1 /* 2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com 3 * Written by Alex Tomas <alex@clusterfs.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public Licens 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111- 17 */ 18 19 20 /* 21 * mballoc.c contains the multiblocks allocation routines 22 */ 23 24 #include "ext4_jbd2.h" 25 #include "mballoc.h" 26 #include <linux/debugfs.h> 27 #include <linux/log2.h> 28 #include <linux/slab.h> 29 #include <trace/events/ext4.h> 30 31 /* 32 * MUSTDO: 33 * - test ext4_ext_search_left() and ext4_ext_search_right() 34 * - search for metadata in few groups 35 * 36 * TODO v4: 37 * - normalization should take into account whether file is still open 38 * - discard preallocations if no free space left (policy?) 39 * - don't normalize tails 40 * - quota 41 * - reservation for superuser 42 * 43 * TODO v3: 44 * - bitmap read-ahead (proposed by Oleg Drokin aka green) 45 * - track min/max extents in each group for better group selection 46 * - mb_mark_used() may allocate chunk right after splitting buddy 47 * - tree of groups sorted by number of free blocks 48 * - error handling 49 */ 50 51 /* 52 * The allocation request involve request for multiple number of blocks 53 * near to the goal(block) value specified. 54 * 55 * During initialization phase of the allocator we decide to use the 56 * group preallocation or inode preallocation depending on the size of 57 * the file. The size of the file could be the resulting file size we 58 * would have after allocation, or the current file size, which ever 59 * is larger. If the size is less than sbi->s_mb_stream_request we 60 * select to use the group preallocation. The default value of 61 * s_mb_stream_request is 16 blocks. This can also be tuned via 62 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in 63 * terms of number of blocks. 64 * 65 * The main motivation for having small file use group preallocation is to 66 * ensure that we have small files closer together on the disk. 67 * 68 * First stage the allocator looks at the inode prealloc list, 69 * ext4_inode_info->i_prealloc_list, which contains list of prealloc 70 * spaces for this particular inode. The inode prealloc space is 71 * represented as: 72 * 73 * pa_lstart -> the logical start block for this prealloc space 74 * pa_pstart -> the physical start block for this prealloc space 75 * pa_len -> length for this prealloc space (in clusters) 76 * pa_free -> free space available in this prealloc space (in clusters) 77 * 78 * The inode preallocation space is used looking at the _logical_ start 79 * block. If only the logical file block falls within the range of prealloc 80 * space we will consume the particular prealloc space. This makes sure that 81 * we have contiguous physical blocks representing the file blocks 82 * 83 * The important thing to be noted in case of inode prealloc space is that 84 * we don't modify the values associated to inode prealloc space except 85 * pa_free. 86 * 87 * If we are not able to find blocks in the inode prealloc space and if we 88 * have the group allocation flag set then we look at the locality group 89 * prealloc space. These are per CPU prealloc list represented as 90 * 91 * ext4_sb_info.s_locality_groups[smp_processor_id()] 92 * 93 * The reason for having a per cpu locality group is to reduce the contention 94 * between CPUs. It is possible to get scheduled at this point. 95 * 96 * The locality group prealloc space is used looking at whether we have 97 * enough free space (pa_free) within the prealloc space. 98 * 99 * If we can't allocate blocks via inode prealloc or/and locality group 100 * prealloc then we look at the buddy cache. The buddy cache is represented 101 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets 102 * mapped to the buddy and bitmap information regarding different 103 * groups. The buddy information is attached to buddy cache inode so that 104 * we can access them through the page cache. The information regarding 105 * each group is loaded via ext4_mb_load_buddy. The information involve 106 * block bitmap and buddy information. The information are stored in the 107 * inode as: 108 * 109 * { page } 110 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 111 * 112 * 113 * one block each for bitmap and buddy information. So for each group we 114 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE / 115 * blocksize) blocks. So it can have information regarding groups_per_page 116 * which is blocks_per_page/2 117 * 118 * The buddy cache inode is not stored on disk. The inode is thrown 119 * away when the filesystem is unmounted. 120 * 121 * We look for count number of blocks in the buddy cache. If we were able 122 * to locate that many free blocks we return with additional information 123 * regarding rest of the contiguous physical block available 124 * 125 * Before allocating blocks via buddy cache we normalize the request 126 * blocks. This ensure we ask for more blocks that we needed. The extra 127 * blocks that we get after allocation is added to the respective prealloc 128 * list. In case of inode preallocation we follow a list of heuristics 129 * based on file size. This can be found in ext4_mb_normalize_request. If 130 * we are doing a group prealloc we try to normalize the request to 131 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is 132 * dependent on the cluster size; for non-bigalloc file systems, it is 133 * 512 blocks. This can be tuned via 134 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in 135 * terms of number of blocks. If we have mounted the file system with -O 136 * stripe=<value> option the group prealloc request is normalized to the 137 * the smallest multiple of the stripe value (sbi->s_stripe) which is 138 * greater than the default mb_group_prealloc. 139 * 140 * The regular allocator (using the buddy cache) supports a few tunables. 141 * 142 * /sys/fs/ext4/<partition>/mb_min_to_scan 143 * /sys/fs/ext4/<partition>/mb_max_to_scan 144 * /sys/fs/ext4/<partition>/mb_order2_req 145 * 146 * The regular allocator uses buddy scan only if the request len is power of 147 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The 148 * value of s_mb_order2_reqs can be tuned via 149 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to 150 * stripe size (sbi->s_stripe), we try to search for contiguous block in 151 * stripe size. This should result in better allocation on RAID setups. If 152 * not, we search in the specific group using bitmap for best extents. The 153 * tunable min_to_scan and max_to_scan control the behaviour here. 154 * min_to_scan indicate how long the mballoc __must__ look for a best 155 * extent and max_to_scan indicates how long the mballoc __can__ look for a 156 * best extent in the found extents. Searching for the blocks starts with 157 * the group specified as the goal value in allocation context via 158 * ac_g_ex. Each group is first checked based on the criteria whether it 159 * can be used for allocation. ext4_mb_good_group explains how the groups are 160 * checked. 161 * 162 * Both the prealloc space are getting populated as above. So for the first 163 * request we will hit the buddy cache which will result in this prealloc 164 * space getting filled. The prealloc space is then later used for the 165 * subsequent request. 166 */ 167 168 /* 169 * mballoc operates on the following data: 170 * - on-disk bitmap 171 * - in-core buddy (actually includes buddy and bitmap) 172 * - preallocation descriptors (PAs) 173 * 174 * there are two types of preallocations: 175 * - inode 176 * assiged to specific inode and can be used for this inode only. 177 * it describes part of inode's space preallocated to specific 178 * physical blocks. any block from that preallocated can be used 179 * independent. the descriptor just tracks number of blocks left 180 * unused. so, before taking some block from descriptor, one must 181 * make sure corresponded logical block isn't allocated yet. this 182 * also means that freeing any block within descriptor's range 183 * must discard all preallocated blocks. 184 * - locality group 185 * assigned to specific locality group which does not translate to 186 * permanent set of inodes: inode can join and leave group. space 187 * from this type of preallocation can be used for any inode. thus 188 * it's consumed from the beginning to the end. 189 * 190 * relation between them can be expressed as: 191 * in-core buddy = on-disk bitmap + preallocation descriptors 192 * 193 * this mean blocks mballoc considers used are: 194 * - allocated blocks (persistent) 195 * - preallocated blocks (non-persistent) 196 * 197 * consistency in mballoc world means that at any time a block is either 198 * free or used in ALL structures. notice: "any time" should not be read 199 * literally -- time is discrete and delimited by locks. 200 * 201 * to keep it simple, we don't use block numbers, instead we count number of 202 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA. 203 * 204 * all operations can be expressed as: 205 * - init buddy: buddy = on-disk + PAs 206 * - new PA: buddy += N; PA = N 207 * - use inode PA: on-disk += N; PA -= N 208 * - discard inode PA buddy -= on-disk - PA; PA = 0 209 * - use locality group PA on-disk += N; PA -= N 210 * - discard locality group PA buddy -= PA; PA = 0 211 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap 212 * is used in real operation because we can't know actual used 213 * bits from PA, only from on-disk bitmap 214 * 215 * if we follow this strict logic, then all operations above should be atomic. 216 * given some of them can block, we'd have to use something like semaphores 217 * killing performance on high-end SMP hardware. let's try to relax it using 218 * the following knowledge: 219 * 1) if buddy is referenced, it's already initialized 220 * 2) while block is used in buddy and the buddy is referenced, 221 * nobody can re-allocate that block 222 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has 223 * bit set and PA claims same block, it's OK. IOW, one can set bit in 224 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded 225 * block 226 * 227 * so, now we're building a concurrency table: 228 * - init buddy vs. 229 * - new PA 230 * blocks for PA are allocated in the buddy, buddy must be referenced 231 * until PA is linked to allocation group to avoid concurrent buddy init 232 * - use inode PA 233 * we need to make sure that either on-disk bitmap or PA has uptodate data 234 * given (3) we care that PA-=N operation doesn't interfere with init 235 * - discard inode PA 236 * the simplest way would be to have buddy initialized by the discard 237 * - use locality group PA 238 * again PA-=N must be serialized with init 239 * - discard locality group PA 240 * the simplest way would be to have buddy initialized by the discard 241 * - new PA vs. 242 * - use inode PA 243 * i_data_sem serializes them 244 * - discard inode PA 245 * discard process must wait until PA isn't used by another process 246 * - use locality group PA 247 * some mutex should serialize them 248 * - discard locality group PA 249 * discard process must wait until PA isn't used by another process 250 * - use inode PA 251 * - use inode PA 252 * i_data_sem or another mutex should serializes them 253 * - discard inode PA 254 * discard process must wait until PA isn't used by another process 255 * - use locality group PA 256 * nothing wrong here -- they're different PAs covering different blocks 257 * - discard locality group PA 258 * discard process must wait until PA isn't used by another process 259 * 260 * now we're ready to make few consequences: 261 * - PA is referenced and while it is no discard is possible 262 * - PA is referenced until block isn't marked in on-disk bitmap 263 * - PA changes only after on-disk bitmap 264 * - discard must not compete with init. either init is done before 265 * any discard or they're serialized somehow 266 * - buddy init as sum of on-disk bitmap and PAs is done atomically 267 * 268 * a special case when we've used PA to emptiness. no need to modify buddy 269 * in this case, but we should care about concurrent init 270 * 271 */ 272 273 /* 274 * Logic in few words: 275 * 276 * - allocation: 277 * load group 278 * find blocks 279 * mark bits in on-disk bitmap 280 * release group 281 * 282 * - use preallocation: 283 * find proper PA (per-inode or group) 284 * load group 285 * mark bits in on-disk bitmap 286 * release group 287 * release PA 288 * 289 * - free: 290 * load group 291 * mark bits in on-disk bitmap 292 * release group 293 * 294 * - discard preallocations in group: 295 * mark PAs deleted 296 * move them onto local list 297 * load on-disk bitmap 298 * load group 299 * remove PA from object (inode or locality group) 300 * mark free blocks in-core 301 * 302 * - discard inode's preallocations: 303 */ 304 305 /* 306 * Locking rules 307 * 308 * Locks: 309 * - bitlock on a group (group) 310 * - object (inode/locality) (object) 311 * - per-pa lock (pa) 312 * 313 * Paths: 314 * - new pa 315 * object 316 * group 317 * 318 * - find and use pa: 319 * pa 320 * 321 * - release consumed pa: 322 * pa 323 * group 324 * object 325 * 326 * - generate in-core bitmap: 327 * group 328 * pa 329 * 330 * - discard all for given object (inode, locality group): 331 * object 332 * pa 333 * group 334 * 335 * - discard all for given group: 336 * group 337 * pa 338 * group 339 * object 340 * 341 */ 342 static struct kmem_cache *ext4_pspace_cachep; 343 static struct kmem_cache *ext4_ac_cachep; 344 static struct kmem_cache *ext4_free_data_cachep; 345 346 /* We create slab caches for groupinfo data structures based on the 347 * superblock block size. There will be one per mounted filesystem for 348 * each unique s_blocksize_bits */ 349 #define NR_GRPINFO_CACHES 8 350 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES]; 351 352 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = { 353 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k", 354 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k", 355 "ext4_groupinfo_64k", "ext4_groupinfo_128k" 356 }; 357 358 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 359 ext4_group_t group); 360 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 361 ext4_group_t group); 362 static void ext4_free_data_callback(struct super_block *sb, 363 struct ext4_journal_cb_entry *jce, int rc); 364 365 static inline void *mb_correct_addr_and_bit(int *bit, void *addr) 366 { 367 #if BITS_PER_LONG == 64 368 *bit += ((unsigned long) addr & 7UL) << 3; 369 addr = (void *) ((unsigned long) addr & ~7UL); 370 #elif BITS_PER_LONG == 32 371 *bit += ((unsigned long) addr & 3UL) << 3; 372 addr = (void *) ((unsigned long) addr & ~3UL); 373 #else 374 #error "how many bits you are?!" 375 #endif 376 return addr; 377 } 378 379 static inline int mb_test_bit(int bit, void *addr) 380 { 381 /* 382 * ext4_test_bit on architecture like powerpc 383 * needs unsigned long aligned address 384 */ 385 addr = mb_correct_addr_and_bit(&bit, addr); 386 return ext4_test_bit(bit, addr); 387 } 388 389 static inline void mb_set_bit(int bit, void *addr) 390 { 391 addr = mb_correct_addr_and_bit(&bit, addr); 392 ext4_set_bit(bit, addr); 393 } 394 395 static inline void mb_clear_bit(int bit, void *addr) 396 { 397 addr = mb_correct_addr_and_bit(&bit, addr); 398 ext4_clear_bit(bit, addr); 399 } 400 401 static inline int mb_find_next_zero_bit(void *addr, int max, int start) 402 { 403 int fix = 0, ret, tmpmax; 404 addr = mb_correct_addr_and_bit(&fix, addr); 405 tmpmax = max + fix; 406 start += fix; 407 408 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix; 409 if (ret > max) 410 return max; 411 return ret; 412 } 413 414 static inline int mb_find_next_bit(void *addr, int max, int start) 415 { 416 int fix = 0, ret, tmpmax; 417 addr = mb_correct_addr_and_bit(&fix, addr); 418 tmpmax = max + fix; 419 start += fix; 420 421 ret = ext4_find_next_bit(addr, tmpmax, start) - fix; 422 if (ret > max) 423 return max; 424 return ret; 425 } 426 427 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max) 428 { 429 char *bb; 430 431 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 432 BUG_ON(max == NULL); 433 434 if (order > e4b->bd_blkbits + 1) { 435 *max = 0; 436 return NULL; 437 } 438 439 /* at order 0 we see each particular block */ 440 if (order == 0) { 441 *max = 1 << (e4b->bd_blkbits + 3); 442 return e4b->bd_bitmap; 443 } 444 445 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order]; 446 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order]; 447 448 return bb; 449 } 450 451 #ifdef DOUBLE_CHECK 452 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b, 453 int first, int count) 454 { 455 int i; 456 struct super_block *sb = e4b->bd_sb; 457 458 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 459 return; 460 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 461 for (i = 0; i < count; i++) { 462 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) { 463 ext4_fsblk_t blocknr; 464 465 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 466 blocknr += EXT4_C2B(EXT4_SB(sb), first + i); 467 ext4_grp_locked_error(sb, e4b->bd_group, 468 inode ? inode->i_ino : 0, 469 blocknr, 470 "freeing block already freed " 471 "(bit %u)", 472 first + i); 473 } 474 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap); 475 } 476 } 477 478 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count) 479 { 480 int i; 481 482 if (unlikely(e4b->bd_info->bb_bitmap == NULL)) 483 return; 484 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 485 for (i = 0; i < count; i++) { 486 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap)); 487 mb_set_bit(first + i, e4b->bd_info->bb_bitmap); 488 } 489 } 490 491 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 492 { 493 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) { 494 unsigned char *b1, *b2; 495 int i; 496 b1 = (unsigned char *) e4b->bd_info->bb_bitmap; 497 b2 = (unsigned char *) bitmap; 498 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) { 499 if (b1[i] != b2[i]) { 500 ext4_msg(e4b->bd_sb, KERN_ERR, 501 "corruption in group %u " 502 "at byte %u(%u): %x in copy != %x " 503 "on disk/prealloc", 504 e4b->bd_group, i, i * 8, b1[i], b2[i]); 505 BUG(); 506 } 507 } 508 } 509 } 510 511 #else 512 static inline void mb_free_blocks_double(struct inode *inode, 513 struct ext4_buddy *e4b, int first, int count) 514 { 515 return; 516 } 517 static inline void mb_mark_used_double(struct ext4_buddy *e4b, 518 int first, int count) 519 { 520 return; 521 } 522 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap) 523 { 524 return; 525 } 526 #endif 527 528 #ifdef AGGRESSIVE_CHECK 529 530 #define MB_CHECK_ASSERT(assert) \ 531 do { \ 532 if (!