1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 4 * Written by Alex Tomas <alex@clusterfs.com> 5 */ 6 7 8 /* 9 * mballoc.c contains the multiblocks allocation routines 10 */ 11 12 #include "ext4_jbd2.h" 13 #include "mballoc.h" 14 #include <linux/log2.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/nospec.h> 18 #include <linux/backing-dev.h> 19 #include <trace/events/ext4.h> 20 21 /* 22 * MUSTDO: 23 * - test ext4_ext_search_left() and ext4_ext_search_right() 24 * - search for metadata in few groups 25 * 26 * TODO v4: 27 * - normalization should take into account whether file is still open 28 * - discard preallocations if no free space left (policy?) 29 * - don't normalize tails 30 * - quota 31 * - reservation for superuser 32 * 33 * TODO v3: 34 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 35 * - track min/max extents in each group for better group selection 36 * - mb_mark_used() may allocate chunk right after splitting buddy 37 * - tree of groups sorted by number of free blocks 38 * - error handling 39 */ 40 41 /* 42 * The allocation request involve request for multiple number of blocks 43 * near to the goal(block) value specified. 44 * 45 * During initialization phase of the allocator we decide to use the 46 * group preallocation or inode preallocation depending on the size of 47 * the file. The size of the file could be the resulting file size we 48 * would have after allocation, or the current file size, which ever 49 * is larger. If the size is less than sbi->s_mb_stream_request we 50 * select to use the group preallocation. The default value of 51 * s_mb_stream_request is 16 blocks. This can also be tuned via 52 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 53 * terms of number of blocks. 54 * 55 * The main motivation for having small file use group preallocation is to 56 * ensure that we have small files closer together on the disk. 57 * 58 * First stage the allocator looks at the inode prealloc list, 59 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 60 * spaces for this particular inode. The inode prealloc space is 61 * represented as: 62 * 63 * pa_lstart -> the logical start block for this prealloc space 64 * pa_pstart -> the physical start block for this prealloc space 65 * pa_len -> length for this prealloc space (in clusters) 66 * pa_free -> free space available in this prealloc space (in clusters) 67 * 68 * The inode preallocation space is used looking at the _logical_ start 69 * block. If only the logical file block falls within the range of prealloc 70 * space we will consume the particular prealloc space. This makes sure that 71 * we have contiguous physical blocks representing the file blocks 72 * 73 * The important thing to be noted in case of inode prealloc space is that 74 * we don't modify the values associated to inode prealloc space except 75 * pa_free. 76 * 77 * If we are not able to find blocks in the inode prealloc space and if we 78 * have the group allocation flag set then we look at the locality group 79 * prealloc space. These are per CPU prealloc list represented as 80 * 81 * ext4_sb_info.s_locality_groups[smp_processor_id()] 82 * 83 * The reason for having a per cpu locality group is to reduce the contention 84 * between CPUs. It is possible to get scheduled at this point. 85 * 86 * The locality group prealloc space is used looking at whether we have 87 * enough free space (pa_free) within the prealloc space. 88 * 89 * If we can't allocate blocks via inode prealloc or/and locality group 90 * prealloc then we look at the buddy cache. The buddy cache is represented 91 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 92 * mapped to the buddy and bitmap information regarding different 93 * groups. The buddy information is attached to buddy cache inode so that 94 * we can access them through the page cache. The information regarding 95 * each group is loaded via ext4_mb_load_buddy. The information involve 96 * block bitmap and buddy information. The information are stored in the 97 * inode as: 98 * 99 * { page } 100 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 101 * 102 * 103 * one block each for bitmap and buddy information. So for each group we 104 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE / 105 * blocksize) blocks. So it can have information regarding groups_per_page 106 * which is blocks_per_page/2 107 * 108 * The buddy cache inode is not stored on disk. The inode is thrown 109 * away when the filesystem is unmounted. 110 * 111 * We look for count number of blocks in the buddy cache. If we were able 112 * to locate that many free blocks we return with additional information 113 * regarding rest of the contiguous physical block available 114 * 115 * Before allocating blocks via buddy cache we normalize the request 116 * blocks. This ensure we ask for more blocks that we needed. The extra 117 * blocks that we get after allocation is added to the respective prealloc 118 * list. In case of inode preallocation we follow a list of heuristics 119 * based on file size. This can be found in ext4_mb_normalize_request. If 120 * we are doing a group prealloc we try to normalize the request to 121 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 122 * dependent on the cluster size; for non-bigalloc file systems, it is 123 * 512 blocks. This can be tuned via 124 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 125 * terms of number of blocks. If we have mounted the file system with -O 126 * stripe=<value> option the group prealloc request is normalized to the 127 * smallest multiple of the stripe value (sbi->s_stripe) which is 128 * greater than the default mb_group_prealloc. 129 * 130 * The regular allocator (using the buddy cache) supports a few tunables. 131 * 132 * /sys/fs/ext4/<partition>/mb_min_to_scan 133 * /sys/fs/ext4/<partition>/mb_max_to_scan 134 * /sys/fs/ext4/<partition>/mb_order2_req 135 * 136 * The regular allocator uses buddy scan only if the request len is power of 137 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 138 * value of s_mb_order2_reqs can be tuned via 139 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 140 * stripe size (sbi->s_stripe), we try to search for contiguous block in 141 * stripe size. This should result in better allocation on RAID setups. If 142 * not, we search in the specific group using bitmap for best extents. The 143 * tunable min_to_scan and max_to_scan control the behaviour here. 144 * min_to_scan indicate how long the mballoc __must__ look for a best 145 * extent and max_to_scan indicates how long the mballoc __can__ look for a 146 * best extent in the found extents. Searching for the blocks starts with 147 * the group specified as the goal value in allocation context via 148 * ac_g_ex. Each group is first checked based on the criteria whether it 149 * can be used for allocation. ext4_mb_good_group explains how the groups are 150 * checked. 151 * 152 * Both the prealloc space are getting populated as above. So for the first 153 * request we will hit the buddy cache which will result in this prealloc 154 * space getting filled. The prealloc space is then later used for the 155 * subsequent request. 156 */ 157 158 /* 159 * mballoc operates on the following data: 160 * - on-disk bitmap 161 * - in-core buddy (actually includes buddy and bitmap) 162 * - preallocation descriptors (PAs) 163 * 164 * there are two types of preallocations: 165 * - inode 166 * assiged to specific inode and can be used for this inode only. 167 * it describes part of inode's space preallocated to specific 168 * physical blocks. any block from that preallocated can be used 169 * independent. the descriptor just tracks number of blocks left 170 * unused. so, before taking some block from descriptor, one must 171 * make sure corresponded logical block isn't allocated yet. this 172 * also means that freeing any block within descriptor's range 173 * must discard all preallocated blocks. 174 * - locality group 175 * assigned to specific locality group which does not translate to 176 * permanent set of inodes: inode can join and leave group. space 177 * from this type of preallocation can be used for any inode. thus 178 * it's consumed from the beginning to the end. 179 * 180 * relation between them can be expressed as: 181 * in-core buddy = on-disk bitmap + preallocation descriptors 182 * 183 * this mean blocks mballoc considers used are: 184 * - allocated blocks (persistent) 185 * - preallocated blocks (non-persistent) 186 * 187 * consistency in mballoc world means that at any time a block is either 188 * free or used in ALL structures. notice: "any time" should not be read 189 * literally -- time is discrete and delimited by locks. 190 * 191 * to keep it simple, we don't use block numbers, instead we count number of 192 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 193 * 194 * all operations can be expressed as: 195 * - init buddy: buddy = on-disk + PAs 196 * - new PA: buddy += N; PA = N 197 * - use inode PA: on-disk += N; PA -= N 198 * - discard inode PA buddy -= on-disk - PA; PA = 0 199 * - use locality group PA on-disk += N; PA -= N 200 * - discard locality group PA buddy -= PA; PA = 0 201 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 202 * is used in real operation because we can't know actual used 203 * bits from PA, only from on-disk bitmap 204 * 205 * if we follow this strict logic, then all operations above should be atomic. 206 * given some of them can block, we'd have to use something like semaphores 207 * killing performance on high-end SMP hardware. let's try to relax it using 208 * the following knowledge: 209 * 1) if buddy is referenced, it's already initialized 210 * 2) while block is used in buddy and the buddy is referenced, 211 * nobody can re-allocate that block 212 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 213 * bit set and PA claims same block, it's OK. IOW, one can set bit in 214 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 215 * block 216 * 217 * so, now we're building a concurrency table: 218 * - init buddy vs. 219 * - new PA 220 * blocks for PA are allocated in the buddy, buddy must be referenced 221 * until PA is linked to allocation group to avoid concurrent buddy init 222 * - use inode PA 223 * we need to make sure that either on-disk bitmap or PA has uptodate data 224 * given (3) we care that PA-=N operation doesn't interfere with init 225 * - discard inode PA 226 * the simplest way would be to have buddy initialized by the discard 227 * - use locality group PA 228 * again PA-=N must be serialized with init 229 * - discard locality group PA 230 * the simplest way would be to have buddy initialized by the discard 231 * - new PA vs. 232 * - use inode PA 233 * i_data_sem serializes them 234 * - discard inode PA 235 * discard process must wait until PA isn't used by another process 236 * - use locality group PA 237 * some mutex should serialize them 238 * - discard locality group PA 239 * discard process must wait until PA isn't used by another process 240 * - use inode PA 241 * - use inode PA 242 * i_data_sem or another mutex should serializes them 243 * - discard inode PA 244 * discard process must wait until PA isn't used by another process 245 * - use locality group PA 246 * nothing wrong here -- they're different PAs covering different blocks 247 * - discard locality group PA 248 * discard process must wait until PA isn't used by another process 249 * 250 * now we're ready to make few consequences: 251 * - PA is referenced and while it is no discard is possible 252 * - PA is referenced until block isn't marked in on-disk bitmap 253 * - PA changes only after on-disk bitmap 254 * - discard must not compete with init. either init is done before 255 * any discard or they're serialized somehow 256 * - buddy init as sum of on-disk bitmap and PAs is done atomically 257 * 258 * a special case when we've used PA to emptiness. no need to modify buddy 259 * in this case, but we should care about concurrent init 260 * 261 */ 262 263 /* 264 * Logic in few words: 265 * 266 * - allocation: 267 * load group 268 * find blocks 269 * mark bits in on-disk bitmap 270 * release group 271 * 272 * - use preallocation: 273 * find proper PA (per-inode or group) 274 * load group 275 * mark bits in on-disk bitmap 276 * release group 277 * release PA 278 * 279 * - free: 280 * load group 281 * mark bits in on-disk bitmap 282 * release group 283 * 284 * - discard preallocations in group: 285 * mark PAs deleted 286 * move them onto local list 287 * load on-disk bitmap 288 * load group 289 * remove PA from object (inode or locality group) 290 * mark free blocks in-core 291 * 292 * - discard inode's preallocations: 293 */ 294 295 /* 296 * Locking rules 297 * 298 * Locks: 299 * - bitlock on a group (group) 300 * - object (inode/locality) (object) 301 * - per-pa lock (pa) 302 * 303 * Paths: 304 * - new pa 305 * object 306 * group 307 * 308 * - find and use pa: 309 * pa 310 * 311 * - release consumed pa: 312 * pa 313 * group 314 * object 315 * 316 * - generate in-core bitmap: 317 * group 318 * pa 319 * 320 * - discard all for given object (inode, locality group): 321 * object 322 * pa 323 * group 324 * 325 * - discard all for given group: 326 * group 327 * pa 328 * group 329 * object 330 * 331 */ 332 static struct kmem_cache *ext4_pspace_cachep; 333 static struct kmem_cache *ext4_ac_cachep; 334 static struct kmem_cache *ext4_free_data_cachep; 335 336 /* We create slab caches for groupinfo data structures based on the 337 * superblock block size. There will be one per mounted filesystem for 338 * each unique s_blocksize_bits */ 339 #define NR_GRPINFO_CACHES 8 340 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 341 342 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 343 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 344 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 345 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 346 }; 347 348 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 349 ext4_group_t group); 350 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 351 ext4_group_t group); 352 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); 353 354 /* 355 * The algorithm using this percpu seq counter goes below: 356 * 1. We sample the percpu discard_pa_seq counter before trying for block 357 * allocation in ext4_mb_new_blocks(). 358 * 2. We increment this percpu discard_pa_seq counter when we either allocate 359 * or free these blocks i.e. while marking those blocks as used/free in 360 * mb_mark_used()/mb_free_blocks(). 361 * 3. We also increment this percpu seq counter when we successfully identify 362 * that the bb_prealloc_list is not empty and hence proceed for discarding 363 * of those PAs inside ext4_mb_discard_group_preallocations(). 364 * 365 * Now to make sure that the regular fast path of block allocation is not 366 * affected, as a small optimization we only sample the percpu seq counter 367 * on that cpu. Only when the block allocation fails and when freed blocks 368 * found were 0, that is when we sample percpu seq counter for all cpus using 369 * below function ext4_get_discard_pa_seq_sum(). This happens after making 370 * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty. 371 */ 372 static DEFINE_PER_CPU(u64, discard_pa_seq); 373 static inline u64 ext4_get_discard_pa_seq_sum(void) 374 { 375 int __cpu; 376 u64 __seq = 0; 377 378 for_each_possible_cpu(__cpu) 379 __seq += per_cpu(discard_pa_seq, __cpu); 380 return __seq; 381 } 382 383 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 384 { 385 #if BITS_PER_LONG == 64 386 *bit += ((unsigned long) addr & 7UL) << 3; 387 addr = (void *) ((unsigned long) addr & ~7UL); 388 #elif BITS_PER_LONG == 32 389 *bit += ((unsigned long) addr & 3UL) << 3; 390 addr = (void *) ((unsigned long) addr & ~3UL); 391 #else 392 #error "how many bits you are?!" 393 #endif 394 return addr; 395 } 396 397 static inline int mb_test_bit(int bit, void *addr) 398 { 399 /* 400 * ext4_test_bit on architecture like powerpc 401 * needs unsigned long aligned address 402 */ 403 addr = mb_correct_addr_and_bit(&bit, addr); 404 return ext4_test_bit(bit, addr); 405 } 406 407 static inline void mb_set_bit(int bit, void *addr) 408 { 409 addr = mb_correct_addr_and_bit(&bit, addr); 410 ext4_set_bit(bit, addr); 411 } 412 413 static inline void mb_clear_bit(int bit, void *addr) 414 { 415 addr = mb_correct_addr_and_bit(&bit, addr); 416 ext4_clear_bit(bit, addr); 417 } 418 419 static inline int mb_test_and_clear_bit(int bit, void *addr) 420 { 421 addr = mb_correct_addr_and_bit(&bit, addr); 422 return ext4_test_and_clear_bit(bit, addr); 423 } 424 425 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 426 { 427 int fix = 0, ret, tmpmax; 428 addr = mb_correct_addr_and_bit(&fix, addr); 429 tmpmax = max + fix; 430 start += fix; 431 432 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 433 if (ret > max) 434 return max; 435 return ret; 436 } 437 438 static inline int mb_find_next_bit(void *addr, int max, int start) 439 { 440 int fix = 0, ret, tmpmax; 441 addr = mb_correct_addr_and_bit(&fix, addr); 442 tmpmax = max + fix; 443 start += fix; 444 445 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 446 if (ret > max) 447 return max; 448 return ret; 449 } 450 451 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 452 { 453 char *bb; 454 455 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 456 BUG_ON(max == NULL); 457 458 if (order > e4b->bd_blkbits + 1) { 459 *max = 0; 460 return NULL; 461 } 462 463 /* at order 0 we see each particular block */ 464 if (order == 0) { 465 *max = 1 << (e4b->bd_blkbits + 3); 466 return e4b->bd_bitmap; 467 } 468 469 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 470 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 471 472 return bb; 473 } 474 475 #ifdef DOUBLE_CHECK 476 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 477 int first, int count) 478 { 479 int i; 480 struct super_block *sb = e4b->bd_sb; 481 482 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 483 return; 484 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 485 for (i = 0; i < count; i++) { 486 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 487 ext4_fsblk_t blocknr; 488 489 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 490 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 491 ext4_grp_locked_error(sb, e4b->bd_group, 492 inode ? inode->i_ino : 0, 493 blocknr, 494 "freeing block already freed " 495 "(bit %u)", 496 first + i); 497 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 498 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 499 } 500 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 501 } 502 } 503 504 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 505 { 506 int i; 507 508 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 509 return; 510 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 511 for (i = 0; i < count; i++) { 512 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 513 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 514 } 515 } 516 517 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 518 { 519 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 520 return; 521 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 522 unsigned char *b1, *b2; 523 int i; 524 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 525 b2 = (unsigned char *) bitmap; 526 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 527 if (b1[i] != b2[i]) { 528 ext4_msg(e4b->bd_sb, KERN_ERR, 529 "corruption in group %u " 530 "at byte %u(%u): %x in copy != %x " 531 "on disk/prealloc", 532 e4b->bd_group, i, i * 8, b1[i], b2[i]); 533 BUG(); 534 } 535 } 536 } 537 } 538 539 static void mb_group_bb_bitmap_alloc(struct super_block *sb, 540 struct ext4_group_info *grp, ext4_group_t group) 541 { 542 struct buffer_head *bh; 543 544 grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS); 545 if (!grp->bb_bitmap) 546 return; 547 548 bh = ext4_read_block_bitmap(sb, group); 549 if (IS_ERR_OR_NULL(bh)) { 550 kfree(grp->bb_bitmap); 551 grp->bb_bitmap = NULL; 552 return; 553 } 554 555 memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize); 556 put_bh(bh); 557 } 558 559 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 560 { 561 kfree(grp->bb_bitmap); 562 } 563 564 #else 565 static inline void mb_free_blocks_double(struct inode *inode, 566 struct ext4_buddy *e4b, int first, int count) 567 { 568 return; 569 } 570 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 571 int first, int count) 572 { 573 return; 574 } 575 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 576 { 577 return; 578 } 579 580 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb, 581 struct ext4_group_info *grp, ext4_group_t group) 582 { 583 return; 584 } 585 586 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp) 587 { 588 return; 589 } 590 #endif 591 592 #ifdef AGGRESSIVE_CHECK 593 594 #define MB_CHECK_ASSERT(assert) \ 595 do { \ 596 if (!(assert)) { \ 597 printk(KERN_EMERG \ 598 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 599 function, file, line, # assert); \ 600 BUG(); \ 601 } \ 602 } while (0) 603 604 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 605 const char *function, int line) 606 { 607 struct super_block *sb = e4b->bd_sb; 608 int order = e4b->bd_blkbits + 1; 609 int max; 610 int max2; 611 int i; 612 int j; 613 int k; 614 int count; 615 struct ext4_group_info *grp; 616 int fragments = 0; 617 int fstart; 618 struct list_head *cur; 619 void *buddy; 620 void *buddy2; 621 622 if (e4b->bd_info->bb_check_counter++ % 10) 623 return 0; 624 625 while (order > 1) { 626 buddy = mb_find_buddy(e4b, order, &max); 627 MB_CHECK_ASSERT(buddy); 628 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 629 MB_CHECK_ASSERT(buddy2); 630 MB_CHECK_ASSERT(buddy != buddy2); 631 MB_CHECK_ASSERT(max * 2 == max2); 632 633 count = 0; 634 for (i = 0; i < max; i++) { 635 636 if (mb_test_bit(i, buddy)) { 637 /* only single bit in buddy2 may be 1 */ 638 if (!mb_test_bit(i << 1, buddy2)) { 639 MB_CHECK_ASSERT( 640 mb_test_bit((i<<1)+1, buddy2)); 641 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 642 MB_CHECK_ASSERT( 643 mb_test_bit(i << 1, buddy2)); 644 } 645 continue; 646 } 647 648 /* both bits in buddy2 must be 1 */ 649 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 650 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 651 652 for (j = 0; j < (1 << order); j++) { 653 k = (i * (1 << order)) + j; 654 MB_CHECK_ASSERT( 655 !mb_test_bit(k, e4b->bd_bitmap)); 656 } 657 count++; 658 } 659 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 660 order--; 661 } 662 663 fstart = -1; 664 buddy = mb_find_buddy(e4b, 0, &max); 665 for (i = 0; i < max; i++) { 666 if (!mb_test_bit(i, buddy)) { 667 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 668 if (fstart == -1) { 669 fragments++; 670 fstart = i; 671 } 672 continue; 673 } 674 fstart = -1; 675 /* check used bits only */ 676 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 677 buddy2 = mb_find_buddy(e4b, j, &max2); 678 k = i >> j; 679 MB_CHECK_ASSERT(k < max2); 680 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 681 } 682 } 683 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 684 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 685 686 grp = ext4_get_group_info(sb, e4b->bd_group); 687 list_for_each(cur, &grp->bb_prealloc_list) { 688 ext4_group_t groupnr; 689 struct ext4_prealloc_space *pa; 690 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 691 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 692 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 693 for (i = 0; i < pa->pa_len; i++) 694 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 695 } 696 return 0; 697 } 698 #undef MB_CHECK_ASSERT 699 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 700 __FILE__, __func__, __LINE__) 701 #else 702 #define mb_check_buddy(e4b) 703 #endif 704 705 /* 706 * Divide blocks started from @first with length @len into 707 * smaller chunks with power of 2 blocks. 