1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "mballoc.h" 25 #include <linux/debugfs.h> 26 #include <linux/slab.h> 27 #include <trace/events/ext4.h> 28 29 /* 30 * MUSTDO: 31 * - test ext4_ext_search_left() and ext4_ext_search_right() 32 * - search for metadata in few groups 33 * 34 * TODO v4: 35 * - normalization should take into account whether file is still open 36 * - discard preallocations if no free space left (policy?) 37 * - don't normalize tails 38 * - quota 39 * - reservation for superuser 40 * 41 * TODO v3: 42 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 43 * - track min/max extents in each group for better group selection 44 * - mb_mark_used() may allocate chunk right after splitting buddy 45 * - tree of groups sorted by number of free blocks 46 * - error handling 47 */ 48 49 /* 50 * The allocation request involve request for multiple number of blocks 51 * near to the goal(block) value specified. 52 * 53 * During initialization phase of the allocator we decide to use the 54 * group preallocation or inode preallocation depending on the size of 55 * the file. The size of the file could be the resulting file size we 56 * would have after allocation, or the current file size, which ever 57 * is larger. If the size is less than sbi->s_mb_stream_request we 58 * select to use the group preallocation. The default value of 59 * s_mb_stream_request is 16 blocks. This can also be tuned via 60 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 61 * terms of number of blocks. 62 * 63 * The main motivation for having small file use group preallocation is to 64 * ensure that we have small files closer together on the disk. 65 * 66 * First stage the allocator looks at the inode prealloc list, 67 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 68 * spaces for this particular inode. The inode prealloc space is 69 * represented as: 70 * 71 * pa_lstart -> the logical start block for this prealloc space 72 * pa_pstart -> the physical start block for this prealloc space 73 * pa_len -> length for this prealloc space 74 * pa_free -> free space available in this prealloc space 75 * 76 * The inode preallocation space is used looking at the _logical_ start 77 * block. If only the logical file block falls within the range of prealloc 78 * space we will consume the particular prealloc space. This make sure that 79 * that the we have contiguous physical blocks representing the file blocks 80 * 81 * The important thing to be noted in case of inode prealloc space is that 82 * we don't modify the values associated to inode prealloc space except 83 * pa_free. 84 * 85 * If we are not able to find blocks in the inode prealloc space and if we 86 * have the group allocation flag set then we look at the locality group 87 * prealloc space. These are per CPU prealloc list repreasented as 88 * 89 * ext4_sb_info.s_locality_groups[smp_processor_id()] 90 * 91 * The reason for having a per cpu locality group is to reduce the contention 92 * between CPUs. It is possible to get scheduled at this point. 93 * 94 * The locality group prealloc space is used looking at whether we have 95 * enough free space (pa_free) within the prealloc space. 96 * 97 * If we can't allocate blocks via inode prealloc or/and locality group 98 * prealloc then we look at the buddy cache. The buddy cache is represented 99 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 100 * mapped to the buddy and bitmap information regarding different 101 * groups. The buddy information is attached to buddy cache inode so that 102 * we can access them through the page cache. The information regarding 103 * each group is loaded via ext4_mb_load_buddy. The information involve 104 * block bitmap and buddy information. The information are stored in the 105 * inode as: 106 * 107 * { page } 108 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 109 * 110 * 111 * one block each for bitmap and buddy information. So for each group we 112 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 113 * blocksize) blocks. So it can have information regarding groups_per_page 114 * which is blocks_per_page/2 115 * 116 * The buddy cache inode is not stored on disk. The inode is thrown 117 * away when the filesystem is unmounted. 118 * 119 * We look for count number of blocks in the buddy cache. If we were able 120 * to locate that many free blocks we return with additional information 121 * regarding rest of the contiguous physical block available 122 * 123 * Before allocating blocks via buddy cache we normalize the request 124 * blocks. This ensure we ask for more blocks that we needed. The extra 125 * blocks that we get after allocation is added to the respective prealloc 126 * list. In case of inode preallocation we follow a list of heuristics 127 * based on file size. This can be found in ext4_mb_normalize_request. If 128 * we are doing a group prealloc we try to normalize the request to 129 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is 130 * 512 blocks. This can be tuned via 131 * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in 132 * terms of number of blocks. If we have mounted the file system with -O 133 * stripe=<value> option the group prealloc request is normalized to the 134 * stripe value (sbi->s_stripe) 135 * 136 * The regular allocator(using the buddy cache) supports few tunables. 137 * 138 * /sys/fs/ext4/<partition>/mb_min_to_scan 139 * /sys/fs/ext4/<partition>/mb_max_to_scan 140 * /sys/fs/ext4/<partition>/mb_order2_req 141 * 142 * The regular allocator uses buddy scan only if the request len is power of 143 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 144 * value of s_mb_order2_reqs can be tuned via 145 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 146 * stripe size (sbi->s_stripe), we try to search for contiguous block in 147 * stripe size. This should result in better allocation on RAID setups. If 148 * not, we search in the specific group using bitmap for best extents. The 149 * tunable min_to_scan and max_to_scan control the behaviour here. 150 * min_to_scan indicate how long the mballoc __must__ look for a best 151 * extent and max_to_scan indicates how long the mballoc __can__ look for a 152 * best extent in the found extents. Searching for the blocks starts with 153 * the group specified as the goal value in allocation context via 154 * ac_g_ex. Each group is first checked based on the criteria whether it 155 * can used for allocation. ext4_mb_good_group explains how the groups are 156 * checked. 157 * 158 * Both the prealloc space are getting populated as above. So for the first 159 * request we will hit the buddy cache which will result in this prealloc 160 * space getting filled. The prealloc space is then later used for the 161 * subsequent request. 162 */ 163 164 /* 165 * mballoc operates on the following data: 166 * - on-disk bitmap 167 * - in-core buddy (actually includes buddy and bitmap) 168 * - preallocation descriptors (PAs) 169 * 170 * there are two types of preallocations: 171 * - inode 172 * assiged to specific inode and can be used for this inode only. 173 * it describes part of inode's space preallocated to specific 174 * physical blocks. any block from that preallocated can be used 175 * independent. the descriptor just tracks number of blocks left 176 * unused. so, before taking some block from descriptor, one must 177 * make sure corresponded logical block isn't allocated yet. this 178 * also means that freeing any block within descriptor's range 179 * must discard all preallocated blocks. 180 * - locality group 181 * assigned to specific locality group which does not translate to 182 * permanent set of inodes: inode can join and leave group. space 183 * from this type of preallocation can be used for any inode. thus 184 * it's consumed from the beginning to the end. 185 * 186 * relation between them can be expressed as: 187 * in-core buddy = on-disk bitmap + preallocation descriptors 188 * 189 * this mean blocks mballoc considers used are: 190 * - allocated blocks (persistent) 191 * - preallocated blocks (non-persistent) 192 * 193 * consistency in mballoc world means that at any time a block is either 194 * free or used in ALL structures. notice: "any time" should not be read 195 * literally -- time is discrete and delimited by locks. 196 * 197 * to keep it simple, we don't use block numbers, instead we count number of 198 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 199 * 200 * all operations can be expressed as: 201 * - init buddy: buddy = on-disk + PAs 202 * - new PA: buddy += N; PA = N 203 * - use inode PA: on-disk += N; PA -= N 204 * - discard inode PA buddy -= on-disk - PA; PA = 0 205 * - use locality group PA on-disk += N; PA -= N 206 * - discard locality group PA buddy -= PA; PA = 0 207 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 208 * is used in real operation because we can't know actual used 209 * bits from PA, only from on-disk bitmap 210 * 211 * if we follow this strict logic, then all operations above should be atomic. 212 * given some of them can block, we'd have to use something like semaphores 213 * killing performance on high-end SMP hardware. let's try to relax it using 214 * the following knowledge: 215 * 1) if buddy is referenced, it's already initialized 216 * 2) while block is used in buddy and the buddy is referenced, 217 * nobody can re-allocate that block 218 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 219 * bit set and PA claims same block, it's OK. IOW, one can set bit in 220 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 221 * block 222 * 223 * so, now we're building a concurrency table: 224 * - init buddy vs. 225 * - new PA 226 * blocks for PA are allocated in the buddy, buddy must be referenced 227 * until PA is linked to allocation group to avoid concurrent buddy init 228 * - use inode PA 229 * we need to make sure that either on-disk bitmap or PA has uptodate data 230 * given (3) we care that PA-=N operation doesn't interfere with init 231 * - discard inode PA 232 * the simplest way would be to have buddy initialized by the discard 233 * - use locality group PA 234 * again PA-=N must be serialized with init 235 * - discard locality group PA 236 * the simplest way would be to have buddy initialized by the discard 237 * - new PA vs. 238 * - use inode PA 239 * i_data_sem serializes them 240 * - discard inode PA 241 * discard process must wait until PA isn't used by another process 242 * - use locality group PA 243 * some mutex should serialize them 244 * - discard locality group PA 245 * discard process must wait until PA isn't used by another process 246 * - use inode PA 247 * - use inode PA 248 * i_data_sem or another mutex should serializes them 249 * - discard inode PA 250 * discard process must wait until PA isn't used by another process 251 * - use locality group PA 252 * nothing wrong here -- they're different PAs covering different blocks 253 * - discard locality group PA 254 * discard process must wait until PA isn't used by another process 255 * 256 * now we're ready to make few consequences: 257 * - PA is referenced and while it is no discard is possible 258 * - PA is referenced until block isn't marked in on-disk bitmap 259 * - PA changes only after on-disk bitmap 260 * - discard must not compete with init. either init is done before 261 * any discard or they're serialized somehow 262 * - buddy init as sum of on-disk bitmap and PAs is done atomically 263 * 264 * a special case when we've used PA to emptiness. no need to modify buddy 265 * in this case, but we should care about concurrent init 266 * 267 */ 268 269 /* 270 * Logic in few words: 271 * 272 * - allocation: 273 * load group 274 * find blocks 275 * mark bits in on-disk bitmap 276 * release group 277 * 278 * - use preallocation: 279 * find proper PA (per-inode or group) 280 * load group 281 * mark bits in on-disk bitmap 282 * release group 283 * release PA 284 * 285 * - free: 286 * load group 287 * mark bits in on-disk bitmap 288 * release group 289 * 290 * - discard preallocations in group: 291 * mark PAs deleted 292 * move them onto local list 293 * load on-disk bitmap 294 * load group 295 * remove PA from object (inode or locality group) 296 * mark free blocks in-core 297 * 298 * - discard inode's preallocations: 299 */ 300 301 /* 302 * Locking rules 303 * 304 * Locks: 305 * - bitlock on a group (group) 306 * - object (inode/locality) (object) 307 * - per-pa lock (pa) 308 * 309 * Paths: 310 * - new pa 311 * object 312 * group 313 * 314 * - find and use pa: 315 * pa 316 * 317 * - release consumed pa: 318 * pa 319 * group 320 * object 321 * 322 * - generate in-core bitmap: 323 * group 324 * pa 325 * 326 * - discard all for given object (inode, locality group): 327 * object 328 * pa 329 * group 330 * 331 * - discard all for given group: 332 * group 333 * pa 334 * group 335 * object 336 * 337 */ 338 static struct kmem_cache *ext4_pspace_cachep; 339 static struct kmem_cache *ext4_ac_cachep; 340 static struct kmem_cache *ext4_free_ext_cachep; 341 342 /* We create slab caches for groupinfo data structures based on the 343 * superblock block size. There will be one per mounted filesystem for 344 * each unique s_blocksize_bits */ 345 #define NR_GRPINFO_CACHES 8 346 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 347 348 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 349 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 350 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 351 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 352 }; 353 354 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 355 ext4_group_t group); 356 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 357 ext4_group_t group); 358 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn); 359 360 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 361 { 362 #if BITS_PER_LONG == 64 363 *bit += ((unsigned long) addr & 7UL) << 3; 364 addr = (void *) ((unsigned long) addr & ~7UL); 365 #elif BITS_PER_LONG == 32 366 *bit += ((unsigned long) addr & 3UL) << 3; 367 addr = (void *) ((unsigned long) addr & ~3UL); 368 #else 369 #error "how many bits you are?!" 370 #endif 371 return addr; 372 } 373 374 static inline int mb_test_bit(int bit, void *addr) 375 { 376 /* 377 * ext4_test_bit on architecture like powerpc 378 * needs unsigned long aligned address 379 */ 380 addr = mb_correct_addr_and_bit(&bit, addr); 381 return ext4_test_bit(bit, addr); 382 } 383 384 static inline void mb_set_bit(int bit, void *addr) 385 { 386 addr = mb_correct_addr_and_bit(&bit, addr); 387 ext4_set_bit(bit, addr); 388 } 389 390 static inline void mb_clear_bit(int bit, void *addr) 391 { 392 addr = mb_correct_addr_and_bit(&bit, addr); 393 ext4_clear_bit(bit, addr); 394 } 395 396 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 397 { 398 int fix = 0, ret, tmpmax; 399 addr = mb_correct_addr_and_bit(&fix, addr); 400 tmpmax = max + fix; 401 start += fix; 402 403 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 404 if (ret > max) 405 return max; 406 return ret; 407 } 408 409 static inline int mb_find_next_bit(void *addr, int max, int start) 410 { 411 int fix = 0, ret, tmpmax; 412 addr = mb_correct_addr_and_bit(&fix, addr); 413 tmpmax = max + fix; 414 start += fix; 415 416 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 417 if (ret > max) 418 return max; 419 return ret; 420 } 421 422 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 423 { 424 char *bb; 425 426 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b)); 427 BUG_ON(max == NULL); 428 429 if (order > e4b->bd_blkbits + 1) { 430 *max = 0; 431 return NULL; 432 } 433 434 /* at order 0 we see each particular block */ 435 if (order == 0) { 436 *max = 1 << (e4b->bd_blkbits + 3); 437 return EXT4_MB_BITMAP(e4b); 438 } 439 440 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 441 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 442 443 return bb; 444 } 445 446 #ifdef DOUBLE_CHECK 447 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 448 int first, int count) 449 { 450 int i; 451 struct super_block *sb = e4b->bd_sb; 452 453 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 454 return; 455 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 456 for (i = 0; i < count; i++) { 457 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 458 ext4_fsblk_t blocknr; 459 460 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 461 blocknr += first + i; 462 ext4_grp_locked_error(sb, e4b->bd_group, 463 inode ? inode->i_ino : 0, 464 blocknr, 465 "freeing block already freed " 466 "(bit %u)", 467 first + i); 468 } 469 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 470 } 471 } 472 473 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 474 { 475 int i; 476 477 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 478 return; 479 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 480 for (i = 0; i < count; i++) { 481 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 482 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 483 } 484 } 485 486 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 487 { 488 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 489 unsigned char *b1, *b2; 490 int i; 491 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 492 b2 = (unsigned char *) bitmap; 493 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 494 if (b1[i] != b2[i]) { 495 printk(KERN_ERR "corruption in group %u " 496 "at byte %u(%u): %x in copy != %x " 497 "on disk/prealloc\n", 498 e4b->bd_group, i, i * 8, b1[i], b2[i]); 499 BUG(); 500 } 501 } 502 } 503 } 504 505 #else 506 static inline void mb_free_blocks_double(struct inode *inode, 507 struct ext4_buddy *e4b, int first, int count) 508 { 509 return; 510 } 511 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 512 int first, int count) 513 { 514 return; 515 } 516 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 517 { 518 return; 519 } 520 #endif 521 522 #ifdef AGGRESSIVE_CHECK 523 524 #define MB_CHECK_ASSERT(assert) \ 525 do { \ 526 if (!