xref: /openbmc/linux/fs/ext4/inode.c (revision f35e839a)
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *	(jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20 
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/aio.h>
41 
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "truncate.h"
46 
47 #include <trace/events/ext4.h>
48 
49 #define MPAGE_DA_EXTENT_TAIL 0x01
50 
51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 			      struct ext4_inode_info *ei)
53 {
54 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 	__u16 csum_lo;
56 	__u16 csum_hi = 0;
57 	__u32 csum;
58 
59 	csum_lo = le16_to_cpu(raw->i_checksum_lo);
60 	raw->i_checksum_lo = 0;
61 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
63 		csum_hi = le16_to_cpu(raw->i_checksum_hi);
64 		raw->i_checksum_hi = 0;
65 	}
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 			   EXT4_INODE_SIZE(inode->i_sb));
69 
70 	raw->i_checksum_lo = cpu_to_le16(csum_lo);
71 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
73 		raw->i_checksum_hi = cpu_to_le16(csum_hi);
74 
75 	return csum;
76 }
77 
78 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 				  struct ext4_inode_info *ei)
80 {
81 	__u32 provided, calculated;
82 
83 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 	    cpu_to_le32(EXT4_OS_LINUX) ||
85 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 		return 1;
88 
89 	provided = le16_to_cpu(raw->i_checksum_lo);
90 	calculated = ext4_inode_csum(inode, raw, ei);
91 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 	else
95 		calculated &= 0xFFFF;
96 
97 	return provided == calculated;
98 }
99 
100 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 				struct ext4_inode_info *ei)
102 {
103 	__u32 csum;
104 
105 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 	    cpu_to_le32(EXT4_OS_LINUX) ||
107 	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 		return;
110 
111 	csum = ext4_inode_csum(inode, raw, ei);
112 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116 }
117 
118 static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 					      loff_t new_size)
120 {
121 	trace_ext4_begin_ordered_truncate(inode, new_size);
122 	/*
123 	 * If jinode is zero, then we never opened the file for
124 	 * writing, so there's no need to call
125 	 * jbd2_journal_begin_ordered_truncate() since there's no
126 	 * outstanding writes we need to flush.
127 	 */
128 	if (!EXT4_I(inode)->jinode)
129 		return 0;
130 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 						   EXT4_I(inode)->jinode,
132 						   new_size);
133 }
134 
135 static void ext4_invalidatepage(struct page *page, unsigned long offset);
136 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
137 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
138 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
139 		struct inode *inode, struct page *page, loff_t from,
140 		loff_t length, int flags);
141 
142 /*
143  * Test whether an inode is a fast symlink.
144  */
145 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 {
147 	int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 		(inode->i_sb->s_blocksize >> 9) : 0;
149 
150 	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151 }
152 
153 /*
154  * Restart the transaction associated with *handle.  This does a commit,
155  * so before we call here everything must be consistently dirtied against
156  * this transaction.
157  */
158 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
159 				 int nblocks)
160 {
161 	int ret;
162 
163 	/*
164 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
165 	 * moment, get_block can be called only for blocks inside i_size since
166 	 * page cache has been already dropped and writes are blocked by
167 	 * i_mutex. So we can safely drop the i_data_sem here.
168 	 */
169 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
170 	jbd_debug(2, "restarting handle %p\n", handle);
171 	up_write(&EXT4_I(inode)->i_data_sem);
172 	ret = ext4_journal_restart(handle, nblocks);
173 	down_write(&EXT4_I(inode)->i_data_sem);
174 	ext4_discard_preallocations(inode);
175 
176 	return ret;
177 }
178 
179 /*
180  * Called at the last iput() if i_nlink is zero.
181  */
182 void ext4_evict_inode(struct inode *inode)
183 {
184 	handle_t *handle;
185 	int err;
186 
187 	trace_ext4_evict_inode(inode);
188 
189 	if (inode->i_nlink) {
190 		/*
191 		 * When journalling data dirty buffers are tracked only in the
192 		 * journal. So although mm thinks everything is clean and
193 		 * ready for reaping the inode might still have some pages to
194 		 * write in the running transaction or waiting to be
195 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 		 * (via truncate_inode_pages()) to discard these buffers can
197 		 * cause data loss. Also even if we did not discard these
198 		 * buffers, we would have no way to find them after the inode
199 		 * is reaped and thus user could see stale data if he tries to
200 		 * read them before the transaction is checkpointed. So be
201 		 * careful and force everything to disk here... We use
202 		 * ei->i_datasync_tid to store the newest transaction
203 		 * containing inode's data.
204 		 *
205 		 * Note that directories do not have this problem because they
206 		 * don't use page cache.
207 		 */
208 		if (ext4_should_journal_data(inode) &&
209 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 		    inode->i_ino != EXT4_JOURNAL_INO) {
211 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213 
214 			jbd2_complete_transaction(journal, commit_tid);
215 			filemap_write_and_wait(&inode->i_data);
216 		}
217 		truncate_inode_pages(&inode->i_data, 0);
218 		ext4_ioend_shutdown(inode);
219 		goto no_delete;
220 	}
221 
222 	if (!is_bad_inode(inode))
223 		dquot_initialize(inode);
224 
225 	if (ext4_should_order_data(inode))
226 		ext4_begin_ordered_truncate(inode, 0);
227 	truncate_inode_pages(&inode->i_data, 0);
228 	ext4_ioend_shutdown(inode);
229 
230 	if (is_bad_inode(inode))
231 		goto no_delete;
232 
233 	/*
234 	 * Protect us against freezing - iput() caller didn't have to have any
235 	 * protection against it
236 	 */
237 	sb_start_intwrite(inode->i_sb);
238 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 				    ext4_blocks_for_truncate(inode)+3);
240 	if (IS_ERR(handle)) {
241 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 		/*
243 		 * If we're going to skip the normal cleanup, we still need to
244 		 * make sure that the in-core orphan linked list is properly
245 		 * cleaned up.
246 		 */
247 		ext4_orphan_del(NULL, inode);
248 		sb_end_intwrite(inode->i_sb);
249 		goto no_delete;
250 	}
251 
252 	if (IS_SYNC(inode))
253 		ext4_handle_sync(handle);
254 	inode->i_size = 0;
255 	err = ext4_mark_inode_dirty(handle, inode);
256 	if (err) {
257 		ext4_warning(inode->i_sb,
258 			     "couldn't mark inode dirty (err %d)", err);
259 		goto stop_handle;
260 	}
261 	if (inode->i_blocks)
262 		ext4_truncate(inode);
263 
264 	/*
265 	 * ext4_ext_truncate() doesn't reserve any slop when it
266 	 * restarts journal transactions; therefore there may not be
267 	 * enough credits left in the handle to remove the inode from
268 	 * the orphan list and set the dtime field.
269 	 */
270 	if (!ext4_handle_has_enough_credits(handle, 3)) {
271 		err = ext4_journal_extend(handle, 3);
272 		if (err > 0)
273 			err = ext4_journal_restart(handle, 3);
274 		if (err != 0) {
275 			ext4_warning(inode->i_sb,
276 				     "couldn't extend journal (err %d)", err);
277 		stop_handle:
278 			ext4_journal_stop(handle);
279 			ext4_orphan_del(NULL, inode);
280 			sb_end_intwrite(inode->i_sb);
281 			goto no_delete;
282 		}
283 	}
284 
285 	/*
286 	 * Kill off the orphan record which ext4_truncate created.
287 	 * AKPM: I think this can be inside the above `if'.
288 	 * Note that ext4_orphan_del() has to be able to cope with the
289 	 * deletion of a non-existent orphan - this is because we don't
290 	 * know if ext4_truncate() actually created an orphan record.
291 	 * (Well, we could do this if we need to, but heck - it works)
292 	 */
293 	ext4_orphan_del(handle, inode);
294 	EXT4_I(inode)->i_dtime	= get_seconds();
295 
296 	/*
297 	 * One subtle ordering requirement: if anything has gone wrong
298 	 * (transaction abort, IO errors, whatever), then we can still
299 	 * do these next steps (the fs will already have been marked as
300 	 * having errors), but we can't free the inode if the mark_dirty
301 	 * fails.
302 	 */
303 	if (ext4_mark_inode_dirty(handle, inode))
304 		/* If that failed, just do the required in-core inode clear. */
305 		ext4_clear_inode(inode);
306 	else
307 		ext4_free_inode(handle, inode);
308 	ext4_journal_stop(handle);
309 	sb_end_intwrite(inode->i_sb);
310 	return;
311 no_delete:
312 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
313 }
314 
315 #ifdef CONFIG_QUOTA
316 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 {
318 	return &EXT4_I(inode)->i_reserved_quota;
319 }
320 #endif
321 
322 /*
323  * Calculate the number of metadata blocks need to reserve
324  * to allocate a block located at @lblock
325  */
326 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327 {
328 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
329 		return ext4_ext_calc_metadata_amount(inode, lblock);
330 
331 	return ext4_ind_calc_metadata_amount(inode, lblock);
332 }
333 
334 /*
335  * Called with i_data_sem down, which is important since we can call
336  * ext4_discard_preallocations() from here.
337  */
338 void ext4_da_update_reserve_space(struct inode *inode,
339 					int used, int quota_claim)
340 {
341 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
342 	struct ext4_inode_info *ei = EXT4_I(inode);
343 
344 	spin_lock(&ei->i_block_reservation_lock);
345 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
346 	if (unlikely(used > ei->i_reserved_data_blocks)) {
347 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
348 			 "with only %d reserved data blocks",
349 			 __func__, inode->i_ino, used,
350 			 ei->i_reserved_data_blocks);
351 		WARN_ON(1);
352 		used = ei->i_reserved_data_blocks;
353 	}
354 
355 	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
356 		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
357 			"with only %d reserved metadata blocks "
358 			"(releasing %d blocks with reserved %d data blocks)",
359 			inode->i_ino, ei->i_allocated_meta_blocks,
360 			     ei->i_reserved_meta_blocks, used,
361 			     ei->i_reserved_data_blocks);
362 		WARN_ON(1);
363 		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 	}
365 
366 	/* Update per-inode reservations */
367 	ei->i_reserved_data_blocks -= used;
368 	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369 	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370 			   used + ei->i_allocated_meta_blocks);
371 	ei->i_allocated_meta_blocks = 0;
372 
373 	if (ei->i_reserved_data_blocks == 0) {
374 		/*
375 		 * We can release all of the reserved metadata blocks
376 		 * only when we have written all of the delayed
377 		 * allocation blocks.
378 		 */
379 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380 				   ei->i_reserved_meta_blocks);
381 		ei->i_reserved_meta_blocks = 0;
382 		ei->i_da_metadata_calc_len = 0;
383 	}
384 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385 
386 	/* Update quota subsystem for data blocks */
387 	if (quota_claim)
388 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
389 	else {
390 		/*
391 		 * We did fallocate with an offset that is already delayed
392 		 * allocated. So on delayed allocated writeback we should
393 		 * not re-claim the quota for fallocated blocks.
394 		 */
395 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396 	}
397 
398 	/*
399 	 * If we have done all the pending block allocations and if
400 	 * there aren't any writers on the inode, we can discard the
401 	 * inode's preallocations.
402 	 */
403 	if ((ei->i_reserved_data_blocks == 0) &&
404 	    (atomic_read(&inode->i_writecount) == 0))
405 		ext4_discard_preallocations(inode);
406 }
407 
408 static int __check_block_validity(struct inode *inode, const char *func,
409 				unsigned int line,
410 				struct ext4_map_blocks *map)
411 {
412 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 				   map->m_len)) {
414 		ext4_error_inode(inode, func, line, map->m_pblk,
415 				 "lblock %lu mapped to illegal pblock "
416 				 "(length %d)", (unsigned long) map->m_lblk,
417 				 map->m_len);
418 		return -EIO;
419 	}
420 	return 0;
421 }
422 
423 #define check_block_validity(inode, map)	\
424 	__check_block_validity((inode), __func__, __LINE__, (map))
425 
426 /*
427  * Return the number of contiguous dirty pages in a given inode
428  * starting at page frame idx.
429  */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 				    unsigned int max_pages)
432 {
433 	struct address_space *mapping = inode->i_mapping;
434 	pgoff_t	index;
435 	struct pagevec pvec;
436 	pgoff_t num = 0;
437 	int i, nr_pages, done = 0;
438 
439 	if (max_pages == 0)
440 		return 0;
441 	pagevec_init(&pvec, 0);
442 	while (!done) {
443 		index = idx;
444 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 					      PAGECACHE_TAG_DIRTY,
446 					      (pgoff_t)PAGEVEC_SIZE);
447 		if (nr_pages == 0)
448 			break;
449 		for (i = 0; i < nr_pages; i++) {
450 			struct page *page = pvec.pages[i];
451 			struct buffer_head *bh, *head;
452 
453 			lock_page(page);
454 			if (unlikely(page->mapping != mapping) ||
455 			    !PageDirty(page) ||
456 			    PageWriteback(page) ||
457 			    page->index != idx) {
458 				done = 1;
459 				unlock_page(page);
460 				break;
461 			}
462 			if (page_has_buffers(page)) {
463 				bh = head = page_buffers(page);
464 				do {
465 					if (!buffer_delay(bh) &&
466 					    !buffer_unwritten(bh))
467 						done = 1;
468 					bh = bh->b_this_page;
469 				} while (!done && (bh != head));
470 			}
471 			unlock_page(page);
472 			if (done)
473 				break;
474 			idx++;
475 			num++;
476 			if (num >= max_pages) {
477 				done = 1;
478 				break;
479 			}
480 		}
481 		pagevec_release(&pvec);
482 	}
483 	return num;
484 }
485 
486 #ifdef ES_AGGRESSIVE_TEST
487 static void ext4_map_blocks_es_recheck(handle_t *handle,
488 				       struct inode *inode,
489 				       struct ext4_map_blocks *es_map,
490 				       struct ext4_map_blocks *map,
491 				       int flags)
492 {
493 	int retval;
494 
495 	map->m_flags = 0;
496 	/*
497 	 * There is a race window that the result is not the same.
498 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
499 	 * is that we lookup a block mapping in extent status tree with
500 	 * out taking i_data_sem.  So at the time the unwritten extent
501 	 * could be converted.
502 	 */
503 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
504 		down_read((&EXT4_I(inode)->i_data_sem));
505 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
506 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
507 					     EXT4_GET_BLOCKS_KEEP_SIZE);
508 	} else {
509 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
510 					     EXT4_GET_BLOCKS_KEEP_SIZE);
511 	}
512 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
513 		up_read((&EXT4_I(inode)->i_data_sem));
514 	/*
515 	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
516 	 * because it shouldn't be marked in es_map->m_flags.
517 	 */
518 	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
519 
520 	/*
521 	 * We don't check m_len because extent will be collpased in status
522 	 * tree.  So the m_len might not equal.
523 	 */
524 	if (es_map->m_lblk != map->m_lblk ||
525 	    es_map->m_flags != map->m_flags ||
526 	    es_map->m_pblk != map->m_pblk) {
527 		printk("ES cache assertation failed for inode: %lu "
528 		       "es_cached ex [%d/%d/%llu/%x] != "
529 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
530 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
531 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
532 		       map->m_len, map->m_pblk, map->m_flags,
533 		       retval, flags);
534 	}
535 }
536 #endif /* ES_AGGRESSIVE_TEST */
537 
538 /*
539  * The ext4_map_blocks() function tries to look up the requested blocks,
540  * and returns if the blocks are already mapped.
541  *
542  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
543  * and store the allocated blocks in the result buffer head and mark it
544  * mapped.
545  *
546  * If file type is extents based, it will call ext4_ext_map_blocks(),
547  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
548  * based files
549  *
550  * On success, it returns the number of blocks being mapped or allocate.
551  * if create==0 and the blocks are pre-allocated and uninitialized block,
552  * the result buffer head is unmapped. If the create ==1, it will make sure
553  * the buffer head is mapped.
554  *
555  * It returns 0 if plain look up failed (blocks have not been allocated), in
556  * that case, buffer head is unmapped
557  *
558  * It returns the error in case of allocation failure.
559  */
560 int ext4_map_blocks(handle_t *handle, struct inode *inode,
561 		    struct ext4_map_blocks *map, int flags)
562 {
563 	struct extent_status es;
564 	int retval;
565 #ifdef ES_AGGRESSIVE_TEST
566 	struct ext4_map_blocks orig_map;
567 
568 	memcpy(&orig_map, map, sizeof(*map));
569 #endif
570 
571 	map->m_flags = 0;
572 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
573 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
574 		  (unsigned long) map->m_lblk);
575 
576 	/* Lookup extent status tree firstly */
577 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
578 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
579 			map->m_pblk = ext4_es_pblock(&es) +
580 					map->m_lblk - es.es_lblk;
581 			map->m_flags |= ext4_es_is_written(&es) ?
582 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
583 			retval = es.es_len - (map->m_lblk - es.es_lblk);
584 			if (retval > map->m_len)
585 				retval = map->m_len;
586 			map->m_len = retval;
587 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
588 			retval = 0;
589 		} else {
590 			BUG_ON(1);
591 		}
592 #ifdef ES_AGGRESSIVE_TEST
593 		ext4_map_blocks_es_recheck(handle, inode, map,
594 					   &orig_map, flags);
595 #endif
596 		goto found;
597 	}
598 
599 	/*
600 	 * Try to see if we can get the block without requesting a new
601 	 * file system block.
602 	 */
603 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
604 		down_read((&EXT4_I(inode)->i_data_sem));
605 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
606 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
607 					     EXT4_GET_BLOCKS_KEEP_SIZE);
608 	} else {
609 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
610 					     EXT4_GET_BLOCKS_KEEP_SIZE);
611 	}
612 	if (retval > 0) {
613 		int ret;
614 		unsigned long long status;
615 
616 #ifdef ES_AGGRESSIVE_TEST
617 		if (retval != map->m_len) {
618 			printk("ES len assertation failed for inode: %lu "
619 			       "retval %d != map->m_len %d "
620 			       "in %s (lookup)\n", inode->i_ino, retval,
621 			       map->m_len, __func__);
622 		}
623 #endif
624 
625 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
626 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
627 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
628 		    ext4_find_delalloc_range(inode, map->m_lblk,
629 					     map->m_lblk + map->m_len - 1))
630 			status |= EXTENT_STATUS_DELAYED;
631 		ret = ext4_es_insert_extent(inode, map->m_lblk,
632 					    map->m_len, map->m_pblk, status);
633 		if (ret < 0)
634 			retval = ret;
635 	}
636 	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
637 		up_read((&EXT4_I(inode)->i_data_sem));
638 
639 found:
640 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
641 		int ret = check_block_validity(inode, map);
642 		if (ret != 0)
643 			return ret;
644 	}
645 
646 	/* If it is only a block(s) look up */
647 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
648 		return retval;
649 
650 	/*
651 	 * Returns if the blocks have already allocated
652 	 *
653 	 * Note that if blocks have been preallocated
654 	 * ext4_ext_get_block() returns the create = 0
655 	 * with buffer head unmapped.
656 	 */
657 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
658 		return retval;
659 
660 	/*
661 	 * Here we clear m_flags because after allocating an new extent,
662 	 * it will be set again.
663 	 */
664 	map->m_flags &= ~EXT4_MAP_FLAGS;
665 
666 	/*
667 	 * New blocks allocate and/or writing to uninitialized extent
668 	 * will possibly result in updating i_data, so we take
669 	 * the write lock of i_data_sem, and call get_blocks()
670 	 * with create == 1 flag.
671 	 */
672 	down_write((&EXT4_I(inode)->i_data_sem));
673 
674 	/*
675 	 * if the caller is from delayed allocation writeout path
676 	 * we have already reserved fs blocks for allocation
677 	 * let the underlying get_block() function know to
678 	 * avoid double accounting
679 	 */
680 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
681 		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
682 	/*
683 	 * We need to check for EXT4 here because migrate
684 	 * could have changed the inode type in between
685 	 */
686 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
687 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
688 	} else {
689 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
690 
691 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
692 			/*
693 			 * We allocated new blocks which will result in
694 			 * i_data's format changing.  Force the migrate
695 			 * to fail by clearing migrate flags
696 			 */
697 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
698 		}
699 
700 		/*
701 		 * Update reserved blocks/metadata blocks after successful
702 		 * block allocation which had been deferred till now. We don't
703 		 * support fallocate for non extent files. So we can update
704 		 * reserve space here.
705 		 */
706 		if ((retval > 0) &&
707 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
708 			ext4_da_update_reserve_space(inode, retval, 1);
709 	}
710 	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
711 		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
712 
713 	if (retval > 0) {
714 		int ret;
715 		unsigned long long status;
716 
717 #ifdef ES_AGGRESSIVE_TEST
718 		if (retval != map->m_len) {
719 			printk("ES len assertation failed for inode: %lu "
720 			       "retval %d != map->m_len %d "
721 			       "in %s (allocation)\n", inode->i_ino, retval,
722 			       map->m_len, __func__);
723 		}
724 #endif
725 
726 		/*
727 		 * If the extent has been zeroed out, we don't need to update
728 		 * extent status tree.
