1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 141 int pextents); 142 143 /* 144 * Test whether an inode is a fast symlink. 145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 146 */ 147 int ext4_inode_is_fast_symlink(struct inode *inode) 148 { 149 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 150 int ea_blocks = EXT4_I(inode)->i_file_acl ? 151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 152 153 if (ext4_has_inline_data(inode)) 154 return 0; 155 156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 157 } 158 return S_ISLNK(inode->i_mode) && inode->i_size && 159 (inode->i_size < EXT4_N_BLOCKS * 4); 160 } 161 162 /* 163 * Called at the last iput() if i_nlink is zero. 164 */ 165 void ext4_evict_inode(struct inode *inode) 166 { 167 handle_t *handle; 168 int err; 169 /* 170 * Credits for final inode cleanup and freeing: 171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 172 * (xattr block freeing), bitmap, group descriptor (inode freeing) 173 */ 174 int extra_credits = 6; 175 struct ext4_xattr_inode_array *ea_inode_array = NULL; 176 bool freeze_protected = false; 177 178 trace_ext4_evict_inode(inode); 179 180 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 181 ext4_evict_ea_inode(inode); 182 if (inode->i_nlink) { 183 /* 184 * When journalling data dirty buffers are tracked only in the 185 * journal. So although mm thinks everything is clean and 186 * ready for reaping the inode might still have some pages to 187 * write in the running transaction or waiting to be 188 * checkpointed. Thus calling jbd2_journal_invalidate_folio() 189 * (via truncate_inode_pages()) to discard these buffers can 190 * cause data loss. Also even if we did not discard these 191 * buffers, we would have no way to find them after the inode 192 * is reaped and thus user could see stale data if he tries to 193 * read them before the transaction is checkpointed. So be 194 * careful and force everything to disk here... We use 195 * ei->i_datasync_tid to store the newest transaction 196 * containing inode's data. 197 * 198 * Note that directories do not have this problem because they 199 * don't use page cache. 200 */ 201 if (inode->i_ino != EXT4_JOURNAL_INO && 202 ext4_should_journal_data(inode) && 203 S_ISREG(inode->i_mode) && inode->i_data.nrpages) { 204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 206 207 jbd2_complete_transaction(journal, commit_tid); 208 filemap_write_and_wait(&inode->i_data); 209 } 210 truncate_inode_pages_final(&inode->i_data); 211 212 goto no_delete; 213 } 214 215 if (is_bad_inode(inode)) 216 goto no_delete; 217 dquot_initialize(inode); 218 219 if (ext4_should_order_data(inode)) 220 ext4_begin_ordered_truncate(inode, 0); 221 truncate_inode_pages_final(&inode->i_data); 222 223 /* 224 * For inodes with journalled data, transaction commit could have 225 * dirtied the inode. Flush worker is ignoring it because of I_FREEING 226 * flag but we still need to remove the inode from the writeback lists. 227 */ 228 if (!list_empty_careful(&inode->i_io_list)) { 229 WARN_ON_ONCE(!ext4_should_journal_data(inode)); 230 inode_io_list_del(inode); 231 } 232 233 /* 234 * Protect us against freezing - iput() caller didn't have to have any 235 * protection against it. When we are in a running transaction though, 236 * we are already protected against freezing and we cannot grab further 237 * protection due to lock ordering constraints. 238 */ 239 if (!ext4_journal_current_handle()) { 240 sb_start_intwrite(inode->i_sb); 241 freeze_protected = true; 242 } 243 244 if (!IS_NOQUOTA(inode)) 245 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 246 247 /* 248 * Block bitmap, group descriptor, and inode are accounted in both 249 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 250 */ 251 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 252 ext4_blocks_for_truncate(inode) + extra_credits - 3); 253 if (IS_ERR(handle)) { 254 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 255 /* 256 * If we're going to skip the normal cleanup, we still need to 257 * make sure that the in-core orphan linked list is properly 258 * cleaned up. 259 */ 260 ext4_orphan_del(NULL, inode); 261 if (freeze_protected) 262 sb_end_intwrite(inode->i_sb); 263 goto no_delete; 264 } 265 266 if (IS_SYNC(inode)) 267 ext4_handle_sync(handle); 268 269 /* 270 * Set inode->i_size to 0 before calling ext4_truncate(). We need 271 * special handling of symlinks here because i_size is used to 272 * determine whether ext4_inode_info->i_data contains symlink data or 273 * block mappings. Setting i_size to 0 will remove its fast symlink 274 * status. Erase i_data so that it becomes a valid empty block map. 275 */ 276 if (ext4_inode_is_fast_symlink(inode)) 277 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 278 inode->i_size = 0; 279 err = ext4_mark_inode_dirty(handle, inode); 280 if (err) { 281 ext4_warning(inode->i_sb, 282 "couldn't mark inode dirty (err %d)", err); 283 goto stop_handle; 284 } 285 if (inode->i_blocks) { 286 err = ext4_truncate(inode); 287 if (err) { 288 ext4_error_err(inode->i_sb, -err, 289 "couldn't truncate inode %lu (err %d)", 290 inode->i_ino, err); 291 goto stop_handle; 292 } 293 } 294 295 /* Remove xattr references. */ 296 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 297 extra_credits); 298 if (err) { 299 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 300 stop_handle: 301 ext4_journal_stop(handle); 302 ext4_orphan_del(NULL, inode); 303 if (freeze_protected) 304 sb_end_intwrite(inode->i_sb); 305 ext4_xattr_inode_array_free(ea_inode_array); 306 goto no_delete; 307 } 308 309 /* 310 * Kill off the orphan record which ext4_truncate created. 311 * AKPM: I think this can be inside the above `if'. 312 * Note that ext4_orphan_del() has to be able to cope with the 313 * deletion of a non-existent orphan - this is because we don't 314 * know if ext4_truncate() actually created an orphan record. 315 * (Well, we could do this if we need to, but heck - it works) 316 */ 317 ext4_orphan_del(handle, inode); 318 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 319 320 /* 321 * One subtle ordering requirement: if anything has gone wrong 322 * (transaction abort, IO errors, whatever), then we can still 323 * do these next steps (the fs will already have been marked as 324 * having errors), but we can't free the inode if the mark_dirty 325 * fails. 326 */ 327 if (ext4_mark_inode_dirty(handle, inode)) 328 /* If that failed, just do the required in-core inode clear. */ 329 ext4_clear_inode(inode); 330 else 331 ext4_free_inode(handle, inode); 332 ext4_journal_stop(handle); 333 if (freeze_protected) 334 sb_end_intwrite(inode->i_sb); 335 ext4_xattr_inode_array_free(ea_inode_array); 336 return; 337 no_delete: 338 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 339 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 340 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 341 } 342 343 #ifdef CONFIG_QUOTA 344 qsize_t *ext4_get_reserved_space(struct inode *inode) 345 { 346 return &EXT4_I(inode)->i_reserved_quota; 347 } 348 #endif 349 350 /* 351 * Called with i_data_sem down, which is important since we can call 352 * ext4_discard_preallocations() from here. 353 */ 354 void ext4_da_update_reserve_space(struct inode *inode, 355 int used, int quota_claim) 356 { 357 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 358 struct ext4_inode_info *ei = EXT4_I(inode); 359 360 spin_lock(&ei->i_block_reservation_lock); 361 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 362 if (unlikely(used > ei->i_reserved_data_blocks)) { 363 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 364 "with only %d reserved data blocks", 365 __func__, inode->i_ino, used, 366 ei->i_reserved_data_blocks); 367 WARN_ON(1); 368 used = ei->i_reserved_data_blocks; 369 } 370 371 /* Update per-inode reservations */ 372 ei->i_reserved_data_blocks -= used; 373 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 374 375 spin_unlock(&ei->i_block_reservation_lock); 376 377 /* Update quota subsystem for data blocks */ 378 if (quota_claim) 379 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 380 else { 381 /* 382 * We did fallocate with an offset that is already delayed 383 * allocated. So on delayed allocated writeback we should 384 * not re-claim the quota for fallocated blocks. 385 */ 386 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 387 } 388 389 /* 390 * If we have done all the pending block allocations and if 391 * there aren't any writers on the inode, we can discard the 392 * inode's preallocations. 393 */ 394 if ((ei->i_reserved_data_blocks == 0) && 395 !inode_is_open_for_write(inode)) 396 ext4_discard_preallocations(inode, 0); 397 } 398 399 static int __check_block_validity(struct inode *inode, const char *func, 400 unsigned int line, 401 struct ext4_map_blocks *map) 402 { 403 if (ext4_has_feature_journal(inode->i_sb) && 404 (inode->i_ino == 405 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 406 return 0; 407 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 408 ext4_error_inode(inode, func, line, map->m_pblk, 409 "lblock %lu mapped to illegal pblock %llu " 410 "(length %d)", (unsigned long) map->m_lblk, 411 map->m_pblk, map->m_len); 412 return -EFSCORRUPTED; 413 } 414 return 0; 415 } 416 417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 418 ext4_lblk_t len) 419 { 420 int ret; 421 422 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 423 return fscrypt_zeroout_range(inode, lblk, pblk, len); 424 425 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 426 if (ret > 0) 427 ret = 0; 428 429 return ret; 430 } 431 432 #define check_block_validity(inode, map) \ 433 __check_block_validity((inode), __func__, __LINE__, (map)) 434 435 #ifdef ES_AGGRESSIVE_TEST 436 static void ext4_map_blocks_es_recheck(handle_t *handle, 437 struct inode *inode, 438 struct ext4_map_blocks *es_map, 439 struct ext4_map_blocks *map, 440 int flags) 441 { 442 int retval; 443 444 map->m_flags = 0; 445 /* 446 * There is a race window that the result is not the same. 447 * e.g. xfstests #223 when dioread_nolock enables. The reason 448 * is that we lookup a block mapping in extent status tree with 449 * out taking i_data_sem. So at the time the unwritten extent 450 * could be converted. 451 */ 452 down_read(&EXT4_I(inode)->i_data_sem); 453 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 454 retval = ext4_ext_map_blocks(handle, inode, map, 0); 455 } else { 456 retval = ext4_ind_map_blocks(handle, inode, map, 0); 457 } 458 up_read((&EXT4_I(inode)->i_data_sem)); 459 460 /* 461 * We don't check m_len because extent will be collpased in status 462 * tree. So the m_len might not equal. 463 */ 464 if (es_map->m_lblk != map->m_lblk || 465 es_map->m_flags != map->m_flags || 466 es_map->m_pblk != map->m_pblk) { 467 printk("ES cache assertion failed for inode: %lu " 468 "es_cached ex [%d/%d/%llu/%x] != " 469 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 470 inode->i_ino, es_map->m_lblk, es_map->m_len, 471 es_map->m_pblk, es_map->m_flags, map->m_lblk, 472 map->m_len, map->m_pblk, map->m_flags, 473 retval, flags); 474 } 475 } 476 #endif /* ES_AGGRESSIVE_TEST */ 477 478 /* 479 * The ext4_map_blocks() function tries to look up the requested blocks, 480 * and returns if the blocks are already mapped. 481 * 482 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 483 * and store the allocated blocks in the result buffer head and mark it 484 * mapped. 485 * 486 * If file type is extents based, it will call ext4_ext_map_blocks(), 487 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 488 * based files 489 * 490 * On success, it returns the number of blocks being mapped or allocated. if 491 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 492 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 493 * 494 * It returns 0 if plain look up failed (blocks have not been allocated), in 495 * that case, @map is returned as unmapped but we still do fill map->m_len to 496 * indicate the length of a hole starting at map->m_lblk. 497 * 498 * It returns the error in case of allocation failure. 499 */ 500 int ext4_map_blocks(handle_t *handle, struct inode *inode, 501 struct ext4_map_blocks *map, int flags) 502 { 503 struct extent_status es; 504 int retval; 505 int ret = 0; 506 #ifdef ES_AGGRESSIVE_TEST 507 struct ext4_map_blocks orig_map; 508 509 memcpy(&orig_map, map, sizeof(*map)); 510 #endif 511 512 map->m_flags = 0; 513 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 514 flags, map->m_len, (unsigned long) map->m_lblk); 515 516 /* 517 * ext4_map_blocks returns an int, and m_len is an unsigned int 518 */ 519 if (unlikely(map->m_len > INT_MAX)) 520 map->m_len = INT_MAX; 521 522 /* We can handle the block number less than EXT_MAX_BLOCKS */ 523 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 524 return -EFSCORRUPTED; 525 526 /* Lookup extent status tree firstly */ 527 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 528 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 529 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 530 map->m_pblk = ext4_es_pblock(&es) + 531 map->m_lblk - es.es_lblk; 532 map->m_flags |= ext4_es_is_written(&es) ? 533 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 534 retval = es.es_len - (map->m_lblk - es.es_lblk); 535 if (retval > map->m_len) 536 retval = map->m_len; 537 map->m_len = retval; 538 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 539 map->m_pblk = 0; 540 retval = es.es_len - (map->m_lblk - es.es_lblk); 541 if (retval > map->m_len) 542 retval = map->m_len; 543 map->m_len = retval; 544 retval = 0; 545 } else { 546 BUG(); 547 } 548 549 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 550 return retval; 551 #ifdef ES_AGGRESSIVE_TEST 552 ext4_map_blocks_es_recheck(handle, inode, map, 553 &orig_map, flags); 554 #endif 555 goto found; 556 } 557 /* 558 * In the query cache no-wait mode, nothing we can do more if we 559 * cannot find extent in the cache. 560 */ 561 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 562 return 0; 563 564 /* 565 * Try to see if we can get the block without requesting a new 566 * file system block. 567 */ 568 down_read(&EXT4_I(inode)->i_data_sem); 569 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 570 retval = ext4_ext_map_blocks(handle, inode, map, 0); 571 } else { 572 retval = ext4_ind_map_blocks(handle, inode, map, 0); 573 } 574 if (retval > 0) { 575 unsigned int status; 576 577 if (unlikely(retval != map->m_len)) { 578 ext4_warning(inode->i_sb, 579 "ES len assertion failed for inode " 580 "%lu: retval %d != map->m_len %d", 581 inode->i_ino, retval, map->m_len); 582 WARN_ON(1); 583 } 584 585 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 586 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 587 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 588 !(status & EXTENT_STATUS_WRITTEN) && 589 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 590 map->m_lblk + map->m_len - 1)) 591 status |= EXTENT_STATUS_DELAYED; 592 ret = ext4_es_insert_extent(inode, map->m_lblk, 593 map->m_len, map->m_pblk, status); 594 if (ret < 0) 595 retval = ret; 596 } 597 up_read((&EXT4_I(inode)->i_data_sem)); 598 599 found: 600 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 601 ret = check_block_validity(inode, map); 602 if (ret != 0) 603 return ret; 604 } 605 606 /* If it is only a block(s) look up */ 607 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 608 return retval; 609 610 /* 611 * Returns if the blocks have already allocated 612 * 613 * Note that if blocks have been preallocated 614 * ext4_ext_get_block() returns the create = 0 615 * with buffer head unmapped. 616 */ 617 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 618 /* 619 * If we need to convert extent to unwritten 620 * we continue and do the actual work in 621 * ext4_ext_map_blocks() 622 */ 623 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 624 return retval; 625 626 /* 627 * Here we clear m_flags because after allocating an new extent, 628 * it will be set again. 629 */ 630 map->m_flags &= ~EXT4_MAP_FLAGS; 631 632 /* 633 * New blocks allocate and/or writing to unwritten extent 634 * will possibly result in updating i_data, so we take 635 * the write lock of i_data_sem, and call get_block() 636 * with create == 1 flag. 637 */ 638 down_write(&EXT4_I(inode)->i_data_sem); 639 640 /* 641 * We need to check for EXT4 here because migrate 642 * could have changed the inode type in between 643 */ 644 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 645 retval = ext4_ext_map_blocks(handle, inode, map, flags); 646 } else { 647 retval = ext4_ind_map_blocks(handle, inode, map, flags); 648 649 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 650 /* 651 * We allocated new blocks which will result in 652 * i_data's format changing. Force the migrate 653 * to fail by clearing migrate flags 654 */ 655 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 656 } 657 658 /* 659 * Update reserved blocks/metadata blocks after successful 660 * block allocation which had been deferred till now. We don't 661 * support fallocate for non extent files. So we can update 662 * reserve space here. 663 */ 664 if ((retval > 0) && 665 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 666 ext4_da_update_reserve_space(inode, retval, 1); 667 } 668 669 if (retval > 0) { 670 unsigned int status; 671 672 if (unlikely(retval != map->m_len)) { 673 ext4_warning(inode->i_sb, 674 "ES len assertion failed for inode " 675 "%lu: retval %d != map->m_len %d", 676 inode->i_ino, retval, map->m_len); 677 WARN_ON(1); 678 } 679 680 /* 681 * We have to zeroout blocks before inserting them into extent 682 * status tree. Otherwise someone could look them up there and 683 * use them before they are really zeroed. We also have to 684 * unmap metadata before zeroing as otherwise writeback can 685 * overwrite zeros with stale data from block device. 686 */ 687 if (flags & EXT4_GET_BLOCKS_ZERO && 688 map->m_flags & EXT4_MAP_MAPPED && 689 map->m_flags & EXT4_MAP_NEW) { 690 ret = ext4_issue_zeroout(inode, map->m_lblk, 691 map->m_pblk, map->m_len); 692 if (ret) { 693 retval = ret; 694 goto out_sem; 695 } 696 } 697 698 /* 699 * If the extent has been zeroed out, we don't need to update 700 * extent status tree. 701 */ 702 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 703 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 704 if (ext4_es_is_written(&es)) 705 goto out_sem; 706 } 707 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 708 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 709 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 710 !(status & EXTENT_STATUS_WRITTEN) && 711 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 712 map->m_lblk + map->m_len - 1)) 713 status |= EXTENT_STATUS_DELAYED; 714 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 715 map->m_pblk, status); 716 if (ret < 0) { 717 retval = ret; 718 goto out_sem; 719 } 720 } 721 722 out_sem: 723 up_write((&EXT4_I(inode)->i_data_sem)); 724 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 725 ret = check_block_validity(inode, map); 726 if (ret != 0) 727 return ret; 728 729 /* 730 * Inodes with freshly allocated blocks where contents will be 731 * visible after transaction commit must be on transaction's 732 * ordered data list. 733 */ 734 if (map->m_flags & EXT4_MAP_NEW && 735 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 736 !(flags & EXT4_GET_BLOCKS_ZERO) && 737 !ext4_is_quota_file(inode) && 738 ext4_should_order_data(inode)) { 739 loff_t start_byte = 740 (loff_t)map->m_lblk << inode->i_blkbits; 741 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 742 743 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 744 ret = ext4_jbd2_inode_add_wait(handle, inode, 745 start_byte, length); 746 else 747 ret = ext4_jbd2_inode_add_write(handle, inode, 748 start_byte, length); 749 if (ret) 750 return ret; 751 } 752 } 753 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 754 map->m_flags & EXT4_MAP_MAPPED)) 755 ext4_fc_track_range(handle, inode, map->m_lblk, 756 map->m_lblk + map->m_len - 1); 757 if (retval < 0) 758 ext_debug(inode, "failed with err %d\n", retval); 759 return retval; 760 } 761 762 /* 763 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 764 * we have to be careful as someone else may be manipulating b_state as well. 765 */ 766 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 767 { 768 unsigned long old_state; 769 unsigned long new_state; 770 771 flags &= EXT4_MAP_FLAGS; 772 773 /* Dummy buffer_head? Set non-atomically. */ 774 if (!bh->b_page) { 775 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 776 return; 777 } 778 /* 779 * Someone else may be modifying b_state. Be careful! This is ugly but 780 * once we get rid of using bh as a container for mapping information 781 * to pass to / from get_block functions, this can go away. 782 */ 783 do { 784 old_state = READ_ONCE(bh->b_state); 785 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 786 } while (unlikely( 787 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 788 } 789 790 static int _ext4_get_block(struct inode *inode, sector_t iblock, 791 struct buffer_head *bh, int flags) 792 { 793 struct ext4_map_blocks map; 794 int ret = 0; 795 796 if (ext4_has_inline_data(inode)) 797 return -ERANGE; 798 799 map.m_lblk = iblock; 800 map.m_len = bh->b_size >> inode->i_blkbits; 801 802 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 803 flags); 804 if (ret > 0) { 805 map_bh(bh, inode->i_sb, map.m_pblk); 806 ext4_update_bh_state(bh, map.m_flags); 807 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 808 ret = 0; 809 } else if (ret == 0) { 810 /* hole case, need to fill in bh->b_size */ 811 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 812 } 813 return ret; 814 } 815 816 int ext4_get_block(struct inode *inode, sector_t iblock, 817 struct buffer_head *bh, int create) 818 { 819 return _ext4_get_block(inode, iblock, bh, 820 create ? EXT4_GET_BLOCKS_CREATE : 0); 821 } 822 823 /* 824 * Get block function used when preparing for buffered write if we require 825 * creating an unwritten extent if blocks haven't been allocated. The extent 826 * will be converted to written after the IO is complete. 827 */ 828 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 829 struct buffer_head *bh_result, int create) 830 { 831 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 832 inode->i_ino, create); 833 return _ext4_get_block(inode, iblock, bh_result, 834 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 835 } 836 837 /* Maximum number of blocks we map for direct IO at once. */ 838 #define DIO_MAX_BLOCKS 4096 839 840 /* 841 * `handle' can be NULL if create is zero 842 */ 843 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 844 ext4_lblk_t block, int map_flags) 845 { 846 struct ext4_map_blocks map; 847 struct buffer_head *bh; 848 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 849 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 850 int err; 851 852 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 853 || handle != NULL || create == 0); 854 ASSERT(create == 0 || !nowait); 855 856 map.m_lblk = block; 857 map.m_len = 1; 858 err = ext4_map_blocks(handle, inode, &map, map_flags); 859 860 if (err == 0) 861 return create ? ERR_PTR(-ENOSPC) : NULL; 862 if (err < 0) 863 return ERR_PTR(err); 864 865 if (nowait) 866 return sb_find_get_block(inode->i_sb, map.m_pblk); 867 868 bh = sb_getblk(inode->i_sb, map.m_pblk); 869 if (unlikely(!bh)) 870 return ERR_PTR(-ENOMEM); 871 if (map.m_flags & EXT4_MAP_NEW) { 872 ASSERT(create != 0); 873 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 874 || (handle != NULL)); 875 876 /* 877 * Now that we do not always journal data, we should 878 * keep in mind whether this should always journal the 879 * new buffer as metadata. For now, regular file 880 * writes use ext4_get_block instead, so it's not a 881 * problem. 