xref: /openbmc/linux/fs/ext4/mballoc.c (revision 2ae1beb3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
4  * Written by Alex Tomas <alex@clusterfs.com>
5  */
6 
7 
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11 
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <trace/events/ext4.h>
21 
22 /*
23  * MUSTDO:
24  *   - test ext4_ext_search_left() and ext4_ext_search_right()
25  *   - search for metadata in few groups
26  *
27  * TODO v4:
28  *   - normalization should take into account whether file is still open
29  *   - discard preallocations if no free space left (policy?)
30  *   - don't normalize tails
31  *   - quota
32  *   - reservation for superuser
33  *
34  * TODO v3:
35  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
36  *   - track min/max extents in each group for better group selection
37  *   - mb_mark_used() may allocate chunk right after splitting buddy
38  *   - tree of groups sorted by number of free blocks
39  *   - error handling
40  */
41 
42 /*
43  * The allocation request involve request for multiple number of blocks
44  * near to the goal(block) value specified.
45  *
46  * During initialization phase of the allocator we decide to use the
47  * group preallocation or inode preallocation depending on the size of
48  * the file. The size of the file could be the resulting file size we
49  * would have after allocation, or the current file size, which ever
50  * is larger. If the size is less than sbi->s_mb_stream_request we
51  * select to use the group preallocation. The default value of
52  * s_mb_stream_request is 16 blocks. This can also be tuned via
53  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
54  * terms of number of blocks.
55  *
56  * The main motivation for having small file use group preallocation is to
57  * ensure that we have small files closer together on the disk.
58  *
59  * First stage the allocator looks at the inode prealloc list,
60  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
61  * spaces for this particular inode. The inode prealloc space is
62  * represented as:
63  *
64  * pa_lstart -> the logical start block for this prealloc space
65  * pa_pstart -> the physical start block for this prealloc space
66  * pa_len    -> length for this prealloc space (in clusters)
67  * pa_free   ->  free space available in this prealloc space (in clusters)
68  *
69  * The inode preallocation space is used looking at the _logical_ start
70  * block. If only the logical file block falls within the range of prealloc
71  * space we will consume the particular prealloc space. This makes sure that
72  * we have contiguous physical blocks representing the file blocks
73  *
74  * The important thing to be noted in case of inode prealloc space is that
75  * we don't modify the values associated to inode prealloc space except
76  * pa_free.
77  *
78  * If we are not able to find blocks in the inode prealloc space and if we
79  * have the group allocation flag set then we look at the locality group
80  * prealloc space. These are per CPU prealloc list represented as
81  *
82  * ext4_sb_info.s_locality_groups[smp_processor_id()]
83  *
84  * The reason for having a per cpu locality group is to reduce the contention
85  * between CPUs. It is possible to get scheduled at this point.
86  *
87  * The locality group prealloc space is used looking at whether we have
88  * enough free space (pa_free) within the prealloc space.
89  *
90  * If we can't allocate blocks via inode prealloc or/and locality group
91  * prealloc then we look at the buddy cache. The buddy cache is represented
92  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
93  * mapped to the buddy and bitmap information regarding different
94  * groups. The buddy information is attached to buddy cache inode so that
95  * we can access them through the page cache. The information regarding
96  * each group is loaded via ext4_mb_load_buddy.  The information involve
97  * block bitmap and buddy information. The information are stored in the
98  * inode as:
99  *
100  *  {                        page                        }
101  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
102  *
103  *
104  * one block each for bitmap and buddy information.  So for each group we
105  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
106  * blocksize) blocks.  So it can have information regarding groups_per_page
107  * which is blocks_per_page/2
108  *
109  * The buddy cache inode is not stored on disk. The inode is thrown
110  * away when the filesystem is unmounted.
111  *
112  * We look for count number of blocks in the buddy cache. If we were able
113  * to locate that many free blocks we return with additional information
114  * regarding rest of the contiguous physical block available
115  *
116  * Before allocating blocks via buddy cache we normalize the request
117  * blocks. This ensure we ask for more blocks that we needed. The extra
118  * blocks that we get after allocation is added to the respective prealloc
119  * list. In case of inode preallocation we follow a list of heuristics
120  * based on file size. This can be found in ext4_mb_normalize_request. If
121  * we are doing a group prealloc we try to normalize the request to
122  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
123  * dependent on the cluster size; for non-bigalloc file systems, it is
124  * 512 blocks. This can be tuned via
125  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
126  * terms of number of blocks. If we have mounted the file system with -O
127  * stripe=<value> option the group prealloc request is normalized to the
128  * smallest multiple of the stripe value (sbi->s_stripe) which is
129  * greater than the default mb_group_prealloc.
130  *
131  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
132  * structures in two data structures:
133  *
134  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
135  *
136  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
137  *
138  *    This is an array of lists where the index in the array represents the
139  *    largest free order in the buddy bitmap of the participating group infos of
140  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
141  *    number of buddy bitmap orders possible) number of lists. Group-infos are
142  *    placed in appropriate lists.
143  *
144  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
145  *
146  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
147  *
148  *    This is an array of lists where in the i-th list there are groups with
149  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
150  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
151  *    Note that we don't bother with a special list for completely empty groups
152  *    so we only have MB_NUM_ORDERS(sb) lists.
153  *
154  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
155  * structures to decide the order in which groups are to be traversed for
156  * fulfilling an allocation request.
157  *
158  * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
159  * >= the order of the request. We directly look at the largest free order list
160  * in the data structure (1) above where largest_free_order = order of the
161  * request. If that list is empty, we look at remaining list in the increasing
162  * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
163  * lookup in O(1) time.
164  *
165  * At CR_GOAL_LEN_FAST, we only consider groups where
166  * average fragment size > request size. So, we lookup a group which has average
167  * fragment size just above or equal to request size using our average fragment
168  * size group lists (data structure 2) in O(1) time.
169  *
170  * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
171  * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
172  * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
173  * fragment size > goal length. So before falling to the slower
174  * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
175  * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
176  * enough average fragment size. This increases the chances of finding a
177  * suitable block group in O(1) time and results in faster allocation at the
178  * cost of reduced size of allocation.
179  *
180  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
181  * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
182  * CR_GOAL_LEN_FAST phase.
183  *
184  * The regular allocator (using the buddy cache) supports a few tunables.
185  *
186  * /sys/fs/ext4/<partition>/mb_min_to_scan
187  * /sys/fs/ext4/<partition>/mb_max_to_scan
188  * /sys/fs/ext4/<partition>/mb_order2_req
189  * /sys/fs/ext4/<partition>/mb_linear_limit
190  *
191  * The regular allocator uses buddy scan only if the request len is power of
192  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
193  * value of s_mb_order2_reqs can be tuned via
194  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
195  * stripe size (sbi->s_stripe), we try to search for contiguous block in
196  * stripe size. This should result in better allocation on RAID setups. If
197  * not, we search in the specific group using bitmap for best extents. The
198  * tunable min_to_scan and max_to_scan control the behaviour here.
199  * min_to_scan indicate how long the mballoc __must__ look for a best
200  * extent and max_to_scan indicates how long the mballoc __can__ look for a
201  * best extent in the found extents. Searching for the blocks starts with
202  * the group specified as the goal value in allocation context via
203  * ac_g_ex. Each group is first checked based on the criteria whether it
204  * can be used for allocation. ext4_mb_good_group explains how the groups are
205  * checked.
206  *
207  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
208  * get traversed linearly. That may result in subsequent allocations being not
209  * close to each other. And so, the underlying device may get filled up in a
210  * non-linear fashion. While that may not matter on non-rotational devices, for
211  * rotational devices that may result in higher seek times. "mb_linear_limit"
212  * tells mballoc how many groups mballoc should search linearly before
213  * performing consulting above data structures for more efficient lookups. For
214  * non rotational devices, this value defaults to 0 and for rotational devices
215  * this is set to MB_DEFAULT_LINEAR_LIMIT.
216  *
217  * Both the prealloc space are getting populated as above. So for the first
218  * request we will hit the buddy cache which will result in this prealloc
219  * space getting filled. The prealloc space is then later used for the
220  * subsequent request.
221  */
222 
223 /*
224  * mballoc operates on the following data:
225  *  - on-disk bitmap
226  *  - in-core buddy (actually includes buddy and bitmap)
227  *  - preallocation descriptors (PAs)
228  *
229  * there are two types of preallocations:
230  *  - inode
231  *    assiged to specific inode and can be used for this inode only.
232  *    it describes part of inode's space preallocated to specific
233  *    physical blocks. any block from that preallocated can be used
234  *    independent. the descriptor just tracks number of blocks left
235  *    unused. so, before taking some block from descriptor, one must
236  *    make sure corresponded logical block isn't allocated yet. this
237  *    also means that freeing any block within descriptor's range
238  *    must discard all preallocated blocks.
239  *  - locality group
240  *    assigned to specific locality group which does not translate to
241  *    permanent set of inodes: inode can join and leave group. space
242  *    from this type of preallocation can be used for any inode. thus
243  *    it's consumed from the beginning to the end.
244  *
245  * relation between them can be expressed as:
246  *    in-core buddy = on-disk bitmap + preallocation descriptors
247  *
248  * this mean blocks mballoc considers used are:
249  *  - allocated blocks (persistent)
250  *  - preallocated blocks (non-persistent)
251  *
252  * consistency in mballoc world means that at any time a block is either
253  * free or used in ALL structures. notice: "any time" should not be read
254  * literally -- time is discrete and delimited by locks.
255  *
256  *  to keep it simple, we don't use block numbers, instead we count number of
257  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
258  *
259  * all operations can be expressed as:
260  *  - init buddy:			buddy = on-disk + PAs
261  *  - new PA:				buddy += N; PA = N
262  *  - use inode PA:			on-disk += N; PA -= N
263  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
264  *  - use locality group PA		on-disk += N; PA -= N
265  *  - discard locality group PA		buddy -= PA; PA = 0
266  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
267  *        is used in real operation because we can't know actual used
268  *        bits from PA, only from on-disk bitmap
269  *
270  * if we follow this strict logic, then all operations above should be atomic.
271  * given some of them can block, we'd have to use something like semaphores
272  * killing performance on high-end SMP hardware. let's try to relax it using
273  * the following knowledge:
274  *  1) if buddy is referenced, it's already initialized
275  *  2) while block is used in buddy and the buddy is referenced,
276  *     nobody can re-allocate that block
277  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
278  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
279  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
280  *     block
281  *
282  * so, now we're building a concurrency table:
283  *  - init buddy vs.
284  *    - new PA
285  *      blocks for PA are allocated in the buddy, buddy must be referenced
286  *      until PA is linked to allocation group to avoid concurrent buddy init
287  *    - use inode PA
288  *      we need to make sure that either on-disk bitmap or PA has uptodate data
289  *      given (3) we care that PA-=N operation doesn't interfere with init
290  *    - discard inode PA
291  *      the simplest way would be to have buddy initialized by the discard
292  *    - use locality group PA
293  *      again PA-=N must be serialized with init
294  *    - discard locality group PA
295  *      the simplest way would be to have buddy initialized by the discard
296  *  - new PA vs.
297  *    - use inode PA
298  *      i_data_sem serializes them
299  *    - discard inode PA
300  *      discard process must wait until PA isn't used by another process
301  *    - use locality group PA
302  *      some mutex should serialize them
303  *    - discard locality group PA
304  *      discard process must wait until PA isn't used by another process
305  *  - use inode PA
306  *    - use inode PA
307  *      i_data_sem or another mutex should serializes them
308  *    - discard inode PA
309  *      discard process must wait until PA isn't used by another process
310  *    - use locality group PA
311  *      nothing wrong here -- they're different PAs covering different blocks
312  *    - discard locality group PA
313  *      discard process must wait until PA isn't used by another process
314  *
315  * now we're ready to make few consequences:
316  *  - PA is referenced and while it is no discard is possible
317  *  - PA is referenced until block isn't marked in on-disk bitmap
318  *  - PA changes only after on-disk bitmap
319  *  - discard must not compete with init. either init is done before
320  *    any discard or they're serialized somehow
321  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
322  *
323  * a special case when we've used PA to emptiness. no need to modify buddy
324  * in this case, but we should care about concurrent init
325  *
326  */
327 
328  /*
329  * Logic in few words:
330  *
331  *  - allocation:
332  *    load group
333  *    find blocks
334  *    mark bits in on-disk bitmap
335  *    release group
336  *
337  *  - use preallocation:
338  *    find proper PA (per-inode or group)
339  *    load group
340  *    mark bits in on-disk bitmap
341  *    release group
342  *    release PA
343  *
344  *  - free:
345  *    load group
346  *    mark bits in on-disk bitmap
347  *    release group
348  *
349  *  - discard preallocations in group:
350  *    mark PAs deleted
351  *    move them onto local list
352  *    load on-disk bitmap
353  *    load group
354  *    remove PA from object (inode or locality group)
355  *    mark free blocks in-core
356  *
357  *  - discard inode's preallocations:
358  */
359 
360 /*
361  * Locking rules
362  *
363  * Locks:
364  *  - bitlock on a group	(group)
365  *  - object (inode/locality)	(object)
366  *  - per-pa lock		(pa)
367  *  - cr_power2_aligned lists lock	(cr_power2_aligned)
368  *  - cr_goal_len_fast lists lock	(cr_goal_len_fast)
369  *
370  * Paths:
371  *  - new pa
372  *    object
373  *    group
374  *
375  *  - find and use pa:
376  *    pa
377  *
378  *  - release consumed pa:
379  *    pa
380  *    group
381  *    object
382  *
383  *  - generate in-core bitmap:
384  *    group
385  *        pa
386  *
387  *  - discard all for given object (inode, locality group):
388  *    object
389  *        pa
390  *    group
391  *
392  *  - discard all for given group:
393  *    group
394  *        pa
395  *    group
396  *        object
397  *
398  *  - allocation path (ext4_mb_regular_allocator)
399  *    group
400  *    cr_power2_aligned/cr_goal_len_fast
401  */
402 static struct kmem_cache *ext4_pspace_cachep;
403 static struct kmem_cache *ext4_ac_cachep;
404 static struct kmem_cache *ext4_free_data_cachep;
405 
406 /* We create slab caches for groupinfo data structures based on the
407  * superblock block size.  There will be one per mounted filesystem for
408  * each unique s_blocksize_bits */
409 #define NR_GRPINFO_CACHES 8
410 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
411 
412 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
413 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
414 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
415 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
416 };
417 
418 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
419 					ext4_group_t group);
420 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
421 
422 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
423 			       ext4_group_t group, enum criteria cr);
424 
425 static int ext4_try_to_trim_range(struct super_block *sb,
426 		struct ext4_buddy *e4b, ext4_grpblk_t start,
427 		ext4_grpblk_t max, ext4_grpblk_t minblocks);
428 
429 /*
430  * The algorithm using this percpu seq counter goes below:
431  * 1. We sample the percpu discard_pa_seq counter before trying for block
432  *    allocation in ext4_mb_new_blocks().
433  * 2. We increment this percpu discard_pa_seq counter when we either allocate
434  *    or free these blocks i.e. while marking those blocks as used/free in
435  *    mb_mark_used()/mb_free_blocks().
436  * 3. We also increment this percpu seq counter when we successfully identify
437  *    that the bb_prealloc_list is not empty and hence proceed for discarding
438  *    of those PAs inside ext4_mb_discard_group_preallocations().
439  *
440  * Now to make sure that the regular fast path of block allocation is not
441  * affected, as a small optimization we only sample the percpu seq counter
442  * on that cpu. Only when the block allocation fails and when freed blocks
443  * found were 0, that is when we sample percpu seq counter for all cpus using
444  * below function ext4_get_discard_pa_seq_sum(). This happens after making
445  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
446  */
447 static DEFINE_PER_CPU(u64, discard_pa_seq);
448 static inline u64 ext4_get_discard_pa_seq_sum(void)
449 {
450 	int __cpu;
451 	u64 __seq = 0;
452 
453 	for_each_possible_cpu(__cpu)
454 		__seq += per_cpu(discard_pa_seq, __cpu);
455 	return __seq;
456 }
457 
458 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
459 {
460 #if BITS_PER_LONG == 64
461 	*bit += ((unsigned long) addr & 7UL) << 3;
462 	addr = (void *) ((unsigned long) addr & ~7UL);
463 #elif BITS_PER_LONG == 32
464 	*bit += ((unsigned long) addr & 3UL) << 3;
465 	addr = (void *) ((unsigned long) addr & ~3UL);
466 #else
467 #error "how many bits you are?!"
468 #endif
469 	return addr;
470 }
471 
472 static inline int mb_test_bit(int bit, void *addr)
473 {
474 	/*
475 	 * ext4_test_bit on architecture like powerpc
476 	 * needs unsigned long aligned address
477 	 */
478 	addr = mb_correct_addr_and_bit(&bit, addr);
479 	return ext4_test_bit(bit, addr);
480 }
481 
482 static inline void mb_set_bit(int bit, void *addr)
483 {
484 	addr = mb_correct_addr_and_bit(&bit, addr);
485 	ext4_set_bit(bit, addr);
486 }
487 
488 static inline void mb_clear_bit(int bit, void *addr)
489 {
490 	addr = mb_correct_addr_and_bit(&bit, addr);
491 	ext4_clear_bit(bit, addr);
492 }
493 
494 static inline int mb_test_and_clear_bit(int bit, void *addr)
495 {
496 	addr = mb_correct_addr_and_bit(&bit, addr);
497 	return ext4_test_and_clear_bit(bit, addr);
498 }
499 
500 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
501 {
502 	int fix = 0, ret, tmpmax;
503 	addr = mb_correct_addr_and_bit(&fix, addr);
504 	tmpmax = max + fix;
505 	start += fix;
506 
507 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
508 	if (ret > max)
509 		return max;
510 	return ret;
511 }
512 
513 static inline int mb_find_next_bit(void *addr, int max, int start)
514 {
515 	int fix = 0, ret, tmpmax;
516 	addr = mb_correct_addr_and_bit(&fix, addr);
517 	tmpmax = max + fix;
518 	start += fix;
519 
520 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
521 	if (ret > max)
522 		return max;
523 	return ret;
524 }
525 
526 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
527 {
528 	char *bb;
529 
530 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
531 	BUG_ON(max == NULL);
532 
533 	if (order > e4b->bd_blkbits + 1) {
534 		*max = 0;
535 		return NULL;
536 	}
537 
538 	/* at order 0 we see each particular block */
539 	if (order == 0) {
540 		*max = 1 << (e4b->bd_blkbits + 3);
541 		return e4b->bd_bitmap;
542 	}
543 
544 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
545 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
546 
547 	return bb;
548 }
549 
550 #ifdef DOUBLE_CHECK
551 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
552 			   int first, int count)
553 {
554 	int i;
555 	struct super_block *sb = e4b->bd_sb;
556 
557 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
558 		return;
559 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
560 	for (i = 0; i < count; i++) {
561 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
562 			ext4_fsblk_t blocknr;
563 
564 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
565 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
566 			ext4_grp_locked_error(sb, e4b->bd_group,
567 					      inode ? inode->i_ino : 0,
568 					      blocknr,
569 					      "freeing block already freed "
570 					      "(bit %u)",
571 					      first + i);
572 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
573 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
574 		}
575 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
576 	}
577 }
578 
579 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
580 {
581 	int i;
582 
583 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
584 		return;
585 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
586 	for (i = 0; i < count; i++) {
587 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
588 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
589 	}
590 }
591 
592 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
593 {
594 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
595 		return;
596 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
597 		unsigned char *b1, *b2;
598 		int i;
599 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
600 		b2 = (unsigned char *) bitmap;
601 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
602 			if (b1[i] != b2[i]) {
603 				ext4_msg(e4b->bd_sb, KERN_ERR,
604 					 "corruption in group %u "
605 					 "at byte %u(%u): %x in copy != %x "
606 					 "on disk/prealloc",
607 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
608 				BUG();
609 			}
610 		}
611 	}
612 }
613 
614 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
615 			struct ext4_group_info *grp, ext4_group_t group)
616 {
617 	struct buffer_head *bh;
618 
619 	grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
620 	if (!grp->bb_bitmap)
621 		return;
622 
623 	bh = ext4_read_block_bitmap(sb, group);
624 	if (IS_ERR_OR_NULL(bh)) {
625 		kfree(grp->bb_bitmap);
626 		grp->bb_bitmap = NULL;
627 		return;
628 	}
629 
630 	memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
631 	put_bh(bh);
632 }
633 
634 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
635 {
636 	kfree(grp->bb_bitmap);
637 }
638 
639 #else
640 static inline void mb_free_blocks_double(struct inode *inode,
641 				struct ext4_buddy *e4b, int first, int count)
642 {
643 	return;
644 }
645 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
646 						int first, int count)
647 {
648 	return;
649 }
650 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
651 {
652 	return;
653 }
654 
655 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
656 			struct ext4_group_info *grp, ext4_group_t group)
657 {
658 	return;
659 }
660 
661 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
662 {
663 	return;
664 }
665 #endif
666 
667 #ifdef AGGRESSIVE_CHECK
668 
669 #define MB_CHECK_ASSERT(assert)						\
670 do {									\
671 	if (!(assert)) {						\
672 		printk(KERN_EMERG					\
673 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
674 			function, file, line, # assert);		\
675 		BUG();							\
676 	}								\
677 } while (0)
678 
679 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
680 				const char *function, int line)
681 {
682 	struct super_block *sb = e4b->bd_sb;
683 	int order = e4b->bd_blkbits + 1;
684 	int max;
685 	int max2;
686 	int i;
687 	int j;
688 	int k;
689 	int count;
690 	struct ext4_group_info *grp;
691 	int fragments = 0;
692 	int fstart;
693 	struct list_head *cur;
694 	void *buddy;
695 	void *buddy2;
696 
697 	if (e4b->bd_info->bb_check_counter++ % 10)
698 		return 0;
699 
700 	while (order > 1) {
701 		buddy = mb_find_buddy(e4b, order, &max);
702 		MB_CHECK_ASSERT(buddy);
703 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
704 		MB_CHECK_ASSERT(buddy2);
705 		MB_CHECK_ASSERT(buddy != buddy2);
706 		MB_CHECK_ASSERT(max * 2 == max2);
707 
708 		count = 0;
709 		for (i = 0; i < max; i++) {
710 
711 			if (mb_test_bit(i, buddy)) {
712 				/* only single bit in buddy2 may be 0 */
713 				if (!mb_test_bit(i << 1, buddy2)) {
714 					MB_CHECK_ASSERT(
715 						mb_test_bit((i<<1)+1, buddy2));
716 				}
717 				continue;
718 			}
719 
720 			/* both bits in buddy2 must be 1 */
721 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
722 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
723 
724 			for (j = 0; j < (1 << order); j++) {
725 				k = (i * (1 << order)) + j;
726 				MB_CHECK_ASSERT(
727 					!mb_test_bit(k, e4b->bd_bitmap));
728 			}
729 			count++;
730 		}
731 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
732 		order--;
733 	}
734 
735 	fstart = -1;
736 	buddy = mb_find_buddy(e4b, 0, &max);
737 	for (i = 0; i < max; i++) {
738 		if (!mb_test_bit(i, buddy)) {
739 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
740 			if (fstart == -1) {
741 				fragments++;
742 				fstart = i;
743 			}
744 			continue;
745 		}
746 		fstart = -1;
747 		/* check used bits only */
748 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
749 			buddy2 = mb_find_buddy(e4b, j, &max2);
750 			k = i >> j;
751 			MB_CHECK_ASSERT(k < max2);
752 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
753 		}
754 	}
755 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
756 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
757 
758 	grp = ext4_get_group_info(sb, e4b->bd_group);
759 	if (!grp)
760 		return NULL;
761 	list_for_each(cur, &grp->bb_prealloc_list) {
762 		ext4_group_t groupnr;
763 		struct ext4_prealloc_space *pa;
764 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
765 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
766 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
767 		for (i = 0; i < pa->pa_len; i++)
768 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
769 	}
770 	return 0;
771 }
772 #undef MB_CHECK_ASSERT
773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
774 					__FILE__, __func__, __LINE__)
775 #else
776 #define mb_check_buddy(e4b)
777 #endif
778 
779 /*
780  * Divide blocks started from @first with length @len into
781  * smaller chunks with power of 2 blocks.
782  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
783  * then increase bb_counters[] for corresponded chunk size.
784  */
785 static void ext4_mb_mark_free_simple(struct super_block *sb,
786 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
787 					struct ext4_group_info *grp)
788 {
789 	struct ext4_sb_info *sbi = EXT4_SB(sb);
790 	ext4_grpblk_t min;
791 	ext4_grpblk_t max;
792 	ext4_grpblk_t chunk;
793 	unsigned int border;
794 
795 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
796 
797 	border = 2 << sb->s_blocksize_bits;
798 
799 	while (len > 0) {
800 		/* find how many blocks can be covered since this position */
801 		max = ffs(first | border) - 1;
802 
803 		/* find how many blocks of power 2 we need to mark */
804 		min = fls(len) - 1;
805 
806 		if (max < min)
807 			min = max;
808 		chunk = 1 << min;
809 
810 		/* mark multiblock chunks only */
811 		grp->bb_counters[min]++;
812 		if (min > 0)
813 			mb_clear_bit(first >> min,
814 				     buddy + sbi->s_mb_offsets[min]);
815 
816 		len -= chunk;
817 		first += chunk;
818 	}
819 }
820 
821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
822 {
823 	int order;
824 
825 	/*
826 	 * We don't bother with a special lists groups with only 1 block free
827 	 * extents and for completely empty groups.
828 	 */
829 	order = fls(len) - 2;
830 	if (order < 0)
831 		return 0;
832 	if (order == MB_NUM_ORDERS(sb))
833 		order--;
834 	if (WARN_ON_ONCE(order > MB_NUM_ORDERS(sb)))
835 		order = MB_NUM_ORDERS(sb) - 1;
836 	return order;
837 }
838 
839 /* Move group to appropriate avg_fragment_size list */
840 static void
841 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
842 {
843 	struct ext4_sb_info *sbi = EXT4_SB(sb);
844 	int new_order;
845 
846 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_fragments == 0)
847 		return;
848 
849 	new_order = mb_avg_fragment_size_order(sb,
850 					grp->bb_free / grp->bb_fragments);
851 	if (new_order == grp->bb_avg_fragment_size_order)
852 		return;
853 
854 	if (grp->bb_avg_fragment_size_order != -1) {
855 		write_lock(&sbi->s_mb_avg_fragment_size_locks[
856 					grp->bb_avg_fragment_size_order]);
857 		list_del(&grp->bb_avg_fragment_size_node);
858 		write_unlock(&sbi->s_mb_avg_fragment_size_locks[
859 					grp->bb_avg_fragment_size_order]);
860 	}
861 	grp->bb_avg_fragment_size_order = new_order;
862 	write_lock(&sbi->s_mb_avg_fragment_size_locks[
863 					grp->bb_avg_fragment_size_order]);
864 	list_add_tail(&grp->bb_avg_fragment_size_node,
865 		&sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
866 	write_unlock(&sbi->s_mb_avg_fragment_size_locks[
867 					grp->bb_avg_fragment_size_order]);
868 }
869 
870 /*
871  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
872  * cr level needs an update.
873  */
874 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
875 			enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
876 {
877 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
878 	struct ext4_group_info *iter;
879 	int i;
880 
881 	if (ac->ac_status == AC_STATUS_FOUND)
882 		return;
883 
884 	if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
885 		atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
886 
887 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
888 		if (list_empty(&sbi->s_mb_largest_free_orders[i]))
889 			continue;
890 		read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
891 		if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
892 			read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
893 			continue;
894 		}
895 		list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
896 				    bb_largest_free_order_node) {
897 			if (sbi->s_mb_stats)
898 				atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
899 			if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
900 				*group = iter->bb_group;
901 				ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
902 				read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
903 				return;
904 			}
905 		}
906 		read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
907 	}
908 
909 	/* Increment cr and search again if no group is found */
910 	*new_cr = CR_GOAL_LEN_FAST;
911 }
912 
913 /*
914  * Find a suitable group of given order from the average fragments list.
915  */
916 static struct ext4_group_info *
917 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
918 {
919 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
920 	struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
921 	rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
922 	struct ext4_group_info *grp = NULL, *iter;
923 	enum criteria cr = ac->ac_criteria;
924 
925 	if (list_empty(frag_list))
926 		return NULL;
927 	read_lock(frag_list_lock);
928 	if (list_empty(frag_list)) {
929 		read_unlock(frag_list_lock);
930 		return NULL;
931 	}
932 	list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
933 		if (sbi->s_mb_stats)
934 			atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
935 		if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
936 			grp = iter;
937 			break;
938 		}
939 	}
940 	read_unlock(frag_list_lock);
941 	return grp;
942 }
943 
944 /*
945  * Choose next group by traversing average fragment size list of suitable
946  * order. Updates *new_cr if cr level needs an update.
