1 /* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21 #include <linux/fs.h> 22 #include <linux/time.h> 23 #include <linux/jbd2.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/quotaops.h> 27 #include <linux/string.h> 28 #include <linux/buffer_head.h> 29 #include <linux/writeback.h> 30 #include <linux/pagevec.h> 31 #include <linux/mpage.h> 32 #include <linux/namei.h> 33 #include <linux/uio.h> 34 #include <linux/bio.h> 35 #include <linux/workqueue.h> 36 #include <linux/kernel.h> 37 #include <linux/printk.h> 38 #include <linux/slab.h> 39 #include <linux/ratelimit.h> 40 #include <linux/aio.h> 41 42 #include "ext4_jbd2.h" 43 #include "xattr.h" 44 #include "acl.h" 45 #include "truncate.h" 46 47 #include <trace/events/ext4.h> 48 49 #define MPAGE_DA_EXTENT_TAIL 0x01 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u16 csum_lo; 56 __u16 csum_hi = 0; 57 __u32 csum; 58 59 csum_lo = le16_to_cpu(raw->i_checksum_lo); 60 raw->i_checksum_lo = 0; 61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 63 csum_hi = le16_to_cpu(raw->i_checksum_hi); 64 raw->i_checksum_hi = 0; 65 } 66 67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 68 EXT4_INODE_SIZE(inode->i_sb)); 69 70 raw->i_checksum_lo = cpu_to_le16(csum_lo); 71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 73 raw->i_checksum_hi = cpu_to_le16(csum_hi); 74 75 return csum; 76 } 77 78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 79 struct ext4_inode_info *ei) 80 { 81 __u32 provided, calculated; 82 83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 84 cpu_to_le32(EXT4_OS_LINUX) || 85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 87 return 1; 88 89 provided = le16_to_cpu(raw->i_checksum_lo); 90 calculated = ext4_inode_csum(inode, raw, ei); 91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 94 else 95 calculated &= 0xFFFF; 96 97 return provided == calculated; 98 } 99 100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 101 struct ext4_inode_info *ei) 102 { 103 __u32 csum; 104 105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 106 cpu_to_le32(EXT4_OS_LINUX) || 107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 109 return; 110 111 csum = ext4_inode_csum(inode, raw, ei); 112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 115 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 116 } 117 118 static inline int ext4_begin_ordered_truncate(struct inode *inode, 119 loff_t new_size) 120 { 121 trace_ext4_begin_ordered_truncate(inode, new_size); 122 /* 123 * If jinode is zero, then we never opened the file for 124 * writing, so there's no need to call 125 * jbd2_journal_begin_ordered_truncate() since there's no 126 * outstanding writes we need to flush. 127 */ 128 if (!EXT4_I(inode)->jinode) 129 return 0; 130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 131 EXT4_I(inode)->jinode, 132 new_size); 133 } 134 135 static void ext4_invalidatepage(struct page *page, unsigned long offset); 136 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 138 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 139 struct inode *inode, struct page *page, loff_t from, 140 loff_t length, int flags); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 */ 145 static int ext4_inode_is_fast_symlink(struct inode *inode) 146 { 147 int ea_blocks = EXT4_I(inode)->i_file_acl ? 148 (inode->i_sb->s_blocksize >> 9) : 0; 149 150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 151 } 152 153 /* 154 * Restart the transaction associated with *handle. This does a commit, 155 * so before we call here everything must be consistently dirtied against 156 * this transaction. 157 */ 158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 159 int nblocks) 160 { 161 int ret; 162 163 /* 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 165 * moment, get_block can be called only for blocks inside i_size since 166 * page cache has been already dropped and writes are blocked by 167 * i_mutex. So we can safely drop the i_data_sem here. 168 */ 169 BUG_ON(EXT4_JOURNAL(inode) == NULL); 170 jbd_debug(2, "restarting handle %p\n", handle); 171 up_write(&EXT4_I(inode)->i_data_sem); 172 ret = ext4_journal_restart(handle, nblocks); 173 down_write(&EXT4_I(inode)->i_data_sem); 174 ext4_discard_preallocations(inode); 175 176 return ret; 177 } 178 179 /* 180 * Called at the last iput() if i_nlink is zero. 181 */ 182 void ext4_evict_inode(struct inode *inode) 183 { 184 handle_t *handle; 185 int err; 186 187 trace_ext4_evict_inode(inode); 188 189 if (inode->i_nlink) { 190 /* 191 * When journalling data dirty buffers are tracked only in the 192 * journal. So although mm thinks everything is clean and 193 * ready for reaping the inode might still have some pages to 194 * write in the running transaction or waiting to be 195 * checkpointed. Thus calling jbd2_journal_invalidatepage() 196 * (via truncate_inode_pages()) to discard these buffers can 197 * cause data loss. Also even if we did not discard these 198 * buffers, we would have no way to find them after the inode 199 * is reaped and thus user could see stale data if he tries to 200 * read them before the transaction is checkpointed. So be 201 * careful and force everything to disk here... We use 202 * ei->i_datasync_tid to store the newest transaction 203 * containing inode's data. 204 * 205 * Note that directories do not have this problem because they 206 * don't use page cache. 207 */ 208 if (ext4_should_journal_data(inode) && 209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 210 inode->i_ino != EXT4_JOURNAL_INO) { 211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 213 214 jbd2_complete_transaction(journal, commit_tid); 215 filemap_write_and_wait(&inode->i_data); 216 } 217 truncate_inode_pages(&inode->i_data, 0); 218 ext4_ioend_shutdown(inode); 219 goto no_delete; 220 } 221 222 if (!is_bad_inode(inode)) 223 dquot_initialize(inode); 224 225 if (ext4_should_order_data(inode)) 226 ext4_begin_ordered_truncate(inode, 0); 227 truncate_inode_pages(&inode->i_data, 0); 228 ext4_ioend_shutdown(inode); 229 230 if (is_bad_inode(inode)) 231 goto no_delete; 232 233 /* 234 * Protect us against freezing - iput() caller didn't have to have any 235 * protection against it 236 */ 237 sb_start_intwrite(inode->i_sb); 238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 239 ext4_blocks_for_truncate(inode)+3); 240 if (IS_ERR(handle)) { 241 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 242 /* 243 * If we're going to skip the normal cleanup, we still need to 244 * make sure that the in-core orphan linked list is properly 245 * cleaned up. 246 */ 247 ext4_orphan_del(NULL, inode); 248 sb_end_intwrite(inode->i_sb); 249 goto no_delete; 250 } 251 252 if (IS_SYNC(inode)) 253 ext4_handle_sync(handle); 254 inode->i_size = 0; 255 err = ext4_mark_inode_dirty(handle, inode); 256 if (err) { 257 ext4_warning(inode->i_sb, 258 "couldn't mark inode dirty (err %d)", err); 259 goto stop_handle; 260 } 261 if (inode->i_blocks) 262 ext4_truncate(inode); 263 264 /* 265 * ext4_ext_truncate() doesn't reserve any slop when it 266 * restarts journal transactions; therefore there may not be 267 * enough credits left in the handle to remove the inode from 268 * the orphan list and set the dtime field. 269 */ 270 if (!ext4_handle_has_enough_credits(handle, 3)) { 271 err = ext4_journal_extend(handle, 3); 272 if (err > 0) 273 err = ext4_journal_restart(handle, 3); 274 if (err != 0) { 275 ext4_warning(inode->i_sb, 276 "couldn't extend journal (err %d)", err); 277 stop_handle: 278 ext4_journal_stop(handle); 279 ext4_orphan_del(NULL, inode); 280 sb_end_intwrite(inode->i_sb); 281 goto no_delete; 282 } 283 } 284 285 /* 286 * Kill off the orphan record which ext4_truncate created. 287 * AKPM: I think this can be inside the above `if'. 288 * Note that ext4_orphan_del() has to be able to cope with the 289 * deletion of a non-existent orphan - this is because we don't 290 * know if ext4_truncate() actually created an orphan record. 291 * (Well, we could do this if we need to, but heck - it works) 292 */ 293 ext4_orphan_del(handle, inode); 294 EXT4_I(inode)->i_dtime = get_seconds(); 295 296 /* 297 * One subtle ordering requirement: if anything has gone wrong 298 * (transaction abort, IO errors, whatever), then we can still 299 * do these next steps (the fs will already have been marked as 300 * having errors), but we can't free the inode if the mark_dirty 301 * fails. 302 */ 303 if (ext4_mark_inode_dirty(handle, inode)) 304 /* If that failed, just do the required in-core inode clear. */ 305 ext4_clear_inode(inode); 306 else 307 ext4_free_inode(handle, inode); 308 ext4_journal_stop(handle); 309 sb_end_intwrite(inode->i_sb); 310 return; 311 no_delete: 312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 313 } 314 315 #ifdef CONFIG_QUOTA 316 qsize_t *ext4_get_reserved_space(struct inode *inode) 317 { 318 return &EXT4_I(inode)->i_reserved_quota; 319 } 320 #endif 321 322 /* 323 * Calculate the number of metadata blocks need to reserve 324 * to allocate a block located at @lblock 325 */ 326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock) 327 { 328 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 329 return ext4_ext_calc_metadata_amount(inode, lblock); 330 331 return ext4_ind_calc_metadata_amount(inode, lblock); 332 } 333 334 /* 335 * Called with i_data_sem down, which is important since we can call 336 * ext4_discard_preallocations() from here. 337 */ 338 void ext4_da_update_reserve_space(struct inode *inode, 339 int used, int quota_claim) 340 { 341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 342 struct ext4_inode_info *ei = EXT4_I(inode); 343 344 spin_lock(&ei->i_block_reservation_lock); 345 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 346 if (unlikely(used > ei->i_reserved_data_blocks)) { 347 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 348 "with only %d reserved data blocks", 349 __func__, inode->i_ino, used, 350 ei->i_reserved_data_blocks); 351 WARN_ON(1); 352 used = ei->i_reserved_data_blocks; 353 } 354 355 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) { 356 ext4_warning(inode->i_sb, "ino %lu, allocated %d " 357 "with only %d reserved metadata blocks " 358 "(releasing %d blocks with reserved %d data blocks)", 359 inode->i_ino, ei->i_allocated_meta_blocks, 360 ei->i_reserved_meta_blocks, used, 361 ei->i_reserved_data_blocks); 362 WARN_ON(1); 363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks; 364 } 365 366 /* Update per-inode reservations */ 367 ei->i_reserved_data_blocks -= used; 368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks; 369 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 370 used + ei->i_allocated_meta_blocks); 371 ei->i_allocated_meta_blocks = 0; 372 373 if (ei->i_reserved_data_blocks == 0) { 374 /* 375 * We can release all of the reserved metadata blocks 376 * only when we have written all of the delayed 377 * allocation blocks. 378 */ 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 380 ei->i_reserved_meta_blocks); 381 ei->i_reserved_meta_blocks = 0; 382 ei->i_da_metadata_calc_len = 0; 383 } 384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 385 386 /* Update quota subsystem for data blocks */ 387 if (quota_claim) 388 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 389 else { 390 /* 391 * We did fallocate with an offset that is already delayed 392 * allocated. So on delayed allocated writeback we should 393 * not re-claim the quota for fallocated blocks. 394 */ 395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 396 } 397 398 /* 399 * If we have done all the pending block allocations and if 400 * there aren't any writers on the inode, we can discard the 401 * inode's preallocations. 402 */ 403 if ((ei->i_reserved_data_blocks == 0) && 404 (atomic_read(&inode->i_writecount) == 0)) 405 ext4_discard_preallocations(inode); 406 } 407 408 static int __check_block_validity(struct inode *inode, const char *func, 409 unsigned int line, 410 struct ext4_map_blocks *map) 411 { 412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 413 map->m_len)) { 414 ext4_error_inode(inode, func, line, map->m_pblk, 415 "lblock %lu mapped to illegal pblock " 416 "(length %d)", (unsigned long) map->m_lblk, 417 map->m_len); 418 return -EIO; 419 } 420 return 0; 421 } 422 423 #define check_block_validity(inode, map) \ 424 __check_block_validity((inode), __func__, __LINE__, (map)) 425 426 /* 427 * Return the number of contiguous dirty pages in a given inode 428 * starting at page frame idx. 429 */ 430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx, 431 unsigned int max_pages) 432 { 433 struct address_space *mapping = inode->i_mapping; 434 pgoff_t index; 435 struct pagevec pvec; 436 pgoff_t num = 0; 437 int i, nr_pages, done = 0; 438 439 if (max_pages == 0) 440 return 0; 441 pagevec_init(&pvec, 0); 442 while (!done) { 443 index = idx; 444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 445 PAGECACHE_TAG_DIRTY, 446 (pgoff_t)PAGEVEC_SIZE); 447 if (nr_pages == 0) 448 break; 449 for (i = 0; i < nr_pages; i++) { 450 struct page *page = pvec.pages[i]; 451 struct buffer_head *bh, *head; 452 453 lock_page(page); 454 if (unlikely(page->mapping != mapping) || 455 !PageDirty(page) || 456 PageWriteback(page) || 457 page->index != idx) { 458 done = 1; 459 unlock_page(page); 460 break; 461 } 462 if (page_has_buffers(page)) { 463 bh = head = page_buffers(page); 464 do { 465 if (!buffer_delay(bh) && 466 !buffer_unwritten(bh)) 467 done = 1; 468 bh = bh->b_this_page; 469 } while (!done && (bh != head)); 470 } 471 unlock_page(page); 472 if (done) 473 break; 474 idx++; 475 num++; 476 if (num >= max_pages) { 477 done = 1; 478 break; 479 } 480 } 481 pagevec_release(&pvec); 482 } 483 return num; 484 } 485 486 #ifdef ES_AGGRESSIVE_TEST 487 static void ext4_map_blocks_es_recheck(handle_t *handle, 488 struct inode *inode, 489 struct ext4_map_blocks *es_map, 490 struct ext4_map_blocks *map, 491 int flags) 492 { 493 int retval; 494 495 map->m_flags = 0; 496 /* 497 * There is a race window that the result is not the same. 498 * e.g. xfstests #223 when dioread_nolock enables. The reason 499 * is that we lookup a block mapping in extent status tree with 500 * out taking i_data_sem. So at the time the unwritten extent 501 * could be converted. 502 */ 503 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 504 down_read((&EXT4_I(inode)->i_data_sem)); 505 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 506 retval = ext4_ext_map_blocks(handle, inode, map, flags & 507 EXT4_GET_BLOCKS_KEEP_SIZE); 508 } else { 509 retval = ext4_ind_map_blocks(handle, inode, map, flags & 510 EXT4_GET_BLOCKS_KEEP_SIZE); 511 } 512 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 513 up_read((&EXT4_I(inode)->i_data_sem)); 514 /* 515 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag 516 * because it shouldn't be marked in es_map->m_flags. 517 */ 518 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY); 519 520 /* 521 * We don't check m_len because extent will be collpased in status 522 * tree. So the m_len might not equal. 523 */ 524 if (es_map->m_lblk != map->m_lblk || 525 es_map->m_flags != map->m_flags || 526 es_map->m_pblk != map->m_pblk) { 527 printk("ES cache assertation failed for inode: %lu " 528 "es_cached ex [%d/%d/%llu/%x] != " 529 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 530 inode->i_ino, es_map->m_lblk, es_map->m_len, 531 es_map->m_pblk, es_map->m_flags, map->m_lblk, 532 map->m_len, map->m_pblk, map->m_flags, 533 retval, flags); 534 } 535 } 536 #endif /* ES_AGGRESSIVE_TEST */ 537 538 /* 539 * The ext4_map_blocks() function tries to look up the requested blocks, 540 * and returns if the blocks are already mapped. 541 * 542 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 543 * and store the allocated blocks in the result buffer head and mark it 544 * mapped. 545 * 546 * If file type is extents based, it will call ext4_ext_map_blocks(), 547 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 548 * based files 549 * 550 * On success, it returns the number of blocks being mapped or allocate. 551 * if create==0 and the blocks are pre-allocated and uninitialized block, 552 * the result buffer head is unmapped. If the create ==1, it will make sure 553 * the buffer head is mapped. 554 * 555 * It returns 0 if plain look up failed (blocks have not been allocated), in 556 * that case, buffer head is unmapped 557 * 558 * It returns the error in case of allocation failure. 559 */ 560 int ext4_map_blocks(handle_t *handle, struct inode *inode, 561 struct ext4_map_blocks *map, int flags) 562 { 563 struct extent_status es; 564 int retval; 565 #ifdef ES_AGGRESSIVE_TEST 566 struct ext4_map_blocks orig_map; 567 568 memcpy(&orig_map, map, sizeof(*map)); 569 #endif 570 571 map->m_flags = 0; 572 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 573 "logical block %lu\n", inode->i_ino, flags, map->m_len, 574 (unsigned long) map->m_lblk); 575 576 /* Lookup extent status tree firstly */ 577 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 578 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 579 map->m_pblk = ext4_es_pblock(&es) + 580 map->m_lblk - es.es_lblk; 581 map->m_flags |= ext4_es_is_written(&es) ? 582 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 583 retval = es.es_len - (map->m_lblk - es.es_lblk); 584 if (retval > map->m_len) 585 retval = map->m_len; 586 map->m_len = retval; 587 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 588 retval = 0; 589 } else { 590 BUG_ON(1); 591 } 592 #ifdef ES_AGGRESSIVE_TEST 593 ext4_map_blocks_es_recheck(handle, inode, map, 594 &orig_map, flags); 595 #endif 596 goto found; 597 } 598 599 /* 600 * Try to see if we can get the block without requesting a new 601 * file system block. 602 */ 603 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 604 down_read((&EXT4_I(inode)->i_data_sem)); 605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 606 retval = ext4_ext_map_blocks(handle, inode, map, flags & 607 EXT4_GET_BLOCKS_KEEP_SIZE); 608 } else { 609 retval = ext4_ind_map_blocks(handle, inode, map, flags & 610 EXT4_GET_BLOCKS_KEEP_SIZE); 611 } 612 if (retval > 0) { 613 int ret; 614 unsigned long long status; 615 616 #ifdef ES_AGGRESSIVE_TEST 617 if (retval != map->m_len) { 618 printk("ES len assertation failed for inode: %lu " 619 "retval %d != map->m_len %d " 620 "in %s (lookup)\n", inode->i_ino, retval, 621 map->m_len, __func__); 622 } 623 #endif 624 625 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 626 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 627 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 628 ext4_find_delalloc_range(inode, map->m_lblk, 629 map->m_lblk + map->m_len - 1)) 630 status |= EXTENT_STATUS_DELAYED; 631 ret = ext4_es_insert_extent(inode, map->m_lblk, 632 map->m_len, map->m_pblk, status); 633 if (ret < 0) 634 retval = ret; 635 } 636 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 637 up_read((&EXT4_I(inode)->i_data_sem)); 638 639 found: 640 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 641 int ret = check_block_validity(inode, map); 642 if (ret != 0) 643 return ret; 644 } 645 646 /* If it is only a block(s) look up */ 647 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 648 return retval; 649 650 /* 651 * Returns if the blocks have already allocated 652 * 653 * Note that if blocks have been preallocated 654 * ext4_ext_get_block() returns the create = 0 655 * with buffer head unmapped. 656 */ 657 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 658 return retval; 659 660 /* 661 * Here we clear m_flags because after allocating an new extent, 662 * it will be set again. 