xref: /openbmc/linux/fs/ext4/mballoc.c (revision 261a9af6)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "mballoc.h"
25 #include <linux/debugfs.h>
26 #include <linux/slab.h>
27 #include <trace/events/ext4.h>
28 
29 /*
30  * MUSTDO:
31  *   - test ext4_ext_search_left() and ext4_ext_search_right()
32  *   - search for metadata in few groups
33  *
34  * TODO v4:
35  *   - normalization should take into account whether file is still open
36  *   - discard preallocations if no free space left (policy?)
37  *   - don't normalize tails
38  *   - quota
39  *   - reservation for superuser
40  *
41  * TODO v3:
42  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
43  *   - track min/max extents in each group for better group selection
44  *   - mb_mark_used() may allocate chunk right after splitting buddy
45  *   - tree of groups sorted by number of free blocks
46  *   - error handling
47  */
48 
49 /*
50  * The allocation request involve request for multiple number of blocks
51  * near to the goal(block) value specified.
52  *
53  * During initialization phase of the allocator we decide to use the
54  * group preallocation or inode preallocation depending on the size of
55  * the file. The size of the file could be the resulting file size we
56  * would have after allocation, or the current file size, which ever
57  * is larger. If the size is less than sbi->s_mb_stream_request we
58  * select to use the group preallocation. The default value of
59  * s_mb_stream_request is 16 blocks. This can also be tuned via
60  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
61  * terms of number of blocks.
62  *
63  * The main motivation for having small file use group preallocation is to
64  * ensure that we have small files closer together on the disk.
65  *
66  * First stage the allocator looks at the inode prealloc list,
67  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
68  * spaces for this particular inode. The inode prealloc space is
69  * represented as:
70  *
71  * pa_lstart -> the logical start block for this prealloc space
72  * pa_pstart -> the physical start block for this prealloc space
73  * pa_len    -> length for this prealloc space
74  * pa_free   ->  free space available in this prealloc space
75  *
76  * The inode preallocation space is used looking at the _logical_ start
77  * block. If only the logical file block falls within the range of prealloc
78  * space we will consume the particular prealloc space. This make sure that
79  * that the we have contiguous physical blocks representing the file blocks
80  *
81  * The important thing to be noted in case of inode prealloc space is that
82  * we don't modify the values associated to inode prealloc space except
83  * pa_free.
84  *
85  * If we are not able to find blocks in the inode prealloc space and if we
86  * have the group allocation flag set then we look at the locality group
87  * prealloc space. These are per CPU prealloc list repreasented as
88  *
89  * ext4_sb_info.s_locality_groups[smp_processor_id()]
90  *
91  * The reason for having a per cpu locality group is to reduce the contention
92  * between CPUs. It is possible to get scheduled at this point.
93  *
94  * The locality group prealloc space is used looking at whether we have
95  * enough free space (pa_free) within the prealloc space.
96  *
97  * If we can't allocate blocks via inode prealloc or/and locality group
98  * prealloc then we look at the buddy cache. The buddy cache is represented
99  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
100  * mapped to the buddy and bitmap information regarding different
101  * groups. The buddy information is attached to buddy cache inode so that
102  * we can access them through the page cache. The information regarding
103  * each group is loaded via ext4_mb_load_buddy.  The information involve
104  * block bitmap and buddy information. The information are stored in the
105  * inode as:
106  *
107  *  {                        page                        }
108  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
109  *
110  *
111  * one block each for bitmap and buddy information.  So for each group we
112  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
113  * blocksize) blocks.  So it can have information regarding groups_per_page
114  * which is blocks_per_page/2
115  *
116  * The buddy cache inode is not stored on disk. The inode is thrown
117  * away when the filesystem is unmounted.
118  *
119  * We look for count number of blocks in the buddy cache. If we were able
120  * to locate that many free blocks we return with additional information
121  * regarding rest of the contiguous physical block available
122  *
123  * Before allocating blocks via buddy cache we normalize the request
124  * blocks. This ensure we ask for more blocks that we needed. The extra
125  * blocks that we get after allocation is added to the respective prealloc
126  * list. In case of inode preallocation we follow a list of heuristics
127  * based on file size. This can be found in ext4_mb_normalize_request. If
128  * we are doing a group prealloc we try to normalize the request to
129  * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
130  * 512 blocks. This can be tuned via
131  * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
132  * terms of number of blocks. If we have mounted the file system with -O
133  * stripe=<value> option the group prealloc request is normalized to the
134  * stripe value (sbi->s_stripe)
135  *
136  * The regular allocator(using the buddy cache) supports few tunables.
137  *
138  * /sys/fs/ext4/<partition>/mb_min_to_scan
139  * /sys/fs/ext4/<partition>/mb_max_to_scan
140  * /sys/fs/ext4/<partition>/mb_order2_req
141  *
142  * The regular allocator uses buddy scan only if the request len is power of
143  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
144  * value of s_mb_order2_reqs can be tuned via
145  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
146  * stripe size (sbi->s_stripe), we try to search for contiguous block in
147  * stripe size. This should result in better allocation on RAID setups. If
148  * not, we search in the specific group using bitmap for best extents. The
149  * tunable min_to_scan and max_to_scan control the behaviour here.
150  * min_to_scan indicate how long the mballoc __must__ look for a best
151  * extent and max_to_scan indicates how long the mballoc __can__ look for a
152  * best extent in the found extents. Searching for the blocks starts with
153  * the group specified as the goal value in allocation context via
154  * ac_g_ex. Each group is first checked based on the criteria whether it
155  * can used for allocation. ext4_mb_good_group explains how the groups are
156  * checked.
157  *
158  * Both the prealloc space are getting populated as above. So for the first
159  * request we will hit the buddy cache which will result in this prealloc
160  * space getting filled. The prealloc space is then later used for the
161  * subsequent request.
162  */
163 
164 /*
165  * mballoc operates on the following data:
166  *  - on-disk bitmap
167  *  - in-core buddy (actually includes buddy and bitmap)
168  *  - preallocation descriptors (PAs)
169  *
170  * there are two types of preallocations:
171  *  - inode
172  *    assiged to specific inode and can be used for this inode only.
173  *    it describes part of inode's space preallocated to specific
174  *    physical blocks. any block from that preallocated can be used
175  *    independent. the descriptor just tracks number of blocks left
176  *    unused. so, before taking some block from descriptor, one must
177  *    make sure corresponded logical block isn't allocated yet. this
178  *    also means that freeing any block within descriptor's range
179  *    must discard all preallocated blocks.
180  *  - locality group
181  *    assigned to specific locality group which does not translate to
182  *    permanent set of inodes: inode can join and leave group. space
183  *    from this type of preallocation can be used for any inode. thus
184  *    it's consumed from the beginning to the end.
185  *
186  * relation between them can be expressed as:
187  *    in-core buddy = on-disk bitmap + preallocation descriptors
188  *
189  * this mean blocks mballoc considers used are:
190  *  - allocated blocks (persistent)
191  *  - preallocated blocks (non-persistent)
192  *
193  * consistency in mballoc world means that at any time a block is either
194  * free or used in ALL structures. notice: "any time" should not be read
195  * literally -- time is discrete and delimited by locks.
196  *
197  *  to keep it simple, we don't use block numbers, instead we count number of
198  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
199  *
200  * all operations can be expressed as:
201  *  - init buddy:			buddy = on-disk + PAs
202  *  - new PA:				buddy += N; PA = N
203  *  - use inode PA:			on-disk += N; PA -= N
204  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
205  *  - use locality group PA		on-disk += N; PA -= N
206  *  - discard locality group PA		buddy -= PA; PA = 0
207  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
208  *        is used in real operation because we can't know actual used
209  *        bits from PA, only from on-disk bitmap
210  *
211  * if we follow this strict logic, then all operations above should be atomic.
212  * given some of them can block, we'd have to use something like semaphores
213  * killing performance on high-end SMP hardware. let's try to relax it using
214  * the following knowledge:
215  *  1) if buddy is referenced, it's already initialized
216  *  2) while block is used in buddy and the buddy is referenced,
217  *     nobody can re-allocate that block
218  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
219  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
220  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
221  *     block
222  *
223  * so, now we're building a concurrency table:
224  *  - init buddy vs.
225  *    - new PA
226  *      blocks for PA are allocated in the buddy, buddy must be referenced
227  *      until PA is linked to allocation group to avoid concurrent buddy init
228  *    - use inode PA
229  *      we need to make sure that either on-disk bitmap or PA has uptodate data
230  *      given (3) we care that PA-=N operation doesn't interfere with init
231  *    - discard inode PA
232  *      the simplest way would be to have buddy initialized by the discard
233  *    - use locality group PA
234  *      again PA-=N must be serialized with init
235  *    - discard locality group PA
236  *      the simplest way would be to have buddy initialized by the discard
237  *  - new PA vs.
238  *    - use inode PA
239  *      i_data_sem serializes them
240  *    - discard inode PA
241  *      discard process must wait until PA isn't used by another process
242  *    - use locality group PA
243  *      some mutex should serialize them
244  *    - discard locality group PA
245  *      discard process must wait until PA isn't used by another process
246  *  - use inode PA
247  *    - use inode PA
248  *      i_data_sem or another mutex should serializes them
249  *    - discard inode PA
250  *      discard process must wait until PA isn't used by another process
251  *    - use locality group PA
252  *      nothing wrong here -- they're different PAs covering different blocks
253  *    - discard locality group PA
254  *      discard process must wait until PA isn't used by another process
255  *
256  * now we're ready to make few consequences:
257  *  - PA is referenced and while it is no discard is possible
258  *  - PA is referenced until block isn't marked in on-disk bitmap
259  *  - PA changes only after on-disk bitmap
260  *  - discard must not compete with init. either init is done before
261  *    any discard or they're serialized somehow
262  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
263  *
264  * a special case when we've used PA to emptiness. no need to modify buddy
265  * in this case, but we should care about concurrent init
266  *
267  */
268 
269  /*
270  * Logic in few words:
271  *
272  *  - allocation:
273  *    load group
274  *    find blocks
275  *    mark bits in on-disk bitmap
276  *    release group
277  *
278  *  - use preallocation:
279  *    find proper PA (per-inode or group)
280  *    load group
281  *    mark bits in on-disk bitmap
282  *    release group
283  *    release PA
284  *
285  *  - free:
286  *    load group
287  *    mark bits in on-disk bitmap
288  *    release group
289  *
290  *  - discard preallocations in group:
291  *    mark PAs deleted
292  *    move them onto local list
293  *    load on-disk bitmap
294  *    load group
295  *    remove PA from object (inode or locality group)
296  *    mark free blocks in-core
297  *
298  *  - discard inode's preallocations:
299  */
300 
301 /*
302  * Locking rules
303  *
304  * Locks:
305  *  - bitlock on a group	(group)
306  *  - object (inode/locality)	(object)
307  *  - per-pa lock		(pa)
308  *
309  * Paths:
310  *  - new pa
311  *    object
312  *    group
313  *
314  *  - find and use pa:
315  *    pa
316  *
317  *  - release consumed pa:
318  *    pa
319  *    group
320  *    object
321  *
322  *  - generate in-core bitmap:
323  *    group
324  *        pa
325  *
326  *  - discard all for given object (inode, locality group):
327  *    object
328  *        pa
329  *    group
330  *
331  *  - discard all for given group:
332  *    group
333  *        pa
334  *    group
335  *        object
336  *
337  */
338 static struct kmem_cache *ext4_pspace_cachep;
339 static struct kmem_cache *ext4_ac_cachep;
340 static struct kmem_cache *ext4_free_ext_cachep;
341 
342 /* We create slab caches for groupinfo data structures based on the
343  * superblock block size.  There will be one per mounted filesystem for
344  * each unique s_blocksize_bits */
345 #define NR_GRPINFO_CACHES 8
346 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
347 
348 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
349 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
350 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
351 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
352 };
353 
354 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
355 					ext4_group_t group);
356 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
357 						ext4_group_t group);
358 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
359 
360 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
361 {
362 #if BITS_PER_LONG == 64
363 	*bit += ((unsigned long) addr & 7UL) << 3;
364 	addr = (void *) ((unsigned long) addr & ~7UL);
365 #elif BITS_PER_LONG == 32
366 	*bit += ((unsigned long) addr & 3UL) << 3;
367 	addr = (void *) ((unsigned long) addr & ~3UL);
368 #else
369 #error "how many bits you are?!"
370 #endif
371 	return addr;
372 }
373 
374 static inline int mb_test_bit(int bit, void *addr)
375 {
376 	/*
377 	 * ext4_test_bit on architecture like powerpc
378 	 * needs unsigned long aligned address
379 	 */
380 	addr = mb_correct_addr_and_bit(&bit, addr);
381 	return ext4_test_bit(bit, addr);
382 }
383 
384 static inline void mb_set_bit(int bit, void *addr)
385 {
386 	addr = mb_correct_addr_and_bit(&bit, addr);
387 	ext4_set_bit(bit, addr);
388 }
389 
390 static inline void mb_clear_bit(int bit, void *addr)
391 {
392 	addr = mb_correct_addr_and_bit(&bit, addr);
393 	ext4_clear_bit(bit, addr);
394 }
395 
396 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
397 {
398 	int fix = 0, ret, tmpmax;
399 	addr = mb_correct_addr_and_bit(&fix, addr);
400 	tmpmax = max + fix;
401 	start += fix;
402 
403 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
404 	if (ret > max)
405 		return max;
406 	return ret;
407 }
408 
409 static inline int mb_find_next_bit(void *addr, int max, int start)
410 {
411 	int fix = 0, ret, tmpmax;
412 	addr = mb_correct_addr_and_bit(&fix, addr);
413 	tmpmax = max + fix;
414 	start += fix;
415 
416 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
417 	if (ret > max)
418 		return max;
419 	return ret;
420 }
421 
422 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
423 {
424 	char *bb;
425 
426 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
427 	BUG_ON(max == NULL);
428 
429 	if (order > e4b->bd_blkbits + 1) {
430 		*max = 0;
431 		return NULL;
432 	}
433 
434 	/* at order 0 we see each particular block */
435 	if (order == 0) {
436 		*max = 1 << (e4b->bd_blkbits + 3);
437 		return EXT4_MB_BITMAP(e4b);
438 	}
439 
440 	bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
441 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
442 
443 	return bb;
444 }
445 
446 #ifdef DOUBLE_CHECK
447 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
448 			   int first, int count)
449 {
450 	int i;
451 	struct super_block *sb = e4b->bd_sb;
452 
453 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
454 		return;
455 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
456 	for (i = 0; i < count; i++) {
457 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
458 			ext4_fsblk_t blocknr;
459 
460 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
461 			blocknr += first + i;
462 			ext4_grp_locked_error(sb, e4b->bd_group,
463 					      inode ? inode->i_ino : 0,
464 					      blocknr,
465 					      "freeing block already freed "
466 					      "(bit %u)",
467 					      first + i);
468 		}
469 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
470 	}
471 }
472 
473 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
474 {
475 	int i;
476 
477 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
478 		return;
479 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
480 	for (i = 0; i < count; i++) {
481 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
482 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
483 	}
484 }
485 
486 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
487 {
488 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
489 		unsigned char *b1, *b2;
490 		int i;
491 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
492 		b2 = (unsigned char *) bitmap;
493 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
494 			if (b1[i] != b2[i]) {
495 				printk(KERN_ERR "corruption in group %u "
496 				       "at byte %u(%u): %x in copy != %x "
497 				       "on disk/prealloc\n",
498 				       e4b->bd_group, i, i * 8, b1[i], b2[i]);
499 				BUG();
500 			}
501 		}
502 	}
503 }
504 
505 #else
506 static inline void mb_free_blocks_double(struct inode *inode,
507 				struct ext4_buddy *e4b, int first, int count)
508 {
509 	return;
510 }
511 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
512 						int first, int count)
513 {
514 	return;
515 }
516 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
517 {
518 	return;
519 }
520 #endif
521 
522 #ifdef AGGRESSIVE_CHECK
523 
524 #define MB_CHECK_ASSERT(assert)						\
525 do {									\
526 	if (!(assert)) {						\
527 		printk(KERN_EMERG					\
528 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
529 			function, file, line, # assert);		\
530 		BUG();							\
531 	}								\
532 } while (0)
533 
534 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
535 				const char *function, int line)
536 {
537 	struct super_block *sb = e4b->bd_sb;
538 	int order = e4b->bd_blkbits + 1;
539 	int max;
540 	int max2;
541 	int i;
542 	int j;
543 	int k;
544 	int count;
545 	struct ext4_group_info *grp;
546 	int fragments = 0;
547 	int fstart;
548 	struct list_head *cur;
549 	void *buddy;
550 	void *buddy2;
551 
552 	{
553 		static int mb_check_counter;
554 		if (mb_check_counter++ % 100 != 0)
555 			return 0;
556 	}
557 
558 	while (order > 1) {
559 		buddy = mb_find_buddy(e4b, order, &max);
560 		MB_CHECK_ASSERT(buddy);
561 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
562 		MB_CHECK_ASSERT(buddy2);
563 		MB_CHECK_ASSERT(buddy != buddy2);
564 		MB_CHECK_ASSERT(max * 2 == max2);
565 
566 		count = 0;
567 		for (i = 0; i < max; i++) {
568 
569 			if (mb_test_bit(i, buddy)) {
570 				/* only single bit in buddy2 may be 1 */
571 				if (!mb_test_bit(i << 1, buddy2)) {
572 					MB_CHECK_ASSERT(
573 						mb_test_bit((i<<1)+1, buddy2));
574 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
575 					MB_CHECK_ASSERT(
576 						mb_test_bit(i << 1, buddy2));
577 				}
578 				continue;
579 			}
580 
581 			/* both bits in buddy2 must be 0 */
582 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
583 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
584 
585 			for (j = 0; j < (1 << order); j++) {
586 				k = (i * (1 << order)) + j;
587 				MB_CHECK_ASSERT(
588 					!mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
589 			}
590 			count++;
591 		}
592 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
593 		order--;
594 	}
595 
596 	fstart = -1;
597 	buddy = mb_find_buddy(e4b, 0, &max);
598 	for (i = 0; i < max; i++) {
599 		if (!mb_test_bit(i, buddy)) {
600 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
601 			if (fstart == -1) {
602 				fragments++;
603 				fstart = i;
604 			}
605 			continue;
606 		}
607 		fstart = -1;
608 		/* check used bits only */
609 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
610 			buddy2 = mb_find_buddy(e4b, j, &max2);
611 			k = i >> j;
612 			MB_CHECK_ASSERT(k < max2);
613 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
614 		}
615 	}
616 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
617 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
618 
619 	grp = ext4_get_group_info(sb, e4b->bd_group);
620 	list_for_each(cur, &grp->bb_prealloc_list) {
621 		ext4_group_t groupnr;
622 		struct ext4_prealloc_space *pa;
623 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
624 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
625 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
626 		for (i = 0; i < pa->pa_len; i++)
627 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
628 	}
629 	return 0;
630 }
631 #undef MB_CHECK_ASSERT
632 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
633 					__FILE__, __func__, __LINE__)
634 #else
635 #define mb_check_buddy(e4b)
636 #endif
637 
638 /*
639  * Divide blocks started from @first with length @len into
640  * smaller chunks with power of 2 blocks.
641  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
642  * then increase bb_counters[] for corresponded chunk size.