947  */
948 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
949 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
950 {
951 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
952 	struct ext4_group_info *grp = NULL;
953 	int i;
954 
955 	if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
956 		if (sbi->s_mb_stats)
957 			atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
958 	}
959 
960 	for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
961 	     i < MB_NUM_ORDERS(ac->ac_sb); i++) {
962 		grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
963 		if (grp) {
964 			*group = grp->bb_group;
965 			ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
966 			return;
967 		}
968 	}
969 
970 	/*
971 	 * CR_BEST_AVAIL_LEN works based on the concept that we have
972 	 * a larger normalized goal len request which can be trimmed to
973 	 * a smaller goal len such that it can still satisfy original
974 	 * request len. However, allocation request for non-regular
975 	 * files never gets normalized.
976 	 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA).
977 	 */
978 	if (ac->ac_flags & EXT4_MB_HINT_DATA)
979 		*new_cr = CR_BEST_AVAIL_LEN;
980 	else
981 		*new_cr = CR_GOAL_LEN_SLOW;
982 }
983 
984 /*
985  * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
986  * order we have and proactively trim the goal request length to that order to
987  * find a suitable group faster.
988  *
989  * This optimizes allocation speed at the cost of slightly reduced
990  * preallocations. However, we make sure that we don't trim the request too
991  * much and fall to CR_GOAL_LEN_SLOW in that case.
992  */
993 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
994 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
995 {
996 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
997 	struct ext4_group_info *grp = NULL;
998 	int i, order, min_order;
999 	unsigned long num_stripe_clusters = 0;
1000 
1001 	if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
1002 		if (sbi->s_mb_stats)
1003 			atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1004 	}
1005 
1006 	/*
1007 	 * mb_avg_fragment_size_order() returns order in a way that makes
1008 	 * retrieving back the length using (1 << order) inaccurate. Hence, use
1009 	 * fls() instead since we need to know the actual length while modifying
1010 	 * goal length.
1011 	 */
1012 	order = fls(ac->ac_g_ex.fe_len) - 1;
1013 	if (WARN_ON_ONCE(order - 1 > MB_NUM_ORDERS(ac->ac_sb)))
1014 		order = MB_NUM_ORDERS(ac->ac_sb);
1015 	min_order = order - sbi->s_mb_best_avail_max_trim_order;
1016 	if (min_order < 0)
1017 		min_order = 0;
1018 
1019 	if (sbi->s_stripe > 0) {
1020 		/*
1021 		 * We are assuming that stripe size is always a multiple of
1022 		 * cluster ratio otherwise __ext4_fill_super exists early.
1023 		 */
1024 		num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1025 		if (1 << min_order < num_stripe_clusters)
1026 			/*
1027 			 * We consider 1 order less because later we round
1028 			 * up the goal len to num_stripe_clusters
1029 			 */
1030 			min_order = fls(num_stripe_clusters) - 1;
1031 	}
1032 
1033 	if (1 << min_order < ac->ac_o_ex.fe_len)
1034 		min_order = fls(ac->ac_o_ex.fe_len);
1035 
1036 	for (i = order; i >= min_order; i--) {
1037 		int frag_order;
1038 		/*
1039 		 * Scale down goal len to make sure we find something
1040 		 * in the free fragments list. Basically, reduce
1041 		 * preallocations.
1042 		 */
1043 		ac->ac_g_ex.fe_len = 1 << i;
1044 
1045 		if (num_stripe_clusters > 0) {
1046 			/*
1047 			 * Try to round up the adjusted goal length to
1048 			 * stripe size (in cluster units) multiple for
1049 			 * efficiency.
1050 			 */
1051 			ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1052 						     num_stripe_clusters);
1053 		}
1054 
1055 		frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1056 							ac->ac_g_ex.fe_len);
1057 
1058 		grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1059 		if (grp) {
1060 			*group = grp->bb_group;
1061 			ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1062 			return;
1063 		}
1064 	}
1065 
1066 	/* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1067 	ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1068 	*new_cr = CR_GOAL_LEN_SLOW;
1069 }
1070 
1071 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1072 {
1073 	if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1074 		return 0;
1075 	if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1076 		return 0;
1077 	if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1078 		return 0;
1079 	return 1;
1080 }
1081 
1082 /*
1083  * Return next linear group for allocation. If linear traversal should not be
1084  * performed, this function just returns the same group
1085  */
1086 static ext4_group_t
1087 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group,
1088 		  ext4_group_t ngroups)
1089 {
1090 	if (!should_optimize_scan(ac))
1091 		goto inc_and_return;
1092 
1093 	if (ac->ac_groups_linear_remaining) {
1094 		ac->ac_groups_linear_remaining--;
1095 		goto inc_and_return;
1096 	}
1097 
1098 	return group;
1099 inc_and_return:
1100 	/*
1101 	 * Artificially restricted ngroups for non-extent
1102 	 * files makes group > ngroups possible on first loop.
1103 	 */
1104 	return group + 1 >= ngroups ? 0 : group + 1;
1105 }
1106 
1107 /*
1108  * ext4_mb_choose_next_group: choose next group for allocation.
1109  *
1110  * @ac        Allocation Context
1111  * @new_cr    This is an output parameter. If the there is no good group
1112  *            available at current CR level, this field is updated to indicate
1113  *            the new cr level that should be used.
1114  * @group     This is an input / output parameter. As an input it indicates the
1115  *            next group that the allocator intends to use for allocation. As
1116  *            output, this field indicates the next group that should be used as
1117  *            determined by the optimization functions.
1118  * @ngroups   Total number of groups
1119  */
1120 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1121 		enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1122 {
1123 	*new_cr = ac->ac_criteria;
1124 
1125 	if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1126 		*group = next_linear_group(ac, *group, ngroups);
1127 		return;
1128 	}
1129 
1130 	if (*new_cr == CR_POWER2_ALIGNED) {
1131 		ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups);
1132 	} else if (*new_cr == CR_GOAL_LEN_FAST) {
1133 		ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups);
1134 	} else if (*new_cr == CR_BEST_AVAIL_LEN) {
1135 		ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups);
1136 	} else {
1137 		/*
1138 		 * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1139 		 * bb_free. But until that happens, we should never come here.
1140 		 */
1141 		WARN_ON(1);
1142 	}
1143 }
1144 
1145 /*
1146  * Cache the order of the largest free extent we have available in this block
1147  * group.
1148  */
1149 static void
1150 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1151 {
1152 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1153 	int i;
1154 
1155 	for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1156 		if (grp->bb_counters[i] > 0)
1157 			break;
1158 	/* No need to move between order lists? */
1159 	if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1160 	    i == grp->bb_largest_free_order) {
1161 		grp->bb_largest_free_order = i;
1162 		return;
1163 	}
1164 
1165 	if (grp->bb_largest_free_order >= 0) {
1166 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1167 					      grp->bb_largest_free_order]);
1168 		list_del_init(&grp->bb_largest_free_order_node);
1169 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1170 					      grp->bb_largest_free_order]);
1171 	}
1172 	grp->bb_largest_free_order = i;
1173 	if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1174 		write_lock(&sbi->s_mb_largest_free_orders_locks[
1175 					      grp->bb_largest_free_order]);
1176 		list_add_tail(&grp->bb_largest_free_order_node,
1177 		      &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1178 		write_unlock(&sbi->s_mb_largest_free_orders_locks[
1179 					      grp->bb_largest_free_order]);
1180 	}
1181 }
1182 
1183 static noinline_for_stack
1184 void ext4_mb_generate_buddy(struct super_block *sb,
1185 			    void *buddy, void *bitmap, ext4_group_t group,
1186 			    struct ext4_group_info *grp)
1187 {
1188 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1189 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1190 	ext4_grpblk_t i = 0;
1191 	ext4_grpblk_t first;
1192 	ext4_grpblk_t len;
1193 	unsigned free = 0;
1194 	unsigned fragments = 0;
1195 	unsigned long long period = get_cycles();
1196 
1197 	/* initialize buddy from bitmap which is aggregation
1198 	 * of on-disk bitmap and preallocations */
1199 	i = mb_find_next_zero_bit(bitmap, max, 0);
1200 	grp->bb_first_free = i;
1201 	while (i < max) {
1202 		fragments++;
1203 		first = i;
1204 		i = mb_find_next_bit(bitmap, max, i);
1205 		len = i - first;
1206 		free += len;
1207 		if (len > 1)
1208 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1209 		else
1210 			grp->bb_counters[0]++;
1211 		if (i < max)
1212 			i = mb_find_next_zero_bit(bitmap, max, i);
1213 	}
1214 	grp->bb_fragments = fragments;
1215 
1216 	if (free != grp->bb_free) {
1217 		ext4_grp_locked_error(sb, group, 0, 0,
1218 				      "block bitmap and bg descriptor "
1219 				      "inconsistent: %u vs %u free clusters",
1220 				      free, grp->bb_free);
1221 		/*
1222 		 * If we intend to continue, we consider group descriptor
1223 		 * corrupt and update bb_free using bitmap value
1224 		 */
1225 		grp->bb_free = free;
1226 		ext4_mark_group_bitmap_corrupted(sb, group,
1227 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1228 	}
1229 	mb_set_largest_free_order(sb, grp);
1230 	mb_update_avg_fragment_size(sb, grp);
1231 
1232 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1233 
1234 	period = get_cycles() - period;
1235 	atomic_inc(&sbi->s_mb_buddies_generated);
1236 	atomic64_add(period, &sbi->s_mb_generation_time);
1237 }
1238 
1239 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
1240 {
1241 	int count;
1242 	int order = 1;
1243 	void *buddy;
1244 
1245 	while ((buddy = mb_find_buddy(e4b, order++, &count)))
1246 		mb_set_bits(buddy, 0, count);
1247 
1248 	e4b->bd_info->bb_fragments = 0;
1249 	memset(e4b->bd_info->bb_counters, 0,
1250 		sizeof(*e4b->bd_info->bb_counters) *
1251 		(e4b->bd_sb->s_blocksize_bits + 2));
1252 
1253 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
1254 		e4b->bd_bitmap, e4b->bd_group, e4b->bd_info);
1255 }
1256 
1257 /* The buddy information is attached the buddy cache inode
1258  * for convenience. The information regarding each group
1259  * is loaded via ext4_mb_load_buddy. The information involve
1260  * block bitmap and buddy information. The information are
1261  * stored in the inode as
1262  *
1263  * {                        page                        }
1264  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1265  *
1266  *
1267  * one block each for bitmap and buddy information.
1268  * So for each group we take up 2 blocks. A page can
1269  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1270  * So it can have information regarding groups_per_page which
1271  * is blocks_per_page/2
1272  *
1273  * Locking note:  This routine takes the block group lock of all groups
1274  * for this page; do not hold this lock when calling this routine!
1275  */
1276 
1277 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1278 {
1279 	ext4_group_t ngroups;
1280 	unsigned int blocksize;
1281 	int blocks_per_page;
1282 	int groups_per_page;
1283 	int err = 0;
1284 	int i;
1285 	ext4_group_t first_group, group;
1286 	int first_block;
1287 	struct super_block *sb;
1288 	struct buffer_head *bhs;
1289 	struct buffer_head **bh = NULL;
1290 	struct inode *inode;
1291 	char *data;
1292 	char *bitmap;
1293 	struct ext4_group_info *grinfo;
1294 
1295 	inode = page->mapping->host;
1296 	sb = inode->i_sb;
1297 	ngroups = ext4_get_groups_count(sb);
1298 	blocksize = i_blocksize(inode);
1299 	blocks_per_page = PAGE_SIZE / blocksize;
1300 
1301 	mb_debug(sb, "init page %lu\n", page->index);
1302 
1303 	groups_per_page = blocks_per_page >> 1;
1304 	if (groups_per_page == 0)
1305 		groups_per_page = 1;
1306 
1307 	/* allocate buffer_heads to read bitmaps */
1308 	if (groups_per_page > 1) {
1309 		i = sizeof(struct buffer_head *) * groups_per_page;
1310 		bh = kzalloc(i, gfp);
1311 		if (bh == NULL)
1312 			return -ENOMEM;
1313 	} else
1314 		bh = &bhs;
1315 
1316 	first_group = page->index * blocks_per_page / 2;
1317 
1318 	/* read all groups the page covers into the cache */
1319 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1320 		if (group >= ngroups)
1321 			break;
1322 
1323 		grinfo = ext4_get_group_info(sb, group);
1324 		if (!grinfo)
1325 			continue;
1326 		/*
1327 		 * If page is uptodate then we came here after online resize
1328 		 * which added some new uninitialized group info structs, so
1329 		 * we must skip all initialized uptodate buddies on the page,
1330 		 * which may be currently in use by an allocating task.
1331 		 */
1332 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1333 			bh[i] = NULL;
1334 			continue;
1335 		}
1336 		bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1337 		if (IS_ERR(bh[i])) {
1338 			err = PTR_ERR(bh[i]);
1339 			bh[i] = NULL;
1340 			goto out;
1341 		}
1342 		mb_debug(sb, "read bitmap for group %u\n", group);
1343 	}
1344 
1345 	/* wait for I/O completion */
1346 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1347 		int err2;
1348 
1349 		if (!bh[i])
1350 			continue;
1351 		err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1352 		if (!err)
1353 			err = err2;
1354 	}
1355 
1356 	first_block = page->index * blocks_per_page;
1357 	for (i = 0; i < blocks_per_page; i++) {
1358 		group = (first_block + i) >> 1;
1359 		if (group >= ngroups)
1360 			break;
1361 
1362 		if (!bh[group - first_group])
1363 			/* skip initialized uptodate buddy */
1364 			continue;
1365 
1366 		if (!buffer_verified(bh[group - first_group]))
1367 			/* Skip faulty bitmaps */
1368 			continue;
1369 		err = 0;
1370 
1371 		/*
1372 		 * data carry information regarding this
1373 		 * particular group in the format specified
1374 		 * above
1375 		 *
1376 		 */
1377 		data = page_address(page) + (i * blocksize);
1378 		bitmap = bh[group - first_group]->b_data;
1379 
1380 		/*
1381 		 * We place the buddy block and bitmap block
1382 		 * close together
1383 		 */
1384 		grinfo = ext4_get_group_info(sb, group);
1385 		if (!grinfo) {
1386 			err = -EFSCORRUPTED;
1387 		        goto out;
1388 		}
1389 		if ((first_block + i) & 1) {
1390 			/* this is block of buddy */
1391 			BUG_ON(incore == NULL);
1392 			mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1393 				group, page->index, i * blocksize);
1394 			trace_ext4_mb_buddy_bitmap_load(sb, group);
1395 			grinfo->bb_fragments = 0;
1396 			memset(grinfo->bb_counters, 0,
1397 			       sizeof(*grinfo->bb_counters) *
1398 			       (MB_NUM_ORDERS(sb)));
1399 			/*
1400 			 * incore got set to the group block bitmap below
1401 			 */
1402 			ext4_lock_group(sb, group);
1403 			/* init the buddy */
1404 			memset(data, 0xff, blocksize);
1405 			ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1406 			ext4_unlock_group(sb, group);
1407 			incore = NULL;
1408 		} else {
1409 			/* this is block of bitmap */
1410 			BUG_ON(incore != NULL);
1411 			mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1412 				group, page->index, i * blocksize);
1413 			trace_ext4_mb_bitmap_load(sb, group);
1414 
1415 			/* see comments in ext4_mb_put_pa() */
1416 			ext4_lock_group(sb, group);
1417 			memcpy(data, bitmap, blocksize);
1418 
1419 			/* mark all preallocated blks used in in-core bitmap */
1420 			ext4_mb_generate_from_pa(sb, data, group);
1421 			WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root));
1422 			ext4_unlock_group(sb, group);
1423 
1424 			/* set incore so that the buddy information can be
1425 			 * generated using this
1426 			 */
1427 			incore = data;
1428 		}
1429 	}
1430 	SetPageUptodate(page);
1431 
1432 out:
1433 	if (bh) {
1434 		for (i = 0; i < groups_per_page; i++)
1435 			brelse(bh[i]);
1436 		if (bh != &bhs)
1437 			kfree(bh);
1438 	}
1439 	return err;
1440 }
1441 
1442 /*
1443  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1444  * on the same buddy page doesn't happen whild holding the buddy page lock.
1445  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1446  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1447  */
1448 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1449 		ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1450 {
1451 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1452 	int block, pnum, poff;
1453 	int blocks_per_page;
1454 	struct page *page;
1455 
1456 	e4b->bd_buddy_page = NULL;
1457 	e4b->bd_bitmap_page = NULL;
1458 
1459 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1460 	/*
1461 	 * the buddy cache inode stores the block bitmap
1462 	 * and buddy information in consecutive blocks.
1463 	 * So for each group we need two blocks.
1464 	 */
1465 	block = group * 2;
1466 	pnum = block / blocks_per_page;
1467 	poff = block % blocks_per_page;
1468 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1469 	if (!page)
1470 		return -ENOMEM;
1471 	BUG_ON(page->mapping != inode->i_mapping);
1472 	e4b->bd_bitmap_page = page;
1473 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1474 
1475 	if (blocks_per_page >= 2) {
1476 		/* buddy and bitmap are on the same page */
1477 		return 0;
1478 	}
1479 
1480 	block++;
1481 	pnum = block / blocks_per_page;
1482 	page = find_or_create_page(inode->i_mapping, pnum, gfp);
1483 	if (!page)
1484 		return -ENOMEM;
1485 	BUG_ON(page->mapping != inode->i_mapping);
1486 	e4b->bd_buddy_page = page;
1487 	return 0;
1488 }
1489 
1490 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1491 {
1492 	if (e4b->bd_bitmap_page) {
1493 		unlock_page(e4b->bd_bitmap_page);
1494 		put_page(e4b->bd_bitmap_page);
1495 	}
1496 	if (e4b->bd_buddy_page) {
1497 		unlock_page(e4b->bd_buddy_page);
1498 		put_page(e4b->bd_buddy_page);
1499 	}
1500 }
1501 
1502 /*
1503  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1504  * block group lock of all groups for this page; do not hold the BG lock when
1505  * calling this routine!
1506  */
1507 static noinline_for_stack
1508 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1509 {
1510 
1511 	struct ext4_group_info *this_grp;
1512 	struct ext4_buddy e4b;
1513 	struct page *page;
1514 	int ret = 0;
1515 
1516 	might_sleep();
1517 	mb_debug(sb, "init group %u\n", group);
1518 	this_grp = ext4_get_group_info(sb, group);
1519 	if (!this_grp)
1520 		return -EFSCORRUPTED;
1521 
1522 	/*
1523 	 * This ensures that we don't reinit the buddy cache
1524 	 * page which map to the group from which we are already
1525 	 * allocating. If we are looking at the buddy cache we would
1526 	 * have taken a reference using ext4_mb_load_buddy and that
1527 	 * would have pinned buddy page to page cache.
1528 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1529 	 * page accessed.
1530 	 */
1531 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1532 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1533 		/*
1534 		 * somebody initialized the group
1535 		 * return without doing anything
1536 		 */
1537 		goto err;
1538 	}
1539 
1540 	page = e4b.bd_bitmap_page;
1541 	ret = ext4_mb_init_cache(page, NULL, gfp);
1542 	if (ret)
1543 		goto err;
1544 	if (!PageUptodate(page)) {
1545 		ret = -EIO;
1546 		goto err;
1547 	}
1548 
1549 	if (e4b.bd_buddy_page == NULL) {
1550 		/*
1551 		 * If both the bitmap and buddy are in
1552 		 * the same page we don't need to force
1553 		 * init the buddy
1554 		 */
1555 		ret = 0;
1556 		goto err;
1557 	}
1558 	/* init buddy cache */
1559 	page = e4b.bd_buddy_page;
1560 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1561 	if (ret)
1562 		goto err;
1563 	if (!PageUptodate(page)) {
1564 		ret = -EIO;
1565 		goto err;
1566 	}
1567 err:
1568 	ext4_mb_put_buddy_page_lock(&e4b);
1569 	return ret;
1570 }
1571 
1572 /*
1573  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1574  * block group lock of all groups for this page; do not hold the BG lock when
1575  * calling this routine!
1576  */
1577 static noinline_for_stack int
1578 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1579 		       struct ext4_buddy *e4b, gfp_t gfp)
1580 {
1581 	int blocks_per_page;
1582 	int block;
1583 	int pnum;
1584 	int poff;
1585 	struct page *page;
1586 	int ret;
1587 	struct ext4_group_info *grp;
1588 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1589 	struct inode *inode = sbi->s_buddy_cache;
1590 
1591 	might_sleep();
1592 	mb_debug(sb, "load group %u\n", group);
1593 
1594 	blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1595 	grp = ext4_get_group_info(sb, group);
1596 	if (!grp)
1597 		return -EFSCORRUPTED;
1598 
1599 	e4b->bd_blkbits = sb->s_blocksize_bits;
1600 	e4b->bd_info = grp;
1601 	e4b->bd_sb = sb;
1602 	e4b->bd_group = group;
1603 	e4b->bd_buddy_page = NULL;
1604 	e4b->bd_bitmap_page = NULL;
1605 
1606 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1607 		/*
1608 		 * we need full data about the group
1609 		 * to make a good selection
1610 		 */
1611 		ret = ext4_mb_init_group(sb, group, gfp);
1612 		if (ret)
1613 			return ret;
1614 	}
1615 
1616 	/*
1617 	 * the buddy cache inode stores the block bitmap
1618 	 * and buddy information in consecutive blocks.
1619 	 * So for each group we need two blocks.
1620 	 */
1621 	block = group * 2;
1622 	pnum = block / blocks_per_page;
1623 	poff = block % blocks_per_page;
1624 
1625 	/* we could use find_or_create_page(), but it locks page
1626 	 * what we'd like to avoid in fast path ... */
1627 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1628 	if (page == NULL || !PageUptodate(page)) {
1629 		if (page)
1630 			/*
1631 			 * drop the page reference and try
1632 			 * to get the page with lock. If we
1633 			 * are not uptodate that implies
1634 			 * somebody just created the page but
1635 			 * is yet to initialize the same. So
1636 			 * wait for it to initialize.
1637 			 */
1638 			put_page(page);
1639 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1640 		if (page) {
1641 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1642 	"ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1643 				/* should never happen */
1644 				unlock_page(page);
1645 				ret = -EINVAL;
1646 				goto err;
1647 			}
1648 			if (!PageUptodate(page)) {
1649 				ret = ext4_mb_init_cache(page, NULL, gfp);
1650 				if (ret) {
1651 					unlock_page(page);
1652 					goto err;
1653 				}
1654 				mb_cmp_bitmaps(e4b, page_address(page) +
1655 					       (poff * sb->s_blocksize));
1656 			}
1657 			unlock_page(page);
1658 		}
1659 	}
1660 	if (page == NULL) {
1661 		ret = -ENOMEM;
1662 		goto err;
1663 	}
1664 	if (!PageUptodate(page)) {
1665 		ret = -EIO;
1666 		goto err;
1667 	}
1668 
1669 	/* Pages marked accessed already */
1670 	e4b->bd_bitmap_page = page;
1671 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1672 
1673 	block++;
1674 	pnum = block / blocks_per_page;
1675 	poff = block % blocks_per_page;
1676 
1677 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1678 	if (page == NULL || !PageUptodate(page)) {
1679 		if (page)
1680 			put_page(page);
1681 		page = find_or_create_page(inode->i_mapping, pnum, gfp);
1682 		if (page) {
1683 			if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1684 	"ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1685 				/* should never happen */
1686 				unlock_page(page);
1687 				ret = -EINVAL;
1688 				goto err;
1689 			}
1690 			if (!PageUptodate(page)) {
1691 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1692 							 gfp);
1693 				if (ret) {
1694 					unlock_page(page);
1695 					goto err;
1696 				}
1697 			}
1698 			unlock_page(page);
1699 		}
1700 	}
1701 	if (page == NULL) {
1702 		ret = -ENOMEM;
1703 		goto err;
1704 	}
1705 	if (!PageUptodate(page)) {
1706 		ret = -EIO;
1707 		goto err;
1708 	}
1709 
1710 	/* Pages marked accessed already */
1711 	e4b->bd_buddy_page = page;
1712 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1713 
1714 	return 0;
1715 
1716 err:
1717 	if (page)
1718 		put_page(page);
1719 	if (e4b->bd_bitmap_page)
1720 		put_page(e4b->bd_bitmap_page);
1721 
1722 	e4b->bd_buddy = NULL;
1723 	e4b->bd_bitmap = NULL;
1724 	return ret;
1725 }
1726 
1727 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1728 			      struct ext4_buddy *e4b)
1729 {
1730 	return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1731 }
1732 
1733 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1734 {
1735 	if (e4b->bd_bitmap_page)
1736 		put_page(e4b->bd_bitmap_page);
1737 	if (e4b->bd_buddy_page)
1738 		put_page(e4b->bd_buddy_page);
1739 }
1740 
1741 
1742 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1743 {
1744 	int order = 1, max;
1745 	void *bb;
1746 
1747 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1748 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1749 
1750 	while (order <= e4b->bd_blkbits + 1) {
1751 		bb = mb_find_buddy(e4b, order, &max);
1752 		if (!mb_test_bit(block >> order, bb)) {
1753 			/* this block is part of buddy of order 'order' */
1754 			return order;
1755 		}
1756 		order++;
1757 	}
1758 	return 0;
1759 }
1760 
1761 static void mb_clear_bits(void *bm, int cur, int len)
1762 {
1763 	__u32 *addr;
1764 
1765 	len = cur + len;
1766 	while (cur < len) {
1767 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1768 			/* fast path: clear whole word at once */
1769 			addr = bm + (cur >> 3);
1770 			*addr = 0;
1771 			cur += 32;
1772 			continue;
1773 		}
1774 		mb_clear_bit(cur, bm);
1775 		cur++;
1776 	}
1777 }
1778 
1779 /* clear bits in given range
1780  * will return first found zero bit if any, -1 otherwise
1781  */
1782 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1783 {
1784 	__u32 *addr;
1785 	int zero_bit = -1;
1786 
1787 	len = cur + len;
1788 	while (cur < len) {
1789 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1790 			/* fast path: clear whole word at once */
1791 			addr = bm + (cur >> 3);
1792 			if (*addr != (__u32)(-1) && zero_bit == -1)
1793 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1794 			*addr = 0;
1795 			cur += 32;
1796 			continue;
1797 		}
1798 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1799 			zero_bit = cur;
1800 		cur++;
1801 	}
1802 
1803 	return zero_bit;
1804 }
1805 
1806 void mb_set_bits(void *bm, int cur, int len)
1807 {
1808 	__u32 *addr;
1809 
1810 	len = cur + len;
1811 	while (cur < len) {
1812 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1813 			/* fast path: set whole word at once */
1814 			addr = bm + (cur >> 3);
1815 			*addr = 0xffffffff;
1816 			cur += 32;
1817 			continue;
1818 		}
1819 		mb_set_bit(cur, bm);
1820 		cur++;
1821 	}
1822 }
1823 
1824 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1825 {
1826 	if (mb_test_bit(*bit + side, bitmap)) {
1827 		mb_clear_bit(*bit, bitmap);
1828 		(*bit) -= side;
1829 		return 1;
1830 	}
1831 	else {
1832 		(*bit) += side;
1833 		mb_set_bit(*bit, bitmap);
1834 		return -1;
1835 	}
1836 }
1837 
1838 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1839 {
1840 	int max;
1841 	int order = 1;
1842 	void *buddy = mb_find_buddy(e4b, order, &max);
1843 
1844 	while (buddy) {
1845 		void *buddy2;
1846 
1847 		/* Bits in range [first; last] are known to be set since
1848 		 * corresponding blocks were allocated. Bits in range
1849 		 * (first; last) will stay set because they form buddies on
1850 		 * upper layer. We just deal with borders if they don't
1851 		 * align with upper layer and then go up.
1852 		 * Releasing entire group is all about clearing
1853 		 * single bit of highest order buddy.
1854 		 */
1855 
1856 		/* Example:
1857 		 * ---------------------------------
1858 		 * |   1   |   1   |   1   |   1   |
1859 		 * ---------------------------------
1860 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1861 		 * ---------------------------------
1862 		 *   0   1   2   3   4   5   6   7
1863 		 *      \_____________________/
1864 		 *
1865 		 * Neither [1] nor [6] is aligned to above layer.
1866 		 * Left neighbour [0] is free, so mark it busy,
1867 		 * decrease bb_counters and extend range to
1868 		 * [0; 6]
1869 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1870 		 * mark [6] free, increase bb_counters and shrink range to
1871 		 * [0; 5].
1872 		 * Then shift range to [0; 2], go up and do the same.