663 */ 664 map->m_flags &= ~EXT4_MAP_FLAGS; 665 666 /* 667 * New blocks allocate and/or writing to uninitialized extent 668 * will possibly result in updating i_data, so we take 669 * the write lock of i_data_sem, and call get_blocks() 670 * with create == 1 flag. 671 */ 672 down_write((&EXT4_I(inode)->i_data_sem)); 673 674 /* 675 * if the caller is from delayed allocation writeout path 676 * we have already reserved fs blocks for allocation 677 * let the underlying get_block() function know to 678 * avoid double accounting 679 */ 680 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 681 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 682 /* 683 * We need to check for EXT4 here because migrate 684 * could have changed the inode type in between 685 */ 686 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 687 retval = ext4_ext_map_blocks(handle, inode, map, flags); 688 } else { 689 retval = ext4_ind_map_blocks(handle, inode, map, flags); 690 691 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 692 /* 693 * We allocated new blocks which will result in 694 * i_data's format changing. Force the migrate 695 * to fail by clearing migrate flags 696 */ 697 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 698 } 699 700 /* 701 * Update reserved blocks/metadata blocks after successful 702 * block allocation which had been deferred till now. We don't 703 * support fallocate for non extent files. So we can update 704 * reserve space here. 705 */ 706 if ((retval > 0) && 707 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 708 ext4_da_update_reserve_space(inode, retval, 1); 709 } 710 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) 711 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED); 712 713 if (retval > 0) { 714 int ret; 715 unsigned long long status; 716 717 #ifdef ES_AGGRESSIVE_TEST 718 if (retval != map->m_len) { 719 printk("ES len assertation failed for inode: %lu " 720 "retval %d != map->m_len %d " 721 "in %s (allocation)\n", inode->i_ino, retval, 722 map->m_len, __func__); 723 } 724 #endif 725 726 /* 727 * If the extent has been zeroed out, we don't need to update 728 * extent status tree. 729 */ 730 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 731 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 732 if (ext4_es_is_written(&es)) 733 goto has_zeroout; 734 } 735 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 736 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 737 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 738 ext4_find_delalloc_range(inode, map->m_lblk, 739 map->m_lblk + map->m_len - 1)) 740 status |= EXTENT_STATUS_DELAYED; 741 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 742 map->m_pblk, status); 743 if (ret < 0) 744 retval = ret; 745 } 746 747 has_zeroout: 748 up_write((&EXT4_I(inode)->i_data_sem)); 749 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 750 int ret = check_block_validity(inode, map); 751 if (ret != 0) 752 return ret; 753 } 754 return retval; 755 } 756 757 /* Maximum number of blocks we map for direct IO at once. */ 758 #define DIO_MAX_BLOCKS 4096 759 760 static int _ext4_get_block(struct inode *inode, sector_t iblock, 761 struct buffer_head *bh, int flags) 762 { 763 handle_t *handle = ext4_journal_current_handle(); 764 struct ext4_map_blocks map; 765 int ret = 0, started = 0; 766 int dio_credits; 767 768 if (ext4_has_inline_data(inode)) 769 return -ERANGE; 770 771 map.m_lblk = iblock; 772 map.m_len = bh->b_size >> inode->i_blkbits; 773 774 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 775 /* Direct IO write... */ 776 if (map.m_len > DIO_MAX_BLOCKS) 777 map.m_len = DIO_MAX_BLOCKS; 778 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 779 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 780 dio_credits); 781 if (IS_ERR(handle)) { 782 ret = PTR_ERR(handle); 783 return ret; 784 } 785 started = 1; 786 } 787 788 ret = ext4_map_blocks(handle, inode, &map, flags); 789 if (ret > 0) { 790 map_bh(bh, inode->i_sb, map.m_pblk); 791 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 792 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 793 ret = 0; 794 } 795 if (started) 796 ext4_journal_stop(handle); 797 return ret; 798 } 799 800 int ext4_get_block(struct inode *inode, sector_t iblock, 801 struct buffer_head *bh, int create) 802 { 803 return _ext4_get_block(inode, iblock, bh, 804 create ? EXT4_GET_BLOCKS_CREATE : 0); 805 } 806 807 /* 808 * `handle' can be NULL if create is zero 809 */ 810 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 811 ext4_lblk_t block, int create, int *errp) 812 { 813 struct ext4_map_blocks map; 814 struct buffer_head *bh; 815 int fatal = 0, err; 816 817 J_ASSERT(handle != NULL || create == 0); 818 819 map.m_lblk = block; 820 map.m_len = 1; 821 err = ext4_map_blocks(handle, inode, &map, 822 create ? EXT4_GET_BLOCKS_CREATE : 0); 823 824 /* ensure we send some value back into *errp */ 825 *errp = 0; 826 827 if (create && err == 0) 828 err = -ENOSPC; /* should never happen */ 829 if (err < 0) 830 *errp = err; 831 if (err <= 0) 832 return NULL; 833 834 bh = sb_getblk(inode->i_sb, map.m_pblk); 835 if (unlikely(!bh)) { 836 *errp = -ENOMEM; 837 return NULL; 838 } 839 if (map.m_flags & EXT4_MAP_NEW) { 840 J_ASSERT(create != 0); 841 J_ASSERT(handle != NULL); 842 843 /* 844 * Now that we do not always journal data, we should 845 * keep in mind whether this should always journal the 846 * new buffer as metadata. For now, regular file 847 * writes use ext4_get_block instead, so it's not a 848 * problem. 849 */ 850 lock_buffer(bh); 851 BUFFER_TRACE(bh, "call get_create_access"); 852 fatal = ext4_journal_get_create_access(handle, bh); 853 if (!fatal && !buffer_uptodate(bh)) { 854 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 855 set_buffer_uptodate(bh); 856 } 857 unlock_buffer(bh); 858 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 859 err = ext4_handle_dirty_metadata(handle, inode, bh); 860 if (!fatal) 861 fatal = err; 862 } else { 863 BUFFER_TRACE(bh, "not a new buffer"); 864 } 865 if (fatal) { 866 *errp = fatal; 867 brelse(bh); 868 bh = NULL; 869 } 870 return bh; 871 } 872 873 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 874 ext4_lblk_t block, int create, int *err) 875 { 876 struct buffer_head *bh; 877 878 bh = ext4_getblk(handle, inode, block, create, err); 879 if (!bh) 880 return bh; 881 if (buffer_uptodate(bh)) 882 return bh; 883 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 884 wait_on_buffer(bh); 885 if (buffer_uptodate(bh)) 886 return bh; 887 put_bh(bh); 888 *err = -EIO; 889 return NULL; 890 } 891 892 int ext4_walk_page_buffers(handle_t *handle, 893 struct buffer_head *head, 894 unsigned from, 895 unsigned to, 896 int *partial, 897 int (*fn)(handle_t *handle, 898 struct buffer_head *bh)) 899 { 900 struct buffer_head *bh; 901 unsigned block_start, block_end; 902 unsigned blocksize = head->b_size; 903 int err, ret = 0; 904 struct buffer_head *next; 905 906 for (bh = head, block_start = 0; 907 ret == 0 && (bh != head || !block_start); 908 block_start = block_end, bh = next) { 909 next = bh->b_this_page; 910 block_end = block_start + blocksize; 911 if (block_end <= from || block_start >= to) { 912 if (partial && !buffer_uptodate(bh)) 913 *partial = 1; 914 continue; 915 } 916 err = (*fn)(handle, bh); 917 if (!ret) 918 ret = err; 919 } 920 return ret; 921 } 922 923 /* 924 * To preserve ordering, it is essential that the hole instantiation and 925 * the data write be encapsulated in a single transaction. We cannot 926 * close off a transaction and start a new one between the ext4_get_block() 927 * and the commit_write(). So doing the jbd2_journal_start at the start of 928 * prepare_write() is the right place. 929 * 930 * Also, this function can nest inside ext4_writepage(). In that case, we 931 * *know* that ext4_writepage() has generated enough buffer credits to do the 932 * whole page. So we won't block on the journal in that case, which is good, 933 * because the caller may be PF_MEMALLOC. 934 * 935 * By accident, ext4 can be reentered when a transaction is open via 936 * quota file writes. If we were to commit the transaction while thus 937 * reentered, there can be a deadlock - we would be holding a quota 938 * lock, and the commit would never complete if another thread had a 939 * transaction open and was blocking on the quota lock - a ranking 940 * violation. 941 * 942 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 943 * will _not_ run commit under these circumstances because handle->h_ref 944 * is elevated. We'll still have enough credits for the tiny quotafile 945 * write. 946 */ 947 int do_journal_get_write_access(handle_t *handle, 948 struct buffer_head *bh) 949 { 950 int dirty = buffer_dirty(bh); 951 int ret; 952 953 if (!buffer_mapped(bh) || buffer_freed(bh)) 954 return 0; 955 /* 956 * __block_write_begin() could have dirtied some buffers. Clean 957 * the dirty bit as jbd2_journal_get_write_access() could complain 958 * otherwise about fs integrity issues. Setting of the dirty bit 959 * by __block_write_begin() isn't a real problem here as we clear 960 * the bit before releasing a page lock and thus writeback cannot 961 * ever write the buffer. 962 */ 963 if (dirty) 964 clear_buffer_dirty(bh); 965 ret = ext4_journal_get_write_access(handle, bh); 966 if (!ret && dirty) 967 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 968 return ret; 969 } 970 971 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 972 struct buffer_head *bh_result, int create); 973 static int ext4_write_begin(struct file *file, struct address_space *mapping, 974 loff_t pos, unsigned len, unsigned flags, 975 struct page **pagep, void **fsdata) 976 { 977 struct inode *inode = mapping->host; 978 int ret, needed_blocks; 979 handle_t *handle; 980 int retries = 0; 981 struct page *page; 982 pgoff_t index; 983 unsigned from, to; 984 985 trace_ext4_write_begin(inode, pos, len, flags); 986 /* 987 * Reserve one block more for addition to orphan list in case 988 * we allocate blocks but write fails for some reason 989 */ 990 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 991 index = pos >> PAGE_CACHE_SHIFT; 992 from = pos & (PAGE_CACHE_SIZE - 1); 993 to = from + len; 994 995 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 996 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 997 flags, pagep); 998 if (ret < 0) 999 return ret; 1000 if (ret == 1) 1001 return 0; 1002 } 1003 1004 /* 1005 * grab_cache_page_write_begin() can take a long time if the 1006 * system is thrashing due to memory pressure, or if the page 1007 * is being written back. So grab it first before we start 1008 * the transaction handle. This also allows us to allocate 1009 * the page (if needed) without using GFP_NOFS. 1010 */ 1011 retry_grab: 1012 page = grab_cache_page_write_begin(mapping, index, flags); 1013 if (!page) 1014 return -ENOMEM; 1015 unlock_page(page); 1016 1017 retry_journal: 1018 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1019 if (IS_ERR(handle)) { 1020 page_cache_release(page); 1021 return PTR_ERR(handle); 1022 } 1023 1024 lock_page(page); 1025 if (page->mapping != mapping) { 1026 /* The page got truncated from under us */ 1027 unlock_page(page); 1028 page_cache_release(page); 1029 ext4_journal_stop(handle); 1030 goto retry_grab; 1031 } 1032 wait_on_page_writeback(page); 1033 1034 if (ext4_should_dioread_nolock(inode)) 1035 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1036 else 1037 ret = __block_write_begin(page, pos, len, ext4_get_block); 1038 1039 if (!ret && ext4_should_journal_data(inode)) { 1040 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1041 from, to, NULL, 1042 do_journal_get_write_access); 1043 } 1044 1045 if (ret) { 1046 unlock_page(page); 1047 /* 1048 * __block_write_begin may have instantiated a few blocks 1049 * outside i_size. Trim these off again. Don't need 1050 * i_size_read because we hold i_mutex. 1051 * 1052 * Add inode to orphan list in case we crash before 1053 * truncate finishes 1054 */ 1055 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1056 ext4_orphan_add(handle, inode); 1057 1058 ext4_journal_stop(handle); 1059 if (pos + len > inode->i_size) { 1060 ext4_truncate_failed_write(inode); 1061 /* 1062 * If truncate failed early the inode might 1063 * still be on the orphan list; we need to 1064 * make sure the inode is removed from the 1065 * orphan list in that case. 1066 */ 1067 if (inode->i_nlink) 1068 ext4_orphan_del(NULL, inode); 1069 } 1070 1071 if (ret == -ENOSPC && 1072 ext4_should_retry_alloc(inode->i_sb, &retries)) 1073 goto retry_journal; 1074 page_cache_release(page); 1075 return ret; 1076 } 1077 *pagep = page; 1078 return ret; 1079 } 1080 1081 /* For write_end() in data=journal mode */ 1082 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1083 { 1084 int ret; 1085 if (!buffer_mapped(bh) || buffer_freed(bh)) 1086 return 0; 1087 set_buffer_uptodate(bh); 1088 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1089 clear_buffer_meta(bh); 1090 clear_buffer_prio(bh); 1091 return ret; 1092 } 1093 1094 /* 1095 * We need to pick up the new inode size which generic_commit_write gave us 1096 * `file' can be NULL - eg, when called from page_symlink(). 1097 * 1098 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1099 * buffers are managed internally. 1100 */ 1101 static int ext4_write_end(struct file *file, 1102 struct address_space *mapping, 1103 loff_t pos, unsigned len, unsigned copied, 1104 struct page *page, void *fsdata) 1105 { 1106 handle_t *handle = ext4_journal_current_handle(); 1107 struct inode *inode = mapping->host; 1108 int ret = 0, ret2; 1109 int i_size_changed = 0; 1110 1111 trace_ext4_write_end(inode, pos, len, copied); 1112 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1113 ret = ext4_jbd2_file_inode(handle, inode); 1114 if (ret) { 1115 unlock_page(page); 1116 page_cache_release(page); 1117 goto errout; 1118 } 1119 } 1120 1121 if (ext4_has_inline_data(inode)) 1122 copied = ext4_write_inline_data_end(inode, pos, len, 1123 copied, page); 1124 else 1125 copied = block_write_end(file, mapping, pos, 1126 len, copied, page, fsdata); 1127 1128 /* 1129 * No need to use i_size_read() here, the i_size 1130 * cannot change under us because we hole i_mutex. 1131 * 1132 * But it's important to update i_size while still holding page lock: 1133 * page writeout could otherwise come in and zero beyond i_size. 1134 */ 1135 if (pos + copied > inode->i_size) { 1136 i_size_write(inode, pos + copied); 1137 i_size_changed = 1; 1138 } 1139 1140 if (pos + copied > EXT4_I(inode)->i_disksize) { 1141 /* We need to mark inode dirty even if 1142 * new_i_size is less that inode->i_size 1143 * but greater than i_disksize. (hint delalloc) 1144 */ 1145 ext4_update_i_disksize(inode, (pos + copied)); 1146 i_size_changed = 1; 1147 } 1148 unlock_page(page); 1149 page_cache_release(page); 1150 1151 /* 1152 * Don't mark the inode dirty under page lock. First, it unnecessarily 1153 * makes the holding time of page lock longer. Second, it forces lock 1154 * ordering of page lock and transaction start for journaling 1155 * filesystems. 1156 */ 1157 if (i_size_changed) 1158 ext4_mark_inode_dirty(handle, inode); 1159 1160 if (copied < 0) 1161 ret = copied; 1162 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1163 /* if we have allocated more blocks and copied 1164 * less. We will have blocks allocated outside 1165 * inode->i_size. So truncate them 1166 */ 1167 ext4_orphan_add(handle, inode); 1168 errout: 1169 ret2 = ext4_journal_stop(handle); 1170 if (!ret) 1171 ret = ret2; 1172 1173 if (pos + len > inode->i_size) { 1174 ext4_truncate_failed_write(inode); 1175 /* 1176 * If truncate failed early the inode might still be 1177 * on the orphan list; we need to make sure the inode 1178 * is removed from the orphan list in that case. 1179 */ 1180 if (inode->i_nlink) 1181 ext4_orphan_del(NULL, inode); 1182 } 1183 1184 return ret ? ret : copied; 1185 } 1186 1187 static int ext4_journalled_write_end(struct file *file, 1188 struct address_space *mapping, 1189 loff_t pos, unsigned len, unsigned copied, 1190 struct page *page, void *fsdata) 1191 { 1192 handle_t *handle = ext4_journal_current_handle(); 1193 struct inode *inode = mapping->host; 1194 int ret = 0, ret2; 1195 int partial = 0; 1196 unsigned from, to; 1197 loff_t new_i_size; 1198 1199 trace_ext4_journalled_write_end(inode, pos, len, copied); 1200 from = pos & (PAGE_CACHE_SIZE - 1); 1201 to = from + len; 1202 1203 BUG_ON(!ext4_handle_valid(handle)); 1204 1205 if (ext4_has_inline_data(inode)) 1206 copied = ext4_write_inline_data_end(inode, pos, len, 1207 copied, page); 1208 else { 1209 if (copied < len) { 1210 if (!PageUptodate(page)) 1211 copied = 0; 1212 page_zero_new_buffers(page, from+copied, to); 1213 } 1214 1215 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1216 to, &partial, write_end_fn); 1217 if (!partial) 1218 SetPageUptodate(page); 1219 } 1220 new_i_size = pos + copied; 1221 if (new_i_size > inode->i_size) 1222 i_size_write(inode, pos+copied); 1223 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1224 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1225 if (new_i_size > EXT4_I(inode)->i_disksize) { 1226 ext4_update_i_disksize(inode, new_i_size); 1227 ret2 = ext4_mark_inode_dirty(handle, inode); 1228 if (!ret) 1229 ret = ret2; 1230 } 1231 1232 unlock_page(page); 1233 page_cache_release(page); 1234 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1235 /* if we have allocated more blocks and copied 1236 * less. We will have blocks allocated outside 1237 * inode->i_size. So truncate them 1238 */ 1239 ext4_orphan_add(handle, inode); 1240 1241 ret2 = ext4_journal_stop(handle); 1242 if (!ret) 1243 ret = ret2; 1244 if (pos + len > inode->i_size) { 1245 ext4_truncate_failed_write(inode); 1246 /* 1247 * If truncate failed early the inode might still be 1248 * on the orphan list; we need to make sure the inode 1249 * is removed from the orphan list in that case. 1250 */ 1251 if (inode->i_nlink) 1252 ext4_orphan_del(NULL, inode); 1253 } 1254 1255 return ret ? ret : copied; 1256 } 1257 1258 /* 1259 * Reserve a metadata for a single block located at lblock 1260 */ 1261 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock) 1262 { 1263 int retries = 0; 1264 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1265 struct ext4_inode_info *ei = EXT4_I(inode); 1266 unsigned int md_needed; 1267 ext4_lblk_t save_last_lblock; 1268 int save_len; 1269 1270 /* 1271 * recalculate the amount of metadata blocks to reserve 1272 * in order to allocate nrblocks 1273 * worse case is one extent per block 1274 */ 1275 repeat: 1276 spin_lock(&ei->i_block_reservation_lock); 1277 /* 1278 * ext4_calc_metadata_amount() has side effects, which we have 1279 * to be prepared undo if we fail to claim space. 1280 */ 1281 save_len = ei->i_da_metadata_calc_len; 1282 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1283 md_needed = EXT4_NUM_B2C(sbi, 1284 ext4_calc_metadata_amount(inode, lblock)); 1285 trace_ext4_da_reserve_space(inode, md_needed); 1286 1287 /* 1288 * We do still charge estimated metadata to the sb though; 1289 * we cannot afford to run out of free blocks. 1290 */ 1291 if (ext4_claim_free_clusters(sbi, md_needed, 0)) { 1292 ei->i_da_metadata_calc_len = save_len; 1293 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1294 spin_unlock(&ei->i_block_reservation_lock); 1295 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1296 cond_resched(); 1297 goto repeat; 1298 } 1299 return -ENOSPC; 1300 } 1301 ei->i_reserved_meta_blocks += md_needed; 1302 spin_unlock(&ei->i_block_reservation_lock); 1303 1304 return 0; /* success */ 1305 } 1306 1307 /* 1308 * Reserve a single cluster located at lblock 1309 */ 1310 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1311 { 1312 int retries = 0; 1313 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1314 struct ext4_inode_info *ei = EXT4_I(inode); 1315 unsigned int md_needed; 1316 int ret; 1317 ext4_lblk_t save_last_lblock; 1318 int save_len; 1319 1320 /* 1321 * We will charge metadata quota at writeout time; this saves 1322 * us from metadata over-estimation, though we may go over by 1323 * a small amount in the end. Here we just reserve for data. 1324 */ 1325 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1326 if (ret) 1327 return ret; 1328 1329 /* 1330 * recalculate the amount of metadata blocks to reserve 1331 * in order to allocate nrblocks 1332 * worse case is one extent per block 1333 */ 1334 repeat: 1335 spin_lock(&ei->i_block_reservation_lock); 1336 /* 1337 * ext4_calc_metadata_amount() has side effects, which we have 1338 * to be prepared undo if we fail to claim space. 1339 */ 1340 save_len = ei->i_da_metadata_calc_len; 1341 save_last_lblock = ei->i_da_metadata_calc_last_lblock; 1342 md_needed = EXT4_NUM_B2C(sbi, 1343 ext4_calc_metadata_amount(inode, lblock)); 1344 trace_ext4_da_reserve_space(inode, md_needed); 1345 1346 /* 1347 * We do still charge estimated metadata to the sb though; 1348 * we cannot afford to run out of free blocks. 1349 */ 1350 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) { 1351 ei->i_da_metadata_calc_len = save_len; 1352 ei->i_da_metadata_calc_last_lblock = save_last_lblock; 1353 spin_unlock(&ei->i_block_reservation_lock); 1354 if (ext4_should_retry_alloc(inode->i_sb, &retries)) { 1355 cond_resched(); 1356 goto repeat; 1357 } 1358 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1359 return -ENOSPC; 1360 } 1361 ei->i_reserved_data_blocks++; 1362 ei->i_reserved_meta_blocks += md_needed; 1363 spin_unlock(&ei->i_block_reservation_lock); 1364 1365 return 0; /* success */ 1366 } 1367 1368 static void ext4_da_release_space(struct inode *inode, int to_free) 1369 { 1370 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1371 struct ext4_inode_info *ei = EXT4_I(inode); 1372 1373 if (!to_free) 1374 return; /* Nothing to release, exit */ 1375 1376 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1377 1378 trace_ext4_da_release_space(inode, to_free); 1379 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1380 /* 1381 * if there aren't enough reserved blocks, then the 1382 * counter is messed up somewhere. Since this 1383 * function is called from invalidate page, it's 1384 * harmless to return without any action. 