1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <linux/freezer.h> 20 #include <trace/events/ext4.h> 21 22 /* 23 * MUSTDO: 24 * - test ext4_ext_search_left() and ext4_ext_search_right() 25 * - search for metadata in few groups 26 * 27 * TODO v4: 28 * - normalization should take into account whether file is still open 29 * - discard preallocations if no free space left (policy?) 30 * - don't normalize tails 31 * - quota 32 * - reservation for superuser 33 * 34 * TODO v3: 35 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 36 * - track min/max extents in each group for better group selection 37 * - mb_mark_used() may allocate chunk right after splitting buddy 38 * - tree of groups sorted by number of free blocks 39 * - error handling 40 */ 41 42 /* 43 * The allocation request involve request for multiple number of blocks 44 * near to the goal(block) value specified. 45 * 46 * During initialization phase of the allocator we decide to use the 47 * group preallocation or inode preallocation depending on the size of 48 * the file. The size of the file could be the resulting file size we 49 * would have after allocation, or the current file size, which ever 50 * is larger. If the size is less than sbi->s_mb_stream_request we 51 * select to use the group preallocation. The default value of 52 * s_mb_stream_request is 16 blocks. This can also be tuned via 53 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 54 * terms of number of blocks. 55 * 56 * The main motivation for having small file use group preallocation is to 57 * ensure that we have small files closer together on the disk. 58 * 59 * First stage the allocator looks at the inode prealloc list, 60 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 61 * spaces for this particular inode. The inode prealloc space is 62 * represented as: 63 * 64 * pa_lstart -> the logical start block for this prealloc space 65 * pa_pstart -> the physical start block for this prealloc space 66 * pa_len -> length for this prealloc space (in clusters) 67 * pa_free -> free space available in this prealloc space (in clusters) 68 * 69 * The inode preallocation space is used looking at the _logical_ start 70 * block. If only the logical file block falls within the range of prealloc 71 * space we will consume the particular prealloc space. This makes sure that 72 * we have contiguous physical blocks representing the file blocks 73 * 74 * The important thing to be noted in case of inode prealloc space is that 75 * we don't modify the values associated to inode prealloc space except 76 * pa_free. 77 * 78 * If we are not able to find blocks in the inode prealloc space and if we 79 * have the group allocation flag set then we look at the locality group 80 * prealloc space. These are per CPU prealloc list represented as 81 * 82 * ext4_sb_info.s_locality_groups[smp_processor_id()] 83 * 84 * The reason for having a per cpu locality group is to reduce the contention 85 * between CPUs. It is possible to get scheduled at this point. 86 * 87 * The locality group prealloc space is used looking at whether we have 88 * enough free space (pa_free) within the prealloc space. 89 * 90 * If we can't allocate blocks via inode prealloc or/and locality group 91 * prealloc then we look at the buddy cache. The buddy cache is represented 92 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 93 * mapped to the buddy and bitmap information regarding different 94 * groups. The buddy information is attached to buddy cache inode so that 95 * we can access them through the page cache. The information regarding 96 * each group is loaded via ext4_mb_load_buddy. The information involve 97 * block bitmap and buddy information. The information are stored in the 98 * inode as: 99 * 100 * { page } 101 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 102 * 103 * 104 * one block each for bitmap and buddy information. So for each group we 105 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 106 * blocksize) blocks. So it can have information regarding groups_per_page 107 * which is blocks_per_page/2 108 * 109 * The buddy cache inode is not stored on disk. The inode is thrown 110 * away when the filesystem is unmounted. 111 * 112 * We look for count number of blocks in the buddy cache. If we were able 113 * to locate that many free blocks we return with additional information 114 * regarding rest of the contiguous physical block available 115 * 116 * Before allocating blocks via buddy cache we normalize the request 117 * blocks. This ensure we ask for more blocks that we needed. The extra 118 * blocks that we get after allocation is added to the respective prealloc 119 * list. In case of inode preallocation we follow a list of heuristics 120 * based on file size. This can be found in ext4_mb_normalize_request. If 121 * we are doing a group prealloc we try to normalize the request to 122 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 123 * dependent on the cluster size; for non-bigalloc file systems, it is 124 * 512 blocks. This can be tuned via 125 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 126 * terms of number of blocks. If we have mounted the file system with -O 127 * stripe=<value> option the group prealloc request is normalized to the 128 * smallest multiple of the stripe value (sbi->s_stripe) which is 129 * greater than the default mb_group_prealloc. 130 * 131 * If "mb_optimize_scan" mount option is set, we maintain in memory group info 132 * structures in two data structures: 133 * 134 * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) 135 * 136 * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) 137 * 138 * This is an array of lists where the index in the array represents the 139 * largest free order in the buddy bitmap of the participating group infos of 140 * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total 141 * number of buddy bitmap orders possible) number of lists. Group-infos are 142 * placed in appropriate lists. 143 * 144 * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size) 145 * 146 * Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks) 147 * 148 * This is an array of lists where in the i-th list there are groups with 149 * average fragment size >= 2^i and < 2^(i+1). The average fragment size 150 * is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments. 151 * Note that we don't bother with a special list for completely empty groups 152 * so we only have MB_NUM_ORDERS(sb) lists. 153 * 154 * When "mb_optimize_scan" mount option is set, mballoc consults the above data 155 * structures to decide the order in which groups are to be traversed for 156 * fulfilling an allocation request. 157 * 158 * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order 159 * >= the order of the request. We directly look at the largest free order list 160 * in the data structure (1) above where largest_free_order = order of the 161 * request. If that list is empty, we look at remaining list in the increasing 162 * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED 163 * lookup in O(1) time. 164 * 165 * At CR_GOAL_LEN_FAST, we only consider groups where 166 * average fragment size > request size. So, we lookup a group which has average 167 * fragment size just above or equal to request size using our average fragment 168 * size group lists (data structure 2) in O(1) time. 169 * 170 * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied 171 * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in 172 * CR_GOAL_LEN_FAST suggests that there is no BG that has avg 173 * fragment size > goal length. So before falling to the slower 174 * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and 175 * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big 176 * enough average fragment size. This increases the chances of finding a 177 * suitable block group in O(1) time and results in faster allocation at the 178 * cost of reduced size of allocation. 179 * 180 * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in 181 * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and 182 * CR_GOAL_LEN_FAST phase. 183 * 184 * The regular allocator (using the buddy cache) supports a few tunables. 185 * 186 * /sys/fs/ext4/<partition>/mb_min_to_scan 187 * /sys/fs/ext4/<partition>/mb_max_to_scan 188 * /sys/fs/ext4/<partition>/mb_order2_req 189 * /sys/fs/ext4/<partition>/mb_linear_limit 190 * 191 * The regular allocator uses buddy scan only if the request len is power of 192 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 193 * value of s_mb_order2_reqs can be tuned via 194 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 195 * stripe size (sbi->s_stripe), we try to search for contiguous block in 196 * stripe size. This should result in better allocation on RAID setups. If 197 * not, we search in the specific group using bitmap for best extents. The 198 * tunable min_to_scan and max_to_scan control the behaviour here. 199 * min_to_scan indicate how long the mballoc __must__ look for a best 200 * extent and max_to_scan indicates how long the mballoc __can__ look for a 201 * best extent in the found extents. Searching for the blocks starts with 202 * the group specified as the goal value in allocation context via 203 * ac_g_ex. Each group is first checked based on the criteria whether it 204 * can be used for allocation. ext4_mb_good_group explains how the groups are 205 * checked. 206 * 207 * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not 208 * get traversed linearly. That may result in subsequent allocations being not 209 * close to each other. And so, the underlying device may get filled up in a 210 * non-linear fashion. While that may not matter on non-rotational devices, for 211 * rotational devices that may result in higher seek times. "mb_linear_limit" 212 * tells mballoc how many groups mballoc should search linearly before 213 * performing consulting above data structures for more efficient lookups. For 214 * non rotational devices, this value defaults to 0 and for rotational devices 215 * this is set to MB_DEFAULT_LINEAR_LIMIT. 216 * 217 * Both the prealloc space are getting populated as above. So for the first 218 * request we will hit the buddy cache which will result in this prealloc 219 * space getting filled. The prealloc space is then later used for the 220 * subsequent request. 221 */ 222 223 /* 224 * mballoc operates on the following data: 225 * - on-disk bitmap 226 * - in-core buddy (actually includes buddy and bitmap) 227 * - preallocation descriptors (PAs) 228 * 229 * there are two types of preallocations: 230 * - inode 231 * assiged to specific inode and can be used for this inode only. 232 * it describes part of inode's space preallocated to specific 233 * physical blocks. any block from that preallocated can be used 234 * independent. the descriptor just tracks number of blocks left 235 * unused. so, before taking some block from descriptor, one must 236 * make sure corresponded logical block isn't allocated yet. this 237 * also means that freeing any block within descriptor's range 238 * must discard all preallocated blocks. 239 * - locality group 240 * assigned to specific locality group which does not translate to 241 * permanent set of inodes: inode can join and leave group. space 242 * from this type of preallocation can be used for any inode. thus 243 * it's consumed from the beginning to the end. 244 * 245 * relation between them can be expressed as: 246 * in-core buddy = on-disk bitmap + preallocation descriptors 247 * 248 * this mean blocks mballoc considers used are: 249 * - allocated blocks (persistent) 250 * - preallocated blocks (non-persistent) 251 * 252 * consistency in mballoc world means that at any time a block is either 253 * free or used in ALL structures. notice: "any time" should not be read 254 * literally -- time is discrete and delimited by locks. 255 * 256 * to keep it simple, we don't use block numbers, instead we count number of 257 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 258 * 259 * all operations can be expressed as: 260 * - init buddy: buddy = on-disk + PAs 261 * - new PA: buddy += N; PA = N 262 * - use inode PA: on-disk += N; PA -= N 263 * - discard inode PA buddy -= on-disk - PA; PA = 0 264 * - use locality group PA on-disk += N; PA -= N 265 * - discard locality group PA buddy -= PA; PA = 0 266 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 267 * is used in real operation because we can't know actual used 268 * bits from PA, only from on-disk bitmap 269 * 270 * if we follow this strict logic, then all operations above should be atomic. 271 * given some of them can block, we'd have to use something like semaphores 272 * killing performance on high-end SMP hardware. let's try to relax it using 273 * the following knowledge: 274 * 1) if buddy is referenced, it's already initialized 275 * 2) while block is used in buddy and the buddy is referenced, 276 * nobody can re-allocate that block 277 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 278 * bit set and PA claims same block, it's OK. IOW, one can set bit in 279 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 280 * block 281 * 282 * so, now we're building a concurrency table: 283 * - init buddy vs. 284 * - new PA 285 * blocks for PA are allocated in the buddy, buddy must be referenced 286 * until PA is linked to allocation group to avoid concurrent buddy init 287 * - use inode PA 288 * we need to make sure that either on-disk bitmap or PA has uptodate data 289 * given (3) we care that PA-=N operation doesn't interfere with init 290 * - discard inode PA 291 * the simplest way would be to have buddy initialized by the discard 292 * - use locality group PA 293 * again PA-=N must be serialized with init 294 * - discard locality group PA 295 * the simplest way would be to have buddy initialized by the discard 296 * - new PA vs. 297 * - use inode PA 298 * i_data_sem serializes them 299 * - discard inode PA 300 * discard process must wait until PA isn't used by another process 301 * - use locality group PA 302 * some mutex should serialize them 303 * - discard locality group PA 304 * discard process must wait until PA isn't used by another process 305 * - use inode PA 306 * - use inode PA 307 * i_data_sem or another mutex should serializes them 308 * - discard inode PA 309 * discard process must wait until PA isn't used by another process 310 * - use locality group PA 311 * nothing wrong here -- they're different PAs covering different blocks 312 * - discard locality group PA 313 * discard process must wait until PA isn't used by another process 314 * 315 * now we're ready to make few consequences: 316 * - PA is referenced and while it is no discard is possible 317 * - PA is referenced until block isn't marked in on-disk bitmap 318 * - PA changes only after on-disk bitmap 319 * - discard must not compete with init. either init is done before 320 * any discard or they're serialized somehow 321 * - buddy init as sum of on-disk bitmap and PAs is done atomically 322 * 323 * a special case when we've used PA to emptiness. no need to modify buddy 324 * in this case, but we should care about concurrent init 325 * 326 */ 327 328 /* 329 * Logic in few words: 330 * 331 * - allocation: 332 * load group 333 * find blocks 334 * mark bits in on-disk bitmap 335 * release group 336 * 337 * - use preallocation: 338 * find proper PA (per-inode or group) 339 * load group 340 * mark bits in on-disk bitmap 341 * release group 342 * release PA 343 * 344 * - free: 345 * load group 346 * mark bits in on-disk bitmap 347 * release group 348 * 349 * - discard preallocations in group: 350 * mark PAs deleted 351 * move them onto local list 352 * load on-disk bitmap 353 * load group 354 * remove PA from object (inode or locality group) 355 * mark free blocks in-core 356 * 357 * - discard inode's preallocations: 358 */ 359 360 /* 361 * Locking rules 362 * 363 * Locks: 364 * - bitlock on a group (group) 365 * - object (inode/locality) (object) 366 * - per-pa lock (pa) 367 * - cr_power2_aligned lists lock (cr_power2_aligned) 368 * - cr_goal_len_fast lists lock (cr_goal_len_fast) 369 * 370 * Paths: 371 * - new pa 372 * object 373 * group 374 * 375 * - find and use pa: 376 * pa 377 * 378 * - release consumed pa: 379 * pa 380 * group 381 * object 382 * 383 * - generate in-core bitmap: 384 * group 385 * pa 386 * 387 * - discard all for given object (inode, locality group): 388 * object 389 * pa 390 * group 391 * 392 * - discard all for given group: 393 * group 394 * pa 395 * group 396 * object 397 * 398 * - allocation path (ext4_mb_regular_allocator) 399 * group 400 * cr_power2_aligned/cr_goal_len_fast 401 */ 402 static struct kmem_cache *ext4_pspace_cachep; 403 static struct kmem_cache *ext4_ac_cachep; 404 static struct kmem_cache *ext4_free_data_cachep; 405 406 /* We create slab caches for groupinfo data structures based on the 407 * superblock block size. There will be one per mounted filesystem for 408 * each unique s_blocksize_bits */ 409 #define NR_GRPINFO_CACHES 8 410 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 411 412 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 413 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 414 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 415 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 416 }; 417 418 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 419 ext4_group_t group); 420 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 421 422 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 423 ext4_group_t group, enum criteria cr); 424 425 static int ext4_try_to_trim_range(struct super_block *sb, 426 struct ext4_buddy *e4b, ext4_grpblk_t start, 427 ext4_grpblk_t max, ext4_grpblk_t minblocks); 428 429 /* 430 * The algorithm using this percpu seq counter goes below: 431 * 1. We sample the percpu discard_pa_seq counter before trying for block 432 * allocation in ext4_mb_new_blocks(). 433 * 2. We increment this percpu discard_pa_seq counter when we either allocate 434 * or free these blocks i.e. while marking those blocks as used/free in 435 * mb_mark_used()/mb_free_blocks(). 436 * 3. We also increment this percpu seq counter when we successfully identify 437 * that the bb_prealloc_list is not empty and hence proceed for discarding 438 * of those PAs inside ext4_mb_discard_group_preallocations(). 439 * 440 * Now to make sure that the regular fast path of block allocation is not 441 * affected, as a small optimization we only sample the percpu seq counter 442 * on that cpu. Only when the block allocation fails and when freed blocks 443 * found were 0, that is when we sample percpu seq counter for all cpus using 444 * below function ext4_get_discard_pa_seq_sum(). This happens after making 445 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 446 */ 447 static DEFINE_PER_CPU(u64, discard_pa_seq); 448 static inline u64 ext4_get_discard_pa_seq_sum(void) 449 { 450 int __cpu; 451 u64 __seq = 0; 452 453 for_each_possible_cpu(__cpu) 454 __seq += per_cpu(discard_pa_seq, __cpu); 455 return __seq; 456 } 457 458 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 459 { 460 #if BITS_PER_LONG == 64 461 *bit += ((unsigned long) addr & 7UL) << 3; 462 addr = (void *) ((unsigned long) addr & ~7UL); 463 #elif BITS_PER_LONG == 32 464 *bit += ((unsigned long) addr & 3UL) << 3; 465 addr = (void *) ((unsigned long) addr & ~3UL); 466 #else 467 #error "how many bits you are?!" 468 #endif 469 return addr; 470 } 471 472 static inline int mb_test_bit(int bit, void *addr) 473 { 474 /* 475 * ext4_test_bit on architecture like powerpc 476 * needs unsigned long aligned address 477 */ 478 addr = mb_correct_addr_and_bit(&bit, addr); 479 return ext4_test_bit(bit, addr); 480 } 481 482 static inline void mb_set_bit(int bit, void *addr) 483 { 484 addr = mb_correct_addr_and_bit(&bit, addr); 485 ext4_set_bit(bit, addr); 486 } 487 488 static inline void mb_clear_bit(int bit, void *addr) 489 { 490 addr = mb_correct_addr_and_bit(&bit, addr); 491 ext4_clear_bit(bit, addr); 492 } 493 494 static inline int mb_test_and_clear_bit(int bit, void *addr) 495 { 496 addr = mb_correct_addr_and_bit(&bit, addr); 497 return ext4_test_and_clear_bit(bit, addr); 498 } 499 500 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 501 { 502 int fix = 0, ret, tmpmax; 503 addr = mb_correct_addr_and_bit(&fix, addr); 504 tmpmax = max + fix; 505 start += fix; 506 507 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 508 if (ret > max) 509 return max; 510 return ret; 511 } 512 513 static inline int mb_find_next_bit(void *addr, int max, int start) 514 { 515 int fix = 0, ret, tmpmax; 516 addr = mb_correct_addr_and_bit(&fix, addr); 517 tmpmax = max + fix; 518 start += fix; 519 520 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 521 if (ret > max) 522 return max; 523 return ret; 524 } 525 526 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 527 { 528 char *bb; 529 530 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 531 BUG_ON(max == NULL); 532 533 if (order > e4b->bd_blkbits + 1) { 534 *max = 0; 535 return NULL; 536 } 537 538 /* at order 0 we see each particular block */ 539 if (order == 0) { 540 *max = 1 << (e4b->bd_blkbits + 3); 541 return e4b->bd_bitmap; 542 } 543 544 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 545 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 546 547 return bb; 548 } 549 550 #ifdef DOUBLE_CHECK 551 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 552 int first, int count) 553 { 554 int i; 555 struct super_block *sb = e4b->bd_sb; 556 557 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 558 return; 559 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 560 for (i = 0; i < count; i++) { 561 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 562 ext4_fsblk_t blocknr; 563 564 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 565 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 566 ext4_grp_locked_error(sb, e4b->bd_group, 567 inode ? inode->i_ino : 0, 568 blocknr, 569 "freeing block already freed " 570 "(bit %u)", 571 first + i); 572 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 573 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 574 } 575 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 576 } 577 } 578 579 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 580 { 581 int i; 582 583 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 584 return; 585 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 586 for (i = 0; i < count; i++) { 587 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 588 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 589 } 590 } 591 592 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 593 { 594 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 595 return; 596 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 597 unsigned char *b1, *b2; 598 int i; 599 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 600 b2 = (unsigned char *) bitmap; 601 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 602 if (b1[i] != b2[i]) { 603 ext4_msg(e4b->bd_sb, KERN_ERR, 604 "corruption in group %u " 605 "at byte %u(%u): %x in copy != %x " 606 "on disk/prealloc", 607 e4b->bd_group, i, i * 8, b1[i], b2[i]); 608 BUG(); 609 } 610 } 611 } 612 } 613 614 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 615 struct ext4_group_info *grp, ext4_group_t group) 616 { 617 struct buffer_head *bh; 618 619 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 620 if (!grp->bb_bitmap) 621 return; 622 623 bh = ext4_read_block_bitmap(sb, group); 624 if (IS_ERR_OR_NULL(bh)) { 625 kfree(grp->bb_bitmap); 626 grp->bb_bitmap = NULL; 627 return; 628 } 629 630 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 631 put_bh(bh); 632 } 633 634 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 635 { 636 kfree(grp->bb_bitmap); 637 } 638 639 #else 640 static inline void mb_free_blocks_double(struct inode *inode, 641 struct ext4_buddy *e4b, int first, int count) 642 { 643 return; 644 } 645 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 646 int first, int count) 647 { 648 return; 649 } 650 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 651 { 652 return; 653 } 654 655 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 656 struct ext4_group_info *grp, ext4_group_t group) 657 { 658 return; 659 } 660 661 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 662 { 663 return; 664 } 665 #endif 666 667 #ifdef AGGRESSIVE_CHECK 668 669 #define MB_CHECK_ASSERT(assert) \ 670 do { \ 671 if (!(assert)) { \ 672 printk(KERN_EMERG \ 673 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 674 function, file, line, # assert); \ 675 BUG(); \ 676 } \ 677 } while (0) 678 679 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 680 const char *function, int line) 681 { 682 struct super_block *sb = e4b->bd_sb; 683 int order = e4b->bd_blkbits + 1; 684 int max; 685 int max2; 686 int i; 687 int j; 688 int k; 689 int count; 690 struct ext4_group_info *grp; 691 int fragments = 0; 692 int fstart; 693 struct list_head *cur; 694 void *buddy; 695 void *buddy2; 696 697 if (e4b->bd_info->bb_check_counter++ % 10) 698 return 0; 699 700 while (order > 1) { 701 buddy = mb_find_buddy(e4b, order, &max); 702 MB_CHECK_ASSERT(buddy); 703 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 704 MB_CHECK_ASSERT(buddy2); 705 MB_CHECK_ASSERT(buddy != buddy2); 706 MB_CHECK_ASSERT(max * 2 == max2); 707 708 count = 0; 709 for (i = 0; i < max; i++) { 710 711 if (mb_test_bit(i, buddy)) { 712 /* only single bit in buddy2 may be 0 */ 713 if (!mb_test_bit(i << 1, buddy2)) { 714 MB_CHECK_ASSERT( 715 mb_test_bit((i<<1)+1, buddy2)); 716 } 717 continue; 718 } 719 720 /* both bits in buddy2 must be 1 */ 721 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 722 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 723 724 for (j = 0; j < (1 << order); j++) { 725 k = (i * (1 << order)) + j; 726 MB_CHECK_ASSERT( 727 !mb_test_bit(k, e4b->bd_bitmap)); 728 } 729 count++; 730 } 731 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 732 order--; 733 } 734 735 fstart = -1; 736 buddy = mb_find_buddy(e4b, 0, &max); 737 for (i = 0; i < max; i++) { 738 if (!mb_test_bit(i, buddy)) { 739 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 740 if (fstart == -1) { 741 fragments++; 742 fstart = i; 743 } 744 continue; 745 } 746 fstart = -1; 747 /* check used bits only */ 748 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 749 buddy2 = mb_find_buddy(e4b, j, &max2); 750 k = i >> j; 751 MB_CHECK_ASSERT(k < max2); 752 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 753 } 754 } 755 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 756 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 757 758 grp = ext4_get_group_info(sb, e4b->bd_group); 759 if (!grp) 760 return NULL; 761 list_for_each(cur, &grp->bb_prealloc_list) { 762 ext4_group_t groupnr; 763 struct ext4_prealloc_space *pa; 764 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 765 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 766 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 767 for (i = 0; i < pa->pa_len; i++) 768 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 769 } 770 return 0; 771 } 772 #undef MB_CHECK_ASSERT 773 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 774 __FILE__, __func__, __LINE__) 775 #else 776 #define mb_check_buddy(e4b) 777 #endif 778 779 /* 780 * Divide blocks started from @first with length @len into 781 * smaller chunks with power of 2 blocks. 782 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 783 * then increase bb_counters[] for corresponded chunk size. 784 */ 785 static void ext4_mb_mark_free_simple(struct super_block *sb, 786 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 787 struct ext4_group_info *grp) 788 { 789 struct ext4_sb_info *sbi = EXT4_SB(sb); 790 ext4_grpblk_t min; 791 ext4_grpblk_t max; 792 ext4_grpblk_t chunk; 793 unsigned int border; 794 795 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 796 797 border = 2 << sb->s_blocksize_bits; 798 799 while (len > 0) { 800 /* find how many blocks can be covered since this position */ 801 max = ffs(first | border) - 1; 802 803 /* find how many blocks of power 2 we need to mark */ 804 min = fls(len) - 1; 805 806 if (max < min) 807 min = max; 808 chunk = 1 << min; 809 810 /* mark multiblock chunks only */ 811 grp->bb_counters[min]++; 812 if (min > 0) 813 mb_clear_bit(first >> min, 814 buddy + sbi->s_mb_offsets[min]); 815 816 len -= chunk; 817 first += chunk; 818 } 819 } 820 821 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len) 822 { 823 int order; 824 825 /* 826 * We don't bother with a special lists groups with only 1 block free 827 * extents and for completely empty groups. 