643  */
644 static void ext4_mb_mark_free_simple(struct super_block *sb,
645 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
646 					struct ext4_group_info *grp)
647 {
648 	struct ext4_sb_info *sbi = EXT4_SB(sb);
649 	ext4_grpblk_t min;
650 	ext4_grpblk_t max;
651 	ext4_grpblk_t chunk;
652 	unsigned short border;
653 
654 	BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
655 
656 	border = 2 << sb->s_blocksize_bits;
657 
658 	while (len > 0) {
659 		/* find how many blocks can be covered since this position */
660 		max = ffs(first | border) - 1;
661 
662 		/* find how many blocks of power 2 we need to mark */
663 		min = fls(len) - 1;
664 
665 		if (max < min)
666 			min = max;
667 		chunk = 1 << min;
668 
669 		/* mark multiblock chunks only */
670 		grp->bb_counters[min]++;
671 		if (min > 0)
672 			mb_clear_bit(first >> min,
673 				     buddy + sbi->s_mb_offsets[min]);
674 
675 		len -= chunk;
676 		first += chunk;
677 	}
678 }
679 
680 /*
681  * Cache the order of the largest free extent we have available in this block
682  * group.
683  */
684 static void
685 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
686 {
687 	int i;
688 	int bits;
689 
690 	grp->bb_largest_free_order = -1; /* uninit */
691 
692 	bits = sb->s_blocksize_bits + 1;
693 	for (i = bits; i >= 0; i--) {
694 		if (grp->bb_counters[i] > 0) {
695 			grp->bb_largest_free_order = i;
696 			break;
697 		}
698 	}
699 }
700 
701 static noinline_for_stack
702 void ext4_mb_generate_buddy(struct super_block *sb,
703 				void *buddy, void *bitmap, ext4_group_t group)
704 {
705 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
706 	ext4_grpblk_t max = EXT4_BLOCKS_PER_GROUP(sb);
707 	ext4_grpblk_t i = 0;
708 	ext4_grpblk_t first;
709 	ext4_grpblk_t len;
710 	unsigned free = 0;
711 	unsigned fragments = 0;
712 	unsigned long long period = get_cycles();
713 
714 	/* initialize buddy from bitmap which is aggregation
715 	 * of on-disk bitmap and preallocations */
716 	i = mb_find_next_zero_bit(bitmap, max, 0);
717 	grp->bb_first_free = i;
718 	while (i < max) {
719 		fragments++;
720 		first = i;
721 		i = mb_find_next_bit(bitmap, max, i);
722 		len = i - first;
723 		free += len;
724 		if (len > 1)
725 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
726 		else
727 			grp->bb_counters[0]++;
728 		if (i < max)
729 			i = mb_find_next_zero_bit(bitmap, max, i);
730 	}
731 	grp->bb_fragments = fragments;
732 
733 	if (free != grp->bb_free) {
734 		ext4_grp_locked_error(sb, group, 0, 0,
735 				      "%u blocks in bitmap, %u in gd",
736 				      free, grp->bb_free);
737 		/*
738 		 * If we intent to continue, we consider group descritor
739 		 * corrupt and update bb_free using bitmap value
740 		 */
741 		grp->bb_free = free;
742 	}
743 	mb_set_largest_free_order(sb, grp);
744 
745 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
746 
747 	period = get_cycles() - period;
748 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
749 	EXT4_SB(sb)->s_mb_buddies_generated++;
750 	EXT4_SB(sb)->s_mb_generation_time += period;
751 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
752 }
753 
754 /* The buddy information is attached the buddy cache inode
755  * for convenience. The information regarding each group
756  * is loaded via ext4_mb_load_buddy. The information involve
757  * block bitmap and buddy information. The information are
758  * stored in the inode as
759  *
760  * {                        page                        }
761  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
762  *
763  *
764  * one block each for bitmap and buddy information.
765  * So for each group we take up 2 blocks. A page can
766  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
767  * So it can have information regarding groups_per_page which
768  * is blocks_per_page/2
769  *
770  * Locking note:  This routine takes the block group lock of all groups
771  * for this page; do not hold this lock when calling this routine!
772  */
773 
774 static int ext4_mb_init_cache(struct page *page, char *incore)
775 {
776 	ext4_group_t ngroups;
777 	int blocksize;
778 	int blocks_per_page;
779 	int groups_per_page;
780 	int err = 0;
781 	int i;
782 	ext4_group_t first_group;
783 	int first_block;
784 	struct super_block *sb;
785 	struct buffer_head *bhs;
786 	struct buffer_head **bh;
787 	struct inode *inode;
788 	char *data;
789 	char *bitmap;
790 	struct ext4_group_info *grinfo;
791 
792 	mb_debug(1, "init page %lu\n", page->index);
793 
794 	inode = page->mapping->host;
795 	sb = inode->i_sb;
796 	ngroups = ext4_get_groups_count(sb);
797 	blocksize = 1 << inode->i_blkbits;
798 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
799 
800 	groups_per_page = blocks_per_page >> 1;
801 	if (groups_per_page == 0)
802 		groups_per_page = 1;
803 
804 	/* allocate buffer_heads to read bitmaps */
805 	if (groups_per_page > 1) {
806 		err = -ENOMEM;
807 		i = sizeof(struct buffer_head *) * groups_per_page;
808 		bh = kzalloc(i, GFP_NOFS);
809 		if (bh == NULL)
810 			goto out;
811 	} else
812 		bh = &bhs;
813 
814 	first_group = page->index * blocks_per_page / 2;
815 
816 	/* read all groups the page covers into the cache */
817 	for (i = 0; i < groups_per_page; i++) {
818 		struct ext4_group_desc *desc;
819 
820 		if (first_group + i >= ngroups)
821 			break;
822 
823 		grinfo = ext4_get_group_info(sb, first_group + i);
824 		/*
825 		 * If page is uptodate then we came here after online resize
826 		 * which added some new uninitialized group info structs, so
827 		 * we must skip all initialized uptodate buddies on the page,
828 		 * which may be currently in use by an allocating task.
829 		 */
830 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
831 			bh[i] = NULL;
832 			continue;
833 		}
834 
835 		err = -EIO;
836 		desc = ext4_get_group_desc(sb, first_group + i, NULL);
837 		if (desc == NULL)
838 			goto out;
839 
840 		err = -ENOMEM;
841 		bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
842 		if (bh[i] == NULL)
843 			goto out;
844 
845 		if (bitmap_uptodate(bh[i]))
846 			continue;
847 
848 		lock_buffer(bh[i]);
849 		if (bitmap_uptodate(bh[i])) {
850 			unlock_buffer(bh[i]);
851 			continue;
852 		}
853 		ext4_lock_group(sb, first_group + i);
854 		if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
855 			ext4_init_block_bitmap(sb, bh[i],
856 						first_group + i, desc);
857 			set_bitmap_uptodate(bh[i]);
858 			set_buffer_uptodate(bh[i]);
859 			ext4_unlock_group(sb, first_group + i);
860 			unlock_buffer(bh[i]);
861 			continue;
862 		}
863 		ext4_unlock_group(sb, first_group + i);
864 		if (buffer_uptodate(bh[i])) {
865 			/*
866 			 * if not uninit if bh is uptodate,
867 			 * bitmap is also uptodate
868 			 */
869 			set_bitmap_uptodate(bh[i]);
870 			unlock_buffer(bh[i]);
871 			continue;
872 		}
873 		get_bh(bh[i]);
874 		/*
875 		 * submit the buffer_head for read. We can
876 		 * safely mark the bitmap as uptodate now.
877 		 * We do it here so the bitmap uptodate bit
878 		 * get set with buffer lock held.
879 		 */
880 		set_bitmap_uptodate(bh[i]);
881 		bh[i]->b_end_io = end_buffer_read_sync;
882 		submit_bh(READ, bh[i]);
883 		mb_debug(1, "read bitmap for group %u\n", first_group + i);
884 	}
885 
886 	/* wait for I/O completion */
887 	for (i = 0; i < groups_per_page; i++)
888 		if (bh[i])
889 			wait_on_buffer(bh[i]);
890 
891 	err = -EIO;
892 	for (i = 0; i < groups_per_page; i++)
893 		if (bh[i] && !buffer_uptodate(bh[i]))
894 			goto out;
895 
896 	err = 0;
897 	first_block = page->index * blocks_per_page;
898 	for (i = 0; i < blocks_per_page; i++) {
899 		int group;
900 
901 		group = (first_block + i) >> 1;
902 		if (group >= ngroups)
903 			break;
904 
905 		if (!bh[group - first_group])
906 			/* skip initialized uptodate buddy */
907 			continue;
908 
909 		/*
910 		 * data carry information regarding this
911 		 * particular group in the format specified
912 		 * above
913 		 *
914 		 */
915 		data = page_address(page) + (i * blocksize);
916 		bitmap = bh[group - first_group]->b_data;
917 
918 		/*
919 		 * We place the buddy block and bitmap block
920 		 * close together
921 		 */
922 		if ((first_block + i) & 1) {
923 			/* this is block of buddy */
924 			BUG_ON(incore == NULL);
925 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
926 				group, page->index, i * blocksize);
927 			trace_ext4_mb_buddy_bitmap_load(sb, group);
928 			grinfo = ext4_get_group_info(sb, group);
929 			grinfo->bb_fragments = 0;
930 			memset(grinfo->bb_counters, 0,
931 			       sizeof(*grinfo->bb_counters) *
932 				(sb->s_blocksize_bits+2));
933 			/*
934 			 * incore got set to the group block bitmap below
935 			 */
936 			ext4_lock_group(sb, group);
937 			/* init the buddy */
938 			memset(data, 0xff, blocksize);
939 			ext4_mb_generate_buddy(sb, data, incore, group);
940 			ext4_unlock_group(sb, group);
941 			incore = NULL;
942 		} else {
943 			/* this is block of bitmap */
944 			BUG_ON(incore != NULL);
945 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
946 				group, page->index, i * blocksize);
947 			trace_ext4_mb_bitmap_load(sb, group);
948 
949 			/* see comments in ext4_mb_put_pa() */
950 			ext4_lock_group(sb, group);
951 			memcpy(data, bitmap, blocksize);
952 
953 			/* mark all preallocated blks used in in-core bitmap */
954 			ext4_mb_generate_from_pa(sb, data, group);
955 			ext4_mb_generate_from_freelist(sb, data, group);
956 			ext4_unlock_group(sb, group);
957 
958 			/* set incore so that the buddy information can be
959 			 * generated using this
960 			 */
961 			incore = data;
962 		}
963 	}
964 	SetPageUptodate(page);
965 
966 out:
967 	if (bh) {
968 		for (i = 0; i < groups_per_page; i++)
969 			brelse(bh[i]);
970 		if (bh != &bhs)
971 			kfree(bh);
972 	}
973 	return err;
974 }
975 
976 /*
977  * Lock the buddy and bitmap pages. This make sure other parallel init_group
978  * on the same buddy page doesn't happen whild holding the buddy page lock.
979  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
980  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
981  */
982 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
983 		ext4_group_t group, struct ext4_buddy *e4b)
984 {
985 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
986 	int block, pnum, poff;
987 	int blocks_per_page;
988 	struct page *page;
989 
990 	e4b->bd_buddy_page = NULL;
991 	e4b->bd_bitmap_page = NULL;
992 
993 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
994 	/*
995 	 * the buddy cache inode stores the block bitmap
996 	 * and buddy information in consecutive blocks.
997 	 * So for each group we need two blocks.
998 	 */
999 	block = group * 2;
1000 	pnum = block / blocks_per_page;
1001 	poff = block % blocks_per_page;
1002 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1003 	if (!page)
1004 		return -EIO;
1005 	BUG_ON(page->mapping != inode->i_mapping);
1006 	e4b->bd_bitmap_page = page;
1007 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1008 
1009 	if (blocks_per_page >= 2) {
1010 		/* buddy and bitmap are on the same page */
1011 		return 0;
1012 	}
1013 
1014 	block++;
1015 	pnum = block / blocks_per_page;
1016 	poff = block % blocks_per_page;
1017 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1018 	if (!page)
1019 		return -EIO;
1020 	BUG_ON(page->mapping != inode->i_mapping);
1021 	e4b->bd_buddy_page = page;
1022 	return 0;
1023 }
1024 
1025 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1026 {
1027 	if (e4b->bd_bitmap_page) {
1028 		unlock_page(e4b->bd_bitmap_page);
1029 		page_cache_release(e4b->bd_bitmap_page);
1030 	}
1031 	if (e4b->bd_buddy_page) {
1032 		unlock_page(e4b->bd_buddy_page);
1033 		page_cache_release(e4b->bd_buddy_page);
1034 	}
1035 }
1036 
1037 /*
1038  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1039  * block group lock of all groups for this page; do not hold the BG lock when
1040  * calling this routine!
1041  */
1042 static noinline_for_stack
1043 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1044 {
1045 
1046 	struct ext4_group_info *this_grp;
1047 	struct ext4_buddy e4b;
1048 	struct page *page;
1049 	int ret = 0;
1050 
1051 	mb_debug(1, "init group %u\n", group);
1052 	this_grp = ext4_get_group_info(sb, group);
1053 	/*
1054 	 * This ensures that we don't reinit the buddy cache
1055 	 * page which map to the group from which we are already
1056 	 * allocating. If we are looking at the buddy cache we would
1057 	 * have taken a reference using ext4_mb_load_buddy and that
1058 	 * would have pinned buddy page to page cache.
1059 	 */
1060 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1061 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1062 		/*
1063 		 * somebody initialized the group
1064 		 * return without doing anything
1065 		 */
1066 		goto err;
1067 	}
1068 
1069 	page = e4b.bd_bitmap_page;
1070 	ret = ext4_mb_init_cache(page, NULL);
1071 	if (ret)
1072 		goto err;
1073 	if (!PageUptodate(page)) {
1074 		ret = -EIO;
1075 		goto err;
1076 	}
1077 	mark_page_accessed(page);
1078 
1079 	if (e4b.bd_buddy_page == NULL) {
1080 		/*
1081 		 * If both the bitmap and buddy are in
1082 		 * the same page we don't need to force
1083 		 * init the buddy
1084 		 */
1085 		ret = 0;
1086 		goto err;
1087 	}
1088 	/* init buddy cache */
1089 	page = e4b.bd_buddy_page;
1090 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1091 	if (ret)
1092 		goto err;
1093 	if (!PageUptodate(page)) {
1094 		ret = -EIO;
1095 		goto err;
1096 	}
1097 	mark_page_accessed(page);
1098 err:
1099 	ext4_mb_put_buddy_page_lock(&e4b);
1100 	return ret;
1101 }
1102 
1103 /*
1104  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1105  * block group lock of all groups for this page; do not hold the BG lock when
1106  * calling this routine!
1107  */
1108 static noinline_for_stack int
1109 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1110 					struct ext4_buddy *e4b)
1111 {
1112 	int blocks_per_page;
1113 	int block;
1114 	int pnum;
1115 	int poff;
1116 	struct page *page;
1117 	int ret;
1118 	struct ext4_group_info *grp;
1119 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1120 	struct inode *inode = sbi->s_buddy_cache;
1121 
1122 	mb_debug(1, "load group %u\n", group);
1123 
1124 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1125 	grp = ext4_get_group_info(sb, group);
1126 
1127 	e4b->bd_blkbits = sb->s_blocksize_bits;
1128 	e4b->bd_info = ext4_get_group_info(sb, group);
1129 	e4b->bd_sb = sb;
1130 	e4b->bd_group = group;
1131 	e4b->bd_buddy_page = NULL;
1132 	e4b->bd_bitmap_page = NULL;
1133 
1134 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1135 		/*
1136 		 * we need full data about the group
1137 		 * to make a good selection
1138 		 */
1139 		ret = ext4_mb_init_group(sb, group);
1140 		if (ret)
1141 			return ret;
1142 	}
1143 
1144 	/*
1145 	 * the buddy cache inode stores the block bitmap
1146 	 * and buddy information in consecutive blocks.
1147 	 * So for each group we need two blocks.
1148 	 */
1149 	block = group * 2;
1150 	pnum = block / blocks_per_page;
1151 	poff = block % blocks_per_page;
1152 
1153 	/* we could use find_or_create_page(), but it locks page
1154 	 * what we'd like to avoid in fast path ... */
1155 	page = find_get_page(inode->i_mapping, pnum);
1156 	if (page == NULL || !PageUptodate(page)) {
1157 		if (page)
1158 			/*
1159 			 * drop the page reference and try
1160 			 * to get the page with lock. If we
1161 			 * are not uptodate that implies
1162 			 * somebody just created the page but
1163 			 * is yet to initialize the same. So
1164 			 * wait for it to initialize.
