xref: /openbmc/linux/fs/ext4/inode.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u32 csum;
56 	__u16 dummy_csum = 0;
57 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 	unsigned int csum_size = sizeof(dummy_csum);
59 
60 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 	offset += csum_size;
63 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
65 
66 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 		offset = offsetof(struct ext4_inode, i_checksum_hi);
68 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 				   EXT4_GOOD_OLD_INODE_SIZE,
70 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
71 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 					   csum_size);
74 			offset += csum_size;
75 		}
76 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 				struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
148  */
149 int ext4_inode_is_fast_symlink(struct inode *inode)
150 {
151 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154 
155 		if (ext4_has_inline_data(inode))
156 			return 0;
157 
158 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 	}
160 	return S_ISLNK(inode->i_mode) && inode->i_size &&
161 	       (inode->i_size < EXT4_N_BLOCKS * 4);
162 }
163 
164 /*
165  * Called at the last iput() if i_nlink is zero.
166  */
167 void ext4_evict_inode(struct inode *inode)
168 {
169 	handle_t *handle;
170 	int err;
171 	/*
172 	 * Credits for final inode cleanup and freeing:
173 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 	 */
176 	int extra_credits = 6;
177 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
178 
179 	trace_ext4_evict_inode(inode);
180 
181 	if (inode->i_nlink) {
182 		/*
183 		 * When journalling data dirty buffers are tracked only in the
184 		 * journal. So although mm thinks everything is clean and
185 		 * ready for reaping the inode might still have some pages to
186 		 * write in the running transaction or waiting to be
187 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
188 		 * (via truncate_inode_pages()) to discard these buffers can
189 		 * cause data loss. Also even if we did not discard these
190 		 * buffers, we would have no way to find them after the inode
191 		 * is reaped and thus user could see stale data if he tries to
192 		 * read them before the transaction is checkpointed. So be
193 		 * careful and force everything to disk here... We use
194 		 * ei->i_datasync_tid to store the newest transaction
195 		 * containing inode's data.
196 		 *
197 		 * Note that directories do not have this problem because they
198 		 * don't use page cache.
199 		 */
200 		if (inode->i_ino != EXT4_JOURNAL_INO &&
201 		    ext4_should_journal_data(inode) &&
202 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
203 		    inode->i_data.nrpages) {
204 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206 
207 			jbd2_complete_transaction(journal, commit_tid);
208 			filemap_write_and_wait(&inode->i_data);
209 		}
210 		truncate_inode_pages_final(&inode->i_data);
211 
212 		goto no_delete;
213 	}
214 
215 	if (is_bad_inode(inode))
216 		goto no_delete;
217 	dquot_initialize(inode);
218 
219 	if (ext4_should_order_data(inode))
220 		ext4_begin_ordered_truncate(inode, 0);
221 	truncate_inode_pages_final(&inode->i_data);
222 
223 	/*
224 	 * For inodes with journalled data, transaction commit could have
225 	 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
226 	 * flag but we still need to remove the inode from the writeback lists.
227 	 */
228 	if (!list_empty_careful(&inode->i_io_list)) {
229 		WARN_ON_ONCE(!ext4_should_journal_data(inode));
230 		inode_io_list_del(inode);
231 	}
232 
233 	/*
234 	 * Protect us against freezing - iput() caller didn't have to have any
235 	 * protection against it
236 	 */
237 	sb_start_intwrite(inode->i_sb);
238 
239 	if (!IS_NOQUOTA(inode))
240 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
241 
242 	/*
243 	 * Block bitmap, group descriptor, and inode are accounted in both
244 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
245 	 */
246 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
247 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
248 	if (IS_ERR(handle)) {
249 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
250 		/*
251 		 * If we're going to skip the normal cleanup, we still need to
252 		 * make sure that the in-core orphan linked list is properly
253 		 * cleaned up.
254 		 */
255 		ext4_orphan_del(NULL, inode);
256 		sb_end_intwrite(inode->i_sb);
257 		goto no_delete;
258 	}
259 
260 	if (IS_SYNC(inode))
261 		ext4_handle_sync(handle);
262 
263 	/*
264 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
265 	 * special handling of symlinks here because i_size is used to
266 	 * determine whether ext4_inode_info->i_data contains symlink data or
267 	 * block mappings. Setting i_size to 0 will remove its fast symlink
268 	 * status. Erase i_data so that it becomes a valid empty block map.
269 	 */
270 	if (ext4_inode_is_fast_symlink(inode))
271 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
272 	inode->i_size = 0;
273 	err = ext4_mark_inode_dirty(handle, inode);
274 	if (err) {
275 		ext4_warning(inode->i_sb,
276 			     "couldn't mark inode dirty (err %d)", err);
277 		goto stop_handle;
278 	}
279 	if (inode->i_blocks) {
280 		err = ext4_truncate(inode);
281 		if (err) {
282 			ext4_error_err(inode->i_sb, -err,
283 				       "couldn't truncate inode %lu (err %d)",
284 				       inode->i_ino, err);
285 			goto stop_handle;
286 		}
287 	}
288 
289 	/* Remove xattr references. */
290 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
291 				      extra_credits);
292 	if (err) {
293 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
294 stop_handle:
295 		ext4_journal_stop(handle);
296 		ext4_orphan_del(NULL, inode);
297 		sb_end_intwrite(inode->i_sb);
298 		ext4_xattr_inode_array_free(ea_inode_array);
299 		goto no_delete;
300 	}
301 
302 	/*
303 	 * Kill off the orphan record which ext4_truncate created.
304 	 * AKPM: I think this can be inside the above `if'.
305 	 * Note that ext4_orphan_del() has to be able to cope with the
306 	 * deletion of a non-existent orphan - this is because we don't
307 	 * know if ext4_truncate() actually created an orphan record.
308 	 * (Well, we could do this if we need to, but heck - it works)
309 	 */
310 	ext4_orphan_del(handle, inode);
311 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
312 
313 	/*
314 	 * One subtle ordering requirement: if anything has gone wrong
315 	 * (transaction abort, IO errors, whatever), then we can still
316 	 * do these next steps (the fs will already have been marked as
317 	 * having errors), but we can't free the inode if the mark_dirty
318 	 * fails.
319 	 */
320 	if (ext4_mark_inode_dirty(handle, inode))
321 		/* If that failed, just do the required in-core inode clear. */
322 		ext4_clear_inode(inode);
323 	else
324 		ext4_free_inode(handle, inode);
325 	ext4_journal_stop(handle);
326 	sb_end_intwrite(inode->i_sb);
327 	ext4_xattr_inode_array_free(ea_inode_array);
328 	return;
329 no_delete:
330 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
331 }
332 
333 #ifdef CONFIG_QUOTA
334 qsize_t *ext4_get_reserved_space(struct inode *inode)
335 {
336 	return &EXT4_I(inode)->i_reserved_quota;
337 }
338 #endif
339 
340 /*
341  * Called with i_data_sem down, which is important since we can call
342  * ext4_discard_preallocations() from here.
343  */
344 void ext4_da_update_reserve_space(struct inode *inode,
345 					int used, int quota_claim)
346 {
347 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
348 	struct ext4_inode_info *ei = EXT4_I(inode);
349 
350 	spin_lock(&ei->i_block_reservation_lock);
351 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
352 	if (unlikely(used > ei->i_reserved_data_blocks)) {
353 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
354 			 "with only %d reserved data blocks",
355 			 __func__, inode->i_ino, used,
356 			 ei->i_reserved_data_blocks);
357 		WARN_ON(1);
358 		used = ei->i_reserved_data_blocks;
359 	}
360 
361 	/* Update per-inode reservations */
362 	ei->i_reserved_data_blocks -= used;
363 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
364 
365 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
366 
367 	/* Update quota subsystem for data blocks */
368 	if (quota_claim)
369 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
370 	else {
371 		/*
372 		 * We did fallocate with an offset that is already delayed
373 		 * allocated. So on delayed allocated writeback we should
374 		 * not re-claim the quota for fallocated blocks.
375 		 */
376 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
377 	}
378 
379 	/*
380 	 * If we have done all the pending block allocations and if
381 	 * there aren't any writers on the inode, we can discard the
382 	 * inode's preallocations.
383 	 */
384 	if ((ei->i_reserved_data_blocks == 0) &&
385 	    !inode_is_open_for_write(inode))
386 		ext4_discard_preallocations(inode, 0);
387 }
388 
389 static int __check_block_validity(struct inode *inode, const char *func,
390 				unsigned int line,
391 				struct ext4_map_blocks *map)
392 {
393 	if (ext4_has_feature_journal(inode->i_sb) &&
394 	    (inode->i_ino ==
395 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
396 		return 0;
397 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
398 		ext4_error_inode(inode, func, line, map->m_pblk,
399 				 "lblock %lu mapped to illegal pblock %llu "
400 				 "(length %d)", (unsigned long) map->m_lblk,
401 				 map->m_pblk, map->m_len);
402 		return -EFSCORRUPTED;
403 	}
404 	return 0;
405 }
406 
407 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
408 		       ext4_lblk_t len)
409 {
410 	int ret;
411 
412 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
413 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
414 
415 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
416 	if (ret > 0)
417 		ret = 0;
418 
419 	return ret;
420 }
421 
422 #define check_block_validity(inode, map)	\
423 	__check_block_validity((inode), __func__, __LINE__, (map))
424 
425 #ifdef ES_AGGRESSIVE_TEST
426 static void ext4_map_blocks_es_recheck(handle_t *handle,
427 				       struct inode *inode,
428 				       struct ext4_map_blocks *es_map,
429 				       struct ext4_map_blocks *map,
430 				       int flags)
431 {
432 	int retval;
433 
434 	map->m_flags = 0;
435 	/*
436 	 * There is a race window that the result is not the same.
437 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
438 	 * is that we lookup a block mapping in extent status tree with
439 	 * out taking i_data_sem.  So at the time the unwritten extent
440 	 * could be converted.
441 	 */
442 	down_read(&EXT4_I(inode)->i_data_sem);
443 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
444 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
445 	} else {
446 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
447 	}
448 	up_read((&EXT4_I(inode)->i_data_sem));
449 
450 	/*
451 	 * We don't check m_len because extent will be collpased in status
452 	 * tree.  So the m_len might not equal.
453 	 */
454 	if (es_map->m_lblk != map->m_lblk ||
455 	    es_map->m_flags != map->m_flags ||
456 	    es_map->m_pblk != map->m_pblk) {
457 		printk("ES cache assertion failed for inode: %lu "
458 		       "es_cached ex [%d/%d/%llu/%x] != "
459 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
460 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
461 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
462 		       map->m_len, map->m_pblk, map->m_flags,
463 		       retval, flags);
464 	}
465 }
466 #endif /* ES_AGGRESSIVE_TEST */
467 
468 /*
469  * The ext4_map_blocks() function tries to look up the requested blocks,
470  * and returns if the blocks are already mapped.
471  *
472  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
473  * and store the allocated blocks in the result buffer head and mark it
474  * mapped.
475  *
476  * If file type is extents based, it will call ext4_ext_map_blocks(),
477  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
478  * based files
479  *
480  * On success, it returns the number of blocks being mapped or allocated.  if
481  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
482  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
483  *
484  * It returns 0 if plain look up failed (blocks have not been allocated), in
485  * that case, @map is returned as unmapped but we still do fill map->m_len to
486  * indicate the length of a hole starting at map->m_lblk.
487  *
488  * It returns the error in case of allocation failure.
489  */
490 int ext4_map_blocks(handle_t *handle, struct inode *inode,
491 		    struct ext4_map_blocks *map, int flags)
492 {
493 	struct extent_status es;
494 	int retval;
495 	int ret = 0;
496 #ifdef ES_AGGRESSIVE_TEST
497 	struct ext4_map_blocks orig_map;
498 
499 	memcpy(&orig_map, map, sizeof(*map));
500 #endif
501 
502 	map->m_flags = 0;
503 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
504 		  flags, map->m_len, (unsigned long) map->m_lblk);
505 
506 	/*
507 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
508 	 */
509 	if (unlikely(map->m_len > INT_MAX))
510 		map->m_len = INT_MAX;
511 
512 	/* We can handle the block number less than EXT_MAX_BLOCKS */
513 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
514 		return -EFSCORRUPTED;
515 
516 	/* Lookup extent status tree firstly */
517 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
518 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
519 			map->m_pblk = ext4_es_pblock(&es) +
520 					map->m_lblk - es.es_lblk;
521 			map->m_flags |= ext4_es_is_written(&es) ?
522 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
523 			retval = es.es_len - (map->m_lblk - es.es_lblk);
524 			if (retval > map->m_len)
525 				retval = map->m_len;
526 			map->m_len = retval;
527 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
528 			map->m_pblk = 0;
529 			retval = es.es_len - (map->m_lblk - es.es_lblk);
530 			if (retval > map->m_len)
531 				retval = map->m_len;
532 			map->m_len = retval;
533 			retval = 0;
534 		} else {
535 			BUG();
536 		}
537 #ifdef ES_AGGRESSIVE_TEST
538 		ext4_map_blocks_es_recheck(handle, inode, map,
539 					   &orig_map, flags);
540 #endif
541 		goto found;
542 	}
543 
544 	/*
545 	 * Try to see if we can get the block without requesting a new
546 	 * file system block.
547 	 */
548 	down_read(&EXT4_I(inode)->i_data_sem);
549 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
550 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
551 	} else {
552 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
553 	}
554 	if (retval > 0) {
555 		unsigned int status;
556 
557 		if (unlikely(retval != map->m_len)) {
558 			ext4_warning(inode->i_sb,
559 				     "ES len assertion failed for inode "
560 				     "%lu: retval %d != map->m_len %d",
561 				     inode->i_ino, retval, map->m_len);
562 			WARN_ON(1);
563 		}
564 
565 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568 		    !(status & EXTENT_STATUS_WRITTEN) &&
569 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
570 				       map->m_lblk + map->m_len - 1))
571 			status |= EXTENT_STATUS_DELAYED;
572 		ret = ext4_es_insert_extent(inode, map->m_lblk,
573 					    map->m_len, map->m_pblk, status);
574 		if (ret < 0)
575 			retval = ret;
576 	}
577 	up_read((&EXT4_I(inode)->i_data_sem));
578 
579 found:
580 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
581 		ret = check_block_validity(inode, map);
582 		if (ret != 0)
583 			return ret;
584 	}
585 
586 	/* If it is only a block(s) look up */
587 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
588 		return retval;
589 
590 	/*
591 	 * Returns if the blocks have already allocated
592 	 *
593 	 * Note that if blocks have been preallocated
594 	 * ext4_ext_get_block() returns the create = 0
595 	 * with buffer head unmapped.
596 	 */
597 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
598 		/*
599 		 * If we need to convert extent to unwritten
600 		 * we continue and do the actual work in
601 		 * ext4_ext_map_blocks()
602 		 */
603 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
604 			return retval;
605 
606 	/*
607 	 * Here we clear m_flags because after allocating an new extent,
608 	 * it will be set again.
609 	 */
610 	map->m_flags &= ~EXT4_MAP_FLAGS;
611 
612 	/*
613 	 * New blocks allocate and/or writing to unwritten extent
614 	 * will possibly result in updating i_data, so we take
615 	 * the write lock of i_data_sem, and call get_block()
616 	 * with create == 1 flag.
617 	 */
618 	down_write(&EXT4_I(inode)->i_data_sem);
619 
620 	/*
621 	 * We need to check for EXT4 here because migrate
622 	 * could have changed the inode type in between
623 	 */
624 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
625 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
626 	} else {
627 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
628 
629 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
630 			/*
631 			 * We allocated new blocks which will result in
632 			 * i_data's format changing.  Force the migrate
633 			 * to fail by clearing migrate flags
634 			 */
635 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
636 		}
637 
638 		/*
639 		 * Update reserved blocks/metadata blocks after successful
640 		 * block allocation which had been deferred till now. We don't
641 		 * support fallocate for non extent files. So we can update
642 		 * reserve space here.
643 		 */
644 		if ((retval > 0) &&
645 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
646 			ext4_da_update_reserve_space(inode, retval, 1);
647 	}
648 
649 	if (retval > 0) {
650 		unsigned int status;
651 
652 		if (unlikely(retval != map->m_len)) {
653 			ext4_warning(inode->i_sb,
654 				     "ES len assertion failed for inode "
655 				     "%lu: retval %d != map->m_len %d",
656 				     inode->i_ino, retval, map->m_len);
657 			WARN_ON(1);
658 		}
659 
660 		/*
661 		 * We have to zeroout blocks before inserting them into extent
662 		 * status tree. Otherwise someone could look them up there and
663 		 * use them before they are really zeroed. We also have to
664 		 * unmap metadata before zeroing as otherwise writeback can
665 		 * overwrite zeros with stale data from block device.
666 		 */
667 		if (flags & EXT4_GET_BLOCKS_ZERO &&
668 		    map->m_flags & EXT4_MAP_MAPPED &&
669 		    map->m_flags & EXT4_MAP_NEW) {
670 			ret = ext4_issue_zeroout(inode, map->m_lblk,
671 						 map->m_pblk, map->m_len);
672 			if (ret) {
673 				retval = ret;
674 				goto out_sem;
675 			}
676 		}
677 
678 		/*
679 		 * If the extent has been zeroed out, we don't need to update
680 		 * extent status tree.
681 		 */
682 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
683 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
684 			if (ext4_es_is_written(&es))
685 				goto out_sem;
686 		}
687 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
688 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
689 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
690 		    !(status & EXTENT_STATUS_WRITTEN) &&
691 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
692 				       map->m_lblk + map->m_len - 1))
693 			status |= EXTENT_STATUS_DELAYED;
694 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
695 					    map->m_pblk, status);
696 		if (ret < 0) {
697 			retval = ret;
698 			goto out_sem;
699 		}
700 	}
701 
702 out_sem:
703 	up_write((&EXT4_I(inode)->i_data_sem));
704 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
705 		ret = check_block_validity(inode, map);
706 		if (ret != 0)
707 			return ret;
708 
709 		/*
710 		 * Inodes with freshly allocated blocks where contents will be
711 		 * visible after transaction commit must be on transaction's
712 		 * ordered data list.
713 		 */
714 		if (map->m_flags & EXT4_MAP_NEW &&
715 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
716 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
717 		    !ext4_is_quota_file(inode) &&
718 		    ext4_should_order_data(inode)) {
719 			loff_t start_byte =
720 				(loff_t)map->m_lblk << inode->i_blkbits;
721 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
722 
723 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
724 				ret = ext4_jbd2_inode_add_wait(handle, inode,
725 						start_byte, length);
726 			else
727 				ret = ext4_jbd2_inode_add_write(handle, inode,
728 						start_byte, length);
729 			if (ret)
730 				return ret;
731 		}
732 	}
733 
734 	if (retval < 0)
735 		ext_debug(inode, "failed with err %d\n", retval);
736 	return retval;
737 }
738 
739 /*
740  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
741  * we have to be careful as someone else may be manipulating b_state as well.
742  */
743 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
744 {
745 	unsigned long old_state;
746 	unsigned long new_state;
747 
748 	flags &= EXT4_MAP_FLAGS;
749 
750 	/* Dummy buffer_head? Set non-atomically. */
751 	if (!bh->b_page) {
752 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
753 		return;
754 	}
755 	/*
756 	 * Someone else may be modifying b_state. Be careful! This is ugly but
757 	 * once we get rid of using bh as a container for mapping information
758 	 * to pass to / from get_block functions, this can go away.
759 	 */
760 	do {
761 		old_state = READ_ONCE(bh->b_state);
762 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
763 	} while (unlikely(
764 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
765 }
766 
767 static int _ext4_get_block(struct inode *inode, sector_t iblock,
768 			   struct buffer_head *bh, int flags)
769 {
770 	struct ext4_map_blocks map;
771 	int ret = 0;
772 
773 	if (ext4_has_inline_data(inode))
774 		return -ERANGE;
775 
776 	map.m_lblk = iblock;
777 	map.m_len = bh->b_size >> inode->i_blkbits;
778 
779 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
780 			      flags);
781 	if (ret > 0) {
782 		map_bh(bh, inode->i_sb, map.m_pblk);
783 		ext4_update_bh_state(bh, map.m_flags);
784 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
785 		ret = 0;
786 	} else if (ret == 0) {
787 		/* hole case, need to fill in bh->b_size */
788 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
789 	}
790 	return ret;
791 }
792 
793 int ext4_get_block(struct inode *inode, sector_t iblock,
794 		   struct buffer_head *bh, int create)
795 {
796 	return _ext4_get_block(inode, iblock, bh,
797 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
798 }
799 
800 /*
801  * Get block function used when preparing for buffered write if we require
802  * creating an unwritten extent if blocks haven't been allocated.  The extent
803  * will be converted to written after the IO is complete.
804  */
805 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
806 			     struct buffer_head *bh_result, int create)
807 {
808 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
809 		   inode->i_ino, create);
810 	return _ext4_get_block(inode, iblock, bh_result,
811 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
812 }
813 
814 /* Maximum number of blocks we map for direct IO at once. */
815 #define DIO_MAX_BLOCKS 4096
816 
817 /*
818  * `handle' can be NULL if create is zero
819  */
820 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
821 				ext4_lblk_t block, int map_flags)
822 {
823 	struct ext4_map_blocks map;
824 	struct buffer_head *bh;
825 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
826 	int err;
827 
828 	J_ASSERT(handle != NULL || create == 0);
829 
830 	map.m_lblk = block;
831 	map.m_len = 1;
832 	err = ext4_map_blocks(handle, inode, &map, map_flags);
833 
834 	if (err == 0)
835 		return create ? ERR_PTR(-ENOSPC) : NULL;
836 	if (err < 0)
837 		return ERR_PTR(err);
838 
839 	bh = sb_getblk(inode->i_sb, map.m_pblk);
840 	if (unlikely(!bh))
841 		return ERR_PTR(-ENOMEM);
842 	if (map.m_flags & EXT4_MAP_NEW) {
843 		J_ASSERT(create != 0);
844 		J_ASSERT(handle != NULL);
845 
846 		/*
847 		 * Now that we do not always journal data, we should
848 		 * keep in mind whether this should always journal the
849 		 * new buffer as metadata.  For now, regular file
850 		 * writes use ext4_get_block instead, so it's not a
851 		 * problem.
852 		 */
853 		lock_buffer(bh);
854 		BUFFER_TRACE(bh, "call get_create_access");
855 		err = ext4_journal_get_create_access(handle, bh);
856 		if (unlikely(err)) {
857 			unlock_buffer(bh);
858 			goto errout;
859 		}
860 		if (!buffer_uptodate(bh)) {
861 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
862 			set_buffer_uptodate(bh);
863 		}
864 		unlock_buffer(bh);
865 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
866 		err = ext4_handle_dirty_metadata(handle, inode, bh);
867 		if (unlikely(err))
868 			goto errout;
869 	} else
870 		BUFFER_TRACE(bh, "not a new buffer");
871 	return bh;
872 errout:
873 	brelse(bh);
874 	return ERR_PTR(err);
875 }
876 
877 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
878 			       ext4_lblk_t block, int map_flags)
879 {
880 	struct buffer_head *bh;
881 
882 	bh = ext4_getblk(handle, inode, block, map_flags);
883 	if (IS_ERR(bh))
884 		return bh;
885 	if (!bh || ext4_buffer_uptodate(bh))
886 		return bh;
887 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
888 	wait_on_buffer(bh);
889 	if (buffer_uptodate(bh))
890 		return bh;
891 	put_bh(bh);
892 	return ERR_PTR(-EIO);
893 }
894 
895 /* Read a contiguous batch of blocks. */
896 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
897 		     bool wait, struct buffer_head **bhs)
898 {
899 	int i, err;
900 
901 	for (i = 0; i < bh_count; i++) {
902 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
903 		if (IS_ERR(bhs[i])) {
904 			err = PTR_ERR(bhs[i]);
905 			bh_count = i;
906 			goto out_brelse;
907 		}
908 	}
909 
910 	for (i = 0; i < bh_count; i++)
911 		/* Note that NULL bhs[i] is valid because of holes. */
912 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
913 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
914 				    &bhs[i]);
915 
916 	if (!wait)
917 		return 0;
918 
919 	for (i = 0; i < bh_count; i++)
920 		if (bhs[i])
921 			wait_on_buffer(bhs[i]);
922 
923 	for (i = 0; i < bh_count; i++) {
924 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
925 			err = -EIO;
926 			goto out_brelse;
927 		}
928 	}
929 	return 0;
930 
931 out_brelse:
932 	for (i = 0; i < bh_count; i++) {
933 		brelse(bhs[i]);
934 		bhs[i] = NULL;
935 	}
936 	return err;
937 }
938 
939 int ext4_walk_page_buffers(handle_t *handle,
940 			   struct buffer_head *head,
941 			   unsigned from,
942 			   unsigned to,
943 			   int *partial,
944 			   int (*fn)(handle_t *handle,
945 				     struct buffer_head *bh))
946 {
947 	struct buffer_head *bh;
948 	unsigned block_start, block_end;
949 	unsigned blocksize = head->b_size;
950 	int err, ret = 0;
951 	struct buffer_head *next;
952 
953 	for (bh = head, block_start = 0;
954 	     ret == 0 && (bh != head || !block_start);
955 	     block_start = block_end, bh = next) {
956 		next = bh->b_this_page;
957 		block_end = block_start + blocksize;
958 		if (block_end <= from || block_start >= to) {
959 			if (partial && !buffer_uptodate(bh))
960 				*partial = 1;
961 			continue;
962 		}
963 		err = (*fn)(handle, bh);
964 		if (!ret)
965 			ret = err;
966 	}
967 	return ret;
968 }
969 
970 /*
971  * To preserve ordering, it is essential that the hole instantiation and
972  * the data write be encapsulated in a single transaction.  We cannot
973  * close off a transaction and start a new one between the ext4_get_block()
974  * and the commit_write().  So doing the jbd2_journal_start at the start of
975  * prepare_write() is the right place.
