1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <trace/events/ext4.h> 21 22 /* 23 * MUSTDO: 24 * - test ext4_ext_search_left() and ext4_ext_search_right() 25 * - search for metadata in few groups 26 * 27 * TODO v4: 28 * - normalization should take into account whether file is still open 29 * - discard preallocations if no free space left (policy?) 30 * - don't normalize tails 31 * - quota 32 * - reservation for superuser 33 * 34 * TODO v3: 35 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 36 * - track min/max extents in each group for better group selection 37 * - mb_mark_used() may allocate chunk right after splitting buddy 38 * - tree of groups sorted by number of free blocks 39 * - error handling 40 */ 41 42 /* 43 * The allocation request involve request for multiple number of blocks 44 * near to the goal(block) value specified. 45 * 46 * During initialization phase of the allocator we decide to use the 47 * group preallocation or inode preallocation depending on the size of 48 * the file. The size of the file could be the resulting file size we 49 * would have after allocation, or the current file size, which ever 50 * is larger. If the size is less than sbi->s_mb_stream_request we 51 * select to use the group preallocation. The default value of 52 * s_mb_stream_request is 16 blocks. This can also be tuned via 53 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 54 * terms of number of blocks. 55 * 56 * The main motivation for having small file use group preallocation is to 57 * ensure that we have small files closer together on the disk. 58 * 59 * First stage the allocator looks at the inode prealloc list, 60 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 61 * spaces for this particular inode. The inode prealloc space is 62 * represented as: 63 * 64 * pa_lstart -> the logical start block for this prealloc space 65 * pa_pstart -> the physical start block for this prealloc space 66 * pa_len -> length for this prealloc space (in clusters) 67 * pa_free -> free space available in this prealloc space (in clusters) 68 * 69 * The inode preallocation space is used looking at the _logical_ start 70 * block. If only the logical file block falls within the range of prealloc 71 * space we will consume the particular prealloc space. This makes sure that 72 * we have contiguous physical blocks representing the file blocks 73 * 74 * The important thing to be noted in case of inode prealloc space is that 75 * we don't modify the values associated to inode prealloc space except 76 * pa_free. 77 * 78 * If we are not able to find blocks in the inode prealloc space and if we 79 * have the group allocation flag set then we look at the locality group 80 * prealloc space. These are per CPU prealloc list represented as 81 * 82 * ext4_sb_info.s_locality_groups[smp_processor_id()] 83 * 84 * The reason for having a per cpu locality group is to reduce the contention 85 * between CPUs. It is possible to get scheduled at this point. 86 * 87 * The locality group prealloc space is used looking at whether we have 88 * enough free space (pa_free) within the prealloc space. 89 * 90 * If we can't allocate blocks via inode prealloc or/and locality group 91 * prealloc then we look at the buddy cache. The buddy cache is represented 92 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 93 * mapped to the buddy and bitmap information regarding different 94 * groups. The buddy information is attached to buddy cache inode so that 95 * we can access them through the page cache. The information regarding 96 * each group is loaded via ext4_mb_load_buddy. The information involve 97 * block bitmap and buddy information. The information are stored in the 98 * inode as: 99 * 100 * { page } 101 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 102 * 103 * 104 * one block each for bitmap and buddy information. So for each group we 105 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 106 * blocksize) blocks. So it can have information regarding groups_per_page 107 * which is blocks_per_page/2 108 * 109 * The buddy cache inode is not stored on disk. The inode is thrown 110 * away when the filesystem is unmounted. 111 * 112 * We look for count number of blocks in the buddy cache. If we were able 113 * to locate that many free blocks we return with additional information 114 * regarding rest of the contiguous physical block available 115 * 116 * Before allocating blocks via buddy cache we normalize the request 117 * blocks. This ensure we ask for more blocks that we needed. The extra 118 * blocks that we get after allocation is added to the respective prealloc 119 * list. In case of inode preallocation we follow a list of heuristics 120 * based on file size. This can be found in ext4_mb_normalize_request. If 121 * we are doing a group prealloc we try to normalize the request to 122 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 123 * dependent on the cluster size; for non-bigalloc file systems, it is 124 * 512 blocks. This can be tuned via 125 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 126 * terms of number of blocks. If we have mounted the file system with -O 127 * stripe=<value> option the group prealloc request is normalized to the 128 * smallest multiple of the stripe value (sbi->s_stripe) which is 129 * greater than the default mb_group_prealloc. 130 * 131 * If "mb_optimize_scan" mount option is set, we maintain in memory group info 132 * structures in two data structures: 133 * 134 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) 135 * 136 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) 137 * 138 * This is an array of lists where the index in the array represents the 139 * largest free order in the buddy bitmap of the participating group infos of 140 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total 141 * number of buddy bitmap orders possible) number of lists. Group-infos are 142 * placed in appropriate lists. 143 * 144 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size) 145 * 146 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks) 147 * 148 * This is an array of lists where in the i-th list there are groups with 149 * average fragment size >= 2^i and < 2^(i+1). The average fragment size 150 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments. 151 * Note that we don't bother with a special list for completely empty groups 152 * so we only have MB_NUM_ORDERS(sb) lists. 153 * 154 * When "mb_optimize_scan" mount option is set, mballoc consults the above data 155 * structures to decide the order in which groups are to be traversed for 156 * fulfilling an allocation request. 157 * 158 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order 159 * >= the order of the request. We directly look at the largest free order list 160 * in the data structure (1) above where largest_free_order = order of the 161 * request. If that list is empty, we look at remaining list in the increasing 162 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED 163 * lookup in O(1) time. 164 * 165 * At CR_GOAL_LEN_FAST, we only consider groups where 166 * average fragment size > request size. So, we lookup a group which has average 167 * fragment size just above or equal to request size using our average fragment 168 * size group lists (data structure 2) in O(1) time. 169 * 170 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied 171 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in 172 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg 173 * fragment size > goal length. So before falling to the slower 174 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and 175 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big 176 * enough average fragment size. This increases the chances of finding a 177 * suitable block group in O(1) time and results in faster allocation at the 178 * cost of reduced size of allocation. 179 * 180 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in 181 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and 182 * CR_GOAL_LEN_FAST phase. 183 * 184 * The regular allocator (using the buddy cache) supports a few tunables. 185 * 186 * /sys/fs/ext4/<partition>/mb_min_to_scan 187 * /sys/fs/ext4/<partition>/mb_max_to_scan 188 * /sys/fs/ext4/<partition>/mb_order2_req 189 * /sys/fs/ext4/<partition>/mb_linear_limit 190 * 191 * The regular allocator uses buddy scan only if the request len is power of 192 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 193 * value of s_mb_order2_reqs can be tuned via 194 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 195 * stripe size (sbi->s_stripe), we try to search for contiguous block in 196 * stripe size. This should result in better allocation on RAID setups. If 197 * not, we search in the specific group using bitmap for best extents. The 198 * tunable min_to_scan and max_to_scan control the behaviour here. 199 * min_to_scan indicate how long the mballoc __must__ look for a best 200 * extent and max_to_scan indicates how long the mballoc __can__ look for a 201 * best extent in the found extents. Searching for the blocks starts with 202 * the group specified as the goal value in allocation context via 203 * ac_g_ex. Each group is first checked based on the criteria whether it 204 * can be used for allocation. ext4_mb_good_group explains how the groups are 205 * checked. 206 * 207 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not 208 * get traversed linearly. That may result in subsequent allocations being not 209 * close to each other. And so, the underlying device may get filled up in a 210 * non-linear fashion. While that may not matter on non-rotational devices, for 211 * rotational devices that may result in higher seek times. "mb_linear_limit" 212 * tells mballoc how many groups mballoc should search linearly before 213 * performing consulting above data structures for more efficient lookups. For 214 * non rotational devices, this value defaults to 0 and for rotational devices 215 * this is set to MB_DEFAULT_LINEAR_LIMIT. 216 * 217 * Both the prealloc space are getting populated as above. So for the first 218 * request we will hit the buddy cache which will result in this prealloc 219 * space getting filled. The prealloc space is then later used for the 220 * subsequent request. 221 */ 222 223 /* 224 * mballoc operates on the following data: 225 * - on-disk bitmap 226 * - in-core buddy (actually includes buddy and bitmap) 227 * - preallocation descriptors (PAs) 228 * 229 * there are two types of preallocations: 230 * - inode 231 * assiged to specific inode and can be used for this inode only. 232 * it describes part of inode's space preallocated to specific 233 * physical blocks. any block from that preallocated can be used 234 * independent. the descriptor just tracks number of blocks left 235 * unused. so, before taking some block from descriptor, one must 236 * make sure corresponded logical block isn't allocated yet. this 237 * also means that freeing any block within descriptor's range 238 * must discard all preallocated blocks. 239 * - locality group 240 * assigned to specific locality group which does not translate to 241 * permanent set of inodes: inode can join and leave group. space 242 * from this type of preallocation can be used for any inode. thus 243 * it's consumed from the beginning to the end. 244 * 245 * relation between them can be expressed as: 246 * in-core buddy = on-disk bitmap + preallocation descriptors 247 * 248 * this mean blocks mballoc considers used are: 249 * - allocated blocks (persistent) 250 * - preallocated blocks (non-persistent) 251 * 252 * consistency in mballoc world means that at any time a block is either 253 * free or used in ALL structures. notice: "any time" should not be read 254 * literally -- time is discrete and delimited by locks. 255 * 256 * to keep it simple, we don't use block numbers, instead we count number of 257 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 258 * 259 * all operations can be expressed as: 260 * - init buddy: buddy = on-disk + PAs 261 * - new PA: buddy += N; PA = N 262 * - use inode PA: on-disk += N; PA -= N 263 * - discard inode PA buddy -= on-disk - PA; PA = 0 264 * - use locality group PA on-disk += N; PA -= N 265 * - discard locality group PA buddy -= PA; PA = 0 266 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 267 * is used in real operation because we can't know actual used 268 * bits from PA, only from on-disk bitmap 269 * 270 * if we follow this strict logic, then all operations above should be atomic. 271 * given some of them can block, we'd have to use something like semaphores 272 * killing performance on high-end SMP hardware. let's try to relax it using 273 * the following knowledge: 274 * 1) if buddy is referenced, it's already initialized 275 * 2) while block is used in buddy and the buddy is referenced, 276 * nobody can re-allocate that block 277 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 278 * bit set and PA claims same block, it's OK. IOW, one can set bit in 279 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 280 * block 281 * 282 * so, now we're building a concurrency table: 283 * - init buddy vs. 284 * - new PA 285 * blocks for PA are allocated in the buddy, buddy must be referenced 286 * until PA is linked to allocation group to avoid concurrent buddy init 287 * - use inode PA 288 * we need to make sure that either on-disk bitmap or PA has uptodate data 289 * given (3) we care that PA-=N operation doesn't interfere with init 290 * - discard inode PA 291 * the simplest way would be to have buddy initialized by the discard 292 * - use locality group PA 293 * again PA-=N must be serialized with init 294 * - discard locality group PA 295 * the simplest way would be to have buddy initialized by the discard 296 * - new PA vs. 297 * - use inode PA 298 * i_data_sem serializes them 299 * - discard inode PA 300 * discard process must wait until PA isn't used by another process 301 * - use locality group PA 302 * some mutex should serialize them 303 * - discard locality group PA 304 * discard process must wait until PA isn't used by another process 305 * - use inode PA 306 * - use inode PA 307 * i_data_sem or another mutex should serializes them 308 * - discard inode PA 309 * discard process must wait until PA isn't used by another process 310 * - use locality group PA 311 * nothing wrong here -- they're different PAs covering different blocks 312 * - discard locality group PA 313 * discard process must wait until PA isn't used by another process 314 * 315 * now we're ready to make few consequences: 316 * - PA is referenced and while it is no discard is possible 317 * - PA is referenced until block isn't marked in on-disk bitmap 318 * - PA changes only after on-disk bitmap 319 * - discard must not compete with init. either init is done before 320 * any discard or they're serialized somehow 321 * - buddy init as sum of on-disk bitmap and PAs is done atomically 322 * 323 * a special case when we've used PA to emptiness. no need to modify buddy 324 * in this case, but we should care about concurrent init 325 * 326 */ 327 328 /* 329 * Logic in few words: 330 * 331 * - allocation: 332 * load group 333 * find blocks 334 * mark bits in on-disk bitmap 335 * release group 336 * 337 * - use preallocation: 338 * find proper PA (per-inode or group) 339 * load group 340 * mark bits in on-disk bitmap 341 * release group 342 * release PA 343 * 344 * - free: 345 * load group 346 * mark bits in on-disk bitmap 347 * release group 348 * 349 * - discard preallocations in group: 350 * mark PAs deleted 351 * move them onto local list 352 * load on-disk bitmap 353 * load group 354 * remove PA from object (inode or locality group) 355 * mark free blocks in-core 356 * 357 * - discard inode's preallocations: 358 */ 359 360 /* 361 * Locking rules 362 * 363 * Locks: 364 * - bitlock on a group (group) 365 * - object (inode/locality) (object) 366 * - per-pa lock (pa) 367 * - cr_power2_aligned lists lock (cr_power2_aligned) 368 * - cr_goal_len_fast lists lock (cr_goal_len_fast) 369 * 370 * Paths: 371 * - new pa 372 * object 373 * group 374 * 375 * - find and use pa: 376 * pa 377 * 378 * - release consumed pa: 379 * pa 380 * group 381 * object 382 * 383 * - generate in-core bitmap: 384 * group 385 * pa 386 * 387 * - discard all for given object (inode, locality group): 388 * object 389 * pa 390 * group 391 * 392 * - discard all for given group: 393 * group 394 * pa 395 * group 396 * object 397 * 398 * - allocation path (ext4_mb_regular_allocator) 399 * group 400 * cr_power2_aligned/cr_goal_len_fast 401 */ 402 static struct kmem_cache *ext4_pspace_cachep; 403 static struct kmem_cache *ext4_ac_cachep; 404 static struct kmem_cache *ext4_free_data_cachep; 405 406 /* We create slab caches for groupinfo data structures based on the 407 * superblock block size. There will be one per mounted filesystem for 408 * each unique s_blocksize_bits */ 409 #define NR_GRPINFO_CACHES 8 410 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 411 412 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 413 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 414 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 415 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 416 }; 417 418 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 419 ext4_group_t group); 420 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 421 422 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 423 ext4_group_t group, enum criteria cr); 424 425 static int ext4_try_to_trim_range(struct super_block *sb, 426 struct ext4_buddy *e4b, ext4_grpblk_t start, 427 ext4_grpblk_t max, ext4_grpblk_t minblocks); 428 429 /* 430 * The algorithm using this percpu seq counter goes below: 431 * 1. We sample the percpu discard_pa_seq counter before trying for block 432 * allocation in ext4_mb_new_blocks(). 433 * 2. We increment this percpu discard_pa_seq counter when we either allocate 434 * or free these blocks i.e. while marking those blocks as used/free in 435 * mb_mark_used()/mb_free_blocks(). 436 * 3. We also increment this percpu seq counter when we successfully identify 437 * that the bb_prealloc_list is not empty and hence proceed for discarding 438 * of those PAs inside ext4_mb_discard_group_preallocations(). 439 * 440 * Now to make sure that the regular fast path of block allocation is not 441 * affected, as a small optimization we only sample the percpu seq counter 442 * on that cpu. Only when the block allocation fails and when freed blocks 443 * found were 0, that is when we sample percpu seq counter for all cpus using 444 * below function ext4_get_discard_pa_seq_sum(). This happens after making 445 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 446 */ 447 static DEFINE_PER_CPU(u64, discard_pa_seq); 448 static inline u64 ext4_get_discard_pa_seq_sum(void) 449 { 450 int __cpu; 451 u64 __seq = 0; 452 453 for_each_possible_cpu(__cpu) 454 __seq += per_cpu(discard_pa_seq, __cpu); 455 return __seq; 456 } 457 458 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 459 { 460 #if BITS_PER_LONG == 64 461 *bit += ((unsigned long) addr & 7UL) << 3; 462 addr = (void *) ((unsigned long) addr & ~7UL); 463 #elif BITS_PER_LONG == 32 464 *bit += ((unsigned long) addr & 3UL) << 3; 465 addr = (void *) ((unsigned long) addr & ~3UL); 466 #else 467 #error "how many bits you are?!" 468 #endif 469 return addr; 470 } 471 472 static inline int mb_test_bit(int bit, void *addr) 473 { 474 /* 475 * ext4_test_bit on architecture like powerpc 476 * needs unsigned long aligned address 477 */ 478 addr = mb_correct_addr_and_bit(&bit, addr); 479 return ext4_test_bit(bit, addr); 480 } 481 482 static inline void mb_set_bit(int bit, void *addr) 483 { 484 addr = mb_correct_addr_and_bit(&bit, addr); 485 ext4_set_bit(bit, addr); 486 } 487 488 static inline void mb_clear_bit(int bit, void *addr) 489 { 490 addr = mb_correct_addr_and_bit(&bit, addr); 491 ext4_clear_bit(bit, addr); 492 } 493 494 static inline int mb_test_and_clear_bit(int bit, void *addr) 495 { 496 addr = mb_correct_addr_and_bit(&bit, addr); 497 return ext4_test_and_clear_bit(bit, addr); 498 } 499 500 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 501 { 502 int fix = 0, ret, tmpmax; 503 addr = mb_correct_addr_and_bit(&fix, addr); 504 tmpmax = max + fix; 505 start += fix; 506 507 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 508 if (ret > max) 509 return max; 510 return ret; 511 } 512 513 static inline int mb_find_next_bit(void *addr, int max, int start) 514 { 515 int fix = 0, ret, tmpmax; 516 addr = mb_correct_addr_and_bit(&fix, addr); 517 tmpmax = max + fix; 518 start += fix; 519 520 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 521 if (ret > max) 522 return max; 523 return ret; 524 } 525 526 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 527 { 528 char *bb; 529 530 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 531 BUG_ON(max == NULL); 532 533 if (order > e4b->bd_blkbits + 1) { 534 *max = 0; 535 return NULL; 536 } 537 538 /* at order 0 we see each particular block */ 539 if (order == 0) { 540 *max = 1 << (e4b->bd_blkbits + 3); 541 return e4b->bd_bitmap; 542 } 543 544 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 545 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 546 547 return bb; 548 } 549 550 #ifdef DOUBLE_CHECK 551 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 552 int first, int count) 553 { 554 int i; 555 struct super_block *sb = e4b->bd_sb; 556 557 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 558 return; 559 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 560 for (i = 0; i < count; i++) { 561 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 562 ext4_fsblk_t blocknr; 563 564 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 565 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 566 ext4_grp_locked_error(sb, e4b->bd_group, 567 inode ? inode->i_ino : 0, 568 blocknr, 569 "freeing block already freed " 570 "(bit %u)", 571 first + i); 572 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 573 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 574 } 575 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 576 } 577 } 578 579 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 580 { 581 int i; 582 583 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 584 return; 585 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 586 for (i = 0; i < count; i++) { 587 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 588 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 589 } 590 } 591 592 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 593 { 594 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 595 return; 596 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 597 unsigned char *b1, *b2; 598 int i; 599 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 600 b2 = (unsigned char *) bitmap; 601 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 602 if (b1[i] != b2[i]) { 603 ext4_msg(e4b->bd_sb, KERN_ERR, 604 "corruption in group %u " 605 "at byte %u(%u): %x in copy != %x " 606 "on disk/prealloc", 607 e4b->bd_group, i, i * 8, b1[i], b2[i]); 608 BUG(); 609 } 610 } 611 } 612 } 613 614 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 615 struct ext4_group_info *grp, ext4_group_t group) 616 { 617 struct buffer_head *bh; 618 619 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 620 if (!grp->bb_bitmap) 621 return; 622 623 bh = ext4_read_block_bitmap(sb, group); 624 if (IS_ERR_OR_NULL(bh)) { 625 kfree(grp->bb_bitmap); 626 grp->bb_bitmap = NULL; 627 return; 628 } 629 630 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 631 put_bh(bh); 632 } 633 634 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 635 { 636 kfree(grp->bb_bitmap); 637 } 638 639 #else 640 static inline void mb_free_blocks_double(struct inode *inode, 641 struct ext4_buddy *e4b, int first, int count) 642 { 643 return; 644 } 645 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 646 int first, int count) 647 { 648 return; 649 } 650 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 651 { 652 return; 653 } 654 655 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 656 struct ext4_group_info *grp, ext4_group_t group) 657 { 658 return; 659 } 660 661 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 662 { 663 return; 664 } 665 #endif 666 667 #ifdef AGGRESSIVE_CHECK 668 669 #define MB_CHECK_ASSERT(assert) \ 670 do { \ 671 if (!(assert)) { \ 672 printk(KERN_EMERG \ 673 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 674 function, file, line, # assert); \ 675 BUG(); \ 676 } \ 677 } while (0) 678 679 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 680 const char *function, int line) 681 { 682 struct super_block *sb = e4b->bd_sb; 683 int order = e4b->bd_blkbits + 1; 684 int max; 685 int max2; 686 int i; 687 int j; 688 int k; 689 int count; 690 struct ext4_group_info *grp; 691 int fragments = 0; 692 int fstart; 693 struct list_head *cur; 694 void *buddy; 695 void *buddy2; 696 697 if (e4b->bd_info->bb_check_counter++ % 10) 698 return 0; 699 700 while (order > 1) { 701 buddy = mb_find_buddy(e4b, order, &max); 702 MB_CHECK_ASSERT(buddy); 703 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 704 MB_CHECK_ASSERT(buddy2); 705 MB_CHECK_ASSERT(buddy != buddy2); 706 MB_CHECK_ASSERT(max * 2 == max2); 707 708 count = 0; 709 for (i = 0; i < max; i++) { 710 711 if (mb_test_bit(i, buddy)) { 712 /* only single bit in buddy2 may be 0 */ 713 if (!mb_test_bit(i << 1, buddy2)) { 714 MB_CHECK_ASSERT( 715 mb_test_bit((i<<1)+1, buddy2)); 716 } 717 continue; 718 } 719 720 /* both bits in buddy2 must be 1 */ 721 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 722 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 723 724 for (j = 0; j < (1 << order); j++) { 725 k = (i * (1 << order)) + j; 726 MB_CHECK_ASSERT( 727 !mb_test_bit(k, e4b->bd_bitmap)); 728 } 729 count++; 730 } 731 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 732 order--; 733 } 734 735 fstart = -1; 736 buddy = mb_find_buddy(e4b, 0, &max); 737 for (i = 0; i < max; i++) { 738 if (!mb_test_bit(i, buddy)) { 739 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 740 if (fstart == -1) { 741 fragments++; 742 fstart = i; 743 } 744 continue; 745 } 746 fstart = -1; 747 /* check used bits only */ 748 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 749 buddy2 = mb_find_buddy(e4b, j, &max2); 750 k = i >> j; 751 MB_CHECK_ASSERT(k < max2); 752 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 753 } 754 } 755 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 756 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 757 758 grp = ext4_get_group_info(sb, e4b->bd_group); 759 if (!grp) 760 return NULL; 761 list_for_each(cur, &grp->bb_prealloc_list) { 762 ext4_group_t groupnr; 763 struct ext4_prealloc_space *pa; 764 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 765 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 766 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 767 for (i = 0; i < pa->pa_len; i++) 768 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 769 } 770 return 0; 771 } 772 #undef MB_CHECK_ASSERT 773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 774 __FILE__, __func__, __LINE__) 775 #else 776 #define mb_check_buddy(e4b) 777 #endif 778 779 /* 780 * Divide blocks started from @first with length @len into 781 * smaller chunks with power of 2 blocks. 782 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 783 * then increase bb_counters[] for corresponded chunk size. 784 */ 785 static void ext4_mb_mark_free_simple(struct super_block *sb, 786 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 787 struct ext4_group_info *grp) 788 { 789 struct ext4_sb_info *sbi = EXT4_SB(sb); 790 ext4_grpblk_t min; 791 ext4_grpblk_t max; 792 ext4_grpblk_t chunk; 793 unsigned int border; 794 795 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 796 797 border = 2 << sb->s_blocksize_bits; 798 799 while (len > 0) { 800 /* find how many blocks can be covered since this position */ 801 max = ffs(first | border) - 1; 802 803 /* find how many blocks of power 2 we need to mark */ 804 min = fls(len) - 1; 805 806 if (max < min) 807 min = max; 808 chunk = 1 << min; 809 810 /* mark multiblock chunks only */ 811 grp->bb_counters[min]++; 812 if (min > 0) 813 mb_clear_bit(first >> min, 814 buddy + sbi->s_mb_offsets[min]); 815 816 len -= chunk; 817 first += chunk; 818 } 819 } 820 821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len) 822 { 823 int order; 824 825 /* 826 * We don't bother with a special lists groups with only 1 block free 827 * extents and for completely empty groups. 