(assert)) { \ 527 printk(KERN_EMERG \ 528 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 529 function, file, line, # assert); \ 530 BUG(); \ 531 } \ 532 } while (0) 533 534 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 535 const char *function, int line) 536 { 537 struct super_block *sb = e4b->bd_sb; 538 int order = e4b->bd_blkbits + 1; 539 int max; 540 int max2; 541 int i; 542 int j; 543 int k; 544 int count; 545 struct ext4_group_info *grp; 546 int fragments = 0; 547 int fstart; 548 struct list_head *cur; 549 void *buddy; 550 void *buddy2; 551 552 { 553 static int mb_check_counter; 554 if (mb_check_counter++ % 100 != 0) 555 return 0; 556 } 557 558 while (order > 1) { 559 buddy = mb_find_buddy(e4b, order, &max); 560 MB_CHECK_ASSERT(buddy); 561 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 562 MB_CHECK_ASSERT(buddy2); 563 MB_CHECK_ASSERT(buddy != buddy2); 564 MB_CHECK_ASSERT(max * 2 == max2); 565 566 count = 0; 567 for (i = 0; i < max; i++) { 568 569 if (mb_test_bit(i, buddy)) { 570 /* only single bit in buddy2 may be 1 */ 571 if (!mb_test_bit(i << 1, buddy2)) { 572 MB_CHECK_ASSERT( 573 mb_test_bit((i<<1)+1, buddy2)); 574 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 575 MB_CHECK_ASSERT( 576 mb_test_bit(i << 1, buddy2)); 577 } 578 continue; 579 } 580 581 /* both bits in buddy2 must be 0 */ 582 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 583 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 584 585 for (j = 0; j < (1 << order); j++) { 586 k = (i * (1 << order)) + j; 587 MB_CHECK_ASSERT( 588 !mb_test_bit(k, EXT4_MB_BITMAP(e4b))); 589 } 590 count++; 591 } 592 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 593 order--; 594 } 595 596 fstart = -1; 597 buddy = mb_find_buddy(e4b, 0, &max); 598 for (i = 0; i < max; i++) { 599 if (!mb_test_bit(i, buddy)) { 600 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 601 if (fstart == -1) { 602 fragments++; 603 fstart = i; 604 } 605 continue; 606 } 607 fstart = -1; 608 /* check used bits only */ 609 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 610 buddy2 = mb_find_buddy(e4b, j, &max2); 611 k = i >> j; 612 MB_CHECK_ASSERT(k < max2); 613 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 614 } 615 } 616 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 617 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 618 619 grp = ext4_get_group_info(sb, e4b->bd_group); 620 list_for_each(cur, &grp->bb_prealloc_list) { 621 ext4_group_t groupnr; 622 struct ext4_prealloc_space *pa; 623 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 624 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 625 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 626 for (i = 0; i < pa->pa_len; i++) 627 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 628 } 629 return 0; 630 } 631 #undef MB_CHECK_ASSERT 632 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 633 __FILE__, __func__, __LINE__) 634 #else 635 #define mb_check_buddy(e4b) 636 #endif 637 638 /* 639 * Divide blocks started from @first with length @len into 640 * smaller chunks with power of 2 blocks. 641 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 642 * then increase bb_counters[] for corresponded chunk size. 643 */ 644 static void ext4_mb_mark_free_simple(struct super_block *sb, 645 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 646 struct ext4_group_info *grp) 647 { 648 struct ext4_sb_info *sbi = EXT4_SB(sb); 649 ext4_grpblk_t min; 650 ext4_grpblk_t max; 651 ext4_grpblk_t chunk; 652 unsigned short border; 653 654 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb)); 655 656 border = 2 << sb->s_blocksize_bits; 657 658 while (len > 0) { 659 /* find how many blocks can be covered since this position */ 660 max = ffs(first | border) - 1; 661 662 /* find how many blocks of power 2 we need to mark */ 663 min = fls(len) - 1; 664 665 if (max < min) 666 min = max; 667 chunk = 1 << min; 668 669 /* mark multiblock chunks only */ 670 grp->bb_counters[min]++; 671 if (min > 0) 672 mb_clear_bit(first >> min, 673 buddy + sbi->s_mb_offsets[min]); 674 675 len -= chunk; 676 first += chunk; 677 } 678 } 679 680 /* 681 * Cache the order of the largest free extent we have available in this block 682 * group. 683 */ 684 static void 685 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 686 { 687 int i; 688 int bits; 689 690 grp->bb_largest_free_order = -1; /* uninit */ 691 692 bits = sb->s_blocksize_bits + 1; 693 for (i = bits; i >= 0; i--) { 694 if (grp->bb_counters[i] > 0) { 695 grp->bb_largest_free_order = i; 696 break; 697 } 698 } 699 } 700 701 static noinline_for_stack 702 void ext4_mb_generate_buddy(struct super_block *sb, 703 void *buddy, void *bitmap, ext4_group_t group) 704 { 705 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 706 ext4_grpblk_t max = EXT4_BLOCKS_PER_GROUP(sb); 707 ext4_grpblk_t i = 0; 708 ext4_grpblk_t first; 709 ext4_grpblk_t len; 710 unsigned free = 0; 711 unsigned fragments = 0; 712 unsigned long long period = get_cycles(); 713 714 /* initialize buddy from bitmap which is aggregation 715 * of on-disk bitmap and preallocations */ 716 i = mb_find_next_zero_bit(bitmap, max, 0); 717 grp->bb_first_free = i; 718 while (i < max) { 719 fragments++; 720 first = i; 721 i = mb_find_next_bit(bitmap, max, i); 722 len = i - first; 723 free += len; 724 if (len > 1) 725 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 726 else 727 grp->bb_counters[0]++; 728 if (i < max) 729 i = mb_find_next_zero_bit(bitmap, max, i); 730 } 731 grp->bb_fragments = fragments; 732 733 if (free != grp->bb_free) { 734 ext4_grp_locked_error(sb, group, 0, 0, 735 "%u blocks in bitmap, %u in gd", 736 free, grp->bb_free); 737 /* 738 * If we intent to continue, we consider group descritor 739 * corrupt and update bb_free using bitmap value 740 */ 741 grp->bb_free = free; 742 } 743 mb_set_largest_free_order(sb, grp); 744 745 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 746 747 period = get_cycles() - period; 748 spin_lock(&EXT4_SB(sb)->s_bal_lock); 749 EXT4_SB(sb)->s_mb_buddies_generated++; 750 EXT4_SB(sb)->s_mb_generation_time += period; 751 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 752 } 753 754 /* The buddy information is attached the buddy cache inode 755 * for convenience. The information regarding each group 756 * is loaded via ext4_mb_load_buddy. The information involve 757 * block bitmap and buddy information. The information are 758 * stored in the inode as 759 * 760 * { page } 761 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 762 * 763 * 764 * one block each for bitmap and buddy information. 765 * So for each group we take up 2 blocks. A page can 766 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 767 * So it can have information regarding groups_per_page which 768 * is blocks_per_page/2 769 * 770 * Locking note: This routine takes the block group lock of all groups 771 * for this page; do not hold this lock when calling this routine! 772 */ 773 774 static int ext4_mb_init_cache(struct page *page, char *incore) 775 { 776 ext4_group_t ngroups; 777 int blocksize; 778 int blocks_per_page; 779 int groups_per_page; 780 int err = 0; 781 int i; 782 ext4_group_t first_group; 783 int first_block; 784 struct super_block *sb; 785 struct buffer_head *bhs; 786 struct buffer_head **bh; 787 struct inode *inode; 788 char *data; 789 char *bitmap; 790 struct ext4_group_info *grinfo; 791 792 mb_debug(1, "init page %lu\n", page->index); 793 794 inode = page->mapping->host; 795 sb = inode->i_sb; 796 ngroups = ext4_get_groups_count(sb); 797 blocksize = 1 << inode->i_blkbits; 798 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 799 800 groups_per_page = blocks_per_page >> 1; 801 if (groups_per_page == 0) 802 groups_per_page = 1; 803 804 /* allocate buffer_heads to read bitmaps */ 805 if (groups_per_page > 1) { 806 err = -ENOMEM; 807 i = sizeof(struct buffer_head *) * groups_per_page; 808 bh = kzalloc(i, GFP_NOFS); 809 if (bh == NULL) 810 goto out; 811 } else 812 bh = &bhs; 813 814 first_group = page->index * blocks_per_page / 2; 815 816 /* read all groups the page covers into the cache */ 817 for (i = 0; i < groups_per_page; i++) { 818 struct ext4_group_desc *desc; 819 820 if (first_group + i >= ngroups) 821 break; 822 823 grinfo = ext4_get_group_info(sb, first_group + i); 824 /* 825 * If page is uptodate then we came here after online resize 826 * which added some new uninitialized group info structs, so 827 * we must skip all initialized uptodate buddies on the page, 828 * which may be currently in use by an allocating task. 829 */ 830 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 831 bh[i] = NULL; 832 continue; 833 } 834 835 err = -EIO; 836 desc = ext4_get_group_desc(sb, first_group + i, NULL); 837 if (desc == NULL) 838 goto out; 839 840 err = -ENOMEM; 841 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc)); 842 if (bh[i] == NULL) 843 goto out; 844 845 if (bitmap_uptodate(bh[i])) 846 continue; 847 848 lock_buffer(bh[i]); 849 if (bitmap_uptodate(bh[i])) { 850 unlock_buffer(bh[i]); 851 continue; 852 } 853 ext4_lock_group(sb, first_group + i); 854 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 855 ext4_init_block_bitmap(sb, bh[i], 856 first_group + i, desc); 857 set_bitmap_uptodate(bh[i]); 858 set_buffer_uptodate(bh[i]); 859 ext4_unlock_group(sb, first_group + i); 860 unlock_buffer(bh[i]); 861 continue; 862 } 863 ext4_unlock_group(sb, first_group + i); 864 if (buffer_uptodate(bh[i])) { 865 /* 866 * if not uninit if bh is uptodate, 867 * bitmap is also uptodate 868 */ 869 set_bitmap_uptodate(bh[i]); 870 unlock_buffer(bh[i]); 871 continue; 872 } 873 get_bh(bh[i]); 874 /* 875 * submit the buffer_head for read. We can 876 * safely mark the bitmap as uptodate now. 877 * We do it here so the bitmap uptodate bit 878 * get set with buffer lock held. 879 */ 880 set_bitmap_uptodate(bh[i]); 881 bh[i]->b_end_io = end_buffer_read_sync; 882 submit_bh(READ, bh[i]); 883 mb_debug(1, "read bitmap for group %u\n", first_group + i); 884 } 885 886 /* wait for I/O completion */ 887 for (i = 0; i < groups_per_page; i++) 888 if (bh[i]) 889 wait_on_buffer(bh[i]); 890 891 err = -EIO; 892 for (i = 0; i < groups_per_page; i++) 893 if (bh[i] && !buffer_uptodate(bh[i])) 894 goto out; 895 896 err = 0; 897 first_block = page->index * blocks_per_page; 898 for (i = 0; i < blocks_per_page; i++) { 899 int group; 900 901 group = (first_block + i) >> 1; 902 if (group >= ngroups) 903 break; 904 905 if (!bh[group - first_group]) 906 /* skip initialized uptodate buddy */ 907 continue; 908 909 /* 910 * data carry information regarding this 911 * particular group in the format specified 912 * above 913 * 914 */ 915 data = page_address(page) + (i * blocksize); 916 bitmap = bh[group - first_group]->b_data; 917 918 /* 919 * We place the buddy block and bitmap block 920 * close together 921 */ 922 if ((first_block + i) & 1) { 923 /* this is block of buddy */ 924 BUG_ON(incore == NULL); 925 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 926 group, page->index, i * blocksize); 927 trace_ext4_mb_buddy_bitmap_load(sb, group); 928 grinfo = ext4_get_group_info(sb, group); 929 grinfo->bb_fragments = 0; 930 memset(grinfo->bb_counters, 0, 931 sizeof(*grinfo->bb_counters) * 932 (sb->s_blocksize_bits+2)); 933 /* 934 * incore got set to the group block bitmap below 935 */ 936 ext4_lock_group(sb, group); 937 /* init the buddy */ 938 memset(data, 0xff, blocksize); 939 ext4_mb_generate_buddy(sb, data, incore, group); 940 ext4_unlock_group(sb, group); 941 incore = NULL; 942 } else { 943 /* this is block of bitmap */ 944 BUG_ON(incore != NULL); 945 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 946 group, page->index, i * blocksize); 947 trace_ext4_mb_bitmap_load(sb, group); 948 949 /* see comments in ext4_mb_put_pa() */ 950 ext4_lock_group(sb, group); 951 memcpy(data, bitmap, blocksize); 952 953 /* mark all preallocated blks used in in-core bitmap */ 954 ext4_mb_generate_from_pa(sb, data, group); 955 ext4_mb_generate_from_freelist(sb, data, group); 956 ext4_unlock_group(sb, group); 957 958 /* set incore so that the buddy information can be 959 * generated using this 960 */ 961 incore = data; 962 } 963 } 964 SetPageUptodate(page); 965 966 out: 967 if (bh) { 968 for (i = 0; i < groups_per_page; i++) 969 brelse(bh[i]); 970 if (bh != &bhs) 971 kfree(bh); 972 } 973 return err; 974 } 975 976 /* 977 * Lock the buddy and bitmap pages. This make sure other parallel init_group 978 * on the same buddy page doesn't happen whild holding the buddy page lock. 979 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 980 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 981 */ 982 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 983 ext4_group_t group, struct ext4_buddy *e4b) 984 { 985 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 986 int block, pnum, poff; 987 int blocks_per_page; 988 struct page *page; 989 990 e4b->bd_buddy_page = NULL; 991 e4b->bd_bitmap_page = NULL; 992 993 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 994 /* 995 * the buddy cache inode stores the block bitmap 996 * and buddy information in consecutive blocks. 997 * So for each group we need two blocks. 998 */ 999 block = group * 2; 1000 pnum = block / blocks_per_page; 1001 poff = block % blocks_per_page; 1002 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1003 if (!page) 1004 return -EIO; 1005 BUG_ON(page->mapping != inode->i_mapping); 1006 e4b->bd_bitmap_page = page; 1007 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1008 1009 if (blocks_per_page >= 2) { 1010 /* buddy and bitmap are on the same page */ 1011 return 0; 1012 } 1013 1014 block++; 1015 pnum = block / blocks_per_page; 1016 poff = block % blocks_per_page; 1017 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1018 if (!page) 1019 return -EIO; 1020 BUG_ON(page->mapping != inode->i_mapping); 1021 e4b->bd_buddy_page = page; 1022 return 0; 1023 } 1024 1025 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1026 { 1027 if (e4b->bd_bitmap_page) { 1028 unlock_page(e4b->bd_bitmap_page); 1029 page_cache_release(e4b->bd_bitmap_page); 1030 } 1031 if (e4b->bd_buddy_page) { 1032 unlock_page(e4b->bd_buddy_page); 1033 page_cache_release(e4b->bd_buddy_page); 1034 } 1035 } 1036 1037 /* 1038 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1039 * block group lock of all groups for this page; do not hold the BG lock when 1040 * calling this routine! 1041 */ 1042 static noinline_for_stack 1043 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) 1044 { 1045 1046 struct ext4_group_info *this_grp; 1047 struct ext4_buddy e4b; 1048 struct page *page; 1049 int ret = 0; 1050 1051 mb_debug(1, "init group %u\n", group); 1052 this_grp = ext4_get_group_info(sb, group); 1053 /* 1054 * This ensures that we don't reinit the buddy cache 1055 * page which map to the group from which we are already 1056 * allocating. If we are looking at the buddy cache we would 1057 * have taken a reference using ext4_mb_load_buddy and that 1058 * would have pinned buddy page to page cache. 1059 */ 1060 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b); 1061 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1062 /* 1063 * somebody initialized the group 1064 * return without doing anything 1065 */ 1066 goto err; 1067 } 1068 1069 page = e4b.bd_bitmap_page; 1070 ret = ext4_mb_init_cache(page, NULL); 1071 if (ret) 1072 goto err; 1073 if (!PageUptodate(page)) { 1074 ret = -EIO; 1075 goto err; 1076 } 1077 mark_page_accessed(page); 1078 1079 if (e4b.bd_buddy_page == NULL) { 1080 /* 1081 * If both the bitmap and buddy are in 1082 * the same page we don't need to force 1083 * init the buddy 1084 */ 1085 ret = 0; 1086 goto err; 1087 } 1088 /* init buddy cache */ 1089 page = e4b.bd_buddy_page; 1090 ret = ext4_mb_init_cache(page, e4b.bd_bitmap); 1091 if (ret) 1092 goto err; 1093 if (!PageUptodate(page)) { 1094 ret = -EIO; 1095 goto err; 1096 } 1097 mark_page_accessed(page); 1098 err: 1099 ext4_mb_put_buddy_page_lock(&e4b); 1100 return ret; 1101 } 1102 1103 /* 1104 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1105 * block group lock of all groups for this page; do not hold the BG lock when 1106 * calling this routine! 1107 */ 1108 static noinline_for_stack int 1109 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1110 struct ext4_buddy *e4b) 1111 { 1112 int blocks_per_page; 1113 int block; 1114 int pnum; 1115 int poff; 1116 struct page *page; 1117 int ret; 1118 struct ext4_group_info *grp; 1119 struct ext4_sb_info *sbi = EXT4_SB(sb); 1120 struct inode *inode = sbi->s_buddy_cache; 1121 1122 mb_debug(1, "load group %u\n", group); 1123 1124 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1125 grp = ext4_get_group_info(sb, group); 1126 1127 e4b->bd_blkbits = sb->s_blocksize_bits; 1128 e4b->bd_info = ext4_get_group_info(sb, group); 1129 e4b->bd_sb = sb; 1130 e4b->bd_group = group; 1131 e4b->bd_buddy_page = NULL; 1132 e4b->bd_bitmap_page = NULL; 1133 1134 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1135 /* 1136 * we need full data about the group 1137 * to make a good selection 1138 */ 1139 ret = ext4_mb_init_group(sb, group); 1140 if (ret) 1141 return ret; 1142 } 1143 1144 /* 1145 * the buddy cache inode stores the block bitmap 1146 * and buddy information in consecutive blocks. 1147 * So for each group we need two blocks. 1148 */ 1149 block = group * 2; 1150 pnum = block / blocks_per_page; 1151 poff = block % blocks_per_page; 1152 1153 /* we could use find_or_create_page(), but it locks page 1154 * what we'd like to avoid in fast path ... */ 1155 page = find_get_page(inode->i_mapping, pnum); 1156 if (page == NULL || !PageUptodate(page)) { 1157 if (page) 1158 /* 1159 * drop the page reference and try 1160 * to get the page with lock. If we 1161 * are not uptodate that implies 1162 * somebody just created the page but 1163 * is yet to initialize the same. So 1164 * wait for it to initialize. 