1165 			 */
1166 			page_cache_release(page);
1167 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1168 		if (page) {
1169 			BUG_ON(page->mapping != inode->i_mapping);
1170 			if (!PageUptodate(page)) {
1171 				ret = ext4_mb_init_cache(page, NULL);
1172 				if (ret) {
1173 					unlock_page(page);
1174 					goto err;
1175 				}
1176 				mb_cmp_bitmaps(e4b, page_address(page) +
1177 					       (poff * sb->s_blocksize));
1178 			}
1179 			unlock_page(page);
1180 		}
1181 	}
1182 	if (page == NULL || !PageUptodate(page)) {
1183 		ret = -EIO;
1184 		goto err;
1185 	}
1186 	e4b->bd_bitmap_page = page;
1187 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1188 	mark_page_accessed(page);
1189 
1190 	block++;
1191 	pnum = block / blocks_per_page;
1192 	poff = block % blocks_per_page;
1193 
1194 	page = find_get_page(inode->i_mapping, pnum);
1195 	if (page == NULL || !PageUptodate(page)) {
1196 		if (page)
1197 			page_cache_release(page);
1198 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1199 		if (page) {
1200 			BUG_ON(page->mapping != inode->i_mapping);
1201 			if (!PageUptodate(page)) {
1202 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1203 				if (ret) {
1204 					unlock_page(page);
1205 					goto err;
1206 				}
1207 			}
1208 			unlock_page(page);
1209 		}
1210 	}
1211 	if (page == NULL || !PageUptodate(page)) {
1212 		ret = -EIO;
1213 		goto err;
1214 	}
1215 	e4b->bd_buddy_page = page;
1216 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1217 	mark_page_accessed(page);
1218 
1219 	BUG_ON(e4b->bd_bitmap_page == NULL);
1220 	BUG_ON(e4b->bd_buddy_page == NULL);
1221 
1222 	return 0;
1223 
1224 err:
1225 	if (page)
1226 		page_cache_release(page);
1227 	if (e4b->bd_bitmap_page)
1228 		page_cache_release(e4b->bd_bitmap_page);
1229 	if (e4b->bd_buddy_page)
1230 		page_cache_release(e4b->bd_buddy_page);
1231 	e4b->bd_buddy = NULL;
1232 	e4b->bd_bitmap = NULL;
1233 	return ret;
1234 }
1235 
1236 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1237 {
1238 	if (e4b->bd_bitmap_page)
1239 		page_cache_release(e4b->bd_bitmap_page);
1240 	if (e4b->bd_buddy_page)
1241 		page_cache_release(e4b->bd_buddy_page);
1242 }
1243 
1244 
1245 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1246 {
1247 	int order = 1;
1248 	void *bb;
1249 
1250 	BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1251 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1252 
1253 	bb = EXT4_MB_BUDDY(e4b);
1254 	while (order <= e4b->bd_blkbits + 1) {
1255 		block = block >> 1;
1256 		if (!mb_test_bit(block, bb)) {
1257 			/* this block is part of buddy of order 'order' */
1258 			return order;
1259 		}
1260 		bb += 1 << (e4b->bd_blkbits - order);
1261 		order++;
1262 	}
1263 	return 0;
1264 }
1265 
1266 static void mb_clear_bits(void *bm, int cur, int len)
1267 {
1268 	__u32 *addr;
1269 
1270 	len = cur + len;
1271 	while (cur < len) {
1272 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1273 			/* fast path: clear whole word at once */
1274 			addr = bm + (cur >> 3);
1275 			*addr = 0;
1276 			cur += 32;
1277 			continue;
1278 		}
1279 		mb_clear_bit(cur, bm);
1280 		cur++;
1281 	}
1282 }
1283 
1284 static void mb_set_bits(void *bm, int cur, int len)
1285 {
1286 	__u32 *addr;
1287 
1288 	len = cur + len;
1289 	while (cur < len) {
1290 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1291 			/* fast path: set whole word at once */
1292 			addr = bm + (cur >> 3);
1293 			*addr = 0xffffffff;
1294 			cur += 32;
1295 			continue;
1296 		}
1297 		mb_set_bit(cur, bm);
1298 		cur++;
1299 	}
1300 }
1301 
1302 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1303 			  int first, int count)
1304 {
1305 	int block = 0;
1306 	int max = 0;
1307 	int order;
1308 	void *buddy;
1309 	void *buddy2;
1310 	struct super_block *sb = e4b->bd_sb;
1311 
1312 	BUG_ON(first + count > (sb->s_blocksize << 3));
1313 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1314 	mb_check_buddy(e4b);
1315 	mb_free_blocks_double(inode, e4b, first, count);
1316 
1317 	e4b->bd_info->bb_free += count;
1318 	if (first < e4b->bd_info->bb_first_free)
1319 		e4b->bd_info->bb_first_free = first;
1320 
1321 	/* let's maintain fragments counter */
1322 	if (first != 0)
1323 		block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1324 	if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1325 		max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1326 	if (block && max)
1327 		e4b->bd_info->bb_fragments--;
1328 	else if (!block && !max)
1329 		e4b->bd_info->bb_fragments++;
1330 
1331 	/* let's maintain buddy itself */
1332 	while (count-- > 0) {
1333 		block = first++;
1334 		order = 0;
1335 
1336 		if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1337 			ext4_fsblk_t blocknr;
1338 
1339 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1340 			blocknr += block;
1341 			ext4_grp_locked_error(sb, e4b->bd_group,
1342 					      inode ? inode->i_ino : 0,
1343 					      blocknr,
1344 					      "freeing already freed block "
1345 					      "(bit %u)", block);
1346 		}
1347 		mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1348 		e4b->bd_info->bb_counters[order]++;
1349 
1350 		/* start of the buddy */
1351 		buddy = mb_find_buddy(e4b, order, &max);
1352 
1353 		do {
1354 			block &= ~1UL;
1355 			if (mb_test_bit(block, buddy) ||
1356 					mb_test_bit(block + 1, buddy))
1357 				break;
1358 
1359 			/* both the buddies are free, try to coalesce them */
1360 			buddy2 = mb_find_buddy(e4b, order + 1, &max);
1361 
1362 			if (!buddy2)
1363 				break;
1364 
1365 			if (order > 0) {
1366 				/* for special purposes, we don't set
1367 				 * free bits in bitmap */
1368 				mb_set_bit(block, buddy);
1369 				mb_set_bit(block + 1, buddy);
1370 			}
1371 			e4b->bd_info->bb_counters[order]--;
1372 			e4b->bd_info->bb_counters[order]--;
1373 
1374 			block = block >> 1;
1375 			order++;
1376 			e4b->bd_info->bb_counters[order]++;
1377 
1378 			mb_clear_bit(block, buddy2);
1379 			buddy = buddy2;
1380 		} while (1);
1381 	}
1382 	mb_set_largest_free_order(sb, e4b->bd_info);
1383 	mb_check_buddy(e4b);
1384 }
1385 
1386 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1387 				int needed, struct ext4_free_extent *ex)
1388 {
1389 	int next = block;
1390 	int max;
1391 	int ord;
1392 	void *buddy;
1393 
1394 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1395 	BUG_ON(ex == NULL);
1396 
1397 	buddy = mb_find_buddy(e4b, order, &max);
1398 	BUG_ON(buddy == NULL);
1399 	BUG_ON(block >= max);
1400 	if (mb_test_bit(block, buddy)) {
1401 		ex->fe_len = 0;
1402 		ex->fe_start = 0;
1403 		ex->fe_group = 0;
1404 		return 0;
1405 	}
1406 
1407 	/* FIXME dorp order completely ? */
1408 	if (likely(order == 0)) {
1409 		/* find actual order */
1410 		order = mb_find_order_for_block(e4b, block);
1411 		block = block >> order;
1412 	}
1413 
1414 	ex->fe_len = 1 << order;
1415 	ex->fe_start = block << order;
1416 	ex->fe_group = e4b->bd_group;
1417 
1418 	/* calc difference from given start */
1419 	next = next - ex->fe_start;
1420 	ex->fe_len -= next;
1421 	ex->fe_start += next;
1422 
1423 	while (needed > ex->fe_len &&
1424 	       (buddy = mb_find_buddy(e4b, order, &max))) {
1425 
1426 		if (block + 1 >= max)
1427 			break;
1428 
1429 		next = (block + 1) * (1 << order);
1430 		if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1431 			break;
1432 
1433 		ord = mb_find_order_for_block(e4b, next);
1434 
1435 		order = ord;
1436 		block = next >> order;
1437 		ex->fe_len += 1 << order;
1438 	}
1439 
1440 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1441 	return ex->fe_len;
1442 }
1443 
1444 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1445 {
1446 	int ord;
1447 	int mlen = 0;
1448 	int max = 0;
1449 	int cur;
1450 	int start = ex->fe_start;
1451 	int len = ex->fe_len;
1452 	unsigned ret = 0;
1453 	int len0 = len;
1454 	void *buddy;
1455 
1456 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1457 	BUG_ON(e4b->bd_group != ex->fe_group);
1458 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1459 	mb_check_buddy(e4b);
1460 	mb_mark_used_double(e4b, start, len);
1461 
1462 	e4b->bd_info->bb_free -= len;
1463 	if (e4b->bd_info->bb_first_free == start)
1464 		e4b->bd_info->bb_first_free += len;
1465 
1466 	/* let's maintain fragments counter */
1467 	if (start != 0)
1468 		mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1469 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1470 		max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1471 	if (mlen && max)
1472 		e4b->bd_info->bb_fragments++;
1473 	else if (!mlen && !max)
1474 		e4b->bd_info->bb_fragments--;
1475 
1476 	/* let's maintain buddy itself */
1477 	while (len) {
1478 		ord = mb_find_order_for_block(e4b, start);
1479 
1480 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1481 			/* the whole chunk may be allocated at once! */
1482 			mlen = 1 << ord;
1483 			buddy = mb_find_buddy(e4b, ord, &max);
1484 			BUG_ON((start >> ord) >= max);
1485 			mb_set_bit(start >> ord, buddy);
1486 			e4b->bd_info->bb_counters[ord]--;
1487 			start += mlen;
1488 			len -= mlen;
1489 			BUG_ON(len < 0);
1490 			continue;
1491 		}
1492 
1493 		/* store for history */
1494 		if (ret == 0)
1495 			ret = len | (ord << 16);
1496 
1497 		/* we have to split large buddy */
1498 		BUG_ON(ord <= 0);
1499 		buddy = mb_find_buddy(e4b, ord, &max);
1500 		mb_set_bit(start >> ord, buddy);
1501 		e4b->bd_info->bb_counters[ord]--;
1502 
1503 		ord--;
1504 		cur = (start >> ord) & ~1U;
1505 		buddy = mb_find_buddy(e4b, ord, &max);
1506 		mb_clear_bit(cur, buddy);
1507 		mb_clear_bit(cur + 1, buddy);
1508 		e4b->bd_info->bb_counters[ord]++;
1509 		e4b->bd_info->bb_counters[ord]++;
1510 	}
1511 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1512 
1513 	mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1514 	mb_check_buddy(e4b);
1515 
1516 	return ret;
1517 }
1518 
1519 /*
1520  * Must be called under group lock!
1521  */
1522 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1523 					struct ext4_buddy *e4b)
1524 {
1525 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1526 	int ret;
1527 
1528 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1529 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1530 
1531 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1532 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1533 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1534 
1535 	/* preallocation can change ac_b_ex, thus we store actually
1536 	 * allocated blocks for history */
1537 	ac->ac_f_ex = ac->ac_b_ex;
1538 
1539 	ac->ac_status = AC_STATUS_FOUND;
1540 	ac->ac_tail = ret & 0xffff;
1541 	ac->ac_buddy = ret >> 16;
1542 
1543 	/*
1544 	 * take the page reference. We want the page to be pinned
1545 	 * so that we don't get a ext4_mb_init_cache_call for this
1546 	 * group until we update the bitmap. That would mean we
1547 	 * double allocate blocks. The reference is dropped
1548 	 * in ext4_mb_release_context
1549 	 */
1550 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1551 	get_page(ac->ac_bitmap_page);
1552 	ac->ac_buddy_page = e4b->bd_buddy_page;
1553 	get_page(ac->ac_buddy_page);
1554 	/* store last allocated for subsequent stream allocation */
1555 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1556 		spin_lock(&sbi->s_md_lock);
1557 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1558 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1559 		spin_unlock(&sbi->s_md_lock);
1560 	}
1561 }
1562 
1563 /*
1564  * regular allocator, for general purposes allocation
1565  */
1566 
1567 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1568 					struct ext4_buddy *e4b,
1569 					int finish_group)
1570 {
1571 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1572 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1573 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1574 	struct ext4_free_extent ex;
1575 	int max;
1576 
1577 	if (ac->ac_status == AC_STATUS_FOUND)
1578 		return;
1579 	/*
1580 	 * We don't want to scan for a whole year
1581 	 */
1582 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1583 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1584 		ac->ac_status = AC_STATUS_BREAK;
1585 		return;
1586 	}
1587 
1588 	/*
1589 	 * Haven't found good chunk so far, let's continue
1590 	 */
1591 	if (bex->fe_len < gex->fe_len)
1592 		return;
1593 
1594 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1595 			&& bex->fe_group == e4b->bd_group) {
1596 		/* recheck chunk's availability - we don't know
1597 		 * when it was found (within this lock-unlock
1598 		 * period or not) */
1599 		max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1600 		if (max >= gex->fe_len) {
1601 			ext4_mb_use_best_found(ac, e4b);
1602 			return;
1603 		}
1604 	}
1605 }
1606 
1607 /*
1608  * The routine checks whether found extent is good enough. If it is,
1609  * then the extent gets marked used and flag is set to the context
1610  * to stop scanning. Otherwise, the extent is compared with the
1611  * previous found extent and if new one is better, then it's stored
1612  * in the context. Later, the best found extent will be used, if
1613  * mballoc can't find good enough extent.
1614  *
1615  * FIXME: real allocation policy is to be designed yet!
1616  */
1617 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1618 					struct ext4_free_extent *ex,
1619 					struct ext4_buddy *e4b)
1620 {
1621 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1622 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1623 
1624 	BUG_ON(ex->fe_len <= 0);
1625 	BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1626 	BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1627 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1628 
1629 	ac->ac_found++;
1630 
1631 	/*
1632 	 * The special case - take what you catch first
1633 	 */
1634 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1635 		*bex = *ex;
1636 		ext4_mb_use_best_found(ac, e4b);
1637 		return;
1638 	}
1639 
1640 	/*
1641 	 * Let's check whether the chuck is good enough
1642 	 */
1643 	if (ex->fe_len == gex->fe_len) {
1644 		*bex = *ex;
1645 		ext4_mb_use_best_found(ac, e4b);
1646 		return;
1647 	}
1648 
1649 	/*
1650 	 * If this is first found extent, just store it in the context
1651 	 */
1652 	if (bex->fe_len == 0) {
1653 		*bex = *ex;
1654 		return;
1655 	}
1656 
1657 	/*
1658 	 * If new found extent is better, store it in the context
1659 	 */
1660 	if (bex->fe_len < gex->fe_len) {
1661 		/* if the request isn't satisfied, any found extent
1662 		 * larger than previous best one is better */
1663 		if (ex->fe_len > bex->fe_len)
1664 			*bex = *ex;
1665 	} else if (ex->fe_len > gex->fe_len) {
1666 		/* if the request is satisfied, then we try to find
1667 		 * an extent that still satisfy the request, but is
1668 		 * smaller than previous one */
1669 		if (ex->fe_len < bex->fe_len)
1670 			*bex = *ex;
1671 	}
1672 
1673 	ext4_mb_check_limits(ac, e4b, 0);
1674 }
1675 
1676 static noinline_for_stack
1677 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1678 					struct ext4_buddy *e4b)
1679 {
1680 	struct ext4_free_extent ex = ac->ac_b_ex;
1681 	ext4_group_t group = ex.fe_group;
1682 	int max;
1683 	int err;
1684 
1685 	BUG_ON(ex.fe_len <= 0);
1686 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1687 	if (err)
1688 		return err;
1689 
1690 	ext4_lock_group(ac->ac_sb, group);
1691 	max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1692 
1693 	if (max > 0) {
1694 		ac->ac_b_ex = ex;
1695 		ext4_mb_use_best_found(ac, e4b);
1696 	}
1697 
1698 	ext4_unlock_group(ac->ac_sb, group);
1699 	ext4_mb_unload_buddy(e4b);
1700 
1701 	return 0;
1702 }
1703 
1704 static noinline_for_stack
1705 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1706 				struct ext4_buddy *e4b)
1707 {
1708 	ext4_group_t group = ac->ac_g_ex.fe_group;
1709 	int max;
1710 	int err;
1711 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1712 	struct ext4_free_extent ex;
1713 
1714 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1715 		return 0;
1716 
1717 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1718 	if (err)
1719 		return err;
1720 
1721 	ext4_lock_group(ac->ac_sb, group);
1722 	max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1723 			     ac->ac_g_ex.fe_len, &ex);
1724 
1725 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1726 		ext4_fsblk_t start;
1727 
1728 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1729 			ex.fe_start;
1730 		/* use do_div to get remainder (would be 64-bit modulo) */
1731 		if (do_div(start, sbi->s_stripe) == 0) {
1732 			ac->ac_found++;
1733 			ac->ac_b_ex = ex;
1734 			ext4_mb_use_best_found(ac, e4b);
1735 		}
1736 	} else if (max >= ac->ac_g_ex.fe_len) {
1737 		BUG_ON(ex.fe_len <= 0);
1738 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1739 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1740 		ac->ac_found++;
1741 		ac->ac_b_ex = ex;
1742 		ext4_mb_use_best_found(ac, e4b);
1743 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1744 		/* Sometimes, caller may want to merge even small
1745 		 * number of blocks to an existing extent */
1746 		BUG_ON(ex.fe_len <= 0);
1747 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1748 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1749 		ac->ac_found++;
1750 		ac->ac_b_ex = ex;
1751 		ext4_mb_use_best_found(ac, e4b);
1752 	}
1753 	ext4_unlock_group(ac->ac_sb, group);
1754 	ext4_mb_unload_buddy(e4b);
1755 
1756 	return 0;
1757 }
1758 
1759 /*
1760  * The routine scans buddy structures (not bitmap!) from given order
1761  * to max order and tries to find big enough chunk to satisfy the req
1762  */
1763 static noinline_for_stack
1764 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1765 					struct ext4_buddy *e4b)
1766 {
1767 	struct super_block *sb = ac->ac_sb;
1768 	struct ext4_group_info *grp = e4b->bd_info;
1769 	void *buddy;
1770 	int i;
1771 	int k;
1772 	int max;
1773 
1774 	BUG_ON(ac->ac_2order <= 0);
1775 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1776 		if (grp->bb_counters[i] == 0)
1777 			continue;
1778 
1779 		buddy = mb_find_buddy(e4b, i, &max);
1780 		BUG_ON(buddy == NULL);
1781 
1782 		k = mb_find_next_zero_bit(buddy, max, 0);
1783 		BUG_ON(k >= max);
1784 
1785 		ac->ac_found++;
1786 
1787 		ac->ac_b_ex.fe_len = 1 << i;
1788 		ac->ac_b_ex.fe_start = k << i;
1789 		ac->ac_b_ex.fe_group = e4b->bd_group;
1790 
1791 		ext4_mb_use_best_found(ac, e4b);
1792 
1793 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1794 
1795 		if (EXT4_SB(sb)->s_mb_stats)
1796 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1797 
1798 		break;
1799 	}
1800 }
1801 
1802 /*
1803  * The routine scans the group and measures all found extents.
1804  * In order to optimize scanning, caller must pass number of
1805  * free blocks in the group, so the routine can know upper limit.
1806  */
1807 static noinline_for_stack
1808 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1809 					struct ext4_buddy *e4b)
1810 {
1811 	struct super_block *sb = ac->ac_sb;
1812 	void *bitmap = EXT4_MB_BITMAP(e4b);
1813 	struct ext4_free_extent ex;
1814 	int i;
1815 	int free;
1816 
1817 	free = e4b->bd_info->bb_free;
1818 	BUG_ON(free <= 0);
1819 
1820 	i = e4b->bd_info->bb_first_free;
1821 
1822 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1823 		i = mb_find_next_zero_bit(bitmap,
1824 						EXT4_BLOCKS_PER_GROUP(sb), i);
1825 		if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1826 			/*
1827 			 * IF we have corrupt bitmap, we won't find any
1828 			 * free blocks even though group info says we
1829 			 * we have free blocks
1830 			 */
1831 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1832 					"%d free blocks as per "
1833 					"group info. But bitmap says 0",
1834 					free);
1835 			break;
1836 		}
1837 
1838 		mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1839 		BUG_ON(ex.fe_len <= 0);
1840 		if (free < ex.fe_len) {
1841 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1842 					"%d free blocks as per "
1843 					"group info. But got %d blocks",
1844 					free, ex.fe_len);
1845 			/*
1846 			 * The number of free blocks differs. This mostly
1847 			 * indicate that the bitmap is corrupt. So exit
1848 			 * without claiming the space.
1849 			 */
1850 			break;
1851 		}
1852 
1853 		ext4_mb_measure_extent(ac, &ex, e4b);
1854 
1855 		i += ex.fe_len;
1856 		free -= ex.fe_len;
1857 	}
1858 
1859 	ext4_mb_check_limits(ac, e4b, 1);
1860 }
1861 
1862 /*
1863  * This is a special case for storages like raid5
1864  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1865  */
1866 static noinline_for_stack
1867 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1868 				 struct ext4_buddy *e4b)
1869 {
1870 	struct super_block *sb = ac->ac_sb;
1871 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1872 	void *bitmap = EXT4_MB_BITMAP(e4b);
1873 	struct ext4_free_extent ex;
1874 	ext4_fsblk_t first_group_block;
1875 	ext4_fsblk_t a;
1876 	ext4_grpblk_t i;
1877 	int max;
1878 
1879 	BUG_ON(sbi->s_stripe == 0);
1880 
1881 	/* find first stripe-aligned block in group */
1882 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1883 
1884 	a = first_group_block + sbi->s_stripe - 1;
1885 	do_div(a, sbi->s_stripe);
1886 	i = (a * sbi->s_stripe) - first_group_block;
1887 
1888 	while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1889 		if (!mb_test_bit(i, bitmap)) {
1890 			max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1891 			if (max >= sbi->s_stripe) {
1892 				ac->ac_found++;
1893 				ac->ac_b_ex = ex;
1894 				ext4_mb_use_best_found(ac, e4b);
1895 				break;
1896 			}
1897 		}
1898 		i += sbi->s_stripe;
1899 	}
1900 }
1901 
1902 /* This is now called BEFORE we load the buddy bitmap. */
1903 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1904 				ext4_group_t group, int cr)
1905 {
1906 	unsigned free, fragments;
1907 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1908 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1909 
1910 	BUG_ON(cr < 0 || cr >= 4);
1911 
1912 	/* We only do this if the grp has never been initialized */
1913 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1914 		int ret = ext4_mb_init_group(ac->ac_sb, group);
1915 		if (ret)
1916 			return 0;
1917 	}
1918 
1919 	free = grp->bb_free;
1920 	fragments = grp->bb_fragments;
1921 	if (free == 0)
1922 		return 0;
1923 	if (fragments == 0)
1924 		return 0;
1925 
1926 	switch (cr) {
1927 	case 0:
1928 		BUG_ON(ac->ac_2order == 0);
1929 
1930 		if (grp->bb_largest_free_order < ac->ac_2order)
1931 			return 0;
1932 
1933 		/* Avoid using the first bg of a flexgroup for data files */
1934 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1935 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1936 		    ((group % flex_size) == 0))
1937 			return 0;
1938 
1939 		return 1;
1940 	case 1:
1941 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
1942 			return 1;
1943 		break;
1944 	case 2:
1945 		if (free >= ac->ac_g_ex.fe_len)
1946 			return 1;
1947 		break;
1948 	case 3:
1949 		return 1;
1950 	default:
1951 		BUG();
1952 	}
1953 
1954 	return 0;
1955 }
1956 
1957 static noinline_for_stack int
1958 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1959 {
1960 	ext4_group_t ngroups, group, i;
1961 	int cr;
1962 	int err = 0;
1963 	struct ext4_sb_info *sbi;
1964 	struct super_block *sb;
1965 	struct ext4_buddy e4b;
1966 
1967 	sb = ac->ac_sb;
1968 	sbi = EXT4_SB(sb);
1969 	ngroups = ext4_get_groups_count(sb);
1970 	/* non-extent files are limited to low blocks/groups */
1971 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
1972 		ngroups = sbi->s_blockfile_groups;
1973 
1974 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1975 
1976 	/* first, try the goal */
1977 	err = ext4_mb_find_by_goal(ac, &e4b);
1978 	if (err || ac->ac_status == AC_STATUS_FOUND)
1979 		goto out;
1980 
1981 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1982 		goto out;
1983 
1984 	/*
1985 	 * ac->ac2_order is set only if the fe_len is a power of 2
1986 	 * if ac2_order is set we also set criteria to 0 so that we
1987 	 * try exact allocation using buddy.