1385 */ 1386 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1387 "ino %lu, to_free %d with only %d reserved " 1388 "data blocks", inode->i_ino, to_free, 1389 ei->i_reserved_data_blocks); 1390 WARN_ON(1); 1391 to_free = ei->i_reserved_data_blocks; 1392 } 1393 ei->i_reserved_data_blocks -= to_free; 1394 1395 if (ei->i_reserved_data_blocks == 0) { 1396 /* 1397 * We can release all of the reserved metadata blocks 1398 * only when we have written all of the delayed 1399 * allocation blocks. 1400 * Note that in case of bigalloc, i_reserved_meta_blocks, 1401 * i_reserved_data_blocks, etc. refer to number of clusters. 1402 */ 1403 percpu_counter_sub(&sbi->s_dirtyclusters_counter, 1404 ei->i_reserved_meta_blocks); 1405 ei->i_reserved_meta_blocks = 0; 1406 ei->i_da_metadata_calc_len = 0; 1407 } 1408 1409 /* update fs dirty data blocks counter */ 1410 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1411 1412 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1413 1414 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1415 } 1416 1417 static void ext4_da_page_release_reservation(struct page *page, 1418 unsigned long offset) 1419 { 1420 int to_release = 0; 1421 struct buffer_head *head, *bh; 1422 unsigned int curr_off = 0; 1423 struct inode *inode = page->mapping->host; 1424 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1425 int num_clusters; 1426 ext4_fsblk_t lblk; 1427 1428 head = page_buffers(page); 1429 bh = head; 1430 do { 1431 unsigned int next_off = curr_off + bh->b_size; 1432 1433 if ((offset <= curr_off) && (buffer_delay(bh))) { 1434 to_release++; 1435 clear_buffer_delay(bh); 1436 } 1437 curr_off = next_off; 1438 } while ((bh = bh->b_this_page) != head); 1439 1440 if (to_release) { 1441 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1442 ext4_es_remove_extent(inode, lblk, to_release); 1443 } 1444 1445 /* If we have released all the blocks belonging to a cluster, then we 1446 * need to release the reserved space for that cluster. */ 1447 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1448 while (num_clusters > 0) { 1449 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1450 ((num_clusters - 1) << sbi->s_cluster_bits); 1451 if (sbi->s_cluster_ratio == 1 || 1452 !ext4_find_delalloc_cluster(inode, lblk)) 1453 ext4_da_release_space(inode, 1); 1454 1455 num_clusters--; 1456 } 1457 } 1458 1459 /* 1460 * Delayed allocation stuff 1461 */ 1462 1463 /* 1464 * mpage_da_submit_io - walks through extent of pages and try to write 1465 * them with writepage() call back 1466 * 1467 * @mpd->inode: inode 1468 * @mpd->first_page: first page of the extent 1469 * @mpd->next_page: page after the last page of the extent 1470 * 1471 * By the time mpage_da_submit_io() is called we expect all blocks 1472 * to be allocated. this may be wrong if allocation failed. 1473 * 1474 * As pages are already locked by write_cache_pages(), we can't use it 1475 */ 1476 static int mpage_da_submit_io(struct mpage_da_data *mpd, 1477 struct ext4_map_blocks *map) 1478 { 1479 struct pagevec pvec; 1480 unsigned long index, end; 1481 int ret = 0, err, nr_pages, i; 1482 struct inode *inode = mpd->inode; 1483 struct address_space *mapping = inode->i_mapping; 1484 loff_t size = i_size_read(inode); 1485 unsigned int len, block_start; 1486 struct buffer_head *bh, *page_bufs = NULL; 1487 sector_t pblock = 0, cur_logical = 0; 1488 struct ext4_io_submit io_submit; 1489 1490 BUG_ON(mpd->next_page <= mpd->first_page); 1491 ext4_io_submit_init(&io_submit, mpd->wbc); 1492 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1493 if (!io_submit.io_end) 1494 return -ENOMEM; 1495 /* 1496 * We need to start from the first_page to the next_page - 1 1497 * to make sure we also write the mapped dirty buffer_heads. 1498 * If we look at mpd->b_blocknr we would only be looking 1499 * at the currently mapped buffer_heads. 1500 */ 1501 index = mpd->first_page; 1502 end = mpd->next_page - 1; 1503 1504 pagevec_init(&pvec, 0); 1505 while (index <= end) { 1506 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1507 if (nr_pages == 0) 1508 break; 1509 for (i = 0; i < nr_pages; i++) { 1510 int skip_page = 0; 1511 struct page *page = pvec.pages[i]; 1512 1513 index = page->index; 1514 if (index > end) 1515 break; 1516 1517 if (index == size >> PAGE_CACHE_SHIFT) 1518 len = size & ~PAGE_CACHE_MASK; 1519 else 1520 len = PAGE_CACHE_SIZE; 1521 if (map) { 1522 cur_logical = index << (PAGE_CACHE_SHIFT - 1523 inode->i_blkbits); 1524 pblock = map->m_pblk + (cur_logical - 1525 map->m_lblk); 1526 } 1527 index++; 1528 1529 BUG_ON(!PageLocked(page)); 1530 BUG_ON(PageWriteback(page)); 1531 1532 bh = page_bufs = page_buffers(page); 1533 block_start = 0; 1534 do { 1535 if (map && (cur_logical >= map->m_lblk) && 1536 (cur_logical <= (map->m_lblk + 1537 (map->m_len - 1)))) { 1538 if (buffer_delay(bh)) { 1539 clear_buffer_delay(bh); 1540 bh->b_blocknr = pblock; 1541 } 1542 if (buffer_unwritten(bh) || 1543 buffer_mapped(bh)) 1544 BUG_ON(bh->b_blocknr != pblock); 1545 if (map->m_flags & EXT4_MAP_UNINIT) 1546 set_buffer_uninit(bh); 1547 clear_buffer_unwritten(bh); 1548 } 1549 1550 /* 1551 * skip page if block allocation undone and 1552 * block is dirty 1553 */ 1554 if (ext4_bh_delay_or_unwritten(NULL, bh)) 1555 skip_page = 1; 1556 bh = bh->b_this_page; 1557 block_start += bh->b_size; 1558 cur_logical++; 1559 pblock++; 1560 } while (bh != page_bufs); 1561 1562 if (skip_page) { 1563 unlock_page(page); 1564 continue; 1565 } 1566 1567 clear_page_dirty_for_io(page); 1568 err = ext4_bio_write_page(&io_submit, page, len, 1569 mpd->wbc); 1570 if (!err) 1571 mpd->pages_written++; 1572 /* 1573 * In error case, we have to continue because 1574 * remaining pages are still locked 1575 */ 1576 if (ret == 0) 1577 ret = err; 1578 } 1579 pagevec_release(&pvec); 1580 } 1581 ext4_io_submit(&io_submit); 1582 /* Drop io_end reference we got from init */ 1583 ext4_put_io_end_defer(io_submit.io_end); 1584 return ret; 1585 } 1586 1587 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd) 1588 { 1589 int nr_pages, i; 1590 pgoff_t index, end; 1591 struct pagevec pvec; 1592 struct inode *inode = mpd->inode; 1593 struct address_space *mapping = inode->i_mapping; 1594 ext4_lblk_t start, last; 1595 1596 index = mpd->first_page; 1597 end = mpd->next_page - 1; 1598 1599 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1600 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1601 ext4_es_remove_extent(inode, start, last - start + 1); 1602 1603 pagevec_init(&pvec, 0); 1604 while (index <= end) { 1605 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1606 if (nr_pages == 0) 1607 break; 1608 for (i = 0; i < nr_pages; i++) { 1609 struct page *page = pvec.pages[i]; 1610 if (page->index > end) 1611 break; 1612 BUG_ON(!PageLocked(page)); 1613 BUG_ON(PageWriteback(page)); 1614 block_invalidatepage(page, 0); 1615 ClearPageUptodate(page); 1616 unlock_page(page); 1617 } 1618 index = pvec.pages[nr_pages - 1]->index + 1; 1619 pagevec_release(&pvec); 1620 } 1621 return; 1622 } 1623 1624 static void ext4_print_free_blocks(struct inode *inode) 1625 { 1626 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1627 struct super_block *sb = inode->i_sb; 1628 struct ext4_inode_info *ei = EXT4_I(inode); 1629 1630 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1631 EXT4_C2B(EXT4_SB(inode->i_sb), 1632 ext4_count_free_clusters(sb))); 1633 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1634 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1635 (long long) EXT4_C2B(EXT4_SB(sb), 1636 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1637 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1638 (long long) EXT4_C2B(EXT4_SB(sb), 1639 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1640 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1641 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1642 ei->i_reserved_data_blocks); 1643 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u", 1644 ei->i_reserved_meta_blocks); 1645 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u", 1646 ei->i_allocated_meta_blocks); 1647 return; 1648 } 1649 1650 /* 1651 * mpage_da_map_and_submit - go through given space, map them 1652 * if necessary, and then submit them for I/O 1653 * 1654 * @mpd - bh describing space 1655 * 1656 * The function skips space we know is already mapped to disk blocks. 1657 * 1658 */ 1659 static void mpage_da_map_and_submit(struct mpage_da_data *mpd) 1660 { 1661 int err, blks, get_blocks_flags; 1662 struct ext4_map_blocks map, *mapp = NULL; 1663 sector_t next = mpd->b_blocknr; 1664 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits; 1665 loff_t disksize = EXT4_I(mpd->inode)->i_disksize; 1666 handle_t *handle = NULL; 1667 1668 /* 1669 * If the blocks are mapped already, or we couldn't accumulate 1670 * any blocks, then proceed immediately to the submission stage. 1671 */ 1672 if ((mpd->b_size == 0) || 1673 ((mpd->b_state & (1 << BH_Mapped)) && 1674 !(mpd->b_state & (1 << BH_Delay)) && 1675 !(mpd->b_state & (1 << BH_Unwritten)))) 1676 goto submit_io; 1677 1678 handle = ext4_journal_current_handle(); 1679 BUG_ON(!handle); 1680 1681 /* 1682 * Call ext4_map_blocks() to allocate any delayed allocation 1683 * blocks, or to convert an uninitialized extent to be 1684 * initialized (in the case where we have written into 1685 * one or more preallocated blocks). 1686 * 1687 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to 1688 * indicate that we are on the delayed allocation path. This 1689 * affects functions in many different parts of the allocation 1690 * call path. This flag exists primarily because we don't 1691 * want to change *many* call functions, so ext4_map_blocks() 1692 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the 1693 * inode's allocation semaphore is taken. 1694 * 1695 * If the blocks in questions were delalloc blocks, set 1696 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting 1697 * variables are updated after the blocks have been allocated. 1698 */ 1699 map.m_lblk = next; 1700 map.m_len = max_blocks; 1701 /* 1702 * We're in delalloc path and it is possible that we're going to 1703 * need more metadata blocks than previously reserved. However 1704 * we must not fail because we're in writeback and there is 1705 * nothing we can do about it so it might result in data loss. 1706 * So use reserved blocks to allocate metadata if possible. 1707 */ 1708 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 1709 EXT4_GET_BLOCKS_METADATA_NOFAIL; 1710 if (ext4_should_dioread_nolock(mpd->inode)) 1711 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 1712 if (mpd->b_state & (1 << BH_Delay)) 1713 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 1714 1715 1716 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags); 1717 if (blks < 0) { 1718 struct super_block *sb = mpd->inode->i_sb; 1719 1720 err = blks; 1721 /* 1722 * If get block returns EAGAIN or ENOSPC and there 1723 * appears to be free blocks we will just let 1724 * mpage_da_submit_io() unlock all of the pages. 1725 */ 1726 if (err == -EAGAIN) 1727 goto submit_io; 1728 1729 if (err == -ENOSPC && ext4_count_free_clusters(sb)) { 1730 mpd->retval = err; 1731 goto submit_io; 1732 } 1733 1734 /* 1735 * get block failure will cause us to loop in 1736 * writepages, because a_ops->writepage won't be able 1737 * to make progress. The page will be redirtied by 1738 * writepage and writepages will again try to write 1739 * the same. 1740 */ 1741 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) { 1742 ext4_msg(sb, KERN_CRIT, 1743 "delayed block allocation failed for inode %lu " 1744 "at logical offset %llu with max blocks %zd " 1745 "with error %d", mpd->inode->i_ino, 1746 (unsigned long long) next, 1747 mpd->b_size >> mpd->inode->i_blkbits, err); 1748 ext4_msg(sb, KERN_CRIT, 1749 "This should not happen!! Data will be lost"); 1750 if (err == -ENOSPC) 1751 ext4_print_free_blocks(mpd->inode); 1752 } 1753 /* invalidate all the pages */ 1754 ext4_da_block_invalidatepages(mpd); 1755 1756 /* Mark this page range as having been completed */ 1757 mpd->io_done = 1; 1758 return; 1759 } 1760 BUG_ON(blks == 0); 1761 1762 mapp = ↦ 1763 if (map.m_flags & EXT4_MAP_NEW) { 1764 struct block_device *bdev = mpd->inode->i_sb->s_bdev; 1765 int i; 1766 1767 for (i = 0; i < map.m_len; i++) 1768 unmap_underlying_metadata(bdev, map.m_pblk + i); 1769 } 1770 1771 /* 1772 * Update on-disk size along with block allocation. 1773 */ 1774 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits; 1775 if (disksize > i_size_read(mpd->inode)) 1776 disksize = i_size_read(mpd->inode); 1777 if (disksize > EXT4_I(mpd->inode)->i_disksize) { 1778 ext4_update_i_disksize(mpd->inode, disksize); 1779 err = ext4_mark_inode_dirty(handle, mpd->inode); 1780 if (err) 1781 ext4_error(mpd->inode->i_sb, 1782 "Failed to mark inode %lu dirty", 1783 mpd->inode->i_ino); 1784 } 1785 1786 submit_io: 1787 mpage_da_submit_io(mpd, mapp); 1788 mpd->io_done = 1; 1789 } 1790 1791 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \ 1792 (1 << BH_Delay) | (1 << BH_Unwritten)) 1793 1794 /* 1795 * mpage_add_bh_to_extent - try to add one more block to extent of blocks 1796 * 1797 * @mpd->lbh - extent of blocks 1798 * @logical - logical number of the block in the file 1799 * @b_state - b_state of the buffer head added 1800 * 1801 * the function is used to collect contig. blocks in same state 1802 */ 1803 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical, 1804 unsigned long b_state) 1805 { 1806 sector_t next; 1807 int blkbits = mpd->inode->i_blkbits; 1808 int nrblocks = mpd->b_size >> blkbits; 1809 1810 /* 1811 * XXX Don't go larger than mballoc is willing to allocate 1812 * This is a stopgap solution. We eventually need to fold 1813 * mpage_da_submit_io() into this function and then call 1814 * ext4_map_blocks() multiple times in a loop 1815 */ 1816 if (nrblocks >= (8*1024*1024 >> blkbits)) 1817 goto flush_it; 1818 1819 /* check if the reserved journal credits might overflow */ 1820 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) { 1821 if (nrblocks >= EXT4_MAX_TRANS_DATA) { 1822 /* 1823 * With non-extent format we are limited by the journal 1824 * credit available. Total credit needed to insert 1825 * nrblocks contiguous blocks is dependent on the 1826 * nrblocks. So limit nrblocks. 1827 */ 1828 goto flush_it; 1829 } 1830 } 1831 /* 1832 * First block in the extent 1833 */ 1834 if (mpd->b_size == 0) { 1835 mpd->b_blocknr = logical; 1836 mpd->b_size = 1 << blkbits; 1837 mpd->b_state = b_state & BH_FLAGS; 1838 return; 1839 } 1840 1841 next = mpd->b_blocknr + nrblocks; 1842 /* 1843 * Can we merge the block to our big extent? 1844 */ 1845 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) { 1846 mpd->b_size += 1 << blkbits; 1847 return; 1848 } 1849 1850 flush_it: 1851 /* 1852 * We couldn't merge the block to our extent, so we 1853 * need to flush current extent and start new one 1854 */ 1855 mpage_da_map_and_submit(mpd); 1856 return; 1857 } 1858 1859 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1860 { 1861 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1862 } 1863 1864 /* 1865 * This function is grabs code from the very beginning of 1866 * ext4_map_blocks, but assumes that the caller is from delayed write 1867 * time. This function looks up the requested blocks and sets the 1868 * buffer delay bit under the protection of i_data_sem. 1869 */ 1870 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1871 struct ext4_map_blocks *map, 1872 struct buffer_head *bh) 1873 { 1874 struct extent_status es; 1875 int retval; 1876 sector_t invalid_block = ~((sector_t) 0xffff); 1877 #ifdef ES_AGGRESSIVE_TEST 1878 struct ext4_map_blocks orig_map; 1879 1880 memcpy(&orig_map, map, sizeof(*map)); 1881 #endif 1882 1883 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1884 invalid_block = ~0; 1885 1886 map->m_flags = 0; 1887 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1888 "logical block %lu\n", inode->i_ino, map->m_len, 1889 (unsigned long) map->m_lblk); 1890 1891 /* Lookup extent status tree firstly */ 1892 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1893 1894 if (ext4_es_is_hole(&es)) { 1895 retval = 0; 1896 down_read((&EXT4_I(inode)->i_data_sem)); 1897 goto add_delayed; 1898 } 1899 1900 /* 1901 * Delayed extent could be allocated by fallocate. 1902 * So we need to check it. 1903 */ 1904 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1905 map_bh(bh, inode->i_sb, invalid_block); 1906 set_buffer_new(bh); 1907 set_buffer_delay(bh); 1908 return 0; 1909 } 1910 1911 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1912 retval = es.es_len - (iblock - es.es_lblk); 1913 if (retval > map->m_len) 1914 retval = map->m_len; 1915 map->m_len = retval; 1916 if (ext4_es_is_written(&es)) 1917 map->m_flags |= EXT4_MAP_MAPPED; 1918 else if (ext4_es_is_unwritten(&es)) 1919 map->m_flags |= EXT4_MAP_UNWRITTEN; 1920 else 1921 BUG_ON(1); 1922 1923 #ifdef ES_AGGRESSIVE_TEST 1924 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1925 #endif 1926 return retval; 1927 } 1928 1929 /* 1930 * Try to see if we can get the block without requesting a new 1931 * file system block. 1932 */ 1933 down_read((&EXT4_I(inode)->i_data_sem)); 1934 if (ext4_has_inline_data(inode)) { 1935 /* 1936 * We will soon create blocks for this page, and let 1937 * us pretend as if the blocks aren't allocated yet. 1938 * In case of clusters, we have to handle the work 1939 * of mapping from cluster so that the reserved space 1940 * is calculated properly. 1941 */ 1942 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) && 1943 ext4_find_delalloc_cluster(inode, map->m_lblk)) 1944 map->m_flags |= EXT4_MAP_FROM_CLUSTER; 1945 retval = 0; 1946 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1947 retval = ext4_ext_map_blocks(NULL, inode, map, 1948 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1949 else 1950 retval = ext4_ind_map_blocks(NULL, inode, map, 1951 EXT4_GET_BLOCKS_NO_PUT_HOLE); 1952 1953 add_delayed: 1954 if (retval == 0) { 1955 int ret; 1956 /* 1957 * XXX: __block_prepare_write() unmaps passed block, 1958 * is it OK? 1959 */ 1960 /* 1961 * If the block was allocated from previously allocated cluster, 1962 * then we don't need to reserve it again. However we still need 1963 * to reserve metadata for every block we're going to write. 1964 */ 1965 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) { 1966 ret = ext4_da_reserve_space(inode, iblock); 1967 if (ret) { 1968 /* not enough space to reserve */ 1969 retval = ret; 1970 goto out_unlock; 1971 } 1972 } else { 1973 ret = ext4_da_reserve_metadata(inode, iblock); 1974 if (ret) { 1975 /* not enough space to reserve */ 1976 retval = ret; 1977 goto out_unlock; 1978 } 1979 } 1980 1981 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1982 ~0, EXTENT_STATUS_DELAYED); 1983 if (ret) { 1984 retval = ret; 1985 goto out_unlock; 1986 } 1987 1988 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served 1989 * and it should not appear on the bh->b_state. 1990 */ 1991 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER; 1992 1993 map_bh(bh, inode->i_sb, invalid_block); 1994 set_buffer_new(bh); 1995 set_buffer_delay(bh); 1996 } else if (retval > 0) { 1997 int ret; 1998 unsigned long long status; 1999 2000 #ifdef ES_AGGRESSIVE_TEST 2001 if (retval != map->m_len) { 2002 printk("ES len assertation failed for inode: %lu " 2003 "retval %d != map->m_len %d " 2004 "in %s (lookup)\n", inode->i_ino, retval, 2005 map->m_len, __func__); 2006 } 2007 #endif 2008 2009 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 2010 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 2011 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 2012 map->m_pblk, status); 2013 if (ret != 0) 2014 retval = ret; 2015 } 2016 2017 out_unlock: 2018 up_read((&EXT4_I(inode)->i_data_sem)); 2019 2020 return retval; 2021 } 2022 2023 /* 2024 * This is a special get_blocks_t callback which is used by 2025 * ext4_da_write_begin(). It will either return mapped block or 2026 * reserve space for a single block. 2027 * 2028 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 2029 * We also have b_blocknr = -1 and b_bdev initialized properly 2030 * 2031 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 2032 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 2033 * initialized properly. 2034 */ 2035 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 2036 struct buffer_head *bh, int create) 2037 { 2038 struct ext4_map_blocks map; 2039 int ret = 0; 2040 2041 BUG_ON(create == 0); 2042 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 2043 2044 map.m_lblk = iblock; 2045 map.m_len = 1; 2046 2047 /* 2048 * first, we need to know whether the block is allocated already 2049 * preallocated blocks are unmapped but should treated 2050 * the same as allocated blocks. 