(assert)) { \ 533 printk(KERN_EMERG \ 534 "Assertion failure in %s() at %s:%d: \"%s\"\n", \ 535 function, file, line, # assert); \ 536 BUG(); \ 537 } \ 538 } while (0) 539 540 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file, 541 const char *function, int line) 542 { 543 struct super_block *sb = e4b->bd_sb; 544 int order = e4b->bd_blkbits + 1; 545 int max; 546 int max2; 547 int i; 548 int j; 549 int k; 550 int count; 551 struct ext4_group_info *grp; 552 int fragments = 0; 553 int fstart; 554 struct list_head *cur; 555 void *buddy; 556 void *buddy2; 557 558 { 559 static int mb_check_counter; 560 if (mb_check_counter++ % 100 != 0) 561 return 0; 562 } 563 564 while (order > 1) { 565 buddy = mb_find_buddy(e4b, order, &max); 566 MB_CHECK_ASSERT(buddy); 567 buddy2 = mb_find_buddy(e4b, order - 1, &max2); 568 MB_CHECK_ASSERT(buddy2); 569 MB_CHECK_ASSERT(buddy != buddy2); 570 MB_CHECK_ASSERT(max * 2 == max2); 571 572 count = 0; 573 for (i = 0; i < max; i++) { 574 575 if (mb_test_bit(i, buddy)) { 576 /* only single bit in buddy2 may be 1 */ 577 if (!mb_test_bit(i << 1, buddy2)) { 578 MB_CHECK_ASSERT( 579 mb_test_bit((i<<1)+1, buddy2)); 580 } else if (!mb_test_bit((i << 1) + 1, buddy2)) { 581 MB_CHECK_ASSERT( 582 mb_test_bit(i << 1, buddy2)); 583 } 584 continue; 585 } 586 587 /* both bits in buddy2 must be 1 */ 588 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2)); 589 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2)); 590 591 for (j = 0; j < (1 << order); j++) { 592 k = (i * (1 << order)) + j; 593 MB_CHECK_ASSERT( 594 !mb_test_bit(k, e4b->bd_bitmap)); 595 } 596 count++; 597 } 598 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count); 599 order--; 600 } 601 602 fstart = -1; 603 buddy = mb_find_buddy(e4b, 0, &max); 604 for (i = 0; i < max; i++) { 605 if (!mb_test_bit(i, buddy)) { 606 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free); 607 if (fstart == -1) { 608 fragments++; 609 fstart = i; 610 } 611 continue; 612 } 613 fstart = -1; 614 /* check used bits only */ 615 for (j = 0; j < e4b->bd_blkbits + 1; j++) { 616 buddy2 = mb_find_buddy(e4b, j, &max2); 617 k = i >> j; 618 MB_CHECK_ASSERT(k < max2); 619 MB_CHECK_ASSERT(mb_test_bit(k, buddy2)); 620 } 621 } 622 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info)); 623 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments); 624 625 grp = ext4_get_group_info(sb, e4b->bd_group); 626 list_for_each(cur, &grp->bb_prealloc_list) { 627 ext4_group_t groupnr; 628 struct ext4_prealloc_space *pa; 629 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 630 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k); 631 MB_CHECK_ASSERT(groupnr == e4b->bd_group); 632 for (i = 0; i < pa->pa_len; i++) 633 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy)); 634 } 635 return 0; 636 } 637 #undef MB_CHECK_ASSERT 638 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \ 639 __FILE__, __func__, __LINE__) 640 #else 641 #define mb_check_buddy(e4b) 642 #endif 643 644 /* 645 * Divide blocks started from @first with length @len into 646 * smaller chunks with power of 2 blocks. 647 * Clear the bits in bitmap which the blocks of the chunk(s) covered, 648 * then increase bb_counters[] for corresponded chunk size. 649 */ 650 static void ext4_mb_mark_free_simple(struct super_block *sb, 651 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len, 652 struct ext4_group_info *grp) 653 { 654 struct ext4_sb_info *sbi = EXT4_SB(sb); 655 ext4_grpblk_t min; 656 ext4_grpblk_t max; 657 ext4_grpblk_t chunk; 658 unsigned short border; 659 660 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb)); 661 662 border = 2 << sb->s_blocksize_bits; 663 664 while (len > 0) { 665 /* find how many blocks can be covered since this position */ 666 max = ffs(first | border) - 1; 667 668 /* find how many blocks of power 2 we need to mark */ 669 min = fls(len) - 1; 670 671 if (max < min) 672 min = max; 673 chunk = 1 << min; 674 675 /* mark multiblock chunks only */ 676 grp->bb_counters[min]++; 677 if (min > 0) 678 mb_clear_bit(first >> min, 679 buddy + sbi->s_mb_offsets[min]); 680 681 len -= chunk; 682 first += chunk; 683 } 684 } 685 686 /* 687 * Cache the order of the largest free extent we have available in this block 688 * group. 689 */ 690 static void 691 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) 692 { 693 int i; 694 int bits; 695 696 grp->bb_largest_free_order = -1; /* uninit */ 697 698 bits = sb->s_blocksize_bits + 1; 699 for (i = bits; i >= 0; i--) { 700 if (grp->bb_counters[i] > 0) { 701 grp->bb_largest_free_order = i; 702 break; 703 } 704 } 705 } 706 707 static noinline_for_stack 708 void ext4_mb_generate_buddy(struct super_block *sb, 709 void *buddy, void *bitmap, ext4_group_t group) 710 { 711 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 712 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb); 713 ext4_grpblk_t i = 0; 714 ext4_grpblk_t first; 715 ext4_grpblk_t len; 716 unsigned free = 0; 717 unsigned fragments = 0; 718 unsigned long long period = get_cycles(); 719 720 /* initialize buddy from bitmap which is aggregation 721 * of on-disk bitmap and preallocations */ 722 i = mb_find_next_zero_bit(bitmap, max, 0); 723 grp->bb_first_free = i; 724 while (i < max) { 725 fragments++; 726 first = i; 727 i = mb_find_next_bit(bitmap, max, i); 728 len = i - first; 729 free += len; 730 if (len > 1) 731 ext4_mb_mark_free_simple(sb, buddy, first, len, grp); 732 else 733 grp->bb_counters[0]++; 734 if (i < max) 735 i = mb_find_next_zero_bit(bitmap, max, i); 736 } 737 grp->bb_fragments = fragments; 738 739 if (free != grp->bb_free) { 740 ext4_grp_locked_error(sb, group, 0, 0, 741 "%u clusters in bitmap, %u in gd", 742 free, grp->bb_free); 743 /* 744 * If we intent to continue, we consider group descritor 745 * corrupt and update bb_free using bitmap value 746 */ 747 grp->bb_free = free; 748 } 749 mb_set_largest_free_order(sb, grp); 750 751 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state)); 752 753 period = get_cycles() - period; 754 spin_lock(&EXT4_SB(sb)->s_bal_lock); 755 EXT4_SB(sb)->s_mb_buddies_generated++; 756 EXT4_SB(sb)->s_mb_generation_time += period; 757 spin_unlock(&EXT4_SB(sb)->s_bal_lock); 758 } 759 760 /* The buddy information is attached the buddy cache inode 761 * for convenience. The information regarding each group 762 * is loaded via ext4_mb_load_buddy. The information involve 763 * block bitmap and buddy information. The information are 764 * stored in the inode as 765 * 766 * { page } 767 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]... 768 * 769 * 770 * one block each for bitmap and buddy information. 771 * So for each group we take up 2 blocks. A page can 772 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks. 773 * So it can have information regarding groups_per_page which 774 * is blocks_per_page/2 775 * 776 * Locking note: This routine takes the block group lock of all groups 777 * for this page; do not hold this lock when calling this routine! 778 */ 779 780 static int ext4_mb_init_cache(struct page *page, char *incore) 781 { 782 ext4_group_t ngroups; 783 int blocksize; 784 int blocks_per_page; 785 int groups_per_page; 786 int err = 0; 787 int i; 788 ext4_group_t first_group, group; 789 int first_block; 790 struct super_block *sb; 791 struct buffer_head *bhs; 792 struct buffer_head **bh = NULL; 793 struct inode *inode; 794 char *data; 795 char *bitmap; 796 struct ext4_group_info *grinfo; 797 798 mb_debug(1, "init page %lu\n", page->index); 799 800 inode = page->mapping->host; 801 sb = inode->i_sb; 802 ngroups = ext4_get_groups_count(sb); 803 blocksize = 1 << inode->i_blkbits; 804 blocks_per_page = PAGE_CACHE_SIZE / blocksize; 805 806 groups_per_page = blocks_per_page >> 1; 807 if (groups_per_page == 0) 808 groups_per_page = 1; 809 810 /* allocate buffer_heads to read bitmaps */ 811 if (groups_per_page > 1) { 812 i = sizeof(struct buffer_head *) * groups_per_page; 813 bh = kzalloc(i, GFP_NOFS); 814 if (bh == NULL) { 815 err = -ENOMEM; 816 goto out; 817 } 818 } else 819 bh = &bhs; 820 821 first_group = page->index * blocks_per_page / 2; 822 823 /* read all groups the page covers into the cache */ 824 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 825 if (group >= ngroups) 826 break; 827 828 grinfo = ext4_get_group_info(sb, group); 829 /* 830 * If page is uptodate then we came here after online resize 831 * which added some new uninitialized group info structs, so 832 * we must skip all initialized uptodate buddies on the page, 833 * which may be currently in use by an allocating task. 834 */ 835 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) { 836 bh[i] = NULL; 837 continue; 838 } 839 if (!(bh[i] = ext4_read_block_bitmap_nowait(sb, group))) { 840 err = -ENOMEM; 841 goto out; 842 } 843 mb_debug(1, "read bitmap for group %u\n", group); 844 } 845 846 /* wait for I/O completion */ 847 for (i = 0, group = first_group; i < groups_per_page; i++, group++) { 848 if (bh[i] && ext4_wait_block_bitmap(sb, group, bh[i])) { 849 err = -EIO; 850 goto out; 851 } 852 } 853 854 first_block = page->index * blocks_per_page; 855 for (i = 0; i < blocks_per_page; i++) { 856 int group; 857 858 group = (first_block + i) >> 1; 859 if (group >= ngroups) 860 break; 861 862 if (!bh[group - first_group]) 863 /* skip initialized uptodate buddy */ 864 continue; 865 866 /* 867 * data carry information regarding this 868 * particular group in the format specified 869 * above 870 * 871 */ 872 data = page_address(page) + (i * blocksize); 873 bitmap = bh[group - first_group]->b_data; 874 875 /* 876 * We place the buddy block and bitmap block 877 * close together 878 */ 879 if ((first_block + i) & 1) { 880 /* this is block of buddy */ 881 BUG_ON(incore == NULL); 882 mb_debug(1, "put buddy for group %u in page %lu/%x\n", 883 group, page->index, i * blocksize); 884 trace_ext4_mb_buddy_bitmap_load(sb, group); 885 grinfo = ext4_get_group_info(sb, group); 886 grinfo->bb_fragments = 0; 887 memset(grinfo->bb_counters, 0, 888 sizeof(*grinfo->bb_counters) * 889 (sb->s_blocksize_bits+2)); 890 /* 891 * incore got set to the group block bitmap below 892 */ 893 ext4_lock_group(sb, group); 894 /* init the buddy */ 895 memset(data, 0xff, blocksize); 896 ext4_mb_generate_buddy(sb, data, incore, group); 897 ext4_unlock_group(sb, group); 898 incore = NULL; 899 } else { 900 /* this is block of bitmap */ 901 BUG_ON(incore != NULL); 902 mb_debug(1, "put bitmap for group %u in page %lu/%x\n", 903 group, page->index, i * blocksize); 904 trace_ext4_mb_bitmap_load(sb, group); 905 906 /* see comments in ext4_mb_put_pa() */ 907 ext4_lock_group(sb, group); 908 memcpy(data, bitmap, blocksize); 909 910 /* mark all preallocated blks used in in-core bitmap */ 911 ext4_mb_generate_from_pa(sb, data, group); 912 ext4_mb_generate_from_freelist(sb, data, group); 913 ext4_unlock_group(sb, group); 914 915 /* set incore so that the buddy information can be 916 * generated using this 917 */ 918 incore = data; 919 } 920 } 921 SetPageUptodate(page); 922 923 out: 924 if (bh) { 925 for (i = 0; i < groups_per_page; i++) 926 brelse(bh[i]); 927 if (bh != &bhs) 928 kfree(bh); 929 } 930 return err; 931 } 932 933 /* 934 * Lock the buddy and bitmap pages. This make sure other parallel init_group 935 * on the same buddy page doesn't happen whild holding the buddy page lock. 936 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap 937 * are on the same page e4b->bd_buddy_page is NULL and return value is 0. 938 */ 939 static int ext4_mb_get_buddy_page_lock(struct super_block *sb, 940 ext4_group_t group, struct ext4_buddy *e4b) 941 { 942 struct inode *inode = EXT4_SB(sb)->s_buddy_cache; 943 int block, pnum, poff; 944 int blocks_per_page; 945 struct page *page; 946 947 e4b->bd_buddy_page = NULL; 948 e4b->bd_bitmap_page = NULL; 949 950 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 951 /* 952 * the buddy cache inode stores the block bitmap 953 * and buddy information in consecutive blocks. 954 * So for each group we need two blocks. 955 */ 956 block = group * 2; 957 pnum = block / blocks_per_page; 958 poff = block % blocks_per_page; 959 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 960 if (!page) 961 return -EIO; 962 BUG_ON(page->mapping != inode->i_mapping); 963 e4b->bd_bitmap_page = page; 964 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 965 966 if (blocks_per_page >= 2) { 967 /* buddy and bitmap are on the same page */ 968 return 0; 969 } 970 971 block++; 972 pnum = block / blocks_per_page; 973 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 974 if (!page) 975 return -EIO; 976 BUG_ON(page->mapping != inode->i_mapping); 977 e4b->bd_buddy_page = page; 978 return 0; 979 } 980 981 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b) 982 { 983 if (e4b->bd_bitmap_page) { 984 unlock_page(e4b->bd_bitmap_page); 985 page_cache_release(e4b->bd_bitmap_page); 986 } 987 if (e4b->bd_buddy_page) { 988 unlock_page(e4b->bd_buddy_page); 989 page_cache_release(e4b->bd_buddy_page); 990 } 991 } 992 993 /* 994 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 995 * block group lock of all groups for this page; do not hold the BG lock when 996 * calling this routine! 997 */ 998 static noinline_for_stack 999 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group) 1000 { 1001 1002 struct ext4_group_info *this_grp; 1003 struct ext4_buddy e4b; 1004 struct page *page; 1005 int ret = 0; 1006 1007 mb_debug(1, "init group %u\n", group); 1008 this_grp = ext4_get_group_info(sb, group); 1009 /* 1010 * This ensures that we don't reinit the buddy cache 1011 * page which map to the group from which we are already 1012 * allocating. If we are looking at the buddy cache we would 1013 * have taken a reference using ext4_mb_load_buddy and that 1014 * would have pinned buddy page to page cache. 1015 */ 1016 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b); 1017 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) { 1018 /* 1019 * somebody initialized the group 1020 * return without doing anything 1021 */ 1022 goto err; 1023 } 1024 1025 page = e4b.bd_bitmap_page; 1026 ret = ext4_mb_init_cache(page, NULL); 1027 if (ret) 1028 goto err; 1029 if (!PageUptodate(page)) { 1030 ret = -EIO; 1031 goto err; 1032 } 1033 mark_page_accessed(page); 1034 1035 if (e4b.bd_buddy_page == NULL) { 1036 /* 1037 * If both the bitmap and buddy are in 1038 * the same page we don't need to force 1039 * init the buddy 1040 */ 1041 ret = 0; 1042 goto err; 1043 } 1044 /* init buddy cache */ 1045 page = e4b.bd_buddy_page; 1046 ret = ext4_mb_init_cache(page, e4b.bd_bitmap); 1047 if (ret) 1048 goto err; 1049 if (!PageUptodate(page)) { 1050 ret = -EIO; 1051 goto err; 1052 } 1053 mark_page_accessed(page); 1054 err: 1055 ext4_mb_put_buddy_page_lock(&e4b); 1056 return ret; 1057 } 1058 1059 /* 1060 * Locking note: This routine calls ext4_mb_init_cache(), which takes the 1061 * block group lock of all groups for this page; do not hold the BG lock when 1062 * calling this routine! 1063 */ 1064 static noinline_for_stack int 1065 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group, 1066 struct ext4_buddy *e4b) 1067 { 1068 int blocks_per_page; 1069 int block; 1070 int pnum; 1071 int poff; 1072 struct page *page; 1073 int ret; 1074 struct ext4_group_info *grp; 1075 struct ext4_sb_info *sbi = EXT4_SB(sb); 1076 struct inode *inode = sbi->s_buddy_cache; 1077 1078 mb_debug(1, "load group %u\n", group); 1079 1080 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize; 1081 grp = ext4_get_group_info(sb, group); 1082 1083 e4b->bd_blkbits = sb->s_blocksize_bits; 1084 e4b->bd_info = grp; 1085 e4b->bd_sb = sb; 1086 e4b->bd_group = group; 1087 e4b->bd_buddy_page = NULL; 1088 e4b->bd_bitmap_page = NULL; 1089 1090 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1091 /* 1092 * we need full data about the group 1093 * to make a good selection 1094 */ 1095 ret = ext4_mb_init_group(sb, group); 1096 if (ret) 1097 return ret; 1098 } 1099 1100 /* 1101 * the buddy cache inode stores the block bitmap 1102 * and buddy information in consecutive blocks. 1103 * So for each group we need two blocks. 1104 */ 1105 block = group * 2; 1106 pnum = block / blocks_per_page; 1107 poff = block % blocks_per_page; 1108 1109 /* we could use find_or_create_page(), but it locks page 1110 * what we'd like to avoid in fast path ... */ 1111 page = find_get_page(inode->i_mapping, pnum); 1112 if (page == NULL || !PageUptodate(page)) { 1113 if (page) 1114 /* 1115 * drop the page reference and try 1116 * to get the page with lock. If we 1117 * are not uptodate that implies 1118 * somebody just created the page but 1119 * is yet to initialize the same. So 1120 * wait for it to initialize. 1121 */ 1122 page_cache_release(page); 1123 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1124 if (page) { 1125 BUG_ON(page->mapping != inode->i_mapping); 1126 if (!PageUptodate(page)) { 1127 ret = ext4_mb_init_cache(page, NULL); 1128 if (ret) { 1129 unlock_page(page); 1130 goto err; 1131 } 1132 mb_cmp_bitmaps(e4b, page_address(page) + 1133 (poff * sb->s_blocksize)); 1134 } 1135 unlock_page(page); 1136 } 1137 } 1138 if (page == NULL || !PageUptodate(page)) { 1139 ret = -EIO; 1140 goto err; 1141 } 1142 e4b->bd_bitmap_page = page; 1143 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize); 1144 mark_page_accessed(page); 1145 1146 block++; 1147 pnum = block / blocks_per_page; 1148 poff = block % blocks_per_page; 1149 1150 page = find_get_page(inode->i_mapping, pnum); 1151 if (page == NULL || !PageUptodate(page)) { 1152 if (page) 1153 page_cache_release(page); 1154 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS); 1155 if (page) { 1156 BUG_ON(page->mapping != inode->i_mapping); 1157 if (!PageUptodate(page)) { 1158 ret = ext4_mb_init_cache(page, e4b->bd_bitmap); 1159 if (ret) { 1160 unlock_page(page); 1161 goto err; 1162 } 1163 } 1164 unlock_page(page); 1165 } 1166 } 1167 if (page == NULL || !PageUptodate(page)) { 1168 ret = -EIO; 1169 goto err; 1170 } 1171 e4b->bd_buddy_page = page; 1172 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize); 1173 mark_page_accessed(page); 1174 1175 BUG_ON(e4b->bd_bitmap_page == NULL); 1176 BUG_ON(e4b->bd_buddy_page == NULL); 1177 1178 return 0; 1179 1180 err: 1181 if (page) 1182 page_cache_release(page); 1183 if (e4b->bd_bitmap_page) 1184 page_cache_release(e4b->bd_bitmap_page); 1185 if (e4b->bd_buddy_page) 1186 page_cache_release(e4b->bd_buddy_page); 1187 e4b->bd_buddy = NULL; 1188 e4b->bd_bitmap = NULL; 1189 return ret; 1190 } 1191 1192 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b) 1193 { 1194 if (e4b->bd_bitmap_page) 1195 page_cache_release(e4b->bd_bitmap_page); 1196 if (e4b->bd_buddy_page) 1197 page_cache_release(e4b->bd_buddy_page); 1198 } 1199 1200 1201 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block) 1202 { 1203 int order = 1; 1204 void *bb; 1205 1206 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy); 1207 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3))); 1208 1209 bb = e4b->bd_buddy; 1210 while (order <= e4b->bd_blkbits + 1) { 1211 block = block >> 1; 1212 if (!mb_test_bit(block, bb)) { 1213 /* this block is part of buddy of order 'order' */ 1214 return order; 1215 } 1216 bb += 1 << (e4b->bd_blkbits - order); 1217 order++; 1218 } 1219 return 0; 1220 } 1221 1222 static void mb_clear_bits(void *bm, int cur, int len) 1223 { 1224 __u32 *addr; 1225 1226 len = cur + len; 1227 while (cur < len) { 1228 if ((cur & 31) == 0 && (len - cur) >= 32) { 1229 /* fast path: clear whole word at once */ 1230 addr = bm + (cur >> 3); 1231 *addr = 0; 1232 cur += 32; 1233 continue; 1234 } 1235 mb_clear_bit(cur, bm); 1236 cur++; 1237 } 1238 } 1239 1240 void ext4_set_bits(void *bm, int cur, int len) 1241 { 1242 __u32 *addr; 1243 1244 len = cur + len; 1245 while (cur < len) { 1246 if ((cur & 31) == 0 && (len - cur) >= 32) { 1247 /* fast path: set whole word at once */ 1248 addr = bm + (cur >> 3); 1249 *addr = 0xffffffff; 1250 cur += 32; 1251 continue; 1252 } 1253 mb_set_bit(cur, bm); 1254 cur++; 1255 } 1256 } 1257 1258 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, 1259 int first, int count) 1260 { 1261 int block = 0; 1262 int max = 0; 1263 int order; 1264 void *buddy; 1265 void *buddy2; 1266 struct super_block *sb = e4b->bd_sb; 1267 1268 BUG_ON(first + count > (sb->s_blocksize << 