xref: /openbmc/linux/fs/ext4/mballoc.c (revision 206204a1)
1 /*
2  * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3  * Written by Alex Tomas <alex@clusterfs.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public Licens
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-
17  */
18 
19 
20 /*
21  * mballoc.c contains the multiblocks allocation routines
22  */
23 
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <trace/events/ext4.h>
30 
31 #ifdef CONFIG_EXT4_DEBUG
32 ushort ext4_mballoc_debug __read_mostly;
33 
34 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
35 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
36 #endif
37 
38 /*
39  * MUSTDO:
40  *   - test ext4_ext_search_left() and ext4_ext_search_right()
41  *   - search for metadata in few groups
42  *
43  * TODO v4:
44  *   - normalization should take into account whether file is still open
45  *   - discard preallocations if no free space left (policy?)
46  *   - don't normalize tails
47  *   - quota
48  *   - reservation for superuser
49  *
50  * TODO v3:
51  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
52  *   - track min/max extents in each group for better group selection
53  *   - mb_mark_used() may allocate chunk right after splitting buddy
54  *   - tree of groups sorted by number of free blocks
55  *   - error handling
56  */
57 
58 /*
59  * The allocation request involve request for multiple number of blocks
60  * near to the goal(block) value specified.
61  *
62  * During initialization phase of the allocator we decide to use the
63  * group preallocation or inode preallocation depending on the size of
64  * the file. The size of the file could be the resulting file size we
65  * would have after allocation, or the current file size, which ever
66  * is larger. If the size is less than sbi->s_mb_stream_request we
67  * select to use the group preallocation. The default value of
68  * s_mb_stream_request is 16 blocks. This can also be tuned via
69  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
70  * terms of number of blocks.
71  *
72  * The main motivation for having small file use group preallocation is to
73  * ensure that we have small files closer together on the disk.
74  *
75  * First stage the allocator looks at the inode prealloc list,
76  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
77  * spaces for this particular inode. The inode prealloc space is
78  * represented as:
79  *
80  * pa_lstart -> the logical start block for this prealloc space
81  * pa_pstart -> the physical start block for this prealloc space
82  * pa_len    -> length for this prealloc space (in clusters)
83  * pa_free   ->  free space available in this prealloc space (in clusters)
84  *
85  * The inode preallocation space is used looking at the _logical_ start
86  * block. If only the logical file block falls within the range of prealloc
87  * space we will consume the particular prealloc space. This makes sure that
88  * we have contiguous physical blocks representing the file blocks
89  *
90  * The important thing to be noted in case of inode prealloc space is that
91  * we don't modify the values associated to inode prealloc space except
92  * pa_free.
93  *
94  * If we are not able to find blocks in the inode prealloc space and if we
95  * have the group allocation flag set then we look at the locality group
96  * prealloc space. These are per CPU prealloc list represented as
97  *
98  * ext4_sb_info.s_locality_groups[smp_processor_id()]
99  *
100  * The reason for having a per cpu locality group is to reduce the contention
101  * between CPUs. It is possible to get scheduled at this point.
102  *
103  * The locality group prealloc space is used looking at whether we have
104  * enough free space (pa_free) within the prealloc space.
105  *
106  * If we can't allocate blocks via inode prealloc or/and locality group
107  * prealloc then we look at the buddy cache. The buddy cache is represented
108  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
109  * mapped to the buddy and bitmap information regarding different
110  * groups. The buddy information is attached to buddy cache inode so that
111  * we can access them through the page cache. The information regarding
112  * each group is loaded via ext4_mb_load_buddy.  The information involve
113  * block bitmap and buddy information. The information are stored in the
114  * inode as:
115  *
116  *  {                        page                        }
117  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
118  *
119  *
120  * one block each for bitmap and buddy information.  So for each group we
121  * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
122  * blocksize) blocks.  So it can have information regarding groups_per_page
123  * which is blocks_per_page/2
124  *
125  * The buddy cache inode is not stored on disk. The inode is thrown
126  * away when the filesystem is unmounted.
127  *
128  * We look for count number of blocks in the buddy cache. If we were able
129  * to locate that many free blocks we return with additional information
130  * regarding rest of the contiguous physical block available
131  *
132  * Before allocating blocks via buddy cache we normalize the request
133  * blocks. This ensure we ask for more blocks that we needed. The extra
134  * blocks that we get after allocation is added to the respective prealloc
135  * list. In case of inode preallocation we follow a list of heuristics
136  * based on file size. This can be found in ext4_mb_normalize_request. If
137  * we are doing a group prealloc we try to normalize the request to
138  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
139  * dependent on the cluster size; for non-bigalloc file systems, it is
140  * 512 blocks. This can be tuned via
141  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
142  * terms of number of blocks. If we have mounted the file system with -O
143  * stripe=<value> option the group prealloc request is normalized to the
144  * the smallest multiple of the stripe value (sbi->s_stripe) which is
145  * greater than the default mb_group_prealloc.
146  *
147  * The regular allocator (using the buddy cache) supports a few tunables.
148  *
149  * /sys/fs/ext4/<partition>/mb_min_to_scan
150  * /sys/fs/ext4/<partition>/mb_max_to_scan
151  * /sys/fs/ext4/<partition>/mb_order2_req
152  *
153  * The regular allocator uses buddy scan only if the request len is power of
154  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
155  * value of s_mb_order2_reqs can be tuned via
156  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
157  * stripe size (sbi->s_stripe), we try to search for contiguous block in
158  * stripe size. This should result in better allocation on RAID setups. If
159  * not, we search in the specific group using bitmap for best extents. The
160  * tunable min_to_scan and max_to_scan control the behaviour here.
161  * min_to_scan indicate how long the mballoc __must__ look for a best
162  * extent and max_to_scan indicates how long the mballoc __can__ look for a
163  * best extent in the found extents. Searching for the blocks starts with
164  * the group specified as the goal value in allocation context via
165  * ac_g_ex. Each group is first checked based on the criteria whether it
166  * can be used for allocation. ext4_mb_good_group explains how the groups are
167  * checked.
168  *
169  * Both the prealloc space are getting populated as above. So for the first
170  * request we will hit the buddy cache which will result in this prealloc
171  * space getting filled. The prealloc space is then later used for the
172  * subsequent request.
173  */
174 
175 /*
176  * mballoc operates on the following data:
177  *  - on-disk bitmap
178  *  - in-core buddy (actually includes buddy and bitmap)
179  *  - preallocation descriptors (PAs)
180  *
181  * there are two types of preallocations:
182  *  - inode
183  *    assiged to specific inode and can be used for this inode only.
184  *    it describes part of inode's space preallocated to specific
185  *    physical blocks. any block from that preallocated can be used
186  *    independent. the descriptor just tracks number of blocks left
187  *    unused. so, before taking some block from descriptor, one must
188  *    make sure corresponded logical block isn't allocated yet. this
189  *    also means that freeing any block within descriptor's range
190  *    must discard all preallocated blocks.
191  *  - locality group
192  *    assigned to specific locality group which does not translate to
193  *    permanent set of inodes: inode can join and leave group. space
194  *    from this type of preallocation can be used for any inode. thus
195  *    it's consumed from the beginning to the end.
196  *
197  * relation between them can be expressed as:
198  *    in-core buddy = on-disk bitmap + preallocation descriptors
199  *
200  * this mean blocks mballoc considers used are:
201  *  - allocated blocks (persistent)
202  *  - preallocated blocks (non-persistent)
203  *
204  * consistency in mballoc world means that at any time a block is either
205  * free or used in ALL structures. notice: "any time" should not be read
206  * literally -- time is discrete and delimited by locks.
207  *
208  *  to keep it simple, we don't use block numbers, instead we count number of
209  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
210  *
211  * all operations can be expressed as:
212  *  - init buddy:			buddy = on-disk + PAs
213  *  - new PA:				buddy += N; PA = N
214  *  - use inode PA:			on-disk += N; PA -= N
215  *  - discard inode PA			buddy -= on-disk - PA; PA = 0
216  *  - use locality group PA		on-disk += N; PA -= N
217  *  - discard locality group PA		buddy -= PA; PA = 0
218  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
219  *        is used in real operation because we can't know actual used
220  *        bits from PA, only from on-disk bitmap
221  *
222  * if we follow this strict logic, then all operations above should be atomic.
223  * given some of them can block, we'd have to use something like semaphores
224  * killing performance on high-end SMP hardware. let's try to relax it using
225  * the following knowledge:
226  *  1) if buddy is referenced, it's already initialized
227  *  2) while block is used in buddy and the buddy is referenced,
228  *     nobody can re-allocate that block
229  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
230  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
231  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
232  *     block
233  *
234  * so, now we're building a concurrency table:
235  *  - init buddy vs.
236  *    - new PA
237  *      blocks for PA are allocated in the buddy, buddy must be referenced
238  *      until PA is linked to allocation group to avoid concurrent buddy init
239  *    - use inode PA
240  *      we need to make sure that either on-disk bitmap or PA has uptodate data
241  *      given (3) we care that PA-=N operation doesn't interfere with init
242  *    - discard inode PA
243  *      the simplest way would be to have buddy initialized by the discard
244  *    - use locality group PA
245  *      again PA-=N must be serialized with init
246  *    - discard locality group PA
247  *      the simplest way would be to have buddy initialized by the discard
248  *  - new PA vs.
249  *    - use inode PA
250  *      i_data_sem serializes them
251  *    - discard inode PA
252  *      discard process must wait until PA isn't used by another process
253  *    - use locality group PA
254  *      some mutex should serialize them
255  *    - discard locality group PA
256  *      discard process must wait until PA isn't used by another process
257  *  - use inode PA
258  *    - use inode PA
259  *      i_data_sem or another mutex should serializes them
260  *    - discard inode PA
261  *      discard process must wait until PA isn't used by another process
262  *    - use locality group PA
263  *      nothing wrong here -- they're different PAs covering different blocks
264  *    - discard locality group PA
265  *      discard process must wait until PA isn't used by another process
266  *
267  * now we're ready to make few consequences:
268  *  - PA is referenced and while it is no discard is possible
269  *  - PA is referenced until block isn't marked in on-disk bitmap
270  *  - PA changes only after on-disk bitmap
271  *  - discard must not compete with init. either init is done before
272  *    any discard or they're serialized somehow
273  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
274  *
275  * a special case when we've used PA to emptiness. no need to modify buddy
276  * in this case, but we should care about concurrent init
277  *
278  */
279 
280  /*
281  * Logic in few words:
282  *
283  *  - allocation:
284  *    load group
285  *    find blocks
286  *    mark bits in on-disk bitmap
287  *    release group
288  *
289  *  - use preallocation:
290  *    find proper PA (per-inode or group)
291  *    load group
292  *    mark bits in on-disk bitmap
293  *    release group
294  *    release PA
295  *
296  *  - free:
297  *    load group
298  *    mark bits in on-disk bitmap
299  *    release group
300  *
301  *  - discard preallocations in group:
302  *    mark PAs deleted
303  *    move them onto local list
304  *    load on-disk bitmap
305  *    load group
306  *    remove PA from object (inode or locality group)
307  *    mark free blocks in-core
308  *
309  *  - discard inode's preallocations:
310  */
311 
312 /*
313  * Locking rules
314  *
315  * Locks:
316  *  - bitlock on a group	(group)
317  *  - object (inode/locality)	(object)
318  *  - per-pa lock		(pa)
319  *
320  * Paths:
321  *  - new pa
322  *    object
323  *    group
324  *
325  *  - find and use pa:
326  *    pa
327  *
328  *  - release consumed pa:
329  *    pa
330  *    group
331  *    object
332  *
333  *  - generate in-core bitmap:
334  *    group
335  *        pa
336  *
337  *  - discard all for given object (inode, locality group):
338  *    object
339  *        pa
340  *    group
341  *
342  *  - discard all for given group:
343  *    group
344  *        pa
345  *    group
346  *        object
347  *
348  */
349 static struct kmem_cache *ext4_pspace_cachep;
350 static struct kmem_cache *ext4_ac_cachep;
351 static struct kmem_cache *ext4_free_data_cachep;
352 
353 /* We create slab caches for groupinfo data structures based on the
354  * superblock block size.  There will be one per mounted filesystem for
355  * each unique s_blocksize_bits */
356 #define NR_GRPINFO_CACHES 8
357 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
358 
359 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
360 	"ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
361 	"ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
362 	"ext4_groupinfo_64k", "ext4_groupinfo_128k"
363 };
364 
365 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
366 					ext4_group_t group);
367 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
368 						ext4_group_t group);
369 static void ext4_free_data_callback(struct super_block *sb,
370 				struct ext4_journal_cb_entry *jce, int rc);
371 
372 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
373 {
374 #if BITS_PER_LONG == 64
375 	*bit += ((unsigned long) addr & 7UL) << 3;
376 	addr = (void *) ((unsigned long) addr & ~7UL);
377 #elif BITS_PER_LONG == 32
378 	*bit += ((unsigned long) addr & 3UL) << 3;
379 	addr = (void *) ((unsigned long) addr & ~3UL);
380 #else
381 #error "how many bits you are?!"
382 #endif
383 	return addr;
384 }
385 
386 static inline int mb_test_bit(int bit, void *addr)
387 {
388 	/*
389 	 * ext4_test_bit on architecture like powerpc
390 	 * needs unsigned long aligned address
391 	 */
392 	addr = mb_correct_addr_and_bit(&bit, addr);
393 	return ext4_test_bit(bit, addr);
394 }
395 
396 static inline void mb_set_bit(int bit, void *addr)
397 {
398 	addr = mb_correct_addr_and_bit(&bit, addr);
399 	ext4_set_bit(bit, addr);
400 }
401 
402 static inline void mb_clear_bit(int bit, void *addr)
403 {
404 	addr = mb_correct_addr_and_bit(&bit, addr);
405 	ext4_clear_bit(bit, addr);
406 }
407 
408 static inline int mb_test_and_clear_bit(int bit, void *addr)
409 {
410 	addr = mb_correct_addr_and_bit(&bit, addr);
411 	return ext4_test_and_clear_bit(bit, addr);
412 }
413 
414 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
415 {
416 	int fix = 0, ret, tmpmax;
417 	addr = mb_correct_addr_and_bit(&fix, addr);
418 	tmpmax = max + fix;
419 	start += fix;
420 
421 	ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
422 	if (ret > max)
423 		return max;
424 	return ret;
425 }
426 
427 static inline int mb_find_next_bit(void *addr, int max, int start)
428 {
429 	int fix = 0, ret, tmpmax;
430 	addr = mb_correct_addr_and_bit(&fix, addr);
431 	tmpmax = max + fix;
432 	start += fix;
433 
434 	ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
435 	if (ret > max)
436 		return max;
437 	return ret;
438 }
439 
440 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
441 {
442 	char *bb;
443 
444 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
445 	BUG_ON(max == NULL);
446 
447 	if (order > e4b->bd_blkbits + 1) {
448 		*max = 0;
449 		return NULL;
450 	}
451 
452 	/* at order 0 we see each particular block */
453 	if (order == 0) {
454 		*max = 1 << (e4b->bd_blkbits + 3);
455 		return e4b->bd_bitmap;
456 	}
457 
458 	bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
459 	*max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
460 
461 	return bb;
462 }
463 
464 #ifdef DOUBLE_CHECK
465 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
466 			   int first, int count)
467 {
468 	int i;
469 	struct super_block *sb = e4b->bd_sb;
470 
471 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
472 		return;
473 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
474 	for (i = 0; i < count; i++) {
475 		if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
476 			ext4_fsblk_t blocknr;
477 
478 			blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
479 			blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
480 			ext4_grp_locked_error(sb, e4b->bd_group,
481 					      inode ? inode->i_ino : 0,
482 					      blocknr,
483 					      "freeing block already freed "
484 					      "(bit %u)",
485 					      first + i);
486 		}
487 		mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
488 	}
489 }
490 
491 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
492 {
493 	int i;
494 
495 	if (unlikely(e4b->bd_info->bb_bitmap == NULL))
496 		return;
497 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
498 	for (i = 0; i < count; i++) {
499 		BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
500 		mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
501 	}
502 }
503 
504 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
505 {
506 	if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
507 		unsigned char *b1, *b2;
508 		int i;
509 		b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
510 		b2 = (unsigned char *) bitmap;
511 		for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
512 			if (b1[i] != b2[i]) {
513 				ext4_msg(e4b->bd_sb, KERN_ERR,
514 					 "corruption in group %u "
515 					 "at byte %u(%u): %x in copy != %x "
516 					 "on disk/prealloc",
517 					 e4b->bd_group, i, i * 8, b1[i], b2[i]);
518 				BUG();
519 			}
520 		}
521 	}
522 }
523 
524 #else
525 static inline void mb_free_blocks_double(struct inode *inode,
526 				struct ext4_buddy *e4b, int first, int count)
527 {
528 	return;
529 }
530 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
531 						int first, int count)
532 {
533 	return;
534 }
535 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
536 {
537 	return;
538 }
539 #endif
540 
541 #ifdef AGGRESSIVE_CHECK
542 
543 #define MB_CHECK_ASSERT(assert)						\
544 do {									\
545 	if (!(assert)) {						\
546 		printk(KERN_EMERG					\
547 			"Assertion failure in %s() at %s:%d: \"%s\"\n",	\
548 			function, file, line, # assert);		\
549 		BUG();							\
550 	}								\
551 } while (0)
552 
553 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
554 				const char *function, int line)
555 {
556 	struct super_block *sb = e4b->bd_sb;
557 	int order = e4b->bd_blkbits + 1;
558 	int max;
559 	int max2;
560 	int i;
561 	int j;
562 	int k;
563 	int count;
564 	struct ext4_group_info *grp;
565 	int fragments = 0;
566 	int fstart;
567 	struct list_head *cur;
568 	void *buddy;
569 	void *buddy2;
570 
571 	{
572 		static int mb_check_counter;
573 		if (mb_check_counter++ % 100 != 0)
574 			return 0;
575 	}
576 
577 	while (order > 1) {
578 		buddy = mb_find_buddy(e4b, order, &max);
579 		MB_CHECK_ASSERT(buddy);
580 		buddy2 = mb_find_buddy(e4b, order - 1, &max2);
581 		MB_CHECK_ASSERT(buddy2);
582 		MB_CHECK_ASSERT(buddy != buddy2);
583 		MB_CHECK_ASSERT(max * 2 == max2);
584 
585 		count = 0;
586 		for (i = 0; i < max; i++) {
587 
588 			if (mb_test_bit(i, buddy)) {
589 				/* only single bit in buddy2 may be 1 */
590 				if (!mb_test_bit(i << 1, buddy2)) {
591 					MB_CHECK_ASSERT(
592 						mb_test_bit((i<<1)+1, buddy2));
593 				} else if (!mb_test_bit((i << 1) + 1, buddy2)) {
594 					MB_CHECK_ASSERT(
595 						mb_test_bit(i << 1, buddy2));
596 				}
597 				continue;
598 			}
599 
600 			/* both bits in buddy2 must be 1 */
601 			MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
602 			MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
603 
604 			for (j = 0; j < (1 << order); j++) {
605 				k = (i * (1 << order)) + j;
606 				MB_CHECK_ASSERT(
607 					!mb_test_bit(k, e4b->bd_bitmap));
608 			}
609 			count++;
610 		}
611 		MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
612 		order--;
613 	}
614 
615 	fstart = -1;
616 	buddy = mb_find_buddy(e4b, 0, &max);
617 	for (i = 0; i < max; i++) {
618 		if (!mb_test_bit(i, buddy)) {
619 			MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
620 			if (fstart == -1) {
621 				fragments++;
622 				fstart = i;
623 			}
624 			continue;
625 		}
626 		fstart = -1;
627 		/* check used bits only */
628 		for (j = 0; j < e4b->bd_blkbits + 1; j++) {
629 			buddy2 = mb_find_buddy(e4b, j, &max2);
630 			k = i >> j;
631 			MB_CHECK_ASSERT(k < max2);
632 			MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
633 		}
634 	}
635 	MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
636 	MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
637 
638 	grp = ext4_get_group_info(sb, e4b->bd_group);
639 	list_for_each(cur, &grp->bb_prealloc_list) {
640 		ext4_group_t groupnr;
641 		struct ext4_prealloc_space *pa;
642 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
643 		ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
644 		MB_CHECK_ASSERT(groupnr == e4b->bd_group);
645 		for (i = 0; i < pa->pa_len; i++)
646 			MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
647 	}
648 	return 0;
649 }
650 #undef MB_CHECK_ASSERT
651 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,	\
652 					__FILE__, __func__, __LINE__)
653 #else
654 #define mb_check_buddy(e4b)
655 #endif
656 
657 /*
658  * Divide blocks started from @first with length @len into
659  * smaller chunks with power of 2 blocks.
660  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
661  * then increase bb_counters[] for corresponded chunk size.
662  */
663 static void ext4_mb_mark_free_simple(struct super_block *sb,
664 				void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
665 					struct ext4_group_info *grp)
666 {
667 	struct ext4_sb_info *sbi = EXT4_SB(sb);
668 	ext4_grpblk_t min;
669 	ext4_grpblk_t max;
670 	ext4_grpblk_t chunk;
671 	unsigned short border;
672 
673 	BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
674 
675 	border = 2 << sb->s_blocksize_bits;
676 
677 	while (len > 0) {
678 		/* find how many blocks can be covered since this position */
679 		max = ffs(first | border) - 1;
680 
681 		/* find how many blocks of power 2 we need to mark */
682 		min = fls(len) - 1;
683 
684 		if (max < min)
685 			min = max;
686 		chunk = 1 << min;
687 
688 		/* mark multiblock chunks only */
689 		grp->bb_counters[min]++;
690 		if (min > 0)
691 			mb_clear_bit(first >> min,
692 				     buddy + sbi->s_mb_offsets[min]);
693 
694 		len -= chunk;
695 		first += chunk;
696 	}
697 }
698 
699 /*
700  * Cache the order of the largest free extent we have available in this block
701  * group.