1165 */ 1166 page_cache_release(page); 1167 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1168 if (page) { 1169 BUG_ON(page->mapping != inode->i_mapping); 1170 if (!PageUptodate(page)) { 1171 ret = ext4_mb_init_cache(page, NULL); 1172 if (ret) { 1173 unlock_page(page); 1174 goto err; 1175 } 1176 mb_cmp_bitmaps(e4b, page_address(page) + 1177 (poff * sb->s_blocksize)); 1178 } 1179 unlock_page(page); 1180 } 1181 } 1182 if (page == NULL || !PageUptodate(page)) { 1183 ret = -EIO; 1184 goto err; 1185 } 1186 e4b->bd_bitmap_page = page; 1187 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1188 mark_page_accessed(page); 1189 1190 block++; 1191 pnum = block / blocks_per_page; 1192 poff = block % blocks_per_page; 1193 1194 page = find_get_page(inode->i_mapping, pnum); 1195 if (page == NULL || !PageUptodate(page)) { 1196 if (page) 1197 page_cache_release(page); 1198 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1199 if (page) { 1200 BUG_ON(page->mapping != inode->i_mapping); 1201 if (!PageUptodate(page)) { 1202 ret = ext4_mb_init_cache(page, e4b->bd_bitmap); 1203 if (ret) { 1204 unlock_page(page); 1205 goto err; 1206 } 1207 } 1208 unlock_page(page); 1209 } 1210 } 1211 if (page == NULL || !PageUptodate(page)) { 1212 ret = -EIO; 1213 goto err; 1214 } 1215 e4b->bd_buddy_page = page; 1216 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1217 mark_page_accessed(page); 1218 1219 BUG_ON(e4b->bd_bitmap_page == NULL); 1220 BUG_ON(e4b->bd_buddy_page == NULL); 1221 1222 return 0; 1223 1224 err: 1225 if (page) 1226 page_cache_release(page); 1227 if (e4b->bd_bitmap_page) 1228 page_cache_release(e4b->bd_bitmap_page); 1229 if (e4b->bd_buddy_page) 1230 page_cache_release(e4b->bd_buddy_page); 1231 e4b->bd_buddy = NULL; 1232 e4b->bd_bitmap = NULL; 1233 return ret; 1234 } 1235 1236 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1237 { 1238 if (e4b->bd_bitmap_page) 1239 page_cache_release(e4b->bd_bitmap_page); 1240 if (e4b->bd_buddy_page) 1241 page_cache_release(e4b->bd_buddy_page); 1242 } 1243 1244 1245 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1246 { 1247 int order = 1; 1248 void *bb; 1249 1250 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b)); 1251 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1252 1253 bb = EXT4_MB_BUDDY(e4b); 1254 while (order <= e4b->bd_blkbits + 1) { 1255 block = block >> 1; 1256 if (!mb_test_bit(block, bb)) { 1257 /* this block is part of buddy of order 'order' */ 1258 return order; 1259 } 1260 bb += 1 << (e4b->bd_blkbits - order); 1261 order++; 1262 } 1263 return 0; 1264 } 1265 1266 static void mb_clear_bits(void *bm, int cur, int len) 1267 { 1268 __u32 *addr; 1269 1270 len = cur + len; 1271 while (cur < len) { 1272 if ((cur & 31) == 0 && (len - cur) >= 32) { 1273 /* fast path: clear whole word at once */ 1274 addr = bm + (cur >> 3); 1275 *addr = 0; 1276 cur += 32; 1277 continue; 1278 } 1279 mb_clear_bit(cur, bm); 1280 cur++; 1281 } 1282 } 1283 1284 static void mb_set_bits(void *bm, int cur, int len) 1285 { 1286 __u32 *addr; 1287 1288 len = cur + len; 1289 while (cur < len) { 1290 if ((cur & 31) == 0 && (len - cur) >= 32) { 1291 /* fast path: set whole word at once */ 1292 addr = bm + (cur >> 3); 1293 *addr = 0xffffffff; 1294 cur += 32; 1295 continue; 1296 } 1297 mb_set_bit(cur, bm); 1298 cur++; 1299 } 1300 } 1301 1302 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1303 int first, int count) 1304 { 1305 int block = 0; 1306 int max = 0; 1307 int order; 1308 void *buddy; 1309 void *buddy2; 1310 struct super_block *sb = e4b->bd_sb; 1311 1312 BUG_ON(first + count > (sb->s_blocksize << 3)); 1313 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1314 mb_check_buddy(e4b); 1315 mb_free_blocks_double(inode, e4b, first, count); 1316 1317 e4b->bd_info->bb_free += count; 1318 if (first < e4b->bd_info->bb_first_free) 1319 e4b->bd_info->bb_first_free = first; 1320 1321 /* let's maintain fragments counter */ 1322 if (first != 0) 1323 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b)); 1324 if (first + count < EXT4_SB(sb)->s_mb_maxs[0]) 1325 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b)); 1326 if (block && max) 1327 e4b->bd_info->bb_fragments--; 1328 else if (!block && !max) 1329 e4b->bd_info->bb_fragments++; 1330 1331 /* let's maintain buddy itself */ 1332 while (count-- > 0) { 1333 block = first++; 1334 order = 0; 1335 1336 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) { 1337 ext4_fsblk_t blocknr; 1338 1339 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1340 blocknr += block; 1341 ext4_grp_locked_error(sb, e4b->bd_group, 1342 inode ? inode->i_ino : 0, 1343 blocknr, 1344 "freeing already freed block " 1345 "(bit %u)", block); 1346 } 1347 mb_clear_bit(block, EXT4_MB_BITMAP(e4b)); 1348 e4b->bd_info->bb_counters[order]++; 1349 1350 /* start of the buddy */ 1351 buddy = mb_find_buddy(e4b, order, &max); 1352 1353 do { 1354 block &= ~1UL; 1355 if (mb_test_bit(block, buddy) || 1356 mb_test_bit(block + 1, buddy)) 1357 break; 1358 1359 /* both the buddies are free, try to coalesce them */ 1360 buddy2 = mb_find_buddy(e4b, order + 1, &max); 1361 1362 if (!buddy2) 1363 break; 1364 1365 if (order > 0) { 1366 /* for special purposes, we don't set 1367 * free bits in bitmap */ 1368 mb_set_bit(block, buddy); 1369 mb_set_bit(block + 1, buddy); 1370 } 1371 e4b->bd_info->bb_counters[order]--; 1372 e4b->bd_info->bb_counters[order]--; 1373 1374 block = block >> 1; 1375 order++; 1376 e4b->bd_info->bb_counters[order]++; 1377 1378 mb_clear_bit(block, buddy2); 1379 buddy = buddy2; 1380 } while (1); 1381 } 1382 mb_set_largest_free_order(sb, e4b->bd_info); 1383 mb_check_buddy(e4b); 1384 } 1385 1386 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block, 1387 int needed, struct ext4_free_extent *ex) 1388 { 1389 int next = block; 1390 int max; 1391 int ord; 1392 void *buddy; 1393 1394 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1395 BUG_ON(ex == NULL); 1396 1397 buddy = mb_find_buddy(e4b, order, &max); 1398 BUG_ON(buddy == NULL); 1399 BUG_ON(block >= max); 1400 if (mb_test_bit(block, buddy)) { 1401 ex->fe_len = 0; 1402 ex->fe_start = 0; 1403 ex->fe_group = 0; 1404 return 0; 1405 } 1406 1407 /* FIXME dorp order completely ? */ 1408 if (likely(order == 0)) { 1409 /* find actual order */ 1410 order = mb_find_order_for_block(e4b, block); 1411 block = block >> order; 1412 } 1413 1414 ex->fe_len = 1 << order; 1415 ex->fe_start = block << order; 1416 ex->fe_group = e4b->bd_group; 1417 1418 /* calc difference from given start */ 1419 next = next - ex->fe_start; 1420 ex->fe_len -= next; 1421 ex->fe_start += next; 1422 1423 while (needed > ex->fe_len && 1424 (buddy = mb_find_buddy(e4b, order, &max))) { 1425 1426 if (block + 1 >= max) 1427 break; 1428 1429 next = (block + 1) * (1 << order); 1430 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b))) 1431 break; 1432 1433 ord = mb_find_order_for_block(e4b, next); 1434 1435 order = ord; 1436 block = next >> order; 1437 ex->fe_len += 1 << order; 1438 } 1439 1440 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1441 return ex->fe_len; 1442 } 1443 1444 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1445 { 1446 int ord; 1447 int mlen = 0; 1448 int max = 0; 1449 int cur; 1450 int start = ex->fe_start; 1451 int len = ex->fe_len; 1452 unsigned ret = 0; 1453 int len0 = len; 1454 void *buddy; 1455 1456 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1457 BUG_ON(e4b->bd_group != ex->fe_group); 1458 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1459 mb_check_buddy(e4b); 1460 mb_mark_used_double(e4b, start, len); 1461 1462 e4b->bd_info->bb_free -= len; 1463 if (e4b->bd_info->bb_first_free == start) 1464 e4b->bd_info->bb_first_free += len; 1465 1466 /* let's maintain fragments counter */ 1467 if (start != 0) 1468 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b)); 1469 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1470 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b)); 1471 if (mlen && max) 1472 e4b->bd_info->bb_fragments++; 1473 else if (!mlen && !max) 1474 e4b->bd_info->bb_fragments--; 1475 1476 /* let's maintain buddy itself */ 1477 while (len) { 1478 ord = mb_find_order_for_block(e4b, start); 1479 1480 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1481 /* the whole chunk may be allocated at once! */ 1482 mlen = 1 << ord; 1483 buddy = mb_find_buddy(e4b, ord, &max); 1484 BUG_ON((start >> ord) >= max); 1485 mb_set_bit(start >> ord, buddy); 1486 e4b->bd_info->bb_counters[ord]--; 1487 start += mlen; 1488 len -= mlen; 1489 BUG_ON(len < 0); 1490 continue; 1491 } 1492 1493 /* store for history */ 1494 if (ret == 0) 1495 ret = len | (ord << 16); 1496 1497 /* we have to split large buddy */ 1498 BUG_ON(ord <= 0); 1499 buddy = mb_find_buddy(e4b, ord, &max); 1500 mb_set_bit(start >> ord, buddy); 1501 e4b->bd_info->bb_counters[ord]--; 1502 1503 ord--; 1504 cur = (start >> ord) & ~1U; 1505 buddy = mb_find_buddy(e4b, ord, &max); 1506 mb_clear_bit(cur, buddy); 1507 mb_clear_bit(cur + 1, buddy); 1508 e4b->bd_info->bb_counters[ord]++; 1509 e4b->bd_info->bb_counters[ord]++; 1510 } 1511 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1512 1513 mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0); 1514 mb_check_buddy(e4b); 1515 1516 return ret; 1517 } 1518 1519 /* 1520 * Must be called under group lock! 1521 */ 1522 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1523 struct ext4_buddy *e4b) 1524 { 1525 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1526 int ret; 1527 1528 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1529 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1530 1531 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1532 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1533 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1534 1535 /* preallocation can change ac_b_ex, thus we store actually 1536 * allocated blocks for history */ 1537 ac->ac_f_ex = ac->ac_b_ex; 1538 1539 ac->ac_status = AC_STATUS_FOUND; 1540 ac->ac_tail = ret & 0xffff; 1541 ac->ac_buddy = ret >> 16; 1542 1543 /* 1544 * take the page reference. We want the page to be pinned 1545 * so that we don't get a ext4_mb_init_cache_call for this 1546 * group until we update the bitmap. That would mean we 1547 * double allocate blocks. The reference is dropped 1548 * in ext4_mb_release_context 1549 */ 1550 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1551 get_page(ac->ac_bitmap_page); 1552 ac->ac_buddy_page = e4b->bd_buddy_page; 1553 get_page(ac->ac_buddy_page); 1554 /* store last allocated for subsequent stream allocation */ 1555 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1556 spin_lock(&sbi->s_md_lock); 1557 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1558 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1559 spin_unlock(&sbi->s_md_lock); 1560 } 1561 } 1562 1563 /* 1564 * regular allocator, for general purposes allocation 1565 */ 1566 1567 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1568 struct ext4_buddy *e4b, 1569 int finish_group) 1570 { 1571 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1572 struct ext4_free_extent *bex = &ac->ac_b_ex; 1573 struct ext4_free_extent *gex = &ac->ac_g_ex; 1574 struct ext4_free_extent ex; 1575 int max; 1576 1577 if (ac->ac_status == AC_STATUS_FOUND) 1578 return; 1579 /* 1580 * We don't want to scan for a whole year 1581 */ 1582 if (ac->ac_found > sbi->s_mb_max_to_scan && 1583 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1584 ac->ac_status = AC_STATUS_BREAK; 1585 return; 1586 } 1587 1588 /* 1589 * Haven't found good chunk so far, let's continue 1590 */ 1591 if (bex->fe_len < gex->fe_len) 1592 return; 1593 1594 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1595 && bex->fe_group == e4b->bd_group) { 1596 /* recheck chunk's availability - we don't know 1597 * when it was found (within this lock-unlock 1598 * period or not) */ 1599 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex); 1600 if (max >= gex->fe_len) { 1601 ext4_mb_use_best_found(ac, e4b); 1602 return; 1603 } 1604 } 1605 } 1606 1607 /* 1608 * The routine checks whether found extent is good enough. If it is, 1609 * then the extent gets marked used and flag is set to the context 1610 * to stop scanning. Otherwise, the extent is compared with the 1611 * previous found extent and if new one is better, then it's stored 1612 * in the context. Later, the best found extent will be used, if 1613 * mballoc can't find good enough extent. 1614 * 1615 * FIXME: real allocation policy is to be designed yet! 1616 */ 1617 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1618 struct ext4_free_extent *ex, 1619 struct ext4_buddy *e4b) 1620 { 1621 struct ext4_free_extent *bex = &ac->ac_b_ex; 1622 struct ext4_free_extent *gex = &ac->ac_g_ex; 1623 1624 BUG_ON(ex->fe_len <= 0); 1625 BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 1626 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 1627 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1628 1629 ac->ac_found++; 1630 1631 /* 1632 * The special case - take what you catch first 1633 */ 1634 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1635 *bex = *ex; 1636 ext4_mb_use_best_found(ac, e4b); 1637 return; 1638 } 1639 1640 /* 1641 * Let's check whether the chuck is good enough 1642 */ 1643 if (ex->fe_len == gex->fe_len) { 1644 *bex = *ex; 1645 ext4_mb_use_best_found(ac, e4b); 1646 return; 1647 } 1648 1649 /* 1650 * If this is first found extent, just store it in the context 1651 */ 1652 if (bex->fe_len == 0) { 1653 *bex = *ex; 1654 return; 1655 } 1656 1657 /* 1658 * If new found extent is better, store it in the context 1659 */ 1660 if (bex->fe_len < gex->fe_len) { 1661 /* if the request isn't satisfied, any found extent 1662 * larger than previous best one is better */ 1663 if (ex->fe_len > bex->fe_len) 1664 *bex = *ex; 1665 } else if (ex->fe_len > gex->fe_len) { 1666 /* if the request is satisfied, then we try to find 1667 * an extent that still satisfy the request, but is 1668 * smaller than previous one */ 1669 if (ex->fe_len < bex->fe_len) 1670 *bex = *ex; 1671 } 1672 1673 ext4_mb_check_limits(ac, e4b, 0); 1674 } 1675 1676 static noinline_for_stack 1677 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1678 struct ext4_buddy *e4b) 1679 { 1680 struct ext4_free_extent ex = ac->ac_b_ex; 1681 ext4_group_t group = ex.fe_group; 1682 int max; 1683 int err; 1684 1685 BUG_ON(ex.fe_len <= 0); 1686 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1687 if (err) 1688 return err; 1689 1690 ext4_lock_group(ac->ac_sb, group); 1691 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex); 1692 1693 if (max > 0) { 1694 ac->ac_b_ex = ex; 1695 ext4_mb_use_best_found(ac, e4b); 1696 } 1697 1698 ext4_unlock_group(ac->ac_sb, group); 1699 ext4_mb_unload_buddy(e4b); 1700 1701 return 0; 1702 } 1703 1704 static noinline_for_stack 1705 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1706 struct ext4_buddy *e4b) 1707 { 1708 ext4_group_t group = ac->ac_g_ex.fe_group; 1709 int max; 1710 int err; 1711 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1712 struct ext4_free_extent ex; 1713 1714 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1715 return 0; 1716 1717 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1718 if (err) 1719 return err; 1720 1721 ext4_lock_group(ac->ac_sb, group); 1722 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start, 1723 ac->ac_g_ex.fe_len, &ex); 1724 1725 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1726 ext4_fsblk_t start; 1727 1728 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1729 ex.fe_start; 1730 /* use do_div to get remainder (would be 64-bit modulo) */ 1731 if (do_div(start, sbi->s_stripe) == 0) { 1732 ac->ac_found++; 1733 ac->ac_b_ex = ex; 1734 ext4_mb_use_best_found(ac, e4b); 1735 } 1736 } else if (max >= ac->ac_g_ex.fe_len) { 1737 BUG_ON(ex.fe_len <= 0); 1738 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1739 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1740 ac->ac_found++; 1741 ac->ac_b_ex = ex; 1742 ext4_mb_use_best_found(ac, e4b); 1743 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1744 /* Sometimes, caller may want to merge even small 1745 * number of blocks to an existing extent */ 1746 BUG_ON(ex.fe_len <= 0); 1747 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1748 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1749 ac->ac_found++; 1750 ac->ac_b_ex = ex; 1751 ext4_mb_use_best_found(ac, e4b); 1752 } 1753 ext4_unlock_group(ac->ac_sb, group); 1754 ext4_mb_unload_buddy(e4b); 1755 1756 return 0; 1757 } 1758 1759 /* 1760 * The routine scans buddy structures (not bitmap!) from given order 1761 * to max order and tries to find big enough chunk to satisfy the req 1762 */ 1763 static noinline_for_stack 1764 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1765 struct ext4_buddy *e4b) 1766 { 1767 struct super_block *sb = ac->ac_sb; 1768 struct ext4_group_info *grp = e4b->bd_info; 1769 void *buddy; 1770 int i; 1771 int k; 1772 int max; 1773 1774 BUG_ON(ac->ac_2order <= 0); 1775 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1776 if (grp->bb_counters[i] == 0) 1777 continue; 1778 1779 buddy = mb_find_buddy(e4b, i, &max); 1780 BUG_ON(buddy == NULL); 1781 1782 k = mb_find_next_zero_bit(buddy, max, 0); 1783 BUG_ON(k >= max); 1784 1785 ac->ac_found++; 1786 1787 ac->ac_b_ex.fe_len = 1 << i; 1788 ac->ac_b_ex.fe_start = k << i; 1789 ac->ac_b_ex.fe_group = e4b->bd_group; 1790 1791 ext4_mb_use_best_found(ac, e4b); 1792 1793 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1794 1795 if (EXT4_SB(sb)->s_mb_stats) 1796 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1797 1798 break; 1799 } 1800 } 1801 1802 /* 1803 * The routine scans the group and measures all found extents. 1804 * In order to optimize scanning, caller must pass number of 1805 * free blocks in the group, so the routine can know upper limit. 1806 */ 1807 static noinline_for_stack 1808 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1809 struct ext4_buddy *e4b) 1810 { 1811 struct super_block *sb = ac->ac_sb; 1812 void *bitmap = EXT4_MB_BITMAP(e4b); 1813 struct ext4_free_extent ex; 1814 int i; 1815 int free; 1816 1817 free = e4b->bd_info->bb_free; 1818 BUG_ON(free <= 0); 1819 1820 i = e4b->bd_info->bb_first_free; 1821 1822 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1823 i = mb_find_next_zero_bit(bitmap, 1824 EXT4_BLOCKS_PER_GROUP(sb), i); 1825 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) { 1826 /* 1827 * IF we have corrupt bitmap, we won't find any 1828 * free blocks even though group info says we 1829 * we have free blocks 1830 */ 1831 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1832 "%d free blocks as per " 1833 "group info. But bitmap says 0", 1834 free); 1835 break; 1836 } 1837 1838 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex); 1839 BUG_ON(ex.fe_len <= 0); 1840 if (free < ex.fe_len) { 1841 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1842 "%d free blocks as per " 1843 "group info. But got %d blocks", 1844 free, ex.fe_len); 1845 /* 1846 * The number of free blocks differs. This mostly 1847 * indicate that the bitmap is corrupt. So exit 1848 * without claiming the space. 