708 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 709 * then increase bb_counters[] for corresponded chunk size. 710 */ 711 static void ext4_mb_mark_free_simple(struct super_block *sb, 712 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 713 struct ext4_group_info *grp) 714 { 715 struct ext4_sb_info *sbi = EXT4_SB(sb); 716 ext4_grpblk_t min; 717 ext4_grpblk_t max; 718 ext4_grpblk_t chunk; 719 unsigned int border; 720 721 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 722 723 border = 2 << sb->s_blocksize_bits; 724 725 while (len > 0) { 726 /* find how many blocks can be covered since this position */ 727 max = ffs(first | border) - 1; 728 729 /* find how many blocks of power 2 we need to mark */ 730 min = fls(len) - 1; 731 732 if (max < min) 733 min = max; 734 chunk = 1 << min; 735 736 /* mark multiblock chunks only */ 737 grp->bb_counters[min]++; 738 if (min > 0) 739 mb_clear_bit(first >> min, 740 buddy + sbi->s_mb_offsets[min]); 741 742 len -= chunk; 743 first += chunk; 744 } 745 } 746 747 /* 748 * Cache the order of the largest free extent we have available in this block 749 * group. 750 */ 751 static void 752 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 753 { 754 int i; 755 int bits; 756 757 grp->bb_largest_free_order = -1; /* uninit */ 758 759 bits = sb->s_blocksize_bits + 1; 760 for (i = bits; i >= 0; i--) { 761 if (grp->bb_counters[i] > 0) { 762 grp->bb_largest_free_order = i; 763 break; 764 } 765 } 766 } 767 768 static noinline_for_stack 769 void ext4_mb_generate_buddy(struct super_block *sb, 770 void *buddy, void *bitmap, ext4_group_t group) 771 { 772 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 773 struct ext4_sb_info *sbi = EXT4_SB(sb); 774 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 775 ext4_grpblk_t i = 0; 776 ext4_grpblk_t first; 777 ext4_grpblk_t len; 778 unsigned free = 0; 779 unsigned fragments = 0; 780 unsigned long long period = get_cycles(); 781 782 /* initialize buddy from bitmap which is aggregation 783 * of on-disk bitmap and preallocations */ 784 i = mb_find_next_zero_bit(bitmap, max, 0); 785 grp->bb_first_free = i; 786 while (i < max) { 787 fragments++; 788 first = i; 789 i = mb_find_next_bit(bitmap, max, i); 790 len = i - first; 791 free += len; 792 if (len > 1) 793 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 794 else 795 grp->bb_counters[0]++; 796 if (i < max) 797 i = mb_find_next_zero_bit(bitmap, max, i); 798 } 799 grp->bb_fragments = fragments; 800 801 if (free != grp->bb_free) { 802 ext4_grp_locked_error(sb, group, 0, 0, 803 "block bitmap and bg descriptor " 804 "inconsistent: %u vs %u free clusters", 805 free, grp->bb_free); 806 /* 807 * If we intend to continue, we consider group descriptor 808 * corrupt and update bb_free using bitmap value 809 */ 810 grp->bb_free = free; 811 ext4_mark_group_bitmap_corrupted(sb, group, 812 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 813 } 814 mb_set_largest_free_order(sb, grp); 815 816 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 817 818 period = get_cycles() - period; 819 spin_lock(&sbi->s_bal_lock); 820 sbi->s_mb_buddies_generated++; 821 sbi->s_mb_generation_time += period; 822 spin_unlock(&sbi->s_bal_lock); 823 } 824 825 static void mb_regenerate_buddy(struct ext4_buddy *e4b) 826 { 827 int count; 828 int order = 1; 829 void *buddy; 830 831 while ((buddy = mb_find_buddy(e4b, order++, &count))) { 832 ext4_set_bits(buddy, 0, count); 833 } 834 e4b->bd_info->bb_fragments = 0; 835 memset(e4b->bd_info->bb_counters, 0, 836 sizeof(*e4b->bd_info->bb_counters) * 837 (e4b->bd_sb->s_blocksize_bits + 2)); 838 839 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy, 840 e4b->bd_bitmap, e4b->bd_group); 841 } 842 843 /* The buddy information is attached the buddy cache inode 844 * for convenience. The information regarding each group 845 * is loaded via ext4_mb_load_buddy. The information involve 846 * block bitmap and buddy information. The information are 847 * stored in the inode as 848 * 849 * { page } 850 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 851 * 852 * 853 * one block each for bitmap and buddy information. 854 * So for each group we take up 2 blocks. A page can 855 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks. 856 * So it can have information regarding groups_per_page which 857 * is blocks_per_page/2 858 * 859 * Locking note: This routine takes the block group lock of all groups 860 * for this page; do not hold this lock when calling this routine! 861 */ 862 863 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp) 864 { 865 ext4_group_t ngroups; 866 int blocksize; 867 int blocks_per_page; 868 int groups_per_page; 869 int err = 0; 870 int i; 871 ext4_group_t first_group, group; 872 int first_block; 873 struct super_block *sb; 874 struct buffer_head *bhs; 875 struct buffer_head **bh = NULL; 876 struct inode *inode; 877 char *data; 878 char *bitmap; 879 struct ext4_group_info *grinfo; 880 881 inode = page->mapping->host; 882 sb = inode->i_sb; 883 ngroups = ext4_get_groups_count(sb); 884 blocksize = i_blocksize(inode); 885 blocks_per_page = PAGE_SIZE / blocksize; 886 887 mb_debug(sb, "init page %lu\n", page->index); 888 889 groups_per_page = blocks_per_page >> 1; 890 if (groups_per_page == 0) 891 groups_per_page = 1; 892 893 /* allocate buffer_heads to read bitmaps */ 894 if (groups_per_page > 1) { 895 i = sizeof(struct buffer_head *) * groups_per_page; 896 bh = kzalloc(i, gfp); 897 if (bh == NULL) { 898 err = -ENOMEM; 899 goto out; 900 } 901 } else 902 bh = &bhs; 903 904 first_group = page->index * blocks_per_page / 2; 905 906 /* read all groups the page covers into the cache */ 907 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 908 if (group >= ngroups) 909 break; 910 911 grinfo = ext4_get_group_info(sb, group); 912 /* 913 * If page is uptodate then we came here after online resize 914 * which added some new uninitialized group info structs, so 915 * we must skip all initialized uptodate buddies on the page, 916 * which may be currently in use by an allocating task. 917 */ 918 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 919 bh[i] = NULL; 920 continue; 921 } 922 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false); 923 if (IS_ERR(bh[i])) { 924 err = PTR_ERR(bh[i]); 925 bh[i] = NULL; 926 goto out; 927 } 928 mb_debug(sb, "read bitmap for group %u\n", group); 929 } 930 931 /* wait for I/O completion */ 932 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 933 int err2; 934 935 if (!bh[i]) 936 continue; 937 err2 = ext4_wait_block_bitmap(sb, group, bh[i]); 938 if (!err) 939 err = err2; 940 } 941 942 first_block = page->index * blocks_per_page; 943 for (i = 0; i < blocks_per_page; i++) { 944 group = (first_block + i) >> 1; 945 if (group >= ngroups) 946 break; 947 948 if (!bh[group - first_group]) 949 /* skip initialized uptodate buddy */ 950 continue; 951 952 if (!buffer_verified(bh[group - first_group])) 953 /* Skip faulty bitmaps */ 954 continue; 955 err = 0; 956 957 /* 958 * data carry information regarding this 959 * particular group in the format specified 960 * above 961 * 962 */ 963 data = page_address(page) + (i * blocksize); 964 bitmap = bh[group - first_group]->b_data; 965 966 /* 967 * We place the buddy block and bitmap block 968 * close together 969 */ 970 if ((first_block + i) & 1) { 971 /* this is block of buddy */ 972 BUG_ON(incore == NULL); 973 mb_debug(sb, "put buddy for group %u in page %lu/%x\n", 974 group, page->index, i * blocksize); 975 trace_ext4_mb_buddy_bitmap_load(sb, group); 976 grinfo = ext4_get_group_info(sb, group); 977 grinfo->bb_fragments = 0; 978 memset(grinfo->bb_counters, 0, 979 sizeof(*grinfo->bb_counters) * 980 (sb->s_blocksize_bits+2)); 981 /* 982 * incore got set to the group block bitmap below 983 */ 984 ext4_lock_group(sb, group); 985 /* init the buddy */ 986 memset(data, 0xff, blocksize); 987 ext4_mb_generate_buddy(sb, data, incore, group); 988 ext4_unlock_group(sb, group); 989 incore = NULL; 990 } else { 991 /* this is block of bitmap */ 992 BUG_ON(incore != NULL); 993 mb_debug(sb, "put bitmap for group %u in page %lu/%x\n", 994 group, page->index, i * blocksize); 995 trace_ext4_mb_bitmap_load(sb, group); 996 997 /* see comments in ext4_mb_put_pa() */ 998 ext4_lock_group(sb, group); 999 memcpy(data, bitmap, blocksize); 1000 1001 /* mark all preallocated blks used in in-core bitmap */ 1002 ext4_mb_generate_from_pa(sb, data, group); 1003 ext4_mb_generate_from_freelist(sb, data, group); 1004 ext4_unlock_group(sb, group); 1005 1006 /* set incore so that the buddy information can be 1007 * generated using this 1008 */ 1009 incore = data; 1010 } 1011 } 1012 SetPageUptodate(page); 1013 1014 out: 1015 if (bh) { 1016 for (i = 0; i < groups_per_page; i++) 1017 brelse(bh[i]); 1018 if (bh != &bhs) 1019 kfree(bh); 1020 } 1021 return err; 1022 } 1023 1024 /* 1025 * Lock the buddy and bitmap pages. This make sure other parallel init_group 1026 * on the same buddy page doesn't happen whild holding the buddy page lock. 1027 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 1028 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 1029 */ 1030 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 1031 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp) 1032 { 1033 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 1034 int block, pnum, poff; 1035 int blocks_per_page; 1036 struct page *page; 1037 1038 e4b->bd_buddy_page = NULL; 1039 e4b->bd_bitmap_page = NULL; 1040 1041 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1042 /* 1043 * the buddy cache inode stores the block bitmap 1044 * and buddy information in consecutive blocks. 1045 * So for each group we need two blocks. 1046 */ 1047 block = group * 2; 1048 pnum = block / blocks_per_page; 1049 poff = block % blocks_per_page; 1050 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1051 if (!page) 1052 return -ENOMEM; 1053 BUG_ON(page->mapping != inode->i_mapping); 1054 e4b->bd_bitmap_page = page; 1055 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1056 1057 if (blocks_per_page >= 2) { 1058 /* buddy and bitmap are on the same page */ 1059 return 0; 1060 } 1061 1062 block++; 1063 pnum = block / blocks_per_page; 1064 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1065 if (!page) 1066 return -ENOMEM; 1067 BUG_ON(page->mapping != inode->i_mapping); 1068 e4b->bd_buddy_page = page; 1069 return 0; 1070 } 1071 1072 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 1073 { 1074 if (e4b->bd_bitmap_page) { 1075 unlock_page(e4b->bd_bitmap_page); 1076 put_page(e4b->bd_bitmap_page); 1077 } 1078 if (e4b->bd_buddy_page) { 1079 unlock_page(e4b->bd_buddy_page); 1080 put_page(e4b->bd_buddy_page); 1081 } 1082 } 1083 1084 /* 1085 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1086 * block group lock of all groups for this page; do not hold the BG lock when 1087 * calling this routine! 1088 */ 1089 static noinline_for_stack 1090 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp) 1091 { 1092 1093 struct ext4_group_info *this_grp; 1094 struct ext4_buddy e4b; 1095 struct page *page; 1096 int ret = 0; 1097 1098 might_sleep(); 1099 mb_debug(sb, "init group %u\n", group); 1100 this_grp = ext4_get_group_info(sb, group); 1101 /* 1102 * This ensures that we don't reinit the buddy cache 1103 * page which map to the group from which we are already 1104 * allocating. If we are looking at the buddy cache we would 1105 * have taken a reference using ext4_mb_load_buddy and that 1106 * would have pinned buddy page to page cache. 1107 * The call to ext4_mb_get_buddy_page_lock will mark the 1108 * page accessed. 1109 */ 1110 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp); 1111 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1112 /* 1113 * somebody initialized the group 1114 * return without doing anything 1115 */ 1116 goto err; 1117 } 1118 1119 page = e4b.bd_bitmap_page; 1120 ret = ext4_mb_init_cache(page, NULL, gfp); 1121 if (ret) 1122 goto err; 1123 if (!PageUptodate(page)) { 1124 ret = -EIO; 1125 goto err; 1126 } 1127 1128 if (e4b.bd_buddy_page == NULL) { 1129 /* 1130 * If both the bitmap and buddy are in 1131 * the same page we don't need to force 1132 * init the buddy 1133 */ 1134 ret = 0; 1135 goto err; 1136 } 1137 /* init buddy cache */ 1138 page = e4b.bd_buddy_page; 1139 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp); 1140 if (ret) 1141 goto err; 1142 if (!PageUptodate(page)) { 1143 ret = -EIO; 1144 goto err; 1145 } 1146 err: 1147 ext4_mb_put_buddy_page_lock(&e4b); 1148 return ret; 1149 } 1150 1151 /* 1152 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1153 * block group lock of all groups for this page; do not hold the BG lock when 1154 * calling this routine! 1155 */ 1156 static noinline_for_stack int 1157 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group, 1158 struct ext4_buddy *e4b, gfp_t gfp) 1159 { 1160 int blocks_per_page; 1161 int block; 1162 int pnum; 1163 int poff; 1164 struct page *page; 1165 int ret; 1166 struct ext4_group_info *grp; 1167 struct ext4_sb_info *sbi = EXT4_SB(sb); 1168 struct inode *inode = sbi->s_buddy_cache; 1169 1170 might_sleep(); 1171 mb_debug(sb, "load group %u\n", group); 1172 1173 blocks_per_page = PAGE_SIZE / sb->s_blocksize; 1174 grp = ext4_get_group_info(sb, group); 1175 1176 e4b->bd_blkbits = sb->s_blocksize_bits; 1177 e4b->bd_info = grp; 1178 e4b->bd_sb = sb; 1179 e4b->bd_group = group; 1180 e4b->bd_buddy_page = NULL; 1181 e4b->bd_bitmap_page = NULL; 1182 1183 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1184 /* 1185 * we need full data about the group 1186 * to make a good selection 1187 */ 1188 ret = ext4_mb_init_group(sb, group, gfp); 1189 if (ret) 1190 return ret; 1191 } 1192 1193 /* 1194 * the buddy cache inode stores the block bitmap 1195 * and buddy information in consecutive blocks. 1196 * So for each group we need two blocks. 1197 */ 1198 block = group * 2; 1199 pnum = block / blocks_per_page; 1200 poff = block % blocks_per_page; 1201 1202 /* we could use find_or_create_page(), but it locks page 1203 * what we'd like to avoid in fast path ... */ 1204 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1205 if (page == NULL || !PageUptodate(page)) { 1206 if (page) 1207 /* 1208 * drop the page reference and try 1209 * to get the page with lock. If we 1210 * are not uptodate that implies 1211 * somebody just created the page but 1212 * is yet to initialize the same. So 1213 * wait for it to initialize. 1214 */ 1215 put_page(page); 1216 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1217 if (page) { 1218 BUG_ON(page->mapping != inode->i_mapping); 1219 if (!PageUptodate(page)) { 1220 ret = ext4_mb_init_cache(page, NULL, gfp); 1221 if (ret) { 1222 unlock_page(page); 1223 goto err; 1224 } 1225 mb_cmp_bitmaps(e4b, page_address(page) + 1226 (poff * sb->s_blocksize)); 1227 } 1228 unlock_page(page); 1229 } 1230 } 1231 if (page == NULL) { 1232 ret = -ENOMEM; 1233 goto err; 1234 } 1235 if (!PageUptodate(page)) { 1236 ret = -EIO; 1237 goto err; 1238 } 1239 1240 /* Pages marked accessed already */ 1241 e4b->bd_bitmap_page = page; 1242 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1243 1244 block++; 1245 pnum = block / blocks_per_page; 1246 poff = block % blocks_per_page; 1247 1248 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED); 1249 if (page == NULL || !PageUptodate(page)) { 1250 if (page) 1251 put_page(page); 1252 page = find_or_create_page(inode->i_mapping, pnum, gfp); 1253 if (page) { 1254 BUG_ON(page->mapping != inode->i_mapping); 1255 if (!PageUptodate(page)) { 1256 ret = ext4_mb_init_cache(page, e4b->bd_bitmap, 1257 gfp); 1258 if (ret) { 1259 unlock_page(page); 1260 goto err; 1261 } 1262 } 1263 unlock_page(page); 1264 } 1265 } 1266 if (page == NULL) { 1267 ret = -ENOMEM; 1268 goto err; 1269 } 1270 if (!PageUptodate(page)) { 1271 ret = -EIO; 1272 goto err; 1273 } 1274 1275 /* Pages marked accessed already */ 1276 e4b->bd_buddy_page = page; 1277 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1278 1279 return 0; 1280 1281 err: 1282 if (page) 1283 put_page(page); 1284 if (e4b->bd_bitmap_page) 1285 put_page(e4b->bd_bitmap_page); 1286 if (e4b->bd_buddy_page) 1287 put_page(e4b->bd_buddy_page); 1288 e4b->bd_buddy = NULL; 1289 e4b->bd_bitmap = NULL; 1290 return ret; 1291 } 1292 1293 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1294 struct ext4_buddy *e4b) 1295 { 1296 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS); 1297 } 1298 1299 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1300 { 1301 if (e4b->bd_bitmap_page) 1302 put_page(e4b->bd_bitmap_page); 1303 if (e4b->bd_buddy_page) 1304 put_page(e4b->bd_buddy_page); 1305 } 1306 1307 1308 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1309 { 1310 int order = 1; 1311 int bb_incr = 1 << (e4b->bd_blkbits - 1); 1312 void *bb; 1313 1314 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1315 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1316 1317 bb = e4b->bd_buddy; 1318 while (order <= e4b->bd_blkbits + 1) { 1319 block = block >> 1; 1320 if (!mb_test_bit(block, bb)) { 1321 /* this block is part of buddy of order 'order' */ 1322 return order; 1323 } 1324 bb += bb_incr; 1325 bb_incr >>= 1; 1326 order++; 1327 } 1328 return 0; 1329 } 1330 1331 static void mb_clear_bits(void *bm, int cur, int len) 1332 { 1333 __u32 *addr; 1334 1335 len = cur + len; 1336 while (cur < len) { 1337 if ((cur & 31) == 0 && (len - cur) >= 32) { 1338 /* fast path: clear whole word at once */ 1339 addr = bm + (cur >> 3); 1340 *addr = 0; 1341 cur += 32; 1342 continue; 1343 } 1344 mb_clear_bit(cur, bm); 1345 cur++; 1346 } 1347 } 1348 1349 /* clear bits in given range 1350 * will return first found zero bit if any, -1 otherwise 1351 */ 1352 static int mb_test_and_clear_bits(void *bm, int cur, int len) 1353 { 1354 __u32 *addr; 1355 int zero_bit = -1; 1356 1357 len = cur + len; 1358 while (cur < len) { 1359 if ((cur & 31) == 0 && (len - cur) >= 32) { 1360 /* fast path: clear whole word at once */ 1361 addr = bm + (cur >> 3); 1362 if (*addr != (__u32)(-1) && zero_bit == -1) 1363 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0); 1364 *addr = 0; 1365 cur += 32; 1366 continue; 1367 } 1368 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1) 1369 zero_bit = cur; 1370 cur++; 1371 } 1372 1373 return zero_bit; 1374 } 1375 1376 void ext4_set_bits(void *bm, int cur, int len) 1377 { 1378 __u32 *addr; 1379 1380 len = cur + len; 1381 while (cur < len) { 1382 if ((cur & 31) == 0 && (len - cur) >= 32) { 1383 /* fast path: set whole word at once */ 1384 addr = bm + (cur >> 3); 1385 *addr = 0xffffffff; 1386 cur += 32; 1387 continue; 1388 } 1389 mb_set_bit(cur, bm); 1390 cur++; 1391 } 1392 } 1393 1394 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side) 1395 { 1396 if (mb_test_bit(*bit + side, bitmap)) { 1397 mb_clear_bit(*bit, bitmap); 1398 (*bit) -= side; 1399 return 1; 1400 } 1401 else { 1402 (*bit) += side; 1403 mb_set_bit(*bit, bitmap); 1404 return -1; 1405 } 1406 } 1407 1408 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last) 1409 { 1410 int max; 1411 int order = 1; 1412 void *buddy = mb_find_buddy(e4b, order, &max); 1413 1414 while (buddy) { 1415 void *buddy2; 1416 1417 /* Bits in range [first; last] are known to be set since 1418 * corresponding blocks were allocated. Bits in range 1419 * (first; last) will stay set because they form buddies on 1420 * upper layer. We just deal with borders if they don't 1421 * align with upper layer and then go up. 1422 * Releasing entire group is all about clearing 1423 * single bit of highest order buddy. 1424 */ 1425 1426 /* Example: 1427 * --------------------------------- 1428 * | 1 | 1 | 1 | 1 | 1429 * --------------------------------- 1430 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1431 * --------------------------------- 1432 * 0 1 2 3 4 5 6 7 1433 * \_____________________/ 1434 * 1435 * Neither [1] nor [6] is aligned to above layer. 1436 * Left neighbour [0] is free, so mark it busy, 1437 * decrease bb_counters and extend range to 1438 * [0; 6] 1439 * Right neighbour [7] is busy. It can't be coaleasced with [6], so 1440 * mark [6] free, increase bb_counters and shrink range to 1441 * [0; 5]. 1442 * Then shift range to [0; 2], go up and do the same. 1443 */ 1444 1445 1446 if (first & 1) 1447 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1); 1448 if (!(last & 1)) 1449 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1); 1450 if (first > last) 1451 break; 1452 order++; 1453 1454 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) { 1455 mb_clear_bits(buddy, first, last - first + 1); 1456 e4b->bd_info->bb_counters[order - 1] += last - first + 1; 1457 break; 1458 } 1459 first >>= 1; 1460 last >>= 1; 1461 buddy = buddy2; 1462 } 1463 } 1464 1465 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1466 int first, int count) 1467 { 1468 int left_is_free = 0; 1469 int right_is_free = 0; 1470 int block; 1471 int last = first + count - 1; 1472 struct super_block *sb = e4b->bd_sb; 1473 1474 if (WARN_ON(count == 0)) 1475 return; 1476 BUG_ON(last >= (sb->s_blocksize << 3)); 1477 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1478 /* Don't bother if the block group is corrupt. */ 1479 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) 1480 return; 1481 1482 mb_check_buddy(e4b); 1483 mb_free_blocks_double(inode, e4b, first, count); 1484 1485 this_cpu_inc(discard_pa_seq); 1486 e4b->bd_info->bb_free += count; 1487 if (first < e4b->bd_info->bb_first_free) 1488 e4b->bd_info->bb_first_free = first; 1489 1490 /* access memory sequentially: check left neighbour, 1491 * clear range and then check right neighbour 1492 */ 1493 if (first != 0) 1494 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap); 1495 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count); 1496 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0]) 1497 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap); 1498 1499 if (unlikely(block != -1)) { 1500 struct ext4_sb_info *sbi = EXT4_SB(sb); 1501 ext4_fsblk_t blocknr; 1502 1503 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1504 blocknr += EXT4_C2B(sbi, block); 1505 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) { 1506 ext4_grp_locked_error(sb, e4b->bd_group, 1507 inode ? inode->i_ino : 0, 1508 blocknr, 1509 "freeing already freed block (bit %u); block bitmap corrupt.", 1510 block); 1511 ext4_mark_group_bitmap_corrupted( 1512 sb, e4b->bd_group, 1513 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1514 } 1515 mb_regenerate_buddy(e4b); 1516 goto done; 1517 } 1518 1519 /* let's maintain fragments counter */ 1520 if (left_is_free && right_is_free) 1521 e4b->bd_info->bb_fragments--; 1522 else if (!left_is_free && !right_is_free) 1523 e4b->bd_info->bb_fragments++; 1524 1525 /* buddy[0] == bd_bitmap is a special case, so handle 1526 * it right away and let mb_buddy_mark_free stay free of 1527 * zero order checks. 