1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 #include <linux/iversion.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "truncate.h" 48 49 #include <trace/events/ext4.h> 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u32 csum; 56 __u16 dummy_csum = 0; 57 int offset = offsetof(struct ext4_inode, i_checksum_lo); 58 unsigned int csum_size = sizeof(dummy_csum); 59 60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 62 offset += csum_size; 63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 64 EXT4_GOOD_OLD_INODE_SIZE - offset); 65 66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 67 offset = offsetof(struct ext4_inode, i_checksum_hi); 68 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 69 EXT4_GOOD_OLD_INODE_SIZE, 70 offset - EXT4_GOOD_OLD_INODE_SIZE); 71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 73 csum_size); 74 offset += csum_size; 75 } 76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 77 EXT4_INODE_SIZE(inode->i_sb) - offset); 78 } 79 80 return csum; 81 } 82 83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 84 struct ext4_inode_info *ei) 85 { 86 __u32 provided, calculated; 87 88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 89 cpu_to_le32(EXT4_OS_LINUX) || 90 !ext4_has_metadata_csum(inode->i_sb)) 91 return 1; 92 93 provided = le16_to_cpu(raw->i_checksum_lo); 94 calculated = ext4_inode_csum(inode, raw, ei); 95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 98 else 99 calculated &= 0xFFFF; 100 101 return provided == calculated; 102 } 103 104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 105 struct ext4_inode_info *ei) 106 { 107 __u32 csum; 108 109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 110 cpu_to_le32(EXT4_OS_LINUX) || 111 !ext4_has_metadata_csum(inode->i_sb)) 112 return; 113 114 csum = ext4_inode_csum(inode, raw, ei); 115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 118 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 119 } 120 121 static inline int ext4_begin_ordered_truncate(struct inode *inode, 122 loff_t new_size) 123 { 124 trace_ext4_begin_ordered_truncate(inode, new_size); 125 /* 126 * If jinode is zero, then we never opened the file for 127 * writing, so there's no need to call 128 * jbd2_journal_begin_ordered_truncate() since there's no 129 * outstanding writes we need to flush. 130 */ 131 if (!EXT4_I(inode)->jinode) 132 return 0; 133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 134 EXT4_I(inode)->jinode, 135 new_size); 136 } 137 138 static void ext4_invalidatepage(struct page *page, unsigned int offset, 139 unsigned int length); 140 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 143 int pextents); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 148 */ 149 int ext4_inode_is_fast_symlink(struct inode *inode) 150 { 151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 152 int ea_blocks = EXT4_I(inode)->i_file_acl ? 153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 154 155 if (ext4_has_inline_data(inode)) 156 return 0; 157 158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 159 } 160 return S_ISLNK(inode->i_mode) && inode->i_size && 161 (inode->i_size < EXT4_N_BLOCKS * 4); 162 } 163 164 /* 165 * Called at the last iput() if i_nlink is zero. 166 */ 167 void ext4_evict_inode(struct inode *inode) 168 { 169 handle_t *handle; 170 int err; 171 /* 172 * Credits for final inode cleanup and freeing: 173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 174 * (xattr block freeing), bitmap, group descriptor (inode freeing) 175 */ 176 int extra_credits = 6; 177 struct ext4_xattr_inode_array *ea_inode_array = NULL; 178 179 trace_ext4_evict_inode(inode); 180 181 if (inode->i_nlink) { 182 /* 183 * When journalling data dirty buffers are tracked only in the 184 * journal. So although mm thinks everything is clean and 185 * ready for reaping the inode might still have some pages to 186 * write in the running transaction or waiting to be 187 * checkpointed. Thus calling jbd2_journal_invalidatepage() 188 * (via truncate_inode_pages()) to discard these buffers can 189 * cause data loss. Also even if we did not discard these 190 * buffers, we would have no way to find them after the inode 191 * is reaped and thus user could see stale data if he tries to 192 * read them before the transaction is checkpointed. So be 193 * careful and force everything to disk here... We use 194 * ei->i_datasync_tid to store the newest transaction 195 * containing inode's data. 196 * 197 * Note that directories do not have this problem because they 198 * don't use page cache. 199 */ 200 if (inode->i_ino != EXT4_JOURNAL_INO && 201 ext4_should_journal_data(inode) && 202 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 203 inode->i_data.nrpages) { 204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 206 207 jbd2_complete_transaction(journal, commit_tid); 208 filemap_write_and_wait(&inode->i_data); 209 } 210 truncate_inode_pages_final(&inode->i_data); 211 212 goto no_delete; 213 } 214 215 if (is_bad_inode(inode)) 216 goto no_delete; 217 dquot_initialize(inode); 218 219 if (ext4_should_order_data(inode)) 220 ext4_begin_ordered_truncate(inode, 0); 221 truncate_inode_pages_final(&inode->i_data); 222 223 /* 224 * For inodes with journalled data, transaction commit could have 225 * dirtied the inode. Flush worker is ignoring it because of I_FREEING 226 * flag but we still need to remove the inode from the writeback lists. 227 */ 228 if (!list_empty_careful(&inode->i_io_list)) { 229 WARN_ON_ONCE(!ext4_should_journal_data(inode)); 230 inode_io_list_del(inode); 231 } 232 233 /* 234 * Protect us against freezing - iput() caller didn't have to have any 235 * protection against it 236 */ 237 sb_start_intwrite(inode->i_sb); 238 239 if (!IS_NOQUOTA(inode)) 240 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 241 242 /* 243 * Block bitmap, group descriptor, and inode are accounted in both 244 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 245 */ 246 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 247 ext4_blocks_for_truncate(inode) + extra_credits - 3); 248 if (IS_ERR(handle)) { 249 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 250 /* 251 * If we're going to skip the normal cleanup, we still need to 252 * make sure that the in-core orphan linked list is properly 253 * cleaned up. 254 */ 255 ext4_orphan_del(NULL, inode); 256 sb_end_intwrite(inode->i_sb); 257 goto no_delete; 258 } 259 260 if (IS_SYNC(inode)) 261 ext4_handle_sync(handle); 262 263 /* 264 * Set inode->i_size to 0 before calling ext4_truncate(). We need 265 * special handling of symlinks here because i_size is used to 266 * determine whether ext4_inode_info->i_data contains symlink data or 267 * block mappings. Setting i_size to 0 will remove its fast symlink 268 * status. Erase i_data so that it becomes a valid empty block map. 269 */ 270 if (ext4_inode_is_fast_symlink(inode)) 271 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 272 inode->i_size = 0; 273 err = ext4_mark_inode_dirty(handle, inode); 274 if (err) { 275 ext4_warning(inode->i_sb, 276 "couldn't mark inode dirty (err %d)", err); 277 goto stop_handle; 278 } 279 if (inode->i_blocks) { 280 err = ext4_truncate(inode); 281 if (err) { 282 ext4_error_err(inode->i_sb, -err, 283 "couldn't truncate inode %lu (err %d)", 284 inode->i_ino, err); 285 goto stop_handle; 286 } 287 } 288 289 /* Remove xattr references. */ 290 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 291 extra_credits); 292 if (err) { 293 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 294 stop_handle: 295 ext4_journal_stop(handle); 296 ext4_orphan_del(NULL, inode); 297 sb_end_intwrite(inode->i_sb); 298 ext4_xattr_inode_array_free(ea_inode_array); 299 goto no_delete; 300 } 301 302 /* 303 * Kill off the orphan record which ext4_truncate created. 304 * AKPM: I think this can be inside the above `if'. 305 * Note that ext4_orphan_del() has to be able to cope with the 306 * deletion of a non-existent orphan - this is because we don't 307 * know if ext4_truncate() actually created an orphan record. 308 * (Well, we could do this if we need to, but heck - it works) 309 */ 310 ext4_orphan_del(handle, inode); 311 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 312 313 /* 314 * One subtle ordering requirement: if anything has gone wrong 315 * (transaction abort, IO errors, whatever), then we can still 316 * do these next steps (the fs will already have been marked as 317 * having errors), but we can't free the inode if the mark_dirty 318 * fails. 319 */ 320 if (ext4_mark_inode_dirty(handle, inode)) 321 /* If that failed, just do the required in-core inode clear. */ 322 ext4_clear_inode(inode); 323 else 324 ext4_free_inode(handle, inode); 325 ext4_journal_stop(handle); 326 sb_end_intwrite(inode->i_sb); 327 ext4_xattr_inode_array_free(ea_inode_array); 328 return; 329 no_delete: 330 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 331 } 332 333 #ifdef CONFIG_QUOTA 334 qsize_t *ext4_get_reserved_space(struct inode *inode) 335 { 336 return &EXT4_I(inode)->i_reserved_quota; 337 } 338 #endif 339 340 /* 341 * Called with i_data_sem down, which is important since we can call 342 * ext4_discard_preallocations() from here. 343 */ 344 void ext4_da_update_reserve_space(struct inode *inode, 345 int used, int quota_claim) 346 { 347 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 348 struct ext4_inode_info *ei = EXT4_I(inode); 349 350 spin_lock(&ei->i_block_reservation_lock); 351 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 352 if (unlikely(used > ei->i_reserved_data_blocks)) { 353 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 354 "with only %d reserved data blocks", 355 __func__, inode->i_ino, used, 356 ei->i_reserved_data_blocks); 357 WARN_ON(1); 358 used = ei->i_reserved_data_blocks; 359 } 360 361 /* Update per-inode reservations */ 362 ei->i_reserved_data_blocks -= used; 363 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 364 365 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 366 367 /* Update quota subsystem for data blocks */ 368 if (quota_claim) 369 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 370 else { 371 /* 372 * We did fallocate with an offset that is already delayed 373 * allocated. So on delayed allocated writeback we should 374 * not re-claim the quota for fallocated blocks. 375 */ 376 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 377 } 378 379 /* 380 * If we have done all the pending block allocations and if 381 * there aren't any writers on the inode, we can discard the 382 * inode's preallocations. 383 */ 384 if ((ei->i_reserved_data_blocks == 0) && 385 !inode_is_open_for_write(inode)) 386 ext4_discard_preallocations(inode); 387 } 388 389 static int __check_block_validity(struct inode *inode, const char *func, 390 unsigned int line, 391 struct ext4_map_blocks *map) 392 { 393 if (ext4_has_feature_journal(inode->i_sb) && 394 (inode->i_ino == 395 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 396 return 0; 397 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 398 map->m_len)) { 399 ext4_error_inode(inode, func, line, map->m_pblk, 400 "lblock %lu mapped to illegal pblock %llu " 401 "(length %d)", (unsigned long) map->m_lblk, 402 map->m_pblk, map->m_len); 403 return -EFSCORRUPTED; 404 } 405 return 0; 406 } 407 408 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 409 ext4_lblk_t len) 410 { 411 int ret; 412 413 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 414 return fscrypt_zeroout_range(inode, lblk, pblk, len); 415 416 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 417 if (ret > 0) 418 ret = 0; 419 420 return ret; 421 } 422 423 #define check_block_validity(inode, map) \ 424 __check_block_validity((inode), __func__, __LINE__, (map)) 425 426 #ifdef ES_AGGRESSIVE_TEST 427 static void ext4_map_blocks_es_recheck(handle_t *handle, 428 struct inode *inode, 429 struct ext4_map_blocks *es_map, 430 struct ext4_map_blocks *map, 431 int flags) 432 { 433 int retval; 434 435 map->m_flags = 0; 436 /* 437 * There is a race window that the result is not the same. 438 * e.g. xfstests #223 when dioread_nolock enables. The reason 439 * is that we lookup a block mapping in extent status tree with 440 * out taking i_data_sem. So at the time the unwritten extent 441 * could be converted. 442 */ 443 down_read(&EXT4_I(inode)->i_data_sem); 444 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 445 retval = ext4_ext_map_blocks(handle, inode, map, 0); 446 } else { 447 retval = ext4_ind_map_blocks(handle, inode, map, 0); 448 } 449 up_read((&EXT4_I(inode)->i_data_sem)); 450 451 /* 452 * We don't check m_len because extent will be collpased in status 453 * tree. So the m_len might not equal. 454 */ 455 if (es_map->m_lblk != map->m_lblk || 456 es_map->m_flags != map->m_flags || 457 es_map->m_pblk != map->m_pblk) { 458 printk("ES cache assertion failed for inode: %lu " 459 "es_cached ex [%d/%d/%llu/%x] != " 460 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 461 inode->i_ino, es_map->m_lblk, es_map->m_len, 462 es_map->m_pblk, es_map->m_flags, map->m_lblk, 463 map->m_len, map->m_pblk, map->m_flags, 464 retval, flags); 465 } 466 } 467 #endif /* ES_AGGRESSIVE_TEST */ 468 469 /* 470 * The ext4_map_blocks() function tries to look up the requested blocks, 471 * and returns if the blocks are already mapped. 472 * 473 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 474 * and store the allocated blocks in the result buffer head and mark it 475 * mapped. 476 * 477 * If file type is extents based, it will call ext4_ext_map_blocks(), 478 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 479 * based files 480 * 481 * On success, it returns the number of blocks being mapped or allocated. if 482 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 483 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 484 * 485 * It returns 0 if plain look up failed (blocks have not been allocated), in 486 * that case, @map is returned as unmapped but we still do fill map->m_len to 487 * indicate the length of a hole starting at map->m_lblk. 488 * 489 * It returns the error in case of allocation failure. 490 */ 491 int ext4_map_blocks(handle_t *handle, struct inode *inode, 492 struct ext4_map_blocks *map, int flags) 493 { 494 struct extent_status es; 495 int retval; 496 int ret = 0; 497 #ifdef ES_AGGRESSIVE_TEST 498 struct ext4_map_blocks orig_map; 499 500 memcpy(&orig_map, map, sizeof(*map)); 501 #endif 502 503 map->m_flags = 0; 504 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 505 flags, map->m_len, (unsigned long) map->m_lblk); 506 507 /* 508 * ext4_map_blocks returns an int, and m_len is an unsigned int 509 */ 510 if (unlikely(map->m_len > INT_MAX)) 511 map->m_len = INT_MAX; 512 513 /* We can handle the block number less than EXT_MAX_BLOCKS */ 514 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 515 return -EFSCORRUPTED; 516 517 /* Lookup extent status tree firstly */ 518 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 519 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 520 map->m_pblk = ext4_es_pblock(&es) + 521 map->m_lblk - es.es_lblk; 522 map->m_flags |= ext4_es_is_written(&es) ? 523 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 524 retval = es.es_len - (map->m_lblk - es.es_lblk); 525 if (retval > map->m_len) 526 retval = map->m_len; 527 map->m_len = retval; 528 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 529 map->m_pblk = 0; 530 retval = es.es_len - (map->m_lblk - es.es_lblk); 531 if (retval > map->m_len) 532 retval = map->m_len; 533 map->m_len = retval; 534 retval = 0; 535 } else { 536 BUG(); 537 } 538 #ifdef ES_AGGRESSIVE_TEST 539 ext4_map_blocks_es_recheck(handle, inode, map, 540 &orig_map, flags); 541 #endif 542 goto found; 543 } 544 545 /* 546 * Try to see if we can get the block without requesting a new 547 * file system block. 