2051 */ 2052 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 2053 if (ret <= 0) 2054 return ret; 2055 2056 map_bh(bh, inode->i_sb, map.m_pblk); 2057 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags; 2058 2059 if (buffer_unwritten(bh)) { 2060 /* A delayed write to unwritten bh should be marked 2061 * new and mapped. Mapped ensures that we don't do 2062 * get_block multiple times when we write to the same 2063 * offset and new ensures that we do proper zero out 2064 * for partial write. 2065 */ 2066 set_buffer_new(bh); 2067 set_buffer_mapped(bh); 2068 } 2069 return 0; 2070 } 2071 2072 static int bget_one(handle_t *handle, struct buffer_head *bh) 2073 { 2074 get_bh(bh); 2075 return 0; 2076 } 2077 2078 static int bput_one(handle_t *handle, struct buffer_head *bh) 2079 { 2080 put_bh(bh); 2081 return 0; 2082 } 2083 2084 static int __ext4_journalled_writepage(struct page *page, 2085 unsigned int len) 2086 { 2087 struct address_space *mapping = page->mapping; 2088 struct inode *inode = mapping->host; 2089 struct buffer_head *page_bufs = NULL; 2090 handle_t *handle = NULL; 2091 int ret = 0, err = 0; 2092 int inline_data = ext4_has_inline_data(inode); 2093 struct buffer_head *inode_bh = NULL; 2094 2095 ClearPageChecked(page); 2096 2097 if (inline_data) { 2098 BUG_ON(page->index != 0); 2099 BUG_ON(len > ext4_get_max_inline_size(inode)); 2100 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 2101 if (inode_bh == NULL) 2102 goto out; 2103 } else { 2104 page_bufs = page_buffers(page); 2105 if (!page_bufs) { 2106 BUG(); 2107 goto out; 2108 } 2109 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2110 NULL, bget_one); 2111 } 2112 /* As soon as we unlock the page, it can go away, but we have 2113 * references to buffers so we are safe */ 2114 unlock_page(page); 2115 2116 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2117 ext4_writepage_trans_blocks(inode)); 2118 if (IS_ERR(handle)) { 2119 ret = PTR_ERR(handle); 2120 goto out; 2121 } 2122 2123 BUG_ON(!ext4_handle_valid(handle)); 2124 2125 if (inline_data) { 2126 ret = ext4_journal_get_write_access(handle, inode_bh); 2127 2128 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 2129 2130 } else { 2131 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2132 do_journal_get_write_access); 2133 2134 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 2135 write_end_fn); 2136 } 2137 if (ret == 0) 2138 ret = err; 2139 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2140 err = ext4_journal_stop(handle); 2141 if (!ret) 2142 ret = err; 2143 2144 if (!ext4_has_inline_data(inode)) 2145 ext4_walk_page_buffers(handle, page_bufs, 0, len, 2146 NULL, bput_one); 2147 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 2148 out: 2149 brelse(inode_bh); 2150 return ret; 2151 } 2152 2153 /* 2154 * Note that we don't need to start a transaction unless we're journaling data 2155 * because we should have holes filled from ext4_page_mkwrite(). We even don't 2156 * need to file the inode to the transaction's list in ordered mode because if 2157 * we are writing back data added by write(), the inode is already there and if 2158 * we are writing back data modified via mmap(), no one guarantees in which 2159 * transaction the data will hit the disk. In case we are journaling data, we 2160 * cannot start transaction directly because transaction start ranks above page 2161 * lock so we have to do some magic. 2162 * 2163 * This function can get called via... 2164 * - ext4_da_writepages after taking page lock (have journal handle) 2165 * - journal_submit_inode_data_buffers (no journal handle) 2166 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 2167 * - grab_page_cache when doing write_begin (have journal handle) 2168 * 2169 * We don't do any block allocation in this function. If we have page with 2170 * multiple blocks we need to write those buffer_heads that are mapped. This 2171 * is important for mmaped based write. So if we do with blocksize 1K 2172 * truncate(f, 1024); 2173 * a = mmap(f, 0, 4096); 2174 * a[0] = 'a'; 2175 * truncate(f, 4096); 2176 * we have in the page first buffer_head mapped via page_mkwrite call back 2177 * but other buffer_heads would be unmapped but dirty (dirty done via the 2178 * do_wp_page). So writepage should write the first block. If we modify 2179 * the mmap area beyond 1024 we will again get a page_fault and the 2180 * page_mkwrite callback will do the block allocation and mark the 2181 * buffer_heads mapped. 2182 * 2183 * We redirty the page if we have any buffer_heads that is either delay or 2184 * unwritten in the page. 2185 * 2186 * We can get recursively called as show below. 2187 * 2188 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 2189 * ext4_writepage() 2190 * 2191 * But since we don't do any block allocation we should not deadlock. 2192 * Page also have the dirty flag cleared so we don't get recurive page_lock. 2193 */ 2194 static int ext4_writepage(struct page *page, 2195 struct writeback_control *wbc) 2196 { 2197 int ret = 0; 2198 loff_t size; 2199 unsigned int len; 2200 struct buffer_head *page_bufs = NULL; 2201 struct inode *inode = page->mapping->host; 2202 struct ext4_io_submit io_submit; 2203 2204 trace_ext4_writepage(page); 2205 size = i_size_read(inode); 2206 if (page->index == size >> PAGE_CACHE_SHIFT) 2207 len = size & ~PAGE_CACHE_MASK; 2208 else 2209 len = PAGE_CACHE_SIZE; 2210 2211 page_bufs = page_buffers(page); 2212 /* 2213 * We cannot do block allocation or other extent handling in this 2214 * function. If there are buffers needing that, we have to redirty 2215 * the page. But we may reach here when we do a journal commit via 2216 * journal_submit_inode_data_buffers() and in that case we must write 2217 * allocated buffers to achieve data=ordered mode guarantees. 2218 */ 2219 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2220 ext4_bh_delay_or_unwritten)) { 2221 redirty_page_for_writepage(wbc, page); 2222 if (current->flags & PF_MEMALLOC) { 2223 /* 2224 * For memory cleaning there's no point in writing only 2225 * some buffers. So just bail out. Warn if we came here 2226 * from direct reclaim. 2227 */ 2228 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2229 == PF_MEMALLOC); 2230 unlock_page(page); 2231 return 0; 2232 } 2233 } 2234 2235 if (PageChecked(page) && ext4_should_journal_data(inode)) 2236 /* 2237 * It's mmapped pagecache. Add buffers and journal it. There 2238 * doesn't seem much point in redirtying the page here. 2239 */ 2240 return __ext4_journalled_writepage(page, len); 2241 2242 ext4_io_submit_init(&io_submit, wbc); 2243 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2244 if (!io_submit.io_end) { 2245 redirty_page_for_writepage(wbc, page); 2246 return -ENOMEM; 2247 } 2248 ret = ext4_bio_write_page(&io_submit, page, len, wbc); 2249 ext4_io_submit(&io_submit); 2250 /* Drop io_end reference we got from init */ 2251 ext4_put_io_end_defer(io_submit.io_end); 2252 return ret; 2253 } 2254 2255 /* 2256 * This is called via ext4_da_writepages() to 2257 * calculate the total number of credits to reserve to fit 2258 * a single extent allocation into a single transaction, 2259 * ext4_da_writpeages() will loop calling this before 2260 * the block allocation. 2261 */ 2262 2263 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2264 { 2265 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks; 2266 2267 /* 2268 * With non-extent format the journal credit needed to 2269 * insert nrblocks contiguous block is dependent on 2270 * number of contiguous block. So we will limit 2271 * number of contiguous block to a sane value 2272 */ 2273 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) && 2274 (max_blocks > EXT4_MAX_TRANS_DATA)) 2275 max_blocks = EXT4_MAX_TRANS_DATA; 2276 2277 return ext4_chunk_trans_blocks(inode, max_blocks); 2278 } 2279 2280 /* 2281 * write_cache_pages_da - walk the list of dirty pages of the given 2282 * address space and accumulate pages that need writing, and call 2283 * mpage_da_map_and_submit to map a single contiguous memory region 2284 * and then write them. 2285 */ 2286 static int write_cache_pages_da(handle_t *handle, 2287 struct address_space *mapping, 2288 struct writeback_control *wbc, 2289 struct mpage_da_data *mpd, 2290 pgoff_t *done_index) 2291 { 2292 struct buffer_head *bh, *head; 2293 struct inode *inode = mapping->host; 2294 struct pagevec pvec; 2295 unsigned int nr_pages; 2296 sector_t logical; 2297 pgoff_t index, end; 2298 long nr_to_write = wbc->nr_to_write; 2299 int i, tag, ret = 0; 2300 2301 memset(mpd, 0, sizeof(struct mpage_da_data)); 2302 mpd->wbc = wbc; 2303 mpd->inode = inode; 2304 pagevec_init(&pvec, 0); 2305 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2306 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2307 2308 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2309 tag = PAGECACHE_TAG_TOWRITE; 2310 else 2311 tag = PAGECACHE_TAG_DIRTY; 2312 2313 *done_index = index; 2314 while (index <= end) { 2315 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2316 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2317 if (nr_pages == 0) 2318 return 0; 2319 2320 for (i = 0; i < nr_pages; i++) { 2321 struct page *page = pvec.pages[i]; 2322 2323 /* 2324 * At this point, the page may be truncated or 2325 * invalidated (changing page->mapping to NULL), or 2326 * even swizzled back from swapper_space to tmpfs file 2327 * mapping. However, page->index will not change 2328 * because we have a reference on the page. 2329 */ 2330 if (page->index > end) 2331 goto out; 2332 2333 *done_index = page->index + 1; 2334 2335 /* 2336 * If we can't merge this page, and we have 2337 * accumulated an contiguous region, write it 2338 */ 2339 if ((mpd->next_page != page->index) && 2340 (mpd->next_page != mpd->first_page)) { 2341 mpage_da_map_and_submit(mpd); 2342 goto ret_extent_tail; 2343 } 2344 2345 lock_page(page); 2346 2347 /* 2348 * If the page is no longer dirty, or its 2349 * mapping no longer corresponds to inode we 2350 * are writing (which means it has been 2351 * truncated or invalidated), or the page is 2352 * already under writeback and we are not 2353 * doing a data integrity writeback, skip the page 2354 */ 2355 if (!PageDirty(page) || 2356 (PageWriteback(page) && 2357 (wbc->sync_mode == WB_SYNC_NONE)) || 2358 unlikely(page->mapping != mapping)) { 2359 unlock_page(page); 2360 continue; 2361 } 2362 2363 wait_on_page_writeback(page); 2364 BUG_ON(PageWriteback(page)); 2365 2366 /* 2367 * If we have inline data and arrive here, it means that 2368 * we will soon create the block for the 1st page, so 2369 * we'd better clear the inline data here. 2370 */ 2371 if (ext4_has_inline_data(inode)) { 2372 BUG_ON(ext4_test_inode_state(inode, 2373 EXT4_STATE_MAY_INLINE_DATA)); 2374 ext4_destroy_inline_data(handle, inode); 2375 } 2376 2377 if (mpd->next_page != page->index) 2378 mpd->first_page = page->index; 2379 mpd->next_page = page->index + 1; 2380 logical = (sector_t) page->index << 2381 (PAGE_CACHE_SHIFT - inode->i_blkbits); 2382 2383 /* Add all dirty buffers to mpd */ 2384 head = page_buffers(page); 2385 bh = head; 2386 do { 2387 BUG_ON(buffer_locked(bh)); 2388 /* 2389 * We need to try to allocate unmapped blocks 2390 * in the same page. Otherwise we won't make 2391 * progress with the page in ext4_writepage 2392 */ 2393 if (ext4_bh_delay_or_unwritten(NULL, bh)) { 2394 mpage_add_bh_to_extent(mpd, logical, 2395 bh->b_state); 2396 if (mpd->io_done) 2397 goto ret_extent_tail; 2398 } else if (buffer_dirty(bh) && 2399 buffer_mapped(bh)) { 2400 /* 2401 * mapped dirty buffer. We need to 2402 * update the b_state because we look 2403 * at b_state in mpage_da_map_blocks. 2404 * We don't update b_size because if we 2405 * find an unmapped buffer_head later 2406 * we need to use the b_state flag of 2407 * that buffer_head. 2408 */ 2409 if (mpd->b_size == 0) 2410 mpd->b_state = 2411 bh->b_state & BH_FLAGS; 2412 } 2413 logical++; 2414 } while ((bh = bh->b_this_page) != head); 2415 2416 if (nr_to_write > 0) { 2417 nr_to_write--; 2418 if (nr_to_write == 0 && 2419 wbc->sync_mode == WB_SYNC_NONE) 2420 /* 2421 * We stop writing back only if we are 2422 * not doing integrity sync. In case of 2423 * integrity sync we have to keep going 2424 * because someone may be concurrently 2425 * dirtying pages, and we might have 2426 * synced a lot of newly appeared dirty 2427 * pages, but have not synced all of the 2428 * old dirty pages. 2429 */ 2430 goto out; 2431 } 2432 } 2433 pagevec_release(&pvec); 2434 cond_resched(); 2435 } 2436 return 0; 2437 ret_extent_tail: 2438 ret = MPAGE_DA_EXTENT_TAIL; 2439 out: 2440 pagevec_release(&pvec); 2441 cond_resched(); 2442 return ret; 2443 } 2444 2445 2446 static int ext4_da_writepages(struct address_space *mapping, 2447 struct writeback_control *wbc) 2448 { 2449 pgoff_t index; 2450 int range_whole = 0; 2451 handle_t *handle = NULL; 2452 struct mpage_da_data mpd; 2453 struct inode *inode = mapping->host; 2454 int pages_written = 0; 2455 unsigned int max_pages; 2456 int range_cyclic, cycled = 1, io_done = 0; 2457 int needed_blocks, ret = 0; 2458 long desired_nr_to_write, nr_to_writebump = 0; 2459 loff_t range_start = wbc->range_start; 2460 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2461 pgoff_t done_index = 0; 2462 pgoff_t end; 2463 struct blk_plug plug; 2464 2465 trace_ext4_da_writepages(inode, wbc); 2466 2467 /* 2468 * No pages to write? This is mainly a kludge to avoid starting 2469 * a transaction for special inodes like journal inode on last iput() 2470 * because that could violate lock ordering on umount 2471 */ 2472 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2473 return 0; 2474 2475 /* 2476 * If the filesystem has aborted, it is read-only, so return 2477 * right away instead of dumping stack traces later on that 2478 * will obscure the real source of the problem. We test 2479 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2480 * the latter could be true if the filesystem is mounted 2481 * read-only, and in that case, ext4_da_writepages should 2482 * *never* be called, so if that ever happens, we would want 2483 * the stack trace. 2484 */ 2485 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) 2486 return -EROFS; 2487 2488 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2489 range_whole = 1; 2490 2491 range_cyclic = wbc->range_cyclic; 2492 if (wbc->range_cyclic) { 2493 index = mapping->writeback_index; 2494 if (index) 2495 cycled = 0; 2496 wbc->range_start = index << PAGE_CACHE_SHIFT; 2497 wbc->range_end = LLONG_MAX; 2498 wbc->range_cyclic = 0; 2499 end = -1; 2500 } else { 2501 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2502 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2503 } 2504 2505 /* 2506 * This works around two forms of stupidity. The first is in 2507 * the writeback code, which caps the maximum number of pages 2508 * written to be 1024 pages. This is wrong on multiple 2509 * levels; different architectues have a different page size, 2510 * which changes the maximum amount of data which gets 2511 * written. Secondly, 4 megabytes is way too small. XFS 2512 * forces this value to be 16 megabytes by multiplying 2513 * nr_to_write parameter by four, and then relies on its 2514 * allocator to allocate larger extents to make them 2515 * contiguous. Unfortunately this brings us to the second 2516 * stupidity, which is that ext4's mballoc code only allocates 2517 * at most 2048 blocks. So we force contiguous writes up to 2518 * the number of dirty blocks in the inode, or 2519 * sbi->max_writeback_mb_bump whichever is smaller. 2520 */ 2521 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT); 2522 if (!range_cyclic && range_whole) { 2523 if (wbc->nr_to_write == LONG_MAX) 2524 desired_nr_to_write = wbc->nr_to_write; 2525 else 2526 desired_nr_to_write = wbc->nr_to_write * 8; 2527 } else 2528 desired_nr_to_write = ext4_num_dirty_pages(inode, index, 2529 max_pages); 2530 if (desired_nr_to_write > max_pages) 2531 desired_nr_to_write = max_pages; 2532 2533 if (wbc->nr_to_write < desired_nr_to_write) { 2534 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write; 2535 wbc->nr_to_write = desired_nr_to_write; 2536 } 2537 2538 retry: 2539 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2540 tag_pages_for_writeback(mapping, index, end); 2541 2542 blk_start_plug(&plug); 2543 while (!ret && wbc->nr_to_write > 0) { 2544 2545 /* 2546 * we insert one extent at a time. So we need 2547 * credit needed for single extent allocation. 2548 * journalled mode is currently not supported 2549 * by delalloc 2550 */ 2551 BUG_ON(ext4_should_journal_data(inode)); 2552 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2553 2554 /* start a new transaction*/ 2555 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2556 needed_blocks); 2557 if (IS_ERR(handle)) { 2558 ret = PTR_ERR(handle); 2559 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2560 "%ld pages, ino %lu; err %d", __func__, 2561 wbc->nr_to_write, inode->i_ino, ret); 2562 blk_finish_plug(&plug); 2563 goto out_writepages; 2564 } 2565 2566 /* 2567 * Now call write_cache_pages_da() to find the next 2568 * contiguous region of logical blocks that need 2569 * blocks to be allocated by ext4 and submit them. 2570 */ 2571 ret = write_cache_pages_da(handle, mapping, 2572 wbc, &mpd, &done_index); 2573 /* 2574 * If we have a contiguous extent of pages and we 2575 * haven't done the I/O yet, map the blocks and submit 2576 * them for I/O. 2577 */ 2578 if (!mpd.io_done && mpd.next_page != mpd.first_page) { 2579 mpage_da_map_and_submit(&mpd); 2580 ret = MPAGE_DA_EXTENT_TAIL; 2581 } 2582 trace_ext4_da_write_pages(inode, &mpd); 2583 wbc->nr_to_write -= mpd.pages_written; 2584 2585 ext4_journal_stop(handle); 2586 2587 if ((mpd.retval == -ENOSPC) && sbi->s_journal) { 2588 /* commit the transaction which would 2589 * free blocks released in the transaction 2590 * and try again 2591 */ 2592 jbd2_journal_force_commit_nested(sbi->s_journal); 2593 ret = 0; 2594 } else if (ret == MPAGE_DA_EXTENT_TAIL) { 2595 /* 2596 * Got one extent now try with rest of the pages. 2597 * If mpd.retval is set -EIO, journal is aborted. 2598 * So we don't need to write any more. 2599 */ 2600 pages_written += mpd.pages_written; 2601 ret = mpd.retval; 2602 io_done = 1; 2603 } else if (wbc->nr_to_write) 2604 /* 2605 * There is no more writeout needed 2606 * or we requested for a noblocking writeout 2607 * and we found the device congested 2608 */ 2609 break; 2610 } 2611 blk_finish_plug(&plug); 2612 if (!io_done && !cycled) { 2613 cycled = 1; 2614 index = 0; 2615 wbc->range_start = index << PAGE_CACHE_SHIFT; 2616 wbc->range_end = mapping->writeback_index - 1; 2617 goto retry; 2618 } 2619 2620 /* Update index */ 2621 wbc->range_cyclic = range_cyclic; 2622 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2623 /* 2624 * set the writeback_index so that range_cyclic 2625 * mode will write it back later 2626 */ 2627 mapping->writeback_index = done_index; 2628 2629 out_writepages: 2630 wbc->nr_to_write -= nr_to_writebump; 2631 wbc->range_start = range_start; 2632 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written); 2633 return ret; 2634 } 2635 2636 static int ext4_nonda_switch(struct super_block *sb) 2637 { 2638 s64 free_clusters, dirty_clusters; 2639 struct ext4_sb_info *sbi = EXT4_SB(sb); 2640 2641 /* 2642 * switch to non delalloc mode if we are running low 2643 * on free block. The free block accounting via percpu 2644 * counters can get slightly wrong with percpu_counter_batch getting 2645 * accumulated on each CPU without updating global counters 2646 * Delalloc need an accurate free block accounting. So switch 2647 * to non delalloc when we are near to error range. 2648 */ 2649 free_clusters = 2650 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2651 dirty_clusters = 2652 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2653 /* 2654 * Start pushing delalloc when 1/2 of free blocks are dirty. 2655 */ 2656 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2657 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2658 2659 if (2 * free_clusters < 3 * dirty_clusters || 2660 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2661 /* 2662 * free block count is less than 150% of dirty blocks 2663 * or free blocks is less than watermark 2664 */ 2665 return 1; 2666 } 2667 return 0; 2668 } 2669 2670 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2671 loff_t pos, unsigned len, unsigned flags, 2672 struct page **pagep, void **fsdata) 2673 { 2674 int ret, retries = 0; 2675 struct page *page; 2676 pgoff_t index; 2677 struct inode *inode = mapping->host; 2678 handle_t *handle; 2679 2680 index = pos >> PAGE_CACHE_SHIFT; 2681 2682 if (ext4_nonda_switch(inode->i_sb)) { 2683 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2684 return ext4_write_begin(file, mapping, pos, 2685 len, flags, pagep, fsdata); 2686 } 2687 *fsdata = (void *)0; 2688 trace_ext4_da_write_begin(inode, pos, len, flags); 2689 2690 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2691 ret = ext4_da_write_inline_data_begin(mapping, inode, 2692 pos, len, flags, 2693 pagep, fsdata); 2694 if (ret < 0) 2695 return ret; 2696 if (ret == 1) 2697 return 0; 2698 } 2699 2700 /* 2701 * grab_cache_page_write_begin() can take a long time if the 2702 * system is thrashing due to memory pressure, or if the page 2703 * is being written back. So grab it first before we start 2704 * the transaction handle. This also allows us to allocate 2705 * the page (if needed) without using GFP_NOFS. 2706 */ 2707 retry_grab: 2708 page = grab_cache_page_write_begin(mapping, index, flags); 2709 if (!page) 2710 return -ENOMEM; 2711 unlock_page(page); 2712 2713 /* 2714 * With delayed allocation, we don't log the i_disksize update 2715 * if there is delayed block allocation. But we still need 2716 * to journalling the i_disksize update if writes to the end 2717 * of file which has an already mapped buffer. 