1849 */ 1850 break; 1851 } 1852 1853 ext4_mb_measure_extent(ac, &ex, e4b); 1854 1855 i += ex.fe_len; 1856 free -= ex.fe_len; 1857 } 1858 1859 ext4_mb_check_limits(ac, e4b, 1); 1860 } 1861 1862 /* 1863 * This is a special case for storages like raid5 1864 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1865 */ 1866 static noinline_for_stack 1867 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1868 struct ext4_buddy *e4b) 1869 { 1870 struct super_block *sb = ac->ac_sb; 1871 struct ext4_sb_info *sbi = EXT4_SB(sb); 1872 void *bitmap = EXT4_MB_BITMAP(e4b); 1873 struct ext4_free_extent ex; 1874 ext4_fsblk_t first_group_block; 1875 ext4_fsblk_t a; 1876 ext4_grpblk_t i; 1877 int max; 1878 1879 BUG_ON(sbi->s_stripe == 0); 1880 1881 /* find first stripe-aligned block in group */ 1882 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 1883 1884 a = first_group_block + sbi->s_stripe - 1; 1885 do_div(a, sbi->s_stripe); 1886 i = (a * sbi->s_stripe) - first_group_block; 1887 1888 while (i < EXT4_BLOCKS_PER_GROUP(sb)) { 1889 if (!mb_test_bit(i, bitmap)) { 1890 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex); 1891 if (max >= sbi->s_stripe) { 1892 ac->ac_found++; 1893 ac->ac_b_ex = ex; 1894 ext4_mb_use_best_found(ac, e4b); 1895 break; 1896 } 1897 } 1898 i += sbi->s_stripe; 1899 } 1900 } 1901 1902 /* This is now called BEFORE we load the buddy bitmap. */ 1903 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 1904 ext4_group_t group, int cr) 1905 { 1906 unsigned free, fragments; 1907 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 1908 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1909 1910 BUG_ON(cr < 0 || cr >= 4); 1911 1912 /* We only do this if the grp has never been initialized */ 1913 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1914 int ret = ext4_mb_init_group(ac->ac_sb, group); 1915 if (ret) 1916 return 0; 1917 } 1918 1919 free = grp->bb_free; 1920 fragments = grp->bb_fragments; 1921 if (free == 0) 1922 return 0; 1923 if (fragments == 0) 1924 return 0; 1925 1926 switch (cr) { 1927 case 0: 1928 BUG_ON(ac->ac_2order == 0); 1929 1930 if (grp->bb_largest_free_order < ac->ac_2order) 1931 return 0; 1932 1933 /* Avoid using the first bg of a flexgroup for data files */ 1934 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 1935 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 1936 ((group % flex_size) == 0)) 1937 return 0; 1938 1939 return 1; 1940 case 1: 1941 if ((free / fragments) >= ac->ac_g_ex.fe_len) 1942 return 1; 1943 break; 1944 case 2: 1945 if (free >= ac->ac_g_ex.fe_len) 1946 return 1; 1947 break; 1948 case 3: 1949 return 1; 1950 default: 1951 BUG(); 1952 } 1953 1954 return 0; 1955 } 1956 1957 static noinline_for_stack int 1958 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 1959 { 1960 ext4_group_t ngroups, group, i; 1961 int cr; 1962 int err = 0; 1963 struct ext4_sb_info *sbi; 1964 struct super_block *sb; 1965 struct ext4_buddy e4b; 1966 1967 sb = ac->ac_sb; 1968 sbi = EXT4_SB(sb); 1969 ngroups = ext4_get_groups_count(sb); 1970 /* non-extent files are limited to low blocks/groups */ 1971 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 1972 ngroups = sbi->s_blockfile_groups; 1973 1974 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1975 1976 /* first, try the goal */ 1977 err = ext4_mb_find_by_goal(ac, &e4b); 1978 if (err || ac->ac_status == AC_STATUS_FOUND) 1979 goto out; 1980 1981 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 1982 goto out; 1983 1984 /* 1985 * ac->ac2_order is set only if the fe_len is a power of 2 1986 * if ac2_order is set we also set criteria to 0 so that we 1987 * try exact allocation using buddy. 1988 */ 1989 i = fls(ac->ac_g_ex.fe_len); 1990 ac->ac_2order = 0; 1991 /* 1992 * We search using buddy data only if the order of the request 1993 * is greater than equal to the sbi_s_mb_order2_reqs 1994 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 1995 */ 1996 if (i >= sbi->s_mb_order2_reqs) { 1997 /* 1998 * This should tell if fe_len is exactly power of 2 1999 */ 2000 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2001 ac->ac_2order = i - 1; 2002 } 2003 2004 /* if stream allocation is enabled, use global goal */ 2005 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2006 /* TBD: may be hot point */ 2007 spin_lock(&sbi->s_md_lock); 2008 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2009 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2010 spin_unlock(&sbi->s_md_lock); 2011 } 2012 2013 /* Let's just scan groups to find more-less suitable blocks */ 2014 cr = ac->ac_2order ? 0 : 1; 2015 /* 2016 * cr == 0 try to get exact allocation, 2017 * cr == 3 try to get anything 2018 */ 2019 repeat: 2020 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2021 ac->ac_criteria = cr; 2022 /* 2023 * searching for the right group start 2024 * from the goal value specified 2025 */ 2026 group = ac->ac_g_ex.fe_group; 2027 2028 for (i = 0; i < ngroups; group++, i++) { 2029 if (group == ngroups) 2030 group = 0; 2031 2032 /* This now checks without needing the buddy page */ 2033 if (!ext4_mb_good_group(ac, group, cr)) 2034 continue; 2035 2036 err = ext4_mb_load_buddy(sb, group, &e4b); 2037 if (err) 2038 goto out; 2039 2040 ext4_lock_group(sb, group); 2041 2042 /* 2043 * We need to check again after locking the 2044 * block group 2045 */ 2046 if (!ext4_mb_good_group(ac, group, cr)) { 2047 ext4_unlock_group(sb, group); 2048 ext4_mb_unload_buddy(&e4b); 2049 continue; 2050 } 2051 2052 ac->ac_groups_scanned++; 2053 if (cr == 0) 2054 ext4_mb_simple_scan_group(ac, &e4b); 2055 else if (cr == 1 && sbi->s_stripe && 2056 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2057 ext4_mb_scan_aligned(ac, &e4b); 2058 else 2059 ext4_mb_complex_scan_group(ac, &e4b); 2060 2061 ext4_unlock_group(sb, group); 2062 ext4_mb_unload_buddy(&e4b); 2063 2064 if (ac->ac_status != AC_STATUS_CONTINUE) 2065 break; 2066 } 2067 } 2068 2069 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2070 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2071 /* 2072 * We've been searching too long. Let's try to allocate 2073 * the best chunk we've found so far 2074 */ 2075 2076 ext4_mb_try_best_found(ac, &e4b); 2077 if (ac->ac_status != AC_STATUS_FOUND) { 2078 /* 2079 * Someone more lucky has already allocated it. 2080 * The only thing we can do is just take first 2081 * found block(s) 2082 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2083 */ 2084 ac->ac_b_ex.fe_group = 0; 2085 ac->ac_b_ex.fe_start = 0; 2086 ac->ac_b_ex.fe_len = 0; 2087 ac->ac_status = AC_STATUS_CONTINUE; 2088 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2089 cr = 3; 2090 atomic_inc(&sbi->s_mb_lost_chunks); 2091 goto repeat; 2092 } 2093 } 2094 out: 2095 return err; 2096 } 2097 2098 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2099 { 2100 struct super_block *sb = seq->private; 2101 ext4_group_t group; 2102 2103 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2104 return NULL; 2105 group = *pos + 1; 2106 return (void *) ((unsigned long) group); 2107 } 2108 2109 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2110 { 2111 struct super_block *sb = seq->private; 2112 ext4_group_t group; 2113 2114 ++*pos; 2115 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2116 return NULL; 2117 group = *pos + 1; 2118 return (void *) ((unsigned long) group); 2119 } 2120 2121 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2122 { 2123 struct super_block *sb = seq->private; 2124 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2125 int i; 2126 int err; 2127 struct ext4_buddy e4b; 2128 struct sg { 2129 struct ext4_group_info info; 2130 ext4_grpblk_t counters[16]; 2131 } sg; 2132 2133 group--; 2134 if (group == 0) 2135 seq_printf(seq, "#%-5s: %-5s %-5s %-5s " 2136 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " 2137 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", 2138 "group", "free", "frags", "first", 2139 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", 2140 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); 2141 2142 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2143 sizeof(struct ext4_group_info); 2144 err = ext4_mb_load_buddy(sb, group, &e4b); 2145 if (err) { 2146 seq_printf(seq, "#%-5u: I/O error\n", group); 2147 return 0; 2148 } 2149 ext4_lock_group(sb, group); 2150 memcpy(&sg, ext4_get_group_info(sb, group), i); 2151 ext4_unlock_group(sb, group); 2152 ext4_mb_unload_buddy(&e4b); 2153 2154 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2155 sg.info.bb_fragments, sg.info.bb_first_free); 2156 for (i = 0; i <= 13; i++) 2157 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2158 sg.info.bb_counters[i] : 0); 2159 seq_printf(seq, " ]\n"); 2160 2161 return 0; 2162 } 2163 2164 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2165 { 2166 } 2167 2168 static const struct seq_operations ext4_mb_seq_groups_ops = { 2169 .start = ext4_mb_seq_groups_start, 2170 .next = ext4_mb_seq_groups_next, 2171 .stop = ext4_mb_seq_groups_stop, 2172 .show = ext4_mb_seq_groups_show, 2173 }; 2174 2175 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2176 { 2177 struct super_block *sb = PDE(inode)->data; 2178 int rc; 2179 2180 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2181 if (rc == 0) { 2182 struct seq_file *m = file->private_data; 2183 m->private = sb; 2184 } 2185 return rc; 2186 2187 } 2188 2189 static const struct file_operations ext4_mb_seq_groups_fops = { 2190 .owner = THIS_MODULE, 2191 .open = ext4_mb_seq_groups_open, 2192 .read = seq_read, 2193 .llseek = seq_lseek, 2194 .release = seq_release, 2195 }; 2196 2197 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2198 { 2199 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2200 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2201 2202 BUG_ON(!cachep); 2203 return cachep; 2204 } 2205 2206 /* Create and initialize ext4_group_info data for the given group. */ 2207 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2208 struct ext4_group_desc *desc) 2209 { 2210 int i; 2211 int metalen = 0; 2212 struct ext4_sb_info *sbi = EXT4_SB(sb); 2213 struct ext4_group_info **meta_group_info; 2214 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2215 2216 /* 2217 * First check if this group is the first of a reserved block. 2218 * If it's true, we have to allocate a new table of pointers 2219 * to ext4_group_info structures 2220 */ 2221 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2222 metalen = sizeof(*meta_group_info) << 2223 EXT4_DESC_PER_BLOCK_BITS(sb); 2224 meta_group_info = kmalloc(metalen, GFP_KERNEL); 2225 if (meta_group_info == NULL) { 2226 printk(KERN_ERR "EXT4-fs: can't allocate mem for a " 2227 "buddy group\n"); 2228 goto exit_meta_group_info; 2229 } 2230 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2231 meta_group_info; 2232 } 2233 2234 meta_group_info = 2235 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2236 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2237 2238 meta_group_info[i] = kmem_cache_alloc(cachep, GFP_KERNEL); 2239 if (meta_group_info[i] == NULL) { 2240 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n"); 2241 goto exit_group_info; 2242 } 2243 memset(meta_group_info[i], 0, kmem_cache_size(cachep)); 2244 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2245 &(meta_group_info[i]->bb_state)); 2246 2247 /* 2248 * initialize bb_free to be able to skip 2249 * empty groups without initialization 2250 */ 2251 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2252 meta_group_info[i]->bb_free = 2253 ext4_free_blocks_after_init(sb, group, desc); 2254 } else { 2255 meta_group_info[i]->bb_free = 2256 ext4_free_blks_count(sb, desc); 2257 } 2258 2259 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2260 init_rwsem(&meta_group_info[i]->alloc_sem); 2261 meta_group_info[i]->bb_free_root = RB_ROOT; 2262 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2263 2264 #ifdef DOUBLE_CHECK 2265 { 2266 struct buffer_head *bh; 2267 meta_group_info[i]->bb_bitmap = 2268 kmalloc(sb->s_blocksize, GFP_KERNEL); 2269 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2270 bh = ext4_read_block_bitmap(sb, group); 2271 BUG_ON(bh == NULL); 2272 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2273 sb->s_blocksize); 2274 put_bh(bh); 2275 } 2276 #endif 2277 2278 return 0; 2279 2280 exit_group_info: 2281 /* If a meta_group_info table has been allocated, release it now */ 2282 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) 2283 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2284 exit_meta_group_info: 2285 return -ENOMEM; 2286 } /* ext4_mb_add_groupinfo */ 2287 2288 static int ext4_mb_init_backend(struct super_block *sb) 2289 { 2290 ext4_group_t ngroups = ext4_get_groups_count(sb); 2291 ext4_group_t i; 2292 struct ext4_sb_info *sbi = EXT4_SB(sb); 2293 struct ext4_super_block *es = sbi->s_es; 2294 int num_meta_group_infos; 2295 int num_meta_group_infos_max; 2296 int array_size; 2297 struct ext4_group_desc *desc; 2298 struct kmem_cache *cachep; 2299 2300 /* This is the number of blocks used by GDT */ 2301 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 2302 1) >> EXT4_DESC_PER_BLOCK_BITS(sb); 2303 2304 /* 2305 * This is the total number of blocks used by GDT including 2306 * the number of reserved blocks for GDT. 2307 * The s_group_info array is allocated with this value 2308 * to allow a clean online resize without a complex 2309 * manipulation of pointer. 2310 * The drawback is the unused memory when no resize 2311 * occurs but it's very low in terms of pages 2312 * (see comments below) 2313 * Need to handle this properly when META_BG resizing is allowed 2314 */ 2315 num_meta_group_infos_max = num_meta_group_infos + 2316 le16_to_cpu(es->s_reserved_gdt_blocks); 2317 2318 /* 2319 * array_size is the size of s_group_info array. We round it 2320 * to the next power of two because this approximation is done 2321 * internally by kmalloc so we can have some more memory 2322 * for free here (e.g. may be used for META_BG resize). 2323 */ 2324 array_size = 1; 2325 while (array_size < sizeof(*sbi->s_group_info) * 2326 num_meta_group_infos_max) 2327 array_size = array_size << 1; 2328 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte 2329 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem. 2330 * So a two level scheme suffices for now. */ 2331 sbi->s_group_info = kzalloc(array_size, GFP_KERNEL); 2332 if (sbi->s_group_info == NULL) { 2333 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n"); 2334 return -ENOMEM; 2335 } 2336 sbi->s_buddy_cache = new_inode(sb); 2337 if (sbi->s_buddy_cache == NULL) { 2338 printk(KERN_ERR "EXT4-fs: can't get new inode\n"); 2339 goto err_freesgi; 2340 } 2341 sbi->s_buddy_cache->i_ino = get_next_ino(); 2342 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2343 for (i = 0; i < ngroups; i++) { 2344 desc = ext4_get_group_desc(sb, i, NULL); 2345 if (desc == NULL) { 2346 printk(KERN_ERR 2347 "EXT4-fs: can't read descriptor %u\n", i); 2348 goto err_freebuddy; 2349 } 2350 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2351 goto err_freebuddy; 2352 } 2353 2354 return 0; 2355 2356 err_freebuddy: 2357 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2358 while (i-- > 0) 2359 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2360 i = num_meta_group_infos; 2361 while (i-- > 0) 2362 kfree(sbi->s_group_info[i]); 2363 iput(sbi->s_buddy_cache); 2364 err_freesgi: 2365 kfree(sbi->s_group_info); 2366 return -ENOMEM; 2367 } 2368 2369 static void ext4_groupinfo_destroy_slabs(void) 2370 { 2371 int i; 2372 2373 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2374 if (ext4_groupinfo_caches[i]) 2375 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2376 ext4_groupinfo_caches[i] = NULL; 2377 } 2378 } 2379 2380 static int ext4_groupinfo_create_slab(size_t size) 2381 { 2382 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2383 int slab_size; 2384 int blocksize_bits = order_base_2(size); 2385 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2386 struct kmem_cache *cachep; 2387 2388 if (cache_index >= NR_GRPINFO_CACHES) 2389 return -EINVAL; 2390 2391 if (unlikely(cache_index < 0)) 2392 cache_index = 0; 2393 2394 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2395 if (ext4_groupinfo_caches[cache_index]) { 2396 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2397 return 0; /* Already created */ 2398 } 2399 2400 slab_size = offsetof(struct ext4_group_info, 2401 bb_counters[blocksize_bits + 2]); 2402 2403 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2404 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2405 NULL); 2406 2407 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2408 if (!cachep) { 2409 printk(KERN_EMERG "EXT4: no memory for groupinfo slab cache\n"); 2410 return -ENOMEM; 2411 } 2412 2413 ext4_groupinfo_caches[cache_index] = cachep; 2414 2415 return 0; 2416 } 2417 2418 int ext4_mb_init(struct super_block *sb, int needs_recovery) 2419 { 2420 struct ext4_sb_info *sbi = EXT4_SB(sb); 2421 unsigned i, j; 2422 unsigned offset; 2423 unsigned max; 2424 int ret; 2425 2426 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2427 2428 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2429 if (sbi->s_mb_offsets == NULL) { 2430 ret = -ENOMEM; 2431 goto out; 2432 } 2433 2434 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2435 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2436 if (sbi->s_mb_maxs == NULL) { 2437 ret = -ENOMEM; 2438 goto out; 2439 } 2440 2441 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2442 if (ret < 0) 2443 goto out; 2444 2445 /* order 0 is regular bitmap */ 2446 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2447 sbi->s_mb_offsets[0] = 0; 2448 2449 i = 1; 2450 offset = 0; 2451 max = sb->s_blocksize << 2; 2452 do { 2453 sbi->s_mb_offsets[i] = offset; 2454 sbi->s_mb_maxs[i] = max; 2455 offset += 1 << (sb->s_blocksize_bits - i); 2456 max = max >> 1; 2457 i++; 2458 } while (i <= sb->s_blocksize_bits + 1); 2459 2460 /* init file for buddy data */ 2461 ret = ext4_mb_init_backend(sb); 2462 if (ret != 0) { 2463 goto out; 2464 } 2465 2466 spin_lock_init(&sbi->s_md_lock); 2467 spin_lock_init(&sbi->s_bal_lock); 2468 2469 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2470 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2471 sbi->s_mb_stats = MB_DEFAULT_STATS; 2472 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2473 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2474 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC; 2475 2476 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2477 if (sbi->s_locality_groups == NULL) { 2478 ret = -ENOMEM; 2479 goto out; 2480 } 2481 for_each_possible_cpu(i) { 2482 struct ext4_locality_group *lg; 2483 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2484 mutex_init(&lg->lg_mutex); 2485 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2486 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2487 spin_lock_init(&lg->lg_prealloc_lock); 2488 } 2489 2490 if (sbi->s_proc) 2491 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, 2492 &ext4_mb_seq_groups_fops, sb); 2493 2494 if (sbi->s_journal) 2495 sbi->s_journal->j_commit_callback = release_blocks_on_commit; 2496 out: 2497 if (ret) { 2498 kfree(sbi->s_mb_offsets); 2499 kfree(sbi->s_mb_maxs); 2500 } 2501 return ret; 2502 } 2503 2504 /* need to called with the ext4 group lock held */ 2505 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2506 { 2507 struct ext4_prealloc_space *pa; 2508 struct list_head *cur, *tmp; 2509 int count = 0; 2510 2511 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2512 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2513 list_del(&pa->pa_group_list); 2514 count++; 2515 kmem_cache_free(ext4_pspace_cachep, pa); 2516 } 2517 if (count) 2518 mb_debug(1, "mballoc: %u PAs left\n", count); 2519 2520 } 2521 2522 int ext4_mb_release(struct super_block *sb) 2523 { 2524 ext4_group_t ngroups = ext4_get_groups_count(sb); 2525 ext4_group_t i; 2526 int num_meta_group_infos; 2527 struct ext4_group_info *grinfo; 2528 struct ext4_sb_info *sbi = EXT4_SB(sb); 2529 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2530 2531 if (sbi->s_group_info) { 2532 for (i = 0; i < ngroups; i++) { 2533 grinfo = ext4_get_group_info(sb, i); 2534 #ifdef DOUBLE_CHECK 2535 kfree(grinfo->bb_bitmap); 2536 #endif 2537 ext4_lock_group(sb, i); 2538 ext4_mb_cleanup_pa(grinfo); 2539 ext4_unlock_group(sb, i); 2540 kmem_cache_free(cachep, grinfo); 2541 } 2542 num_meta_group_infos = (ngroups + 2543 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2544 EXT4_DESC_PER_BLOCK_BITS(sb); 2545 for (i = 0; i < num_meta_group_infos; i++) 2546 kfree(sbi->s_group_info[i]); 2547 kfree(sbi->s_group_info); 2548 } 2549 kfree(sbi->s_mb_offsets); 2550 kfree(sbi->s_mb_maxs); 2551 if (sbi->s_buddy_cache) 2552 iput(sbi->s_buddy_cache); 2553 if (sbi->s_mb_stats) { 2554 printk(KERN_INFO 2555 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n", 2556 atomic_read(&sbi->s_bal_allocated), 2557 atomic_read(&sbi->s_bal_reqs), 2558 atomic_read(&sbi->s_bal_success)); 2559 printk(KERN_INFO 2560 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, " 2561 "%u 2^N hits, %u breaks, %u lost\n", 2562 atomic_read(&sbi->s_bal_ex_scanned), 2563 atomic_read(&sbi->s_bal_goals), 2564 atomic_read(&sbi->s_bal_2orders), 2565 atomic_read(&sbi->s_bal_breaks), 2566 atomic_read(&sbi->s_mb_lost_chunks)); 2567 printk(KERN_INFO 2568 "EXT4-fs: mballoc: %lu generated and it took %Lu\n", 2569 sbi->s_mb_buddies_generated++, 2570 sbi->s_mb_generation_time); 2571 printk(KERN_INFO 2572 "EXT4-fs: mballoc: %u preallocated, %u discarded\n", 2573 atomic_read(&sbi->s_mb_preallocated), 2574 atomic_read(&sbi->s_mb_discarded)); 2575 } 2576 2577 free_percpu(sbi->s_locality_groups); 2578 if (sbi->s_proc) 2579 remove_proc_entry("mb_groups", sbi->s_proc); 2580 2581 return 0; 2582 } 2583 2584 static inline int ext4_issue_discard(struct super_block *sb, 2585 ext4_group_t block_group, ext4_grpblk_t block, int count) 2586 { 2587 ext4_fsblk_t discard_block; 2588 2589 discard_block = block + ext4_group_first_block_no(sb, block_group); 2590 trace_ext4_discard_blocks(sb, 2591 (unsigned long long) discard_block, count); 2592 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2593 } 2594 2595 /* 2596 * This function is called by the jbd2 layer once the commit has finished, 2597 * so we know we can free the blocks that were released with that commit. 