1873 		 */
1874 
1875 
1876 		if (first & 1)
1877 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1878 		if (!(last & 1))
1879 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1880 		if (first > last)
1881 			break;
1882 		order++;
1883 
1884 		buddy2 = mb_find_buddy(e4b, order, &max);
1885 		if (!buddy2) {
1886 			mb_clear_bits(buddy, first, last - first + 1);
1887 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1888 			break;
1889 		}
1890 		first >>= 1;
1891 		last >>= 1;
1892 		buddy = buddy2;
1893 	}
1894 }
1895 
1896 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1897 			   int first, int count)
1898 {
1899 	int left_is_free = 0;
1900 	int right_is_free = 0;
1901 	int block;
1902 	int last = first + count - 1;
1903 	struct super_block *sb = e4b->bd_sb;
1904 
1905 	if (WARN_ON(count == 0))
1906 		return;
1907 	BUG_ON(last >= (sb->s_blocksize << 3));
1908 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1909 	/* Don't bother if the block group is corrupt. */
1910 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1911 		return;
1912 
1913 	mb_check_buddy(e4b);
1914 	mb_free_blocks_double(inode, e4b, first, count);
1915 
1916 	/* access memory sequentially: check left neighbour,
1917 	 * clear range and then check right neighbour
1918 	 */
1919 	if (first != 0)
1920 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1921 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1922 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1923 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1924 
1925 	if (unlikely(block != -1)) {
1926 		struct ext4_sb_info *sbi = EXT4_SB(sb);
1927 		ext4_fsblk_t blocknr;
1928 
1929 		/*
1930 		 * Fastcommit replay can free already freed blocks which
1931 		 * corrupts allocation info. Regenerate it.
1932 		 */
1933 		if (sbi->s_mount_state & EXT4_FC_REPLAY) {
1934 			mb_regenerate_buddy(e4b);
1935 			goto check;
1936 		}
1937 
1938 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1939 		blocknr += EXT4_C2B(sbi, block);
1940 		ext4_grp_locked_error(sb, e4b->bd_group,
1941 				      inode ? inode->i_ino : 0, blocknr,
1942 				      "freeing already freed block (bit %u); block bitmap corrupt.",
1943 				      block);
1944 		ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
1945 				EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1946 		return;
1947 	}
1948 
1949 	this_cpu_inc(discard_pa_seq);
1950 	e4b->bd_info->bb_free += count;
1951 	if (first < e4b->bd_info->bb_first_free)
1952 		e4b->bd_info->bb_first_free = first;
1953 
1954 	/* let's maintain fragments counter */
1955 	if (left_is_free && right_is_free)
1956 		e4b->bd_info->bb_fragments--;
1957 	else if (!left_is_free && !right_is_free)
1958 		e4b->bd_info->bb_fragments++;
1959 
1960 	/* buddy[0] == bd_bitmap is a special case, so handle
1961 	 * it right away and let mb_buddy_mark_free stay free of
1962 	 * zero order checks.
1963 	 * Check if neighbours are to be coaleasced,
1964 	 * adjust bitmap bb_counters and borders appropriately.
1965 	 */
1966 	if (first & 1) {
1967 		first += !left_is_free;
1968 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1969 	}
1970 	if (!(last & 1)) {
1971 		last -= !right_is_free;
1972 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1973 	}
1974 
1975 	if (first <= last)
1976 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1977 
1978 	mb_set_largest_free_order(sb, e4b->bd_info);
1979 	mb_update_avg_fragment_size(sb, e4b->bd_info);
1980 check:
1981 	mb_check_buddy(e4b);
1982 }
1983 
1984 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1985 				int needed, struct ext4_free_extent *ex)
1986 {
1987 	int next = block;
1988 	int max, order;
1989 	void *buddy;
1990 
1991 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1992 	BUG_ON(ex == NULL);
1993 
1994 	buddy = mb_find_buddy(e4b, 0, &max);
1995 	BUG_ON(buddy == NULL);
1996 	BUG_ON(block >= max);
1997 	if (mb_test_bit(block, buddy)) {
1998 		ex->fe_len = 0;
1999 		ex->fe_start = 0;
2000 		ex->fe_group = 0;
2001 		return 0;
2002 	}
2003 
2004 	/* find actual order */
2005 	order = mb_find_order_for_block(e4b, block);
2006 	block = block >> order;
2007 
2008 	ex->fe_len = 1 << order;
2009 	ex->fe_start = block << order;
2010 	ex->fe_group = e4b->bd_group;
2011 
2012 	/* calc difference from given start */
2013 	next = next - ex->fe_start;
2014 	ex->fe_len -= next;
2015 	ex->fe_start += next;
2016 
2017 	while (needed > ex->fe_len &&
2018 	       mb_find_buddy(e4b, order, &max)) {
2019 
2020 		if (block + 1 >= max)
2021 			break;
2022 
2023 		next = (block + 1) * (1 << order);
2024 		if (mb_test_bit(next, e4b->bd_bitmap))
2025 			break;
2026 
2027 		order = mb_find_order_for_block(e4b, next);
2028 
2029 		block = next >> order;
2030 		ex->fe_len += 1 << order;
2031 	}
2032 
2033 	if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2034 		/* Should never happen! (but apparently sometimes does?!?) */
2035 		WARN_ON(1);
2036 		ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2037 			"corruption or bug in mb_find_extent "
2038 			"block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2039 			block, order, needed, ex->fe_group, ex->fe_start,
2040 			ex->fe_len, ex->fe_logical);
2041 		ex->fe_len = 0;
2042 		ex->fe_start = 0;
2043 		ex->fe_group = 0;
2044 	}
2045 	return ex->fe_len;
2046 }
2047 
2048 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2049 {
2050 	int ord;
2051 	int mlen = 0;
2052 	int max = 0;
2053 	int cur;
2054 	int start = ex->fe_start;
2055 	int len = ex->fe_len;
2056 	unsigned ret = 0;
2057 	int len0 = len;
2058 	void *buddy;
2059 	bool split = false;
2060 
2061 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2062 	BUG_ON(e4b->bd_group != ex->fe_group);
2063 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2064 	mb_check_buddy(e4b);
2065 	mb_mark_used_double(e4b, start, len);
2066 
2067 	this_cpu_inc(discard_pa_seq);
2068 	e4b->bd_info->bb_free -= len;
2069 	if (e4b->bd_info->bb_first_free == start)
2070 		e4b->bd_info->bb_first_free += len;
2071 
2072 	/* let's maintain fragments counter */
2073 	if (start != 0)
2074 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2075 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2076 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
2077 	if (mlen && max)
2078 		e4b->bd_info->bb_fragments++;
2079 	else if (!mlen && !max)
2080 		e4b->bd_info->bb_fragments--;
2081 
2082 	/* let's maintain buddy itself */
2083 	while (len) {
2084 		if (!split)
2085 			ord = mb_find_order_for_block(e4b, start);
2086 
2087 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2088 			/* the whole chunk may be allocated at once! */
2089 			mlen = 1 << ord;
2090 			if (!split)
2091 				buddy = mb_find_buddy(e4b, ord, &max);
2092 			else
2093 				split = false;
2094 			BUG_ON((start >> ord) >= max);
2095 			mb_set_bit(start >> ord, buddy);
2096 			e4b->bd_info->bb_counters[ord]--;
2097 			start += mlen;
2098 			len -= mlen;
2099 			BUG_ON(len < 0);
2100 			continue;
2101 		}
2102 
2103 		/* store for history */
2104 		if (ret == 0)
2105 			ret = len | (ord << 16);
2106 
2107 		/* we have to split large buddy */
2108 		BUG_ON(ord <= 0);
2109 		buddy = mb_find_buddy(e4b, ord, &max);
2110 		mb_set_bit(start >> ord, buddy);
2111 		e4b->bd_info->bb_counters[ord]--;
2112 
2113 		ord--;
2114 		cur = (start >> ord) & ~1U;
2115 		buddy = mb_find_buddy(e4b, ord, &max);
2116 		mb_clear_bit(cur, buddy);
2117 		mb_clear_bit(cur + 1, buddy);
2118 		e4b->bd_info->bb_counters[ord]++;
2119 		e4b->bd_info->bb_counters[ord]++;
2120 		split = true;
2121 	}
2122 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2123 
2124 	mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2125 	mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2126 	mb_check_buddy(e4b);
2127 
2128 	return ret;
2129 }
2130 
2131 /*
2132  * Must be called under group lock!
2133  */
2134 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2135 					struct ext4_buddy *e4b)
2136 {
2137 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2138 	int ret;
2139 
2140 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2141 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2142 
2143 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2144 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2145 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
2146 
2147 	/* preallocation can change ac_b_ex, thus we store actually
2148 	 * allocated blocks for history */
2149 	ac->ac_f_ex = ac->ac_b_ex;
2150 
2151 	ac->ac_status = AC_STATUS_FOUND;
2152 	ac->ac_tail = ret & 0xffff;
2153 	ac->ac_buddy = ret >> 16;
2154 
2155 	/*
2156 	 * take the page reference. We want the page to be pinned
2157 	 * so that we don't get a ext4_mb_init_cache_call for this
2158 	 * group until we update the bitmap. That would mean we
2159 	 * double allocate blocks. The reference is dropped
2160 	 * in ext4_mb_release_context
2161 	 */
2162 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
2163 	get_page(ac->ac_bitmap_page);
2164 	ac->ac_buddy_page = e4b->bd_buddy_page;
2165 	get_page(ac->ac_buddy_page);
2166 	/* store last allocated for subsequent stream allocation */
2167 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2168 		spin_lock(&sbi->s_md_lock);
2169 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2170 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2171 		spin_unlock(&sbi->s_md_lock);
2172 	}
2173 	/*
2174 	 * As we've just preallocated more space than
2175 	 * user requested originally, we store allocated
2176 	 * space in a special descriptor.
2177 	 */
2178 	if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2179 		ext4_mb_new_preallocation(ac);
2180 
2181 }
2182 
2183 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2184 					struct ext4_buddy *e4b,
2185 					int finish_group)
2186 {
2187 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2188 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2189 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2190 
2191 	if (ac->ac_status == AC_STATUS_FOUND)
2192 		return;
2193 	/*
2194 	 * We don't want to scan for a whole year
2195 	 */
2196 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
2197 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2198 		ac->ac_status = AC_STATUS_BREAK;
2199 		return;
2200 	}
2201 
2202 	/*
2203 	 * Haven't found good chunk so far, let's continue
2204 	 */
2205 	if (bex->fe_len < gex->fe_len)
2206 		return;
2207 
2208 	if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2209 		ext4_mb_use_best_found(ac, e4b);
2210 }
2211 
2212 /*
2213  * The routine checks whether found extent is good enough. If it is,
2214  * then the extent gets marked used and flag is set to the context
2215  * to stop scanning. Otherwise, the extent is compared with the
2216  * previous found extent and if new one is better, then it's stored
2217  * in the context. Later, the best found extent will be used, if
2218  * mballoc can't find good enough extent.
2219  *
2220  * The algorithm used is roughly as follows:
2221  *
2222  * * If free extent found is exactly as big as goal, then
2223  *   stop the scan and use it immediately
2224  *
2225  * * If free extent found is smaller than goal, then keep retrying
2226  *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2227  *   that stop scanning and use whatever we have.
2228  *
2229  * * If free extent found is bigger than goal, then keep retrying
2230  *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2231  *   stopping the scan and using the extent.
2232  *
2233  *
2234  * FIXME: real allocation policy is to be designed yet!
2235  */
2236 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2237 					struct ext4_free_extent *ex,
2238 					struct ext4_buddy *e4b)
2239 {
2240 	struct ext4_free_extent *bex = &ac->ac_b_ex;
2241 	struct ext4_free_extent *gex = &ac->ac_g_ex;
2242 
2243 	BUG_ON(ex->fe_len <= 0);
2244 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2245 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2246 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2247 
2248 	ac->ac_found++;
2249 	ac->ac_cX_found[ac->ac_criteria]++;
2250 
2251 	/*
2252 	 * The special case - take what you catch first
2253 	 */
2254 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2255 		*bex = *ex;
2256 		ext4_mb_use_best_found(ac, e4b);
2257 		return;
2258 	}
2259 
2260 	/*
2261 	 * Let's check whether the chuck is good enough
2262 	 */
2263 	if (ex->fe_len == gex->fe_len) {
2264 		*bex = *ex;
2265 		ext4_mb_use_best_found(ac, e4b);
2266 		return;
2267 	}
2268 
2269 	/*
2270 	 * If this is first found extent, just store it in the context
2271 	 */
2272 	if (bex->fe_len == 0) {
2273 		*bex = *ex;
2274 		return;
2275 	}
2276 
2277 	/*
2278 	 * If new found extent is better, store it in the context
2279 	 */
2280 	if (bex->fe_len < gex->fe_len) {
2281 		/* if the request isn't satisfied, any found extent
2282 		 * larger than previous best one is better */
2283 		if (ex->fe_len > bex->fe_len)
2284 			*bex = *ex;
2285 	} else if (ex->fe_len > gex->fe_len) {
2286 		/* if the request is satisfied, then we try to find
2287 		 * an extent that still satisfy the request, but is
2288 		 * smaller than previous one */
2289 		if (ex->fe_len < bex->fe_len)
2290 			*bex = *ex;
2291 	}
2292 
2293 	ext4_mb_check_limits(ac, e4b, 0);
2294 }
2295 
2296 static noinline_for_stack
2297 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2298 					struct ext4_buddy *e4b)
2299 {
2300 	struct ext4_free_extent ex = ac->ac_b_ex;
2301 	ext4_group_t group = ex.fe_group;
2302 	int max;
2303 	int err;
2304 
2305 	BUG_ON(ex.fe_len <= 0);
2306 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2307 	if (err)
2308 		return;
2309 
2310 	ext4_lock_group(ac->ac_sb, group);
2311 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2312 		goto out;
2313 
2314 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2315 
2316 	if (max > 0) {
2317 		ac->ac_b_ex = ex;
2318 		ext4_mb_use_best_found(ac, e4b);
2319 	}
2320 
2321 out:
2322 	ext4_unlock_group(ac->ac_sb, group);
2323 	ext4_mb_unload_buddy(e4b);
2324 }
2325 
2326 static noinline_for_stack
2327 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2328 				struct ext4_buddy *e4b)
2329 {
2330 	ext4_group_t group = ac->ac_g_ex.fe_group;
2331 	int max;
2332 	int err;
2333 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2334 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2335 	struct ext4_free_extent ex;
2336 
2337 	if (!grp)
2338 		return -EFSCORRUPTED;
2339 	if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2340 		return 0;
2341 	if (grp->bb_free == 0)
2342 		return 0;
2343 
2344 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2345 	if (err)
2346 		return err;
2347 
2348 	ext4_lock_group(ac->ac_sb, group);
2349 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
2350 		goto out;
2351 
2352 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2353 			     ac->ac_g_ex.fe_len, &ex);
2354 	ex.fe_logical = 0xDEADFA11; /* debug value */
2355 
2356 	if (max >= ac->ac_g_ex.fe_len &&
2357 	    ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2358 		ext4_fsblk_t start;
2359 
2360 		start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2361 		/* use do_div to get remainder (would be 64-bit modulo) */
2362 		if (do_div(start, sbi->s_stripe) == 0) {
2363 			ac->ac_found++;
2364 			ac->ac_b_ex = ex;
2365 			ext4_mb_use_best_found(ac, e4b);
2366 		}
2367 	} else if (max >= ac->ac_g_ex.fe_len) {
2368 		BUG_ON(ex.fe_len <= 0);
2369 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2370 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2371 		ac->ac_found++;
2372 		ac->ac_b_ex = ex;
2373 		ext4_mb_use_best_found(ac, e4b);
2374 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2375 		/* Sometimes, caller may want to merge even small
2376 		 * number of blocks to an existing extent */
2377 		BUG_ON(ex.fe_len <= 0);
2378 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2379 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2380 		ac->ac_found++;
2381 		ac->ac_b_ex = ex;
2382 		ext4_mb_use_best_found(ac, e4b);
2383 	}
2384 out:
2385 	ext4_unlock_group(ac->ac_sb, group);
2386 	ext4_mb_unload_buddy(e4b);
2387 
2388 	return 0;
2389 }
2390 
2391 /*
2392  * The routine scans buddy structures (not bitmap!) from given order
2393  * to max order and tries to find big enough chunk to satisfy the req
2394  */
2395 static noinline_for_stack
2396 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2397 					struct ext4_buddy *e4b)
2398 {
2399 	struct super_block *sb = ac->ac_sb;
2400 	struct ext4_group_info *grp = e4b->bd_info;
2401 	void *buddy;
2402 	int i;
2403 	int k;
2404 	int max;
2405 
2406 	BUG_ON(ac->ac_2order <= 0);
2407 	for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2408 		if (grp->bb_counters[i] == 0)
2409 			continue;
2410 
2411 		buddy = mb_find_buddy(e4b, i, &max);
2412 		if (WARN_RATELIMIT(buddy == NULL,
2413 			 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2414 			continue;
2415 
2416 		k = mb_find_next_zero_bit(buddy, max, 0);
2417 		if (k >= max) {
2418 			ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2419 				"%d free clusters of order %d. But found 0",
2420 				grp->bb_counters[i], i);
2421 			ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2422 					 e4b->bd_group,
2423 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2424 			break;
2425 		}
2426 		ac->ac_found++;
2427 		ac->ac_cX_found[ac->ac_criteria]++;
2428 
2429 		ac->ac_b_ex.fe_len = 1 << i;
2430 		ac->ac_b_ex.fe_start = k << i;
2431 		ac->ac_b_ex.fe_group = e4b->bd_group;
2432 
2433 		ext4_mb_use_best_found(ac, e4b);
2434 
2435 		BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2436 
2437 		if (EXT4_SB(sb)->s_mb_stats)
2438 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2439 
2440 		break;
2441 	}
2442 }
2443 
2444 /*
2445  * The routine scans the group and measures all found extents.
2446  * In order to optimize scanning, caller must pass number of
2447  * free blocks in the group, so the routine can know upper limit.
2448  */
2449 static noinline_for_stack
2450 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2451 					struct ext4_buddy *e4b)
2452 {
2453 	struct super_block *sb = ac->ac_sb;
2454 	void *bitmap = e4b->bd_bitmap;
2455 	struct ext4_free_extent ex;
2456 	int i, j, freelen;
2457 	int free;
2458 
2459 	free = e4b->bd_info->bb_free;
2460 	if (WARN_ON(free <= 0))
2461 		return;
2462 
2463 	i = e4b->bd_info->bb_first_free;
2464 
2465 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2466 		i = mb_find_next_zero_bit(bitmap,
2467 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2468 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2469 			/*
2470 			 * IF we have corrupt bitmap, we won't find any
2471 			 * free blocks even though group info says we
2472 			 * have free blocks
2473 			 */
2474 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2475 					"%d free clusters as per "
2476 					"group info. But bitmap says 0",
2477 					free);
2478 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2479 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2480 			break;
2481 		}
2482 
2483 		if (!ext4_mb_cr_expensive(ac->ac_criteria)) {
2484 			/*
2485 			 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2486 			 * sure that this group will have a large enough
2487 			 * continuous free extent, so skip over the smaller free
2488 			 * extents
2489 			 */
2490 			j = mb_find_next_bit(bitmap,
2491 						EXT4_CLUSTERS_PER_GROUP(sb), i);
2492 			freelen = j - i;
2493 
2494 			if (freelen < ac->ac_g_ex.fe_len) {
2495 				i = j;
2496 				free -= freelen;
2497 				continue;
2498 			}
2499 		}
2500 
2501 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2502 		if (WARN_ON(ex.fe_len <= 0))
2503 			break;
2504 		if (free < ex.fe_len) {
2505 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2506 					"%d free clusters as per "
2507 					"group info. But got %d blocks",
2508 					free, ex.fe_len);
2509 			ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2510 					EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2511 			/*
2512 			 * The number of free blocks differs. This mostly
2513 			 * indicate that the bitmap is corrupt. So exit
2514 			 * without claiming the space.
2515 			 */
2516 			break;
2517 		}
2518 		ex.fe_logical = 0xDEADC0DE; /* debug value */
2519 		ext4_mb_measure_extent(ac, &ex, e4b);
2520 
2521 		i += ex.fe_len;
2522 		free -= ex.fe_len;
2523 	}
2524 
2525 	ext4_mb_check_limits(ac, e4b, 1);
2526 }
2527 
2528 /*
2529  * This is a special case for storages like raid5
2530  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2531  */
2532 static noinline_for_stack
2533 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2534 				 struct ext4_buddy *e4b)
2535 {
2536 	struct super_block *sb = ac->ac_sb;
2537 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2538 	void *bitmap = e4b->bd_bitmap;
2539 	struct ext4_free_extent ex;
2540 	ext4_fsblk_t first_group_block;
2541 	ext4_fsblk_t a;
2542 	ext4_grpblk_t i, stripe;
2543 	int max;
2544 
2545 	BUG_ON(sbi->s_stripe == 0);
2546 
2547 	/* find first stripe-aligned block in group */
2548 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2549 
2550 	a = first_group_block + sbi->s_stripe - 1;
2551 	do_div(a, sbi->s_stripe);
2552 	i = (a * sbi->s_stripe) - first_group_block;
2553 
2554 	stripe = EXT4_B2C(sbi, sbi->s_stripe);
2555 	i = EXT4_B2C(sbi, i);
2556 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2557 		if (!mb_test_bit(i, bitmap)) {
2558 			max = mb_find_extent(e4b, i, stripe, &ex);
2559 			if (max >= stripe) {
2560 				ac->ac_found++;
2561 				ac->ac_cX_found[ac->ac_criteria]++;
2562 				ex.fe_logical = 0xDEADF00D; /* debug value */
2563 				ac->ac_b_ex = ex;
2564 				ext4_mb_use_best_found(ac, e4b);
2565 				break;
2566 			}
2567 		}
2568 		i += stripe;
2569 	}
2570 }
2571 
2572 /*
2573  * This is also called BEFORE we load the buddy bitmap.
2574  * Returns either 1 or 0 indicating that the group is either suitable
2575  * for the allocation or not.
2576  */
2577 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2578 				ext4_group_t group, enum criteria cr)
2579 {
2580 	ext4_grpblk_t free, fragments;
2581 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2582 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2583 
2584 	BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2585 
2586 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2587 		return false;
2588 
2589 	free = grp->bb_free;
2590 	if (free == 0)
2591 		return false;
2592 
2593 	fragments = grp->bb_fragments;
2594 	if (fragments == 0)
2595 		return false;
2596 
2597 	switch (cr) {
2598 	case CR_POWER2_ALIGNED:
2599 		BUG_ON(ac->ac_2order == 0);
2600 
2601 		/* Avoid using the first bg of a flexgroup for data files */
2602 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2603 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2604 		    ((group % flex_size) == 0))
2605 			return false;
2606 
2607 		if (free < ac->ac_g_ex.fe_len)
2608 			return false;
2609 
2610 		if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2611 			return true;
2612 
2613 		if (grp->bb_largest_free_order < ac->ac_2order)
2614 			return false;
2615 
2616 		return true;
2617 	case CR_GOAL_LEN_FAST:
2618 	case CR_BEST_AVAIL_LEN:
2619 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2620 			return true;
2621 		break;
2622 	case CR_GOAL_LEN_SLOW:
2623 		if (free >= ac->ac_g_ex.fe_len)
2624 			return true;
2625 		break;
2626 	case CR_ANY_FREE:
2627 		return true;
2628 	default:
2629 		BUG();
2630 	}
2631 
2632 	return false;
2633 }
2634 
2635 /*
2636  * This could return negative error code if something goes wrong
2637  * during ext4_mb_init_group(). This should not be called with
2638  * ext4_lock_group() held.
2639  *
2640  * Note: because we are conditionally operating with the group lock in
2641  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2642  * function using __acquire and __release.  This means we need to be
2643  * super careful before messing with the error path handling via "goto
2644  * out"!
2645  */
2646 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2647 				     ext4_group_t group, enum criteria cr)
2648 {
2649 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2650 	struct super_block *sb = ac->ac_sb;
2651 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2652 	bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2653 	ext4_grpblk_t free;
2654 	int ret = 0;
2655 
2656 	if (!grp)
2657 		return -EFSCORRUPTED;
2658 	if (sbi->s_mb_stats)
2659 		atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2660 	if (should_lock) {
2661 		ext4_lock_group(sb, group);
2662 		__release(ext4_group_lock_ptr(sb, group));
2663 	}
2664 	free = grp->bb_free;
2665 	if (free == 0)
2666 		goto out;
2667 	/*
2668 	 * In all criterias except CR_ANY_FREE we try to avoid groups that
2669 	 * can't possibly satisfy the full goal request due to insufficient
2670 	 * free blocks.
2671 	 */
2672 	if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len)
2673 		goto out;
2674 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2675 		goto out;
2676 	if (should_lock) {
2677 		__acquire(ext4_group_lock_ptr(sb, group));
2678 		ext4_unlock_group(sb, group);
2679 	}
2680 
2681 	/* We only do this if the grp has never been initialized */
2682 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2683 		struct ext4_group_desc *gdp =
2684 			ext4_get_group_desc(sb, group, NULL);
2685 		int ret;
2686 
2687 		/*
2688 		 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2689 		 * search to find large good chunks almost for free. If buddy
2690 		 * data is not ready, then this optimization makes no sense. But
2691 		 * we never skip the first block group in a flex_bg, since this
2692 		 * gets used for metadata block allocation, and we want to make
2693 		 * sure we locate metadata blocks in the first block group in
2694 		 * the flex_bg if possible.
2695 		 */
2696 		if (!ext4_mb_cr_expensive(cr) &&
2697 		    (!sbi->s_log_groups_per_flex ||
2698 		     ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2699 		    !(ext4_has_group_desc_csum(sb) &&
2700 		      (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2701 			return 0;
2702 		ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2703 		if (ret)
2704 			return ret;
2705 	}
2706 
2707 	if (should_lock) {
2708 		ext4_lock_group(sb, group);
2709 		__release(ext4_group_lock_ptr(sb, group));
2710 	}
2711 	ret = ext4_mb_good_group(ac, group, cr);
2712 out:
2713 	if (should_lock) {
2714 		__acquire(ext4_group_lock_ptr(sb, group));
2715 		ext4_unlock_group(sb, group);
2716 	}
2717 	return ret;
2718 }
2719 
2720 /*
2721  * Start prefetching @nr block bitmaps starting at @group.
2722  * Return the next group which needs to be prefetched.
2723  */
2724 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2725 			      unsigned int nr, int *cnt)
2726 {
2727 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2728 	struct buffer_head *bh;
2729 	struct blk_plug plug;
2730 
2731 	blk_start_plug(&plug);
2732 	while (nr-- > 0) {
2733 		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2734 								  NULL);
2735 		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2736 
2737 		/*
2738 		 * Prefetch block groups with free blocks; but don't
2739 		 * bother if it is marked uninitialized on disk, since
2740 		 * it won't require I/O to read.  Also only try to
2741 		 * prefetch once, so we avoid getblk() call, which can
2742 		 * be expensive.
2743 		 */
2744 		if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2745 		    EXT4_MB_GRP_NEED_INIT(grp) &&
2746 		    ext4_free_group_clusters(sb, gdp) > 0 ) {
2747 			bh = ext4_read_block_bitmap_nowait(sb, group, true);
2748 			if (bh && !IS_ERR(bh)) {
2749 				if (!buffer_uptodate(bh) && cnt)
2750 					(*cnt)++;
2751 				brelse(bh);
2752 			}
2753 		}
2754 		if (++group >= ngroups)
2755 			group = 0;
2756 	}
2757 	blk_finish_plug(&plug);
2758 	return group;
2759 }
2760 
2761 /*
2762  * Prefetching reads the block bitmap into the buffer cache; but we
2763  * need to make sure that the buddy bitmap in the page cache has been
2764  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2765  * is not yet completed, or indeed if it was not initiated by
2766  * ext4_mb_prefetch did not start the I/O.
2767  *
2768  * TODO: We should actually kick off the buddy bitmap setup in a work
2769  * queue when the buffer I/O is completed, so that we don't block
2770  * waiting for the block allocation bitmap read to finish when
2771  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2772  */
2773 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2774 			   unsigned int nr)
2775 {
2776 	struct ext4_group_desc *gdp;
2777 	struct ext4_group_info *grp;
2778 
2779 	while (nr-- > 0) {
2780 		if (!group)
2781 			group = ext4_get_groups_count(sb);
2782 		group--;
2783 		gdp = ext4_get_group_desc(sb, group, NULL);
2784 		grp = ext4_get_group_info(sb, group);
2785 
2786 		if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2787 		    ext4_free_group_clusters(sb, gdp) > 0) {
2788 			if (ext4_mb_init_group(sb, group, GFP_NOFS))
2789 				break;
2790 		}
2791 	}
2792 }
2793 
2794 static noinline_for_stack int
2795 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2796 {
2797 	ext4_group_t prefetch_grp = 0, ngroups, group, i;
2798 	enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2799 	int err = 0, first_err = 0;
2800 	unsigned int nr = 0, prefetch_ios = 0;
2801 	struct ext4_sb_info *sbi;
2802 	struct super_block *sb;
2803 	struct ext4_buddy e4b;
2804 	int lost;
2805 
2806 	sb = ac->ac_sb;
2807 	sbi = EXT4_SB(sb);
2808 	ngroups = ext4_get_groups_count(sb);
2809 	/* non-extent files are limited to low blocks/groups */
2810 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2811 		ngroups = sbi->s_blockfile_groups;
2812 
2813 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2814 
2815 	/* first, try the goal */
2816 	err = ext4_mb_find_by_goal(ac, &e4b);
2817 	if (err || ac->ac_status == AC_STATUS_FOUND)
2818 		goto out;
2819 
2820 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2821 		goto out;
2822 
2823 	/*
2824 	 * ac->ac_2order is set only if the fe_len is a power of 2
2825 	 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED
2826 	 * so that we try exact allocation using buddy.