729 		 */
730 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
731 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
732 			if (ext4_es_is_written(&es))
733 				goto has_zeroout;
734 		}
735 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
736 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
737 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
738 		    ext4_find_delalloc_range(inode, map->m_lblk,
739 					     map->m_lblk + map->m_len - 1))
740 			status |= EXTENT_STATUS_DELAYED;
741 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
742 					    map->m_pblk, status);
743 		if (ret < 0)
744 			retval = ret;
745 	}
746 
747 has_zeroout:
748 	up_write((&EXT4_I(inode)->i_data_sem));
749 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
750 		int ret = check_block_validity(inode, map);
751 		if (ret != 0)
752 			return ret;
753 	}
754 	return retval;
755 }
756 
757 /* Maximum number of blocks we map for direct IO at once. */
758 #define DIO_MAX_BLOCKS 4096
759 
760 static int _ext4_get_block(struct inode *inode, sector_t iblock,
761 			   struct buffer_head *bh, int flags)
762 {
763 	handle_t *handle = ext4_journal_current_handle();
764 	struct ext4_map_blocks map;
765 	int ret = 0, started = 0;
766 	int dio_credits;
767 
768 	if (ext4_has_inline_data(inode))
769 		return -ERANGE;
770 
771 	map.m_lblk = iblock;
772 	map.m_len = bh->b_size >> inode->i_blkbits;
773 
774 	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
775 		/* Direct IO write... */
776 		if (map.m_len > DIO_MAX_BLOCKS)
777 			map.m_len = DIO_MAX_BLOCKS;
778 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
779 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
780 					    dio_credits);
781 		if (IS_ERR(handle)) {
782 			ret = PTR_ERR(handle);
783 			return ret;
784 		}
785 		started = 1;
786 	}
787 
788 	ret = ext4_map_blocks(handle, inode, &map, flags);
789 	if (ret > 0) {
790 		map_bh(bh, inode->i_sb, map.m_pblk);
791 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
792 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
793 		ret = 0;
794 	}
795 	if (started)
796 		ext4_journal_stop(handle);
797 	return ret;
798 }
799 
800 int ext4_get_block(struct inode *inode, sector_t iblock,
801 		   struct buffer_head *bh, int create)
802 {
803 	return _ext4_get_block(inode, iblock, bh,
804 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
805 }
806 
807 /*
808  * `handle' can be NULL if create is zero
809  */
810 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
811 				ext4_lblk_t block, int create, int *errp)
812 {
813 	struct ext4_map_blocks map;
814 	struct buffer_head *bh;
815 	int fatal = 0, err;
816 
817 	J_ASSERT(handle != NULL || create == 0);
818 
819 	map.m_lblk = block;
820 	map.m_len = 1;
821 	err = ext4_map_blocks(handle, inode, &map,
822 			      create ? EXT4_GET_BLOCKS_CREATE : 0);
823 
824 	/* ensure we send some value back into *errp */
825 	*errp = 0;
826 
827 	if (create && err == 0)
828 		err = -ENOSPC;	/* should never happen */
829 	if (err < 0)
830 		*errp = err;
831 	if (err <= 0)
832 		return NULL;
833 
834 	bh = sb_getblk(inode->i_sb, map.m_pblk);
835 	if (unlikely(!bh)) {
836 		*errp = -ENOMEM;
837 		return NULL;
838 	}
839 	if (map.m_flags & EXT4_MAP_NEW) {
840 		J_ASSERT(create != 0);
841 		J_ASSERT(handle != NULL);
842 
843 		/*
844 		 * Now that we do not always journal data, we should
845 		 * keep in mind whether this should always journal the
846 		 * new buffer as metadata.  For now, regular file
847 		 * writes use ext4_get_block instead, so it's not a
848 		 * problem.
849 		 */
850 		lock_buffer(bh);
851 		BUFFER_TRACE(bh, "call get_create_access");
852 		fatal = ext4_journal_get_create_access(handle, bh);
853 		if (!fatal && !buffer_uptodate(bh)) {
854 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
855 			set_buffer_uptodate(bh);
856 		}
857 		unlock_buffer(bh);
858 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
859 		err = ext4_handle_dirty_metadata(handle, inode, bh);
860 		if (!fatal)
861 			fatal = err;
862 	} else {
863 		BUFFER_TRACE(bh, "not a new buffer");
864 	}
865 	if (fatal) {
866 		*errp = fatal;
867 		brelse(bh);
868 		bh = NULL;
869 	}
870 	return bh;
871 }
872 
873 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
874 			       ext4_lblk_t block, int create, int *err)
875 {
876 	struct buffer_head *bh;
877 
878 	bh = ext4_getblk(handle, inode, block, create, err);
879 	if (!bh)
880 		return bh;
881 	if (buffer_uptodate(bh))
882 		return bh;
883 	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
884 	wait_on_buffer(bh);
885 	if (buffer_uptodate(bh))
886 		return bh;
887 	put_bh(bh);
888 	*err = -EIO;
889 	return NULL;
890 }
891 
892 int ext4_walk_page_buffers(handle_t *handle,
893 			   struct buffer_head *head,
894 			   unsigned from,
895 			   unsigned to,
896 			   int *partial,
897 			   int (*fn)(handle_t *handle,
898 				     struct buffer_head *bh))
899 {
900 	struct buffer_head *bh;
901 	unsigned block_start, block_end;
902 	unsigned blocksize = head->b_size;
903 	int err, ret = 0;
904 	struct buffer_head *next;
905 
906 	for (bh = head, block_start = 0;
907 	     ret == 0 && (bh != head || !block_start);
908 	     block_start = block_end, bh = next) {
909 		next = bh->b_this_page;
910 		block_end = block_start + blocksize;
911 		if (block_end <= from || block_start >= to) {
912 			if (partial && !buffer_uptodate(bh))
913 				*partial = 1;
914 			continue;
915 		}
916 		err = (*fn)(handle, bh);
917 		if (!ret)
918 			ret = err;
919 	}
920 	return ret;
921 }
922 
923 /*
924  * To preserve ordering, it is essential that the hole instantiation and
925  * the data write be encapsulated in a single transaction.  We cannot
926  * close off a transaction and start a new one between the ext4_get_block()
927  * and the commit_write().  So doing the jbd2_journal_start at the start of
928  * prepare_write() is the right place.
929  *
930  * Also, this function can nest inside ext4_writepage().  In that case, we
931  * *know* that ext4_writepage() has generated enough buffer credits to do the
932  * whole page.  So we won't block on the journal in that case, which is good,
933  * because the caller may be PF_MEMALLOC.
934  *
935  * By accident, ext4 can be reentered when a transaction is open via
936  * quota file writes.  If we were to commit the transaction while thus
937  * reentered, there can be a deadlock - we would be holding a quota
938  * lock, and the commit would never complete if another thread had a
939  * transaction open and was blocking on the quota lock - a ranking
940  * violation.
941  *
942  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
943  * will _not_ run commit under these circumstances because handle->h_ref
944  * is elevated.  We'll still have enough credits for the tiny quotafile
945  * write.
946  */
947 int do_journal_get_write_access(handle_t *handle,
948 				struct buffer_head *bh)
949 {
950 	int dirty = buffer_dirty(bh);
951 	int ret;
952 
953 	if (!buffer_mapped(bh) || buffer_freed(bh))
954 		return 0;
955 	/*
956 	 * __block_write_begin() could have dirtied some buffers. Clean
957 	 * the dirty bit as jbd2_journal_get_write_access() could complain
958 	 * otherwise about fs integrity issues. Setting of the dirty bit
959 	 * by __block_write_begin() isn't a real problem here as we clear
960 	 * the bit before releasing a page lock and thus writeback cannot
961 	 * ever write the buffer.
962 	 */
963 	if (dirty)
964 		clear_buffer_dirty(bh);
965 	ret = ext4_journal_get_write_access(handle, bh);
966 	if (!ret && dirty)
967 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
968 	return ret;
969 }
970 
971 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
972 		   struct buffer_head *bh_result, int create);
973 static int ext4_write_begin(struct file *file, struct address_space *mapping,
974 			    loff_t pos, unsigned len, unsigned flags,
975 			    struct page **pagep, void **fsdata)
976 {
977 	struct inode *inode = mapping->host;
978 	int ret, needed_blocks;
979 	handle_t *handle;
980 	int retries = 0;
981 	struct page *page;
982 	pgoff_t index;
983 	unsigned from, to;
984 
985 	trace_ext4_write_begin(inode, pos, len, flags);
986 	/*
987 	 * Reserve one block more for addition to orphan list in case
988 	 * we allocate blocks but write fails for some reason
989 	 */
990 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
991 	index = pos >> PAGE_CACHE_SHIFT;
992 	from = pos & (PAGE_CACHE_SIZE - 1);
993 	to = from + len;
994 
995 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
996 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
997 						    flags, pagep);
998 		if (ret < 0)
999 			return ret;
1000 		if (ret == 1)
1001 			return 0;
1002 	}
1003 
1004 	/*
1005 	 * grab_cache_page_write_begin() can take a long time if the
1006 	 * system is thrashing due to memory pressure, or if the page
1007 	 * is being written back.  So grab it first before we start
1008 	 * the transaction handle.  This also allows us to allocate
1009 	 * the page (if needed) without using GFP_NOFS.
1010 	 */
1011 retry_grab:
1012 	page = grab_cache_page_write_begin(mapping, index, flags);
1013 	if (!page)
1014 		return -ENOMEM;
1015 	unlock_page(page);
1016 
1017 retry_journal:
1018 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1019 	if (IS_ERR(handle)) {
1020 		page_cache_release(page);
1021 		return PTR_ERR(handle);
1022 	}
1023 
1024 	lock_page(page);
1025 	if (page->mapping != mapping) {
1026 		/* The page got truncated from under us */
1027 		unlock_page(page);
1028 		page_cache_release(page);
1029 		ext4_journal_stop(handle);
1030 		goto retry_grab;
1031 	}
1032 	wait_on_page_writeback(page);
1033 
1034 	if (ext4_should_dioread_nolock(inode))
1035 		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1036 	else
1037 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1038 
1039 	if (!ret && ext4_should_journal_data(inode)) {
1040 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1041 					     from, to, NULL,
1042 					     do_journal_get_write_access);
1043 	}
1044 
1045 	if (ret) {
1046 		unlock_page(page);
1047 		/*
1048 		 * __block_write_begin may have instantiated a few blocks
1049 		 * outside i_size.  Trim these off again. Don't need
1050 		 * i_size_read because we hold i_mutex.
1051 		 *
1052 		 * Add inode to orphan list in case we crash before
1053 		 * truncate finishes
1054 		 */
1055 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1056 			ext4_orphan_add(handle, inode);
1057 
1058 		ext4_journal_stop(handle);
1059 		if (pos + len > inode->i_size) {
1060 			ext4_truncate_failed_write(inode);
1061 			/*
1062 			 * If truncate failed early the inode might
1063 			 * still be on the orphan list; we need to
1064 			 * make sure the inode is removed from the
1065 			 * orphan list in that case.
1066 			 */
1067 			if (inode->i_nlink)
1068 				ext4_orphan_del(NULL, inode);
1069 		}
1070 
1071 		if (ret == -ENOSPC &&
1072 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1073 			goto retry_journal;
1074 		page_cache_release(page);
1075 		return ret;
1076 	}
1077 	*pagep = page;
1078 	return ret;
1079 }
1080 
1081 /* For write_end() in data=journal mode */
1082 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1083 {
1084 	int ret;
1085 	if (!buffer_mapped(bh) || buffer_freed(bh))
1086 		return 0;
1087 	set_buffer_uptodate(bh);
1088 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 	clear_buffer_meta(bh);
1090 	clear_buffer_prio(bh);
1091 	return ret;
1092 }
1093 
1094 /*
1095  * We need to pick up the new inode size which generic_commit_write gave us
1096  * `file' can be NULL - eg, when called from page_symlink().
1097  *
1098  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1099  * buffers are managed internally.
1100  */
1101 static int ext4_write_end(struct file *file,
1102 			  struct address_space *mapping,
1103 			  loff_t pos, unsigned len, unsigned copied,
1104 			  struct page *page, void *fsdata)
1105 {
1106 	handle_t *handle = ext4_journal_current_handle();
1107 	struct inode *inode = mapping->host;
1108 	int ret = 0, ret2;
1109 	int i_size_changed = 0;
1110 
1111 	trace_ext4_write_end(inode, pos, len, copied);
1112 	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1113 		ret = ext4_jbd2_file_inode(handle, inode);
1114 		if (ret) {
1115 			unlock_page(page);
1116 			page_cache_release(page);
1117 			goto errout;
1118 		}
1119 	}
1120 
1121 	if (ext4_has_inline_data(inode))
1122 		copied = ext4_write_inline_data_end(inode, pos, len,
1123 						    copied, page);
1124 	else
1125 		copied = block_write_end(file, mapping, pos,
1126 					 len, copied, page, fsdata);
1127 
1128 	/*
1129 	 * No need to use i_size_read() here, the i_size
1130 	 * cannot change under us because we hole i_mutex.
1131 	 *
1132 	 * But it's important to update i_size while still holding page lock:
1133 	 * page writeout could otherwise come in and zero beyond i_size.
1134 	 */
1135 	if (pos + copied > inode->i_size) {
1136 		i_size_write(inode, pos + copied);
1137 		i_size_changed = 1;
1138 	}
1139 
1140 	if (pos + copied > EXT4_I(inode)->i_disksize) {
1141 		/* We need to mark inode dirty even if
1142 		 * new_i_size is less that inode->i_size
1143 		 * but greater than i_disksize. (hint delalloc)
1144 		 */
1145 		ext4_update_i_disksize(inode, (pos + copied));
1146 		i_size_changed = 1;
1147 	}
1148 	unlock_page(page);
1149 	page_cache_release(page);
1150 
1151 	/*
1152 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1153 	 * makes the holding time of page lock longer. Second, it forces lock
1154 	 * ordering of page lock and transaction start for journaling
1155 	 * filesystems.
1156 	 */
1157 	if (i_size_changed)
1158 		ext4_mark_inode_dirty(handle, inode);
1159 
1160 	if (copied < 0)
1161 		ret = copied;
1162 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1163 		/* if we have allocated more blocks and copied
1164 		 * less. We will have blocks allocated outside
1165 		 * inode->i_size. So truncate them
1166 		 */
1167 		ext4_orphan_add(handle, inode);
1168 errout:
1169 	ret2 = ext4_journal_stop(handle);
1170 	if (!ret)
1171 		ret = ret2;
1172 
1173 	if (pos + len > inode->i_size) {
1174 		ext4_truncate_failed_write(inode);
1175 		/*
1176 		 * If truncate failed early the inode might still be
1177 		 * on the orphan list; we need to make sure the inode
1178 		 * is removed from the orphan list in that case.
1179 		 */
1180 		if (inode->i_nlink)
1181 			ext4_orphan_del(NULL, inode);
1182 	}
1183 
1184 	return ret ? ret : copied;
1185 }
1186 
1187 static int ext4_journalled_write_end(struct file *file,
1188 				     struct address_space *mapping,
1189 				     loff_t pos, unsigned len, unsigned copied,
1190 				     struct page *page, void *fsdata)
1191 {
1192 	handle_t *handle = ext4_journal_current_handle();
1193 	struct inode *inode = mapping->host;
1194 	int ret = 0, ret2;
1195 	int partial = 0;
1196 	unsigned from, to;
1197 	loff_t new_i_size;
1198 
1199 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1200 	from = pos & (PAGE_CACHE_SIZE - 1);
1201 	to = from + len;
1202 
1203 	BUG_ON(!ext4_handle_valid(handle));
1204 
1205 	if (ext4_has_inline_data(inode))
1206 		copied = ext4_write_inline_data_end(inode, pos, len,
1207 						    copied, page);
1208 	else {
1209 		if (copied < len) {
1210 			if (!PageUptodate(page))
1211 				copied = 0;
1212 			page_zero_new_buffers(page, from+copied, to);
1213 		}
1214 
1215 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1216 					     to, &partial, write_end_fn);
1217 		if (!partial)
1218 			SetPageUptodate(page);
1219 	}
1220 	new_i_size = pos + copied;
1221 	if (new_i_size > inode->i_size)
1222 		i_size_write(inode, pos+copied);
1223 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1224 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1225 	if (new_i_size > EXT4_I(inode)->i_disksize) {
1226 		ext4_update_i_disksize(inode, new_i_size);
1227 		ret2 = ext4_mark_inode_dirty(handle, inode);
1228 		if (!ret)
1229 			ret = ret2;
1230 	}
1231 
1232 	unlock_page(page);
1233 	page_cache_release(page);
1234 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1235 		/* if we have allocated more blocks and copied
1236 		 * less. We will have blocks allocated outside
1237 		 * inode->i_size. So truncate them
1238 		 */
1239 		ext4_orphan_add(handle, inode);
1240 
1241 	ret2 = ext4_journal_stop(handle);
1242 	if (!ret)
1243 		ret = ret2;
1244 	if (pos + len > inode->i_size) {
1245 		ext4_truncate_failed_write(inode);
1246 		/*
1247 		 * If truncate failed early the inode might still be
1248 		 * on the orphan list; we need to make sure the inode
1249 		 * is removed from the orphan list in that case.
1250 		 */
1251 		if (inode->i_nlink)
1252 			ext4_orphan_del(NULL, inode);
1253 	}
1254 
1255 	return ret ? ret : copied;
1256 }
1257 
1258 /*
1259  * Reserve a metadata for a single block located at lblock
1260  */
1261 static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1262 {
1263 	int retries = 0;
1264 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1265 	struct ext4_inode_info *ei = EXT4_I(inode);
1266 	unsigned int md_needed;
1267 	ext4_lblk_t save_last_lblock;
1268 	int save_len;
1269 
1270 	/*
1271 	 * recalculate the amount of metadata blocks to reserve
1272 	 * in order to allocate nrblocks
1273 	 * worse case is one extent per block
1274 	 */
1275 repeat:
1276 	spin_lock(&ei->i_block_reservation_lock);
1277 	/*
1278 	 * ext4_calc_metadata_amount() has side effects, which we have
1279 	 * to be prepared undo if we fail to claim space.
1280 	 */
1281 	save_len = ei->i_da_metadata_calc_len;
1282 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1283 	md_needed = EXT4_NUM_B2C(sbi,
1284 				 ext4_calc_metadata_amount(inode, lblock));
1285 	trace_ext4_da_reserve_space(inode, md_needed);
1286 
1287 	/*
1288 	 * We do still charge estimated metadata to the sb though;
1289 	 * we cannot afford to run out of free blocks.
1290 	 */
1291 	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1292 		ei->i_da_metadata_calc_len = save_len;
1293 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1294 		spin_unlock(&ei->i_block_reservation_lock);
1295 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1296 			cond_resched();
1297 			goto repeat;
1298 		}
1299 		return -ENOSPC;
1300 	}
1301 	ei->i_reserved_meta_blocks += md_needed;
1302 	spin_unlock(&ei->i_block_reservation_lock);
1303 
1304 	return 0;       /* success */
1305 }
1306 
1307 /*
1308  * Reserve a single cluster located at lblock
1309  */
1310 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1311 {
1312 	int retries = 0;
1313 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1314 	struct ext4_inode_info *ei = EXT4_I(inode);
1315 	unsigned int md_needed;
1316 	int ret;
1317 	ext4_lblk_t save_last_lblock;
1318 	int save_len;
1319 
1320 	/*
1321 	 * We will charge metadata quota at writeout time; this saves
1322 	 * us from metadata over-estimation, though we may go over by
1323 	 * a small amount in the end.  Here we just reserve for data.
1324 	 */
1325 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1326 	if (ret)
1327 		return ret;
1328 
1329 	/*
1330 	 * recalculate the amount of metadata blocks to reserve
1331 	 * in order to allocate nrblocks
1332 	 * worse case is one extent per block
1333 	 */
1334 repeat:
1335 	spin_lock(&ei->i_block_reservation_lock);
1336 	/*
1337 	 * ext4_calc_metadata_amount() has side effects, which we have
1338 	 * to be prepared undo if we fail to claim space.
1339 	 */
1340 	save_len = ei->i_da_metadata_calc_len;
1341 	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1342 	md_needed = EXT4_NUM_B2C(sbi,
1343 				 ext4_calc_metadata_amount(inode, lblock));
1344 	trace_ext4_da_reserve_space(inode, md_needed);
1345 
1346 	/*
1347 	 * We do still charge estimated metadata to the sb though;
1348 	 * we cannot afford to run out of free blocks.
1349 	 */
1350 	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1351 		ei->i_da_metadata_calc_len = save_len;
1352 		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1353 		spin_unlock(&ei->i_block_reservation_lock);
1354 		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1355 			cond_resched();
1356 			goto repeat;
1357 		}
1358 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1359 		return -ENOSPC;
1360 	}
1361 	ei->i_reserved_data_blocks++;
1362 	ei->i_reserved_meta_blocks += md_needed;
1363 	spin_unlock(&ei->i_block_reservation_lock);
1364 
1365 	return 0;       /* success */
1366 }
1367 
1368 static void ext4_da_release_space(struct inode *inode, int to_free)
1369 {
1370 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1371 	struct ext4_inode_info *ei = EXT4_I(inode);
1372 
1373 	if (!to_free)
1374 		return;		/* Nothing to release, exit */
1375 
1376 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1377 
1378 	trace_ext4_da_release_space(inode, to_free);
1379 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1380 		/*
1381 		 * if there aren't enough reserved blocks, then the
1382 		 * counter is messed up somewhere.  Since this
1383 		 * function is called from invalidate page, it's
1384 		 * harmless to return without any action.
1385 		 */
1386 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1387 			 "ino %lu, to_free %d with only %d reserved "
1388 			 "data blocks", inode->i_ino, to_free,
1389 			 ei->i_reserved_data_blocks);
1390 		WARN_ON(1);
1391 		to_free = ei->i_reserved_data_blocks;
1392 	}
1393 	ei->i_reserved_data_blocks -= to_free;
1394 
1395 	if (ei->i_reserved_data_blocks == 0) {
1396 		/*
1397 		 * We can release all of the reserved metadata blocks
1398 		 * only when we have written all of the delayed
1399 		 * allocation blocks.
1400 		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1401 		 * i_reserved_data_blocks, etc. refer to number of clusters.
