1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <trace/events/ext4.h> 20 21 #ifdef CONFIG_EXT4_DEBUG 22 ushort ext4_mballoc_debug __read_mostly; 23 24 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644); 25 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc"); 26 #endif 27 28 /* 29 * MUSTDO: 30 * - test ext4_ext_search_left() and ext4_ext_search_right() 31 * - search for metadata in few groups 32 * 33 * TODO v4: 34 * - normalization should take into account whether file is still open 35 * - discard preallocations if no free space left (policy?) 36 * - don't normalize tails 37 * - quota 38 * - reservation for superuser 39 * 40 * TODO v3: 41 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 42 * - track min/max extents in each group for better group selection 43 * - mb_mark_used() may allocate chunk right after splitting buddy 44 * - tree of groups sorted by number of free blocks 45 * - error handling 46 */ 47 48 /* 49 * The allocation request involve request for multiple number of blocks 50 * near to the goal(block) value specified. 51 * 52 * During initialization phase of the allocator we decide to use the 53 * group preallocation or inode preallocation depending on the size of 54 * the file. The size of the file could be the resulting file size we 55 * would have after allocation, or the current file size, which ever 56 * is larger. If the size is less than sbi->s_mb_stream_request we 57 * select to use the group preallocation. The default value of 58 * s_mb_stream_request is 16 blocks. This can also be tuned via 59 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 60 * terms of number of blocks. 61 * 62 * The main motivation for having small file use group preallocation is to 63 * ensure that we have small files closer together on the disk. 64 * 65 * First stage the allocator looks at the inode prealloc list, 66 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 67 * spaces for this particular inode. The inode prealloc space is 68 * represented as: 69 * 70 * pa_lstart -> the logical start block for this prealloc space 71 * pa_pstart -> the physical start block for this prealloc space 72 * pa_len -> length for this prealloc space (in clusters) 73 * pa_free -> free space available in this prealloc space (in clusters) 74 * 75 * The inode preallocation space is used looking at the _logical_ start 76 * block. If only the logical file block falls within the range of prealloc 77 * space we will consume the particular prealloc space. This makes sure that 78 * we have contiguous physical blocks representing the file blocks 79 * 80 * The important thing to be noted in case of inode prealloc space is that 81 * we don't modify the values associated to inode prealloc space except 82 * pa_free. 83 * 84 * If we are not able to find blocks in the inode prealloc space and if we 85 * have the group allocation flag set then we look at the locality group 86 * prealloc space. These are per CPU prealloc list represented as 87 * 88 * ext4_sb_info.s_locality_groups[smp_processor_id()] 89 * 90 * The reason for having a per cpu locality group is to reduce the contention 91 * between CPUs. It is possible to get scheduled at this point. 92 * 93 * The locality group prealloc space is used looking at whether we have 94 * enough free space (pa_free) within the prealloc space. 95 * 96 * If we can't allocate blocks via inode prealloc or/and locality group 97 * prealloc then we look at the buddy cache. The buddy cache is represented 98 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 99 * mapped to the buddy and bitmap information regarding different 100 * groups. The buddy information is attached to buddy cache inode so that 101 * we can access them through the page cache. The information regarding 102 * each group is loaded via ext4_mb_load_buddy. The information involve 103 * block bitmap and buddy information. The information are stored in the 104 * inode as: 105 * 106 * { page } 107 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 108 * 109 * 110 * one block each for bitmap and buddy information. So for each group we 111 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 112 * blocksize) blocks. So it can have information regarding groups_per_page 113 * which is blocks_per_page/2 114 * 115 * The buddy cache inode is not stored on disk. The inode is thrown 116 * away when the filesystem is unmounted. 117 * 118 * We look for count number of blocks in the buddy cache. If we were able 119 * to locate that many free blocks we return with additional information 120 * regarding rest of the contiguous physical block available 121 * 122 * Before allocating blocks via buddy cache we normalize the request 123 * blocks. This ensure we ask for more blocks that we needed. The extra 124 * blocks that we get after allocation is added to the respective prealloc 125 * list. In case of inode preallocation we follow a list of heuristics 126 * based on file size. This can be found in ext4_mb_normalize_request. If 127 * we are doing a group prealloc we try to normalize the request to 128 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 129 * dependent on the cluster size; for non-bigalloc file systems, it is 130 * 512 blocks. This can be tuned via 131 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 132 * terms of number of blocks. If we have mounted the file system with -O 133 * stripe=<value> option the group prealloc request is normalized to the 134 * the smallest multiple of the stripe value (sbi->s_stripe) which is 135 * greater than the default mb_group_prealloc. 136 * 137 * The regular allocator (using the buddy cache) supports a few tunables. 138 * 139 * /sys/fs/ext4/<partition>/mb_min_to_scan 140 * /sys/fs/ext4/<partition>/mb_max_to_scan 141 * /sys/fs/ext4/<partition>/mb_order2_req 142 * 143 * The regular allocator uses buddy scan only if the request len is power of 144 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 145 * value of s_mb_order2_reqs can be tuned via 146 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 147 * stripe size (sbi->s_stripe), we try to search for contiguous block in 148 * stripe size. This should result in better allocation on RAID setups. If 149 * not, we search in the specific group using bitmap for best extents. The 150 * tunable min_to_scan and max_to_scan control the behaviour here. 151 * min_to_scan indicate how long the mballoc __must__ look for a best 152 * extent and max_to_scan indicates how long the mballoc __can__ look for a 153 * best extent in the found extents. Searching for the blocks starts with 154 * the group specified as the goal value in allocation context via 155 * ac_g_ex. Each group is first checked based on the criteria whether it 156 * can be used for allocation. ext4_mb_good_group explains how the groups are 157 * checked. 158 * 159 * Both the prealloc space are getting populated as above. So for the first 160 * request we will hit the buddy cache which will result in this prealloc 161 * space getting filled. The prealloc space is then later used for the 162 * subsequent request. 163 */ 164 165 /* 166 * mballoc operates on the following data: 167 * - on-disk bitmap 168 * - in-core buddy (actually includes buddy and bitmap) 169 * - preallocation descriptors (PAs) 170 * 171 * there are two types of preallocations: 172 * - inode 173 * assiged to specific inode and can be used for this inode only. 174 * it describes part of inode's space preallocated to specific 175 * physical blocks. any block from that preallocated can be used 176 * independent. the descriptor just tracks number of blocks left 177 * unused. so, before taking some block from descriptor, one must 178 * make sure corresponded logical block isn't allocated yet. this 179 * also means that freeing any block within descriptor's range 180 * must discard all preallocated blocks. 181 * - locality group 182 * assigned to specific locality group which does not translate to 183 * permanent set of inodes: inode can join and leave group. space 184 * from this type of preallocation can be used for any inode. thus 185 * it's consumed from the beginning to the end. 186 * 187 * relation between them can be expressed as: 188 * in-core buddy = on-disk bitmap + preallocation descriptors 189 * 190 * this mean blocks mballoc considers used are: 191 * - allocated blocks (persistent) 192 * - preallocated blocks (non-persistent) 193 * 194 * consistency in mballoc world means that at any time a block is either 195 * free or used in ALL structures. notice: "any time" should not be read 196 * literally -- time is discrete and delimited by locks. 197 * 198 * to keep it simple, we don't use block numbers, instead we count number of 199 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 200 * 201 * all operations can be expressed as: 202 * - init buddy: buddy = on-disk + PAs 203 * - new PA: buddy += N; PA = N 204 * - use inode PA: on-disk += N; PA -= N 205 * - discard inode PA buddy -= on-disk - PA; PA = 0 206 * - use locality group PA on-disk += N; PA -= N 207 * - discard locality group PA buddy -= PA; PA = 0 208 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 209 * is used in real operation because we can't know actual used 210 * bits from PA, only from on-disk bitmap 211 * 212 * if we follow this strict logic, then all operations above should be atomic. 213 * given some of them can block, we'd have to use something like semaphores 214 * killing performance on high-end SMP hardware. let's try to relax it using 215 * the following knowledge: 216 * 1) if buddy is referenced, it's already initialized 217 * 2) while block is used in buddy and the buddy is referenced, 218 * nobody can re-allocate that block 219 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 220 * bit set and PA claims same block, it's OK. IOW, one can set bit in 221 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 222 * block 223 * 224 * so, now we're building a concurrency table: 225 * - init buddy vs. 226 * - new PA 227 * blocks for PA are allocated in the buddy, buddy must be referenced 228 * until PA is linked to allocation group to avoid concurrent buddy init 229 * - use inode PA 230 * we need to make sure that either on-disk bitmap or PA has uptodate data 231 * given (3) we care that PA-=N operation doesn't interfere with init 232 * - discard inode PA 233 * the simplest way would be to have buddy initialized by the discard 234 * - use locality group PA 235 * again PA-=N must be serialized with init 236 * - discard locality group PA 237 * the simplest way would be to have buddy initialized by the discard 238 * - new PA vs. 239 * - use inode PA 240 * i_data_sem serializes them 241 * - discard inode PA 242 * discard process must wait until PA isn't used by another process 243 * - use locality group PA 244 * some mutex should serialize them 245 * - discard locality group PA 246 * discard process must wait until PA isn't used by another process 247 * - use inode PA 248 * - use inode PA 249 * i_data_sem or another mutex should serializes them 250 * - discard inode PA 251 * discard process must wait until PA isn't used by another process 252 * - use locality group PA 253 * nothing wrong here -- they're different PAs covering different blocks 254 * - discard locality group PA 255 * discard process must wait until PA isn't used by another process 256 * 257 * now we're ready to make few consequences: 258 * - PA is referenced and while it is no discard is possible 259 * - PA is referenced until block isn't marked in on-disk bitmap 260 * - PA changes only after on-disk bitmap 261 * - discard must not compete with init. either init is done before 262 * any discard or they're serialized somehow 263 * - buddy init as sum of on-disk bitmap and PAs is done atomically 264 * 265 * a special case when we've used PA to emptiness. no need to modify buddy 266 * in this case, but we should care about concurrent init 267 * 268 */ 269 270 /* 271 * Logic in few words: 272 * 273 * - allocation: 274 * load group 275 * find blocks 276 * mark bits in on-disk bitmap 277 * release group 278 * 279 * - use preallocation: 280 * find proper PA (per-inode or group) 281 * load group 282 * mark bits in on-disk bitmap 283 * release group 284 * release PA 285 * 286 * - free: 287 * load group 288 * mark bits in on-disk bitmap 289 * release group 290 * 291 * - discard preallocations in group: 292 * mark PAs deleted 293 * move them onto local list 294 * load on-disk bitmap 295 * load group 296 * remove PA from object (inode or locality group) 297 * mark free blocks in-core 298 * 299 * - discard inode's preallocations: 300 */ 301 302 /* 303 * Locking rules 304 * 305 * Locks: 306 * - bitlock on a group (group) 307 * - object (inode/locality) (object) 308 * - per-pa lock (pa) 309 * 310 * Paths: 311 * - new pa 312 * object 313 * group 314 * 315 * - find and use pa: 316 * pa 317 * 318 * - release consumed pa: 319 * pa 320 * group 321 * object 322 * 323 * - generate in-core bitmap: 324 * group 325 * pa 326 * 327 * - discard all for given object (inode, locality group): 328 * object 329 * pa 330 * group 331 * 332 * - discard all for given group: 333 * group 334 * pa 335 * group 336 * object 337 * 338 */ 339 static struct kmem_cache *ext4_pspace_cachep; 340 static struct kmem_cache *ext4_ac_cachep; 341 static struct kmem_cache *ext4_free_data_cachep; 342 343 /* We create slab caches for groupinfo data structures based on the 344 * superblock block size. There will be one per mounted filesystem for 345 * each unique s_blocksize_bits */ 346 #define NR_GRPINFO_CACHES 8 347 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 348 349 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 350 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 351 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 352 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 353 }; 354 355 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 356 ext4_group_t group); 357 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 358 ext4_group_t group); 359 360 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 361 { 362 #if BITS_PER_LONG == 64 363 *bit += ((unsigned long) addr & 7UL) << 3; 364 addr = (void *) ((unsigned long) addr & ~7UL); 365 #elif BITS_PER_LONG == 32 366 *bit += ((unsigned long) addr & 3UL) << 3; 367 addr = (void *) ((unsigned long) addr & ~3UL); 368 #else 369 #error "how many bits you are?!" 370 #endif 371 return addr; 372 } 373 374 static inline int mb_test_bit(int bit, void *addr) 375 { 376 /* 377 * ext4_test_bit on architecture like powerpc 378 * needs unsigned long aligned address 379 */ 380 addr = mb_correct_addr_and_bit(&bit, addr); 381 return ext4_test_bit(bit, addr); 382 } 383 384 static inline void mb_set_bit(int bit, void *addr) 385 { 386 addr = mb_correct_addr_and_bit(&bit, addr); 387 ext4_set_bit(bit, addr); 388 } 389 390 static inline void mb_clear_bit(int bit, void *addr) 391 { 392 addr = mb_correct_addr_and_bit(&bit, addr); 393 ext4_clear_bit(bit, addr); 394 } 395 396 static inline int mb_test_and_clear_bit(int bit, void *addr) 397 { 398 addr = mb_correct_addr_and_bit(&bit, addr); 399 return ext4_test_and_clear_bit(bit, addr); 400 } 401 402 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 403 { 404 int fix = 0, ret, tmpmax; 405 addr = mb_correct_addr_and_bit(&fix, addr); 406 tmpmax = max + fix; 407 start += fix; 408 409 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 410 if (ret > max) 411 return max; 412 return ret; 413 } 414 415 static inline int mb_find_next_bit(void *addr, int max, int start) 416 { 417 int fix = 0, ret, tmpmax; 418 addr = mb_correct_addr_and_bit(&fix, addr); 419 tmpmax = max + fix; 420 start += fix; 421 422 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 423 if (ret > max) 424 return max; 425 return ret; 426 } 427 428 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 429 { 430 char *bb; 431 432 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 433 BUG_ON(max == NULL); 434 435 if (order > e4b->bd_blkbits + 1) { 436 *max = 0; 437 return NULL; 438 } 439 440 /* at order 0 we see each particular block */ 441 if (order == 0) { 442 *max = 1 << (e4b->bd_blkbits + 3); 443 return e4b->bd_bitmap; 444 } 445 446 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 447 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 448 449 return bb; 450 } 451 452 #ifdef DOUBLE_CHECK 453 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 454 int first, int count) 455 { 456 int i; 457 struct super_block *sb = e4b->bd_sb; 458 459 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 460 return; 461 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 462 for (i = 0; i < count; i++) { 463 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 464 ext4_fsblk_t blocknr; 465 466 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 467 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 468 ext4_grp_locked_error(sb, e4b->bd_group, 469 inode ? inode->i_ino : 0, 470 blocknr, 471 "freeing block already freed " 472 "(bit %u)", 473 first + i); 474 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 475 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 476 } 477 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 478 } 479 } 480 481 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 482 { 483 int i; 484 485 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 486 return; 487 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 488 for (i = 0; i < count; i++) { 489 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 490 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 491 } 492 } 493 494 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 495 { 496 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 497 unsigned char *b1, *b2; 498 int i; 499 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 500 b2 = (unsigned char *) bitmap; 501 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 502 if (b1[i] != b2[i]) { 503 ext4_msg(e4b->bd_sb, KERN_ERR, 504 "corruption in group %u " 505 "at byte %u(%u): %x in copy != %x " 506 "on disk/prealloc", 507 e4b->bd_group, i, i * 8, b1[i], b2[i]); 508 BUG(); 509 } 510 } 511 } 512 } 513 514 #else 515 static inline void mb_free_blocks_double(struct inode *inode, 516 struct ext4_buddy *e4b, int first, int count) 517 { 518 return; 519 } 520 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 521 int first, int count) 522 { 523 return; 524 } 525 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 526 { 527 return; 528 } 529 #endif 530 531 #ifdef AGGRESSIVE_CHECK 532 533 #define MB_CHECK_ASSERT(assert) \ 534 do { \ 535 if (!(assert)) { \ 536 printk(KERN_EMERG \ 537 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 538 function, file, line, # assert); \ 539 BUG(); \ 540 } \ 541 } while (0) 542 543 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 544 const char *function, int line) 545 { 546 struct super_block *sb = e4b->bd_sb; 547 int order = e4b->bd_blkbits + 1; 548 int max; 549 int max2; 550 int i; 551 int j; 552 int k; 553 int count; 554 struct ext4_group_info *grp; 555 int fragments = 0; 556 int fstart; 557 struct list_head *cur; 558 void *buddy; 559 void *buddy2; 560 561 { 562 static int mb_check_counter; 563 if (mb_check_counter++ % 100 != 0) 564 return 0; 565 } 566 567 while (order > 1) { 568 buddy = mb_find_buddy(e4b, order, &max); 569 MB_CHECK_ASSERT(buddy); 570 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 571 MB_CHECK_ASSERT(buddy2); 572 MB_CHECK_ASSERT(buddy != buddy2); 573 MB_CHECK_ASSERT(max * 2 == max2); 574 575 count = 0; 576 for (i = 0; i < max; i++) { 577 578 if (mb_test_bit(i, buddy)) { 579 /* only single bit in buddy2 may be 1 */ 580 if (!mb_test_bit(i << 1, buddy2)) { 581 MB_CHECK_ASSERT( 582 mb_test_bit((i<<1)+1, buddy2)); 583 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 584 MB_CHECK_ASSERT( 585 mb_test_bit(i << 1, buddy2)); 586 } 587 continue; 588 } 589 590 /* both bits in buddy2 must be 1 */ 591 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 592 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 593 594 for (j = 0; j < (1 << order); j++) { 595 k = (i * (1 << order)) + j; 596 MB_CHECK_ASSERT( 597 !mb_test_bit(k, e4b->bd_bitmap)); 598 } 599 count++; 600 } 601 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 602 order--; 603 } 604 605 fstart = -1; 606 buddy = mb_find_buddy(e4b, 0, &max); 607 for (i = 0; i < max; i++) { 608 if (!mb_test_bit(i, buddy)) { 609 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 610 if (fstart == -1) { 611 fragments++; 612 fstart = i; 613 } 614 continue; 615 } 616 fstart = -1; 617 /* check used bits only */ 618 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 619 buddy2 = mb_find_buddy(e4b, j, &max2); 620 k = i >> j; 621 MB_CHECK_ASSERT(k < max2); 622 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 623 } 624 } 625 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 626 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 627 628 grp = ext4_get_group_info(sb, e4b->bd_group); 629 list_for_each(cur, &grp->bb_prealloc_list) { 630 ext4_group_t groupnr; 631 struct ext4_prealloc_space *pa; 632 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 633 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 634 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 635 for (i = 0; i < pa->pa_len; i++) 636 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 637 } 638 return 0; 639 } 640 #undef MB_CHECK_ASSERT 641 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 642 __FILE__, __func__, __LINE__) 643 #else 644 #define mb_check_buddy(e4b) 645 #endif 646 647 /* 648 * Divide blocks started from @first with length @len into 649 * smaller chunks with power of 2 blocks. 