2598 */ 2599 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn) 2600 { 2601 struct super_block *sb = journal->j_private; 2602 struct ext4_buddy e4b; 2603 struct ext4_group_info *db; 2604 int err, count = 0, count2 = 0; 2605 struct ext4_free_data *entry; 2606 struct list_head *l, *ltmp; 2607 2608 list_for_each_safe(l, ltmp, &txn->t_private_list) { 2609 entry = list_entry(l, struct ext4_free_data, list); 2610 2611 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2612 entry->count, entry->group, entry); 2613 2614 if (test_opt(sb, DISCARD)) 2615 ext4_issue_discard(sb, entry->group, 2616 entry->start_blk, entry->count); 2617 2618 err = ext4_mb_load_buddy(sb, entry->group, &e4b); 2619 /* we expect to find existing buddy because it's pinned */ 2620 BUG_ON(err != 0); 2621 2622 db = e4b.bd_info; 2623 /* there are blocks to put in buddy to make them really free */ 2624 count += entry->count; 2625 count2++; 2626 ext4_lock_group(sb, entry->group); 2627 /* Take it out of per group rb tree */ 2628 rb_erase(&entry->node, &(db->bb_free_root)); 2629 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count); 2630 2631 if (!db->bb_free_root.rb_node) { 2632 /* No more items in the per group rb tree 2633 * balance refcounts from ext4_mb_free_metadata() 2634 */ 2635 page_cache_release(e4b.bd_buddy_page); 2636 page_cache_release(e4b.bd_bitmap_page); 2637 } 2638 ext4_unlock_group(sb, entry->group); 2639 kmem_cache_free(ext4_free_ext_cachep, entry); 2640 ext4_mb_unload_buddy(&e4b); 2641 } 2642 2643 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2644 } 2645 2646 #ifdef CONFIG_EXT4_DEBUG 2647 u8 mb_enable_debug __read_mostly; 2648 2649 static struct dentry *debugfs_dir; 2650 static struct dentry *debugfs_debug; 2651 2652 static void __init ext4_create_debugfs_entry(void) 2653 { 2654 debugfs_dir = debugfs_create_dir("ext4", NULL); 2655 if (debugfs_dir) 2656 debugfs_debug = debugfs_create_u8("mballoc-debug", 2657 S_IRUGO | S_IWUSR, 2658 debugfs_dir, 2659 &mb_enable_debug); 2660 } 2661 2662 static void ext4_remove_debugfs_entry(void) 2663 { 2664 debugfs_remove(debugfs_debug); 2665 debugfs_remove(debugfs_dir); 2666 } 2667 2668 #else 2669 2670 static void __init ext4_create_debugfs_entry(void) 2671 { 2672 } 2673 2674 static void ext4_remove_debugfs_entry(void) 2675 { 2676 } 2677 2678 #endif 2679 2680 int __init ext4_init_mballoc(void) 2681 { 2682 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2683 SLAB_RECLAIM_ACCOUNT); 2684 if (ext4_pspace_cachep == NULL) 2685 return -ENOMEM; 2686 2687 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2688 SLAB_RECLAIM_ACCOUNT); 2689 if (ext4_ac_cachep == NULL) { 2690 kmem_cache_destroy(ext4_pspace_cachep); 2691 return -ENOMEM; 2692 } 2693 2694 ext4_free_ext_cachep = KMEM_CACHE(ext4_free_data, 2695 SLAB_RECLAIM_ACCOUNT); 2696 if (ext4_free_ext_cachep == NULL) { 2697 kmem_cache_destroy(ext4_pspace_cachep); 2698 kmem_cache_destroy(ext4_ac_cachep); 2699 return -ENOMEM; 2700 } 2701 ext4_create_debugfs_entry(); 2702 return 0; 2703 } 2704 2705 void ext4_exit_mballoc(void) 2706 { 2707 /* 2708 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2709 * before destroying the slab cache. 2710 */ 2711 rcu_barrier(); 2712 kmem_cache_destroy(ext4_pspace_cachep); 2713 kmem_cache_destroy(ext4_ac_cachep); 2714 kmem_cache_destroy(ext4_free_ext_cachep); 2715 ext4_groupinfo_destroy_slabs(); 2716 ext4_remove_debugfs_entry(); 2717 } 2718 2719 2720 /* 2721 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2722 * Returns 0 if success or error code 2723 */ 2724 static noinline_for_stack int 2725 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2726 handle_t *handle, unsigned int reserv_blks) 2727 { 2728 struct buffer_head *bitmap_bh = NULL; 2729 struct ext4_group_desc *gdp; 2730 struct buffer_head *gdp_bh; 2731 struct ext4_sb_info *sbi; 2732 struct super_block *sb; 2733 ext4_fsblk_t block; 2734 int err, len; 2735 2736 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2737 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2738 2739 sb = ac->ac_sb; 2740 sbi = EXT4_SB(sb); 2741 2742 err = -EIO; 2743 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2744 if (!bitmap_bh) 2745 goto out_err; 2746 2747 err = ext4_journal_get_write_access(handle, bitmap_bh); 2748 if (err) 2749 goto out_err; 2750 2751 err = -EIO; 2752 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2753 if (!gdp) 2754 goto out_err; 2755 2756 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2757 ext4_free_blks_count(sb, gdp)); 2758 2759 err = ext4_journal_get_write_access(handle, gdp_bh); 2760 if (err) 2761 goto out_err; 2762 2763 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2764 2765 len = ac->ac_b_ex.fe_len; 2766 if (!ext4_data_block_valid(sbi, block, len)) { 2767 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2768 "fs metadata\n", block, block+len); 2769 /* File system mounted not to panic on error 2770 * Fix the bitmap and repeat the block allocation 2771 * We leak some of the blocks here. 2772 */ 2773 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2774 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2775 ac->ac_b_ex.fe_len); 2776 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2777 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2778 if (!err) 2779 err = -EAGAIN; 2780 goto out_err; 2781 } 2782 2783 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2784 #ifdef AGGRESSIVE_CHECK 2785 { 2786 int i; 2787 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2788 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2789 bitmap_bh->b_data)); 2790 } 2791 } 2792 #endif 2793 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len); 2794 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2795 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2796 ext4_free_blks_set(sb, gdp, 2797 ext4_free_blocks_after_init(sb, 2798 ac->ac_b_ex.fe_group, gdp)); 2799 } 2800 len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len; 2801 ext4_free_blks_set(sb, gdp, len); 2802 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp); 2803 2804 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2805 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len); 2806 /* 2807 * Now reduce the dirty block count also. Should not go negative 2808 */ 2809 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 2810 /* release all the reserved blocks if non delalloc */ 2811 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks); 2812 2813 if (sbi->s_log_groups_per_flex) { 2814 ext4_group_t flex_group = ext4_flex_group(sbi, 2815 ac->ac_b_ex.fe_group); 2816 atomic_sub(ac->ac_b_ex.fe_len, 2817 &sbi->s_flex_groups[flex_group].free_blocks); 2818 } 2819 2820 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2821 if (err) 2822 goto out_err; 2823 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 2824 2825 out_err: 2826 ext4_mark_super_dirty(sb); 2827 brelse(bitmap_bh); 2828 return err; 2829 } 2830 2831 /* 2832 * here we normalize request for locality group 2833 * Group request are normalized to s_strip size if we set the same via mount 2834 * option. If not we set it to s_mb_group_prealloc which can be configured via 2835 * /sys/fs/ext4/<partition>/mb_group_prealloc 2836 * 2837 * XXX: should we try to preallocate more than the group has now? 2838 */ 2839 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 2840 { 2841 struct super_block *sb = ac->ac_sb; 2842 struct ext4_locality_group *lg = ac->ac_lg; 2843 2844 BUG_ON(lg == NULL); 2845 if (EXT4_SB(sb)->s_stripe) 2846 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe; 2847 else 2848 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 2849 mb_debug(1, "#%u: goal %u blocks for locality group\n", 2850 current->pid, ac->ac_g_ex.fe_len); 2851 } 2852 2853 /* 2854 * Normalization means making request better in terms of 2855 * size and alignment 2856 */ 2857 static noinline_for_stack void 2858 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 2859 struct ext4_allocation_request *ar) 2860 { 2861 int bsbits, max; 2862 ext4_lblk_t end; 2863 loff_t size, orig_size, start_off; 2864 ext4_lblk_t start; 2865 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 2866 struct ext4_prealloc_space *pa; 2867 2868 /* do normalize only data requests, metadata requests 2869 do not need preallocation */ 2870 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 2871 return; 2872 2873 /* sometime caller may want exact blocks */ 2874 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2875 return; 2876 2877 /* caller may indicate that preallocation isn't 2878 * required (it's a tail, for example) */ 2879 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 2880 return; 2881 2882 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 2883 ext4_mb_normalize_group_request(ac); 2884 return ; 2885 } 2886 2887 bsbits = ac->ac_sb->s_blocksize_bits; 2888 2889 /* first, let's learn actual file size 2890 * given current request is allocated */ 2891 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len; 2892 size = size << bsbits; 2893 if (size < i_size_read(ac->ac_inode)) 2894 size = i_size_read(ac->ac_inode); 2895 orig_size = size; 2896 2897 /* max size of free chunks */ 2898 max = 2 << bsbits; 2899 2900 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 2901 (req <= (size) || max <= (chunk_size)) 2902 2903 /* first, try to predict filesize */ 2904 /* XXX: should this table be tunable? */ 2905 start_off = 0; 2906 if (size <= 16 * 1024) { 2907 size = 16 * 1024; 2908 } else if (size <= 32 * 1024) { 2909 size = 32 * 1024; 2910 } else if (size <= 64 * 1024) { 2911 size = 64 * 1024; 2912 } else if (size <= 128 * 1024) { 2913 size = 128 * 1024; 2914 } else if (size <= 256 * 1024) { 2915 size = 256 * 1024; 2916 } else if (size <= 512 * 1024) { 2917 size = 512 * 1024; 2918 } else if (size <= 1024 * 1024) { 2919 size = 1024 * 1024; 2920 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 2921 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2922 (21 - bsbits)) << 21; 2923 size = 2 * 1024 * 1024; 2924 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 2925 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2926 (22 - bsbits)) << 22; 2927 size = 4 * 1024 * 1024; 2928 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 2929 (8<<20)>>bsbits, max, 8 * 1024)) { 2930 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2931 (23 - bsbits)) << 23; 2932 size = 8 * 1024 * 1024; 2933 } else { 2934 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits; 2935 size = ac->ac_o_ex.fe_len << bsbits; 2936 } 2937 size = size >> bsbits; 2938 start = start_off >> bsbits; 2939 2940 /* don't cover already allocated blocks in selected range */ 2941 if (ar->pleft && start <= ar->lleft) { 2942 size -= ar->lleft + 1 - start; 2943 start = ar->lleft + 1; 2944 } 2945 if (ar->pright && start + size - 1 >= ar->lright) 2946 size -= start + size - ar->lright; 2947 2948 end = start + size; 2949 2950 /* check we don't cross already preallocated blocks */ 2951 rcu_read_lock(); 2952 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 2953 ext4_lblk_t pa_end; 2954 2955 if (pa->pa_deleted) 2956 continue; 2957 spin_lock(&pa->pa_lock); 2958 if (pa->pa_deleted) { 2959 spin_unlock(&pa->pa_lock); 2960 continue; 2961 } 2962 2963 pa_end = pa->pa_lstart + pa->pa_len; 2964 2965 /* PA must not overlap original request */ 2966 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 2967 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 2968 2969 /* skip PAs this normalized request doesn't overlap with */ 2970 if (pa->pa_lstart >= end || pa_end <= start) { 2971 spin_unlock(&pa->pa_lock); 2972 continue; 2973 } 2974 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 2975 2976 /* adjust start or end to be adjacent to this pa */ 2977 if (pa_end <= ac->ac_o_ex.fe_logical) { 2978 BUG_ON(pa_end < start); 2979 start = pa_end; 2980 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 2981 BUG_ON(pa->pa_lstart > end); 2982 end = pa->pa_lstart; 2983 } 2984 spin_unlock(&pa->pa_lock); 2985 } 2986 rcu_read_unlock(); 2987 size = end - start; 2988 2989 /* XXX: extra loop to check we really don't overlap preallocations */ 2990 rcu_read_lock(); 2991 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 2992 ext4_lblk_t pa_end; 2993 spin_lock(&pa->pa_lock); 2994 if (pa->pa_deleted == 0) { 2995 pa_end = pa->pa_lstart + pa->pa_len; 2996 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 2997 } 2998 spin_unlock(&pa->pa_lock); 2999 } 3000 rcu_read_unlock(); 3001 3002 if (start + size <= ac->ac_o_ex.fe_logical && 3003 start > ac->ac_o_ex.fe_logical) { 3004 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n", 3005 (unsigned long) start, (unsigned long) size, 3006 (unsigned long) ac->ac_o_ex.fe_logical); 3007 } 3008 BUG_ON(start + size <= ac->ac_o_ex.fe_logical && 3009 start > ac->ac_o_ex.fe_logical); 3010 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3011 3012 /* now prepare goal request */ 3013 3014 /* XXX: is it better to align blocks WRT to logical 3015 * placement or satisfy big request as is */ 3016 ac->ac_g_ex.fe_logical = start; 3017 ac->ac_g_ex.fe_len = size; 3018 3019 /* define goal start in order to merge */ 3020 if (ar->pright && (ar->lright == (start + size))) { 3021 /* merge to the right */ 3022 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3023 &ac->ac_f_ex.fe_group, 3024 &ac->ac_f_ex.fe_start); 3025 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3026 } 3027 if (ar->pleft && (ar->lleft + 1 == start)) { 3028 /* merge to the left */ 3029 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3030 &ac->ac_f_ex.fe_group, 3031 &ac->ac_f_ex.fe_start); 3032 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3033 } 3034 3035 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3036 (unsigned) orig_size, (unsigned) start); 3037 } 3038 3039 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3040 { 3041 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3042 3043 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3044 atomic_inc(&sbi->s_bal_reqs); 3045 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3046 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3047 atomic_inc(&sbi->s_bal_success); 3048 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3049 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3050 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3051 atomic_inc(&sbi->s_bal_goals); 3052 if (ac->ac_found > sbi->s_mb_max_to_scan) 3053 atomic_inc(&sbi->s_bal_breaks); 3054 } 3055 3056 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3057 trace_ext4_mballoc_alloc(ac); 3058 else 3059 trace_ext4_mballoc_prealloc(ac); 3060 } 3061 3062 /* 3063 * Called on failure; free up any blocks from the inode PA for this 3064 * context. We don't need this for MB_GROUP_PA because we only change 3065 * pa_free in ext4_mb_release_context(), but on failure, we've already 3066 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3067 */ 3068 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3069 { 3070 struct ext4_prealloc_space *pa = ac->ac_pa; 3071 int len; 3072 3073 if (pa && pa->pa_type == MB_INODE_PA) { 3074 len = ac->ac_b_ex.fe_len; 3075 pa->pa_free += len; 3076 } 3077 3078 } 3079 3080 /* 3081 * use blocks preallocated to inode 3082 */ 3083 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3084 struct ext4_prealloc_space *pa) 3085 { 3086 ext4_fsblk_t start; 3087 ext4_fsblk_t end; 3088 int len; 3089 3090 /* found preallocated blocks, use them */ 3091 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3092 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len); 3093 len = end - start; 3094 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3095 &ac->ac_b_ex.fe_start); 3096 ac->ac_b_ex.fe_len = len; 3097 ac->ac_status = AC_STATUS_FOUND; 3098 ac->ac_pa = pa; 3099 3100 BUG_ON(start < pa->pa_pstart); 3101 BUG_ON(start + len > pa->pa_pstart + pa->pa_len); 3102 BUG_ON(pa->pa_free < len); 3103 pa->pa_free -= len; 3104 3105 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3106 } 3107 3108 /* 3109 * use blocks preallocated to locality group 3110 */ 3111 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3112 struct ext4_prealloc_space *pa) 3113 { 3114 unsigned int len = ac->ac_o_ex.fe_len; 3115 3116 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3117 &ac->ac_b_ex.fe_group, 3118 &ac->ac_b_ex.fe_start); 3119 ac->ac_b_ex.fe_len = len; 3120 ac->ac_status = AC_STATUS_FOUND; 3121 ac->ac_pa = pa; 3122 3123 /* we don't correct pa_pstart or pa_plen here to avoid 3124 * possible race when the group is being loaded concurrently 3125 * instead we correct pa later, after blocks are marked 3126 * in on-disk bitmap -- see ext4_mb_release_context() 3127 * Other CPUs are prevented from allocating from this pa by lg_mutex 3128 */ 3129 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3130 } 3131 3132 /* 3133 * Return the prealloc space that have minimal distance 3134 * from the goal block. @cpa is the prealloc 3135 * space that is having currently known minimal distance 3136 * from the goal block. 