702  */
703 static void
704 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
705 {
706 	int i;
707 	int bits;
708 
709 	grp->bb_largest_free_order = -1; /* uninit */
710 
711 	bits = sb->s_blocksize_bits + 1;
712 	for (i = bits; i >= 0; i--) {
713 		if (grp->bb_counters[i] > 0) {
714 			grp->bb_largest_free_order = i;
715 			break;
716 		}
717 	}
718 }
719 
720 static noinline_for_stack
721 void ext4_mb_generate_buddy(struct super_block *sb,
722 				void *buddy, void *bitmap, ext4_group_t group)
723 {
724 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
725 	ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
726 	ext4_grpblk_t i = 0;
727 	ext4_grpblk_t first;
728 	ext4_grpblk_t len;
729 	unsigned free = 0;
730 	unsigned fragments = 0;
731 	unsigned long long period = get_cycles();
732 
733 	/* initialize buddy from bitmap which is aggregation
734 	 * of on-disk bitmap and preallocations */
735 	i = mb_find_next_zero_bit(bitmap, max, 0);
736 	grp->bb_first_free = i;
737 	while (i < max) {
738 		fragments++;
739 		first = i;
740 		i = mb_find_next_bit(bitmap, max, i);
741 		len = i - first;
742 		free += len;
743 		if (len > 1)
744 			ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
745 		else
746 			grp->bb_counters[0]++;
747 		if (i < max)
748 			i = mb_find_next_zero_bit(bitmap, max, i);
749 	}
750 	grp->bb_fragments = fragments;
751 
752 	if (free != grp->bb_free) {
753 		ext4_grp_locked_error(sb, group, 0, 0,
754 				      "%u clusters in bitmap, %u in gd; "
755 				      "block bitmap corrupt.",
756 				      free, grp->bb_free);
757 		/*
758 		 * If we intend to continue, we consider group descriptor
759 		 * corrupt and update bb_free using bitmap value
760 		 */
761 		grp->bb_free = free;
762 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
763 	}
764 	mb_set_largest_free_order(sb, grp);
765 
766 	clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
767 
768 	period = get_cycles() - period;
769 	spin_lock(&EXT4_SB(sb)->s_bal_lock);
770 	EXT4_SB(sb)->s_mb_buddies_generated++;
771 	EXT4_SB(sb)->s_mb_generation_time += period;
772 	spin_unlock(&EXT4_SB(sb)->s_bal_lock);
773 }
774 
775 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
776 {
777 	int count;
778 	int order = 1;
779 	void *buddy;
780 
781 	while ((buddy = mb_find_buddy(e4b, order++, &count))) {
782 		ext4_set_bits(buddy, 0, count);
783 	}
784 	e4b->bd_info->bb_fragments = 0;
785 	memset(e4b->bd_info->bb_counters, 0,
786 		sizeof(*e4b->bd_info->bb_counters) *
787 		(e4b->bd_sb->s_blocksize_bits + 2));
788 
789 	ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
790 		e4b->bd_bitmap, e4b->bd_group);
791 }
792 
793 /* The buddy information is attached the buddy cache inode
794  * for convenience. The information regarding each group
795  * is loaded via ext4_mb_load_buddy. The information involve
796  * block bitmap and buddy information. The information are
797  * stored in the inode as
798  *
799  * {                        page                        }
800  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
801  *
802  *
803  * one block each for bitmap and buddy information.
804  * So for each group we take up 2 blocks. A page can
805  * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize)  blocks.
806  * So it can have information regarding groups_per_page which
807  * is blocks_per_page/2
808  *
809  * Locking note:  This routine takes the block group lock of all groups
810  * for this page; do not hold this lock when calling this routine!
811  */
812 
813 static int ext4_mb_init_cache(struct page *page, char *incore)
814 {
815 	ext4_group_t ngroups;
816 	int blocksize;
817 	int blocks_per_page;
818 	int groups_per_page;
819 	int err = 0;
820 	int i;
821 	ext4_group_t first_group, group;
822 	int first_block;
823 	struct super_block *sb;
824 	struct buffer_head *bhs;
825 	struct buffer_head **bh = NULL;
826 	struct inode *inode;
827 	char *data;
828 	char *bitmap;
829 	struct ext4_group_info *grinfo;
830 
831 	mb_debug(1, "init page %lu\n", page->index);
832 
833 	inode = page->mapping->host;
834 	sb = inode->i_sb;
835 	ngroups = ext4_get_groups_count(sb);
836 	blocksize = 1 << inode->i_blkbits;
837 	blocks_per_page = PAGE_CACHE_SIZE / blocksize;
838 
839 	groups_per_page = blocks_per_page >> 1;
840 	if (groups_per_page == 0)
841 		groups_per_page = 1;
842 
843 	/* allocate buffer_heads to read bitmaps */
844 	if (groups_per_page > 1) {
845 		i = sizeof(struct buffer_head *) * groups_per_page;
846 		bh = kzalloc(i, GFP_NOFS);
847 		if (bh == NULL) {
848 			err = -ENOMEM;
849 			goto out;
850 		}
851 	} else
852 		bh = &bhs;
853 
854 	first_group = page->index * blocks_per_page / 2;
855 
856 	/* read all groups the page covers into the cache */
857 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
858 		if (group >= ngroups)
859 			break;
860 
861 		grinfo = ext4_get_group_info(sb, group);
862 		/*
863 		 * If page is uptodate then we came here after online resize
864 		 * which added some new uninitialized group info structs, so
865 		 * we must skip all initialized uptodate buddies on the page,
866 		 * which may be currently in use by an allocating task.
867 		 */
868 		if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
869 			bh[i] = NULL;
870 			continue;
871 		}
872 		if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) {
873 			err = -ENOMEM;
874 			goto out;
875 		}
876 		mb_debug(1, "read bitmap for group %u\n", group);
877 	}
878 
879 	/* wait for I/O completion */
880 	for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
881 		if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) {
882 			err = -EIO;
883 			goto out;
884 		}
885 	}
886 
887 	first_block = page->index * blocks_per_page;
888 	for (i = 0; i < blocks_per_page; i++) {
889 		group = (first_block + i) >> 1;
890 		if (group >= ngroups)
891 			break;
892 
893 		if (!bh[group - first_group])
894 			/* skip initialized uptodate buddy */
895 			continue;
896 
897 		/*
898 		 * data carry information regarding this
899 		 * particular group in the format specified
900 		 * above
901 		 *
902 		 */
903 		data = page_address(page) + (i * blocksize);
904 		bitmap = bh[group - first_group]->b_data;
905 
906 		/*
907 		 * We place the buddy block and bitmap block
908 		 * close together
909 		 */
910 		if ((first_block + i) & 1) {
911 			/* this is block of buddy */
912 			BUG_ON(incore == NULL);
913 			mb_debug(1, "put buddy for group %u in page %lu/%x\n",
914 				group, page->index, i * blocksize);
915 			trace_ext4_mb_buddy_bitmap_load(sb, group);
916 			grinfo = ext4_get_group_info(sb, group);
917 			grinfo->bb_fragments = 0;
918 			memset(grinfo->bb_counters, 0,
919 			       sizeof(*grinfo->bb_counters) *
920 				(sb->s_blocksize_bits+2));
921 			/*
922 			 * incore got set to the group block bitmap below
923 			 */
924 			ext4_lock_group(sb, group);
925 			/* init the buddy */
926 			memset(data, 0xff, blocksize);
927 			ext4_mb_generate_buddy(sb, data, incore, group);
928 			ext4_unlock_group(sb, group);
929 			incore = NULL;
930 		} else {
931 			/* this is block of bitmap */
932 			BUG_ON(incore != NULL);
933 			mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
934 				group, page->index, i * blocksize);
935 			trace_ext4_mb_bitmap_load(sb, group);
936 
937 			/* see comments in ext4_mb_put_pa() */
938 			ext4_lock_group(sb, group);
939 			memcpy(data, bitmap, blocksize);
940 
941 			/* mark all preallocated blks used in in-core bitmap */
942 			ext4_mb_generate_from_pa(sb, data, group);
943 			ext4_mb_generate_from_freelist(sb, data, group);
944 			ext4_unlock_group(sb, group);
945 
946 			/* set incore so that the buddy information can be
947 			 * generated using this
948 			 */
949 			incore = data;
950 		}
951 	}
952 	SetPageUptodate(page);
953 
954 out:
955 	if (bh) {
956 		for (i = 0; i < groups_per_page; i++)
957 			brelse(bh[i]);
958 		if (bh != &bhs)
959 			kfree(bh);
960 	}
961 	return err;
962 }
963 
964 /*
965  * Lock the buddy and bitmap pages. This make sure other parallel init_group
966  * on the same buddy page doesn't happen whild holding the buddy page lock.
967  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
968  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
969  */
970 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
971 		ext4_group_t group, struct ext4_buddy *e4b)
972 {
973 	struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
974 	int block, pnum, poff;
975 	int blocks_per_page;
976 	struct page *page;
977 
978 	e4b->bd_buddy_page = NULL;
979 	e4b->bd_bitmap_page = NULL;
980 
981 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
982 	/*
983 	 * the buddy cache inode stores the block bitmap
984 	 * and buddy information in consecutive blocks.
985 	 * So for each group we need two blocks.
986 	 */
987 	block = group * 2;
988 	pnum = block / blocks_per_page;
989 	poff = block % blocks_per_page;
990 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
991 	if (!page)
992 		return -ENOMEM;
993 	BUG_ON(page->mapping != inode->i_mapping);
994 	e4b->bd_bitmap_page = page;
995 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
996 
997 	if (blocks_per_page >= 2) {
998 		/* buddy and bitmap are on the same page */
999 		return 0;
1000 	}
1001 
1002 	block++;
1003 	pnum = block / blocks_per_page;
1004 	page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1005 	if (!page)
1006 		return -ENOMEM;
1007 	BUG_ON(page->mapping != inode->i_mapping);
1008 	e4b->bd_buddy_page = page;
1009 	return 0;
1010 }
1011 
1012 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1013 {
1014 	if (e4b->bd_bitmap_page) {
1015 		unlock_page(e4b->bd_bitmap_page);
1016 		page_cache_release(e4b->bd_bitmap_page);
1017 	}
1018 	if (e4b->bd_buddy_page) {
1019 		unlock_page(e4b->bd_buddy_page);
1020 		page_cache_release(e4b->bd_buddy_page);
1021 	}
1022 }
1023 
1024 /*
1025  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1026  * block group lock of all groups for this page; do not hold the BG lock when
1027  * calling this routine!
1028  */
1029 static noinline_for_stack
1030 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
1031 {
1032 
1033 	struct ext4_group_info *this_grp;
1034 	struct ext4_buddy e4b;
1035 	struct page *page;
1036 	int ret = 0;
1037 
1038 	might_sleep();
1039 	mb_debug(1, "init group %u\n", group);
1040 	this_grp = ext4_get_group_info(sb, group);
1041 	/*
1042 	 * This ensures that we don't reinit the buddy cache
1043 	 * page which map to the group from which we are already
1044 	 * allocating. If we are looking at the buddy cache we would
1045 	 * have taken a reference using ext4_mb_load_buddy and that
1046 	 * would have pinned buddy page to page cache.
1047 	 * The call to ext4_mb_get_buddy_page_lock will mark the
1048 	 * page accessed.
1049 	 */
1050 	ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b);
1051 	if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1052 		/*
1053 		 * somebody initialized the group
1054 		 * return without doing anything
1055 		 */
1056 		goto err;
1057 	}
1058 
1059 	page = e4b.bd_bitmap_page;
1060 	ret = ext4_mb_init_cache(page, NULL);
1061 	if (ret)
1062 		goto err;
1063 	if (!PageUptodate(page)) {
1064 		ret = -EIO;
1065 		goto err;
1066 	}
1067 
1068 	if (e4b.bd_buddy_page == NULL) {
1069 		/*
1070 		 * If both the bitmap and buddy are in
1071 		 * the same page we don't need to force
1072 		 * init the buddy
1073 		 */
1074 		ret = 0;
1075 		goto err;
1076 	}
1077 	/* init buddy cache */
1078 	page = e4b.bd_buddy_page;
1079 	ret = ext4_mb_init_cache(page, e4b.bd_bitmap);
1080 	if (ret)
1081 		goto err;
1082 	if (!PageUptodate(page)) {
1083 		ret = -EIO;
1084 		goto err;
1085 	}
1086 err:
1087 	ext4_mb_put_buddy_page_lock(&e4b);
1088 	return ret;
1089 }
1090 
1091 /*
1092  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1093  * block group lock of all groups for this page; do not hold the BG lock when
1094  * calling this routine!
1095  */
1096 static noinline_for_stack int
1097 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1098 					struct ext4_buddy *e4b)
1099 {
1100 	int blocks_per_page;
1101 	int block;
1102 	int pnum;
1103 	int poff;
1104 	struct page *page;
1105 	int ret;
1106 	struct ext4_group_info *grp;
1107 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1108 	struct inode *inode = sbi->s_buddy_cache;
1109 
1110 	might_sleep();
1111 	mb_debug(1, "load group %u\n", group);
1112 
1113 	blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1114 	grp = ext4_get_group_info(sb, group);
1115 
1116 	e4b->bd_blkbits = sb->s_blocksize_bits;
1117 	e4b->bd_info = grp;
1118 	e4b->bd_sb = sb;
1119 	e4b->bd_group = group;
1120 	e4b->bd_buddy_page = NULL;
1121 	e4b->bd_bitmap_page = NULL;
1122 
1123 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1124 		/*
1125 		 * we need full data about the group
1126 		 * to make a good selection
1127 		 */
1128 		ret = ext4_mb_init_group(sb, group);
1129 		if (ret)
1130 			return ret;
1131 	}
1132 
1133 	/*
1134 	 * the buddy cache inode stores the block bitmap
1135 	 * and buddy information in consecutive blocks.
1136 	 * So for each group we need two blocks.
1137 	 */
1138 	block = group * 2;
1139 	pnum = block / blocks_per_page;
1140 	poff = block % blocks_per_page;
1141 
1142 	/* we could use find_or_create_page(), but it locks page
1143 	 * what we'd like to avoid in fast path ... */
1144 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1145 	if (page == NULL || !PageUptodate(page)) {
1146 		if (page)
1147 			/*
1148 			 * drop the page reference and try
1149 			 * to get the page with lock. If we
1150 			 * are not uptodate that implies
1151 			 * somebody just created the page but
1152 			 * is yet to initialize the same. So
1153 			 * wait for it to initialize.
1154 			 */
1155 			page_cache_release(page);
1156 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1157 		if (page) {
1158 			BUG_ON(page->mapping != inode->i_mapping);
1159 			if (!PageUptodate(page)) {
1160 				ret = ext4_mb_init_cache(page, NULL);
1161 				if (ret) {
1162 					unlock_page(page);
1163 					goto err;
1164 				}
1165 				mb_cmp_bitmaps(e4b, page_address(page) +
1166 					       (poff * sb->s_blocksize));
1167 			}
1168 			unlock_page(page);
1169 		}
1170 	}
1171 	if (page == NULL) {
1172 		ret = -ENOMEM;
1173 		goto err;
1174 	}
1175 	if (!PageUptodate(page)) {
1176 		ret = -EIO;
1177 		goto err;
1178 	}
1179 
1180 	/* Pages marked accessed already */
1181 	e4b->bd_bitmap_page = page;
1182 	e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1183 
1184 	block++;
1185 	pnum = block / blocks_per_page;
1186 	poff = block % blocks_per_page;
1187 
1188 	page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1189 	if (page == NULL || !PageUptodate(page)) {
1190 		if (page)
1191 			page_cache_release(page);
1192 		page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1193 		if (page) {
1194 			BUG_ON(page->mapping != inode->i_mapping);
1195 			if (!PageUptodate(page)) {
1196 				ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1197 				if (ret) {
1198 					unlock_page(page);
1199 					goto err;
1200 				}
1201 			}
1202 			unlock_page(page);
1203 		}
1204 	}
1205 	if (page == NULL) {
1206 		ret = -ENOMEM;
1207 		goto err;
1208 	}
1209 	if (!PageUptodate(page)) {
1210 		ret = -EIO;
1211 		goto err;
1212 	}
1213 
1214 	/* Pages marked accessed already */
1215 	e4b->bd_buddy_page = page;
1216 	e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1217 
1218 	BUG_ON(e4b->bd_bitmap_page == NULL);
1219 	BUG_ON(e4b->bd_buddy_page == NULL);
1220 
1221 	return 0;
1222 
1223 err:
1224 	if (page)
1225 		page_cache_release(page);
1226 	if (e4b->bd_bitmap_page)
1227 		page_cache_release(e4b->bd_bitmap_page);
1228 	if (e4b->bd_buddy_page)
1229 		page_cache_release(e4b->bd_buddy_page);
1230 	e4b->bd_buddy = NULL;
1231 	e4b->bd_bitmap = NULL;
1232 	return ret;
1233 }
1234 
1235 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1236 {
1237 	if (e4b->bd_bitmap_page)
1238 		page_cache_release(e4b->bd_bitmap_page);
1239 	if (e4b->bd_buddy_page)
1240 		page_cache_release(e4b->bd_buddy_page);
1241 }
1242 
1243 
1244 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1245 {
1246 	int order = 1;
1247 	void *bb;
1248 
1249 	BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1250 	BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1251 
1252 	bb = e4b->bd_buddy;
1253 	while (order <= e4b->bd_blkbits + 1) {
1254 		block = block >> 1;
1255 		if (!mb_test_bit(block, bb)) {
1256 			/* this block is part of buddy of order 'order' */
1257 			return order;
1258 		}
1259 		bb += 1 << (e4b->bd_blkbits - order);
1260 		order++;
1261 	}
1262 	return 0;
1263 }
1264 
1265 static void mb_clear_bits(void *bm, int cur, int len)
1266 {
1267 	__u32 *addr;
1268 
1269 	len = cur + len;
1270 	while (cur < len) {
1271 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1272 			/* fast path: clear whole word at once */
1273 			addr = bm + (cur >> 3);
1274 			*addr = 0;
1275 			cur += 32;
1276 			continue;
1277 		}
1278 		mb_clear_bit(cur, bm);
1279 		cur++;
1280 	}
1281 }
1282 
1283 /* clear bits in given range
1284  * will return first found zero bit if any, -1 otherwise
1285  */
1286 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1287 {
1288 	__u32 *addr;
1289 	int zero_bit = -1;
1290 
1291 	len = cur + len;
1292 	while (cur < len) {
1293 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1294 			/* fast path: clear whole word at once */
1295 			addr = bm + (cur >> 3);
1296 			if (*addr != (__u32)(-1) && zero_bit == -1)
1297 				zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1298 			*addr = 0;
1299 			cur += 32;
1300 			continue;
1301 		}
1302 		if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1303 			zero_bit = cur;
1304 		cur++;
1305 	}
1306 
1307 	return zero_bit;
1308 }
1309 
1310 void ext4_set_bits(void *bm, int cur, int len)
1311 {
1312 	__u32 *addr;
1313 
1314 	len = cur + len;
1315 	while (cur < len) {
1316 		if ((cur & 31) == 0 && (len - cur) >= 32) {
1317 			/* fast path: set whole word at once */
1318 			addr = bm + (cur >> 3);
1319 			*addr = 0xffffffff;
1320 			cur += 32;
1321 			continue;
1322 		}
1323 		mb_set_bit(cur, bm);
1324 		cur++;
1325 	}
1326 }
1327 
1328 /*
1329  * _________________________________________________________________ */
1330 
1331 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1332 {
1333 	if (mb_test_bit(*bit + side, bitmap)) {
1334 		mb_clear_bit(*bit, bitmap);
1335 		(*bit) -= side;
1336 		return 1;
1337 	}
1338 	else {
1339 		(*bit) += side;
1340 		mb_set_bit(*bit, bitmap);
1341 		return -1;
1342 	}
1343 }
1344 
1345 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1346 {
1347 	int max;
1348 	int order = 1;
1349 	void *buddy = mb_find_buddy(e4b, order, &max);
1350 
1351 	while (buddy) {
1352 		void *buddy2;
1353 
1354 		/* Bits in range [first; last] are known to be set since
1355 		 * corresponding blocks were allocated. Bits in range
1356 		 * (first; last) will stay set because they form buddies on
1357 		 * upper layer. We just deal with borders if they don't
1358 		 * align with upper layer and then go up.
1359 		 * Releasing entire group is all about clearing
1360 		 * single bit of highest order buddy.
1361 		 */
1362 
1363 		/* Example:
1364 		 * ---------------------------------
1365 		 * |   1   |   1   |   1   |   1   |
1366 		 * ---------------------------------
1367 		 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1368 		 * ---------------------------------
1369 		 *   0   1   2   3   4   5   6   7
1370 		 *      \_____________________/
1371 		 *
1372 		 * Neither [1] nor [6] is aligned to above layer.
1373 		 * Left neighbour [0] is free, so mark it busy,
1374 		 * decrease bb_counters and extend range to
1375 		 * [0; 6]
1376 		 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1377 		 * mark [6] free, increase bb_counters and shrink range to
1378 		 * [0; 5].