1528 * Check if neighbours are to be coaleasced, 1529 * adjust bitmap bb_counters and borders appropriately. 1530 */ 1531 if (first & 1) { 1532 first += !left_is_free; 1533 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1; 1534 } 1535 if (!(last & 1)) { 1536 last -= !right_is_free; 1537 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1; 1538 } 1539 1540 if (first <= last) 1541 mb_buddy_mark_free(e4b, first >> 1, last >> 1); 1542 1543 done: 1544 mb_set_largest_free_order(sb, e4b->bd_info); 1545 mb_check_buddy(e4b); 1546 } 1547 1548 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1549 int needed, struct ext4_free_extent *ex) 1550 { 1551 int next = block; 1552 int max, order; 1553 void *buddy; 1554 1555 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1556 BUG_ON(ex == NULL); 1557 1558 buddy = mb_find_buddy(e4b, 0, &max); 1559 BUG_ON(buddy == NULL); 1560 BUG_ON(block >= max); 1561 if (mb_test_bit(block, buddy)) { 1562 ex->fe_len = 0; 1563 ex->fe_start = 0; 1564 ex->fe_group = 0; 1565 return 0; 1566 } 1567 1568 /* find actual order */ 1569 order = mb_find_order_for_block(e4b, block); 1570 block = block >> order; 1571 1572 ex->fe_len = 1 << order; 1573 ex->fe_start = block << order; 1574 ex->fe_group = e4b->bd_group; 1575 1576 /* calc difference from given start */ 1577 next = next - ex->fe_start; 1578 ex->fe_len -= next; 1579 ex->fe_start += next; 1580 1581 while (needed > ex->fe_len && 1582 mb_find_buddy(e4b, order, &max)) { 1583 1584 if (block + 1 >= max) 1585 break; 1586 1587 next = (block + 1) * (1 << order); 1588 if (mb_test_bit(next, e4b->bd_bitmap)) 1589 break; 1590 1591 order = mb_find_order_for_block(e4b, next); 1592 1593 block = next >> order; 1594 ex->fe_len += 1 << order; 1595 } 1596 1597 if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) { 1598 /* Should never happen! (but apparently sometimes does?!?) */ 1599 WARN_ON(1); 1600 ext4_error(e4b->bd_sb, "corruption or bug in mb_find_extent " 1601 "block=%d, order=%d needed=%d ex=%u/%d/%d@%u", 1602 block, order, needed, ex->fe_group, ex->fe_start, 1603 ex->fe_len, ex->fe_logical); 1604 ex->fe_len = 0; 1605 ex->fe_start = 0; 1606 ex->fe_group = 0; 1607 } 1608 return ex->fe_len; 1609 } 1610 1611 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1612 { 1613 int ord; 1614 int mlen = 0; 1615 int max = 0; 1616 int cur; 1617 int start = ex->fe_start; 1618 int len = ex->fe_len; 1619 unsigned ret = 0; 1620 int len0 = len; 1621 void *buddy; 1622 1623 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1624 BUG_ON(e4b->bd_group != ex->fe_group); 1625 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1626 mb_check_buddy(e4b); 1627 mb_mark_used_double(e4b, start, len); 1628 1629 this_cpu_inc(discard_pa_seq); 1630 e4b->bd_info->bb_free -= len; 1631 if (e4b->bd_info->bb_first_free == start) 1632 e4b->bd_info->bb_first_free += len; 1633 1634 /* let's maintain fragments counter */ 1635 if (start != 0) 1636 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1637 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1638 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1639 if (mlen && max) 1640 e4b->bd_info->bb_fragments++; 1641 else if (!mlen && !max) 1642 e4b->bd_info->bb_fragments--; 1643 1644 /* let's maintain buddy itself */ 1645 while (len) { 1646 ord = mb_find_order_for_block(e4b, start); 1647 1648 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1649 /* the whole chunk may be allocated at once! */ 1650 mlen = 1 << ord; 1651 buddy = mb_find_buddy(e4b, ord, &max); 1652 BUG_ON((start >> ord) >= max); 1653 mb_set_bit(start >> ord, buddy); 1654 e4b->bd_info->bb_counters[ord]--; 1655 start += mlen; 1656 len -= mlen; 1657 BUG_ON(len < 0); 1658 continue; 1659 } 1660 1661 /* store for history */ 1662 if (ret == 0) 1663 ret = len | (ord << 16); 1664 1665 /* we have to split large buddy */ 1666 BUG_ON(ord <= 0); 1667 buddy = mb_find_buddy(e4b, ord, &max); 1668 mb_set_bit(start >> ord, buddy); 1669 e4b->bd_info->bb_counters[ord]--; 1670 1671 ord--; 1672 cur = (start >> ord) & ~1U; 1673 buddy = mb_find_buddy(e4b, ord, &max); 1674 mb_clear_bit(cur, buddy); 1675 mb_clear_bit(cur + 1, buddy); 1676 e4b->bd_info->bb_counters[ord]++; 1677 e4b->bd_info->bb_counters[ord]++; 1678 } 1679 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1680 1681 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1682 mb_check_buddy(e4b); 1683 1684 return ret; 1685 } 1686 1687 /* 1688 * Must be called under group lock! 1689 */ 1690 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1691 struct ext4_buddy *e4b) 1692 { 1693 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1694 int ret; 1695 1696 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1697 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1698 1699 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1700 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1701 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1702 1703 /* preallocation can change ac_b_ex, thus we store actually 1704 * allocated blocks for history */ 1705 ac->ac_f_ex = ac->ac_b_ex; 1706 1707 ac->ac_status = AC_STATUS_FOUND; 1708 ac->ac_tail = ret & 0xffff; 1709 ac->ac_buddy = ret >> 16; 1710 1711 /* 1712 * take the page reference. We want the page to be pinned 1713 * so that we don't get a ext4_mb_init_cache_call for this 1714 * group until we update the bitmap. That would mean we 1715 * double allocate blocks. The reference is dropped 1716 * in ext4_mb_release_context 1717 */ 1718 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1719 get_page(ac->ac_bitmap_page); 1720 ac->ac_buddy_page = e4b->bd_buddy_page; 1721 get_page(ac->ac_buddy_page); 1722 /* store last allocated for subsequent stream allocation */ 1723 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1724 spin_lock(&sbi->s_md_lock); 1725 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1726 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1727 spin_unlock(&sbi->s_md_lock); 1728 } 1729 /* 1730 * As we've just preallocated more space than 1731 * user requested originally, we store allocated 1732 * space in a special descriptor. 1733 */ 1734 if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 1735 ext4_mb_new_preallocation(ac); 1736 1737 } 1738 1739 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1740 struct ext4_buddy *e4b, 1741 int finish_group) 1742 { 1743 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1744 struct ext4_free_extent *bex = &ac->ac_b_ex; 1745 struct ext4_free_extent *gex = &ac->ac_g_ex; 1746 struct ext4_free_extent ex; 1747 int max; 1748 1749 if (ac->ac_status == AC_STATUS_FOUND) 1750 return; 1751 /* 1752 * We don't want to scan for a whole year 1753 */ 1754 if (ac->ac_found > sbi->s_mb_max_to_scan && 1755 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1756 ac->ac_status = AC_STATUS_BREAK; 1757 return; 1758 } 1759 1760 /* 1761 * Haven't found good chunk so far, let's continue 1762 */ 1763 if (bex->fe_len < gex->fe_len) 1764 return; 1765 1766 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1767 && bex->fe_group == e4b->bd_group) { 1768 /* recheck chunk's availability - we don't know 1769 * when it was found (within this lock-unlock 1770 * period or not) */ 1771 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1772 if (max >= gex->fe_len) { 1773 ext4_mb_use_best_found(ac, e4b); 1774 return; 1775 } 1776 } 1777 } 1778 1779 /* 1780 * The routine checks whether found extent is good enough. If it is, 1781 * then the extent gets marked used and flag is set to the context 1782 * to stop scanning. Otherwise, the extent is compared with the 1783 * previous found extent and if new one is better, then it's stored 1784 * in the context. Later, the best found extent will be used, if 1785 * mballoc can't find good enough extent. 1786 * 1787 * FIXME: real allocation policy is to be designed yet! 1788 */ 1789 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1790 struct ext4_free_extent *ex, 1791 struct ext4_buddy *e4b) 1792 { 1793 struct ext4_free_extent *bex = &ac->ac_b_ex; 1794 struct ext4_free_extent *gex = &ac->ac_g_ex; 1795 1796 BUG_ON(ex->fe_len <= 0); 1797 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1798 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1799 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1800 1801 ac->ac_found++; 1802 1803 /* 1804 * The special case - take what you catch first 1805 */ 1806 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1807 *bex = *ex; 1808 ext4_mb_use_best_found(ac, e4b); 1809 return; 1810 } 1811 1812 /* 1813 * Let's check whether the chuck is good enough 1814 */ 1815 if (ex->fe_len == gex->fe_len) { 1816 *bex = *ex; 1817 ext4_mb_use_best_found(ac, e4b); 1818 return; 1819 } 1820 1821 /* 1822 * If this is first found extent, just store it in the context 1823 */ 1824 if (bex->fe_len == 0) { 1825 *bex = *ex; 1826 return; 1827 } 1828 1829 /* 1830 * If new found extent is better, store it in the context 1831 */ 1832 if (bex->fe_len < gex->fe_len) { 1833 /* if the request isn't satisfied, any found extent 1834 * larger than previous best one is better */ 1835 if (ex->fe_len > bex->fe_len) 1836 *bex = *ex; 1837 } else if (ex->fe_len > gex->fe_len) { 1838 /* if the request is satisfied, then we try to find 1839 * an extent that still satisfy the request, but is 1840 * smaller than previous one */ 1841 if (ex->fe_len < bex->fe_len) 1842 *bex = *ex; 1843 } 1844 1845 ext4_mb_check_limits(ac, e4b, 0); 1846 } 1847 1848 static noinline_for_stack 1849 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1850 struct ext4_buddy *e4b) 1851 { 1852 struct ext4_free_extent ex = ac->ac_b_ex; 1853 ext4_group_t group = ex.fe_group; 1854 int max; 1855 int err; 1856 1857 BUG_ON(ex.fe_len <= 0); 1858 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1859 if (err) 1860 return err; 1861 1862 ext4_lock_group(ac->ac_sb, group); 1863 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1864 1865 if (max > 0) { 1866 ac->ac_b_ex = ex; 1867 ext4_mb_use_best_found(ac, e4b); 1868 } 1869 1870 ext4_unlock_group(ac->ac_sb, group); 1871 ext4_mb_unload_buddy(e4b); 1872 1873 return 0; 1874 } 1875 1876 static noinline_for_stack 1877 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1878 struct ext4_buddy *e4b) 1879 { 1880 ext4_group_t group = ac->ac_g_ex.fe_group; 1881 int max; 1882 int err; 1883 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1884 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1885 struct ext4_free_extent ex; 1886 1887 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1888 return 0; 1889 if (grp->bb_free == 0) 1890 return 0; 1891 1892 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1893 if (err) 1894 return err; 1895 1896 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) { 1897 ext4_mb_unload_buddy(e4b); 1898 return 0; 1899 } 1900 1901 ext4_lock_group(ac->ac_sb, group); 1902 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1903 ac->ac_g_ex.fe_len, &ex); 1904 ex.fe_logical = 0xDEADFA11; /* debug value */ 1905 1906 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1907 ext4_fsblk_t start; 1908 1909 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1910 ex.fe_start; 1911 /* use do_div to get remainder (would be 64-bit modulo) */ 1912 if (do_div(start, sbi->s_stripe) == 0) { 1913 ac->ac_found++; 1914 ac->ac_b_ex = ex; 1915 ext4_mb_use_best_found(ac, e4b); 1916 } 1917 } else if (max >= ac->ac_g_ex.fe_len) { 1918 BUG_ON(ex.fe_len <= 0); 1919 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1920 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1921 ac->ac_found++; 1922 ac->ac_b_ex = ex; 1923 ext4_mb_use_best_found(ac, e4b); 1924 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1925 /* Sometimes, caller may want to merge even small 1926 * number of blocks to an existing extent */ 1927 BUG_ON(ex.fe_len <= 0); 1928 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1929 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1930 ac->ac_found++; 1931 ac->ac_b_ex = ex; 1932 ext4_mb_use_best_found(ac, e4b); 1933 } 1934 ext4_unlock_group(ac->ac_sb, group); 1935 ext4_mb_unload_buddy(e4b); 1936 1937 return 0; 1938 } 1939 1940 /* 1941 * The routine scans buddy structures (not bitmap!) from given order 1942 * to max order and tries to find big enough chunk to satisfy the req 1943 */ 1944 static noinline_for_stack 1945 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1946 struct ext4_buddy *e4b) 1947 { 1948 struct super_block *sb = ac->ac_sb; 1949 struct ext4_group_info *grp = e4b->bd_info; 1950 void *buddy; 1951 int i; 1952 int k; 1953 int max; 1954 1955 BUG_ON(ac->ac_2order <= 0); 1956 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1957 if (grp->bb_counters[i] == 0) 1958 continue; 1959 1960 buddy = mb_find_buddy(e4b, i, &max); 1961 BUG_ON(buddy == NULL); 1962 1963 k = mb_find_next_zero_bit(buddy, max, 0); 1964 if (k >= max) { 1965 ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0, 1966 "%d free clusters of order %d. But found 0", 1967 grp->bb_counters[i], i); 1968 ext4_mark_group_bitmap_corrupted(ac->ac_sb, 1969 e4b->bd_group, 1970 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 1971 break; 1972 } 1973 ac->ac_found++; 1974 1975 ac->ac_b_ex.fe_len = 1 << i; 1976 ac->ac_b_ex.fe_start = k << i; 1977 ac->ac_b_ex.fe_group = e4b->bd_group; 1978 1979 ext4_mb_use_best_found(ac, e4b); 1980 1981 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len); 1982 1983 if (EXT4_SB(sb)->s_mb_stats) 1984 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1985 1986 break; 1987 } 1988 } 1989 1990 /* 1991 * The routine scans the group and measures all found extents. 1992 * In order to optimize scanning, caller must pass number of 1993 * free blocks in the group, so the routine can know upper limit. 1994 */ 1995 static noinline_for_stack 1996 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1997 struct ext4_buddy *e4b) 1998 { 1999 struct super_block *sb = ac->ac_sb; 2000 void *bitmap = e4b->bd_bitmap; 2001 struct ext4_free_extent ex; 2002 int i; 2003 int free; 2004 2005 free = e4b->bd_info->bb_free; 2006 if (WARN_ON(free <= 0)) 2007 return; 2008 2009 i = e4b->bd_info->bb_first_free; 2010 2011 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 2012 i = mb_find_next_zero_bit(bitmap, 2013 EXT4_CLUSTERS_PER_GROUP(sb), i); 2014 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 2015 /* 2016 * IF we have corrupt bitmap, we won't find any 2017 * free blocks even though group info says we 2018 * have free blocks 2019 */ 2020 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2021 "%d free clusters as per " 2022 "group info. But bitmap says 0", 2023 free); 2024 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2025 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2026 break; 2027 } 2028 2029 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 2030 if (WARN_ON(ex.fe_len <= 0)) 2031 break; 2032 if (free < ex.fe_len) { 2033 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 2034 "%d free clusters as per " 2035 "group info. But got %d blocks", 2036 free, ex.fe_len); 2037 ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group, 2038 EXT4_GROUP_INFO_BBITMAP_CORRUPT); 2039 /* 2040 * The number of free blocks differs. This mostly 2041 * indicate that the bitmap is corrupt. So exit 2042 * without claiming the space. 2043 */ 2044 break; 2045 } 2046 ex.fe_logical = 0xDEADC0DE; /* debug value */ 2047 ext4_mb_measure_extent(ac, &ex, e4b); 2048 2049 i += ex.fe_len; 2050 free -= ex.fe_len; 2051 } 2052 2053 ext4_mb_check_limits(ac, e4b, 1); 2054 } 2055 2056 /* 2057 * This is a special case for storages like raid5 2058 * we try to find stripe-aligned chunks for stripe-size-multiple requests 2059 */ 2060 static noinline_for_stack 2061 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 2062 struct ext4_buddy *e4b) 2063 { 2064 struct super_block *sb = ac->ac_sb; 2065 struct ext4_sb_info *sbi = EXT4_SB(sb); 2066 void *bitmap = e4b->bd_bitmap; 2067 struct ext4_free_extent ex; 2068 ext4_fsblk_t first_group_block; 2069 ext4_fsblk_t a; 2070 ext4_grpblk_t i; 2071 int max; 2072 2073 BUG_ON(sbi->s_stripe == 0); 2074 2075 /* find first stripe-aligned block in group */ 2076 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 2077 2078 a = first_group_block + sbi->s_stripe - 1; 2079 do_div(a, sbi->s_stripe); 2080 i = (a * sbi->s_stripe) - first_group_block; 2081 2082 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 2083 if (!mb_test_bit(i, bitmap)) { 2084 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 2085 if (max >= sbi->s_stripe) { 2086 ac->ac_found++; 2087 ex.fe_logical = 0xDEADF00D; /* debug value */ 2088 ac->ac_b_ex = ex; 2089 ext4_mb_use_best_found(ac, e4b); 2090 break; 2091 } 2092 } 2093 i += sbi->s_stripe; 2094 } 2095 } 2096 2097 /* 2098 * This is also called BEFORE we load the buddy bitmap. 2099 * Returns either 1 or 0 indicating that the group is either suitable 2100 * for the allocation or not. 2101 */ 2102 static bool ext4_mb_good_group(struct ext4_allocation_context *ac, 2103 ext4_group_t group, int cr) 2104 { 2105 ext4_grpblk_t free, fragments; 2106 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 2107 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2108 2109 BUG_ON(cr < 0 || cr >= 4); 2110 2111 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2112 return false; 2113 2114 free = grp->bb_free; 2115 if (free == 0) 2116 return false; 2117 2118 fragments = grp->bb_fragments; 2119 if (fragments == 0) 2120 return false; 2121 2122 switch (cr) { 2123 case 0: 2124 BUG_ON(ac->ac_2order == 0); 2125 2126 /* Avoid using the first bg of a flexgroup for data files */ 2127 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 2128 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 2129 ((group % flex_size) == 0)) 2130 return false; 2131 2132 if (free < ac->ac_g_ex.fe_len) 2133 return false; 2134 2135 if (ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) 2136 return true; 2137 2138 if (grp->bb_largest_free_order < ac->ac_2order) 2139 return false; 2140 2141 return true; 2142 case 1: 2143 if ((free / fragments) >= ac->ac_g_ex.fe_len) 2144 return true; 2145 break; 2146 case 2: 2147 if (free >= ac->ac_g_ex.fe_len) 2148 return true; 2149 break; 2150 case 3: 2151 return true; 2152 default: 2153 BUG(); 2154 } 2155 2156 return false; 2157 } 2158 2159 /* 2160 * This could return negative error code if something goes wrong 2161 * during ext4_mb_init_group(). This should not be called with 2162 * ext4_lock_group() held. 2163 */ 2164 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac, 2165 ext4_group_t group, int cr) 2166 { 2167 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 2168 struct super_block *sb = ac->ac_sb; 2169 struct ext4_sb_info *sbi = EXT4_SB(sb); 2170 bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK; 2171 ext4_grpblk_t free; 2172 int ret = 0; 2173 2174 if (should_lock) 2175 ext4_lock_group(sb, group); 2176 free = grp->bb_free; 2177 if (free == 0) 2178 goto out; 2179 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 2180 goto out; 2181 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp))) 2182 goto out; 2183 if (should_lock) 2184 ext4_unlock_group(sb, group); 2185 2186 /* We only do this if the grp has never been initialized */ 2187 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 2188 struct ext4_group_desc *gdp = 2189 ext4_get_group_desc(sb, group, NULL); 2190 int ret; 2191 2192 /* cr=0/1 is a very optimistic search to find large 2193 * good chunks almost for free. If buddy data is not 2194 * ready, then this optimization makes no sense. But 2195 * we never skip the first block group in a flex_bg, 2196 * since this gets used for metadata block allocation, 2197 * and we want to make sure we locate metadata blocks 2198 * in the first block group in the flex_bg if possible. 2199 */ 2200 if (cr < 2 && 2201 (!sbi->s_log_groups_per_flex || 2202 ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) && 2203 !(ext4_has_group_desc_csum(sb) && 2204 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) 2205 return 0; 2206 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 2207 if (ret) 2208 return ret; 2209 } 2210 2211 if (should_lock) 2212 ext4_lock_group(sb, group); 2213 ret = ext4_mb_good_group(ac, group, cr); 2214 out: 2215 if (should_lock) 2216 ext4_unlock_group(sb, group); 2217 return ret; 2218 } 2219 2220 /* 2221 * Start prefetching @nr block bitmaps starting at @group. 2222 * Return the next group which needs to be prefetched. 2223 */ 2224 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group, 2225 unsigned int nr, int *cnt) 2226 { 2227 ext4_group_t ngroups = ext4_get_groups_count(sb); 2228 struct buffer_head *bh; 2229 struct blk_plug plug; 2230 2231 blk_start_plug(&plug); 2232 while (nr-- > 0) { 2233 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2234 NULL); 2235 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2236 2237 /* 2238 * Prefetch block groups with free blocks; but don't 2239 * bother if it is marked uninitialized on disk, since 2240 * it won't require I/O to read. Also only try to 2241 * prefetch once, so we avoid getblk() call, which can 2242 * be expensive. 2243 */ 2244 if (!EXT4_MB_GRP_TEST_AND_SET_READ(grp) && 2245 EXT4_MB_GRP_NEED_INIT(grp) && 2246 ext4_free_group_clusters(sb, gdp) > 0 && 2247 !(ext4_has_group_desc_csum(sb) && 2248 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) { 2249 bh = ext4_read_block_bitmap_nowait(sb, group, true); 2250 if (bh && !IS_ERR(bh)) { 2251 if (!buffer_uptodate(bh) && cnt) 2252 (*cnt)++; 2253 brelse(bh); 2254 } 2255 } 2256 if (++group >= ngroups) 2257 group = 0; 2258 } 2259 blk_finish_plug(&plug); 2260 return group; 2261 } 2262 2263 /* 2264 * Prefetching reads the block bitmap into the buffer cache; but we 2265 * need to make sure that the buddy bitmap in the page cache has been 2266 * initialized. Note that ext4_mb_init_group() will block if the I/O 2267 * is not yet completed, or indeed if it was not initiated by 2268 * ext4_mb_prefetch did not start the I/O. 2269 * 2270 * TODO: We should actually kick off the buddy bitmap setup in a work 2271 * queue when the buffer I/O is completed, so that we don't block 2272 * waiting for the block allocation bitmap read to finish when 2273 * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator(). 