116 * away when the filesystem is unmounted. 117 * 118 * We look for count number of blocks in the buddy cache. If we were able 119 * to locate that many free blocks we return with additional information 120 * regarding rest of the contiguous physical block available 121 * 122 * Before allocating blocks via buddy cache we normalize the request 123 * blocks. This ensure we ask for more blocks that we needed. The extra 124 * blocks that we get after allocation is added to the respective prealloc 125 * list. In case of inode preallocation we follow a list of heuristics 126 * based on file size. This can be found in ext4_mb_normalize_request. If 127 * we are doing a group prealloc we try to normalize the request to 128 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 129 * dependent on the cluster size; for non-bigalloc file systems, it is 130 * 512 blocks. This can be tuned via 131 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 132 * terms of number of blocks. If we have mounted the file system with -O 133 * stripe=<value> option the group prealloc request is normalized to the 134 * the smallest multiple of the stripe value (sbi->s_stripe) which is 135 * greater than the default mb_group_prealloc. 136 * 137 * The regular allocator (using the buddy cache) supports a few tunables. 138 * 139 * /sys/fs/ext4/<partition>/mb_min_to_scan 140 * /sys/fs/ext4/<partition>/mb_max_to_scan 141 * /sys/fs/ext4/<partition>/mb_order2_req 142 * 143 * The regular allocator uses buddy scan only if the request len is power of 144 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 145 * value of s_mb_order2_reqs can be tuned via 146 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 147 * stripe size (sbi->s_stripe), we try to search for contiguous block in 148 * stripe size. This should result in better allocation on RAID setups. If 149 * not, we search in the specific group using bitmap for best extents. The 150 * tunable min_to_scan and max_to_scan control the behaviour here. 151 * min_to_scan indicate how long the mballoc __must__ look for a best 152 * extent and max_to_scan indicates how long the mballoc __can__ look for a 153 * best extent in the found extents. Searching for the blocks starts with 154 * the group specified as the goal value in allocation context via 155 * ac_g_ex. Each group is first checked based on the criteria whether it 156 * can be used for allocation. ext4_mb_good_group explains how the groups are 157 * checked. 158 * 159 * Both the prealloc space are getting populated as above. So for the first 160 * request we will hit the buddy cache which will result in this prealloc 161 * space getting filled. The prealloc space is then later used for the 162 * subsequent request. 163 */ 164 165 /* 166 * mballoc operates on the following data: 167 * - on-disk bitmap 168 * - in-core buddy (actually includes buddy and bitmap) 169 * - preallocation descriptors (PAs) 170 * 171 * there are two types of preallocations: 172 * - inode 173 * assiged to specific inode and can be used for this inode only. 174 * it describes part of inode's space preallocated to specific 175 * physical blocks. any block from that preallocated can be used 176 * independent. the descriptor just tracks number of blocks left 177 * unused. so, before taking some block from descriptor, one must 178 * make sure corresponded logical block isn't allocated yet. this 179 * also means that freeing any block within descriptor's range 180 * must discard all preallocated blocks. 181 * - locality group 182 * assigned to specific locality group which does not translate to 183 * permanent set of inodes: inode can join and leave group. space 184 * from this type of preallocation can be used for any inode. thus 185 * it's consumed from the beginning to the end. 186 * 187 * relation between them can be expressed as: 188 * in-core buddy = on-disk bitmap + preallocation descriptors 189 * 190 * this mean blocks mballoc considers used are: 191 * - allocated blocks (persistent) 192 * - preallocated blocks (non-persistent) 193 * 194 * consistency in mballoc world means that at any time a block is either 195 * free or used in ALL structures. notice: "any time" should not be read 196 * literally -- time is discrete and delimited by locks. 197 * 198 * to keep it simple, we don't use block numbers, instead we count number of 199 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 200 * 201 * all operations can be expressed as: 202 * - init buddy: buddy = on-disk + PAs 203 * - new PA: buddy += N; PA = N 204 * - use inode PA: on-disk += N; PA -= N 205 * - discard inode PA buddy -= on-disk - PA; PA = 0 206 * - use locality group PA on-disk += N; PA -= N 207 * - discard locality group PA buddy -= PA; PA = 0 208 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 209 * is used in real operation because we can't know actual used 210 * bits from PA, only from on-disk bitmap 211 * 212 * if we follow this strict logic, then all operations above should be atomic. 213 * given some of them can block, we'd have to use something like semaphores 214 * killing performance on high-end SMP hardware. let's try to relax it using 215 * the following knowledge: 216 * 1) if buddy is referenced, it's already initialized 217 * 2) while block is used in buddy and the buddy is referenced, 218 * nobody can re-allocate that block 219 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 220 * bit set and PA claims same block, it's OK. IOW, one can set bit in 221 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 222 * block 223 * 224 * so, now we're building a concurrency table: 225 * - init buddy vs. 226 * - new PA 227 * blocks for PA are allocated in the buddy, buddy must be referenced 228 * until PA is linked to allocation group to avoid concurrent buddy init 229 * - use inode PA 230 * we need to make sure that either on-disk bitmap or PA has uptodate data 231 * given (3) we care that PA-=N operation doesn't interfere with init 232 * - discard inode PA 233 * the simplest way would be to have buddy initialized by the discard 234 * - use locality group PA 235 * again PA-=N must be serialized with init 236 * - discard locality group PA 237 * the simplest way would be to have buddy initialized by the discard 238 * - new PA vs. 239 * - use inode PA 240 * i_data_sem serializes them 241 * - discard inode PA 242 * discard process must wait until PA isn't used by another process 243 * - use locality group PA 244 * some mutex should serialize them 245 * - discard locality group PA 246 * discard process must wait until PA isn't used by another process 247 * - use inode PA 248 * - use inode PA 249 * i_data_sem or another mutex should serializes them 250 * - discard inode PA 251 * discard process must wait until PA isn't used by another process 252 * - use locality group PA 253 * nothing wrong here -- they're different PAs covering different blocks 254 * - discard locality group PA 255 * discard process must wait until PA isn't used by another process 256 * 257 * now we're ready to make few consequences: 258 * - PA is referenced and while it is no discard is possible 259 * - PA is referenced until block isn't marked in on-disk bitmap 260 * - PA changes only after on-disk bitmap 261 * - discard must not compete with init. either init is done before 262 * any discard or they're serialized somehow 263 * - buddy init as sum of on-disk bitmap and PAs is done atomically 264 * 265 * a special case when we've used PA to emptiness. no need to modify buddy 266 * in this case, but we should care about concurrent init 267 * 268 */ 269 270 /* 271 * Logic in few words: 272 * 273 * - allocation: 274 * load group 275 * find blocks 276 * mark bits in on-disk bitmap 277 * release group 278 * 279 * - use preallocation: 280 * find proper PA (per-inode or group) 281 * load group 282 * mark bits in on-disk bitmap 283 * release group 284 * release PA 285 * 286 * - free: 287 * load group 288 * mark bits in on-disk bitmap 289 * release group 290 * 291 * - discard preallocations in group: 292 * mark PAs deleted 293 * move them onto local list 294 * load on-disk bitmap 295 * load group 296 * remove PA from object (inode or locality group) 297 * mark free blocks in-core 298 * 299 * - discard inode's preallocations: 300 */ 301 302 /* 303 * Locking rules 304 * 305 * Locks: 306 * - bitlock on a group (group) 307 * - object (inode/locality) (object) 308 * - per-pa lock (pa) 309 * 310 * Paths: 311 * - new pa 312 * object 313 * group 314 * 315 * - find and use pa: 316 * pa 317 * 318 * - release consumed pa: 319 * pa 320 * group 321 * object 322 * 323 * - generate in-core bitmap: 324 * group 325 * pa 326 * 327 * - discard all for given object (inode, locality group): 328 * object 329 * pa 330 * group 331 * 332 * - discard all for given group: 333 * group 334 * pa 335 * group 336 * object 337 * 338 */ 339 static struct kmem_cache *ext4_pspace_cachep; 340 static struct kmem_cache *ext4_ac_cachep; 341 static struct kmem_cache *ext4_free_data_cachep; 342 343 /* We create slab caches for groupinfo data structures based on the 344 * superblock block size. There will be one per mounted filesystem for 345 * each unique s_blocksize_bits */ 346 #define NR_GRPINFO_CACHES 8 347 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 348 349 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 350 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 351 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 352 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 353 }; 354 355 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 356 ext4_group_t group); 357 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 358 ext4_group_t group); 359 360 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 361 { 362 #if BITS_PER_LONG == 64 363 *bit += ((unsigned long) addr & 7UL) << 3; 364 addr = (void *) ((unsigned long) addr & ~7UL); 365 #elif BITS_PER_LONG == 32 366 *bit += ((unsigned long) addr & 3UL) << 3; 367 addr = (void *) ((unsigned long) addr & ~3UL); 368 #else 369 #error "how many bits you are?!" 370 #endif 371 return addr; 372 } 373 374 static inline int mb_test_bit(int bit, void *addr) 375 { 376 /* 377 * ext4_test_bit on architecture like powerpc 378 * needs unsigned long aligned address 379 */ 380 addr = mb_correct_addr_and_bit(&bit, addr); 381 return ext4_test_bit(bit, addr); 382 } 383 384 static inline void mb_set_bit(int bit, void *addr) 385 { 386 addr = mb_correct_addr_and_bit(&bit, addr); 387 ext4_set_bit(bit, addr); 388 } 389 390 static inline void mb_clear_bit(int bit, void *addr) 391 { 392 addr = mb_correct_addr_and_bit(&bit, addr); 393 ext4_clear_bit(bit, addr); 394 } 395 396 static inline int mb_test_and_clear_bit(int bit, void *addr) 397 { 398 addr = mb_correct_addr_and_bit(&bit, addr); 399 return ext4_test_and_clear_bit(bit, addr); 400 } 401 402 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 403 { 404 int fix = 0, ret, tmpmax; 405 addr = mb_correct_addr_and_bit(&fix, addr); 406 tmpmax = max + fix; 407 start += fix; 408 409 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 410 if (ret > max) 411 return max; 412 return ret; 413 } 414 415 static inline int mb_find_next_bit(void *addr, int max, int start) 416 { 417 int fix = 0, ret, tmpmax; 418 addr = mb_correct_addr_and_bit(&fix, addr); 419 tmpmax = max + fix; 420 start += fix; 421 422 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 423 if (ret > max) 424 return max; 425 return ret; 426 } 427 428 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 429 { 430 char *bb; 431 432 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 433 BUG_ON(max == NULL); 434 435 if (order > e4b->bd_blkbits + 1) { 436 *max = 0; 437 return NULL; 438 } 439 440 /* at order 0 we see each particular block */ 441 if (order == 0) { 442 *max = 1 << (e4b->bd_blkbits + 3); 443 return e4b->bd_bitmap; 444 } 445 446 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 447 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 448 449 return bb; 450 } 451 452 #ifdef DOUBLE_CHECK 453 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 454 int first, int count) 455 { 456 int i; 457 struct super_block *sb = e4b->bd_sb; 458 459 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 460 return; 461 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 462 for (i = 0; i < count; i++) { 463 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 464 ext4_fsblk_t blocknr; 465 466 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 467 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 468 ext4_grp_locked_error(sb, e4b->bd_group, 469 inode ? inode->i_ino : 0, 470 blocknr, 471 "freeing block already freed " 472 "(bit %u)", 473 first + i); 474 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 475 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 476 } 477 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 478 } 479 } 480 481 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 482 { 483 int i; 484 485 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 486 return; 487 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 488 for (i = 0; i < count; i++) { 489 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 490 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 491 } 492 } 493 494 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 495 { 496 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 497 unsigned char *b1, *b2; 498 int i; 499 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 500 b2 = (unsigned char *) bitmap; 501 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 502 if (b1[i] != b2[i]) { 503 ext4_msg(e4b->bd_sb, KERN_ERR, 504 "corruption in group %u " 505 "at byte %u(%u): %x in copy != %x " 506 "on disk/prealloc", 507 e4b->bd_group, i, i * 8, b1[i], b2[i]); 508 BUG(); 509 } 510 } 511 } 512 } 513 514 #else 515 static inline void mb_free_blocks_double(struct inode *inode, 516 struct ext4_buddy *e4b, int first, int count) 517 { 518 return; 519 } 520 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 521 int first, int count) 522 { 523 return; 524 } 525 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 526 { 527 return; 528 } 529 #endif 530 531 #ifdef AGGRESSIVE_CHECK 532 533 #define MB_CHECK_ASSERT(assert) \ 534 do { \ 535 if (!(assert)) { \ 536 printk(KERN_EMERG \ 537 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 538 function, file, line, # assert); \ 539 BUG(); \ 540 } \ 541 } while (0) 542 543 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 544 const char *function, int line) 545 { 546 struct super_block *sb = e4b->bd_sb; 547 int order = e4b->bd_blkbits + 1; 548 int max; 549 int max2; 550 int i; 551 int j; 552 int k; 553 int count; 554 struct ext4_group_info *grp; 555 int fragments = 0; 556 int fstart; 557 struct list_head *cur; 558 void *buddy; 559 void *buddy2; 560 561 { 562 static int mb_check_counter; 563 if (mb_check_counter++ % 100 != 0) 564 return 0; 565 } 566 567 while (order > 1) { 568 buddy = mb_find_buddy(e4b, order, &max); 569 MB_CHECK_ASSERT(buddy); 570 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 571 MB_CHECK_ASSERT(buddy2); 572 MB_CHECK_ASSERT(buddy != buddy2); 573 MB_CHECK_ASSERT(max * 2 == max2); 574 575 count = 0; 576 for (i = 0; i < max; i++) { 577 578 if (mb_test_bit(i, buddy)) { 579 /* only single bit in buddy2 may be 1 */ 580 if (!mb_test_bit(i << 1, buddy2)) { 581 MB_CHECK_ASSERT( 582 mb_test_bit((i<<1)+1, buddy2)); 583 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 584 MB_CHECK_ASSERT( 585 mb_test_bit(i << 1, buddy2)); 586 } 587 continue; 588 } 589 590 /* both bits in buddy2 must be 1 */ 591 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 592 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 593 594 for (j = 0; j < (1 << order); j++) { 595 k = (i * (1 << order)) + j; 596 MB_CHECK_ASSERT( 597 !mb_test_bit(k, e4b->bd_bitmap)); 598 } 599 count++; 600 } 601 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 602 order--; 603 } 604 605 fstart = -1; 606 buddy = mb_find_buddy(e4b, 0, &max); 607 for (i = 0; i < max; i++) { 608 if (!mb_test_bit(i, buddy)) { 609 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 610 if (fstart == -1) { 611 fragments++; 612 fstart = i; 613 } 614 continue; 615 } 616 fstart = -1; 617 /* check used bits only */ 618 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 619 buddy2 = mb_find_buddy(e4b, j, &max2); 620 k = i >> j; 621 MB_CHECK_ASSERT(k < max2); 622 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 623 } 624 } 625 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 626 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 627 628 grp = ext4_get_group_info(sb, e4b->bd_group); 629 list_for_each(cur, &grp->bb_prealloc_list) { 630 ext4_group_t groupnr; 631 struct ext4_prealloc_space *pa; 632 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 633 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 634 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 635 for (i = 0; i < pa->pa_len; i++) 636 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 637 } 638 return 0; 639 } 640 #undef MB_CHECK_ASSERT 641 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 642 __FILE__, __func__, __LINE__) 643 #else 644 #define mb_check_buddy(e4b) 645 #endif 646 647 /* 648 * Divide blocks started from @first with length @len into 649 * smaller chunks with power of 2 blocks. 650 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 651 * then increase bb_counters[] for corresponded chunk size. 652 */ 653 static void ext4_mb_mark_free_simple(struct super_block *sb, 654 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 655 struct ext4_group_info *grp) 656 { 657 struct ext4_sb_info *sbi = EXT4_SB(sb); 658 ext4_grpblk_t min; 659 ext4_grpblk_t max; 660 ext4_grpblk_t chunk; 661 unsigned int border; 662 663 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 664 665 border = 2 << sb->s_blocksize_bits; 666 667 while (len > 0) { 668 /* find how many blocks can be covered since this position */ 669 max = ffs(first | border) - 1; 670 671 /* find how many blocks of power 2 we need to mark */ 672 min = fls(len) - 1; 673 674 if (max < min) 675 min = max; 676 chunk = 1 << min; 677 678 /* mark multiblock chunks only */ 679 grp->bb_counters[min]++; 680 if (min > 0) 681 mb_clear_bit(first >> min, 682 buddy + sbi->s_mb_offsets[min]); 683 684 len -= chunk; 685 first += chunk; 686 } 687 } 688 689 /* 690 * Cache the order of the largest free extent we have available in this block 691 * group. 