1379 		 * Then shift range to [0; 2], go up and do the same.
1380 		 */
1381 
1382 
1383 		if (first & 1)
1384 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1385 		if (!(last & 1))
1386 			e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1387 		if (first > last)
1388 			break;
1389 		order++;
1390 
1391 		if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1392 			mb_clear_bits(buddy, first, last - first + 1);
1393 			e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1394 			break;
1395 		}
1396 		first >>= 1;
1397 		last >>= 1;
1398 		buddy = buddy2;
1399 	}
1400 }
1401 
1402 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1403 			   int first, int count)
1404 {
1405 	int left_is_free = 0;
1406 	int right_is_free = 0;
1407 	int block;
1408 	int last = first + count - 1;
1409 	struct super_block *sb = e4b->bd_sb;
1410 
1411 	BUG_ON(last >= (sb->s_blocksize << 3));
1412 	assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1413 	/* Don't bother if the block group is corrupt. */
1414 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1415 		return;
1416 
1417 	mb_check_buddy(e4b);
1418 	mb_free_blocks_double(inode, e4b, first, count);
1419 
1420 	e4b->bd_info->bb_free += count;
1421 	if (first < e4b->bd_info->bb_first_free)
1422 		e4b->bd_info->bb_first_free = first;
1423 
1424 	/* access memory sequentially: check left neighbour,
1425 	 * clear range and then check right neighbour
1426 	 */
1427 	if (first != 0)
1428 		left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1429 	block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1430 	if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1431 		right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1432 
1433 	if (unlikely(block != -1)) {
1434 		ext4_fsblk_t blocknr;
1435 
1436 		blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1437 		blocknr += EXT4_C2B(EXT4_SB(sb), block);
1438 		ext4_grp_locked_error(sb, e4b->bd_group,
1439 				      inode ? inode->i_ino : 0,
1440 				      blocknr,
1441 				      "freeing already freed block "
1442 				      "(bit %u); block bitmap corrupt.",
1443 				      block);
1444 		/* Mark the block group as corrupt. */
1445 		set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1446 			&e4b->bd_info->bb_state);
1447 		mb_regenerate_buddy(e4b);
1448 		goto done;
1449 	}
1450 
1451 	/* let's maintain fragments counter */
1452 	if (left_is_free && right_is_free)
1453 		e4b->bd_info->bb_fragments--;
1454 	else if (!left_is_free && !right_is_free)
1455 		e4b->bd_info->bb_fragments++;
1456 
1457 	/* buddy[0] == bd_bitmap is a special case, so handle
1458 	 * it right away and let mb_buddy_mark_free stay free of
1459 	 * zero order checks.
1460 	 * Check if neighbours are to be coaleasced,
1461 	 * adjust bitmap bb_counters and borders appropriately.
1462 	 */
1463 	if (first & 1) {
1464 		first += !left_is_free;
1465 		e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1466 	}
1467 	if (!(last & 1)) {
1468 		last -= !right_is_free;
1469 		e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1470 	}
1471 
1472 	if (first <= last)
1473 		mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1474 
1475 done:
1476 	mb_set_largest_free_order(sb, e4b->bd_info);
1477 	mb_check_buddy(e4b);
1478 }
1479 
1480 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1481 				int needed, struct ext4_free_extent *ex)
1482 {
1483 	int next = block;
1484 	int max, order;
1485 	void *buddy;
1486 
1487 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1488 	BUG_ON(ex == NULL);
1489 
1490 	buddy = mb_find_buddy(e4b, 0, &max);
1491 	BUG_ON(buddy == NULL);
1492 	BUG_ON(block >= max);
1493 	if (mb_test_bit(block, buddy)) {
1494 		ex->fe_len = 0;
1495 		ex->fe_start = 0;
1496 		ex->fe_group = 0;
1497 		return 0;
1498 	}
1499 
1500 	/* find actual order */
1501 	order = mb_find_order_for_block(e4b, block);
1502 	block = block >> order;
1503 
1504 	ex->fe_len = 1 << order;
1505 	ex->fe_start = block << order;
1506 	ex->fe_group = e4b->bd_group;
1507 
1508 	/* calc difference from given start */
1509 	next = next - ex->fe_start;
1510 	ex->fe_len -= next;
1511 	ex->fe_start += next;
1512 
1513 	while (needed > ex->fe_len &&
1514 	       mb_find_buddy(e4b, order, &max)) {
1515 
1516 		if (block + 1 >= max)
1517 			break;
1518 
1519 		next = (block + 1) * (1 << order);
1520 		if (mb_test_bit(next, e4b->bd_bitmap))
1521 			break;
1522 
1523 		order = mb_find_order_for_block(e4b, next);
1524 
1525 		block = next >> order;
1526 		ex->fe_len += 1 << order;
1527 	}
1528 
1529 	BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1530 	return ex->fe_len;
1531 }
1532 
1533 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1534 {
1535 	int ord;
1536 	int mlen = 0;
1537 	int max = 0;
1538 	int cur;
1539 	int start = ex->fe_start;
1540 	int len = ex->fe_len;
1541 	unsigned ret = 0;
1542 	int len0 = len;
1543 	void *buddy;
1544 
1545 	BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1546 	BUG_ON(e4b->bd_group != ex->fe_group);
1547 	assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1548 	mb_check_buddy(e4b);
1549 	mb_mark_used_double(e4b, start, len);
1550 
1551 	e4b->bd_info->bb_free -= len;
1552 	if (e4b->bd_info->bb_first_free == start)
1553 		e4b->bd_info->bb_first_free += len;
1554 
1555 	/* let's maintain fragments counter */
1556 	if (start != 0)
1557 		mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1558 	if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1559 		max = !mb_test_bit(start + len, e4b->bd_bitmap);
1560 	if (mlen && max)
1561 		e4b->bd_info->bb_fragments++;
1562 	else if (!mlen && !max)
1563 		e4b->bd_info->bb_fragments--;
1564 
1565 	/* let's maintain buddy itself */
1566 	while (len) {
1567 		ord = mb_find_order_for_block(e4b, start);
1568 
1569 		if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1570 			/* the whole chunk may be allocated at once! */
1571 			mlen = 1 << ord;
1572 			buddy = mb_find_buddy(e4b, ord, &max);
1573 			BUG_ON((start >> ord) >= max);
1574 			mb_set_bit(start >> ord, buddy);
1575 			e4b->bd_info->bb_counters[ord]--;
1576 			start += mlen;
1577 			len -= mlen;
1578 			BUG_ON(len < 0);
1579 			continue;
1580 		}
1581 
1582 		/* store for history */
1583 		if (ret == 0)
1584 			ret = len | (ord << 16);
1585 
1586 		/* we have to split large buddy */
1587 		BUG_ON(ord <= 0);
1588 		buddy = mb_find_buddy(e4b, ord, &max);
1589 		mb_set_bit(start >> ord, buddy);
1590 		e4b->bd_info->bb_counters[ord]--;
1591 
1592 		ord--;
1593 		cur = (start >> ord) & ~1U;
1594 		buddy = mb_find_buddy(e4b, ord, &max);
1595 		mb_clear_bit(cur, buddy);
1596 		mb_clear_bit(cur + 1, buddy);
1597 		e4b->bd_info->bb_counters[ord]++;
1598 		e4b->bd_info->bb_counters[ord]++;
1599 	}
1600 	mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1601 
1602 	ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1603 	mb_check_buddy(e4b);
1604 
1605 	return ret;
1606 }
1607 
1608 /*
1609  * Must be called under group lock!
1610  */
1611 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1612 					struct ext4_buddy *e4b)
1613 {
1614 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1615 	int ret;
1616 
1617 	BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1618 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1619 
1620 	ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1621 	ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1622 	ret = mb_mark_used(e4b, &ac->ac_b_ex);
1623 
1624 	/* preallocation can change ac_b_ex, thus we store actually
1625 	 * allocated blocks for history */
1626 	ac->ac_f_ex = ac->ac_b_ex;
1627 
1628 	ac->ac_status = AC_STATUS_FOUND;
1629 	ac->ac_tail = ret & 0xffff;
1630 	ac->ac_buddy = ret >> 16;
1631 
1632 	/*
1633 	 * take the page reference. We want the page to be pinned
1634 	 * so that we don't get a ext4_mb_init_cache_call for this
1635 	 * group until we update the bitmap. That would mean we
1636 	 * double allocate blocks. The reference is dropped
1637 	 * in ext4_mb_release_context
1638 	 */
1639 	ac->ac_bitmap_page = e4b->bd_bitmap_page;
1640 	get_page(ac->ac_bitmap_page);
1641 	ac->ac_buddy_page = e4b->bd_buddy_page;
1642 	get_page(ac->ac_buddy_page);
1643 	/* store last allocated for subsequent stream allocation */
1644 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1645 		spin_lock(&sbi->s_md_lock);
1646 		sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1647 		sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1648 		spin_unlock(&sbi->s_md_lock);
1649 	}
1650 }
1651 
1652 /*
1653  * regular allocator, for general purposes allocation
1654  */
1655 
1656 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1657 					struct ext4_buddy *e4b,
1658 					int finish_group)
1659 {
1660 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1661 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1662 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1663 	struct ext4_free_extent ex;
1664 	int max;
1665 
1666 	if (ac->ac_status == AC_STATUS_FOUND)
1667 		return;
1668 	/*
1669 	 * We don't want to scan for a whole year
1670 	 */
1671 	if (ac->ac_found > sbi->s_mb_max_to_scan &&
1672 			!(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1673 		ac->ac_status = AC_STATUS_BREAK;
1674 		return;
1675 	}
1676 
1677 	/*
1678 	 * Haven't found good chunk so far, let's continue
1679 	 */
1680 	if (bex->fe_len < gex->fe_len)
1681 		return;
1682 
1683 	if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1684 			&& bex->fe_group == e4b->bd_group) {
1685 		/* recheck chunk's availability - we don't know
1686 		 * when it was found (within this lock-unlock
1687 		 * period or not) */
1688 		max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1689 		if (max >= gex->fe_len) {
1690 			ext4_mb_use_best_found(ac, e4b);
1691 			return;
1692 		}
1693 	}
1694 }
1695 
1696 /*
1697  * The routine checks whether found extent is good enough. If it is,
1698  * then the extent gets marked used and flag is set to the context
1699  * to stop scanning. Otherwise, the extent is compared with the
1700  * previous found extent and if new one is better, then it's stored
1701  * in the context. Later, the best found extent will be used, if
1702  * mballoc can't find good enough extent.
1703  *
1704  * FIXME: real allocation policy is to be designed yet!
1705  */
1706 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1707 					struct ext4_free_extent *ex,
1708 					struct ext4_buddy *e4b)
1709 {
1710 	struct ext4_free_extent *bex = &ac->ac_b_ex;
1711 	struct ext4_free_extent *gex = &ac->ac_g_ex;
1712 
1713 	BUG_ON(ex->fe_len <= 0);
1714 	BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1715 	BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1716 	BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1717 
1718 	ac->ac_found++;
1719 
1720 	/*
1721 	 * The special case - take what you catch first
1722 	 */
1723 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1724 		*bex = *ex;
1725 		ext4_mb_use_best_found(ac, e4b);
1726 		return;
1727 	}
1728 
1729 	/*
1730 	 * Let's check whether the chuck is good enough
1731 	 */
1732 	if (ex->fe_len == gex->fe_len) {
1733 		*bex = *ex;
1734 		ext4_mb_use_best_found(ac, e4b);
1735 		return;
1736 	}
1737 
1738 	/*
1739 	 * If this is first found extent, just store it in the context
1740 	 */
1741 	if (bex->fe_len == 0) {
1742 		*bex = *ex;
1743 		return;
1744 	}
1745 
1746 	/*
1747 	 * If new found extent is better, store it in the context
1748 	 */
1749 	if (bex->fe_len < gex->fe_len) {
1750 		/* if the request isn't satisfied, any found extent
1751 		 * larger than previous best one is better */
1752 		if (ex->fe_len > bex->fe_len)
1753 			*bex = *ex;
1754 	} else if (ex->fe_len > gex->fe_len) {
1755 		/* if the request is satisfied, then we try to find
1756 		 * an extent that still satisfy the request, but is
1757 		 * smaller than previous one */
1758 		if (ex->fe_len < bex->fe_len)
1759 			*bex = *ex;
1760 	}
1761 
1762 	ext4_mb_check_limits(ac, e4b, 0);
1763 }
1764 
1765 static noinline_for_stack
1766 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1767 					struct ext4_buddy *e4b)
1768 {
1769 	struct ext4_free_extent ex = ac->ac_b_ex;
1770 	ext4_group_t group = ex.fe_group;
1771 	int max;
1772 	int err;
1773 
1774 	BUG_ON(ex.fe_len <= 0);
1775 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1776 	if (err)
1777 		return err;
1778 
1779 	ext4_lock_group(ac->ac_sb, group);
1780 	max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1781 
1782 	if (max > 0) {
1783 		ac->ac_b_ex = ex;
1784 		ext4_mb_use_best_found(ac, e4b);
1785 	}
1786 
1787 	ext4_unlock_group(ac->ac_sb, group);
1788 	ext4_mb_unload_buddy(e4b);
1789 
1790 	return 0;
1791 }
1792 
1793 static noinline_for_stack
1794 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1795 				struct ext4_buddy *e4b)
1796 {
1797 	ext4_group_t group = ac->ac_g_ex.fe_group;
1798 	int max;
1799 	int err;
1800 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1801 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1802 	struct ext4_free_extent ex;
1803 
1804 	if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1805 		return 0;
1806 	if (grp->bb_free == 0)
1807 		return 0;
1808 
1809 	err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1810 	if (err)
1811 		return err;
1812 
1813 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1814 		ext4_mb_unload_buddy(e4b);
1815 		return 0;
1816 	}
1817 
1818 	ext4_lock_group(ac->ac_sb, group);
1819 	max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1820 			     ac->ac_g_ex.fe_len, &ex);
1821 	ex.fe_logical = 0xDEADFA11; /* debug value */
1822 
1823 	if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1824 		ext4_fsblk_t start;
1825 
1826 		start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1827 			ex.fe_start;
1828 		/* use do_div to get remainder (would be 64-bit modulo) */
1829 		if (do_div(start, sbi->s_stripe) == 0) {
1830 			ac->ac_found++;
1831 			ac->ac_b_ex = ex;
1832 			ext4_mb_use_best_found(ac, e4b);
1833 		}
1834 	} else if (max >= ac->ac_g_ex.fe_len) {
1835 		BUG_ON(ex.fe_len <= 0);
1836 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1837 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1838 		ac->ac_found++;
1839 		ac->ac_b_ex = ex;
1840 		ext4_mb_use_best_found(ac, e4b);
1841 	} else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1842 		/* Sometimes, caller may want to merge even small
1843 		 * number of blocks to an existing extent */
1844 		BUG_ON(ex.fe_len <= 0);
1845 		BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1846 		BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1847 		ac->ac_found++;
1848 		ac->ac_b_ex = ex;
1849 		ext4_mb_use_best_found(ac, e4b);
1850 	}
1851 	ext4_unlock_group(ac->ac_sb, group);
1852 	ext4_mb_unload_buddy(e4b);
1853 
1854 	return 0;
1855 }
1856 
1857 /*
1858  * The routine scans buddy structures (not bitmap!) from given order
1859  * to max order and tries to find big enough chunk to satisfy the req
1860  */
1861 static noinline_for_stack
1862 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1863 					struct ext4_buddy *e4b)
1864 {
1865 	struct super_block *sb = ac->ac_sb;
1866 	struct ext4_group_info *grp = e4b->bd_info;
1867 	void *buddy;
1868 	int i;
1869 	int k;
1870 	int max;
1871 
1872 	BUG_ON(ac->ac_2order <= 0);
1873 	for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1874 		if (grp->bb_counters[i] == 0)
1875 			continue;
1876 
1877 		buddy = mb_find_buddy(e4b, i, &max);
1878 		BUG_ON(buddy == NULL);
1879 
1880 		k = mb_find_next_zero_bit(buddy, max, 0);
1881 		BUG_ON(k >= max);
1882 
1883 		ac->ac_found++;
1884 
1885 		ac->ac_b_ex.fe_len = 1 << i;
1886 		ac->ac_b_ex.fe_start = k << i;
1887 		ac->ac_b_ex.fe_group = e4b->bd_group;
1888 
1889 		ext4_mb_use_best_found(ac, e4b);
1890 
1891 		BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1892 
1893 		if (EXT4_SB(sb)->s_mb_stats)
1894 			atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1895 
1896 		break;
1897 	}
1898 }
1899 
1900 /*
1901  * The routine scans the group and measures all found extents.
1902  * In order to optimize scanning, caller must pass number of
1903  * free blocks in the group, so the routine can know upper limit.
1904  */
1905 static noinline_for_stack
1906 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1907 					struct ext4_buddy *e4b)
1908 {
1909 	struct super_block *sb = ac->ac_sb;
1910 	void *bitmap = e4b->bd_bitmap;
1911 	struct ext4_free_extent ex;
1912 	int i;
1913 	int free;
1914 
1915 	free = e4b->bd_info->bb_free;
1916 	BUG_ON(free <= 0);
1917 
1918 	i = e4b->bd_info->bb_first_free;
1919 
1920 	while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1921 		i = mb_find_next_zero_bit(bitmap,
1922 						EXT4_CLUSTERS_PER_GROUP(sb), i);
1923 		if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1924 			/*
1925 			 * IF we have corrupt bitmap, we won't find any
1926 			 * free blocks even though group info says we
1927 			 * we have free blocks
1928 			 */
1929 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1930 					"%d free clusters as per "
1931 					"group info. But bitmap says 0",
1932 					free);
1933 			break;
1934 		}
1935 
1936 		mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1937 		BUG_ON(ex.fe_len <= 0);
1938 		if (free < ex.fe_len) {
1939 			ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1940 					"%d free clusters as per "
1941 					"group info. But got %d blocks",
1942 					free, ex.fe_len);
1943 			/*
1944 			 * The number of free blocks differs. This mostly
1945 			 * indicate that the bitmap is corrupt. So exit
1946 			 * without claiming the space.
1947 			 */
1948 			break;
1949 		}
1950 		ex.fe_logical = 0xDEADC0DE; /* debug value */
1951 		ext4_mb_measure_extent(ac, &ex, e4b);
1952 
1953 		i += ex.fe_len;
1954 		free -= ex.fe_len;
1955 	}
1956 
1957 	ext4_mb_check_limits(ac, e4b, 1);
1958 }
1959 
1960 /*
1961  * This is a special case for storages like raid5
1962  * we try to find stripe-aligned chunks for stripe-size-multiple requests
1963  */
1964 static noinline_for_stack
1965 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1966 				 struct ext4_buddy *e4b)
1967 {
1968 	struct super_block *sb = ac->ac_sb;
1969 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1970 	void *bitmap = e4b->bd_bitmap;
1971 	struct ext4_free_extent ex;
1972 	ext4_fsblk_t first_group_block;
1973 	ext4_fsblk_t a;
1974 	ext4_grpblk_t i;
1975 	int max;
1976 
1977 	BUG_ON(sbi->s_stripe == 0);
1978 
1979 	/* find first stripe-aligned block in group */
1980 	first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1981 
1982 	a = first_group_block + sbi->s_stripe - 1;
1983 	do_div(a, sbi->s_stripe);
1984 	i = (a * sbi->s_stripe) - first_group_block;
1985 
1986 	while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
1987 		if (!mb_test_bit(i, bitmap)) {
1988 			max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
1989 			if (max >= sbi->s_stripe) {
1990 				ac->ac_found++;
1991 				ex.fe_logical = 0xDEADF00D; /* debug value */
1992 				ac->ac_b_ex = ex;
1993 				ext4_mb_use_best_found(ac, e4b);
1994 				break;
1995 			}
1996 		}
1997 		i += sbi->s_stripe;
1998 	}
1999 }
2000 
2001 /* This is now called BEFORE we load the buddy bitmap. */
2002 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2003 				ext4_group_t group, int cr)
2004 {
2005 	unsigned free, fragments;
2006 	int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2007 	struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2008 
2009 	BUG_ON(cr < 0 || cr >= 4);
2010 
2011 	free = grp->bb_free;
2012 	if (free == 0)
2013 		return 0;
2014 	if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2015 		return 0;
2016 
2017 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2018 		return 0;
2019 
2020 	/* We only do this if the grp has never been initialized */
2021 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2022 		int ret = ext4_mb_init_group(ac->ac_sb, group);
2023 		if (ret)
2024 			return 0;
2025 	}
2026 
2027 	fragments = grp->bb_fragments;
2028 	if (fragments == 0)
2029 		return 0;
2030 
2031 	switch (cr) {
2032 	case 0:
2033 		BUG_ON(ac->ac_2order == 0);
2034 
2035 		/* Avoid using the first bg of a flexgroup for data files */
2036 		if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2037 		    (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2038 		    ((group % flex_size) == 0))
2039 			return 0;
2040 
2041 		if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2042 		    (free / fragments) >= ac->ac_g_ex.fe_len)
2043 			return 1;
2044 
2045 		if (grp->bb_largest_free_order < ac->ac_2order)
2046 			return 0;
2047 
2048 		return 1;
2049 	case 1:
2050 		if ((free / fragments) >= ac->ac_g_ex.fe_len)
2051 			return 1;
2052 		break;
2053 	case 2:
2054 		if (free >= ac->ac_g_ex.fe_len)
2055 			return 1;
2056 		break;
2057 	case 3:
2058 		return 1;
2059 	default:
2060 		BUG();
2061 	}
2062 
2063 	return 0;
2064 }
2065 
2066 static noinline_for_stack int
2067 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2068 {
2069 	ext4_group_t ngroups, group, i;
2070 	int cr;
2071 	int err = 0;
2072 	struct ext4_sb_info *sbi;
2073 	struct super_block *sb;
2074 	struct ext4_buddy e4b;
2075 
2076 	sb = ac->ac_sb;
2077 	sbi = EXT4_SB(sb);
2078 	ngroups = ext4_get_groups_count(sb);
2079 	/* non-extent files are limited to low blocks/groups */
2080 	if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2081 		ngroups = sbi->s_blockfile_groups;
2082 
2083 	BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2084 
2085 	/* first, try the goal */
2086 	err = ext4_mb_find_by_goal(ac, &e4b);
2087 	if (err || ac->ac_status == AC_STATUS_FOUND)
2088 		goto out;
2089 
2090 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2091 		goto out;
2092 
2093 	/*
2094 	 * ac->ac2_order is set only if the fe_len is a power of 2
2095 	 * if ac2_order is set we also set criteria to 0 so that we
2096 	 * try exact allocation using buddy.