1402 		 */
1403 		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1404 				   ei->i_reserved_meta_blocks);
1405 		ei->i_reserved_meta_blocks = 0;
1406 		ei->i_da_metadata_calc_len = 0;
1407 	}
1408 
1409 	/* update fs dirty data blocks counter */
1410 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1411 
1412 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1413 
1414 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1415 }
1416 
1417 static void ext4_da_page_release_reservation(struct page *page,
1418 					     unsigned long offset)
1419 {
1420 	int to_release = 0;
1421 	struct buffer_head *head, *bh;
1422 	unsigned int curr_off = 0;
1423 	struct inode *inode = page->mapping->host;
1424 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1425 	int num_clusters;
1426 	ext4_fsblk_t lblk;
1427 
1428 	head = page_buffers(page);
1429 	bh = head;
1430 	do {
1431 		unsigned int next_off = curr_off + bh->b_size;
1432 
1433 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1434 			to_release++;
1435 			clear_buffer_delay(bh);
1436 		}
1437 		curr_off = next_off;
1438 	} while ((bh = bh->b_this_page) != head);
1439 
1440 	if (to_release) {
1441 		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1442 		ext4_es_remove_extent(inode, lblk, to_release);
1443 	}
1444 
1445 	/* If we have released all the blocks belonging to a cluster, then we
1446 	 * need to release the reserved space for that cluster. */
1447 	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1448 	while (num_clusters > 0) {
1449 		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1450 			((num_clusters - 1) << sbi->s_cluster_bits);
1451 		if (sbi->s_cluster_ratio == 1 ||
1452 		    !ext4_find_delalloc_cluster(inode, lblk))
1453 			ext4_da_release_space(inode, 1);
1454 
1455 		num_clusters--;
1456 	}
1457 }
1458 
1459 /*
1460  * Delayed allocation stuff
1461  */
1462 
1463 /*
1464  * mpage_da_submit_io - walks through extent of pages and try to write
1465  * them with writepage() call back
1466  *
1467  * @mpd->inode: inode
1468  * @mpd->first_page: first page of the extent
1469  * @mpd->next_page: page after the last page of the extent
1470  *
1471  * By the time mpage_da_submit_io() is called we expect all blocks
1472  * to be allocated. this may be wrong if allocation failed.
1473  *
1474  * As pages are already locked by write_cache_pages(), we can't use it
1475  */
1476 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1477 			      struct ext4_map_blocks *map)
1478 {
1479 	struct pagevec pvec;
1480 	unsigned long index, end;
1481 	int ret = 0, err, nr_pages, i;
1482 	struct inode *inode = mpd->inode;
1483 	struct address_space *mapping = inode->i_mapping;
1484 	loff_t size = i_size_read(inode);
1485 	unsigned int len, block_start;
1486 	struct buffer_head *bh, *page_bufs = NULL;
1487 	sector_t pblock = 0, cur_logical = 0;
1488 	struct ext4_io_submit io_submit;
1489 
1490 	BUG_ON(mpd->next_page <= mpd->first_page);
1491 	ext4_io_submit_init(&io_submit, mpd->wbc);
1492 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1493 	if (!io_submit.io_end)
1494 		return -ENOMEM;
1495 	/*
1496 	 * We need to start from the first_page to the next_page - 1
1497 	 * to make sure we also write the mapped dirty buffer_heads.
1498 	 * If we look at mpd->b_blocknr we would only be looking
1499 	 * at the currently mapped buffer_heads.
1500 	 */
1501 	index = mpd->first_page;
1502 	end = mpd->next_page - 1;
1503 
1504 	pagevec_init(&pvec, 0);
1505 	while (index <= end) {
1506 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1507 		if (nr_pages == 0)
1508 			break;
1509 		for (i = 0; i < nr_pages; i++) {
1510 			int skip_page = 0;
1511 			struct page *page = pvec.pages[i];
1512 
1513 			index = page->index;
1514 			if (index > end)
1515 				break;
1516 
1517 			if (index == size >> PAGE_CACHE_SHIFT)
1518 				len = size & ~PAGE_CACHE_MASK;
1519 			else
1520 				len = PAGE_CACHE_SIZE;
1521 			if (map) {
1522 				cur_logical = index << (PAGE_CACHE_SHIFT -
1523 							inode->i_blkbits);
1524 				pblock = map->m_pblk + (cur_logical -
1525 							map->m_lblk);
1526 			}
1527 			index++;
1528 
1529 			BUG_ON(!PageLocked(page));
1530 			BUG_ON(PageWriteback(page));
1531 
1532 			bh = page_bufs = page_buffers(page);
1533 			block_start = 0;
1534 			do {
1535 				if (map && (cur_logical >= map->m_lblk) &&
1536 				    (cur_logical <= (map->m_lblk +
1537 						     (map->m_len - 1)))) {
1538 					if (buffer_delay(bh)) {
1539 						clear_buffer_delay(bh);
1540 						bh->b_blocknr = pblock;
1541 					}
1542 					if (buffer_unwritten(bh) ||
1543 					    buffer_mapped(bh))
1544 						BUG_ON(bh->b_blocknr != pblock);
1545 					if (map->m_flags & EXT4_MAP_UNINIT)
1546 						set_buffer_uninit(bh);
1547 					clear_buffer_unwritten(bh);
1548 				}
1549 
1550 				/*
1551 				 * skip page if block allocation undone and
1552 				 * block is dirty
1553 				 */
1554 				if (ext4_bh_delay_or_unwritten(NULL, bh))
1555 					skip_page = 1;
1556 				bh = bh->b_this_page;
1557 				block_start += bh->b_size;
1558 				cur_logical++;
1559 				pblock++;
1560 			} while (bh != page_bufs);
1561 
1562 			if (skip_page) {
1563 				unlock_page(page);
1564 				continue;
1565 			}
1566 
1567 			clear_page_dirty_for_io(page);
1568 			err = ext4_bio_write_page(&io_submit, page, len,
1569 						  mpd->wbc);
1570 			if (!err)
1571 				mpd->pages_written++;
1572 			/*
1573 			 * In error case, we have to continue because
1574 			 * remaining pages are still locked
1575 			 */
1576 			if (ret == 0)
1577 				ret = err;
1578 		}
1579 		pagevec_release(&pvec);
1580 	}
1581 	ext4_io_submit(&io_submit);
1582 	/* Drop io_end reference we got from init */
1583 	ext4_put_io_end_defer(io_submit.io_end);
1584 	return ret;
1585 }
1586 
1587 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1588 {
1589 	int nr_pages, i;
1590 	pgoff_t index, end;
1591 	struct pagevec pvec;
1592 	struct inode *inode = mpd->inode;
1593 	struct address_space *mapping = inode->i_mapping;
1594 	ext4_lblk_t start, last;
1595 
1596 	index = mpd->first_page;
1597 	end   = mpd->next_page - 1;
1598 
1599 	start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1600 	last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1601 	ext4_es_remove_extent(inode, start, last - start + 1);
1602 
1603 	pagevec_init(&pvec, 0);
1604 	while (index <= end) {
1605 		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1606 		if (nr_pages == 0)
1607 			break;
1608 		for (i = 0; i < nr_pages; i++) {
1609 			struct page *page = pvec.pages[i];
1610 			if (page->index > end)
1611 				break;
1612 			BUG_ON(!PageLocked(page));
1613 			BUG_ON(PageWriteback(page));
1614 			block_invalidatepage(page, 0);
1615 			ClearPageUptodate(page);
1616 			unlock_page(page);
1617 		}
1618 		index = pvec.pages[nr_pages - 1]->index + 1;
1619 		pagevec_release(&pvec);
1620 	}
1621 	return;
1622 }
1623 
1624 static void ext4_print_free_blocks(struct inode *inode)
1625 {
1626 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1627 	struct super_block *sb = inode->i_sb;
1628 	struct ext4_inode_info *ei = EXT4_I(inode);
1629 
1630 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1631 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1632 			ext4_count_free_clusters(sb)));
1633 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1634 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1635 	       (long long) EXT4_C2B(EXT4_SB(sb),
1636 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1637 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1638 	       (long long) EXT4_C2B(EXT4_SB(sb),
1639 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1640 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1641 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1642 		 ei->i_reserved_data_blocks);
1643 	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1644 	       ei->i_reserved_meta_blocks);
1645 	ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1646 	       ei->i_allocated_meta_blocks);
1647 	return;
1648 }
1649 
1650 /*
1651  * mpage_da_map_and_submit - go through given space, map them
1652  *       if necessary, and then submit them for I/O
1653  *
1654  * @mpd - bh describing space
1655  *
1656  * The function skips space we know is already mapped to disk blocks.
1657  *
1658  */
1659 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1660 {
1661 	int err, blks, get_blocks_flags;
1662 	struct ext4_map_blocks map, *mapp = NULL;
1663 	sector_t next = mpd->b_blocknr;
1664 	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1665 	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1666 	handle_t *handle = NULL;
1667 
1668 	/*
1669 	 * If the blocks are mapped already, or we couldn't accumulate
1670 	 * any blocks, then proceed immediately to the submission stage.
1671 	 */
1672 	if ((mpd->b_size == 0) ||
1673 	    ((mpd->b_state  & (1 << BH_Mapped)) &&
1674 	     !(mpd->b_state & (1 << BH_Delay)) &&
1675 	     !(mpd->b_state & (1 << BH_Unwritten))))
1676 		goto submit_io;
1677 
1678 	handle = ext4_journal_current_handle();
1679 	BUG_ON(!handle);
1680 
1681 	/*
1682 	 * Call ext4_map_blocks() to allocate any delayed allocation
1683 	 * blocks, or to convert an uninitialized extent to be
1684 	 * initialized (in the case where we have written into
1685 	 * one or more preallocated blocks).
1686 	 *
1687 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1688 	 * indicate that we are on the delayed allocation path.  This
1689 	 * affects functions in many different parts of the allocation
1690 	 * call path.  This flag exists primarily because we don't
1691 	 * want to change *many* call functions, so ext4_map_blocks()
1692 	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1693 	 * inode's allocation semaphore is taken.
1694 	 *
1695 	 * If the blocks in questions were delalloc blocks, set
1696 	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1697 	 * variables are updated after the blocks have been allocated.
1698 	 */
1699 	map.m_lblk = next;
1700 	map.m_len = max_blocks;
1701 	/*
1702 	 * We're in delalloc path and it is possible that we're going to
1703 	 * need more metadata blocks than previously reserved. However
1704 	 * we must not fail because we're in writeback and there is
1705 	 * nothing we can do about it so it might result in data loss.
1706 	 * So use reserved blocks to allocate metadata if possible.
1707 	 */
1708 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1709 			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
1710 	if (ext4_should_dioread_nolock(mpd->inode))
1711 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1712 	if (mpd->b_state & (1 << BH_Delay))
1713 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1714 
1715 
1716 	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1717 	if (blks < 0) {
1718 		struct super_block *sb = mpd->inode->i_sb;
1719 
1720 		err = blks;
1721 		/*
1722 		 * If get block returns EAGAIN or ENOSPC and there
1723 		 * appears to be free blocks we will just let
1724 		 * mpage_da_submit_io() unlock all of the pages.
1725 		 */
1726 		if (err == -EAGAIN)
1727 			goto submit_io;
1728 
1729 		if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1730 			mpd->retval = err;
1731 			goto submit_io;
1732 		}
1733 
1734 		/*
1735 		 * get block failure will cause us to loop in
1736 		 * writepages, because a_ops->writepage won't be able
1737 		 * to make progress. The page will be redirtied by
1738 		 * writepage and writepages will again try to write
1739 		 * the same.
1740 		 */
1741 		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1742 			ext4_msg(sb, KERN_CRIT,
1743 				 "delayed block allocation failed for inode %lu "
1744 				 "at logical offset %llu with max blocks %zd "
1745 				 "with error %d", mpd->inode->i_ino,
1746 				 (unsigned long long) next,
1747 				 mpd->b_size >> mpd->inode->i_blkbits, err);
1748 			ext4_msg(sb, KERN_CRIT,
1749 				"This should not happen!! Data will be lost");
1750 			if (err == -ENOSPC)
1751 				ext4_print_free_blocks(mpd->inode);
1752 		}
1753 		/* invalidate all the pages */
1754 		ext4_da_block_invalidatepages(mpd);
1755 
1756 		/* Mark this page range as having been completed */
1757 		mpd->io_done = 1;
1758 		return;
1759 	}
1760 	BUG_ON(blks == 0);
1761 
1762 	mapp = &map;
1763 	if (map.m_flags & EXT4_MAP_NEW) {
1764 		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1765 		int i;
1766 
1767 		for (i = 0; i < map.m_len; i++)
1768 			unmap_underlying_metadata(bdev, map.m_pblk + i);
1769 	}
1770 
1771 	/*
1772 	 * Update on-disk size along with block allocation.
1773 	 */
1774 	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1775 	if (disksize > i_size_read(mpd->inode))
1776 		disksize = i_size_read(mpd->inode);
1777 	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1778 		ext4_update_i_disksize(mpd->inode, disksize);
1779 		err = ext4_mark_inode_dirty(handle, mpd->inode);
1780 		if (err)
1781 			ext4_error(mpd->inode->i_sb,
1782 				   "Failed to mark inode %lu dirty",
1783 				   mpd->inode->i_ino);
1784 	}
1785 
1786 submit_io:
1787 	mpage_da_submit_io(mpd, mapp);
1788 	mpd->io_done = 1;
1789 }
1790 
1791 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1792 		(1 << BH_Delay) | (1 << BH_Unwritten))
1793 
1794 /*
1795  * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1796  *
1797  * @mpd->lbh - extent of blocks
1798  * @logical - logical number of the block in the file
1799  * @b_state - b_state of the buffer head added
1800  *
1801  * the function is used to collect contig. blocks in same state
1802  */
1803 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1804 				   unsigned long b_state)
1805 {
1806 	sector_t next;
1807 	int blkbits = mpd->inode->i_blkbits;
1808 	int nrblocks = mpd->b_size >> blkbits;
1809 
1810 	/*
1811 	 * XXX Don't go larger than mballoc is willing to allocate
1812 	 * This is a stopgap solution.  We eventually need to fold
1813 	 * mpage_da_submit_io() into this function and then call
1814 	 * ext4_map_blocks() multiple times in a loop
1815 	 */
1816 	if (nrblocks >= (8*1024*1024 >> blkbits))
1817 		goto flush_it;
1818 
1819 	/* check if the reserved journal credits might overflow */
1820 	if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1821 		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1822 			/*
1823 			 * With non-extent format we are limited by the journal
1824 			 * credit available.  Total credit needed to insert
1825 			 * nrblocks contiguous blocks is dependent on the
1826 			 * nrblocks.  So limit nrblocks.
1827 			 */
1828 			goto flush_it;
1829 		}
1830 	}
1831 	/*
1832 	 * First block in the extent
1833 	 */
1834 	if (mpd->b_size == 0) {
1835 		mpd->b_blocknr = logical;
1836 		mpd->b_size = 1 << blkbits;
1837 		mpd->b_state = b_state & BH_FLAGS;
1838 		return;
1839 	}
1840 
1841 	next = mpd->b_blocknr + nrblocks;
1842 	/*
1843 	 * Can we merge the block to our big extent?
1844 	 */
1845 	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1846 		mpd->b_size += 1 << blkbits;
1847 		return;
1848 	}
1849 
1850 flush_it:
1851 	/*
1852 	 * We couldn't merge the block to our extent, so we
1853 	 * need to flush current  extent and start new one
1854 	 */
1855 	mpage_da_map_and_submit(mpd);
1856 	return;
1857 }
1858 
1859 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1860 {
1861 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1862 }
1863 
1864 /*
1865  * This function is grabs code from the very beginning of
1866  * ext4_map_blocks, but assumes that the caller is from delayed write
1867  * time. This function looks up the requested blocks and sets the
1868  * buffer delay bit under the protection of i_data_sem.
1869  */
1870 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1871 			      struct ext4_map_blocks *map,
1872 			      struct buffer_head *bh)
1873 {
1874 	struct extent_status es;
1875 	int retval;
1876 	sector_t invalid_block = ~((sector_t) 0xffff);
1877 #ifdef ES_AGGRESSIVE_TEST
1878 	struct ext4_map_blocks orig_map;
1879 
1880 	memcpy(&orig_map, map, sizeof(*map));
1881 #endif
1882 
1883 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1884 		invalid_block = ~0;
1885 
1886 	map->m_flags = 0;
1887 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1888 		  "logical block %lu\n", inode->i_ino, map->m_len,
1889 		  (unsigned long) map->m_lblk);
1890 
1891 	/* Lookup extent status tree firstly */
1892 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1893 
1894 		if (ext4_es_is_hole(&es)) {
1895 			retval = 0;
1896 			down_read((&EXT4_I(inode)->i_data_sem));
1897 			goto add_delayed;
1898 		}
1899 
1900 		/*
1901 		 * Delayed extent could be allocated by fallocate.
1902 		 * So we need to check it.
1903 		 */
1904 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1905 			map_bh(bh, inode->i_sb, invalid_block);
1906 			set_buffer_new(bh);
1907 			set_buffer_delay(bh);
1908 			return 0;
1909 		}
1910 
1911 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1912 		retval = es.es_len - (iblock - es.es_lblk);
1913 		if (retval > map->m_len)
1914 			retval = map->m_len;
1915 		map->m_len = retval;
1916 		if (ext4_es_is_written(&es))
1917 			map->m_flags |= EXT4_MAP_MAPPED;
1918 		else if (ext4_es_is_unwritten(&es))
1919 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1920 		else
1921 			BUG_ON(1);
1922 
1923 #ifdef ES_AGGRESSIVE_TEST
1924 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1925 #endif
1926 		return retval;
1927 	}
1928 
1929 	/*
1930 	 * Try to see if we can get the block without requesting a new
1931 	 * file system block.
1932 	 */
1933 	down_read((&EXT4_I(inode)->i_data_sem));
1934 	if (ext4_has_inline_data(inode)) {
1935 		/*
1936 		 * We will soon create blocks for this page, and let
1937 		 * us pretend as if the blocks aren't allocated yet.
1938 		 * In case of clusters, we have to handle the work
1939 		 * of mapping from cluster so that the reserved space
1940 		 * is calculated properly.
1941 		 */
1942 		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1943 		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1944 			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1945 		retval = 0;
1946 	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1947 		retval = ext4_ext_map_blocks(NULL, inode, map,
1948 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1949 	else
1950 		retval = ext4_ind_map_blocks(NULL, inode, map,
1951 					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1952 
1953 add_delayed:
1954 	if (retval == 0) {
1955 		int ret;
1956 		/*
1957 		 * XXX: __block_prepare_write() unmaps passed block,
1958 		 * is it OK?
1959 		 */
1960 		/*
1961 		 * If the block was allocated from previously allocated cluster,
1962 		 * then we don't need to reserve it again. However we still need
1963 		 * to reserve metadata for every block we're going to write.
1964 		 */
1965 		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1966 			ret = ext4_da_reserve_space(inode, iblock);
1967 			if (ret) {
1968 				/* not enough space to reserve */
1969 				retval = ret;
1970 				goto out_unlock;
1971 			}
1972 		} else {
1973 			ret = ext4_da_reserve_metadata(inode, iblock);
1974 			if (ret) {
1975 				/* not enough space to reserve */
1976 				retval = ret;
1977 				goto out_unlock;
1978 			}
1979 		}
1980 
1981 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1982 					    ~0, EXTENT_STATUS_DELAYED);
1983 		if (ret) {
1984 			retval = ret;
1985 			goto out_unlock;
1986 		}
1987 
1988 		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1989 		 * and it should not appear on the bh->b_state.
1990 		 */
1991 		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1992 
1993 		map_bh(bh, inode->i_sb, invalid_block);
1994 		set_buffer_new(bh);
1995 		set_buffer_delay(bh);
1996 	} else if (retval > 0) {
1997 		int ret;
1998 		unsigned long long status;
1999 
2000 #ifdef ES_AGGRESSIVE_TEST
2001 		if (retval != map->m_len) {
2002 			printk("ES len assertation failed for inode: %lu "
2003 			       "retval %d != map->m_len %d "
2004 			       "in %s (lookup)\n", inode->i_ino, retval,
2005 			       map->m_len, __func__);
2006 		}
2007 #endif
2008 
2009 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2010 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2011 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2012 					    map->m_pblk, status);
2013 		if (ret != 0)
2014 			retval = ret;
2015 	}
2016 
2017 out_unlock:
2018 	up_read((&EXT4_I(inode)->i_data_sem));
2019 
2020 	return retval;
2021 }
2022 
2023 /*
2024  * This is a special get_blocks_t callback which is used by
2025  * ext4_da_write_begin().  It will either return mapped block or
2026  * reserve space for a single block.
2027  *
2028  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2029  * We also have b_blocknr = -1 and b_bdev initialized properly
2030  *
2031  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2032  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2033  * initialized properly.
2034  */
2035 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2036 			   struct buffer_head *bh, int create)
2037 {
2038 	struct ext4_map_blocks map;
2039 	int ret = 0;
2040 
2041 	BUG_ON(create == 0);
2042 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2043 
2044 	map.m_lblk = iblock;
2045 	map.m_len = 1;
2046 
2047 	/*
2048 	 * first, we need to know whether the block is allocated already
2049 	 * preallocated blocks are unmapped but should treated
2050 	 * the same as allocated blocks.
2051 	 */
2052 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2053 	if (ret <= 0)
2054 		return ret;
2055 
2056 	map_bh(bh, inode->i_sb, map.m_pblk);
2057 	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2058 
2059 	if (buffer_unwritten(bh)) {
2060 		/* A delayed write to unwritten bh should be marked
2061 		 * new and mapped.  Mapped ensures that we don't do
2062 		 * get_block multiple times when we write to the same
2063 		 * offset and new ensures that we do proper zero out
2064 		 * for partial write.