650 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 651 * then increase bb_counters[] for corresponded chunk size. 652 */ 653 static void ext4_mb_mark_free_simple(struct super_block *sb, 654 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 655 struct ext4_group_info *grp) 656 { 657 struct ext4_sb_info *sbi = EXT4_SB(sb); 658 ext4_grpblk_t min; 659 ext4_grpblk_t max; 660 ext4_grpblk_t chunk; 661 unsigned int border; 662 663 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 664 665 border = 2 << sb->s_blocksize_bits; 666 667 while (len > 0) { 668 /* find how many blocks can be covered since this position */ 669 max = ffs(first | border) - 1; 670 671 /* find how many blocks of power 2 we need to mark */ 672 min = fls(len) - 1; 673 674 if (max < min) 675 min = max; 676 chunk = 1 << min; 677 678 /* mark multiblock chunks only */ 679 grp->bb_counters[min]++; 680 if (min > 0) 681 mb_clear_bit(first >> min, 682 buddy + sbi->s_mb_offsets[min]); 683 684 len -= chunk; 685 first += chunk; 686 } 687 } 688 689 /* 690 * Cache the order of the largest free extent we have available in this block 691 * group. 692 */ 693 static void 694 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 695 { 696 int i; 697 int bits; 698 699 grp->bb_largest_free_order = -1; /* uninit */ 700 701 bits = sb->s_blocksize_bits + 1; 702 for (i = bits; i >= 0; i--) { 703 if (grp->bb_counters[i] > 0) { 704 grp->bb_largest_free_order = i; 705 break; 706 } 707 } 708 } 709 710 static noinline_for_stack 711 void ext4_mb_generate_buddy(struct super_block *sb, 712 void *buddy, void *bitmap, ext4_group_t group) 713 { 714 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 715 struct ext4_sb_info *sbi = EXT4_SB(sb); 716 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 717 ext4_grpblk_t i = 0; 718 ext4_grpblk_t first; 719 ext4_grpblk_t len; 720 unsigned free = 0; 721 unsigned fragments = 0; 722 unsigned long long period = get_cycles(); 723 724 /* initialize buddy from bitmap which is aggregation 725 * of on-disk bitmap and preallocations */ 726 i = mb_find_next_zero_bit(bitmap, max, 0); 727 grp->bb_first_free = i; 728 while (i < max) { 729 fragments++; 730 first = i; 731 i = mb_find_next_bit(bitmap, max, i); 732 len = i - first; 733 free += len; 734 if (len > 1) 735 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 736 else 737 grp->bb_counters[0]++; 738 if (i < max) 739 i = mb_find_next_zero_bit(bitmap, max, i); 740 } 741 grp->bb_fragments = fragments; 742 743 if (free != grp->bb_free) { 744 ext4_grp_locked_error(sb, group, 0, 0, 745 "block bitmap and bg descriptor " 746 "inconsistent: %u vs %u free clusters", 747 free, grp->bb_free); 748 /* 749 * If we intend to continue, we consider group descriptor 750 * corrupt and update bb_free using bitmap value 751 */ 752 grp->bb_free = free; 753 ext4_mark_group_bitmap_corrupted(sb, group, 754 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 755 } 756 mb_set_largest_free_order(sb, grp); 757 758 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 759 760 period = get_cycles() - period; 761 spin_lock(&sbi->s_bal_lock); 762 sbi->s_mb_buddies_generated++; 763 sbi->s_mb_generation_time += period; 764 spin_unlock(&sbi->s_bal_lock); 765 } 766 767 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 768 { 769 int count; 770 int order = 1; 771 void *buddy; 772 773 while ((buddy = mb_find_buddy(e4b, order++, &count))) { 774 ext4_set_bits(buddy, 0, count); 775 } 776 e4b->bd_info->bb_fragments = 0; 777 memset(e4b->bd_info->bb_counters, 0, 778 sizeof(*e4b->bd_info->bb_counters) * 779 (e4b->bd_sb->s_blocksize_bits + 2)); 780 781 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 782 e4b->bd_bitmap, e4b->bd_group); 783 } 784 785 /* The buddy information is attached the buddy cache inode 786 * for convenience. The information regarding each group 787 * is loaded via ext4_mb_load_buddy. The information involve 788 * block bitmap and buddy information. The information are 789 * stored in the inode as 790 * 791 * { page } 792 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 793 * 794 * 795 * one block each for bitmap and buddy information. 796 * So for each group we take up 2 blocks. A page can 797 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 798 * So it can have information regarding groups_per_page which 799 * is blocks_per_page/2 800 * 801 * Locking note: This routine takes the block group lock of all groups 802 * for this page; do not hold this lock when calling this routine! 803 */ 804 805 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 806 { 807 ext4_group_t ngroups; 808 int blocksize; 809 int blocks_per_page; 810 int groups_per_page; 811 int err = 0; 812 int i; 813 ext4_group_t first_group, group; 814 int first_block; 815 struct super_block *sb; 816 struct buffer_head *bhs; 817 struct buffer_head **bh = NULL; 818 struct inode *inode; 819 char *data; 820 char *bitmap; 821 struct ext4_group_info *grinfo; 822 823 mb_debug(1, "init page %lu\n", page->index); 824 825 inode = page->mapping->host; 826 sb = inode->i_sb; 827 ngroups = ext4_get_groups_count(sb); 828 blocksize = i_blocksize(inode); 829 blocks_per_page = PAGE_SIZE / blocksize; 830 831 groups_per_page = blocks_per_page >> 1; 832 if (groups_per_page == 0) 833 groups_per_page = 1; 834 835 /* allocate buffer_heads to read bitmaps */ 836 if (groups_per_page > 1) { 837 i = sizeof(struct buffer_head *) * groups_per_page; 838 bh = kzalloc(i, gfp); 839 if (bh == NULL) { 840 err = -ENOMEM; 841 goto out; 842 } 843 } else 844 bh = &bhs; 845 846 first_group = page->index * blocks_per_page / 2; 847 848 /* read all groups the page covers into the cache */ 849 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 850 if (group >= ngroups) 851 break; 852 853 grinfo = ext4_get_group_info(sb, group); 854 /* 855 * If page is uptodate then we came here after online resize 856 * which added some new uninitialized group info structs, so 857 * we must skip all initialized uptodate buddies on the page, 858 * which may be currently in use by an allocating task. 859 */ 860 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 861 bh[i] = NULL; 862 continue; 863 } 864 bh[i] = ext4_read_block_bitmap_nowait(sb, group); 865 if (IS_ERR(bh[i])) { 866 err = PTR_ERR(bh[i]); 867 bh[i] = NULL; 868 goto out; 869 } 870 mb_debug(1, "read bitmap for group %u\n", group); 871 } 872 873 /* wait for I/O completion */ 874 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 875 int err2; 876 877 if (!bh[i]) 878 continue; 879 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 880 if (!err) 881 err = err2; 882 } 883 884 first_block = page->index * blocks_per_page; 885 for (i = 0; i < blocks_per_page; i++) { 886 group = (first_block + i) >> 1; 887 if (group >= ngroups) 888 break; 889 890 if (!bh[group - first_group]) 891 /* skip initialized uptodate buddy */ 892 continue; 893 894 if (!buffer_verified(bh[group - first_group])) 895 /* Skip faulty bitmaps */ 896 continue; 897 err = 0; 898 899 /* 900 * data carry information regarding this 901 * particular group in the format specified 902 * above 903 * 904 */ 905 data = page_address(page) + (i * blocksize); 906 bitmap = bh[group - first_group]->b_data; 907 908 /* 909 * We place the buddy block and bitmap block 910 * close together 911 */ 912 if ((first_block + i) & 1) { 913 /* this is block of buddy */ 914 BUG_ON(incore == NULL); 915 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 916 group, page->index, i * blocksize); 917 trace_ext4_mb_buddy_bitmap_load(sb, group); 918 grinfo = ext4_get_group_info(sb, group); 919 grinfo->bb_fragments = 0; 920 memset(grinfo->bb_counters, 0, 921 sizeof(*grinfo->bb_counters) * 922 (sb->s_blocksize_bits+2)); 923 /* 924 * incore got set to the group block bitmap below 925 */ 926 ext4_lock_group(sb, group); 927 /* init the buddy */ 928 memset(data, 0xff, blocksize); 929 ext4_mb_generate_buddy(sb, data, incore, group); 930 ext4_unlock_group(sb, group); 931 incore = NULL; 932 } else { 933 /* this is block of bitmap */ 934 BUG_ON(incore != NULL); 935 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 936 group, page->index, i * blocksize); 937 trace_ext4_mb_bitmap_load(sb, group); 938 939 /* see comments in ext4_mb_put_pa() */ 940 ext4_lock_group(sb, group); 941 memcpy(data, bitmap, blocksize); 942 943 /* mark all preallocated blks used in in-core bitmap */ 944 ext4_mb_generate_from_pa(sb, data, group); 945 ext4_mb_generate_from_freelist(sb, data, group); 946 ext4_unlock_group(sb, group); 947 948 /* set incore so that the buddy information can be 949 * generated using this 950 */ 951 incore = data; 952 } 953 } 954 SetPageUptodate(page); 955 956 out: 957 if (bh) { 958 for (i = 0; i < groups_per_page; i++) 959 brelse(bh[i]); 960 if (bh != &bhs) 961 kfree(bh); 962 } 963 return err; 964 } 965 966 /* 967 * Lock the buddy and bitmap pages. This make sure other parallel init_group 968 * on the same buddy page doesn't happen whild holding the buddy page lock. 969 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 970 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 971 */ 972 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 973 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 974 { 975 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 976 int block, pnum, poff; 977 int blocks_per_page; 978 struct page *page; 979 980 e4b->bd_buddy_page = NULL; 981 e4b->bd_bitmap_page = NULL; 982 983 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 984 /* 985 * the buddy cache inode stores the block bitmap 986 * and buddy information in consecutive blocks. 987 * So for each group we need two blocks. 988 */ 989 block = group * 2; 990 pnum = block / blocks_per_page; 991 poff = block % blocks_per_page; 992 page = find_or_create_page(inode->i_mapping, pnum, gfp); 993 if (!page) 994 return -ENOMEM; 995 BUG_ON(page->mapping != inode->i_mapping); 996 e4b->bd_bitmap_page = page; 997 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 998 999 if (blocks_per_page >= 2) { 1000 /* buddy and bitmap are on the same page */ 1001 return 0; 1002 } 1003 1004 block++; 1005 pnum = block / blocks_per_page; 1006 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1007 if (!page) 1008 return -ENOMEM; 1009 BUG_ON(page->mapping != inode->i_mapping); 1010 e4b->bd_buddy_page = page; 1011 return 0; 1012 } 1013 1014 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1015 { 1016 if (e4b->bd_bitmap_page) { 1017 unlock_page(e4b->bd_bitmap_page); 1018 put_page(e4b->bd_bitmap_page); 1019 } 1020 if (e4b->bd_buddy_page) { 1021 unlock_page(e4b->bd_buddy_page); 1022 put_page(e4b->bd_buddy_page); 1023 } 1024 } 1025 1026 /* 1027 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1028 * block group lock of all groups for this page; do not hold the BG lock when 1029 * calling this routine! 1030 */ 1031 static noinline_for_stack 1032 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1033 { 1034 1035 struct ext4_group_info *this_grp; 1036 struct ext4_buddy e4b; 1037 struct page *page; 1038 int ret = 0; 1039 1040 might_sleep(); 1041 mb_debug(1, "init group %u\n", group); 1042 this_grp = ext4_get_group_info(sb, group); 1043 /* 1044 * This ensures that we don't reinit the buddy cache 1045 * page which map to the group from which we are already 1046 * allocating. If we are looking at the buddy cache we would 1047 * have taken a reference using ext4_mb_load_buddy and that 1048 * would have pinned buddy page to page cache. 1049 * The call to ext4_mb_get_buddy_page_lock will mark the 1050 * page accessed. 1051 */ 1052 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1053 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1054 /* 1055 * somebody initialized the group 1056 * return without doing anything 1057 */ 1058 goto err; 1059 } 1060 1061 page = e4b.bd_bitmap_page; 1062 ret = ext4_mb_init_cache(page, NULL, gfp); 1063 if (ret) 1064 goto err; 1065 if (!PageUptodate(page)) { 1066 ret = -EIO; 1067 goto err; 1068 } 1069 1070 if (e4b.bd_buddy_page == NULL) { 1071 /* 1072 * If both the bitmap and buddy are in 1073 * the same page we don't need to force 1074 * init the buddy 1075 */ 1076 ret = 0; 1077 goto err; 1078 } 1079 /* init buddy cache */ 1080 page = e4b.bd_buddy_page; 1081 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1082 if (ret) 1083 goto err; 1084 if (!PageUptodate(page)) { 1085 ret = -EIO; 1086 goto err; 1087 } 1088 err: 1089 ext4_mb_put_buddy_page_lock(&e4b); 1090 return ret; 1091 } 1092 1093 /* 1094 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1095 * block group lock of all groups for this page; do not hold the BG lock when 1096 * calling this routine! 1097 */ 1098 static noinline_for_stack int 1099 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1100 struct ext4_buddy *e4b, gfp_t gfp) 1101 { 1102 int blocks_per_page; 1103 int block; 1104 int pnum; 1105 int poff; 1106 struct page *page; 1107 int ret; 1108 struct ext4_group_info *grp; 1109 struct ext4_sb_info *sbi = EXT4_SB(sb); 1110 struct inode *inode = sbi->s_buddy_cache; 1111 1112 might_sleep(); 1113 mb_debug(1, "load group %u\n", group); 1114 1115 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1116 grp = ext4_get_group_info(sb, group); 1117 1118 e4b->bd_blkbits = sb->s_blocksize_bits; 1119 e4b->bd_info = grp; 1120 e4b->bd_sb = sb; 1121 e4b->bd_group = group; 1122 e4b->bd_buddy_page = NULL; 1123 e4b->bd_bitmap_page = NULL; 1124 1125 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1126 /* 1127 * we need full data about the group 1128 * to make a good selection 1129 */ 1130 ret = ext4_mb_init_group(sb, group, gfp); 1131 if (ret) 1132 return ret; 1133 } 1134 1135 /* 1136 * the buddy cache inode stores the block bitmap 1137 * and buddy information in consecutive blocks. 1138 * So for each group we need two blocks. 1139 */ 1140 block = group * 2; 1141 pnum = block / blocks_per_page; 1142 poff = block % blocks_per_page; 1143 1144 /* we could use find_or_create_page(), but it locks page 1145 * what we'd like to avoid in fast path ... */ 1146 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1147 if (page == NULL || !PageUptodate(page)) { 1148 if (page) 1149 /* 1150 * drop the page reference and try 1151 * to get the page with lock. If we 1152 * are not uptodate that implies 1153 * somebody just created the page but 1154 * is yet to initialize the same. So 1155 * wait for it to initialize. 1156 */ 1157 put_page(page); 1158 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1159 if (page) { 1160 BUG_ON(page->mapping != inode->i_mapping); 1161 if (!PageUptodate(page)) { 1162 ret = ext4_mb_init_cache(page, NULL, gfp); 1163 if (ret) { 1164 unlock_page(page); 1165 goto err; 1166 } 1167 mb_cmp_bitmaps(e4b, page_address(page) + 1168 (poff * sb->s_blocksize)); 1169 } 1170 unlock_page(page); 1171 } 1172 } 1173 if (page == NULL) { 1174 ret = -ENOMEM; 1175 goto err; 1176 } 1177 if (!PageUptodate(page)) { 1178 ret = -EIO; 1179 goto err; 1180 } 1181 1182 /* Pages marked accessed already */ 1183 e4b->bd_bitmap_page = page; 1184 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1185 1186 block++; 1187 pnum = block / blocks_per_page; 1188 poff = block % blocks_per_page; 1189 1190 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1191 if (page == NULL || !PageUptodate(page)) { 1192 if (page) 1193 put_page(page); 1194 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1195 if (page) { 1196 BUG_ON(page->mapping != inode->i_mapping); 1197 if (!PageUptodate(page)) { 1198 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1199 gfp); 1200 if (ret) { 1201 unlock_page(page); 1202 goto err; 1203 } 1204 } 1205 unlock_page(page); 1206 } 1207 } 1208 if (page == NULL) { 1209 ret = -ENOMEM; 1210 goto err; 1211 } 1212 if (!PageUptodate(page)) { 1213 ret = -EIO; 1214 goto err; 1215 } 1216 1217 /* Pages marked accessed already */ 1218 e4b->bd_buddy_page = page; 1219 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1220 1221 BUG_ON(e4b->bd_bitmap_page == NULL); 1222 BUG_ON(e4b->bd_buddy_page == NULL); 1223 1224 return 0; 1225 1226 err: 1227 if (page) 1228 put_page(page); 1229 if (e4b->bd_bitmap_page) 1230 put_page(e4b->bd_bitmap_page); 1231 if (e4b->bd_buddy_page) 1232 put_page(e4b->bd_buddy_page); 1233 e4b->bd_buddy = NULL; 1234 e4b->bd_bitmap = NULL; 1235 return ret; 1236 } 1237 1238 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1239 struct ext4_buddy *e4b) 1240 { 1241 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1242 } 1243 1244 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1245 { 1246 if (e4b->bd_bitmap_page) 1247 put_page(e4b->bd_bitmap_page); 1248 if (e4b->bd_buddy_page) 1249 put_page(e4b->bd_buddy_page); 1250 } 1251 1252 1253 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1254 { 1255 int order = 1; 1256 int bb_incr = 1 << (e4b->bd_blkbits - 1); 1257 void *bb; 1258 1259 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1260 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1261 1262 bb = e4b->bd_buddy; 1263 while (order <= e4b->bd_blkbits + 1) { 1264 block = block >> 1; 1265 if (!mb_test_bit(block, bb)) { 1266 /* this block is part of buddy of order 'order' */ 1267 return order; 1268 } 1269 bb += bb_incr; 1270 bb_incr >>= 1; 1271 order++; 1272 } 1273 return 0; 1274 } 1275 1276 static void mb_clear_bits(void *bm, int cur, int len) 1277 { 1278 __u32 *addr; 1279 1280 len = cur + len; 1281 while (cur < len) { 1282 if ((cur & 31) == 0 && (len - cur) >= 32) { 1283 /* fast path: clear whole word at once */ 1284 addr = bm + (cur >> 3); 1285 *addr = 0; 1286 cur += 32; 1287 continue; 1288 } 1289 mb_clear_bit(cur, bm); 1290 cur++; 1291 } 1292 } 1293 1294 /* clear bits in given range 1295 * will return first found zero bit if any, -1 otherwise 1296 */ 1297 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1298 { 1299 __u32 *addr; 1300 int zero_bit = -1; 1301 1302 len = cur + len; 1303 while (cur < len) { 1304 if ((cur & 31) == 0 && (len - cur) >= 32) { 1305 /* fast path: clear whole word at once */ 1306 addr = bm + (cur >> 3); 1307 if (*addr != (__u32)(-1) && zero_bit == -1) 1308 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1309 *addr = 0; 1310 cur += 32; 1311 continue; 1312 } 1313 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1314 zero_bit = cur; 1315 cur++; 1316 } 1317 1318 return zero_bit; 1319 } 1320 1321 void ext4_set_bits(void *bm, int cur, int len) 1322 { 1323 __u32 *addr; 1324 1325 len = cur + len; 1326 while (cur < len) { 1327 if ((cur & 31) == 0 && (len - cur) >= 32) { 1328 /* fast path: set whole word at once */ 1329 addr = bm + (cur >> 3); 1330 *addr = 0xffffffff; 1331 cur += 32; 1332 continue; 1333 } 1334 mb_set_bit(cur, bm); 1335 cur++; 1336 } 1337 } 1338 1339 /* 1340 * _________________________________________________________________ */ 1341 1342 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1343 { 1344 if (mb_test_bit(*bit + side, bitmap)) { 1345 mb_clear_bit(*bit, bitmap); 1346 (*bit) -= side; 1347 return 1; 1348 } 1349 else { 1350 (*bit) += side; 1351 mb_set_bit(*bit, bitmap); 1352 return -1; 1353 } 1354 } 1355 1356 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1357 { 1358 int max; 1359 int order = 1; 1360 void *buddy = mb_find_buddy(e4b, order, &max); 1361 1362 while (buddy) { 1363 void *buddy2; 1364 1365 /* Bits in range [first; last] are known to be set since 1366 * corresponding blocks were allocated. Bits in range 1367 * (first; last) will stay set because they form buddies on 1368 * upper layer. We just deal with borders if they don't 1369 * align with upper layer and then go up. 1370 * Releasing entire group is all about clearing 1371 * single bit of highest order buddy. 