976  *
977  * Also, this function can nest inside ext4_writepage().  In that case, we
978  * *know* that ext4_writepage() has generated enough buffer credits to do the
979  * whole page.  So we won't block on the journal in that case, which is good,
980  * because the caller may be PF_MEMALLOC.
981  *
982  * By accident, ext4 can be reentered when a transaction is open via
983  * quota file writes.  If we were to commit the transaction while thus
984  * reentered, there can be a deadlock - we would be holding a quota
985  * lock, and the commit would never complete if another thread had a
986  * transaction open and was blocking on the quota lock - a ranking
987  * violation.
988  *
989  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
990  * will _not_ run commit under these circumstances because handle->h_ref
991  * is elevated.  We'll still have enough credits for the tiny quotafile
992  * write.
993  */
994 int do_journal_get_write_access(handle_t *handle,
995 				struct buffer_head *bh)
996 {
997 	int dirty = buffer_dirty(bh);
998 	int ret;
999 
1000 	if (!buffer_mapped(bh) || buffer_freed(bh))
1001 		return 0;
1002 	/*
1003 	 * __block_write_begin() could have dirtied some buffers. Clean
1004 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1005 	 * otherwise about fs integrity issues. Setting of the dirty bit
1006 	 * by __block_write_begin() isn't a real problem here as we clear
1007 	 * the bit before releasing a page lock and thus writeback cannot
1008 	 * ever write the buffer.
1009 	 */
1010 	if (dirty)
1011 		clear_buffer_dirty(bh);
1012 	BUFFER_TRACE(bh, "get write access");
1013 	ret = ext4_journal_get_write_access(handle, bh);
1014 	if (!ret && dirty)
1015 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1016 	return ret;
1017 }
1018 
1019 #ifdef CONFIG_FS_ENCRYPTION
1020 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1021 				  get_block_t *get_block)
1022 {
1023 	unsigned from = pos & (PAGE_SIZE - 1);
1024 	unsigned to = from + len;
1025 	struct inode *inode = page->mapping->host;
1026 	unsigned block_start, block_end;
1027 	sector_t block;
1028 	int err = 0;
1029 	unsigned blocksize = inode->i_sb->s_blocksize;
1030 	unsigned bbits;
1031 	struct buffer_head *bh, *head, *wait[2];
1032 	int nr_wait = 0;
1033 	int i;
1034 
1035 	BUG_ON(!PageLocked(page));
1036 	BUG_ON(from > PAGE_SIZE);
1037 	BUG_ON(to > PAGE_SIZE);
1038 	BUG_ON(from > to);
1039 
1040 	if (!page_has_buffers(page))
1041 		create_empty_buffers(page, blocksize, 0);
1042 	head = page_buffers(page);
1043 	bbits = ilog2(blocksize);
1044 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1045 
1046 	for (bh = head, block_start = 0; bh != head || !block_start;
1047 	    block++, block_start = block_end, bh = bh->b_this_page) {
1048 		block_end = block_start + blocksize;
1049 		if (block_end <= from || block_start >= to) {
1050 			if (PageUptodate(page)) {
1051 				if (!buffer_uptodate(bh))
1052 					set_buffer_uptodate(bh);
1053 			}
1054 			continue;
1055 		}
1056 		if (buffer_new(bh))
1057 			clear_buffer_new(bh);
1058 		if (!buffer_mapped(bh)) {
1059 			WARN_ON(bh->b_size != blocksize);
1060 			err = get_block(inode, block, bh, 1);
1061 			if (err)
1062 				break;
1063 			if (buffer_new(bh)) {
1064 				if (PageUptodate(page)) {
1065 					clear_buffer_new(bh);
1066 					set_buffer_uptodate(bh);
1067 					mark_buffer_dirty(bh);
1068 					continue;
1069 				}
1070 				if (block_end > to || block_start < from)
1071 					zero_user_segments(page, to, block_end,
1072 							   block_start, from);
1073 				continue;
1074 			}
1075 		}
1076 		if (PageUptodate(page)) {
1077 			if (!buffer_uptodate(bh))
1078 				set_buffer_uptodate(bh);
1079 			continue;
1080 		}
1081 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1082 		    !buffer_unwritten(bh) &&
1083 		    (block_start < from || block_end > to)) {
1084 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1085 			wait[nr_wait++] = bh;
1086 		}
1087 	}
1088 	/*
1089 	 * If we issued read requests, let them complete.
1090 	 */
1091 	for (i = 0; i < nr_wait; i++) {
1092 		wait_on_buffer(wait[i]);
1093 		if (!buffer_uptodate(wait[i]))
1094 			err = -EIO;
1095 	}
1096 	if (unlikely(err)) {
1097 		page_zero_new_buffers(page, from, to);
1098 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1099 		for (i = 0; i < nr_wait; i++) {
1100 			int err2;
1101 
1102 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1103 								bh_offset(wait[i]));
1104 			if (err2) {
1105 				clear_buffer_uptodate(wait[i]);
1106 				err = err2;
1107 			}
1108 		}
1109 	}
1110 
1111 	return err;
1112 }
1113 #endif
1114 
1115 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1116 			    loff_t pos, unsigned len, unsigned flags,
1117 			    struct page **pagep, void **fsdata)
1118 {
1119 	struct inode *inode = mapping->host;
1120 	int ret, needed_blocks;
1121 	handle_t *handle;
1122 	int retries = 0;
1123 	struct page *page;
1124 	pgoff_t index;
1125 	unsigned from, to;
1126 
1127 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1128 		return -EIO;
1129 
1130 	trace_ext4_write_begin(inode, pos, len, flags);
1131 	/*
1132 	 * Reserve one block more for addition to orphan list in case
1133 	 * we allocate blocks but write fails for some reason
1134 	 */
1135 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1136 	index = pos >> PAGE_SHIFT;
1137 	from = pos & (PAGE_SIZE - 1);
1138 	to = from + len;
1139 
1140 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1141 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1142 						    flags, pagep);
1143 		if (ret < 0)
1144 			return ret;
1145 		if (ret == 1)
1146 			return 0;
1147 	}
1148 
1149 	/*
1150 	 * grab_cache_page_write_begin() can take a long time if the
1151 	 * system is thrashing due to memory pressure, or if the page
1152 	 * is being written back.  So grab it first before we start
1153 	 * the transaction handle.  This also allows us to allocate
1154 	 * the page (if needed) without using GFP_NOFS.
1155 	 */
1156 retry_grab:
1157 	page = grab_cache_page_write_begin(mapping, index, flags);
1158 	if (!page)
1159 		return -ENOMEM;
1160 	unlock_page(page);
1161 
1162 retry_journal:
1163 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1164 	if (IS_ERR(handle)) {
1165 		put_page(page);
1166 		return PTR_ERR(handle);
1167 	}
1168 
1169 	lock_page(page);
1170 	if (page->mapping != mapping) {
1171 		/* The page got truncated from under us */
1172 		unlock_page(page);
1173 		put_page(page);
1174 		ext4_journal_stop(handle);
1175 		goto retry_grab;
1176 	}
1177 	/* In case writeback began while the page was unlocked */
1178 	wait_for_stable_page(page);
1179 
1180 #ifdef CONFIG_FS_ENCRYPTION
1181 	if (ext4_should_dioread_nolock(inode))
1182 		ret = ext4_block_write_begin(page, pos, len,
1183 					     ext4_get_block_unwritten);
1184 	else
1185 		ret = ext4_block_write_begin(page, pos, len,
1186 					     ext4_get_block);
1187 #else
1188 	if (ext4_should_dioread_nolock(inode))
1189 		ret = __block_write_begin(page, pos, len,
1190 					  ext4_get_block_unwritten);
1191 	else
1192 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1193 #endif
1194 	if (!ret && ext4_should_journal_data(inode)) {
1195 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1196 					     from, to, NULL,
1197 					     do_journal_get_write_access);
1198 	}
1199 
1200 	if (ret) {
1201 		bool extended = (pos + len > inode->i_size) &&
1202 				!ext4_verity_in_progress(inode);
1203 
1204 		unlock_page(page);
1205 		/*
1206 		 * __block_write_begin may have instantiated a few blocks
1207 		 * outside i_size.  Trim these off again. Don't need
1208 		 * i_size_read because we hold i_mutex.
1209 		 *
1210 		 * Add inode to orphan list in case we crash before
1211 		 * truncate finishes
1212 		 */
1213 		if (extended && ext4_can_truncate(inode))
1214 			ext4_orphan_add(handle, inode);
1215 
1216 		ext4_journal_stop(handle);
1217 		if (extended) {
1218 			ext4_truncate_failed_write(inode);
1219 			/*
1220 			 * If truncate failed early the inode might
1221 			 * still be on the orphan list; we need to
1222 			 * make sure the inode is removed from the
1223 			 * orphan list in that case.
1224 			 */
1225 			if (inode->i_nlink)
1226 				ext4_orphan_del(NULL, inode);
1227 		}
1228 
1229 		if (ret == -ENOSPC &&
1230 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1231 			goto retry_journal;
1232 		put_page(page);
1233 		return ret;
1234 	}
1235 	*pagep = page;
1236 	return ret;
1237 }
1238 
1239 /* For write_end() in data=journal mode */
1240 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1241 {
1242 	int ret;
1243 	if (!buffer_mapped(bh) || buffer_freed(bh))
1244 		return 0;
1245 	set_buffer_uptodate(bh);
1246 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1247 	clear_buffer_meta(bh);
1248 	clear_buffer_prio(bh);
1249 	return ret;
1250 }
1251 
1252 /*
1253  * We need to pick up the new inode size which generic_commit_write gave us
1254  * `file' can be NULL - eg, when called from page_symlink().
1255  *
1256  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1257  * buffers are managed internally.
1258  */
1259 static int ext4_write_end(struct file *file,
1260 			  struct address_space *mapping,
1261 			  loff_t pos, unsigned len, unsigned copied,
1262 			  struct page *page, void *fsdata)
1263 {
1264 	handle_t *handle = ext4_journal_current_handle();
1265 	struct inode *inode = mapping->host;
1266 	loff_t old_size = inode->i_size;
1267 	int ret = 0, ret2;
1268 	int i_size_changed = 0;
1269 	int inline_data = ext4_has_inline_data(inode);
1270 	bool verity = ext4_verity_in_progress(inode);
1271 
1272 	trace_ext4_write_end(inode, pos, len, copied);
1273 	if (inline_data) {
1274 		ret = ext4_write_inline_data_end(inode, pos, len,
1275 						 copied, page);
1276 		if (ret < 0) {
1277 			unlock_page(page);
1278 			put_page(page);
1279 			goto errout;
1280 		}
1281 		copied = ret;
1282 	} else
1283 		copied = block_write_end(file, mapping, pos,
1284 					 len, copied, page, fsdata);
1285 	/*
1286 	 * it's important to update i_size while still holding page lock:
1287 	 * page writeout could otherwise come in and zero beyond i_size.
1288 	 *
1289 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1290 	 * blocks are being written past EOF, so skip the i_size update.
1291 	 */
1292 	if (!verity)
1293 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1294 	unlock_page(page);
1295 	put_page(page);
1296 
1297 	if (old_size < pos && !verity)
1298 		pagecache_isize_extended(inode, old_size, pos);
1299 	/*
1300 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1301 	 * makes the holding time of page lock longer. Second, it forces lock
1302 	 * ordering of page lock and transaction start for journaling
1303 	 * filesystems.
1304 	 */
1305 	if (i_size_changed || inline_data)
1306 		ret = ext4_mark_inode_dirty(handle, inode);
1307 
1308 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1309 		/* if we have allocated more blocks and copied
1310 		 * less. We will have blocks allocated outside
1311 		 * inode->i_size. So truncate them
1312 		 */
1313 		ext4_orphan_add(handle, inode);
1314 errout:
1315 	ret2 = ext4_journal_stop(handle);
1316 	if (!ret)
1317 		ret = ret2;
1318 
1319 	if (pos + len > inode->i_size && !verity) {
1320 		ext4_truncate_failed_write(inode);
1321 		/*
1322 		 * If truncate failed early the inode might still be
1323 		 * on the orphan list; we need to make sure the inode
1324 		 * is removed from the orphan list in that case.
1325 		 */
1326 		if (inode->i_nlink)
1327 			ext4_orphan_del(NULL, inode);
1328 	}
1329 
1330 	return ret ? ret : copied;
1331 }
1332 
1333 /*
1334  * This is a private version of page_zero_new_buffers() which doesn't
1335  * set the buffer to be dirty, since in data=journalled mode we need
1336  * to call ext4_handle_dirty_metadata() instead.
1337  */
1338 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1339 					    struct page *page,
1340 					    unsigned from, unsigned to)
1341 {
1342 	unsigned int block_start = 0, block_end;
1343 	struct buffer_head *head, *bh;
1344 
1345 	bh = head = page_buffers(page);
1346 	do {
1347 		block_end = block_start + bh->b_size;
1348 		if (buffer_new(bh)) {
1349 			if (block_end > from && block_start < to) {
1350 				if (!PageUptodate(page)) {
1351 					unsigned start, size;
1352 
1353 					start = max(from, block_start);
1354 					size = min(to, block_end) - start;
1355 
1356 					zero_user(page, start, size);
1357 					write_end_fn(handle, bh);
1358 				}
1359 				clear_buffer_new(bh);
1360 			}
1361 		}
1362 		block_start = block_end;
1363 		bh = bh->b_this_page;
1364 	} while (bh != head);
1365 }
1366 
1367 static int ext4_journalled_write_end(struct file *file,
1368 				     struct address_space *mapping,
1369 				     loff_t pos, unsigned len, unsigned copied,
1370 				     struct page *page, void *fsdata)
1371 {
1372 	handle_t *handle = ext4_journal_current_handle();
1373 	struct inode *inode = mapping->host;
1374 	loff_t old_size = inode->i_size;
1375 	int ret = 0, ret2;
1376 	int partial = 0;
1377 	unsigned from, to;
1378 	int size_changed = 0;
1379 	int inline_data = ext4_has_inline_data(inode);
1380 	bool verity = ext4_verity_in_progress(inode);
1381 
1382 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1383 	from = pos & (PAGE_SIZE - 1);
1384 	to = from + len;
1385 
1386 	BUG_ON(!ext4_handle_valid(handle));
1387 
1388 	if (inline_data) {
1389 		ret = ext4_write_inline_data_end(inode, pos, len,
1390 						 copied, page);
1391 		if (ret < 0) {
1392 			unlock_page(page);
1393 			put_page(page);
1394 			goto errout;
1395 		}
1396 		copied = ret;
1397 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1398 		copied = 0;
1399 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1400 	} else {
1401 		if (unlikely(copied < len))
1402 			ext4_journalled_zero_new_buffers(handle, page,
1403 							 from + copied, to);
1404 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1405 					     from + copied, &partial,
1406 					     write_end_fn);
1407 		if (!partial)
1408 			SetPageUptodate(page);
1409 	}
1410 	if (!verity)
1411 		size_changed = ext4_update_inode_size(inode, pos + copied);
1412 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1413 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1414 	unlock_page(page);
1415 	put_page(page);
1416 
1417 	if (old_size < pos && !verity)
1418 		pagecache_isize_extended(inode, old_size, pos);
1419 
1420 	if (size_changed || inline_data) {
1421 		ret2 = ext4_mark_inode_dirty(handle, inode);
1422 		if (!ret)
1423 			ret = ret2;
1424 	}
1425 
1426 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1427 		/* if we have allocated more blocks and copied
1428 		 * less. We will have blocks allocated outside
1429 		 * inode->i_size. So truncate them
1430 		 */
1431 		ext4_orphan_add(handle, inode);
1432 
1433 errout:
1434 	ret2 = ext4_journal_stop(handle);
1435 	if (!ret)
1436 		ret = ret2;
1437 	if (pos + len > inode->i_size && !verity) {
1438 		ext4_truncate_failed_write(inode);
1439 		/*
1440 		 * If truncate failed early the inode might still be
1441 		 * on the orphan list; we need to make sure the inode
1442 		 * is removed from the orphan list in that case.
1443 		 */
1444 		if (inode->i_nlink)
1445 			ext4_orphan_del(NULL, inode);
1446 	}
1447 
1448 	return ret ? ret : copied;
1449 }
1450 
1451 /*
1452  * Reserve space for a single cluster
1453  */
1454 static int ext4_da_reserve_space(struct inode *inode)
1455 {
1456 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1457 	struct ext4_inode_info *ei = EXT4_I(inode);
1458 	int ret;
1459 
1460 	/*
1461 	 * We will charge metadata quota at writeout time; this saves
1462 	 * us from metadata over-estimation, though we may go over by
1463 	 * a small amount in the end.  Here we just reserve for data.
1464 	 */
1465 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1466 	if (ret)
1467 		return ret;
1468 
1469 	spin_lock(&ei->i_block_reservation_lock);
1470 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1471 		spin_unlock(&ei->i_block_reservation_lock);
1472 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1473 		return -ENOSPC;
1474 	}
1475 	ei->i_reserved_data_blocks++;
1476 	trace_ext4_da_reserve_space(inode);
1477 	spin_unlock(&ei->i_block_reservation_lock);
1478 
1479 	return 0;       /* success */
1480 }
1481 
1482 void ext4_da_release_space(struct inode *inode, int to_free)
1483 {
1484 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1485 	struct ext4_inode_info *ei = EXT4_I(inode);
1486 
1487 	if (!to_free)
1488 		return;		/* Nothing to release, exit */
1489 
1490 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1491 
1492 	trace_ext4_da_release_space(inode, to_free);
1493 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1494 		/*
1495 		 * if there aren't enough reserved blocks, then the
1496 		 * counter is messed up somewhere.  Since this
1497 		 * function is called from invalidate page, it's
1498 		 * harmless to return without any action.
1499 		 */
1500 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1501 			 "ino %lu, to_free %d with only %d reserved "
1502 			 "data blocks", inode->i_ino, to_free,
1503 			 ei->i_reserved_data_blocks);
1504 		WARN_ON(1);
1505 		to_free = ei->i_reserved_data_blocks;
1506 	}
1507 	ei->i_reserved_data_blocks -= to_free;
1508 
1509 	/* update fs dirty data blocks counter */
1510 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1511 
1512 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1513 
1514 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1515 }
1516 
1517 /*
1518  * Delayed allocation stuff
1519  */
1520 
1521 struct mpage_da_data {
1522 	struct inode *inode;
1523 	struct writeback_control *wbc;
1524 
1525 	pgoff_t first_page;	/* The first page to write */
1526 	pgoff_t next_page;	/* Current page to examine */
1527 	pgoff_t last_page;	/* Last page to examine */
1528 	/*
1529 	 * Extent to map - this can be after first_page because that can be
1530 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1531 	 * is delalloc or unwritten.
1532 	 */
1533 	struct ext4_map_blocks map;
1534 	struct ext4_io_submit io_submit;	/* IO submission data */
1535 	unsigned int do_map:1;
1536 	unsigned int scanned_until_end:1;
1537 };
1538 
1539 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1540 				       bool invalidate)
1541 {
1542 	int nr_pages, i;
1543 	pgoff_t index, end;
1544 	struct pagevec pvec;
1545 	struct inode *inode = mpd->inode;
1546 	struct address_space *mapping = inode->i_mapping;
1547 
1548 	/* This is necessary when next_page == 0. */
1549 	if (mpd->first_page >= mpd->next_page)
1550 		return;
1551 
1552 	mpd->scanned_until_end = 0;
1553 	index = mpd->first_page;
1554 	end   = mpd->next_page - 1;
1555 	if (invalidate) {
1556 		ext4_lblk_t start, last;
1557 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1558 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1559 		ext4_es_remove_extent(inode, start, last - start + 1);
1560 	}
1561 
1562 	pagevec_init(&pvec);
1563 	while (index <= end) {
1564 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1565 		if (nr_pages == 0)
1566 			break;
1567 		for (i = 0; i < nr_pages; i++) {
1568 			struct page *page = pvec.pages[i];
1569 
1570 			BUG_ON(!PageLocked(page));
1571 			BUG_ON(PageWriteback(page));
1572 			if (invalidate) {
1573 				if (page_mapped(page))
1574 					clear_page_dirty_for_io(page);
1575 				block_invalidatepage(page, 0, PAGE_SIZE);
1576 				ClearPageUptodate(page);
1577 			}
1578 			unlock_page(page);
1579 		}
1580 		pagevec_release(&pvec);
1581 	}
1582 }
1583 
1584 static void ext4_print_free_blocks(struct inode *inode)
1585 {
1586 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1587 	struct super_block *sb = inode->i_sb;
1588 	struct ext4_inode_info *ei = EXT4_I(inode);
1589 
1590 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1591 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1592 			ext4_count_free_clusters(sb)));
1593 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1594 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1595 	       (long long) EXT4_C2B(EXT4_SB(sb),
1596 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1597 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1598 	       (long long) EXT4_C2B(EXT4_SB(sb),
1599 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1600 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1601 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1602 		 ei->i_reserved_data_blocks);
1603 	return;
1604 }
1605 
1606 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1607 {
1608 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1609 }
1610 
1611 /*
1612  * ext4_insert_delayed_block - adds a delayed block to the extents status
1613  *                             tree, incrementing the reserved cluster/block
1614  *                             count or making a pending reservation
1615  *                             where needed
1616  *
1617  * @inode - file containing the newly added block
1618  * @lblk - logical block to be added
1619  *
1620  * Returns 0 on success, negative error code on failure.
1621  */
1622 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1623 {
1624 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1625 	int ret;
1626 	bool allocated = false;
1627 
1628 	/*
1629 	 * If the cluster containing lblk is shared with a delayed,
1630 	 * written, or unwritten extent in a bigalloc file system, it's
1631 	 * already been accounted for and does not need to be reserved.
1632 	 * A pending reservation must be made for the cluster if it's
1633 	 * shared with a written or unwritten extent and doesn't already
1634 	 * have one.  Written and unwritten extents can be purged from the
1635 	 * extents status tree if the system is under memory pressure, so
1636 	 * it's necessary to examine the extent tree if a search of the
1637 	 * extents status tree doesn't get a match.
1638 	 */
1639 	if (sbi->s_cluster_ratio == 1) {
1640 		ret = ext4_da_reserve_space(inode);
1641 		if (ret != 0)   /* ENOSPC */
1642 			goto errout;
1643 	} else {   /* bigalloc */
1644 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1645 			if (!ext4_es_scan_clu(inode,
1646 					      &ext4_es_is_mapped, lblk)) {
1647 				ret = ext4_clu_mapped(inode,
1648 						      EXT4_B2C(sbi, lblk));
1649 				if (ret < 0)
1650 					goto errout;
1651 				if (ret == 0) {
1652 					ret = ext4_da_reserve_space(inode);
1653 					if (ret != 0)   /* ENOSPC */
1654 						goto errout;
1655 				} else {
1656 					allocated = true;
1657 				}
1658 			} else {
1659 				allocated = true;
1660 			}
1661 		}
1662 	}
1663 
1664 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1665 
1666 errout:
1667 	return ret;
1668 }
1669 
1670 /*
1671  * This function is grabs code from the very beginning of
1672  * ext4_map_blocks, but assumes that the caller is from delayed write
1673  * time. This function looks up the requested blocks and sets the
1674  * buffer delay bit under the protection of i_data_sem.