692 */ 693 static void 694 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 695 { 696 int i; 697 int bits; 698 699 grp->bb_largest_free_order = -1; /* uninit */ 700 701 bits = sb->s_blocksize_bits + 1; 702 for (i = bits; i >= 0; i--) { 703 if (grp->bb_counters[i] > 0) { 704 grp->bb_largest_free_order = i; 705 break; 706 } 707 } 708 } 709 710 static noinline_for_stack 711 void ext4_mb_generate_buddy(struct super_block *sb, 712 void *buddy, void *bitmap, ext4_group_t group) 713 { 714 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 715 struct ext4_sb_info *sbi = EXT4_SB(sb); 716 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 717 ext4_grpblk_t i = 0; 718 ext4_grpblk_t first; 719 ext4_grpblk_t len; 720 unsigned free = 0; 721 unsigned fragments = 0; 722 unsigned long long period = get_cycles(); 723 724 /* initialize buddy from bitmap which is aggregation 725 * of on-disk bitmap and preallocations */ 726 i = mb_find_next_zero_bit(bitmap, max, 0); 727 grp->bb_first_free = i; 728 while (i < max) { 729 fragments++; 730 first = i; 731 i = mb_find_next_bit(bitmap, max, i); 732 len = i - first; 733 free += len; 734 if (len > 1) 735 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 736 else 737 grp->bb_counters[0]++; 738 if (i < max) 739 i = mb_find_next_zero_bit(bitmap, max, i); 740 } 741 grp->bb_fragments = fragments; 742 743 if (free != grp->bb_free) { 744 ext4_grp_locked_error(sb, group, 0, 0, 745 "block bitmap and bg descriptor " 746 "inconsistent: %u vs %u free clusters", 747 free, grp->bb_free); 748 /* 749 * If we intend to continue, we consider group descriptor 750 * corrupt and update bb_free using bitmap value 751 */ 752 grp->bb_free = free; 753 ext4_mark_group_bitmap_corrupted(sb, group, 754 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 755 } 756 mb_set_largest_free_order(sb, grp); 757 758 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 759 760 period = get_cycles() - period; 761 spin_lock(&sbi->s_bal_lock); 762 sbi->s_mb_buddies_generated++; 763 sbi->s_mb_generation_time += period; 764 spin_unlock(&sbi->s_bal_lock); 765 } 766 767 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 768 { 769 int count; 770 int order = 1; 771 void *buddy; 772 773 while ((buddy = mb_find_buddy(e4b, order++, &count))) { 774 ext4_set_bits(buddy, 0, count); 775 } 776 e4b->bd_info->bb_fragments = 0; 777 memset(e4b->bd_info->bb_counters, 0, 778 sizeof(*e4b->bd_info->bb_counters) * 779 (e4b->bd_sb->s_blocksize_bits + 2)); 780 781 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 782 e4b->bd_bitmap, e4b->bd_group); 783 } 784 785 /* The buddy information is attached the buddy cache inode 786 * for convenience. The information regarding each group 787 * is loaded via ext4_mb_load_buddy. The information involve 788 * block bitmap and buddy information. The information are 789 * stored in the inode as 790 * 791 * { page } 792 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 793 * 794 * 795 * one block each for bitmap and buddy information. 796 * So for each group we take up 2 blocks. A page can 797 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 798 * So it can have information regarding groups_per_page which 799 * is blocks_per_page/2 800 * 801 * Locking note: This routine takes the block group lock of all groups 802 * for this page; do not hold this lock when calling this routine! 803 */ 804 805 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 806 { 807 ext4_group_t ngroups; 808 int blocksize; 809 int blocks_per_page; 810 int groups_per_page; 811 int err = 0; 812 int i; 813 ext4_group_t first_group, group; 814 int first_block; 815 struct super_block *sb; 816 struct buffer_head *bhs; 817 struct buffer_head **bh = NULL; 818 struct inode *inode; 819 char *data; 820 char *bitmap; 821 struct ext4_group_info *grinfo; 822 823 mb_debug(1, "init page %lu\n", page->index); 824 825 inode = page->mapping->host; 826 sb = inode->i_sb; 827 ngroups = ext4_get_groups_count(sb); 828 blocksize = i_blocksize(inode); 829 blocks_per_page = PAGE_SIZE / blocksize; 830 831 groups_per_page = blocks_per_page >> 1; 832 if (groups_per_page == 0) 833 groups_per_page = 1; 834 835 /* allocate buffer_heads to read bitmaps */ 836 if (groups_per_page > 1) { 837 i = sizeof(struct buffer_head *) * groups_per_page; 838 bh = kzalloc(i, gfp); 839 if (bh == NULL) { 840 err = -ENOMEM; 841 goto out; 842 } 843 } else 844 bh = &bhs; 845 846 first_group = page->index * blocks_per_page / 2; 847 848 /* read all groups the page covers into the cache */ 849 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 850 if (group >= ngroups) 851 break; 852 853 grinfo = ext4_get_group_info(sb, group); 854 /* 855 * If page is uptodate then we came here after online resize 856 * which added some new uninitialized group info structs, so 857 * we must skip all initialized uptodate buddies on the page, 858 * which may be currently in use by an allocating task. 859 */ 860 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 861 bh[i] = NULL; 862 continue; 863 } 864 bh[i] = ext4_read_block_bitmap_nowait(sb, group); 865 if (IS_ERR(bh[i])) { 866 err = PTR_ERR(bh[i]); 867 bh[i] = NULL; 868 goto out; 869 } 870 mb_debug(1, "read bitmap for group %u\n", group); 871 } 872 873 /* wait for I/O completion */ 874 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 875 int err2; 876 877 if (!bh[i]) 878 continue; 879 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 880 if (!err) 881 err = err2; 882 } 883 884 first_block = page->index * blocks_per_page; 885 for (i = 0; i < blocks_per_page; i++) { 886 group = (first_block + i) >> 1; 887 if (group >= ngroups) 888 break; 889 890 if (!bh[group - first_group]) 891 /* skip initialized uptodate buddy */ 892 continue; 893 894 if (!buffer_verified(bh[group - first_group])) 895 /* Skip faulty bitmaps */ 896 continue; 897 err = 0; 898 899 /* 900 * data carry information regarding this 901 * particular group in the format specified 902 * above 903 * 904 */ 905 data = page_address(page) + (i * blocksize); 906 bitmap = bh[group - first_group]->b_data; 907 908 /* 909 * We place the buddy block and bitmap block 910 * close together 911 */ 912 if ((first_block + i) & 1) { 913 /* this is block of buddy */ 914 BUG_ON(incore == NULL); 915 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 916 group, page->index, i * blocksize); 917 trace_ext4_mb_buddy_bitmap_load(sb, group); 918 grinfo = ext4_get_group_info(sb, group); 919 grinfo->bb_fragments = 0; 920 memset(grinfo->bb_counters, 0, 921 sizeof(*grinfo->bb_counters) * 922 (sb->s_blocksize_bits+2)); 923 /* 924 * incore got set to the group block bitmap below 925 */ 926 ext4_lock_group(sb, group); 927 /* init the buddy */ 928 memset(data, 0xff, blocksize); 929 ext4_mb_generate_buddy(sb, data, incore, group); 930 ext4_unlock_group(sb, group); 931 incore = NULL; 932 } else { 933 /* this is block of bitmap */ 934 BUG_ON(incore != NULL); 935 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 936 group, page->index, i * blocksize); 937 trace_ext4_mb_bitmap_load(sb, group); 938 939 /* see comments in ext4_mb_put_pa() */ 940 ext4_lock_group(sb, group); 941 memcpy(data, bitmap, blocksize); 942 943 /* mark all preallocated blks used in in-core bitmap */ 944 ext4_mb_generate_from_pa(sb, data, group); 945 ext4_mb_generate_from_freelist(sb, data, group); 946 ext4_unlock_group(sb, group); 947 948 /* set incore so that the buddy information can be 949 * generated using this 950 */ 951 incore = data; 952 } 953 } 954 SetPageUptodate(page); 955 956 out: 957 if (bh) { 958 for (i = 0; i < groups_per_page; i++) 959 brelse(bh[i]); 960 if (bh != &bhs) 961 kfree(bh); 962 } 963 return err; 964 } 965 966 /* 967 * Lock the buddy and bitmap pages. This make sure other parallel init_group 968 * on the same buddy page doesn't happen whild holding the buddy page lock. 969 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 970 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 971 */ 972 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 973 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 974 { 975 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 976 int block, pnum, poff; 977 int blocks_per_page; 978 struct page *page; 979 980 e4b->bd_buddy_page = NULL; 981 e4b->bd_bitmap_page = NULL; 982 983 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 984 /* 985 * the buddy cache inode stores the block bitmap 986 * and buddy information in consecutive blocks. 987 * So for each group we need two blocks. 988 */ 989 block = group * 2; 990 pnum = block / blocks_per_page; 991 poff = block % blocks_per_page; 992 page = find_or_create_page(inode->i_mapping, pnum, gfp); 993 if (!page) 994 return -ENOMEM; 995 BUG_ON(page->mapping != inode->i_mapping); 996 e4b->bd_bitmap_page = page; 997 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 998 999 if (blocks_per_page >= 2) { 1000 /* buddy and bitmap are on the same page */ 1001 return 0; 1002 } 1003 1004 block++; 1005 pnum = block / blocks_per_page; 1006 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1007 if (!page) 1008 return -ENOMEM; 1009 BUG_ON(page->mapping != inode->i_mapping); 1010 e4b->bd_buddy_page = page; 1011 return 0; 1012 } 1013 1014 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1015 { 1016 if (e4b->bd_bitmap_page) { 1017 unlock_page(e4b->bd_bitmap_page); 1018 put_page(e4b->bd_bitmap_page); 1019 } 1020 if (e4b->bd_buddy_page) { 1021 unlock_page(e4b->bd_buddy_page); 1022 put_page(e4b->bd_buddy_page); 1023 } 1024 } 1025 1026 /* 1027 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1028 * block group lock of all groups for this page; do not hold the BG lock when 1029 * calling this routine! 1030 */ 1031 static noinline_for_stack 1032 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1033 { 1034 1035 struct ext4_group_info *this_grp; 1036 struct ext4_buddy e4b; 1037 struct page *page; 1038 int ret = 0; 1039 1040 might_sleep(); 1041 mb_debug(1, "init group %u\n", group); 1042 this_grp = ext4_get_group_info(sb, group); 1043 /* 1044 * This ensures that we don't reinit the buddy cache 1045 * page which map to the group from which we are already 1046 * allocating. If we are looking at the buddy cache we would 1047 * have taken a reference using ext4_mb_load_buddy and that 1048 * would have pinned buddy page to page cache. 1049 * The call to ext4_mb_get_buddy_page_lock will mark the 1050 * page accessed. 1051 */ 1052 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1053 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1054 /* 1055 * somebody initialized the group 1056 * return without doing anything 1057 */ 1058 goto err; 1059 } 1060 1061 page = e4b.bd_bitmap_page; 1062 ret = ext4_mb_init_cache(page, NULL, gfp); 1063 if (ret) 1064 goto err; 1065 if (!PageUptodate(page)) { 1066 ret = -EIO; 1067 goto err; 1068 } 1069 1070 if (e4b.bd_buddy_page == NULL) { 1071 /* 1072 * If both the bitmap and buddy are in 1073 * the same page we don't need to force 1074 * init the buddy 1075 */ 1076 ret = 0; 1077 goto err; 1078 } 1079 /* init buddy cache */ 1080 page = e4b.bd_buddy_page; 1081 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1082 if (ret) 1083 goto err; 1084 if (!PageUptodate(page)) { 1085 ret = -EIO; 1086 goto err; 1087 } 1088 err: 1089 ext4_mb_put_buddy_page_lock(&e4b); 1090 return ret; 1091 } 1092 1093 /* 1094 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1095 * block group lock of all groups for this page; do not hold the BG lock when 1096 * calling this routine! 1097 */ 1098 static noinline_for_stack int 1099 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1100 struct ext4_buddy *e4b, gfp_t gfp) 1101 { 1102 int blocks_per_page; 1103 int block; 1104 int pnum; 1105 int poff; 1106 struct page *page; 1107 int ret; 1108 struct ext4_group_info *grp; 1109 struct ext4_sb_info *sbi = EXT4_SB(sb); 1110 struct inode *inode = sbi->s_buddy_cache; 1111 1112 might_sleep(); 1113 mb_debug(1, "load group %u\n", group); 1114 1115 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1116 grp = ext4_get_group_info(sb, group); 1117 1118 e4b->bd_blkbits = sb->s_blocksize_bits; 1119 e4b->bd_info = grp; 1120 e4b->bd_sb = sb; 1121 e4b->bd_group = group; 1122 e4b->bd_buddy_page = NULL; 1123 e4b->bd_bitmap_page = NULL; 1124 1125 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1126 /* 1127 * we need full data about the group 1128 * to make a good selection 1129 */ 1130 ret = ext4_mb_init_group(sb, group, gfp); 1131 if (ret) 1132 return ret; 1133 } 1134 1135 /* 1136 * the buddy cache inode stores the block bitmap 1137 * and buddy information in consecutive blocks. 1138 * So for each group we need two blocks. 1139 */ 1140 block = group * 2; 1141 pnum = block / blocks_per_page; 1142 poff = block % blocks_per_page; 1143 1144 /* we could use find_or_create_page(), but it locks page 1145 * what we'd like to avoid in fast path ... */ 1146 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1147 if (page == NULL || !PageUptodate(page)) { 1148 if (page) 1149 /* 1150 * drop the page reference and try 1151 * to get the page with lock. If we 1152 * are not uptodate that implies 1153 * somebody just created the page but 1154 * is yet to initialize the same. So 1155 * wait for it to initialize. 1156 */ 1157 put_page(page); 1158 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1159 if (page) { 1160 BUG_ON(page->mapping != inode->i_mapping); 1161 if (!PageUptodate(page)) { 1162 ret = ext4_mb_init_cache(page, NULL, gfp); 1163 if (ret) { 1164 unlock_page(page); 1165 goto err; 1166 } 1167 mb_cmp_bitmaps(e4b, page_address(page) + 1168 (poff * sb->s_blocksize)); 1169 } 1170 unlock_page(page); 1171 } 1172 } 1173 if (page == NULL) { 1174 ret = -ENOMEM; 1175 goto err; 1176 } 1177 if (!PageUptodate(page)) { 1178 ret = -EIO; 1179 goto err; 1180 } 1181 1182 /* Pages marked accessed already */ 1183 e4b->bd_bitmap_page = page; 1184 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1185 1186 block++; 1187 pnum = block / blocks_per_page; 1188 poff = block % blocks_per_page; 1189 1190 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1191 if (page == NULL || !PageUptodate(page)) { 1192 if (page) 1193 put_page(page); 1194 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1195 if (page) { 1196 BUG_ON(page->mapping != inode->i_mapping); 1197 if (!PageUptodate(page)) { 1198 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1199 gfp); 1200 if (ret) { 1201 unlock_page(page); 1202 goto err; 1203 } 1204 } 1205 unlock_page(page); 1206 } 1207 } 1208 if (page == NULL) { 1209 ret = -ENOMEM; 1210 goto err; 1211 } 1212 if (!PageUptodate(page)) { 1213 ret = -EIO; 1214 goto err; 1215 } 1216 1217 /* Pages marked accessed already */ 1218 e4b->bd_buddy_page = page; 1219 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1220 1221 BUG_ON(e4b->bd_bitmap_page == NULL); 1222 BUG_ON(e4b->bd_buddy_page == NULL); 1223 1224 return 0; 1225 1226 err: 1227 if (page) 1228 put_page(page); 1229 if (e4b->bd_bitmap_page) 1230 put_page(e4b->bd_bitmap_page); 1231 if (e4b->bd_buddy_page) 1232 put_page(e4b->bd_buddy_page); 1233 e4b->bd_buddy = NULL; 1234 e4b->bd_bitmap = NULL; 1235 return ret; 1236 } 1237 1238 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1239 struct ext4_buddy *e4b) 1240 { 1241 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1242 } 1243 1244 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1245 { 1246 if (e4b->bd_bitmap_page) 1247 put_page(e4b->bd_bitmap_page); 1248 if (e4b->bd_buddy_page) 1249 put_page(e4b->bd_buddy_page); 1250 } 1251 1252 1253 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1254 { 1255 int order = 1; 1256 int bb_incr = 1 << (e4b->bd_blkbits - 1); 1257 void *bb; 1258 1259 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1260 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1261 1262 bb = e4b->bd_buddy; 1263 while (order <= e4b->bd_blkbits + 1) { 1264 block = block >> 1; 1265 if (!mb_test_bit(block, bb)) { 1266 /* this block is part of buddy of order 'order' */ 1267 return order; 1268 } 1269 bb += bb_incr; 1270 bb_incr >>= 1; 1271 order++; 1272 } 1273 return 0; 1274 } 1275 1276 static void mb_clear_bits(void *bm, int cur, int len) 1277 { 1278 __u32 *addr; 1279 1280 len = cur + len; 1281 while (cur < len) { 1282 if ((cur & 31) == 0 && (len - cur) >= 32) { 1283 /* fast path: clear whole word at once */ 1284 addr = bm + (cur >> 3); 1285 *addr = 0; 1286 cur += 32; 1287 continue; 1288 } 1289 mb_clear_bit(cur, bm); 1290 cur++; 1291 } 1292 } 1293 1294 /* clear bits in given range 1295 * will return first found zero bit if any, -1 otherwise 1296 */ 1297 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1298 { 1299 __u32 *addr; 1300 int zero_bit = -1; 1301 1302 len = cur + len; 1303 while (cur < len) { 1304 if ((cur & 31) == 0 && (len - cur) >= 32) { 1305 /* fast path: clear whole word at once */ 1306 addr = bm + (cur >> 3); 1307 if (*addr != (__u32)(-1) && zero_bit == -1) 1308 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1309 *addr = 0; 1310 cur += 32; 1311 continue; 1312 } 1313 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1314 zero_bit = cur; 1315 cur++; 1316 } 1317 1318 return zero_bit; 1319 } 1320 1321 void ext4_set_bits(void *bm, int cur, int len) 1322 { 1323 __u32 *addr; 1324 1325 len = cur + len; 1326 while (cur < len) { 1327 if ((cur & 31) == 0 && (len - cur) >= 32) { 1328 /* fast path: set whole word at once */ 1329 addr = bm + (cur >> 3); 1330 *addr = 0xffffffff; 1331 cur += 32; 1332 continue; 1333 } 1334 mb_set_bit(cur, bm); 1335 cur++; 1336 } 1337 } 1338 1339 /* 1340 * _________________________________________________________________ */ 1341 1342 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1343 { 1344 if (mb_test_bit(*bit + side, bitmap)) { 1345 mb_clear_bit(*bit, bitmap); 1346 (*bit) -= side; 1347 return 1; 1348 } 1349 else { 1350 (*bit) += side; 1351 mb_set_bit(*bit, bitmap); 1352 return -1; 1353 } 1354 } 1355 1356 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1357 { 1358 int max; 1359 int order = 1; 1360 void *buddy = mb_find_buddy(e4b, order, &max); 1361 1362 while (buddy) { 1363 void *buddy2; 1364 1365 /* Bits in range [first; last] are known to be set since 1366 * corresponding blocks were allocated. Bits in range 1367 * (first; last) will stay set because they form buddies on 1368 * upper layer. We just deal with borders if they don't 1369 * align with upper layer and then go up. 1370 * Releasing entire group is all about clearing 1371 * single bit of highest order buddy. 1372 */ 1373 1374 /* Example: 1375 * --------------------------------- 1376 * | 1 | 1 | 1 | 1 | 1377 * --------------------------------- 1378 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1379 * --------------------------------- 1380 * 0 1 2 3 4 5 6 7 1381 * \_____________________/ 1382 * 1383 * Neither [1] nor [6] is aligned to above layer. 1384 * Left neighbour [0] is free, so mark it busy, 1385 * decrease bb_counters and extend range to 1386 * [0; 6] 1387 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1388 * mark [6] free, increase bb_counters and shrink range to 1389 * [0; 5]. 1390 * Then shift range to [0; 2], go up and do the same. 1391 */ 1392 1393 1394 if (first & 1) 1395 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1396 if (!(last & 1)) 1397 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1398 if (first > last) 1399 break; 1400 order++; 1401 1402 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1403 mb_clear_bits(buddy, first, last - first + 1); 1404 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1405 break; 1406 } 1407 first >>= 1; 1408 last >>= 1; 1409 buddy = buddy2; 1410 } 1411 } 1412 1413 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1414 int first, int count) 1415 { 1416 int left_is_free = 0; 1417 int right_is_free = 0; 1418 int block; 1419 int last = first + count - 1; 1420 struct super_block *sb = e4b->bd_sb; 1421 1422 if (WARN_ON(count == 0)) 1423 return; 1424 BUG_ON(last >= (sb->s_blocksize << 3)); 1425 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1426 /* Don't bother if the block group is corrupt. */ 1427 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1428 return; 1429 1430 mb_check_buddy(e4b); 1431 mb_free_blocks_double(inode, e4b, first, count); 1432 1433 e4b->bd_info->bb_free += count; 1434 if (first < e4b->bd_info->bb_first_free) 1435 e4b->bd_info->bb_first_free = first; 1436 1437 /* access memory sequentially: check left neighbour, 1438 * clear range and then check right neighbour 1439 */ 1440 if (first != 0) 1441 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1442 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1443 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1444 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1445 1446 if (unlikely(block != -1)) { 1447 struct ext4_sb_info *sbi = EXT4_SB(sb); 1448 ext4_fsblk_t blocknr; 1449 1450 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1451 blocknr += EXT4_C2B(sbi, block); 1452 ext4_grp_locked_error(sb, e4b->bd_group, 1453 inode ? inode->i_ino : 0, 1454 blocknr, 1455 "freeing already freed block " 1456 "(bit %u); block bitmap corrupt.", 1457 block); 1458 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1459 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1460 mb_regenerate_buddy(e4b); 1461 goto done; 1462 } 1463 1464 /* let's maintain fragments counter */ 1465 if (left_is_free && right_is_free) 1466 e4b->bd_info->bb_fragments--; 1467 else if (!left_is_free && !right_is_free) 1468 e4b->bd_info->bb_fragments++; 1469 1470 /* buddy[0] == bd_bitmap is a special case, so handle 1471 * it right away and let mb_buddy_mark_free stay free of 1472 * zero order checks. 