1372 */ 1373 1374 /* Example: 1375 * --------------------------------- 1376 * | 1 | 1 | 1 | 1 | 1377 * --------------------------------- 1378 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1379 * --------------------------------- 1380 * 0 1 2 3 4 5 6 7 1381 * \_____________________/ 1382 * 1383 * Neither [1] nor [6] is aligned to above layer. 1384 * Left neighbour [0] is free, so mark it busy, 1385 * decrease bb_counters and extend range to 1386 * [0; 6] 1387 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1388 * mark [6] free, increase bb_counters and shrink range to 1389 * [0; 5]. 1390 * Then shift range to [0; 2], go up and do the same. 1391 */ 1392 1393 1394 if (first & 1) 1395 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1396 if (!(last & 1)) 1397 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1398 if (first > last) 1399 break; 1400 order++; 1401 1402 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1403 mb_clear_bits(buddy, first, last - first + 1); 1404 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1405 break; 1406 } 1407 first >>= 1; 1408 last >>= 1; 1409 buddy = buddy2; 1410 } 1411 } 1412 1413 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1414 int first, int count) 1415 { 1416 int left_is_free = 0; 1417 int right_is_free = 0; 1418 int block; 1419 int last = first + count - 1; 1420 struct super_block *sb = e4b->bd_sb; 1421 1422 if (WARN_ON(count == 0)) 1423 return; 1424 BUG_ON(last >= (sb->s_blocksize << 3)); 1425 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1426 /* Don't bother if the block group is corrupt. */ 1427 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1428 return; 1429 1430 mb_check_buddy(e4b); 1431 mb_free_blocks_double(inode, e4b, first, count); 1432 1433 e4b->bd_info->bb_free += count; 1434 if (first < e4b->bd_info->bb_first_free) 1435 e4b->bd_info->bb_first_free = first; 1436 1437 /* access memory sequentially: check left neighbour, 1438 * clear range and then check right neighbour 1439 */ 1440 if (first != 0) 1441 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1442 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1443 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1444 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1445 1446 if (unlikely(block != -1)) { 1447 struct ext4_sb_info *sbi = EXT4_SB(sb); 1448 ext4_fsblk_t blocknr; 1449 1450 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1451 blocknr += EXT4_C2B(sbi, block); 1452 ext4_grp_locked_error(sb, e4b->bd_group, 1453 inode ? inode->i_ino : 0, 1454 blocknr, 1455 "freeing already freed block " 1456 "(bit %u); block bitmap corrupt.", 1457 block); 1458 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1459 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1460 mb_regenerate_buddy(e4b); 1461 goto done; 1462 } 1463 1464 /* let's maintain fragments counter */ 1465 if (left_is_free && right_is_free) 1466 e4b->bd_info->bb_fragments--; 1467 else if (!left_is_free && !right_is_free) 1468 e4b->bd_info->bb_fragments++; 1469 1470 /* buddy[0] == bd_bitmap is a special case, so handle 1471 * it right away and let mb_buddy_mark_free stay free of 1472 * zero order checks. 1473 * Check if neighbours are to be coaleasced, 1474 * adjust bitmap bb_counters and borders appropriately. 1475 */ 1476 if (first & 1) { 1477 first += !left_is_free; 1478 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1479 } 1480 if (!(last & 1)) { 1481 last -= !right_is_free; 1482 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1483 } 1484 1485 if (first <= last) 1486 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1487 1488 done: 1489 mb_set_largest_free_order(sb, e4b->bd_info); 1490 mb_check_buddy(e4b); 1491 } 1492 1493 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1494 int needed, struct ext4_free_extent *ex) 1495 { 1496 int next = block; 1497 int max, order; 1498 void *buddy; 1499 1500 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1501 BUG_ON(ex == NULL); 1502 1503 buddy = mb_find_buddy(e4b, 0, &max); 1504 BUG_ON(buddy == NULL); 1505 BUG_ON(block >= max); 1506 if (mb_test_bit(block, buddy)) { 1507 ex->fe_len = 0; 1508 ex->fe_start = 0; 1509 ex->fe_group = 0; 1510 return 0; 1511 } 1512 1513 /* find actual order */ 1514 order = mb_find_order_for_block(e4b, block); 1515 block = block >> order; 1516 1517 ex->fe_len = 1 << order; 1518 ex->fe_start = block << order; 1519 ex->fe_group = e4b->bd_group; 1520 1521 /* calc difference from given start */ 1522 next = next - ex->fe_start; 1523 ex->fe_len -= next; 1524 ex->fe_start += next; 1525 1526 while (needed > ex->fe_len && 1527 mb_find_buddy(e4b, order, &max)) { 1528 1529 if (block + 1 >= max) 1530 break; 1531 1532 next = (block + 1) * (1 << order); 1533 if (mb_test_bit(next, e4b->bd_bitmap)) 1534 break; 1535 1536 order = mb_find_order_for_block(e4b, next); 1537 1538 block = next >> order; 1539 ex->fe_len += 1 << order; 1540 } 1541 1542 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 1543 /* Should never happen! (but apparently sometimes does?!?) */ 1544 WARN_ON(1); 1545 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent " 1546 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 1547 block, order, needed, ex->fe_group, ex->fe_start, 1548 ex->fe_len, ex->fe_logical); 1549 ex->fe_len = 0; 1550 ex->fe_start = 0; 1551 ex->fe_group = 0; 1552 } 1553 return ex->fe_len; 1554 } 1555 1556 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1557 { 1558 int ord; 1559 int mlen = 0; 1560 int max = 0; 1561 int cur; 1562 int start = ex->fe_start; 1563 int len = ex->fe_len; 1564 unsigned ret = 0; 1565 int len0 = len; 1566 void *buddy; 1567 1568 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1569 BUG_ON(e4b->bd_group != ex->fe_group); 1570 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1571 mb_check_buddy(e4b); 1572 mb_mark_used_double(e4b, start, len); 1573 1574 e4b->bd_info->bb_free -= len; 1575 if (e4b->bd_info->bb_first_free == start) 1576 e4b->bd_info->bb_first_free += len; 1577 1578 /* let's maintain fragments counter */ 1579 if (start != 0) 1580 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1581 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1582 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1583 if (mlen && max) 1584 e4b->bd_info->bb_fragments++; 1585 else if (!mlen && !max) 1586 e4b->bd_info->bb_fragments--; 1587 1588 /* let's maintain buddy itself */ 1589 while (len) { 1590 ord = mb_find_order_for_block(e4b, start); 1591 1592 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1593 /* the whole chunk may be allocated at once! */ 1594 mlen = 1 << ord; 1595 buddy = mb_find_buddy(e4b, ord, &max); 1596 BUG_ON((start >> ord) >= max); 1597 mb_set_bit(start >> ord, buddy); 1598 e4b->bd_info->bb_counters[ord]--; 1599 start += mlen; 1600 len -= mlen; 1601 BUG_ON(len < 0); 1602 continue; 1603 } 1604 1605 /* store for history */ 1606 if (ret == 0) 1607 ret = len | (ord << 16); 1608 1609 /* we have to split large buddy */ 1610 BUG_ON(ord <= 0); 1611 buddy = mb_find_buddy(e4b, ord, &max); 1612 mb_set_bit(start >> ord, buddy); 1613 e4b->bd_info->bb_counters[ord]--; 1614 1615 ord--; 1616 cur = (start >> ord) & ~1U; 1617 buddy = mb_find_buddy(e4b, ord, &max); 1618 mb_clear_bit(cur, buddy); 1619 mb_clear_bit(cur + 1, buddy); 1620 e4b->bd_info->bb_counters[ord]++; 1621 e4b->bd_info->bb_counters[ord]++; 1622 } 1623 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1624 1625 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1626 mb_check_buddy(e4b); 1627 1628 return ret; 1629 } 1630 1631 /* 1632 * Must be called under group lock! 1633 */ 1634 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1635 struct ext4_buddy *e4b) 1636 { 1637 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1638 int ret; 1639 1640 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1641 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1642 1643 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1644 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1645 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1646 1647 /* preallocation can change ac_b_ex, thus we store actually 1648 * allocated blocks for history */ 1649 ac->ac_f_ex = ac->ac_b_ex; 1650 1651 ac->ac_status = AC_STATUS_FOUND; 1652 ac->ac_tail = ret & 0xffff; 1653 ac->ac_buddy = ret >> 16; 1654 1655 /* 1656 * take the page reference. We want the page to be pinned 1657 * so that we don't get a ext4_mb_init_cache_call for this 1658 * group until we update the bitmap. That would mean we 1659 * double allocate blocks. The reference is dropped 1660 * in ext4_mb_release_context 1661 */ 1662 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1663 get_page(ac->ac_bitmap_page); 1664 ac->ac_buddy_page = e4b->bd_buddy_page; 1665 get_page(ac->ac_buddy_page); 1666 /* store last allocated for subsequent stream allocation */ 1667 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1668 spin_lock(&sbi->s_md_lock); 1669 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1670 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1671 spin_unlock(&sbi->s_md_lock); 1672 } 1673 } 1674 1675 /* 1676 * regular allocator, for general purposes allocation 1677 */ 1678 1679 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1680 struct ext4_buddy *e4b, 1681 int finish_group) 1682 { 1683 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1684 struct ext4_free_extent *bex = &ac->ac_b_ex; 1685 struct ext4_free_extent *gex = &ac->ac_g_ex; 1686 struct ext4_free_extent ex; 1687 int max; 1688 1689 if (ac->ac_status == AC_STATUS_FOUND) 1690 return; 1691 /* 1692 * We don't want to scan for a whole year 1693 */ 1694 if (ac->ac_found > sbi->s_mb_max_to_scan && 1695 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1696 ac->ac_status = AC_STATUS_BREAK; 1697 return; 1698 } 1699 1700 /* 1701 * Haven't found good chunk so far, let's continue 1702 */ 1703 if (bex->fe_len < gex->fe_len) 1704 return; 1705 1706 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1707 && bex->fe_group == e4b->bd_group) { 1708 /* recheck chunk's availability - we don't know 1709 * when it was found (within this lock-unlock 1710 * period or not) */ 1711 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1712 if (max >= gex->fe_len) { 1713 ext4_mb_use_best_found(ac, e4b); 1714 return; 1715 } 1716 } 1717 } 1718 1719 /* 1720 * The routine checks whether found extent is good enough. If it is, 1721 * then the extent gets marked used and flag is set to the context 1722 * to stop scanning. Otherwise, the extent is compared with the 1723 * previous found extent and if new one is better, then it's stored 1724 * in the context. Later, the best found extent will be used, if 1725 * mballoc can't find good enough extent. 1726 * 1727 * FIXME: real allocation policy is to be designed yet! 1728 */ 1729 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1730 struct ext4_free_extent *ex, 1731 struct ext4_buddy *e4b) 1732 { 1733 struct ext4_free_extent *bex = &ac->ac_b_ex; 1734 struct ext4_free_extent *gex = &ac->ac_g_ex; 1735 1736 BUG_ON(ex->fe_len <= 0); 1737 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1738 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1739 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1740 1741 ac->ac_found++; 1742 1743 /* 1744 * The special case - take what you catch first 1745 */ 1746 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1747 *bex = *ex; 1748 ext4_mb_use_best_found(ac, e4b); 1749 return; 1750 } 1751 1752 /* 1753 * Let's check whether the chuck is good enough 1754 */ 1755 if (ex->fe_len == gex->fe_len) { 1756 *bex = *ex; 1757 ext4_mb_use_best_found(ac, e4b); 1758 return; 1759 } 1760 1761 /* 1762 * If this is first found extent, just store it in the context 1763 */ 1764 if (bex->fe_len == 0) { 1765 *bex = *ex; 1766 return; 1767 } 1768 1769 /* 1770 * If new found extent is better, store it in the context 1771 */ 1772 if (bex->fe_len < gex->fe_len) { 1773 /* if the request isn't satisfied, any found extent 1774 * larger than previous best one is better */ 1775 if (ex->fe_len > bex->fe_len) 1776 *bex = *ex; 1777 } else if (ex->fe_len > gex->fe_len) { 1778 /* if the request is satisfied, then we try to find 1779 * an extent that still satisfy the request, but is 1780 * smaller than previous one */ 1781 if (ex->fe_len < bex->fe_len) 1782 *bex = *ex; 1783 } 1784 1785 ext4_mb_check_limits(ac, e4b, 0); 1786 } 1787 1788 static noinline_for_stack 1789 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1790 struct ext4_buddy *e4b) 1791 { 1792 struct ext4_free_extent ex = ac->ac_b_ex; 1793 ext4_group_t group = ex.fe_group; 1794 int max; 1795 int err; 1796 1797 BUG_ON(ex.fe_len <= 0); 1798 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1799 if (err) 1800 return err; 1801 1802 ext4_lock_group(ac->ac_sb, group); 1803 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1804 1805 if (max > 0) { 1806 ac->ac_b_ex = ex; 1807 ext4_mb_use_best_found(ac, e4b); 1808 } 1809 1810 ext4_unlock_group(ac->ac_sb, group); 1811 ext4_mb_unload_buddy(e4b); 1812 1813 return 0; 1814 } 1815 1816 static noinline_for_stack 1817 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1818 struct ext4_buddy *e4b) 1819 { 1820 ext4_group_t group = ac->ac_g_ex.fe_group; 1821 int max; 1822 int err; 1823 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1824 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1825 struct ext4_free_extent ex; 1826 1827 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1828 return 0; 1829 if (grp->bb_free == 0) 1830 return 0; 1831 1832 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1833 if (err) 1834 return err; 1835 1836 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 1837 ext4_mb_unload_buddy(e4b); 1838 return 0; 1839 } 1840 1841 ext4_lock_group(ac->ac_sb, group); 1842 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1843 ac->ac_g_ex.fe_len, &ex); 1844 ex.fe_logical = 0xDEADFA11; /* debug value */ 1845 1846 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1847 ext4_fsblk_t start; 1848 1849 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1850 ex.fe_start; 1851 /* use do_div to get remainder (would be 64-bit modulo) */ 1852 if (do_div(start, sbi->s_stripe) == 0) { 1853 ac->ac_found++; 1854 ac->ac_b_ex = ex; 1855 ext4_mb_use_best_found(ac, e4b); 1856 } 1857 } else if (max >= ac->ac_g_ex.fe_len) { 1858 BUG_ON(ex.fe_len <= 0); 1859 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1860 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1861 ac->ac_found++; 1862 ac->ac_b_ex = ex; 1863 ext4_mb_use_best_found(ac, e4b); 1864 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1865 /* Sometimes, caller may want to merge even small 1866 * number of blocks to an existing extent */ 1867 BUG_ON(ex.fe_len <= 0); 1868 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1869 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1870 ac->ac_found++; 1871 ac->ac_b_ex = ex; 1872 ext4_mb_use_best_found(ac, e4b); 1873 } 1874 ext4_unlock_group(ac->ac_sb, group); 1875 ext4_mb_unload_buddy(e4b); 1876 1877 return 0; 1878 } 1879 1880 /* 1881 * The routine scans buddy structures (not bitmap!) from given order 1882 * to max order and tries to find big enough chunk to satisfy the req 1883 */ 1884 static noinline_for_stack 1885 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1886 struct ext4_buddy *e4b) 1887 { 1888 struct super_block *sb = ac->ac_sb; 1889 struct ext4_group_info *grp = e4b->bd_info; 1890 void *buddy; 1891 int i; 1892 int k; 1893 int max; 1894 1895 BUG_ON(ac->ac_2order <= 0); 1896 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1897 if (grp->bb_counters[i] == 0) 1898 continue; 1899 1900 buddy = mb_find_buddy(e4b, i, &max); 1901 BUG_ON(buddy == NULL); 1902 1903 k = mb_find_next_zero_bit(buddy, max, 0); 1904 if (k >= max) { 1905 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 1906 "%d free clusters of order %d. But found 0", 1907 grp->bb_counters[i], i); 1908 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 1909 e4b->bd_group, 1910 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1911 break; 1912 } 1913 ac->ac_found++; 1914 1915 ac->ac_b_ex.fe_len = 1 << i; 1916 ac->ac_b_ex.fe_start = k << i; 1917 ac->ac_b_ex.fe_group = e4b->bd_group; 1918 1919 ext4_mb_use_best_found(ac, e4b); 1920 1921 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1922 1923 if (EXT4_SB(sb)->s_mb_stats) 1924 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1925 1926 break; 1927 } 1928 } 1929 1930 /* 1931 * The routine scans the group and measures all found extents. 1932 * In order to optimize scanning, caller must pass number of 1933 * free blocks in the group, so the routine can know upper limit. 1934 */ 1935 static noinline_for_stack 1936 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1937 struct ext4_buddy *e4b) 1938 { 1939 struct super_block *sb = ac->ac_sb; 1940 void *bitmap = e4b->bd_bitmap; 1941 struct ext4_free_extent ex; 1942 int i; 1943 int free; 1944 1945 free = e4b->bd_info->bb_free; 1946 BUG_ON(free <= 0); 1947 1948 i = e4b->bd_info->bb_first_free; 1949 1950 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1951 i = mb_find_next_zero_bit(bitmap, 1952 EXT4_CLUSTERS_PER_GROUP(sb), i); 1953 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1954 /* 1955 * IF we have corrupt bitmap, we won't find any 1956 * free blocks even though group info says we 1957 * we have free blocks 1958 */ 1959 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1960 "%d free clusters as per " 1961 "group info. But bitmap says 0", 1962 free); 1963 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1964 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1965 break; 1966 } 1967 1968 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1969 BUG_ON(ex.fe_len <= 0); 1970 if (free < ex.fe_len) { 1971 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1972 "%d free clusters as per " 1973 "group info. But got %d blocks", 1974 free, ex.fe_len); 1975 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 1976 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1977 /* 1978 * The number of free blocks differs. This mostly 1979 * indicate that the bitmap is corrupt. So exit 1980 * without claiming the space. 1981 */ 1982 break; 1983 } 1984 ex.fe_logical = 0xDEADC0DE; /* debug value */ 1985 ext4_mb_measure_extent(ac, &ex, e4b); 1986 1987 i += ex.fe_len; 1988 free -= ex.fe_len; 1989 } 1990 1991 ext4_mb_check_limits(ac, e4b, 1); 1992 } 1993 1994 /* 1995 * This is a special case for storages like raid5 1996 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1997 */ 1998 static noinline_for_stack 1999 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2000 struct ext4_buddy *e4b) 2001 { 2002 struct super_block *sb = ac->ac_sb; 2003 struct ext4_sb_info *sbi = EXT4_SB(sb); 2004 void *bitmap = e4b->bd_bitmap; 2005 struct ext4_free_extent ex; 2006 ext4_fsblk_t first_group_block; 2007 ext4_fsblk_t a; 2008 ext4_grpblk_t i; 2009 int max; 2010 2011 BUG_ON(sbi->s_stripe == 0); 2012 2013 /* find first stripe-aligned block in group */ 2014 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2015 2016 a = first_group_block + sbi->s_stripe - 1; 2017 do_div(a, sbi->s_stripe); 2018 i = (a * sbi->s_stripe) - first_group_block; 2019 2020 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2021 if (!mb_test_bit(i, bitmap)) { 2022 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 2023 if (max >= sbi->s_stripe) { 2024 ac->ac_found++; 2025 ex.fe_logical = 0xDEADF00D; /* debug value */ 2026 ac->ac_b_ex = ex; 2027 ext4_mb_use_best_found(ac, e4b); 2028 break; 2029 } 2030 } 2031 i += sbi->s_stripe; 2032 } 2033 } 2034 2035 /* 2036 * This is now called BEFORE we load the buddy bitmap. 2037 * Returns either 1 or 0 indicating that the group is either suitable 2038 * for the allocation or not. In addition it can also return negative 2039 * error code when something goes wrong. 