1988 	 */
1989 	i = fls(ac->ac_g_ex.fe_len);
1990 	ac->ac_2order = 0;
1991 	/*
1992 	 * We search using buddy data only if the order of the request
1993 	 * is greater than equal to the sbi_s_mb_order2_reqs
1994 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1995 	 */
1996 	if (i >= sbi->s_mb_order2_reqs) {
1997 		/*
1998 		 * This should tell if fe_len is exactly power of 2
1999 		 */
2000 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2001 			ac->ac_2order = i - 1;
2002 	}
2003 
2004 	/* if stream allocation is enabled, use global goal */
2005 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2006 		/* TBD: may be hot point */
2007 		spin_lock(&sbi->s_md_lock);
2008 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2009 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2010 		spin_unlock(&sbi->s_md_lock);
2011 	}
2012 
2013 	/* Let's just scan groups to find more-less suitable blocks */
2014 	cr = ac->ac_2order ? 0 : 1;
2015 	/*
2016 	 * cr == 0 try to get exact allocation,
2017 	 * cr == 3  try to get anything
2018 	 */
2019 repeat:
2020 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2021 		ac->ac_criteria = cr;
2022 		/*
2023 		 * searching for the right group start
2024 		 * from the goal value specified
2025 		 */
2026 		group = ac->ac_g_ex.fe_group;
2027 
2028 		for (i = 0; i < ngroups; group++, i++) {
2029 			if (group == ngroups)
2030 				group = 0;
2031 
2032 			/* This now checks without needing the buddy page */
2033 			if (!ext4_mb_good_group(ac, group, cr))
2034 				continue;
2035 
2036 			err = ext4_mb_load_buddy(sb, group, &e4b);
2037 			if (err)
2038 				goto out;
2039 
2040 			ext4_lock_group(sb, group);
2041 
2042 			/*
2043 			 * We need to check again after locking the
2044 			 * block group
2045 			 */
2046 			if (!ext4_mb_good_group(ac, group, cr)) {
2047 				ext4_unlock_group(sb, group);
2048 				ext4_mb_unload_buddy(&e4b);
2049 				continue;
2050 			}
2051 
2052 			ac->ac_groups_scanned++;
2053 			if (cr == 0)
2054 				ext4_mb_simple_scan_group(ac, &e4b);
2055 			else if (cr == 1 && sbi->s_stripe &&
2056 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2057 				ext4_mb_scan_aligned(ac, &e4b);
2058 			else
2059 				ext4_mb_complex_scan_group(ac, &e4b);
2060 
2061 			ext4_unlock_group(sb, group);
2062 			ext4_mb_unload_buddy(&e4b);
2063 
2064 			if (ac->ac_status != AC_STATUS_CONTINUE)
2065 				break;
2066 		}
2067 	}
2068 
2069 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2070 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2071 		/*
2072 		 * We've been searching too long. Let's try to allocate
2073 		 * the best chunk we've found so far
2074 		 */
2075 
2076 		ext4_mb_try_best_found(ac, &e4b);
2077 		if (ac->ac_status != AC_STATUS_FOUND) {
2078 			/*
2079 			 * Someone more lucky has already allocated it.
2080 			 * The only thing we can do is just take first
2081 			 * found block(s)
2082 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2083 			 */
2084 			ac->ac_b_ex.fe_group = 0;
2085 			ac->ac_b_ex.fe_start = 0;
2086 			ac->ac_b_ex.fe_len = 0;
2087 			ac->ac_status = AC_STATUS_CONTINUE;
2088 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2089 			cr = 3;
2090 			atomic_inc(&sbi->s_mb_lost_chunks);
2091 			goto repeat;
2092 		}
2093 	}
2094 out:
2095 	return err;
2096 }
2097 
2098 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2099 {
2100 	struct super_block *sb = seq->private;
2101 	ext4_group_t group;
2102 
2103 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2104 		return NULL;
2105 	group = *pos + 1;
2106 	return (void *) ((unsigned long) group);
2107 }
2108 
2109 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2110 {
2111 	struct super_block *sb = seq->private;
2112 	ext4_group_t group;
2113 
2114 	++*pos;
2115 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2116 		return NULL;
2117 	group = *pos + 1;
2118 	return (void *) ((unsigned long) group);
2119 }
2120 
2121 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2122 {
2123 	struct super_block *sb = seq->private;
2124 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2125 	int i;
2126 	int err;
2127 	struct ext4_buddy e4b;
2128 	struct sg {
2129 		struct ext4_group_info info;
2130 		ext4_grpblk_t counters[16];
2131 	} sg;
2132 
2133 	group--;
2134 	if (group == 0)
2135 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2136 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2137 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2138 			   "group", "free", "frags", "first",
2139 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2140 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2141 
2142 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2143 		sizeof(struct ext4_group_info);
2144 	err = ext4_mb_load_buddy(sb, group, &e4b);
2145 	if (err) {
2146 		seq_printf(seq, "#%-5u: I/O error\n", group);
2147 		return 0;
2148 	}
2149 	ext4_lock_group(sb, group);
2150 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2151 	ext4_unlock_group(sb, group);
2152 	ext4_mb_unload_buddy(&e4b);
2153 
2154 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2155 			sg.info.bb_fragments, sg.info.bb_first_free);
2156 	for (i = 0; i <= 13; i++)
2157 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2158 				sg.info.bb_counters[i] : 0);
2159 	seq_printf(seq, " ]\n");
2160 
2161 	return 0;
2162 }
2163 
2164 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2165 {
2166 }
2167 
2168 static const struct seq_operations ext4_mb_seq_groups_ops = {
2169 	.start  = ext4_mb_seq_groups_start,
2170 	.next   = ext4_mb_seq_groups_next,
2171 	.stop   = ext4_mb_seq_groups_stop,
2172 	.show   = ext4_mb_seq_groups_show,
2173 };
2174 
2175 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2176 {
2177 	struct super_block *sb = PDE(inode)->data;
2178 	int rc;
2179 
2180 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2181 	if (rc == 0) {
2182 		struct seq_file *m = file->private_data;
2183 		m->private = sb;
2184 	}
2185 	return rc;
2186 
2187 }
2188 
2189 static const struct file_operations ext4_mb_seq_groups_fops = {
2190 	.owner		= THIS_MODULE,
2191 	.open		= ext4_mb_seq_groups_open,
2192 	.read		= seq_read,
2193 	.llseek		= seq_lseek,
2194 	.release	= seq_release,
2195 };
2196 
2197 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2198 {
2199 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2200 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2201 
2202 	BUG_ON(!cachep);
2203 	return cachep;
2204 }
2205 
2206 /* Create and initialize ext4_group_info data for the given group. */
2207 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2208 			  struct ext4_group_desc *desc)
2209 {
2210 	int i;
2211 	int metalen = 0;
2212 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2213 	struct ext4_group_info **meta_group_info;
2214 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2215 
2216 	/*
2217 	 * First check if this group is the first of a reserved block.
2218 	 * If it's true, we have to allocate a new table of pointers
2219 	 * to ext4_group_info structures
2220 	 */
2221 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2222 		metalen = sizeof(*meta_group_info) <<
2223 			EXT4_DESC_PER_BLOCK_BITS(sb);
2224 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2225 		if (meta_group_info == NULL) {
2226 			printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2227 			       "buddy group\n");
2228 			goto exit_meta_group_info;
2229 		}
2230 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2231 			meta_group_info;
2232 	}
2233 
2234 	meta_group_info =
2235 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2236 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2237 
2238 	meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL);
2239 	if (meta_group_info[i] == NULL) {
2240 		printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2241 		goto exit_group_info;
2242 	}
2243 	memset(meta_group_info[i], 0, kmem_cache_size(cachep));
2244 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2245 		&(meta_group_info[i]->bb_state));
2246 
2247 	/*
2248 	 * initialize bb_free to be able to skip
2249 	 * empty groups without initialization
2250 	 */
2251 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2252 		meta_group_info[i]->bb_free =
2253 			ext4_free_blocks_after_init(sb, group, desc);
2254 	} else {
2255 		meta_group_info[i]->bb_free =
2256 			ext4_free_blks_count(sb, desc);
2257 	}
2258 
2259 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2260 	init_rwsem(&meta_group_info[i]->alloc_sem);
2261 	meta_group_info[i]->bb_free_root = RB_ROOT;
2262 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2263 
2264 #ifdef DOUBLE_CHECK
2265 	{
2266 		struct buffer_head *bh;
2267 		meta_group_info[i]->bb_bitmap =
2268 			kmalloc(sb->s_blocksize, GFP_KERNEL);
2269 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2270 		bh = ext4_read_block_bitmap(sb, group);
2271 		BUG_ON(bh == NULL);
2272 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2273 			sb->s_blocksize);
2274 		put_bh(bh);
2275 	}
2276 #endif
2277 
2278 	return 0;
2279 
2280 exit_group_info:
2281 	/* If a meta_group_info table has been allocated, release it now */
2282 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2283 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2284 exit_meta_group_info:
2285 	return -ENOMEM;
2286 } /* ext4_mb_add_groupinfo */
2287 
2288 static int ext4_mb_init_backend(struct super_block *sb)
2289 {
2290 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2291 	ext4_group_t i;
2292 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2293 	struct ext4_super_block *es = sbi->s_es;
2294 	int num_meta_group_infos;
2295 	int num_meta_group_infos_max;
2296 	int array_size;
2297 	struct ext4_group_desc *desc;
2298 	struct kmem_cache *cachep;
2299 
2300 	/* This is the number of blocks used by GDT */
2301 	num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2302 				1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2303 
2304 	/*
2305 	 * This is the total number of blocks used by GDT including
2306 	 * the number of reserved blocks for GDT.
2307 	 * The s_group_info array is allocated with this value
2308 	 * to allow a clean online resize without a complex
2309 	 * manipulation of pointer.
2310 	 * The drawback is the unused memory when no resize
2311 	 * occurs but it's very low in terms of pages
2312 	 * (see comments below)
2313 	 * Need to handle this properly when META_BG resizing is allowed
2314 	 */
2315 	num_meta_group_infos_max = num_meta_group_infos +
2316 				le16_to_cpu(es->s_reserved_gdt_blocks);
2317 
2318 	/*
2319 	 * array_size is the size of s_group_info array. We round it
2320 	 * to the next power of two because this approximation is done
2321 	 * internally by kmalloc so we can have some more memory
2322 	 * for free here (e.g. may be used for META_BG resize).
2323 	 */
2324 	array_size = 1;
2325 	while (array_size < sizeof(*sbi->s_group_info) *
2326 	       num_meta_group_infos_max)
2327 		array_size = array_size << 1;
2328 	/* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2329 	 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2330 	 * So a two level scheme suffices for now. */
2331 	sbi->s_group_info = kzalloc(array_size, GFP_KERNEL);
2332 	if (sbi->s_group_info == NULL) {
2333 		printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2334 		return -ENOMEM;
2335 	}
2336 	sbi->s_buddy_cache = new_inode(sb);
2337 	if (sbi->s_buddy_cache == NULL) {
2338 		printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2339 		goto err_freesgi;
2340 	}
2341 	sbi->s_buddy_cache->i_ino = get_next_ino();
2342 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2343 	for (i = 0; i < ngroups; i++) {
2344 		desc = ext4_get_group_desc(sb, i, NULL);
2345 		if (desc == NULL) {
2346 			printk(KERN_ERR
2347 				"EXT4-fs: can't read descriptor %u\n", i);
2348 			goto err_freebuddy;
2349 		}
2350 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2351 			goto err_freebuddy;
2352 	}
2353 
2354 	return 0;
2355 
2356 err_freebuddy:
2357 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2358 	while (i-- > 0)
2359 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2360 	i = num_meta_group_infos;
2361 	while (i-- > 0)
2362 		kfree(sbi->s_group_info[i]);
2363 	iput(sbi->s_buddy_cache);
2364 err_freesgi:
2365 	kfree(sbi->s_group_info);
2366 	return -ENOMEM;
2367 }
2368 
2369 static void ext4_groupinfo_destroy_slabs(void)
2370 {
2371 	int i;
2372 
2373 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2374 		if (ext4_groupinfo_caches[i])
2375 			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2376 		ext4_groupinfo_caches[i] = NULL;
2377 	}
2378 }
2379 
2380 static int ext4_groupinfo_create_slab(size_t size)
2381 {
2382 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2383 	int slab_size;
2384 	int blocksize_bits = order_base_2(size);
2385 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2386 	struct kmem_cache *cachep;
2387 
2388 	if (cache_index >= NR_GRPINFO_CACHES)
2389 		return -EINVAL;
2390 
2391 	if (unlikely(cache_index < 0))
2392 		cache_index = 0;
2393 
2394 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2395 	if (ext4_groupinfo_caches[cache_index]) {
2396 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2397 		return 0;	/* Already created */
2398 	}
2399 
2400 	slab_size = offsetof(struct ext4_group_info,
2401 				bb_counters[blocksize_bits + 2]);
2402 
2403 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2404 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2405 					NULL);
2406 
2407 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2408 	if (!cachep) {
2409 		printk(KERN_EMERG "EXT4: no memory for groupinfo slab cache\n");
2410 		return -ENOMEM;
2411 	}
2412 
2413 	ext4_groupinfo_caches[cache_index] = cachep;
2414 
2415 	return 0;
2416 }
2417 
2418 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2419 {
2420 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2421 	unsigned i, j;
2422 	unsigned offset;
2423 	unsigned max;
2424 	int ret;
2425 
2426 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2427 
2428 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2429 	if (sbi->s_mb_offsets == NULL) {
2430 		ret = -ENOMEM;
2431 		goto out;
2432 	}
2433 
2434 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2435 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2436 	if (sbi->s_mb_maxs == NULL) {
2437 		ret = -ENOMEM;
2438 		goto out;
2439 	}
2440 
2441 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2442 	if (ret < 0)
2443 		goto out;
2444 
2445 	/* order 0 is regular bitmap */
2446 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2447 	sbi->s_mb_offsets[0] = 0;
2448 
2449 	i = 1;
2450 	offset = 0;
2451 	max = sb->s_blocksize << 2;
2452 	do {
2453 		sbi->s_mb_offsets[i] = offset;
2454 		sbi->s_mb_maxs[i] = max;
2455 		offset += 1 << (sb->s_blocksize_bits - i);
2456 		max = max >> 1;
2457 		i++;
2458 	} while (i <= sb->s_blocksize_bits + 1);
2459 
2460 	/* init file for buddy data */
2461 	ret = ext4_mb_init_backend(sb);
2462 	if (ret != 0) {
2463 		goto out;
2464 	}
2465 
2466 	spin_lock_init(&sbi->s_md_lock);
2467 	spin_lock_init(&sbi->s_bal_lock);
2468 
2469 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2470 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2471 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2472 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2473 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2474 	sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2475 
2476 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2477 	if (sbi->s_locality_groups == NULL) {
2478 		ret = -ENOMEM;
2479 		goto out;
2480 	}
2481 	for_each_possible_cpu(i) {
2482 		struct ext4_locality_group *lg;
2483 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2484 		mutex_init(&lg->lg_mutex);
2485 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2486 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2487 		spin_lock_init(&lg->lg_prealloc_lock);
2488 	}
2489 
2490 	if (sbi->s_proc)
2491 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2492 				 &ext4_mb_seq_groups_fops, sb);
2493 
2494 	if (sbi->s_journal)
2495 		sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2496 out:
2497 	if (ret) {
2498 		kfree(sbi->s_mb_offsets);
2499 		kfree(sbi->s_mb_maxs);
2500 	}
2501 	return ret;
2502 }
2503 
2504 /* need to called with the ext4 group lock held */
2505 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2506 {
2507 	struct ext4_prealloc_space *pa;
2508 	struct list_head *cur, *tmp;
2509 	int count = 0;
2510 
2511 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2512 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2513 		list_del(&pa->pa_group_list);
2514 		count++;
2515 		kmem_cache_free(ext4_pspace_cachep, pa);
2516 	}
2517 	if (count)
2518 		mb_debug(1, "mballoc: %u PAs left\n", count);
2519 
2520 }
2521 
2522 int ext4_mb_release(struct super_block *sb)
2523 {
2524 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2525 	ext4_group_t i;
2526 	int num_meta_group_infos;
2527 	struct ext4_group_info *grinfo;
2528 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2529 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2530 
2531 	if (sbi->s_group_info) {
2532 		for (i = 0; i < ngroups; i++) {
2533 			grinfo = ext4_get_group_info(sb, i);
2534 #ifdef DOUBLE_CHECK
2535 			kfree(grinfo->bb_bitmap);
2536 #endif
2537 			ext4_lock_group(sb, i);
2538 			ext4_mb_cleanup_pa(grinfo);
2539 			ext4_unlock_group(sb, i);
2540 			kmem_cache_free(cachep, grinfo);
2541 		}
2542 		num_meta_group_infos = (ngroups +
2543 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2544 			EXT4_DESC_PER_BLOCK_BITS(sb);
2545 		for (i = 0; i < num_meta_group_infos; i++)
2546 			kfree(sbi->s_group_info[i]);
2547 		kfree(sbi->s_group_info);
2548 	}
2549 	kfree(sbi->s_mb_offsets);
2550 	kfree(sbi->s_mb_maxs);
2551 	if (sbi->s_buddy_cache)
2552 		iput(sbi->s_buddy_cache);
2553 	if (sbi->s_mb_stats) {
2554 		printk(KERN_INFO
2555 		       "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2556 				atomic_read(&sbi->s_bal_allocated),
2557 				atomic_read(&sbi->s_bal_reqs),
2558 				atomic_read(&sbi->s_bal_success));
2559 		printk(KERN_INFO
2560 		      "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2561 				"%u 2^N hits, %u breaks, %u lost\n",
2562 				atomic_read(&sbi->s_bal_ex_scanned),
2563 				atomic_read(&sbi->s_bal_goals),
2564 				atomic_read(&sbi->s_bal_2orders),
2565 				atomic_read(&sbi->s_bal_breaks),
2566 				atomic_read(&sbi->s_mb_lost_chunks));
2567 		printk(KERN_INFO
2568 		       "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2569 				sbi->s_mb_buddies_generated++,
2570 				sbi->s_mb_generation_time);
2571 		printk(KERN_INFO
2572 		       "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2573 				atomic_read(&sbi->s_mb_preallocated),
2574 				atomic_read(&sbi->s_mb_discarded));
2575 	}
2576 
2577 	free_percpu(sbi->s_locality_groups);
2578 	if (sbi->s_proc)
2579 		remove_proc_entry("mb_groups", sbi->s_proc);
2580 
2581 	return 0;
2582 }
2583 
2584 static inline int ext4_issue_discard(struct super_block *sb,
2585 		ext4_group_t block_group, ext4_grpblk_t block, int count)
2586 {
2587 	ext4_fsblk_t discard_block;
2588 
2589 	discard_block = block + ext4_group_first_block_no(sb, block_group);
2590 	trace_ext4_discard_blocks(sb,
2591 			(unsigned long long) discard_block, count);
2592 	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2593 }
2594 
2595 /*
2596  * This function is called by the jbd2 layer once the commit has finished,
2597  * so we know we can free the blocks that were released with that commit.