2718 */ 2719 retry_journal: 2720 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1); 2721 if (IS_ERR(handle)) { 2722 page_cache_release(page); 2723 return PTR_ERR(handle); 2724 } 2725 2726 lock_page(page); 2727 if (page->mapping != mapping) { 2728 /* The page got truncated from under us */ 2729 unlock_page(page); 2730 page_cache_release(page); 2731 ext4_journal_stop(handle); 2732 goto retry_grab; 2733 } 2734 /* In case writeback began while the page was unlocked */ 2735 wait_on_page_writeback(page); 2736 2737 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2738 if (ret < 0) { 2739 unlock_page(page); 2740 ext4_journal_stop(handle); 2741 /* 2742 * block_write_begin may have instantiated a few blocks 2743 * outside i_size. Trim these off again. Don't need 2744 * i_size_read because we hold i_mutex. 2745 */ 2746 if (pos + len > inode->i_size) 2747 ext4_truncate_failed_write(inode); 2748 2749 if (ret == -ENOSPC && 2750 ext4_should_retry_alloc(inode->i_sb, &retries)) 2751 goto retry_journal; 2752 2753 page_cache_release(page); 2754 return ret; 2755 } 2756 2757 *pagep = page; 2758 return ret; 2759 } 2760 2761 /* 2762 * Check if we should update i_disksize 2763 * when write to the end of file but not require block allocation 2764 */ 2765 static int ext4_da_should_update_i_disksize(struct page *page, 2766 unsigned long offset) 2767 { 2768 struct buffer_head *bh; 2769 struct inode *inode = page->mapping->host; 2770 unsigned int idx; 2771 int i; 2772 2773 bh = page_buffers(page); 2774 idx = offset >> inode->i_blkbits; 2775 2776 for (i = 0; i < idx; i++) 2777 bh = bh->b_this_page; 2778 2779 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2780 return 0; 2781 return 1; 2782 } 2783 2784 static int ext4_da_write_end(struct file *file, 2785 struct address_space *mapping, 2786 loff_t pos, unsigned len, unsigned copied, 2787 struct page *page, void *fsdata) 2788 { 2789 struct inode *inode = mapping->host; 2790 int ret = 0, ret2; 2791 handle_t *handle = ext4_journal_current_handle(); 2792 loff_t new_i_size; 2793 unsigned long start, end; 2794 int write_mode = (int)(unsigned long)fsdata; 2795 2796 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2797 return ext4_write_end(file, mapping, pos, 2798 len, copied, page, fsdata); 2799 2800 trace_ext4_da_write_end(inode, pos, len, copied); 2801 start = pos & (PAGE_CACHE_SIZE - 1); 2802 end = start + copied - 1; 2803 2804 /* 2805 * generic_write_end() will run mark_inode_dirty() if i_size 2806 * changes. So let's piggyback the i_disksize mark_inode_dirty 2807 * into that. 2808 */ 2809 new_i_size = pos + copied; 2810 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2811 if (ext4_has_inline_data(inode) || 2812 ext4_da_should_update_i_disksize(page, end)) { 2813 down_write(&EXT4_I(inode)->i_data_sem); 2814 if (new_i_size > EXT4_I(inode)->i_disksize) 2815 EXT4_I(inode)->i_disksize = new_i_size; 2816 up_write(&EXT4_I(inode)->i_data_sem); 2817 /* We need to mark inode dirty even if 2818 * new_i_size is less that inode->i_size 2819 * bu greater than i_disksize.(hint delalloc) 2820 */ 2821 ext4_mark_inode_dirty(handle, inode); 2822 } 2823 } 2824 2825 if (write_mode != CONVERT_INLINE_DATA && 2826 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2827 ext4_has_inline_data(inode)) 2828 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2829 page); 2830 else 2831 ret2 = generic_write_end(file, mapping, pos, len, copied, 2832 page, fsdata); 2833 2834 copied = ret2; 2835 if (ret2 < 0) 2836 ret = ret2; 2837 ret2 = ext4_journal_stop(handle); 2838 if (!ret) 2839 ret = ret2; 2840 2841 return ret ? ret : copied; 2842 } 2843 2844 static void ext4_da_invalidatepage(struct page *page, unsigned long offset) 2845 { 2846 /* 2847 * Drop reserved blocks 2848 */ 2849 BUG_ON(!PageLocked(page)); 2850 if (!page_has_buffers(page)) 2851 goto out; 2852 2853 ext4_da_page_release_reservation(page, offset); 2854 2855 out: 2856 ext4_invalidatepage(page, offset); 2857 2858 return; 2859 } 2860 2861 /* 2862 * Force all delayed allocation blocks to be allocated for a given inode. 2863 */ 2864 int ext4_alloc_da_blocks(struct inode *inode) 2865 { 2866 trace_ext4_alloc_da_blocks(inode); 2867 2868 if (!EXT4_I(inode)->i_reserved_data_blocks && 2869 !EXT4_I(inode)->i_reserved_meta_blocks) 2870 return 0; 2871 2872 /* 2873 * We do something simple for now. The filemap_flush() will 2874 * also start triggering a write of the data blocks, which is 2875 * not strictly speaking necessary (and for users of 2876 * laptop_mode, not even desirable). However, to do otherwise 2877 * would require replicating code paths in: 2878 * 2879 * ext4_da_writepages() -> 2880 * write_cache_pages() ---> (via passed in callback function) 2881 * __mpage_da_writepage() --> 2882 * mpage_add_bh_to_extent() 2883 * mpage_da_map_blocks() 2884 * 2885 * The problem is that write_cache_pages(), located in 2886 * mm/page-writeback.c, marks pages clean in preparation for 2887 * doing I/O, which is not desirable if we're not planning on 2888 * doing I/O at all. 2889 * 2890 * We could call write_cache_pages(), and then redirty all of 2891 * the pages by calling redirty_page_for_writepage() but that 2892 * would be ugly in the extreme. So instead we would need to 2893 * replicate parts of the code in the above functions, 2894 * simplifying them because we wouldn't actually intend to 2895 * write out the pages, but rather only collect contiguous 2896 * logical block extents, call the multi-block allocator, and 2897 * then update the buffer heads with the block allocations. 2898 * 2899 * For now, though, we'll cheat by calling filemap_flush(), 2900 * which will map the blocks, and start the I/O, but not 2901 * actually wait for the I/O to complete. 2902 */ 2903 return filemap_flush(inode->i_mapping); 2904 } 2905 2906 /* 2907 * bmap() is special. It gets used by applications such as lilo and by 2908 * the swapper to find the on-disk block of a specific piece of data. 2909 * 2910 * Naturally, this is dangerous if the block concerned is still in the 2911 * journal. If somebody makes a swapfile on an ext4 data-journaling 2912 * filesystem and enables swap, then they may get a nasty shock when the 2913 * data getting swapped to that swapfile suddenly gets overwritten by 2914 * the original zero's written out previously to the journal and 2915 * awaiting writeback in the kernel's buffer cache. 2916 * 2917 * So, if we see any bmap calls here on a modified, data-journaled file, 2918 * take extra steps to flush any blocks which might be in the cache. 2919 */ 2920 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2921 { 2922 struct inode *inode = mapping->host; 2923 journal_t *journal; 2924 int err; 2925 2926 /* 2927 * We can get here for an inline file via the FIBMAP ioctl 2928 */ 2929 if (ext4_has_inline_data(inode)) 2930 return 0; 2931 2932 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2933 test_opt(inode->i_sb, DELALLOC)) { 2934 /* 2935 * With delalloc we want to sync the file 2936 * so that we can make sure we allocate 2937 * blocks for file 2938 */ 2939 filemap_write_and_wait(mapping); 2940 } 2941 2942 if (EXT4_JOURNAL(inode) && 2943 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2944 /* 2945 * This is a REALLY heavyweight approach, but the use of 2946 * bmap on dirty files is expected to be extremely rare: 2947 * only if we run lilo or swapon on a freshly made file 2948 * do we expect this to happen. 2949 * 2950 * (bmap requires CAP_SYS_RAWIO so this does not 2951 * represent an unprivileged user DOS attack --- we'd be 2952 * in trouble if mortal users could trigger this path at 2953 * will.) 2954 * 2955 * NB. EXT4_STATE_JDATA is not set on files other than 2956 * regular files. If somebody wants to bmap a directory 2957 * or symlink and gets confused because the buffer 2958 * hasn't yet been flushed to disk, they deserve 2959 * everything they get. 2960 */ 2961 2962 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2963 journal = EXT4_JOURNAL(inode); 2964 jbd2_journal_lock_updates(journal); 2965 err = jbd2_journal_flush(journal); 2966 jbd2_journal_unlock_updates(journal); 2967 2968 if (err) 2969 return 0; 2970 } 2971 2972 return generic_block_bmap(mapping, block, ext4_get_block); 2973 } 2974 2975 static int ext4_readpage(struct file *file, struct page *page) 2976 { 2977 int ret = -EAGAIN; 2978 struct inode *inode = page->mapping->host; 2979 2980 trace_ext4_readpage(page); 2981 2982 if (ext4_has_inline_data(inode)) 2983 ret = ext4_readpage_inline(inode, page); 2984 2985 if (ret == -EAGAIN) 2986 return mpage_readpage(page, ext4_get_block); 2987 2988 return ret; 2989 } 2990 2991 static int 2992 ext4_readpages(struct file *file, struct address_space *mapping, 2993 struct list_head *pages, unsigned nr_pages) 2994 { 2995 struct inode *inode = mapping->host; 2996 2997 /* If the file has inline data, no need to do readpages. */ 2998 if (ext4_has_inline_data(inode)) 2999 return 0; 3000 3001 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block); 3002 } 3003 3004 static void ext4_invalidatepage(struct page *page, unsigned long offset) 3005 { 3006 trace_ext4_invalidatepage(page, offset); 3007 3008 /* No journalling happens on data buffers when this function is used */ 3009 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3010 3011 block_invalidatepage(page, offset); 3012 } 3013 3014 static int __ext4_journalled_invalidatepage(struct page *page, 3015 unsigned long offset) 3016 { 3017 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3018 3019 trace_ext4_journalled_invalidatepage(page, offset); 3020 3021 /* 3022 * If it's a full truncate we just forget about the pending dirtying 3023 */ 3024 if (offset == 0) 3025 ClearPageChecked(page); 3026 3027 return jbd2_journal_invalidatepage(journal, page, offset); 3028 } 3029 3030 /* Wrapper for aops... */ 3031 static void ext4_journalled_invalidatepage(struct page *page, 3032 unsigned long offset) 3033 { 3034 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0); 3035 } 3036 3037 static int ext4_releasepage(struct page *page, gfp_t wait) 3038 { 3039 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3040 3041 trace_ext4_releasepage(page); 3042 3043 /* Page has dirty journalled data -> cannot release */ 3044 if (PageChecked(page)) 3045 return 0; 3046 if (journal) 3047 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3048 else 3049 return try_to_free_buffers(page); 3050 } 3051 3052 /* 3053 * ext4_get_block used when preparing for a DIO write or buffer write. 3054 * We allocate an uinitialized extent if blocks haven't been allocated. 3055 * The extent will be converted to initialized after the IO is complete. 3056 */ 3057 int ext4_get_block_write(struct inode *inode, sector_t iblock, 3058 struct buffer_head *bh_result, int create) 3059 { 3060 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3061 inode->i_ino, create); 3062 return _ext4_get_block(inode, iblock, bh_result, 3063 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3064 } 3065 3066 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3067 struct buffer_head *bh_result, int create) 3068 { 3069 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3070 inode->i_ino, create); 3071 return _ext4_get_block(inode, iblock, bh_result, 3072 EXT4_GET_BLOCKS_NO_LOCK); 3073 } 3074 3075 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3076 ssize_t size, void *private, int ret, 3077 bool is_async) 3078 { 3079 struct inode *inode = file_inode(iocb->ki_filp); 3080 ext4_io_end_t *io_end = iocb->private; 3081 3082 /* if not async direct IO just return */ 3083 if (!io_end) { 3084 inode_dio_done(inode); 3085 if (is_async) 3086 aio_complete(iocb, ret, 0); 3087 return; 3088 } 3089 3090 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3091 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3092 iocb->private, io_end->inode->i_ino, iocb, offset, 3093 size); 3094 3095 iocb->private = NULL; 3096 io_end->offset = offset; 3097 io_end->size = size; 3098 if (is_async) { 3099 io_end->iocb = iocb; 3100 io_end->result = ret; 3101 } 3102 ext4_put_io_end_defer(io_end); 3103 } 3104 3105 /* 3106 * For ext4 extent files, ext4 will do direct-io write to holes, 3107 * preallocated extents, and those write extend the file, no need to 3108 * fall back to buffered IO. 3109 * 3110 * For holes, we fallocate those blocks, mark them as uninitialized 3111 * If those blocks were preallocated, we mark sure they are split, but 3112 * still keep the range to write as uninitialized. 3113 * 3114 * The unwritten extents will be converted to written when DIO is completed. 3115 * For async direct IO, since the IO may still pending when return, we 3116 * set up an end_io call back function, which will do the conversion 3117 * when async direct IO completed. 3118 * 3119 * If the O_DIRECT write will extend the file then add this inode to the 3120 * orphan list. So recovery will truncate it back to the original size 3121 * if the machine crashes during the write. 3122 * 3123 */ 3124 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb, 3125 const struct iovec *iov, loff_t offset, 3126 unsigned long nr_segs) 3127 { 3128 struct file *file = iocb->ki_filp; 3129 struct inode *inode = file->f_mapping->host; 3130 ssize_t ret; 3131 size_t count = iov_length(iov, nr_segs); 3132 int overwrite = 0; 3133 get_block_t *get_block_func = NULL; 3134 int dio_flags = 0; 3135 loff_t final_size = offset + count; 3136 ext4_io_end_t *io_end = NULL; 3137 3138 /* Use the old path for reads and writes beyond i_size. */ 3139 if (rw != WRITE || final_size > inode->i_size) 3140 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3141 3142 BUG_ON(iocb->private == NULL); 3143 3144 /* If we do a overwrite dio, i_mutex locking can be released */ 3145 overwrite = *((int *)iocb->private); 3146 3147 if (overwrite) { 3148 atomic_inc(&inode->i_dio_count); 3149 down_read(&EXT4_I(inode)->i_data_sem); 3150 mutex_unlock(&inode->i_mutex); 3151 } 3152 3153 /* 3154 * We could direct write to holes and fallocate. 3155 * 3156 * Allocated blocks to fill the hole are marked as 3157 * uninitialized to prevent parallel buffered read to expose 3158 * the stale data before DIO complete the data IO. 3159 * 3160 * As to previously fallocated extents, ext4 get_block will 3161 * just simply mark the buffer mapped but still keep the 3162 * extents uninitialized. 3163 * 3164 * For non AIO case, we will convert those unwritten extents 3165 * to written after return back from blockdev_direct_IO. 3166 * 3167 * For async DIO, the conversion needs to be deferred when the 3168 * IO is completed. The ext4 end_io callback function will be 3169 * called to take care of the conversion work. Here for async 3170 * case, we allocate an io_end structure to hook to the iocb. 3171 */ 3172 iocb->private = NULL; 3173 ext4_inode_aio_set(inode, NULL); 3174 if (!is_sync_kiocb(iocb)) { 3175 io_end = ext4_init_io_end(inode, GFP_NOFS); 3176 if (!io_end) { 3177 ret = -ENOMEM; 3178 goto retake_lock; 3179 } 3180 io_end->flag |= EXT4_IO_END_DIRECT; 3181 /* 3182 * Grab reference for DIO. Will be dropped in ext4_end_io_dio() 3183 */ 3184 iocb->private = ext4_get_io_end(io_end); 3185 /* 3186 * we save the io structure for current async direct 3187 * IO, so that later ext4_map_blocks() could flag the 3188 * io structure whether there is a unwritten extents 3189 * needs to be converted when IO is completed. 3190 */ 3191 ext4_inode_aio_set(inode, io_end); 3192 } 3193 3194 if (overwrite) { 3195 get_block_func = ext4_get_block_write_nolock; 3196 } else { 3197 get_block_func = ext4_get_block_write; 3198 dio_flags = DIO_LOCKING; 3199 } 3200 ret = __blockdev_direct_IO(rw, iocb, inode, 3201 inode->i_sb->s_bdev, iov, 3202 offset, nr_segs, 3203 get_block_func, 3204 ext4_end_io_dio, 3205 NULL, 3206 dio_flags); 3207 3208 /* 3209 * Put our reference to io_end. This can free the io_end structure e.g. 3210 * in sync IO case or in case of error. It can even perform extent 3211 * conversion if all bios we submitted finished before we got here. 3212 * Note that in that case iocb->private can be already set to NULL 3213 * here. 3214 */ 3215 if (io_end) { 3216 ext4_inode_aio_set(inode, NULL); 3217 ext4_put_io_end(io_end); 3218 /* 3219 * In case of error or no write ext4_end_io_dio() was not 3220 * called so we have to put iocb's reference. 3221 */ 3222 if (ret <= 0 && ret != -EIOCBQUEUED) { 3223 WARN_ON(iocb->private != io_end); 3224 ext4_put_io_end(io_end); 3225 iocb->private = NULL; 3226 } 3227 } 3228 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3229 EXT4_STATE_DIO_UNWRITTEN)) { 3230 int err; 3231 /* 3232 * for non AIO case, since the IO is already 3233 * completed, we could do the conversion right here 3234 */ 3235 err = ext4_convert_unwritten_extents(inode, 3236 offset, ret); 3237 if (err < 0) 3238 ret = err; 3239 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3240 } 3241 3242 retake_lock: 3243 /* take i_mutex locking again if we do a ovewrite dio */ 3244 if (overwrite) { 3245 inode_dio_done(inode); 3246 up_read(&EXT4_I(inode)->i_data_sem); 3247 mutex_lock(&inode->i_mutex); 3248 } 3249 3250 return ret; 3251 } 3252 3253 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb, 3254 const struct iovec *iov, loff_t offset, 3255 unsigned long nr_segs) 3256 { 3257 struct file *file = iocb->ki_filp; 3258 struct inode *inode = file->f_mapping->host; 3259 ssize_t ret; 3260 3261 /* 3262 * If we are doing data journalling we don't support O_DIRECT 3263 */ 3264 if (ext4_should_journal_data(inode)) 3265 return 0; 3266 3267 /* Let buffer I/O handle the inline data case. */ 3268 if (ext4_has_inline_data(inode)) 3269 return 0; 3270 3271 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw); 3272 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3273 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs); 3274 else 3275 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs); 3276 trace_ext4_direct_IO_exit(inode, offset, 3277 iov_length(iov, nr_segs), rw, ret); 3278 return ret; 3279 } 3280 3281 /* 3282 * Pages can be marked dirty completely asynchronously from ext4's journalling 3283 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3284 * much here because ->set_page_dirty is called under VFS locks. The page is 3285 * not necessarily locked. 3286 * 3287 * We cannot just dirty the page and leave attached buffers clean, because the 3288 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3289 * or jbddirty because all the journalling code will explode. 3290 * 3291 * So what we do is to mark the page "pending dirty" and next time writepage 3292 * is called, propagate that into the buffers appropriately. 3293 */ 3294 static int ext4_journalled_set_page_dirty(struct page *page) 3295 { 3296 SetPageChecked(page); 3297 return __set_page_dirty_nobuffers(page); 3298 } 3299 3300 static const struct address_space_operations ext4_aops = { 3301 .readpage = ext4_readpage, 3302 .readpages = ext4_readpages, 3303 .writepage = ext4_writepage, 3304 .write_begin = ext4_write_begin, 3305 .write_end = ext4_write_end, 3306 .bmap = ext4_bmap, 3307 .invalidatepage = ext4_invalidatepage, 3308 .releasepage = ext4_releasepage, 3309 .direct_IO = ext4_direct_IO, 3310 .migratepage = buffer_migrate_page, 3311 .is_partially_uptodate = block_is_partially_uptodate, 3312 .error_remove_page = generic_error_remove_page, 3313 }; 3314 3315 static const struct address_space_operations ext4_journalled_aops = { 3316 .readpage = ext4_readpage, 3317 .readpages = ext4_readpages, 3318 .writepage = ext4_writepage, 3319 .write_begin = ext4_write_begin, 3320 .write_end = ext4_journalled_write_end, 3321 .set_page_dirty = ext4_journalled_set_page_dirty, 3322 .bmap = ext4_bmap, 3323 .invalidatepage = ext4_journalled_invalidatepage, 3324 .releasepage = ext4_releasepage, 3325 .direct_IO = ext4_direct_IO, 3326 .is_partially_uptodate = block_is_partially_uptodate, 3327 .error_remove_page = generic_error_remove_page, 3328 }; 3329 3330 static const struct address_space_operations ext4_da_aops = { 3331 .readpage = ext4_readpage, 3332 .readpages = ext4_readpages, 3333 .writepage = ext4_writepage, 3334 .writepages = ext4_da_writepages, 3335 .write_begin = ext4_da_write_begin, 3336 .write_end = ext4_da_write_end, 3337 .bmap = ext4_bmap, 3338 .invalidatepage = ext4_da_invalidatepage, 3339 .releasepage = ext4_releasepage, 3340 .direct_IO = ext4_direct_IO, 3341 .migratepage = buffer_migrate_page, 3342 .is_partially_uptodate = block_is_partially_uptodate, 3343 .error_remove_page = generic_error_remove_page, 3344 }; 3345 3346 void ext4_set_aops(struct inode *inode) 3347 { 3348 switch (ext4_inode_journal_mode(inode)) { 3349 case EXT4_INODE_ORDERED_DATA_MODE: 3350 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3351 break; 3352 case EXT4_INODE_WRITEBACK_DATA_MODE: 3353 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3354 break; 3355 case EXT4_INODE_JOURNAL_DATA_MODE: 3356 inode->i_mapping->a_ops = &ext4_journalled_aops; 3357 return; 3358 default: 3359 BUG(); 3360 } 3361 if (test_opt(inode->i_sb, DELALLOC)) 3362 inode->i_mapping->a_ops = &ext4_da_aops; 3363 else 3364 inode->i_mapping->a_ops = &ext4_aops; 3365 } 3366 3367 3368 /* 3369 * ext4_discard_partial_page_buffers() 3370 * Wrapper function for ext4_discard_partial_page_buffers_no_lock. 3371 * This function finds and locks the page containing the offset 3372 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock. 3373 * Calling functions that already have the page locked should call 3374 * ext4_discard_partial_page_buffers_no_lock directly. 