828 */ 829 order = fls(len) - 2; 830 if (order < 0) 831 return 0; 832 if (order == MB_NUM_ORDERS(sb)) 833 order--; 834 return order; 835 } 836 837 /* Move group to appropriate avg_fragment_size list */ 838 static void 839 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) 840 { 841 struct ext4_sb_info *sbi = EXT4_SB(sb); 842 int new_order; 843 844 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0) 845 return; 846 847 new_order = mb_avg_fragment_size_order(sb, 848 grp->bb_free / grp->bb_fragments); 849 if (new_order == grp->bb_avg_fragment_size_order) 850 return; 851 852 if (grp->bb_avg_fragment_size_order != -1) { 853 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 854 grp->bb_avg_fragment_size_order]); 855 list_del(&grp->bb_avg_fragment_size_node); 856 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 857 grp->bb_avg_fragment_size_order]); 858 } 859 grp->bb_avg_fragment_size_order = new_order; 860 write_lock(&sbi->s_mb_avg_fragment_size_locks[ 861 grp->bb_avg_fragment_size_order]); 862 list_add_tail(&grp->bb_avg_fragment_size_node, 863 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]); 864 write_unlock(&sbi->s_mb_avg_fragment_size_locks[ 865 grp->bb_avg_fragment_size_order]); 866 } 867 868 /* 869 * Choose next group by traversing largest_free_order lists. Updates *new_cr if 870 * cr level needs an update. 871 */ 872 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac, 873 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 874 { 875 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 876 struct ext4_group_info *iter; 877 int i; 878 879 if (ac->ac_status == AC_STATUS_FOUND) 880 return; 881 882 if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED)) 883 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions); 884 885 for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { 886 if (list_empty(&sbi->s_mb_largest_free_orders[i])) 887 continue; 888 read_lock(&sbi->s_mb_largest_free_orders_locks[i]); 889 if (list_empty(&sbi->s_mb_largest_free_orders[i])) { 890 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 891 continue; 892 } 893 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], 894 bb_largest_free_order_node) { 895 if (sbi->s_mb_stats) 896 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]); 897 if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) { 898 *group = iter->bb_group; 899 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED; 900 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 901 return; 902 } 903 } 904 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); 905 } 906 907 /* Increment cr and search again if no group is found */ 908 *new_cr = CR_GOAL_LEN_FAST; 909 } 910 911 /* 912 * Find a suitable group of given order from the average fragments list. 913 */ 914 static struct ext4_group_info * 915 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order) 916 { 917 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 918 struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order]; 919 rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order]; 920 struct ext4_group_info *grp = NULL, *iter; 921 enum criteria cr = ac->ac_criteria; 922 923 if (list_empty(frag_list)) 924 return NULL; 925 read_lock(frag_list_lock); 926 if (list_empty(frag_list)) { 927 read_unlock(frag_list_lock); 928 return NULL; 929 } 930 list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) { 931 if (sbi->s_mb_stats) 932 atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]); 933 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) { 934 grp = iter; 935 break; 936 } 937 } 938 read_unlock(frag_list_lock); 939 return grp; 940 } 941 942 /* 943 * Choose next group by traversing average fragment size list of suitable 944 * order. Updates *new_cr if cr level needs an update. 945 */ 946 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac, 947 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 948 { 949 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 950 struct ext4_group_info *grp = NULL; 951 int i; 952 953 if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) { 954 if (sbi->s_mb_stats) 955 atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions); 956 } 957 958 for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len); 959 i < MB_NUM_ORDERS(ac->ac_sb); i++) { 960 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i); 961 if (grp) { 962 *group = grp->bb_group; 963 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED; 964 return; 965 } 966 } 967 968 /* 969 * CR_BEST_AVAIL_LEN works based on the concept that we have 970 * a larger normalized goal len request which can be trimmed to 971 * a smaller goal len such that it can still satisfy original 972 * request len. However, allocation request for non-regular 973 * files never gets normalized. 974 * See function ext4_mb_normalize_request() (EXT4_MB_HINT_DATA). 975 */ 976 if (ac->ac_flags & EXT4_MB_HINT_DATA) 977 *new_cr = CR_BEST_AVAIL_LEN; 978 else 979 *new_cr = CR_GOAL_LEN_SLOW; 980 } 981 982 /* 983 * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment 984 * order we have and proactively trim the goal request length to that order to 985 * find a suitable group faster. 986 * 987 * This optimizes allocation speed at the cost of slightly reduced 988 * preallocations. However, we make sure that we don't trim the request too 989 * much and fall to CR_GOAL_LEN_SLOW in that case. 990 */ 991 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac, 992 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 993 { 994 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 995 struct ext4_group_info *grp = NULL; 996 int i, order, min_order; 997 unsigned long num_stripe_clusters = 0; 998 999 if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) { 1000 if (sbi->s_mb_stats) 1001 atomic_inc(&sbi->s_bal_best_avail_bad_suggestions); 1002 } 1003 1004 /* 1005 * mb_avg_fragment_size_order() returns order in a way that makes 1006 * retrieving back the length using (1 << order) inaccurate. Hence, use 1007 * fls() instead since we need to know the actual length while modifying 1008 * goal length. 1009 */ 1010 order = fls(ac->ac_g_ex.fe_len) - 1; 1011 min_order = order - sbi->s_mb_best_avail_max_trim_order; 1012 if (min_order < 0) 1013 min_order = 0; 1014 1015 if (sbi->s_stripe > 0) { 1016 /* 1017 * We are assuming that stripe size is always a multiple of 1018 * cluster ratio otherwise __ext4_fill_super exists early. 1019 */ 1020 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe); 1021 if (1 << min_order < num_stripe_clusters) 1022 /* 1023 * We consider 1 order less because later we round 1024 * up the goal len to num_stripe_clusters 1025 */ 1026 min_order = fls(num_stripe_clusters) - 1; 1027 } 1028 1029 if (1 << min_order < ac->ac_o_ex.fe_len) 1030 min_order = fls(ac->ac_o_ex.fe_len); 1031 1032 for (i = order; i >= min_order; i--) { 1033 int frag_order; 1034 /* 1035 * Scale down goal len to make sure we find something 1036 * in the free fragments list. Basically, reduce 1037 * preallocations. 1038 */ 1039 ac->ac_g_ex.fe_len = 1 << i; 1040 1041 if (num_stripe_clusters > 0) { 1042 /* 1043 * Try to round up the adjusted goal length to 1044 * stripe size (in cluster units) multiple for 1045 * efficiency. 1046 */ 1047 ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len, 1048 num_stripe_clusters); 1049 } 1050 1051 frag_order = mb_avg_fragment_size_order(ac->ac_sb, 1052 ac->ac_g_ex.fe_len); 1053 1054 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order); 1055 if (grp) { 1056 *group = grp->bb_group; 1057 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED; 1058 return; 1059 } 1060 } 1061 1062 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */ 1063 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 1064 *new_cr = CR_GOAL_LEN_SLOW; 1065 } 1066 1067 static inline int should_optimize_scan(struct ext4_allocation_context *ac) 1068 { 1069 if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN))) 1070 return 0; 1071 if (ac->ac_criteria >= CR_GOAL_LEN_SLOW) 1072 return 0; 1073 if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) 1074 return 0; 1075 return 1; 1076 } 1077 1078 /* 1079 * Return next linear group for allocation. If linear traversal should not be 1080 * performed, this function just returns the same group 1081 */ 1082 static ext4_group_t 1083 next_linear_group(struct ext4_allocation_context *ac, ext4_group_t group, 1084 ext4_group_t ngroups) 1085 { 1086 if (!should_optimize_scan(ac)) 1087 goto inc_and_return; 1088 1089 if (ac->ac_groups_linear_remaining) { 1090 ac->ac_groups_linear_remaining--; 1091 goto inc_and_return; 1092 } 1093 1094 return group; 1095 inc_and_return: 1096 /* 1097 * Artificially restricted ngroups for non-extent 1098 * files makes group > ngroups possible on first loop. 1099 */ 1100 return group + 1 >= ngroups ? 0 : group + 1; 1101 } 1102 1103 /* 1104 * ext4_mb_choose_next_group: choose next group for allocation. 1105 * 1106 * @ac Allocation Context 1107 * @new_cr This is an output parameter. If the there is no good group 1108 * available at current CR level, this field is updated to indicate 1109 * the new cr level that should be used. 1110 * @group This is an input / output parameter. As an input it indicates the 1111 * next group that the allocator intends to use for allocation. As 1112 * output, this field indicates the next group that should be used as 1113 * determined by the optimization functions. 1114 * @ngroups Total number of groups 1115 */ 1116 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, 1117 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups) 1118 { 1119 *new_cr = ac->ac_criteria; 1120 1121 if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) { 1122 *group = next_linear_group(ac, *group, ngroups); 1123 return; 1124 } 1125 1126 if (*new_cr == CR_POWER2_ALIGNED) { 1127 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups); 1128 } else if (*new_cr == CR_GOAL_LEN_FAST) { 1129 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups); 1130 } else if (*new_cr == CR_BEST_AVAIL_LEN) { 1131 ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups); 1132 } else { 1133 /* 1134 * TODO: For CR=2, we can arrange groups in an rb tree sorted by 1135 * bb_free. But until that happens, we should never come here. 1136 */ 1137 WARN_ON(1); 1138 } 1139 } 1140 1141 /* 1142 * Cache the order of the largest free extent we have available in this block 1143 * group. 1144 */ 1145 static void 1146 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 1147 { 1148 struct ext4_sb_info *sbi = EXT4_SB(sb); 1149 int i; 1150 1151 for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) 1152 if (grp->bb_counters[i] > 0) 1153 break; 1154 /* No need to move between order lists? */ 1155 if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || 1156 i == grp->bb_largest_free_order) { 1157 grp->bb_largest_free_order = i; 1158 return; 1159 } 1160 1161 if (grp->bb_largest_free_order >= 0) { 1162 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1163 grp->bb_largest_free_order]); 1164 list_del_init(&grp->bb_largest_free_order_node); 1165 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1166 grp->bb_largest_free_order]); 1167 } 1168 grp->bb_largest_free_order = i; 1169 if (grp->bb_largest_free_order >= 0 && grp->bb_free) { 1170 write_lock(&sbi->s_mb_largest_free_orders_locks[ 1171 grp->bb_largest_free_order]); 1172 list_add_tail(&grp->bb_largest_free_order_node, 1173 &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); 1174 write_unlock(&sbi->s_mb_largest_free_orders_locks[ 1175 grp->bb_largest_free_order]); 1176 } 1177 } 1178 1179 static noinline_for_stack 1180 void ext4_mb_generate_buddy(struct super_block *sb, 1181 void *buddy, void *bitmap, ext4_group_t group, 1182 struct ext4_group_info *grp) 1183 { 1184 struct ext4_sb_info *sbi = EXT4_SB(sb); 1185 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 1186 ext4_grpblk_t i = 0; 1187 ext4_grpblk_t first; 1188 ext4_grpblk_t len; 1189 unsigned free = 0; 1190 unsigned fragments = 0; 1191 unsigned long long period = get_cycles(); 1192 1193 /* initialize buddy from bitmap which is aggregation 1194 * of on-disk bitmap and preallocations */ 1195 i = mb_find_next_zero_bit(bitmap, max, 0); 1196 grp->bb_first_free = i; 1197 while (i < max) { 1198 fragments++; 1199 first = i; 1200 i = mb_find_next_bit(bitmap, max, i); 1201 len = i - first; 1202 free += len; 1203 if (len > 1) 1204 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 1205 else 1206 grp->bb_counters[0]++; 1207 if (i < max) 1208 i = mb_find_next_zero_bit(bitmap, max, i); 1209 } 1210 grp->bb_fragments = fragments; 1211 1212 if (free != grp->bb_free) { 1213 ext4_grp_locked_error(sb, group, 0, 0, 1214 "block bitmap and bg descriptor " 1215 "inconsistent: %u vs %u free clusters", 1216 free, grp->bb_free); 1217 /* 1218 * If we intend to continue, we consider group descriptor 1219 * corrupt and update bb_free using bitmap value 1220 */ 1221 grp->bb_free = free; 1222 ext4_mark_group_bitmap_corrupted(sb, group, 1223 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1224 } 1225 mb_set_largest_free_order(sb, grp); 1226 mb_update_avg_fragment_size(sb, grp); 1227 1228 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 1229 1230 period = get_cycles() - period; 1231 atomic_inc(&sbi->s_mb_buddies_generated); 1232 atomic64_add(period, &sbi->s_mb_generation_time); 1233 } 1234 1235 /* The buddy information is attached the buddy cache inode 1236 * for convenience. The information regarding each group 1237 * is loaded via ext4_mb_load_buddy. The information involve 1238 * block bitmap and buddy information. The information are 1239 * stored in the inode as 1240 * 1241 * { page } 1242 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 1243 * 1244 * 1245 * one block each for bitmap and buddy information. 1246 * So for each group we take up 2 blocks. A page can 1247 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 1248 * So it can have information regarding groups_per_page which 1249 * is blocks_per_page/2 1250 * 1251 * Locking note: This routine takes the block group lock of all groups 1252 * for this page; do not hold this lock when calling this routine! 1253 */ 1254 1255 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 1256 { 1257 ext4_group_t ngroups; 1258 unsigned int blocksize; 1259 int blocks_per_page; 1260 int groups_per_page; 1261 int err = 0; 1262 int i; 1263 ext4_group_t first_group, group; 1264 int first_block; 1265 struct super_block *sb; 1266 struct buffer_head *bhs; 1267 struct buffer_head **bh = NULL; 1268 struct inode *inode; 1269 char *data; 1270 char *bitmap; 1271 struct ext4_group_info *grinfo; 1272 1273 inode = page->mapping->host; 1274 sb = inode->i_sb; 1275 ngroups = ext4_get_groups_count(sb); 1276 blocksize = i_blocksize(inode); 1277 blocks_per_page = PAGE_SIZE / blocksize; 1278 1279 mb_debug(sb, "init page %lu\n", page->index); 1280 1281 groups_per_page = blocks_per_page >> 1; 1282 if (groups_per_page == 0) 1283 groups_per_page = 1; 1284 1285 /* allocate buffer_heads to read bitmaps */ 1286 if (groups_per_page > 1) { 1287 i = sizeof(struct buffer_head *) * groups_per_page; 1288 bh = kzalloc(i, gfp); 1289 if (bh == NULL) 1290 return -ENOMEM; 1291 } else 1292 bh = &bhs; 1293 1294 first_group = page->index * blocks_per_page / 2; 1295 1296 /* read all groups the page covers into the cache */ 1297 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1298 if (group >= ngroups) 1299 break; 1300 1301 grinfo = ext4_get_group_info(sb, group); 1302 if (!grinfo) 1303 continue; 1304 /* 1305 * If page is uptodate then we came here after online resize 1306 * which added some new uninitialized group info structs, so 1307 * we must skip all initialized uptodate buddies on the page, 1308 * which may be currently in use by an allocating task. 1309 */ 1310 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 1311 bh[i] = NULL; 1312 continue; 1313 } 1314 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 1315 if (IS_ERR(bh[i])) { 1316 err = PTR_ERR(bh[i]); 1317 bh[i] = NULL; 1318 goto out; 1319 } 1320 mb_debug(sb, "read bitmap for group %u\n", group); 1321 } 1322 1323 /* wait for I/O completion */ 1324 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 1325 int err2; 1326 1327 if (!bh[i]) 1328 continue; 1329 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 1330 if (!err) 1331 err = err2; 1332 } 1333 1334 first_block = page->index * blocks_per_page; 1335 for (i = 0; i < blocks_per_page; i++) { 1336 group = (first_block + i) >> 1; 1337 if (group >= ngroups) 1338 break; 1339 1340 if (!bh[group - first_group]) 1341 /* skip initialized uptodate buddy */ 1342 continue; 1343 1344 if (!buffer_verified(bh[group - first_group])) 1345 /* Skip faulty bitmaps */ 1346 continue; 1347 err = 0; 1348 1349 /* 1350 * data carry information regarding this 1351 * particular group in the format specified 1352 * above 1353 * 1354 */ 1355 data = page_address(page) + (i * blocksize); 1356 bitmap = bh[group - first_group]->b_data; 1357 1358 /* 1359 * We place the buddy block and bitmap block 1360 * close together 1361 */ 1362 grinfo = ext4_get_group_info(sb, group); 1363 if (!grinfo) { 1364 err = -EFSCORRUPTED; 1365 goto out; 1366 } 1367 if ((first_block + i) & 1) { 1368 /* this is block of buddy */ 1369 BUG_ON(incore == NULL); 1370 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 1371 group, page->index, i * blocksize); 1372 trace_ext4_mb_buddy_bitmap_load(sb, group); 1373 grinfo->bb_fragments = 0; 1374 memset(grinfo->bb_counters, 0, 1375 sizeof(*grinfo->bb_counters) * 1376 (MB_NUM_ORDERS(sb))); 1377 /* 1378 * incore got set to the group block bitmap below 1379 */ 1380 ext4_lock_group(sb, group); 1381 /* init the buddy */ 1382 memset(data, 0xff, blocksize); 1383 ext4_mb_generate_buddy(sb, data, incore, group, grinfo); 1384 ext4_unlock_group(sb, group); 1385 incore = NULL; 1386 } else { 1387 /* this is block of bitmap */ 1388 BUG_ON(incore != NULL); 1389 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 1390 group, page->index, i * blocksize); 1391 trace_ext4_mb_bitmap_load(sb, group); 1392 1393 /* see comments in ext4_mb_put_pa() */ 1394 ext4_lock_group(sb, group); 1395 memcpy(data, bitmap, blocksize); 1396 1397 /* mark all preallocated blks used in in-core bitmap */ 1398 ext4_mb_generate_from_pa(sb, data, group); 1399 WARN_ON_ONCE(!RB_EMPTY_ROOT(&grinfo->bb_free_root)); 1400 ext4_unlock_group(sb, group); 1401 1402 /* set incore so that the buddy information can be 1403 * generated using this 1404 */ 1405 incore = data; 1406 } 1407 } 1408 SetPageUptodate(page); 1409 1410 out: 1411 if (bh) { 1412 for (i = 0; i < groups_per_page; i++) 1413 brelse(bh[i]); 1414 if (bh != &bhs) 1415 kfree(bh); 1416 } 1417 return err; 1418 } 1419 1420 /* 1421 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1422 * on the same buddy page doesn't happen whild holding the buddy page lock. 1423 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1424 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1425 */ 1426 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1427 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1428 { 1429 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1430 int block, pnum, poff; 1431 int blocks_per_page; 1432 struct page *page; 1433 1434 e4b->bd_buddy_page = NULL; 1435 e4b->bd_bitmap_page = NULL; 1436 1437 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1438 /* 1439 * the buddy cache inode stores the block bitmap 1440 * and buddy information in consecutive blocks. 1441 * So for each group we need two blocks. 1442 */ 1443 block = group * 2; 1444 pnum = block / blocks_per_page; 1445 poff = block % blocks_per_page; 1446 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1447 if (!page) 1448 return -ENOMEM; 1449 BUG_ON(page->mapping != inode->i_mapping); 1450 e4b->bd_bitmap_page = page; 1451 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1452 1453 if (blocks_per_page >= 2) { 1454 /* buddy and bitmap are on the same page */ 1455 return 0; 1456 } 1457 1458 block++; 1459 pnum = block / blocks_per_page; 1460 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1461 if (!page) 1462 return -ENOMEM; 1463 BUG_ON(page->mapping != inode->i_mapping); 1464 e4b->bd_buddy_page = page; 1465 return 0; 1466 } 1467 1468 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1469 { 1470 if (e4b->bd_bitmap_page) { 1471 unlock_page(e4b->bd_bitmap_page); 1472 put_page(e4b->bd_bitmap_page); 1473 } 1474 if (e4b->bd_buddy_page) { 1475 unlock_page(e4b->bd_buddy_page); 1476 put_page(e4b->bd_buddy_page); 1477 } 1478 } 1479 1480 /* 1481 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1482 * block group lock of all groups for this page; do not hold the BG lock when 1483 * calling this routine! 1484 */ 1485 static noinline_for_stack 1486 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1487 { 1488 1489 struct ext4_group_info *this_grp; 1490 struct ext4_buddy e4b; 1491 struct page *page; 1492 int ret = 0; 1493 1494 might_sleep(); 1495 mb_debug(sb, "init group %u\n", group); 1496 this_grp = ext4_get_group_info(sb, group); 1497 if (!this_grp) 1498 return -EFSCORRUPTED; 1499 1500 /* 1501 * This ensures that we don't reinit the buddy cache 1502 * page which map to the group from which we are already 1503 * allocating. If we are looking at the buddy cache we would 1504 * have taken a reference using ext4_mb_load_buddy and that 1505 * would have pinned buddy page to page cache. 1506 * The call to ext4_mb_get_buddy_page_lock will mark the 1507 * page accessed. 1508 */ 1509 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1510 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1511 /* 1512 * somebody initialized the group 1513 * return without doing anything 1514 */ 1515 goto err; 1516 } 1517 1518 page = e4b.bd_bitmap_page; 1519 ret = ext4_mb_init_cache(page, NULL, gfp); 1520 if (ret) 1521 goto err; 1522 if (!PageUptodate(page)) { 1523 ret = -EIO; 1524 goto err; 1525 } 1526 1527 if (e4b.bd_buddy_page == NULL) { 1528 /* 1529 * If both the bitmap and buddy are in 1530 * the same page we don't need to force 1531 * init the buddy 1532 */ 1533 ret = 0; 1534 goto err; 1535 } 1536 /* init buddy cache */ 1537 page = e4b.bd_buddy_page; 1538 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1539 if (ret) 1540 goto err; 1541 if (!PageUptodate(page)) { 1542 ret = -EIO; 1543 goto err; 1544 } 1545 err: 1546 ext4_mb_put_buddy_page_lock(&e4b); 1547 return ret; 1548 } 1549 1550 /* 1551 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1552 * block group lock of all groups for this page; do not hold the BG lock when 1553 * calling this routine! 1554 */ 1555 static noinline_for_stack int 1556 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1557 struct ext4_buddy *e4b, gfp_t gfp) 1558 { 1559 int blocks_per_page; 1560 int block; 1561 int pnum; 1562 int poff; 1563 struct page *page; 1564 int ret; 1565 struct ext4_group_info *grp; 1566 struct ext4_sb_info *sbi = EXT4_SB(sb); 1567 struct inode *inode = sbi->s_buddy_cache; 1568 1569 might_sleep(); 1570 mb_debug(sb, "load group %u\n", group); 1571 1572 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1573 grp = ext4_get_group_info(sb, group); 1574 if (!grp) 1575 return -EFSCORRUPTED; 1576 1577 e4b->bd_blkbits = sb->s_blocksize_bits; 1578 e4b->bd_info = grp; 1579 e4b->bd_sb = sb; 1580 e4b->bd_group = group; 1581 e4b->bd_buddy_page = NULL; 1582 e4b->bd_bitmap_page = NULL; 1583 1584 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1585 /* 1586 * we need full data about the group 1587 * to make a good selection 1588 */ 1589 ret = ext4_mb_init_group(sb, group, gfp); 1590 if (ret) 1591 return ret; 1592 } 1593 1594 /* 1595 * the buddy cache inode stores the block bitmap 1596 * and buddy information in consecutive blocks. 1597 * So for each group we need two blocks. 1598 */ 1599 block = group * 2; 1600 pnum = block / blocks_per_page; 1601 poff = block % blocks_per_page; 1602 1603 /* we could use find_or_create_page(), but it locks page 1604 * what we'd like to avoid in fast path ... */ 1605 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1606 if (page == NULL || !PageUptodate(page)) { 1607 if (page) 1608 /* 1609 * drop the page reference and try 1610 * to get the page with lock. If we 1611 * are not uptodate that implies 1612 * somebody just created the page but 1613 * is yet to initialize the same. So 1614 * wait for it to initialize. 1615 */ 1616 put_page(page); 1617 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1618 if (page) { 1619 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1620 "ext4: bitmap's paging->mapping != inode->i_mapping\n")) { 1621 /* should never happen */ 1622 unlock_page(page); 1623 ret = -EINVAL; 1624 goto err; 1625 } 1626 if (!PageUptodate(page)) { 1627 ret = ext4_mb_init_cache(page, NULL, gfp); 1628 if (ret) { 1629 unlock_page(page); 1630 goto err; 1631 } 1632 mb_cmp_bitmaps(e4b, page_address(page) + 1633 (poff * sb->s_blocksize)); 1634 } 1635 unlock_page(page); 1636 } 1637 } 1638 if (page == NULL) { 1639 ret = -ENOMEM; 1640 goto err; 1641 } 1642 if (!PageUptodate(page)) { 1643 ret = -EIO; 1644 goto err; 1645 } 1646 1647 /* Pages marked accessed already */ 1648 e4b->bd_bitmap_page = page; 1649 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1650 1651 block++; 1652 pnum = block / blocks_per_page; 1653 poff = block % blocks_per_page; 1654 1655 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1656 if (page == NULL || !PageUptodate(page)) { 1657 if (page) 1658 put_page(page); 1659 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1660 if (page) { 1661 if (WARN_RATELIMIT(page->mapping != inode->i_mapping, 1662 "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) { 1663 /* should never happen */ 1664 unlock_page(page); 1665 ret = -EINVAL; 1666 goto err; 1667 } 1668 if (!PageUptodate(page)) { 1669 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1670 gfp); 1671 if (ret) { 1672 unlock_page(page); 1673 goto err; 1674 } 1675 } 1676 unlock_page(page); 1677 } 1678 } 1679 if (page == NULL) { 1680 ret = -ENOMEM; 1681 goto err; 1682 } 1683 if (!PageUptodate(page)) { 1684 ret = -EIO; 1685 goto err; 1686 } 1687 1688 /* Pages marked accessed already */ 1689 e4b->bd_buddy_page = page; 1690 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1691 1692 return 0; 1693 1694 err: 1695 if (page) 1696 put_page(page); 1697 if (e4b->bd_bitmap_page) 1698 put_page(e4b->bd_bitmap_page); 1699 1700 e4b->bd_buddy = NULL; 1701 e4b->bd_bitmap = NULL; 1702 return ret; 1703 } 1704 1705 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1706 struct ext4_buddy *e4b) 1707 { 1708 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1709 } 1710 1711 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1712 { 1713 if (e4b->bd_bitmap_page) 1714 put_page(e4b->bd_bitmap_page); 1715 if (e4b->bd_buddy_page) 1716 put_page(e4b->bd_buddy_page); 1717 } 1718 1719 1720 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1721 { 1722 int order = 1, max; 1723 void *bb; 1724 1725 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1726 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1727 1728 while (order <= e4b->bd_blkbits + 1) { 1729 bb = mb_find_buddy(e4b, order, &max); 1730 if (!mb_test_bit(block >> order, bb)) { 1731 /* this block is part of buddy of order 'order' */ 1732 return order; 1733 } 1734 order++; 1735 } 1736 return 0; 1737 } 1738 1739 static void mb_clear_bits(void *bm, int cur, int len) 1740 { 1741 __u32 *addr; 1742 1743 len = cur + len; 1744 while (cur < len) { 1745 if ((cur & 31) == 0 && (len - cur) >= 32) { 1746 /* fast path: clear whole word at once */ 1747 addr = bm + (cur >> 3); 1748 *addr = 0; 1749 cur += 32; 1750 continue; 1751 } 1752 mb_clear_bit(cur, bm); 1753 cur++; 1754 } 1755 } 1756 1757 /* clear bits in given range 1758 * will return first found zero bit if any, -1 otherwise 1759 */ 1760 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1761 { 1762 __u32 *addr; 1763 int zero_bit = -1; 1764 1765 len = cur + len; 1766 while (cur < len) { 1767 if ((cur & 31) == 0 && (len - cur) >= 32) { 1768 /* fast path: clear whole word at once */ 1769 addr = bm + (cur >> 3); 1770 if (*addr != (__u32)(-1) && zero_bit == -1) 1771 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1772 *addr = 0; 1773 cur += 32; 1774 continue; 1775 } 1776 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1777 zero_bit = cur; 1778 cur++; 1779 } 1780 1781 return zero_bit; 1782 } 1783 1784 void mb_set_bits(void *bm, int cur, int len) 1785 { 1786 __u32 *addr; 1787 1788 len = cur + len; 1789 while (cur < len) { 1790 if ((cur & 31) == 0 && (len - cur) >= 32) { 1791 /* fast path: set whole word at once */ 1792 addr = bm + (cur >> 3); 1793 *addr = 0xffffffff; 1794 cur += 32; 1795 continue; 1796 } 1797 mb_set_bit(cur, bm); 1798 cur++; 1799 } 1800 } 1801 1802 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1803 { 1804 if (mb_test_bit(*bit + side, bitmap)) { 1805 mb_clear_bit(*bit, bitmap); 1806 (*bit) -= side; 1807 return 1; 1808 } 1809 else { 1810 (*bit) += side; 1811 mb_set_bit(*bit, bitmap); 1812 return -1; 1813 } 1814 } 1815 1816 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1817 { 1818 int max; 1819 int order = 1; 1820 void *buddy = mb_find_buddy(e4b, order, &max); 1821 1822 while (buddy) { 1823 void *buddy2; 1824 1825 /* Bits in range [first; last] are known to be set since 1826 * corresponding blocks were allocated. Bits in range 1827 * (first; last) will stay set because they form buddies on 1828 * upper layer. We just deal with borders if they don't 1829 * align with upper layer and then go up. 1830 * Releasing entire group is all about clearing 1831 * single bit of highest order buddy. 