828 */ 829 order = fls(len) - 2; 830 if (order < 0) 831 return 0; 832 if (order == MB_NUM_ORDERS(sb)) 833 order--; 834 return order; 835 } 836 837 /* Move group to appropriate avg_fragment_size list */ 838 static void 839 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) 840 { 841 struct ext4_sb_info *sbi = EXT4_SB(sb); 842 int new_order; 843 844 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0) 845 return; 846 847 new_order = mb_avg_fragment_size_order(sb, 848 grp->bb_free / grp->bb_fragments); 849 if (new_order == grp->bb_avg_fragment_size_order) 850 return; 851 852 if (grp->bb_avg_fragment_size_order != -1) { 853 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 854 grp->bb_avg_fragment_size_order]); 855 list_del(&grp->bb_avg_fragment_size_node); 856 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 857 grp->bb_avg_fragment_size_order]); 858 } 859 grp->bb_avg_fragment_size_order = new_order; 860 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 861 grp->bb_avg_fragment_size_order]); 862 list_add_tail(&grp->bb_avg_fragment_size_node, 863 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]); 864 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 865 grp->bb_avg_fragment_size_order]); 866 } 867 868 /* 869 * Choose next group by traversing largest_free_order lists. Updates *new_cr if 870 * cr level needs an update. 871 */ 872 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac, 873 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 874 { 875 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 876 struct ext4_group_info *iter; 877 int i; 878 879 if (ac->ac_status == AC_STATUS_FOUND) 880 return; 881 882 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED)) 883 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions); 884 885 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 886 if (list_empty(&sbi->s_mb_largest_free_orders[i])) 887 continue; 888 read_lock(&sbi->s_mb_largest_free_orders_locks[i]); 889 if (list_empty(&sbi->s_mb_largest_free_orders[i])) { 890 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 891 continue; 892 } 893 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], 894 bb_largest_free_order_node) { 895 if (sbi->s_mb_stats) 896 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]); 897 if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) { 898 *group = iter->bb_group; 899 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED; 900 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 901 return; 902 } 903 } 904 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 905 } 906 907 /* Increment cr and search again if no group is found */ 908 *new_cr = CR_GOAL_LEN_FAST; 909 } 910 911 /* 912 * Find a suitable group of given order from the average fragments list. 913 */ 914 static struct ext4_group_info * 915 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order) 916 { 917 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 918 struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order]; 919 rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order]; 920 struct ext4_group_info *grp = NULL, *iter; 921 enum criteria cr = ac->ac_criteria; 922 923 if (list_empty(frag_list)) 924 return NULL; 925 read_lock(frag_list_lock); 926 if (list_empty(frag_list)) { 927 read_unlock(frag_list_lock); 928 return NULL; 929 } 930 list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) { 931 if (sbi->s_mb_stats) 932 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]); 933 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) { 934 grp = iter; 935 break; 936 } 937 } 938 read_unlock(frag_list_lock); 939 return grp; 940 } 941 942 /* 943 * Choose next group by traversing average fragment size list of suitable 944 * order. Updates *new_cr if cr level needs an update. 945 */ 946 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac, 947 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 948 { 949 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 950 struct ext4_group_info *grp = NULL; 951 int i; 952 953 if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) { 954 if (sbi->s_mb_stats) 955 atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions); 956 } 957 958 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len); 959 i < MB_NUM_ORDERS(ac->ac_sb); i++) { 960 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i); 961 if (grp) { 962 *group = grp->bb_group; 963 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED; 964 return; 965 } 966 } 967 968 /* 969 * CR_BEST_AVAIL_LEN works based on the concept that we have 970 * a larger normalized goal len request which can be trimmed to 971 * a smaller goal len such that it can still satisfy original 972 * request len. However, allocation request for non-regular 973 * files never gets normalized. 974 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA). 975 */ 976 if (ac->ac_flags & EXT4_MB_HINT_DATA) 977 *new_cr = CR_BEST_AVAIL_LEN; 978 else 979 *new_cr = CR_GOAL_LEN_SLOW; 980 } 981 982 /* 983 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment 984 * order we have and proactively trim the goal request length to that order to 985 * find a suitable group faster. 986 * 987 * This optimizes allocation speed at the cost of slightly reduced 988 * preallocations. However, we make sure that we don't trim the request too 989 * much and fall to CR_GOAL_LEN_SLOW in that case. 990 */ 991 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac, 992 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 993 { 994 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 995 struct ext4_group_info *grp = NULL; 996 int i, order, min_order; 997 unsigned long num_stripe_clusters = 0; 998 999 if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) { 1000 if (sbi->s_mb_stats) 1001 atomic_inc(&sbi->s_bal_best_avail_bad_suggestions); 1002 } 1003 1004 /* 1005 * mb_avg_fragment_size_order() returns order in a way that makes 1006 * retrieving back the length using (1 << order) inaccurate. Hence, use 1007 * fls() instead since we need to know the actual length while modifying 1008 * goal length. 1009 */ 1010 order = fls(ac->ac_g_ex.fe_len) - 1; 1011 min_order = order - sbi->s_mb_best_avail_max_trim_order; 1012 if (min_order < 0) 1013 min_order = 0; 1014 1015 if (sbi->s_stripe > 0) { 1016 /* 1017 * We are assuming that stripe size is always a multiple of 1018 * cluster ratio otherwise __ext4_fill_super exists early. 1019 */ 1020 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe); 1021 if (1 << min_order < num_stripe_clusters) 1022 /* 1023 * We consider 1 order less because later we round 1024 * up the goal len to num_stripe_clusters 1025 */ 1026 min_order = fls(num_stripe_clusters) - 1; 1027 } 1028 1029 if (1 << min_order < ac->ac_o_ex.fe_len) 1030 min_order = fls(ac->ac_o_ex.fe_len); 1031 1032 for (i = order; i >= min_order; i--) { 1033 int frag_order; 1034 /* 1035 * Scale down goal len to make sure we find something 1036 * in the free fragments list. Basically, reduce 1037 * preallocations. 1038 */ 1039 ac->ac_g_ex.fe_len = 1 << i; 1040 1041 if (num_stripe_clusters > 0) { 1042 /* 1043 * Try to round up the adjusted goal length to 1044 * stripe size (in cluster units) multiple for 1045 * efficiency. 1046 */ 1047 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len, 1048 num_stripe_clusters); 1049 } 1050 1051 frag_order = mb_avg_fragment_size_order(ac->ac_sb, 1052 ac->ac_g_ex.fe_len); 1053 1054 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order); 1055 if (grp) { 1056 *group = grp->bb_group; 1057 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED; 1058 return; 1059 } 1060 } 1061 1062 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */ 1063 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 1064 *new_cr = CR_GOAL_LEN_SLOW; 1065 } 1066 1067 static inline int should_optimize_scan(struct ext4_allocation_context *ac) 1068 { 1069 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) 1070 return 0; 1071 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW) 1072 return 0; 1073 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) 1074 return 0; 1075 return 1; 1076 } 1077 1078 /* 1079 * Return next linear group for allocation. If linear traversal should not be 1080 * performed, this function just returns the same group 1081 */ 1082 static ext4_group_t 1083 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group, 1084 ext4_group_t ngroups) 1085 { 1086 if (!should_optimize_scan(ac)) 1087 goto inc_and_return; 1088 1089 if (ac->ac_groups_linear_remaining) { 1090 ac->ac_groups_linear_remaining--; 1091 goto inc_and_return; 1092 } 1093 1094 return group; 1095 inc_and_return: 1096 /* 1097 * Artificially restricted ngroups for non-extent 1098 * files makes group > ngroups possible on first loop. 1099 */ 1100 return group + 1 >= ngroups ? 0 : group + 1; 1101 } 1102 1103 /* 1104 * ext4_mb_choose_next_group: choose next group for allocation. 1105 * 1106 * @ac Allocation Context 1107 * @new_cr This is an output parameter. If the there is no good group 1108 * available at current CR level, this field is updated to indicate 1109 * the new cr level that should be used. 1110 * @group This is an input / output parameter. As an input it indicates the 1111 * next group that the allocator intends to use for allocation. As 1112 * output, this field indicates the next group that should be used as 1113 * determined by the optimization functions. 1114 * @ngroups Total number of groups 1115 */ 1116 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, 1117 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 1118 { 1119 *new_cr = ac->ac_criteria; 1120 1121 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) { 1122 *group = next_linear_group(ac, *group, ngroups); 1123 return; 1124 } 1125 1126 if (*new_cr == CR_POWER2_ALIGNED) { 1127 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups); 1128 } else if (*new_cr == CR_GOAL_LEN_FAST) { 1129 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups); 1130 } else if (*new_cr == CR_BEST_AVAIL_LEN) { 1131 ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups); 1132 } else { 1133 /* 1134 * TODO: For CR=2, we can arrange groups in an rb tree sorted by 1135 * bb_free. But until that happens, we should never come here. 1136 */ 1137 WARN_ON(1); 1138 } 1139 } 1140 1141 /* 1142 * Cache the order of the largest free extent we have available in this block 1143 * group. 1144 */ 1145 static void 1146 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 1147 { 1148 struct ext4_sb_info *sbi = EXT4_SB(sb); 1149 int i; 1150 1151 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) 1152 if (grp->bb_counters[i] > 0) 1153 break; 1154 /* No need to move between order lists? */ 1155 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || 1156 i == grp->bb_largest_free_order) { 1157 grp->bb_largest_free_order = i; 1158 return; 1159 } 1160 1161 if (grp->bb_largest_free_order >= 0) { 1162 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1163 grp->bb_largest_free_order]); 1164 list_del_init(&grp->bb_largest_free_order_node); 1165 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1166 grp->bb_largest_free_order]); 1167 } 1168 grp->bb_largest_free_order = i; 1169 if (grp->bb_largest_free_order >= 0 && grp->bb_free) { 1170 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1171 grp->bb_largest_free_order]); 1172 list_add_tail(&grp->bb_largest_free_order_node, 1173 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); 1174 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1175 grp->bb_largest_free_order]); 1176 } 1177 } 1178 1179 static noinline_for_stack 1180 void ext4_mb_generate_buddy(struct super_block *sb, 1181 void *buddy, void *bitmap, ext4_group_t group, 1182 struct ext4_group_info *grp) 1183 { 1184 struct ext4_sb_info *sbi = EXT4_SB(sb); 1185 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 1186 ext4_grpblk_t i = 0; 1187 ext4_grpblk_t first; 1188 ext4_grpblk_t len; 1189 unsigned free = 0; 1190 unsigned fragments = 0; 1191 unsigned long long period = get_cycles(); 1192 1193 /* initialize buddy from bitmap which is aggregation 1194 * of on-disk bitmap and preallocations */ 1195 i = mb_find_next_zero_bit(bitmap, max, 0); 1196 grp->bb_first_free = i; 1197 while (i < max) { 1198 fragments++; 1199 first = i; 1200 i = mb_find_next_bit(bitmap, max, i); 1201 len = i - first; 1202 free += len; 1203 if (len > 1) 1204 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 1205 else 1206 grp->bb_counters[0]++; 1207 if (i < max) 1208 i = mb_find_next_zero_bit(bitmap, max, i); 1209 } 1210 grp->bb_fragments = fragments; 1211 1212 if (free != grp->bb_free) { 1213 ext4_grp_locked_error(sb, group, 0, 0, 1214 "block bitmap and bg descriptor " 1215 "inconsistent: %u vs %u free clusters", 1216 free, grp->bb_free); 1217 /* 1218 * If we intend to continue, we consider group descriptor 1219 * corrupt and update bb_free using bitmap value 1220 */ 1221 grp->bb_free = free; 1222 ext4_mark_group_bitmap_corrupted(sb, group, 1223 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1224 } 1225 mb_set_largest_free_order(sb, grp); 1226 mb_update_avg_fragment_size(sb, grp); 1227 1228 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 1229 1230 period = get_cycles() - period; 1231 atomic_inc(&sbi->s_mb_buddies_generated); 1232 atomic64_add(period, &sbi->s_mb_generation_time); 1233 } 1234 1235 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 1236 { 1237 int count; 1238 int order = 1; 1239 void *buddy; 1240 1241 while ((buddy = mb_find_buddy(e4b, order++, &count))) 1242 mb_set_bits(buddy, 0, count); 1243 1244 e4b->bd_info->bb_fragments = 0; 1245 memset(e4b->bd_info->bb_counters, 0, 1246 sizeof(*e4b->bd_info->bb_counters) * 1247 (e4b->bd_sb->s_blocksize_bits + 2)); 1248 1249 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 1250 e4b->bd_bitmap, e4b->bd_group, e4b->bd_info); 1251 } 1252 1253 /* The buddy information is attached the buddy cache inode 1254 * for convenience. The information regarding each group 1255 * is loaded via ext4_mb_load_buddy. The information involve 1256 * block bitmap and buddy information. The information are 1257 * stored in the inode as 1258 * 1259 * { page } 1260 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 1261 * 1262 * 1263 * one block each for bitmap and buddy information. 1264 * So for each group we take up 2 blocks. A page can 1265 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 1266 * So it can have information regarding groups_per_page which 1267 * is blocks_per_page/2 1268 * 1269 * Locking note: This routine takes the block group lock of all groups 1270 * for this page; do not hold this lock when calling this routine! 1271 */ 1272 1273 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 1274 { 1275 ext4_group_t ngroups; 1276 unsigned int blocksize; 1277 int blocks_per_page; 1278 int groups_per_page; 1279 int err = 0; 1280 int i; 1281 ext4_group_t first_group, group; 1282 int first_block; 1283 struct super_block *sb; 1284 struct buffer_head *bhs; 1285 struct buffer_head **bh = NULL; 1286 struct inode *inode; 1287 char *data; 1288 char *bitmap; 1289 struct ext4_group_info *grinfo; 1290 1291 inode = page->mapping->host; 1292 sb = inode->i_sb; 1293 ngroups = ext4_get_groups_count(sb); 1294 blocksize = i_blocksize(inode); 1295 blocks_per_page = PAGE_SIZE / blocksize; 1296 1297 mb_debug(sb, "init page %lu\n", page->index); 1298 1299 groups_per_page = blocks_per_page >> 1; 1300 if (groups_per_page == 0) 1301 groups_per_page = 1; 1302 1303 /* allocate buffer_heads to read bitmaps */ 1304 if (groups_per_page > 1) { 1305 i = sizeof(struct buffer_head *) * groups_per_page; 1306 bh = kzalloc(i, gfp); 1307 if (bh == NULL) 1308 return -ENOMEM; 1309 } else 1310 bh = &bhs; 1311 1312 first_group = page->index * blocks_per_page / 2; 1313 1314 /* read all groups the page covers into the cache */ 1315 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1316 if (group >= ngroups) 1317 break; 1318 1319 grinfo = ext4_get_group_info(sb, group); 1320 if (!grinfo) 1321 continue; 1322 /* 1323 * If page is uptodate then we came here after online resize 1324 * which added some new uninitialized group info structs, so 1325 * we must skip all initialized uptodate buddies on the page, 1326 * which may be currently in use by an allocating task. 1327 */ 1328 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 1329 bh[i] = NULL; 1330 continue; 1331 } 1332 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 1333 if (IS_ERR(bh[i])) { 1334 err = PTR_ERR(bh[i]); 1335 bh[i] = NULL; 1336 goto out; 1337 } 1338 mb_debug(sb, "read bitmap for group %u\n", group); 1339 } 1340 1341 /* wait for I/O completion */ 1342 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1343 int err2; 1344 1345 if (!bh[i]) 1346 continue; 1347 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 1348 if (!err) 1349 err = err2; 1350 } 1351 1352 first_block = page->index * blocks_per_page; 1353 for (i = 0; i < blocks_per_page; i++) { 1354 group = (first_block + i) >> 1; 1355 if (group >= ngroups) 1356 break; 1357 1358 if (!bh[group - first_group]) 1359 /* skip initialized uptodate buddy */ 1360 continue; 1361 1362 if (!buffer_verified(bh[group - first_group])) 1363 /* Skip faulty bitmaps */ 1364 continue; 1365 err = 0; 1366 1367 /* 1368 * data carry information regarding this 1369 * particular group in the format specified 1370 * above 1371 * 1372 */ 1373 data = page_address(page) + (i * blocksize); 1374 bitmap = bh[group - first_group]->b_data; 1375 1376 /* 1377 * We place the buddy block and bitmap block 1378 * close together 1379 */ 1380 grinfo = ext4_get_group_info(sb, group); 1381 if (!grinfo) { 1382 err = -EFSCORRUPTED; 1383 goto out; 1384 } 1385 if ((first_block + i) & 1) { 1386 /* this is block of buddy */ 1387 BUG_ON(incore == NULL); 1388 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 1389 group, page->index, i * blocksize); 1390 trace_ext4_mb_buddy_bitmap_load(sb, group); 1391 grinfo->bb_fragments = 0; 1392 memset(grinfo->bb_counters, 0, 1393 sizeof(*grinfo->bb_counters) * 1394 (MB_NUM_ORDERS(sb))); 1395 /* 1396 * incore got set to the group block bitmap below 1397 */ 1398 ext4_lock_group(sb, group); 1399 /* init the buddy */ 1400 memset(data, 0xff, blocksize); 1401 ext4_mb_generate_buddy(sb, data, incore, group, grinfo); 1402 ext4_unlock_group(sb, group); 1403 incore = NULL; 1404 } else { 1405 /* this is block of bitmap */ 1406 BUG_ON(incore != NULL); 1407 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 1408 group, page->index, i * blocksize); 1409 trace_ext4_mb_bitmap_load(sb, group); 1410 1411 /* see comments in ext4_mb_put_pa() */ 1412 ext4_lock_group(sb, group); 1413 memcpy(data, bitmap, blocksize); 1414 1415 /* mark all preallocated blks used in in-core bitmap */ 1416 ext4_mb_generate_from_pa(sb, data, group); 1417 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root)); 1418 ext4_unlock_group(sb, group); 1419 1420 /* set incore so that the buddy information can be 1421 * generated using this 1422 */ 1423 incore = data; 1424 } 1425 } 1426 SetPageUptodate(page); 1427 1428 out: 1429 if (bh) { 1430 for (i = 0; i < groups_per_page; i++) 1431 brelse(bh[i]); 1432 if (bh != &bhs) 1433 kfree(bh); 1434 } 1435 return err; 1436 } 1437 1438 /* 1439 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1440 * on the same buddy page doesn't happen whild holding the buddy page lock. 1441 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1442 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1443 */ 1444 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1445 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1446 { 1447 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1448 int block, pnum, poff; 1449 int blocks_per_page; 1450 struct page *page; 1451 1452 e4b->bd_buddy_page = NULL; 1453 e4b->bd_bitmap_page = NULL; 1454 1455 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1456 /* 1457 * the buddy cache inode stores the block bitmap 1458 * and buddy information in consecutive blocks. 1459 * So for each group we need two blocks. 1460 */ 1461 block = group * 2; 1462 pnum = block / blocks_per_page; 1463 poff = block % blocks_per_page; 1464 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1465 if (!page) 1466 return -ENOMEM; 1467 BUG_ON(page->mapping != inode->i_mapping); 1468 e4b->bd_bitmap_page = page; 1469 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1470 1471 if (blocks_per_page >= 2) { 1472 /* buddy and bitmap are on the same page */ 1473 return 0; 1474 } 1475 1476 block++; 1477 pnum = block / blocks_per_page; 1478 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1479 if (!page) 1480 return -ENOMEM; 1481 BUG_ON(page->mapping != inode->i_mapping); 1482 e4b->bd_buddy_page = page; 1483 return 0; 1484 } 1485 1486 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1487 { 1488 if (e4b->bd_bitmap_page) { 1489 unlock_page(e4b->bd_bitmap_page); 1490 put_page(e4b->bd_bitmap_page); 1491 } 1492 if (e4b->bd_buddy_page) { 1493 unlock_page(e4b->bd_buddy_page); 1494 put_page(e4b->bd_buddy_page); 1495 } 1496 } 1497 1498 /* 1499 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1500 * block group lock of all groups for this page; do not hold the BG lock when 1501 * calling this routine! 1502 */ 1503 static noinline_for_stack 1504 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1505 { 1506 1507 struct ext4_group_info *this_grp; 1508 struct ext4_buddy e4b; 1509 struct page *page; 1510 int ret = 0; 1511 1512 might_sleep(); 1513 mb_debug(sb, "init group %u\n", group); 1514 this_grp = ext4_get_group_info(sb, group); 1515 if (!this_grp) 1516 return -EFSCORRUPTED; 1517 1518 /* 1519 * This ensures that we don't reinit the buddy cache 1520 * page which map to the group from which we are already 1521 * allocating. If we are looking at the buddy cache we would 1522 * have taken a reference using ext4_mb_load_buddy and that 1523 * would have pinned buddy page to page cache. 1524 * The call to ext4_mb_get_buddy_page_lock will mark the 1525 * page accessed. 1526 */ 1527 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1528 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1529 /* 1530 * somebody initialized the group 1531 * return without doing anything 1532 */ 1533 goto err; 1534 } 1535 1536 page = e4b.bd_bitmap_page; 1537 ret = ext4_mb_init_cache(page, NULL, gfp); 1538 if (ret) 1539 goto err; 1540 if (!PageUptodate(page)) { 1541 ret = -EIO; 1542 goto err; 1543 } 1544 1545 if (e4b.bd_buddy_page == NULL) { 1546 /* 1547 * If both the bitmap and buddy are in 1548 * the same page we don't need to force 1549 * init the buddy 1550 */ 1551 ret = 0; 1552 goto err; 1553 } 1554 /* init buddy cache */ 1555 page = e4b.bd_buddy_page; 1556 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1557 if (ret) 1558 goto err; 1559 if (!PageUptodate(page)) { 1560 ret = -EIO; 1561 goto err; 1562 } 1563 err: 1564 ext4_mb_put_buddy_page_lock(&e4b); 1565 return ret; 1566 } 1567 1568 /* 1569 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1570 * block group lock of all groups for this page; do not hold the BG lock when 1571 * calling this routine! 1572 */ 1573 static noinline_for_stack int 1574 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1575 struct ext4_buddy *e4b, gfp_t gfp) 1576 { 1577 int blocks_per_page; 1578 int block; 1579 int pnum; 1580 int poff; 1581 struct page *page; 1582 int ret; 1583 struct ext4_group_info *grp; 1584 struct ext4_sb_info *sbi = EXT4_SB(sb); 1585 struct inode *inode = sbi->s_buddy_cache; 1586 1587 might_sleep(); 1588 mb_debug(sb, "load group %u\n", group); 1589 1590 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1591 grp = ext4_get_group_info(sb, group); 1592 if (!grp) 1593 return -EFSCORRUPTED; 1594 1595 e4b->bd_blkbits = sb->s_blocksize_bits; 1596 e4b->bd_info = grp; 1597 e4b->bd_sb = sb; 1598 e4b->bd_group = group; 1599 e4b->bd_buddy_page = NULL; 1600 e4b->bd_bitmap_page = NULL; 1601 1602 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1603 /* 1604 * we need full data about the group 1605 * to make a good selection 1606 */ 1607 ret = ext4_mb_init_group(sb, group, gfp); 1608 if (ret) 1609 return ret; 1610 } 1611 1612 /* 1613 * the buddy cache inode stores the block bitmap 1614 * and buddy information in consecutive blocks. 1615 * So for each group we need two blocks. 1616 */ 1617 block = group * 2; 1618 pnum = block / blocks_per_page; 1619 poff = block % blocks_per_page; 1620 1621 /* we could use find_or_create_page(), but it locks page 1622 * what we'd like to avoid in fast path ... */ 1623 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1624 if (page == NULL || !PageUptodate(page)) { 1625 if (page) 1626 /* 1627 * drop the page reference and try 1628 * to get the page with lock. If we 1629 * are not uptodate that implies 1630 * somebody just created the page but 1631 * is yet to initialize the same. So 1632 * wait for it to initialize. 1633 */ 1634 put_page(page); 1635 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1636 if (page) { 1637 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1638 "ext4: bitmap's paging->mapping != inode->i_mapping\n")) { 1639 /* should never happen */ 1640 unlock_page(page); 1641 ret = -EINVAL; 1642 goto err; 1643 } 1644 if (!PageUptodate(page)) { 1645 ret = ext4_mb_init_cache(page, NULL, gfp); 1646 if (ret) { 1647 unlock_page(page); 1648 goto err; 1649 } 1650 mb_cmp_bitmaps(e4b, page_address(page) + 1651 (poff * sb->s_blocksize)); 1652 } 1653 unlock_page(page); 1654 } 1655 } 1656 if (page == NULL) { 1657 ret = -ENOMEM; 1658 goto err; 1659 } 1660 if (!PageUptodate(page)) { 1661 ret = -EIO; 1662 goto err; 1663 } 1664 1665 /* Pages marked accessed already */ 1666 e4b->bd_bitmap_page = page; 1667 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1668 1669 block++; 1670 pnum = block / blocks_per_page; 1671 poff = block % blocks_per_page; 1672 1673 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1674 if (page == NULL || !PageUptodate(page)) { 1675 if (page) 1676 put_page(page); 1677 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1678 if (page) { 1679 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1680 "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) { 1681 /* should never happen */ 1682 unlock_page(page); 1683 ret = -EINVAL; 1684 goto err; 1685 } 1686 if (!PageUptodate(page)) { 1687 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1688 gfp); 1689 if (ret) { 1690 unlock_page(page); 1691 goto err; 1692 } 1693 } 1694 unlock_page(page); 1695 } 1696 } 1697 if (page == NULL) { 1698 ret = -ENOMEM; 1699 goto err; 1700 } 1701 if (!PageUptodate(page)) { 1702 ret = -EIO; 1703 goto err; 1704 } 1705 1706 /* Pages marked accessed already */ 1707 e4b->bd_buddy_page = page; 1708 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1709 1710 return 0; 1711 1712 err: 1713 if (page) 1714 put_page(page); 1715 if (e4b->bd_bitmap_page) 1716 put_page(e4b->bd_bitmap_page); 1717 1718 e4b->bd_buddy = NULL; 1719 e4b->bd_bitmap = NULL; 1720 return ret; 1721 } 1722 1723 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1724 struct ext4_buddy *e4b) 1725 { 1726 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1727 } 1728 1729 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1730 { 1731 if (e4b->bd_bitmap_page) 1732 put_page(e4b->bd_bitmap_page); 1733 if (e4b->bd_buddy_page) 1734 put_page(e4b->bd_buddy_page); 1735 } 1736 1737 1738 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1739 { 1740 int order = 1, max; 1741 void *bb; 1742 1743 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1744 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1745 1746 while (order <= e4b->bd_blkbits + 1) { 1747 bb = mb_find_buddy(e4b, order, &max); 1748 if (!mb_test_bit(block >> order, bb)) { 1749 /* this block is part of buddy of order 'order' */ 1750 return order; 1751 } 1752 order++; 1753 } 1754 return 0; 1755 } 1756 1757 static void mb_clear_bits(void *bm, int cur, int len) 1758 { 1759 __u32 *addr; 1760 1761 len = cur + len; 1762 while (cur < len) { 1763 if ((cur & 31) == 0 && (len - cur) >= 32) { 1764 /* fast path: clear whole word at once */ 1765 addr = bm + (cur >> 3); 1766 *addr = 0; 1767 cur += 32; 1768 continue; 1769 } 1770 mb_clear_bit(cur, bm); 1771 cur++; 1772 } 1773 } 1774 1775 /* clear bits in given range 1776 * will return first found zero bit if any, -1 otherwise 1777 */ 1778 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1779 { 1780 __u32 *addr; 1781 int zero_bit = -1; 1782 1783 len = cur + len; 1784 while (cur < len) { 1785 if ((cur & 31) == 0 && (len - cur) >= 32) { 1786 /* fast path: clear whole word at once */ 1787 addr = bm + (cur >> 3); 1788 if (*addr != (__u32)(-1) && zero_bit == -1) 1789 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1790 *addr = 0; 1791 cur += 32; 1792 continue; 1793 } 1794 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1795 zero_bit = cur; 1796 cur++; 1797 } 1798 1799 return zero_bit; 1800 } 1801 1802 void mb_set_bits(void *bm, int cur, int len) 1803 { 1804 __u32 *addr; 1805 1806 len = cur + len; 1807 while (cur < len) { 1808 if ((cur & 31) == 0 && (len - cur) >= 32) { 1809 /* fast path: set whole word at once */ 1810 addr = bm + (cur >> 3); 1811 *addr = 0xffffffff; 1812 cur += 32; 1813 continue; 1814 } 1815 mb_set_bit(cur, bm); 1816 cur++; 1817 } 1818 } 1819 1820 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1821 { 1822 if (mb_test_bit(*bit + side, bitmap)) { 1823 mb_clear_bit(*bit, bitmap); 1824 (*bit) -= side; 1825 return 1; 1826 } 1827 else { 1828 (*bit) += side; 1829 mb_set_bit(*bit, bitmap); 1830 return -1; 1831 } 1832 } 1833 1834 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1835 { 1836 int max; 1837 int order = 1; 1838 void *buddy = mb_find_buddy(e4b, order, &max); 1839 1840 while (buddy) { 1841 void *buddy2; 1842 1843 /* Bits in range [first; last] are known to be set since 1844 * corresponding blocks were allocated. Bits in range 1845 * (first; last) will stay set because they form buddies on 1846 * upper layer. We just deal with borders if they don't 1847 * align with upper layer and then go up. 1848 * Releasing entire group is all about clearing 1849 * single bit of highest order buddy. 