3)); 1269 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group)); 1270 mb_check_buddy(e4b); 1271 mb_free_blocks_double(inode, e4b, first, count); 1272 1273 e4b->bd_info->bb_free += count; 1274 if (first < e4b->bd_info->bb_first_free) 1275 e4b->bd_info->bb_first_free = first; 1276 1277 /* let's maintain fragments counter */ 1278 if (first != 0) 1279 block = !mb_test_bit(first - 1, e4b->bd_bitmap); 1280 if (first + count < EXT4_SB(sb)->s_mb_maxs[0]) 1281 max = !mb_test_bit(first + count, e4b->bd_bitmap); 1282 if (block && max) 1283 e4b->bd_info->bb_fragments--; 1284 else if (!block && !max) 1285 e4b->bd_info->bb_fragments++; 1286 1287 /* let's maintain buddy itself */ 1288 while (count-- > 0) { 1289 block = first++; 1290 order = 0; 1291 1292 if (!mb_test_bit(block, e4b->bd_bitmap)) { 1293 ext4_fsblk_t blocknr; 1294 1295 blocknr = ext4_group_first_block_no(sb, e4b->bd_group); 1296 blocknr += EXT4_C2B(EXT4_SB(sb), block); 1297 ext4_grp_locked_error(sb, e4b->bd_group, 1298 inode ? inode->i_ino : 0, 1299 blocknr, 1300 "freeing already freed block " 1301 "(bit %u)", block); 1302 } 1303 mb_clear_bit(block, e4b->bd_bitmap); 1304 e4b->bd_info->bb_counters[order]++; 1305 1306 /* start of the buddy */ 1307 buddy = mb_find_buddy(e4b, order, &max); 1308 1309 do { 1310 block &= ~1UL; 1311 if (mb_test_bit(block, buddy) || 1312 mb_test_bit(block + 1, buddy)) 1313 break; 1314 1315 /* both the buddies are free, try to coalesce them */ 1316 buddy2 = mb_find_buddy(e4b, order + 1, &max); 1317 1318 if (!buddy2) 1319 break; 1320 1321 if (order > 0) { 1322 /* for special purposes, we don't set 1323 * free bits in bitmap */ 1324 mb_set_bit(block, buddy); 1325 mb_set_bit(block + 1, buddy); 1326 } 1327 e4b->bd_info->bb_counters[order]--; 1328 e4b->bd_info->bb_counters[order]--; 1329 1330 block = block >> 1; 1331 order++; 1332 e4b->bd_info->bb_counters[order]++; 1333 1334 mb_clear_bit(block, buddy2); 1335 buddy = buddy2; 1336 } while (1); 1337 } 1338 mb_set_largest_free_order(sb, e4b->bd_info); 1339 mb_check_buddy(e4b); 1340 } 1341 1342 static int mb_find_extent(struct ext4_buddy *e4b, int block, 1343 int needed, struct ext4_free_extent *ex) 1344 { 1345 int next = block; 1346 int max, order; 1347 void *buddy; 1348 1349 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1350 BUG_ON(ex == NULL); 1351 1352 buddy = mb_find_buddy(e4b, 0, &max); 1353 BUG_ON(buddy == NULL); 1354 BUG_ON(block >= max); 1355 if (mb_test_bit(block, buddy)) { 1356 ex->fe_len = 0; 1357 ex->fe_start = 0; 1358 ex->fe_group = 0; 1359 return 0; 1360 } 1361 1362 /* find actual order */ 1363 order = mb_find_order_for_block(e4b, block); 1364 block = block >> order; 1365 1366 ex->fe_len = 1 << order; 1367 ex->fe_start = block << order; 1368 ex->fe_group = e4b->bd_group; 1369 1370 /* calc difference from given start */ 1371 next = next - ex->fe_start; 1372 ex->fe_len -= next; 1373 ex->fe_start += next; 1374 1375 while (needed > ex->fe_len && 1376 (buddy = mb_find_buddy(e4b, order, &max))) { 1377 1378 if (block + 1 >= max) 1379 break; 1380 1381 next = (block + 1) * (1 << order); 1382 if (mb_test_bit(next, e4b->bd_bitmap)) 1383 break; 1384 1385 order = mb_find_order_for_block(e4b, next); 1386 1387 block = next >> order; 1388 ex->fe_len += 1 << order; 1389 } 1390 1391 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3))); 1392 return ex->fe_len; 1393 } 1394 1395 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) 1396 { 1397 int ord; 1398 int mlen = 0; 1399 int max = 0; 1400 int cur; 1401 int start = ex->fe_start; 1402 int len = ex->fe_len; 1403 unsigned ret = 0; 1404 int len0 = len; 1405 void *buddy; 1406 1407 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3)); 1408 BUG_ON(e4b->bd_group != ex->fe_group); 1409 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group)); 1410 mb_check_buddy(e4b); 1411 mb_mark_used_double(e4b, start, len); 1412 1413 e4b->bd_info->bb_free -= len; 1414 if (e4b->bd_info->bb_first_free == start) 1415 e4b->bd_info->bb_first_free += len; 1416 1417 /* let's maintain fragments counter */ 1418 if (start != 0) 1419 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap); 1420 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0]) 1421 max = !mb_test_bit(start + len, e4b->bd_bitmap); 1422 if (mlen && max) 1423 e4b->bd_info->bb_fragments++; 1424 else if (!mlen && !max) 1425 e4b->bd_info->bb_fragments--; 1426 1427 /* let's maintain buddy itself */ 1428 while (len) { 1429 ord = mb_find_order_for_block(e4b, start); 1430 1431 if (((start >> ord) << ord) == start && len >= (1 << ord)) { 1432 /* the whole chunk may be allocated at once! */ 1433 mlen = 1 << ord; 1434 buddy = mb_find_buddy(e4b, ord, &max); 1435 BUG_ON((start >> ord) >= max); 1436 mb_set_bit(start >> ord, buddy); 1437 e4b->bd_info->bb_counters[ord]--; 1438 start += mlen; 1439 len -= mlen; 1440 BUG_ON(len < 0); 1441 continue; 1442 } 1443 1444 /* store for history */ 1445 if (ret == 0) 1446 ret = len | (ord << 16); 1447 1448 /* we have to split large buddy */ 1449 BUG_ON(ord <= 0); 1450 buddy = mb_find_buddy(e4b, ord, &max); 1451 mb_set_bit(start >> ord, buddy); 1452 e4b->bd_info->bb_counters[ord]--; 1453 1454 ord--; 1455 cur = (start >> ord) & ~1U; 1456 buddy = mb_find_buddy(e4b, ord, &max); 1457 mb_clear_bit(cur, buddy); 1458 mb_clear_bit(cur + 1, buddy); 1459 e4b->bd_info->bb_counters[ord]++; 1460 e4b->bd_info->bb_counters[ord]++; 1461 } 1462 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); 1463 1464 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); 1465 mb_check_buddy(e4b); 1466 1467 return ret; 1468 } 1469 1470 /* 1471 * Must be called under group lock! 1472 */ 1473 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac, 1474 struct ext4_buddy *e4b) 1475 { 1476 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1477 int ret; 1478 1479 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group); 1480 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1481 1482 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len); 1483 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical; 1484 ret = mb_mark_used(e4b, &ac->ac_b_ex); 1485 1486 /* preallocation can change ac_b_ex, thus we store actually 1487 * allocated blocks for history */ 1488 ac->ac_f_ex = ac->ac_b_ex; 1489 1490 ac->ac_status = AC_STATUS_FOUND; 1491 ac->ac_tail = ret & 0xffff; 1492 ac->ac_buddy = ret >> 16; 1493 1494 /* 1495 * take the page reference. We want the page to be pinned 1496 * so that we don't get a ext4_mb_init_cache_call for this 1497 * group until we update the bitmap. That would mean we 1498 * double allocate blocks. The reference is dropped 1499 * in ext4_mb_release_context 1500 */ 1501 ac->ac_bitmap_page = e4b->bd_bitmap_page; 1502 get_page(ac->ac_bitmap_page); 1503 ac->ac_buddy_page = e4b->bd_buddy_page; 1504 get_page(ac->ac_buddy_page); 1505 /* store last allocated for subsequent stream allocation */ 1506 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1507 spin_lock(&sbi->s_md_lock); 1508 sbi->s_mb_last_group = ac->ac_f_ex.fe_group; 1509 sbi->s_mb_last_start = ac->ac_f_ex.fe_start; 1510 spin_unlock(&sbi->s_md_lock); 1511 } 1512 } 1513 1514 /* 1515 * regular allocator, for general purposes allocation 1516 */ 1517 1518 static void ext4_mb_check_limits(struct ext4_allocation_context *ac, 1519 struct ext4_buddy *e4b, 1520 int finish_group) 1521 { 1522 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1523 struct ext4_free_extent *bex = &ac->ac_b_ex; 1524 struct ext4_free_extent *gex = &ac->ac_g_ex; 1525 struct ext4_free_extent ex; 1526 int max; 1527 1528 if (ac->ac_status == AC_STATUS_FOUND) 1529 return; 1530 /* 1531 * We don't want to scan for a whole year 1532 */ 1533 if (ac->ac_found > sbi->s_mb_max_to_scan && 1534 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1535 ac->ac_status = AC_STATUS_BREAK; 1536 return; 1537 } 1538 1539 /* 1540 * Haven't found good chunk so far, let's continue 1541 */ 1542 if (bex->fe_len < gex->fe_len) 1543 return; 1544 1545 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan) 1546 && bex->fe_group == e4b->bd_group) { 1547 /* recheck chunk's availability - we don't know 1548 * when it was found (within this lock-unlock 1549 * period or not) */ 1550 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex); 1551 if (max >= gex->fe_len) { 1552 ext4_mb_use_best_found(ac, e4b); 1553 return; 1554 } 1555 } 1556 } 1557 1558 /* 1559 * The routine checks whether found extent is good enough. If it is, 1560 * then the extent gets marked used and flag is set to the context 1561 * to stop scanning. Otherwise, the extent is compared with the 1562 * previous found extent and if new one is better, then it's stored 1563 * in the context. Later, the best found extent will be used, if 1564 * mballoc can't find good enough extent. 1565 * 1566 * FIXME: real allocation policy is to be designed yet! 1567 */ 1568 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac, 1569 struct ext4_free_extent *ex, 1570 struct ext4_buddy *e4b) 1571 { 1572 struct ext4_free_extent *bex = &ac->ac_b_ex; 1573 struct ext4_free_extent *gex = &ac->ac_g_ex; 1574 1575 BUG_ON(ex->fe_len <= 0); 1576 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1577 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 1578 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE); 1579 1580 ac->ac_found++; 1581 1582 /* 1583 * The special case - take what you catch first 1584 */ 1585 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 1586 *bex = *ex; 1587 ext4_mb_use_best_found(ac, e4b); 1588 return; 1589 } 1590 1591 /* 1592 * Let's check whether the chuck is good enough 1593 */ 1594 if (ex->fe_len == gex->fe_len) { 1595 *bex = *ex; 1596 ext4_mb_use_best_found(ac, e4b); 1597 return; 1598 } 1599 1600 /* 1601 * If this is first found extent, just store it in the context 1602 */ 1603 if (bex->fe_len == 0) { 1604 *bex = *ex; 1605 return; 1606 } 1607 1608 /* 1609 * If new found extent is better, store it in the context 1610 */ 1611 if (bex->fe_len < gex->fe_len) { 1612 /* if the request isn't satisfied, any found extent 1613 * larger than previous best one is better */ 1614 if (ex->fe_len > bex->fe_len) 1615 *bex = *ex; 1616 } else if (ex->fe_len > gex->fe_len) { 1617 /* if the request is satisfied, then we try to find 1618 * an extent that still satisfy the request, but is 1619 * smaller than previous one */ 1620 if (ex->fe_len < bex->fe_len) 1621 *bex = *ex; 1622 } 1623 1624 ext4_mb_check_limits(ac, e4b, 0); 1625 } 1626 1627 static noinline_for_stack 1628 int ext4_mb_try_best_found(struct ext4_allocation_context *ac, 1629 struct ext4_buddy *e4b) 1630 { 1631 struct ext4_free_extent ex = ac->ac_b_ex; 1632 ext4_group_t group = ex.fe_group; 1633 int max; 1634 int err; 1635 1636 BUG_ON(ex.fe_len <= 0); 1637 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1638 if (err) 1639 return err; 1640 1641 ext4_lock_group(ac->ac_sb, group); 1642 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex); 1643 1644 if (max > 0) { 1645 ac->ac_b_ex = ex; 1646 ext4_mb_use_best_found(ac, e4b); 1647 } 1648 1649 ext4_unlock_group(ac->ac_sb, group); 1650 ext4_mb_unload_buddy(e4b); 1651 1652 return 0; 1653 } 1654 1655 static noinline_for_stack 1656 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac, 1657 struct ext4_buddy *e4b) 1658 { 1659 ext4_group_t group = ac->ac_g_ex.fe_group; 1660 int max; 1661 int err; 1662 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 1663 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1664 struct ext4_free_extent ex; 1665 1666 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL)) 1667 return 0; 1668 if (grp->bb_free == 0) 1669 return 0; 1670 1671 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b); 1672 if (err) 1673 return err; 1674 1675 ext4_lock_group(ac->ac_sb, group); 1676 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start, 1677 ac->ac_g_ex.fe_len, &ex); 1678 1679 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) { 1680 ext4_fsblk_t start; 1681 1682 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) + 1683 ex.fe_start; 1684 /* use do_div to get remainder (would be 64-bit modulo) */ 1685 if (do_div(start, sbi->s_stripe) == 0) { 1686 ac->ac_found++; 1687 ac->ac_b_ex = ex; 1688 ext4_mb_use_best_found(ac, e4b); 1689 } 1690 } else if (max >= ac->ac_g_ex.fe_len) { 1691 BUG_ON(ex.fe_len <= 0); 1692 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1693 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1694 ac->ac_found++; 1695 ac->ac_b_ex = ex; 1696 ext4_mb_use_best_found(ac, e4b); 1697 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) { 1698 /* Sometimes, caller may want to merge even small 1699 * number of blocks to an existing extent */ 1700 BUG_ON(ex.fe_len <= 0); 1701 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group); 1702 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start); 1703 ac->ac_found++; 1704 ac->ac_b_ex = ex; 1705 ext4_mb_use_best_found(ac, e4b); 1706 } 1707 ext4_unlock_group(ac->ac_sb, group); 1708 ext4_mb_unload_buddy(e4b); 1709 1710 return 0; 1711 } 1712 1713 /* 1714 * The routine scans buddy structures (not bitmap!) from given order 1715 * to max order and tries to find big enough chunk to satisfy the req 1716 */ 1717 static noinline_for_stack 1718 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac, 1719 struct ext4_buddy *e4b) 1720 { 1721 struct super_block *sb = ac->ac_sb; 1722 struct ext4_group_info *grp = e4b->bd_info; 1723 void *buddy; 1724 int i; 1725 int k; 1726 int max; 1727 1728 BUG_ON(ac->ac_2order <= 0); 1729 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) { 1730 if (grp->bb_counters[i] == 0) 1731 continue; 1732 1733 buddy = mb_find_buddy(e4b, i, &max); 1734 BUG_ON(buddy == NULL); 1735 1736 k = mb_find_next_zero_bit(buddy, max, 0); 1737 BUG_ON(k >= max); 1738 1739 ac->ac_found++; 1740 1741 ac->ac_b_ex.fe_len = 1 << i; 1742 ac->ac_b_ex.fe_start = k << i; 1743 ac->ac_b_ex.fe_group = e4b->bd_group; 1744 1745 ext4_mb_use_best_found(ac, e4b); 1746 1747 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len); 1748 1749 if (EXT4_SB(sb)->s_mb_stats) 1750 atomic_inc(&EXT4_SB(sb)->s_bal_2orders); 1751 1752 break; 1753 } 1754 } 1755 1756 /* 1757 * The routine scans the group and measures all found extents. 1758 * In order to optimize scanning, caller must pass number of 1759 * free blocks in the group, so the routine can know upper limit. 1760 */ 1761 static noinline_for_stack 1762 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac, 1763 struct ext4_buddy *e4b) 1764 { 1765 struct super_block *sb = ac->ac_sb; 1766 void *bitmap = e4b->bd_bitmap; 1767 struct ext4_free_extent ex; 1768 int i; 1769 int free; 1770 1771 free = e4b->bd_info->bb_free; 1772 BUG_ON(free <= 0); 1773 1774 i = e4b->bd_info->bb_first_free; 1775 1776 while (free && ac->ac_status == AC_STATUS_CONTINUE) { 1777 i = mb_find_next_zero_bit(bitmap, 1778 EXT4_CLUSTERS_PER_GROUP(sb), i); 1779 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) { 1780 /* 1781 * IF we have corrupt bitmap, we won't find any 1782 * free blocks even though group info says we 1783 * we have free blocks 1784 */ 1785 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1786 "%d free clusters as per " 1787 "group info. But bitmap says 0", 1788 free); 1789 break; 1790 } 1791 1792 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex); 1793 BUG_ON(ex.fe_len <= 0); 1794 if (free < ex.fe_len) { 1795 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0, 1796 "%d free clusters as per " 1797 "group info. But got %d blocks", 1798 free, ex.fe_len); 1799 /* 1800 * The number of free blocks differs. This mostly 1801 * indicate that the bitmap is corrupt. So exit 1802 * without claiming the space. 1803 */ 1804 break; 1805 } 1806 1807 ext4_mb_measure_extent(ac, &ex, e4b); 1808 1809 i += ex.fe_len; 1810 free -= ex.fe_len; 1811 } 1812 1813 ext4_mb_check_limits(ac, e4b, 1); 1814 } 1815 1816 /* 1817 * This is a special case for storages like raid5 1818 * we try to find stripe-aligned chunks for stripe-size-multiple requests 1819 */ 1820 static noinline_for_stack 1821 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac, 1822 struct ext4_buddy *e4b) 1823 { 1824 struct super_block *sb = ac->ac_sb; 1825 struct ext4_sb_info *sbi = EXT4_SB(sb); 1826 void *bitmap = e4b->bd_bitmap; 1827 struct ext4_free_extent ex; 1828 ext4_fsblk_t first_group_block; 1829 ext4_fsblk_t a; 1830 ext4_grpblk_t i; 1831 int max; 1832 1833 BUG_ON(sbi->s_stripe == 0); 1834 1835 /* find first stripe-aligned block in group */ 1836 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group); 1837 1838 a = first_group_block + sbi->s_stripe - 1; 1839 do_div(a, sbi->s_stripe); 1840 i = (a * sbi->s_stripe) - first_group_block; 1841 1842 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) { 1843 if (!mb_test_bit(i, bitmap)) { 1844 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex); 1845 if (max >= sbi->s_stripe) { 1846 ac->ac_found++; 1847 ac->ac_b_ex = ex; 1848 ext4_mb_use_best_found(ac, e4b); 1849 break; 1850 } 1851 } 1852 i += sbi->s_stripe; 1853 } 1854 } 1855 1856 /* This is now called BEFORE we load the buddy bitmap. */ 1857 static int ext4_mb_good_group(struct ext4_allocation_context *ac, 1858 ext4_group_t group, int cr) 1859 { 1860 unsigned free, fragments; 1861 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb)); 1862 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group); 1863 1864 BUG_ON(cr < 0 || cr >= 4); 1865 1866 free = grp->bb_free; 1867 if (free == 0) 1868 return 0; 1869 if (cr <= 2 && free < ac->ac_g_ex.fe_len) 1870 return 0; 1871 1872 /* We only do this if the grp has never been initialized */ 1873 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 1874 int ret = ext4_mb_init_group(ac->ac_sb, group); 1875 if (ret) 1876 return 0; 1877 } 1878 1879 fragments = grp->bb_fragments; 1880 if (fragments == 0) 1881 return 0; 1882 1883 switch (cr) { 1884 case 0: 1885 BUG_ON(ac->ac_2order == 0); 1886 1887 if (grp->bb_largest_free_order < ac->ac_2order) 1888 return 0; 1889 1890 /* Avoid using the first bg of a flexgroup for data files */ 1891 if ((ac->ac_flags & EXT4_MB_HINT_DATA) && 1892 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) && 1893 ((group % flex_size) == 0)) 1894 return 0; 1895 1896 return 1; 1897 case 1: 1898 if ((free / fragments) >= ac->ac_g_ex.fe_len) 1899 return 1; 1900 break; 1901 case 2: 1902 if (free >= ac->ac_g_ex.fe_len) 1903 return 1; 1904 break; 1905 case 3: 1906 return 1; 1907 default: 1908 BUG(); 1909 } 1910 1911 return 0; 1912 } 1913 1914 static noinline_for_stack int 1915 ext4_mb_regular_allocator(struct ext4_allocation_context *ac) 1916 { 1917 ext4_group_t ngroups, group, i; 1918 int cr; 1919 int err = 0; 1920 struct ext4_sb_info *sbi; 1921 struct super_block *sb; 1922 struct ext4_buddy e4b; 1923 1924 sb = ac->ac_sb; 1925 sbi = EXT4_SB(sb); 1926 ngroups = ext4_get_groups_count(sb); 1927 /* non-extent files are limited to low blocks/groups */ 1928 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))) 1929 ngroups = sbi->s_blockfile_groups; 1930 1931 BUG_ON(ac->ac_status == AC_STATUS_FOUND); 1932 1933 /* first, try the goal */ 1934 err = ext4_mb_find_by_goal(ac, &e4b); 1935 if (err || ac->ac_status == AC_STATUS_FOUND) 1936 goto out; 1937 1938 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 1939 goto out; 1940 1941 /* 1942 * ac->ac2_order is set only if the fe_len is a power of 2 1943 * if ac2_order is set we also set criteria to 0 so that we 1944 * try exact allocation using buddy. 