xref: /openbmc/linux/fs/ext4/inode.c (revision f3a8b664)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40 
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45 
46 #include <trace/events/ext4.h>
47 
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49 
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 			      struct ext4_inode_info *ei)
52 {
53 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 	__u32 csum;
55 	__u16 dummy_csum = 0;
56 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
57 	unsigned int csum_size = sizeof(dummy_csum);
58 
59 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
60 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
61 	offset += csum_size;
62 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
63 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
64 
65 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
66 		offset = offsetof(struct ext4_inode, i_checksum_hi);
67 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
68 				   EXT4_GOOD_OLD_INODE_SIZE,
69 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
70 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
71 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
72 					   csum_size);
73 			offset += csum_size;
74 			csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
75 					   EXT4_INODE_SIZE(inode->i_sb) -
76 					   offset);
77 		}
78 	}
79 
80 	return csum;
81 }
82 
83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 				  struct ext4_inode_info *ei)
85 {
86 	__u32 provided, calculated;
87 
88 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 	    cpu_to_le32(EXT4_OS_LINUX) ||
90 	    !ext4_has_metadata_csum(inode->i_sb))
91 		return 1;
92 
93 	provided = le16_to_cpu(raw->i_checksum_lo);
94 	calculated = ext4_inode_csum(inode, raw, ei);
95 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 	else
99 		calculated &= 0xFFFF;
100 
101 	return provided == calculated;
102 }
103 
104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 				struct ext4_inode_info *ei)
106 {
107 	__u32 csum;
108 
109 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 	    cpu_to_le32(EXT4_OS_LINUX) ||
111 	    !ext4_has_metadata_csum(inode->i_sb))
112 		return;
113 
114 	csum = ext4_inode_csum(inode, raw, ei);
115 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119 }
120 
121 static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 					      loff_t new_size)
123 {
124 	trace_ext4_begin_ordered_truncate(inode, new_size);
125 	/*
126 	 * If jinode is zero, then we never opened the file for
127 	 * writing, so there's no need to call
128 	 * jbd2_journal_begin_ordered_truncate() since there's no
129 	 * outstanding writes we need to flush.
130 	 */
131 	if (!EXT4_I(inode)->jinode)
132 		return 0;
133 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 						   EXT4_I(inode)->jinode,
135 						   new_size);
136 }
137 
138 static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 				unsigned int length);
140 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 				  int pextents);
144 
145 /*
146  * Test whether an inode is a fast symlink.
147  */
148 int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 	if (ext4_has_inline_data(inode))
154 		return 0;
155 
156 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158 
159 /*
160  * Restart the transaction associated with *handle.  This does a commit,
161  * so before we call here everything must be consistently dirtied against
162  * this transaction.
163  */
164 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 				 int nblocks)
166 {
167 	int ret;
168 
169 	/*
170 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
171 	 * moment, get_block can be called only for blocks inside i_size since
172 	 * page cache has been already dropped and writes are blocked by
173 	 * i_mutex. So we can safely drop the i_data_sem here.
174 	 */
175 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 	jbd_debug(2, "restarting handle %p\n", handle);
177 	up_write(&EXT4_I(inode)->i_data_sem);
178 	ret = ext4_journal_restart(handle, nblocks);
179 	down_write(&EXT4_I(inode)->i_data_sem);
180 	ext4_discard_preallocations(inode);
181 
182 	return ret;
183 }
184 
185 /*
186  * Called at the last iput() if i_nlink is zero.
187  */
188 void ext4_evict_inode(struct inode *inode)
189 {
190 	handle_t *handle;
191 	int err;
192 
193 	trace_ext4_evict_inode(inode);
194 
195 	if (inode->i_nlink) {
196 		/*
197 		 * When journalling data dirty buffers are tracked only in the
198 		 * journal. So although mm thinks everything is clean and
199 		 * ready for reaping the inode might still have some pages to
200 		 * write in the running transaction or waiting to be
201 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 		 * (via truncate_inode_pages()) to discard these buffers can
203 		 * cause data loss. Also even if we did not discard these
204 		 * buffers, we would have no way to find them after the inode
205 		 * is reaped and thus user could see stale data if he tries to
206 		 * read them before the transaction is checkpointed. So be
207 		 * careful and force everything to disk here... We use
208 		 * ei->i_datasync_tid to store the newest transaction
209 		 * containing inode's data.
210 		 *
211 		 * Note that directories do not have this problem because they
212 		 * don't use page cache.
213 		 */
214 		if (inode->i_ino != EXT4_JOURNAL_INO &&
215 		    ext4_should_journal_data(inode) &&
216 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219 
220 			jbd2_complete_transaction(journal, commit_tid);
221 			filemap_write_and_wait(&inode->i_data);
222 		}
223 		truncate_inode_pages_final(&inode->i_data);
224 
225 		goto no_delete;
226 	}
227 
228 	if (is_bad_inode(inode))
229 		goto no_delete;
230 	dquot_initialize(inode);
231 
232 	if (ext4_should_order_data(inode))
233 		ext4_begin_ordered_truncate(inode, 0);
234 	truncate_inode_pages_final(&inode->i_data);
235 
236 	/*
237 	 * Protect us against freezing - iput() caller didn't have to have any
238 	 * protection against it
239 	 */
240 	sb_start_intwrite(inode->i_sb);
241 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 				    ext4_blocks_for_truncate(inode)+3);
243 	if (IS_ERR(handle)) {
244 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 		/*
246 		 * If we're going to skip the normal cleanup, we still need to
247 		 * make sure that the in-core orphan linked list is properly
248 		 * cleaned up.
249 		 */
250 		ext4_orphan_del(NULL, inode);
251 		sb_end_intwrite(inode->i_sb);
252 		goto no_delete;
253 	}
254 
255 	if (IS_SYNC(inode))
256 		ext4_handle_sync(handle);
257 	inode->i_size = 0;
258 	err = ext4_mark_inode_dirty(handle, inode);
259 	if (err) {
260 		ext4_warning(inode->i_sb,
261 			     "couldn't mark inode dirty (err %d)", err);
262 		goto stop_handle;
263 	}
264 	if (inode->i_blocks)
265 		ext4_truncate(inode);
266 
267 	/*
268 	 * ext4_ext_truncate() doesn't reserve any slop when it
269 	 * restarts journal transactions; therefore there may not be
270 	 * enough credits left in the handle to remove the inode from
271 	 * the orphan list and set the dtime field.
272 	 */
273 	if (!ext4_handle_has_enough_credits(handle, 3)) {
274 		err = ext4_journal_extend(handle, 3);
275 		if (err > 0)
276 			err = ext4_journal_restart(handle, 3);
277 		if (err != 0) {
278 			ext4_warning(inode->i_sb,
279 				     "couldn't extend journal (err %d)", err);
280 		stop_handle:
281 			ext4_journal_stop(handle);
282 			ext4_orphan_del(NULL, inode);
283 			sb_end_intwrite(inode->i_sb);
284 			goto no_delete;
285 		}
286 	}
287 
288 	/*
289 	 * Kill off the orphan record which ext4_truncate created.
290 	 * AKPM: I think this can be inside the above `if'.
291 	 * Note that ext4_orphan_del() has to be able to cope with the
292 	 * deletion of a non-existent orphan - this is because we don't
293 	 * know if ext4_truncate() actually created an orphan record.
294 	 * (Well, we could do this if we need to, but heck - it works)
295 	 */
296 	ext4_orphan_del(handle, inode);
297 	EXT4_I(inode)->i_dtime	= get_seconds();
298 
299 	/*
300 	 * One subtle ordering requirement: if anything has gone wrong
301 	 * (transaction abort, IO errors, whatever), then we can still
302 	 * do these next steps (the fs will already have been marked as
303 	 * having errors), but we can't free the inode if the mark_dirty
304 	 * fails.
305 	 */
306 	if (ext4_mark_inode_dirty(handle, inode))
307 		/* If that failed, just do the required in-core inode clear. */
308 		ext4_clear_inode(inode);
309 	else
310 		ext4_free_inode(handle, inode);
311 	ext4_journal_stop(handle);
312 	sb_end_intwrite(inode->i_sb);
313 	return;
314 no_delete:
315 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
316 }
317 
318 #ifdef CONFIG_QUOTA
319 qsize_t *ext4_get_reserved_space(struct inode *inode)
320 {
321 	return &EXT4_I(inode)->i_reserved_quota;
322 }
323 #endif
324 
325 /*
326  * Called with i_data_sem down, which is important since we can call
327  * ext4_discard_preallocations() from here.
328  */
329 void ext4_da_update_reserve_space(struct inode *inode,
330 					int used, int quota_claim)
331 {
332 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
333 	struct ext4_inode_info *ei = EXT4_I(inode);
334 
335 	spin_lock(&ei->i_block_reservation_lock);
336 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
337 	if (unlikely(used > ei->i_reserved_data_blocks)) {
338 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
339 			 "with only %d reserved data blocks",
340 			 __func__, inode->i_ino, used,
341 			 ei->i_reserved_data_blocks);
342 		WARN_ON(1);
343 		used = ei->i_reserved_data_blocks;
344 	}
345 
346 	/* Update per-inode reservations */
347 	ei->i_reserved_data_blocks -= used;
348 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
349 
350 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
351 
352 	/* Update quota subsystem for data blocks */
353 	if (quota_claim)
354 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
355 	else {
356 		/*
357 		 * We did fallocate with an offset that is already delayed
358 		 * allocated. So on delayed allocated writeback we should
359 		 * not re-claim the quota for fallocated blocks.
360 		 */
361 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
362 	}
363 
364 	/*
365 	 * If we have done all the pending block allocations and if
366 	 * there aren't any writers on the inode, we can discard the
367 	 * inode's preallocations.
368 	 */
369 	if ((ei->i_reserved_data_blocks == 0) &&
370 	    (atomic_read(&inode->i_writecount) == 0))
371 		ext4_discard_preallocations(inode);
372 }
373 
374 static int __check_block_validity(struct inode *inode, const char *func,
375 				unsigned int line,
376 				struct ext4_map_blocks *map)
377 {
378 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
379 				   map->m_len)) {
380 		ext4_error_inode(inode, func, line, map->m_pblk,
381 				 "lblock %lu mapped to illegal pblock "
382 				 "(length %d)", (unsigned long) map->m_lblk,
383 				 map->m_len);
384 		return -EFSCORRUPTED;
385 	}
386 	return 0;
387 }
388 
389 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
390 		       ext4_lblk_t len)
391 {
392 	int ret;
393 
394 	if (ext4_encrypted_inode(inode))
395 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
396 
397 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
398 	if (ret > 0)
399 		ret = 0;
400 
401 	return ret;
402 }
403 
404 #define check_block_validity(inode, map)	\
405 	__check_block_validity((inode), __func__, __LINE__, (map))
406 
407 #ifdef ES_AGGRESSIVE_TEST
408 static void ext4_map_blocks_es_recheck(handle_t *handle,
409 				       struct inode *inode,
410 				       struct ext4_map_blocks *es_map,
411 				       struct ext4_map_blocks *map,
412 				       int flags)
413 {
414 	int retval;
415 
416 	map->m_flags = 0;
417 	/*
418 	 * There is a race window that the result is not the same.
419 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
420 	 * is that we lookup a block mapping in extent status tree with
421 	 * out taking i_data_sem.  So at the time the unwritten extent
422 	 * could be converted.
423 	 */
424 	down_read(&EXT4_I(inode)->i_data_sem);
425 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
426 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
427 					     EXT4_GET_BLOCKS_KEEP_SIZE);
428 	} else {
429 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
430 					     EXT4_GET_BLOCKS_KEEP_SIZE);
431 	}
432 	up_read((&EXT4_I(inode)->i_data_sem));
433 
434 	/*
435 	 * We don't check m_len because extent will be collpased in status
436 	 * tree.  So the m_len might not equal.
437 	 */
438 	if (es_map->m_lblk != map->m_lblk ||
439 	    es_map->m_flags != map->m_flags ||
440 	    es_map->m_pblk != map->m_pblk) {
441 		printk("ES cache assertion failed for inode: %lu "
442 		       "es_cached ex [%d/%d/%llu/%x] != "
443 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
444 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
445 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
446 		       map->m_len, map->m_pblk, map->m_flags,
447 		       retval, flags);
448 	}
449 }
450 #endif /* ES_AGGRESSIVE_TEST */
451 
452 /*
453  * The ext4_map_blocks() function tries to look up the requested blocks,
454  * and returns if the blocks are already mapped.
455  *
456  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
457  * and store the allocated blocks in the result buffer head and mark it
458  * mapped.
459  *
460  * If file type is extents based, it will call ext4_ext_map_blocks(),
461  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
462  * based files
463  *
464  * On success, it returns the number of blocks being mapped or allocated.  if
465  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
466  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
467  *
468  * It returns 0 if plain look up failed (blocks have not been allocated), in
469  * that case, @map is returned as unmapped but we still do fill map->m_len to
470  * indicate the length of a hole starting at map->m_lblk.
471  *
472  * It returns the error in case of allocation failure.
473  */
474 int ext4_map_blocks(handle_t *handle, struct inode *inode,
475 		    struct ext4_map_blocks *map, int flags)
476 {
477 	struct extent_status es;
478 	int retval;
479 	int ret = 0;
480 #ifdef ES_AGGRESSIVE_TEST
481 	struct ext4_map_blocks orig_map;
482 
483 	memcpy(&orig_map, map, sizeof(*map));
484 #endif
485 
486 	map->m_flags = 0;
487 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
488 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
489 		  (unsigned long) map->m_lblk);
490 
491 	/*
492 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
493 	 */
494 	if (unlikely(map->m_len > INT_MAX))
495 		map->m_len = INT_MAX;
496 
497 	/* We can handle the block number less than EXT_MAX_BLOCKS */
498 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
499 		return -EFSCORRUPTED;
500 
501 	/* Lookup extent status tree firstly */
502 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
503 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
504 			map->m_pblk = ext4_es_pblock(&es) +
505 					map->m_lblk - es.es_lblk;
506 			map->m_flags |= ext4_es_is_written(&es) ?
507 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
508 			retval = es.es_len - (map->m_lblk - es.es_lblk);
509 			if (retval > map->m_len)
510 				retval = map->m_len;
511 			map->m_len = retval;
512 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
513 			map->m_pblk = 0;
514 			retval = es.es_len - (map->m_lblk - es.es_lblk);
515 			if (retval > map->m_len)
516 				retval = map->m_len;
517 			map->m_len = retval;
518 			retval = 0;
519 		} else {
520 			BUG_ON(1);
521 		}
522 #ifdef ES_AGGRESSIVE_TEST
523 		ext4_map_blocks_es_recheck(handle, inode, map,
524 					   &orig_map, flags);
525 #endif
526 		goto found;
527 	}
528 
529 	/*
530 	 * Try to see if we can get the block without requesting a new
531 	 * file system block.
532 	 */
533 	down_read(&EXT4_I(inode)->i_data_sem);
534 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
535 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
536 					     EXT4_GET_BLOCKS_KEEP_SIZE);
537 	} else {
538 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
539 					     EXT4_GET_BLOCKS_KEEP_SIZE);
540 	}
541 	if (retval > 0) {
542 		unsigned int status;
543 
544 		if (unlikely(retval != map->m_len)) {
545 			ext4_warning(inode->i_sb,
546 				     "ES len assertion failed for inode "
547 				     "%lu: retval %d != map->m_len %d",
548 				     inode->i_ino, retval, map->m_len);
549 			WARN_ON(1);
550 		}
551 
552 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
553 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
554 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
555 		    !(status & EXTENT_STATUS_WRITTEN) &&
556 		    ext4_find_delalloc_range(inode, map->m_lblk,
557 					     map->m_lblk + map->m_len - 1))
558 			status |= EXTENT_STATUS_DELAYED;
559 		ret = ext4_es_insert_extent(inode, map->m_lblk,
560 					    map->m_len, map->m_pblk, status);
561 		if (ret < 0)
562 			retval = ret;
563 	}
564 	up_read((&EXT4_I(inode)->i_data_sem));
565 
566 found:
567 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
568 		ret = check_block_validity(inode, map);
569 		if (ret != 0)
570 			return ret;
571 	}
572 
573 	/* If it is only a block(s) look up */
574 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
575 		return retval;
576 
577 	/*
578 	 * Returns if the blocks have already allocated
579 	 *
580 	 * Note that if blocks have been preallocated
581 	 * ext4_ext_get_block() returns the create = 0
582 	 * with buffer head unmapped.
583 	 */
584 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
585 		/*
586 		 * If we need to convert extent to unwritten
587 		 * we continue and do the actual work in
588 		 * ext4_ext_map_blocks()
589 		 */
590 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
591 			return retval;
592 
593 	/*
594 	 * Here we clear m_flags because after allocating an new extent,
595 	 * it will be set again.
596 	 */
597 	map->m_flags &= ~EXT4_MAP_FLAGS;
598 
599 	/*
600 	 * New blocks allocate and/or writing to unwritten extent
601 	 * will possibly result in updating i_data, so we take
602 	 * the write lock of i_data_sem, and call get_block()
603 	 * with create == 1 flag.
604 	 */
605 	down_write(&EXT4_I(inode)->i_data_sem);
606 
607 	/*
608 	 * We need to check for EXT4 here because migrate
609 	 * could have changed the inode type in between
610 	 */
611 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
612 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
613 	} else {
614 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
615 
616 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
617 			/*
618 			 * We allocated new blocks which will result in
619 			 * i_data's format changing.  Force the migrate
620 			 * to fail by clearing migrate flags
621 			 */
622 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
623 		}
624 
625 		/*
626 		 * Update reserved blocks/metadata blocks after successful
627 		 * block allocation which had been deferred till now. We don't
628 		 * support fallocate for non extent files. So we can update
629 		 * reserve space here.
630 		 */
631 		if ((retval > 0) &&
632 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
633 			ext4_da_update_reserve_space(inode, retval, 1);
634 	}
635 
636 	if (retval > 0) {
637 		unsigned int status;
638 
639 		if (unlikely(retval != map->m_len)) {
640 			ext4_warning(inode->i_sb,
641 				     "ES len assertion failed for inode "
642 				     "%lu: retval %d != map->m_len %d",
643 				     inode->i_ino, retval, map->m_len);
644 			WARN_ON(1);
645 		}
646 
647 		/*
648 		 * We have to zeroout blocks before inserting them into extent
649 		 * status tree. Otherwise someone could look them up there and
650 		 * use them before they are really zeroed. We also have to
651 		 * unmap metadata before zeroing as otherwise writeback can
652 		 * overwrite zeros with stale data from block device.
653 		 */
654 		if (flags & EXT4_GET_BLOCKS_ZERO &&
655 		    map->m_flags & EXT4_MAP_MAPPED &&
656 		    map->m_flags & EXT4_MAP_NEW) {
657 			ext4_lblk_t i;
658 
659 			for (i = 0; i < map->m_len; i++) {
660 				unmap_underlying_metadata(inode->i_sb->s_bdev,
661 							  map->m_pblk + i);
662 			}
663 			ret = ext4_issue_zeroout(inode, map->m_lblk,
664 						 map->m_pblk, map->m_len);
665 			if (ret) {
666 				retval = ret;
667 				goto out_sem;
668 			}
669 		}
670 
671 		/*
672 		 * If the extent has been zeroed out, we don't need to update
673 		 * extent status tree.
674 		 */
675 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
676 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
677 			if (ext4_es_is_written(&es))
678 				goto out_sem;
679 		}
680 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
681 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
682 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
683 		    !(status & EXTENT_STATUS_WRITTEN) &&
684 		    ext4_find_delalloc_range(inode, map->m_lblk,
685 					     map->m_lblk + map->m_len - 1))
686 			status |= EXTENT_STATUS_DELAYED;
687 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
688 					    map->m_pblk, status);
689 		if (ret < 0) {
690 			retval = ret;
691 			goto out_sem;
692 		}
693 	}
694 
695 out_sem:
696 	up_write((&EXT4_I(inode)->i_data_sem));
697 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
698 		ret = check_block_validity(inode, map);
699 		if (ret != 0)
700 			return ret;
701 
702 		/*
703 		 * Inodes with freshly allocated blocks where contents will be
704 		 * visible after transaction commit must be on transaction's
705 		 * ordered data list.
706 		 */
707 		if (map->m_flags & EXT4_MAP_NEW &&
708 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
709 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
710 		    !IS_NOQUOTA(inode) &&
711 		    ext4_should_order_data(inode)) {
712 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
713 				ret = ext4_jbd2_inode_add_wait(handle, inode);
714 			else
715 				ret = ext4_jbd2_inode_add_write(handle, inode);
716 			if (ret)
717 				return ret;
718 		}
719 	}
720 	return retval;
721 }
722 
723 /*
724  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
725  * we have to be careful as someone else may be manipulating b_state as well.
726  */
727 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
728 {
729 	unsigned long old_state;
730 	unsigned long new_state;
731 
732 	flags &= EXT4_MAP_FLAGS;
733 
734 	/* Dummy buffer_head? Set non-atomically. */
735 	if (!bh->b_page) {
736 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
737 		return;
738 	}
739 	/*
740 	 * Someone else may be modifying b_state. Be careful! This is ugly but
741 	 * once we get rid of using bh as a container for mapping information
742 	 * to pass to / from get_block functions, this can go away.
743 	 */
744 	do {
745 		old_state = READ_ONCE(bh->b_state);
746 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
747 	} while (unlikely(
748 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
749 }
750 
751 static int _ext4_get_block(struct inode *inode, sector_t iblock,
752 			   struct buffer_head *bh, int flags)
753 {
754 	struct ext4_map_blocks map;
755 	int ret = 0;
756 
757 	if (ext4_has_inline_data(inode))
758 		return -ERANGE;
759 
760 	map.m_lblk = iblock;
761 	map.m_len = bh->b_size >> inode->i_blkbits;
762 
763 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
764 			      flags);
765 	if (ret > 0) {
766 		map_bh(bh, inode->i_sb, map.m_pblk);
767 		ext4_update_bh_state(bh, map.m_flags);
768 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
769 		ret = 0;
770 	}
771 	return ret;
772 }
773 
774 int ext4_get_block(struct inode *inode, sector_t iblock,
775 		   struct buffer_head *bh, int create)
776 {
777 	return _ext4_get_block(inode, iblock, bh,
778 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
779 }
780 
781 /*
782  * Get block function used when preparing for buffered write if we require
783  * creating an unwritten extent if blocks haven't been allocated.  The extent
784  * will be converted to written after the IO is complete.
785  */
786 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
787 			     struct buffer_head *bh_result, int create)
788 {
789 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
790 		   inode->i_ino, create);
791 	return _ext4_get_block(inode, iblock, bh_result,
792 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
793 }
794 
795 /* Maximum number of blocks we map for direct IO at once. */
796 #define DIO_MAX_BLOCKS 4096
797 
798 /*
799  * Get blocks function for the cases that need to start a transaction -
800  * generally difference cases of direct IO and DAX IO. It also handles retries
801  * in case of ENOSPC.
802  */
803 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
804 				struct buffer_head *bh_result, int flags)
805 {
806 	int dio_credits;
807 	handle_t *handle;
808 	int retries = 0;
809 	int ret;
810 
811 	/* Trim mapping request to maximum we can map at once for DIO */
812 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
813 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
814 	dio_credits = ext4_chunk_trans_blocks(inode,
815 				      bh_result->b_size >> inode->i_blkbits);
816 retry:
817 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
818 	if (IS_ERR(handle))
819 		return PTR_ERR(handle);
820 
821 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
822 	ext4_journal_stop(handle);
823 
824 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
825 		goto retry;
826 	return ret;
827 }
828 
829 /* Get block function for DIO reads and writes to inodes without extents */
830 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
831 		       struct buffer_head *bh, int create)
832 {
833 	/* We don't expect handle for direct IO */
834 	WARN_ON_ONCE(ext4_journal_current_handle());
835 
836 	if (!create)
837 		return _ext4_get_block(inode, iblock, bh, 0);
838 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
839 }
840 
841 /*
842  * Get block function for AIO DIO writes when we create unwritten extent if
843  * blocks are not allocated yet. The extent will be converted to written
844  * after IO is complete.