1675  */
1676 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1677 			      struct ext4_map_blocks *map,
1678 			      struct buffer_head *bh)
1679 {
1680 	struct extent_status es;
1681 	int retval;
1682 	sector_t invalid_block = ~((sector_t) 0xffff);
1683 #ifdef ES_AGGRESSIVE_TEST
1684 	struct ext4_map_blocks orig_map;
1685 
1686 	memcpy(&orig_map, map, sizeof(*map));
1687 #endif
1688 
1689 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1690 		invalid_block = ~0;
1691 
1692 	map->m_flags = 0;
1693 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1694 		  (unsigned long) map->m_lblk);
1695 
1696 	/* Lookup extent status tree firstly */
1697 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1698 		if (ext4_es_is_hole(&es)) {
1699 			retval = 0;
1700 			down_read(&EXT4_I(inode)->i_data_sem);
1701 			goto add_delayed;
1702 		}
1703 
1704 		/*
1705 		 * Delayed extent could be allocated by fallocate.
1706 		 * So we need to check it.
1707 		 */
1708 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1709 			map_bh(bh, inode->i_sb, invalid_block);
1710 			set_buffer_new(bh);
1711 			set_buffer_delay(bh);
1712 			return 0;
1713 		}
1714 
1715 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1716 		retval = es.es_len - (iblock - es.es_lblk);
1717 		if (retval > map->m_len)
1718 			retval = map->m_len;
1719 		map->m_len = retval;
1720 		if (ext4_es_is_written(&es))
1721 			map->m_flags |= EXT4_MAP_MAPPED;
1722 		else if (ext4_es_is_unwritten(&es))
1723 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1724 		else
1725 			BUG();
1726 
1727 #ifdef ES_AGGRESSIVE_TEST
1728 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1729 #endif
1730 		return retval;
1731 	}
1732 
1733 	/*
1734 	 * Try to see if we can get the block without requesting a new
1735 	 * file system block.
1736 	 */
1737 	down_read(&EXT4_I(inode)->i_data_sem);
1738 	if (ext4_has_inline_data(inode))
1739 		retval = 0;
1740 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1741 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1742 	else
1743 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1744 
1745 add_delayed:
1746 	if (retval == 0) {
1747 		int ret;
1748 
1749 		/*
1750 		 * XXX: __block_prepare_write() unmaps passed block,
1751 		 * is it OK?
1752 		 */
1753 
1754 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1755 		if (ret != 0) {
1756 			retval = ret;
1757 			goto out_unlock;
1758 		}
1759 
1760 		map_bh(bh, inode->i_sb, invalid_block);
1761 		set_buffer_new(bh);
1762 		set_buffer_delay(bh);
1763 	} else if (retval > 0) {
1764 		int ret;
1765 		unsigned int status;
1766 
1767 		if (unlikely(retval != map->m_len)) {
1768 			ext4_warning(inode->i_sb,
1769 				     "ES len assertion failed for inode "
1770 				     "%lu: retval %d != map->m_len %d",
1771 				     inode->i_ino, retval, map->m_len);
1772 			WARN_ON(1);
1773 		}
1774 
1775 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1776 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1777 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1778 					    map->m_pblk, status);
1779 		if (ret != 0)
1780 			retval = ret;
1781 	}
1782 
1783 out_unlock:
1784 	up_read((&EXT4_I(inode)->i_data_sem));
1785 
1786 	return retval;
1787 }
1788 
1789 /*
1790  * This is a special get_block_t callback which is used by
1791  * ext4_da_write_begin().  It will either return mapped block or
1792  * reserve space for a single block.
1793  *
1794  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1795  * We also have b_blocknr = -1 and b_bdev initialized properly
1796  *
1797  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1798  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1799  * initialized properly.
1800  */
1801 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1802 			   struct buffer_head *bh, int create)
1803 {
1804 	struct ext4_map_blocks map;
1805 	int ret = 0;
1806 
1807 	BUG_ON(create == 0);
1808 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1809 
1810 	map.m_lblk = iblock;
1811 	map.m_len = 1;
1812 
1813 	/*
1814 	 * first, we need to know whether the block is allocated already
1815 	 * preallocated blocks are unmapped but should treated
1816 	 * the same as allocated blocks.
1817 	 */
1818 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1819 	if (ret <= 0)
1820 		return ret;
1821 
1822 	map_bh(bh, inode->i_sb, map.m_pblk);
1823 	ext4_update_bh_state(bh, map.m_flags);
1824 
1825 	if (buffer_unwritten(bh)) {
1826 		/* A delayed write to unwritten bh should be marked
1827 		 * new and mapped.  Mapped ensures that we don't do
1828 		 * get_block multiple times when we write to the same
1829 		 * offset and new ensures that we do proper zero out
1830 		 * for partial write.
1831 		 */
1832 		set_buffer_new(bh);
1833 		set_buffer_mapped(bh);
1834 	}
1835 	return 0;
1836 }
1837 
1838 static int bget_one(handle_t *handle, struct buffer_head *bh)
1839 {
1840 	get_bh(bh);
1841 	return 0;
1842 }
1843 
1844 static int bput_one(handle_t *handle, struct buffer_head *bh)
1845 {
1846 	put_bh(bh);
1847 	return 0;
1848 }
1849 
1850 static int __ext4_journalled_writepage(struct page *page,
1851 				       unsigned int len)
1852 {
1853 	struct address_space *mapping = page->mapping;
1854 	struct inode *inode = mapping->host;
1855 	struct buffer_head *page_bufs = NULL;
1856 	handle_t *handle = NULL;
1857 	int ret = 0, err = 0;
1858 	int inline_data = ext4_has_inline_data(inode);
1859 	struct buffer_head *inode_bh = NULL;
1860 
1861 	ClearPageChecked(page);
1862 
1863 	if (inline_data) {
1864 		BUG_ON(page->index != 0);
1865 		BUG_ON(len > ext4_get_max_inline_size(inode));
1866 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1867 		if (inode_bh == NULL)
1868 			goto out;
1869 	} else {
1870 		page_bufs = page_buffers(page);
1871 		if (!page_bufs) {
1872 			BUG();
1873 			goto out;
1874 		}
1875 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1876 				       NULL, bget_one);
1877 	}
1878 	/*
1879 	 * We need to release the page lock before we start the
1880 	 * journal, so grab a reference so the page won't disappear
1881 	 * out from under us.
1882 	 */
1883 	get_page(page);
1884 	unlock_page(page);
1885 
1886 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1887 				    ext4_writepage_trans_blocks(inode));
1888 	if (IS_ERR(handle)) {
1889 		ret = PTR_ERR(handle);
1890 		put_page(page);
1891 		goto out_no_pagelock;
1892 	}
1893 	BUG_ON(!ext4_handle_valid(handle));
1894 
1895 	lock_page(page);
1896 	put_page(page);
1897 	if (page->mapping != mapping) {
1898 		/* The page got truncated from under us */
1899 		ext4_journal_stop(handle);
1900 		ret = 0;
1901 		goto out;
1902 	}
1903 
1904 	if (inline_data) {
1905 		ret = ext4_mark_inode_dirty(handle, inode);
1906 	} else {
1907 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1908 					     do_journal_get_write_access);
1909 
1910 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1911 					     write_end_fn);
1912 	}
1913 	if (ret == 0)
1914 		ret = err;
1915 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1916 	err = ext4_journal_stop(handle);
1917 	if (!ret)
1918 		ret = err;
1919 
1920 	if (!ext4_has_inline_data(inode))
1921 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1922 				       NULL, bput_one);
1923 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1924 out:
1925 	unlock_page(page);
1926 out_no_pagelock:
1927 	brelse(inode_bh);
1928 	return ret;
1929 }
1930 
1931 /*
1932  * Note that we don't need to start a transaction unless we're journaling data
1933  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1934  * need to file the inode to the transaction's list in ordered mode because if
1935  * we are writing back data added by write(), the inode is already there and if
1936  * we are writing back data modified via mmap(), no one guarantees in which
1937  * transaction the data will hit the disk. In case we are journaling data, we
1938  * cannot start transaction directly because transaction start ranks above page
1939  * lock so we have to do some magic.
1940  *
1941  * This function can get called via...
1942  *   - ext4_writepages after taking page lock (have journal handle)
1943  *   - journal_submit_inode_data_buffers (no journal handle)
1944  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1945  *   - grab_page_cache when doing write_begin (have journal handle)
1946  *
1947  * We don't do any block allocation in this function. If we have page with
1948  * multiple blocks we need to write those buffer_heads that are mapped. This
1949  * is important for mmaped based write. So if we do with blocksize 1K
1950  * truncate(f, 1024);
1951  * a = mmap(f, 0, 4096);
1952  * a[0] = 'a';
1953  * truncate(f, 4096);
1954  * we have in the page first buffer_head mapped via page_mkwrite call back
1955  * but other buffer_heads would be unmapped but dirty (dirty done via the
1956  * do_wp_page). So writepage should write the first block. If we modify
1957  * the mmap area beyond 1024 we will again get a page_fault and the
1958  * page_mkwrite callback will do the block allocation and mark the
1959  * buffer_heads mapped.
1960  *
1961  * We redirty the page if we have any buffer_heads that is either delay or
1962  * unwritten in the page.
1963  *
1964  * We can get recursively called as show below.
1965  *
1966  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1967  *		ext4_writepage()
1968  *
1969  * But since we don't do any block allocation we should not deadlock.
1970  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1971  */
1972 static int ext4_writepage(struct page *page,
1973 			  struct writeback_control *wbc)
1974 {
1975 	int ret = 0;
1976 	loff_t size;
1977 	unsigned int len;
1978 	struct buffer_head *page_bufs = NULL;
1979 	struct inode *inode = page->mapping->host;
1980 	struct ext4_io_submit io_submit;
1981 	bool keep_towrite = false;
1982 
1983 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1984 		inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
1985 		unlock_page(page);
1986 		return -EIO;
1987 	}
1988 
1989 	trace_ext4_writepage(page);
1990 	size = i_size_read(inode);
1991 	if (page->index == size >> PAGE_SHIFT &&
1992 	    !ext4_verity_in_progress(inode))
1993 		len = size & ~PAGE_MASK;
1994 	else
1995 		len = PAGE_SIZE;
1996 
1997 	page_bufs = page_buffers(page);
1998 	/*
1999 	 * We cannot do block allocation or other extent handling in this
2000 	 * function. If there are buffers needing that, we have to redirty
2001 	 * the page. But we may reach here when we do a journal commit via
2002 	 * journal_submit_inode_data_buffers() and in that case we must write
2003 	 * allocated buffers to achieve data=ordered mode guarantees.
2004 	 *
2005 	 * Also, if there is only one buffer per page (the fs block
2006 	 * size == the page size), if one buffer needs block
2007 	 * allocation or needs to modify the extent tree to clear the
2008 	 * unwritten flag, we know that the page can't be written at
2009 	 * all, so we might as well refuse the write immediately.
2010 	 * Unfortunately if the block size != page size, we can't as
2011 	 * easily detect this case using ext4_walk_page_buffers(), but
2012 	 * for the extremely common case, this is an optimization that
2013 	 * skips a useless round trip through ext4_bio_write_page().
2014 	 */
2015 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2016 				   ext4_bh_delay_or_unwritten)) {
2017 		redirty_page_for_writepage(wbc, page);
2018 		if ((current->flags & PF_MEMALLOC) ||
2019 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2020 			/*
2021 			 * For memory cleaning there's no point in writing only
2022 			 * some buffers. So just bail out. Warn if we came here
2023 			 * from direct reclaim.
2024 			 */
2025 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2026 							== PF_MEMALLOC);
2027 			unlock_page(page);
2028 			return 0;
2029 		}
2030 		keep_towrite = true;
2031 	}
2032 
2033 	if (PageChecked(page) && ext4_should_journal_data(inode))
2034 		/*
2035 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2036 		 * doesn't seem much point in redirtying the page here.
2037 		 */
2038 		return __ext4_journalled_writepage(page, len);
2039 
2040 	ext4_io_submit_init(&io_submit, wbc);
2041 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2042 	if (!io_submit.io_end) {
2043 		redirty_page_for_writepage(wbc, page);
2044 		unlock_page(page);
2045 		return -ENOMEM;
2046 	}
2047 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2048 	ext4_io_submit(&io_submit);
2049 	/* Drop io_end reference we got from init */
2050 	ext4_put_io_end_defer(io_submit.io_end);
2051 	return ret;
2052 }
2053 
2054 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2055 {
2056 	int len;
2057 	loff_t size;
2058 	int err;
2059 
2060 	BUG_ON(page->index != mpd->first_page);
2061 	clear_page_dirty_for_io(page);
2062 	/*
2063 	 * We have to be very careful here!  Nothing protects writeback path
2064 	 * against i_size changes and the page can be writeably mapped into
2065 	 * page tables. So an application can be growing i_size and writing
2066 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2067 	 * write-protects our page in page tables and the page cannot get
2068 	 * written to again until we release page lock. So only after
2069 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2070 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2071 	 * on the barrier provided by TestClearPageDirty in
2072 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2073 	 * after page tables are updated.
2074 	 */
2075 	size = i_size_read(mpd->inode);
2076 	if (page->index == size >> PAGE_SHIFT &&
2077 	    !ext4_verity_in_progress(mpd->inode))
2078 		len = size & ~PAGE_MASK;
2079 	else
2080 		len = PAGE_SIZE;
2081 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2082 	if (!err)
2083 		mpd->wbc->nr_to_write--;
2084 	mpd->first_page++;
2085 
2086 	return err;
2087 }
2088 
2089 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2090 
2091 /*
2092  * mballoc gives us at most this number of blocks...
2093  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2094  * The rest of mballoc seems to handle chunks up to full group size.
2095  */
2096 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2097 
2098 /*
2099  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2100  *
2101  * @mpd - extent of blocks
2102  * @lblk - logical number of the block in the file
2103  * @bh - buffer head we want to add to the extent
2104  *
2105  * The function is used to collect contig. blocks in the same state. If the
2106  * buffer doesn't require mapping for writeback and we haven't started the
2107  * extent of buffers to map yet, the function returns 'true' immediately - the
2108  * caller can write the buffer right away. Otherwise the function returns true
2109  * if the block has been added to the extent, false if the block couldn't be
2110  * added.
2111  */
2112 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2113 				   struct buffer_head *bh)
2114 {
2115 	struct ext4_map_blocks *map = &mpd->map;
2116 
2117 	/* Buffer that doesn't need mapping for writeback? */
2118 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2119 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2120 		/* So far no extent to map => we write the buffer right away */
2121 		if (map->m_len == 0)
2122 			return true;
2123 		return false;
2124 	}
2125 
2126 	/* First block in the extent? */
2127 	if (map->m_len == 0) {
2128 		/* We cannot map unless handle is started... */
2129 		if (!mpd->do_map)
2130 			return false;
2131 		map->m_lblk = lblk;
2132 		map->m_len = 1;
2133 		map->m_flags = bh->b_state & BH_FLAGS;
2134 		return true;
2135 	}
2136 
2137 	/* Don't go larger than mballoc is willing to allocate */
2138 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2139 		return false;
2140 
2141 	/* Can we merge the block to our big extent? */
2142 	if (lblk == map->m_lblk + map->m_len &&
2143 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2144 		map->m_len++;
2145 		return true;
2146 	}
2147 	return false;
2148 }
2149 
2150 /*
2151  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2152  *
2153  * @mpd - extent of blocks for mapping
2154  * @head - the first buffer in the page
2155  * @bh - buffer we should start processing from
2156  * @lblk - logical number of the block in the file corresponding to @bh
2157  *
2158  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2159  * the page for IO if all buffers in this page were mapped and there's no
2160  * accumulated extent of buffers to map or add buffers in the page to the
2161  * extent of buffers to map. The function returns 1 if the caller can continue
2162  * by processing the next page, 0 if it should stop adding buffers to the
2163  * extent to map because we cannot extend it anymore. It can also return value
2164  * < 0 in case of error during IO submission.
2165  */
2166 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2167 				   struct buffer_head *head,
2168 				   struct buffer_head *bh,
2169 				   ext4_lblk_t lblk)
2170 {
2171 	struct inode *inode = mpd->inode;
2172 	int err;
2173 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2174 							>> inode->i_blkbits;
2175 
2176 	if (ext4_verity_in_progress(inode))
2177 		blocks = EXT_MAX_BLOCKS;
2178 
2179 	do {
2180 		BUG_ON(buffer_locked(bh));
2181 
2182 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2183 			/* Found extent to map? */
2184 			if (mpd->map.m_len)
2185 				return 0;
2186 			/* Buffer needs mapping and handle is not started? */
2187 			if (!mpd->do_map)
2188 				return 0;
2189 			/* Everything mapped so far and we hit EOF */
2190 			break;
2191 		}
2192 	} while (lblk++, (bh = bh->b_this_page) != head);
2193 	/* So far everything mapped? Submit the page for IO. */
2194 	if (mpd->map.m_len == 0) {
2195 		err = mpage_submit_page(mpd, head->b_page);
2196 		if (err < 0)
2197 			return err;
2198 	}
2199 	if (lblk >= blocks) {
2200 		mpd->scanned_until_end = 1;
2201 		return 0;
2202 	}
2203 	return 1;
2204 }
2205 
2206 /*
2207  * mpage_process_page - update page buffers corresponding to changed extent and
2208  *		       may submit fully mapped page for IO
2209  *
2210  * @mpd		- description of extent to map, on return next extent to map
2211  * @m_lblk	- logical block mapping.
2212  * @m_pblk	- corresponding physical mapping.
2213  * @map_bh	- determines on return whether this page requires any further
2214  *		  mapping or not.
2215  * Scan given page buffers corresponding to changed extent and update buffer
2216  * state according to new extent state.
2217  * We map delalloc buffers to their physical location, clear unwritten bits.
2218  * If the given page is not fully mapped, we update @map to the next extent in
2219  * the given page that needs mapping & return @map_bh as true.
2220  */
2221 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2222 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2223 			      bool *map_bh)
2224 {
2225 	struct buffer_head *head, *bh;
2226 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2227 	ext4_lblk_t lblk = *m_lblk;
2228 	ext4_fsblk_t pblock = *m_pblk;
2229 	int err = 0;
2230 	int blkbits = mpd->inode->i_blkbits;
2231 	ssize_t io_end_size = 0;
2232 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2233 
2234 	bh = head = page_buffers(page);
2235 	do {
2236 		if (lblk < mpd->map.m_lblk)
2237 			continue;
2238 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2239 			/*
2240 			 * Buffer after end of mapped extent.
2241 			 * Find next buffer in the page to map.
2242 			 */
2243 			mpd->map.m_len = 0;
2244 			mpd->map.m_flags = 0;
2245 			io_end_vec->size += io_end_size;
2246 			io_end_size = 0;
2247 
2248 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2249 			if (err > 0)
2250 				err = 0;
2251 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2252 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2253 				if (IS_ERR(io_end_vec)) {
2254 					err = PTR_ERR(io_end_vec);
2255 					goto out;
2256 				}
2257 				io_end_vec->offset = mpd->map.m_lblk << blkbits;
2258 			}
2259 			*map_bh = true;
2260 			goto out;
2261 		}
2262 		if (buffer_delay(bh)) {
2263 			clear_buffer_delay(bh);
2264 			bh->b_blocknr = pblock++;
2265 		}
2266 		clear_buffer_unwritten(bh);
2267 		io_end_size += (1 << blkbits);
2268 	} while (lblk++, (bh = bh->b_this_page) != head);
2269 
2270 	io_end_vec->size += io_end_size;
2271 	io_end_size = 0;
2272 	*map_bh = false;
2273 out:
2274 	*m_lblk = lblk;
2275 	*m_pblk = pblock;
2276 	return err;
2277 }
2278 
2279 /*
2280  * mpage_map_buffers - update buffers corresponding to changed extent and
2281  *		       submit fully mapped pages for IO
2282  *
2283  * @mpd - description of extent to map, on return next extent to map
2284  *
2285  * Scan buffers corresponding to changed extent (we expect corresponding pages
2286  * to be already locked) and update buffer state according to new extent state.
2287  * We map delalloc buffers to their physical location, clear unwritten bits,
2288  * and mark buffers as uninit when we perform writes to unwritten extents
2289  * and do extent conversion after IO is finished. If the last page is not fully
2290  * mapped, we update @map to the next extent in the last page that needs
2291  * mapping. Otherwise we submit the page for IO.
2292  */
2293 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2294 {
2295 	struct pagevec pvec;
2296 	int nr_pages, i;
2297 	struct inode *inode = mpd->inode;
2298 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2299 	pgoff_t start, end;
2300 	ext4_lblk_t lblk;
2301 	ext4_fsblk_t pblock;
2302 	int err;
2303 	bool map_bh = false;
2304 
2305 	start = mpd->map.m_lblk >> bpp_bits;
2306 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2307 	lblk = start << bpp_bits;
2308 	pblock = mpd->map.m_pblk;
2309 
2310 	pagevec_init(&pvec);
2311 	while (start <= end) {
2312 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2313 						&start, end);
2314 		if (nr_pages == 0)
2315 			break;
2316 		for (i = 0; i < nr_pages; i++) {
2317 			struct page *page = pvec.pages[i];
2318 
2319 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2320 						 &map_bh);
2321 			/*
2322 			 * If map_bh is true, means page may require further bh
2323 			 * mapping, or maybe the page was submitted for IO.
2324 			 * So we return to call further extent mapping.
2325 			 */
2326 			if (err < 0 || map_bh)
2327 				goto out;
2328 			/* Page fully mapped - let IO run! */
2329 			err = mpage_submit_page(mpd, page);
2330 			if (err < 0)
2331 				goto out;
2332 		}
2333 		pagevec_release(&pvec);
2334 	}
2335 	/* Extent fully mapped and matches with page boundary. We are done. */
2336 	mpd->map.m_len = 0;
2337 	mpd->map.m_flags = 0;
2338 	return 0;
2339 out:
2340 	pagevec_release(&pvec);
2341 	return err;
2342 }
2343 
2344 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2345 {
2346 	struct inode *inode = mpd->inode;
2347 	struct ext4_map_blocks *map = &mpd->map;
2348 	int get_blocks_flags;
2349 	int err, dioread_nolock;
2350 
2351 	trace_ext4_da_write_pages_extent(inode, map);
2352 	/*
2353 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2354 	 * to convert an unwritten extent to be initialized (in the case
2355 	 * where we have written into one or more preallocated blocks).  It is
2356 	 * possible that we're going to need more metadata blocks than
2357 	 * previously reserved. However we must not fail because we're in
2358 	 * writeback and there is nothing we can do about it so it might result
2359 	 * in data loss.  So use reserved blocks to allocate metadata if
2360 	 * possible.
2361 	 *
2362 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2363 	 * the blocks in question are delalloc blocks.  This indicates
2364 	 * that the blocks and quotas has already been checked when
2365 	 * the data was copied into the page cache.
2366 	 */
2367 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2368 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2369 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2370 	dioread_nolock = ext4_should_dioread_nolock(inode);
2371 	if (dioread_nolock)
2372 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2373 	if (map->m_flags & BIT(BH_Delay))
2374 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2375 
2376 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2377 	if (err < 0)
2378 		return err;
2379 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2380 		if (!mpd->io_submit.io_end->handle &&
2381 		    ext4_handle_valid(handle)) {
2382 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2383 			handle->h_rsv_handle = NULL;
2384 		}
2385 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2386 	}
2387 
2388 	BUG_ON(map->m_len == 0);
2389 	return 0;
2390 }
2391 
2392 /*
2393  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2394  *				 mpd->len and submit pages underlying it for IO
2395  *
2396  * @handle - handle for journal operations
2397  * @mpd - extent to map
2398  * @give_up_on_write - we set this to true iff there is a fatal error and there
2399  *                     is no hope of writing the data. The caller should discard
2400  *                     dirty pages to avoid infinite loops.