1945 */ 1946 i = fls(ac->ac_g_ex.fe_len); 1947 ac->ac_2order = 0; 1948 /* 1949 * We search using buddy data only if the order of the request 1950 * is greater than equal to the sbi_s_mb_order2_reqs 1951 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req 1952 */ 1953 if (i >= sbi->s_mb_order2_reqs) { 1954 /* 1955 * This should tell if fe_len is exactly power of 2 1956 */ 1957 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0) 1958 ac->ac_2order = i - 1; 1959 } 1960 1961 /* if stream allocation is enabled, use global goal */ 1962 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) { 1963 /* TBD: may be hot point */ 1964 spin_lock(&sbi->s_md_lock); 1965 ac->ac_g_ex.fe_group = sbi->s_mb_last_group; 1966 ac->ac_g_ex.fe_start = sbi->s_mb_last_start; 1967 spin_unlock(&sbi->s_md_lock); 1968 } 1969 1970 /* Let's just scan groups to find more-less suitable blocks */ 1971 cr = ac->ac_2order ? 0 : 1; 1972 /* 1973 * cr == 0 try to get exact allocation, 1974 * cr == 3 try to get anything 1975 */ 1976 repeat: 1977 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) { 1978 ac->ac_criteria = cr; 1979 /* 1980 * searching for the right group start 1981 * from the goal value specified 1982 */ 1983 group = ac->ac_g_ex.fe_group; 1984 1985 for (i = 0; i < ngroups; group++, i++) { 1986 if (group == ngroups) 1987 group = 0; 1988 1989 /* This now checks without needing the buddy page */ 1990 if (!ext4_mb_good_group(ac, group, cr)) 1991 continue; 1992 1993 err = ext4_mb_load_buddy(sb, group, &e4b); 1994 if (err) 1995 goto out; 1996 1997 ext4_lock_group(sb, group); 1998 1999 /* 2000 * We need to check again after locking the 2001 * block group 2002 */ 2003 if (!ext4_mb_good_group(ac, group, cr)) { 2004 ext4_unlock_group(sb, group); 2005 ext4_mb_unload_buddy(&e4b); 2006 continue; 2007 } 2008 2009 ac->ac_groups_scanned++; 2010 if (cr == 0) 2011 ext4_mb_simple_scan_group(ac, &e4b); 2012 else if (cr == 1 && sbi->s_stripe && 2013 !(ac->ac_g_ex.fe_len % sbi->s_stripe)) 2014 ext4_mb_scan_aligned(ac, &e4b); 2015 else 2016 ext4_mb_complex_scan_group(ac, &e4b); 2017 2018 ext4_unlock_group(sb, group); 2019 ext4_mb_unload_buddy(&e4b); 2020 2021 if (ac->ac_status != AC_STATUS_CONTINUE) 2022 break; 2023 } 2024 } 2025 2026 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND && 2027 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) { 2028 /* 2029 * We've been searching too long. Let's try to allocate 2030 * the best chunk we've found so far 2031 */ 2032 2033 ext4_mb_try_best_found(ac, &e4b); 2034 if (ac->ac_status != AC_STATUS_FOUND) { 2035 /* 2036 * Someone more lucky has already allocated it. 2037 * The only thing we can do is just take first 2038 * found block(s) 2039 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n"); 2040 */ 2041 ac->ac_b_ex.fe_group = 0; 2042 ac->ac_b_ex.fe_start = 0; 2043 ac->ac_b_ex.fe_len = 0; 2044 ac->ac_status = AC_STATUS_CONTINUE; 2045 ac->ac_flags |= EXT4_MB_HINT_FIRST; 2046 cr = 3; 2047 atomic_inc(&sbi->s_mb_lost_chunks); 2048 goto repeat; 2049 } 2050 } 2051 out: 2052 return err; 2053 } 2054 2055 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos) 2056 { 2057 struct super_block *sb = seq->private; 2058 ext4_group_t group; 2059 2060 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2061 return NULL; 2062 group = *pos + 1; 2063 return (void *) ((unsigned long) group); 2064 } 2065 2066 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos) 2067 { 2068 struct super_block *sb = seq->private; 2069 ext4_group_t group; 2070 2071 ++*pos; 2072 if (*pos < 0 || *pos >= ext4_get_groups_count(sb)) 2073 return NULL; 2074 group = *pos + 1; 2075 return (void *) ((unsigned long) group); 2076 } 2077 2078 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v) 2079 { 2080 struct super_block *sb = seq->private; 2081 ext4_group_t group = (ext4_group_t) ((unsigned long) v); 2082 int i; 2083 int err, buddy_loaded = 0; 2084 struct ext4_buddy e4b; 2085 struct ext4_group_info *grinfo; 2086 struct sg { 2087 struct ext4_group_info info; 2088 ext4_grpblk_t counters[16]; 2089 } sg; 2090 2091 group--; 2092 if (group == 0) 2093 seq_printf(seq, "#%-5s: %-5s %-5s %-5s " 2094 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s " 2095 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n", 2096 "group", "free", "frags", "first", 2097 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6", 2098 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13"); 2099 2100 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) + 2101 sizeof(struct ext4_group_info); 2102 grinfo = ext4_get_group_info(sb, group); 2103 /* Load the group info in memory only if not already loaded. */ 2104 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) { 2105 err = ext4_mb_load_buddy(sb, group, &e4b); 2106 if (err) { 2107 seq_printf(seq, "#%-5u: I/O error\n", group); 2108 return 0; 2109 } 2110 buddy_loaded = 1; 2111 } 2112 2113 memcpy(&sg, ext4_get_group_info(sb, group), i); 2114 2115 if (buddy_loaded) 2116 ext4_mb_unload_buddy(&e4b); 2117 2118 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free, 2119 sg.info.bb_fragments, sg.info.bb_first_free); 2120 for (i = 0; i <= 13; i++) 2121 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ? 2122 sg.info.bb_counters[i] : 0); 2123 seq_printf(seq, " ]\n"); 2124 2125 return 0; 2126 } 2127 2128 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v) 2129 { 2130 } 2131 2132 static const struct seq_operations ext4_mb_seq_groups_ops = { 2133 .start = ext4_mb_seq_groups_start, 2134 .next = ext4_mb_seq_groups_next, 2135 .stop = ext4_mb_seq_groups_stop, 2136 .show = ext4_mb_seq_groups_show, 2137 }; 2138 2139 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file) 2140 { 2141 struct super_block *sb = PDE(inode)->data; 2142 int rc; 2143 2144 rc = seq_open(file, &ext4_mb_seq_groups_ops); 2145 if (rc == 0) { 2146 struct seq_file *m = file->private_data; 2147 m->private = sb; 2148 } 2149 return rc; 2150 2151 } 2152 2153 static const struct file_operations ext4_mb_seq_groups_fops = { 2154 .owner = THIS_MODULE, 2155 .open = ext4_mb_seq_groups_open, 2156 .read = seq_read, 2157 .llseek = seq_lseek, 2158 .release = seq_release, 2159 }; 2160 2161 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits) 2162 { 2163 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2164 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index]; 2165 2166 BUG_ON(!cachep); 2167 return cachep; 2168 } 2169 2170 /* 2171 * Allocate the top-level s_group_info array for the specified number 2172 * of groups 2173 */ 2174 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups) 2175 { 2176 struct ext4_sb_info *sbi = EXT4_SB(sb); 2177 unsigned size; 2178 struct ext4_group_info ***new_groupinfo; 2179 2180 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >> 2181 EXT4_DESC_PER_BLOCK_BITS(sb); 2182 if (size <= sbi->s_group_info_size) 2183 return 0; 2184 2185 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size); 2186 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL); 2187 if (!new_groupinfo) { 2188 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group"); 2189 return -ENOMEM; 2190 } 2191 if (sbi->s_group_info) { 2192 memcpy(new_groupinfo, sbi->s_group_info, 2193 sbi->s_group_info_size * sizeof(*sbi->s_group_info)); 2194 ext4_kvfree(sbi->s_group_info); 2195 } 2196 sbi->s_group_info = new_groupinfo; 2197 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info); 2198 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n", 2199 sbi->s_group_info_size); 2200 return 0; 2201 } 2202 2203 /* Create and initialize ext4_group_info data for the given group. */ 2204 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, 2205 struct ext4_group_desc *desc) 2206 { 2207 int i; 2208 int metalen = 0; 2209 struct ext4_sb_info *sbi = EXT4_SB(sb); 2210 struct ext4_group_info **meta_group_info; 2211 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2212 2213 /* 2214 * First check if this group is the first of a reserved block. 2215 * If it's true, we have to allocate a new table of pointers 2216 * to ext4_group_info structures 2217 */ 2218 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2219 metalen = sizeof(*meta_group_info) << 2220 EXT4_DESC_PER_BLOCK_BITS(sb); 2221 meta_group_info = kmalloc(metalen, GFP_KERNEL); 2222 if (meta_group_info == NULL) { 2223 ext4_msg(sb, KERN_ERR, "can't allocate mem " 2224 "for a buddy group"); 2225 goto exit_meta_group_info; 2226 } 2227 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = 2228 meta_group_info; 2229 } 2230 2231 meta_group_info = 2232 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]; 2233 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1); 2234 2235 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_KERNEL); 2236 if (meta_group_info[i] == NULL) { 2237 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem"); 2238 goto exit_group_info; 2239 } 2240 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, 2241 &(meta_group_info[i]->bb_state)); 2242 2243 /* 2244 * initialize bb_free to be able to skip 2245 * empty groups without initialization 2246 */ 2247 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2248 meta_group_info[i]->bb_free = 2249 ext4_free_clusters_after_init(sb, group, desc); 2250 } else { 2251 meta_group_info[i]->bb_free = 2252 ext4_free_group_clusters(sb, desc); 2253 } 2254 2255 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); 2256 init_rwsem(&meta_group_info[i]->alloc_sem); 2257 meta_group_info[i]->bb_free_root = RB_ROOT; 2258 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ 2259 2260 #ifdef DOUBLE_CHECK 2261 { 2262 struct buffer_head *bh; 2263 meta_group_info[i]->bb_bitmap = 2264 kmalloc(sb->s_blocksize, GFP_KERNEL); 2265 BUG_ON(meta_group_info[i]->bb_bitmap == NULL); 2266 bh = ext4_read_block_bitmap(sb, group); 2267 BUG_ON(bh == NULL); 2268 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data, 2269 sb->s_blocksize); 2270 put_bh(bh); 2271 } 2272 #endif 2273 2274 return 0; 2275 2276 exit_group_info: 2277 /* If a meta_group_info table has been allocated, release it now */ 2278 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) { 2279 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]); 2280 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] = NULL; 2281 } 2282 exit_meta_group_info: 2283 return -ENOMEM; 2284 } /* ext4_mb_add_groupinfo */ 2285 2286 static int ext4_mb_init_backend(struct super_block *sb) 2287 { 2288 ext4_group_t ngroups = ext4_get_groups_count(sb); 2289 ext4_group_t i; 2290 struct ext4_sb_info *sbi = EXT4_SB(sb); 2291 int err; 2292 struct ext4_group_desc *desc; 2293 struct kmem_cache *cachep; 2294 2295 err = ext4_mb_alloc_groupinfo(sb, ngroups); 2296 if (err) 2297 return err; 2298 2299 sbi->s_buddy_cache = new_inode(sb); 2300 if (sbi->s_buddy_cache == NULL) { 2301 ext4_msg(sb, KERN_ERR, "can't get new inode"); 2302 goto err_freesgi; 2303 } 2304 /* To avoid potentially colliding with an valid on-disk inode number, 2305 * use EXT4_BAD_INO for the buddy cache inode number. This inode is 2306 * not in the inode hash, so it should never be found by iget(), but 2307 * this will avoid confusion if it ever shows up during debugging. */ 2308 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO; 2309 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0; 2310 for (i = 0; i < ngroups; i++) { 2311 desc = ext4_get_group_desc(sb, i, NULL); 2312 if (desc == NULL) { 2313 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i); 2314 goto err_freebuddy; 2315 } 2316 if (ext4_mb_add_groupinfo(sb, i, desc) != 0) 2317 goto err_freebuddy; 2318 } 2319 2320 return 0; 2321 2322 err_freebuddy: 2323 cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2324 while (i-- > 0) 2325 kmem_cache_free(cachep, ext4_get_group_info(sb, i)); 2326 i = sbi->s_group_info_size; 2327 while (i-- > 0) 2328 kfree(sbi->s_group_info[i]); 2329 iput(sbi->s_buddy_cache); 2330 err_freesgi: 2331 ext4_kvfree(sbi->s_group_info); 2332 return -ENOMEM; 2333 } 2334 2335 static void ext4_groupinfo_destroy_slabs(void) 2336 { 2337 int i; 2338 2339 for (i = 0; i < NR_GRPINFO_CACHES; i++) { 2340 if (ext4_groupinfo_caches[i]) 2341 kmem_cache_destroy(ext4_groupinfo_caches[i]); 2342 ext4_groupinfo_caches[i] = NULL; 2343 } 2344 } 2345 2346 static int ext4_groupinfo_create_slab(size_t size) 2347 { 2348 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex); 2349 int slab_size; 2350 int blocksize_bits = order_base_2(size); 2351 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE; 2352 struct kmem_cache *cachep; 2353 2354 if (cache_index >= NR_GRPINFO_CACHES) 2355 return -EINVAL; 2356 2357 if (unlikely(cache_index < 0)) 2358 cache_index = 0; 2359 2360 mutex_lock(&ext4_grpinfo_slab_create_mutex); 2361 if (ext4_groupinfo_caches[cache_index]) { 2362 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2363 return 0; /* Already created */ 2364 } 2365 2366 slab_size = offsetof(struct ext4_group_info, 2367 bb_counters[blocksize_bits + 2]); 2368 2369 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index], 2370 slab_size, 0, SLAB_RECLAIM_ACCOUNT, 2371 NULL); 2372 2373 ext4_groupinfo_caches[cache_index] = cachep; 2374 2375 mutex_unlock(&ext4_grpinfo_slab_create_mutex); 2376 if (!cachep) { 2377 printk(KERN_EMERG 2378 "EXT4-fs: no memory for groupinfo slab cache\n"); 2379 return -ENOMEM; 2380 } 2381 2382 return 0; 2383 } 2384 2385 int ext4_mb_init(struct super_block *sb) 2386 { 2387 struct ext4_sb_info *sbi = EXT4_SB(sb); 2388 unsigned i, j; 2389 unsigned offset; 2390 unsigned max; 2391 int ret; 2392 2393 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets); 2394 2395 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL); 2396 if (sbi->s_mb_offsets == NULL) { 2397 ret = -ENOMEM; 2398 goto out; 2399 } 2400 2401 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs); 2402 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL); 2403 if (sbi->s_mb_maxs == NULL) { 2404 ret = -ENOMEM; 2405 goto out; 2406 } 2407 2408 ret = ext4_groupinfo_create_slab(sb->s_blocksize); 2409 if (ret < 0) 2410 goto out; 2411 2412 /* order 0 is regular bitmap */ 2413 sbi->s_mb_maxs[0] = sb->s_blocksize << 3; 2414 sbi->s_mb_offsets[0] = 0; 2415 2416 i = 1; 2417 offset = 0; 2418 max = sb->s_blocksize << 2; 2419 do { 2420 sbi->s_mb_offsets[i] = offset; 2421 sbi->s_mb_maxs[i] = max; 2422 offset += 1 << (sb->s_blocksize_bits - i); 2423 max = max >> 1; 2424 i++; 2425 } while (i <= sb->s_blocksize_bits + 1); 2426 2427 spin_lock_init(&sbi->s_md_lock); 2428 spin_lock_init(&sbi->s_bal_lock); 2429 2430 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN; 2431 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN; 2432 sbi->s_mb_stats = MB_DEFAULT_STATS; 2433 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD; 2434 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS; 2435 /* 2436 * The default group preallocation is 512, which for 4k block 2437 * sizes translates to 2 megabytes. However for bigalloc file 2438 * systems, this is probably too big (i.e, if the cluster size 2439 * is 1 megabyte, then group preallocation size becomes half a 2440 * gigabyte!). As a default, we will keep a two megabyte 2441 * group pralloc size for cluster sizes up to 64k, and after 2442 * that, we will force a minimum group preallocation size of 2443 * 32 clusters. This translates to 8 megs when the cluster 2444 * size is 256k, and 32 megs when the cluster size is 1 meg, 2445 * which seems reasonable as a default. 2446 */ 2447 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >> 2448 sbi->s_cluster_bits, 32); 2449 /* 2450 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc 2451 * to the lowest multiple of s_stripe which is bigger than 2452 * the s_mb_group_prealloc as determined above. We want 2453 * the preallocation size to be an exact multiple of the 2454 * RAID stripe size so that preallocations don't fragment 2455 * the stripes. 2456 */ 2457 if (sbi->s_stripe > 1) { 2458 sbi->s_mb_group_prealloc = roundup( 2459 sbi->s_mb_group_prealloc, sbi->s_stripe); 2460 } 2461 2462 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group); 2463 if (sbi->s_locality_groups == NULL) { 2464 ret = -ENOMEM; 2465 goto out_free_groupinfo_slab; 2466 } 2467 for_each_possible_cpu(i) { 2468 struct ext4_locality_group *lg; 2469 lg = per_cpu_ptr(sbi->s_locality_groups, i); 2470 mutex_init(&lg->lg_mutex); 2471 for (j = 0; j < PREALLOC_TB_SIZE; j++) 2472 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]); 2473 spin_lock_init(&lg->lg_prealloc_lock); 2474 } 2475 2476 /* init file for buddy data */ 2477 ret = ext4_mb_init_backend(sb); 2478 if (ret != 0) 2479 goto out_free_locality_groups; 2480 2481 if (sbi->s_proc) 2482 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc, 2483 &ext4_mb_seq_groups_fops, sb); 2484 2485 return 0; 2486 2487 out_free_locality_groups: 2488 free_percpu(sbi->s_locality_groups); 2489 sbi->s_locality_groups = NULL; 2490 out_free_groupinfo_slab: 2491 ext4_groupinfo_destroy_slabs(); 2492 out: 2493 kfree(sbi->s_mb_offsets); 2494 sbi->s_mb_offsets = NULL; 2495 kfree(sbi->s_mb_maxs); 2496 sbi->s_mb_maxs = NULL; 2497 return ret; 2498 } 2499 2500 /* need to called with the ext4 group lock held */ 2501 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp) 2502 { 2503 struct ext4_prealloc_space *pa; 2504 struct list_head *cur, *tmp; 2505 int count = 0; 2506 2507 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) { 2508 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 2509 list_del(&pa->pa_group_list); 2510 count++; 2511 kmem_cache_free(ext4_pspace_cachep, pa); 2512 } 2513 if (count) 2514 mb_debug(1, "mballoc: %u PAs left\n", count); 2515 2516 } 2517 2518 int ext4_mb_release(struct super_block *sb) 2519 { 2520 ext4_group_t ngroups = ext4_get_groups_count(sb); 2521 ext4_group_t i; 2522 int num_meta_group_infos; 2523 struct ext4_group_info *grinfo; 2524 struct ext4_sb_info *sbi = EXT4_SB(sb); 2525 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits); 2526 2527 if (sbi->s_proc) 2528 remove_proc_entry("mb_groups", sbi->s_proc); 2529 2530 if (sbi->s_group_info) { 2531 for (i = 0; i < ngroups; i++) { 2532 grinfo = ext4_get_group_info(sb, i); 2533 #ifdef DOUBLE_CHECK 2534 kfree(grinfo->bb_bitmap); 2535 #endif 2536 ext4_lock_group(sb, i); 2537 ext4_mb_cleanup_pa(grinfo); 2538 ext4_unlock_group(sb, i); 2539 kmem_cache_free(cachep, grinfo); 2540 } 2541 num_meta_group_infos = (ngroups + 2542 EXT4_DESC_PER_BLOCK(sb) - 1) >> 2543 EXT4_DESC_PER_BLOCK_BITS(sb); 2544 for (i = 0; i < num_meta_group_infos; i++) 2545 kfree(sbi->s_group_info[i]); 2546 ext4_kvfree(sbi->s_group_info); 2547 } 2548 kfree(sbi->s_mb_offsets); 2549 kfree(sbi->s_mb_maxs); 2550 if (sbi->s_buddy_cache) 2551 iput(sbi->s_buddy_cache); 2552 if (sbi->s_mb_stats) { 2553 ext4_msg(sb, KERN_INFO, 2554 "mballoc: %u blocks %u reqs (%u success)", 2555 atomic_read(&sbi->s_bal_allocated), 2556 atomic_read(&sbi->s_bal_reqs), 2557 atomic_read(&sbi->s_bal_success)); 2558 ext4_msg(sb, KERN_INFO, 2559 "mballoc: %u extents scanned, %u goal hits, " 2560 "%u 2^N hits, %u breaks, %u lost", 2561 atomic_read(&sbi->s_bal_ex_scanned), 2562 atomic_read(&sbi->s_bal_goals), 2563 atomic_read(&sbi->s_bal_2orders), 2564 atomic_read(&sbi->s_bal_breaks), 2565 atomic_read(&sbi->s_mb_lost_chunks)); 2566 ext4_msg(sb, KERN_INFO, 2567 "mballoc: %lu generated and it took %Lu", 2568 sbi->s_mb_buddies_generated, 2569 sbi->s_mb_generation_time); 2570 ext4_msg(sb, KERN_INFO, 2571 "mballoc: %u preallocated, %u discarded", 2572 atomic_read(&sbi->s_mb_preallocated), 2573 atomic_read(&sbi->s_mb_discarded)); 2574 } 2575 2576 free_percpu(sbi->s_locality_groups); 2577 2578 return 0; 2579 } 2580 2581 static inline int ext4_issue_discard(struct super_block *sb, 2582 ext4_group_t block_group, ext4_grpblk_t cluster, int count) 2583 { 2584 ext4_fsblk_t discard_block; 2585 2586 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) + 2587 ext4_group_first_block_no(sb, block_group)); 2588 count = EXT4_C2B(EXT4_SB(sb), count); 2589 trace_ext4_discard_blocks(sb, 2590 (unsigned long long) discard_block, count); 2591 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0); 2592 } 2593 2594 /* 2595 * This function is called by the jbd2 layer once the commit has finished, 2596 * so we know we can free the blocks that were released with that commit. 