845  */
846 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
847 		sector_t iblock, struct buffer_head *bh_result,	int create)
848 {
849 	int ret;
850 
851 	/* We don't expect handle for direct IO */
852 	WARN_ON_ONCE(ext4_journal_current_handle());
853 
854 	ret = ext4_get_block_trans(inode, iblock, bh_result,
855 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
856 
857 	/*
858 	 * When doing DIO using unwritten extents, we need io_end to convert
859 	 * unwritten extents to written on IO completion. We allocate io_end
860 	 * once we spot unwritten extent and store it in b_private. Generic
861 	 * DIO code keeps b_private set and furthermore passes the value to
862 	 * our completion callback in 'private' argument.
863 	 */
864 	if (!ret && buffer_unwritten(bh_result)) {
865 		if (!bh_result->b_private) {
866 			ext4_io_end_t *io_end;
867 
868 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
869 			if (!io_end)
870 				return -ENOMEM;
871 			bh_result->b_private = io_end;
872 			ext4_set_io_unwritten_flag(inode, io_end);
873 		}
874 		set_buffer_defer_completion(bh_result);
875 	}
876 
877 	return ret;
878 }
879 
880 /*
881  * Get block function for non-AIO DIO writes when we create unwritten extent if
882  * blocks are not allocated yet. The extent will be converted to written
883  * after IO is complete from ext4_ext_direct_IO() function.
884  */
885 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
886 		sector_t iblock, struct buffer_head *bh_result,	int create)
887 {
888 	int ret;
889 
890 	/* We don't expect handle for direct IO */
891 	WARN_ON_ONCE(ext4_journal_current_handle());
892 
893 	ret = ext4_get_block_trans(inode, iblock, bh_result,
894 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
895 
896 	/*
897 	 * Mark inode as having pending DIO writes to unwritten extents.
898 	 * ext4_ext_direct_IO() checks this flag and converts extents to
899 	 * written.
900 	 */
901 	if (!ret && buffer_unwritten(bh_result))
902 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
903 
904 	return ret;
905 }
906 
907 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
908 		   struct buffer_head *bh_result, int create)
909 {
910 	int ret;
911 
912 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
913 		   inode->i_ino, create);
914 	/* We don't expect handle for direct IO */
915 	WARN_ON_ONCE(ext4_journal_current_handle());
916 
917 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
918 	/*
919 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
920 	 * that.
921 	 */
922 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
923 
924 	return ret;
925 }
926 
927 
928 /*
929  * `handle' can be NULL if create is zero
930  */
931 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
932 				ext4_lblk_t block, int map_flags)
933 {
934 	struct ext4_map_blocks map;
935 	struct buffer_head *bh;
936 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
937 	int err;
938 
939 	J_ASSERT(handle != NULL || create == 0);
940 
941 	map.m_lblk = block;
942 	map.m_len = 1;
943 	err = ext4_map_blocks(handle, inode, &map, map_flags);
944 
945 	if (err == 0)
946 		return create ? ERR_PTR(-ENOSPC) : NULL;
947 	if (err < 0)
948 		return ERR_PTR(err);
949 
950 	bh = sb_getblk(inode->i_sb, map.m_pblk);
951 	if (unlikely(!bh))
952 		return ERR_PTR(-ENOMEM);
953 	if (map.m_flags & EXT4_MAP_NEW) {
954 		J_ASSERT(create != 0);
955 		J_ASSERT(handle != NULL);
956 
957 		/*
958 		 * Now that we do not always journal data, we should
959 		 * keep in mind whether this should always journal the
960 		 * new buffer as metadata.  For now, regular file
961 		 * writes use ext4_get_block instead, so it's not a
962 		 * problem.
963 		 */
964 		lock_buffer(bh);
965 		BUFFER_TRACE(bh, "call get_create_access");
966 		err = ext4_journal_get_create_access(handle, bh);
967 		if (unlikely(err)) {
968 			unlock_buffer(bh);
969 			goto errout;
970 		}
971 		if (!buffer_uptodate(bh)) {
972 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
973 			set_buffer_uptodate(bh);
974 		}
975 		unlock_buffer(bh);
976 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
977 		err = ext4_handle_dirty_metadata(handle, inode, bh);
978 		if (unlikely(err))
979 			goto errout;
980 	} else
981 		BUFFER_TRACE(bh, "not a new buffer");
982 	return bh;
983 errout:
984 	brelse(bh);
985 	return ERR_PTR(err);
986 }
987 
988 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
989 			       ext4_lblk_t block, int map_flags)
990 {
991 	struct buffer_head *bh;
992 
993 	bh = ext4_getblk(handle, inode, block, map_flags);
994 	if (IS_ERR(bh))
995 		return bh;
996 	if (!bh || buffer_uptodate(bh))
997 		return bh;
998 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
999 	wait_on_buffer(bh);
1000 	if (buffer_uptodate(bh))
1001 		return bh;
1002 	put_bh(bh);
1003 	return ERR_PTR(-EIO);
1004 }
1005 
1006 int ext4_walk_page_buffers(handle_t *handle,
1007 			   struct buffer_head *head,
1008 			   unsigned from,
1009 			   unsigned to,
1010 			   int *partial,
1011 			   int (*fn)(handle_t *handle,
1012 				     struct buffer_head *bh))
1013 {
1014 	struct buffer_head *bh;
1015 	unsigned block_start, block_end;
1016 	unsigned blocksize = head->b_size;
1017 	int err, ret = 0;
1018 	struct buffer_head *next;
1019 
1020 	for (bh = head, block_start = 0;
1021 	     ret == 0 && (bh != head || !block_start);
1022 	     block_start = block_end, bh = next) {
1023 		next = bh->b_this_page;
1024 		block_end = block_start + blocksize;
1025 		if (block_end <= from || block_start >= to) {
1026 			if (partial && !buffer_uptodate(bh))
1027 				*partial = 1;
1028 			continue;
1029 		}
1030 		err = (*fn)(handle, bh);
1031 		if (!ret)
1032 			ret = err;
1033 	}
1034 	return ret;
1035 }
1036 
1037 /*
1038  * To preserve ordering, it is essential that the hole instantiation and
1039  * the data write be encapsulated in a single transaction.  We cannot
1040  * close off a transaction and start a new one between the ext4_get_block()
1041  * and the commit_write().  So doing the jbd2_journal_start at the start of
1042  * prepare_write() is the right place.
1043  *
1044  * Also, this function can nest inside ext4_writepage().  In that case, we
1045  * *know* that ext4_writepage() has generated enough buffer credits to do the
1046  * whole page.  So we won't block on the journal in that case, which is good,
1047  * because the caller may be PF_MEMALLOC.
1048  *
1049  * By accident, ext4 can be reentered when a transaction is open via
1050  * quota file writes.  If we were to commit the transaction while thus
1051  * reentered, there can be a deadlock - we would be holding a quota
1052  * lock, and the commit would never complete if another thread had a
1053  * transaction open and was blocking on the quota lock - a ranking
1054  * violation.
1055  *
1056  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1057  * will _not_ run commit under these circumstances because handle->h_ref
1058  * is elevated.  We'll still have enough credits for the tiny quotafile
1059  * write.
1060  */
1061 int do_journal_get_write_access(handle_t *handle,
1062 				struct buffer_head *bh)
1063 {
1064 	int dirty = buffer_dirty(bh);
1065 	int ret;
1066 
1067 	if (!buffer_mapped(bh) || buffer_freed(bh))
1068 		return 0;
1069 	/*
1070 	 * __block_write_begin() could have dirtied some buffers. Clean
1071 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1072 	 * otherwise about fs integrity issues. Setting of the dirty bit
1073 	 * by __block_write_begin() isn't a real problem here as we clear
1074 	 * the bit before releasing a page lock and thus writeback cannot
1075 	 * ever write the buffer.
1076 	 */
1077 	if (dirty)
1078 		clear_buffer_dirty(bh);
1079 	BUFFER_TRACE(bh, "get write access");
1080 	ret = ext4_journal_get_write_access(handle, bh);
1081 	if (!ret && dirty)
1082 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1083 	return ret;
1084 }
1085 
1086 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1087 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1088 				  get_block_t *get_block)
1089 {
1090 	unsigned from = pos & (PAGE_SIZE - 1);
1091 	unsigned to = from + len;
1092 	struct inode *inode = page->mapping->host;
1093 	unsigned block_start, block_end;
1094 	sector_t block;
1095 	int err = 0;
1096 	unsigned blocksize = inode->i_sb->s_blocksize;
1097 	unsigned bbits;
1098 	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1099 	bool decrypt = false;
1100 
1101 	BUG_ON(!PageLocked(page));
1102 	BUG_ON(from > PAGE_SIZE);
1103 	BUG_ON(to > PAGE_SIZE);
1104 	BUG_ON(from > to);
1105 
1106 	if (!page_has_buffers(page))
1107 		create_empty_buffers(page, blocksize, 0);
1108 	head = page_buffers(page);
1109 	bbits = ilog2(blocksize);
1110 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1111 
1112 	for (bh = head, block_start = 0; bh != head || !block_start;
1113 	    block++, block_start = block_end, bh = bh->b_this_page) {
1114 		block_end = block_start + blocksize;
1115 		if (block_end <= from || block_start >= to) {
1116 			if (PageUptodate(page)) {
1117 				if (!buffer_uptodate(bh))
1118 					set_buffer_uptodate(bh);
1119 			}
1120 			continue;
1121 		}
1122 		if (buffer_new(bh))
1123 			clear_buffer_new(bh);
1124 		if (!buffer_mapped(bh)) {
1125 			WARN_ON(bh->b_size != blocksize);
1126 			err = get_block(inode, block, bh, 1);
1127 			if (err)
1128 				break;
1129 			if (buffer_new(bh)) {
1130 				unmap_underlying_metadata(bh->b_bdev,
1131 							  bh->b_blocknr);
1132 				if (PageUptodate(page)) {
1133 					clear_buffer_new(bh);
1134 					set_buffer_uptodate(bh);
1135 					mark_buffer_dirty(bh);
1136 					continue;
1137 				}
1138 				if (block_end > to || block_start < from)
1139 					zero_user_segments(page, to, block_end,
1140 							   block_start, from);
1141 				continue;
1142 			}
1143 		}
1144 		if (PageUptodate(page)) {
1145 			if (!buffer_uptodate(bh))
1146 				set_buffer_uptodate(bh);
1147 			continue;
1148 		}
1149 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1150 		    !buffer_unwritten(bh) &&
1151 		    (block_start < from || block_end > to)) {
1152 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1153 			*wait_bh++ = bh;
1154 			decrypt = ext4_encrypted_inode(inode) &&
1155 				S_ISREG(inode->i_mode);
1156 		}
1157 	}
1158 	/*
1159 	 * If we issued read requests, let them complete.
1160 	 */
1161 	while (wait_bh > wait) {
1162 		wait_on_buffer(*--wait_bh);
1163 		if (!buffer_uptodate(*wait_bh))
1164 			err = -EIO;
1165 	}
1166 	if (unlikely(err))
1167 		page_zero_new_buffers(page, from, to);
1168 	else if (decrypt)
1169 		err = fscrypt_decrypt_page(page);
1170 	return err;
1171 }
1172 #endif
1173 
1174 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1175 			    loff_t pos, unsigned len, unsigned flags,
1176 			    struct page **pagep, void **fsdata)
1177 {
1178 	struct inode *inode = mapping->host;
1179 	int ret, needed_blocks;
1180 	handle_t *handle;
1181 	int retries = 0;
1182 	struct page *page;
1183 	pgoff_t index;
1184 	unsigned from, to;
1185 
1186 	trace_ext4_write_begin(inode, pos, len, flags);
1187 	/*
1188 	 * Reserve one block more for addition to orphan list in case
1189 	 * we allocate blocks but write fails for some reason
1190 	 */
1191 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1192 	index = pos >> PAGE_SHIFT;
1193 	from = pos & (PAGE_SIZE - 1);
1194 	to = from + len;
1195 
1196 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1197 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1198 						    flags, pagep);
1199 		if (ret < 0)
1200 			return ret;
1201 		if (ret == 1)
1202 			return 0;
1203 	}
1204 
1205 	/*
1206 	 * grab_cache_page_write_begin() can take a long time if the
1207 	 * system is thrashing due to memory pressure, or if the page
1208 	 * is being written back.  So grab it first before we start
1209 	 * the transaction handle.  This also allows us to allocate
1210 	 * the page (if needed) without using GFP_NOFS.
1211 	 */
1212 retry_grab:
1213 	page = grab_cache_page_write_begin(mapping, index, flags);
1214 	if (!page)
1215 		return -ENOMEM;
1216 	unlock_page(page);
1217 
1218 retry_journal:
1219 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1220 	if (IS_ERR(handle)) {
1221 		put_page(page);
1222 		return PTR_ERR(handle);
1223 	}
1224 
1225 	lock_page(page);
1226 	if (page->mapping != mapping) {
1227 		/* The page got truncated from under us */
1228 		unlock_page(page);
1229 		put_page(page);
1230 		ext4_journal_stop(handle);
1231 		goto retry_grab;
1232 	}
1233 	/* In case writeback began while the page was unlocked */
1234 	wait_for_stable_page(page);
1235 
1236 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1237 	if (ext4_should_dioread_nolock(inode))
1238 		ret = ext4_block_write_begin(page, pos, len,
1239 					     ext4_get_block_unwritten);
1240 	else
1241 		ret = ext4_block_write_begin(page, pos, len,
1242 					     ext4_get_block);
1243 #else
1244 	if (ext4_should_dioread_nolock(inode))
1245 		ret = __block_write_begin(page, pos, len,
1246 					  ext4_get_block_unwritten);
1247 	else
1248 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1249 #endif
1250 	if (!ret && ext4_should_journal_data(inode)) {
1251 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1252 					     from, to, NULL,
1253 					     do_journal_get_write_access);
1254 	}
1255 
1256 	if (ret) {
1257 		unlock_page(page);
1258 		/*
1259 		 * __block_write_begin may have instantiated a few blocks
1260 		 * outside i_size.  Trim these off again. Don't need
1261 		 * i_size_read because we hold i_mutex.
1262 		 *
1263 		 * Add inode to orphan list in case we crash before
1264 		 * truncate finishes
1265 		 */
1266 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1267 			ext4_orphan_add(handle, inode);
1268 
1269 		ext4_journal_stop(handle);
1270 		if (pos + len > inode->i_size) {
1271 			ext4_truncate_failed_write(inode);
1272 			/*
1273 			 * If truncate failed early the inode might
1274 			 * still be on the orphan list; we need to
1275 			 * make sure the inode is removed from the
1276 			 * orphan list in that case.
1277 			 */
1278 			if (inode->i_nlink)
1279 				ext4_orphan_del(NULL, inode);
1280 		}
1281 
1282 		if (ret == -ENOSPC &&
1283 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1284 			goto retry_journal;
1285 		put_page(page);
1286 		return ret;
1287 	}
1288 	*pagep = page;
1289 	return ret;
1290 }
1291 
1292 /* For write_end() in data=journal mode */
1293 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1294 {
1295 	int ret;
1296 	if (!buffer_mapped(bh) || buffer_freed(bh))
1297 		return 0;
1298 	set_buffer_uptodate(bh);
1299 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1300 	clear_buffer_meta(bh);
1301 	clear_buffer_prio(bh);
1302 	return ret;
1303 }
1304 
1305 /*
1306  * We need to pick up the new inode size which generic_commit_write gave us
1307  * `file' can be NULL - eg, when called from page_symlink().
1308  *
1309  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1310  * buffers are managed internally.
1311  */
1312 static int ext4_write_end(struct file *file,
1313 			  struct address_space *mapping,
1314 			  loff_t pos, unsigned len, unsigned copied,
1315 			  struct page *page, void *fsdata)
1316 {
1317 	handle_t *handle = ext4_journal_current_handle();
1318 	struct inode *inode = mapping->host;
1319 	loff_t old_size = inode->i_size;
1320 	int ret = 0, ret2;
1321 	int i_size_changed = 0;
1322 
1323 	trace_ext4_write_end(inode, pos, len, copied);
1324 	if (ext4_has_inline_data(inode)) {
1325 		ret = ext4_write_inline_data_end(inode, pos, len,
1326 						 copied, page);
1327 		if (ret < 0)
1328 			goto errout;
1329 		copied = ret;
1330 	} else
1331 		copied = block_write_end(file, mapping, pos,
1332 					 len, copied, page, fsdata);
1333 	/*
1334 	 * it's important to update i_size while still holding page lock:
1335 	 * page writeout could otherwise come in and zero beyond i_size.
1336 	 */
1337 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1338 	unlock_page(page);
1339 	put_page(page);
1340 
1341 	if (old_size < pos)
1342 		pagecache_isize_extended(inode, old_size, pos);
1343 	/*
1344 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1345 	 * makes the holding time of page lock longer. Second, it forces lock
1346 	 * ordering of page lock and transaction start for journaling
1347 	 * filesystems.
1348 	 */
1349 	if (i_size_changed)
1350 		ext4_mark_inode_dirty(handle, inode);
1351 
1352 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1353 		/* if we have allocated more blocks and copied
1354 		 * less. We will have blocks allocated outside
1355 		 * inode->i_size. So truncate them
1356 		 */
1357 		ext4_orphan_add(handle, inode);
1358 errout:
1359 	ret2 = ext4_journal_stop(handle);
1360 	if (!ret)
1361 		ret = ret2;
1362 
1363 	if (pos + len > inode->i_size) {
1364 		ext4_truncate_failed_write(inode);
1365 		/*
1366 		 * If truncate failed early the inode might still be
1367 		 * on the orphan list; we need to make sure the inode
1368 		 * is removed from the orphan list in that case.
1369 		 */
1370 		if (inode->i_nlink)
1371 			ext4_orphan_del(NULL, inode);
1372 	}
1373 
1374 	return ret ? ret : copied;
1375 }
1376 
1377 /*
1378  * This is a private version of page_zero_new_buffers() which doesn't
1379  * set the buffer to be dirty, since in data=journalled mode we need
1380  * to call ext4_handle_dirty_metadata() instead.
1381  */
1382 static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1383 {
1384 	unsigned int block_start = 0, block_end;
1385 	struct buffer_head *head, *bh;
1386 
1387 	bh = head = page_buffers(page);
1388 	do {
1389 		block_end = block_start + bh->b_size;
1390 		if (buffer_new(bh)) {
1391 			if (block_end > from && block_start < to) {
1392 				if (!PageUptodate(page)) {
1393 					unsigned start, size;
1394 
1395 					start = max(from, block_start);
1396 					size = min(to, block_end) - start;
1397 
1398 					zero_user(page, start, size);
1399 					set_buffer_uptodate(bh);
1400 				}
1401 				clear_buffer_new(bh);
1402 			}
1403 		}
1404 		block_start = block_end;
1405 		bh = bh->b_this_page;
1406 	} while (bh != head);
1407 }
1408 
1409 static int ext4_journalled_write_end(struct file *file,
1410 				     struct address_space *mapping,
1411 				     loff_t pos, unsigned len, unsigned copied,
1412 				     struct page *page, void *fsdata)
1413 {
1414 	handle_t *handle = ext4_journal_current_handle();
1415 	struct inode *inode = mapping->host;
1416 	loff_t old_size = inode->i_size;
1417 	int ret = 0, ret2;
1418 	int partial = 0;
1419 	unsigned from, to;
1420 	int size_changed = 0;
1421 
1422 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1423 	from = pos & (PAGE_SIZE - 1);
1424 	to = from + len;
1425 
1426 	BUG_ON(!ext4_handle_valid(handle));
1427 
1428 	if (ext4_has_inline_data(inode))
1429 		copied = ext4_write_inline_data_end(inode, pos, len,
1430 						    copied, page);
1431 	else {
1432 		if (copied < len) {
1433 			if (!PageUptodate(page))
1434 				copied = 0;
1435 			zero_new_buffers(page, from+copied, to);
1436 		}
1437 
1438 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1439 					     to, &partial, write_end_fn);
1440 		if (!partial)
1441 			SetPageUptodate(page);
1442 	}
1443 	size_changed = ext4_update_inode_size(inode, pos + copied);
1444 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1445 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1446 	unlock_page(page);
1447 	put_page(page);
1448 
1449 	if (old_size < pos)
1450 		pagecache_isize_extended(inode, old_size, pos);
1451 
1452 	if (size_changed) {
1453 		ret2 = ext4_mark_inode_dirty(handle, inode);
1454 		if (!ret)
1455 			ret = ret2;
1456 	}
1457 
1458 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1459 		/* if we have allocated more blocks and copied
1460 		 * less. We will have blocks allocated outside
1461 		 * inode->i_size. So truncate them
1462 		 */
1463 		ext4_orphan_add(handle, inode);
1464 
1465 	ret2 = ext4_journal_stop(handle);
1466 	if (!ret)
1467 		ret = ret2;
1468 	if (pos + len > inode->i_size) {
1469 		ext4_truncate_failed_write(inode);
1470 		/*
1471 		 * If truncate failed early the inode might still be
1472 		 * on the orphan list; we need to make sure the inode
1473 		 * is removed from the orphan list in that case.
1474 		 */
1475 		if (inode->i_nlink)
1476 			ext4_orphan_del(NULL, inode);
1477 	}
1478 
1479 	return ret ? ret : copied;
1480 }
1481 
1482 /*
1483  * Reserve space for a single cluster
1484  */
1485 static int ext4_da_reserve_space(struct inode *inode)
1486 {
1487 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1488 	struct ext4_inode_info *ei = EXT4_I(inode);
1489 	int ret;
1490 
1491 	/*
1492 	 * We will charge metadata quota at writeout time; this saves
1493 	 * us from metadata over-estimation, though we may go over by
1494 	 * a small amount in the end.  Here we just reserve for data.
1495 	 */
1496 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1497 	if (ret)
1498 		return ret;
1499 
1500 	spin_lock(&ei->i_block_reservation_lock);
1501 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1502 		spin_unlock(&ei->i_block_reservation_lock);
1503 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1504 		return -ENOSPC;
1505 	}
1506 	ei->i_reserved_data_blocks++;
1507 	trace_ext4_da_reserve_space(inode);
1508 	spin_unlock(&ei->i_block_reservation_lock);
1509 
1510 	return 0;       /* success */
1511 }
1512 
1513 static void ext4_da_release_space(struct inode *inode, int to_free)
1514 {
1515 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1516 	struct ext4_inode_info *ei = EXT4_I(inode);
1517 
1518 	if (!to_free)
1519 		return;		/* Nothing to release, exit */
1520 
1521 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1522 
1523 	trace_ext4_da_release_space(inode, to_free);
1524 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1525 		/*
1526 		 * if there aren't enough reserved blocks, then the
1527 		 * counter is messed up somewhere.  Since this
1528 		 * function is called from invalidate page, it's
1529 		 * harmless to return without any action.