3137 */ 3138 static struct ext4_prealloc_space * 3139 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3140 struct ext4_prealloc_space *pa, 3141 struct ext4_prealloc_space *cpa) 3142 { 3143 ext4_fsblk_t cur_distance, new_distance; 3144 3145 if (cpa == NULL) { 3146 atomic_inc(&pa->pa_count); 3147 return pa; 3148 } 3149 cur_distance = abs(goal_block - cpa->pa_pstart); 3150 new_distance = abs(goal_block - pa->pa_pstart); 3151 3152 if (cur_distance <= new_distance) 3153 return cpa; 3154 3155 /* drop the previous reference */ 3156 atomic_dec(&cpa->pa_count); 3157 atomic_inc(&pa->pa_count); 3158 return pa; 3159 } 3160 3161 /* 3162 * search goal blocks in preallocated space 3163 */ 3164 static noinline_for_stack int 3165 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3166 { 3167 int order, i; 3168 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3169 struct ext4_locality_group *lg; 3170 struct ext4_prealloc_space *pa, *cpa = NULL; 3171 ext4_fsblk_t goal_block; 3172 3173 /* only data can be preallocated */ 3174 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3175 return 0; 3176 3177 /* first, try per-file preallocation */ 3178 rcu_read_lock(); 3179 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3180 3181 /* all fields in this condition don't change, 3182 * so we can skip locking for them */ 3183 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3184 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len) 3185 continue; 3186 3187 /* non-extent files can't have physical blocks past 2^32 */ 3188 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3189 pa->pa_pstart + pa->pa_len > EXT4_MAX_BLOCK_FILE_PHYS) 3190 continue; 3191 3192 /* found preallocated blocks, use them */ 3193 spin_lock(&pa->pa_lock); 3194 if (pa->pa_deleted == 0 && pa->pa_free) { 3195 atomic_inc(&pa->pa_count); 3196 ext4_mb_use_inode_pa(ac, pa); 3197 spin_unlock(&pa->pa_lock); 3198 ac->ac_criteria = 10; 3199 rcu_read_unlock(); 3200 return 1; 3201 } 3202 spin_unlock(&pa->pa_lock); 3203 } 3204 rcu_read_unlock(); 3205 3206 /* can we use group allocation? */ 3207 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3208 return 0; 3209 3210 /* inode may have no locality group for some reason */ 3211 lg = ac->ac_lg; 3212 if (lg == NULL) 3213 return 0; 3214 order = fls(ac->ac_o_ex.fe_len) - 1; 3215 if (order > PREALLOC_TB_SIZE - 1) 3216 /* The max size of hash table is PREALLOC_TB_SIZE */ 3217 order = PREALLOC_TB_SIZE - 1; 3218 3219 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3220 /* 3221 * search for the prealloc space that is having 3222 * minimal distance from the goal block. 3223 */ 3224 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3225 rcu_read_lock(); 3226 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3227 pa_inode_list) { 3228 spin_lock(&pa->pa_lock); 3229 if (pa->pa_deleted == 0 && 3230 pa->pa_free >= ac->ac_o_ex.fe_len) { 3231 3232 cpa = ext4_mb_check_group_pa(goal_block, 3233 pa, cpa); 3234 } 3235 spin_unlock(&pa->pa_lock); 3236 } 3237 rcu_read_unlock(); 3238 } 3239 if (cpa) { 3240 ext4_mb_use_group_pa(ac, cpa); 3241 ac->ac_criteria = 20; 3242 return 1; 3243 } 3244 return 0; 3245 } 3246 3247 /* 3248 * the function goes through all block freed in the group 3249 * but not yet committed and marks them used in in-core bitmap. 3250 * buddy must be generated from this bitmap 3251 * Need to be called with the ext4 group lock held 3252 */ 3253 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3254 ext4_group_t group) 3255 { 3256 struct rb_node *n; 3257 struct ext4_group_info *grp; 3258 struct ext4_free_data *entry; 3259 3260 grp = ext4_get_group_info(sb, group); 3261 n = rb_first(&(grp->bb_free_root)); 3262 3263 while (n) { 3264 entry = rb_entry(n, struct ext4_free_data, node); 3265 mb_set_bits(bitmap, entry->start_blk, entry->count); 3266 n = rb_next(n); 3267 } 3268 return; 3269 } 3270 3271 /* 3272 * the function goes through all preallocation in this group and marks them 3273 * used in in-core bitmap. buddy must be generated from this bitmap 3274 * Need to be called with ext4 group lock held 3275 */ 3276 static noinline_for_stack 3277 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3278 ext4_group_t group) 3279 { 3280 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3281 struct ext4_prealloc_space *pa; 3282 struct list_head *cur; 3283 ext4_group_t groupnr; 3284 ext4_grpblk_t start; 3285 int preallocated = 0; 3286 int count = 0; 3287 int len; 3288 3289 /* all form of preallocation discards first load group, 3290 * so the only competing code is preallocation use. 3291 * we don't need any locking here 3292 * notice we do NOT ignore preallocations with pa_deleted 3293 * otherwise we could leave used blocks available for 3294 * allocation in buddy when concurrent ext4_mb_put_pa() 3295 * is dropping preallocation 3296 */ 3297 list_for_each(cur, &grp->bb_prealloc_list) { 3298 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3299 spin_lock(&pa->pa_lock); 3300 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3301 &groupnr, &start); 3302 len = pa->pa_len; 3303 spin_unlock(&pa->pa_lock); 3304 if (unlikely(len == 0)) 3305 continue; 3306 BUG_ON(groupnr != group); 3307 mb_set_bits(bitmap, start, len); 3308 preallocated += len; 3309 count++; 3310 } 3311 mb_debug(1, "prellocated %u for group %u\n", preallocated, group); 3312 } 3313 3314 static void ext4_mb_pa_callback(struct rcu_head *head) 3315 { 3316 struct ext4_prealloc_space *pa; 3317 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3318 kmem_cache_free(ext4_pspace_cachep, pa); 3319 } 3320 3321 /* 3322 * drops a reference to preallocated space descriptor 3323 * if this was the last reference and the space is consumed 3324 */ 3325 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3326 struct super_block *sb, struct ext4_prealloc_space *pa) 3327 { 3328 ext4_group_t grp; 3329 ext4_fsblk_t grp_blk; 3330 3331 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) 3332 return; 3333 3334 /* in this short window concurrent discard can set pa_deleted */ 3335 spin_lock(&pa->pa_lock); 3336 if (pa->pa_deleted == 1) { 3337 spin_unlock(&pa->pa_lock); 3338 return; 3339 } 3340 3341 pa->pa_deleted = 1; 3342 spin_unlock(&pa->pa_lock); 3343 3344 grp_blk = pa->pa_pstart; 3345 /* 3346 * If doing group-based preallocation, pa_pstart may be in the 3347 * next group when pa is used up 3348 */ 3349 if (pa->pa_type == MB_GROUP_PA) 3350 grp_blk--; 3351 3352 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL); 3353 3354 /* 3355 * possible race: 3356 * 3357 * P1 (buddy init) P2 (regular allocation) 3358 * find block B in PA 3359 * copy on-disk bitmap to buddy 3360 * mark B in on-disk bitmap 3361 * drop PA from group 3362 * mark all PAs in buddy 3363 * 3364 * thus, P1 initializes buddy with B available. to prevent this 3365 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3366 * against that pair 3367 */ 3368 ext4_lock_group(sb, grp); 3369 list_del(&pa->pa_group_list); 3370 ext4_unlock_group(sb, grp); 3371 3372 spin_lock(pa->pa_obj_lock); 3373 list_del_rcu(&pa->pa_inode_list); 3374 spin_unlock(pa->pa_obj_lock); 3375 3376 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3377 } 3378 3379 /* 3380 * creates new preallocated space for given inode 3381 */ 3382 static noinline_for_stack int 3383 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3384 { 3385 struct super_block *sb = ac->ac_sb; 3386 struct ext4_prealloc_space *pa; 3387 struct ext4_group_info *grp; 3388 struct ext4_inode_info *ei; 3389 3390 /* preallocate only when found space is larger then requested */ 3391 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3392 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3393 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3394 3395 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3396 if (pa == NULL) 3397 return -ENOMEM; 3398 3399 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3400 int winl; 3401 int wins; 3402 int win; 3403 int offs; 3404 3405 /* we can't allocate as much as normalizer wants. 3406 * so, found space must get proper lstart 3407 * to cover original request */ 3408 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3409 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3410 3411 /* we're limited by original request in that 3412 * logical block must be covered any way 3413 * winl is window we can move our chunk within */ 3414 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3415 3416 /* also, we should cover whole original request */ 3417 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len; 3418 3419 /* the smallest one defines real window */ 3420 win = min(winl, wins); 3421 3422 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len; 3423 if (offs && offs < win) 3424 win = offs; 3425 3426 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win; 3427 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3428 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3429 } 3430 3431 /* preallocation can change ac_b_ex, thus we store actually 3432 * allocated blocks for history */ 3433 ac->ac_f_ex = ac->ac_b_ex; 3434 3435 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3436 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3437 pa->pa_len = ac->ac_b_ex.fe_len; 3438 pa->pa_free = pa->pa_len; 3439 atomic_set(&pa->pa_count, 1); 3440 spin_lock_init(&pa->pa_lock); 3441 INIT_LIST_HEAD(&pa->pa_inode_list); 3442 INIT_LIST_HEAD(&pa->pa_group_list); 3443 pa->pa_deleted = 0; 3444 pa->pa_type = MB_INODE_PA; 3445 3446 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3447 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3448 trace_ext4_mb_new_inode_pa(ac, pa); 3449 3450 ext4_mb_use_inode_pa(ac, pa); 3451 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3452 3453 ei = EXT4_I(ac->ac_inode); 3454 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3455 3456 pa->pa_obj_lock = &ei->i_prealloc_lock; 3457 pa->pa_inode = ac->ac_inode; 3458 3459 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3460 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3461 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3462 3463 spin_lock(pa->pa_obj_lock); 3464 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3465 spin_unlock(pa->pa_obj_lock); 3466 3467 return 0; 3468 } 3469 3470 /* 3471 * creates new preallocated space for locality group inodes belongs to 3472 */ 3473 static noinline_for_stack int 3474 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3475 { 3476 struct super_block *sb = ac->ac_sb; 3477 struct ext4_locality_group *lg; 3478 struct ext4_prealloc_space *pa; 3479 struct ext4_group_info *grp; 3480 3481 /* preallocate only when found space is larger then requested */ 3482 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3483 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3484 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3485 3486 BUG_ON(ext4_pspace_cachep == NULL); 3487 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3488 if (pa == NULL) 3489 return -ENOMEM; 3490 3491 /* preallocation can change ac_b_ex, thus we store actually 3492 * allocated blocks for history */ 3493 ac->ac_f_ex = ac->ac_b_ex; 3494 3495 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3496 pa->pa_lstart = pa->pa_pstart; 3497 pa->pa_len = ac->ac_b_ex.fe_len; 3498 pa->pa_free = pa->pa_len; 3499 atomic_set(&pa->pa_count, 1); 3500 spin_lock_init(&pa->pa_lock); 3501 INIT_LIST_HEAD(&pa->pa_inode_list); 3502 INIT_LIST_HEAD(&pa->pa_group_list); 3503 pa->pa_deleted = 0; 3504 pa->pa_type = MB_GROUP_PA; 3505 3506 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3507 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3508 trace_ext4_mb_new_group_pa(ac, pa); 3509 3510 ext4_mb_use_group_pa(ac, pa); 3511 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3512 3513 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3514 lg = ac->ac_lg; 3515 BUG_ON(lg == NULL); 3516 3517 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3518 pa->pa_inode = NULL; 3519 3520 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3521 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3522 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3523 3524 /* 3525 * We will later add the new pa to the right bucket 3526 * after updating the pa_free in ext4_mb_release_context 3527 */ 3528 return 0; 3529 } 3530 3531 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3532 { 3533 int err; 3534 3535 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3536 err = ext4_mb_new_group_pa(ac); 3537 else 3538 err = ext4_mb_new_inode_pa(ac); 3539 return err; 3540 } 3541 3542 /* 3543 * finds all unused blocks in on-disk bitmap, frees them in 3544 * in-core bitmap and buddy. 3545 * @pa must be unlinked from inode and group lists, so that 3546 * nobody else can find/use it. 3547 * the caller MUST hold group/inode locks. 3548 * TODO: optimize the case when there are no in-core structures yet 3549 */ 3550 static noinline_for_stack int 3551 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3552 struct ext4_prealloc_space *pa) 3553 { 3554 struct super_block *sb = e4b->bd_sb; 3555 struct ext4_sb_info *sbi = EXT4_SB(sb); 3556 unsigned int end; 3557 unsigned int next; 3558 ext4_group_t group; 3559 ext4_grpblk_t bit; 3560 unsigned long long grp_blk_start; 3561 int err = 0; 3562 int free = 0; 3563 3564 BUG_ON(pa->pa_deleted == 0); 3565 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3566 grp_blk_start = pa->pa_pstart - bit; 3567 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3568 end = bit + pa->pa_len; 3569 3570 while (bit < end) { 3571 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3572 if (bit >= end) 3573 break; 3574 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3575 mb_debug(1, " free preallocated %u/%u in group %u\n", 3576 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3577 (unsigned) next - bit, (unsigned) group); 3578 free += next - bit; 3579 3580 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3581 trace_ext4_mb_release_inode_pa(sb, pa->pa_inode, pa, 3582 grp_blk_start + bit, next - bit); 3583 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3584 bit = next + 1; 3585 } 3586 if (free != pa->pa_free) { 3587 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n", 3588 pa, (unsigned long) pa->pa_lstart, 3589 (unsigned long) pa->pa_pstart, 3590 (unsigned long) pa->pa_len); 3591 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3592 free, pa->pa_free); 3593 /* 3594 * pa is already deleted so we use the value obtained 3595 * from the bitmap and continue. 3596 */ 3597 } 3598 atomic_add(free, &sbi->s_mb_discarded); 3599 3600 return err; 3601 } 3602 3603 static noinline_for_stack int 3604 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3605 struct ext4_prealloc_space *pa) 3606 { 3607 struct super_block *sb = e4b->bd_sb; 3608 ext4_group_t group; 3609 ext4_grpblk_t bit; 3610 3611 trace_ext4_mb_release_group_pa(sb, pa); 3612 BUG_ON(pa->pa_deleted == 0); 3613 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3614 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3615 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3616 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3617 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3618 3619 return 0; 3620 } 3621 3622 /* 3623 * releases all preallocations in given group 3624 * 3625 * first, we need to decide discard policy: 3626 * - when do we discard 3627 * 1) ENOSPC 3628 * - how many do we discard 3629 * 1) how many requested 3630 */ 3631 static noinline_for_stack int 3632 ext4_mb_discard_group_preallocations(struct super_block *sb, 3633 ext4_group_t group, int needed) 3634 { 3635 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3636 struct buffer_head *bitmap_bh = NULL; 3637 struct ext4_prealloc_space *pa, *tmp; 3638 struct list_head list; 3639 struct ext4_buddy e4b; 3640 int err; 3641 int busy = 0; 3642 int free = 0; 3643 3644 mb_debug(1, "discard preallocation for group %u\n", group); 3645 3646 if (list_empty(&grp->bb_prealloc_list)) 3647 return 0; 3648 3649 bitmap_bh = ext4_read_block_bitmap(sb, group); 3650 if (bitmap_bh == NULL) { 3651 ext4_error(sb, "Error reading block bitmap for %u", group); 3652 return 0; 3653 } 3654 3655 err = ext4_mb_load_buddy(sb, group, &e4b); 3656 if (err) { 3657 ext4_error(sb, "Error loading buddy information for %u", group); 3658 put_bh(bitmap_bh); 3659 return 0; 3660 } 3661 3662 if (needed == 0) 3663 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1; 3664 3665 INIT_LIST_HEAD(&list); 3666 repeat: 3667 ext4_lock_group(sb, group); 3668 list_for_each_entry_safe(pa, tmp, 3669 &grp->bb_prealloc_list, pa_group_list) { 3670 spin_lock(&pa->pa_lock); 3671 if (atomic_read(&pa->pa_count)) { 3672 spin_unlock(&pa->pa_lock); 3673 busy = 1; 3674 continue; 3675 } 3676 if (pa->pa_deleted) { 3677 spin_unlock(&pa->pa_lock); 3678 continue; 3679 } 3680 3681 /* seems this one can be freed ... */ 3682 pa->pa_deleted = 1; 3683 3684 /* we can trust pa_free ... */ 3685 free += pa->pa_free; 3686 3687 spin_unlock(&pa->pa_lock); 3688 3689 list_del(&pa->pa_group_list); 3690 list_add(&pa->u.pa_tmp_list, &list); 3691 } 3692 3693 /* if we still need more blocks and some PAs were used, try again */ 3694 if (free < needed && busy) { 3695 busy = 0; 3696 ext4_unlock_group(sb, group); 3697 /* 3698 * Yield the CPU here so that we don't get soft lockup 3699 * in non preempt case. 3700 */ 3701 yield(); 3702 goto repeat; 3703 } 3704 3705 /* found anything to free? */ 3706 if (list_empty(&list)) { 3707 BUG_ON(free != 0); 3708 goto out; 3709 } 3710 3711 /* now free all selected PAs */ 3712 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3713 3714 /* remove from object (inode or locality group) */ 3715 spin_lock(pa->pa_obj_lock); 3716 list_del_rcu(&pa->pa_inode_list); 3717 spin_unlock(pa->pa_obj_lock); 3718 3719 if (pa->pa_type == MB_GROUP_PA) 3720 ext4_mb_release_group_pa(&e4b, pa); 3721 else 3722 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3723 3724 list_del(&pa->u.pa_tmp_list); 3725 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3726 } 3727 3728 out: 3729 ext4_unlock_group(sb, group); 3730 ext4_mb_unload_buddy(&e4b); 3731 put_bh(bitmap_bh); 3732 return free; 3733 } 3734 3735 /* 3736 * releases all non-used preallocated blocks for given inode 3737 * 3738 * It's important to discard preallocations under i_data_sem 3739 * We don't want another block to be served from the prealloc 3740 * space when we are discarding the inode prealloc space. 