2040 */ 2041 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 2042 ext4_group_t group, int cr) 2043 { 2044 unsigned free, fragments; 2045 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2046 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2047 2048 BUG_ON(cr < 0 || cr >= 4); 2049 2050 free = grp->bb_free; 2051 if (free == 0) 2052 return 0; 2053 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2054 return 0; 2055 2056 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2057 return 0; 2058 2059 /* We only do this if the grp has never been initialized */ 2060 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2061 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS); 2062 if (ret) 2063 return ret; 2064 } 2065 2066 fragments = grp->bb_fragments; 2067 if (fragments == 0) 2068 return 0; 2069 2070 switch (cr) { 2071 case 0: 2072 BUG_ON(ac->ac_2order == 0); 2073 2074 /* Avoid using the first bg of a flexgroup for data files */ 2075 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2076 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2077 ((group % flex_size) == 0)) 2078 return 0; 2079 2080 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) || 2081 (free / fragments) >= ac->ac_g_ex.fe_len) 2082 return 1; 2083 2084 if (grp->bb_largest_free_order < ac->ac_2order) 2085 return 0; 2086 2087 return 1; 2088 case 1: 2089 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2090 return 1; 2091 break; 2092 case 2: 2093 if (free >= ac->ac_g_ex.fe_len) 2094 return 1; 2095 break; 2096 case 3: 2097 return 1; 2098 default: 2099 BUG(); 2100 } 2101 2102 return 0; 2103 } 2104 2105 static noinline_for_stack int 2106 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2107 { 2108 ext4_group_t ngroups, group, i; 2109 int cr; 2110 int err = 0, first_err = 0; 2111 struct ext4_sb_info *sbi; 2112 struct super_block *sb; 2113 struct ext4_buddy e4b; 2114 2115 sb = ac->ac_sb; 2116 sbi = EXT4_SB(sb); 2117 ngroups = ext4_get_groups_count(sb); 2118 /* non-extent files are limited to low blocks/groups */ 2119 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2120 ngroups = sbi->s_blockfile_groups; 2121 2122 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2123 2124 /* first, try the goal */ 2125 err = ext4_mb_find_by_goal(ac, &e4b); 2126 if (err || ac->ac_status == AC_STATUS_FOUND) 2127 goto out; 2128 2129 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2130 goto out; 2131 2132 /* 2133 * ac->ac2_order is set only if the fe_len is a power of 2 2134 * if ac2_order is set we also set criteria to 0 so that we 2135 * try exact allocation using buddy. 2136 */ 2137 i = fls(ac->ac_g_ex.fe_len); 2138 ac->ac_2order = 0; 2139 /* 2140 * We search using buddy data only if the order of the request 2141 * is greater than equal to the sbi_s_mb_order2_reqs 2142 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2143 * We also support searching for power-of-two requests only for 2144 * requests upto maximum buddy size we have constructed. 2145 */ 2146 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) { 2147 /* 2148 * This should tell if fe_len is exactly power of 2 2149 */ 2150 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2151 ac->ac_2order = array_index_nospec(i - 1, 2152 sb->s_blocksize_bits + 2); 2153 } 2154 2155 /* if stream allocation is enabled, use global goal */ 2156 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2157 /* TBD: may be hot point */ 2158 spin_lock(&sbi->s_md_lock); 2159 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2160 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2161 spin_unlock(&sbi->s_md_lock); 2162 } 2163 2164 /* Let's just scan groups to find more-less suitable blocks */ 2165 cr = ac->ac_2order ? 0 : 1; 2166 /* 2167 * cr == 0 try to get exact allocation, 2168 * cr == 3 try to get anything 2169 */ 2170 repeat: 2171 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2172 ac->ac_criteria = cr; 2173 /* 2174 * searching for the right group start 2175 * from the goal value specified 2176 */ 2177 group = ac->ac_g_ex.fe_group; 2178 2179 for (i = 0; i < ngroups; group++, i++) { 2180 int ret = 0; 2181 cond_resched(); 2182 /* 2183 * Artificially restricted ngroups for non-extent 2184 * files makes group > ngroups possible on first loop. 2185 */ 2186 if (group >= ngroups) 2187 group = 0; 2188 2189 /* This now checks without needing the buddy page */ 2190 ret = ext4_mb_good_group(ac, group, cr); 2191 if (ret <= 0) { 2192 if (!first_err) 2193 first_err = ret; 2194 continue; 2195 } 2196 2197 err = ext4_mb_load_buddy(sb, group, &e4b); 2198 if (err) 2199 goto out; 2200 2201 ext4_lock_group(sb, group); 2202 2203 /* 2204 * We need to check again after locking the 2205 * block group 2206 */ 2207 ret = ext4_mb_good_group(ac, group, cr); 2208 if (ret <= 0) { 2209 ext4_unlock_group(sb, group); 2210 ext4_mb_unload_buddy(&e4b); 2211 if (!first_err) 2212 first_err = ret; 2213 continue; 2214 } 2215 2216 ac->ac_groups_scanned++; 2217 if (cr == 0) 2218 ext4_mb_simple_scan_group(ac, &e4b); 2219 else if (cr == 1 && sbi->s_stripe && 2220 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2221 ext4_mb_scan_aligned(ac, &e4b); 2222 else 2223 ext4_mb_complex_scan_group(ac, &e4b); 2224 2225 ext4_unlock_group(sb, group); 2226 ext4_mb_unload_buddy(&e4b); 2227 2228 if (ac->ac_status != AC_STATUS_CONTINUE) 2229 break; 2230 } 2231 } 2232 2233 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2234 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2235 /* 2236 * We've been searching too long. Let's try to allocate 2237 * the best chunk we've found so far 2238 */ 2239 2240 ext4_mb_try_best_found(ac, &e4b); 2241 if (ac->ac_status != AC_STATUS_FOUND) { 2242 /* 2243 * Someone more lucky has already allocated it. 2244 * The only thing we can do is just take first 2245 * found block(s) 2246 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2247 */ 2248 ac->ac_b_ex.fe_group = 0; 2249 ac->ac_b_ex.fe_start = 0; 2250 ac->ac_b_ex.fe_len = 0; 2251 ac->ac_status = AC_STATUS_CONTINUE; 2252 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2253 cr = 3; 2254 atomic_inc(&sbi->s_mb_lost_chunks); 2255 goto repeat; 2256 } 2257 } 2258 out: 2259 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2260 err = first_err; 2261 return err; 2262 } 2263 2264 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2265 { 2266 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2267 ext4_group_t group; 2268 2269 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2270 return NULL; 2271 group = *pos + 1; 2272 return (void *) ((unsigned long) group); 2273 } 2274 2275 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2276 { 2277 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2278 ext4_group_t group; 2279 2280 ++*pos; 2281 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2282 return NULL; 2283 group = *pos + 1; 2284 return (void *) ((unsigned long) group); 2285 } 2286 2287 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2288 { 2289 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2290 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2291 int i; 2292 int err, buddy_loaded = 0; 2293 struct ext4_buddy e4b; 2294 struct ext4_group_info *grinfo; 2295 unsigned char blocksize_bits = min_t(unsigned char, 2296 sb->s_blocksize_bits, 2297 EXT4_MAX_BLOCK_LOG_SIZE); 2298 struct sg { 2299 struct ext4_group_info info; 2300 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 2301 } sg; 2302 2303 group--; 2304 if (group == 0) 2305 seq_puts(seq, "#group: free frags first [" 2306 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 2307 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 2308 2309 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2310 sizeof(struct ext4_group_info); 2311 2312 grinfo = ext4_get_group_info(sb, group); 2313 /* Load the group info in memory only if not already loaded. */ 2314 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2315 err = ext4_mb_load_buddy(sb, group, &e4b); 2316 if (err) { 2317 seq_printf(seq, "#%-5u: I/O error\n", group); 2318 return 0; 2319 } 2320 buddy_loaded = 1; 2321 } 2322 2323 memcpy(&sg, ext4_get_group_info(sb, group), i); 2324 2325 if (buddy_loaded) 2326 ext4_mb_unload_buddy(&e4b); 2327 2328 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2329 sg.info.bb_fragments, sg.info.bb_first_free); 2330 for (i = 0; i <= 13; i++) 2331 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 2332 sg.info.bb_counters[i] : 0); 2333 seq_printf(seq, " ]\n"); 2334 2335 return 0; 2336 } 2337 2338 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2339 { 2340 } 2341 2342 const struct seq_operations ext4_mb_seq_groups_ops = { 2343 .start = ext4_mb_seq_groups_start, 2344 .next = ext4_mb_seq_groups_next, 2345 .stop = ext4_mb_seq_groups_stop, 2346 .show = ext4_mb_seq_groups_show, 2347 }; 2348 2349 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2350 { 2351 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2352 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2353 2354 BUG_ON(!cachep); 2355 return cachep; 2356 } 2357 2358 /* 2359 * Allocate the top-level s_group_info array for the specified number 2360 * of groups 2361 */ 2362 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2363 { 2364 struct ext4_sb_info *sbi = EXT4_SB(sb); 2365 unsigned size; 2366 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 2367 2368 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2369 EXT4_DESC_PER_BLOCK_BITS(sb); 2370 if (size <= sbi->s_group_info_size) 2371 return 0; 2372 2373 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2374 new_groupinfo = kvzalloc(size, GFP_KERNEL); 2375 if (!new_groupinfo) { 2376 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2377 return -ENOMEM; 2378 } 2379 rcu_read_lock(); 2380 old_groupinfo = rcu_dereference(sbi->s_group_info); 2381 if (old_groupinfo) 2382 memcpy(new_groupinfo, old_groupinfo, 2383 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2384 rcu_read_unlock(); 2385 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 2386 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2387 if (old_groupinfo) 2388 ext4_kvfree_array_rcu(old_groupinfo); 2389 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2390 sbi->s_group_info_size); 2391 return 0; 2392 } 2393 2394 /* Create and initialize ext4_group_info data for the given group. */ 2395 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2396 struct ext4_group_desc *desc) 2397 { 2398 int i; 2399 int metalen = 0; 2400 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 2401 struct ext4_sb_info *sbi = EXT4_SB(sb); 2402 struct ext4_group_info **meta_group_info; 2403 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2404 2405 /* 2406 * First check if this group is the first of a reserved block. 2407 * If it's true, we have to allocate a new table of pointers 2408 * to ext4_group_info structures 2409 */ 2410 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2411 metalen = sizeof(*meta_group_info) << 2412 EXT4_DESC_PER_BLOCK_BITS(sb); 2413 meta_group_info = kmalloc(metalen, GFP_NOFS); 2414 if (meta_group_info == NULL) { 2415 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2416 "for a buddy group"); 2417 goto exit_meta_group_info; 2418 } 2419 rcu_read_lock(); 2420 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 2421 rcu_read_unlock(); 2422 } 2423 2424 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 2425 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2426 2427 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 2428 if (meta_group_info[i] == NULL) { 2429 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2430 goto exit_group_info; 2431 } 2432 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2433 &(meta_group_info[i]->bb_state)); 2434 2435 /* 2436 * initialize bb_free to be able to skip 2437 * empty groups without initialization 2438 */ 2439 if (ext4_has_group_desc_csum(sb) && 2440 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 2441 meta_group_info[i]->bb_free = 2442 ext4_free_clusters_after_init(sb, group, desc); 2443 } else { 2444 meta_group_info[i]->bb_free = 2445 ext4_free_group_clusters(sb, desc); 2446 } 2447 2448 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2449 init_rwsem(&meta_group_info[i]->alloc_sem); 2450 meta_group_info[i]->bb_free_root = RB_ROOT; 2451 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2452 2453 #ifdef DOUBLE_CHECK 2454 { 2455 struct buffer_head *bh; 2456 meta_group_info[i]->bb_bitmap = 2457 kmalloc(sb->s_blocksize, GFP_NOFS); 2458 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2459 bh = ext4_read_block_bitmap(sb, group); 2460 BUG_ON(IS_ERR_OR_NULL(bh)); 2461 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2462 sb->s_blocksize); 2463 put_bh(bh); 2464 } 2465 #endif 2466 2467 return 0; 2468 2469 exit_group_info: 2470 /* If a meta_group_info table has been allocated, release it now */ 2471 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2472 struct ext4_group_info ***group_info; 2473 2474 rcu_read_lock(); 2475 group_info = rcu_dereference(sbi->s_group_info); 2476 kfree(group_info[idx]); 2477 group_info[idx] = NULL; 2478 rcu_read_unlock(); 2479 } 2480 exit_meta_group_info: 2481 return -ENOMEM; 2482 } /* ext4_mb_add_groupinfo */ 2483 2484 static int ext4_mb_init_backend(struct super_block *sb) 2485 { 2486 ext4_group_t ngroups = ext4_get_groups_count(sb); 2487 ext4_group_t i; 2488 struct ext4_sb_info *sbi = EXT4_SB(sb); 2489 int err; 2490 struct ext4_group_desc *desc; 2491 struct ext4_group_info ***group_info; 2492 struct kmem_cache *cachep; 2493 2494 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2495 if (err) 2496 return err; 2497 2498 sbi->s_buddy_cache = new_inode(sb); 2499 if (sbi->s_buddy_cache == NULL) { 2500 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2501 goto err_freesgi; 2502 } 2503 /* To avoid potentially colliding with an valid on-disk inode number, 2504 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2505 * not in the inode hash, so it should never be found by iget(), but 2506 * this will avoid confusion if it ever shows up during debugging. */ 2507 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2508 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2509 for (i = 0; i < ngroups; i++) { 2510 cond_resched(); 2511 desc = ext4_get_group_desc(sb, i, NULL); 2512 if (desc == NULL) { 2513 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2514 goto err_freebuddy; 2515 } 2516 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2517 goto err_freebuddy; 2518 } 2519 2520 return 0; 2521 2522 err_freebuddy: 2523 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2524 while (i-- > 0) 2525 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2526 i = sbi->s_group_info_size; 2527 rcu_read_lock(); 2528 group_info = rcu_dereference(sbi->s_group_info); 2529 while (i-- > 0) 2530 kfree(group_info[i]); 2531 rcu_read_unlock(); 2532 iput(sbi->s_buddy_cache); 2533 err_freesgi: 2534 rcu_read_lock(); 2535 kvfree(rcu_dereference(sbi->s_group_info)); 2536 rcu_read_unlock(); 2537 return -ENOMEM; 2538 } 2539 2540 static void ext4_groupinfo_destroy_slabs(void) 2541 { 2542 int i; 2543 2544 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2545 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2546 ext4_groupinfo_caches[i] = NULL; 2547 } 2548 } 2549 2550 static int ext4_groupinfo_create_slab(size_t size) 2551 { 2552 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2553 int slab_size; 2554 int blocksize_bits = order_base_2(size); 2555 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2556 struct kmem_cache *cachep; 2557 2558 if (cache_index >= NR_GRPINFO_CACHES) 2559 return -EINVAL; 2560 2561 if (unlikely(cache_index < 0)) 2562 cache_index = 0; 2563 2564 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2565 if (ext4_groupinfo_caches[cache_index]) { 2566 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2567 return 0; /* Already created */ 2568 } 2569 2570 slab_size = offsetof(struct ext4_group_info, 2571 bb_counters[blocksize_bits + 2]); 2572 2573 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2574 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2575 NULL); 2576 2577 ext4_groupinfo_caches[cache_index] = cachep; 2578 2579 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2580 if (!cachep) { 2581 printk(KERN_EMERG 2582 "EXT4-fs: no memory for groupinfo slab cache\n"); 2583 return -ENOMEM; 2584 } 2585 2586 return 0; 2587 } 2588 2589 int ext4_mb_init(struct super_block *sb) 2590 { 2591 struct ext4_sb_info *sbi = EXT4_SB(sb); 2592 unsigned i, j; 2593 unsigned offset, offset_incr; 2594 unsigned max; 2595 int ret; 2596 2597 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2598 2599 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2600 if (sbi->s_mb_offsets == NULL) { 2601 ret = -ENOMEM; 2602 goto out; 2603 } 2604 2605 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2606 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2607 if (sbi->s_mb_maxs == NULL) { 2608 ret = -ENOMEM; 2609 goto out; 2610 } 2611 2612 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2613 if (ret < 0) 2614 goto out; 2615 2616 /* order 0 is regular bitmap */ 2617 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2618 sbi->s_mb_offsets[0] = 0; 2619 2620 i = 1; 2621 offset = 0; 2622 offset_incr = 1 << (sb->s_blocksize_bits - 1); 2623 max = sb->s_blocksize << 2; 2624 do { 2625 sbi->s_mb_offsets[i] = offset; 2626 sbi->s_mb_maxs[i] = max; 2627 offset += offset_incr; 2628 offset_incr = offset_incr >> 1; 2629 max = max >> 1; 2630 i++; 2631 } while (i <= sb->s_blocksize_bits + 1); 2632 2633 spin_lock_init(&sbi->s_md_lock); 2634 spin_lock_init(&sbi->s_bal_lock); 2635 sbi->s_mb_free_pending = 0; 2636 INIT_LIST_HEAD(&sbi->s_freed_data_list); 2637 2638 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2639 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2640 sbi->s_mb_stats = MB_DEFAULT_STATS; 2641 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2642 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2643 /* 2644 * The default group preallocation is 512, which for 4k block 2645 * sizes translates to 2 megabytes. However for bigalloc file 2646 * systems, this is probably too big (i.e, if the cluster size 2647 * is 1 megabyte, then group preallocation size becomes half a 2648 * gigabyte!). As a default, we will keep a two megabyte 2649 * group pralloc size for cluster sizes up to 64k, and after 2650 * that, we will force a minimum group preallocation size of 2651 * 32 clusters. This translates to 8 megs when the cluster 2652 * size is 256k, and 32 megs when the cluster size is 1 meg, 2653 * which seems reasonable as a default. 2654 */ 2655 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2656 sbi->s_cluster_bits, 32); 2657 /* 2658 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2659 * to the lowest multiple of s_stripe which is bigger than 2660 * the s_mb_group_prealloc as determined above. We want 2661 * the preallocation size to be an exact multiple of the 2662 * RAID stripe size so that preallocations don't fragment 2663 * the stripes. 