1832 */ 1833 1834 /* Example: 1835 * --------------------------------- 1836 * | 1 | 1 | 1 | 1 | 1837 * --------------------------------- 1838 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1839 * --------------------------------- 1840 * 0 1 2 3 4 5 6 7 1841 * \_____________________/ 1842 * 1843 * Neither [1] nor [6] is aligned to above layer. 1844 * Left neighbour [0] is free, so mark it busy, 1845 * decrease bb_counters and extend range to 1846 * [0; 6] 1847 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1848 * mark [6] free, increase bb_counters and shrink range to 1849 * [0; 5]. 1850 * Then shift range to [0; 2], go up and do the same. 1851 */ 1852 1853 1854 if (first & 1) 1855 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1856 if (!(last & 1)) 1857 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1858 if (first > last) 1859 break; 1860 order++; 1861 1862 buddy2 = mb_find_buddy(e4b, order, &max); 1863 if (!buddy2) { 1864 mb_clear_bits(buddy, first, last - first + 1); 1865 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1866 break; 1867 } 1868 first >>= 1; 1869 last >>= 1; 1870 buddy = buddy2; 1871 } 1872 } 1873 1874 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1875 int first, int count) 1876 { 1877 int left_is_free = 0; 1878 int right_is_free = 0; 1879 int block; 1880 int last = first + count - 1; 1881 struct super_block *sb = e4b->bd_sb; 1882 1883 if (WARN_ON(count == 0)) 1884 return; 1885 BUG_ON(last >= (sb->s_blocksize << 3)); 1886 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1887 /* Don't bother if the block group is corrupt. */ 1888 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1889 return; 1890 1891 mb_check_buddy(e4b); 1892 mb_free_blocks_double(inode, e4b, first, count); 1893 1894 this_cpu_inc(discard_pa_seq); 1895 e4b->bd_info->bb_free += count; 1896 if (first < e4b->bd_info->bb_first_free) 1897 e4b->bd_info->bb_first_free = first; 1898 1899 /* access memory sequentially: check left neighbour, 1900 * clear range and then check right neighbour 1901 */ 1902 if (first != 0) 1903 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1904 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1905 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1906 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1907 1908 if (unlikely(block != -1)) { 1909 struct ext4_sb_info *sbi = EXT4_SB(sb); 1910 ext4_fsblk_t blocknr; 1911 1912 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1913 blocknr += EXT4_C2B(sbi, block); 1914 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1915 ext4_grp_locked_error(sb, e4b->bd_group, 1916 inode ? inode->i_ino : 0, 1917 blocknr, 1918 "freeing already freed block (bit %u); block bitmap corrupt.", 1919 block); 1920 ext4_mark_group_bitmap_corrupted( 1921 sb, e4b->bd_group, 1922 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1923 } 1924 goto done; 1925 } 1926 1927 /* let's maintain fragments counter */ 1928 if (left_is_free && right_is_free) 1929 e4b->bd_info->bb_fragments--; 1930 else if (!left_is_free && !right_is_free) 1931 e4b->bd_info->bb_fragments++; 1932 1933 /* buddy[0] == bd_bitmap is a special case, so handle 1934 * it right away and let mb_buddy_mark_free stay free of 1935 * zero order checks. 1936 * Check if neighbours are to be coaleasced, 1937 * adjust bitmap bb_counters and borders appropriately. 1938 */ 1939 if (first & 1) { 1940 first += !left_is_free; 1941 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1942 } 1943 if (!(last & 1)) { 1944 last -= !right_is_free; 1945 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1946 } 1947 1948 if (first <= last) 1949 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1950 1951 done: 1952 mb_set_largest_free_order(sb, e4b->bd_info); 1953 mb_update_avg_fragment_size(sb, e4b->bd_info); 1954 mb_check_buddy(e4b); 1955 } 1956 1957 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1958 int needed, struct ext4_free_extent *ex) 1959 { 1960 int next = block; 1961 int max, order; 1962 void *buddy; 1963 1964 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1965 BUG_ON(ex == NULL); 1966 1967 buddy = mb_find_buddy(e4b, 0, &max); 1968 BUG_ON(buddy == NULL); 1969 BUG_ON(block >= max); 1970 if (mb_test_bit(block, buddy)) { 1971 ex->fe_len = 0; 1972 ex->fe_start = 0; 1973 ex->fe_group = 0; 1974 return 0; 1975 } 1976 1977 /* find actual order */ 1978 order = mb_find_order_for_block(e4b, block); 1979 block = block >> order; 1980 1981 ex->fe_len = 1 << order; 1982 ex->fe_start = block << order; 1983 ex->fe_group = e4b->bd_group; 1984 1985 /* calc difference from given start */ 1986 next = next - ex->fe_start; 1987 ex->fe_len -= next; 1988 ex->fe_start += next; 1989 1990 while (needed > ex->fe_len && 1991 mb_find_buddy(e4b, order, &max)) { 1992 1993 if (block + 1 >= max) 1994 break; 1995 1996 next = (block + 1) * (1 << order); 1997 if (mb_test_bit(next, e4b->bd_bitmap)) 1998 break; 1999 2000 order = mb_find_order_for_block(e4b, next); 2001 2002 block = next >> order; 2003 ex->fe_len += 1 << order; 2004 } 2005 2006 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 2007 /* Should never happen! (but apparently sometimes does?!?) */ 2008 WARN_ON(1); 2009 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0, 2010 "corruption or bug in mb_find_extent " 2011 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 2012 block, order, needed, ex->fe_group, ex->fe_start, 2013 ex->fe_len, ex->fe_logical); 2014 ex->fe_len = 0; 2015 ex->fe_start = 0; 2016 ex->fe_group = 0; 2017 } 2018 return ex->fe_len; 2019 } 2020 2021 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 2022 { 2023 int ord; 2024 int mlen = 0; 2025 int max = 0; 2026 int cur; 2027 int start = ex->fe_start; 2028 int len = ex->fe_len; 2029 unsigned ret = 0; 2030 int len0 = len; 2031 void *buddy; 2032 bool split = false; 2033 2034 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 2035 BUG_ON(e4b->bd_group != ex->fe_group); 2036 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 2037 mb_check_buddy(e4b); 2038 mb_mark_used_double(e4b, start, len); 2039 2040 this_cpu_inc(discard_pa_seq); 2041 e4b->bd_info->bb_free -= len; 2042 if (e4b->bd_info->bb_first_free == start) 2043 e4b->bd_info->bb_first_free += len; 2044 2045 /* let's maintain fragments counter */ 2046 if (start != 0) 2047 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 2048 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 2049 max = !mb_test_bit(start + len, e4b->bd_bitmap); 2050 if (mlen && max) 2051 e4b->bd_info->bb_fragments++; 2052 else if (!mlen && !max) 2053 e4b->bd_info->bb_fragments--; 2054 2055 /* let's maintain buddy itself */ 2056 while (len) { 2057 if (!split) 2058 ord = mb_find_order_for_block(e4b, start); 2059 2060 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 2061 /* the whole chunk may be allocated at once! */ 2062 mlen = 1 << ord; 2063 if (!split) 2064 buddy = mb_find_buddy(e4b, ord, &max); 2065 else 2066 split = false; 2067 BUG_ON((start >> ord) >= max); 2068 mb_set_bit(start >> ord, buddy); 2069 e4b->bd_info->bb_counters[ord]--; 2070 start += mlen; 2071 len -= mlen; 2072 BUG_ON(len < 0); 2073 continue; 2074 } 2075 2076 /* store for history */ 2077 if (ret == 0) 2078 ret = len | (ord << 16); 2079 2080 /* we have to split large buddy */ 2081 BUG_ON(ord <= 0); 2082 buddy = mb_find_buddy(e4b, ord, &max); 2083 mb_set_bit(start >> ord, buddy); 2084 e4b->bd_info->bb_counters[ord]--; 2085 2086 ord--; 2087 cur = (start >> ord) & ~1U; 2088 buddy = mb_find_buddy(e4b, ord, &max); 2089 mb_clear_bit(cur, buddy); 2090 mb_clear_bit(cur + 1, buddy); 2091 e4b->bd_info->bb_counters[ord]++; 2092 e4b->bd_info->bb_counters[ord]++; 2093 split = true; 2094 } 2095 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 2096 2097 mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); 2098 mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 2099 mb_check_buddy(e4b); 2100 2101 return ret; 2102 } 2103 2104 /* 2105 * Must be called under group lock! 2106 */ 2107 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 2108 struct ext4_buddy *e4b) 2109 { 2110 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2111 int ret; 2112 2113 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 2114 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2115 2116 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 2117 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 2118 ret = mb_mark_used(e4b, &ac->ac_b_ex); 2119 2120 /* preallocation can change ac_b_ex, thus we store actually 2121 * allocated blocks for history */ 2122 ac->ac_f_ex = ac->ac_b_ex; 2123 2124 ac->ac_status = AC_STATUS_FOUND; 2125 ac->ac_tail = ret & 0xffff; 2126 ac->ac_buddy = ret >> 16; 2127 2128 /* 2129 * take the page reference. We want the page to be pinned 2130 * so that we don't get a ext4_mb_init_cache_call for this 2131 * group until we update the bitmap. That would mean we 2132 * double allocate blocks. The reference is dropped 2133 * in ext4_mb_release_context 2134 */ 2135 ac->ac_bitmap_page = e4b->bd_bitmap_page; 2136 get_page(ac->ac_bitmap_page); 2137 ac->ac_buddy_page = e4b->bd_buddy_page; 2138 get_page(ac->ac_buddy_page); 2139 /* store last allocated for subsequent stream allocation */ 2140 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2141 spin_lock(&sbi->s_md_lock); 2142 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 2143 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 2144 spin_unlock(&sbi->s_md_lock); 2145 } 2146 /* 2147 * As we've just preallocated more space than 2148 * user requested originally, we store allocated 2149 * space in a special descriptor. 2150 */ 2151 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 2152 ext4_mb_new_preallocation(ac); 2153 2154 } 2155 2156 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 2157 struct ext4_buddy *e4b, 2158 int finish_group) 2159 { 2160 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2161 struct ext4_free_extent *bex = &ac->ac_b_ex; 2162 struct ext4_free_extent *gex = &ac->ac_g_ex; 2163 2164 if (ac->ac_status == AC_STATUS_FOUND) 2165 return; 2166 /* 2167 * We don't want to scan for a whole year 2168 */ 2169 if (ac->ac_found > sbi->s_mb_max_to_scan && 2170 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2171 ac->ac_status = AC_STATUS_BREAK; 2172 return; 2173 } 2174 2175 /* 2176 * Haven't found good chunk so far, let's continue 2177 */ 2178 if (bex->fe_len < gex->fe_len) 2179 return; 2180 2181 if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 2182 ext4_mb_use_best_found(ac, e4b); 2183 } 2184 2185 /* 2186 * The routine checks whether found extent is good enough. If it is, 2187 * then the extent gets marked used and flag is set to the context 2188 * to stop scanning. Otherwise, the extent is compared with the 2189 * previous found extent and if new one is better, then it's stored 2190 * in the context. Later, the best found extent will be used, if 2191 * mballoc can't find good enough extent. 2192 * 2193 * The algorithm used is roughly as follows: 2194 * 2195 * * If free extent found is exactly as big as goal, then 2196 * stop the scan and use it immediately 2197 * 2198 * * If free extent found is smaller than goal, then keep retrying 2199 * upto a max of sbi->s_mb_max_to_scan times (default 200). After 2200 * that stop scanning and use whatever we have. 2201 * 2202 * * If free extent found is bigger than goal, then keep retrying 2203 * upto a max of sbi->s_mb_min_to_scan times (default 10) before 2204 * stopping the scan and using the extent. 2205 * 2206 * 2207 * FIXME: real allocation policy is to be designed yet! 2208 */ 2209 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 2210 struct ext4_free_extent *ex, 2211 struct ext4_buddy *e4b) 2212 { 2213 struct ext4_free_extent *bex = &ac->ac_b_ex; 2214 struct ext4_free_extent *gex = &ac->ac_g_ex; 2215 2216 BUG_ON(ex->fe_len <= 0); 2217 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2218 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 2219 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 2220 2221 ac->ac_found++; 2222 ac->ac_cX_found[ac->ac_criteria]++; 2223 2224 /* 2225 * The special case - take what you catch first 2226 */ 2227 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2228 *bex = *ex; 2229 ext4_mb_use_best_found(ac, e4b); 2230 return; 2231 } 2232 2233 /* 2234 * Let's check whether the chuck is good enough 2235 */ 2236 if (ex->fe_len == gex->fe_len) { 2237 *bex = *ex; 2238 ext4_mb_use_best_found(ac, e4b); 2239 return; 2240 } 2241 2242 /* 2243 * If this is first found extent, just store it in the context 2244 */ 2245 if (bex->fe_len == 0) { 2246 *bex = *ex; 2247 return; 2248 } 2249 2250 /* 2251 * If new found extent is better, store it in the context 2252 */ 2253 if (bex->fe_len < gex->fe_len) { 2254 /* if the request isn't satisfied, any found extent 2255 * larger than previous best one is better */ 2256 if (ex->fe_len > bex->fe_len) 2257 *bex = *ex; 2258 } else if (ex->fe_len > gex->fe_len) { 2259 /* if the request is satisfied, then we try to find 2260 * an extent that still satisfy the request, but is 2261 * smaller than previous one */ 2262 if (ex->fe_len < bex->fe_len) 2263 *bex = *ex; 2264 } 2265 2266 ext4_mb_check_limits(ac, e4b, 0); 2267 } 2268 2269 static noinline_for_stack 2270 void ext4_mb_try_best_found(struct ext4_allocation_context *ac, 2271 struct ext4_buddy *e4b) 2272 { 2273 struct ext4_free_extent ex = ac->ac_b_ex; 2274 ext4_group_t group = ex.fe_group; 2275 int max; 2276 int err; 2277 2278 BUG_ON(ex.fe_len <= 0); 2279 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2280 if (err) 2281 return; 2282 2283 ext4_lock_group(ac->ac_sb, group); 2284 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 2285 2286 if (max > 0) { 2287 ac->ac_b_ex = ex; 2288 ext4_mb_use_best_found(ac, e4b); 2289 } 2290 2291 ext4_unlock_group(ac->ac_sb, group); 2292 ext4_mb_unload_buddy(e4b); 2293 } 2294 2295 static noinline_for_stack 2296 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 2297 struct ext4_buddy *e4b) 2298 { 2299 ext4_group_t group = ac->ac_g_ex.fe_group; 2300 int max; 2301 int err; 2302 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2303 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2304 struct ext4_free_extent ex; 2305 2306 if (!grp) 2307 return -EFSCORRUPTED; 2308 if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY))) 2309 return 0; 2310 if (grp->bb_free == 0) 2311 return 0; 2312 2313 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 2314 if (err) 2315 return err; 2316 2317 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 2318 ext4_mb_unload_buddy(e4b); 2319 return 0; 2320 } 2321 2322 ext4_lock_group(ac->ac_sb, group); 2323 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 2324 ac->ac_g_ex.fe_len, &ex); 2325 ex.fe_logical = 0xDEADFA11; /* debug value */ 2326 2327 if (max >= ac->ac_g_ex.fe_len && 2328 ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) { 2329 ext4_fsblk_t start; 2330 2331 start = ext4_grp_offs_to_block(ac->ac_sb, &ex); 2332 /* use do_div to get remainder (would be 64-bit modulo) */ 2333 if (do_div(start, sbi->s_stripe) == 0) { 2334 ac->ac_found++; 2335 ac->ac_b_ex = ex; 2336 ext4_mb_use_best_found(ac, e4b); 2337 } 2338 } else if (max >= ac->ac_g_ex.fe_len) { 2339 BUG_ON(ex.fe_len <= 0); 2340 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2341 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2342 ac->ac_found++; 2343 ac->ac_b_ex = ex; 2344 ext4_mb_use_best_found(ac, e4b); 2345 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 2346 /* Sometimes, caller may want to merge even small 2347 * number of blocks to an existing extent */ 2348 BUG_ON(ex.fe_len <= 0); 2349 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 2350 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 2351 ac->ac_found++; 2352 ac->ac_b_ex = ex; 2353 ext4_mb_use_best_found(ac, e4b); 2354 } 2355 ext4_unlock_group(ac->ac_sb, group); 2356 ext4_mb_unload_buddy(e4b); 2357 2358 return 0; 2359 } 2360 2361 /* 2362 * The routine scans buddy structures (not bitmap!) from given order 2363 * to max order and tries to find big enough chunk to satisfy the req 2364 */ 2365 static noinline_for_stack 2366 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 2367 struct ext4_buddy *e4b) 2368 { 2369 struct super_block *sb = ac->ac_sb; 2370 struct ext4_group_info *grp = e4b->bd_info; 2371 void *buddy; 2372 int i; 2373 int k; 2374 int max; 2375 2376 BUG_ON(ac->ac_2order <= 0); 2377 for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) { 2378 if (grp->bb_counters[i] == 0) 2379 continue; 2380 2381 buddy = mb_find_buddy(e4b, i, &max); 2382 if (WARN_RATELIMIT(buddy == NULL, 2383 "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i)) 2384 continue; 2385 2386 k = mb_find_next_zero_bit(buddy, max, 0); 2387 if (k >= max) { 2388 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 2389 "%d free clusters of order %d. But found 0", 2390 grp->bb_counters[i], i); 2391 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 2392 e4b->bd_group, 2393 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2394 break; 2395 } 2396 ac->ac_found++; 2397 ac->ac_cX_found[ac->ac_criteria]++; 2398 2399 ac->ac_b_ex.fe_len = 1 << i; 2400 ac->ac_b_ex.fe_start = k << i; 2401 ac->ac_b_ex.fe_group = e4b->bd_group; 2402 2403 ext4_mb_use_best_found(ac, e4b); 2404 2405 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 2406 2407 if (EXT4_SB(sb)->s_mb_stats) 2408 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 2409 2410 break; 2411 } 2412 } 2413 2414 /* 2415 * The routine scans the group and measures all found extents. 2416 * In order to optimize scanning, caller must pass number of 2417 * free blocks in the group, so the routine can know upper limit. 2418 */ 2419 static noinline_for_stack 2420 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 2421 struct ext4_buddy *e4b) 2422 { 2423 struct super_block *sb = ac->ac_sb; 2424 void *bitmap = e4b->bd_bitmap; 2425 struct ext4_free_extent ex; 2426 int i, j, freelen; 2427 int free; 2428 2429 free = e4b->bd_info->bb_free; 2430 if (WARN_ON(free <= 0)) 2431 return; 2432 2433 i = e4b->bd_info->bb_first_free; 2434 2435 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2436 i = mb_find_next_zero_bit(bitmap, 2437 EXT4_CLUSTERS_PER_GROUP(sb), i); 2438 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2439 /* 2440 * IF we have corrupt bitmap, we won't find any 2441 * free blocks even though group info says we 2442 * have free blocks 2443 */ 2444 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2445 "%d free clusters as per " 2446 "group info. But bitmap says 0", 2447 free); 2448 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2449 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2450 break; 2451 } 2452 2453 if (!ext4_mb_cr_expensive(ac->ac_criteria)) { 2454 /* 2455 * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are 2456 * sure that this group will have a large enough 2457 * continuous free extent, so skip over the smaller free 2458 * extents 2459 */ 2460 j = mb_find_next_bit(bitmap, 2461 EXT4_CLUSTERS_PER_GROUP(sb), i); 2462 freelen = j - i; 2463 2464 if (freelen < ac->ac_g_ex.fe_len) { 2465 i = j; 2466 free -= freelen; 2467 continue; 2468 } 2469 } 2470 2471 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2472 if (WARN_ON(ex.fe_len <= 0)) 2473 break; 2474 if (free < ex.fe_len) { 2475 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2476 "%d free clusters as per " 2477 "group info. But got %d blocks", 2478 free, ex.fe_len); 2479 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2480 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2481 /* 2482 * The number of free blocks differs. This mostly 2483 * indicate that the bitmap is corrupt. So exit 2484 * without claiming the space. 2485 */ 2486 break; 2487 } 2488 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2489 ext4_mb_measure_extent(ac, &ex, e4b); 2490 2491 i += ex.fe_len; 2492 free -= ex.fe_len; 2493 } 2494 2495 ext4_mb_check_limits(ac, e4b, 1); 2496 } 2497 2498 /* 2499 * This is a special case for storages like raid5 2500 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2501 */ 2502 static noinline_for_stack 2503 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2504 struct ext4_buddy *e4b) 2505 { 2506 struct super_block *sb = ac->ac_sb; 2507 struct ext4_sb_info *sbi = EXT4_SB(sb); 2508 void *bitmap = e4b->bd_bitmap; 2509 struct ext4_free_extent ex; 2510 ext4_fsblk_t first_group_block; 2511 ext4_fsblk_t a; 2512 ext4_grpblk_t i, stripe; 2513 int max; 2514 2515 BUG_ON(sbi->s_stripe == 0); 2516 2517 /* find first stripe-aligned block in group */ 2518 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2519 2520 a = first_group_block + sbi->s_stripe - 1; 2521 do_div(a, sbi->s_stripe); 2522 i = (a * sbi->s_stripe) - first_group_block; 2523 2524 stripe = EXT4_B2C(sbi, sbi->s_stripe); 2525 i = EXT4_B2C(sbi, i); 2526 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2527 if (!mb_test_bit(i, bitmap)) { 2528 max = mb_find_extent(e4b, i, stripe, &ex); 2529 if (max >= stripe) { 2530 ac->ac_found++; 2531 ac->ac_cX_found[ac->ac_criteria]++; 2532 ex.fe_logical = 0xDEADF00D; /* debug value */ 2533 ac->ac_b_ex = ex; 2534 ext4_mb_use_best_found(ac, e4b); 2535 break; 2536 } 2537 } 2538 i += stripe; 2539 } 2540 } 2541 2542 /* 2543 * This is also called BEFORE we load the buddy bitmap. 2544 * Returns either 1 or 0 indicating that the group is either suitable 2545 * for the allocation or not. 2546 */ 2547 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2548 ext4_group_t group, enum criteria cr) 2549 { 2550 ext4_grpblk_t free, fragments; 2551 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2552 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2553 2554 BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS); 2555 2556 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2557 return false; 2558 2559 free = grp->bb_free; 2560 if (free == 0) 2561 return false; 2562 2563 fragments = grp->bb_fragments; 2564 if (fragments == 0) 2565 return false; 2566 2567 switch (cr) { 2568 case CR_POWER2_ALIGNED: 2569 BUG_ON(ac->ac_2order == 0); 2570 2571 /* Avoid using the first bg of a flexgroup for data files */ 2572 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2573 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2574 ((group % flex_size) == 0)) 2575 return false; 2576 2577 if (free < ac->ac_g_ex.fe_len) 2578 return false; 2579 2580 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb)) 2581 return true; 2582 2583 if (grp->bb_largest_free_order < ac->ac_2order) 2584 return false; 2585 2586 return true; 2587 case CR_GOAL_LEN_FAST: 2588 case CR_BEST_AVAIL_LEN: 2589 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2590 return true; 2591 break; 2592 case CR_GOAL_LEN_SLOW: 2593 if (free >= ac->ac_g_ex.fe_len) 2594 return true; 2595 break; 2596 case CR_ANY_FREE: 2597 return true; 2598 default: 2599 BUG(); 2600 } 2601 2602 return false; 2603 } 2604 2605 /* 2606 * This could return negative error code if something goes wrong 2607 * during ext4_mb_init_group(). This should not be called with 2608 * ext4_lock_group() held. 2609 * 2610 * Note: because we are conditionally operating with the group lock in 2611 * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this 2612 * function using __acquire and __release. This means we need to be 2613 * super careful before messing with the error path handling via "goto 2614 * out"! 2615 */ 2616 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2617 ext4_group_t group, enum criteria cr) 2618 { 2619 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2620 struct super_block *sb = ac->ac_sb; 2621 struct ext4_sb_info *sbi = EXT4_SB(sb); 2622 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2623 ext4_grpblk_t free; 2624 int ret = 0; 2625 2626 if (!grp) 2627 return -EFSCORRUPTED; 2628 if (sbi->s_mb_stats) 2629 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]); 2630 if (should_lock) { 2631 ext4_lock_group(sb, group); 2632 __release(ext4_group_lock_ptr(sb, group)); 2633 } 2634 free = grp->bb_free; 2635 if (free == 0) 2636 goto out; 2637 /* 2638 * In all criterias except CR_ANY_FREE we try to avoid groups that 2639 * can't possibly satisfy the full goal request due to insufficient 2640 * free blocks. 2641 */ 2642 if (cr < CR_ANY_FREE && free < ac->ac_g_ex.fe_len) 2643 goto out; 2644 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2645 goto out; 2646 if (should_lock) { 2647 __acquire(ext4_group_lock_ptr(sb, group)); 2648 ext4_unlock_group(sb, group); 2649 } 2650 2651 /* We only do this if the grp has never been initialized */ 2652 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2653 struct ext4_group_desc *gdp = 2654 ext4_get_group_desc(sb, group, NULL); 2655 int ret; 2656 2657 /* 2658 * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic 2659 * search to find large good chunks almost for free. If buddy 2660 * data is not ready, then this optimization makes no sense. But 2661 * we never skip the first block group in a flex_bg, since this 2662 * gets used for metadata block allocation, and we want to make 2663 * sure we locate metadata blocks in the first block group in 2664 * the flex_bg if possible. 2665 */ 2666 if (!ext4_mb_cr_expensive(cr) && 2667 (!sbi->s_log_groups_per_flex || 2668 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2669 !(ext4_has_group_desc_csum(sb) && 2670 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2671 return 0; 2672 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2673 if (ret) 2674 return ret; 2675 } 2676 2677 if (should_lock) { 2678 ext4_lock_group(sb, group); 2679 __release(ext4_group_lock_ptr(sb, group)); 2680 } 2681 ret = ext4_mb_good_group(ac, group, cr); 2682 out: 2683 if (should_lock) { 2684 __acquire(ext4_group_lock_ptr(sb, group)); 2685 ext4_unlock_group(sb, group); 2686 } 2687 return ret; 2688 } 2689 2690 /* 2691 * Start prefetching @nr block bitmaps starting at @group. 2692 * Return the next group which needs to be prefetched. 2693 */ 2694 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2695 unsigned int nr, int *cnt) 2696 { 2697 ext4_group_t ngroups = ext4_get_groups_count(sb); 2698 struct buffer_head *bh; 2699 struct blk_plug plug; 2700 2701 blk_start_plug(&plug); 2702 while (nr-- > 0) { 2703 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2704 NULL); 2705 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2706 2707 /* 2708 * Prefetch block groups with free blocks; but don't 2709 * bother if it is marked uninitialized on disk, since 2710 * it won't require I/O to read. Also only try to 2711 * prefetch once, so we avoid getblk() call, which can 2712 * be expensive. 