882 */ 883 lock_buffer(bh); 884 BUFFER_TRACE(bh, "call get_create_access"); 885 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 886 EXT4_JTR_NONE); 887 if (unlikely(err)) { 888 unlock_buffer(bh); 889 goto errout; 890 } 891 if (!buffer_uptodate(bh)) { 892 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 893 set_buffer_uptodate(bh); 894 } 895 unlock_buffer(bh); 896 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 897 err = ext4_handle_dirty_metadata(handle, inode, bh); 898 if (unlikely(err)) 899 goto errout; 900 } else 901 BUFFER_TRACE(bh, "not a new buffer"); 902 return bh; 903 errout: 904 brelse(bh); 905 return ERR_PTR(err); 906 } 907 908 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 909 ext4_lblk_t block, int map_flags) 910 { 911 struct buffer_head *bh; 912 int ret; 913 914 bh = ext4_getblk(handle, inode, block, map_flags); 915 if (IS_ERR(bh)) 916 return bh; 917 if (!bh || ext4_buffer_uptodate(bh)) 918 return bh; 919 920 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 921 if (ret) { 922 put_bh(bh); 923 return ERR_PTR(ret); 924 } 925 return bh; 926 } 927 928 /* Read a contiguous batch of blocks. */ 929 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 930 bool wait, struct buffer_head **bhs) 931 { 932 int i, err; 933 934 for (i = 0; i < bh_count; i++) { 935 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 936 if (IS_ERR(bhs[i])) { 937 err = PTR_ERR(bhs[i]); 938 bh_count = i; 939 goto out_brelse; 940 } 941 } 942 943 for (i = 0; i < bh_count; i++) 944 /* Note that NULL bhs[i] is valid because of holes. */ 945 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 946 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 947 948 if (!wait) 949 return 0; 950 951 for (i = 0; i < bh_count; i++) 952 if (bhs[i]) 953 wait_on_buffer(bhs[i]); 954 955 for (i = 0; i < bh_count; i++) { 956 if (bhs[i] && !buffer_uptodate(bhs[i])) { 957 err = -EIO; 958 goto out_brelse; 959 } 960 } 961 return 0; 962 963 out_brelse: 964 for (i = 0; i < bh_count; i++) { 965 brelse(bhs[i]); 966 bhs[i] = NULL; 967 } 968 return err; 969 } 970 971 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 972 struct buffer_head *head, 973 unsigned from, 974 unsigned to, 975 int *partial, 976 int (*fn)(handle_t *handle, struct inode *inode, 977 struct buffer_head *bh)) 978 { 979 struct buffer_head *bh; 980 unsigned block_start, block_end; 981 unsigned blocksize = head->b_size; 982 int err, ret = 0; 983 struct buffer_head *next; 984 985 for (bh = head, block_start = 0; 986 ret == 0 && (bh != head || !block_start); 987 block_start = block_end, bh = next) { 988 next = bh->b_this_page; 989 block_end = block_start + blocksize; 990 if (block_end <= from || block_start >= to) { 991 if (partial && !buffer_uptodate(bh)) 992 *partial = 1; 993 continue; 994 } 995 err = (*fn)(handle, inode, bh); 996 if (!ret) 997 ret = err; 998 } 999 return ret; 1000 } 1001 1002 /* 1003 * To preserve ordering, it is essential that the hole instantiation and 1004 * the data write be encapsulated in a single transaction. We cannot 1005 * close off a transaction and start a new one between the ext4_get_block() 1006 * and the commit_write(). So doing the jbd2_journal_start at the start of 1007 * prepare_write() is the right place. 1008 * 1009 * Also, this function can nest inside ext4_writepage(). In that case, we 1010 * *know* that ext4_writepage() has generated enough buffer credits to do the 1011 * whole page. So we won't block on the journal in that case, which is good, 1012 * because the caller may be PF_MEMALLOC. 1013 * 1014 * By accident, ext4 can be reentered when a transaction is open via 1015 * quota file writes. If we were to commit the transaction while thus 1016 * reentered, there can be a deadlock - we would be holding a quota 1017 * lock, and the commit would never complete if another thread had a 1018 * transaction open and was blocking on the quota lock - a ranking 1019 * violation. 1020 * 1021 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 1022 * will _not_ run commit under these circumstances because handle->h_ref 1023 * is elevated. We'll still have enough credits for the tiny quotafile 1024 * write. 1025 */ 1026 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 1027 struct buffer_head *bh) 1028 { 1029 int dirty = buffer_dirty(bh); 1030 int ret; 1031 1032 if (!buffer_mapped(bh) || buffer_freed(bh)) 1033 return 0; 1034 /* 1035 * __block_write_begin() could have dirtied some buffers. Clean 1036 * the dirty bit as jbd2_journal_get_write_access() could complain 1037 * otherwise about fs integrity issues. Setting of the dirty bit 1038 * by __block_write_begin() isn't a real problem here as we clear 1039 * the bit before releasing a page lock and thus writeback cannot 1040 * ever write the buffer. 1041 */ 1042 if (dirty) 1043 clear_buffer_dirty(bh); 1044 BUFFER_TRACE(bh, "get write access"); 1045 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1046 EXT4_JTR_NONE); 1047 if (!ret && dirty) 1048 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1049 return ret; 1050 } 1051 1052 #ifdef CONFIG_FS_ENCRYPTION 1053 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1054 get_block_t *get_block) 1055 { 1056 unsigned from = pos & (PAGE_SIZE - 1); 1057 unsigned to = from + len; 1058 struct inode *inode = page->mapping->host; 1059 unsigned block_start, block_end; 1060 sector_t block; 1061 int err = 0; 1062 unsigned blocksize = inode->i_sb->s_blocksize; 1063 unsigned bbits; 1064 struct buffer_head *bh, *head, *wait[2]; 1065 int nr_wait = 0; 1066 int i; 1067 1068 BUG_ON(!PageLocked(page)); 1069 BUG_ON(from > PAGE_SIZE); 1070 BUG_ON(to > PAGE_SIZE); 1071 BUG_ON(from > to); 1072 1073 if (!page_has_buffers(page)) 1074 create_empty_buffers(page, blocksize, 0); 1075 head = page_buffers(page); 1076 bbits = ilog2(blocksize); 1077 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1078 1079 for (bh = head, block_start = 0; bh != head || !block_start; 1080 block++, block_start = block_end, bh = bh->b_this_page) { 1081 block_end = block_start + blocksize; 1082 if (block_end <= from || block_start >= to) { 1083 if (PageUptodate(page)) { 1084 set_buffer_uptodate(bh); 1085 } 1086 continue; 1087 } 1088 if (buffer_new(bh)) 1089 clear_buffer_new(bh); 1090 if (!buffer_mapped(bh)) { 1091 WARN_ON(bh->b_size != blocksize); 1092 err = get_block(inode, block, bh, 1); 1093 if (err) 1094 break; 1095 if (buffer_new(bh)) { 1096 if (PageUptodate(page)) { 1097 clear_buffer_new(bh); 1098 set_buffer_uptodate(bh); 1099 mark_buffer_dirty(bh); 1100 continue; 1101 } 1102 if (block_end > to || block_start < from) 1103 zero_user_segments(page, to, block_end, 1104 block_start, from); 1105 continue; 1106 } 1107 } 1108 if (PageUptodate(page)) { 1109 set_buffer_uptodate(bh); 1110 continue; 1111 } 1112 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1113 !buffer_unwritten(bh) && 1114 (block_start < from || block_end > to)) { 1115 ext4_read_bh_lock(bh, 0, false); 1116 wait[nr_wait++] = bh; 1117 } 1118 } 1119 /* 1120 * If we issued read requests, let them complete. 1121 */ 1122 for (i = 0; i < nr_wait; i++) { 1123 wait_on_buffer(wait[i]); 1124 if (!buffer_uptodate(wait[i])) 1125 err = -EIO; 1126 } 1127 if (unlikely(err)) { 1128 page_zero_new_buffers(page, from, to); 1129 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1130 for (i = 0; i < nr_wait; i++) { 1131 int err2; 1132 1133 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1134 bh_offset(wait[i])); 1135 if (err2) { 1136 clear_buffer_uptodate(wait[i]); 1137 err = err2; 1138 } 1139 } 1140 } 1141 1142 return err; 1143 } 1144 #endif 1145 1146 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1147 loff_t pos, unsigned len, 1148 struct page **pagep, void **fsdata) 1149 { 1150 struct inode *inode = mapping->host; 1151 int ret, needed_blocks; 1152 handle_t *handle; 1153 int retries = 0; 1154 struct page *page; 1155 pgoff_t index; 1156 unsigned from, to; 1157 1158 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1159 return -EIO; 1160 1161 trace_ext4_write_begin(inode, pos, len); 1162 /* 1163 * Reserve one block more for addition to orphan list in case 1164 * we allocate blocks but write fails for some reason 1165 */ 1166 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1167 index = pos >> PAGE_SHIFT; 1168 from = pos & (PAGE_SIZE - 1); 1169 to = from + len; 1170 1171 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1172 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1173 pagep); 1174 if (ret < 0) 1175 return ret; 1176 if (ret == 1) 1177 return 0; 1178 } 1179 1180 /* 1181 * grab_cache_page_write_begin() can take a long time if the 1182 * system is thrashing due to memory pressure, or if the page 1183 * is being written back. So grab it first before we start 1184 * the transaction handle. This also allows us to allocate 1185 * the page (if needed) without using GFP_NOFS. 1186 */ 1187 retry_grab: 1188 page = grab_cache_page_write_begin(mapping, index); 1189 if (!page) 1190 return -ENOMEM; 1191 unlock_page(page); 1192 1193 retry_journal: 1194 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1195 if (IS_ERR(handle)) { 1196 put_page(page); 1197 return PTR_ERR(handle); 1198 } 1199 1200 lock_page(page); 1201 if (page->mapping != mapping) { 1202 /* The page got truncated from under us */ 1203 unlock_page(page); 1204 put_page(page); 1205 ext4_journal_stop(handle); 1206 goto retry_grab; 1207 } 1208 /* In case writeback began while the page was unlocked */ 1209 wait_for_stable_page(page); 1210 1211 #ifdef CONFIG_FS_ENCRYPTION 1212 if (ext4_should_dioread_nolock(inode)) 1213 ret = ext4_block_write_begin(page, pos, len, 1214 ext4_get_block_unwritten); 1215 else 1216 ret = ext4_block_write_begin(page, pos, len, 1217 ext4_get_block); 1218 #else 1219 if (ext4_should_dioread_nolock(inode)) 1220 ret = __block_write_begin(page, pos, len, 1221 ext4_get_block_unwritten); 1222 else 1223 ret = __block_write_begin(page, pos, len, ext4_get_block); 1224 #endif 1225 if (!ret && ext4_should_journal_data(inode)) { 1226 ret = ext4_walk_page_buffers(handle, inode, 1227 page_buffers(page), from, to, NULL, 1228 do_journal_get_write_access); 1229 } 1230 1231 if (ret) { 1232 bool extended = (pos + len > inode->i_size) && 1233 !ext4_verity_in_progress(inode); 1234 1235 unlock_page(page); 1236 /* 1237 * __block_write_begin may have instantiated a few blocks 1238 * outside i_size. Trim these off again. Don't need 1239 * i_size_read because we hold i_rwsem. 1240 * 1241 * Add inode to orphan list in case we crash before 1242 * truncate finishes 1243 */ 1244 if (extended && ext4_can_truncate(inode)) 1245 ext4_orphan_add(handle, inode); 1246 1247 ext4_journal_stop(handle); 1248 if (extended) { 1249 ext4_truncate_failed_write(inode); 1250 /* 1251 * If truncate failed early the inode might 1252 * still be on the orphan list; we need to 1253 * make sure the inode is removed from the 1254 * orphan list in that case. 1255 */ 1256 if (inode->i_nlink) 1257 ext4_orphan_del(NULL, inode); 1258 } 1259 1260 if (ret == -ENOSPC && 1261 ext4_should_retry_alloc(inode->i_sb, &retries)) 1262 goto retry_journal; 1263 put_page(page); 1264 return ret; 1265 } 1266 *pagep = page; 1267 return ret; 1268 } 1269 1270 /* For write_end() in data=journal mode */ 1271 static int write_end_fn(handle_t *handle, struct inode *inode, 1272 struct buffer_head *bh) 1273 { 1274 int ret; 1275 if (!buffer_mapped(bh) || buffer_freed(bh)) 1276 return 0; 1277 set_buffer_uptodate(bh); 1278 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1279 clear_buffer_meta(bh); 1280 clear_buffer_prio(bh); 1281 return ret; 1282 } 1283 1284 /* 1285 * We need to pick up the new inode size which generic_commit_write gave us 1286 * `file' can be NULL - eg, when called from page_symlink(). 1287 * 1288 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1289 * buffers are managed internally. 1290 */ 1291 static int ext4_write_end(struct file *file, 1292 struct address_space *mapping, 1293 loff_t pos, unsigned len, unsigned copied, 1294 struct page *page, void *fsdata) 1295 { 1296 handle_t *handle = ext4_journal_current_handle(); 1297 struct inode *inode = mapping->host; 1298 loff_t old_size = inode->i_size; 1299 int ret = 0, ret2; 1300 int i_size_changed = 0; 1301 bool verity = ext4_verity_in_progress(inode); 1302 1303 trace_ext4_write_end(inode, pos, len, copied); 1304 1305 if (ext4_has_inline_data(inode)) 1306 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1307 1308 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1309 /* 1310 * it's important to update i_size while still holding page lock: 1311 * page writeout could otherwise come in and zero beyond i_size. 1312 * 1313 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1314 * blocks are being written past EOF, so skip the i_size update. 1315 */ 1316 if (!verity) 1317 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1318 unlock_page(page); 1319 put_page(page); 1320 1321 if (old_size < pos && !verity) 1322 pagecache_isize_extended(inode, old_size, pos); 1323 /* 1324 * Don't mark the inode dirty under page lock. First, it unnecessarily 1325 * makes the holding time of page lock longer. Second, it forces lock 1326 * ordering of page lock and transaction start for journaling 1327 * filesystems. 1328 */ 1329 if (i_size_changed) 1330 ret = ext4_mark_inode_dirty(handle, inode); 1331 1332 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1333 /* if we have allocated more blocks and copied 1334 * less. We will have blocks allocated outside 1335 * inode->i_size. So truncate them 1336 */ 1337 ext4_orphan_add(handle, inode); 1338 1339 ret2 = ext4_journal_stop(handle); 1340 if (!ret) 1341 ret = ret2; 1342 1343 if (pos + len > inode->i_size && !verity) { 1344 ext4_truncate_failed_write(inode); 1345 /* 1346 * If truncate failed early the inode might still be 1347 * on the orphan list; we need to make sure the inode 1348 * is removed from the orphan list in that case. 1349 */ 1350 if (inode->i_nlink) 1351 ext4_orphan_del(NULL, inode); 1352 } 1353 1354 return ret ? ret : copied; 1355 } 1356 1357 /* 1358 * This is a private version of page_zero_new_buffers() which doesn't 1359 * set the buffer to be dirty, since in data=journalled mode we need 1360 * to call ext4_handle_dirty_metadata() instead. 1361 */ 1362 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1363 struct inode *inode, 1364 struct page *page, 1365 unsigned from, unsigned to) 1366 { 1367 unsigned int block_start = 0, block_end; 1368 struct buffer_head *head, *bh; 1369 1370 bh = head = page_buffers(page); 1371 do { 1372 block_end = block_start + bh->b_size; 1373 if (buffer_new(bh)) { 1374 if (block_end > from && block_start < to) { 1375 if (!PageUptodate(page)) { 1376 unsigned start, size; 1377 1378 start = max(from, block_start); 1379 size = min(to, block_end) - start; 1380 1381 zero_user(page, start, size); 1382 write_end_fn(handle, inode, bh); 1383 } 1384 clear_buffer_new(bh); 1385 } 1386 } 1387 block_start = block_end; 1388 bh = bh->b_this_page; 1389 } while (bh != head); 1390 } 1391 1392 static int ext4_journalled_write_end(struct file *file, 1393 struct address_space *mapping, 1394 loff_t pos, unsigned len, unsigned copied, 1395 struct page *page, void *fsdata) 1396 { 1397 handle_t *handle = ext4_journal_current_handle(); 1398 struct inode *inode = mapping->host; 1399 loff_t old_size = inode->i_size; 1400 int ret = 0, ret2; 1401 int partial = 0; 1402 unsigned from, to; 1403 int size_changed = 0; 1404 bool verity = ext4_verity_in_progress(inode); 1405 1406 trace_ext4_journalled_write_end(inode, pos, len, copied); 1407 from = pos & (PAGE_SIZE - 1); 1408 to = from + len; 1409 1410 BUG_ON(!ext4_handle_valid(handle)); 1411 1412 if (ext4_has_inline_data(inode)) 1413 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1414 1415 if (unlikely(copied < len) && !PageUptodate(page)) { 1416 copied = 0; 1417 ext4_journalled_zero_new_buffers(handle, inode, page, from, to); 1418 } else { 1419 if (unlikely(copied < len)) 1420 ext4_journalled_zero_new_buffers(handle, inode, page, 1421 from + copied, to); 1422 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page), 1423 from, from + copied, &partial, 1424 write_end_fn); 1425 if (!partial) 1426 SetPageUptodate(page); 1427 } 1428 if (!verity) 1429 size_changed = ext4_update_inode_size(inode, pos + copied); 1430 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1431 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1432 unlock_page(page); 1433 put_page(page); 1434 1435 if (old_size < pos && !verity) 1436 pagecache_isize_extended(inode, old_size, pos); 1437 1438 if (size_changed) { 1439 ret2 = ext4_mark_inode_dirty(handle, inode); 1440 if (!ret) 1441 ret = ret2; 1442 } 1443 1444 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1445 /* if we have allocated more blocks and copied 1446 * less. We will have blocks allocated outside 1447 * inode->i_size. So truncate them 1448 */ 1449 ext4_orphan_add(handle, inode); 1450 1451 ret2 = ext4_journal_stop(handle); 1452 if (!ret) 1453 ret = ret2; 1454 if (pos + len > inode->i_size && !verity) { 1455 ext4_truncate_failed_write(inode); 1456 /* 1457 * If truncate failed early the inode might still be 1458 * on the orphan list; we need to make sure the inode 1459 * is removed from the orphan list in that case. 1460 */ 1461 if (inode->i_nlink) 1462 ext4_orphan_del(NULL, inode); 1463 } 1464 1465 return ret ? ret : copied; 1466 } 1467 1468 /* 1469 * Reserve space for a single cluster 1470 */ 1471 static int ext4_da_reserve_space(struct inode *inode) 1472 { 1473 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1474 struct ext4_inode_info *ei = EXT4_I(inode); 1475 int ret; 1476 1477 /* 1478 * We will charge metadata quota at writeout time; this saves 1479 * us from metadata over-estimation, though we may go over by 1480 * a small amount in the end. Here we just reserve for data. 1481 */ 1482 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1483 if (ret) 1484 return ret; 1485 1486 spin_lock(&ei->i_block_reservation_lock); 1487 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1488 spin_unlock(&ei->i_block_reservation_lock); 1489 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1490 return -ENOSPC; 1491 } 1492 ei->i_reserved_data_blocks++; 1493 trace_ext4_da_reserve_space(inode); 1494 spin_unlock(&ei->i_block_reservation_lock); 1495 1496 return 0; /* success */ 1497 } 1498 1499 void ext4_da_release_space(struct inode *inode, int to_free) 1500 { 1501 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1502 struct ext4_inode_info *ei = EXT4_I(inode); 1503 1504 if (!to_free) 1505 return; /* Nothing to release, exit */ 1506 1507 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1508 1509 trace_ext4_da_release_space(inode, to_free); 1510 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1511 /* 1512 * if there aren't enough reserved blocks, then the 1513 * counter is messed up somewhere. Since this 1514 * function is called from invalidate page, it's 1515 * harmless to return without any action. 1516 */ 1517 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1518 "ino %lu, to_free %d with only %d reserved " 1519 "data blocks", inode->i_ino, to_free, 1520 ei->i_reserved_data_blocks); 1521 WARN_ON(1); 1522 to_free = ei->i_reserved_data_blocks; 1523 } 1524 ei->i_reserved_data_blocks -= to_free; 1525 1526 /* update fs dirty data blocks counter */ 1527 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1528 1529 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1530 1531 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1532 } 1533 1534 /* 1535 * Delayed allocation stuff 1536 */ 1537 1538 struct mpage_da_data { 1539 struct inode *inode; 1540 struct writeback_control *wbc; 1541 1542 pgoff_t first_page; /* The first page to write */ 1543 pgoff_t next_page; /* Current page to examine */ 1544 pgoff_t last_page; /* Last page to examine */ 1545 /* 1546 * Extent to map - this can be after first_page because that can be 1547 * fully mapped. We somewhat abuse m_flags to store whether the extent 1548 * is delalloc or unwritten. 1549 */ 1550 struct ext4_map_blocks map; 1551 struct ext4_io_submit io_submit; /* IO submission data */ 1552 unsigned int do_map:1; 1553 unsigned int scanned_until_end:1; 1554 }; 1555 1556 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1557 bool invalidate) 1558 { 1559 unsigned nr, i; 1560 pgoff_t index, end; 1561 struct folio_batch fbatch; 1562 struct inode *inode = mpd->inode; 1563 struct address_space *mapping = inode->i_mapping; 1564 1565 /* This is necessary when next_page == 0. */ 1566 if (mpd->first_page >= mpd->next_page) 1567 return; 1568 1569 mpd->scanned_until_end = 0; 1570 index = mpd->first_page; 1571 end = mpd->next_page - 1; 1572 if (invalidate) { 1573 ext4_lblk_t start, last; 1574 start = index << (PAGE_SHIFT - inode->i_blkbits); 1575 last = end << (PAGE_SHIFT - inode->i_blkbits); 1576 1577 /* 1578 * avoid racing with extent status tree scans made by 1579 * ext4_insert_delayed_block() 1580 */ 1581 down_write(&EXT4_I(inode)->i_data_sem); 1582 ext4_es_remove_extent(inode, start, last - start + 1); 1583 up_write(&EXT4_I(inode)->i_data_sem); 1584 } 1585 1586 folio_batch_init(&fbatch); 1587 while (index <= end) { 1588 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1589 if (nr == 0) 1590 break; 1591 for (i = 0; i < nr; i++) { 1592 struct folio *folio = fbatch.folios[i]; 1593 1594 if (folio->index < mpd->first_page) 1595 continue; 1596 if (folio->index + folio_nr_pages(folio) - 1 > end) 1597 continue; 1598 BUG_ON(!folio_test_locked(folio)); 1599 BUG_ON(folio_test_writeback(folio)); 1600 if (invalidate) { 1601 if (folio_mapped(folio)) 1602 folio_clear_dirty_for_io(folio); 1603 block_invalidate_folio(folio, 0, 1604 folio_size(folio)); 1605 folio_clear_uptodate(folio); 1606 } 1607 folio_unlock(folio); 1608 } 1609 folio_batch_release(&fbatch); 1610 } 1611 } 1612 1613 static void ext4_print_free_blocks(struct inode *inode) 1614 { 1615 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1616 struct super_block *sb = inode->i_sb; 1617 struct ext4_inode_info *ei = EXT4_I(inode); 1618 1619 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1620 EXT4_C2B(EXT4_SB(inode->i_sb), 1621 ext4_count_free_clusters(sb))); 1622 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1623 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1624 (long long) EXT4_C2B(EXT4_SB(sb), 1625 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1626 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1627 (long long) EXT4_C2B(EXT4_SB(sb), 1628 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1629 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1630 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1631 ei->i_reserved_data_blocks); 1632 return; 1633 } 1634 1635 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode, 1636 struct buffer_head *bh) 1637 { 1638 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1639 } 1640 1641 /* 1642 * ext4_insert_delayed_block - adds a delayed block to the extents status 1643 * tree, incrementing the reserved cluster/block 1644 * count or making a pending reservation 1645 * where needed 1646 * 1647 * @inode - file containing the newly added block 1648 * @lblk - logical block to be added 1649 * 1650 * Returns 0 on success, negative error code on failure. 1651 */ 1652 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1653 { 1654 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1655 int ret; 1656 bool allocated = false; 1657 bool reserved = false; 1658 1659 /* 1660 * If the cluster containing lblk is shared with a delayed, 1661 * written, or unwritten extent in a bigalloc file system, it's 1662 * already been accounted for and does not need to be reserved. 1663 * A pending reservation must be made for the cluster if it's 1664 * shared with a written or unwritten extent and doesn't already 1665 * have one. Written and unwritten extents can be purged from the 1666 * extents status tree if the system is under memory pressure, so 1667 * it's necessary to examine the extent tree if a search of the 1668 * extents status tree doesn't get a match. 