548 */ 549 down_read(&EXT4_I(inode)->i_data_sem); 550 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 551 retval = ext4_ext_map_blocks(handle, inode, map, 0); 552 } else { 553 retval = ext4_ind_map_blocks(handle, inode, map, 0); 554 } 555 if (retval > 0) { 556 unsigned int status; 557 558 if (unlikely(retval != map->m_len)) { 559 ext4_warning(inode->i_sb, 560 "ES len assertion failed for inode " 561 "%lu: retval %d != map->m_len %d", 562 inode->i_ino, retval, map->m_len); 563 WARN_ON(1); 564 } 565 566 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 569 !(status & EXTENT_STATUS_WRITTEN) && 570 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 571 map->m_lblk + map->m_len - 1)) 572 status |= EXTENT_STATUS_DELAYED; 573 ret = ext4_es_insert_extent(inode, map->m_lblk, 574 map->m_len, map->m_pblk, status); 575 if (ret < 0) 576 retval = ret; 577 } 578 up_read((&EXT4_I(inode)->i_data_sem)); 579 580 found: 581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 582 ret = check_block_validity(inode, map); 583 if (ret != 0) 584 return ret; 585 } 586 587 /* If it is only a block(s) look up */ 588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 589 return retval; 590 591 /* 592 * Returns if the blocks have already allocated 593 * 594 * Note that if blocks have been preallocated 595 * ext4_ext_get_block() returns the create = 0 596 * with buffer head unmapped. 597 */ 598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 599 /* 600 * If we need to convert extent to unwritten 601 * we continue and do the actual work in 602 * ext4_ext_map_blocks() 603 */ 604 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 605 return retval; 606 607 /* 608 * Here we clear m_flags because after allocating an new extent, 609 * it will be set again. 610 */ 611 map->m_flags &= ~EXT4_MAP_FLAGS; 612 613 /* 614 * New blocks allocate and/or writing to unwritten extent 615 * will possibly result in updating i_data, so we take 616 * the write lock of i_data_sem, and call get_block() 617 * with create == 1 flag. 618 */ 619 down_write(&EXT4_I(inode)->i_data_sem); 620 621 /* 622 * We need to check for EXT4 here because migrate 623 * could have changed the inode type in between 624 */ 625 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 626 retval = ext4_ext_map_blocks(handle, inode, map, flags); 627 } else { 628 retval = ext4_ind_map_blocks(handle, inode, map, flags); 629 630 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 631 /* 632 * We allocated new blocks which will result in 633 * i_data's format changing. Force the migrate 634 * to fail by clearing migrate flags 635 */ 636 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 637 } 638 639 /* 640 * Update reserved blocks/metadata blocks after successful 641 * block allocation which had been deferred till now. We don't 642 * support fallocate for non extent files. So we can update 643 * reserve space here. 644 */ 645 if ((retval > 0) && 646 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 647 ext4_da_update_reserve_space(inode, retval, 1); 648 } 649 650 if (retval > 0) { 651 unsigned int status; 652 653 if (unlikely(retval != map->m_len)) { 654 ext4_warning(inode->i_sb, 655 "ES len assertion failed for inode " 656 "%lu: retval %d != map->m_len %d", 657 inode->i_ino, retval, map->m_len); 658 WARN_ON(1); 659 } 660 661 /* 662 * We have to zeroout blocks before inserting them into extent 663 * status tree. Otherwise someone could look them up there and 664 * use them before they are really zeroed. We also have to 665 * unmap metadata before zeroing as otherwise writeback can 666 * overwrite zeros with stale data from block device. 667 */ 668 if (flags & EXT4_GET_BLOCKS_ZERO && 669 map->m_flags & EXT4_MAP_MAPPED && 670 map->m_flags & EXT4_MAP_NEW) { 671 ret = ext4_issue_zeroout(inode, map->m_lblk, 672 map->m_pblk, map->m_len); 673 if (ret) { 674 retval = ret; 675 goto out_sem; 676 } 677 } 678 679 /* 680 * If the extent has been zeroed out, we don't need to update 681 * extent status tree. 682 */ 683 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 684 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 685 if (ext4_es_is_written(&es)) 686 goto out_sem; 687 } 688 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 689 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 690 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 691 !(status & EXTENT_STATUS_WRITTEN) && 692 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 693 map->m_lblk + map->m_len - 1)) 694 status |= EXTENT_STATUS_DELAYED; 695 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 696 map->m_pblk, status); 697 if (ret < 0) { 698 retval = ret; 699 goto out_sem; 700 } 701 } 702 703 out_sem: 704 up_write((&EXT4_I(inode)->i_data_sem)); 705 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 706 ret = check_block_validity(inode, map); 707 if (ret != 0) 708 return ret; 709 710 /* 711 * Inodes with freshly allocated blocks where contents will be 712 * visible after transaction commit must be on transaction's 713 * ordered data list. 714 */ 715 if (map->m_flags & EXT4_MAP_NEW && 716 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 717 !(flags & EXT4_GET_BLOCKS_ZERO) && 718 !ext4_is_quota_file(inode) && 719 ext4_should_order_data(inode)) { 720 loff_t start_byte = 721 (loff_t)map->m_lblk << inode->i_blkbits; 722 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 723 724 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 725 ret = ext4_jbd2_inode_add_wait(handle, inode, 726 start_byte, length); 727 else 728 ret = ext4_jbd2_inode_add_write(handle, inode, 729 start_byte, length); 730 if (ret) 731 return ret; 732 } 733 } 734 735 if (retval < 0) 736 ext_debug(inode, "failed with err %d\n", retval); 737 return retval; 738 } 739 740 /* 741 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 742 * we have to be careful as someone else may be manipulating b_state as well. 743 */ 744 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 745 { 746 unsigned long old_state; 747 unsigned long new_state; 748 749 flags &= EXT4_MAP_FLAGS; 750 751 /* Dummy buffer_head? Set non-atomically. */ 752 if (!bh->b_page) { 753 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 754 return; 755 } 756 /* 757 * Someone else may be modifying b_state. Be careful! This is ugly but 758 * once we get rid of using bh as a container for mapping information 759 * to pass to / from get_block functions, this can go away. 760 */ 761 do { 762 old_state = READ_ONCE(bh->b_state); 763 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 764 } while (unlikely( 765 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 766 } 767 768 static int _ext4_get_block(struct inode *inode, sector_t iblock, 769 struct buffer_head *bh, int flags) 770 { 771 struct ext4_map_blocks map; 772 int ret = 0; 773 774 if (ext4_has_inline_data(inode)) 775 return -ERANGE; 776 777 map.m_lblk = iblock; 778 map.m_len = bh->b_size >> inode->i_blkbits; 779 780 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 781 flags); 782 if (ret > 0) { 783 map_bh(bh, inode->i_sb, map.m_pblk); 784 ext4_update_bh_state(bh, map.m_flags); 785 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 786 ret = 0; 787 } else if (ret == 0) { 788 /* hole case, need to fill in bh->b_size */ 789 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 790 } 791 return ret; 792 } 793 794 int ext4_get_block(struct inode *inode, sector_t iblock, 795 struct buffer_head *bh, int create) 796 { 797 return _ext4_get_block(inode, iblock, bh, 798 create ? EXT4_GET_BLOCKS_CREATE : 0); 799 } 800 801 /* 802 * Get block function used when preparing for buffered write if we require 803 * creating an unwritten extent if blocks haven't been allocated. The extent 804 * will be converted to written after the IO is complete. 805 */ 806 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 807 struct buffer_head *bh_result, int create) 808 { 809 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 810 inode->i_ino, create); 811 return _ext4_get_block(inode, iblock, bh_result, 812 EXT4_GET_BLOCKS_IO_CREATE_EXT); 813 } 814 815 /* Maximum number of blocks we map for direct IO at once. */ 816 #define DIO_MAX_BLOCKS 4096 817 818 /* 819 * `handle' can be NULL if create is zero 820 */ 821 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 822 ext4_lblk_t block, int map_flags) 823 { 824 struct ext4_map_blocks map; 825 struct buffer_head *bh; 826 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 827 int err; 828 829 J_ASSERT(handle != NULL || create == 0); 830 831 map.m_lblk = block; 832 map.m_len = 1; 833 err = ext4_map_blocks(handle, inode, &map, map_flags); 834 835 if (err == 0) 836 return create ? ERR_PTR(-ENOSPC) : NULL; 837 if (err < 0) 838 return ERR_PTR(err); 839 840 bh = sb_getblk(inode->i_sb, map.m_pblk); 841 if (unlikely(!bh)) 842 return ERR_PTR(-ENOMEM); 843 if (map.m_flags & EXT4_MAP_NEW) { 844 J_ASSERT(create != 0); 845 J_ASSERT(handle != NULL); 846 847 /* 848 * Now that we do not always journal data, we should 849 * keep in mind whether this should always journal the 850 * new buffer as metadata. For now, regular file 851 * writes use ext4_get_block instead, so it's not a 852 * problem. 853 */ 854 lock_buffer(bh); 855 BUFFER_TRACE(bh, "call get_create_access"); 856 err = ext4_journal_get_create_access(handle, bh); 857 if (unlikely(err)) { 858 unlock_buffer(bh); 859 goto errout; 860 } 861 if (!buffer_uptodate(bh)) { 862 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 863 set_buffer_uptodate(bh); 864 } 865 unlock_buffer(bh); 866 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 867 err = ext4_handle_dirty_metadata(handle, inode, bh); 868 if (unlikely(err)) 869 goto errout; 870 } else 871 BUFFER_TRACE(bh, "not a new buffer"); 872 return bh; 873 errout: 874 brelse(bh); 875 return ERR_PTR(err); 876 } 877 878 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 879 ext4_lblk_t block, int map_flags) 880 { 881 struct buffer_head *bh; 882 883 bh = ext4_getblk(handle, inode, block, map_flags); 884 if (IS_ERR(bh)) 885 return bh; 886 if (!bh || ext4_buffer_uptodate(bh)) 887 return bh; 888 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 889 wait_on_buffer(bh); 890 if (buffer_uptodate(bh)) 891 return bh; 892 put_bh(bh); 893 return ERR_PTR(-EIO); 894 } 895 896 /* Read a contiguous batch of blocks. */ 897 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 898 bool wait, struct buffer_head **bhs) 899 { 900 int i, err; 901 902 for (i = 0; i < bh_count; i++) { 903 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 904 if (IS_ERR(bhs[i])) { 905 err = PTR_ERR(bhs[i]); 906 bh_count = i; 907 goto out_brelse; 908 } 909 } 910 911 for (i = 0; i < bh_count; i++) 912 /* Note that NULL bhs[i] is valid because of holes. */ 913 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 914 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 915 &bhs[i]); 916 917 if (!wait) 918 return 0; 919 920 for (i = 0; i < bh_count; i++) 921 if (bhs[i]) 922 wait_on_buffer(bhs[i]); 923 924 for (i = 0; i < bh_count; i++) { 925 if (bhs[i] && !buffer_uptodate(bhs[i])) { 926 err = -EIO; 927 goto out_brelse; 928 } 929 } 930 return 0; 931 932 out_brelse: 933 for (i = 0; i < bh_count; i++) { 934 brelse(bhs[i]); 935 bhs[i] = NULL; 936 } 937 return err; 938 } 939 940 int ext4_walk_page_buffers(handle_t *handle, 941 struct buffer_head *head, 942 unsigned from, 943 unsigned to, 944 int *partial, 945 int (*fn)(handle_t *handle, 946 struct buffer_head *bh)) 947 { 948 struct buffer_head *bh; 949 unsigned block_start, block_end; 950 unsigned blocksize = head->b_size; 951 int err, ret = 0; 952 struct buffer_head *next; 953 954 for (bh = head, block_start = 0; 955 ret == 0 && (bh != head || !block_start); 956 block_start = block_end, bh = next) { 957 next = bh->b_this_page; 958 block_end = block_start + blocksize; 959 if (block_end <= from || block_start >= to) { 960 if (partial && !buffer_uptodate(bh)) 961 *partial = 1; 962 continue; 963 } 964 err = (*fn)(handle, bh); 965 if (!ret) 966 ret = err; 967 } 968 return ret; 969 } 970 971 /* 972 * To preserve ordering, it is essential that the hole instantiation and 973 * the data write be encapsulated in a single transaction. We cannot 974 * close off a transaction and start a new one between the ext4_get_block() 975 * and the commit_write(). So doing the jbd2_journal_start at the start of 976 * prepare_write() is the right place. 977 * 978 * Also, this function can nest inside ext4_writepage(). In that case, we 979 * *know* that ext4_writepage() has generated enough buffer credits to do the 980 * whole page. So we won't block on the journal in that case, which is good, 981 * because the caller may be PF_MEMALLOC. 982 * 983 * By accident, ext4 can be reentered when a transaction is open via 984 * quota file writes. If we were to commit the transaction while thus 985 * reentered, there can be a deadlock - we would be holding a quota 986 * lock, and the commit would never complete if another thread had a 987 * transaction open and was blocking on the quota lock - a ranking 988 * violation. 989 * 990 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 991 * will _not_ run commit under these circumstances because handle->h_ref 992 * is elevated. We'll still have enough credits for the tiny quotafile 993 * write. 994 */ 995 int do_journal_get_write_access(handle_t *handle, 996 struct buffer_head *bh) 997 { 998 int dirty = buffer_dirty(bh); 999 int ret; 1000 1001 if (!buffer_mapped(bh) || buffer_freed(bh)) 1002 return 0; 1003 /* 1004 * __block_write_begin() could have dirtied some buffers. Clean 1005 * the dirty bit as jbd2_journal_get_write_access() could complain 1006 * otherwise about fs integrity issues. Setting of the dirty bit 1007 * by __block_write_begin() isn't a real problem here as we clear 1008 * the bit before releasing a page lock and thus writeback cannot 1009 * ever write the buffer. 1010 */ 1011 if (dirty) 1012 clear_buffer_dirty(bh); 1013 BUFFER_TRACE(bh, "get write access"); 1014 ret = ext4_journal_get_write_access(handle, bh); 1015 if (!ret && dirty) 1016 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1017 return ret; 1018 } 1019 1020 #ifdef CONFIG_FS_ENCRYPTION 1021 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1022 get_block_t *get_block) 1023 { 1024 unsigned from = pos & (PAGE_SIZE - 1); 1025 unsigned to = from + len; 1026 struct inode *inode = page->mapping->host; 1027 unsigned block_start, block_end; 1028 sector_t block; 1029 int err = 0; 1030 unsigned blocksize = inode->i_sb->s_blocksize; 1031 unsigned bbits; 1032 struct buffer_head *bh, *head, *wait[2]; 1033 int nr_wait = 0; 1034 int i; 1035 1036 BUG_ON(!PageLocked(page)); 1037 BUG_ON(from > PAGE_SIZE); 1038 BUG_ON(to > PAGE_SIZE); 1039 BUG_ON(from > to); 1040 1041 if (!page_has_buffers(page)) 1042 create_empty_buffers(page, blocksize, 0); 1043 head = page_buffers(page); 1044 bbits = ilog2(blocksize); 1045 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1046 1047 for (bh = head, block_start = 0; bh != head || !block_start; 1048 block++, block_start = block_end, bh = bh->b_this_page) { 1049 block_end = block_start + blocksize; 1050 if (block_end <= from || block_start >= to) { 1051 if (PageUptodate(page)) { 1052 if (!buffer_uptodate(bh)) 1053 set_buffer_uptodate(bh); 1054 } 1055 continue; 1056 } 1057 if (buffer_new(bh)) 1058 clear_buffer_new(bh); 1059 if (!buffer_mapped(bh)) { 1060 WARN_ON(bh->b_size != blocksize); 1061 err = get_block(inode, block, bh, 1); 1062 if (err) 1063 break; 1064 if (buffer_new(bh)) { 1065 if (PageUptodate(page)) { 1066 clear_buffer_new(bh); 1067 set_buffer_uptodate(bh); 1068 mark_buffer_dirty(bh); 1069 continue; 1070 } 1071 if (block_end > to || block_start < from) 1072 zero_user_segments(page, to, block_end, 1073 block_start, from); 1074 continue; 1075 } 1076 } 1077 if (PageUptodate(page)) { 1078 if (!buffer_uptodate(bh)) 1079 set_buffer_uptodate(bh); 1080 continue; 1081 } 1082 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1083 !buffer_unwritten(bh) && 1084 (block_start < from || block_end > to)) { 1085 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1086 wait[nr_wait++] = bh; 1087 } 1088 } 1089 /* 1090 * If we issued read requests, let them complete. 