2274 */ 2275 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group, 2276 unsigned int nr) 2277 { 2278 while (nr-- > 0) { 2279 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, 2280 NULL); 2281 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 2282 2283 if (!group) 2284 group = ext4_get_groups_count(sb); 2285 group--; 2286 grp = ext4_get_group_info(sb, group); 2287 2288 if (EXT4_MB_GRP_NEED_INIT(grp) && 2289 ext4_free_group_clusters(sb, gdp) > 0 && 2290 !(ext4_has_group_desc_csum(sb) && 2291 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)))) { 2292 if (ext4_mb_init_group(sb, group, GFP_NOFS)) 2293 break; 2294 } 2295 } 2296 } 2297 2298 static noinline_for_stack int 2299 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 2300 { 2301 ext4_group_t prefetch_grp = 0, ngroups, group, i; 2302 int cr = -1; 2303 int err = 0, first_err = 0; 2304 unsigned int nr = 0, prefetch_ios = 0; 2305 struct ext4_sb_info *sbi; 2306 struct super_block *sb; 2307 struct ext4_buddy e4b; 2308 int lost; 2309 2310 sb = ac->ac_sb; 2311 sbi = EXT4_SB(sb); 2312 ngroups = ext4_get_groups_count(sb); 2313 /* non-extent files are limited to low blocks/groups */ 2314 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 2315 ngroups = sbi->s_blockfile_groups; 2316 2317 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 2318 2319 /* first, try the goal */ 2320 err = ext4_mb_find_by_goal(ac, &e4b); 2321 if (err || ac->ac_status == AC_STATUS_FOUND) 2322 goto out; 2323 2324 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2325 goto out; 2326 2327 /* 2328 * ac->ac_2order is set only if the fe_len is a power of 2 2329 * if ac->ac_2order is set we also set criteria to 0 so that we 2330 * try exact allocation using buddy. 2331 */ 2332 i = fls(ac->ac_g_ex.fe_len); 2333 ac->ac_2order = 0; 2334 /* 2335 * We search using buddy data only if the order of the request 2336 * is greater than equal to the sbi_s_mb_order2_reqs 2337 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 2338 * We also support searching for power-of-two requests only for 2339 * requests upto maximum buddy size we have constructed. 2340 */ 2341 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) { 2342 /* 2343 * This should tell if fe_len is exactly power of 2 2344 */ 2345 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 2346 ac->ac_2order = array_index_nospec(i - 1, 2347 sb->s_blocksize_bits + 2); 2348 } 2349 2350 /* if stream allocation is enabled, use global goal */ 2351 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 2352 /* TBD: may be hot point */ 2353 spin_lock(&sbi->s_md_lock); 2354 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 2355 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 2356 spin_unlock(&sbi->s_md_lock); 2357 } 2358 2359 /* Let's just scan groups to find more-less suitable blocks */ 2360 cr = ac->ac_2order ? 0 : 1; 2361 /* 2362 * cr == 0 try to get exact allocation, 2363 * cr == 3 try to get anything 2364 */ 2365 repeat: 2366 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 2367 ac->ac_criteria = cr; 2368 /* 2369 * searching for the right group start 2370 * from the goal value specified 2371 */ 2372 group = ac->ac_g_ex.fe_group; 2373 prefetch_grp = group; 2374 2375 for (i = 0; i < ngroups; group++, i++) { 2376 int ret = 0; 2377 cond_resched(); 2378 /* 2379 * Artificially restricted ngroups for non-extent 2380 * files makes group > ngroups possible on first loop. 2381 */ 2382 if (group >= ngroups) 2383 group = 0; 2384 2385 /* 2386 * Batch reads of the block allocation bitmaps 2387 * to get multiple READs in flight; limit 2388 * prefetching at cr=0/1, otherwise mballoc can 2389 * spend a lot of time loading imperfect groups 2390 */ 2391 if ((prefetch_grp == group) && 2392 (cr > 1 || 2393 prefetch_ios < sbi->s_mb_prefetch_limit)) { 2394 unsigned int curr_ios = prefetch_ios; 2395 2396 nr = sbi->s_mb_prefetch; 2397 if (ext4_has_feature_flex_bg(sb)) { 2398 nr = (group / sbi->s_mb_prefetch) * 2399 sbi->s_mb_prefetch; 2400 nr = nr + sbi->s_mb_prefetch - group; 2401 } 2402 prefetch_grp = ext4_mb_prefetch(sb, group, 2403 nr, &prefetch_ios); 2404 if (prefetch_ios == curr_ios) 2405 nr = 0; 2406 } 2407 2408 /* This now checks without needing the buddy page */ 2409 ret = ext4_mb_good_group_nolock(ac, group, cr); 2410 if (ret <= 0) { 2411 if (!first_err) 2412 first_err = ret; 2413 continue; 2414 } 2415 2416 err = ext4_mb_load_buddy(sb, group, &e4b); 2417 if (err) 2418 goto out; 2419 2420 ext4_lock_group(sb, group); 2421 2422 /* 2423 * We need to check again after locking the 2424 * block group 2425 */ 2426 ret = ext4_mb_good_group(ac, group, cr); 2427 if (ret == 0) { 2428 ext4_unlock_group(sb, group); 2429 ext4_mb_unload_buddy(&e4b); 2430 continue; 2431 } 2432 2433 ac->ac_groups_scanned++; 2434 if (cr == 0) 2435 ext4_mb_simple_scan_group(ac, &e4b); 2436 else if (cr == 1 && sbi->s_stripe && 2437 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2438 ext4_mb_scan_aligned(ac, &e4b); 2439 else 2440 ext4_mb_complex_scan_group(ac, &e4b); 2441 2442 ext4_unlock_group(sb, group); 2443 ext4_mb_unload_buddy(&e4b); 2444 2445 if (ac->ac_status != AC_STATUS_CONTINUE) 2446 break; 2447 } 2448 } 2449 2450 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2451 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2452 /* 2453 * We've been searching too long. Let's try to allocate 2454 * the best chunk we've found so far 2455 */ 2456 ext4_mb_try_best_found(ac, &e4b); 2457 if (ac->ac_status != AC_STATUS_FOUND) { 2458 /* 2459 * Someone more lucky has already allocated it. 2460 * The only thing we can do is just take first 2461 * found block(s) 2462 */ 2463 lost = atomic_inc_return(&sbi->s_mb_lost_chunks); 2464 mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n", 2465 ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start, 2466 ac->ac_b_ex.fe_len, lost); 2467 2468 ac->ac_b_ex.fe_group = 0; 2469 ac->ac_b_ex.fe_start = 0; 2470 ac->ac_b_ex.fe_len = 0; 2471 ac->ac_status = AC_STATUS_CONTINUE; 2472 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2473 cr = 3; 2474 goto repeat; 2475 } 2476 } 2477 out: 2478 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err) 2479 err = first_err; 2480 2481 mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n", 2482 ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status, 2483 ac->ac_flags, cr, err); 2484 2485 if (nr) 2486 ext4_mb_prefetch_fini(sb, prefetch_grp, nr); 2487 2488 return err; 2489 } 2490 2491 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2492 { 2493 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2494 ext4_group_t group; 2495 2496 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2497 return NULL; 2498 group = *pos + 1; 2499 return (void *) ((unsigned long) group); 2500 } 2501 2502 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2503 { 2504 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2505 ext4_group_t group; 2506 2507 ++*pos; 2508 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2509 return NULL; 2510 group = *pos + 1; 2511 return (void *) ((unsigned long) group); 2512 } 2513 2514 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2515 { 2516 struct super_block *sb = PDE_DATA(file_inode(seq->file)); 2517 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2518 int i; 2519 int err, buddy_loaded = 0; 2520 struct ext4_buddy e4b; 2521 struct ext4_group_info *grinfo; 2522 unsigned char blocksize_bits = min_t(unsigned char, 2523 sb->s_blocksize_bits, 2524 EXT4_MAX_BLOCK_LOG_SIZE); 2525 struct sg { 2526 struct ext4_group_info info; 2527 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2]; 2528 } sg; 2529 2530 group--; 2531 if (group == 0) 2532 seq_puts(seq, "#group: free frags first [" 2533 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 " 2534 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n"); 2535 2536 i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2537 sizeof(struct ext4_group_info); 2538 2539 grinfo = ext4_get_group_info(sb, group); 2540 /* Load the group info in memory only if not already loaded. */ 2541 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2542 err = ext4_mb_load_buddy(sb, group, &e4b); 2543 if (err) { 2544 seq_printf(seq, "#%-5u: I/O error\n", group); 2545 return 0; 2546 } 2547 buddy_loaded = 1; 2548 } 2549 2550 memcpy(&sg, ext4_get_group_info(sb, group), i); 2551 2552 if (buddy_loaded) 2553 ext4_mb_unload_buddy(&e4b); 2554 2555 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2556 sg.info.bb_fragments, sg.info.bb_first_free); 2557 for (i = 0; i <= 13; i++) 2558 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ? 2559 sg.info.bb_counters[i] : 0); 2560 seq_puts(seq, " ]\n"); 2561 2562 return 0; 2563 } 2564 2565 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2566 { 2567 } 2568 2569 const struct seq_operations ext4_mb_seq_groups_ops = { 2570 .start = ext4_mb_seq_groups_start, 2571 .next = ext4_mb_seq_groups_next, 2572 .stop = ext4_mb_seq_groups_stop, 2573 .show = ext4_mb_seq_groups_show, 2574 }; 2575 2576 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2577 { 2578 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2579 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2580 2581 BUG_ON(!cachep); 2582 return cachep; 2583 } 2584 2585 /* 2586 * Allocate the top-level s_group_info array for the specified number 2587 * of groups 2588 */ 2589 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2590 { 2591 struct ext4_sb_info *sbi = EXT4_SB(sb); 2592 unsigned size; 2593 struct ext4_group_info ***old_groupinfo, ***new_groupinfo; 2594 2595 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2596 EXT4_DESC_PER_BLOCK_BITS(sb); 2597 if (size <= sbi->s_group_info_size) 2598 return 0; 2599 2600 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2601 new_groupinfo = kvzalloc(size, GFP_KERNEL); 2602 if (!new_groupinfo) { 2603 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2604 return -ENOMEM; 2605 } 2606 rcu_read_lock(); 2607 old_groupinfo = rcu_dereference(sbi->s_group_info); 2608 if (old_groupinfo) 2609 memcpy(new_groupinfo, old_groupinfo, 2610 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2611 rcu_read_unlock(); 2612 rcu_assign_pointer(sbi->s_group_info, new_groupinfo); 2613 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2614 if (old_groupinfo) 2615 ext4_kvfree_array_rcu(old_groupinfo); 2616 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2617 sbi->s_group_info_size); 2618 return 0; 2619 } 2620 2621 /* Create and initialize ext4_group_info data for the given group. */ 2622 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2623 struct ext4_group_desc *desc) 2624 { 2625 int i; 2626 int metalen = 0; 2627 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb); 2628 struct ext4_sb_info *sbi = EXT4_SB(sb); 2629 struct ext4_group_info **meta_group_info; 2630 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2631 2632 /* 2633 * First check if this group is the first of a reserved block. 2634 * If it's true, we have to allocate a new table of pointers 2635 * to ext4_group_info structures 2636 */ 2637 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2638 metalen = sizeof(*meta_group_info) << 2639 EXT4_DESC_PER_BLOCK_BITS(sb); 2640 meta_group_info = kmalloc(metalen, GFP_NOFS); 2641 if (meta_group_info == NULL) { 2642 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2643 "for a buddy group"); 2644 goto exit_meta_group_info; 2645 } 2646 rcu_read_lock(); 2647 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info; 2648 rcu_read_unlock(); 2649 } 2650 2651 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx); 2652 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2653 2654 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS); 2655 if (meta_group_info[i] == NULL) { 2656 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2657 goto exit_group_info; 2658 } 2659 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2660 &(meta_group_info[i]->bb_state)); 2661 2662 /* 2663 * initialize bb_free to be able to skip 2664 * empty groups without initialization 2665 */ 2666 if (ext4_has_group_desc_csum(sb) && 2667 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 2668 meta_group_info[i]->bb_free = 2669 ext4_free_clusters_after_init(sb, group, desc); 2670 } else { 2671 meta_group_info[i]->bb_free = 2672 ext4_free_group_clusters(sb, desc); 2673 } 2674 2675 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2676 init_rwsem(&meta_group_info[i]->alloc_sem); 2677 meta_group_info[i]->bb_free_root = RB_ROOT; 2678 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2679 2680 mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); 2681 return 0; 2682 2683 exit_group_info: 2684 /* If a meta_group_info table has been allocated, release it now */ 2685 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2686 struct ext4_group_info ***group_info; 2687 2688 rcu_read_lock(); 2689 group_info = rcu_dereference(sbi->s_group_info); 2690 kfree(group_info[idx]); 2691 group_info[idx] = NULL; 2692 rcu_read_unlock(); 2693 } 2694 exit_meta_group_info: 2695 return -ENOMEM; 2696 } /* ext4_mb_add_groupinfo */ 2697 2698 static int ext4_mb_init_backend(struct super_block *sb) 2699 { 2700 ext4_group_t ngroups = ext4_get_groups_count(sb); 2701 ext4_group_t i; 2702 struct ext4_sb_info *sbi = EXT4_SB(sb); 2703 int err; 2704 struct ext4_group_desc *desc; 2705 struct ext4_group_info ***group_info; 2706 struct kmem_cache *cachep; 2707 2708 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2709 if (err) 2710 return err; 2711 2712 sbi->s_buddy_cache = new_inode(sb); 2713 if (sbi->s_buddy_cache == NULL) { 2714 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2715 goto err_freesgi; 2716 } 2717 /* To avoid potentially colliding with an valid on-disk inode number, 2718 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2719 * not in the inode hash, so it should never be found by iget(), but 2720 * this will avoid confusion if it ever shows up during debugging. */ 2721 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2722 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2723 for (i = 0; i < ngroups; i++) { 2724 cond_resched(); 2725 desc = ext4_get_group_desc(sb, i, NULL); 2726 if (desc == NULL) { 2727 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2728 goto err_freebuddy; 2729 } 2730 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2731 goto err_freebuddy; 2732 } 2733 2734 if (ext4_has_feature_flex_bg(sb)) { 2735 /* a single flex group is supposed to be read by a single IO */ 2736 sbi->s_mb_prefetch = 1 << sbi->s_es->s_log_groups_per_flex; 2737 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */ 2738 } else { 2739 sbi->s_mb_prefetch = 32; 2740 } 2741 if (sbi->s_mb_prefetch > ext4_get_groups_count(sb)) 2742 sbi->s_mb_prefetch = ext4_get_groups_count(sb); 2743 /* now many real IOs to prefetch within a single allocation at cr=0 2744 * given cr=0 is an CPU-related optimization we shouldn't try to 2745 * load too many groups, at some point we should start to use what 2746 * we've got in memory. 2747 * with an average random access time 5ms, it'd take a second to get 2748 * 200 groups (* N with flex_bg), so let's make this limit 4 2749 */ 2750 sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4; 2751 if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb)) 2752 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb); 2753 2754 return 0; 2755 2756 err_freebuddy: 2757 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2758 while (i-- > 0) 2759 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2760 i = sbi->s_group_info_size; 2761 rcu_read_lock(); 2762 group_info = rcu_dereference(sbi->s_group_info); 2763 while (i-- > 0) 2764 kfree(group_info[i]); 2765 rcu_read_unlock(); 2766 iput(sbi->s_buddy_cache); 2767 err_freesgi: 2768 rcu_read_lock(); 2769 kvfree(rcu_dereference(sbi->s_group_info)); 2770 rcu_read_unlock(); 2771 return -ENOMEM; 2772 } 2773 2774 static void ext4_groupinfo_destroy_slabs(void) 2775 { 2776 int i; 2777 2778 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2779 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2780 ext4_groupinfo_caches[i] = NULL; 2781 } 2782 } 2783 2784 static int ext4_groupinfo_create_slab(size_t size) 2785 { 2786 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2787 int slab_size; 2788 int blocksize_bits = order_base_2(size); 2789 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2790 struct kmem_cache *cachep; 2791 2792 if (cache_index >= NR_GRPINFO_CACHES) 2793 return -EINVAL; 2794 2795 if (unlikely(cache_index < 0)) 2796 cache_index = 0; 2797 2798 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2799 if (ext4_groupinfo_caches[cache_index]) { 2800 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2801 return 0; /* Already created */ 2802 } 2803 2804 slab_size = offsetof(struct ext4_group_info, 2805 bb_counters[blocksize_bits + 2]); 2806 2807 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2808 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2809 NULL); 2810 2811 ext4_groupinfo_caches[cache_index] = cachep; 2812 2813 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2814 if (!cachep) { 2815 printk(KERN_EMERG 2816 "EXT4-fs: no memory for groupinfo slab cache\n"); 2817 return -ENOMEM; 2818 } 2819 2820 return 0; 2821 } 2822 2823 int ext4_mb_init(struct super_block *sb) 2824 { 2825 struct ext4_sb_info *sbi = EXT4_SB(sb); 2826 unsigned i, j; 2827 unsigned offset, offset_incr; 2828 unsigned max; 2829 int ret; 2830 2831 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2832 2833 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2834 if (sbi->s_mb_offsets == NULL) { 2835 ret = -ENOMEM; 2836 goto out; 2837 } 2838 2839 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2840 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2841 if (sbi->s_mb_maxs == NULL) { 2842 ret = -ENOMEM; 2843 goto out; 2844 } 2845 2846 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2847 if (ret < 0) 2848 goto out; 2849 2850 /* order 0 is regular bitmap */ 2851 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2852 sbi->s_mb_offsets[0] = 0; 2853 2854 i = 1; 2855 offset = 0; 2856 offset_incr = 1 << (sb->s_blocksize_bits - 1); 2857 max = sb->s_blocksize << 2; 2858 do { 2859 sbi->s_mb_offsets[i] = offset; 2860 sbi->s_mb_maxs[i] = max; 2861 offset += offset_incr; 2862 offset_incr = offset_incr >> 1; 2863 max = max >> 1; 2864 i++; 2865 } while (i <= sb->s_blocksize_bits + 1); 2866 2867 spin_lock_init(&sbi->s_md_lock); 2868 spin_lock_init(&sbi->s_bal_lock); 2869 sbi->s_mb_free_pending = 0; 2870 INIT_LIST_HEAD(&sbi->s_freed_data_list); 2871 2872 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2873 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2874 sbi->s_mb_stats = MB_DEFAULT_STATS; 2875 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2876 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2877 sbi->s_mb_max_inode_prealloc = MB_DEFAULT_MAX_INODE_PREALLOC; 2878 /* 2879 * The default group preallocation is 512, which for 4k block 2880 * sizes translates to 2 megabytes. However for bigalloc file 2881 * systems, this is probably too big (i.e, if the cluster size 2882 * is 1 megabyte, then group preallocation size becomes half a 2883 * gigabyte!). As a default, we will keep a two megabyte 2884 * group pralloc size for cluster sizes up to 64k, and after 2885 * that, we will force a minimum group preallocation size of 2886 * 32 clusters. This translates to 8 megs when the cluster 2887 * size is 256k, and 32 megs when the cluster size is 1 meg, 2888 * which seems reasonable as a default. 2889 */ 2890 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2891 sbi->s_cluster_bits, 32); 2892 /* 2893 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2894 * to the lowest multiple of s_stripe which is bigger than 2895 * the s_mb_group_prealloc as determined above. We want 2896 * the preallocation size to be an exact multiple of the 2897 * RAID stripe size so that preallocations don't fragment 2898 * the stripes. 