1669 */ 1670 if (sbi->s_cluster_ratio == 1) { 1671 ret = ext4_da_reserve_space(inode); 1672 if (ret != 0) /* ENOSPC */ 1673 goto errout; 1674 reserved = true; 1675 } else { /* bigalloc */ 1676 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1677 if (!ext4_es_scan_clu(inode, 1678 &ext4_es_is_mapped, lblk)) { 1679 ret = ext4_clu_mapped(inode, 1680 EXT4_B2C(sbi, lblk)); 1681 if (ret < 0) 1682 goto errout; 1683 if (ret == 0) { 1684 ret = ext4_da_reserve_space(inode); 1685 if (ret != 0) /* ENOSPC */ 1686 goto errout; 1687 reserved = true; 1688 } else { 1689 allocated = true; 1690 } 1691 } else { 1692 allocated = true; 1693 } 1694 } 1695 } 1696 1697 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1698 if (ret && reserved) 1699 ext4_da_release_space(inode, 1); 1700 1701 errout: 1702 return ret; 1703 } 1704 1705 /* 1706 * This function is grabs code from the very beginning of 1707 * ext4_map_blocks, but assumes that the caller is from delayed write 1708 * time. This function looks up the requested blocks and sets the 1709 * buffer delay bit under the protection of i_data_sem. 1710 */ 1711 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1712 struct ext4_map_blocks *map, 1713 struct buffer_head *bh) 1714 { 1715 struct extent_status es; 1716 int retval; 1717 sector_t invalid_block = ~((sector_t) 0xffff); 1718 #ifdef ES_AGGRESSIVE_TEST 1719 struct ext4_map_blocks orig_map; 1720 1721 memcpy(&orig_map, map, sizeof(*map)); 1722 #endif 1723 1724 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1725 invalid_block = ~0; 1726 1727 map->m_flags = 0; 1728 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1729 (unsigned long) map->m_lblk); 1730 1731 /* Lookup extent status tree firstly */ 1732 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1733 if (ext4_es_is_hole(&es)) { 1734 retval = 0; 1735 down_read(&EXT4_I(inode)->i_data_sem); 1736 goto add_delayed; 1737 } 1738 1739 /* 1740 * Delayed extent could be allocated by fallocate. 1741 * So we need to check it. 1742 */ 1743 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1744 map_bh(bh, inode->i_sb, invalid_block); 1745 set_buffer_new(bh); 1746 set_buffer_delay(bh); 1747 return 0; 1748 } 1749 1750 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1751 retval = es.es_len - (iblock - es.es_lblk); 1752 if (retval > map->m_len) 1753 retval = map->m_len; 1754 map->m_len = retval; 1755 if (ext4_es_is_written(&es)) 1756 map->m_flags |= EXT4_MAP_MAPPED; 1757 else if (ext4_es_is_unwritten(&es)) 1758 map->m_flags |= EXT4_MAP_UNWRITTEN; 1759 else 1760 BUG(); 1761 1762 #ifdef ES_AGGRESSIVE_TEST 1763 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1764 #endif 1765 return retval; 1766 } 1767 1768 /* 1769 * Try to see if we can get the block without requesting a new 1770 * file system block. 1771 */ 1772 down_read(&EXT4_I(inode)->i_data_sem); 1773 if (ext4_has_inline_data(inode)) 1774 retval = 0; 1775 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1776 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1777 else 1778 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1779 1780 add_delayed: 1781 if (retval == 0) { 1782 int ret; 1783 1784 /* 1785 * XXX: __block_prepare_write() unmaps passed block, 1786 * is it OK? 1787 */ 1788 1789 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1790 if (ret != 0) { 1791 retval = ret; 1792 goto out_unlock; 1793 } 1794 1795 map_bh(bh, inode->i_sb, invalid_block); 1796 set_buffer_new(bh); 1797 set_buffer_delay(bh); 1798 } else if (retval > 0) { 1799 int ret; 1800 unsigned int status; 1801 1802 if (unlikely(retval != map->m_len)) { 1803 ext4_warning(inode->i_sb, 1804 "ES len assertion failed for inode " 1805 "%lu: retval %d != map->m_len %d", 1806 inode->i_ino, retval, map->m_len); 1807 WARN_ON(1); 1808 } 1809 1810 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1811 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1812 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1813 map->m_pblk, status); 1814 if (ret != 0) 1815 retval = ret; 1816 } 1817 1818 out_unlock: 1819 up_read((&EXT4_I(inode)->i_data_sem)); 1820 1821 return retval; 1822 } 1823 1824 /* 1825 * This is a special get_block_t callback which is used by 1826 * ext4_da_write_begin(). It will either return mapped block or 1827 * reserve space for a single block. 1828 * 1829 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1830 * We also have b_blocknr = -1 and b_bdev initialized properly 1831 * 1832 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1833 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1834 * initialized properly. 1835 */ 1836 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1837 struct buffer_head *bh, int create) 1838 { 1839 struct ext4_map_blocks map; 1840 int ret = 0; 1841 1842 BUG_ON(create == 0); 1843 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1844 1845 map.m_lblk = iblock; 1846 map.m_len = 1; 1847 1848 /* 1849 * first, we need to know whether the block is allocated already 1850 * preallocated blocks are unmapped but should treated 1851 * the same as allocated blocks. 1852 */ 1853 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1854 if (ret <= 0) 1855 return ret; 1856 1857 map_bh(bh, inode->i_sb, map.m_pblk); 1858 ext4_update_bh_state(bh, map.m_flags); 1859 1860 if (buffer_unwritten(bh)) { 1861 /* A delayed write to unwritten bh should be marked 1862 * new and mapped. Mapped ensures that we don't do 1863 * get_block multiple times when we write to the same 1864 * offset and new ensures that we do proper zero out 1865 * for partial write. 1866 */ 1867 set_buffer_new(bh); 1868 set_buffer_mapped(bh); 1869 } 1870 return 0; 1871 } 1872 1873 static int __ext4_journalled_writepage(struct page *page, 1874 unsigned int len) 1875 { 1876 struct address_space *mapping = page->mapping; 1877 struct inode *inode = mapping->host; 1878 handle_t *handle = NULL; 1879 int ret = 0, err = 0; 1880 int inline_data = ext4_has_inline_data(inode); 1881 struct buffer_head *inode_bh = NULL; 1882 loff_t size; 1883 1884 ClearPageChecked(page); 1885 1886 if (inline_data) { 1887 BUG_ON(page->index != 0); 1888 BUG_ON(len > ext4_get_max_inline_size(inode)); 1889 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1890 if (inode_bh == NULL) 1891 goto out; 1892 } 1893 /* 1894 * We need to release the page lock before we start the 1895 * journal, so grab a reference so the page won't disappear 1896 * out from under us. 1897 */ 1898 get_page(page); 1899 unlock_page(page); 1900 1901 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1902 ext4_writepage_trans_blocks(inode)); 1903 if (IS_ERR(handle)) { 1904 ret = PTR_ERR(handle); 1905 put_page(page); 1906 goto out_no_pagelock; 1907 } 1908 BUG_ON(!ext4_handle_valid(handle)); 1909 1910 lock_page(page); 1911 put_page(page); 1912 size = i_size_read(inode); 1913 if (page->mapping != mapping || page_offset(page) > size) { 1914 /* The page got truncated from under us */ 1915 ext4_journal_stop(handle); 1916 ret = 0; 1917 goto out; 1918 } 1919 1920 if (inline_data) { 1921 ret = ext4_mark_inode_dirty(handle, inode); 1922 } else { 1923 struct buffer_head *page_bufs = page_buffers(page); 1924 1925 if (page->index == size >> PAGE_SHIFT) 1926 len = size & ~PAGE_MASK; 1927 else 1928 len = PAGE_SIZE; 1929 1930 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1931 NULL, do_journal_get_write_access); 1932 1933 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 1934 NULL, write_end_fn); 1935 } 1936 if (ret == 0) 1937 ret = err; 1938 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len); 1939 if (ret == 0) 1940 ret = err; 1941 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1942 err = ext4_journal_stop(handle); 1943 if (!ret) 1944 ret = err; 1945 1946 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1947 out: 1948 unlock_page(page); 1949 out_no_pagelock: 1950 brelse(inode_bh); 1951 return ret; 1952 } 1953 1954 /* 1955 * Note that we don't need to start a transaction unless we're journaling data 1956 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1957 * need to file the inode to the transaction's list in ordered mode because if 1958 * we are writing back data added by write(), the inode is already there and if 1959 * we are writing back data modified via mmap(), no one guarantees in which 1960 * transaction the data will hit the disk. In case we are journaling data, we 1961 * cannot start transaction directly because transaction start ranks above page 1962 * lock so we have to do some magic. 1963 * 1964 * This function can get called via... 1965 * - ext4_writepages after taking page lock (have journal handle) 1966 * - journal_submit_inode_data_buffers (no journal handle) 1967 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1968 * - grab_page_cache when doing write_begin (have journal handle) 1969 * 1970 * We don't do any block allocation in this function. If we have page with 1971 * multiple blocks we need to write those buffer_heads that are mapped. This 1972 * is important for mmaped based write. So if we do with blocksize 1K 1973 * truncate(f, 1024); 1974 * a = mmap(f, 0, 4096); 1975 * a[0] = 'a'; 1976 * truncate(f, 4096); 1977 * we have in the page first buffer_head mapped via page_mkwrite call back 1978 * but other buffer_heads would be unmapped but dirty (dirty done via the 1979 * do_wp_page). So writepage should write the first block. If we modify 1980 * the mmap area beyond 1024 we will again get a page_fault and the 1981 * page_mkwrite callback will do the block allocation and mark the 1982 * buffer_heads mapped. 1983 * 1984 * We redirty the page if we have any buffer_heads that is either delay or 1985 * unwritten in the page. 1986 * 1987 * We can get recursively called as show below. 1988 * 1989 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1990 * ext4_writepage() 1991 * 1992 * But since we don't do any block allocation we should not deadlock. 1993 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1994 */ 1995 static int ext4_writepage(struct page *page, 1996 struct writeback_control *wbc) 1997 { 1998 struct folio *folio = page_folio(page); 1999 int ret = 0; 2000 loff_t size; 2001 unsigned int len; 2002 struct buffer_head *page_bufs = NULL; 2003 struct inode *inode = page->mapping->host; 2004 struct ext4_io_submit io_submit; 2005 bool keep_towrite = false; 2006 2007 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 2008 folio_invalidate(folio, 0, folio_size(folio)); 2009 folio_unlock(folio); 2010 return -EIO; 2011 } 2012 2013 trace_ext4_writepage(page); 2014 size = i_size_read(inode); 2015 if (page->index == size >> PAGE_SHIFT && 2016 !ext4_verity_in_progress(inode)) 2017 len = size & ~PAGE_MASK; 2018 else 2019 len = PAGE_SIZE; 2020 2021 /* Should never happen but for bugs in other kernel subsystems */ 2022 if (!page_has_buffers(page)) { 2023 ext4_warning_inode(inode, 2024 "page %lu does not have buffers attached", page->index); 2025 ClearPageDirty(page); 2026 unlock_page(page); 2027 return 0; 2028 } 2029 2030 page_bufs = page_buffers(page); 2031 /* 2032 * We cannot do block allocation or other extent handling in this 2033 * function. If there are buffers needing that, we have to redirty 2034 * the page. But we may reach here when we do a journal commit via 2035 * journal_submit_inode_data_buffers() and in that case we must write 2036 * allocated buffers to achieve data=ordered mode guarantees. 2037 * 2038 * Also, if there is only one buffer per page (the fs block 2039 * size == the page size), if one buffer needs block 2040 * allocation or needs to modify the extent tree to clear the 2041 * unwritten flag, we know that the page can't be written at 2042 * all, so we might as well refuse the write immediately. 2043 * Unfortunately if the block size != page size, we can't as 2044 * easily detect this case using ext4_walk_page_buffers(), but 2045 * for the extremely common case, this is an optimization that 2046 * skips a useless round trip through ext4_bio_write_page(). 2047 */ 2048 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL, 2049 ext4_bh_delay_or_unwritten)) { 2050 redirty_page_for_writepage(wbc, page); 2051 if ((current->flags & PF_MEMALLOC) || 2052 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2053 /* 2054 * For memory cleaning there's no point in writing only 2055 * some buffers. So just bail out. Warn if we came here 2056 * from direct reclaim. 2057 */ 2058 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2059 == PF_MEMALLOC); 2060 unlock_page(page); 2061 return 0; 2062 } 2063 keep_towrite = true; 2064 } 2065 2066 if (PageChecked(page) && ext4_should_journal_data(inode)) 2067 /* 2068 * It's mmapped pagecache. Add buffers and journal it. There 2069 * doesn't seem much point in redirtying the page here. 2070 */ 2071 return __ext4_journalled_writepage(page, len); 2072 2073 ext4_io_submit_init(&io_submit, wbc); 2074 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2075 if (!io_submit.io_end) { 2076 redirty_page_for_writepage(wbc, page); 2077 unlock_page(page); 2078 return -ENOMEM; 2079 } 2080 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite); 2081 ext4_io_submit(&io_submit); 2082 /* Drop io_end reference we got from init */ 2083 ext4_put_io_end_defer(io_submit.io_end); 2084 return ret; 2085 } 2086 2087 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2088 { 2089 int len; 2090 loff_t size; 2091 int err; 2092 2093 BUG_ON(page->index != mpd->first_page); 2094 clear_page_dirty_for_io(page); 2095 /* 2096 * We have to be very careful here! Nothing protects writeback path 2097 * against i_size changes and the page can be writeably mapped into 2098 * page tables. So an application can be growing i_size and writing 2099 * data through mmap while writeback runs. clear_page_dirty_for_io() 2100 * write-protects our page in page tables and the page cannot get 2101 * written to again until we release page lock. So only after 2102 * clear_page_dirty_for_io() we are safe to sample i_size for 2103 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2104 * on the barrier provided by TestClearPageDirty in 2105 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2106 * after page tables are updated. 2107 */ 2108 size = i_size_read(mpd->inode); 2109 if (page->index == size >> PAGE_SHIFT && 2110 !ext4_verity_in_progress(mpd->inode)) 2111 len = size & ~PAGE_MASK; 2112 else 2113 len = PAGE_SIZE; 2114 err = ext4_bio_write_page(&mpd->io_submit, page, len, false); 2115 if (!err) 2116 mpd->wbc->nr_to_write--; 2117 mpd->first_page++; 2118 2119 return err; 2120 } 2121 2122 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2123 2124 /* 2125 * mballoc gives us at most this number of blocks... 2126 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2127 * The rest of mballoc seems to handle chunks up to full group size. 2128 */ 2129 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2130 2131 /* 2132 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2133 * 2134 * @mpd - extent of blocks 2135 * @lblk - logical number of the block in the file 2136 * @bh - buffer head we want to add to the extent 2137 * 2138 * The function is used to collect contig. blocks in the same state. If the 2139 * buffer doesn't require mapping for writeback and we haven't started the 2140 * extent of buffers to map yet, the function returns 'true' immediately - the 2141 * caller can write the buffer right away. Otherwise the function returns true 2142 * if the block has been added to the extent, false if the block couldn't be 2143 * added. 2144 */ 2145 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2146 struct buffer_head *bh) 2147 { 2148 struct ext4_map_blocks *map = &mpd->map; 2149 2150 /* Buffer that doesn't need mapping for writeback? */ 2151 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2152 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2153 /* So far no extent to map => we write the buffer right away */ 2154 if (map->m_len == 0) 2155 return true; 2156 return false; 2157 } 2158 2159 /* First block in the extent? */ 2160 if (map->m_len == 0) { 2161 /* We cannot map unless handle is started... */ 2162 if (!mpd->do_map) 2163 return false; 2164 map->m_lblk = lblk; 2165 map->m_len = 1; 2166 map->m_flags = bh->b_state & BH_FLAGS; 2167 return true; 2168 } 2169 2170 /* Don't go larger than mballoc is willing to allocate */ 2171 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2172 return false; 2173 2174 /* Can we merge the block to our big extent? */ 2175 if (lblk == map->m_lblk + map->m_len && 2176 (bh->b_state & BH_FLAGS) == map->m_flags) { 2177 map->m_len++; 2178 return true; 2179 } 2180 return false; 2181 } 2182 2183 /* 2184 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2185 * 2186 * @mpd - extent of blocks for mapping 2187 * @head - the first buffer in the page 2188 * @bh - buffer we should start processing from 2189 * @lblk - logical number of the block in the file corresponding to @bh 2190 * 2191 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2192 * the page for IO if all buffers in this page were mapped and there's no 2193 * accumulated extent of buffers to map or add buffers in the page to the 2194 * extent of buffers to map. The function returns 1 if the caller can continue 2195 * by processing the next page, 0 if it should stop adding buffers to the 2196 * extent to map because we cannot extend it anymore. It can also return value 2197 * < 0 in case of error during IO submission. 2198 */ 2199 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2200 struct buffer_head *head, 2201 struct buffer_head *bh, 2202 ext4_lblk_t lblk) 2203 { 2204 struct inode *inode = mpd->inode; 2205 int err; 2206 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2207 >> inode->i_blkbits; 2208 2209 if (ext4_verity_in_progress(inode)) 2210 blocks = EXT_MAX_BLOCKS; 2211 2212 do { 2213 BUG_ON(buffer_locked(bh)); 2214 2215 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2216 /* Found extent to map? */ 2217 if (mpd->map.m_len) 2218 return 0; 2219 /* Buffer needs mapping and handle is not started? */ 2220 if (!mpd->do_map) 2221 return 0; 2222 /* Everything mapped so far and we hit EOF */ 2223 break; 2224 } 2225 } while (lblk++, (bh = bh->b_this_page) != head); 2226 /* So far everything mapped? Submit the page for IO. */ 2227 if (mpd->map.m_len == 0) { 2228 err = mpage_submit_page(mpd, head->b_page); 2229 if (err < 0) 2230 return err; 2231 } 2232 if (lblk >= blocks) { 2233 mpd->scanned_until_end = 1; 2234 return 0; 2235 } 2236 return 1; 2237 } 2238 2239 /* 2240 * mpage_process_page - update page buffers corresponding to changed extent and 2241 * may submit fully mapped page for IO 2242 * 2243 * @mpd - description of extent to map, on return next extent to map 2244 * @m_lblk - logical block mapping. 2245 * @m_pblk - corresponding physical mapping. 2246 * @map_bh - determines on return whether this page requires any further 2247 * mapping or not. 2248 * Scan given page buffers corresponding to changed extent and update buffer 2249 * state according to new extent state. 2250 * We map delalloc buffers to their physical location, clear unwritten bits. 2251 * If the given page is not fully mapped, we update @map to the next extent in 2252 * the given page that needs mapping & return @map_bh as true. 2253 */ 2254 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2255 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2256 bool *map_bh) 2257 { 2258 struct buffer_head *head, *bh; 2259 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2260 ext4_lblk_t lblk = *m_lblk; 2261 ext4_fsblk_t pblock = *m_pblk; 2262 int err = 0; 2263 int blkbits = mpd->inode->i_blkbits; 2264 ssize_t io_end_size = 0; 2265 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2266 2267 bh = head = page_buffers(page); 2268 do { 2269 if (lblk < mpd->map.m_lblk) 2270 continue; 2271 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2272 /* 2273 * Buffer after end of mapped extent. 2274 * Find next buffer in the page to map. 2275 */ 2276 mpd->map.m_len = 0; 2277 mpd->map.m_flags = 0; 2278 io_end_vec->size += io_end_size; 2279 2280 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2281 if (err > 0) 2282 err = 0; 2283 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2284 io_end_vec = ext4_alloc_io_end_vec(io_end); 2285 if (IS_ERR(io_end_vec)) { 2286 err = PTR_ERR(io_end_vec); 2287 goto out; 2288 } 2289 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2290 } 2291 *map_bh = true; 2292 goto out; 2293 } 2294 if (buffer_delay(bh)) { 2295 clear_buffer_delay(bh); 2296 bh->b_blocknr = pblock++; 2297 } 2298 clear_buffer_unwritten(bh); 2299 io_end_size += (1 << blkbits); 2300 } while (lblk++, (bh = bh->b_this_page) != head); 2301 2302 io_end_vec->size += io_end_size; 2303 *map_bh = false; 2304 out: 2305 *m_lblk = lblk; 2306 *m_pblk = pblock; 2307 return err; 2308 } 2309 2310 /* 2311 * mpage_map_buffers - update buffers corresponding to changed extent and 2312 * submit fully mapped pages for IO 2313 * 2314 * @mpd - description of extent to map, on return next extent to map 2315 * 2316 * Scan buffers corresponding to changed extent (we expect corresponding pages 2317 * to be already locked) and update buffer state according to new extent state. 2318 * We map delalloc buffers to their physical location, clear unwritten bits, 2319 * and mark buffers as uninit when we perform writes to unwritten extents 2320 * and do extent conversion after IO is finished. If the last page is not fully 2321 * mapped, we update @map to the next extent in the last page that needs 2322 * mapping. Otherwise we submit the page for IO. 2323 */ 2324 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2325 { 2326 struct folio_batch fbatch; 2327 unsigned nr, i; 2328 struct inode *inode = mpd->inode; 2329 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2330 pgoff_t start, end; 2331 ext4_lblk_t lblk; 2332 ext4_fsblk_t pblock; 2333 int err; 2334 bool map_bh = false; 2335 2336 start = mpd->map.m_lblk >> bpp_bits; 2337 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2338 lblk = start << bpp_bits; 2339 pblock = mpd->map.m_pblk; 2340 2341 folio_batch_init(&fbatch); 2342 while (start <= end) { 2343 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2344 if (nr == 0) 2345 break; 2346 for (i = 0; i < nr; i++) { 2347 struct page *page = &fbatch.folios[i]->page; 2348 2349 err = mpage_process_page(mpd, page, &lblk, &pblock, 2350 &map_bh); 2351 /* 2352 * If map_bh is true, means page may require further bh 2353 * mapping, or maybe the page was submitted for IO. 2354 * So we return to call further extent mapping. 2355 */ 2356 if (err < 0 || map_bh) 2357 goto out; 2358 /* Page fully mapped - let IO run! */ 2359 err = mpage_submit_page(mpd, page); 2360 if (err < 0) 2361 goto out; 2362 } 2363 folio_batch_release(&fbatch); 2364 } 2365 /* Extent fully mapped and matches with page boundary. We are done. */ 2366 mpd->map.m_len = 0; 2367 mpd->map.m_flags = 0; 2368 return 0; 2369 out: 2370 folio_batch_release(&fbatch); 2371 return err; 2372 } 2373 2374 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2375 { 2376 struct inode *inode = mpd->inode; 2377 struct ext4_map_blocks *map = &mpd->map; 2378 int get_blocks_flags; 2379 int err, dioread_nolock; 2380 2381 trace_ext4_da_write_pages_extent(inode, map); 2382 /* 2383 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2384 * to convert an unwritten extent to be initialized (in the case 2385 * where we have written into one or more preallocated blocks). It is 2386 * possible that we're going to need more metadata blocks than 2387 * previously reserved. However we must not fail because we're in 2388 * writeback and there is nothing we can do about it so it might result 2389 * in data loss. So use reserved blocks to allocate metadata if 2390 * possible. 2391 * 2392 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2393 * the blocks in question are delalloc blocks. This indicates 2394 * that the blocks and quotas has already been checked when 2395 * the data was copied into the page cache. 2396 */ 2397 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2398 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2399 EXT4_GET_BLOCKS_IO_SUBMIT; 2400 dioread_nolock = ext4_should_dioread_nolock(inode); 2401 if (dioread_nolock) 2402 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2403 if (map->m_flags & BIT(BH_Delay)) 2404 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2405 2406 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2407 if (err < 0) 2408 return err; 2409 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2410 if (!mpd->io_submit.io_end->handle && 2411 ext4_handle_valid(handle)) { 2412 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2413 handle->h_rsv_handle = NULL; 2414 } 2415 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2416 } 2417 2418 BUG_ON(map->m_len == 0); 2419 return 0; 2420 } 2421 2422 /* 2423 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2424 * mpd->len and submit pages underlying it for IO 2425 * 2426 * @handle - handle for journal operations 2427 * @mpd - extent to map 2428 * @give_up_on_write - we set this to true iff there is a fatal error and there 2429 * is no hope of writing the data. The caller should discard 2430 * dirty pages to avoid infinite loops. 