1091 */ 1092 for (i = 0; i < nr_wait; i++) { 1093 wait_on_buffer(wait[i]); 1094 if (!buffer_uptodate(wait[i])) 1095 err = -EIO; 1096 } 1097 if (unlikely(err)) { 1098 page_zero_new_buffers(page, from, to); 1099 } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) { 1100 for (i = 0; i < nr_wait; i++) { 1101 int err2; 1102 1103 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1104 bh_offset(wait[i])); 1105 if (err2) { 1106 clear_buffer_uptodate(wait[i]); 1107 err = err2; 1108 } 1109 } 1110 } 1111 1112 return err; 1113 } 1114 #endif 1115 1116 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1117 loff_t pos, unsigned len, unsigned flags, 1118 struct page **pagep, void **fsdata) 1119 { 1120 struct inode *inode = mapping->host; 1121 int ret, needed_blocks; 1122 handle_t *handle; 1123 int retries = 0; 1124 struct page *page; 1125 pgoff_t index; 1126 unsigned from, to; 1127 1128 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1129 return -EIO; 1130 1131 trace_ext4_write_begin(inode, pos, len, flags); 1132 /* 1133 * Reserve one block more for addition to orphan list in case 1134 * we allocate blocks but write fails for some reason 1135 */ 1136 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1137 index = pos >> PAGE_SHIFT; 1138 from = pos & (PAGE_SIZE - 1); 1139 to = from + len; 1140 1141 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1142 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1143 flags, pagep); 1144 if (ret < 0) 1145 return ret; 1146 if (ret == 1) 1147 return 0; 1148 } 1149 1150 /* 1151 * grab_cache_page_write_begin() can take a long time if the 1152 * system is thrashing due to memory pressure, or if the page 1153 * is being written back. So grab it first before we start 1154 * the transaction handle. This also allows us to allocate 1155 * the page (if needed) without using GFP_NOFS. 1156 */ 1157 retry_grab: 1158 page = grab_cache_page_write_begin(mapping, index, flags); 1159 if (!page) 1160 return -ENOMEM; 1161 unlock_page(page); 1162 1163 retry_journal: 1164 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1165 if (IS_ERR(handle)) { 1166 put_page(page); 1167 return PTR_ERR(handle); 1168 } 1169 1170 lock_page(page); 1171 if (page->mapping != mapping) { 1172 /* The page got truncated from under us */ 1173 unlock_page(page); 1174 put_page(page); 1175 ext4_journal_stop(handle); 1176 goto retry_grab; 1177 } 1178 /* In case writeback began while the page was unlocked */ 1179 wait_for_stable_page(page); 1180 1181 #ifdef CONFIG_FS_ENCRYPTION 1182 if (ext4_should_dioread_nolock(inode)) 1183 ret = ext4_block_write_begin(page, pos, len, 1184 ext4_get_block_unwritten); 1185 else 1186 ret = ext4_block_write_begin(page, pos, len, 1187 ext4_get_block); 1188 #else 1189 if (ext4_should_dioread_nolock(inode)) 1190 ret = __block_write_begin(page, pos, len, 1191 ext4_get_block_unwritten); 1192 else 1193 ret = __block_write_begin(page, pos, len, ext4_get_block); 1194 #endif 1195 if (!ret && ext4_should_journal_data(inode)) { 1196 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1197 from, to, NULL, 1198 do_journal_get_write_access); 1199 } 1200 1201 if (ret) { 1202 bool extended = (pos + len > inode->i_size) && 1203 !ext4_verity_in_progress(inode); 1204 1205 unlock_page(page); 1206 /* 1207 * __block_write_begin may have instantiated a few blocks 1208 * outside i_size. Trim these off again. Don't need 1209 * i_size_read because we hold i_mutex. 1210 * 1211 * Add inode to orphan list in case we crash before 1212 * truncate finishes 1213 */ 1214 if (extended && ext4_can_truncate(inode)) 1215 ext4_orphan_add(handle, inode); 1216 1217 ext4_journal_stop(handle); 1218 if (extended) { 1219 ext4_truncate_failed_write(inode); 1220 /* 1221 * If truncate failed early the inode might 1222 * still be on the orphan list; we need to 1223 * make sure the inode is removed from the 1224 * orphan list in that case. 1225 */ 1226 if (inode->i_nlink) 1227 ext4_orphan_del(NULL, inode); 1228 } 1229 1230 if (ret == -ENOSPC && 1231 ext4_should_retry_alloc(inode->i_sb, &retries)) 1232 goto retry_journal; 1233 put_page(page); 1234 return ret; 1235 } 1236 *pagep = page; 1237 return ret; 1238 } 1239 1240 /* For write_end() in data=journal mode */ 1241 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1242 { 1243 int ret; 1244 if (!buffer_mapped(bh) || buffer_freed(bh)) 1245 return 0; 1246 set_buffer_uptodate(bh); 1247 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1248 clear_buffer_meta(bh); 1249 clear_buffer_prio(bh); 1250 return ret; 1251 } 1252 1253 /* 1254 * We need to pick up the new inode size which generic_commit_write gave us 1255 * `file' can be NULL - eg, when called from page_symlink(). 1256 * 1257 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1258 * buffers are managed internally. 1259 */ 1260 static int ext4_write_end(struct file *file, 1261 struct address_space *mapping, 1262 loff_t pos, unsigned len, unsigned copied, 1263 struct page *page, void *fsdata) 1264 { 1265 handle_t *handle = ext4_journal_current_handle(); 1266 struct inode *inode = mapping->host; 1267 loff_t old_size = inode->i_size; 1268 int ret = 0, ret2; 1269 int i_size_changed = 0; 1270 int inline_data = ext4_has_inline_data(inode); 1271 bool verity = ext4_verity_in_progress(inode); 1272 1273 trace_ext4_write_end(inode, pos, len, copied); 1274 if (inline_data) { 1275 ret = ext4_write_inline_data_end(inode, pos, len, 1276 copied, page); 1277 if (ret < 0) { 1278 unlock_page(page); 1279 put_page(page); 1280 goto errout; 1281 } 1282 copied = ret; 1283 } else 1284 copied = block_write_end(file, mapping, pos, 1285 len, copied, page, fsdata); 1286 /* 1287 * it's important to update i_size while still holding page lock: 1288 * page writeout could otherwise come in and zero beyond i_size. 1289 * 1290 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1291 * blocks are being written past EOF, so skip the i_size update. 1292 */ 1293 if (!verity) 1294 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1295 unlock_page(page); 1296 put_page(page); 1297 1298 if (old_size < pos && !verity) 1299 pagecache_isize_extended(inode, old_size, pos); 1300 /* 1301 * Don't mark the inode dirty under page lock. First, it unnecessarily 1302 * makes the holding time of page lock longer. Second, it forces lock 1303 * ordering of page lock and transaction start for journaling 1304 * filesystems. 1305 */ 1306 if (i_size_changed || inline_data) 1307 ret = ext4_mark_inode_dirty(handle, inode); 1308 1309 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1310 /* if we have allocated more blocks and copied 1311 * less. We will have blocks allocated outside 1312 * inode->i_size. So truncate them 1313 */ 1314 ext4_orphan_add(handle, inode); 1315 errout: 1316 ret2 = ext4_journal_stop(handle); 1317 if (!ret) 1318 ret = ret2; 1319 1320 if (pos + len > inode->i_size && !verity) { 1321 ext4_truncate_failed_write(inode); 1322 /* 1323 * If truncate failed early the inode might still be 1324 * on the orphan list; we need to make sure the inode 1325 * is removed from the orphan list in that case. 1326 */ 1327 if (inode->i_nlink) 1328 ext4_orphan_del(NULL, inode); 1329 } 1330 1331 return ret ? ret : copied; 1332 } 1333 1334 /* 1335 * This is a private version of page_zero_new_buffers() which doesn't 1336 * set the buffer to be dirty, since in data=journalled mode we need 1337 * to call ext4_handle_dirty_metadata() instead. 1338 */ 1339 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1340 struct page *page, 1341 unsigned from, unsigned to) 1342 { 1343 unsigned int block_start = 0, block_end; 1344 struct buffer_head *head, *bh; 1345 1346 bh = head = page_buffers(page); 1347 do { 1348 block_end = block_start + bh->b_size; 1349 if (buffer_new(bh)) { 1350 if (block_end > from && block_start < to) { 1351 if (!PageUptodate(page)) { 1352 unsigned start, size; 1353 1354 start = max(from, block_start); 1355 size = min(to, block_end) - start; 1356 1357 zero_user(page, start, size); 1358 write_end_fn(handle, bh); 1359 } 1360 clear_buffer_new(bh); 1361 } 1362 } 1363 block_start = block_end; 1364 bh = bh->b_this_page; 1365 } while (bh != head); 1366 } 1367 1368 static int ext4_journalled_write_end(struct file *file, 1369 struct address_space *mapping, 1370 loff_t pos, unsigned len, unsigned copied, 1371 struct page *page, void *fsdata) 1372 { 1373 handle_t *handle = ext4_journal_current_handle(); 1374 struct inode *inode = mapping->host; 1375 loff_t old_size = inode->i_size; 1376 int ret = 0, ret2; 1377 int partial = 0; 1378 unsigned from, to; 1379 int size_changed = 0; 1380 int inline_data = ext4_has_inline_data(inode); 1381 bool verity = ext4_verity_in_progress(inode); 1382 1383 trace_ext4_journalled_write_end(inode, pos, len, copied); 1384 from = pos & (PAGE_SIZE - 1); 1385 to = from + len; 1386 1387 BUG_ON(!ext4_handle_valid(handle)); 1388 1389 if (inline_data) { 1390 ret = ext4_write_inline_data_end(inode, pos, len, 1391 copied, page); 1392 if (ret < 0) { 1393 unlock_page(page); 1394 put_page(page); 1395 goto errout; 1396 } 1397 copied = ret; 1398 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1399 copied = 0; 1400 ext4_journalled_zero_new_buffers(handle, page, from, to); 1401 } else { 1402 if (unlikely(copied < len)) 1403 ext4_journalled_zero_new_buffers(handle, page, 1404 from + copied, to); 1405 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1406 from + copied, &partial, 1407 write_end_fn); 1408 if (!partial) 1409 SetPageUptodate(page); 1410 } 1411 if (!verity) 1412 size_changed = ext4_update_inode_size(inode, pos + copied); 1413 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1414 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1415 unlock_page(page); 1416 put_page(page); 1417 1418 if (old_size < pos && !verity) 1419 pagecache_isize_extended(inode, old_size, pos); 1420 1421 if (size_changed || inline_data) { 1422 ret2 = ext4_mark_inode_dirty(handle, inode); 1423 if (!ret) 1424 ret = ret2; 1425 } 1426 1427 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1428 /* if we have allocated more blocks and copied 1429 * less. We will have blocks allocated outside 1430 * inode->i_size. So truncate them 1431 */ 1432 ext4_orphan_add(handle, inode); 1433 1434 errout: 1435 ret2 = ext4_journal_stop(handle); 1436 if (!ret) 1437 ret = ret2; 1438 if (pos + len > inode->i_size && !verity) { 1439 ext4_truncate_failed_write(inode); 1440 /* 1441 * If truncate failed early the inode might still be 1442 * on the orphan list; we need to make sure the inode 1443 * is removed from the orphan list in that case. 1444 */ 1445 if (inode->i_nlink) 1446 ext4_orphan_del(NULL, inode); 1447 } 1448 1449 return ret ? ret : copied; 1450 } 1451 1452 /* 1453 * Reserve space for a single cluster 1454 */ 1455 static int ext4_da_reserve_space(struct inode *inode) 1456 { 1457 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1458 struct ext4_inode_info *ei = EXT4_I(inode); 1459 int ret; 1460 1461 /* 1462 * We will charge metadata quota at writeout time; this saves 1463 * us from metadata over-estimation, though we may go over by 1464 * a small amount in the end. Here we just reserve for data. 1465 */ 1466 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1467 if (ret) 1468 return ret; 1469 1470 spin_lock(&ei->i_block_reservation_lock); 1471 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1472 spin_unlock(&ei->i_block_reservation_lock); 1473 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1474 return -ENOSPC; 1475 } 1476 ei->i_reserved_data_blocks++; 1477 trace_ext4_da_reserve_space(inode); 1478 spin_unlock(&ei->i_block_reservation_lock); 1479 1480 return 0; /* success */ 1481 } 1482 1483 void ext4_da_release_space(struct inode *inode, int to_free) 1484 { 1485 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1486 struct ext4_inode_info *ei = EXT4_I(inode); 1487 1488 if (!to_free) 1489 return; /* Nothing to release, exit */ 1490 1491 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1492 1493 trace_ext4_da_release_space(inode, to_free); 1494 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1495 /* 1496 * if there aren't enough reserved blocks, then the 1497 * counter is messed up somewhere. Since this 1498 * function is called from invalidate page, it's 1499 * harmless to return without any action. 1500 */ 1501 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1502 "ino %lu, to_free %d with only %d reserved " 1503 "data blocks", inode->i_ino, to_free, 1504 ei->i_reserved_data_blocks); 1505 WARN_ON(1); 1506 to_free = ei->i_reserved_data_blocks; 1507 } 1508 ei->i_reserved_data_blocks -= to_free; 1509 1510 /* update fs dirty data blocks counter */ 1511 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1512 1513 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1514 1515 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1516 } 1517 1518 /* 1519 * Delayed allocation stuff 1520 */ 1521 1522 struct mpage_da_data { 1523 struct inode *inode; 1524 struct writeback_control *wbc; 1525 1526 pgoff_t first_page; /* The first page to write */ 1527 pgoff_t next_page; /* Current page to examine */ 1528 pgoff_t last_page; /* Last page to examine */ 1529 /* 1530 * Extent to map - this can be after first_page because that can be 1531 * fully mapped. We somewhat abuse m_flags to store whether the extent 1532 * is delalloc or unwritten. 1533 */ 1534 struct ext4_map_blocks map; 1535 struct ext4_io_submit io_submit; /* IO submission data */ 1536 unsigned int do_map:1; 1537 unsigned int scanned_until_end:1; 1538 }; 1539 1540 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1541 bool invalidate) 1542 { 1543 int nr_pages, i; 1544 pgoff_t index, end; 1545 struct pagevec pvec; 1546 struct inode *inode = mpd->inode; 1547 struct address_space *mapping = inode->i_mapping; 1548 1549 /* This is necessary when next_page == 0. */ 1550 if (mpd->first_page >= mpd->next_page) 1551 return; 1552 1553 mpd->scanned_until_end = 0; 1554 index = mpd->first_page; 1555 end = mpd->next_page - 1; 1556 if (invalidate) { 1557 ext4_lblk_t start, last; 1558 start = index << (PAGE_SHIFT - inode->i_blkbits); 1559 last = end << (PAGE_SHIFT - inode->i_blkbits); 1560 ext4_es_remove_extent(inode, start, last - start + 1); 1561 } 1562 1563 pagevec_init(&pvec); 1564 while (index <= end) { 1565 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1566 if (nr_pages == 0) 1567 break; 1568 for (i = 0; i < nr_pages; i++) { 1569 struct page *page = pvec.pages[i]; 1570 1571 BUG_ON(!PageLocked(page)); 1572 BUG_ON(PageWriteback(page)); 1573 if (invalidate) { 1574 if (page_mapped(page)) 1575 clear_page_dirty_for_io(page); 1576 block_invalidatepage(page, 0, PAGE_SIZE); 1577 ClearPageUptodate(page); 1578 } 1579 unlock_page(page); 1580 } 1581 pagevec_release(&pvec); 1582 } 1583 } 1584 1585 static void ext4_print_free_blocks(struct inode *inode) 1586 { 1587 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1588 struct super_block *sb = inode->i_sb; 1589 struct ext4_inode_info *ei = EXT4_I(inode); 1590 1591 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1592 EXT4_C2B(EXT4_SB(inode->i_sb), 1593 ext4_count_free_clusters(sb))); 1594 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1595 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1596 (long long) EXT4_C2B(EXT4_SB(sb), 1597 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1598 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1599 (long long) EXT4_C2B(EXT4_SB(sb), 1600 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1601 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1602 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1603 ei->i_reserved_data_blocks); 1604 return; 1605 } 1606 1607 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1608 { 1609 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1610 } 1611 1612 /* 1613 * ext4_insert_delayed_block - adds a delayed block to the extents status 1614 * tree, incrementing the reserved cluster/block 1615 * count or making a pending reservation 1616 * where needed 1617 * 1618 * @inode - file containing the newly added block 1619 * @lblk - logical block to be added 1620 * 1621 * Returns 0 on success, negative error code on failure. 