3375 */ 3376 int ext4_discard_partial_page_buffers(handle_t *handle, 3377 struct address_space *mapping, loff_t from, 3378 loff_t length, int flags) 3379 { 3380 struct inode *inode = mapping->host; 3381 struct page *page; 3382 int err = 0; 3383 3384 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3385 mapping_gfp_mask(mapping) & ~__GFP_FS); 3386 if (!page) 3387 return -ENOMEM; 3388 3389 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page, 3390 from, length, flags); 3391 3392 unlock_page(page); 3393 page_cache_release(page); 3394 return err; 3395 } 3396 3397 /* 3398 * ext4_discard_partial_page_buffers_no_lock() 3399 * Zeros a page range of length 'length' starting from offset 'from'. 3400 * Buffer heads that correspond to the block aligned regions of the 3401 * zeroed range will be unmapped. Unblock aligned regions 3402 * will have the corresponding buffer head mapped if needed so that 3403 * that region of the page can be updated with the partial zero out. 3404 * 3405 * This function assumes that the page has already been locked. The 3406 * The range to be discarded must be contained with in the given page. 3407 * If the specified range exceeds the end of the page it will be shortened 3408 * to the end of the page that corresponds to 'from'. This function is 3409 * appropriate for updating a page and it buffer heads to be unmapped and 3410 * zeroed for blocks that have been either released, or are going to be 3411 * released. 3412 * 3413 * handle: The journal handle 3414 * inode: The files inode 3415 * page: A locked page that contains the offset "from" 3416 * from: The starting byte offset (from the beginning of the file) 3417 * to begin discarding 3418 * len: The length of bytes to discard 3419 * flags: Optional flags that may be used: 3420 * 3421 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED 3422 * Only zero the regions of the page whose buffer heads 3423 * have already been unmapped. This flag is appropriate 3424 * for updating the contents of a page whose blocks may 3425 * have already been released, and we only want to zero 3426 * out the regions that correspond to those released blocks. 3427 * 3428 * Returns zero on success or negative on failure. 3429 */ 3430 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle, 3431 struct inode *inode, struct page *page, loff_t from, 3432 loff_t length, int flags) 3433 { 3434 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3435 unsigned int offset = from & (PAGE_CACHE_SIZE-1); 3436 unsigned int blocksize, max, pos; 3437 ext4_lblk_t iblock; 3438 struct buffer_head *bh; 3439 int err = 0; 3440 3441 blocksize = inode->i_sb->s_blocksize; 3442 max = PAGE_CACHE_SIZE - offset; 3443 3444 if (index != page->index) 3445 return -EINVAL; 3446 3447 /* 3448 * correct length if it does not fall between 3449 * 'from' and the end of the page 3450 */ 3451 if (length > max || length < 0) 3452 length = max; 3453 3454 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3455 3456 if (!page_has_buffers(page)) 3457 create_empty_buffers(page, blocksize, 0); 3458 3459 /* Find the buffer that contains "offset" */ 3460 bh = page_buffers(page); 3461 pos = blocksize; 3462 while (offset >= pos) { 3463 bh = bh->b_this_page; 3464 iblock++; 3465 pos += blocksize; 3466 } 3467 3468 pos = offset; 3469 while (pos < offset + length) { 3470 unsigned int end_of_block, range_to_discard; 3471 3472 err = 0; 3473 3474 /* The length of space left to zero and unmap */ 3475 range_to_discard = offset + length - pos; 3476 3477 /* The length of space until the end of the block */ 3478 end_of_block = blocksize - (pos & (blocksize-1)); 3479 3480 /* 3481 * Do not unmap or zero past end of block 3482 * for this buffer head 3483 */ 3484 if (range_to_discard > end_of_block) 3485 range_to_discard = end_of_block; 3486 3487 3488 /* 3489 * Skip this buffer head if we are only zeroing unampped 3490 * regions of the page 3491 */ 3492 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED && 3493 buffer_mapped(bh)) 3494 goto next; 3495 3496 /* If the range is block aligned, unmap */ 3497 if (range_to_discard == blocksize) { 3498 clear_buffer_dirty(bh); 3499 bh->b_bdev = NULL; 3500 clear_buffer_mapped(bh); 3501 clear_buffer_req(bh); 3502 clear_buffer_new(bh); 3503 clear_buffer_delay(bh); 3504 clear_buffer_unwritten(bh); 3505 clear_buffer_uptodate(bh); 3506 zero_user(page, pos, range_to_discard); 3507 BUFFER_TRACE(bh, "Buffer discarded"); 3508 goto next; 3509 } 3510 3511 /* 3512 * If this block is not completely contained in the range 3513 * to be discarded, then it is not going to be released. Because 3514 * we need to keep this block, we need to make sure this part 3515 * of the page is uptodate before we modify it by writeing 3516 * partial zeros on it. 3517 */ 3518 if (!buffer_mapped(bh)) { 3519 /* 3520 * Buffer head must be mapped before we can read 3521 * from the block 3522 */ 3523 BUFFER_TRACE(bh, "unmapped"); 3524 ext4_get_block(inode, iblock, bh, 0); 3525 /* unmapped? It's a hole - nothing to do */ 3526 if (!buffer_mapped(bh)) { 3527 BUFFER_TRACE(bh, "still unmapped"); 3528 goto next; 3529 } 3530 } 3531 3532 /* Ok, it's mapped. Make sure it's up-to-date */ 3533 if (PageUptodate(page)) 3534 set_buffer_uptodate(bh); 3535 3536 if (!buffer_uptodate(bh)) { 3537 err = -EIO; 3538 ll_rw_block(READ, 1, &bh); 3539 wait_on_buffer(bh); 3540 /* Uhhuh. Read error. Complain and punt.*/ 3541 if (!buffer_uptodate(bh)) 3542 goto next; 3543 } 3544 3545 if (ext4_should_journal_data(inode)) { 3546 BUFFER_TRACE(bh, "get write access"); 3547 err = ext4_journal_get_write_access(handle, bh); 3548 if (err) 3549 goto next; 3550 } 3551 3552 zero_user(page, pos, range_to_discard); 3553 3554 err = 0; 3555 if (ext4_should_journal_data(inode)) { 3556 err = ext4_handle_dirty_metadata(handle, inode, bh); 3557 } else 3558 mark_buffer_dirty(bh); 3559 3560 BUFFER_TRACE(bh, "Partial buffer zeroed"); 3561 next: 3562 bh = bh->b_this_page; 3563 iblock++; 3564 pos += range_to_discard; 3565 } 3566 3567 return err; 3568 } 3569 3570 int ext4_can_truncate(struct inode *inode) 3571 { 3572 if (S_ISREG(inode->i_mode)) 3573 return 1; 3574 if (S_ISDIR(inode->i_mode)) 3575 return 1; 3576 if (S_ISLNK(inode->i_mode)) 3577 return !ext4_inode_is_fast_symlink(inode); 3578 return 0; 3579 } 3580 3581 /* 3582 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3583 * associated with the given offset and length 3584 * 3585 * @inode: File inode 3586 * @offset: The offset where the hole will begin 3587 * @len: The length of the hole 3588 * 3589 * Returns: 0 on success or negative on failure 3590 */ 3591 3592 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3593 { 3594 struct inode *inode = file_inode(file); 3595 struct super_block *sb = inode->i_sb; 3596 ext4_lblk_t first_block, stop_block; 3597 struct address_space *mapping = inode->i_mapping; 3598 loff_t first_page, last_page, page_len; 3599 loff_t first_page_offset, last_page_offset; 3600 handle_t *handle; 3601 unsigned int credits; 3602 int ret = 0; 3603 3604 if (!S_ISREG(inode->i_mode)) 3605 return -EOPNOTSUPP; 3606 3607 if (EXT4_SB(sb)->s_cluster_ratio > 1) { 3608 /* TODO: Add support for bigalloc file systems */ 3609 return -EOPNOTSUPP; 3610 } 3611 3612 trace_ext4_punch_hole(inode, offset, length); 3613 3614 /* 3615 * Write out all dirty pages to avoid race conditions 3616 * Then release them. 3617 */ 3618 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3619 ret = filemap_write_and_wait_range(mapping, offset, 3620 offset + length - 1); 3621 if (ret) 3622 return ret; 3623 } 3624 3625 mutex_lock(&inode->i_mutex); 3626 /* It's not possible punch hole on append only file */ 3627 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 3628 ret = -EPERM; 3629 goto out_mutex; 3630 } 3631 if (IS_SWAPFILE(inode)) { 3632 ret = -ETXTBSY; 3633 goto out_mutex; 3634 } 3635 3636 /* No need to punch hole beyond i_size */ 3637 if (offset >= inode->i_size) 3638 goto out_mutex; 3639 3640 /* 3641 * If the hole extends beyond i_size, set the hole 3642 * to end after the page that contains i_size 3643 */ 3644 if (offset + length > inode->i_size) { 3645 length = inode->i_size + 3646 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3647 offset; 3648 } 3649 3650 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 3651 last_page = (offset + length) >> PAGE_CACHE_SHIFT; 3652 3653 first_page_offset = first_page << PAGE_CACHE_SHIFT; 3654 last_page_offset = last_page << PAGE_CACHE_SHIFT; 3655 3656 /* Now release the pages */ 3657 if (last_page_offset > first_page_offset) { 3658 truncate_pagecache_range(inode, first_page_offset, 3659 last_page_offset - 1); 3660 } 3661 3662 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3663 ext4_inode_block_unlocked_dio(inode); 3664 ret = ext4_flush_unwritten_io(inode); 3665 if (ret) 3666 goto out_dio; 3667 inode_dio_wait(inode); 3668 3669 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3670 credits = ext4_writepage_trans_blocks(inode); 3671 else 3672 credits = ext4_blocks_for_truncate(inode); 3673 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3674 if (IS_ERR(handle)) { 3675 ret = PTR_ERR(handle); 3676 ext4_std_error(sb, ret); 3677 goto out_dio; 3678 } 3679 3680 /* 3681 * Now we need to zero out the non-page-aligned data in the 3682 * pages at the start and tail of the hole, and unmap the 3683 * buffer heads for the block aligned regions of the page that 3684 * were completely zeroed. 3685 */ 3686 if (first_page > last_page) { 3687 /* 3688 * If the file space being truncated is contained 3689 * within a page just zero out and unmap the middle of 3690 * that page 3691 */ 3692 ret = ext4_discard_partial_page_buffers(handle, 3693 mapping, offset, length, 0); 3694 3695 if (ret) 3696 goto out_stop; 3697 } else { 3698 /* 3699 * zero out and unmap the partial page that contains 3700 * the start of the hole 3701 */ 3702 page_len = first_page_offset - offset; 3703 if (page_len > 0) { 3704 ret = ext4_discard_partial_page_buffers(handle, mapping, 3705 offset, page_len, 0); 3706 if (ret) 3707 goto out_stop; 3708 } 3709 3710 /* 3711 * zero out and unmap the partial page that contains 3712 * the end of the hole 3713 */ 3714 page_len = offset + length - last_page_offset; 3715 if (page_len > 0) { 3716 ret = ext4_discard_partial_page_buffers(handle, mapping, 3717 last_page_offset, page_len, 0); 3718 if (ret) 3719 goto out_stop; 3720 } 3721 } 3722 3723 /* 3724 * If i_size is contained in the last page, we need to 3725 * unmap and zero the partial page after i_size 3726 */ 3727 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page && 3728 inode->i_size % PAGE_CACHE_SIZE != 0) { 3729 page_len = PAGE_CACHE_SIZE - 3730 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 3731 3732 if (page_len > 0) { 3733 ret = ext4_discard_partial_page_buffers(handle, 3734 mapping, inode->i_size, page_len, 0); 3735 3736 if (ret) 3737 goto out_stop; 3738 } 3739 } 3740 3741 first_block = (offset + sb->s_blocksize - 1) >> 3742 EXT4_BLOCK_SIZE_BITS(sb); 3743 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3744 3745 /* If there are no blocks to remove, return now */ 3746 if (first_block >= stop_block) 3747 goto out_stop; 3748 3749 down_write(&EXT4_I(inode)->i_data_sem); 3750 ext4_discard_preallocations(inode); 3751 3752 ret = ext4_es_remove_extent(inode, first_block, 3753 stop_block - first_block); 3754 if (ret) { 3755 up_write(&EXT4_I(inode)->i_data_sem); 3756 goto out_stop; 3757 } 3758 3759 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3760 ret = ext4_ext_remove_space(inode, first_block, 3761 stop_block - 1); 3762 else 3763 ret = ext4_free_hole_blocks(handle, inode, first_block, 3764 stop_block); 3765 3766 ext4_discard_preallocations(inode); 3767 up_write(&EXT4_I(inode)->i_data_sem); 3768 if (IS_SYNC(inode)) 3769 ext4_handle_sync(handle); 3770 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3771 ext4_mark_inode_dirty(handle, inode); 3772 out_stop: 3773 ext4_journal_stop(handle); 3774 out_dio: 3775 ext4_inode_resume_unlocked_dio(inode); 3776 out_mutex: 3777 mutex_unlock(&inode->i_mutex); 3778 return ret; 3779 } 3780 3781 /* 3782 * ext4_truncate() 3783 * 3784 * We block out ext4_get_block() block instantiations across the entire 3785 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3786 * simultaneously on behalf of the same inode. 3787 * 3788 * As we work through the truncate and commit bits of it to the journal there 3789 * is one core, guiding principle: the file's tree must always be consistent on 3790 * disk. We must be able to restart the truncate after a crash. 3791 * 3792 * The file's tree may be transiently inconsistent in memory (although it 3793 * probably isn't), but whenever we close off and commit a journal transaction, 3794 * the contents of (the filesystem + the journal) must be consistent and 3795 * restartable. It's pretty simple, really: bottom up, right to left (although 3796 * left-to-right works OK too). 3797 * 3798 * Note that at recovery time, journal replay occurs *before* the restart of 3799 * truncate against the orphan inode list. 3800 * 3801 * The committed inode has the new, desired i_size (which is the same as 3802 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3803 * that this inode's truncate did not complete and it will again call 3804 * ext4_truncate() to have another go. So there will be instantiated blocks 3805 * to the right of the truncation point in a crashed ext4 filesystem. But 3806 * that's fine - as long as they are linked from the inode, the post-crash 3807 * ext4_truncate() run will find them and release them. 3808 */ 3809 void ext4_truncate(struct inode *inode) 3810 { 3811 struct ext4_inode_info *ei = EXT4_I(inode); 3812 unsigned int credits; 3813 handle_t *handle; 3814 struct address_space *mapping = inode->i_mapping; 3815 loff_t page_len; 3816 3817 /* 3818 * There is a possibility that we're either freeing the inode 3819 * or it completely new indode. In those cases we might not 3820 * have i_mutex locked because it's not necessary. 3821 */ 3822 if (!(inode->i_state & (I_NEW|I_FREEING))) 3823 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3824 trace_ext4_truncate_enter(inode); 3825 3826 if (!ext4_can_truncate(inode)) 3827 return; 3828 3829 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3830 3831 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3832 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3833 3834 if (ext4_has_inline_data(inode)) { 3835 int has_inline = 1; 3836 3837 ext4_inline_data_truncate(inode, &has_inline); 3838 if (has_inline) 3839 return; 3840 } 3841 3842 /* 3843 * finish any pending end_io work so we won't run the risk of 3844 * converting any truncated blocks to initialized later 3845 */ 3846 ext4_flush_unwritten_io(inode); 3847 3848 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3849 credits = ext4_writepage_trans_blocks(inode); 3850 else 3851 credits = ext4_blocks_for_truncate(inode); 3852 3853 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3854 if (IS_ERR(handle)) { 3855 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3856 return; 3857 } 3858 3859 if (inode->i_size % PAGE_CACHE_SIZE != 0) { 3860 page_len = PAGE_CACHE_SIZE - 3861 (inode->i_size & (PAGE_CACHE_SIZE - 1)); 3862 3863 if (ext4_discard_partial_page_buffers(handle, 3864 mapping, inode->i_size, page_len, 0)) 3865 goto out_stop; 3866 } 3867 3868 /* 3869 * We add the inode to the orphan list, so that if this 3870 * truncate spans multiple transactions, and we crash, we will 3871 * resume the truncate when the filesystem recovers. It also 3872 * marks the inode dirty, to catch the new size. 3873 * 3874 * Implication: the file must always be in a sane, consistent 3875 * truncatable state while each transaction commits. 3876 */ 3877 if (ext4_orphan_add(handle, inode)) 3878 goto out_stop; 3879 3880 down_write(&EXT4_I(inode)->i_data_sem); 3881 3882 ext4_discard_preallocations(inode); 3883 3884 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3885 ext4_ext_truncate(handle, inode); 3886 else 3887 ext4_ind_truncate(handle, inode); 3888 3889 up_write(&ei->i_data_sem); 3890 3891 if (IS_SYNC(inode)) 3892 ext4_handle_sync(handle); 3893 3894 out_stop: 3895 /* 3896 * If this was a simple ftruncate() and the file will remain alive, 3897 * then we need to clear up the orphan record which we created above. 3898 * However, if this was a real unlink then we were called by 3899 * ext4_delete_inode(), and we allow that function to clean up the 3900 * orphan info for us. 3901 */ 3902 if (inode->i_nlink) 3903 ext4_orphan_del(handle, inode); 3904 3905 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3906 ext4_mark_inode_dirty(handle, inode); 3907 ext4_journal_stop(handle); 3908 3909 trace_ext4_truncate_exit(inode); 3910 } 3911 3912 /* 3913 * ext4_get_inode_loc returns with an extra refcount against the inode's 3914 * underlying buffer_head on success. If 'in_mem' is true, we have all 3915 * data in memory that is needed to recreate the on-disk version of this 3916 * inode. 3917 */ 3918 static int __ext4_get_inode_loc(struct inode *inode, 3919 struct ext4_iloc *iloc, int in_mem) 3920 { 3921 struct ext4_group_desc *gdp; 3922 struct buffer_head *bh; 3923 struct super_block *sb = inode->i_sb; 3924 ext4_fsblk_t block; 3925 int inodes_per_block, inode_offset; 3926 3927 iloc->bh = NULL; 3928 if (!ext4_valid_inum(sb, inode->i_ino)) 3929 return -EIO; 3930 3931 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3932 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3933 if (!gdp) 3934 return -EIO; 3935 3936 /* 3937 * Figure out the offset within the block group inode table 3938 */ 3939 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3940 inode_offset = ((inode->i_ino - 1) % 3941 EXT4_INODES_PER_GROUP(sb)); 3942 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3943 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3944 3945 bh = sb_getblk(sb, block); 3946 if (unlikely(!bh)) 3947 return -ENOMEM; 3948 if (!buffer_uptodate(bh)) { 3949 lock_buffer(bh); 3950 3951 /* 3952 * If the buffer has the write error flag, we have failed 3953 * to write out another inode in the same block. In this 3954 * case, we don't have to read the block because we may 3955 * read the old inode data successfully. 3956 */ 3957 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3958 set_buffer_uptodate(bh); 3959 3960 if (buffer_uptodate(bh)) { 3961 /* someone brought it uptodate while we waited */ 3962 unlock_buffer(bh); 3963 goto has_buffer; 3964 } 3965 3966 /* 3967 * If we have all information of the inode in memory and this 3968 * is the only valid inode in the block, we need not read the 3969 * block. 3970 */ 3971 if (in_mem) { 3972 struct buffer_head *bitmap_bh; 3973 int i, start; 3974 3975 start = inode_offset & ~(inodes_per_block - 1); 3976 3977 /* Is the inode bitmap in cache? */ 3978 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3979 if (unlikely(!bitmap_bh)) 3980 goto make_io; 3981 3982 /* 3983 * If the inode bitmap isn't in cache then the 3984 * optimisation may end up performing two reads instead 3985 * of one, so skip it. 3986 */ 3987 if (!buffer_uptodate(bitmap_bh)) { 3988 brelse(bitmap_bh); 3989 goto make_io; 3990 } 3991 for (i = start; i < start + inodes_per_block; i++) { 3992 if (i == inode_offset) 3993 continue; 3994 if (ext4_test_bit(i, bitmap_bh->b_data)) 3995 break; 3996 } 3997 brelse(bitmap_bh); 3998 if (i == start + inodes_per_block) { 3999 /* all other inodes are free, so skip I/O */ 4000 memset(bh->b_data, 0, bh->b_size); 4001 set_buffer_uptodate(bh); 4002 unlock_buffer(bh); 4003 goto has_buffer; 4004 } 4005 } 4006 4007 make_io: 4008 /* 4009 * If we need to do any I/O, try to pre-readahead extra 4010 * blocks from the inode table. 