1530 		 */
1531 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1532 			 "ino %lu, to_free %d with only %d reserved "
1533 			 "data blocks", inode->i_ino, to_free,
1534 			 ei->i_reserved_data_blocks);
1535 		WARN_ON(1);
1536 		to_free = ei->i_reserved_data_blocks;
1537 	}
1538 	ei->i_reserved_data_blocks -= to_free;
1539 
1540 	/* update fs dirty data blocks counter */
1541 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1542 
1543 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1544 
1545 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1546 }
1547 
1548 static void ext4_da_page_release_reservation(struct page *page,
1549 					     unsigned int offset,
1550 					     unsigned int length)
1551 {
1552 	int to_release = 0, contiguous_blks = 0;
1553 	struct buffer_head *head, *bh;
1554 	unsigned int curr_off = 0;
1555 	struct inode *inode = page->mapping->host;
1556 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1557 	unsigned int stop = offset + length;
1558 	int num_clusters;
1559 	ext4_fsblk_t lblk;
1560 
1561 	BUG_ON(stop > PAGE_SIZE || stop < length);
1562 
1563 	head = page_buffers(page);
1564 	bh = head;
1565 	do {
1566 		unsigned int next_off = curr_off + bh->b_size;
1567 
1568 		if (next_off > stop)
1569 			break;
1570 
1571 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1572 			to_release++;
1573 			contiguous_blks++;
1574 			clear_buffer_delay(bh);
1575 		} else if (contiguous_blks) {
1576 			lblk = page->index <<
1577 			       (PAGE_SHIFT - inode->i_blkbits);
1578 			lblk += (curr_off >> inode->i_blkbits) -
1579 				contiguous_blks;
1580 			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1581 			contiguous_blks = 0;
1582 		}
1583 		curr_off = next_off;
1584 	} while ((bh = bh->b_this_page) != head);
1585 
1586 	if (contiguous_blks) {
1587 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1588 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1589 		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1590 	}
1591 
1592 	/* If we have released all the blocks belonging to a cluster, then we
1593 	 * need to release the reserved space for that cluster. */
1594 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1595 	while (num_clusters > 0) {
1596 		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1597 			((num_clusters - 1) << sbi->s_cluster_bits);
1598 		if (sbi->s_cluster_ratio == 1 ||
1599 		    !ext4_find_delalloc_cluster(inode, lblk))
1600 			ext4_da_release_space(inode, 1);
1601 
1602 		num_clusters--;
1603 	}
1604 }
1605 
1606 /*
1607  * Delayed allocation stuff
1608  */
1609 
1610 struct mpage_da_data {
1611 	struct inode *inode;
1612 	struct writeback_control *wbc;
1613 
1614 	pgoff_t first_page;	/* The first page to write */
1615 	pgoff_t next_page;	/* Current page to examine */
1616 	pgoff_t last_page;	/* Last page to examine */
1617 	/*
1618 	 * Extent to map - this can be after first_page because that can be
1619 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1620 	 * is delalloc or unwritten.
1621 	 */
1622 	struct ext4_map_blocks map;
1623 	struct ext4_io_submit io_submit;	/* IO submission data */
1624 };
1625 
1626 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1627 				       bool invalidate)
1628 {
1629 	int nr_pages, i;
1630 	pgoff_t index, end;
1631 	struct pagevec pvec;
1632 	struct inode *inode = mpd->inode;
1633 	struct address_space *mapping = inode->i_mapping;
1634 
1635 	/* This is necessary when next_page == 0. */
1636 	if (mpd->first_page >= mpd->next_page)
1637 		return;
1638 
1639 	index = mpd->first_page;
1640 	end   = mpd->next_page - 1;
1641 	if (invalidate) {
1642 		ext4_lblk_t start, last;
1643 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1644 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1645 		ext4_es_remove_extent(inode, start, last - start + 1);
1646 	}
1647 
1648 	pagevec_init(&pvec, 0);
1649 	while (index <= end) {
1650 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1651 		if (nr_pages == 0)
1652 			break;
1653 		for (i = 0; i < nr_pages; i++) {
1654 			struct page *page = pvec.pages[i];
1655 			if (page->index > end)
1656 				break;
1657 			BUG_ON(!PageLocked(page));
1658 			BUG_ON(PageWriteback(page));
1659 			if (invalidate) {
1660 				if (page_mapped(page))
1661 					clear_page_dirty_for_io(page);
1662 				block_invalidatepage(page, 0, PAGE_SIZE);
1663 				ClearPageUptodate(page);
1664 			}
1665 			unlock_page(page);
1666 		}
1667 		index = pvec.pages[nr_pages - 1]->index + 1;
1668 		pagevec_release(&pvec);
1669 	}
1670 }
1671 
1672 static void ext4_print_free_blocks(struct inode *inode)
1673 {
1674 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1675 	struct super_block *sb = inode->i_sb;
1676 	struct ext4_inode_info *ei = EXT4_I(inode);
1677 
1678 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1679 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1680 			ext4_count_free_clusters(sb)));
1681 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1682 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1683 	       (long long) EXT4_C2B(EXT4_SB(sb),
1684 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1685 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1686 	       (long long) EXT4_C2B(EXT4_SB(sb),
1687 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1688 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1689 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1690 		 ei->i_reserved_data_blocks);
1691 	return;
1692 }
1693 
1694 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1695 {
1696 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1697 }
1698 
1699 /*
1700  * This function is grabs code from the very beginning of
1701  * ext4_map_blocks, but assumes that the caller is from delayed write
1702  * time. This function looks up the requested blocks and sets the
1703  * buffer delay bit under the protection of i_data_sem.
1704  */
1705 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1706 			      struct ext4_map_blocks *map,
1707 			      struct buffer_head *bh)
1708 {
1709 	struct extent_status es;
1710 	int retval;
1711 	sector_t invalid_block = ~((sector_t) 0xffff);
1712 #ifdef ES_AGGRESSIVE_TEST
1713 	struct ext4_map_blocks orig_map;
1714 
1715 	memcpy(&orig_map, map, sizeof(*map));
1716 #endif
1717 
1718 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1719 		invalid_block = ~0;
1720 
1721 	map->m_flags = 0;
1722 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1723 		  "logical block %lu\n", inode->i_ino, map->m_len,
1724 		  (unsigned long) map->m_lblk);
1725 
1726 	/* Lookup extent status tree firstly */
1727 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1728 		if (ext4_es_is_hole(&es)) {
1729 			retval = 0;
1730 			down_read(&EXT4_I(inode)->i_data_sem);
1731 			goto add_delayed;
1732 		}
1733 
1734 		/*
1735 		 * Delayed extent could be allocated by fallocate.
1736 		 * So we need to check it.
1737 		 */
1738 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1739 			map_bh(bh, inode->i_sb, invalid_block);
1740 			set_buffer_new(bh);
1741 			set_buffer_delay(bh);
1742 			return 0;
1743 		}
1744 
1745 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1746 		retval = es.es_len - (iblock - es.es_lblk);
1747 		if (retval > map->m_len)
1748 			retval = map->m_len;
1749 		map->m_len = retval;
1750 		if (ext4_es_is_written(&es))
1751 			map->m_flags |= EXT4_MAP_MAPPED;
1752 		else if (ext4_es_is_unwritten(&es))
1753 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1754 		else
1755 			BUG_ON(1);
1756 
1757 #ifdef ES_AGGRESSIVE_TEST
1758 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1759 #endif
1760 		return retval;
1761 	}
1762 
1763 	/*
1764 	 * Try to see if we can get the block without requesting a new
1765 	 * file system block.
1766 	 */
1767 	down_read(&EXT4_I(inode)->i_data_sem);
1768 	if (ext4_has_inline_data(inode))
1769 		retval = 0;
1770 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1771 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1772 	else
1773 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1774 
1775 add_delayed:
1776 	if (retval == 0) {
1777 		int ret;
1778 		/*
1779 		 * XXX: __block_prepare_write() unmaps passed block,
1780 		 * is it OK?
1781 		 */
1782 		/*
1783 		 * If the block was allocated from previously allocated cluster,
1784 		 * then we don't need to reserve it again. However we still need
1785 		 * to reserve metadata for every block we're going to write.
1786 		 */
1787 		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1788 		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1789 			ret = ext4_da_reserve_space(inode);
1790 			if (ret) {
1791 				/* not enough space to reserve */
1792 				retval = ret;
1793 				goto out_unlock;
1794 			}
1795 		}
1796 
1797 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1798 					    ~0, EXTENT_STATUS_DELAYED);
1799 		if (ret) {
1800 			retval = ret;
1801 			goto out_unlock;
1802 		}
1803 
1804 		map_bh(bh, inode->i_sb, invalid_block);
1805 		set_buffer_new(bh);
1806 		set_buffer_delay(bh);
1807 	} else if (retval > 0) {
1808 		int ret;
1809 		unsigned int status;
1810 
1811 		if (unlikely(retval != map->m_len)) {
1812 			ext4_warning(inode->i_sb,
1813 				     "ES len assertion failed for inode "
1814 				     "%lu: retval %d != map->m_len %d",
1815 				     inode->i_ino, retval, map->m_len);
1816 			WARN_ON(1);
1817 		}
1818 
1819 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1820 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1821 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1822 					    map->m_pblk, status);
1823 		if (ret != 0)
1824 			retval = ret;
1825 	}
1826 
1827 out_unlock:
1828 	up_read((&EXT4_I(inode)->i_data_sem));
1829 
1830 	return retval;
1831 }
1832 
1833 /*
1834  * This is a special get_block_t callback which is used by
1835  * ext4_da_write_begin().  It will either return mapped block or
1836  * reserve space for a single block.
1837  *
1838  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1839  * We also have b_blocknr = -1 and b_bdev initialized properly
1840  *
1841  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1842  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1843  * initialized properly.
1844  */
1845 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1846 			   struct buffer_head *bh, int create)
1847 {
1848 	struct ext4_map_blocks map;
1849 	int ret = 0;
1850 
1851 	BUG_ON(create == 0);
1852 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1853 
1854 	map.m_lblk = iblock;
1855 	map.m_len = 1;
1856 
1857 	/*
1858 	 * first, we need to know whether the block is allocated already
1859 	 * preallocated blocks are unmapped but should treated
1860 	 * the same as allocated blocks.
1861 	 */
1862 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1863 	if (ret <= 0)
1864 		return ret;
1865 
1866 	map_bh(bh, inode->i_sb, map.m_pblk);
1867 	ext4_update_bh_state(bh, map.m_flags);
1868 
1869 	if (buffer_unwritten(bh)) {
1870 		/* A delayed write to unwritten bh should be marked
1871 		 * new and mapped.  Mapped ensures that we don't do
1872 		 * get_block multiple times when we write to the same
1873 		 * offset and new ensures that we do proper zero out
1874 		 * for partial write.
1875 		 */
1876 		set_buffer_new(bh);
1877 		set_buffer_mapped(bh);
1878 	}
1879 	return 0;
1880 }
1881 
1882 static int bget_one(handle_t *handle, struct buffer_head *bh)
1883 {
1884 	get_bh(bh);
1885 	return 0;
1886 }
1887 
1888 static int bput_one(handle_t *handle, struct buffer_head *bh)
1889 {
1890 	put_bh(bh);
1891 	return 0;
1892 }
1893 
1894 static int __ext4_journalled_writepage(struct page *page,
1895 				       unsigned int len)
1896 {
1897 	struct address_space *mapping = page->mapping;
1898 	struct inode *inode = mapping->host;
1899 	struct buffer_head *page_bufs = NULL;
1900 	handle_t *handle = NULL;
1901 	int ret = 0, err = 0;
1902 	int inline_data = ext4_has_inline_data(inode);
1903 	struct buffer_head *inode_bh = NULL;
1904 
1905 	ClearPageChecked(page);
1906 
1907 	if (inline_data) {
1908 		BUG_ON(page->index != 0);
1909 		BUG_ON(len > ext4_get_max_inline_size(inode));
1910 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1911 		if (inode_bh == NULL)
1912 			goto out;
1913 	} else {
1914 		page_bufs = page_buffers(page);
1915 		if (!page_bufs) {
1916 			BUG();
1917 			goto out;
1918 		}
1919 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1920 				       NULL, bget_one);
1921 	}
1922 	/*
1923 	 * We need to release the page lock before we start the
1924 	 * journal, so grab a reference so the page won't disappear
1925 	 * out from under us.
1926 	 */
1927 	get_page(page);
1928 	unlock_page(page);
1929 
1930 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1931 				    ext4_writepage_trans_blocks(inode));
1932 	if (IS_ERR(handle)) {
1933 		ret = PTR_ERR(handle);
1934 		put_page(page);
1935 		goto out_no_pagelock;
1936 	}
1937 	BUG_ON(!ext4_handle_valid(handle));
1938 
1939 	lock_page(page);
1940 	put_page(page);
1941 	if (page->mapping != mapping) {
1942 		/* The page got truncated from under us */
1943 		ext4_journal_stop(handle);
1944 		ret = 0;
1945 		goto out;
1946 	}
1947 
1948 	if (inline_data) {
1949 		BUFFER_TRACE(inode_bh, "get write access");
1950 		ret = ext4_journal_get_write_access(handle, inode_bh);
1951 
1952 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1953 
1954 	} else {
1955 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1956 					     do_journal_get_write_access);
1957 
1958 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1959 					     write_end_fn);
1960 	}
1961 	if (ret == 0)
1962 		ret = err;
1963 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1964 	err = ext4_journal_stop(handle);
1965 	if (!ret)
1966 		ret = err;
1967 
1968 	if (!ext4_has_inline_data(inode))
1969 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1970 				       NULL, bput_one);
1971 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1972 out:
1973 	unlock_page(page);
1974 out_no_pagelock:
1975 	brelse(inode_bh);
1976 	return ret;
1977 }
1978 
1979 /*
1980  * Note that we don't need to start a transaction unless we're journaling data
1981  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1982  * need to file the inode to the transaction's list in ordered mode because if
1983  * we are writing back data added by write(), the inode is already there and if
1984  * we are writing back data modified via mmap(), no one guarantees in which
1985  * transaction the data will hit the disk. In case we are journaling data, we
1986  * cannot start transaction directly because transaction start ranks above page
1987  * lock so we have to do some magic.
1988  *
1989  * This function can get called via...
1990  *   - ext4_writepages after taking page lock (have journal handle)
1991  *   - journal_submit_inode_data_buffers (no journal handle)
1992  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1993  *   - grab_page_cache when doing write_begin (have journal handle)
1994  *
1995  * We don't do any block allocation in this function. If we have page with
1996  * multiple blocks we need to write those buffer_heads that are mapped. This
1997  * is important for mmaped based write. So if we do with blocksize 1K
1998  * truncate(f, 1024);
1999  * a = mmap(f, 0, 4096);
2000  * a[0] = 'a';
2001  * truncate(f, 4096);
2002  * we have in the page first buffer_head mapped via page_mkwrite call back
2003  * but other buffer_heads would be unmapped but dirty (dirty done via the
2004  * do_wp_page). So writepage should write the first block. If we modify
2005  * the mmap area beyond 1024 we will again get a page_fault and the
2006  * page_mkwrite callback will do the block allocation and mark the
2007  * buffer_heads mapped.
2008  *
2009  * We redirty the page if we have any buffer_heads that is either delay or
2010  * unwritten in the page.
2011  *
2012  * We can get recursively called as show below.
2013  *
2014  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2015  *		ext4_writepage()
2016  *
2017  * But since we don't do any block allocation we should not deadlock.
2018  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2019  */
2020 static int ext4_writepage(struct page *page,
2021 			  struct writeback_control *wbc)
2022 {
2023 	int ret = 0;
2024 	loff_t size;
2025 	unsigned int len;
2026 	struct buffer_head *page_bufs = NULL;
2027 	struct inode *inode = page->mapping->host;
2028 	struct ext4_io_submit io_submit;
2029 	bool keep_towrite = false;
2030 
2031 	trace_ext4_writepage(page);
2032 	size = i_size_read(inode);
2033 	if (page->index == size >> PAGE_SHIFT)
2034 		len = size & ~PAGE_MASK;
2035 	else
2036 		len = PAGE_SIZE;
2037 
2038 	page_bufs = page_buffers(page);
2039 	/*
2040 	 * We cannot do block allocation or other extent handling in this
2041 	 * function. If there are buffers needing that, we have to redirty
2042 	 * the page. But we may reach here when we do a journal commit via
2043 	 * journal_submit_inode_data_buffers() and in that case we must write
2044 	 * allocated buffers to achieve data=ordered mode guarantees.
2045 	 *
2046 	 * Also, if there is only one buffer per page (the fs block
2047 	 * size == the page size), if one buffer needs block
2048 	 * allocation or needs to modify the extent tree to clear the
2049 	 * unwritten flag, we know that the page can't be written at
2050 	 * all, so we might as well refuse the write immediately.
2051 	 * Unfortunately if the block size != page size, we can't as
2052 	 * easily detect this case using ext4_walk_page_buffers(), but
2053 	 * for the extremely common case, this is an optimization that
2054 	 * skips a useless round trip through ext4_bio_write_page().
2055 	 */
2056 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2057 				   ext4_bh_delay_or_unwritten)) {
2058 		redirty_page_for_writepage(wbc, page);
2059 		if ((current->flags & PF_MEMALLOC) ||
2060 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2061 			/*
2062 			 * For memory cleaning there's no point in writing only
2063 			 * some buffers. So just bail out. Warn if we came here
2064 			 * from direct reclaim.
2065 			 */
2066 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2067 							== PF_MEMALLOC);
2068 			unlock_page(page);
2069 			return 0;
2070 		}
2071 		keep_towrite = true;
2072 	}
2073 
2074 	if (PageChecked(page) && ext4_should_journal_data(inode))
2075 		/*
2076 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2077 		 * doesn't seem much point in redirtying the page here.
2078 		 */
2079 		return __ext4_journalled_writepage(page, len);
2080 
2081 	ext4_io_submit_init(&io_submit, wbc);
2082 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2083 	if (!io_submit.io_end) {
2084 		redirty_page_for_writepage(wbc, page);
2085 		unlock_page(page);
2086 		return -ENOMEM;
2087 	}
2088 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2089 	ext4_io_submit(&io_submit);
2090 	/* Drop io_end reference we got from init */
2091 	ext4_put_io_end_defer(io_submit.io_end);
2092 	return ret;
2093 }
2094 
2095 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2096 {
2097 	int len;
2098 	loff_t size = i_size_read(mpd->inode);
2099 	int err;
2100 
2101 	BUG_ON(page->index != mpd->first_page);
2102 	if (page->index == size >> PAGE_SHIFT)
2103 		len = size & ~PAGE_MASK;
2104 	else
2105 		len = PAGE_SIZE;
2106 	clear_page_dirty_for_io(page);
2107 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2108 	if (!err)
2109 		mpd->wbc->nr_to_write--;
2110 	mpd->first_page++;
2111 
2112 	return err;
2113 }
2114 
2115 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2116 
2117 /*
2118  * mballoc gives us at most this number of blocks...
2119  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2120  * The rest of mballoc seems to handle chunks up to full group size.
2121  */
2122 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2123 
2124 /*
2125  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2126  *
2127  * @mpd - extent of blocks
2128  * @lblk - logical number of the block in the file
2129  * @bh - buffer head we want to add to the extent
2130  *
2131  * The function is used to collect contig. blocks in the same state. If the
2132  * buffer doesn't require mapping for writeback and we haven't started the
2133  * extent of buffers to map yet, the function returns 'true' immediately - the
2134  * caller can write the buffer right away. Otherwise the function returns true
2135  * if the block has been added to the extent, false if the block couldn't be
2136  * added.
2137  */
2138 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2139 				   struct buffer_head *bh)
2140 {
2141 	struct ext4_map_blocks *map = &mpd->map;
2142 
2143 	/* Buffer that doesn't need mapping for writeback? */
2144 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2145 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2146 		/* So far no extent to map => we write the buffer right away */
2147 		if (map->m_len == 0)
2148 			return true;
2149 		return false;
2150 	}
2151 
2152 	/* First block in the extent? */
2153 	if (map->m_len == 0) {
2154 		map->m_lblk = lblk;
2155 		map->m_len = 1;
2156 		map->m_flags = bh->b_state & BH_FLAGS;
2157 		return true;
2158 	}
2159 
2160 	/* Don't go larger than mballoc is willing to allocate */
2161 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2162 		return false;
2163 
2164 	/* Can we merge the block to our big extent? */
2165 	if (lblk == map->m_lblk + map->m_len &&
2166 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2167 		map->m_len++;
2168 		return true;
2169 	}
2170 	return false;
2171 }
2172 
2173 /*
2174  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2175  *
2176  * @mpd - extent of blocks for mapping
2177  * @head - the first buffer in the page
2178  * @bh - buffer we should start processing from
2179  * @lblk - logical number of the block in the file corresponding to @bh
2180  *
2181  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2182  * the page for IO if all buffers in this page were mapped and there's no
2183  * accumulated extent of buffers to map or add buffers in the page to the
2184  * extent of buffers to map. The function returns 1 if the caller can continue
2185  * by processing the next page, 0 if it should stop adding buffers to the
2186  * extent to map because we cannot extend it anymore. It can also return value
2187  * < 0 in case of error during IO submission.
2188  */
2189 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2190 				   struct buffer_head *head,
2191 				   struct buffer_head *bh,
2192 				   ext4_lblk_t lblk)
2193 {
2194 	struct inode *inode = mpd->inode;
2195 	int err;
2196 	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2197 							>> inode->i_blkbits;
2198 
2199 	do {
2200 		BUG_ON(buffer_locked(bh));
2201 
2202 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2203 			/* Found extent to map? */
2204 			if (mpd->map.m_len)
2205 				return 0;
2206 			/* Everything mapped so far and we hit EOF */
2207 			break;
2208 		}
2209 	} while (lblk++, (bh = bh->b_this_page) != head);
2210 	/* So far everything mapped? Submit the page for IO. */
2211 	if (mpd->map.m_len == 0) {
2212 		err = mpage_submit_page(mpd, head->b_page);
2213 		if (err < 0)
2214 			return err;
2215 	}
2216 	return lblk < blocks;
2217 }
2218 
2219 /*
2220  * mpage_map_buffers - update buffers corresponding to changed extent and
2221  *		       submit fully mapped pages for IO
2222  *
2223  * @mpd - description of extent to map, on return next extent to map
2224  *
2225  * Scan buffers corresponding to changed extent (we expect corresponding pages
2226  * to be already locked) and update buffer state according to new extent state.
2227  * We map delalloc buffers to their physical location, clear unwritten bits,
2228  * and mark buffers as uninit when we perform writes to unwritten extents
2229  * and do extent conversion after IO is finished. If the last page is not fully
2230  * mapped, we update @map to the next extent in the last page that needs
2231  * mapping. Otherwise we submit the page for IO.
2232  */
2233 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2234 {
2235 	struct pagevec pvec;
2236 	int nr_pages, i;
2237 	struct inode *inode = mpd->inode;
2238 	struct buffer_head *head, *bh;
2239 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2240 	pgoff_t start, end;
2241 	ext4_lblk_t lblk;
2242 	sector_t pblock;
2243 	int err;
2244 
2245 	start = mpd->map.m_lblk >> bpp_bits;
2246 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2247 	lblk = start << bpp_bits;
2248 	pblock = mpd->map.m_pblk;
2249 
2250 	pagevec_init(&pvec, 0);
2251 	while (start <= end) {
2252 		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2253 					  PAGEVEC_SIZE);
2254 		if (nr_pages == 0)
2255 			break;
2256 		for (i = 0; i < nr_pages; i++) {
2257 			struct page *page = pvec.pages[i];
2258 
2259 			if (page->index > end)
2260 				break;
2261 			/* Up to 'end' pages must be contiguous */
2262 			BUG_ON(page->index != start);
2263 			bh = head = page_buffers(page);
2264 			do {
2265 				if (lblk < mpd->map.m_lblk)
2266 					continue;
2267 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2268 					/*
2269 					 * Buffer after end of mapped extent.
2270 					 * Find next buffer in the page to map.
2271 					 */
2272 					mpd->map.m_len = 0;
2273 					mpd->map.m_flags = 0;
2274 					/*
2275 					 * FIXME: If dioread_nolock supports
2276 					 * blocksize < pagesize, we need to make
2277 					 * sure we add size mapped so far to
2278 					 * io_end->size as the following call
2279 					 * can submit the page for IO.