2664 */ 2665 if (sbi->s_stripe > 1) { 2666 sbi->s_mb_group_prealloc = roundup( 2667 sbi->s_mb_group_prealloc, sbi->s_stripe); 2668 } 2669 2670 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2671 if (sbi->s_locality_groups == NULL) { 2672 ret = -ENOMEM; 2673 goto out; 2674 } 2675 for_each_possible_cpu(i) { 2676 struct ext4_locality_group *lg; 2677 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2678 mutex_init(&lg->lg_mutex); 2679 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2680 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2681 spin_lock_init(&lg->lg_prealloc_lock); 2682 } 2683 2684 /* init file for buddy data */ 2685 ret = ext4_mb_init_backend(sb); 2686 if (ret != 0) 2687 goto out_free_locality_groups; 2688 2689 return 0; 2690 2691 out_free_locality_groups: 2692 free_percpu(sbi->s_locality_groups); 2693 sbi->s_locality_groups = NULL; 2694 out: 2695 kfree(sbi->s_mb_offsets); 2696 sbi->s_mb_offsets = NULL; 2697 kfree(sbi->s_mb_maxs); 2698 sbi->s_mb_maxs = NULL; 2699 return ret; 2700 } 2701 2702 /* need to called with the ext4 group lock held */ 2703 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2704 { 2705 struct ext4_prealloc_space *pa; 2706 struct list_head *cur, *tmp; 2707 int count = 0; 2708 2709 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2710 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2711 list_del(&pa->pa_group_list); 2712 count++; 2713 kmem_cache_free(ext4_pspace_cachep, pa); 2714 } 2715 if (count) 2716 mb_debug(1, "mballoc: %u PAs left\n", count); 2717 2718 } 2719 2720 int ext4_mb_release(struct super_block *sb) 2721 { 2722 ext4_group_t ngroups = ext4_get_groups_count(sb); 2723 ext4_group_t i; 2724 int num_meta_group_infos; 2725 struct ext4_group_info *grinfo, ***group_info; 2726 struct ext4_sb_info *sbi = EXT4_SB(sb); 2727 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2728 2729 if (sbi->s_group_info) { 2730 for (i = 0; i < ngroups; i++) { 2731 cond_resched(); 2732 grinfo = ext4_get_group_info(sb, i); 2733 #ifdef DOUBLE_CHECK 2734 kfree(grinfo->bb_bitmap); 2735 #endif 2736 ext4_lock_group(sb, i); 2737 ext4_mb_cleanup_pa(grinfo); 2738 ext4_unlock_group(sb, i); 2739 kmem_cache_free(cachep, grinfo); 2740 } 2741 num_meta_group_infos = (ngroups + 2742 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2743 EXT4_DESC_PER_BLOCK_BITS(sb); 2744 rcu_read_lock(); 2745 group_info = rcu_dereference(sbi->s_group_info); 2746 for (i = 0; i < num_meta_group_infos; i++) 2747 kfree(group_info[i]); 2748 kvfree(group_info); 2749 rcu_read_unlock(); 2750 } 2751 kfree(sbi->s_mb_offsets); 2752 kfree(sbi->s_mb_maxs); 2753 iput(sbi->s_buddy_cache); 2754 if (sbi->s_mb_stats) { 2755 ext4_msg(sb, KERN_INFO, 2756 "mballoc: %u blocks %u reqs (%u success)", 2757 atomic_read(&sbi->s_bal_allocated), 2758 atomic_read(&sbi->s_bal_reqs), 2759 atomic_read(&sbi->s_bal_success)); 2760 ext4_msg(sb, KERN_INFO, 2761 "mballoc: %u extents scanned, %u goal hits, " 2762 "%u 2^N hits, %u breaks, %u lost", 2763 atomic_read(&sbi->s_bal_ex_scanned), 2764 atomic_read(&sbi->s_bal_goals), 2765 atomic_read(&sbi->s_bal_2orders), 2766 atomic_read(&sbi->s_bal_breaks), 2767 atomic_read(&sbi->s_mb_lost_chunks)); 2768 ext4_msg(sb, KERN_INFO, 2769 "mballoc: %lu generated and it took %Lu", 2770 sbi->s_mb_buddies_generated, 2771 sbi->s_mb_generation_time); 2772 ext4_msg(sb, KERN_INFO, 2773 "mballoc: %u preallocated, %u discarded", 2774 atomic_read(&sbi->s_mb_preallocated), 2775 atomic_read(&sbi->s_mb_discarded)); 2776 } 2777 2778 free_percpu(sbi->s_locality_groups); 2779 2780 return 0; 2781 } 2782 2783 static inline int ext4_issue_discard(struct super_block *sb, 2784 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 2785 struct bio **biop) 2786 { 2787 ext4_fsblk_t discard_block; 2788 2789 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2790 ext4_group_first_block_no(sb, block_group)); 2791 count = EXT4_C2B(EXT4_SB(sb), count); 2792 trace_ext4_discard_blocks(sb, 2793 (unsigned long long) discard_block, count); 2794 if (biop) { 2795 return __blkdev_issue_discard(sb->s_bdev, 2796 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 2797 (sector_t)count << (sb->s_blocksize_bits - 9), 2798 GFP_NOFS, 0, biop); 2799 } else 2800 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2801 } 2802 2803 static void ext4_free_data_in_buddy(struct super_block *sb, 2804 struct ext4_free_data *entry) 2805 { 2806 struct ext4_buddy e4b; 2807 struct ext4_group_info *db; 2808 int err, count = 0, count2 = 0; 2809 2810 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2811 entry->efd_count, entry->efd_group, entry); 2812 2813 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2814 /* we expect to find existing buddy because it's pinned */ 2815 BUG_ON(err != 0); 2816 2817 spin_lock(&EXT4_SB(sb)->s_md_lock); 2818 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 2819 spin_unlock(&EXT4_SB(sb)->s_md_lock); 2820 2821 db = e4b.bd_info; 2822 /* there are blocks to put in buddy to make them really free */ 2823 count += entry->efd_count; 2824 count2++; 2825 ext4_lock_group(sb, entry->efd_group); 2826 /* Take it out of per group rb tree */ 2827 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2828 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2829 2830 /* 2831 * Clear the trimmed flag for the group so that the next 2832 * ext4_trim_fs can trim it. 2833 * If the volume is mounted with -o discard, online discard 2834 * is supported and the free blocks will be trimmed online. 2835 */ 2836 if (!test_opt(sb, DISCARD)) 2837 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2838 2839 if (!db->bb_free_root.rb_node) { 2840 /* No more items in the per group rb tree 2841 * balance refcounts from ext4_mb_free_metadata() 2842 */ 2843 put_page(e4b.bd_buddy_page); 2844 put_page(e4b.bd_bitmap_page); 2845 } 2846 ext4_unlock_group(sb, entry->efd_group); 2847 kmem_cache_free(ext4_free_data_cachep, entry); 2848 ext4_mb_unload_buddy(&e4b); 2849 2850 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2851 } 2852 2853 /* 2854 * This function is called by the jbd2 layer once the commit has finished, 2855 * so we know we can free the blocks that were released with that commit. 2856 */ 2857 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 2858 { 2859 struct ext4_sb_info *sbi = EXT4_SB(sb); 2860 struct ext4_free_data *entry, *tmp; 2861 struct bio *discard_bio = NULL; 2862 struct list_head freed_data_list; 2863 struct list_head *cut_pos = NULL; 2864 int err; 2865 2866 INIT_LIST_HEAD(&freed_data_list); 2867 2868 spin_lock(&sbi->s_md_lock); 2869 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 2870 if (entry->efd_tid != commit_tid) 2871 break; 2872 cut_pos = &entry->efd_list; 2873 } 2874 if (cut_pos) 2875 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 2876 cut_pos); 2877 spin_unlock(&sbi->s_md_lock); 2878 2879 if (test_opt(sb, DISCARD)) { 2880 list_for_each_entry(entry, &freed_data_list, efd_list) { 2881 err = ext4_issue_discard(sb, entry->efd_group, 2882 entry->efd_start_cluster, 2883 entry->efd_count, 2884 &discard_bio); 2885 if (err && err != -EOPNOTSUPP) { 2886 ext4_msg(sb, KERN_WARNING, "discard request in" 2887 " group:%d block:%d count:%d failed" 2888 " with %d", entry->efd_group, 2889 entry->efd_start_cluster, 2890 entry->efd_count, err); 2891 } else if (err == -EOPNOTSUPP) 2892 break; 2893 } 2894 2895 if (discard_bio) { 2896 submit_bio_wait(discard_bio); 2897 bio_put(discard_bio); 2898 } 2899 } 2900 2901 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 2902 ext4_free_data_in_buddy(sb, entry); 2903 } 2904 2905 int __init ext4_init_mballoc(void) 2906 { 2907 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2908 SLAB_RECLAIM_ACCOUNT); 2909 if (ext4_pspace_cachep == NULL) 2910 return -ENOMEM; 2911 2912 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2913 SLAB_RECLAIM_ACCOUNT); 2914 if (ext4_ac_cachep == NULL) { 2915 kmem_cache_destroy(ext4_pspace_cachep); 2916 return -ENOMEM; 2917 } 2918 2919 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2920 SLAB_RECLAIM_ACCOUNT); 2921 if (ext4_free_data_cachep == NULL) { 2922 kmem_cache_destroy(ext4_pspace_cachep); 2923 kmem_cache_destroy(ext4_ac_cachep); 2924 return -ENOMEM; 2925 } 2926 return 0; 2927 } 2928 2929 void ext4_exit_mballoc(void) 2930 { 2931 /* 2932 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2933 * before destroying the slab cache. 2934 */ 2935 rcu_barrier(); 2936 kmem_cache_destroy(ext4_pspace_cachep); 2937 kmem_cache_destroy(ext4_ac_cachep); 2938 kmem_cache_destroy(ext4_free_data_cachep); 2939 ext4_groupinfo_destroy_slabs(); 2940 } 2941 2942 2943 /* 2944 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2945 * Returns 0 if success or error code 2946 */ 2947 static noinline_for_stack int 2948 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2949 handle_t *handle, unsigned int reserv_clstrs) 2950 { 2951 struct buffer_head *bitmap_bh = NULL; 2952 struct ext4_group_desc *gdp; 2953 struct buffer_head *gdp_bh; 2954 struct ext4_sb_info *sbi; 2955 struct super_block *sb; 2956 ext4_fsblk_t block; 2957 int err, len; 2958 2959 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2960 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2961 2962 sb = ac->ac_sb; 2963 sbi = EXT4_SB(sb); 2964 2965 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2966 if (IS_ERR(bitmap_bh)) { 2967 err = PTR_ERR(bitmap_bh); 2968 bitmap_bh = NULL; 2969 goto out_err; 2970 } 2971 2972 BUFFER_TRACE(bitmap_bh, "getting write access"); 2973 err = ext4_journal_get_write_access(handle, bitmap_bh); 2974 if (err) 2975 goto out_err; 2976 2977 err = -EIO; 2978 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2979 if (!gdp) 2980 goto out_err; 2981 2982 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2983 ext4_free_group_clusters(sb, gdp)); 2984 2985 BUFFER_TRACE(gdp_bh, "get_write_access"); 2986 err = ext4_journal_get_write_access(handle, gdp_bh); 2987 if (err) 2988 goto out_err; 2989 2990 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2991 2992 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2993 if (!ext4_data_block_valid(sbi, block, len)) { 2994 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2995 "fs metadata", block, block+len); 2996 /* File system mounted not to panic on error 2997 * Fix the bitmap and return EFSCORRUPTED 2998 * We leak some of the blocks here. 2999 */ 3000 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3001 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3002 ac->ac_b_ex.fe_len); 3003 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3004 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3005 if (!err) 3006 err = -EFSCORRUPTED; 3007 goto out_err; 3008 } 3009 3010 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3011 #ifdef AGGRESSIVE_CHECK 3012 { 3013 int i; 3014 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 3015 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 3016 bitmap_bh->b_data)); 3017 } 3018 } 3019 #endif 3020 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3021 ac->ac_b_ex.fe_len); 3022 if (ext4_has_group_desc_csum(sb) && 3023 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3024 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3025 ext4_free_group_clusters_set(sb, gdp, 3026 ext4_free_clusters_after_init(sb, 3027 ac->ac_b_ex.fe_group, gdp)); 3028 } 3029 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 3030 ext4_free_group_clusters_set(sb, gdp, len); 3031 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 3032 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 3033 3034 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3035 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 3036 /* 3037 * Now reduce the dirty block count also. Should not go negative 3038 */ 3039 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 3040 /* release all the reserved blocks if non delalloc */ 3041 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 3042 reserv_clstrs); 3043 3044 if (sbi->s_log_groups_per_flex) { 3045 ext4_group_t flex_group = ext4_flex_group(sbi, 3046 ac->ac_b_ex.fe_group); 3047 atomic64_sub(ac->ac_b_ex.fe_len, 3048 &sbi_array_rcu_deref(sbi, s_flex_groups, 3049 flex_group)->free_clusters); 3050 } 3051 3052 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3053 if (err) 3054 goto out_err; 3055 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 3056 3057 out_err: 3058 brelse(bitmap_bh); 3059 return err; 3060 } 3061 3062 /* 3063 * here we normalize request for locality group 3064 * Group request are normalized to s_mb_group_prealloc, which goes to 3065 * s_strip if we set the same via mount option. 3066 * s_mb_group_prealloc can be configured via 3067 * /sys/fs/ext4/<partition>/mb_group_prealloc 3068 * 3069 * XXX: should we try to preallocate more than the group has now? 3070 */ 3071 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 3072 { 3073 struct super_block *sb = ac->ac_sb; 3074 struct ext4_locality_group *lg = ac->ac_lg; 3075 3076 BUG_ON(lg == NULL); 3077 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 3078 mb_debug(1, "#%u: goal %u blocks for locality group\n", 3079 current->pid, ac->ac_g_ex.fe_len); 3080 } 3081 3082 /* 3083 * Normalization means making request better in terms of 3084 * size and alignment 3085 */ 3086 static noinline_for_stack void 3087 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3088 struct ext4_allocation_request *ar) 3089 { 3090 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3091 int bsbits, max; 3092 ext4_lblk_t end; 3093 loff_t size, start_off; 3094 loff_t orig_size __maybe_unused; 3095 ext4_lblk_t start; 3096 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3097 struct ext4_prealloc_space *pa; 3098 3099 /* do normalize only data requests, metadata requests 3100 do not need preallocation */ 3101 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3102 return; 3103 3104 /* sometime caller may want exact blocks */ 3105 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3106 return; 3107 3108 /* caller may indicate that preallocation isn't 3109 * required (it's a tail, for example) */ 3110 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3111 return; 3112 3113 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3114 ext4_mb_normalize_group_request(ac); 3115 return ; 3116 } 3117 3118 bsbits = ac->ac_sb->s_blocksize_bits; 3119 3120 /* first, let's learn actual file size 3121 * given current request is allocated */ 3122 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3123 size = size << bsbits; 3124 if (size < i_size_read(ac->ac_inode)) 3125 size = i_size_read(ac->ac_inode); 3126 orig_size = size; 3127 3128 /* max size of free chunks */ 3129 max = 2 << bsbits; 3130 3131 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3132 (req <= (size) || max <= (chunk_size)) 3133 3134 /* first, try to predict filesize */ 3135 /* XXX: should this table be tunable? */ 3136 start_off = 0; 3137 if (size <= 16 * 1024) { 3138 size = 16 * 1024; 3139 } else if (size <= 32 * 1024) { 3140 size = 32 * 1024; 3141 } else if (size <= 64 * 1024) { 3142 size = 64 * 1024; 3143 } else if (size <= 128 * 1024) { 3144 size = 128 * 1024; 3145 } else if (size <= 256 * 1024) { 3146 size = 256 * 1024; 3147 } else if (size <= 512 * 1024) { 3148 size = 512 * 1024; 3149 } else if (size <= 1024 * 1024) { 3150 size = 1024 * 1024; 3151 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3152 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3153 (21 - bsbits)) << 21; 3154 size = 2 * 1024 * 1024; 3155 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3156 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3157 (22 - bsbits)) << 22; 3158 size = 4 * 1024 * 1024; 3159 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3160 (8<<20)>>bsbits, max, 8 * 1024)) { 3161 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3162 (23 - bsbits)) << 23; 3163 size = 8 * 1024 * 1024; 3164 } else { 3165 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 3166 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 3167 ac->ac_o_ex.fe_len) << bsbits; 3168 } 3169 size = size >> bsbits; 3170 start = start_off >> bsbits; 3171 3172 /* don't cover already allocated blocks in selected range */ 3173 if (ar->pleft && start <= ar->lleft) { 3174 size -= ar->lleft + 1 - start; 3175 start = ar->lleft + 1; 3176 } 3177 if (ar->pright && start + size - 1 >= ar->lright) 3178 size -= start + size - ar->lright; 3179 3180 /* 3181 * Trim allocation request for filesystems with artificially small 3182 * groups. 3183 */ 3184 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 3185 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 3186 3187 end = start + size; 3188 3189 /* check we don't cross already preallocated blocks */ 3190 rcu_read_lock(); 3191 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3192 ext4_lblk_t pa_end; 3193 3194 if (pa->pa_deleted) 3195 continue; 3196 spin_lock(&pa->pa_lock); 3197 if (pa->pa_deleted) { 3198 spin_unlock(&pa->pa_lock); 3199 continue; 3200 } 3201 3202 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3203 pa->pa_len); 3204 3205 /* PA must not overlap original request */ 3206 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3207 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3208 3209 /* skip PAs this normalized request doesn't overlap with */ 3210 if (pa->pa_lstart >= end || pa_end <= start) { 3211 spin_unlock(&pa->pa_lock); 3212 continue; 3213 } 3214 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3215 3216 /* adjust start or end to be adjacent to this pa */ 3217 if (pa_end <= ac->ac_o_ex.fe_logical) { 3218 BUG_ON(pa_end < start); 3219 start = pa_end; 3220 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3221 BUG_ON(pa->pa_lstart > end); 3222 end = pa->pa_lstart; 3223 } 3224 spin_unlock(&pa->pa_lock); 3225 } 3226 rcu_read_unlock(); 3227 size = end - start; 3228 3229 /* XXX: extra loop to check we really don't overlap preallocations */ 3230 rcu_read_lock(); 3231 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3232 ext4_lblk_t pa_end; 3233 3234 spin_lock(&pa->pa_lock); 3235 if (pa->pa_deleted == 0) { 3236 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3237 pa->pa_len); 3238 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3239 } 3240 spin_unlock(&pa->pa_lock); 3241 } 3242 rcu_read_unlock(); 3243 3244 if (start + size <= ac->ac_o_ex.fe_logical && 3245 start > ac->ac_o_ex.fe_logical) { 3246 ext4_msg(ac->ac_sb, KERN_ERR, 3247 "start %lu, size %lu, fe_logical %lu", 3248 (unsigned long) start, (unsigned long) size, 3249 (unsigned long) ac->ac_o_ex.fe_logical); 3250 BUG(); 3251 } 3252 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3253 3254 /* now prepare goal request */ 3255 3256 /* XXX: is it better to align blocks WRT to logical 3257 * placement or satisfy big request as is */ 3258 ac->ac_g_ex.fe_logical = start; 3259 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3260 3261 /* define goal start in order to merge */ 3262 if (ar->pright && (ar->lright == (start + size))) { 3263 /* merge to the right */ 3264 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3265 &ac->ac_f_ex.fe_group, 3266 &ac->ac_f_ex.fe_start); 3267 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3268 } 3269 if (ar->pleft && (ar->lleft + 1 == start)) { 3270 /* merge to the left */ 3271 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3272 &ac->ac_f_ex.fe_group, 3273 &ac->ac_f_ex.fe_start); 3274 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3275 } 3276 3277 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3278 (unsigned) orig_size, (unsigned) start); 3279 } 3280 3281 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3282 { 3283 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3284 3285 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3286 atomic_inc(&sbi->s_bal_reqs); 3287 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3288 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3289 atomic_inc(&sbi->s_bal_success); 3290 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3291 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3292 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3293 atomic_inc(&sbi->s_bal_goals); 3294 if (ac->ac_found > sbi->s_mb_max_to_scan) 3295 atomic_inc(&sbi->s_bal_breaks); 3296 } 3297 3298 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3299 trace_ext4_mballoc_alloc(ac); 3300 else 3301 trace_ext4_mballoc_prealloc(ac); 3302 } 3303 3304 /* 3305 * Called on failure; free up any blocks from the inode PA for this 3306 * context. We don't need this for MB_GROUP_PA because we only change 3307 * pa_free in ext4_mb_release_context(), but on failure, we've already 3308 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3309 */ 3310 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3311 { 3312 struct ext4_prealloc_space *pa = ac->ac_pa; 3313 struct ext4_buddy e4b; 3314 int err; 3315 3316 if (pa == NULL) { 3317 if (ac->ac_f_ex.fe_len == 0) 3318 return; 3319 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 3320 if (err) { 3321 /* 3322 * This should never happen since we pin the 3323 * pages in the ext4_allocation_context so 3324 * ext4_mb_load_buddy() should never fail. 3325 */ 3326 WARN(1, "mb_load_buddy failed (%d)", err); 3327 return; 3328 } 3329 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3330 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 3331 ac->ac_f_ex.fe_len); 3332 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3333 ext4_mb_unload_buddy(&e4b); 3334 return; 3335 } 3336 if (pa->pa_type == MB_INODE_PA) 3337 pa->pa_free += ac->ac_b_ex.fe_len; 3338 } 3339 3340 /* 3341 * use blocks preallocated to inode 3342 */ 3343 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3344 struct ext4_prealloc_space *pa) 3345 { 3346 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3347 ext4_fsblk_t start; 3348 ext4_fsblk_t end; 3349 int len; 3350 3351 /* found preallocated blocks, use them */ 3352 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3353 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3354 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3355 len = EXT4_NUM_B2C(sbi, end - start); 3356 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3357 &ac->ac_b_ex.fe_start); 3358 ac->ac_b_ex.fe_len = len; 3359 ac->ac_status = AC_STATUS_FOUND; 3360 ac->ac_pa = pa; 3361 3362 BUG_ON(start < pa->pa_pstart); 3363 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3364 BUG_ON(pa->pa_free < len); 3365 pa->pa_free -= len; 3366 3367 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3368 } 3369 3370 /* 3371 * use blocks preallocated to locality group 3372 */ 3373 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3374 struct ext4_prealloc_space *pa) 3375 { 3376 unsigned int len = ac->ac_o_ex.fe_len; 3377 3378 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3379 &ac->ac_b_ex.fe_group, 3380 &ac->ac_b_ex.fe_start); 3381 ac->ac_b_ex.fe_len = len; 3382 ac->ac_status = AC_STATUS_FOUND; 3383 ac->ac_pa = pa; 3384 3385 /* we don't correct pa_pstart or pa_plen here to avoid 3386 * possible race when the group is being loaded concurrently 3387 * instead we correct pa later, after blocks are marked 3388 * in on-disk bitmap -- see ext4_mb_release_context() 3389 * Other CPUs are prevented from allocating from this pa by lg_mutex 3390 */ 3391 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3392 } 3393 3394 /* 3395 * Return the prealloc space that have minimal distance 3396 * from the goal block. @cpa is the prealloc 3397 * space that is having currently known minimal distance 3398 * from the goal block. 