3741 * 3742 * FIXME!! Make sure it is valid at all the call sites 3743 */ 3744 void ext4_discard_preallocations(struct inode *inode) 3745 { 3746 struct ext4_inode_info *ei = EXT4_I(inode); 3747 struct super_block *sb = inode->i_sb; 3748 struct buffer_head *bitmap_bh = NULL; 3749 struct ext4_prealloc_space *pa, *tmp; 3750 ext4_group_t group = 0; 3751 struct list_head list; 3752 struct ext4_buddy e4b; 3753 int err; 3754 3755 if (!S_ISREG(inode->i_mode)) { 3756 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 3757 return; 3758 } 3759 3760 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 3761 trace_ext4_discard_preallocations(inode); 3762 3763 INIT_LIST_HEAD(&list); 3764 3765 repeat: 3766 /* first, collect all pa's in the inode */ 3767 spin_lock(&ei->i_prealloc_lock); 3768 while (!list_empty(&ei->i_prealloc_list)) { 3769 pa = list_entry(ei->i_prealloc_list.next, 3770 struct ext4_prealloc_space, pa_inode_list); 3771 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 3772 spin_lock(&pa->pa_lock); 3773 if (atomic_read(&pa->pa_count)) { 3774 /* this shouldn't happen often - nobody should 3775 * use preallocation while we're discarding it */ 3776 spin_unlock(&pa->pa_lock); 3777 spin_unlock(&ei->i_prealloc_lock); 3778 printk(KERN_ERR "uh-oh! used pa while discarding\n"); 3779 WARN_ON(1); 3780 schedule_timeout_uninterruptible(HZ); 3781 goto repeat; 3782 3783 } 3784 if (pa->pa_deleted == 0) { 3785 pa->pa_deleted = 1; 3786 spin_unlock(&pa->pa_lock); 3787 list_del_rcu(&pa->pa_inode_list); 3788 list_add(&pa->u.pa_tmp_list, &list); 3789 continue; 3790 } 3791 3792 /* someone is deleting pa right now */ 3793 spin_unlock(&pa->pa_lock); 3794 spin_unlock(&ei->i_prealloc_lock); 3795 3796 /* we have to wait here because pa_deleted 3797 * doesn't mean pa is already unlinked from 3798 * the list. as we might be called from 3799 * ->clear_inode() the inode will get freed 3800 * and concurrent thread which is unlinking 3801 * pa from inode's list may access already 3802 * freed memory, bad-bad-bad */ 3803 3804 /* XXX: if this happens too often, we can 3805 * add a flag to force wait only in case 3806 * of ->clear_inode(), but not in case of 3807 * regular truncate */ 3808 schedule_timeout_uninterruptible(HZ); 3809 goto repeat; 3810 } 3811 spin_unlock(&ei->i_prealloc_lock); 3812 3813 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3814 BUG_ON(pa->pa_type != MB_INODE_PA); 3815 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 3816 3817 err = ext4_mb_load_buddy(sb, group, &e4b); 3818 if (err) { 3819 ext4_error(sb, "Error loading buddy information for %u", 3820 group); 3821 continue; 3822 } 3823 3824 bitmap_bh = ext4_read_block_bitmap(sb, group); 3825 if (bitmap_bh == NULL) { 3826 ext4_error(sb, "Error reading block bitmap for %u", 3827 group); 3828 ext4_mb_unload_buddy(&e4b); 3829 continue; 3830 } 3831 3832 ext4_lock_group(sb, group); 3833 list_del(&pa->pa_group_list); 3834 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3835 ext4_unlock_group(sb, group); 3836 3837 ext4_mb_unload_buddy(&e4b); 3838 put_bh(bitmap_bh); 3839 3840 list_del(&pa->u.pa_tmp_list); 3841 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3842 } 3843 } 3844 3845 #ifdef CONFIG_EXT4_DEBUG 3846 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3847 { 3848 struct super_block *sb = ac->ac_sb; 3849 ext4_group_t ngroups, i; 3850 3851 if (!mb_enable_debug || 3852 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 3853 return; 3854 3855 printk(KERN_ERR "EXT4-fs: Can't allocate:" 3856 " Allocation context details:\n"); 3857 printk(KERN_ERR "EXT4-fs: status %d flags %d\n", 3858 ac->ac_status, ac->ac_flags); 3859 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, " 3860 "best %lu/%lu/%lu@%lu cr %d\n", 3861 (unsigned long)ac->ac_o_ex.fe_group, 3862 (unsigned long)ac->ac_o_ex.fe_start, 3863 (unsigned long)ac->ac_o_ex.fe_len, 3864 (unsigned long)ac->ac_o_ex.fe_logical, 3865 (unsigned long)ac->ac_g_ex.fe_group, 3866 (unsigned long)ac->ac_g_ex.fe_start, 3867 (unsigned long)ac->ac_g_ex.fe_len, 3868 (unsigned long)ac->ac_g_ex.fe_logical, 3869 (unsigned long)ac->ac_b_ex.fe_group, 3870 (unsigned long)ac->ac_b_ex.fe_start, 3871 (unsigned long)ac->ac_b_ex.fe_len, 3872 (unsigned long)ac->ac_b_ex.fe_logical, 3873 (int)ac->ac_criteria); 3874 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned, 3875 ac->ac_found); 3876 printk(KERN_ERR "EXT4-fs: groups: \n"); 3877 ngroups = ext4_get_groups_count(sb); 3878 for (i = 0; i < ngroups; i++) { 3879 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3880 struct ext4_prealloc_space *pa; 3881 ext4_grpblk_t start; 3882 struct list_head *cur; 3883 ext4_lock_group(sb, i); 3884 list_for_each(cur, &grp->bb_prealloc_list) { 3885 pa = list_entry(cur, struct ext4_prealloc_space, 3886 pa_group_list); 3887 spin_lock(&pa->pa_lock); 3888 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3889 NULL, &start); 3890 spin_unlock(&pa->pa_lock); 3891 printk(KERN_ERR "PA:%u:%d:%u \n", i, 3892 start, pa->pa_len); 3893 } 3894 ext4_unlock_group(sb, i); 3895 3896 if (grp->bb_free == 0) 3897 continue; 3898 printk(KERN_ERR "%u: %d/%d \n", 3899 i, grp->bb_free, grp->bb_fragments); 3900 } 3901 printk(KERN_ERR "\n"); 3902 } 3903 #else 3904 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3905 { 3906 return; 3907 } 3908 #endif 3909 3910 /* 3911 * We use locality group preallocation for small size file. The size of the 3912 * file is determined by the current size or the resulting size after 3913 * allocation which ever is larger 3914 * 3915 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 3916 */ 3917 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 3918 { 3919 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3920 int bsbits = ac->ac_sb->s_blocksize_bits; 3921 loff_t size, isize; 3922 3923 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3924 return; 3925 3926 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3927 return; 3928 3929 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len; 3930 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 3931 >> bsbits; 3932 3933 if ((size == isize) && 3934 !ext4_fs_is_busy(sbi) && 3935 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 3936 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 3937 return; 3938 } 3939 3940 /* don't use group allocation for large files */ 3941 size = max(size, isize); 3942 if (size > sbi->s_mb_stream_request) { 3943 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 3944 return; 3945 } 3946 3947 BUG_ON(ac->ac_lg != NULL); 3948 /* 3949 * locality group prealloc space are per cpu. The reason for having 3950 * per cpu locality group is to reduce the contention between block 3951 * request from multiple CPUs. 3952 */ 3953 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups); 3954 3955 /* we're going to use group allocation */ 3956 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 3957 3958 /* serialize all allocations in the group */ 3959 mutex_lock(&ac->ac_lg->lg_mutex); 3960 } 3961 3962 static noinline_for_stack int 3963 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 3964 struct ext4_allocation_request *ar) 3965 { 3966 struct super_block *sb = ar->inode->i_sb; 3967 struct ext4_sb_info *sbi = EXT4_SB(sb); 3968 struct ext4_super_block *es = sbi->s_es; 3969 ext4_group_t group; 3970 unsigned int len; 3971 ext4_fsblk_t goal; 3972 ext4_grpblk_t block; 3973 3974 /* we can't allocate > group size */ 3975 len = ar->len; 3976 3977 /* just a dirty hack to filter too big requests */ 3978 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10) 3979 len = EXT4_BLOCKS_PER_GROUP(sb) - 10; 3980 3981 /* start searching from the goal */ 3982 goal = ar->goal; 3983 if (goal < le32_to_cpu(es->s_first_data_block) || 3984 goal >= ext4_blocks_count(es)) 3985 goal = le32_to_cpu(es->s_first_data_block); 3986 ext4_get_group_no_and_offset(sb, goal, &group, &block); 3987 3988 /* set up allocation goals */ 3989 memset(ac, 0, sizeof(struct ext4_allocation_context)); 3990 ac->ac_b_ex.fe_logical = ar->logical; 3991 ac->ac_status = AC_STATUS_CONTINUE; 3992 ac->ac_sb = sb; 3993 ac->ac_inode = ar->inode; 3994 ac->ac_o_ex.fe_logical = ar->logical; 3995 ac->ac_o_ex.fe_group = group; 3996 ac->ac_o_ex.fe_start = block; 3997 ac->ac_o_ex.fe_len = len; 3998 ac->ac_g_ex.fe_logical = ar->logical; 3999 ac->ac_g_ex.fe_group = group; 4000 ac->ac_g_ex.fe_start = block; 4001 ac->ac_g_ex.fe_len = len; 4002 ac->ac_flags = ar->flags; 4003 4004 /* we have to define context: we'll we work with a file or 4005 * locality group. this is a policy, actually */ 4006 ext4_mb_group_or_file(ac); 4007 4008 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4009 "left: %u/%u, right %u/%u to %swritable\n", 4010 (unsigned) ar->len, (unsigned) ar->logical, 4011 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4012 (unsigned) ar->lleft, (unsigned) ar->pleft, 4013 (unsigned) ar->lright, (unsigned) ar->pright, 4014 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4015 return 0; 4016 4017 } 4018 4019 static noinline_for_stack void 4020 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4021 struct ext4_locality_group *lg, 4022 int order, int total_entries) 4023 { 4024 ext4_group_t group = 0; 4025 struct ext4_buddy e4b; 4026 struct list_head discard_list; 4027 struct ext4_prealloc_space *pa, *tmp; 4028 4029 mb_debug(1, "discard locality group preallocation\n"); 4030 4031 INIT_LIST_HEAD(&discard_list); 4032 4033 spin_lock(&lg->lg_prealloc_lock); 4034 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4035 pa_inode_list) { 4036 spin_lock(&pa->pa_lock); 4037 if (atomic_read(&pa->pa_count)) { 4038 /* 4039 * This is the pa that we just used 4040 * for block allocation. So don't 4041 * free that 4042 */ 4043 spin_unlock(&pa->pa_lock); 4044 continue; 4045 } 4046 if (pa->pa_deleted) { 4047 spin_unlock(&pa->pa_lock); 4048 continue; 4049 } 4050 /* only lg prealloc space */ 4051 BUG_ON(pa->pa_type != MB_GROUP_PA); 4052 4053 /* seems this one can be freed ... */ 4054 pa->pa_deleted = 1; 4055 spin_unlock(&pa->pa_lock); 4056 4057 list_del_rcu(&pa->pa_inode_list); 4058 list_add(&pa->u.pa_tmp_list, &discard_list); 4059 4060 total_entries--; 4061 if (total_entries <= 5) { 4062 /* 4063 * we want to keep only 5 entries 4064 * allowing it to grow to 8. This 4065 * mak sure we don't call discard 4066 * soon for this list. 4067 */ 4068 break; 4069 } 4070 } 4071 spin_unlock(&lg->lg_prealloc_lock); 4072 4073 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4074 4075 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 4076 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4077 ext4_error(sb, "Error loading buddy information for %u", 4078 group); 4079 continue; 4080 } 4081 ext4_lock_group(sb, group); 4082 list_del(&pa->pa_group_list); 4083 ext4_mb_release_group_pa(&e4b, pa); 4084 ext4_unlock_group(sb, group); 4085 4086 ext4_mb_unload_buddy(&e4b); 4087 list_del(&pa->u.pa_tmp_list); 4088 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4089 } 4090 } 4091 4092 /* 4093 * We have incremented pa_count. So it cannot be freed at this 4094 * point. Also we hold lg_mutex. So no parallel allocation is 4095 * possible from this lg. That means pa_free cannot be updated. 4096 * 4097 * A parallel ext4_mb_discard_group_preallocations is possible. 4098 * which can cause the lg_prealloc_list to be updated. 4099 */ 4100 4101 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4102 { 4103 int order, added = 0, lg_prealloc_count = 1; 4104 struct super_block *sb = ac->ac_sb; 4105 struct ext4_locality_group *lg = ac->ac_lg; 4106 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4107 4108 order = fls(pa->pa_free) - 1; 4109 if (order > PREALLOC_TB_SIZE - 1) 4110 /* The max size of hash table is PREALLOC_TB_SIZE */ 4111 order = PREALLOC_TB_SIZE - 1; 4112 /* Add the prealloc space to lg */ 4113 rcu_read_lock(); 4114 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4115 pa_inode_list) { 4116 spin_lock(&tmp_pa->pa_lock); 4117 if (tmp_pa->pa_deleted) { 4118 spin_unlock(&tmp_pa->pa_lock); 4119 continue; 4120 } 4121 if (!added && pa->pa_free < tmp_pa->pa_free) { 4122 /* Add to the tail of the previous entry */ 4123 list_add_tail_rcu(&pa->pa_inode_list, 4124 &tmp_pa->pa_inode_list); 4125 added = 1; 4126 /* 4127 * we want to count the total 4128 * number of entries in the list 4129 */ 4130 } 4131 spin_unlock(&tmp_pa->pa_lock); 4132 lg_prealloc_count++; 4133 } 4134 if (!added) 4135 list_add_tail_rcu(&pa->pa_inode_list, 4136 &lg->lg_prealloc_list[order]); 4137 rcu_read_unlock(); 4138 4139 /* Now trim the list to be not more than 8 elements */ 4140 if (lg_prealloc_count > 8) { 4141 ext4_mb_discard_lg_preallocations(sb, lg, 4142 order, lg_prealloc_count); 4143 return; 4144 } 4145 return ; 4146 } 4147 4148 /* 4149 * release all resource we used in allocation 4150 */ 4151 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4152 { 4153 struct ext4_prealloc_space *pa = ac->ac_pa; 4154 if (pa) { 4155 if (pa->pa_type == MB_GROUP_PA) { 4156 /* see comment in ext4_mb_use_group_pa() */ 4157 spin_lock(&pa->pa_lock); 4158 pa->pa_pstart += ac->ac_b_ex.fe_len; 4159 pa->pa_lstart += ac->ac_b_ex.fe_len; 4160 pa->pa_free -= ac->ac_b_ex.fe_len; 4161 pa->pa_len -= ac->ac_b_ex.fe_len; 4162 spin_unlock(&pa->pa_lock); 4163 } 4164 } 4165 if (pa) { 4166 /* 4167 * We want to add the pa to the right bucket. 4168 * Remove it from the list and while adding 4169 * make sure the list to which we are adding 4170 * doesn't grow big. 4171 */ 4172 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4173 spin_lock(pa->pa_obj_lock); 4174 list_del_rcu(&pa->pa_inode_list); 4175 spin_unlock(pa->pa_obj_lock); 4176 ext4_mb_add_n_trim(ac); 4177 } 4178 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4179 } 4180 if (ac->ac_bitmap_page) 4181 page_cache_release(ac->ac_bitmap_page); 4182 if (ac->ac_buddy_page) 4183 page_cache_release(ac->ac_buddy_page); 4184 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4185 mutex_unlock(&ac->ac_lg->lg_mutex); 4186 ext4_mb_collect_stats(ac); 4187 return 0; 4188 } 4189 4190 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4191 { 4192 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4193 int ret; 4194 int freed = 0; 4195 4196 trace_ext4_mb_discard_preallocations(sb, needed); 4197 for (i = 0; i < ngroups && needed > 0; i++) { 4198 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4199 freed += ret; 4200 needed -= ret; 4201 } 4202 4203 return freed; 4204 } 4205 4206 /* 4207 * Main entry point into mballoc to allocate blocks 4208 * it tries to use preallocation first, then falls back 4209 * to usual allocation 4210 */ 4211 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4212 struct ext4_allocation_request *ar, int *errp) 4213 { 4214 int freed; 4215 struct ext4_allocation_context *ac = NULL; 4216 struct ext4_sb_info *sbi; 4217 struct super_block *sb; 4218 ext4_fsblk_t block = 0; 4219 unsigned int inquota = 0; 4220 unsigned int reserv_blks = 0; 4221 4222 sb = ar->inode->i_sb; 4223 sbi = EXT4_SB(sb); 4224 4225 trace_ext4_request_blocks(ar); 4226 4227 /* 4228 * For delayed allocation, we could skip the ENOSPC and 4229 * EDQUOT check, as blocks and quotas have been already 4230 * reserved when data being copied into pagecache. 4231 */ 4232 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED)) 4233 ar->flags |= EXT4_MB_DELALLOC_RESERVED; 4234 else { 4235 /* Without delayed allocation we need to verify 4236 * there is enough free blocks to do block allocation 4237 * and verify allocation doesn't exceed the quota limits. 4238 */ 4239 while (ar->len && 4240 ext4_claim_free_blocks(sbi, ar->len, ar->flags)) { 4241 4242 /* let others to free the space */ 4243 yield(); 4244 ar->len = ar->len >> 1; 4245 } 4246 if (!ar->len) { 4247 *errp = -ENOSPC; 4248 return 0; 4249 } 4250 reserv_blks = ar->len; 4251 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4252 dquot_alloc_block_nofail(ar->inode, ar->len); 4253 } else { 4254 while (ar->len && 4255 dquot_alloc_block(ar->inode, ar->len)) { 4256 4257 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4258 ar->len--; 4259 } 4260 } 4261 inquota = ar->len; 4262 if (ar->len == 0) { 4263 *errp = -EDQUOT; 4264 goto out; 4265 } 4266 } 4267 4268 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS); 4269 if (!ac) { 4270 ar->len = 0; 4271 *errp = -ENOMEM; 4272 goto out; 4273 } 4274 4275 *errp = ext4_mb_initialize_context(ac, ar); 4276 if (*errp) { 4277 ar->len = 0; 4278 goto out; 4279 } 4280 4281 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4282 if (!ext4_mb_use_preallocated(ac)) { 4283 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4284 ext4_mb_normalize_request(ac, ar); 4285 repeat: 4286 /* allocate space in core */ 4287 *errp = ext4_mb_regular_allocator(ac); 4288 if (*errp) 4289 goto errout; 4290 4291 /* as we've just preallocated more space than 4292 * user requested orinally, we store allocated 4293 * space in a special descriptor */ 4294 if (ac->ac_status == AC_STATUS_FOUND && 4295 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4296 ext4_mb_new_preallocation(ac); 4297 } 4298 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4299 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks); 4300 if (*errp == -EAGAIN) { 4301 /* 4302 * drop the reference that we took 4303 * in ext4_mb_use_best_found 4304 */ 4305 ext4_mb_release_context(ac); 4306 ac->ac_b_ex.fe_group = 0; 4307 ac->ac_b_ex.fe_start = 0; 4308 ac->ac_b_ex.fe_len = 0; 4309 ac->ac_status = AC_STATUS_CONTINUE; 4310 goto repeat; 4311 } else if (*errp) 4312 errout: 4313 ext4_discard_allocated_blocks(ac); 4314 else { 4315 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4316 ar->len = ac->ac_b_ex.fe_len; 4317 } 4318 } else { 4319 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4320 if (freed) 4321 goto repeat; 4322 *errp = -ENOSPC; 4323 } 4324 4325 if (*errp) { 4326 ac->ac_b_ex.fe_len = 0; 4327 ar->len = 0; 4328 ext4_mb_show_ac(ac); 4329 } 4330 ext4_mb_release_context(ac); 4331 out: 4332 if (ac) 4333 kmem_cache_free(ext4_ac_cachep, ac); 4334 if (inquota && ar->len < inquota) 4335 dquot_free_block(ar->inode, inquota - ar->len); 4336 if (!ar->len) { 4337 if (!ext4_test_inode_state(ar->inode, 4338 EXT4_STATE_DELALLOC_RESERVED)) 4339 /* release all the reserved blocks if non delalloc */ 4340 percpu_counter_sub(&sbi->s_dirtyblocks_counter, 4341 reserv_blks); 4342 } 4343 4344 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4345 4346 return block; 4347 } 4348 4349 /* 4350 * We can merge two free data extents only if the physical blocks 4351 * are contiguous, AND the extents were freed by the same transaction, 4352 * AND the blocks are associated with the same group. 