2280 					 */
2281 					err = mpage_process_page_bufs(mpd, head,
2282 								      bh, lblk);
2283 					pagevec_release(&pvec);
2284 					if (err > 0)
2285 						err = 0;
2286 					return err;
2287 				}
2288 				if (buffer_delay(bh)) {
2289 					clear_buffer_delay(bh);
2290 					bh->b_blocknr = pblock++;
2291 				}
2292 				clear_buffer_unwritten(bh);
2293 			} while (lblk++, (bh = bh->b_this_page) != head);
2294 
2295 			/*
2296 			 * FIXME: This is going to break if dioread_nolock
2297 			 * supports blocksize < pagesize as we will try to
2298 			 * convert potentially unmapped parts of inode.
2299 			 */
2300 			mpd->io_submit.io_end->size += PAGE_SIZE;
2301 			/* Page fully mapped - let IO run! */
2302 			err = mpage_submit_page(mpd, page);
2303 			if (err < 0) {
2304 				pagevec_release(&pvec);
2305 				return err;
2306 			}
2307 			start++;
2308 		}
2309 		pagevec_release(&pvec);
2310 	}
2311 	/* Extent fully mapped and matches with page boundary. We are done. */
2312 	mpd->map.m_len = 0;
2313 	mpd->map.m_flags = 0;
2314 	return 0;
2315 }
2316 
2317 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2318 {
2319 	struct inode *inode = mpd->inode;
2320 	struct ext4_map_blocks *map = &mpd->map;
2321 	int get_blocks_flags;
2322 	int err, dioread_nolock;
2323 
2324 	trace_ext4_da_write_pages_extent(inode, map);
2325 	/*
2326 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2327 	 * to convert an unwritten extent to be initialized (in the case
2328 	 * where we have written into one or more preallocated blocks).  It is
2329 	 * possible that we're going to need more metadata blocks than
2330 	 * previously reserved. However we must not fail because we're in
2331 	 * writeback and there is nothing we can do about it so it might result
2332 	 * in data loss.  So use reserved blocks to allocate metadata if
2333 	 * possible.
2334 	 *
2335 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2336 	 * the blocks in question are delalloc blocks.  This indicates
2337 	 * that the blocks and quotas has already been checked when
2338 	 * the data was copied into the page cache.
2339 	 */
2340 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2341 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2342 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2343 	dioread_nolock = ext4_should_dioread_nolock(inode);
2344 	if (dioread_nolock)
2345 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2346 	if (map->m_flags & (1 << BH_Delay))
2347 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2348 
2349 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2350 	if (err < 0)
2351 		return err;
2352 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2353 		if (!mpd->io_submit.io_end->handle &&
2354 		    ext4_handle_valid(handle)) {
2355 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2356 			handle->h_rsv_handle = NULL;
2357 		}
2358 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2359 	}
2360 
2361 	BUG_ON(map->m_len == 0);
2362 	if (map->m_flags & EXT4_MAP_NEW) {
2363 		struct block_device *bdev = inode->i_sb->s_bdev;
2364 		int i;
2365 
2366 		for (i = 0; i < map->m_len; i++)
2367 			unmap_underlying_metadata(bdev, map->m_pblk + i);
2368 	}
2369 	return 0;
2370 }
2371 
2372 /*
2373  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2374  *				 mpd->len and submit pages underlying it for IO
2375  *
2376  * @handle - handle for journal operations
2377  * @mpd - extent to map
2378  * @give_up_on_write - we set this to true iff there is a fatal error and there
2379  *                     is no hope of writing the data. The caller should discard
2380  *                     dirty pages to avoid infinite loops.
2381  *
2382  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2383  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2384  * them to initialized or split the described range from larger unwritten
2385  * extent. Note that we need not map all the described range since allocation
2386  * can return less blocks or the range is covered by more unwritten extents. We
2387  * cannot map more because we are limited by reserved transaction credits. On
2388  * the other hand we always make sure that the last touched page is fully
2389  * mapped so that it can be written out (and thus forward progress is
2390  * guaranteed). After mapping we submit all mapped pages for IO.
2391  */
2392 static int mpage_map_and_submit_extent(handle_t *handle,
2393 				       struct mpage_da_data *mpd,
2394 				       bool *give_up_on_write)
2395 {
2396 	struct inode *inode = mpd->inode;
2397 	struct ext4_map_blocks *map = &mpd->map;
2398 	int err;
2399 	loff_t disksize;
2400 	int progress = 0;
2401 
2402 	mpd->io_submit.io_end->offset =
2403 				((loff_t)map->m_lblk) << inode->i_blkbits;
2404 	do {
2405 		err = mpage_map_one_extent(handle, mpd);
2406 		if (err < 0) {
2407 			struct super_block *sb = inode->i_sb;
2408 
2409 			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2410 				goto invalidate_dirty_pages;
2411 			/*
2412 			 * Let the uper layers retry transient errors.
2413 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2414 			 * is non-zero, a commit should free up blocks.
2415 			 */
2416 			if ((err == -ENOMEM) ||
2417 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2418 				if (progress)
2419 					goto update_disksize;
2420 				return err;
2421 			}
2422 			ext4_msg(sb, KERN_CRIT,
2423 				 "Delayed block allocation failed for "
2424 				 "inode %lu at logical offset %llu with"
2425 				 " max blocks %u with error %d",
2426 				 inode->i_ino,
2427 				 (unsigned long long)map->m_lblk,
2428 				 (unsigned)map->m_len, -err);
2429 			ext4_msg(sb, KERN_CRIT,
2430 				 "This should not happen!! Data will "
2431 				 "be lost\n");
2432 			if (err == -ENOSPC)
2433 				ext4_print_free_blocks(inode);
2434 		invalidate_dirty_pages:
2435 			*give_up_on_write = true;
2436 			return err;
2437 		}
2438 		progress = 1;
2439 		/*
2440 		 * Update buffer state, submit mapped pages, and get us new
2441 		 * extent to map
2442 		 */
2443 		err = mpage_map_and_submit_buffers(mpd);
2444 		if (err < 0)
2445 			goto update_disksize;
2446 	} while (map->m_len);
2447 
2448 update_disksize:
2449 	/*
2450 	 * Update on-disk size after IO is submitted.  Races with
2451 	 * truncate are avoided by checking i_size under i_data_sem.
2452 	 */
2453 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2454 	if (disksize > EXT4_I(inode)->i_disksize) {
2455 		int err2;
2456 		loff_t i_size;
2457 
2458 		down_write(&EXT4_I(inode)->i_data_sem);
2459 		i_size = i_size_read(inode);
2460 		if (disksize > i_size)
2461 			disksize = i_size;
2462 		if (disksize > EXT4_I(inode)->i_disksize)
2463 			EXT4_I(inode)->i_disksize = disksize;
2464 		err2 = ext4_mark_inode_dirty(handle, inode);
2465 		up_write(&EXT4_I(inode)->i_data_sem);
2466 		if (err2)
2467 			ext4_error(inode->i_sb,
2468 				   "Failed to mark inode %lu dirty",
2469 				   inode->i_ino);
2470 		if (!err)
2471 			err = err2;
2472 	}
2473 	return err;
2474 }
2475 
2476 /*
2477  * Calculate the total number of credits to reserve for one writepages
2478  * iteration. This is called from ext4_writepages(). We map an extent of
2479  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2480  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2481  * bpp - 1 blocks in bpp different extents.
2482  */
2483 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2484 {
2485 	int bpp = ext4_journal_blocks_per_page(inode);
2486 
2487 	return ext4_meta_trans_blocks(inode,
2488 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2489 }
2490 
2491 /*
2492  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2493  * 				 and underlying extent to map
2494  *
2495  * @mpd - where to look for pages
2496  *
2497  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2498  * IO immediately. When we find a page which isn't mapped we start accumulating
2499  * extent of buffers underlying these pages that needs mapping (formed by
2500  * either delayed or unwritten buffers). We also lock the pages containing
2501  * these buffers. The extent found is returned in @mpd structure (starting at
2502  * mpd->lblk with length mpd->len blocks).
2503  *
2504  * Note that this function can attach bios to one io_end structure which are
2505  * neither logically nor physically contiguous. Although it may seem as an
2506  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2507  * case as we need to track IO to all buffers underlying a page in one io_end.
2508  */
2509 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2510 {
2511 	struct address_space *mapping = mpd->inode->i_mapping;
2512 	struct pagevec pvec;
2513 	unsigned int nr_pages;
2514 	long left = mpd->wbc->nr_to_write;
2515 	pgoff_t index = mpd->first_page;
2516 	pgoff_t end = mpd->last_page;
2517 	int tag;
2518 	int i, err = 0;
2519 	int blkbits = mpd->inode->i_blkbits;
2520 	ext4_lblk_t lblk;
2521 	struct buffer_head *head;
2522 
2523 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2524 		tag = PAGECACHE_TAG_TOWRITE;
2525 	else
2526 		tag = PAGECACHE_TAG_DIRTY;
2527 
2528 	pagevec_init(&pvec, 0);
2529 	mpd->map.m_len = 0;
2530 	mpd->next_page = index;
2531 	while (index <= end) {
2532 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2533 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2534 		if (nr_pages == 0)
2535 			goto out;
2536 
2537 		for (i = 0; i < nr_pages; i++) {
2538 			struct page *page = pvec.pages[i];
2539 
2540 			/*
2541 			 * At this point, the page may be truncated or
2542 			 * invalidated (changing page->mapping to NULL), or
2543 			 * even swizzled back from swapper_space to tmpfs file
2544 			 * mapping. However, page->index will not change
2545 			 * because we have a reference on the page.
2546 			 */
2547 			if (page->index > end)
2548 				goto out;
2549 
2550 			/*
2551 			 * Accumulated enough dirty pages? This doesn't apply
2552 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2553 			 * keep going because someone may be concurrently
2554 			 * dirtying pages, and we might have synced a lot of
2555 			 * newly appeared dirty pages, but have not synced all
2556 			 * of the old dirty pages.
2557 			 */
2558 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2559 				goto out;
2560 
2561 			/* If we can't merge this page, we are done. */
2562 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2563 				goto out;
2564 
2565 			lock_page(page);
2566 			/*
2567 			 * If the page is no longer dirty, or its mapping no
2568 			 * longer corresponds to inode we are writing (which
2569 			 * means it has been truncated or invalidated), or the
2570 			 * page is already under writeback and we are not doing
2571 			 * a data integrity writeback, skip the page
2572 			 */
2573 			if (!PageDirty(page) ||
2574 			    (PageWriteback(page) &&
2575 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2576 			    unlikely(page->mapping != mapping)) {
2577 				unlock_page(page);
2578 				continue;
2579 			}
2580 
2581 			wait_on_page_writeback(page);
2582 			BUG_ON(PageWriteback(page));
2583 
2584 			if (mpd->map.m_len == 0)
2585 				mpd->first_page = page->index;
2586 			mpd->next_page = page->index + 1;
2587 			/* Add all dirty buffers to mpd */
2588 			lblk = ((ext4_lblk_t)page->index) <<
2589 				(PAGE_SHIFT - blkbits);
2590 			head = page_buffers(page);
2591 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2592 			if (err <= 0)
2593 				goto out;
2594 			err = 0;
2595 			left--;
2596 		}
2597 		pagevec_release(&pvec);
2598 		cond_resched();
2599 	}
2600 	return 0;
2601 out:
2602 	pagevec_release(&pvec);
2603 	return err;
2604 }
2605 
2606 static int __writepage(struct page *page, struct writeback_control *wbc,
2607 		       void *data)
2608 {
2609 	struct address_space *mapping = data;
2610 	int ret = ext4_writepage(page, wbc);
2611 	mapping_set_error(mapping, ret);
2612 	return ret;
2613 }
2614 
2615 static int ext4_writepages(struct address_space *mapping,
2616 			   struct writeback_control *wbc)
2617 {
2618 	pgoff_t	writeback_index = 0;
2619 	long nr_to_write = wbc->nr_to_write;
2620 	int range_whole = 0;
2621 	int cycled = 1;
2622 	handle_t *handle = NULL;
2623 	struct mpage_da_data mpd;
2624 	struct inode *inode = mapping->host;
2625 	int needed_blocks, rsv_blocks = 0, ret = 0;
2626 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2627 	bool done;
2628 	struct blk_plug plug;
2629 	bool give_up_on_write = false;
2630 
2631 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2632 	trace_ext4_writepages(inode, wbc);
2633 
2634 	if (dax_mapping(mapping)) {
2635 		ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2636 						  wbc);
2637 		goto out_writepages;
2638 	}
2639 
2640 	/*
2641 	 * No pages to write? This is mainly a kludge to avoid starting
2642 	 * a transaction for special inodes like journal inode on last iput()
2643 	 * because that could violate lock ordering on umount
2644 	 */
2645 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2646 		goto out_writepages;
2647 
2648 	if (ext4_should_journal_data(inode)) {
2649 		struct blk_plug plug;
2650 
2651 		blk_start_plug(&plug);
2652 		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2653 		blk_finish_plug(&plug);
2654 		goto out_writepages;
2655 	}
2656 
2657 	/*
2658 	 * If the filesystem has aborted, it is read-only, so return
2659 	 * right away instead of dumping stack traces later on that
2660 	 * will obscure the real source of the problem.  We test
2661 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2662 	 * the latter could be true if the filesystem is mounted
2663 	 * read-only, and in that case, ext4_writepages should
2664 	 * *never* be called, so if that ever happens, we would want
2665 	 * the stack trace.
2666 	 */
2667 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2668 		ret = -EROFS;
2669 		goto out_writepages;
2670 	}
2671 
2672 	if (ext4_should_dioread_nolock(inode)) {
2673 		/*
2674 		 * We may need to convert up to one extent per block in
2675 		 * the page and we may dirty the inode.
2676 		 */
2677 		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2678 	}
2679 
2680 	/*
2681 	 * If we have inline data and arrive here, it means that
2682 	 * we will soon create the block for the 1st page, so
2683 	 * we'd better clear the inline data here.
2684 	 */
2685 	if (ext4_has_inline_data(inode)) {
2686 		/* Just inode will be modified... */
2687 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2688 		if (IS_ERR(handle)) {
2689 			ret = PTR_ERR(handle);
2690 			goto out_writepages;
2691 		}
2692 		BUG_ON(ext4_test_inode_state(inode,
2693 				EXT4_STATE_MAY_INLINE_DATA));
2694 		ext4_destroy_inline_data(handle, inode);
2695 		ext4_journal_stop(handle);
2696 	}
2697 
2698 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2699 		range_whole = 1;
2700 
2701 	if (wbc->range_cyclic) {
2702 		writeback_index = mapping->writeback_index;
2703 		if (writeback_index)
2704 			cycled = 0;
2705 		mpd.first_page = writeback_index;
2706 		mpd.last_page = -1;
2707 	} else {
2708 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2709 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2710 	}
2711 
2712 	mpd.inode = inode;
2713 	mpd.wbc = wbc;
2714 	ext4_io_submit_init(&mpd.io_submit, wbc);
2715 retry:
2716 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2717 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2718 	done = false;
2719 	blk_start_plug(&plug);
2720 	while (!done && mpd.first_page <= mpd.last_page) {
2721 		/* For each extent of pages we use new io_end */
2722 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2723 		if (!mpd.io_submit.io_end) {
2724 			ret = -ENOMEM;
2725 			break;
2726 		}
2727 
2728 		/*
2729 		 * We have two constraints: We find one extent to map and we
2730 		 * must always write out whole page (makes a difference when
2731 		 * blocksize < pagesize) so that we don't block on IO when we
2732 		 * try to write out the rest of the page. Journalled mode is
2733 		 * not supported by delalloc.
2734 		 */
2735 		BUG_ON(ext4_should_journal_data(inode));
2736 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2737 
2738 		/* start a new transaction */
2739 		handle = ext4_journal_start_with_reserve(inode,
2740 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2741 		if (IS_ERR(handle)) {
2742 			ret = PTR_ERR(handle);
2743 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2744 			       "%ld pages, ino %lu; err %d", __func__,
2745 				wbc->nr_to_write, inode->i_ino, ret);
2746 			/* Release allocated io_end */
2747 			ext4_put_io_end(mpd.io_submit.io_end);
2748 			break;
2749 		}
2750 
2751 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2752 		ret = mpage_prepare_extent_to_map(&mpd);
2753 		if (!ret) {
2754 			if (mpd.map.m_len)
2755 				ret = mpage_map_and_submit_extent(handle, &mpd,
2756 					&give_up_on_write);
2757 			else {
2758 				/*
2759 				 * We scanned the whole range (or exhausted
2760 				 * nr_to_write), submitted what was mapped and
2761 				 * didn't find anything needing mapping. We are
2762 				 * done.
2763 				 */
2764 				done = true;
2765 			}
2766 		}
2767 		/*
2768 		 * Caution: If the handle is synchronous,
2769 		 * ext4_journal_stop() can wait for transaction commit
2770 		 * to finish which may depend on writeback of pages to
2771 		 * complete or on page lock to be released.  In that
2772 		 * case, we have to wait until after after we have
2773 		 * submitted all the IO, released page locks we hold,
2774 		 * and dropped io_end reference (for extent conversion
2775 		 * to be able to complete) before stopping the handle.
2776 		 */
2777 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2778 			ext4_journal_stop(handle);
2779 			handle = NULL;
2780 		}
2781 		/* Submit prepared bio */
2782 		ext4_io_submit(&mpd.io_submit);
2783 		/* Unlock pages we didn't use */
2784 		mpage_release_unused_pages(&mpd, give_up_on_write);
2785 		/*
2786 		 * Drop our io_end reference we got from init. We have
2787 		 * to be careful and use deferred io_end finishing if
2788 		 * we are still holding the transaction as we can
2789 		 * release the last reference to io_end which may end
2790 		 * up doing unwritten extent conversion.
2791 		 */
2792 		if (handle) {
2793 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2794 			ext4_journal_stop(handle);
2795 		} else
2796 			ext4_put_io_end(mpd.io_submit.io_end);
2797 
2798 		if (ret == -ENOSPC && sbi->s_journal) {
2799 			/*
2800 			 * Commit the transaction which would
2801 			 * free blocks released in the transaction
2802 			 * and try again
2803 			 */
2804 			jbd2_journal_force_commit_nested(sbi->s_journal);
2805 			ret = 0;
2806 			continue;
2807 		}
2808 		/* Fatal error - ENOMEM, EIO... */
2809 		if (ret)
2810 			break;
2811 	}
2812 	blk_finish_plug(&plug);
2813 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2814 		cycled = 1;
2815 		mpd.last_page = writeback_index - 1;
2816 		mpd.first_page = 0;
2817 		goto retry;
2818 	}
2819 
2820 	/* Update index */
2821 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2822 		/*
2823 		 * Set the writeback_index so that range_cyclic
2824 		 * mode will write it back later
2825 		 */
2826 		mapping->writeback_index = mpd.first_page;
2827 
2828 out_writepages:
2829 	trace_ext4_writepages_result(inode, wbc, ret,
2830 				     nr_to_write - wbc->nr_to_write);
2831 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2832 	return ret;
2833 }
2834 
2835 static int ext4_nonda_switch(struct super_block *sb)
2836 {
2837 	s64 free_clusters, dirty_clusters;
2838 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2839 
2840 	/*
2841 	 * switch to non delalloc mode if we are running low
2842 	 * on free block. The free block accounting via percpu
2843 	 * counters can get slightly wrong with percpu_counter_batch getting
2844 	 * accumulated on each CPU without updating global counters
2845 	 * Delalloc need an accurate free block accounting. So switch
2846 	 * to non delalloc when we are near to error range.
2847 	 */
2848 	free_clusters =
2849 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2850 	dirty_clusters =
2851 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2852 	/*
2853 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2854 	 */
2855 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2856 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2857 
2858 	if (2 * free_clusters < 3 * dirty_clusters ||
2859 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2860 		/*
2861 		 * free block count is less than 150% of dirty blocks
2862 		 * or free blocks is less than watermark
2863 		 */
2864 		return 1;
2865 	}
2866 	return 0;
2867 }
2868 
2869 /* We always reserve for an inode update; the superblock could be there too */
2870 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2871 {
2872 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2873 		return 1;
2874 
2875 	if (pos + len <= 0x7fffffffULL)
2876 		return 1;
2877 
2878 	/* We might need to update the superblock to set LARGE_FILE */
2879 	return 2;
2880 }
2881 
2882 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2883 			       loff_t pos, unsigned len, unsigned flags,
2884 			       struct page **pagep, void **fsdata)
2885 {
2886 	int ret, retries = 0;
2887 	struct page *page;
2888 	pgoff_t index;
2889 	struct inode *inode = mapping->host;
2890 	handle_t *handle;
2891 
2892 	index = pos >> PAGE_SHIFT;
2893 
2894 	if (ext4_nonda_switch(inode->i_sb)) {
2895 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2896 		return ext4_write_begin(file, mapping, pos,
2897 					len, flags, pagep, fsdata);
2898 	}
2899 	*fsdata = (void *)0;
2900 	trace_ext4_da_write_begin(inode, pos, len, flags);
2901 
2902 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2903 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2904 						      pos, len, flags,
2905 						      pagep, fsdata);
2906 		if (ret < 0)
2907 			return ret;
2908 		if (ret == 1)
2909 			return 0;
2910 	}
2911 
2912 	/*
2913 	 * grab_cache_page_write_begin() can take a long time if the
2914 	 * system is thrashing due to memory pressure, or if the page
2915 	 * is being written back.  So grab it first before we start
2916 	 * the transaction handle.  This also allows us to allocate
2917 	 * the page (if needed) without using GFP_NOFS.
2918 	 */
2919 retry_grab:
2920 	page = grab_cache_page_write_begin(mapping, index, flags);
2921 	if (!page)
2922 		return -ENOMEM;
2923 	unlock_page(page);
2924 
2925 	/*
2926 	 * With delayed allocation, we don't log the i_disksize update
2927 	 * if there is delayed block allocation. But we still need
2928 	 * to journalling the i_disksize update if writes to the end
2929 	 * of file which has an already mapped buffer.
2930 	 */
2931 retry_journal:
2932 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2933 				ext4_da_write_credits(inode, pos, len));
2934 	if (IS_ERR(handle)) {
2935 		put_page(page);
2936 		return PTR_ERR(handle);
2937 	}
2938 
2939 	lock_page(page);
2940 	if (page->mapping != mapping) {
2941 		/* The page got truncated from under us */
2942 		unlock_page(page);
2943 		put_page(page);
2944 		ext4_journal_stop(handle);
2945 		goto retry_grab;
2946 	}
2947 	/* In case writeback began while the page was unlocked */
2948 	wait_for_stable_page(page);
2949 
2950 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2951 	ret = ext4_block_write_begin(page, pos, len,
2952 				     ext4_da_get_block_prep);
2953 #else
2954 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2955 #endif
2956 	if (ret < 0) {
2957 		unlock_page(page);
2958 		ext4_journal_stop(handle);
2959 		/*
2960 		 * block_write_begin may have instantiated a few blocks
2961 		 * outside i_size.  Trim these off again. Don't need
2962 		 * i_size_read because we hold i_mutex.