2097 	 */
2098 	i = fls(ac->ac_g_ex.fe_len);
2099 	ac->ac_2order = 0;
2100 	/*
2101 	 * We search using buddy data only if the order of the request
2102 	 * is greater than equal to the sbi_s_mb_order2_reqs
2103 	 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2104 	 */
2105 	if (i >= sbi->s_mb_order2_reqs) {
2106 		/*
2107 		 * This should tell if fe_len is exactly power of 2
2108 		 */
2109 		if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2110 			ac->ac_2order = i - 1;
2111 	}
2112 
2113 	/* if stream allocation is enabled, use global goal */
2114 	if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2115 		/* TBD: may be hot point */
2116 		spin_lock(&sbi->s_md_lock);
2117 		ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2118 		ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2119 		spin_unlock(&sbi->s_md_lock);
2120 	}
2121 
2122 	/* Let's just scan groups to find more-less suitable blocks */
2123 	cr = ac->ac_2order ? 0 : 1;
2124 	/*
2125 	 * cr == 0 try to get exact allocation,
2126 	 * cr == 3  try to get anything
2127 	 */
2128 repeat:
2129 	for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2130 		ac->ac_criteria = cr;
2131 		/*
2132 		 * searching for the right group start
2133 		 * from the goal value specified
2134 		 */
2135 		group = ac->ac_g_ex.fe_group;
2136 
2137 		for (i = 0; i < ngroups; group++, i++) {
2138 			cond_resched();
2139 			/*
2140 			 * Artificially restricted ngroups for non-extent
2141 			 * files makes group > ngroups possible on first loop.
2142 			 */
2143 			if (group >= ngroups)
2144 				group = 0;
2145 
2146 			/* This now checks without needing the buddy page */
2147 			if (!ext4_mb_good_group(ac, group, cr))
2148 				continue;
2149 
2150 			err = ext4_mb_load_buddy(sb, group, &e4b);
2151 			if (err)
2152 				goto out;
2153 
2154 			ext4_lock_group(sb, group);
2155 
2156 			/*
2157 			 * We need to check again after locking the
2158 			 * block group
2159 			 */
2160 			if (!ext4_mb_good_group(ac, group, cr)) {
2161 				ext4_unlock_group(sb, group);
2162 				ext4_mb_unload_buddy(&e4b);
2163 				continue;
2164 			}
2165 
2166 			ac->ac_groups_scanned++;
2167 			if (cr == 0 && ac->ac_2order < sb->s_blocksize_bits+2)
2168 				ext4_mb_simple_scan_group(ac, &e4b);
2169 			else if (cr == 1 && sbi->s_stripe &&
2170 					!(ac->ac_g_ex.fe_len % sbi->s_stripe))
2171 				ext4_mb_scan_aligned(ac, &e4b);
2172 			else
2173 				ext4_mb_complex_scan_group(ac, &e4b);
2174 
2175 			ext4_unlock_group(sb, group);
2176 			ext4_mb_unload_buddy(&e4b);
2177 
2178 			if (ac->ac_status != AC_STATUS_CONTINUE)
2179 				break;
2180 		}
2181 	}
2182 
2183 	if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2184 	    !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2185 		/*
2186 		 * We've been searching too long. Let's try to allocate
2187 		 * the best chunk we've found so far
2188 		 */
2189 
2190 		ext4_mb_try_best_found(ac, &e4b);
2191 		if (ac->ac_status != AC_STATUS_FOUND) {
2192 			/*
2193 			 * Someone more lucky has already allocated it.
2194 			 * The only thing we can do is just take first
2195 			 * found block(s)
2196 			printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2197 			 */
2198 			ac->ac_b_ex.fe_group = 0;
2199 			ac->ac_b_ex.fe_start = 0;
2200 			ac->ac_b_ex.fe_len = 0;
2201 			ac->ac_status = AC_STATUS_CONTINUE;
2202 			ac->ac_flags |= EXT4_MB_HINT_FIRST;
2203 			cr = 3;
2204 			atomic_inc(&sbi->s_mb_lost_chunks);
2205 			goto repeat;
2206 		}
2207 	}
2208 out:
2209 	return err;
2210 }
2211 
2212 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2213 {
2214 	struct super_block *sb = seq->private;
2215 	ext4_group_t group;
2216 
2217 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2218 		return NULL;
2219 	group = *pos + 1;
2220 	return (void *) ((unsigned long) group);
2221 }
2222 
2223 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2224 {
2225 	struct super_block *sb = seq->private;
2226 	ext4_group_t group;
2227 
2228 	++*pos;
2229 	if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2230 		return NULL;
2231 	group = *pos + 1;
2232 	return (void *) ((unsigned long) group);
2233 }
2234 
2235 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2236 {
2237 	struct super_block *sb = seq->private;
2238 	ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2239 	int i;
2240 	int err, buddy_loaded = 0;
2241 	struct ext4_buddy e4b;
2242 	struct ext4_group_info *grinfo;
2243 	struct sg {
2244 		struct ext4_group_info info;
2245 		ext4_grpblk_t counters[16];
2246 	} sg;
2247 
2248 	group--;
2249 	if (group == 0)
2250 		seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2251 				"[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2252 				  "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2253 			   "group", "free", "frags", "first",
2254 			   "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2255 			   "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2256 
2257 	i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2258 		sizeof(struct ext4_group_info);
2259 	grinfo = ext4_get_group_info(sb, group);
2260 	/* Load the group info in memory only if not already loaded. */
2261 	if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2262 		err = ext4_mb_load_buddy(sb, group, &e4b);
2263 		if (err) {
2264 			seq_printf(seq, "#%-5u: I/O error\n", group);
2265 			return 0;
2266 		}
2267 		buddy_loaded = 1;
2268 	}
2269 
2270 	memcpy(&sg, ext4_get_group_info(sb, group), i);
2271 
2272 	if (buddy_loaded)
2273 		ext4_mb_unload_buddy(&e4b);
2274 
2275 	seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2276 			sg.info.bb_fragments, sg.info.bb_first_free);
2277 	for (i = 0; i <= 13; i++)
2278 		seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2279 				sg.info.bb_counters[i] : 0);
2280 	seq_printf(seq, " ]\n");
2281 
2282 	return 0;
2283 }
2284 
2285 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2286 {
2287 }
2288 
2289 static const struct seq_operations ext4_mb_seq_groups_ops = {
2290 	.start  = ext4_mb_seq_groups_start,
2291 	.next   = ext4_mb_seq_groups_next,
2292 	.stop   = ext4_mb_seq_groups_stop,
2293 	.show   = ext4_mb_seq_groups_show,
2294 };
2295 
2296 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2297 {
2298 	struct super_block *sb = PDE_DATA(inode);
2299 	int rc;
2300 
2301 	rc = seq_open(file, &ext4_mb_seq_groups_ops);
2302 	if (rc == 0) {
2303 		struct seq_file *m = file->private_data;
2304 		m->private = sb;
2305 	}
2306 	return rc;
2307 
2308 }
2309 
2310 static const struct file_operations ext4_mb_seq_groups_fops = {
2311 	.owner		= THIS_MODULE,
2312 	.open		= ext4_mb_seq_groups_open,
2313 	.read		= seq_read,
2314 	.llseek		= seq_lseek,
2315 	.release	= seq_release,
2316 };
2317 
2318 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2319 {
2320 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2321 	struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2322 
2323 	BUG_ON(!cachep);
2324 	return cachep;
2325 }
2326 
2327 /*
2328  * Allocate the top-level s_group_info array for the specified number
2329  * of groups
2330  */
2331 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2332 {
2333 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2334 	unsigned size;
2335 	struct ext4_group_info ***new_groupinfo;
2336 
2337 	size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2338 		EXT4_DESC_PER_BLOCK_BITS(sb);
2339 	if (size <= sbi->s_group_info_size)
2340 		return 0;
2341 
2342 	size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2343 	new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2344 	if (!new_groupinfo) {
2345 		ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2346 		return -ENOMEM;
2347 	}
2348 	if (sbi->s_group_info) {
2349 		memcpy(new_groupinfo, sbi->s_group_info,
2350 		       sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2351 		ext4_kvfree(sbi->s_group_info);
2352 	}
2353 	sbi->s_group_info = new_groupinfo;
2354 	sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2355 	ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2356 		   sbi->s_group_info_size);
2357 	return 0;
2358 }
2359 
2360 /* Create and initialize ext4_group_info data for the given group. */
2361 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2362 			  struct ext4_group_desc *desc)
2363 {
2364 	int i;
2365 	int metalen = 0;
2366 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2367 	struct ext4_group_info **meta_group_info;
2368 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2369 
2370 	/*
2371 	 * First check if this group is the first of a reserved block.
2372 	 * If it's true, we have to allocate a new table of pointers
2373 	 * to ext4_group_info structures
2374 	 */
2375 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2376 		metalen = sizeof(*meta_group_info) <<
2377 			EXT4_DESC_PER_BLOCK_BITS(sb);
2378 		meta_group_info = kmalloc(metalen, GFP_KERNEL);
2379 		if (meta_group_info == NULL) {
2380 			ext4_msg(sb, KERN_ERR, "can't allocate mem "
2381 				 "for a buddy group");
2382 			goto exit_meta_group_info;
2383 		}
2384 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2385 			meta_group_info;
2386 	}
2387 
2388 	meta_group_info =
2389 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2390 	i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2391 
2392 	meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL);
2393 	if (meta_group_info[i] == NULL) {
2394 		ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2395 		goto exit_group_info;
2396 	}
2397 	set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2398 		&(meta_group_info[i]->bb_state));
2399 
2400 	/*
2401 	 * initialize bb_free to be able to skip
2402 	 * empty groups without initialization
2403 	 */
2404 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2405 		meta_group_info[i]->bb_free =
2406 			ext4_free_clusters_after_init(sb, group, desc);
2407 	} else {
2408 		meta_group_info[i]->bb_free =
2409 			ext4_free_group_clusters(sb, desc);
2410 	}
2411 
2412 	INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2413 	init_rwsem(&meta_group_info[i]->alloc_sem);
2414 	meta_group_info[i]->bb_free_root = RB_ROOT;
2415 	meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
2416 
2417 #ifdef DOUBLE_CHECK
2418 	{
2419 		struct buffer_head *bh;
2420 		meta_group_info[i]->bb_bitmap =
2421 			kmalloc(sb->s_blocksize, GFP_KERNEL);
2422 		BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2423 		bh = ext4_read_block_bitmap(sb, group);
2424 		BUG_ON(bh == NULL);
2425 		memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2426 			sb->s_blocksize);
2427 		put_bh(bh);
2428 	}
2429 #endif
2430 
2431 	return 0;
2432 
2433 exit_group_info:
2434 	/* If a meta_group_info table has been allocated, release it now */
2435 	if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2436 		kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2437 		sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL;
2438 	}
2439 exit_meta_group_info:
2440 	return -ENOMEM;
2441 } /* ext4_mb_add_groupinfo */
2442 
2443 static int ext4_mb_init_backend(struct super_block *sb)
2444 {
2445 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2446 	ext4_group_t i;
2447 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2448 	int err;
2449 	struct ext4_group_desc *desc;
2450 	struct kmem_cache *cachep;
2451 
2452 	err = ext4_mb_alloc_groupinfo(sb, ngroups);
2453 	if (err)
2454 		return err;
2455 
2456 	sbi->s_buddy_cache = new_inode(sb);
2457 	if (sbi->s_buddy_cache == NULL) {
2458 		ext4_msg(sb, KERN_ERR, "can't get new inode");
2459 		goto err_freesgi;
2460 	}
2461 	/* To avoid potentially colliding with an valid on-disk inode number,
2462 	 * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
2463 	 * not in the inode hash, so it should never be found by iget(), but
2464 	 * this will avoid confusion if it ever shows up during debugging. */
2465 	sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2466 	EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2467 	for (i = 0; i < ngroups; i++) {
2468 		desc = ext4_get_group_desc(sb, i, NULL);
2469 		if (desc == NULL) {
2470 			ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2471 			goto err_freebuddy;
2472 		}
2473 		if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2474 			goto err_freebuddy;
2475 	}
2476 
2477 	return 0;
2478 
2479 err_freebuddy:
2480 	cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2481 	while (i-- > 0)
2482 		kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2483 	i = sbi->s_group_info_size;
2484 	while (i-- > 0)
2485 		kfree(sbi->s_group_info[i]);
2486 	iput(sbi->s_buddy_cache);
2487 err_freesgi:
2488 	ext4_kvfree(sbi->s_group_info);
2489 	return -ENOMEM;
2490 }
2491 
2492 static void ext4_groupinfo_destroy_slabs(void)
2493 {
2494 	int i;
2495 
2496 	for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2497 		if (ext4_groupinfo_caches[i])
2498 			kmem_cache_destroy(ext4_groupinfo_caches[i]);
2499 		ext4_groupinfo_caches[i] = NULL;
2500 	}
2501 }
2502 
2503 static int ext4_groupinfo_create_slab(size_t size)
2504 {
2505 	static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2506 	int slab_size;
2507 	int blocksize_bits = order_base_2(size);
2508 	int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2509 	struct kmem_cache *cachep;
2510 
2511 	if (cache_index >= NR_GRPINFO_CACHES)
2512 		return -EINVAL;
2513 
2514 	if (unlikely(cache_index < 0))
2515 		cache_index = 0;
2516 
2517 	mutex_lock(&ext4_grpinfo_slab_create_mutex);
2518 	if (ext4_groupinfo_caches[cache_index]) {
2519 		mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2520 		return 0;	/* Already created */
2521 	}
2522 
2523 	slab_size = offsetof(struct ext4_group_info,
2524 				bb_counters[blocksize_bits + 2]);
2525 
2526 	cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2527 					slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2528 					NULL);
2529 
2530 	ext4_groupinfo_caches[cache_index] = cachep;
2531 
2532 	mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2533 	if (!cachep) {
2534 		printk(KERN_EMERG
2535 		       "EXT4-fs: no memory for groupinfo slab cache\n");
2536 		return -ENOMEM;
2537 	}
2538 
2539 	return 0;
2540 }
2541 
2542 int ext4_mb_init(struct super_block *sb)
2543 {
2544 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2545 	unsigned i, j;
2546 	unsigned offset;
2547 	unsigned max;
2548 	int ret;
2549 
2550 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2551 
2552 	sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2553 	if (sbi->s_mb_offsets == NULL) {
2554 		ret = -ENOMEM;
2555 		goto out;
2556 	}
2557 
2558 	i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2559 	sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2560 	if (sbi->s_mb_maxs == NULL) {
2561 		ret = -ENOMEM;
2562 		goto out;
2563 	}
2564 
2565 	ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2566 	if (ret < 0)
2567 		goto out;
2568 
2569 	/* order 0 is regular bitmap */
2570 	sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2571 	sbi->s_mb_offsets[0] = 0;
2572 
2573 	i = 1;
2574 	offset = 0;
2575 	max = sb->s_blocksize << 2;
2576 	do {
2577 		sbi->s_mb_offsets[i] = offset;
2578 		sbi->s_mb_maxs[i] = max;
2579 		offset += 1 << (sb->s_blocksize_bits - i);
2580 		max = max >> 1;
2581 		i++;
2582 	} while (i <= sb->s_blocksize_bits + 1);
2583 
2584 	spin_lock_init(&sbi->s_md_lock);
2585 	spin_lock_init(&sbi->s_bal_lock);
2586 
2587 	sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2588 	sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2589 	sbi->s_mb_stats = MB_DEFAULT_STATS;
2590 	sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2591 	sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2592 	/*
2593 	 * The default group preallocation is 512, which for 4k block
2594 	 * sizes translates to 2 megabytes.  However for bigalloc file
2595 	 * systems, this is probably too big (i.e, if the cluster size
2596 	 * is 1 megabyte, then group preallocation size becomes half a
2597 	 * gigabyte!).  As a default, we will keep a two megabyte
2598 	 * group pralloc size for cluster sizes up to 64k, and after
2599 	 * that, we will force a minimum group preallocation size of
2600 	 * 32 clusters.  This translates to 8 megs when the cluster
2601 	 * size is 256k, and 32 megs when the cluster size is 1 meg,
2602 	 * which seems reasonable as a default.
2603 	 */
2604 	sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2605 				       sbi->s_cluster_bits, 32);
2606 	/*
2607 	 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2608 	 * to the lowest multiple of s_stripe which is bigger than
2609 	 * the s_mb_group_prealloc as determined above. We want
2610 	 * the preallocation size to be an exact multiple of the
2611 	 * RAID stripe size so that preallocations don't fragment
2612 	 * the stripes.
2613 	 */
2614 	if (sbi->s_stripe > 1) {
2615 		sbi->s_mb_group_prealloc = roundup(
2616 			sbi->s_mb_group_prealloc, sbi->s_stripe);
2617 	}
2618 
2619 	sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2620 	if (sbi->s_locality_groups == NULL) {
2621 		ret = -ENOMEM;
2622 		goto out;
2623 	}
2624 	for_each_possible_cpu(i) {
2625 		struct ext4_locality_group *lg;
2626 		lg = per_cpu_ptr(sbi->s_locality_groups, i);
2627 		mutex_init(&lg->lg_mutex);
2628 		for (j = 0; j < PREALLOC_TB_SIZE; j++)
2629 			INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2630 		spin_lock_init(&lg->lg_prealloc_lock);
2631 	}
2632 
2633 	/* init file for buddy data */
2634 	ret = ext4_mb_init_backend(sb);
2635 	if (ret != 0)
2636 		goto out_free_locality_groups;
2637 
2638 	if (sbi->s_proc)
2639 		proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2640 				 &ext4_mb_seq_groups_fops, sb);
2641 
2642 	return 0;
2643 
2644 out_free_locality_groups:
2645 	free_percpu(sbi->s_locality_groups);
2646 	sbi->s_locality_groups = NULL;
2647 out:
2648 	kfree(sbi->s_mb_offsets);
2649 	sbi->s_mb_offsets = NULL;
2650 	kfree(sbi->s_mb_maxs);
2651 	sbi->s_mb_maxs = NULL;
2652 	return ret;
2653 }
2654 
2655 /* need to called with the ext4 group lock held */
2656 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2657 {
2658 	struct ext4_prealloc_space *pa;
2659 	struct list_head *cur, *tmp;
2660 	int count = 0;
2661 
2662 	list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2663 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2664 		list_del(&pa->pa_group_list);
2665 		count++;
2666 		kmem_cache_free(ext4_pspace_cachep, pa);
2667 	}
2668 	if (count)
2669 		mb_debug(1, "mballoc: %u PAs left\n", count);
2670 
2671 }
2672 
2673 int ext4_mb_release(struct super_block *sb)
2674 {
2675 	ext4_group_t ngroups = ext4_get_groups_count(sb);
2676 	ext4_group_t i;
2677 	int num_meta_group_infos;
2678 	struct ext4_group_info *grinfo;
2679 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2680 	struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2681 
2682 	if (sbi->s_proc)
2683 		remove_proc_entry("mb_groups", sbi->s_proc);
2684 
2685 	if (sbi->s_group_info) {
2686 		for (i = 0; i < ngroups; i++) {
2687 			grinfo = ext4_get_group_info(sb, i);
2688 #ifdef DOUBLE_CHECK
2689 			kfree(grinfo->bb_bitmap);
2690 #endif
2691 			ext4_lock_group(sb, i);
2692 			ext4_mb_cleanup_pa(grinfo);
2693 			ext4_unlock_group(sb, i);
2694 			kmem_cache_free(cachep, grinfo);
2695 		}
2696 		num_meta_group_infos = (ngroups +
2697 				EXT4_DESC_PER_BLOCK(sb) - 1) >>
2698 			EXT4_DESC_PER_BLOCK_BITS(sb);
2699 		for (i = 0; i < num_meta_group_infos; i++)
2700 			kfree(sbi->s_group_info[i]);
2701 		ext4_kvfree(sbi->s_group_info);
2702 	}
2703 	kfree(sbi->s_mb_offsets);
2704 	kfree(sbi->s_mb_maxs);
2705 	if (sbi->s_buddy_cache)
2706 		iput(sbi->s_buddy_cache);
2707 	if (sbi->s_mb_stats) {
2708 		ext4_msg(sb, KERN_INFO,
2709 		       "mballoc: %u blocks %u reqs (%u success)",
2710 				atomic_read(&sbi->s_bal_allocated),
2711 				atomic_read(&sbi->s_bal_reqs),
2712 				atomic_read(&sbi->s_bal_success));
2713 		ext4_msg(sb, KERN_INFO,
2714 		      "mballoc: %u extents scanned, %u goal hits, "
2715 				"%u 2^N hits, %u breaks, %u lost",
2716 				atomic_read(&sbi->s_bal_ex_scanned),
2717 				atomic_read(&sbi->s_bal_goals),
2718 				atomic_read(&sbi->s_bal_2orders),
2719 				atomic_read(&sbi->s_bal_breaks),
2720 				atomic_read(&sbi->s_mb_lost_chunks));
2721 		ext4_msg(sb, KERN_INFO,
2722 		       "mballoc: %lu generated and it took %Lu",
2723 				sbi->s_mb_buddies_generated,
2724 				sbi->s_mb_generation_time);
2725 		ext4_msg(sb, KERN_INFO,
2726 		       "mballoc: %u preallocated, %u discarded",
2727 				atomic_read(&sbi->s_mb_preallocated),
2728 				atomic_read(&sbi->s_mb_discarded));
2729 	}
2730 
2731 	free_percpu(sbi->s_locality_groups);
2732 
2733 	return 0;
2734 }
2735 
2736 static inline int ext4_issue_discard(struct super_block *sb,
2737 		ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2738 {
2739 	ext4_fsblk_t discard_block;
2740 
2741 	discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2742 			 ext4_group_first_block_no(sb, block_group));
2743 	count = EXT4_C2B(EXT4_SB(sb), count);
2744 	trace_ext4_discard_blocks(sb,
2745 			(unsigned long long) discard_block, count);
2746 	return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2747 }
2748 
2749 /*
2750  * This function is called by the jbd2 layer once the commit has finished,
2751  * so we know we can free the blocks that were released with that commit.