2431 * 2432 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2433 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2434 * them to initialized or split the described range from larger unwritten 2435 * extent. Note that we need not map all the described range since allocation 2436 * can return less blocks or the range is covered by more unwritten extents. We 2437 * cannot map more because we are limited by reserved transaction credits. On 2438 * the other hand we always make sure that the last touched page is fully 2439 * mapped so that it can be written out (and thus forward progress is 2440 * guaranteed). After mapping we submit all mapped pages for IO. 2441 */ 2442 static int mpage_map_and_submit_extent(handle_t *handle, 2443 struct mpage_da_data *mpd, 2444 bool *give_up_on_write) 2445 { 2446 struct inode *inode = mpd->inode; 2447 struct ext4_map_blocks *map = &mpd->map; 2448 int err; 2449 loff_t disksize; 2450 int progress = 0; 2451 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2452 struct ext4_io_end_vec *io_end_vec; 2453 2454 io_end_vec = ext4_alloc_io_end_vec(io_end); 2455 if (IS_ERR(io_end_vec)) 2456 return PTR_ERR(io_end_vec); 2457 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2458 do { 2459 err = mpage_map_one_extent(handle, mpd); 2460 if (err < 0) { 2461 struct super_block *sb = inode->i_sb; 2462 2463 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2464 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 2465 goto invalidate_dirty_pages; 2466 /* 2467 * Let the uper layers retry transient errors. 2468 * In the case of ENOSPC, if ext4_count_free_blocks() 2469 * is non-zero, a commit should free up blocks. 2470 */ 2471 if ((err == -ENOMEM) || 2472 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2473 if (progress) 2474 goto update_disksize; 2475 return err; 2476 } 2477 ext4_msg(sb, KERN_CRIT, 2478 "Delayed block allocation failed for " 2479 "inode %lu at logical offset %llu with" 2480 " max blocks %u with error %d", 2481 inode->i_ino, 2482 (unsigned long long)map->m_lblk, 2483 (unsigned)map->m_len, -err); 2484 ext4_msg(sb, KERN_CRIT, 2485 "This should not happen!! Data will " 2486 "be lost\n"); 2487 if (err == -ENOSPC) 2488 ext4_print_free_blocks(inode); 2489 invalidate_dirty_pages: 2490 *give_up_on_write = true; 2491 return err; 2492 } 2493 progress = 1; 2494 /* 2495 * Update buffer state, submit mapped pages, and get us new 2496 * extent to map 2497 */ 2498 err = mpage_map_and_submit_buffers(mpd); 2499 if (err < 0) 2500 goto update_disksize; 2501 } while (map->m_len); 2502 2503 update_disksize: 2504 /* 2505 * Update on-disk size after IO is submitted. Races with 2506 * truncate are avoided by checking i_size under i_data_sem. 2507 */ 2508 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2509 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2510 int err2; 2511 loff_t i_size; 2512 2513 down_write(&EXT4_I(inode)->i_data_sem); 2514 i_size = i_size_read(inode); 2515 if (disksize > i_size) 2516 disksize = i_size; 2517 if (disksize > EXT4_I(inode)->i_disksize) 2518 EXT4_I(inode)->i_disksize = disksize; 2519 up_write(&EXT4_I(inode)->i_data_sem); 2520 err2 = ext4_mark_inode_dirty(handle, inode); 2521 if (err2) { 2522 ext4_error_err(inode->i_sb, -err2, 2523 "Failed to mark inode %lu dirty", 2524 inode->i_ino); 2525 } 2526 if (!err) 2527 err = err2; 2528 } 2529 return err; 2530 } 2531 2532 /* 2533 * Calculate the total number of credits to reserve for one writepages 2534 * iteration. This is called from ext4_writepages(). We map an extent of 2535 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2536 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2537 * bpp - 1 blocks in bpp different extents. 2538 */ 2539 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2540 { 2541 int bpp = ext4_journal_blocks_per_page(inode); 2542 2543 return ext4_meta_trans_blocks(inode, 2544 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2545 } 2546 2547 /* 2548 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2549 * and underlying extent to map 2550 * 2551 * @mpd - where to look for pages 2552 * 2553 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2554 * IO immediately. When we find a page which isn't mapped we start accumulating 2555 * extent of buffers underlying these pages that needs mapping (formed by 2556 * either delayed or unwritten buffers). We also lock the pages containing 2557 * these buffers. The extent found is returned in @mpd structure (starting at 2558 * mpd->lblk with length mpd->len blocks). 2559 * 2560 * Note that this function can attach bios to one io_end structure which are 2561 * neither logically nor physically contiguous. Although it may seem as an 2562 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2563 * case as we need to track IO to all buffers underlying a page in one io_end. 2564 */ 2565 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2566 { 2567 struct address_space *mapping = mpd->inode->i_mapping; 2568 struct pagevec pvec; 2569 unsigned int nr_pages; 2570 long left = mpd->wbc->nr_to_write; 2571 pgoff_t index = mpd->first_page; 2572 pgoff_t end = mpd->last_page; 2573 xa_mark_t tag; 2574 int i, err = 0; 2575 int blkbits = mpd->inode->i_blkbits; 2576 ext4_lblk_t lblk; 2577 struct buffer_head *head; 2578 2579 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2580 tag = PAGECACHE_TAG_TOWRITE; 2581 else 2582 tag = PAGECACHE_TAG_DIRTY; 2583 2584 pagevec_init(&pvec); 2585 mpd->map.m_len = 0; 2586 mpd->next_page = index; 2587 while (index <= end) { 2588 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2589 tag); 2590 if (nr_pages == 0) 2591 break; 2592 2593 for (i = 0; i < nr_pages; i++) { 2594 struct page *page = pvec.pages[i]; 2595 2596 /* 2597 * Accumulated enough dirty pages? This doesn't apply 2598 * to WB_SYNC_ALL mode. For integrity sync we have to 2599 * keep going because someone may be concurrently 2600 * dirtying pages, and we might have synced a lot of 2601 * newly appeared dirty pages, but have not synced all 2602 * of the old dirty pages. 2603 */ 2604 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2605 goto out; 2606 2607 /* If we can't merge this page, we are done. */ 2608 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2609 goto out; 2610 2611 lock_page(page); 2612 /* 2613 * If the page is no longer dirty, or its mapping no 2614 * longer corresponds to inode we are writing (which 2615 * means it has been truncated or invalidated), or the 2616 * page is already under writeback and we are not doing 2617 * a data integrity writeback, skip the page 2618 */ 2619 if (!PageDirty(page) || 2620 (PageWriteback(page) && 2621 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2622 unlikely(page->mapping != mapping)) { 2623 unlock_page(page); 2624 continue; 2625 } 2626 2627 wait_on_page_writeback(page); 2628 BUG_ON(PageWriteback(page)); 2629 2630 /* 2631 * Should never happen but for buggy code in 2632 * other subsystems that call 2633 * set_page_dirty() without properly warning 2634 * the file system first. See [1] for more 2635 * information. 2636 * 2637 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2638 */ 2639 if (!page_has_buffers(page)) { 2640 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index); 2641 ClearPageDirty(page); 2642 unlock_page(page); 2643 continue; 2644 } 2645 2646 if (mpd->map.m_len == 0) 2647 mpd->first_page = page->index; 2648 mpd->next_page = page->index + 1; 2649 /* Add all dirty buffers to mpd */ 2650 lblk = ((ext4_lblk_t)page->index) << 2651 (PAGE_SHIFT - blkbits); 2652 head = page_buffers(page); 2653 err = mpage_process_page_bufs(mpd, head, head, lblk); 2654 if (err <= 0) 2655 goto out; 2656 err = 0; 2657 left--; 2658 } 2659 pagevec_release(&pvec); 2660 cond_resched(); 2661 } 2662 mpd->scanned_until_end = 1; 2663 return 0; 2664 out: 2665 pagevec_release(&pvec); 2666 return err; 2667 } 2668 2669 static int ext4_writepages(struct address_space *mapping, 2670 struct writeback_control *wbc) 2671 { 2672 pgoff_t writeback_index = 0; 2673 long nr_to_write = wbc->nr_to_write; 2674 int range_whole = 0; 2675 int cycled = 1; 2676 handle_t *handle = NULL; 2677 struct mpage_da_data mpd; 2678 struct inode *inode = mapping->host; 2679 int needed_blocks, rsv_blocks = 0, ret = 0; 2680 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2681 struct blk_plug plug; 2682 bool give_up_on_write = false; 2683 2684 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2685 return -EIO; 2686 2687 percpu_down_read(&sbi->s_writepages_rwsem); 2688 trace_ext4_writepages(inode, wbc); 2689 2690 /* 2691 * No pages to write? This is mainly a kludge to avoid starting 2692 * a transaction for special inodes like journal inode on last iput() 2693 * because that could violate lock ordering on umount 2694 */ 2695 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2696 goto out_writepages; 2697 2698 if (ext4_should_journal_data(inode)) { 2699 ret = generic_writepages(mapping, wbc); 2700 goto out_writepages; 2701 } 2702 2703 /* 2704 * If the filesystem has aborted, it is read-only, so return 2705 * right away instead of dumping stack traces later on that 2706 * will obscure the real source of the problem. We test 2707 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2708 * the latter could be true if the filesystem is mounted 2709 * read-only, and in that case, ext4_writepages should 2710 * *never* be called, so if that ever happens, we would want 2711 * the stack trace. 2712 */ 2713 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2714 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) { 2715 ret = -EROFS; 2716 goto out_writepages; 2717 } 2718 2719 /* 2720 * If we have inline data and arrive here, it means that 2721 * we will soon create the block for the 1st page, so 2722 * we'd better clear the inline data here. 2723 */ 2724 if (ext4_has_inline_data(inode)) { 2725 /* Just inode will be modified... */ 2726 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2727 if (IS_ERR(handle)) { 2728 ret = PTR_ERR(handle); 2729 goto out_writepages; 2730 } 2731 BUG_ON(ext4_test_inode_state(inode, 2732 EXT4_STATE_MAY_INLINE_DATA)); 2733 ext4_destroy_inline_data(handle, inode); 2734 ext4_journal_stop(handle); 2735 } 2736 2737 if (ext4_should_dioread_nolock(inode)) { 2738 /* 2739 * We may need to convert up to one extent per block in 2740 * the page and we may dirty the inode. 2741 */ 2742 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2743 PAGE_SIZE >> inode->i_blkbits); 2744 } 2745 2746 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2747 range_whole = 1; 2748 2749 if (wbc->range_cyclic) { 2750 writeback_index = mapping->writeback_index; 2751 if (writeback_index) 2752 cycled = 0; 2753 mpd.first_page = writeback_index; 2754 mpd.last_page = -1; 2755 } else { 2756 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2757 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2758 } 2759 2760 mpd.inode = inode; 2761 mpd.wbc = wbc; 2762 ext4_io_submit_init(&mpd.io_submit, wbc); 2763 retry: 2764 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2765 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2766 blk_start_plug(&plug); 2767 2768 /* 2769 * First writeback pages that don't need mapping - we can avoid 2770 * starting a transaction unnecessarily and also avoid being blocked 2771 * in the block layer on device congestion while having transaction 2772 * started. 2773 */ 2774 mpd.do_map = 0; 2775 mpd.scanned_until_end = 0; 2776 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2777 if (!mpd.io_submit.io_end) { 2778 ret = -ENOMEM; 2779 goto unplug; 2780 } 2781 ret = mpage_prepare_extent_to_map(&mpd); 2782 /* Unlock pages we didn't use */ 2783 mpage_release_unused_pages(&mpd, false); 2784 /* Submit prepared bio */ 2785 ext4_io_submit(&mpd.io_submit); 2786 ext4_put_io_end_defer(mpd.io_submit.io_end); 2787 mpd.io_submit.io_end = NULL; 2788 if (ret < 0) 2789 goto unplug; 2790 2791 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) { 2792 /* For each extent of pages we use new io_end */ 2793 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2794 if (!mpd.io_submit.io_end) { 2795 ret = -ENOMEM; 2796 break; 2797 } 2798 2799 /* 2800 * We have two constraints: We find one extent to map and we 2801 * must always write out whole page (makes a difference when 2802 * blocksize < pagesize) so that we don't block on IO when we 2803 * try to write out the rest of the page. Journalled mode is 2804 * not supported by delalloc. 2805 */ 2806 BUG_ON(ext4_should_journal_data(inode)); 2807 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2808 2809 /* start a new transaction */ 2810 handle = ext4_journal_start_with_reserve(inode, 2811 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2812 if (IS_ERR(handle)) { 2813 ret = PTR_ERR(handle); 2814 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2815 "%ld pages, ino %lu; err %d", __func__, 2816 wbc->nr_to_write, inode->i_ino, ret); 2817 /* Release allocated io_end */ 2818 ext4_put_io_end(mpd.io_submit.io_end); 2819 mpd.io_submit.io_end = NULL; 2820 break; 2821 } 2822 mpd.do_map = 1; 2823 2824 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2825 ret = mpage_prepare_extent_to_map(&mpd); 2826 if (!ret && mpd.map.m_len) 2827 ret = mpage_map_and_submit_extent(handle, &mpd, 2828 &give_up_on_write); 2829 /* 2830 * Caution: If the handle is synchronous, 2831 * ext4_journal_stop() can wait for transaction commit 2832 * to finish which may depend on writeback of pages to 2833 * complete or on page lock to be released. In that 2834 * case, we have to wait until after we have 2835 * submitted all the IO, released page locks we hold, 2836 * and dropped io_end reference (for extent conversion 2837 * to be able to complete) before stopping the handle. 2838 */ 2839 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2840 ext4_journal_stop(handle); 2841 handle = NULL; 2842 mpd.do_map = 0; 2843 } 2844 /* Unlock pages we didn't use */ 2845 mpage_release_unused_pages(&mpd, give_up_on_write); 2846 /* Submit prepared bio */ 2847 ext4_io_submit(&mpd.io_submit); 2848 2849 /* 2850 * Drop our io_end reference we got from init. We have 2851 * to be careful and use deferred io_end finishing if 2852 * we are still holding the transaction as we can 2853 * release the last reference to io_end which may end 2854 * up doing unwritten extent conversion. 2855 */ 2856 if (handle) { 2857 ext4_put_io_end_defer(mpd.io_submit.io_end); 2858 ext4_journal_stop(handle); 2859 } else 2860 ext4_put_io_end(mpd.io_submit.io_end); 2861 mpd.io_submit.io_end = NULL; 2862 2863 if (ret == -ENOSPC && sbi->s_journal) { 2864 /* 2865 * Commit the transaction which would 2866 * free blocks released in the transaction 2867 * and try again 2868 */ 2869 jbd2_journal_force_commit_nested(sbi->s_journal); 2870 ret = 0; 2871 continue; 2872 } 2873 /* Fatal error - ENOMEM, EIO... */ 2874 if (ret) 2875 break; 2876 } 2877 unplug: 2878 blk_finish_plug(&plug); 2879 if (!ret && !cycled && wbc->nr_to_write > 0) { 2880 cycled = 1; 2881 mpd.last_page = writeback_index - 1; 2882 mpd.first_page = 0; 2883 goto retry; 2884 } 2885 2886 /* Update index */ 2887 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2888 /* 2889 * Set the writeback_index so that range_cyclic 2890 * mode will write it back later 2891 */ 2892 mapping->writeback_index = mpd.first_page; 2893 2894 out_writepages: 2895 trace_ext4_writepages_result(inode, wbc, ret, 2896 nr_to_write - wbc->nr_to_write); 2897 percpu_up_read(&sbi->s_writepages_rwsem); 2898 return ret; 2899 } 2900 2901 static int ext4_dax_writepages(struct address_space *mapping, 2902 struct writeback_control *wbc) 2903 { 2904 int ret; 2905 long nr_to_write = wbc->nr_to_write; 2906 struct inode *inode = mapping->host; 2907 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2908 2909 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2910 return -EIO; 2911 2912 percpu_down_read(&sbi->s_writepages_rwsem); 2913 trace_ext4_writepages(inode, wbc); 2914 2915 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2916 trace_ext4_writepages_result(inode, wbc, ret, 2917 nr_to_write - wbc->nr_to_write); 2918 percpu_up_read(&sbi->s_writepages_rwsem); 2919 return ret; 2920 } 2921 2922 static int ext4_nonda_switch(struct super_block *sb) 2923 { 2924 s64 free_clusters, dirty_clusters; 2925 struct ext4_sb_info *sbi = EXT4_SB(sb); 2926 2927 /* 2928 * switch to non delalloc mode if we are running low 2929 * on free block. The free block accounting via percpu 2930 * counters can get slightly wrong with percpu_counter_batch getting 2931 * accumulated on each CPU without updating global counters 2932 * Delalloc need an accurate free block accounting. So switch 2933 * to non delalloc when we are near to error range. 2934 */ 2935 free_clusters = 2936 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2937 dirty_clusters = 2938 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2939 /* 2940 * Start pushing delalloc when 1/2 of free blocks are dirty. 2941 */ 2942 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2943 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2944 2945 if (2 * free_clusters < 3 * dirty_clusters || 2946 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2947 /* 2948 * free block count is less than 150% of dirty blocks 2949 * or free blocks is less than watermark 2950 */ 2951 return 1; 2952 } 2953 return 0; 2954 } 2955 2956 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2957 loff_t pos, unsigned len, 2958 struct page **pagep, void **fsdata) 2959 { 2960 int ret, retries = 0; 2961 struct page *page; 2962 pgoff_t index; 2963 struct inode *inode = mapping->host; 2964 2965 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2966 return -EIO; 2967 2968 index = pos >> PAGE_SHIFT; 2969 2970 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2971 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2972 return ext4_write_begin(file, mapping, pos, 2973 len, pagep, fsdata); 2974 } 2975 *fsdata = (void *)0; 2976 trace_ext4_da_write_begin(inode, pos, len); 2977 2978 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2979 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2980 pagep, fsdata); 2981 if (ret < 0) 2982 return ret; 2983 if (ret == 1) 2984 return 0; 2985 } 2986 2987 retry: 2988 page = grab_cache_page_write_begin(mapping, index); 2989 if (!page) 2990 return -ENOMEM; 2991 2992 /* In case writeback began while the page was unlocked */ 2993 wait_for_stable_page(page); 2994 2995 #ifdef CONFIG_FS_ENCRYPTION 2996 ret = ext4_block_write_begin(page, pos, len, 2997 ext4_da_get_block_prep); 2998 #else 2999 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3000 #endif 3001 if (ret < 0) { 3002 unlock_page(page); 3003 put_page(page); 3004 /* 3005 * block_write_begin may have instantiated a few blocks 3006 * outside i_size. Trim these off again. Don't need 3007 * i_size_read because we hold inode lock. 3008 */ 3009 if (pos + len > inode->i_size) 3010 ext4_truncate_failed_write(inode); 3011 3012 if (ret == -ENOSPC && 3013 ext4_should_retry_alloc(inode->i_sb, &retries)) 3014 goto retry; 3015 return ret; 3016 } 3017 3018 *pagep = page; 3019 return ret; 3020 } 3021 3022 /* 3023 * Check if we should update i_disksize 3024 * when write to the end of file but not require block allocation 3025 */ 3026 static int ext4_da_should_update_i_disksize(struct page *page, 3027 unsigned long offset) 3028 { 3029 struct buffer_head *bh; 3030 struct inode *inode = page->mapping->host; 3031 unsigned int idx; 3032 int i; 3033 3034 bh = page_buffers(page); 3035 idx = offset >> inode->i_blkbits; 3036 3037 for (i = 0; i < idx; i++) 3038 bh = bh->b_this_page; 3039 3040 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3041 return 0; 3042 return 1; 3043 } 3044 3045 static int ext4_da_write_end(struct file *file, 3046 struct address_space *mapping, 3047 loff_t pos, unsigned len, unsigned copied, 3048 struct page *page, void *fsdata) 3049 { 3050 struct inode *inode = mapping->host; 3051 loff_t new_i_size; 3052 unsigned long start, end; 3053 int write_mode = (int)(unsigned long)fsdata; 3054 3055 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3056 return ext4_write_end(file, mapping, pos, 3057 len, copied, page, fsdata); 3058 3059 trace_ext4_da_write_end(inode, pos, len, copied); 3060 3061 if (write_mode != CONVERT_INLINE_DATA && 3062 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3063 ext4_has_inline_data(inode)) 3064 return ext4_write_inline_data_end(inode, pos, len, copied, page); 3065 3066 start = pos & (PAGE_SIZE - 1); 3067 end = start + copied - 1; 3068 3069 /* 3070 * Since we are holding inode lock, we are sure i_disksize <= 3071 * i_size. We also know that if i_disksize < i_size, there are 3072 * delalloc writes pending in the range upto i_size. If the end of 3073 * the current write is <= i_size, there's no need to touch 3074 * i_disksize since writeback will push i_disksize upto i_size 3075 * eventually. If the end of the current write is > i_size and 3076 * inside an allocated block (ext4_da_should_update_i_disksize() 3077 * check), we need to update i_disksize here as neither 3078 * ext4_writepage() nor certain ext4_writepages() paths not 3079 * allocating blocks update i_disksize. 3080 * 3081 * Note that we defer inode dirtying to generic_write_end() / 3082 * ext4_da_write_inline_data_end(). 3083 */ 3084 new_i_size = pos + copied; 3085 if (copied && new_i_size > inode->i_size && 3086 ext4_da_should_update_i_disksize(page, end)) 3087 ext4_update_i_disksize(inode, new_i_size); 3088 3089 return generic_write_end(file, mapping, pos, len, copied, page, fsdata); 3090 } 3091 3092 /* 3093 * Force all delayed allocation blocks to be allocated for a given inode. 3094 */ 3095 int ext4_alloc_da_blocks(struct inode *inode) 3096 { 3097 trace_ext4_alloc_da_blocks(inode); 3098 3099 if (!EXT4_I(inode)->i_reserved_data_blocks) 3100 return 0; 3101 3102 /* 3103 * We do something simple for now. The filemap_flush() will 3104 * also start triggering a write of the data blocks, which is 3105 * not strictly speaking necessary (and for users of 3106 * laptop_mode, not even desirable). However, to do otherwise 3107 * would require replicating code paths in: 3108 * 3109 * ext4_writepages() -> 3110 * write_cache_pages() ---> (via passed in callback function) 3111 * __mpage_da_writepage() --> 3112 * mpage_add_bh_to_extent() 3113 * mpage_da_map_blocks() 3114 * 3115 * The problem is that write_cache_pages(), located in 3116 * mm/page-writeback.c, marks pages clean in preparation for 3117 * doing I/O, which is not desirable if we're not planning on 3118 * doing I/O at all. 3119 * 3120 * We could call write_cache_pages(), and then redirty all of 3121 * the pages by calling redirty_page_for_writepage() but that 3122 * would be ugly in the extreme. So instead we would need to 3123 * replicate parts of the code in the above functions, 3124 * simplifying them because we wouldn't actually intend to 3125 * write out the pages, but rather only collect contiguous 3126 * logical block extents, call the multi-block allocator, and 3127 * then update the buffer heads with the block allocations. 3128 * 3129 * For now, though, we'll cheat by calling filemap_flush(), 3130 * which will map the blocks, and start the I/O, but not 3131 * actually wait for the I/O to complete. 3132 */ 3133 return filemap_flush(inode->i_mapping); 3134 } 3135 3136 /* 3137 * bmap() is special. It gets used by applications such as lilo and by 3138 * the swapper to find the on-disk block of a specific piece of data. 3139 * 3140 * Naturally, this is dangerous if the block concerned is still in the 3141 * journal. If somebody makes a swapfile on an ext4 data-journaling 3142 * filesystem and enables swap, then they may get a nasty shock when the 3143 * data getting swapped to that swapfile suddenly gets overwritten by 3144 * the original zero's written out previously to the journal and 3145 * awaiting writeback in the kernel's buffer cache. 3146 * 3147 * So, if we see any bmap calls here on a modified, data-journaled file, 3148 * take extra steps to flush any blocks which might be in the cache. 3149 */ 3150 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3151 { 3152 struct inode *inode = mapping->host; 3153 journal_t *journal; 3154 sector_t ret = 0; 3155 int err; 3156 3157 inode_lock_shared(inode); 3158 /* 3159 * We can get here for an inline file via the FIBMAP ioctl 3160 */ 3161 if (ext4_has_inline_data(inode)) 3162 goto out; 3163 3164 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3165 test_opt(inode->i_sb, DELALLOC)) { 3166 /* 3167 * With delalloc we want to sync the file 3168 * so that we can make sure we allocate 3169 * blocks for file 3170 */ 3171 filemap_write_and_wait(mapping); 3172 } 3173 3174 if (EXT4_JOURNAL(inode) && 3175 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3176 /* 3177 * This is a REALLY heavyweight approach, but the use of 3178 * bmap on dirty files is expected to be extremely rare: 3179 * only if we run lilo or swapon on a freshly made file 3180 * do we expect this to happen. 