1850 */ 1851 1852 /* Example: 1853 * --------------------------------- 1854 * | 1 | 1 | 1 | 1 | 1855 * --------------------------------- 1856 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1857 * --------------------------------- 1858 * 0 1 2 3 4 5 6 7 1859 * \_____________________/ 1860 * 1861 * Neither [1] nor [6] is aligned to above layer. 1862 * Left neighbour [0] is free, so mark it busy, 1863 * decrease bb_counters and extend range to 1864 * [0; 6] 1865 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1866 * mark [6] free, increase bb_counters and shrink range to 1867 * [0; 5]. 1868 * Then shift range to [0; 2], go up and do the same. 1869 */ 1870 1871 1872 if (first & 1) 1873 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1874 if (!(last & 1)) 1875 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1876 if (first > last) 1877 break; 1878 order++; 1879 1880 buddy2 = mb_find_buddy(e4b, order, &max); 1881 if (!buddy2) { 1882 mb_clear_bits(buddy, first, last - first + 1); 1883 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1884 break; 1885 } 1886 first >>= 1; 1887 last >>= 1; 1888 buddy = buddy2; 1889 } 1890 } 1891 1892 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1893 int first, int count) 1894 { 1895 int left_is_free = 0; 1896 int right_is_free = 0; 1897 int block; 1898 int last = first + count - 1; 1899 struct super_block *sb = e4b->bd_sb; 1900 1901 if (WARN_ON(count == 0)) 1902 return; 1903 BUG_ON(last >= (sb->s_blocksize << 3)); 1904 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1905 /* Don't bother if the block group is corrupt. */ 1906 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1907 return; 1908 1909 mb_check_buddy(e4b); 1910 mb_free_blocks_double(inode, e4b, first, count); 1911 1912 /* access memory sequentially: check left neighbour, 1913 * clear range and then check right neighbour 1914 */ 1915 if (first != 0) 1916 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1917 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1918 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1919 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1920 1921 if (unlikely(block != -1)) { 1922 struct ext4_sb_info *sbi = EXT4_SB(sb); 1923 ext4_fsblk_t blocknr; 1924 1925 /* 1926 * Fastcommit replay can free already freed blocks which 1927 * corrupts allocation info. Regenerate it. 1928 */ 1929 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 1930 mb_regenerate_buddy(e4b); 1931 goto check; 1932 } 1933 1934 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1935 blocknr += EXT4_C2B(sbi, block); 1936 ext4_grp_locked_error(sb, e4b->bd_group, 1937 inode ? inode->i_ino : 0, blocknr, 1938 "freeing already freed block (bit %u); block bitmap corrupt.", 1939 block); 1940 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1941 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1942 return; 1943 } 1944 1945 this_cpu_inc(discard_pa_seq); 1946 e4b->bd_info->bb_free += count; 1947 if (first < e4b->bd_info->bb_first_free) 1948 e4b->bd_info->bb_first_free = first; 1949 1950 /* let's maintain fragments counter */ 1951 if (left_is_free && right_is_free) 1952 e4b->bd_info->bb_fragments--; 1953 else if (!left_is_free && !right_is_free) 1954 e4b->bd_info->bb_fragments++; 1955 1956 /* buddy[0] == bd_bitmap is a special case, so handle 1957 * it right away and let mb_buddy_mark_free stay free of 1958 * zero order checks. 1959 * Check if neighbours are to be coaleasced, 1960 * adjust bitmap bb_counters and borders appropriately. 1961 */ 1962 if (first & 1) { 1963 first += !left_is_free; 1964 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1965 } 1966 if (!(last & 1)) { 1967 last -= !right_is_free; 1968 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1969 } 1970 1971 if (first <= last) 1972 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1973 1974 mb_set_largest_free_order(sb, e4b->bd_info); 1975 mb_update_avg_fragment_size(sb, e4b->bd_info); 1976 check: 1977 mb_check_buddy(e4b); 1978 } 1979 1980 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1981 int needed, struct ext4_free_extent *ex) 1982 { 1983 int next = block; 1984 int max, order; 1985 void *buddy; 1986 1987 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1988 BUG_ON(ex == NULL); 1989 1990 buddy = mb_find_buddy(e4b, 0, &max); 1991 BUG_ON(buddy == NULL); 1992 BUG_ON(block >= max); 1993 if (mb_test_bit(block, buddy)) { 1994 ex->fe_len = 0; 1995 ex->fe_start = 0; 1996 ex->fe_group = 0; 1997 return 0; 1998 } 1999 2000 /* find actual order */ 2001 order = mb_find_order_for_block(e4b, block); 2002 block = block >> order; 2003 2004 ex->fe_len = 1 << order; 2005 ex->fe_start = block << order; 2006 ex->fe_group = e4b->bd_group; 2007 2008 /* calc difference from given start */ 2009 next = next - ex->fe_start; 2010 ex->fe_len -= next; 2011 ex->fe_start += next; 2012 2013 while (needed > ex->fe_len && 2014 mb_find_buddy(e4b, order, &max)) { 2015 2016 if (block + 1 >= max) 2017 break; 2018 2019 next = (block + 1) * (1 << order); 2020 if (mb_test_bit(next, e4b->bd_bitmap)) 2021 break; 2022 2023 order = mb_find_order_for_block(e4b, next); 2024 2025 block = next >> order; 2026 ex->fe_len += 1 << order; 2027 } 2028 2029 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 2030 /* Should never happen! (but apparently sometimes does?!?) */ 2031 WARN_ON(1); 2032 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, 2033 "corruption or bug in mb_find_extent " 2034 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 2035 block, order, needed, ex->fe_group, ex->fe_start, 2036 ex->fe_len, ex->fe_logical); 2037 ex->fe_len = 0; 2038 ex->fe_start = 0; 2039 ex->fe_group = 0; 2040 } 2041 return ex->fe_len; 2042 } 2043 2044 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 2045 { 2046 int ord; 2047 int mlen = 0; 2048 int max = 0; 2049 int cur; 2050 int start = ex->fe_start; 2051 int len = ex->fe_len; 2052 unsigned ret = 0; 2053 int len0 = len; 2054 void *buddy; 2055 bool split = false; 2056 2057 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 2058 BUG_ON(e4b->bd_group != ex->fe_group); 2059 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 2060 mb_check_buddy(e4b); 2061 mb_mark_used_double(e4b, start, len); 2062 2063 this_cpu_inc(discard_pa_seq); 2064 e4b->bd_info->bb_free -= len; 2065 if (e4b->bd_info->bb_first_free == start) 2066 e4b->bd_info->bb_first_free += len; 2067 2068 /* let's maintain fragments counter */ 2069 if (start != 0) 2070 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 2071 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 2072 max = !mb_test_bit(start + len, e4b->bd_bitmap); 2073 if (mlen && max) 2074 e4b->bd_info->bb_fragments++; 2075 else if (!mlen && !max) 2076 e4b->bd_info->bb_fragments--; 2077 2078 /* let's maintain buddy itself */ 2079 while (len) { 2080 if (!split) 2081 ord = mb_find_order_for_block(e4b, start); 2082 2083 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 2084 /* the whole chunk may be allocated at once! */ 2085 mlen = 1 << ord; 2086 if (!split) 2087 buddy = mb_find_buddy(e4b, ord, &max); 2088 else 2089 split = false; 2090 BUG_ON((start >> ord) >= max); 2091 mb_set_bit(start >> ord, buddy); 2092 e4b->bd_info->bb_counters[ord]--; 2093 start += mlen; 2094 len -= mlen; 2095 BUG_ON(len < 0); 2096 continue; 2097 } 2098 2099 /* store for history */ 2100 if (ret == 0) 2101 ret = len | (ord << 16); 2102 2103 /* we have to split large buddy */ 2104 BUG_ON(ord <= 0); 2105 buddy = mb_find_buddy(e4b, ord, &max); 2106 mb_set_bit(start >> ord, buddy); 2107 e4b->bd_info->bb_counters[ord]--; 2108 2109 ord--; 2110 cur = (start >> ord) & ~1U; 2111 buddy = mb_find_buddy(e4b, ord, &max); 2112 mb_clear_bit(cur, buddy); 2113 mb_clear_bit(cur + 1, buddy); 2114 e4b->bd_info->bb_counters[ord]++; 2115 e4b->bd_info->bb_counters[ord]++; 2116 split = true; 2117 } 2118 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 2119 2120 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); 2121 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 2122 mb_check_buddy(e4b); 2123 2124 return ret; 2125 } 2126 2127 /* 2128 * Must be called under group lock! 2129 */ 2130 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 2131 struct ext4_buddy *e4b) 2132 { 2133 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2134 int ret; 2135 2136 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 2137 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2138 2139 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 2140 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 2141 ret = mb_mark_used(e4b, &ac->ac_b_ex); 2142 2143 /* preallocation can change ac_b_ex, thus we store actually 2144 * allocated blocks for history */ 2145 ac->ac_f_ex = ac->ac_b_ex; 2146 2147 ac->ac_status = AC_STATUS_FOUND; 2148 ac->ac_tail = ret & 0xffff; 2149 ac->ac_buddy = ret >> 16; 2150 2151 /* 2152 * take the page reference. We want the page to be pinned 2153 * so that we don't get a ext4_mb_init_cache_call for this 2154 * group until we update the bitmap. That would mean we 2155 * double allocate blocks. The reference is dropped 2156 * in ext4_mb_release_context 2157 */ 2158 ac->ac_bitmap_page = e4b->bd_bitmap_page; 2159 get_page(ac->ac_bitmap_page); 2160 ac->ac_buddy_page = e4b->bd_buddy_page; 2161 get_page(ac->ac_buddy_page); 2162 /* store last allocated for subsequent stream allocation */ 2163 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2164 spin_lock(&sbi->s_md_lock); 2165 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 2166 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 2167 spin_unlock(&sbi->s_md_lock); 2168 } 2169 /* 2170 * As we've just preallocated more space than 2171 * user requested originally, we store allocated 2172 * space in a special descriptor. 2173 */ 2174 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 2175 ext4_mb_new_preallocation(ac); 2176 2177 } 2178 2179 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 2180 struct ext4_buddy *e4b, 2181 int finish_group) 2182 { 2183 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2184 struct ext4_free_extent *bex = &ac->ac_b_ex; 2185 struct ext4_free_extent *gex = &ac->ac_g_ex; 2186 2187 if (ac->ac_status == AC_STATUS_FOUND) 2188 return; 2189 /* 2190 * We don't want to scan for a whole year 2191 */ 2192 if (ac->ac_found > sbi->s_mb_max_to_scan && 2193 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2194 ac->ac_status = AC_STATUS_BREAK; 2195 return; 2196 } 2197 2198 /* 2199 * Haven't found good chunk so far, let's continue 2200 */ 2201 if (bex->fe_len < gex->fe_len) 2202 return; 2203 2204 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 2205 ext4_mb_use_best_found(ac, e4b); 2206 } 2207 2208 /* 2209 * The routine checks whether found extent is good enough. If it is, 2210 * then the extent gets marked used and flag is set to the context 2211 * to stop scanning. Otherwise, the extent is compared with the 2212 * previous found extent and if new one is better, then it's stored 2213 * in the context. Later, the best found extent will be used, if 2214 * mballoc can't find good enough extent. 2215 * 2216 * The algorithm used is roughly as follows: 2217 * 2218 * * If free extent found is exactly as big as goal, then 2219 * stop the scan and use it immediately 2220 * 2221 * * If free extent found is smaller than goal, then keep retrying 2222 * upto a max of sbi->s_mb_max_to_scan times (default 200). After 2223 * that stop scanning and use whatever we have. 2224 * 2225 * * If free extent found is bigger than goal, then keep retrying 2226 * upto a max of sbi->s_mb_min_to_scan times (default 10) before 2227 * stopping the scan and using the extent. 2228 * 2229 * 2230 * FIXME: real allocation policy is to be designed yet! 2231 */ 2232 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 2233 struct ext4_free_extent *ex, 2234 struct ext4_buddy *e4b) 2235 { 2236 struct ext4_free_extent *bex = &ac->ac_b_ex; 2237 struct ext4_free_extent *gex = &ac->ac_g_ex; 2238 2239 BUG_ON(ex->fe_len <= 0); 2240 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2241 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2242 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 2243 2244 ac->ac_found++; 2245 ac->ac_cX_found[ac->ac_criteria]++; 2246 2247 /* 2248 * The special case - take what you catch first 2249 */ 2250 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2251 *bex = *ex; 2252 ext4_mb_use_best_found(ac, e4b); 2253 return; 2254 } 2255 2256 /* 2257 * Let's check whether the chuck is good enough 2258 */ 2259 if (ex->fe_len == gex->fe_len) { 2260 *bex = *ex; 2261 ext4_mb_use_best_found(ac, e4b); 2262 return; 2263 } 2264 2265 /* 2266 * If this is first found extent, just store it in the context 2267 */ 2268 if (bex->fe_len == 0) { 2269 *bex = *ex; 2270 return; 2271 } 2272 2273 /* 2274 * If new found extent is better, store it in the context 2275 */ 2276 if (bex->fe_len < gex->fe_len) { 2277 /* if the request isn't satisfied, any found extent 2278 * larger than previous best one is better */ 2279 if (ex->fe_len > bex->fe_len) 2280 *bex = *ex; 2281 } else if (ex->fe_len > gex->fe_len) { 2282 /* if the request is satisfied, then we try to find 2283 * an extent that still satisfy the request, but is 2284 * smaller than previous one */ 2285 if (ex->fe_len < bex->fe_len) 2286 *bex = *ex; 2287 } 2288 2289 ext4_mb_check_limits(ac, e4b, 0); 2290 } 2291 2292 static noinline_for_stack 2293 void ext4_mb_try_best_found(struct ext4_allocation_context *ac, 2294 struct ext4_buddy *e4b) 2295 { 2296 struct ext4_free_extent ex = ac->ac_b_ex; 2297 ext4_group_t group = ex.fe_group; 2298 int max; 2299 int err; 2300 2301 BUG_ON(ex.fe_len <= 0); 2302 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2303 if (err) 2304 return; 2305 2306 ext4_lock_group(ac->ac_sb, group); 2307 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 2308 2309 if (max > 0) { 2310 ac->ac_b_ex = ex; 2311 ext4_mb_use_best_found(ac, e4b); 2312 } 2313 2314 ext4_unlock_group(ac->ac_sb, group); 2315 ext4_mb_unload_buddy(e4b); 2316 } 2317 2318 static noinline_for_stack 2319 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 2320 struct ext4_buddy *e4b) 2321 { 2322 ext4_group_t group = ac->ac_g_ex.fe_group; 2323 int max; 2324 int err; 2325 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2326 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2327 struct ext4_free_extent ex; 2328 2329 if (!grp) 2330 return -EFSCORRUPTED; 2331 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY))) 2332 return 0; 2333 if (grp->bb_free == 0) 2334 return 0; 2335 2336 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2337 if (err) 2338 return err; 2339 2340 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 2341 ext4_mb_unload_buddy(e4b); 2342 return 0; 2343 } 2344 2345 ext4_lock_group(ac->ac_sb, group); 2346 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 2347 ac->ac_g_ex.fe_len, &ex); 2348 ex.fe_logical = 0xDEADFA11; /* debug value */ 2349 2350 if (max >= ac->ac_g_ex.fe_len && 2351 ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) { 2352 ext4_fsblk_t start; 2353 2354 start = ext4_grp_offs_to_block(ac->ac_sb, &ex); 2355 /* use do_div to get remainder (would be 64-bit modulo) */ 2356 if (do_div(start, sbi->s_stripe) == 0) { 2357 ac->ac_found++; 2358 ac->ac_b_ex = ex; 2359 ext4_mb_use_best_found(ac, e4b); 2360 } 2361 } else if (max >= ac->ac_g_ex.fe_len) { 2362 BUG_ON(ex.fe_len <= 0); 2363 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2364 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2365 ac->ac_found++; 2366 ac->ac_b_ex = ex; 2367 ext4_mb_use_best_found(ac, e4b); 2368 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 2369 /* Sometimes, caller may want to merge even small 2370 * number of blocks to an existing extent */ 2371 BUG_ON(ex.fe_len <= 0); 2372 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2373 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2374 ac->ac_found++; 2375 ac->ac_b_ex = ex; 2376 ext4_mb_use_best_found(ac, e4b); 2377 } 2378 ext4_unlock_group(ac->ac_sb, group); 2379 ext4_mb_unload_buddy(e4b); 2380 2381 return 0; 2382 } 2383 2384 /* 2385 * The routine scans buddy structures (not bitmap!) from given order 2386 * to max order and tries to find big enough chunk to satisfy the req 2387 */ 2388 static noinline_for_stack 2389 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 2390 struct ext4_buddy *e4b) 2391 { 2392 struct super_block *sb = ac->ac_sb; 2393 struct ext4_group_info *grp = e4b->bd_info; 2394 void *buddy; 2395 int i; 2396 int k; 2397 int max; 2398 2399 BUG_ON(ac->ac_2order <= 0); 2400 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { 2401 if (grp->bb_counters[i] == 0) 2402 continue; 2403 2404 buddy = mb_find_buddy(e4b, i, &max); 2405 if (WARN_RATELIMIT(buddy == NULL, 2406 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i)) 2407 continue; 2408 2409 k = mb_find_next_zero_bit(buddy, max, 0); 2410 if (k >= max) { 2411 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 2412 "%d free clusters of order %d. But found 0", 2413 grp->bb_counters[i], i); 2414 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 2415 e4b->bd_group, 2416 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2417 break; 2418 } 2419 ac->ac_found++; 2420 ac->ac_cX_found[ac->ac_criteria]++; 2421 2422 ac->ac_b_ex.fe_len = 1 << i; 2423 ac->ac_b_ex.fe_start = k << i; 2424 ac->ac_b_ex.fe_group = e4b->bd_group; 2425 2426 ext4_mb_use_best_found(ac, e4b); 2427 2428 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2429 2430 if (EXT4_SB(sb)->s_mb_stats) 2431 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2432 2433 break; 2434 } 2435 } 2436 2437 /* 2438 * The routine scans the group and measures all found extents. 2439 * In order to optimize scanning, caller must pass number of 2440 * free blocks in the group, so the routine can know upper limit. 2441 */ 2442 static noinline_for_stack 2443 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2444 struct ext4_buddy *e4b) 2445 { 2446 struct super_block *sb = ac->ac_sb; 2447 void *bitmap = e4b->bd_bitmap; 2448 struct ext4_free_extent ex; 2449 int i, j, freelen; 2450 int free; 2451 2452 free = e4b->bd_info->bb_free; 2453 if (WARN_ON(free <= 0)) 2454 return; 2455 2456 i = e4b->bd_info->bb_first_free; 2457 2458 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2459 i = mb_find_next_zero_bit(bitmap, 2460 EXT4_CLUSTERS_PER_GROUP(sb), i); 2461 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2462 /* 2463 * IF we have corrupt bitmap, we won't find any 2464 * free blocks even though group info says we 2465 * have free blocks 2466 */ 2467 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2468 "%d free clusters as per " 2469 "group info. But bitmap says 0", 2470 free); 2471 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2472 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2473 break; 2474 } 2475 2476 if (!ext4_mb_cr_expensive(ac->ac_criteria)) { 2477 /* 2478 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are 2479 * sure that this group will have a large enough 2480 * continuous free extent, so skip over the smaller free 2481 * extents 2482 */ 2483 j = mb_find_next_bit(bitmap, 2484 EXT4_CLUSTERS_PER_GROUP(sb), i); 2485 freelen = j - i; 2486 2487 if (freelen < ac->ac_g_ex.fe_len) { 2488 i = j; 2489 free -= freelen; 2490 continue; 2491 } 2492 } 2493 2494 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2495 if (WARN_ON(ex.fe_len <= 0)) 2496 break; 2497 if (free < ex.fe_len) { 2498 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2499 "%d free clusters as per " 2500 "group info. But got %d blocks", 2501 free, ex.fe_len); 2502 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2503 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2504 /* 2505 * The number of free blocks differs. This mostly 2506 * indicate that the bitmap is corrupt. So exit 2507 * without claiming the space. 2508 */ 2509 break; 2510 } 2511 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2512 ext4_mb_measure_extent(ac, &ex, e4b); 2513 2514 i += ex.fe_len; 2515 free -= ex.fe_len; 2516 } 2517 2518 ext4_mb_check_limits(ac, e4b, 1); 2519 } 2520 2521 /* 2522 * This is a special case for storages like raid5 2523 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2524 */ 2525 static noinline_for_stack 2526 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2527 struct ext4_buddy *e4b) 2528 { 2529 struct super_block *sb = ac->ac_sb; 2530 struct ext4_sb_info *sbi = EXT4_SB(sb); 2531 void *bitmap = e4b->bd_bitmap; 2532 struct ext4_free_extent ex; 2533 ext4_fsblk_t first_group_block; 2534 ext4_fsblk_t a; 2535 ext4_grpblk_t i, stripe; 2536 int max; 2537 2538 BUG_ON(sbi->s_stripe == 0); 2539 2540 /* find first stripe-aligned block in group */ 2541 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2542 2543 a = first_group_block + sbi->s_stripe - 1; 2544 do_div(a, sbi->s_stripe); 2545 i = (a * sbi->s_stripe) - first_group_block; 2546 2547 stripe = EXT4_B2C(sbi, sbi->s_stripe); 2548 i = EXT4_B2C(sbi, i); 2549 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2550 if (!mb_test_bit(i, bitmap)) { 2551 max = mb_find_extent(e4b, i, stripe, &ex); 2552 if (max >= stripe) { 2553 ac->ac_found++; 2554 ac->ac_cX_found[ac->ac_criteria]++; 2555 ex.fe_logical = 0xDEADF00D; /* debug value */ 2556 ac->ac_b_ex = ex; 2557 ext4_mb_use_best_found(ac, e4b); 2558 break; 2559 } 2560 } 2561 i += stripe; 2562 } 2563 } 2564 2565 /* 2566 * This is also called BEFORE we load the buddy bitmap. 2567 * Returns either 1 or 0 indicating that the group is either suitable 2568 * for the allocation or not. 2569 */ 2570 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2571 ext4_group_t group, enum criteria cr) 2572 { 2573 ext4_grpblk_t free, fragments; 2574 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2575 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2576 2577 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS); 2578 2579 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2580 return false; 2581 2582 free = grp->bb_free; 2583 if (free == 0) 2584 return false; 2585 2586 fragments = grp->bb_fragments; 2587 if (fragments == 0) 2588 return false; 2589 2590 switch (cr) { 2591 case CR_POWER2_ALIGNED: 2592 BUG_ON(ac->ac_2order == 0); 2593 2594 /* Avoid using the first bg of a flexgroup for data files */ 2595 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2596 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2597 ((group % flex_size) == 0)) 2598 return false; 2599 2600 if (free < ac->ac_g_ex.fe_len) 2601 return false; 2602 2603 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) 2604 return true; 2605 2606 if (grp->bb_largest_free_order < ac->ac_2order) 2607 return false; 2608 2609 return true; 2610 case CR_GOAL_LEN_FAST: 2611 case CR_BEST_AVAIL_LEN: 2612 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2613 return true; 2614 break; 2615 case CR_GOAL_LEN_SLOW: 2616 if (free >= ac->ac_g_ex.fe_len) 2617 return true; 2618 break; 2619 case CR_ANY_FREE: 2620 return true; 2621 default: 2622 BUG(); 2623 } 2624 2625 return false; 2626 } 2627 2628 /* 2629 * This could return negative error code if something goes wrong 2630 * during ext4_mb_init_group(). This should not be called with 2631 * ext4_lock_group() held. 2632 * 2633 * Note: because we are conditionally operating with the group lock in 2634 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this 2635 * function using __acquire and __release. This means we need to be 2636 * super careful before messing with the error path handling via "goto 2637 * out"! 2638 */ 2639 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2640 ext4_group_t group, enum criteria cr) 2641 { 2642 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2643 struct super_block *sb = ac->ac_sb; 2644 struct ext4_sb_info *sbi = EXT4_SB(sb); 2645 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2646 ext4_grpblk_t free; 2647 int ret = 0; 2648 2649 if (!grp) 2650 return -EFSCORRUPTED; 2651 if (sbi->s_mb_stats) 2652 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2653 if (should_lock) { 2654 ext4_lock_group(sb, group); 2655 __release(ext4_group_lock_ptr(sb, group)); 2656 } 2657 free = grp->bb_free; 2658 if (free == 0) 2659 goto out; 2660 /* 2661 * In all criterias except CR_ANY_FREE we try to avoid groups that 2662 * can't possibly satisfy the full goal request due to insufficient 2663 * free blocks. 2664 */ 2665 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len) 2666 goto out; 2667 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2668 goto out; 2669 if (should_lock) { 2670 __acquire(ext4_group_lock_ptr(sb, group)); 2671 ext4_unlock_group(sb, group); 2672 } 2673 2674 /* We only do this if the grp has never been initialized */ 2675 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2676 struct ext4_group_desc *gdp = 2677 ext4_get_group_desc(sb, group, NULL); 2678 int ret; 2679 2680 /* 2681 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic 2682 * search to find large good chunks almost for free. If buddy 2683 * data is not ready, then this optimization makes no sense. But 2684 * we never skip the first block group in a flex_bg, since this 2685 * gets used for metadata block allocation, and we want to make 2686 * sure we locate metadata blocks in the first block group in 2687 * the flex_bg if possible. 2688 */ 2689 if (!ext4_mb_cr_expensive(cr) && 2690 (!sbi->s_log_groups_per_flex || 2691 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2692 !(ext4_has_group_desc_csum(sb) && 2693 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2694 return 0; 2695 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2696 if (ret) 2697 return ret; 2698 } 2699 2700 if (should_lock) { 2701 ext4_lock_group(sb, group); 2702 __release(ext4_group_lock_ptr(sb, group)); 2703 } 2704 ret = ext4_mb_good_group(ac, group, cr); 2705 out: 2706 if (should_lock) { 2707 __acquire(ext4_group_lock_ptr(sb, group)); 2708 ext4_unlock_group(sb, group); 2709 } 2710 return ret; 2711 } 2712 2713 /* 2714 * Start prefetching @nr block bitmaps starting at @group. 2715 * Return the next group which needs to be prefetched. 