2065 		 */
2066 		set_buffer_new(bh);
2067 		set_buffer_mapped(bh);
2068 	}
2069 	return 0;
2070 }
2071 
2072 static int bget_one(handle_t *handle, struct buffer_head *bh)
2073 {
2074 	get_bh(bh);
2075 	return 0;
2076 }
2077 
2078 static int bput_one(handle_t *handle, struct buffer_head *bh)
2079 {
2080 	put_bh(bh);
2081 	return 0;
2082 }
2083 
2084 static int __ext4_journalled_writepage(struct page *page,
2085 				       unsigned int len)
2086 {
2087 	struct address_space *mapping = page->mapping;
2088 	struct inode *inode = mapping->host;
2089 	struct buffer_head *page_bufs = NULL;
2090 	handle_t *handle = NULL;
2091 	int ret = 0, err = 0;
2092 	int inline_data = ext4_has_inline_data(inode);
2093 	struct buffer_head *inode_bh = NULL;
2094 
2095 	ClearPageChecked(page);
2096 
2097 	if (inline_data) {
2098 		BUG_ON(page->index != 0);
2099 		BUG_ON(len > ext4_get_max_inline_size(inode));
2100 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2101 		if (inode_bh == NULL)
2102 			goto out;
2103 	} else {
2104 		page_bufs = page_buffers(page);
2105 		if (!page_bufs) {
2106 			BUG();
2107 			goto out;
2108 		}
2109 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2110 				       NULL, bget_one);
2111 	}
2112 	/* As soon as we unlock the page, it can go away, but we have
2113 	 * references to buffers so we are safe */
2114 	unlock_page(page);
2115 
2116 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2117 				    ext4_writepage_trans_blocks(inode));
2118 	if (IS_ERR(handle)) {
2119 		ret = PTR_ERR(handle);
2120 		goto out;
2121 	}
2122 
2123 	BUG_ON(!ext4_handle_valid(handle));
2124 
2125 	if (inline_data) {
2126 		ret = ext4_journal_get_write_access(handle, inode_bh);
2127 
2128 		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2129 
2130 	} else {
2131 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2132 					     do_journal_get_write_access);
2133 
2134 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2135 					     write_end_fn);
2136 	}
2137 	if (ret == 0)
2138 		ret = err;
2139 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2140 	err = ext4_journal_stop(handle);
2141 	if (!ret)
2142 		ret = err;
2143 
2144 	if (!ext4_has_inline_data(inode))
2145 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2146 				       NULL, bput_one);
2147 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2148 out:
2149 	brelse(inode_bh);
2150 	return ret;
2151 }
2152 
2153 /*
2154  * Note that we don't need to start a transaction unless we're journaling data
2155  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2156  * need to file the inode to the transaction's list in ordered mode because if
2157  * we are writing back data added by write(), the inode is already there and if
2158  * we are writing back data modified via mmap(), no one guarantees in which
2159  * transaction the data will hit the disk. In case we are journaling data, we
2160  * cannot start transaction directly because transaction start ranks above page
2161  * lock so we have to do some magic.
2162  *
2163  * This function can get called via...
2164  *   - ext4_da_writepages after taking page lock (have journal handle)
2165  *   - journal_submit_inode_data_buffers (no journal handle)
2166  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2167  *   - grab_page_cache when doing write_begin (have journal handle)
2168  *
2169  * We don't do any block allocation in this function. If we have page with
2170  * multiple blocks we need to write those buffer_heads that are mapped. This
2171  * is important for mmaped based write. So if we do with blocksize 1K
2172  * truncate(f, 1024);
2173  * a = mmap(f, 0, 4096);
2174  * a[0] = 'a';
2175  * truncate(f, 4096);
2176  * we have in the page first buffer_head mapped via page_mkwrite call back
2177  * but other buffer_heads would be unmapped but dirty (dirty done via the
2178  * do_wp_page). So writepage should write the first block. If we modify
2179  * the mmap area beyond 1024 we will again get a page_fault and the
2180  * page_mkwrite callback will do the block allocation and mark the
2181  * buffer_heads mapped.
2182  *
2183  * We redirty the page if we have any buffer_heads that is either delay or
2184  * unwritten in the page.
2185  *
2186  * We can get recursively called as show below.
2187  *
2188  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2189  *		ext4_writepage()
2190  *
2191  * But since we don't do any block allocation we should not deadlock.
2192  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2193  */
2194 static int ext4_writepage(struct page *page,
2195 			  struct writeback_control *wbc)
2196 {
2197 	int ret = 0;
2198 	loff_t size;
2199 	unsigned int len;
2200 	struct buffer_head *page_bufs = NULL;
2201 	struct inode *inode = page->mapping->host;
2202 	struct ext4_io_submit io_submit;
2203 
2204 	trace_ext4_writepage(page);
2205 	size = i_size_read(inode);
2206 	if (page->index == size >> PAGE_CACHE_SHIFT)
2207 		len = size & ~PAGE_CACHE_MASK;
2208 	else
2209 		len = PAGE_CACHE_SIZE;
2210 
2211 	page_bufs = page_buffers(page);
2212 	/*
2213 	 * We cannot do block allocation or other extent handling in this
2214 	 * function. If there are buffers needing that, we have to redirty
2215 	 * the page. But we may reach here when we do a journal commit via
2216 	 * journal_submit_inode_data_buffers() and in that case we must write
2217 	 * allocated buffers to achieve data=ordered mode guarantees.
2218 	 */
2219 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2220 				   ext4_bh_delay_or_unwritten)) {
2221 		redirty_page_for_writepage(wbc, page);
2222 		if (current->flags & PF_MEMALLOC) {
2223 			/*
2224 			 * For memory cleaning there's no point in writing only
2225 			 * some buffers. So just bail out. Warn if we came here
2226 			 * from direct reclaim.
2227 			 */
2228 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2229 							== PF_MEMALLOC);
2230 			unlock_page(page);
2231 			return 0;
2232 		}
2233 	}
2234 
2235 	if (PageChecked(page) && ext4_should_journal_data(inode))
2236 		/*
2237 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2238 		 * doesn't seem much point in redirtying the page here.
2239 		 */
2240 		return __ext4_journalled_writepage(page, len);
2241 
2242 	ext4_io_submit_init(&io_submit, wbc);
2243 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2244 	if (!io_submit.io_end) {
2245 		redirty_page_for_writepage(wbc, page);
2246 		return -ENOMEM;
2247 	}
2248 	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2249 	ext4_io_submit(&io_submit);
2250 	/* Drop io_end reference we got from init */
2251 	ext4_put_io_end_defer(io_submit.io_end);
2252 	return ret;
2253 }
2254 
2255 /*
2256  * This is called via ext4_da_writepages() to
2257  * calculate the total number of credits to reserve to fit
2258  * a single extent allocation into a single transaction,
2259  * ext4_da_writpeages() will loop calling this before
2260  * the block allocation.
2261  */
2262 
2263 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2264 {
2265 	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2266 
2267 	/*
2268 	 * With non-extent format the journal credit needed to
2269 	 * insert nrblocks contiguous block is dependent on
2270 	 * number of contiguous block. So we will limit
2271 	 * number of contiguous block to a sane value
2272 	 */
2273 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2274 	    (max_blocks > EXT4_MAX_TRANS_DATA))
2275 		max_blocks = EXT4_MAX_TRANS_DATA;
2276 
2277 	return ext4_chunk_trans_blocks(inode, max_blocks);
2278 }
2279 
2280 /*
2281  * write_cache_pages_da - walk the list of dirty pages of the given
2282  * address space and accumulate pages that need writing, and call
2283  * mpage_da_map_and_submit to map a single contiguous memory region
2284  * and then write them.
2285  */
2286 static int write_cache_pages_da(handle_t *handle,
2287 				struct address_space *mapping,
2288 				struct writeback_control *wbc,
2289 				struct mpage_da_data *mpd,
2290 				pgoff_t *done_index)
2291 {
2292 	struct buffer_head	*bh, *head;
2293 	struct inode		*inode = mapping->host;
2294 	struct pagevec		pvec;
2295 	unsigned int		nr_pages;
2296 	sector_t		logical;
2297 	pgoff_t			index, end;
2298 	long			nr_to_write = wbc->nr_to_write;
2299 	int			i, tag, ret = 0;
2300 
2301 	memset(mpd, 0, sizeof(struct mpage_da_data));
2302 	mpd->wbc = wbc;
2303 	mpd->inode = inode;
2304 	pagevec_init(&pvec, 0);
2305 	index = wbc->range_start >> PAGE_CACHE_SHIFT;
2306 	end = wbc->range_end >> PAGE_CACHE_SHIFT;
2307 
2308 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2309 		tag = PAGECACHE_TAG_TOWRITE;
2310 	else
2311 		tag = PAGECACHE_TAG_DIRTY;
2312 
2313 	*done_index = index;
2314 	while (index <= end) {
2315 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2316 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2317 		if (nr_pages == 0)
2318 			return 0;
2319 
2320 		for (i = 0; i < nr_pages; i++) {
2321 			struct page *page = pvec.pages[i];
2322 
2323 			/*
2324 			 * At this point, the page may be truncated or
2325 			 * invalidated (changing page->mapping to NULL), or
2326 			 * even swizzled back from swapper_space to tmpfs file
2327 			 * mapping. However, page->index will not change
2328 			 * because we have a reference on the page.
2329 			 */
2330 			if (page->index > end)
2331 				goto out;
2332 
2333 			*done_index = page->index + 1;
2334 
2335 			/*
2336 			 * If we can't merge this page, and we have
2337 			 * accumulated an contiguous region, write it
2338 			 */
2339 			if ((mpd->next_page != page->index) &&
2340 			    (mpd->next_page != mpd->first_page)) {
2341 				mpage_da_map_and_submit(mpd);
2342 				goto ret_extent_tail;
2343 			}
2344 
2345 			lock_page(page);
2346 
2347 			/*
2348 			 * If the page is no longer dirty, or its
2349 			 * mapping no longer corresponds to inode we
2350 			 * are writing (which means it has been
2351 			 * truncated or invalidated), or the page is
2352 			 * already under writeback and we are not
2353 			 * doing a data integrity writeback, skip the page
2354 			 */
2355 			if (!PageDirty(page) ||
2356 			    (PageWriteback(page) &&
2357 			     (wbc->sync_mode == WB_SYNC_NONE)) ||
2358 			    unlikely(page->mapping != mapping)) {
2359 				unlock_page(page);
2360 				continue;
2361 			}
2362 
2363 			wait_on_page_writeback(page);
2364 			BUG_ON(PageWriteback(page));
2365 
2366 			/*
2367 			 * If we have inline data and arrive here, it means that
2368 			 * we will soon create the block for the 1st page, so
2369 			 * we'd better clear the inline data here.
2370 			 */
2371 			if (ext4_has_inline_data(inode)) {
2372 				BUG_ON(ext4_test_inode_state(inode,
2373 						EXT4_STATE_MAY_INLINE_DATA));
2374 				ext4_destroy_inline_data(handle, inode);
2375 			}
2376 
2377 			if (mpd->next_page != page->index)
2378 				mpd->first_page = page->index;
2379 			mpd->next_page = page->index + 1;
2380 			logical = (sector_t) page->index <<
2381 				(PAGE_CACHE_SHIFT - inode->i_blkbits);
2382 
2383 			/* Add all dirty buffers to mpd */
2384 			head = page_buffers(page);
2385 			bh = head;
2386 			do {
2387 				BUG_ON(buffer_locked(bh));
2388 				/*
2389 				 * We need to try to allocate unmapped blocks
2390 				 * in the same page.  Otherwise we won't make
2391 				 * progress with the page in ext4_writepage
2392 				 */
2393 				if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2394 					mpage_add_bh_to_extent(mpd, logical,
2395 							       bh->b_state);
2396 					if (mpd->io_done)
2397 						goto ret_extent_tail;
2398 				} else if (buffer_dirty(bh) &&
2399 					   buffer_mapped(bh)) {
2400 					/*
2401 					 * mapped dirty buffer. We need to
2402 					 * update the b_state because we look
2403 					 * at b_state in mpage_da_map_blocks.
2404 					 * We don't update b_size because if we
2405 					 * find an unmapped buffer_head later
2406 					 * we need to use the b_state flag of
2407 					 * that buffer_head.
2408 					 */
2409 					if (mpd->b_size == 0)
2410 						mpd->b_state =
2411 							bh->b_state & BH_FLAGS;
2412 				}
2413 				logical++;
2414 			} while ((bh = bh->b_this_page) != head);
2415 
2416 			if (nr_to_write > 0) {
2417 				nr_to_write--;
2418 				if (nr_to_write == 0 &&
2419 				    wbc->sync_mode == WB_SYNC_NONE)
2420 					/*
2421 					 * We stop writing back only if we are
2422 					 * not doing integrity sync. In case of
2423 					 * integrity sync we have to keep going
2424 					 * because someone may be concurrently
2425 					 * dirtying pages, and we might have
2426 					 * synced a lot of newly appeared dirty
2427 					 * pages, but have not synced all of the
2428 					 * old dirty pages.
2429 					 */
2430 					goto out;
2431 			}
2432 		}
2433 		pagevec_release(&pvec);
2434 		cond_resched();
2435 	}
2436 	return 0;
2437 ret_extent_tail:
2438 	ret = MPAGE_DA_EXTENT_TAIL;
2439 out:
2440 	pagevec_release(&pvec);
2441 	cond_resched();
2442 	return ret;
2443 }
2444 
2445 
2446 static int ext4_da_writepages(struct address_space *mapping,
2447 			      struct writeback_control *wbc)
2448 {
2449 	pgoff_t	index;
2450 	int range_whole = 0;
2451 	handle_t *handle = NULL;
2452 	struct mpage_da_data mpd;
2453 	struct inode *inode = mapping->host;
2454 	int pages_written = 0;
2455 	unsigned int max_pages;
2456 	int range_cyclic, cycled = 1, io_done = 0;
2457 	int needed_blocks, ret = 0;
2458 	long desired_nr_to_write, nr_to_writebump = 0;
2459 	loff_t range_start = wbc->range_start;
2460 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2461 	pgoff_t done_index = 0;
2462 	pgoff_t end;
2463 	struct blk_plug plug;
2464 
2465 	trace_ext4_da_writepages(inode, wbc);
2466 
2467 	/*
2468 	 * No pages to write? This is mainly a kludge to avoid starting
2469 	 * a transaction for special inodes like journal inode on last iput()
2470 	 * because that could violate lock ordering on umount
2471 	 */
2472 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2473 		return 0;
2474 
2475 	/*
2476 	 * If the filesystem has aborted, it is read-only, so return
2477 	 * right away instead of dumping stack traces later on that
2478 	 * will obscure the real source of the problem.  We test
2479 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2480 	 * the latter could be true if the filesystem is mounted
2481 	 * read-only, and in that case, ext4_da_writepages should
2482 	 * *never* be called, so if that ever happens, we would want
2483 	 * the stack trace.
2484 	 */
2485 	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2486 		return -EROFS;
2487 
2488 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2489 		range_whole = 1;
2490 
2491 	range_cyclic = wbc->range_cyclic;
2492 	if (wbc->range_cyclic) {
2493 		index = mapping->writeback_index;
2494 		if (index)
2495 			cycled = 0;
2496 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2497 		wbc->range_end  = LLONG_MAX;
2498 		wbc->range_cyclic = 0;
2499 		end = -1;
2500 	} else {
2501 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2502 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2503 	}
2504 
2505 	/*
2506 	 * This works around two forms of stupidity.  The first is in
2507 	 * the writeback code, which caps the maximum number of pages
2508 	 * written to be 1024 pages.  This is wrong on multiple
2509 	 * levels; different architectues have a different page size,
2510 	 * which changes the maximum amount of data which gets
2511 	 * written.  Secondly, 4 megabytes is way too small.  XFS
2512 	 * forces this value to be 16 megabytes by multiplying
2513 	 * nr_to_write parameter by four, and then relies on its
2514 	 * allocator to allocate larger extents to make them
2515 	 * contiguous.  Unfortunately this brings us to the second
2516 	 * stupidity, which is that ext4's mballoc code only allocates
2517 	 * at most 2048 blocks.  So we force contiguous writes up to
2518 	 * the number of dirty blocks in the inode, or
2519 	 * sbi->max_writeback_mb_bump whichever is smaller.
2520 	 */
2521 	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2522 	if (!range_cyclic && range_whole) {
2523 		if (wbc->nr_to_write == LONG_MAX)
2524 			desired_nr_to_write = wbc->nr_to_write;
2525 		else
2526 			desired_nr_to_write = wbc->nr_to_write * 8;
2527 	} else
2528 		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2529 							   max_pages);
2530 	if (desired_nr_to_write > max_pages)
2531 		desired_nr_to_write = max_pages;
2532 
2533 	if (wbc->nr_to_write < desired_nr_to_write) {
2534 		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2535 		wbc->nr_to_write = desired_nr_to_write;
2536 	}
2537 
2538 retry:
2539 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2540 		tag_pages_for_writeback(mapping, index, end);
2541 
2542 	blk_start_plug(&plug);
2543 	while (!ret && wbc->nr_to_write > 0) {
2544 
2545 		/*
2546 		 * we  insert one extent at a time. So we need
2547 		 * credit needed for single extent allocation.
2548 		 * journalled mode is currently not supported
2549 		 * by delalloc
2550 		 */
2551 		BUG_ON(ext4_should_journal_data(inode));
2552 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2553 
2554 		/* start a new transaction*/
2555 		handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2556 					    needed_blocks);
2557 		if (IS_ERR(handle)) {
2558 			ret = PTR_ERR(handle);
2559 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2560 			       "%ld pages, ino %lu; err %d", __func__,
2561 				wbc->nr_to_write, inode->i_ino, ret);
2562 			blk_finish_plug(&plug);
2563 			goto out_writepages;
2564 		}
2565 
2566 		/*
2567 		 * Now call write_cache_pages_da() to find the next
2568 		 * contiguous region of logical blocks that need
2569 		 * blocks to be allocated by ext4 and submit them.
2570 		 */
2571 		ret = write_cache_pages_da(handle, mapping,
2572 					   wbc, &mpd, &done_index);
2573 		/*
2574 		 * If we have a contiguous extent of pages and we
2575 		 * haven't done the I/O yet, map the blocks and submit
2576 		 * them for I/O.
2577 		 */
2578 		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2579 			mpage_da_map_and_submit(&mpd);
2580 			ret = MPAGE_DA_EXTENT_TAIL;
2581 		}
2582 		trace_ext4_da_write_pages(inode, &mpd);
2583 		wbc->nr_to_write -= mpd.pages_written;
2584 
2585 		ext4_journal_stop(handle);
2586 
2587 		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2588 			/* commit the transaction which would
2589 			 * free blocks released in the transaction
2590 			 * and try again
2591 			 */
2592 			jbd2_journal_force_commit_nested(sbi->s_journal);
2593 			ret = 0;
2594 		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
2595 			/*
2596 			 * Got one extent now try with rest of the pages.
2597 			 * If mpd.retval is set -EIO, journal is aborted.
2598 			 * So we don't need to write any more.
2599 			 */
2600 			pages_written += mpd.pages_written;
2601 			ret = mpd.retval;
2602 			io_done = 1;
2603 		} else if (wbc->nr_to_write)
2604 			/*
2605 			 * There is no more writeout needed
2606 			 * or we requested for a noblocking writeout
2607 			 * and we found the device congested
2608 			 */
2609 			break;
2610 	}
2611 	blk_finish_plug(&plug);
2612 	if (!io_done && !cycled) {
2613 		cycled = 1;
2614 		index = 0;
2615 		wbc->range_start = index << PAGE_CACHE_SHIFT;
2616 		wbc->range_end  = mapping->writeback_index - 1;
2617 		goto retry;
2618 	}
2619 
2620 	/* Update index */
2621 	wbc->range_cyclic = range_cyclic;
2622 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2623 		/*
2624 		 * set the writeback_index so that range_cyclic
2625 		 * mode will write it back later
2626 		 */
2627 		mapping->writeback_index = done_index;
2628 
2629 out_writepages:
2630 	wbc->nr_to_write -= nr_to_writebump;
2631 	wbc->range_start = range_start;
2632 	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2633 	return ret;
2634 }
2635 
2636 static int ext4_nonda_switch(struct super_block *sb)
2637 {
2638 	s64 free_clusters, dirty_clusters;
2639 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2640 
2641 	/*
2642 	 * switch to non delalloc mode if we are running low
2643 	 * on free block. The free block accounting via percpu
2644 	 * counters can get slightly wrong with percpu_counter_batch getting
2645 	 * accumulated on each CPU without updating global counters
2646 	 * Delalloc need an accurate free block accounting. So switch
2647 	 * to non delalloc when we are near to error range.
2648 	 */
2649 	free_clusters =
2650 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2651 	dirty_clusters =
2652 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2653 	/*
2654 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2655 	 */
2656 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2657 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2658 
2659 	if (2 * free_clusters < 3 * dirty_clusters ||
2660 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2661 		/*
2662 		 * free block count is less than 150% of dirty blocks
2663 		 * or free blocks is less than watermark
2664 		 */
2665 		return 1;
2666 	}
2667 	return 0;
2668 }
2669 
2670 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2671 			       loff_t pos, unsigned len, unsigned flags,
2672 			       struct page **pagep, void **fsdata)
2673 {
2674 	int ret, retries = 0;
2675 	struct page *page;
2676 	pgoff_t index;
2677 	struct inode *inode = mapping->host;
2678 	handle_t *handle;
2679 
2680 	index = pos >> PAGE_CACHE_SHIFT;
2681 
2682 	if (ext4_nonda_switch(inode->i_sb)) {
2683 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2684 		return ext4_write_begin(file, mapping, pos,
2685 					len, flags, pagep, fsdata);
2686 	}
2687 	*fsdata = (void *)0;
2688 	trace_ext4_da_write_begin(inode, pos, len, flags);
2689 
2690 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2691 		ret = ext4_da_write_inline_data_begin(mapping, inode,
2692 						      pos, len, flags,
2693 						      pagep, fsdata);
2694 		if (ret < 0)
2695 			return ret;
2696 		if (ret == 1)
2697 			return 0;
2698 	}
2699 
2700 	/*
2701 	 * grab_cache_page_write_begin() can take a long time if the
2702 	 * system is thrashing due to memory pressure, or if the page
2703 	 * is being written back.  So grab it first before we start
2704 	 * the transaction handle.  This also allows us to allocate
2705 	 * the page (if needed) without using GFP_NOFS.