3181 * 3182 * (bmap requires CAP_SYS_RAWIO so this does not 3183 * represent an unprivileged user DOS attack --- we'd be 3184 * in trouble if mortal users could trigger this path at 3185 * will.) 3186 * 3187 * NB. EXT4_STATE_JDATA is not set on files other than 3188 * regular files. If somebody wants to bmap a directory 3189 * or symlink and gets confused because the buffer 3190 * hasn't yet been flushed to disk, they deserve 3191 * everything they get. 3192 */ 3193 3194 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3195 journal = EXT4_JOURNAL(inode); 3196 jbd2_journal_lock_updates(journal); 3197 err = jbd2_journal_flush(journal, 0); 3198 jbd2_journal_unlock_updates(journal); 3199 3200 if (err) 3201 goto out; 3202 } 3203 3204 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3205 3206 out: 3207 inode_unlock_shared(inode); 3208 return ret; 3209 } 3210 3211 static int ext4_read_folio(struct file *file, struct folio *folio) 3212 { 3213 struct page *page = &folio->page; 3214 int ret = -EAGAIN; 3215 struct inode *inode = page->mapping->host; 3216 3217 trace_ext4_readpage(page); 3218 3219 if (ext4_has_inline_data(inode)) 3220 ret = ext4_readpage_inline(inode, page); 3221 3222 if (ret == -EAGAIN) 3223 return ext4_mpage_readpages(inode, NULL, page); 3224 3225 return ret; 3226 } 3227 3228 static void ext4_readahead(struct readahead_control *rac) 3229 { 3230 struct inode *inode = rac->mapping->host; 3231 3232 /* If the file has inline data, no need to do readahead. */ 3233 if (ext4_has_inline_data(inode)) 3234 return; 3235 3236 ext4_mpage_readpages(inode, rac, NULL); 3237 } 3238 3239 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3240 size_t length) 3241 { 3242 trace_ext4_invalidate_folio(folio, offset, length); 3243 3244 /* No journalling happens on data buffers when this function is used */ 3245 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3246 3247 block_invalidate_folio(folio, offset, length); 3248 } 3249 3250 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3251 size_t offset, size_t length) 3252 { 3253 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3254 3255 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3256 3257 /* 3258 * If it's a full truncate we just forget about the pending dirtying 3259 */ 3260 if (offset == 0 && length == folio_size(folio)) 3261 folio_clear_checked(folio); 3262 3263 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3264 } 3265 3266 /* Wrapper for aops... */ 3267 static void ext4_journalled_invalidate_folio(struct folio *folio, 3268 size_t offset, 3269 size_t length) 3270 { 3271 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3272 } 3273 3274 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3275 { 3276 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3277 3278 trace_ext4_releasepage(&folio->page); 3279 3280 /* Page has dirty journalled data -> cannot release */ 3281 if (folio_test_checked(folio)) 3282 return false; 3283 if (journal) 3284 return jbd2_journal_try_to_free_buffers(journal, folio); 3285 else 3286 return try_to_free_buffers(folio); 3287 } 3288 3289 static bool ext4_inode_datasync_dirty(struct inode *inode) 3290 { 3291 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3292 3293 if (journal) { 3294 if (jbd2_transaction_committed(journal, 3295 EXT4_I(inode)->i_datasync_tid)) 3296 return false; 3297 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3298 return !list_empty(&EXT4_I(inode)->i_fc_list); 3299 return true; 3300 } 3301 3302 /* Any metadata buffers to write? */ 3303 if (!list_empty(&inode->i_mapping->private_list)) 3304 return true; 3305 return inode->i_state & I_DIRTY_DATASYNC; 3306 } 3307 3308 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3309 struct ext4_map_blocks *map, loff_t offset, 3310 loff_t length, unsigned int flags) 3311 { 3312 u8 blkbits = inode->i_blkbits; 3313 3314 /* 3315 * Writes that span EOF might trigger an I/O size update on completion, 3316 * so consider them to be dirty for the purpose of O_DSYNC, even if 3317 * there is no other metadata changes being made or are pending. 3318 */ 3319 iomap->flags = 0; 3320 if (ext4_inode_datasync_dirty(inode) || 3321 offset + length > i_size_read(inode)) 3322 iomap->flags |= IOMAP_F_DIRTY; 3323 3324 if (map->m_flags & EXT4_MAP_NEW) 3325 iomap->flags |= IOMAP_F_NEW; 3326 3327 if (flags & IOMAP_DAX) 3328 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3329 else 3330 iomap->bdev = inode->i_sb->s_bdev; 3331 iomap->offset = (u64) map->m_lblk << blkbits; 3332 iomap->length = (u64) map->m_len << blkbits; 3333 3334 if ((map->m_flags & EXT4_MAP_MAPPED) && 3335 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3336 iomap->flags |= IOMAP_F_MERGED; 3337 3338 /* 3339 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3340 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3341 * set. In order for any allocated unwritten extents to be converted 3342 * into written extents correctly within the ->end_io() handler, we 3343 * need to ensure that the iomap->type is set appropriately. Hence, the 3344 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3345 * been set first. 3346 */ 3347 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3348 iomap->type = IOMAP_UNWRITTEN; 3349 iomap->addr = (u64) map->m_pblk << blkbits; 3350 if (flags & IOMAP_DAX) 3351 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3352 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3353 iomap->type = IOMAP_MAPPED; 3354 iomap->addr = (u64) map->m_pblk << blkbits; 3355 if (flags & IOMAP_DAX) 3356 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3357 } else { 3358 iomap->type = IOMAP_HOLE; 3359 iomap->addr = IOMAP_NULL_ADDR; 3360 } 3361 } 3362 3363 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3364 unsigned int flags) 3365 { 3366 handle_t *handle; 3367 u8 blkbits = inode->i_blkbits; 3368 int ret, dio_credits, m_flags = 0, retries = 0; 3369 3370 /* 3371 * Trim the mapping request to the maximum value that we can map at 3372 * once for direct I/O. 3373 */ 3374 if (map->m_len > DIO_MAX_BLOCKS) 3375 map->m_len = DIO_MAX_BLOCKS; 3376 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3377 3378 retry: 3379 /* 3380 * Either we allocate blocks and then don't get an unwritten extent, so 3381 * in that case we have reserved enough credits. Or, the blocks are 3382 * already allocated and unwritten. In that case, the extent conversion 3383 * fits into the credits as well. 3384 */ 3385 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3386 if (IS_ERR(handle)) 3387 return PTR_ERR(handle); 3388 3389 /* 3390 * DAX and direct I/O are the only two operations that are currently 3391 * supported with IOMAP_WRITE. 3392 */ 3393 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3394 if (flags & IOMAP_DAX) 3395 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3396 /* 3397 * We use i_size instead of i_disksize here because delalloc writeback 3398 * can complete at any point during the I/O and subsequently push the 3399 * i_disksize out to i_size. This could be beyond where direct I/O is 3400 * happening and thus expose allocated blocks to direct I/O reads. 3401 */ 3402 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3403 m_flags = EXT4_GET_BLOCKS_CREATE; 3404 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3405 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3406 3407 ret = ext4_map_blocks(handle, inode, map, m_flags); 3408 3409 /* 3410 * We cannot fill holes in indirect tree based inodes as that could 3411 * expose stale data in the case of a crash. Use the magic error code 3412 * to fallback to buffered I/O. 3413 */ 3414 if (!m_flags && !ret) 3415 ret = -ENOTBLK; 3416 3417 ext4_journal_stop(handle); 3418 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3419 goto retry; 3420 3421 return ret; 3422 } 3423 3424 3425 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3426 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3427 { 3428 int ret; 3429 struct ext4_map_blocks map; 3430 u8 blkbits = inode->i_blkbits; 3431 3432 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3433 return -EINVAL; 3434 3435 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3436 return -ERANGE; 3437 3438 /* 3439 * Calculate the first and last logical blocks respectively. 3440 */ 3441 map.m_lblk = offset >> blkbits; 3442 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3443 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3444 3445 if (flags & IOMAP_WRITE) { 3446 /* 3447 * We check here if the blocks are already allocated, then we 3448 * don't need to start a journal txn and we can directly return 3449 * the mapping information. This could boost performance 3450 * especially in multi-threaded overwrite requests. 3451 */ 3452 if (offset + length <= i_size_read(inode)) { 3453 ret = ext4_map_blocks(NULL, inode, &map, 0); 3454 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3455 goto out; 3456 } 3457 ret = ext4_iomap_alloc(inode, &map, flags); 3458 } else { 3459 ret = ext4_map_blocks(NULL, inode, &map, 0); 3460 } 3461 3462 if (ret < 0) 3463 return ret; 3464 out: 3465 /* 3466 * When inline encryption is enabled, sometimes I/O to an encrypted file 3467 * has to be broken up to guarantee DUN contiguity. Handle this by 3468 * limiting the length of the mapping returned. 3469 */ 3470 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3471 3472 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3473 3474 return 0; 3475 } 3476 3477 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3478 loff_t length, unsigned flags, struct iomap *iomap, 3479 struct iomap *srcmap) 3480 { 3481 int ret; 3482 3483 /* 3484 * Even for writes we don't need to allocate blocks, so just pretend 3485 * we are reading to save overhead of starting a transaction. 3486 */ 3487 flags &= ~IOMAP_WRITE; 3488 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3489 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3490 return ret; 3491 } 3492 3493 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3494 ssize_t written, unsigned flags, struct iomap *iomap) 3495 { 3496 /* 3497 * Check to see whether an error occurred while writing out the data to 3498 * the allocated blocks. If so, return the magic error code so that we 3499 * fallback to buffered I/O and attempt to complete the remainder of 3500 * the I/O. Any blocks that may have been allocated in preparation for 3501 * the direct I/O will be reused during buffered I/O. 3502 */ 3503 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3504 return -ENOTBLK; 3505 3506 return 0; 3507 } 3508 3509 const struct iomap_ops ext4_iomap_ops = { 3510 .iomap_begin = ext4_iomap_begin, 3511 .iomap_end = ext4_iomap_end, 3512 }; 3513 3514 const struct iomap_ops ext4_iomap_overwrite_ops = { 3515 .iomap_begin = ext4_iomap_overwrite_begin, 3516 .iomap_end = ext4_iomap_end, 3517 }; 3518 3519 static bool ext4_iomap_is_delalloc(struct inode *inode, 3520 struct ext4_map_blocks *map) 3521 { 3522 struct extent_status es; 3523 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3524 3525 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3526 map->m_lblk, end, &es); 3527 3528 if (!es.es_len || es.es_lblk > end) 3529 return false; 3530 3531 if (es.es_lblk > map->m_lblk) { 3532 map->m_len = es.es_lblk - map->m_lblk; 3533 return false; 3534 } 3535 3536 offset = map->m_lblk - es.es_lblk; 3537 map->m_len = es.es_len - offset; 3538 3539 return true; 3540 } 3541 3542 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3543 loff_t length, unsigned int flags, 3544 struct iomap *iomap, struct iomap *srcmap) 3545 { 3546 int ret; 3547 bool delalloc = false; 3548 struct ext4_map_blocks map; 3549 u8 blkbits = inode->i_blkbits; 3550 3551 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3552 return -EINVAL; 3553 3554 if (ext4_has_inline_data(inode)) { 3555 ret = ext4_inline_data_iomap(inode, iomap); 3556 if (ret != -EAGAIN) { 3557 if (ret == 0 && offset >= iomap->length) 3558 ret = -ENOENT; 3559 return ret; 3560 } 3561 } 3562 3563 /* 3564 * Calculate the first and last logical block respectively. 3565 */ 3566 map.m_lblk = offset >> blkbits; 3567 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3568 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3569 3570 /* 3571 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3572 * So handle it here itself instead of querying ext4_map_blocks(). 3573 * Since ext4_map_blocks() will warn about it and will return 3574 * -EIO error. 3575 */ 3576 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3577 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3578 3579 if (offset >= sbi->s_bitmap_maxbytes) { 3580 map.m_flags = 0; 3581 goto set_iomap; 3582 } 3583 } 3584 3585 ret = ext4_map_blocks(NULL, inode, &map, 0); 3586 if (ret < 0) 3587 return ret; 3588 if (ret == 0) 3589 delalloc = ext4_iomap_is_delalloc(inode, &map); 3590 3591 set_iomap: 3592 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3593 if (delalloc && iomap->type == IOMAP_HOLE) 3594 iomap->type = IOMAP_DELALLOC; 3595 3596 return 0; 3597 } 3598 3599 const struct iomap_ops ext4_iomap_report_ops = { 3600 .iomap_begin = ext4_iomap_begin_report, 3601 }; 3602 3603 /* 3604 * Whenever the folio is being dirtied, corresponding buffers should already 3605 * be attached to the transaction (we take care of this in ext4_page_mkwrite() 3606 * and ext4_write_begin()). However we cannot move buffers to dirty transaction 3607 * lists here because ->dirty_folio is called under VFS locks and the folio 3608 * is not necessarily locked. 3609 * 3610 * We cannot just dirty the folio and leave attached buffers clean, because the 3611 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3612 * or jbddirty because all the journalling code will explode. 3613 * 3614 * So what we do is to mark the folio "pending dirty" and next time writepage 3615 * is called, propagate that into the buffers appropriately. 3616 */ 3617 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3618 struct folio *folio) 3619 { 3620 WARN_ON_ONCE(!folio_buffers(folio)); 3621 folio_set_checked(folio); 3622 return filemap_dirty_folio(mapping, folio); 3623 } 3624 3625 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3626 { 3627 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3628 WARN_ON_ONCE(!folio_buffers(folio)); 3629 return block_dirty_folio(mapping, folio); 3630 } 3631 3632 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3633 struct file *file, sector_t *span) 3634 { 3635 return iomap_swapfile_activate(sis, file, span, 3636 &ext4_iomap_report_ops); 3637 } 3638 3639 static const struct address_space_operations ext4_aops = { 3640 .read_folio = ext4_read_folio, 3641 .readahead = ext4_readahead, 3642 .writepage = ext4_writepage, 3643 .writepages = ext4_writepages, 3644 .write_begin = ext4_write_begin, 3645 .write_end = ext4_write_end, 3646 .dirty_folio = ext4_dirty_folio, 3647 .bmap = ext4_bmap, 3648 .invalidate_folio = ext4_invalidate_folio, 3649 .release_folio = ext4_release_folio, 3650 .direct_IO = noop_direct_IO, 3651 .migrate_folio = buffer_migrate_folio, 3652 .is_partially_uptodate = block_is_partially_uptodate, 3653 .error_remove_page = generic_error_remove_page, 3654 .swap_activate = ext4_iomap_swap_activate, 3655 }; 3656 3657 static const struct address_space_operations ext4_journalled_aops = { 3658 .read_folio = ext4_read_folio, 3659 .readahead = ext4_readahead, 3660 .writepage = ext4_writepage, 3661 .writepages = ext4_writepages, 3662 .write_begin = ext4_write_begin, 3663 .write_end = ext4_journalled_write_end, 3664 .dirty_folio = ext4_journalled_dirty_folio, 3665 .bmap = ext4_bmap, 3666 .invalidate_folio = ext4_journalled_invalidate_folio, 3667 .release_folio = ext4_release_folio, 3668 .direct_IO = noop_direct_IO, 3669 .is_partially_uptodate = block_is_partially_uptodate, 3670 .error_remove_page = generic_error_remove_page, 3671 .swap_activate = ext4_iomap_swap_activate, 3672 }; 3673 3674 static const struct address_space_operations ext4_da_aops = { 3675 .read_folio = ext4_read_folio, 3676 .readahead = ext4_readahead, 3677 .writepage = ext4_writepage, 3678 .writepages = ext4_writepages, 3679 .write_begin = ext4_da_write_begin, 3680 .write_end = ext4_da_write_end, 3681 .dirty_folio = ext4_dirty_folio, 3682 .bmap = ext4_bmap, 3683 .invalidate_folio = ext4_invalidate_folio, 3684 .release_folio = ext4_release_folio, 3685 .direct_IO = noop_direct_IO, 3686 .migrate_folio = buffer_migrate_folio, 3687 .is_partially_uptodate = block_is_partially_uptodate, 3688 .error_remove_page = generic_error_remove_page, 3689 .swap_activate = ext4_iomap_swap_activate, 3690 }; 3691 3692 static const struct address_space_operations ext4_dax_aops = { 3693 .writepages = ext4_dax_writepages, 3694 .direct_IO = noop_direct_IO, 3695 .dirty_folio = noop_dirty_folio, 3696 .bmap = ext4_bmap, 3697 .swap_activate = ext4_iomap_swap_activate, 3698 }; 3699 3700 void ext4_set_aops(struct inode *inode) 3701 { 3702 switch (ext4_inode_journal_mode(inode)) { 3703 case EXT4_INODE_ORDERED_DATA_MODE: 3704 case EXT4_INODE_WRITEBACK_DATA_MODE: 3705 break; 3706 case EXT4_INODE_JOURNAL_DATA_MODE: 3707 inode->i_mapping->a_ops = &ext4_journalled_aops; 3708 return; 3709 default: 3710 BUG(); 3711 } 3712 if (IS_DAX(inode)) 3713 inode->i_mapping->a_ops = &ext4_dax_aops; 3714 else if (test_opt(inode->i_sb, DELALLOC)) 3715 inode->i_mapping->a_ops = &ext4_da_aops; 3716 else 3717 inode->i_mapping->a_ops = &ext4_aops; 3718 } 3719 3720 static int __ext4_block_zero_page_range(handle_t *handle, 3721 struct address_space *mapping, loff_t from, loff_t length) 3722 { 3723 ext4_fsblk_t index = from >> PAGE_SHIFT; 3724 unsigned offset = from & (PAGE_SIZE-1); 3725 unsigned blocksize, pos; 3726 ext4_lblk_t iblock; 3727 struct inode *inode = mapping->host; 3728 struct buffer_head *bh; 3729 struct page *page; 3730 int err = 0; 3731 3732 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3733 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3734 if (!page) 3735 return -ENOMEM; 3736 3737 blocksize = inode->i_sb->s_blocksize; 3738 3739 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3740 3741 if (!page_has_buffers(page)) 3742 create_empty_buffers(page, blocksize, 0); 3743 3744 /* Find the buffer that contains "offset" */ 3745 bh = page_buffers(page); 3746 pos = blocksize; 3747 while (offset >= pos) { 3748 bh = bh->b_this_page; 3749 iblock++; 3750 pos += blocksize; 3751 } 3752 if (buffer_freed(bh)) { 3753 BUFFER_TRACE(bh, "freed: skip"); 3754 goto unlock; 3755 } 3756 if (!buffer_mapped(bh)) { 3757 BUFFER_TRACE(bh, "unmapped"); 3758 ext4_get_block(inode, iblock, bh, 0); 3759 /* unmapped? It's a hole - nothing to do */ 3760 if (!buffer_mapped(bh)) { 3761 BUFFER_TRACE(bh, "still unmapped"); 3762 goto unlock; 3763 } 3764 } 3765 3766 /* Ok, it's mapped. Make sure it's up-to-date */ 3767 if (PageUptodate(page)) 3768 set_buffer_uptodate(bh); 3769 3770 if (!buffer_uptodate(bh)) { 3771 err = ext4_read_bh_lock(bh, 0, true); 3772 if (err) 3773 goto unlock; 3774 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3775 /* We expect the key to be set. */ 3776 BUG_ON(!fscrypt_has_encryption_key(inode)); 3777 err = fscrypt_decrypt_pagecache_blocks(page, blocksize, 3778 bh_offset(bh)); 3779 if (err) { 3780 clear_buffer_uptodate(bh); 3781 goto unlock; 3782 } 3783 } 3784 } 3785 if (ext4_should_journal_data(inode)) { 3786 BUFFER_TRACE(bh, "get write access"); 3787 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3788 EXT4_JTR_NONE); 3789 if (err) 3790 goto unlock; 3791 } 3792 zero_user(page, offset, length); 3793 BUFFER_TRACE(bh, "zeroed end of block"); 3794 3795 if (ext4_should_journal_data(inode)) { 3796 err = ext4_handle_dirty_metadata(handle, inode, bh); 3797 } else { 3798 err = 0; 3799 mark_buffer_dirty(bh); 3800 if (ext4_should_order_data(inode)) 3801 err = ext4_jbd2_inode_add_write(handle, inode, from, 3802 length); 3803 } 3804 3805 unlock: 3806 unlock_page(page); 3807 put_page(page); 3808 return err; 3809 } 3810 3811 /* 3812 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3813 * starting from file offset 'from'. The range to be zero'd must 3814 * be contained with in one block. If the specified range exceeds 3815 * the end of the block it will be shortened to end of the block 3816 * that corresponds to 'from' 3817 */ 3818 static int ext4_block_zero_page_range(handle_t *handle, 3819 struct address_space *mapping, loff_t from, loff_t length) 3820 { 3821 struct inode *inode = mapping->host; 3822 unsigned offset = from & (PAGE_SIZE-1); 3823 unsigned blocksize = inode->i_sb->s_blocksize; 3824 unsigned max = blocksize - (offset & (blocksize - 1)); 3825 3826 /* 3827 * correct length if it does not fall between 3828 * 'from' and the end of the block 3829 */ 3830 if (length > max || length < 0) 3831 length = max; 3832 3833 if (IS_DAX(inode)) { 3834 return dax_zero_range(inode, from, length, NULL, 3835 &ext4_iomap_ops); 3836 } 3837 return __ext4_block_zero_page_range(handle, mapping, from, length); 3838 } 3839 3840 /* 3841 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3842 * up to the end of the block which corresponds to `from'. 3843 * This required during truncate. We need to physically zero the tail end 3844 * of that block so it doesn't yield old data if the file is later grown. 3845 */ 3846 static int ext4_block_truncate_page(handle_t *handle, 3847 struct address_space *mapping, loff_t from) 3848 { 3849 unsigned offset = from & (PAGE_SIZE-1); 3850 unsigned length; 3851 unsigned blocksize; 3852 struct inode *inode = mapping->host; 3853 3854 /* If we are processing an encrypted inode during orphan list handling */ 3855 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3856 return 0; 3857 3858 blocksize = inode->i_sb->s_blocksize; 3859 length = blocksize - (offset & (blocksize - 1)); 3860 3861 return ext4_block_zero_page_range(handle, mapping, from, length); 3862 } 3863 3864 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3865 loff_t lstart, loff_t length) 3866 { 3867 struct super_block *sb = inode->i_sb; 3868 struct address_space *mapping = inode->i_mapping; 3869 unsigned partial_start, partial_end; 3870 ext4_fsblk_t start, end; 3871 loff_t byte_end = (lstart + length - 1); 3872 int err = 0; 3873 3874 partial_start = lstart & (sb->s_blocksize - 1); 3875 partial_end = byte_end & (sb->s_blocksize - 1); 3876 3877 start = lstart >> sb->s_blocksize_bits; 3878 end = byte_end >> sb->s_blocksize_bits; 3879 3880 /* Handle partial zero within the single block */ 3881 if (start == end && 3882 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3883 err = ext4_block_zero_page_range(handle, mapping, 3884 lstart, length); 3885 return err; 3886 } 3887 /* Handle partial zero out on the start of the range */ 3888 if (partial_start) { 3889 err = ext4_block_zero_page_range(handle, mapping, 3890 lstart, sb->s_blocksize); 3891 if (err) 3892 return err; 3893 } 3894 /* Handle partial zero out on the end of the range */ 3895 if (partial_end != sb->s_blocksize - 1) 3896 err = ext4_block_zero_page_range(handle, mapping, 3897 byte_end - partial_end, 3898 partial_end + 1); 3899 return err; 3900 } 3901 3902 int ext4_can_truncate(struct inode *inode) 3903 { 3904 if (S_ISREG(inode->i_mode)) 3905 return 1; 3906 if (S_ISDIR(inode->i_mode)) 3907 return 1; 3908 if (S_ISLNK(inode->i_mode)) 3909 return !ext4_inode_is_fast_symlink(inode); 3910 return 0; 3911 } 3912 3913 /* 3914 * We have to make sure i_disksize gets properly updated before we truncate 3915 * page cache due to hole punching or zero range. Otherwise i_disksize update 3916 * can get lost as it may have been postponed to submission of writeback but 3917 * that will never happen after we truncate page cache. 