1473 * Check if neighbours are to be coaleasced, 1474 * adjust bitmap bb_counters and borders appropriately. 1475 */ 1476 if (first & 1) { 1477 first += !left_is_free; 1478 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1479 } 1480 if (!(last & 1)) { 1481 last -= !right_is_free; 1482 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1483 } 1484 1485 if (first <= last) 1486 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1487 1488 done: 1489 mb_set_largest_free_order(sb, e4b->bd_info); 1490 mb_check_buddy(e4b); 1491 } 1492 1493 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1494 int needed, struct ext4_free_extent *ex) 1495 { 1496 int next = block; 1497 int max, order; 1498 void *buddy; 1499 1500 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1501 BUG_ON(ex == NULL); 1502 1503 buddy = mb_find_buddy(e4b, 0, &max); 1504 BUG_ON(buddy == NULL); 1505 BUG_ON(block >= max); 1506 if (mb_test_bit(block, buddy)) { 1507 ex->fe_len = 0; 1508 ex->fe_start = 0; 1509 ex->fe_group = 0; 1510 return 0; 1511 } 1512 1513 /* find actual order */ 1514 order = mb_find_order_for_block(e4b, block); 1515 block = block >> order; 1516 1517 ex->fe_len = 1 << order; 1518 ex->fe_start = block << order; 1519 ex->fe_group = e4b->bd_group; 1520 1521 /* calc difference from given start */ 1522 next = next - ex->fe_start; 1523 ex->fe_len -= next; 1524 ex->fe_start += next; 1525 1526 while (needed > ex->fe_len && 1527 mb_find_buddy(e4b, order, &max)) { 1528 1529 if (block + 1 >= max) 1530 break; 1531 1532 next = (block + 1) * (1 << order); 1533 if (mb_test_bit(next, e4b->bd_bitmap)) 1534 break; 1535 1536 order = mb_find_order_for_block(e4b, next); 1537 1538 block = next >> order; 1539 ex->fe_len += 1 << order; 1540 } 1541 1542 if (ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))) { 1543 /* Should never happen! (but apparently sometimes does?!?) */ 1544 WARN_ON(1); 1545 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent " 1546 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 1547 block, order, needed, ex->fe_group, ex->fe_start, 1548 ex->fe_len, ex->fe_logical); 1549 ex->fe_len = 0; 1550 ex->fe_start = 0; 1551 ex->fe_group = 0; 1552 } 1553 return ex->fe_len; 1554 } 1555 1556 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1557 { 1558 int ord; 1559 int mlen = 0; 1560 int max = 0; 1561 int cur; 1562 int start = ex->fe_start; 1563 int len = ex->fe_len; 1564 unsigned ret = 0; 1565 int len0 = len; 1566 void *buddy; 1567 1568 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1569 BUG_ON(e4b->bd_group != ex->fe_group); 1570 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1571 mb_check_buddy(e4b); 1572 mb_mark_used_double(e4b, start, len); 1573 1574 e4b->bd_info->bb_free -= len; 1575 if (e4b->bd_info->bb_first_free == start) 1576 e4b->bd_info->bb_first_free += len; 1577 1578 /* let's maintain fragments counter */ 1579 if (start != 0) 1580 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1581 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1582 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1583 if (mlen && max) 1584 e4b->bd_info->bb_fragments++; 1585 else if (!mlen && !max) 1586 e4b->bd_info->bb_fragments--; 1587 1588 /* let's maintain buddy itself */ 1589 while (len) { 1590 ord = mb_find_order_for_block(e4b, start); 1591 1592 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1593 /* the whole chunk may be allocated at once! */ 1594 mlen = 1 << ord; 1595 buddy = mb_find_buddy(e4b, ord, &max); 1596 BUG_ON((start >> ord) >= max); 1597 mb_set_bit(start >> ord, buddy); 1598 e4b->bd_info->bb_counters[ord]--; 1599 start += mlen; 1600 len -= mlen; 1601 BUG_ON(len < 0); 1602 continue; 1603 } 1604 1605 /* store for history */ 1606 if (ret == 0) 1607 ret = len | (ord << 16); 1608 1609 /* we have to split large buddy */ 1610 BUG_ON(ord <= 0); 1611 buddy = mb_find_buddy(e4b, ord, &max); 1612 mb_set_bit(start >> ord, buddy); 1613 e4b->bd_info->bb_counters[ord]--; 1614 1615 ord--; 1616 cur = (start >> ord) & ~1U; 1617 buddy = mb_find_buddy(e4b, ord, &max); 1618 mb_clear_bit(cur, buddy); 1619 mb_clear_bit(cur + 1, buddy); 1620 e4b->bd_info->bb_counters[ord]++; 1621 e4b->bd_info->bb_counters[ord]++; 1622 } 1623 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1624 1625 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1626 mb_check_buddy(e4b); 1627 1628 return ret; 1629 } 1630 1631 /* 1632 * Must be called under group lock! 1633 */ 1634 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1635 struct ext4_buddy *e4b) 1636 { 1637 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1638 int ret; 1639 1640 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1641 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1642 1643 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1644 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1645 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1646 1647 /* preallocation can change ac_b_ex, thus we store actually 1648 * allocated blocks for history */ 1649 ac->ac_f_ex = ac->ac_b_ex; 1650 1651 ac->ac_status = AC_STATUS_FOUND; 1652 ac->ac_tail = ret & 0xffff; 1653 ac->ac_buddy = ret >> 16; 1654 1655 /* 1656 * take the page reference. We want the page to be pinned 1657 * so that we don't get a ext4_mb_init_cache_call for this 1658 * group until we update the bitmap. That would mean we 1659 * double allocate blocks. The reference is dropped 1660 * in ext4_mb_release_context 1661 */ 1662 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1663 get_page(ac->ac_bitmap_page); 1664 ac->ac_buddy_page = e4b->bd_buddy_page; 1665 get_page(ac->ac_buddy_page); 1666 /* store last allocated for subsequent stream allocation */ 1667 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1668 spin_lock(&sbi->s_md_lock); 1669 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1670 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1671 spin_unlock(&sbi->s_md_lock); 1672 } 1673 } 1674 1675 /* 1676 * regular allocator, for general purposes allocation 1677 */ 1678 1679 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1680 struct ext4_buddy *e4b, 1681 int finish_group) 1682 { 1683 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1684 struct ext4_free_extent *bex = &ac->ac_b_ex; 1685 struct ext4_free_extent *gex = &ac->ac_g_ex; 1686 struct ext4_free_extent ex; 1687 int max; 1688 1689 if (ac->ac_status == AC_STATUS_FOUND) 1690 return; 1691 /* 1692 * We don't want to scan for a whole year 1693 */ 1694 if (ac->ac_found > sbi->s_mb_max_to_scan && 1695 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1696 ac->ac_status = AC_STATUS_BREAK; 1697 return; 1698 } 1699 1700 /* 1701 * Haven't found good chunk so far, let's continue 1702 */ 1703 if (bex->fe_len < gex->fe_len) 1704 return; 1705 1706 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1707 && bex->fe_group == e4b->bd_group) { 1708 /* recheck chunk's availability - we don't know 1709 * when it was found (within this lock-unlock 1710 * period or not) */ 1711 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1712 if (max >= gex->fe_len) { 1713 ext4_mb_use_best_found(ac, e4b); 1714 return; 1715 } 1716 } 1717 } 1718 1719 /* 1720 * The routine checks whether found extent is good enough. If it is, 1721 * then the extent gets marked used and flag is set to the context 1722 * to stop scanning. Otherwise, the extent is compared with the 1723 * previous found extent and if new one is better, then it's stored 1724 * in the context. Later, the best found extent will be used, if 1725 * mballoc can't find good enough extent. 1726 * 1727 * FIXME: real allocation policy is to be designed yet! 1728 */ 1729 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1730 struct ext4_free_extent *ex, 1731 struct ext4_buddy *e4b) 1732 { 1733 struct ext4_free_extent *bex = &ac->ac_b_ex; 1734 struct ext4_free_extent *gex = &ac->ac_g_ex; 1735 1736 BUG_ON(ex->fe_len <= 0); 1737 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1738 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1739 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1740 1741 ac->ac_found++; 1742 1743 /* 1744 * The special case - take what you catch first 1745 */ 1746 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1747 *bex = *ex; 1748 ext4_mb_use_best_found(ac, e4b); 1749 return; 1750 } 1751 1752 /* 1753 * Let's check whether the chuck is good enough 1754 */ 1755 if (ex->fe_len == gex->fe_len) { 1756 *bex = *ex; 1757 ext4_mb_use_best_found(ac, e4b); 1758 return; 1759 } 1760 1761 /* 1762 * If this is first found extent, just store it in the context 1763 */ 1764 if (bex->fe_len == 0) { 1765 *bex = *ex; 1766 return; 1767 } 1768 1769 /* 1770 * If new found extent is better, store it in the context 1771 */ 1772 if (bex->fe_len < gex->fe_len) { 1773 /* if the request isn't satisfied, any found extent 1774 * larger than previous best one is better */ 1775 if (ex->fe_len > bex->fe_len) 1776 *bex = *ex; 1777 } else if (ex->fe_len > gex->fe_len) { 1778 /* if the request is satisfied, then we try to find 1779 * an extent that still satisfy the request, but is 1780 * smaller than previous one */ 1781 if (ex->fe_len < bex->fe_len) 1782 *bex = *ex; 1783 } 1784 1785 ext4_mb_check_limits(ac, e4b, 0); 1786 } 1787 1788 static noinline_for_stack 1789 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1790 struct ext4_buddy *e4b) 1791 { 1792 struct ext4_free_extent ex = ac->ac_b_ex; 1793 ext4_group_t group = ex.fe_group; 1794 int max; 1795 int err; 1796 1797 BUG_ON(ex.fe_len <= 0); 1798 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1799 if (err) 1800 return err; 1801 1802 ext4_lock_group(ac->ac_sb, group); 1803 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1804 1805 if (max > 0) { 1806 ac->ac_b_ex = ex; 1807 ext4_mb_use_best_found(ac, e4b); 1808 } 1809 1810 ext4_unlock_group(ac->ac_sb, group); 1811 ext4_mb_unload_buddy(e4b); 1812 1813 return 0; 1814 } 1815 1816 static noinline_for_stack 1817 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1818 struct ext4_buddy *e4b) 1819 { 1820 ext4_group_t group = ac->ac_g_ex.fe_group; 1821 int max; 1822 int err; 1823 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1824 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1825 struct ext4_free_extent ex; 1826 1827 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1828 return 0; 1829 if (grp->bb_free == 0) 1830 return 0; 1831 1832 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1833 if (err) 1834 return err; 1835 1836 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 1837 ext4_mb_unload_buddy(e4b); 1838 return 0; 1839 } 1840 1841 ext4_lock_group(ac->ac_sb, group); 1842 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1843 ac->ac_g_ex.fe_len, &ex); 1844 ex.fe_logical = 0xDEADFA11; /* debug value */ 1845 1846 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1847 ext4_fsblk_t start; 1848 1849 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1850 ex.fe_start; 1851 /* use do_div to get remainder (would be 64-bit modulo) */ 1852 if (do_div(start, sbi->s_stripe) == 0) { 1853 ac->ac_found++; 1854 ac->ac_b_ex = ex; 1855 ext4_mb_use_best_found(ac, e4b); 1856 } 1857 } else if (max >= ac->ac_g_ex.fe_len) { 1858 BUG_ON(ex.fe_len <= 0); 1859 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1860 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1861 ac->ac_found++; 1862 ac->ac_b_ex = ex; 1863 ext4_mb_use_best_found(ac, e4b); 1864 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1865 /* Sometimes, caller may want to merge even small 1866 * number of blocks to an existing extent */ 1867 BUG_ON(ex.fe_len <= 0); 1868 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1869 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1870 ac->ac_found++; 1871 ac->ac_b_ex = ex; 1872 ext4_mb_use_best_found(ac, e4b); 1873 } 1874 ext4_unlock_group(ac->ac_sb, group); 1875 ext4_mb_unload_buddy(e4b); 1876 1877 return 0; 1878 } 1879 1880 /* 1881 * The routine scans buddy structures (not bitmap!) from given order 1882 * to max order and tries to find big enough chunk to satisfy the req 1883 */ 1884 static noinline_for_stack 1885 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1886 struct ext4_buddy *e4b) 1887 { 1888 struct super_block *sb = ac->ac_sb; 1889 struct ext4_group_info *grp = e4b->bd_info; 1890 void *buddy; 1891 int i; 1892 int k; 1893 int max; 1894 1895 BUG_ON(ac->ac_2order <= 0); 1896 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1897 if (grp->bb_counters[i] == 0) 1898 continue; 1899 1900 buddy = mb_find_buddy(e4b, i, &max); 1901 BUG_ON(buddy == NULL); 1902 1903 k = mb_find_next_zero_bit(buddy, max, 0); 1904 BUG_ON(k >= max); 1905 1906 ac->ac_found++; 1907 1908 ac->ac_b_ex.fe_len = 1 << i; 1909 ac->ac_b_ex.fe_start = k << i; 1910 ac->ac_b_ex.fe_group = e4b->bd_group; 1911 1912 ext4_mb_use_best_found(ac, e4b); 1913 1914 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1915 1916 if (EXT4_SB(sb)->s_mb_stats) 1917 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1918 1919 break; 1920 } 1921 } 1922 1923 /* 1924 * The routine scans the group and measures all found extents. 1925 * In order to optimize scanning, caller must pass number of 1926 * free blocks in the group, so the routine can know upper limit. 1927 */ 1928 static noinline_for_stack 1929 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1930 struct ext4_buddy *e4b) 1931 { 1932 struct super_block *sb = ac->ac_sb; 1933 void *bitmap = e4b->bd_bitmap; 1934 struct ext4_free_extent ex; 1935 int i; 1936 int free; 1937 1938 free = e4b->bd_info->bb_free; 1939 BUG_ON(free <= 0); 1940 1941 i = e4b->bd_info->bb_first_free; 1942 1943 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1944 i = mb_find_next_zero_bit(bitmap, 1945 EXT4_CLUSTERS_PER_GROUP(sb), i); 1946 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1947 /* 1948 * IF we have corrupt bitmap, we won't find any 1949 * free blocks even though group info says we 1950 * we have free blocks 1951 */ 1952 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1953 "%d free clusters as per " 1954 "group info. But bitmap says 0", 1955 free); 1956 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1957 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1958 break; 1959 } 1960 1961 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1962 BUG_ON(ex.fe_len <= 0); 1963 if (free < ex.fe_len) { 1964 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1965 "%d free clusters as per " 1966 "group info. But got %d blocks", 1967 free, ex.fe_len); 1968 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1969 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1970 /* 1971 * The number of free blocks differs. This mostly 1972 * indicate that the bitmap is corrupt. So exit 1973 * without claiming the space. 1974 */ 1975 break; 1976 } 1977 ex.fe_logical = 0xDEADC0DE; /* debug value */ 1978 ext4_mb_measure_extent(ac, &ex, e4b); 1979 1980 i += ex.fe_len; 1981 free -= ex.fe_len; 1982 } 1983 1984 ext4_mb_check_limits(ac, e4b, 1); 1985 } 1986 1987 /* 1988 * This is a special case for storages like raid5 1989 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1990 */ 1991 static noinline_for_stack 1992 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1993 struct ext4_buddy *e4b) 1994 { 1995 struct super_block *sb = ac->ac_sb; 1996 struct ext4_sb_info *sbi = EXT4_SB(sb); 1997 void *bitmap = e4b->bd_bitmap; 1998 struct ext4_free_extent ex; 1999 ext4_fsblk_t first_group_block; 2000 ext4_fsblk_t a; 2001 ext4_grpblk_t i; 2002 int max; 2003 2004 BUG_ON(sbi->s_stripe == 0); 2005 2006 /* find first stripe-aligned block in group */ 2007 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2008 2009 a = first_group_block + sbi->s_stripe - 1; 2010 do_div(a, sbi->s_stripe); 2011 i = (a * sbi->s_stripe) - first_group_block; 2012 2013 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2014 if (!mb_test_bit(i, bitmap)) { 2015 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 2016 if (max >= sbi->s_stripe) { 2017 ac->ac_found++; 2018 ex.fe_logical = 0xDEADF00D; /* debug value */ 2019 ac->ac_b_ex = ex; 2020 ext4_mb_use_best_found(ac, e4b); 2021 break; 2022 } 2023 } 2024 i += sbi->s_stripe; 2025 } 2026 } 2027 2028 /* 2029 * This is now called BEFORE we load the buddy bitmap. 2030 * Returns either 1 or 0 indicating that the group is either suitable 2031 * for the allocation or not. In addition it can also return negative 2032 * error code when something goes wrong. 2033 */ 2034 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 2035 ext4_group_t group, int cr) 2036 { 2037 unsigned free, fragments; 2038 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2039 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2040 2041 BUG_ON(cr < 0 || cr >= 4); 2042 2043 free = grp->bb_free; 2044 if (free == 0) 2045 return 0; 2046 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2047 return 0; 2048 2049 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2050 return 0; 2051 2052 /* We only do this if the grp has never been initialized */ 2053 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2054 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS); 2055 if (ret) 2056 return ret; 2057 } 2058 2059 fragments = grp->bb_fragments; 2060 if (fragments == 0) 2061 return 0; 2062 2063 switch (cr) { 2064 case 0: 2065 BUG_ON(ac->ac_2order == 0); 2066 2067 /* Avoid using the first bg of a flexgroup for data files */ 2068 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2069 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2070 ((group % flex_size) == 0)) 2071 return 0; 2072 2073 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) || 2074 (free / fragments) >= ac->ac_g_ex.fe_len) 2075 return 1; 2076 2077 if (grp->bb_largest_free_order < ac->ac_2order) 2078 return 0; 2079 2080 return 1; 2081 case 1: 2082 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2083 return 1; 2084 break; 2085 case 2: 2086 if (free >= ac->ac_g_ex.fe_len) 2087 return 1; 2088 break; 2089 case 3: 2090 return 1; 2091 default: 2092 BUG(); 2093 } 2094 2095 return 0; 2096 } 2097 2098 static noinline_for_stack int 2099 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2100 { 2101 ext4_group_t ngroups, group, i; 2102 int cr; 2103 int err = 0, first_err = 0; 2104 struct ext4_sb_info *sbi; 2105 struct super_block *sb; 2106 struct ext4_buddy e4b; 2107 2108 sb = ac->ac_sb; 2109 sbi = EXT4_SB(sb); 2110 ngroups = ext4_get_groups_count(sb); 2111 /* non-extent files are limited to low blocks/groups */ 2112 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2113 ngroups = sbi->s_blockfile_groups; 2114 2115 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2116 2117 /* first, try the goal */ 2118 err = ext4_mb_find_by_goal(ac, &e4b); 2119 if (err || ac->ac_status == AC_STATUS_FOUND) 2120 goto out; 2121 2122 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2123 goto out; 2124 2125 /* 2126 * ac->ac2_order is set only if the fe_len is a power of 2 2127 * if ac2_order is set we also set criteria to 0 so that we 2128 * try exact allocation using buddy. 2129 */ 2130 i = fls(ac->ac_g_ex.fe_len); 2131 ac->ac_2order = 0; 2132 /* 2133 * We search using buddy data only if the order of the request 2134 * is greater than equal to the sbi_s_mb_order2_reqs 2135 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2136 * We also support searching for power-of-two requests only for 2137 * requests upto maximum buddy size we have constructed. 