2716 */ 2717 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2718 unsigned int nr, int *cnt) 2719 { 2720 ext4_group_t ngroups = ext4_get_groups_count(sb); 2721 struct buffer_head *bh; 2722 struct blk_plug plug; 2723 2724 blk_start_plug(&plug); 2725 while (nr-- > 0) { 2726 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2727 NULL); 2728 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2729 2730 /* 2731 * Prefetch block groups with free blocks; but don't 2732 * bother if it is marked uninitialized on disk, since 2733 * it won't require I/O to read. Also only try to 2734 * prefetch once, so we avoid getblk() call, which can 2735 * be expensive. 2736 */ 2737 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2738 EXT4_MB_GRP_NEED_INIT(grp) && 2739 ext4_free_group_clusters(sb, gdp) > 0 ) { 2740 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2741 if (bh && !IS_ERR(bh)) { 2742 if (!buffer_uptodate(bh) && cnt) 2743 (*cnt)++; 2744 brelse(bh); 2745 } 2746 } 2747 if (++group >= ngroups) 2748 group = 0; 2749 } 2750 blk_finish_plug(&plug); 2751 return group; 2752 } 2753 2754 /* 2755 * Prefetching reads the block bitmap into the buffer cache; but we 2756 * need to make sure that the buddy bitmap in the page cache has been 2757 * initialized. Note that ext4_mb_init_group() will block if the I/O 2758 * is not yet completed, or indeed if it was not initiated by 2759 * ext4_mb_prefetch did not start the I/O. 2760 * 2761 * TODO: We should actually kick off the buddy bitmap setup in a work 2762 * queue when the buffer I/O is completed, so that we don't block 2763 * waiting for the block allocation bitmap read to finish when 2764 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2765 */ 2766 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2767 unsigned int nr) 2768 { 2769 struct ext4_group_desc *gdp; 2770 struct ext4_group_info *grp; 2771 2772 while (nr-- > 0) { 2773 if (!group) 2774 group = ext4_get_groups_count(sb); 2775 group--; 2776 gdp = ext4_get_group_desc(sb, group, NULL); 2777 grp = ext4_get_group_info(sb, group); 2778 2779 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) && 2780 ext4_free_group_clusters(sb, gdp) > 0) { 2781 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2782 break; 2783 } 2784 } 2785 } 2786 2787 static noinline_for_stack int 2788 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2789 { 2790 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2791 enum criteria new_cr, cr = CR_GOAL_LEN_FAST; 2792 int err = 0, first_err = 0; 2793 unsigned int nr = 0, prefetch_ios = 0; 2794 struct ext4_sb_info *sbi; 2795 struct super_block *sb; 2796 struct ext4_buddy e4b; 2797 int lost; 2798 2799 sb = ac->ac_sb; 2800 sbi = EXT4_SB(sb); 2801 ngroups = ext4_get_groups_count(sb); 2802 /* non-extent files are limited to low blocks/groups */ 2803 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2804 ngroups = sbi->s_blockfile_groups; 2805 2806 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2807 2808 /* first, try the goal */ 2809 err = ext4_mb_find_by_goal(ac, &e4b); 2810 if (err || ac->ac_status == AC_STATUS_FOUND) 2811 goto out; 2812 2813 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2814 goto out; 2815 2816 /* 2817 * ac->ac_2order is set only if the fe_len is a power of 2 2818 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED 2819 * so that we try exact allocation using buddy. 2820 */ 2821 i = fls(ac->ac_g_ex.fe_len); 2822 ac->ac_2order = 0; 2823 /* 2824 * We search using buddy data only if the order of the request 2825 * is greater than equal to the sbi_s_mb_order2_reqs 2826 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2827 * We also support searching for power-of-two requests only for 2828 * requests upto maximum buddy size we have constructed. 2829 */ 2830 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { 2831 if (is_power_of_2(ac->ac_g_ex.fe_len)) 2832 ac->ac_2order = array_index_nospec(i - 1, 2833 MB_NUM_ORDERS(sb)); 2834 } 2835 2836 /* if stream allocation is enabled, use global goal */ 2837 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2838 /* TBD: may be hot point */ 2839 spin_lock(&sbi->s_md_lock); 2840 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2841 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2842 spin_unlock(&sbi->s_md_lock); 2843 } 2844 2845 /* 2846 * Let's just scan groups to find more-less suitable blocks We 2847 * start with CR_GOAL_LEN_FAST, unless it is power of 2 2848 * aligned, in which case let's do that faster approach first. 2849 */ 2850 if (ac->ac_2order) 2851 cr = CR_POWER2_ALIGNED; 2852 repeat: 2853 for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2854 ac->ac_criteria = cr; 2855 /* 2856 * searching for the right group start 2857 * from the goal value specified 2858 */ 2859 group = ac->ac_g_ex.fe_group; 2860 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; 2861 prefetch_grp = group; 2862 2863 for (i = 0, new_cr = cr; i < ngroups; i++, 2864 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) { 2865 int ret = 0; 2866 2867 cond_resched(); 2868 if (new_cr != cr) { 2869 cr = new_cr; 2870 goto repeat; 2871 } 2872 2873 /* 2874 * Batch reads of the block allocation bitmaps 2875 * to get multiple READs in flight; limit 2876 * prefetching at inexpensive CR, otherwise mballoc 2877 * can spend a lot of time loading imperfect groups 2878 */ 2879 if ((prefetch_grp == group) && 2880 (ext4_mb_cr_expensive(cr) || 2881 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2882 nr = sbi->s_mb_prefetch; 2883 if (ext4_has_feature_flex_bg(sb)) { 2884 nr = 1 << sbi->s_log_groups_per_flex; 2885 nr -= group & (nr - 1); 2886 nr = min(nr, sbi->s_mb_prefetch); 2887 } 2888 prefetch_grp = ext4_mb_prefetch(sb, group, 2889 nr, &prefetch_ios); 2890 } 2891 2892 /* This now checks without needing the buddy page */ 2893 ret = ext4_mb_good_group_nolock(ac, group, cr); 2894 if (ret <= 0) { 2895 if (!first_err) 2896 first_err = ret; 2897 continue; 2898 } 2899 2900 err = ext4_mb_load_buddy(sb, group, &e4b); 2901 if (err) 2902 goto out; 2903 2904 ext4_lock_group(sb, group); 2905 2906 /* 2907 * We need to check again after locking the 2908 * block group 2909 */ 2910 ret = ext4_mb_good_group(ac, group, cr); 2911 if (ret == 0) { 2912 ext4_unlock_group(sb, group); 2913 ext4_mb_unload_buddy(&e4b); 2914 continue; 2915 } 2916 2917 ac->ac_groups_scanned++; 2918 if (cr == CR_POWER2_ALIGNED) 2919 ext4_mb_simple_scan_group(ac, &e4b); 2920 else if ((cr == CR_GOAL_LEN_FAST || 2921 cr == CR_BEST_AVAIL_LEN) && 2922 sbi->s_stripe && 2923 !(ac->ac_g_ex.fe_len % 2924 EXT4_B2C(sbi, sbi->s_stripe))) 2925 ext4_mb_scan_aligned(ac, &e4b); 2926 else 2927 ext4_mb_complex_scan_group(ac, &e4b); 2928 2929 ext4_unlock_group(sb, group); 2930 ext4_mb_unload_buddy(&e4b); 2931 2932 if (ac->ac_status != AC_STATUS_CONTINUE) 2933 break; 2934 } 2935 /* Processed all groups and haven't found blocks */ 2936 if (sbi->s_mb_stats && i == ngroups) 2937 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 2938 2939 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN) 2940 /* Reset goal length to original goal length before 2941 * falling into CR_GOAL_LEN_SLOW */ 2942 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 2943 } 2944 2945 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2946 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2947 /* 2948 * We've been searching too long. Let's try to allocate 2949 * the best chunk we've found so far 2950 */ 2951 ext4_mb_try_best_found(ac, &e4b); 2952 if (ac->ac_status != AC_STATUS_FOUND) { 2953 /* 2954 * Someone more lucky has already allocated it. 2955 * The only thing we can do is just take first 2956 * found block(s) 2957 */ 2958 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2959 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2960 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2961 ac->ac_b_ex.fe_len, lost); 2962 2963 ac->ac_b_ex.fe_group = 0; 2964 ac->ac_b_ex.fe_start = 0; 2965 ac->ac_b_ex.fe_len = 0; 2966 ac->ac_status = AC_STATUS_CONTINUE; 2967 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2968 cr = CR_ANY_FREE; 2969 goto repeat; 2970 } 2971 } 2972 2973 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) 2974 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 2975 out: 2976 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2977 err = first_err; 2978 2979 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2980 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2981 ac->ac_flags, cr, err); 2982 2983 if (nr) 2984 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 2985 2986 return err; 2987 } 2988 2989 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2990 { 2991 struct super_block *sb = pde_data(file_inode(seq->file)); 2992 ext4_group_t group; 2993 2994 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2995 return NULL; 2996 group = *pos + 1; 2997 return (void *) ((unsigned long) group); 2998 } 2999 3000 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 3001 { 3002 struct super_block *sb = pde_data(file_inode(seq->file)); 3003 ext4_group_t group; 3004 3005 ++*pos; 3006 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 3007 return NULL; 3008 group = *pos + 1; 3009 return (void *) ((unsigned long) group); 3010 } 3011 3012 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 3013 { 3014 struct super_block *sb = pde_data(file_inode(seq->file)); 3015 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 3016 int i; 3017 int err, buddy_loaded = 0; 3018 struct ext4_buddy e4b; 3019 struct ext4_group_info *grinfo; 3020 unsigned char blocksize_bits = min_t(unsigned char, 3021 sb->s_blocksize_bits, 3022 EXT4_MAX_BLOCK_LOG_SIZE); 3023 struct sg { 3024 struct ext4_group_info info; 3025 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 3026 } sg; 3027 3028 group--; 3029 if (group == 0) 3030 seq_puts(seq, "#group: free frags first [" 3031 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 3032 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 3033 3034 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 3035 sizeof(struct ext4_group_info); 3036 3037 grinfo = ext4_get_group_info(sb, group); 3038 if (!grinfo) 3039 return 0; 3040 /* Load the group info in memory only if not already loaded. */ 3041 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 3042 err = ext4_mb_load_buddy(sb, group, &e4b); 3043 if (err) { 3044 seq_printf(seq, "#%-5u: I/O error\n", group); 3045 return 0; 3046 } 3047 buddy_loaded = 1; 3048 } 3049 3050 memcpy(&sg, grinfo, i); 3051 3052 if (buddy_loaded) 3053 ext4_mb_unload_buddy(&e4b); 3054 3055 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 3056 sg.info.bb_fragments, sg.info.bb_first_free); 3057 for (i = 0; i <= 13; i++) 3058 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 3059 sg.info.bb_counters[i] : 0); 3060 seq_puts(seq, " ]\n"); 3061 3062 return 0; 3063 } 3064 3065 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 3066 { 3067 } 3068 3069 const struct seq_operations ext4_mb_seq_groups_ops = { 3070 .start = ext4_mb_seq_groups_start, 3071 .next = ext4_mb_seq_groups_next, 3072 .stop = ext4_mb_seq_groups_stop, 3073 .show = ext4_mb_seq_groups_show, 3074 }; 3075 3076 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 3077 { 3078 struct super_block *sb = seq->private; 3079 struct ext4_sb_info *sbi = EXT4_SB(sb); 3080 3081 seq_puts(seq, "mballoc:\n"); 3082 if (!sbi->s_mb_stats) { 3083 seq_puts(seq, "\tmb stats collection turned off.\n"); 3084 seq_puts( 3085 seq, 3086 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 3087 return 0; 3088 } 3089 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 3090 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 3091 3092 seq_printf(seq, "\tgroups_scanned: %u\n", 3093 atomic_read(&sbi->s_bal_groups_scanned)); 3094 3095 /* CR_POWER2_ALIGNED stats */ 3096 seq_puts(seq, "\tcr_p2_aligned_stats:\n"); 3097 seq_printf(seq, "\t\thits: %llu\n", 3098 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED])); 3099 seq_printf( 3100 seq, "\t\tgroups_considered: %llu\n", 3101 atomic64_read( 3102 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED])); 3103 seq_printf(seq, "\t\textents_scanned: %u\n", 3104 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED])); 3105 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3106 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED])); 3107 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3108 atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions)); 3109 3110 /* CR_GOAL_LEN_FAST stats */ 3111 seq_puts(seq, "\tcr_goal_fast_stats:\n"); 3112 seq_printf(seq, "\t\thits: %llu\n", 3113 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST])); 3114 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3115 atomic64_read( 3116 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST])); 3117 seq_printf(seq, "\t\textents_scanned: %u\n", 3118 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST])); 3119 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3120 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST])); 3121 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3122 atomic_read(&sbi->s_bal_goal_fast_bad_suggestions)); 3123 3124 /* CR_BEST_AVAIL_LEN stats */ 3125 seq_puts(seq, "\tcr_best_avail_stats:\n"); 3126 seq_printf(seq, "\t\thits: %llu\n", 3127 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN])); 3128 seq_printf( 3129 seq, "\t\tgroups_considered: %llu\n", 3130 atomic64_read( 3131 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN])); 3132 seq_printf(seq, "\t\textents_scanned: %u\n", 3133 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN])); 3134 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3135 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN])); 3136 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3137 atomic_read(&sbi->s_bal_best_avail_bad_suggestions)); 3138 3139 /* CR_GOAL_LEN_SLOW stats */ 3140 seq_puts(seq, "\tcr_goal_slow_stats:\n"); 3141 seq_printf(seq, "\t\thits: %llu\n", 3142 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW])); 3143 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3144 atomic64_read( 3145 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW])); 3146 seq_printf(seq, "\t\textents_scanned: %u\n", 3147 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW])); 3148 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3149 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW])); 3150 3151 /* CR_ANY_FREE stats */ 3152 seq_puts(seq, "\tcr_any_free_stats:\n"); 3153 seq_printf(seq, "\t\thits: %llu\n", 3154 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE])); 3155 seq_printf( 3156 seq, "\t\tgroups_considered: %llu\n", 3157 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE])); 3158 seq_printf(seq, "\t\textents_scanned: %u\n", 3159 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE])); 3160 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3161 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE])); 3162 3163 /* Aggregates */ 3164 seq_printf(seq, "\textents_scanned: %u\n", 3165 atomic_read(&sbi->s_bal_ex_scanned)); 3166 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 3167 seq_printf(seq, "\t\tlen_goal_hits: %u\n", 3168 atomic_read(&sbi->s_bal_len_goals)); 3169 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 3170 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 3171 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 3172 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 3173 atomic_read(&sbi->s_mb_buddies_generated), 3174 ext4_get_groups_count(sb)); 3175 seq_printf(seq, "\tbuddies_time_used: %llu\n", 3176 atomic64_read(&sbi->s_mb_generation_time)); 3177 seq_printf(seq, "\tpreallocated: %u\n", 3178 atomic_read(&sbi->s_mb_preallocated)); 3179 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded)); 3180 return 0; 3181 } 3182 3183 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) 3184 __acquires(&EXT4_SB(sb)->s_mb_rb_lock) 3185 { 3186 struct super_block *sb = pde_data(file_inode(seq->file)); 3187 unsigned long position; 3188 3189 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3190 return NULL; 3191 position = *pos + 1; 3192 return (void *) ((unsigned long) position); 3193 } 3194 3195 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) 3196 { 3197 struct super_block *sb = pde_data(file_inode(seq->file)); 3198 unsigned long position; 3199 3200 ++*pos; 3201 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3202 return NULL; 3203 position = *pos + 1; 3204 return (void *) ((unsigned long) position); 3205 } 3206 3207 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) 3208 { 3209 struct super_block *sb = pde_data(file_inode(seq->file)); 3210 struct ext4_sb_info *sbi = EXT4_SB(sb); 3211 unsigned long position = ((unsigned long) v); 3212 struct ext4_group_info *grp; 3213 unsigned int count; 3214 3215 position--; 3216 if (position >= MB_NUM_ORDERS(sb)) { 3217 position -= MB_NUM_ORDERS(sb); 3218 if (position == 0) 3219 seq_puts(seq, "avg_fragment_size_lists:\n"); 3220 3221 count = 0; 3222 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]); 3223 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position], 3224 bb_avg_fragment_size_node) 3225 count++; 3226 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]); 3227 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3228 (unsigned int)position, count); 3229 return 0; 3230 } 3231 3232 if (position == 0) { 3233 seq_printf(seq, "optimize_scan: %d\n", 3234 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); 3235 seq_puts(seq, "max_free_order_lists:\n"); 3236 } 3237 count = 0; 3238 read_lock(&sbi->s_mb_largest_free_orders_locks[position]); 3239 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], 3240 bb_largest_free_order_node) 3241 count++; 3242 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]); 3243 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3244 (unsigned int)position, count); 3245 3246 return 0; 3247 } 3248 3249 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) 3250 { 3251 } 3252 3253 const struct seq_operations ext4_mb_seq_structs_summary_ops = { 3254 .start = ext4_mb_seq_structs_summary_start, 3255 .next = ext4_mb_seq_structs_summary_next, 3256 .stop = ext4_mb_seq_structs_summary_stop, 3257 .show = ext4_mb_seq_structs_summary_show, 3258 }; 3259 3260 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 3261 { 3262 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3263 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 3264 3265 BUG_ON(!cachep); 3266 return cachep; 3267 } 3268 3269 /* 3270 * Allocate the top-level s_group_info array for the specified number 3271 * of groups 3272 */ 3273 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 3274 { 3275 struct ext4_sb_info *sbi = EXT4_SB(sb); 3276 unsigned size; 3277 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 3278 3279 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 3280 EXT4_DESC_PER_BLOCK_BITS(sb); 3281 if (size <= sbi->s_group_info_size) 3282 return 0; 3283 3284 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 3285 new_groupinfo = kvzalloc(size, GFP_KERNEL); 3286 if (!new_groupinfo) { 3287 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 3288 return -ENOMEM; 3289 } 3290 rcu_read_lock(); 3291 old_groupinfo = rcu_dereference(sbi->s_group_info); 3292 if (old_groupinfo) 3293 memcpy(new_groupinfo, old_groupinfo, 3294 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 3295 rcu_read_unlock(); 3296 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 3297 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 3298 if (old_groupinfo) 3299 ext4_kvfree_array_rcu(old_groupinfo); 3300 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 3301 sbi->s_group_info_size); 3302 return 0; 3303 } 3304 3305 /* Create and initialize ext4_group_info data for the given group. */ 3306 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 3307 struct ext4_group_desc *desc) 3308 { 3309 int i; 3310 int metalen = 0; 3311 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 3312 struct ext4_sb_info *sbi = EXT4_SB(sb); 3313 struct ext4_group_info **meta_group_info; 3314 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3315 3316 /* 3317 * First check if this group is the first of a reserved block. 3318 * If it's true, we have to allocate a new table of pointers 3319 * to ext4_group_info structures 3320 */ 3321 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3322 metalen = sizeof(*meta_group_info) << 3323 EXT4_DESC_PER_BLOCK_BITS(sb); 3324 meta_group_info = kmalloc(metalen, GFP_NOFS); 3325 if (meta_group_info == NULL) { 3326 ext4_msg(sb, KERN_ERR, "can't allocate mem " 3327 "for a buddy group"); 3328 return -ENOMEM; 3329 } 3330 rcu_read_lock(); 3331 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 3332 rcu_read_unlock(); 3333 } 3334 3335 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 3336 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 3337 3338 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 3339 if (meta_group_info[i] == NULL) { 3340 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 3341 goto exit_group_info; 3342 } 3343 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 3344 &(meta_group_info[i]->bb_state)); 3345 3346 /* 3347 * initialize bb_free to be able to skip 3348 * empty groups without initialization 3349 */ 3350 if (ext4_has_group_desc_csum(sb) && 3351 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3352 meta_group_info[i]->bb_free = 3353 ext4_free_clusters_after_init(sb, group, desc); 3354 } else { 3355 meta_group_info[i]->bb_free = 3356 ext4_free_group_clusters(sb, desc); 3357 } 3358 3359 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 3360 init_rwsem(&meta_group_info[i]->alloc_sem); 3361 meta_group_info[i]->bb_free_root = RB_ROOT; 3362 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); 3363 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node); 3364 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 3365 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */ 3366 meta_group_info[i]->bb_group = group; 3367 3368 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 3369 return 0; 3370 3371 exit_group_info: 3372 /* If a meta_group_info table has been allocated, release it now */ 3373 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3374 struct ext4_group_info ***group_info; 3375 3376 rcu_read_lock(); 3377 group_info = rcu_dereference(sbi->s_group_info); 3378 kfree(group_info[idx]); 3379 group_info[idx] = NULL; 3380 rcu_read_unlock(); 3381 } 3382 return -ENOMEM; 3383 } /* ext4_mb_add_groupinfo */ 3384 3385 static int ext4_mb_init_backend(struct super_block *sb) 3386 { 3387 ext4_group_t ngroups = ext4_get_groups_count(sb); 3388 ext4_group_t i; 3389 struct ext4_sb_info *sbi = EXT4_SB(sb); 3390 int err; 3391 struct ext4_group_desc *desc; 3392 struct ext4_group_info ***group_info; 3393 struct kmem_cache *cachep; 3394 3395 err = ext4_mb_alloc_groupinfo(sb, ngroups); 3396 if (err) 3397 return err; 3398 3399 sbi->s_buddy_cache = new_inode(sb); 3400 if (sbi->s_buddy_cache == NULL) { 3401 ext4_msg(sb, KERN_ERR, "can't get new inode"); 3402 goto err_freesgi; 3403 } 3404 /* To avoid potentially colliding with an valid on-disk inode number, 3405 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 3406 * not in the inode hash, so it should never be found by iget(), but 3407 * this will avoid confusion if it ever shows up during debugging. */ 3408 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 3409 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 3410 for (i = 0; i < ngroups; i++) { 3411 cond_resched(); 3412 desc = ext4_get_group_desc(sb, i, NULL); 3413 if (desc == NULL) { 3414 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 3415 goto err_freebuddy; 3416 } 3417 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 3418 goto err_freebuddy; 3419 } 3420 3421 if (ext4_has_feature_flex_bg(sb)) { 3422 /* a single flex group is supposed to be read by a single IO. 3423 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 3424 * unsigned integer, so the maximum shift is 32. 3425 */ 3426 if (sbi->s_es->s_log_groups_per_flex >= 32) { 3427 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 3428 goto err_freebuddy; 3429 } 3430 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 3431 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 3432 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 3433 } else { 3434 sbi->s_mb_prefetch = 32; 3435 } 3436 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 3437 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 3438 /* now many real IOs to prefetch within a single allocation at cr=0 3439 * given cr=0 is an CPU-related optimization we shouldn't try to 3440 * load too many groups, at some point we should start to use what 3441 * we've got in memory. 3442 * with an average random access time 5ms, it'd take a second to get 3443 * 200 groups (* N with flex_bg), so let's make this limit 4 3444 */ 3445 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 3446 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 3447 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 3448 3449 return 0; 3450 3451 err_freebuddy: 3452 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3453 while (i-- > 0) { 3454 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3455 3456 if (grp) 3457 kmem_cache_free(cachep, grp); 3458 } 3459 i = sbi->s_group_info_size; 3460 rcu_read_lock(); 3461 group_info = rcu_dereference(sbi->s_group_info); 3462 while (i-- > 0) 3463 kfree(group_info[i]); 3464 rcu_read_unlock(); 3465 iput(sbi->s_buddy_cache); 3466 err_freesgi: 3467 rcu_read_lock(); 3468 kvfree(rcu_dereference(sbi->s_group_info)); 3469 rcu_read_unlock(); 3470 return -ENOMEM; 3471 } 3472 3473 static void ext4_groupinfo_destroy_slabs(void) 3474 { 3475 int i; 3476 3477 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 3478 kmem_cache_destroy(ext4_groupinfo_caches[i]); 3479 ext4_groupinfo_caches[i] = NULL; 3480 } 3481 } 3482 3483 static int ext4_groupinfo_create_slab(size_t size) 3484 { 3485 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 3486 int slab_size; 3487 int blocksize_bits = order_base_2(size); 3488 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3489 struct kmem_cache *cachep; 3490 3491 if (cache_index >= NR_GRPINFO_CACHES) 3492 return -EINVAL; 3493 3494 if (unlikely(cache_index < 0)) 3495 cache_index = 0; 3496 3497 mutex_lock(&ext4_grpinfo_slab_create_mutex); 3498 if (ext4_groupinfo_caches[cache_index]) { 3499 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3500 return 0; /* Already created */ 3501 } 3502 3503 slab_size = offsetof(struct ext4_group_info, 3504 bb_counters[blocksize_bits + 2]); 3505 3506 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 3507 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 3508 NULL); 3509 3510 ext4_groupinfo_caches[cache_index] = cachep; 3511 3512 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3513 if (!cachep) { 3514 printk(KERN_EMERG 3515 "EXT4-fs: no memory for groupinfo slab cache\n"); 3516 return -ENOMEM; 3517 } 3518 3519 return 0; 3520 } 3521 3522 static void ext4_discard_work(struct work_struct *work) 3523 { 3524 struct ext4_sb_info *sbi = container_of(work, 3525 struct ext4_sb_info, s_discard_work); 3526 struct super_block *sb = sbi->s_sb; 3527 struct ext4_free_data *fd, *nfd; 3528 struct ext4_buddy e4b; 3529 LIST_HEAD(discard_list); 3530 ext4_group_t grp, load_grp; 3531 int err = 0; 3532 3533 spin_lock(&sbi->s_md_lock); 3534 list_splice_init(&sbi->s_discard_list, &discard_list); 3535 spin_unlock(&sbi->s_md_lock); 3536 3537 load_grp = UINT_MAX; 3538 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { 3539 /* 3540 * If filesystem is umounting or no memory or suffering 3541 * from no space, give up the discard 3542 */ 3543 if ((sb->s_flags & SB_ACTIVE) && !err && 3544 !atomic_read(&sbi->s_retry_alloc_pending)) { 3545 grp = fd->efd_group; 3546 if (grp != load_grp) { 3547 if (load_grp != UINT_MAX) 3548 ext4_mb_unload_buddy(&e4b); 3549 3550 err = ext4_mb_load_buddy(sb, grp, &e4b); 3551 if (err) { 3552 kmem_cache_free(ext4_free_data_cachep, fd); 3553 load_grp = UINT_MAX; 3554 continue; 3555 } else { 3556 load_grp = grp; 3557 } 3558 } 3559 3560 ext4_lock_group(sb, grp); 3561 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster, 3562 fd->efd_start_cluster + fd->efd_count - 1, 1); 3563 ext4_unlock_group(sb, grp); 3564 } 3565 kmem_cache_free(ext4_free_data_cachep, fd); 3566 } 3567 3568 if (load_grp != UINT_MAX) 3569 ext4_mb_unload_buddy(&e4b); 3570 } 3571 3572 int ext4_mb_init(struct super_block *sb) 3573 { 3574 struct ext4_sb_info *sbi = EXT4_SB(sb); 3575 unsigned i, j; 3576 unsigned offset, offset_incr; 3577 unsigned max; 3578 int ret; 3579 3580 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); 3581 3582 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 3583 if (sbi->s_mb_offsets == NULL) { 3584 ret = -ENOMEM; 3585 goto out; 3586 } 3587 3588 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); 3589 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 3590 if (sbi->s_mb_maxs == NULL) { 3591 ret = -ENOMEM; 3592 goto out; 3593 } 3594 3595 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 3596 if (ret < 0) 3597 goto out; 3598 3599 /* order 0 is regular bitmap */ 3600 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 3601 sbi->s_mb_offsets[0] = 0; 3602 3603 i = 1; 3604 offset = 0; 3605 offset_incr = 1 << (sb->s_blocksize_bits - 1); 3606 max = sb->s_blocksize << 2; 3607 do { 3608 sbi->s_mb_offsets[i] = offset; 3609 sbi->s_mb_maxs[i] = max; 3610 offset += offset_incr; 3611 offset_incr = offset_incr >> 1; 3612 max = max >> 1; 3613 i++; 3614 } while (i < MB_NUM_ORDERS(sb)); 3615 3616 sbi->s_mb_avg_fragment_size = 3617 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3618 GFP_KERNEL); 3619 if (!sbi->s_mb_avg_fragment_size) { 3620 ret = -ENOMEM; 3621 goto out; 3622 } 3623 sbi->s_mb_avg_fragment_size_locks = 3624 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3625 GFP_KERNEL); 3626 if (!sbi->s_mb_avg_fragment_size_locks) { 3627 ret = -ENOMEM; 3628 goto out; 3629 } 3630 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3631 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]); 3632 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]); 3633 } 3634 sbi->s_mb_largest_free_orders = 3635 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3636 GFP_KERNEL); 3637 if (!sbi->s_mb_largest_free_orders) { 3638 ret = -ENOMEM; 3639 goto out; 3640 } 3641 sbi->s_mb_largest_free_orders_locks = 3642 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3643 GFP_KERNEL); 3644 if (!sbi->s_mb_largest_free_orders_locks) { 3645 ret = -ENOMEM; 3646 goto out; 3647 } 3648 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3649 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); 3650 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); 3651 } 3652 3653 spin_lock_init(&sbi->s_md_lock); 3654 sbi->s_mb_free_pending = 0; 3655 INIT_LIST_HEAD(&sbi->s_freed_data_list); 3656 INIT_LIST_HEAD(&sbi->s_discard_list); 3657 INIT_WORK(&sbi->s_discard_work, ext4_discard_work); 3658 atomic_set(&sbi->s_retry_alloc_pending, 0); 3659 3660 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 3661 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 3662 sbi->s_mb_stats = MB_DEFAULT_STATS; 3663 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 3664 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 3665 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER; 3666 3667 /* 3668 * The default group preallocation is 512, which for 4k block 3669 * sizes translates to 2 megabytes. However for bigalloc file 3670 * systems, this is probably too big (i.e, if the cluster size 3671 * is 1 megabyte, then group preallocation size becomes half a 3672 * gigabyte!). As a default, we will keep a two megabyte 3673 * group pralloc size for cluster sizes up to 64k, and after 3674 * that, we will force a minimum group preallocation size of 3675 * 32 clusters. This translates to 8 megs when the cluster 3676 * size is 256k, and 32 megs when the cluster size is 1 meg, 3677 * which seems reasonable as a default. 