2899 */ 2900 if (sbi->s_stripe > 1) { 2901 sbi->s_mb_group_prealloc = roundup( 2902 sbi->s_mb_group_prealloc, sbi->s_stripe); 2903 } 2904 2905 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2906 if (sbi->s_locality_groups == NULL) { 2907 ret = -ENOMEM; 2908 goto out; 2909 } 2910 for_each_possible_cpu(i) { 2911 struct ext4_locality_group *lg; 2912 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2913 mutex_init(&lg->lg_mutex); 2914 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2915 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2916 spin_lock_init(&lg->lg_prealloc_lock); 2917 } 2918 2919 /* init file for buddy data */ 2920 ret = ext4_mb_init_backend(sb); 2921 if (ret != 0) 2922 goto out_free_locality_groups; 2923 2924 return 0; 2925 2926 out_free_locality_groups: 2927 free_percpu(sbi->s_locality_groups); 2928 sbi->s_locality_groups = NULL; 2929 out: 2930 kfree(sbi->s_mb_offsets); 2931 sbi->s_mb_offsets = NULL; 2932 kfree(sbi->s_mb_maxs); 2933 sbi->s_mb_maxs = NULL; 2934 return ret; 2935 } 2936 2937 /* need to called with the ext4 group lock held */ 2938 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2939 { 2940 struct ext4_prealloc_space *pa; 2941 struct list_head *cur, *tmp; 2942 int count = 0; 2943 2944 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2945 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2946 list_del(&pa->pa_group_list); 2947 count++; 2948 kmem_cache_free(ext4_pspace_cachep, pa); 2949 } 2950 return count; 2951 } 2952 2953 int ext4_mb_release(struct super_block *sb) 2954 { 2955 ext4_group_t ngroups = ext4_get_groups_count(sb); 2956 ext4_group_t i; 2957 int num_meta_group_infos; 2958 struct ext4_group_info *grinfo, ***group_info; 2959 struct ext4_sb_info *sbi = EXT4_SB(sb); 2960 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2961 int count; 2962 2963 if (sbi->s_group_info) { 2964 for (i = 0; i < ngroups; i++) { 2965 cond_resched(); 2966 grinfo = ext4_get_group_info(sb, i); 2967 mb_group_bb_bitmap_free(grinfo); 2968 ext4_lock_group(sb, i); 2969 count = ext4_mb_cleanup_pa(grinfo); 2970 if (count) 2971 mb_debug(sb, "mballoc: %d PAs left\n", 2972 count); 2973 ext4_unlock_group(sb, i); 2974 kmem_cache_free(cachep, grinfo); 2975 } 2976 num_meta_group_infos = (ngroups + 2977 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2978 EXT4_DESC_PER_BLOCK_BITS(sb); 2979 rcu_read_lock(); 2980 group_info = rcu_dereference(sbi->s_group_info); 2981 for (i = 0; i < num_meta_group_infos; i++) 2982 kfree(group_info[i]); 2983 kvfree(group_info); 2984 rcu_read_unlock(); 2985 } 2986 kfree(sbi->s_mb_offsets); 2987 kfree(sbi->s_mb_maxs); 2988 iput(sbi->s_buddy_cache); 2989 if (sbi->s_mb_stats) { 2990 ext4_msg(sb, KERN_INFO, 2991 "mballoc: %u blocks %u reqs (%u success)", 2992 atomic_read(&sbi->s_bal_allocated), 2993 atomic_read(&sbi->s_bal_reqs), 2994 atomic_read(&sbi->s_bal_success)); 2995 ext4_msg(sb, KERN_INFO, 2996 "mballoc: %u extents scanned, %u goal hits, " 2997 "%u 2^N hits, %u breaks, %u lost", 2998 atomic_read(&sbi->s_bal_ex_scanned), 2999 atomic_read(&sbi->s_bal_goals), 3000 atomic_read(&sbi->s_bal_2orders), 3001 atomic_read(&sbi->s_bal_breaks), 3002 atomic_read(&sbi->s_mb_lost_chunks)); 3003 ext4_msg(sb, KERN_INFO, 3004 "mballoc: %lu generated and it took %Lu", 3005 sbi->s_mb_buddies_generated, 3006 sbi->s_mb_generation_time); 3007 ext4_msg(sb, KERN_INFO, 3008 "mballoc: %u preallocated, %u discarded", 3009 atomic_read(&sbi->s_mb_preallocated), 3010 atomic_read(&sbi->s_mb_discarded)); 3011 } 3012 3013 free_percpu(sbi->s_locality_groups); 3014 3015 return 0; 3016 } 3017 3018 static inline int ext4_issue_discard(struct super_block *sb, 3019 ext4_group_t block_group, ext4_grpblk_t cluster, int count, 3020 struct bio **biop) 3021 { 3022 ext4_fsblk_t discard_block; 3023 3024 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 3025 ext4_group_first_block_no(sb, block_group)); 3026 count = EXT4_C2B(EXT4_SB(sb), count); 3027 trace_ext4_discard_blocks(sb, 3028 (unsigned long long) discard_block, count); 3029 if (biop) { 3030 return __blkdev_issue_discard(sb->s_bdev, 3031 (sector_t)discard_block << (sb->s_blocksize_bits - 9), 3032 (sector_t)count << (sb->s_blocksize_bits - 9), 3033 GFP_NOFS, 0, biop); 3034 } else 3035 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 3036 } 3037 3038 static void ext4_free_data_in_buddy(struct super_block *sb, 3039 struct ext4_free_data *entry) 3040 { 3041 struct ext4_buddy e4b; 3042 struct ext4_group_info *db; 3043 int err, count = 0, count2 = 0; 3044 3045 mb_debug(sb, "gonna free %u blocks in group %u (0x%p):", 3046 entry->efd_count, entry->efd_group, entry); 3047 3048 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 3049 /* we expect to find existing buddy because it's pinned */ 3050 BUG_ON(err != 0); 3051 3052 spin_lock(&EXT4_SB(sb)->s_md_lock); 3053 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count; 3054 spin_unlock(&EXT4_SB(sb)->s_md_lock); 3055 3056 db = e4b.bd_info; 3057 /* there are blocks to put in buddy to make them really free */ 3058 count += entry->efd_count; 3059 count2++; 3060 ext4_lock_group(sb, entry->efd_group); 3061 /* Take it out of per group rb tree */ 3062 rb_erase(&entry->efd_node, &(db->bb_free_root)); 3063 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 3064 3065 /* 3066 * Clear the trimmed flag for the group so that the next 3067 * ext4_trim_fs can trim it. 3068 * If the volume is mounted with -o discard, online discard 3069 * is supported and the free blocks will be trimmed online. 3070 */ 3071 if (!test_opt(sb, DISCARD)) 3072 EXT4_MB_GRP_CLEAR_TRIMMED(db); 3073 3074 if (!db->bb_free_root.rb_node) { 3075 /* No more items in the per group rb tree 3076 * balance refcounts from ext4_mb_free_metadata() 3077 */ 3078 put_page(e4b.bd_buddy_page); 3079 put_page(e4b.bd_bitmap_page); 3080 } 3081 ext4_unlock_group(sb, entry->efd_group); 3082 kmem_cache_free(ext4_free_data_cachep, entry); 3083 ext4_mb_unload_buddy(&e4b); 3084 3085 mb_debug(sb, "freed %d blocks in %d structures\n", count, 3086 count2); 3087 } 3088 3089 /* 3090 * This function is called by the jbd2 layer once the commit has finished, 3091 * so we know we can free the blocks that were released with that commit. 3092 */ 3093 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid) 3094 { 3095 struct ext4_sb_info *sbi = EXT4_SB(sb); 3096 struct ext4_free_data *entry, *tmp; 3097 struct bio *discard_bio = NULL; 3098 struct list_head freed_data_list; 3099 struct list_head *cut_pos = NULL; 3100 int err; 3101 3102 INIT_LIST_HEAD(&freed_data_list); 3103 3104 spin_lock(&sbi->s_md_lock); 3105 list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) { 3106 if (entry->efd_tid != commit_tid) 3107 break; 3108 cut_pos = &entry->efd_list; 3109 } 3110 if (cut_pos) 3111 list_cut_position(&freed_data_list, &sbi->s_freed_data_list, 3112 cut_pos); 3113 spin_unlock(&sbi->s_md_lock); 3114 3115 if (test_opt(sb, DISCARD)) { 3116 list_for_each_entry(entry, &freed_data_list, efd_list) { 3117 err = ext4_issue_discard(sb, entry->efd_group, 3118 entry->efd_start_cluster, 3119 entry->efd_count, 3120 &discard_bio); 3121 if (err && err != -EOPNOTSUPP) { 3122 ext4_msg(sb, KERN_WARNING, "discard request in" 3123 " group:%d block:%d count:%d failed" 3124 " with %d", entry->efd_group, 3125 entry->efd_start_cluster, 3126 entry->efd_count, err); 3127 } else if (err == -EOPNOTSUPP) 3128 break; 3129 } 3130 3131 if (discard_bio) { 3132 submit_bio_wait(discard_bio); 3133 bio_put(discard_bio); 3134 } 3135 } 3136 3137 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list) 3138 ext4_free_data_in_buddy(sb, entry); 3139 } 3140 3141 int __init ext4_init_mballoc(void) 3142 { 3143 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 3144 SLAB_RECLAIM_ACCOUNT); 3145 if (ext4_pspace_cachep == NULL) 3146 goto out; 3147 3148 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 3149 SLAB_RECLAIM_ACCOUNT); 3150 if (ext4_ac_cachep == NULL) 3151 goto out_pa_free; 3152 3153 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 3154 SLAB_RECLAIM_ACCOUNT); 3155 if (ext4_free_data_cachep == NULL) 3156 goto out_ac_free; 3157 3158 return 0; 3159 3160 out_ac_free: 3161 kmem_cache_destroy(ext4_ac_cachep); 3162 out_pa_free: 3163 kmem_cache_destroy(ext4_pspace_cachep); 3164 out: 3165 return -ENOMEM; 3166 } 3167 3168 void ext4_exit_mballoc(void) 3169 { 3170 /* 3171 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 3172 * before destroying the slab cache. 3173 */ 3174 rcu_barrier(); 3175 kmem_cache_destroy(ext4_pspace_cachep); 3176 kmem_cache_destroy(ext4_ac_cachep); 3177 kmem_cache_destroy(ext4_free_data_cachep); 3178 ext4_groupinfo_destroy_slabs(); 3179 } 3180 3181 3182 /* 3183 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 3184 * Returns 0 if success or error code 3185 */ 3186 static noinline_for_stack int 3187 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 3188 handle_t *handle, unsigned int reserv_clstrs) 3189 { 3190 struct buffer_head *bitmap_bh = NULL; 3191 struct ext4_group_desc *gdp; 3192 struct buffer_head *gdp_bh; 3193 struct ext4_sb_info *sbi; 3194 struct super_block *sb; 3195 ext4_fsblk_t block; 3196 int err, len; 3197 3198 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3199 BUG_ON(ac->ac_b_ex.fe_len <= 0); 3200 3201 sb = ac->ac_sb; 3202 sbi = EXT4_SB(sb); 3203 3204 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 3205 if (IS_ERR(bitmap_bh)) { 3206 err = PTR_ERR(bitmap_bh); 3207 bitmap_bh = NULL; 3208 goto out_err; 3209 } 3210 3211 BUFFER_TRACE(bitmap_bh, "getting write access"); 3212 err = ext4_journal_get_write_access(handle, bitmap_bh); 3213 if (err) 3214 goto out_err; 3215 3216 err = -EIO; 3217 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 3218 if (!gdp) 3219 goto out_err; 3220 3221 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 3222 ext4_free_group_clusters(sb, gdp)); 3223 3224 BUFFER_TRACE(gdp_bh, "get_write_access"); 3225 err = ext4_journal_get_write_access(handle, gdp_bh); 3226 if (err) 3227 goto out_err; 3228 3229 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3230 3231 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3232 if (!ext4_inode_block_valid(ac->ac_inode, block, len)) { 3233 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 3234 "fs metadata", block, block+len); 3235 /* File system mounted not to panic on error 3236 * Fix the bitmap and return EFSCORRUPTED 3237 * We leak some of the blocks here. 3238 */ 3239 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3240 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3241 ac->ac_b_ex.fe_len); 3242 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3243 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3244 if (!err) 3245 err = -EFSCORRUPTED; 3246 goto out_err; 3247 } 3248 3249 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3250 #ifdef AGGRESSIVE_CHECK 3251 { 3252 int i; 3253 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 3254 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 3255 bitmap_bh->b_data)); 3256 } 3257 } 3258 #endif 3259 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 3260 ac->ac_b_ex.fe_len); 3261 if (ext4_has_group_desc_csum(sb) && 3262 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3263 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3264 ext4_free_group_clusters_set(sb, gdp, 3265 ext4_free_clusters_after_init(sb, 3266 ac->ac_b_ex.fe_group, gdp)); 3267 } 3268 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 3269 ext4_free_group_clusters_set(sb, gdp, len); 3270 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 3271 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 3272 3273 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3274 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 3275 /* 3276 * Now reduce the dirty block count also. Should not go negative 3277 */ 3278 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 3279 /* release all the reserved blocks if non delalloc */ 3280 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 3281 reserv_clstrs); 3282 3283 if (sbi->s_log_groups_per_flex) { 3284 ext4_group_t flex_group = ext4_flex_group(sbi, 3285 ac->ac_b_ex.fe_group); 3286 atomic64_sub(ac->ac_b_ex.fe_len, 3287 &sbi_array_rcu_deref(sbi, s_flex_groups, 3288 flex_group)->free_clusters); 3289 } 3290 3291 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 3292 if (err) 3293 goto out_err; 3294 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 3295 3296 out_err: 3297 brelse(bitmap_bh); 3298 return err; 3299 } 3300 3301 /* 3302 * Idempotent helper for Ext4 fast commit replay path to set the state of 3303 * blocks in bitmaps and update counters. 3304 */ 3305 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block, 3306 int len, int state) 3307 { 3308 struct buffer_head *bitmap_bh = NULL; 3309 struct ext4_group_desc *gdp; 3310 struct buffer_head *gdp_bh; 3311 struct ext4_sb_info *sbi = EXT4_SB(sb); 3312 ext4_group_t group; 3313 ext4_grpblk_t blkoff; 3314 int i, clen, err; 3315 int already; 3316 3317 clen = EXT4_B2C(sbi, len); 3318 3319 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 3320 bitmap_bh = ext4_read_block_bitmap(sb, group); 3321 if (IS_ERR(bitmap_bh)) { 3322 err = PTR_ERR(bitmap_bh); 3323 bitmap_bh = NULL; 3324 goto out_err; 3325 } 3326 3327 err = -EIO; 3328 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 3329 if (!gdp) 3330 goto out_err; 3331 3332 ext4_lock_group(sb, group); 3333 already = 0; 3334 for (i = 0; i < clen; i++) 3335 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) == !state) 3336 already++; 3337 3338 if (state) 3339 ext4_set_bits(bitmap_bh->b_data, blkoff, clen); 3340 else 3341 mb_test_and_clear_bits(bitmap_bh->b_data, blkoff, clen); 3342 if (ext4_has_group_desc_csum(sb) && 3343 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) { 3344 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 3345 ext4_free_group_clusters_set(sb, gdp, 3346 ext4_free_clusters_after_init(sb, 3347 group, gdp)); 3348 } 3349 if (state) 3350 clen = ext4_free_group_clusters(sb, gdp) - clen + already; 3351 else 3352 clen = ext4_free_group_clusters(sb, gdp) + clen - already; 3353 3354 ext4_free_group_clusters_set(sb, gdp, clen); 3355 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh); 3356 ext4_group_desc_csum_set(sb, group, gdp); 3357 3358 ext4_unlock_group(sb, group); 3359 3360 if (sbi->s_log_groups_per_flex) { 3361 ext4_group_t flex_group = ext4_flex_group(sbi, group); 3362 3363 atomic64_sub(len, 3364 &sbi_array_rcu_deref(sbi, s_flex_groups, 3365 flex_group)->free_clusters); 3366 } 3367 3368 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 3369 if (err) 3370 goto out_err; 3371 sync_dirty_buffer(bitmap_bh); 3372 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 3373 sync_dirty_buffer(gdp_bh); 3374 3375 out_err: 3376 brelse(bitmap_bh); 3377 } 3378 3379 /* 3380 * here we normalize request for locality group 3381 * Group request are normalized to s_mb_group_prealloc, which goes to 3382 * s_strip if we set the same via mount option. 3383 * s_mb_group_prealloc can be configured via 3384 * /sys/fs/ext4/<partition>/mb_group_prealloc 3385 * 3386 * XXX: should we try to preallocate more than the group has now? 3387 */ 3388 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 3389 { 3390 struct super_block *sb = ac->ac_sb; 3391 struct ext4_locality_group *lg = ac->ac_lg; 3392 3393 BUG_ON(lg == NULL); 3394 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 3395 mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len); 3396 } 3397 3398 /* 3399 * Normalization means making request better in terms of 3400 * size and alignment 3401 */ 3402 static noinline_for_stack void 3403 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 3404 struct ext4_allocation_request *ar) 3405 { 3406 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3407 int bsbits, max; 3408 ext4_lblk_t end; 3409 loff_t size, start_off; 3410 loff_t orig_size __maybe_unused; 3411 ext4_lblk_t start; 3412 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3413 struct ext4_prealloc_space *pa; 3414 3415 /* do normalize only data requests, metadata requests 3416 do not need preallocation */ 3417 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3418 return; 3419 3420 /* sometime caller may want exact blocks */ 3421 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3422 return; 3423 3424 /* caller may indicate that preallocation isn't 3425 * required (it's a tail, for example) */ 3426 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 3427 return; 3428 3429 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 3430 ext4_mb_normalize_group_request(ac); 3431 return ; 3432 } 3433 3434 bsbits = ac->ac_sb->s_blocksize_bits; 3435 3436 /* first, let's learn actual file size 3437 * given current request is allocated */ 3438 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3439 size = size << bsbits; 3440 if (size < i_size_read(ac->ac_inode)) 3441 size = i_size_read(ac->ac_inode); 3442 orig_size = size; 3443 3444 /* max size of free chunks */ 3445 max = 2 << bsbits; 3446 3447 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 3448 (req <= (size) || max <= (chunk_size)) 3449 3450 /* first, try to predict filesize */ 3451 /* XXX: should this table be tunable? */ 3452 start_off = 0; 3453 if (size <= 16 * 1024) { 3454 size = 16 * 1024; 3455 } else if (size <= 32 * 1024) { 3456 size = 32 * 1024; 3457 } else if (size <= 64 * 1024) { 3458 size = 64 * 1024; 3459 } else if (size <= 128 * 1024) { 3460 size = 128 * 1024; 3461 } else if (size <= 256 * 1024) { 3462 size = 256 * 1024; 3463 } else if (size <= 512 * 1024) { 3464 size = 512 * 1024; 3465 } else if (size <= 1024 * 1024) { 3466 size = 1024 * 1024; 3467 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 3468 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3469 (21 - bsbits)) << 21; 3470 size = 2 * 1024 * 1024; 3471 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 3472 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3473 (22 - bsbits)) << 22; 3474 size = 4 * 1024 * 1024; 3475 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 3476 (8<<20)>>bsbits, max, 8 * 1024)) { 3477 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 3478 (23 - bsbits)) << 23; 3479 size = 8 * 1024 * 1024; 3480 } else { 3481 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits; 3482 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb), 3483 ac->ac_o_ex.fe_len) << bsbits; 3484 } 3485 size = size >> bsbits; 3486 start = start_off >> bsbits; 3487 3488 /* don't cover already allocated blocks in selected range */ 3489 if (ar->pleft && start <= ar->lleft) { 3490 size -= ar->lleft + 1 - start; 3491 start = ar->lleft + 1; 3492 } 3493 if (ar->pright && start + size - 1 >= ar->lright) 3494 size -= start + size - ar->lright; 3495 3496 /* 3497 * Trim allocation request for filesystems with artificially small 3498 * groups. 3499 */ 3500 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)) 3501 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb); 3502 3503 end = start + size; 3504 3505 /* check we don't cross already preallocated blocks */ 3506 rcu_read_lock(); 3507 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3508 ext4_lblk_t pa_end; 3509 3510 if (pa->pa_deleted) 3511 continue; 3512 spin_lock(&pa->pa_lock); 3513 if (pa->pa_deleted) { 3514 spin_unlock(&pa->pa_lock); 3515 continue; 3516 } 3517 3518 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3519 pa->pa_len); 3520 3521 /* PA must not overlap original request */ 3522 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 3523 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 3524 3525 /* skip PAs this normalized request doesn't overlap with */ 3526 if (pa->pa_lstart >= end || pa_end <= start) { 3527 spin_unlock(&pa->pa_lock); 3528 continue; 3529 } 3530 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 3531 3532 /* adjust start or end to be adjacent to this pa */ 3533 if (pa_end <= ac->ac_o_ex.fe_logical) { 3534 BUG_ON(pa_end < start); 3535 start = pa_end; 3536 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 3537 BUG_ON(pa->pa_lstart > end); 3538 end = pa->pa_lstart; 3539 } 3540 spin_unlock(&pa->pa_lock); 3541 } 3542 rcu_read_unlock(); 3543 size = end - start; 3544 3545 /* XXX: extra loop to check we really don't overlap preallocations */ 3546 rcu_read_lock(); 3547 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3548 ext4_lblk_t pa_end; 3549 3550 spin_lock(&pa->pa_lock); 3551 if (pa->pa_deleted == 0) { 3552 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3553 pa->pa_len); 3554 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3555 } 3556 spin_unlock(&pa->pa_lock); 3557 } 3558 rcu_read_unlock(); 3559 3560 if (start + size <= ac->ac_o_ex.fe_logical && 3561 start > ac->ac_o_ex.fe_logical) { 3562 ext4_msg(ac->ac_sb, KERN_ERR, 3563 "start %lu, size %lu, fe_logical %lu", 3564 (unsigned long) start, (unsigned long) size, 3565 (unsigned long) ac->ac_o_ex.fe_logical); 3566 BUG(); 3567 } 3568 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb)); 3569 3570 /* now prepare goal request */ 3571 3572 /* XXX: is it better to align blocks WRT to logical 3573 * placement or satisfy big request as is */ 3574 ac->ac_g_ex.fe_logical = start; 3575 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3576 3577 /* define goal start in order to merge */ 3578 if (ar->pright && (ar->lright == (start + size))) { 3579 /* merge to the right */ 3580 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3581 &ac->ac_f_ex.fe_group, 3582 &ac->ac_f_ex.fe_start); 3583 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3584 } 3585 if (ar->pleft && (ar->lleft + 1 == start)) { 3586 /* merge to the left */ 3587 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3588 &ac->ac_f_ex.fe_group, 3589 &ac->ac_f_ex.fe_start); 3590 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3591 } 3592 3593 mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size, 3594 orig_size, start); 3595 } 3596 3597 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3598 { 3599 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3600 3601 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3602 atomic_inc(&sbi->s_bal_reqs); 3603 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3604 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3605 atomic_inc(&sbi->s_bal_success); 3606 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3607 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3608 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3609 atomic_inc(&sbi->s_bal_goals); 3610 if (ac->ac_found > sbi->s_mb_max_to_scan) 3611 atomic_inc(&sbi->s_bal_breaks); 3612 } 3613 3614 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3615 trace_ext4_mballoc_alloc(ac); 3616 else 3617 trace_ext4_mballoc_prealloc(ac); 3618 } 3619 3620 /* 3621 * Called on failure; free up any blocks from the inode PA for this 3622 * context. We don't need this for MB_GROUP_PA because we only change 3623 * pa_free in ext4_mb_release_context(), but on failure, we've already 3624 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3625 */ 3626 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3627 { 3628 struct ext4_prealloc_space *pa = ac->ac_pa; 3629 struct ext4_buddy e4b; 3630 int err; 3631 3632 if (pa == NULL) { 3633 if (ac->ac_f_ex.fe_len == 0) 3634 return; 3635 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b); 3636 if (err) { 3637 /* 3638 * This should never happen since we pin the 3639 * pages in the ext4_allocation_context so 3640 * ext4_mb_load_buddy() should never fail. 3641 */ 3642 WARN(1, "mb_load_buddy failed (%d)", err); 3643 return; 3644 } 3645 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3646 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start, 3647 ac->ac_f_ex.fe_len); 3648 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group); 3649 ext4_mb_unload_buddy(&e4b); 3650 return; 3651 } 3652 if (pa->pa_type == MB_INODE_PA) 3653 pa->pa_free += ac->ac_b_ex.fe_len; 3654 } 3655 3656 /* 3657 * use blocks preallocated to inode 3658 */ 3659 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3660 struct ext4_prealloc_space *pa) 3661 { 3662 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3663 ext4_fsblk_t start; 3664 ext4_fsblk_t end; 3665 int len; 3666 3667 /* found preallocated blocks, use them */ 3668 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3669 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3670 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3671 len = EXT4_NUM_B2C(sbi, end - start); 3672 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3673 &ac->ac_b_ex.fe_start); 3674 ac->ac_b_ex.fe_len = len; 3675 ac->ac_status = AC_STATUS_FOUND; 3676 ac->ac_pa = pa; 3677 3678 BUG_ON(start < pa->pa_pstart); 3679 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3680 BUG_ON(pa->pa_free < len); 3681 pa->pa_free -= len; 3682 3683 mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa); 3684 } 3685 3686 /* 3687 * use blocks preallocated to locality group 3688 */ 3689 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3690 struct ext4_prealloc_space *pa) 3691 { 3692 unsigned int len = ac->ac_o_ex.fe_len; 3693 3694 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3695 &ac->ac_b_ex.fe_group, 3696 &ac->ac_b_ex.fe_start); 3697 ac->ac_b_ex.fe_len = len; 3698 ac->ac_status = AC_STATUS_FOUND; 3699 ac->ac_pa = pa; 3700 3701 /* we don't correct pa_pstart or pa_plen here to avoid 3702 * possible race when the group is being loaded concurrently 3703 * instead we correct pa later, after blocks are marked 3704 * in on-disk bitmap -- see ext4_mb_release_context() 3705 * Other CPUs are prevented from allocating from this pa by lg_mutex 3706 */ 3707 mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n", 3708 pa->pa_lstart-len, len, pa); 3709 } 3710 3711 /* 3712 * Return the prealloc space that have minimal distance 3713 * from the goal block. @cpa is the prealloc 3714 * space that is having currently known minimal distance 3715 * from the goal block. 