2713 */ 2714 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2715 EXT4_MB_GRP_NEED_INIT(grp) && 2716 ext4_free_group_clusters(sb, gdp) > 0 ) { 2717 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2718 if (bh && !IS_ERR(bh)) { 2719 if (!buffer_uptodate(bh) && cnt) 2720 (*cnt)++; 2721 brelse(bh); 2722 } 2723 } 2724 if (++group >= ngroups) 2725 group = 0; 2726 } 2727 blk_finish_plug(&plug); 2728 return group; 2729 } 2730 2731 /* 2732 * Prefetching reads the block bitmap into the buffer cache; but we 2733 * need to make sure that the buddy bitmap in the page cache has been 2734 * initialized. Note that ext4_mb_init_group() will block if the I/O 2735 * is not yet completed, or indeed if it was not initiated by 2736 * ext4_mb_prefetch did not start the I/O. 2737 * 2738 * TODO: We should actually kick off the buddy bitmap setup in a work 2739 * queue when the buffer I/O is completed, so that we don't block 2740 * waiting for the block allocation bitmap read to finish when 2741 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2742 */ 2743 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2744 unsigned int nr) 2745 { 2746 struct ext4_group_desc *gdp; 2747 struct ext4_group_info *grp; 2748 2749 while (nr-- > 0) { 2750 if (!group) 2751 group = ext4_get_groups_count(sb); 2752 group--; 2753 gdp = ext4_get_group_desc(sb, group, NULL); 2754 grp = ext4_get_group_info(sb, group); 2755 2756 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) && 2757 ext4_free_group_clusters(sb, gdp) > 0) { 2758 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2759 break; 2760 } 2761 } 2762 } 2763 2764 static noinline_for_stack int 2765 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2766 { 2767 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2768 enum criteria new_cr, cr = CR_GOAL_LEN_FAST; 2769 int err = 0, first_err = 0; 2770 unsigned int nr = 0, prefetch_ios = 0; 2771 struct ext4_sb_info *sbi; 2772 struct super_block *sb; 2773 struct ext4_buddy e4b; 2774 int lost; 2775 2776 sb = ac->ac_sb; 2777 sbi = EXT4_SB(sb); 2778 ngroups = ext4_get_groups_count(sb); 2779 /* non-extent files are limited to low blocks/groups */ 2780 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2781 ngroups = sbi->s_blockfile_groups; 2782 2783 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2784 2785 /* first, try the goal */ 2786 err = ext4_mb_find_by_goal(ac, &e4b); 2787 if (err || ac->ac_status == AC_STATUS_FOUND) 2788 goto out; 2789 2790 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2791 goto out; 2792 2793 /* 2794 * ac->ac_2order is set only if the fe_len is a power of 2 2795 * if ac->ac_2order is set we also set criteria to CR_POWER2_ALIGNED 2796 * so that we try exact allocation using buddy. 2797 */ 2798 i = fls(ac->ac_g_ex.fe_len); 2799 ac->ac_2order = 0; 2800 /* 2801 * We search using buddy data only if the order of the request 2802 * is greater than equal to the sbi_s_mb_order2_reqs 2803 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2804 * We also support searching for power-of-two requests only for 2805 * requests upto maximum buddy size we have constructed. 2806 */ 2807 if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) { 2808 if (is_power_of_2(ac->ac_g_ex.fe_len)) 2809 ac->ac_2order = array_index_nospec(i - 1, 2810 MB_NUM_ORDERS(sb)); 2811 } 2812 2813 /* if stream allocation is enabled, use global goal */ 2814 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2815 /* TBD: may be hot point */ 2816 spin_lock(&sbi->s_md_lock); 2817 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2818 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2819 spin_unlock(&sbi->s_md_lock); 2820 } 2821 2822 /* 2823 * Let's just scan groups to find more-less suitable blocks We 2824 * start with CR_GOAL_LEN_FAST, unless it is power of 2 2825 * aligned, in which case let's do that faster approach first. 2826 */ 2827 if (ac->ac_2order) 2828 cr = CR_POWER2_ALIGNED; 2829 repeat: 2830 for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2831 ac->ac_criteria = cr; 2832 /* 2833 * searching for the right group start 2834 * from the goal value specified 2835 */ 2836 group = ac->ac_g_ex.fe_group; 2837 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups; 2838 prefetch_grp = group; 2839 2840 for (i = 0, new_cr = cr; i < ngroups; i++, 2841 ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) { 2842 int ret = 0; 2843 2844 cond_resched(); 2845 if (new_cr != cr) { 2846 cr = new_cr; 2847 goto repeat; 2848 } 2849 2850 /* 2851 * Batch reads of the block allocation bitmaps 2852 * to get multiple READs in flight; limit 2853 * prefetching at inexpensive CR, otherwise mballoc 2854 * can spend a lot of time loading imperfect groups 2855 */ 2856 if ((prefetch_grp == group) && 2857 (ext4_mb_cr_expensive(cr) || 2858 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2859 nr = sbi->s_mb_prefetch; 2860 if (ext4_has_feature_flex_bg(sb)) { 2861 nr = 1 << sbi->s_log_groups_per_flex; 2862 nr -= group & (nr - 1); 2863 nr = min(nr, sbi->s_mb_prefetch); 2864 } 2865 prefetch_grp = ext4_mb_prefetch(sb, group, 2866 nr, &prefetch_ios); 2867 } 2868 2869 /* This now checks without needing the buddy page */ 2870 ret = ext4_mb_good_group_nolock(ac, group, cr); 2871 if (ret <= 0) { 2872 if (!first_err) 2873 first_err = ret; 2874 continue; 2875 } 2876 2877 err = ext4_mb_load_buddy(sb, group, &e4b); 2878 if (err) 2879 goto out; 2880 2881 ext4_lock_group(sb, group); 2882 2883 /* 2884 * We need to check again after locking the 2885 * block group 2886 */ 2887 ret = ext4_mb_good_group(ac, group, cr); 2888 if (ret == 0) { 2889 ext4_unlock_group(sb, group); 2890 ext4_mb_unload_buddy(&e4b); 2891 continue; 2892 } 2893 2894 ac->ac_groups_scanned++; 2895 if (cr == CR_POWER2_ALIGNED) 2896 ext4_mb_simple_scan_group(ac, &e4b); 2897 else if ((cr == CR_GOAL_LEN_FAST || 2898 cr == CR_BEST_AVAIL_LEN) && 2899 sbi->s_stripe && 2900 !(ac->ac_g_ex.fe_len % 2901 EXT4_B2C(sbi, sbi->s_stripe))) 2902 ext4_mb_scan_aligned(ac, &e4b); 2903 else 2904 ext4_mb_complex_scan_group(ac, &e4b); 2905 2906 ext4_unlock_group(sb, group); 2907 ext4_mb_unload_buddy(&e4b); 2908 2909 if (ac->ac_status != AC_STATUS_CONTINUE) 2910 break; 2911 } 2912 /* Processed all groups and haven't found blocks */ 2913 if (sbi->s_mb_stats && i == ngroups) 2914 atomic64_inc(&sbi->s_bal_cX_failed[cr]); 2915 2916 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN) 2917 /* Reset goal length to original goal length before 2918 * falling into CR_GOAL_LEN_SLOW */ 2919 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len; 2920 } 2921 2922 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2923 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2924 /* 2925 * We've been searching too long. Let's try to allocate 2926 * the best chunk we've found so far 2927 */ 2928 ext4_mb_try_best_found(ac, &e4b); 2929 if (ac->ac_status != AC_STATUS_FOUND) { 2930 /* 2931 * Someone more lucky has already allocated it. 2932 * The only thing we can do is just take first 2933 * found block(s) 2934 */ 2935 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2936 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2937 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2938 ac->ac_b_ex.fe_len, lost); 2939 2940 ac->ac_b_ex.fe_group = 0; 2941 ac->ac_b_ex.fe_start = 0; 2942 ac->ac_b_ex.fe_len = 0; 2943 ac->ac_status = AC_STATUS_CONTINUE; 2944 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2945 cr = CR_ANY_FREE; 2946 goto repeat; 2947 } 2948 } 2949 2950 if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND) 2951 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]); 2952 out: 2953 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2954 err = first_err; 2955 2956 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2957 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2958 ac->ac_flags, cr, err); 2959 2960 if (nr) 2961 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 2962 2963 return err; 2964 } 2965 2966 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2967 { 2968 struct super_block *sb = pde_data(file_inode(seq->file)); 2969 ext4_group_t group; 2970 2971 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2972 return NULL; 2973 group = *pos + 1; 2974 return (void *) ((unsigned long) group); 2975 } 2976 2977 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2978 { 2979 struct super_block *sb = pde_data(file_inode(seq->file)); 2980 ext4_group_t group; 2981 2982 ++*pos; 2983 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2984 return NULL; 2985 group = *pos + 1; 2986 return (void *) ((unsigned long) group); 2987 } 2988 2989 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2990 { 2991 struct super_block *sb = pde_data(file_inode(seq->file)); 2992 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2993 int i; 2994 int err, buddy_loaded = 0; 2995 struct ext4_buddy e4b; 2996 struct ext4_group_info *grinfo; 2997 unsigned char blocksize_bits = min_t(unsigned char, 2998 sb->s_blocksize_bits, 2999 EXT4_MAX_BLOCK_LOG_SIZE); 3000 struct sg { 3001 struct ext4_group_info info; 3002 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 3003 } sg; 3004 3005 group--; 3006 if (group == 0) 3007 seq_puts(seq, "#group: free frags first [" 3008 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 3009 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 3010 3011 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 3012 sizeof(struct ext4_group_info); 3013 3014 grinfo = ext4_get_group_info(sb, group); 3015 if (!grinfo) 3016 return 0; 3017 /* Load the group info in memory only if not already loaded. */ 3018 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 3019 err = ext4_mb_load_buddy(sb, group, &e4b); 3020 if (err) { 3021 seq_printf(seq, "#%-5u: I/O error\n", group); 3022 return 0; 3023 } 3024 buddy_loaded = 1; 3025 } 3026 3027 memcpy(&sg, grinfo, i); 3028 3029 if (buddy_loaded) 3030 ext4_mb_unload_buddy(&e4b); 3031 3032 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 3033 sg.info.bb_fragments, sg.info.bb_first_free); 3034 for (i = 0; i <= 13; i++) 3035 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 3036 sg.info.bb_counters[i] : 0); 3037 seq_puts(seq, " ]\n"); 3038 3039 return 0; 3040 } 3041 3042 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 3043 { 3044 } 3045 3046 const struct seq_operations ext4_mb_seq_groups_ops = { 3047 .start = ext4_mb_seq_groups_start, 3048 .next = ext4_mb_seq_groups_next, 3049 .stop = ext4_mb_seq_groups_stop, 3050 .show = ext4_mb_seq_groups_show, 3051 }; 3052 3053 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset) 3054 { 3055 struct super_block *sb = seq->private; 3056 struct ext4_sb_info *sbi = EXT4_SB(sb); 3057 3058 seq_puts(seq, "mballoc:\n"); 3059 if (!sbi->s_mb_stats) { 3060 seq_puts(seq, "\tmb stats collection turned off.\n"); 3061 seq_puts( 3062 seq, 3063 "\tTo enable, please write \"1\" to sysfs file mb_stats.\n"); 3064 return 0; 3065 } 3066 seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs)); 3067 seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success)); 3068 3069 seq_printf(seq, "\tgroups_scanned: %u\n", 3070 atomic_read(&sbi->s_bal_groups_scanned)); 3071 3072 /* CR_POWER2_ALIGNED stats */ 3073 seq_puts(seq, "\tcr_p2_aligned_stats:\n"); 3074 seq_printf(seq, "\t\thits: %llu\n", 3075 atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED])); 3076 seq_printf( 3077 seq, "\t\tgroups_considered: %llu\n", 3078 atomic64_read( 3079 &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED])); 3080 seq_printf(seq, "\t\textents_scanned: %u\n", 3081 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED])); 3082 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3083 atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED])); 3084 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3085 atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions)); 3086 3087 /* CR_GOAL_LEN_FAST stats */ 3088 seq_puts(seq, "\tcr_goal_fast_stats:\n"); 3089 seq_printf(seq, "\t\thits: %llu\n", 3090 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST])); 3091 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3092 atomic64_read( 3093 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST])); 3094 seq_printf(seq, "\t\textents_scanned: %u\n", 3095 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST])); 3096 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3097 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST])); 3098 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3099 atomic_read(&sbi->s_bal_goal_fast_bad_suggestions)); 3100 3101 /* CR_BEST_AVAIL_LEN stats */ 3102 seq_puts(seq, "\tcr_best_avail_stats:\n"); 3103 seq_printf(seq, "\t\thits: %llu\n", 3104 atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN])); 3105 seq_printf( 3106 seq, "\t\tgroups_considered: %llu\n", 3107 atomic64_read( 3108 &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN])); 3109 seq_printf(seq, "\t\textents_scanned: %u\n", 3110 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN])); 3111 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3112 atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN])); 3113 seq_printf(seq, "\t\tbad_suggestions: %u\n", 3114 atomic_read(&sbi->s_bal_best_avail_bad_suggestions)); 3115 3116 /* CR_GOAL_LEN_SLOW stats */ 3117 seq_puts(seq, "\tcr_goal_slow_stats:\n"); 3118 seq_printf(seq, "\t\thits: %llu\n", 3119 atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW])); 3120 seq_printf(seq, "\t\tgroups_considered: %llu\n", 3121 atomic64_read( 3122 &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW])); 3123 seq_printf(seq, "\t\textents_scanned: %u\n", 3124 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW])); 3125 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3126 atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW])); 3127 3128 /* CR_ANY_FREE stats */ 3129 seq_puts(seq, "\tcr_any_free_stats:\n"); 3130 seq_printf(seq, "\t\thits: %llu\n", 3131 atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE])); 3132 seq_printf( 3133 seq, "\t\tgroups_considered: %llu\n", 3134 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE])); 3135 seq_printf(seq, "\t\textents_scanned: %u\n", 3136 atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE])); 3137 seq_printf(seq, "\t\tuseless_loops: %llu\n", 3138 atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE])); 3139 3140 /* Aggregates */ 3141 seq_printf(seq, "\textents_scanned: %u\n", 3142 atomic_read(&sbi->s_bal_ex_scanned)); 3143 seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals)); 3144 seq_printf(seq, "\t\tlen_goal_hits: %u\n", 3145 atomic_read(&sbi->s_bal_len_goals)); 3146 seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders)); 3147 seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks)); 3148 seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks)); 3149 seq_printf(seq, "\tbuddies_generated: %u/%u\n", 3150 atomic_read(&sbi->s_mb_buddies_generated), 3151 ext4_get_groups_count(sb)); 3152 seq_printf(seq, "\tbuddies_time_used: %llu\n", 3153 atomic64_read(&sbi->s_mb_generation_time)); 3154 seq_printf(seq, "\tpreallocated: %u\n", 3155 atomic_read(&sbi->s_mb_preallocated)); 3156 seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded)); 3157 return 0; 3158 } 3159 3160 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos) 3161 __acquires(&EXT4_SB(sb)->s_mb_rb_lock) 3162 { 3163 struct super_block *sb = pde_data(file_inode(seq->file)); 3164 unsigned long position; 3165 3166 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3167 return NULL; 3168 position = *pos + 1; 3169 return (void *) ((unsigned long) position); 3170 } 3171 3172 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos) 3173 { 3174 struct super_block *sb = pde_data(file_inode(seq->file)); 3175 unsigned long position; 3176 3177 ++*pos; 3178 if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb)) 3179 return NULL; 3180 position = *pos + 1; 3181 return (void *) ((unsigned long) position); 3182 } 3183 3184 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v) 3185 { 3186 struct super_block *sb = pde_data(file_inode(seq->file)); 3187 struct ext4_sb_info *sbi = EXT4_SB(sb); 3188 unsigned long position = ((unsigned long) v); 3189 struct ext4_group_info *grp; 3190 unsigned int count; 3191 3192 position--; 3193 if (position >= MB_NUM_ORDERS(sb)) { 3194 position -= MB_NUM_ORDERS(sb); 3195 if (position == 0) 3196 seq_puts(seq, "avg_fragment_size_lists:\n"); 3197 3198 count = 0; 3199 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]); 3200 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position], 3201 bb_avg_fragment_size_node) 3202 count++; 3203 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]); 3204 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3205 (unsigned int)position, count); 3206 return 0; 3207 } 3208 3209 if (position == 0) { 3210 seq_printf(seq, "optimize_scan: %d\n", 3211 test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0); 3212 seq_puts(seq, "max_free_order_lists:\n"); 3213 } 3214 count = 0; 3215 read_lock(&sbi->s_mb_largest_free_orders_locks[position]); 3216 list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position], 3217 bb_largest_free_order_node) 3218 count++; 3219 read_unlock(&sbi->s_mb_largest_free_orders_locks[position]); 3220 seq_printf(seq, "\tlist_order_%u_groups: %u\n", 3221 (unsigned int)position, count); 3222 3223 return 0; 3224 } 3225 3226 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v) 3227 { 3228 } 3229 3230 const struct seq_operations ext4_mb_seq_structs_summary_ops = { 3231 .start = ext4_mb_seq_structs_summary_start, 3232 .next = ext4_mb_seq_structs_summary_next, 3233 .stop = ext4_mb_seq_structs_summary_stop, 3234 .show = ext4_mb_seq_structs_summary_show, 3235 }; 3236 3237 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 3238 { 3239 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3240 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 3241 3242 BUG_ON(!cachep); 3243 return cachep; 3244 } 3245 3246 /* 3247 * Allocate the top-level s_group_info array for the specified number 3248 * of groups 3249 */ 3250 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 3251 { 3252 struct ext4_sb_info *sbi = EXT4_SB(sb); 3253 unsigned size; 3254 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 3255 3256 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 3257 EXT4_DESC_PER_BLOCK_BITS(sb); 3258 if (size <= sbi->s_group_info_size) 3259 return 0; 3260 3261 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 3262 new_groupinfo = kvzalloc(size, GFP_KERNEL); 3263 if (!new_groupinfo) { 3264 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 3265 return -ENOMEM; 3266 } 3267 rcu_read_lock(); 3268 old_groupinfo = rcu_dereference(sbi->s_group_info); 3269 if (old_groupinfo) 3270 memcpy(new_groupinfo, old_groupinfo, 3271 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 3272 rcu_read_unlock(); 3273 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 3274 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 3275 if (old_groupinfo) 3276 ext4_kvfree_array_rcu(old_groupinfo); 3277 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 3278 sbi->s_group_info_size); 3279 return 0; 3280 } 3281 3282 /* Create and initialize ext4_group_info data for the given group. */ 3283 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 3284 struct ext4_group_desc *desc) 3285 { 3286 int i; 3287 int metalen = 0; 3288 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 3289 struct ext4_sb_info *sbi = EXT4_SB(sb); 3290 struct ext4_group_info **meta_group_info; 3291 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3292 3293 /* 3294 * First check if this group is the first of a reserved block. 3295 * If it's true, we have to allocate a new table of pointers 3296 * to ext4_group_info structures 3297 */ 3298 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3299 metalen = sizeof(*meta_group_info) << 3300 EXT4_DESC_PER_BLOCK_BITS(sb); 3301 meta_group_info = kmalloc(metalen, GFP_NOFS); 3302 if (meta_group_info == NULL) { 3303 ext4_msg(sb, KERN_ERR, "can't allocate mem " 3304 "for a buddy group"); 3305 return -ENOMEM; 3306 } 3307 rcu_read_lock(); 3308 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 3309 rcu_read_unlock(); 3310 } 3311 3312 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 3313 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 3314 3315 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 3316 if (meta_group_info[i] == NULL) { 3317 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 3318 goto exit_group_info; 3319 } 3320 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 3321 &(meta_group_info[i]->bb_state)); 3322 3323 /* 3324 * initialize bb_free to be able to skip 3325 * empty groups without initialization 3326 */ 3327 if (ext4_has_group_desc_csum(sb) && 3328 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3329 meta_group_info[i]->bb_free = 3330 ext4_free_clusters_after_init(sb, group, desc); 3331 } else { 3332 meta_group_info[i]->bb_free = 3333 ext4_free_group_clusters(sb, desc); 3334 } 3335 3336 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 3337 init_rwsem(&meta_group_info[i]->alloc_sem); 3338 meta_group_info[i]->bb_free_root = RB_ROOT; 3339 INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); 3340 INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node); 3341 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 3342 meta_group_info[i]->bb_avg_fragment_size_order = -1; /* uninit */ 3343 meta_group_info[i]->bb_group = group; 3344 3345 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 3346 return 0; 3347 3348 exit_group_info: 3349 /* If a meta_group_info table has been allocated, release it now */ 3350 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 3351 struct ext4_group_info ***group_info; 3352 3353 rcu_read_lock(); 3354 group_info = rcu_dereference(sbi->s_group_info); 3355 kfree(group_info[idx]); 3356 group_info[idx] = NULL; 3357 rcu_read_unlock(); 3358 } 3359 return -ENOMEM; 3360 } /* ext4_mb_add_groupinfo */ 3361 3362 static int ext4_mb_init_backend(struct super_block *sb) 3363 { 3364 ext4_group_t ngroups = ext4_get_groups_count(sb); 3365 ext4_group_t i; 3366 struct ext4_sb_info *sbi = EXT4_SB(sb); 3367 int err; 3368 struct ext4_group_desc *desc; 3369 struct ext4_group_info ***group_info; 3370 struct kmem_cache *cachep; 3371 3372 err = ext4_mb_alloc_groupinfo(sb, ngroups); 3373 if (err) 3374 return err; 3375 3376 sbi->s_buddy_cache = new_inode(sb); 3377 if (sbi->s_buddy_cache == NULL) { 3378 ext4_msg(sb, KERN_ERR, "can't get new inode"); 3379 goto err_freesgi; 3380 } 3381 /* To avoid potentially colliding with an valid on-disk inode number, 3382 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 3383 * not in the inode hash, so it should never be found by iget(), but 3384 * this will avoid confusion if it ever shows up during debugging. */ 3385 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 3386 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 3387 for (i = 0; i < ngroups; i++) { 3388 cond_resched(); 3389 desc = ext4_get_group_desc(sb, i, NULL); 3390 if (desc == NULL) { 3391 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 3392 goto err_freebuddy; 3393 } 3394 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 3395 goto err_freebuddy; 3396 } 3397 3398 if (ext4_has_feature_flex_bg(sb)) { 3399 /* a single flex group is supposed to be read by a single IO. 3400 * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is 3401 * unsigned integer, so the maximum shift is 32. 3402 */ 3403 if (sbi->s_es->s_log_groups_per_flex >= 32) { 3404 ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group"); 3405 goto err_freebuddy; 3406 } 3407 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex, 3408 BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9)); 3409 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 3410 } else { 3411 sbi->s_mb_prefetch = 32; 3412 } 3413 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 3414 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 3415 /* now many real IOs to prefetch within a single allocation at cr=0 3416 * given cr=0 is an CPU-related optimization we shouldn't try to 3417 * load too many groups, at some point we should start to use what 3418 * we've got in memory. 3419 * with an average random access time 5ms, it'd take a second to get 3420 * 200 groups (* N with flex_bg), so let's make this limit 4 3421 */ 3422 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 3423 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 3424 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 3425 3426 return 0; 3427 3428 err_freebuddy: 3429 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3430 while (i-- > 0) { 3431 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3432 3433 if (grp) 3434 kmem_cache_free(cachep, grp); 3435 } 3436 i = sbi->s_group_info_size; 3437 rcu_read_lock(); 3438 group_info = rcu_dereference(sbi->s_group_info); 3439 while (i-- > 0) 3440 kfree(group_info[i]); 3441 rcu_read_unlock(); 3442 iput(sbi->s_buddy_cache); 3443 err_freesgi: 3444 rcu_read_lock(); 3445 kvfree(rcu_dereference(sbi->s_group_info)); 3446 rcu_read_unlock(); 3447 return -ENOMEM; 3448 } 3449 3450 static void ext4_groupinfo_destroy_slabs(void) 3451 { 3452 int i; 3453 3454 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 3455 kmem_cache_destroy(ext4_groupinfo_caches[i]); 3456 ext4_groupinfo_caches[i] = NULL; 3457 } 3458 } 3459 3460 static int ext4_groupinfo_create_slab(size_t size) 3461 { 3462 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 3463 int slab_size; 3464 int blocksize_bits = order_base_2(size); 3465 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 3466 struct kmem_cache *cachep; 3467 3468 if (cache_index >= NR_GRPINFO_CACHES) 3469 return -EINVAL; 3470 3471 if (unlikely(cache_index < 0)) 3472 cache_index = 0; 3473 3474 mutex_lock(&ext4_grpinfo_slab_create_mutex); 3475 if (ext4_groupinfo_caches[cache_index]) { 3476 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3477 return 0; /* Already created */ 3478 } 3479 3480 slab_size = offsetof(struct ext4_group_info, 3481 bb_counters[blocksize_bits + 2]); 3482 3483 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 3484 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 3485 NULL); 3486 3487 ext4_groupinfo_caches[cache_index] = cachep; 3488 3489 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 3490 if (!cachep) { 3491 printk(KERN_EMERG 3492 "EXT4-fs: no memory for groupinfo slab cache\n"); 3493 return -ENOMEM; 3494 } 3495 3496 return 0; 3497 } 3498 3499 static void ext4_discard_work(struct work_struct *work) 3500 { 3501 struct ext4_sb_info *sbi = container_of(work, 3502 struct ext4_sb_info, s_discard_work); 3503 struct super_block *sb = sbi->s_sb; 3504 struct ext4_free_data *fd, *nfd; 3505 struct ext4_buddy e4b; 3506 LIST_HEAD(discard_list); 3507 ext4_group_t grp, load_grp; 3508 int err = 0; 3509 3510 spin_lock(&sbi->s_md_lock); 3511 list_splice_init(&sbi->s_discard_list, &discard_list); 3512 spin_unlock(&sbi->s_md_lock); 3513 3514 load_grp = UINT_MAX; 3515 list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) { 3516 /* 3517 * If filesystem is umounting or no memory or suffering 3518 * from no space, give up the discard 3519 */ 3520 if ((sb->s_flags & SB_ACTIVE) && !err && 3521 !atomic_read(&sbi->s_retry_alloc_pending)) { 3522 grp = fd->efd_group; 3523 if (grp != load_grp) { 3524 if (load_grp != UINT_MAX) 3525 ext4_mb_unload_buddy(&e4b); 3526 3527 err = ext4_mb_load_buddy(sb, grp, &e4b); 3528 if (err) { 3529 kmem_cache_free(ext4_free_data_cachep, fd); 3530 load_grp = UINT_MAX; 3531 continue; 3532 } else { 3533 load_grp = grp; 3534 } 3535 } 3536 3537 ext4_lock_group(sb, grp); 3538 ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster, 3539 fd->efd_start_cluster + fd->efd_count - 1, 1); 3540 ext4_unlock_group(sb, grp); 3541 } 3542 kmem_cache_free(ext4_free_data_cachep, fd); 3543 } 3544 3545 if (load_grp != UINT_MAX) 3546 ext4_mb_unload_buddy(&e4b); 3547 } 3548 3549 int ext4_mb_init(struct super_block *sb) 3550 { 3551 struct ext4_sb_info *sbi = EXT4_SB(sb); 3552 unsigned i, j; 3553 unsigned offset, offset_incr; 3554 unsigned max; 3555 int ret; 3556 3557 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets); 3558 3559 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 3560 if (sbi->s_mb_offsets == NULL) { 3561 ret = -ENOMEM; 3562 goto out; 3563 } 3564 3565 i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs); 3566 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 3567 if (sbi->s_mb_maxs == NULL) { 3568 ret = -ENOMEM; 3569 goto out; 3570 } 3571 3572 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 3573 if (ret < 0) 3574 goto out; 3575 3576 /* order 0 is regular bitmap */ 3577 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 3578 sbi->s_mb_offsets[0] = 0; 3579 3580 i = 1; 3581 offset = 0; 3582 offset_incr = 1 << (sb->s_blocksize_bits - 1); 3583 max = sb->s_blocksize << 2; 3584 do { 3585 sbi->s_mb_offsets[i] = offset; 3586 sbi->s_mb_maxs[i] = max; 3587 offset += offset_incr; 3588 offset_incr = offset_incr >> 1; 3589 max = max >> 1; 3590 i++; 3591 } while (i < MB_NUM_ORDERS(sb)); 3592 3593 sbi->s_mb_avg_fragment_size = 3594 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3595 GFP_KERNEL); 3596 if (!sbi->s_mb_avg_fragment_size) { 3597 ret = -ENOMEM; 3598 goto out; 3599 } 3600 sbi->s_mb_avg_fragment_size_locks = 3601 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3602 GFP_KERNEL); 3603 if (!sbi->s_mb_avg_fragment_size_locks) { 3604 ret = -ENOMEM; 3605 goto out; 3606 } 3607 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3608 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]); 3609 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]); 3610 } 3611 sbi->s_mb_largest_free_orders = 3612 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), 3613 GFP_KERNEL); 3614 if (!sbi->s_mb_largest_free_orders) { 3615 ret = -ENOMEM; 3616 goto out; 3617 } 3618 sbi->s_mb_largest_free_orders_locks = 3619 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), 3620 GFP_KERNEL); 3621 if (!sbi->s_mb_largest_free_orders_locks) { 3622 ret = -ENOMEM; 3623 goto out; 3624 } 3625 for (i = 0; i < MB_NUM_ORDERS(sb); i++) { 3626 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); 3627 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); 3628 } 3629 3630 spin_lock_init(&sbi->s_md_lock); 3631 sbi->s_mb_free_pending = 0; 3632 INIT_LIST_HEAD(&sbi->s_freed_data_list); 3633 INIT_LIST_HEAD(&sbi->s_discard_list); 3634 INIT_WORK(&sbi->s_discard_work, ext4_discard_work); 3635 atomic_set(&sbi->s_retry_alloc_pending, 0); 3636 3637 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 3638 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 3639 sbi->s_mb_stats = MB_DEFAULT_STATS; 3640 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 3641 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 3642 sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER; 3643 3644 /* 3645 * The default group preallocation is 512, which for 4k block 3646 * sizes translates to 2 megabytes. However for bigalloc file 3647 * systems, this is probably too big (i.e, if the cluster size 3648 * is 1 megabyte, then group preallocation size becomes half a 3649 * gigabyte!). As a default, we will keep a two megabyte 3650 * group pralloc size for cluster sizes up to 64k, and after 3651 * that, we will force a minimum group preallocation size of 3652 * 32 clusters. This translates to 8 megs when the cluster 3653 * size is 256k, and 32 megs when the cluster size is 1 meg, 3654 * which seems reasonable as a default. 