2827 	 */
2828 	i = fls(ac->ac_g_ex.fe_len);
2829 	ac->ac_2order = 0;
2830 	/*
2831 	 * We search using buddy data only if the order of the request
2832 	 * is greater than equal to the sbi_s_mb_order2_reqs
2833 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2834 	 * We also support searching for power-of-two requests only for
2835 	 * requests upto maximum buddy size we have constructed.
2836 	 */
2837 	if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2838 		if (is_power_of_2(ac->ac_g_ex.fe_len))
2839 			ac->ac_2order = array_index_nospec(i - 1,
2840 							   MB_NUM_ORDERS(sb));
2841 	}
2842 
2843 	/* if stream allocation is enabled, use global goal */
2844 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2845 		/* TBD: may be hot point */
2846 		spin_lock(&sbi->s_md_lock);
2847 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2848 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2849 		spin_unlock(&sbi->s_md_lock);
2850 	}
2851 
2852 	/*
2853 	 * Let's just scan groups to find more-less suitable blocks We
2854 	 * start with CR_GOAL_LEN_FAST, unless it is power of 2
2855 	 * aligned, in which case let's do that faster approach first.
2856 	 */
2857 	if (ac->ac_2order)
2858 		cr = CR_POWER2_ALIGNED;
2859 repeat:
2860 	for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2861 		ac->ac_criteria = cr;
2862 		/*
2863 		 * searching for the right group start
2864 		 * from the goal value specified
2865 		 */
2866 		group = ac->ac_g_ex.fe_group;
2867 		ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2868 		prefetch_grp = group;
2869 
2870 		for (i = 0, new_cr = cr; i < ngroups; i++,
2871 		     ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2872 			int ret = 0;
2873 
2874 			cond_resched();
2875 			if (new_cr != cr) {
2876 				cr = new_cr;
2877 				goto repeat;
2878 			}
2879 
2880 			/*
2881 			 * Batch reads of the block allocation bitmaps
2882 			 * to get multiple READs in flight; limit
2883 			 * prefetching at inexpensive CR, otherwise mballoc
2884 			 * can spend a lot of time loading imperfect groups
2885 			 */
2886 			if ((prefetch_grp == group) &&
2887 			    (ext4_mb_cr_expensive(cr) ||
2888 			     prefetch_ios < sbi->s_mb_prefetch_limit)) {
2889 				nr = sbi->s_mb_prefetch;
2890 				if (ext4_has_feature_flex_bg(sb)) {
2891 					nr = 1 << sbi->s_log_groups_per_flex;
2892 					nr -= group & (nr - 1);
2893 					nr = min(nr, sbi->s_mb_prefetch);
2894 				}
2895 				prefetch_grp = ext4_mb_prefetch(sb, group,
2896 							nr, &prefetch_ios);
2897 			}
2898 
2899 			/* This now checks without needing the buddy page */
2900 			ret = ext4_mb_good_group_nolock(ac, group, cr);
2901 			if (ret <= 0) {
2902 				if (!first_err)
2903 					first_err = ret;
2904 				continue;
2905 			}
2906 
2907 			err = ext4_mb_load_buddy(sb, group, &e4b);
2908 			if (err)
2909 				goto out;
2910 
2911 			ext4_lock_group(sb, group);
2912 
2913 			/*
2914 			 * We need to check again after locking the
2915 			 * block group
2916 			 */
2917 			ret = ext4_mb_good_group(ac, group, cr);
2918 			if (ret == 0) {
2919 				ext4_unlock_group(sb, group);
2920 				ext4_mb_unload_buddy(&e4b);
2921 				continue;
2922 			}
2923 
2924 			ac->ac_groups_scanned++;
2925 			if (cr == CR_POWER2_ALIGNED)
2926 				ext4_mb_simple_scan_group(ac, &e4b);
2927 			else if ((cr == CR_GOAL_LEN_FAST ||
2928 				 cr == CR_BEST_AVAIL_LEN) &&
2929 				 sbi->s_stripe &&
2930 				 !(ac->ac_g_ex.fe_len %
2931 				 EXT4_B2C(sbi, sbi->s_stripe)))
2932 				ext4_mb_scan_aligned(ac, &e4b);
2933 			else
2934 				ext4_mb_complex_scan_group(ac, &e4b);
2935 
2936 			ext4_unlock_group(sb, group);
2937 			ext4_mb_unload_buddy(&e4b);
2938 
2939 			if (ac->ac_status != AC_STATUS_CONTINUE)
2940 				break;
2941 		}
2942 		/* Processed all groups and haven't found blocks */
2943 		if (sbi->s_mb_stats && i == ngroups)
2944 			atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2945 
2946 		if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2947 			/* Reset goal length to original goal length before
2948 			 * falling into CR_GOAL_LEN_SLOW */
2949 			ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2950 	}
2951 
2952 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2953 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2954 		/*
2955 		 * We've been searching too long. Let's try to allocate
2956 		 * the best chunk we've found so far
2957 		 */
2958 		ext4_mb_try_best_found(ac, &e4b);
2959 		if (ac->ac_status != AC_STATUS_FOUND) {
2960 			/*
2961 			 * Someone more lucky has already allocated it.
2962 			 * The only thing we can do is just take first
2963 			 * found block(s)
2964 			 */
2965 			lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2966 			mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2967 				 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2968 				 ac->ac_b_ex.fe_len, lost);
2969 
2970 			ac->ac_b_ex.fe_group = 0;
2971 			ac->ac_b_ex.fe_start = 0;
2972 			ac->ac_b_ex.fe_len = 0;
2973 			ac->ac_status = AC_STATUS_CONTINUE;
2974 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2975 			cr = CR_ANY_FREE;
2976 			goto repeat;
2977 		}
2978 	}
2979 
2980 	if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2981 		atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2982 out:
2983 	if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2984 		err = first_err;
2985 
2986 	mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2987 		 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2988 		 ac->ac_flags, cr, err);
2989 
2990 	if (nr)
2991 		ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2992 
2993 	return err;
2994 }
2995 
2996 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2997 {
2998 	struct super_block *sb = pde_data(file_inode(seq->file));
2999 	ext4_group_t group;
3000 
3001 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3002 		return NULL;
3003 	group = *pos + 1;
3004 	return (void *) ((unsigned long) group);
3005 }
3006 
3007 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
3008 {
3009 	struct super_block *sb = pde_data(file_inode(seq->file));
3010 	ext4_group_t group;
3011 
3012 	++*pos;
3013 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
3014 		return NULL;
3015 	group = *pos + 1;
3016 	return (void *) ((unsigned long) group);
3017 }
3018 
3019 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
3020 {
3021 	struct super_block *sb = pde_data(file_inode(seq->file));
3022 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
3023 	int i;
3024 	int err, buddy_loaded = 0;
3025 	struct ext4_buddy e4b;
3026 	struct ext4_group_info *grinfo;
3027 	unsigned char blocksize_bits = min_t(unsigned char,
3028 					     sb->s_blocksize_bits,
3029 					     EXT4_MAX_BLOCK_LOG_SIZE);
3030 	struct sg {
3031 		struct ext4_group_info info;
3032 		ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3033 	} sg;
3034 
3035 	group--;
3036 	if (group == 0)
3037 		seq_puts(seq, "#group: free  frags first ["
3038 			      " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3039 			      " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3040 
3041 	i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3042 		sizeof(struct ext4_group_info);
3043 
3044 	grinfo = ext4_get_group_info(sb, group);
3045 	if (!grinfo)
3046 		return 0;
3047 	/* Load the group info in memory only if not already loaded. */
3048 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3049 		err = ext4_mb_load_buddy(sb, group, &e4b);
3050 		if (err) {
3051 			seq_printf(seq, "#%-5u: I/O error\n", group);
3052 			return 0;
3053 		}
3054 		buddy_loaded = 1;
3055 	}
3056 
3057 	memcpy(&sg, grinfo, i);
3058 
3059 	if (buddy_loaded)
3060 		ext4_mb_unload_buddy(&e4b);
3061 
3062 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3063 			sg.info.bb_fragments, sg.info.bb_first_free);
3064 	for (i = 0; i <= 13; i++)
3065 		seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3066 				sg.info.bb_counters[i] : 0);
3067 	seq_puts(seq, " ]");
3068 	if (EXT4_MB_GRP_BBITMAP_CORRUPT(&sg.info))
3069 		seq_puts(seq, " Block bitmap corrupted!");
3070 	seq_puts(seq, "\n");
3071 
3072 	return 0;
3073 }
3074 
3075 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3076 {
3077 }
3078 
3079 const struct seq_operations ext4_mb_seq_groups_ops = {
3080 	.start  = ext4_mb_seq_groups_start,
3081 	.next   = ext4_mb_seq_groups_next,
3082 	.stop   = ext4_mb_seq_groups_stop,
3083 	.show   = ext4_mb_seq_groups_show,
3084 };
3085 
3086 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3087 {
3088 	struct super_block *sb = seq->private;
3089 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3090 
3091 	seq_puts(seq, "mballoc:\n");
3092 	if (!sbi->s_mb_stats) {
3093 		seq_puts(seq, "\tmb stats collection turned off.\n");
3094 		seq_puts(
3095 			seq,
3096 			"\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3097 		return 0;
3098 	}
3099 	seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3100 	seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3101 
3102 	seq_printf(seq, "\tgroups_scanned: %u\n",
3103 		   atomic_read(&sbi->s_bal_groups_scanned));
3104 
3105 	/* CR_POWER2_ALIGNED stats */
3106 	seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3107 	seq_printf(seq, "\t\thits: %llu\n",
3108 		   atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3109 	seq_printf(
3110 		seq, "\t\tgroups_considered: %llu\n",
3111 		atomic64_read(
3112 			&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3113 	seq_printf(seq, "\t\textents_scanned: %u\n",
3114 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3115 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3116 		   atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3117 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3118 		   atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3119 
3120 	/* CR_GOAL_LEN_FAST stats */
3121 	seq_puts(seq, "\tcr_goal_fast_stats:\n");
3122 	seq_printf(seq, "\t\thits: %llu\n",
3123 		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3124 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3125 		   atomic64_read(
3126 			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3127 	seq_printf(seq, "\t\textents_scanned: %u\n",
3128 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3129 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3130 		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3131 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3132 		   atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3133 
3134 	/* CR_BEST_AVAIL_LEN stats */
3135 	seq_puts(seq, "\tcr_best_avail_stats:\n");
3136 	seq_printf(seq, "\t\thits: %llu\n",
3137 		   atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3138 	seq_printf(
3139 		seq, "\t\tgroups_considered: %llu\n",
3140 		atomic64_read(
3141 			&sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3142 	seq_printf(seq, "\t\textents_scanned: %u\n",
3143 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3144 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3145 		   atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3146 	seq_printf(seq, "\t\tbad_suggestions: %u\n",
3147 		   atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3148 
3149 	/* CR_GOAL_LEN_SLOW stats */
3150 	seq_puts(seq, "\tcr_goal_slow_stats:\n");
3151 	seq_printf(seq, "\t\thits: %llu\n",
3152 		   atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3153 	seq_printf(seq, "\t\tgroups_considered: %llu\n",
3154 		   atomic64_read(
3155 			   &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3156 	seq_printf(seq, "\t\textents_scanned: %u\n",
3157 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3158 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3159 		   atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3160 
3161 	/* CR_ANY_FREE stats */
3162 	seq_puts(seq, "\tcr_any_free_stats:\n");
3163 	seq_printf(seq, "\t\thits: %llu\n",
3164 		   atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3165 	seq_printf(
3166 		seq, "\t\tgroups_considered: %llu\n",
3167 		atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3168 	seq_printf(seq, "\t\textents_scanned: %u\n",
3169 		   atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3170 	seq_printf(seq, "\t\tuseless_loops: %llu\n",
3171 		   atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3172 
3173 	/* Aggregates */
3174 	seq_printf(seq, "\textents_scanned: %u\n",
3175 		   atomic_read(&sbi->s_bal_ex_scanned));
3176 	seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3177 	seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3178 		   atomic_read(&sbi->s_bal_len_goals));
3179 	seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3180 	seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3181 	seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3182 	seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3183 		   atomic_read(&sbi->s_mb_buddies_generated),
3184 		   ext4_get_groups_count(sb));
3185 	seq_printf(seq, "\tbuddies_time_used: %llu\n",
3186 		   atomic64_read(&sbi->s_mb_generation_time));
3187 	seq_printf(seq, "\tpreallocated: %u\n",
3188 		   atomic_read(&sbi->s_mb_preallocated));
3189 	seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3190 	return 0;
3191 }
3192 
3193 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3194 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3195 {
3196 	struct super_block *sb = pde_data(file_inode(seq->file));
3197 	unsigned long position;
3198 
3199 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3200 		return NULL;
3201 	position = *pos + 1;
3202 	return (void *) ((unsigned long) position);
3203 }
3204 
3205 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3206 {
3207 	struct super_block *sb = pde_data(file_inode(seq->file));
3208 	unsigned long position;
3209 
3210 	++*pos;
3211 	if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3212 		return NULL;
3213 	position = *pos + 1;
3214 	return (void *) ((unsigned long) position);
3215 }
3216 
3217 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3218 {
3219 	struct super_block *sb = pde_data(file_inode(seq->file));
3220 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3221 	unsigned long position = ((unsigned long) v);
3222 	struct ext4_group_info *grp;
3223 	unsigned int count;
3224 
3225 	position--;
3226 	if (position >= MB_NUM_ORDERS(sb)) {
3227 		position -= MB_NUM_ORDERS(sb);
3228 		if (position == 0)
3229 			seq_puts(seq, "avg_fragment_size_lists:\n");
3230 
3231 		count = 0;
3232 		read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3233 		list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3234 				    bb_avg_fragment_size_node)
3235 			count++;
3236 		read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3237 		seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3238 					(unsigned int)position, count);
3239 		return 0;
3240 	}
3241 
3242 	if (position == 0) {
3243 		seq_printf(seq, "optimize_scan: %d\n",
3244 			   test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3245 		seq_puts(seq, "max_free_order_lists:\n");
3246 	}
3247 	count = 0;
3248 	read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3249 	list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3250 			    bb_largest_free_order_node)
3251 		count++;
3252 	read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3253 	seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3254 		   (unsigned int)position, count);
3255 
3256 	return 0;
3257 }
3258 
3259 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3260 {
3261 }
3262 
3263 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3264 	.start  = ext4_mb_seq_structs_summary_start,
3265 	.next   = ext4_mb_seq_structs_summary_next,
3266 	.stop   = ext4_mb_seq_structs_summary_stop,
3267 	.show   = ext4_mb_seq_structs_summary_show,
3268 };
3269 
3270 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3271 {
3272 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3273 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3274 
3275 	BUG_ON(!cachep);
3276 	return cachep;
3277 }
3278 
3279 /*
3280  * Allocate the top-level s_group_info array for the specified number
3281  * of groups
3282  */
3283 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3284 {
3285 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3286 	unsigned size;
3287 	struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3288 
3289 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3290 		EXT4_DESC_PER_BLOCK_BITS(sb);
3291 	if (size <= sbi->s_group_info_size)
3292 		return 0;
3293 
3294 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3295 	new_groupinfo = kvzalloc(size, GFP_KERNEL);
3296 	if (!new_groupinfo) {
3297 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3298 		return -ENOMEM;
3299 	}
3300 	rcu_read_lock();
3301 	old_groupinfo = rcu_dereference(sbi->s_group_info);
3302 	if (old_groupinfo)
3303 		memcpy(new_groupinfo, old_groupinfo,
3304 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3305 	rcu_read_unlock();
3306 	rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3307 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3308 	if (old_groupinfo)
3309 		ext4_kvfree_array_rcu(old_groupinfo);
3310 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3311 		   sbi->s_group_info_size);
3312 	return 0;
3313 }
3314 
3315 /* Create and initialize ext4_group_info data for the given group. */
3316 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3317 			  struct ext4_group_desc *desc)
3318 {
3319 	int i;
3320 	int metalen = 0;
3321 	int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3322 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3323 	struct ext4_group_info **meta_group_info;
3324 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3325 
3326 	/*
3327 	 * First check if this group is the first of a reserved block.
3328 	 * If it's true, we have to allocate a new table of pointers
3329 	 * to ext4_group_info structures
3330 	 */
3331 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3332 		metalen = sizeof(*meta_group_info) <<
3333 			EXT4_DESC_PER_BLOCK_BITS(sb);
3334 		meta_group_info = kmalloc(metalen, GFP_NOFS);
3335 		if (meta_group_info == NULL) {
3336 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
3337 				 "for a buddy group");
3338 			return -ENOMEM;
3339 		}
3340 		rcu_read_lock();
3341 		rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3342 		rcu_read_unlock();
3343 	}
3344 
3345 	meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3346 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3347 
3348 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3349 	if (meta_group_info[i] == NULL) {
3350 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3351 		goto exit_group_info;
3352 	}
3353 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3354 		&(meta_group_info[i]->bb_state));
3355 
3356 	/*
3357 	 * initialize bb_free to be able to skip
3358 	 * empty groups without initialization
3359 	 */
3360 	if (ext4_has_group_desc_csum(sb) &&
3361 	    (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3362 		meta_group_info[i]->bb_free =
3363 			ext4_free_clusters_after_init(sb, group, desc);
3364 	} else {
3365 		meta_group_info[i]->bb_free =
3366 			ext4_free_group_clusters(sb, desc);
3367 	}
3368 
3369 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3370 	init_rwsem(&meta_group_info[i]->alloc_sem);
3371 	meta_group_info[i]->bb_free_root = RB_ROOT;
3372 	INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3373 	INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3374 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3375 	meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3376 	meta_group_info[i]->bb_group = group;
3377 
3378 	mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3379 	return 0;
3380 
3381 exit_group_info:
3382 	/* If a meta_group_info table has been allocated, release it now */
3383 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3384 		struct ext4_group_info ***group_info;
3385 
3386 		rcu_read_lock();
3387 		group_info = rcu_dereference(sbi->s_group_info);
3388 		kfree(group_info[idx]);
3389 		group_info[idx] = NULL;
3390 		rcu_read_unlock();
3391 	}
3392 	return -ENOMEM;
3393 } /* ext4_mb_add_groupinfo */
3394 
3395 static int ext4_mb_init_backend(struct super_block *sb)
3396 {
3397 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3398 	ext4_group_t i;
3399 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3400 	int err;
3401 	struct ext4_group_desc *desc;
3402 	struct ext4_group_info ***group_info;
3403 	struct kmem_cache *cachep;
3404 
3405 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
3406 	if (err)
3407 		return err;
3408 
3409 	sbi->s_buddy_cache = new_inode(sb);
3410 	if (sbi->s_buddy_cache == NULL) {
3411 		ext4_msg(sb, KERN_ERR, "can't get new inode");
3412 		goto err_freesgi;
3413 	}
3414 	/* To avoid potentially colliding with an valid on-disk inode number,
3415 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3416 	 * not in the inode hash, so it should never be found by iget(), but
3417 	 * this will avoid confusion if it ever shows up during debugging. */
3418 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3419 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3420 	for (i = 0; i < ngroups; i++) {
3421 		cond_resched();
3422 		desc = ext4_get_group_desc(sb, i, NULL);
3423 		if (desc == NULL) {
3424 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3425 			goto err_freebuddy;
3426 		}
3427 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3428 			goto err_freebuddy;
3429 	}
3430 
3431 	if (ext4_has_feature_flex_bg(sb)) {
3432 		/* a single flex group is supposed to be read by a single IO.
3433 		 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3434 		 * unsigned integer, so the maximum shift is 32.
3435 		 */
3436 		if (sbi->s_es->s_log_groups_per_flex >= 32) {
3437 			ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3438 			goto err_freebuddy;
3439 		}
3440 		sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3441 			BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3442 		sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3443 	} else {
3444 		sbi->s_mb_prefetch = 32;
3445 	}
3446 	if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3447 		sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3448 	/* now many real IOs to prefetch within a single allocation at cr=0
3449 	 * given cr=0 is an CPU-related optimization we shouldn't try to
3450 	 * load too many groups, at some point we should start to use what
3451 	 * we've got in memory.
3452 	 * with an average random access time 5ms, it'd take a second to get
3453 	 * 200 groups (* N with flex_bg), so let's make this limit 4
3454 	 */
3455 	sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3456 	if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3457 		sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3458 
3459 	return 0;
3460 
3461 err_freebuddy:
3462 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3463 	while (i-- > 0) {
3464 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3465 
3466 		if (grp)
3467 			kmem_cache_free(cachep, grp);
3468 	}
3469 	i = sbi->s_group_info_size;
3470 	rcu_read_lock();
3471 	group_info = rcu_dereference(sbi->s_group_info);
3472 	while (i-- > 0)
3473 		kfree(group_info[i]);
3474 	rcu_read_unlock();
3475 	iput(sbi->s_buddy_cache);
3476 err_freesgi:
3477 	rcu_read_lock();
3478 	kvfree(rcu_dereference(sbi->s_group_info));
3479 	rcu_read_unlock();
3480 	return -ENOMEM;
3481 }
3482 
3483 static void ext4_groupinfo_destroy_slabs(void)
3484 {
3485 	int i;
3486 
3487 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3488 		kmem_cache_destroy(ext4_groupinfo_caches[i]);
3489 		ext4_groupinfo_caches[i] = NULL;
3490 	}
3491 }
3492 
3493 static int ext4_groupinfo_create_slab(size_t size)
3494 {
3495 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3496 	int slab_size;
3497 	int blocksize_bits = order_base_2(size);
3498 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3499 	struct kmem_cache *cachep;
3500 
3501 	if (cache_index >= NR_GRPINFO_CACHES)
3502 		return -EINVAL;
3503 
3504 	if (unlikely(cache_index < 0))
3505 		cache_index = 0;
3506 
3507 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
3508 	if (ext4_groupinfo_caches[cache_index]) {
3509 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3510 		return 0;	/* Already created */
3511 	}
3512 
3513 	slab_size = offsetof(struct ext4_group_info,
3514 				bb_counters[blocksize_bits + 2]);
3515 
3516 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3517 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3518 					NULL);
3519 
3520 	ext4_groupinfo_caches[cache_index] = cachep;
3521 
3522 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3523 	if (!cachep) {
3524 		printk(KERN_EMERG
3525 		       "EXT4-fs: no memory for groupinfo slab cache\n");
3526 		return -ENOMEM;
3527 	}
3528 
3529 	return 0;
3530 }
3531 
3532 static void ext4_discard_work(struct work_struct *work)
3533 {
3534 	struct ext4_sb_info *sbi = container_of(work,
3535 			struct ext4_sb_info, s_discard_work);
3536 	struct super_block *sb = sbi->s_sb;
3537 	struct ext4_free_data *fd, *nfd;
3538 	struct ext4_buddy e4b;
3539 	LIST_HEAD(discard_list);
3540 	ext4_group_t grp, load_grp;
3541 	int err = 0;
3542 
3543 	spin_lock(&sbi->s_md_lock);
3544 	list_splice_init(&sbi->s_discard_list, &discard_list);
3545 	spin_unlock(&sbi->s_md_lock);
3546 
3547 	load_grp = UINT_MAX;
3548 	list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3549 		/*
3550 		 * If filesystem is umounting or no memory or suffering
3551 		 * from no space, give up the discard
3552 		 */
3553 		if ((sb->s_flags & SB_ACTIVE) && !err &&
3554 		    !atomic_read(&sbi->s_retry_alloc_pending)) {
3555 			grp = fd->efd_group;
3556 			if (grp != load_grp) {
3557 				if (load_grp != UINT_MAX)
3558 					ext4_mb_unload_buddy(&e4b);
3559 
3560 				err = ext4_mb_load_buddy(sb, grp, &e4b);
3561 				if (err) {
3562 					kmem_cache_free(ext4_free_data_cachep, fd);
3563 					load_grp = UINT_MAX;
3564 					continue;
3565 				} else {
3566 					load_grp = grp;
3567 				}
3568 			}
3569 
3570 			ext4_lock_group(sb, grp);
3571 			ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3572 						fd->efd_start_cluster + fd->efd_count - 1, 1);
3573 			ext4_unlock_group(sb, grp);
3574 		}
3575 		kmem_cache_free(ext4_free_data_cachep, fd);
3576 	}
3577 
3578 	if (load_grp != UINT_MAX)
3579 		ext4_mb_unload_buddy(&e4b);
3580 }
3581 
3582 int ext4_mb_init(struct super_block *sb)
3583 {
3584 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3585 	unsigned i, j;
3586 	unsigned offset, offset_incr;
3587 	unsigned max;
3588 	int ret;
3589 
3590 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3591 
3592 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3593 	if (sbi->s_mb_offsets == NULL) {
3594 		ret = -ENOMEM;
3595 		goto out;
3596 	}
3597 
3598 	i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3599 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3600 	if (sbi->s_mb_maxs == NULL) {
3601 		ret = -ENOMEM;
3602 		goto out;
3603 	}
3604 
3605 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3606 	if (ret < 0)
3607 		goto out;
3608 
3609 	/* order 0 is regular bitmap */
3610 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3611 	sbi->s_mb_offsets[0] = 0;
3612 
3613 	i = 1;
3614 	offset = 0;
3615 	offset_incr = 1 << (sb->s_blocksize_bits - 1);
3616 	max = sb->s_blocksize << 2;
3617 	do {
3618 		sbi->s_mb_offsets[i] = offset;
3619 		sbi->s_mb_maxs[i] = max;
3620 		offset += offset_incr;
3621 		offset_incr = offset_incr >> 1;
3622 		max = max >> 1;
3623 		i++;
3624 	} while (i < MB_NUM_ORDERS(sb));
3625 
3626 	sbi->s_mb_avg_fragment_size =
3627 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3628 			GFP_KERNEL);
3629 	if (!sbi->s_mb_avg_fragment_size) {
3630 		ret = -ENOMEM;
3631 		goto out;
3632 	}
3633 	sbi->s_mb_avg_fragment_size_locks =
3634 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3635 			GFP_KERNEL);
3636 	if (!sbi->s_mb_avg_fragment_size_locks) {
3637 		ret = -ENOMEM;
3638 		goto out;
3639 	}
3640 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3641 		INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3642 		rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3643 	}
3644 	sbi->s_mb_largest_free_orders =
3645 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3646 			GFP_KERNEL);
3647 	if (!sbi->s_mb_largest_free_orders) {
3648 		ret = -ENOMEM;
3649 		goto out;
3650 	}
3651 	sbi->s_mb_largest_free_orders_locks =
3652 		kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3653 			GFP_KERNEL);
3654 	if (!sbi->s_mb_largest_free_orders_locks) {
3655 		ret = -ENOMEM;
3656 		goto out;
3657 	}
3658 	for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3659 		INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3660 		rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3661 	}
3662 
3663 	spin_lock_init(&sbi->s_md_lock);
3664 	sbi->s_mb_free_pending = 0;
3665 	INIT_LIST_HEAD(&sbi->s_freed_data_list);
3666 	INIT_LIST_HEAD(&sbi->s_discard_list);
3667 	INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3668 	atomic_set(&sbi->s_retry_alloc_pending, 0);
3669 
3670 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3671 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3672 	sbi->s_mb_stats = MB_DEFAULT_STATS;
3673 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3674 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3675 	sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3676 
3677 	/*
3678 	 * The default group preallocation is 512, which for 4k block
3679 	 * sizes translates to 2 megabytes.  However for bigalloc file
3680 	 * systems, this is probably too big (i.e, if the cluster size
3681 	 * is 1 megabyte, then group preallocation size becomes half a
3682 	 * gigabyte!).  As a default, we will keep a two megabyte
3683 	 * group pralloc size for cluster sizes up to 64k, and after
3684 	 * that, we will force a minimum group preallocation size of
3685 	 * 32 clusters.  This translates to 8 megs when the cluster
3686 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
3687 	 * which seems reasonable as a default.
3688 	 */
3689 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3690 				       sbi->s_cluster_bits, 32);
3691 	/*
3692 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3693 	 * to the lowest multiple of s_stripe which is bigger than
3694 	 * the s_mb_group_prealloc as determined above. We want
3695 	 * the preallocation size to be an exact multiple of the
3696 	 * RAID stripe size so that preallocations don't fragment
3697 	 * the stripes.