3678 */ 3679 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 3680 sbi->s_cluster_bits, 32); 3681 /* 3682 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 3683 * to the lowest multiple of s_stripe which is bigger than 3684 * the s_mb_group_prealloc as determined above. We want 3685 * the preallocation size to be an exact multiple of the 3686 * RAID stripe size so that preallocations don't fragment 3687 * the stripes. 3688 */ 3689 if (sbi->s_stripe > 1) { 3690 sbi->s_mb_group_prealloc = roundup( 3691 sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe)); 3692 } 3693 3694 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3695 if (sbi->s_locality_groups == NULL) { 3696 ret = -ENOMEM; 3697 goto out; 3698 } 3699 for_each_possible_cpu(i) { 3700 struct ext4_locality_group *lg; 3701 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3702 mutex_init(&lg->lg_mutex); 3703 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3704 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3705 spin_lock_init(&lg->lg_prealloc_lock); 3706 } 3707 3708 if (bdev_nonrot(sb->s_bdev)) 3709 sbi->s_mb_max_linear_groups = 0; 3710 else 3711 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; 3712 /* init file for buddy data */ 3713 ret = ext4_mb_init_backend(sb); 3714 if (ret != 0) 3715 goto out_free_locality_groups; 3716 3717 return 0; 3718 3719 out_free_locality_groups: 3720 free_percpu(sbi->s_locality_groups); 3721 sbi->s_locality_groups = NULL; 3722 out: 3723 kfree(sbi->s_mb_avg_fragment_size); 3724 kfree(sbi->s_mb_avg_fragment_size_locks); 3725 kfree(sbi->s_mb_largest_free_orders); 3726 kfree(sbi->s_mb_largest_free_orders_locks); 3727 kfree(sbi->s_mb_offsets); 3728 sbi->s_mb_offsets = NULL; 3729 kfree(sbi->s_mb_maxs); 3730 sbi->s_mb_maxs = NULL; 3731 return ret; 3732 } 3733 3734 /* need to called with the ext4 group lock held */ 3735 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3736 { 3737 struct ext4_prealloc_space *pa; 3738 struct list_head *cur, *tmp; 3739 int count = 0; 3740 3741 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3742 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3743 list_del(&pa->pa_group_list); 3744 count++; 3745 kmem_cache_free(ext4_pspace_cachep, pa); 3746 } 3747 return count; 3748 } 3749 3750 int ext4_mb_release(struct super_block *sb) 3751 { 3752 ext4_group_t ngroups = ext4_get_groups_count(sb); 3753 ext4_group_t i; 3754 int num_meta_group_infos; 3755 struct ext4_group_info *grinfo, ***group_info; 3756 struct ext4_sb_info *sbi = EXT4_SB(sb); 3757 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3758 int count; 3759 3760 if (test_opt(sb, DISCARD)) { 3761 /* 3762 * wait the discard work to drain all of ext4_free_data 3763 */ 3764 flush_work(&sbi->s_discard_work); 3765 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); 3766 } 3767 3768 if (sbi->s_group_info) { 3769 for (i = 0; i < ngroups; i++) { 3770 cond_resched(); 3771 grinfo = ext4_get_group_info(sb, i); 3772 if (!grinfo) 3773 continue; 3774 mb_group_bb_bitmap_free(grinfo); 3775 ext4_lock_group(sb, i); 3776 count = ext4_mb_cleanup_pa(grinfo); 3777 if (count) 3778 mb_debug(sb, "mballoc: %d PAs left\n", 3779 count); 3780 ext4_unlock_group(sb, i); 3781 kmem_cache_free(cachep, grinfo); 3782 } 3783 num_meta_group_infos = (ngroups + 3784 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3785 EXT4_DESC_PER_BLOCK_BITS(sb); 3786 rcu_read_lock(); 3787 group_info = rcu_dereference(sbi->s_group_info); 3788 for (i = 0; i < num_meta_group_infos; i++) 3789 kfree(group_info[i]); 3790 kvfree(group_info); 3791 rcu_read_unlock(); 3792 } 3793 kfree(sbi->s_mb_avg_fragment_size); 3794 kfree(sbi->s_mb_avg_fragment_size_locks); 3795 kfree(sbi->s_mb_largest_free_orders); 3796 kfree(sbi->s_mb_largest_free_orders_locks); 3797 kfree(sbi->s_mb_offsets); 3798 kfree(sbi->s_mb_maxs); 3799 iput(sbi->s_buddy_cache); 3800 if (sbi->s_mb_stats) { 3801 ext4_msg(sb, KERN_INFO, 3802 "mballoc: %u blocks %u reqs (%u success)", 3803 atomic_read(&sbi->s_bal_allocated), 3804 atomic_read(&sbi->s_bal_reqs), 3805 atomic_read(&sbi->s_bal_success)); 3806 ext4_msg(sb, KERN_INFO, 3807 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3808 "%u 2^N hits, %u breaks, %u lost", 3809 atomic_read(&sbi->s_bal_ex_scanned), 3810 atomic_read(&sbi->s_bal_groups_scanned), 3811 atomic_read(&sbi->s_bal_goals), 3812 atomic_read(&sbi->s_bal_2orders), 3813 atomic_read(&sbi->s_bal_breaks), 3814 atomic_read(&sbi->s_mb_lost_chunks)); 3815 ext4_msg(sb, KERN_INFO, 3816 "mballoc: %u generated and it took %llu", 3817 atomic_read(&sbi->s_mb_buddies_generated), 3818 atomic64_read(&sbi->s_mb_generation_time)); 3819 ext4_msg(sb, KERN_INFO, 3820 "mballoc: %u preallocated, %u discarded", 3821 atomic_read(&sbi->s_mb_preallocated), 3822 atomic_read(&sbi->s_mb_discarded)); 3823 } 3824 3825 free_percpu(sbi->s_locality_groups); 3826 3827 return 0; 3828 } 3829 3830 static inline int ext4_issue_discard(struct super_block *sb, 3831 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 3832 struct bio **biop) 3833 { 3834 ext4_fsblk_t discard_block; 3835 3836 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3837 ext4_group_first_block_no(sb, block_group)); 3838 count = EXT4_C2B(EXT4_SB(sb), count); 3839 trace_ext4_discard_blocks(sb, 3840 (unsigned long long) discard_block, count); 3841 if (biop) { 3842 return __blkdev_issue_discard(sb->s_bdev, 3843 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 3844 (sector_t)count << (sb->s_blocksize_bits - 9), 3845 GFP_NOFS, biop); 3846 } else 3847 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3848 } 3849 3850 static void ext4_free_data_in_buddy(struct super_block *sb, 3851 struct ext4_free_data *entry) 3852 { 3853 struct ext4_buddy e4b; 3854 struct ext4_group_info *db; 3855 int err, count = 0; 3856 3857 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3858 entry->efd_count, entry->efd_group, entry); 3859 3860 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3861 /* we expect to find existing buddy because it's pinned */ 3862 BUG_ON(err != 0); 3863 3864 spin_lock(&EXT4_SB(sb)->s_md_lock); 3865 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3866 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3867 3868 db = e4b.bd_info; 3869 /* there are blocks to put in buddy to make them really free */ 3870 count += entry->efd_count; 3871 ext4_lock_group(sb, entry->efd_group); 3872 /* Take it out of per group rb tree */ 3873 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3874 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3875 3876 /* 3877 * Clear the trimmed flag for the group so that the next 3878 * ext4_trim_fs can trim it. 3879 * If the volume is mounted with -o discard, online discard 3880 * is supported and the free blocks will be trimmed online. 3881 */ 3882 if (!test_opt(sb, DISCARD)) 3883 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3884 3885 if (!db->bb_free_root.rb_node) { 3886 /* No more items in the per group rb tree 3887 * balance refcounts from ext4_mb_free_metadata() 3888 */ 3889 put_page(e4b.bd_buddy_page); 3890 put_page(e4b.bd_bitmap_page); 3891 } 3892 ext4_unlock_group(sb, entry->efd_group); 3893 ext4_mb_unload_buddy(&e4b); 3894 3895 mb_debug(sb, "freed %d blocks in 1 structures\n", count); 3896 } 3897 3898 /* 3899 * This function is called by the jbd2 layer once the commit has finished, 3900 * so we know we can free the blocks that were released with that commit. 3901 */ 3902 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3903 { 3904 struct ext4_sb_info *sbi = EXT4_SB(sb); 3905 struct ext4_free_data *entry, *tmp; 3906 LIST_HEAD(freed_data_list); 3907 struct list_head *cut_pos = NULL; 3908 bool wake; 3909 3910 spin_lock(&sbi->s_md_lock); 3911 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 3912 if (entry->efd_tid != commit_tid) 3913 break; 3914 cut_pos = &entry->efd_list; 3915 } 3916 if (cut_pos) 3917 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 3918 cut_pos); 3919 spin_unlock(&sbi->s_md_lock); 3920 3921 list_for_each_entry(entry, &freed_data_list, efd_list) 3922 ext4_free_data_in_buddy(sb, entry); 3923 3924 if (test_opt(sb, DISCARD)) { 3925 spin_lock(&sbi->s_md_lock); 3926 wake = list_empty(&sbi->s_discard_list); 3927 list_splice_tail(&freed_data_list, &sbi->s_discard_list); 3928 spin_unlock(&sbi->s_md_lock); 3929 if (wake) 3930 queue_work(system_unbound_wq, &sbi->s_discard_work); 3931 } else { 3932 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3933 kmem_cache_free(ext4_free_data_cachep, entry); 3934 } 3935 } 3936 3937 int __init ext4_init_mballoc(void) 3938 { 3939 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3940 SLAB_RECLAIM_ACCOUNT); 3941 if (ext4_pspace_cachep == NULL) 3942 goto out; 3943 3944 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3945 SLAB_RECLAIM_ACCOUNT); 3946 if (ext4_ac_cachep == NULL) 3947 goto out_pa_free; 3948 3949 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3950 SLAB_RECLAIM_ACCOUNT); 3951 if (ext4_free_data_cachep == NULL) 3952 goto out_ac_free; 3953 3954 return 0; 3955 3956 out_ac_free: 3957 kmem_cache_destroy(ext4_ac_cachep); 3958 out_pa_free: 3959 kmem_cache_destroy(ext4_pspace_cachep); 3960 out: 3961 return -ENOMEM; 3962 } 3963 3964 void ext4_exit_mballoc(void) 3965 { 3966 /* 3967 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3968 * before destroying the slab cache. 3969 */ 3970 rcu_barrier(); 3971 kmem_cache_destroy(ext4_pspace_cachep); 3972 kmem_cache_destroy(ext4_ac_cachep); 3973 kmem_cache_destroy(ext4_free_data_cachep); 3974 ext4_groupinfo_destroy_slabs(); 3975 } 3976 3977 3978 /* 3979 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 3980 * Returns 0 if success or error code 3981 */ 3982 static noinline_for_stack int 3983 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 3984 handle_t *handle, unsigned int reserv_clstrs) 3985 { 3986 struct buffer_head *bitmap_bh = NULL; 3987 struct ext4_group_desc *gdp; 3988 struct buffer_head *gdp_bh; 3989 struct ext4_sb_info *sbi; 3990 struct super_block *sb; 3991 ext4_fsblk_t block; 3992 int err, len; 3993 3994 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3995 BUG_ON(ac->ac_b_ex.fe_len <= 0); 3996 3997 sb = ac->ac_sb; 3998 sbi = EXT4_SB(sb); 3999 4000 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 4001 if (IS_ERR(bitmap_bh)) { 4002 return PTR_ERR(bitmap_bh); 4003 } 4004 4005 BUFFER_TRACE(bitmap_bh, "getting write access"); 4006 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 4007 EXT4_JTR_NONE); 4008 if (err) 4009 goto out_err; 4010 4011 err = -EIO; 4012 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 4013 if (!gdp) 4014 goto out_err; 4015 4016 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 4017 ext4_free_group_clusters(sb, gdp)); 4018 4019 BUFFER_TRACE(gdp_bh, "get_write_access"); 4020 err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE); 4021 if (err) 4022 goto out_err; 4023 4024 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4025 4026 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4027 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 4028 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 4029 "fs metadata", block, block+len); 4030 /* File system mounted not to panic on error 4031 * Fix the bitmap and return EFSCORRUPTED 4032 * We leak some of the blocks here. 4033 */ 4034 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 4035 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 4036 ac->ac_b_ex.fe_len); 4037 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 4038 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4039 if (!err) 4040 err = -EFSCORRUPTED; 4041 goto out_err; 4042 } 4043 4044 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 4045 #ifdef AGGRESSIVE_CHECK 4046 { 4047 int i; 4048 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 4049 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 4050 bitmap_bh->b_data)); 4051 } 4052 } 4053 #endif 4054 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 4055 ac->ac_b_ex.fe_len); 4056 if (ext4_has_group_desc_csum(sb) && 4057 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4058 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4059 ext4_free_group_clusters_set(sb, gdp, 4060 ext4_free_clusters_after_init(sb, 4061 ac->ac_b_ex.fe_group, gdp)); 4062 } 4063 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 4064 ext4_free_group_clusters_set(sb, gdp, len); 4065 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4066 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 4067 4068 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 4069 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 4070 /* 4071 * Now reduce the dirty block count also. Should not go negative 4072 */ 4073 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 4074 /* release all the reserved blocks if non delalloc */ 4075 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4076 reserv_clstrs); 4077 4078 if (sbi->s_log_groups_per_flex) { 4079 ext4_group_t flex_group = ext4_flex_group(sbi, 4080 ac->ac_b_ex.fe_group); 4081 atomic64_sub(ac->ac_b_ex.fe_len, 4082 &sbi_array_rcu_deref(sbi, s_flex_groups, 4083 flex_group)->free_clusters); 4084 } 4085 4086 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4087 if (err) 4088 goto out_err; 4089 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 4090 4091 out_err: 4092 brelse(bitmap_bh); 4093 return err; 4094 } 4095 4096 /* 4097 * Idempotent helper for Ext4 fast commit replay path to set the state of 4098 * blocks in bitmaps and update counters. 4099 */ 4100 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 4101 int len, int state) 4102 { 4103 struct buffer_head *bitmap_bh = NULL; 4104 struct ext4_group_desc *gdp; 4105 struct buffer_head *gdp_bh; 4106 struct ext4_sb_info *sbi = EXT4_SB(sb); 4107 ext4_group_t group; 4108 ext4_grpblk_t blkoff; 4109 int i, err = 0; 4110 int already; 4111 unsigned int clen, clen_changed, thisgrp_len; 4112 4113 while (len > 0) { 4114 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 4115 4116 /* 4117 * Check to see if we are freeing blocks across a group 4118 * boundary. 4119 * In case of flex_bg, this can happen that (block, len) may 4120 * span across more than one group. In that case we need to 4121 * get the corresponding group metadata to work with. 4122 * For this we have goto again loop. 4123 */ 4124 thisgrp_len = min_t(unsigned int, (unsigned int)len, 4125 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); 4126 clen = EXT4_NUM_B2C(sbi, thisgrp_len); 4127 4128 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) { 4129 ext4_error(sb, "Marking blocks in system zone - " 4130 "Block = %llu, len = %u", 4131 block, thisgrp_len); 4132 bitmap_bh = NULL; 4133 break; 4134 } 4135 4136 bitmap_bh = ext4_read_block_bitmap(sb, group); 4137 if (IS_ERR(bitmap_bh)) { 4138 err = PTR_ERR(bitmap_bh); 4139 bitmap_bh = NULL; 4140 break; 4141 } 4142 4143 err = -EIO; 4144 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 4145 if (!gdp) 4146 break; 4147 4148 ext4_lock_group(sb, group); 4149 already = 0; 4150 for (i = 0; i < clen; i++) 4151 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == 4152 !state) 4153 already++; 4154 4155 clen_changed = clen - already; 4156 if (state) 4157 mb_set_bits(bitmap_bh->b_data, blkoff, clen); 4158 else 4159 mb_clear_bits(bitmap_bh->b_data, blkoff, clen); 4160 if (ext4_has_group_desc_csum(sb) && 4161 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4162 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4163 ext4_free_group_clusters_set(sb, gdp, 4164 ext4_free_clusters_after_init(sb, group, gdp)); 4165 } 4166 if (state) 4167 clen = ext4_free_group_clusters(sb, gdp) - clen_changed; 4168 else 4169 clen = ext4_free_group_clusters(sb, gdp) + clen_changed; 4170 4171 ext4_free_group_clusters_set(sb, gdp, clen); 4172 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4173 ext4_group_desc_csum_set(sb, group, gdp); 4174 4175 ext4_unlock_group(sb, group); 4176 4177 if (sbi->s_log_groups_per_flex) { 4178 ext4_group_t flex_group = ext4_flex_group(sbi, group); 4179 struct flex_groups *fg = sbi_array_rcu_deref(sbi, 4180 s_flex_groups, flex_group); 4181 4182 if (state) 4183 atomic64_sub(clen_changed, &fg->free_clusters); 4184 else 4185 atomic64_add(clen_changed, &fg->free_clusters); 4186 4187 } 4188 4189 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 4190 if (err) 4191 break; 4192 sync_dirty_buffer(bitmap_bh); 4193 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 4194 sync_dirty_buffer(gdp_bh); 4195 if (err) 4196 break; 4197 4198 block += thisgrp_len; 4199 len -= thisgrp_len; 4200 brelse(bitmap_bh); 4201 BUG_ON(len < 0); 4202 } 4203 4204 if (err) 4205 brelse(bitmap_bh); 4206 } 4207 4208 /* 4209 * here we normalize request for locality group 4210 * Group request are normalized to s_mb_group_prealloc, which goes to 4211 * s_strip if we set the same via mount option. 4212 * s_mb_group_prealloc can be configured via 4213 * /sys/fs/ext4/<partition>/mb_group_prealloc 4214 * 4215 * XXX: should we try to preallocate more than the group has now? 4216 */ 4217 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 4218 { 4219 struct super_block *sb = ac->ac_sb; 4220 struct ext4_locality_group *lg = ac->ac_lg; 4221 4222 BUG_ON(lg == NULL); 4223 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 4224 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 4225 } 4226 4227 /* 4228 * This function returns the next element to look at during inode 4229 * PA rbtree walk. We assume that we have held the inode PA rbtree lock 4230 * (ei->i_prealloc_lock) 4231 * 4232 * new_start The start of the range we want to compare 4233 * cur_start The existing start that we are comparing against 4234 * node The node of the rb_tree 4235 */ 4236 static inline struct rb_node* 4237 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node) 4238 { 4239 if (new_start < cur_start) 4240 return node->rb_left; 4241 else 4242 return node->rb_right; 4243 } 4244 4245 static inline void 4246 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac, 4247 ext4_lblk_t start, loff_t end) 4248 { 4249 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4250 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4251 struct ext4_prealloc_space *tmp_pa; 4252 ext4_lblk_t tmp_pa_start; 4253 loff_t tmp_pa_end; 4254 struct rb_node *iter; 4255 4256 read_lock(&ei->i_prealloc_lock); 4257 for (iter = ei->i_prealloc_node.rb_node; iter; 4258 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) { 4259 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4260 pa_node.inode_node); 4261 tmp_pa_start = tmp_pa->pa_lstart; 4262 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4263 4264 spin_lock(&tmp_pa->pa_lock); 4265 if (tmp_pa->pa_deleted == 0) 4266 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start)); 4267 spin_unlock(&tmp_pa->pa_lock); 4268 } 4269 read_unlock(&ei->i_prealloc_lock); 4270 } 4271 4272 /* 4273 * Given an allocation context "ac" and a range "start", "end", check 4274 * and adjust boundaries if the range overlaps with any of the existing 4275 * preallocatoins stored in the corresponding inode of the allocation context. 4276 * 4277 * Parameters: 4278 * ac allocation context 4279 * start start of the new range 4280 * end end of the new range 4281 */ 4282 static inline void 4283 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac, 4284 ext4_lblk_t *start, loff_t *end) 4285 { 4286 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4287 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4288 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL; 4289 struct rb_node *iter; 4290 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1; 4291 loff_t new_end, tmp_pa_end, left_pa_end = -1; 4292 4293 new_start = *start; 4294 new_end = *end; 4295 4296 /* 4297 * Adjust the normalized range so that it doesn't overlap with any 4298 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock 4299 * so it doesn't change underneath us. 4300 */ 4301 read_lock(&ei->i_prealloc_lock); 4302 4303 /* Step 1: find any one immediate neighboring PA of the normalized range */ 4304 for (iter = ei->i_prealloc_node.rb_node; iter; 4305 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4306 tmp_pa_start, iter)) { 4307 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4308 pa_node.inode_node); 4309 tmp_pa_start = tmp_pa->pa_lstart; 4310 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4311 4312 /* PA must not overlap original request */ 4313 spin_lock(&tmp_pa->pa_lock); 4314 if (tmp_pa->pa_deleted == 0) 4315 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end || 4316 ac->ac_o_ex.fe_logical < tmp_pa_start)); 4317 spin_unlock(&tmp_pa->pa_lock); 4318 } 4319 4320 /* 4321 * Step 2: check if the found PA is left or right neighbor and 4322 * get the other neighbor 4323 */ 4324 if (tmp_pa) { 4325 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) { 4326 struct rb_node *tmp; 4327 4328 left_pa = tmp_pa; 4329 tmp = rb_next(&left_pa->pa_node.inode_node); 4330 if (tmp) { 4331 right_pa = rb_entry(tmp, 4332 struct ext4_prealloc_space, 4333 pa_node.inode_node); 4334 } 4335 } else { 4336 struct rb_node *tmp; 4337 4338 right_pa = tmp_pa; 4339 tmp = rb_prev(&right_pa->pa_node.inode_node); 4340 if (tmp) { 4341 left_pa = rb_entry(tmp, 4342 struct ext4_prealloc_space, 4343 pa_node.inode_node); 4344 } 4345 } 4346 } 4347 4348 /* Step 3: get the non deleted neighbors */ 4349 if (left_pa) { 4350 for (iter = &left_pa->pa_node.inode_node;; 4351 iter = rb_prev(iter)) { 4352 if (!iter) { 4353 left_pa = NULL; 4354 break; 4355 } 4356 4357 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4358 pa_node.inode_node); 4359 left_pa = tmp_pa; 4360 spin_lock(&tmp_pa->pa_lock); 4361 if (tmp_pa->pa_deleted == 0) { 4362 spin_unlock(&tmp_pa->pa_lock); 4363 break; 4364 } 4365 spin_unlock(&tmp_pa->pa_lock); 4366 } 4367 } 4368 4369 if (right_pa) { 4370 for (iter = &right_pa->pa_node.inode_node;; 4371 iter = rb_next(iter)) { 4372 if (!iter) { 4373 right_pa = NULL; 4374 break; 4375 } 4376 4377 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4378 pa_node.inode_node); 4379 right_pa = tmp_pa; 4380 spin_lock(&tmp_pa->pa_lock); 4381 if (tmp_pa->pa_deleted == 0) { 4382 spin_unlock(&tmp_pa->pa_lock); 4383 break; 4384 } 4385 spin_unlock(&tmp_pa->pa_lock); 4386 } 4387 } 4388 4389 if (left_pa) { 4390 left_pa_end = pa_logical_end(sbi, left_pa); 4391 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical); 4392 } 4393 4394 if (right_pa) { 4395 right_pa_start = right_pa->pa_lstart; 4396 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical); 4397 } 4398 4399 /* Step 4: trim our normalized range to not overlap with the neighbors */ 4400 if (left_pa) { 4401 if (left_pa_end > new_start) 4402 new_start = left_pa_end; 4403 } 4404 4405 if (right_pa) { 4406 if (right_pa_start < new_end) 4407 new_end = right_pa_start; 4408 } 4409 read_unlock(&ei->i_prealloc_lock); 4410 4411 /* XXX: extra loop to check we really don't overlap preallocations */ 4412 ext4_mb_pa_assert_overlap(ac, new_start, new_end); 4413 4414 *start = new_start; 4415 *end = new_end; 4416 } 4417 4418 /* 4419 * Normalization means making request better in terms of 4420 * size and alignment 4421 */ 4422 static noinline_for_stack void 4423 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 4424 struct ext4_allocation_request *ar) 4425 { 4426 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4427 struct ext4_super_block *es = sbi->s_es; 4428 int bsbits, max; 4429 loff_t size, start_off, end; 4430 loff_t orig_size __maybe_unused; 4431 ext4_lblk_t start; 4432 4433 /* do normalize only data requests, metadata requests 4434 do not need preallocation */ 4435 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4436 return; 4437 4438 /* sometime caller may want exact blocks */ 4439 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4440 return; 4441 4442 /* caller may indicate that preallocation isn't 4443 * required (it's a tail, for example) */ 4444 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 4445 return; 4446 4447 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 4448 ext4_mb_normalize_group_request(ac); 4449 return ; 4450 } 4451 4452 bsbits = ac->ac_sb->s_blocksize_bits; 4453 4454 /* first, let's learn actual file size 4455 * given current request is allocated */ 4456 size = extent_logical_end(sbi, &ac->ac_o_ex); 4457 size = size << bsbits; 4458 if (size < i_size_read(ac->ac_inode)) 4459 size = i_size_read(ac->ac_inode); 4460 orig_size = size; 4461 4462 /* max size of free chunks */ 4463 max = 2 << bsbits; 4464 4465 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 4466 (req <= (size) || max <= (chunk_size)) 4467 4468 /* first, try to predict filesize */ 4469 /* XXX: should this table be tunable? */ 4470 start_off = 0; 4471 if (size <= 16 * 1024) { 4472 size = 16 * 1024; 4473 } else if (size <= 32 * 1024) { 4474 size = 32 * 1024; 4475 } else if (size <= 64 * 1024) { 4476 size = 64 * 1024; 4477 } else if (size <= 128 * 1024) { 4478 size = 128 * 1024; 4479 } else if (size <= 256 * 1024) { 4480 size = 256 * 1024; 4481 } else if (size <= 512 * 1024) { 4482 size = 512 * 1024; 4483 } else if (size <= 1024 * 1024) { 4484 size = 1024 * 1024; 4485 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 4486 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4487 (21 - bsbits)) << 21; 4488 size = 2 * 1024 * 1024; 4489 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 4490 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4491 (22 - bsbits)) << 22; 4492 size = 4 * 1024 * 1024; 4493 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len), 4494 (8<<20)>>bsbits, max, 8 * 1024)) { 4495 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4496 (23 - bsbits)) << 23; 4497 size = 8 * 1024 * 1024; 4498 } else { 4499 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 4500 size = (loff_t) EXT4_C2B(sbi, 4501 ac->ac_o_ex.fe_len) << bsbits; 4502 } 4503 size = size >> bsbits; 4504 start = start_off >> bsbits; 4505 4506 /* 4507 * For tiny groups (smaller than 8MB) the chosen allocation 4508 * alignment may be larger than group size. Make sure the 4509 * alignment does not move allocation to a different group which 4510 * makes mballoc fail assertions later. 