3655 */ 3656 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 3657 sbi->s_cluster_bits, 32); 3658 /* 3659 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 3660 * to the lowest multiple of s_stripe which is bigger than 3661 * the s_mb_group_prealloc as determined above. We want 3662 * the preallocation size to be an exact multiple of the 3663 * RAID stripe size so that preallocations don't fragment 3664 * the stripes. 3665 */ 3666 if (sbi->s_stripe > 1) { 3667 sbi->s_mb_group_prealloc = roundup( 3668 sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe)); 3669 } 3670 3671 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 3672 if (sbi->s_locality_groups == NULL) { 3673 ret = -ENOMEM; 3674 goto out; 3675 } 3676 for_each_possible_cpu(i) { 3677 struct ext4_locality_group *lg; 3678 lg = per_cpu_ptr(sbi->s_locality_groups, i); 3679 mutex_init(&lg->lg_mutex); 3680 for (j = 0; j < PREALLOC_TB_SIZE; j++) 3681 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 3682 spin_lock_init(&lg->lg_prealloc_lock); 3683 } 3684 3685 if (bdev_nonrot(sb->s_bdev)) 3686 sbi->s_mb_max_linear_groups = 0; 3687 else 3688 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT; 3689 /* init file for buddy data */ 3690 ret = ext4_mb_init_backend(sb); 3691 if (ret != 0) 3692 goto out_free_locality_groups; 3693 3694 return 0; 3695 3696 out_free_locality_groups: 3697 free_percpu(sbi->s_locality_groups); 3698 sbi->s_locality_groups = NULL; 3699 out: 3700 kfree(sbi->s_mb_avg_fragment_size); 3701 kfree(sbi->s_mb_avg_fragment_size_locks); 3702 kfree(sbi->s_mb_largest_free_orders); 3703 kfree(sbi->s_mb_largest_free_orders_locks); 3704 kfree(sbi->s_mb_offsets); 3705 sbi->s_mb_offsets = NULL; 3706 kfree(sbi->s_mb_maxs); 3707 sbi->s_mb_maxs = NULL; 3708 return ret; 3709 } 3710 3711 /* need to called with the ext4 group lock held */ 3712 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 3713 { 3714 struct ext4_prealloc_space *pa; 3715 struct list_head *cur, *tmp; 3716 int count = 0; 3717 3718 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 3719 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3720 list_del(&pa->pa_group_list); 3721 count++; 3722 kmem_cache_free(ext4_pspace_cachep, pa); 3723 } 3724 return count; 3725 } 3726 3727 int ext4_mb_release(struct super_block *sb) 3728 { 3729 ext4_group_t ngroups = ext4_get_groups_count(sb); 3730 ext4_group_t i; 3731 int num_meta_group_infos; 3732 struct ext4_group_info *grinfo, ***group_info; 3733 struct ext4_sb_info *sbi = EXT4_SB(sb); 3734 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 3735 int count; 3736 3737 if (test_opt(sb, DISCARD)) { 3738 /* 3739 * wait the discard work to drain all of ext4_free_data 3740 */ 3741 flush_work(&sbi->s_discard_work); 3742 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list)); 3743 } 3744 3745 if (sbi->s_group_info) { 3746 for (i = 0; i < ngroups; i++) { 3747 cond_resched(); 3748 grinfo = ext4_get_group_info(sb, i); 3749 if (!grinfo) 3750 continue; 3751 mb_group_bb_bitmap_free(grinfo); 3752 ext4_lock_group(sb, i); 3753 count = ext4_mb_cleanup_pa(grinfo); 3754 if (count) 3755 mb_debug(sb, "mballoc: %d PAs left\n", 3756 count); 3757 ext4_unlock_group(sb, i); 3758 kmem_cache_free(cachep, grinfo); 3759 } 3760 num_meta_group_infos = (ngroups + 3761 EXT4_DESC_PER_BLOCK(sb) - 1) >> 3762 EXT4_DESC_PER_BLOCK_BITS(sb); 3763 rcu_read_lock(); 3764 group_info = rcu_dereference(sbi->s_group_info); 3765 for (i = 0; i < num_meta_group_infos; i++) 3766 kfree(group_info[i]); 3767 kvfree(group_info); 3768 rcu_read_unlock(); 3769 } 3770 kfree(sbi->s_mb_avg_fragment_size); 3771 kfree(sbi->s_mb_avg_fragment_size_locks); 3772 kfree(sbi->s_mb_largest_free_orders); 3773 kfree(sbi->s_mb_largest_free_orders_locks); 3774 kfree(sbi->s_mb_offsets); 3775 kfree(sbi->s_mb_maxs); 3776 iput(sbi->s_buddy_cache); 3777 if (sbi->s_mb_stats) { 3778 ext4_msg(sb, KERN_INFO, 3779 "mballoc: %u blocks %u reqs (%u success)", 3780 atomic_read(&sbi->s_bal_allocated), 3781 atomic_read(&sbi->s_bal_reqs), 3782 atomic_read(&sbi->s_bal_success)); 3783 ext4_msg(sb, KERN_INFO, 3784 "mballoc: %u extents scanned, %u groups scanned, %u goal hits, " 3785 "%u 2^N hits, %u breaks, %u lost", 3786 atomic_read(&sbi->s_bal_ex_scanned), 3787 atomic_read(&sbi->s_bal_groups_scanned), 3788 atomic_read(&sbi->s_bal_goals), 3789 atomic_read(&sbi->s_bal_2orders), 3790 atomic_read(&sbi->s_bal_breaks), 3791 atomic_read(&sbi->s_mb_lost_chunks)); 3792 ext4_msg(sb, KERN_INFO, 3793 "mballoc: %u generated and it took %llu", 3794 atomic_read(&sbi->s_mb_buddies_generated), 3795 atomic64_read(&sbi->s_mb_generation_time)); 3796 ext4_msg(sb, KERN_INFO, 3797 "mballoc: %u preallocated, %u discarded", 3798 atomic_read(&sbi->s_mb_preallocated), 3799 atomic_read(&sbi->s_mb_discarded)); 3800 } 3801 3802 free_percpu(sbi->s_locality_groups); 3803 3804 return 0; 3805 } 3806 3807 static inline int ext4_issue_discard(struct super_block *sb, 3808 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 3809 struct bio **biop) 3810 { 3811 ext4_fsblk_t discard_block; 3812 3813 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3814 ext4_group_first_block_no(sb, block_group)); 3815 count = EXT4_C2B(EXT4_SB(sb), count); 3816 trace_ext4_discard_blocks(sb, 3817 (unsigned long long) discard_block, count); 3818 if (biop) { 3819 return __blkdev_issue_discard(sb->s_bdev, 3820 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 3821 (sector_t)count << (sb->s_blocksize_bits - 9), 3822 GFP_NOFS, biop); 3823 } else 3824 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3825 } 3826 3827 static void ext4_free_data_in_buddy(struct super_block *sb, 3828 struct ext4_free_data *entry) 3829 { 3830 struct ext4_buddy e4b; 3831 struct ext4_group_info *db; 3832 int err, count = 0; 3833 3834 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3835 entry->efd_count, entry->efd_group, entry); 3836 3837 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3838 /* we expect to find existing buddy because it's pinned */ 3839 BUG_ON(err != 0); 3840 3841 spin_lock(&EXT4_SB(sb)->s_md_lock); 3842 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3843 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3844 3845 db = e4b.bd_info; 3846 /* there are blocks to put in buddy to make them really free */ 3847 count += entry->efd_count; 3848 ext4_lock_group(sb, entry->efd_group); 3849 /* Take it out of per group rb tree */ 3850 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3851 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3852 3853 /* 3854 * Clear the trimmed flag for the group so that the next 3855 * ext4_trim_fs can trim it. 3856 * If the volume is mounted with -o discard, online discard 3857 * is supported and the free blocks will be trimmed online. 3858 */ 3859 if (!test_opt(sb, DISCARD)) 3860 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3861 3862 if (!db->bb_free_root.rb_node) { 3863 /* No more items in the per group rb tree 3864 * balance refcounts from ext4_mb_free_metadata() 3865 */ 3866 put_page(e4b.bd_buddy_page); 3867 put_page(e4b.bd_bitmap_page); 3868 } 3869 ext4_unlock_group(sb, entry->efd_group); 3870 ext4_mb_unload_buddy(&e4b); 3871 3872 mb_debug(sb, "freed %d blocks in 1 structures\n", count); 3873 } 3874 3875 /* 3876 * This function is called by the jbd2 layer once the commit has finished, 3877 * so we know we can free the blocks that were released with that commit. 3878 */ 3879 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3880 { 3881 struct ext4_sb_info *sbi = EXT4_SB(sb); 3882 struct ext4_free_data *entry, *tmp; 3883 LIST_HEAD(freed_data_list); 3884 struct list_head *cut_pos = NULL; 3885 bool wake; 3886 3887 spin_lock(&sbi->s_md_lock); 3888 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 3889 if (entry->efd_tid != commit_tid) 3890 break; 3891 cut_pos = &entry->efd_list; 3892 } 3893 if (cut_pos) 3894 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 3895 cut_pos); 3896 spin_unlock(&sbi->s_md_lock); 3897 3898 list_for_each_entry(entry, &freed_data_list, efd_list) 3899 ext4_free_data_in_buddy(sb, entry); 3900 3901 if (test_opt(sb, DISCARD)) { 3902 spin_lock(&sbi->s_md_lock); 3903 wake = list_empty(&sbi->s_discard_list); 3904 list_splice_tail(&freed_data_list, &sbi->s_discard_list); 3905 spin_unlock(&sbi->s_md_lock); 3906 if (wake) 3907 queue_work(system_unbound_wq, &sbi->s_discard_work); 3908 } else { 3909 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3910 kmem_cache_free(ext4_free_data_cachep, entry); 3911 } 3912 } 3913 3914 int __init ext4_init_mballoc(void) 3915 { 3916 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3917 SLAB_RECLAIM_ACCOUNT); 3918 if (ext4_pspace_cachep == NULL) 3919 goto out; 3920 3921 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3922 SLAB_RECLAIM_ACCOUNT); 3923 if (ext4_ac_cachep == NULL) 3924 goto out_pa_free; 3925 3926 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3927 SLAB_RECLAIM_ACCOUNT); 3928 if (ext4_free_data_cachep == NULL) 3929 goto out_ac_free; 3930 3931 return 0; 3932 3933 out_ac_free: 3934 kmem_cache_destroy(ext4_ac_cachep); 3935 out_pa_free: 3936 kmem_cache_destroy(ext4_pspace_cachep); 3937 out: 3938 return -ENOMEM; 3939 } 3940 3941 void ext4_exit_mballoc(void) 3942 { 3943 /* 3944 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3945 * before destroying the slab cache. 3946 */ 3947 rcu_barrier(); 3948 kmem_cache_destroy(ext4_pspace_cachep); 3949 kmem_cache_destroy(ext4_ac_cachep); 3950 kmem_cache_destroy(ext4_free_data_cachep); 3951 ext4_groupinfo_destroy_slabs(); 3952 } 3953 3954 3955 /* 3956 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 3957 * Returns 0 if success or error code 3958 */ 3959 static noinline_for_stack int 3960 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 3961 handle_t *handle, unsigned int reserv_clstrs) 3962 { 3963 struct buffer_head *bitmap_bh = NULL; 3964 struct ext4_group_desc *gdp; 3965 struct buffer_head *gdp_bh; 3966 struct ext4_sb_info *sbi; 3967 struct super_block *sb; 3968 ext4_fsblk_t block; 3969 int err, len; 3970 3971 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3972 BUG_ON(ac->ac_b_ex.fe_len <= 0); 3973 3974 sb = ac->ac_sb; 3975 sbi = EXT4_SB(sb); 3976 3977 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 3978 if (IS_ERR(bitmap_bh)) { 3979 return PTR_ERR(bitmap_bh); 3980 } 3981 3982 BUFFER_TRACE(bitmap_bh, "getting write access"); 3983 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 3984 EXT4_JTR_NONE); 3985 if (err) 3986 goto out_err; 3987 3988 err = -EIO; 3989 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 3990 if (!gdp) 3991 goto out_err; 3992 3993 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 3994 ext4_free_group_clusters(sb, gdp)); 3995 3996 BUFFER_TRACE(gdp_bh, "get_write_access"); 3997 err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE); 3998 if (err) 3999 goto out_err; 4000 4001 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4002 4003 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4004 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 4005 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 4006 "fs metadata", block, block+len); 4007 /* File system mounted not to panic on error 4008 * Fix the bitmap and return EFSCORRUPTED 4009 * We leak some of the blocks here. 4010 */ 4011 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 4012 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 4013 ac->ac_b_ex.fe_len); 4014 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 4015 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4016 if (!err) 4017 err = -EFSCORRUPTED; 4018 goto out_err; 4019 } 4020 4021 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 4022 #ifdef AGGRESSIVE_CHECK 4023 { 4024 int i; 4025 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 4026 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 4027 bitmap_bh->b_data)); 4028 } 4029 } 4030 #endif 4031 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 4032 ac->ac_b_ex.fe_len); 4033 if (ext4_has_group_desc_csum(sb) && 4034 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4035 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4036 ext4_free_group_clusters_set(sb, gdp, 4037 ext4_free_clusters_after_init(sb, 4038 ac->ac_b_ex.fe_group, gdp)); 4039 } 4040 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 4041 ext4_free_group_clusters_set(sb, gdp, len); 4042 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4043 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 4044 4045 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 4046 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 4047 /* 4048 * Now reduce the dirty block count also. Should not go negative 4049 */ 4050 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 4051 /* release all the reserved blocks if non delalloc */ 4052 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4053 reserv_clstrs); 4054 4055 if (sbi->s_log_groups_per_flex) { 4056 ext4_group_t flex_group = ext4_flex_group(sbi, 4057 ac->ac_b_ex.fe_group); 4058 atomic64_sub(ac->ac_b_ex.fe_len, 4059 &sbi_array_rcu_deref(sbi, s_flex_groups, 4060 flex_group)->free_clusters); 4061 } 4062 4063 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4064 if (err) 4065 goto out_err; 4066 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 4067 4068 out_err: 4069 brelse(bitmap_bh); 4070 return err; 4071 } 4072 4073 /* 4074 * Idempotent helper for Ext4 fast commit replay path to set the state of 4075 * blocks in bitmaps and update counters. 4076 */ 4077 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 4078 int len, int state) 4079 { 4080 struct buffer_head *bitmap_bh = NULL; 4081 struct ext4_group_desc *gdp; 4082 struct buffer_head *gdp_bh; 4083 struct ext4_sb_info *sbi = EXT4_SB(sb); 4084 ext4_group_t group; 4085 ext4_grpblk_t blkoff; 4086 int i, err = 0; 4087 int already; 4088 unsigned int clen, clen_changed, thisgrp_len; 4089 4090 while (len > 0) { 4091 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 4092 4093 /* 4094 * Check to see if we are freeing blocks across a group 4095 * boundary. 4096 * In case of flex_bg, this can happen that (block, len) may 4097 * span across more than one group. In that case we need to 4098 * get the corresponding group metadata to work with. 4099 * For this we have goto again loop. 4100 */ 4101 thisgrp_len = min_t(unsigned int, (unsigned int)len, 4102 EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff)); 4103 clen = EXT4_NUM_B2C(sbi, thisgrp_len); 4104 4105 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) { 4106 ext4_error(sb, "Marking blocks in system zone - " 4107 "Block = %llu, len = %u", 4108 block, thisgrp_len); 4109 bitmap_bh = NULL; 4110 break; 4111 } 4112 4113 bitmap_bh = ext4_read_block_bitmap(sb, group); 4114 if (IS_ERR(bitmap_bh)) { 4115 err = PTR_ERR(bitmap_bh); 4116 bitmap_bh = NULL; 4117 break; 4118 } 4119 4120 err = -EIO; 4121 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 4122 if (!gdp) 4123 break; 4124 4125 ext4_lock_group(sb, group); 4126 already = 0; 4127 for (i = 0; i < clen; i++) 4128 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == 4129 !state) 4130 already++; 4131 4132 clen_changed = clen - already; 4133 if (state) 4134 mb_set_bits(bitmap_bh->b_data, blkoff, clen); 4135 else 4136 mb_clear_bits(bitmap_bh->b_data, blkoff, clen); 4137 if (ext4_has_group_desc_csum(sb) && 4138 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 4139 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 4140 ext4_free_group_clusters_set(sb, gdp, 4141 ext4_free_clusters_after_init(sb, group, gdp)); 4142 } 4143 if (state) 4144 clen = ext4_free_group_clusters(sb, gdp) - clen_changed; 4145 else 4146 clen = ext4_free_group_clusters(sb, gdp) + clen_changed; 4147 4148 ext4_free_group_clusters_set(sb, gdp, clen); 4149 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 4150 ext4_group_desc_csum_set(sb, group, gdp); 4151 4152 ext4_unlock_group(sb, group); 4153 4154 if (sbi->s_log_groups_per_flex) { 4155 ext4_group_t flex_group = ext4_flex_group(sbi, group); 4156 struct flex_groups *fg = sbi_array_rcu_deref(sbi, 4157 s_flex_groups, flex_group); 4158 4159 if (state) 4160 atomic64_sub(clen_changed, &fg->free_clusters); 4161 else 4162 atomic64_add(clen_changed, &fg->free_clusters); 4163 4164 } 4165 4166 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 4167 if (err) 4168 break; 4169 sync_dirty_buffer(bitmap_bh); 4170 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 4171 sync_dirty_buffer(gdp_bh); 4172 if (err) 4173 break; 4174 4175 block += thisgrp_len; 4176 len -= thisgrp_len; 4177 brelse(bitmap_bh); 4178 BUG_ON(len < 0); 4179 } 4180 4181 if (err) 4182 brelse(bitmap_bh); 4183 } 4184 4185 /* 4186 * here we normalize request for locality group 4187 * Group request are normalized to s_mb_group_prealloc, which goes to 4188 * s_strip if we set the same via mount option. 4189 * s_mb_group_prealloc can be configured via 4190 * /sys/fs/ext4/<partition>/mb_group_prealloc 4191 * 4192 * XXX: should we try to preallocate more than the group has now? 4193 */ 4194 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 4195 { 4196 struct super_block *sb = ac->ac_sb; 4197 struct ext4_locality_group *lg = ac->ac_lg; 4198 4199 BUG_ON(lg == NULL); 4200 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 4201 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 4202 } 4203 4204 /* 4205 * This function returns the next element to look at during inode 4206 * PA rbtree walk. We assume that we have held the inode PA rbtree lock 4207 * (ei->i_prealloc_lock) 4208 * 4209 * new_start The start of the range we want to compare 4210 * cur_start The existing start that we are comparing against 4211 * node The node of the rb_tree 4212 */ 4213 static inline struct rb_node* 4214 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node) 4215 { 4216 if (new_start < cur_start) 4217 return node->rb_left; 4218 else 4219 return node->rb_right; 4220 } 4221 4222 static inline void 4223 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac, 4224 ext4_lblk_t start, loff_t end) 4225 { 4226 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4227 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4228 struct ext4_prealloc_space *tmp_pa; 4229 ext4_lblk_t tmp_pa_start; 4230 loff_t tmp_pa_end; 4231 struct rb_node *iter; 4232 4233 read_lock(&ei->i_prealloc_lock); 4234 for (iter = ei->i_prealloc_node.rb_node; iter; 4235 iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) { 4236 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4237 pa_node.inode_node); 4238 tmp_pa_start = tmp_pa->pa_lstart; 4239 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4240 4241 spin_lock(&tmp_pa->pa_lock); 4242 if (tmp_pa->pa_deleted == 0) 4243 BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start)); 4244 spin_unlock(&tmp_pa->pa_lock); 4245 } 4246 read_unlock(&ei->i_prealloc_lock); 4247 } 4248 4249 /* 4250 * Given an allocation context "ac" and a range "start", "end", check 4251 * and adjust boundaries if the range overlaps with any of the existing 4252 * preallocatoins stored in the corresponding inode of the allocation context. 4253 * 4254 * Parameters: 4255 * ac allocation context 4256 * start start of the new range 4257 * end end of the new range 4258 */ 4259 static inline void 4260 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac, 4261 ext4_lblk_t *start, loff_t *end) 4262 { 4263 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4264 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4265 struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL; 4266 struct rb_node *iter; 4267 ext4_lblk_t new_start, tmp_pa_start, right_pa_start = -1; 4268 loff_t new_end, tmp_pa_end, left_pa_end = -1; 4269 4270 new_start = *start; 4271 new_end = *end; 4272 4273 /* 4274 * Adjust the normalized range so that it doesn't overlap with any 4275 * existing preallocated blocks(PAs). Make sure to hold the rbtree lock 4276 * so it doesn't change underneath us. 4277 */ 4278 read_lock(&ei->i_prealloc_lock); 4279 4280 /* Step 1: find any one immediate neighboring PA of the normalized range */ 4281 for (iter = ei->i_prealloc_node.rb_node; iter; 4282 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4283 tmp_pa_start, iter)) { 4284 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4285 pa_node.inode_node); 4286 tmp_pa_start = tmp_pa->pa_lstart; 4287 tmp_pa_end = pa_logical_end(sbi, tmp_pa); 4288 4289 /* PA must not overlap original request */ 4290 spin_lock(&tmp_pa->pa_lock); 4291 if (tmp_pa->pa_deleted == 0) 4292 BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end || 4293 ac->ac_o_ex.fe_logical < tmp_pa_start)); 4294 spin_unlock(&tmp_pa->pa_lock); 4295 } 4296 4297 /* 4298 * Step 2: check if the found PA is left or right neighbor and 4299 * get the other neighbor 4300 */ 4301 if (tmp_pa) { 4302 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) { 4303 struct rb_node *tmp; 4304 4305 left_pa = tmp_pa; 4306 tmp = rb_next(&left_pa->pa_node.inode_node); 4307 if (tmp) { 4308 right_pa = rb_entry(tmp, 4309 struct ext4_prealloc_space, 4310 pa_node.inode_node); 4311 } 4312 } else { 4313 struct rb_node *tmp; 4314 4315 right_pa = tmp_pa; 4316 tmp = rb_prev(&right_pa->pa_node.inode_node); 4317 if (tmp) { 4318 left_pa = rb_entry(tmp, 4319 struct ext4_prealloc_space, 4320 pa_node.inode_node); 4321 } 4322 } 4323 } 4324 4325 /* Step 3: get the non deleted neighbors */ 4326 if (left_pa) { 4327 for (iter = &left_pa->pa_node.inode_node;; 4328 iter = rb_prev(iter)) { 4329 if (!iter) { 4330 left_pa = NULL; 4331 break; 4332 } 4333 4334 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4335 pa_node.inode_node); 4336 left_pa = tmp_pa; 4337 spin_lock(&tmp_pa->pa_lock); 4338 if (tmp_pa->pa_deleted == 0) { 4339 spin_unlock(&tmp_pa->pa_lock); 4340 break; 4341 } 4342 spin_unlock(&tmp_pa->pa_lock); 4343 } 4344 } 4345 4346 if (right_pa) { 4347 for (iter = &right_pa->pa_node.inode_node;; 4348 iter = rb_next(iter)) { 4349 if (!iter) { 4350 right_pa = NULL; 4351 break; 4352 } 4353 4354 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4355 pa_node.inode_node); 4356 right_pa = tmp_pa; 4357 spin_lock(&tmp_pa->pa_lock); 4358 if (tmp_pa->pa_deleted == 0) { 4359 spin_unlock(&tmp_pa->pa_lock); 4360 break; 4361 } 4362 spin_unlock(&tmp_pa->pa_lock); 4363 } 4364 } 4365 4366 if (left_pa) { 4367 left_pa_end = pa_logical_end(sbi, left_pa); 4368 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical); 4369 } 4370 4371 if (right_pa) { 4372 right_pa_start = right_pa->pa_lstart; 4373 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical); 4374 } 4375 4376 /* Step 4: trim our normalized range to not overlap with the neighbors */ 4377 if (left_pa) { 4378 if (left_pa_end > new_start) 4379 new_start = left_pa_end; 4380 } 4381 4382 if (right_pa) { 4383 if (right_pa_start < new_end) 4384 new_end = right_pa_start; 4385 } 4386 read_unlock(&ei->i_prealloc_lock); 4387 4388 /* XXX: extra loop to check we really don't overlap preallocations */ 4389 ext4_mb_pa_assert_overlap(ac, new_start, new_end); 4390 4391 *start = new_start; 4392 *end = new_end; 4393 } 4394 4395 /* 4396 * Normalization means making request better in terms of 4397 * size and alignment 4398 */ 4399 static noinline_for_stack void 4400 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 4401 struct ext4_allocation_request *ar) 4402 { 4403 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4404 struct ext4_super_block *es = sbi->s_es; 4405 int bsbits, max; 4406 loff_t size, start_off, end; 4407 loff_t orig_size __maybe_unused; 4408 ext4_lblk_t start; 4409 4410 /* do normalize only data requests, metadata requests 4411 do not need preallocation */ 4412 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4413 return; 4414 4415 /* sometime caller may want exact blocks */ 4416 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4417 return; 4418 4419 /* caller may indicate that preallocation isn't 4420 * required (it's a tail, for example) */ 4421 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 4422 return; 4423 4424 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 4425 ext4_mb_normalize_group_request(ac); 4426 return ; 4427 } 4428 4429 bsbits = ac->ac_sb->s_blocksize_bits; 4430 4431 /* first, let's learn actual file size 4432 * given current request is allocated */ 4433 size = extent_logical_end(sbi, &ac->ac_o_ex); 4434 size = size << bsbits; 4435 if (size < i_size_read(ac->ac_inode)) 4436 size = i_size_read(ac->ac_inode); 4437 orig_size = size; 4438 4439 /* max size of free chunks */ 4440 max = 2 << bsbits; 4441 4442 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 4443 (req <= (size) || max <= (chunk_size)) 4444 4445 /* first, try to predict filesize */ 4446 /* XXX: should this table be tunable? */ 4447 start_off = 0; 4448 if (size <= 16 * 1024) { 4449 size = 16 * 1024; 4450 } else if (size <= 32 * 1024) { 4451 size = 32 * 1024; 4452 } else if (size <= 64 * 1024) { 4453 size = 64 * 1024; 4454 } else if (size <= 128 * 1024) { 4455 size = 128 * 1024; 4456 } else if (size <= 256 * 1024) { 4457 size = 256 * 1024; 4458 } else if (size <= 512 * 1024) { 4459 size = 512 * 1024; 4460 } else if (size <= 1024 * 1024) { 4461 size = 1024 * 1024; 4462 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 4463 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4464 (21 - bsbits)) << 21; 4465 size = 2 * 1024 * 1024; 4466 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 4467 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4468 (22 - bsbits)) << 22; 4469 size = 4 * 1024 * 1024; 4470 } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len), 4471 (8<<20)>>bsbits, max, 8 * 1024)) { 4472 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 4473 (23 - bsbits)) << 23; 4474 size = 8 * 1024 * 1024; 4475 } else { 4476 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 4477 size = (loff_t) EXT4_C2B(sbi, 4478 ac->ac_o_ex.fe_len) << bsbits; 4479 } 4480 size = size >> bsbits; 4481 start = start_off >> bsbits; 4482 4483 /* 4484 * For tiny groups (smaller than 8MB) the chosen allocation 4485 * alignment may be larger than group size. Make sure the 4486 * alignment does not move allocation to a different group which 4487 * makes mballoc fail assertions later. 