3399 */ 3400 static struct ext4_prealloc_space * 3401 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3402 struct ext4_prealloc_space *pa, 3403 struct ext4_prealloc_space *cpa) 3404 { 3405 ext4_fsblk_t cur_distance, new_distance; 3406 3407 if (cpa == NULL) { 3408 atomic_inc(&pa->pa_count); 3409 return pa; 3410 } 3411 cur_distance = abs(goal_block - cpa->pa_pstart); 3412 new_distance = abs(goal_block - pa->pa_pstart); 3413 3414 if (cur_distance <= new_distance) 3415 return cpa; 3416 3417 /* drop the previous reference */ 3418 atomic_dec(&cpa->pa_count); 3419 atomic_inc(&pa->pa_count); 3420 return pa; 3421 } 3422 3423 /* 3424 * search goal blocks in preallocated space 3425 */ 3426 static noinline_for_stack int 3427 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3428 { 3429 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3430 int order, i; 3431 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3432 struct ext4_locality_group *lg; 3433 struct ext4_prealloc_space *pa, *cpa = NULL; 3434 ext4_fsblk_t goal_block; 3435 3436 /* only data can be preallocated */ 3437 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3438 return 0; 3439 3440 /* first, try per-file preallocation */ 3441 rcu_read_lock(); 3442 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3443 3444 /* all fields in this condition don't change, 3445 * so we can skip locking for them */ 3446 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3447 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3448 EXT4_C2B(sbi, pa->pa_len))) 3449 continue; 3450 3451 /* non-extent files can't have physical blocks past 2^32 */ 3452 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3453 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3454 EXT4_MAX_BLOCK_FILE_PHYS)) 3455 continue; 3456 3457 /* found preallocated blocks, use them */ 3458 spin_lock(&pa->pa_lock); 3459 if (pa->pa_deleted == 0 && pa->pa_free) { 3460 atomic_inc(&pa->pa_count); 3461 ext4_mb_use_inode_pa(ac, pa); 3462 spin_unlock(&pa->pa_lock); 3463 ac->ac_criteria = 10; 3464 rcu_read_unlock(); 3465 return 1; 3466 } 3467 spin_unlock(&pa->pa_lock); 3468 } 3469 rcu_read_unlock(); 3470 3471 /* can we use group allocation? */ 3472 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3473 return 0; 3474 3475 /* inode may have no locality group for some reason */ 3476 lg = ac->ac_lg; 3477 if (lg == NULL) 3478 return 0; 3479 order = fls(ac->ac_o_ex.fe_len) - 1; 3480 if (order > PREALLOC_TB_SIZE - 1) 3481 /* The max size of hash table is PREALLOC_TB_SIZE */ 3482 order = PREALLOC_TB_SIZE - 1; 3483 3484 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3485 /* 3486 * search for the prealloc space that is having 3487 * minimal distance from the goal block. 3488 */ 3489 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3490 rcu_read_lock(); 3491 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3492 pa_inode_list) { 3493 spin_lock(&pa->pa_lock); 3494 if (pa->pa_deleted == 0 && 3495 pa->pa_free >= ac->ac_o_ex.fe_len) { 3496 3497 cpa = ext4_mb_check_group_pa(goal_block, 3498 pa, cpa); 3499 } 3500 spin_unlock(&pa->pa_lock); 3501 } 3502 rcu_read_unlock(); 3503 } 3504 if (cpa) { 3505 ext4_mb_use_group_pa(ac, cpa); 3506 ac->ac_criteria = 20; 3507 return 1; 3508 } 3509 return 0; 3510 } 3511 3512 /* 3513 * the function goes through all block freed in the group 3514 * but not yet committed and marks them used in in-core bitmap. 3515 * buddy must be generated from this bitmap 3516 * Need to be called with the ext4 group lock held 3517 */ 3518 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3519 ext4_group_t group) 3520 { 3521 struct rb_node *n; 3522 struct ext4_group_info *grp; 3523 struct ext4_free_data *entry; 3524 3525 grp = ext4_get_group_info(sb, group); 3526 n = rb_first(&(grp->bb_free_root)); 3527 3528 while (n) { 3529 entry = rb_entry(n, struct ext4_free_data, efd_node); 3530 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3531 n = rb_next(n); 3532 } 3533 return; 3534 } 3535 3536 /* 3537 * the function goes through all preallocation in this group and marks them 3538 * used in in-core bitmap. buddy must be generated from this bitmap 3539 * Need to be called with ext4 group lock held 3540 */ 3541 static noinline_for_stack 3542 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3543 ext4_group_t group) 3544 { 3545 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3546 struct ext4_prealloc_space *pa; 3547 struct list_head *cur; 3548 ext4_group_t groupnr; 3549 ext4_grpblk_t start; 3550 int preallocated = 0; 3551 int len; 3552 3553 /* all form of preallocation discards first load group, 3554 * so the only competing code is preallocation use. 3555 * we don't need any locking here 3556 * notice we do NOT ignore preallocations with pa_deleted 3557 * otherwise we could leave used blocks available for 3558 * allocation in buddy when concurrent ext4_mb_put_pa() 3559 * is dropping preallocation 3560 */ 3561 list_for_each(cur, &grp->bb_prealloc_list) { 3562 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3563 spin_lock(&pa->pa_lock); 3564 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3565 &groupnr, &start); 3566 len = pa->pa_len; 3567 spin_unlock(&pa->pa_lock); 3568 if (unlikely(len == 0)) 3569 continue; 3570 BUG_ON(groupnr != group); 3571 ext4_set_bits(bitmap, start, len); 3572 preallocated += len; 3573 } 3574 mb_debug(1, "preallocated %u for group %u\n", preallocated, group); 3575 } 3576 3577 static void ext4_mb_pa_callback(struct rcu_head *head) 3578 { 3579 struct ext4_prealloc_space *pa; 3580 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3581 3582 BUG_ON(atomic_read(&pa->pa_count)); 3583 BUG_ON(pa->pa_deleted == 0); 3584 kmem_cache_free(ext4_pspace_cachep, pa); 3585 } 3586 3587 /* 3588 * drops a reference to preallocated space descriptor 3589 * if this was the last reference and the space is consumed 3590 */ 3591 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3592 struct super_block *sb, struct ext4_prealloc_space *pa) 3593 { 3594 ext4_group_t grp; 3595 ext4_fsblk_t grp_blk; 3596 3597 /* in this short window concurrent discard can set pa_deleted */ 3598 spin_lock(&pa->pa_lock); 3599 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 3600 spin_unlock(&pa->pa_lock); 3601 return; 3602 } 3603 3604 if (pa->pa_deleted == 1) { 3605 spin_unlock(&pa->pa_lock); 3606 return; 3607 } 3608 3609 pa->pa_deleted = 1; 3610 spin_unlock(&pa->pa_lock); 3611 3612 grp_blk = pa->pa_pstart; 3613 /* 3614 * If doing group-based preallocation, pa_pstart may be in the 3615 * next group when pa is used up 3616 */ 3617 if (pa->pa_type == MB_GROUP_PA) 3618 grp_blk--; 3619 3620 grp = ext4_get_group_number(sb, grp_blk); 3621 3622 /* 3623 * possible race: 3624 * 3625 * P1 (buddy init) P2 (regular allocation) 3626 * find block B in PA 3627 * copy on-disk bitmap to buddy 3628 * mark B in on-disk bitmap 3629 * drop PA from group 3630 * mark all PAs in buddy 3631 * 3632 * thus, P1 initializes buddy with B available. to prevent this 3633 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3634 * against that pair 3635 */ 3636 ext4_lock_group(sb, grp); 3637 list_del(&pa->pa_group_list); 3638 ext4_unlock_group(sb, grp); 3639 3640 spin_lock(pa->pa_obj_lock); 3641 list_del_rcu(&pa->pa_inode_list); 3642 spin_unlock(pa->pa_obj_lock); 3643 3644 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3645 } 3646 3647 /* 3648 * creates new preallocated space for given inode 3649 */ 3650 static noinline_for_stack int 3651 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3652 { 3653 struct super_block *sb = ac->ac_sb; 3654 struct ext4_sb_info *sbi = EXT4_SB(sb); 3655 struct ext4_prealloc_space *pa; 3656 struct ext4_group_info *grp; 3657 struct ext4_inode_info *ei; 3658 3659 /* preallocate only when found space is larger then requested */ 3660 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3661 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3662 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3663 3664 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3665 if (pa == NULL) 3666 return -ENOMEM; 3667 3668 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3669 int winl; 3670 int wins; 3671 int win; 3672 int offs; 3673 3674 /* we can't allocate as much as normalizer wants. 3675 * so, found space must get proper lstart 3676 * to cover original request */ 3677 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3678 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3679 3680 /* we're limited by original request in that 3681 * logical block must be covered any way 3682 * winl is window we can move our chunk within */ 3683 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3684 3685 /* also, we should cover whole original request */ 3686 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3687 3688 /* the smallest one defines real window */ 3689 win = min(winl, wins); 3690 3691 offs = ac->ac_o_ex.fe_logical % 3692 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3693 if (offs && offs < win) 3694 win = offs; 3695 3696 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3697 EXT4_NUM_B2C(sbi, win); 3698 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3699 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3700 } 3701 3702 /* preallocation can change ac_b_ex, thus we store actually 3703 * allocated blocks for history */ 3704 ac->ac_f_ex = ac->ac_b_ex; 3705 3706 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3707 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3708 pa->pa_len = ac->ac_b_ex.fe_len; 3709 pa->pa_free = pa->pa_len; 3710 atomic_set(&pa->pa_count, 1); 3711 spin_lock_init(&pa->pa_lock); 3712 INIT_LIST_HEAD(&pa->pa_inode_list); 3713 INIT_LIST_HEAD(&pa->pa_group_list); 3714 pa->pa_deleted = 0; 3715 pa->pa_type = MB_INODE_PA; 3716 3717 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3718 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3719 trace_ext4_mb_new_inode_pa(ac, pa); 3720 3721 ext4_mb_use_inode_pa(ac, pa); 3722 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3723 3724 ei = EXT4_I(ac->ac_inode); 3725 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3726 3727 pa->pa_obj_lock = &ei->i_prealloc_lock; 3728 pa->pa_inode = ac->ac_inode; 3729 3730 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3731 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3732 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3733 3734 spin_lock(pa->pa_obj_lock); 3735 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3736 spin_unlock(pa->pa_obj_lock); 3737 3738 return 0; 3739 } 3740 3741 /* 3742 * creates new preallocated space for locality group inodes belongs to 3743 */ 3744 static noinline_for_stack int 3745 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3746 { 3747 struct super_block *sb = ac->ac_sb; 3748 struct ext4_locality_group *lg; 3749 struct ext4_prealloc_space *pa; 3750 struct ext4_group_info *grp; 3751 3752 /* preallocate only when found space is larger then requested */ 3753 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3754 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3755 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3756 3757 BUG_ON(ext4_pspace_cachep == NULL); 3758 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3759 if (pa == NULL) 3760 return -ENOMEM; 3761 3762 /* preallocation can change ac_b_ex, thus we store actually 3763 * allocated blocks for history */ 3764 ac->ac_f_ex = ac->ac_b_ex; 3765 3766 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3767 pa->pa_lstart = pa->pa_pstart; 3768 pa->pa_len = ac->ac_b_ex.fe_len; 3769 pa->pa_free = pa->pa_len; 3770 atomic_set(&pa->pa_count, 1); 3771 spin_lock_init(&pa->pa_lock); 3772 INIT_LIST_HEAD(&pa->pa_inode_list); 3773 INIT_LIST_HEAD(&pa->pa_group_list); 3774 pa->pa_deleted = 0; 3775 pa->pa_type = MB_GROUP_PA; 3776 3777 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3778 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3779 trace_ext4_mb_new_group_pa(ac, pa); 3780 3781 ext4_mb_use_group_pa(ac, pa); 3782 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3783 3784 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3785 lg = ac->ac_lg; 3786 BUG_ON(lg == NULL); 3787 3788 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3789 pa->pa_inode = NULL; 3790 3791 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3792 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3793 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3794 3795 /* 3796 * We will later add the new pa to the right bucket 3797 * after updating the pa_free in ext4_mb_release_context 3798 */ 3799 return 0; 3800 } 3801 3802 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3803 { 3804 int err; 3805 3806 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3807 err = ext4_mb_new_group_pa(ac); 3808 else 3809 err = ext4_mb_new_inode_pa(ac); 3810 return err; 3811 } 3812 3813 /* 3814 * finds all unused blocks in on-disk bitmap, frees them in 3815 * in-core bitmap and buddy. 3816 * @pa must be unlinked from inode and group lists, so that 3817 * nobody else can find/use it. 3818 * the caller MUST hold group/inode locks. 3819 * TODO: optimize the case when there are no in-core structures yet 3820 */ 3821 static noinline_for_stack int 3822 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3823 struct ext4_prealloc_space *pa) 3824 { 3825 struct super_block *sb = e4b->bd_sb; 3826 struct ext4_sb_info *sbi = EXT4_SB(sb); 3827 unsigned int end; 3828 unsigned int next; 3829 ext4_group_t group; 3830 ext4_grpblk_t bit; 3831 unsigned long long grp_blk_start; 3832 int free = 0; 3833 3834 BUG_ON(pa->pa_deleted == 0); 3835 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3836 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3837 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3838 end = bit + pa->pa_len; 3839 3840 while (bit < end) { 3841 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3842 if (bit >= end) 3843 break; 3844 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3845 mb_debug(1, " free preallocated %u/%u in group %u\n", 3846 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3847 (unsigned) next - bit, (unsigned) group); 3848 free += next - bit; 3849 3850 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3851 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3852 EXT4_C2B(sbi, bit)), 3853 next - bit); 3854 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3855 bit = next + 1; 3856 } 3857 if (free != pa->pa_free) { 3858 ext4_msg(e4b->bd_sb, KERN_CRIT, 3859 "pa %p: logic %lu, phys. %lu, len %lu", 3860 pa, (unsigned long) pa->pa_lstart, 3861 (unsigned long) pa->pa_pstart, 3862 (unsigned long) pa->pa_len); 3863 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3864 free, pa->pa_free); 3865 /* 3866 * pa is already deleted so we use the value obtained 3867 * from the bitmap and continue. 3868 */ 3869 } 3870 atomic_add(free, &sbi->s_mb_discarded); 3871 3872 return 0; 3873 } 3874 3875 static noinline_for_stack int 3876 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3877 struct ext4_prealloc_space *pa) 3878 { 3879 struct super_block *sb = e4b->bd_sb; 3880 ext4_group_t group; 3881 ext4_grpblk_t bit; 3882 3883 trace_ext4_mb_release_group_pa(sb, pa); 3884 BUG_ON(pa->pa_deleted == 0); 3885 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3886 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3887 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3888 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3889 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3890 3891 return 0; 3892 } 3893 3894 /* 3895 * releases all preallocations in given group 3896 * 3897 * first, we need to decide discard policy: 3898 * - when do we discard 3899 * 1) ENOSPC 3900 * - how many do we discard 3901 * 1) how many requested 3902 */ 3903 static noinline_for_stack int 3904 ext4_mb_discard_group_preallocations(struct super_block *sb, 3905 ext4_group_t group, int needed) 3906 { 3907 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3908 struct buffer_head *bitmap_bh = NULL; 3909 struct ext4_prealloc_space *pa, *tmp; 3910 struct list_head list; 3911 struct ext4_buddy e4b; 3912 int err; 3913 int busy = 0; 3914 int free = 0; 3915 3916 mb_debug(1, "discard preallocation for group %u\n", group); 3917 3918 if (list_empty(&grp->bb_prealloc_list)) 3919 return 0; 3920 3921 bitmap_bh = ext4_read_block_bitmap(sb, group); 3922 if (IS_ERR(bitmap_bh)) { 3923 err = PTR_ERR(bitmap_bh); 3924 ext4_error_err(sb, -err, 3925 "Error %d reading block bitmap for %u", 3926 err, group); 3927 return 0; 3928 } 3929 3930 err = ext4_mb_load_buddy(sb, group, &e4b); 3931 if (err) { 3932 ext4_warning(sb, "Error %d loading buddy information for %u", 3933 err, group); 3934 put_bh(bitmap_bh); 3935 return 0; 3936 } 3937 3938 if (needed == 0) 3939 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3940 3941 INIT_LIST_HEAD(&list); 3942 repeat: 3943 ext4_lock_group(sb, group); 3944 list_for_each_entry_safe(pa, tmp, 3945 &grp->bb_prealloc_list, pa_group_list) { 3946 spin_lock(&pa->pa_lock); 3947 if (atomic_read(&pa->pa_count)) { 3948 spin_unlock(&pa->pa_lock); 3949 busy = 1; 3950 continue; 3951 } 3952 if (pa->pa_deleted) { 3953 spin_unlock(&pa->pa_lock); 3954 continue; 3955 } 3956 3957 /* seems this one can be freed ... */ 3958 pa->pa_deleted = 1; 3959 3960 /* we can trust pa_free ... */ 3961 free += pa->pa_free; 3962 3963 spin_unlock(&pa->pa_lock); 3964 3965 list_del(&pa->pa_group_list); 3966 list_add(&pa->u.pa_tmp_list, &list); 3967 } 3968 3969 /* if we still need more blocks and some PAs were used, try again */ 3970 if (free < needed && busy) { 3971 busy = 0; 3972 ext4_unlock_group(sb, group); 3973 cond_resched(); 3974 goto repeat; 3975 } 3976 3977 /* found anything to free? */ 3978 if (list_empty(&list)) { 3979 BUG_ON(free != 0); 3980 goto out; 3981 } 3982 3983 /* now free all selected PAs */ 3984 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3985 3986 /* remove from object (inode or locality group) */ 3987 spin_lock(pa->pa_obj_lock); 3988 list_del_rcu(&pa->pa_inode_list); 3989 spin_unlock(pa->pa_obj_lock); 3990 3991 if (pa->pa_type == MB_GROUP_PA) 3992 ext4_mb_release_group_pa(&e4b, pa); 3993 else 3994 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3995 3996 list_del(&pa->u.pa_tmp_list); 3997 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3998 } 3999 4000 out: 4001 ext4_unlock_group(sb, group); 4002 ext4_mb_unload_buddy(&e4b); 4003 put_bh(bitmap_bh); 4004 return free; 4005 } 4006 4007 /* 4008 * releases all non-used preallocated blocks for given inode 4009 * 4010 * It's important to discard preallocations under i_data_sem 4011 * We don't want another block to be served from the prealloc 4012 * space when we are discarding the inode prealloc space. 