3918 */ 3919 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3920 loff_t len) 3921 { 3922 handle_t *handle; 3923 int ret; 3924 3925 loff_t size = i_size_read(inode); 3926 3927 WARN_ON(!inode_is_locked(inode)); 3928 if (offset > size || offset + len < size) 3929 return 0; 3930 3931 if (EXT4_I(inode)->i_disksize >= size) 3932 return 0; 3933 3934 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3935 if (IS_ERR(handle)) 3936 return PTR_ERR(handle); 3937 ext4_update_i_disksize(inode, size); 3938 ret = ext4_mark_inode_dirty(handle, inode); 3939 ext4_journal_stop(handle); 3940 3941 return ret; 3942 } 3943 3944 static void ext4_wait_dax_page(struct inode *inode) 3945 { 3946 filemap_invalidate_unlock(inode->i_mapping); 3947 schedule(); 3948 filemap_invalidate_lock(inode->i_mapping); 3949 } 3950 3951 int ext4_break_layouts(struct inode *inode) 3952 { 3953 struct page *page; 3954 int error; 3955 3956 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3957 return -EINVAL; 3958 3959 do { 3960 page = dax_layout_busy_page(inode->i_mapping); 3961 if (!page) 3962 return 0; 3963 3964 error = ___wait_var_event(&page->_refcount, 3965 atomic_read(&page->_refcount) == 1, 3966 TASK_INTERRUPTIBLE, 0, 0, 3967 ext4_wait_dax_page(inode)); 3968 } while (error == 0); 3969 3970 return error; 3971 } 3972 3973 /* 3974 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3975 * associated with the given offset and length 3976 * 3977 * @inode: File inode 3978 * @offset: The offset where the hole will begin 3979 * @len: The length of the hole 3980 * 3981 * Returns: 0 on success or negative on failure 3982 */ 3983 3984 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3985 { 3986 struct inode *inode = file_inode(file); 3987 struct super_block *sb = inode->i_sb; 3988 ext4_lblk_t first_block, stop_block; 3989 struct address_space *mapping = inode->i_mapping; 3990 loff_t first_block_offset, last_block_offset, max_length; 3991 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3992 handle_t *handle; 3993 unsigned int credits; 3994 int ret = 0, ret2 = 0; 3995 3996 trace_ext4_punch_hole(inode, offset, length, 0); 3997 3998 /* 3999 * Write out all dirty pages to avoid race conditions 4000 * Then release them. 4001 */ 4002 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 4003 ret = filemap_write_and_wait_range(mapping, offset, 4004 offset + length - 1); 4005 if (ret) 4006 return ret; 4007 } 4008 4009 inode_lock(inode); 4010 4011 /* No need to punch hole beyond i_size */ 4012 if (offset >= inode->i_size) 4013 goto out_mutex; 4014 4015 /* 4016 * If the hole extends beyond i_size, set the hole 4017 * to end after the page that contains i_size 4018 */ 4019 if (offset + length > inode->i_size) { 4020 length = inode->i_size + 4021 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 4022 offset; 4023 } 4024 4025 /* 4026 * For punch hole the length + offset needs to be within one block 4027 * before last range. Adjust the length if it goes beyond that limit. 4028 */ 4029 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 4030 if (offset + length > max_length) 4031 length = max_length - offset; 4032 4033 if (offset & (sb->s_blocksize - 1) || 4034 (offset + length) & (sb->s_blocksize - 1)) { 4035 /* 4036 * Attach jinode to inode for jbd2 if we do any zeroing of 4037 * partial block 4038 */ 4039 ret = ext4_inode_attach_jinode(inode); 4040 if (ret < 0) 4041 goto out_mutex; 4042 4043 } 4044 4045 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 4046 inode_dio_wait(inode); 4047 4048 ret = file_modified(file); 4049 if (ret) 4050 goto out_mutex; 4051 4052 /* 4053 * Prevent page faults from reinstantiating pages we have released from 4054 * page cache. 4055 */ 4056 filemap_invalidate_lock(mapping); 4057 4058 ret = ext4_break_layouts(inode); 4059 if (ret) 4060 goto out_dio; 4061 4062 first_block_offset = round_up(offset, sb->s_blocksize); 4063 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4064 4065 /* Now release the pages and zero block aligned part of pages*/ 4066 if (last_block_offset > first_block_offset) { 4067 ret = ext4_update_disksize_before_punch(inode, offset, length); 4068 if (ret) 4069 goto out_dio; 4070 truncate_pagecache_range(inode, first_block_offset, 4071 last_block_offset); 4072 } 4073 4074 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4075 credits = ext4_writepage_trans_blocks(inode); 4076 else 4077 credits = ext4_blocks_for_truncate(inode); 4078 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4079 if (IS_ERR(handle)) { 4080 ret = PTR_ERR(handle); 4081 ext4_std_error(sb, ret); 4082 goto out_dio; 4083 } 4084 4085 ret = ext4_zero_partial_blocks(handle, inode, offset, 4086 length); 4087 if (ret) 4088 goto out_stop; 4089 4090 first_block = (offset + sb->s_blocksize - 1) >> 4091 EXT4_BLOCK_SIZE_BITS(sb); 4092 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4093 4094 /* If there are blocks to remove, do it */ 4095 if (stop_block > first_block) { 4096 4097 down_write(&EXT4_I(inode)->i_data_sem); 4098 ext4_discard_preallocations(inode, 0); 4099 4100 ret = ext4_es_remove_extent(inode, first_block, 4101 stop_block - first_block); 4102 if (ret) { 4103 up_write(&EXT4_I(inode)->i_data_sem); 4104 goto out_stop; 4105 } 4106 4107 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4108 ret = ext4_ext_remove_space(inode, first_block, 4109 stop_block - 1); 4110 else 4111 ret = ext4_ind_remove_space(handle, inode, first_block, 4112 stop_block); 4113 4114 up_write(&EXT4_I(inode)->i_data_sem); 4115 } 4116 ext4_fc_track_range(handle, inode, first_block, stop_block); 4117 if (IS_SYNC(inode)) 4118 ext4_handle_sync(handle); 4119 4120 inode->i_mtime = inode->i_ctime = current_time(inode); 4121 ret2 = ext4_mark_inode_dirty(handle, inode); 4122 if (unlikely(ret2)) 4123 ret = ret2; 4124 if (ret >= 0) 4125 ext4_update_inode_fsync_trans(handle, inode, 1); 4126 out_stop: 4127 ext4_journal_stop(handle); 4128 out_dio: 4129 filemap_invalidate_unlock(mapping); 4130 out_mutex: 4131 inode_unlock(inode); 4132 return ret; 4133 } 4134 4135 int ext4_inode_attach_jinode(struct inode *inode) 4136 { 4137 struct ext4_inode_info *ei = EXT4_I(inode); 4138 struct jbd2_inode *jinode; 4139 4140 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4141 return 0; 4142 4143 jinode = jbd2_alloc_inode(GFP_KERNEL); 4144 spin_lock(&inode->i_lock); 4145 if (!ei->jinode) { 4146 if (!jinode) { 4147 spin_unlock(&inode->i_lock); 4148 return -ENOMEM; 4149 } 4150 ei->jinode = jinode; 4151 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4152 jinode = NULL; 4153 } 4154 spin_unlock(&inode->i_lock); 4155 if (unlikely(jinode != NULL)) 4156 jbd2_free_inode(jinode); 4157 return 0; 4158 } 4159 4160 /* 4161 * ext4_truncate() 4162 * 4163 * We block out ext4_get_block() block instantiations across the entire 4164 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4165 * simultaneously on behalf of the same inode. 4166 * 4167 * As we work through the truncate and commit bits of it to the journal there 4168 * is one core, guiding principle: the file's tree must always be consistent on 4169 * disk. We must be able to restart the truncate after a crash. 4170 * 4171 * The file's tree may be transiently inconsistent in memory (although it 4172 * probably isn't), but whenever we close off and commit a journal transaction, 4173 * the contents of (the filesystem + the journal) must be consistent and 4174 * restartable. It's pretty simple, really: bottom up, right to left (although 4175 * left-to-right works OK too). 4176 * 4177 * Note that at recovery time, journal replay occurs *before* the restart of 4178 * truncate against the orphan inode list. 4179 * 4180 * The committed inode has the new, desired i_size (which is the same as 4181 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4182 * that this inode's truncate did not complete and it will again call 4183 * ext4_truncate() to have another go. So there will be instantiated blocks 4184 * to the right of the truncation point in a crashed ext4 filesystem. But 4185 * that's fine - as long as they are linked from the inode, the post-crash 4186 * ext4_truncate() run will find them and release them. 4187 */ 4188 int ext4_truncate(struct inode *inode) 4189 { 4190 struct ext4_inode_info *ei = EXT4_I(inode); 4191 unsigned int credits; 4192 int err = 0, err2; 4193 handle_t *handle; 4194 struct address_space *mapping = inode->i_mapping; 4195 4196 /* 4197 * There is a possibility that we're either freeing the inode 4198 * or it's a completely new inode. In those cases we might not 4199 * have i_rwsem locked because it's not necessary. 4200 */ 4201 if (!(inode->i_state & (I_NEW|I_FREEING))) 4202 WARN_ON(!inode_is_locked(inode)); 4203 trace_ext4_truncate_enter(inode); 4204 4205 if (!ext4_can_truncate(inode)) 4206 goto out_trace; 4207 4208 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4209 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4210 4211 if (ext4_has_inline_data(inode)) { 4212 int has_inline = 1; 4213 4214 err = ext4_inline_data_truncate(inode, &has_inline); 4215 if (err || has_inline) 4216 goto out_trace; 4217 } 4218 4219 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4220 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4221 if (ext4_inode_attach_jinode(inode) < 0) 4222 goto out_trace; 4223 } 4224 4225 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4226 credits = ext4_writepage_trans_blocks(inode); 4227 else 4228 credits = ext4_blocks_for_truncate(inode); 4229 4230 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4231 if (IS_ERR(handle)) { 4232 err = PTR_ERR(handle); 4233 goto out_trace; 4234 } 4235 4236 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4237 ext4_block_truncate_page(handle, mapping, inode->i_size); 4238 4239 /* 4240 * We add the inode to the orphan list, so that if this 4241 * truncate spans multiple transactions, and we crash, we will 4242 * resume the truncate when the filesystem recovers. It also 4243 * marks the inode dirty, to catch the new size. 4244 * 4245 * Implication: the file must always be in a sane, consistent 4246 * truncatable state while each transaction commits. 4247 */ 4248 err = ext4_orphan_add(handle, inode); 4249 if (err) 4250 goto out_stop; 4251 4252 down_write(&EXT4_I(inode)->i_data_sem); 4253 4254 ext4_discard_preallocations(inode, 0); 4255 4256 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4257 err = ext4_ext_truncate(handle, inode); 4258 else 4259 ext4_ind_truncate(handle, inode); 4260 4261 up_write(&ei->i_data_sem); 4262 if (err) 4263 goto out_stop; 4264 4265 if (IS_SYNC(inode)) 4266 ext4_handle_sync(handle); 4267 4268 out_stop: 4269 /* 4270 * If this was a simple ftruncate() and the file will remain alive, 4271 * then we need to clear up the orphan record which we created above. 4272 * However, if this was a real unlink then we were called by 4273 * ext4_evict_inode(), and we allow that function to clean up the 4274 * orphan info for us. 4275 */ 4276 if (inode->i_nlink) 4277 ext4_orphan_del(handle, inode); 4278 4279 inode->i_mtime = inode->i_ctime = current_time(inode); 4280 err2 = ext4_mark_inode_dirty(handle, inode); 4281 if (unlikely(err2 && !err)) 4282 err = err2; 4283 ext4_journal_stop(handle); 4284 4285 out_trace: 4286 trace_ext4_truncate_exit(inode); 4287 return err; 4288 } 4289 4290 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4291 { 4292 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4293 return inode_peek_iversion_raw(inode); 4294 else 4295 return inode_peek_iversion(inode); 4296 } 4297 4298 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4299 struct ext4_inode_info *ei) 4300 { 4301 struct inode *inode = &(ei->vfs_inode); 4302 u64 i_blocks = READ_ONCE(inode->i_blocks); 4303 struct super_block *sb = inode->i_sb; 4304 4305 if (i_blocks <= ~0U) { 4306 /* 4307 * i_blocks can be represented in a 32 bit variable 4308 * as multiple of 512 bytes 4309 */ 4310 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4311 raw_inode->i_blocks_high = 0; 4312 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4313 return 0; 4314 } 4315 4316 /* 4317 * This should never happen since sb->s_maxbytes should not have 4318 * allowed this, sb->s_maxbytes was set according to the huge_file 4319 * feature in ext4_fill_super(). 4320 */ 4321 if (!ext4_has_feature_huge_file(sb)) 4322 return -EFSCORRUPTED; 4323 4324 if (i_blocks <= 0xffffffffffffULL) { 4325 /* 4326 * i_blocks can be represented in a 48 bit variable 4327 * as multiple of 512 bytes 4328 */ 4329 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4330 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4331 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4332 } else { 4333 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4334 /* i_block is stored in file system block size */ 4335 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4336 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4337 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4338 } 4339 return 0; 4340 } 4341 4342 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4343 { 4344 struct ext4_inode_info *ei = EXT4_I(inode); 4345 uid_t i_uid; 4346 gid_t i_gid; 4347 projid_t i_projid; 4348 int block; 4349 int err; 4350 4351 err = ext4_inode_blocks_set(raw_inode, ei); 4352 4353 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4354 i_uid = i_uid_read(inode); 4355 i_gid = i_gid_read(inode); 4356 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4357 if (!(test_opt(inode->i_sb, NO_UID32))) { 4358 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4359 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4360 /* 4361 * Fix up interoperability with old kernels. Otherwise, 4362 * old inodes get re-used with the upper 16 bits of the 4363 * uid/gid intact. 4364 */ 4365 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4366 raw_inode->i_uid_high = 0; 4367 raw_inode->i_gid_high = 0; 4368 } else { 4369 raw_inode->i_uid_high = 4370 cpu_to_le16(high_16_bits(i_uid)); 4371 raw_inode->i_gid_high = 4372 cpu_to_le16(high_16_bits(i_gid)); 4373 } 4374 } else { 4375 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4376 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4377 raw_inode->i_uid_high = 0; 4378 raw_inode->i_gid_high = 0; 4379 } 4380 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4381 4382 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4383 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4384 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4385 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4386 4387 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4388 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4389 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4390 raw_inode->i_file_acl_high = 4391 cpu_to_le16(ei->i_file_acl >> 32); 4392 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4393 ext4_isize_set(raw_inode, ei->i_disksize); 4394 4395 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4396 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4397 if (old_valid_dev(inode->i_rdev)) { 4398 raw_inode->i_block[0] = 4399 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4400 raw_inode->i_block[1] = 0; 4401 } else { 4402 raw_inode->i_block[0] = 0; 4403 raw_inode->i_block[1] = 4404 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4405 raw_inode->i_block[2] = 0; 4406 } 4407 } else if (!ext4_has_inline_data(inode)) { 4408 for (block = 0; block < EXT4_N_BLOCKS; block++) 4409 raw_inode->i_block[block] = ei->i_data[block]; 4410 } 4411 4412 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4413 u64 ivers = ext4_inode_peek_iversion(inode); 4414 4415 raw_inode->i_disk_version = cpu_to_le32(ivers); 4416 if (ei->i_extra_isize) { 4417 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4418 raw_inode->i_version_hi = 4419 cpu_to_le32(ivers >> 32); 4420 raw_inode->i_extra_isize = 4421 cpu_to_le16(ei->i_extra_isize); 4422 } 4423 } 4424 4425 if (i_projid != EXT4_DEF_PROJID && 4426 !ext4_has_feature_project(inode->i_sb)) 4427 err = err ?: -EFSCORRUPTED; 4428 4429 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4430 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4431 raw_inode->i_projid = cpu_to_le32(i_projid); 4432 4433 ext4_inode_csum_set(inode, raw_inode, ei); 4434 return err; 4435 } 4436 4437 /* 4438 * ext4_get_inode_loc returns with an extra refcount against the inode's 4439 * underlying buffer_head on success. If we pass 'inode' and it does not 4440 * have in-inode xattr, we have all inode data in memory that is needed 4441 * to recreate the on-disk version of this inode. 4442 */ 4443 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4444 struct inode *inode, struct ext4_iloc *iloc, 4445 ext4_fsblk_t *ret_block) 4446 { 4447 struct ext4_group_desc *gdp; 4448 struct buffer_head *bh; 4449 ext4_fsblk_t block; 4450 struct blk_plug plug; 4451 int inodes_per_block, inode_offset; 4452 4453 iloc->bh = NULL; 4454 if (ino < EXT4_ROOT_INO || 4455 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4456 return -EFSCORRUPTED; 4457 4458 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4459 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4460 if (!gdp) 4461 return -EIO; 4462 4463 /* 4464 * Figure out the offset within the block group inode table 4465 */ 4466 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4467 inode_offset = ((ino - 1) % 4468 EXT4_INODES_PER_GROUP(sb)); 4469 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4470 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4471 4472 bh = sb_getblk(sb, block); 4473 if (unlikely(!bh)) 4474 return -ENOMEM; 4475 if (ext4_buffer_uptodate(bh)) 4476 goto has_buffer; 4477 4478 lock_buffer(bh); 4479 if (ext4_buffer_uptodate(bh)) { 4480 /* Someone brought it uptodate while we waited */ 4481 unlock_buffer(bh); 4482 goto has_buffer; 4483 } 4484 4485 /* 4486 * If we have all information of the inode in memory and this 4487 * is the only valid inode in the block, we need not read the 4488 * block. 4489 */ 4490 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4491 struct buffer_head *bitmap_bh; 4492 int i, start; 4493 4494 start = inode_offset & ~(inodes_per_block - 1); 4495 4496 /* Is the inode bitmap in cache? */ 4497 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4498 if (unlikely(!bitmap_bh)) 4499 goto make_io; 4500 4501 /* 4502 * If the inode bitmap isn't in cache then the 4503 * optimisation may end up performing two reads instead 4504 * of one, so skip it. 4505 */ 4506 if (!buffer_uptodate(bitmap_bh)) { 4507 brelse(bitmap_bh); 4508 goto make_io; 4509 } 4510 for (i = start; i < start + inodes_per_block; i++) { 4511 if (i == inode_offset) 4512 continue; 4513 if (ext4_test_bit(i, bitmap_bh->b_data)) 4514 break; 4515 } 4516 brelse(bitmap_bh); 4517 if (i == start + inodes_per_block) { 4518 struct ext4_inode *raw_inode = 4519 (struct ext4_inode *) (bh->b_data + iloc->offset); 4520 4521 /* all other inodes are free, so skip I/O */ 4522 memset(bh->b_data, 0, bh->b_size); 4523 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4524 ext4_fill_raw_inode(inode, raw_inode); 4525 set_buffer_uptodate(bh); 4526 unlock_buffer(bh); 4527 goto has_buffer; 4528 } 4529 } 4530 4531 make_io: 4532 /* 4533 * If we need to do any I/O, try to pre-readahead extra 4534 * blocks from the inode table. 4535 */ 4536 blk_start_plug(&plug); 4537 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4538 ext4_fsblk_t b, end, table; 4539 unsigned num; 4540 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4541 4542 table = ext4_inode_table(sb, gdp); 4543 /* s_inode_readahead_blks is always a power of 2 */ 4544 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4545 if (table > b) 4546 b = table; 4547 end = b + ra_blks; 4548 num = EXT4_INODES_PER_GROUP(sb); 4549 if (ext4_has_group_desc_csum(sb)) 4550 num -= ext4_itable_unused_count(sb, gdp); 4551 table += num / inodes_per_block; 4552 if (end > table) 4553 end = table; 4554 while (b <= end) 4555 ext4_sb_breadahead_unmovable(sb, b++); 4556 } 4557 4558 /* 4559 * There are other valid inodes in the buffer, this inode 4560 * has in-inode xattrs, or we don't have this inode in memory. 4561 * Read the block from disk. 4562 */ 4563 trace_ext4_load_inode(sb, ino); 4564 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4565 blk_finish_plug(&plug); 4566 wait_on_buffer(bh); 4567 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4568 if (!buffer_uptodate(bh)) { 4569 if (ret_block) 4570 *ret_block = block; 4571 brelse(bh); 4572 return -EIO; 4573 } 4574 has_buffer: 4575 iloc->bh = bh; 4576 return 0; 4577 } 4578 4579 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4580 struct ext4_iloc *iloc) 4581 { 4582 ext4_fsblk_t err_blk = 0; 4583 int ret; 4584 4585 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4586 &err_blk); 4587 4588 if (ret == -EIO) 4589 ext4_error_inode_block(inode, err_blk, EIO, 4590 "unable to read itable block"); 4591 4592 return ret; 4593 } 4594 4595 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4596 { 4597 ext4_fsblk_t err_blk = 0; 4598 int ret; 4599 4600 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4601 &err_blk); 4602 4603 if (ret == -EIO) 4604 ext4_error_inode_block(inode, err_blk, EIO, 4605 "unable to read itable block"); 4606 4607 return ret; 4608 } 4609 4610 4611 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4612 struct ext4_iloc *iloc) 4613 { 4614 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4615 } 4616 4617 static bool ext4_should_enable_dax(struct inode *inode) 4618 { 4619 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4620 4621 if (test_opt2(inode->i_sb, DAX_NEVER)) 4622 return false; 4623 if (!S_ISREG(inode->i_mode)) 4624 return false; 4625 if (ext4_should_journal_data(inode)) 4626 return false; 4627 if (ext4_has_inline_data(inode)) 4628 return false; 4629 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4630 return false; 4631 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4632 return false; 4633 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4634 return false; 4635 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4636 return true; 4637 4638 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4639 } 4640 4641 void ext4_set_inode_flags(struct inode *inode, bool init) 4642 { 4643 unsigned int flags = EXT4_I(inode)->i_flags; 4644 unsigned int new_fl = 0; 4645 4646 WARN_ON_ONCE(IS_DAX(inode) && init); 4647 4648 if (flags & EXT4_SYNC_FL) 4649 new_fl |= S_SYNC; 4650 if (flags & EXT4_APPEND_FL) 4651 new_fl |= S_APPEND; 4652 if (flags & EXT4_IMMUTABLE_FL) 4653 new_fl |= S_IMMUTABLE; 4654 if (flags & EXT4_NOATIME_FL) 4655 new_fl |= S_NOATIME; 4656 if (flags & EXT4_DIRSYNC_FL) 4657 new_fl |= S_DIRSYNC; 4658 4659 /* Because of the way inode_set_flags() works we must preserve S_DAX 4660 * here if already set. */ 4661 new_fl |= (inode->i_flags & S_DAX); 4662 if (init && ext4_should_enable_dax(inode)) 4663 new_fl |= S_DAX; 4664 4665 if (flags & EXT4_ENCRYPT_FL) 4666 new_fl |= S_ENCRYPTED; 4667 if (flags & EXT4_CASEFOLD_FL) 4668 new_fl |= S_CASEFOLD; 4669 if (flags & EXT4_VERITY_FL) 4670 new_fl |= S_VERITY; 4671 inode_set_flags(inode, new_fl, 4672 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4673 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4674 } 4675 4676 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4677 struct ext4_inode_info *ei) 4678 { 4679 blkcnt_t i_blocks ; 4680 struct inode *inode = &(ei->vfs_inode); 4681 struct super_block *sb = inode->i_sb; 4682 4683 if (ext4_has_feature_huge_file(sb)) { 4684 /* we are using combined 48 bit field */ 4685 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4686 le32_to_cpu(raw_inode->i_blocks_lo); 4687 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4688 /* i_blocks represent file system block size */ 4689 return i_blocks << (inode->i_blkbits - 9); 4690 } else { 4691 return i_blocks; 4692 } 4693 } else { 4694 return le32_to_cpu(raw_inode->i_blocks_lo); 4695 } 4696 } 4697 4698 static inline int ext4_iget_extra_inode(struct inode *inode, 4699 struct ext4_inode *raw_inode, 4700 struct ext4_inode_info *ei) 4701 { 4702 __le32 *magic = (void *)raw_inode + 4703 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4704 4705 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4706 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4707 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4708 return ext4_find_inline_data_nolock(inode); 4709 } else 4710 EXT4_I(inode)->i_inline_off = 0; 4711 return 0; 4712 } 4713 4714 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4715 { 4716 if (!ext4_has_feature_project(inode->i_sb)) 4717 return -EOPNOTSUPP; 4718 *projid = EXT4_I(inode)->i_projid; 4719 return 0; 4720 } 4721 4722 /* 4723 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4724 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4725 * set. 4726 */ 4727 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4728 { 4729 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4730 inode_set_iversion_raw(inode, val); 4731 else 4732 inode_set_iversion_queried(inode, val); 4733 } 4734 4735 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4736 ext4_iget_flags flags, const char *function, 4737 unsigned int line) 4738 { 4739 struct ext4_iloc iloc; 4740 struct ext4_inode *raw_inode; 4741 struct ext4_inode_info *ei; 4742 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4743 struct inode *inode; 4744 journal_t *journal = EXT4_SB(sb)->s_journal; 4745 long ret; 4746 loff_t size; 4747 int block; 4748 uid_t i_uid; 4749 gid_t i_gid; 4750 projid_t i_projid; 4751 4752 if ((!