4488 */ 4489 start = max(start, rounddown(ac->ac_o_ex.fe_logical, 4490 (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb))); 4491 4492 /* avoid unnecessary preallocation that may trigger assertions */ 4493 if (start + size > EXT_MAX_BLOCKS) 4494 size = EXT_MAX_BLOCKS - start; 4495 4496 /* don't cover already allocated blocks in selected range */ 4497 if (ar->pleft && start <= ar->lleft) { 4498 size -= ar->lleft + 1 - start; 4499 start = ar->lleft + 1; 4500 } 4501 if (ar->pright && start + size - 1 >= ar->lright) 4502 size -= start + size - ar->lright; 4503 4504 /* 4505 * Trim allocation request for filesystems with artificially small 4506 * groups. 4507 */ 4508 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 4509 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 4510 4511 end = start + size; 4512 4513 ext4_mb_pa_adjust_overlap(ac, &start, &end); 4514 4515 size = end - start; 4516 4517 /* 4518 * In this function "start" and "size" are normalized for better 4519 * alignment and length such that we could preallocate more blocks. 4520 * This normalization is done such that original request of 4521 * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and 4522 * "size" boundaries. 4523 * (Note fe_len can be relaxed since FS block allocation API does not 4524 * provide gurantee on number of contiguous blocks allocation since that 4525 * depends upon free space left, etc). 4526 * In case of inode pa, later we use the allocated blocks 4527 * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated 4528 * range of goal/best blocks [start, size] to put it at the 4529 * ac_o_ex.fe_logical extent of this inode. 4530 * (See ext4_mb_use_inode_pa() for more details) 4531 */ 4532 if (start + size <= ac->ac_o_ex.fe_logical || 4533 start > ac->ac_o_ex.fe_logical) { 4534 ext4_msg(ac->ac_sb, KERN_ERR, 4535 "start %lu, size %lu, fe_logical %lu", 4536 (unsigned long) start, (unsigned long) size, 4537 (unsigned long) ac->ac_o_ex.fe_logical); 4538 BUG(); 4539 } 4540 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 4541 4542 /* now prepare goal request */ 4543 4544 /* XXX: is it better to align blocks WRT to logical 4545 * placement or satisfy big request as is */ 4546 ac->ac_g_ex.fe_logical = start; 4547 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 4548 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 4549 4550 /* define goal start in order to merge */ 4551 if (ar->pright && (ar->lright == (start + size)) && 4552 ar->pright >= size && 4553 ar->pright - size >= le32_to_cpu(es->s_first_data_block)) { 4554 /* merge to the right */ 4555 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 4556 &ac->ac_g_ex.fe_group, 4557 &ac->ac_g_ex.fe_start); 4558 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4559 } 4560 if (ar->pleft && (ar->lleft + 1 == start) && 4561 ar->pleft + 1 < ext4_blocks_count(es)) { 4562 /* merge to the left */ 4563 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 4564 &ac->ac_g_ex.fe_group, 4565 &ac->ac_g_ex.fe_start); 4566 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 4567 } 4568 4569 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 4570 orig_size, start); 4571 } 4572 4573 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 4574 { 4575 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4576 4577 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) { 4578 atomic_inc(&sbi->s_bal_reqs); 4579 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 4580 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 4581 atomic_inc(&sbi->s_bal_success); 4582 4583 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 4584 for (int i=0; i<EXT4_MB_NUM_CRS; i++) { 4585 atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]); 4586 } 4587 4588 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned); 4589 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 4590 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 4591 atomic_inc(&sbi->s_bal_goals); 4592 /* did we allocate as much as normalizer originally wanted? */ 4593 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len) 4594 atomic_inc(&sbi->s_bal_len_goals); 4595 4596 if (ac->ac_found > sbi->s_mb_max_to_scan) 4597 atomic_inc(&sbi->s_bal_breaks); 4598 } 4599 4600 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 4601 trace_ext4_mballoc_alloc(ac); 4602 else 4603 trace_ext4_mballoc_prealloc(ac); 4604 } 4605 4606 /* 4607 * Called on failure; free up any blocks from the inode PA for this 4608 * context. We don't need this for MB_GROUP_PA because we only change 4609 * pa_free in ext4_mb_release_context(), but on failure, we've already 4610 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 4611 */ 4612 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 4613 { 4614 struct ext4_prealloc_space *pa = ac->ac_pa; 4615 struct ext4_buddy e4b; 4616 int err; 4617 4618 if (pa == NULL) { 4619 if (ac->ac_f_ex.fe_len == 0) 4620 return; 4621 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 4622 if (WARN_RATELIMIT(err, 4623 "ext4: mb_load_buddy failed (%d)", err)) 4624 /* 4625 * This should never happen since we pin the 4626 * pages in the ext4_allocation_context so 4627 * ext4_mb_load_buddy() should never fail. 4628 */ 4629 return; 4630 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4631 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 4632 ac->ac_f_ex.fe_len); 4633 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 4634 ext4_mb_unload_buddy(&e4b); 4635 return; 4636 } 4637 if (pa->pa_type == MB_INODE_PA) { 4638 spin_lock(&pa->pa_lock); 4639 pa->pa_free += ac->ac_b_ex.fe_len; 4640 spin_unlock(&pa->pa_lock); 4641 } 4642 } 4643 4644 /* 4645 * use blocks preallocated to inode 4646 */ 4647 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 4648 struct ext4_prealloc_space *pa) 4649 { 4650 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4651 ext4_fsblk_t start; 4652 ext4_fsblk_t end; 4653 int len; 4654 4655 /* found preallocated blocks, use them */ 4656 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 4657 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 4658 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 4659 len = EXT4_NUM_B2C(sbi, end - start); 4660 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 4661 &ac->ac_b_ex.fe_start); 4662 ac->ac_b_ex.fe_len = len; 4663 ac->ac_status = AC_STATUS_FOUND; 4664 ac->ac_pa = pa; 4665 4666 BUG_ON(start < pa->pa_pstart); 4667 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 4668 BUG_ON(pa->pa_free < len); 4669 BUG_ON(ac->ac_b_ex.fe_len <= 0); 4670 pa->pa_free -= len; 4671 4672 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 4673 } 4674 4675 /* 4676 * use blocks preallocated to locality group 4677 */ 4678 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 4679 struct ext4_prealloc_space *pa) 4680 { 4681 unsigned int len = ac->ac_o_ex.fe_len; 4682 4683 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 4684 &ac->ac_b_ex.fe_group, 4685 &ac->ac_b_ex.fe_start); 4686 ac->ac_b_ex.fe_len = len; 4687 ac->ac_status = AC_STATUS_FOUND; 4688 ac->ac_pa = pa; 4689 4690 /* we don't correct pa_pstart or pa_len here to avoid 4691 * possible race when the group is being loaded concurrently 4692 * instead we correct pa later, after blocks are marked 4693 * in on-disk bitmap -- see ext4_mb_release_context() 4694 * Other CPUs are prevented from allocating from this pa by lg_mutex 4695 */ 4696 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 4697 pa->pa_lstart, len, pa); 4698 } 4699 4700 /* 4701 * Return the prealloc space that have minimal distance 4702 * from the goal block. @cpa is the prealloc 4703 * space that is having currently known minimal distance 4704 * from the goal block. 4705 */ 4706 static struct ext4_prealloc_space * 4707 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 4708 struct ext4_prealloc_space *pa, 4709 struct ext4_prealloc_space *cpa) 4710 { 4711 ext4_fsblk_t cur_distance, new_distance; 4712 4713 if (cpa == NULL) { 4714 atomic_inc(&pa->pa_count); 4715 return pa; 4716 } 4717 cur_distance = abs(goal_block - cpa->pa_pstart); 4718 new_distance = abs(goal_block - pa->pa_pstart); 4719 4720 if (cur_distance <= new_distance) 4721 return cpa; 4722 4723 /* drop the previous reference */ 4724 atomic_dec(&cpa->pa_count); 4725 atomic_inc(&pa->pa_count); 4726 return pa; 4727 } 4728 4729 /* 4730 * check if found pa meets EXT4_MB_HINT_GOAL_ONLY 4731 */ 4732 static bool 4733 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac, 4734 struct ext4_prealloc_space *pa) 4735 { 4736 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4737 ext4_fsblk_t start; 4738 4739 if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))) 4740 return true; 4741 4742 /* 4743 * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted 4744 * in ext4_mb_normalize_request and will keep same with ac_o_ex 4745 * from ext4_mb_initialize_context. Choose ac_g_ex here to keep 4746 * consistent with ext4_mb_find_by_goal. 4747 */ 4748 start = pa->pa_pstart + 4749 (ac->ac_g_ex.fe_logical - pa->pa_lstart); 4750 if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start) 4751 return false; 4752 4753 if (ac->ac_g_ex.fe_len > pa->pa_len - 4754 EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart)) 4755 return false; 4756 4757 return true; 4758 } 4759 4760 /* 4761 * search goal blocks in preallocated space 4762 */ 4763 static noinline_for_stack bool 4764 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 4765 { 4766 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4767 int order, i; 4768 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 4769 struct ext4_locality_group *lg; 4770 struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL; 4771 struct rb_node *iter; 4772 ext4_fsblk_t goal_block; 4773 4774 /* only data can be preallocated */ 4775 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4776 return false; 4777 4778 /* 4779 * first, try per-file preallocation by searching the inode pa rbtree. 4780 * 4781 * Here, we can't do a direct traversal of the tree because 4782 * ext4_mb_discard_group_preallocation() can paralelly mark the pa 4783 * deleted and that can cause direct traversal to skip some entries. 4784 */ 4785 read_lock(&ei->i_prealloc_lock); 4786 4787 if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) { 4788 goto try_group_pa; 4789 } 4790 4791 /* 4792 * Step 1: Find a pa with logical start immediately adjacent to the 4793 * original logical start. This could be on the left or right. 4794 * 4795 * (tmp_pa->pa_lstart never changes so we can skip locking for it). 4796 */ 4797 for (iter = ei->i_prealloc_node.rb_node; iter; 4798 iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical, 4799 tmp_pa->pa_lstart, iter)) { 4800 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4801 pa_node.inode_node); 4802 } 4803 4804 /* 4805 * Step 2: The adjacent pa might be to the right of logical start, find 4806 * the left adjacent pa. After this step we'd have a valid tmp_pa whose 4807 * logical start is towards the left of original request's logical start 4808 */ 4809 if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) { 4810 struct rb_node *tmp; 4811 tmp = rb_prev(&tmp_pa->pa_node.inode_node); 4812 4813 if (tmp) { 4814 tmp_pa = rb_entry(tmp, struct ext4_prealloc_space, 4815 pa_node.inode_node); 4816 } else { 4817 /* 4818 * If there is no adjacent pa to the left then finding 4819 * an overlapping pa is not possible hence stop searching 4820 * inode pa tree 4821 */ 4822 goto try_group_pa; 4823 } 4824 } 4825 4826 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4827 4828 /* 4829 * Step 3: If the left adjacent pa is deleted, keep moving left to find 4830 * the first non deleted adjacent pa. After this step we should have a 4831 * valid tmp_pa which is guaranteed to be non deleted. 4832 */ 4833 for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) { 4834 if (!iter) { 4835 /* 4836 * no non deleted left adjacent pa, so stop searching 4837 * inode pa tree 4838 */ 4839 goto try_group_pa; 4840 } 4841 tmp_pa = rb_entry(iter, struct ext4_prealloc_space, 4842 pa_node.inode_node); 4843 spin_lock(&tmp_pa->pa_lock); 4844 if (tmp_pa->pa_deleted == 0) { 4845 /* 4846 * We will keep holding the pa_lock from 4847 * this point on because we don't want group discard 4848 * to delete this pa underneath us. Since group 4849 * discard is anyways an ENOSPC operation it 4850 * should be okay for it to wait a few more cycles. 4851 */ 4852 break; 4853 } else { 4854 spin_unlock(&tmp_pa->pa_lock); 4855 } 4856 } 4857 4858 BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical)); 4859 BUG_ON(tmp_pa->pa_deleted == 1); 4860 4861 /* 4862 * Step 4: We now have the non deleted left adjacent pa. Only this 4863 * pa can possibly satisfy the request hence check if it overlaps 4864 * original logical start and stop searching if it doesn't. 4865 */ 4866 if (ac->ac_o_ex.fe_logical >= pa_logical_end(sbi, tmp_pa)) { 4867 spin_unlock(&tmp_pa->pa_lock); 4868 goto try_group_pa; 4869 } 4870 4871 /* non-extent files can't have physical blocks past 2^32 */ 4872 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 4873 (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) > 4874 EXT4_MAX_BLOCK_FILE_PHYS)) { 4875 /* 4876 * Since PAs don't overlap, we won't find any other PA to 4877 * satisfy this. 4878 */ 4879 spin_unlock(&tmp_pa->pa_lock); 4880 goto try_group_pa; 4881 } 4882 4883 if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) { 4884 atomic_inc(&tmp_pa->pa_count); 4885 ext4_mb_use_inode_pa(ac, tmp_pa); 4886 spin_unlock(&tmp_pa->pa_lock); 4887 read_unlock(&ei->i_prealloc_lock); 4888 return true; 4889 } else { 4890 /* 4891 * We found a valid overlapping pa but couldn't use it because 4892 * it had no free blocks. This should ideally never happen 4893 * because: 4894 * 4895 * 1. When a new inode pa is added to rbtree it must have 4896 * pa_free > 0 since otherwise we won't actually need 4897 * preallocation. 4898 * 4899 * 2. An inode pa that is in the rbtree can only have it's 4900 * pa_free become zero when another thread calls: 4901 * ext4_mb_new_blocks 4902 * ext4_mb_use_preallocated 4903 * ext4_mb_use_inode_pa 4904 * 4905 * 3. Further, after the above calls make pa_free == 0, we will 4906 * immediately remove it from the rbtree in: 4907 * ext4_mb_new_blocks 4908 * ext4_mb_release_context 4909 * ext4_mb_put_pa 4910 * 4911 * 4. Since the pa_free becoming 0 and pa_free getting removed 4912 * from tree both happen in ext4_mb_new_blocks, which is always 4913 * called with i_data_sem held for data allocations, we can be 4914 * sure that another process will never see a pa in rbtree with 4915 * pa_free == 0. 4916 */ 4917 WARN_ON_ONCE(tmp_pa->pa_free == 0); 4918 } 4919 spin_unlock(&tmp_pa->pa_lock); 4920 try_group_pa: 4921 read_unlock(&ei->i_prealloc_lock); 4922 4923 /* can we use group allocation? */ 4924 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 4925 return false; 4926 4927 /* inode may have no locality group for some reason */ 4928 lg = ac->ac_lg; 4929 if (lg == NULL) 4930 return false; 4931 order = fls(ac->ac_o_ex.fe_len) - 1; 4932 if (order > PREALLOC_TB_SIZE - 1) 4933 /* The max size of hash table is PREALLOC_TB_SIZE */ 4934 order = PREALLOC_TB_SIZE - 1; 4935 4936 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 4937 /* 4938 * search for the prealloc space that is having 4939 * minimal distance from the goal block. 4940 */ 4941 for (i = order; i < PREALLOC_TB_SIZE; i++) { 4942 rcu_read_lock(); 4943 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i], 4944 pa_node.lg_list) { 4945 spin_lock(&tmp_pa->pa_lock); 4946 if (tmp_pa->pa_deleted == 0 && 4947 tmp_pa->pa_free >= ac->ac_o_ex.fe_len) { 4948 4949 cpa = ext4_mb_check_group_pa(goal_block, 4950 tmp_pa, cpa); 4951 } 4952 spin_unlock(&tmp_pa->pa_lock); 4953 } 4954 rcu_read_unlock(); 4955 } 4956 if (cpa) { 4957 ext4_mb_use_group_pa(ac, cpa); 4958 return true; 4959 } 4960 return false; 4961 } 4962 4963 /* 4964 * the function goes through all preallocation in this group and marks them 4965 * used in in-core bitmap. buddy must be generated from this bitmap 4966 * Need to be called with ext4 group lock held 4967 */ 4968 static noinline_for_stack 4969 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 4970 ext4_group_t group) 4971 { 4972 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4973 struct ext4_prealloc_space *pa; 4974 struct list_head *cur; 4975 ext4_group_t groupnr; 4976 ext4_grpblk_t start; 4977 int preallocated = 0; 4978 int len; 4979 4980 if (!grp) 4981 return; 4982 4983 /* all form of preallocation discards first load group, 4984 * so the only competing code is preallocation use. 4985 * we don't need any locking here 4986 * notice we do NOT ignore preallocations with pa_deleted 4987 * otherwise we could leave used blocks available for 4988 * allocation in buddy when concurrent ext4_mb_put_pa() 4989 * is dropping preallocation 4990 */ 4991 list_for_each(cur, &grp->bb_prealloc_list) { 4992 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 4993 spin_lock(&pa->pa_lock); 4994 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4995 &groupnr, &start); 4996 len = pa->pa_len; 4997 spin_unlock(&pa->pa_lock); 4998 if (unlikely(len == 0)) 4999 continue; 5000 BUG_ON(groupnr != group); 5001 mb_set_bits(bitmap, start, len); 5002 preallocated += len; 5003 } 5004 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 5005 } 5006 5007 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 5008 struct ext4_prealloc_space *pa) 5009 { 5010 struct ext4_inode_info *ei; 5011 5012 if (pa->pa_deleted) { 5013 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 5014 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 5015 pa->pa_len); 5016 return; 5017 } 5018 5019 pa->pa_deleted = 1; 5020 5021 if (pa->pa_type == MB_INODE_PA) { 5022 ei = EXT4_I(pa->pa_inode); 5023 atomic_dec(&ei->i_prealloc_active); 5024 } 5025 } 5026 5027 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa) 5028 { 5029 BUG_ON(!pa); 5030 BUG_ON(atomic_read(&pa->pa_count)); 5031 BUG_ON(pa->pa_deleted == 0); 5032 kmem_cache_free(ext4_pspace_cachep, pa); 5033 } 5034 5035 static void ext4_mb_pa_callback(struct rcu_head *head) 5036 { 5037 struct ext4_prealloc_space *pa; 5038 5039 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 5040 ext4_mb_pa_free(pa); 5041 } 5042 5043 /* 5044 * drops a reference to preallocated space descriptor 5045 * if this was the last reference and the space is consumed 5046 */ 5047 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 5048 struct super_block *sb, struct ext4_prealloc_space *pa) 5049 { 5050 ext4_group_t grp; 5051 ext4_fsblk_t grp_blk; 5052 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 5053 5054 /* in this short window concurrent discard can set pa_deleted */ 5055 spin_lock(&pa->pa_lock); 5056 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 5057 spin_unlock(&pa->pa_lock); 5058 return; 5059 } 5060 5061 if (pa->pa_deleted == 1) { 5062 spin_unlock(&pa->pa_lock); 5063 return; 5064 } 5065 5066 ext4_mb_mark_pa_deleted(sb, pa); 5067 spin_unlock(&pa->pa_lock); 5068 5069 grp_blk = pa->pa_pstart; 5070 /* 5071 * If doing group-based preallocation, pa_pstart may be in the 5072 * next group when pa is used up 5073 */ 5074 if (pa->pa_type == MB_GROUP_PA) 5075 grp_blk--; 5076 5077 grp = ext4_get_group_number(sb, grp_blk); 5078 5079 /* 5080 * possible race: 5081 * 5082 * P1 (buddy init) P2 (regular allocation) 5083 * find block B in PA 5084 * copy on-disk bitmap to buddy 5085 * mark B in on-disk bitmap 5086 * drop PA from group 5087 * mark all PAs in buddy 5088 * 5089 * thus, P1 initializes buddy with B available. to prevent this 5090 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 5091 * against that pair 5092 */ 5093 ext4_lock_group(sb, grp); 5094 list_del(&pa->pa_group_list); 5095 ext4_unlock_group(sb, grp); 5096 5097 if (pa->pa_type == MB_INODE_PA) { 5098 write_lock(pa->pa_node_lock.inode_lock); 5099 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5100 write_unlock(pa->pa_node_lock.inode_lock); 5101 ext4_mb_pa_free(pa); 5102 } else { 5103 spin_lock(pa->pa_node_lock.lg_lock); 5104 list_del_rcu(&pa->pa_node.lg_list); 5105 spin_unlock(pa->pa_node_lock.lg_lock); 5106 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5107 } 5108 } 5109 5110 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new) 5111 { 5112 struct rb_node **iter = &root->rb_node, *parent = NULL; 5113 struct ext4_prealloc_space *iter_pa, *new_pa; 5114 ext4_lblk_t iter_start, new_start; 5115 5116 while (*iter) { 5117 iter_pa = rb_entry(*iter, struct ext4_prealloc_space, 5118 pa_node.inode_node); 5119 new_pa = rb_entry(new, struct ext4_prealloc_space, 5120 pa_node.inode_node); 5121 iter_start = iter_pa->pa_lstart; 5122 new_start = new_pa->pa_lstart; 5123 5124 parent = *iter; 5125 if (new_start < iter_start) 5126 iter = &((*iter)->rb_left); 5127 else 5128 iter = &((*iter)->rb_right); 5129 } 5130 5131 rb_link_node(new, parent, iter); 5132 rb_insert_color(new, root); 5133 } 5134 5135 /* 5136 * creates new preallocated space for given inode 5137 */ 5138 static noinline_for_stack void 5139 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 5140 { 5141 struct super_block *sb = ac->ac_sb; 5142 struct ext4_sb_info *sbi = EXT4_SB(sb); 5143 struct ext4_prealloc_space *pa; 5144 struct ext4_group_info *grp; 5145 struct ext4_inode_info *ei; 5146 5147 /* preallocate only when found space is larger then requested */ 5148 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5149 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5150 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5151 BUG_ON(ac->ac_pa == NULL); 5152 5153 pa = ac->ac_pa; 5154 5155 if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) { 5156 struct ext4_free_extent ex = { 5157 .fe_logical = ac->ac_g_ex.fe_logical, 5158 .fe_len = ac->ac_orig_goal_len, 5159 }; 5160 loff_t orig_goal_end = extent_logical_end(sbi, &ex); 5161 5162 /* we can't allocate as much as normalizer wants. 5163 * so, found space must get proper lstart 5164 * to cover original request */ 5165 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 5166 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 5167 5168 /* 5169 * Use the below logic for adjusting best extent as it keeps 5170 * fragmentation in check while ensuring logical range of best 5171 * extent doesn't overflow out of goal extent: 5172 * 5173 * 1. Check if best ex can be kept at end of goal (before 5174 * cr_best_avail trimmed it) and still cover original start 5175 * 2. Else, check if best ex can be kept at start of goal and 5176 * still cover original start 5177 * 3. Else, keep the best ex at start of original request. 5178 */ 5179 ex.fe_len = ac->ac_b_ex.fe_len; 5180 5181 ex.fe_logical = orig_goal_end - EXT4_C2B(sbi, ex.fe_len); 5182 if (ac->ac_o_ex.fe_logical >= ex.fe_logical) 5183 goto adjust_bex; 5184 5185 ex.fe_logical = ac->ac_g_ex.fe_logical; 5186 if (ac->ac_o_ex.fe_logical < extent_logical_end(sbi, &ex)) 5187 goto adjust_bex; 5188 5189 ex.fe_logical = ac->ac_o_ex.fe_logical; 5190 adjust_bex: 5191 ac->ac_b_ex.fe_logical = ex.fe_logical; 5192 5193 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 5194 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 5195 BUG_ON(extent_logical_end(sbi, &ex) > orig_goal_end); 5196 } 5197 5198 pa->pa_lstart = ac->ac_b_ex.fe_logical; 5199 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5200 pa->pa_len = ac->ac_b_ex.fe_len; 5201 pa->pa_free = pa->pa_len; 5202 spin_lock_init(&pa->pa_lock); 5203 INIT_LIST_HEAD(&pa->pa_group_list); 5204 pa->pa_deleted = 0; 5205 pa->pa_type = MB_INODE_PA; 5206 5207 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5208 pa->pa_len, pa->pa_lstart); 5209 trace_ext4_mb_new_inode_pa(ac, pa); 5210 5211 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 5212 ext4_mb_use_inode_pa(ac, pa); 5213 5214 ei = EXT4_I(ac->ac_inode); 5215 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5216 if (!grp) 5217 return; 5218 5219 pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock; 5220 pa->pa_inode = ac->ac_inode; 5221 5222 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5223 5224 write_lock(pa->pa_node_lock.inode_lock); 5225 ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node); 5226 write_unlock(pa->pa_node_lock.inode_lock); 5227 atomic_inc(&ei->i_prealloc_active); 5228 } 5229 5230 /* 5231 * creates new preallocated space for locality group inodes belongs to 5232 */ 5233 static noinline_for_stack void 5234 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 5235 { 5236 struct super_block *sb = ac->ac_sb; 5237 struct ext4_locality_group *lg; 5238 struct ext4_prealloc_space *pa; 5239 struct ext4_group_info *grp; 5240 5241 /* preallocate only when found space is larger then requested */ 5242 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 5243 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 5244 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 5245 BUG_ON(ac->ac_pa == NULL); 5246 5247 pa = ac->ac_pa; 5248 5249 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5250 pa->pa_lstart = pa->pa_pstart; 5251 pa->pa_len = ac->ac_b_ex.fe_len; 5252 pa->pa_free = pa->pa_len; 5253 spin_lock_init(&pa->pa_lock); 5254 INIT_LIST_HEAD(&pa->pa_node.lg_list); 5255 INIT_LIST_HEAD(&pa->pa_group_list); 5256 pa->pa_deleted = 0; 5257 pa->pa_type = MB_GROUP_PA; 5258 5259 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 5260 pa->pa_len, pa->pa_lstart); 5261 trace_ext4_mb_new_group_pa(ac, pa); 5262 5263 ext4_mb_use_group_pa(ac, pa); 5264 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 5265 5266 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 5267 if (!grp) 5268 return; 5269 lg = ac->ac_lg; 5270 BUG_ON(lg == NULL); 5271 5272 pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock; 5273 pa->pa_inode = NULL; 5274 5275 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 5276 5277 /* 5278 * We will later add the new pa to the right bucket 5279 * after updating the pa_free in ext4_mb_release_context 5280 */ 5281 } 5282 5283 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 5284 { 5285 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5286 ext4_mb_new_group_pa(ac); 5287 else 5288 ext4_mb_new_inode_pa(ac); 5289 } 5290 5291 /* 5292 * finds all unused blocks in on-disk bitmap, frees them in 5293 * in-core bitmap and buddy. 5294 * @pa must be unlinked from inode and group lists, so that 5295 * nobody else can find/use it. 5296 * the caller MUST hold group/inode locks. 