1622 */ 1623 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1624 { 1625 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1626 int ret; 1627 bool allocated = false; 1628 1629 /* 1630 * If the cluster containing lblk is shared with a delayed, 1631 * written, or unwritten extent in a bigalloc file system, it's 1632 * already been accounted for and does not need to be reserved. 1633 * A pending reservation must be made for the cluster if it's 1634 * shared with a written or unwritten extent and doesn't already 1635 * have one. Written and unwritten extents can be purged from the 1636 * extents status tree if the system is under memory pressure, so 1637 * it's necessary to examine the extent tree if a search of the 1638 * extents status tree doesn't get a match. 1639 */ 1640 if (sbi->s_cluster_ratio == 1) { 1641 ret = ext4_da_reserve_space(inode); 1642 if (ret != 0) /* ENOSPC */ 1643 goto errout; 1644 } else { /* bigalloc */ 1645 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1646 if (!ext4_es_scan_clu(inode, 1647 &ext4_es_is_mapped, lblk)) { 1648 ret = ext4_clu_mapped(inode, 1649 EXT4_B2C(sbi, lblk)); 1650 if (ret < 0) 1651 goto errout; 1652 if (ret == 0) { 1653 ret = ext4_da_reserve_space(inode); 1654 if (ret != 0) /* ENOSPC */ 1655 goto errout; 1656 } else { 1657 allocated = true; 1658 } 1659 } else { 1660 allocated = true; 1661 } 1662 } 1663 } 1664 1665 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1666 1667 errout: 1668 return ret; 1669 } 1670 1671 /* 1672 * This function is grabs code from the very beginning of 1673 * ext4_map_blocks, but assumes that the caller is from delayed write 1674 * time. This function looks up the requested blocks and sets the 1675 * buffer delay bit under the protection of i_data_sem. 1676 */ 1677 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1678 struct ext4_map_blocks *map, 1679 struct buffer_head *bh) 1680 { 1681 struct extent_status es; 1682 int retval; 1683 sector_t invalid_block = ~((sector_t) 0xffff); 1684 #ifdef ES_AGGRESSIVE_TEST 1685 struct ext4_map_blocks orig_map; 1686 1687 memcpy(&orig_map, map, sizeof(*map)); 1688 #endif 1689 1690 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1691 invalid_block = ~0; 1692 1693 map->m_flags = 0; 1694 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1695 (unsigned long) map->m_lblk); 1696 1697 /* Lookup extent status tree firstly */ 1698 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1699 if (ext4_es_is_hole(&es)) { 1700 retval = 0; 1701 down_read(&EXT4_I(inode)->i_data_sem); 1702 goto add_delayed; 1703 } 1704 1705 /* 1706 * Delayed extent could be allocated by fallocate. 1707 * So we need to check it. 1708 */ 1709 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1710 map_bh(bh, inode->i_sb, invalid_block); 1711 set_buffer_new(bh); 1712 set_buffer_delay(bh); 1713 return 0; 1714 } 1715 1716 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1717 retval = es.es_len - (iblock - es.es_lblk); 1718 if (retval > map->m_len) 1719 retval = map->m_len; 1720 map->m_len = retval; 1721 if (ext4_es_is_written(&es)) 1722 map->m_flags |= EXT4_MAP_MAPPED; 1723 else if (ext4_es_is_unwritten(&es)) 1724 map->m_flags |= EXT4_MAP_UNWRITTEN; 1725 else 1726 BUG(); 1727 1728 #ifdef ES_AGGRESSIVE_TEST 1729 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1730 #endif 1731 return retval; 1732 } 1733 1734 /* 1735 * Try to see if we can get the block without requesting a new 1736 * file system block. 1737 */ 1738 down_read(&EXT4_I(inode)->i_data_sem); 1739 if (ext4_has_inline_data(inode)) 1740 retval = 0; 1741 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1742 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1743 else 1744 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1745 1746 add_delayed: 1747 if (retval == 0) { 1748 int ret; 1749 1750 /* 1751 * XXX: __block_prepare_write() unmaps passed block, 1752 * is it OK? 1753 */ 1754 1755 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1756 if (ret != 0) { 1757 retval = ret; 1758 goto out_unlock; 1759 } 1760 1761 map_bh(bh, inode->i_sb, invalid_block); 1762 set_buffer_new(bh); 1763 set_buffer_delay(bh); 1764 } else if (retval > 0) { 1765 int ret; 1766 unsigned int status; 1767 1768 if (unlikely(retval != map->m_len)) { 1769 ext4_warning(inode->i_sb, 1770 "ES len assertion failed for inode " 1771 "%lu: retval %d != map->m_len %d", 1772 inode->i_ino, retval, map->m_len); 1773 WARN_ON(1); 1774 } 1775 1776 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1777 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1778 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1779 map->m_pblk, status); 1780 if (ret != 0) 1781 retval = ret; 1782 } 1783 1784 out_unlock: 1785 up_read((&EXT4_I(inode)->i_data_sem)); 1786 1787 return retval; 1788 } 1789 1790 /* 1791 * This is a special get_block_t callback which is used by 1792 * ext4_da_write_begin(). It will either return mapped block or 1793 * reserve space for a single block. 1794 * 1795 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1796 * We also have b_blocknr = -1 and b_bdev initialized properly 1797 * 1798 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1799 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1800 * initialized properly. 1801 */ 1802 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1803 struct buffer_head *bh, int create) 1804 { 1805 struct ext4_map_blocks map; 1806 int ret = 0; 1807 1808 BUG_ON(create == 0); 1809 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1810 1811 map.m_lblk = iblock; 1812 map.m_len = 1; 1813 1814 /* 1815 * first, we need to know whether the block is allocated already 1816 * preallocated blocks are unmapped but should treated 1817 * the same as allocated blocks. 1818 */ 1819 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1820 if (ret <= 0) 1821 return ret; 1822 1823 map_bh(bh, inode->i_sb, map.m_pblk); 1824 ext4_update_bh_state(bh, map.m_flags); 1825 1826 if (buffer_unwritten(bh)) { 1827 /* A delayed write to unwritten bh should be marked 1828 * new and mapped. Mapped ensures that we don't do 1829 * get_block multiple times when we write to the same 1830 * offset and new ensures that we do proper zero out 1831 * for partial write. 1832 */ 1833 set_buffer_new(bh); 1834 set_buffer_mapped(bh); 1835 } 1836 return 0; 1837 } 1838 1839 static int bget_one(handle_t *handle, struct buffer_head *bh) 1840 { 1841 get_bh(bh); 1842 return 0; 1843 } 1844 1845 static int bput_one(handle_t *handle, struct buffer_head *bh) 1846 { 1847 put_bh(bh); 1848 return 0; 1849 } 1850 1851 static int __ext4_journalled_writepage(struct page *page, 1852 unsigned int len) 1853 { 1854 struct address_space *mapping = page->mapping; 1855 struct inode *inode = mapping->host; 1856 struct buffer_head *page_bufs = NULL; 1857 handle_t *handle = NULL; 1858 int ret = 0, err = 0; 1859 int inline_data = ext4_has_inline_data(inode); 1860 struct buffer_head *inode_bh = NULL; 1861 1862 ClearPageChecked(page); 1863 1864 if (inline_data) { 1865 BUG_ON(page->index != 0); 1866 BUG_ON(len > ext4_get_max_inline_size(inode)); 1867 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1868 if (inode_bh == NULL) 1869 goto out; 1870 } else { 1871 page_bufs = page_buffers(page); 1872 if (!page_bufs) { 1873 BUG(); 1874 goto out; 1875 } 1876 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1877 NULL, bget_one); 1878 } 1879 /* 1880 * We need to release the page lock before we start the 1881 * journal, so grab a reference so the page won't disappear 1882 * out from under us. 1883 */ 1884 get_page(page); 1885 unlock_page(page); 1886 1887 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1888 ext4_writepage_trans_blocks(inode)); 1889 if (IS_ERR(handle)) { 1890 ret = PTR_ERR(handle); 1891 put_page(page); 1892 goto out_no_pagelock; 1893 } 1894 BUG_ON(!ext4_handle_valid(handle)); 1895 1896 lock_page(page); 1897 put_page(page); 1898 if (page->mapping != mapping) { 1899 /* The page got truncated from under us */ 1900 ext4_journal_stop(handle); 1901 ret = 0; 1902 goto out; 1903 } 1904 1905 if (inline_data) { 1906 ret = ext4_mark_inode_dirty(handle, inode); 1907 } else { 1908 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1909 do_journal_get_write_access); 1910 1911 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1912 write_end_fn); 1913 } 1914 if (ret == 0) 1915 ret = err; 1916 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1917 err = ext4_journal_stop(handle); 1918 if (!ret) 1919 ret = err; 1920 1921 if (!ext4_has_inline_data(inode)) 1922 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1923 NULL, bput_one); 1924 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1925 out: 1926 unlock_page(page); 1927 out_no_pagelock: 1928 brelse(inode_bh); 1929 return ret; 1930 } 1931 1932 /* 1933 * Note that we don't need to start a transaction unless we're journaling data 1934 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1935 * need to file the inode to the transaction's list in ordered mode because if 1936 * we are writing back data added by write(), the inode is already there and if 1937 * we are writing back data modified via mmap(), no one guarantees in which 1938 * transaction the data will hit the disk. In case we are journaling data, we 1939 * cannot start transaction directly because transaction start ranks above page 1940 * lock so we have to do some magic. 1941 * 1942 * This function can get called via... 1943 * - ext4_writepages after taking page lock (have journal handle) 1944 * - journal_submit_inode_data_buffers (no journal handle) 1945 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1946 * - grab_page_cache when doing write_begin (have journal handle) 1947 * 1948 * We don't do any block allocation in this function. If we have page with 1949 * multiple blocks we need to write those buffer_heads that are mapped. This 1950 * is important for mmaped based write. So if we do with blocksize 1K 1951 * truncate(f, 1024); 1952 * a = mmap(f, 0, 4096); 1953 * a[0] = 'a'; 1954 * truncate(f, 4096); 1955 * we have in the page first buffer_head mapped via page_mkwrite call back 1956 * but other buffer_heads would be unmapped but dirty (dirty done via the 1957 * do_wp_page). So writepage should write the first block. If we modify 1958 * the mmap area beyond 1024 we will again get a page_fault and the 1959 * page_mkwrite callback will do the block allocation and mark the 1960 * buffer_heads mapped. 1961 * 1962 * We redirty the page if we have any buffer_heads that is either delay or 1963 * unwritten in the page. 1964 * 1965 * We can get recursively called as show below. 1966 * 1967 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1968 * ext4_writepage() 1969 * 1970 * But since we don't do any block allocation we should not deadlock. 1971 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1972 */ 1973 static int ext4_writepage(struct page *page, 1974 struct writeback_control *wbc) 1975 { 1976 int ret = 0; 1977 loff_t size; 1978 unsigned int len; 1979 struct buffer_head *page_bufs = NULL; 1980 struct inode *inode = page->mapping->host; 1981 struct ext4_io_submit io_submit; 1982 bool keep_towrite = false; 1983 1984 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 1985 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE); 1986 unlock_page(page); 1987 return -EIO; 1988 } 1989 1990 trace_ext4_writepage(page); 1991 size = i_size_read(inode); 1992 if (page->index == size >> PAGE_SHIFT && 1993 !ext4_verity_in_progress(inode)) 1994 len = size & ~PAGE_MASK; 1995 else 1996 len = PAGE_SIZE; 1997 1998 page_bufs = page_buffers(page); 1999 /* 2000 * We cannot do block allocation or other extent handling in this 2001 * function. If there are buffers needing that, we have to redirty 2002 * the page. But we may reach here when we do a journal commit via 2003 * journal_submit_inode_data_buffers() and in that case we must write 2004 * allocated buffers to achieve data=ordered mode guarantees. 2005 * 2006 * Also, if there is only one buffer per page (the fs block 2007 * size == the page size), if one buffer needs block 2008 * allocation or needs to modify the extent tree to clear the 2009 * unwritten flag, we know that the page can't be written at 2010 * all, so we might as well refuse the write immediately. 2011 * Unfortunately if the block size != page size, we can't as 2012 * easily detect this case using ext4_walk_page_buffers(), but 2013 * for the extremely common case, this is an optimization that 2014 * skips a useless round trip through ext4_bio_write_page(). 2015 */ 2016 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2017 ext4_bh_delay_or_unwritten)) { 2018 redirty_page_for_writepage(wbc, page); 2019 if ((current->flags & PF_MEMALLOC) || 2020 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2021 /* 2022 * For memory cleaning there's no point in writing only 2023 * some buffers. So just bail out. Warn if we came here 2024 * from direct reclaim. 2025 */ 2026 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2027 == PF_MEMALLOC); 2028 unlock_page(page); 2029 return 0; 2030 } 2031 keep_towrite = true; 2032 } 2033 2034 if (PageChecked(page) && ext4_should_journal_data(inode)) 2035 /* 2036 * It's mmapped pagecache. Add buffers and journal it. There 2037 * doesn't seem much point in redirtying the page here. 2038 */ 2039 return __ext4_journalled_writepage(page, len); 2040 2041 ext4_io_submit_init(&io_submit, wbc); 2042 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2043 if (!io_submit.io_end) { 2044 redirty_page_for_writepage(wbc, page); 2045 unlock_page(page); 2046 return -ENOMEM; 2047 } 2048 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2049 ext4_io_submit(&io_submit); 2050 /* Drop io_end reference we got from init */ 2051 ext4_put_io_end_defer(io_submit.io_end); 2052 return ret; 2053 } 2054 2055 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2056 { 2057 int len; 2058 loff_t size; 2059 int err; 2060 2061 BUG_ON(page->index != mpd->first_page); 2062 clear_page_dirty_for_io(page); 2063 /* 2064 * We have to be very careful here! Nothing protects writeback path 2065 * against i_size changes and the page can be writeably mapped into 2066 * page tables. So an application can be growing i_size and writing 2067 * data through mmap while writeback runs. clear_page_dirty_for_io() 2068 * write-protects our page in page tables and the page cannot get 2069 * written to again until we release page lock. So only after 2070 * clear_page_dirty_for_io() we are safe to sample i_size for 2071 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2072 * on the barrier provided by TestClearPageDirty in 2073 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2074 * after page tables are updated. 2075 */ 2076 size = i_size_read(mpd->inode); 2077 if (page->index == size >> PAGE_SHIFT && 2078 !ext4_verity_in_progress(mpd->inode)) 2079 len = size & ~PAGE_MASK; 2080 else 2081 len = PAGE_SIZE; 2082 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2083 if (!err) 2084 mpd->wbc->nr_to_write--; 2085 mpd->first_page++; 2086 2087 return err; 2088 } 2089 2090 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 2091 2092 /* 2093 * mballoc gives us at most this number of blocks... 