2401  *
2402  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2403  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2404  * them to initialized or split the described range from larger unwritten
2405  * extent. Note that we need not map all the described range since allocation
2406  * can return less blocks or the range is covered by more unwritten extents. We
2407  * cannot map more because we are limited by reserved transaction credits. On
2408  * the other hand we always make sure that the last touched page is fully
2409  * mapped so that it can be written out (and thus forward progress is
2410  * guaranteed). After mapping we submit all mapped pages for IO.
2411  */
2412 static int mpage_map_and_submit_extent(handle_t *handle,
2413 				       struct mpage_da_data *mpd,
2414 				       bool *give_up_on_write)
2415 {
2416 	struct inode *inode = mpd->inode;
2417 	struct ext4_map_blocks *map = &mpd->map;
2418 	int err;
2419 	loff_t disksize;
2420 	int progress = 0;
2421 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2422 	struct ext4_io_end_vec *io_end_vec;
2423 
2424 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2425 	if (IS_ERR(io_end_vec))
2426 		return PTR_ERR(io_end_vec);
2427 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2428 	do {
2429 		err = mpage_map_one_extent(handle, mpd);
2430 		if (err < 0) {
2431 			struct super_block *sb = inode->i_sb;
2432 
2433 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2434 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2435 				goto invalidate_dirty_pages;
2436 			/*
2437 			 * Let the uper layers retry transient errors.
2438 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2439 			 * is non-zero, a commit should free up blocks.
2440 			 */
2441 			if ((err == -ENOMEM) ||
2442 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2443 				if (progress)
2444 					goto update_disksize;
2445 				return err;
2446 			}
2447 			ext4_msg(sb, KERN_CRIT,
2448 				 "Delayed block allocation failed for "
2449 				 "inode %lu at logical offset %llu with"
2450 				 " max blocks %u with error %d",
2451 				 inode->i_ino,
2452 				 (unsigned long long)map->m_lblk,
2453 				 (unsigned)map->m_len, -err);
2454 			ext4_msg(sb, KERN_CRIT,
2455 				 "This should not happen!! Data will "
2456 				 "be lost\n");
2457 			if (err == -ENOSPC)
2458 				ext4_print_free_blocks(inode);
2459 		invalidate_dirty_pages:
2460 			*give_up_on_write = true;
2461 			return err;
2462 		}
2463 		progress = 1;
2464 		/*
2465 		 * Update buffer state, submit mapped pages, and get us new
2466 		 * extent to map
2467 		 */
2468 		err = mpage_map_and_submit_buffers(mpd);
2469 		if (err < 0)
2470 			goto update_disksize;
2471 	} while (map->m_len);
2472 
2473 update_disksize:
2474 	/*
2475 	 * Update on-disk size after IO is submitted.  Races with
2476 	 * truncate are avoided by checking i_size under i_data_sem.
2477 	 */
2478 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2479 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2480 		int err2;
2481 		loff_t i_size;
2482 
2483 		down_write(&EXT4_I(inode)->i_data_sem);
2484 		i_size = i_size_read(inode);
2485 		if (disksize > i_size)
2486 			disksize = i_size;
2487 		if (disksize > EXT4_I(inode)->i_disksize)
2488 			EXT4_I(inode)->i_disksize = disksize;
2489 		up_write(&EXT4_I(inode)->i_data_sem);
2490 		err2 = ext4_mark_inode_dirty(handle, inode);
2491 		if (err2) {
2492 			ext4_error_err(inode->i_sb, -err2,
2493 				       "Failed to mark inode %lu dirty",
2494 				       inode->i_ino);
2495 		}
2496 		if (!err)
2497 			err = err2;
2498 	}
2499 	return err;
2500 }
2501 
2502 /*
2503  * Calculate the total number of credits to reserve for one writepages
2504  * iteration. This is called from ext4_writepages(). We map an extent of
2505  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2506  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2507  * bpp - 1 blocks in bpp different extents.
2508  */
2509 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2510 {
2511 	int bpp = ext4_journal_blocks_per_page(inode);
2512 
2513 	return ext4_meta_trans_blocks(inode,
2514 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2515 }
2516 
2517 /*
2518  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2519  * 				 and underlying extent to map
2520  *
2521  * @mpd - where to look for pages
2522  *
2523  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2524  * IO immediately. When we find a page which isn't mapped we start accumulating
2525  * extent of buffers underlying these pages that needs mapping (formed by
2526  * either delayed or unwritten buffers). We also lock the pages containing
2527  * these buffers. The extent found is returned in @mpd structure (starting at
2528  * mpd->lblk with length mpd->len blocks).
2529  *
2530  * Note that this function can attach bios to one io_end structure which are
2531  * neither logically nor physically contiguous. Although it may seem as an
2532  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2533  * case as we need to track IO to all buffers underlying a page in one io_end.
2534  */
2535 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2536 {
2537 	struct address_space *mapping = mpd->inode->i_mapping;
2538 	struct pagevec pvec;
2539 	unsigned int nr_pages;
2540 	long left = mpd->wbc->nr_to_write;
2541 	pgoff_t index = mpd->first_page;
2542 	pgoff_t end = mpd->last_page;
2543 	xa_mark_t tag;
2544 	int i, err = 0;
2545 	int blkbits = mpd->inode->i_blkbits;
2546 	ext4_lblk_t lblk;
2547 	struct buffer_head *head;
2548 
2549 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2550 		tag = PAGECACHE_TAG_TOWRITE;
2551 	else
2552 		tag = PAGECACHE_TAG_DIRTY;
2553 
2554 	pagevec_init(&pvec);
2555 	mpd->map.m_len = 0;
2556 	mpd->next_page = index;
2557 	while (index <= end) {
2558 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2559 				tag);
2560 		if (nr_pages == 0)
2561 			break;
2562 
2563 		for (i = 0; i < nr_pages; i++) {
2564 			struct page *page = pvec.pages[i];
2565 
2566 			/*
2567 			 * Accumulated enough dirty pages? This doesn't apply
2568 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2569 			 * keep going because someone may be concurrently
2570 			 * dirtying pages, and we might have synced a lot of
2571 			 * newly appeared dirty pages, but have not synced all
2572 			 * of the old dirty pages.
2573 			 */
2574 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2575 				goto out;
2576 
2577 			/* If we can't merge this page, we are done. */
2578 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2579 				goto out;
2580 
2581 			lock_page(page);
2582 			/*
2583 			 * If the page is no longer dirty, or its mapping no
2584 			 * longer corresponds to inode we are writing (which
2585 			 * means it has been truncated or invalidated), or the
2586 			 * page is already under writeback and we are not doing
2587 			 * a data integrity writeback, skip the page
2588 			 */
2589 			if (!PageDirty(page) ||
2590 			    (PageWriteback(page) &&
2591 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2592 			    unlikely(page->mapping != mapping)) {
2593 				unlock_page(page);
2594 				continue;
2595 			}
2596 
2597 			wait_on_page_writeback(page);
2598 			BUG_ON(PageWriteback(page));
2599 
2600 			if (mpd->map.m_len == 0)
2601 				mpd->first_page = page->index;
2602 			mpd->next_page = page->index + 1;
2603 			/* Add all dirty buffers to mpd */
2604 			lblk = ((ext4_lblk_t)page->index) <<
2605 				(PAGE_SHIFT - blkbits);
2606 			head = page_buffers(page);
2607 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2608 			if (err <= 0)
2609 				goto out;
2610 			err = 0;
2611 			left--;
2612 		}
2613 		pagevec_release(&pvec);
2614 		cond_resched();
2615 	}
2616 	mpd->scanned_until_end = 1;
2617 	return 0;
2618 out:
2619 	pagevec_release(&pvec);
2620 	return err;
2621 }
2622 
2623 static int ext4_writepages(struct address_space *mapping,
2624 			   struct writeback_control *wbc)
2625 {
2626 	pgoff_t	writeback_index = 0;
2627 	long nr_to_write = wbc->nr_to_write;
2628 	int range_whole = 0;
2629 	int cycled = 1;
2630 	handle_t *handle = NULL;
2631 	struct mpage_da_data mpd;
2632 	struct inode *inode = mapping->host;
2633 	int needed_blocks, rsv_blocks = 0, ret = 0;
2634 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2635 	struct blk_plug plug;
2636 	bool give_up_on_write = false;
2637 
2638 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2639 		return -EIO;
2640 
2641 	percpu_down_read(&sbi->s_writepages_rwsem);
2642 	trace_ext4_writepages(inode, wbc);
2643 
2644 	/*
2645 	 * No pages to write? This is mainly a kludge to avoid starting
2646 	 * a transaction for special inodes like journal inode on last iput()
2647 	 * because that could violate lock ordering on umount
2648 	 */
2649 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2650 		goto out_writepages;
2651 
2652 	if (ext4_should_journal_data(inode)) {
2653 		ret = generic_writepages(mapping, wbc);
2654 		goto out_writepages;
2655 	}
2656 
2657 	/*
2658 	 * If the filesystem has aborted, it is read-only, so return
2659 	 * right away instead of dumping stack traces later on that
2660 	 * will obscure the real source of the problem.  We test
2661 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2662 	 * the latter could be true if the filesystem is mounted
2663 	 * read-only, and in that case, ext4_writepages should
2664 	 * *never* be called, so if that ever happens, we would want
2665 	 * the stack trace.
2666 	 */
2667 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2668 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2669 		ret = -EROFS;
2670 		goto out_writepages;
2671 	}
2672 
2673 	/*
2674 	 * If we have inline data and arrive here, it means that
2675 	 * we will soon create the block for the 1st page, so
2676 	 * we'd better clear the inline data here.
2677 	 */
2678 	if (ext4_has_inline_data(inode)) {
2679 		/* Just inode will be modified... */
2680 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2681 		if (IS_ERR(handle)) {
2682 			ret = PTR_ERR(handle);
2683 			goto out_writepages;
2684 		}
2685 		BUG_ON(ext4_test_inode_state(inode,
2686 				EXT4_STATE_MAY_INLINE_DATA));
2687 		ext4_destroy_inline_data(handle, inode);
2688 		ext4_journal_stop(handle);
2689 	}
2690 
2691 	if (ext4_should_dioread_nolock(inode)) {
2692 		/*
2693 		 * We may need to convert up to one extent per block in
2694 		 * the page and we may dirty the inode.
2695 		 */
2696 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2697 						PAGE_SIZE >> inode->i_blkbits);
2698 	}
2699 
2700 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2701 		range_whole = 1;
2702 
2703 	if (wbc->range_cyclic) {
2704 		writeback_index = mapping->writeback_index;
2705 		if (writeback_index)
2706 			cycled = 0;
2707 		mpd.first_page = writeback_index;
2708 		mpd.last_page = -1;
2709 	} else {
2710 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2711 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2712 	}
2713 
2714 	mpd.inode = inode;
2715 	mpd.wbc = wbc;
2716 	ext4_io_submit_init(&mpd.io_submit, wbc);
2717 retry:
2718 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2719 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2720 	blk_start_plug(&plug);
2721 
2722 	/*
2723 	 * First writeback pages that don't need mapping - we can avoid
2724 	 * starting a transaction unnecessarily and also avoid being blocked
2725 	 * in the block layer on device congestion while having transaction
2726 	 * started.
2727 	 */
2728 	mpd.do_map = 0;
2729 	mpd.scanned_until_end = 0;
2730 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2731 	if (!mpd.io_submit.io_end) {
2732 		ret = -ENOMEM;
2733 		goto unplug;
2734 	}
2735 	ret = mpage_prepare_extent_to_map(&mpd);
2736 	/* Unlock pages we didn't use */
2737 	mpage_release_unused_pages(&mpd, false);
2738 	/* Submit prepared bio */
2739 	ext4_io_submit(&mpd.io_submit);
2740 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2741 	mpd.io_submit.io_end = NULL;
2742 	if (ret < 0)
2743 		goto unplug;
2744 
2745 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2746 		/* For each extent of pages we use new io_end */
2747 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2748 		if (!mpd.io_submit.io_end) {
2749 			ret = -ENOMEM;
2750 			break;
2751 		}
2752 
2753 		/*
2754 		 * We have two constraints: We find one extent to map and we
2755 		 * must always write out whole page (makes a difference when
2756 		 * blocksize < pagesize) so that we don't block on IO when we
2757 		 * try to write out the rest of the page. Journalled mode is
2758 		 * not supported by delalloc.
2759 		 */
2760 		BUG_ON(ext4_should_journal_data(inode));
2761 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2762 
2763 		/* start a new transaction */
2764 		handle = ext4_journal_start_with_reserve(inode,
2765 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2766 		if (IS_ERR(handle)) {
2767 			ret = PTR_ERR(handle);
2768 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2769 			       "%ld pages, ino %lu; err %d", __func__,
2770 				wbc->nr_to_write, inode->i_ino, ret);
2771 			/* Release allocated io_end */
2772 			ext4_put_io_end(mpd.io_submit.io_end);
2773 			mpd.io_submit.io_end = NULL;
2774 			break;
2775 		}
2776 		mpd.do_map = 1;
2777 
2778 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2779 		ret = mpage_prepare_extent_to_map(&mpd);
2780 		if (!ret && mpd.map.m_len)
2781 			ret = mpage_map_and_submit_extent(handle, &mpd,
2782 					&give_up_on_write);
2783 		/*
2784 		 * Caution: If the handle is synchronous,
2785 		 * ext4_journal_stop() can wait for transaction commit
2786 		 * to finish which may depend on writeback of pages to
2787 		 * complete or on page lock to be released.  In that
2788 		 * case, we have to wait until after after we have
2789 		 * submitted all the IO, released page locks we hold,
2790 		 * and dropped io_end reference (for extent conversion
2791 		 * to be able to complete) before stopping the handle.
2792 		 */
2793 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2794 			ext4_journal_stop(handle);
2795 			handle = NULL;
2796 			mpd.do_map = 0;
2797 		}
2798 		/* Unlock pages we didn't use */
2799 		mpage_release_unused_pages(&mpd, give_up_on_write);
2800 		/* Submit prepared bio */
2801 		ext4_io_submit(&mpd.io_submit);
2802 
2803 		/*
2804 		 * Drop our io_end reference we got from init. We have
2805 		 * to be careful and use deferred io_end finishing if
2806 		 * we are still holding the transaction as we can
2807 		 * release the last reference to io_end which may end
2808 		 * up doing unwritten extent conversion.
2809 		 */
2810 		if (handle) {
2811 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2812 			ext4_journal_stop(handle);
2813 		} else
2814 			ext4_put_io_end(mpd.io_submit.io_end);
2815 		mpd.io_submit.io_end = NULL;
2816 
2817 		if (ret == -ENOSPC && sbi->s_journal) {
2818 			/*
2819 			 * Commit the transaction which would
2820 			 * free blocks released in the transaction
2821 			 * and try again
2822 			 */
2823 			jbd2_journal_force_commit_nested(sbi->s_journal);
2824 			ret = 0;
2825 			continue;
2826 		}
2827 		/* Fatal error - ENOMEM, EIO... */
2828 		if (ret)
2829 			break;
2830 	}
2831 unplug:
2832 	blk_finish_plug(&plug);
2833 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2834 		cycled = 1;
2835 		mpd.last_page = writeback_index - 1;
2836 		mpd.first_page = 0;
2837 		goto retry;
2838 	}
2839 
2840 	/* Update index */
2841 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2842 		/*
2843 		 * Set the writeback_index so that range_cyclic
2844 		 * mode will write it back later
2845 		 */
2846 		mapping->writeback_index = mpd.first_page;
2847 
2848 out_writepages:
2849 	trace_ext4_writepages_result(inode, wbc, ret,
2850 				     nr_to_write - wbc->nr_to_write);
2851 	percpu_up_read(&sbi->s_writepages_rwsem);
2852 	return ret;
2853 }
2854 
2855 static int ext4_dax_writepages(struct address_space *mapping,
2856 			       struct writeback_control *wbc)
2857 {
2858 	int ret;
2859 	long nr_to_write = wbc->nr_to_write;
2860 	struct inode *inode = mapping->host;
2861 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2862 
2863 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2864 		return -EIO;
2865 
2866 	percpu_down_read(&sbi->s_writepages_rwsem);
2867 	trace_ext4_writepages(inode, wbc);
2868 
2869 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2870 	trace_ext4_writepages_result(inode, wbc, ret,
2871 				     nr_to_write - wbc->nr_to_write);
2872 	percpu_up_read(&sbi->s_writepages_rwsem);
2873 	return ret;
2874 }
2875 
2876 static int ext4_nonda_switch(struct super_block *sb)
2877 {
2878 	s64 free_clusters, dirty_clusters;
2879 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2880 
2881 	/*
2882 	 * switch to non delalloc mode if we are running low
2883 	 * on free block. The free block accounting via percpu
2884 	 * counters can get slightly wrong with percpu_counter_batch getting
2885 	 * accumulated on each CPU without updating global counters
2886 	 * Delalloc need an accurate free block accounting. So switch
2887 	 * to non delalloc when we are near to error range.
2888 	 */
2889 	free_clusters =
2890 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2891 	dirty_clusters =
2892 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2893 	/*
2894 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2895 	 */
2896 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2897 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2898 
2899 	if (2 * free_clusters < 3 * dirty_clusters ||
2900 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2901 		/*
2902 		 * free block count is less than 150% of dirty blocks
2903 		 * or free blocks is less than watermark
2904 		 */
2905 		return 1;
2906 	}
2907 	return 0;
2908 }
2909 
2910 /* We always reserve for an inode update; the superblock could be there too */
2911 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2912 {
2913 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2914 		return 1;
2915 
2916 	if (pos + len <= 0x7fffffffULL)
2917 		return 1;
2918 
2919 	/* We might need to update the superblock to set LARGE_FILE */
2920 	return 2;
2921 }
2922 
2923 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2924 			       loff_t pos, unsigned len, unsigned flags,
2925 			       struct page **pagep, void **fsdata)
2926 {
2927 	int ret, retries = 0;
2928 	struct page *page;
2929 	pgoff_t index;
2930 	struct inode *inode = mapping->host;
2931 	handle_t *handle;
2932 
2933 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2934 		return -EIO;
2935 
2936 	index = pos >> PAGE_SHIFT;
2937 
2938 	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2939 	    ext4_verity_in_progress(inode)) {
2940 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2941 		return ext4_write_begin(file, mapping, pos,
2942 					len, flags, pagep, fsdata);
2943 	}
2944 	*fsdata = (void *)0;
2945 	trace_ext4_da_write_begin(inode, pos, len, flags);
2946 
2947 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2948 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2949 						      pos, len, flags,
2950 						      pagep, fsdata);
2951 		if (ret < 0)
2952 			return ret;
2953 		if (ret == 1)
2954 			return 0;
2955 	}
2956 
2957 	/*
2958 	 * grab_cache_page_write_begin() can take a long time if the
2959 	 * system is thrashing due to memory pressure, or if the page
2960 	 * is being written back.  So grab it first before we start
2961 	 * the transaction handle.  This also allows us to allocate
2962 	 * the page (if needed) without using GFP_NOFS.
2963 	 */
2964 retry_grab:
2965 	page = grab_cache_page_write_begin(mapping, index, flags);
2966 	if (!page)
2967 		return -ENOMEM;
2968 	unlock_page(page);
2969 
2970 	/*
2971 	 * With delayed allocation, we don't log the i_disksize update
2972 	 * if there is delayed block allocation. But we still need
2973 	 * to journalling the i_disksize update if writes to the end
2974 	 * of file which has an already mapped buffer.
2975 	 */
2976 retry_journal:
2977 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2978 				ext4_da_write_credits(inode, pos, len));
2979 	if (IS_ERR(handle)) {
2980 		put_page(page);
2981 		return PTR_ERR(handle);
2982 	}
2983 
2984 	lock_page(page);
2985 	if (page->mapping != mapping) {
2986 		/* The page got truncated from under us */
2987 		unlock_page(page);
2988 		put_page(page);
2989 		ext4_journal_stop(handle);
2990 		goto retry_grab;
2991 	}
2992 	/* In case writeback began while the page was unlocked */
2993 	wait_for_stable_page(page);
2994 
2995 #ifdef CONFIG_FS_ENCRYPTION
2996 	ret = ext4_block_write_begin(page, pos, len,
2997 				     ext4_da_get_block_prep);
2998 #else
2999 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3000 #endif
3001 	if (ret < 0) {
3002 		unlock_page(page);
3003 		ext4_journal_stop(handle);
3004 		/*
3005 		 * block_write_begin may have instantiated a few blocks
3006 		 * outside i_size.  Trim these off again. Don't need
3007 		 * i_size_read because we hold i_mutex.
3008 		 */
3009 		if (pos + len > inode->i_size)
3010 			ext4_truncate_failed_write(inode);
3011 
3012 		if (ret == -ENOSPC &&
3013 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3014 			goto retry_journal;
3015 
3016 		put_page(page);
3017 		return ret;
3018 	}
3019 
3020 	*pagep = page;
3021 	return ret;
3022 }
3023 
3024 /*
3025  * Check if we should update i_disksize
3026  * when write to the end of file but not require block allocation
3027  */
3028 static int ext4_da_should_update_i_disksize(struct page *page,
3029 					    unsigned long offset)
3030 {
3031 	struct buffer_head *bh;
3032 	struct inode *inode = page->mapping->host;
3033 	unsigned int idx;
3034 	int i;
3035 
3036 	bh = page_buffers(page);
3037 	idx = offset >> inode->i_blkbits;
3038 
3039 	for (i = 0; i < idx; i++)
3040 		bh = bh->b_this_page;
3041 
3042 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3043 		return 0;
3044 	return 1;
3045 }
3046 
3047 static int ext4_da_write_end(struct file *file,
3048 			     struct address_space *mapping,
3049 			     loff_t pos, unsigned len, unsigned copied,
3050 			     struct page *page, void *fsdata)
3051 {
3052 	struct inode *inode = mapping->host;
3053 	int ret = 0, ret2;
3054 	handle_t *handle = ext4_journal_current_handle();
3055 	loff_t new_i_size;
3056 	unsigned long start, end;
3057 	int write_mode = (int)(unsigned long)fsdata;
3058 
3059 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3060 		return ext4_write_end(file, mapping, pos,
3061 				      len, copied, page, fsdata);
3062 
3063 	trace_ext4_da_write_end(inode, pos, len, copied);
3064 	start = pos & (PAGE_SIZE - 1);
3065 	end = start + copied - 1;
3066 
3067 	/*
3068 	 * generic_write_end() will run mark_inode_dirty() if i_size
3069 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3070 	 * into that.
3071 	 */
3072 	new_i_size = pos + copied;
3073 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3074 		if (ext4_has_inline_data(inode) ||
3075 		    ext4_da_should_update_i_disksize(page, end)) {
3076 			ext4_update_i_disksize(inode, new_i_size);
3077 			/* We need to mark inode dirty even if
3078 			 * new_i_size is less that inode->i_size
3079 			 * bu greater than i_disksize.(hint delalloc)
3080 			 */
3081 			ret = ext4_mark_inode_dirty(handle, inode);
3082 		}
3083 	}
3084 
3085 	if (write_mode != CONVERT_INLINE_DATA &&
3086 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3087 	    ext4_has_inline_data(inode))
3088 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3089 						     page);
3090 	else
3091 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3092 							page, fsdata);
3093 
3094 	copied = ret2;
3095 	if (ret2 < 0)
3096 		ret = ret2;
3097 	ret2 = ext4_journal_stop(handle);
3098 	if (unlikely(ret2 && !ret))
3099 		ret = ret2;
3100 
3101 	return ret ? ret : copied;
3102 }
3103 
3104 /*
3105  * Force all delayed allocation blocks to be allocated for a given inode.
3106  */
3107 int ext4_alloc_da_blocks(struct inode *inode)
3108 {
3109 	trace_ext4_alloc_da_blocks(inode);
3110 
3111 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3112 		return 0;
3113 
3114 	/*
3115 	 * We do something simple for now.  The filemap_flush() will
3116 	 * also start triggering a write of the data blocks, which is
3117 	 * not strictly speaking necessary (and for users of
3118 	 * laptop_mode, not even desirable).  However, to do otherwise
3119 	 * would require replicating code paths in:
3120 	 *
3121 	 * ext4_writepages() ->
3122 	 *    write_cache_pages() ---> (via passed in callback function)
3123 	 *        __mpage_da_writepage() -->
3124 	 *           mpage_add_bh_to_extent()
3125 	 *           mpage_da_map_blocks()
3126 	 *
3127 	 * The problem is that write_cache_pages(), located in
3128 	 * mm/page-writeback.c, marks pages clean in preparation for
3129 	 * doing I/O, which is not desirable if we're not planning on
3130 	 * doing I/O at all.