2138 */ 2139 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) { 2140 /* 2141 * This should tell if fe_len is exactly power of 2 2142 */ 2143 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2144 ac->ac_2order = array_index_nospec(i - 1, 2145 sb->s_blocksize_bits + 2); 2146 } 2147 2148 /* if stream allocation is enabled, use global goal */ 2149 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2150 /* TBD: may be hot point */ 2151 spin_lock(&sbi->s_md_lock); 2152 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2153 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2154 spin_unlock(&sbi->s_md_lock); 2155 } 2156 2157 /* Let's just scan groups to find more-less suitable blocks */ 2158 cr = ac->ac_2order ? 0 : 1; 2159 /* 2160 * cr == 0 try to get exact allocation, 2161 * cr == 3 try to get anything 2162 */ 2163 repeat: 2164 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2165 ac->ac_criteria = cr; 2166 /* 2167 * searching for the right group start 2168 * from the goal value specified 2169 */ 2170 group = ac->ac_g_ex.fe_group; 2171 2172 for (i = 0; i < ngroups; group++, i++) { 2173 int ret = 0; 2174 cond_resched(); 2175 /* 2176 * Artificially restricted ngroups for non-extent 2177 * files makes group > ngroups possible on first loop. 2178 */ 2179 if (group >= ngroups) 2180 group = 0; 2181 2182 /* This now checks without needing the buddy page */ 2183 ret = ext4_mb_good_group(ac, group, cr); 2184 if (ret <= 0) { 2185 if (!first_err) 2186 first_err = ret; 2187 continue; 2188 } 2189 2190 err = ext4_mb_load_buddy(sb, group, &e4b); 2191 if (err) 2192 goto out; 2193 2194 ext4_lock_group(sb, group); 2195 2196 /* 2197 * We need to check again after locking the 2198 * block group 2199 */ 2200 ret = ext4_mb_good_group(ac, group, cr); 2201 if (ret <= 0) { 2202 ext4_unlock_group(sb, group); 2203 ext4_mb_unload_buddy(&e4b); 2204 if (!first_err) 2205 first_err = ret; 2206 continue; 2207 } 2208 2209 ac->ac_groups_scanned++; 2210 if (cr == 0) 2211 ext4_mb_simple_scan_group(ac, &e4b); 2212 else if (cr == 1 && sbi->s_stripe && 2213 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2214 ext4_mb_scan_aligned(ac, &e4b); 2215 else 2216 ext4_mb_complex_scan_group(ac, &e4b); 2217 2218 ext4_unlock_group(sb, group); 2219 ext4_mb_unload_buddy(&e4b); 2220 2221 if (ac->ac_status != AC_STATUS_CONTINUE) 2222 break; 2223 } 2224 } 2225 2226 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2227 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2228 /* 2229 * We've been searching too long. Let's try to allocate 2230 * the best chunk we've found so far 2231 */ 2232 2233 ext4_mb_try_best_found(ac, &e4b); 2234 if (ac->ac_status != AC_STATUS_FOUND) { 2235 /* 2236 * Someone more lucky has already allocated it. 2237 * The only thing we can do is just take first 2238 * found block(s) 2239 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2240 */ 2241 ac->ac_b_ex.fe_group = 0; 2242 ac->ac_b_ex.fe_start = 0; 2243 ac->ac_b_ex.fe_len = 0; 2244 ac->ac_status = AC_STATUS_CONTINUE; 2245 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2246 cr = 3; 2247 atomic_inc(&sbi->s_mb_lost_chunks); 2248 goto repeat; 2249 } 2250 } 2251 out: 2252 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2253 err = first_err; 2254 return err; 2255 } 2256 2257 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2258 { 2259 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2260 ext4_group_t group; 2261 2262 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2263 return NULL; 2264 group = *pos + 1; 2265 return (void *) ((unsigned long) group); 2266 } 2267 2268 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2269 { 2270 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2271 ext4_group_t group; 2272 2273 ++*pos; 2274 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2275 return NULL; 2276 group = *pos + 1; 2277 return (void *) ((unsigned long) group); 2278 } 2279 2280 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2281 { 2282 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2283 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2284 int i; 2285 int err, buddy_loaded = 0; 2286 struct ext4_buddy e4b; 2287 struct ext4_group_info *grinfo; 2288 unsigned char blocksize_bits = min_t(unsigned char, 2289 sb->s_blocksize_bits, 2290 EXT4_MAX_BLOCK_LOG_SIZE); 2291 struct sg { 2292 struct ext4_group_info info; 2293 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 2294 } sg; 2295 2296 group--; 2297 if (group == 0) 2298 seq_puts(seq, "#group: free frags first [" 2299 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 2300 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 2301 2302 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2303 sizeof(struct ext4_group_info); 2304 2305 grinfo = ext4_get_group_info(sb, group); 2306 /* Load the group info in memory only if not already loaded. */ 2307 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2308 err = ext4_mb_load_buddy(sb, group, &e4b); 2309 if (err) { 2310 seq_printf(seq, "#%-5u: I/O error\n", group); 2311 return 0; 2312 } 2313 buddy_loaded = 1; 2314 } 2315 2316 memcpy(&sg, ext4_get_group_info(sb, group), i); 2317 2318 if (buddy_loaded) 2319 ext4_mb_unload_buddy(&e4b); 2320 2321 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2322 sg.info.bb_fragments, sg.info.bb_first_free); 2323 for (i = 0; i <= 13; i++) 2324 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 2325 sg.info.bb_counters[i] : 0); 2326 seq_printf(seq, " ]\n"); 2327 2328 return 0; 2329 } 2330 2331 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2332 { 2333 } 2334 2335 const struct seq_operations ext4_mb_seq_groups_ops = { 2336 .start = ext4_mb_seq_groups_start, 2337 .next = ext4_mb_seq_groups_next, 2338 .stop = ext4_mb_seq_groups_stop, 2339 .show = ext4_mb_seq_groups_show, 2340 }; 2341 2342 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2343 { 2344 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2345 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2346 2347 BUG_ON(!cachep); 2348 return cachep; 2349 } 2350 2351 /* 2352 * Allocate the top-level s_group_info array for the specified number 2353 * of groups 2354 */ 2355 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2356 { 2357 struct ext4_sb_info *sbi = EXT4_SB(sb); 2358 unsigned size; 2359 struct ext4_group_info ***new_groupinfo; 2360 2361 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2362 EXT4_DESC_PER_BLOCK_BITS(sb); 2363 if (size <= sbi->s_group_info_size) 2364 return 0; 2365 2366 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2367 new_groupinfo = kvzalloc(size, GFP_KERNEL); 2368 if (!new_groupinfo) { 2369 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2370 return -ENOMEM; 2371 } 2372 if (sbi->s_group_info) { 2373 memcpy(new_groupinfo, sbi->s_group_info, 2374 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2375 kvfree(sbi->s_group_info); 2376 } 2377 sbi->s_group_info = new_groupinfo; 2378 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2379 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2380 sbi->s_group_info_size); 2381 return 0; 2382 } 2383 2384 /* Create and initialize ext4_group_info data for the given group. */ 2385 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2386 struct ext4_group_desc *desc) 2387 { 2388 int i; 2389 int metalen = 0; 2390 struct ext4_sb_info *sbi = EXT4_SB(sb); 2391 struct ext4_group_info **meta_group_info; 2392 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2393 2394 /* 2395 * First check if this group is the first of a reserved block. 2396 * If it's true, we have to allocate a new table of pointers 2397 * to ext4_group_info structures 2398 */ 2399 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2400 metalen = sizeof(*meta_group_info) << 2401 EXT4_DESC_PER_BLOCK_BITS(sb); 2402 meta_group_info = kmalloc(metalen, GFP_NOFS); 2403 if (meta_group_info == NULL) { 2404 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2405 "for a buddy group"); 2406 goto exit_meta_group_info; 2407 } 2408 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2409 meta_group_info; 2410 } 2411 2412 meta_group_info = 2413 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2414 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2415 2416 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 2417 if (meta_group_info[i] == NULL) { 2418 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2419 goto exit_group_info; 2420 } 2421 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2422 &(meta_group_info[i]->bb_state)); 2423 2424 /* 2425 * initialize bb_free to be able to skip 2426 * empty groups without initialization 2427 */ 2428 if (ext4_has_group_desc_csum(sb) && 2429 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 2430 meta_group_info[i]->bb_free = 2431 ext4_free_clusters_after_init(sb, group, desc); 2432 } else { 2433 meta_group_info[i]->bb_free = 2434 ext4_free_group_clusters(sb, desc); 2435 } 2436 2437 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2438 init_rwsem(&meta_group_info[i]->alloc_sem); 2439 meta_group_info[i]->bb_free_root = RB_ROOT; 2440 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2441 2442 #ifdef DOUBLE_CHECK 2443 { 2444 struct buffer_head *bh; 2445 meta_group_info[i]->bb_bitmap = 2446 kmalloc(sb->s_blocksize, GFP_NOFS); 2447 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2448 bh = ext4_read_block_bitmap(sb, group); 2449 BUG_ON(IS_ERR_OR_NULL(bh)); 2450 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2451 sb->s_blocksize); 2452 put_bh(bh); 2453 } 2454 #endif 2455 2456 return 0; 2457 2458 exit_group_info: 2459 /* If a meta_group_info table has been allocated, release it now */ 2460 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2461 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2462 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL; 2463 } 2464 exit_meta_group_info: 2465 return -ENOMEM; 2466 } /* ext4_mb_add_groupinfo */ 2467 2468 static int ext4_mb_init_backend(struct super_block *sb) 2469 { 2470 ext4_group_t ngroups = ext4_get_groups_count(sb); 2471 ext4_group_t i; 2472 struct ext4_sb_info *sbi = EXT4_SB(sb); 2473 int err; 2474 struct ext4_group_desc *desc; 2475 struct kmem_cache *cachep; 2476 2477 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2478 if (err) 2479 return err; 2480 2481 sbi->s_buddy_cache = new_inode(sb); 2482 if (sbi->s_buddy_cache == NULL) { 2483 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2484 goto err_freesgi; 2485 } 2486 /* To avoid potentially colliding with an valid on-disk inode number, 2487 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2488 * not in the inode hash, so it should never be found by iget(), but 2489 * this will avoid confusion if it ever shows up during debugging. */ 2490 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2491 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2492 for (i = 0; i < ngroups; i++) { 2493 desc = ext4_get_group_desc(sb, i, NULL); 2494 if (desc == NULL) { 2495 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2496 goto err_freebuddy; 2497 } 2498 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2499 goto err_freebuddy; 2500 } 2501 2502 return 0; 2503 2504 err_freebuddy: 2505 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2506 while (i-- > 0) 2507 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2508 i = sbi->s_group_info_size; 2509 while (i-- > 0) 2510 kfree(sbi->s_group_info[i]); 2511 iput(sbi->s_buddy_cache); 2512 err_freesgi: 2513 kvfree(sbi->s_group_info); 2514 return -ENOMEM; 2515 } 2516 2517 static void ext4_groupinfo_destroy_slabs(void) 2518 { 2519 int i; 2520 2521 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2522 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2523 ext4_groupinfo_caches[i] = NULL; 2524 } 2525 } 2526 2527 static int ext4_groupinfo_create_slab(size_t size) 2528 { 2529 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2530 int slab_size; 2531 int blocksize_bits = order_base_2(size); 2532 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2533 struct kmem_cache *cachep; 2534 2535 if (cache_index >= NR_GRPINFO_CACHES) 2536 return -EINVAL; 2537 2538 if (unlikely(cache_index < 0)) 2539 cache_index = 0; 2540 2541 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2542 if (ext4_groupinfo_caches[cache_index]) { 2543 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2544 return 0; /* Already created */ 2545 } 2546 2547 slab_size = offsetof(struct ext4_group_info, 2548 bb_counters[blocksize_bits + 2]); 2549 2550 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2551 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2552 NULL); 2553 2554 ext4_groupinfo_caches[cache_index] = cachep; 2555 2556 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2557 if (!cachep) { 2558 printk(KERN_EMERG 2559 "EXT4-fs: no memory for groupinfo slab cache\n"); 2560 return -ENOMEM; 2561 } 2562 2563 return 0; 2564 } 2565 2566 int ext4_mb_init(struct super_block *sb) 2567 { 2568 struct ext4_sb_info *sbi = EXT4_SB(sb); 2569 unsigned i, j; 2570 unsigned offset, offset_incr; 2571 unsigned max; 2572 int ret; 2573 2574 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2575 2576 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2577 if (sbi->s_mb_offsets == NULL) { 2578 ret = -ENOMEM; 2579 goto out; 2580 } 2581 2582 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2583 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2584 if (sbi->s_mb_maxs == NULL) { 2585 ret = -ENOMEM; 2586 goto out; 2587 } 2588 2589 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2590 if (ret < 0) 2591 goto out; 2592 2593 /* order 0 is regular bitmap */ 2594 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2595 sbi->s_mb_offsets[0] = 0; 2596 2597 i = 1; 2598 offset = 0; 2599 offset_incr = 1 << (sb->s_blocksize_bits - 1); 2600 max = sb->s_blocksize << 2; 2601 do { 2602 sbi->s_mb_offsets[i] = offset; 2603 sbi->s_mb_maxs[i] = max; 2604 offset += offset_incr; 2605 offset_incr = offset_incr >> 1; 2606 max = max >> 1; 2607 i++; 2608 } while (i <= sb->s_blocksize_bits + 1); 2609 2610 spin_lock_init(&sbi->s_md_lock); 2611 spin_lock_init(&sbi->s_bal_lock); 2612 sbi->s_mb_free_pending = 0; 2613 INIT_LIST_HEAD(&sbi->s_freed_data_list); 2614 2615 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2616 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2617 sbi->s_mb_stats = MB_DEFAULT_STATS; 2618 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2619 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2620 /* 2621 * The default group preallocation is 512, which for 4k block 2622 * sizes translates to 2 megabytes. However for bigalloc file 2623 * systems, this is probably too big (i.e, if the cluster size 2624 * is 1 megabyte, then group preallocation size becomes half a 2625 * gigabyte!). As a default, we will keep a two megabyte 2626 * group pralloc size for cluster sizes up to 64k, and after 2627 * that, we will force a minimum group preallocation size of 2628 * 32 clusters. This translates to 8 megs when the cluster 2629 * size is 256k, and 32 megs when the cluster size is 1 meg, 2630 * which seems reasonable as a default. 2631 */ 2632 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2633 sbi->s_cluster_bits, 32); 2634 /* 2635 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2636 * to the lowest multiple of s_stripe which is bigger than 2637 * the s_mb_group_prealloc as determined above. We want 2638 * the preallocation size to be an exact multiple of the 2639 * RAID stripe size so that preallocations don't fragment 2640 * the stripes. 2641 */ 2642 if (sbi->s_stripe > 1) { 2643 sbi->s_mb_group_prealloc = roundup( 2644 sbi->s_mb_group_prealloc, sbi->s_stripe); 2645 } 2646 2647 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2648 if (sbi->s_locality_groups == NULL) { 2649 ret = -ENOMEM; 2650 goto out; 2651 } 2652 for_each_possible_cpu(i) { 2653 struct ext4_locality_group *lg; 2654 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2655 mutex_init(&lg->lg_mutex); 2656 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2657 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2658 spin_lock_init(&lg->lg_prealloc_lock); 2659 } 2660 2661 /* init file for buddy data */ 2662 ret = ext4_mb_init_backend(sb); 2663 if (ret != 0) 2664 goto out_free_locality_groups; 2665 2666 return 0; 2667 2668 out_free_locality_groups: 2669 free_percpu(sbi->s_locality_groups); 2670 sbi->s_locality_groups = NULL; 2671 out: 2672 kfree(sbi->s_mb_offsets); 2673 sbi->s_mb_offsets = NULL; 2674 kfree(sbi->s_mb_maxs); 2675 sbi->s_mb_maxs = NULL; 2676 return ret; 2677 } 2678 2679 /* need to called with the ext4 group lock held */ 2680 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2681 { 2682 struct ext4_prealloc_space *pa; 2683 struct list_head *cur, *tmp; 2684 int count = 0; 2685 2686 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2687 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2688 list_del(&pa->pa_group_list); 2689 count++; 2690 kmem_cache_free(ext4_pspace_cachep, pa); 2691 } 2692 if (count) 2693 mb_debug(1, "mballoc: %u PAs left\n", count); 2694 2695 } 2696 2697 int ext4_mb_release(struct super_block *sb) 2698 { 2699 ext4_group_t ngroups = ext4_get_groups_count(sb); 2700 ext4_group_t i; 2701 int num_meta_group_infos; 2702 struct ext4_group_info *grinfo; 2703 struct ext4_sb_info *sbi = EXT4_SB(sb); 2704 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2705 2706 if (sbi->s_group_info) { 2707 for (i = 0; i < ngroups; i++) { 2708 grinfo = ext4_get_group_info(sb, i); 2709 #ifdef DOUBLE_CHECK 2710 kfree(grinfo->bb_bitmap); 2711 #endif 2712 ext4_lock_group(sb, i); 2713 ext4_mb_cleanup_pa(grinfo); 2714 ext4_unlock_group(sb, i); 2715 kmem_cache_free(cachep, grinfo); 2716 } 2717 num_meta_group_infos = (ngroups + 2718 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2719 EXT4_DESC_PER_BLOCK_BITS(sb); 2720 for (i = 0; i < num_meta_group_infos; i++) 2721 kfree(sbi->s_group_info[i]); 2722 kvfree(sbi->s_group_info); 2723 } 2724 kfree(sbi->s_mb_offsets); 2725 kfree(sbi->s_mb_maxs); 2726 iput(sbi->s_buddy_cache); 2727 if (sbi->s_mb_stats) { 2728 ext4_msg(sb, KERN_INFO, 2729 "mballoc: %u blocks %u reqs (%u success)", 2730 atomic_read(&sbi->s_bal_allocated), 2731 atomic_read(&sbi->s_bal_reqs), 2732 atomic_read(&sbi->s_bal_success)); 2733 ext4_msg(sb, KERN_INFO, 2734 "mballoc: %u extents scanned, %u goal hits, " 2735 "%u 2^N hits, %u breaks, %u lost", 2736 atomic_read(&sbi->s_bal_ex_scanned), 2737 atomic_read(&sbi->s_bal_goals), 2738 atomic_read(&sbi->s_bal_2orders), 2739 atomic_read(&sbi->s_bal_breaks), 2740 atomic_read(&sbi->s_mb_lost_chunks)); 2741 ext4_msg(sb, KERN_INFO, 2742 "mballoc: %lu generated and it took %Lu", 2743 sbi->s_mb_buddies_generated, 2744 sbi->s_mb_generation_time); 2745 ext4_msg(sb, KERN_INFO, 2746 "mballoc: %u preallocated, %u discarded", 2747 atomic_read(&sbi->s_mb_preallocated), 2748 atomic_read(&sbi->s_mb_discarded)); 2749 } 2750 2751 free_percpu(sbi->s_locality_groups); 2752 2753 return 0; 2754 } 2755 2756 static inline int ext4_issue_discard(struct super_block *sb, 2757 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 2758 struct bio **biop) 2759 { 2760 ext4_fsblk_t discard_block; 2761 2762 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2763 ext4_group_first_block_no(sb, block_group)); 2764 count = EXT4_C2B(EXT4_SB(sb), count); 2765 trace_ext4_discard_blocks(sb, 2766 (unsigned long long) discard_block, count); 2767 if (biop) { 2768 return __blkdev_issue_discard(sb->s_bdev, 2769 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 2770 (sector_t)count << (sb->s_blocksize_bits - 9), 2771 GFP_NOFS, 0, biop); 2772 } else 2773 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2774 } 2775 2776 static void ext4_free_data_in_buddy(struct super_block *sb, 2777 struct ext4_free_data *entry) 2778 { 2779 struct ext4_buddy e4b; 2780 struct ext4_group_info *db; 2781 int err, count = 0, count2 = 0; 2782 2783 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2784 entry->efd_count, entry->efd_group, entry); 2785 2786 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2787 /* we expect to find existing buddy because it's pinned */ 2788 BUG_ON(err != 0); 2789 2790 spin_lock(&EXT4_SB(sb)->s_md_lock); 2791 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 2792 spin_unlock(&EXT4_SB(sb)->s_md_lock); 2793 2794 db = e4b.bd_info; 2795 /* there are blocks to put in buddy to make them really free */ 2796 count += entry->efd_count; 2797 count2++; 2798 ext4_lock_group(sb, entry->efd_group); 2799 /* Take it out of per group rb tree */ 2800 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2801 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2802 2803 /* 2804 * Clear the trimmed flag for the group so that the next 2805 * ext4_trim_fs can trim it. 2806 * If the volume is mounted with -o discard, online discard 2807 * is supported and the free blocks will be trimmed online. 