2094 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2095 * The rest of mballoc seems to handle chunks up to full group size. 2096 */ 2097 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2098 2099 /* 2100 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2101 * 2102 * @mpd - extent of blocks 2103 * @lblk - logical number of the block in the file 2104 * @bh - buffer head we want to add to the extent 2105 * 2106 * The function is used to collect contig. blocks in the same state. If the 2107 * buffer doesn't require mapping for writeback and we haven't started the 2108 * extent of buffers to map yet, the function returns 'true' immediately - the 2109 * caller can write the buffer right away. Otherwise the function returns true 2110 * if the block has been added to the extent, false if the block couldn't be 2111 * added. 2112 */ 2113 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2114 struct buffer_head *bh) 2115 { 2116 struct ext4_map_blocks *map = &mpd->map; 2117 2118 /* Buffer that doesn't need mapping for writeback? */ 2119 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2120 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2121 /* So far no extent to map => we write the buffer right away */ 2122 if (map->m_len == 0) 2123 return true; 2124 return false; 2125 } 2126 2127 /* First block in the extent? */ 2128 if (map->m_len == 0) { 2129 /* We cannot map unless handle is started... */ 2130 if (!mpd->do_map) 2131 return false; 2132 map->m_lblk = lblk; 2133 map->m_len = 1; 2134 map->m_flags = bh->b_state & BH_FLAGS; 2135 return true; 2136 } 2137 2138 /* Don't go larger than mballoc is willing to allocate */ 2139 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2140 return false; 2141 2142 /* Can we merge the block to our big extent? */ 2143 if (lblk == map->m_lblk + map->m_len && 2144 (bh->b_state & BH_FLAGS) == map->m_flags) { 2145 map->m_len++; 2146 return true; 2147 } 2148 return false; 2149 } 2150 2151 /* 2152 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2153 * 2154 * @mpd - extent of blocks for mapping 2155 * @head - the first buffer in the page 2156 * @bh - buffer we should start processing from 2157 * @lblk - logical number of the block in the file corresponding to @bh 2158 * 2159 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2160 * the page for IO if all buffers in this page were mapped and there's no 2161 * accumulated extent of buffers to map or add buffers in the page to the 2162 * extent of buffers to map. The function returns 1 if the caller can continue 2163 * by processing the next page, 0 if it should stop adding buffers to the 2164 * extent to map because we cannot extend it anymore. It can also return value 2165 * < 0 in case of error during IO submission. 2166 */ 2167 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2168 struct buffer_head *head, 2169 struct buffer_head *bh, 2170 ext4_lblk_t lblk) 2171 { 2172 struct inode *inode = mpd->inode; 2173 int err; 2174 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2175 >> inode->i_blkbits; 2176 2177 if (ext4_verity_in_progress(inode)) 2178 blocks = EXT_MAX_BLOCKS; 2179 2180 do { 2181 BUG_ON(buffer_locked(bh)); 2182 2183 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2184 /* Found extent to map? */ 2185 if (mpd->map.m_len) 2186 return 0; 2187 /* Buffer needs mapping and handle is not started? */ 2188 if (!mpd->do_map) 2189 return 0; 2190 /* Everything mapped so far and we hit EOF */ 2191 break; 2192 } 2193 } while (lblk++, (bh = bh->b_this_page) != head); 2194 /* So far everything mapped? Submit the page for IO. */ 2195 if (mpd->map.m_len == 0) { 2196 err = mpage_submit_page(mpd, head->b_page); 2197 if (err < 0) 2198 return err; 2199 } 2200 if (lblk >= blocks) { 2201 mpd->scanned_until_end = 1; 2202 return 0; 2203 } 2204 return 1; 2205 } 2206 2207 /* 2208 * mpage_process_page - update page buffers corresponding to changed extent and 2209 * may submit fully mapped page for IO 2210 * 2211 * @mpd - description of extent to map, on return next extent to map 2212 * @m_lblk - logical block mapping. 2213 * @m_pblk - corresponding physical mapping. 2214 * @map_bh - determines on return whether this page requires any further 2215 * mapping or not. 2216 * Scan given page buffers corresponding to changed extent and update buffer 2217 * state according to new extent state. 2218 * We map delalloc buffers to their physical location, clear unwritten bits. 2219 * If the given page is not fully mapped, we update @map to the next extent in 2220 * the given page that needs mapping & return @map_bh as true. 2221 */ 2222 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2223 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2224 bool *map_bh) 2225 { 2226 struct buffer_head *head, *bh; 2227 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2228 ext4_lblk_t lblk = *m_lblk; 2229 ext4_fsblk_t pblock = *m_pblk; 2230 int err = 0; 2231 int blkbits = mpd->inode->i_blkbits; 2232 ssize_t io_end_size = 0; 2233 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2234 2235 bh = head = page_buffers(page); 2236 do { 2237 if (lblk < mpd->map.m_lblk) 2238 continue; 2239 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2240 /* 2241 * Buffer after end of mapped extent. 2242 * Find next buffer in the page to map. 2243 */ 2244 mpd->map.m_len = 0; 2245 mpd->map.m_flags = 0; 2246 io_end_vec->size += io_end_size; 2247 io_end_size = 0; 2248 2249 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2250 if (err > 0) 2251 err = 0; 2252 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2253 io_end_vec = ext4_alloc_io_end_vec(io_end); 2254 if (IS_ERR(io_end_vec)) { 2255 err = PTR_ERR(io_end_vec); 2256 goto out; 2257 } 2258 io_end_vec->offset = mpd->map.m_lblk << blkbits; 2259 } 2260 *map_bh = true; 2261 goto out; 2262 } 2263 if (buffer_delay(bh)) { 2264 clear_buffer_delay(bh); 2265 bh->b_blocknr = pblock++; 2266 } 2267 clear_buffer_unwritten(bh); 2268 io_end_size += (1 << blkbits); 2269 } while (lblk++, (bh = bh->b_this_page) != head); 2270 2271 io_end_vec->size += io_end_size; 2272 io_end_size = 0; 2273 *map_bh = false; 2274 out: 2275 *m_lblk = lblk; 2276 *m_pblk = pblock; 2277 return err; 2278 } 2279 2280 /* 2281 * mpage_map_buffers - update buffers corresponding to changed extent and 2282 * submit fully mapped pages for IO 2283 * 2284 * @mpd - description of extent to map, on return next extent to map 2285 * 2286 * Scan buffers corresponding to changed extent (we expect corresponding pages 2287 * to be already locked) and update buffer state according to new extent state. 2288 * We map delalloc buffers to their physical location, clear unwritten bits, 2289 * and mark buffers as uninit when we perform writes to unwritten extents 2290 * and do extent conversion after IO is finished. If the last page is not fully 2291 * mapped, we update @map to the next extent in the last page that needs 2292 * mapping. Otherwise we submit the page for IO. 2293 */ 2294 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2295 { 2296 struct pagevec pvec; 2297 int nr_pages, i; 2298 struct inode *inode = mpd->inode; 2299 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2300 pgoff_t start, end; 2301 ext4_lblk_t lblk; 2302 ext4_fsblk_t pblock; 2303 int err; 2304 bool map_bh = false; 2305 2306 start = mpd->map.m_lblk >> bpp_bits; 2307 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2308 lblk = start << bpp_bits; 2309 pblock = mpd->map.m_pblk; 2310 2311 pagevec_init(&pvec); 2312 while (start <= end) { 2313 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2314 &start, end); 2315 if (nr_pages == 0) 2316 break; 2317 for (i = 0; i < nr_pages; i++) { 2318 struct page *page = pvec.pages[i]; 2319 2320 err = mpage_process_page(mpd, page, &lblk, &pblock, 2321 &map_bh); 2322 /* 2323 * If map_bh is true, means page may require further bh 2324 * mapping, or maybe the page was submitted for IO. 2325 * So we return to call further extent mapping. 2326 */ 2327 if (err < 0 || map_bh) 2328 goto out; 2329 /* Page fully mapped - let IO run! */ 2330 err = mpage_submit_page(mpd, page); 2331 if (err < 0) 2332 goto out; 2333 } 2334 pagevec_release(&pvec); 2335 } 2336 /* Extent fully mapped and matches with page boundary. We are done. */ 2337 mpd->map.m_len = 0; 2338 mpd->map.m_flags = 0; 2339 return 0; 2340 out: 2341 pagevec_release(&pvec); 2342 return err; 2343 } 2344 2345 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2346 { 2347 struct inode *inode = mpd->inode; 2348 struct ext4_map_blocks *map = &mpd->map; 2349 int get_blocks_flags; 2350 int err, dioread_nolock; 2351 2352 trace_ext4_da_write_pages_extent(inode, map); 2353 /* 2354 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2355 * to convert an unwritten extent to be initialized (in the case 2356 * where we have written into one or more preallocated blocks). It is 2357 * possible that we're going to need more metadata blocks than 2358 * previously reserved. However we must not fail because we're in 2359 * writeback and there is nothing we can do about it so it might result 2360 * in data loss. So use reserved blocks to allocate metadata if 2361 * possible. 2362 * 2363 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2364 * the blocks in question are delalloc blocks. This indicates 2365 * that the blocks and quotas has already been checked when 2366 * the data was copied into the page cache. 2367 */ 2368 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2369 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2370 EXT4_GET_BLOCKS_IO_SUBMIT; 2371 dioread_nolock = ext4_should_dioread_nolock(inode); 2372 if (dioread_nolock) 2373 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2374 if (map->m_flags & BIT(BH_Delay)) 2375 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2376 2377 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2378 if (err < 0) 2379 return err; 2380 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2381 if (!mpd->io_submit.io_end->handle && 2382 ext4_handle_valid(handle)) { 2383 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2384 handle->h_rsv_handle = NULL; 2385 } 2386 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2387 } 2388 2389 BUG_ON(map->m_len == 0); 2390 return 0; 2391 } 2392 2393 /* 2394 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2395 * mpd->len and submit pages underlying it for IO 2396 * 2397 * @handle - handle for journal operations 2398 * @mpd - extent to map 2399 * @give_up_on_write - we set this to true iff there is a fatal error and there 2400 * is no hope of writing the data. The caller should discard 2401 * dirty pages to avoid infinite loops. 2402 * 2403 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2404 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2405 * them to initialized or split the described range from larger unwritten 2406 * extent. Note that we need not map all the described range since allocation 2407 * can return less blocks or the range is covered by more unwritten extents. We 2408 * cannot map more because we are limited by reserved transaction credits. On 2409 * the other hand we always make sure that the last touched page is fully 2410 * mapped so that it can be written out (and thus forward progress is 2411 * guaranteed). After mapping we submit all mapped pages for IO. 2412 */ 2413 static int mpage_map_and_submit_extent(handle_t *handle, 2414 struct mpage_da_data *mpd, 2415 bool *give_up_on_write) 2416 { 2417 struct inode *inode = mpd->inode; 2418 struct ext4_map_blocks *map = &mpd->map; 2419 int err; 2420 loff_t disksize; 2421 int progress = 0; 2422 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2423 struct ext4_io_end_vec *io_end_vec; 2424 2425 io_end_vec = ext4_alloc_io_end_vec(io_end); 2426 if (IS_ERR(io_end_vec)) 2427 return PTR_ERR(io_end_vec); 2428 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2429 do { 2430 err = mpage_map_one_extent(handle, mpd); 2431 if (err < 0) { 2432 struct super_block *sb = inode->i_sb; 2433 2434 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2435 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2436 goto invalidate_dirty_pages; 2437 /* 2438 * Let the uper layers retry transient errors. 2439 * In the case of ENOSPC, if ext4_count_free_blocks() 2440 * is non-zero, a commit should free up blocks. 2441 */ 2442 if ((err == -ENOMEM) || 2443 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2444 if (progress) 2445 goto update_disksize; 2446 return err; 2447 } 2448 ext4_msg(sb, KERN_CRIT, 2449 "Delayed block allocation failed for " 2450 "inode %lu at logical offset %llu with" 2451 " max blocks %u with error %d", 2452 inode->i_ino, 2453 (unsigned long long)map->m_lblk, 2454 (unsigned)map->m_len, -err); 2455 ext4_msg(sb, KERN_CRIT, 2456 "This should not happen!! Data will " 2457 "be lost\n"); 2458 if (err == -ENOSPC) 2459 ext4_print_free_blocks(inode); 2460 invalidate_dirty_pages: 2461 *give_up_on_write = true; 2462 return err; 2463 } 2464 progress = 1; 2465 /* 2466 * Update buffer state, submit mapped pages, and get us new 2467 * extent to map 2468 */ 2469 err = mpage_map_and_submit_buffers(mpd); 2470 if (err < 0) 2471 goto update_disksize; 2472 } while (map->m_len); 2473 2474 update_disksize: 2475 /* 2476 * Update on-disk size after IO is submitted. Races with 2477 * truncate are avoided by checking i_size under i_data_sem. 2478 */ 2479 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2480 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2481 int err2; 2482 loff_t i_size; 2483 2484 down_write(&EXT4_I(inode)->i_data_sem); 2485 i_size = i_size_read(inode); 2486 if (disksize > i_size) 2487 disksize = i_size; 2488 if (disksize > EXT4_I(inode)->i_disksize) 2489 EXT4_I(inode)->i_disksize = disksize; 2490 up_write(&EXT4_I(inode)->i_data_sem); 2491 err2 = ext4_mark_inode_dirty(handle, inode); 2492 if (err2) { 2493 ext4_error_err(inode->i_sb, -err2, 2494 "Failed to mark inode %lu dirty", 2495 inode->i_ino); 2496 } 2497 if (!err) 2498 err = err2; 2499 } 2500 return err; 2501 } 2502 2503 /* 2504 * Calculate the total number of credits to reserve for one writepages 2505 * iteration. This is called from ext4_writepages(). We map an extent of 2506 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2507 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2508 * bpp - 1 blocks in bpp different extents. 2509 */ 2510 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2511 { 2512 int bpp = ext4_journal_blocks_per_page(inode); 2513 2514 return ext4_meta_trans_blocks(inode, 2515 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2516 } 2517 2518 /* 2519 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2520 * and underlying extent to map 2521 * 2522 * @mpd - where to look for pages 2523 * 2524 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2525 * IO immediately. When we find a page which isn't mapped we start accumulating 2526 * extent of buffers underlying these pages that needs mapping (formed by 2527 * either delayed or unwritten buffers). We also lock the pages containing 2528 * these buffers. The extent found is returned in @mpd structure (starting at 2529 * mpd->lblk with length mpd->len blocks). 