2598  */
2599 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2600 {
2601 	struct super_block *sb = journal->j_private;
2602 	struct ext4_buddy e4b;
2603 	struct ext4_group_info *db;
2604 	int err, count = 0, count2 = 0;
2605 	struct ext4_free_data *entry;
2606 	struct list_head *l, *ltmp;
2607 
2608 	list_for_each_safe(l, ltmp, &txn->t_private_list) {
2609 		entry = list_entry(l, struct ext4_free_data, list);
2610 
2611 		mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2612 			 entry->count, entry->group, entry);
2613 
2614 		if (test_opt(sb, DISCARD))
2615 			ext4_issue_discard(sb, entry->group,
2616 					   entry->start_blk, entry->count);
2617 
2618 		err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2619 		/* we expect to find existing buddy because it's pinned */
2620 		BUG_ON(err != 0);
2621 
2622 		db = e4b.bd_info;
2623 		/* there are blocks to put in buddy to make them really free */
2624 		count += entry->count;
2625 		count2++;
2626 		ext4_lock_group(sb, entry->group);
2627 		/* Take it out of per group rb tree */
2628 		rb_erase(&entry->node, &(db->bb_free_root));
2629 		mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2630 
2631 		if (!db->bb_free_root.rb_node) {
2632 			/* No more items in the per group rb tree
2633 			 * balance refcounts from ext4_mb_free_metadata()
2634 			 */
2635 			page_cache_release(e4b.bd_buddy_page);
2636 			page_cache_release(e4b.bd_bitmap_page);
2637 		}
2638 		ext4_unlock_group(sb, entry->group);
2639 		kmem_cache_free(ext4_free_ext_cachep, entry);
2640 		ext4_mb_unload_buddy(&e4b);
2641 	}
2642 
2643 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2644 }
2645 
2646 #ifdef CONFIG_EXT4_DEBUG
2647 u8 mb_enable_debug __read_mostly;
2648 
2649 static struct dentry *debugfs_dir;
2650 static struct dentry *debugfs_debug;
2651 
2652 static void __init ext4_create_debugfs_entry(void)
2653 {
2654 	debugfs_dir = debugfs_create_dir("ext4", NULL);
2655 	if (debugfs_dir)
2656 		debugfs_debug = debugfs_create_u8("mballoc-debug",
2657 						  S_IRUGO | S_IWUSR,
2658 						  debugfs_dir,
2659 						  &mb_enable_debug);
2660 }
2661 
2662 static void ext4_remove_debugfs_entry(void)
2663 {
2664 	debugfs_remove(debugfs_debug);
2665 	debugfs_remove(debugfs_dir);
2666 }
2667 
2668 #else
2669 
2670 static void __init ext4_create_debugfs_entry(void)
2671 {
2672 }
2673 
2674 static void ext4_remove_debugfs_entry(void)
2675 {
2676 }
2677 
2678 #endif
2679 
2680 int __init ext4_init_mballoc(void)
2681 {
2682 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2683 					SLAB_RECLAIM_ACCOUNT);
2684 	if (ext4_pspace_cachep == NULL)
2685 		return -ENOMEM;
2686 
2687 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2688 				    SLAB_RECLAIM_ACCOUNT);
2689 	if (ext4_ac_cachep == NULL) {
2690 		kmem_cache_destroy(ext4_pspace_cachep);
2691 		return -ENOMEM;
2692 	}
2693 
2694 	ext4_free_ext_cachep = KMEM_CACHE(ext4_free_data,
2695 					  SLAB_RECLAIM_ACCOUNT);
2696 	if (ext4_free_ext_cachep == NULL) {
2697 		kmem_cache_destroy(ext4_pspace_cachep);
2698 		kmem_cache_destroy(ext4_ac_cachep);
2699 		return -ENOMEM;
2700 	}
2701 	ext4_create_debugfs_entry();
2702 	return 0;
2703 }
2704 
2705 void ext4_exit_mballoc(void)
2706 {
2707 	/*
2708 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2709 	 * before destroying the slab cache.
2710 	 */
2711 	rcu_barrier();
2712 	kmem_cache_destroy(ext4_pspace_cachep);
2713 	kmem_cache_destroy(ext4_ac_cachep);
2714 	kmem_cache_destroy(ext4_free_ext_cachep);
2715 	ext4_groupinfo_destroy_slabs();
2716 	ext4_remove_debugfs_entry();
2717 }
2718 
2719 
2720 /*
2721  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2722  * Returns 0 if success or error code
2723  */
2724 static noinline_for_stack int
2725 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2726 				handle_t *handle, unsigned int reserv_blks)
2727 {
2728 	struct buffer_head *bitmap_bh = NULL;
2729 	struct ext4_group_desc *gdp;
2730 	struct buffer_head *gdp_bh;
2731 	struct ext4_sb_info *sbi;
2732 	struct super_block *sb;
2733 	ext4_fsblk_t block;
2734 	int err, len;
2735 
2736 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2737 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2738 
2739 	sb = ac->ac_sb;
2740 	sbi = EXT4_SB(sb);
2741 
2742 	err = -EIO;
2743 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2744 	if (!bitmap_bh)
2745 		goto out_err;
2746 
2747 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2748 	if (err)
2749 		goto out_err;
2750 
2751 	err = -EIO;
2752 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2753 	if (!gdp)
2754 		goto out_err;
2755 
2756 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2757 			ext4_free_blks_count(sb, gdp));
2758 
2759 	err = ext4_journal_get_write_access(handle, gdp_bh);
2760 	if (err)
2761 		goto out_err;
2762 
2763 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2764 
2765 	len = ac->ac_b_ex.fe_len;
2766 	if (!ext4_data_block_valid(sbi, block, len)) {
2767 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2768 			   "fs metadata\n", block, block+len);
2769 		/* File system mounted not to panic on error
2770 		 * Fix the bitmap and repeat the block allocation
2771 		 * We leak some of the blocks here.
2772 		 */
2773 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2774 		mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2775 			    ac->ac_b_ex.fe_len);
2776 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2777 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2778 		if (!err)
2779 			err = -EAGAIN;
2780 		goto out_err;
2781 	}
2782 
2783 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2784 #ifdef AGGRESSIVE_CHECK
2785 	{
2786 		int i;
2787 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2788 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2789 						bitmap_bh->b_data));
2790 		}
2791 	}
2792 #endif
2793 	mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len);
2794 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2795 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2796 		ext4_free_blks_set(sb, gdp,
2797 					ext4_free_blocks_after_init(sb,
2798 					ac->ac_b_ex.fe_group, gdp));
2799 	}
2800 	len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
2801 	ext4_free_blks_set(sb, gdp, len);
2802 	gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2803 
2804 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2805 	percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
2806 	/*
2807 	 * Now reduce the dirty block count also. Should not go negative
2808 	 */
2809 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2810 		/* release all the reserved blocks if non delalloc */
2811 		percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
2812 
2813 	if (sbi->s_log_groups_per_flex) {
2814 		ext4_group_t flex_group = ext4_flex_group(sbi,
2815 							  ac->ac_b_ex.fe_group);
2816 		atomic_sub(ac->ac_b_ex.fe_len,
2817 			   &sbi->s_flex_groups[flex_group].free_blocks);
2818 	}
2819 
2820 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2821 	if (err)
2822 		goto out_err;
2823 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2824 
2825 out_err:
2826 	ext4_mark_super_dirty(sb);
2827 	brelse(bitmap_bh);
2828 	return err;
2829 }
2830 
2831 /*
2832  * here we normalize request for locality group
2833  * Group request are normalized to s_strip size if we set the same via mount
2834  * option. If not we set it to s_mb_group_prealloc which can be configured via
2835  * /sys/fs/ext4/<partition>/mb_group_prealloc
2836  *
2837  * XXX: should we try to preallocate more than the group has now?
2838  */
2839 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2840 {
2841 	struct super_block *sb = ac->ac_sb;
2842 	struct ext4_locality_group *lg = ac->ac_lg;
2843 
2844 	BUG_ON(lg == NULL);
2845 	if (EXT4_SB(sb)->s_stripe)
2846 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
2847 	else
2848 		ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2849 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2850 		current->pid, ac->ac_g_ex.fe_len);
2851 }
2852 
2853 /*
2854  * Normalization means making request better in terms of
2855  * size and alignment
2856  */
2857 static noinline_for_stack void
2858 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2859 				struct ext4_allocation_request *ar)
2860 {
2861 	int bsbits, max;
2862 	ext4_lblk_t end;
2863 	loff_t size, orig_size, start_off;
2864 	ext4_lblk_t start;
2865 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2866 	struct ext4_prealloc_space *pa;
2867 
2868 	/* do normalize only data requests, metadata requests
2869 	   do not need preallocation */
2870 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2871 		return;
2872 
2873 	/* sometime caller may want exact blocks */
2874 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2875 		return;
2876 
2877 	/* caller may indicate that preallocation isn't
2878 	 * required (it's a tail, for example) */
2879 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2880 		return;
2881 
2882 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2883 		ext4_mb_normalize_group_request(ac);
2884 		return ;
2885 	}
2886 
2887 	bsbits = ac->ac_sb->s_blocksize_bits;
2888 
2889 	/* first, let's learn actual file size
2890 	 * given current request is allocated */
2891 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
2892 	size = size << bsbits;
2893 	if (size < i_size_read(ac->ac_inode))
2894 		size = i_size_read(ac->ac_inode);
2895 	orig_size = size;
2896 
2897 	/* max size of free chunks */
2898 	max = 2 << bsbits;
2899 
2900 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
2901 		(req <= (size) || max <= (chunk_size))
2902 
2903 	/* first, try to predict filesize */
2904 	/* XXX: should this table be tunable? */
2905 	start_off = 0;
2906 	if (size <= 16 * 1024) {
2907 		size = 16 * 1024;
2908 	} else if (size <= 32 * 1024) {
2909 		size = 32 * 1024;
2910 	} else if (size <= 64 * 1024) {
2911 		size = 64 * 1024;
2912 	} else if (size <= 128 * 1024) {
2913 		size = 128 * 1024;
2914 	} else if (size <= 256 * 1024) {
2915 		size = 256 * 1024;
2916 	} else if (size <= 512 * 1024) {
2917 		size = 512 * 1024;
2918 	} else if (size <= 1024 * 1024) {
2919 		size = 1024 * 1024;
2920 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2921 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2922 						(21 - bsbits)) << 21;
2923 		size = 2 * 1024 * 1024;
2924 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2925 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2926 							(22 - bsbits)) << 22;
2927 		size = 4 * 1024 * 1024;
2928 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2929 					(8<<20)>>bsbits, max, 8 * 1024)) {
2930 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2931 							(23 - bsbits)) << 23;
2932 		size = 8 * 1024 * 1024;
2933 	} else {
2934 		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2935 		size	  = ac->ac_o_ex.fe_len << bsbits;
2936 	}
2937 	size = size >> bsbits;
2938 	start = start_off >> bsbits;
2939 
2940 	/* don't cover already allocated blocks in selected range */
2941 	if (ar->pleft && start <= ar->lleft) {
2942 		size -= ar->lleft + 1 - start;
2943 		start = ar->lleft + 1;
2944 	}
2945 	if (ar->pright && start + size - 1 >= ar->lright)
2946 		size -= start + size - ar->lright;
2947 
2948 	end = start + size;
2949 
2950 	/* check we don't cross already preallocated blocks */
2951 	rcu_read_lock();
2952 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2953 		ext4_lblk_t pa_end;
2954 
2955 		if (pa->pa_deleted)
2956 			continue;
2957 		spin_lock(&pa->pa_lock);
2958 		if (pa->pa_deleted) {
2959 			spin_unlock(&pa->pa_lock);
2960 			continue;
2961 		}
2962 
2963 		pa_end = pa->pa_lstart + pa->pa_len;
2964 
2965 		/* PA must not overlap original request */
2966 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2967 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
2968 
2969 		/* skip PAs this normalized request doesn't overlap with */
2970 		if (pa->pa_lstart >= end || pa_end <= start) {
2971 			spin_unlock(&pa->pa_lock);
2972 			continue;
2973 		}
2974 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
2975 
2976 		/* adjust start or end to be adjacent to this pa */
2977 		if (pa_end <= ac->ac_o_ex.fe_logical) {
2978 			BUG_ON(pa_end < start);
2979 			start = pa_end;
2980 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
2981 			BUG_ON(pa->pa_lstart > end);
2982 			end = pa->pa_lstart;
2983 		}
2984 		spin_unlock(&pa->pa_lock);
2985 	}
2986 	rcu_read_unlock();
2987 	size = end - start;
2988 
2989 	/* XXX: extra loop to check we really don't overlap preallocations */
2990 	rcu_read_lock();
2991 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2992 		ext4_lblk_t pa_end;
2993 		spin_lock(&pa->pa_lock);
2994 		if (pa->pa_deleted == 0) {
2995 			pa_end = pa->pa_lstart + pa->pa_len;
2996 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
2997 		}
2998 		spin_unlock(&pa->pa_lock);
2999 	}
3000 	rcu_read_unlock();
3001 
3002 	if (start + size <= ac->ac_o_ex.fe_logical &&
3003 			start > ac->ac_o_ex.fe_logical) {
3004 		printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
3005 			(unsigned long) start, (unsigned long) size,
3006 			(unsigned long) ac->ac_o_ex.fe_logical);
3007 	}
3008 	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3009 			start > ac->ac_o_ex.fe_logical);
3010 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3011 
3012 	/* now prepare goal request */
3013 
3014 	/* XXX: is it better to align blocks WRT to logical
3015 	 * placement or satisfy big request as is */
3016 	ac->ac_g_ex.fe_logical = start;
3017 	ac->ac_g_ex.fe_len = size;
3018 
3019 	/* define goal start in order to merge */
3020 	if (ar->pright && (ar->lright == (start + size))) {
3021 		/* merge to the right */
3022 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3023 						&ac->ac_f_ex.fe_group,
3024 						&ac->ac_f_ex.fe_start);
3025 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3026 	}
3027 	if (ar->pleft && (ar->lleft + 1 == start)) {
3028 		/* merge to the left */
3029 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3030 						&ac->ac_f_ex.fe_group,
3031 						&ac->ac_f_ex.fe_start);
3032 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3033 	}
3034 
3035 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3036 		(unsigned) orig_size, (unsigned) start);
3037 }
3038 
3039 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3040 {
3041 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3042 
3043 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3044 		atomic_inc(&sbi->s_bal_reqs);
3045 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3046 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3047 			atomic_inc(&sbi->s_bal_success);
3048 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3049 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3050 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3051 			atomic_inc(&sbi->s_bal_goals);
3052 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3053 			atomic_inc(&sbi->s_bal_breaks);
3054 	}
3055 
3056 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3057 		trace_ext4_mballoc_alloc(ac);
3058 	else
3059 		trace_ext4_mballoc_prealloc(ac);
3060 }
3061 
3062 /*
3063  * Called on failure; free up any blocks from the inode PA for this
3064  * context.  We don't need this for MB_GROUP_PA because we only change
3065  * pa_free in ext4_mb_release_context(), but on failure, we've already
3066  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3067  */
3068 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3069 {
3070 	struct ext4_prealloc_space *pa = ac->ac_pa;
3071 	int len;
3072 
3073 	if (pa && pa->pa_type == MB_INODE_PA) {
3074 		len = ac->ac_b_ex.fe_len;
3075 		pa->pa_free += len;
3076 	}
3077 
3078 }
3079 
3080 /*
3081  * use blocks preallocated to inode
3082  */
3083 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3084 				struct ext4_prealloc_space *pa)
3085 {
3086 	ext4_fsblk_t start;
3087 	ext4_fsblk_t end;
3088 	int len;
3089 
3090 	/* found preallocated blocks, use them */
3091 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3092 	end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3093 	len = end - start;
3094 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3095 					&ac->ac_b_ex.fe_start);
3096 	ac->ac_b_ex.fe_len = len;
3097 	ac->ac_status = AC_STATUS_FOUND;
3098 	ac->ac_pa = pa;
3099 
3100 	BUG_ON(start < pa->pa_pstart);
3101 	BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3102 	BUG_ON(pa->pa_free < len);
3103 	pa->pa_free -= len;
3104 
3105 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3106 }
3107 
3108 /*
3109  * use blocks preallocated to locality group
3110  */
3111 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3112 				struct ext4_prealloc_space *pa)
3113 {
3114 	unsigned int len = ac->ac_o_ex.fe_len;
3115 
3116 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3117 					&ac->ac_b_ex.fe_group,
3118 					&ac->ac_b_ex.fe_start);
3119 	ac->ac_b_ex.fe_len = len;
3120 	ac->ac_status = AC_STATUS_FOUND;
3121 	ac->ac_pa = pa;
3122 
3123 	/* we don't correct pa_pstart or pa_plen here to avoid
3124 	 * possible race when the group is being loaded concurrently
3125 	 * instead we correct pa later, after blocks are marked
3126 	 * in on-disk bitmap -- see ext4_mb_release_context()
3127 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3128 	 */
3129 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3130 }
3131 
3132 /*
3133  * Return the prealloc space that have minimal distance
3134  * from the goal block. @cpa is the prealloc
3135  * space that is having currently known minimal distance
3136  * from the goal block.
3137  */
3138 static struct ext4_prealloc_space *
3139 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3140 			struct ext4_prealloc_space *pa,
3141 			struct ext4_prealloc_space *cpa)
3142 {
3143 	ext4_fsblk_t cur_distance, new_distance;
3144 
3145 	if (cpa == NULL) {
3146 		atomic_inc(&pa->pa_count);
3147 		return pa;
3148 	}
3149 	cur_distance = abs(goal_block - cpa->pa_pstart);
3150 	new_distance = abs(goal_block - pa->pa_pstart);
3151 
3152 	if (cur_distance <= new_distance)
3153 		return cpa;
3154 
3155 	/* drop the previous reference */
3156 	atomic_dec(&cpa->pa_count);
3157 	atomic_inc(&pa->pa_count);
3158 	return pa;
3159 }
3160 
3161 /*
3162  * search goal blocks in preallocated space
3163  */
3164 static noinline_for_stack int
3165 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3166 {
3167 	int order, i;
3168 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3169 	struct ext4_locality_group *lg;
3170 	struct ext4_prealloc_space *pa, *cpa = NULL;
3171 	ext4_fsblk_t goal_block;
3172 
3173 	/* only data can be preallocated */
3174 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3175 		return 0;
3176 
3177 	/* first, try per-file preallocation */
3178 	rcu_read_lock();
3179 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3180 
3181 		/* all fields in this condition don't change,
3182 		 * so we can skip locking for them */
3183 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3184 			ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3185 			continue;
3186 
3187 		/* non-extent files can't have physical blocks past 2^32 */
3188 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3189 			pa->pa_pstart + pa->pa_len > EXT4_MAX_BLOCK_FILE_PHYS)
3190 			continue;
3191 
3192 		/* found preallocated blocks, use them */
3193 		spin_lock(&pa->pa_lock);
3194 		if (pa->pa_deleted == 0 && pa->pa_free) {
3195 			atomic_inc(&pa->pa_count);
3196 			ext4_mb_use_inode_pa(ac, pa);
3197 			spin_unlock(&pa->pa_lock);
3198 			ac->ac_criteria = 10;
3199 			rcu_read_unlock();
3200 			return 1;
3201 		}
3202 		spin_unlock(&pa->pa_lock);
3203 	}
3204 	rcu_read_unlock();
3205 
3206 	/* can we use group allocation? */
3207 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3208 		return 0;
3209 
3210 	/* inode may have no locality group for some reason */
3211 	lg = ac->ac_lg;
3212 	if (lg == NULL)
3213 		return 0;
3214 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3215 	if (order > PREALLOC_TB_SIZE - 1)
3216 		/* The max size of hash table is PREALLOC_TB_SIZE */
3217 		order = PREALLOC_TB_SIZE - 1;
3218 
3219 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3220 	/*
3221 	 * search for the prealloc space that is having
3222 	 * minimal distance from the goal block.