2808 */ 2809 if (!test_opt(sb, DISCARD)) 2810 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2811 2812 if (!db->bb_free_root.rb_node) { 2813 /* No more items in the per group rb tree 2814 * balance refcounts from ext4_mb_free_metadata() 2815 */ 2816 put_page(e4b.bd_buddy_page); 2817 put_page(e4b.bd_bitmap_page); 2818 } 2819 ext4_unlock_group(sb, entry->efd_group); 2820 kmem_cache_free(ext4_free_data_cachep, entry); 2821 ext4_mb_unload_buddy(&e4b); 2822 2823 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2824 } 2825 2826 /* 2827 * This function is called by the jbd2 layer once the commit has finished, 2828 * so we know we can free the blocks that were released with that commit. 2829 */ 2830 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 2831 { 2832 struct ext4_sb_info *sbi = EXT4_SB(sb); 2833 struct ext4_free_data *entry, *tmp; 2834 struct bio *discard_bio = NULL; 2835 struct list_head freed_data_list; 2836 struct list_head *cut_pos = NULL; 2837 int err; 2838 2839 INIT_LIST_HEAD(&freed_data_list); 2840 2841 spin_lock(&sbi->s_md_lock); 2842 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 2843 if (entry->efd_tid != commit_tid) 2844 break; 2845 cut_pos = &entry->efd_list; 2846 } 2847 if (cut_pos) 2848 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 2849 cut_pos); 2850 spin_unlock(&sbi->s_md_lock); 2851 2852 if (test_opt(sb, DISCARD)) { 2853 list_for_each_entry(entry, &freed_data_list, efd_list) { 2854 err = ext4_issue_discard(sb, entry->efd_group, 2855 entry->efd_start_cluster, 2856 entry->efd_count, 2857 &discard_bio); 2858 if (err && err != -EOPNOTSUPP) { 2859 ext4_msg(sb, KERN_WARNING, "discard request in" 2860 " group:%d block:%d count:%d failed" 2861 " with %d", entry->efd_group, 2862 entry->efd_start_cluster, 2863 entry->efd_count, err); 2864 } else if (err == -EOPNOTSUPP) 2865 break; 2866 } 2867 2868 if (discard_bio) { 2869 submit_bio_wait(discard_bio); 2870 bio_put(discard_bio); 2871 } 2872 } 2873 2874 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 2875 ext4_free_data_in_buddy(sb, entry); 2876 } 2877 2878 int __init ext4_init_mballoc(void) 2879 { 2880 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2881 SLAB_RECLAIM_ACCOUNT); 2882 if (ext4_pspace_cachep == NULL) 2883 return -ENOMEM; 2884 2885 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2886 SLAB_RECLAIM_ACCOUNT); 2887 if (ext4_ac_cachep == NULL) { 2888 kmem_cache_destroy(ext4_pspace_cachep); 2889 return -ENOMEM; 2890 } 2891 2892 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2893 SLAB_RECLAIM_ACCOUNT); 2894 if (ext4_free_data_cachep == NULL) { 2895 kmem_cache_destroy(ext4_pspace_cachep); 2896 kmem_cache_destroy(ext4_ac_cachep); 2897 return -ENOMEM; 2898 } 2899 return 0; 2900 } 2901 2902 void ext4_exit_mballoc(void) 2903 { 2904 /* 2905 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2906 * before destroying the slab cache. 2907 */ 2908 rcu_barrier(); 2909 kmem_cache_destroy(ext4_pspace_cachep); 2910 kmem_cache_destroy(ext4_ac_cachep); 2911 kmem_cache_destroy(ext4_free_data_cachep); 2912 ext4_groupinfo_destroy_slabs(); 2913 } 2914 2915 2916 /* 2917 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2918 * Returns 0 if success or error code 2919 */ 2920 static noinline_for_stack int 2921 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2922 handle_t *handle, unsigned int reserv_clstrs) 2923 { 2924 struct buffer_head *bitmap_bh = NULL; 2925 struct ext4_group_desc *gdp; 2926 struct buffer_head *gdp_bh; 2927 struct ext4_sb_info *sbi; 2928 struct super_block *sb; 2929 ext4_fsblk_t block; 2930 int err, len; 2931 2932 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2933 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2934 2935 sb = ac->ac_sb; 2936 sbi = EXT4_SB(sb); 2937 2938 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2939 if (IS_ERR(bitmap_bh)) { 2940 err = PTR_ERR(bitmap_bh); 2941 bitmap_bh = NULL; 2942 goto out_err; 2943 } 2944 2945 BUFFER_TRACE(bitmap_bh, "getting write access"); 2946 err = ext4_journal_get_write_access(handle, bitmap_bh); 2947 if (err) 2948 goto out_err; 2949 2950 err = -EIO; 2951 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2952 if (!gdp) 2953 goto out_err; 2954 2955 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2956 ext4_free_group_clusters(sb, gdp)); 2957 2958 BUFFER_TRACE(gdp_bh, "get_write_access"); 2959 err = ext4_journal_get_write_access(handle, gdp_bh); 2960 if (err) 2961 goto out_err; 2962 2963 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2964 2965 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2966 if (!ext4_data_block_valid(sbi, block, len)) { 2967 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2968 "fs metadata", block, block+len); 2969 /* File system mounted not to panic on error 2970 * Fix the bitmap and return EFSCORRUPTED 2971 * We leak some of the blocks here. 2972 */ 2973 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2974 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2975 ac->ac_b_ex.fe_len); 2976 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2977 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2978 if (!err) 2979 err = -EFSCORRUPTED; 2980 goto out_err; 2981 } 2982 2983 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2984 #ifdef AGGRESSIVE_CHECK 2985 { 2986 int i; 2987 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2988 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2989 bitmap_bh->b_data)); 2990 } 2991 } 2992 #endif 2993 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2994 ac->ac_b_ex.fe_len); 2995 if (ext4_has_group_desc_csum(sb) && 2996 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 2997 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2998 ext4_free_group_clusters_set(sb, gdp, 2999 ext4_free_clusters_after_init(sb, 3000 ac->ac_b_ex.fe_group, gdp)); 3001 } 3002 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 3003 ext4_free_group_clusters_set(sb, gdp, len); 3004 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 3005 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 3006 3007 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3008 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 3009 /* 3010 * Now reduce the dirty block count also. Should not go negative 3011 */ 3012 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 3013 /* release all the reserved blocks if non delalloc */ 3014 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 3015 reserv_clstrs); 3016 3017 if (sbi->s_log_groups_per_flex) { 3018 ext4_group_t flex_group = ext4_flex_group(sbi, 3019 ac->ac_b_ex.fe_group); 3020 atomic64_sub(ac->ac_b_ex.fe_len, 3021 &sbi->s_flex_groups[flex_group].free_clusters); 3022 } 3023 3024 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3025 if (err) 3026 goto out_err; 3027 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 3028 3029 out_err: 3030 brelse(bitmap_bh); 3031 return err; 3032 } 3033 3034 /* 3035 * here we normalize request for locality group 3036 * Group request are normalized to s_mb_group_prealloc, which goes to 3037 * s_strip if we set the same via mount option. 3038 * s_mb_group_prealloc can be configured via 3039 * /sys/fs/ext4/<partition>/mb_group_prealloc 3040 * 3041 * XXX: should we try to preallocate more than the group has now? 3042 */ 3043 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 3044 { 3045 struct super_block *sb = ac->ac_sb; 3046 struct ext4_locality_group *lg = ac->ac_lg; 3047 3048 BUG_ON(lg == NULL); 3049 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 3050 mb_debug(1, "#%u: goal %u blocks for locality group\n", 3051 current->pid, ac->ac_g_ex.fe_len); 3052 } 3053 3054 /* 3055 * Normalization means making request better in terms of 3056 * size and alignment 3057 */ 3058 static noinline_for_stack void 3059 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3060 struct ext4_allocation_request *ar) 3061 { 3062 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3063 int bsbits, max; 3064 ext4_lblk_t end; 3065 loff_t size, start_off; 3066 loff_t orig_size __maybe_unused; 3067 ext4_lblk_t start; 3068 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3069 struct ext4_prealloc_space *pa; 3070 3071 /* do normalize only data requests, metadata requests 3072 do not need preallocation */ 3073 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3074 return; 3075 3076 /* sometime caller may want exact blocks */ 3077 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3078 return; 3079 3080 /* caller may indicate that preallocation isn't 3081 * required (it's a tail, for example) */ 3082 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3083 return; 3084 3085 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3086 ext4_mb_normalize_group_request(ac); 3087 return ; 3088 } 3089 3090 bsbits = ac->ac_sb->s_blocksize_bits; 3091 3092 /* first, let's learn actual file size 3093 * given current request is allocated */ 3094 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3095 size = size << bsbits; 3096 if (size < i_size_read(ac->ac_inode)) 3097 size = i_size_read(ac->ac_inode); 3098 orig_size = size; 3099 3100 /* max size of free chunks */ 3101 max = 2 << bsbits; 3102 3103 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3104 (req <= (size) || max <= (chunk_size)) 3105 3106 /* first, try to predict filesize */ 3107 /* XXX: should this table be tunable? */ 3108 start_off = 0; 3109 if (size <= 16 * 1024) { 3110 size = 16 * 1024; 3111 } else if (size <= 32 * 1024) { 3112 size = 32 * 1024; 3113 } else if (size <= 64 * 1024) { 3114 size = 64 * 1024; 3115 } else if (size <= 128 * 1024) { 3116 size = 128 * 1024; 3117 } else if (size <= 256 * 1024) { 3118 size = 256 * 1024; 3119 } else if (size <= 512 * 1024) { 3120 size = 512 * 1024; 3121 } else if (size <= 1024 * 1024) { 3122 size = 1024 * 1024; 3123 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3124 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3125 (21 - bsbits)) << 21; 3126 size = 2 * 1024 * 1024; 3127 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3128 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3129 (22 - bsbits)) << 22; 3130 size = 4 * 1024 * 1024; 3131 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3132 (8<<20)>>bsbits, max, 8 * 1024)) { 3133 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3134 (23 - bsbits)) << 23; 3135 size = 8 * 1024 * 1024; 3136 } else { 3137 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 3138 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 3139 ac->ac_o_ex.fe_len) << bsbits; 3140 } 3141 size = size >> bsbits; 3142 start = start_off >> bsbits; 3143 3144 /* don't cover already allocated blocks in selected range */ 3145 if (ar->pleft && start <= ar->lleft) { 3146 size -= ar->lleft + 1 - start; 3147 start = ar->lleft + 1; 3148 } 3149 if (ar->pright && start + size - 1 >= ar->lright) 3150 size -= start + size - ar->lright; 3151 3152 /* 3153 * Trim allocation request for filesystems with artificially small 3154 * groups. 3155 */ 3156 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 3157 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 3158 3159 end = start + size; 3160 3161 /* check we don't cross already preallocated blocks */ 3162 rcu_read_lock(); 3163 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3164 ext4_lblk_t pa_end; 3165 3166 if (pa->pa_deleted) 3167 continue; 3168 spin_lock(&pa->pa_lock); 3169 if (pa->pa_deleted) { 3170 spin_unlock(&pa->pa_lock); 3171 continue; 3172 } 3173 3174 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3175 pa->pa_len); 3176 3177 /* PA must not overlap original request */ 3178 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3179 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3180 3181 /* skip PAs this normalized request doesn't overlap with */ 3182 if (pa->pa_lstart >= end || pa_end <= start) { 3183 spin_unlock(&pa->pa_lock); 3184 continue; 3185 } 3186 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3187 3188 /* adjust start or end to be adjacent to this pa */ 3189 if (pa_end <= ac->ac_o_ex.fe_logical) { 3190 BUG_ON(pa_end < start); 3191 start = pa_end; 3192 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3193 BUG_ON(pa->pa_lstart > end); 3194 end = pa->pa_lstart; 3195 } 3196 spin_unlock(&pa->pa_lock); 3197 } 3198 rcu_read_unlock(); 3199 size = end - start; 3200 3201 /* XXX: extra loop to check we really don't overlap preallocations */ 3202 rcu_read_lock(); 3203 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3204 ext4_lblk_t pa_end; 3205 3206 spin_lock(&pa->pa_lock); 3207 if (pa->pa_deleted == 0) { 3208 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3209 pa->pa_len); 3210 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3211 } 3212 spin_unlock(&pa->pa_lock); 3213 } 3214 rcu_read_unlock(); 3215 3216 if (start + size <= ac->ac_o_ex.fe_logical && 3217 start > ac->ac_o_ex.fe_logical) { 3218 ext4_msg(ac->ac_sb, KERN_ERR, 3219 "start %lu, size %lu, fe_logical %lu", 3220 (unsigned long) start, (unsigned long) size, 3221 (unsigned long) ac->ac_o_ex.fe_logical); 3222 BUG(); 3223 } 3224 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3225 3226 /* now prepare goal request */ 3227 3228 /* XXX: is it better to align blocks WRT to logical 3229 * placement or satisfy big request as is */ 3230 ac->ac_g_ex.fe_logical = start; 3231 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3232 3233 /* define goal start in order to merge */ 3234 if (ar->pright && (ar->lright == (start + size))) { 3235 /* merge to the right */ 3236 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3237 &ac->ac_f_ex.fe_group, 3238 &ac->ac_f_ex.fe_start); 3239 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3240 } 3241 if (ar->pleft && (ar->lleft + 1 == start)) { 3242 /* merge to the left */ 3243 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3244 &ac->ac_f_ex.fe_group, 3245 &ac->ac_f_ex.fe_start); 3246 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3247 } 3248 3249 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3250 (unsigned) orig_size, (unsigned) start); 3251 } 3252 3253 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3254 { 3255 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3256 3257 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3258 atomic_inc(&sbi->s_bal_reqs); 3259 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3260 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3261 atomic_inc(&sbi->s_bal_success); 3262 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3263 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3264 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3265 atomic_inc(&sbi->s_bal_goals); 3266 if (ac->ac_found > sbi->s_mb_max_to_scan) 3267 atomic_inc(&sbi->s_bal_breaks); 3268 } 3269 3270 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3271 trace_ext4_mballoc_alloc(ac); 3272 else 3273 trace_ext4_mballoc_prealloc(ac); 3274 } 3275 3276 /* 3277 * Called on failure; free up any blocks from the inode PA for this 3278 * context. We don't need this for MB_GROUP_PA because we only change 3279 * pa_free in ext4_mb_release_context(), but on failure, we've already 3280 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3281 */ 3282 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3283 { 3284 struct ext4_prealloc_space *pa = ac->ac_pa; 3285 struct ext4_buddy e4b; 3286 int err; 3287 3288 if (pa == NULL) { 3289 if (ac->ac_f_ex.fe_len == 0) 3290 return; 3291 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 3292 if (err) { 3293 /* 3294 * This should never happen since we pin the 3295 * pages in the ext4_allocation_context so 3296 * ext4_mb_load_buddy() should never fail. 3297 */ 3298 WARN(1, "mb_load_buddy failed (%d)", err); 3299 return; 3300 } 3301 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3302 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 3303 ac->ac_f_ex.fe_len); 3304 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3305 ext4_mb_unload_buddy(&e4b); 3306 return; 3307 } 3308 if (pa->pa_type == MB_INODE_PA) 3309 pa->pa_free += ac->ac_b_ex.fe_len; 3310 } 3311 3312 /* 3313 * use blocks preallocated to inode 3314 */ 3315 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3316 struct ext4_prealloc_space *pa) 3317 { 3318 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3319 ext4_fsblk_t start; 3320 ext4_fsblk_t end; 3321 int len; 3322 3323 /* found preallocated blocks, use them */ 3324 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3325 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3326 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3327 len = EXT4_NUM_B2C(sbi, end - start); 3328 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3329 &ac->ac_b_ex.fe_start); 3330 ac->ac_b_ex.fe_len = len; 3331 ac->ac_status = AC_STATUS_FOUND; 3332 ac->ac_pa = pa; 3333 3334 BUG_ON(start < pa->pa_pstart); 3335 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3336 BUG_ON(pa->pa_free < len); 3337 pa->pa_free -= len; 3338 3339 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3340 } 3341 3342 /* 3343 * use blocks preallocated to locality group 3344 */ 3345 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3346 struct ext4_prealloc_space *pa) 3347 { 3348 unsigned int len = ac->ac_o_ex.fe_len; 3349 3350 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3351 &ac->ac_b_ex.fe_group, 3352 &ac->ac_b_ex.fe_start); 3353 ac->ac_b_ex.fe_len = len; 3354 ac->ac_status = AC_STATUS_FOUND; 3355 ac->ac_pa = pa; 3356 3357 /* we don't correct pa_pstart or pa_plen here to avoid 3358 * possible race when the group is being loaded concurrently 3359 * instead we correct pa later, after blocks are marked 3360 * in on-disk bitmap -- see ext4_mb_release_context() 3361 * Other CPUs are prevented from allocating from this pa by lg_mutex 3362 */ 3363 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3364 } 3365 3366 /* 3367 * Return the prealloc space that have minimal distance 3368 * from the goal block. @cpa is the prealloc 3369 * space that is having currently known minimal distance 3370 * from the goal block. 