5297 * TODO: optimize the case when there are no in-core structures yet 5298 */ 5299 static noinline_for_stack int 5300 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 5301 struct ext4_prealloc_space *pa) 5302 { 5303 struct super_block *sb = e4b->bd_sb; 5304 struct ext4_sb_info *sbi = EXT4_SB(sb); 5305 unsigned int end; 5306 unsigned int next; 5307 ext4_group_t group; 5308 ext4_grpblk_t bit; 5309 unsigned long long grp_blk_start; 5310 int free = 0; 5311 5312 BUG_ON(pa->pa_deleted == 0); 5313 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5314 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 5315 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 5316 end = bit + pa->pa_len; 5317 5318 while (bit < end) { 5319 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 5320 if (bit >= end) 5321 break; 5322 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 5323 mb_debug(sb, "free preallocated %u/%u in group %u\n", 5324 (unsigned) ext4_group_first_block_no(sb, group) + bit, 5325 (unsigned) next - bit, (unsigned) group); 5326 free += next - bit; 5327 5328 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 5329 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 5330 EXT4_C2B(sbi, bit)), 5331 next - bit); 5332 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 5333 bit = next + 1; 5334 } 5335 if (free != pa->pa_free) { 5336 ext4_msg(e4b->bd_sb, KERN_CRIT, 5337 "pa %p: logic %lu, phys. %lu, len %d", 5338 pa, (unsigned long) pa->pa_lstart, 5339 (unsigned long) pa->pa_pstart, 5340 pa->pa_len); 5341 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 5342 free, pa->pa_free); 5343 /* 5344 * pa is already deleted so we use the value obtained 5345 * from the bitmap and continue. 5346 */ 5347 } 5348 atomic_add(free, &sbi->s_mb_discarded); 5349 5350 return 0; 5351 } 5352 5353 static noinline_for_stack int 5354 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 5355 struct ext4_prealloc_space *pa) 5356 { 5357 struct super_block *sb = e4b->bd_sb; 5358 ext4_group_t group; 5359 ext4_grpblk_t bit; 5360 5361 trace_ext4_mb_release_group_pa(sb, pa); 5362 BUG_ON(pa->pa_deleted == 0); 5363 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 5364 if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) { 5365 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu", 5366 e4b->bd_group, group, pa->pa_pstart); 5367 return 0; 5368 } 5369 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 5370 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 5371 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 5372 5373 return 0; 5374 } 5375 5376 /* 5377 * releases all preallocations in given group 5378 * 5379 * first, we need to decide discard policy: 5380 * - when do we discard 5381 * 1) ENOSPC 5382 * - how many do we discard 5383 * 1) how many requested 5384 */ 5385 static noinline_for_stack int 5386 ext4_mb_discard_group_preallocations(struct super_block *sb, 5387 ext4_group_t group, int *busy) 5388 { 5389 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 5390 struct buffer_head *bitmap_bh = NULL; 5391 struct ext4_prealloc_space *pa, *tmp; 5392 LIST_HEAD(list); 5393 struct ext4_buddy e4b; 5394 struct ext4_inode_info *ei; 5395 int err; 5396 int free = 0; 5397 5398 if (!grp) 5399 return 0; 5400 mb_debug(sb, "discard preallocation for group %u\n", group); 5401 if (list_empty(&grp->bb_prealloc_list)) 5402 goto out_dbg; 5403 5404 bitmap_bh = ext4_read_block_bitmap(sb, group); 5405 if (IS_ERR(bitmap_bh)) { 5406 err = PTR_ERR(bitmap_bh); 5407 ext4_error_err(sb, -err, 5408 "Error %d reading block bitmap for %u", 5409 err, group); 5410 goto out_dbg; 5411 } 5412 5413 err = ext4_mb_load_buddy(sb, group, &e4b); 5414 if (err) { 5415 ext4_warning(sb, "Error %d loading buddy information for %u", 5416 err, group); 5417 put_bh(bitmap_bh); 5418 goto out_dbg; 5419 } 5420 5421 ext4_lock_group(sb, group); 5422 list_for_each_entry_safe(pa, tmp, 5423 &grp->bb_prealloc_list, pa_group_list) { 5424 spin_lock(&pa->pa_lock); 5425 if (atomic_read(&pa->pa_count)) { 5426 spin_unlock(&pa->pa_lock); 5427 *busy = 1; 5428 continue; 5429 } 5430 if (pa->pa_deleted) { 5431 spin_unlock(&pa->pa_lock); 5432 continue; 5433 } 5434 5435 /* seems this one can be freed ... */ 5436 ext4_mb_mark_pa_deleted(sb, pa); 5437 5438 if (!free) 5439 this_cpu_inc(discard_pa_seq); 5440 5441 /* we can trust pa_free ... */ 5442 free += pa->pa_free; 5443 5444 spin_unlock(&pa->pa_lock); 5445 5446 list_del(&pa->pa_group_list); 5447 list_add(&pa->u.pa_tmp_list, &list); 5448 } 5449 5450 /* now free all selected PAs */ 5451 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5452 5453 /* remove from object (inode or locality group) */ 5454 if (pa->pa_type == MB_GROUP_PA) { 5455 spin_lock(pa->pa_node_lock.lg_lock); 5456 list_del_rcu(&pa->pa_node.lg_list); 5457 spin_unlock(pa->pa_node_lock.lg_lock); 5458 } else { 5459 write_lock(pa->pa_node_lock.inode_lock); 5460 ei = EXT4_I(pa->pa_inode); 5461 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5462 write_unlock(pa->pa_node_lock.inode_lock); 5463 } 5464 5465 list_del(&pa->u.pa_tmp_list); 5466 5467 if (pa->pa_type == MB_GROUP_PA) { 5468 ext4_mb_release_group_pa(&e4b, pa); 5469 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5470 } else { 5471 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5472 ext4_mb_pa_free(pa); 5473 } 5474 } 5475 5476 ext4_unlock_group(sb, group); 5477 ext4_mb_unload_buddy(&e4b); 5478 put_bh(bitmap_bh); 5479 out_dbg: 5480 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 5481 free, group, grp->bb_free); 5482 return free; 5483 } 5484 5485 /* 5486 * releases all non-used preallocated blocks for given inode 5487 * 5488 * It's important to discard preallocations under i_data_sem 5489 * We don't want another block to be served from the prealloc 5490 * space when we are discarding the inode prealloc space. 5491 * 5492 * FIXME!! Make sure it is valid at all the call sites 5493 */ 5494 void ext4_discard_preallocations(struct inode *inode, unsigned int needed) 5495 { 5496 struct ext4_inode_info *ei = EXT4_I(inode); 5497 struct super_block *sb = inode->i_sb; 5498 struct buffer_head *bitmap_bh = NULL; 5499 struct ext4_prealloc_space *pa, *tmp; 5500 ext4_group_t group = 0; 5501 LIST_HEAD(list); 5502 struct ext4_buddy e4b; 5503 struct rb_node *iter; 5504 int err; 5505 5506 if (!S_ISREG(inode->i_mode)) { 5507 return; 5508 } 5509 5510 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 5511 return; 5512 5513 mb_debug(sb, "discard preallocation for inode %lu\n", 5514 inode->i_ino); 5515 trace_ext4_discard_preallocations(inode, 5516 atomic_read(&ei->i_prealloc_active), needed); 5517 5518 if (needed == 0) 5519 needed = UINT_MAX; 5520 5521 repeat: 5522 /* first, collect all pa's in the inode */ 5523 write_lock(&ei->i_prealloc_lock); 5524 for (iter = rb_first(&ei->i_prealloc_node); iter && needed; 5525 iter = rb_next(iter)) { 5526 pa = rb_entry(iter, struct ext4_prealloc_space, 5527 pa_node.inode_node); 5528 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock); 5529 5530 spin_lock(&pa->pa_lock); 5531 if (atomic_read(&pa->pa_count)) { 5532 /* this shouldn't happen often - nobody should 5533 * use preallocation while we're discarding it */ 5534 spin_unlock(&pa->pa_lock); 5535 write_unlock(&ei->i_prealloc_lock); 5536 ext4_msg(sb, KERN_ERR, 5537 "uh-oh! used pa while discarding"); 5538 WARN_ON(1); 5539 schedule_timeout_uninterruptible(HZ); 5540 goto repeat; 5541 5542 } 5543 if (pa->pa_deleted == 0) { 5544 ext4_mb_mark_pa_deleted(sb, pa); 5545 spin_unlock(&pa->pa_lock); 5546 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node); 5547 list_add(&pa->u.pa_tmp_list, &list); 5548 needed--; 5549 continue; 5550 } 5551 5552 /* someone is deleting pa right now */ 5553 spin_unlock(&pa->pa_lock); 5554 write_unlock(&ei->i_prealloc_lock); 5555 5556 /* we have to wait here because pa_deleted 5557 * doesn't mean pa is already unlinked from 5558 * the list. as we might be called from 5559 * ->clear_inode() the inode will get freed 5560 * and concurrent thread which is unlinking 5561 * pa from inode's list may access already 5562 * freed memory, bad-bad-bad */ 5563 5564 /* XXX: if this happens too often, we can 5565 * add a flag to force wait only in case 5566 * of ->clear_inode(), but not in case of 5567 * regular truncate */ 5568 schedule_timeout_uninterruptible(HZ); 5569 goto repeat; 5570 } 5571 write_unlock(&ei->i_prealloc_lock); 5572 5573 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 5574 BUG_ON(pa->pa_type != MB_INODE_PA); 5575 group = ext4_get_group_number(sb, pa->pa_pstart); 5576 5577 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5578 GFP_NOFS|__GFP_NOFAIL); 5579 if (err) { 5580 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5581 err, group); 5582 continue; 5583 } 5584 5585 bitmap_bh = ext4_read_block_bitmap(sb, group); 5586 if (IS_ERR(bitmap_bh)) { 5587 err = PTR_ERR(bitmap_bh); 5588 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 5589 err, group); 5590 ext4_mb_unload_buddy(&e4b); 5591 continue; 5592 } 5593 5594 ext4_lock_group(sb, group); 5595 list_del(&pa->pa_group_list); 5596 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 5597 ext4_unlock_group(sb, group); 5598 5599 ext4_mb_unload_buddy(&e4b); 5600 put_bh(bitmap_bh); 5601 5602 list_del(&pa->u.pa_tmp_list); 5603 ext4_mb_pa_free(pa); 5604 } 5605 } 5606 5607 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 5608 { 5609 struct ext4_prealloc_space *pa; 5610 5611 BUG_ON(ext4_pspace_cachep == NULL); 5612 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 5613 if (!pa) 5614 return -ENOMEM; 5615 atomic_set(&pa->pa_count, 1); 5616 ac->ac_pa = pa; 5617 return 0; 5618 } 5619 5620 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac) 5621 { 5622 struct ext4_prealloc_space *pa = ac->ac_pa; 5623 5624 BUG_ON(!pa); 5625 ac->ac_pa = NULL; 5626 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 5627 /* 5628 * current function is only called due to an error or due to 5629 * len of found blocks < len of requested blocks hence the PA has not 5630 * been added to grp->bb_prealloc_list. So we don't need to lock it 5631 */ 5632 pa->pa_deleted = 1; 5633 ext4_mb_pa_free(pa); 5634 } 5635 5636 #ifdef CONFIG_EXT4_DEBUG 5637 static inline void ext4_mb_show_pa(struct super_block *sb) 5638 { 5639 ext4_group_t i, ngroups; 5640 5641 if (ext4_forced_shutdown(sb)) 5642 return; 5643 5644 ngroups = ext4_get_groups_count(sb); 5645 mb_debug(sb, "groups: "); 5646 for (i = 0; i < ngroups; i++) { 5647 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 5648 struct ext4_prealloc_space *pa; 5649 ext4_grpblk_t start; 5650 struct list_head *cur; 5651 5652 if (!grp) 5653 continue; 5654 ext4_lock_group(sb, i); 5655 list_for_each(cur, &grp->bb_prealloc_list) { 5656 pa = list_entry(cur, struct ext4_prealloc_space, 5657 pa_group_list); 5658 spin_lock(&pa->pa_lock); 5659 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 5660 NULL, &start); 5661 spin_unlock(&pa->pa_lock); 5662 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 5663 pa->pa_len); 5664 } 5665 ext4_unlock_group(sb, i); 5666 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 5667 grp->bb_fragments); 5668 } 5669 } 5670 5671 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5672 { 5673 struct super_block *sb = ac->ac_sb; 5674 5675 if (ext4_forced_shutdown(sb)) 5676 return; 5677 5678 mb_debug(sb, "Can't allocate:" 5679 " Allocation context details:"); 5680 mb_debug(sb, "status %u flags 0x%x", 5681 ac->ac_status, ac->ac_flags); 5682 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 5683 "goal %lu/%lu/%lu@%lu, " 5684 "best %lu/%lu/%lu@%lu cr %d", 5685 (unsigned long)ac->ac_o_ex.fe_group, 5686 (unsigned long)ac->ac_o_ex.fe_start, 5687 (unsigned long)ac->ac_o_ex.fe_len, 5688 (unsigned long)ac->ac_o_ex.fe_logical, 5689 (unsigned long)ac->ac_g_ex.fe_group, 5690 (unsigned long)ac->ac_g_ex.fe_start, 5691 (unsigned long)ac->ac_g_ex.fe_len, 5692 (unsigned long)ac->ac_g_ex.fe_logical, 5693 (unsigned long)ac->ac_b_ex.fe_group, 5694 (unsigned long)ac->ac_b_ex.fe_start, 5695 (unsigned long)ac->ac_b_ex.fe_len, 5696 (unsigned long)ac->ac_b_ex.fe_logical, 5697 (int)ac->ac_criteria); 5698 mb_debug(sb, "%u found", ac->ac_found); 5699 mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no"); 5700 if (ac->ac_pa) 5701 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ? 5702 "group pa" : "inode pa"); 5703 ext4_mb_show_pa(sb); 5704 } 5705 #else 5706 static inline void ext4_mb_show_pa(struct super_block *sb) 5707 { 5708 } 5709 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 5710 { 5711 ext4_mb_show_pa(ac->ac_sb); 5712 } 5713 #endif 5714 5715 /* 5716 * We use locality group preallocation for small size file. The size of the 5717 * file is determined by the current size or the resulting size after 5718 * allocation which ever is larger 5719 * 5720 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 5721 */ 5722 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 5723 { 5724 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5725 int bsbits = ac->ac_sb->s_blocksize_bits; 5726 loff_t size, isize; 5727 bool inode_pa_eligible, group_pa_eligible; 5728 5729 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 5730 return; 5731 5732 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 5733 return; 5734 5735 group_pa_eligible = sbi->s_mb_group_prealloc > 0; 5736 inode_pa_eligible = true; 5737 size = extent_logical_end(sbi, &ac->ac_o_ex); 5738 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 5739 >> bsbits; 5740 5741 /* No point in using inode preallocation for closed files */ 5742 if ((size == isize) && !ext4_fs_is_busy(sbi) && 5743 !inode_is_open_for_write(ac->ac_inode)) 5744 inode_pa_eligible = false; 5745 5746 size = max(size, isize); 5747 /* Don't use group allocation for large files */ 5748 if (size > sbi->s_mb_stream_request) 5749 group_pa_eligible = false; 5750 5751 if (!group_pa_eligible) { 5752 if (inode_pa_eligible) 5753 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 5754 else 5755 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 5756 return; 5757 } 5758 5759 BUG_ON(ac->ac_lg != NULL); 5760 /* 5761 * locality group prealloc space are per cpu. The reason for having 5762 * per cpu locality group is to reduce the contention between block 5763 * request from multiple CPUs. 5764 */ 5765 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 5766 5767 /* we're going to use group allocation */ 5768 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 5769 5770 /* serialize all allocations in the group */ 5771 mutex_lock(&ac->ac_lg->lg_mutex); 5772 } 5773 5774 static noinline_for_stack void 5775 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 5776 struct ext4_allocation_request *ar) 5777 { 5778 struct super_block *sb = ar->inode->i_sb; 5779 struct ext4_sb_info *sbi = EXT4_SB(sb); 5780 struct ext4_super_block *es = sbi->s_es; 5781 ext4_group_t group; 5782 unsigned int len; 5783 ext4_fsblk_t goal; 5784 ext4_grpblk_t block; 5785 5786 /* we can't allocate > group size */ 5787 len = ar->len; 5788 5789 /* just a dirty hack to filter too big requests */ 5790 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 5791 len = EXT4_CLUSTERS_PER_GROUP(sb); 5792 5793 /* start searching from the goal */ 5794 goal = ar->goal; 5795 if (goal < le32_to_cpu(es->s_first_data_block) || 5796 goal >= ext4_blocks_count(es)) 5797 goal = le32_to_cpu(es->s_first_data_block); 5798 ext4_get_group_no_and_offset(sb, goal, &group, &block); 5799 5800 /* set up allocation goals */ 5801 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 5802 ac->ac_status = AC_STATUS_CONTINUE; 5803 ac->ac_sb = sb; 5804 ac->ac_inode = ar->inode; 5805 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 5806 ac->ac_o_ex.fe_group = group; 5807 ac->ac_o_ex.fe_start = block; 5808 ac->ac_o_ex.fe_len = len; 5809 ac->ac_g_ex = ac->ac_o_ex; 5810 ac->ac_orig_goal_len = ac->ac_g_ex.fe_len; 5811 ac->ac_flags = ar->flags; 5812 5813 /* we have to define context: we'll work with a file or 5814 * locality group. this is a policy, actually */ 5815 ext4_mb_group_or_file(ac); 5816 5817 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 5818 "left: %u/%u, right %u/%u to %swritable\n", 5819 (unsigned) ar->len, (unsigned) ar->logical, 5820 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 5821 (unsigned) ar->lleft, (unsigned) ar->pleft, 5822 (unsigned) ar->lright, (unsigned) ar->pright, 5823 inode_is_open_for_write(ar->inode) ? "" : "non-"); 5824 } 5825 5826 static noinline_for_stack void 5827 ext4_mb_discard_lg_preallocations(struct super_block *sb, 5828 struct ext4_locality_group *lg, 5829 int order, int total_entries) 5830 { 5831 ext4_group_t group = 0; 5832 struct ext4_buddy e4b; 5833 LIST_HEAD(discard_list); 5834 struct ext4_prealloc_space *pa, *tmp; 5835 5836 mb_debug(sb, "discard locality group preallocation\n"); 5837 5838 spin_lock(&lg->lg_prealloc_lock); 5839 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 5840 pa_node.lg_list, 5841 lockdep_is_held(&lg->lg_prealloc_lock)) { 5842 spin_lock(&pa->pa_lock); 5843 if (atomic_read(&pa->pa_count)) { 5844 /* 5845 * This is the pa that we just used 5846 * for block allocation. So don't 5847 * free that 5848 */ 5849 spin_unlock(&pa->pa_lock); 5850 continue; 5851 } 5852 if (pa->pa_deleted) { 5853 spin_unlock(&pa->pa_lock); 5854 continue; 5855 } 5856 /* only lg prealloc space */ 5857 BUG_ON(pa->pa_type != MB_GROUP_PA); 5858 5859 /* seems this one can be freed ... */ 5860 ext4_mb_mark_pa_deleted(sb, pa); 5861 spin_unlock(&pa->pa_lock); 5862 5863 list_del_rcu(&pa->pa_node.lg_list); 5864 list_add(&pa->u.pa_tmp_list, &discard_list); 5865 5866 total_entries--; 5867 if (total_entries <= 5) { 5868 /* 5869 * we want to keep only 5 entries 5870 * allowing it to grow to 8. This 5871 * mak sure we don't call discard 5872 * soon for this list. 5873 */ 5874 break; 5875 } 5876 } 5877 spin_unlock(&lg->lg_prealloc_lock); 5878 5879 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 5880 int err; 5881 5882 group = ext4_get_group_number(sb, pa->pa_pstart); 5883 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 5884 GFP_NOFS|__GFP_NOFAIL); 5885 if (err) { 5886 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 5887 err, group); 5888 continue; 5889 } 5890 ext4_lock_group(sb, group); 5891 list_del(&pa->pa_group_list); 5892 ext4_mb_release_group_pa(&e4b, pa); 5893 ext4_unlock_group(sb, group); 5894 5895 ext4_mb_unload_buddy(&e4b); 5896 list_del(&pa->u.pa_tmp_list); 5897 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 5898 } 5899 } 5900 5901 /* 5902 * We have incremented pa_count. So it cannot be freed at this 5903 * point. Also we hold lg_mutex. So no parallel allocation is 5904 * possible from this lg. That means pa_free cannot be updated. 5905 * 5906 * A parallel ext4_mb_discard_group_preallocations is possible. 5907 * which can cause the lg_prealloc_list to be updated. 5908 */ 5909 5910 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 5911 { 5912 int order, added = 0, lg_prealloc_count = 1; 5913 struct super_block *sb = ac->ac_sb; 5914 struct ext4_locality_group *lg = ac->ac_lg; 5915 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 5916 5917 order = fls(pa->pa_free) - 1; 5918 if (order > PREALLOC_TB_SIZE - 1) 5919 /* The max size of hash table is PREALLOC_TB_SIZE */ 5920 order = PREALLOC_TB_SIZE - 1; 5921 /* Add the prealloc space to lg */ 5922 spin_lock(&lg->lg_prealloc_lock); 5923 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 5924 pa_node.lg_list, 5925 lockdep_is_held(&lg->lg_prealloc_lock)) { 5926 spin_lock(&tmp_pa->pa_lock); 5927 if (tmp_pa->pa_deleted) { 5928 spin_unlock(&tmp_pa->pa_lock); 5929 continue; 5930 } 5931 if (!added && pa->pa_free < tmp_pa->pa_free) { 5932 /* Add to the tail of the previous entry */ 5933 list_add_tail_rcu(&pa->pa_node.lg_list, 5934 &tmp_pa->pa_node.lg_list); 5935 added = 1; 5936 /* 5937 * we want to count the total 5938 * number of entries in the list 5939 */ 5940 } 5941 spin_unlock(&tmp_pa->pa_lock); 5942 lg_prealloc_count++; 5943 } 5944 if (!added) 5945 list_add_tail_rcu(&pa->pa_node.lg_list, 5946 &lg->lg_prealloc_list[order]); 5947 spin_unlock(&lg->lg_prealloc_lock); 5948 5949 /* Now trim the list to be not more than 8 elements */ 5950 if (lg_prealloc_count > 8) 5951 ext4_mb_discard_lg_preallocations(sb, lg, 5952 order, lg_prealloc_count); 5953 } 5954 5955 /* 5956 * release all resource we used in allocation 5957 */ 5958 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 5959 { 5960 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 5961 struct ext4_prealloc_space *pa = ac->ac_pa; 5962 if (pa) { 5963 if (pa->pa_type == MB_GROUP_PA) { 5964 /* see comment in ext4_mb_use_group_pa() */ 5965 spin_lock(&pa->pa_lock); 5966 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5967 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 5968 pa->pa_free -= ac->ac_b_ex.fe_len; 5969 pa->pa_len -= ac->ac_b_ex.fe_len; 5970 spin_unlock(&pa->pa_lock); 5971 5972 /* 5973 * We want to add the pa to the right bucket. 5974 * Remove it from the list and while adding 5975 * make sure the list to which we are adding 5976 * doesn't grow big. 5977 */ 5978 if (likely(pa->pa_free)) { 5979 spin_lock(pa->pa_node_lock.lg_lock); 5980 list_del_rcu(&pa->pa_node.lg_list); 5981 spin_unlock(pa->pa_node_lock.lg_lock); 5982 ext4_mb_add_n_trim(ac); 5983 } 5984 } 5985 5986 ext4_mb_put_pa(ac, ac->ac_sb, pa); 5987 } 5988 if (ac->ac_bitmap_page) 5989 put_page(ac->ac_bitmap_page); 5990 if (ac->ac_buddy_page) 5991 put_page(ac->ac_buddy_page); 5992 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 5993 mutex_unlock(&ac->ac_lg->lg_mutex); 5994 ext4_mb_collect_stats(ac); 5995 return 0; 5996 } 5997 5998 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 5999 { 6000 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 6001 int ret; 6002 int freed = 0, busy = 0; 6003 int retry = 0; 6004 6005 trace_ext4_mb_discard_preallocations(sb, needed); 6006 6007 if (needed == 0) 6008 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 6009 repeat: 6010 for (i = 0; i < ngroups && needed > 0; i++) { 6011 ret = ext4_mb_discard_group_preallocations(sb, i, &busy); 6012 freed += ret; 6013 needed -= ret; 6014 cond_resched(); 6015 } 6016 6017 if (needed > 0 && busy && ++retry < 3) { 6018 busy = 0; 6019 goto repeat; 6020 } 6021 6022 return freed; 6023 } 6024 6025 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 6026 struct ext4_allocation_context *ac, u64 *seq) 6027 { 6028 int freed; 6029 u64 seq_retry = 0; 6030 bool ret = false; 6031 6032 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 6033 if (freed) { 6034 ret = true; 6035 goto out_dbg; 6036 } 6037 seq_retry = ext4_get_discard_pa_seq_sum(); 6038 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 6039 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 6040 *seq = seq_retry; 6041 ret = true; 6042 } 6043 6044 out_dbg: 6045 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 6046 return ret; 6047 } 6048 6049 /* 6050 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 6051 * linearly starting at the goal block and also excludes the blocks which 6052 * are going to be in use after fast commit replay. 6053 */ 6054 static ext4_fsblk_t 6055 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp) 6056 { 6057 struct buffer_head *bitmap_bh; 6058 struct super_block *sb = ar->inode->i_sb; 6059 struct ext4_sb_info *sbi = EXT4_SB(sb); 6060 ext4_group_t group, nr; 6061 ext4_grpblk_t blkoff; 6062 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 6063 ext4_grpblk_t i = 0; 6064 ext4_fsblk_t goal, block; 6065 struct ext4_super_block *es = sbi->s_es; 6066 6067 goal = ar->goal; 6068 if (goal < le32_to_cpu(es->s_first_data_block) || 6069 goal >= ext4_blocks_count(es)) 6070 goal = le32_to_cpu(es->s_first_data_block); 6071 6072 ar->len = 0; 6073 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 6074 for (nr = ext4_get_groups_count(sb); nr > 0; nr--) { 6075 bitmap_bh = ext4_read_block_bitmap(sb, group); 6076 if (IS_ERR(bitmap_bh)) { 6077 *errp = PTR_ERR(bitmap_bh); 6078 pr_warn("Failed to read block bitmap\n"); 6079 return 0; 6080 } 6081 6082 while (1) { 6083 i = mb_find_next_zero_bit(bitmap_bh->b_data, max, 6084 blkoff); 6085 if (i >= max) 6086 break; 6087 if (ext4_fc_replay_check_excluded(sb, 6088 ext4_group_first_block_no(sb, group) + 6089 EXT4_C2B(sbi, i))) { 6090 blkoff = i + 1; 6091 } else 6092 break; 6093 } 6094 brelse(bitmap_bh); 6095 if (i < max) 6096 break; 6097 6098 if (++group >= ext4_get_groups_count(sb)) 6099 group = 0; 6100 6101 blkoff = 0; 6102 } 6103 6104 if (i >= max) { 6105 *errp = -ENOSPC; 6106 return 0; 6107 } 6108 6109 block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i); 6110 ext4_mb_mark_bb(sb, block, 1, 1); 6111 ar->len = 1; 6112 6113 return block; 6114 } 6115 6116 /* 6117 * Main entry point into mballoc to allocate blocks 6118 * it tries to use preallocation first, then falls back 6119 * to usual allocation 6120 */ 6121 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 6122 struct ext4_allocation_request *ar, int *errp) 6123 { 6124 struct ext4_allocation_context *ac = NULL; 6125 struct ext4_sb_info *sbi; 6126 struct super_block *sb; 6127 ext4_fsblk_t block = 0; 6128 unsigned int inquota = 0; 6129 unsigned int reserv_clstrs = 0; 6130 int retries = 0; 6131 u64 seq; 6132 6133 might_sleep(); 6134 sb = ar->inode->i_sb; 6135 sbi = EXT4_SB(sb); 6136 6137 trace_ext4_request_blocks(ar); 6138 if (sbi->s_mount_state & EXT4_FC_REPLAY) 6139 return ext4_mb_new_blocks_simple(ar, errp); 6140 6141 /* Allow to use superuser reservation for quota file */ 6142 if (ext4_is_quota_file(ar->inode)) 6143 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 6144 6145 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 6146 /* Without delayed allocation we need to verify 6147 * there is enough free blocks to do block allocation 6148 * and verify allocation doesn't exceed the quota limits. 6149 */ 6150 while (ar->len && 6151 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 6152 6153 /* let others to free the space */ 6154 cond_resched(); 6155 ar->len = ar->len >> 1; 6156 } 6157 if (!ar->len) { 6158 ext4_mb_show_pa(sb); 6159 *errp = -ENOSPC; 6160 return 0; 6161 } 6162 reserv_clstrs = ar->len; 6163 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 6164 dquot_alloc_block_nofail(ar->inode, 6165 EXT4_C2B(sbi, ar->len)); 6166 } else { 6167 while (ar->len && 6168 dquot_alloc_block(ar->inode, 6169 EXT4_C2B(sbi, ar->len))) { 6170 6171 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 6172 ar->len--; 6173 } 6174 } 6175 inquota = ar->len; 6176 if (ar->len == 0) { 6177 *errp = -EDQUOT; 6178 goto out; 6179 } 6180 } 6181 6182 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 6183 if (!ac) { 6184 ar->len = 0; 6185 *errp = -ENOMEM; 6186 goto out; 6187 } 6188 6189 ext4_mb_initialize_context(ac, ar); 6190 6191 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 6192 seq = this_cpu_read(discard_pa_seq); 6193 if (!ext4_mb_use_preallocated(ac)) { 6194 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 6195 ext4_mb_normalize_request(ac, ar); 6196 6197 *errp = ext4_mb_pa_alloc(ac); 6198 if (*errp) 6199 goto errout; 6200 repeat: 6201 /* allocate space in core */ 6202 *errp = ext4_mb_regular_allocator(ac); 6203 /* 6204 * pa allocated above is added to grp->bb_prealloc_list only 6205 * when we were able to allocate some block i.e. when 6206 * ac->ac_status == AC_STATUS_FOUND. 6207 * And error from above mean ac->ac_status != AC_STATUS_FOUND 6208 * So we have to free this pa here itself. 6209 */ 6210 if (*errp) { 6211 ext4_mb_pa_put_free(ac); 6212 ext4_discard_allocated_blocks(ac); 6213 goto errout; 6214 } 6215 if (ac->ac_status == AC_STATUS_FOUND && 6216 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 6217 ext4_mb_pa_put_free(ac); 6218 } 6219 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 6220 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 6221 if (*errp) { 6222 ext4_discard_allocated_blocks(ac); 6223 goto errout; 6224 } else { 6225 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 6226 ar->len = ac->ac_b_ex.fe_len; 6227 } 6228 } else { 6229 if (++retries < 3 && 6230 ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 6231 goto repeat; 6232 /* 6233 * If block allocation fails then the pa allocated above 6234 * needs to be freed here itself. 6235 */ 6236 ext4_mb_pa_put_free(ac); 6237 *errp = -ENOSPC; 6238 } 6239 6240 if (*errp) { 6241 errout: 6242 ac->ac_b_ex.fe_len = 0; 6243 ar->len = 0; 6244 ext4_mb_show_ac(ac); 6245 } 6246 ext4_mb_release_context(ac); 6247 kmem_cache_free(ext4_ac_cachep, ac); 6248 out: 6249 if (inquota && ar->len < inquota) 6250 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 6251 if (!ar->len) { 6252 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 6253 /* release all the reserved blocks if non delalloc */ 6254 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 6255 reserv_clstrs); 6256 } 6257 6258 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 6259 6260 return block; 6261 } 6262 6263 /* 6264 * We can merge two free data extents only if the physical blocks 6265 * are contiguous, AND the extents were freed by the same transaction, 6266 * AND the blocks are associated with the same group. 