2706 	 */
2707 retry_grab:
2708 	page = grab_cache_page_write_begin(mapping, index, flags);
2709 	if (!page)
2710 		return -ENOMEM;
2711 	unlock_page(page);
2712 
2713 	/*
2714 	 * With delayed allocation, we don't log the i_disksize update
2715 	 * if there is delayed block allocation. But we still need
2716 	 * to journalling the i_disksize update if writes to the end
2717 	 * of file which has an already mapped buffer.
2718 	 */
2719 retry_journal:
2720 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2721 	if (IS_ERR(handle)) {
2722 		page_cache_release(page);
2723 		return PTR_ERR(handle);
2724 	}
2725 
2726 	lock_page(page);
2727 	if (page->mapping != mapping) {
2728 		/* The page got truncated from under us */
2729 		unlock_page(page);
2730 		page_cache_release(page);
2731 		ext4_journal_stop(handle);
2732 		goto retry_grab;
2733 	}
2734 	/* In case writeback began while the page was unlocked */
2735 	wait_on_page_writeback(page);
2736 
2737 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2738 	if (ret < 0) {
2739 		unlock_page(page);
2740 		ext4_journal_stop(handle);
2741 		/*
2742 		 * block_write_begin may have instantiated a few blocks
2743 		 * outside i_size.  Trim these off again. Don't need
2744 		 * i_size_read because we hold i_mutex.
2745 		 */
2746 		if (pos + len > inode->i_size)
2747 			ext4_truncate_failed_write(inode);
2748 
2749 		if (ret == -ENOSPC &&
2750 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2751 			goto retry_journal;
2752 
2753 		page_cache_release(page);
2754 		return ret;
2755 	}
2756 
2757 	*pagep = page;
2758 	return ret;
2759 }
2760 
2761 /*
2762  * Check if we should update i_disksize
2763  * when write to the end of file but not require block allocation
2764  */
2765 static int ext4_da_should_update_i_disksize(struct page *page,
2766 					    unsigned long offset)
2767 {
2768 	struct buffer_head *bh;
2769 	struct inode *inode = page->mapping->host;
2770 	unsigned int idx;
2771 	int i;
2772 
2773 	bh = page_buffers(page);
2774 	idx = offset >> inode->i_blkbits;
2775 
2776 	for (i = 0; i < idx; i++)
2777 		bh = bh->b_this_page;
2778 
2779 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2780 		return 0;
2781 	return 1;
2782 }
2783 
2784 static int ext4_da_write_end(struct file *file,
2785 			     struct address_space *mapping,
2786 			     loff_t pos, unsigned len, unsigned copied,
2787 			     struct page *page, void *fsdata)
2788 {
2789 	struct inode *inode = mapping->host;
2790 	int ret = 0, ret2;
2791 	handle_t *handle = ext4_journal_current_handle();
2792 	loff_t new_i_size;
2793 	unsigned long start, end;
2794 	int write_mode = (int)(unsigned long)fsdata;
2795 
2796 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2797 		return ext4_write_end(file, mapping, pos,
2798 				      len, copied, page, fsdata);
2799 
2800 	trace_ext4_da_write_end(inode, pos, len, copied);
2801 	start = pos & (PAGE_CACHE_SIZE - 1);
2802 	end = start + copied - 1;
2803 
2804 	/*
2805 	 * generic_write_end() will run mark_inode_dirty() if i_size
2806 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2807 	 * into that.
2808 	 */
2809 	new_i_size = pos + copied;
2810 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2811 		if (ext4_has_inline_data(inode) ||
2812 		    ext4_da_should_update_i_disksize(page, end)) {
2813 			down_write(&EXT4_I(inode)->i_data_sem);
2814 			if (new_i_size > EXT4_I(inode)->i_disksize)
2815 				EXT4_I(inode)->i_disksize = new_i_size;
2816 			up_write(&EXT4_I(inode)->i_data_sem);
2817 			/* We need to mark inode dirty even if
2818 			 * new_i_size is less that inode->i_size
2819 			 * bu greater than i_disksize.(hint delalloc)
2820 			 */
2821 			ext4_mark_inode_dirty(handle, inode);
2822 		}
2823 	}
2824 
2825 	if (write_mode != CONVERT_INLINE_DATA &&
2826 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2827 	    ext4_has_inline_data(inode))
2828 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2829 						     page);
2830 	else
2831 		ret2 = generic_write_end(file, mapping, pos, len, copied,
2832 							page, fsdata);
2833 
2834 	copied = ret2;
2835 	if (ret2 < 0)
2836 		ret = ret2;
2837 	ret2 = ext4_journal_stop(handle);
2838 	if (!ret)
2839 		ret = ret2;
2840 
2841 	return ret ? ret : copied;
2842 }
2843 
2844 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2845 {
2846 	/*
2847 	 * Drop reserved blocks
2848 	 */
2849 	BUG_ON(!PageLocked(page));
2850 	if (!page_has_buffers(page))
2851 		goto out;
2852 
2853 	ext4_da_page_release_reservation(page, offset);
2854 
2855 out:
2856 	ext4_invalidatepage(page, offset);
2857 
2858 	return;
2859 }
2860 
2861 /*
2862  * Force all delayed allocation blocks to be allocated for a given inode.
2863  */
2864 int ext4_alloc_da_blocks(struct inode *inode)
2865 {
2866 	trace_ext4_alloc_da_blocks(inode);
2867 
2868 	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2869 	    !EXT4_I(inode)->i_reserved_meta_blocks)
2870 		return 0;
2871 
2872 	/*
2873 	 * We do something simple for now.  The filemap_flush() will
2874 	 * also start triggering a write of the data blocks, which is
2875 	 * not strictly speaking necessary (and for users of
2876 	 * laptop_mode, not even desirable).  However, to do otherwise
2877 	 * would require replicating code paths in:
2878 	 *
2879 	 * ext4_da_writepages() ->
2880 	 *    write_cache_pages() ---> (via passed in callback function)
2881 	 *        __mpage_da_writepage() -->
2882 	 *           mpage_add_bh_to_extent()
2883 	 *           mpage_da_map_blocks()
2884 	 *
2885 	 * The problem is that write_cache_pages(), located in
2886 	 * mm/page-writeback.c, marks pages clean in preparation for
2887 	 * doing I/O, which is not desirable if we're not planning on
2888 	 * doing I/O at all.
2889 	 *
2890 	 * We could call write_cache_pages(), and then redirty all of
2891 	 * the pages by calling redirty_page_for_writepage() but that
2892 	 * would be ugly in the extreme.  So instead we would need to
2893 	 * replicate parts of the code in the above functions,
2894 	 * simplifying them because we wouldn't actually intend to
2895 	 * write out the pages, but rather only collect contiguous
2896 	 * logical block extents, call the multi-block allocator, and
2897 	 * then update the buffer heads with the block allocations.
2898 	 *
2899 	 * For now, though, we'll cheat by calling filemap_flush(),
2900 	 * which will map the blocks, and start the I/O, but not
2901 	 * actually wait for the I/O to complete.
2902 	 */
2903 	return filemap_flush(inode->i_mapping);
2904 }
2905 
2906 /*
2907  * bmap() is special.  It gets used by applications such as lilo and by
2908  * the swapper to find the on-disk block of a specific piece of data.
2909  *
2910  * Naturally, this is dangerous if the block concerned is still in the
2911  * journal.  If somebody makes a swapfile on an ext4 data-journaling
2912  * filesystem and enables swap, then they may get a nasty shock when the
2913  * data getting swapped to that swapfile suddenly gets overwritten by
2914  * the original zero's written out previously to the journal and
2915  * awaiting writeback in the kernel's buffer cache.
2916  *
2917  * So, if we see any bmap calls here on a modified, data-journaled file,
2918  * take extra steps to flush any blocks which might be in the cache.
2919  */
2920 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2921 {
2922 	struct inode *inode = mapping->host;
2923 	journal_t *journal;
2924 	int err;
2925 
2926 	/*
2927 	 * We can get here for an inline file via the FIBMAP ioctl
2928 	 */
2929 	if (ext4_has_inline_data(inode))
2930 		return 0;
2931 
2932 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2933 			test_opt(inode->i_sb, DELALLOC)) {
2934 		/*
2935 		 * With delalloc we want to sync the file
2936 		 * so that we can make sure we allocate
2937 		 * blocks for file
2938 		 */
2939 		filemap_write_and_wait(mapping);
2940 	}
2941 
2942 	if (EXT4_JOURNAL(inode) &&
2943 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2944 		/*
2945 		 * This is a REALLY heavyweight approach, but the use of
2946 		 * bmap on dirty files is expected to be extremely rare:
2947 		 * only if we run lilo or swapon on a freshly made file
2948 		 * do we expect this to happen.
2949 		 *
2950 		 * (bmap requires CAP_SYS_RAWIO so this does not
2951 		 * represent an unprivileged user DOS attack --- we'd be
2952 		 * in trouble if mortal users could trigger this path at
2953 		 * will.)
2954 		 *
2955 		 * NB. EXT4_STATE_JDATA is not set on files other than
2956 		 * regular files.  If somebody wants to bmap a directory
2957 		 * or symlink and gets confused because the buffer
2958 		 * hasn't yet been flushed to disk, they deserve
2959 		 * everything they get.
2960 		 */
2961 
2962 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2963 		journal = EXT4_JOURNAL(inode);
2964 		jbd2_journal_lock_updates(journal);
2965 		err = jbd2_journal_flush(journal);
2966 		jbd2_journal_unlock_updates(journal);
2967 
2968 		if (err)
2969 			return 0;
2970 	}
2971 
2972 	return generic_block_bmap(mapping, block, ext4_get_block);
2973 }
2974 
2975 static int ext4_readpage(struct file *file, struct page *page)
2976 {
2977 	int ret = -EAGAIN;
2978 	struct inode *inode = page->mapping->host;
2979 
2980 	trace_ext4_readpage(page);
2981 
2982 	if (ext4_has_inline_data(inode))
2983 		ret = ext4_readpage_inline(inode, page);
2984 
2985 	if (ret == -EAGAIN)
2986 		return mpage_readpage(page, ext4_get_block);
2987 
2988 	return ret;
2989 }
2990 
2991 static int
2992 ext4_readpages(struct file *file, struct address_space *mapping,
2993 		struct list_head *pages, unsigned nr_pages)
2994 {
2995 	struct inode *inode = mapping->host;
2996 
2997 	/* If the file has inline data, no need to do readpages. */
2998 	if (ext4_has_inline_data(inode))
2999 		return 0;
3000 
3001 	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3002 }
3003 
3004 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3005 {
3006 	trace_ext4_invalidatepage(page, offset);
3007 
3008 	/* No journalling happens on data buffers when this function is used */
3009 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3010 
3011 	block_invalidatepage(page, offset);
3012 }
3013 
3014 static int __ext4_journalled_invalidatepage(struct page *page,
3015 					    unsigned long offset)
3016 {
3017 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3018 
3019 	trace_ext4_journalled_invalidatepage(page, offset);
3020 
3021 	/*
3022 	 * If it's a full truncate we just forget about the pending dirtying
3023 	 */
3024 	if (offset == 0)
3025 		ClearPageChecked(page);
3026 
3027 	return jbd2_journal_invalidatepage(journal, page, offset);
3028 }
3029 
3030 /* Wrapper for aops... */
3031 static void ext4_journalled_invalidatepage(struct page *page,
3032 					   unsigned long offset)
3033 {
3034 	WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
3035 }
3036 
3037 static int ext4_releasepage(struct page *page, gfp_t wait)
3038 {
3039 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3040 
3041 	trace_ext4_releasepage(page);
3042 
3043 	/* Page has dirty journalled data -> cannot release */
3044 	if (PageChecked(page))
3045 		return 0;
3046 	if (journal)
3047 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3048 	else
3049 		return try_to_free_buffers(page);
3050 }
3051 
3052 /*
3053  * ext4_get_block used when preparing for a DIO write or buffer write.
3054  * We allocate an uinitialized extent if blocks haven't been allocated.
3055  * The extent will be converted to initialized after the IO is complete.
3056  */
3057 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3058 		   struct buffer_head *bh_result, int create)
3059 {
3060 	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3061 		   inode->i_ino, create);
3062 	return _ext4_get_block(inode, iblock, bh_result,
3063 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3064 }
3065 
3066 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3067 		   struct buffer_head *bh_result, int create)
3068 {
3069 	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3070 		   inode->i_ino, create);
3071 	return _ext4_get_block(inode, iblock, bh_result,
3072 			       EXT4_GET_BLOCKS_NO_LOCK);
3073 }
3074 
3075 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3076 			    ssize_t size, void *private, int ret,
3077 			    bool is_async)
3078 {
3079 	struct inode *inode = file_inode(iocb->ki_filp);
3080         ext4_io_end_t *io_end = iocb->private;
3081 
3082 	/* if not async direct IO just return */
3083 	if (!io_end) {
3084 		inode_dio_done(inode);
3085 		if (is_async)
3086 			aio_complete(iocb, ret, 0);
3087 		return;
3088 	}
3089 
3090 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3091 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3092  		  iocb->private, io_end->inode->i_ino, iocb, offset,
3093 		  size);
3094 
3095 	iocb->private = NULL;
3096 	io_end->offset = offset;
3097 	io_end->size = size;
3098 	if (is_async) {
3099 		io_end->iocb = iocb;
3100 		io_end->result = ret;
3101 	}
3102 	ext4_put_io_end_defer(io_end);
3103 }
3104 
3105 /*
3106  * For ext4 extent files, ext4 will do direct-io write to holes,
3107  * preallocated extents, and those write extend the file, no need to
3108  * fall back to buffered IO.
3109  *
3110  * For holes, we fallocate those blocks, mark them as uninitialized
3111  * If those blocks were preallocated, we mark sure they are split, but
3112  * still keep the range to write as uninitialized.
3113  *
3114  * The unwritten extents will be converted to written when DIO is completed.
3115  * For async direct IO, since the IO may still pending when return, we
3116  * set up an end_io call back function, which will do the conversion
3117  * when async direct IO completed.
3118  *
3119  * If the O_DIRECT write will extend the file then add this inode to the
3120  * orphan list.  So recovery will truncate it back to the original size
3121  * if the machine crashes during the write.
3122  *
3123  */
3124 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3125 			      const struct iovec *iov, loff_t offset,
3126 			      unsigned long nr_segs)
3127 {
3128 	struct file *file = iocb->ki_filp;
3129 	struct inode *inode = file->f_mapping->host;
3130 	ssize_t ret;
3131 	size_t count = iov_length(iov, nr_segs);
3132 	int overwrite = 0;
3133 	get_block_t *get_block_func = NULL;
3134 	int dio_flags = 0;
3135 	loff_t final_size = offset + count;
3136 	ext4_io_end_t *io_end = NULL;
3137 
3138 	/* Use the old path for reads and writes beyond i_size. */
3139 	if (rw != WRITE || final_size > inode->i_size)
3140 		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3141 
3142 	BUG_ON(iocb->private == NULL);
3143 
3144 	/* If we do a overwrite dio, i_mutex locking can be released */
3145 	overwrite = *((int *)iocb->private);
3146 
3147 	if (overwrite) {
3148 		atomic_inc(&inode->i_dio_count);
3149 		down_read(&EXT4_I(inode)->i_data_sem);
3150 		mutex_unlock(&inode->i_mutex);
3151 	}
3152 
3153 	/*
3154 	 * We could direct write to holes and fallocate.
3155 	 *
3156 	 * Allocated blocks to fill the hole are marked as
3157 	 * uninitialized to prevent parallel buffered read to expose
3158 	 * the stale data before DIO complete the data IO.
3159 	 *
3160 	 * As to previously fallocated extents, ext4 get_block will
3161 	 * just simply mark the buffer mapped but still keep the
3162 	 * extents uninitialized.
3163 	 *
3164 	 * For non AIO case, we will convert those unwritten extents
3165 	 * to written after return back from blockdev_direct_IO.
3166 	 *
3167 	 * For async DIO, the conversion needs to be deferred when the
3168 	 * IO is completed. The ext4 end_io callback function will be
3169 	 * called to take care of the conversion work.  Here for async
3170 	 * case, we allocate an io_end structure to hook to the iocb.
3171 	 */
3172 	iocb->private = NULL;
3173 	ext4_inode_aio_set(inode, NULL);
3174 	if (!is_sync_kiocb(iocb)) {
3175 		io_end = ext4_init_io_end(inode, GFP_NOFS);
3176 		if (!io_end) {
3177 			ret = -ENOMEM;
3178 			goto retake_lock;
3179 		}
3180 		io_end->flag |= EXT4_IO_END_DIRECT;
3181 		/*
3182 		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3183 		 */
3184 		iocb->private = ext4_get_io_end(io_end);
3185 		/*
3186 		 * we save the io structure for current async direct
3187 		 * IO, so that later ext4_map_blocks() could flag the
3188 		 * io structure whether there is a unwritten extents
3189 		 * needs to be converted when IO is completed.
3190 		 */
3191 		ext4_inode_aio_set(inode, io_end);
3192 	}
3193 
3194 	if (overwrite) {
3195 		get_block_func = ext4_get_block_write_nolock;
3196 	} else {
3197 		get_block_func = ext4_get_block_write;
3198 		dio_flags = DIO_LOCKING;
3199 	}
3200 	ret = __blockdev_direct_IO(rw, iocb, inode,
3201 				   inode->i_sb->s_bdev, iov,
3202 				   offset, nr_segs,
3203 				   get_block_func,
3204 				   ext4_end_io_dio,
3205 				   NULL,
3206 				   dio_flags);
3207 
3208 	/*
3209 	 * Put our reference to io_end. This can free the io_end structure e.g.
3210 	 * in sync IO case or in case of error. It can even perform extent
3211 	 * conversion if all bios we submitted finished before we got here.
3212 	 * Note that in that case iocb->private can be already set to NULL
3213 	 * here.
3214 	 */
3215 	if (io_end) {
3216 		ext4_inode_aio_set(inode, NULL);
3217 		ext4_put_io_end(io_end);
3218 		/*
3219 		 * In case of error or no write ext4_end_io_dio() was not
3220 		 * called so we have to put iocb's reference.
3221 		 */
3222 		if (ret <= 0 && ret != -EIOCBQUEUED) {
3223 			WARN_ON(iocb->private != io_end);
3224 			ext4_put_io_end(io_end);
3225 			iocb->private = NULL;
3226 		}
3227 	}
3228 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3229 						EXT4_STATE_DIO_UNWRITTEN)) {
3230 		int err;
3231 		/*
3232 		 * for non AIO case, since the IO is already
3233 		 * completed, we could do the conversion right here
3234 		 */
3235 		err = ext4_convert_unwritten_extents(inode,
3236 						     offset, ret);
3237 		if (err < 0)
3238 			ret = err;
3239 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3240 	}
3241 
3242 retake_lock:
3243 	/* take i_mutex locking again if we do a ovewrite dio */
3244 	if (overwrite) {
3245 		inode_dio_done(inode);
3246 		up_read(&EXT4_I(inode)->i_data_sem);
3247 		mutex_lock(&inode->i_mutex);
3248 	}
3249 
3250 	return ret;
3251 }
3252 
3253 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3254 			      const struct iovec *iov, loff_t offset,
3255 			      unsigned long nr_segs)
3256 {
3257 	struct file *file = iocb->ki_filp;
3258 	struct inode *inode = file->f_mapping->host;
3259 	ssize_t ret;
3260 
3261 	/*
3262 	 * If we are doing data journalling we don't support O_DIRECT
3263 	 */
3264 	if (ext4_should_journal_data(inode))
3265 		return 0;
3266 
3267 	/* Let buffer I/O handle the inline data case. */
3268 	if (ext4_has_inline_data(inode))
3269 		return 0;
3270 
3271 	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3272 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3273 		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3274 	else
3275 		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3276 	trace_ext4_direct_IO_exit(inode, offset,
3277 				iov_length(iov, nr_segs), rw, ret);
3278 	return ret;
3279 }
3280 
3281 /*
3282  * Pages can be marked dirty completely asynchronously from ext4's journalling
3283  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3284  * much here because ->set_page_dirty is called under VFS locks.  The page is
3285  * not necessarily locked.
3286  *
3287  * We cannot just dirty the page and leave attached buffers clean, because the
3288  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3289  * or jbddirty because all the journalling code will explode.
3290  *
3291  * So what we do is to mark the page "pending dirty" and next time writepage
3292  * is called, propagate that into the buffers appropriately.
3293  */
3294 static int ext4_journalled_set_page_dirty(struct page *page)
3295 {
3296 	SetPageChecked(page);
3297 	return __set_page_dirty_nobuffers(page);
3298 }
3299 
3300 static const struct address_space_operations ext4_aops = {
3301 	.readpage		= ext4_readpage,
3302 	.readpages		= ext4_readpages,
3303 	.writepage		= ext4_writepage,
3304 	.write_begin		= ext4_write_begin,
3305 	.write_end		= ext4_write_end,
3306 	.bmap			= ext4_bmap,
3307 	.invalidatepage		= ext4_invalidatepage,
3308 	.releasepage		= ext4_releasepage,
3309 	.direct_IO		= ext4_direct_IO,
3310 	.migratepage		= buffer_migrate_page,
3311 	.is_partially_uptodate  = block_is_partially_uptodate,
3312 	.error_remove_page	= generic_error_remove_page,
3313 };
3314 
3315 static const struct address_space_operations ext4_journalled_aops = {
3316 	.readpage		= ext4_readpage,
3317 	.readpages		= ext4_readpages,
3318 	.writepage		= ext4_writepage,
3319 	.write_begin		= ext4_write_begin,
3320 	.write_end		= ext4_journalled_write_end,
3321 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3322 	.bmap			= ext4_bmap,
3323 	.invalidatepage		= ext4_journalled_invalidatepage,
3324 	.releasepage		= ext4_releasepage,
3325 	.direct_IO		= ext4_direct_IO,
3326 	.is_partially_uptodate  = block_is_partially_uptodate,
3327 	.error_remove_page	= generic_error_remove_page,
3328 };
3329 
3330 static const struct address_space_operations ext4_da_aops = {
3331 	.readpage		= ext4_readpage,
3332 	.readpages		= ext4_readpages,
3333 	.writepage		= ext4_writepage,
3334 	.writepages		= ext4_da_writepages,
3335 	.write_begin		= ext4_da_write_begin,
3336 	.write_end		= ext4_da_write_end,
3337 	.bmap			= ext4_bmap,
3338 	.invalidatepage		= ext4_da_invalidatepage,
3339 	.releasepage		= ext4_releasepage,
3340 	.direct_IO		= ext4_direct_IO,
3341 	.migratepage		= buffer_migrate_page,
3342 	.is_partially_uptodate  = block_is_partially_uptodate,
3343 	.error_remove_page	= generic_error_remove_page,
3344 };
3345 
3346 void ext4_set_aops(struct inode *inode)
3347 {
3348 	switch (ext4_inode_journal_mode(inode)) {
3349 	case EXT4_INODE_ORDERED_DATA_MODE:
3350 		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3351 		break;
3352 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3353 		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3354 		break;
3355 	case EXT4_INODE_JOURNAL_DATA_MODE:
3356 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3357 		return;
3358 	default:
3359 		BUG();
3360 	}
3361 	if (test_opt(inode->i_sb, DELALLOC))
3362 		inode->i_mapping->a_ops = &ext4_da_aops;
3363 	else
3364 		inode->i_mapping->a_ops = &ext4_aops;
3365 }
3366 
3367 
3368 /*
3369  * ext4_discard_partial_page_buffers()
3370  * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3371  * This function finds and locks the page containing the offset
3372  * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3373  * Calling functions that already have the page locked should call
3374  * ext4_discard_partial_page_buffers_no_lock directly.