3131 	 *
3132 	 * We could call write_cache_pages(), and then redirty all of
3133 	 * the pages by calling redirty_page_for_writepage() but that
3134 	 * would be ugly in the extreme.  So instead we would need to
3135 	 * replicate parts of the code in the above functions,
3136 	 * simplifying them because we wouldn't actually intend to
3137 	 * write out the pages, but rather only collect contiguous
3138 	 * logical block extents, call the multi-block allocator, and
3139 	 * then update the buffer heads with the block allocations.
3140 	 *
3141 	 * For now, though, we'll cheat by calling filemap_flush(),
3142 	 * which will map the blocks, and start the I/O, but not
3143 	 * actually wait for the I/O to complete.
3144 	 */
3145 	return filemap_flush(inode->i_mapping);
3146 }
3147 
3148 /*
3149  * bmap() is special.  It gets used by applications such as lilo and by
3150  * the swapper to find the on-disk block of a specific piece of data.
3151  *
3152  * Naturally, this is dangerous if the block concerned is still in the
3153  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3154  * filesystem and enables swap, then they may get a nasty shock when the
3155  * data getting swapped to that swapfile suddenly gets overwritten by
3156  * the original zero's written out previously to the journal and
3157  * awaiting writeback in the kernel's buffer cache.
3158  *
3159  * So, if we see any bmap calls here on a modified, data-journaled file,
3160  * take extra steps to flush any blocks which might be in the cache.
3161  */
3162 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3163 {
3164 	struct inode *inode = mapping->host;
3165 	journal_t *journal;
3166 	int err;
3167 
3168 	/*
3169 	 * We can get here for an inline file via the FIBMAP ioctl
3170 	 */
3171 	if (ext4_has_inline_data(inode))
3172 		return 0;
3173 
3174 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3175 			test_opt(inode->i_sb, DELALLOC)) {
3176 		/*
3177 		 * With delalloc we want to sync the file
3178 		 * so that we can make sure we allocate
3179 		 * blocks for file
3180 		 */
3181 		filemap_write_and_wait(mapping);
3182 	}
3183 
3184 	if (EXT4_JOURNAL(inode) &&
3185 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3186 		/*
3187 		 * This is a REALLY heavyweight approach, but the use of
3188 		 * bmap on dirty files is expected to be extremely rare:
3189 		 * only if we run lilo or swapon on a freshly made file
3190 		 * do we expect this to happen.
3191 		 *
3192 		 * (bmap requires CAP_SYS_RAWIO so this does not
3193 		 * represent an unprivileged user DOS attack --- we'd be
3194 		 * in trouble if mortal users could trigger this path at
3195 		 * will.)
3196 		 *
3197 		 * NB. EXT4_STATE_JDATA is not set on files other than
3198 		 * regular files.  If somebody wants to bmap a directory
3199 		 * or symlink and gets confused because the buffer
3200 		 * hasn't yet been flushed to disk, they deserve
3201 		 * everything they get.
3202 		 */
3203 
3204 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3205 		journal = EXT4_JOURNAL(inode);
3206 		jbd2_journal_lock_updates(journal);
3207 		err = jbd2_journal_flush(journal);
3208 		jbd2_journal_unlock_updates(journal);
3209 
3210 		if (err)
3211 			return 0;
3212 	}
3213 
3214 	return iomap_bmap(mapping, block, &ext4_iomap_ops);
3215 }
3216 
3217 static int ext4_readpage(struct file *file, struct page *page)
3218 {
3219 	int ret = -EAGAIN;
3220 	struct inode *inode = page->mapping->host;
3221 
3222 	trace_ext4_readpage(page);
3223 
3224 	if (ext4_has_inline_data(inode))
3225 		ret = ext4_readpage_inline(inode, page);
3226 
3227 	if (ret == -EAGAIN)
3228 		return ext4_mpage_readpages(inode, NULL, page);
3229 
3230 	return ret;
3231 }
3232 
3233 static void ext4_readahead(struct readahead_control *rac)
3234 {
3235 	struct inode *inode = rac->mapping->host;
3236 
3237 	/* If the file has inline data, no need to do readahead. */
3238 	if (ext4_has_inline_data(inode))
3239 		return;
3240 
3241 	ext4_mpage_readpages(inode, rac, NULL);
3242 }
3243 
3244 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3245 				unsigned int length)
3246 {
3247 	trace_ext4_invalidatepage(page, offset, length);
3248 
3249 	/* No journalling happens on data buffers when this function is used */
3250 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3251 
3252 	block_invalidatepage(page, offset, length);
3253 }
3254 
3255 static int __ext4_journalled_invalidatepage(struct page *page,
3256 					    unsigned int offset,
3257 					    unsigned int length)
3258 {
3259 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3260 
3261 	trace_ext4_journalled_invalidatepage(page, offset, length);
3262 
3263 	/*
3264 	 * If it's a full truncate we just forget about the pending dirtying
3265 	 */
3266 	if (offset == 0 && length == PAGE_SIZE)
3267 		ClearPageChecked(page);
3268 
3269 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3270 }
3271 
3272 /* Wrapper for aops... */
3273 static void ext4_journalled_invalidatepage(struct page *page,
3274 					   unsigned int offset,
3275 					   unsigned int length)
3276 {
3277 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3278 }
3279 
3280 static int ext4_releasepage(struct page *page, gfp_t wait)
3281 {
3282 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3283 
3284 	trace_ext4_releasepage(page);
3285 
3286 	/* Page has dirty journalled data -> cannot release */
3287 	if (PageChecked(page))
3288 		return 0;
3289 	if (journal)
3290 		return jbd2_journal_try_to_free_buffers(journal, page);
3291 	else
3292 		return try_to_free_buffers(page);
3293 }
3294 
3295 static bool ext4_inode_datasync_dirty(struct inode *inode)
3296 {
3297 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3298 
3299 	if (journal)
3300 		return !jbd2_transaction_committed(journal,
3301 					EXT4_I(inode)->i_datasync_tid);
3302 	/* Any metadata buffers to write? */
3303 	if (!list_empty(&inode->i_mapping->private_list))
3304 		return true;
3305 	return inode->i_state & I_DIRTY_DATASYNC;
3306 }
3307 
3308 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3309 			   struct ext4_map_blocks *map, loff_t offset,
3310 			   loff_t length)
3311 {
3312 	u8 blkbits = inode->i_blkbits;
3313 
3314 	/*
3315 	 * Writes that span EOF might trigger an I/O size update on completion,
3316 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3317 	 * there is no other metadata changes being made or are pending.
3318 	 */
3319 	iomap->flags = 0;
3320 	if (ext4_inode_datasync_dirty(inode) ||
3321 	    offset + length > i_size_read(inode))
3322 		iomap->flags |= IOMAP_F_DIRTY;
3323 
3324 	if (map->m_flags & EXT4_MAP_NEW)
3325 		iomap->flags |= IOMAP_F_NEW;
3326 
3327 	iomap->bdev = inode->i_sb->s_bdev;
3328 	iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3329 	iomap->offset = (u64) map->m_lblk << blkbits;
3330 	iomap->length = (u64) map->m_len << blkbits;
3331 
3332 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3333 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3334 		iomap->flags |= IOMAP_F_MERGED;
3335 
3336 	/*
3337 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3338 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3339 	 * set. In order for any allocated unwritten extents to be converted
3340 	 * into written extents correctly within the ->end_io() handler, we
3341 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3342 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3343 	 * been set first.
3344 	 */
3345 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3346 		iomap->type = IOMAP_UNWRITTEN;
3347 		iomap->addr = (u64) map->m_pblk << blkbits;
3348 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3349 		iomap->type = IOMAP_MAPPED;
3350 		iomap->addr = (u64) map->m_pblk << blkbits;
3351 	} else {
3352 		iomap->type = IOMAP_HOLE;
3353 		iomap->addr = IOMAP_NULL_ADDR;
3354 	}
3355 }
3356 
3357 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3358 			    unsigned int flags)
3359 {
3360 	handle_t *handle;
3361 	u8 blkbits = inode->i_blkbits;
3362 	int ret, dio_credits, m_flags = 0, retries = 0;
3363 
3364 	/*
3365 	 * Trim the mapping request to the maximum value that we can map at
3366 	 * once for direct I/O.
3367 	 */
3368 	if (map->m_len > DIO_MAX_BLOCKS)
3369 		map->m_len = DIO_MAX_BLOCKS;
3370 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3371 
3372 retry:
3373 	/*
3374 	 * Either we allocate blocks and then don't get an unwritten extent, so
3375 	 * in that case we have reserved enough credits. Or, the blocks are
3376 	 * already allocated and unwritten. In that case, the extent conversion
3377 	 * fits into the credits as well.
3378 	 */
3379 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3380 	if (IS_ERR(handle))
3381 		return PTR_ERR(handle);
3382 
3383 	/*
3384 	 * DAX and direct I/O are the only two operations that are currently
3385 	 * supported with IOMAP_WRITE.
3386 	 */
3387 	WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3388 	if (IS_DAX(inode))
3389 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3390 	/*
3391 	 * We use i_size instead of i_disksize here because delalloc writeback
3392 	 * can complete at any point during the I/O and subsequently push the
3393 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3394 	 * happening and thus expose allocated blocks to direct I/O reads.
3395 	 */
3396 	else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3397 		m_flags = EXT4_GET_BLOCKS_CREATE;
3398 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3399 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3400 
3401 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3402 
3403 	/*
3404 	 * We cannot fill holes in indirect tree based inodes as that could
3405 	 * expose stale data in the case of a crash. Use the magic error code
3406 	 * to fallback to buffered I/O.
3407 	 */
3408 	if (!m_flags && !ret)
3409 		ret = -ENOTBLK;
3410 
3411 	ext4_journal_stop(handle);
3412 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3413 		goto retry;
3414 
3415 	return ret;
3416 }
3417 
3418 
3419 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3420 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3421 {
3422 	int ret;
3423 	struct ext4_map_blocks map;
3424 	u8 blkbits = inode->i_blkbits;
3425 
3426 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3427 		return -EINVAL;
3428 
3429 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3430 		return -ERANGE;
3431 
3432 	/*
3433 	 * Calculate the first and last logical blocks respectively.
3434 	 */
3435 	map.m_lblk = offset >> blkbits;
3436 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3437 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3438 
3439 	if (flags & IOMAP_WRITE)
3440 		ret = ext4_iomap_alloc(inode, &map, flags);
3441 	else
3442 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3443 
3444 	if (ret < 0)
3445 		return ret;
3446 
3447 	ext4_set_iomap(inode, iomap, &map, offset, length);
3448 
3449 	return 0;
3450 }
3451 
3452 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3453 		loff_t length, unsigned flags, struct iomap *iomap,
3454 		struct iomap *srcmap)
3455 {
3456 	int ret;
3457 
3458 	/*
3459 	 * Even for writes we don't need to allocate blocks, so just pretend
3460 	 * we are reading to save overhead of starting a transaction.
3461 	 */
3462 	flags &= ~IOMAP_WRITE;
3463 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3464 	WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3465 	return ret;
3466 }
3467 
3468 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3469 			  ssize_t written, unsigned flags, struct iomap *iomap)
3470 {
3471 	/*
3472 	 * Check to see whether an error occurred while writing out the data to
3473 	 * the allocated blocks. If so, return the magic error code so that we
3474 	 * fallback to buffered I/O and attempt to complete the remainder of
3475 	 * the I/O. Any blocks that may have been allocated in preparation for
3476 	 * the direct I/O will be reused during buffered I/O.
3477 	 */
3478 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3479 		return -ENOTBLK;
3480 
3481 	return 0;
3482 }
3483 
3484 const struct iomap_ops ext4_iomap_ops = {
3485 	.iomap_begin		= ext4_iomap_begin,
3486 	.iomap_end		= ext4_iomap_end,
3487 };
3488 
3489 const struct iomap_ops ext4_iomap_overwrite_ops = {
3490 	.iomap_begin		= ext4_iomap_overwrite_begin,
3491 	.iomap_end		= ext4_iomap_end,
3492 };
3493 
3494 static bool ext4_iomap_is_delalloc(struct inode *inode,
3495 				   struct ext4_map_blocks *map)
3496 {
3497 	struct extent_status es;
3498 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3499 
3500 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3501 				  map->m_lblk, end, &es);
3502 
3503 	if (!es.es_len || es.es_lblk > end)
3504 		return false;
3505 
3506 	if (es.es_lblk > map->m_lblk) {
3507 		map->m_len = es.es_lblk - map->m_lblk;
3508 		return false;
3509 	}
3510 
3511 	offset = map->m_lblk - es.es_lblk;
3512 	map->m_len = es.es_len - offset;
3513 
3514 	return true;
3515 }
3516 
3517 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3518 				   loff_t length, unsigned int flags,
3519 				   struct iomap *iomap, struct iomap *srcmap)
3520 {
3521 	int ret;
3522 	bool delalloc = false;
3523 	struct ext4_map_blocks map;
3524 	u8 blkbits = inode->i_blkbits;
3525 
3526 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3527 		return -EINVAL;
3528 
3529 	if (ext4_has_inline_data(inode)) {
3530 		ret = ext4_inline_data_iomap(inode, iomap);
3531 		if (ret != -EAGAIN) {
3532 			if (ret == 0 && offset >= iomap->length)
3533 				ret = -ENOENT;
3534 			return ret;
3535 		}
3536 	}
3537 
3538 	/*
3539 	 * Calculate the first and last logical block respectively.
3540 	 */
3541 	map.m_lblk = offset >> blkbits;
3542 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3543 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3544 
3545 	/*
3546 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3547 	 * So handle it here itself instead of querying ext4_map_blocks().
3548 	 * Since ext4_map_blocks() will warn about it and will return
3549 	 * -EIO error.
3550 	 */
3551 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3552 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3553 
3554 		if (offset >= sbi->s_bitmap_maxbytes) {
3555 			map.m_flags = 0;
3556 			goto set_iomap;
3557 		}
3558 	}
3559 
3560 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3561 	if (ret < 0)
3562 		return ret;
3563 	if (ret == 0)
3564 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3565 
3566 set_iomap:
3567 	ext4_set_iomap(inode, iomap, &map, offset, length);
3568 	if (delalloc && iomap->type == IOMAP_HOLE)
3569 		iomap->type = IOMAP_DELALLOC;
3570 
3571 	return 0;
3572 }
3573 
3574 const struct iomap_ops ext4_iomap_report_ops = {
3575 	.iomap_begin = ext4_iomap_begin_report,
3576 };
3577 
3578 /*
3579  * Pages can be marked dirty completely asynchronously from ext4's journalling
3580  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3581  * much here because ->set_page_dirty is called under VFS locks.  The page is
3582  * not necessarily locked.
3583  *
3584  * We cannot just dirty the page and leave attached buffers clean, because the
3585  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3586  * or jbddirty because all the journalling code will explode.
3587  *
3588  * So what we do is to mark the page "pending dirty" and next time writepage
3589  * is called, propagate that into the buffers appropriately.
3590  */
3591 static int ext4_journalled_set_page_dirty(struct page *page)
3592 {
3593 	SetPageChecked(page);
3594 	return __set_page_dirty_nobuffers(page);
3595 }
3596 
3597 static int ext4_set_page_dirty(struct page *page)
3598 {
3599 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3600 	WARN_ON_ONCE(!page_has_buffers(page));
3601 	return __set_page_dirty_buffers(page);
3602 }
3603 
3604 static const struct address_space_operations ext4_aops = {
3605 	.readpage		= ext4_readpage,
3606 	.readahead		= ext4_readahead,
3607 	.writepage		= ext4_writepage,
3608 	.writepages		= ext4_writepages,
3609 	.write_begin		= ext4_write_begin,
3610 	.write_end		= ext4_write_end,
3611 	.set_page_dirty		= ext4_set_page_dirty,
3612 	.bmap			= ext4_bmap,
3613 	.invalidatepage		= ext4_invalidatepage,
3614 	.releasepage		= ext4_releasepage,
3615 	.direct_IO		= noop_direct_IO,
3616 	.migratepage		= buffer_migrate_page,
3617 	.is_partially_uptodate  = block_is_partially_uptodate,
3618 	.error_remove_page	= generic_error_remove_page,
3619 };
3620 
3621 static const struct address_space_operations ext4_journalled_aops = {
3622 	.readpage		= ext4_readpage,
3623 	.readahead		= ext4_readahead,
3624 	.writepage		= ext4_writepage,
3625 	.writepages		= ext4_writepages,
3626 	.write_begin		= ext4_write_begin,
3627 	.write_end		= ext4_journalled_write_end,
3628 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3629 	.bmap			= ext4_bmap,
3630 	.invalidatepage		= ext4_journalled_invalidatepage,
3631 	.releasepage		= ext4_releasepage,
3632 	.direct_IO		= noop_direct_IO,
3633 	.is_partially_uptodate  = block_is_partially_uptodate,
3634 	.error_remove_page	= generic_error_remove_page,
3635 };
3636 
3637 static const struct address_space_operations ext4_da_aops = {
3638 	.readpage		= ext4_readpage,
3639 	.readahead		= ext4_readahead,
3640 	.writepage		= ext4_writepage,
3641 	.writepages		= ext4_writepages,
3642 	.write_begin		= ext4_da_write_begin,
3643 	.write_end		= ext4_da_write_end,
3644 	.set_page_dirty		= ext4_set_page_dirty,
3645 	.bmap			= ext4_bmap,
3646 	.invalidatepage		= ext4_invalidatepage,
3647 	.releasepage		= ext4_releasepage,
3648 	.direct_IO		= noop_direct_IO,
3649 	.migratepage		= buffer_migrate_page,
3650 	.is_partially_uptodate  = block_is_partially_uptodate,
3651 	.error_remove_page	= generic_error_remove_page,
3652 };
3653 
3654 static const struct address_space_operations ext4_dax_aops = {
3655 	.writepages		= ext4_dax_writepages,
3656 	.direct_IO		= noop_direct_IO,
3657 	.set_page_dirty		= noop_set_page_dirty,
3658 	.bmap			= ext4_bmap,
3659 	.invalidatepage		= noop_invalidatepage,
3660 };
3661 
3662 void ext4_set_aops(struct inode *inode)
3663 {
3664 	switch (ext4_inode_journal_mode(inode)) {
3665 	case EXT4_INODE_ORDERED_DATA_MODE:
3666 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3667 		break;
3668 	case EXT4_INODE_JOURNAL_DATA_MODE:
3669 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3670 		return;
3671 	default:
3672 		BUG();
3673 	}
3674 	if (IS_DAX(inode))
3675 		inode->i_mapping->a_ops = &ext4_dax_aops;
3676 	else if (test_opt(inode->i_sb, DELALLOC))
3677 		inode->i_mapping->a_ops = &ext4_da_aops;
3678 	else
3679 		inode->i_mapping->a_ops = &ext4_aops;
3680 }
3681 
3682 static int __ext4_block_zero_page_range(handle_t *handle,
3683 		struct address_space *mapping, loff_t from, loff_t length)
3684 {
3685 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3686 	unsigned offset = from & (PAGE_SIZE-1);
3687 	unsigned blocksize, pos;
3688 	ext4_lblk_t iblock;
3689 	struct inode *inode = mapping->host;
3690 	struct buffer_head *bh;
3691 	struct page *page;
3692 	int err = 0;
3693 
3694 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3695 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3696 	if (!page)
3697 		return -ENOMEM;
3698 
3699 	blocksize = inode->i_sb->s_blocksize;
3700 
3701 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3702 
3703 	if (!page_has_buffers(page))
3704 		create_empty_buffers(page, blocksize, 0);
3705 
3706 	/* Find the buffer that contains "offset" */
3707 	bh = page_buffers(page);
3708 	pos = blocksize;
3709 	while (offset >= pos) {
3710 		bh = bh->b_this_page;
3711 		iblock++;
3712 		pos += blocksize;
3713 	}
3714 	if (buffer_freed(bh)) {
3715 		BUFFER_TRACE(bh, "freed: skip");
3716 		goto unlock;
3717 	}
3718 	if (!buffer_mapped(bh)) {
3719 		BUFFER_TRACE(bh, "unmapped");
3720 		ext4_get_block(inode, iblock, bh, 0);
3721 		/* unmapped? It's a hole - nothing to do */
3722 		if (!buffer_mapped(bh)) {
3723 			BUFFER_TRACE(bh, "still unmapped");
3724 			goto unlock;
3725 		}
3726 	}
3727 
3728 	/* Ok, it's mapped. Make sure it's up-to-date */
3729 	if (PageUptodate(page))
3730 		set_buffer_uptodate(bh);
3731 
3732 	if (!buffer_uptodate(bh)) {
3733 		err = -EIO;
3734 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3735 		wait_on_buffer(bh);
3736 		/* Uhhuh. Read error. Complain and punt. */
3737 		if (!buffer_uptodate(bh))
3738 			goto unlock;
3739 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3740 			/* We expect the key to be set. */
3741 			BUG_ON(!fscrypt_has_encryption_key(inode));
3742 			err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3743 							       bh_offset(bh));
3744 			if (err) {
3745 				clear_buffer_uptodate(bh);
3746 				goto unlock;
3747 			}
3748 		}
3749 	}
3750 	if (ext4_should_journal_data(inode)) {
3751 		BUFFER_TRACE(bh, "get write access");
3752 		err = ext4_journal_get_write_access(handle, bh);
3753 		if (err)
3754 			goto unlock;
3755 	}
3756 	zero_user(page, offset, length);
3757 	BUFFER_TRACE(bh, "zeroed end of block");
3758 
3759 	if (ext4_should_journal_data(inode)) {
3760 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3761 	} else {
3762 		err = 0;
3763 		mark_buffer_dirty(bh);
3764 		if (ext4_should_order_data(inode))
3765 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3766 					length);
3767 	}
3768 
3769 unlock:
3770 	unlock_page(page);
3771 	put_page(page);
3772 	return err;
3773 }
3774 
3775 /*
3776  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3777  * starting from file offset 'from'.  The range to be zero'd must
3778  * be contained with in one block.  If the specified range exceeds
3779  * the end of the block it will be shortened to end of the block
3780  * that cooresponds to 'from'
3781  */
3782 static int ext4_block_zero_page_range(handle_t *handle,
3783 		struct address_space *mapping, loff_t from, loff_t length)
3784 {
3785 	struct inode *inode = mapping->host;
3786 	unsigned offset = from & (PAGE_SIZE-1);
3787 	unsigned blocksize = inode->i_sb->s_blocksize;
3788 	unsigned max = blocksize - (offset & (blocksize - 1));
3789 
3790 	/*
3791 	 * correct length if it does not fall between
3792 	 * 'from' and the end of the block
3793 	 */
3794 	if (length > max || length < 0)
3795 		length = max;
3796 
3797 	if (IS_DAX(inode)) {
3798 		return iomap_zero_range(inode, from, length, NULL,
3799 					&ext4_iomap_ops);
3800 	}
3801 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3802 }
3803 
3804 /*
3805  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3806  * up to the end of the block which corresponds to `from'.
3807  * This required during truncate. We need to physically zero the tail end
3808  * of that block so it doesn't yield old data if the file is later grown.