2752  */
2753 static void ext4_free_data_callback(struct super_block *sb,
2754 				    struct ext4_journal_cb_entry *jce,
2755 				    int rc)
2756 {
2757 	struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2758 	struct ext4_buddy e4b;
2759 	struct ext4_group_info *db;
2760 	int err, count = 0, count2 = 0;
2761 
2762 	mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2763 		 entry->efd_count, entry->efd_group, entry);
2764 
2765 	if (test_opt(sb, DISCARD)) {
2766 		err = ext4_issue_discard(sb, entry->efd_group,
2767 					 entry->efd_start_cluster,
2768 					 entry->efd_count);
2769 		if (err && err != -EOPNOTSUPP)
2770 			ext4_msg(sb, KERN_WARNING, "discard request in"
2771 				 " group:%d block:%d count:%d failed"
2772 				 " with %d", entry->efd_group,
2773 				 entry->efd_start_cluster,
2774 				 entry->efd_count, err);
2775 	}
2776 
2777 	err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2778 	/* we expect to find existing buddy because it's pinned */
2779 	BUG_ON(err != 0);
2780 
2781 
2782 	db = e4b.bd_info;
2783 	/* there are blocks to put in buddy to make them really free */
2784 	count += entry->efd_count;
2785 	count2++;
2786 	ext4_lock_group(sb, entry->efd_group);
2787 	/* Take it out of per group rb tree */
2788 	rb_erase(&entry->efd_node, &(db->bb_free_root));
2789 	mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2790 
2791 	/*
2792 	 * Clear the trimmed flag for the group so that the next
2793 	 * ext4_trim_fs can trim it.
2794 	 * If the volume is mounted with -o discard, online discard
2795 	 * is supported and the free blocks will be trimmed online.
2796 	 */
2797 	if (!test_opt(sb, DISCARD))
2798 		EXT4_MB_GRP_CLEAR_TRIMMED(db);
2799 
2800 	if (!db->bb_free_root.rb_node) {
2801 		/* No more items in the per group rb tree
2802 		 * balance refcounts from ext4_mb_free_metadata()
2803 		 */
2804 		page_cache_release(e4b.bd_buddy_page);
2805 		page_cache_release(e4b.bd_bitmap_page);
2806 	}
2807 	ext4_unlock_group(sb, entry->efd_group);
2808 	kmem_cache_free(ext4_free_data_cachep, entry);
2809 	ext4_mb_unload_buddy(&e4b);
2810 
2811 	mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2812 }
2813 
2814 int __init ext4_init_mballoc(void)
2815 {
2816 	ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2817 					SLAB_RECLAIM_ACCOUNT);
2818 	if (ext4_pspace_cachep == NULL)
2819 		return -ENOMEM;
2820 
2821 	ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2822 				    SLAB_RECLAIM_ACCOUNT);
2823 	if (ext4_ac_cachep == NULL) {
2824 		kmem_cache_destroy(ext4_pspace_cachep);
2825 		return -ENOMEM;
2826 	}
2827 
2828 	ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2829 					   SLAB_RECLAIM_ACCOUNT);
2830 	if (ext4_free_data_cachep == NULL) {
2831 		kmem_cache_destroy(ext4_pspace_cachep);
2832 		kmem_cache_destroy(ext4_ac_cachep);
2833 		return -ENOMEM;
2834 	}
2835 	return 0;
2836 }
2837 
2838 void ext4_exit_mballoc(void)
2839 {
2840 	/*
2841 	 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2842 	 * before destroying the slab cache.
2843 	 */
2844 	rcu_barrier();
2845 	kmem_cache_destroy(ext4_pspace_cachep);
2846 	kmem_cache_destroy(ext4_ac_cachep);
2847 	kmem_cache_destroy(ext4_free_data_cachep);
2848 	ext4_groupinfo_destroy_slabs();
2849 }
2850 
2851 
2852 /*
2853  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2854  * Returns 0 if success or error code
2855  */
2856 static noinline_for_stack int
2857 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2858 				handle_t *handle, unsigned int reserv_clstrs)
2859 {
2860 	struct buffer_head *bitmap_bh = NULL;
2861 	struct ext4_group_desc *gdp;
2862 	struct buffer_head *gdp_bh;
2863 	struct ext4_sb_info *sbi;
2864 	struct super_block *sb;
2865 	ext4_fsblk_t block;
2866 	int err, len;
2867 
2868 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2869 	BUG_ON(ac->ac_b_ex.fe_len <= 0);
2870 
2871 	sb = ac->ac_sb;
2872 	sbi = EXT4_SB(sb);
2873 
2874 	err = -EIO;
2875 	bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2876 	if (!bitmap_bh)
2877 		goto out_err;
2878 
2879 	BUFFER_TRACE(bitmap_bh, "getting write access");
2880 	err = ext4_journal_get_write_access(handle, bitmap_bh);
2881 	if (err)
2882 		goto out_err;
2883 
2884 	err = -EIO;
2885 	gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2886 	if (!gdp)
2887 		goto out_err;
2888 
2889 	ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2890 			ext4_free_group_clusters(sb, gdp));
2891 
2892 	BUFFER_TRACE(gdp_bh, "get_write_access");
2893 	err = ext4_journal_get_write_access(handle, gdp_bh);
2894 	if (err)
2895 		goto out_err;
2896 
2897 	block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2898 
2899 	len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2900 	if (!ext4_data_block_valid(sbi, block, len)) {
2901 		ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2902 			   "fs metadata", block, block+len);
2903 		/* File system mounted not to panic on error
2904 		 * Fix the bitmap and repeat the block allocation
2905 		 * We leak some of the blocks here.
2906 		 */
2907 		ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2908 		ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2909 			      ac->ac_b_ex.fe_len);
2910 		ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2911 		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2912 		if (!err)
2913 			err = -EAGAIN;
2914 		goto out_err;
2915 	}
2916 
2917 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2918 #ifdef AGGRESSIVE_CHECK
2919 	{
2920 		int i;
2921 		for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2922 			BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2923 						bitmap_bh->b_data));
2924 		}
2925 	}
2926 #endif
2927 	ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2928 		      ac->ac_b_ex.fe_len);
2929 	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2930 		gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2931 		ext4_free_group_clusters_set(sb, gdp,
2932 					     ext4_free_clusters_after_init(sb,
2933 						ac->ac_b_ex.fe_group, gdp));
2934 	}
2935 	len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
2936 	ext4_free_group_clusters_set(sb, gdp, len);
2937 	ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
2938 	ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
2939 
2940 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2941 	percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
2942 	/*
2943 	 * Now reduce the dirty block count also. Should not go negative
2944 	 */
2945 	if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2946 		/* release all the reserved blocks if non delalloc */
2947 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
2948 				   reserv_clstrs);
2949 
2950 	if (sbi->s_log_groups_per_flex) {
2951 		ext4_group_t flex_group = ext4_flex_group(sbi,
2952 							  ac->ac_b_ex.fe_group);
2953 		atomic64_sub(ac->ac_b_ex.fe_len,
2954 			     &sbi->s_flex_groups[flex_group].free_clusters);
2955 	}
2956 
2957 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2958 	if (err)
2959 		goto out_err;
2960 	err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2961 
2962 out_err:
2963 	brelse(bitmap_bh);
2964 	return err;
2965 }
2966 
2967 /*
2968  * here we normalize request for locality group
2969  * Group request are normalized to s_mb_group_prealloc, which goes to
2970  * s_strip if we set the same via mount option.
2971  * s_mb_group_prealloc can be configured via
2972  * /sys/fs/ext4/<partition>/mb_group_prealloc
2973  *
2974  * XXX: should we try to preallocate more than the group has now?
2975  */
2976 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2977 {
2978 	struct super_block *sb = ac->ac_sb;
2979 	struct ext4_locality_group *lg = ac->ac_lg;
2980 
2981 	BUG_ON(lg == NULL);
2982 	ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2983 	mb_debug(1, "#%u: goal %u blocks for locality group\n",
2984 		current->pid, ac->ac_g_ex.fe_len);
2985 }
2986 
2987 /*
2988  * Normalization means making request better in terms of
2989  * size and alignment
2990  */
2991 static noinline_for_stack void
2992 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2993 				struct ext4_allocation_request *ar)
2994 {
2995 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2996 	int bsbits, max;
2997 	ext4_lblk_t end;
2998 	loff_t size, start_off;
2999 	loff_t orig_size __maybe_unused;
3000 	ext4_lblk_t start;
3001 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3002 	struct ext4_prealloc_space *pa;
3003 
3004 	/* do normalize only data requests, metadata requests
3005 	   do not need preallocation */
3006 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3007 		return;
3008 
3009 	/* sometime caller may want exact blocks */
3010 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3011 		return;
3012 
3013 	/* caller may indicate that preallocation isn't
3014 	 * required (it's a tail, for example) */
3015 	if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3016 		return;
3017 
3018 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3019 		ext4_mb_normalize_group_request(ac);
3020 		return ;
3021 	}
3022 
3023 	bsbits = ac->ac_sb->s_blocksize_bits;
3024 
3025 	/* first, let's learn actual file size
3026 	 * given current request is allocated */
3027 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3028 	size = size << bsbits;
3029 	if (size < i_size_read(ac->ac_inode))
3030 		size = i_size_read(ac->ac_inode);
3031 	orig_size = size;
3032 
3033 	/* max size of free chunks */
3034 	max = 2 << bsbits;
3035 
3036 #define NRL_CHECK_SIZE(req, size, max, chunk_size)	\
3037 		(req <= (size) || max <= (chunk_size))
3038 
3039 	/* first, try to predict filesize */
3040 	/* XXX: should this table be tunable? */
3041 	start_off = 0;
3042 	if (size <= 16 * 1024) {
3043 		size = 16 * 1024;
3044 	} else if (size <= 32 * 1024) {
3045 		size = 32 * 1024;
3046 	} else if (size <= 64 * 1024) {
3047 		size = 64 * 1024;
3048 	} else if (size <= 128 * 1024) {
3049 		size = 128 * 1024;
3050 	} else if (size <= 256 * 1024) {
3051 		size = 256 * 1024;
3052 	} else if (size <= 512 * 1024) {
3053 		size = 512 * 1024;
3054 	} else if (size <= 1024 * 1024) {
3055 		size = 1024 * 1024;
3056 	} else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3057 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3058 						(21 - bsbits)) << 21;
3059 		size = 2 * 1024 * 1024;
3060 	} else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3061 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3062 							(22 - bsbits)) << 22;
3063 		size = 4 * 1024 * 1024;
3064 	} else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3065 					(8<<20)>>bsbits, max, 8 * 1024)) {
3066 		start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3067 							(23 - bsbits)) << 23;
3068 		size = 8 * 1024 * 1024;
3069 	} else {
3070 		start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
3071 		size	  = ac->ac_o_ex.fe_len << bsbits;
3072 	}
3073 	size = size >> bsbits;
3074 	start = start_off >> bsbits;
3075 
3076 	/* don't cover already allocated blocks in selected range */
3077 	if (ar->pleft && start <= ar->lleft) {
3078 		size -= ar->lleft + 1 - start;
3079 		start = ar->lleft + 1;
3080 	}
3081 	if (ar->pright && start + size - 1 >= ar->lright)
3082 		size -= start + size - ar->lright;
3083 
3084 	end = start + size;
3085 
3086 	/* check we don't cross already preallocated blocks */
3087 	rcu_read_lock();
3088 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3089 		ext4_lblk_t pa_end;
3090 
3091 		if (pa->pa_deleted)
3092 			continue;
3093 		spin_lock(&pa->pa_lock);
3094 		if (pa->pa_deleted) {
3095 			spin_unlock(&pa->pa_lock);
3096 			continue;
3097 		}
3098 
3099 		pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3100 						  pa->pa_len);
3101 
3102 		/* PA must not overlap original request */
3103 		BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3104 			ac->ac_o_ex.fe_logical < pa->pa_lstart));
3105 
3106 		/* skip PAs this normalized request doesn't overlap with */
3107 		if (pa->pa_lstart >= end || pa_end <= start) {
3108 			spin_unlock(&pa->pa_lock);
3109 			continue;
3110 		}
3111 		BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3112 
3113 		/* adjust start or end to be adjacent to this pa */
3114 		if (pa_end <= ac->ac_o_ex.fe_logical) {
3115 			BUG_ON(pa_end < start);
3116 			start = pa_end;
3117 		} else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3118 			BUG_ON(pa->pa_lstart > end);
3119 			end = pa->pa_lstart;
3120 		}
3121 		spin_unlock(&pa->pa_lock);
3122 	}
3123 	rcu_read_unlock();
3124 	size = end - start;
3125 
3126 	/* XXX: extra loop to check we really don't overlap preallocations */
3127 	rcu_read_lock();
3128 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3129 		ext4_lblk_t pa_end;
3130 
3131 		spin_lock(&pa->pa_lock);
3132 		if (pa->pa_deleted == 0) {
3133 			pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3134 							  pa->pa_len);
3135 			BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3136 		}
3137 		spin_unlock(&pa->pa_lock);
3138 	}
3139 	rcu_read_unlock();
3140 
3141 	if (start + size <= ac->ac_o_ex.fe_logical &&
3142 			start > ac->ac_o_ex.fe_logical) {
3143 		ext4_msg(ac->ac_sb, KERN_ERR,
3144 			 "start %lu, size %lu, fe_logical %lu",
3145 			 (unsigned long) start, (unsigned long) size,
3146 			 (unsigned long) ac->ac_o_ex.fe_logical);
3147 	}
3148 	BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
3149 			start > ac->ac_o_ex.fe_logical);
3150 	BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3151 
3152 	/* now prepare goal request */
3153 
3154 	/* XXX: is it better to align blocks WRT to logical
3155 	 * placement or satisfy big request as is */
3156 	ac->ac_g_ex.fe_logical = start;
3157 	ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3158 
3159 	/* define goal start in order to merge */
3160 	if (ar->pright && (ar->lright == (start + size))) {
3161 		/* merge to the right */
3162 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3163 						&ac->ac_f_ex.fe_group,
3164 						&ac->ac_f_ex.fe_start);
3165 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3166 	}
3167 	if (ar->pleft && (ar->lleft + 1 == start)) {
3168 		/* merge to the left */
3169 		ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3170 						&ac->ac_f_ex.fe_group,
3171 						&ac->ac_f_ex.fe_start);
3172 		ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3173 	}
3174 
3175 	mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3176 		(unsigned) orig_size, (unsigned) start);
3177 }
3178 
3179 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3180 {
3181 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3182 
3183 	if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3184 		atomic_inc(&sbi->s_bal_reqs);
3185 		atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3186 		if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3187 			atomic_inc(&sbi->s_bal_success);
3188 		atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3189 		if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3190 				ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3191 			atomic_inc(&sbi->s_bal_goals);
3192 		if (ac->ac_found > sbi->s_mb_max_to_scan)
3193 			atomic_inc(&sbi->s_bal_breaks);
3194 	}
3195 
3196 	if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3197 		trace_ext4_mballoc_alloc(ac);
3198 	else
3199 		trace_ext4_mballoc_prealloc(ac);
3200 }
3201 
3202 /*
3203  * Called on failure; free up any blocks from the inode PA for this
3204  * context.  We don't need this for MB_GROUP_PA because we only change
3205  * pa_free in ext4_mb_release_context(), but on failure, we've already
3206  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3207  */
3208 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3209 {
3210 	struct ext4_prealloc_space *pa = ac->ac_pa;
3211 
3212 	if (pa && pa->pa_type == MB_INODE_PA)
3213 		pa->pa_free += ac->ac_b_ex.fe_len;
3214 }
3215 
3216 /*
3217  * use blocks preallocated to inode
3218  */
3219 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3220 				struct ext4_prealloc_space *pa)
3221 {
3222 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3223 	ext4_fsblk_t start;
3224 	ext4_fsblk_t end;
3225 	int len;
3226 
3227 	/* found preallocated blocks, use them */
3228 	start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3229 	end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3230 		  start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3231 	len = EXT4_NUM_B2C(sbi, end - start);
3232 	ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3233 					&ac->ac_b_ex.fe_start);
3234 	ac->ac_b_ex.fe_len = len;
3235 	ac->ac_status = AC_STATUS_FOUND;
3236 	ac->ac_pa = pa;
3237 
3238 	BUG_ON(start < pa->pa_pstart);
3239 	BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3240 	BUG_ON(pa->pa_free < len);
3241 	pa->pa_free -= len;
3242 
3243 	mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3244 }
3245 
3246 /*
3247  * use blocks preallocated to locality group
3248  */
3249 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3250 				struct ext4_prealloc_space *pa)
3251 {
3252 	unsigned int len = ac->ac_o_ex.fe_len;
3253 
3254 	ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3255 					&ac->ac_b_ex.fe_group,
3256 					&ac->ac_b_ex.fe_start);
3257 	ac->ac_b_ex.fe_len = len;
3258 	ac->ac_status = AC_STATUS_FOUND;
3259 	ac->ac_pa = pa;
3260 
3261 	/* we don't correct pa_pstart or pa_plen here to avoid
3262 	 * possible race when the group is being loaded concurrently
3263 	 * instead we correct pa later, after blocks are marked
3264 	 * in on-disk bitmap -- see ext4_mb_release_context()
3265 	 * Other CPUs are prevented from allocating from this pa by lg_mutex
3266 	 */
3267 	mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3268 }
3269 
3270 /*
3271  * Return the prealloc space that have minimal distance
3272  * from the goal block. @cpa is the prealloc
3273  * space that is having currently known minimal distance
3274  * from the goal block.
3275  */
3276 static struct ext4_prealloc_space *
3277 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3278 			struct ext4_prealloc_space *pa,
3279 			struct ext4_prealloc_space *cpa)
3280 {
3281 	ext4_fsblk_t cur_distance, new_distance;
3282 
3283 	if (cpa == NULL) {
3284 		atomic_inc(&pa->pa_count);
3285 		return pa;
3286 	}
3287 	cur_distance = abs(goal_block - cpa->pa_pstart);
3288 	new_distance = abs(goal_block - pa->pa_pstart);
3289 
3290 	if (cur_distance <= new_distance)
3291 		return cpa;
3292 
3293 	/* drop the previous reference */
3294 	atomic_dec(&cpa->pa_count);
3295 	atomic_inc(&pa->pa_count);
3296 	return pa;
3297 }
3298 
3299 /*
3300  * search goal blocks in preallocated space
3301  */
3302 static noinline_for_stack int
3303 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3304 {
3305 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3306 	int order, i;
3307 	struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3308 	struct ext4_locality_group *lg;
3309 	struct ext4_prealloc_space *pa, *cpa = NULL;
3310 	ext4_fsblk_t goal_block;
3311 
3312 	/* only data can be preallocated */
3313 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3314 		return 0;
3315 
3316 	/* first, try per-file preallocation */
3317 	rcu_read_lock();
3318 	list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3319 
3320 		/* all fields in this condition don't change,
3321 		 * so we can skip locking for them */
3322 		if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3323 		    ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3324 					       EXT4_C2B(sbi, pa->pa_len)))
3325 			continue;
3326 
3327 		/* non-extent files can't have physical blocks past 2^32 */
3328 		if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3329 		    (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3330 		     EXT4_MAX_BLOCK_FILE_PHYS))
3331 			continue;
3332 
3333 		/* found preallocated blocks, use them */
3334 		spin_lock(&pa->pa_lock);
3335 		if (pa->pa_deleted == 0 && pa->pa_free) {
3336 			atomic_inc(&pa->pa_count);
3337 			ext4_mb_use_inode_pa(ac, pa);
3338 			spin_unlock(&pa->pa_lock);
3339 			ac->ac_criteria = 10;
3340 			rcu_read_unlock();
3341 			return 1;
3342 		}
3343 		spin_unlock(&pa->pa_lock);
3344 	}
3345 	rcu_read_unlock();
3346 
3347 	/* can we use group allocation? */
3348 	if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3349 		return 0;
3350 
3351 	/* inode may have no locality group for some reason */
3352 	lg = ac->ac_lg;
3353 	if (lg == NULL)
3354 		return 0;
3355 	order  = fls(ac->ac_o_ex.fe_len) - 1;
3356 	if (order > PREALLOC_TB_SIZE - 1)
3357 		/* The max size of hash table is PREALLOC_TB_SIZE */
3358 		order = PREALLOC_TB_SIZE - 1;
3359 
3360 	goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3361 	/*
3362 	 * search for the prealloc space that is having
3363 	 * minimal distance from the goal block.