3375  */
3376 int ext4_discard_partial_page_buffers(handle_t *handle,
3377 		struct address_space *mapping, loff_t from,
3378 		loff_t length, int flags)
3379 {
3380 	struct inode *inode = mapping->host;
3381 	struct page *page;
3382 	int err = 0;
3383 
3384 	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3385 				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3386 	if (!page)
3387 		return -ENOMEM;
3388 
3389 	err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3390 		from, length, flags);
3391 
3392 	unlock_page(page);
3393 	page_cache_release(page);
3394 	return err;
3395 }
3396 
3397 /*
3398  * ext4_discard_partial_page_buffers_no_lock()
3399  * Zeros a page range of length 'length' starting from offset 'from'.
3400  * Buffer heads that correspond to the block aligned regions of the
3401  * zeroed range will be unmapped.  Unblock aligned regions
3402  * will have the corresponding buffer head mapped if needed so that
3403  * that region of the page can be updated with the partial zero out.
3404  *
3405  * This function assumes that the page has already been  locked.  The
3406  * The range to be discarded must be contained with in the given page.
3407  * If the specified range exceeds the end of the page it will be shortened
3408  * to the end of the page that corresponds to 'from'.  This function is
3409  * appropriate for updating a page and it buffer heads to be unmapped and
3410  * zeroed for blocks that have been either released, or are going to be
3411  * released.
3412  *
3413  * handle: The journal handle
3414  * inode:  The files inode
3415  * page:   A locked page that contains the offset "from"
3416  * from:   The starting byte offset (from the beginning of the file)
3417  *         to begin discarding
3418  * len:    The length of bytes to discard
3419  * flags:  Optional flags that may be used:
3420  *
3421  *         EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3422  *         Only zero the regions of the page whose buffer heads
3423  *         have already been unmapped.  This flag is appropriate
3424  *         for updating the contents of a page whose blocks may
3425  *         have already been released, and we only want to zero
3426  *         out the regions that correspond to those released blocks.
3427  *
3428  * Returns zero on success or negative on failure.
3429  */
3430 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3431 		struct inode *inode, struct page *page, loff_t from,
3432 		loff_t length, int flags)
3433 {
3434 	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3435 	unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3436 	unsigned int blocksize, max, pos;
3437 	ext4_lblk_t iblock;
3438 	struct buffer_head *bh;
3439 	int err = 0;
3440 
3441 	blocksize = inode->i_sb->s_blocksize;
3442 	max = PAGE_CACHE_SIZE - offset;
3443 
3444 	if (index != page->index)
3445 		return -EINVAL;
3446 
3447 	/*
3448 	 * correct length if it does not fall between
3449 	 * 'from' and the end of the page
3450 	 */
3451 	if (length > max || length < 0)
3452 		length = max;
3453 
3454 	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3455 
3456 	if (!page_has_buffers(page))
3457 		create_empty_buffers(page, blocksize, 0);
3458 
3459 	/* Find the buffer that contains "offset" */
3460 	bh = page_buffers(page);
3461 	pos = blocksize;
3462 	while (offset >= pos) {
3463 		bh = bh->b_this_page;
3464 		iblock++;
3465 		pos += blocksize;
3466 	}
3467 
3468 	pos = offset;
3469 	while (pos < offset + length) {
3470 		unsigned int end_of_block, range_to_discard;
3471 
3472 		err = 0;
3473 
3474 		/* The length of space left to zero and unmap */
3475 		range_to_discard = offset + length - pos;
3476 
3477 		/* The length of space until the end of the block */
3478 		end_of_block = blocksize - (pos & (blocksize-1));
3479 
3480 		/*
3481 		 * Do not unmap or zero past end of block
3482 		 * for this buffer head
3483 		 */
3484 		if (range_to_discard > end_of_block)
3485 			range_to_discard = end_of_block;
3486 
3487 
3488 		/*
3489 		 * Skip this buffer head if we are only zeroing unampped
3490 		 * regions of the page
3491 		 */
3492 		if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3493 			buffer_mapped(bh))
3494 				goto next;
3495 
3496 		/* If the range is block aligned, unmap */
3497 		if (range_to_discard == blocksize) {
3498 			clear_buffer_dirty(bh);
3499 			bh->b_bdev = NULL;
3500 			clear_buffer_mapped(bh);
3501 			clear_buffer_req(bh);
3502 			clear_buffer_new(bh);
3503 			clear_buffer_delay(bh);
3504 			clear_buffer_unwritten(bh);
3505 			clear_buffer_uptodate(bh);
3506 			zero_user(page, pos, range_to_discard);
3507 			BUFFER_TRACE(bh, "Buffer discarded");
3508 			goto next;
3509 		}
3510 
3511 		/*
3512 		 * If this block is not completely contained in the range
3513 		 * to be discarded, then it is not going to be released. Because
3514 		 * we need to keep this block, we need to make sure this part
3515 		 * of the page is uptodate before we modify it by writeing
3516 		 * partial zeros on it.
3517 		 */
3518 		if (!buffer_mapped(bh)) {
3519 			/*
3520 			 * Buffer head must be mapped before we can read
3521 			 * from the block
3522 			 */
3523 			BUFFER_TRACE(bh, "unmapped");
3524 			ext4_get_block(inode, iblock, bh, 0);
3525 			/* unmapped? It's a hole - nothing to do */
3526 			if (!buffer_mapped(bh)) {
3527 				BUFFER_TRACE(bh, "still unmapped");
3528 				goto next;
3529 			}
3530 		}
3531 
3532 		/* Ok, it's mapped. Make sure it's up-to-date */
3533 		if (PageUptodate(page))
3534 			set_buffer_uptodate(bh);
3535 
3536 		if (!buffer_uptodate(bh)) {
3537 			err = -EIO;
3538 			ll_rw_block(READ, 1, &bh);
3539 			wait_on_buffer(bh);
3540 			/* Uhhuh. Read error. Complain and punt.*/
3541 			if (!buffer_uptodate(bh))
3542 				goto next;
3543 		}
3544 
3545 		if (ext4_should_journal_data(inode)) {
3546 			BUFFER_TRACE(bh, "get write access");
3547 			err = ext4_journal_get_write_access(handle, bh);
3548 			if (err)
3549 				goto next;
3550 		}
3551 
3552 		zero_user(page, pos, range_to_discard);
3553 
3554 		err = 0;
3555 		if (ext4_should_journal_data(inode)) {
3556 			err = ext4_handle_dirty_metadata(handle, inode, bh);
3557 		} else
3558 			mark_buffer_dirty(bh);
3559 
3560 		BUFFER_TRACE(bh, "Partial buffer zeroed");
3561 next:
3562 		bh = bh->b_this_page;
3563 		iblock++;
3564 		pos += range_to_discard;
3565 	}
3566 
3567 	return err;
3568 }
3569 
3570 int ext4_can_truncate(struct inode *inode)
3571 {
3572 	if (S_ISREG(inode->i_mode))
3573 		return 1;
3574 	if (S_ISDIR(inode->i_mode))
3575 		return 1;
3576 	if (S_ISLNK(inode->i_mode))
3577 		return !ext4_inode_is_fast_symlink(inode);
3578 	return 0;
3579 }
3580 
3581 /*
3582  * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3583  * associated with the given offset and length
3584  *
3585  * @inode:  File inode
3586  * @offset: The offset where the hole will begin
3587  * @len:    The length of the hole
3588  *
3589  * Returns: 0 on success or negative on failure
3590  */
3591 
3592 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3593 {
3594 	struct inode *inode = file_inode(file);
3595 	struct super_block *sb = inode->i_sb;
3596 	ext4_lblk_t first_block, stop_block;
3597 	struct address_space *mapping = inode->i_mapping;
3598 	loff_t first_page, last_page, page_len;
3599 	loff_t first_page_offset, last_page_offset;
3600 	handle_t *handle;
3601 	unsigned int credits;
3602 	int ret = 0;
3603 
3604 	if (!S_ISREG(inode->i_mode))
3605 		return -EOPNOTSUPP;
3606 
3607 	if (EXT4_SB(sb)->s_cluster_ratio > 1) {
3608 		/* TODO: Add support for bigalloc file systems */
3609 		return -EOPNOTSUPP;
3610 	}
3611 
3612 	trace_ext4_punch_hole(inode, offset, length);
3613 
3614 	/*
3615 	 * Write out all dirty pages to avoid race conditions
3616 	 * Then release them.
3617 	 */
3618 	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3619 		ret = filemap_write_and_wait_range(mapping, offset,
3620 						   offset + length - 1);
3621 		if (ret)
3622 			return ret;
3623 	}
3624 
3625 	mutex_lock(&inode->i_mutex);
3626 	/* It's not possible punch hole on append only file */
3627 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3628 		ret = -EPERM;
3629 		goto out_mutex;
3630 	}
3631 	if (IS_SWAPFILE(inode)) {
3632 		ret = -ETXTBSY;
3633 		goto out_mutex;
3634 	}
3635 
3636 	/* No need to punch hole beyond i_size */
3637 	if (offset >= inode->i_size)
3638 		goto out_mutex;
3639 
3640 	/*
3641 	 * If the hole extends beyond i_size, set the hole
3642 	 * to end after the page that contains i_size
3643 	 */
3644 	if (offset + length > inode->i_size) {
3645 		length = inode->i_size +
3646 		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3647 		   offset;
3648 	}
3649 
3650 	first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3651 	last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3652 
3653 	first_page_offset = first_page << PAGE_CACHE_SHIFT;
3654 	last_page_offset = last_page << PAGE_CACHE_SHIFT;
3655 
3656 	/* Now release the pages */
3657 	if (last_page_offset > first_page_offset) {
3658 		truncate_pagecache_range(inode, first_page_offset,
3659 					 last_page_offset - 1);
3660 	}
3661 
3662 	/* Wait all existing dio workers, newcomers will block on i_mutex */
3663 	ext4_inode_block_unlocked_dio(inode);
3664 	ret = ext4_flush_unwritten_io(inode);
3665 	if (ret)
3666 		goto out_dio;
3667 	inode_dio_wait(inode);
3668 
3669 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3670 		credits = ext4_writepage_trans_blocks(inode);
3671 	else
3672 		credits = ext4_blocks_for_truncate(inode);
3673 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3674 	if (IS_ERR(handle)) {
3675 		ret = PTR_ERR(handle);
3676 		ext4_std_error(sb, ret);
3677 		goto out_dio;
3678 	}
3679 
3680 	/*
3681 	 * Now we need to zero out the non-page-aligned data in the
3682 	 * pages at the start and tail of the hole, and unmap the
3683 	 * buffer heads for the block aligned regions of the page that
3684 	 * were completely zeroed.
3685 	 */
3686 	if (first_page > last_page) {
3687 		/*
3688 		 * If the file space being truncated is contained
3689 		 * within a page just zero out and unmap the middle of
3690 		 * that page
3691 		 */
3692 		ret = ext4_discard_partial_page_buffers(handle,
3693 			mapping, offset, length, 0);
3694 
3695 		if (ret)
3696 			goto out_stop;
3697 	} else {
3698 		/*
3699 		 * zero out and unmap the partial page that contains
3700 		 * the start of the hole
3701 		 */
3702 		page_len = first_page_offset - offset;
3703 		if (page_len > 0) {
3704 			ret = ext4_discard_partial_page_buffers(handle, mapping,
3705 						offset, page_len, 0);
3706 			if (ret)
3707 				goto out_stop;
3708 		}
3709 
3710 		/*
3711 		 * zero out and unmap the partial page that contains
3712 		 * the end of the hole
3713 		 */
3714 		page_len = offset + length - last_page_offset;
3715 		if (page_len > 0) {
3716 			ret = ext4_discard_partial_page_buffers(handle, mapping,
3717 					last_page_offset, page_len, 0);
3718 			if (ret)
3719 				goto out_stop;
3720 		}
3721 	}
3722 
3723 	/*
3724 	 * If i_size is contained in the last page, we need to
3725 	 * unmap and zero the partial page after i_size
3726 	 */
3727 	if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3728 	   inode->i_size % PAGE_CACHE_SIZE != 0) {
3729 		page_len = PAGE_CACHE_SIZE -
3730 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
3731 
3732 		if (page_len > 0) {
3733 			ret = ext4_discard_partial_page_buffers(handle,
3734 					mapping, inode->i_size, page_len, 0);
3735 
3736 			if (ret)
3737 				goto out_stop;
3738 		}
3739 	}
3740 
3741 	first_block = (offset + sb->s_blocksize - 1) >>
3742 		EXT4_BLOCK_SIZE_BITS(sb);
3743 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3744 
3745 	/* If there are no blocks to remove, return now */
3746 	if (first_block >= stop_block)
3747 		goto out_stop;
3748 
3749 	down_write(&EXT4_I(inode)->i_data_sem);
3750 	ext4_discard_preallocations(inode);
3751 
3752 	ret = ext4_es_remove_extent(inode, first_block,
3753 				    stop_block - first_block);
3754 	if (ret) {
3755 		up_write(&EXT4_I(inode)->i_data_sem);
3756 		goto out_stop;
3757 	}
3758 
3759 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3760 		ret = ext4_ext_remove_space(inode, first_block,
3761 					    stop_block - 1);
3762 	else
3763 		ret = ext4_free_hole_blocks(handle, inode, first_block,
3764 					    stop_block);
3765 
3766 	ext4_discard_preallocations(inode);
3767 	up_write(&EXT4_I(inode)->i_data_sem);
3768 	if (IS_SYNC(inode))
3769 		ext4_handle_sync(handle);
3770 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3771 	ext4_mark_inode_dirty(handle, inode);
3772 out_stop:
3773 	ext4_journal_stop(handle);
3774 out_dio:
3775 	ext4_inode_resume_unlocked_dio(inode);
3776 out_mutex:
3777 	mutex_unlock(&inode->i_mutex);
3778 	return ret;
3779 }
3780 
3781 /*
3782  * ext4_truncate()
3783  *
3784  * We block out ext4_get_block() block instantiations across the entire
3785  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3786  * simultaneously on behalf of the same inode.
3787  *
3788  * As we work through the truncate and commit bits of it to the journal there
3789  * is one core, guiding principle: the file's tree must always be consistent on
3790  * disk.  We must be able to restart the truncate after a crash.
3791  *
3792  * The file's tree may be transiently inconsistent in memory (although it
3793  * probably isn't), but whenever we close off and commit a journal transaction,
3794  * the contents of (the filesystem + the journal) must be consistent and
3795  * restartable.  It's pretty simple, really: bottom up, right to left (although
3796  * left-to-right works OK too).
3797  *
3798  * Note that at recovery time, journal replay occurs *before* the restart of
3799  * truncate against the orphan inode list.
3800  *
3801  * The committed inode has the new, desired i_size (which is the same as
3802  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3803  * that this inode's truncate did not complete and it will again call
3804  * ext4_truncate() to have another go.  So there will be instantiated blocks
3805  * to the right of the truncation point in a crashed ext4 filesystem.  But
3806  * that's fine - as long as they are linked from the inode, the post-crash
3807  * ext4_truncate() run will find them and release them.
3808  */
3809 void ext4_truncate(struct inode *inode)
3810 {
3811 	struct ext4_inode_info *ei = EXT4_I(inode);
3812 	unsigned int credits;
3813 	handle_t *handle;
3814 	struct address_space *mapping = inode->i_mapping;
3815 	loff_t page_len;
3816 
3817 	/*
3818 	 * There is a possibility that we're either freeing the inode
3819 	 * or it completely new indode. In those cases we might not
3820 	 * have i_mutex locked because it's not necessary.
3821 	 */
3822 	if (!(inode->i_state & (I_NEW|I_FREEING)))
3823 		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3824 	trace_ext4_truncate_enter(inode);
3825 
3826 	if (!ext4_can_truncate(inode))
3827 		return;
3828 
3829 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3830 
3831 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3832 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3833 
3834 	if (ext4_has_inline_data(inode)) {
3835 		int has_inline = 1;
3836 
3837 		ext4_inline_data_truncate(inode, &has_inline);
3838 		if (has_inline)
3839 			return;
3840 	}
3841 
3842 	/*
3843 	 * finish any pending end_io work so we won't run the risk of
3844 	 * converting any truncated blocks to initialized later
3845 	 */
3846 	ext4_flush_unwritten_io(inode);
3847 
3848 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3849 		credits = ext4_writepage_trans_blocks(inode);
3850 	else
3851 		credits = ext4_blocks_for_truncate(inode);
3852 
3853 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3854 	if (IS_ERR(handle)) {
3855 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3856 		return;
3857 	}
3858 
3859 	if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3860 		page_len = PAGE_CACHE_SIZE -
3861 			(inode->i_size & (PAGE_CACHE_SIZE - 1));
3862 
3863 		if (ext4_discard_partial_page_buffers(handle,
3864 				mapping, inode->i_size, page_len, 0))
3865 			goto out_stop;
3866 	}
3867 
3868 	/*
3869 	 * We add the inode to the orphan list, so that if this
3870 	 * truncate spans multiple transactions, and we crash, we will
3871 	 * resume the truncate when the filesystem recovers.  It also
3872 	 * marks the inode dirty, to catch the new size.
3873 	 *
3874 	 * Implication: the file must always be in a sane, consistent
3875 	 * truncatable state while each transaction commits.
3876 	 */
3877 	if (ext4_orphan_add(handle, inode))
3878 		goto out_stop;
3879 
3880 	down_write(&EXT4_I(inode)->i_data_sem);
3881 
3882 	ext4_discard_preallocations(inode);
3883 
3884 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3885 		ext4_ext_truncate(handle, inode);
3886 	else
3887 		ext4_ind_truncate(handle, inode);
3888 
3889 	up_write(&ei->i_data_sem);
3890 
3891 	if (IS_SYNC(inode))
3892 		ext4_handle_sync(handle);
3893 
3894 out_stop:
3895 	/*
3896 	 * If this was a simple ftruncate() and the file will remain alive,
3897 	 * then we need to clear up the orphan record which we created above.
3898 	 * However, if this was a real unlink then we were called by
3899 	 * ext4_delete_inode(), and we allow that function to clean up the
3900 	 * orphan info for us.
3901 	 */
3902 	if (inode->i_nlink)
3903 		ext4_orphan_del(handle, inode);
3904 
3905 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3906 	ext4_mark_inode_dirty(handle, inode);
3907 	ext4_journal_stop(handle);
3908 
3909 	trace_ext4_truncate_exit(inode);
3910 }
3911 
3912 /*
3913  * ext4_get_inode_loc returns with an extra refcount against the inode's
3914  * underlying buffer_head on success. If 'in_mem' is true, we have all
3915  * data in memory that is needed to recreate the on-disk version of this
3916  * inode.
3917  */
3918 static int __ext4_get_inode_loc(struct inode *inode,
3919 				struct ext4_iloc *iloc, int in_mem)
3920 {
3921 	struct ext4_group_desc	*gdp;
3922 	struct buffer_head	*bh;
3923 	struct super_block	*sb = inode->i_sb;
3924 	ext4_fsblk_t		block;
3925 	int			inodes_per_block, inode_offset;
3926 
3927 	iloc->bh = NULL;
3928 	if (!ext4_valid_inum(sb, inode->i_ino))
3929 		return -EIO;
3930 
3931 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3932 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3933 	if (!gdp)
3934 		return -EIO;
3935 
3936 	/*
3937 	 * Figure out the offset within the block group inode table
3938 	 */
3939 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3940 	inode_offset = ((inode->i_ino - 1) %
3941 			EXT4_INODES_PER_GROUP(sb));
3942 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3943 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3944 
3945 	bh = sb_getblk(sb, block);
3946 	if (unlikely(!bh))
3947 		return -ENOMEM;
3948 	if (!buffer_uptodate(bh)) {
3949 		lock_buffer(bh);
3950 
3951 		/*
3952 		 * If the buffer has the write error flag, we have failed
3953 		 * to write out another inode in the same block.  In this
3954 		 * case, we don't have to read the block because we may
3955 		 * read the old inode data successfully.
3956 		 */
3957 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3958 			set_buffer_uptodate(bh);
3959 
3960 		if (buffer_uptodate(bh)) {
3961 			/* someone brought it uptodate while we waited */
3962 			unlock_buffer(bh);
3963 			goto has_buffer;
3964 		}
3965 
3966 		/*
3967 		 * If we have all information of the inode in memory and this
3968 		 * is the only valid inode in the block, we need not read the
3969 		 * block.