(flags & EXT4_IGET_SPECIAL) && 4753 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4754 ino == le32_to_cpu(es->s_usr_quota_inum) || 4755 ino == le32_to_cpu(es->s_grp_quota_inum) || 4756 ino == le32_to_cpu(es->s_prj_quota_inum) || 4757 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4758 (ino < EXT4_ROOT_INO) || 4759 (ino > le32_to_cpu(es->s_inodes_count))) { 4760 if (flags & EXT4_IGET_HANDLE) 4761 return ERR_PTR(-ESTALE); 4762 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4763 "inode #%lu: comm %s: iget: illegal inode #", 4764 ino, current->comm); 4765 return ERR_PTR(-EFSCORRUPTED); 4766 } 4767 4768 inode = iget_locked(sb, ino); 4769 if (!inode) 4770 return ERR_PTR(-ENOMEM); 4771 if (!(inode->i_state & I_NEW)) 4772 return inode; 4773 4774 ei = EXT4_I(inode); 4775 iloc.bh = NULL; 4776 4777 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4778 if (ret < 0) 4779 goto bad_inode; 4780 raw_inode = ext4_raw_inode(&iloc); 4781 4782 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4783 ext4_error_inode(inode, function, line, 0, 4784 "iget: root inode unallocated"); 4785 ret = -EFSCORRUPTED; 4786 goto bad_inode; 4787 } 4788 4789 if ((flags & EXT4_IGET_HANDLE) && 4790 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4791 ret = -ESTALE; 4792 goto bad_inode; 4793 } 4794 4795 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4796 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4797 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4798 EXT4_INODE_SIZE(inode->i_sb) || 4799 (ei->i_extra_isize & 3)) { 4800 ext4_error_inode(inode, function, line, 0, 4801 "iget: bad extra_isize %u " 4802 "(inode size %u)", 4803 ei->i_extra_isize, 4804 EXT4_INODE_SIZE(inode->i_sb)); 4805 ret = -EFSCORRUPTED; 4806 goto bad_inode; 4807 } 4808 } else 4809 ei->i_extra_isize = 0; 4810 4811 /* Precompute checksum seed for inode metadata */ 4812 if (ext4_has_metadata_csum(sb)) { 4813 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4814 __u32 csum; 4815 __le32 inum = cpu_to_le32(inode->i_ino); 4816 __le32 gen = raw_inode->i_generation; 4817 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4818 sizeof(inum)); 4819 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4820 sizeof(gen)); 4821 } 4822 4823 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4824 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4825 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4826 ext4_error_inode_err(inode, function, line, 0, 4827 EFSBADCRC, "iget: checksum invalid"); 4828 ret = -EFSBADCRC; 4829 goto bad_inode; 4830 } 4831 4832 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4833 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4834 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4835 if (ext4_has_feature_project(sb) && 4836 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4837 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4838 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4839 else 4840 i_projid = EXT4_DEF_PROJID; 4841 4842 if (!(test_opt(inode->i_sb, NO_UID32))) { 4843 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4844 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4845 } 4846 i_uid_write(inode, i_uid); 4847 i_gid_write(inode, i_gid); 4848 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4849 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4850 4851 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4852 ei->i_inline_off = 0; 4853 ei->i_dir_start_lookup = 0; 4854 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4855 /* We now have enough fields to check if the inode was active or not. 4856 * This is needed because nfsd might try to access dead inodes 4857 * the test is that same one that e2fsck uses 4858 * NeilBrown 1999oct15 4859 */ 4860 if (inode->i_nlink == 0) { 4861 if ((inode->i_mode == 0 || 4862 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4863 ino != EXT4_BOOT_LOADER_INO) { 4864 /* this inode is deleted */ 4865 ret = -ESTALE; 4866 goto bad_inode; 4867 } 4868 /* The only unlinked inodes we let through here have 4869 * valid i_mode and are being read by the orphan 4870 * recovery code: that's fine, we're about to complete 4871 * the process of deleting those. 4872 * OR it is the EXT4_BOOT_LOADER_INO which is 4873 * not initialized on a new filesystem. */ 4874 } 4875 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4876 ext4_set_inode_flags(inode, true); 4877 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4878 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4879 if (ext4_has_feature_64bit(sb)) 4880 ei->i_file_acl |= 4881 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4882 inode->i_size = ext4_isize(sb, raw_inode); 4883 if ((size = i_size_read(inode)) < 0) { 4884 ext4_error_inode(inode, function, line, 0, 4885 "iget: bad i_size value: %lld", size); 4886 ret = -EFSCORRUPTED; 4887 goto bad_inode; 4888 } 4889 /* 4890 * If dir_index is not enabled but there's dir with INDEX flag set, 4891 * we'd normally treat htree data as empty space. But with metadata 4892 * checksumming that corrupts checksums so forbid that. 4893 */ 4894 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4895 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4896 ext4_error_inode(inode, function, line, 0, 4897 "iget: Dir with htree data on filesystem without dir_index feature."); 4898 ret = -EFSCORRUPTED; 4899 goto bad_inode; 4900 } 4901 ei->i_disksize = inode->i_size; 4902 #ifdef CONFIG_QUOTA 4903 ei->i_reserved_quota = 0; 4904 #endif 4905 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4906 ei->i_block_group = iloc.block_group; 4907 ei->i_last_alloc_group = ~0; 4908 /* 4909 * NOTE! The in-memory inode i_data array is in little-endian order 4910 * even on big-endian machines: we do NOT byteswap the block numbers! 4911 */ 4912 for (block = 0; block < EXT4_N_BLOCKS; block++) 4913 ei->i_data[block] = raw_inode->i_block[block]; 4914 INIT_LIST_HEAD(&ei->i_orphan); 4915 ext4_fc_init_inode(&ei->vfs_inode); 4916 4917 /* 4918 * Set transaction id's of transactions that have to be committed 4919 * to finish f[data]sync. We set them to currently running transaction 4920 * as we cannot be sure that the inode or some of its metadata isn't 4921 * part of the transaction - the inode could have been reclaimed and 4922 * now it is reread from disk. 4923 */ 4924 if (journal) { 4925 transaction_t *transaction; 4926 tid_t tid; 4927 4928 read_lock(&journal->j_state_lock); 4929 if (journal->j_running_transaction) 4930 transaction = journal->j_running_transaction; 4931 else 4932 transaction = journal->j_committing_transaction; 4933 if (transaction) 4934 tid = transaction->t_tid; 4935 else 4936 tid = journal->j_commit_sequence; 4937 read_unlock(&journal->j_state_lock); 4938 ei->i_sync_tid = tid; 4939 ei->i_datasync_tid = tid; 4940 } 4941 4942 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4943 if (ei->i_extra_isize == 0) { 4944 /* The extra space is currently unused. Use it. */ 4945 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4946 ei->i_extra_isize = sizeof(struct ext4_inode) - 4947 EXT4_GOOD_OLD_INODE_SIZE; 4948 } else { 4949 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4950 if (ret) 4951 goto bad_inode; 4952 } 4953 } 4954 4955 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4956 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4957 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4958 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4959 4960 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4961 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4962 4963 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4964 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4965 ivers |= 4966 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4967 } 4968 ext4_inode_set_iversion_queried(inode, ivers); 4969 } 4970 4971 ret = 0; 4972 if (ei->i_file_acl && 4973 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4974 ext4_error_inode(inode, function, line, 0, 4975 "iget: bad extended attribute block %llu", 4976 ei->i_file_acl); 4977 ret = -EFSCORRUPTED; 4978 goto bad_inode; 4979 } else if (!ext4_has_inline_data(inode)) { 4980 /* validate the block references in the inode */ 4981 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4982 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4983 (S_ISLNK(inode->i_mode) && 4984 !ext4_inode_is_fast_symlink(inode)))) { 4985 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4986 ret = ext4_ext_check_inode(inode); 4987 else 4988 ret = ext4_ind_check_inode(inode); 4989 } 4990 } 4991 if (ret) 4992 goto bad_inode; 4993 4994 if (S_ISREG(inode->i_mode)) { 4995 inode->i_op = &ext4_file_inode_operations; 4996 inode->i_fop = &ext4_file_operations; 4997 ext4_set_aops(inode); 4998 } else if (S_ISDIR(inode->i_mode)) { 4999 inode->i_op = &ext4_dir_inode_operations; 5000 inode->i_fop = &ext4_dir_operations; 5001 } else if (S_ISLNK(inode->i_mode)) { 5002 /* VFS does not allow setting these so must be corruption */ 5003 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 5004 ext4_error_inode(inode, function, line, 0, 5005 "iget: immutable or append flags " 5006 "not allowed on symlinks"); 5007 ret = -EFSCORRUPTED; 5008 goto bad_inode; 5009 } 5010 if (IS_ENCRYPTED(inode)) { 5011 inode->i_op = &ext4_encrypted_symlink_inode_operations; 5012 } else if (ext4_inode_is_fast_symlink(inode)) { 5013 inode->i_link = (char *)ei->i_data; 5014 inode->i_op = &ext4_fast_symlink_inode_operations; 5015 nd_terminate_link(ei->i_data, inode->i_size, 5016 sizeof(ei->i_data) - 1); 5017 } else { 5018 inode->i_op = &ext4_symlink_inode_operations; 5019 } 5020 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 5021 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 5022 inode->i_op = &ext4_special_inode_operations; 5023 if (raw_inode->i_block[0]) 5024 init_special_inode(inode, inode->i_mode, 5025 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 5026 else 5027 init_special_inode(inode, inode->i_mode, 5028 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 5029 } else if (ino == EXT4_BOOT_LOADER_INO) { 5030 make_bad_inode(inode); 5031 } else { 5032 ret = -EFSCORRUPTED; 5033 ext4_error_inode(inode, function, line, 0, 5034 "iget: bogus i_mode (%o)", inode->i_mode); 5035 goto bad_inode; 5036 } 5037 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 5038 ext4_error_inode(inode, function, line, 0, 5039 "casefold flag without casefold feature"); 5040 brelse(iloc.bh); 5041 5042 unlock_new_inode(inode); 5043 return inode; 5044 5045 bad_inode: 5046 brelse(iloc.bh); 5047 iget_failed(inode); 5048 return ERR_PTR(ret); 5049 } 5050 5051 static void __ext4_update_other_inode_time(struct super_block *sb, 5052 unsigned long orig_ino, 5053 unsigned long ino, 5054 struct ext4_inode *raw_inode) 5055 { 5056 struct inode *inode; 5057 5058 inode = find_inode_by_ino_rcu(sb, ino); 5059 if (!inode) 5060 return; 5061 5062 if (!inode_is_dirtytime_only(inode)) 5063 return; 5064 5065 spin_lock(&inode->i_lock); 5066 if (inode_is_dirtytime_only(inode)) { 5067 struct ext4_inode_info *ei = EXT4_I(inode); 5068 5069 inode->i_state &= ~I_DIRTY_TIME; 5070 spin_unlock(&inode->i_lock); 5071 5072 spin_lock(&ei->i_raw_lock); 5073 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 5074 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 5075 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 5076 ext4_inode_csum_set(inode, raw_inode, ei); 5077 spin_unlock(&ei->i_raw_lock); 5078 trace_ext4_other_inode_update_time(inode, orig_ino); 5079 return; 5080 } 5081 spin_unlock(&inode->i_lock); 5082 } 5083 5084 /* 5085 * Opportunistically update the other time fields for other inodes in 5086 * the same inode table block. 5087 */ 5088 static void ext4_update_other_inodes_time(struct super_block *sb, 5089 unsigned long orig_ino, char *buf) 5090 { 5091 unsigned long ino; 5092 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5093 int inode_size = EXT4_INODE_SIZE(sb); 5094 5095 /* 5096 * Calculate the first inode in the inode table block. Inode 5097 * numbers are one-based. That is, the first inode in a block 5098 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5099 */ 5100 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5101 rcu_read_lock(); 5102 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5103 if (ino == orig_ino) 5104 continue; 5105 __ext4_update_other_inode_time(sb, orig_ino, ino, 5106 (struct ext4_inode *)buf); 5107 } 5108 rcu_read_unlock(); 5109 } 5110 5111 /* 5112 * Post the struct inode info into an on-disk inode location in the 5113 * buffer-cache. This gobbles the caller's reference to the 5114 * buffer_head in the inode location struct. 5115 * 5116 * The caller must have write access to iloc->bh. 5117 */ 5118 static int ext4_do_update_inode(handle_t *handle, 5119 struct inode *inode, 5120 struct ext4_iloc *iloc) 5121 { 5122 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5123 struct ext4_inode_info *ei = EXT4_I(inode); 5124 struct buffer_head *bh = iloc->bh; 5125 struct super_block *sb = inode->i_sb; 5126 int err; 5127 int need_datasync = 0, set_large_file = 0; 5128 5129 spin_lock(&ei->i_raw_lock); 5130 5131 /* 5132 * For fields not tracked in the in-memory inode, initialise them 5133 * to zero for new inodes. 5134 */ 5135 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5136 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5137 5138 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5139 need_datasync = 1; 5140 if (ei->i_disksize > 0x7fffffffULL) { 5141 if (!ext4_has_feature_large_file(sb) || 5142 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5143 set_large_file = 1; 5144 } 5145 5146 err = ext4_fill_raw_inode(inode, raw_inode); 5147 spin_unlock(&ei->i_raw_lock); 5148 if (err) { 5149 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5150 goto out_brelse; 5151 } 5152 5153 if (inode->i_sb->s_flags & SB_LAZYTIME) 5154 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5155 bh->b_data); 5156 5157 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5158 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5159 if (err) 5160 goto out_error; 5161 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5162 if (set_large_file) { 5163 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5164 err = ext4_journal_get_write_access(handle, sb, 5165 EXT4_SB(sb)->s_sbh, 5166 EXT4_JTR_NONE); 5167 if (err) 5168 goto out_error; 5169 lock_buffer(EXT4_SB(sb)->s_sbh); 5170 ext4_set_feature_large_file(sb); 5171 ext4_superblock_csum_set(sb); 5172 unlock_buffer(EXT4_SB(sb)->s_sbh); 5173 ext4_handle_sync(handle); 5174 err = ext4_handle_dirty_metadata(handle, NULL, 5175 EXT4_SB(sb)->s_sbh); 5176 } 5177 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5178 out_error: 5179 ext4_std_error(inode->i_sb, err); 5180 out_brelse: 5181 brelse(bh); 5182 return err; 5183 } 5184 5185 /* 5186 * ext4_write_inode() 5187 * 5188 * We are called from a few places: 5189 * 5190 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5191 * Here, there will be no transaction running. We wait for any running 5192 * transaction to commit. 5193 * 5194 * - Within flush work (sys_sync(), kupdate and such). 5195 * We wait on commit, if told to. 5196 * 5197 * - Within iput_final() -> write_inode_now() 5198 * We wait on commit, if told to. 5199 * 5200 * In all cases it is actually safe for us to return without doing anything, 5201 * because the inode has been copied into a raw inode buffer in 5202 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5203 * writeback. 5204 * 5205 * Note that we are absolutely dependent upon all inode dirtiers doing the 5206 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5207 * which we are interested. 5208 * 5209 * It would be a bug for them to not do this. The code: 5210 * 5211 * mark_inode_dirty(inode) 5212 * stuff(); 5213 * inode->i_size = expr; 5214 * 5215 * is in error because write_inode() could occur while `stuff()' is running, 5216 * and the new i_size will be lost. Plus the inode will no longer be on the 5217 * superblock's dirty inode list. 5218 */ 5219 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5220 { 5221 int err; 5222 5223 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5224 sb_rdonly(inode->i_sb)) 5225 return 0; 5226 5227 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5228 return -EIO; 5229 5230 if (EXT4_SB(inode->i_sb)->s_journal) { 5231 if (ext4_journal_current_handle()) { 5232 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5233 dump_stack(); 5234 return -EIO; 5235 } 5236 5237 /* 5238 * No need to force transaction in WB_SYNC_NONE mode. Also 5239 * ext4_sync_fs() will force the commit after everything is 5240 * written. 5241 */ 5242 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5243 return 0; 5244 5245 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5246 EXT4_I(inode)->i_sync_tid); 5247 } else { 5248 struct ext4_iloc iloc; 5249 5250 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5251 if (err) 5252 return err; 5253 /* 5254 * sync(2) will flush the whole buffer cache. No need to do 5255 * it here separately for each inode. 5256 */ 5257 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5258 sync_dirty_buffer(iloc.bh); 5259 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5260 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5261 "IO error syncing inode"); 5262 err = -EIO; 5263 } 5264 brelse(iloc.bh); 5265 } 5266 return err; 5267 } 5268 5269 /* 5270 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5271 * buffers that are attached to a folio straddling i_size and are undergoing 5272 * commit. In that case we have to wait for commit to finish and try again. 5273 */ 5274 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5275 { 5276 unsigned offset; 5277 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5278 tid_t commit_tid = 0; 5279 int ret; 5280 5281 offset = inode->i_size & (PAGE_SIZE - 1); 5282 /* 5283 * If the folio is fully truncated, we don't need to wait for any commit 5284 * (and we even should not as __ext4_journalled_invalidate_folio() may 5285 * strip all buffers from the folio but keep the folio dirty which can then 5286 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without 5287 * buffers). Also we don't need to wait for any commit if all buffers in 5288 * the folio remain valid. This is most beneficial for the common case of 5289 * blocksize == PAGESIZE. 5290 */ 5291 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5292 return; 5293 while (1) { 5294 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5295 inode->i_size >> PAGE_SHIFT); 5296 if (!folio) 5297 return; 5298 ret = __ext4_journalled_invalidate_folio(folio, offset, 5299 folio_size(folio) - offset); 5300 folio_unlock(folio); 5301 folio_put(folio); 5302 if (ret != -EBUSY) 5303 return; 5304 commit_tid = 0; 5305 read_lock(&journal->j_state_lock); 5306 if (journal->j_committing_transaction) 5307 commit_tid = journal->j_committing_transaction->t_tid; 5308 read_unlock(&journal->j_state_lock); 5309 if (commit_tid) 5310 jbd2_log_wait_commit(journal, commit_tid); 5311 } 5312 } 5313 5314 /* 5315 * ext4_setattr() 5316 * 5317 * Called from notify_change. 5318 * 5319 * We want to trap VFS attempts to truncate the file as soon as 5320 * possible. In particular, we want to make sure that when the VFS 5321 * shrinks i_size, we put the inode on the orphan list and modify 5322 * i_disksize immediately, so that during the subsequent flushing of 5323 * dirty pages and freeing of disk blocks, we can guarantee that any 5324 * commit will leave the blocks being flushed in an unused state on 5325 * disk. (On recovery, the inode will get truncated and the blocks will 5326 * be freed, so we have a strong guarantee that no future commit will 5327 * leave these blocks visible to the user.) 5328 * 5329 * Another thing we have to assure is that if we are in ordered mode 5330 * and inode is still attached to the committing transaction, we must 5331 * we start writeout of all the dirty pages which are being truncated. 5332 * This way we are sure that all the data written in the previous 5333 * transaction are already on disk (truncate waits for pages under 5334 * writeback). 5335 * 5336 * Called with inode->i_rwsem down. 5337 */ 5338 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5339 struct iattr *attr) 5340 { 5341 struct inode *inode = d_inode(dentry); 5342 int error, rc = 0; 5343 int orphan = 0; 5344 const unsigned int ia_valid = attr->ia_valid; 5345 5346 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5347 return -EIO; 5348 5349 if (unlikely(IS_IMMUTABLE(inode))) 5350 return -EPERM; 5351 5352 if (unlikely(IS_APPEND(inode) && 5353 (ia_valid & (ATTR_MODE | ATTR_UID | 5354 ATTR_GID | ATTR_TIMES_SET)))) 5355 return -EPERM; 5356 5357 error = setattr_prepare(mnt_userns, dentry, attr); 5358 if (error) 5359 return error; 5360 5361 error = fscrypt_prepare_setattr(dentry, attr); 5362 if (error) 5363 return error; 5364 5365 error = fsverity_prepare_setattr(dentry, attr); 5366 if (error) 5367 return error; 5368 5369 if (is_quota_modification(mnt_userns, inode, attr)) { 5370 error = dquot_initialize(inode); 5371 if (error) 5372 return error; 5373 } 5374 5375 if (i_uid_needs_update(mnt_userns, attr, inode) || 5376 i_gid_needs_update(mnt_userns, attr, inode)) { 5377 handle_t *handle; 5378 5379 /* (user+group)*(old+new) structure, inode write (sb, 5380 * inode block, ? - but truncate inode update has it) */ 5381 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5382 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5383 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5384 if (IS_ERR(handle)) { 5385 error = PTR_ERR(handle); 5386 goto err_out; 5387 } 5388 5389 /* dquot_transfer() calls back ext4_get_inode_usage() which 5390 * counts xattr inode references. 5391 */ 5392 down_read(&EXT4_I(inode)->xattr_sem); 5393 error = dquot_transfer(mnt_userns, inode, attr); 5394 up_read(&EXT4_I(inode)->xattr_sem); 5395 5396 if (error) { 5397 ext4_journal_stop(handle); 5398 return error; 5399 } 5400 /* Update corresponding info in inode so that everything is in 5401 * one transaction */ 5402 i_uid_update(mnt_userns, attr, inode); 5403 i_gid_update(mnt_userns, attr, inode); 5404 error = ext4_mark_inode_dirty(handle, inode); 5405 ext4_journal_stop(handle); 5406 if (unlikely(error)) { 5407 return error; 5408 } 5409 } 5410 5411 if (attr->ia_valid & ATTR_SIZE) { 5412 handle_t *handle; 5413 loff_t oldsize = inode->i_size; 5414 loff_t old_disksize; 5415 int shrink = (attr->ia_size < inode->i_size); 5416 5417 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5418 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5419 5420 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5421 return -EFBIG; 5422 } 5423 } 5424 if (!S_ISREG(inode->i_mode)) { 5425 return -EINVAL; 5426 } 5427 5428 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5429 inode_inc_iversion(inode); 5430 5431 if (shrink) { 5432 if (ext4_should_order_data(inode)) { 5433 error = ext4_begin_ordered_truncate(inode, 5434 attr->ia_size); 5435 if (error) 5436 goto err_out; 5437 } 5438 /* 5439 * Blocks are going to be removed from the inode. Wait 5440 * for dio in flight. 