4011 */ 4012 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4013 ext4_fsblk_t b, end, table; 4014 unsigned num; 4015 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4016 4017 table = ext4_inode_table(sb, gdp); 4018 /* s_inode_readahead_blks is always a power of 2 */ 4019 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4020 if (table > b) 4021 b = table; 4022 end = b + ra_blks; 4023 num = EXT4_INODES_PER_GROUP(sb); 4024 if (ext4_has_group_desc_csum(sb)) 4025 num -= ext4_itable_unused_count(sb, gdp); 4026 table += num / inodes_per_block; 4027 if (end > table) 4028 end = table; 4029 while (b <= end) 4030 sb_breadahead(sb, b++); 4031 } 4032 4033 /* 4034 * There are other valid inodes in the buffer, this inode 4035 * has in-inode xattrs, or we don't have this inode in memory. 4036 * Read the block from disk. 4037 */ 4038 trace_ext4_load_inode(inode); 4039 get_bh(bh); 4040 bh->b_end_io = end_buffer_read_sync; 4041 submit_bh(READ | REQ_META | REQ_PRIO, bh); 4042 wait_on_buffer(bh); 4043 if (!buffer_uptodate(bh)) { 4044 EXT4_ERROR_INODE_BLOCK(inode, block, 4045 "unable to read itable block"); 4046 brelse(bh); 4047 return -EIO; 4048 } 4049 } 4050 has_buffer: 4051 iloc->bh = bh; 4052 return 0; 4053 } 4054 4055 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4056 { 4057 /* We have all inode data except xattrs in memory here. */ 4058 return __ext4_get_inode_loc(inode, iloc, 4059 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4060 } 4061 4062 void ext4_set_inode_flags(struct inode *inode) 4063 { 4064 unsigned int flags = EXT4_I(inode)->i_flags; 4065 4066 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC); 4067 if (flags & EXT4_SYNC_FL) 4068 inode->i_flags |= S_SYNC; 4069 if (flags & EXT4_APPEND_FL) 4070 inode->i_flags |= S_APPEND; 4071 if (flags & EXT4_IMMUTABLE_FL) 4072 inode->i_flags |= S_IMMUTABLE; 4073 if (flags & EXT4_NOATIME_FL) 4074 inode->i_flags |= S_NOATIME; 4075 if (flags & EXT4_DIRSYNC_FL) 4076 inode->i_flags |= S_DIRSYNC; 4077 } 4078 4079 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4080 void ext4_get_inode_flags(struct ext4_inode_info *ei) 4081 { 4082 unsigned int vfs_fl; 4083 unsigned long old_fl, new_fl; 4084 4085 do { 4086 vfs_fl = ei->vfs_inode.i_flags; 4087 old_fl = ei->i_flags; 4088 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4089 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4090 EXT4_DIRSYNC_FL); 4091 if (vfs_fl & S_SYNC) 4092 new_fl |= EXT4_SYNC_FL; 4093 if (vfs_fl & S_APPEND) 4094 new_fl |= EXT4_APPEND_FL; 4095 if (vfs_fl & S_IMMUTABLE) 4096 new_fl |= EXT4_IMMUTABLE_FL; 4097 if (vfs_fl & S_NOATIME) 4098 new_fl |= EXT4_NOATIME_FL; 4099 if (vfs_fl & S_DIRSYNC) 4100 new_fl |= EXT4_DIRSYNC_FL; 4101 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4102 } 4103 4104 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4105 struct ext4_inode_info *ei) 4106 { 4107 blkcnt_t i_blocks ; 4108 struct inode *inode = &(ei->vfs_inode); 4109 struct super_block *sb = inode->i_sb; 4110 4111 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4112 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4113 /* we are using combined 48 bit field */ 4114 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4115 le32_to_cpu(raw_inode->i_blocks_lo); 4116 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4117 /* i_blocks represent file system block size */ 4118 return i_blocks << (inode->i_blkbits - 9); 4119 } else { 4120 return i_blocks; 4121 } 4122 } else { 4123 return le32_to_cpu(raw_inode->i_blocks_lo); 4124 } 4125 } 4126 4127 static inline void ext4_iget_extra_inode(struct inode *inode, 4128 struct ext4_inode *raw_inode, 4129 struct ext4_inode_info *ei) 4130 { 4131 __le32 *magic = (void *)raw_inode + 4132 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4133 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4134 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4135 ext4_find_inline_data_nolock(inode); 4136 } else 4137 EXT4_I(inode)->i_inline_off = 0; 4138 } 4139 4140 struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4141 { 4142 struct ext4_iloc iloc; 4143 struct ext4_inode *raw_inode; 4144 struct ext4_inode_info *ei; 4145 struct inode *inode; 4146 journal_t *journal = EXT4_SB(sb)->s_journal; 4147 long ret; 4148 int block; 4149 uid_t i_uid; 4150 gid_t i_gid; 4151 4152 inode = iget_locked(sb, ino); 4153 if (!inode) 4154 return ERR_PTR(-ENOMEM); 4155 if (!(inode->i_state & I_NEW)) 4156 return inode; 4157 4158 ei = EXT4_I(inode); 4159 iloc.bh = NULL; 4160 4161 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4162 if (ret < 0) 4163 goto bad_inode; 4164 raw_inode = ext4_raw_inode(&iloc); 4165 4166 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4167 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4168 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4169 EXT4_INODE_SIZE(inode->i_sb)) { 4170 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4171 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4172 EXT4_INODE_SIZE(inode->i_sb)); 4173 ret = -EIO; 4174 goto bad_inode; 4175 } 4176 } else 4177 ei->i_extra_isize = 0; 4178 4179 /* Precompute checksum seed for inode metadata */ 4180 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4181 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 4182 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4183 __u32 csum; 4184 __le32 inum = cpu_to_le32(inode->i_ino); 4185 __le32 gen = raw_inode->i_generation; 4186 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4187 sizeof(inum)); 4188 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4189 sizeof(gen)); 4190 } 4191 4192 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4193 EXT4_ERROR_INODE(inode, "checksum invalid"); 4194 ret = -EIO; 4195 goto bad_inode; 4196 } 4197 4198 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4199 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4200 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4201 if (!(test_opt(inode->i_sb, NO_UID32))) { 4202 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4203 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4204 } 4205 i_uid_write(inode, i_uid); 4206 i_gid_write(inode, i_gid); 4207 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4208 4209 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4210 ei->i_inline_off = 0; 4211 ei->i_dir_start_lookup = 0; 4212 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4213 /* We now have enough fields to check if the inode was active or not. 4214 * This is needed because nfsd might try to access dead inodes 4215 * the test is that same one that e2fsck uses 4216 * NeilBrown 1999oct15 4217 */ 4218 if (inode->i_nlink == 0) { 4219 if ((inode->i_mode == 0 || 4220 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4221 ino != EXT4_BOOT_LOADER_INO) { 4222 /* this inode is deleted */ 4223 ret = -ESTALE; 4224 goto bad_inode; 4225 } 4226 /* The only unlinked inodes we let through here have 4227 * valid i_mode and are being read by the orphan 4228 * recovery code: that's fine, we're about to complete 4229 * the process of deleting those. 4230 * OR it is the EXT4_BOOT_LOADER_INO which is 4231 * not initialized on a new filesystem. */ 4232 } 4233 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4234 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4235 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4236 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4237 ei->i_file_acl |= 4238 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4239 inode->i_size = ext4_isize(raw_inode); 4240 ei->i_disksize = inode->i_size; 4241 #ifdef CONFIG_QUOTA 4242 ei->i_reserved_quota = 0; 4243 #endif 4244 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4245 ei->i_block_group = iloc.block_group; 4246 ei->i_last_alloc_group = ~0; 4247 /* 4248 * NOTE! The in-memory inode i_data array is in little-endian order 4249 * even on big-endian machines: we do NOT byteswap the block numbers! 4250 */ 4251 for (block = 0; block < EXT4_N_BLOCKS; block++) 4252 ei->i_data[block] = raw_inode->i_block[block]; 4253 INIT_LIST_HEAD(&ei->i_orphan); 4254 4255 /* 4256 * Set transaction id's of transactions that have to be committed 4257 * to finish f[data]sync. We set them to currently running transaction 4258 * as we cannot be sure that the inode or some of its metadata isn't 4259 * part of the transaction - the inode could have been reclaimed and 4260 * now it is reread from disk. 4261 */ 4262 if (journal) { 4263 transaction_t *transaction; 4264 tid_t tid; 4265 4266 read_lock(&journal->j_state_lock); 4267 if (journal->j_running_transaction) 4268 transaction = journal->j_running_transaction; 4269 else 4270 transaction = journal->j_committing_transaction; 4271 if (transaction) 4272 tid = transaction->t_tid; 4273 else 4274 tid = journal->j_commit_sequence; 4275 read_unlock(&journal->j_state_lock); 4276 ei->i_sync_tid = tid; 4277 ei->i_datasync_tid = tid; 4278 } 4279 4280 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4281 if (ei->i_extra_isize == 0) { 4282 /* The extra space is currently unused. Use it. */ 4283 ei->i_extra_isize = sizeof(struct ext4_inode) - 4284 EXT4_GOOD_OLD_INODE_SIZE; 4285 } else { 4286 ext4_iget_extra_inode(inode, raw_inode, ei); 4287 } 4288 } 4289 4290 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4291 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4292 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4293 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4294 4295 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4296 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4297 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4298 inode->i_version |= 4299 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4300 } 4301 4302 ret = 0; 4303 if (ei->i_file_acl && 4304 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4305 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4306 ei->i_file_acl); 4307 ret = -EIO; 4308 goto bad_inode; 4309 } else if (!ext4_has_inline_data(inode)) { 4310 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4311 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4312 (S_ISLNK(inode->i_mode) && 4313 !ext4_inode_is_fast_symlink(inode)))) 4314 /* Validate extent which is part of inode */ 4315 ret = ext4_ext_check_inode(inode); 4316 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4317 (S_ISLNK(inode->i_mode) && 4318 !ext4_inode_is_fast_symlink(inode))) { 4319 /* Validate block references which are part of inode */ 4320 ret = ext4_ind_check_inode(inode); 4321 } 4322 } 4323 if (ret) 4324 goto bad_inode; 4325 4326 if (S_ISREG(inode->i_mode)) { 4327 inode->i_op = &ext4_file_inode_operations; 4328 inode->i_fop = &ext4_file_operations; 4329 ext4_set_aops(inode); 4330 } else if (S_ISDIR(inode->i_mode)) { 4331 inode->i_op = &ext4_dir_inode_operations; 4332 inode->i_fop = &ext4_dir_operations; 4333 } else if (S_ISLNK(inode->i_mode)) { 4334 if (ext4_inode_is_fast_symlink(inode)) { 4335 inode->i_op = &ext4_fast_symlink_inode_operations; 4336 nd_terminate_link(ei->i_data, inode->i_size, 4337 sizeof(ei->i_data) - 1); 4338 } else { 4339 inode->i_op = &ext4_symlink_inode_operations; 4340 ext4_set_aops(inode); 4341 } 4342 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4343 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4344 inode->i_op = &ext4_special_inode_operations; 4345 if (raw_inode->i_block[0]) 4346 init_special_inode(inode, inode->i_mode, 4347 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4348 else 4349 init_special_inode(inode, inode->i_mode, 4350 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4351 } else if (ino == EXT4_BOOT_LOADER_INO) { 4352 make_bad_inode(inode); 4353 } else { 4354 ret = -EIO; 4355 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4356 goto bad_inode; 4357 } 4358 brelse(iloc.bh); 4359 ext4_set_inode_flags(inode); 4360 unlock_new_inode(inode); 4361 return inode; 4362 4363 bad_inode: 4364 brelse(iloc.bh); 4365 iget_failed(inode); 4366 return ERR_PTR(ret); 4367 } 4368 4369 static int ext4_inode_blocks_set(handle_t *handle, 4370 struct ext4_inode *raw_inode, 4371 struct ext4_inode_info *ei) 4372 { 4373 struct inode *inode = &(ei->vfs_inode); 4374 u64 i_blocks = inode->i_blocks; 4375 struct super_block *sb = inode->i_sb; 4376 4377 if (i_blocks <= ~0U) { 4378 /* 4379 * i_blocks can be represented in a 32 bit variable 4380 * as multiple of 512 bytes 4381 */ 4382 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4383 raw_inode->i_blocks_high = 0; 4384 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4385 return 0; 4386 } 4387 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4388 return -EFBIG; 4389 4390 if (i_blocks <= 0xffffffffffffULL) { 4391 /* 4392 * i_blocks can be represented in a 48 bit variable 4393 * as multiple of 512 bytes 4394 */ 4395 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4396 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4397 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4398 } else { 4399 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4400 /* i_block is stored in file system block size */ 4401 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4402 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4403 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4404 } 4405 return 0; 4406 } 4407 4408 /* 4409 * Post the struct inode info into an on-disk inode location in the 4410 * buffer-cache. This gobbles the caller's reference to the 4411 * buffer_head in the inode location struct. 4412 * 4413 * The caller must have write access to iloc->bh. 4414 */ 4415 static int ext4_do_update_inode(handle_t *handle, 4416 struct inode *inode, 4417 struct ext4_iloc *iloc) 4418 { 4419 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4420 struct ext4_inode_info *ei = EXT4_I(inode); 4421 struct buffer_head *bh = iloc->bh; 4422 int err = 0, rc, block; 4423 int need_datasync = 0; 4424 uid_t i_uid; 4425 gid_t i_gid; 4426 4427 /* For fields not not tracking in the in-memory inode, 4428 * initialise them to zero for new inodes. */ 4429 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4430 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4431 4432 ext4_get_inode_flags(ei); 4433 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4434 i_uid = i_uid_read(inode); 4435 i_gid = i_gid_read(inode); 4436 if (!(test_opt(inode->i_sb, NO_UID32))) { 4437 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4438 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4439 /* 4440 * Fix up interoperability with old kernels. Otherwise, old inodes get 4441 * re-used with the upper 16 bits of the uid/gid intact 4442 */ 4443 if (!ei->i_dtime) { 4444 raw_inode->i_uid_high = 4445 cpu_to_le16(high_16_bits(i_uid)); 4446 raw_inode->i_gid_high = 4447 cpu_to_le16(high_16_bits(i_gid)); 4448 } else { 4449 raw_inode->i_uid_high = 0; 4450 raw_inode->i_gid_high = 0; 4451 } 4452 } else { 4453 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4454 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4455 raw_inode->i_uid_high = 0; 4456 raw_inode->i_gid_high = 0; 4457 } 4458 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4459 4460 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4461 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4462 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4463 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4464 4465 if (ext4_inode_blocks_set(handle, raw_inode, ei)) 4466 goto out_brelse; 4467 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4468 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4469 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 4470 cpu_to_le32(EXT4_OS_HURD)) 4471 raw_inode->i_file_acl_high = 4472 cpu_to_le16(ei->i_file_acl >> 32); 4473 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4474 if (ei->i_disksize != ext4_isize(raw_inode)) { 4475 ext4_isize_set(raw_inode, ei->i_disksize); 4476 need_datasync = 1; 4477 } 4478 if (ei->i_disksize > 0x7fffffffULL) { 4479 struct super_block *sb = inode->i_sb; 4480 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4481 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4482 EXT4_SB(sb)->s_es->s_rev_level == 4483 cpu_to_le32(EXT4_GOOD_OLD_REV)) { 4484 /* If this is the first large file 4485 * created, add a flag to the superblock. 4486 */ 4487 err = ext4_journal_get_write_access(handle, 4488 EXT4_SB(sb)->s_sbh); 4489 if (err) 4490 goto out_brelse; 4491 ext4_update_dynamic_rev(sb); 4492 EXT4_SET_RO_COMPAT_FEATURE(sb, 4493 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4494 ext4_handle_sync(handle); 4495 err = ext4_handle_dirty_super(handle, sb); 4496 } 4497 } 4498 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4499 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4500 if (old_valid_dev(inode->i_rdev)) { 4501 raw_inode->i_block[0] = 4502 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4503 raw_inode->i_block[1] = 0; 4504 } else { 4505 raw_inode->i_block[0] = 0; 4506 raw_inode->i_block[1] = 4507 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4508 raw_inode->i_block[2] = 0; 4509 } 4510 } else if (!ext4_has_inline_data(inode)) { 4511 for (block = 0; block < EXT4_N_BLOCKS; block++) 4512 raw_inode->i_block[block] = ei->i_data[block]; 4513 } 4514 4515 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4516 if (ei->i_extra_isize) { 4517 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4518 raw_inode->i_version_hi = 4519 cpu_to_le32(inode->i_version >> 32); 4520 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize); 4521 } 4522 4523 ext4_inode_csum_set(inode, raw_inode, ei); 4524 4525 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4526 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4527 if (!err) 4528 err = rc; 4529 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4530 4531 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4532 out_brelse: 4533 brelse(bh); 4534 ext4_std_error(inode->i_sb, err); 4535 return err; 4536 } 4537 4538 /* 4539 * ext4_write_inode() 4540 * 4541 * We are called from a few places: 4542 * 4543 * - Within generic_file_write() for O_SYNC files. 4544 * Here, there will be no transaction running. We wait for any running 4545 * transaction to commit. 4546 * 4547 * - Within sys_sync(), kupdate and such. 4548 * We wait on commit, if tol to. 4549 * 4550 * - Within prune_icache() (PF_MEMALLOC == true) 4551 * Here we simply return. We can't afford to block kswapd on the 4552 * journal commit. 4553 * 4554 * In all cases it is actually safe for us to return without doing anything, 4555 * because the inode has been copied into a raw inode buffer in 4556 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for 4557 * knfsd. 4558 * 4559 * Note that we are absolutely dependent upon all inode dirtiers doing the 4560 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4561 * which we are interested. 4562 * 4563 * It would be a bug for them to not do this. The code: 4564 * 4565 * mark_inode_dirty(inode) 4566 * stuff(); 4567 * inode->i_size = expr; 4568 * 4569 * is in error because a kswapd-driven write_inode() could occur while 4570 * `stuff()' is running, and the new i_size will be lost. Plus the inode 4571 * will no longer be on the superblock's dirty inode list. 4572 */ 4573 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4574 { 4575 int err; 4576 4577 if (current->flags & PF_MEMALLOC) 4578 return 0; 4579 4580 if (EXT4_SB(inode->i_sb)->s_journal) { 4581 if (ext4_journal_current_handle()) { 4582 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4583 dump_stack(); 4584 return -EIO; 4585 } 4586 4587 if (wbc->sync_mode != WB_SYNC_ALL) 4588 return 0; 4589 4590 err = ext4_force_commit(inode->i_sb); 4591 } else { 4592 struct ext4_iloc iloc; 4593 4594 err = __ext4_get_inode_loc(inode, &iloc, 0); 4595 if (err) 4596 return err; 4597 if (wbc->sync_mode == WB_SYNC_ALL) 4598 sync_dirty_buffer(iloc.bh); 4599 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4600 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4601 "IO error syncing inode"); 4602 err = -EIO; 4603 } 4604 brelse(iloc.bh); 4605 } 4606 return err; 4607 } 4608 4609 /* 4610 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4611 * buffers that are attached to a page stradding i_size and are undergoing 4612 * commit. In that case we have to wait for commit to finish and try again. 