6267 */ 6268 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 6269 struct ext4_free_data *entry, 6270 struct ext4_free_data *new_entry, 6271 struct rb_root *entry_rb_root) 6272 { 6273 if ((entry->efd_tid != new_entry->efd_tid) || 6274 (entry->efd_group != new_entry->efd_group)) 6275 return; 6276 if (entry->efd_start_cluster + entry->efd_count == 6277 new_entry->efd_start_cluster) { 6278 new_entry->efd_start_cluster = entry->efd_start_cluster; 6279 new_entry->efd_count += entry->efd_count; 6280 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 6281 entry->efd_start_cluster) { 6282 new_entry->efd_count += entry->efd_count; 6283 } else 6284 return; 6285 spin_lock(&sbi->s_md_lock); 6286 list_del(&entry->efd_list); 6287 spin_unlock(&sbi->s_md_lock); 6288 rb_erase(&entry->efd_node, entry_rb_root); 6289 kmem_cache_free(ext4_free_data_cachep, entry); 6290 } 6291 6292 static noinline_for_stack void 6293 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 6294 struct ext4_free_data *new_entry) 6295 { 6296 ext4_group_t group = e4b->bd_group; 6297 ext4_grpblk_t cluster; 6298 ext4_grpblk_t clusters = new_entry->efd_count; 6299 struct ext4_free_data *entry; 6300 struct ext4_group_info *db = e4b->bd_info; 6301 struct super_block *sb = e4b->bd_sb; 6302 struct ext4_sb_info *sbi = EXT4_SB(sb); 6303 struct rb_node **n = &db->bb_free_root.rb_node, *node; 6304 struct rb_node *parent = NULL, *new_node; 6305 6306 BUG_ON(!ext4_handle_valid(handle)); 6307 BUG_ON(e4b->bd_bitmap_page == NULL); 6308 BUG_ON(e4b->bd_buddy_page == NULL); 6309 6310 new_node = &new_entry->efd_node; 6311 cluster = new_entry->efd_start_cluster; 6312 6313 if (!*n) { 6314 /* first free block exent. We need to 6315 protect buddy cache from being freed, 6316 * otherwise we'll refresh it from 6317 * on-disk bitmap and lose not-yet-available 6318 * blocks */ 6319 get_page(e4b->bd_buddy_page); 6320 get_page(e4b->bd_bitmap_page); 6321 } 6322 while (*n) { 6323 parent = *n; 6324 entry = rb_entry(parent, struct ext4_free_data, efd_node); 6325 if (cluster < entry->efd_start_cluster) 6326 n = &(*n)->rb_left; 6327 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 6328 n = &(*n)->rb_right; 6329 else { 6330 ext4_grp_locked_error(sb, group, 0, 6331 ext4_group_first_block_no(sb, group) + 6332 EXT4_C2B(sbi, cluster), 6333 "Block already on to-be-freed list"); 6334 kmem_cache_free(ext4_free_data_cachep, new_entry); 6335 return; 6336 } 6337 } 6338 6339 rb_link_node(new_node, parent, n); 6340 rb_insert_color(new_node, &db->bb_free_root); 6341 6342 /* Now try to see the extent can be merged to left and right */ 6343 node = rb_prev(new_node); 6344 if (node) { 6345 entry = rb_entry(node, struct ext4_free_data, efd_node); 6346 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6347 &(db->bb_free_root)); 6348 } 6349 6350 node = rb_next(new_node); 6351 if (node) { 6352 entry = rb_entry(node, struct ext4_free_data, efd_node); 6353 ext4_try_merge_freed_extent(sbi, entry, new_entry, 6354 &(db->bb_free_root)); 6355 } 6356 6357 spin_lock(&sbi->s_md_lock); 6358 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 6359 sbi->s_mb_free_pending += clusters; 6360 spin_unlock(&sbi->s_md_lock); 6361 } 6362 6363 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 6364 unsigned long count) 6365 { 6366 struct buffer_head *bitmap_bh; 6367 struct super_block *sb = inode->i_sb; 6368 struct ext4_group_desc *gdp; 6369 struct buffer_head *gdp_bh; 6370 ext4_group_t group; 6371 ext4_grpblk_t blkoff; 6372 int already_freed = 0, err, i; 6373 6374 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 6375 bitmap_bh = ext4_read_block_bitmap(sb, group); 6376 if (IS_ERR(bitmap_bh)) { 6377 pr_warn("Failed to read block bitmap\n"); 6378 return; 6379 } 6380 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 6381 if (!gdp) 6382 goto err_out; 6383 6384 for (i = 0; i < count; i++) { 6385 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data)) 6386 already_freed++; 6387 } 6388 mb_clear_bits(bitmap_bh->b_data, blkoff, count); 6389 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 6390 if (err) 6391 goto err_out; 6392 ext4_free_group_clusters_set( 6393 sb, gdp, ext4_free_group_clusters(sb, gdp) + 6394 count - already_freed); 6395 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 6396 ext4_group_desc_csum_set(sb, group, gdp); 6397 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 6398 sync_dirty_buffer(bitmap_bh); 6399 sync_dirty_buffer(gdp_bh); 6400 6401 err_out: 6402 brelse(bitmap_bh); 6403 } 6404 6405 /** 6406 * ext4_mb_clear_bb() -- helper function for freeing blocks. 6407 * Used by ext4_free_blocks() 6408 * @handle: handle for this transaction 6409 * @inode: inode 6410 * @block: starting physical block to be freed 6411 * @count: number of blocks to be freed 6412 * @flags: flags used by ext4_free_blocks 6413 */ 6414 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode, 6415 ext4_fsblk_t block, unsigned long count, 6416 int flags) 6417 { 6418 struct buffer_head *bitmap_bh = NULL; 6419 struct super_block *sb = inode->i_sb; 6420 struct ext4_group_desc *gdp; 6421 struct ext4_group_info *grp; 6422 unsigned int overflow; 6423 ext4_grpblk_t bit; 6424 struct buffer_head *gd_bh; 6425 ext4_group_t block_group; 6426 struct ext4_sb_info *sbi; 6427 struct ext4_buddy e4b; 6428 unsigned int count_clusters; 6429 int err = 0; 6430 int ret; 6431 6432 sbi = EXT4_SB(sb); 6433 6434 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6435 !ext4_inode_block_valid(inode, block, count)) { 6436 ext4_error(sb, "Freeing blocks in system zone - " 6437 "Block = %llu, count = %lu", block, count); 6438 /* err = 0. ext4_std_error should be a no op */ 6439 goto error_return; 6440 } 6441 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6442 6443 do_more: 6444 overflow = 0; 6445 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6446 6447 grp = ext4_get_group_info(sb, block_group); 6448 if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 6449 return; 6450 6451 /* 6452 * Check to see if we are freeing blocks across a group 6453 * boundary. 6454 */ 6455 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 6456 overflow = EXT4_C2B(sbi, bit) + count - 6457 EXT4_BLOCKS_PER_GROUP(sb); 6458 count -= overflow; 6459 /* The range changed so it's no longer validated */ 6460 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6461 } 6462 count_clusters = EXT4_NUM_B2C(sbi, count); 6463 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6464 if (IS_ERR(bitmap_bh)) { 6465 err = PTR_ERR(bitmap_bh); 6466 bitmap_bh = NULL; 6467 goto error_return; 6468 } 6469 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 6470 if (!gdp) { 6471 err = -EIO; 6472 goto error_return; 6473 } 6474 6475 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6476 !ext4_inode_block_valid(inode, block, count)) { 6477 ext4_error(sb, "Freeing blocks in system zone - " 6478 "Block = %llu, count = %lu", block, count); 6479 /* err = 0. ext4_std_error should be a no op */ 6480 goto error_return; 6481 } 6482 6483 BUFFER_TRACE(bitmap_bh, "getting write access"); 6484 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6485 EXT4_JTR_NONE); 6486 if (err) 6487 goto error_return; 6488 6489 /* 6490 * We are about to modify some metadata. Call the journal APIs 6491 * to unshare ->b_data if a currently-committing transaction is 6492 * using it 6493 */ 6494 BUFFER_TRACE(gd_bh, "get_write_access"); 6495 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6496 if (err) 6497 goto error_return; 6498 #ifdef AGGRESSIVE_CHECK 6499 { 6500 int i; 6501 for (i = 0; i < count_clusters; i++) 6502 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 6503 } 6504 #endif 6505 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 6506 6507 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 6508 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 6509 GFP_NOFS|__GFP_NOFAIL); 6510 if (err) 6511 goto error_return; 6512 6513 /* 6514 * We need to make sure we don't reuse the freed block until after the 6515 * transaction is committed. We make an exception if the inode is to be 6516 * written in writeback mode since writeback mode has weak data 6517 * consistency guarantees. 6518 */ 6519 if (ext4_handle_valid(handle) && 6520 ((flags & EXT4_FREE_BLOCKS_METADATA) || 6521 !ext4_should_writeback_data(inode))) { 6522 struct ext4_free_data *new_entry; 6523 /* 6524 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 6525 * to fail. 6526 */ 6527 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 6528 GFP_NOFS|__GFP_NOFAIL); 6529 new_entry->efd_start_cluster = bit; 6530 new_entry->efd_group = block_group; 6531 new_entry->efd_count = count_clusters; 6532 new_entry->efd_tid = handle->h_transaction->t_tid; 6533 6534 ext4_lock_group(sb, block_group); 6535 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6536 ext4_mb_free_metadata(handle, &e4b, new_entry); 6537 } else { 6538 /* need to update group_info->bb_free and bitmap 6539 * with group lock held. generate_buddy look at 6540 * them with group lock_held 6541 */ 6542 if (test_opt(sb, DISCARD)) { 6543 err = ext4_issue_discard(sb, block_group, bit, 6544 count_clusters, NULL); 6545 if (err && err != -EOPNOTSUPP) 6546 ext4_msg(sb, KERN_WARNING, "discard request in" 6547 " group:%u block:%d count:%lu failed" 6548 " with %d", block_group, bit, count, 6549 err); 6550 } else 6551 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 6552 6553 ext4_lock_group(sb, block_group); 6554 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 6555 mb_free_blocks(inode, &e4b, bit, count_clusters); 6556 } 6557 6558 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 6559 ext4_free_group_clusters_set(sb, gdp, ret); 6560 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh); 6561 ext4_group_desc_csum_set(sb, block_group, gdp); 6562 ext4_unlock_group(sb, block_group); 6563 6564 if (sbi->s_log_groups_per_flex) { 6565 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6566 atomic64_add(count_clusters, 6567 &sbi_array_rcu_deref(sbi, s_flex_groups, 6568 flex_group)->free_clusters); 6569 } 6570 6571 /* 6572 * on a bigalloc file system, defer the s_freeclusters_counter 6573 * update to the caller (ext4_remove_space and friends) so they 6574 * can determine if a cluster freed here should be rereserved 6575 */ 6576 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 6577 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 6578 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 6579 percpu_counter_add(&sbi->s_freeclusters_counter, 6580 count_clusters); 6581 } 6582 6583 ext4_mb_unload_buddy(&e4b); 6584 6585 /* We dirtied the bitmap block */ 6586 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6587 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6588 6589 /* And the group descriptor block */ 6590 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6591 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6592 if (!err) 6593 err = ret; 6594 6595 if (overflow && !err) { 6596 block += count; 6597 count = overflow; 6598 put_bh(bitmap_bh); 6599 /* The range changed so it's no longer validated */ 6600 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6601 goto do_more; 6602 } 6603 error_return: 6604 brelse(bitmap_bh); 6605 ext4_std_error(sb, err); 6606 } 6607 6608 /** 6609 * ext4_free_blocks() -- Free given blocks and update quota 6610 * @handle: handle for this transaction 6611 * @inode: inode 6612 * @bh: optional buffer of the block to be freed 6613 * @block: starting physical block to be freed 6614 * @count: number of blocks to be freed 6615 * @flags: flags used by ext4_free_blocks 6616 */ 6617 void ext4_free_blocks(handle_t *handle, struct inode *inode, 6618 struct buffer_head *bh, ext4_fsblk_t block, 6619 unsigned long count, int flags) 6620 { 6621 struct super_block *sb = inode->i_sb; 6622 unsigned int overflow; 6623 struct ext4_sb_info *sbi; 6624 6625 sbi = EXT4_SB(sb); 6626 6627 if (bh) { 6628 if (block) 6629 BUG_ON(block != bh->b_blocknr); 6630 else 6631 block = bh->b_blocknr; 6632 } 6633 6634 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 6635 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count)); 6636 return; 6637 } 6638 6639 might_sleep(); 6640 6641 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 6642 !ext4_inode_block_valid(inode, block, count)) { 6643 ext4_error(sb, "Freeing blocks not in datazone - " 6644 "block = %llu, count = %lu", block, count); 6645 return; 6646 } 6647 flags |= EXT4_FREE_BLOCKS_VALIDATED; 6648 6649 ext4_debug("freeing block %llu\n", block); 6650 trace_ext4_free_blocks(inode, block, count, flags); 6651 6652 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6653 BUG_ON(count > 1); 6654 6655 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 6656 inode, bh, block); 6657 } 6658 6659 /* 6660 * If the extent to be freed does not begin on a cluster 6661 * boundary, we need to deal with partial clusters at the 6662 * beginning and end of the extent. Normally we will free 6663 * blocks at the beginning or the end unless we are explicitly 6664 * requested to avoid doing so. 6665 */ 6666 overflow = EXT4_PBLK_COFF(sbi, block); 6667 if (overflow) { 6668 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 6669 overflow = sbi->s_cluster_ratio - overflow; 6670 block += overflow; 6671 if (count > overflow) 6672 count -= overflow; 6673 else 6674 return; 6675 } else { 6676 block -= overflow; 6677 count += overflow; 6678 } 6679 /* The range changed so it's no longer validated */ 6680 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6681 } 6682 overflow = EXT4_LBLK_COFF(sbi, count); 6683 if (overflow) { 6684 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 6685 if (count > overflow) 6686 count -= overflow; 6687 else 6688 return; 6689 } else 6690 count += sbi->s_cluster_ratio - overflow; 6691 /* The range changed so it's no longer validated */ 6692 flags &= ~EXT4_FREE_BLOCKS_VALIDATED; 6693 } 6694 6695 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 6696 int i; 6697 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 6698 6699 for (i = 0; i < count; i++) { 6700 cond_resched(); 6701 if (is_metadata) 6702 bh = sb_find_get_block(inode->i_sb, block + i); 6703 ext4_forget(handle, is_metadata, inode, bh, block + i); 6704 } 6705 } 6706 6707 ext4_mb_clear_bb(handle, inode, block, count, flags); 6708 } 6709 6710 /** 6711 * ext4_group_add_blocks() -- Add given blocks to an existing group 6712 * @handle: handle to this transaction 6713 * @sb: super block 6714 * @block: start physical block to add to the block group 6715 * @count: number of blocks to free 6716 * 6717 * This marks the blocks as free in the bitmap and buddy. 6718 */ 6719 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 6720 ext4_fsblk_t block, unsigned long count) 6721 { 6722 struct buffer_head *bitmap_bh = NULL; 6723 struct buffer_head *gd_bh; 6724 ext4_group_t block_group; 6725 ext4_grpblk_t bit; 6726 unsigned int i; 6727 struct ext4_group_desc *desc; 6728 struct ext4_sb_info *sbi = EXT4_SB(sb); 6729 struct ext4_buddy e4b; 6730 int err = 0, ret, free_clusters_count; 6731 ext4_grpblk_t clusters_freed; 6732 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 6733 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 6734 unsigned long cluster_count = last_cluster - first_cluster + 1; 6735 6736 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 6737 6738 if (count == 0) 6739 return 0; 6740 6741 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 6742 /* 6743 * Check to see if we are freeing blocks across a group 6744 * boundary. 6745 */ 6746 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 6747 ext4_warning(sb, "too many blocks added to group %u", 6748 block_group); 6749 err = -EINVAL; 6750 goto error_return; 6751 } 6752 6753 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 6754 if (IS_ERR(bitmap_bh)) { 6755 err = PTR_ERR(bitmap_bh); 6756 bitmap_bh = NULL; 6757 goto error_return; 6758 } 6759 6760 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 6761 if (!desc) { 6762 err = -EIO; 6763 goto error_return; 6764 } 6765 6766 if (!ext4_sb_block_valid(sb, NULL, block, count)) { 6767 ext4_error(sb, "Adding blocks in system zones - " 6768 "Block = %llu, count = %lu", 6769 block, count); 6770 err = -EINVAL; 6771 goto error_return; 6772 } 6773 6774 BUFFER_TRACE(bitmap_bh, "getting write access"); 6775 err = ext4_journal_get_write_access(handle, sb, bitmap_bh, 6776 EXT4_JTR_NONE); 6777 if (err) 6778 goto error_return; 6779 6780 /* 6781 * We are about to modify some metadata. Call the journal APIs 6782 * to unshare ->b_data if a currently-committing transaction is 6783 * using it 6784 */ 6785 BUFFER_TRACE(gd_bh, "get_write_access"); 6786 err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE); 6787 if (err) 6788 goto error_return; 6789 6790 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 6791 BUFFER_TRACE(bitmap_bh, "clear bit"); 6792 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 6793 ext4_error(sb, "bit already cleared for block %llu", 6794 (ext4_fsblk_t)(block + i)); 6795 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 6796 } else { 6797 clusters_freed++; 6798 } 6799 } 6800 6801 err = ext4_mb_load_buddy(sb, block_group, &e4b); 6802 if (err) 6803 goto error_return; 6804 6805 /* 6806 * need to update group_info->bb_free and bitmap 6807 * with group lock held. generate_buddy look at 6808 * them with group lock_held 6809 */ 6810 ext4_lock_group(sb, block_group); 6811 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 6812 mb_free_blocks(NULL, &e4b, bit, cluster_count); 6813 free_clusters_count = clusters_freed + 6814 ext4_free_group_clusters(sb, desc); 6815 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 6816 ext4_block_bitmap_csum_set(sb, desc, bitmap_bh); 6817 ext4_group_desc_csum_set(sb, block_group, desc); 6818 ext4_unlock_group(sb, block_group); 6819 percpu_counter_add(&sbi->s_freeclusters_counter, 6820 clusters_freed); 6821 6822 if (sbi->s_log_groups_per_flex) { 6823 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 6824 atomic64_add(clusters_freed, 6825 &sbi_array_rcu_deref(sbi, s_flex_groups, 6826 flex_group)->free_clusters); 6827 } 6828 6829 ext4_mb_unload_buddy(&e4b); 6830 6831 /* We dirtied the bitmap block */ 6832 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 6833 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 6834 6835 /* And the group descriptor block */ 6836 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 6837 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 6838 if (!err) 6839 err = ret; 6840 6841 error_return: 6842 brelse(bitmap_bh); 6843 ext4_std_error(sb, err); 6844 return err; 6845 } 6846 6847 /** 6848 * ext4_trim_extent -- function to TRIM one single free extent in the group 6849 * @sb: super block for the file system 6850 * @start: starting block of the free extent in the alloc. group 6851 * @count: number of blocks to TRIM 6852 * @e4b: ext4 buddy for the group 6853 * 6854 * Trim "count" blocks starting at "start" in the "group". To assure that no 6855 * one will allocate those blocks, mark it as used in buddy bitmap. This must 6856 * be called with under the group lock. 6857 */ 6858 static int ext4_trim_extent(struct super_block *sb, 6859 int start, int count, struct ext4_buddy *e4b) 6860 __releases(bitlock) 6861 __acquires(bitlock) 6862 { 6863 struct ext4_free_extent ex; 6864 ext4_group_t group = e4b->bd_group; 6865 int ret = 0; 6866 6867 trace_ext4_trim_extent(sb, group, start, count); 6868 6869 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 6870 6871 ex.fe_start = start; 6872 ex.fe_group = group; 6873 ex.fe_len = count; 6874 6875 /* 6876 * Mark blocks used, so no one can reuse them while 6877 * being trimmed. 6878 */ 6879 mb_mark_used(e4b, &ex); 6880 ext4_unlock_group(sb, group); 6881 ret = ext4_issue_discard(sb, group, start, count, NULL); 6882 ext4_lock_group(sb, group); 6883 mb_free_blocks(NULL, e4b, start, ex.fe_len); 6884 return ret; 6885 } 6886 6887 static ext4_grpblk_t ext4_last_grp_cluster(struct super_block *sb, 6888 ext4_group_t grp) 6889 { 6890 unsigned long nr_clusters_in_group; 6891 6892 if (grp < (ext4_get_groups_count(sb) - 1)) 6893 nr_clusters_in_group = EXT4_CLUSTERS_PER_GROUP(sb); 6894 else 6895 nr_clusters_in_group = (ext4_blocks_count(EXT4_SB(sb)->s_es) - 6896 ext4_group_first_block_no(sb, grp)) 6897 >> EXT4_CLUSTER_BITS(sb); 6898 6899 return nr_clusters_in_group - 1; 6900 } 6901 6902 static bool ext4_trim_interrupted(void) 6903 { 6904 return fatal_signal_pending(current) || freezing(current); 6905 } 6906 6907 static int ext4_try_to_trim_range(struct super_block *sb, 6908 struct ext4_buddy *e4b, ext4_grpblk_t start, 6909 ext4_grpblk_t max, ext4_grpblk_t minblocks) 6910 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group)) 6911 __releases(ext4_group_lock_ptr(sb, e4b->bd_group)) 6912 { 6913 ext4_grpblk_t next, count, free_count, last, origin_start; 6914 bool set_trimmed = false; 6915 void *bitmap; 6916 6917 last = ext4_last_grp_cluster(sb, e4b->bd_group); 6918 bitmap = e4b->bd_bitmap; 6919 if (start == 0 && max >= last) 6920 set_trimmed = true; 6921 origin_start = start; 6922 start = max(e4b->bd_info->bb_first_free, start); 6923 count = 0; 6924 free_count = 0; 6925 6926 while (start <= max) { 6927 start = mb_find_next_zero_bit(bitmap, max + 1, start); 6928 if (start > max) 6929 break; 6930 6931 next = mb_find_next_bit(bitmap, last + 1, start); 6932 if (origin_start == 0 && next >= last) 6933 set_trimmed = true; 6934 6935 if ((next - start) >= minblocks) { 6936 int ret = ext4_trim_extent(sb, start, next - start, e4b); 6937 6938 if (ret && ret != -EOPNOTSUPP) 6939 return count; 6940 count += next - start; 6941 } 6942 free_count += next - start; 6943 start = next + 1; 6944 6945 if (ext4_trim_interrupted()) 6946 return count; 6947 6948 if (need_resched()) { 6949 ext4_unlock_group(sb, e4b->bd_group); 6950 cond_resched(); 6951 ext4_lock_group(sb, e4b->bd_group); 6952 } 6953 6954 if ((e4b->bd_info->bb_free - free_count) < minblocks) 6955 break; 6956 } 6957 6958 if (set_trimmed) 6959 EXT4_MB_GRP_SET_TRIMMED(e4b->bd_info); 6960 6961 return count; 6962 } 6963 6964 /** 6965 * ext4_trim_all_free -- function to trim all free space in alloc. group 6966 * @sb: super block for file system 6967 * @group: group to be trimmed 6968 * @start: first group block to examine 6969 * @max: last group block to examine 6970 * @minblocks: minimum extent block count 6971 * 6972 * ext4_trim_all_free walks through group's block bitmap searching for free 6973 * extents. When the free extent is found, mark it as used in group buddy 6974 * bitmap. Then issue a TRIM command on this extent and free the extent in 6975 * the group buddy bitmap. 6976 */ 6977 static ext4_grpblk_t 6978 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 6979 ext4_grpblk_t start, ext4_grpblk_t max, 6980 ext4_grpblk_t minblocks) 6981 { 6982 struct ext4_buddy e4b; 6983 int ret; 6984 6985 trace_ext4_trim_all_free(sb, group, start, max); 6986 6987 ret = ext4_mb_load_buddy(sb, group, &e4b); 6988 if (ret) { 6989 ext4_warning(sb, "Error %d loading buddy information for %u", 6990 ret, group); 6991 return ret; 6992 } 6993 6994 ext4_lock_group(sb, group); 6995 6996 if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) || 6997 minblocks < EXT4_SB(sb)->s_last_trim_minblks) 6998 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks); 6999 else 7000 ret = 0; 7001 7002 ext4_unlock_group(sb, group); 7003 ext4_mb_unload_buddy(&e4b); 7004 7005 ext4_debug("trimmed %d blocks in the group %d\n", 7006 ret, group); 7007 7008 return ret; 7009 } 7010 7011 /** 7012 * ext4_trim_fs() -- trim ioctl handle function 7013 * @sb: superblock for filesystem 7014 * @range: fstrim_range structure 7015 * 7016 * start: First Byte to trim 7017 * len: number of Bytes to trim from start 7018 * minlen: minimum extent length in Bytes 7019 * ext4_trim_fs goes through all allocation groups containing Bytes from 7020 * start to start+len. For each such a group ext4_trim_all_free function 7021 * is invoked to trim all free space. 7022 */ 7023 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 7024 { 7025 unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev); 7026 struct ext4_group_info *grp; 7027 ext4_group_t group, first_group, last_group; 7028 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 7029 uint64_t start, end, minlen, trimmed = 0; 7030 ext4_fsblk_t first_data_blk = 7031 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 7032 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 7033 int ret = 0; 7034 7035 start = range->start >> sb->s_blocksize_bits; 7036 end = start + (range->len >> sb->s_blocksize_bits) - 1; 7037 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7038 range->minlen >> sb->s_blocksize_bits); 7039 7040 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 7041 start >= max_blks || 7042 range->len < sb->s_blocksize) 7043 return -EINVAL; 7044 /* No point to try to trim less than discard granularity */ 7045 if (range->minlen < discard_granularity) { 7046 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 7047 discard_granularity >> sb->s_blocksize_bits); 7048 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb)) 7049 goto out; 7050 } 7051 if (end >= max_blks - 1) 7052 end = max_blks - 1; 7053 if (end <= first_data_blk) 7054 goto out; 7055 if (start < first_data_blk) 7056 start = first_data_blk; 7057 7058 /* Determine first and last group to examine based on start and end */ 7059 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 7060 &first_group, &first_cluster); 7061 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 7062 &last_group, &last_cluster); 7063 7064 /* end now represents the last cluster to discard in this group */ 7065 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7066 7067 for (group = first_group; group <= last_group; group++) { 7068 if (ext4_trim_interrupted()) 7069 break; 7070 grp = ext4_get_group_info(sb, group); 7071 if (!grp) 7072 continue; 7073 /* We only do this if the grp has never been initialized */ 7074 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 7075 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 7076 if (ret) 7077 break; 7078 } 7079 7080 /* 7081 * For all the groups except the last one, last cluster will 7082 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 7083 * change it for the last group, note that last_cluster is 7084 * already computed earlier by ext4_get_group_no_and_offset() 7085 */ 7086 if (group == last_group) 7087 end = last_cluster; 7088 if (grp->bb_free >= minlen) { 7089 cnt = ext4_trim_all_free(sb, group, first_cluster, 7090 end, minlen); 7091 if (cnt < 0) { 7092 ret = cnt; 7093 break; 7094 } 7095 trimmed += cnt; 7096 } 7097 7098 /* 7099 * For every group except the first one, we are sure 7100 * that the first cluster to discard will be cluster #0. 7101 */ 7102 first_cluster = 0; 7103 } 7104 7105 if (!ret) 7106 EXT4_SB(sb)->s_last_trim_minblks = minlen; 7107 7108 out: 7109 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 7110 return ret; 7111 } 7112 7113 /* Iterate all the free extents in the group. */ 7114 int 7115 ext4_mballoc_query_range( 7116 struct super_block *sb, 7117 ext4_group_t group, 7118 ext4_grpblk_t start, 7119 ext4_grpblk_t end, 7120 ext4_mballoc_query_range_fn formatter, 7121 void *priv) 7122 { 7123 void *bitmap; 7124 ext4_grpblk_t next; 7125 struct ext4_buddy e4b; 7126 int error; 7127 7128 error = ext4_mb_load_buddy(sb, group, &e4b); 7129 if (error) 7130 return error; 7131 bitmap = e4b.bd_bitmap; 7132 7133 ext4_lock_group(sb, group); 7134 7135 start = max(e4b.bd_info->bb_first_free, start); 7136 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 7137 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 7138 7139 while (start <= end) { 7140 start = mb_find_next_zero_bit(bitmap, end + 1, start); 7141 if (start > end) 7142 break; 7143 next = mb_find_next_bit(bitmap, end + 1, start); 7144 7145 ext4_unlock_group(sb, group); 7146 error = formatter(sb, group, start, next - start, priv); 7147 if (error) 7148 goto out_unload; 7149 ext4_lock_group(sb, group); 7150 7151 start = next + 1; 7152 } 7153 7154 ext4_unlock_group(sb, group); 7155 out_unload: 7156 ext4_mb_unload_buddy(&e4b); 7157 7158 return error; 7159 } 7160