3223 	 */
3224 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3225 		rcu_read_lock();
3226 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3227 					pa_inode_list) {
3228 			spin_lock(&pa->pa_lock);
3229 			if (pa->pa_deleted == 0 &&
3230 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3231 
3232 				cpa = ext4_mb_check_group_pa(goal_block,
3233 								pa, cpa);
3234 			}
3235 			spin_unlock(&pa->pa_lock);
3236 		}
3237 		rcu_read_unlock();
3238 	}
3239 	if (cpa) {
3240 		ext4_mb_use_group_pa(ac, cpa);
3241 		ac->ac_criteria = 20;
3242 		return 1;
3243 	}
3244 	return 0;
3245 }
3246 
3247 /*
3248  * the function goes through all block freed in the group
3249  * but not yet committed and marks them used in in-core bitmap.
3250  * buddy must be generated from this bitmap
3251  * Need to be called with the ext4 group lock held
3252  */
3253 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3254 						ext4_group_t group)
3255 {
3256 	struct rb_node *n;
3257 	struct ext4_group_info *grp;
3258 	struct ext4_free_data *entry;
3259 
3260 	grp = ext4_get_group_info(sb, group);
3261 	n = rb_first(&(grp->bb_free_root));
3262 
3263 	while (n) {
3264 		entry = rb_entry(n, struct ext4_free_data, node);
3265 		mb_set_bits(bitmap, entry->start_blk, entry->count);
3266 		n = rb_next(n);
3267 	}
3268 	return;
3269 }
3270 
3271 /*
3272  * the function goes through all preallocation in this group and marks them
3273  * used in in-core bitmap. buddy must be generated from this bitmap
3274  * Need to be called with ext4 group lock held
3275  */
3276 static noinline_for_stack
3277 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3278 					ext4_group_t group)
3279 {
3280 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3281 	struct ext4_prealloc_space *pa;
3282 	struct list_head *cur;
3283 	ext4_group_t groupnr;
3284 	ext4_grpblk_t start;
3285 	int preallocated = 0;
3286 	int count = 0;
3287 	int len;
3288 
3289 	/* all form of preallocation discards first load group,
3290 	 * so the only competing code is preallocation use.
3291 	 * we don't need any locking here
3292 	 * notice we do NOT ignore preallocations with pa_deleted
3293 	 * otherwise we could leave used blocks available for
3294 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3295 	 * is dropping preallocation
3296 	 */
3297 	list_for_each(cur, &grp->bb_prealloc_list) {
3298 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3299 		spin_lock(&pa->pa_lock);
3300 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3301 					     &groupnr, &start);
3302 		len = pa->pa_len;
3303 		spin_unlock(&pa->pa_lock);
3304 		if (unlikely(len == 0))
3305 			continue;
3306 		BUG_ON(groupnr != group);
3307 		mb_set_bits(bitmap, start, len);
3308 		preallocated += len;
3309 		count++;
3310 	}
3311 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3312 }
3313 
3314 static void ext4_mb_pa_callback(struct rcu_head *head)
3315 {
3316 	struct ext4_prealloc_space *pa;
3317 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3318 	kmem_cache_free(ext4_pspace_cachep, pa);
3319 }
3320 
3321 /*
3322  * drops a reference to preallocated space descriptor
3323  * if this was the last reference and the space is consumed
3324  */
3325 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3326 			struct super_block *sb, struct ext4_prealloc_space *pa)
3327 {
3328 	ext4_group_t grp;
3329 	ext4_fsblk_t grp_blk;
3330 
3331 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3332 		return;
3333 
3334 	/* in this short window concurrent discard can set pa_deleted */
3335 	spin_lock(&pa->pa_lock);
3336 	if (pa->pa_deleted == 1) {
3337 		spin_unlock(&pa->pa_lock);
3338 		return;
3339 	}
3340 
3341 	pa->pa_deleted = 1;
3342 	spin_unlock(&pa->pa_lock);
3343 
3344 	grp_blk = pa->pa_pstart;
3345 	/*
3346 	 * If doing group-based preallocation, pa_pstart may be in the
3347 	 * next group when pa is used up
3348 	 */
3349 	if (pa->pa_type == MB_GROUP_PA)
3350 		grp_blk--;
3351 
3352 	ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3353 
3354 	/*
3355 	 * possible race:
3356 	 *
3357 	 *  P1 (buddy init)			P2 (regular allocation)
3358 	 *					find block B in PA
3359 	 *  copy on-disk bitmap to buddy
3360 	 *  					mark B in on-disk bitmap
3361 	 *					drop PA from group
3362 	 *  mark all PAs in buddy
3363 	 *
3364 	 * thus, P1 initializes buddy with B available. to prevent this
3365 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3366 	 * against that pair
3367 	 */
3368 	ext4_lock_group(sb, grp);
3369 	list_del(&pa->pa_group_list);
3370 	ext4_unlock_group(sb, grp);
3371 
3372 	spin_lock(pa->pa_obj_lock);
3373 	list_del_rcu(&pa->pa_inode_list);
3374 	spin_unlock(pa->pa_obj_lock);
3375 
3376 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3377 }
3378 
3379 /*
3380  * creates new preallocated space for given inode
3381  */
3382 static noinline_for_stack int
3383 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3384 {
3385 	struct super_block *sb = ac->ac_sb;
3386 	struct ext4_prealloc_space *pa;
3387 	struct ext4_group_info *grp;
3388 	struct ext4_inode_info *ei;
3389 
3390 	/* preallocate only when found space is larger then requested */
3391 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3392 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3393 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3394 
3395 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3396 	if (pa == NULL)
3397 		return -ENOMEM;
3398 
3399 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3400 		int winl;
3401 		int wins;
3402 		int win;
3403 		int offs;
3404 
3405 		/* we can't allocate as much as normalizer wants.
3406 		 * so, found space must get proper lstart
3407 		 * to cover original request */
3408 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3409 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3410 
3411 		/* we're limited by original request in that
3412 		 * logical block must be covered any way
3413 		 * winl is window we can move our chunk within */
3414 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3415 
3416 		/* also, we should cover whole original request */
3417 		wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3418 
3419 		/* the smallest one defines real window */
3420 		win = min(winl, wins);
3421 
3422 		offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3423 		if (offs && offs < win)
3424 			win = offs;
3425 
3426 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3427 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3428 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3429 	}
3430 
3431 	/* preallocation can change ac_b_ex, thus we store actually
3432 	 * allocated blocks for history */
3433 	ac->ac_f_ex = ac->ac_b_ex;
3434 
3435 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3436 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3437 	pa->pa_len = ac->ac_b_ex.fe_len;
3438 	pa->pa_free = pa->pa_len;
3439 	atomic_set(&pa->pa_count, 1);
3440 	spin_lock_init(&pa->pa_lock);
3441 	INIT_LIST_HEAD(&pa->pa_inode_list);
3442 	INIT_LIST_HEAD(&pa->pa_group_list);
3443 	pa->pa_deleted = 0;
3444 	pa->pa_type = MB_INODE_PA;
3445 
3446 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3447 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3448 	trace_ext4_mb_new_inode_pa(ac, pa);
3449 
3450 	ext4_mb_use_inode_pa(ac, pa);
3451 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3452 
3453 	ei = EXT4_I(ac->ac_inode);
3454 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3455 
3456 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3457 	pa->pa_inode = ac->ac_inode;
3458 
3459 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3460 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3461 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3462 
3463 	spin_lock(pa->pa_obj_lock);
3464 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3465 	spin_unlock(pa->pa_obj_lock);
3466 
3467 	return 0;
3468 }
3469 
3470 /*
3471  * creates new preallocated space for locality group inodes belongs to
3472  */
3473 static noinline_for_stack int
3474 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3475 {
3476 	struct super_block *sb = ac->ac_sb;
3477 	struct ext4_locality_group *lg;
3478 	struct ext4_prealloc_space *pa;
3479 	struct ext4_group_info *grp;
3480 
3481 	/* preallocate only when found space is larger then requested */
3482 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3483 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3484 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3485 
3486 	BUG_ON(ext4_pspace_cachep == NULL);
3487 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3488 	if (pa == NULL)
3489 		return -ENOMEM;
3490 
3491 	/* preallocation can change ac_b_ex, thus we store actually
3492 	 * allocated blocks for history */
3493 	ac->ac_f_ex = ac->ac_b_ex;
3494 
3495 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3496 	pa->pa_lstart = pa->pa_pstart;
3497 	pa->pa_len = ac->ac_b_ex.fe_len;
3498 	pa->pa_free = pa->pa_len;
3499 	atomic_set(&pa->pa_count, 1);
3500 	spin_lock_init(&pa->pa_lock);
3501 	INIT_LIST_HEAD(&pa->pa_inode_list);
3502 	INIT_LIST_HEAD(&pa->pa_group_list);
3503 	pa->pa_deleted = 0;
3504 	pa->pa_type = MB_GROUP_PA;
3505 
3506 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3507 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3508 	trace_ext4_mb_new_group_pa(ac, pa);
3509 
3510 	ext4_mb_use_group_pa(ac, pa);
3511 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3512 
3513 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3514 	lg = ac->ac_lg;
3515 	BUG_ON(lg == NULL);
3516 
3517 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3518 	pa->pa_inode = NULL;
3519 
3520 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3521 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3522 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3523 
3524 	/*
3525 	 * We will later add the new pa to the right bucket
3526 	 * after updating the pa_free in ext4_mb_release_context
3527 	 */
3528 	return 0;
3529 }
3530 
3531 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3532 {
3533 	int err;
3534 
3535 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3536 		err = ext4_mb_new_group_pa(ac);
3537 	else
3538 		err = ext4_mb_new_inode_pa(ac);
3539 	return err;
3540 }
3541 
3542 /*
3543  * finds all unused blocks in on-disk bitmap, frees them in
3544  * in-core bitmap and buddy.
3545  * @pa must be unlinked from inode and group lists, so that
3546  * nobody else can find/use it.
3547  * the caller MUST hold group/inode locks.
3548  * TODO: optimize the case when there are no in-core structures yet
3549  */
3550 static noinline_for_stack int
3551 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3552 			struct ext4_prealloc_space *pa)
3553 {
3554 	struct super_block *sb = e4b->bd_sb;
3555 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3556 	unsigned int end;
3557 	unsigned int next;
3558 	ext4_group_t group;
3559 	ext4_grpblk_t bit;
3560 	unsigned long long grp_blk_start;
3561 	int err = 0;
3562 	int free = 0;
3563 
3564 	BUG_ON(pa->pa_deleted == 0);
3565 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3566 	grp_blk_start = pa->pa_pstart - bit;
3567 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3568 	end = bit + pa->pa_len;
3569 
3570 	while (bit < end) {
3571 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3572 		if (bit >= end)
3573 			break;
3574 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3575 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3576 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3577 			 (unsigned) next - bit, (unsigned) group);
3578 		free += next - bit;
3579 
3580 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3581 		trace_ext4_mb_release_inode_pa(sb, pa->pa_inode, pa,
3582 					       grp_blk_start + bit, next - bit);
3583 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3584 		bit = next + 1;
3585 	}
3586 	if (free != pa->pa_free) {
3587 		printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3588 			pa, (unsigned long) pa->pa_lstart,
3589 			(unsigned long) pa->pa_pstart,
3590 			(unsigned long) pa->pa_len);
3591 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3592 					free, pa->pa_free);
3593 		/*
3594 		 * pa is already deleted so we use the value obtained
3595 		 * from the bitmap and continue.
3596 		 */
3597 	}
3598 	atomic_add(free, &sbi->s_mb_discarded);
3599 
3600 	return err;
3601 }
3602 
3603 static noinline_for_stack int
3604 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3605 				struct ext4_prealloc_space *pa)
3606 {
3607 	struct super_block *sb = e4b->bd_sb;
3608 	ext4_group_t group;
3609 	ext4_grpblk_t bit;
3610 
3611 	trace_ext4_mb_release_group_pa(sb, pa);
3612 	BUG_ON(pa->pa_deleted == 0);
3613 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3614 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3615 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3616 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3617 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3618 
3619 	return 0;
3620 }
3621 
3622 /*
3623  * releases all preallocations in given group
3624  *
3625  * first, we need to decide discard policy:
3626  * - when do we discard
3627  *   1) ENOSPC
3628  * - how many do we discard
3629  *   1) how many requested
3630  */
3631 static noinline_for_stack int
3632 ext4_mb_discard_group_preallocations(struct super_block *sb,
3633 					ext4_group_t group, int needed)
3634 {
3635 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3636 	struct buffer_head *bitmap_bh = NULL;
3637 	struct ext4_prealloc_space *pa, *tmp;
3638 	struct list_head list;
3639 	struct ext4_buddy e4b;
3640 	int err;
3641 	int busy = 0;
3642 	int free = 0;
3643 
3644 	mb_debug(1, "discard preallocation for group %u\n", group);
3645 
3646 	if (list_empty(&grp->bb_prealloc_list))
3647 		return 0;
3648 
3649 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3650 	if (bitmap_bh == NULL) {
3651 		ext4_error(sb, "Error reading block bitmap for %u", group);
3652 		return 0;
3653 	}
3654 
3655 	err = ext4_mb_load_buddy(sb, group, &e4b);
3656 	if (err) {
3657 		ext4_error(sb, "Error loading buddy information for %u", group);
3658 		put_bh(bitmap_bh);
3659 		return 0;
3660 	}
3661 
3662 	if (needed == 0)
3663 		needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3664 
3665 	INIT_LIST_HEAD(&list);
3666 repeat:
3667 	ext4_lock_group(sb, group);
3668 	list_for_each_entry_safe(pa, tmp,
3669 				&grp->bb_prealloc_list, pa_group_list) {
3670 		spin_lock(&pa->pa_lock);
3671 		if (atomic_read(&pa->pa_count)) {
3672 			spin_unlock(&pa->pa_lock);
3673 			busy = 1;
3674 			continue;
3675 		}
3676 		if (pa->pa_deleted) {
3677 			spin_unlock(&pa->pa_lock);
3678 			continue;
3679 		}
3680 
3681 		/* seems this one can be freed ... */
3682 		pa->pa_deleted = 1;
3683 
3684 		/* we can trust pa_free ... */
3685 		free += pa->pa_free;
3686 
3687 		spin_unlock(&pa->pa_lock);
3688 
3689 		list_del(&pa->pa_group_list);
3690 		list_add(&pa->u.pa_tmp_list, &list);
3691 	}
3692 
3693 	/* if we still need more blocks and some PAs were used, try again */
3694 	if (free < needed && busy) {
3695 		busy = 0;
3696 		ext4_unlock_group(sb, group);
3697 		/*
3698 		 * Yield the CPU here so that we don't get soft lockup
3699 		 * in non preempt case.
3700 		 */
3701 		yield();
3702 		goto repeat;
3703 	}
3704 
3705 	/* found anything to free? */
3706 	if (list_empty(&list)) {
3707 		BUG_ON(free != 0);
3708 		goto out;
3709 	}
3710 
3711 	/* now free all selected PAs */
3712 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3713 
3714 		/* remove from object (inode or locality group) */
3715 		spin_lock(pa->pa_obj_lock);
3716 		list_del_rcu(&pa->pa_inode_list);
3717 		spin_unlock(pa->pa_obj_lock);
3718 
3719 		if (pa->pa_type == MB_GROUP_PA)
3720 			ext4_mb_release_group_pa(&e4b, pa);
3721 		else
3722 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3723 
3724 		list_del(&pa->u.pa_tmp_list);
3725 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3726 	}
3727 
3728 out:
3729 	ext4_unlock_group(sb, group);
3730 	ext4_mb_unload_buddy(&e4b);
3731 	put_bh(bitmap_bh);
3732 	return free;
3733 }
3734 
3735 /*
3736  * releases all non-used preallocated blocks for given inode
3737  *
3738  * It's important to discard preallocations under i_data_sem
3739  * We don't want another block to be served from the prealloc
3740  * space when we are discarding the inode prealloc space.