2530 * 2531 * Note that this function can attach bios to one io_end structure which are 2532 * neither logically nor physically contiguous. Although it may seem as an 2533 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2534 * case as we need to track IO to all buffers underlying a page in one io_end. 2535 */ 2536 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2537 { 2538 struct address_space *mapping = mpd->inode->i_mapping; 2539 struct pagevec pvec; 2540 unsigned int nr_pages; 2541 long left = mpd->wbc->nr_to_write; 2542 pgoff_t index = mpd->first_page; 2543 pgoff_t end = mpd->last_page; 2544 xa_mark_t tag; 2545 int i, err = 0; 2546 int blkbits = mpd->inode->i_blkbits; 2547 ext4_lblk_t lblk; 2548 struct buffer_head *head; 2549 2550 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2551 tag = PAGECACHE_TAG_TOWRITE; 2552 else 2553 tag = PAGECACHE_TAG_DIRTY; 2554 2555 pagevec_init(&pvec); 2556 mpd->map.m_len = 0; 2557 mpd->next_page = index; 2558 while (index <= end) { 2559 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2560 tag); 2561 if (nr_pages == 0) 2562 break; 2563 2564 for (i = 0; i < nr_pages; i++) { 2565 struct page *page = pvec.pages[i]; 2566 2567 /* 2568 * Accumulated enough dirty pages? This doesn't apply 2569 * to WB_SYNC_ALL mode. For integrity sync we have to 2570 * keep going because someone may be concurrently 2571 * dirtying pages, and we might have synced a lot of 2572 * newly appeared dirty pages, but have not synced all 2573 * of the old dirty pages. 2574 */ 2575 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2576 goto out; 2577 2578 /* If we can't merge this page, we are done. */ 2579 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2580 goto out; 2581 2582 lock_page(page); 2583 /* 2584 * If the page is no longer dirty, or its mapping no 2585 * longer corresponds to inode we are writing (which 2586 * means it has been truncated or invalidated), or the 2587 * page is already under writeback and we are not doing 2588 * a data integrity writeback, skip the page 2589 */ 2590 if (!PageDirty(page) || 2591 (PageWriteback(page) && 2592 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2593 unlikely(page->mapping != mapping)) { 2594 unlock_page(page); 2595 continue; 2596 } 2597 2598 wait_on_page_writeback(page); 2599 BUG_ON(PageWriteback(page)); 2600 2601 if (mpd->map.m_len == 0) 2602 mpd->first_page = page->index; 2603 mpd->next_page = page->index + 1; 2604 /* Add all dirty buffers to mpd */ 2605 lblk = ((ext4_lblk_t)page->index) << 2606 (PAGE_SHIFT - blkbits); 2607 head = page_buffers(page); 2608 err = mpage_process_page_bufs(mpd, head, head, lblk); 2609 if (err <= 0) 2610 goto out; 2611 err = 0; 2612 left--; 2613 } 2614 pagevec_release(&pvec); 2615 cond_resched(); 2616 } 2617 mpd->scanned_until_end = 1; 2618 return 0; 2619 out: 2620 pagevec_release(&pvec); 2621 return err; 2622 } 2623 2624 static int ext4_writepages(struct address_space *mapping, 2625 struct writeback_control *wbc) 2626 { 2627 pgoff_t writeback_index = 0; 2628 long nr_to_write = wbc->nr_to_write; 2629 int range_whole = 0; 2630 int cycled = 1; 2631 handle_t *handle = NULL; 2632 struct mpage_da_data mpd; 2633 struct inode *inode = mapping->host; 2634 int needed_blocks, rsv_blocks = 0, ret = 0; 2635 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2636 struct blk_plug plug; 2637 bool give_up_on_write = false; 2638 2639 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2640 return -EIO; 2641 2642 percpu_down_read(&sbi->s_writepages_rwsem); 2643 trace_ext4_writepages(inode, wbc); 2644 2645 /* 2646 * No pages to write? This is mainly a kludge to avoid starting 2647 * a transaction for special inodes like journal inode on last iput() 2648 * because that could violate lock ordering on umount 2649 */ 2650 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2651 goto out_writepages; 2652 2653 if (ext4_should_journal_data(inode)) { 2654 ret = generic_writepages(mapping, wbc); 2655 goto out_writepages; 2656 } 2657 2658 /* 2659 * If the filesystem has aborted, it is read-only, so return 2660 * right away instead of dumping stack traces later on that 2661 * will obscure the real source of the problem. We test 2662 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2663 * the latter could be true if the filesystem is mounted 2664 * read-only, and in that case, ext4_writepages should 2665 * *never* be called, so if that ever happens, we would want 2666 * the stack trace. 2667 */ 2668 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2669 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2670 ret = -EROFS; 2671 goto out_writepages; 2672 } 2673 2674 /* 2675 * If we have inline data and arrive here, it means that 2676 * we will soon create the block for the 1st page, so 2677 * we'd better clear the inline data here. 2678 */ 2679 if (ext4_has_inline_data(inode)) { 2680 /* Just inode will be modified... */ 2681 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2682 if (IS_ERR(handle)) { 2683 ret = PTR_ERR(handle); 2684 goto out_writepages; 2685 } 2686 BUG_ON(ext4_test_inode_state(inode, 2687 EXT4_STATE_MAY_INLINE_DATA)); 2688 ext4_destroy_inline_data(handle, inode); 2689 ext4_journal_stop(handle); 2690 } 2691 2692 if (ext4_should_dioread_nolock(inode)) { 2693 /* 2694 * We may need to convert up to one extent per block in 2695 * the page and we may dirty the inode. 2696 */ 2697 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2698 PAGE_SIZE >> inode->i_blkbits); 2699 } 2700 2701 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2702 range_whole = 1; 2703 2704 if (wbc->range_cyclic) { 2705 writeback_index = mapping->writeback_index; 2706 if (writeback_index) 2707 cycled = 0; 2708 mpd.first_page = writeback_index; 2709 mpd.last_page = -1; 2710 } else { 2711 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2712 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2713 } 2714 2715 mpd.inode = inode; 2716 mpd.wbc = wbc; 2717 ext4_io_submit_init(&mpd.io_submit, wbc); 2718 retry: 2719 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2720 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2721 blk_start_plug(&plug); 2722 2723 /* 2724 * First writeback pages that don't need mapping - we can avoid 2725 * starting a transaction unnecessarily and also avoid being blocked 2726 * in the block layer on device congestion while having transaction 2727 * started. 2728 */ 2729 mpd.do_map = 0; 2730 mpd.scanned_until_end = 0; 2731 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2732 if (!mpd.io_submit.io_end) { 2733 ret = -ENOMEM; 2734 goto unplug; 2735 } 2736 ret = mpage_prepare_extent_to_map(&mpd); 2737 /* Unlock pages we didn't use */ 2738 mpage_release_unused_pages(&mpd, false); 2739 /* Submit prepared bio */ 2740 ext4_io_submit(&mpd.io_submit); 2741 ext4_put_io_end_defer(mpd.io_submit.io_end); 2742 mpd.io_submit.io_end = NULL; 2743 if (ret < 0) 2744 goto unplug; 2745 2746 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) { 2747 /* For each extent of pages we use new io_end */ 2748 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2749 if (!mpd.io_submit.io_end) { 2750 ret = -ENOMEM; 2751 break; 2752 } 2753 2754 /* 2755 * We have two constraints: We find one extent to map and we 2756 * must always write out whole page (makes a difference when 2757 * blocksize < pagesize) so that we don't block on IO when we 2758 * try to write out the rest of the page. Journalled mode is 2759 * not supported by delalloc. 2760 */ 2761 BUG_ON(ext4_should_journal_data(inode)); 2762 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2763 2764 /* start a new transaction */ 2765 handle = ext4_journal_start_with_reserve(inode, 2766 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2767 if (IS_ERR(handle)) { 2768 ret = PTR_ERR(handle); 2769 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2770 "%ld pages, ino %lu; err %d", __func__, 2771 wbc->nr_to_write, inode->i_ino, ret); 2772 /* Release allocated io_end */ 2773 ext4_put_io_end(mpd.io_submit.io_end); 2774 mpd.io_submit.io_end = NULL; 2775 break; 2776 } 2777 mpd.do_map = 1; 2778 2779 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2780 ret = mpage_prepare_extent_to_map(&mpd); 2781 if (!ret && mpd.map.m_len) 2782 ret = mpage_map_and_submit_extent(handle, &mpd, 2783 &give_up_on_write); 2784 /* 2785 * Caution: If the handle is synchronous, 2786 * ext4_journal_stop() can wait for transaction commit 2787 * to finish which may depend on writeback of pages to 2788 * complete or on page lock to be released. In that 2789 * case, we have to wait until after after we have 2790 * submitted all the IO, released page locks we hold, 2791 * and dropped io_end reference (for extent conversion 2792 * to be able to complete) before stopping the handle. 2793 */ 2794 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2795 ext4_journal_stop(handle); 2796 handle = NULL; 2797 mpd.do_map = 0; 2798 } 2799 /* Unlock pages we didn't use */ 2800 mpage_release_unused_pages(&mpd, give_up_on_write); 2801 /* Submit prepared bio */ 2802 ext4_io_submit(&mpd.io_submit); 2803 2804 /* 2805 * Drop our io_end reference we got from init. We have 2806 * to be careful and use deferred io_end finishing if 2807 * we are still holding the transaction as we can 2808 * release the last reference to io_end which may end 2809 * up doing unwritten extent conversion. 2810 */ 2811 if (handle) { 2812 ext4_put_io_end_defer(mpd.io_submit.io_end); 2813 ext4_journal_stop(handle); 2814 } else 2815 ext4_put_io_end(mpd.io_submit.io_end); 2816 mpd.io_submit.io_end = NULL; 2817 2818 if (ret == -ENOSPC && sbi->s_journal) { 2819 /* 2820 * Commit the transaction which would 2821 * free blocks released in the transaction 2822 * and try again 2823 */ 2824 jbd2_journal_force_commit_nested(sbi->s_journal); 2825 ret = 0; 2826 continue; 2827 } 2828 /* Fatal error - ENOMEM, EIO... */ 2829 if (ret) 2830 break; 2831 } 2832 unplug: 2833 blk_finish_plug(&plug); 2834 if (!ret && !cycled && wbc->nr_to_write > 0) { 2835 cycled = 1; 2836 mpd.last_page = writeback_index - 1; 2837 mpd.first_page = 0; 2838 goto retry; 2839 } 2840 2841 /* Update index */ 2842 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2843 /* 2844 * Set the writeback_index so that range_cyclic 2845 * mode will write it back later 2846 */ 2847 mapping->writeback_index = mpd.first_page; 2848 2849 out_writepages: 2850 trace_ext4_writepages_result(inode, wbc, ret, 2851 nr_to_write - wbc->nr_to_write); 2852 percpu_up_read(&sbi->s_writepages_rwsem); 2853 return ret; 2854 } 2855 2856 static int ext4_dax_writepages(struct address_space *mapping, 2857 struct writeback_control *wbc) 2858 { 2859 int ret; 2860 long nr_to_write = wbc->nr_to_write; 2861 struct inode *inode = mapping->host; 2862 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2863 2864 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2865 return -EIO; 2866 2867 percpu_down_read(&sbi->s_writepages_rwsem); 2868 trace_ext4_writepages(inode, wbc); 2869 2870 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2871 trace_ext4_writepages_result(inode, wbc, ret, 2872 nr_to_write - wbc->nr_to_write); 2873 percpu_up_read(&sbi->s_writepages_rwsem); 2874 return ret; 2875 } 2876 2877 static int ext4_nonda_switch(struct super_block *sb) 2878 { 2879 s64 free_clusters, dirty_clusters; 2880 struct ext4_sb_info *sbi = EXT4_SB(sb); 2881 2882 /* 2883 * switch to non delalloc mode if we are running low 2884 * on free block. The free block accounting via percpu 2885 * counters can get slightly wrong with percpu_counter_batch getting 2886 * accumulated on each CPU without updating global counters 2887 * Delalloc need an accurate free block accounting. So switch 2888 * to non delalloc when we are near to error range. 2889 */ 2890 free_clusters = 2891 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2892 dirty_clusters = 2893 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2894 /* 2895 * Start pushing delalloc when 1/2 of free blocks are dirty. 2896 */ 2897 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2898 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2899 2900 if (2 * free_clusters < 3 * dirty_clusters || 2901 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2902 /* 2903 * free block count is less than 150% of dirty blocks 2904 * or free blocks is less than watermark 2905 */ 2906 return 1; 2907 } 2908 return 0; 2909 } 2910 2911 /* We always reserve for an inode update; the superblock could be there too */ 2912 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2913 { 2914 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2915 return 1; 2916 2917 if (pos + len <= 0x7fffffffULL) 2918 return 1; 2919 2920 /* We might need to update the superblock to set LARGE_FILE */ 2921 return 2; 2922 } 2923 2924 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2925 loff_t pos, unsigned len, unsigned flags, 2926 struct page **pagep, void **fsdata) 2927 { 2928 int ret, retries = 0; 2929 struct page *page; 2930 pgoff_t index; 2931 struct inode *inode = mapping->host; 2932 handle_t *handle; 2933 2934 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2935 return -EIO; 2936 2937 index = pos >> PAGE_SHIFT; 2938 2939 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) || 2940 ext4_verity_in_progress(inode)) { 2941 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2942 return ext4_write_begin(file, mapping, pos, 2943 len, flags, pagep, fsdata); 2944 } 2945 *fsdata = (void *)0; 2946 trace_ext4_da_write_begin(inode, pos, len, flags); 2947 2948 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2949 ret = ext4_da_write_inline_data_begin(mapping, inode, 2950 pos, len, flags, 2951 pagep, fsdata); 2952 if (ret < 0) 2953 return ret; 2954 if (ret == 1) 2955 return 0; 2956 } 2957 2958 /* 2959 * grab_cache_page_write_begin() can take a long time if the 2960 * system is thrashing due to memory pressure, or if the page 2961 * is being written back. So grab it first before we start 2962 * the transaction handle. This also allows us to allocate 2963 * the page (if needed) without using GFP_NOFS. 2964 */ 2965 retry_grab: 2966 page = grab_cache_page_write_begin(mapping, index, flags); 2967 if (!page) 2968 return -ENOMEM; 2969 unlock_page(page); 2970 2971 /* 2972 * With delayed allocation, we don't log the i_disksize update 2973 * if there is delayed block allocation. But we still need 2974 * to journalling the i_disksize update if writes to the end 2975 * of file which has an already mapped buffer. 2976 */ 2977 retry_journal: 2978 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2979 ext4_da_write_credits(inode, pos, len)); 2980 if (IS_ERR(handle)) { 2981 put_page(page); 2982 return PTR_ERR(handle); 2983 } 2984 2985 lock_page(page); 2986 if (page->mapping != mapping) { 2987 /* The page got truncated from under us */ 2988 unlock_page(page); 2989 put_page(page); 2990 ext4_journal_stop(handle); 2991 goto retry_grab; 2992 } 2993 /* In case writeback began while the page was unlocked */ 2994 wait_for_stable_page(page); 2995 2996 #ifdef CONFIG_FS_ENCRYPTION 2997 ret = ext4_block_write_begin(page, pos, len, 2998 ext4_da_get_block_prep); 2999 #else 3000 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3001 #endif 3002 if (ret < 0) { 3003 unlock_page(page); 3004 ext4_journal_stop(handle); 3005 /* 3006 * block_write_begin may have instantiated a few blocks 3007 * outside i_size. Trim these off again. Don't need 3008 * i_size_read because we hold i_mutex. 3009 */ 3010 if (pos + len > inode->i_size) 3011 ext4_truncate_failed_write(inode); 3012 3013 if (ret == -ENOSPC && 3014 ext4_should_retry_alloc(inode->i_sb, &retries)) 3015 goto retry_journal; 3016 3017 put_page(page); 3018 return ret; 3019 } 3020 3021 *pagep = page; 3022 return ret; 3023 } 3024 3025 /* 3026 * Check if we should update i_disksize 3027 * when write to the end of file but not require block allocation 3028 */ 3029 static int ext4_da_should_update_i_disksize(struct page *page, 3030 unsigned long offset) 3031 { 3032 struct buffer_head *bh; 3033 struct inode *inode = page->mapping->host; 3034 unsigned int idx; 3035 int i; 3036 3037 bh = page_buffers(page); 3038 idx = offset >> inode->i_blkbits; 3039 3040 for (i = 0; i < idx; i++) 3041 bh = bh->b_this_page; 3042 3043 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3044 return 0; 3045 return 1; 3046 } 3047 3048 static int ext4_da_write_end(struct file *file, 3049 struct address_space *mapping, 3050 loff_t pos, unsigned len, unsigned copied, 3051 struct page *page, void *fsdata) 3052 { 3053 struct inode *inode = mapping->host; 3054 int ret = 0, ret2; 3055 handle_t *handle = ext4_journal_current_handle(); 3056 loff_t new_i_size; 3057 unsigned long start, end; 3058 int write_mode = (int)(unsigned long)fsdata; 3059 3060 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3061 return ext4_write_end(file, mapping, pos, 3062 len, copied, page, fsdata); 3063 3064 trace_ext4_da_write_end(inode, pos, len, copied); 3065 start = pos & (PAGE_SIZE - 1); 3066 end = start + copied - 1; 3067 3068 /* 3069 * generic_write_end() will run mark_inode_dirty() if i_size 3070 * changes. So let's piggyback the i_disksize mark_inode_dirty 3071 * into that. 3072 */ 3073 new_i_size = pos + copied; 3074 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3075 if (ext4_has_inline_data(inode) || 3076 ext4_da_should_update_i_disksize(page, end)) { 3077 ext4_update_i_disksize(inode, new_i_size); 3078 /* We need to mark inode dirty even if 3079 * new_i_size is less that inode->i_size 3080 * bu greater than i_disksize.