3698 	 */
3699 	if (sbi->s_stripe > 1) {
3700 		sbi->s_mb_group_prealloc = roundup(
3701 			sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3702 	}
3703 
3704 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3705 	if (sbi->s_locality_groups == NULL) {
3706 		ret = -ENOMEM;
3707 		goto out;
3708 	}
3709 	for_each_possible_cpu(i) {
3710 		struct ext4_locality_group *lg;
3711 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
3712 		mutex_init(&lg->lg_mutex);
3713 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
3714 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3715 		spin_lock_init(&lg->lg_prealloc_lock);
3716 	}
3717 
3718 	if (bdev_nonrot(sb->s_bdev))
3719 		sbi->s_mb_max_linear_groups = 0;
3720 	else
3721 		sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3722 	/* init file for buddy data */
3723 	ret = ext4_mb_init_backend(sb);
3724 	if (ret != 0)
3725 		goto out_free_locality_groups;
3726 
3727 	return 0;
3728 
3729 out_free_locality_groups:
3730 	free_percpu(sbi->s_locality_groups);
3731 	sbi->s_locality_groups = NULL;
3732 out:
3733 	kfree(sbi->s_mb_avg_fragment_size);
3734 	kfree(sbi->s_mb_avg_fragment_size_locks);
3735 	kfree(sbi->s_mb_largest_free_orders);
3736 	kfree(sbi->s_mb_largest_free_orders_locks);
3737 	kfree(sbi->s_mb_offsets);
3738 	sbi->s_mb_offsets = NULL;
3739 	kfree(sbi->s_mb_maxs);
3740 	sbi->s_mb_maxs = NULL;
3741 	return ret;
3742 }
3743 
3744 /* need to called with the ext4 group lock held */
3745 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3746 {
3747 	struct ext4_prealloc_space *pa;
3748 	struct list_head *cur, *tmp;
3749 	int count = 0;
3750 
3751 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3752 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3753 		list_del(&pa->pa_group_list);
3754 		count++;
3755 		kmem_cache_free(ext4_pspace_cachep, pa);
3756 	}
3757 	return count;
3758 }
3759 
3760 int ext4_mb_release(struct super_block *sb)
3761 {
3762 	ext4_group_t ngroups = ext4_get_groups_count(sb);
3763 	ext4_group_t i;
3764 	int num_meta_group_infos;
3765 	struct ext4_group_info *grinfo, ***group_info;
3766 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3767 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3768 	int count;
3769 
3770 	if (test_opt(sb, DISCARD)) {
3771 		/*
3772 		 * wait the discard work to drain all of ext4_free_data
3773 		 */
3774 		flush_work(&sbi->s_discard_work);
3775 		WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3776 	}
3777 
3778 	if (sbi->s_group_info) {
3779 		for (i = 0; i < ngroups; i++) {
3780 			cond_resched();
3781 			grinfo = ext4_get_group_info(sb, i);
3782 			if (!grinfo)
3783 				continue;
3784 			mb_group_bb_bitmap_free(grinfo);
3785 			ext4_lock_group(sb, i);
3786 			count = ext4_mb_cleanup_pa(grinfo);
3787 			if (count)
3788 				mb_debug(sb, "mballoc: %d PAs left\n",
3789 					 count);
3790 			ext4_unlock_group(sb, i);
3791 			kmem_cache_free(cachep, grinfo);
3792 		}
3793 		num_meta_group_infos = (ngroups +
3794 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
3795 			EXT4_DESC_PER_BLOCK_BITS(sb);
3796 		rcu_read_lock();
3797 		group_info = rcu_dereference(sbi->s_group_info);
3798 		for (i = 0; i < num_meta_group_infos; i++)
3799 			kfree(group_info[i]);
3800 		kvfree(group_info);
3801 		rcu_read_unlock();
3802 	}
3803 	kfree(sbi->s_mb_avg_fragment_size);
3804 	kfree(sbi->s_mb_avg_fragment_size_locks);
3805 	kfree(sbi->s_mb_largest_free_orders);
3806 	kfree(sbi->s_mb_largest_free_orders_locks);
3807 	kfree(sbi->s_mb_offsets);
3808 	kfree(sbi->s_mb_maxs);
3809 	iput(sbi->s_buddy_cache);
3810 	if (sbi->s_mb_stats) {
3811 		ext4_msg(sb, KERN_INFO,
3812 		       "mballoc: %u blocks %u reqs (%u success)",
3813 				atomic_read(&sbi->s_bal_allocated),
3814 				atomic_read(&sbi->s_bal_reqs),
3815 				atomic_read(&sbi->s_bal_success));
3816 		ext4_msg(sb, KERN_INFO,
3817 		      "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3818 				"%u 2^N hits, %u breaks, %u lost",
3819 				atomic_read(&sbi->s_bal_ex_scanned),
3820 				atomic_read(&sbi->s_bal_groups_scanned),
3821 				atomic_read(&sbi->s_bal_goals),
3822 				atomic_read(&sbi->s_bal_2orders),
3823 				atomic_read(&sbi->s_bal_breaks),
3824 				atomic_read(&sbi->s_mb_lost_chunks));
3825 		ext4_msg(sb, KERN_INFO,
3826 		       "mballoc: %u generated and it took %llu",
3827 				atomic_read(&sbi->s_mb_buddies_generated),
3828 				atomic64_read(&sbi->s_mb_generation_time));
3829 		ext4_msg(sb, KERN_INFO,
3830 		       "mballoc: %u preallocated, %u discarded",
3831 				atomic_read(&sbi->s_mb_preallocated),
3832 				atomic_read(&sbi->s_mb_discarded));
3833 	}
3834 
3835 	free_percpu(sbi->s_locality_groups);
3836 
3837 	return 0;
3838 }
3839 
3840 static inline int ext4_issue_discard(struct super_block *sb,
3841 		ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3842 		struct bio **biop)
3843 {
3844 	ext4_fsblk_t discard_block;
3845 
3846 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3847 			 ext4_group_first_block_no(sb, block_group));
3848 	count = EXT4_C2B(EXT4_SB(sb), count);
3849 	trace_ext4_discard_blocks(sb,
3850 			(unsigned long long) discard_block, count);
3851 	if (biop) {
3852 		return __blkdev_issue_discard(sb->s_bdev,
3853 			(sector_t)discard_block << (sb->s_blocksize_bits - 9),
3854 			(sector_t)count << (sb->s_blocksize_bits - 9),
3855 			GFP_NOFS, biop);
3856 	} else
3857 		return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3858 }
3859 
3860 static void ext4_free_data_in_buddy(struct super_block *sb,
3861 				    struct ext4_free_data *entry)
3862 {
3863 	struct ext4_buddy e4b;
3864 	struct ext4_group_info *db;
3865 	int err, count = 0;
3866 
3867 	mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3868 		 entry->efd_count, entry->efd_group, entry);
3869 
3870 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3871 	/* we expect to find existing buddy because it's pinned */
3872 	BUG_ON(err != 0);
3873 
3874 	spin_lock(&EXT4_SB(sb)->s_md_lock);
3875 	EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3876 	spin_unlock(&EXT4_SB(sb)->s_md_lock);
3877 
3878 	db = e4b.bd_info;
3879 	/* there are blocks to put in buddy to make them really free */
3880 	count += entry->efd_count;
3881 	ext4_lock_group(sb, entry->efd_group);
3882 	/* Take it out of per group rb tree */
3883 	rb_erase(&entry->efd_node, &(db->bb_free_root));
3884 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3885 
3886 	/*
3887 	 * Clear the trimmed flag for the group so that the next
3888 	 * ext4_trim_fs can trim it.
3889 	 * If the volume is mounted with -o discard, online discard
3890 	 * is supported and the free blocks will be trimmed online.
3891 	 */
3892 	if (!test_opt(sb, DISCARD))
3893 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
3894 
3895 	if (!db->bb_free_root.rb_node) {
3896 		/* No more items in the per group rb tree
3897 		 * balance refcounts from ext4_mb_free_metadata()
3898 		 */
3899 		put_page(e4b.bd_buddy_page);
3900 		put_page(e4b.bd_bitmap_page);
3901 	}
3902 	ext4_unlock_group(sb, entry->efd_group);
3903 	ext4_mb_unload_buddy(&e4b);
3904 
3905 	mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3906 }
3907 
3908 /*
3909  * This function is called by the jbd2 layer once the commit has finished,
3910  * so we know we can free the blocks that were released with that commit.
3911  */
3912 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3913 {
3914 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3915 	struct ext4_free_data *entry, *tmp;
3916 	LIST_HEAD(freed_data_list);
3917 	struct list_head *cut_pos = NULL;
3918 	bool wake;
3919 
3920 	spin_lock(&sbi->s_md_lock);
3921 	list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3922 		if (entry->efd_tid != commit_tid)
3923 			break;
3924 		cut_pos = &entry->efd_list;
3925 	}
3926 	if (cut_pos)
3927 		list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3928 				  cut_pos);
3929 	spin_unlock(&sbi->s_md_lock);
3930 
3931 	list_for_each_entry(entry, &freed_data_list, efd_list)
3932 		ext4_free_data_in_buddy(sb, entry);
3933 
3934 	if (test_opt(sb, DISCARD)) {
3935 		spin_lock(&sbi->s_md_lock);
3936 		wake = list_empty(&sbi->s_discard_list);
3937 		list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3938 		spin_unlock(&sbi->s_md_lock);
3939 		if (wake)
3940 			queue_work(system_unbound_wq, &sbi->s_discard_work);
3941 	} else {
3942 		list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3943 			kmem_cache_free(ext4_free_data_cachep, entry);
3944 	}
3945 }
3946 
3947 int __init ext4_init_mballoc(void)
3948 {
3949 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3950 					SLAB_RECLAIM_ACCOUNT);
3951 	if (ext4_pspace_cachep == NULL)
3952 		goto out;
3953 
3954 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3955 				    SLAB_RECLAIM_ACCOUNT);
3956 	if (ext4_ac_cachep == NULL)
3957 		goto out_pa_free;
3958 
3959 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3960 					   SLAB_RECLAIM_ACCOUNT);
3961 	if (ext4_free_data_cachep == NULL)
3962 		goto out_ac_free;
3963 
3964 	return 0;
3965 
3966 out_ac_free:
3967 	kmem_cache_destroy(ext4_ac_cachep);
3968 out_pa_free:
3969 	kmem_cache_destroy(ext4_pspace_cachep);
3970 out:
3971 	return -ENOMEM;
3972 }
3973 
3974 void ext4_exit_mballoc(void)
3975 {
3976 	/*
3977 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3978 	 * before destroying the slab cache.
3979 	 */
3980 	rcu_barrier();
3981 	kmem_cache_destroy(ext4_pspace_cachep);
3982 	kmem_cache_destroy(ext4_ac_cachep);
3983 	kmem_cache_destroy(ext4_free_data_cachep);
3984 	ext4_groupinfo_destroy_slabs();
3985 }
3986 
3987 
3988 /*
3989  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3990  * Returns 0 if success or error code
3991  */
3992 static noinline_for_stack int
3993 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3994 				handle_t *handle, unsigned int reserv_clstrs)
3995 {
3996 	struct buffer_head *bitmap_bh = NULL;
3997 	struct ext4_group_desc *gdp;
3998 	struct buffer_head *gdp_bh;
3999 	struct ext4_sb_info *sbi;
4000 	struct super_block *sb;
4001 	ext4_fsblk_t block;
4002 	int err, len;
4003 
4004 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
4005 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4006 
4007 	sb = ac->ac_sb;
4008 	sbi = EXT4_SB(sb);
4009 
4010 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
4011 	if (IS_ERR(bitmap_bh)) {
4012 		return PTR_ERR(bitmap_bh);
4013 	}
4014 
4015 	BUFFER_TRACE(bitmap_bh, "getting write access");
4016 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
4017 					    EXT4_JTR_NONE);
4018 	if (err)
4019 		goto out_err;
4020 
4021 	err = -EIO;
4022 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
4023 	if (!gdp)
4024 		goto out_err;
4025 
4026 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
4027 			ext4_free_group_clusters(sb, gdp));
4028 
4029 	BUFFER_TRACE(gdp_bh, "get_write_access");
4030 	err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE);
4031 	if (err)
4032 		goto out_err;
4033 
4034 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4035 
4036 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4037 	if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4038 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4039 			   "fs metadata", block, block+len);
4040 		/* File system mounted not to panic on error
4041 		 * Fix the bitmap and return EFSCORRUPTED
4042 		 * We leak some of the blocks here.
4043 		 */
4044 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
4045 		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
4046 			      ac->ac_b_ex.fe_len);
4047 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
4048 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4049 		if (!err)
4050 			err = -EFSCORRUPTED;
4051 		goto out_err;
4052 	}
4053 
4054 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
4055 #ifdef AGGRESSIVE_CHECK
4056 	{
4057 		int i;
4058 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
4059 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
4060 						bitmap_bh->b_data));
4061 		}
4062 	}
4063 #endif
4064 	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
4065 		      ac->ac_b_ex.fe_len);
4066 	if (ext4_has_group_desc_csum(sb) &&
4067 	    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4068 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4069 		ext4_free_group_clusters_set(sb, gdp,
4070 					     ext4_free_clusters_after_init(sb,
4071 						ac->ac_b_ex.fe_group, gdp));
4072 	}
4073 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
4074 	ext4_free_group_clusters_set(sb, gdp, len);
4075 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4076 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
4077 
4078 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
4079 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4080 	/*
4081 	 * Now reduce the dirty block count also. Should not go negative
4082 	 */
4083 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4084 		/* release all the reserved blocks if non delalloc */
4085 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4086 				   reserv_clstrs);
4087 
4088 	if (sbi->s_log_groups_per_flex) {
4089 		ext4_group_t flex_group = ext4_flex_group(sbi,
4090 							  ac->ac_b_ex.fe_group);
4091 		atomic64_sub(ac->ac_b_ex.fe_len,
4092 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
4093 						  flex_group)->free_clusters);
4094 	}
4095 
4096 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4097 	if (err)
4098 		goto out_err;
4099 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4100 
4101 out_err:
4102 	brelse(bitmap_bh);
4103 	return err;
4104 }
4105 
4106 /*
4107  * Idempotent helper for Ext4 fast commit replay path to set the state of
4108  * blocks in bitmaps and update counters.
4109  */
4110 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4111 			int len, int state)
4112 {
4113 	struct buffer_head *bitmap_bh = NULL;
4114 	struct ext4_group_desc *gdp;
4115 	struct buffer_head *gdp_bh;
4116 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4117 	ext4_group_t group;
4118 	ext4_grpblk_t blkoff;
4119 	int i, err = 0;
4120 	int already;
4121 	unsigned int clen, clen_changed, thisgrp_len;
4122 
4123 	while (len > 0) {
4124 		ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4125 
4126 		/*
4127 		 * Check to see if we are freeing blocks across a group
4128 		 * boundary.
4129 		 * In case of flex_bg, this can happen that (block, len) may
4130 		 * span across more than one group. In that case we need to
4131 		 * get the corresponding group metadata to work with.
4132 		 * For this we have goto again loop.
4133 		 */
4134 		thisgrp_len = min_t(unsigned int, (unsigned int)len,
4135 			EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4136 		clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4137 
4138 		if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4139 			ext4_error(sb, "Marking blocks in system zone - "
4140 				   "Block = %llu, len = %u",
4141 				   block, thisgrp_len);
4142 			bitmap_bh = NULL;
4143 			break;
4144 		}
4145 
4146 		bitmap_bh = ext4_read_block_bitmap(sb, group);
4147 		if (IS_ERR(bitmap_bh)) {
4148 			err = PTR_ERR(bitmap_bh);
4149 			bitmap_bh = NULL;
4150 			break;
4151 		}
4152 
4153 		err = -EIO;
4154 		gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4155 		if (!gdp)
4156 			break;
4157 
4158 		ext4_lock_group(sb, group);
4159 		already = 0;
4160 		for (i = 0; i < clen; i++)
4161 			if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4162 					 !state)
4163 				already++;
4164 
4165 		clen_changed = clen - already;
4166 		if (state)
4167 			mb_set_bits(bitmap_bh->b_data, blkoff, clen);
4168 		else
4169 			mb_clear_bits(bitmap_bh->b_data, blkoff, clen);
4170 		if (ext4_has_group_desc_csum(sb) &&
4171 		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4172 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4173 			ext4_free_group_clusters_set(sb, gdp,
4174 			     ext4_free_clusters_after_init(sb, group, gdp));
4175 		}
4176 		if (state)
4177 			clen = ext4_free_group_clusters(sb, gdp) - clen_changed;
4178 		else
4179 			clen = ext4_free_group_clusters(sb, gdp) + clen_changed;
4180 
4181 		ext4_free_group_clusters_set(sb, gdp, clen);
4182 		ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4183 		ext4_group_desc_csum_set(sb, group, gdp);
4184 
4185 		ext4_unlock_group(sb, group);
4186 
4187 		if (sbi->s_log_groups_per_flex) {
4188 			ext4_group_t flex_group = ext4_flex_group(sbi, group);
4189 			struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4190 						   s_flex_groups, flex_group);
4191 
4192 			if (state)
4193 				atomic64_sub(clen_changed, &fg->free_clusters);
4194 			else
4195 				atomic64_add(clen_changed, &fg->free_clusters);
4196 
4197 		}
4198 
4199 		err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
4200 		if (err)
4201 			break;
4202 		sync_dirty_buffer(bitmap_bh);
4203 		err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
4204 		sync_dirty_buffer(gdp_bh);
4205 		if (err)
4206 			break;
4207 
4208 		block += thisgrp_len;
4209 		len -= thisgrp_len;
4210 		brelse(bitmap_bh);
4211 		BUG_ON(len < 0);
4212 	}
4213 
4214 	if (err)
4215 		brelse(bitmap_bh);
4216 }
4217 
4218 /*
4219  * here we normalize request for locality group
4220  * Group request are normalized to s_mb_group_prealloc, which goes to
4221  * s_strip if we set the same via mount option.
4222  * s_mb_group_prealloc can be configured via
4223  * /sys/fs/ext4/<partition>/mb_group_prealloc
4224  *
4225  * XXX: should we try to preallocate more than the group has now?
4226  */
4227 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4228 {
4229 	struct super_block *sb = ac->ac_sb;
4230 	struct ext4_locality_group *lg = ac->ac_lg;
4231 
4232 	BUG_ON(lg == NULL);
4233 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4234 	mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4235 }
4236 
4237 /*
4238  * This function returns the next element to look at during inode
4239  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4240  * (ei->i_prealloc_lock)
4241  *
4242  * new_start	The start of the range we want to compare
4243  * cur_start	The existing start that we are comparing against
4244  * node	The node of the rb_tree
4245  */
4246 static inline struct rb_node*
4247 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4248 {
4249 	if (new_start < cur_start)
4250 		return node->rb_left;
4251 	else
4252 		return node->rb_right;
4253 }
4254 
4255 static inline void
4256 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4257 			  ext4_lblk_t start, loff_t end)
4258 {
4259 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4260 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4261 	struct ext4_prealloc_space *tmp_pa;
4262 	ext4_lblk_t tmp_pa_start;
4263 	loff_t tmp_pa_end;
4264 	struct rb_node *iter;
4265 
4266 	read_lock(&ei->i_prealloc_lock);
4267 	for (iter = ei->i_prealloc_node.rb_node; iter;
4268 	     iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4269 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4270 				  pa_node.inode_node);
4271 		tmp_pa_start = tmp_pa->pa_lstart;
4272 		tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4273 
4274 		spin_lock(&tmp_pa->pa_lock);
4275 		if (tmp_pa->pa_deleted == 0)
4276 			BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4277 		spin_unlock(&tmp_pa->pa_lock);
4278 	}
4279 	read_unlock(&ei->i_prealloc_lock);
4280 }
4281 
4282 /*
4283  * Given an allocation context "ac" and a range "start", "end", check
4284  * and adjust boundaries if the range overlaps with any of the existing
4285  * preallocatoins stored in the corresponding inode of the allocation context.
4286  *
4287  * Parameters:
4288  *	ac			allocation context
4289  *	start			start of the new range
4290  *	end			end of the new range
4291  */
4292 static inline void
4293 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4294 			  ext4_lblk_t *start, loff_t *end)
4295 {
4296 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4297 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4298 	struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4299 	struct rb_node *iter;
4300 	ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1;
4301 	loff_t new_end, tmp_pa_end, left_pa_end = -1;
4302 
4303 	new_start = *start;
4304 	new_end = *end;
4305 
4306 	/*
4307 	 * Adjust the normalized range so that it doesn't overlap with any
4308 	 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4309 	 * so it doesn't change underneath us.
4310 	 */
4311 	read_lock(&ei->i_prealloc_lock);
4312 
4313 	/* Step 1: find any one immediate neighboring PA of the normalized range */
4314 	for (iter = ei->i_prealloc_node.rb_node; iter;
4315 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4316 					    tmp_pa_start, iter)) {
4317 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4318 				  pa_node.inode_node);
4319 		tmp_pa_start = tmp_pa->pa_lstart;
4320 		tmp_pa_end = pa_logical_end(sbi, tmp_pa);
4321 
4322 		/* PA must not overlap original request */
4323 		spin_lock(&tmp_pa->pa_lock);
4324 		if (tmp_pa->pa_deleted == 0)
4325 			BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4326 				 ac->ac_o_ex.fe_logical < tmp_pa_start));
4327 		spin_unlock(&tmp_pa->pa_lock);
4328 	}
4329 
4330 	/*
4331 	 * Step 2: check if the found PA is left or right neighbor and
4332 	 * get the other neighbor
4333 	 */
4334 	if (tmp_pa) {
4335 		if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4336 			struct rb_node *tmp;
4337 
4338 			left_pa = tmp_pa;
4339 			tmp = rb_next(&left_pa->pa_node.inode_node);
4340 			if (tmp) {
4341 				right_pa = rb_entry(tmp,
4342 						    struct ext4_prealloc_space,
4343 						    pa_node.inode_node);
4344 			}
4345 		} else {
4346 			struct rb_node *tmp;
4347 
4348 			right_pa = tmp_pa;
4349 			tmp = rb_prev(&right_pa->pa_node.inode_node);
4350 			if (tmp) {
4351 				left_pa = rb_entry(tmp,
4352 						   struct ext4_prealloc_space,
4353 						   pa_node.inode_node);
4354 			}
4355 		}
4356 	}
4357 
4358 	/* Step 3: get the non deleted neighbors */
4359 	if (left_pa) {
4360 		for (iter = &left_pa->pa_node.inode_node;;
4361 		     iter = rb_prev(iter)) {
4362 			if (!iter) {
4363 				left_pa = NULL;
4364 				break;
4365 			}
4366 
4367 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4368 					  pa_node.inode_node);
4369 			left_pa = tmp_pa;
4370 			spin_lock(&tmp_pa->pa_lock);
4371 			if (tmp_pa->pa_deleted == 0) {
4372 				spin_unlock(&tmp_pa->pa_lock);
4373 				break;
4374 			}
4375 			spin_unlock(&tmp_pa->pa_lock);
4376 		}
4377 	}
4378 
4379 	if (right_pa) {
4380 		for (iter = &right_pa->pa_node.inode_node;;
4381 		     iter = rb_next(iter)) {
4382 			if (!iter) {
4383 				right_pa = NULL;
4384 				break;
4385 			}
4386 
4387 			tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4388 					  pa_node.inode_node);
4389 			right_pa = tmp_pa;
4390 			spin_lock(&tmp_pa->pa_lock);
4391 			if (tmp_pa->pa_deleted == 0) {
4392 				spin_unlock(&tmp_pa->pa_lock);
4393 				break;
4394 			}
4395 			spin_unlock(&tmp_pa->pa_lock);
4396 		}
4397 	}
4398 
4399 	if (left_pa) {
4400 		left_pa_end = pa_logical_end(sbi, left_pa);
4401 		BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4402 	}
4403 
4404 	if (right_pa) {
4405 		right_pa_start = right_pa->pa_lstart;
4406 		BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4407 	}
4408 
4409 	/* Step 4: trim our normalized range to not overlap with the neighbors */
4410 	if (left_pa) {
4411 		if (left_pa_end > new_start)
4412 			new_start = left_pa_end;
4413 	}
4414 
4415 	if (right_pa) {
4416 		if (right_pa_start < new_end)
4417 			new_end = right_pa_start;
4418 	}
4419 	read_unlock(&ei->i_prealloc_lock);
4420 
4421 	/* XXX: extra loop to check we really don't overlap preallocations */
4422 	ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4423 
4424 	*start = new_start;
4425 	*end = new_end;
4426 }
4427 
4428 /*
4429  * Normalization means making request better in terms of
4430  * size and alignment
4431  */
4432 static noinline_for_stack void
4433 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4434 				struct ext4_allocation_request *ar)
4435 {
4436 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4437 	struct ext4_super_block *es = sbi->s_es;
4438 	int bsbits, max;
4439 	loff_t size, start_off, end;
4440 	loff_t orig_size __maybe_unused;
4441 	ext4_lblk_t start;
4442 
4443 	/* do normalize only data requests, metadata requests
4444 	   do not need preallocation */
4445 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4446 		return;
4447 
4448 	/* sometime caller may want exact blocks */
4449 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4450 		return;
4451 
4452 	/* caller may indicate that preallocation isn't
4453 	 * required (it's a tail, for example) */
4454 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4455 		return;
4456 
4457 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4458 		ext4_mb_normalize_group_request(ac);
4459 		return ;
4460 	}
4461 
4462 	bsbits = ac->ac_sb->s_blocksize_bits;
4463 
4464 	/* first, let's learn actual file size
4465 	 * given current request is allocated */
4466 	size = extent_logical_end(sbi, &ac->ac_o_ex);
4467 	size = size << bsbits;
4468 	if (size < i_size_read(ac->ac_inode))
4469 		size = i_size_read(ac->ac_inode);
4470 	orig_size = size;
4471 
4472 	/* max size of free chunks */
4473 	max = 2 << bsbits;
4474 
4475 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
4476 		(req <= (size) || max <= (chunk_size))
4477 
4478 	/* first, try to predict filesize */
4479 	/* XXX: should this table be tunable? */
4480 	start_off = 0;
4481 	if (size <= 16 * 1024) {
4482 		size = 16 * 1024;
4483 	} else if (size <= 32 * 1024) {
4484 		size = 32 * 1024;
4485 	} else if (size <= 64 * 1024) {
4486 		size = 64 * 1024;
4487 	} else if (size <= 128 * 1024) {
4488 		size = 128 * 1024;
4489 	} else if (size <= 256 * 1024) {
4490 		size = 256 * 1024;
4491 	} else if (size <= 512 * 1024) {
4492 		size = 512 * 1024;
4493 	} else if (size <= 1024 * 1024) {
4494 		size = 1024 * 1024;
4495 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4496 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4497 						(21 - bsbits)) << 21;
4498 		size = 2 * 1024 * 1024;
4499 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4500 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4501 							(22 - bsbits)) << 22;
4502 		size = 4 * 1024 * 1024;
4503 	} else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4504 					(8<<20)>>bsbits, max, 8 * 1024)) {
4505 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4506 							(23 - bsbits)) << 23;
4507 		size = 8 * 1024 * 1024;
4508 	} else {
4509 		start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4510 		size	  = (loff_t) EXT4_C2B(sbi,
4511 					      ac->ac_o_ex.fe_len) << bsbits;
4512 	}
4513 	size = size >> bsbits;
4514 	start = start_off >> bsbits;
4515 
4516 	/*
4517 	 * For tiny groups (smaller than 8MB) the chosen allocation
4518 	 * alignment may be larger than group size. Make sure the
4519 	 * alignment does not move allocation to a different group which
4520 	 * makes mballoc fail assertions later.
4521 	 */
4522 	start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4523 			(ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4524 
4525 	/* avoid unnecessary preallocation that may trigger assertions */
4526 	if (start + size > EXT_MAX_BLOCKS)
4527 		size = EXT_MAX_BLOCKS - start;
4528 
4529 	/* don't cover already allocated blocks in selected range */
4530 	if (ar->pleft && start <= ar->lleft) {
4531 		size -= ar->lleft + 1 - start;
4532 		start = ar->lleft + 1;
4533 	}
4534 	if (ar->pright && start + size - 1 >= ar->lright)
4535 		size -= start + size - ar->lright;
4536 
4537 	/*
4538 	 * Trim allocation request for filesystems with artificially small
4539 	 * groups.
4540 	 */
4541 	if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4542 		size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4543 
4544 	end = start + size;
4545 
4546 	ext4_mb_pa_adjust_overlap(ac, &start, &end);
4547 
4548 	size = end - start;
4549 
4550 	/*
4551 	 * In this function "start" and "size" are normalized for better
4552 	 * alignment and length such that we could preallocate more blocks.
4553 	 * This normalization is done such that original request of
4554 	 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4555 	 * "size" boundaries.
4556 	 * (Note fe_len can be relaxed since FS block allocation API does not
4557 	 * provide gurantee on number of contiguous blocks allocation since that
4558 	 * depends upon free space left, etc).
4559 	 * In case of inode pa, later we use the allocated blocks
4560 	 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4561 	 * range of goal/best blocks [start, size] to put it at the
4562 	 * ac_o_ex.fe_logical extent of this inode.