4511 */ 4512 start = max(start, rounddown(ac->ac_o_ex.fe_logical, 4513 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); 4514 4515 /* avoid unnecessary preallocation that may trigger assertions */ 4516 if (start + size > EXT_MAX_BLOCKS) 4517 size = EXT_MAX_BLOCKS - start; 4518 4519 /* don't cover already allocated blocks in selected range */ 4520 if (ar->pleft && start <= ar->lleft) { 4521 size -= ar->lleft + 1 - start; 4522 start = ar->lleft + 1; 4523 } 4524 if (ar->pright && start + size - 1 >= ar->lright) 4525 size -= start + size - ar->lright; 4526 4527 /* 4528 * Trim allocation request for filesystems with artificially small 4529 * groups. 4530 */ 4531 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 4532 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 4533 4534 end = start + size; 4535 4536 ext4_mb_pa_adjust_overlap(ac, &start, &end); 4537 4538 size = end - start; 4539 4540 /* 4541 * In this function "start" and "size" are normalized for better 4542 * alignment and length such that we could preallocate more blocks. 4543 * This normalization is done such that original request of 4544 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and 4545 * "size" boundaries. 4546 * (Note fe_len can be relaxed since FS block allocation API does not 4547 * provide gurantee on number of contiguous blocks allocation since that 4548 * depends upon free space left, etc). 4549 * In case of inode pa, later we use the allocated blocks 4550 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated 4551 * range of goal/best blocks [start, size] to put it at the 4552 * ac_o_ex.fe_logical extent of this inode. 4553 * (See ext4_mb_use_inode_pa() for more details) 4554 */ 4555 if (start + size <= ac->ac_o_ex.fe_logical || 4556 start > ac->ac_o_ex.fe_logical) { 4557 ext4_msg(ac->ac_sb, KERN_ERR, 4558 "start %lu, size %lu, fe_logical %lu", 4559 (unsigned long) start, (unsigned long) size, 4560 (unsigned long) ac->ac_o_ex.fe_logical); 4561 BUG(); 4562 } 4563 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 4564 4565 /* now prepare goal request */ 4566 4567 /* XXX: is it better to align blocks WRT to logical 4568 * placement or satisfy big request as is */ 4569 ac->ac_g_ex.fe_logical = start; 4570 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 4571 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 4572 4573 /* define goal start in order to merge */ 4574 if (ar->pright && (ar->lright == (start + size)) && 4575 ar->pright >= size && 4576 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) { 4577 /* merge to the right */ 4578 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 4579 &ac->ac_g_ex.fe_group, 4580 &ac->ac_g_ex.fe_start); 4581 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4582 } 4583 if (ar->pleft && (ar->lleft + 1 == start) && 4584 ar->pleft + 1 < ext4_blocks_count(es)) { 4585 /* merge to the left */ 4586 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 4587 &ac->ac_g_ex.fe_group, 4588 &ac->ac_g_ex.fe_start); 4589 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4590 } 4591 4592 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 4593 orig_size, start); 4594 } 4595 4596 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 4597 { 4598 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4599 4600 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 4601 atomic_inc(&sbi->s_bal_reqs); 4602 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 4603 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 4604 atomic_inc(&sbi->s_bal_success); 4605 4606 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 4607 for (int i=0; i<EXT4_MB_NUM_CRS; i++) { 4608 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]); 4609 } 4610 4611 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 4612 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 4613 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 4614 atomic_inc(&sbi->s_bal_goals); 4615 /* did we allocate as much as normalizer originally wanted? */ 4616 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len) 4617 atomic_inc(&sbi->s_bal_len_goals); 4618 4619 if (ac->ac_found > sbi->s_mb_max_to_scan) 4620 atomic_inc(&sbi->s_bal_breaks); 4621 } 4622 4623 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 4624 trace_ext4_mballoc_alloc(ac); 4625 else 4626 trace_ext4_mballoc_prealloc(ac); 4627 } 4628 4629 /* 4630 * Called on failure; free up any blocks from the inode PA for this 4631 * context. We don't need this for MB_GROUP_PA because we only change 4632 * pa_free in ext4_mb_release_context(), but on failure, we've already 4633 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 4634 */ 4635 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 4636 { 4637 struct ext4_prealloc_space *pa = ac->ac_pa; 4638 struct ext4_buddy e4b; 4639 int err; 4640 4641 if (pa == NULL) { 4642 if (ac->ac_f_ex.fe_len == 0) 4643 return; 4644 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 4645 if (WARN_RATELIMIT(err, 4646 "ext4: mb_load_buddy failed (%d)", err)) 4647 /* 4648 * This should never happen since we pin the 4649 * pages in the ext4_allocation_context so 4650 * ext4_mb_load_buddy() should never fail. 4651 */ 4652 return; 4653 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4654 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 4655 ac->ac_f_ex.fe_len); 4656 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4657 ext4_mb_unload_buddy(&e4b); 4658 return; 4659 } 4660 if (pa->pa_type == MB_INODE_PA) { 4661 spin_lock(&pa->pa_lock); 4662 pa->pa_free += ac->ac_b_ex.fe_len; 4663 spin_unlock(&pa->pa_lock); 4664 } 4665 } 4666 4667 /* 4668 * use blocks preallocated to inode 4669 */ 4670 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 4671 struct ext4_prealloc_space *pa) 4672 { 4673 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4674 ext4_fsblk_t start; 4675 ext4_fsblk_t end; 4676 int len; 4677 4678 /* found preallocated blocks, use them */ 4679 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 4680 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 4681 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 4682 len = EXT4_NUM_B2C(sbi, end - start); 4683 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 4684 &ac->ac_b_ex.fe_start); 4685 ac->ac_b_ex.fe_len = len; 4686 ac->ac_status = AC_STATUS_FOUND; 4687 ac->ac_pa = pa; 4688 4689 BUG_ON(start < pa->pa_pstart); 4690 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 4691 BUG_ON(pa->pa_free < len); 4692 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4693 pa->pa_free -= len; 4694 4695 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 4696 } 4697 4698 /* 4699 * use blocks preallocated to locality group 4700 */ 4701 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 4702 struct ext4_prealloc_space *pa) 4703 { 4704 unsigned int len = ac->ac_o_ex.fe_len; 4705 4706 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 4707 &ac->ac_b_ex.fe_group, 4708 &ac->ac_b_ex.fe_start); 4709 ac->ac_b_ex.fe_len = len; 4710 ac->ac_status = AC_STATUS_FOUND; 4711 ac->ac_pa = pa; 4712 4713 /* we don't correct pa_pstart or pa_len here to avoid 4714 * possible race when the group is being loaded concurrently 4715 * instead we correct pa later, after blocks are marked 4716 * in on-disk bitmap -- see ext4_mb_release_context() 4717 * Other CPUs are prevented from allocating from this pa by lg_mutex 4718 */ 4719 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 4720 pa->pa_lstart, len, pa); 4721 } 4722 4723 /* 4724 * Return the prealloc space that have minimal distance 4725 * from the goal block. @cpa is the prealloc 4726 * space that is having currently known minimal distance 4727 * from the goal block. 4728 */ 4729 static struct ext4_prealloc_space * 4730 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 4731 struct ext4_prealloc_space *pa, 4732 struct ext4_prealloc_space *cpa) 4733 { 4734 ext4_fsblk_t cur_distance, new_distance; 4735 4736 if (cpa == NULL) { 4737 atomic_inc(&pa->pa_count); 4738 return pa; 4739 } 4740 cur_distance = abs(goal_block - cpa->pa_pstart); 4741 new_distance = abs(goal_block - pa->pa_pstart); 4742 4743 if (cur_distance <= new_distance) 4744 return cpa; 4745 4746 /* drop the previous reference */ 4747 atomic_dec(&cpa->pa_count); 4748 atomic_inc(&pa->pa_count); 4749 return pa; 4750 } 4751 4752 /* 4753 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY 4754 */ 4755 static bool 4756 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac, 4757 struct ext4_prealloc_space *pa) 4758 { 4759 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4760 ext4_fsblk_t start; 4761 4762 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))) 4763 return true; 4764 4765 /* 4766 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted 4767 * in ext4_mb_normalize_request and will keep same with ac_o_ex 4768 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep 4769 * consistent with ext4_mb_find_by_goal. 4770 */ 4771 start = pa->pa_pstart + 4772 (ac->ac_g_ex.fe_logical - pa->pa_lstart); 4773 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start) 4774 return false; 4775 4776 if (ac->ac_g_ex.fe_len > pa->pa_len - 4777 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart)) 4778 return false; 4779 4780 return true; 4781 } 4782 4783 /* 4784 * search goal blocks in preallocated space 4785 */ 4786 static noinline_for_stack bool 4787 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 4788 { 4789 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4790 int order, i; 4791 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4792 struct ext4_locality_group *lg; 4793 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL; 4794 struct rb_node *iter; 4795 ext4_fsblk_t goal_block; 4796 4797 /* only data can be preallocated */ 4798 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4799 return false; 4800 4801 /* 4802 * first, try per-file preallocation by searching the inode pa rbtree. 4803 * 4804 * Here, we can't do a direct traversal of the tree because 4805 * ext4_mb_discard_group_preallocation() can paralelly mark the pa 4806 * deleted and that can cause direct traversal to skip some entries. 4807 */ 4808 read_lock(&ei->i_prealloc_lock); 4809 4810 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) { 4811 goto try_group_pa; 4812 } 4813 4814 /* 4815 * Step 1: Find a pa with logical start immediately adjacent to the 4816 * original logical start. This could be on the left or right. 4817 * 4818 * (tmp_pa->pa_lstart never changes so we can skip locking for it). 4819 */ 4820 for (iter = ei->i_prealloc_node.rb_node; iter; 4821 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4822 tmp_pa->pa_lstart, iter)) { 4823 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4824 pa_node.inode_node); 4825 } 4826 4827 /* 4828 * Step 2: The adjacent pa might be to the right of logical start, find 4829 * the left adjacent pa. After this step we'd have a valid tmp_pa whose 4830 * logical start is towards the left of original request's logical start 4831 */ 4832 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) { 4833 struct rb_node *tmp; 4834 tmp = rb_prev(&tmp_pa->pa_node.inode_node); 4835 4836 if (tmp) { 4837 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space, 4838 pa_node.inode_node); 4839 } else { 4840 /* 4841 * If there is no adjacent pa to the left then finding 4842 * an overlapping pa is not possible hence stop searching 4843 * inode pa tree 4844 */ 4845 goto try_group_pa; 4846 } 4847 } 4848 4849 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4850 4851 /* 4852 * Step 3: If the left adjacent pa is deleted, keep moving left to find 4853 * the first non deleted adjacent pa. After this step we should have a 4854 * valid tmp_pa which is guaranteed to be non deleted. 4855 */ 4856 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) { 4857 if (!iter) { 4858 /* 4859 * no non deleted left adjacent pa, so stop searching 4860 * inode pa tree 4861 */ 4862 goto try_group_pa; 4863 } 4864 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4865 pa_node.inode_node); 4866 spin_lock(&tmp_pa->pa_lock); 4867 if (tmp_pa->pa_deleted == 0) { 4868 /* 4869 * We will keep holding the pa_lock from 4870 * this point on because we don't want group discard 4871 * to delete this pa underneath us. Since group 4872 * discard is anyways an ENOSPC operation it 4873 * should be okay for it to wait a few more cycles. 4874 */ 4875 break; 4876 } else { 4877 spin_unlock(&tmp_pa->pa_lock); 4878 } 4879 } 4880 4881 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4882 BUG_ON(tmp_pa->pa_deleted == 1); 4883 4884 /* 4885 * Step 4: We now have the non deleted left adjacent pa. Only this 4886 * pa can possibly satisfy the request hence check if it overlaps 4887 * original logical start and stop searching if it doesn't. 4888 */ 4889 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) { 4890 spin_unlock(&tmp_pa->pa_lock); 4891 goto try_group_pa; 4892 } 4893 4894 /* non-extent files can't have physical blocks past 2^32 */ 4895 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 4896 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) > 4897 EXT4_MAX_BLOCK_FILE_PHYS)) { 4898 /* 4899 * Since PAs don't overlap, we won't find any other PA to 4900 * satisfy this. 4901 */ 4902 spin_unlock(&tmp_pa->pa_lock); 4903 goto try_group_pa; 4904 } 4905 4906 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) { 4907 atomic_inc(&tmp_pa->pa_count); 4908 ext4_mb_use_inode_pa(ac, tmp_pa); 4909 spin_unlock(&tmp_pa->pa_lock); 4910 read_unlock(&ei->i_prealloc_lock); 4911 return true; 4912 } else { 4913 /* 4914 * We found a valid overlapping pa but couldn't use it because 4915 * it had no free blocks. This should ideally never happen 4916 * because: 4917 * 4918 * 1. When a new inode pa is added to rbtree it must have 4919 * pa_free > 0 since otherwise we won't actually need 4920 * preallocation. 4921 * 4922 * 2. An inode pa that is in the rbtree can only have it's 4923 * pa_free become zero when another thread calls: 4924 * ext4_mb_new_blocks 4925 * ext4_mb_use_preallocated 4926 * ext4_mb_use_inode_pa 4927 * 4928 * 3. Further, after the above calls make pa_free == 0, we will 4929 * immediately remove it from the rbtree in: 4930 * ext4_mb_new_blocks 4931 * ext4_mb_release_context 4932 * ext4_mb_put_pa 4933 * 4934 * 4. Since the pa_free becoming 0 and pa_free getting removed 4935 * from tree both happen in ext4_mb_new_blocks, which is always 4936 * called with i_data_sem held for data allocations, we can be 4937 * sure that another process will never see a pa in rbtree with 4938 * pa_free == 0. 4939 */ 4940 WARN_ON_ONCE(tmp_pa->pa_free == 0); 4941 } 4942 spin_unlock(&tmp_pa->pa_lock); 4943 try_group_pa: 4944 read_unlock(&ei->i_prealloc_lock); 4945 4946 /* can we use group allocation? */ 4947 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 4948 return false; 4949 4950 /* inode may have no locality group for some reason */ 4951 lg = ac->ac_lg; 4952 if (lg == NULL) 4953 return false; 4954 order = fls(ac->ac_o_ex.fe_len) - 1; 4955 if (order > PREALLOC_TB_SIZE - 1) 4956 /* The max size of hash table is PREALLOC_TB_SIZE */ 4957 order = PREALLOC_TB_SIZE - 1; 4958 4959 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 4960 /* 4961 * search for the prealloc space that is having 4962 * minimal distance from the goal block. 4963 */ 4964 for (i = order; i < PREALLOC_TB_SIZE; i++) { 4965 rcu_read_lock(); 4966 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i], 4967 pa_node.lg_list) { 4968 spin_lock(&tmp_pa->pa_lock); 4969 if (tmp_pa->pa_deleted == 0 && 4970 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) { 4971 4972 cpa = ext4_mb_check_group_pa(goal_block, 4973 tmp_pa, cpa); 4974 } 4975 spin_unlock(&tmp_pa->pa_lock); 4976 } 4977 rcu_read_unlock(); 4978 } 4979 if (cpa) { 4980 ext4_mb_use_group_pa(ac, cpa); 4981 return true; 4982 } 4983 return false; 4984 } 4985 4986 /* 4987 * the function goes through all preallocation in this group and marks them 4988 * used in in-core bitmap. buddy must be generated from this bitmap 4989 * Need to be called with ext4 group lock held 4990 */ 4991 static noinline_for_stack 4992 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 4993 ext4_group_t group) 4994 { 4995 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4996 struct ext4_prealloc_space *pa; 4997 struct list_head *cur; 4998 ext4_group_t groupnr; 4999 ext4_grpblk_t start; 5000 int preallocated = 0; 5001 int len; 5002 5003 if (!grp) 5004 return; 5005 5006 /* all form of preallocation discards first load group, 5007 * so the only competing code is preallocation use. 5008 * we don't need any locking here 5009 * notice we do NOT ignore preallocations with pa_deleted 5010 * otherwise we could leave used blocks available for 5011 * allocation in buddy when concurrent ext4_mb_put_pa() 5012 * is dropping preallocation 5013 */ 5014 list_for_each(cur, &grp->bb_prealloc_list) { 5015 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 5016 spin_lock(&pa->pa_lock); 5017 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5018 &groupnr, &start); 5019 len = pa->pa_len; 5020 spin_unlock(&pa->pa_lock); 5021 if (unlikely(len == 0)) 5022 continue; 5023 BUG_ON(groupnr != group); 5024 mb_set_bits(bitmap, start, len); 5025 preallocated += len; 5026 } 5027 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 5028 } 5029 5030 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 5031 struct ext4_prealloc_space *pa) 5032 { 5033 struct ext4_inode_info *ei; 5034 5035 if (pa->pa_deleted) { 5036 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 5037 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 5038 pa->pa_len); 5039 return; 5040 } 5041 5042 pa->pa_deleted = 1; 5043 5044 if (pa->pa_type == MB_INODE_PA) { 5045 ei = EXT4_I(pa->pa_inode); 5046 atomic_dec(&ei->i_prealloc_active); 5047 } 5048 } 5049 5050 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa) 5051 { 5052 BUG_ON(!pa); 5053 BUG_ON(atomic_read(&pa->pa_count)); 5054 BUG_ON(pa->pa_deleted == 0); 5055 kmem_cache_free(ext4_pspace_cachep, pa); 5056 } 5057 5058 static void ext4_mb_pa_callback(struct rcu_head *head) 5059 { 5060 struct ext4_prealloc_space *pa; 5061 5062 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 5063 ext4_mb_pa_free(pa); 5064 } 5065 5066 /* 5067 * drops a reference to preallocated space descriptor 5068 * if this was the last reference and the space is consumed 5069 */ 5070 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 5071 struct super_block *sb, struct ext4_prealloc_space *pa) 5072 { 5073 ext4_group_t grp; 5074 ext4_fsblk_t grp_blk; 5075 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 5076 5077 /* in this short window concurrent discard can set pa_deleted */ 5078 spin_lock(&pa->pa_lock); 5079 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 5080 spin_unlock(&pa->pa_lock); 5081 return; 5082 } 5083 5084 if (pa->pa_deleted == 1) { 5085 spin_unlock(&pa->pa_lock); 5086 return; 5087 } 5088 5089 ext4_mb_mark_pa_deleted(sb, pa); 5090 spin_unlock(&pa->pa_lock); 5091 5092 grp_blk = pa->pa_pstart; 5093 /* 5094 * If doing group-based preallocation, pa_pstart may be in the 5095 * next group when pa is used up 5096 */ 5097 if (pa->pa_type == MB_GROUP_PA) 5098 grp_blk--; 5099 5100 grp = ext4_get_group_number(sb, grp_blk); 5101 5102 /* 5103 * possible race: 5104 * 5105 * P1 (buddy init) P2 (regular allocation) 5106 * find block B in PA 5107 * copy on-disk bitmap to buddy 5108 * mark B in on-disk bitmap 5109 * drop PA from group 5110 * mark all PAs in buddy 5111 * 5112 * thus, P1 initializes buddy with B available. to prevent this 5113 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 5114 * against that pair 5115 */ 5116 ext4_lock_group(sb, grp); 5117 list_del(&pa->pa_group_list); 5118 ext4_unlock_group(sb, grp); 5119 5120 if (pa->pa_type == MB_INODE_PA) { 5121 write_lock(pa->pa_node_lock.inode_lock); 5122 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5123 write_unlock(pa->pa_node_lock.inode_lock); 5124 ext4_mb_pa_free(pa); 5125 } else { 5126 spin_lock(pa->pa_node_lock.lg_lock); 5127 list_del_rcu(&pa->pa_node.lg_list); 5128 spin_unlock(pa->pa_node_lock.lg_lock); 5129 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5130 } 5131 } 5132 5133 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new) 5134 { 5135 struct rb_node **iter = &root->rb_node, *parent = NULL; 5136 struct ext4_prealloc_space *iter_pa, *new_pa; 5137 ext4_lblk_t iter_start, new_start; 5138 5139 while (*iter) { 5140 iter_pa = rb_entry(*iter, struct ext4_prealloc_space, 5141 pa_node.inode_node); 5142 new_pa = rb_entry(new, struct ext4_prealloc_space, 5143 pa_node.inode_node); 5144 iter_start = iter_pa->pa_lstart; 5145 new_start = new_pa->pa_lstart; 5146 5147 parent = *iter; 5148 if (new_start < iter_start) 5149 iter = &((*iter)->rb_left); 5150 else 5151 iter = &((*iter)->rb_right); 5152 } 5153 5154 rb_link_node(new, parent, iter); 5155 rb_insert_color(new, root); 5156 } 5157 5158 /* 5159 * creates new preallocated space for given inode 5160 */ 5161 static noinline_for_stack void 5162 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 5163 { 5164 struct super_block *sb = ac->ac_sb; 5165 struct ext4_sb_info *sbi = EXT4_SB(sb); 5166 struct ext4_prealloc_space *pa; 5167 struct ext4_group_info *grp; 5168 struct ext4_inode_info *ei; 5169 5170 /* preallocate only when found space is larger then requested */ 5171 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5172 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5173 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5174 BUG_ON(ac->ac_pa == NULL); 5175 5176 pa = ac->ac_pa; 5177 5178 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) { 5179 struct ext4_free_extent ex = { 5180 .fe_logical = ac->ac_g_ex.fe_logical, 5181 .fe_len = ac->ac_orig_goal_len, 5182 }; 5183 loff_t orig_goal_end = extent_logical_end(sbi, &ex); 5184 5185 /* we can't allocate as much as normalizer wants. 5186 * so, found space must get proper lstart 5187 * to cover original request */ 5188 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 5189 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 5190 5191 /* 5192 * Use the below logic for adjusting best extent as it keeps 5193 * fragmentation in check while ensuring logical range of best 5194 * extent doesn't overflow out of goal extent: 5195 * 5196 * 1. Check if best ex can be kept at end of goal (before 5197 * cr_best_avail trimmed it) and still cover original start 5198 * 2. Else, check if best ex can be kept at start of goal and 5199 * still cover original start 5200 * 3. Else, keep the best ex at start of original request. 5201 */ 5202 ex.fe_len = ac->ac_b_ex.fe_len; 5203 5204 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len); 5205 if (ac->ac_o_ex.fe_logical >= ex.fe_logical) 5206 goto adjust_bex; 5207 5208 ex.fe_logical = ac->ac_g_ex.fe_logical; 5209 if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex)) 5210 goto adjust_bex; 5211 5212 ex.fe_logical = ac->ac_o_ex.fe_logical; 5213 adjust_bex: 5214 ac->ac_b_ex.fe_logical = ex.fe_logical; 5215 5216 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 5217 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 5218 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end); 5219 } 5220 5221 pa->pa_lstart = ac->ac_b_ex.fe_logical; 5222 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5223 pa->pa_len = ac->ac_b_ex.fe_len; 5224 pa->pa_free = pa->pa_len; 5225 spin_lock_init(&pa->pa_lock); 5226 INIT_LIST_HEAD(&pa->pa_group_list); 5227 pa->pa_deleted = 0; 5228 pa->pa_type = MB_INODE_PA; 5229 5230 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5231 pa->pa_len, pa->pa_lstart); 5232 trace_ext4_mb_new_inode_pa(ac, pa); 5233 5234 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 5235 ext4_mb_use_inode_pa(ac, pa); 5236 5237 ei = EXT4_I(ac->ac_inode); 5238 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5239 if (!grp) 5240 return; 5241 5242 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock; 5243 pa->pa_inode = ac->ac_inode; 5244 5245 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5246 5247 write_lock(pa->pa_node_lock.inode_lock); 5248 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node); 5249 write_unlock(pa->pa_node_lock.inode_lock); 5250 atomic_inc(&ei->i_prealloc_active); 5251 } 5252 5253 /* 5254 * creates new preallocated space for locality group inodes belongs to 5255 */ 5256 static noinline_for_stack void 5257 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 5258 { 5259 struct super_block *sb = ac->ac_sb; 5260 struct ext4_locality_group *lg; 5261 struct ext4_prealloc_space *pa; 5262 struct ext4_group_info *grp; 5263 5264 /* preallocate only when found space is larger then requested */ 5265 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5266 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5267 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5268 BUG_ON(ac->ac_pa == NULL); 5269 5270 pa = ac->ac_pa; 5271 5272 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5273 pa->pa_lstart = pa->pa_pstart; 5274 pa->pa_len = ac->ac_b_ex.fe_len; 5275 pa->pa_free = pa->pa_len; 5276 spin_lock_init(&pa->pa_lock); 5277 INIT_LIST_HEAD(&pa->pa_node.lg_list); 5278 INIT_LIST_HEAD(&pa->pa_group_list); 5279 pa->pa_deleted = 0; 5280 pa->pa_type = MB_GROUP_PA; 5281 5282 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5283 pa->pa_len, pa->pa_lstart); 5284 trace_ext4_mb_new_group_pa(ac, pa); 5285 5286 ext4_mb_use_group_pa(ac, pa); 5287 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 5288 5289 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5290 if (!grp) 5291 return; 5292 lg = ac->ac_lg; 5293 BUG_ON(lg == NULL); 5294 5295 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock; 5296 pa->pa_inode = NULL; 5297 5298 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5299 5300 /* 5301 * We will later add the new pa to the right bucket 5302 * after updating the pa_free in ext4_mb_release_context 5303 */ 5304 } 5305 5306 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 5307 { 5308 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5309 ext4_mb_new_group_pa(ac); 5310 else 5311 ext4_mb_new_inode_pa(ac); 5312 } 5313 5314 /* 5315 * finds all unused blocks in on-disk bitmap, frees them in 5316 * in-core bitmap and buddy. 5317 * @pa must be unlinked from inode and group lists, so that 5318 * nobody else can find/use it. 5319 * the caller MUST hold group/inode locks. 