2963 		 */
2964 		if (pos + len > inode->i_size)
2965 			ext4_truncate_failed_write(inode);
2966 
2967 		if (ret == -ENOSPC &&
2968 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2969 			goto retry_journal;
2970 
2971 		put_page(page);
2972 		return ret;
2973 	}
2974 
2975 	*pagep = page;
2976 	return ret;
2977 }
2978 
2979 /*
2980  * Check if we should update i_disksize
2981  * when write to the end of file but not require block allocation
2982  */
2983 static int ext4_da_should_update_i_disksize(struct page *page,
2984 					    unsigned long offset)
2985 {
2986 	struct buffer_head *bh;
2987 	struct inode *inode = page->mapping->host;
2988 	unsigned int idx;
2989 	int i;
2990 
2991 	bh = page_buffers(page);
2992 	idx = offset >> inode->i_blkbits;
2993 
2994 	for (i = 0; i < idx; i++)
2995 		bh = bh->b_this_page;
2996 
2997 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2998 		return 0;
2999 	return 1;
3000 }
3001 
3002 static int ext4_da_write_end(struct file *file,
3003 			     struct address_space *mapping,
3004 			     loff_t pos, unsigned len, unsigned copied,
3005 			     struct page *page, void *fsdata)
3006 {
3007 	struct inode *inode = mapping->host;
3008 	int ret = 0, ret2;
3009 	handle_t *handle = ext4_journal_current_handle();
3010 	loff_t new_i_size;
3011 	unsigned long start, end;
3012 	int write_mode = (int)(unsigned long)fsdata;
3013 
3014 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3015 		return ext4_write_end(file, mapping, pos,
3016 				      len, copied, page, fsdata);
3017 
3018 	trace_ext4_da_write_end(inode, pos, len, copied);
3019 	start = pos & (PAGE_SIZE - 1);
3020 	end = start + copied - 1;
3021 
3022 	/*
3023 	 * generic_write_end() will run mark_inode_dirty() if i_size
3024 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3025 	 * into that.
3026 	 */
3027 	new_i_size = pos + copied;
3028 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3029 		if (ext4_has_inline_data(inode) ||
3030 		    ext4_da_should_update_i_disksize(page, end)) {
3031 			ext4_update_i_disksize(inode, new_i_size);
3032 			/* We need to mark inode dirty even if
3033 			 * new_i_size is less that inode->i_size
3034 			 * bu greater than i_disksize.(hint delalloc)
3035 			 */
3036 			ext4_mark_inode_dirty(handle, inode);
3037 		}
3038 	}
3039 
3040 	if (write_mode != CONVERT_INLINE_DATA &&
3041 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3042 	    ext4_has_inline_data(inode))
3043 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3044 						     page);
3045 	else
3046 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3047 							page, fsdata);
3048 
3049 	copied = ret2;
3050 	if (ret2 < 0)
3051 		ret = ret2;
3052 	ret2 = ext4_journal_stop(handle);
3053 	if (!ret)
3054 		ret = ret2;
3055 
3056 	return ret ? ret : copied;
3057 }
3058 
3059 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3060 				   unsigned int length)
3061 {
3062 	/*
3063 	 * Drop reserved blocks
3064 	 */
3065 	BUG_ON(!PageLocked(page));
3066 	if (!page_has_buffers(page))
3067 		goto out;
3068 
3069 	ext4_da_page_release_reservation(page, offset, length);
3070 
3071 out:
3072 	ext4_invalidatepage(page, offset, length);
3073 
3074 	return;
3075 }
3076 
3077 /*
3078  * Force all delayed allocation blocks to be allocated for a given inode.
3079  */
3080 int ext4_alloc_da_blocks(struct inode *inode)
3081 {
3082 	trace_ext4_alloc_da_blocks(inode);
3083 
3084 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3085 		return 0;
3086 
3087 	/*
3088 	 * We do something simple for now.  The filemap_flush() will
3089 	 * also start triggering a write of the data blocks, which is
3090 	 * not strictly speaking necessary (and for users of
3091 	 * laptop_mode, not even desirable).  However, to do otherwise
3092 	 * would require replicating code paths in:
3093 	 *
3094 	 * ext4_writepages() ->
3095 	 *    write_cache_pages() ---> (via passed in callback function)
3096 	 *        __mpage_da_writepage() -->
3097 	 *           mpage_add_bh_to_extent()
3098 	 *           mpage_da_map_blocks()
3099 	 *
3100 	 * The problem is that write_cache_pages(), located in
3101 	 * mm/page-writeback.c, marks pages clean in preparation for
3102 	 * doing I/O, which is not desirable if we're not planning on
3103 	 * doing I/O at all.
3104 	 *
3105 	 * We could call write_cache_pages(), and then redirty all of
3106 	 * the pages by calling redirty_page_for_writepage() but that
3107 	 * would be ugly in the extreme.  So instead we would need to
3108 	 * replicate parts of the code in the above functions,
3109 	 * simplifying them because we wouldn't actually intend to
3110 	 * write out the pages, but rather only collect contiguous
3111 	 * logical block extents, call the multi-block allocator, and
3112 	 * then update the buffer heads with the block allocations.
3113 	 *
3114 	 * For now, though, we'll cheat by calling filemap_flush(),
3115 	 * which will map the blocks, and start the I/O, but not
3116 	 * actually wait for the I/O to complete.
3117 	 */
3118 	return filemap_flush(inode->i_mapping);
3119 }
3120 
3121 /*
3122  * bmap() is special.  It gets used by applications such as lilo and by
3123  * the swapper to find the on-disk block of a specific piece of data.
3124  *
3125  * Naturally, this is dangerous if the block concerned is still in the
3126  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3127  * filesystem and enables swap, then they may get a nasty shock when the
3128  * data getting swapped to that swapfile suddenly gets overwritten by
3129  * the original zero's written out previously to the journal and
3130  * awaiting writeback in the kernel's buffer cache.
3131  *
3132  * So, if we see any bmap calls here on a modified, data-journaled file,
3133  * take extra steps to flush any blocks which might be in the cache.
3134  */
3135 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3136 {
3137 	struct inode *inode = mapping->host;
3138 	journal_t *journal;
3139 	int err;
3140 
3141 	/*
3142 	 * We can get here for an inline file via the FIBMAP ioctl
3143 	 */
3144 	if (ext4_has_inline_data(inode))
3145 		return 0;
3146 
3147 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3148 			test_opt(inode->i_sb, DELALLOC)) {
3149 		/*
3150 		 * With delalloc we want to sync the file
3151 		 * so that we can make sure we allocate
3152 		 * blocks for file
3153 		 */
3154 		filemap_write_and_wait(mapping);
3155 	}
3156 
3157 	if (EXT4_JOURNAL(inode) &&
3158 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3159 		/*
3160 		 * This is a REALLY heavyweight approach, but the use of
3161 		 * bmap on dirty files is expected to be extremely rare:
3162 		 * only if we run lilo or swapon on a freshly made file
3163 		 * do we expect this to happen.
3164 		 *
3165 		 * (bmap requires CAP_SYS_RAWIO so this does not
3166 		 * represent an unprivileged user DOS attack --- we'd be
3167 		 * in trouble if mortal users could trigger this path at
3168 		 * will.)
3169 		 *
3170 		 * NB. EXT4_STATE_JDATA is not set on files other than
3171 		 * regular files.  If somebody wants to bmap a directory
3172 		 * or symlink and gets confused because the buffer
3173 		 * hasn't yet been flushed to disk, they deserve
3174 		 * everything they get.
3175 		 */
3176 
3177 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3178 		journal = EXT4_JOURNAL(inode);
3179 		jbd2_journal_lock_updates(journal);
3180 		err = jbd2_journal_flush(journal);
3181 		jbd2_journal_unlock_updates(journal);
3182 
3183 		if (err)
3184 			return 0;
3185 	}
3186 
3187 	return generic_block_bmap(mapping, block, ext4_get_block);
3188 }
3189 
3190 static int ext4_readpage(struct file *file, struct page *page)
3191 {
3192 	int ret = -EAGAIN;
3193 	struct inode *inode = page->mapping->host;
3194 
3195 	trace_ext4_readpage(page);
3196 
3197 	if (ext4_has_inline_data(inode))
3198 		ret = ext4_readpage_inline(inode, page);
3199 
3200 	if (ret == -EAGAIN)
3201 		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3202 
3203 	return ret;
3204 }
3205 
3206 static int
3207 ext4_readpages(struct file *file, struct address_space *mapping,
3208 		struct list_head *pages, unsigned nr_pages)
3209 {
3210 	struct inode *inode = mapping->host;
3211 
3212 	/* If the file has inline data, no need to do readpages. */
3213 	if (ext4_has_inline_data(inode))
3214 		return 0;
3215 
3216 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3217 }
3218 
3219 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3220 				unsigned int length)
3221 {
3222 	trace_ext4_invalidatepage(page, offset, length);
3223 
3224 	/* No journalling happens on data buffers when this function is used */
3225 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3226 
3227 	block_invalidatepage(page, offset, length);
3228 }
3229 
3230 static int __ext4_journalled_invalidatepage(struct page *page,
3231 					    unsigned int offset,
3232 					    unsigned int length)
3233 {
3234 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3235 
3236 	trace_ext4_journalled_invalidatepage(page, offset, length);
3237 
3238 	/*
3239 	 * If it's a full truncate we just forget about the pending dirtying
3240 	 */
3241 	if (offset == 0 && length == PAGE_SIZE)
3242 		ClearPageChecked(page);
3243 
3244 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3245 }
3246 
3247 /* Wrapper for aops... */
3248 static void ext4_journalled_invalidatepage(struct page *page,
3249 					   unsigned int offset,
3250 					   unsigned int length)
3251 {
3252 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3253 }
3254 
3255 static int ext4_releasepage(struct page *page, gfp_t wait)
3256 {
3257 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3258 
3259 	trace_ext4_releasepage(page);
3260 
3261 	/* Page has dirty journalled data -> cannot release */
3262 	if (PageChecked(page))
3263 		return 0;
3264 	if (journal)
3265 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3266 	else
3267 		return try_to_free_buffers(page);
3268 }
3269 
3270 #ifdef CONFIG_FS_DAX
3271 /*
3272  * Get block function for DAX IO and mmap faults. It takes care of converting
3273  * unwritten extents to written ones and initializes new / converted blocks
3274  * to zeros.
3275  */
3276 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3277 		       struct buffer_head *bh_result, int create)
3278 {
3279 	int ret;
3280 
3281 	ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3282 	if (!create)
3283 		return _ext4_get_block(inode, iblock, bh_result, 0);
3284 
3285 	ret = ext4_get_block_trans(inode, iblock, bh_result,
3286 				   EXT4_GET_BLOCKS_PRE_IO |
3287 				   EXT4_GET_BLOCKS_CREATE_ZERO);
3288 	if (ret < 0)
3289 		return ret;
3290 
3291 	if (buffer_unwritten(bh_result)) {
3292 		/*
3293 		 * We are protected by i_mmap_sem or i_mutex so we know block
3294 		 * cannot go away from under us even though we dropped
3295 		 * i_data_sem. Convert extent to written and write zeros there.
3296 		 */
3297 		ret = ext4_get_block_trans(inode, iblock, bh_result,
3298 					   EXT4_GET_BLOCKS_CONVERT |
3299 					   EXT4_GET_BLOCKS_CREATE_ZERO);
3300 		if (ret < 0)
3301 			return ret;
3302 	}
3303 	/*
3304 	 * At least for now we have to clear BH_New so that DAX code
3305 	 * doesn't attempt to zero blocks again in a racy way.
3306 	 */
3307 	clear_buffer_new(bh_result);
3308 	return 0;
3309 }
3310 #else
3311 /* Just define empty function, it will never get called. */
3312 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3313 		       struct buffer_head *bh_result, int create)
3314 {
3315 	BUG();
3316 	return 0;
3317 }
3318 #endif
3319 
3320 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3321 			    ssize_t size, void *private)
3322 {
3323         ext4_io_end_t *io_end = private;
3324 
3325 	/* if not async direct IO just return */
3326 	if (!io_end)
3327 		return 0;
3328 
3329 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3330 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3331 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3332 
3333 	/*
3334 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3335 	 * data was not written. Just clear the unwritten flag and drop io_end.
3336 	 */
3337 	if (size <= 0) {
3338 		ext4_clear_io_unwritten_flag(io_end);
3339 		size = 0;
3340 	}
3341 	io_end->offset = offset;
3342 	io_end->size = size;
3343 	ext4_put_io_end(io_end);
3344 
3345 	return 0;
3346 }
3347 
3348 /*
3349  * Handling of direct IO writes.
3350  *
3351  * For ext4 extent files, ext4 will do direct-io write even to holes,
3352  * preallocated extents, and those write extend the file, no need to
3353  * fall back to buffered IO.
3354  *
3355  * For holes, we fallocate those blocks, mark them as unwritten
3356  * If those blocks were preallocated, we mark sure they are split, but
3357  * still keep the range to write as unwritten.
3358  *
3359  * The unwritten extents will be converted to written when DIO is completed.
3360  * For async direct IO, since the IO may still pending when return, we
3361  * set up an end_io call back function, which will do the conversion
3362  * when async direct IO completed.
3363  *
3364  * If the O_DIRECT write will extend the file then add this inode to the
3365  * orphan list.  So recovery will truncate it back to the original size
3366  * if the machine crashes during the write.
3367  *
3368  */
3369 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3370 {
3371 	struct file *file = iocb->ki_filp;
3372 	struct inode *inode = file->f_mapping->host;
3373 	struct ext4_inode_info *ei = EXT4_I(inode);
3374 	ssize_t ret;
3375 	loff_t offset = iocb->ki_pos;
3376 	size_t count = iov_iter_count(iter);
3377 	int overwrite = 0;
3378 	get_block_t *get_block_func = NULL;
3379 	int dio_flags = 0;
3380 	loff_t final_size = offset + count;
3381 	int orphan = 0;
3382 	handle_t *handle;
3383 
3384 	if (final_size > inode->i_size) {
3385 		/* Credits for sb + inode write */
3386 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3387 		if (IS_ERR(handle)) {
3388 			ret = PTR_ERR(handle);
3389 			goto out;
3390 		}
3391 		ret = ext4_orphan_add(handle, inode);
3392 		if (ret) {
3393 			ext4_journal_stop(handle);
3394 			goto out;
3395 		}
3396 		orphan = 1;
3397 		ei->i_disksize = inode->i_size;
3398 		ext4_journal_stop(handle);
3399 	}
3400 
3401 	BUG_ON(iocb->private == NULL);
3402 
3403 	/*
3404 	 * Make all waiters for direct IO properly wait also for extent
3405 	 * conversion. This also disallows race between truncate() and
3406 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3407 	 */
3408 	inode_dio_begin(inode);
3409 
3410 	/* If we do a overwrite dio, i_mutex locking can be released */
3411 	overwrite = *((int *)iocb->private);
3412 
3413 	if (overwrite)
3414 		inode_unlock(inode);
3415 
3416 	/*
3417 	 * For extent mapped files we could direct write to holes and fallocate.
3418 	 *
3419 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3420 	 * parallel buffered read to expose the stale data before DIO complete
3421 	 * the data IO.
3422 	 *
3423 	 * As to previously fallocated extents, ext4 get_block will just simply
3424 	 * mark the buffer mapped but still keep the extents unwritten.
3425 	 *
3426 	 * For non AIO case, we will convert those unwritten extents to written
3427 	 * after return back from blockdev_direct_IO. That way we save us from
3428 	 * allocating io_end structure and also the overhead of offloading
3429 	 * the extent convertion to a workqueue.
3430 	 *
3431 	 * For async DIO, the conversion needs to be deferred when the
3432 	 * IO is completed. The ext4 end_io callback function will be
3433 	 * called to take care of the conversion work.  Here for async
3434 	 * case, we allocate an io_end structure to hook to the iocb.
3435 	 */
3436 	iocb->private = NULL;
3437 	if (overwrite)
3438 		get_block_func = ext4_dio_get_block_overwrite;
3439 	else if (IS_DAX(inode)) {
3440 		/*
3441 		 * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3442 		 * writes need zeroing either because they can race with page
3443 		 * faults or because they use partial blocks.
3444 		 */
3445 		if (round_down(offset, 1<<inode->i_blkbits) >= inode->i_size &&
3446 		    ext4_aligned_io(inode, offset, count))
3447 			get_block_func = ext4_dio_get_block;
3448 		else
3449 			get_block_func = ext4_dax_get_block;
3450 		dio_flags = DIO_LOCKING;
3451 	} else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3452 		   round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3453 		get_block_func = ext4_dio_get_block;
3454 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3455 	} else if (is_sync_kiocb(iocb)) {
3456 		get_block_func = ext4_dio_get_block_unwritten_sync;
3457 		dio_flags = DIO_LOCKING;
3458 	} else {
3459 		get_block_func = ext4_dio_get_block_unwritten_async;
3460 		dio_flags = DIO_LOCKING;
3461 	}
3462 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3463 	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3464 #endif
3465 	if (IS_DAX(inode)) {
3466 		ret = dax_do_io(iocb, inode, iter, get_block_func,
3467 				ext4_end_io_dio, dio_flags);
3468 	} else
3469 		ret = __blockdev_direct_IO(iocb, inode,
3470 					   inode->i_sb->s_bdev, iter,
3471 					   get_block_func,
3472 					   ext4_end_io_dio, NULL, dio_flags);
3473 
3474 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3475 						EXT4_STATE_DIO_UNWRITTEN)) {
3476 		int err;
3477 		/*
3478 		 * for non AIO case, since the IO is already
3479 		 * completed, we could do the conversion right here
3480 		 */
3481 		err = ext4_convert_unwritten_extents(NULL, inode,
3482 						     offset, ret);
3483 		if (err < 0)
3484 			ret = err;
3485 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3486 	}
3487 
3488 	inode_dio_end(inode);
3489 	/* take i_mutex locking again if we do a ovewrite dio */
3490 	if (overwrite)
3491 		inode_lock(inode);
3492 
3493 	if (ret < 0 && final_size > inode->i_size)
3494 		ext4_truncate_failed_write(inode);
3495 
3496 	/* Handle extending of i_size after direct IO write */
3497 	if (orphan) {
3498 		int err;
3499 
3500 		/* Credits for sb + inode write */
3501 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3502 		if (IS_ERR(handle)) {
3503 			/* This is really bad luck. We've written the data
3504 			 * but cannot extend i_size. Bail out and pretend
3505 			 * the write failed... */
3506 			ret = PTR_ERR(handle);
3507 			if (inode->i_nlink)
3508 				ext4_orphan_del(NULL, inode);
3509 
3510 			goto out;
3511 		}
3512 		if (inode->i_nlink)
3513 			ext4_orphan_del(handle, inode);
3514 		if (ret > 0) {
3515 			loff_t end = offset + ret;
3516 			if (end > inode->i_size) {
3517 				ei->i_disksize = end;
3518 				i_size_write(inode, end);
3519 				/*
3520 				 * We're going to return a positive `ret'
3521 				 * here due to non-zero-length I/O, so there's
3522 				 * no way of reporting error returns from
3523 				 * ext4_mark_inode_dirty() to userspace.  So
3524 				 * ignore it.
3525 				 */
3526 				ext4_mark_inode_dirty(handle, inode);
3527 			}
3528 		}
3529 		err = ext4_journal_stop(handle);
3530 		if (ret == 0)
3531 			ret = err;
3532 	}
3533 out:
3534 	return ret;
3535 }
3536 
3537 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3538 {
3539 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3540 	struct inode *inode = mapping->host;
3541 	ssize_t ret;
3542 
3543 	/*
3544 	 * Shared inode_lock is enough for us - it protects against concurrent
3545 	 * writes & truncates and since we take care of writing back page cache,
3546 	 * we are protected against page writeback as well.
3547 	 */
3548 	inode_lock_shared(inode);
3549 	if (IS_DAX(inode)) {
3550 		ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block, NULL, 0);
3551 	} else {
3552 		size_t count = iov_iter_count(iter);
3553 
3554 		ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3555 						   iocb->ki_pos + count);
3556 		if (ret)
3557 			goto out_unlock;
3558 		ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3559 					   iter, ext4_dio_get_block,
3560 					   NULL, NULL, 0);
3561 	}
3562 out_unlock:
3563 	inode_unlock_shared(inode);
3564 	return ret;
3565 }
3566 
3567 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3568 {
3569 	struct file *file = iocb->ki_filp;
3570 	struct inode *inode = file->f_mapping->host;
3571 	size_t count = iov_iter_count(iter);
3572 	loff_t offset = iocb->ki_pos;
3573 	ssize_t ret;
3574 
3575 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3576 	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3577 		return 0;
3578 #endif
3579 
3580 	/*
3581 	 * If we are doing data journalling we don't support O_DIRECT
3582 	 */
3583 	if (ext4_should_journal_data(inode))
3584 		return 0;
3585 
3586 	/* Let buffer I/O handle the inline data case. */
3587 	if (ext4_has_inline_data(inode))
3588 		return 0;
3589 
3590 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3591 	if (iov_iter_rw(iter) == READ)
3592 		ret = ext4_direct_IO_read(iocb, iter);
3593 	else
3594 		ret = ext4_direct_IO_write(iocb, iter);
3595 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3596 	return ret;
3597 }
3598 
3599 /*
3600  * Pages can be marked dirty completely asynchronously from ext4's journalling
3601  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3602  * much here because ->set_page_dirty is called under VFS locks.  The page is
3603  * not necessarily locked.
3604  *
3605  * We cannot just dirty the page and leave attached buffers clean, because the
3606  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3607  * or jbddirty because all the journalling code will explode.
3608  *
3609  * So what we do is to mark the page "pending dirty" and next time writepage
3610  * is called, propagate that into the buffers appropriately.