(hint delalloc) 3081 */ 3082 ret = ext4_mark_inode_dirty(handle, inode); 3083 } 3084 } 3085 3086 if (write_mode != CONVERT_INLINE_DATA && 3087 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3088 ext4_has_inline_data(inode)) 3089 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3090 page); 3091 else 3092 ret2 = generic_write_end(file, mapping, pos, len, copied, 3093 page, fsdata); 3094 3095 copied = ret2; 3096 if (ret2 < 0) 3097 ret = ret2; 3098 ret2 = ext4_journal_stop(handle); 3099 if (unlikely(ret2 && !ret)) 3100 ret = ret2; 3101 3102 return ret ? ret : copied; 3103 } 3104 3105 /* 3106 * Force all delayed allocation blocks to be allocated for a given inode. 3107 */ 3108 int ext4_alloc_da_blocks(struct inode *inode) 3109 { 3110 trace_ext4_alloc_da_blocks(inode); 3111 3112 if (!EXT4_I(inode)->i_reserved_data_blocks) 3113 return 0; 3114 3115 /* 3116 * We do something simple for now. The filemap_flush() will 3117 * also start triggering a write of the data blocks, which is 3118 * not strictly speaking necessary (and for users of 3119 * laptop_mode, not even desirable). However, to do otherwise 3120 * would require replicating code paths in: 3121 * 3122 * ext4_writepages() -> 3123 * write_cache_pages() ---> (via passed in callback function) 3124 * __mpage_da_writepage() --> 3125 * mpage_add_bh_to_extent() 3126 * mpage_da_map_blocks() 3127 * 3128 * The problem is that write_cache_pages(), located in 3129 * mm/page-writeback.c, marks pages clean in preparation for 3130 * doing I/O, which is not desirable if we're not planning on 3131 * doing I/O at all. 3132 * 3133 * We could call write_cache_pages(), and then redirty all of 3134 * the pages by calling redirty_page_for_writepage() but that 3135 * would be ugly in the extreme. So instead we would need to 3136 * replicate parts of the code in the above functions, 3137 * simplifying them because we wouldn't actually intend to 3138 * write out the pages, but rather only collect contiguous 3139 * logical block extents, call the multi-block allocator, and 3140 * then update the buffer heads with the block allocations. 3141 * 3142 * For now, though, we'll cheat by calling filemap_flush(), 3143 * which will map the blocks, and start the I/O, but not 3144 * actually wait for the I/O to complete. 3145 */ 3146 return filemap_flush(inode->i_mapping); 3147 } 3148 3149 /* 3150 * bmap() is special. It gets used by applications such as lilo and by 3151 * the swapper to find the on-disk block of a specific piece of data. 3152 * 3153 * Naturally, this is dangerous if the block concerned is still in the 3154 * journal. If somebody makes a swapfile on an ext4 data-journaling 3155 * filesystem and enables swap, then they may get a nasty shock when the 3156 * data getting swapped to that swapfile suddenly gets overwritten by 3157 * the original zero's written out previously to the journal and 3158 * awaiting writeback in the kernel's buffer cache. 3159 * 3160 * So, if we see any bmap calls here on a modified, data-journaled file, 3161 * take extra steps to flush any blocks which might be in the cache. 3162 */ 3163 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3164 { 3165 struct inode *inode = mapping->host; 3166 journal_t *journal; 3167 int err; 3168 3169 /* 3170 * We can get here for an inline file via the FIBMAP ioctl 3171 */ 3172 if (ext4_has_inline_data(inode)) 3173 return 0; 3174 3175 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3176 test_opt(inode->i_sb, DELALLOC)) { 3177 /* 3178 * With delalloc we want to sync the file 3179 * so that we can make sure we allocate 3180 * blocks for file 3181 */ 3182 filemap_write_and_wait(mapping); 3183 } 3184 3185 if (EXT4_JOURNAL(inode) && 3186 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3187 /* 3188 * This is a REALLY heavyweight approach, but the use of 3189 * bmap on dirty files is expected to be extremely rare: 3190 * only if we run lilo or swapon on a freshly made file 3191 * do we expect this to happen. 3192 * 3193 * (bmap requires CAP_SYS_RAWIO so this does not 3194 * represent an unprivileged user DOS attack --- we'd be 3195 * in trouble if mortal users could trigger this path at 3196 * will.) 3197 * 3198 * NB. EXT4_STATE_JDATA is not set on files other than 3199 * regular files. If somebody wants to bmap a directory 3200 * or symlink and gets confused because the buffer 3201 * hasn't yet been flushed to disk, they deserve 3202 * everything they get. 3203 */ 3204 3205 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3206 journal = EXT4_JOURNAL(inode); 3207 jbd2_journal_lock_updates(journal); 3208 err = jbd2_journal_flush(journal); 3209 jbd2_journal_unlock_updates(journal); 3210 3211 if (err) 3212 return 0; 3213 } 3214 3215 return iomap_bmap(mapping, block, &ext4_iomap_ops); 3216 } 3217 3218 static int ext4_readpage(struct file *file, struct page *page) 3219 { 3220 int ret = -EAGAIN; 3221 struct inode *inode = page->mapping->host; 3222 3223 trace_ext4_readpage(page); 3224 3225 if (ext4_has_inline_data(inode)) 3226 ret = ext4_readpage_inline(inode, page); 3227 3228 if (ret == -EAGAIN) 3229 return ext4_mpage_readpages(inode, NULL, page); 3230 3231 return ret; 3232 } 3233 3234 static void ext4_readahead(struct readahead_control *rac) 3235 { 3236 struct inode *inode = rac->mapping->host; 3237 3238 /* If the file has inline data, no need to do readahead. */ 3239 if (ext4_has_inline_data(inode)) 3240 return; 3241 3242 ext4_mpage_readpages(inode, rac, NULL); 3243 } 3244 3245 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3246 unsigned int length) 3247 { 3248 trace_ext4_invalidatepage(page, offset, length); 3249 3250 /* No journalling happens on data buffers when this function is used */ 3251 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3252 3253 block_invalidatepage(page, offset, length); 3254 } 3255 3256 static int __ext4_journalled_invalidatepage(struct page *page, 3257 unsigned int offset, 3258 unsigned int length) 3259 { 3260 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3261 3262 trace_ext4_journalled_invalidatepage(page, offset, length); 3263 3264 /* 3265 * If it's a full truncate we just forget about the pending dirtying 3266 */ 3267 if (offset == 0 && length == PAGE_SIZE) 3268 ClearPageChecked(page); 3269 3270 return jbd2_journal_invalidatepage(journal, page, offset, length); 3271 } 3272 3273 /* Wrapper for aops... */ 3274 static void ext4_journalled_invalidatepage(struct page *page, 3275 unsigned int offset, 3276 unsigned int length) 3277 { 3278 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3279 } 3280 3281 static int ext4_releasepage(struct page *page, gfp_t wait) 3282 { 3283 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3284 3285 trace_ext4_releasepage(page); 3286 3287 /* Page has dirty journalled data -> cannot release */ 3288 if (PageChecked(page)) 3289 return 0; 3290 if (journal) 3291 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3292 else 3293 return try_to_free_buffers(page); 3294 } 3295 3296 static bool ext4_inode_datasync_dirty(struct inode *inode) 3297 { 3298 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3299 3300 if (journal) 3301 return !jbd2_transaction_committed(journal, 3302 EXT4_I(inode)->i_datasync_tid); 3303 /* Any metadata buffers to write? */ 3304 if (!list_empty(&inode->i_mapping->private_list)) 3305 return true; 3306 return inode->i_state & I_DIRTY_DATASYNC; 3307 } 3308 3309 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3310 struct ext4_map_blocks *map, loff_t offset, 3311 loff_t length) 3312 { 3313 u8 blkbits = inode->i_blkbits; 3314 3315 /* 3316 * Writes that span EOF might trigger an I/O size update on completion, 3317 * so consider them to be dirty for the purpose of O_DSYNC, even if 3318 * there is no other metadata changes being made or are pending. 3319 */ 3320 iomap->flags = 0; 3321 if (ext4_inode_datasync_dirty(inode) || 3322 offset + length > i_size_read(inode)) 3323 iomap->flags |= IOMAP_F_DIRTY; 3324 3325 if (map->m_flags & EXT4_MAP_NEW) 3326 iomap->flags |= IOMAP_F_NEW; 3327 3328 iomap->bdev = inode->i_sb->s_bdev; 3329 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3330 iomap->offset = (u64) map->m_lblk << blkbits; 3331 iomap->length = (u64) map->m_len << blkbits; 3332 3333 if ((map->m_flags & EXT4_MAP_MAPPED) && 3334 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3335 iomap->flags |= IOMAP_F_MERGED; 3336 3337 /* 3338 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3339 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3340 * set. In order for any allocated unwritten extents to be converted 3341 * into written extents correctly within the ->end_io() handler, we 3342 * need to ensure that the iomap->type is set appropriately. Hence, the 3343 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3344 * been set first. 3345 */ 3346 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3347 iomap->type = IOMAP_UNWRITTEN; 3348 iomap->addr = (u64) map->m_pblk << blkbits; 3349 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3350 iomap->type = IOMAP_MAPPED; 3351 iomap->addr = (u64) map->m_pblk << blkbits; 3352 } else { 3353 iomap->type = IOMAP_HOLE; 3354 iomap->addr = IOMAP_NULL_ADDR; 3355 } 3356 } 3357 3358 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3359 unsigned int flags) 3360 { 3361 handle_t *handle; 3362 u8 blkbits = inode->i_blkbits; 3363 int ret, dio_credits, m_flags = 0, retries = 0; 3364 3365 /* 3366 * Trim the mapping request to the maximum value that we can map at 3367 * once for direct I/O. 3368 */ 3369 if (map->m_len > DIO_MAX_BLOCKS) 3370 map->m_len = DIO_MAX_BLOCKS; 3371 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3372 3373 retry: 3374 /* 3375 * Either we allocate blocks and then don't get an unwritten extent, so 3376 * in that case we have reserved enough credits. Or, the blocks are 3377 * already allocated and unwritten. In that case, the extent conversion 3378 * fits into the credits as well. 3379 */ 3380 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3381 if (IS_ERR(handle)) 3382 return PTR_ERR(handle); 3383 3384 /* 3385 * DAX and direct I/O are the only two operations that are currently 3386 * supported with IOMAP_WRITE. 3387 */ 3388 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT)); 3389 if (IS_DAX(inode)) 3390 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3391 /* 3392 * We use i_size instead of i_disksize here because delalloc writeback 3393 * can complete at any point during the I/O and subsequently push the 3394 * i_disksize out to i_size. This could be beyond where direct I/O is 3395 * happening and thus expose allocated blocks to direct I/O reads. 3396 */ 3397 else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode)) 3398 m_flags = EXT4_GET_BLOCKS_CREATE; 3399 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3400 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3401 3402 ret = ext4_map_blocks(handle, inode, map, m_flags); 3403 3404 /* 3405 * We cannot fill holes in indirect tree based inodes as that could 3406 * expose stale data in the case of a crash. Use the magic error code 3407 * to fallback to buffered I/O. 3408 */ 3409 if (!m_flags && !ret) 3410 ret = -ENOTBLK; 3411 3412 ext4_journal_stop(handle); 3413 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3414 goto retry; 3415 3416 return ret; 3417 } 3418 3419 3420 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3421 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3422 { 3423 int ret; 3424 struct ext4_map_blocks map; 3425 u8 blkbits = inode->i_blkbits; 3426 3427 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3428 return -EINVAL; 3429 3430 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3431 return -ERANGE; 3432 3433 /* 3434 * Calculate the first and last logical blocks respectively. 3435 */ 3436 map.m_lblk = offset >> blkbits; 3437 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3438 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3439 3440 if (flags & IOMAP_WRITE) 3441 ret = ext4_iomap_alloc(inode, &map, flags); 3442 else 3443 ret = ext4_map_blocks(NULL, inode, &map, 0); 3444 3445 if (ret < 0) 3446 return ret; 3447 3448 ext4_set_iomap(inode, iomap, &map, offset, length); 3449 3450 return 0; 3451 } 3452 3453 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3454 loff_t length, unsigned flags, struct iomap *iomap, 3455 struct iomap *srcmap) 3456 { 3457 int ret; 3458 3459 /* 3460 * Even for writes we don't need to allocate blocks, so just pretend 3461 * we are reading to save overhead of starting a transaction. 3462 */ 3463 flags &= ~IOMAP_WRITE; 3464 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3465 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3466 return ret; 3467 } 3468 3469 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3470 ssize_t written, unsigned flags, struct iomap *iomap) 3471 { 3472 /* 3473 * Check to see whether an error occurred while writing out the data to 3474 * the allocated blocks. If so, return the magic error code so that we 3475 * fallback to buffered I/O and attempt to complete the remainder of 3476 * the I/O. Any blocks that may have been allocated in preparation for 3477 * the direct I/O will be reused during buffered I/O. 3478 */ 3479 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3480 return -ENOTBLK; 3481 3482 return 0; 3483 } 3484 3485 const struct iomap_ops ext4_iomap_ops = { 3486 .iomap_begin = ext4_iomap_begin, 3487 .iomap_end = ext4_iomap_end, 3488 }; 3489 3490 const struct iomap_ops ext4_iomap_overwrite_ops = { 3491 .iomap_begin = ext4_iomap_overwrite_begin, 3492 .iomap_end = ext4_iomap_end, 3493 }; 3494 3495 static bool ext4_iomap_is_delalloc(struct inode *inode, 3496 struct ext4_map_blocks *map) 3497 { 3498 struct extent_status es; 3499 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3500 3501 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3502 map->m_lblk, end, &es); 3503 3504 if (!es.es_len || es.es_lblk > end) 3505 return false; 3506 3507 if (es.es_lblk > map->m_lblk) { 3508 map->m_len = es.es_lblk - map->m_lblk; 3509 return false; 3510 } 3511 3512 offset = map->m_lblk - es.es_lblk; 3513 map->m_len = es.es_len - offset; 3514 3515 return true; 3516 } 3517 3518 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3519 loff_t length, unsigned int flags, 3520 struct iomap *iomap, struct iomap *srcmap) 3521 { 3522 int ret; 3523 bool delalloc = false; 3524 struct ext4_map_blocks map; 3525 u8 blkbits = inode->i_blkbits; 3526 3527 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3528 return -EINVAL; 3529 3530 if (ext4_has_inline_data(inode)) { 3531 ret = ext4_inline_data_iomap(inode, iomap); 3532 if (ret != -EAGAIN) { 3533 if (ret == 0 && offset >= iomap->length) 3534 ret = -ENOENT; 3535 return ret; 3536 } 3537 } 3538 3539 /* 3540 * Calculate the first and last logical block respectively. 