4563 	 * (See ext4_mb_use_inode_pa() for more details)
4564 	 */
4565 	if (start + size <= ac->ac_o_ex.fe_logical ||
4566 			start > ac->ac_o_ex.fe_logical) {
4567 		ext4_msg(ac->ac_sb, KERN_ERR,
4568 			 "start %lu, size %lu, fe_logical %lu",
4569 			 (unsigned long) start, (unsigned long) size,
4570 			 (unsigned long) ac->ac_o_ex.fe_logical);
4571 		BUG();
4572 	}
4573 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4574 
4575 	/* now prepare goal request */
4576 
4577 	/* XXX: is it better to align blocks WRT to logical
4578 	 * placement or satisfy big request as is */
4579 	ac->ac_g_ex.fe_logical = start;
4580 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4581 	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4582 
4583 	/* define goal start in order to merge */
4584 	if (ar->pright && (ar->lright == (start + size)) &&
4585 	    ar->pright >= size &&
4586 	    ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4587 		/* merge to the right */
4588 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4589 						&ac->ac_g_ex.fe_group,
4590 						&ac->ac_g_ex.fe_start);
4591 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4592 	}
4593 	if (ar->pleft && (ar->lleft + 1 == start) &&
4594 	    ar->pleft + 1 < ext4_blocks_count(es)) {
4595 		/* merge to the left */
4596 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4597 						&ac->ac_g_ex.fe_group,
4598 						&ac->ac_g_ex.fe_start);
4599 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4600 	}
4601 
4602 	mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4603 		 orig_size, start);
4604 }
4605 
4606 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4607 {
4608 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4609 
4610 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4611 		atomic_inc(&sbi->s_bal_reqs);
4612 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4613 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4614 			atomic_inc(&sbi->s_bal_success);
4615 
4616 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4617 		for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4618 			atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4619 		}
4620 
4621 		atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4622 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4623 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4624 			atomic_inc(&sbi->s_bal_goals);
4625 		/* did we allocate as much as normalizer originally wanted? */
4626 		if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4627 			atomic_inc(&sbi->s_bal_len_goals);
4628 
4629 		if (ac->ac_found > sbi->s_mb_max_to_scan)
4630 			atomic_inc(&sbi->s_bal_breaks);
4631 	}
4632 
4633 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4634 		trace_ext4_mballoc_alloc(ac);
4635 	else
4636 		trace_ext4_mballoc_prealloc(ac);
4637 }
4638 
4639 /*
4640  * Called on failure; free up any blocks from the inode PA for this
4641  * context.  We don't need this for MB_GROUP_PA because we only change
4642  * pa_free in ext4_mb_release_context(), but on failure, we've already
4643  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4644  */
4645 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4646 {
4647 	struct ext4_prealloc_space *pa = ac->ac_pa;
4648 	struct ext4_buddy e4b;
4649 	int err;
4650 
4651 	if (pa == NULL) {
4652 		if (ac->ac_f_ex.fe_len == 0)
4653 			return;
4654 		err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4655 		if (WARN_RATELIMIT(err,
4656 				   "ext4: mb_load_buddy failed (%d)", err))
4657 			/*
4658 			 * This should never happen since we pin the
4659 			 * pages in the ext4_allocation_context so
4660 			 * ext4_mb_load_buddy() should never fail.
4661 			 */
4662 			return;
4663 		ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4664 		mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4665 			       ac->ac_f_ex.fe_len);
4666 		ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4667 		ext4_mb_unload_buddy(&e4b);
4668 		return;
4669 	}
4670 	if (pa->pa_type == MB_INODE_PA) {
4671 		spin_lock(&pa->pa_lock);
4672 		pa->pa_free += ac->ac_b_ex.fe_len;
4673 		spin_unlock(&pa->pa_lock);
4674 	}
4675 }
4676 
4677 /*
4678  * use blocks preallocated to inode
4679  */
4680 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4681 				struct ext4_prealloc_space *pa)
4682 {
4683 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4684 	ext4_fsblk_t start;
4685 	ext4_fsblk_t end;
4686 	int len;
4687 
4688 	/* found preallocated blocks, use them */
4689 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4690 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4691 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4692 	len = EXT4_NUM_B2C(sbi, end - start);
4693 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4694 					&ac->ac_b_ex.fe_start);
4695 	ac->ac_b_ex.fe_len = len;
4696 	ac->ac_status = AC_STATUS_FOUND;
4697 	ac->ac_pa = pa;
4698 
4699 	BUG_ON(start < pa->pa_pstart);
4700 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4701 	BUG_ON(pa->pa_free < len);
4702 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
4703 	pa->pa_free -= len;
4704 
4705 	mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4706 }
4707 
4708 /*
4709  * use blocks preallocated to locality group
4710  */
4711 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4712 				struct ext4_prealloc_space *pa)
4713 {
4714 	unsigned int len = ac->ac_o_ex.fe_len;
4715 
4716 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4717 					&ac->ac_b_ex.fe_group,
4718 					&ac->ac_b_ex.fe_start);
4719 	ac->ac_b_ex.fe_len = len;
4720 	ac->ac_status = AC_STATUS_FOUND;
4721 	ac->ac_pa = pa;
4722 
4723 	/* we don't correct pa_pstart or pa_len here to avoid
4724 	 * possible race when the group is being loaded concurrently
4725 	 * instead we correct pa later, after blocks are marked
4726 	 * in on-disk bitmap -- see ext4_mb_release_context()
4727 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
4728 	 */
4729 	mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4730 		 pa->pa_lstart, len, pa);
4731 }
4732 
4733 /*
4734  * Return the prealloc space that have minimal distance
4735  * from the goal block. @cpa is the prealloc
4736  * space that is having currently known minimal distance
4737  * from the goal block.
4738  */
4739 static struct ext4_prealloc_space *
4740 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4741 			struct ext4_prealloc_space *pa,
4742 			struct ext4_prealloc_space *cpa)
4743 {
4744 	ext4_fsblk_t cur_distance, new_distance;
4745 
4746 	if (cpa == NULL) {
4747 		atomic_inc(&pa->pa_count);
4748 		return pa;
4749 	}
4750 	cur_distance = abs(goal_block - cpa->pa_pstart);
4751 	new_distance = abs(goal_block - pa->pa_pstart);
4752 
4753 	if (cur_distance <= new_distance)
4754 		return cpa;
4755 
4756 	/* drop the previous reference */
4757 	atomic_dec(&cpa->pa_count);
4758 	atomic_inc(&pa->pa_count);
4759 	return pa;
4760 }
4761 
4762 /*
4763  * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4764  */
4765 static bool
4766 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4767 		      struct ext4_prealloc_space *pa)
4768 {
4769 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4770 	ext4_fsblk_t start;
4771 
4772 	if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4773 		return true;
4774 
4775 	/*
4776 	 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4777 	 * in ext4_mb_normalize_request and will keep same with ac_o_ex
4778 	 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4779 	 * consistent with ext4_mb_find_by_goal.
4780 	 */
4781 	start = pa->pa_pstart +
4782 		(ac->ac_g_ex.fe_logical - pa->pa_lstart);
4783 	if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4784 		return false;
4785 
4786 	if (ac->ac_g_ex.fe_len > pa->pa_len -
4787 	    EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4788 		return false;
4789 
4790 	return true;
4791 }
4792 
4793 /*
4794  * search goal blocks in preallocated space
4795  */
4796 static noinline_for_stack bool
4797 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4798 {
4799 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4800 	int order, i;
4801 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4802 	struct ext4_locality_group *lg;
4803 	struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4804 	struct rb_node *iter;
4805 	ext4_fsblk_t goal_block;
4806 
4807 	/* only data can be preallocated */
4808 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4809 		return false;
4810 
4811 	/*
4812 	 * first, try per-file preallocation by searching the inode pa rbtree.
4813 	 *
4814 	 * Here, we can't do a direct traversal of the tree because
4815 	 * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4816 	 * deleted and that can cause direct traversal to skip some entries.
4817 	 */
4818 	read_lock(&ei->i_prealloc_lock);
4819 
4820 	if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4821 		goto try_group_pa;
4822 	}
4823 
4824 	/*
4825 	 * Step 1: Find a pa with logical start immediately adjacent to the
4826 	 * original logical start. This could be on the left or right.
4827 	 *
4828 	 * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4829 	 */
4830 	for (iter = ei->i_prealloc_node.rb_node; iter;
4831 	     iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4832 					    tmp_pa->pa_lstart, iter)) {
4833 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4834 				  pa_node.inode_node);
4835 	}
4836 
4837 	/*
4838 	 * Step 2: The adjacent pa might be to the right of logical start, find
4839 	 * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4840 	 * logical start is towards the left of original request's logical start
4841 	 */
4842 	if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4843 		struct rb_node *tmp;
4844 		tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4845 
4846 		if (tmp) {
4847 			tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4848 					    pa_node.inode_node);
4849 		} else {
4850 			/*
4851 			 * If there is no adjacent pa to the left then finding
4852 			 * an overlapping pa is not possible hence stop searching
4853 			 * inode pa tree
4854 			 */
4855 			goto try_group_pa;
4856 		}
4857 	}
4858 
4859 	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4860 
4861 	/*
4862 	 * Step 3: If the left adjacent pa is deleted, keep moving left to find
4863 	 * the first non deleted adjacent pa. After this step we should have a
4864 	 * valid tmp_pa which is guaranteed to be non deleted.
4865 	 */
4866 	for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4867 		if (!iter) {
4868 			/*
4869 			 * no non deleted left adjacent pa, so stop searching
4870 			 * inode pa tree
4871 			 */
4872 			goto try_group_pa;
4873 		}
4874 		tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4875 				  pa_node.inode_node);
4876 		spin_lock(&tmp_pa->pa_lock);
4877 		if (tmp_pa->pa_deleted == 0) {
4878 			/*
4879 			 * We will keep holding the pa_lock from
4880 			 * this point on because we don't want group discard
4881 			 * to delete this pa underneath us. Since group
4882 			 * discard is anyways an ENOSPC operation it
4883 			 * should be okay for it to wait a few more cycles.
4884 			 */
4885 			break;
4886 		} else {
4887 			spin_unlock(&tmp_pa->pa_lock);
4888 		}
4889 	}
4890 
4891 	BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4892 	BUG_ON(tmp_pa->pa_deleted == 1);
4893 
4894 	/*
4895 	 * Step 4: We now have the non deleted left adjacent pa. Only this
4896 	 * pa can possibly satisfy the request hence check if it overlaps
4897 	 * original logical start and stop searching if it doesn't.
4898 	 */
4899 	if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) {
4900 		spin_unlock(&tmp_pa->pa_lock);
4901 		goto try_group_pa;
4902 	}
4903 
4904 	/* non-extent files can't have physical blocks past 2^32 */
4905 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4906 	    (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4907 	     EXT4_MAX_BLOCK_FILE_PHYS)) {
4908 		/*
4909 		 * Since PAs don't overlap, we won't find any other PA to
4910 		 * satisfy this.
4911 		 */
4912 		spin_unlock(&tmp_pa->pa_lock);
4913 		goto try_group_pa;
4914 	}
4915 
4916 	if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4917 		atomic_inc(&tmp_pa->pa_count);
4918 		ext4_mb_use_inode_pa(ac, tmp_pa);
4919 		spin_unlock(&tmp_pa->pa_lock);
4920 		read_unlock(&ei->i_prealloc_lock);
4921 		return true;
4922 	} else {
4923 		/*
4924 		 * We found a valid overlapping pa but couldn't use it because
4925 		 * it had no free blocks. This should ideally never happen
4926 		 * because:
4927 		 *
4928 		 * 1. When a new inode pa is added to rbtree it must have
4929 		 *    pa_free > 0 since otherwise we won't actually need
4930 		 *    preallocation.
4931 		 *
4932 		 * 2. An inode pa that is in the rbtree can only have it's
4933 		 *    pa_free become zero when another thread calls:
4934 		 *      ext4_mb_new_blocks
4935 		 *       ext4_mb_use_preallocated
4936 		 *        ext4_mb_use_inode_pa
4937 		 *
4938 		 * 3. Further, after the above calls make pa_free == 0, we will
4939 		 *    immediately remove it from the rbtree in:
4940 		 *      ext4_mb_new_blocks
4941 		 *       ext4_mb_release_context
4942 		 *        ext4_mb_put_pa
4943 		 *
4944 		 * 4. Since the pa_free becoming 0 and pa_free getting removed
4945 		 * from tree both happen in ext4_mb_new_blocks, which is always
4946 		 * called with i_data_sem held for data allocations, we can be
4947 		 * sure that another process will never see a pa in rbtree with
4948 		 * pa_free == 0.
4949 		 */
4950 		WARN_ON_ONCE(tmp_pa->pa_free == 0);
4951 	}
4952 	spin_unlock(&tmp_pa->pa_lock);
4953 try_group_pa:
4954 	read_unlock(&ei->i_prealloc_lock);
4955 
4956 	/* can we use group allocation? */
4957 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4958 		return false;
4959 
4960 	/* inode may have no locality group for some reason */
4961 	lg = ac->ac_lg;
4962 	if (lg == NULL)
4963 		return false;
4964 	order  = fls(ac->ac_o_ex.fe_len) - 1;
4965 	if (order > PREALLOC_TB_SIZE - 1)
4966 		/* The max size of hash table is PREALLOC_TB_SIZE */
4967 		order = PREALLOC_TB_SIZE - 1;
4968 
4969 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4970 	/*
4971 	 * search for the prealloc space that is having
4972 	 * minimal distance from the goal block.
4973 	 */
4974 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
4975 		rcu_read_lock();
4976 		list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4977 					pa_node.lg_list) {
4978 			spin_lock(&tmp_pa->pa_lock);
4979 			if (tmp_pa->pa_deleted == 0 &&
4980 					tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4981 
4982 				cpa = ext4_mb_check_group_pa(goal_block,
4983 								tmp_pa, cpa);
4984 			}
4985 			spin_unlock(&tmp_pa->pa_lock);
4986 		}
4987 		rcu_read_unlock();
4988 	}
4989 	if (cpa) {
4990 		ext4_mb_use_group_pa(ac, cpa);
4991 		return true;
4992 	}
4993 	return false;
4994 }
4995 
4996 /*
4997  * the function goes through all preallocation in this group and marks them
4998  * used in in-core bitmap. buddy must be generated from this bitmap
4999  * Need to be called with ext4 group lock held
5000  */
5001 static noinline_for_stack
5002 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
5003 					ext4_group_t group)
5004 {
5005 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5006 	struct ext4_prealloc_space *pa;
5007 	struct list_head *cur;
5008 	ext4_group_t groupnr;
5009 	ext4_grpblk_t start;
5010 	int preallocated = 0;
5011 	int len;
5012 
5013 	if (!grp)
5014 		return;
5015 
5016 	/* all form of preallocation discards first load group,
5017 	 * so the only competing code is preallocation use.
5018 	 * we don't need any locking here
5019 	 * notice we do NOT ignore preallocations with pa_deleted
5020 	 * otherwise we could leave used blocks available for
5021 	 * allocation in buddy when concurrent ext4_mb_put_pa()
5022 	 * is dropping preallocation
5023 	 */
5024 	list_for_each(cur, &grp->bb_prealloc_list) {
5025 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5026 		spin_lock(&pa->pa_lock);
5027 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5028 					     &groupnr, &start);
5029 		len = pa->pa_len;
5030 		spin_unlock(&pa->pa_lock);
5031 		if (unlikely(len == 0))
5032 			continue;
5033 		BUG_ON(groupnr != group);
5034 		mb_set_bits(bitmap, start, len);
5035 		preallocated += len;
5036 	}
5037 	mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5038 }
5039 
5040 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5041 				    struct ext4_prealloc_space *pa)
5042 {
5043 	struct ext4_inode_info *ei;
5044 
5045 	if (pa->pa_deleted) {
5046 		ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5047 			     pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5048 			     pa->pa_len);
5049 		return;
5050 	}
5051 
5052 	pa->pa_deleted = 1;
5053 
5054 	if (pa->pa_type == MB_INODE_PA) {
5055 		ei = EXT4_I(pa->pa_inode);
5056 		atomic_dec(&ei->i_prealloc_active);
5057 	}
5058 }
5059 
5060 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5061 {
5062 	BUG_ON(!pa);
5063 	BUG_ON(atomic_read(&pa->pa_count));
5064 	BUG_ON(pa->pa_deleted == 0);
5065 	kmem_cache_free(ext4_pspace_cachep, pa);
5066 }
5067 
5068 static void ext4_mb_pa_callback(struct rcu_head *head)
5069 {
5070 	struct ext4_prealloc_space *pa;
5071 
5072 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5073 	ext4_mb_pa_free(pa);
5074 }
5075 
5076 /*
5077  * drops a reference to preallocated space descriptor
5078  * if this was the last reference and the space is consumed
5079  */
5080 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5081 			struct super_block *sb, struct ext4_prealloc_space *pa)
5082 {
5083 	ext4_group_t grp;
5084 	ext4_fsblk_t grp_blk;
5085 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5086 
5087 	/* in this short window concurrent discard can set pa_deleted */
5088 	spin_lock(&pa->pa_lock);
5089 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5090 		spin_unlock(&pa->pa_lock);
5091 		return;
5092 	}
5093 
5094 	if (pa->pa_deleted == 1) {
5095 		spin_unlock(&pa->pa_lock);
5096 		return;
5097 	}
5098 
5099 	ext4_mb_mark_pa_deleted(sb, pa);
5100 	spin_unlock(&pa->pa_lock);
5101 
5102 	grp_blk = pa->pa_pstart;
5103 	/*
5104 	 * If doing group-based preallocation, pa_pstart may be in the
5105 	 * next group when pa is used up
5106 	 */
5107 	if (pa->pa_type == MB_GROUP_PA)
5108 		grp_blk--;
5109 
5110 	grp = ext4_get_group_number(sb, grp_blk);
5111 
5112 	/*
5113 	 * possible race:
5114 	 *
5115 	 *  P1 (buddy init)			P2 (regular allocation)
5116 	 *					find block B in PA
5117 	 *  copy on-disk bitmap to buddy
5118 	 *  					mark B in on-disk bitmap
5119 	 *					drop PA from group
5120 	 *  mark all PAs in buddy
5121 	 *
5122 	 * thus, P1 initializes buddy with B available. to prevent this
5123 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5124 	 * against that pair
5125 	 */
5126 	ext4_lock_group(sb, grp);
5127 	list_del(&pa->pa_group_list);
5128 	ext4_unlock_group(sb, grp);
5129 
5130 	if (pa->pa_type == MB_INODE_PA) {
5131 		write_lock(pa->pa_node_lock.inode_lock);
5132 		rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5133 		write_unlock(pa->pa_node_lock.inode_lock);
5134 		ext4_mb_pa_free(pa);
5135 	} else {
5136 		spin_lock(pa->pa_node_lock.lg_lock);
5137 		list_del_rcu(&pa->pa_node.lg_list);
5138 		spin_unlock(pa->pa_node_lock.lg_lock);
5139 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5140 	}
5141 }
5142 
5143 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5144 {
5145 	struct rb_node **iter = &root->rb_node, *parent = NULL;
5146 	struct ext4_prealloc_space *iter_pa, *new_pa;
5147 	ext4_lblk_t iter_start, new_start;
5148 
5149 	while (*iter) {
5150 		iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5151 				   pa_node.inode_node);
5152 		new_pa = rb_entry(new, struct ext4_prealloc_space,
5153 				   pa_node.inode_node);
5154 		iter_start = iter_pa->pa_lstart;
5155 		new_start = new_pa->pa_lstart;
5156 
5157 		parent = *iter;
5158 		if (new_start < iter_start)
5159 			iter = &((*iter)->rb_left);
5160 		else
5161 			iter = &((*iter)->rb_right);
5162 	}
5163 
5164 	rb_link_node(new, parent, iter);
5165 	rb_insert_color(new, root);
5166 }
5167 
5168 /*
5169  * creates new preallocated space for given inode
5170  */
5171 static noinline_for_stack void
5172 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5173 {
5174 	struct super_block *sb = ac->ac_sb;
5175 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5176 	struct ext4_prealloc_space *pa;
5177 	struct ext4_group_info *grp;
5178 	struct ext4_inode_info *ei;
5179 
5180 	/* preallocate only when found space is larger then requested */
5181 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5182 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5183 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5184 	BUG_ON(ac->ac_pa == NULL);
5185 
5186 	pa = ac->ac_pa;
5187 
5188 	if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5189 		struct ext4_free_extent ex = {
5190 			.fe_logical = ac->ac_g_ex.fe_logical,
5191 			.fe_len = ac->ac_orig_goal_len,
5192 		};
5193 		loff_t orig_goal_end = extent_logical_end(sbi, &ex);
5194 		loff_t o_ex_end = extent_logical_end(sbi, &ac->ac_o_ex);
5195 
5196 		/*
5197 		 * We can't allocate as much as normalizer wants, so we try
5198 		 * to get proper lstart to cover the original request, except
5199 		 * when the goal doesn't cover the original request as below:
5200 		 *
5201 		 * orig_ex:2045/2055(10), isize:8417280 -> normalized:0/2048
5202 		 * best_ex:0/200(200) -> adjusted: 1848/2048(200)
5203 		 */
5204 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5205 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5206 
5207 		/*
5208 		 * Use the below logic for adjusting best extent as it keeps
5209 		 * fragmentation in check while ensuring logical range of best
5210 		 * extent doesn't overflow out of goal extent:
5211 		 *
5212 		 * 1. Check if best ex can be kept at end of goal (before
5213 		 *    cr_best_avail trimmed it) and still cover original start
5214 		 * 2. Else, check if best ex can be kept at start of goal and
5215 		 *    still cover original end
5216 		 * 3. Else, keep the best ex at start of original request.
5217 		 */
5218 		ex.fe_len = ac->ac_b_ex.fe_len;
5219 
5220 		ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len);
5221 		if (ac->ac_o_ex.fe_logical >= ex.fe_logical)
5222 			goto adjust_bex;
5223 
5224 		ex.fe_logical = ac->ac_g_ex.fe_logical;
5225 		if (o_ex_end <= extent_logical_end(sbi, &ex))
5226 			goto adjust_bex;
5227 
5228 		ex.fe_logical = ac->ac_o_ex.fe_logical;
5229 adjust_bex:
5230 		ac->ac_b_ex.fe_logical = ex.fe_logical;
5231 
5232 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5233 		BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end);
5234 	}
5235 
5236 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
5237 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5238 	pa->pa_len = ac->ac_b_ex.fe_len;
5239 	pa->pa_free = pa->pa_len;
5240 	spin_lock_init(&pa->pa_lock);
5241 	INIT_LIST_HEAD(&pa->pa_group_list);
5242 	pa->pa_deleted = 0;
5243 	pa->pa_type = MB_INODE_PA;
5244 
5245 	mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5246 		 pa->pa_len, pa->pa_lstart);
5247 	trace_ext4_mb_new_inode_pa(ac, pa);
5248 
5249 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5250 	ext4_mb_use_inode_pa(ac, pa);
5251 
5252 	ei = EXT4_I(ac->ac_inode);
5253 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5254 	if (!grp)
5255 		return;
5256 
5257 	pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5258 	pa->pa_inode = ac->ac_inode;
5259 
5260 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5261 
5262 	write_lock(pa->pa_node_lock.inode_lock);
5263 	ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5264 	write_unlock(pa->pa_node_lock.inode_lock);
5265 	atomic_inc(&ei->i_prealloc_active);
5266 }
5267 
5268 /*
5269  * creates new preallocated space for locality group inodes belongs to
5270  */
5271 static noinline_for_stack void
5272 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5273 {
5274 	struct super_block *sb = ac->ac_sb;
5275 	struct ext4_locality_group *lg;
5276 	struct ext4_prealloc_space *pa;
5277 	struct ext4_group_info *grp;
5278 
5279 	/* preallocate only when found space is larger then requested */
5280 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5281 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5282 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5283 	BUG_ON(ac->ac_pa == NULL);
5284 
5285 	pa = ac->ac_pa;
5286 
5287 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5288 	pa->pa_lstart = pa->pa_pstart;
5289 	pa->pa_len = ac->ac_b_ex.fe_len;
5290 	pa->pa_free = pa->pa_len;
5291 	spin_lock_init(&pa->pa_lock);
5292 	INIT_LIST_HEAD(&pa->pa_node.lg_list);
5293 	INIT_LIST_HEAD(&pa->pa_group_list);
5294 	pa->pa_deleted = 0;
5295 	pa->pa_type = MB_GROUP_PA;
5296 
5297 	mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5298 		 pa->pa_len, pa->pa_lstart);
5299 	trace_ext4_mb_new_group_pa(ac, pa);
5300 
5301 	ext4_mb_use_group_pa(ac, pa);
5302 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5303 
5304 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5305 	if (!grp)
5306 		return;
5307 	lg = ac->ac_lg;
5308 	BUG_ON(lg == NULL);
5309 
5310 	pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5311 	pa->pa_inode = NULL;
5312 
5313 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5314 
5315 	/*
5316 	 * We will later add the new pa to the right bucket
5317 	 * after updating the pa_free in ext4_mb_release_context
5318 	 */
5319 }
5320 
5321 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5322 {
5323 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5324 		ext4_mb_new_group_pa(ac);
5325 	else
5326 		ext4_mb_new_inode_pa(ac);
5327 }
5328 
5329 /*
5330  * finds all unused blocks in on-disk bitmap, frees them in
5331  * in-core bitmap and buddy.
5332  * @pa must be unlinked from inode and group lists, so that
5333  * nobody else can find/use it.
5334  * the caller MUST hold group/inode locks.
5335  * TODO: optimize the case when there are no in-core structures yet
5336  */
5337 static noinline_for_stack int
5338 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5339 			struct ext4_prealloc_space *pa)
5340 {
5341 	struct super_block *sb = e4b->bd_sb;
5342 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5343 	unsigned int end;
5344 	unsigned int next;
5345 	ext4_group_t group;
5346 	ext4_grpblk_t bit;
5347 	unsigned long long grp_blk_start;
5348 	int free = 0;
5349 
5350 	BUG_ON(pa->pa_deleted == 0);
5351 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5352 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5353 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5354 	end = bit + pa->pa_len;
5355 
5356 	while (bit < end) {
5357 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5358 		if (bit >= end)
5359 			break;
5360 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5361 		mb_debug(sb, "free preallocated %u/%u in group %u\n",
5362 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
5363 			 (unsigned) next - bit, (unsigned) group);
5364 		free += next - bit;
5365 
5366 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5367 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5368 						    EXT4_C2B(sbi, bit)),
5369 					       next - bit);
5370 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5371 		bit = next + 1;
5372 	}
5373 	if (free != pa->pa_free) {
5374 		ext4_msg(e4b->bd_sb, KERN_CRIT,
5375 			 "pa %p: logic %lu, phys. %lu, len %d",
5376 			 pa, (unsigned long) pa->pa_lstart,
5377 			 (unsigned long) pa->pa_pstart,
5378 			 pa->pa_len);
5379 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5380 					free, pa->pa_free);
5381 		/*
5382 		 * pa is already deleted so we use the value obtained
5383 		 * from the bitmap and continue.
5384 		 */
5385 	}
5386 	atomic_add(free, &sbi->s_mb_discarded);
5387 
5388 	return 0;
5389 }
5390 
5391 static noinline_for_stack int
5392 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5393 				struct ext4_prealloc_space *pa)
5394 {
5395 	struct super_block *sb = e4b->bd_sb;
5396 	ext4_group_t group;
5397 	ext4_grpblk_t bit;
5398 
5399 	trace_ext4_mb_release_group_pa(sb, pa);
5400 	BUG_ON(pa->pa_deleted == 0);
5401 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5402 	if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5403 		ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5404 			     e4b->bd_group, group, pa->pa_pstart);
5405 		return 0;
5406 	}
5407 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5408 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5409 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5410 
5411 	return 0;
5412 }
5413 
5414 /*
5415  * releases all preallocations in given group
5416  *
5417  * first, we need to decide discard policy:
5418  * - when do we discard
5419  *   1) ENOSPC
5420  * - how many do we discard
5421  *   1) how many requested
5422  */
5423 static noinline_for_stack int
5424 ext4_mb_discard_group_preallocations(struct super_block *sb,
5425 				     ext4_group_t group, int *busy)
5426 {
5427 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5428 	struct buffer_head *bitmap_bh = NULL;
5429 	struct ext4_prealloc_space *pa, *tmp;
5430 	LIST_HEAD(list);
5431 	struct ext4_buddy e4b;
5432 	struct ext4_inode_info *ei;
5433 	int err;
5434 	int free = 0;
5435 
5436 	if (!grp)
5437 		return 0;
5438 	mb_debug(sb, "discard preallocation for group %u\n", group);
5439 	if (list_empty(&grp->bb_prealloc_list))
5440 		goto out_dbg;
5441 
5442 	bitmap_bh = ext4_read_block_bitmap(sb, group);
5443 	if (IS_ERR(bitmap_bh)) {
5444 		err = PTR_ERR(bitmap_bh);
5445 		ext4_error_err(sb, -err,
5446 			       "Error %d reading block bitmap for %u",
5447 			       err, group);
5448 		goto out_dbg;
5449 	}
5450 
5451 	err = ext4_mb_load_buddy(sb, group, &e4b);
5452 	if (err) {
5453 		ext4_warning(sb, "Error %d loading buddy information for %u",
5454 			     err, group);
5455 		put_bh(bitmap_bh);
5456 		goto out_dbg;
5457 	}
5458 
5459 	ext4_lock_group(sb, group);
5460 	list_for_each_entry_safe(pa, tmp,
5461 				&grp->bb_prealloc_list, pa_group_list) {
5462 		spin_lock(&pa->pa_lock);
5463 		if (atomic_read(&pa->pa_count)) {
5464 			spin_unlock(&pa->pa_lock);
5465 			*busy = 1;
5466 			continue;
5467 		}
5468 		if (pa->pa_deleted) {
5469 			spin_unlock(&pa->pa_lock);
5470 			continue;
5471 		}
5472 
5473 		/* seems this one can be freed ... */
5474 		ext4_mb_mark_pa_deleted(sb, pa);
5475 
5476 		if (!free)
5477 			this_cpu_inc(discard_pa_seq);
5478 
5479 		/* we can trust pa_free ... */
5480 		free += pa->pa_free;
5481 
5482 		spin_unlock(&pa->pa_lock);
5483 
5484 		list_del(&pa->pa_group_list);
5485 		list_add(&pa->u.pa_tmp_list, &list);
5486 	}
5487 
5488 	/* now free all selected PAs */
5489 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5490 
5491 		/* remove from object (inode or locality group) */
5492 		if (pa->pa_type == MB_GROUP_PA) {
5493 			spin_lock(pa->pa_node_lock.lg_lock);
5494 			list_del_rcu(&pa->pa_node.lg_list);
5495 			spin_unlock(pa->pa_node_lock.lg_lock);
5496 		} else {
5497 			write_lock(pa->pa_node_lock.inode_lock);
5498 			ei = EXT4_I(pa->pa_inode);
5499 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5500 			write_unlock(pa->pa_node_lock.inode_lock);
5501 		}
5502 
5503 		list_del(&pa->u.pa_tmp_list);
5504 
5505 		if (pa->pa_type == MB_GROUP_PA) {
5506 			ext4_mb_release_group_pa(&e4b, pa);
5507 			call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5508 		} else {
5509 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5510 			ext4_mb_pa_free(pa);
5511 		}
5512 	}
5513 
5514 	ext4_unlock_group(sb, group);
5515 	ext4_mb_unload_buddy(&e4b);
5516 	put_bh(bitmap_bh);
5517 out_dbg:
5518 	mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5519 		 free, group, grp->bb_free);
5520 	return free;
5521 }
5522 
5523 /*
5524  * releases all non-used preallocated blocks for given inode
5525  *
5526  * It's important to discard preallocations under i_data_sem
5527  * We don't want another block to be served from the prealloc
5528  * space when we are discarding the inode prealloc space.