2597 */ 2598 static void ext4_free_data_callback(struct super_block *sb, 2599 struct ext4_journal_cb_entry *jce, 2600 int rc) 2601 { 2602 struct ext4_free_data *entry = (struct ext4_free_data *)jce; 2603 struct ext4_buddy e4b; 2604 struct ext4_group_info *db; 2605 int err, count = 0, count2 = 0; 2606 2607 mb_debug(1, "gonna free %u blocks in group %u (0x%p):", 2608 entry->efd_count, entry->efd_group, entry); 2609 2610 if (test_opt(sb, DISCARD)) 2611 ext4_issue_discard(sb, entry->efd_group, 2612 entry->efd_start_cluster, entry->efd_count); 2613 2614 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b); 2615 /* we expect to find existing buddy because it's pinned */ 2616 BUG_ON(err != 0); 2617 2618 2619 db = e4b.bd_info; 2620 /* there are blocks to put in buddy to make them really free */ 2621 count += entry->efd_count; 2622 count2++; 2623 ext4_lock_group(sb, entry->efd_group); 2624 /* Take it out of per group rb tree */ 2625 rb_erase(&entry->efd_node, &(db->bb_free_root)); 2626 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count); 2627 2628 /* 2629 * Clear the trimmed flag for the group so that the next 2630 * ext4_trim_fs can trim it. 2631 * If the volume is mounted with -o discard, online discard 2632 * is supported and the free blocks will be trimmed online. 2633 */ 2634 if (!test_opt(sb, DISCARD)) 2635 EXT4_MB_GRP_CLEAR_TRIMMED(db); 2636 2637 if (!db->bb_free_root.rb_node) { 2638 /* No more items in the per group rb tree 2639 * balance refcounts from ext4_mb_free_metadata() 2640 */ 2641 page_cache_release(e4b.bd_buddy_page); 2642 page_cache_release(e4b.bd_bitmap_page); 2643 } 2644 ext4_unlock_group(sb, entry->efd_group); 2645 kmem_cache_free(ext4_free_data_cachep, entry); 2646 ext4_mb_unload_buddy(&e4b); 2647 2648 mb_debug(1, "freed %u blocks in %u structures\n", count, count2); 2649 } 2650 2651 #ifdef CONFIG_EXT4_DEBUG 2652 u8 mb_enable_debug __read_mostly; 2653 2654 static struct dentry *debugfs_dir; 2655 static struct dentry *debugfs_debug; 2656 2657 static void __init ext4_create_debugfs_entry(void) 2658 { 2659 debugfs_dir = debugfs_create_dir("ext4", NULL); 2660 if (debugfs_dir) 2661 debugfs_debug = debugfs_create_u8("mballoc-debug", 2662 S_IRUGO | S_IWUSR, 2663 debugfs_dir, 2664 &mb_enable_debug); 2665 } 2666 2667 static void ext4_remove_debugfs_entry(void) 2668 { 2669 debugfs_remove(debugfs_debug); 2670 debugfs_remove(debugfs_dir); 2671 } 2672 2673 #else 2674 2675 static void __init ext4_create_debugfs_entry(void) 2676 { 2677 } 2678 2679 static void ext4_remove_debugfs_entry(void) 2680 { 2681 } 2682 2683 #endif 2684 2685 int __init ext4_init_mballoc(void) 2686 { 2687 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space, 2688 SLAB_RECLAIM_ACCOUNT); 2689 if (ext4_pspace_cachep == NULL) 2690 return -ENOMEM; 2691 2692 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context, 2693 SLAB_RECLAIM_ACCOUNT); 2694 if (ext4_ac_cachep == NULL) { 2695 kmem_cache_destroy(ext4_pspace_cachep); 2696 return -ENOMEM; 2697 } 2698 2699 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data, 2700 SLAB_RECLAIM_ACCOUNT); 2701 if (ext4_free_data_cachep == NULL) { 2702 kmem_cache_destroy(ext4_pspace_cachep); 2703 kmem_cache_destroy(ext4_ac_cachep); 2704 return -ENOMEM; 2705 } 2706 ext4_create_debugfs_entry(); 2707 return 0; 2708 } 2709 2710 void ext4_exit_mballoc(void) 2711 { 2712 /* 2713 * Wait for completion of call_rcu()'s on ext4_pspace_cachep 2714 * before destroying the slab cache. 2715 */ 2716 rcu_barrier(); 2717 kmem_cache_destroy(ext4_pspace_cachep); 2718 kmem_cache_destroy(ext4_ac_cachep); 2719 kmem_cache_destroy(ext4_free_data_cachep); 2720 ext4_groupinfo_destroy_slabs(); 2721 ext4_remove_debugfs_entry(); 2722 } 2723 2724 2725 /* 2726 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps 2727 * Returns 0 if success or error code 2728 */ 2729 static noinline_for_stack int 2730 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac, 2731 handle_t *handle, unsigned int reserv_clstrs) 2732 { 2733 struct buffer_head *bitmap_bh = NULL; 2734 struct ext4_group_desc *gdp; 2735 struct buffer_head *gdp_bh; 2736 struct ext4_sb_info *sbi; 2737 struct super_block *sb; 2738 ext4_fsblk_t block; 2739 int err, len; 2740 2741 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 2742 BUG_ON(ac->ac_b_ex.fe_len <= 0); 2743 2744 sb = ac->ac_sb; 2745 sbi = EXT4_SB(sb); 2746 2747 err = -EIO; 2748 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group); 2749 if (!bitmap_bh) 2750 goto out_err; 2751 2752 err = ext4_journal_get_write_access(handle, bitmap_bh); 2753 if (err) 2754 goto out_err; 2755 2756 err = -EIO; 2757 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh); 2758 if (!gdp) 2759 goto out_err; 2760 2761 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group, 2762 ext4_free_group_clusters(sb, gdp)); 2763 2764 err = ext4_journal_get_write_access(handle, gdp_bh); 2765 if (err) 2766 goto out_err; 2767 2768 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 2769 2770 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 2771 if (!ext4_data_block_valid(sbi, block, len)) { 2772 ext4_error(sb, "Allocating blocks %llu-%llu which overlap " 2773 "fs metadata", block, block+len); 2774 /* File system mounted not to panic on error 2775 * Fix the bitmap and repeat the block allocation 2776 * We leak some of the blocks here. 2777 */ 2778 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2779 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2780 ac->ac_b_ex.fe_len); 2781 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2782 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2783 if (!err) 2784 err = -EAGAIN; 2785 goto out_err; 2786 } 2787 2788 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 2789 #ifdef AGGRESSIVE_CHECK 2790 { 2791 int i; 2792 for (i = 0; i < ac->ac_b_ex.fe_len; i++) { 2793 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i, 2794 bitmap_bh->b_data)); 2795 } 2796 } 2797 #endif 2798 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start, 2799 ac->ac_b_ex.fe_len); 2800 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { 2801 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); 2802 ext4_free_group_clusters_set(sb, gdp, 2803 ext4_free_clusters_after_init(sb, 2804 ac->ac_b_ex.fe_group, gdp)); 2805 } 2806 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len; 2807 ext4_free_group_clusters_set(sb, gdp, len); 2808 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh); 2809 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp); 2810 2811 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 2812 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len); 2813 /* 2814 * Now reduce the dirty block count also. Should not go negative 2815 */ 2816 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED)) 2817 /* release all the reserved blocks if non delalloc */ 2818 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 2819 reserv_clstrs); 2820 2821 if (sbi->s_log_groups_per_flex) { 2822 ext4_group_t flex_group = ext4_flex_group(sbi, 2823 ac->ac_b_ex.fe_group); 2824 atomic_sub(ac->ac_b_ex.fe_len, 2825 &sbi->s_flex_groups[flex_group].free_clusters); 2826 } 2827 2828 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 2829 if (err) 2830 goto out_err; 2831 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh); 2832 2833 out_err: 2834 brelse(bitmap_bh); 2835 return err; 2836 } 2837 2838 /* 2839 * here we normalize request for locality group 2840 * Group request are normalized to s_mb_group_prealloc, which goes to 2841 * s_strip if we set the same via mount option. 2842 * s_mb_group_prealloc can be configured via 2843 * /sys/fs/ext4/<partition>/mb_group_prealloc 2844 * 2845 * XXX: should we try to preallocate more than the group has now? 2846 */ 2847 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac) 2848 { 2849 struct super_block *sb = ac->ac_sb; 2850 struct ext4_locality_group *lg = ac->ac_lg; 2851 2852 BUG_ON(lg == NULL); 2853 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc; 2854 mb_debug(1, "#%u: goal %u blocks for locality group\n", 2855 current->pid, ac->ac_g_ex.fe_len); 2856 } 2857 2858 /* 2859 * Normalization means making request better in terms of 2860 * size and alignment 2861 */ 2862 static noinline_for_stack void 2863 ext4_mb_normalize_request(struct ext4_allocation_context *ac, 2864 struct ext4_allocation_request *ar) 2865 { 2866 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 2867 int bsbits, max; 2868 ext4_lblk_t end; 2869 loff_t size, start_off; 2870 loff_t orig_size __maybe_unused; 2871 ext4_lblk_t start; 2872 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 2873 struct ext4_prealloc_space *pa; 2874 2875 /* do normalize only data requests, metadata requests 2876 do not need preallocation */ 2877 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 2878 return; 2879 2880 /* sometime caller may want exact blocks */ 2881 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 2882 return; 2883 2884 /* caller may indicate that preallocation isn't 2885 * required (it's a tail, for example) */ 2886 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC) 2887 return; 2888 2889 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) { 2890 ext4_mb_normalize_group_request(ac); 2891 return ; 2892 } 2893 2894 bsbits = ac->ac_sb->s_blocksize_bits; 2895 2896 /* first, let's learn actual file size 2897 * given current request is allocated */ 2898 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 2899 size = size << bsbits; 2900 if (size < i_size_read(ac->ac_inode)) 2901 size = i_size_read(ac->ac_inode); 2902 orig_size = size; 2903 2904 /* max size of free chunks */ 2905 max = 2 << bsbits; 2906 2907 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \ 2908 (req <= (size) || max <= (chunk_size)) 2909 2910 /* first, try to predict filesize */ 2911 /* XXX: should this table be tunable? */ 2912 start_off = 0; 2913 if (size <= 16 * 1024) { 2914 size = 16 * 1024; 2915 } else if (size <= 32 * 1024) { 2916 size = 32 * 1024; 2917 } else if (size <= 64 * 1024) { 2918 size = 64 * 1024; 2919 } else if (size <= 128 * 1024) { 2920 size = 128 * 1024; 2921 } else if (size <= 256 * 1024) { 2922 size = 256 * 1024; 2923 } else if (size <= 512 * 1024) { 2924 size = 512 * 1024; 2925 } else if (size <= 1024 * 1024) { 2926 size = 1024 * 1024; 2927 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) { 2928 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2929 (21 - bsbits)) << 21; 2930 size = 2 * 1024 * 1024; 2931 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) { 2932 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2933 (22 - bsbits)) << 22; 2934 size = 4 * 1024 * 1024; 2935 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len, 2936 (8<<20)>>bsbits, max, 8 * 1024)) { 2937 start_off = ((loff_t)ac->ac_o_ex.fe_logical >> 2938 (23 - bsbits)) << 23; 2939 size = 8 * 1024 * 1024; 2940 } else { 2941 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits; 2942 size = ac->ac_o_ex.fe_len << bsbits; 2943 } 2944 size = size >> bsbits; 2945 start = start_off >> bsbits; 2946 2947 /* don't cover already allocated blocks in selected range */ 2948 if (ar->pleft && start <= ar->lleft) { 2949 size -= ar->lleft + 1 - start; 2950 start = ar->lleft + 1; 2951 } 2952 if (ar->pright && start + size - 1 >= ar->lright) 2953 size -= start + size - ar->lright; 2954 2955 end = start + size; 2956 2957 /* check we don't cross already preallocated blocks */ 2958 rcu_read_lock(); 2959 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 2960 ext4_lblk_t pa_end; 2961 2962 if (pa->pa_deleted) 2963 continue; 2964 spin_lock(&pa->pa_lock); 2965 if (pa->pa_deleted) { 2966 spin_unlock(&pa->pa_lock); 2967 continue; 2968 } 2969 2970 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 2971 pa->pa_len); 2972 2973 /* PA must not overlap original request */ 2974 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end || 2975 ac->ac_o_ex.fe_logical < pa->pa_lstart)); 2976 2977 /* skip PAs this normalized request doesn't overlap with */ 2978 if (pa->pa_lstart >= end || pa_end <= start) { 2979 spin_unlock(&pa->pa_lock); 2980 continue; 2981 } 2982 BUG_ON(pa->pa_lstart <= start && pa_end >= end); 2983 2984 /* adjust start or end to be adjacent to this pa */ 2985 if (pa_end <= ac->ac_o_ex.fe_logical) { 2986 BUG_ON(pa_end < start); 2987 start = pa_end; 2988 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) { 2989 BUG_ON(pa->pa_lstart > end); 2990 end = pa->pa_lstart; 2991 } 2992 spin_unlock(&pa->pa_lock); 2993 } 2994 rcu_read_unlock(); 2995 size = end - start; 2996 2997 /* XXX: extra loop to check we really don't overlap preallocations */ 2998 rcu_read_lock(); 2999 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3000 ext4_lblk_t pa_end; 3001 3002 spin_lock(&pa->pa_lock); 3003 if (pa->pa_deleted == 0) { 3004 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb), 3005 pa->pa_len); 3006 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart)); 3007 } 3008 spin_unlock(&pa->pa_lock); 3009 } 3010 rcu_read_unlock(); 3011 3012 if (start + size <= ac->ac_o_ex.fe_logical && 3013 start > ac->ac_o_ex.fe_logical) { 3014 ext4_msg(ac->ac_sb, KERN_ERR, 3015 "start %lu, size %lu, fe_logical %lu", 3016 (unsigned long) start, (unsigned long) size, 3017 (unsigned long) ac->ac_o_ex.fe_logical); 3018 } 3019 BUG_ON(start + size <= ac->ac_o_ex.fe_logical && 3020 start > ac->ac_o_ex.fe_logical); 3021 BUG_ON(size <= 0 || size > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb)); 3022 3023 /* now prepare goal request */ 3024 3025 /* XXX: is it better to align blocks WRT to logical 3026 * placement or satisfy big request as is */ 3027 ac->ac_g_ex.fe_logical = start; 3028 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size); 3029 3030 /* define goal start in order to merge */ 3031 if (ar->pright && (ar->lright == (start + size))) { 3032 /* merge to the right */ 3033 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size, 3034 &ac->ac_f_ex.fe_group, 3035 &ac->ac_f_ex.fe_start); 3036 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3037 } 3038 if (ar->pleft && (ar->lleft + 1 == start)) { 3039 /* merge to the left */ 3040 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1, 3041 &ac->ac_f_ex.fe_group, 3042 &ac->ac_f_ex.fe_start); 3043 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL; 3044 } 3045 3046 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size, 3047 (unsigned) orig_size, (unsigned) start); 3048 } 3049 3050 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac) 3051 { 3052 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3053 3054 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) { 3055 atomic_inc(&sbi->s_bal_reqs); 3056 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated); 3057 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len) 3058 atomic_inc(&sbi->s_bal_success); 3059 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned); 3060 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start && 3061 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group) 3062 atomic_inc(&sbi->s_bal_goals); 3063 if (ac->ac_found > sbi->s_mb_max_to_scan) 3064 atomic_inc(&sbi->s_bal_breaks); 3065 } 3066 3067 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC) 3068 trace_ext4_mballoc_alloc(ac); 3069 else 3070 trace_ext4_mballoc_prealloc(ac); 3071 } 3072 3073 /* 3074 * Called on failure; free up any blocks from the inode PA for this 3075 * context. We don't need this for MB_GROUP_PA because we only change 3076 * pa_free in ext4_mb_release_context(), but on failure, we've already 3077 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed. 3078 */ 3079 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac) 3080 { 3081 struct ext4_prealloc_space *pa = ac->ac_pa; 3082 3083 if (pa && pa->pa_type == MB_INODE_PA) 3084 pa->pa_free += ac->ac_b_ex.fe_len; 3085 } 3086 3087 /* 3088 * use blocks preallocated to inode 3089 */ 3090 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac, 3091 struct ext4_prealloc_space *pa) 3092 { 3093 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3094 ext4_fsblk_t start; 3095 ext4_fsblk_t end; 3096 int len; 3097 3098 /* found preallocated blocks, use them */ 3099 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart); 3100 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len), 3101 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len)); 3102 len = EXT4_NUM_B2C(sbi, end - start); 3103 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group, 3104 &ac->ac_b_ex.fe_start); 3105 ac->ac_b_ex.fe_len = len; 3106 ac->ac_status = AC_STATUS_FOUND; 3107 ac->ac_pa = pa; 3108 3109 BUG_ON(start < pa->pa_pstart); 3110 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len)); 3111 BUG_ON(pa->pa_free < len); 3112 pa->pa_free -= len; 3113 3114 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa); 3115 } 3116 3117 /* 3118 * use blocks preallocated to locality group 3119 */ 3120 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac, 3121 struct ext4_prealloc_space *pa) 3122 { 3123 unsigned int len = ac->ac_o_ex.fe_len; 3124 3125 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart, 3126 &ac->ac_b_ex.fe_group, 3127 &ac->ac_b_ex.fe_start); 3128 ac->ac_b_ex.fe_len = len; 3129 ac->ac_status = AC_STATUS_FOUND; 3130 ac->ac_pa = pa; 3131 3132 /* we don't correct pa_pstart or pa_plen here to avoid 3133 * possible race when the group is being loaded concurrently 3134 * instead we correct pa later, after blocks are marked 3135 * in on-disk bitmap -- see ext4_mb_release_context() 3136 * Other CPUs are prevented from allocating from this pa by lg_mutex 3137 */ 3138 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa); 3139 } 3140 3141 /* 3142 * Return the prealloc space that have minimal distance 3143 * from the goal block. @cpa is the prealloc 3144 * space that is having currently known minimal distance 3145 * from the goal block. 