5441 */ 5442 inode_dio_wait(inode); 5443 } 5444 5445 filemap_invalidate_lock(inode->i_mapping); 5446 5447 rc = ext4_break_layouts(inode); 5448 if (rc) { 5449 filemap_invalidate_unlock(inode->i_mapping); 5450 goto err_out; 5451 } 5452 5453 if (attr->ia_size != inode->i_size) { 5454 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5455 if (IS_ERR(handle)) { 5456 error = PTR_ERR(handle); 5457 goto out_mmap_sem; 5458 } 5459 if (ext4_handle_valid(handle) && shrink) { 5460 error = ext4_orphan_add(handle, inode); 5461 orphan = 1; 5462 } 5463 /* 5464 * Update c/mtime on truncate up, ext4_truncate() will 5465 * update c/mtime in shrink case below 5466 */ 5467 if (!shrink) { 5468 inode->i_mtime = current_time(inode); 5469 inode->i_ctime = inode->i_mtime; 5470 } 5471 5472 if (shrink) 5473 ext4_fc_track_range(handle, inode, 5474 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5475 inode->i_sb->s_blocksize_bits, 5476 EXT_MAX_BLOCKS - 1); 5477 else 5478 ext4_fc_track_range( 5479 handle, inode, 5480 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5481 inode->i_sb->s_blocksize_bits, 5482 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5483 inode->i_sb->s_blocksize_bits); 5484 5485 down_write(&EXT4_I(inode)->i_data_sem); 5486 old_disksize = EXT4_I(inode)->i_disksize; 5487 EXT4_I(inode)->i_disksize = attr->ia_size; 5488 rc = ext4_mark_inode_dirty(handle, inode); 5489 if (!error) 5490 error = rc; 5491 /* 5492 * We have to update i_size under i_data_sem together 5493 * with i_disksize to avoid races with writeback code 5494 * running ext4_wb_update_i_disksize(). 5495 */ 5496 if (!error) 5497 i_size_write(inode, attr->ia_size); 5498 else 5499 EXT4_I(inode)->i_disksize = old_disksize; 5500 up_write(&EXT4_I(inode)->i_data_sem); 5501 ext4_journal_stop(handle); 5502 if (error) 5503 goto out_mmap_sem; 5504 if (!shrink) { 5505 pagecache_isize_extended(inode, oldsize, 5506 inode->i_size); 5507 } else if (ext4_should_journal_data(inode)) { 5508 ext4_wait_for_tail_page_commit(inode); 5509 } 5510 } 5511 5512 /* 5513 * Truncate pagecache after we've waited for commit 5514 * in data=journal mode to make pages freeable. 5515 */ 5516 truncate_pagecache(inode, inode->i_size); 5517 /* 5518 * Call ext4_truncate() even if i_size didn't change to 5519 * truncate possible preallocated blocks. 5520 */ 5521 if (attr->ia_size <= oldsize) { 5522 rc = ext4_truncate(inode); 5523 if (rc) 5524 error = rc; 5525 } 5526 out_mmap_sem: 5527 filemap_invalidate_unlock(inode->i_mapping); 5528 } 5529 5530 if (!error) { 5531 setattr_copy(mnt_userns, inode, attr); 5532 mark_inode_dirty(inode); 5533 } 5534 5535 /* 5536 * If the call to ext4_truncate failed to get a transaction handle at 5537 * all, we need to clean up the in-core orphan list manually. 5538 */ 5539 if (orphan && inode->i_nlink) 5540 ext4_orphan_del(NULL, inode); 5541 5542 if (!error && (ia_valid & ATTR_MODE)) 5543 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 5544 5545 err_out: 5546 if (error) 5547 ext4_std_error(inode->i_sb, error); 5548 if (!error) 5549 error = rc; 5550 return error; 5551 } 5552 5553 u32 ext4_dio_alignment(struct inode *inode) 5554 { 5555 if (fsverity_active(inode)) 5556 return 0; 5557 if (ext4_should_journal_data(inode)) 5558 return 0; 5559 if (ext4_has_inline_data(inode)) 5560 return 0; 5561 if (IS_ENCRYPTED(inode)) { 5562 if (!fscrypt_dio_supported(inode)) 5563 return 0; 5564 return i_blocksize(inode); 5565 } 5566 return 1; /* use the iomap defaults */ 5567 } 5568 5569 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path, 5570 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5571 { 5572 struct inode *inode = d_inode(path->dentry); 5573 struct ext4_inode *raw_inode; 5574 struct ext4_inode_info *ei = EXT4_I(inode); 5575 unsigned int flags; 5576 5577 if ((request_mask & STATX_BTIME) && 5578 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5579 stat->result_mask |= STATX_BTIME; 5580 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5581 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5582 } 5583 5584 /* 5585 * Return the DIO alignment restrictions if requested. We only return 5586 * this information when requested, since on encrypted files it might 5587 * take a fair bit of work to get if the file wasn't opened recently. 5588 */ 5589 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5590 u32 dio_align = ext4_dio_alignment(inode); 5591 5592 stat->result_mask |= STATX_DIOALIGN; 5593 if (dio_align == 1) { 5594 struct block_device *bdev = inode->i_sb->s_bdev; 5595 5596 /* iomap defaults */ 5597 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5598 stat->dio_offset_align = bdev_logical_block_size(bdev); 5599 } else { 5600 stat->dio_mem_align = dio_align; 5601 stat->dio_offset_align = dio_align; 5602 } 5603 } 5604 5605 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5606 if (flags & EXT4_APPEND_FL) 5607 stat->attributes |= STATX_ATTR_APPEND; 5608 if (flags & EXT4_COMPR_FL) 5609 stat->attributes |= STATX_ATTR_COMPRESSED; 5610 if (flags & EXT4_ENCRYPT_FL) 5611 stat->attributes |= STATX_ATTR_ENCRYPTED; 5612 if (flags & EXT4_IMMUTABLE_FL) 5613 stat->attributes |= STATX_ATTR_IMMUTABLE; 5614 if (flags & EXT4_NODUMP_FL) 5615 stat->attributes |= STATX_ATTR_NODUMP; 5616 if (flags & EXT4_VERITY_FL) 5617 stat->attributes |= STATX_ATTR_VERITY; 5618 5619 stat->attributes_mask |= (STATX_ATTR_APPEND | 5620 STATX_ATTR_COMPRESSED | 5621 STATX_ATTR_ENCRYPTED | 5622 STATX_ATTR_IMMUTABLE | 5623 STATX_ATTR_NODUMP | 5624 STATX_ATTR_VERITY); 5625 5626 generic_fillattr(mnt_userns, inode, stat); 5627 return 0; 5628 } 5629 5630 int ext4_file_getattr(struct user_namespace *mnt_userns, 5631 const struct path *path, struct kstat *stat, 5632 u32 request_mask, unsigned int query_flags) 5633 { 5634 struct inode *inode = d_inode(path->dentry); 5635 u64 delalloc_blocks; 5636 5637 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags); 5638 5639 /* 5640 * If there is inline data in the inode, the inode will normally not 5641 * have data blocks allocated (it may have an external xattr block). 5642 * Report at least one sector for such files, so tools like tar, rsync, 5643 * others don't incorrectly think the file is completely sparse. 5644 */ 5645 if (unlikely(ext4_has_inline_data(inode))) 5646 stat->blocks += (stat->size + 511) >> 9; 5647 5648 /* 5649 * We can't update i_blocks if the block allocation is delayed 5650 * otherwise in the case of system crash before the real block 5651 * allocation is done, we will have i_blocks inconsistent with 5652 * on-disk file blocks. 5653 * We always keep i_blocks updated together with real 5654 * allocation. But to not confuse with user, stat 5655 * will return the blocks that include the delayed allocation 5656 * blocks for this file. 5657 */ 5658 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5659 EXT4_I(inode)->i_reserved_data_blocks); 5660 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5661 return 0; 5662 } 5663 5664 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5665 int pextents) 5666 { 5667 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5668 return ext4_ind_trans_blocks(inode, lblocks); 5669 return ext4_ext_index_trans_blocks(inode, pextents); 5670 } 5671 5672 /* 5673 * Account for index blocks, block groups bitmaps and block group 5674 * descriptor blocks if modify datablocks and index blocks 5675 * worse case, the indexs blocks spread over different block groups 5676 * 5677 * If datablocks are discontiguous, they are possible to spread over 5678 * different block groups too. If they are contiguous, with flexbg, 5679 * they could still across block group boundary. 5680 * 5681 * Also account for superblock, inode, quota and xattr blocks 5682 */ 5683 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5684 int pextents) 5685 { 5686 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5687 int gdpblocks; 5688 int idxblocks; 5689 int ret = 0; 5690 5691 /* 5692 * How many index blocks need to touch to map @lblocks logical blocks 5693 * to @pextents physical extents? 5694 */ 5695 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5696 5697 ret = idxblocks; 5698 5699 /* 5700 * Now let's see how many group bitmaps and group descriptors need 5701 * to account 5702 */ 5703 groups = idxblocks + pextents; 5704 gdpblocks = groups; 5705 if (groups > ngroups) 5706 groups = ngroups; 5707 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5708 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5709 5710 /* bitmaps and block group descriptor blocks */ 5711 ret += groups + gdpblocks; 5712 5713 /* Blocks for super block, inode, quota and xattr blocks */ 5714 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5715 5716 return ret; 5717 } 5718 5719 /* 5720 * Calculate the total number of credits to reserve to fit 5721 * the modification of a single pages into a single transaction, 5722 * which may include multiple chunks of block allocations. 5723 * 5724 * This could be called via ext4_write_begin() 5725 * 5726 * We need to consider the worse case, when 5727 * one new block per extent. 5728 */ 5729 int ext4_writepage_trans_blocks(struct inode *inode) 5730 { 5731 int bpp = ext4_journal_blocks_per_page(inode); 5732 int ret; 5733 5734 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5735 5736 /* Account for data blocks for journalled mode */ 5737 if (ext4_should_journal_data(inode)) 5738 ret += bpp; 5739 return ret; 5740 } 5741 5742 /* 5743 * Calculate the journal credits for a chunk of data modification. 5744 * 5745 * This is called from DIO, fallocate or whoever calling 5746 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5747 * 5748 * journal buffers for data blocks are not included here, as DIO 5749 * and fallocate do no need to journal data buffers. 5750 */ 5751 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5752 { 5753 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5754 } 5755 5756 /* 5757 * The caller must have previously called ext4_reserve_inode_write(). 5758 * Give this, we know that the caller already has write access to iloc->bh. 5759 */ 5760 int ext4_mark_iloc_dirty(handle_t *handle, 5761 struct inode *inode, struct ext4_iloc *iloc) 5762 { 5763 int err = 0; 5764 5765 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5766 put_bh(iloc->bh); 5767 return -EIO; 5768 } 5769 ext4_fc_track_inode(handle, inode); 5770 5771 if (IS_I_VERSION(inode)) 5772 inode_inc_iversion(inode); 5773 5774 /* the do_update_inode consumes one bh->b_count */ 5775 get_bh(iloc->bh); 5776 5777 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5778 err = ext4_do_update_inode(handle, inode, iloc); 5779 put_bh(iloc->bh); 5780 return err; 5781 } 5782 5783 /* 5784 * On success, We end up with an outstanding reference count against 5785 * iloc->bh. This _must_ be cleaned up later. 5786 */ 5787 5788 int 5789 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5790 struct ext4_iloc *iloc) 5791 { 5792 int err; 5793 5794 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5795 return -EIO; 5796 5797 err = ext4_get_inode_loc(inode, iloc); 5798 if (!err) { 5799 BUFFER_TRACE(iloc->bh, "get_write_access"); 5800 err = ext4_journal_get_write_access(handle, inode->i_sb, 5801 iloc->bh, EXT4_JTR_NONE); 5802 if (err) { 5803 brelse(iloc->bh); 5804 iloc->bh = NULL; 5805 } 5806 } 5807 ext4_std_error(inode->i_sb, err); 5808 return err; 5809 } 5810 5811 static int __ext4_expand_extra_isize(struct inode *inode, 5812 unsigned int new_extra_isize, 5813 struct ext4_iloc *iloc, 5814 handle_t *handle, int *no_expand) 5815 { 5816 struct ext4_inode *raw_inode; 5817 struct ext4_xattr_ibody_header *header; 5818 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5819 struct ext4_inode_info *ei = EXT4_I(inode); 5820 int error; 5821 5822 /* this was checked at iget time, but double check for good measure */ 5823 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5824 (ei->i_extra_isize & 3)) { 5825 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5826 ei->i_extra_isize, 5827 EXT4_INODE_SIZE(inode->i_sb)); 5828 return -EFSCORRUPTED; 5829 } 5830 if ((new_extra_isize < ei->i_extra_isize) || 5831 (new_extra_isize < 4) || 5832 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5833 return -EINVAL; /* Should never happen */ 5834 5835 raw_inode = ext4_raw_inode(iloc); 5836 5837 header = IHDR(inode, raw_inode); 5838 5839 /* No extended attributes present */ 5840 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5841 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5842 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5843 EXT4_I(inode)->i_extra_isize, 0, 5844 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5845 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5846 return 0; 5847 } 5848 5849 /* try to expand with EAs present */ 5850 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5851 raw_inode, handle); 5852 if (error) { 5853 /* 5854 * Inode size expansion failed; don't try again 5855 */ 5856 *no_expand = 1; 5857 } 5858 5859 return error; 5860 } 5861 5862 /* 5863 * Expand an inode by new_extra_isize bytes. 5864 * Returns 0 on success or negative error number on failure. 5865 */ 5866 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5867 unsigned int new_extra_isize, 5868 struct ext4_iloc iloc, 5869 handle_t *handle) 5870 { 5871 int no_expand; 5872 int error; 5873 5874 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5875 return -EOVERFLOW; 5876 5877 /* 5878 * In nojournal mode, we can immediately attempt to expand 5879 * the inode. When journaled, we first need to obtain extra 5880 * buffer credits since we may write into the EA block 5881 * with this same handle. If journal_extend fails, then it will 5882 * only result in a minor loss of functionality for that inode. 5883 * If this is felt to be critical, then e2fsck should be run to 5884 * force a large enough s_min_extra_isize. 5885 */ 5886 if (ext4_journal_extend(handle, 5887 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5888 return -ENOSPC; 5889 5890 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5891 return -EBUSY; 5892 5893 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5894 handle, &no_expand); 5895 ext4_write_unlock_xattr(inode, &no_expand); 5896 5897 return error; 5898 } 5899 5900 int ext4_expand_extra_isize(struct inode *inode, 5901 unsigned int new_extra_isize, 5902 struct ext4_iloc *iloc) 5903 { 5904 handle_t *handle; 5905 int no_expand; 5906 int error, rc; 5907 5908 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5909 brelse(iloc->bh); 5910 return -EOVERFLOW; 5911 } 5912 5913 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5914 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5915 if (IS_ERR(handle)) { 5916 error = PTR_ERR(handle); 5917 brelse(iloc->bh); 5918 return error; 5919 } 5920 5921 ext4_write_lock_xattr(inode, &no_expand); 5922 5923 BUFFER_TRACE(iloc->bh, "get_write_access"); 5924 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5925 EXT4_JTR_NONE); 5926 if (error) { 5927 brelse(iloc->bh); 5928 goto out_unlock; 5929 } 5930 5931 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5932 handle, &no_expand); 5933 5934 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5935 if (!error) 5936 error = rc; 5937 5938 out_unlock: 5939 ext4_write_unlock_xattr(inode, &no_expand); 5940 ext4_journal_stop(handle); 5941 return error; 5942 } 5943 5944 /* 5945 * What we do here is to mark the in-core inode as clean with respect to inode 5946 * dirtiness (it may still be data-dirty). 5947 * This means that the in-core inode may be reaped by prune_icache 5948 * without having to perform any I/O. This is a very good thing, 5949 * because *any* task may call prune_icache - even ones which 5950 * have a transaction open against a different journal. 5951 * 5952 * Is this cheating? Not really. Sure, we haven't written the 5953 * inode out, but prune_icache isn't a user-visible syncing function. 5954 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5955 * we start and wait on commits. 5956 */ 5957 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5958 const char *func, unsigned int line) 5959 { 5960 struct ext4_iloc iloc; 5961 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5962 int err; 5963 5964 might_sleep(); 5965 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5966 err = ext4_reserve_inode_write(handle, inode, &iloc); 5967 if (err) 5968 goto out; 5969 5970 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5971 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5972 iloc, handle); 5973 5974 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5975 out: 5976 if (unlikely(err)) 5977 ext4_error_inode_err(inode, func, line, 0, err, 5978 "mark_inode_dirty error"); 5979 return err; 5980 } 5981 5982 /* 5983 * ext4_dirty_inode() is called from __mark_inode_dirty() 5984 * 5985 * We're really interested in the case where a file is being extended. 5986 * i_size has been changed by generic_commit_write() and we thus need 5987 * to include the updated inode in the current transaction. 5988 * 5989 * Also, dquot_alloc_block() will always dirty the inode when blocks 5990 * are allocated to the file. 5991 * 5992 * If the inode is marked synchronous, we don't honour that here - doing 5993 * so would cause a commit on atime updates, which we don't bother doing. 5994 * We handle synchronous inodes at the highest possible level. 5995 */ 5996 void ext4_dirty_inode(struct inode *inode, int flags) 5997 { 5998 handle_t *handle; 5999 6000 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 6001 if (IS_ERR(handle)) 6002 return; 6003 ext4_mark_inode_dirty(handle, inode); 6004 ext4_journal_stop(handle); 6005 } 6006 6007 int ext4_change_inode_journal_flag(struct inode *inode, int val) 6008 { 6009 journal_t *journal; 6010 handle_t *handle; 6011 int err; 6012 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 6013 6014 /* 6015 * We have to be very careful here: changing a data block's 6016 * journaling status dynamically is dangerous. If we write a 6017 * data block to the journal, change the status and then delete 6018 * that block, we risk forgetting to revoke the old log record 6019 * from the journal and so a subsequent replay can corrupt data. 6020 * So, first we make sure that the journal is empty and that 6021 * nobody is changing anything. 6022 */ 6023 6024 journal = EXT4_JOURNAL(inode); 6025 if (!journal) 6026 return 0; 6027 if (is_journal_aborted(journal)) 6028 return -EROFS; 6029 6030 /* Wait for all existing dio workers */ 6031 inode_dio_wait(inode); 6032 6033 /* 6034 * Before flushing the journal and switching inode's aops, we have 6035 * to flush all dirty data the inode has. There can be outstanding 6036 * delayed allocations, there can be unwritten extents created by 6037 * fallocate or buffered writes in dioread_nolock mode covered by 6038 * dirty data which can be converted only after flushing the dirty 6039 * data (and journalled aops don't know how to handle these cases). 6040 */ 6041 if (val) { 6042 filemap_invalidate_lock(inode->i_mapping); 6043 err = filemap_write_and_wait(inode->i_mapping); 6044 if (err < 0) { 6045 filemap_invalidate_unlock(inode->i_mapping); 6046 return err; 6047 } 6048 } 6049 6050 percpu_down_write(&sbi->s_writepages_rwsem); 6051 jbd2_journal_lock_updates(journal); 6052 6053 /* 6054 * OK, there are no updates running now, and all cached data is 6055 * synced to disk. We are now in a completely consistent state 6056 * which doesn't have anything in the journal, and we know that 6057 * no filesystem updates are running, so it is safe to modify 6058 * the inode's in-core data-journaling state flag now. 6059 */ 6060 6061 if (val) 6062 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6063 else { 6064 err = jbd2_journal_flush(journal, 0); 6065 if (err < 0) { 6066 jbd2_journal_unlock_updates(journal); 6067 percpu_up_write(&sbi->s_writepages_rwsem); 6068 return err; 6069 } 6070 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 6071 } 6072 ext4_set_aops(inode); 6073 6074 jbd2_journal_unlock_updates(journal); 6075 percpu_up_write(&sbi->s_writepages_rwsem); 6076 6077 if (val) 6078 filemap_invalidate_unlock(inode->i_mapping); 6079 6080 /* Finally we can mark the inode as dirty. */ 6081 6082 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 6083 if (IS_ERR(handle)) 6084 return PTR_ERR(handle); 6085 6086 ext4_fc_mark_ineligible(inode->i_sb, 6087 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6088 err = ext4_mark_inode_dirty(handle, inode); 6089 ext4_handle_sync(handle); 6090 ext4_journal_stop(handle); 6091 ext4_std_error(inode->i_sb, err); 6092 6093 return err; 6094 } 6095 6096 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6097 struct buffer_head *bh) 6098 { 6099 return !buffer_mapped(bh); 6100 } 6101 6102 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6103 { 6104 struct vm_area_struct *vma = vmf->vma; 6105 struct page *page = vmf->page; 6106 loff_t size; 6107 unsigned long len; 6108 int err; 6109 vm_fault_t ret; 6110 struct file *file = vma->vm_file; 6111 struct inode *inode = file_inode(file); 6112 struct address_space *mapping = inode->i_mapping; 6113 handle_t *handle; 6114 get_block_t *get_block; 6115 int retries = 0; 6116 6117 if (unlikely(IS_IMMUTABLE(inode))) 6118 return VM_FAULT_SIGBUS; 6119 6120 sb_start_pagefault(inode->i_sb); 6121 file_update_time(vma->vm_file); 6122 6123 filemap_invalidate_lock_shared(mapping); 6124 6125 err = ext4_convert_inline_data(inode); 6126 if (err) 6127 goto out_ret; 6128 6129 /* 6130 * On data journalling we skip straight to the transaction handle: 6131 * there's no delalloc; page truncated will be checked later; the 6132 * early return w/ all buffers mapped (calculates size/len) can't 6133 * be used; and there's no dioread_nolock, so only ext4_get_block. 6134 */ 6135 if (ext4_should_journal_data(inode)) 6136 goto retry_alloc; 6137 6138 /* Delalloc case is easy... */ 6139 if (test_opt(inode->i_sb, DELALLOC) && 6140 !ext4_nonda_switch(inode->i_sb)) { 6141 do { 6142 err = block_page_mkwrite(vma, vmf, 6143 ext4_da_get_block_prep); 6144 } while (err == -ENOSPC && 6145 ext4_should_retry_alloc(inode->i_sb, &retries)); 6146 goto out_ret; 6147 } 6148 6149 lock_page(page); 6150 size = i_size_read(inode); 6151 /* Page got truncated from under us? */ 6152 if (page->mapping != mapping || page_offset(page) > size) { 6153 unlock_page(page); 6154 ret = VM_FAULT_NOPAGE; 6155 goto out; 6156 } 6157 6158 if (page->index == size >> PAGE_SHIFT) 6159 len = size & ~PAGE_MASK; 6160 else 6161 len = PAGE_SIZE; 6162 /* 6163 * Return if we have all the buffers mapped. This avoids the need to do 6164 * journal_start/journal_stop which can block and take a long time 6165 * 6166 * This cannot be done for data journalling, as we have to add the 6167 * inode to the transaction's list to writeprotect pages on commit. 6168 */ 6169 if (page_has_buffers(page)) { 6170 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page), 6171 0, len, NULL, 6172 ext4_bh_unmapped)) { 6173 /* Wait so that we don't change page under IO */ 6174 wait_for_stable_page(page); 6175 ret = VM_FAULT_LOCKED; 6176 goto out; 6177 } 6178 } 6179 unlock_page(page); 6180 /* OK, we need to fill the hole... */ 6181 if (ext4_should_dioread_nolock(inode)) 6182 get_block = ext4_get_block_unwritten; 6183 else 6184 get_block = ext4_get_block; 6185 retry_alloc: 6186 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6187 ext4_writepage_trans_blocks(inode)); 6188 if (IS_ERR(handle)) { 6189 ret = VM_FAULT_SIGBUS; 6190 goto out; 6191 } 6192 /* 6193 * Data journalling can't use block_page_mkwrite() because it 6194 * will set_buffer_dirty() before do_journal_get_write_access() 6195 * thus might hit warning messages for dirty metadata buffers. 6196 */ 6197 if (!ext4_should_journal_data(inode)) { 6198 err = block_page_mkwrite(vma, vmf, get_block); 6199 } else { 6200 lock_page(page); 6201 size = i_size_read(inode); 6202 /* Page got truncated from under us? */ 6203 if (page->mapping != mapping || page_offset(page) > size) { 6204 ret = VM_FAULT_NOPAGE; 6205 goto out_error; 6206 } 6207 6208 if (page->index == size >> PAGE_SHIFT) 6209 len = size & ~PAGE_MASK; 6210 else 6211 len = PAGE_SIZE; 6212 6213 err = __block_write_begin(page, 0, len, ext4_get_block); 6214 if (!err) { 6215 ret = VM_FAULT_SIGBUS; 6216 if (ext4_walk_page_buffers(handle, inode, 6217 page_buffers(page), 0, len, NULL, 6218 do_journal_get_write_access)) 6219 goto out_error; 6220 if (ext4_walk_page_buffers(handle, inode, 6221 page_buffers(page), 0, len, NULL, 6222 write_end_fn)) 6223 goto out_error; 6224 if (ext4_jbd2_inode_add_write(handle, inode, 6225 page_offset(page), len)) 6226 goto out_error; 6227 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6228 } else { 6229 unlock_page(page); 6230 } 6231 } 6232 ext4_journal_stop(handle); 6233 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6234 goto retry_alloc; 6235 out_ret: 6236 ret = block_page_mkwrite_return(err); 6237 out: 6238 filemap_invalidate_unlock_shared(mapping); 6239 sb_end_pagefault(inode->i_sb); 6240 return ret; 6241 out_error: 6242 unlock_page(page); 6243 ext4_journal_stop(handle); 6244 goto out; 6245 } 6246