3611  */
3612 static int ext4_journalled_set_page_dirty(struct page *page)
3613 {
3614 	SetPageChecked(page);
3615 	return __set_page_dirty_nobuffers(page);
3616 }
3617 
3618 static const struct address_space_operations ext4_aops = {
3619 	.readpage		= ext4_readpage,
3620 	.readpages		= ext4_readpages,
3621 	.writepage		= ext4_writepage,
3622 	.writepages		= ext4_writepages,
3623 	.write_begin		= ext4_write_begin,
3624 	.write_end		= ext4_write_end,
3625 	.bmap			= ext4_bmap,
3626 	.invalidatepage		= ext4_invalidatepage,
3627 	.releasepage		= ext4_releasepage,
3628 	.direct_IO		= ext4_direct_IO,
3629 	.migratepage		= buffer_migrate_page,
3630 	.is_partially_uptodate  = block_is_partially_uptodate,
3631 	.error_remove_page	= generic_error_remove_page,
3632 };
3633 
3634 static const struct address_space_operations ext4_journalled_aops = {
3635 	.readpage		= ext4_readpage,
3636 	.readpages		= ext4_readpages,
3637 	.writepage		= ext4_writepage,
3638 	.writepages		= ext4_writepages,
3639 	.write_begin		= ext4_write_begin,
3640 	.write_end		= ext4_journalled_write_end,
3641 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3642 	.bmap			= ext4_bmap,
3643 	.invalidatepage		= ext4_journalled_invalidatepage,
3644 	.releasepage		= ext4_releasepage,
3645 	.direct_IO		= ext4_direct_IO,
3646 	.is_partially_uptodate  = block_is_partially_uptodate,
3647 	.error_remove_page	= generic_error_remove_page,
3648 };
3649 
3650 static const struct address_space_operations ext4_da_aops = {
3651 	.readpage		= ext4_readpage,
3652 	.readpages		= ext4_readpages,
3653 	.writepage		= ext4_writepage,
3654 	.writepages		= ext4_writepages,
3655 	.write_begin		= ext4_da_write_begin,
3656 	.write_end		= ext4_da_write_end,
3657 	.bmap			= ext4_bmap,
3658 	.invalidatepage		= ext4_da_invalidatepage,
3659 	.releasepage		= ext4_releasepage,
3660 	.direct_IO		= ext4_direct_IO,
3661 	.migratepage		= buffer_migrate_page,
3662 	.is_partially_uptodate  = block_is_partially_uptodate,
3663 	.error_remove_page	= generic_error_remove_page,
3664 };
3665 
3666 void ext4_set_aops(struct inode *inode)
3667 {
3668 	switch (ext4_inode_journal_mode(inode)) {
3669 	case EXT4_INODE_ORDERED_DATA_MODE:
3670 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3671 		break;
3672 	case EXT4_INODE_JOURNAL_DATA_MODE:
3673 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3674 		return;
3675 	default:
3676 		BUG();
3677 	}
3678 	if (test_opt(inode->i_sb, DELALLOC))
3679 		inode->i_mapping->a_ops = &ext4_da_aops;
3680 	else
3681 		inode->i_mapping->a_ops = &ext4_aops;
3682 }
3683 
3684 static int __ext4_block_zero_page_range(handle_t *handle,
3685 		struct address_space *mapping, loff_t from, loff_t length)
3686 {
3687 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3688 	unsigned offset = from & (PAGE_SIZE-1);
3689 	unsigned blocksize, pos;
3690 	ext4_lblk_t iblock;
3691 	struct inode *inode = mapping->host;
3692 	struct buffer_head *bh;
3693 	struct page *page;
3694 	int err = 0;
3695 
3696 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3697 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3698 	if (!page)
3699 		return -ENOMEM;
3700 
3701 	blocksize = inode->i_sb->s_blocksize;
3702 
3703 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3704 
3705 	if (!page_has_buffers(page))
3706 		create_empty_buffers(page, blocksize, 0);
3707 
3708 	/* Find the buffer that contains "offset" */
3709 	bh = page_buffers(page);
3710 	pos = blocksize;
3711 	while (offset >= pos) {
3712 		bh = bh->b_this_page;
3713 		iblock++;
3714 		pos += blocksize;
3715 	}
3716 	if (buffer_freed(bh)) {
3717 		BUFFER_TRACE(bh, "freed: skip");
3718 		goto unlock;
3719 	}
3720 	if (!buffer_mapped(bh)) {
3721 		BUFFER_TRACE(bh, "unmapped");
3722 		ext4_get_block(inode, iblock, bh, 0);
3723 		/* unmapped? It's a hole - nothing to do */
3724 		if (!buffer_mapped(bh)) {
3725 			BUFFER_TRACE(bh, "still unmapped");
3726 			goto unlock;
3727 		}
3728 	}
3729 
3730 	/* Ok, it's mapped. Make sure it's up-to-date */
3731 	if (PageUptodate(page))
3732 		set_buffer_uptodate(bh);
3733 
3734 	if (!buffer_uptodate(bh)) {
3735 		err = -EIO;
3736 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3737 		wait_on_buffer(bh);
3738 		/* Uhhuh. Read error. Complain and punt. */
3739 		if (!buffer_uptodate(bh))
3740 			goto unlock;
3741 		if (S_ISREG(inode->i_mode) &&
3742 		    ext4_encrypted_inode(inode)) {
3743 			/* We expect the key to be set. */
3744 			BUG_ON(!fscrypt_has_encryption_key(inode));
3745 			BUG_ON(blocksize != PAGE_SIZE);
3746 			WARN_ON_ONCE(fscrypt_decrypt_page(page));
3747 		}
3748 	}
3749 	if (ext4_should_journal_data(inode)) {
3750 		BUFFER_TRACE(bh, "get write access");
3751 		err = ext4_journal_get_write_access(handle, bh);
3752 		if (err)
3753 			goto unlock;
3754 	}
3755 	zero_user(page, offset, length);
3756 	BUFFER_TRACE(bh, "zeroed end of block");
3757 
3758 	if (ext4_should_journal_data(inode)) {
3759 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3760 	} else {
3761 		err = 0;
3762 		mark_buffer_dirty(bh);
3763 		if (ext4_should_order_data(inode))
3764 			err = ext4_jbd2_inode_add_write(handle, inode);
3765 	}
3766 
3767 unlock:
3768 	unlock_page(page);
3769 	put_page(page);
3770 	return err;
3771 }
3772 
3773 /*
3774  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3775  * starting from file offset 'from'.  The range to be zero'd must
3776  * be contained with in one block.  If the specified range exceeds
3777  * the end of the block it will be shortened to end of the block
3778  * that cooresponds to 'from'
3779  */
3780 static int ext4_block_zero_page_range(handle_t *handle,
3781 		struct address_space *mapping, loff_t from, loff_t length)
3782 {
3783 	struct inode *inode = mapping->host;
3784 	unsigned offset = from & (PAGE_SIZE-1);
3785 	unsigned blocksize = inode->i_sb->s_blocksize;
3786 	unsigned max = blocksize - (offset & (blocksize - 1));
3787 
3788 	/*
3789 	 * correct length if it does not fall between
3790 	 * 'from' and the end of the block
3791 	 */
3792 	if (length > max || length < 0)
3793 		length = max;
3794 
3795 	if (IS_DAX(inode))
3796 		return dax_zero_page_range(inode, from, length, ext4_get_block);
3797 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3798 }
3799 
3800 /*
3801  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3802  * up to the end of the block which corresponds to `from'.
3803  * This required during truncate. We need to physically zero the tail end
3804  * of that block so it doesn't yield old data if the file is later grown.
3805  */
3806 static int ext4_block_truncate_page(handle_t *handle,
3807 		struct address_space *mapping, loff_t from)
3808 {
3809 	unsigned offset = from & (PAGE_SIZE-1);
3810 	unsigned length;
3811 	unsigned blocksize;
3812 	struct inode *inode = mapping->host;
3813 
3814 	blocksize = inode->i_sb->s_blocksize;
3815 	length = blocksize - (offset & (blocksize - 1));
3816 
3817 	return ext4_block_zero_page_range(handle, mapping, from, length);
3818 }
3819 
3820 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3821 			     loff_t lstart, loff_t length)
3822 {
3823 	struct super_block *sb = inode->i_sb;
3824 	struct address_space *mapping = inode->i_mapping;
3825 	unsigned partial_start, partial_end;
3826 	ext4_fsblk_t start, end;
3827 	loff_t byte_end = (lstart + length - 1);
3828 	int err = 0;
3829 
3830 	partial_start = lstart & (sb->s_blocksize - 1);
3831 	partial_end = byte_end & (sb->s_blocksize - 1);
3832 
3833 	start = lstart >> sb->s_blocksize_bits;
3834 	end = byte_end >> sb->s_blocksize_bits;
3835 
3836 	/* Handle partial zero within the single block */
3837 	if (start == end &&
3838 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3839 		err = ext4_block_zero_page_range(handle, mapping,
3840 						 lstart, length);
3841 		return err;
3842 	}
3843 	/* Handle partial zero out on the start of the range */
3844 	if (partial_start) {
3845 		err = ext4_block_zero_page_range(handle, mapping,
3846 						 lstart, sb->s_blocksize);
3847 		if (err)
3848 			return err;
3849 	}
3850 	/* Handle partial zero out on the end of the range */
3851 	if (partial_end != sb->s_blocksize - 1)
3852 		err = ext4_block_zero_page_range(handle, mapping,
3853 						 byte_end - partial_end,
3854 						 partial_end + 1);
3855 	return err;
3856 }
3857 
3858 int ext4_can_truncate(struct inode *inode)
3859 {
3860 	if (S_ISREG(inode->i_mode))
3861 		return 1;
3862 	if (S_ISDIR(inode->i_mode))
3863 		return 1;
3864 	if (S_ISLNK(inode->i_mode))
3865 		return !ext4_inode_is_fast_symlink(inode);
3866 	return 0;
3867 }
3868 
3869 /*
3870  * We have to make sure i_disksize gets properly updated before we truncate
3871  * page cache due to hole punching or zero range. Otherwise i_disksize update
3872  * can get lost as it may have been postponed to submission of writeback but
3873  * that will never happen after we truncate page cache.
3874  */
3875 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3876 				      loff_t len)
3877 {
3878 	handle_t *handle;
3879 	loff_t size = i_size_read(inode);
3880 
3881 	WARN_ON(!inode_is_locked(inode));
3882 	if (offset > size || offset + len < size)
3883 		return 0;
3884 
3885 	if (EXT4_I(inode)->i_disksize >= size)
3886 		return 0;
3887 
3888 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3889 	if (IS_ERR(handle))
3890 		return PTR_ERR(handle);
3891 	ext4_update_i_disksize(inode, size);
3892 	ext4_mark_inode_dirty(handle, inode);
3893 	ext4_journal_stop(handle);
3894 
3895 	return 0;
3896 }
3897 
3898 /*
3899  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3900  * associated with the given offset and length
3901  *
3902  * @inode:  File inode
3903  * @offset: The offset where the hole will begin
3904  * @len:    The length of the hole
3905  *
3906  * Returns: 0 on success or negative on failure
3907  */
3908 
3909 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3910 {
3911 	struct super_block *sb = inode->i_sb;
3912 	ext4_lblk_t first_block, stop_block;
3913 	struct address_space *mapping = inode->i_mapping;
3914 	loff_t first_block_offset, last_block_offset;
3915 	handle_t *handle;
3916 	unsigned int credits;
3917 	int ret = 0;
3918 
3919 	if (!S_ISREG(inode->i_mode))
3920 		return -EOPNOTSUPP;
3921 
3922 	trace_ext4_punch_hole(inode, offset, length, 0);
3923 
3924 	/*
3925 	 * Write out all dirty pages to avoid race conditions
3926 	 * Then release them.
3927 	 */
3928 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3929 		ret = filemap_write_and_wait_range(mapping, offset,
3930 						   offset + length - 1);
3931 		if (ret)
3932 			return ret;
3933 	}
3934 
3935 	inode_lock(inode);
3936 
3937 	/* No need to punch hole beyond i_size */
3938 	if (offset >= inode->i_size)
3939 		goto out_mutex;
3940 
3941 	/*
3942 	 * If the hole extends beyond i_size, set the hole
3943 	 * to end after the page that contains i_size
3944 	 */
3945 	if (offset + length > inode->i_size) {
3946 		length = inode->i_size +
3947 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3948 		   offset;
3949 	}
3950 
3951 	if (offset & (sb->s_blocksize - 1) ||
3952 	    (offset + length) & (sb->s_blocksize - 1)) {
3953 		/*
3954 		 * Attach jinode to inode for jbd2 if we do any zeroing of
3955 		 * partial block
3956 		 */
3957 		ret = ext4_inode_attach_jinode(inode);
3958 		if (ret < 0)
3959 			goto out_mutex;
3960 
3961 	}
3962 
3963 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3964 	ext4_inode_block_unlocked_dio(inode);
3965 	inode_dio_wait(inode);
3966 
3967 	/*
3968 	 * Prevent page faults from reinstantiating pages we have released from
3969 	 * page cache.
3970 	 */
3971 	down_write(&EXT4_I(inode)->i_mmap_sem);
3972 	first_block_offset = round_up(offset, sb->s_blocksize);
3973 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3974 
3975 	/* Now release the pages and zero block aligned part of pages*/
3976 	if (last_block_offset > first_block_offset) {
3977 		ret = ext4_update_disksize_before_punch(inode, offset, length);
3978 		if (ret)
3979 			goto out_dio;
3980 		truncate_pagecache_range(inode, first_block_offset,
3981 					 last_block_offset);
3982 	}
3983 
3984 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3985 		credits = ext4_writepage_trans_blocks(inode);
3986 	else
3987 		credits = ext4_blocks_for_truncate(inode);
3988 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3989 	if (IS_ERR(handle)) {
3990 		ret = PTR_ERR(handle);
3991 		ext4_std_error(sb, ret);
3992 		goto out_dio;
3993 	}
3994 
3995 	ret = ext4_zero_partial_blocks(handle, inode, offset,
3996 				       length);
3997 	if (ret)
3998 		goto out_stop;
3999 
4000 	first_block = (offset + sb->s_blocksize - 1) >>
4001 		EXT4_BLOCK_SIZE_BITS(sb);
4002 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4003 
4004 	/* If there are no blocks to remove, return now */
4005 	if (first_block >= stop_block)
4006 		goto out_stop;
4007 
4008 	down_write(&EXT4_I(inode)->i_data_sem);
4009 	ext4_discard_preallocations(inode);
4010 
4011 	ret = ext4_es_remove_extent(inode, first_block,
4012 				    stop_block - first_block);
4013 	if (ret) {
4014 		up_write(&EXT4_I(inode)->i_data_sem);
4015 		goto out_stop;
4016 	}
4017 
4018 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4019 		ret = ext4_ext_remove_space(inode, first_block,
4020 					    stop_block - 1);
4021 	else
4022 		ret = ext4_ind_remove_space(handle, inode, first_block,
4023 					    stop_block);
4024 
4025 	up_write(&EXT4_I(inode)->i_data_sem);
4026 	if (IS_SYNC(inode))
4027 		ext4_handle_sync(handle);
4028 
4029 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4030 	ext4_mark_inode_dirty(handle, inode);
4031 out_stop:
4032 	ext4_journal_stop(handle);
4033 out_dio:
4034 	up_write(&EXT4_I(inode)->i_mmap_sem);
4035 	ext4_inode_resume_unlocked_dio(inode);
4036 out_mutex:
4037 	inode_unlock(inode);
4038 	return ret;
4039 }
4040 
4041 int ext4_inode_attach_jinode(struct inode *inode)
4042 {
4043 	struct ext4_inode_info *ei = EXT4_I(inode);
4044 	struct jbd2_inode *jinode;
4045 
4046 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4047 		return 0;
4048 
4049 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4050 	spin_lock(&inode->i_lock);
4051 	if (!ei->jinode) {
4052 		if (!jinode) {
4053 			spin_unlock(&inode->i_lock);
4054 			return -ENOMEM;
4055 		}
4056 		ei->jinode = jinode;
4057 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4058 		jinode = NULL;
4059 	}
4060 	spin_unlock(&inode->i_lock);
4061 	if (unlikely(jinode != NULL))
4062 		jbd2_free_inode(jinode);
4063 	return 0;
4064 }
4065 
4066 /*
4067  * ext4_truncate()
4068  *
4069  * We block out ext4_get_block() block instantiations across the entire
4070  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4071  * simultaneously on behalf of the same inode.
4072  *
4073  * As we work through the truncate and commit bits of it to the journal there
4074  * is one core, guiding principle: the file's tree must always be consistent on
4075  * disk.  We must be able to restart the truncate after a crash.
4076  *
4077  * The file's tree may be transiently inconsistent in memory (although it
4078  * probably isn't), but whenever we close off and commit a journal transaction,
4079  * the contents of (the filesystem + the journal) must be consistent and
4080  * restartable.  It's pretty simple, really: bottom up, right to left (although
4081  * left-to-right works OK too).
4082  *
4083  * Note that at recovery time, journal replay occurs *before* the restart of
4084  * truncate against the orphan inode list.
4085  *
4086  * The committed inode has the new, desired i_size (which is the same as
4087  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4088  * that this inode's truncate did not complete and it will again call
4089  * ext4_truncate() to have another go.  So there will be instantiated blocks
4090  * to the right of the truncation point in a crashed ext4 filesystem.  But
4091  * that's fine - as long as they are linked from the inode, the post-crash
4092  * ext4_truncate() run will find them and release them.
4093  */
4094 void ext4_truncate(struct inode *inode)
4095 {
4096 	struct ext4_inode_info *ei = EXT4_I(inode);
4097 	unsigned int credits;
4098 	handle_t *handle;
4099 	struct address_space *mapping = inode->i_mapping;
4100 
4101 	/*
4102 	 * There is a possibility that we're either freeing the inode
4103 	 * or it's a completely new inode. In those cases we might not
4104 	 * have i_mutex locked because it's not necessary.
4105 	 */
4106 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4107 		WARN_ON(!inode_is_locked(inode));
4108 	trace_ext4_truncate_enter(inode);
4109 
4110 	if (!ext4_can_truncate(inode))
4111 		return;
4112 
4113 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4114 
4115 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4116 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4117 
4118 	if (ext4_has_inline_data(inode)) {
4119 		int has_inline = 1;
4120 
4121 		ext4_inline_data_truncate(inode, &has_inline);
4122 		if (has_inline)
4123 			return;
4124 	}
4125 
4126 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4127 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4128 		if (ext4_inode_attach_jinode(inode) < 0)
4129 			return;
4130 	}
4131 
4132 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4133 		credits = ext4_writepage_trans_blocks(inode);
4134 	else
4135 		credits = ext4_blocks_for_truncate(inode);
4136 
4137 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4138 	if (IS_ERR(handle)) {
4139 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
4140 		return;
4141 	}
4142 
4143 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4144 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4145 
4146 	/*
4147 	 * We add the inode to the orphan list, so that if this
4148 	 * truncate spans multiple transactions, and we crash, we will
4149 	 * resume the truncate when the filesystem recovers.  It also
4150 	 * marks the inode dirty, to catch the new size.
4151 	 *
4152 	 * Implication: the file must always be in a sane, consistent
4153 	 * truncatable state while each transaction commits.
4154 	 */
4155 	if (ext4_orphan_add(handle, inode))
4156 		goto out_stop;
4157 
4158 	down_write(&EXT4_I(inode)->i_data_sem);
4159 
4160 	ext4_discard_preallocations(inode);
4161 
4162 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4163 		ext4_ext_truncate(handle, inode);
4164 	else
4165 		ext4_ind_truncate(handle, inode);
4166 
4167 	up_write(&ei->i_data_sem);
4168 
4169 	if (IS_SYNC(inode))
4170 		ext4_handle_sync(handle);
4171 
4172 out_stop:
4173 	/*
4174 	 * If this was a simple ftruncate() and the file will remain alive,
4175 	 * then we need to clear up the orphan record which we created above.
4176 	 * However, if this was a real unlink then we were called by
4177 	 * ext4_evict_inode(), and we allow that function to clean up the
4178 	 * orphan info for us.
4179 	 */
4180 	if (inode->i_nlink)
4181 		ext4_orphan_del(handle, inode);
4182 
4183 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4184 	ext4_mark_inode_dirty(handle, inode);
4185 	ext4_journal_stop(handle);
4186 
4187 	trace_ext4_truncate_exit(inode);
4188 }
4189 
4190 /*
4191  * ext4_get_inode_loc returns with an extra refcount against the inode's
4192  * underlying buffer_head on success. If 'in_mem' is true, we have all
4193  * data in memory that is needed to recreate the on-disk version of this
4194  * inode.
4195  */
4196 static int __ext4_get_inode_loc(struct inode *inode,
4197 				struct ext4_iloc *iloc, int in_mem)
4198 {
4199 	struct ext4_group_desc	*gdp;
4200 	struct buffer_head	*bh;
4201 	struct super_block	*sb = inode->i_sb;
4202 	ext4_fsblk_t		block;
4203 	int			inodes_per_block, inode_offset;
4204 
4205 	iloc->bh = NULL;
4206 	if (!ext4_valid_inum(sb, inode->i_ino))
4207 		return -EFSCORRUPTED;
4208 
4209 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4210 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4211 	if (!gdp)
4212 		return -EIO;
4213 
4214 	/*
4215 	 * Figure out the offset within the block group inode table
4216 	 */
4217 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4218 	inode_offset = ((inode->i_ino - 1) %
4219 			EXT4_INODES_PER_GROUP(sb));
4220 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4221 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4222 
4223 	bh = sb_getblk(sb, block);
4224 	if (unlikely(!bh))
4225 		return -ENOMEM;
4226 	if (!buffer_uptodate(bh)) {
4227 		lock_buffer(bh);
4228 
4229 		/*
4230 		 * If the buffer has the write error flag, we have failed
4231 		 * to write out another inode in the same block.  In this
4232 		 * case, we don't have to read the block because we may
4233 		 * read the old inode data successfully.
4234 		 */
4235 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4236 			set_buffer_uptodate(bh);
4237 
4238 		if (buffer_uptodate(bh)) {
4239 			/* someone brought it uptodate while we waited */
4240 			unlock_buffer(bh);
4241 			goto has_buffer;
4242 		}
4243 
4244 		/*
4245 		 * If we have all information of the inode in memory and this
4246 		 * is the only valid inode in the block, we need not read the
4247 		 * block.
4248 		 */
4249 		if (in_mem) {
4250 			struct buffer_head *bitmap_bh;
4251 			int i, start;
4252 
4253 			start = inode_offset & ~(inodes_per_block - 1);
4254 
4255 			/* Is the inode bitmap in cache? */
4256 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4257 			if (unlikely(!bitmap_bh))
4258 				goto make_io;
4259 
4260 			/*
4261 			 * If the inode bitmap isn't in cache then the
4262 			 * optimisation may end up performing two reads instead
4263 			 * of one, so skip it.
4264 			 */
4265 			if (!buffer_uptodate(bitmap_bh)) {
4266 				brelse(bitmap_bh);
4267 				goto make_io;
4268 			}
4269 			for (i = start; i < start + inodes_per_block; i++) {
4270 				if (i == inode_offset)
4271 					continue;
4272 				if (ext4_test_bit(i, bitmap_bh->b_data))
4273 					break;
4274 			}
4275 			brelse(bitmap_bh);
4276 			if (i == start + inodes_per_block) {
4277 				/* all other inodes are free, so skip I/O */
4278 				memset(bh->b_data, 0, bh->b_size);
4279 				set_buffer_uptodate(bh);
4280 				unlock_buffer(bh);
4281 				goto has_buffer;
4282 			}
4283 		}
4284 
4285 make_io:
4286 		/*
4287 		 * If we need to do any I/O, try to pre-readahead extra
4288 		 * blocks from the inode table.
4289 		 */
4290 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4291 			ext4_fsblk_t b, end, table;
4292 			unsigned num;
4293 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4294 
4295 			table = ext4_inode_table(sb, gdp);
4296 			/* s_inode_readahead_blks is always a power of 2 */
4297 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4298 			if (table > b)
4299 				b = table;
4300 			end = b + ra_blks;
4301 			num = EXT4_INODES_PER_GROUP(sb);
4302 			if (ext4_has_group_desc_csum(sb))
4303 				num -= ext4_itable_unused_count(sb, gdp);
4304 			table += num / inodes_per_block;
4305 			if (end > table)
4306 				end = table;
4307 			while (b <= end)
4308 				sb_breadahead(sb, b++);
4309 		}
4310 
4311 		/*
4312 		 * There are other valid inodes in the buffer, this inode
4313 		 * has in-inode xattrs, or we don't have this inode in memory.
4314 		 * Read the block from disk.