3809  */
3810 static int ext4_block_truncate_page(handle_t *handle,
3811 		struct address_space *mapping, loff_t from)
3812 {
3813 	unsigned offset = from & (PAGE_SIZE-1);
3814 	unsigned length;
3815 	unsigned blocksize;
3816 	struct inode *inode = mapping->host;
3817 
3818 	/* If we are processing an encrypted inode during orphan list handling */
3819 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3820 		return 0;
3821 
3822 	blocksize = inode->i_sb->s_blocksize;
3823 	length = blocksize - (offset & (blocksize - 1));
3824 
3825 	return ext4_block_zero_page_range(handle, mapping, from, length);
3826 }
3827 
3828 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3829 			     loff_t lstart, loff_t length)
3830 {
3831 	struct super_block *sb = inode->i_sb;
3832 	struct address_space *mapping = inode->i_mapping;
3833 	unsigned partial_start, partial_end;
3834 	ext4_fsblk_t start, end;
3835 	loff_t byte_end = (lstart + length - 1);
3836 	int err = 0;
3837 
3838 	partial_start = lstart & (sb->s_blocksize - 1);
3839 	partial_end = byte_end & (sb->s_blocksize - 1);
3840 
3841 	start = lstart >> sb->s_blocksize_bits;
3842 	end = byte_end >> sb->s_blocksize_bits;
3843 
3844 	/* Handle partial zero within the single block */
3845 	if (start == end &&
3846 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3847 		err = ext4_block_zero_page_range(handle, mapping,
3848 						 lstart, length);
3849 		return err;
3850 	}
3851 	/* Handle partial zero out on the start of the range */
3852 	if (partial_start) {
3853 		err = ext4_block_zero_page_range(handle, mapping,
3854 						 lstart, sb->s_blocksize);
3855 		if (err)
3856 			return err;
3857 	}
3858 	/* Handle partial zero out on the end of the range */
3859 	if (partial_end != sb->s_blocksize - 1)
3860 		err = ext4_block_zero_page_range(handle, mapping,
3861 						 byte_end - partial_end,
3862 						 partial_end + 1);
3863 	return err;
3864 }
3865 
3866 int ext4_can_truncate(struct inode *inode)
3867 {
3868 	if (S_ISREG(inode->i_mode))
3869 		return 1;
3870 	if (S_ISDIR(inode->i_mode))
3871 		return 1;
3872 	if (S_ISLNK(inode->i_mode))
3873 		return !ext4_inode_is_fast_symlink(inode);
3874 	return 0;
3875 }
3876 
3877 /*
3878  * We have to make sure i_disksize gets properly updated before we truncate
3879  * page cache due to hole punching or zero range. Otherwise i_disksize update
3880  * can get lost as it may have been postponed to submission of writeback but
3881  * that will never happen after we truncate page cache.
3882  */
3883 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3884 				      loff_t len)
3885 {
3886 	handle_t *handle;
3887 	int ret;
3888 
3889 	loff_t size = i_size_read(inode);
3890 
3891 	WARN_ON(!inode_is_locked(inode));
3892 	if (offset > size || offset + len < size)
3893 		return 0;
3894 
3895 	if (EXT4_I(inode)->i_disksize >= size)
3896 		return 0;
3897 
3898 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3899 	if (IS_ERR(handle))
3900 		return PTR_ERR(handle);
3901 	ext4_update_i_disksize(inode, size);
3902 	ret = ext4_mark_inode_dirty(handle, inode);
3903 	ext4_journal_stop(handle);
3904 
3905 	return ret;
3906 }
3907 
3908 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3909 {
3910 	up_write(&ei->i_mmap_sem);
3911 	schedule();
3912 	down_write(&ei->i_mmap_sem);
3913 }
3914 
3915 int ext4_break_layouts(struct inode *inode)
3916 {
3917 	struct ext4_inode_info *ei = EXT4_I(inode);
3918 	struct page *page;
3919 	int error;
3920 
3921 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3922 		return -EINVAL;
3923 
3924 	do {
3925 		page = dax_layout_busy_page(inode->i_mapping);
3926 		if (!page)
3927 			return 0;
3928 
3929 		error = ___wait_var_event(&page->_refcount,
3930 				atomic_read(&page->_refcount) == 1,
3931 				TASK_INTERRUPTIBLE, 0, 0,
3932 				ext4_wait_dax_page(ei));
3933 	} while (error == 0);
3934 
3935 	return error;
3936 }
3937 
3938 /*
3939  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3940  * associated with the given offset and length
3941  *
3942  * @inode:  File inode
3943  * @offset: The offset where the hole will begin
3944  * @len:    The length of the hole
3945  *
3946  * Returns: 0 on success or negative on failure
3947  */
3948 
3949 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3950 {
3951 	struct super_block *sb = inode->i_sb;
3952 	ext4_lblk_t first_block, stop_block;
3953 	struct address_space *mapping = inode->i_mapping;
3954 	loff_t first_block_offset, last_block_offset;
3955 	handle_t *handle;
3956 	unsigned int credits;
3957 	int ret = 0, ret2 = 0;
3958 
3959 	trace_ext4_punch_hole(inode, offset, length, 0);
3960 
3961 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3962 	if (ext4_has_inline_data(inode)) {
3963 		down_write(&EXT4_I(inode)->i_mmap_sem);
3964 		ret = ext4_convert_inline_data(inode);
3965 		up_write(&EXT4_I(inode)->i_mmap_sem);
3966 		if (ret)
3967 			return ret;
3968 	}
3969 
3970 	/*
3971 	 * Write out all dirty pages to avoid race conditions
3972 	 * Then release them.
3973 	 */
3974 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3975 		ret = filemap_write_and_wait_range(mapping, offset,
3976 						   offset + length - 1);
3977 		if (ret)
3978 			return ret;
3979 	}
3980 
3981 	inode_lock(inode);
3982 
3983 	/* No need to punch hole beyond i_size */
3984 	if (offset >= inode->i_size)
3985 		goto out_mutex;
3986 
3987 	/*
3988 	 * If the hole extends beyond i_size, set the hole
3989 	 * to end after the page that contains i_size
3990 	 */
3991 	if (offset + length > inode->i_size) {
3992 		length = inode->i_size +
3993 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3994 		   offset;
3995 	}
3996 
3997 	if (offset & (sb->s_blocksize - 1) ||
3998 	    (offset + length) & (sb->s_blocksize - 1)) {
3999 		/*
4000 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4001 		 * partial block
4002 		 */
4003 		ret = ext4_inode_attach_jinode(inode);
4004 		if (ret < 0)
4005 			goto out_mutex;
4006 
4007 	}
4008 
4009 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4010 	inode_dio_wait(inode);
4011 
4012 	/*
4013 	 * Prevent page faults from reinstantiating pages we have released from
4014 	 * page cache.
4015 	 */
4016 	down_write(&EXT4_I(inode)->i_mmap_sem);
4017 
4018 	ret = ext4_break_layouts(inode);
4019 	if (ret)
4020 		goto out_dio;
4021 
4022 	first_block_offset = round_up(offset, sb->s_blocksize);
4023 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4024 
4025 	/* Now release the pages and zero block aligned part of pages*/
4026 	if (last_block_offset > first_block_offset) {
4027 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4028 		if (ret)
4029 			goto out_dio;
4030 		truncate_pagecache_range(inode, first_block_offset,
4031 					 last_block_offset);
4032 	}
4033 
4034 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4035 		credits = ext4_writepage_trans_blocks(inode);
4036 	else
4037 		credits = ext4_blocks_for_truncate(inode);
4038 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4039 	if (IS_ERR(handle)) {
4040 		ret = PTR_ERR(handle);
4041 		ext4_std_error(sb, ret);
4042 		goto out_dio;
4043 	}
4044 
4045 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4046 				       length);
4047 	if (ret)
4048 		goto out_stop;
4049 
4050 	first_block = (offset + sb->s_blocksize - 1) >>
4051 		EXT4_BLOCK_SIZE_BITS(sb);
4052 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4053 
4054 	/* If there are blocks to remove, do it */
4055 	if (stop_block > first_block) {
4056 
4057 		down_write(&EXT4_I(inode)->i_data_sem);
4058 		ext4_discard_preallocations(inode, 0);
4059 
4060 		ret = ext4_es_remove_extent(inode, first_block,
4061 					    stop_block - first_block);
4062 		if (ret) {
4063 			up_write(&EXT4_I(inode)->i_data_sem);
4064 			goto out_stop;
4065 		}
4066 
4067 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4068 			ret = ext4_ext_remove_space(inode, first_block,
4069 						    stop_block - 1);
4070 		else
4071 			ret = ext4_ind_remove_space(handle, inode, first_block,
4072 						    stop_block);
4073 
4074 		up_write(&EXT4_I(inode)->i_data_sem);
4075 	}
4076 	if (IS_SYNC(inode))
4077 		ext4_handle_sync(handle);
4078 
4079 	inode->i_mtime = inode->i_ctime = current_time(inode);
4080 	ret2 = ext4_mark_inode_dirty(handle, inode);
4081 	if (unlikely(ret2))
4082 		ret = ret2;
4083 	if (ret >= 0)
4084 		ext4_update_inode_fsync_trans(handle, inode, 1);
4085 out_stop:
4086 	ext4_journal_stop(handle);
4087 out_dio:
4088 	up_write(&EXT4_I(inode)->i_mmap_sem);
4089 out_mutex:
4090 	inode_unlock(inode);
4091 	return ret;
4092 }
4093 
4094 int ext4_inode_attach_jinode(struct inode *inode)
4095 {
4096 	struct ext4_inode_info *ei = EXT4_I(inode);
4097 	struct jbd2_inode *jinode;
4098 
4099 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4100 		return 0;
4101 
4102 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4103 	spin_lock(&inode->i_lock);
4104 	if (!ei->jinode) {
4105 		if (!jinode) {
4106 			spin_unlock(&inode->i_lock);
4107 			return -ENOMEM;
4108 		}
4109 		ei->jinode = jinode;
4110 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4111 		jinode = NULL;
4112 	}
4113 	spin_unlock(&inode->i_lock);
4114 	if (unlikely(jinode != NULL))
4115 		jbd2_free_inode(jinode);
4116 	return 0;
4117 }
4118 
4119 /*
4120  * ext4_truncate()
4121  *
4122  * We block out ext4_get_block() block instantiations across the entire
4123  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4124  * simultaneously on behalf of the same inode.
4125  *
4126  * As we work through the truncate and commit bits of it to the journal there
4127  * is one core, guiding principle: the file's tree must always be consistent on
4128  * disk.  We must be able to restart the truncate after a crash.
4129  *
4130  * The file's tree may be transiently inconsistent in memory (although it
4131  * probably isn't), but whenever we close off and commit a journal transaction,
4132  * the contents of (the filesystem + the journal) must be consistent and
4133  * restartable.  It's pretty simple, really: bottom up, right to left (although
4134  * left-to-right works OK too).
4135  *
4136  * Note that at recovery time, journal replay occurs *before* the restart of
4137  * truncate against the orphan inode list.
4138  *
4139  * The committed inode has the new, desired i_size (which is the same as
4140  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4141  * that this inode's truncate did not complete and it will again call
4142  * ext4_truncate() to have another go.  So there will be instantiated blocks
4143  * to the right of the truncation point in a crashed ext4 filesystem.  But
4144  * that's fine - as long as they are linked from the inode, the post-crash
4145  * ext4_truncate() run will find them and release them.
4146  */
4147 int ext4_truncate(struct inode *inode)
4148 {
4149 	struct ext4_inode_info *ei = EXT4_I(inode);
4150 	unsigned int credits;
4151 	int err = 0, err2;
4152 	handle_t *handle;
4153 	struct address_space *mapping = inode->i_mapping;
4154 
4155 	/*
4156 	 * There is a possibility that we're either freeing the inode
4157 	 * or it's a completely new inode. In those cases we might not
4158 	 * have i_mutex locked because it's not necessary.
4159 	 */
4160 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4161 		WARN_ON(!inode_is_locked(inode));
4162 	trace_ext4_truncate_enter(inode);
4163 
4164 	if (!ext4_can_truncate(inode))
4165 		goto out_trace;
4166 
4167 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4168 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4169 
4170 	if (ext4_has_inline_data(inode)) {
4171 		int has_inline = 1;
4172 
4173 		err = ext4_inline_data_truncate(inode, &has_inline);
4174 		if (err || has_inline)
4175 			goto out_trace;
4176 	}
4177 
4178 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4179 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4180 		if (ext4_inode_attach_jinode(inode) < 0)
4181 			goto out_trace;
4182 	}
4183 
4184 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4185 		credits = ext4_writepage_trans_blocks(inode);
4186 	else
4187 		credits = ext4_blocks_for_truncate(inode);
4188 
4189 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4190 	if (IS_ERR(handle)) {
4191 		err = PTR_ERR(handle);
4192 		goto out_trace;
4193 	}
4194 
4195 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4196 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4197 
4198 	/*
4199 	 * We add the inode to the orphan list, so that if this
4200 	 * truncate spans multiple transactions, and we crash, we will
4201 	 * resume the truncate when the filesystem recovers.  It also
4202 	 * marks the inode dirty, to catch the new size.
4203 	 *
4204 	 * Implication: the file must always be in a sane, consistent
4205 	 * truncatable state while each transaction commits.
4206 	 */
4207 	err = ext4_orphan_add(handle, inode);
4208 	if (err)
4209 		goto out_stop;
4210 
4211 	down_write(&EXT4_I(inode)->i_data_sem);
4212 
4213 	ext4_discard_preallocations(inode, 0);
4214 
4215 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4216 		err = ext4_ext_truncate(handle, inode);
4217 	else
4218 		ext4_ind_truncate(handle, inode);
4219 
4220 	up_write(&ei->i_data_sem);
4221 	if (err)
4222 		goto out_stop;
4223 
4224 	if (IS_SYNC(inode))
4225 		ext4_handle_sync(handle);
4226 
4227 out_stop:
4228 	/*
4229 	 * If this was a simple ftruncate() and the file will remain alive,
4230 	 * then we need to clear up the orphan record which we created above.
4231 	 * However, if this was a real unlink then we were called by
4232 	 * ext4_evict_inode(), and we allow that function to clean up the
4233 	 * orphan info for us.
4234 	 */
4235 	if (inode->i_nlink)
4236 		ext4_orphan_del(handle, inode);
4237 
4238 	inode->i_mtime = inode->i_ctime = current_time(inode);
4239 	err2 = ext4_mark_inode_dirty(handle, inode);
4240 	if (unlikely(err2 && !err))
4241 		err = err2;
4242 	ext4_journal_stop(handle);
4243 
4244 out_trace:
4245 	trace_ext4_truncate_exit(inode);
4246 	return err;
4247 }
4248 
4249 /*
4250  * ext4_get_inode_loc returns with an extra refcount against the inode's
4251  * underlying buffer_head on success. If 'in_mem' is true, we have all
4252  * data in memory that is needed to recreate the on-disk version of this
4253  * inode.
4254  */
4255 static int __ext4_get_inode_loc(struct inode *inode,
4256 				struct ext4_iloc *iloc, int in_mem)
4257 {
4258 	struct ext4_group_desc	*gdp;
4259 	struct buffer_head	*bh;
4260 	struct super_block	*sb = inode->i_sb;
4261 	ext4_fsblk_t		block;
4262 	struct blk_plug		plug;
4263 	int			inodes_per_block, inode_offset;
4264 
4265 	iloc->bh = NULL;
4266 	if (inode->i_ino < EXT4_ROOT_INO ||
4267 	    inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4268 		return -EFSCORRUPTED;
4269 
4270 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4271 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4272 	if (!gdp)
4273 		return -EIO;
4274 
4275 	/*
4276 	 * Figure out the offset within the block group inode table
4277 	 */
4278 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4279 	inode_offset = ((inode->i_ino - 1) %
4280 			EXT4_INODES_PER_GROUP(sb));
4281 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4282 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4283 
4284 	bh = sb_getblk(sb, block);
4285 	if (unlikely(!bh))
4286 		return -ENOMEM;
4287 	if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4288 		goto simulate_eio;
4289 	if (!buffer_uptodate(bh)) {
4290 		lock_buffer(bh);
4291 
4292 		/*
4293 		 * If the buffer has the write error flag, we have failed
4294 		 * to write out another inode in the same block.  In this
4295 		 * case, we don't have to read the block because we may
4296 		 * read the old inode data successfully.
4297 		 */
4298 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4299 			set_buffer_uptodate(bh);
4300 
4301 		if (buffer_uptodate(bh)) {
4302 			/* someone brought it uptodate while we waited */
4303 			unlock_buffer(bh);
4304 			goto has_buffer;
4305 		}
4306 
4307 		/*
4308 		 * If we have all information of the inode in memory and this
4309 		 * is the only valid inode in the block, we need not read the
4310 		 * block.
4311 		 */
4312 		if (in_mem) {
4313 			struct buffer_head *bitmap_bh;
4314 			int i, start;
4315 
4316 			start = inode_offset & ~(inodes_per_block - 1);
4317 
4318 			/* Is the inode bitmap in cache? */
4319 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4320 			if (unlikely(!bitmap_bh))
4321 				goto make_io;
4322 
4323 			/*
4324 			 * If the inode bitmap isn't in cache then the
4325 			 * optimisation may end up performing two reads instead
4326 			 * of one, so skip it.
4327 			 */
4328 			if (!buffer_uptodate(bitmap_bh)) {
4329 				brelse(bitmap_bh);
4330 				goto make_io;
4331 			}
4332 			for (i = start; i < start + inodes_per_block; i++) {
4333 				if (i == inode_offset)
4334 					continue;
4335 				if (ext4_test_bit(i, bitmap_bh->b_data))
4336 					break;
4337 			}
4338 			brelse(bitmap_bh);
4339 			if (i == start + inodes_per_block) {
4340 				/* all other inodes are free, so skip I/O */
4341 				memset(bh->b_data, 0, bh->b_size);
4342 				set_buffer_uptodate(bh);
4343 				unlock_buffer(bh);
4344 				goto has_buffer;
4345 			}
4346 		}
4347 
4348 make_io:
4349 		/*
4350 		 * If we need to do any I/O, try to pre-readahead extra
4351 		 * blocks from the inode table.
4352 		 */
4353 		blk_start_plug(&plug);
4354 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4355 			ext4_fsblk_t b, end, table;
4356 			unsigned num;
4357 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4358 
4359 			table = ext4_inode_table(sb, gdp);
4360 			/* s_inode_readahead_blks is always a power of 2 */
4361 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4362 			if (table > b)
4363 				b = table;
4364 			end = b + ra_blks;
4365 			num = EXT4_INODES_PER_GROUP(sb);
4366 			if (ext4_has_group_desc_csum(sb))
4367 				num -= ext4_itable_unused_count(sb, gdp);
4368 			table += num / inodes_per_block;
4369 			if (end > table)
4370 				end = table;
4371 			while (b <= end)
4372 				sb_breadahead_unmovable(sb, b++);
4373 		}
4374 
4375 		/*
4376 		 * There are other valid inodes in the buffer, this inode
4377 		 * has in-inode xattrs, or we don't have this inode in memory.
4378 		 * Read the block from disk.
4379 		 */
4380 		trace_ext4_load_inode(inode);
4381 		get_bh(bh);
4382 		bh->b_end_io = end_buffer_read_sync;
4383 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4384 		blk_finish_plug(&plug);
4385 		wait_on_buffer(bh);
4386 		if (!buffer_uptodate(bh)) {
4387 		simulate_eio:
4388 			ext4_error_inode_block(inode, block, EIO,
4389 					       "unable to read itable block");
4390 			brelse(bh);
4391 			return -EIO;
4392 		}
4393 	}
4394 has_buffer:
4395 	iloc->bh = bh;
4396 	return 0;
4397 }
4398 
4399 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4400 {
4401 	/* We have all inode data except xattrs in memory here. */
4402 	return __ext4_get_inode_loc(inode, iloc,
4403 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4404 }
4405 
4406 static bool ext4_should_enable_dax(struct inode *inode)
4407 {
4408 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4409 
4410 	if (test_opt2(inode->i_sb, DAX_NEVER))
4411 		return false;
4412 	if (!S_ISREG(inode->i_mode))
4413 		return false;
4414 	if (ext4_should_journal_data(inode))
4415 		return false;
4416 	if (ext4_has_inline_data(inode))
4417 		return false;
4418 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4419 		return false;
4420 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4421 		return false;
4422 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4423 		return false;
4424 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4425 		return true;
4426 
4427 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4428 }
4429 
4430 void ext4_set_inode_flags(struct inode *inode, bool init)
4431 {
4432 	unsigned int flags = EXT4_I(inode)->i_flags;
4433 	unsigned int new_fl = 0;
4434 
4435 	WARN_ON_ONCE(IS_DAX(inode) && init);
4436 
4437 	if (flags & EXT4_SYNC_FL)
4438 		new_fl |= S_SYNC;
4439 	if (flags & EXT4_APPEND_FL)
4440 		new_fl |= S_APPEND;
4441 	if (flags & EXT4_IMMUTABLE_FL)
4442 		new_fl |= S_IMMUTABLE;
4443 	if (flags & EXT4_NOATIME_FL)
4444 		new_fl |= S_NOATIME;
4445 	if (flags & EXT4_DIRSYNC_FL)
4446 		new_fl |= S_DIRSYNC;
4447 
4448 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4449 	 * here if already set. */
4450 	new_fl |= (inode->i_flags & S_DAX);
4451 	if (init && ext4_should_enable_dax(inode))
4452 		new_fl |= S_DAX;
4453 
4454 	if (flags & EXT4_ENCRYPT_FL)
4455 		new_fl |= S_ENCRYPTED;
4456 	if (flags & EXT4_CASEFOLD_FL)
4457 		new_fl |= S_CASEFOLD;
4458 	if (flags & EXT4_VERITY_FL)
4459 		new_fl |= S_VERITY;
4460 	inode_set_flags(inode, new_fl,
4461 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4462 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4463 }
4464 
4465 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4466 				  struct ext4_inode_info *ei)
4467 {
4468 	blkcnt_t i_blocks ;
4469 	struct inode *inode = &(ei->vfs_inode);
4470 	struct super_block *sb = inode->i_sb;
4471 
4472 	if (ext4_has_feature_huge_file(sb)) {
4473 		/* we are using combined 48 bit field */
4474 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4475 					le32_to_cpu(raw_inode->i_blocks_lo);
4476 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4477 			/* i_blocks represent file system block size */
4478 			return i_blocks  << (inode->i_blkbits - 9);
4479 		} else {
4480 			return i_blocks;
4481 		}
4482 	} else {
4483 		return le32_to_cpu(raw_inode->i_blocks_lo);
4484 	}
4485 }
4486 
4487 static inline int ext4_iget_extra_inode(struct inode *inode,
4488 					 struct ext4_inode *raw_inode,
4489 					 struct ext4_inode_info *ei)
4490 {
4491 	__le32 *magic = (void *)raw_inode +
4492 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4493 
4494 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4495 	    EXT4_INODE_SIZE(inode->i_sb) &&
4496 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4497 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4498 		return ext4_find_inline_data_nolock(inode);
4499 	} else
4500 		EXT4_I(inode)->i_inline_off = 0;
4501 	return 0;
4502 }
4503 
4504 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4505 {
4506 	if (!ext4_has_feature_project(inode->i_sb))
4507 		return -EOPNOTSUPP;
4508 	*projid = EXT4_I(inode)->i_projid;
4509 	return 0;
4510 }
4511 
4512 /*
4513  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4514  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4515  * set.