5529  *
5530  * FIXME!! Make sure it is valid at all the call sites
5531  */
5532 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
5533 {
5534 	struct ext4_inode_info *ei = EXT4_I(inode);
5535 	struct super_block *sb = inode->i_sb;
5536 	struct buffer_head *bitmap_bh = NULL;
5537 	struct ext4_prealloc_space *pa, *tmp;
5538 	ext4_group_t group = 0;
5539 	LIST_HEAD(list);
5540 	struct ext4_buddy e4b;
5541 	struct rb_node *iter;
5542 	int err;
5543 
5544 	if (!S_ISREG(inode->i_mode)) {
5545 		return;
5546 	}
5547 
5548 	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5549 		return;
5550 
5551 	mb_debug(sb, "discard preallocation for inode %lu\n",
5552 		 inode->i_ino);
5553 	trace_ext4_discard_preallocations(inode,
5554 			atomic_read(&ei->i_prealloc_active), needed);
5555 
5556 	if (needed == 0)
5557 		needed = UINT_MAX;
5558 
5559 repeat:
5560 	/* first, collect all pa's in the inode */
5561 	write_lock(&ei->i_prealloc_lock);
5562 	for (iter = rb_first(&ei->i_prealloc_node); iter && needed;
5563 	     iter = rb_next(iter)) {
5564 		pa = rb_entry(iter, struct ext4_prealloc_space,
5565 			      pa_node.inode_node);
5566 		BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5567 
5568 		spin_lock(&pa->pa_lock);
5569 		if (atomic_read(&pa->pa_count)) {
5570 			/* this shouldn't happen often - nobody should
5571 			 * use preallocation while we're discarding it */
5572 			spin_unlock(&pa->pa_lock);
5573 			write_unlock(&ei->i_prealloc_lock);
5574 			ext4_msg(sb, KERN_ERR,
5575 				 "uh-oh! used pa while discarding");
5576 			WARN_ON(1);
5577 			schedule_timeout_uninterruptible(HZ);
5578 			goto repeat;
5579 
5580 		}
5581 		if (pa->pa_deleted == 0) {
5582 			ext4_mb_mark_pa_deleted(sb, pa);
5583 			spin_unlock(&pa->pa_lock);
5584 			rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5585 			list_add(&pa->u.pa_tmp_list, &list);
5586 			needed--;
5587 			continue;
5588 		}
5589 
5590 		/* someone is deleting pa right now */
5591 		spin_unlock(&pa->pa_lock);
5592 		write_unlock(&ei->i_prealloc_lock);
5593 
5594 		/* we have to wait here because pa_deleted
5595 		 * doesn't mean pa is already unlinked from
5596 		 * the list. as we might be called from
5597 		 * ->clear_inode() the inode will get freed
5598 		 * and concurrent thread which is unlinking
5599 		 * pa from inode's list may access already
5600 		 * freed memory, bad-bad-bad */
5601 
5602 		/* XXX: if this happens too often, we can
5603 		 * add a flag to force wait only in case
5604 		 * of ->clear_inode(), but not in case of
5605 		 * regular truncate */
5606 		schedule_timeout_uninterruptible(HZ);
5607 		goto repeat;
5608 	}
5609 	write_unlock(&ei->i_prealloc_lock);
5610 
5611 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5612 		BUG_ON(pa->pa_type != MB_INODE_PA);
5613 		group = ext4_get_group_number(sb, pa->pa_pstart);
5614 
5615 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5616 					     GFP_NOFS|__GFP_NOFAIL);
5617 		if (err) {
5618 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5619 				       err, group);
5620 			continue;
5621 		}
5622 
5623 		bitmap_bh = ext4_read_block_bitmap(sb, group);
5624 		if (IS_ERR(bitmap_bh)) {
5625 			err = PTR_ERR(bitmap_bh);
5626 			ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5627 				       err, group);
5628 			ext4_mb_unload_buddy(&e4b);
5629 			continue;
5630 		}
5631 
5632 		ext4_lock_group(sb, group);
5633 		list_del(&pa->pa_group_list);
5634 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5635 		ext4_unlock_group(sb, group);
5636 
5637 		ext4_mb_unload_buddy(&e4b);
5638 		put_bh(bitmap_bh);
5639 
5640 		list_del(&pa->u.pa_tmp_list);
5641 		ext4_mb_pa_free(pa);
5642 	}
5643 }
5644 
5645 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5646 {
5647 	struct ext4_prealloc_space *pa;
5648 
5649 	BUG_ON(ext4_pspace_cachep == NULL);
5650 	pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5651 	if (!pa)
5652 		return -ENOMEM;
5653 	atomic_set(&pa->pa_count, 1);
5654 	ac->ac_pa = pa;
5655 	return 0;
5656 }
5657 
5658 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5659 {
5660 	struct ext4_prealloc_space *pa = ac->ac_pa;
5661 
5662 	BUG_ON(!pa);
5663 	ac->ac_pa = NULL;
5664 	WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5665 	/*
5666 	 * current function is only called due to an error or due to
5667 	 * len of found blocks < len of requested blocks hence the PA has not
5668 	 * been added to grp->bb_prealloc_list. So we don't need to lock it
5669 	 */
5670 	pa->pa_deleted = 1;
5671 	ext4_mb_pa_free(pa);
5672 }
5673 
5674 #ifdef CONFIG_EXT4_DEBUG
5675 static inline void ext4_mb_show_pa(struct super_block *sb)
5676 {
5677 	ext4_group_t i, ngroups;
5678 
5679 	if (ext4_forced_shutdown(sb))
5680 		return;
5681 
5682 	ngroups = ext4_get_groups_count(sb);
5683 	mb_debug(sb, "groups: ");
5684 	for (i = 0; i < ngroups; i++) {
5685 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5686 		struct ext4_prealloc_space *pa;
5687 		ext4_grpblk_t start;
5688 		struct list_head *cur;
5689 
5690 		if (!grp)
5691 			continue;
5692 		ext4_lock_group(sb, i);
5693 		list_for_each(cur, &grp->bb_prealloc_list) {
5694 			pa = list_entry(cur, struct ext4_prealloc_space,
5695 					pa_group_list);
5696 			spin_lock(&pa->pa_lock);
5697 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5698 						     NULL, &start);
5699 			spin_unlock(&pa->pa_lock);
5700 			mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5701 				 pa->pa_len);
5702 		}
5703 		ext4_unlock_group(sb, i);
5704 		mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5705 			 grp->bb_fragments);
5706 	}
5707 }
5708 
5709 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5710 {
5711 	struct super_block *sb = ac->ac_sb;
5712 
5713 	if (ext4_forced_shutdown(sb))
5714 		return;
5715 
5716 	mb_debug(sb, "Can't allocate:"
5717 			" Allocation context details:");
5718 	mb_debug(sb, "status %u flags 0x%x",
5719 			ac->ac_status, ac->ac_flags);
5720 	mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5721 			"goal %lu/%lu/%lu@%lu, "
5722 			"best %lu/%lu/%lu@%lu cr %d",
5723 			(unsigned long)ac->ac_o_ex.fe_group,
5724 			(unsigned long)ac->ac_o_ex.fe_start,
5725 			(unsigned long)ac->ac_o_ex.fe_len,
5726 			(unsigned long)ac->ac_o_ex.fe_logical,
5727 			(unsigned long)ac->ac_g_ex.fe_group,
5728 			(unsigned long)ac->ac_g_ex.fe_start,
5729 			(unsigned long)ac->ac_g_ex.fe_len,
5730 			(unsigned long)ac->ac_g_ex.fe_logical,
5731 			(unsigned long)ac->ac_b_ex.fe_group,
5732 			(unsigned long)ac->ac_b_ex.fe_start,
5733 			(unsigned long)ac->ac_b_ex.fe_len,
5734 			(unsigned long)ac->ac_b_ex.fe_logical,
5735 			(int)ac->ac_criteria);
5736 	mb_debug(sb, "%u found", ac->ac_found);
5737 	mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5738 	if (ac->ac_pa)
5739 		mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5740 			 "group pa" : "inode pa");
5741 	ext4_mb_show_pa(sb);
5742 }
5743 #else
5744 static inline void ext4_mb_show_pa(struct super_block *sb)
5745 {
5746 }
5747 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5748 {
5749 	ext4_mb_show_pa(ac->ac_sb);
5750 }
5751 #endif
5752 
5753 /*
5754  * We use locality group preallocation for small size file. The size of the
5755  * file is determined by the current size or the resulting size after
5756  * allocation which ever is larger
5757  *
5758  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5759  */
5760 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5761 {
5762 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5763 	int bsbits = ac->ac_sb->s_blocksize_bits;
5764 	loff_t size, isize;
5765 	bool inode_pa_eligible, group_pa_eligible;
5766 
5767 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5768 		return;
5769 
5770 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5771 		return;
5772 
5773 	group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5774 	inode_pa_eligible = true;
5775 	size = extent_logical_end(sbi, &ac->ac_o_ex);
5776 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5777 		>> bsbits;
5778 
5779 	/* No point in using inode preallocation for closed files */
5780 	if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5781 	    !inode_is_open_for_write(ac->ac_inode))
5782 		inode_pa_eligible = false;
5783 
5784 	size = max(size, isize);
5785 	/* Don't use group allocation for large files */
5786 	if (size > sbi->s_mb_stream_request)
5787 		group_pa_eligible = false;
5788 
5789 	if (!group_pa_eligible) {
5790 		if (inode_pa_eligible)
5791 			ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5792 		else
5793 			ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5794 		return;
5795 	}
5796 
5797 	BUG_ON(ac->ac_lg != NULL);
5798 	/*
5799 	 * locality group prealloc space are per cpu. The reason for having
5800 	 * per cpu locality group is to reduce the contention between block
5801 	 * request from multiple CPUs.
5802 	 */
5803 	ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5804 
5805 	/* we're going to use group allocation */
5806 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5807 
5808 	/* serialize all allocations in the group */
5809 	mutex_lock(&ac->ac_lg->lg_mutex);
5810 }
5811 
5812 static noinline_for_stack void
5813 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5814 				struct ext4_allocation_request *ar)
5815 {
5816 	struct super_block *sb = ar->inode->i_sb;
5817 	struct ext4_sb_info *sbi = EXT4_SB(sb);
5818 	struct ext4_super_block *es = sbi->s_es;
5819 	ext4_group_t group;
5820 	unsigned int len;
5821 	ext4_fsblk_t goal;
5822 	ext4_grpblk_t block;
5823 
5824 	/* we can't allocate > group size */
5825 	len = ar->len;
5826 
5827 	/* just a dirty hack to filter too big requests  */
5828 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5829 		len = EXT4_CLUSTERS_PER_GROUP(sb);
5830 
5831 	/* start searching from the goal */
5832 	goal = ar->goal;
5833 	if (goal < le32_to_cpu(es->s_first_data_block) ||
5834 			goal >= ext4_blocks_count(es))
5835 		goal = le32_to_cpu(es->s_first_data_block);
5836 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
5837 
5838 	/* set up allocation goals */
5839 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5840 	ac->ac_status = AC_STATUS_CONTINUE;
5841 	ac->ac_sb = sb;
5842 	ac->ac_inode = ar->inode;
5843 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5844 	ac->ac_o_ex.fe_group = group;
5845 	ac->ac_o_ex.fe_start = block;
5846 	ac->ac_o_ex.fe_len = len;
5847 	ac->ac_g_ex = ac->ac_o_ex;
5848 	ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5849 	ac->ac_flags = ar->flags;
5850 
5851 	/* we have to define context: we'll work with a file or
5852 	 * locality group. this is a policy, actually */
5853 	ext4_mb_group_or_file(ac);
5854 
5855 	mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5856 			"left: %u/%u, right %u/%u to %swritable\n",
5857 			(unsigned) ar->len, (unsigned) ar->logical,
5858 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5859 			(unsigned) ar->lleft, (unsigned) ar->pleft,
5860 			(unsigned) ar->lright, (unsigned) ar->pright,
5861 			inode_is_open_for_write(ar->inode) ? "" : "non-");
5862 }
5863 
5864 static noinline_for_stack void
5865 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5866 					struct ext4_locality_group *lg,
5867 					int order, int total_entries)
5868 {
5869 	ext4_group_t group = 0;
5870 	struct ext4_buddy e4b;
5871 	LIST_HEAD(discard_list);
5872 	struct ext4_prealloc_space *pa, *tmp;
5873 
5874 	mb_debug(sb, "discard locality group preallocation\n");
5875 
5876 	spin_lock(&lg->lg_prealloc_lock);
5877 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5878 				pa_node.lg_list,
5879 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5880 		spin_lock(&pa->pa_lock);
5881 		if (atomic_read(&pa->pa_count)) {
5882 			/*
5883 			 * This is the pa that we just used
5884 			 * for block allocation. So don't
5885 			 * free that
5886 			 */
5887 			spin_unlock(&pa->pa_lock);
5888 			continue;
5889 		}
5890 		if (pa->pa_deleted) {
5891 			spin_unlock(&pa->pa_lock);
5892 			continue;
5893 		}
5894 		/* only lg prealloc space */
5895 		BUG_ON(pa->pa_type != MB_GROUP_PA);
5896 
5897 		/* seems this one can be freed ... */
5898 		ext4_mb_mark_pa_deleted(sb, pa);
5899 		spin_unlock(&pa->pa_lock);
5900 
5901 		list_del_rcu(&pa->pa_node.lg_list);
5902 		list_add(&pa->u.pa_tmp_list, &discard_list);
5903 
5904 		total_entries--;
5905 		if (total_entries <= 5) {
5906 			/*
5907 			 * we want to keep only 5 entries
5908 			 * allowing it to grow to 8. This
5909 			 * mak sure we don't call discard
5910 			 * soon for this list.
5911 			 */
5912 			break;
5913 		}
5914 	}
5915 	spin_unlock(&lg->lg_prealloc_lock);
5916 
5917 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5918 		int err;
5919 
5920 		group = ext4_get_group_number(sb, pa->pa_pstart);
5921 		err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5922 					     GFP_NOFS|__GFP_NOFAIL);
5923 		if (err) {
5924 			ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5925 				       err, group);
5926 			continue;
5927 		}
5928 		ext4_lock_group(sb, group);
5929 		list_del(&pa->pa_group_list);
5930 		ext4_mb_release_group_pa(&e4b, pa);
5931 		ext4_unlock_group(sb, group);
5932 
5933 		ext4_mb_unload_buddy(&e4b);
5934 		list_del(&pa->u.pa_tmp_list);
5935 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5936 	}
5937 }
5938 
5939 /*
5940  * We have incremented pa_count. So it cannot be freed at this
5941  * point. Also we hold lg_mutex. So no parallel allocation is
5942  * possible from this lg. That means pa_free cannot be updated.
5943  *
5944  * A parallel ext4_mb_discard_group_preallocations is possible.
5945  * which can cause the lg_prealloc_list to be updated.
5946  */
5947 
5948 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5949 {
5950 	int order, added = 0, lg_prealloc_count = 1;
5951 	struct super_block *sb = ac->ac_sb;
5952 	struct ext4_locality_group *lg = ac->ac_lg;
5953 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5954 
5955 	order = fls(pa->pa_free) - 1;
5956 	if (order > PREALLOC_TB_SIZE - 1)
5957 		/* The max size of hash table is PREALLOC_TB_SIZE */
5958 		order = PREALLOC_TB_SIZE - 1;
5959 	/* Add the prealloc space to lg */
5960 	spin_lock(&lg->lg_prealloc_lock);
5961 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5962 				pa_node.lg_list,
5963 				lockdep_is_held(&lg->lg_prealloc_lock)) {
5964 		spin_lock(&tmp_pa->pa_lock);
5965 		if (tmp_pa->pa_deleted) {
5966 			spin_unlock(&tmp_pa->pa_lock);
5967 			continue;
5968 		}
5969 		if (!added && pa->pa_free < tmp_pa->pa_free) {
5970 			/* Add to the tail of the previous entry */
5971 			list_add_tail_rcu(&pa->pa_node.lg_list,
5972 						&tmp_pa->pa_node.lg_list);
5973 			added = 1;
5974 			/*
5975 			 * we want to count the total
5976 			 * number of entries in the list
5977 			 */
5978 		}
5979 		spin_unlock(&tmp_pa->pa_lock);
5980 		lg_prealloc_count++;
5981 	}
5982 	if (!added)
5983 		list_add_tail_rcu(&pa->pa_node.lg_list,
5984 					&lg->lg_prealloc_list[order]);
5985 	spin_unlock(&lg->lg_prealloc_lock);
5986 
5987 	/* Now trim the list to be not more than 8 elements */
5988 	if (lg_prealloc_count > 8)
5989 		ext4_mb_discard_lg_preallocations(sb, lg,
5990 						  order, lg_prealloc_count);
5991 }
5992 
5993 /*
5994  * release all resource we used in allocation
5995  */
5996 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5997 {
5998 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5999 	struct ext4_prealloc_space *pa = ac->ac_pa;
6000 	if (pa) {
6001 		if (pa->pa_type == MB_GROUP_PA) {
6002 			/* see comment in ext4_mb_use_group_pa() */
6003 			spin_lock(&pa->pa_lock);
6004 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
6005 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
6006 			pa->pa_free -= ac->ac_b_ex.fe_len;
6007 			pa->pa_len -= ac->ac_b_ex.fe_len;
6008 			spin_unlock(&pa->pa_lock);
6009 
6010 			/*
6011 			 * We want to add the pa to the right bucket.
6012 			 * Remove it from the list and while adding
6013 			 * make sure the list to which we are adding
6014 			 * doesn't grow big.
6015 			 */
6016 			if (likely(pa->pa_free)) {
6017 				spin_lock(pa->pa_node_lock.lg_lock);
6018 				list_del_rcu(&pa->pa_node.lg_list);
6019 				spin_unlock(pa->pa_node_lock.lg_lock);
6020 				ext4_mb_add_n_trim(ac);
6021 			}
6022 		}
6023 
6024 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
6025 	}
6026 	if (ac->ac_bitmap_page)
6027 		put_page(ac->ac_bitmap_page);
6028 	if (ac->ac_buddy_page)
6029 		put_page(ac->ac_buddy_page);
6030 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
6031 		mutex_unlock(&ac->ac_lg->lg_mutex);
6032 	ext4_mb_collect_stats(ac);
6033 	return 0;
6034 }
6035 
6036 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6037 {
6038 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6039 	int ret;
6040 	int freed = 0, busy = 0;
6041 	int retry = 0;
6042 
6043 	trace_ext4_mb_discard_preallocations(sb, needed);
6044 
6045 	if (needed == 0)
6046 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6047  repeat:
6048 	for (i = 0; i < ngroups && needed > 0; i++) {
6049 		ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6050 		freed += ret;
6051 		needed -= ret;
6052 		cond_resched();
6053 	}
6054 
6055 	if (needed > 0 && busy && ++retry < 3) {
6056 		busy = 0;
6057 		goto repeat;
6058 	}
6059 
6060 	return freed;
6061 }
6062 
6063 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6064 			struct ext4_allocation_context *ac, u64 *seq)
6065 {
6066 	int freed;
6067 	u64 seq_retry = 0;
6068 	bool ret = false;
6069 
6070 	freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6071 	if (freed) {
6072 		ret = true;
6073 		goto out_dbg;
6074 	}
6075 	seq_retry = ext4_get_discard_pa_seq_sum();
6076 	if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6077 		ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6078 		*seq = seq_retry;
6079 		ret = true;
6080 	}
6081 
6082 out_dbg:
6083 	mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6084 	return ret;
6085 }
6086 
6087 /*
6088  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6089  * linearly starting at the goal block and also excludes the blocks which
6090  * are going to be in use after fast commit replay.
6091  */
6092 static ext4_fsblk_t
6093 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6094 {
6095 	struct buffer_head *bitmap_bh;
6096 	struct super_block *sb = ar->inode->i_sb;
6097 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6098 	ext4_group_t group, nr;
6099 	ext4_grpblk_t blkoff;
6100 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6101 	ext4_grpblk_t i = 0;
6102 	ext4_fsblk_t goal, block;
6103 	struct ext4_super_block *es = sbi->s_es;
6104 
6105 	goal = ar->goal;
6106 	if (goal < le32_to_cpu(es->s_first_data_block) ||
6107 			goal >= ext4_blocks_count(es))
6108 		goal = le32_to_cpu(es->s_first_data_block);
6109 
6110 	ar->len = 0;
6111 	ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6112 	for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6113 		bitmap_bh = ext4_read_block_bitmap(sb, group);
6114 		if (IS_ERR(bitmap_bh)) {
6115 			*errp = PTR_ERR(bitmap_bh);
6116 			pr_warn("Failed to read block bitmap\n");
6117 			return 0;
6118 		}
6119 
6120 		while (1) {
6121 			i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6122 						blkoff);
6123 			if (i >= max)
6124 				break;
6125 			if (ext4_fc_replay_check_excluded(sb,
6126 				ext4_group_first_block_no(sb, group) +
6127 				EXT4_C2B(sbi, i))) {
6128 				blkoff = i + 1;
6129 			} else
6130 				break;
6131 		}
6132 		brelse(bitmap_bh);
6133 		if (i < max)
6134 			break;
6135 
6136 		if (++group >= ext4_get_groups_count(sb))
6137 			group = 0;
6138 
6139 		blkoff = 0;
6140 	}
6141 
6142 	if (i >= max) {
6143 		*errp = -ENOSPC;
6144 		return 0;
6145 	}
6146 
6147 	block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6148 	ext4_mb_mark_bb(sb, block, 1, 1);
6149 	ar->len = 1;
6150 
6151 	*errp = 0;
6152 	return block;
6153 }
6154 
6155 /*
6156  * Main entry point into mballoc to allocate blocks
6157  * it tries to use preallocation first, then falls back
6158  * to usual allocation
6159  */
6160 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6161 				struct ext4_allocation_request *ar, int *errp)
6162 {
6163 	struct ext4_allocation_context *ac = NULL;
6164 	struct ext4_sb_info *sbi;
6165 	struct super_block *sb;
6166 	ext4_fsblk_t block = 0;
6167 	unsigned int inquota = 0;
6168 	unsigned int reserv_clstrs = 0;
6169 	int retries = 0;
6170 	u64 seq;
6171 
6172 	might_sleep();
6173 	sb = ar->inode->i_sb;
6174 	sbi = EXT4_SB(sb);
6175 
6176 	trace_ext4_request_blocks(ar);
6177 	if (sbi->s_mount_state & EXT4_FC_REPLAY)
6178 		return ext4_mb_new_blocks_simple(ar, errp);
6179 
6180 	/* Allow to use superuser reservation for quota file */
6181 	if (ext4_is_quota_file(ar->inode))
6182 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6183 
6184 	if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6185 		/* Without delayed allocation we need to verify
6186 		 * there is enough free blocks to do block allocation
6187 		 * and verify allocation doesn't exceed the quota limits.
6188 		 */
6189 		while (ar->len &&
6190 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6191 
6192 			/* let others to free the space */
6193 			cond_resched();
6194 			ar->len = ar->len >> 1;
6195 		}
6196 		if (!ar->len) {
6197 			ext4_mb_show_pa(sb);
6198 			*errp = -ENOSPC;
6199 			return 0;
6200 		}
6201 		reserv_clstrs = ar->len;
6202 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6203 			dquot_alloc_block_nofail(ar->inode,
6204 						 EXT4_C2B(sbi, ar->len));
6205 		} else {
6206 			while (ar->len &&
6207 				dquot_alloc_block(ar->inode,
6208 						  EXT4_C2B(sbi, ar->len))) {
6209 
6210 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6211 				ar->len--;
6212 			}
6213 		}
6214 		inquota = ar->len;
6215 		if (ar->len == 0) {
6216 			*errp = -EDQUOT;
6217 			goto out;
6218 		}
6219 	}
6220 
6221 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6222 	if (!ac) {
6223 		ar->len = 0;
6224 		*errp = -ENOMEM;
6225 		goto out;
6226 	}
6227 
6228 	ext4_mb_initialize_context(ac, ar);
6229 
6230 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6231 	seq = this_cpu_read(discard_pa_seq);
6232 	if (!ext4_mb_use_preallocated(ac)) {
6233 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6234 		ext4_mb_normalize_request(ac, ar);
6235 
6236 		*errp = ext4_mb_pa_alloc(ac);
6237 		if (*errp)
6238 			goto errout;
6239 repeat:
6240 		/* allocate space in core */
6241 		*errp = ext4_mb_regular_allocator(ac);
6242 		/*
6243 		 * pa allocated above is added to grp->bb_prealloc_list only
6244 		 * when we were able to allocate some block i.e. when
6245 		 * ac->ac_status == AC_STATUS_FOUND.
6246 		 * And error from above mean ac->ac_status != AC_STATUS_FOUND
6247 		 * So we have to free this pa here itself.
6248 		 */
6249 		if (*errp) {
6250 			ext4_mb_pa_put_free(ac);
6251 			ext4_discard_allocated_blocks(ac);
6252 			goto errout;
6253 		}
6254 		if (ac->ac_status == AC_STATUS_FOUND &&
6255 			ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6256 			ext4_mb_pa_put_free(ac);
6257 	}
6258 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6259 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6260 		if (*errp) {
6261 			ext4_discard_allocated_blocks(ac);
6262 			goto errout;
6263 		} else {
6264 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6265 			ar->len = ac->ac_b_ex.fe_len;
6266 		}
6267 	} else {
6268 		if (++retries < 3 &&
6269 		    ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6270 			goto repeat;
6271 		/*
6272 		 * If block allocation fails then the pa allocated above
6273 		 * needs to be freed here itself.
6274 		 */
6275 		ext4_mb_pa_put_free(ac);
6276 		*errp = -ENOSPC;
6277 	}
6278 
6279 	if (*errp) {
6280 errout:
6281 		ac->ac_b_ex.fe_len = 0;
6282 		ar->len = 0;
6283 		ext4_mb_show_ac(ac);
6284 	}
6285 	ext4_mb_release_context(ac);
6286 	kmem_cache_free(ext4_ac_cachep, ac);
6287 out:
6288 	if (inquota && ar->len < inquota)
6289 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6290 	if (!ar->len) {
6291 		if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6292 			/* release all the reserved blocks if non delalloc */
6293 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6294 						reserv_clstrs);
6295 	}
6296 
6297 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6298 
6299 	return block;
6300 }
6301 
6302 /*
6303  * We can merge two free data extents only if the physical blocks
6304  * are contiguous, AND the extents were freed by the same transaction,
6305  * AND the blocks are associated with the same group.