3371 */ 3372 static struct ext4_prealloc_space * 3373 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3374 struct ext4_prealloc_space *pa, 3375 struct ext4_prealloc_space *cpa) 3376 { 3377 ext4_fsblk_t cur_distance, new_distance; 3378 3379 if (cpa == NULL) { 3380 atomic_inc(&pa->pa_count); 3381 return pa; 3382 } 3383 cur_distance = abs(goal_block - cpa->pa_pstart); 3384 new_distance = abs(goal_block - pa->pa_pstart); 3385 3386 if (cur_distance <= new_distance) 3387 return cpa; 3388 3389 /* drop the previous reference */ 3390 atomic_dec(&cpa->pa_count); 3391 atomic_inc(&pa->pa_count); 3392 return pa; 3393 } 3394 3395 /* 3396 * search goal blocks in preallocated space 3397 */ 3398 static noinline_for_stack int 3399 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3400 { 3401 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3402 int order, i; 3403 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3404 struct ext4_locality_group *lg; 3405 struct ext4_prealloc_space *pa, *cpa = NULL; 3406 ext4_fsblk_t goal_block; 3407 3408 /* only data can be preallocated */ 3409 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3410 return 0; 3411 3412 /* first, try per-file preallocation */ 3413 rcu_read_lock(); 3414 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3415 3416 /* all fields in this condition don't change, 3417 * so we can skip locking for them */ 3418 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3419 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3420 EXT4_C2B(sbi, pa->pa_len))) 3421 continue; 3422 3423 /* non-extent files can't have physical blocks past 2^32 */ 3424 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3425 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3426 EXT4_MAX_BLOCK_FILE_PHYS)) 3427 continue; 3428 3429 /* found preallocated blocks, use them */ 3430 spin_lock(&pa->pa_lock); 3431 if (pa->pa_deleted == 0 && pa->pa_free) { 3432 atomic_inc(&pa->pa_count); 3433 ext4_mb_use_inode_pa(ac, pa); 3434 spin_unlock(&pa->pa_lock); 3435 ac->ac_criteria = 10; 3436 rcu_read_unlock(); 3437 return 1; 3438 } 3439 spin_unlock(&pa->pa_lock); 3440 } 3441 rcu_read_unlock(); 3442 3443 /* can we use group allocation? */ 3444 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3445 return 0; 3446 3447 /* inode may have no locality group for some reason */ 3448 lg = ac->ac_lg; 3449 if (lg == NULL) 3450 return 0; 3451 order = fls(ac->ac_o_ex.fe_len) - 1; 3452 if (order > PREALLOC_TB_SIZE - 1) 3453 /* The max size of hash table is PREALLOC_TB_SIZE */ 3454 order = PREALLOC_TB_SIZE - 1; 3455 3456 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3457 /* 3458 * search for the prealloc space that is having 3459 * minimal distance from the goal block. 3460 */ 3461 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3462 rcu_read_lock(); 3463 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3464 pa_inode_list) { 3465 spin_lock(&pa->pa_lock); 3466 if (pa->pa_deleted == 0 && 3467 pa->pa_free >= ac->ac_o_ex.fe_len) { 3468 3469 cpa = ext4_mb_check_group_pa(goal_block, 3470 pa, cpa); 3471 } 3472 spin_unlock(&pa->pa_lock); 3473 } 3474 rcu_read_unlock(); 3475 } 3476 if (cpa) { 3477 ext4_mb_use_group_pa(ac, cpa); 3478 ac->ac_criteria = 20; 3479 return 1; 3480 } 3481 return 0; 3482 } 3483 3484 /* 3485 * the function goes through all block freed in the group 3486 * but not yet committed and marks them used in in-core bitmap. 3487 * buddy must be generated from this bitmap 3488 * Need to be called with the ext4 group lock held 3489 */ 3490 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3491 ext4_group_t group) 3492 { 3493 struct rb_node *n; 3494 struct ext4_group_info *grp; 3495 struct ext4_free_data *entry; 3496 3497 grp = ext4_get_group_info(sb, group); 3498 n = rb_first(&(grp->bb_free_root)); 3499 3500 while (n) { 3501 entry = rb_entry(n, struct ext4_free_data, efd_node); 3502 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3503 n = rb_next(n); 3504 } 3505 return; 3506 } 3507 3508 /* 3509 * the function goes through all preallocation in this group and marks them 3510 * used in in-core bitmap. buddy must be generated from this bitmap 3511 * Need to be called with ext4 group lock held 3512 */ 3513 static noinline_for_stack 3514 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3515 ext4_group_t group) 3516 { 3517 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3518 struct ext4_prealloc_space *pa; 3519 struct list_head *cur; 3520 ext4_group_t groupnr; 3521 ext4_grpblk_t start; 3522 int preallocated = 0; 3523 int len; 3524 3525 /* all form of preallocation discards first load group, 3526 * so the only competing code is preallocation use. 3527 * we don't need any locking here 3528 * notice we do NOT ignore preallocations with pa_deleted 3529 * otherwise we could leave used blocks available for 3530 * allocation in buddy when concurrent ext4_mb_put_pa() 3531 * is dropping preallocation 3532 */ 3533 list_for_each(cur, &grp->bb_prealloc_list) { 3534 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3535 spin_lock(&pa->pa_lock); 3536 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3537 &groupnr, &start); 3538 len = pa->pa_len; 3539 spin_unlock(&pa->pa_lock); 3540 if (unlikely(len == 0)) 3541 continue; 3542 BUG_ON(groupnr != group); 3543 ext4_set_bits(bitmap, start, len); 3544 preallocated += len; 3545 } 3546 mb_debug(1, "preallocated %u for group %u\n", preallocated, group); 3547 } 3548 3549 static void ext4_mb_pa_callback(struct rcu_head *head) 3550 { 3551 struct ext4_prealloc_space *pa; 3552 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3553 3554 BUG_ON(atomic_read(&pa->pa_count)); 3555 BUG_ON(pa->pa_deleted == 0); 3556 kmem_cache_free(ext4_pspace_cachep, pa); 3557 } 3558 3559 /* 3560 * drops a reference to preallocated space descriptor 3561 * if this was the last reference and the space is consumed 3562 */ 3563 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3564 struct super_block *sb, struct ext4_prealloc_space *pa) 3565 { 3566 ext4_group_t grp; 3567 ext4_fsblk_t grp_blk; 3568 3569 /* in this short window concurrent discard can set pa_deleted */ 3570 spin_lock(&pa->pa_lock); 3571 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 3572 spin_unlock(&pa->pa_lock); 3573 return; 3574 } 3575 3576 if (pa->pa_deleted == 1) { 3577 spin_unlock(&pa->pa_lock); 3578 return; 3579 } 3580 3581 pa->pa_deleted = 1; 3582 spin_unlock(&pa->pa_lock); 3583 3584 grp_blk = pa->pa_pstart; 3585 /* 3586 * If doing group-based preallocation, pa_pstart may be in the 3587 * next group when pa is used up 3588 */ 3589 if (pa->pa_type == MB_GROUP_PA) 3590 grp_blk--; 3591 3592 grp = ext4_get_group_number(sb, grp_blk); 3593 3594 /* 3595 * possible race: 3596 * 3597 * P1 (buddy init) P2 (regular allocation) 3598 * find block B in PA 3599 * copy on-disk bitmap to buddy 3600 * mark B in on-disk bitmap 3601 * drop PA from group 3602 * mark all PAs in buddy 3603 * 3604 * thus, P1 initializes buddy with B available. to prevent this 3605 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3606 * against that pair 3607 */ 3608 ext4_lock_group(sb, grp); 3609 list_del(&pa->pa_group_list); 3610 ext4_unlock_group(sb, grp); 3611 3612 spin_lock(pa->pa_obj_lock); 3613 list_del_rcu(&pa->pa_inode_list); 3614 spin_unlock(pa->pa_obj_lock); 3615 3616 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3617 } 3618 3619 /* 3620 * creates new preallocated space for given inode 3621 */ 3622 static noinline_for_stack int 3623 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3624 { 3625 struct super_block *sb = ac->ac_sb; 3626 struct ext4_sb_info *sbi = EXT4_SB(sb); 3627 struct ext4_prealloc_space *pa; 3628 struct ext4_group_info *grp; 3629 struct ext4_inode_info *ei; 3630 3631 /* preallocate only when found space is larger then requested */ 3632 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3633 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3634 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3635 3636 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3637 if (pa == NULL) 3638 return -ENOMEM; 3639 3640 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3641 int winl; 3642 int wins; 3643 int win; 3644 int offs; 3645 3646 /* we can't allocate as much as normalizer wants. 3647 * so, found space must get proper lstart 3648 * to cover original request */ 3649 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3650 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3651 3652 /* we're limited by original request in that 3653 * logical block must be covered any way 3654 * winl is window we can move our chunk within */ 3655 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3656 3657 /* also, we should cover whole original request */ 3658 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3659 3660 /* the smallest one defines real window */ 3661 win = min(winl, wins); 3662 3663 offs = ac->ac_o_ex.fe_logical % 3664 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3665 if (offs && offs < win) 3666 win = offs; 3667 3668 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3669 EXT4_NUM_B2C(sbi, win); 3670 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3671 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3672 } 3673 3674 /* preallocation can change ac_b_ex, thus we store actually 3675 * allocated blocks for history */ 3676 ac->ac_f_ex = ac->ac_b_ex; 3677 3678 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3679 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3680 pa->pa_len = ac->ac_b_ex.fe_len; 3681 pa->pa_free = pa->pa_len; 3682 atomic_set(&pa->pa_count, 1); 3683 spin_lock_init(&pa->pa_lock); 3684 INIT_LIST_HEAD(&pa->pa_inode_list); 3685 INIT_LIST_HEAD(&pa->pa_group_list); 3686 pa->pa_deleted = 0; 3687 pa->pa_type = MB_INODE_PA; 3688 3689 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3690 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3691 trace_ext4_mb_new_inode_pa(ac, pa); 3692 3693 ext4_mb_use_inode_pa(ac, pa); 3694 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3695 3696 ei = EXT4_I(ac->ac_inode); 3697 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3698 3699 pa->pa_obj_lock = &ei->i_prealloc_lock; 3700 pa->pa_inode = ac->ac_inode; 3701 3702 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3703 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3704 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3705 3706 spin_lock(pa->pa_obj_lock); 3707 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3708 spin_unlock(pa->pa_obj_lock); 3709 3710 return 0; 3711 } 3712 3713 /* 3714 * creates new preallocated space for locality group inodes belongs to 3715 */ 3716 static noinline_for_stack int 3717 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3718 { 3719 struct super_block *sb = ac->ac_sb; 3720 struct ext4_locality_group *lg; 3721 struct ext4_prealloc_space *pa; 3722 struct ext4_group_info *grp; 3723 3724 /* preallocate only when found space is larger then requested */ 3725 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3726 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3727 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3728 3729 BUG_ON(ext4_pspace_cachep == NULL); 3730 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3731 if (pa == NULL) 3732 return -ENOMEM; 3733 3734 /* preallocation can change ac_b_ex, thus we store actually 3735 * allocated blocks for history */ 3736 ac->ac_f_ex = ac->ac_b_ex; 3737 3738 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3739 pa->pa_lstart = pa->pa_pstart; 3740 pa->pa_len = ac->ac_b_ex.fe_len; 3741 pa->pa_free = pa->pa_len; 3742 atomic_set(&pa->pa_count, 1); 3743 spin_lock_init(&pa->pa_lock); 3744 INIT_LIST_HEAD(&pa->pa_inode_list); 3745 INIT_LIST_HEAD(&pa->pa_group_list); 3746 pa->pa_deleted = 0; 3747 pa->pa_type = MB_GROUP_PA; 3748 3749 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3750 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3751 trace_ext4_mb_new_group_pa(ac, pa); 3752 3753 ext4_mb_use_group_pa(ac, pa); 3754 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3755 3756 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3757 lg = ac->ac_lg; 3758 BUG_ON(lg == NULL); 3759 3760 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3761 pa->pa_inode = NULL; 3762 3763 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3764 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3765 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3766 3767 /* 3768 * We will later add the new pa to the right bucket 3769 * after updating the pa_free in ext4_mb_release_context 3770 */ 3771 return 0; 3772 } 3773 3774 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3775 { 3776 int err; 3777 3778 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3779 err = ext4_mb_new_group_pa(ac); 3780 else 3781 err = ext4_mb_new_inode_pa(ac); 3782 return err; 3783 } 3784 3785 /* 3786 * finds all unused blocks in on-disk bitmap, frees them in 3787 * in-core bitmap and buddy. 3788 * @pa must be unlinked from inode and group lists, so that 3789 * nobody else can find/use it. 3790 * the caller MUST hold group/inode locks. 3791 * TODO: optimize the case when there are no in-core structures yet 3792 */ 3793 static noinline_for_stack int 3794 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3795 struct ext4_prealloc_space *pa) 3796 { 3797 struct super_block *sb = e4b->bd_sb; 3798 struct ext4_sb_info *sbi = EXT4_SB(sb); 3799 unsigned int end; 3800 unsigned int next; 3801 ext4_group_t group; 3802 ext4_grpblk_t bit; 3803 unsigned long long grp_blk_start; 3804 int free = 0; 3805 3806 BUG_ON(pa->pa_deleted == 0); 3807 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3808 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3809 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3810 end = bit + pa->pa_len; 3811 3812 while (bit < end) { 3813 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3814 if (bit >= end) 3815 break; 3816 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3817 mb_debug(1, " free preallocated %u/%u in group %u\n", 3818 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3819 (unsigned) next - bit, (unsigned) group); 3820 free += next - bit; 3821 3822 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3823 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3824 EXT4_C2B(sbi, bit)), 3825 next - bit); 3826 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3827 bit = next + 1; 3828 } 3829 if (free != pa->pa_free) { 3830 ext4_msg(e4b->bd_sb, KERN_CRIT, 3831 "pa %p: logic %lu, phys. %lu, len %lu", 3832 pa, (unsigned long) pa->pa_lstart, 3833 (unsigned long) pa->pa_pstart, 3834 (unsigned long) pa->pa_len); 3835 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3836 free, pa->pa_free); 3837 /* 3838 * pa is already deleted so we use the value obtained 3839 * from the bitmap and continue. 3840 */ 3841 } 3842 atomic_add(free, &sbi->s_mb_discarded); 3843 3844 return 0; 3845 } 3846 3847 static noinline_for_stack int 3848 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3849 struct ext4_prealloc_space *pa) 3850 { 3851 struct super_block *sb = e4b->bd_sb; 3852 ext4_group_t group; 3853 ext4_grpblk_t bit; 3854 3855 trace_ext4_mb_release_group_pa(sb, pa); 3856 BUG_ON(pa->pa_deleted == 0); 3857 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3858 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3859 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3860 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3861 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3862 3863 return 0; 3864 } 3865 3866 /* 3867 * releases all preallocations in given group 3868 * 3869 * first, we need to decide discard policy: 3870 * - when do we discard 3871 * 1) ENOSPC 3872 * - how many do we discard 3873 * 1) how many requested 3874 */ 3875 static noinline_for_stack int 3876 ext4_mb_discard_group_preallocations(struct super_block *sb, 3877 ext4_group_t group, int needed) 3878 { 3879 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3880 struct buffer_head *bitmap_bh = NULL; 3881 struct ext4_prealloc_space *pa, *tmp; 3882 struct list_head list; 3883 struct ext4_buddy e4b; 3884 int err; 3885 int busy = 0; 3886 int free = 0; 3887 3888 mb_debug(1, "discard preallocation for group %u\n", group); 3889 3890 if (list_empty(&grp->bb_prealloc_list)) 3891 return 0; 3892 3893 bitmap_bh = ext4_read_block_bitmap(sb, group); 3894 if (IS_ERR(bitmap_bh)) { 3895 err = PTR_ERR(bitmap_bh); 3896 ext4_error(sb, "Error %d reading block bitmap for %u", 3897 err, group); 3898 return 0; 3899 } 3900 3901 err = ext4_mb_load_buddy(sb, group, &e4b); 3902 if (err) { 3903 ext4_warning(sb, "Error %d loading buddy information for %u", 3904 err, group); 3905 put_bh(bitmap_bh); 3906 return 0; 3907 } 3908 3909 if (needed == 0) 3910 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3911 3912 INIT_LIST_HEAD(&list); 3913 repeat: 3914 ext4_lock_group(sb, group); 3915 list_for_each_entry_safe(pa, tmp, 3916 &grp->bb_prealloc_list, pa_group_list) { 3917 spin_lock(&pa->pa_lock); 3918 if (atomic_read(&pa->pa_count)) { 3919 spin_unlock(&pa->pa_lock); 3920 busy = 1; 3921 continue; 3922 } 3923 if (pa->pa_deleted) { 3924 spin_unlock(&pa->pa_lock); 3925 continue; 3926 } 3927 3928 /* seems this one can be freed ... */ 3929 pa->pa_deleted = 1; 3930 3931 /* we can trust pa_free ... */ 3932 free += pa->pa_free; 3933 3934 spin_unlock(&pa->pa_lock); 3935 3936 list_del(&pa->pa_group_list); 3937 list_add(&pa->u.pa_tmp_list, &list); 3938 } 3939 3940 /* if we still need more blocks and some PAs were used, try again */ 3941 if (free < needed && busy) { 3942 busy = 0; 3943 ext4_unlock_group(sb, group); 3944 cond_resched(); 3945 goto repeat; 3946 } 3947 3948 /* found anything to free? */ 3949 if (list_empty(&list)) { 3950 BUG_ON(free != 0); 3951 goto out; 3952 } 3953 3954 /* now free all selected PAs */ 3955 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3956 3957 /* remove from object (inode or locality group) */ 3958 spin_lock(pa->pa_obj_lock); 3959 list_del_rcu(&pa->pa_inode_list); 3960 spin_unlock(pa->pa_obj_lock); 3961 3962 if (pa->pa_type == MB_GROUP_PA) 3963 ext4_mb_release_group_pa(&e4b, pa); 3964 else 3965 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3966 3967 list_del(&pa->u.pa_tmp_list); 3968 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3969 } 3970 3971 out: 3972 ext4_unlock_group(sb, group); 3973 ext4_mb_unload_buddy(&e4b); 3974 put_bh(bitmap_bh); 3975 return free; 3976 } 3977 3978 /* 3979 * releases all non-used preallocated blocks for given inode 3980 * 3981 * It's important to discard preallocations under i_data_sem 3982 * We don't want another block to be served from the prealloc 3983 * space when we are discarding the inode prealloc space. 