4353 */ 4354 static int can_merge(struct ext4_free_data *entry1, 4355 struct ext4_free_data *entry2) 4356 { 4357 if ((entry1->t_tid == entry2->t_tid) && 4358 (entry1->group == entry2->group) && 4359 ((entry1->start_blk + entry1->count) == entry2->start_blk)) 4360 return 1; 4361 return 0; 4362 } 4363 4364 static noinline_for_stack int 4365 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4366 struct ext4_free_data *new_entry) 4367 { 4368 ext4_group_t group = e4b->bd_group; 4369 ext4_grpblk_t block; 4370 struct ext4_free_data *entry; 4371 struct ext4_group_info *db = e4b->bd_info; 4372 struct super_block *sb = e4b->bd_sb; 4373 struct ext4_sb_info *sbi = EXT4_SB(sb); 4374 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4375 struct rb_node *parent = NULL, *new_node; 4376 4377 BUG_ON(!ext4_handle_valid(handle)); 4378 BUG_ON(e4b->bd_bitmap_page == NULL); 4379 BUG_ON(e4b->bd_buddy_page == NULL); 4380 4381 new_node = &new_entry->node; 4382 block = new_entry->start_blk; 4383 4384 if (!*n) { 4385 /* first free block exent. We need to 4386 protect buddy cache from being freed, 4387 * otherwise we'll refresh it from 4388 * on-disk bitmap and lose not-yet-available 4389 * blocks */ 4390 page_cache_get(e4b->bd_buddy_page); 4391 page_cache_get(e4b->bd_bitmap_page); 4392 } 4393 while (*n) { 4394 parent = *n; 4395 entry = rb_entry(parent, struct ext4_free_data, node); 4396 if (block < entry->start_blk) 4397 n = &(*n)->rb_left; 4398 else if (block >= (entry->start_blk + entry->count)) 4399 n = &(*n)->rb_right; 4400 else { 4401 ext4_grp_locked_error(sb, group, 0, 4402 ext4_group_first_block_no(sb, group) + block, 4403 "Block already on to-be-freed list"); 4404 return 0; 4405 } 4406 } 4407 4408 rb_link_node(new_node, parent, n); 4409 rb_insert_color(new_node, &db->bb_free_root); 4410 4411 /* Now try to see the extent can be merged to left and right */ 4412 node = rb_prev(new_node); 4413 if (node) { 4414 entry = rb_entry(node, struct ext4_free_data, node); 4415 if (can_merge(entry, new_entry)) { 4416 new_entry->start_blk = entry->start_blk; 4417 new_entry->count += entry->count; 4418 rb_erase(node, &(db->bb_free_root)); 4419 spin_lock(&sbi->s_md_lock); 4420 list_del(&entry->list); 4421 spin_unlock(&sbi->s_md_lock); 4422 kmem_cache_free(ext4_free_ext_cachep, entry); 4423 } 4424 } 4425 4426 node = rb_next(new_node); 4427 if (node) { 4428 entry = rb_entry(node, struct ext4_free_data, node); 4429 if (can_merge(new_entry, entry)) { 4430 new_entry->count += entry->count; 4431 rb_erase(node, &(db->bb_free_root)); 4432 spin_lock(&sbi->s_md_lock); 4433 list_del(&entry->list); 4434 spin_unlock(&sbi->s_md_lock); 4435 kmem_cache_free(ext4_free_ext_cachep, entry); 4436 } 4437 } 4438 /* Add the extent to transaction's private list */ 4439 spin_lock(&sbi->s_md_lock); 4440 list_add(&new_entry->list, &handle->h_transaction->t_private_list); 4441 spin_unlock(&sbi->s_md_lock); 4442 return 0; 4443 } 4444 4445 /** 4446 * ext4_free_blocks() -- Free given blocks and update quota 4447 * @handle: handle for this transaction 4448 * @inode: inode 4449 * @block: start physical block to free 4450 * @count: number of blocks to count 4451 * @metadata: Are these metadata blocks 4452 */ 4453 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4454 struct buffer_head *bh, ext4_fsblk_t block, 4455 unsigned long count, int flags) 4456 { 4457 struct buffer_head *bitmap_bh = NULL; 4458 struct super_block *sb = inode->i_sb; 4459 struct ext4_group_desc *gdp; 4460 unsigned long freed = 0; 4461 unsigned int overflow; 4462 ext4_grpblk_t bit; 4463 struct buffer_head *gd_bh; 4464 ext4_group_t block_group; 4465 struct ext4_sb_info *sbi; 4466 struct ext4_buddy e4b; 4467 int err = 0; 4468 int ret; 4469 4470 if (bh) { 4471 if (block) 4472 BUG_ON(block != bh->b_blocknr); 4473 else 4474 block = bh->b_blocknr; 4475 } 4476 4477 sbi = EXT4_SB(sb); 4478 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4479 !ext4_data_block_valid(sbi, block, count)) { 4480 ext4_error(sb, "Freeing blocks not in datazone - " 4481 "block = %llu, count = %lu", block, count); 4482 goto error_return; 4483 } 4484 4485 ext4_debug("freeing block %llu\n", block); 4486 trace_ext4_free_blocks(inode, block, count, flags); 4487 4488 if (flags & EXT4_FREE_BLOCKS_FORGET) { 4489 struct buffer_head *tbh = bh; 4490 int i; 4491 4492 BUG_ON(bh && (count > 1)); 4493 4494 for (i = 0; i < count; i++) { 4495 if (!bh) 4496 tbh = sb_find_get_block(inode->i_sb, 4497 block + i); 4498 if (unlikely(!tbh)) 4499 continue; 4500 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4501 inode, tbh, block + i); 4502 } 4503 } 4504 4505 /* 4506 * We need to make sure we don't reuse the freed block until 4507 * after the transaction is committed, which we can do by 4508 * treating the block as metadata, below. We make an 4509 * exception if the inode is to be written in writeback mode 4510 * since writeback mode has weak data consistency guarantees. 4511 */ 4512 if (!ext4_should_writeback_data(inode)) 4513 flags |= EXT4_FREE_BLOCKS_METADATA; 4514 4515 do_more: 4516 overflow = 0; 4517 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4518 4519 /* 4520 * Check to see if we are freeing blocks across a group 4521 * boundary. 4522 */ 4523 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4524 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb); 4525 count -= overflow; 4526 } 4527 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4528 if (!bitmap_bh) { 4529 err = -EIO; 4530 goto error_return; 4531 } 4532 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4533 if (!gdp) { 4534 err = -EIO; 4535 goto error_return; 4536 } 4537 4538 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4539 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4540 in_range(block, ext4_inode_table(sb, gdp), 4541 EXT4_SB(sb)->s_itb_per_group) || 4542 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4543 EXT4_SB(sb)->s_itb_per_group)) { 4544 4545 ext4_error(sb, "Freeing blocks in system zone - " 4546 "Block = %llu, count = %lu", block, count); 4547 /* err = 0. ext4_std_error should be a no op */ 4548 goto error_return; 4549 } 4550 4551 BUFFER_TRACE(bitmap_bh, "getting write access"); 4552 err = ext4_journal_get_write_access(handle, bitmap_bh); 4553 if (err) 4554 goto error_return; 4555 4556 /* 4557 * We are about to modify some metadata. Call the journal APIs 4558 * to unshare ->b_data if a currently-committing transaction is 4559 * using it 4560 */ 4561 BUFFER_TRACE(gd_bh, "get_write_access"); 4562 err = ext4_journal_get_write_access(handle, gd_bh); 4563 if (err) 4564 goto error_return; 4565 #ifdef AGGRESSIVE_CHECK 4566 { 4567 int i; 4568 for (i = 0; i < count; i++) 4569 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4570 } 4571 #endif 4572 trace_ext4_mballoc_free(sb, inode, block_group, bit, count); 4573 4574 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4575 if (err) 4576 goto error_return; 4577 4578 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) { 4579 struct ext4_free_data *new_entry; 4580 /* 4581 * blocks being freed are metadata. these blocks shouldn't 4582 * be used until this transaction is committed 4583 */ 4584 new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS); 4585 if (!new_entry) { 4586 err = -ENOMEM; 4587 goto error_return; 4588 } 4589 new_entry->start_blk = bit; 4590 new_entry->group = block_group; 4591 new_entry->count = count; 4592 new_entry->t_tid = handle->h_transaction->t_tid; 4593 4594 ext4_lock_group(sb, block_group); 4595 mb_clear_bits(bitmap_bh->b_data, bit, count); 4596 ext4_mb_free_metadata(handle, &e4b, new_entry); 4597 } else { 4598 /* need to update group_info->bb_free and bitmap 4599 * with group lock held. generate_buddy look at 4600 * them with group lock_held 4601 */ 4602 ext4_lock_group(sb, block_group); 4603 mb_clear_bits(bitmap_bh->b_data, bit, count); 4604 mb_free_blocks(inode, &e4b, bit, count); 4605 } 4606 4607 ret = ext4_free_blks_count(sb, gdp) + count; 4608 ext4_free_blks_set(sb, gdp, ret); 4609 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp); 4610 ext4_unlock_group(sb, block_group); 4611 percpu_counter_add(&sbi->s_freeblocks_counter, count); 4612 4613 if (sbi->s_log_groups_per_flex) { 4614 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4615 atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks); 4616 } 4617 4618 ext4_mb_unload_buddy(&e4b); 4619 4620 freed += count; 4621 4622 /* We dirtied the bitmap block */ 4623 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4624 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4625 4626 /* And the group descriptor block */ 4627 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4628 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4629 if (!err) 4630 err = ret; 4631 4632 if (overflow && !err) { 4633 block += count; 4634 count = overflow; 4635 put_bh(bitmap_bh); 4636 goto do_more; 4637 } 4638 ext4_mark_super_dirty(sb); 4639 error_return: 4640 if (freed) 4641 dquot_free_block(inode, freed); 4642 brelse(bitmap_bh); 4643 ext4_std_error(sb, err); 4644 return; 4645 } 4646 4647 /** 4648 * ext4_add_groupblocks() -- Add given blocks to an existing group 4649 * @handle: handle to this transaction 4650 * @sb: super block 4651 * @block: start physcial block to add to the block group 4652 * @count: number of blocks to free 4653 * 4654 * This marks the blocks as free in the bitmap and buddy. 4655 */ 4656 void ext4_add_groupblocks(handle_t *handle, struct super_block *sb, 4657 ext4_fsblk_t block, unsigned long count) 4658 { 4659 struct buffer_head *bitmap_bh = NULL; 4660 struct buffer_head *gd_bh; 4661 ext4_group_t block_group; 4662 ext4_grpblk_t bit; 4663 unsigned int i; 4664 struct ext4_group_desc *desc; 4665 struct ext4_sb_info *sbi = EXT4_SB(sb); 4666 struct ext4_buddy e4b; 4667 int err = 0, ret, blk_free_count; 4668 ext4_grpblk_t blocks_freed; 4669 struct ext4_group_info *grp; 4670 4671 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 4672 4673 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4674 grp = ext4_get_group_info(sb, block_group); 4675 /* 4676 * Check to see if we are freeing blocks across a group 4677 * boundary. 4678 */ 4679 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) 4680 goto error_return; 4681 4682 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4683 if (!bitmap_bh) 4684 goto error_return; 4685 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 4686 if (!desc) 4687 goto error_return; 4688 4689 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 4690 in_range(ext4_inode_bitmap(sb, desc), block, count) || 4691 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 4692 in_range(block + count - 1, ext4_inode_table(sb, desc), 4693 sbi->s_itb_per_group)) { 4694 ext4_error(sb, "Adding blocks in system zones - " 4695 "Block = %llu, count = %lu", 4696 block, count); 4697 goto error_return; 4698 } 4699 4700 BUFFER_TRACE(bitmap_bh, "getting write access"); 4701 err = ext4_journal_get_write_access(handle, bitmap_bh); 4702 if (err) 4703 goto error_return; 4704 4705 /* 4706 * We are about to modify some metadata. Call the journal APIs 4707 * to unshare ->b_data if a currently-committing transaction is 4708 * using it 4709 */ 4710 BUFFER_TRACE(gd_bh, "get_write_access"); 4711 err = ext4_journal_get_write_access(handle, gd_bh); 4712 if (err) 4713 goto error_return; 4714 4715 for (i = 0, blocks_freed = 0; i < count; i++) { 4716 BUFFER_TRACE(bitmap_bh, "clear bit"); 4717 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 4718 ext4_error(sb, "bit already cleared for block %llu", 4719 (ext4_fsblk_t)(block + i)); 4720 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 4721 } else { 4722 blocks_freed++; 4723 } 4724 } 4725 4726 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4727 if (err) 4728 goto error_return; 4729 4730 /* 4731 * need to update group_info->bb_free and bitmap 4732 * with group lock held. generate_buddy look at 4733 * them with group lock_held 4734 */ 4735 ext4_lock_group(sb, block_group); 4736 mb_clear_bits(bitmap_bh->b_data, bit, count); 4737 mb_free_blocks(NULL, &e4b, bit, count); 4738 blk_free_count = blocks_freed + ext4_free_blks_count(sb, desc); 4739 ext4_free_blks_set(sb, desc, blk_free_count); 4740 desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc); 4741 ext4_unlock_group(sb, block_group); 4742 percpu_counter_add(&sbi->s_freeblocks_counter, blocks_freed); 4743 4744 if (sbi->s_log_groups_per_flex) { 4745 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4746 atomic_add(blocks_freed, 4747 &sbi->s_flex_groups[flex_group].free_blocks); 4748 } 4749 4750 ext4_mb_unload_buddy(&e4b); 4751 4752 /* We dirtied the bitmap block */ 4753 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4754 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4755 4756 /* And the group descriptor block */ 4757 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4758 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4759 if (!err) 4760 err = ret; 4761 4762 error_return: 4763 brelse(bitmap_bh); 4764 ext4_std_error(sb, err); 4765 return; 4766 } 4767 4768 /** 4769 * ext4_trim_extent -- function to TRIM one single free extent in the group 4770 * @sb: super block for the file system 4771 * @start: starting block of the free extent in the alloc. group 4772 * @count: number of blocks to TRIM 4773 * @group: alloc. group we are working with 4774 * @e4b: ext4 buddy for the group 4775 * 4776 * Trim "count" blocks starting at "start" in the "group". To assure that no 4777 * one will allocate those blocks, mark it as used in buddy bitmap. This must 4778 * be called with under the group lock. 4779 */ 4780 static void ext4_trim_extent(struct super_block *sb, int start, int count, 4781 ext4_group_t group, struct ext4_buddy *e4b) 4782 { 4783 struct ext4_free_extent ex; 4784 4785 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 4786 4787 ex.fe_start = start; 4788 ex.fe_group = group; 4789 ex.fe_len = count; 4790 4791 /* 4792 * Mark blocks used, so no one can reuse them while 4793 * being trimmed. 4794 */ 4795 mb_mark_used(e4b, &ex); 4796 ext4_unlock_group(sb, group); 4797 ext4_issue_discard(sb, group, start, count); 4798 ext4_lock_group(sb, group); 4799 mb_free_blocks(NULL, e4b, start, ex.fe_len); 4800 } 4801 4802 /** 4803 * ext4_trim_all_free -- function to trim all free space in alloc. group 4804 * @sb: super block for file system 4805 * @e4b: ext4 buddy 4806 * @start: first group block to examine 4807 * @max: last group block to examine 4808 * @minblocks: minimum extent block count 4809 * 4810 * ext4_trim_all_free walks through group's buddy bitmap searching for free 4811 * extents. When the free block is found, ext4_trim_extent is called to TRIM 4812 * the extent. 4813 * 4814 * 4815 * ext4_trim_all_free walks through group's block bitmap searching for free 4816 * extents. When the free extent is found, mark it as used in group buddy 4817 * bitmap. Then issue a TRIM command on this extent and free the extent in 4818 * the group buddy bitmap. This is done until whole group is scanned. 4819 */ 4820 static ext4_grpblk_t 4821 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 4822 ext4_grpblk_t start, ext4_grpblk_t max, 4823 ext4_grpblk_t minblocks) 4824 { 4825 void *bitmap; 4826 ext4_grpblk_t next, count = 0; 4827 struct ext4_buddy e4b; 4828 int ret; 4829 4830 ret = ext4_mb_load_buddy(sb, group, &e4b); 4831 if (ret) { 4832 ext4_error(sb, "Error in loading buddy " 4833 "information for %u", group); 4834 return ret; 4835 } 4836 bitmap = e4b.bd_bitmap; 4837 4838 ext4_lock_group(sb, group); 4839 start = (e4b.bd_info->bb_first_free > start) ? 4840 e4b.bd_info->bb_first_free : start; 4841 4842 while (start < max) { 4843 start = mb_find_next_zero_bit(bitmap, max, start); 4844 if (start >= max) 4845 break; 4846 next = mb_find_next_bit(bitmap, max, start); 4847 4848 if ((next - start) >= minblocks) { 4849 ext4_trim_extent(sb, start, 4850 next - start, group, &e4b); 4851 count += next - start; 4852 } 4853 start = next + 1; 4854 4855 if (fatal_signal_pending(current)) { 4856 count = -ERESTARTSYS; 4857 break; 4858 } 4859 4860 if (need_resched()) { 4861 ext4_unlock_group(sb, group); 4862 cond_resched(); 4863 ext4_lock_group(sb, group); 4864 } 4865 4866 if ((e4b.bd_info->bb_free - count) < minblocks) 4867 break; 4868 } 4869 ext4_unlock_group(sb, group); 4870 ext4_mb_unload_buddy(&e4b); 4871 4872 ext4_debug("trimmed %d blocks in the group %d\n", 4873 count, group); 4874 4875 return count; 4876 } 4877 4878 /** 4879 * ext4_trim_fs() -- trim ioctl handle function 4880 * @sb: superblock for filesystem 4881 * @range: fstrim_range structure 4882 * 4883 * start: First Byte to trim 4884 * len: number of Bytes to trim from start 4885 * minlen: minimum extent length in Bytes 4886 * ext4_trim_fs goes through all allocation groups containing Bytes from 4887 * start to start+len. For each such a group ext4_trim_all_free function 4888 * is invoked to trim all free space. 4889 */ 4890 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 4891 { 4892 struct ext4_group_info *grp; 4893 ext4_group_t first_group, last_group; 4894 ext4_group_t group, ngroups = ext4_get_groups_count(sb); 4895 ext4_grpblk_t cnt = 0, first_block, last_block; 4896 uint64_t start, len, minlen, trimmed = 0; 4897 ext4_fsblk_t first_data_blk = 4898 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 4899 int ret = 0; 4900 4901 start = range->start >> sb->s_blocksize_bits; 4902 len = range->len >> sb->s_blocksize_bits; 4903 minlen = range->minlen >> sb->s_blocksize_bits; 4904 4905 if (unlikely(minlen > EXT4_BLOCKS_PER_GROUP(sb))) 4906 return -EINVAL; 4907 if (start < first_data_blk) { 4908 len -= first_data_blk - start; 4909 start = first_data_blk; 4910 } 4911 4912 /* Determine first and last group to examine based on start and len */ 4913 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 4914 &first_group, &first_block); 4915 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) (start + len), 4916 &last_group, &last_block); 4917 last_group = (last_group > ngroups - 1) ? ngroups - 1 : last_group; 4918 last_block = EXT4_BLOCKS_PER_GROUP(sb); 4919 4920 if (first_group > last_group) 4921 return -EINVAL; 4922 4923 for (group = first_group; group <= last_group; group++) { 4924 grp = ext4_get_group_info(sb, group); 4925 /* We only do this if the grp has never been initialized */ 4926 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 4927 ret = ext4_mb_init_group(sb, group); 4928 if (ret) 4929 break; 4930 } 4931 4932 /* 4933 * For all the groups except the last one, last block will 4934 * always be EXT4_BLOCKS_PER_GROUP(sb), so we only need to 4935 * change it for the last group in which case start + 4936 * len < EXT4_BLOCKS_PER_GROUP(sb). 4937 */ 4938 if (first_block + len < EXT4_BLOCKS_PER_GROUP(sb)) 4939 last_block = first_block + len; 4940 len -= last_block - first_block; 4941 4942 if (grp->bb_free >= minlen) { 4943 cnt = ext4_trim_all_free(sb, group, first_block, 4944 last_block, minlen); 4945 if (cnt < 0) { 4946 ret = cnt; 4947 break; 4948 } 4949 } 4950 trimmed += cnt; 4951 first_block = 0; 4952 } 4953 range->len = trimmed * sb->s_blocksize; 4954 4955 return ret; 4956 } 4957