4613 */ 4614 static void ext4_wait_for_tail_page_commit(struct inode *inode) 4615 { 4616 struct page *page; 4617 unsigned offset; 4618 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4619 tid_t commit_tid = 0; 4620 int ret; 4621 4622 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4623 /* 4624 * All buffers in the last page remain valid? Then there's nothing to 4625 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4626 * blocksize case 4627 */ 4628 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4629 return; 4630 while (1) { 4631 page = find_lock_page(inode->i_mapping, 4632 inode->i_size >> PAGE_CACHE_SHIFT); 4633 if (!page) 4634 return; 4635 ret = __ext4_journalled_invalidatepage(page, offset); 4636 unlock_page(page); 4637 page_cache_release(page); 4638 if (ret != -EBUSY) 4639 return; 4640 commit_tid = 0; 4641 read_lock(&journal->j_state_lock); 4642 if (journal->j_committing_transaction) 4643 commit_tid = journal->j_committing_transaction->t_tid; 4644 read_unlock(&journal->j_state_lock); 4645 if (commit_tid) 4646 jbd2_log_wait_commit(journal, commit_tid); 4647 } 4648 } 4649 4650 /* 4651 * ext4_setattr() 4652 * 4653 * Called from notify_change. 4654 * 4655 * We want to trap VFS attempts to truncate the file as soon as 4656 * possible. In particular, we want to make sure that when the VFS 4657 * shrinks i_size, we put the inode on the orphan list and modify 4658 * i_disksize immediately, so that during the subsequent flushing of 4659 * dirty pages and freeing of disk blocks, we can guarantee that any 4660 * commit will leave the blocks being flushed in an unused state on 4661 * disk. (On recovery, the inode will get truncated and the blocks will 4662 * be freed, so we have a strong guarantee that no future commit will 4663 * leave these blocks visible to the user.) 4664 * 4665 * Another thing we have to assure is that if we are in ordered mode 4666 * and inode is still attached to the committing transaction, we must 4667 * we start writeout of all the dirty pages which are being truncated. 4668 * This way we are sure that all the data written in the previous 4669 * transaction are already on disk (truncate waits for pages under 4670 * writeback). 4671 * 4672 * Called with inode->i_mutex down. 4673 */ 4674 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4675 { 4676 struct inode *inode = dentry->d_inode; 4677 int error, rc = 0; 4678 int orphan = 0; 4679 const unsigned int ia_valid = attr->ia_valid; 4680 4681 error = inode_change_ok(inode, attr); 4682 if (error) 4683 return error; 4684 4685 if (is_quota_modification(inode, attr)) 4686 dquot_initialize(inode); 4687 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4688 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4689 handle_t *handle; 4690 4691 /* (user+group)*(old+new) structure, inode write (sb, 4692 * inode block, ? - but truncate inode update has it) */ 4693 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4694 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4695 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4696 if (IS_ERR(handle)) { 4697 error = PTR_ERR(handle); 4698 goto err_out; 4699 } 4700 error = dquot_transfer(inode, attr); 4701 if (error) { 4702 ext4_journal_stop(handle); 4703 return error; 4704 } 4705 /* Update corresponding info in inode so that everything is in 4706 * one transaction */ 4707 if (attr->ia_valid & ATTR_UID) 4708 inode->i_uid = attr->ia_uid; 4709 if (attr->ia_valid & ATTR_GID) 4710 inode->i_gid = attr->ia_gid; 4711 error = ext4_mark_inode_dirty(handle, inode); 4712 ext4_journal_stop(handle); 4713 } 4714 4715 if (attr->ia_valid & ATTR_SIZE) { 4716 4717 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4718 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4719 4720 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4721 return -EFBIG; 4722 } 4723 } 4724 4725 if (S_ISREG(inode->i_mode) && 4726 attr->ia_valid & ATTR_SIZE && 4727 (attr->ia_size < inode->i_size)) { 4728 handle_t *handle; 4729 4730 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4731 if (IS_ERR(handle)) { 4732 error = PTR_ERR(handle); 4733 goto err_out; 4734 } 4735 if (ext4_handle_valid(handle)) { 4736 error = ext4_orphan_add(handle, inode); 4737 orphan = 1; 4738 } 4739 EXT4_I(inode)->i_disksize = attr->ia_size; 4740 rc = ext4_mark_inode_dirty(handle, inode); 4741 if (!error) 4742 error = rc; 4743 ext4_journal_stop(handle); 4744 4745 if (ext4_should_order_data(inode)) { 4746 error = ext4_begin_ordered_truncate(inode, 4747 attr->ia_size); 4748 if (error) { 4749 /* Do as much error cleanup as possible */ 4750 handle = ext4_journal_start(inode, 4751 EXT4_HT_INODE, 3); 4752 if (IS_ERR(handle)) { 4753 ext4_orphan_del(NULL, inode); 4754 goto err_out; 4755 } 4756 ext4_orphan_del(handle, inode); 4757 orphan = 0; 4758 ext4_journal_stop(handle); 4759 goto err_out; 4760 } 4761 } 4762 } 4763 4764 if (attr->ia_valid & ATTR_SIZE) { 4765 if (attr->ia_size != inode->i_size) { 4766 loff_t oldsize = inode->i_size; 4767 4768 i_size_write(inode, attr->ia_size); 4769 /* 4770 * Blocks are going to be removed from the inode. Wait 4771 * for dio in flight. Temporarily disable 4772 * dioread_nolock to prevent livelock. 4773 */ 4774 if (orphan) { 4775 if (!ext4_should_journal_data(inode)) { 4776 ext4_inode_block_unlocked_dio(inode); 4777 inode_dio_wait(inode); 4778 ext4_inode_resume_unlocked_dio(inode); 4779 } else 4780 ext4_wait_for_tail_page_commit(inode); 4781 } 4782 /* 4783 * Truncate pagecache after we've waited for commit 4784 * in data=journal mode to make pages freeable. 4785 */ 4786 truncate_pagecache(inode, oldsize, inode->i_size); 4787 } 4788 ext4_truncate(inode); 4789 } 4790 4791 if (!rc) { 4792 setattr_copy(inode, attr); 4793 mark_inode_dirty(inode); 4794 } 4795 4796 /* 4797 * If the call to ext4_truncate failed to get a transaction handle at 4798 * all, we need to clean up the in-core orphan list manually. 4799 */ 4800 if (orphan && inode->i_nlink) 4801 ext4_orphan_del(NULL, inode); 4802 4803 if (!rc && (ia_valid & ATTR_MODE)) 4804 rc = ext4_acl_chmod(inode); 4805 4806 err_out: 4807 ext4_std_error(inode->i_sb, error); 4808 if (!error) 4809 error = rc; 4810 return error; 4811 } 4812 4813 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4814 struct kstat *stat) 4815 { 4816 struct inode *inode; 4817 unsigned long delalloc_blocks; 4818 4819 inode = dentry->d_inode; 4820 generic_fillattr(inode, stat); 4821 4822 /* 4823 * We can't update i_blocks if the block allocation is delayed 4824 * otherwise in the case of system crash before the real block 4825 * allocation is done, we will have i_blocks inconsistent with 4826 * on-disk file blocks. 4827 * We always keep i_blocks updated together with real 4828 * allocation. But to not confuse with user, stat 4829 * will return the blocks that include the delayed allocation 4830 * blocks for this file. 4831 */ 4832 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4833 EXT4_I(inode)->i_reserved_data_blocks); 4834 4835 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9; 4836 return 0; 4837 } 4838 4839 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4840 { 4841 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4842 return ext4_ind_trans_blocks(inode, nrblocks, chunk); 4843 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk); 4844 } 4845 4846 /* 4847 * Account for index blocks, block groups bitmaps and block group 4848 * descriptor blocks if modify datablocks and index blocks 4849 * worse case, the indexs blocks spread over different block groups 4850 * 4851 * If datablocks are discontiguous, they are possible to spread over 4852 * different block groups too. If they are contiguous, with flexbg, 4853 * they could still across block group boundary. 4854 * 4855 * Also account for superblock, inode, quota and xattr blocks 4856 */ 4857 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk) 4858 { 4859 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4860 int gdpblocks; 4861 int idxblocks; 4862 int ret = 0; 4863 4864 /* 4865 * How many index blocks need to touch to modify nrblocks? 4866 * The "Chunk" flag indicating whether the nrblocks is 4867 * physically contiguous on disk 4868 * 4869 * For Direct IO and fallocate, they calls get_block to allocate 4870 * one single extent at a time, so they could set the "Chunk" flag 4871 */ 4872 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk); 4873 4874 ret = idxblocks; 4875 4876 /* 4877 * Now let's see how many group bitmaps and group descriptors need 4878 * to account 4879 */ 4880 groups = idxblocks; 4881 if (chunk) 4882 groups += 1; 4883 else 4884 groups += nrblocks; 4885 4886 gdpblocks = groups; 4887 if (groups > ngroups) 4888 groups = ngroups; 4889 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4890 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4891 4892 /* bitmaps and block group descriptor blocks */ 4893 ret += groups + gdpblocks; 4894 4895 /* Blocks for super block, inode, quota and xattr blocks */ 4896 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4897 4898 return ret; 4899 } 4900 4901 /* 4902 * Calculate the total number of credits to reserve to fit 4903 * the modification of a single pages into a single transaction, 4904 * which may include multiple chunks of block allocations. 4905 * 4906 * This could be called via ext4_write_begin() 4907 * 4908 * We need to consider the worse case, when 4909 * one new block per extent. 4910 */ 4911 int ext4_writepage_trans_blocks(struct inode *inode) 4912 { 4913 int bpp = ext4_journal_blocks_per_page(inode); 4914 int ret; 4915 4916 ret = ext4_meta_trans_blocks(inode, bpp, 0); 4917 4918 /* Account for data blocks for journalled mode */ 4919 if (ext4_should_journal_data(inode)) 4920 ret += bpp; 4921 return ret; 4922 } 4923 4924 /* 4925 * Calculate the journal credits for a chunk of data modification. 4926 * 4927 * This is called from DIO, fallocate or whoever calling 4928 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4929 * 4930 * journal buffers for data blocks are not included here, as DIO 4931 * and fallocate do no need to journal data buffers. 4932 */ 4933 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4934 { 4935 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4936 } 4937 4938 /* 4939 * The caller must have previously called ext4_reserve_inode_write(). 4940 * Give this, we know that the caller already has write access to iloc->bh. 4941 */ 4942 int ext4_mark_iloc_dirty(handle_t *handle, 4943 struct inode *inode, struct ext4_iloc *iloc) 4944 { 4945 int err = 0; 4946 4947 if (IS_I_VERSION(inode)) 4948 inode_inc_iversion(inode); 4949 4950 /* the do_update_inode consumes one bh->b_count */ 4951 get_bh(iloc->bh); 4952 4953 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 4954 err = ext4_do_update_inode(handle, inode, iloc); 4955 put_bh(iloc->bh); 4956 return err; 4957 } 4958 4959 /* 4960 * On success, We end up with an outstanding reference count against 4961 * iloc->bh. This _must_ be cleaned up later. 4962 */ 4963 4964 int 4965 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 4966 struct ext4_iloc *iloc) 4967 { 4968 int err; 4969 4970 err = ext4_get_inode_loc(inode, iloc); 4971 if (!err) { 4972 BUFFER_TRACE(iloc->bh, "get_write_access"); 4973 err = ext4_journal_get_write_access(handle, iloc->bh); 4974 if (err) { 4975 brelse(iloc->bh); 4976 iloc->bh = NULL; 4977 } 4978 } 4979 ext4_std_error(inode->i_sb, err); 4980 return err; 4981 } 4982 4983 /* 4984 * Expand an inode by new_extra_isize bytes. 4985 * Returns 0 on success or negative error number on failure. 4986 */ 4987 static int ext4_expand_extra_isize(struct inode *inode, 4988 unsigned int new_extra_isize, 4989 struct ext4_iloc iloc, 4990 handle_t *handle) 4991 { 4992 struct ext4_inode *raw_inode; 4993 struct ext4_xattr_ibody_header *header; 4994 4995 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 4996 return 0; 4997 4998 raw_inode = ext4_raw_inode(&iloc); 4999 5000 header = IHDR(inode, raw_inode); 5001 5002 /* No extended attributes present */ 5003 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5004 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5005 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5006 new_extra_isize); 5007 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5008 return 0; 5009 } 5010 5011 /* try to expand with EAs present */ 5012 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5013 raw_inode, handle); 5014 } 5015 5016 /* 5017 * What we do here is to mark the in-core inode as clean with respect to inode 5018 * dirtiness (it may still be data-dirty). 5019 * This means that the in-core inode may be reaped by prune_icache 5020 * without having to perform any I/O. This is a very good thing, 5021 * because *any* task may call prune_icache - even ones which 5022 * have a transaction open against a different journal. 5023 * 5024 * Is this cheating? Not really. Sure, we haven't written the 5025 * inode out, but prune_icache isn't a user-visible syncing function. 5026 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5027 * we start and wait on commits. 5028 */ 5029 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5030 { 5031 struct ext4_iloc iloc; 5032 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5033 static unsigned int mnt_count; 5034 int err, ret; 5035 5036 might_sleep(); 5037 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5038 err = ext4_reserve_inode_write(handle, inode, &iloc); 5039 if (ext4_handle_valid(handle) && 5040 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5041 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5042 /* 5043 * We need extra buffer credits since we may write into EA block 5044 * with this same handle. If journal_extend fails, then it will 5045 * only result in a minor loss of functionality for that inode. 5046 * If this is felt to be critical, then e2fsck should be run to 5047 * force a large enough s_min_extra_isize. 5048 */ 5049 if ((jbd2_journal_extend(handle, 5050 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5051 ret = ext4_expand_extra_isize(inode, 5052 sbi->s_want_extra_isize, 5053 iloc, handle); 5054 if (ret) { 5055 ext4_set_inode_state(inode, 5056 EXT4_STATE_NO_EXPAND); 5057 if (mnt_count != 5058 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5059 ext4_warning(inode->i_sb, 5060 "Unable to expand inode %lu. Delete" 5061 " some EAs or run e2fsck.", 5062 inode->i_ino); 5063 mnt_count = 5064 le16_to_cpu(sbi->s_es->s_mnt_count); 5065 } 5066 } 5067 } 5068 } 5069 if (!err) 5070 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5071 return err; 5072 } 5073 5074 /* 5075 * ext4_dirty_inode() is called from __mark_inode_dirty() 5076 * 5077 * We're really interested in the case where a file is being extended. 5078 * i_size has been changed by generic_commit_write() and we thus need 5079 * to include the updated inode in the current transaction. 5080 * 5081 * Also, dquot_alloc_block() will always dirty the inode when blocks 5082 * are allocated to the file. 5083 * 5084 * If the inode is marked synchronous, we don't honour that here - doing 5085 * so would cause a commit on atime updates, which we don't bother doing. 5086 * We handle synchronous inodes at the highest possible level. 5087 */ 5088 void ext4_dirty_inode(struct inode *inode, int flags) 5089 { 5090 handle_t *handle; 5091 5092 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5093 if (IS_ERR(handle)) 5094 goto out; 5095 5096 ext4_mark_inode_dirty(handle, inode); 5097 5098 ext4_journal_stop(handle); 5099 out: 5100 return; 5101 } 5102 5103 #if 0 5104 /* 5105 * Bind an inode's backing buffer_head into this transaction, to prevent 5106 * it from being flushed to disk early. Unlike 5107 * ext4_reserve_inode_write, this leaves behind no bh reference and 5108 * returns no iloc structure, so the caller needs to repeat the iloc 5109 * lookup to mark the inode dirty later. 5110 */ 5111 static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5112 { 5113 struct ext4_iloc iloc; 5114 5115 int err = 0; 5116 if (handle) { 5117 err = ext4_get_inode_loc(inode, &iloc); 5118 if (!err) { 5119 BUFFER_TRACE(iloc.bh, "get_write_access"); 5120 err = jbd2_journal_get_write_access(handle, iloc.bh); 5121 if (!err) 5122 err = ext4_handle_dirty_metadata(handle, 5123 NULL, 5124 iloc.bh); 5125 brelse(iloc.bh); 5126 } 5127 } 5128 ext4_std_error(inode->i_sb, err); 5129 return err; 5130 } 5131 #endif 5132 5133 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5134 { 5135 journal_t *journal; 5136 handle_t *handle; 5137 int err; 5138 5139 /* 5140 * We have to be very careful here: changing a data block's 5141 * journaling status dynamically is dangerous. If we write a 5142 * data block to the journal, change the status and then delete 5143 * that block, we risk forgetting to revoke the old log record 5144 * from the journal and so a subsequent replay can corrupt data. 5145 * So, first we make sure that the journal is empty and that 5146 * nobody is changing anything. 5147 */ 5148 5149 journal = EXT4_JOURNAL(inode); 5150 if (!journal) 5151 return 0; 5152 if (is_journal_aborted(journal)) 5153 return -EROFS; 5154 /* We have to allocate physical blocks for delalloc blocks 5155 * before flushing journal. otherwise delalloc blocks can not 5156 * be allocated any more. even more truncate on delalloc blocks 5157 * could trigger BUG by flushing delalloc blocks in journal. 5158 * There is no delalloc block in non-journal data mode. 5159 */ 5160 if (val && test_opt(inode->i_sb, DELALLOC)) { 5161 err = ext4_alloc_da_blocks(inode); 5162 if (err < 0) 5163 return err; 5164 } 5165 5166 /* Wait for all existing dio workers */ 5167 ext4_inode_block_unlocked_dio(inode); 5168 inode_dio_wait(inode); 5169 5170 jbd2_journal_lock_updates(journal); 5171 5172 /* 5173 * OK, there are no updates running now, and all cached data is 5174 * synced to disk. We are now in a completely consistent state 5175 * which doesn't have anything in the journal, and we know that 5176 * no filesystem updates are running, so it is safe to modify 5177 * the inode's in-core data-journaling state flag now. 5178 */ 5179 5180 if (val) 5181 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5182 else { 5183 jbd2_journal_flush(journal); 5184 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5185 } 5186 ext4_set_aops(inode); 5187 5188 jbd2_journal_unlock_updates(journal); 5189 ext4_inode_resume_unlocked_dio(inode); 5190 5191 /* Finally we can mark the inode as dirty. */ 5192 5193 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5194 if (IS_ERR(handle)) 5195 return PTR_ERR(handle); 5196 5197 err = ext4_mark_inode_dirty(handle, inode); 5198 ext4_handle_sync(handle); 5199 ext4_journal_stop(handle); 5200 ext4_std_error(inode->i_sb, err); 5201 5202 return err; 5203 } 5204 5205 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5206 { 5207 return !buffer_mapped(bh); 5208 } 5209 5210 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5211 { 5212 struct page *page = vmf->page; 5213 loff_t size; 5214 unsigned long len; 5215 int ret; 5216 struct file *file = vma->vm_file; 5217 struct inode *inode = file_inode(file); 5218 struct address_space *mapping = inode->i_mapping; 5219 handle_t *handle; 5220 get_block_t *get_block; 5221 int retries = 0; 5222 5223 sb_start_pagefault(inode->i_sb); 5224 file_update_time(vma->vm_file); 5225 /* Delalloc case is easy... */ 5226 if (test_opt(inode->i_sb, DELALLOC) && 5227 !ext4_should_journal_data(inode) && 5228 !ext4_nonda_switch(inode->i_sb)) { 5229 do { 5230 ret = __block_page_mkwrite(vma, vmf, 5231 ext4_da_get_block_prep); 5232 } while (ret == -ENOSPC && 5233 ext4_should_retry_alloc(inode->i_sb, &retries)); 5234 goto out_ret; 5235 } 5236 5237 lock_page(page); 5238 size = i_size_read(inode); 5239 /* Page got truncated from under us? */ 5240 if (page->mapping != mapping || page_offset(page) > size) { 5241 unlock_page(page); 5242 ret = VM_FAULT_NOPAGE; 5243 goto out; 5244 } 5245 5246 if (page->index == size >> PAGE_CACHE_SHIFT) 5247 len = size & ~PAGE_CACHE_MASK; 5248 else 5249 len = PAGE_CACHE_SIZE; 5250 /* 5251 * Return if we have all the buffers mapped. This avoids the need to do 5252 * journal_start/journal_stop which can block and take a long time 5253 */ 5254 if (page_has_buffers(page)) { 5255 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5256 0, len, NULL, 5257 ext4_bh_unmapped)) { 5258 /* Wait so that we don't change page under IO */ 5259 wait_for_stable_page(page); 5260 ret = VM_FAULT_LOCKED; 5261 goto out; 5262 } 5263 } 5264 unlock_page(page); 5265 /* OK, we need to fill the hole... */ 5266 if (ext4_should_dioread_nolock(inode)) 5267 get_block = ext4_get_block_write; 5268 else 5269 get_block = ext4_get_block; 5270 retry_alloc: 5271 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5272 ext4_writepage_trans_blocks(inode)); 5273 if (IS_ERR(handle)) { 5274 ret = VM_FAULT_SIGBUS; 5275 goto out; 5276 } 5277 ret = __block_page_mkwrite(vma, vmf, get_block); 5278 if (!ret && ext4_should_journal_data(inode)) { 5279 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5280 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5281 unlock_page(page); 5282 ret = VM_FAULT_SIGBUS; 5283 ext4_journal_stop(handle); 5284 goto out; 5285 } 5286 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5287 } 5288 ext4_journal_stop(handle); 5289 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5290 goto retry_alloc; 5291 out_ret: 5292 ret = block_page_mkwrite_return(ret); 5293 out: 5294 sb_end_pagefault(inode->i_sb); 5295 return ret; 5296 } 5297