4013 * 4014 * FIXME!! Make sure it is valid at all the call sites 4015 */ 4016 void ext4_discard_preallocations(struct inode *inode) 4017 { 4018 struct ext4_inode_info *ei = EXT4_I(inode); 4019 struct super_block *sb = inode->i_sb; 4020 struct buffer_head *bitmap_bh = NULL; 4021 struct ext4_prealloc_space *pa, *tmp; 4022 ext4_group_t group = 0; 4023 struct list_head list; 4024 struct ext4_buddy e4b; 4025 int err; 4026 4027 if (!S_ISREG(inode->i_mode)) { 4028 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 4029 return; 4030 } 4031 4032 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 4033 trace_ext4_discard_preallocations(inode); 4034 4035 INIT_LIST_HEAD(&list); 4036 4037 repeat: 4038 /* first, collect all pa's in the inode */ 4039 spin_lock(&ei->i_prealloc_lock); 4040 while (!list_empty(&ei->i_prealloc_list)) { 4041 pa = list_entry(ei->i_prealloc_list.next, 4042 struct ext4_prealloc_space, pa_inode_list); 4043 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 4044 spin_lock(&pa->pa_lock); 4045 if (atomic_read(&pa->pa_count)) { 4046 /* this shouldn't happen often - nobody should 4047 * use preallocation while we're discarding it */ 4048 spin_unlock(&pa->pa_lock); 4049 spin_unlock(&ei->i_prealloc_lock); 4050 ext4_msg(sb, KERN_ERR, 4051 "uh-oh! used pa while discarding"); 4052 WARN_ON(1); 4053 schedule_timeout_uninterruptible(HZ); 4054 goto repeat; 4055 4056 } 4057 if (pa->pa_deleted == 0) { 4058 pa->pa_deleted = 1; 4059 spin_unlock(&pa->pa_lock); 4060 list_del_rcu(&pa->pa_inode_list); 4061 list_add(&pa->u.pa_tmp_list, &list); 4062 continue; 4063 } 4064 4065 /* someone is deleting pa right now */ 4066 spin_unlock(&pa->pa_lock); 4067 spin_unlock(&ei->i_prealloc_lock); 4068 4069 /* we have to wait here because pa_deleted 4070 * doesn't mean pa is already unlinked from 4071 * the list. as we might be called from 4072 * ->clear_inode() the inode will get freed 4073 * and concurrent thread which is unlinking 4074 * pa from inode's list may access already 4075 * freed memory, bad-bad-bad */ 4076 4077 /* XXX: if this happens too often, we can 4078 * add a flag to force wait only in case 4079 * of ->clear_inode(), but not in case of 4080 * regular truncate */ 4081 schedule_timeout_uninterruptible(HZ); 4082 goto repeat; 4083 } 4084 spin_unlock(&ei->i_prealloc_lock); 4085 4086 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4087 BUG_ON(pa->pa_type != MB_INODE_PA); 4088 group = ext4_get_group_number(sb, pa->pa_pstart); 4089 4090 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4091 GFP_NOFS|__GFP_NOFAIL); 4092 if (err) { 4093 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 4094 err, group); 4095 continue; 4096 } 4097 4098 bitmap_bh = ext4_read_block_bitmap(sb, group); 4099 if (IS_ERR(bitmap_bh)) { 4100 err = PTR_ERR(bitmap_bh); 4101 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 4102 err, group); 4103 ext4_mb_unload_buddy(&e4b); 4104 continue; 4105 } 4106 4107 ext4_lock_group(sb, group); 4108 list_del(&pa->pa_group_list); 4109 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4110 ext4_unlock_group(sb, group); 4111 4112 ext4_mb_unload_buddy(&e4b); 4113 put_bh(bitmap_bh); 4114 4115 list_del(&pa->u.pa_tmp_list); 4116 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4117 } 4118 } 4119 4120 #ifdef CONFIG_EXT4_DEBUG 4121 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4122 { 4123 struct super_block *sb = ac->ac_sb; 4124 ext4_group_t ngroups, i; 4125 4126 if (!ext4_mballoc_debug || 4127 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 4128 return; 4129 4130 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 4131 " Allocation context details:"); 4132 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 4133 ac->ac_status, ac->ac_flags); 4134 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 4135 "goal %lu/%lu/%lu@%lu, " 4136 "best %lu/%lu/%lu@%lu cr %d", 4137 (unsigned long)ac->ac_o_ex.fe_group, 4138 (unsigned long)ac->ac_o_ex.fe_start, 4139 (unsigned long)ac->ac_o_ex.fe_len, 4140 (unsigned long)ac->ac_o_ex.fe_logical, 4141 (unsigned long)ac->ac_g_ex.fe_group, 4142 (unsigned long)ac->ac_g_ex.fe_start, 4143 (unsigned long)ac->ac_g_ex.fe_len, 4144 (unsigned long)ac->ac_g_ex.fe_logical, 4145 (unsigned long)ac->ac_b_ex.fe_group, 4146 (unsigned long)ac->ac_b_ex.fe_start, 4147 (unsigned long)ac->ac_b_ex.fe_len, 4148 (unsigned long)ac->ac_b_ex.fe_logical, 4149 (int)ac->ac_criteria); 4150 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found); 4151 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 4152 ngroups = ext4_get_groups_count(sb); 4153 for (i = 0; i < ngroups; i++) { 4154 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 4155 struct ext4_prealloc_space *pa; 4156 ext4_grpblk_t start; 4157 struct list_head *cur; 4158 ext4_lock_group(sb, i); 4159 list_for_each(cur, &grp->bb_prealloc_list) { 4160 pa = list_entry(cur, struct ext4_prealloc_space, 4161 pa_group_list); 4162 spin_lock(&pa->pa_lock); 4163 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4164 NULL, &start); 4165 spin_unlock(&pa->pa_lock); 4166 printk(KERN_ERR "PA:%u:%d:%u \n", i, 4167 start, pa->pa_len); 4168 } 4169 ext4_unlock_group(sb, i); 4170 4171 if (grp->bb_free == 0) 4172 continue; 4173 printk(KERN_ERR "%u: %d/%d \n", 4174 i, grp->bb_free, grp->bb_fragments); 4175 } 4176 printk(KERN_ERR "\n"); 4177 } 4178 #else 4179 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4180 { 4181 return; 4182 } 4183 #endif 4184 4185 /* 4186 * We use locality group preallocation for small size file. The size of the 4187 * file is determined by the current size or the resulting size after 4188 * allocation which ever is larger 4189 * 4190 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4191 */ 4192 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4193 { 4194 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4195 int bsbits = ac->ac_sb->s_blocksize_bits; 4196 loff_t size, isize; 4197 4198 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4199 return; 4200 4201 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4202 return; 4203 4204 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4205 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4206 >> bsbits; 4207 4208 if ((size == isize) && !ext4_fs_is_busy(sbi) && 4209 !inode_is_open_for_write(ac->ac_inode)) { 4210 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4211 return; 4212 } 4213 4214 if (sbi->s_mb_group_prealloc <= 0) { 4215 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4216 return; 4217 } 4218 4219 /* don't use group allocation for large files */ 4220 size = max(size, isize); 4221 if (size > sbi->s_mb_stream_request) { 4222 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4223 return; 4224 } 4225 4226 BUG_ON(ac->ac_lg != NULL); 4227 /* 4228 * locality group prealloc space are per cpu. The reason for having 4229 * per cpu locality group is to reduce the contention between block 4230 * request from multiple CPUs. 4231 */ 4232 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 4233 4234 /* we're going to use group allocation */ 4235 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4236 4237 /* serialize all allocations in the group */ 4238 mutex_lock(&ac->ac_lg->lg_mutex); 4239 } 4240 4241 static noinline_for_stack int 4242 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4243 struct ext4_allocation_request *ar) 4244 { 4245 struct super_block *sb = ar->inode->i_sb; 4246 struct ext4_sb_info *sbi = EXT4_SB(sb); 4247 struct ext4_super_block *es = sbi->s_es; 4248 ext4_group_t group; 4249 unsigned int len; 4250 ext4_fsblk_t goal; 4251 ext4_grpblk_t block; 4252 4253 /* we can't allocate > group size */ 4254 len = ar->len; 4255 4256 /* just a dirty hack to filter too big requests */ 4257 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4258 len = EXT4_CLUSTERS_PER_GROUP(sb); 4259 4260 /* start searching from the goal */ 4261 goal = ar->goal; 4262 if (goal < le32_to_cpu(es->s_first_data_block) || 4263 goal >= ext4_blocks_count(es)) 4264 goal = le32_to_cpu(es->s_first_data_block); 4265 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4266 4267 /* set up allocation goals */ 4268 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 4269 ac->ac_status = AC_STATUS_CONTINUE; 4270 ac->ac_sb = sb; 4271 ac->ac_inode = ar->inode; 4272 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4273 ac->ac_o_ex.fe_group = group; 4274 ac->ac_o_ex.fe_start = block; 4275 ac->ac_o_ex.fe_len = len; 4276 ac->ac_g_ex = ac->ac_o_ex; 4277 ac->ac_flags = ar->flags; 4278 4279 /* we have to define context: we'll we work with a file or 4280 * locality group. this is a policy, actually */ 4281 ext4_mb_group_or_file(ac); 4282 4283 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4284 "left: %u/%u, right %u/%u to %swritable\n", 4285 (unsigned) ar->len, (unsigned) ar->logical, 4286 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4287 (unsigned) ar->lleft, (unsigned) ar->pleft, 4288 (unsigned) ar->lright, (unsigned) ar->pright, 4289 inode_is_open_for_write(ar->inode) ? "" : "non-"); 4290 return 0; 4291 4292 } 4293 4294 static noinline_for_stack void 4295 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4296 struct ext4_locality_group *lg, 4297 int order, int total_entries) 4298 { 4299 ext4_group_t group = 0; 4300 struct ext4_buddy e4b; 4301 struct list_head discard_list; 4302 struct ext4_prealloc_space *pa, *tmp; 4303 4304 mb_debug(1, "discard locality group preallocation\n"); 4305 4306 INIT_LIST_HEAD(&discard_list); 4307 4308 spin_lock(&lg->lg_prealloc_lock); 4309 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4310 pa_inode_list, 4311 lockdep_is_held(&lg->lg_prealloc_lock)) { 4312 spin_lock(&pa->pa_lock); 4313 if (atomic_read(&pa->pa_count)) { 4314 /* 4315 * This is the pa that we just used 4316 * for block allocation. So don't 4317 * free that 4318 */ 4319 spin_unlock(&pa->pa_lock); 4320 continue; 4321 } 4322 if (pa->pa_deleted) { 4323 spin_unlock(&pa->pa_lock); 4324 continue; 4325 } 4326 /* only lg prealloc space */ 4327 BUG_ON(pa->pa_type != MB_GROUP_PA); 4328 4329 /* seems this one can be freed ... */ 4330 pa->pa_deleted = 1; 4331 spin_unlock(&pa->pa_lock); 4332 4333 list_del_rcu(&pa->pa_inode_list); 4334 list_add(&pa->u.pa_tmp_list, &discard_list); 4335 4336 total_entries--; 4337 if (total_entries <= 5) { 4338 /* 4339 * we want to keep only 5 entries 4340 * allowing it to grow to 8. This 4341 * mak sure we don't call discard 4342 * soon for this list. 4343 */ 4344 break; 4345 } 4346 } 4347 spin_unlock(&lg->lg_prealloc_lock); 4348 4349 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4350 int err; 4351 4352 group = ext4_get_group_number(sb, pa->pa_pstart); 4353 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4354 GFP_NOFS|__GFP_NOFAIL); 4355 if (err) { 4356 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 4357 err, group); 4358 continue; 4359 } 4360 ext4_lock_group(sb, group); 4361 list_del(&pa->pa_group_list); 4362 ext4_mb_release_group_pa(&e4b, pa); 4363 ext4_unlock_group(sb, group); 4364 4365 ext4_mb_unload_buddy(&e4b); 4366 list_del(&pa->u.pa_tmp_list); 4367 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4368 } 4369 } 4370 4371 /* 4372 * We have incremented pa_count. So it cannot be freed at this 4373 * point. Also we hold lg_mutex. So no parallel allocation is 4374 * possible from this lg. That means pa_free cannot be updated. 4375 * 4376 * A parallel ext4_mb_discard_group_preallocations is possible. 4377 * which can cause the lg_prealloc_list to be updated. 4378 */ 4379 4380 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4381 { 4382 int order, added = 0, lg_prealloc_count = 1; 4383 struct super_block *sb = ac->ac_sb; 4384 struct ext4_locality_group *lg = ac->ac_lg; 4385 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4386 4387 order = fls(pa->pa_free) - 1; 4388 if (order > PREALLOC_TB_SIZE - 1) 4389 /* The max size of hash table is PREALLOC_TB_SIZE */ 4390 order = PREALLOC_TB_SIZE - 1; 4391 /* Add the prealloc space to lg */ 4392 spin_lock(&lg->lg_prealloc_lock); 4393 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4394 pa_inode_list, 4395 lockdep_is_held(&lg->lg_prealloc_lock)) { 4396 spin_lock(&tmp_pa->pa_lock); 4397 if (tmp_pa->pa_deleted) { 4398 spin_unlock(&tmp_pa->pa_lock); 4399 continue; 4400 } 4401 if (!added && pa->pa_free < tmp_pa->pa_free) { 4402 /* Add to the tail of the previous entry */ 4403 list_add_tail_rcu(&pa->pa_inode_list, 4404 &tmp_pa->pa_inode_list); 4405 added = 1; 4406 /* 4407 * we want to count the total 4408 * number of entries in the list 4409 */ 4410 } 4411 spin_unlock(&tmp_pa->pa_lock); 4412 lg_prealloc_count++; 4413 } 4414 if (!added) 4415 list_add_tail_rcu(&pa->pa_inode_list, 4416 &lg->lg_prealloc_list[order]); 4417 spin_unlock(&lg->lg_prealloc_lock); 4418 4419 /* Now trim the list to be not more than 8 elements */ 4420 if (lg_prealloc_count > 8) { 4421 ext4_mb_discard_lg_preallocations(sb, lg, 4422 order, lg_prealloc_count); 4423 return; 4424 } 4425 return ; 4426 } 4427 4428 /* 4429 * release all resource we used in allocation 4430 */ 4431 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4432 { 4433 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4434 struct ext4_prealloc_space *pa = ac->ac_pa; 4435 if (pa) { 4436 if (pa->pa_type == MB_GROUP_PA) { 4437 /* see comment in ext4_mb_use_group_pa() */ 4438 spin_lock(&pa->pa_lock); 4439 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4440 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4441 pa->pa_free -= ac->ac_b_ex.fe_len; 4442 pa->pa_len -= ac->ac_b_ex.fe_len; 4443 spin_unlock(&pa->pa_lock); 4444 } 4445 } 4446 if (pa) { 4447 /* 4448 * We want to add the pa to the right bucket. 4449 * Remove it from the list and while adding 4450 * make sure the list to which we are adding 4451 * doesn't grow big. 4452 */ 4453 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4454 spin_lock(pa->pa_obj_lock); 4455 list_del_rcu(&pa->pa_inode_list); 4456 spin_unlock(pa->pa_obj_lock); 4457 ext4_mb_add_n_trim(ac); 4458 } 4459 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4460 } 4461 if (ac->ac_bitmap_page) 4462 put_page(ac->ac_bitmap_page); 4463 if (ac->ac_buddy_page) 4464 put_page(ac->ac_buddy_page); 4465 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4466 mutex_unlock(&ac->ac_lg->lg_mutex); 4467 ext4_mb_collect_stats(ac); 4468 return 0; 4469 } 4470 4471 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4472 { 4473 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4474 int ret; 4475 int freed = 0; 4476 4477 trace_ext4_mb_discard_preallocations(sb, needed); 4478 for (i = 0; i < ngroups && needed > 0; i++) { 4479 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4480 freed += ret; 4481 needed -= ret; 4482 } 4483 4484 return freed; 4485 } 4486 4487 /* 4488 * Main entry point into mballoc to allocate blocks 4489 * it tries to use preallocation first, then falls back 4490 * to usual allocation 4491 */ 4492 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4493 struct ext4_allocation_request *ar, int *errp) 4494 { 4495 int freed; 4496 struct ext4_allocation_context *ac = NULL; 4497 struct ext4_sb_info *sbi; 4498 struct super_block *sb; 4499 ext4_fsblk_t block = 0; 4500 unsigned int inquota = 0; 4501 unsigned int reserv_clstrs = 0; 4502 4503 might_sleep(); 4504 sb = ar->inode->i_sb; 4505 sbi = EXT4_SB(sb); 4506 4507 trace_ext4_request_blocks(ar); 4508 4509 /* Allow to use superuser reservation for quota file */ 4510 if (ext4_is_quota_file(ar->inode)) 4511 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4512 4513 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 4514 /* Without delayed allocation we need to verify 4515 * there is enough free blocks to do block allocation 4516 * and verify allocation doesn't exceed the quota limits. 4517 */ 4518 while (ar->len && 4519 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4520 4521 /* let others to free the space */ 4522 cond_resched(); 4523 ar->len = ar->len >> 1; 4524 } 4525 if (!ar->len) { 4526 *errp = -ENOSPC; 4527 return 0; 4528 } 4529 reserv_clstrs = ar->len; 4530 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4531 dquot_alloc_block_nofail(ar->inode, 4532 EXT4_C2B(sbi, ar->len)); 4533 } else { 4534 while (ar->len && 4535 dquot_alloc_block(ar->inode, 4536 EXT4_C2B(sbi, ar->len))) { 4537 4538 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4539 ar->len--; 4540 } 4541 } 4542 inquota = ar->len; 4543 if (ar->len == 0) { 4544 *errp = -EDQUOT; 4545 goto out; 4546 } 4547 } 4548 4549 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4550 if (!ac) { 4551 ar->len = 0; 4552 *errp = -ENOMEM; 4553 goto out; 4554 } 4555 4556 *errp = ext4_mb_initialize_context(ac, ar); 4557 if (*errp) { 4558 ar->len = 0; 4559 goto out; 4560 } 4561 4562 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4563 if (!ext4_mb_use_preallocated(ac)) { 4564 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4565 ext4_mb_normalize_request(ac, ar); 4566 repeat: 4567 /* allocate space in core */ 4568 *errp = ext4_mb_regular_allocator(ac); 4569 if (*errp) 4570 goto discard_and_exit; 4571 4572 /* as we've just preallocated more space than 4573 * user requested originally, we store allocated 4574 * space in a special descriptor */ 4575 if (ac->ac_status == AC_STATUS_FOUND && 4576 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4577 *errp = ext4_mb_new_preallocation(ac); 4578 if (*errp) { 4579 discard_and_exit: 4580 ext4_discard_allocated_blocks(ac); 4581 goto errout; 4582 } 4583 } 4584 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4585 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4586 if (*errp) { 4587 ext4_discard_allocated_blocks(ac); 4588 goto errout; 4589 } else { 4590 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4591 ar->len = ac->ac_b_ex.fe_len; 4592 } 4593 } else { 4594 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4595 if (freed) 4596 goto repeat; 4597 *errp = -ENOSPC; 4598 } 4599 4600 errout: 4601 if (*errp) { 4602 ac->ac_b_ex.fe_len = 0; 4603 ar->len = 0; 4604 ext4_mb_show_ac(ac); 4605 } 4606 ext4_mb_release_context(ac); 4607 out: 4608 if (ac) 4609 kmem_cache_free(ext4_ac_cachep, ac); 4610 if (inquota && ar->len < inquota) 4611 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4612 if (!ar->len) { 4613 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 4614 /* release all the reserved blocks if non delalloc */ 4615 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4616 reserv_clstrs); 4617 } 4618 4619 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4620 4621 return block; 4622 } 4623 4624 /* 4625 * We can merge two free data extents only if the physical blocks 4626 * are contiguous, AND the extents were freed by the same transaction, 4627 * AND the blocks are associated with the same group. 4628 */ 4629 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 4630 struct ext4_free_data *entry, 4631 struct ext4_free_data *new_entry, 4632 struct rb_root *entry_rb_root) 4633 { 4634 if ((entry->efd_tid != new_entry->efd_tid) || 4635 (entry->efd_group != new_entry->efd_group)) 4636 return; 4637 if (entry->efd_start_cluster + entry->efd_count == 4638 new_entry->efd_start_cluster) { 4639 new_entry->efd_start_cluster = entry->efd_start_cluster; 4640 new_entry->efd_count += entry->efd_count; 4641 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 4642 entry->efd_start_cluster) { 4643 new_entry->efd_count += entry->efd_count; 4644 } else 4645 return; 4646 spin_lock(&sbi->s_md_lock); 4647 list_del(&entry->efd_list); 4648 spin_unlock(&sbi->s_md_lock); 4649 rb_erase(&entry->efd_node, entry_rb_root); 4650 kmem_cache_free(ext4_free_data_cachep, entry); 4651 } 4652 4653 static noinline_for_stack int 4654 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4655 struct ext4_free_data *new_entry) 4656 { 4657 ext4_group_t group = e4b->bd_group; 4658 ext4_grpblk_t cluster; 4659 ext4_grpblk_t clusters = new_entry->efd_count; 4660 struct ext4_free_data *entry; 4661 struct ext4_group_info *db = e4b->bd_info; 4662 struct super_block *sb = e4b->bd_sb; 4663 struct ext4_sb_info *sbi = EXT4_SB(sb); 4664 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4665 struct rb_node *parent = NULL, *new_node; 4666 4667 BUG_ON(!ext4_handle_valid(handle)); 4668 BUG_ON(e4b->bd_bitmap_page == NULL); 4669 BUG_ON(e4b->bd_buddy_page == NULL); 4670 4671 new_node = &new_entry->efd_node; 4672 cluster = new_entry->efd_start_cluster; 4673 4674 if (!