3146 */ 3147 static struct ext4_prealloc_space * 3148 ext4_mb_check_group_pa(ext4_fsblk_t goal_block, 3149 struct ext4_prealloc_space *pa, 3150 struct ext4_prealloc_space *cpa) 3151 { 3152 ext4_fsblk_t cur_distance, new_distance; 3153 3154 if (cpa == NULL) { 3155 atomic_inc(&pa->pa_count); 3156 return pa; 3157 } 3158 cur_distance = abs(goal_block - cpa->pa_pstart); 3159 new_distance = abs(goal_block - pa->pa_pstart); 3160 3161 if (cur_distance <= new_distance) 3162 return cpa; 3163 3164 /* drop the previous reference */ 3165 atomic_dec(&cpa->pa_count); 3166 atomic_inc(&pa->pa_count); 3167 return pa; 3168 } 3169 3170 /* 3171 * search goal blocks in preallocated space 3172 */ 3173 static noinline_for_stack int 3174 ext4_mb_use_preallocated(struct ext4_allocation_context *ac) 3175 { 3176 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3177 int order, i; 3178 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode); 3179 struct ext4_locality_group *lg; 3180 struct ext4_prealloc_space *pa, *cpa = NULL; 3181 ext4_fsblk_t goal_block; 3182 3183 /* only data can be preallocated */ 3184 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3185 return 0; 3186 3187 /* first, try per-file preallocation */ 3188 rcu_read_lock(); 3189 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) { 3190 3191 /* all fields in this condition don't change, 3192 * so we can skip locking for them */ 3193 if (ac->ac_o_ex.fe_logical < pa->pa_lstart || 3194 ac->ac_o_ex.fe_logical >= (pa->pa_lstart + 3195 EXT4_C2B(sbi, pa->pa_len))) 3196 continue; 3197 3198 /* non-extent files can't have physical blocks past 2^32 */ 3199 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) && 3200 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) > 3201 EXT4_MAX_BLOCK_FILE_PHYS)) 3202 continue; 3203 3204 /* found preallocated blocks, use them */ 3205 spin_lock(&pa->pa_lock); 3206 if (pa->pa_deleted == 0 && pa->pa_free) { 3207 atomic_inc(&pa->pa_count); 3208 ext4_mb_use_inode_pa(ac, pa); 3209 spin_unlock(&pa->pa_lock); 3210 ac->ac_criteria = 10; 3211 rcu_read_unlock(); 3212 return 1; 3213 } 3214 spin_unlock(&pa->pa_lock); 3215 } 3216 rcu_read_unlock(); 3217 3218 /* can we use group allocation? */ 3219 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)) 3220 return 0; 3221 3222 /* inode may have no locality group for some reason */ 3223 lg = ac->ac_lg; 3224 if (lg == NULL) 3225 return 0; 3226 order = fls(ac->ac_o_ex.fe_len) - 1; 3227 if (order > PREALLOC_TB_SIZE - 1) 3228 /* The max size of hash table is PREALLOC_TB_SIZE */ 3229 order = PREALLOC_TB_SIZE - 1; 3230 3231 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex); 3232 /* 3233 * search for the prealloc space that is having 3234 * minimal distance from the goal block. 3235 */ 3236 for (i = order; i < PREALLOC_TB_SIZE; i++) { 3237 rcu_read_lock(); 3238 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i], 3239 pa_inode_list) { 3240 spin_lock(&pa->pa_lock); 3241 if (pa->pa_deleted == 0 && 3242 pa->pa_free >= ac->ac_o_ex.fe_len) { 3243 3244 cpa = ext4_mb_check_group_pa(goal_block, 3245 pa, cpa); 3246 } 3247 spin_unlock(&pa->pa_lock); 3248 } 3249 rcu_read_unlock(); 3250 } 3251 if (cpa) { 3252 ext4_mb_use_group_pa(ac, cpa); 3253 ac->ac_criteria = 20; 3254 return 1; 3255 } 3256 return 0; 3257 } 3258 3259 /* 3260 * the function goes through all block freed in the group 3261 * but not yet committed and marks them used in in-core bitmap. 3262 * buddy must be generated from this bitmap 3263 * Need to be called with the ext4 group lock held 3264 */ 3265 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, 3266 ext4_group_t group) 3267 { 3268 struct rb_node *n; 3269 struct ext4_group_info *grp; 3270 struct ext4_free_data *entry; 3271 3272 grp = ext4_get_group_info(sb, group); 3273 n = rb_first(&(grp->bb_free_root)); 3274 3275 while (n) { 3276 entry = rb_entry(n, struct ext4_free_data, efd_node); 3277 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count); 3278 n = rb_next(n); 3279 } 3280 return; 3281 } 3282 3283 /* 3284 * the function goes through all preallocation in this group and marks them 3285 * used in in-core bitmap. buddy must be generated from this bitmap 3286 * Need to be called with ext4 group lock held 3287 */ 3288 static noinline_for_stack 3289 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap, 3290 ext4_group_t group) 3291 { 3292 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3293 struct ext4_prealloc_space *pa; 3294 struct list_head *cur; 3295 ext4_group_t groupnr; 3296 ext4_grpblk_t start; 3297 int preallocated = 0; 3298 int len; 3299 3300 /* all form of preallocation discards first load group, 3301 * so the only competing code is preallocation use. 3302 * we don't need any locking here 3303 * notice we do NOT ignore preallocations with pa_deleted 3304 * otherwise we could leave used blocks available for 3305 * allocation in buddy when concurrent ext4_mb_put_pa() 3306 * is dropping preallocation 3307 */ 3308 list_for_each(cur, &grp->bb_prealloc_list) { 3309 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list); 3310 spin_lock(&pa->pa_lock); 3311 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3312 &groupnr, &start); 3313 len = pa->pa_len; 3314 spin_unlock(&pa->pa_lock); 3315 if (unlikely(len == 0)) 3316 continue; 3317 BUG_ON(groupnr != group); 3318 ext4_set_bits(bitmap, start, len); 3319 preallocated += len; 3320 } 3321 mb_debug(1, "prellocated %u for group %u\n", preallocated, group); 3322 } 3323 3324 static void ext4_mb_pa_callback(struct rcu_head *head) 3325 { 3326 struct ext4_prealloc_space *pa; 3327 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu); 3328 kmem_cache_free(ext4_pspace_cachep, pa); 3329 } 3330 3331 /* 3332 * drops a reference to preallocated space descriptor 3333 * if this was the last reference and the space is consumed 3334 */ 3335 static void ext4_mb_put_pa(struct ext4_allocation_context *ac, 3336 struct super_block *sb, struct ext4_prealloc_space *pa) 3337 { 3338 ext4_group_t grp; 3339 ext4_fsblk_t grp_blk; 3340 3341 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) 3342 return; 3343 3344 /* in this short window concurrent discard can set pa_deleted */ 3345 spin_lock(&pa->pa_lock); 3346 if (pa->pa_deleted == 1) { 3347 spin_unlock(&pa->pa_lock); 3348 return; 3349 } 3350 3351 pa->pa_deleted = 1; 3352 spin_unlock(&pa->pa_lock); 3353 3354 grp_blk = pa->pa_pstart; 3355 /* 3356 * If doing group-based preallocation, pa_pstart may be in the 3357 * next group when pa is used up 3358 */ 3359 if (pa->pa_type == MB_GROUP_PA) 3360 grp_blk--; 3361 3362 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL); 3363 3364 /* 3365 * possible race: 3366 * 3367 * P1 (buddy init) P2 (regular allocation) 3368 * find block B in PA 3369 * copy on-disk bitmap to buddy 3370 * mark B in on-disk bitmap 3371 * drop PA from group 3372 * mark all PAs in buddy 3373 * 3374 * thus, P1 initializes buddy with B available. to prevent this 3375 * we make "copy" and "mark all PAs" atomic and serialize "drop PA" 3376 * against that pair 3377 */ 3378 ext4_lock_group(sb, grp); 3379 list_del(&pa->pa_group_list); 3380 ext4_unlock_group(sb, grp); 3381 3382 spin_lock(pa->pa_obj_lock); 3383 list_del_rcu(&pa->pa_inode_list); 3384 spin_unlock(pa->pa_obj_lock); 3385 3386 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3387 } 3388 3389 /* 3390 * creates new preallocated space for given inode 3391 */ 3392 static noinline_for_stack int 3393 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac) 3394 { 3395 struct super_block *sb = ac->ac_sb; 3396 struct ext4_sb_info *sbi = EXT4_SB(sb); 3397 struct ext4_prealloc_space *pa; 3398 struct ext4_group_info *grp; 3399 struct ext4_inode_info *ei; 3400 3401 /* preallocate only when found space is larger then requested */ 3402 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3403 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3404 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3405 3406 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3407 if (pa == NULL) 3408 return -ENOMEM; 3409 3410 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) { 3411 int winl; 3412 int wins; 3413 int win; 3414 int offs; 3415 3416 /* we can't allocate as much as normalizer wants. 3417 * so, found space must get proper lstart 3418 * to cover original request */ 3419 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical); 3420 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len); 3421 3422 /* we're limited by original request in that 3423 * logical block must be covered any way 3424 * winl is window we can move our chunk within */ 3425 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical; 3426 3427 /* also, we should cover whole original request */ 3428 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len); 3429 3430 /* the smallest one defines real window */ 3431 win = min(winl, wins); 3432 3433 offs = ac->ac_o_ex.fe_logical % 3434 EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 3435 if (offs && offs < win) 3436 win = offs; 3437 3438 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - 3439 EXT4_B2C(sbi, win); 3440 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical); 3441 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len); 3442 } 3443 3444 /* preallocation can change ac_b_ex, thus we store actually 3445 * allocated blocks for history */ 3446 ac->ac_f_ex = ac->ac_b_ex; 3447 3448 pa->pa_lstart = ac->ac_b_ex.fe_logical; 3449 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3450 pa->pa_len = ac->ac_b_ex.fe_len; 3451 pa->pa_free = pa->pa_len; 3452 atomic_set(&pa->pa_count, 1); 3453 spin_lock_init(&pa->pa_lock); 3454 INIT_LIST_HEAD(&pa->pa_inode_list); 3455 INIT_LIST_HEAD(&pa->pa_group_list); 3456 pa->pa_deleted = 0; 3457 pa->pa_type = MB_INODE_PA; 3458 3459 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa, 3460 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3461 trace_ext4_mb_new_inode_pa(ac, pa); 3462 3463 ext4_mb_use_inode_pa(ac, pa); 3464 atomic_add(pa->pa_free, &sbi->s_mb_preallocated); 3465 3466 ei = EXT4_I(ac->ac_inode); 3467 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3468 3469 pa->pa_obj_lock = &ei->i_prealloc_lock; 3470 pa->pa_inode = ac->ac_inode; 3471 3472 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3473 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3474 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3475 3476 spin_lock(pa->pa_obj_lock); 3477 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list); 3478 spin_unlock(pa->pa_obj_lock); 3479 3480 return 0; 3481 } 3482 3483 /* 3484 * creates new preallocated space for locality group inodes belongs to 3485 */ 3486 static noinline_for_stack int 3487 ext4_mb_new_group_pa(struct ext4_allocation_context *ac) 3488 { 3489 struct super_block *sb = ac->ac_sb; 3490 struct ext4_locality_group *lg; 3491 struct ext4_prealloc_space *pa; 3492 struct ext4_group_info *grp; 3493 3494 /* preallocate only when found space is larger then requested */ 3495 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len); 3496 BUG_ON(ac->ac_status != AC_STATUS_FOUND); 3497 BUG_ON(!S_ISREG(ac->ac_inode->i_mode)); 3498 3499 BUG_ON(ext4_pspace_cachep == NULL); 3500 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS); 3501 if (pa == NULL) 3502 return -ENOMEM; 3503 3504 /* preallocation can change ac_b_ex, thus we store actually 3505 * allocated blocks for history */ 3506 ac->ac_f_ex = ac->ac_b_ex; 3507 3508 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 3509 pa->pa_lstart = pa->pa_pstart; 3510 pa->pa_len = ac->ac_b_ex.fe_len; 3511 pa->pa_free = pa->pa_len; 3512 atomic_set(&pa->pa_count, 1); 3513 spin_lock_init(&pa->pa_lock); 3514 INIT_LIST_HEAD(&pa->pa_inode_list); 3515 INIT_LIST_HEAD(&pa->pa_group_list); 3516 pa->pa_deleted = 0; 3517 pa->pa_type = MB_GROUP_PA; 3518 3519 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa, 3520 pa->pa_pstart, pa->pa_len, pa->pa_lstart); 3521 trace_ext4_mb_new_group_pa(ac, pa); 3522 3523 ext4_mb_use_group_pa(ac, pa); 3524 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated); 3525 3526 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group); 3527 lg = ac->ac_lg; 3528 BUG_ON(lg == NULL); 3529 3530 pa->pa_obj_lock = &lg->lg_prealloc_lock; 3531 pa->pa_inode = NULL; 3532 3533 ext4_lock_group(sb, ac->ac_b_ex.fe_group); 3534 list_add(&pa->pa_group_list, &grp->bb_prealloc_list); 3535 ext4_unlock_group(sb, ac->ac_b_ex.fe_group); 3536 3537 /* 3538 * We will later add the new pa to the right bucket 3539 * after updating the pa_free in ext4_mb_release_context 3540 */ 3541 return 0; 3542 } 3543 3544 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac) 3545 { 3546 int err; 3547 3548 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 3549 err = ext4_mb_new_group_pa(ac); 3550 else 3551 err = ext4_mb_new_inode_pa(ac); 3552 return err; 3553 } 3554 3555 /* 3556 * finds all unused blocks in on-disk bitmap, frees them in 3557 * in-core bitmap and buddy. 3558 * @pa must be unlinked from inode and group lists, so that 3559 * nobody else can find/use it. 3560 * the caller MUST hold group/inode locks. 3561 * TODO: optimize the case when there are no in-core structures yet 3562 */ 3563 static noinline_for_stack int 3564 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh, 3565 struct ext4_prealloc_space *pa) 3566 { 3567 struct super_block *sb = e4b->bd_sb; 3568 struct ext4_sb_info *sbi = EXT4_SB(sb); 3569 unsigned int end; 3570 unsigned int next; 3571 ext4_group_t group; 3572 ext4_grpblk_t bit; 3573 unsigned long long grp_blk_start; 3574 int err = 0; 3575 int free = 0; 3576 3577 BUG_ON(pa->pa_deleted == 0); 3578 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3579 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit); 3580 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3581 end = bit + pa->pa_len; 3582 3583 while (bit < end) { 3584 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit); 3585 if (bit >= end) 3586 break; 3587 next = mb_find_next_bit(bitmap_bh->b_data, end, bit); 3588 mb_debug(1, " free preallocated %u/%u in group %u\n", 3589 (unsigned) ext4_group_first_block_no(sb, group) + bit, 3590 (unsigned) next - bit, (unsigned) group); 3591 free += next - bit; 3592 3593 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit); 3594 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start + 3595 EXT4_C2B(sbi, bit)), 3596 next - bit); 3597 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit); 3598 bit = next + 1; 3599 } 3600 if (free != pa->pa_free) { 3601 ext4_msg(e4b->bd_sb, KERN_CRIT, 3602 "pa %p: logic %lu, phys. %lu, len %lu", 3603 pa, (unsigned long) pa->pa_lstart, 3604 (unsigned long) pa->pa_pstart, 3605 (unsigned long) pa->pa_len); 3606 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u", 3607 free, pa->pa_free); 3608 /* 3609 * pa is already deleted so we use the value obtained 3610 * from the bitmap and continue. 3611 */ 3612 } 3613 atomic_add(free, &sbi->s_mb_discarded); 3614 3615 return err; 3616 } 3617 3618 static noinline_for_stack int 3619 ext4_mb_release_group_pa(struct ext4_buddy *e4b, 3620 struct ext4_prealloc_space *pa) 3621 { 3622 struct super_block *sb = e4b->bd_sb; 3623 ext4_group_t group; 3624 ext4_grpblk_t bit; 3625 3626 trace_ext4_mb_release_group_pa(sb, pa); 3627 BUG_ON(pa->pa_deleted == 0); 3628 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit); 3629 BUG_ON(group != e4b->bd_group && pa->pa_len != 0); 3630 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len); 3631 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded); 3632 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len); 3633 3634 return 0; 3635 } 3636 3637 /* 3638 * releases all preallocations in given group 3639 * 3640 * first, we need to decide discard policy: 3641 * - when do we discard 3642 * 1) ENOSPC 3643 * - how many do we discard 3644 * 1) how many requested 3645 */ 3646 static noinline_for_stack int 3647 ext4_mb_discard_group_preallocations(struct super_block *sb, 3648 ext4_group_t group, int needed) 3649 { 3650 struct ext4_group_info *grp = ext4_get_group_info(sb, group); 3651 struct buffer_head *bitmap_bh = NULL; 3652 struct ext4_prealloc_space *pa, *tmp; 3653 struct list_head list; 3654 struct ext4_buddy e4b; 3655 int err; 3656 int busy = 0; 3657 int free = 0; 3658 3659 mb_debug(1, "discard preallocation for group %u\n", group); 3660 3661 if (list_empty(&grp->bb_prealloc_list)) 3662 return 0; 3663 3664 bitmap_bh = ext4_read_block_bitmap(sb, group); 3665 if (bitmap_bh == NULL) { 3666 ext4_error(sb, "Error reading block bitmap for %u", group); 3667 return 0; 3668 } 3669 3670 err = ext4_mb_load_buddy(sb, group, &e4b); 3671 if (err) { 3672 ext4_error(sb, "Error loading buddy information for %u", group); 3673 put_bh(bitmap_bh); 3674 return 0; 3675 } 3676 3677 if (needed == 0) 3678 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1; 3679 3680 INIT_LIST_HEAD(&list); 3681 repeat: 3682 ext4_lock_group(sb, group); 3683 list_for_each_entry_safe(pa, tmp, 3684 &grp->bb_prealloc_list, pa_group_list) { 3685 spin_lock(&pa->pa_lock); 3686 if (atomic_read(&pa->pa_count)) { 3687 spin_unlock(&pa->pa_lock); 3688 busy = 1; 3689 continue; 3690 } 3691 if (pa->pa_deleted) { 3692 spin_unlock(&pa->pa_lock); 3693 continue; 3694 } 3695 3696 /* seems this one can be freed ... */ 3697 pa->pa_deleted = 1; 3698 3699 /* we can trust pa_free ... */ 3700 free += pa->pa_free; 3701 3702 spin_unlock(&pa->pa_lock); 3703 3704 list_del(&pa->pa_group_list); 3705 list_add(&pa->u.pa_tmp_list, &list); 3706 } 3707 3708 /* if we still need more blocks and some PAs were used, try again */ 3709 if (free < needed && busy) { 3710 busy = 0; 3711 ext4_unlock_group(sb, group); 3712 /* 3713 * Yield the CPU here so that we don't get soft lockup 3714 * in non preempt case. 3715 */ 3716 yield(); 3717 goto repeat; 3718 } 3719 3720 /* found anything to free? */ 3721 if (list_empty(&list)) { 3722 BUG_ON(free != 0); 3723 goto out; 3724 } 3725 3726 /* now free all selected PAs */ 3727 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3728 3729 /* remove from object (inode or locality group) */ 3730 spin_lock(pa->pa_obj_lock); 3731 list_del_rcu(&pa->pa_inode_list); 3732 spin_unlock(pa->pa_obj_lock); 3733 3734 if (pa->pa_type == MB_GROUP_PA) 3735 ext4_mb_release_group_pa(&e4b, pa); 3736 else 3737 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3738 3739 list_del(&pa->u.pa_tmp_list); 3740 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3741 } 3742 3743 out: 3744 ext4_unlock_group(sb, group); 3745 ext4_mb_unload_buddy(&e4b); 3746 put_bh(bitmap_bh); 3747 return free; 3748 } 3749 3750 /* 3751 * releases all non-used preallocated blocks for given inode 3752 * 3753 * It's important to discard preallocations under i_data_sem 3754 * We don't want another block to be served from the prealloc 3755 * space when we are discarding the inode prealloc space. 