4516  */
4517 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4518 {
4519 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4520 		inode_set_iversion_raw(inode, val);
4521 	else
4522 		inode_set_iversion_queried(inode, val);
4523 }
4524 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4525 {
4526 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4527 		return inode_peek_iversion_raw(inode);
4528 	else
4529 		return inode_peek_iversion(inode);
4530 }
4531 
4532 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4533 			  ext4_iget_flags flags, const char *function,
4534 			  unsigned int line)
4535 {
4536 	struct ext4_iloc iloc;
4537 	struct ext4_inode *raw_inode;
4538 	struct ext4_inode_info *ei;
4539 	struct inode *inode;
4540 	journal_t *journal = EXT4_SB(sb)->s_journal;
4541 	long ret;
4542 	loff_t size;
4543 	int block;
4544 	uid_t i_uid;
4545 	gid_t i_gid;
4546 	projid_t i_projid;
4547 
4548 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4549 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4550 	    (ino < EXT4_ROOT_INO) ||
4551 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4552 		if (flags & EXT4_IGET_HANDLE)
4553 			return ERR_PTR(-ESTALE);
4554 		__ext4_error(sb, function, line, EFSCORRUPTED, 0,
4555 			     "inode #%lu: comm %s: iget: illegal inode #",
4556 			     ino, current->comm);
4557 		return ERR_PTR(-EFSCORRUPTED);
4558 	}
4559 
4560 	inode = iget_locked(sb, ino);
4561 	if (!inode)
4562 		return ERR_PTR(-ENOMEM);
4563 	if (!(inode->i_state & I_NEW))
4564 		return inode;
4565 
4566 	ei = EXT4_I(inode);
4567 	iloc.bh = NULL;
4568 
4569 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4570 	if (ret < 0)
4571 		goto bad_inode;
4572 	raw_inode = ext4_raw_inode(&iloc);
4573 
4574 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4575 		ext4_error_inode(inode, function, line, 0,
4576 				 "iget: root inode unallocated");
4577 		ret = -EFSCORRUPTED;
4578 		goto bad_inode;
4579 	}
4580 
4581 	if ((flags & EXT4_IGET_HANDLE) &&
4582 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4583 		ret = -ESTALE;
4584 		goto bad_inode;
4585 	}
4586 
4587 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4588 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4589 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4590 			EXT4_INODE_SIZE(inode->i_sb) ||
4591 		    (ei->i_extra_isize & 3)) {
4592 			ext4_error_inode(inode, function, line, 0,
4593 					 "iget: bad extra_isize %u "
4594 					 "(inode size %u)",
4595 					 ei->i_extra_isize,
4596 					 EXT4_INODE_SIZE(inode->i_sb));
4597 			ret = -EFSCORRUPTED;
4598 			goto bad_inode;
4599 		}
4600 	} else
4601 		ei->i_extra_isize = 0;
4602 
4603 	/* Precompute checksum seed for inode metadata */
4604 	if (ext4_has_metadata_csum(sb)) {
4605 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4606 		__u32 csum;
4607 		__le32 inum = cpu_to_le32(inode->i_ino);
4608 		__le32 gen = raw_inode->i_generation;
4609 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4610 				   sizeof(inum));
4611 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4612 					      sizeof(gen));
4613 	}
4614 
4615 	if (!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4616 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) {
4617 		ext4_error_inode_err(inode, function, line, 0, EFSBADCRC,
4618 				     "iget: checksum invalid");
4619 		ret = -EFSBADCRC;
4620 		goto bad_inode;
4621 	}
4622 
4623 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4624 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4625 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4626 	if (ext4_has_feature_project(sb) &&
4627 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4628 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4629 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4630 	else
4631 		i_projid = EXT4_DEF_PROJID;
4632 
4633 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4634 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4635 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4636 	}
4637 	i_uid_write(inode, i_uid);
4638 	i_gid_write(inode, i_gid);
4639 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4640 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4641 
4642 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4643 	ei->i_inline_off = 0;
4644 	ei->i_dir_start_lookup = 0;
4645 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4646 	/* We now have enough fields to check if the inode was active or not.
4647 	 * This is needed because nfsd might try to access dead inodes
4648 	 * the test is that same one that e2fsck uses
4649 	 * NeilBrown 1999oct15
4650 	 */
4651 	if (inode->i_nlink == 0) {
4652 		if ((inode->i_mode == 0 ||
4653 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4654 		    ino != EXT4_BOOT_LOADER_INO) {
4655 			/* this inode is deleted */
4656 			ret = -ESTALE;
4657 			goto bad_inode;
4658 		}
4659 		/* The only unlinked inodes we let through here have
4660 		 * valid i_mode and are being read by the orphan
4661 		 * recovery code: that's fine, we're about to complete
4662 		 * the process of deleting those.
4663 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4664 		 * not initialized on a new filesystem. */
4665 	}
4666 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4667 	ext4_set_inode_flags(inode, true);
4668 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4669 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4670 	if (ext4_has_feature_64bit(sb))
4671 		ei->i_file_acl |=
4672 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4673 	inode->i_size = ext4_isize(sb, raw_inode);
4674 	if ((size = i_size_read(inode)) < 0) {
4675 		ext4_error_inode(inode, function, line, 0,
4676 				 "iget: bad i_size value: %lld", size);
4677 		ret = -EFSCORRUPTED;
4678 		goto bad_inode;
4679 	}
4680 	/*
4681 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4682 	 * we'd normally treat htree data as empty space. But with metadata
4683 	 * checksumming that corrupts checksums so forbid that.
4684 	 */
4685 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4686 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4687 		ext4_error_inode(inode, function, line, 0,
4688 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4689 		ret = -EFSCORRUPTED;
4690 		goto bad_inode;
4691 	}
4692 	ei->i_disksize = inode->i_size;
4693 #ifdef CONFIG_QUOTA
4694 	ei->i_reserved_quota = 0;
4695 #endif
4696 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4697 	ei->i_block_group = iloc.block_group;
4698 	ei->i_last_alloc_group = ~0;
4699 	/*
4700 	 * NOTE! The in-memory inode i_data array is in little-endian order
4701 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4702 	 */
4703 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4704 		ei->i_data[block] = raw_inode->i_block[block];
4705 	INIT_LIST_HEAD(&ei->i_orphan);
4706 
4707 	/*
4708 	 * Set transaction id's of transactions that have to be committed
4709 	 * to finish f[data]sync. We set them to currently running transaction
4710 	 * as we cannot be sure that the inode or some of its metadata isn't
4711 	 * part of the transaction - the inode could have been reclaimed and
4712 	 * now it is reread from disk.
4713 	 */
4714 	if (journal) {
4715 		transaction_t *transaction;
4716 		tid_t tid;
4717 
4718 		read_lock(&journal->j_state_lock);
4719 		if (journal->j_running_transaction)
4720 			transaction = journal->j_running_transaction;
4721 		else
4722 			transaction = journal->j_committing_transaction;
4723 		if (transaction)
4724 			tid = transaction->t_tid;
4725 		else
4726 			tid = journal->j_commit_sequence;
4727 		read_unlock(&journal->j_state_lock);
4728 		ei->i_sync_tid = tid;
4729 		ei->i_datasync_tid = tid;
4730 	}
4731 
4732 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4733 		if (ei->i_extra_isize == 0) {
4734 			/* The extra space is currently unused. Use it. */
4735 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4736 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4737 					    EXT4_GOOD_OLD_INODE_SIZE;
4738 		} else {
4739 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4740 			if (ret)
4741 				goto bad_inode;
4742 		}
4743 	}
4744 
4745 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4746 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4747 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4748 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4749 
4750 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4751 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4752 
4753 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4754 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4755 				ivers |=
4756 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4757 		}
4758 		ext4_inode_set_iversion_queried(inode, ivers);
4759 	}
4760 
4761 	ret = 0;
4762 	if (ei->i_file_acl &&
4763 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4764 		ext4_error_inode(inode, function, line, 0,
4765 				 "iget: bad extended attribute block %llu",
4766 				 ei->i_file_acl);
4767 		ret = -EFSCORRUPTED;
4768 		goto bad_inode;
4769 	} else if (!ext4_has_inline_data(inode)) {
4770 		/* validate the block references in the inode */
4771 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4772 		   (S_ISLNK(inode->i_mode) &&
4773 		    !ext4_inode_is_fast_symlink(inode))) {
4774 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4775 				ret = ext4_ext_check_inode(inode);
4776 			else
4777 				ret = ext4_ind_check_inode(inode);
4778 		}
4779 	}
4780 	if (ret)
4781 		goto bad_inode;
4782 
4783 	if (S_ISREG(inode->i_mode)) {
4784 		inode->i_op = &ext4_file_inode_operations;
4785 		inode->i_fop = &ext4_file_operations;
4786 		ext4_set_aops(inode);
4787 	} else if (S_ISDIR(inode->i_mode)) {
4788 		inode->i_op = &ext4_dir_inode_operations;
4789 		inode->i_fop = &ext4_dir_operations;
4790 	} else if (S_ISLNK(inode->i_mode)) {
4791 		/* VFS does not allow setting these so must be corruption */
4792 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4793 			ext4_error_inode(inode, function, line, 0,
4794 					 "iget: immutable or append flags "
4795 					 "not allowed on symlinks");
4796 			ret = -EFSCORRUPTED;
4797 			goto bad_inode;
4798 		}
4799 		if (IS_ENCRYPTED(inode)) {
4800 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4801 			ext4_set_aops(inode);
4802 		} else if (ext4_inode_is_fast_symlink(inode)) {
4803 			inode->i_link = (char *)ei->i_data;
4804 			inode->i_op = &ext4_fast_symlink_inode_operations;
4805 			nd_terminate_link(ei->i_data, inode->i_size,
4806 				sizeof(ei->i_data) - 1);
4807 		} else {
4808 			inode->i_op = &ext4_symlink_inode_operations;
4809 			ext4_set_aops(inode);
4810 		}
4811 		inode_nohighmem(inode);
4812 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4813 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4814 		inode->i_op = &ext4_special_inode_operations;
4815 		if (raw_inode->i_block[0])
4816 			init_special_inode(inode, inode->i_mode,
4817 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4818 		else
4819 			init_special_inode(inode, inode->i_mode,
4820 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4821 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4822 		make_bad_inode(inode);
4823 	} else {
4824 		ret = -EFSCORRUPTED;
4825 		ext4_error_inode(inode, function, line, 0,
4826 				 "iget: bogus i_mode (%o)", inode->i_mode);
4827 		goto bad_inode;
4828 	}
4829 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4830 		ext4_error_inode(inode, function, line, 0,
4831 				 "casefold flag without casefold feature");
4832 	brelse(iloc.bh);
4833 
4834 	unlock_new_inode(inode);
4835 	return inode;
4836 
4837 bad_inode:
4838 	brelse(iloc.bh);
4839 	iget_failed(inode);
4840 	return ERR_PTR(ret);
4841 }
4842 
4843 static int ext4_inode_blocks_set(handle_t *handle,
4844 				struct ext4_inode *raw_inode,
4845 				struct ext4_inode_info *ei)
4846 {
4847 	struct inode *inode = &(ei->vfs_inode);
4848 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4849 	struct super_block *sb = inode->i_sb;
4850 
4851 	if (i_blocks <= ~0U) {
4852 		/*
4853 		 * i_blocks can be represented in a 32 bit variable
4854 		 * as multiple of 512 bytes
4855 		 */
4856 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4857 		raw_inode->i_blocks_high = 0;
4858 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4859 		return 0;
4860 	}
4861 	if (!ext4_has_feature_huge_file(sb))
4862 		return -EFBIG;
4863 
4864 	if (i_blocks <= 0xffffffffffffULL) {
4865 		/*
4866 		 * i_blocks can be represented in a 48 bit variable
4867 		 * as multiple of 512 bytes
4868 		 */
4869 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4870 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4871 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4872 	} else {
4873 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4874 		/* i_block is stored in file system block size */
4875 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4876 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4877 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4878 	}
4879 	return 0;
4880 }
4881 
4882 static void __ext4_update_other_inode_time(struct super_block *sb,
4883 					   unsigned long orig_ino,
4884 					   unsigned long ino,
4885 					   struct ext4_inode *raw_inode)
4886 {
4887 	struct inode *inode;
4888 
4889 	inode = find_inode_by_ino_rcu(sb, ino);
4890 	if (!inode)
4891 		return;
4892 
4893 	if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4894 			       I_DIRTY_INODE)) ||
4895 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4896 		return;
4897 
4898 	spin_lock(&inode->i_lock);
4899 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4900 				I_DIRTY_INODE)) == 0) &&
4901 	    (inode->i_state & I_DIRTY_TIME)) {
4902 		struct ext4_inode_info	*ei = EXT4_I(inode);
4903 
4904 		inode->i_state &= ~I_DIRTY_TIME;
4905 		spin_unlock(&inode->i_lock);
4906 
4907 		spin_lock(&ei->i_raw_lock);
4908 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4909 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4910 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4911 		ext4_inode_csum_set(inode, raw_inode, ei);
4912 		spin_unlock(&ei->i_raw_lock);
4913 		trace_ext4_other_inode_update_time(inode, orig_ino);
4914 		return;
4915 	}
4916 	spin_unlock(&inode->i_lock);
4917 }
4918 
4919 /*
4920  * Opportunistically update the other time fields for other inodes in
4921  * the same inode table block.
4922  */
4923 static void ext4_update_other_inodes_time(struct super_block *sb,
4924 					  unsigned long orig_ino, char *buf)
4925 {
4926 	unsigned long ino;
4927 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4928 	int inode_size = EXT4_INODE_SIZE(sb);
4929 
4930 	/*
4931 	 * Calculate the first inode in the inode table block.  Inode
4932 	 * numbers are one-based.  That is, the first inode in a block
4933 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4934 	 */
4935 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4936 	rcu_read_lock();
4937 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4938 		if (ino == orig_ino)
4939 			continue;
4940 		__ext4_update_other_inode_time(sb, orig_ino, ino,
4941 					       (struct ext4_inode *)buf);
4942 	}
4943 	rcu_read_unlock();
4944 }
4945 
4946 /*
4947  * Post the struct inode info into an on-disk inode location in the
4948  * buffer-cache.  This gobbles the caller's reference to the
4949  * buffer_head in the inode location struct.
4950  *
4951  * The caller must have write access to iloc->bh.
4952  */
4953 static int ext4_do_update_inode(handle_t *handle,
4954 				struct inode *inode,
4955 				struct ext4_iloc *iloc)
4956 {
4957 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4958 	struct ext4_inode_info *ei = EXT4_I(inode);
4959 	struct buffer_head *bh = iloc->bh;
4960 	struct super_block *sb = inode->i_sb;
4961 	int err = 0, rc, block;
4962 	int need_datasync = 0, set_large_file = 0;
4963 	uid_t i_uid;
4964 	gid_t i_gid;
4965 	projid_t i_projid;
4966 
4967 	spin_lock(&ei->i_raw_lock);
4968 
4969 	/* For fields not tracked in the in-memory inode,
4970 	 * initialise them to zero for new inodes. */
4971 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4972 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4973 
4974 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4975 	i_uid = i_uid_read(inode);
4976 	i_gid = i_gid_read(inode);
4977 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4978 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4979 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4980 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4981 /*
4982  * Fix up interoperability with old kernels. Otherwise, old inodes get
4983  * re-used with the upper 16 bits of the uid/gid intact
4984  */
4985 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4986 			raw_inode->i_uid_high = 0;
4987 			raw_inode->i_gid_high = 0;
4988 		} else {
4989 			raw_inode->i_uid_high =
4990 				cpu_to_le16(high_16_bits(i_uid));
4991 			raw_inode->i_gid_high =
4992 				cpu_to_le16(high_16_bits(i_gid));
4993 		}
4994 	} else {
4995 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4996 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4997 		raw_inode->i_uid_high = 0;
4998 		raw_inode->i_gid_high = 0;
4999 	}
5000 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5001 
5002 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5003 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5004 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5005 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5006 
5007 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5008 	if (err) {
5009 		spin_unlock(&ei->i_raw_lock);
5010 		goto out_brelse;
5011 	}
5012 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5013 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5014 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5015 		raw_inode->i_file_acl_high =
5016 			cpu_to_le16(ei->i_file_acl >> 32);
5017 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5018 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
5019 		ext4_isize_set(raw_inode, ei->i_disksize);
5020 		need_datasync = 1;
5021 	}
5022 	if (ei->i_disksize > 0x7fffffffULL) {
5023 		if (!ext4_has_feature_large_file(sb) ||
5024 				EXT4_SB(sb)->s_es->s_rev_level ==
5025 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5026 			set_large_file = 1;
5027 	}
5028 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5029 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5030 		if (old_valid_dev(inode->i_rdev)) {
5031 			raw_inode->i_block[0] =
5032 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5033 			raw_inode->i_block[1] = 0;
5034 		} else {
5035 			raw_inode->i_block[0] = 0;
5036 			raw_inode->i_block[1] =
5037 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5038 			raw_inode->i_block[2] = 0;
5039 		}
5040 	} else if (!ext4_has_inline_data(inode)) {
5041 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5042 			raw_inode->i_block[block] = ei->i_data[block];
5043 	}
5044 
5045 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5046 		u64 ivers = ext4_inode_peek_iversion(inode);
5047 
5048 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5049 		if (ei->i_extra_isize) {
5050 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5051 				raw_inode->i_version_hi =
5052 					cpu_to_le32(ivers >> 32);
5053 			raw_inode->i_extra_isize =
5054 				cpu_to_le16(ei->i_extra_isize);
5055 		}
5056 	}
5057 
5058 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5059 	       i_projid != EXT4_DEF_PROJID);
5060 
5061 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5062 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5063 		raw_inode->i_projid = cpu_to_le32(i_projid);
5064 
5065 	ext4_inode_csum_set(inode, raw_inode, ei);
5066 	spin_unlock(&ei->i_raw_lock);
5067 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5068 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5069 					      bh->b_data);
5070 
5071 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5072 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5073 	if (!err)
5074 		err = rc;
5075 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5076 	if (set_large_file) {
5077 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5078 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5079 		if (err)
5080 			goto out_brelse;
5081 		ext4_set_feature_large_file(sb);
5082 		ext4_handle_sync(handle);
5083 		err = ext4_handle_dirty_super(handle, sb);
5084 	}
5085 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5086 out_brelse:
5087 	brelse(bh);
5088 	ext4_std_error(inode->i_sb, err);
5089 	return err;
5090 }
5091 
5092 /*
5093  * ext4_write_inode()
5094  *
5095  * We are called from a few places:
5096  *
5097  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5098  *   Here, there will be no transaction running. We wait for any running
5099  *   transaction to commit.
5100  *
5101  * - Within flush work (sys_sync(), kupdate and such).
5102  *   We wait on commit, if told to.
5103  *
5104  * - Within iput_final() -> write_inode_now()
5105  *   We wait on commit, if told to.
5106  *
5107  * In all cases it is actually safe for us to return without doing anything,
5108  * because the inode has been copied into a raw inode buffer in
5109  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5110  * writeback.
5111  *
5112  * Note that we are absolutely dependent upon all inode dirtiers doing the
5113  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5114  * which we are interested.
5115  *
5116  * It would be a bug for them to not do this.  The code:
5117  *
5118  *	mark_inode_dirty(inode)
5119  *	stuff();
5120  *	inode->i_size = expr;
5121  *
5122  * is in error because write_inode() could occur while `stuff()' is running,
5123  * and the new i_size will be lost.  Plus the inode will no longer be on the
5124  * superblock's dirty inode list.
5125  */
5126 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5127 {
5128 	int err;
5129 
5130 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5131 	    sb_rdonly(inode->i_sb))
5132 		return 0;
5133 
5134 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5135 		return -EIO;
5136 
5137 	if (EXT4_SB(inode->i_sb)->s_journal) {
5138 		if (ext4_journal_current_handle()) {
5139 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5140 			dump_stack();
5141 			return -EIO;
5142 		}
5143 
5144 		/*
5145 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5146 		 * ext4_sync_fs() will force the commit after everything is
5147 		 * written.
5148 		 */
5149 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5150 			return 0;
5151 
5152 		err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5153 						EXT4_I(inode)->i_sync_tid);
5154 	} else {
5155 		struct ext4_iloc iloc;
5156 
5157 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5158 		if (err)
5159 			return err;
5160 		/*
5161 		 * sync(2) will flush the whole buffer cache. No need to do
5162 		 * it here separately for each inode.
5163 		 */
5164 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5165 			sync_dirty_buffer(iloc.bh);
5166 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5167 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5168 					       "IO error syncing inode");
5169 			err = -EIO;
5170 		}
5171 		brelse(iloc.bh);
5172 	}
5173 	return err;
5174 }
5175 
5176 /*
5177  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5178  * buffers that are attached to a page stradding i_size and are undergoing
5179  * commit. In that case we have to wait for commit to finish and try again.
5180  */
5181 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5182 {
5183 	struct page *page;
5184 	unsigned offset;
5185 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5186 	tid_t commit_tid = 0;
5187 	int ret;
5188 
5189 	offset = inode->i_size & (PAGE_SIZE - 1);
5190 	/*
5191 	 * If the page is fully truncated, we don't need to wait for any commit
5192 	 * (and we even should not as __ext4_journalled_invalidatepage() may
5193 	 * strip all buffers from the page but keep the page dirty which can then
5194 	 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5195 	 * buffers). Also we don't need to wait for any commit if all buffers in
5196 	 * the page remain valid. This is most beneficial for the common case of
5197 	 * blocksize == PAGESIZE.
5198 	 */
5199 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5200 		return;
5201 	while (1) {
5202 		page = find_lock_page(inode->i_mapping,
5203 				      inode->i_size >> PAGE_SHIFT);
5204 		if (!page)
5205 			return;
5206 		ret = __ext4_journalled_invalidatepage(page, offset,
5207 						PAGE_SIZE - offset);
5208 		unlock_page(page);
5209 		put_page(page);
5210 		if (ret != -EBUSY)
5211 			return;
5212 		commit_tid = 0;
5213 		read_lock(&journal->j_state_lock);
5214 		if (journal->j_committing_transaction)
5215 			commit_tid = journal->j_committing_transaction->t_tid;
5216 		read_unlock(&journal->j_state_lock);
5217 		if (commit_tid)
5218 			jbd2_log_wait_commit(journal, commit_tid);
5219 	}
5220 }
5221 
5222 /*
5223  * ext4_setattr()
5224  *
5225  * Called from notify_change.
5226  *
5227  * We want to trap VFS attempts to truncate the file as soon as
5228  * possible.  In particular, we want to make sure that when the VFS
5229  * shrinks i_size, we put the inode on the orphan list and modify
5230  * i_disksize immediately, so that during the subsequent flushing of
5231  * dirty pages and freeing of disk blocks, we can guarantee that any
5232  * commit will leave the blocks being flushed in an unused state on
5233  * disk.  (On recovery, the inode will get truncated and the blocks will
5234  * be freed, so we have a strong guarantee that no future commit will
5235  * leave these blocks visible to the user.)
5236  *
5237  * Another thing we have to assure is that if we are in ordered mode
5238  * and inode is still attached to the committing transaction, we must
5239  * we start writeout of all the dirty pages which are being truncated.
5240  * This way we are sure that all the data written in the previous
5241  * transaction are already on disk (truncate waits for pages under
5242  * writeback).
5243  *
5244  * Called with inode->i_mutex down.
5245  */
5246 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5247 {
5248 	struct inode *inode = d_inode(dentry);
5249 	int error, rc = 0;
5250 	int orphan = 0;
5251 	const unsigned int ia_valid = attr->ia_valid;
5252 
5253 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5254 		return -EIO;
5255 
5256 	if (unlikely(IS_IMMUTABLE(inode)))
5257 		return -EPERM;
5258 
5259 	if (unlikely(IS_APPEND(inode) &&
5260 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5261 				  ATTR_GID | ATTR_TIMES_SET))))
5262 		return -EPERM;
5263 
5264 	error = setattr_prepare(dentry, attr);
5265 	if (error)
5266 		return error;
5267 
5268 	error = fscrypt_prepare_setattr(dentry, attr);
5269 	if (error)
5270 		return error;
5271 
5272 	error = fsverity_prepare_setattr(dentry, attr);
5273 	if (error)
5274 		return error;
5275 
5276 	if (is_quota_modification(inode, attr)) {
5277 		error = dquot_initialize(inode);
5278 		if (error)
5279 			return error;
5280 	}
5281 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5282 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5283 		handle_t *handle;
5284 
5285 		/* (user+group)*(old+new) structure, inode write (sb,
5286 		 * inode block, ? - but truncate inode update has it) */
5287 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5288 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5289 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5290 		if (IS_ERR(handle)) {
5291 			error = PTR_ERR(handle);
5292 			goto err_out;
5293 		}
5294 
5295 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5296 		 * counts xattr inode references.
5297 		 */
5298 		down_read(&EXT4_I(inode)->xattr_sem);
5299 		error = dquot_transfer(inode, attr);
5300 		up_read(&EXT4_I(inode)->xattr_sem);
5301 
5302 		if (error) {
5303 			ext4_journal_stop(handle);
5304 			return error;
5305 		}
5306 		/* Update corresponding info in inode so that everything is in
5307 		 * one transaction */
5308 		if (attr->ia_valid & ATTR_UID)
5309 			inode->i_uid = attr->ia_uid;
5310 		if (attr->ia_valid & ATTR_GID)
5311 			inode->i_gid = attr->ia_gid;
5312 		error = ext4_mark_inode_dirty(handle, inode);
5313 		ext4_journal_stop(handle);
5314 		if (unlikely(error))
5315 			return error;
5316 	}
5317 
5318 	if (attr->ia_valid & ATTR_SIZE) {
5319 		handle_t *handle;
5320 		loff_t oldsize = inode->i_size;
5321 		int shrink = (attr->ia_size < inode->i_size);
5322 
5323 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5324 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5325 
5326 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5327 				return -EFBIG;
5328 		}
5329 		if (!S_ISREG(inode->i_mode))
5330 			return -EINVAL;
5331 
5332 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5333 			inode_inc_iversion(inode);
5334 
5335 		if (shrink) {
5336 			if (ext4_should_order_data(inode)) {
5337 				error = ext4_begin_ordered_truncate(inode,
5338 							    attr->ia_size);
5339 				if (error)
5340 					goto err_out;
5341 			}
5342 			/*
5343 			 * Blocks are going to be removed from the inode. Wait
5344 			 * for dio in flight.