3970 		 */
3971 		if (in_mem) {
3972 			struct buffer_head *bitmap_bh;
3973 			int i, start;
3974 
3975 			start = inode_offset & ~(inodes_per_block - 1);
3976 
3977 			/* Is the inode bitmap in cache? */
3978 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3979 			if (unlikely(!bitmap_bh))
3980 				goto make_io;
3981 
3982 			/*
3983 			 * If the inode bitmap isn't in cache then the
3984 			 * optimisation may end up performing two reads instead
3985 			 * of one, so skip it.
3986 			 */
3987 			if (!buffer_uptodate(bitmap_bh)) {
3988 				brelse(bitmap_bh);
3989 				goto make_io;
3990 			}
3991 			for (i = start; i < start + inodes_per_block; i++) {
3992 				if (i == inode_offset)
3993 					continue;
3994 				if (ext4_test_bit(i, bitmap_bh->b_data))
3995 					break;
3996 			}
3997 			brelse(bitmap_bh);
3998 			if (i == start + inodes_per_block) {
3999 				/* all other inodes are free, so skip I/O */
4000 				memset(bh->b_data, 0, bh->b_size);
4001 				set_buffer_uptodate(bh);
4002 				unlock_buffer(bh);
4003 				goto has_buffer;
4004 			}
4005 		}
4006 
4007 make_io:
4008 		/*
4009 		 * If we need to do any I/O, try to pre-readahead extra
4010 		 * blocks from the inode table.
4011 		 */
4012 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4013 			ext4_fsblk_t b, end, table;
4014 			unsigned num;
4015 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4016 
4017 			table = ext4_inode_table(sb, gdp);
4018 			/* s_inode_readahead_blks is always a power of 2 */
4019 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4020 			if (table > b)
4021 				b = table;
4022 			end = b + ra_blks;
4023 			num = EXT4_INODES_PER_GROUP(sb);
4024 			if (ext4_has_group_desc_csum(sb))
4025 				num -= ext4_itable_unused_count(sb, gdp);
4026 			table += num / inodes_per_block;
4027 			if (end > table)
4028 				end = table;
4029 			while (b <= end)
4030 				sb_breadahead(sb, b++);
4031 		}
4032 
4033 		/*
4034 		 * There are other valid inodes in the buffer, this inode
4035 		 * has in-inode xattrs, or we don't have this inode in memory.
4036 		 * Read the block from disk.
4037 		 */
4038 		trace_ext4_load_inode(inode);
4039 		get_bh(bh);
4040 		bh->b_end_io = end_buffer_read_sync;
4041 		submit_bh(READ | REQ_META | REQ_PRIO, bh);
4042 		wait_on_buffer(bh);
4043 		if (!buffer_uptodate(bh)) {
4044 			EXT4_ERROR_INODE_BLOCK(inode, block,
4045 					       "unable to read itable block");
4046 			brelse(bh);
4047 			return -EIO;
4048 		}
4049 	}
4050 has_buffer:
4051 	iloc->bh = bh;
4052 	return 0;
4053 }
4054 
4055 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4056 {
4057 	/* We have all inode data except xattrs in memory here. */
4058 	return __ext4_get_inode_loc(inode, iloc,
4059 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4060 }
4061 
4062 void ext4_set_inode_flags(struct inode *inode)
4063 {
4064 	unsigned int flags = EXT4_I(inode)->i_flags;
4065 
4066 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4067 	if (flags & EXT4_SYNC_FL)
4068 		inode->i_flags |= S_SYNC;
4069 	if (flags & EXT4_APPEND_FL)
4070 		inode->i_flags |= S_APPEND;
4071 	if (flags & EXT4_IMMUTABLE_FL)
4072 		inode->i_flags |= S_IMMUTABLE;
4073 	if (flags & EXT4_NOATIME_FL)
4074 		inode->i_flags |= S_NOATIME;
4075 	if (flags & EXT4_DIRSYNC_FL)
4076 		inode->i_flags |= S_DIRSYNC;
4077 }
4078 
4079 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4080 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4081 {
4082 	unsigned int vfs_fl;
4083 	unsigned long old_fl, new_fl;
4084 
4085 	do {
4086 		vfs_fl = ei->vfs_inode.i_flags;
4087 		old_fl = ei->i_flags;
4088 		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4089 				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4090 				EXT4_DIRSYNC_FL);
4091 		if (vfs_fl & S_SYNC)
4092 			new_fl |= EXT4_SYNC_FL;
4093 		if (vfs_fl & S_APPEND)
4094 			new_fl |= EXT4_APPEND_FL;
4095 		if (vfs_fl & S_IMMUTABLE)
4096 			new_fl |= EXT4_IMMUTABLE_FL;
4097 		if (vfs_fl & S_NOATIME)
4098 			new_fl |= EXT4_NOATIME_FL;
4099 		if (vfs_fl & S_DIRSYNC)
4100 			new_fl |= EXT4_DIRSYNC_FL;
4101 	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4102 }
4103 
4104 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4105 				  struct ext4_inode_info *ei)
4106 {
4107 	blkcnt_t i_blocks ;
4108 	struct inode *inode = &(ei->vfs_inode);
4109 	struct super_block *sb = inode->i_sb;
4110 
4111 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4112 				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4113 		/* we are using combined 48 bit field */
4114 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4115 					le32_to_cpu(raw_inode->i_blocks_lo);
4116 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4117 			/* i_blocks represent file system block size */
4118 			return i_blocks  << (inode->i_blkbits - 9);
4119 		} else {
4120 			return i_blocks;
4121 		}
4122 	} else {
4123 		return le32_to_cpu(raw_inode->i_blocks_lo);
4124 	}
4125 }
4126 
4127 static inline void ext4_iget_extra_inode(struct inode *inode,
4128 					 struct ext4_inode *raw_inode,
4129 					 struct ext4_inode_info *ei)
4130 {
4131 	__le32 *magic = (void *)raw_inode +
4132 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4133 	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4134 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4135 		ext4_find_inline_data_nolock(inode);
4136 	} else
4137 		EXT4_I(inode)->i_inline_off = 0;
4138 }
4139 
4140 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4141 {
4142 	struct ext4_iloc iloc;
4143 	struct ext4_inode *raw_inode;
4144 	struct ext4_inode_info *ei;
4145 	struct inode *inode;
4146 	journal_t *journal = EXT4_SB(sb)->s_journal;
4147 	long ret;
4148 	int block;
4149 	uid_t i_uid;
4150 	gid_t i_gid;
4151 
4152 	inode = iget_locked(sb, ino);
4153 	if (!inode)
4154 		return ERR_PTR(-ENOMEM);
4155 	if (!(inode->i_state & I_NEW))
4156 		return inode;
4157 
4158 	ei = EXT4_I(inode);
4159 	iloc.bh = NULL;
4160 
4161 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4162 	if (ret < 0)
4163 		goto bad_inode;
4164 	raw_inode = ext4_raw_inode(&iloc);
4165 
4166 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4167 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4168 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4169 		    EXT4_INODE_SIZE(inode->i_sb)) {
4170 			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4171 				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4172 				EXT4_INODE_SIZE(inode->i_sb));
4173 			ret = -EIO;
4174 			goto bad_inode;
4175 		}
4176 	} else
4177 		ei->i_extra_isize = 0;
4178 
4179 	/* Precompute checksum seed for inode metadata */
4180 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4181 			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4182 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4183 		__u32 csum;
4184 		__le32 inum = cpu_to_le32(inode->i_ino);
4185 		__le32 gen = raw_inode->i_generation;
4186 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4187 				   sizeof(inum));
4188 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4189 					      sizeof(gen));
4190 	}
4191 
4192 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4193 		EXT4_ERROR_INODE(inode, "checksum invalid");
4194 		ret = -EIO;
4195 		goto bad_inode;
4196 	}
4197 
4198 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4199 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4200 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4201 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4202 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4203 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4204 	}
4205 	i_uid_write(inode, i_uid);
4206 	i_gid_write(inode, i_gid);
4207 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4208 
4209 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4210 	ei->i_inline_off = 0;
4211 	ei->i_dir_start_lookup = 0;
4212 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4213 	/* We now have enough fields to check if the inode was active or not.
4214 	 * This is needed because nfsd might try to access dead inodes
4215 	 * the test is that same one that e2fsck uses
4216 	 * NeilBrown 1999oct15
4217 	 */
4218 	if (inode->i_nlink == 0) {
4219 		if ((inode->i_mode == 0 ||
4220 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4221 		    ino != EXT4_BOOT_LOADER_INO) {
4222 			/* this inode is deleted */
4223 			ret = -ESTALE;
4224 			goto bad_inode;
4225 		}
4226 		/* The only unlinked inodes we let through here have
4227 		 * valid i_mode and are being read by the orphan
4228 		 * recovery code: that's fine, we're about to complete
4229 		 * the process of deleting those.
4230 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4231 		 * not initialized on a new filesystem. */
4232 	}
4233 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4234 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4235 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4236 	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4237 		ei->i_file_acl |=
4238 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4239 	inode->i_size = ext4_isize(raw_inode);
4240 	ei->i_disksize = inode->i_size;
4241 #ifdef CONFIG_QUOTA
4242 	ei->i_reserved_quota = 0;
4243 #endif
4244 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4245 	ei->i_block_group = iloc.block_group;
4246 	ei->i_last_alloc_group = ~0;
4247 	/*
4248 	 * NOTE! The in-memory inode i_data array is in little-endian order
4249 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4250 	 */
4251 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4252 		ei->i_data[block] = raw_inode->i_block[block];
4253 	INIT_LIST_HEAD(&ei->i_orphan);
4254 
4255 	/*
4256 	 * Set transaction id's of transactions that have to be committed
4257 	 * to finish f[data]sync. We set them to currently running transaction
4258 	 * as we cannot be sure that the inode or some of its metadata isn't
4259 	 * part of the transaction - the inode could have been reclaimed and
4260 	 * now it is reread from disk.
4261 	 */
4262 	if (journal) {
4263 		transaction_t *transaction;
4264 		tid_t tid;
4265 
4266 		read_lock(&journal->j_state_lock);
4267 		if (journal->j_running_transaction)
4268 			transaction = journal->j_running_transaction;
4269 		else
4270 			transaction = journal->j_committing_transaction;
4271 		if (transaction)
4272 			tid = transaction->t_tid;
4273 		else
4274 			tid = journal->j_commit_sequence;
4275 		read_unlock(&journal->j_state_lock);
4276 		ei->i_sync_tid = tid;
4277 		ei->i_datasync_tid = tid;
4278 	}
4279 
4280 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4281 		if (ei->i_extra_isize == 0) {
4282 			/* The extra space is currently unused. Use it. */
4283 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4284 					    EXT4_GOOD_OLD_INODE_SIZE;
4285 		} else {
4286 			ext4_iget_extra_inode(inode, raw_inode, ei);
4287 		}
4288 	}
4289 
4290 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4291 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4292 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4293 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4294 
4295 	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4296 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4297 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4298 			inode->i_version |=
4299 			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4300 	}
4301 
4302 	ret = 0;
4303 	if (ei->i_file_acl &&
4304 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4305 		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4306 				 ei->i_file_acl);
4307 		ret = -EIO;
4308 		goto bad_inode;
4309 	} else if (!ext4_has_inline_data(inode)) {
4310 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4311 			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4312 			    (S_ISLNK(inode->i_mode) &&
4313 			     !ext4_inode_is_fast_symlink(inode))))
4314 				/* Validate extent which is part of inode */
4315 				ret = ext4_ext_check_inode(inode);
4316 		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4317 			   (S_ISLNK(inode->i_mode) &&
4318 			    !ext4_inode_is_fast_symlink(inode))) {
4319 			/* Validate block references which are part of inode */
4320 			ret = ext4_ind_check_inode(inode);
4321 		}
4322 	}
4323 	if (ret)
4324 		goto bad_inode;
4325 
4326 	if (S_ISREG(inode->i_mode)) {
4327 		inode->i_op = &ext4_file_inode_operations;
4328 		inode->i_fop = &ext4_file_operations;
4329 		ext4_set_aops(inode);
4330 	} else if (S_ISDIR(inode->i_mode)) {
4331 		inode->i_op = &ext4_dir_inode_operations;
4332 		inode->i_fop = &ext4_dir_operations;
4333 	} else if (S_ISLNK(inode->i_mode)) {
4334 		if (ext4_inode_is_fast_symlink(inode)) {
4335 			inode->i_op = &ext4_fast_symlink_inode_operations;
4336 			nd_terminate_link(ei->i_data, inode->i_size,
4337 				sizeof(ei->i_data) - 1);
4338 		} else {
4339 			inode->i_op = &ext4_symlink_inode_operations;
4340 			ext4_set_aops(inode);
4341 		}
4342 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4343 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4344 		inode->i_op = &ext4_special_inode_operations;
4345 		if (raw_inode->i_block[0])
4346 			init_special_inode(inode, inode->i_mode,
4347 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4348 		else
4349 			init_special_inode(inode, inode->i_mode,
4350 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4351 	} else if (ino == EXT4_BOOT_LOADER_INO) {
4352 		make_bad_inode(inode);
4353 	} else {
4354 		ret = -EIO;
4355 		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4356 		goto bad_inode;
4357 	}
4358 	brelse(iloc.bh);
4359 	ext4_set_inode_flags(inode);
4360 	unlock_new_inode(inode);
4361 	return inode;
4362 
4363 bad_inode:
4364 	brelse(iloc.bh);
4365 	iget_failed(inode);
4366 	return ERR_PTR(ret);
4367 }
4368 
4369 static int ext4_inode_blocks_set(handle_t *handle,
4370 				struct ext4_inode *raw_inode,
4371 				struct ext4_inode_info *ei)
4372 {
4373 	struct inode *inode = &(ei->vfs_inode);
4374 	u64 i_blocks = inode->i_blocks;
4375 	struct super_block *sb = inode->i_sb;
4376 
4377 	if (i_blocks <= ~0U) {
4378 		/*
4379 		 * i_blocks can be represented in a 32 bit variable
4380 		 * as multiple of 512 bytes
4381 		 */
4382 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4383 		raw_inode->i_blocks_high = 0;
4384 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4385 		return 0;
4386 	}
4387 	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4388 		return -EFBIG;
4389 
4390 	if (i_blocks <= 0xffffffffffffULL) {
4391 		/*
4392 		 * i_blocks can be represented in a 48 bit variable
4393 		 * as multiple of 512 bytes
4394 		 */
4395 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4396 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4397 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4398 	} else {
4399 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4400 		/* i_block is stored in file system block size */
4401 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4402 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4403 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4404 	}
4405 	return 0;
4406 }
4407 
4408 /*
4409  * Post the struct inode info into an on-disk inode location in the
4410  * buffer-cache.  This gobbles the caller's reference to the
4411  * buffer_head in the inode location struct.
4412  *
4413  * The caller must have write access to iloc->bh.
4414  */
4415 static int ext4_do_update_inode(handle_t *handle,
4416 				struct inode *inode,
4417 				struct ext4_iloc *iloc)
4418 {
4419 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4420 	struct ext4_inode_info *ei = EXT4_I(inode);
4421 	struct buffer_head *bh = iloc->bh;
4422 	int err = 0, rc, block;
4423 	int need_datasync = 0;
4424 	uid_t i_uid;
4425 	gid_t i_gid;
4426 
4427 	/* For fields not not tracking in the in-memory inode,
4428 	 * initialise them to zero for new inodes. */
4429 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4430 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4431 
4432 	ext4_get_inode_flags(ei);
4433 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4434 	i_uid = i_uid_read(inode);
4435 	i_gid = i_gid_read(inode);
4436 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4437 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4438 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4439 /*
4440  * Fix up interoperability with old kernels. Otherwise, old inodes get
4441  * re-used with the upper 16 bits of the uid/gid intact
4442  */
4443 		if (!ei->i_dtime) {
4444 			raw_inode->i_uid_high =
4445 				cpu_to_le16(high_16_bits(i_uid));
4446 			raw_inode->i_gid_high =
4447 				cpu_to_le16(high_16_bits(i_gid));
4448 		} else {
4449 			raw_inode->i_uid_high = 0;
4450 			raw_inode->i_gid_high = 0;
4451 		}
4452 	} else {
4453 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4454 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4455 		raw_inode->i_uid_high = 0;
4456 		raw_inode->i_gid_high = 0;
4457 	}
4458 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4459 
4460 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4461 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4462 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4463 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4464 
4465 	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4466 		goto out_brelse;
4467 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4468 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4469 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4470 	    cpu_to_le32(EXT4_OS_HURD))
4471 		raw_inode->i_file_acl_high =
4472 			cpu_to_le16(ei->i_file_acl >> 32);
4473 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4474 	if (ei->i_disksize != ext4_isize(raw_inode)) {
4475 		ext4_isize_set(raw_inode, ei->i_disksize);
4476 		need_datasync = 1;
4477 	}
4478 	if (ei->i_disksize > 0x7fffffffULL) {
4479 		struct super_block *sb = inode->i_sb;
4480 		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4481 				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4482 				EXT4_SB(sb)->s_es->s_rev_level ==
4483 				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4484 			/* If this is the first large file
4485 			 * created, add a flag to the superblock.
4486 			 */
4487 			err = ext4_journal_get_write_access(handle,
4488 					EXT4_SB(sb)->s_sbh);
4489 			if (err)
4490 				goto out_brelse;
4491 			ext4_update_dynamic_rev(sb);
4492 			EXT4_SET_RO_COMPAT_FEATURE(sb,
4493 					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4494 			ext4_handle_sync(handle);
4495 			err = ext4_handle_dirty_super(handle, sb);
4496 		}
4497 	}
4498 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4499 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4500 		if (old_valid_dev(inode->i_rdev)) {
4501 			raw_inode->i_block[0] =
4502 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4503 			raw_inode->i_block[1] = 0;
4504 		} else {
4505 			raw_inode->i_block[0] = 0;
4506 			raw_inode->i_block[1] =
4507 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4508 			raw_inode->i_block[2] = 0;
4509 		}
4510 	} else if (!ext4_has_inline_data(inode)) {
4511 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4512 			raw_inode->i_block[block] = ei->i_data[block];
4513 	}
4514 
4515 	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4516 	if (ei->i_extra_isize) {
4517 		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4518 			raw_inode->i_version_hi =
4519 			cpu_to_le32(inode->i_version >> 32);
4520 		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4521 	}
4522 
4523 	ext4_inode_csum_set(inode, raw_inode, ei);
4524 
4525 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4526 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4527 	if (!err)
4528 		err = rc;
4529 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4530 
4531 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4532 out_brelse:
4533 	brelse(bh);
4534 	ext4_std_error(inode->i_sb, err);
4535 	return err;
4536 }
4537 
4538 /*
4539  * ext4_write_inode()
4540  *
4541  * We are called from a few places:
4542  *
4543  * - Within generic_file_write() for O_SYNC files.
4544  *   Here, there will be no transaction running. We wait for any running
4545  *   transaction to commit.
4546  *
4547  * - Within sys_sync(), kupdate and such.
4548  *   We wait on commit, if tol to.
4549  *
4550  * - Within prune_icache() (PF_MEMALLOC == true)
4551  *   Here we simply return.  We can't afford to block kswapd on the
4552  *   journal commit.
4553  *
4554  * In all cases it is actually safe for us to return without doing anything,
4555  * because the inode has been copied into a raw inode buffer in
4556  * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
4557  * knfsd.
4558  *
4559  * Note that we are absolutely dependent upon all inode dirtiers doing the
4560  * right thing: they *must* call mark_inode_dirty() after dirtying info in
4561  * which we are interested.
4562  *
4563  * It would be a bug for them to not do this.  The code:
4564  *
4565  *	mark_inode_dirty(inode)
4566  *	stuff();
4567  *	inode->i_size = expr;
4568  *
4569  * is in error because a kswapd-driven write_inode() could occur while
4570  * `stuff()' is running, and the new i_size will be lost.  Plus the inode
4571  * will no longer be on the superblock's dirty inode list.
4572  */
4573 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4574 {
4575 	int err;
4576 
4577 	if (current->flags & PF_MEMALLOC)
4578 		return 0;
4579 
4580 	if (EXT4_SB(inode->i_sb)->s_journal) {
4581 		if (ext4_journal_current_handle()) {
4582 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4583 			dump_stack();
4584 			return -EIO;
4585 		}
4586 
4587 		if (wbc->sync_mode != WB_SYNC_ALL)
4588 			return 0;
4589 
4590 		err = ext4_force_commit(inode->i_sb);
4591 	} else {
4592 		struct ext4_iloc iloc;
4593 
4594 		err = __ext4_get_inode_loc(inode, &iloc, 0);
4595 		if (err)
4596 			return err;
4597 		if (wbc->sync_mode == WB_SYNC_ALL)
4598 			sync_dirty_buffer(iloc.bh);
4599 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4600 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4601 					 "IO error syncing inode");
4602 			err = -EIO;
4603 		}
4604 		brelse(iloc.bh);
4605 	}
4606 	return err;
4607 }
4608 
4609 /*
4610  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4611  * buffers that are attached to a page stradding i_size and are undergoing
4612  * commit. In that case we have to wait for commit to finish and try again.
4613  */
4614 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4615 {
4616 	struct page *page;
4617 	unsigned offset;
4618 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4619 	tid_t commit_tid = 0;
4620 	int ret;
4621 
4622 	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4623 	/*
4624 	 * All buffers in the last page remain valid? Then there's nothing to
4625 	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4626 	 * blocksize case
4627 	 */
4628 	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4629 		return;
4630 	while (1) {
4631 		page = find_lock_page(inode->i_mapping,
4632 				      inode->i_size >> PAGE_CACHE_SHIFT);
4633 		if (!page)
4634 			return;
4635 		ret = __ext4_journalled_invalidatepage(page, offset);
4636 		unlock_page(page);
4637 		page_cache_release(page);
4638 		if (ret != -EBUSY)
4639 			return;
4640 		commit_tid = 0;
4641 		read_lock(&journal->j_state_lock);
4642 		if (journal->j_committing_transaction)
4643 			commit_tid = journal->j_committing_transaction->t_tid;
4644 		read_unlock(&journal->j_state_lock);
4645 		if (commit_tid)
4646 			jbd2_log_wait_commit(journal, commit_tid);
4647 	}
4648 }
4649 
4650 /*
4651  * ext4_setattr()
4652  *
4653  * Called from notify_change.