3756 * 3757 * FIXME!! Make sure it is valid at all the call sites 3758 */ 3759 void ext4_discard_preallocations(struct inode *inode) 3760 { 3761 struct ext4_inode_info *ei = EXT4_I(inode); 3762 struct super_block *sb = inode->i_sb; 3763 struct buffer_head *bitmap_bh = NULL; 3764 struct ext4_prealloc_space *pa, *tmp; 3765 ext4_group_t group = 0; 3766 struct list_head list; 3767 struct ext4_buddy e4b; 3768 int err; 3769 3770 if (!S_ISREG(inode->i_mode)) { 3771 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/ 3772 return; 3773 } 3774 3775 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino); 3776 trace_ext4_discard_preallocations(inode); 3777 3778 INIT_LIST_HEAD(&list); 3779 3780 repeat: 3781 /* first, collect all pa's in the inode */ 3782 spin_lock(&ei->i_prealloc_lock); 3783 while (!list_empty(&ei->i_prealloc_list)) { 3784 pa = list_entry(ei->i_prealloc_list.next, 3785 struct ext4_prealloc_space, pa_inode_list); 3786 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock); 3787 spin_lock(&pa->pa_lock); 3788 if (atomic_read(&pa->pa_count)) { 3789 /* this shouldn't happen often - nobody should 3790 * use preallocation while we're discarding it */ 3791 spin_unlock(&pa->pa_lock); 3792 spin_unlock(&ei->i_prealloc_lock); 3793 ext4_msg(sb, KERN_ERR, 3794 "uh-oh! used pa while discarding"); 3795 WARN_ON(1); 3796 schedule_timeout_uninterruptible(HZ); 3797 goto repeat; 3798 3799 } 3800 if (pa->pa_deleted == 0) { 3801 pa->pa_deleted = 1; 3802 spin_unlock(&pa->pa_lock); 3803 list_del_rcu(&pa->pa_inode_list); 3804 list_add(&pa->u.pa_tmp_list, &list); 3805 continue; 3806 } 3807 3808 /* someone is deleting pa right now */ 3809 spin_unlock(&pa->pa_lock); 3810 spin_unlock(&ei->i_prealloc_lock); 3811 3812 /* we have to wait here because pa_deleted 3813 * doesn't mean pa is already unlinked from 3814 * the list. as we might be called from 3815 * ->clear_inode() the inode will get freed 3816 * and concurrent thread which is unlinking 3817 * pa from inode's list may access already 3818 * freed memory, bad-bad-bad */ 3819 3820 /* XXX: if this happens too often, we can 3821 * add a flag to force wait only in case 3822 * of ->clear_inode(), but not in case of 3823 * regular truncate */ 3824 schedule_timeout_uninterruptible(HZ); 3825 goto repeat; 3826 } 3827 spin_unlock(&ei->i_prealloc_lock); 3828 3829 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) { 3830 BUG_ON(pa->pa_type != MB_INODE_PA); 3831 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 3832 3833 err = ext4_mb_load_buddy(sb, group, &e4b); 3834 if (err) { 3835 ext4_error(sb, "Error loading buddy information for %u", 3836 group); 3837 continue; 3838 } 3839 3840 bitmap_bh = ext4_read_block_bitmap(sb, group); 3841 if (bitmap_bh == NULL) { 3842 ext4_error(sb, "Error reading block bitmap for %u", 3843 group); 3844 ext4_mb_unload_buddy(&e4b); 3845 continue; 3846 } 3847 3848 ext4_lock_group(sb, group); 3849 list_del(&pa->pa_group_list); 3850 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa); 3851 ext4_unlock_group(sb, group); 3852 3853 ext4_mb_unload_buddy(&e4b); 3854 put_bh(bitmap_bh); 3855 3856 list_del(&pa->u.pa_tmp_list); 3857 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 3858 } 3859 } 3860 3861 #ifdef CONFIG_EXT4_DEBUG 3862 static void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3863 { 3864 struct super_block *sb = ac->ac_sb; 3865 ext4_group_t ngroups, i; 3866 3867 if (!mb_enable_debug || 3868 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) 3869 return; 3870 3871 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:" 3872 " Allocation context details:"); 3873 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d", 3874 ac->ac_status, ac->ac_flags); 3875 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, " 3876 "goal %lu/%lu/%lu@%lu, " 3877 "best %lu/%lu/%lu@%lu cr %d", 3878 (unsigned long)ac->ac_o_ex.fe_group, 3879 (unsigned long)ac->ac_o_ex.fe_start, 3880 (unsigned long)ac->ac_o_ex.fe_len, 3881 (unsigned long)ac->ac_o_ex.fe_logical, 3882 (unsigned long)ac->ac_g_ex.fe_group, 3883 (unsigned long)ac->ac_g_ex.fe_start, 3884 (unsigned long)ac->ac_g_ex.fe_len, 3885 (unsigned long)ac->ac_g_ex.fe_logical, 3886 (unsigned long)ac->ac_b_ex.fe_group, 3887 (unsigned long)ac->ac_b_ex.fe_start, 3888 (unsigned long)ac->ac_b_ex.fe_len, 3889 (unsigned long)ac->ac_b_ex.fe_logical, 3890 (int)ac->ac_criteria); 3891 ext4_msg(ac->ac_sb, KERN_ERR, "%lu scanned, %d found", 3892 ac->ac_ex_scanned, ac->ac_found); 3893 ext4_msg(ac->ac_sb, KERN_ERR, "groups: "); 3894 ngroups = ext4_get_groups_count(sb); 3895 for (i = 0; i < ngroups; i++) { 3896 struct ext4_group_info *grp = ext4_get_group_info(sb, i); 3897 struct ext4_prealloc_space *pa; 3898 ext4_grpblk_t start; 3899 struct list_head *cur; 3900 ext4_lock_group(sb, i); 3901 list_for_each(cur, &grp->bb_prealloc_list) { 3902 pa = list_entry(cur, struct ext4_prealloc_space, 3903 pa_group_list); 3904 spin_lock(&pa->pa_lock); 3905 ext4_get_group_no_and_offset(sb, pa->pa_pstart, 3906 NULL, &start); 3907 spin_unlock(&pa->pa_lock); 3908 printk(KERN_ERR "PA:%u:%d:%u \n", i, 3909 start, pa->pa_len); 3910 } 3911 ext4_unlock_group(sb, i); 3912 3913 if (grp->bb_free == 0) 3914 continue; 3915 printk(KERN_ERR "%u: %d/%d \n", 3916 i, grp->bb_free, grp->bb_fragments); 3917 } 3918 printk(KERN_ERR "\n"); 3919 } 3920 #else 3921 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac) 3922 { 3923 return; 3924 } 3925 #endif 3926 3927 /* 3928 * We use locality group preallocation for small size file. The size of the 3929 * file is determined by the current size or the resulting size after 3930 * allocation which ever is larger 3931 * 3932 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req 3933 */ 3934 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac) 3935 { 3936 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 3937 int bsbits = ac->ac_sb->s_blocksize_bits; 3938 loff_t size, isize; 3939 3940 if (!(ac->ac_flags & EXT4_MB_HINT_DATA)) 3941 return; 3942 3943 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)) 3944 return; 3945 3946 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len); 3947 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1) 3948 >> bsbits; 3949 3950 if ((size == isize) && 3951 !ext4_fs_is_busy(sbi) && 3952 (atomic_read(&ac->ac_inode->i_writecount) == 0)) { 3953 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC; 3954 return; 3955 } 3956 3957 if (sbi->s_mb_group_prealloc <= 0) { 3958 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 3959 return; 3960 } 3961 3962 /* don't use group allocation for large files */ 3963 size = max(size, isize); 3964 if (size > sbi->s_mb_stream_request) { 3965 ac->ac_flags |= EXT4_MB_STREAM_ALLOC; 3966 return; 3967 } 3968 3969 BUG_ON(ac->ac_lg != NULL); 3970 /* 3971 * locality group prealloc space are per cpu. The reason for having 3972 * per cpu locality group is to reduce the contention between block 3973 * request from multiple CPUs. 3974 */ 3975 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups); 3976 3977 /* we're going to use group allocation */ 3978 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC; 3979 3980 /* serialize all allocations in the group */ 3981 mutex_lock(&ac->ac_lg->lg_mutex); 3982 } 3983 3984 static noinline_for_stack int 3985 ext4_mb_initialize_context(struct ext4_allocation_context *ac, 3986 struct ext4_allocation_request *ar) 3987 { 3988 struct super_block *sb = ar->inode->i_sb; 3989 struct ext4_sb_info *sbi = EXT4_SB(sb); 3990 struct ext4_super_block *es = sbi->s_es; 3991 ext4_group_t group; 3992 unsigned int len; 3993 ext4_fsblk_t goal; 3994 ext4_grpblk_t block; 3995 3996 /* we can't allocate > group size */ 3997 len = ar->len; 3998 3999 /* just a dirty hack to filter too big requests */ 4000 if (len >= EXT4_CLUSTERS_PER_GROUP(sb) - 10) 4001 len = EXT4_CLUSTERS_PER_GROUP(sb) - 10; 4002 4003 /* start searching from the goal */ 4004 goal = ar->goal; 4005 if (goal < le32_to_cpu(es->s_first_data_block) || 4006 goal >= ext4_blocks_count(es)) 4007 goal = le32_to_cpu(es->s_first_data_block); 4008 ext4_get_group_no_and_offset(sb, goal, &group, &block); 4009 4010 /* set up allocation goals */ 4011 ac->ac_b_ex.fe_logical = ar->logical & ~(sbi->s_cluster_ratio - 1); 4012 ac->ac_status = AC_STATUS_CONTINUE; 4013 ac->ac_sb = sb; 4014 ac->ac_inode = ar->inode; 4015 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical; 4016 ac->ac_o_ex.fe_group = group; 4017 ac->ac_o_ex.fe_start = block; 4018 ac->ac_o_ex.fe_len = len; 4019 ac->ac_g_ex = ac->ac_o_ex; 4020 ac->ac_flags = ar->flags; 4021 4022 /* we have to define context: we'll we work with a file or 4023 * locality group. this is a policy, actually */ 4024 ext4_mb_group_or_file(ac); 4025 4026 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, " 4027 "left: %u/%u, right %u/%u to %swritable\n", 4028 (unsigned) ar->len, (unsigned) ar->logical, 4029 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order, 4030 (unsigned) ar->lleft, (unsigned) ar->pleft, 4031 (unsigned) ar->lright, (unsigned) ar->pright, 4032 atomic_read(&ar->inode->i_writecount) ? "" : "non-"); 4033 return 0; 4034 4035 } 4036 4037 static noinline_for_stack void 4038 ext4_mb_discard_lg_preallocations(struct super_block *sb, 4039 struct ext4_locality_group *lg, 4040 int order, int total_entries) 4041 { 4042 ext4_group_t group = 0; 4043 struct ext4_buddy e4b; 4044 struct list_head discard_list; 4045 struct ext4_prealloc_space *pa, *tmp; 4046 4047 mb_debug(1, "discard locality group preallocation\n"); 4048 4049 INIT_LIST_HEAD(&discard_list); 4050 4051 spin_lock(&lg->lg_prealloc_lock); 4052 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order], 4053 pa_inode_list) { 4054 spin_lock(&pa->pa_lock); 4055 if (atomic_read(&pa->pa_count)) { 4056 /* 4057 * This is the pa that we just used 4058 * for block allocation. So don't 4059 * free that 4060 */ 4061 spin_unlock(&pa->pa_lock); 4062 continue; 4063 } 4064 if (pa->pa_deleted) { 4065 spin_unlock(&pa->pa_lock); 4066 continue; 4067 } 4068 /* only lg prealloc space */ 4069 BUG_ON(pa->pa_type != MB_GROUP_PA); 4070 4071 /* seems this one can be freed ... */ 4072 pa->pa_deleted = 1; 4073 spin_unlock(&pa->pa_lock); 4074 4075 list_del_rcu(&pa->pa_inode_list); 4076 list_add(&pa->u.pa_tmp_list, &discard_list); 4077 4078 total_entries--; 4079 if (total_entries <= 5) { 4080 /* 4081 * we want to keep only 5 entries 4082 * allowing it to grow to 8. This 4083 * mak sure we don't call discard 4084 * soon for this list. 4085 */ 4086 break; 4087 } 4088 } 4089 spin_unlock(&lg->lg_prealloc_lock); 4090 4091 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) { 4092 4093 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL); 4094 if (ext4_mb_load_buddy(sb, group, &e4b)) { 4095 ext4_error(sb, "Error loading buddy information for %u", 4096 group); 4097 continue; 4098 } 4099 ext4_lock_group(sb, group); 4100 list_del(&pa->pa_group_list); 4101 ext4_mb_release_group_pa(&e4b, pa); 4102 ext4_unlock_group(sb, group); 4103 4104 ext4_mb_unload_buddy(&e4b); 4105 list_del(&pa->u.pa_tmp_list); 4106 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback); 4107 } 4108 } 4109 4110 /* 4111 * We have incremented pa_count. So it cannot be freed at this 4112 * point. Also we hold lg_mutex. So no parallel allocation is 4113 * possible from this lg. That means pa_free cannot be updated. 4114 * 4115 * A parallel ext4_mb_discard_group_preallocations is possible. 4116 * which can cause the lg_prealloc_list to be updated. 4117 */ 4118 4119 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac) 4120 { 4121 int order, added = 0, lg_prealloc_count = 1; 4122 struct super_block *sb = ac->ac_sb; 4123 struct ext4_locality_group *lg = ac->ac_lg; 4124 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa; 4125 4126 order = fls(pa->pa_free) - 1; 4127 if (order > PREALLOC_TB_SIZE - 1) 4128 /* The max size of hash table is PREALLOC_TB_SIZE */ 4129 order = PREALLOC_TB_SIZE - 1; 4130 /* Add the prealloc space to lg */ 4131 rcu_read_lock(); 4132 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order], 4133 pa_inode_list) { 4134 spin_lock(&tmp_pa->pa_lock); 4135 if (tmp_pa->pa_deleted) { 4136 spin_unlock(&tmp_pa->pa_lock); 4137 continue; 4138 } 4139 if (!added && pa->pa_free < tmp_pa->pa_free) { 4140 /* Add to the tail of the previous entry */ 4141 list_add_tail_rcu(&pa->pa_inode_list, 4142 &tmp_pa->pa_inode_list); 4143 added = 1; 4144 /* 4145 * we want to count the total 4146 * number of entries in the list 4147 */ 4148 } 4149 spin_unlock(&tmp_pa->pa_lock); 4150 lg_prealloc_count++; 4151 } 4152 if (!added) 4153 list_add_tail_rcu(&pa->pa_inode_list, 4154 &lg->lg_prealloc_list[order]); 4155 rcu_read_unlock(); 4156 4157 /* Now trim the list to be not more than 8 elements */ 4158 if (lg_prealloc_count > 8) { 4159 ext4_mb_discard_lg_preallocations(sb, lg, 4160 order, lg_prealloc_count); 4161 return; 4162 } 4163 return ; 4164 } 4165 4166 /* 4167 * release all resource we used in allocation 4168 */ 4169 static int ext4_mb_release_context(struct ext4_allocation_context *ac) 4170 { 4171 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); 4172 struct ext4_prealloc_space *pa = ac->ac_pa; 4173 if (pa) { 4174 if (pa->pa_type == MB_GROUP_PA) { 4175 /* see comment in ext4_mb_use_group_pa() */ 4176 spin_lock(&pa->pa_lock); 4177 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4178 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len); 4179 pa->pa_free -= ac->ac_b_ex.fe_len; 4180 pa->pa_len -= ac->ac_b_ex.fe_len; 4181 spin_unlock(&pa->pa_lock); 4182 } 4183 } 4184 if (pa) { 4185 /* 4186 * We want to add the pa to the right bucket. 4187 * Remove it from the list and while adding 4188 * make sure the list to which we are adding 4189 * doesn't grow big. 4190 */ 4191 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) { 4192 spin_lock(pa->pa_obj_lock); 4193 list_del_rcu(&pa->pa_inode_list); 4194 spin_unlock(pa->pa_obj_lock); 4195 ext4_mb_add_n_trim(ac); 4196 } 4197 ext4_mb_put_pa(ac, ac->ac_sb, pa); 4198 } 4199 if (ac->ac_bitmap_page) 4200 page_cache_release(ac->ac_bitmap_page); 4201 if (ac->ac_buddy_page) 4202 page_cache_release(ac->ac_buddy_page); 4203 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) 4204 mutex_unlock(&ac->ac_lg->lg_mutex); 4205 ext4_mb_collect_stats(ac); 4206 return 0; 4207 } 4208 4209 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed) 4210 { 4211 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 4212 int ret; 4213 int freed = 0; 4214 4215 trace_ext4_mb_discard_preallocations(sb, needed); 4216 for (i = 0; i < ngroups && needed > 0; i++) { 4217 ret = ext4_mb_discard_group_preallocations(sb, i, needed); 4218 freed += ret; 4219 needed -= ret; 4220 } 4221 4222 return freed; 4223 } 4224 4225 /* 4226 * Main entry point into mballoc to allocate blocks 4227 * it tries to use preallocation first, then falls back 4228 * to usual allocation 4229 */ 4230 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle, 4231 struct ext4_allocation_request *ar, int *errp) 4232 { 4233 int freed; 4234 struct ext4_allocation_context *ac = NULL; 4235 struct ext4_sb_info *sbi; 4236 struct super_block *sb; 4237 ext4_fsblk_t block = 0; 4238 unsigned int inquota = 0; 4239 unsigned int reserv_clstrs = 0; 4240 4241 sb = ar->inode->i_sb; 4242 sbi = EXT4_SB(sb); 4243 4244 trace_ext4_request_blocks(ar); 4245 4246 /* Allow to use superuser reservation for quota file */ 4247 if (IS_NOQUOTA(ar->inode)) 4248 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS; 4249 4250 /* 4251 * For delayed allocation, we could skip the ENOSPC and 4252 * EDQUOT check, as blocks and quotas have been already 4253 * reserved when data being copied into pagecache. 4254 */ 4255 if (ext4_test_inode_state(ar->inode, EXT4_STATE_DELALLOC_RESERVED)) 4256 ar->flags |= EXT4_MB_DELALLOC_RESERVED; 4257 else { 4258 /* Without delayed allocation we need to verify 4259 * there is enough free blocks to do block allocation 4260 * and verify allocation doesn't exceed the quota limits. 4261 */ 4262 while (ar->len && 4263 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) { 4264 4265 /* let others to free the space */ 4266 yield(); 4267 ar->len = ar->len >> 1; 4268 } 4269 if (!ar->len) { 4270 *errp = -ENOSPC; 4271 return 0; 4272 } 4273 reserv_clstrs = ar->len; 4274 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) { 4275 dquot_alloc_block_nofail(ar->inode, 4276 EXT4_C2B(sbi, ar->len)); 4277 } else { 4278 while (ar->len && 4279 dquot_alloc_block(ar->inode, 4280 EXT4_C2B(sbi, ar->len))) { 4281 4282 ar->flags |= EXT4_MB_HINT_NOPREALLOC; 4283 ar->len--; 4284 } 4285 } 4286 inquota = ar->len; 4287 if (ar->len == 0) { 4288 *errp = -EDQUOT; 4289 goto out; 4290 } 4291 } 4292 4293 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS); 4294 if (!ac) { 4295 ar->len = 0; 4296 *errp = -ENOMEM; 4297 goto out; 4298 } 4299 4300 *errp = ext4_mb_initialize_context(ac, ar); 4301 if (*errp) { 4302 ar->len = 0; 4303 goto out; 4304 } 4305 4306 ac->ac_op = EXT4_MB_HISTORY_PREALLOC; 4307 if (!ext4_mb_use_preallocated(ac)) { 4308 ac->ac_op = EXT4_MB_HISTORY_ALLOC; 4309 ext4_mb_normalize_request(ac, ar); 4310 repeat: 4311 /* allocate space in core */ 4312 *errp = ext4_mb_regular_allocator(ac); 4313 if (*errp) 4314 goto errout; 4315 4316 /* as we've just preallocated more space than 4317 * user requested orinally, we store allocated 4318 * space in a special descriptor */ 4319 if (ac->ac_status == AC_STATUS_FOUND && 4320 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len) 4321 ext4_mb_new_preallocation(ac); 4322 } 4323 if (likely(ac->ac_status == AC_STATUS_FOUND)) { 4324 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs); 4325 if (*errp == -EAGAIN) { 4326 /* 4327 * drop the reference that we took 4328 * in ext4_mb_use_best_found 4329 */ 4330 ext4_mb_release_context(ac); 4331 ac->ac_b_ex.fe_group = 0; 4332 ac->ac_b_ex.fe_start = 0; 4333 ac->ac_b_ex.fe_len = 0; 4334 ac->ac_status = AC_STATUS_CONTINUE; 4335 goto repeat; 4336 } else if (*errp) 4337 errout: 4338 ext4_discard_allocated_blocks(ac); 4339 else { 4340 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex); 4341 ar->len = ac->ac_b_ex.fe_len; 4342 } 4343 } else { 4344 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len); 4345 if (freed) 4346 goto repeat; 4347 *errp = -ENOSPC; 4348 } 4349 4350 if (*errp) { 4351 ac->ac_b_ex.fe_len = 0; 4352 ar->len = 0; 4353 ext4_mb_show_ac(ac); 4354 } 4355 ext4_mb_release_context(ac); 4356 out: 4357 if (ac) 4358 kmem_cache_free(ext4_ac_cachep, ac); 4359 if (inquota && ar->len < inquota) 4360 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len)); 4361 if (!ar->len) { 4362 if (!ext4_test_inode_state(ar->inode, 4363 EXT4_STATE_DELALLOC_RESERVED)) 4364 /* release all the reserved blocks if non delalloc */ 4365 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 4366 reserv_clstrs); 4367 } 4368 4369 trace_ext4_allocate_blocks(ar, (unsigned long long)block); 4370 4371 return block; 4372 } 4373 4374 /* 4375 * We can merge two free data extents only if the physical blocks 4376 * are contiguous, AND the extents were freed by the same transaction, 4377 * AND the blocks are associated with the same group. 4378 */ 4379 static int can_merge(struct ext4_free_data *entry1, 4380 struct ext4_free_data *entry2) 4381 { 4382 if ((entry1->efd_tid == entry2->efd_tid) && 4383 (entry1->efd_group == entry2->efd_group) && 4384 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster)) 4385 return 1; 4386 return 0; 4387 } 4388 4389 static noinline_for_stack int 4390 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b, 4391 struct ext4_free_data *new_entry) 4392 { 4393 ext4_group_t group = e4b->bd_group; 4394 ext4_grpblk_t cluster; 4395 struct ext4_free_data *entry; 4396 struct ext4_group_info *db = e4b->bd_info; 4397 struct super_block *sb = e4b->bd_sb; 4398 struct ext4_sb_info *sbi = EXT4_SB(sb); 4399 struct rb_node **n = &db->bb_free_root.rb_node, *node; 4400 struct rb_node *parent = NULL, *new_node; 4401 4402 BUG_ON(!ext4_handle_valid(handle)); 4403 BUG_ON(e4b->bd_bitmap_page == NULL); 4404 BUG_ON(e4b->bd_buddy_page == NULL); 4405 4406 new_node = &new_entry->efd_node; 4407 cluster = new_entry->efd_start_cluster; 4408 4409 if (!