3741  *
3742  * FIXME!! Make sure it is valid at all the call sites
3743  */
3744 void ext4_discard_preallocations(struct inode *inode)
3745 {
3746 	struct ext4_inode_info *ei = EXT4_I(inode);
3747 	struct super_block *sb = inode->i_sb;
3748 	struct buffer_head *bitmap_bh = NULL;
3749 	struct ext4_prealloc_space *pa, *tmp;
3750 	ext4_group_t group = 0;
3751 	struct list_head list;
3752 	struct ext4_buddy e4b;
3753 	int err;
3754 
3755 	if (!S_ISREG(inode->i_mode)) {
3756 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3757 		return;
3758 	}
3759 
3760 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3761 	trace_ext4_discard_preallocations(inode);
3762 
3763 	INIT_LIST_HEAD(&list);
3764 
3765 repeat:
3766 	/* first, collect all pa's in the inode */
3767 	spin_lock(&ei->i_prealloc_lock);
3768 	while (!list_empty(&ei->i_prealloc_list)) {
3769 		pa = list_entry(ei->i_prealloc_list.next,
3770 				struct ext4_prealloc_space, pa_inode_list);
3771 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3772 		spin_lock(&pa->pa_lock);
3773 		if (atomic_read(&pa->pa_count)) {
3774 			/* this shouldn't happen often - nobody should
3775 			 * use preallocation while we're discarding it */
3776 			spin_unlock(&pa->pa_lock);
3777 			spin_unlock(&ei->i_prealloc_lock);
3778 			printk(KERN_ERR "uh-oh! used pa while discarding\n");
3779 			WARN_ON(1);
3780 			schedule_timeout_uninterruptible(HZ);
3781 			goto repeat;
3782 
3783 		}
3784 		if (pa->pa_deleted == 0) {
3785 			pa->pa_deleted = 1;
3786 			spin_unlock(&pa->pa_lock);
3787 			list_del_rcu(&pa->pa_inode_list);
3788 			list_add(&pa->u.pa_tmp_list, &list);
3789 			continue;
3790 		}
3791 
3792 		/* someone is deleting pa right now */
3793 		spin_unlock(&pa->pa_lock);
3794 		spin_unlock(&ei->i_prealloc_lock);
3795 
3796 		/* we have to wait here because pa_deleted
3797 		 * doesn't mean pa is already unlinked from
3798 		 * the list. as we might be called from
3799 		 * ->clear_inode() the inode will get freed
3800 		 * and concurrent thread which is unlinking
3801 		 * pa from inode's list may access already
3802 		 * freed memory, bad-bad-bad */
3803 
3804 		/* XXX: if this happens too often, we can
3805 		 * add a flag to force wait only in case
3806 		 * of ->clear_inode(), but not in case of
3807 		 * regular truncate */
3808 		schedule_timeout_uninterruptible(HZ);
3809 		goto repeat;
3810 	}
3811 	spin_unlock(&ei->i_prealloc_lock);
3812 
3813 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3814 		BUG_ON(pa->pa_type != MB_INODE_PA);
3815 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3816 
3817 		err = ext4_mb_load_buddy(sb, group, &e4b);
3818 		if (err) {
3819 			ext4_error(sb, "Error loading buddy information for %u",
3820 					group);
3821 			continue;
3822 		}
3823 
3824 		bitmap_bh = ext4_read_block_bitmap(sb, group);
3825 		if (bitmap_bh == NULL) {
3826 			ext4_error(sb, "Error reading block bitmap for %u",
3827 					group);
3828 			ext4_mb_unload_buddy(&e4b);
3829 			continue;
3830 		}
3831 
3832 		ext4_lock_group(sb, group);
3833 		list_del(&pa->pa_group_list);
3834 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3835 		ext4_unlock_group(sb, group);
3836 
3837 		ext4_mb_unload_buddy(&e4b);
3838 		put_bh(bitmap_bh);
3839 
3840 		list_del(&pa->u.pa_tmp_list);
3841 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3842 	}
3843 }
3844 
3845 #ifdef CONFIG_EXT4_DEBUG
3846 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3847 {
3848 	struct super_block *sb = ac->ac_sb;
3849 	ext4_group_t ngroups, i;
3850 
3851 	if (!mb_enable_debug ||
3852 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3853 		return;
3854 
3855 	printk(KERN_ERR "EXT4-fs: Can't allocate:"
3856 			" Allocation context details:\n");
3857 	printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
3858 			ac->ac_status, ac->ac_flags);
3859 	printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
3860 			"best %lu/%lu/%lu@%lu cr %d\n",
3861 			(unsigned long)ac->ac_o_ex.fe_group,
3862 			(unsigned long)ac->ac_o_ex.fe_start,
3863 			(unsigned long)ac->ac_o_ex.fe_len,
3864 			(unsigned long)ac->ac_o_ex.fe_logical,
3865 			(unsigned long)ac->ac_g_ex.fe_group,
3866 			(unsigned long)ac->ac_g_ex.fe_start,
3867 			(unsigned long)ac->ac_g_ex.fe_len,
3868 			(unsigned long)ac->ac_g_ex.fe_logical,
3869 			(unsigned long)ac->ac_b_ex.fe_group,
3870 			(unsigned long)ac->ac_b_ex.fe_start,
3871 			(unsigned long)ac->ac_b_ex.fe_len,
3872 			(unsigned long)ac->ac_b_ex.fe_logical,
3873 			(int)ac->ac_criteria);
3874 	printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
3875 		ac->ac_found);
3876 	printk(KERN_ERR "EXT4-fs: groups: \n");
3877 	ngroups = ext4_get_groups_count(sb);
3878 	for (i = 0; i < ngroups; i++) {
3879 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3880 		struct ext4_prealloc_space *pa;
3881 		ext4_grpblk_t start;
3882 		struct list_head *cur;
3883 		ext4_lock_group(sb, i);
3884 		list_for_each(cur, &grp->bb_prealloc_list) {
3885 			pa = list_entry(cur, struct ext4_prealloc_space,
3886 					pa_group_list);
3887 			spin_lock(&pa->pa_lock);
3888 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3889 						     NULL, &start);
3890 			spin_unlock(&pa->pa_lock);
3891 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
3892 			       start, pa->pa_len);
3893 		}
3894 		ext4_unlock_group(sb, i);
3895 
3896 		if (grp->bb_free == 0)
3897 			continue;
3898 		printk(KERN_ERR "%u: %d/%d \n",
3899 		       i, grp->bb_free, grp->bb_fragments);
3900 	}
3901 	printk(KERN_ERR "\n");
3902 }
3903 #else
3904 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3905 {
3906 	return;
3907 }
3908 #endif
3909 
3910 /*
3911  * We use locality group preallocation for small size file. The size of the
3912  * file is determined by the current size or the resulting size after
3913  * allocation which ever is larger
3914  *
3915  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3916  */
3917 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3918 {
3919 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3920 	int bsbits = ac->ac_sb->s_blocksize_bits;
3921 	loff_t size, isize;
3922 
3923 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3924 		return;
3925 
3926 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3927 		return;
3928 
3929 	size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3930 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3931 		>> bsbits;
3932 
3933 	if ((size == isize) &&
3934 	    !ext4_fs_is_busy(sbi) &&
3935 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3936 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3937 		return;
3938 	}
3939 
3940 	/* don't use group allocation for large files */
3941 	size = max(size, isize);
3942 	if (size > sbi->s_mb_stream_request) {
3943 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3944 		return;
3945 	}
3946 
3947 	BUG_ON(ac->ac_lg != NULL);
3948 	/*
3949 	 * locality group prealloc space are per cpu. The reason for having
3950 	 * per cpu locality group is to reduce the contention between block
3951 	 * request from multiple CPUs.
3952 	 */
3953 	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3954 
3955 	/* we're going to use group allocation */
3956 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
3957 
3958 	/* serialize all allocations in the group */
3959 	mutex_lock(&ac->ac_lg->lg_mutex);
3960 }
3961 
3962 static noinline_for_stack int
3963 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3964 				struct ext4_allocation_request *ar)
3965 {
3966 	struct super_block *sb = ar->inode->i_sb;
3967 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3968 	struct ext4_super_block *es = sbi->s_es;
3969 	ext4_group_t group;
3970 	unsigned int len;
3971 	ext4_fsblk_t goal;
3972 	ext4_grpblk_t block;
3973 
3974 	/* we can't allocate > group size */
3975 	len = ar->len;
3976 
3977 	/* just a dirty hack to filter too big requests  */
3978 	if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
3979 		len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
3980 
3981 	/* start searching from the goal */
3982 	goal = ar->goal;
3983 	if (goal < le32_to_cpu(es->s_first_data_block) ||
3984 			goal >= ext4_blocks_count(es))
3985 		goal = le32_to_cpu(es->s_first_data_block);
3986 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
3987 
3988 	/* set up allocation goals */
3989 	memset(ac, 0, sizeof(struct ext4_allocation_context));
3990 	ac->ac_b_ex.fe_logical = ar->logical;
3991 	ac->ac_status = AC_STATUS_CONTINUE;
3992 	ac->ac_sb = sb;
3993 	ac->ac_inode = ar->inode;
3994 	ac->ac_o_ex.fe_logical = ar->logical;
3995 	ac->ac_o_ex.fe_group = group;
3996 	ac->ac_o_ex.fe_start = block;
3997 	ac->ac_o_ex.fe_len = len;
3998 	ac->ac_g_ex.fe_logical = ar->logical;
3999 	ac->ac_g_ex.fe_group = group;
4000 	ac->ac_g_ex.fe_start = block;
4001 	ac->ac_g_ex.fe_len = len;
4002 	ac->ac_flags = ar->flags;
4003 
4004 	/* we have to define context: we'll we work with a file or
4005 	 * locality group. this is a policy, actually */
4006 	ext4_mb_group_or_file(ac);
4007 
4008 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4009 			"left: %u/%u, right %u/%u to %swritable\n",
4010 			(unsigned) ar->len, (unsigned) ar->logical,
4011 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4012 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4013 			(unsigned) ar->lright, (unsigned) ar->pright,
4014 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4015 	return 0;
4016 
4017 }
4018 
4019 static noinline_for_stack void
4020 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4021 					struct ext4_locality_group *lg,
4022 					int order, int total_entries)
4023 {
4024 	ext4_group_t group = 0;
4025 	struct ext4_buddy e4b;
4026 	struct list_head discard_list;
4027 	struct ext4_prealloc_space *pa, *tmp;
4028 
4029 	mb_debug(1, "discard locality group preallocation\n");
4030 
4031 	INIT_LIST_HEAD(&discard_list);
4032 
4033 	spin_lock(&lg->lg_prealloc_lock);
4034 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4035 						pa_inode_list) {
4036 		spin_lock(&pa->pa_lock);
4037 		if (atomic_read(&pa->pa_count)) {
4038 			/*
4039 			 * This is the pa that we just used
4040 			 * for block allocation. So don't
4041 			 * free that
4042 			 */
4043 			spin_unlock(&pa->pa_lock);
4044 			continue;
4045 		}
4046 		if (pa->pa_deleted) {
4047 			spin_unlock(&pa->pa_lock);
4048 			continue;
4049 		}
4050 		/* only lg prealloc space */
4051 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4052 
4053 		/* seems this one can be freed ... */
4054 		pa->pa_deleted = 1;
4055 		spin_unlock(&pa->pa_lock);
4056 
4057 		list_del_rcu(&pa->pa_inode_list);
4058 		list_add(&pa->u.pa_tmp_list, &discard_list);
4059 
4060 		total_entries--;
4061 		if (total_entries <= 5) {
4062 			/*
4063 			 * we want to keep only 5 entries
4064 			 * allowing it to grow to 8. This
4065 			 * mak sure we don't call discard
4066 			 * soon for this list.
4067 			 */
4068 			break;
4069 		}
4070 	}
4071 	spin_unlock(&lg->lg_prealloc_lock);
4072 
4073 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4074 
4075 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4076 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4077 			ext4_error(sb, "Error loading buddy information for %u",
4078 					group);
4079 			continue;
4080 		}
4081 		ext4_lock_group(sb, group);
4082 		list_del(&pa->pa_group_list);
4083 		ext4_mb_release_group_pa(&e4b, pa);
4084 		ext4_unlock_group(sb, group);
4085 
4086 		ext4_mb_unload_buddy(&e4b);
4087 		list_del(&pa->u.pa_tmp_list);
4088 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4089 	}
4090 }
4091 
4092 /*
4093  * We have incremented pa_count. So it cannot be freed at this
4094  * point. Also we hold lg_mutex. So no parallel allocation is
4095  * possible from this lg. That means pa_free cannot be updated.
4096  *
4097  * A parallel ext4_mb_discard_group_preallocations is possible.
4098  * which can cause the lg_prealloc_list to be updated.
4099  */
4100 
4101 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4102 {
4103 	int order, added = 0, lg_prealloc_count = 1;
4104 	struct super_block *sb = ac->ac_sb;
4105 	struct ext4_locality_group *lg = ac->ac_lg;
4106 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4107 
4108 	order = fls(pa->pa_free) - 1;
4109 	if (order > PREALLOC_TB_SIZE - 1)
4110 		/* The max size of hash table is PREALLOC_TB_SIZE */
4111 		order = PREALLOC_TB_SIZE - 1;
4112 	/* Add the prealloc space to lg */
4113 	rcu_read_lock();
4114 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4115 						pa_inode_list) {
4116 		spin_lock(&tmp_pa->pa_lock);
4117 		if (tmp_pa->pa_deleted) {
4118 			spin_unlock(&tmp_pa->pa_lock);
4119 			continue;
4120 		}
4121 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4122 			/* Add to the tail of the previous entry */
4123 			list_add_tail_rcu(&pa->pa_inode_list,
4124 						&tmp_pa->pa_inode_list);
4125 			added = 1;
4126 			/*
4127 			 * we want to count the total
4128 			 * number of entries in the list
4129 			 */
4130 		}
4131 		spin_unlock(&tmp_pa->pa_lock);
4132 		lg_prealloc_count++;
4133 	}
4134 	if (!added)
4135 		list_add_tail_rcu(&pa->pa_inode_list,
4136 					&lg->lg_prealloc_list[order]);
4137 	rcu_read_unlock();
4138 
4139 	/* Now trim the list to be not more than 8 elements */
4140 	if (lg_prealloc_count > 8) {
4141 		ext4_mb_discard_lg_preallocations(sb, lg,
4142 						order, lg_prealloc_count);
4143 		return;
4144 	}
4145 	return ;
4146 }
4147 
4148 /*
4149  * release all resource we used in allocation
4150  */
4151 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4152 {
4153 	struct ext4_prealloc_space *pa = ac->ac_pa;
4154 	if (pa) {
4155 		if (pa->pa_type == MB_GROUP_PA) {
4156 			/* see comment in ext4_mb_use_group_pa() */
4157 			spin_lock(&pa->pa_lock);
4158 			pa->pa_pstart += ac->ac_b_ex.fe_len;
4159 			pa->pa_lstart += ac->ac_b_ex.fe_len;
4160 			pa->pa_free -= ac->ac_b_ex.fe_len;
4161 			pa->pa_len -= ac->ac_b_ex.fe_len;
4162 			spin_unlock(&pa->pa_lock);
4163 		}
4164 	}
4165 	if (pa) {
4166 		/*
4167 		 * We want to add the pa to the right bucket.
4168 		 * Remove it from the list and while adding
4169 		 * make sure the list to which we are adding
4170 		 * doesn't grow big.
4171 		 */
4172 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4173 			spin_lock(pa->pa_obj_lock);
4174 			list_del_rcu(&pa->pa_inode_list);
4175 			spin_unlock(pa->pa_obj_lock);
4176 			ext4_mb_add_n_trim(ac);
4177 		}
4178 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4179 	}
4180 	if (ac->ac_bitmap_page)
4181 		page_cache_release(ac->ac_bitmap_page);
4182 	if (ac->ac_buddy_page)
4183 		page_cache_release(ac->ac_buddy_page);
4184 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4185 		mutex_unlock(&ac->ac_lg->lg_mutex);
4186 	ext4_mb_collect_stats(ac);
4187 	return 0;
4188 }
4189 
4190 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4191 {
4192 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4193 	int ret;
4194 	int freed = 0;
4195 
4196 	trace_ext4_mb_discard_preallocations(sb, needed);
4197 	for (i = 0; i < ngroups && needed > 0; i++) {
4198 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4199 		freed += ret;
4200 		needed -= ret;
4201 	}
4202 
4203 	return freed;
4204 }
4205 
4206 /*
4207  * Main entry point into mballoc to allocate blocks
4208  * it tries to use preallocation first, then falls back
4209  * to usual allocation
4210  */
4211 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4212 				struct ext4_allocation_request *ar, int *errp)
4213 {
4214 	int freed;
4215 	struct ext4_allocation_context *ac = NULL;
4216 	struct ext4_sb_info *sbi;
4217 	struct super_block *sb;
4218 	ext4_fsblk_t block = 0;
4219 	unsigned int inquota = 0;
4220 	unsigned int reserv_blks = 0;
4221 
4222 	sb = ar->inode->i_sb;
4223 	sbi = EXT4_SB(sb);
4224 
4225 	trace_ext4_request_blocks(ar);
4226 
4227 	/*
4228 	 * For delayed allocation, we could skip the ENOSPC and
4229 	 * EDQUOT check, as blocks and quotas have been already
4230 	 * reserved when data being copied into pagecache.
4231 	 */
4232 	if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4233 		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4234 	else {
4235 		/* Without delayed allocation we need to verify
4236 		 * there is enough free blocks to do block allocation
4237 		 * and verify allocation doesn't exceed the quota limits.
4238 		 */
4239 		while (ar->len &&
4240 			ext4_claim_free_blocks(sbi, ar->len, ar->flags)) {
4241 
4242 			/* let others to free the space */
4243 			yield();
4244 			ar->len = ar->len >> 1;
4245 		}
4246 		if (!ar->len) {
4247 			*errp = -ENOSPC;
4248 			return 0;
4249 		}
4250 		reserv_blks = ar->len;
4251 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4252 			dquot_alloc_block_nofail(ar->inode, ar->len);
4253 		} else {
4254 			while (ar->len &&
4255 				dquot_alloc_block(ar->inode, ar->len)) {
4256 
4257 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4258 				ar->len--;
4259 			}
4260 		}
4261 		inquota = ar->len;
4262 		if (ar->len == 0) {
4263 			*errp = -EDQUOT;
4264 			goto out;
4265 		}
4266 	}
4267 
4268 	ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4269 	if (!ac) {
4270 		ar->len = 0;
4271 		*errp = -ENOMEM;
4272 		goto out;
4273 	}
4274 
4275 	*errp = ext4_mb_initialize_context(ac, ar);
4276 	if (*errp) {
4277 		ar->len = 0;
4278 		goto out;
4279 	}
4280 
4281 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4282 	if (!ext4_mb_use_preallocated(ac)) {
4283 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4284 		ext4_mb_normalize_request(ac, ar);
4285 repeat:
4286 		/* allocate space in core */
4287 		*errp = ext4_mb_regular_allocator(ac);
4288 		if (*errp)
4289 			goto errout;
4290 
4291 		/* as we've just preallocated more space than
4292 		 * user requested orinally, we store allocated
4293 		 * space in a special descriptor */
4294 		if (ac->ac_status == AC_STATUS_FOUND &&
4295 				ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4296 			ext4_mb_new_preallocation(ac);
4297 	}
4298 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4299 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4300 		if (*errp == -EAGAIN) {
4301 			/*
4302 			 * drop the reference that we took
4303 			 * in ext4_mb_use_best_found
4304 			 */
4305 			ext4_mb_release_context(ac);
4306 			ac->ac_b_ex.fe_group = 0;
4307 			ac->ac_b_ex.fe_start = 0;
4308 			ac->ac_b_ex.fe_len = 0;
4309 			ac->ac_status = AC_STATUS_CONTINUE;
4310 			goto repeat;
4311 		} else if (*errp)
4312 		errout:
4313 			ext4_discard_allocated_blocks(ac);
4314 		else {
4315 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4316 			ar->len = ac->ac_b_ex.fe_len;
4317 		}
4318 	} else {
4319 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4320 		if (freed)
4321 			goto repeat;
4322 		*errp = -ENOSPC;
4323 	}
4324 
4325 	if (*errp) {
4326 		ac->ac_b_ex.fe_len = 0;
4327 		ar->len = 0;
4328 		ext4_mb_show_ac(ac);
4329 	}
4330 	ext4_mb_release_context(ac);
4331 out:
4332 	if (ac)
4333 		kmem_cache_free(ext4_ac_cachep, ac);
4334 	if (inquota && ar->len < inquota)
4335 		dquot_free_block(ar->inode, inquota - ar->len);
4336 	if (!ar->len) {
4337 		if (!ext4_test_inode_state(ar->inode,
4338 					   EXT4_STATE_DELALLOC_RESERVED))
4339 			/* release all the reserved blocks if non delalloc */
4340 			percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4341 						reserv_blks);
4342 	}
4343 
4344 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4345 
4346 	return block;
4347 }
4348 
4349 /*
4350  * We can merge two free data extents only if the physical blocks
4351  * are contiguous, AND the extents were freed by the same transaction,
4352  * AND the blocks are associated with the same group.