3716 */ 3717 static struct ext4_prealloc_space * 3718 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3719 struct ext4_prealloc_space *pa, 3720 struct ext4_prealloc_space *cpa) 3721 { 3722 ext4_fsblk_t cur_distance, new_distance; 3723 3724 if (cpa == NULL) { 3725 atomic_inc(&pa->pa_count); 3726 return pa; 3727 } 3728 cur_distance = abs(goal_block - cpa->pa_pstart); 3729 new_distance = abs(goal_block - pa->pa_pstart); 3730 3731 if (cur_distance <= new_distance) 3732 return cpa; 3733 3734 /* drop the previous reference */ 3735 atomic_dec(&cpa->pa_count); 3736 atomic_inc(&pa->pa_count); 3737 return pa; 3738 } 3739 3740 /* 3741 * search goal blocks in preallocated space 3742 */ 3743 static noinline_for_stack bool 3744 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3745 { 3746 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3747 int order, i; 3748 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3749 struct ext4_locality_group *lg; 3750 struct ext4_prealloc_space *pa, *cpa = NULL; 3751 ext4_fsblk_t goal_block; 3752 3753 /* only data can be preallocated */ 3754 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3755 return false; 3756 3757 /* first, try per-file preallocation */ 3758 rcu_read_lock(); 3759 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3760 3761 /* all fields in this condition don't change, 3762 * so we can skip locking for them */ 3763 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3764 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3765 EXT4_C2B(sbi, pa->pa_len))) 3766 continue; 3767 3768 /* non-extent files can't have physical blocks past 2^32 */ 3769 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3770 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3771 EXT4_MAX_BLOCK_FILE_PHYS)) 3772 continue; 3773 3774 /* found preallocated blocks, use them */ 3775 spin_lock(&pa->pa_lock); 3776 if (pa->pa_deleted == 0 && pa->pa_free) { 3777 atomic_inc(&pa->pa_count); 3778 ext4_mb_use_inode_pa(ac, pa); 3779 spin_unlock(&pa->pa_lock); 3780 ac->ac_criteria = 10; 3781 rcu_read_unlock(); 3782 return true; 3783 } 3784 spin_unlock(&pa->pa_lock); 3785 } 3786 rcu_read_unlock(); 3787 3788 /* can we use group allocation? */ 3789 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3790 return false; 3791 3792 /* inode may have no locality group for some reason */ 3793 lg = ac->ac_lg; 3794 if (lg == NULL) 3795 return false; 3796 order = fls(ac->ac_o_ex.fe_len) - 1; 3797 if (order > PREALLOC_TB_SIZE - 1) 3798 /* The max size of hash table is PREALLOC_TB_SIZE */ 3799 order = PREALLOC_TB_SIZE - 1; 3800 3801 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3802 /* 3803 * search for the prealloc space that is having 3804 * minimal distance from the goal block. 3805 */ 3806 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3807 rcu_read_lock(); 3808 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3809 pa_inode_list) { 3810 spin_lock(&pa->pa_lock); 3811 if (pa->pa_deleted == 0 && 3812 pa->pa_free >= ac->ac_o_ex.fe_len) { 3813 3814 cpa = ext4_mb_check_group_pa(goal_block, 3815 pa, cpa); 3816 } 3817 spin_unlock(&pa->pa_lock); 3818 } 3819 rcu_read_unlock(); 3820 } 3821 if (cpa) { 3822 ext4_mb_use_group_pa(ac, cpa); 3823 ac->ac_criteria = 20; 3824 return true; 3825 } 3826 return false; 3827 } 3828 3829 /* 3830 * the function goes through all block freed in the group 3831 * but not yet committed and marks them used in in-core bitmap. 3832 * buddy must be generated from this bitmap 3833 * Need to be called with the ext4 group lock held 3834 */ 3835 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3836 ext4_group_t group) 3837 { 3838 struct rb_node *n; 3839 struct ext4_group_info *grp; 3840 struct ext4_free_data *entry; 3841 3842 grp = ext4_get_group_info(sb, group); 3843 n = rb_first(&(grp->bb_free_root)); 3844 3845 while (n) { 3846 entry = rb_entry(n, struct ext4_free_data, efd_node); 3847 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3848 n = rb_next(n); 3849 } 3850 return; 3851 } 3852 3853 /* 3854 * the function goes through all preallocation in this group and marks them 3855 * used in in-core bitmap. buddy must be generated from this bitmap 3856 * Need to be called with ext4 group lock held 3857 */ 3858 static noinline_for_stack 3859 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3860 ext4_group_t group) 3861 { 3862 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3863 struct ext4_prealloc_space *pa; 3864 struct list_head *cur; 3865 ext4_group_t groupnr; 3866 ext4_grpblk_t start; 3867 int preallocated = 0; 3868 int len; 3869 3870 /* all form of preallocation discards first load group, 3871 * so the only competing code is preallocation use. 3872 * we don't need any locking here 3873 * notice we do NOT ignore preallocations with pa_deleted 3874 * otherwise we could leave used blocks available for 3875 * allocation in buddy when concurrent ext4_mb_put_pa() 3876 * is dropping preallocation 3877 */ 3878 list_for_each(cur, &grp->bb_prealloc_list) { 3879 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3880 spin_lock(&pa->pa_lock); 3881 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3882 &groupnr, &start); 3883 len = pa->pa_len; 3884 spin_unlock(&pa->pa_lock); 3885 if (unlikely(len == 0)) 3886 continue; 3887 BUG_ON(groupnr != group); 3888 ext4_set_bits(bitmap, start, len); 3889 preallocated += len; 3890 } 3891 mb_debug(sb, "preallocated %d for group %u\n", preallocated, group); 3892 } 3893 3894 static void ext4_mb_mark_pa_deleted(struct super_block *sb, 3895 struct ext4_prealloc_space *pa) 3896 { 3897 struct ext4_inode_info *ei; 3898 3899 if (pa->pa_deleted) { 3900 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n", 3901 pa->pa_type, pa->pa_pstart, pa->pa_lstart, 3902 pa->pa_len); 3903 return; 3904 } 3905 3906 pa->pa_deleted = 1; 3907 3908 if (pa->pa_type == MB_INODE_PA) { 3909 ei = EXT4_I(pa->pa_inode); 3910 atomic_dec(&ei->i_prealloc_active); 3911 } 3912 } 3913 3914 static void ext4_mb_pa_callback(struct rcu_head *head) 3915 { 3916 struct ext4_prealloc_space *pa; 3917 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3918 3919 BUG_ON(atomic_read(&pa->pa_count)); 3920 BUG_ON(pa->pa_deleted == 0); 3921 kmem_cache_free(ext4_pspace_cachep, pa); 3922 } 3923 3924 /* 3925 * drops a reference to preallocated space descriptor 3926 * if this was the last reference and the space is consumed 3927 */ 3928 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3929 struct super_block *sb, struct ext4_prealloc_space *pa) 3930 { 3931 ext4_group_t grp; 3932 ext4_fsblk_t grp_blk; 3933 3934 /* in this short window concurrent discard can set pa_deleted */ 3935 spin_lock(&pa->pa_lock); 3936 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) { 3937 spin_unlock(&pa->pa_lock); 3938 return; 3939 } 3940 3941 if (pa->pa_deleted == 1) { 3942 spin_unlock(&pa->pa_lock); 3943 return; 3944 } 3945 3946 ext4_mb_mark_pa_deleted(sb, pa); 3947 spin_unlock(&pa->pa_lock); 3948 3949 grp_blk = pa->pa_pstart; 3950 /* 3951 * If doing group-based preallocation, pa_pstart may be in the 3952 * next group when pa is used up 3953 */ 3954 if (pa->pa_type == MB_GROUP_PA) 3955 grp_blk--; 3956 3957 grp = ext4_get_group_number(sb, grp_blk); 3958 3959 /* 3960 * possible race: 3961 * 3962 * P1 (buddy init) P2 (regular allocation) 3963 * find block B in PA 3964 * copy on-disk bitmap to buddy 3965 * mark B in on-disk bitmap 3966 * drop PA from group 3967 * mark all PAs in buddy 3968 * 3969 * thus, P1 initializes buddy with B available. to prevent this 3970 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3971 * against that pair 3972 */ 3973 ext4_lock_group(sb, grp); 3974 list_del(&pa->pa_group_list); 3975 ext4_unlock_group(sb, grp); 3976 3977 spin_lock(pa->pa_obj_lock); 3978 list_del_rcu(&pa->pa_inode_list); 3979 spin_unlock(pa->pa_obj_lock); 3980 3981 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3982 } 3983 3984 /* 3985 * creates new preallocated space for given inode 3986 */ 3987 static noinline_for_stack void 3988 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3989 { 3990 struct super_block *sb = ac->ac_sb; 3991 struct ext4_sb_info *sbi = EXT4_SB(sb); 3992 struct ext4_prealloc_space *pa; 3993 struct ext4_group_info *grp; 3994 struct ext4_inode_info *ei; 3995 3996 /* preallocate only when found space is larger then requested */ 3997 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3998 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3999 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 4000 BUG_ON(ac->ac_pa == NULL); 4001 4002 pa = ac->ac_pa; 4003 4004 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 4005 int winl; 4006 int wins; 4007 int win; 4008 int offs; 4009 4010 /* we can't allocate as much as normalizer wants. 4011 * so, found space must get proper lstart 4012 * to cover original request */ 4013 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 4014 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 4015 4016 /* we're limited by original request in that 4017 * logical block must be covered any way 4018 * winl is window we can move our chunk within */ 4019 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 4020 4021 /* also, we should cover whole original request */ 4022 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 4023 4024 /* the smallest one defines real window */ 4025 win = min(winl, wins); 4026 4027 offs = ac->ac_o_ex.fe_logical % 4028 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4029 if (offs && offs < win) 4030 win = offs; 4031 4032 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 4033 EXT4_NUM_B2C(sbi, win); 4034 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 4035 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 4036 } 4037 4038 /* preallocation can change ac_b_ex, thus we store actually 4039 * allocated blocks for history */ 4040 ac->ac_f_ex = ac->ac_b_ex; 4041 4042 pa->pa_lstart = ac->ac_b_ex.fe_logical; 4043 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4044 pa->pa_len = ac->ac_b_ex.fe_len; 4045 pa->pa_free = pa->pa_len; 4046 spin_lock_init(&pa->pa_lock); 4047 INIT_LIST_HEAD(&pa->pa_inode_list); 4048 INIT_LIST_HEAD(&pa->pa_group_list); 4049 pa->pa_deleted = 0; 4050 pa->pa_type = MB_INODE_PA; 4051 4052 mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 4053 pa->pa_len, pa->pa_lstart); 4054 trace_ext4_mb_new_inode_pa(ac, pa); 4055 4056 ext4_mb_use_inode_pa(ac, pa); 4057 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 4058 4059 ei = EXT4_I(ac->ac_inode); 4060 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 4061 4062 pa->pa_obj_lock = &ei->i_prealloc_lock; 4063 pa->pa_inode = ac->ac_inode; 4064 4065 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 4066 4067 spin_lock(pa->pa_obj_lock); 4068 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 4069 spin_unlock(pa->pa_obj_lock); 4070 atomic_inc(&ei->i_prealloc_active); 4071 } 4072 4073 /* 4074 * creates new preallocated space for locality group inodes belongs to 4075 */ 4076 static noinline_for_stack void 4077 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 4078 { 4079 struct super_block *sb = ac->ac_sb; 4080 struct ext4_locality_group *lg; 4081 struct ext4_prealloc_space *pa; 4082 struct ext4_group_info *grp; 4083 4084 /* preallocate only when found space is larger then requested */ 4085 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 4086 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 4087 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 4088 BUG_ON(ac->ac_pa == NULL); 4089 4090 pa = ac->ac_pa; 4091 4092 /* preallocation can change ac_b_ex, thus we store actually 4093 * allocated blocks for history */ 4094 ac->ac_f_ex = ac->ac_b_ex; 4095 4096 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4097 pa->pa_lstart = pa->pa_pstart; 4098 pa->pa_len = ac->ac_b_ex.fe_len; 4099 pa->pa_free = pa->pa_len; 4100 spin_lock_init(&pa->pa_lock); 4101 INIT_LIST_HEAD(&pa->pa_inode_list); 4102 INIT_LIST_HEAD(&pa->pa_group_list); 4103 pa->pa_deleted = 0; 4104 pa->pa_type = MB_GROUP_PA; 4105 4106 mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart, 4107 pa->pa_len, pa->pa_lstart); 4108 trace_ext4_mb_new_group_pa(ac, pa); 4109 4110 ext4_mb_use_group_pa(ac, pa); 4111 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 4112 4113 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 4114 lg = ac->ac_lg; 4115 BUG_ON(lg == NULL); 4116 4117 pa->pa_obj_lock = &lg->lg_prealloc_lock; 4118 pa->pa_inode = NULL; 4119 4120 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 4121 4122 /* 4123 * We will later add the new pa to the right bucket 4124 * after updating the pa_free in ext4_mb_release_context 4125 */ 4126 } 4127 4128 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 4129 { 4130 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4131 ext4_mb_new_group_pa(ac); 4132 else 4133 ext4_mb_new_inode_pa(ac); 4134 } 4135 4136 /* 4137 * finds all unused blocks in on-disk bitmap, frees them in 4138 * in-core bitmap and buddy. 4139 * @pa must be unlinked from inode and group lists, so that 4140 * nobody else can find/use it. 4141 * the caller MUST hold group/inode locks. 4142 * TODO: optimize the case when there are no in-core structures yet 4143 */ 4144 static noinline_for_stack int 4145 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 4146 struct ext4_prealloc_space *pa) 4147 { 4148 struct super_block *sb = e4b->bd_sb; 4149 struct ext4_sb_info *sbi = EXT4_SB(sb); 4150 unsigned int end; 4151 unsigned int next; 4152 ext4_group_t group; 4153 ext4_grpblk_t bit; 4154 unsigned long long grp_blk_start; 4155 int free = 0; 4156 4157 BUG_ON(pa->pa_deleted == 0); 4158 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 4159 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 4160 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 4161 end = bit + pa->pa_len; 4162 4163 while (bit < end) { 4164 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 4165 if (bit >= end) 4166 break; 4167 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 4168 mb_debug(sb, "free preallocated %u/%u in group %u\n", 4169 (unsigned) ext4_group_first_block_no(sb, group) + bit, 4170 (unsigned) next - bit, (unsigned) group); 4171 free += next - bit; 4172 4173 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 4174 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 4175 EXT4_C2B(sbi, bit)), 4176 next - bit); 4177 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 4178 bit = next + 1; 4179 } 4180 if (free != pa->pa_free) { 4181 ext4_msg(e4b->bd_sb, KERN_CRIT, 4182 "pa %p: logic %lu, phys. %lu, len %d", 4183 pa, (unsigned long) pa->pa_lstart, 4184 (unsigned long) pa->pa_pstart, 4185 pa->pa_len); 4186 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 4187 free, pa->pa_free); 4188 /* 4189 * pa is already deleted so we use the value obtained 4190 * from the bitmap and continue. 4191 */ 4192 } 4193 atomic_add(free, &sbi->s_mb_discarded); 4194 4195 return 0; 4196 } 4197 4198 static noinline_for_stack int 4199 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 4200 struct ext4_prealloc_space *pa) 4201 { 4202 struct super_block *sb = e4b->bd_sb; 4203 ext4_group_t group; 4204 ext4_grpblk_t bit; 4205 4206 trace_ext4_mb_release_group_pa(sb, pa); 4207 BUG_ON(pa->pa_deleted == 0); 4208 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 4209 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 4210 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 4211 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 4212 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 4213 4214 return 0; 4215 } 4216 4217 /* 4218 * releases all preallocations in given group 4219 * 4220 * first, we need to decide discard policy: 4221 * - when do we discard 4222 * 1) ENOSPC 4223 * - how many do we discard 4224 * 1) how many requested 4225 */ 4226 static noinline_for_stack int 4227 ext4_mb_discard_group_preallocations(struct super_block *sb, 4228 ext4_group_t group, int needed) 4229 { 4230 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 4231 struct buffer_head *bitmap_bh = NULL; 4232 struct ext4_prealloc_space *pa, *tmp; 4233 struct list_head list; 4234 struct ext4_buddy e4b; 4235 int err; 4236 int busy = 0; 4237 int free, free_total = 0; 4238 4239 mb_debug(sb, "discard preallocation for group %u\n", group); 4240 if (list_empty(&grp->bb_prealloc_list)) 4241 goto out_dbg; 4242 4243 bitmap_bh = ext4_read_block_bitmap(sb, group); 4244 if (IS_ERR(bitmap_bh)) { 4245 err = PTR_ERR(bitmap_bh); 4246 ext4_error_err(sb, -err, 4247 "Error %d reading block bitmap for %u", 4248 err, group); 4249 goto out_dbg; 4250 } 4251 4252 err = ext4_mb_load_buddy(sb, group, &e4b); 4253 if (err) { 4254 ext4_warning(sb, "Error %d loading buddy information for %u", 4255 err, group); 4256 put_bh(bitmap_bh); 4257 goto out_dbg; 4258 } 4259 4260 if (needed == 0) 4261 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 4262 4263 INIT_LIST_HEAD(&list); 4264 repeat: 4265 free = 0; 4266 ext4_lock_group(sb, group); 4267 list_for_each_entry_safe(pa, tmp, 4268 &grp->bb_prealloc_list, pa_group_list) { 4269 spin_lock(&pa->pa_lock); 4270 if (atomic_read(&pa->pa_count)) { 4271 spin_unlock(&pa->pa_lock); 4272 busy = 1; 4273 continue; 4274 } 4275 if (pa->pa_deleted) { 4276 spin_unlock(&pa->pa_lock); 4277 continue; 4278 } 4279 4280 /* seems this one can be freed ... */ 4281 ext4_mb_mark_pa_deleted(sb, pa); 4282 4283 if (!free) 4284 this_cpu_inc(discard_pa_seq); 4285 4286 /* we can trust pa_free ... */ 4287 free += pa->pa_free; 4288 4289 spin_unlock(&pa->pa_lock); 4290 4291 list_del(&pa->pa_group_list); 4292 list_add(&pa->u.pa_tmp_list, &list); 4293 } 4294 4295 /* now free all selected PAs */ 4296 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4297 4298 /* remove from object (inode or locality group) */ 4299 spin_lock(pa->pa_obj_lock); 4300 list_del_rcu(&pa->pa_inode_list); 4301 spin_unlock(pa->pa_obj_lock); 4302 4303 if (pa->pa_type == MB_GROUP_PA) 4304 ext4_mb_release_group_pa(&e4b, pa); 4305 else 4306 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4307 4308 list_del(&pa->u.pa_tmp_list); 4309 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4310 } 4311 4312 free_total += free; 4313 4314 /* if we still need more blocks and some PAs were used, try again */ 4315 if (free_total < needed && busy) { 4316 ext4_unlock_group(sb, group); 4317 cond_resched(); 4318 busy = 0; 4319 goto repeat; 4320 } 4321 ext4_unlock_group(sb, group); 4322 ext4_mb_unload_buddy(&e4b); 4323 put_bh(bitmap_bh); 4324 out_dbg: 4325 mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n", 4326 free_total, group, grp->bb_free); 4327 return free_total; 4328 } 4329 4330 /* 4331 * releases all non-used preallocated blocks for given inode 4332 * 4333 * It's important to discard preallocations under i_data_sem 4334 * We don't want another block to be served from the prealloc 4335 * space when we are discarding the inode prealloc space. 4336 * 4337 * FIXME!! Make sure it is valid at all the call sites 4338 */ 4339 void ext4_discard_preallocations(struct inode *inode, unsigned int needed) 4340 { 4341 struct ext4_inode_info *ei = EXT4_I(inode); 4342 struct super_block *sb = inode->i_sb; 4343 struct buffer_head *bitmap_bh = NULL; 4344 struct ext4_prealloc_space *pa, *tmp; 4345 ext4_group_t group = 0; 4346 struct list_head list; 4347 struct ext4_buddy e4b; 4348 int err; 4349 4350 if (!S_ISREG(inode->i_mode)) { 4351 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 4352 return; 4353 } 4354 4355 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) 4356 return; 4357 4358 mb_debug(sb, "discard preallocation for inode %lu\n", 4359 inode->i_ino); 4360 trace_ext4_discard_preallocations(inode, 4361 atomic_read(&ei->i_prealloc_active), needed); 4362 4363 INIT_LIST_HEAD(&list); 4364 4365 if (needed == 0) 4366 needed = UINT_MAX; 4367 4368 repeat: 4369 /* first, collect all pa's in the inode */ 4370 spin_lock(&ei->i_prealloc_lock); 4371 while (!list_empty(&ei->i_prealloc_list) && needed) { 4372 pa = list_entry(ei->i_prealloc_list.prev, 4373 struct ext4_prealloc_space, pa_inode_list); 4374 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 4375 spin_lock(&pa->pa_lock); 4376 if (atomic_read(&pa->pa_count)) { 4377 /* this shouldn't happen often - nobody should 4378 * use preallocation while we're discarding it */ 4379 spin_unlock(&pa->pa_lock); 4380 spin_unlock(&ei->i_prealloc_lock); 4381 ext4_msg(sb, KERN_ERR, 4382 "uh-oh! used pa while discarding"); 4383 WARN_ON(1); 4384 schedule_timeout_uninterruptible(HZ); 4385 goto repeat; 4386 4387 } 4388 if (pa->pa_deleted == 0) { 4389 ext4_mb_mark_pa_deleted(sb, pa); 4390 spin_unlock(&pa->pa_lock); 4391 list_del_rcu(&pa->pa_inode_list); 4392 list_add(&pa->u.pa_tmp_list, &list); 4393 needed--; 4394 continue; 4395 } 4396 4397 /* someone is deleting pa right now */ 4398 spin_unlock(&pa->pa_lock); 4399 spin_unlock(&ei->i_prealloc_lock); 4400 4401 /* we have to wait here because pa_deleted 4402 * doesn't mean pa is already unlinked from 4403 * the list. as we might be called from 4404 * ->clear_inode() the inode will get freed 4405 * and concurrent thread which is unlinking 4406 * pa from inode's list may access already 4407 * freed memory, bad-bad-bad */ 4408 4409 /* XXX: if this happens too often, we can 4410 * add a flag to force wait only in case 4411 * of ->clear_inode(), but not in case of 4412 * regular truncate */ 4413 schedule_timeout_uninterruptible(HZ); 4414 goto repeat; 4415 } 4416 spin_unlock(&ei->i_prealloc_lock); 4417 4418 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 4419 BUG_ON(pa->pa_type != MB_INODE_PA); 4420 group = ext4_get_group_number(sb, pa->pa_pstart); 4421 4422 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4423 GFP_NOFS|__GFP_NOFAIL); 4424 if (err) { 4425 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 4426 err, group); 4427 continue; 4428 } 4429 4430 bitmap_bh = ext4_read_block_bitmap(sb, group); 4431 if (IS_ERR(bitmap_bh)) { 4432 err = PTR_ERR(bitmap_bh); 4433 ext4_error_err(sb, -err, "Error %d reading block bitmap for %u", 4434 err, group); 4435 ext4_mb_unload_buddy(&e4b); 4436 continue; 4437 } 4438 4439 ext4_lock_group(sb, group); 4440 list_del(&pa->pa_group_list); 4441 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 4442 ext4_unlock_group(sb, group); 4443 4444 ext4_mb_unload_buddy(&e4b); 4445 put_bh(bitmap_bh); 4446 4447 list_del(&pa->u.pa_tmp_list); 4448 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4449 } 4450 } 4451 4452 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac) 4453 { 4454 struct ext4_prealloc_space *pa; 4455 4456 BUG_ON(ext4_pspace_cachep == NULL); 4457 pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS); 4458 if (!pa) 4459 return -ENOMEM; 4460 atomic_set(&pa->pa_count, 1); 4461 ac->ac_pa = pa; 4462 return 0; 4463 } 4464 4465 static void ext4_mb_pa_free(struct ext4_allocation_context *ac) 4466 { 4467 struct ext4_prealloc_space *pa = ac->ac_pa; 4468 4469 BUG_ON(!pa); 4470 ac->ac_pa = NULL; 4471 WARN_ON(!atomic_dec_and_test(&pa->pa_count)); 4472 kmem_cache_free(ext4_pspace_cachep, pa); 4473 } 4474 4475 #ifdef CONFIG_EXT4_DEBUG 4476 static inline void ext4_mb_show_pa(struct super_block *sb) 4477 { 4478 ext4_group_t i, ngroups; 4479 4480 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 4481 return; 4482 4483 ngroups = ext4_get_groups_count(sb); 4484 mb_debug(sb, "groups: "); 4485 for (i = 0; i < ngroups; i++) { 4486 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 4487 struct ext4_prealloc_space *pa; 4488 ext4_grpblk_t start; 4489 struct list_head *cur; 4490 ext4_lock_group(sb, i); 4491 list_for_each(cur, &grp->bb_prealloc_list) { 4492 pa = list_entry(cur, struct ext4_prealloc_space, 4493 pa_group_list); 4494 spin_lock(&pa->pa_lock); 4495 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 4496 NULL, &start); 4497 spin_unlock(&pa->pa_lock); 4498 mb_debug(sb, "PA:%u:%d:%d\n", i, start, 4499 pa->pa_len); 4500 } 4501 ext4_unlock_group(sb, i); 4502 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free, 4503 grp->bb_fragments); 4504 } 4505 } 4506 4507 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4508 { 4509 struct super_block *sb = ac->ac_sb; 4510 4511 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 4512 return; 4513 4514 mb_debug(sb, "Can't allocate:" 4515 " Allocation context details:"); 4516 mb_debug(sb, "status %u flags 0x%x", 4517 ac->ac_status, ac->ac_flags); 4518 mb_debug(sb, "orig %lu/%lu/%lu@%lu, " 4519 "goal %lu/%lu/%lu@%lu, " 4520 "best %lu/%lu/%lu@%lu cr %d", 4521 (unsigned long)ac->ac_o_ex.fe_group, 4522 (unsigned long)ac->ac_o_ex.fe_start, 4523 (unsigned long)ac->ac_o_ex.fe_len, 4524 (unsigned long)ac->ac_o_ex.fe_logical, 4525 (unsigned long)ac->ac_g_ex.fe_group, 4526 (unsigned long)ac->ac_g_ex.fe_start, 4527 (unsigned long)ac->ac_g_ex.fe_len, 4528 (unsigned long)ac->ac_g_ex.fe_logical, 4529 (unsigned long)ac->ac_b_ex.fe_group, 4530 (unsigned long)ac->ac_b_ex.fe_start, 4531 (unsigned long)ac->ac_b_ex.fe_len, 4532 (unsigned long)ac->ac_b_ex.fe_logical, 4533 (int)ac->ac_criteria); 4534 mb_debug(sb, "%u found", ac->ac_found); 4535 ext4_mb_show_pa(sb); 4536 } 4537 #else 4538 static inline void ext4_mb_show_pa(struct super_block *sb) 4539 { 4540 return; 4541 } 4542 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 4543 { 4544 ext4_mb_show_pa(ac->ac_sb); 4545 return; 4546 } 4547 #endif 4548 4549 /* 4550 * We use locality group preallocation for small size file. The size of the 4551 * file is determined by the current size or the resulting size after 4552 * allocation which ever is larger 4553 * 4554 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 4555 */ 4556 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 4557 { 4558 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4559 int bsbits = ac->ac_sb->s_blocksize_bits; 4560 loff_t size, isize; 4561 4562 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 4563 return; 4564 4565 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 4566 return; 4567 4568 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 4569 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 4570 >> bsbits; 4571 4572 if ((size == isize) && !ext4_fs_is_busy(sbi) && 4573 !inode_is_open_for_write(ac->ac_inode)) { 4574 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 4575 return; 4576 } 4577 4578 if (sbi->s_mb_group_prealloc <= 0) { 4579 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4580 return; 4581 } 4582 4583 /* don't use group allocation for large files */ 4584 size = max(size, isize); 4585 if (size > sbi->s_mb_stream_request) { 4586 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 4587 return; 4588 } 4589 4590 BUG_ON(ac->ac_lg != NULL); 4591 /* 4592 * locality group prealloc space are per cpu. The reason for having 4593 * per cpu locality group is to reduce the contention between block 4594 * request from multiple CPUs. 4595 */ 4596 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups); 4597 4598 /* we're going to use group allocation */ 4599 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 4600 4601 /* serialize all allocations in the group */ 4602 mutex_lock(&ac->ac_lg->lg_mutex); 4603 } 4604 4605 static noinline_for_stack int 4606 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 4607 struct ext4_allocation_request *ar) 4608 { 4609 struct super_block *sb = ar->inode->i_sb; 4610 struct ext4_sb_info *sbi = EXT4_SB(sb); 4611 struct ext4_super_block *es = sbi->s_es; 4612 ext4_group_t group; 4613 unsigned int len; 4614 ext4_fsblk_t goal; 4615 ext4_grpblk_t block; 4616 4617 /* we can't allocate > group size */ 4618 len = ar->len; 4619 4620 /* just a dirty hack to filter too big requests */ 4621 if (len >= EXT4_CLUSTERS_PER_GROUP(sb)) 4622 len = EXT4_CLUSTERS_PER_GROUP(sb); 4623 4624 /* start searching from the goal */ 4625 goal = ar->goal; 4626 if (goal < le32_to_cpu(es->s_first_data_block) || 4627 goal >= ext4_blocks_count(es)) 4628 goal = le32_to_cpu(es->s_first_data_block); 4629 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4630 4631 /* set up allocation goals */ 4632 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical); 4633 ac->ac_status = AC_STATUS_CONTINUE; 4634 ac->ac_sb = sb; 4635 ac->ac_inode = ar->inode; 4636 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4637 ac->ac_o_ex.fe_group = group; 4638 ac->ac_o_ex.fe_start = block; 4639 ac->ac_o_ex.fe_len = len; 4640 ac->ac_g_ex = ac->ac_o_ex; 4641 ac->ac_flags = ar->flags; 4642 4643 /* we have to define context: we'll work with a file or 4644 * locality group. this is a policy, actually */ 4645 ext4_mb_group_or_file(ac); 4646 4647 mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, " 4648 "left: %u/%u, right %u/%u to %swritable\n", 4649 (unsigned) ar->len, (unsigned) ar->logical, 4650 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4651 (unsigned) ar->lleft, (unsigned) ar->pleft, 4652 (unsigned) ar->lright, (unsigned) ar->pright, 4653 inode_is_open_for_write(ar->inode) ? "" : "non-"); 4654 return 0; 4655 4656 } 4657 4658 static noinline_for_stack void 4659 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4660 struct ext4_locality_group *lg, 4661 int order, int total_entries) 4662 { 4663 ext4_group_t group = 0; 4664 struct ext4_buddy e4b; 4665 struct list_head discard_list; 4666 struct ext4_prealloc_space *pa, *tmp; 4667 4668 mb_debug(sb, "discard locality group preallocation\n"); 4669 4670 INIT_LIST_HEAD(&discard_list); 4671 4672 spin_lock(&lg->lg_prealloc_lock); 4673 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4674 pa_inode_list, 4675 lockdep_is_held(&lg->lg_prealloc_lock)) { 4676 spin_lock(&pa->pa_lock); 4677 if (atomic_read(&pa->pa_count)) { 4678 /* 4679 * This is the pa that we just used 4680 * for block allocation. So don't 4681 * free that 4682 */ 4683 spin_unlock(&pa->pa_lock); 4684 continue; 4685 } 4686 if (pa->pa_deleted) { 4687 spin_unlock(&pa->pa_lock); 4688 continue; 4689 } 4690 /* only lg prealloc space */ 4691 BUG_ON(pa->pa_type != MB_GROUP_PA); 4692 4693 /* seems this one can be freed ... */ 4694 ext4_mb_mark_pa_deleted(sb, pa); 4695 spin_unlock(&pa->pa_lock); 4696 4697 list_del_rcu(&pa->pa_inode_list); 4698 list_add(&pa->u.pa_tmp_list, &discard_list); 4699 4700 total_entries--; 4701 if (total_entries <= 5) { 4702 /* 4703 * we want to keep only 5 entries 4704 * allowing it to grow to 8. This 4705 * mak sure we don't call discard 4706 * soon for this list. 4707 */ 4708 break; 4709 } 4710 } 4711 spin_unlock(&lg->lg_prealloc_lock); 4712 4713 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4714 int err; 4715 4716 group = ext4_get_group_number(sb, pa->pa_pstart); 4717 err = ext4_mb_load_buddy_gfp(sb, group, &e4b, 4718 GFP_NOFS|__GFP_NOFAIL); 4719 if (err) { 4720 ext4_error_err(sb, -err, "Error %d loading buddy information for %u", 4721 err, group); 4722 continue; 4723 } 4724 ext4_lock_group(sb, group); 4725 list_del(&pa->pa_group_list); 4726 ext4_mb_release_group_pa(&e4b, pa); 4727 ext4_unlock_group(sb, group); 4728 4729 ext4_mb_unload_buddy(&e4b); 4730 list_del(&pa->u.pa_tmp_list); 4731 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4732 } 4733 } 4734 4735 /* 4736 * We have incremented pa_count. So it cannot be freed at this 4737 * point. Also we hold lg_mutex. So no parallel allocation is 4738 * possible from this lg. That means pa_free cannot be updated. 4739 * 4740 * A parallel ext4_mb_discard_group_preallocations is possible. 4741 * which can cause the lg_prealloc_list to be updated. 4742 */ 4743 4744 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4745 { 4746 int order, added = 0, lg_prealloc_count = 1; 4747 struct super_block *sb = ac->ac_sb; 4748 struct ext4_locality_group *lg = ac->ac_lg; 4749 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4750 4751 order = fls(pa->pa_free) - 1; 4752 if (order > PREALLOC_TB_SIZE - 1) 4753 /* The max size of hash table is PREALLOC_TB_SIZE */ 4754 order = PREALLOC_TB_SIZE - 1; 4755 /* Add the prealloc space to lg */ 4756 spin_lock(&lg->lg_prealloc_lock); 4757 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4758 pa_inode_list, 4759 lockdep_is_held(&lg->lg_prealloc_lock)) { 4760 spin_lock(&tmp_pa->pa_lock); 4761 if (tmp_pa->pa_deleted) { 4762 spin_unlock(&tmp_pa->pa_lock); 4763 continue; 4764 } 4765 if (!added && pa->pa_free < tmp_pa->pa_free) { 4766 /* Add to the tail of the previous entry */ 4767 list_add_tail_rcu(&pa->pa_inode_list, 4768 &tmp_pa->pa_inode_list); 4769 added = 1; 4770 /* 4771 * we want to count the total 4772 * number of entries in the list 4773 */ 4774 } 4775 spin_unlock(&tmp_pa->pa_lock); 4776 lg_prealloc_count++; 4777 } 4778 if (!added) 4779 list_add_tail_rcu(&pa->pa_inode_list, 4780 &lg->lg_prealloc_list[order]); 4781 spin_unlock(&lg->lg_prealloc_lock); 4782 4783 /* Now trim the list to be not more than 8 elements */ 4784 if (lg_prealloc_count > 8) { 4785 ext4_mb_discard_lg_preallocations(sb, lg, 4786 order, lg_prealloc_count); 4787 return; 4788 } 4789 return ; 4790 } 4791 4792 /* 4793 * if per-inode prealloc list is too long, trim some PA 4794 */ 4795 static void ext4_mb_trim_inode_pa(struct inode *inode) 4796 { 4797 struct ext4_inode_info *ei = EXT4_I(inode); 4798 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4799 int count, delta; 4800 4801 count = atomic_read(&ei->i_prealloc_active); 4802 delta = (sbi->s_mb_max_inode_prealloc >> 2) + 1; 4803 if (count > sbi->s_mb_max_inode_prealloc + delta) { 4804 count -= sbi->s_mb_max_inode_prealloc; 4805 ext4_discard_preallocations(inode, count); 4806 } 4807 } 4808 4809 /* 4810 * release all resource we used in allocation 4811 */ 4812 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4813 { 4814 struct inode *inode = ac->ac_inode; 4815 struct ext4_inode_info *ei = EXT4_I(inode); 4816 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4817 struct ext4_prealloc_space *pa = ac->ac_pa; 4818 if (pa) { 4819 if (pa->pa_type == MB_GROUP_PA) { 4820 /* see comment in ext4_mb_use_group_pa() */ 4821 spin_lock(&pa->pa_lock); 4822 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4823 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4824 pa->pa_free -= ac->ac_b_ex.fe_len; 4825 pa->pa_len -= ac->ac_b_ex.fe_len; 4826 spin_unlock(&pa->pa_lock); 4827 4828 /* 4829 * We want to add the pa to the right bucket. 4830 * Remove it from the list and while adding 4831 * make sure the list to which we are adding 4832 * doesn't grow big. 4833 */ 4834 if (likely(pa->pa_free)) { 4835 spin_lock(pa->pa_obj_lock); 4836 list_del_rcu(&pa->pa_inode_list); 4837 spin_unlock(pa->pa_obj_lock); 4838 ext4_mb_add_n_trim(ac); 4839 } 4840 } 4841 4842 if (pa->pa_type == MB_INODE_PA) { 4843 /* 4844 * treat per-inode prealloc list as a lru list, then try 4845 * to trim the least recently used PA. 4846 */ 4847 spin_lock(pa->pa_obj_lock); 4848 list_move(&pa->pa_inode_list, &ei->i_prealloc_list); 4849 spin_unlock(pa->pa_obj_lock); 4850 } 4851 4852 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4853 } 4854 if (ac->ac_bitmap_page) 4855 put_page(ac->ac_bitmap_page); 4856 if (ac->ac_buddy_page) 4857 put_page(ac->ac_buddy_page); 4858 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4859 mutex_unlock(&ac->ac_lg->lg_mutex); 4860 ext4_mb_collect_stats(ac); 4861 ext4_mb_trim_inode_pa(inode); 4862 return 0; 4863 } 4864 4865 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4866 { 4867 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4868 int ret; 4869 int freed = 0; 4870 4871 trace_ext4_mb_discard_preallocations(sb, needed); 4872 for (i = 0; i < ngroups && needed > 0; i++) { 4873 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4874 freed += ret; 4875 needed -= ret; 4876 } 4877 4878 return freed; 4879 } 4880 4881 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb, 4882 struct ext4_allocation_context *ac, u64 *seq) 4883 { 4884 int freed; 4885 u64 seq_retry = 0; 4886 bool ret = false; 4887 4888 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4889 if (freed) { 4890 ret = true; 4891 goto out_dbg; 4892 } 4893 seq_retry = ext4_get_discard_pa_seq_sum(); 4894 if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) { 4895 ac->ac_flags |= EXT4_MB_STRICT_CHECK; 4896 *seq = seq_retry; 4897 ret = true; 4898 } 4899 4900 out_dbg: 4901 mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no"); 4902 return ret; 4903 } 4904 4905 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle, 4906 struct ext4_allocation_request *ar, int *errp); 4907 4908 /* 4909 * Main entry point into mballoc to allocate blocks 4910 * it tries to use preallocation first, then falls back 4911 * to usual allocation 4912 */ 4913 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4914 struct ext4_allocation_request *ar, int *errp) 4915 { 4916 struct ext4_allocation_context *ac = NULL; 4917 struct ext4_sb_info *sbi; 4918 struct super_block *sb; 4919 ext4_fsblk_t block = 0; 4920 unsigned int inquota = 0; 4921 unsigned int reserv_clstrs = 0; 4922 u64 seq; 4923 4924 might_sleep(); 4925 sb = ar->inode->i_sb; 4926 sbi = EXT4_SB(sb); 4927 4928 trace_ext4_request_blocks(ar); 4929 if (sbi->s_mount_state & EXT4_FC_REPLAY) 4930 return ext4_mb_new_blocks_simple(handle, ar, errp); 4931 4932 /* Allow to use superuser reservation for quota file */ 4933 if (ext4_is_quota_file(ar->inode)) 4934 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4935 4936 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) { 4937 /* Without delayed allocation we need to verify 4938 * there is enough free blocks to do block allocation 4939 * and verify allocation doesn't exceed the quota limits. 4940 */ 4941 while (ar->len && 4942 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4943 4944 /* let others to free the space */ 4945 cond_resched(); 4946 ar->len = ar->len >> 1; 4947 } 4948 if (!ar->len) { 4949 ext4_mb_show_pa(sb); 4950 *errp = -ENOSPC; 4951 return 0; 4952 } 4953 reserv_clstrs = ar->len; 4954 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4955 dquot_alloc_block_nofail(ar->inode, 4956 EXT4_C2B(sbi, ar->len)); 4957 } else { 4958 while (ar->len && 4959 dquot_alloc_block(ar->inode, 4960 EXT4_C2B(sbi, ar->len))) { 4961 4962 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4963 ar->len--; 4964 } 4965 } 4966 inquota = ar->len; 4967 if (ar->len == 0) { 4968 *errp = -EDQUOT; 4969 goto out; 4970 } 4971 } 4972 4973 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4974 if (!ac) { 4975 ar->len = 0; 4976 *errp = -ENOMEM; 4977 goto out; 4978 } 4979 4980 *errp = ext4_mb_initialize_context(ac, ar); 4981 if (*errp) { 4982 ar->len = 0; 4983 goto out; 4984 } 4985 4986 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4987 seq = this_cpu_read(discard_pa_seq); 4988 if (!ext4_mb_use_preallocated(ac)) { 4989 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4990 ext4_mb_normalize_request(ac, ar); 4991 4992 *errp = ext4_mb_pa_alloc(ac); 4993 if (*errp) 4994 goto errout; 4995 repeat: 4996 /* allocate space in core */ 4997 *errp = ext4_mb_regular_allocator(ac); 4998 /* 4999 * pa allocated above is added to grp->bb_prealloc_list only 5000 * when we were able to allocate some block i.e. when 5001 * ac->ac_status == AC_STATUS_FOUND. 5002 * And error from above mean ac->ac_status != AC_STATUS_FOUND 5003 * So we have to free this pa here itself. 5004 */ 5005 if (*errp) { 5006 ext4_mb_pa_free(ac); 5007 ext4_discard_allocated_blocks(ac); 5008 goto errout; 5009 } 5010 if (ac->ac_status == AC_STATUS_FOUND && 5011 ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len) 5012 ext4_mb_pa_free(ac); 5013 } 5014 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 5015 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 5016 if (*errp) { 5017 ext4_discard_allocated_blocks(ac); 5018 goto errout; 5019 } else { 5020 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 5021 ar->len = ac->ac_b_ex.fe_len; 5022 } 5023 } else { 5024 if (ext4_mb_discard_preallocations_should_retry(sb, ac, &seq)) 5025 goto repeat; 5026 /* 5027 * If block allocation fails then the pa allocated above 5028 * needs to be freed here itself. 5029 */ 5030 ext4_mb_pa_free(ac); 5031 *errp = -ENOSPC; 5032 } 5033 5034 errout: 5035 if (*errp) { 5036 ac->ac_b_ex.fe_len = 0; 5037 ar->len = 0; 5038 ext4_mb_show_ac(ac); 5039 } 5040 ext4_mb_release_context(ac); 5041 out: 5042 if (ac) 5043 kmem_cache_free(ext4_ac_cachep, ac); 5044 if (inquota && ar->len < inquota) 5045 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 5046 if (!ar->len) { 5047 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) 5048 /* release all the reserved blocks if non delalloc */ 5049 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 5050 reserv_clstrs); 5051 } 5052 5053 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 5054 5055 return block; 5056 } 5057 5058 /* 5059 * We can merge two free data extents only if the physical blocks 5060 * are contiguous, AND the extents were freed by the same transaction, 5061 * AND the blocks are associated with the same group. 5062 */ 5063 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi, 5064 struct ext4_free_data *entry, 5065 struct ext4_free_data *new_entry, 5066 struct rb_root *entry_rb_root) 5067 { 5068 if ((entry->efd_tid != new_entry->efd_tid) || 5069 (entry->efd_group != new_entry->efd_group)) 5070 return; 5071 if (entry->efd_start_cluster + entry->efd_count == 5072 new_entry->efd_start_cluster) { 5073 new_entry->efd_start_cluster = entry->efd_start_cluster; 5074 new_entry->efd_count += entry->efd_count; 5075 } else if (new_entry->efd_start_cluster + new_entry->efd_count == 5076 entry->efd_start_cluster) { 5077 new_entry->efd_count += entry->efd_count; 5078 } else 5079 return; 5080 spin_lock(&sbi->s_md_lock); 5081 list_del(&entry->efd_list); 5082 spin_unlock(&sbi->s_md_lock); 5083 rb_erase(&entry->efd_node, entry_rb_root); 5084 kmem_cache_free(ext4_free_data_cachep, entry); 5085 } 5086 5087 static noinline_for_stack int 5088 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 5089 struct ext4_free_data *new_entry) 5090 { 5091 ext4_group_t group = e4b->bd_group; 5092 ext4_grpblk_t cluster; 5093 ext4_grpblk_t clusters = new_entry->efd_count; 5094 struct ext4_free_data *entry; 5095 struct ext4_group_info *db = e4b->bd_info; 5096 struct super_block *sb = e4b->bd_sb; 5097 struct ext4_sb_info *sbi = EXT4_SB(sb); 5098 struct rb_node **n = &db->bb_free_root.rb_node, *node; 5099 struct rb_node *parent = NULL, *new_node; 5100 5101 BUG_ON(!ext4_handle_valid(handle)); 5102 BUG_ON(e4b->bd_bitmap_page == NULL); 5103 BUG_ON(e4b->bd_buddy_page == NULL); 5104 5105 new_node = &new_entry->efd_node; 5106 cluster = new_entry->efd_start_cluster; 5107 5108 if (!*n) { 5109 /* first free block exent. We need to 5110 protect buddy cache from being freed, 5111 * otherwise we'll refresh it from 5112 * on-disk bitmap and lose not-yet-available 5113 * blocks */ 5114 get_page(e4b->bd_buddy_page); 5115 get_page(e4b->bd_bitmap_page); 5116 } 5117 while (*n) { 5118 parent = *n; 5119 entry = rb_entry(parent, struct ext4_free_data, efd_node); 5120 if (cluster < entry->efd_start_cluster) 5121 n = &(*n)->rb_left; 5122 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 5123 n = &(*n)->rb_right; 5124 else { 5125 ext4_grp_locked_error(sb, group, 0, 5126 ext4_group_first_block_no(sb, group) + 5127 EXT4_C2B(sbi, cluster), 5128 "Block already on to-be-freed list"); 5129 return 0; 5130 } 5131 } 5132 5133 rb_link_node(new_node, parent, n); 5134 rb_insert_color(new_node, &db->bb_free_root); 5135 5136 /* Now try to see the extent can be merged to left and right */ 5137 node = rb_prev(new_node); 5138 if (node) { 5139 entry = rb_entry(node, struct ext4_free_data, efd_node); 5140 ext4_try_merge_freed_extent(sbi, entry, new_entry, 5141 &(db->bb_free_root)); 5142 } 5143 5144 node = rb_next(new_node); 5145 if (node) { 5146 entry = rb_entry(node, struct ext4_free_data, efd_node); 5147 ext4_try_merge_freed_extent(sbi, entry, new_entry, 5148 &(db->bb_free_root)); 5149 } 5150 5151 spin_lock(&sbi->s_md_lock); 5152 list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list); 5153 sbi->s_mb_free_pending += clusters; 5154 spin_unlock(&sbi->s_md_lock); 5155 return 0; 5156 } 5157 5158 /* 5159 * Simple allocator for Ext4 fast commit replay path. It searches for blocks 5160 * linearly starting at the goal block and also excludes the blocks which 5161 * are going to be in use after fast commit replay. 