*n) { 4675 /* first free block exent. We need to 4676 protect buddy cache from being freed, 4677 * otherwise we'll refresh it from 4678 * on-disk bitmap and lose not-yet-available 4679 * blocks */ 4680 get_page(e4b->bd_buddy_page); 4681 get_page(e4b->bd_bitmap_page); 4682 } 4683 while (*n) { 4684 parent = *n; 4685 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4686 if (cluster < entry->efd_start_cluster) 4687 n = &(*n)->rb_left; 4688 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4689 n = &(*n)->rb_right; 4690 else { 4691 ext4_grp_locked_error(sb, group, 0, 4692 ext4_group_first_block_no(sb, group) + 4693 EXT4_C2B(sbi, cluster), 4694 "Block already on to-be-freed list"); 4695 return 0; 4696 } 4697 } 4698 4699 rb_link_node(new_node, parent, n); 4700 rb_insert_color(new_node, &db->bb_free_root); 4701 4702 /* Now try to see the extent can be merged to left and right */ 4703 node = rb_prev(new_node); 4704 if (node) { 4705 entry = rb_entry(node, struct ext4_free_data, efd_node); 4706 ext4_try_merge_freed_extent(sbi, entry, new_entry, 4707 &(db->bb_free_root)); 4708 } 4709 4710 node = rb_next(new_node); 4711 if (node) { 4712 entry = rb_entry(node, struct ext4_free_data, efd_node); 4713 ext4_try_merge_freed_extent(sbi, entry, new_entry, 4714 &(db->bb_free_root)); 4715 } 4716 4717 spin_lock(&sbi->s_md_lock); 4718 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 4719 sbi->s_mb_free_pending += clusters; 4720 spin_unlock(&sbi->s_md_lock); 4721 return 0; 4722 } 4723 4724 /** 4725 * ext4_free_blocks() -- Free given blocks and update quota 4726 * @handle: handle for this transaction 4727 * @inode: inode 4728 * @bh: optional buffer of the block to be freed 4729 * @block: starting physical block to be freed 4730 * @count: number of blocks to be freed 4731 * @flags: flags used by ext4_free_blocks 4732 */ 4733 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4734 struct buffer_head *bh, ext4_fsblk_t block, 4735 unsigned long count, int flags) 4736 { 4737 struct buffer_head *bitmap_bh = NULL; 4738 struct super_block *sb = inode->i_sb; 4739 struct ext4_group_desc *gdp; 4740 unsigned int overflow; 4741 ext4_grpblk_t bit; 4742 struct buffer_head *gd_bh; 4743 ext4_group_t block_group; 4744 struct ext4_sb_info *sbi; 4745 struct ext4_buddy e4b; 4746 unsigned int count_clusters; 4747 int err = 0; 4748 int ret; 4749 4750 might_sleep(); 4751 if (bh) { 4752 if (block) 4753 BUG_ON(block != bh->b_blocknr); 4754 else 4755 block = bh->b_blocknr; 4756 } 4757 4758 sbi = EXT4_SB(sb); 4759 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4760 !ext4_data_block_valid(sbi, block, count)) { 4761 ext4_error(sb, "Freeing blocks not in datazone - " 4762 "block = %llu, count = %lu", block, count); 4763 goto error_return; 4764 } 4765 4766 ext4_debug("freeing block %llu\n", block); 4767 trace_ext4_free_blocks(inode, block, count, flags); 4768 4769 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 4770 BUG_ON(count > 1); 4771 4772 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4773 inode, bh, block); 4774 } 4775 4776 /* 4777 * If the extent to be freed does not begin on a cluster 4778 * boundary, we need to deal with partial clusters at the 4779 * beginning and end of the extent. Normally we will free 4780 * blocks at the beginning or the end unless we are explicitly 4781 * requested to avoid doing so. 4782 */ 4783 overflow = EXT4_PBLK_COFF(sbi, block); 4784 if (overflow) { 4785 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4786 overflow = sbi->s_cluster_ratio - overflow; 4787 block += overflow; 4788 if (count > overflow) 4789 count -= overflow; 4790 else 4791 return; 4792 } else { 4793 block -= overflow; 4794 count += overflow; 4795 } 4796 } 4797 overflow = EXT4_LBLK_COFF(sbi, count); 4798 if (overflow) { 4799 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4800 if (count > overflow) 4801 count -= overflow; 4802 else 4803 return; 4804 } else 4805 count += sbi->s_cluster_ratio - overflow; 4806 } 4807 4808 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 4809 int i; 4810 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 4811 4812 for (i = 0; i < count; i++) { 4813 cond_resched(); 4814 if (is_metadata) 4815 bh = sb_find_get_block(inode->i_sb, block + i); 4816 ext4_forget(handle, is_metadata, inode, bh, block + i); 4817 } 4818 } 4819 4820 do_more: 4821 overflow = 0; 4822 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4823 4824 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 4825 ext4_get_group_info(sb, block_group)))) 4826 return; 4827 4828 /* 4829 * Check to see if we are freeing blocks across a group 4830 * boundary. 4831 */ 4832 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4833 overflow = EXT4_C2B(sbi, bit) + count - 4834 EXT4_BLOCKS_PER_GROUP(sb); 4835 count -= overflow; 4836 } 4837 count_clusters = EXT4_NUM_B2C(sbi, count); 4838 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4839 if (IS_ERR(bitmap_bh)) { 4840 err = PTR_ERR(bitmap_bh); 4841 bitmap_bh = NULL; 4842 goto error_return; 4843 } 4844 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4845 if (!gdp) { 4846 err = -EIO; 4847 goto error_return; 4848 } 4849 4850 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4851 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4852 in_range(block, ext4_inode_table(sb, gdp), 4853 sbi->s_itb_per_group) || 4854 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4855 sbi->s_itb_per_group)) { 4856 4857 ext4_error(sb, "Freeing blocks in system zone - " 4858 "Block = %llu, count = %lu", block, count); 4859 /* err = 0. ext4_std_error should be a no op */ 4860 goto error_return; 4861 } 4862 4863 BUFFER_TRACE(bitmap_bh, "getting write access"); 4864 err = ext4_journal_get_write_access(handle, bitmap_bh); 4865 if (err) 4866 goto error_return; 4867 4868 /* 4869 * We are about to modify some metadata. Call the journal APIs 4870 * to unshare ->b_data if a currently-committing transaction is 4871 * using it 4872 */ 4873 BUFFER_TRACE(gd_bh, "get_write_access"); 4874 err = ext4_journal_get_write_access(handle, gd_bh); 4875 if (err) 4876 goto error_return; 4877 #ifdef AGGRESSIVE_CHECK 4878 { 4879 int i; 4880 for (i = 0; i < count_clusters; i++) 4881 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4882 } 4883 #endif 4884 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4885 4886 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 4887 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 4888 GFP_NOFS|__GFP_NOFAIL); 4889 if (err) 4890 goto error_return; 4891 4892 /* 4893 * We need to make sure we don't reuse the freed block until after the 4894 * transaction is committed. We make an exception if the inode is to be 4895 * written in writeback mode since writeback mode has weak data 4896 * consistency guarantees. 4897 */ 4898 if (ext4_handle_valid(handle) && 4899 ((flags & EXT4_FREE_BLOCKS_METADATA) || 4900 !ext4_should_writeback_data(inode))) { 4901 struct ext4_free_data *new_entry; 4902 /* 4903 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 4904 * to fail. 4905 */ 4906 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 4907 GFP_NOFS|__GFP_NOFAIL); 4908 new_entry->efd_start_cluster = bit; 4909 new_entry->efd_group = block_group; 4910 new_entry->efd_count = count_clusters; 4911 new_entry->efd_tid = handle->h_transaction->t_tid; 4912 4913 ext4_lock_group(sb, block_group); 4914 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4915 ext4_mb_free_metadata(handle, &e4b, new_entry); 4916 } else { 4917 /* need to update group_info->bb_free and bitmap 4918 * with group lock held. generate_buddy look at 4919 * them with group lock_held 4920 */ 4921 if (test_opt(sb, DISCARD)) { 4922 err = ext4_issue_discard(sb, block_group, bit, count, 4923 NULL); 4924 if (err && err != -EOPNOTSUPP) 4925 ext4_msg(sb, KERN_WARNING, "discard request in" 4926 " group:%d block:%d count:%lu failed" 4927 " with %d", block_group, bit, count, 4928 err); 4929 } else 4930 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 4931 4932 ext4_lock_group(sb, block_group); 4933 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4934 mb_free_blocks(inode, &e4b, bit, count_clusters); 4935 } 4936 4937 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4938 ext4_free_group_clusters_set(sb, gdp, ret); 4939 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 4940 ext4_group_desc_csum_set(sb, block_group, gdp); 4941 ext4_unlock_group(sb, block_group); 4942 4943 if (sbi->s_log_groups_per_flex) { 4944 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4945 atomic64_add(count_clusters, 4946 &sbi_array_rcu_deref(sbi, s_flex_groups, 4947 flex_group)->free_clusters); 4948 } 4949 4950 /* 4951 * on a bigalloc file system, defer the s_freeclusters_counter 4952 * update to the caller (ext4_remove_space and friends) so they 4953 * can determine if a cluster freed here should be rereserved 4954 */ 4955 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 4956 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4957 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4958 percpu_counter_add(&sbi->s_freeclusters_counter, 4959 count_clusters); 4960 } 4961 4962 ext4_mb_unload_buddy(&e4b); 4963 4964 /* We dirtied the bitmap block */ 4965 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4966 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4967 4968 /* And the group descriptor block */ 4969 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4970 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4971 if (!err) 4972 err = ret; 4973 4974 if (overflow && !err) { 4975 block += count; 4976 count = overflow; 4977 put_bh(bitmap_bh); 4978 goto do_more; 4979 } 4980 error_return: 4981 brelse(bitmap_bh); 4982 ext4_std_error(sb, err); 4983 return; 4984 } 4985 4986 /** 4987 * ext4_group_add_blocks() -- Add given blocks to an existing group 4988 * @handle: handle to this transaction 4989 * @sb: super block 4990 * @block: start physical block to add to the block group 4991 * @count: number of blocks to free 4992 * 4993 * This marks the blocks as free in the bitmap and buddy. 4994 */ 4995 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4996 ext4_fsblk_t block, unsigned long count) 4997 { 4998 struct buffer_head *bitmap_bh = NULL; 4999 struct buffer_head *gd_bh; 5000 ext4_group_t block_group; 5001 ext4_grpblk_t bit; 5002 unsigned int i; 5003 struct ext4_group_desc *desc; 5004 struct ext4_sb_info *sbi = EXT4_SB(sb); 5005 struct ext4_buddy e4b; 5006 int err = 0, ret, free_clusters_count; 5007 ext4_grpblk_t clusters_freed; 5008 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 5009 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 5010 unsigned long cluster_count = last_cluster - first_cluster + 1; 5011 5012 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 5013 5014 if (count == 0) 5015 return 0; 5016 5017 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 5018 /* 5019 * Check to see if we are freeing blocks across a group 5020 * boundary. 5021 */ 5022 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 5023 ext4_warning(sb, "too many blocks added to group %u", 5024 block_group); 5025 err = -EINVAL; 5026 goto error_return; 5027 } 5028 5029 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 5030 if (IS_ERR(bitmap_bh)) { 5031 err = PTR_ERR(bitmap_bh); 5032 bitmap_bh = NULL; 5033 goto error_return; 5034 } 5035 5036 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 5037 if (!desc) { 5038 err = -EIO; 5039 goto error_return; 5040 } 5041 5042 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 5043 in_range(ext4_inode_bitmap(sb, desc), block, count) || 5044 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 5045 in_range(block + count - 1, ext4_inode_table(sb, desc), 5046 sbi->s_itb_per_group)) { 5047 ext4_error(sb, "Adding blocks in system zones - " 5048 "Block = %llu, count = %lu", 5049 block, count); 5050 err = -EINVAL; 5051 goto error_return; 5052 } 5053 5054 BUFFER_TRACE(bitmap_bh, "getting write access"); 5055 err = ext4_journal_get_write_access(handle, bitmap_bh); 5056 if (err) 5057 goto error_return; 5058 5059 /* 5060 * We are about to modify some metadata. Call the journal APIs 5061 * to unshare ->b_data if a currently-committing transaction is 5062 * using it 5063 */ 5064 BUFFER_TRACE(gd_bh, "get_write_access"); 5065 err = ext4_journal_get_write_access(handle, gd_bh); 5066 if (err) 5067 goto error_return; 5068 5069 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 5070 BUFFER_TRACE(bitmap_bh, "clear bit"); 5071 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 5072 ext4_error(sb, "bit already cleared for block %llu", 5073 (ext4_fsblk_t)(block + i)); 5074 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 5075 } else { 5076 clusters_freed++; 5077 } 5078 } 5079 5080 err = ext4_mb_load_buddy(sb, block_group, &e4b); 5081 if (err) 5082 goto error_return; 5083 5084 /* 5085 * need to update group_info->bb_free and bitmap 5086 * with group lock held. generate_buddy look at 5087 * them with group lock_held 5088 */ 5089 ext4_lock_group(sb, block_group); 5090 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 5091 mb_free_blocks(NULL, &e4b, bit, cluster_count); 5092 free_clusters_count = clusters_freed + 5093 ext4_free_group_clusters(sb, desc); 5094 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 5095 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 5096 ext4_group_desc_csum_set(sb, block_group, desc); 5097 ext4_unlock_group(sb, block_group); 5098 percpu_counter_add(&sbi->s_freeclusters_counter, 5099 clusters_freed); 5100 5101 if (sbi->s_log_groups_per_flex) { 5102 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 5103 atomic64_add(clusters_freed, 5104 &sbi_array_rcu_deref(sbi, s_flex_groups, 5105 flex_group)->free_clusters); 5106 } 5107 5108 ext4_mb_unload_buddy(&e4b); 5109 5110 /* We dirtied the bitmap block */ 5111 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5112 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5113 5114 /* And the group descriptor block */ 5115 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5116 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5117 if (!err) 5118 err = ret; 5119 5120 error_return: 5121 brelse(bitmap_bh); 5122 ext4_std_error(sb, err); 5123 return err; 5124 } 5125 5126 /** 5127 * ext4_trim_extent -- function to TRIM one single free extent in the group 5128 * @sb: super block for the file system 5129 * @start: starting block of the free extent in the alloc. group 5130 * @count: number of blocks to TRIM 5131 * @group: alloc. group we are working with 5132 * @e4b: ext4 buddy for the group 5133 * 5134 * Trim "count" blocks starting at "start" in the "group". To assure that no 5135 * one will allocate those blocks, mark it as used in buddy bitmap. This must 5136 * be called with under the group lock. 5137 */ 5138 static int ext4_trim_extent(struct super_block *sb, int start, int count, 5139 ext4_group_t group, struct ext4_buddy *e4b) 5140 __releases(bitlock) 5141 __acquires(bitlock) 5142 { 5143 struct ext4_free_extent ex; 5144 int ret = 0; 5145 5146 trace_ext4_trim_extent(sb, group, start, count); 5147 5148 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 5149 5150 ex.fe_start = start; 5151 ex.fe_group = group; 5152 ex.fe_len = count; 5153 5154 /* 5155 * Mark blocks used, so no one can reuse them while 5156 * being trimmed. 5157 */ 5158 mb_mark_used(e4b, &ex); 5159 ext4_unlock_group(sb, group); 5160 ret = ext4_issue_discard(sb, group, start, count, NULL); 5161 ext4_lock_group(sb, group); 5162 mb_free_blocks(NULL, e4b, start, ex.fe_len); 5163 return ret; 5164 } 5165 5166 /** 5167 * ext4_trim_all_free -- function to trim all free space in alloc. group 5168 * @sb: super block for file system 5169 * @group: group to be trimmed 5170 * @start: first group block to examine 5171 * @max: last group block to examine 5172 * @minblocks: minimum extent block count 5173 * 5174 * ext4_trim_all_free walks through group's buddy bitmap searching for free 5175 * extents. When the free block is found, ext4_trim_extent is called to TRIM 5176 * the extent. 5177 * 5178 * 5179 * ext4_trim_all_free walks through group's block bitmap searching for free 5180 * extents. When the free extent is found, mark it as used in group buddy 5181 * bitmap. Then issue a TRIM command on this extent and free the extent in 5182 * the group buddy bitmap. This is done until whole group is scanned. 5183 */ 5184 static ext4_grpblk_t 5185 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 5186 ext4_grpblk_t start, ext4_grpblk_t max, 5187 ext4_grpblk_t minblocks) 5188 { 5189 void *bitmap; 5190 ext4_grpblk_t next, count = 0, free_count = 0; 5191 struct ext4_buddy e4b; 5192 int ret = 0; 5193 5194 trace_ext4_trim_all_free(sb, group, start, max); 5195 5196 ret = ext4_mb_load_buddy(sb, group, &e4b); 5197 if (ret) { 5198 ext4_warning(sb, "Error %d loading buddy information for %u", 5199 ret, group); 5200 return ret; 5201 } 5202 bitmap = e4b.bd_bitmap; 5203 5204 ext4_lock_group(sb, group); 5205 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 5206 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 5207 goto out; 5208 5209 start = (e4b.bd_info->bb_first_free > start) ? 5210 e4b.bd_info->bb_first_free : start; 5211 5212 while (start <= max) { 5213 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5214 if (start > max) 5215 break; 5216 next = mb_find_next_bit(bitmap, max + 1, start); 5217 5218 if ((next - start) >= minblocks) { 5219 ret = ext4_trim_extent(sb, start, 5220 next - start, group, &e4b); 5221 if (ret && ret != -EOPNOTSUPP) 5222 break; 5223 ret = 0; 5224 count += next - start; 5225 } 5226 free_count += next - start; 5227 start = next + 1; 5228 5229 if (fatal_signal_pending(current)) { 5230 count = -ERESTARTSYS; 5231 break; 5232 } 5233 5234 if (need_resched()) { 5235 ext4_unlock_group(sb, group); 5236 cond_resched(); 5237 ext4_lock_group(sb, group); 5238 } 5239 5240 if ((e4b.bd_info->bb_free - free_count) < minblocks) 5241 break; 5242 } 5243 5244 if (!ret) { 5245 ret = count; 5246 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 5247 } 5248 out: 5249 ext4_unlock_group(sb, group); 5250 ext4_mb_unload_buddy(&e4b); 5251 5252 ext4_debug("trimmed %d blocks in the group %d\n", 5253 count, group); 5254 5255 return ret; 5256 } 5257 5258 /** 5259 * ext4_trim_fs() -- trim ioctl handle function 5260 * @sb: superblock for filesystem 5261 * @range: fstrim_range structure 5262 * 5263 * start: First Byte to trim 5264 * len: number of Bytes to trim from start 5265 * minlen: minimum extent length in Bytes 5266 * ext4_trim_fs goes through all allocation groups containing Bytes from 5267 * start to start+len. For each such a group ext4_trim_all_free function 5268 * is invoked to trim all free space. 5269 */ 5270 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 5271 { 5272 struct ext4_group_info *grp; 5273 ext4_group_t group, first_group, last_group; 5274 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5275 uint64_t start, end, minlen, trimmed = 0; 5276 ext4_fsblk_t first_data_blk = 5277 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5278 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5279 int ret = 0; 5280 5281 start = range->start >> sb->s_blocksize_bits; 5282 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5283 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5284 range->minlen >> sb->s_blocksize_bits); 5285 5286 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5287 start >= max_blks || 5288 range->len < sb->s_blocksize) 5289 return -EINVAL; 5290 if (end >= max_blks) 5291 end = max_blks - 1; 5292 if (end <= first_data_blk) 5293 goto out; 5294 if (start < first_data_blk) 5295 start = first_data_blk; 5296 5297 /* Determine first and last group to examine based on start and end */ 5298 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5299 &first_group, &first_cluster); 5300 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5301 &last_group, &last_cluster); 5302 5303 /* end now represents the last cluster to discard in this group */ 5304 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5305 5306 for (group = first_group; group <= last_group; group++) { 5307 grp = ext4_get_group_info(sb, group); 5308 /* We only do this if the grp has never been initialized */ 5309 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5310 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 5311 if (ret) 5312 break; 5313 } 5314 5315 /* 5316 * For all the groups except the last one, last cluster will 5317 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5318 * change it for the last group, note that last_cluster is 5319 * already computed earlier by ext4_get_group_no_and_offset() 5320 */ 5321 if (group == last_group) 5322 end = last_cluster; 5323 5324 if (grp->bb_free >= minlen) { 5325 cnt = ext4_trim_all_free(sb, group, first_cluster, 5326 end, minlen); 5327 if (cnt < 0) { 5328 ret = cnt; 5329 break; 5330 } 5331 trimmed += cnt; 5332 } 5333 5334 /* 5335 * For every group except the first one, we are sure 5336 * that the first cluster to discard will be cluster #0. 5337 */ 5338 first_cluster = 0; 5339 } 5340 5341 if (!ret) 5342 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5343 5344 out: 5345 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5346 return ret; 5347 } 5348 5349 /* Iterate all the free extents in the group. */ 5350 int 5351 ext4_mballoc_query_range( 5352 struct super_block *sb, 5353 ext4_group_t group, 5354 ext4_grpblk_t start, 5355 ext4_grpblk_t end, 5356 ext4_mballoc_query_range_fn formatter, 5357 void *priv) 5358 { 5359 void *bitmap; 5360 ext4_grpblk_t next; 5361 struct ext4_buddy e4b; 5362 int error; 5363 5364 error = ext4_mb_load_buddy(sb, group, &e4b); 5365 if (error) 5366 return error; 5367 bitmap = e4b.bd_bitmap; 5368 5369 ext4_lock_group(sb, group); 5370 5371 start = (e4b.bd_info->bb_first_free > start) ? 5372 e4b.bd_info->bb_first_free : start; 5373 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 5374 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5375 5376 while (start <= end) { 5377 start = mb_find_next_zero_bit(bitmap, end + 1, start); 5378 if (start > end) 5379 break; 5380 next = mb_find_next_bit(bitmap, end + 1, start); 5381 5382 ext4_unlock_group(sb, group); 5383 error = formatter(sb, group, start, next - start, priv); 5384 if (error) 5385 goto out_unload; 5386 ext4_lock_group(sb, group); 5387 5388 start = next + 1; 5389 } 5390 5391 ext4_unlock_group(sb, group); 5392 out_unload: 5393 ext4_mb_unload_buddy(&e4b); 5394 5395 return error; 5396 } 5397