3984 * 3985 * FIXME!! Make sure it is valid at all the call sites 3986 */ 3987 void ext4_discard_preallocations(struct inode *inode) 3988 { 3989 struct ext4_inode_info *ei = EXT4_I(inode); 3990 struct super_block *sb = inode->i_sb; 3991 struct buffer_head *bitmap_bh = NULL; 3992 struct ext4_prealloc_space *pa, *tmp; 3993 ext4_group_t group = 0; 3994 struct list_head list; 3995 struct ext4_buddy e4b; 3996 int err; 3997 3998 if (!S_ISREG(inode->i_mode)) { 3999 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 4000 return; 4001 } 4002 4003 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 4004 trace_ext4_discard_preallocations(inode); 4005 4006 INIT_LIST_HEAD(&list); 4007 4008 repeat: 4009 /* first, collect all pa's in the inode */ 4010 spin_lock(&ei->i_prealloc_lock); 4011 while (!list_empty(&ei->i_prealloc_list)) { 4012 pa = list_entry(ei->i_prealloc_list.next, 4013 struct ext4_prealloc_space, pa_inode_list); 4014 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 4015 spin_lock(&pa->pa_lock); 4016 if (atomic_read(&pa->pa_count)) { 4017 /* this shouldn't happen often - nobody should 4018 * use preallocation while we're discarding it */ 4019 spin_unlock(&pa->pa_lock); 4020 spin_unlock(&ei->i_prealloc_lock); 4021 ext4_msg(sb, KERN_ERR, 4022 "uh-oh! used pa while discarding"); 4023 WARN_ON(1); 4024 schedule_timeout_uninterruptible(HZ); 4025 goto repeat; 4026 4027 } 4028 if (pa->pa_deleted == 0) { 4029 pa->pa_deleted = 1; 4030 spin_unlock(&pa->pa_lock); 4031 list_del_rcu(&pa->pa_inode_list); 4032 list_add(&pa->u.pa_tmp_list, &list); 4033 continue; 4034 } 4035 4036 /* someone is deleting pa right now */ 4037 spin_unlock(&pa->pa_lock); 4038 spin_unlock(&ei->i_prealloc_lock); 4039 4040 /* we have to wait here because pa_deleted 4041 * doesn't mean pa is already unlinked from 4042 * the list. as we might be called from 4043 * ->clear_inode() the inode will get freed 4044 * and concurrent thread which is unlinking 4045 * pa from inode's list may access already 4046 * freed memory, bad-bad-bad */ 4047 4048 /* XXX: if this happens too often, we can 4049 * add a flag to force wait only in case 4050 * of ->clear_inode(), but not in case of 4051 * regular truncate */ 4052 schedule_timeout_uninterruptible(HZ); 4053 goto repeat; 4054 } 4055 spin_unlock(&ei->i_prealloc_lock); 4056 4057 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4058 BUG_ON(pa->pa_type != MB_INODE_PA); 4059 group = ext4_get_group_number(sb, pa->pa_pstart); 4060 4061 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4062 GFP_NOFS|__GFP_NOFAIL); 4063 if (err) { 4064 ext4_error(sb, "Error %d loading buddy information for %u", 4065 err, group); 4066 continue; 4067 } 4068 4069 bitmap_bh = ext4_read_block_bitmap(sb, group); 4070 if (IS_ERR(bitmap_bh)) { 4071 err = PTR_ERR(bitmap_bh); 4072 ext4_error(sb, "Error %d reading block bitmap for %u", 4073 err, group); 4074 ext4_mb_unload_buddy(&e4b); 4075 continue; 4076 } 4077 4078 ext4_lock_group(sb, group); 4079 list_del(&pa->pa_group_list); 4080 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4081 ext4_unlock_group(sb, group); 4082 4083 ext4_mb_unload_buddy(&e4b); 4084 put_bh(bitmap_bh); 4085 4086 list_del(&pa->u.pa_tmp_list); 4087 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4088 } 4089 } 4090 4091 #ifdef CONFIG_EXT4_DEBUG 4092 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4093 { 4094 struct super_block *sb = ac->ac_sb; 4095 ext4_group_t ngroups, i; 4096 4097 if (!ext4_mballoc_debug || 4098 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 4099 return; 4100 4101 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 4102 " Allocation context details:"); 4103 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 4104 ac->ac_status, ac->ac_flags); 4105 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 4106 "goal %lu/%lu/%lu@%lu, " 4107 "best %lu/%lu/%lu@%lu cr %d", 4108 (unsigned long)ac->ac_o_ex.fe_group, 4109 (unsigned long)ac->ac_o_ex.fe_start, 4110 (unsigned long)ac->ac_o_ex.fe_len, 4111 (unsigned long)ac->ac_o_ex.fe_logical, 4112 (unsigned long)ac->ac_g_ex.fe_group, 4113 (unsigned long)ac->ac_g_ex.fe_start, 4114 (unsigned long)ac->ac_g_ex.fe_len, 4115 (unsigned long)ac->ac_g_ex.fe_logical, 4116 (unsigned long)ac->ac_b_ex.fe_group, 4117 (unsigned long)ac->ac_b_ex.fe_start, 4118 (unsigned long)ac->ac_b_ex.fe_len, 4119 (unsigned long)ac->ac_b_ex.fe_logical, 4120 (int)ac->ac_criteria); 4121 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found); 4122 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 4123 ngroups = ext4_get_groups_count(sb); 4124 for (i = 0; i < ngroups; i++) { 4125 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 4126 struct ext4_prealloc_space *pa; 4127 ext4_grpblk_t start; 4128 struct list_head *cur; 4129 ext4_lock_group(sb, i); 4130 list_for_each(cur, &grp->bb_prealloc_list) { 4131 pa = list_entry(cur, struct ext4_prealloc_space, 4132 pa_group_list); 4133 spin_lock(&pa->pa_lock); 4134 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4135 NULL, &start); 4136 spin_unlock(&pa->pa_lock); 4137 printk(KERN_ERR "PA:%u:%d:%u \n", i, 4138 start, pa->pa_len); 4139 } 4140 ext4_unlock_group(sb, i); 4141 4142 if (grp->bb_free == 0) 4143 continue; 4144 printk(KERN_ERR "%u: %d/%d \n", 4145 i, grp->bb_free, grp->bb_fragments); 4146 } 4147 printk(KERN_ERR "\n"); 4148 } 4149 #else 4150 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4151 { 4152 return; 4153 } 4154 #endif 4155 4156 /* 4157 * We use locality group preallocation for small size file. The size of the 4158 * file is determined by the current size or the resulting size after 4159 * allocation which ever is larger 4160 * 4161 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4162 */ 4163 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4164 { 4165 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4166 int bsbits = ac->ac_sb->s_blocksize_bits; 4167 loff_t size, isize; 4168 4169 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4170 return; 4171 4172 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4173 return; 4174 4175 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4176 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4177 >> bsbits; 4178 4179 if ((size == isize) && 4180 !ext4_fs_is_busy(sbi) && 4181 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 4182 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4183 return; 4184 } 4185 4186 if (sbi->s_mb_group_prealloc <= 0) { 4187 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4188 return; 4189 } 4190 4191 /* don't use group allocation for large files */ 4192 size = max(size, isize); 4193 if (size > sbi->s_mb_stream_request) { 4194 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4195 return; 4196 } 4197 4198 BUG_ON(ac->ac_lg != NULL); 4199 /* 4200 * locality group prealloc space are per cpu. The reason for having 4201 * per cpu locality group is to reduce the contention between block 4202 * request from multiple CPUs. 4203 */ 4204 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 4205 4206 /* we're going to use group allocation */ 4207 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4208 4209 /* serialize all allocations in the group */ 4210 mutex_lock(&ac->ac_lg->lg_mutex); 4211 } 4212 4213 static noinline_for_stack int 4214 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4215 struct ext4_allocation_request *ar) 4216 { 4217 struct super_block *sb = ar->inode->i_sb; 4218 struct ext4_sb_info *sbi = EXT4_SB(sb); 4219 struct ext4_super_block *es = sbi->s_es; 4220 ext4_group_t group; 4221 unsigned int len; 4222 ext4_fsblk_t goal; 4223 ext4_grpblk_t block; 4224 4225 /* we can't allocate > group size */ 4226 len = ar->len; 4227 4228 /* just a dirty hack to filter too big requests */ 4229 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4230 len = EXT4_CLUSTERS_PER_GROUP(sb); 4231 4232 /* start searching from the goal */ 4233 goal = ar->goal; 4234 if (goal < le32_to_cpu(es->s_first_data_block) || 4235 goal >= ext4_blocks_count(es)) 4236 goal = le32_to_cpu(es->s_first_data_block); 4237 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4238 4239 /* set up allocation goals */ 4240 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 4241 ac->ac_status = AC_STATUS_CONTINUE; 4242 ac->ac_sb = sb; 4243 ac->ac_inode = ar->inode; 4244 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4245 ac->ac_o_ex.fe_group = group; 4246 ac->ac_o_ex.fe_start = block; 4247 ac->ac_o_ex.fe_len = len; 4248 ac->ac_g_ex = ac->ac_o_ex; 4249 ac->ac_flags = ar->flags; 4250 4251 /* we have to define context: we'll we work with a file or 4252 * locality group. this is a policy, actually */ 4253 ext4_mb_group_or_file(ac); 4254 4255 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4256 "left: %u/%u, right %u/%u to %swritable\n", 4257 (unsigned) ar->len, (unsigned) ar->logical, 4258 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4259 (unsigned) ar->lleft, (unsigned) ar->pleft, 4260 (unsigned) ar->lright, (unsigned) ar->pright, 4261 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4262 return 0; 4263 4264 } 4265 4266 static noinline_for_stack void 4267 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4268 struct ext4_locality_group *lg, 4269 int order, int total_entries) 4270 { 4271 ext4_group_t group = 0; 4272 struct ext4_buddy e4b; 4273 struct list_head discard_list; 4274 struct ext4_prealloc_space *pa, *tmp; 4275 4276 mb_debug(1, "discard locality group preallocation\n"); 4277 4278 INIT_LIST_HEAD(&discard_list); 4279 4280 spin_lock(&lg->lg_prealloc_lock); 4281 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4282 pa_inode_list) { 4283 spin_lock(&pa->pa_lock); 4284 if (atomic_read(&pa->pa_count)) { 4285 /* 4286 * This is the pa that we just used 4287 * for block allocation. So don't 4288 * free that 4289 */ 4290 spin_unlock(&pa->pa_lock); 4291 continue; 4292 } 4293 if (pa->pa_deleted) { 4294 spin_unlock(&pa->pa_lock); 4295 continue; 4296 } 4297 /* only lg prealloc space */ 4298 BUG_ON(pa->pa_type != MB_GROUP_PA); 4299 4300 /* seems this one can be freed ... */ 4301 pa->pa_deleted = 1; 4302 spin_unlock(&pa->pa_lock); 4303 4304 list_del_rcu(&pa->pa_inode_list); 4305 list_add(&pa->u.pa_tmp_list, &discard_list); 4306 4307 total_entries--; 4308 if (total_entries <= 5) { 4309 /* 4310 * we want to keep only 5 entries 4311 * allowing it to grow to 8. This 4312 * mak sure we don't call discard 4313 * soon for this list. 4314 */ 4315 break; 4316 } 4317 } 4318 spin_unlock(&lg->lg_prealloc_lock); 4319 4320 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4321 int err; 4322 4323 group = ext4_get_group_number(sb, pa->pa_pstart); 4324 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4325 GFP_NOFS|__GFP_NOFAIL); 4326 if (err) { 4327 ext4_error(sb, "Error %d loading buddy information for %u", 4328 err, group); 4329 continue; 4330 } 4331 ext4_lock_group(sb, group); 4332 list_del(&pa->pa_group_list); 4333 ext4_mb_release_group_pa(&e4b, pa); 4334 ext4_unlock_group(sb, group); 4335 4336 ext4_mb_unload_buddy(&e4b); 4337 list_del(&pa->u.pa_tmp_list); 4338 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4339 } 4340 } 4341 4342 /* 4343 * We have incremented pa_count. So it cannot be freed at this 4344 * point. Also we hold lg_mutex. So no parallel allocation is 4345 * possible from this lg. That means pa_free cannot be updated. 4346 * 4347 * A parallel ext4_mb_discard_group_preallocations is possible. 4348 * which can cause the lg_prealloc_list to be updated. 4349 */ 4350 4351 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4352 { 4353 int order, added = 0, lg_prealloc_count = 1; 4354 struct super_block *sb = ac->ac_sb; 4355 struct ext4_locality_group *lg = ac->ac_lg; 4356 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4357 4358 order = fls(pa->pa_free) - 1; 4359 if (order > PREALLOC_TB_SIZE - 1) 4360 /* The max size of hash table is PREALLOC_TB_SIZE */ 4361 order = PREALLOC_TB_SIZE - 1; 4362 /* Add the prealloc space to lg */ 4363 spin_lock(&lg->lg_prealloc_lock); 4364 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4365 pa_inode_list) { 4366 spin_lock(&tmp_pa->pa_lock); 4367 if (tmp_pa->pa_deleted) { 4368 spin_unlock(&tmp_pa->pa_lock); 4369 continue; 4370 } 4371 if (!added && pa->pa_free < tmp_pa->pa_free) { 4372 /* Add to the tail of the previous entry */ 4373 list_add_tail_rcu(&pa->pa_inode_list, 4374 &tmp_pa->pa_inode_list); 4375 added = 1; 4376 /* 4377 * we want to count the total 4378 * number of entries in the list 4379 */ 4380 } 4381 spin_unlock(&tmp_pa->pa_lock); 4382 lg_prealloc_count++; 4383 } 4384 if (!added) 4385 list_add_tail_rcu(&pa->pa_inode_list, 4386 &lg->lg_prealloc_list[order]); 4387 spin_unlock(&lg->lg_prealloc_lock); 4388 4389 /* Now trim the list to be not more than 8 elements */ 4390 if (lg_prealloc_count > 8) { 4391 ext4_mb_discard_lg_preallocations(sb, lg, 4392 order, lg_prealloc_count); 4393 return; 4394 } 4395 return ; 4396 } 4397 4398 /* 4399 * release all resource we used in allocation 4400 */ 4401 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4402 { 4403 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4404 struct ext4_prealloc_space *pa = ac->ac_pa; 4405 if (pa) { 4406 if (pa->pa_type == MB_GROUP_PA) { 4407 /* see comment in ext4_mb_use_group_pa() */ 4408 spin_lock(&pa->pa_lock); 4409 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4410 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4411 pa->pa_free -= ac->ac_b_ex.fe_len; 4412 pa->pa_len -= ac->ac_b_ex.fe_len; 4413 spin_unlock(&pa->pa_lock); 4414 } 4415 } 4416 if (pa) { 4417 /* 4418 * We want to add the pa to the right bucket. 4419 * Remove it from the list and while adding 4420 * make sure the list to which we are adding 4421 * doesn't grow big. 4422 */ 4423 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4424 spin_lock(pa->pa_obj_lock); 4425 list_del_rcu(&pa->pa_inode_list); 4426 spin_unlock(pa->pa_obj_lock); 4427 ext4_mb_add_n_trim(ac); 4428 } 4429 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4430 } 4431 if (ac->ac_bitmap_page) 4432 put_page(ac->ac_bitmap_page); 4433 if (ac->ac_buddy_page) 4434 put_page(ac->ac_buddy_page); 4435 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4436 mutex_unlock(&ac->ac_lg->lg_mutex); 4437 ext4_mb_collect_stats(ac); 4438 return 0; 4439 } 4440 4441 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4442 { 4443 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4444 int ret; 4445 int freed = 0; 4446 4447 trace_ext4_mb_discard_preallocations(sb, needed); 4448 for (i = 0; i < ngroups && needed > 0; i++) { 4449 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4450 freed += ret; 4451 needed -= ret; 4452 } 4453 4454 return freed; 4455 } 4456 4457 /* 4458 * Main entry point into mballoc to allocate blocks 4459 * it tries to use preallocation first, then falls back 4460 * to usual allocation 4461 */ 4462 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4463 struct ext4_allocation_request *ar, int *errp) 4464 { 4465 int freed; 4466 struct ext4_allocation_context *ac = NULL; 4467 struct ext4_sb_info *sbi; 4468 struct super_block *sb; 4469 ext4_fsblk_t block = 0; 4470 unsigned int inquota = 0; 4471 unsigned int reserv_clstrs = 0; 4472 4473 might_sleep(); 4474 sb = ar->inode->i_sb; 4475 sbi = EXT4_SB(sb); 4476 4477 trace_ext4_request_blocks(ar); 4478 4479 /* Allow to use superuser reservation for quota file */ 4480 if (ext4_is_quota_file(ar->inode)) 4481 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4482 4483 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 4484 /* Without delayed allocation we need to verify 4485 * there is enough free blocks to do block allocation 4486 * and verify allocation doesn't exceed the quota limits. 4487 */ 4488 while (ar->len && 4489 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4490 4491 /* let others to free the space */ 4492 cond_resched(); 4493 ar->len = ar->len >> 1; 4494 } 4495 if (!ar->len) { 4496 *errp = -ENOSPC; 4497 return 0; 4498 } 4499 reserv_clstrs = ar->len; 4500 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4501 dquot_alloc_block_nofail(ar->inode, 4502 EXT4_C2B(sbi, ar->len)); 4503 } else { 4504 while (ar->len && 4505 dquot_alloc_block(ar->inode, 4506 EXT4_C2B(sbi, ar->len))) { 4507 4508 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4509 ar->len--; 4510 } 4511 } 4512 inquota = ar->len; 4513 if (ar->len == 0) { 4514 *errp = -EDQUOT; 4515 goto out; 4516 } 4517 } 4518 4519 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4520 if (!ac) { 4521 ar->len = 0; 4522 *errp = -ENOMEM; 4523 goto out; 4524 } 4525 4526 *errp = ext4_mb_initialize_context(ac, ar); 4527 if (*errp) { 4528 ar->len = 0; 4529 goto out; 4530 } 4531 4532 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4533 if (!ext4_mb_use_preallocated(ac)) { 4534 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4535 ext4_mb_normalize_request(ac, ar); 4536 repeat: 4537 /* allocate space in core */ 4538 *errp = ext4_mb_regular_allocator(ac); 4539 if (*errp) 4540 goto discard_and_exit; 4541 4542 /* as we've just preallocated more space than 4543 * user requested originally, we store allocated 4544 * space in a special descriptor */ 4545 if (ac->ac_status == AC_STATUS_FOUND && 4546 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4547 *errp = ext4_mb_new_preallocation(ac); 4548 if (*errp) { 4549 discard_and_exit: 4550 ext4_discard_allocated_blocks(ac); 4551 goto errout; 4552 } 4553 } 4554 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4555 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4556 if (*errp) { 4557 ext4_discard_allocated_blocks(ac); 4558 goto errout; 4559 } else { 4560 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4561 ar->len = ac->ac_b_ex.fe_len; 4562 } 4563 } else { 4564 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4565 if (freed) 4566 goto repeat; 4567 *errp = -ENOSPC; 4568 } 4569 4570 errout: 4571 if (*errp) { 4572 ac->ac_b_ex.fe_len = 0; 4573 ar->len = 0; 4574 ext4_mb_show_ac(ac); 4575 } 4576 ext4_mb_release_context(ac); 4577 out: 4578 if (ac) 4579 kmem_cache_free(ext4_ac_cachep, ac); 4580 if (inquota && ar->len < inquota) 4581 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4582 if (!ar->len) { 4583 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 4584 /* release all the reserved blocks if non delalloc */ 4585 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4586 reserv_clstrs); 4587 } 4588 4589 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4590 4591 return block; 4592 } 4593 4594 /* 4595 * We can merge two free data extents only if the physical blocks 4596 * are contiguous, AND the extents were freed by the same transaction, 4597 * AND the blocks are associated with the same group. 4598 */ 4599 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 4600 struct ext4_free_data *entry, 4601 struct ext4_free_data *new_entry, 4602 struct rb_root *entry_rb_root) 4603 { 4604 if ((entry->efd_tid != new_entry->efd_tid) || 4605 (entry->efd_group != new_entry->efd_group)) 4606 return; 4607 if (entry->efd_start_cluster + entry->efd_count == 4608 new_entry->efd_start_cluster) { 4609 new_entry->efd_start_cluster = entry->efd_start_cluster; 4610 new_entry->efd_count += entry->efd_count; 4611 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 4612 entry->efd_start_cluster) { 4613 new_entry->efd_count += entry->efd_count; 4614 } else 4615 return; 4616 spin_lock(&sbi->s_md_lock); 4617 list_del(&entry->efd_list); 4618 spin_unlock(&sbi->s_md_lock); 4619 rb_erase(&entry->efd_node, entry_rb_root); 4620 kmem_cache_free(ext4_free_data_cachep, entry); 4621 } 4622 4623 static noinline_for_stack int 4624 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4625 struct ext4_free_data *new_entry) 4626 { 4627 ext4_group_t group = e4b->bd_group; 4628 ext4_grpblk_t cluster; 4629 ext4_grpblk_t clusters = new_entry->efd_count; 4630 struct ext4_free_data *entry; 4631 struct ext4_group_info *db = e4b->bd_info; 4632 struct super_block *sb = e4b->bd_sb; 4633 struct ext4_sb_info *sbi = EXT4_SB(sb); 4634 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4635 struct rb_node *parent = NULL, *new_node; 4636 4637 BUG_ON(!ext4_handle_valid(handle)); 4638 BUG_ON(e4b->bd_bitmap_page == NULL); 4639 BUG_ON(e4b->bd_buddy_page == NULL); 4640 4641 new_node = &new_entry->efd_node; 4642 cluster = new_entry->efd_start_cluster; 4643 4644 if (!