5162 */ 5163 static ext4_fsblk_t ext4_mb_new_blocks_simple(handle_t *handle, 5164 struct ext4_allocation_request *ar, int *errp) 5165 { 5166 struct buffer_head *bitmap_bh; 5167 struct super_block *sb = ar->inode->i_sb; 5168 ext4_group_t group; 5169 ext4_grpblk_t blkoff; 5170 int i; 5171 ext4_fsblk_t goal, block; 5172 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 5173 5174 goal = ar->goal; 5175 if (goal < le32_to_cpu(es->s_first_data_block) || 5176 goal >= ext4_blocks_count(es)) 5177 goal = le32_to_cpu(es->s_first_data_block); 5178 5179 ar->len = 0; 5180 ext4_get_group_no_and_offset(sb, goal, &group, &blkoff); 5181 for (; group < ext4_get_groups_count(sb); group++) { 5182 bitmap_bh = ext4_read_block_bitmap(sb, group); 5183 if (IS_ERR(bitmap_bh)) { 5184 *errp = PTR_ERR(bitmap_bh); 5185 pr_warn("Failed to read block bitmap\n"); 5186 return 0; 5187 } 5188 5189 ext4_get_group_no_and_offset(sb, 5190 max(ext4_group_first_block_no(sb, group), goal), 5191 NULL, &blkoff); 5192 i = mb_find_next_zero_bit(bitmap_bh->b_data, sb->s_blocksize, 5193 blkoff); 5194 brelse(bitmap_bh); 5195 if (i >= sb->s_blocksize) 5196 continue; 5197 if (ext4_fc_replay_check_excluded(sb, 5198 ext4_group_first_block_no(sb, group) + i)) 5199 continue; 5200 break; 5201 } 5202 5203 if (group >= ext4_get_groups_count(sb) && i >= sb->s_blocksize) 5204 return 0; 5205 5206 block = ext4_group_first_block_no(sb, group) + i; 5207 ext4_mb_mark_bb(sb, block, 1, 1); 5208 ar->len = 1; 5209 5210 return block; 5211 } 5212 5213 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block, 5214 unsigned long count) 5215 { 5216 struct buffer_head *bitmap_bh; 5217 struct super_block *sb = inode->i_sb; 5218 struct ext4_group_desc *gdp; 5219 struct buffer_head *gdp_bh; 5220 ext4_group_t group; 5221 ext4_grpblk_t blkoff; 5222 int already_freed = 0, err, i; 5223 5224 ext4_get_group_no_and_offset(sb, block, &group, &blkoff); 5225 bitmap_bh = ext4_read_block_bitmap(sb, group); 5226 if (IS_ERR(bitmap_bh)) { 5227 err = PTR_ERR(bitmap_bh); 5228 pr_warn("Failed to read block bitmap\n"); 5229 return; 5230 } 5231 gdp = ext4_get_group_desc(sb, group, &gdp_bh); 5232 if (!gdp) 5233 return; 5234 5235 for (i = 0; i < count; i++) { 5236 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data)) 5237 already_freed++; 5238 } 5239 mb_clear_bits(bitmap_bh->b_data, blkoff, count); 5240 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh); 5241 if (err) 5242 return; 5243 ext4_free_group_clusters_set( 5244 sb, gdp, ext4_free_group_clusters(sb, gdp) + 5245 count - already_freed); 5246 ext4_block_bitmap_csum_set(sb, group, gdp, bitmap_bh); 5247 ext4_group_desc_csum_set(sb, group, gdp); 5248 ext4_handle_dirty_metadata(NULL, NULL, gdp_bh); 5249 sync_dirty_buffer(bitmap_bh); 5250 sync_dirty_buffer(gdp_bh); 5251 brelse(bitmap_bh); 5252 } 5253 5254 /** 5255 * ext4_free_blocks() -- Free given blocks and update quota 5256 * @handle: handle for this transaction 5257 * @inode: inode 5258 * @bh: optional buffer of the block to be freed 5259 * @block: starting physical block to be freed 5260 * @count: number of blocks to be freed 5261 * @flags: flags used by ext4_free_blocks 5262 */ 5263 void ext4_free_blocks(handle_t *handle, struct inode *inode, 5264 struct buffer_head *bh, ext4_fsblk_t block, 5265 unsigned long count, int flags) 5266 { 5267 struct buffer_head *bitmap_bh = NULL; 5268 struct super_block *sb = inode->i_sb; 5269 struct ext4_group_desc *gdp; 5270 unsigned int overflow; 5271 ext4_grpblk_t bit; 5272 struct buffer_head *gd_bh; 5273 ext4_group_t block_group; 5274 struct ext4_sb_info *sbi; 5275 struct ext4_buddy e4b; 5276 unsigned int count_clusters; 5277 int err = 0; 5278 int ret; 5279 5280 sbi = EXT4_SB(sb); 5281 5282 if (sbi->s_mount_state & EXT4_FC_REPLAY) { 5283 ext4_free_blocks_simple(inode, block, count); 5284 return; 5285 } 5286 5287 might_sleep(); 5288 if (bh) { 5289 if (block) 5290 BUG_ON(block != bh->b_blocknr); 5291 else 5292 block = bh->b_blocknr; 5293 } 5294 5295 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 5296 !ext4_inode_block_valid(inode, block, count)) { 5297 ext4_error(sb, "Freeing blocks not in datazone - " 5298 "block = %llu, count = %lu", block, count); 5299 goto error_return; 5300 } 5301 5302 ext4_debug("freeing block %llu\n", block); 5303 trace_ext4_free_blocks(inode, block, count, flags); 5304 5305 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 5306 BUG_ON(count > 1); 5307 5308 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 5309 inode, bh, block); 5310 } 5311 5312 /* 5313 * If the extent to be freed does not begin on a cluster 5314 * boundary, we need to deal with partial clusters at the 5315 * beginning and end of the extent. Normally we will free 5316 * blocks at the beginning or the end unless we are explicitly 5317 * requested to avoid doing so. 5318 */ 5319 overflow = EXT4_PBLK_COFF(sbi, block); 5320 if (overflow) { 5321 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 5322 overflow = sbi->s_cluster_ratio - overflow; 5323 block += overflow; 5324 if (count > overflow) 5325 count -= overflow; 5326 else 5327 return; 5328 } else { 5329 block -= overflow; 5330 count += overflow; 5331 } 5332 } 5333 overflow = EXT4_LBLK_COFF(sbi, count); 5334 if (overflow) { 5335 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 5336 if (count > overflow) 5337 count -= overflow; 5338 else 5339 return; 5340 } else 5341 count += sbi->s_cluster_ratio - overflow; 5342 } 5343 5344 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) { 5345 int i; 5346 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA; 5347 5348 for (i = 0; i < count; i++) { 5349 cond_resched(); 5350 if (is_metadata) 5351 bh = sb_find_get_block(inode->i_sb, block + i); 5352 ext4_forget(handle, is_metadata, inode, bh, block + i); 5353 } 5354 } 5355 5356 do_more: 5357 overflow = 0; 5358 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 5359 5360 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT( 5361 ext4_get_group_info(sb, block_group)))) 5362 return; 5363 5364 /* 5365 * Check to see if we are freeing blocks across a group 5366 * boundary. 5367 */ 5368 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 5369 overflow = EXT4_C2B(sbi, bit) + count - 5370 EXT4_BLOCKS_PER_GROUP(sb); 5371 count -= overflow; 5372 } 5373 count_clusters = EXT4_NUM_B2C(sbi, count); 5374 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 5375 if (IS_ERR(bitmap_bh)) { 5376 err = PTR_ERR(bitmap_bh); 5377 bitmap_bh = NULL; 5378 goto error_return; 5379 } 5380 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 5381 if (!gdp) { 5382 err = -EIO; 5383 goto error_return; 5384 } 5385 5386 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 5387 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 5388 in_range(block, ext4_inode_table(sb, gdp), 5389 sbi->s_itb_per_group) || 5390 in_range(block + count - 1, ext4_inode_table(sb, gdp), 5391 sbi->s_itb_per_group)) { 5392 5393 ext4_error(sb, "Freeing blocks in system zone - " 5394 "Block = %llu, count = %lu", block, count); 5395 /* err = 0. ext4_std_error should be a no op */ 5396 goto error_return; 5397 } 5398 5399 BUFFER_TRACE(bitmap_bh, "getting write access"); 5400 err = ext4_journal_get_write_access(handle, bitmap_bh); 5401 if (err) 5402 goto error_return; 5403 5404 /* 5405 * We are about to modify some metadata. Call the journal APIs 5406 * to unshare ->b_data if a currently-committing transaction is 5407 * using it 5408 */ 5409 BUFFER_TRACE(gd_bh, "get_write_access"); 5410 err = ext4_journal_get_write_access(handle, gd_bh); 5411 if (err) 5412 goto error_return; 5413 #ifdef AGGRESSIVE_CHECK 5414 { 5415 int i; 5416 for (i = 0; i < count_clusters; i++) 5417 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 5418 } 5419 #endif 5420 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 5421 5422 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */ 5423 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b, 5424 GFP_NOFS|__GFP_NOFAIL); 5425 if (err) 5426 goto error_return; 5427 5428 /* 5429 * We need to make sure we don't reuse the freed block until after the 5430 * transaction is committed. We make an exception if the inode is to be 5431 * written in writeback mode since writeback mode has weak data 5432 * consistency guarantees. 5433 */ 5434 if (ext4_handle_valid(handle) && 5435 ((flags & EXT4_FREE_BLOCKS_METADATA) || 5436 !ext4_should_writeback_data(inode))) { 5437 struct ext4_free_data *new_entry; 5438 /* 5439 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed 5440 * to fail. 5441 */ 5442 new_entry = kmem_cache_alloc(ext4_free_data_cachep, 5443 GFP_NOFS|__GFP_NOFAIL); 5444 new_entry->efd_start_cluster = bit; 5445 new_entry->efd_group = block_group; 5446 new_entry->efd_count = count_clusters; 5447 new_entry->efd_tid = handle->h_transaction->t_tid; 5448 5449 ext4_lock_group(sb, block_group); 5450 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 5451 ext4_mb_free_metadata(handle, &e4b, new_entry); 5452 } else { 5453 /* need to update group_info->bb_free and bitmap 5454 * with group lock held. generate_buddy look at 5455 * them with group lock_held 5456 */ 5457 if (test_opt(sb, DISCARD)) { 5458 err = ext4_issue_discard(sb, block_group, bit, count, 5459 NULL); 5460 if (err && err != -EOPNOTSUPP) 5461 ext4_msg(sb, KERN_WARNING, "discard request in" 5462 " group:%d block:%d count:%lu failed" 5463 " with %d", block_group, bit, count, 5464 err); 5465 } else 5466 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info); 5467 5468 ext4_lock_group(sb, block_group); 5469 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 5470 mb_free_blocks(inode, &e4b, bit, count_clusters); 5471 } 5472 5473 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 5474 ext4_free_group_clusters_set(sb, gdp, ret); 5475 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 5476 ext4_group_desc_csum_set(sb, block_group, gdp); 5477 ext4_unlock_group(sb, block_group); 5478 5479 if (sbi->s_log_groups_per_flex) { 5480 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 5481 atomic64_add(count_clusters, 5482 &sbi_array_rcu_deref(sbi, s_flex_groups, 5483 flex_group)->free_clusters); 5484 } 5485 5486 /* 5487 * on a bigalloc file system, defer the s_freeclusters_counter 5488 * update to the caller (ext4_remove_space and friends) so they 5489 * can determine if a cluster freed here should be rereserved 5490 */ 5491 if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) { 5492 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 5493 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 5494 percpu_counter_add(&sbi->s_freeclusters_counter, 5495 count_clusters); 5496 } 5497 5498 ext4_mb_unload_buddy(&e4b); 5499 5500 /* We dirtied the bitmap block */ 5501 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5502 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5503 5504 /* And the group descriptor block */ 5505 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5506 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5507 if (!err) 5508 err = ret; 5509 5510 if (overflow && !err) { 5511 block += count; 5512 count = overflow; 5513 put_bh(bitmap_bh); 5514 goto do_more; 5515 } 5516 error_return: 5517 brelse(bitmap_bh); 5518 ext4_std_error(sb, err); 5519 return; 5520 } 5521 5522 /** 5523 * ext4_group_add_blocks() -- Add given blocks to an existing group 5524 * @handle: handle to this transaction 5525 * @sb: super block 5526 * @block: start physical block to add to the block group 5527 * @count: number of blocks to free 5528 * 5529 * This marks the blocks as free in the bitmap and buddy. 5530 */ 5531 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 5532 ext4_fsblk_t block, unsigned long count) 5533 { 5534 struct buffer_head *bitmap_bh = NULL; 5535 struct buffer_head *gd_bh; 5536 ext4_group_t block_group; 5537 ext4_grpblk_t bit; 5538 unsigned int i; 5539 struct ext4_group_desc *desc; 5540 struct ext4_sb_info *sbi = EXT4_SB(sb); 5541 struct ext4_buddy e4b; 5542 int err = 0, ret, free_clusters_count; 5543 ext4_grpblk_t clusters_freed; 5544 ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block); 5545 ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1); 5546 unsigned long cluster_count = last_cluster - first_cluster + 1; 5547 5548 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 5549 5550 if (count == 0) 5551 return 0; 5552 5553 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 5554 /* 5555 * Check to see if we are freeing blocks across a group 5556 * boundary. 5557 */ 5558 if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) { 5559 ext4_warning(sb, "too many blocks added to group %u", 5560 block_group); 5561 err = -EINVAL; 5562 goto error_return; 5563 } 5564 5565 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 5566 if (IS_ERR(bitmap_bh)) { 5567 err = PTR_ERR(bitmap_bh); 5568 bitmap_bh = NULL; 5569 goto error_return; 5570 } 5571 5572 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 5573 if (!desc) { 5574 err = -EIO; 5575 goto error_return; 5576 } 5577 5578 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 5579 in_range(ext4_inode_bitmap(sb, desc), block, count) || 5580 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 5581 in_range(block + count - 1, ext4_inode_table(sb, desc), 5582 sbi->s_itb_per_group)) { 5583 ext4_error(sb, "Adding blocks in system zones - " 5584 "Block = %llu, count = %lu", 5585 block, count); 5586 err = -EINVAL; 5587 goto error_return; 5588 } 5589 5590 BUFFER_TRACE(bitmap_bh, "getting write access"); 5591 err = ext4_journal_get_write_access(handle, bitmap_bh); 5592 if (err) 5593 goto error_return; 5594 5595 /* 5596 * We are about to modify some metadata. Call the journal APIs 5597 * to unshare ->b_data if a currently-committing transaction is 5598 * using it 5599 */ 5600 BUFFER_TRACE(gd_bh, "get_write_access"); 5601 err = ext4_journal_get_write_access(handle, gd_bh); 5602 if (err) 5603 goto error_return; 5604 5605 for (i = 0, clusters_freed = 0; i < cluster_count; i++) { 5606 BUFFER_TRACE(bitmap_bh, "clear bit"); 5607 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 5608 ext4_error(sb, "bit already cleared for block %llu", 5609 (ext4_fsblk_t)(block + i)); 5610 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 5611 } else { 5612 clusters_freed++; 5613 } 5614 } 5615 5616 err = ext4_mb_load_buddy(sb, block_group, &e4b); 5617 if (err) 5618 goto error_return; 5619 5620 /* 5621 * need to update group_info->bb_free and bitmap 5622 * with group lock held. generate_buddy look at 5623 * them with group lock_held 5624 */ 5625 ext4_lock_group(sb, block_group); 5626 mb_clear_bits(bitmap_bh->b_data, bit, cluster_count); 5627 mb_free_blocks(NULL, &e4b, bit, cluster_count); 5628 free_clusters_count = clusters_freed + 5629 ext4_free_group_clusters(sb, desc); 5630 ext4_free_group_clusters_set(sb, desc, free_clusters_count); 5631 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 5632 ext4_group_desc_csum_set(sb, block_group, desc); 5633 ext4_unlock_group(sb, block_group); 5634 percpu_counter_add(&sbi->s_freeclusters_counter, 5635 clusters_freed); 5636 5637 if (sbi->s_log_groups_per_flex) { 5638 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 5639 atomic64_add(clusters_freed, 5640 &sbi_array_rcu_deref(sbi, s_flex_groups, 5641 flex_group)->free_clusters); 5642 } 5643 5644 ext4_mb_unload_buddy(&e4b); 5645 5646 /* We dirtied the bitmap block */ 5647 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 5648 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 5649 5650 /* And the group descriptor block */ 5651 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 5652 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 5653 if (!err) 5654 err = ret; 5655 5656 error_return: 5657 brelse(bitmap_bh); 5658 ext4_std_error(sb, err); 5659 return err; 5660 } 5661 5662 /** 5663 * ext4_trim_extent -- function to TRIM one single free extent in the group 5664 * @sb: super block for the file system 5665 * @start: starting block of the free extent in the alloc. group 5666 * @count: number of blocks to TRIM 5667 * @group: alloc. group we are working with 5668 * @e4b: ext4 buddy for the group 5669 * 5670 * Trim "count" blocks starting at "start" in the "group". To assure that no 5671 * one will allocate those blocks, mark it as used in buddy bitmap. This must 5672 * be called with under the group lock. 5673 */ 5674 static int ext4_trim_extent(struct super_block *sb, int start, int count, 5675 ext4_group_t group, struct ext4_buddy *e4b) 5676 __releases(bitlock) 5677 __acquires(bitlock) 5678 { 5679 struct ext4_free_extent ex; 5680 int ret = 0; 5681 5682 trace_ext4_trim_extent(sb, group, start, count); 5683 5684 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 5685 5686 ex.fe_start = start; 5687 ex.fe_group = group; 5688 ex.fe_len = count; 5689 5690 /* 5691 * Mark blocks used, so no one can reuse them while 5692 * being trimmed. 5693 */ 5694 mb_mark_used(e4b, &ex); 5695 ext4_unlock_group(sb, group); 5696 ret = ext4_issue_discard(sb, group, start, count, NULL); 5697 ext4_lock_group(sb, group); 5698 mb_free_blocks(NULL, e4b, start, ex.fe_len); 5699 return ret; 5700 } 5701 5702 /** 5703 * ext4_trim_all_free -- function to trim all free space in alloc. group 5704 * @sb: super block for file system 5705 * @group: group to be trimmed 5706 * @start: first group block to examine 5707 * @max: last group block to examine 5708 * @minblocks: minimum extent block count 5709 * 5710 * ext4_trim_all_free walks through group's buddy bitmap searching for free 5711 * extents. When the free block is found, ext4_trim_extent is called to TRIM 5712 * the extent. 5713 * 5714 * 5715 * ext4_trim_all_free walks through group's block bitmap searching for free 5716 * extents. When the free extent is found, mark it as used in group buddy 5717 * bitmap. Then issue a TRIM command on this extent and free the extent in 5718 * the group buddy bitmap. This is done until whole group is scanned. 5719 */ 5720 static ext4_grpblk_t 5721 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 5722 ext4_grpblk_t start, ext4_grpblk_t max, 5723 ext4_grpblk_t minblocks) 5724 { 5725 void *bitmap; 5726 ext4_grpblk_t next, count = 0, free_count = 0; 5727 struct ext4_buddy e4b; 5728 int ret = 0; 5729 5730 trace_ext4_trim_all_free(sb, group, start, max); 5731 5732 ret = ext4_mb_load_buddy(sb, group, &e4b); 5733 if (ret) { 5734 ext4_warning(sb, "Error %d loading buddy information for %u", 5735 ret, group); 5736 return ret; 5737 } 5738 bitmap = e4b.bd_bitmap; 5739 5740 ext4_lock_group(sb, group); 5741 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 5742 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 5743 goto out; 5744 5745 start = (e4b.bd_info->bb_first_free > start) ? 5746 e4b.bd_info->bb_first_free : start; 5747 5748 while (start <= max) { 5749 start = mb_find_next_zero_bit(bitmap, max + 1, start); 5750 if (start > max) 5751 break; 5752 next = mb_find_next_bit(bitmap, max + 1, start); 5753 5754 if ((next - start) >= minblocks) { 5755 ret = ext4_trim_extent(sb, start, 5756 next - start, group, &e4b); 5757 if (ret && ret != -EOPNOTSUPP) 5758 break; 5759 ret = 0; 5760 count += next - start; 5761 } 5762 free_count += next - start; 5763 start = next + 1; 5764 5765 if (fatal_signal_pending(current)) { 5766 count = -ERESTARTSYS; 5767 break; 5768 } 5769 5770 if (need_resched()) { 5771 ext4_unlock_group(sb, group); 5772 cond_resched(); 5773 ext4_lock_group(sb, group); 5774 } 5775 5776 if ((e4b.bd_info->bb_free - free_count) < minblocks) 5777 break; 5778 } 5779 5780 if (!ret) { 5781 ret = count; 5782 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 5783 } 5784 out: 5785 ext4_unlock_group(sb, group); 5786 ext4_mb_unload_buddy(&e4b); 5787 5788 ext4_debug("trimmed %d blocks in the group %d\n", 5789 count, group); 5790 5791 return ret; 5792 } 5793 5794 /** 5795 * ext4_trim_fs() -- trim ioctl handle function 5796 * @sb: superblock for filesystem 5797 * @range: fstrim_range structure 5798 * 5799 * start: First Byte to trim 5800 * len: number of Bytes to trim from start 5801 * minlen: minimum extent length in Bytes 5802 * ext4_trim_fs goes through all allocation groups containing Bytes from 5803 * start to start+len. For each such a group ext4_trim_all_free function 5804 * is invoked to trim all free space. 5805 */ 5806 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 5807 { 5808 struct ext4_group_info *grp; 5809 ext4_group_t group, first_group, last_group; 5810 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 5811 uint64_t start, end, minlen, trimmed = 0; 5812 ext4_fsblk_t first_data_blk = 5813 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 5814 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 5815 int ret = 0; 5816 5817 start = range->start >> sb->s_blocksize_bits; 5818 end = start + (range->len >> sb->s_blocksize_bits) - 1; 5819 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 5820 range->minlen >> sb->s_blocksize_bits); 5821 5822 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 5823 start >= max_blks || 5824 range->len < sb->s_blocksize) 5825 return -EINVAL; 5826 if (end >= max_blks) 5827 end = max_blks - 1; 5828 if (end <= first_data_blk) 5829 goto out; 5830 if (start < first_data_blk) 5831 start = first_data_blk; 5832 5833 /* Determine first and last group to examine based on start and end */ 5834 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5835 &first_group, &first_cluster); 5836 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5837 &last_group, &last_cluster); 5838 5839 /* end now represents the last cluster to discard in this group */ 5840 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5841 5842 for (group = first_group; group <= last_group; group++) { 5843 grp = ext4_get_group_info(sb, group); 5844 /* We only do this if the grp has never been initialized */ 5845 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5846 ret = ext4_mb_init_group(sb, group, GFP_NOFS); 5847 if (ret) 5848 break; 5849 } 5850 5851 /* 5852 * For all the groups except the last one, last cluster will 5853 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5854 * change it for the last group, note that last_cluster is 5855 * already computed earlier by ext4_get_group_no_and_offset() 5856 */ 5857 if (group == last_group) 5858 end = last_cluster; 5859 5860 if (grp->bb_free >= minlen) { 5861 cnt = ext4_trim_all_free(sb, group, first_cluster, 5862 end, minlen); 5863 if (cnt < 0) { 5864 ret = cnt; 5865 break; 5866 } 5867 trimmed += cnt; 5868 } 5869 5870 /* 5871 * For every group except the first one, we are sure 5872 * that the first cluster to discard will be cluster #0. 5873 */ 5874 first_cluster = 0; 5875 } 5876 5877 if (!ret) 5878 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5879 5880 out: 5881 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5882 return ret; 5883 } 5884 5885 /* Iterate all the free extents in the group. */ 5886 int 5887 ext4_mballoc_query_range( 5888 struct super_block *sb, 5889 ext4_group_t group, 5890 ext4_grpblk_t start, 5891 ext4_grpblk_t end, 5892 ext4_mballoc_query_range_fn formatter, 5893 void *priv) 5894 { 5895 void *bitmap; 5896 ext4_grpblk_t next; 5897 struct ext4_buddy e4b; 5898 int error; 5899 5900 error = ext4_mb_load_buddy(sb, group, &e4b); 5901 if (error) 5902 return error; 5903 bitmap = e4b.bd_bitmap; 5904 5905 ext4_lock_group(sb, group); 5906 5907 start = (e4b.bd_info->bb_first_free > start) ? 5908 e4b.bd_info->bb_first_free : start; 5909 if (end >= EXT4_CLUSTERS_PER_GROUP(sb)) 5910 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5911 5912 while (start <= end) { 5913 start = mb_find_next_zero_bit(bitmap, end + 1, start); 5914 if (start > end) 5915 break; 5916 next = mb_find_next_bit(bitmap, end + 1, start); 5917 5918 ext4_unlock_group(sb, group); 5919 error = formatter(sb, group, start, next - start, priv); 5920 if (error) 5921 goto out_unload; 5922 ext4_lock_group(sb, group); 5923 5924 start = next + 1; 5925 } 5926 5927 ext4_unlock_group(sb, group); 5928 out_unload: 5929 ext4_mb_unload_buddy(&e4b); 5930 5931 return error; 5932 } 5933