4315 		 */
4316 		trace_ext4_load_inode(inode);
4317 		get_bh(bh);
4318 		bh->b_end_io = end_buffer_read_sync;
4319 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4320 		wait_on_buffer(bh);
4321 		if (!buffer_uptodate(bh)) {
4322 			EXT4_ERROR_INODE_BLOCK(inode, block,
4323 					       "unable to read itable block");
4324 			brelse(bh);
4325 			return -EIO;
4326 		}
4327 	}
4328 has_buffer:
4329 	iloc->bh = bh;
4330 	return 0;
4331 }
4332 
4333 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4334 {
4335 	/* We have all inode data except xattrs in memory here. */
4336 	return __ext4_get_inode_loc(inode, iloc,
4337 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4338 }
4339 
4340 void ext4_set_inode_flags(struct inode *inode)
4341 {
4342 	unsigned int flags = EXT4_I(inode)->i_flags;
4343 	unsigned int new_fl = 0;
4344 
4345 	if (flags & EXT4_SYNC_FL)
4346 		new_fl |= S_SYNC;
4347 	if (flags & EXT4_APPEND_FL)
4348 		new_fl |= S_APPEND;
4349 	if (flags & EXT4_IMMUTABLE_FL)
4350 		new_fl |= S_IMMUTABLE;
4351 	if (flags & EXT4_NOATIME_FL)
4352 		new_fl |= S_NOATIME;
4353 	if (flags & EXT4_DIRSYNC_FL)
4354 		new_fl |= S_DIRSYNC;
4355 	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4356 		new_fl |= S_DAX;
4357 	inode_set_flags(inode, new_fl,
4358 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4359 }
4360 
4361 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4362 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4363 {
4364 	unsigned int vfs_fl;
4365 	unsigned long old_fl, new_fl;
4366 
4367 	do {
4368 		vfs_fl = ei->vfs_inode.i_flags;
4369 		old_fl = ei->i_flags;
4370 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4371 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4372 				EXT4_DIRSYNC_FL);
4373 		if (vfs_fl & S_SYNC)
4374 			new_fl |= EXT4_SYNC_FL;
4375 		if (vfs_fl & S_APPEND)
4376 			new_fl |= EXT4_APPEND_FL;
4377 		if (vfs_fl & S_IMMUTABLE)
4378 			new_fl |= EXT4_IMMUTABLE_FL;
4379 		if (vfs_fl & S_NOATIME)
4380 			new_fl |= EXT4_NOATIME_FL;
4381 		if (vfs_fl & S_DIRSYNC)
4382 			new_fl |= EXT4_DIRSYNC_FL;
4383 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4384 }
4385 
4386 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4387 				  struct ext4_inode_info *ei)
4388 {
4389 	blkcnt_t i_blocks ;
4390 	struct inode *inode = &(ei->vfs_inode);
4391 	struct super_block *sb = inode->i_sb;
4392 
4393 	if (ext4_has_feature_huge_file(sb)) {
4394 		/* we are using combined 48 bit field */
4395 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4396 					le32_to_cpu(raw_inode->i_blocks_lo);
4397 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4398 			/* i_blocks represent file system block size */
4399 			return i_blocks  << (inode->i_blkbits - 9);
4400 		} else {
4401 			return i_blocks;
4402 		}
4403 	} else {
4404 		return le32_to_cpu(raw_inode->i_blocks_lo);
4405 	}
4406 }
4407 
4408 static inline void ext4_iget_extra_inode(struct inode *inode,
4409 					 struct ext4_inode *raw_inode,
4410 					 struct ext4_inode_info *ei)
4411 {
4412 	__le32 *magic = (void *)raw_inode +
4413 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4414 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4415 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4416 		ext4_find_inline_data_nolock(inode);
4417 	} else
4418 		EXT4_I(inode)->i_inline_off = 0;
4419 }
4420 
4421 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4422 {
4423 	if (!ext4_has_feature_project(inode->i_sb))
4424 		return -EOPNOTSUPP;
4425 	*projid = EXT4_I(inode)->i_projid;
4426 	return 0;
4427 }
4428 
4429 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4430 {
4431 	struct ext4_iloc iloc;
4432 	struct ext4_inode *raw_inode;
4433 	struct ext4_inode_info *ei;
4434 	struct inode *inode;
4435 	journal_t *journal = EXT4_SB(sb)->s_journal;
4436 	long ret;
4437 	int block;
4438 	uid_t i_uid;
4439 	gid_t i_gid;
4440 	projid_t i_projid;
4441 
4442 	inode = iget_locked(sb, ino);
4443 	if (!inode)
4444 		return ERR_PTR(-ENOMEM);
4445 	if (!(inode->i_state & I_NEW))
4446 		return inode;
4447 
4448 	ei = EXT4_I(inode);
4449 	iloc.bh = NULL;
4450 
4451 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4452 	if (ret < 0)
4453 		goto bad_inode;
4454 	raw_inode = ext4_raw_inode(&iloc);
4455 
4456 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4457 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4458 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4459 		    EXT4_INODE_SIZE(inode->i_sb)) {
4460 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4461 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4462 				EXT4_INODE_SIZE(inode->i_sb));
4463 			ret = -EFSCORRUPTED;
4464 			goto bad_inode;
4465 		}
4466 	} else
4467 		ei->i_extra_isize = 0;
4468 
4469 	/* Precompute checksum seed for inode metadata */
4470 	if (ext4_has_metadata_csum(sb)) {
4471 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4472 		__u32 csum;
4473 		__le32 inum = cpu_to_le32(inode->i_ino);
4474 		__le32 gen = raw_inode->i_generation;
4475 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4476 				   sizeof(inum));
4477 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4478 					      sizeof(gen));
4479 	}
4480 
4481 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4482 		EXT4_ERROR_INODE(inode, "checksum invalid");
4483 		ret = -EFSBADCRC;
4484 		goto bad_inode;
4485 	}
4486 
4487 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4488 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4489 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4490 	if (ext4_has_feature_project(sb) &&
4491 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4492 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4493 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4494 	else
4495 		i_projid = EXT4_DEF_PROJID;
4496 
4497 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4498 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4499 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4500 	}
4501 	i_uid_write(inode, i_uid);
4502 	i_gid_write(inode, i_gid);
4503 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4504 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4505 
4506 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4507 	ei->i_inline_off = 0;
4508 	ei->i_dir_start_lookup = 0;
4509 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4510 	/* We now have enough fields to check if the inode was active or not.
4511 	 * This is needed because nfsd might try to access dead inodes
4512 	 * the test is that same one that e2fsck uses
4513 	 * NeilBrown 1999oct15
4514 	 */
4515 	if (inode->i_nlink == 0) {
4516 		if ((inode->i_mode == 0 ||
4517 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4518 		    ino != EXT4_BOOT_LOADER_INO) {
4519 			/* this inode is deleted */
4520 			ret = -ESTALE;
4521 			goto bad_inode;
4522 		}
4523 		/* The only unlinked inodes we let through here have
4524 		 * valid i_mode and are being read by the orphan
4525 		 * recovery code: that's fine, we're about to complete
4526 		 * the process of deleting those.
4527 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4528 		 * not initialized on a new filesystem. */
4529 	}
4530 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4531 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4532 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4533 	if (ext4_has_feature_64bit(sb))
4534 		ei->i_file_acl |=
4535 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4536 	inode->i_size = ext4_isize(raw_inode);
4537 	ei->i_disksize = inode->i_size;
4538 #ifdef CONFIG_QUOTA
4539 	ei->i_reserved_quota = 0;
4540 #endif
4541 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4542 	ei->i_block_group = iloc.block_group;
4543 	ei->i_last_alloc_group = ~0;
4544 	/*
4545 	 * NOTE! The in-memory inode i_data array is in little-endian order
4546 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4547 	 */
4548 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4549 		ei->i_data[block] = raw_inode->i_block[block];
4550 	INIT_LIST_HEAD(&ei->i_orphan);
4551 
4552 	/*
4553 	 * Set transaction id's of transactions that have to be committed
4554 	 * to finish f[data]sync. We set them to currently running transaction
4555 	 * as we cannot be sure that the inode or some of its metadata isn't
4556 	 * part of the transaction - the inode could have been reclaimed and
4557 	 * now it is reread from disk.
4558 	 */
4559 	if (journal) {
4560 		transaction_t *transaction;
4561 		tid_t tid;
4562 
4563 		read_lock(&journal->j_state_lock);
4564 		if (journal->j_running_transaction)
4565 			transaction = journal->j_running_transaction;
4566 		else
4567 			transaction = journal->j_committing_transaction;
4568 		if (transaction)
4569 			tid = transaction->t_tid;
4570 		else
4571 			tid = journal->j_commit_sequence;
4572 		read_unlock(&journal->j_state_lock);
4573 		ei->i_sync_tid = tid;
4574 		ei->i_datasync_tid = tid;
4575 	}
4576 
4577 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4578 		if (ei->i_extra_isize == 0) {
4579 			/* The extra space is currently unused. Use it. */
4580 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4581 					    EXT4_GOOD_OLD_INODE_SIZE;
4582 		} else {
4583 			ext4_iget_extra_inode(inode, raw_inode, ei);
4584 		}
4585 	}
4586 
4587 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4588 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4589 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4590 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4591 
4592 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4593 		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4594 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4595 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4596 				inode->i_version |=
4597 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4598 		}
4599 	}
4600 
4601 	ret = 0;
4602 	if (ei->i_file_acl &&
4603 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4604 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4605 				 ei->i_file_acl);
4606 		ret = -EFSCORRUPTED;
4607 		goto bad_inode;
4608 	} else if (!ext4_has_inline_data(inode)) {
4609 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4610 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4611 			    (S_ISLNK(inode->i_mode) &&
4612 			     !ext4_inode_is_fast_symlink(inode))))
4613 				/* Validate extent which is part of inode */
4614 				ret = ext4_ext_check_inode(inode);
4615 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4616 			   (S_ISLNK(inode->i_mode) &&
4617 			    !ext4_inode_is_fast_symlink(inode))) {
4618 			/* Validate block references which are part of inode */
4619 			ret = ext4_ind_check_inode(inode);
4620 		}
4621 	}
4622 	if (ret)
4623 		goto bad_inode;
4624 
4625 	if (S_ISREG(inode->i_mode)) {
4626 		inode->i_op = &ext4_file_inode_operations;
4627 		inode->i_fop = &ext4_file_operations;
4628 		ext4_set_aops(inode);
4629 	} else if (S_ISDIR(inode->i_mode)) {
4630 		inode->i_op = &ext4_dir_inode_operations;
4631 		inode->i_fop = &ext4_dir_operations;
4632 	} else if (S_ISLNK(inode->i_mode)) {
4633 		if (ext4_encrypted_inode(inode)) {
4634 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4635 			ext4_set_aops(inode);
4636 		} else if (ext4_inode_is_fast_symlink(inode)) {
4637 			inode->i_link = (char *)ei->i_data;
4638 			inode->i_op = &ext4_fast_symlink_inode_operations;
4639 			nd_terminate_link(ei->i_data, inode->i_size,
4640 				sizeof(ei->i_data) - 1);
4641 		} else {
4642 			inode->i_op = &ext4_symlink_inode_operations;
4643 			ext4_set_aops(inode);
4644 		}
4645 		inode_nohighmem(inode);
4646 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4647 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4648 		inode->i_op = &ext4_special_inode_operations;
4649 		if (raw_inode->i_block[0])
4650 			init_special_inode(inode, inode->i_mode,
4651 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4652 		else
4653 			init_special_inode(inode, inode->i_mode,
4654 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4655 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4656 		make_bad_inode(inode);
4657 	} else {
4658 		ret = -EFSCORRUPTED;
4659 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4660 		goto bad_inode;
4661 	}
4662 	brelse(iloc.bh);
4663 	ext4_set_inode_flags(inode);
4664 	unlock_new_inode(inode);
4665 	return inode;
4666 
4667 bad_inode:
4668 	brelse(iloc.bh);
4669 	iget_failed(inode);
4670 	return ERR_PTR(ret);
4671 }
4672 
4673 struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4674 {
4675 	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4676 		return ERR_PTR(-EFSCORRUPTED);
4677 	return ext4_iget(sb, ino);
4678 }
4679 
4680 static int ext4_inode_blocks_set(handle_t *handle,
4681 				struct ext4_inode *raw_inode,
4682 				struct ext4_inode_info *ei)
4683 {
4684 	struct inode *inode = &(ei->vfs_inode);
4685 	u64 i_blocks = inode->i_blocks;
4686 	struct super_block *sb = inode->i_sb;
4687 
4688 	if (i_blocks <= ~0U) {
4689 		/*
4690 		 * i_blocks can be represented in a 32 bit variable
4691 		 * as multiple of 512 bytes
4692 		 */
4693 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4694 		raw_inode->i_blocks_high = 0;
4695 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4696 		return 0;
4697 	}
4698 	if (!ext4_has_feature_huge_file(sb))
4699 		return -EFBIG;
4700 
4701 	if (i_blocks <= 0xffffffffffffULL) {
4702 		/*
4703 		 * i_blocks can be represented in a 48 bit variable
4704 		 * as multiple of 512 bytes
4705 		 */
4706 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4707 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4708 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4709 	} else {
4710 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4711 		/* i_block is stored in file system block size */
4712 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4713 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4714 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4715 	}
4716 	return 0;
4717 }
4718 
4719 struct other_inode {
4720 	unsigned long		orig_ino;
4721 	struct ext4_inode	*raw_inode;
4722 };
4723 
4724 static int other_inode_match(struct inode * inode, unsigned long ino,
4725 			     void *data)
4726 {
4727 	struct other_inode *oi = (struct other_inode *) data;
4728 
4729 	if ((inode->i_ino != ino) ||
4730 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4731 			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4732 	    ((inode->i_state & I_DIRTY_TIME) == 0))
4733 		return 0;
4734 	spin_lock(&inode->i_lock);
4735 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4736 				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4737 	    (inode->i_state & I_DIRTY_TIME)) {
4738 		struct ext4_inode_info	*ei = EXT4_I(inode);
4739 
4740 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4741 		spin_unlock(&inode->i_lock);
4742 
4743 		spin_lock(&ei->i_raw_lock);
4744 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4745 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4746 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4747 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4748 		spin_unlock(&ei->i_raw_lock);
4749 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4750 		return -1;
4751 	}
4752 	spin_unlock(&inode->i_lock);
4753 	return -1;
4754 }
4755 
4756 /*
4757  * Opportunistically update the other time fields for other inodes in
4758  * the same inode table block.
4759  */
4760 static void ext4_update_other_inodes_time(struct super_block *sb,
4761 					  unsigned long orig_ino, char *buf)
4762 {
4763 	struct other_inode oi;
4764 	unsigned long ino;
4765 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4766 	int inode_size = EXT4_INODE_SIZE(sb);
4767 
4768 	oi.orig_ino = orig_ino;
4769 	/*
4770 	 * Calculate the first inode in the inode table block.  Inode
4771 	 * numbers are one-based.  That is, the first inode in a block
4772 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4773 	 */
4774 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4775 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4776 		if (ino == orig_ino)
4777 			continue;
4778 		oi.raw_inode = (struct ext4_inode *) buf;
4779 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4780 	}
4781 }
4782 
4783 /*
4784  * Post the struct inode info into an on-disk inode location in the
4785  * buffer-cache.  This gobbles the caller's reference to the
4786  * buffer_head in the inode location struct.
4787  *
4788  * The caller must have write access to iloc->bh.
4789  */
4790 static int ext4_do_update_inode(handle_t *handle,
4791 				struct inode *inode,
4792 				struct ext4_iloc *iloc)
4793 {
4794 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4795 	struct ext4_inode_info *ei = EXT4_I(inode);
4796 	struct buffer_head *bh = iloc->bh;
4797 	struct super_block *sb = inode->i_sb;
4798 	int err = 0, rc, block;
4799 	int need_datasync = 0, set_large_file = 0;
4800 	uid_t i_uid;
4801 	gid_t i_gid;
4802 	projid_t i_projid;
4803 
4804 	spin_lock(&ei->i_raw_lock);
4805 
4806 	/* For fields not tracked in the in-memory inode,
4807 	 * initialise them to zero for new inodes. */
4808 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4809 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4810 
4811 	ext4_get_inode_flags(ei);
4812 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4813 	i_uid = i_uid_read(inode);
4814 	i_gid = i_gid_read(inode);
4815 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4816 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4817 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4818 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4819 /*
4820  * Fix up interoperability with old kernels. Otherwise, old inodes get
4821  * re-used with the upper 16 bits of the uid/gid intact
4822  */
4823 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4824 			raw_inode->i_uid_high = 0;
4825 			raw_inode->i_gid_high = 0;
4826 		} else {
4827 			raw_inode->i_uid_high =
4828 				cpu_to_le16(high_16_bits(i_uid));
4829 			raw_inode->i_gid_high =
4830 				cpu_to_le16(high_16_bits(i_gid));
4831 		}
4832 	} else {
4833 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4834 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4835 		raw_inode->i_uid_high = 0;
4836 		raw_inode->i_gid_high = 0;
4837 	}
4838 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4839 
4840 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4841 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4842 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4843 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4844 
4845 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4846 	if (err) {
4847 		spin_unlock(&ei->i_raw_lock);
4848 		goto out_brelse;
4849 	}
4850 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4851 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4852 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4853 		raw_inode->i_file_acl_high =
4854 			cpu_to_le16(ei->i_file_acl >> 32);
4855 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4856 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4857 		ext4_isize_set(raw_inode, ei->i_disksize);
4858 		need_datasync = 1;
4859 	}
4860 	if (ei->i_disksize > 0x7fffffffULL) {
4861 		if (!ext4_has_feature_large_file(sb) ||
4862 				EXT4_SB(sb)->s_es->s_rev_level ==
4863 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4864 			set_large_file = 1;
4865 	}
4866 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4867 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4868 		if (old_valid_dev(inode->i_rdev)) {
4869 			raw_inode->i_block[0] =
4870 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4871 			raw_inode->i_block[1] = 0;
4872 		} else {
4873 			raw_inode->i_block[0] = 0;
4874 			raw_inode->i_block[1] =
4875 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4876 			raw_inode->i_block[2] = 0;
4877 		}
4878 	} else if (!ext4_has_inline_data(inode)) {
4879 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4880 			raw_inode->i_block[block] = ei->i_data[block];
4881 	}
4882 
4883 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4884 		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4885 		if (ei->i_extra_isize) {
4886 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4887 				raw_inode->i_version_hi =
4888 					cpu_to_le32(inode->i_version >> 32);
4889 			raw_inode->i_extra_isize =
4890 				cpu_to_le16(ei->i_extra_isize);
4891 		}
4892 	}
4893 
4894 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
4895 	       i_projid != EXT4_DEF_PROJID);
4896 
4897 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4898 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4899 		raw_inode->i_projid = cpu_to_le32(i_projid);
4900 
4901 	ext4_inode_csum_set(inode, raw_inode, ei);
4902 	spin_unlock(&ei->i_raw_lock);
4903 	if (inode->i_sb->s_flags & MS_LAZYTIME)
4904 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4905 					      bh->b_data);
4906 
4907 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4908 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4909 	if (!err)
4910 		err = rc;
4911 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4912 	if (set_large_file) {
4913 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4914 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4915 		if (err)
4916 			goto out_brelse;
4917 		ext4_update_dynamic_rev(sb);
4918 		ext4_set_feature_large_file(sb);
4919 		ext4_handle_sync(handle);
4920 		err = ext4_handle_dirty_super(handle, sb);
4921 	}
4922 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4923 out_brelse:
4924 	brelse(bh);
4925 	ext4_std_error(inode->i_sb, err);
4926 	return err;
4927 }
4928 
4929 /*
4930  * ext4_write_inode()
4931  *
4932  * We are called from a few places:
4933  *
4934  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4935  *   Here, there will be no transaction running. We wait for any running
4936  *   transaction to commit.
4937  *
4938  * - Within flush work (sys_sync(), kupdate and such).
4939  *   We wait on commit, if told to.
4940  *
4941  * - Within iput_final() -> write_inode_now()
4942  *   We wait on commit, if told to.
4943  *
4944  * In all cases it is actually safe for us to return without doing anything,
4945  * because the inode has been copied into a raw inode buffer in
4946  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4947  * writeback.
4948  *
4949  * Note that we are absolutely dependent upon all inode dirtiers doing the
4950  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4951  * which we are interested.
4952  *
4953  * It would be a bug for them to not do this.  The code:
4954  *
4955  *	mark_inode_dirty(inode)
4956  *	stuff();
4957  *	inode->i_size = expr;
4958  *
4959  * is in error because write_inode() could occur while `stuff()' is running,
4960  * and the new i_size will be lost.  Plus the inode will no longer be on the
4961  * superblock's dirty inode list.
4962  */
4963 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4964 {
4965 	int err;
4966 
4967 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4968 		return 0;
4969 
4970 	if (EXT4_SB(inode->i_sb)->s_journal) {
4971 		if (ext4_journal_current_handle()) {
4972 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4973 			dump_stack();
4974 			return -EIO;
4975 		}
4976 
4977 		/*
4978 		 * No need to force transaction in WB_SYNC_NONE mode. Also
4979 		 * ext4_sync_fs() will force the commit after everything is
4980 		 * written.
4981 		 */
4982 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4983 			return 0;
4984 
4985 		err = ext4_force_commit(inode->i_sb);
4986 	} else {
4987 		struct ext4_iloc iloc;
4988 
4989 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4990 		if (err)
4991 			return err;
4992 		/*
4993 		 * sync(2) will flush the whole buffer cache. No need to do
4994 		 * it here separately for each inode.
4995 		 */
4996 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4997 			sync_dirty_buffer(iloc.bh);
4998 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4999 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5000 					 "IO error syncing inode");
5001 			err = -EIO;
5002 		}
5003 		brelse(iloc.bh);
5004 	}
5005 	return err;
5006 }
5007 
5008 /*
5009  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5010  * buffers that are attached to a page stradding i_size and are undergoing
5011  * commit. In that case we have to wait for commit to finish and try again.
5012  */
5013 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5014 {
5015 	struct page *page;
5016 	unsigned offset;
5017 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5018 	tid_t commit_tid = 0;
5019 	int ret;
5020 
5021 	offset = inode->i_size & (PAGE_SIZE - 1);
5022 	/*
5023 	 * All buffers in the last page remain valid? Then there's nothing to
5024 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5025 	 * blocksize case
5026 	 */
5027 	if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5028 		return;
5029 	while (1) {
5030 		page = find_lock_page(inode->i_mapping,
5031 				      inode->i_size >> PAGE_SHIFT);
5032 		if (!page)
5033 			return;
5034 		ret = __ext4_journalled_invalidatepage(page, offset,
5035 						PAGE_SIZE - offset);
5036 		unlock_page(page);
5037 		put_page(page);
5038 		if (ret != -EBUSY)
5039 			return;
5040 		commit_tid = 0;
5041 		read_lock(&journal->j_state_lock);
5042 		if (journal->j_committing_transaction)
5043 			commit_tid = journal->j_committing_transaction->t_tid;
5044 		read_unlock(&journal->j_state_lock);
5045 		if (commit_tid)
5046 			jbd2_log_wait_commit(journal, commit_tid);
5047 	}
5048 }
5049 
5050 /*
5051  * ext4_setattr()
5052  *
5053  * Called from notify_change.
5054  *
5055  * We want to trap VFS attempts to truncate the file as soon as
5056  * possible.  In particular, we want to make sure that when the VFS
5057  * shrinks i_size, we put the inode on the orphan list and modify
5058  * i_disksize immediately, so that during the subsequent flushing of
5059  * dirty pages and freeing of disk blocks, we can guarantee that any
5060  * commit will leave the blocks being flushed in an unused state on
5061  * disk.  (On recovery, the inode will get truncated and the blocks will
5062  * be freed, so we have a strong guarantee that no future commit will
5063  * leave these blocks visible to the user.)
5064  *
5065  * Another thing we have to assure is that if we are in ordered mode
5066  * and inode is still attached to the committing transaction, we must
5067  * we start writeout of all the dirty pages which are being truncated.
5068  * This way we are sure that all the data written in the previous
5069  * transaction are already on disk (truncate waits for pages under
5070  * writeback).
5071  *
5072  * Called with inode->i_mutex down.