4353  */
4354 static int can_merge(struct ext4_free_data *entry1,
4355 			struct ext4_free_data *entry2)
4356 {
4357 	if ((entry1->t_tid == entry2->t_tid) &&
4358 	    (entry1->group == entry2->group) &&
4359 	    ((entry1->start_blk + entry1->count) == entry2->start_blk))
4360 		return 1;
4361 	return 0;
4362 }
4363 
4364 static noinline_for_stack int
4365 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4366 		      struct ext4_free_data *new_entry)
4367 {
4368 	ext4_group_t group = e4b->bd_group;
4369 	ext4_grpblk_t block;
4370 	struct ext4_free_data *entry;
4371 	struct ext4_group_info *db = e4b->bd_info;
4372 	struct super_block *sb = e4b->bd_sb;
4373 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4374 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4375 	struct rb_node *parent = NULL, *new_node;
4376 
4377 	BUG_ON(!ext4_handle_valid(handle));
4378 	BUG_ON(e4b->bd_bitmap_page == NULL);
4379 	BUG_ON(e4b->bd_buddy_page == NULL);
4380 
4381 	new_node = &new_entry->node;
4382 	block = new_entry->start_blk;
4383 
4384 	if (!*n) {
4385 		/* first free block exent. We need to
4386 		   protect buddy cache from being freed,
4387 		 * otherwise we'll refresh it from
4388 		 * on-disk bitmap and lose not-yet-available
4389 		 * blocks */
4390 		page_cache_get(e4b->bd_buddy_page);
4391 		page_cache_get(e4b->bd_bitmap_page);
4392 	}
4393 	while (*n) {
4394 		parent = *n;
4395 		entry = rb_entry(parent, struct ext4_free_data, node);
4396 		if (block < entry->start_blk)
4397 			n = &(*n)->rb_left;
4398 		else if (block >= (entry->start_blk + entry->count))
4399 			n = &(*n)->rb_right;
4400 		else {
4401 			ext4_grp_locked_error(sb, group, 0,
4402 				ext4_group_first_block_no(sb, group) + block,
4403 				"Block already on to-be-freed list");
4404 			return 0;
4405 		}
4406 	}
4407 
4408 	rb_link_node(new_node, parent, n);
4409 	rb_insert_color(new_node, &db->bb_free_root);
4410 
4411 	/* Now try to see the extent can be merged to left and right */
4412 	node = rb_prev(new_node);
4413 	if (node) {
4414 		entry = rb_entry(node, struct ext4_free_data, node);
4415 		if (can_merge(entry, new_entry)) {
4416 			new_entry->start_blk = entry->start_blk;
4417 			new_entry->count += entry->count;
4418 			rb_erase(node, &(db->bb_free_root));
4419 			spin_lock(&sbi->s_md_lock);
4420 			list_del(&entry->list);
4421 			spin_unlock(&sbi->s_md_lock);
4422 			kmem_cache_free(ext4_free_ext_cachep, entry);
4423 		}
4424 	}
4425 
4426 	node = rb_next(new_node);
4427 	if (node) {
4428 		entry = rb_entry(node, struct ext4_free_data, node);
4429 		if (can_merge(new_entry, entry)) {
4430 			new_entry->count += entry->count;
4431 			rb_erase(node, &(db->bb_free_root));
4432 			spin_lock(&sbi->s_md_lock);
4433 			list_del(&entry->list);
4434 			spin_unlock(&sbi->s_md_lock);
4435 			kmem_cache_free(ext4_free_ext_cachep, entry);
4436 		}
4437 	}
4438 	/* Add the extent to transaction's private list */
4439 	spin_lock(&sbi->s_md_lock);
4440 	list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4441 	spin_unlock(&sbi->s_md_lock);
4442 	return 0;
4443 }
4444 
4445 /**
4446  * ext4_free_blocks() -- Free given blocks and update quota
4447  * @handle:		handle for this transaction
4448  * @inode:		inode
4449  * @block:		start physical block to free
4450  * @count:		number of blocks to count
4451  * @metadata: 		Are these metadata blocks
4452  */
4453 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4454 		      struct buffer_head *bh, ext4_fsblk_t block,
4455 		      unsigned long count, int flags)
4456 {
4457 	struct buffer_head *bitmap_bh = NULL;
4458 	struct super_block *sb = inode->i_sb;
4459 	struct ext4_group_desc *gdp;
4460 	unsigned long freed = 0;
4461 	unsigned int overflow;
4462 	ext4_grpblk_t bit;
4463 	struct buffer_head *gd_bh;
4464 	ext4_group_t block_group;
4465 	struct ext4_sb_info *sbi;
4466 	struct ext4_buddy e4b;
4467 	int err = 0;
4468 	int ret;
4469 
4470 	if (bh) {
4471 		if (block)
4472 			BUG_ON(block != bh->b_blocknr);
4473 		else
4474 			block = bh->b_blocknr;
4475 	}
4476 
4477 	sbi = EXT4_SB(sb);
4478 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4479 	    !ext4_data_block_valid(sbi, block, count)) {
4480 		ext4_error(sb, "Freeing blocks not in datazone - "
4481 			   "block = %llu, count = %lu", block, count);
4482 		goto error_return;
4483 	}
4484 
4485 	ext4_debug("freeing block %llu\n", block);
4486 	trace_ext4_free_blocks(inode, block, count, flags);
4487 
4488 	if (flags & EXT4_FREE_BLOCKS_FORGET) {
4489 		struct buffer_head *tbh = bh;
4490 		int i;
4491 
4492 		BUG_ON(bh && (count > 1));
4493 
4494 		for (i = 0; i < count; i++) {
4495 			if (!bh)
4496 				tbh = sb_find_get_block(inode->i_sb,
4497 							block + i);
4498 			if (unlikely(!tbh))
4499 				continue;
4500 			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4501 				    inode, tbh, block + i);
4502 		}
4503 	}
4504 
4505 	/*
4506 	 * We need to make sure we don't reuse the freed block until
4507 	 * after the transaction is committed, which we can do by
4508 	 * treating the block as metadata, below.  We make an
4509 	 * exception if the inode is to be written in writeback mode
4510 	 * since writeback mode has weak data consistency guarantees.
4511 	 */
4512 	if (!ext4_should_writeback_data(inode))
4513 		flags |= EXT4_FREE_BLOCKS_METADATA;
4514 
4515 do_more:
4516 	overflow = 0;
4517 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4518 
4519 	/*
4520 	 * Check to see if we are freeing blocks across a group
4521 	 * boundary.
4522 	 */
4523 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4524 		overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4525 		count -= overflow;
4526 	}
4527 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4528 	if (!bitmap_bh) {
4529 		err = -EIO;
4530 		goto error_return;
4531 	}
4532 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4533 	if (!gdp) {
4534 		err = -EIO;
4535 		goto error_return;
4536 	}
4537 
4538 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4539 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4540 	    in_range(block, ext4_inode_table(sb, gdp),
4541 		      EXT4_SB(sb)->s_itb_per_group) ||
4542 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4543 		      EXT4_SB(sb)->s_itb_per_group)) {
4544 
4545 		ext4_error(sb, "Freeing blocks in system zone - "
4546 			   "Block = %llu, count = %lu", block, count);
4547 		/* err = 0. ext4_std_error should be a no op */
4548 		goto error_return;
4549 	}
4550 
4551 	BUFFER_TRACE(bitmap_bh, "getting write access");
4552 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4553 	if (err)
4554 		goto error_return;
4555 
4556 	/*
4557 	 * We are about to modify some metadata.  Call the journal APIs
4558 	 * to unshare ->b_data if a currently-committing transaction is
4559 	 * using it
4560 	 */
4561 	BUFFER_TRACE(gd_bh, "get_write_access");
4562 	err = ext4_journal_get_write_access(handle, gd_bh);
4563 	if (err)
4564 		goto error_return;
4565 #ifdef AGGRESSIVE_CHECK
4566 	{
4567 		int i;
4568 		for (i = 0; i < count; i++)
4569 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4570 	}
4571 #endif
4572 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count);
4573 
4574 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4575 	if (err)
4576 		goto error_return;
4577 
4578 	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4579 		struct ext4_free_data *new_entry;
4580 		/*
4581 		 * blocks being freed are metadata. these blocks shouldn't
4582 		 * be used until this transaction is committed
4583 		 */
4584 		new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4585 		if (!new_entry) {
4586 			err = -ENOMEM;
4587 			goto error_return;
4588 		}
4589 		new_entry->start_blk = bit;
4590 		new_entry->group  = block_group;
4591 		new_entry->count = count;
4592 		new_entry->t_tid = handle->h_transaction->t_tid;
4593 
4594 		ext4_lock_group(sb, block_group);
4595 		mb_clear_bits(bitmap_bh->b_data, bit, count);
4596 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4597 	} else {
4598 		/* need to update group_info->bb_free and bitmap
4599 		 * with group lock held. generate_buddy look at
4600 		 * them with group lock_held
4601 		 */
4602 		ext4_lock_group(sb, block_group);
4603 		mb_clear_bits(bitmap_bh->b_data, bit, count);
4604 		mb_free_blocks(inode, &e4b, bit, count);
4605 	}
4606 
4607 	ret = ext4_free_blks_count(sb, gdp) + count;
4608 	ext4_free_blks_set(sb, gdp, ret);
4609 	gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4610 	ext4_unlock_group(sb, block_group);
4611 	percpu_counter_add(&sbi->s_freeblocks_counter, count);
4612 
4613 	if (sbi->s_log_groups_per_flex) {
4614 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4615 		atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4616 	}
4617 
4618 	ext4_mb_unload_buddy(&e4b);
4619 
4620 	freed += count;
4621 
4622 	/* We dirtied the bitmap block */
4623 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4624 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4625 
4626 	/* And the group descriptor block */
4627 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4628 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4629 	if (!err)
4630 		err = ret;
4631 
4632 	if (overflow && !err) {
4633 		block += count;
4634 		count = overflow;
4635 		put_bh(bitmap_bh);
4636 		goto do_more;
4637 	}
4638 	ext4_mark_super_dirty(sb);
4639 error_return:
4640 	if (freed)
4641 		dquot_free_block(inode, freed);
4642 	brelse(bitmap_bh);
4643 	ext4_std_error(sb, err);
4644 	return;
4645 }
4646 
4647 /**
4648  * ext4_add_groupblocks() -- Add given blocks to an existing group
4649  * @handle:			handle to this transaction
4650  * @sb:				super block
4651  * @block:			start physcial block to add to the block group
4652  * @count:			number of blocks to free
4653  *
4654  * This marks the blocks as free in the bitmap and buddy.
4655  */
4656 void ext4_add_groupblocks(handle_t *handle, struct super_block *sb,
4657 			 ext4_fsblk_t block, unsigned long count)
4658 {
4659 	struct buffer_head *bitmap_bh = NULL;
4660 	struct buffer_head *gd_bh;
4661 	ext4_group_t block_group;
4662 	ext4_grpblk_t bit;
4663 	unsigned int i;
4664 	struct ext4_group_desc *desc;
4665 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4666 	struct ext4_buddy e4b;
4667 	int err = 0, ret, blk_free_count;
4668 	ext4_grpblk_t blocks_freed;
4669 	struct ext4_group_info *grp;
4670 
4671 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4672 
4673 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4674 	grp = ext4_get_group_info(sb, block_group);
4675 	/*
4676 	 * Check to see if we are freeing blocks across a group
4677 	 * boundary.
4678 	 */
4679 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb))
4680 		goto error_return;
4681 
4682 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4683 	if (!bitmap_bh)
4684 		goto error_return;
4685 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4686 	if (!desc)
4687 		goto error_return;
4688 
4689 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4690 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4691 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4692 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4693 		     sbi->s_itb_per_group)) {
4694 		ext4_error(sb, "Adding blocks in system zones - "
4695 			   "Block = %llu, count = %lu",
4696 			   block, count);
4697 		goto error_return;
4698 	}
4699 
4700 	BUFFER_TRACE(bitmap_bh, "getting write access");
4701 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4702 	if (err)
4703 		goto error_return;
4704 
4705 	/*
4706 	 * We are about to modify some metadata.  Call the journal APIs
4707 	 * to unshare ->b_data if a currently-committing transaction is
4708 	 * using it
4709 	 */
4710 	BUFFER_TRACE(gd_bh, "get_write_access");
4711 	err = ext4_journal_get_write_access(handle, gd_bh);
4712 	if (err)
4713 		goto error_return;
4714 
4715 	for (i = 0, blocks_freed = 0; i < count; i++) {
4716 		BUFFER_TRACE(bitmap_bh, "clear bit");
4717 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4718 			ext4_error(sb, "bit already cleared for block %llu",
4719 				   (ext4_fsblk_t)(block + i));
4720 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4721 		} else {
4722 			blocks_freed++;
4723 		}
4724 	}
4725 
4726 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4727 	if (err)
4728 		goto error_return;
4729 
4730 	/*
4731 	 * need to update group_info->bb_free and bitmap
4732 	 * with group lock held. generate_buddy look at
4733 	 * them with group lock_held
4734 	 */
4735 	ext4_lock_group(sb, block_group);
4736 	mb_clear_bits(bitmap_bh->b_data, bit, count);
4737 	mb_free_blocks(NULL, &e4b, bit, count);
4738 	blk_free_count = blocks_freed + ext4_free_blks_count(sb, desc);
4739 	ext4_free_blks_set(sb, desc, blk_free_count);
4740 	desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
4741 	ext4_unlock_group(sb, block_group);
4742 	percpu_counter_add(&sbi->s_freeblocks_counter, blocks_freed);
4743 
4744 	if (sbi->s_log_groups_per_flex) {
4745 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4746 		atomic_add(blocks_freed,
4747 			   &sbi->s_flex_groups[flex_group].free_blocks);
4748 	}
4749 
4750 	ext4_mb_unload_buddy(&e4b);
4751 
4752 	/* We dirtied the bitmap block */
4753 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4754 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4755 
4756 	/* And the group descriptor block */
4757 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4758 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4759 	if (!err)
4760 		err = ret;
4761 
4762 error_return:
4763 	brelse(bitmap_bh);
4764 	ext4_std_error(sb, err);
4765 	return;
4766 }
4767 
4768 /**
4769  * ext4_trim_extent -- function to TRIM one single free extent in the group
4770  * @sb:		super block for the file system
4771  * @start:	starting block of the free extent in the alloc. group
4772  * @count:	number of blocks to TRIM
4773  * @group:	alloc. group we are working with
4774  * @e4b:	ext4 buddy for the group
4775  *
4776  * Trim "count" blocks starting at "start" in the "group". To assure that no
4777  * one will allocate those blocks, mark it as used in buddy bitmap. This must
4778  * be called with under the group lock.
4779  */
4780 static void ext4_trim_extent(struct super_block *sb, int start, int count,
4781 			     ext4_group_t group, struct ext4_buddy *e4b)
4782 {
4783 	struct ext4_free_extent ex;
4784 
4785 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
4786 
4787 	ex.fe_start = start;
4788 	ex.fe_group = group;
4789 	ex.fe_len = count;
4790 
4791 	/*
4792 	 * Mark blocks used, so no one can reuse them while
4793 	 * being trimmed.
4794 	 */
4795 	mb_mark_used(e4b, &ex);
4796 	ext4_unlock_group(sb, group);
4797 	ext4_issue_discard(sb, group, start, count);
4798 	ext4_lock_group(sb, group);
4799 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
4800 }
4801 
4802 /**
4803  * ext4_trim_all_free -- function to trim all free space in alloc. group
4804  * @sb:			super block for file system
4805  * @e4b:		ext4 buddy
4806  * @start:		first group block to examine
4807  * @max:		last group block to examine
4808  * @minblocks:		minimum extent block count
4809  *
4810  * ext4_trim_all_free walks through group's buddy bitmap searching for free
4811  * extents. When the free block is found, ext4_trim_extent is called to TRIM
4812  * the extent.
4813  *
4814  *
4815  * ext4_trim_all_free walks through group's block bitmap searching for free
4816  * extents. When the free extent is found, mark it as used in group buddy
4817  * bitmap. Then issue a TRIM command on this extent and free the extent in
4818  * the group buddy bitmap. This is done until whole group is scanned.
4819  */
4820 static ext4_grpblk_t
4821 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
4822 		   ext4_grpblk_t start, ext4_grpblk_t max,
4823 		   ext4_grpblk_t minblocks)
4824 {
4825 	void *bitmap;
4826 	ext4_grpblk_t next, count = 0;
4827 	struct ext4_buddy e4b;
4828 	int ret;
4829 
4830 	ret = ext4_mb_load_buddy(sb, group, &e4b);
4831 	if (ret) {
4832 		ext4_error(sb, "Error in loading buddy "
4833 				"information for %u", group);
4834 		return ret;
4835 	}
4836 	bitmap = e4b.bd_bitmap;
4837 
4838 	ext4_lock_group(sb, group);
4839 	start = (e4b.bd_info->bb_first_free > start) ?
4840 		e4b.bd_info->bb_first_free : start;
4841 
4842 	while (start < max) {
4843 		start = mb_find_next_zero_bit(bitmap, max, start);
4844 		if (start >= max)
4845 			break;
4846 		next = mb_find_next_bit(bitmap, max, start);
4847 
4848 		if ((next - start) >= minblocks) {
4849 			ext4_trim_extent(sb, start,
4850 					 next - start, group, &e4b);
4851 			count += next - start;
4852 		}
4853 		start = next + 1;
4854 
4855 		if (fatal_signal_pending(current)) {
4856 			count = -ERESTARTSYS;
4857 			break;
4858 		}
4859 
4860 		if (need_resched()) {
4861 			ext4_unlock_group(sb, group);
4862 			cond_resched();
4863 			ext4_lock_group(sb, group);
4864 		}
4865 
4866 		if ((e4b.bd_info->bb_free - count) < minblocks)
4867 			break;
4868 	}
4869 	ext4_unlock_group(sb, group);
4870 	ext4_mb_unload_buddy(&e4b);
4871 
4872 	ext4_debug("trimmed %d blocks in the group %d\n",
4873 		count, group);
4874 
4875 	return count;
4876 }
4877 
4878 /**
4879  * ext4_trim_fs() -- trim ioctl handle function
4880  * @sb:			superblock for filesystem
4881  * @range:		fstrim_range structure
4882  *
4883  * start:	First Byte to trim
4884  * len:		number of Bytes to trim from start
4885  * minlen:	minimum extent length in Bytes
4886  * ext4_trim_fs goes through all allocation groups containing Bytes from
4887  * start to start+len. For each such a group ext4_trim_all_free function
4888  * is invoked to trim all free space.
4889  */
4890 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
4891 {
4892 	struct ext4_group_info *grp;
4893 	ext4_group_t first_group, last_group;
4894 	ext4_group_t group, ngroups = ext4_get_groups_count(sb);
4895 	ext4_grpblk_t cnt = 0, first_block, last_block;
4896 	uint64_t start, len, minlen, trimmed = 0;
4897 	ext4_fsblk_t first_data_blk =
4898 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
4899 	int ret = 0;
4900 
4901 	start = range->start >> sb->s_blocksize_bits;
4902 	len = range->len >> sb->s_blocksize_bits;
4903 	minlen = range->minlen >> sb->s_blocksize_bits;
4904 
4905 	if (unlikely(minlen > EXT4_BLOCKS_PER_GROUP(sb)))
4906 		return -EINVAL;
4907 	if (start < first_data_blk) {
4908 		len -= first_data_blk - start;
4909 		start = first_data_blk;
4910 	}
4911 
4912 	/* Determine first and last group to examine based on start and len */
4913 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
4914 				     &first_group, &first_block);
4915 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) (start + len),
4916 				     &last_group, &last_block);
4917 	last_group = (last_group > ngroups - 1) ? ngroups - 1 : last_group;
4918 	last_block = EXT4_BLOCKS_PER_GROUP(sb);
4919 
4920 	if (first_group > last_group)
4921 		return -EINVAL;
4922 
4923 	for (group = first_group; group <= last_group; group++) {
4924 		grp = ext4_get_group_info(sb, group);
4925 		/* We only do this if the grp has never been initialized */
4926 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
4927 			ret = ext4_mb_init_group(sb, group);
4928 			if (ret)
4929 				break;
4930 		}
4931 
4932 		/*
4933 		 * For all the groups except the last one, last block will
4934 		 * always be EXT4_BLOCKS_PER_GROUP(sb), so we only need to
4935 		 * change it for the last group in which case start +
4936 		 * len < EXT4_BLOCKS_PER_GROUP(sb).
4937 		 */
4938 		if (first_block + len < EXT4_BLOCKS_PER_GROUP(sb))
4939 			last_block = first_block + len;
4940 		len -= last_block - first_block;
4941 
4942 		if (grp->bb_free >= minlen) {
4943 			cnt = ext4_trim_all_free(sb, group, first_block,
4944 						last_block, minlen);
4945 			if (cnt < 0) {
4946 				ret = cnt;
4947 				break;
4948 			}
4949 		}
4950 		trimmed += cnt;
4951 		first_block = 0;
4952 	}
4953 	range->len = trimmed * sb->s_blocksize;
4954 
4955 	return ret;
4956 }
4957