3364 	 */
3365 	for (i = order; i < PREALLOC_TB_SIZE; i++) {
3366 		rcu_read_lock();
3367 		list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3368 					pa_inode_list) {
3369 			spin_lock(&pa->pa_lock);
3370 			if (pa->pa_deleted == 0 &&
3371 					pa->pa_free >= ac->ac_o_ex.fe_len) {
3372 
3373 				cpa = ext4_mb_check_group_pa(goal_block,
3374 								pa, cpa);
3375 			}
3376 			spin_unlock(&pa->pa_lock);
3377 		}
3378 		rcu_read_unlock();
3379 	}
3380 	if (cpa) {
3381 		ext4_mb_use_group_pa(ac, cpa);
3382 		ac->ac_criteria = 20;
3383 		return 1;
3384 	}
3385 	return 0;
3386 }
3387 
3388 /*
3389  * the function goes through all block freed in the group
3390  * but not yet committed and marks them used in in-core bitmap.
3391  * buddy must be generated from this bitmap
3392  * Need to be called with the ext4 group lock held
3393  */
3394 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3395 						ext4_group_t group)
3396 {
3397 	struct rb_node *n;
3398 	struct ext4_group_info *grp;
3399 	struct ext4_free_data *entry;
3400 
3401 	grp = ext4_get_group_info(sb, group);
3402 	n = rb_first(&(grp->bb_free_root));
3403 
3404 	while (n) {
3405 		entry = rb_entry(n, struct ext4_free_data, efd_node);
3406 		ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3407 		n = rb_next(n);
3408 	}
3409 	return;
3410 }
3411 
3412 /*
3413  * the function goes through all preallocation in this group and marks them
3414  * used in in-core bitmap. buddy must be generated from this bitmap
3415  * Need to be called with ext4 group lock held
3416  */
3417 static noinline_for_stack
3418 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3419 					ext4_group_t group)
3420 {
3421 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3422 	struct ext4_prealloc_space *pa;
3423 	struct list_head *cur;
3424 	ext4_group_t groupnr;
3425 	ext4_grpblk_t start;
3426 	int preallocated = 0;
3427 	int len;
3428 
3429 	/* all form of preallocation discards first load group,
3430 	 * so the only competing code is preallocation use.
3431 	 * we don't need any locking here
3432 	 * notice we do NOT ignore preallocations with pa_deleted
3433 	 * otherwise we could leave used blocks available for
3434 	 * allocation in buddy when concurrent ext4_mb_put_pa()
3435 	 * is dropping preallocation
3436 	 */
3437 	list_for_each(cur, &grp->bb_prealloc_list) {
3438 		pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3439 		spin_lock(&pa->pa_lock);
3440 		ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3441 					     &groupnr, &start);
3442 		len = pa->pa_len;
3443 		spin_unlock(&pa->pa_lock);
3444 		if (unlikely(len == 0))
3445 			continue;
3446 		BUG_ON(groupnr != group);
3447 		ext4_set_bits(bitmap, start, len);
3448 		preallocated += len;
3449 	}
3450 	mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3451 }
3452 
3453 static void ext4_mb_pa_callback(struct rcu_head *head)
3454 {
3455 	struct ext4_prealloc_space *pa;
3456 	pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3457 
3458 	BUG_ON(atomic_read(&pa->pa_count));
3459 	BUG_ON(pa->pa_deleted == 0);
3460 	kmem_cache_free(ext4_pspace_cachep, pa);
3461 }
3462 
3463 /*
3464  * drops a reference to preallocated space descriptor
3465  * if this was the last reference and the space is consumed
3466  */
3467 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3468 			struct super_block *sb, struct ext4_prealloc_space *pa)
3469 {
3470 	ext4_group_t grp;
3471 	ext4_fsblk_t grp_blk;
3472 
3473 	/* in this short window concurrent discard can set pa_deleted */
3474 	spin_lock(&pa->pa_lock);
3475 	if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3476 		spin_unlock(&pa->pa_lock);
3477 		return;
3478 	}
3479 
3480 	if (pa->pa_deleted == 1) {
3481 		spin_unlock(&pa->pa_lock);
3482 		return;
3483 	}
3484 
3485 	pa->pa_deleted = 1;
3486 	spin_unlock(&pa->pa_lock);
3487 
3488 	grp_blk = pa->pa_pstart;
3489 	/*
3490 	 * If doing group-based preallocation, pa_pstart may be in the
3491 	 * next group when pa is used up
3492 	 */
3493 	if (pa->pa_type == MB_GROUP_PA)
3494 		grp_blk--;
3495 
3496 	grp = ext4_get_group_number(sb, grp_blk);
3497 
3498 	/*
3499 	 * possible race:
3500 	 *
3501 	 *  P1 (buddy init)			P2 (regular allocation)
3502 	 *					find block B in PA
3503 	 *  copy on-disk bitmap to buddy
3504 	 *  					mark B in on-disk bitmap
3505 	 *					drop PA from group
3506 	 *  mark all PAs in buddy
3507 	 *
3508 	 * thus, P1 initializes buddy with B available. to prevent this
3509 	 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3510 	 * against that pair
3511 	 */
3512 	ext4_lock_group(sb, grp);
3513 	list_del(&pa->pa_group_list);
3514 	ext4_unlock_group(sb, grp);
3515 
3516 	spin_lock(pa->pa_obj_lock);
3517 	list_del_rcu(&pa->pa_inode_list);
3518 	spin_unlock(pa->pa_obj_lock);
3519 
3520 	call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3521 }
3522 
3523 /*
3524  * creates new preallocated space for given inode
3525  */
3526 static noinline_for_stack int
3527 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3528 {
3529 	struct super_block *sb = ac->ac_sb;
3530 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3531 	struct ext4_prealloc_space *pa;
3532 	struct ext4_group_info *grp;
3533 	struct ext4_inode_info *ei;
3534 
3535 	/* preallocate only when found space is larger then requested */
3536 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3537 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3538 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3539 
3540 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3541 	if (pa == NULL)
3542 		return -ENOMEM;
3543 
3544 	if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3545 		int winl;
3546 		int wins;
3547 		int win;
3548 		int offs;
3549 
3550 		/* we can't allocate as much as normalizer wants.
3551 		 * so, found space must get proper lstart
3552 		 * to cover original request */
3553 		BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3554 		BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3555 
3556 		/* we're limited by original request in that
3557 		 * logical block must be covered any way
3558 		 * winl is window we can move our chunk within */
3559 		winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3560 
3561 		/* also, we should cover whole original request */
3562 		wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3563 
3564 		/* the smallest one defines real window */
3565 		win = min(winl, wins);
3566 
3567 		offs = ac->ac_o_ex.fe_logical %
3568 			EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3569 		if (offs && offs < win)
3570 			win = offs;
3571 
3572 		ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3573 			EXT4_NUM_B2C(sbi, win);
3574 		BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3575 		BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3576 	}
3577 
3578 	/* preallocation can change ac_b_ex, thus we store actually
3579 	 * allocated blocks for history */
3580 	ac->ac_f_ex = ac->ac_b_ex;
3581 
3582 	pa->pa_lstart = ac->ac_b_ex.fe_logical;
3583 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3584 	pa->pa_len = ac->ac_b_ex.fe_len;
3585 	pa->pa_free = pa->pa_len;
3586 	atomic_set(&pa->pa_count, 1);
3587 	spin_lock_init(&pa->pa_lock);
3588 	INIT_LIST_HEAD(&pa->pa_inode_list);
3589 	INIT_LIST_HEAD(&pa->pa_group_list);
3590 	pa->pa_deleted = 0;
3591 	pa->pa_type = MB_INODE_PA;
3592 
3593 	mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3594 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3595 	trace_ext4_mb_new_inode_pa(ac, pa);
3596 
3597 	ext4_mb_use_inode_pa(ac, pa);
3598 	atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3599 
3600 	ei = EXT4_I(ac->ac_inode);
3601 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3602 
3603 	pa->pa_obj_lock = &ei->i_prealloc_lock;
3604 	pa->pa_inode = ac->ac_inode;
3605 
3606 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3607 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3608 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3609 
3610 	spin_lock(pa->pa_obj_lock);
3611 	list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3612 	spin_unlock(pa->pa_obj_lock);
3613 
3614 	return 0;
3615 }
3616 
3617 /*
3618  * creates new preallocated space for locality group inodes belongs to
3619  */
3620 static noinline_for_stack int
3621 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3622 {
3623 	struct super_block *sb = ac->ac_sb;
3624 	struct ext4_locality_group *lg;
3625 	struct ext4_prealloc_space *pa;
3626 	struct ext4_group_info *grp;
3627 
3628 	/* preallocate only when found space is larger then requested */
3629 	BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3630 	BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3631 	BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3632 
3633 	BUG_ON(ext4_pspace_cachep == NULL);
3634 	pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3635 	if (pa == NULL)
3636 		return -ENOMEM;
3637 
3638 	/* preallocation can change ac_b_ex, thus we store actually
3639 	 * allocated blocks for history */
3640 	ac->ac_f_ex = ac->ac_b_ex;
3641 
3642 	pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3643 	pa->pa_lstart = pa->pa_pstart;
3644 	pa->pa_len = ac->ac_b_ex.fe_len;
3645 	pa->pa_free = pa->pa_len;
3646 	atomic_set(&pa->pa_count, 1);
3647 	spin_lock_init(&pa->pa_lock);
3648 	INIT_LIST_HEAD(&pa->pa_inode_list);
3649 	INIT_LIST_HEAD(&pa->pa_group_list);
3650 	pa->pa_deleted = 0;
3651 	pa->pa_type = MB_GROUP_PA;
3652 
3653 	mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3654 			pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3655 	trace_ext4_mb_new_group_pa(ac, pa);
3656 
3657 	ext4_mb_use_group_pa(ac, pa);
3658 	atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3659 
3660 	grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3661 	lg = ac->ac_lg;
3662 	BUG_ON(lg == NULL);
3663 
3664 	pa->pa_obj_lock = &lg->lg_prealloc_lock;
3665 	pa->pa_inode = NULL;
3666 
3667 	ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3668 	list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3669 	ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3670 
3671 	/*
3672 	 * We will later add the new pa to the right bucket
3673 	 * after updating the pa_free in ext4_mb_release_context
3674 	 */
3675 	return 0;
3676 }
3677 
3678 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3679 {
3680 	int err;
3681 
3682 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3683 		err = ext4_mb_new_group_pa(ac);
3684 	else
3685 		err = ext4_mb_new_inode_pa(ac);
3686 	return err;
3687 }
3688 
3689 /*
3690  * finds all unused blocks in on-disk bitmap, frees them in
3691  * in-core bitmap and buddy.
3692  * @pa must be unlinked from inode and group lists, so that
3693  * nobody else can find/use it.
3694  * the caller MUST hold group/inode locks.
3695  * TODO: optimize the case when there are no in-core structures yet
3696  */
3697 static noinline_for_stack int
3698 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3699 			struct ext4_prealloc_space *pa)
3700 {
3701 	struct super_block *sb = e4b->bd_sb;
3702 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3703 	unsigned int end;
3704 	unsigned int next;
3705 	ext4_group_t group;
3706 	ext4_grpblk_t bit;
3707 	unsigned long long grp_blk_start;
3708 	int err = 0;
3709 	int free = 0;
3710 
3711 	BUG_ON(pa->pa_deleted == 0);
3712 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3713 	grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3714 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3715 	end = bit + pa->pa_len;
3716 
3717 	while (bit < end) {
3718 		bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3719 		if (bit >= end)
3720 			break;
3721 		next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3722 		mb_debug(1, "    free preallocated %u/%u in group %u\n",
3723 			 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3724 			 (unsigned) next - bit, (unsigned) group);
3725 		free += next - bit;
3726 
3727 		trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3728 		trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3729 						    EXT4_C2B(sbi, bit)),
3730 					       next - bit);
3731 		mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3732 		bit = next + 1;
3733 	}
3734 	if (free != pa->pa_free) {
3735 		ext4_msg(e4b->bd_sb, KERN_CRIT,
3736 			 "pa %p: logic %lu, phys. %lu, len %lu",
3737 			 pa, (unsigned long) pa->pa_lstart,
3738 			 (unsigned long) pa->pa_pstart,
3739 			 (unsigned long) pa->pa_len);
3740 		ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3741 					free, pa->pa_free);
3742 		/*
3743 		 * pa is already deleted so we use the value obtained
3744 		 * from the bitmap and continue.
3745 		 */
3746 	}
3747 	atomic_add(free, &sbi->s_mb_discarded);
3748 
3749 	return err;
3750 }
3751 
3752 static noinline_for_stack int
3753 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3754 				struct ext4_prealloc_space *pa)
3755 {
3756 	struct super_block *sb = e4b->bd_sb;
3757 	ext4_group_t group;
3758 	ext4_grpblk_t bit;
3759 
3760 	trace_ext4_mb_release_group_pa(sb, pa);
3761 	BUG_ON(pa->pa_deleted == 0);
3762 	ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3763 	BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3764 	mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3765 	atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3766 	trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3767 
3768 	return 0;
3769 }
3770 
3771 /*
3772  * releases all preallocations in given group
3773  *
3774  * first, we need to decide discard policy:
3775  * - when do we discard
3776  *   1) ENOSPC
3777  * - how many do we discard
3778  *   1) how many requested
3779  */
3780 static noinline_for_stack int
3781 ext4_mb_discard_group_preallocations(struct super_block *sb,
3782 					ext4_group_t group, int needed)
3783 {
3784 	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3785 	struct buffer_head *bitmap_bh = NULL;
3786 	struct ext4_prealloc_space *pa, *tmp;
3787 	struct list_head list;
3788 	struct ext4_buddy e4b;
3789 	int err;
3790 	int busy = 0;
3791 	int free = 0;
3792 
3793 	mb_debug(1, "discard preallocation for group %u\n", group);
3794 
3795 	if (list_empty(&grp->bb_prealloc_list))
3796 		return 0;
3797 
3798 	bitmap_bh = ext4_read_block_bitmap(sb, group);
3799 	if (bitmap_bh == NULL) {
3800 		ext4_error(sb, "Error reading block bitmap for %u", group);
3801 		return 0;
3802 	}
3803 
3804 	err = ext4_mb_load_buddy(sb, group, &e4b);
3805 	if (err) {
3806 		ext4_error(sb, "Error loading buddy information for %u", group);
3807 		put_bh(bitmap_bh);
3808 		return 0;
3809 	}
3810 
3811 	if (needed == 0)
3812 		needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3813 
3814 	INIT_LIST_HEAD(&list);
3815 repeat:
3816 	ext4_lock_group(sb, group);
3817 	list_for_each_entry_safe(pa, tmp,
3818 				&grp->bb_prealloc_list, pa_group_list) {
3819 		spin_lock(&pa->pa_lock);
3820 		if (atomic_read(&pa->pa_count)) {
3821 			spin_unlock(&pa->pa_lock);
3822 			busy = 1;
3823 			continue;
3824 		}
3825 		if (pa->pa_deleted) {
3826 			spin_unlock(&pa->pa_lock);
3827 			continue;
3828 		}
3829 
3830 		/* seems this one can be freed ... */
3831 		pa->pa_deleted = 1;
3832 
3833 		/* we can trust pa_free ... */
3834 		free += pa->pa_free;
3835 
3836 		spin_unlock(&pa->pa_lock);
3837 
3838 		list_del(&pa->pa_group_list);
3839 		list_add(&pa->u.pa_tmp_list, &list);
3840 	}
3841 
3842 	/* if we still need more blocks and some PAs were used, try again */
3843 	if (free < needed && busy) {
3844 		busy = 0;
3845 		ext4_unlock_group(sb, group);
3846 		cond_resched();
3847 		goto repeat;
3848 	}
3849 
3850 	/* found anything to free? */
3851 	if (list_empty(&list)) {
3852 		BUG_ON(free != 0);
3853 		goto out;
3854 	}
3855 
3856 	/* now free all selected PAs */
3857 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3858 
3859 		/* remove from object (inode or locality group) */
3860 		spin_lock(pa->pa_obj_lock);
3861 		list_del_rcu(&pa->pa_inode_list);
3862 		spin_unlock(pa->pa_obj_lock);
3863 
3864 		if (pa->pa_type == MB_GROUP_PA)
3865 			ext4_mb_release_group_pa(&e4b, pa);
3866 		else
3867 			ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3868 
3869 		list_del(&pa->u.pa_tmp_list);
3870 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3871 	}
3872 
3873 out:
3874 	ext4_unlock_group(sb, group);
3875 	ext4_mb_unload_buddy(&e4b);
3876 	put_bh(bitmap_bh);
3877 	return free;
3878 }
3879 
3880 /*
3881  * releases all non-used preallocated blocks for given inode
3882  *
3883  * It's important to discard preallocations under i_data_sem
3884  * We don't want another block to be served from the prealloc
3885  * space when we are discarding the inode prealloc space.
3886  *
3887  * FIXME!! Make sure it is valid at all the call sites
3888  */
3889 void ext4_discard_preallocations(struct inode *inode)
3890 {
3891 	struct ext4_inode_info *ei = EXT4_I(inode);
3892 	struct super_block *sb = inode->i_sb;
3893 	struct buffer_head *bitmap_bh = NULL;
3894 	struct ext4_prealloc_space *pa, *tmp;
3895 	ext4_group_t group = 0;
3896 	struct list_head list;
3897 	struct ext4_buddy e4b;
3898 	int err;
3899 
3900 	if (!S_ISREG(inode->i_mode)) {
3901 		/*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3902 		return;
3903 	}
3904 
3905 	mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3906 	trace_ext4_discard_preallocations(inode);
3907 
3908 	INIT_LIST_HEAD(&list);
3909 
3910 repeat:
3911 	/* first, collect all pa's in the inode */
3912 	spin_lock(&ei->i_prealloc_lock);
3913 	while (!list_empty(&ei->i_prealloc_list)) {
3914 		pa = list_entry(ei->i_prealloc_list.next,
3915 				struct ext4_prealloc_space, pa_inode_list);
3916 		BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3917 		spin_lock(&pa->pa_lock);
3918 		if (atomic_read(&pa->pa_count)) {
3919 			/* this shouldn't happen often - nobody should
3920 			 * use preallocation while we're discarding it */
3921 			spin_unlock(&pa->pa_lock);
3922 			spin_unlock(&ei->i_prealloc_lock);
3923 			ext4_msg(sb, KERN_ERR,
3924 				 "uh-oh! used pa while discarding");
3925 			WARN_ON(1);
3926 			schedule_timeout_uninterruptible(HZ);
3927 			goto repeat;
3928 
3929 		}
3930 		if (pa->pa_deleted == 0) {
3931 			pa->pa_deleted = 1;
3932 			spin_unlock(&pa->pa_lock);
3933 			list_del_rcu(&pa->pa_inode_list);
3934 			list_add(&pa->u.pa_tmp_list, &list);
3935 			continue;
3936 		}
3937 
3938 		/* someone is deleting pa right now */
3939 		spin_unlock(&pa->pa_lock);
3940 		spin_unlock(&ei->i_prealloc_lock);
3941 
3942 		/* we have to wait here because pa_deleted
3943 		 * doesn't mean pa is already unlinked from
3944 		 * the list. as we might be called from
3945 		 * ->clear_inode() the inode will get freed
3946 		 * and concurrent thread which is unlinking
3947 		 * pa from inode's list may access already
3948 		 * freed memory, bad-bad-bad */
3949 
3950 		/* XXX: if this happens too often, we can
3951 		 * add a flag to force wait only in case
3952 		 * of ->clear_inode(), but not in case of
3953 		 * regular truncate */
3954 		schedule_timeout_uninterruptible(HZ);
3955 		goto repeat;
3956 	}
3957 	spin_unlock(&ei->i_prealloc_lock);
3958 
3959 	list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3960 		BUG_ON(pa->pa_type != MB_INODE_PA);
3961 		group = ext4_get_group_number(sb, pa->pa_pstart);
3962 
3963 		err = ext4_mb_load_buddy(sb, group, &e4b);
3964 		if (err) {
3965 			ext4_error(sb, "Error loading buddy information for %u",
3966 					group);
3967 			continue;
3968 		}
3969 
3970 		bitmap_bh = ext4_read_block_bitmap(sb, group);
3971 		if (bitmap_bh == NULL) {
3972 			ext4_error(sb, "Error reading block bitmap for %u",
3973 					group);
3974 			ext4_mb_unload_buddy(&e4b);
3975 			continue;
3976 		}
3977 
3978 		ext4_lock_group(sb, group);
3979 		list_del(&pa->pa_group_list);
3980 		ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3981 		ext4_unlock_group(sb, group);
3982 
3983 		ext4_mb_unload_buddy(&e4b);
3984 		put_bh(bitmap_bh);
3985 
3986 		list_del(&pa->u.pa_tmp_list);
3987 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3988 	}
3989 }
3990 
3991 #ifdef CONFIG_EXT4_DEBUG
3992 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3993 {
3994 	struct super_block *sb = ac->ac_sb;
3995 	ext4_group_t ngroups, i;
3996 
3997 	if (!ext4_mballoc_debug ||
3998 	    (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
3999 		return;
4000 
4001 	ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4002 			" Allocation context details:");
4003 	ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4004 			ac->ac_status, ac->ac_flags);
4005 	ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4006 		 	"goal %lu/%lu/%lu@%lu, "
4007 			"best %lu/%lu/%lu@%lu cr %d",
4008 			(unsigned long)ac->ac_o_ex.fe_group,
4009 			(unsigned long)ac->ac_o_ex.fe_start,
4010 			(unsigned long)ac->ac_o_ex.fe_len,
4011 			(unsigned long)ac->ac_o_ex.fe_logical,
4012 			(unsigned long)ac->ac_g_ex.fe_group,
4013 			(unsigned long)ac->ac_g_ex.fe_start,
4014 			(unsigned long)ac->ac_g_ex.fe_len,
4015 			(unsigned long)ac->ac_g_ex.fe_logical,
4016 			(unsigned long)ac->ac_b_ex.fe_group,
4017 			(unsigned long)ac->ac_b_ex.fe_start,
4018 			(unsigned long)ac->ac_b_ex.fe_len,
4019 			(unsigned long)ac->ac_b_ex.fe_logical,
4020 			(int)ac->ac_criteria);
4021 	ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4022 	ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4023 	ngroups = ext4_get_groups_count(sb);
4024 	for (i = 0; i < ngroups; i++) {
4025 		struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4026 		struct ext4_prealloc_space *pa;
4027 		ext4_grpblk_t start;
4028 		struct list_head *cur;
4029 		ext4_lock_group(sb, i);
4030 		list_for_each(cur, &grp->bb_prealloc_list) {
4031 			pa = list_entry(cur, struct ext4_prealloc_space,
4032 					pa_group_list);
4033 			spin_lock(&pa->pa_lock);
4034 			ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4035 						     NULL, &start);
4036 			spin_unlock(&pa->pa_lock);
4037 			printk(KERN_ERR "PA:%u:%d:%u \n", i,
4038 			       start, pa->pa_len);
4039 		}
4040 		ext4_unlock_group(sb, i);
4041 
4042 		if (grp->bb_free == 0)
4043 			continue;
4044 		printk(KERN_ERR "%u: %d/%d \n",
4045 		       i, grp->bb_free, grp->bb_fragments);
4046 	}
4047 	printk(KERN_ERR "\n");
4048 }
4049 #else
4050 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4051 {
4052 	return;
4053 }
4054 #endif
4055 
4056 /*
4057  * We use locality group preallocation for small size file. The size of the
4058  * file is determined by the current size or the resulting size after
4059  * allocation which ever is larger
4060  *
4061  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4062  */
4063 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4064 {
4065 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4066 	int bsbits = ac->ac_sb->s_blocksize_bits;
4067 	loff_t size, isize;
4068 
4069 	if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4070 		return;
4071 
4072 	if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4073 		return;
4074 
4075 	size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4076 	isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4077 		>> bsbits;
4078 
4079 	if ((size == isize) &&
4080 	    !ext4_fs_is_busy(sbi) &&
4081 	    (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4082 		ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4083 		return;
4084 	}
4085 
4086 	if (sbi->s_mb_group_prealloc <= 0) {
4087 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4088 		return;
4089 	}
4090 
4091 	/* don't use group allocation for large files */
4092 	size = max(size, isize);
4093 	if (size > sbi->s_mb_stream_request) {
4094 		ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4095 		return;
4096 	}
4097 
4098 	BUG_ON(ac->ac_lg != NULL);
4099 	/*
4100 	 * locality group prealloc space are per cpu. The reason for having
4101 	 * per cpu locality group is to reduce the contention between block
4102 	 * request from multiple CPUs.