5073  */
5074 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5075 {
5076 	struct inode *inode = d_inode(dentry);
5077 	int error, rc = 0;
5078 	int orphan = 0;
5079 	const unsigned int ia_valid = attr->ia_valid;
5080 
5081 	error = setattr_prepare(dentry, attr);
5082 	if (error)
5083 		return error;
5084 
5085 	if (is_quota_modification(inode, attr)) {
5086 		error = dquot_initialize(inode);
5087 		if (error)
5088 			return error;
5089 	}
5090 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5091 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5092 		handle_t *handle;
5093 
5094 		/* (user+group)*(old+new) structure, inode write (sb,
5095 		 * inode block, ? - but truncate inode update has it) */
5096 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5097 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5098 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5099 		if (IS_ERR(handle)) {
5100 			error = PTR_ERR(handle);
5101 			goto err_out;
5102 		}
5103 		error = dquot_transfer(inode, attr);
5104 		if (error) {
5105 			ext4_journal_stop(handle);
5106 			return error;
5107 		}
5108 		/* Update corresponding info in inode so that everything is in
5109 		 * one transaction */
5110 		if (attr->ia_valid & ATTR_UID)
5111 			inode->i_uid = attr->ia_uid;
5112 		if (attr->ia_valid & ATTR_GID)
5113 			inode->i_gid = attr->ia_gid;
5114 		error = ext4_mark_inode_dirty(handle, inode);
5115 		ext4_journal_stop(handle);
5116 	}
5117 
5118 	if (attr->ia_valid & ATTR_SIZE) {
5119 		handle_t *handle;
5120 		loff_t oldsize = inode->i_size;
5121 		int shrink = (attr->ia_size <= inode->i_size);
5122 
5123 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5124 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5125 
5126 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5127 				return -EFBIG;
5128 		}
5129 		if (!S_ISREG(inode->i_mode))
5130 			return -EINVAL;
5131 
5132 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5133 			inode_inc_iversion(inode);
5134 
5135 		if (ext4_should_order_data(inode) &&
5136 		    (attr->ia_size < inode->i_size)) {
5137 			error = ext4_begin_ordered_truncate(inode,
5138 							    attr->ia_size);
5139 			if (error)
5140 				goto err_out;
5141 		}
5142 		if (attr->ia_size != inode->i_size) {
5143 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5144 			if (IS_ERR(handle)) {
5145 				error = PTR_ERR(handle);
5146 				goto err_out;
5147 			}
5148 			if (ext4_handle_valid(handle) && shrink) {
5149 				error = ext4_orphan_add(handle, inode);
5150 				orphan = 1;
5151 			}
5152 			/*
5153 			 * Update c/mtime on truncate up, ext4_truncate() will
5154 			 * update c/mtime in shrink case below
5155 			 */
5156 			if (!shrink) {
5157 				inode->i_mtime = ext4_current_time(inode);
5158 				inode->i_ctime = inode->i_mtime;
5159 			}
5160 			down_write(&EXT4_I(inode)->i_data_sem);
5161 			EXT4_I(inode)->i_disksize = attr->ia_size;
5162 			rc = ext4_mark_inode_dirty(handle, inode);
5163 			if (!error)
5164 				error = rc;
5165 			/*
5166 			 * We have to update i_size under i_data_sem together
5167 			 * with i_disksize to avoid races with writeback code
5168 			 * running ext4_wb_update_i_disksize().
5169 			 */
5170 			if (!error)
5171 				i_size_write(inode, attr->ia_size);
5172 			up_write(&EXT4_I(inode)->i_data_sem);
5173 			ext4_journal_stop(handle);
5174 			if (error) {
5175 				if (orphan)
5176 					ext4_orphan_del(NULL, inode);
5177 				goto err_out;
5178 			}
5179 		}
5180 		if (!shrink)
5181 			pagecache_isize_extended(inode, oldsize, inode->i_size);
5182 
5183 		/*
5184 		 * Blocks are going to be removed from the inode. Wait
5185 		 * for dio in flight.  Temporarily disable
5186 		 * dioread_nolock to prevent livelock.
5187 		 */
5188 		if (orphan) {
5189 			if (!ext4_should_journal_data(inode)) {
5190 				ext4_inode_block_unlocked_dio(inode);
5191 				inode_dio_wait(inode);
5192 				ext4_inode_resume_unlocked_dio(inode);
5193 			} else
5194 				ext4_wait_for_tail_page_commit(inode);
5195 		}
5196 		down_write(&EXT4_I(inode)->i_mmap_sem);
5197 		/*
5198 		 * Truncate pagecache after we've waited for commit
5199 		 * in data=journal mode to make pages freeable.
5200 		 */
5201 		truncate_pagecache(inode, inode->i_size);
5202 		if (shrink)
5203 			ext4_truncate(inode);
5204 		up_write(&EXT4_I(inode)->i_mmap_sem);
5205 	}
5206 
5207 	if (!rc) {
5208 		setattr_copy(inode, attr);
5209 		mark_inode_dirty(inode);
5210 	}
5211 
5212 	/*
5213 	 * If the call to ext4_truncate failed to get a transaction handle at
5214 	 * all, we need to clean up the in-core orphan list manually.
5215 	 */
5216 	if (orphan && inode->i_nlink)
5217 		ext4_orphan_del(NULL, inode);
5218 
5219 	if (!rc && (ia_valid & ATTR_MODE))
5220 		rc = posix_acl_chmod(inode, inode->i_mode);
5221 
5222 err_out:
5223 	ext4_std_error(inode->i_sb, error);
5224 	if (!error)
5225 		error = rc;
5226 	return error;
5227 }
5228 
5229 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5230 		 struct kstat *stat)
5231 {
5232 	struct inode *inode;
5233 	unsigned long long delalloc_blocks;
5234 
5235 	inode = d_inode(dentry);
5236 	generic_fillattr(inode, stat);
5237 
5238 	/*
5239 	 * If there is inline data in the inode, the inode will normally not
5240 	 * have data blocks allocated (it may have an external xattr block).
5241 	 * Report at least one sector for such files, so tools like tar, rsync,
5242 	 * others doen't incorrectly think the file is completely sparse.
5243 	 */
5244 	if (unlikely(ext4_has_inline_data(inode)))
5245 		stat->blocks += (stat->size + 511) >> 9;
5246 
5247 	/*
5248 	 * We can't update i_blocks if the block allocation is delayed
5249 	 * otherwise in the case of system crash before the real block
5250 	 * allocation is done, we will have i_blocks inconsistent with
5251 	 * on-disk file blocks.
5252 	 * We always keep i_blocks updated together with real
5253 	 * allocation. But to not confuse with user, stat
5254 	 * will return the blocks that include the delayed allocation
5255 	 * blocks for this file.
5256 	 */
5257 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5258 				   EXT4_I(inode)->i_reserved_data_blocks);
5259 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5260 	return 0;
5261 }
5262 
5263 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5264 				   int pextents)
5265 {
5266 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5267 		return ext4_ind_trans_blocks(inode, lblocks);
5268 	return ext4_ext_index_trans_blocks(inode, pextents);
5269 }
5270 
5271 /*
5272  * Account for index blocks, block groups bitmaps and block group
5273  * descriptor blocks if modify datablocks and index blocks
5274  * worse case, the indexs blocks spread over different block groups
5275  *
5276  * If datablocks are discontiguous, they are possible to spread over
5277  * different block groups too. If they are contiguous, with flexbg,
5278  * they could still across block group boundary.
5279  *
5280  * Also account for superblock, inode, quota and xattr blocks
5281  */
5282 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5283 				  int pextents)
5284 {
5285 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5286 	int gdpblocks;
5287 	int idxblocks;
5288 	int ret = 0;
5289 
5290 	/*
5291 	 * How many index blocks need to touch to map @lblocks logical blocks
5292 	 * to @pextents physical extents?
5293 	 */
5294 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5295 
5296 	ret = idxblocks;
5297 
5298 	/*
5299 	 * Now let's see how many group bitmaps and group descriptors need
5300 	 * to account
5301 	 */
5302 	groups = idxblocks + pextents;
5303 	gdpblocks = groups;
5304 	if (groups > ngroups)
5305 		groups = ngroups;
5306 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5307 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5308 
5309 	/* bitmaps and block group descriptor blocks */
5310 	ret += groups + gdpblocks;
5311 
5312 	/* Blocks for super block, inode, quota and xattr blocks */
5313 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5314 
5315 	return ret;
5316 }
5317 
5318 /*
5319  * Calculate the total number of credits to reserve to fit
5320  * the modification of a single pages into a single transaction,
5321  * which may include multiple chunks of block allocations.
5322  *
5323  * This could be called via ext4_write_begin()
5324  *
5325  * We need to consider the worse case, when
5326  * one new block per extent.
5327  */
5328 int ext4_writepage_trans_blocks(struct inode *inode)
5329 {
5330 	int bpp = ext4_journal_blocks_per_page(inode);
5331 	int ret;
5332 
5333 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5334 
5335 	/* Account for data blocks for journalled mode */
5336 	if (ext4_should_journal_data(inode))
5337 		ret += bpp;
5338 	return ret;
5339 }
5340 
5341 /*
5342  * Calculate the journal credits for a chunk of data modification.
5343  *
5344  * This is called from DIO, fallocate or whoever calling
5345  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5346  *
5347  * journal buffers for data blocks are not included here, as DIO
5348  * and fallocate do no need to journal data buffers.
5349  */
5350 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5351 {
5352 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5353 }
5354 
5355 /*
5356  * The caller must have previously called ext4_reserve_inode_write().
5357  * Give this, we know that the caller already has write access to iloc->bh.
5358  */
5359 int ext4_mark_iloc_dirty(handle_t *handle,
5360 			 struct inode *inode, struct ext4_iloc *iloc)
5361 {
5362 	int err = 0;
5363 
5364 	if (IS_I_VERSION(inode))
5365 		inode_inc_iversion(inode);
5366 
5367 	/* the do_update_inode consumes one bh->b_count */
5368 	get_bh(iloc->bh);
5369 
5370 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5371 	err = ext4_do_update_inode(handle, inode, iloc);
5372 	put_bh(iloc->bh);
5373 	return err;
5374 }
5375 
5376 /*
5377  * On success, We end up with an outstanding reference count against
5378  * iloc->bh.  This _must_ be cleaned up later.
5379  */
5380 
5381 int
5382 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5383 			 struct ext4_iloc *iloc)
5384 {
5385 	int err;
5386 
5387 	err = ext4_get_inode_loc(inode, iloc);
5388 	if (!err) {
5389 		BUFFER_TRACE(iloc->bh, "get_write_access");
5390 		err = ext4_journal_get_write_access(handle, iloc->bh);
5391 		if (err) {
5392 			brelse(iloc->bh);
5393 			iloc->bh = NULL;
5394 		}
5395 	}
5396 	ext4_std_error(inode->i_sb, err);
5397 	return err;
5398 }
5399 
5400 /*
5401  * Expand an inode by new_extra_isize bytes.
5402  * Returns 0 on success or negative error number on failure.
5403  */
5404 static int ext4_expand_extra_isize(struct inode *inode,
5405 				   unsigned int new_extra_isize,
5406 				   struct ext4_iloc iloc,
5407 				   handle_t *handle)
5408 {
5409 	struct ext4_inode *raw_inode;
5410 	struct ext4_xattr_ibody_header *header;
5411 
5412 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5413 		return 0;
5414 
5415 	raw_inode = ext4_raw_inode(&iloc);
5416 
5417 	header = IHDR(inode, raw_inode);
5418 
5419 	/* No extended attributes present */
5420 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5421 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5422 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5423 			new_extra_isize);
5424 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5425 		return 0;
5426 	}
5427 
5428 	/* try to expand with EAs present */
5429 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5430 					  raw_inode, handle);
5431 }
5432 
5433 /*
5434  * What we do here is to mark the in-core inode as clean with respect to inode
5435  * dirtiness (it may still be data-dirty).
5436  * This means that the in-core inode may be reaped by prune_icache
5437  * without having to perform any I/O.  This is a very good thing,
5438  * because *any* task may call prune_icache - even ones which
5439  * have a transaction open against a different journal.
5440  *
5441  * Is this cheating?  Not really.  Sure, we haven't written the
5442  * inode out, but prune_icache isn't a user-visible syncing function.
5443  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5444  * we start and wait on commits.
5445  */
5446 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5447 {
5448 	struct ext4_iloc iloc;
5449 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5450 	static unsigned int mnt_count;
5451 	int err, ret;
5452 
5453 	might_sleep();
5454 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5455 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5456 	if (err)
5457 		return err;
5458 	if (ext4_handle_valid(handle) &&
5459 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5460 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5461 		/*
5462 		 * We need extra buffer credits since we may write into EA block
5463 		 * with this same handle. If journal_extend fails, then it will
5464 		 * only result in a minor loss of functionality for that inode.
5465 		 * If this is felt to be critical, then e2fsck should be run to
5466 		 * force a large enough s_min_extra_isize.
5467 		 */
5468 		if ((jbd2_journal_extend(handle,
5469 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5470 			ret = ext4_expand_extra_isize(inode,
5471 						      sbi->s_want_extra_isize,
5472 						      iloc, handle);
5473 			if (ret) {
5474 				if (mnt_count !=
5475 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5476 					ext4_warning(inode->i_sb,
5477 					"Unable to expand inode %lu. Delete"
5478 					" some EAs or run e2fsck.",
5479 					inode->i_ino);
5480 					mnt_count =
5481 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5482 				}
5483 			}
5484 		}
5485 	}
5486 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5487 }
5488 
5489 /*
5490  * ext4_dirty_inode() is called from __mark_inode_dirty()
5491  *
5492  * We're really interested in the case where a file is being extended.
5493  * i_size has been changed by generic_commit_write() and we thus need
5494  * to include the updated inode in the current transaction.
5495  *
5496  * Also, dquot_alloc_block() will always dirty the inode when blocks
5497  * are allocated to the file.
5498  *
5499  * If the inode is marked synchronous, we don't honour that here - doing
5500  * so would cause a commit on atime updates, which we don't bother doing.
5501  * We handle synchronous inodes at the highest possible level.
5502  *
5503  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5504  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5505  * to copy into the on-disk inode structure are the timestamp files.
5506  */
5507 void ext4_dirty_inode(struct inode *inode, int flags)
5508 {
5509 	handle_t *handle;
5510 
5511 	if (flags == I_DIRTY_TIME)
5512 		return;
5513 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5514 	if (IS_ERR(handle))
5515 		goto out;
5516 
5517 	ext4_mark_inode_dirty(handle, inode);
5518 
5519 	ext4_journal_stop(handle);
5520 out:
5521 	return;
5522 }
5523 
5524 #if 0
5525 /*
5526  * Bind an inode's backing buffer_head into this transaction, to prevent
5527  * it from being flushed to disk early.  Unlike
5528  * ext4_reserve_inode_write, this leaves behind no bh reference and
5529  * returns no iloc structure, so the caller needs to repeat the iloc
5530  * lookup to mark the inode dirty later.
5531  */
5532 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5533 {
5534 	struct ext4_iloc iloc;
5535 
5536 	int err = 0;
5537 	if (handle) {
5538 		err = ext4_get_inode_loc(inode, &iloc);
5539 		if (!err) {
5540 			BUFFER_TRACE(iloc.bh, "get_write_access");
5541 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5542 			if (!err)
5543 				err = ext4_handle_dirty_metadata(handle,
5544 								 NULL,
5545 								 iloc.bh);
5546 			brelse(iloc.bh);
5547 		}
5548 	}
5549 	ext4_std_error(inode->i_sb, err);
5550 	return err;
5551 }
5552 #endif
5553 
5554 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5555 {
5556 	journal_t *journal;
5557 	handle_t *handle;
5558 	int err;
5559 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5560 
5561 	/*
5562 	 * We have to be very careful here: changing a data block's
5563 	 * journaling status dynamically is dangerous.  If we write a
5564 	 * data block to the journal, change the status and then delete
5565 	 * that block, we risk forgetting to revoke the old log record
5566 	 * from the journal and so a subsequent replay can corrupt data.
5567 	 * So, first we make sure that the journal is empty and that
5568 	 * nobody is changing anything.
5569 	 */
5570 
5571 	journal = EXT4_JOURNAL(inode);
5572 	if (!journal)
5573 		return 0;
5574 	if (is_journal_aborted(journal))
5575 		return -EROFS;
5576 
5577 	/* Wait for all existing dio workers */
5578 	ext4_inode_block_unlocked_dio(inode);
5579 	inode_dio_wait(inode);
5580 
5581 	/*
5582 	 * Before flushing the journal and switching inode's aops, we have
5583 	 * to flush all dirty data the inode has. There can be outstanding
5584 	 * delayed allocations, there can be unwritten extents created by
5585 	 * fallocate or buffered writes in dioread_nolock mode covered by
5586 	 * dirty data which can be converted only after flushing the dirty
5587 	 * data (and journalled aops don't know how to handle these cases).
5588 	 */
5589 	if (val) {
5590 		down_write(&EXT4_I(inode)->i_mmap_sem);
5591 		err = filemap_write_and_wait(inode->i_mapping);
5592 		if (err < 0) {
5593 			up_write(&EXT4_I(inode)->i_mmap_sem);
5594 			ext4_inode_resume_unlocked_dio(inode);
5595 			return err;
5596 		}
5597 	}
5598 
5599 	percpu_down_write(&sbi->s_journal_flag_rwsem);
5600 	jbd2_journal_lock_updates(journal);
5601 
5602 	/*
5603 	 * OK, there are no updates running now, and all cached data is
5604 	 * synced to disk.  We are now in a completely consistent state
5605 	 * which doesn't have anything in the journal, and we know that
5606 	 * no filesystem updates are running, so it is safe to modify
5607 	 * the inode's in-core data-journaling state flag now.
5608 	 */
5609 
5610 	if (val)
5611 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5612 	else {
5613 		err = jbd2_journal_flush(journal);
5614 		if (err < 0) {
5615 			jbd2_journal_unlock_updates(journal);
5616 			percpu_up_write(&sbi->s_journal_flag_rwsem);
5617 			ext4_inode_resume_unlocked_dio(inode);
5618 			return err;
5619 		}
5620 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5621 	}
5622 	ext4_set_aops(inode);
5623 
5624 	jbd2_journal_unlock_updates(journal);
5625 	percpu_up_write(&sbi->s_journal_flag_rwsem);
5626 
5627 	if (val)
5628 		up_write(&EXT4_I(inode)->i_mmap_sem);
5629 	ext4_inode_resume_unlocked_dio(inode);
5630 
5631 	/* Finally we can mark the inode as dirty. */
5632 
5633 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5634 	if (IS_ERR(handle))
5635 		return PTR_ERR(handle);
5636 
5637 	err = ext4_mark_inode_dirty(handle, inode);
5638 	ext4_handle_sync(handle);
5639 	ext4_journal_stop(handle);
5640 	ext4_std_error(inode->i_sb, err);
5641 
5642 	return err;
5643 }
5644 
5645 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5646 {
5647 	return !buffer_mapped(bh);
5648 }
5649 
5650 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5651 {
5652 	struct page *page = vmf->page;
5653 	loff_t size;
5654 	unsigned long len;
5655 	int ret;
5656 	struct file *file = vma->vm_file;
5657 	struct inode *inode = file_inode(file);
5658 	struct address_space *mapping = inode->i_mapping;
5659 	handle_t *handle;
5660 	get_block_t *get_block;
5661 	int retries = 0;
5662 
5663 	sb_start_pagefault(inode->i_sb);
5664 	file_update_time(vma->vm_file);
5665 
5666 	down_read(&EXT4_I(inode)->i_mmap_sem);
5667 	/* Delalloc case is easy... */
5668 	if (test_opt(inode->i_sb, DELALLOC) &&
5669 	    !ext4_should_journal_data(inode) &&
5670 	    !ext4_nonda_switch(inode->i_sb)) {
5671 		do {
5672 			ret = block_page_mkwrite(vma, vmf,
5673 						   ext4_da_get_block_prep);
5674 		} while (ret == -ENOSPC &&
5675 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5676 		goto out_ret;
5677 	}
5678 
5679 	lock_page(page);
5680 	size = i_size_read(inode);
5681 	/* Page got truncated from under us? */
5682 	if (page->mapping != mapping || page_offset(page) > size) {
5683 		unlock_page(page);
5684 		ret = VM_FAULT_NOPAGE;
5685 		goto out;
5686 	}
5687 
5688 	if (page->index == size >> PAGE_SHIFT)
5689 		len = size & ~PAGE_MASK;
5690 	else
5691 		len = PAGE_SIZE;
5692 	/*
5693 	 * Return if we have all the buffers mapped. This avoids the need to do
5694 	 * journal_start/journal_stop which can block and take a long time
5695 	 */
5696 	if (page_has_buffers(page)) {
5697 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5698 					    0, len, NULL,
5699 					    ext4_bh_unmapped)) {
5700 			/* Wait so that we don't change page under IO */
5701 			wait_for_stable_page(page);
5702 			ret = VM_FAULT_LOCKED;
5703 			goto out;
5704 		}
5705 	}
5706 	unlock_page(page);
5707 	/* OK, we need to fill the hole... */
5708 	if (ext4_should_dioread_nolock(inode))
5709 		get_block = ext4_get_block_unwritten;
5710 	else
5711 		get_block = ext4_get_block;
5712 retry_alloc:
5713 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5714 				    ext4_writepage_trans_blocks(inode));
5715 	if (IS_ERR(handle)) {
5716 		ret = VM_FAULT_SIGBUS;
5717 		goto out;
5718 	}
5719 	ret = block_page_mkwrite(vma, vmf, get_block);
5720 	if (!ret && ext4_should_journal_data(inode)) {
5721 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5722 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5723 			unlock_page(page);
5724 			ret = VM_FAULT_SIGBUS;
5725 			ext4_journal_stop(handle);
5726 			goto out;
5727 		}
5728 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5729 	}
5730 	ext4_journal_stop(handle);
5731 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5732 		goto retry_alloc;
5733 out_ret:
5734 	ret = block_page_mkwrite_return(ret);
5735 out:
5736 	up_read(&EXT4_I(inode)->i_mmap_sem);
5737 	sb_end_pagefault(inode->i_sb);
5738 	return ret;
5739 }
5740 
5741 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5742 {
5743 	struct inode *inode = file_inode(vma->vm_file);
5744 	int err;
5745 
5746 	down_read(&EXT4_I(inode)->i_mmap_sem);
5747 	err = filemap_fault(vma, vmf);
5748 	up_read(&EXT4_I(inode)->i_mmap_sem);
5749 
5750 	return err;
5751 }
5752 
5753 /*
5754  * Find the first extent at or after @lblk in an inode that is not a hole.
5755  * Search for @map_len blocks at most. The extent is returned in @result.
5756  *
5757  * The function returns 1 if we found an extent. The function returns 0 in
5758  * case there is no extent at or after @lblk and in that case also sets
5759  * @result->es_len to 0. In case of error, the error code is returned.
5760  */
5761 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5762 			 unsigned int map_len, struct extent_status *result)
5763 {
5764 	struct ext4_map_blocks map;
5765 	struct extent_status es = {};
5766 	int ret;
5767 
5768 	map.m_lblk = lblk;
5769 	map.m_len = map_len;
5770 
5771 	/*
5772 	 * For non-extent based files this loop may iterate several times since
5773 	 * we do not determine full hole size.
5774 	 */
5775 	while (map.m_len > 0) {
5776 		ret = ext4_map_blocks(NULL, inode, &map, 0);
5777 		if (ret < 0)
5778 			return ret;
5779 		/* There's extent covering m_lblk? Just return it. */
5780 		if (ret > 0) {
5781 			int status;
5782 
5783 			ext4_es_store_pblock(result, map.m_pblk);
5784 			result->es_lblk = map.m_lblk;
5785 			result->es_len = map.m_len;
5786 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
5787 				status = EXTENT_STATUS_UNWRITTEN;
5788 			else
5789 				status = EXTENT_STATUS_WRITTEN;
5790 			ext4_es_store_status(result, status);
5791 			return 1;
5792 		}
5793 		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5794 						  map.m_lblk + map.m_len - 1,
5795 						  &es);
5796 		/* Is delalloc data before next block in extent tree? */
5797 		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5798 			ext4_lblk_t offset = 0;
5799 
5800 			if (es.es_lblk < lblk)
5801 				offset = lblk - es.es_lblk;
5802 			result->es_lblk = es.es_lblk + offset;
5803 			ext4_es_store_pblock(result,
5804 					     ext4_es_pblock(&es) + offset);
5805 			result->es_len = es.es_len - offset;
5806 			ext4_es_store_status(result, ext4_es_status(&es));
5807 
5808 			return 1;
5809 		}
5810 		/* There's a hole at m_lblk, advance us after it */
5811 		map.m_lblk += map.m_len;
5812 		map_len -= map.m_len;
5813 		map.m_len = map_len;
5814 		cond_resched();
5815 	}
5816 	result->es_len = 0;
5817 	return 0;
5818 }
5819