4654  *
4655  * We want to trap VFS attempts to truncate the file as soon as
4656  * possible.  In particular, we want to make sure that when the VFS
4657  * shrinks i_size, we put the inode on the orphan list and modify
4658  * i_disksize immediately, so that during the subsequent flushing of
4659  * dirty pages and freeing of disk blocks, we can guarantee that any
4660  * commit will leave the blocks being flushed in an unused state on
4661  * disk.  (On recovery, the inode will get truncated and the blocks will
4662  * be freed, so we have a strong guarantee that no future commit will
4663  * leave these blocks visible to the user.)
4664  *
4665  * Another thing we have to assure is that if we are in ordered mode
4666  * and inode is still attached to the committing transaction, we must
4667  * we start writeout of all the dirty pages which are being truncated.
4668  * This way we are sure that all the data written in the previous
4669  * transaction are already on disk (truncate waits for pages under
4670  * writeback).
4671  *
4672  * Called with inode->i_mutex down.
4673  */
4674 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4675 {
4676 	struct inode *inode = dentry->d_inode;
4677 	int error, rc = 0;
4678 	int orphan = 0;
4679 	const unsigned int ia_valid = attr->ia_valid;
4680 
4681 	error = inode_change_ok(inode, attr);
4682 	if (error)
4683 		return error;
4684 
4685 	if (is_quota_modification(inode, attr))
4686 		dquot_initialize(inode);
4687 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4688 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4689 		handle_t *handle;
4690 
4691 		/* (user+group)*(old+new) structure, inode write (sb,
4692 		 * inode block, ? - but truncate inode update has it) */
4693 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4694 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4695 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4696 		if (IS_ERR(handle)) {
4697 			error = PTR_ERR(handle);
4698 			goto err_out;
4699 		}
4700 		error = dquot_transfer(inode, attr);
4701 		if (error) {
4702 			ext4_journal_stop(handle);
4703 			return error;
4704 		}
4705 		/* Update corresponding info in inode so that everything is in
4706 		 * one transaction */
4707 		if (attr->ia_valid & ATTR_UID)
4708 			inode->i_uid = attr->ia_uid;
4709 		if (attr->ia_valid & ATTR_GID)
4710 			inode->i_gid = attr->ia_gid;
4711 		error = ext4_mark_inode_dirty(handle, inode);
4712 		ext4_journal_stop(handle);
4713 	}
4714 
4715 	if (attr->ia_valid & ATTR_SIZE) {
4716 
4717 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4718 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4719 
4720 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4721 				return -EFBIG;
4722 		}
4723 	}
4724 
4725 	if (S_ISREG(inode->i_mode) &&
4726 	    attr->ia_valid & ATTR_SIZE &&
4727 	    (attr->ia_size < inode->i_size)) {
4728 		handle_t *handle;
4729 
4730 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4731 		if (IS_ERR(handle)) {
4732 			error = PTR_ERR(handle);
4733 			goto err_out;
4734 		}
4735 		if (ext4_handle_valid(handle)) {
4736 			error = ext4_orphan_add(handle, inode);
4737 			orphan = 1;
4738 		}
4739 		EXT4_I(inode)->i_disksize = attr->ia_size;
4740 		rc = ext4_mark_inode_dirty(handle, inode);
4741 		if (!error)
4742 			error = rc;
4743 		ext4_journal_stop(handle);
4744 
4745 		if (ext4_should_order_data(inode)) {
4746 			error = ext4_begin_ordered_truncate(inode,
4747 							    attr->ia_size);
4748 			if (error) {
4749 				/* Do as much error cleanup as possible */
4750 				handle = ext4_journal_start(inode,
4751 							    EXT4_HT_INODE, 3);
4752 				if (IS_ERR(handle)) {
4753 					ext4_orphan_del(NULL, inode);
4754 					goto err_out;
4755 				}
4756 				ext4_orphan_del(handle, inode);
4757 				orphan = 0;
4758 				ext4_journal_stop(handle);
4759 				goto err_out;
4760 			}
4761 		}
4762 	}
4763 
4764 	if (attr->ia_valid & ATTR_SIZE) {
4765 		if (attr->ia_size != inode->i_size) {
4766 			loff_t oldsize = inode->i_size;
4767 
4768 			i_size_write(inode, attr->ia_size);
4769 			/*
4770 			 * Blocks are going to be removed from the inode. Wait
4771 			 * for dio in flight.  Temporarily disable
4772 			 * dioread_nolock to prevent livelock.
4773 			 */
4774 			if (orphan) {
4775 				if (!ext4_should_journal_data(inode)) {
4776 					ext4_inode_block_unlocked_dio(inode);
4777 					inode_dio_wait(inode);
4778 					ext4_inode_resume_unlocked_dio(inode);
4779 				} else
4780 					ext4_wait_for_tail_page_commit(inode);
4781 			}
4782 			/*
4783 			 * Truncate pagecache after we've waited for commit
4784 			 * in data=journal mode to make pages freeable.
4785 			 */
4786 			truncate_pagecache(inode, oldsize, inode->i_size);
4787 		}
4788 		ext4_truncate(inode);
4789 	}
4790 
4791 	if (!rc) {
4792 		setattr_copy(inode, attr);
4793 		mark_inode_dirty(inode);
4794 	}
4795 
4796 	/*
4797 	 * If the call to ext4_truncate failed to get a transaction handle at
4798 	 * all, we need to clean up the in-core orphan list manually.
4799 	 */
4800 	if (orphan && inode->i_nlink)
4801 		ext4_orphan_del(NULL, inode);
4802 
4803 	if (!rc && (ia_valid & ATTR_MODE))
4804 		rc = ext4_acl_chmod(inode);
4805 
4806 err_out:
4807 	ext4_std_error(inode->i_sb, error);
4808 	if (!error)
4809 		error = rc;
4810 	return error;
4811 }
4812 
4813 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4814 		 struct kstat *stat)
4815 {
4816 	struct inode *inode;
4817 	unsigned long delalloc_blocks;
4818 
4819 	inode = dentry->d_inode;
4820 	generic_fillattr(inode, stat);
4821 
4822 	/*
4823 	 * We can't update i_blocks if the block allocation is delayed
4824 	 * otherwise in the case of system crash before the real block
4825 	 * allocation is done, we will have i_blocks inconsistent with
4826 	 * on-disk file blocks.
4827 	 * We always keep i_blocks updated together with real
4828 	 * allocation. But to not confuse with user, stat
4829 	 * will return the blocks that include the delayed allocation
4830 	 * blocks for this file.
4831 	 */
4832 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4833 				EXT4_I(inode)->i_reserved_data_blocks);
4834 
4835 	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4836 	return 0;
4837 }
4838 
4839 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4840 {
4841 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4842 		return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4843 	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4844 }
4845 
4846 /*
4847  * Account for index blocks, block groups bitmaps and block group
4848  * descriptor blocks if modify datablocks and index blocks
4849  * worse case, the indexs blocks spread over different block groups
4850  *
4851  * If datablocks are discontiguous, they are possible to spread over
4852  * different block groups too. If they are contiguous, with flexbg,
4853  * they could still across block group boundary.
4854  *
4855  * Also account for superblock, inode, quota and xattr blocks
4856  */
4857 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4858 {
4859 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4860 	int gdpblocks;
4861 	int idxblocks;
4862 	int ret = 0;
4863 
4864 	/*
4865 	 * How many index blocks need to touch to modify nrblocks?
4866 	 * The "Chunk" flag indicating whether the nrblocks is
4867 	 * physically contiguous on disk
4868 	 *
4869 	 * For Direct IO and fallocate, they calls get_block to allocate
4870 	 * one single extent at a time, so they could set the "Chunk" flag
4871 	 */
4872 	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4873 
4874 	ret = idxblocks;
4875 
4876 	/*
4877 	 * Now let's see how many group bitmaps and group descriptors need
4878 	 * to account
4879 	 */
4880 	groups = idxblocks;
4881 	if (chunk)
4882 		groups += 1;
4883 	else
4884 		groups += nrblocks;
4885 
4886 	gdpblocks = groups;
4887 	if (groups > ngroups)
4888 		groups = ngroups;
4889 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4890 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4891 
4892 	/* bitmaps and block group descriptor blocks */
4893 	ret += groups + gdpblocks;
4894 
4895 	/* Blocks for super block, inode, quota and xattr blocks */
4896 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4897 
4898 	return ret;
4899 }
4900 
4901 /*
4902  * Calculate the total number of credits to reserve to fit
4903  * the modification of a single pages into a single transaction,
4904  * which may include multiple chunks of block allocations.
4905  *
4906  * This could be called via ext4_write_begin()
4907  *
4908  * We need to consider the worse case, when
4909  * one new block per extent.
4910  */
4911 int ext4_writepage_trans_blocks(struct inode *inode)
4912 {
4913 	int bpp = ext4_journal_blocks_per_page(inode);
4914 	int ret;
4915 
4916 	ret = ext4_meta_trans_blocks(inode, bpp, 0);
4917 
4918 	/* Account for data blocks for journalled mode */
4919 	if (ext4_should_journal_data(inode))
4920 		ret += bpp;
4921 	return ret;
4922 }
4923 
4924 /*
4925  * Calculate the journal credits for a chunk of data modification.
4926  *
4927  * This is called from DIO, fallocate or whoever calling
4928  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4929  *
4930  * journal buffers for data blocks are not included here, as DIO
4931  * and fallocate do no need to journal data buffers.
4932  */
4933 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4934 {
4935 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4936 }
4937 
4938 /*
4939  * The caller must have previously called ext4_reserve_inode_write().
4940  * Give this, we know that the caller already has write access to iloc->bh.
4941  */
4942 int ext4_mark_iloc_dirty(handle_t *handle,
4943 			 struct inode *inode, struct ext4_iloc *iloc)
4944 {
4945 	int err = 0;
4946 
4947 	if (IS_I_VERSION(inode))
4948 		inode_inc_iversion(inode);
4949 
4950 	/* the do_update_inode consumes one bh->b_count */
4951 	get_bh(iloc->bh);
4952 
4953 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4954 	err = ext4_do_update_inode(handle, inode, iloc);
4955 	put_bh(iloc->bh);
4956 	return err;
4957 }
4958 
4959 /*
4960  * On success, We end up with an outstanding reference count against
4961  * iloc->bh.  This _must_ be cleaned up later.
4962  */
4963 
4964 int
4965 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4966 			 struct ext4_iloc *iloc)
4967 {
4968 	int err;
4969 
4970 	err = ext4_get_inode_loc(inode, iloc);
4971 	if (!err) {
4972 		BUFFER_TRACE(iloc->bh, "get_write_access");
4973 		err = ext4_journal_get_write_access(handle, iloc->bh);
4974 		if (err) {
4975 			brelse(iloc->bh);
4976 			iloc->bh = NULL;
4977 		}
4978 	}
4979 	ext4_std_error(inode->i_sb, err);
4980 	return err;
4981 }
4982 
4983 /*
4984  * Expand an inode by new_extra_isize bytes.
4985  * Returns 0 on success or negative error number on failure.
4986  */
4987 static int ext4_expand_extra_isize(struct inode *inode,
4988 				   unsigned int new_extra_isize,
4989 				   struct ext4_iloc iloc,
4990 				   handle_t *handle)
4991 {
4992 	struct ext4_inode *raw_inode;
4993 	struct ext4_xattr_ibody_header *header;
4994 
4995 	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4996 		return 0;
4997 
4998 	raw_inode = ext4_raw_inode(&iloc);
4999 
5000 	header = IHDR(inode, raw_inode);
5001 
5002 	/* No extended attributes present */
5003 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5004 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5005 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5006 			new_extra_isize);
5007 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5008 		return 0;
5009 	}
5010 
5011 	/* try to expand with EAs present */
5012 	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5013 					  raw_inode, handle);
5014 }
5015 
5016 /*
5017  * What we do here is to mark the in-core inode as clean with respect to inode
5018  * dirtiness (it may still be data-dirty).
5019  * This means that the in-core inode may be reaped by prune_icache
5020  * without having to perform any I/O.  This is a very good thing,
5021  * because *any* task may call prune_icache - even ones which
5022  * have a transaction open against a different journal.
5023  *
5024  * Is this cheating?  Not really.  Sure, we haven't written the
5025  * inode out, but prune_icache isn't a user-visible syncing function.
5026  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5027  * we start and wait on commits.
5028  */
5029 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5030 {
5031 	struct ext4_iloc iloc;
5032 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5033 	static unsigned int mnt_count;
5034 	int err, ret;
5035 
5036 	might_sleep();
5037 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5038 	err = ext4_reserve_inode_write(handle, inode, &iloc);
5039 	if (ext4_handle_valid(handle) &&
5040 	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5041 	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5042 		/*
5043 		 * We need extra buffer credits since we may write into EA block
5044 		 * with this same handle. If journal_extend fails, then it will
5045 		 * only result in a minor loss of functionality for that inode.
5046 		 * If this is felt to be critical, then e2fsck should be run to
5047 		 * force a large enough s_min_extra_isize.
5048 		 */
5049 		if ((jbd2_journal_extend(handle,
5050 			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5051 			ret = ext4_expand_extra_isize(inode,
5052 						      sbi->s_want_extra_isize,
5053 						      iloc, handle);
5054 			if (ret) {
5055 				ext4_set_inode_state(inode,
5056 						     EXT4_STATE_NO_EXPAND);
5057 				if (mnt_count !=
5058 					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5059 					ext4_warning(inode->i_sb,
5060 					"Unable to expand inode %lu. Delete"
5061 					" some EAs or run e2fsck.",
5062 					inode->i_ino);
5063 					mnt_count =
5064 					  le16_to_cpu(sbi->s_es->s_mnt_count);
5065 				}
5066 			}
5067 		}
5068 	}
5069 	if (!err)
5070 		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5071 	return err;
5072 }
5073 
5074 /*
5075  * ext4_dirty_inode() is called from __mark_inode_dirty()
5076  *
5077  * We're really interested in the case where a file is being extended.
5078  * i_size has been changed by generic_commit_write() and we thus need
5079  * to include the updated inode in the current transaction.
5080  *
5081  * Also, dquot_alloc_block() will always dirty the inode when blocks
5082  * are allocated to the file.
5083  *
5084  * If the inode is marked synchronous, we don't honour that here - doing
5085  * so would cause a commit on atime updates, which we don't bother doing.
5086  * We handle synchronous inodes at the highest possible level.
5087  */
5088 void ext4_dirty_inode(struct inode *inode, int flags)
5089 {
5090 	handle_t *handle;
5091 
5092 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5093 	if (IS_ERR(handle))
5094 		goto out;
5095 
5096 	ext4_mark_inode_dirty(handle, inode);
5097 
5098 	ext4_journal_stop(handle);
5099 out:
5100 	return;
5101 }
5102 
5103 #if 0
5104 /*
5105  * Bind an inode's backing buffer_head into this transaction, to prevent
5106  * it from being flushed to disk early.  Unlike
5107  * ext4_reserve_inode_write, this leaves behind no bh reference and
5108  * returns no iloc structure, so the caller needs to repeat the iloc
5109  * lookup to mark the inode dirty later.
5110  */
5111 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5112 {
5113 	struct ext4_iloc iloc;
5114 
5115 	int err = 0;
5116 	if (handle) {
5117 		err = ext4_get_inode_loc(inode, &iloc);
5118 		if (!err) {
5119 			BUFFER_TRACE(iloc.bh, "get_write_access");
5120 			err = jbd2_journal_get_write_access(handle, iloc.bh);
5121 			if (!err)
5122 				err = ext4_handle_dirty_metadata(handle,
5123 								 NULL,
5124 								 iloc.bh);
5125 			brelse(iloc.bh);
5126 		}
5127 	}
5128 	ext4_std_error(inode->i_sb, err);
5129 	return err;
5130 }
5131 #endif
5132 
5133 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5134 {
5135 	journal_t *journal;
5136 	handle_t *handle;
5137 	int err;
5138 
5139 	/*
5140 	 * We have to be very careful here: changing a data block's
5141 	 * journaling status dynamically is dangerous.  If we write a
5142 	 * data block to the journal, change the status and then delete
5143 	 * that block, we risk forgetting to revoke the old log record
5144 	 * from the journal and so a subsequent replay can corrupt data.
5145 	 * So, first we make sure that the journal is empty and that
5146 	 * nobody is changing anything.
5147 	 */
5148 
5149 	journal = EXT4_JOURNAL(inode);
5150 	if (!journal)
5151 		return 0;
5152 	if (is_journal_aborted(journal))
5153 		return -EROFS;
5154 	/* We have to allocate physical blocks for delalloc blocks
5155 	 * before flushing journal. otherwise delalloc blocks can not
5156 	 * be allocated any more. even more truncate on delalloc blocks
5157 	 * could trigger BUG by flushing delalloc blocks in journal.
5158 	 * There is no delalloc block in non-journal data mode.
5159 	 */
5160 	if (val && test_opt(inode->i_sb, DELALLOC)) {
5161 		err = ext4_alloc_da_blocks(inode);
5162 		if (err < 0)
5163 			return err;
5164 	}
5165 
5166 	/* Wait for all existing dio workers */
5167 	ext4_inode_block_unlocked_dio(inode);
5168 	inode_dio_wait(inode);
5169 
5170 	jbd2_journal_lock_updates(journal);
5171 
5172 	/*
5173 	 * OK, there are no updates running now, and all cached data is
5174 	 * synced to disk.  We are now in a completely consistent state
5175 	 * which doesn't have anything in the journal, and we know that
5176 	 * no filesystem updates are running, so it is safe to modify
5177 	 * the inode's in-core data-journaling state flag now.
5178 	 */
5179 
5180 	if (val)
5181 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5182 	else {
5183 		jbd2_journal_flush(journal);
5184 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5185 	}
5186 	ext4_set_aops(inode);
5187 
5188 	jbd2_journal_unlock_updates(journal);
5189 	ext4_inode_resume_unlocked_dio(inode);
5190 
5191 	/* Finally we can mark the inode as dirty. */
5192 
5193 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5194 	if (IS_ERR(handle))
5195 		return PTR_ERR(handle);
5196 
5197 	err = ext4_mark_inode_dirty(handle, inode);
5198 	ext4_handle_sync(handle);
5199 	ext4_journal_stop(handle);
5200 	ext4_std_error(inode->i_sb, err);
5201 
5202 	return err;
5203 }
5204 
5205 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5206 {
5207 	return !buffer_mapped(bh);
5208 }
5209 
5210 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5211 {
5212 	struct page *page = vmf->page;
5213 	loff_t size;
5214 	unsigned long len;
5215 	int ret;
5216 	struct file *file = vma->vm_file;
5217 	struct inode *inode = file_inode(file);
5218 	struct address_space *mapping = inode->i_mapping;
5219 	handle_t *handle;
5220 	get_block_t *get_block;
5221 	int retries = 0;
5222 
5223 	sb_start_pagefault(inode->i_sb);
5224 	file_update_time(vma->vm_file);
5225 	/* Delalloc case is easy... */
5226 	if (test_opt(inode->i_sb, DELALLOC) &&
5227 	    !ext4_should_journal_data(inode) &&
5228 	    !ext4_nonda_switch(inode->i_sb)) {
5229 		do {
5230 			ret = __block_page_mkwrite(vma, vmf,
5231 						   ext4_da_get_block_prep);
5232 		} while (ret == -ENOSPC &&
5233 		       ext4_should_retry_alloc(inode->i_sb, &retries));
5234 		goto out_ret;
5235 	}
5236 
5237 	lock_page(page);
5238 	size = i_size_read(inode);
5239 	/* Page got truncated from under us? */
5240 	if (page->mapping != mapping || page_offset(page) > size) {
5241 		unlock_page(page);
5242 		ret = VM_FAULT_NOPAGE;
5243 		goto out;
5244 	}
5245 
5246 	if (page->index == size >> PAGE_CACHE_SHIFT)
5247 		len = size & ~PAGE_CACHE_MASK;
5248 	else
5249 		len = PAGE_CACHE_SIZE;
5250 	/*
5251 	 * Return if we have all the buffers mapped. This avoids the need to do
5252 	 * journal_start/journal_stop which can block and take a long time
5253 	 */
5254 	if (page_has_buffers(page)) {
5255 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5256 					    0, len, NULL,
5257 					    ext4_bh_unmapped)) {
5258 			/* Wait so that we don't change page under IO */
5259 			wait_for_stable_page(page);
5260 			ret = VM_FAULT_LOCKED;
5261 			goto out;
5262 		}
5263 	}
5264 	unlock_page(page);
5265 	/* OK, we need to fill the hole... */
5266 	if (ext4_should_dioread_nolock(inode))
5267 		get_block = ext4_get_block_write;
5268 	else
5269 		get_block = ext4_get_block;
5270 retry_alloc:
5271 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5272 				    ext4_writepage_trans_blocks(inode));
5273 	if (IS_ERR(handle)) {
5274 		ret = VM_FAULT_SIGBUS;
5275 		goto out;
5276 	}
5277 	ret = __block_page_mkwrite(vma, vmf, get_block);
5278 	if (!ret && ext4_should_journal_data(inode)) {
5279 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5280 			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5281 			unlock_page(page);
5282 			ret = VM_FAULT_SIGBUS;
5283 			ext4_journal_stop(handle);
5284 			goto out;
5285 		}
5286 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5287 	}
5288 	ext4_journal_stop(handle);
5289 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5290 		goto retry_alloc;
5291 out_ret:
5292 	ret = block_page_mkwrite_return(ret);
5293 out:
5294 	sb_end_pagefault(inode->i_sb);
5295 	return ret;
5296 }
5297