4103 	 */
4104 	ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
4105 
4106 	/* we're going to use group allocation */
4107 	ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4108 
4109 	/* serialize all allocations in the group */
4110 	mutex_lock(&ac->ac_lg->lg_mutex);
4111 }
4112 
4113 static noinline_for_stack int
4114 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4115 				struct ext4_allocation_request *ar)
4116 {
4117 	struct super_block *sb = ar->inode->i_sb;
4118 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4119 	struct ext4_super_block *es = sbi->s_es;
4120 	ext4_group_t group;
4121 	unsigned int len;
4122 	ext4_fsblk_t goal;
4123 	ext4_grpblk_t block;
4124 
4125 	/* we can't allocate > group size */
4126 	len = ar->len;
4127 
4128 	/* just a dirty hack to filter too big requests  */
4129 	if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4130 		len = EXT4_CLUSTERS_PER_GROUP(sb);
4131 
4132 	/* start searching from the goal */
4133 	goal = ar->goal;
4134 	if (goal < le32_to_cpu(es->s_first_data_block) ||
4135 			goal >= ext4_blocks_count(es))
4136 		goal = le32_to_cpu(es->s_first_data_block);
4137 	ext4_get_group_no_and_offset(sb, goal, &group, &block);
4138 
4139 	/* set up allocation goals */
4140 	ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4141 	ac->ac_status = AC_STATUS_CONTINUE;
4142 	ac->ac_sb = sb;
4143 	ac->ac_inode = ar->inode;
4144 	ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4145 	ac->ac_o_ex.fe_group = group;
4146 	ac->ac_o_ex.fe_start = block;
4147 	ac->ac_o_ex.fe_len = len;
4148 	ac->ac_g_ex = ac->ac_o_ex;
4149 	ac->ac_flags = ar->flags;
4150 
4151 	/* we have to define context: we'll we work with a file or
4152 	 * locality group. this is a policy, actually */
4153 	ext4_mb_group_or_file(ac);
4154 
4155 	mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4156 			"left: %u/%u, right %u/%u to %swritable\n",
4157 			(unsigned) ar->len, (unsigned) ar->logical,
4158 			(unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4159 			(unsigned) ar->lleft, (unsigned) ar->pleft,
4160 			(unsigned) ar->lright, (unsigned) ar->pright,
4161 			atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4162 	return 0;
4163 
4164 }
4165 
4166 static noinline_for_stack void
4167 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4168 					struct ext4_locality_group *lg,
4169 					int order, int total_entries)
4170 {
4171 	ext4_group_t group = 0;
4172 	struct ext4_buddy e4b;
4173 	struct list_head discard_list;
4174 	struct ext4_prealloc_space *pa, *tmp;
4175 
4176 	mb_debug(1, "discard locality group preallocation\n");
4177 
4178 	INIT_LIST_HEAD(&discard_list);
4179 
4180 	spin_lock(&lg->lg_prealloc_lock);
4181 	list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4182 						pa_inode_list) {
4183 		spin_lock(&pa->pa_lock);
4184 		if (atomic_read(&pa->pa_count)) {
4185 			/*
4186 			 * This is the pa that we just used
4187 			 * for block allocation. So don't
4188 			 * free that
4189 			 */
4190 			spin_unlock(&pa->pa_lock);
4191 			continue;
4192 		}
4193 		if (pa->pa_deleted) {
4194 			spin_unlock(&pa->pa_lock);
4195 			continue;
4196 		}
4197 		/* only lg prealloc space */
4198 		BUG_ON(pa->pa_type != MB_GROUP_PA);
4199 
4200 		/* seems this one can be freed ... */
4201 		pa->pa_deleted = 1;
4202 		spin_unlock(&pa->pa_lock);
4203 
4204 		list_del_rcu(&pa->pa_inode_list);
4205 		list_add(&pa->u.pa_tmp_list, &discard_list);
4206 
4207 		total_entries--;
4208 		if (total_entries <= 5) {
4209 			/*
4210 			 * we want to keep only 5 entries
4211 			 * allowing it to grow to 8. This
4212 			 * mak sure we don't call discard
4213 			 * soon for this list.
4214 			 */
4215 			break;
4216 		}
4217 	}
4218 	spin_unlock(&lg->lg_prealloc_lock);
4219 
4220 	list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4221 
4222 		group = ext4_get_group_number(sb, pa->pa_pstart);
4223 		if (ext4_mb_load_buddy(sb, group, &e4b)) {
4224 			ext4_error(sb, "Error loading buddy information for %u",
4225 					group);
4226 			continue;
4227 		}
4228 		ext4_lock_group(sb, group);
4229 		list_del(&pa->pa_group_list);
4230 		ext4_mb_release_group_pa(&e4b, pa);
4231 		ext4_unlock_group(sb, group);
4232 
4233 		ext4_mb_unload_buddy(&e4b);
4234 		list_del(&pa->u.pa_tmp_list);
4235 		call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4236 	}
4237 }
4238 
4239 /*
4240  * We have incremented pa_count. So it cannot be freed at this
4241  * point. Also we hold lg_mutex. So no parallel allocation is
4242  * possible from this lg. That means pa_free cannot be updated.
4243  *
4244  * A parallel ext4_mb_discard_group_preallocations is possible.
4245  * which can cause the lg_prealloc_list to be updated.
4246  */
4247 
4248 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4249 {
4250 	int order, added = 0, lg_prealloc_count = 1;
4251 	struct super_block *sb = ac->ac_sb;
4252 	struct ext4_locality_group *lg = ac->ac_lg;
4253 	struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4254 
4255 	order = fls(pa->pa_free) - 1;
4256 	if (order > PREALLOC_TB_SIZE - 1)
4257 		/* The max size of hash table is PREALLOC_TB_SIZE */
4258 		order = PREALLOC_TB_SIZE - 1;
4259 	/* Add the prealloc space to lg */
4260 	spin_lock(&lg->lg_prealloc_lock);
4261 	list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4262 						pa_inode_list) {
4263 		spin_lock(&tmp_pa->pa_lock);
4264 		if (tmp_pa->pa_deleted) {
4265 			spin_unlock(&tmp_pa->pa_lock);
4266 			continue;
4267 		}
4268 		if (!added && pa->pa_free < tmp_pa->pa_free) {
4269 			/* Add to the tail of the previous entry */
4270 			list_add_tail_rcu(&pa->pa_inode_list,
4271 						&tmp_pa->pa_inode_list);
4272 			added = 1;
4273 			/*
4274 			 * we want to count the total
4275 			 * number of entries in the list
4276 			 */
4277 		}
4278 		spin_unlock(&tmp_pa->pa_lock);
4279 		lg_prealloc_count++;
4280 	}
4281 	if (!added)
4282 		list_add_tail_rcu(&pa->pa_inode_list,
4283 					&lg->lg_prealloc_list[order]);
4284 	spin_unlock(&lg->lg_prealloc_lock);
4285 
4286 	/* Now trim the list to be not more than 8 elements */
4287 	if (lg_prealloc_count > 8) {
4288 		ext4_mb_discard_lg_preallocations(sb, lg,
4289 						  order, lg_prealloc_count);
4290 		return;
4291 	}
4292 	return ;
4293 }
4294 
4295 /*
4296  * release all resource we used in allocation
4297  */
4298 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4299 {
4300 	struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4301 	struct ext4_prealloc_space *pa = ac->ac_pa;
4302 	if (pa) {
4303 		if (pa->pa_type == MB_GROUP_PA) {
4304 			/* see comment in ext4_mb_use_group_pa() */
4305 			spin_lock(&pa->pa_lock);
4306 			pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4307 			pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4308 			pa->pa_free -= ac->ac_b_ex.fe_len;
4309 			pa->pa_len -= ac->ac_b_ex.fe_len;
4310 			spin_unlock(&pa->pa_lock);
4311 		}
4312 	}
4313 	if (pa) {
4314 		/*
4315 		 * We want to add the pa to the right bucket.
4316 		 * Remove it from the list and while adding
4317 		 * make sure the list to which we are adding
4318 		 * doesn't grow big.
4319 		 */
4320 		if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4321 			spin_lock(pa->pa_obj_lock);
4322 			list_del_rcu(&pa->pa_inode_list);
4323 			spin_unlock(pa->pa_obj_lock);
4324 			ext4_mb_add_n_trim(ac);
4325 		}
4326 		ext4_mb_put_pa(ac, ac->ac_sb, pa);
4327 	}
4328 	if (ac->ac_bitmap_page)
4329 		page_cache_release(ac->ac_bitmap_page);
4330 	if (ac->ac_buddy_page)
4331 		page_cache_release(ac->ac_buddy_page);
4332 	if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4333 		mutex_unlock(&ac->ac_lg->lg_mutex);
4334 	ext4_mb_collect_stats(ac);
4335 	return 0;
4336 }
4337 
4338 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4339 {
4340 	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4341 	int ret;
4342 	int freed = 0;
4343 
4344 	trace_ext4_mb_discard_preallocations(sb, needed);
4345 	for (i = 0; i < ngroups && needed > 0; i++) {
4346 		ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4347 		freed += ret;
4348 		needed -= ret;
4349 	}
4350 
4351 	return freed;
4352 }
4353 
4354 /*
4355  * Main entry point into mballoc to allocate blocks
4356  * it tries to use preallocation first, then falls back
4357  * to usual allocation
4358  */
4359 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4360 				struct ext4_allocation_request *ar, int *errp)
4361 {
4362 	int freed;
4363 	struct ext4_allocation_context *ac = NULL;
4364 	struct ext4_sb_info *sbi;
4365 	struct super_block *sb;
4366 	ext4_fsblk_t block = 0;
4367 	unsigned int inquota = 0;
4368 	unsigned int reserv_clstrs = 0;
4369 
4370 	might_sleep();
4371 	sb = ar->inode->i_sb;
4372 	sbi = EXT4_SB(sb);
4373 
4374 	trace_ext4_request_blocks(ar);
4375 
4376 	/* Allow to use superuser reservation for quota file */
4377 	if (IS_NOQUOTA(ar->inode))
4378 		ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4379 
4380 	/*
4381 	 * For delayed allocation, we could skip the ENOSPC and
4382 	 * EDQUOT check, as blocks and quotas have been already
4383 	 * reserved when data being copied into pagecache.
4384 	 */
4385 	if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED))
4386 		ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4387 	else {
4388 		/* Without delayed allocation we need to verify
4389 		 * there is enough free blocks to do block allocation
4390 		 * and verify allocation doesn't exceed the quota limits.
4391 		 */
4392 		while (ar->len &&
4393 			ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4394 
4395 			/* let others to free the space */
4396 			cond_resched();
4397 			ar->len = ar->len >> 1;
4398 		}
4399 		if (!ar->len) {
4400 			*errp = -ENOSPC;
4401 			return 0;
4402 		}
4403 		reserv_clstrs = ar->len;
4404 		if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4405 			dquot_alloc_block_nofail(ar->inode,
4406 						 EXT4_C2B(sbi, ar->len));
4407 		} else {
4408 			while (ar->len &&
4409 				dquot_alloc_block(ar->inode,
4410 						  EXT4_C2B(sbi, ar->len))) {
4411 
4412 				ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4413 				ar->len--;
4414 			}
4415 		}
4416 		inquota = ar->len;
4417 		if (ar->len == 0) {
4418 			*errp = -EDQUOT;
4419 			goto out;
4420 		}
4421 	}
4422 
4423 	ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4424 	if (!ac) {
4425 		ar->len = 0;
4426 		*errp = -ENOMEM;
4427 		goto out;
4428 	}
4429 
4430 	*errp = ext4_mb_initialize_context(ac, ar);
4431 	if (*errp) {
4432 		ar->len = 0;
4433 		goto out;
4434 	}
4435 
4436 	ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4437 	if (!ext4_mb_use_preallocated(ac)) {
4438 		ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4439 		ext4_mb_normalize_request(ac, ar);
4440 repeat:
4441 		/* allocate space in core */
4442 		*errp = ext4_mb_regular_allocator(ac);
4443 		if (*errp)
4444 			goto discard_and_exit;
4445 
4446 		/* as we've just preallocated more space than
4447 		 * user requested originally, we store allocated
4448 		 * space in a special descriptor */
4449 		if (ac->ac_status == AC_STATUS_FOUND &&
4450 		    ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4451 			*errp = ext4_mb_new_preallocation(ac);
4452 		if (*errp) {
4453 		discard_and_exit:
4454 			ext4_discard_allocated_blocks(ac);
4455 			goto errout;
4456 		}
4457 	}
4458 	if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4459 		*errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4460 		if (*errp == -EAGAIN) {
4461 			/*
4462 			 * drop the reference that we took
4463 			 * in ext4_mb_use_best_found
4464 			 */
4465 			ext4_mb_release_context(ac);
4466 			ac->ac_b_ex.fe_group = 0;
4467 			ac->ac_b_ex.fe_start = 0;
4468 			ac->ac_b_ex.fe_len = 0;
4469 			ac->ac_status = AC_STATUS_CONTINUE;
4470 			goto repeat;
4471 		} else if (*errp) {
4472 			ext4_discard_allocated_blocks(ac);
4473 			goto errout;
4474 		} else {
4475 			block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4476 			ar->len = ac->ac_b_ex.fe_len;
4477 		}
4478 	} else {
4479 		freed  = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4480 		if (freed)
4481 			goto repeat;
4482 		*errp = -ENOSPC;
4483 	}
4484 
4485 errout:
4486 	if (*errp) {
4487 		ac->ac_b_ex.fe_len = 0;
4488 		ar->len = 0;
4489 		ext4_mb_show_ac(ac);
4490 	}
4491 	ext4_mb_release_context(ac);
4492 out:
4493 	if (ac)
4494 		kmem_cache_free(ext4_ac_cachep, ac);
4495 	if (inquota && ar->len < inquota)
4496 		dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4497 	if (!ar->len) {
4498 		if (!ext4_test_inode_state(ar->inode,
4499 					   EXT4_STATE_DELALLOC_RESERVED))
4500 			/* release all the reserved blocks if non delalloc */
4501 			percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4502 						reserv_clstrs);
4503 	}
4504 
4505 	trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4506 
4507 	return block;
4508 }
4509 
4510 /*
4511  * We can merge two free data extents only if the physical blocks
4512  * are contiguous, AND the extents were freed by the same transaction,
4513  * AND the blocks are associated with the same group.
4514  */
4515 static int can_merge(struct ext4_free_data *entry1,
4516 			struct ext4_free_data *entry2)
4517 {
4518 	if ((entry1->efd_tid == entry2->efd_tid) &&
4519 	    (entry1->efd_group == entry2->efd_group) &&
4520 	    ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4521 		return 1;
4522 	return 0;
4523 }
4524 
4525 static noinline_for_stack int
4526 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4527 		      struct ext4_free_data *new_entry)
4528 {
4529 	ext4_group_t group = e4b->bd_group;
4530 	ext4_grpblk_t cluster;
4531 	struct ext4_free_data *entry;
4532 	struct ext4_group_info *db = e4b->bd_info;
4533 	struct super_block *sb = e4b->bd_sb;
4534 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4535 	struct rb_node **n = &db->bb_free_root.rb_node, *node;
4536 	struct rb_node *parent = NULL, *new_node;
4537 
4538 	BUG_ON(!ext4_handle_valid(handle));
4539 	BUG_ON(e4b->bd_bitmap_page == NULL);
4540 	BUG_ON(e4b->bd_buddy_page == NULL);
4541 
4542 	new_node = &new_entry->efd_node;
4543 	cluster = new_entry->efd_start_cluster;
4544 
4545 	if (!*n) {
4546 		/* first free block exent. We need to
4547 		   protect buddy cache from being freed,
4548 		 * otherwise we'll refresh it from
4549 		 * on-disk bitmap and lose not-yet-available
4550 		 * blocks */
4551 		page_cache_get(e4b->bd_buddy_page);
4552 		page_cache_get(e4b->bd_bitmap_page);
4553 	}
4554 	while (*n) {
4555 		parent = *n;
4556 		entry = rb_entry(parent, struct ext4_free_data, efd_node);
4557 		if (cluster < entry->efd_start_cluster)
4558 			n = &(*n)->rb_left;
4559 		else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4560 			n = &(*n)->rb_right;
4561 		else {
4562 			ext4_grp_locked_error(sb, group, 0,
4563 				ext4_group_first_block_no(sb, group) +
4564 				EXT4_C2B(sbi, cluster),
4565 				"Block already on to-be-freed list");
4566 			return 0;
4567 		}
4568 	}
4569 
4570 	rb_link_node(new_node, parent, n);
4571 	rb_insert_color(new_node, &db->bb_free_root);
4572 
4573 	/* Now try to see the extent can be merged to left and right */
4574 	node = rb_prev(new_node);
4575 	if (node) {
4576 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4577 		if (can_merge(entry, new_entry) &&
4578 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4579 			new_entry->efd_start_cluster = entry->efd_start_cluster;
4580 			new_entry->efd_count += entry->efd_count;
4581 			rb_erase(node, &(db->bb_free_root));
4582 			kmem_cache_free(ext4_free_data_cachep, entry);
4583 		}
4584 	}
4585 
4586 	node = rb_next(new_node);
4587 	if (node) {
4588 		entry = rb_entry(node, struct ext4_free_data, efd_node);
4589 		if (can_merge(new_entry, entry) &&
4590 		    ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4591 			new_entry->efd_count += entry->efd_count;
4592 			rb_erase(node, &(db->bb_free_root));
4593 			kmem_cache_free(ext4_free_data_cachep, entry);
4594 		}
4595 	}
4596 	/* Add the extent to transaction's private list */
4597 	ext4_journal_callback_add(handle, ext4_free_data_callback,
4598 				  &new_entry->efd_jce);
4599 	return 0;
4600 }
4601 
4602 /**
4603  * ext4_free_blocks() -- Free given blocks and update quota
4604  * @handle:		handle for this transaction
4605  * @inode:		inode
4606  * @block:		start physical block to free
4607  * @count:		number of blocks to count
4608  * @flags:		flags used by ext4_free_blocks
4609  */
4610 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4611 		      struct buffer_head *bh, ext4_fsblk_t block,
4612 		      unsigned long count, int flags)
4613 {
4614 	struct buffer_head *bitmap_bh = NULL;
4615 	struct super_block *sb = inode->i_sb;
4616 	struct ext4_group_desc *gdp;
4617 	unsigned int overflow;
4618 	ext4_grpblk_t bit;
4619 	struct buffer_head *gd_bh;
4620 	ext4_group_t block_group;
4621 	struct ext4_sb_info *sbi;
4622 	struct ext4_inode_info *ei = EXT4_I(inode);
4623 	struct ext4_buddy e4b;
4624 	unsigned int count_clusters;
4625 	int err = 0;
4626 	int ret;
4627 
4628 	might_sleep();
4629 	if (bh) {
4630 		if (block)
4631 			BUG_ON(block != bh->b_blocknr);
4632 		else
4633 			block = bh->b_blocknr;
4634 	}
4635 
4636 	sbi = EXT4_SB(sb);
4637 	if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4638 	    !ext4_data_block_valid(sbi, block, count)) {
4639 		ext4_error(sb, "Freeing blocks not in datazone - "
4640 			   "block = %llu, count = %lu", block, count);
4641 		goto error_return;
4642 	}
4643 
4644 	ext4_debug("freeing block %llu\n", block);
4645 	trace_ext4_free_blocks(inode, block, count, flags);
4646 
4647 	if (flags & EXT4_FREE_BLOCKS_FORGET) {
4648 		struct buffer_head *tbh = bh;
4649 		int i;
4650 
4651 		BUG_ON(bh && (count > 1));
4652 
4653 		for (i = 0; i < count; i++) {
4654 			cond_resched();
4655 			if (!bh)
4656 				tbh = sb_find_get_block(inode->i_sb,
4657 							block + i);
4658 			if (!tbh)
4659 				continue;
4660 			ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4661 				    inode, tbh, block + i);
4662 		}
4663 	}
4664 
4665 	/*
4666 	 * We need to make sure we don't reuse the freed block until
4667 	 * after the transaction is committed, which we can do by
4668 	 * treating the block as metadata, below.  We make an
4669 	 * exception if the inode is to be written in writeback mode
4670 	 * since writeback mode has weak data consistency guarantees.