5320 * TODO: optimize the case when there are no in-core structures yet 5321 */ 5322 static noinline_for_stack int 5323 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 5324 struct ext4_prealloc_space *pa) 5325 { 5326 struct super_block *sb = e4b->bd_sb; 5327 struct ext4_sb_info *sbi = EXT4_SB(sb); 5328 unsigned int end; 5329 unsigned int next; 5330 ext4_group_t group; 5331 ext4_grpblk_t bit; 5332 unsigned long long grp_blk_start; 5333 int free = 0; 5334 5335 BUG_ON(pa->pa_deleted == 0); 5336 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5337 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 5338 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 5339 end = bit + pa->pa_len; 5340 5341 while (bit < end) { 5342 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 5343 if (bit >= end) 5344 break; 5345 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 5346 mb_debug(sb, "free preallocated %u/%u in group %u\n", 5347 (unsigned) ext4_group_first_block_no(sb, group) + bit, 5348 (unsigned) next - bit, (unsigned) group); 5349 free += next - bit; 5350 5351 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 5352 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 5353 EXT4_C2B(sbi, bit)), 5354 next - bit); 5355 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 5356 bit = next + 1; 5357 } 5358 if (free != pa->pa_free) { 5359 ext4_msg(e4b->bd_sb, KERN_CRIT, 5360 "pa %p: logic %lu, phys. %lu, len %d", 5361 pa, (unsigned long) pa->pa_lstart, 5362 (unsigned long) pa->pa_pstart, 5363 pa->pa_len); 5364 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 5365 free, pa->pa_free); 5366 /* 5367 * pa is already deleted so we use the value obtained 5368 * from the bitmap and continue. 5369 */ 5370 } 5371 atomic_add(free, &sbi->s_mb_discarded); 5372 5373 return 0; 5374 } 5375 5376 static noinline_for_stack int 5377 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 5378 struct ext4_prealloc_space *pa) 5379 { 5380 struct super_block *sb = e4b->bd_sb; 5381 ext4_group_t group; 5382 ext4_grpblk_t bit; 5383 5384 trace_ext4_mb_release_group_pa(sb, pa); 5385 BUG_ON(pa->pa_deleted == 0); 5386 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5387 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) { 5388 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu", 5389 e4b->bd_group, group, pa->pa_pstart); 5390 return 0; 5391 } 5392 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 5393 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 5394 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 5395 5396 return 0; 5397 } 5398 5399 /* 5400 * releases all preallocations in given group 5401 * 5402 * first, we need to decide discard policy: 5403 * - when do we discard 5404 * 1) ENOSPC 5405 * - how many do we discard 5406 * 1) how many requested 5407 */ 5408 static noinline_for_stack int 5409 ext4_mb_discard_group_preallocations(struct super_block *sb, 5410 ext4_group_t group, int *busy) 5411 { 5412 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5413 struct buffer_head *bitmap_bh = NULL; 5414 struct ext4_prealloc_space *pa, *tmp; 5415 LIST_HEAD(list); 5416 struct ext4_buddy e4b; 5417 struct ext4_inode_info *ei; 5418 int err; 5419 int free = 0; 5420 5421 if (!grp) 5422 return 0; 5423 mb_debug(sb, "discard preallocation for group %u\n", group); 5424 if (list_empty(&grp->bb_prealloc_list)) 5425 goto out_dbg; 5426 5427 bitmap_bh = ext4_read_block_bitmap(sb, group); 5428 if (IS_ERR(bitmap_bh)) { 5429 err = PTR_ERR(bitmap_bh); 5430 ext4_error_err(sb, -err, 5431 "Error %d reading block bitmap for %u", 5432 err, group); 5433 goto out_dbg; 5434 } 5435 5436 err = ext4_mb_load_buddy(sb, group, &e4b); 5437 if (err) { 5438 ext4_warning(sb, "Error %d loading buddy information for %u", 5439 err, group); 5440 put_bh(bitmap_bh); 5441 goto out_dbg; 5442 } 5443 5444 ext4_lock_group(sb, group); 5445 list_for_each_entry_safe(pa, tmp, 5446 &grp->bb_prealloc_list, pa_group_list) { 5447 spin_lock(&pa->pa_lock); 5448 if (atomic_read(&pa->pa_count)) { 5449 spin_unlock(&pa->pa_lock); 5450 *busy = 1; 5451 continue; 5452 } 5453 if (pa->pa_deleted) { 5454 spin_unlock(&pa->pa_lock); 5455 continue; 5456 } 5457 5458 /* seems this one can be freed ... */ 5459 ext4_mb_mark_pa_deleted(sb, pa); 5460 5461 if (!free) 5462 this_cpu_inc(discard_pa_seq); 5463 5464 /* we can trust pa_free ... */ 5465 free += pa->pa_free; 5466 5467 spin_unlock(&pa->pa_lock); 5468 5469 list_del(&pa->pa_group_list); 5470 list_add(&pa->u.pa_tmp_list, &list); 5471 } 5472 5473 /* now free all selected PAs */ 5474 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5475 5476 /* remove from object (inode or locality group) */ 5477 if (pa->pa_type == MB_GROUP_PA) { 5478 spin_lock(pa->pa_node_lock.lg_lock); 5479 list_del_rcu(&pa->pa_node.lg_list); 5480 spin_unlock(pa->pa_node_lock.lg_lock); 5481 } else { 5482 write_lock(pa->pa_node_lock.inode_lock); 5483 ei = EXT4_I(pa->pa_inode); 5484 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5485 write_unlock(pa->pa_node_lock.inode_lock); 5486 } 5487 5488 list_del(&pa->u.pa_tmp_list); 5489 5490 if (pa->pa_type == MB_GROUP_PA) { 5491 ext4_mb_release_group_pa(&e4b, pa); 5492 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5493 } else { 5494 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5495 ext4_mb_pa_free(pa); 5496 } 5497 } 5498 5499 ext4_unlock_group(sb, group); 5500 ext4_mb_unload_buddy(&e4b); 5501 put_bh(bitmap_bh); 5502 out_dbg: 5503 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 5504 free, group, grp->bb_free); 5505 return free; 5506 } 5507 5508 /* 5509 * releases all non-used preallocated blocks for given inode 5510 * 5511 * It's important to discard preallocations under i_data_sem 5512 * We don't want another block to be served from the prealloc 5513 * space when we are discarding the inode prealloc space. 5514 * 5515 * FIXME!! Make sure it is valid at all the call sites 5516 */ 5517 void ext4_discard_preallocations(struct inode *inode, unsigned int needed) 5518 { 5519 struct ext4_inode_info *ei = EXT4_I(inode); 5520 struct super_block *sb = inode->i_sb; 5521 struct buffer_head *bitmap_bh = NULL; 5522 struct ext4_prealloc_space *pa, *tmp; 5523 ext4_group_t group = 0; 5524 LIST_HEAD(list); 5525 struct ext4_buddy e4b; 5526 struct rb_node *iter; 5527 int err; 5528 5529 if (!S_ISREG(inode->i_mode)) { 5530 return; 5531 } 5532 5533 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 5534 return; 5535 5536 mb_debug(sb, "discard preallocation for inode %lu\n", 5537 inode->i_ino); 5538 trace_ext4_discard_preallocations(inode, 5539 atomic_read(&ei->i_prealloc_active), needed); 5540 5541 if (needed == 0) 5542 needed = UINT_MAX; 5543 5544 repeat: 5545 /* first, collect all pa's in the inode */ 5546 write_lock(&ei->i_prealloc_lock); 5547 for (iter = rb_first(&ei->i_prealloc_node); iter && needed; 5548 iter = rb_next(iter)) { 5549 pa = rb_entry(iter, struct ext4_prealloc_space, 5550 pa_node.inode_node); 5551 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock); 5552 5553 spin_lock(&pa->pa_lock); 5554 if (atomic_read(&pa->pa_count)) { 5555 /* this shouldn't happen often - nobody should 5556 * use preallocation while we're discarding it */ 5557 spin_unlock(&pa->pa_lock); 5558 write_unlock(&ei->i_prealloc_lock); 5559 ext4_msg(sb, KERN_ERR, 5560 "uh-oh! used pa while discarding"); 5561 WARN_ON(1); 5562 schedule_timeout_uninterruptible(HZ); 5563 goto repeat; 5564 5565 } 5566 if (pa->pa_deleted == 0) { 5567 ext4_mb_mark_pa_deleted(sb, pa); 5568 spin_unlock(&pa->pa_lock); 5569 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5570 list_add(&pa->u.pa_tmp_list, &list); 5571 needed--; 5572 continue; 5573 } 5574 5575 /* someone is deleting pa right now */ 5576 spin_unlock(&pa->pa_lock); 5577 write_unlock(&ei->i_prealloc_lock); 5578 5579 /* we have to wait here because pa_deleted 5580 * doesn't mean pa is already unlinked from 5581 * the list. as we might be called from 5582 * ->clear_inode() the inode will get freed 5583 * and concurrent thread which is unlinking 5584 * pa from inode's list may access already 5585 * freed memory, bad-bad-bad */ 5586 5587 /* XXX: if this happens too often, we can 5588 * add a flag to force wait only in case 5589 * of ->clear_inode(), but not in case of 5590 * regular truncate */ 5591 schedule_timeout_uninterruptible(HZ); 5592 goto repeat; 5593 } 5594 write_unlock(&ei->i_prealloc_lock); 5595 5596 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5597 BUG_ON(pa->pa_type != MB_INODE_PA); 5598 group = ext4_get_group_number(sb, pa->pa_pstart); 5599 5600 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5601 GFP_NOFS|__GFP_NOFAIL); 5602 if (err) { 5603 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5604 err, group); 5605 continue; 5606 } 5607 5608 bitmap_bh = ext4_read_block_bitmap(sb, group); 5609 if (IS_ERR(bitmap_bh)) { 5610 err = PTR_ERR(bitmap_bh); 5611 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 5612 err, group); 5613 ext4_mb_unload_buddy(&e4b); 5614 continue; 5615 } 5616 5617 ext4_lock_group(sb, group); 5618 list_del(&pa->pa_group_list); 5619 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5620 ext4_unlock_group(sb, group); 5621 5622 ext4_mb_unload_buddy(&e4b); 5623 put_bh(bitmap_bh); 5624 5625 list_del(&pa->u.pa_tmp_list); 5626 ext4_mb_pa_free(pa); 5627 } 5628 } 5629 5630 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 5631 { 5632 struct ext4_prealloc_space *pa; 5633 5634 BUG_ON(ext4_pspace_cachep == NULL); 5635 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 5636 if (!pa) 5637 return -ENOMEM; 5638 atomic_set(&pa->pa_count, 1); 5639 ac->ac_pa = pa; 5640 return 0; 5641 } 5642 5643 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac) 5644 { 5645 struct ext4_prealloc_space *pa = ac->ac_pa; 5646 5647 BUG_ON(!pa); 5648 ac->ac_pa = NULL; 5649 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 5650 /* 5651 * current function is only called due to an error or due to 5652 * len of found blocks < len of requested blocks hence the PA has not 5653 * been added to grp->bb_prealloc_list. So we don't need to lock it 5654 */ 5655 pa->pa_deleted = 1; 5656 ext4_mb_pa_free(pa); 5657 } 5658 5659 #ifdef CONFIG_EXT4_DEBUG 5660 static inline void ext4_mb_show_pa(struct super_block *sb) 5661 { 5662 ext4_group_t i, ngroups; 5663 5664 if (ext4_forced_shutdown(sb)) 5665 return; 5666 5667 ngroups = ext4_get_groups_count(sb); 5668 mb_debug(sb, "groups: "); 5669 for (i = 0; i < ngroups; i++) { 5670 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 5671 struct ext4_prealloc_space *pa; 5672 ext4_grpblk_t start; 5673 struct list_head *cur; 5674 5675 if (!grp) 5676 continue; 5677 ext4_lock_group(sb, i); 5678 list_for_each(cur, &grp->bb_prealloc_list) { 5679 pa = list_entry(cur, struct ext4_prealloc_space, 5680 pa_group_list); 5681 spin_lock(&pa->pa_lock); 5682 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5683 NULL, &start); 5684 spin_unlock(&pa->pa_lock); 5685 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 5686 pa->pa_len); 5687 } 5688 ext4_unlock_group(sb, i); 5689 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 5690 grp->bb_fragments); 5691 } 5692 } 5693 5694 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5695 { 5696 struct super_block *sb = ac->ac_sb; 5697 5698 if (ext4_forced_shutdown(sb)) 5699 return; 5700 5701 mb_debug(sb, "Can't allocate:" 5702 " Allocation context details:"); 5703 mb_debug(sb, "status %u flags 0x%x", 5704 ac->ac_status, ac->ac_flags); 5705 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 5706 "goal %lu/%lu/%lu@%lu, " 5707 "best %lu/%lu/%lu@%lu cr %d", 5708 (unsigned long)ac->ac_o_ex.fe_group, 5709 (unsigned long)ac->ac_o_ex.fe_start, 5710 (unsigned long)ac->ac_o_ex.fe_len, 5711 (unsigned long)ac->ac_o_ex.fe_logical, 5712 (unsigned long)ac->ac_g_ex.fe_group, 5713 (unsigned long)ac->ac_g_ex.fe_start, 5714 (unsigned long)ac->ac_g_ex.fe_len, 5715 (unsigned long)ac->ac_g_ex.fe_logical, 5716 (unsigned long)ac->ac_b_ex.fe_group, 5717 (unsigned long)ac->ac_b_ex.fe_start, 5718 (unsigned long)ac->ac_b_ex.fe_len, 5719 (unsigned long)ac->ac_b_ex.fe_logical, 5720 (int)ac->ac_criteria); 5721 mb_debug(sb, "%u found", ac->ac_found); 5722 mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no"); 5723 if (ac->ac_pa) 5724 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ? 5725 "group pa" : "inode pa"); 5726 ext4_mb_show_pa(sb); 5727 } 5728 #else 5729 static inline void ext4_mb_show_pa(struct super_block *sb) 5730 { 5731 } 5732 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5733 { 5734 ext4_mb_show_pa(ac->ac_sb); 5735 } 5736 #endif 5737 5738 /* 5739 * We use locality group preallocation for small size file. The size of the 5740 * file is determined by the current size or the resulting size after 5741 * allocation which ever is larger 5742 * 5743 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 5744 */ 5745 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 5746 { 5747 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5748 int bsbits = ac->ac_sb->s_blocksize_bits; 5749 loff_t size, isize; 5750 bool inode_pa_eligible, group_pa_eligible; 5751 5752 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 5753 return; 5754 5755 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 5756 return; 5757 5758 group_pa_eligible = sbi->s_mb_group_prealloc > 0; 5759 inode_pa_eligible = true; 5760 size = extent_logical_end(sbi, &ac->ac_o_ex); 5761 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 5762 >> bsbits; 5763 5764 /* No point in using inode preallocation for closed files */ 5765 if ((size == isize) && !ext4_fs_is_busy(sbi) && 5766 !inode_is_open_for_write(ac->ac_inode)) 5767 inode_pa_eligible = false; 5768 5769 size = max(size, isize); 5770 /* Don't use group allocation for large files */ 5771 if (size > sbi->s_mb_stream_request) 5772 group_pa_eligible = false; 5773 5774 if (!group_pa_eligible) { 5775 if (inode_pa_eligible) 5776 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5777 else 5778 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 5779 return; 5780 } 5781 5782 BUG_ON(ac->ac_lg != NULL); 5783 /* 5784 * locality group prealloc space are per cpu. The reason for having 5785 * per cpu locality group is to reduce the contention between block 5786 * request from multiple CPUs. 5787 */ 5788 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 5789 5790 /* we're going to use group allocation */ 5791 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 5792 5793 /* serialize all allocations in the group */ 5794 mutex_lock(&ac->ac_lg->lg_mutex); 5795 } 5796 5797 static noinline_for_stack void 5798 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 5799 struct ext4_allocation_request *ar) 5800 { 5801 struct super_block *sb = ar->inode->i_sb; 5802 struct ext4_sb_info *sbi = EXT4_SB(sb); 5803 struct ext4_super_block *es = sbi->s_es; 5804 ext4_group_t group; 5805 unsigned int len; 5806 ext4_fsblk_t goal; 5807 ext4_grpblk_t block; 5808 5809 /* we can't allocate > group size */ 5810 len = ar->len; 5811 5812 /* just a dirty hack to filter too big requests */ 5813 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 5814 len = EXT4_CLUSTERS_PER_GROUP(sb); 5815 5816 /* start searching from the goal */ 5817 goal = ar->goal; 5818 if (goal < le32_to_cpu(es->s_first_data_block) || 5819 goal >= ext4_blocks_count(es)) 5820 goal = le32_to_cpu(es->s_first_data_block); 5821 ext4_get_group_no_and_offset(sb, goal, &group, &block); 5822 5823 /* set up allocation goals */ 5824 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 5825 ac->ac_status = AC_STATUS_CONTINUE; 5826 ac->ac_sb = sb; 5827 ac->ac_inode = ar->inode; 5828 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 5829 ac->ac_o_ex.fe_group = group; 5830 ac->ac_o_ex.fe_start = block; 5831 ac->ac_o_ex.fe_len = len; 5832 ac->ac_g_ex = ac->ac_o_ex; 5833 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 5834 ac->ac_flags = ar->flags; 5835 5836 /* we have to define context: we'll work with a file or 5837 * locality group. this is a policy, actually */ 5838 ext4_mb_group_or_file(ac); 5839 5840 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 5841 "left: %u/%u, right %u/%u to %swritable\n", 5842 (unsigned) ar->len, (unsigned) ar->logical, 5843 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 5844 (unsigned) ar->lleft, (unsigned) ar->pleft, 5845 (unsigned) ar->lright, (unsigned) ar->pright, 5846 inode_is_open_for_write(ar->inode) ? "" : "non-"); 5847 } 5848 5849 static noinline_for_stack void 5850 ext4_mb_discard_lg_preallocations(struct super_block *sb, 5851 struct ext4_locality_group *lg, 5852 int order, int total_entries) 5853 { 5854 ext4_group_t group = 0; 5855 struct ext4_buddy e4b; 5856 LIST_HEAD(discard_list); 5857 struct ext4_prealloc_space *pa, *tmp; 5858 5859 mb_debug(sb, "discard locality group preallocation\n"); 5860 5861 spin_lock(&lg->lg_prealloc_lock); 5862 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 5863 pa_node.lg_list, 5864 lockdep_is_held(&lg->lg_prealloc_lock)) { 5865 spin_lock(&pa->pa_lock); 5866 if (atomic_read(&pa->pa_count)) { 5867 /* 5868 * This is the pa that we just used 5869 * for block allocation. So don't 5870 * free that 5871 */ 5872 spin_unlock(&pa->pa_lock); 5873 continue; 5874 } 5875 if (pa->pa_deleted) { 5876 spin_unlock(&pa->pa_lock); 5877 continue; 5878 } 5879 /* only lg prealloc space */ 5880 BUG_ON(pa->pa_type != MB_GROUP_PA); 5881 5882 /* seems this one can be freed ... */ 5883 ext4_mb_mark_pa_deleted(sb, pa); 5884 spin_unlock(&pa->pa_lock); 5885 5886 list_del_rcu(&pa->pa_node.lg_list); 5887 list_add(&pa->u.pa_tmp_list, &discard_list); 5888 5889 total_entries--; 5890 if (total_entries <= 5) { 5891 /* 5892 * we want to keep only 5 entries 5893 * allowing it to grow to 8. This 5894 * mak sure we don't call discard 5895 * soon for this list. 5896 */ 5897 break; 5898 } 5899 } 5900 spin_unlock(&lg->lg_prealloc_lock); 5901 5902 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 5903 int err; 5904 5905 group = ext4_get_group_number(sb, pa->pa_pstart); 5906 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5907 GFP_NOFS|__GFP_NOFAIL); 5908 if (err) { 5909 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5910 err, group); 5911 continue; 5912 } 5913 ext4_lock_group(sb, group); 5914 list_del(&pa->pa_group_list); 5915 ext4_mb_release_group_pa(&e4b, pa); 5916 ext4_unlock_group(sb, group); 5917 5918 ext4_mb_unload_buddy(&e4b); 5919 list_del(&pa->u.pa_tmp_list); 5920 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5921 } 5922 } 5923 5924 /* 5925 * We have incremented pa_count. So it cannot be freed at this 5926 * point. Also we hold lg_mutex. So no parallel allocation is 5927 * possible from this lg. That means pa_free cannot be updated. 5928 * 5929 * A parallel ext4_mb_discard_group_preallocations is possible. 5930 * which can cause the lg_prealloc_list to be updated. 5931 */ 5932 5933 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 5934 { 5935 int order, added = 0, lg_prealloc_count = 1; 5936 struct super_block *sb = ac->ac_sb; 5937 struct ext4_locality_group *lg = ac->ac_lg; 5938 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 5939 5940 order = fls(pa->pa_free) - 1; 5941 if (order > PREALLOC_TB_SIZE - 1) 5942 /* The max size of hash table is PREALLOC_TB_SIZE */ 5943 order = PREALLOC_TB_SIZE - 1; 5944 /* Add the prealloc space to lg */ 5945 spin_lock(&lg->lg_prealloc_lock); 5946 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 5947 pa_node.lg_list, 5948 lockdep_is_held(&lg->lg_prealloc_lock)) { 5949 spin_lock(&tmp_pa->pa_lock); 5950 if (tmp_pa->pa_deleted) { 5951 spin_unlock(&tmp_pa->pa_lock); 5952 continue; 5953 } 5954 if (!added && pa->pa_free < tmp_pa->pa_free) { 5955 /* Add to the tail of the previous entry */ 5956 list_add_tail_rcu(&pa->pa_node.lg_list, 5957 &tmp_pa->pa_node.lg_list); 5958 added = 1; 5959 /* 5960 * we want to count the total 5961 * number of entries in the list 5962 */ 5963 } 5964 spin_unlock(&tmp_pa->pa_lock); 5965 lg_prealloc_count++; 5966 } 5967 if (!added) 5968 list_add_tail_rcu(&pa->pa_node.lg_list, 5969 &lg->lg_prealloc_list[order]); 5970 spin_unlock(&lg->lg_prealloc_lock); 5971 5972 /* Now trim the list to be not more than 8 elements */ 5973 if (lg_prealloc_count > 8) 5974 ext4_mb_discard_lg_preallocations(sb, lg, 5975 order, lg_prealloc_count); 5976 } 5977 5978 /* 5979 * release all resource we used in allocation 5980 */ 5981 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 5982 { 5983 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5984 struct ext4_prealloc_space *pa = ac->ac_pa; 5985 if (pa) { 5986 if (pa->pa_type == MB_GROUP_PA) { 5987 /* see comment in ext4_mb_use_group_pa() */ 5988 spin_lock(&pa->pa_lock); 5989 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5990 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5991 pa->pa_free -= ac->ac_b_ex.fe_len; 5992 pa->pa_len -= ac->ac_b_ex.fe_len; 5993 spin_unlock(&pa->pa_lock); 5994 5995 /* 5996 * We want to add the pa to the right bucket. 5997 * Remove it from the list and while adding 5998 * make sure the list to which we are adding 5999 * doesn't grow big. 6000 */ 6001 if (likely(pa->pa_free)) { 6002 spin_lock(pa->pa_node_lock.lg_lock); 6003 list_del_rcu(&pa->pa_node.lg_list); 6004 spin_unlock(pa->pa_node_lock.lg_lock); 6005 ext4_mb_add_n_trim(ac); 6006 } 6007 } 6008 6009 ext4_mb_put_pa(ac, ac->ac_sb, pa); 6010 } 6011 if (ac->ac_bitmap_page) 6012 put_page(ac->ac_bitmap_page); 6013 if (ac->ac_buddy_page) 6014 put_page(ac->ac_buddy_page); 6015 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 6016 mutex_unlock(&ac->ac_lg->lg_mutex); 6017 ext4_mb_collect_stats(ac); 6018 return 0; 6019 } 6020 6021 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 6022 { 6023 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 6024 int ret; 6025 int freed = 0, busy = 0; 6026 int retry = 0; 6027 6028 trace_ext4_mb_discard_preallocations(sb, needed); 6029 6030 if (needed == 0) 6031 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 6032 repeat: 6033 for (i = 0; i < ngroups && needed > 0; i++) { 6034 ret = ext4_mb_discard_group_preallocations(sb, i, &busy); 6035 freed += ret; 6036 needed -= ret; 6037 cond_resched(); 6038 } 6039 6040 if (needed > 0 && busy && ++retry < 3) { 6041 busy = 0; 6042 goto repeat; 6043 } 6044 6045 return freed; 6046 } 6047 6048 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 6049 struct ext4_allocation_context *ac, u64 *seq) 6050 { 6051 int freed; 6052 u64 seq_retry = 0; 6053 bool ret = false; 6054 6055 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 6056 if (freed) { 6057 ret = true; 6058 goto out_dbg; 6059 } 6060 seq_retry = ext4_get_discard_pa_seq_sum(); 6061 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 6062 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 6063 *seq = seq_retry; 6064 ret = true; 6065 } 6066 6067 out_dbg: 6068 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 6069 return ret; 6070 } 6071 6072 /* 6073 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 6074 * linearly starting at the goal block and also excludes the blocks which 6075 * are going to be in use after fast commit replay. 6076 */ 6077 static ext4_fsblk_t 6078 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp) 6079 { 6080 struct buffer_head *bitmap_bh; 6081 struct super_block *sb = ar->inode->i_sb; 6082 struct ext4_sb_info *sbi = EXT4_SB(sb); 6083 ext4_group_t group, nr; 6084 ext4_grpblk_t blkoff; 6085 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 6086 ext4_grpblk_t i = 0; 6087 ext4_fsblk_t goal, block; 6088 struct ext4_super_block *es = sbi->s_es; 6089 6090 goal = ar->goal; 6091 if (goal < le32_to_cpu(es->s_first_data_block) || 6092 goal >= ext4_blocks_count(es)) 6093 goal = le32_to_cpu(es->s_first_data_block); 6094 6095 ar->len = 0; 6096 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 6097 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) { 6098 bitmap_bh = ext4_read_block_bitmap(sb, group); 6099 if (IS_ERR(bitmap_bh)) { 6100 *errp = PTR_ERR(bitmap_bh); 6101 pr_warn("Failed to read block bitmap\n"); 6102 return 0; 6103 } 6104 6105 while (1) { 6106 i = mb_find_next_zero_bit(bitmap_bh->b_data, max, 6107 blkoff); 6108 if (i >= max) 6109 break; 6110 if (ext4_fc_replay_check_excluded(sb, 6111 ext4_group_first_block_no(sb, group) + 6112 EXT4_C2B(sbi, i))) { 6113 blkoff = i + 1; 6114 } else 6115 break; 6116 } 6117 brelse(bitmap_bh); 6118 if (i < max) 6119 break; 6120 6121 if (++group >= ext4_get_groups_count(sb)) 6122 group = 0; 6123 6124 blkoff = 0; 6125 } 6126 6127 if (i >= max) { 6128 *errp = -ENOSPC; 6129 return 0; 6130 } 6131 6132 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i); 6133 ext4_mb_mark_bb(sb, block, 1, 1); 6134 ar->len = 1; 6135 6136 return block; 6137 } 6138 6139 /* 6140 * Main entry point into mballoc to allocate blocks 6141 * it tries to use preallocation first, then falls back 6142 * to usual allocation 6143 */ 6144 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 6145 struct ext4_allocation_request *ar, int *errp) 6146 { 6147 struct ext4_allocation_context *ac = NULL; 6148 struct ext4_sb_info *sbi; 6149 struct super_block *sb; 6150 ext4_fsblk_t block = 0; 6151 unsigned int inquota = 0; 6152 unsigned int reserv_clstrs = 0; 6153 int retries = 0; 6154 u64 seq; 6155 6156 might_sleep(); 6157 sb = ar->inode->i_sb; 6158 sbi = EXT4_SB(sb); 6159 6160 trace_ext4_request_blocks(ar); 6161 if (sbi->s_mount_state & EXT4_FC_REPLAY) 6162 return ext4_mb_new_blocks_simple(ar, errp); 6163 6164 /* Allow to use superuser reservation for quota file */ 6165 if (ext4_is_quota_file(ar->inode)) 6166 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 6167 6168 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 6169 /* Without delayed allocation we need to verify 6170 * there is enough free blocks to do block allocation 6171 * and verify allocation doesn't exceed the quota limits. 6172 */ 6173 while (ar->len && 6174 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 6175 6176 /* let others to free the space */ 6177 cond_resched(); 6178 ar->len = ar->len >> 1; 6179 } 6180 if (!ar->len) { 6181 ext4_mb_show_pa(sb); 6182 *errp = -ENOSPC; 6183 return 0; 6184 } 6185 reserv_clstrs = ar->len; 6186 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 6187 dquot_alloc_block_nofail(ar->inode, 6188 EXT4_C2B(sbi, ar->len)); 6189 } else { 6190 while (ar->len && 6191 dquot_alloc_block(ar->inode, 6192 EXT4_C2B(sbi, ar->len))) { 6193 6194 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 6195 ar->len--; 6196 } 6197 } 6198 inquota = ar->len; 6199 if (ar->len == 0) { 6200 *errp = -EDQUOT; 6201 goto out; 6202 } 6203 } 6204 6205 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 6206 if (!ac) { 6207 ar->len = 0; 6208 *errp = -ENOMEM; 6209 goto out; 6210 } 6211 6212 ext4_mb_initialize_context(ac, ar); 6213 6214 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 6215 seq = this_cpu_read(discard_pa_seq); 6216 if (!ext4_mb_use_preallocated(ac)) { 6217 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 6218 ext4_mb_normalize_request(ac, ar); 6219 6220 *errp = ext4_mb_pa_alloc(ac); 6221 if (*errp) 6222 goto errout; 6223 repeat: 6224 /* allocate space in core */ 6225 *errp = ext4_mb_regular_allocator(ac); 6226 /* 6227 * pa allocated above is added to grp->bb_prealloc_list only 6228 * when we were able to allocate some block i.e. when 6229 * ac->ac_status == AC_STATUS_FOUND. 6230 * And error from above mean ac->ac_status != AC_STATUS_FOUND 6231 * So we have to free this pa here itself. 6232 */ 6233 if (*errp) { 6234 ext4_mb_pa_put_free(ac); 6235 ext4_discard_allocated_blocks(ac); 6236 goto errout; 6237 } 6238 if (ac->ac_status == AC_STATUS_FOUND && 6239 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 6240 ext4_mb_pa_put_free(ac); 6241 } 6242 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 6243 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 6244 if (*errp) { 6245 ext4_discard_allocated_blocks(ac); 6246 goto errout; 6247 } else { 6248 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 6249 ar->len = ac->ac_b_ex.fe_len; 6250 } 6251 } else { 6252 if (++retries < 3 && 6253 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 6254 goto repeat; 6255 /* 6256 * If block allocation fails then the pa allocated above 6257 * needs to be freed here itself. 6258 */ 6259 ext4_mb_pa_put_free(ac); 6260 *errp = -ENOSPC; 6261 } 6262 6263 if (*errp) { 6264 errout: 6265 ac->ac_b_ex.fe_len = 0; 6266 ar->len = 0; 6267 ext4_mb_show_ac(ac); 6268 } 6269 ext4_mb_release_context(ac); 6270 kmem_cache_free(ext4_ac_cachep, ac); 6271 out: 6272 if (inquota && ar->len < inquota) 6273 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 6274 if (!ar->len) { 6275 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 6276 /* release all the reserved blocks if non delalloc */ 6277 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 6278 reserv_clstrs); 6279 } 6280 6281 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 6282 6283 return block; 6284 } 6285 6286 /* 6287 * We can merge two free data extents only if the physical blocks 6288 * are contiguous, AND the extents were freed by the same transaction, 6289 * AND the blocks are associated with the same group. 