*n) { 4410 /* first free block exent. We need to 4411 protect buddy cache from being freed, 4412 * otherwise we'll refresh it from 4413 * on-disk bitmap and lose not-yet-available 4414 * blocks */ 4415 page_cache_get(e4b->bd_buddy_page); 4416 page_cache_get(e4b->bd_bitmap_page); 4417 } 4418 while (*n) { 4419 parent = *n; 4420 entry = rb_entry(parent, struct ext4_free_data, efd_node); 4421 if (cluster < entry->efd_start_cluster) 4422 n = &(*n)->rb_left; 4423 else if (cluster >= (entry->efd_start_cluster + entry->efd_count)) 4424 n = &(*n)->rb_right; 4425 else { 4426 ext4_grp_locked_error(sb, group, 0, 4427 ext4_group_first_block_no(sb, group) + 4428 EXT4_C2B(sbi, cluster), 4429 "Block already on to-be-freed list"); 4430 return 0; 4431 } 4432 } 4433 4434 rb_link_node(new_node, parent, n); 4435 rb_insert_color(new_node, &db->bb_free_root); 4436 4437 /* Now try to see the extent can be merged to left and right */ 4438 node = rb_prev(new_node); 4439 if (node) { 4440 entry = rb_entry(node, struct ext4_free_data, efd_node); 4441 if (can_merge(entry, new_entry)) { 4442 new_entry->efd_start_cluster = entry->efd_start_cluster; 4443 new_entry->efd_count += entry->efd_count; 4444 rb_erase(node, &(db->bb_free_root)); 4445 ext4_journal_callback_del(handle, &entry->efd_jce); 4446 kmem_cache_free(ext4_free_data_cachep, entry); 4447 } 4448 } 4449 4450 node = rb_next(new_node); 4451 if (node) { 4452 entry = rb_entry(node, struct ext4_free_data, efd_node); 4453 if (can_merge(new_entry, entry)) { 4454 new_entry->efd_count += entry->efd_count; 4455 rb_erase(node, &(db->bb_free_root)); 4456 ext4_journal_callback_del(handle, &entry->efd_jce); 4457 kmem_cache_free(ext4_free_data_cachep, entry); 4458 } 4459 } 4460 /* Add the extent to transaction's private list */ 4461 ext4_journal_callback_add(handle, ext4_free_data_callback, 4462 &new_entry->efd_jce); 4463 return 0; 4464 } 4465 4466 /** 4467 * ext4_free_blocks() -- Free given blocks and update quota 4468 * @handle: handle for this transaction 4469 * @inode: inode 4470 * @block: start physical block to free 4471 * @count: number of blocks to count 4472 * @flags: flags used by ext4_free_blocks 4473 */ 4474 void ext4_free_blocks(handle_t *handle, struct inode *inode, 4475 struct buffer_head *bh, ext4_fsblk_t block, 4476 unsigned long count, int flags) 4477 { 4478 struct buffer_head *bitmap_bh = NULL; 4479 struct super_block *sb = inode->i_sb; 4480 struct ext4_group_desc *gdp; 4481 unsigned long freed = 0; 4482 unsigned int overflow; 4483 ext4_grpblk_t bit; 4484 struct buffer_head *gd_bh; 4485 ext4_group_t block_group; 4486 struct ext4_sb_info *sbi; 4487 struct ext4_buddy e4b; 4488 unsigned int count_clusters; 4489 int err = 0; 4490 int ret; 4491 4492 if (bh) { 4493 if (block) 4494 BUG_ON(block != bh->b_blocknr); 4495 else 4496 block = bh->b_blocknr; 4497 } 4498 4499 sbi = EXT4_SB(sb); 4500 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) && 4501 !ext4_data_block_valid(sbi, block, count)) { 4502 ext4_error(sb, "Freeing blocks not in datazone - " 4503 "block = %llu, count = %lu", block, count); 4504 goto error_return; 4505 } 4506 4507 ext4_debug("freeing block %llu\n", block); 4508 trace_ext4_free_blocks(inode, block, count, flags); 4509 4510 if (flags & EXT4_FREE_BLOCKS_FORGET) { 4511 struct buffer_head *tbh = bh; 4512 int i; 4513 4514 BUG_ON(bh && (count > 1)); 4515 4516 for (i = 0; i < count; i++) { 4517 if (!bh) 4518 tbh = sb_find_get_block(inode->i_sb, 4519 block + i); 4520 if (unlikely(!tbh)) 4521 continue; 4522 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA, 4523 inode, tbh, block + i); 4524 } 4525 } 4526 4527 /* 4528 * We need to make sure we don't reuse the freed block until 4529 * after the transaction is committed, which we can do by 4530 * treating the block as metadata, below. We make an 4531 * exception if the inode is to be written in writeback mode 4532 * since writeback mode has weak data consistency guarantees. 4533 */ 4534 if (!ext4_should_writeback_data(inode)) 4535 flags |= EXT4_FREE_BLOCKS_METADATA; 4536 4537 /* 4538 * If the extent to be freed does not begin on a cluster 4539 * boundary, we need to deal with partial clusters at the 4540 * beginning and end of the extent. Normally we will free 4541 * blocks at the beginning or the end unless we are explicitly 4542 * requested to avoid doing so. 4543 */ 4544 overflow = block & (sbi->s_cluster_ratio - 1); 4545 if (overflow) { 4546 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) { 4547 overflow = sbi->s_cluster_ratio - overflow; 4548 block += overflow; 4549 if (count > overflow) 4550 count -= overflow; 4551 else 4552 return; 4553 } else { 4554 block -= overflow; 4555 count += overflow; 4556 } 4557 } 4558 overflow = count & (sbi->s_cluster_ratio - 1); 4559 if (overflow) { 4560 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) { 4561 if (count > overflow) 4562 count -= overflow; 4563 else 4564 return; 4565 } else 4566 count += sbi->s_cluster_ratio - overflow; 4567 } 4568 4569 do_more: 4570 overflow = 0; 4571 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4572 4573 /* 4574 * Check to see if we are freeing blocks across a group 4575 * boundary. 4576 */ 4577 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4578 overflow = EXT4_C2B(sbi, bit) + count - 4579 EXT4_BLOCKS_PER_GROUP(sb); 4580 count -= overflow; 4581 } 4582 count_clusters = EXT4_B2C(sbi, count); 4583 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4584 if (!bitmap_bh) { 4585 err = -EIO; 4586 goto error_return; 4587 } 4588 gdp = ext4_get_group_desc(sb, block_group, &gd_bh); 4589 if (!gdp) { 4590 err = -EIO; 4591 goto error_return; 4592 } 4593 4594 if (in_range(ext4_block_bitmap(sb, gdp), block, count) || 4595 in_range(ext4_inode_bitmap(sb, gdp), block, count) || 4596 in_range(block, ext4_inode_table(sb, gdp), 4597 EXT4_SB(sb)->s_itb_per_group) || 4598 in_range(block + count - 1, ext4_inode_table(sb, gdp), 4599 EXT4_SB(sb)->s_itb_per_group)) { 4600 4601 ext4_error(sb, "Freeing blocks in system zone - " 4602 "Block = %llu, count = %lu", block, count); 4603 /* err = 0. ext4_std_error should be a no op */ 4604 goto error_return; 4605 } 4606 4607 BUFFER_TRACE(bitmap_bh, "getting write access"); 4608 err = ext4_journal_get_write_access(handle, bitmap_bh); 4609 if (err) 4610 goto error_return; 4611 4612 /* 4613 * We are about to modify some metadata. Call the journal APIs 4614 * to unshare ->b_data if a currently-committing transaction is 4615 * using it 4616 */ 4617 BUFFER_TRACE(gd_bh, "get_write_access"); 4618 err = ext4_journal_get_write_access(handle, gd_bh); 4619 if (err) 4620 goto error_return; 4621 #ifdef AGGRESSIVE_CHECK 4622 { 4623 int i; 4624 for (i = 0; i < count_clusters; i++) 4625 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data)); 4626 } 4627 #endif 4628 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters); 4629 4630 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4631 if (err) 4632 goto error_return; 4633 4634 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) { 4635 struct ext4_free_data *new_entry; 4636 /* 4637 * blocks being freed are metadata. these blocks shouldn't 4638 * be used until this transaction is committed 4639 */ 4640 new_entry = kmem_cache_alloc(ext4_free_data_cachep, GFP_NOFS); 4641 if (!new_entry) { 4642 ext4_mb_unload_buddy(&e4b); 4643 err = -ENOMEM; 4644 goto error_return; 4645 } 4646 new_entry->efd_start_cluster = bit; 4647 new_entry->efd_group = block_group; 4648 new_entry->efd_count = count_clusters; 4649 new_entry->efd_tid = handle->h_transaction->t_tid; 4650 4651 ext4_lock_group(sb, block_group); 4652 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4653 ext4_mb_free_metadata(handle, &e4b, new_entry); 4654 } else { 4655 /* need to update group_info->bb_free and bitmap 4656 * with group lock held. generate_buddy look at 4657 * them with group lock_held 4658 */ 4659 if (test_opt(sb, DISCARD)) 4660 ext4_issue_discard(sb, block_group, bit, count); 4661 ext4_lock_group(sb, block_group); 4662 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters); 4663 mb_free_blocks(inode, &e4b, bit, count_clusters); 4664 } 4665 4666 ret = ext4_free_group_clusters(sb, gdp) + count_clusters; 4667 ext4_free_group_clusters_set(sb, gdp, ret); 4668 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh); 4669 ext4_group_desc_csum_set(sb, block_group, gdp); 4670 ext4_unlock_group(sb, block_group); 4671 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters); 4672 4673 if (sbi->s_log_groups_per_flex) { 4674 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4675 atomic_add(count_clusters, 4676 &sbi->s_flex_groups[flex_group].free_clusters); 4677 } 4678 4679 ext4_mb_unload_buddy(&e4b); 4680 4681 freed += count; 4682 4683 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE)) 4684 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters)); 4685 4686 /* We dirtied the bitmap block */ 4687 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4688 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4689 4690 /* And the group descriptor block */ 4691 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4692 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4693 if (!err) 4694 err = ret; 4695 4696 if (overflow && !err) { 4697 block += count; 4698 count = overflow; 4699 put_bh(bitmap_bh); 4700 goto do_more; 4701 } 4702 error_return: 4703 brelse(bitmap_bh); 4704 ext4_std_error(sb, err); 4705 return; 4706 } 4707 4708 /** 4709 * ext4_group_add_blocks() -- Add given blocks to an existing group 4710 * @handle: handle to this transaction 4711 * @sb: super block 4712 * @block: start physical block to add to the block group 4713 * @count: number of blocks to free 4714 * 4715 * This marks the blocks as free in the bitmap and buddy. 4716 */ 4717 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb, 4718 ext4_fsblk_t block, unsigned long count) 4719 { 4720 struct buffer_head *bitmap_bh = NULL; 4721 struct buffer_head *gd_bh; 4722 ext4_group_t block_group; 4723 ext4_grpblk_t bit; 4724 unsigned int i; 4725 struct ext4_group_desc *desc; 4726 struct ext4_sb_info *sbi = EXT4_SB(sb); 4727 struct ext4_buddy e4b; 4728 int err = 0, ret, blk_free_count; 4729 ext4_grpblk_t blocks_freed; 4730 4731 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1); 4732 4733 if (count == 0) 4734 return 0; 4735 4736 ext4_get_group_no_and_offset(sb, block, &block_group, &bit); 4737 /* 4738 * Check to see if we are freeing blocks across a group 4739 * boundary. 4740 */ 4741 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) { 4742 ext4_warning(sb, "too much blocks added to group %u\n", 4743 block_group); 4744 err = -EINVAL; 4745 goto error_return; 4746 } 4747 4748 bitmap_bh = ext4_read_block_bitmap(sb, block_group); 4749 if (!bitmap_bh) { 4750 err = -EIO; 4751 goto error_return; 4752 } 4753 4754 desc = ext4_get_group_desc(sb, block_group, &gd_bh); 4755 if (!desc) { 4756 err = -EIO; 4757 goto error_return; 4758 } 4759 4760 if (in_range(ext4_block_bitmap(sb, desc), block, count) || 4761 in_range(ext4_inode_bitmap(sb, desc), block, count) || 4762 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) || 4763 in_range(block + count - 1, ext4_inode_table(sb, desc), 4764 sbi->s_itb_per_group)) { 4765 ext4_error(sb, "Adding blocks in system zones - " 4766 "Block = %llu, count = %lu", 4767 block, count); 4768 err = -EINVAL; 4769 goto error_return; 4770 } 4771 4772 BUFFER_TRACE(bitmap_bh, "getting write access"); 4773 err = ext4_journal_get_write_access(handle, bitmap_bh); 4774 if (err) 4775 goto error_return; 4776 4777 /* 4778 * We are about to modify some metadata. Call the journal APIs 4779 * to unshare ->b_data if a currently-committing transaction is 4780 * using it 4781 */ 4782 BUFFER_TRACE(gd_bh, "get_write_access"); 4783 err = ext4_journal_get_write_access(handle, gd_bh); 4784 if (err) 4785 goto error_return; 4786 4787 for (i = 0, blocks_freed = 0; i < count; i++) { 4788 BUFFER_TRACE(bitmap_bh, "clear bit"); 4789 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) { 4790 ext4_error(sb, "bit already cleared for block %llu", 4791 (ext4_fsblk_t)(block + i)); 4792 BUFFER_TRACE(bitmap_bh, "bit already cleared"); 4793 } else { 4794 blocks_freed++; 4795 } 4796 } 4797 4798 err = ext4_mb_load_buddy(sb, block_group, &e4b); 4799 if (err) 4800 goto error_return; 4801 4802 /* 4803 * need to update group_info->bb_free and bitmap 4804 * with group lock held. generate_buddy look at 4805 * them with group lock_held 4806 */ 4807 ext4_lock_group(sb, block_group); 4808 mb_clear_bits(bitmap_bh->b_data, bit, count); 4809 mb_free_blocks(NULL, &e4b, bit, count); 4810 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc); 4811 ext4_free_group_clusters_set(sb, desc, blk_free_count); 4812 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh); 4813 ext4_group_desc_csum_set(sb, block_group, desc); 4814 ext4_unlock_group(sb, block_group); 4815 percpu_counter_add(&sbi->s_freeclusters_counter, 4816 EXT4_B2C(sbi, blocks_freed)); 4817 4818 if (sbi->s_log_groups_per_flex) { 4819 ext4_group_t flex_group = ext4_flex_group(sbi, block_group); 4820 atomic_add(EXT4_B2C(sbi, blocks_freed), 4821 &sbi->s_flex_groups[flex_group].free_clusters); 4822 } 4823 4824 ext4_mb_unload_buddy(&e4b); 4825 4826 /* We dirtied the bitmap block */ 4827 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block"); 4828 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh); 4829 4830 /* And the group descriptor block */ 4831 BUFFER_TRACE(gd_bh, "dirtied group descriptor block"); 4832 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh); 4833 if (!err) 4834 err = ret; 4835 4836 error_return: 4837 brelse(bitmap_bh); 4838 ext4_std_error(sb, err); 4839 return err; 4840 } 4841 4842 /** 4843 * ext4_trim_extent -- function to TRIM one single free extent in the group 4844 * @sb: super block for the file system 4845 * @start: starting block of the free extent in the alloc. group 4846 * @count: number of blocks to TRIM 4847 * @group: alloc. group we are working with 4848 * @e4b: ext4 buddy for the group 4849 * 4850 * Trim "count" blocks starting at "start" in the "group". To assure that no 4851 * one will allocate those blocks, mark it as used in buddy bitmap. This must 4852 * be called with under the group lock. 4853 */ 4854 static void ext4_trim_extent(struct super_block *sb, int start, int count, 4855 ext4_group_t group, struct ext4_buddy *e4b) 4856 { 4857 struct ext4_free_extent ex; 4858 4859 trace_ext4_trim_extent(sb, group, start, count); 4860 4861 assert_spin_locked(ext4_group_lock_ptr(sb, group)); 4862 4863 ex.fe_start = start; 4864 ex.fe_group = group; 4865 ex.fe_len = count; 4866 4867 /* 4868 * Mark blocks used, so no one can reuse them while 4869 * being trimmed. 4870 */ 4871 mb_mark_used(e4b, &ex); 4872 ext4_unlock_group(sb, group); 4873 ext4_issue_discard(sb, group, start, count); 4874 ext4_lock_group(sb, group); 4875 mb_free_blocks(NULL, e4b, start, ex.fe_len); 4876 } 4877 4878 /** 4879 * ext4_trim_all_free -- function to trim all free space in alloc. group 4880 * @sb: super block for file system 4881 * @group: group to be trimmed 4882 * @start: first group block to examine 4883 * @max: last group block to examine 4884 * @minblocks: minimum extent block count 4885 * 4886 * ext4_trim_all_free walks through group's buddy bitmap searching for free 4887 * extents. When the free block is found, ext4_trim_extent is called to TRIM 4888 * the extent. 4889 * 4890 * 4891 * ext4_trim_all_free walks through group's block bitmap searching for free 4892 * extents. When the free extent is found, mark it as used in group buddy 4893 * bitmap. Then issue a TRIM command on this extent and free the extent in 4894 * the group buddy bitmap. This is done until whole group is scanned. 4895 */ 4896 static ext4_grpblk_t 4897 ext4_trim_all_free(struct super_block *sb, ext4_group_t group, 4898 ext4_grpblk_t start, ext4_grpblk_t max, 4899 ext4_grpblk_t minblocks) 4900 { 4901 void *bitmap; 4902 ext4_grpblk_t next, count = 0, free_count = 0; 4903 struct ext4_buddy e4b; 4904 int ret; 4905 4906 trace_ext4_trim_all_free(sb, group, start, max); 4907 4908 ret = ext4_mb_load_buddy(sb, group, &e4b); 4909 if (ret) { 4910 ext4_error(sb, "Error in loading buddy " 4911 "information for %u", group); 4912 return ret; 4913 } 4914 bitmap = e4b.bd_bitmap; 4915 4916 ext4_lock_group(sb, group); 4917 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) && 4918 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks)) 4919 goto out; 4920 4921 start = (e4b.bd_info->bb_first_free > start) ? 4922 e4b.bd_info->bb_first_free : start; 4923 4924 while (start <= max) { 4925 start = mb_find_next_zero_bit(bitmap, max + 1, start); 4926 if (start > max) 4927 break; 4928 next = mb_find_next_bit(bitmap, max + 1, start); 4929 4930 if ((next - start) >= minblocks) { 4931 ext4_trim_extent(sb, start, 4932 next - start, group, &e4b); 4933 count += next - start; 4934 } 4935 free_count += next - start; 4936 start = next + 1; 4937 4938 if (fatal_signal_pending(current)) { 4939 count = -ERESTARTSYS; 4940 break; 4941 } 4942 4943 if (need_resched()) { 4944 ext4_unlock_group(sb, group); 4945 cond_resched(); 4946 ext4_lock_group(sb, group); 4947 } 4948 4949 if ((e4b.bd_info->bb_free - free_count) < minblocks) 4950 break; 4951 } 4952 4953 if (!ret) 4954 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info); 4955 out: 4956 ext4_unlock_group(sb, group); 4957 ext4_mb_unload_buddy(&e4b); 4958 4959 ext4_debug("trimmed %d blocks in the group %d\n", 4960 count, group); 4961 4962 return count; 4963 } 4964 4965 /** 4966 * ext4_trim_fs() -- trim ioctl handle function 4967 * @sb: superblock for filesystem 4968 * @range: fstrim_range structure 4969 * 4970 * start: First Byte to trim 4971 * len: number of Bytes to trim from start 4972 * minlen: minimum extent length in Bytes 4973 * ext4_trim_fs goes through all allocation groups containing Bytes from 4974 * start to start+len. For each such a group ext4_trim_all_free function 4975 * is invoked to trim all free space. 4976 */ 4977 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range) 4978 { 4979 struct ext4_group_info *grp; 4980 ext4_group_t group, first_group, last_group; 4981 ext4_grpblk_t cnt = 0, first_cluster, last_cluster; 4982 uint64_t start, end, minlen, trimmed = 0; 4983 ext4_fsblk_t first_data_blk = 4984 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block); 4985 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es); 4986 int ret = 0; 4987 4988 start = range->start >> sb->s_blocksize_bits; 4989 end = start + (range->len >> sb->s_blocksize_bits) - 1; 4990 minlen = EXT4_NUM_B2C(EXT4_SB(sb), 4991 range->minlen >> sb->s_blocksize_bits); 4992 4993 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) || 4994 start >= max_blks || 4995 range->len < sb->s_blocksize) 4996 return -EINVAL; 4997 if (end >= max_blks) 4998 end = max_blks - 1; 4999 if (end <= first_data_blk) 5000 goto out; 5001 if (start < first_data_blk) 5002 start = first_data_blk; 5003 5004 /* Determine first and last group to examine based on start and end */ 5005 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start, 5006 &first_group, &first_cluster); 5007 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end, 5008 &last_group, &last_cluster); 5009 5010 /* end now represents the last cluster to discard in this group */ 5011 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1; 5012 5013 for (group = first_group; group <= last_group; group++) { 5014 grp = ext4_get_group_info(sb, group); 5015 /* We only do this if the grp has never been initialized */ 5016 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) { 5017 ret = ext4_mb_init_group(sb, group); 5018 if (ret) 5019 break; 5020 } 5021 5022 /* 5023 * For all the groups except the last one, last cluster will 5024 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to 5025 * change it for the last group, note that last_cluster is 5026 * already computed earlier by ext4_get_group_no_and_offset() 5027 */ 5028 if (group == last_group) 5029 end = last_cluster; 5030 5031 if (grp->bb_free >= minlen) { 5032 cnt = ext4_trim_all_free(sb, group, first_cluster, 5033 end, minlen); 5034 if (cnt < 0) { 5035 ret = cnt; 5036 break; 5037 } 5038 trimmed += cnt; 5039 } 5040 5041 /* 5042 * For every group except the first one, we are sure 5043 * that the first cluster to discard will be cluster #0. 5044 */ 5045 first_cluster = 0; 5046 } 5047 5048 if (!ret) 5049 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen); 5050 5051 out: 5052 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits; 5053 return ret; 5054 } 5055