4671 	 */
4672 	if (!ext4_should_writeback_data(inode))
4673 		flags |= EXT4_FREE_BLOCKS_METADATA;
4674 
4675 	/*
4676 	 * If the extent to be freed does not begin on a cluster
4677 	 * boundary, we need to deal with partial clusters at the
4678 	 * beginning and end of the extent.  Normally we will free
4679 	 * blocks at the beginning or the end unless we are explicitly
4680 	 * requested to avoid doing so.
4681 	 */
4682 	overflow = EXT4_PBLK_COFF(sbi, block);
4683 	if (overflow) {
4684 		if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4685 			overflow = sbi->s_cluster_ratio - overflow;
4686 			block += overflow;
4687 			if (count > overflow)
4688 				count -= overflow;
4689 			else
4690 				return;
4691 		} else {
4692 			block -= overflow;
4693 			count += overflow;
4694 		}
4695 	}
4696 	overflow = EXT4_LBLK_COFF(sbi, count);
4697 	if (overflow) {
4698 		if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4699 			if (count > overflow)
4700 				count -= overflow;
4701 			else
4702 				return;
4703 		} else
4704 			count += sbi->s_cluster_ratio - overflow;
4705 	}
4706 
4707 do_more:
4708 	overflow = 0;
4709 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4710 
4711 	if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4712 			ext4_get_group_info(sb, block_group))))
4713 		return;
4714 
4715 	/*
4716 	 * Check to see if we are freeing blocks across a group
4717 	 * boundary.
4718 	 */
4719 	if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4720 		overflow = EXT4_C2B(sbi, bit) + count -
4721 			EXT4_BLOCKS_PER_GROUP(sb);
4722 		count -= overflow;
4723 	}
4724 	count_clusters = EXT4_NUM_B2C(sbi, count);
4725 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4726 	if (!bitmap_bh) {
4727 		err = -EIO;
4728 		goto error_return;
4729 	}
4730 	gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4731 	if (!gdp) {
4732 		err = -EIO;
4733 		goto error_return;
4734 	}
4735 
4736 	if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4737 	    in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4738 	    in_range(block, ext4_inode_table(sb, gdp),
4739 		     EXT4_SB(sb)->s_itb_per_group) ||
4740 	    in_range(block + count - 1, ext4_inode_table(sb, gdp),
4741 		     EXT4_SB(sb)->s_itb_per_group)) {
4742 
4743 		ext4_error(sb, "Freeing blocks in system zone - "
4744 			   "Block = %llu, count = %lu", block, count);
4745 		/* err = 0. ext4_std_error should be a no op */
4746 		goto error_return;
4747 	}
4748 
4749 	BUFFER_TRACE(bitmap_bh, "getting write access");
4750 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4751 	if (err)
4752 		goto error_return;
4753 
4754 	/*
4755 	 * We are about to modify some metadata.  Call the journal APIs
4756 	 * to unshare ->b_data if a currently-committing transaction is
4757 	 * using it
4758 	 */
4759 	BUFFER_TRACE(gd_bh, "get_write_access");
4760 	err = ext4_journal_get_write_access(handle, gd_bh);
4761 	if (err)
4762 		goto error_return;
4763 #ifdef AGGRESSIVE_CHECK
4764 	{
4765 		int i;
4766 		for (i = 0; i < count_clusters; i++)
4767 			BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4768 	}
4769 #endif
4770 	trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4771 
4772 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4773 	if (err)
4774 		goto error_return;
4775 
4776 	if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4777 		struct ext4_free_data *new_entry;
4778 		/*
4779 		 * blocks being freed are metadata. these blocks shouldn't
4780 		 * be used until this transaction is committed
4781 		 */
4782 	retry:
4783 		new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS);
4784 		if (!new_entry) {
4785 			/*
4786 			 * We use a retry loop because
4787 			 * ext4_free_blocks() is not allowed to fail.
4788 			 */
4789 			cond_resched();
4790 			congestion_wait(BLK_RW_ASYNC, HZ/50);
4791 			goto retry;
4792 		}
4793 		new_entry->efd_start_cluster = bit;
4794 		new_entry->efd_group = block_group;
4795 		new_entry->efd_count = count_clusters;
4796 		new_entry->efd_tid = handle->h_transaction->t_tid;
4797 
4798 		ext4_lock_group(sb, block_group);
4799 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4800 		ext4_mb_free_metadata(handle, &e4b, new_entry);
4801 	} else {
4802 		/* need to update group_info->bb_free and bitmap
4803 		 * with group lock held. generate_buddy look at
4804 		 * them with group lock_held
4805 		 */
4806 		if (test_opt(sb, DISCARD)) {
4807 			err = ext4_issue_discard(sb, block_group, bit, count);
4808 			if (err && err != -EOPNOTSUPP)
4809 				ext4_msg(sb, KERN_WARNING, "discard request in"
4810 					 " group:%d block:%d count:%lu failed"
4811 					 " with %d", block_group, bit, count,
4812 					 err);
4813 		} else
4814 			EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4815 
4816 		ext4_lock_group(sb, block_group);
4817 		mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4818 		mb_free_blocks(inode, &e4b, bit, count_clusters);
4819 	}
4820 
4821 	ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4822 	ext4_free_group_clusters_set(sb, gdp, ret);
4823 	ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4824 	ext4_group_desc_csum_set(sb, block_group, gdp);
4825 	ext4_unlock_group(sb, block_group);
4826 
4827 	if (sbi->s_log_groups_per_flex) {
4828 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4829 		atomic64_add(count_clusters,
4830 			     &sbi->s_flex_groups[flex_group].free_clusters);
4831 	}
4832 
4833 	if (flags & EXT4_FREE_BLOCKS_RESERVE && ei->i_reserved_data_blocks) {
4834 		percpu_counter_add(&sbi->s_dirtyclusters_counter,
4835 				   count_clusters);
4836 		spin_lock(&ei->i_block_reservation_lock);
4837 		if (flags & EXT4_FREE_BLOCKS_METADATA)
4838 			ei->i_reserved_meta_blocks += count_clusters;
4839 		else
4840 			ei->i_reserved_data_blocks += count_clusters;
4841 		spin_unlock(&ei->i_block_reservation_lock);
4842 		if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4843 			dquot_reclaim_block(inode,
4844 					EXT4_C2B(sbi, count_clusters));
4845 	} else if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4846 		dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4847 	percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4848 
4849 	ext4_mb_unload_buddy(&e4b);
4850 
4851 	/* We dirtied the bitmap block */
4852 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4853 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4854 
4855 	/* And the group descriptor block */
4856 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4857 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4858 	if (!err)
4859 		err = ret;
4860 
4861 	if (overflow && !err) {
4862 		block += count;
4863 		count = overflow;
4864 		put_bh(bitmap_bh);
4865 		goto do_more;
4866 	}
4867 error_return:
4868 	brelse(bitmap_bh);
4869 	ext4_std_error(sb, err);
4870 	return;
4871 }
4872 
4873 /**
4874  * ext4_group_add_blocks() -- Add given blocks to an existing group
4875  * @handle:			handle to this transaction
4876  * @sb:				super block
4877  * @block:			start physical block to add to the block group
4878  * @count:			number of blocks to free
4879  *
4880  * This marks the blocks as free in the bitmap and buddy.
4881  */
4882 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4883 			 ext4_fsblk_t block, unsigned long count)
4884 {
4885 	struct buffer_head *bitmap_bh = NULL;
4886 	struct buffer_head *gd_bh;
4887 	ext4_group_t block_group;
4888 	ext4_grpblk_t bit;
4889 	unsigned int i;
4890 	struct ext4_group_desc *desc;
4891 	struct ext4_sb_info *sbi = EXT4_SB(sb);
4892 	struct ext4_buddy e4b;
4893 	int err = 0, ret, blk_free_count;
4894 	ext4_grpblk_t blocks_freed;
4895 
4896 	ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4897 
4898 	if (count == 0)
4899 		return 0;
4900 
4901 	ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4902 	/*
4903 	 * Check to see if we are freeing blocks across a group
4904 	 * boundary.
4905 	 */
4906 	if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4907 		ext4_warning(sb, "too much blocks added to group %u\n",
4908 			     block_group);
4909 		err = -EINVAL;
4910 		goto error_return;
4911 	}
4912 
4913 	bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4914 	if (!bitmap_bh) {
4915 		err = -EIO;
4916 		goto error_return;
4917 	}
4918 
4919 	desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4920 	if (!desc) {
4921 		err = -EIO;
4922 		goto error_return;
4923 	}
4924 
4925 	if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4926 	    in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4927 	    in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
4928 	    in_range(block + count - 1, ext4_inode_table(sb, desc),
4929 		     sbi->s_itb_per_group)) {
4930 		ext4_error(sb, "Adding blocks in system zones - "
4931 			   "Block = %llu, count = %lu",
4932 			   block, count);
4933 		err = -EINVAL;
4934 		goto error_return;
4935 	}
4936 
4937 	BUFFER_TRACE(bitmap_bh, "getting write access");
4938 	err = ext4_journal_get_write_access(handle, bitmap_bh);
4939 	if (err)
4940 		goto error_return;
4941 
4942 	/*
4943 	 * We are about to modify some metadata.  Call the journal APIs
4944 	 * to unshare ->b_data if a currently-committing transaction is
4945 	 * using it
4946 	 */
4947 	BUFFER_TRACE(gd_bh, "get_write_access");
4948 	err = ext4_journal_get_write_access(handle, gd_bh);
4949 	if (err)
4950 		goto error_return;
4951 
4952 	for (i = 0, blocks_freed = 0; i < count; i++) {
4953 		BUFFER_TRACE(bitmap_bh, "clear bit");
4954 		if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
4955 			ext4_error(sb, "bit already cleared for block %llu",
4956 				   (ext4_fsblk_t)(block + i));
4957 			BUFFER_TRACE(bitmap_bh, "bit already cleared");
4958 		} else {
4959 			blocks_freed++;
4960 		}
4961 	}
4962 
4963 	err = ext4_mb_load_buddy(sb, block_group, &e4b);
4964 	if (err)
4965 		goto error_return;
4966 
4967 	/*
4968 	 * need to update group_info->bb_free and bitmap
4969 	 * with group lock held. generate_buddy look at
4970 	 * them with group lock_held
4971 	 */
4972 	ext4_lock_group(sb, block_group);
4973 	mb_clear_bits(bitmap_bh->b_data, bit, count);
4974 	mb_free_blocks(NULL, &e4b, bit, count);
4975 	blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
4976 	ext4_free_group_clusters_set(sb, desc, blk_free_count);
4977 	ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
4978 	ext4_group_desc_csum_set(sb, block_group, desc);
4979 	ext4_unlock_group(sb, block_group);
4980 	percpu_counter_add(&sbi->s_freeclusters_counter,
4981 			   EXT4_NUM_B2C(sbi, blocks_freed));
4982 
4983 	if (sbi->s_log_groups_per_flex) {
4984 		ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4985 		atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
4986 			     &sbi->s_flex_groups[flex_group].free_clusters);
4987 	}
4988 
4989 	ext4_mb_unload_buddy(&e4b);
4990 
4991 	/* We dirtied the bitmap block */
4992 	BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4993 	err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4994 
4995 	/* And the group descriptor block */
4996 	BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4997 	ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4998 	if (!err)
4999 		err = ret;
5000 
5001 error_return:
5002 	brelse(bitmap_bh);
5003 	ext4_std_error(sb, err);
5004 	return err;
5005 }
5006 
5007 /**
5008  * ext4_trim_extent -- function to TRIM one single free extent in the group
5009  * @sb:		super block for the file system
5010  * @start:	starting block of the free extent in the alloc. group
5011  * @count:	number of blocks to TRIM
5012  * @group:	alloc. group we are working with
5013  * @e4b:	ext4 buddy for the group
5014  *
5015  * Trim "count" blocks starting at "start" in the "group". To assure that no
5016  * one will allocate those blocks, mark it as used in buddy bitmap. This must
5017  * be called with under the group lock.
5018  */
5019 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5020 			     ext4_group_t group, struct ext4_buddy *e4b)
5021 __releases(bitlock)
5022 __acquires(bitlock)
5023 {
5024 	struct ext4_free_extent ex;
5025 	int ret = 0;
5026 
5027 	trace_ext4_trim_extent(sb, group, start, count);
5028 
5029 	assert_spin_locked(ext4_group_lock_ptr(sb, group));
5030 
5031 	ex.fe_start = start;
5032 	ex.fe_group = group;
5033 	ex.fe_len = count;
5034 
5035 	/*
5036 	 * Mark blocks used, so no one can reuse them while
5037 	 * being trimmed.
5038 	 */
5039 	mb_mark_used(e4b, &ex);
5040 	ext4_unlock_group(sb, group);
5041 	ret = ext4_issue_discard(sb, group, start, count);
5042 	ext4_lock_group(sb, group);
5043 	mb_free_blocks(NULL, e4b, start, ex.fe_len);
5044 	return ret;
5045 }
5046 
5047 /**
5048  * ext4_trim_all_free -- function to trim all free space in alloc. group
5049  * @sb:			super block for file system
5050  * @group:		group to be trimmed
5051  * @start:		first group block to examine
5052  * @max:		last group block to examine
5053  * @minblocks:		minimum extent block count
5054  *
5055  * ext4_trim_all_free walks through group's buddy bitmap searching for free
5056  * extents. When the free block is found, ext4_trim_extent is called to TRIM
5057  * the extent.
5058  *
5059  *
5060  * ext4_trim_all_free walks through group's block bitmap searching for free
5061  * extents. When the free extent is found, mark it as used in group buddy
5062  * bitmap. Then issue a TRIM command on this extent and free the extent in
5063  * the group buddy bitmap. This is done until whole group is scanned.
5064  */
5065 static ext4_grpblk_t
5066 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5067 		   ext4_grpblk_t start, ext4_grpblk_t max,
5068 		   ext4_grpblk_t minblocks)
5069 {
5070 	void *bitmap;
5071 	ext4_grpblk_t next, count = 0, free_count = 0;
5072 	struct ext4_buddy e4b;
5073 	int ret = 0;
5074 
5075 	trace_ext4_trim_all_free(sb, group, start, max);
5076 
5077 	ret = ext4_mb_load_buddy(sb, group, &e4b);
5078 	if (ret) {
5079 		ext4_error(sb, "Error in loading buddy "
5080 				"information for %u", group);
5081 		return ret;
5082 	}
5083 	bitmap = e4b.bd_bitmap;
5084 
5085 	ext4_lock_group(sb, group);
5086 	if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5087 	    minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5088 		goto out;
5089 
5090 	start = (e4b.bd_info->bb_first_free > start) ?
5091 		e4b.bd_info->bb_first_free : start;
5092 
5093 	while (start <= max) {
5094 		start = mb_find_next_zero_bit(bitmap, max + 1, start);
5095 		if (start > max)
5096 			break;
5097 		next = mb_find_next_bit(bitmap, max + 1, start);
5098 
5099 		if ((next - start) >= minblocks) {
5100 			ret = ext4_trim_extent(sb, start,
5101 					       next - start, group, &e4b);
5102 			if (ret && ret != -EOPNOTSUPP)
5103 				break;
5104 			ret = 0;
5105 			count += next - start;
5106 		}
5107 		free_count += next - start;
5108 		start = next + 1;
5109 
5110 		if (fatal_signal_pending(current)) {
5111 			count = -ERESTARTSYS;
5112 			break;
5113 		}
5114 
5115 		if (need_resched()) {
5116 			ext4_unlock_group(sb, group);
5117 			cond_resched();
5118 			ext4_lock_group(sb, group);
5119 		}
5120 
5121 		if ((e4b.bd_info->bb_free - free_count) < minblocks)
5122 			break;
5123 	}
5124 
5125 	if (!ret) {
5126 		ret = count;
5127 		EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5128 	}
5129 out:
5130 	ext4_unlock_group(sb, group);
5131 	ext4_mb_unload_buddy(&e4b);
5132 
5133 	ext4_debug("trimmed %d blocks in the group %d\n",
5134 		count, group);
5135 
5136 	return ret;
5137 }
5138 
5139 /**
5140  * ext4_trim_fs() -- trim ioctl handle function
5141  * @sb:			superblock for filesystem
5142  * @range:		fstrim_range structure
5143  *
5144  * start:	First Byte to trim
5145  * len:		number of Bytes to trim from start
5146  * minlen:	minimum extent length in Bytes
5147  * ext4_trim_fs goes through all allocation groups containing Bytes from
5148  * start to start+len. For each such a group ext4_trim_all_free function
5149  * is invoked to trim all free space.
5150  */
5151 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5152 {
5153 	struct ext4_group_info *grp;
5154 	ext4_group_t group, first_group, last_group;
5155 	ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5156 	uint64_t start, end, minlen, trimmed = 0;
5157 	ext4_fsblk_t first_data_blk =
5158 			le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5159 	ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5160 	int ret = 0;
5161 
5162 	start = range->start >> sb->s_blocksize_bits;
5163 	end = start + (range->len >> sb->s_blocksize_bits) - 1;
5164 	minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5165 			      range->minlen >> sb->s_blocksize_bits);
5166 
5167 	if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5168 	    start >= max_blks ||
5169 	    range->len < sb->s_blocksize)
5170 		return -EINVAL;
5171 	if (end >= max_blks)
5172 		end = max_blks - 1;
5173 	if (end <= first_data_blk)
5174 		goto out;
5175 	if (start < first_data_blk)
5176 		start = first_data_blk;
5177 
5178 	/* Determine first and last group to examine based on start and end */
5179 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5180 				     &first_group, &first_cluster);
5181 	ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5182 				     &last_group, &last_cluster);
5183 
5184 	/* end now represents the last cluster to discard in this group */
5185 	end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5186 
5187 	for (group = first_group; group <= last_group; group++) {
5188 		grp = ext4_get_group_info(sb, group);
5189 		/* We only do this if the grp has never been initialized */
5190 		if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5191 			ret = ext4_mb_init_group(sb, group);
5192 			if (ret)
5193 				break;
5194 		}
5195 
5196 		/*
5197 		 * For all the groups except the last one, last cluster will
5198 		 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5199 		 * change it for the last group, note that last_cluster is
5200 		 * already computed earlier by ext4_get_group_no_and_offset()
5201 		 */
5202 		if (group == last_group)
5203 			end = last_cluster;
5204 
5205 		if (grp->bb_free >= minlen) {
5206 			cnt = ext4_trim_all_free(sb, group, first_cluster,
5207 						end, minlen);
5208 			if (cnt < 0) {
5209 				ret = cnt;
5210 				break;
5211 			}
5212 			trimmed += cnt;
5213 		}
5214 
5215 		/*
5216 		 * For every group except the first one, we are sure
5217 		 * that the first cluster to discard will be cluster #0.
5218 		 */
5219 		first_cluster = 0;
5220 	}
5221 
5222 	if (!ret)
5223 		atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5224 
5225 out:
5226 	range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5227 	return ret;
5228 }
5229