*n) { 4645 /* first free block exent. We need to 4646 protect buddy cache from being freed, 4647 * otherwise we'll refresh it from 4648 * on-disk bitmap and lose not-yet-available 4649 * blocks */ 4650 get_page(e4b->bd_buddy_page); 4651 get_page(e4b->bd_bitmap_page); 4652 } 4653 while (*n) { 4654 parent = *n; 4655 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4656 if (cluster < entry->efd_start_cluster) 4657 n = &(*n)->rb_left; 4658 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4659 n = &(*n)->rb_right; 4660 else { 4661 ext4_grp_locked_error(sb, group, 0, 4662 ext4_group_first_block_no(sb, group) + 4663 EXT4_C2B(sbi, cluster), 4664 "Block already on to-be-freed list"); 4665 return 0; 4666 } 4667 } 4668 4669 rb_link_node(new_node, parent, n); 4670 rb_insert_color(new_node, &db->bb_free_root); 4671 4672 /* Now try to see the extent can be merged to left and right */ 4673 node = rb_prev(new_node); 4674 if (node) { 4675 entry = rb_entry(node, struct ext4_free_data, efd_node); 4676 ext4_try_merge_freed_extent(sbi, entry, new_entry, 4677 &(db->bb_free_root)); 4678 } 4679 4680 node = rb_next(new_node); 4681 if (node) { 4682 entry = rb_entry(node, struct ext4_free_data, efd_node); 4683 ext4_try_merge_freed_extent(sbi, entry, new_entry, 4684 &(db->bb_free_root)); 4685 } 4686 4687 spin_lock(&sbi->s_md_lock); 4688 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 4689 sbi->s_mb_free_pending += clusters; 4690 spin_unlock(&sbi->s_md_lock); 4691 return 0; 4692 } 4693 4694 /** 4695 * ext4_free_blocks() -- Free given blocks and update quota 4696 * @handle: handle for this transaction 4697 * @inode: inode 4698 * @block: start physical block to free 4699 * @count: number of blocks to count 4700 * @flags: flags used by ext4_free_blocks 4701 */ 4702 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4703 struct buffer_head *bh, ext4_fsblk_t block, 4704 unsigned long count, int flags) 4705 { 4706 struct buffer_head *bitmap_bh = NULL; 4707 struct super_block *sb = inode->i_sb; 4708 struct ext4_group_desc *gdp; 4709 unsigned int overflow; 4710 ext4_grpblk_t bit; 4711 struct buffer_head *gd_bh; 4712 ext4_group_t block_group; 4713 struct ext4_sb_info *sbi; 4714 struct ext4_buddy e4b; 4715 unsigned int count_clusters; 4716 int err = 0; 4717 int ret; 4718 4719 might_sleep(); 4720 if (bh) { 4721 if (block) 4722 BUG_ON(block != bh->b_blocknr); 4723 else 4724 block = bh->b_blocknr; 4725 } 4726 4727 sbi = EXT4_SB(sb); 4728 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4729 !ext4_data_block_valid(sbi, block, count)) { 4730 ext4_error(sb, "Freeing blocks not in datazone - " 4731 "block = %llu, count = %lu", block, count); 4732 goto error_return; 4733 } 4734 4735 ext4_debug("freeing block %llu\n", block); 4736 trace_ext4_free_blocks(inode, block, count, flags); 4737 4738 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 4739 BUG_ON(count > 1); 4740 4741 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4742 inode, bh, block); 4743 } 4744 4745 /* 4746 * If the extent to be freed does not begin on a cluster 4747 * boundary, we need to deal with partial clusters at the 4748 * beginning and end of the extent. Normally we will free 4749 * blocks at the beginning or the end unless we are explicitly 4750 * requested to avoid doing so. 4751 */ 4752 overflow = EXT4_PBLK_COFF(sbi, block); 4753 if (overflow) { 4754 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4755 overflow = sbi->s_cluster_ratio - overflow; 4756 block += overflow; 4757 if (count > overflow) 4758 count -= overflow; 4759 else 4760 return; 4761 } else { 4762 block -= overflow; 4763 count += overflow; 4764 } 4765 } 4766 overflow = EXT4_LBLK_COFF(sbi, count); 4767 if (overflow) { 4768 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4769 if (count > overflow) 4770 count -= overflow; 4771 else 4772 return; 4773 } else 4774 count += sbi->s_cluster_ratio - overflow; 4775 } 4776 4777 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 4778 int i; 4779 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 4780 4781 for (i = 0; i < count; i++) { 4782 cond_resched(); 4783 if (is_metadata) 4784 bh = sb_find_get_block(inode->i_sb, block + i); 4785 ext4_forget(handle, is_metadata, inode, bh, block + i); 4786 } 4787 } 4788 4789 do_more: 4790 overflow = 0; 4791 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4792 4793 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 4794 ext4_get_group_info(sb, block_group)))) 4795 return; 4796 4797 /* 4798 * Check to see if we are freeing blocks across a group 4799 * boundary. 4800 */ 4801 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4802 overflow = EXT4_C2B(sbi, bit) + count - 4803 EXT4_BLOCKS_PER_GROUP(sb); 4804 count -= overflow; 4805 } 4806 count_clusters = EXT4_NUM_B2C(sbi, count); 4807 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4808 if (IS_ERR(bitmap_bh)) { 4809 err = PTR_ERR(bitmap_bh); 4810 bitmap_bh = NULL; 4811 goto error_return; 4812 } 4813 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4814 if (!gdp) { 4815 err = -EIO; 4816 goto error_return; 4817 } 4818 4819 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4820 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4821 in_range(block, ext4_inode_table(sb, gdp), 4822 sbi->s_itb_per_group) || 4823 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4824 sbi->s_itb_per_group)) { 4825 4826 ext4_error(sb, "Freeing blocks in system zone - " 4827 "Block = %llu, count = %lu", block, count); 4828 /* err = 0. ext4_std_error should be a no op */ 4829 goto error_return; 4830 } 4831 4832 BUFFER_TRACE(bitmap_bh, "getting write access"); 4833 err = ext4_journal_get_write_access(handle, bitmap_bh); 4834 if (err) 4835 goto error_return; 4836 4837 /* 4838 * We are about to modify some metadata. Call the journal APIs 4839 * to unshare ->b_data if a currently-committing transaction is 4840 * using it 4841 */ 4842 BUFFER_TRACE(gd_bh, "get_write_access"); 4843 err = ext4_journal_get_write_access(handle, gd_bh); 4844 if (err) 4845 goto error_return; 4846 #ifdef AGGRESSIVE_CHECK 4847 { 4848 int i; 4849 for (i = 0; i < count_clusters; i++) 4850 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4851 } 4852 #endif 4853 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4854 4855 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 4856 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 4857 GFP_NOFS|__GFP_NOFAIL); 4858 if (err) 4859 goto error_return; 4860 4861 /* 4862 * We need to make sure we don't reuse the freed block until after the 4863 * transaction is committed. We make an exception if the inode is to be 4864 * written in writeback mode since writeback mode has weak data 4865 * consistency guarantees. 4866 */ 4867 if (ext4_handle_valid(handle) && 4868 ((flags & EXT4_FREE_BLOCKS_METADATA) || 4869 !ext4_should_writeback_data(inode))) { 4870 struct ext4_free_data *new_entry; 4871 /* 4872 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 4873 * to fail. 4874 */ 4875 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 4876 GFP_NOFS|__GFP_NOFAIL); 4877 new_entry->efd_start_cluster = bit; 4878 new_entry->efd_group = block_group; 4879 new_entry->efd_count = count_clusters; 4880 new_entry->efd_tid = handle->h_transaction->t_tid; 4881 4882 ext4_lock_group(sb, block_group); 4883 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4884 ext4_mb_free_metadata(handle, &e4b, new_entry); 4885 } else { 4886 /* need to update group_info->bb_free and bitmap 4887 * with group lock held. generate_buddy look at 4888 * them with group lock_held 4889 */ 4890 if (test_opt(sb, DISCARD)) { 4891 err = ext4_issue_discard(sb, block_group, bit, count, 4892 NULL); 4893 if (err && err != -EOPNOTSUPP) 4894 ext4_msg(sb, KERN_WARNING, "discard request in" 4895 " group:%d block:%d count:%lu failed" 4896 " with %d", block_group, bit, count, 4897 err); 4898 } else 4899 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 4900 4901 ext4_lock_group(sb, block_group); 4902 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4903 mb_free_blocks(inode, &e4b, bit, count_clusters); 4904 } 4905 4906 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4907 ext4_free_group_clusters_set(sb, gdp, ret); 4908 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 4909 ext4_group_desc_csum_set(sb, block_group, gdp); 4910 ext4_unlock_group(sb, block_group); 4911 4912 if (sbi->s_log_groups_per_flex) { 4913 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4914 atomic64_add(count_clusters, 4915 &sbi->s_flex_groups[flex_group].free_clusters); 4916 } 4917 4918 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4919 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4920 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); 4921 4922 ext4_mb_unload_buddy(&e4b); 4923 4924 /* We dirtied the bitmap block */ 4925 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4926 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4927 4928 /* And the group descriptor block */ 4929 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4930 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4931 if (!err) 4932 err = ret; 4933 4934 if (overflow && !err) { 4935 block += count; 4936 count = overflow; 4937 put_bh(bitmap_bh); 4938 goto do_more; 4939 } 4940 error_return: 4941 brelse(bitmap_bh); 4942 ext4_std_error(sb, err); 4943 return; 4944 } 4945 4946 /** 4947 * ext4_group_add_blocks() -- Add given blocks to an existing group 4948 * @handle: handle to this transaction 4949 * @sb: super block 4950 * @block: start physical block to add to the block group 4951 * @count: number of blocks to free 4952 * 4953 * This marks the blocks as free in the bitmap and buddy. 4954 */ 4955 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4956 ext4_fsblk_t block, unsigned long count) 4957 { 4958 struct buffer_head *bitmap_bh = NULL; 4959 struct buffer_head *gd_bh; 4960 ext4_group_t block_group; 4961 ext4_grpblk_t bit; 4962 unsigned int i; 4963 struct ext4_group_desc *desc; 4964 struct ext4_sb_info *sbi = EXT4_SB(sb); 4965 struct ext4_buddy e4b; 4966 int err = 0, ret, free_clusters_count; 4967 ext4_grpblk_t clusters_freed; 4968 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 4969 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 4970 unsigned long cluster_count = last_cluster - first_cluster + 1; 4971 4972 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 4973 4974 if (count == 0) 4975 return 0; 4976 4977 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4978 /* 4979 * Check to see if we are freeing blocks across a group 4980 * boundary. 4981 */ 4982 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 4983 ext4_warning(sb, "too many blocks added to group %u", 4984 block_group); 4985 err = -EINVAL; 4986 goto error_return; 4987 } 4988 4989 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4990 if (IS_ERR(bitmap_bh)) { 4991 err = PTR_ERR(bitmap_bh); 4992 bitmap_bh = NULL; 4993 goto error_return; 4994 } 4995 4996 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 4997 if (!desc) { 4998 err = -EIO; 4999 goto error_return; 5000 } 5001 5002 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 5003 in_range(ext4_inode_bitmap(sb, desc), block, count) || 5004 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 5005 in_range(block + count - 1, ext4_inode_table(sb, desc), 5006 sbi->s_itb_per_group)) { 5007 ext4_error(sb, "Adding blocks in system zones - " 5008 "Block = %llu, count = %lu", 5009 block, count); 5010 err = -EINVAL; 5011 goto error_return; 5012 } 5013 5014 BUFFER_TRACE(bitmap_bh, "getting write access"); 5015 err = ext4_journal_get_write_access(handle, bitmap_bh); 5016 if (err) 5017 goto error_return; 5018 5019 /* 5020 * We are about to modify some metadata. Call the journal APIs 5021 * to unshare ->b_data if a currently-committing transaction is 5022 * using it 5023 */ 5024 BUFFER_TRACE(gd_bh, "get_write_access"); 5025 err = ext4_journal_get_write_access(handle, gd_bh); 5026 if (err) 5027 goto error_return; 5028 5029 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 5030 BUFFER_TRACE(bitmap_bh, "clear bit"); 5031 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 5032 ext4_error(sb, "bit already cleared for block %llu", 5033 (ext4_fsblk_t)(block + i)); 5034 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 5035 } else { 5036 clusters_freed++; 5037 } 5038 } 5039 5040 err = ext4_mb_load_buddy(sb, block_group, &e4b); 5041 if (err) 5042 goto error_return; 5043 5044 /* 5045 * need to update group_info->bb_free and bitmap 5046 * with group lock held. generate_buddy look at 5047 * them with group lock_held 5048 */ 5049 ext4_lock_group(sb, block_group); 5050 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 5051 mb_free_blocks(NULL, &e4b, bit, cluster_count); 5052 free_clusters_count = clusters_freed + 5053 ext4_free_group_clusters(sb, desc); 5054 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 5055 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 5056 ext4_group_desc_csum_set(sb, block_group, desc); 5057 ext4_unlock_group(sb, block_group); 5058 percpu_counter_add(&sbi->s_freeclusters_counter, 5059 clusters_freed); 5060 5061 if (sbi->s_log_groups_per_flex) { 5062 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 5063 atomic64_add(clusters_freed, 5064 &sbi->s_flex_groups[flex_group].free_clusters); 5065 } 5066 5067 ext4_mb_unload_buddy(&e4b); 5068 5069 /* We dirtied the bitmap block */ 5070 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5071 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5072 5073 /* And the group descriptor block */ 5074 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5075 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5076 if (!err) 5077 err = ret; 5078 5079 error_return: 5080 brelse(bitmap_bh); 5081 ext4_std_error(sb, err); 5082 return err; 5083 } 5084 5085 /** 5086 * ext4_trim_extent -- function to TRIM one single free extent in the group 5087 * @sb: super block for the file system 5088 * @start: starting block of the free extent in the alloc. group 5089 * @count: number of blocks to TRIM 5090 * @group: alloc. group we are working with 5091 * @e4b: ext4 buddy for the group 5092 * 5093 * Trim "count" blocks starting at "start" in the "group". To assure that no 5094 * one will allocate those blocks, mark it as used in buddy bitmap. This must 5095 * be called with under the group lock. 5096 */ 5097 static int ext4_trim_extent(struct super_block *sb, int start, int count, 5098 ext4_group_t group, struct ext4_buddy *e4b) 5099 __releases(bitlock) 5100 __acquires(bitlock) 5101 { 5102 struct ext4_free_extent ex; 5103 int ret = 0; 5104 5105 trace_ext4_trim_extent(sb, group, start, count); 5106 5107 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 5108 5109 ex.fe_start = start; 5110 ex.fe_group = group; 5111 ex.fe_len = count; 5112 5113 /* 5114 * Mark blocks used, so no one can reuse them while 5115 * being trimmed. 5116 */ 5117 mb_mark_used(e4b, &ex); 5118 ext4_unlock_group(sb, group); 5119 ret = ext4_issue_discard(sb, group, start, count, NULL); 5120 ext4_lock_group(sb, group); 5121 mb_free_blocks(NULL, e4b, start, ex.fe_len); 5122 return ret; 5123 } 5124 5125 /** 5126 * ext4_trim_all_free -- function to trim all free space in alloc. group 5127 * @sb: super block for file system 5128 * @group: group to be trimmed 5129 * @start: first group block to examine 5130 * @max: last group block to examine 5131 * @minblocks: minimum extent block count 5132 * 5133 * ext4_trim_all_free walks through group's buddy bitmap searching for free 5134 * extents. When the free block is found, ext4_trim_extent is called to TRIM 5135 * the extent. 5136 * 5137 * 5138 * ext4_trim_all_free walks through group's block bitmap searching for free 5139 * extents. When the free extent is found, mark it as used in group buddy 5140 * bitmap. Then issue a TRIM command on this extent and free the extent in 5141 * the group buddy bitmap. This is done until whole group is scanned. 5142 */ 5143 static ext4_grpblk_t 5144 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 5145 ext4_grpblk_t start, ext4_grpblk_t max, 5146 ext4_grpblk_t minblocks) 5147 { 5148 void *bitmap; 5149 ext4_grpblk_t next, count = 0, free_count = 0; 5150 struct ext4_buddy e4b; 5151 int ret = 0; 5152 5153 trace_ext4_trim_all_free(sb, group, start, max); 5154 5155 ret = ext4_mb_load_buddy(sb, group, &e4b); 5156 if (ret) { 5157 ext4_warning(sb, "Error %d loading buddy information for %u", 5158 ret, group); 5159 return ret; 5160 } 5161 bitmap = e4b.bd_bitmap; 5162 5163 ext4_lock_group(sb, group); 5164 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 5165 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 5166 goto out; 5167 5168 start = (e4b.bd_info->bb_first_free > start) ? 5169 e4b.bd_info->bb_first_free : start; 5170 5171 while (start <= max) { 5172 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5173 if (start > max) 5174 break; 5175 next = mb_find_next_bit(bitmap, max + 1, start); 5176 5177 if ((next - start) >= minblocks) { 5178 ret = ext4_trim_extent(sb, start, 5179 next - start, group, &e4b); 5180 if (ret && ret != -EOPNOTSUPP) 5181 break; 5182 ret = 0; 5183 count += next - start; 5184 } 5185 free_count += next - start; 5186 start = next + 1; 5187 5188 if (fatal_signal_pending(current)) { 5189 count = -ERESTARTSYS; 5190 break; 5191 } 5192 5193 if (need_resched()) { 5194 ext4_unlock_group(sb, group); 5195 cond_resched(); 5196 ext4_lock_group(sb, group); 5197 } 5198 5199 if ((e4b.bd_info->bb_free - free_count) < minblocks) 5200 break; 5201 } 5202 5203 if (!ret) { 5204 ret = count; 5205 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 5206 } 5207 out: 5208 ext4_unlock_group(sb, group); 5209 ext4_mb_unload_buddy(&e4b); 5210 5211 ext4_debug("trimmed %d blocks in the group %d\n", 5212 count, group); 5213 5214 return ret; 5215 } 5216 5217 /** 5218 * ext4_trim_fs() -- trim ioctl handle function 5219 * @sb: superblock for filesystem 5220 * @range: fstrim_range structure 5221 * 5222 * start: First Byte to trim 5223 * len: number of Bytes to trim from start 5224 * minlen: minimum extent length in Bytes 5225 * ext4_trim_fs goes through all allocation groups containing Bytes from 5226 * start to start+len. For each such a group ext4_trim_all_free function 5227 * is invoked to trim all free space. 5228 */ 5229 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 5230 { 5231 struct ext4_group_info *grp; 5232 ext4_group_t group, first_group, last_group; 5233 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5234 uint64_t start, end, minlen, trimmed = 0; 5235 ext4_fsblk_t first_data_blk = 5236 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5237 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5238 int ret = 0; 5239 5240 start = range->start >> sb->s_blocksize_bits; 5241 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5242 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5243 range->minlen >> sb->s_blocksize_bits); 5244 5245 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5246 start >= max_blks || 5247 range->len < sb->s_blocksize) 5248 return -EINVAL; 5249 if (end >= max_blks) 5250 end = max_blks - 1; 5251 if (end <= first_data_blk) 5252 goto out; 5253 if (start < first_data_blk) 5254 start = first_data_blk; 5255 5256 /* Determine first and last group to examine based on start and end */ 5257 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5258 &first_group, &first_cluster); 5259 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5260 &last_group, &last_cluster); 5261 5262 /* end now represents the last cluster to discard in this group */ 5263 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5264 5265 for (group = first_group; group <= last_group; group++) { 5266 grp = ext4_get_group_info(sb, group); 5267 /* We only do this if the grp has never been initialized */ 5268 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5269 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 5270 if (ret) 5271 break; 5272 } 5273 5274 /* 5275 * For all the groups except the last one, last cluster will 5276 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5277 * change it for the last group, note that last_cluster is 5278 * already computed earlier by ext4_get_group_no_and_offset() 5279 */ 5280 if (group == last_group) 5281 end = last_cluster; 5282 5283 if (grp->bb_free >= minlen) { 5284 cnt = ext4_trim_all_free(sb, group, first_cluster, 5285 end, minlen); 5286 if (cnt < 0) { 5287 ret = cnt; 5288 break; 5289 } 5290 trimmed += cnt; 5291 } 5292 5293 /* 5294 * For every group except the first one, we are sure 5295 * that the first cluster to discard will be cluster #0. 5296 */ 5297 first_cluster = 0; 5298 } 5299 5300 if (!ret) 5301 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5302 5303 out: 5304 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5305 return ret; 5306 } 5307 5308 /* Iterate all the free extents in the group. */ 5309 int 5310 ext4_mballoc_query_range( 5311 struct super_block *sb, 5312 ext4_group_t group, 5313 ext4_grpblk_t start, 5314 ext4_grpblk_t end, 5315 ext4_mballoc_query_range_fn formatter, 5316 void *priv) 5317 { 5318 void *bitmap; 5319 ext4_grpblk_t next; 5320 struct ext4_buddy e4b; 5321 int error; 5322 5323 error = ext4_mb_load_buddy(sb, group, &e4b); 5324 if (error) 5325 return error; 5326 bitmap = e4b.bd_bitmap; 5327 5328 ext4_lock_group(sb, group); 5329 5330 start = (e4b.bd_info->bb_first_free > start) ? 5331 e4b.bd_info->bb_first_free : start; 5332 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 5333 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5334 5335 while (start <= end) { 5336 start = mb_find_next_zero_bit(bitmap, end + 1, start); 5337 if (start > end) 5338 break; 5339 next = mb_find_next_bit(bitmap, end + 1, start); 5340 5341 ext4_unlock_group(sb, group); 5342 error = formatter(sb, group, start, next - start, priv); 5343 if (error) 5344 goto out_unload; 5345 ext4_lock_group(sb, group); 5346 5347 start = next + 1; 5348 } 5349 5350 ext4_unlock_group(sb, group); 5351 out_unload: 5352 ext4_mb_unload_buddy(&e4b); 5353 5354 return error; 5355 } 5356