6290 */ 6291 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 6292 struct ext4_free_data *entry, 6293 struct ext4_free_data *new_entry, 6294 struct rb_root *entry_rb_root) 6295 { 6296 if ((entry->efd_tid != new_entry->efd_tid) || 6297 (entry->efd_group != new_entry->efd_group)) 6298 return; 6299 if (entry->efd_start_cluster + entry->efd_count == 6300 new_entry->efd_start_cluster) { 6301 new_entry->efd_start_cluster = entry->efd_start_cluster; 6302 new_entry->efd_count += entry->efd_count; 6303 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 6304 entry->efd_start_cluster) { 6305 new_entry->efd_count += entry->efd_count; 6306 } else 6307 return; 6308 spin_lock(&sbi->s_md_lock); 6309 list_del(&entry->efd_list); 6310 spin_unlock(&sbi->s_md_lock); 6311 rb_erase(&entry->efd_node, entry_rb_root); 6312 kmem_cache_free(ext4_free_data_cachep, entry); 6313 } 6314 6315 static noinline_for_stack void 6316 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 6317 struct ext4_free_data *new_entry) 6318 { 6319 ext4_group_t group = e4b->bd_group; 6320 ext4_grpblk_t cluster; 6321 ext4_grpblk_t clusters = new_entry->efd_count; 6322 struct ext4_free_data *entry; 6323 struct ext4_group_info *db = e4b->bd_info; 6324 struct super_block *sb = e4b->bd_sb; 6325 struct ext4_sb_info *sbi = EXT4_SB(sb); 6326 struct rb_node **n = &db->bb_free_root.rb_node, *node; 6327 struct rb_node *parent = NULL, *new_node; 6328 6329 BUG_ON(!ext4_handle_valid(handle)); 6330 BUG_ON(e4b->bd_bitmap_page == NULL); 6331 BUG_ON(e4b->bd_buddy_page == NULL); 6332 6333 new_node = &new_entry->efd_node; 6334 cluster = new_entry->efd_start_cluster; 6335 6336 if (!*n) { 6337 /* first free block exent. We need to 6338 protect buddy cache from being freed, 6339 * otherwise we'll refresh it from 6340 * on-disk bitmap and lose not-yet-available 6341 * blocks */ 6342 get_page(e4b->bd_buddy_page); 6343 get_page(e4b->bd_bitmap_page); 6344 } 6345 while (*n) { 6346 parent = *n; 6347 entry = rb_entry(parent, struct ext4_free_data, efd_node); 6348 if (cluster < entry->efd_start_cluster) 6349 n = &(*n)->rb_left; 6350 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 6351 n = &(*n)->rb_right; 6352 else { 6353 ext4_grp_locked_error(sb, group, 0, 6354 ext4_group_first_block_no(sb, group) + 6355 EXT4_C2B(sbi, cluster), 6356 "Block already on to-be-freed list"); 6357 kmem_cache_free(ext4_free_data_cachep, new_entry); 6358 return; 6359 } 6360 } 6361 6362 rb_link_node(new_node, parent, n); 6363 rb_insert_color(new_node, &db->bb_free_root); 6364 6365 /* Now try to see the extent can be merged to left and right */ 6366 node = rb_prev(new_node); 6367 if (node) { 6368 entry = rb_entry(node, struct ext4_free_data, efd_node); 6369 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6370 &(db->bb_free_root)); 6371 } 6372 6373 node = rb_next(new_node); 6374 if (node) { 6375 entry = rb_entry(node, struct ext4_free_data, efd_node); 6376 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6377 &(db->bb_free_root)); 6378 } 6379 6380 spin_lock(&sbi->s_md_lock); 6381 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 6382 sbi->s_mb_free_pending += clusters; 6383 spin_unlock(&sbi->s_md_lock); 6384 } 6385 6386 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 6387 unsigned long count) 6388 { 6389 struct buffer_head *bitmap_bh; 6390 struct super_block *sb = inode->i_sb; 6391 struct ext4_group_desc *gdp; 6392 struct buffer_head *gdp_bh; 6393 ext4_group_t group; 6394 ext4_grpblk_t blkoff; 6395 int already_freed = 0, err, i; 6396 6397 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 6398 bitmap_bh = ext4_read_block_bitmap(sb, group); 6399 if (IS_ERR(bitmap_bh)) { 6400 pr_warn("Failed to read block bitmap\n"); 6401 return; 6402 } 6403 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 6404 if (!gdp) 6405 goto err_out; 6406 6407 for (i = 0; i < count; i++) { 6408 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data)) 6409 already_freed++; 6410 } 6411 mb_clear_bits(bitmap_bh->b_data, blkoff, count); 6412 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 6413 if (err) 6414 goto err_out; 6415 ext4_free_group_clusters_set( 6416 sb, gdp, ext4_free_group_clusters(sb, gdp) + 6417 count - already_freed); 6418 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 6419 ext4_group_desc_csum_set(sb, group, gdp); 6420 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 6421 sync_dirty_buffer(bitmap_bh); 6422 sync_dirty_buffer(gdp_bh); 6423 6424 err_out: 6425 brelse(bitmap_bh); 6426 } 6427 6428 /** 6429 * ext4_mb_clear_bb() -- helper function for freeing blocks. 6430 * Used by ext4_free_blocks() 6431 * @handle: handle for this transaction 6432 * @inode: inode 6433 * @block: starting physical block to be freed 6434 * @count: number of blocks to be freed 6435 * @flags: flags used by ext4_free_blocks 6436 */ 6437 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, 6438 ext4_fsblk_t block, unsigned long count, 6439 int flags) 6440 { 6441 struct buffer_head *bitmap_bh = NULL; 6442 struct super_block *sb = inode->i_sb; 6443 struct ext4_group_desc *gdp; 6444 struct ext4_group_info *grp; 6445 unsigned int overflow; 6446 ext4_grpblk_t bit; 6447 struct buffer_head *gd_bh; 6448 ext4_group_t block_group; 6449 struct ext4_sb_info *sbi; 6450 struct ext4_buddy e4b; 6451 unsigned int count_clusters; 6452 int err = 0; 6453 int ret; 6454 6455 sbi = EXT4_SB(sb); 6456 6457 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6458 !ext4_inode_block_valid(inode, block, count)) { 6459 ext4_error(sb, "Freeing blocks in system zone - " 6460 "Block = %llu, count = %lu", block, count); 6461 /* err = 0. ext4_std_error should be a no op */ 6462 goto error_return; 6463 } 6464 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6465 6466 do_more: 6467 overflow = 0; 6468 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6469 6470 grp = ext4_get_group_info(sb, block_group); 6471 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 6472 return; 6473 6474 /* 6475 * Check to see if we are freeing blocks across a group 6476 * boundary. 6477 */ 6478 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 6479 overflow = EXT4_C2B(sbi, bit) + count - 6480 EXT4_BLOCKS_PER_GROUP(sb); 6481 count -= overflow; 6482 /* The range changed so it's no longer validated */ 6483 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6484 } 6485 count_clusters = EXT4_NUM_B2C(sbi, count); 6486 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6487 if (IS_ERR(bitmap_bh)) { 6488 err = PTR_ERR(bitmap_bh); 6489 bitmap_bh = NULL; 6490 goto error_return; 6491 } 6492 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 6493 if (!gdp) { 6494 err = -EIO; 6495 goto error_return; 6496 } 6497 6498 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6499 !ext4_inode_block_valid(inode, block, count)) { 6500 ext4_error(sb, "Freeing blocks in system zone - " 6501 "Block = %llu, count = %lu", block, count); 6502 /* err = 0. ext4_std_error should be a no op */ 6503 goto error_return; 6504 } 6505 6506 BUFFER_TRACE(bitmap_bh, "getting write access"); 6507 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6508 EXT4_JTR_NONE); 6509 if (err) 6510 goto error_return; 6511 6512 /* 6513 * We are about to modify some metadata. Call the journal APIs 6514 * to unshare ->b_data if a currently-committing transaction is 6515 * using it 6516 */ 6517 BUFFER_TRACE(gd_bh, "get_write_access"); 6518 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6519 if (err) 6520 goto error_return; 6521 #ifdef AGGRESSIVE_CHECK 6522 { 6523 int i; 6524 for (i = 0; i < count_clusters; i++) 6525 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 6526 } 6527 #endif 6528 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 6529 6530 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 6531 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 6532 GFP_NOFS|__GFP_NOFAIL); 6533 if (err) 6534 goto error_return; 6535 6536 /* 6537 * We need to make sure we don't reuse the freed block until after the 6538 * transaction is committed. We make an exception if the inode is to be 6539 * written in writeback mode since writeback mode has weak data 6540 * consistency guarantees. 6541 */ 6542 if (ext4_handle_valid(handle) && 6543 ((flags & EXT4_FREE_BLOCKS_METADATA) || 6544 !ext4_should_writeback_data(inode))) { 6545 struct ext4_free_data *new_entry; 6546 /* 6547 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 6548 * to fail. 6549 */ 6550 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 6551 GFP_NOFS|__GFP_NOFAIL); 6552 new_entry->efd_start_cluster = bit; 6553 new_entry->efd_group = block_group; 6554 new_entry->efd_count = count_clusters; 6555 new_entry->efd_tid = handle->h_transaction->t_tid; 6556 6557 ext4_lock_group(sb, block_group); 6558 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6559 ext4_mb_free_metadata(handle, &e4b, new_entry); 6560 } else { 6561 /* need to update group_info->bb_free and bitmap 6562 * with group lock held. generate_buddy look at 6563 * them with group lock_held 6564 */ 6565 if (test_opt(sb, DISCARD)) { 6566 err = ext4_issue_discard(sb, block_group, bit, 6567 count_clusters, NULL); 6568 if (err && err != -EOPNOTSUPP) 6569 ext4_msg(sb, KERN_WARNING, "discard request in" 6570 " group:%u block:%d count:%lu failed" 6571 " with %d", block_group, bit, count, 6572 err); 6573 } else 6574 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 6575 6576 ext4_lock_group(sb, block_group); 6577 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6578 mb_free_blocks(inode, &e4b, bit, count_clusters); 6579 } 6580 6581 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 6582 ext4_free_group_clusters_set(sb, gdp, ret); 6583 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 6584 ext4_group_desc_csum_set(sb, block_group, gdp); 6585 ext4_unlock_group(sb, block_group); 6586 6587 if (sbi->s_log_groups_per_flex) { 6588 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6589 atomic64_add(count_clusters, 6590 &sbi_array_rcu_deref(sbi, s_flex_groups, 6591 flex_group)->free_clusters); 6592 } 6593 6594 /* 6595 * on a bigalloc file system, defer the s_freeclusters_counter 6596 * update to the caller (ext4_remove_space and friends) so they 6597 * can determine if a cluster freed here should be rereserved 6598 */ 6599 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 6600 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 6601 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 6602 percpu_counter_add(&sbi->s_freeclusters_counter, 6603 count_clusters); 6604 } 6605 6606 ext4_mb_unload_buddy(&e4b); 6607 6608 /* We dirtied the bitmap block */ 6609 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6610 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6611 6612 /* And the group descriptor block */ 6613 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6614 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6615 if (!err) 6616 err = ret; 6617 6618 if (overflow && !err) { 6619 block += count; 6620 count = overflow; 6621 put_bh(bitmap_bh); 6622 /* The range changed so it's no longer validated */ 6623 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6624 goto do_more; 6625 } 6626 error_return: 6627 brelse(bitmap_bh); 6628 ext4_std_error(sb, err); 6629 } 6630 6631 /** 6632 * ext4_free_blocks() -- Free given blocks and update quota 6633 * @handle: handle for this transaction 6634 * @inode: inode 6635 * @bh: optional buffer of the block to be freed 6636 * @block: starting physical block to be freed 6637 * @count: number of blocks to be freed 6638 * @flags: flags used by ext4_free_blocks 6639 */ 6640 void ext4_free_blocks(handle_t *handle, struct inode *inode, 6641 struct buffer_head *bh, ext4_fsblk_t block, 6642 unsigned long count, int flags) 6643 { 6644 struct super_block *sb = inode->i_sb; 6645 unsigned int overflow; 6646 struct ext4_sb_info *sbi; 6647 6648 sbi = EXT4_SB(sb); 6649 6650 if (bh) { 6651 if (block) 6652 BUG_ON(block != bh->b_blocknr); 6653 else 6654 block = bh->b_blocknr; 6655 } 6656 6657 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 6658 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count)); 6659 return; 6660 } 6661 6662 might_sleep(); 6663 6664 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6665 !ext4_inode_block_valid(inode, block, count)) { 6666 ext4_error(sb, "Freeing blocks not in datazone - " 6667 "block = %llu, count = %lu", block, count); 6668 return; 6669 } 6670 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6671 6672 ext4_debug("freeing block %llu\n", block); 6673 trace_ext4_free_blocks(inode, block, count, flags); 6674 6675 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6676 BUG_ON(count > 1); 6677 6678 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 6679 inode, bh, block); 6680 } 6681 6682 /* 6683 * If the extent to be freed does not begin on a cluster 6684 * boundary, we need to deal with partial clusters at the 6685 * beginning and end of the extent. Normally we will free 6686 * blocks at the beginning or the end unless we are explicitly 6687 * requested to avoid doing so. 6688 */ 6689 overflow = EXT4_PBLK_COFF(sbi, block); 6690 if (overflow) { 6691 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 6692 overflow = sbi->s_cluster_ratio - overflow; 6693 block += overflow; 6694 if (count > overflow) 6695 count -= overflow; 6696 else 6697 return; 6698 } else { 6699 block -= overflow; 6700 count += overflow; 6701 } 6702 /* The range changed so it's no longer validated */ 6703 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6704 } 6705 overflow = EXT4_LBLK_COFF(sbi, count); 6706 if (overflow) { 6707 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 6708 if (count > overflow) 6709 count -= overflow; 6710 else 6711 return; 6712 } else 6713 count += sbi->s_cluster_ratio - overflow; 6714 /* The range changed so it's no longer validated */ 6715 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6716 } 6717 6718 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6719 int i; 6720 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 6721 6722 for (i = 0; i < count; i++) { 6723 cond_resched(); 6724 if (is_metadata) 6725 bh = sb_find_get_block(inode->i_sb, block + i); 6726 ext4_forget(handle, is_metadata, inode, bh, block + i); 6727 } 6728 } 6729 6730 ext4_mb_clear_bb(handle, inode, block, count, flags); 6731 } 6732 6733 /** 6734 * ext4_group_add_blocks() -- Add given blocks to an existing group 6735 * @handle: handle to this transaction 6736 * @sb: super block 6737 * @block: start physical block to add to the block group 6738 * @count: number of blocks to free 6739 * 6740 * This marks the blocks as free in the bitmap and buddy. 6741 */ 6742 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 6743 ext4_fsblk_t block, unsigned long count) 6744 { 6745 struct buffer_head *bitmap_bh = NULL; 6746 struct buffer_head *gd_bh; 6747 ext4_group_t block_group; 6748 ext4_grpblk_t bit; 6749 unsigned int i; 6750 struct ext4_group_desc *desc; 6751 struct ext4_sb_info *sbi = EXT4_SB(sb); 6752 struct ext4_buddy e4b; 6753 int err = 0, ret, free_clusters_count; 6754 ext4_grpblk_t clusters_freed; 6755 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 6756 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 6757 unsigned long cluster_count = last_cluster - first_cluster + 1; 6758 6759 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 6760 6761 if (count == 0) 6762 return 0; 6763 6764 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6765 /* 6766 * Check to see if we are freeing blocks across a group 6767 * boundary. 6768 */ 6769 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 6770 ext4_warning(sb, "too many blocks added to group %u", 6771 block_group); 6772 err = -EINVAL; 6773 goto error_return; 6774 } 6775 6776 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6777 if (IS_ERR(bitmap_bh)) { 6778 err = PTR_ERR(bitmap_bh); 6779 bitmap_bh = NULL; 6780 goto error_return; 6781 } 6782 6783 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 6784 if (!desc) { 6785 err = -EIO; 6786 goto error_return; 6787 } 6788 6789 if (!ext4_sb_block_valid(sb, NULL, block, count)) { 6790 ext4_error(sb, "Adding blocks in system zones - " 6791 "Block = %llu, count = %lu", 6792 block, count); 6793 err = -EINVAL; 6794 goto error_return; 6795 } 6796 6797 BUFFER_TRACE(bitmap_bh, "getting write access"); 6798 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6799 EXT4_JTR_NONE); 6800 if (err) 6801 goto error_return; 6802 6803 /* 6804 * We are about to modify some metadata. Call the journal APIs 6805 * to unshare ->b_data if a currently-committing transaction is 6806 * using it 6807 */ 6808 BUFFER_TRACE(gd_bh, "get_write_access"); 6809 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6810 if (err) 6811 goto error_return; 6812 6813 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 6814 BUFFER_TRACE(bitmap_bh, "clear bit"); 6815 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 6816 ext4_error(sb, "bit already cleared for block %llu", 6817 (ext4_fsblk_t)(block + i)); 6818 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 6819 } else { 6820 clusters_freed++; 6821 } 6822 } 6823 6824 err = ext4_mb_load_buddy(sb, block_group, &e4b); 6825 if (err) 6826 goto error_return; 6827 6828 /* 6829 * need to update group_info->bb_free and bitmap 6830 * with group lock held. generate_buddy look at 6831 * them with group lock_held 6832 */ 6833 ext4_lock_group(sb, block_group); 6834 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 6835 mb_free_blocks(NULL, &e4b, bit, cluster_count); 6836 free_clusters_count = clusters_freed + 6837 ext4_free_group_clusters(sb, desc); 6838 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 6839 ext4_block_bitmap_csum_set(sb, desc, bitmap_bh); 6840 ext4_group_desc_csum_set(sb, block_group, desc); 6841 ext4_unlock_group(sb, block_group); 6842 percpu_counter_add(&sbi->s_freeclusters_counter, 6843 clusters_freed); 6844 6845 if (sbi->s_log_groups_per_flex) { 6846 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6847 atomic64_add(clusters_freed, 6848 &sbi_array_rcu_deref(sbi, s_flex_groups, 6849 flex_group)->free_clusters); 6850 } 6851 6852 ext4_mb_unload_buddy(&e4b); 6853 6854 /* We dirtied the bitmap block */ 6855 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6856 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6857 6858 /* And the group descriptor block */ 6859 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6860 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6861 if (!err) 6862 err = ret; 6863 6864 error_return: 6865 brelse(bitmap_bh); 6866 ext4_std_error(sb, err); 6867 return err; 6868 } 6869 6870 /** 6871 * ext4_trim_extent -- function to TRIM one single free extent in the group 6872 * @sb: super block for the file system 6873 * @start: starting block of the free extent in the alloc. group 6874 * @count: number of blocks to TRIM 6875 * @e4b: ext4 buddy for the group 6876 * 6877 * Trim "count" blocks starting at "start" in the "group". To assure that no 6878 * one will allocate those blocks, mark it as used in buddy bitmap. This must 6879 * be called with under the group lock. 6880 */ 6881 static int ext4_trim_extent(struct super_block *sb, 6882 int start, int count, struct ext4_buddy *e4b) 6883 __releases(bitlock) 6884 __acquires(bitlock) 6885 { 6886 struct ext4_free_extent ex; 6887 ext4_group_t group = e4b->bd_group; 6888 int ret = 0; 6889 6890 trace_ext4_trim_extent(sb, group, start, count); 6891 6892 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 6893 6894 ex.fe_start = start; 6895 ex.fe_group = group; 6896 ex.fe_len = count; 6897 6898 /* 6899 * Mark blocks used, so no one can reuse them while 6900 * being trimmed. 6901 */ 6902 mb_mark_used(e4b, &ex); 6903 ext4_unlock_group(sb, group); 6904 ret = ext4_issue_discard(sb, group, start, count, NULL); 6905 ext4_lock_group(sb, group); 6906 mb_free_blocks(NULL, e4b, start, ex.fe_len); 6907 return ret; 6908 } 6909 6910 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb, 6911 ext4_group_t grp) 6912 { 6913 unsigned long nr_clusters_in_group; 6914 6915 if (grp < (ext4_get_groups_count(sb) - 1)) 6916 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb); 6917 else 6918 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) - 6919 ext4_group_first_block_no(sb, grp)) 6920 >> EXT4_CLUSTER_BITS(sb); 6921 6922 return nr_clusters_in_group - 1; 6923 } 6924 6925 static bool ext4_trim_interrupted(void) 6926 { 6927 return fatal_signal_pending(current) || freezing(current); 6928 } 6929 6930 static int ext4_try_to_trim_range(struct super_block *sb, 6931 struct ext4_buddy *e4b, ext4_grpblk_t start, 6932 ext4_grpblk_t max, ext4_grpblk_t minblocks) 6933 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) 6934 __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) 6935 { 6936 ext4_grpblk_t next, count, free_count, last, origin_start; 6937 bool set_trimmed = false; 6938 void *bitmap; 6939 6940 last = ext4_last_grp_cluster(sb, e4b->bd_group); 6941 bitmap = e4b->bd_bitmap; 6942 if (start == 0 && max >= last) 6943 set_trimmed = true; 6944 origin_start = start; 6945 start = max(e4b->bd_info->bb_first_free, start); 6946 count = 0; 6947 free_count = 0; 6948 6949 while (start <= max) { 6950 start = mb_find_next_zero_bit(bitmap, max + 1, start); 6951 if (start > max) 6952 break; 6953 6954 next = mb_find_next_bit(bitmap, last + 1, start); 6955 if (origin_start == 0 && next >= last) 6956 set_trimmed = true; 6957 6958 if ((next - start) >= minblocks) { 6959 int ret = ext4_trim_extent(sb, start, next - start, e4b); 6960 6961 if (ret && ret != -EOPNOTSUPP) 6962 return count; 6963 count += next - start; 6964 } 6965 free_count += next - start; 6966 start = next + 1; 6967 6968 if (ext4_trim_interrupted()) 6969 return count; 6970 6971 if (need_resched()) { 6972 ext4_unlock_group(sb, e4b->bd_group); 6973 cond_resched(); 6974 ext4_lock_group(sb, e4b->bd_group); 6975 } 6976 6977 if ((e4b->bd_info->bb_free - free_count) < minblocks) 6978 break; 6979 } 6980 6981 if (set_trimmed) 6982 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info); 6983 6984 return count; 6985 } 6986 6987 /** 6988 * ext4_trim_all_free -- function to trim all free space in alloc. group 6989 * @sb: super block for file system 6990 * @group: group to be trimmed 6991 * @start: first group block to examine 6992 * @max: last group block to examine 6993 * @minblocks: minimum extent block count 6994 * 6995 * ext4_trim_all_free walks through group's block bitmap searching for free 6996 * extents. When the free extent is found, mark it as used in group buddy 6997 * bitmap. Then issue a TRIM command on this extent and free the extent in 6998 * the group buddy bitmap. 6999 */ 7000 static ext4_grpblk_t 7001 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 7002 ext4_grpblk_t start, ext4_grpblk_t max, 7003 ext4_grpblk_t minblocks) 7004 { 7005 struct ext4_buddy e4b; 7006 int ret; 7007 7008 trace_ext4_trim_all_free(sb, group, start, max); 7009 7010 ret = ext4_mb_load_buddy(sb, group, &e4b); 7011 if (ret) { 7012 ext4_warning(sb, "Error %d loading buddy information for %u", 7013 ret, group); 7014 return ret; 7015 } 7016 7017 ext4_lock_group(sb, group); 7018 7019 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || 7020 minblocks < EXT4_SB(sb)->s_last_trim_minblks) 7021 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); 7022 else 7023 ret = 0; 7024 7025 ext4_unlock_group(sb, group); 7026 ext4_mb_unload_buddy(&e4b); 7027 7028 ext4_debug("trimmed %d blocks in the group %d\n", 7029 ret, group); 7030 7031 return ret; 7032 } 7033 7034 /** 7035 * ext4_trim_fs() -- trim ioctl handle function 7036 * @sb: superblock for filesystem 7037 * @range: fstrim_range structure 7038 * 7039 * start: First Byte to trim 7040 * len: number of Bytes to trim from start 7041 * minlen: minimum extent length in Bytes 7042 * ext4_trim_fs goes through all allocation groups containing Bytes from 7043 * start to start+len. For each such a group ext4_trim_all_free function 7044 * is invoked to trim all free space. 7045 */ 7046 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 7047 { 7048 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev); 7049 struct ext4_group_info *grp; 7050 ext4_group_t group, first_group, last_group; 7051 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 7052 uint64_t start, end, minlen, trimmed = 0; 7053 ext4_fsblk_t first_data_blk = 7054 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 7055 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 7056 int ret = 0; 7057 7058 start = range->start >> sb->s_blocksize_bits; 7059 end = start + (range->len >> sb->s_blocksize_bits) - 1; 7060 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7061 range->minlen >> sb->s_blocksize_bits); 7062 7063 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 7064 start >= max_blks || 7065 range->len < sb->s_blocksize) 7066 return -EINVAL; 7067 /* No point to try to trim less than discard granularity */ 7068 if (range->minlen < discard_granularity) { 7069 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7070 discard_granularity >> sb->s_blocksize_bits); 7071 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) 7072 goto out; 7073 } 7074 if (end >= max_blks - 1) 7075 end = max_blks - 1; 7076 if (end <= first_data_blk) 7077 goto out; 7078 if (start < first_data_blk) 7079 start = first_data_blk; 7080 7081 /* Determine first and last group to examine based on start and end */ 7082 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 7083 &first_group, &first_cluster); 7084 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 7085 &last_group, &last_cluster); 7086 7087 /* end now represents the last cluster to discard in this group */ 7088 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7089 7090 for (group = first_group; group <= last_group; group++) { 7091 if (ext4_trim_interrupted()) 7092 break; 7093 grp = ext4_get_group_info(sb, group); 7094 if (!grp) 7095 continue; 7096 /* We only do this if the grp has never been initialized */ 7097 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 7098 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 7099 if (ret) 7100 break; 7101 } 7102 7103 /* 7104 * For all the groups except the last one, last cluster will 7105 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 7106 * change it for the last group, note that last_cluster is 7107 * already computed earlier by ext4_get_group_no_and_offset() 7108 */ 7109 if (group == last_group) 7110 end = last_cluster; 7111 if (grp->bb_free >= minlen) { 7112 cnt = ext4_trim_all_free(sb, group, first_cluster, 7113 end, minlen); 7114 if (cnt < 0) { 7115 ret = cnt; 7116 break; 7117 } 7118 trimmed += cnt; 7119 } 7120 7121 /* 7122 * For every group except the first one, we are sure 7123 * that the first cluster to discard will be cluster #0. 7124 */ 7125 first_cluster = 0; 7126 } 7127 7128 if (!ret) 7129 EXT4_SB(sb)->s_last_trim_minblks = minlen; 7130 7131 out: 7132 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 7133 return ret; 7134 } 7135 7136 /* Iterate all the free extents in the group. */ 7137 int 7138 ext4_mballoc_query_range( 7139 struct super_block *sb, 7140 ext4_group_t group, 7141 ext4_grpblk_t start, 7142 ext4_grpblk_t end, 7143 ext4_mballoc_query_range_fn formatter, 7144 void *priv) 7145 { 7146 void *bitmap; 7147 ext4_grpblk_t next; 7148 struct ext4_buddy e4b; 7149 int error; 7150 7151 error = ext4_mb_load_buddy(sb, group, &e4b); 7152 if (error) 7153 return error; 7154 bitmap = e4b.bd_bitmap; 7155 7156 ext4_lock_group(sb, group); 7157 7158 start = max(e4b.bd_info->bb_first_free, start); 7159 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 7160 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7161 7162 while (start <= end) { 7163 start = mb_find_next_zero_bit(bitmap, end + 1, start); 7164 if (start > end) 7165 break; 7166 next = mb_find_next_bit(bitmap, end + 1, start); 7167 7168 ext4_unlock_group(sb, group); 7169 error = formatter(sb, group, start, next - start, priv); 7170 if (error) 7171 goto out_unload; 7172 ext4_lock_group(sb, group); 7173 7174 start = next + 1; 7175 } 7176 7177 ext4_unlock_group(sb, group); 7178 out_unload: 7179 ext4_mb_unload_buddy(&e4b); 7180 7181 return error; 7182 } 7183