6306  */
6307 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6308 					struct ext4_free_data *entry,
6309 					struct ext4_free_data *new_entry,
6310 					struct rb_root *entry_rb_root)
6311 {
6312 	if ((entry->efd_tid != new_entry->efd_tid) ||
6313 	    (entry->efd_group != new_entry->efd_group))
6314 		return;
6315 	if (entry->efd_start_cluster + entry->efd_count ==
6316 	    new_entry->efd_start_cluster) {
6317 		new_entry->efd_start_cluster = entry->efd_start_cluster;
6318 		new_entry->efd_count += entry->efd_count;
6319 	} else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6320 		   entry->efd_start_cluster) {
6321 		new_entry->efd_count += entry->efd_count;
6322 	} else
6323 		return;
6324 	spin_lock(&sbi->s_md_lock);
6325 	list_del(&entry->efd_list);
6326 	spin_unlock(&sbi->s_md_lock);
6327 	rb_erase(&entry->efd_node, entry_rb_root);
6328 	kmem_cache_free(ext4_free_data_cachep, entry);
6329 }
6330 
6331 static noinline_for_stack void
6332 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6333 		      struct ext4_free_data *new_entry)
6334 {
6335 	ext4_group_t group = e4b->bd_group;
6336 	ext4_grpblk_t cluster;
6337 	ext4_grpblk_t clusters = new_entry->efd_count;
6338 	struct ext4_free_data *entry;
6339 	struct ext4_group_info *db = e4b->bd_info;
6340 	struct super_block *sb = e4b->bd_sb;
6341 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6342 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
6343 	struct rb_node *parent = NULL, *new_node;
6344 
6345 	BUG_ON(!ext4_handle_valid(handle));
6346 	BUG_ON(e4b->bd_bitmap_page == NULL);
6347 	BUG_ON(e4b->bd_buddy_page == NULL);
6348 
6349 	new_node = &new_entry->efd_node;
6350 	cluster = new_entry->efd_start_cluster;
6351 
6352 	if (!*n) {
6353 		/* first free block exent. We need to
6354 		   protect buddy cache from being freed,
6355 		 * otherwise we'll refresh it from
6356 		 * on-disk bitmap and lose not-yet-available
6357 		 * blocks */
6358 		get_page(e4b->bd_buddy_page);
6359 		get_page(e4b->bd_bitmap_page);
6360 	}
6361 	while (*n) {
6362 		parent = *n;
6363 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
6364 		if (cluster < entry->efd_start_cluster)
6365 			n = &(*n)->rb_left;
6366 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6367 			n = &(*n)->rb_right;
6368 		else {
6369 			ext4_grp_locked_error(sb, group, 0,
6370 				ext4_group_first_block_no(sb, group) +
6371 				EXT4_C2B(sbi, cluster),
6372 				"Block already on to-be-freed list");
6373 			kmem_cache_free(ext4_free_data_cachep, new_entry);
6374 			return;
6375 		}
6376 	}
6377 
6378 	rb_link_node(new_node, parent, n);
6379 	rb_insert_color(new_node, &db->bb_free_root);
6380 
6381 	/* Now try to see the extent can be merged to left and right */
6382 	node = rb_prev(new_node);
6383 	if (node) {
6384 		entry = rb_entry(node, struct ext4_free_data, efd_node);
6385 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6386 					    &(db->bb_free_root));
6387 	}
6388 
6389 	node = rb_next(new_node);
6390 	if (node) {
6391 		entry = rb_entry(node, struct ext4_free_data, efd_node);
6392 		ext4_try_merge_freed_extent(sbi, entry, new_entry,
6393 					    &(db->bb_free_root));
6394 	}
6395 
6396 	spin_lock(&sbi->s_md_lock);
6397 	list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
6398 	sbi->s_mb_free_pending += clusters;
6399 	spin_unlock(&sbi->s_md_lock);
6400 }
6401 
6402 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6403 					unsigned long count)
6404 {
6405 	struct buffer_head *bitmap_bh;
6406 	struct super_block *sb = inode->i_sb;
6407 	struct ext4_group_desc *gdp;
6408 	struct buffer_head *gdp_bh;
6409 	ext4_group_t group;
6410 	ext4_grpblk_t blkoff;
6411 	int already_freed = 0, err, i;
6412 
6413 	ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6414 	bitmap_bh = ext4_read_block_bitmap(sb, group);
6415 	if (IS_ERR(bitmap_bh)) {
6416 		pr_warn("Failed to read block bitmap\n");
6417 		return;
6418 	}
6419 	gdp = ext4_get_group_desc(sb, group, &gdp_bh);
6420 	if (!gdp)
6421 		goto err_out;
6422 
6423 	for (i = 0; i < count; i++) {
6424 		if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
6425 			already_freed++;
6426 	}
6427 	mb_clear_bits(bitmap_bh->b_data, blkoff, count);
6428 	err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
6429 	if (err)
6430 		goto err_out;
6431 	ext4_free_group_clusters_set(
6432 		sb, gdp, ext4_free_group_clusters(sb, gdp) +
6433 		count - already_freed);
6434 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6435 	ext4_group_desc_csum_set(sb, group, gdp);
6436 	ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
6437 	sync_dirty_buffer(bitmap_bh);
6438 	sync_dirty_buffer(gdp_bh);
6439 
6440 err_out:
6441 	brelse(bitmap_bh);
6442 }
6443 
6444 /**
6445  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6446  *			Used by ext4_free_blocks()
6447  * @handle:		handle for this transaction
6448  * @inode:		inode
6449  * @block:		starting physical block to be freed
6450  * @count:		number of blocks to be freed
6451  * @flags:		flags used by ext4_free_blocks
6452  */
6453 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6454 			       ext4_fsblk_t block, unsigned long count,
6455 			       int flags)
6456 {
6457 	struct buffer_head *bitmap_bh = NULL;
6458 	struct super_block *sb = inode->i_sb;
6459 	struct ext4_group_desc *gdp;
6460 	struct ext4_group_info *grp;
6461 	unsigned int overflow;
6462 	ext4_grpblk_t bit;
6463 	struct buffer_head *gd_bh;
6464 	ext4_group_t block_group;
6465 	struct ext4_sb_info *sbi;
6466 	struct ext4_buddy e4b;
6467 	unsigned int count_clusters;
6468 	int err = 0;
6469 	int ret;
6470 
6471 	sbi = EXT4_SB(sb);
6472 
6473 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6474 	    !ext4_inode_block_valid(inode, block, count)) {
6475 		ext4_error(sb, "Freeing blocks in system zone - "
6476 			   "Block = %llu, count = %lu", block, count);
6477 		/* err = 0. ext4_std_error should be a no op */
6478 		goto error_return;
6479 	}
6480 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6481 
6482 do_more:
6483 	overflow = 0;
6484 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6485 
6486 	grp = ext4_get_group_info(sb, block_group);
6487 	if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6488 		return;
6489 
6490 	/*
6491 	 * Check to see if we are freeing blocks across a group
6492 	 * boundary.
6493 	 */
6494 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6495 		overflow = EXT4_C2B(sbi, bit) + count -
6496 			EXT4_BLOCKS_PER_GROUP(sb);
6497 		count -= overflow;
6498 		/* The range changed so it's no longer validated */
6499 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6500 	}
6501 	count_clusters = EXT4_NUM_B2C(sbi, count);
6502 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6503 	if (IS_ERR(bitmap_bh)) {
6504 		err = PTR_ERR(bitmap_bh);
6505 		bitmap_bh = NULL;
6506 		goto error_return;
6507 	}
6508 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
6509 	if (!gdp) {
6510 		err = -EIO;
6511 		goto error_return;
6512 	}
6513 
6514 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6515 	    !ext4_inode_block_valid(inode, block, count)) {
6516 		ext4_error(sb, "Freeing blocks in system zone - "
6517 			   "Block = %llu, count = %lu", block, count);
6518 		/* err = 0. ext4_std_error should be a no op */
6519 		goto error_return;
6520 	}
6521 
6522 	BUFFER_TRACE(bitmap_bh, "getting write access");
6523 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6524 					    EXT4_JTR_NONE);
6525 	if (err)
6526 		goto error_return;
6527 
6528 	/*
6529 	 * We are about to modify some metadata.  Call the journal APIs
6530 	 * to unshare ->b_data if a currently-committing transaction is
6531 	 * using it
6532 	 */
6533 	BUFFER_TRACE(gd_bh, "get_write_access");
6534 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6535 	if (err)
6536 		goto error_return;
6537 #ifdef AGGRESSIVE_CHECK
6538 	{
6539 		int i;
6540 		for (i = 0; i < count_clusters; i++)
6541 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
6542 	}
6543 #endif
6544 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6545 
6546 	/* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6547 	err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6548 				     GFP_NOFS|__GFP_NOFAIL);
6549 	if (err)
6550 		goto error_return;
6551 
6552 	/*
6553 	 * We need to make sure we don't reuse the freed block until after the
6554 	 * transaction is committed. We make an exception if the inode is to be
6555 	 * written in writeback mode since writeback mode has weak data
6556 	 * consistency guarantees.
6557 	 */
6558 	if (ext4_handle_valid(handle) &&
6559 	    ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6560 	     !ext4_should_writeback_data(inode))) {
6561 		struct ext4_free_data *new_entry;
6562 		/*
6563 		 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6564 		 * to fail.
6565 		 */
6566 		new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6567 				GFP_NOFS|__GFP_NOFAIL);
6568 		new_entry->efd_start_cluster = bit;
6569 		new_entry->efd_group = block_group;
6570 		new_entry->efd_count = count_clusters;
6571 		new_entry->efd_tid = handle->h_transaction->t_tid;
6572 
6573 		ext4_lock_group(sb, block_group);
6574 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6575 		ext4_mb_free_metadata(handle, &e4b, new_entry);
6576 	} else {
6577 		/* need to update group_info->bb_free and bitmap
6578 		 * with group lock held. generate_buddy look at
6579 		 * them with group lock_held
6580 		 */
6581 		if (test_opt(sb, DISCARD)) {
6582 			err = ext4_issue_discard(sb, block_group, bit,
6583 						 count_clusters, NULL);
6584 			if (err && err != -EOPNOTSUPP)
6585 				ext4_msg(sb, KERN_WARNING, "discard request in"
6586 					 " group:%u block:%d count:%lu failed"
6587 					 " with %d", block_group, bit, count,
6588 					 err);
6589 		} else
6590 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6591 
6592 		ext4_lock_group(sb, block_group);
6593 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6594 		mb_free_blocks(inode, &e4b, bit, count_clusters);
6595 	}
6596 
6597 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
6598 	ext4_free_group_clusters_set(sb, gdp, ret);
6599 	ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6600 	ext4_group_desc_csum_set(sb, block_group, gdp);
6601 	ext4_unlock_group(sb, block_group);
6602 
6603 	if (sbi->s_log_groups_per_flex) {
6604 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6605 		atomic64_add(count_clusters,
6606 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6607 						  flex_group)->free_clusters);
6608 	}
6609 
6610 	/*
6611 	 * on a bigalloc file system, defer the s_freeclusters_counter
6612 	 * update to the caller (ext4_remove_space and friends) so they
6613 	 * can determine if a cluster freed here should be rereserved
6614 	 */
6615 	if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6616 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6617 			dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6618 		percpu_counter_add(&sbi->s_freeclusters_counter,
6619 				   count_clusters);
6620 	}
6621 
6622 	ext4_mb_unload_buddy(&e4b);
6623 
6624 	/* We dirtied the bitmap block */
6625 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6626 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6627 
6628 	/* And the group descriptor block */
6629 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6630 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6631 	if (!err)
6632 		err = ret;
6633 
6634 	if (overflow && !err) {
6635 		block += count;
6636 		count = overflow;
6637 		put_bh(bitmap_bh);
6638 		/* The range changed so it's no longer validated */
6639 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6640 		goto do_more;
6641 	}
6642 error_return:
6643 	brelse(bitmap_bh);
6644 	ext4_std_error(sb, err);
6645 }
6646 
6647 /**
6648  * ext4_free_blocks() -- Free given blocks and update quota
6649  * @handle:		handle for this transaction
6650  * @inode:		inode
6651  * @bh:			optional buffer of the block to be freed
6652  * @block:		starting physical block to be freed
6653  * @count:		number of blocks to be freed
6654  * @flags:		flags used by ext4_free_blocks
6655  */
6656 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6657 		      struct buffer_head *bh, ext4_fsblk_t block,
6658 		      unsigned long count, int flags)
6659 {
6660 	struct super_block *sb = inode->i_sb;
6661 	unsigned int overflow;
6662 	struct ext4_sb_info *sbi;
6663 
6664 	sbi = EXT4_SB(sb);
6665 
6666 	if (bh) {
6667 		if (block)
6668 			BUG_ON(block != bh->b_blocknr);
6669 		else
6670 			block = bh->b_blocknr;
6671 	}
6672 
6673 	if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6674 		ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6675 		return;
6676 	}
6677 
6678 	might_sleep();
6679 
6680 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6681 	    !ext4_inode_block_valid(inode, block, count)) {
6682 		ext4_error(sb, "Freeing blocks not in datazone - "
6683 			   "block = %llu, count = %lu", block, count);
6684 		return;
6685 	}
6686 	flags |= EXT4_FREE_BLOCKS_VALIDATED;
6687 
6688 	ext4_debug("freeing block %llu\n", block);
6689 	trace_ext4_free_blocks(inode, block, count, flags);
6690 
6691 	if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6692 		BUG_ON(count > 1);
6693 
6694 		ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6695 			    inode, bh, block);
6696 	}
6697 
6698 	/*
6699 	 * If the extent to be freed does not begin on a cluster
6700 	 * boundary, we need to deal with partial clusters at the
6701 	 * beginning and end of the extent.  Normally we will free
6702 	 * blocks at the beginning or the end unless we are explicitly
6703 	 * requested to avoid doing so.
6704 	 */
6705 	overflow = EXT4_PBLK_COFF(sbi, block);
6706 	if (overflow) {
6707 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6708 			overflow = sbi->s_cluster_ratio - overflow;
6709 			block += overflow;
6710 			if (count > overflow)
6711 				count -= overflow;
6712 			else
6713 				return;
6714 		} else {
6715 			block -= overflow;
6716 			count += overflow;
6717 		}
6718 		/* The range changed so it's no longer validated */
6719 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6720 	}
6721 	overflow = EXT4_LBLK_COFF(sbi, count);
6722 	if (overflow) {
6723 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6724 			if (count > overflow)
6725 				count -= overflow;
6726 			else
6727 				return;
6728 		} else
6729 			count += sbi->s_cluster_ratio - overflow;
6730 		/* The range changed so it's no longer validated */
6731 		flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6732 	}
6733 
6734 	if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6735 		int i;
6736 		int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6737 
6738 		for (i = 0; i < count; i++) {
6739 			cond_resched();
6740 			if (is_metadata)
6741 				bh = sb_find_get_block(inode->i_sb, block + i);
6742 			ext4_forget(handle, is_metadata, inode, bh, block + i);
6743 		}
6744 	}
6745 
6746 	ext4_mb_clear_bb(handle, inode, block, count, flags);
6747 }
6748 
6749 /**
6750  * ext4_group_add_blocks() -- Add given blocks to an existing group
6751  * @handle:			handle to this transaction
6752  * @sb:				super block
6753  * @block:			start physical block to add to the block group
6754  * @count:			number of blocks to free
6755  *
6756  * This marks the blocks as free in the bitmap and buddy.
6757  */
6758 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6759 			 ext4_fsblk_t block, unsigned long count)
6760 {
6761 	struct buffer_head *bitmap_bh = NULL;
6762 	struct buffer_head *gd_bh;
6763 	ext4_group_t block_group;
6764 	ext4_grpblk_t bit;
6765 	unsigned int i;
6766 	struct ext4_group_desc *desc;
6767 	struct ext4_sb_info *sbi = EXT4_SB(sb);
6768 	struct ext4_buddy e4b;
6769 	int err = 0, ret, free_clusters_count;
6770 	ext4_grpblk_t clusters_freed;
6771 	ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6772 	ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6773 	unsigned long cluster_count = last_cluster - first_cluster + 1;
6774 
6775 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6776 
6777 	if (count == 0)
6778 		return 0;
6779 
6780 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6781 	/*
6782 	 * Check to see if we are freeing blocks across a group
6783 	 * boundary.
6784 	 */
6785 	if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6786 		ext4_warning(sb, "too many blocks added to group %u",
6787 			     block_group);
6788 		err = -EINVAL;
6789 		goto error_return;
6790 	}
6791 
6792 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6793 	if (IS_ERR(bitmap_bh)) {
6794 		err = PTR_ERR(bitmap_bh);
6795 		bitmap_bh = NULL;
6796 		goto error_return;
6797 	}
6798 
6799 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6800 	if (!desc) {
6801 		err = -EIO;
6802 		goto error_return;
6803 	}
6804 
6805 	if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6806 		ext4_error(sb, "Adding blocks in system zones - "
6807 			   "Block = %llu, count = %lu",
6808 			   block, count);
6809 		err = -EINVAL;
6810 		goto error_return;
6811 	}
6812 
6813 	BUFFER_TRACE(bitmap_bh, "getting write access");
6814 	err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6815 					    EXT4_JTR_NONE);
6816 	if (err)
6817 		goto error_return;
6818 
6819 	/*
6820 	 * We are about to modify some metadata.  Call the journal APIs
6821 	 * to unshare ->b_data if a currently-committing transaction is
6822 	 * using it
6823 	 */
6824 	BUFFER_TRACE(gd_bh, "get_write_access");
6825 	err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6826 	if (err)
6827 		goto error_return;
6828 
6829 	for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6830 		BUFFER_TRACE(bitmap_bh, "clear bit");
6831 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6832 			ext4_error(sb, "bit already cleared for block %llu",
6833 				   (ext4_fsblk_t)(block + i));
6834 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
6835 		} else {
6836 			clusters_freed++;
6837 		}
6838 	}
6839 
6840 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
6841 	if (err)
6842 		goto error_return;
6843 
6844 	/*
6845 	 * need to update group_info->bb_free and bitmap
6846 	 * with group lock held. generate_buddy look at
6847 	 * them with group lock_held
6848 	 */
6849 	ext4_lock_group(sb, block_group);
6850 	mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6851 	mb_free_blocks(NULL, &e4b, bit, cluster_count);
6852 	free_clusters_count = clusters_freed +
6853 		ext4_free_group_clusters(sb, desc);
6854 	ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6855 	ext4_block_bitmap_csum_set(sb, desc, bitmap_bh);
6856 	ext4_group_desc_csum_set(sb, block_group, desc);
6857 	ext4_unlock_group(sb, block_group);
6858 	percpu_counter_add(&sbi->s_freeclusters_counter,
6859 			   clusters_freed);
6860 
6861 	if (sbi->s_log_groups_per_flex) {
6862 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6863 		atomic64_add(clusters_freed,
6864 			     &sbi_array_rcu_deref(sbi, s_flex_groups,
6865 						  flex_group)->free_clusters);
6866 	}
6867 
6868 	ext4_mb_unload_buddy(&e4b);
6869 
6870 	/* We dirtied the bitmap block */
6871 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6872 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6873 
6874 	/* And the group descriptor block */
6875 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6876 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6877 	if (!err)
6878 		err = ret;
6879 
6880 error_return:
6881 	brelse(bitmap_bh);
6882 	ext4_std_error(sb, err);
6883 	return err;
6884 }
6885 
6886 /**
6887  * ext4_trim_extent -- function to TRIM one single free extent in the group
6888  * @sb:		super block for the file system
6889  * @start:	starting block of the free extent in the alloc. group
6890  * @count:	number of blocks to TRIM
6891  * @e4b:	ext4 buddy for the group
6892  *
6893  * Trim "count" blocks starting at "start" in the "group". To assure that no
6894  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6895  * be called with under the group lock.
6896  */
6897 static int ext4_trim_extent(struct super_block *sb,
6898 		int start, int count, struct ext4_buddy *e4b)
6899 __releases(bitlock)
6900 __acquires(bitlock)
6901 {
6902 	struct ext4_free_extent ex;
6903 	ext4_group_t group = e4b->bd_group;
6904 	int ret = 0;
6905 
6906 	trace_ext4_trim_extent(sb, group, start, count);
6907 
6908 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
6909 
6910 	ex.fe_start = start;
6911 	ex.fe_group = group;
6912 	ex.fe_len = count;
6913 
6914 	/*
6915 	 * Mark blocks used, so no one can reuse them while
6916 	 * being trimmed.
6917 	 */
6918 	mb_mark_used(e4b, &ex);
6919 	ext4_unlock_group(sb, group);
6920 	ret = ext4_issue_discard(sb, group, start, count, NULL);
6921 	ext4_lock_group(sb, group);
6922 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
6923 	return ret;
6924 }
6925 
6926 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb,
6927 					   ext4_group_t grp)
6928 {
6929 	unsigned long nr_clusters_in_group;
6930 
6931 	if (grp < (ext4_get_groups_count(sb) - 1))
6932 		nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb);
6933 	else
6934 		nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) -
6935 					ext4_group_first_block_no(sb, grp))
6936 				       >> EXT4_CLUSTER_BITS(sb);
6937 
6938 	return nr_clusters_in_group - 1;
6939 }
6940 
6941 static bool ext4_trim_interrupted(void)
6942 {
6943 	return fatal_signal_pending(current) || freezing(current);
6944 }
6945 
6946 static int ext4_try_to_trim_range(struct super_block *sb,
6947 		struct ext4_buddy *e4b, ext4_grpblk_t start,
6948 		ext4_grpblk_t max, ext4_grpblk_t minblocks)
6949 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6950 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6951 {
6952 	ext4_grpblk_t next, count, free_count, last, origin_start;
6953 	bool set_trimmed = false;
6954 	void *bitmap;
6955 
6956 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
6957 		return 0;
6958 
6959 	last = ext4_last_grp_cluster(sb, e4b->bd_group);
6960 	bitmap = e4b->bd_bitmap;
6961 	if (start == 0 && max >= last)
6962 		set_trimmed = true;
6963 	origin_start = start;
6964 	start = max(e4b->bd_info->bb_first_free, start);
6965 	count = 0;
6966 	free_count = 0;
6967 
6968 	while (start <= max) {
6969 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
6970 		if (start > max)
6971 			break;
6972 
6973 		next = mb_find_next_bit(bitmap, last + 1, start);
6974 		if (origin_start == 0 && next >= last)
6975 			set_trimmed = true;
6976 
6977 		if ((next - start) >= minblocks) {
6978 			int ret = ext4_trim_extent(sb, start, next - start, e4b);
6979 
6980 			if (ret && ret != -EOPNOTSUPP)
6981 				return count;
6982 			count += next - start;
6983 		}
6984 		free_count += next - start;
6985 		start = next + 1;
6986 
6987 		if (ext4_trim_interrupted())
6988 			return count;
6989 
6990 		if (need_resched()) {
6991 			ext4_unlock_group(sb, e4b->bd_group);
6992 			cond_resched();
6993 			ext4_lock_group(sb, e4b->bd_group);
6994 		}
6995 
6996 		if ((e4b->bd_info->bb_free - free_count) < minblocks)
6997 			break;
6998 	}
6999 
7000 	if (set_trimmed)
7001 		EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info);
7002 
7003 	return count;
7004 }
7005 
7006 /**
7007  * ext4_trim_all_free -- function to trim all free space in alloc. group
7008  * @sb:			super block for file system
7009  * @group:		group to be trimmed
7010  * @start:		first group block to examine
7011  * @max:		last group block to examine
7012  * @minblocks:		minimum extent block count
7013  *
7014  * ext4_trim_all_free walks through group's block bitmap searching for free
7015  * extents. When the free extent is found, mark it as used in group buddy
7016  * bitmap. Then issue a TRIM command on this extent and free the extent in
7017  * the group buddy bitmap.
7018  */
7019 static ext4_grpblk_t
7020 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
7021 		   ext4_grpblk_t start, ext4_grpblk_t max,
7022 		   ext4_grpblk_t minblocks)
7023 {
7024 	struct ext4_buddy e4b;
7025 	int ret;
7026 
7027 	trace_ext4_trim_all_free(sb, group, start, max);
7028 
7029 	ret = ext4_mb_load_buddy(sb, group, &e4b);
7030 	if (ret) {
7031 		ext4_warning(sb, "Error %d loading buddy information for %u",
7032 			     ret, group);
7033 		return ret;
7034 	}
7035 
7036 	ext4_lock_group(sb, group);
7037 
7038 	if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
7039 	    minblocks < EXT4_SB(sb)->s_last_trim_minblks)
7040 		ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
7041 	else
7042 		ret = 0;
7043 
7044 	ext4_unlock_group(sb, group);
7045 	ext4_mb_unload_buddy(&e4b);
7046 
7047 	ext4_debug("trimmed %d blocks in the group %d\n",
7048 		ret, group);
7049 
7050 	return ret;
7051 }
7052 
7053 /**
7054  * ext4_trim_fs() -- trim ioctl handle function
7055  * @sb:			superblock for filesystem
7056  * @range:		fstrim_range structure
7057  *
7058  * start:	First Byte to trim
7059  * len:		number of Bytes to trim from start
7060  * minlen:	minimum extent length in Bytes
7061  * ext4_trim_fs goes through all allocation groups containing Bytes from
7062  * start to start+len. For each such a group ext4_trim_all_free function
7063  * is invoked to trim all free space.
7064  */
7065 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
7066 {
7067 	unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
7068 	struct ext4_group_info *grp;
7069 	ext4_group_t group, first_group, last_group;
7070 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
7071 	uint64_t start, end, minlen, trimmed = 0;
7072 	ext4_fsblk_t first_data_blk =
7073 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
7074 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
7075 	int ret = 0;
7076 
7077 	start = range->start >> sb->s_blocksize_bits;
7078 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
7079 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7080 			      range->minlen >> sb->s_blocksize_bits);
7081 
7082 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
7083 	    start >= max_blks ||
7084 	    range->len < sb->s_blocksize)
7085 		return -EINVAL;
7086 	/* No point to try to trim less than discard granularity */
7087 	if (range->minlen < discard_granularity) {
7088 		minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7089 				discard_granularity >> sb->s_blocksize_bits);
7090 		if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
7091 			goto out;
7092 	}
7093 	if (end >= max_blks - 1)
7094 		end = max_blks - 1;
7095 	if (end <= first_data_blk)
7096 		goto out;
7097 	if (start < first_data_blk)
7098 		start = first_data_blk;
7099 
7100 	/* Determine first and last group to examine based on start and end */
7101 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
7102 				     &first_group, &first_cluster);
7103 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
7104 				     &last_group, &last_cluster);
7105 
7106 	/* end now represents the last cluster to discard in this group */
7107 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7108 
7109 	for (group = first_group; group <= last_group; group++) {
7110 		if (ext4_trim_interrupted())
7111 			break;
7112 		grp = ext4_get_group_info(sb, group);
7113 		if (!grp)
7114 			continue;
7115 		/* We only do this if the grp has never been initialized */
7116 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
7117 			ret = ext4_mb_init_group(sb, group, GFP_NOFS);
7118 			if (ret)
7119 				break;
7120 		}
7121 
7122 		/*
7123 		 * For all the groups except the last one, last cluster will
7124 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
7125 		 * change it for the last group, note that last_cluster is
7126 		 * already computed earlier by ext4_get_group_no_and_offset()
7127 		 */
7128 		if (group == last_group)
7129 			end = last_cluster;
7130 		if (grp->bb_free >= minlen) {
7131 			cnt = ext4_trim_all_free(sb, group, first_cluster,
7132 						 end, minlen);
7133 			if (cnt < 0) {
7134 				ret = cnt;
7135 				break;
7136 			}
7137 			trimmed += cnt;
7138 		}
7139 
7140 		/*
7141 		 * For every group except the first one, we are sure
7142 		 * that the first cluster to discard will be cluster #0.
7143 		 */
7144 		first_cluster = 0;
7145 	}
7146 
7147 	if (!ret)
7148 		EXT4_SB(sb)->s_last_trim_minblks = minlen;
7149 
7150 out:
7151 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
7152 	return ret;
7153 }
7154 
7155 /* Iterate all the free extents in the group. */
7156 int
7157 ext4_mballoc_query_range(
7158 	struct super_block		*sb,
7159 	ext4_group_t			group,
7160 	ext4_grpblk_t			start,
7161 	ext4_grpblk_t			end,
7162 	ext4_mballoc_query_range_fn	formatter,
7163 	void				*priv)
7164 {
7165 	void				*bitmap;
7166 	ext4_grpblk_t			next;
7167 	struct ext4_buddy		e4b;
7168 	int				error;
7169 
7170 	error = ext4_mb_load_buddy(sb, group, &e4b);
7171 	if (error)
7172 		return error;
7173 	bitmap = e4b.bd_bitmap;
7174 
7175 	ext4_lock_group(sb, group);
7176 
7177 	start = max(e4b.bd_info->bb_first_free, start);
7178 	if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7179 		end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7180 
7181 	while (start <= end) {
7182 		start = mb_find_next_zero_bit(bitmap, end + 1, start);
7183 		if (start > end)
7184 			break;
7185 		next = mb_find_next_bit(bitmap, end + 1, start);
7186 
7187 		ext4_unlock_group(sb, group);
7188 		error = formatter(sb, group, start, next - start, priv);
7189 		if (error)
7190 			goto out_unload;
7191 		ext4_lock_group(sb, group);
7192 
7193 		start = next + 1;
7194 	}
7195 
7196 	ext4_unlock_group(sb, group);
7197 out_unload:
7198 	ext4_mb_unload_buddy(&e4b);
7199 
7200 	return error;
7201 }
7202