5345 			 */
5346 			inode_dio_wait(inode);
5347 		}
5348 
5349 		down_write(&EXT4_I(inode)->i_mmap_sem);
5350 
5351 		rc = ext4_break_layouts(inode);
5352 		if (rc) {
5353 			up_write(&EXT4_I(inode)->i_mmap_sem);
5354 			return rc;
5355 		}
5356 
5357 		if (attr->ia_size != inode->i_size) {
5358 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5359 			if (IS_ERR(handle)) {
5360 				error = PTR_ERR(handle);
5361 				goto out_mmap_sem;
5362 			}
5363 			if (ext4_handle_valid(handle) && shrink) {
5364 				error = ext4_orphan_add(handle, inode);
5365 				orphan = 1;
5366 			}
5367 			/*
5368 			 * Update c/mtime on truncate up, ext4_truncate() will
5369 			 * update c/mtime in shrink case below
5370 			 */
5371 			if (!shrink) {
5372 				inode->i_mtime = current_time(inode);
5373 				inode->i_ctime = inode->i_mtime;
5374 			}
5375 			down_write(&EXT4_I(inode)->i_data_sem);
5376 			EXT4_I(inode)->i_disksize = attr->ia_size;
5377 			rc = ext4_mark_inode_dirty(handle, inode);
5378 			if (!error)
5379 				error = rc;
5380 			/*
5381 			 * We have to update i_size under i_data_sem together
5382 			 * with i_disksize to avoid races with writeback code
5383 			 * running ext4_wb_update_i_disksize().
5384 			 */
5385 			if (!error)
5386 				i_size_write(inode, attr->ia_size);
5387 			up_write(&EXT4_I(inode)->i_data_sem);
5388 			ext4_journal_stop(handle);
5389 			if (error)
5390 				goto out_mmap_sem;
5391 			if (!shrink) {
5392 				pagecache_isize_extended(inode, oldsize,
5393 							 inode->i_size);
5394 			} else if (ext4_should_journal_data(inode)) {
5395 				ext4_wait_for_tail_page_commit(inode);
5396 			}
5397 		}
5398 
5399 		/*
5400 		 * Truncate pagecache after we've waited for commit
5401 		 * in data=journal mode to make pages freeable.
5402 		 */
5403 		truncate_pagecache(inode, inode->i_size);
5404 		/*
5405 		 * Call ext4_truncate() even if i_size didn't change to
5406 		 * truncate possible preallocated blocks.
5407 		 */
5408 		if (attr->ia_size <= oldsize) {
5409 			rc = ext4_truncate(inode);
5410 			if (rc)
5411 				error = rc;
5412 		}
5413 out_mmap_sem:
5414 		up_write(&EXT4_I(inode)->i_mmap_sem);
5415 	}
5416 
5417 	if (!error) {
5418 		setattr_copy(inode, attr);
5419 		mark_inode_dirty(inode);
5420 	}
5421 
5422 	/*
5423 	 * If the call to ext4_truncate failed to get a transaction handle at
5424 	 * all, we need to clean up the in-core orphan list manually.
5425 	 */
5426 	if (orphan && inode->i_nlink)
5427 		ext4_orphan_del(NULL, inode);
5428 
5429 	if (!error && (ia_valid & ATTR_MODE))
5430 		rc = posix_acl_chmod(inode, inode->i_mode);
5431 
5432 err_out:
5433 	ext4_std_error(inode->i_sb, error);
5434 	if (!error)
5435 		error = rc;
5436 	return error;
5437 }
5438 
5439 int ext4_getattr(const struct path *path, struct kstat *stat,
5440 		 u32 request_mask, unsigned int query_flags)
5441 {
5442 	struct inode *inode = d_inode(path->dentry);
5443 	struct ext4_inode *raw_inode;
5444 	struct ext4_inode_info *ei = EXT4_I(inode);
5445 	unsigned int flags;
5446 
5447 	if ((request_mask & STATX_BTIME) &&
5448 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5449 		stat->result_mask |= STATX_BTIME;
5450 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5451 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5452 	}
5453 
5454 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5455 	if (flags & EXT4_APPEND_FL)
5456 		stat->attributes |= STATX_ATTR_APPEND;
5457 	if (flags & EXT4_COMPR_FL)
5458 		stat->attributes |= STATX_ATTR_COMPRESSED;
5459 	if (flags & EXT4_ENCRYPT_FL)
5460 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5461 	if (flags & EXT4_IMMUTABLE_FL)
5462 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5463 	if (flags & EXT4_NODUMP_FL)
5464 		stat->attributes |= STATX_ATTR_NODUMP;
5465 	if (flags & EXT4_VERITY_FL)
5466 		stat->attributes |= STATX_ATTR_VERITY;
5467 
5468 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5469 				  STATX_ATTR_COMPRESSED |
5470 				  STATX_ATTR_ENCRYPTED |
5471 				  STATX_ATTR_IMMUTABLE |
5472 				  STATX_ATTR_NODUMP |
5473 				  STATX_ATTR_VERITY);
5474 
5475 	generic_fillattr(inode, stat);
5476 	return 0;
5477 }
5478 
5479 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5480 		      u32 request_mask, unsigned int query_flags)
5481 {
5482 	struct inode *inode = d_inode(path->dentry);
5483 	u64 delalloc_blocks;
5484 
5485 	ext4_getattr(path, stat, request_mask, query_flags);
5486 
5487 	/*
5488 	 * If there is inline data in the inode, the inode will normally not
5489 	 * have data blocks allocated (it may have an external xattr block).
5490 	 * Report at least one sector for such files, so tools like tar, rsync,
5491 	 * others don't incorrectly think the file is completely sparse.
5492 	 */
5493 	if (unlikely(ext4_has_inline_data(inode)))
5494 		stat->blocks += (stat->size + 511) >> 9;
5495 
5496 	/*
5497 	 * We can't update i_blocks if the block allocation is delayed
5498 	 * otherwise in the case of system crash before the real block
5499 	 * allocation is done, we will have i_blocks inconsistent with
5500 	 * on-disk file blocks.
5501 	 * We always keep i_blocks updated together with real
5502 	 * allocation. But to not confuse with user, stat
5503 	 * will return the blocks that include the delayed allocation
5504 	 * blocks for this file.
5505 	 */
5506 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5507 				   EXT4_I(inode)->i_reserved_data_blocks);
5508 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5509 	return 0;
5510 }
5511 
5512 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5513 				   int pextents)
5514 {
5515 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5516 		return ext4_ind_trans_blocks(inode, lblocks);
5517 	return ext4_ext_index_trans_blocks(inode, pextents);
5518 }
5519 
5520 /*
5521  * Account for index blocks, block groups bitmaps and block group
5522  * descriptor blocks if modify datablocks and index blocks
5523  * worse case, the indexs blocks spread over different block groups
5524  *
5525  * If datablocks are discontiguous, they are possible to spread over
5526  * different block groups too. If they are contiguous, with flexbg,
5527  * they could still across block group boundary.
5528  *
5529  * Also account for superblock, inode, quota and xattr blocks
5530  */
5531 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5532 				  int pextents)
5533 {
5534 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5535 	int gdpblocks;
5536 	int idxblocks;
5537 	int ret = 0;
5538 
5539 	/*
5540 	 * How many index blocks need to touch to map @lblocks logical blocks
5541 	 * to @pextents physical extents?
5542 	 */
5543 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5544 
5545 	ret = idxblocks;
5546 
5547 	/*
5548 	 * Now let's see how many group bitmaps and group descriptors need
5549 	 * to account
5550 	 */
5551 	groups = idxblocks + pextents;
5552 	gdpblocks = groups;
5553 	if (groups > ngroups)
5554 		groups = ngroups;
5555 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5556 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5557 
5558 	/* bitmaps and block group descriptor blocks */
5559 	ret += groups + gdpblocks;
5560 
5561 	/* Blocks for super block, inode, quota and xattr blocks */
5562 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5563 
5564 	return ret;
5565 }
5566 
5567 /*
5568  * Calculate the total number of credits to reserve to fit
5569  * the modification of a single pages into a single transaction,
5570  * which may include multiple chunks of block allocations.
5571  *
5572  * This could be called via ext4_write_begin()
5573  *
5574  * We need to consider the worse case, when
5575  * one new block per extent.
5576  */
5577 int ext4_writepage_trans_blocks(struct inode *inode)
5578 {
5579 	int bpp = ext4_journal_blocks_per_page(inode);
5580 	int ret;
5581 
5582 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5583 
5584 	/* Account for data blocks for journalled mode */
5585 	if (ext4_should_journal_data(inode))
5586 		ret += bpp;
5587 	return ret;
5588 }
5589 
5590 /*
5591  * Calculate the journal credits for a chunk of data modification.
5592  *
5593  * This is called from DIO, fallocate or whoever calling
5594  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5595  *
5596  * journal buffers for data blocks are not included here, as DIO
5597  * and fallocate do no need to journal data buffers.
5598  */
5599 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5600 {
5601 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5602 }
5603 
5604 /*
5605  * The caller must have previously called ext4_reserve_inode_write().
5606  * Give this, we know that the caller already has write access to iloc->bh.
5607  */
5608 int ext4_mark_iloc_dirty(handle_t *handle,
5609 			 struct inode *inode, struct ext4_iloc *iloc)
5610 {
5611 	int err = 0;
5612 
5613 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5614 		put_bh(iloc->bh);
5615 		return -EIO;
5616 	}
5617 	if (IS_I_VERSION(inode))
5618 		inode_inc_iversion(inode);
5619 
5620 	/* the do_update_inode consumes one bh->b_count */
5621 	get_bh(iloc->bh);
5622 
5623 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5624 	err = ext4_do_update_inode(handle, inode, iloc);
5625 	put_bh(iloc->bh);
5626 	return err;
5627 }
5628 
5629 /*
5630  * On success, We end up with an outstanding reference count against
5631  * iloc->bh.  This _must_ be cleaned up later.
5632  */
5633 
5634 int
5635 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5636 			 struct ext4_iloc *iloc)
5637 {
5638 	int err;
5639 
5640 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5641 		return -EIO;
5642 
5643 	err = ext4_get_inode_loc(inode, iloc);
5644 	if (!err) {
5645 		BUFFER_TRACE(iloc->bh, "get_write_access");
5646 		err = ext4_journal_get_write_access(handle, iloc->bh);
5647 		if (err) {
5648 			brelse(iloc->bh);
5649 			iloc->bh = NULL;
5650 		}
5651 	}
5652 	ext4_std_error(inode->i_sb, err);
5653 	return err;
5654 }
5655 
5656 static int __ext4_expand_extra_isize(struct inode *inode,
5657 				     unsigned int new_extra_isize,
5658 				     struct ext4_iloc *iloc,
5659 				     handle_t *handle, int *no_expand)
5660 {
5661 	struct ext4_inode *raw_inode;
5662 	struct ext4_xattr_ibody_header *header;
5663 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5664 	struct ext4_inode_info *ei = EXT4_I(inode);
5665 	int error;
5666 
5667 	/* this was checked at iget time, but double check for good measure */
5668 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5669 	    (ei->i_extra_isize & 3)) {
5670 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5671 				 ei->i_extra_isize,
5672 				 EXT4_INODE_SIZE(inode->i_sb));
5673 		return -EFSCORRUPTED;
5674 	}
5675 	if ((new_extra_isize < ei->i_extra_isize) ||
5676 	    (new_extra_isize < 4) ||
5677 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5678 		return -EINVAL;	/* Should never happen */
5679 
5680 	raw_inode = ext4_raw_inode(iloc);
5681 
5682 	header = IHDR(inode, raw_inode);
5683 
5684 	/* No extended attributes present */
5685 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5686 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5687 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5688 		       EXT4_I(inode)->i_extra_isize, 0,
5689 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5690 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5691 		return 0;
5692 	}
5693 
5694 	/* try to expand with EAs present */
5695 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5696 					   raw_inode, handle);
5697 	if (error) {
5698 		/*
5699 		 * Inode size expansion failed; don't try again
5700 		 */
5701 		*no_expand = 1;
5702 	}
5703 
5704 	return error;
5705 }
5706 
5707 /*
5708  * Expand an inode by new_extra_isize bytes.
5709  * Returns 0 on success or negative error number on failure.
5710  */
5711 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5712 					  unsigned int new_extra_isize,
5713 					  struct ext4_iloc iloc,
5714 					  handle_t *handle)
5715 {
5716 	int no_expand;
5717 	int error;
5718 
5719 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5720 		return -EOVERFLOW;
5721 
5722 	/*
5723 	 * In nojournal mode, we can immediately attempt to expand
5724 	 * the inode.  When journaled, we first need to obtain extra
5725 	 * buffer credits since we may write into the EA block
5726 	 * with this same handle. If journal_extend fails, then it will
5727 	 * only result in a minor loss of functionality for that inode.
5728 	 * If this is felt to be critical, then e2fsck should be run to
5729 	 * force a large enough s_min_extra_isize.
5730 	 */
5731 	if (ext4_journal_extend(handle,
5732 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5733 		return -ENOSPC;
5734 
5735 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5736 		return -EBUSY;
5737 
5738 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5739 					  handle, &no_expand);
5740 	ext4_write_unlock_xattr(inode, &no_expand);
5741 
5742 	return error;
5743 }
5744 
5745 int ext4_expand_extra_isize(struct inode *inode,
5746 			    unsigned int new_extra_isize,
5747 			    struct ext4_iloc *iloc)
5748 {
5749 	handle_t *handle;
5750 	int no_expand;
5751 	int error, rc;
5752 
5753 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5754 		brelse(iloc->bh);
5755 		return -EOVERFLOW;
5756 	}
5757 
5758 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5759 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5760 	if (IS_ERR(handle)) {
5761 		error = PTR_ERR(handle);
5762 		brelse(iloc->bh);
5763 		return error;
5764 	}
5765 
5766 	ext4_write_lock_xattr(inode, &no_expand);
5767 
5768 	BUFFER_TRACE(iloc->bh, "get_write_access");
5769 	error = ext4_journal_get_write_access(handle, iloc->bh);
5770 	if (error) {
5771 		brelse(iloc->bh);
5772 		goto out_unlock;
5773 	}
5774 
5775 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5776 					  handle, &no_expand);
5777 
5778 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5779 	if (!error)
5780 		error = rc;
5781 
5782 out_unlock:
5783 	ext4_write_unlock_xattr(inode, &no_expand);
5784 	ext4_journal_stop(handle);
5785 	return error;
5786 }
5787 
5788 /*
5789  * What we do here is to mark the in-core inode as clean with respect to inode
5790  * dirtiness (it may still be data-dirty).
5791  * This means that the in-core inode may be reaped by prune_icache
5792  * without having to perform any I/O.  This is a very good thing,
5793  * because *any* task may call prune_icache - even ones which
5794  * have a transaction open against a different journal.
5795  *
5796  * Is this cheating?  Not really.  Sure, we haven't written the
5797  * inode out, but prune_icache isn't a user-visible syncing function.
5798  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5799  * we start and wait on commits.
5800  */
5801 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5802 				const char *func, unsigned int line)
5803 {
5804 	struct ext4_iloc iloc;
5805 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5806 	int err;
5807 
5808 	might_sleep();
5809 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5810 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5811 	if (err)
5812 		goto out;
5813 
5814 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5815 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5816 					       iloc, handle);
5817 
5818 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5819 out:
5820 	if (unlikely(err))
5821 		ext4_error_inode_err(inode, func, line, 0, err,
5822 					"mark_inode_dirty error");
5823 	return err;
5824 }
5825 
5826 /*
5827  * ext4_dirty_inode() is called from __mark_inode_dirty()
5828  *
5829  * We're really interested in the case where a file is being extended.
5830  * i_size has been changed by generic_commit_write() and we thus need
5831  * to include the updated inode in the current transaction.
5832  *
5833  * Also, dquot_alloc_block() will always dirty the inode when blocks
5834  * are allocated to the file.
5835  *
5836  * If the inode is marked synchronous, we don't honour that here - doing
5837  * so would cause a commit on atime updates, which we don't bother doing.
5838  * We handle synchronous inodes at the highest possible level.
5839  *
5840  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5841  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5842  * to copy into the on-disk inode structure are the timestamp files.
5843  */
5844 void ext4_dirty_inode(struct inode *inode, int flags)
5845 {
5846 	handle_t *handle;
5847 
5848 	if (flags == I_DIRTY_TIME)
5849 		return;
5850 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5851 	if (IS_ERR(handle))
5852 		goto out;
5853 
5854 	ext4_mark_inode_dirty(handle, inode);
5855 
5856 	ext4_journal_stop(handle);
5857 out:
5858 	return;
5859 }
5860 
5861 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5862 {
5863 	journal_t *journal;
5864 	handle_t *handle;
5865 	int err;
5866 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5867 
5868 	/*
5869 	 * We have to be very careful here: changing a data block's
5870 	 * journaling status dynamically is dangerous.  If we write a
5871 	 * data block to the journal, change the status and then delete
5872 	 * that block, we risk forgetting to revoke the old log record
5873 	 * from the journal and so a subsequent replay can corrupt data.
5874 	 * So, first we make sure that the journal is empty and that
5875 	 * nobody is changing anything.
5876 	 */
5877 
5878 	journal = EXT4_JOURNAL(inode);
5879 	if (!journal)
5880 		return 0;
5881 	if (is_journal_aborted(journal))
5882 		return -EROFS;
5883 
5884 	/* Wait for all existing dio workers */
5885 	inode_dio_wait(inode);
5886 
5887 	/*
5888 	 * Before flushing the journal and switching inode's aops, we have
5889 	 * to flush all dirty data the inode has. There can be outstanding
5890 	 * delayed allocations, there can be unwritten extents created by
5891 	 * fallocate or buffered writes in dioread_nolock mode covered by
5892 	 * dirty data which can be converted only after flushing the dirty
5893 	 * data (and journalled aops don't know how to handle these cases).
5894 	 */
5895 	if (val) {
5896 		down_write(&EXT4_I(inode)->i_mmap_sem);
5897 		err = filemap_write_and_wait(inode->i_mapping);
5898 		if (err < 0) {
5899 			up_write(&EXT4_I(inode)->i_mmap_sem);
5900 			return err;
5901 		}
5902 	}
5903 
5904 	percpu_down_write(&sbi->s_writepages_rwsem);
5905 	jbd2_journal_lock_updates(journal);
5906 
5907 	/*
5908 	 * OK, there are no updates running now, and all cached data is
5909 	 * synced to disk.  We are now in a completely consistent state
5910 	 * which doesn't have anything in the journal, and we know that
5911 	 * no filesystem updates are running, so it is safe to modify
5912 	 * the inode's in-core data-journaling state flag now.
5913 	 */
5914 
5915 	if (val)
5916 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5917 	else {
5918 		err = jbd2_journal_flush(journal);
5919 		if (err < 0) {
5920 			jbd2_journal_unlock_updates(journal);
5921 			percpu_up_write(&sbi->s_writepages_rwsem);
5922 			return err;
5923 		}
5924 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5925 	}
5926 	ext4_set_aops(inode);
5927 
5928 	jbd2_journal_unlock_updates(journal);
5929 	percpu_up_write(&sbi->s_writepages_rwsem);
5930 
5931 	if (val)
5932 		up_write(&EXT4_I(inode)->i_mmap_sem);
5933 
5934 	/* Finally we can mark the inode as dirty. */
5935 
5936 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5937 	if (IS_ERR(handle))
5938 		return PTR_ERR(handle);
5939 
5940 	err = ext4_mark_inode_dirty(handle, inode);
5941 	ext4_handle_sync(handle);
5942 	ext4_journal_stop(handle);
5943 	ext4_std_error(inode->i_sb, err);
5944 
5945 	return err;
5946 }
5947 
5948 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5949 {
5950 	return !buffer_mapped(bh);
5951 }
5952 
5953 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5954 {
5955 	struct vm_area_struct *vma = vmf->vma;
5956 	struct page *page = vmf->page;
5957 	loff_t size;
5958 	unsigned long len;
5959 	int err;
5960 	vm_fault_t ret;
5961 	struct file *file = vma->vm_file;
5962 	struct inode *inode = file_inode(file);
5963 	struct address_space *mapping = inode->i_mapping;
5964 	handle_t *handle;
5965 	get_block_t *get_block;
5966 	int retries = 0;
5967 
5968 	if (unlikely(IS_IMMUTABLE(inode)))
5969 		return VM_FAULT_SIGBUS;
5970 
5971 	sb_start_pagefault(inode->i_sb);
5972 	file_update_time(vma->vm_file);
5973 
5974 	down_read(&EXT4_I(inode)->i_mmap_sem);
5975 
5976 	err = ext4_convert_inline_data(inode);
5977 	if (err)
5978 		goto out_ret;
5979 
5980 	/* Delalloc case is easy... */
5981 	if (test_opt(inode->i_sb, DELALLOC) &&
5982 	    !ext4_should_journal_data(inode) &&
5983 	    !ext4_nonda_switch(inode->i_sb)) {
5984 		do {
5985 			err = block_page_mkwrite(vma, vmf,
5986 						   ext4_da_get_block_prep);
5987 		} while (err == -ENOSPC &&
5988 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5989 		goto out_ret;
5990 	}
5991 
5992 	lock_page(page);
5993 	size = i_size_read(inode);
5994 	/* Page got truncated from under us? */
5995 	if (page->mapping != mapping || page_offset(page) > size) {
5996 		unlock_page(page);
5997 		ret = VM_FAULT_NOPAGE;
5998 		goto out;
5999 	}
6000 
6001 	if (page->index == size >> PAGE_SHIFT)
6002 		len = size & ~PAGE_MASK;
6003 	else
6004 		len = PAGE_SIZE;
6005 	/*
6006 	 * Return if we have all the buffers mapped. This avoids the need to do
6007 	 * journal_start/journal_stop which can block and take a long time
6008 	 */
6009 	if (page_has_buffers(page)) {
6010 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6011 					    0, len, NULL,
6012 					    ext4_bh_unmapped)) {
6013 			/* Wait so that we don't change page under IO */
6014 			wait_for_stable_page(page);
6015 			ret = VM_FAULT_LOCKED;
6016 			goto out;
6017 		}
6018 	}
6019 	unlock_page(page);
6020 	/* OK, we need to fill the hole... */
6021 	if (ext4_should_dioread_nolock(inode))
6022 		get_block = ext4_get_block_unwritten;
6023 	else
6024 		get_block = ext4_get_block;
6025 retry_alloc:
6026 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6027 				    ext4_writepage_trans_blocks(inode));
6028 	if (IS_ERR(handle)) {
6029 		ret = VM_FAULT_SIGBUS;
6030 		goto out;
6031 	}
6032 	err = block_page_mkwrite(vma, vmf, get_block);
6033 	if (!err && ext4_should_journal_data(inode)) {
6034 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6035 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6036 			unlock_page(page);
6037 			ret = VM_FAULT_SIGBUS;
6038 			ext4_journal_stop(handle);
6039 			goto out;
6040 		}
6041 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6042 	}
6043 	ext4_journal_stop(handle);
6044 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6045 		goto retry_alloc;
6046 out_ret:
6047 	ret = block_page_mkwrite_return(err);
6048 out:
6049 	up_read(&EXT4_I(inode)->i_mmap_sem);
6050 	sb_end_pagefault(inode->i_sb);
6051 	return ret;
6052 }
6053 
6054 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6055 {
6056 	struct inode *inode = file_inode(vmf->vma->vm_file);
6057 	vm_fault_t ret;
6058 
6059 	down_read(&EXT4_I(inode)->i_mmap_sem);
6060 	ret = filemap_fault(vmf);
6061 	up_read(&EXT4_I(inode)->i_mmap_sem);
6062 
6063 	return ret;
6064 }
6065