3541 */ 3542 map.m_lblk = offset >> blkbits; 3543 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3544 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3545 3546 /* 3547 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3548 * So handle it here itself instead of querying ext4_map_blocks(). 3549 * Since ext4_map_blocks() will warn about it and will return 3550 * -EIO error. 3551 */ 3552 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3553 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3554 3555 if (offset >= sbi->s_bitmap_maxbytes) { 3556 map.m_flags = 0; 3557 goto set_iomap; 3558 } 3559 } 3560 3561 ret = ext4_map_blocks(NULL, inode, &map, 0); 3562 if (ret < 0) 3563 return ret; 3564 if (ret == 0) 3565 delalloc = ext4_iomap_is_delalloc(inode, &map); 3566 3567 set_iomap: 3568 ext4_set_iomap(inode, iomap, &map, offset, length); 3569 if (delalloc && iomap->type == IOMAP_HOLE) 3570 iomap->type = IOMAP_DELALLOC; 3571 3572 return 0; 3573 } 3574 3575 const struct iomap_ops ext4_iomap_report_ops = { 3576 .iomap_begin = ext4_iomap_begin_report, 3577 }; 3578 3579 /* 3580 * Pages can be marked dirty completely asynchronously from ext4's journalling 3581 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3582 * much here because ->set_page_dirty is called under VFS locks. The page is 3583 * not necessarily locked. 3584 * 3585 * We cannot just dirty the page and leave attached buffers clean, because the 3586 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3587 * or jbddirty because all the journalling code will explode. 3588 * 3589 * So what we do is to mark the page "pending dirty" and next time writepage 3590 * is called, propagate that into the buffers appropriately. 3591 */ 3592 static int ext4_journalled_set_page_dirty(struct page *page) 3593 { 3594 SetPageChecked(page); 3595 return __set_page_dirty_nobuffers(page); 3596 } 3597 3598 static int ext4_set_page_dirty(struct page *page) 3599 { 3600 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3601 WARN_ON_ONCE(!page_has_buffers(page)); 3602 return __set_page_dirty_buffers(page); 3603 } 3604 3605 static const struct address_space_operations ext4_aops = { 3606 .readpage = ext4_readpage, 3607 .readahead = ext4_readahead, 3608 .writepage = ext4_writepage, 3609 .writepages = ext4_writepages, 3610 .write_begin = ext4_write_begin, 3611 .write_end = ext4_write_end, 3612 .set_page_dirty = ext4_set_page_dirty, 3613 .bmap = ext4_bmap, 3614 .invalidatepage = ext4_invalidatepage, 3615 .releasepage = ext4_releasepage, 3616 .direct_IO = noop_direct_IO, 3617 .migratepage = buffer_migrate_page, 3618 .is_partially_uptodate = block_is_partially_uptodate, 3619 .error_remove_page = generic_error_remove_page, 3620 }; 3621 3622 static const struct address_space_operations ext4_journalled_aops = { 3623 .readpage = ext4_readpage, 3624 .readahead = ext4_readahead, 3625 .writepage = ext4_writepage, 3626 .writepages = ext4_writepages, 3627 .write_begin = ext4_write_begin, 3628 .write_end = ext4_journalled_write_end, 3629 .set_page_dirty = ext4_journalled_set_page_dirty, 3630 .bmap = ext4_bmap, 3631 .invalidatepage = ext4_journalled_invalidatepage, 3632 .releasepage = ext4_releasepage, 3633 .direct_IO = noop_direct_IO, 3634 .is_partially_uptodate = block_is_partially_uptodate, 3635 .error_remove_page = generic_error_remove_page, 3636 }; 3637 3638 static const struct address_space_operations ext4_da_aops = { 3639 .readpage = ext4_readpage, 3640 .readahead = ext4_readahead, 3641 .writepage = ext4_writepage, 3642 .writepages = ext4_writepages, 3643 .write_begin = ext4_da_write_begin, 3644 .write_end = ext4_da_write_end, 3645 .set_page_dirty = ext4_set_page_dirty, 3646 .bmap = ext4_bmap, 3647 .invalidatepage = ext4_invalidatepage, 3648 .releasepage = ext4_releasepage, 3649 .direct_IO = noop_direct_IO, 3650 .migratepage = buffer_migrate_page, 3651 .is_partially_uptodate = block_is_partially_uptodate, 3652 .error_remove_page = generic_error_remove_page, 3653 }; 3654 3655 static const struct address_space_operations ext4_dax_aops = { 3656 .writepages = ext4_dax_writepages, 3657 .direct_IO = noop_direct_IO, 3658 .set_page_dirty = noop_set_page_dirty, 3659 .bmap = ext4_bmap, 3660 .invalidatepage = noop_invalidatepage, 3661 }; 3662 3663 void ext4_set_aops(struct inode *inode) 3664 { 3665 switch (ext4_inode_journal_mode(inode)) { 3666 case EXT4_INODE_ORDERED_DATA_MODE: 3667 case EXT4_INODE_WRITEBACK_DATA_MODE: 3668 break; 3669 case EXT4_INODE_JOURNAL_DATA_MODE: 3670 inode->i_mapping->a_ops = &ext4_journalled_aops; 3671 return; 3672 default: 3673 BUG(); 3674 } 3675 if (IS_DAX(inode)) 3676 inode->i_mapping->a_ops = &ext4_dax_aops; 3677 else if (test_opt(inode->i_sb, DELALLOC)) 3678 inode->i_mapping->a_ops = &ext4_da_aops; 3679 else 3680 inode->i_mapping->a_ops = &ext4_aops; 3681 } 3682 3683 static int __ext4_block_zero_page_range(handle_t *handle, 3684 struct address_space *mapping, loff_t from, loff_t length) 3685 { 3686 ext4_fsblk_t index = from >> PAGE_SHIFT; 3687 unsigned offset = from & (PAGE_SIZE-1); 3688 unsigned blocksize, pos; 3689 ext4_lblk_t iblock; 3690 struct inode *inode = mapping->host; 3691 struct buffer_head *bh; 3692 struct page *page; 3693 int err = 0; 3694 3695 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3696 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3697 if (!page) 3698 return -ENOMEM; 3699 3700 blocksize = inode->i_sb->s_blocksize; 3701 3702 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3703 3704 if (!page_has_buffers(page)) 3705 create_empty_buffers(page, blocksize, 0); 3706 3707 /* Find the buffer that contains "offset" */ 3708 bh = page_buffers(page); 3709 pos = blocksize; 3710 while (offset >= pos) { 3711 bh = bh->b_this_page; 3712 iblock++; 3713 pos += blocksize; 3714 } 3715 if (buffer_freed(bh)) { 3716 BUFFER_TRACE(bh, "freed: skip"); 3717 goto unlock; 3718 } 3719 if (!buffer_mapped(bh)) { 3720 BUFFER_TRACE(bh, "unmapped"); 3721 ext4_get_block(inode, iblock, bh, 0); 3722 /* unmapped? It's a hole - nothing to do */ 3723 if (!buffer_mapped(bh)) { 3724 BUFFER_TRACE(bh, "still unmapped"); 3725 goto unlock; 3726 } 3727 } 3728 3729 /* Ok, it's mapped. Make sure it's up-to-date */ 3730 if (PageUptodate(page)) 3731 set_buffer_uptodate(bh); 3732 3733 if (!buffer_uptodate(bh)) { 3734 err = -EIO; 3735 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 3736 wait_on_buffer(bh); 3737 /* Uhhuh. Read error. Complain and punt. */ 3738 if (!buffer_uptodate(bh)) 3739 goto unlock; 3740 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) { 3741 /* We expect the key to be set. */ 3742 BUG_ON(!fscrypt_has_encryption_key(inode)); 3743 err = fscrypt_decrypt_pagecache_blocks(page, blocksize, 3744 bh_offset(bh)); 3745 if (err) { 3746 clear_buffer_uptodate(bh); 3747 goto unlock; 3748 } 3749 } 3750 } 3751 if (ext4_should_journal_data(inode)) { 3752 BUFFER_TRACE(bh, "get write access"); 3753 err = ext4_journal_get_write_access(handle, bh); 3754 if (err) 3755 goto unlock; 3756 } 3757 zero_user(page, offset, length); 3758 BUFFER_TRACE(bh, "zeroed end of block"); 3759 3760 if (ext4_should_journal_data(inode)) { 3761 err = ext4_handle_dirty_metadata(handle, inode, bh); 3762 } else { 3763 err = 0; 3764 mark_buffer_dirty(bh); 3765 if (ext4_should_order_data(inode)) 3766 err = ext4_jbd2_inode_add_write(handle, inode, from, 3767 length); 3768 } 3769 3770 unlock: 3771 unlock_page(page); 3772 put_page(page); 3773 return err; 3774 } 3775 3776 /* 3777 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3778 * starting from file offset 'from'. The range to be zero'd must 3779 * be contained with in one block. If the specified range exceeds 3780 * the end of the block it will be shortened to end of the block 3781 * that cooresponds to 'from' 3782 */ 3783 static int ext4_block_zero_page_range(handle_t *handle, 3784 struct address_space *mapping, loff_t from, loff_t length) 3785 { 3786 struct inode *inode = mapping->host; 3787 unsigned offset = from & (PAGE_SIZE-1); 3788 unsigned blocksize = inode->i_sb->s_blocksize; 3789 unsigned max = blocksize - (offset & (blocksize - 1)); 3790 3791 /* 3792 * correct length if it does not fall between 3793 * 'from' and the end of the block 3794 */ 3795 if (length > max || length < 0) 3796 length = max; 3797 3798 if (IS_DAX(inode)) { 3799 return iomap_zero_range(inode, from, length, NULL, 3800 &ext4_iomap_ops); 3801 } 3802 return __ext4_block_zero_page_range(handle, mapping, from, length); 3803 } 3804 3805 /* 3806 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3807 * up to the end of the block which corresponds to `from'. 3808 * This required during truncate. We need to physically zero the tail end 3809 * of that block so it doesn't yield old data if the file is later grown. 3810 */ 3811 static int ext4_block_truncate_page(handle_t *handle, 3812 struct address_space *mapping, loff_t from) 3813 { 3814 unsigned offset = from & (PAGE_SIZE-1); 3815 unsigned length; 3816 unsigned blocksize; 3817 struct inode *inode = mapping->host; 3818 3819 /* If we are processing an encrypted inode during orphan list handling */ 3820 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3821 return 0; 3822 3823 blocksize = inode->i_sb->s_blocksize; 3824 length = blocksize - (offset & (blocksize - 1)); 3825 3826 return ext4_block_zero_page_range(handle, mapping, from, length); 3827 } 3828 3829 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3830 loff_t lstart, loff_t length) 3831 { 3832 struct super_block *sb = inode->i_sb; 3833 struct address_space *mapping = inode->i_mapping; 3834 unsigned partial_start, partial_end; 3835 ext4_fsblk_t start, end; 3836 loff_t byte_end = (lstart + length - 1); 3837 int err = 0; 3838 3839 partial_start = lstart & (sb->s_blocksize - 1); 3840 partial_end = byte_end & (sb->s_blocksize - 1); 3841 3842 start = lstart >> sb->s_blocksize_bits; 3843 end = byte_end >> sb->s_blocksize_bits; 3844 3845 /* Handle partial zero within the single block */ 3846 if (start == end && 3847 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3848 err = ext4_block_zero_page_range(handle, mapping, 3849 lstart, length); 3850 return err; 3851 } 3852 /* Handle partial zero out on the start of the range */ 3853 if (partial_start) { 3854 err = ext4_block_zero_page_range(handle, mapping, 3855 lstart, sb->s_blocksize); 3856 if (err) 3857 return err; 3858 } 3859 /* Handle partial zero out on the end of the range */ 3860 if (partial_end != sb->s_blocksize - 1) 3861 err = ext4_block_zero_page_range(handle, mapping, 3862 byte_end - partial_end, 3863 partial_end + 1); 3864 return err; 3865 } 3866 3867 int ext4_can_truncate(struct inode *inode) 3868 { 3869 if (S_ISREG(inode->i_mode)) 3870 return 1; 3871 if (S_ISDIR(inode->i_mode)) 3872 return 1; 3873 if (S_ISLNK(inode->i_mode)) 3874 return !ext4_inode_is_fast_symlink(inode); 3875 return 0; 3876 } 3877 3878 /* 3879 * We have to make sure i_disksize gets properly updated before we truncate 3880 * page cache due to hole punching or zero range. Otherwise i_disksize update 3881 * can get lost as it may have been postponed to submission of writeback but 3882 * that will never happen after we truncate page cache. 3883 */ 3884 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3885 loff_t len) 3886 { 3887 handle_t *handle; 3888 int ret; 3889 3890 loff_t size = i_size_read(inode); 3891 3892 WARN_ON(!inode_is_locked(inode)); 3893 if (offset > size || offset + len < size) 3894 return 0; 3895 3896 if (EXT4_I(inode)->i_disksize >= size) 3897 return 0; 3898 3899 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3900 if (IS_ERR(handle)) 3901 return PTR_ERR(handle); 3902 ext4_update_i_disksize(inode, size); 3903 ret = ext4_mark_inode_dirty(handle, inode); 3904 ext4_journal_stop(handle); 3905 3906 return ret; 3907 } 3908 3909 static void ext4_wait_dax_page(struct ext4_inode_info *ei) 3910 { 3911 up_write(&ei->i_mmap_sem); 3912 schedule(); 3913 down_write(&ei->i_mmap_sem); 3914 } 3915 3916 int ext4_break_layouts(struct inode *inode) 3917 { 3918 struct ext4_inode_info *ei = EXT4_I(inode); 3919 struct page *page; 3920 int error; 3921 3922 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem))) 3923 return -EINVAL; 3924 3925 do { 3926 page = dax_layout_busy_page(inode->i_mapping); 3927 if (!page) 3928 return 0; 3929 3930 error = ___wait_var_event(&page->_refcount, 3931 atomic_read(&page->_refcount) == 1, 3932 TASK_INTERRUPTIBLE, 0, 0, 3933 ext4_wait_dax_page(ei)); 3934 } while (error == 0); 3935 3936 return error; 3937 } 3938 3939 /* 3940 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3941 * associated with the given offset and length 3942 * 3943 * @inode: File inode 3944 * @offset: The offset where the hole will begin 3945 * @len: The length of the hole 3946 * 3947 * Returns: 0 on success or negative on failure 3948 */ 3949 3950 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3951 { 3952 struct super_block *sb = inode->i_sb; 3953 ext4_lblk_t first_block, stop_block; 3954 struct address_space *mapping = inode->i_mapping; 3955 loff_t first_block_offset, last_block_offset; 3956 handle_t *handle; 3957 unsigned int credits; 3958 int ret = 0, ret2 = 0; 3959 3960 trace_ext4_punch_hole(inode, offset, length, 0); 3961 3962 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 3963 if (ext4_has_inline_data(inode)) { 3964 down_write(&EXT4_I(inode)->i_mmap_sem); 3965 ret = ext4_convert_inline_data(inode); 3966 up_write(&EXT4_I(inode)->i_mmap_sem); 3967 if (ret) 3968 return ret; 3969 } 3970 3971 /* 3972 * Write out all dirty pages to avoid race conditions 3973 * Then release them. 3974 */ 3975 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3976 ret = filemap_write_and_wait_range(mapping, offset, 3977 offset + length - 1); 3978 if (ret) 3979 return ret; 3980 } 3981 3982 inode_lock(inode); 3983 3984 /* No need to punch hole beyond i_size */ 3985 if (offset >= inode->i_size) 3986 goto out_mutex; 3987 3988 /* 3989 * If the hole extends beyond i_size, set the hole 3990 * to end after the page that contains i_size 3991 */ 3992 if (offset + length > inode->i_size) { 3993 length = inode->i_size + 3994 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3995 offset; 3996 } 3997 3998 if (offset & (sb->s_blocksize - 1) || 3999 (offset + length) & (sb->s_blocksize - 1)) { 4000 /* 4001 * Attach jinode to inode for jbd2 if we do any zeroing of 4002 * partial block 4003 */ 4004 ret = ext4_inode_attach_jinode(inode); 4005 if (ret < 0) 4006 goto out_mutex; 4007 4008 } 4009 4010 /* Wait all existing dio workers, newcomers will block on i_mutex */ 4011 inode_dio_wait(inode); 4012 4013 /* 4014 * Prevent page faults from reinstantiating pages we have released from 4015 * page cache. 4016 */ 4017 down_write(&EXT4_I(inode)->i_mmap_sem); 4018 4019 ret = ext4_break_layouts(inode); 4020 if (ret) 4021 goto out_dio; 4022 4023 first_block_offset = round_up(offset, sb->s_blocksize); 4024 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4025 4026 /* Now release the pages and zero block aligned part of pages*/ 4027 if (last_block_offset > first_block_offset) { 4028 ret = ext4_update_disksize_before_punch(inode, offset, length); 4029 if (ret) 4030 goto out_dio; 4031 truncate_pagecache_range(inode, first_block_offset, 4032 last_block_offset); 4033 } 4034 4035 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4036 credits = ext4_writepage_trans_blocks(inode); 4037 else 4038 credits = ext4_blocks_for_truncate(inode); 4039 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4040 if (IS_ERR(handle)) { 4041 ret = PTR_ERR(handle); 4042 ext4_std_error(sb, ret); 4043 goto out_dio; 4044 } 4045 4046 ret = ext4_zero_partial_blocks(handle, inode, offset, 4047 length); 4048 if (ret) 4049 goto out_stop; 4050 4051 first_block = (offset + sb->s_blocksize - 1) >> 4052 EXT4_BLOCK_SIZE_BITS(sb); 4053 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4054 4055 /* If there are blocks to remove, do it */ 4056 if (stop_block > first_block) { 4057 4058 down_write(&EXT4_I(inode)->i_data_sem); 4059 ext4_discard_preallocations(inode); 4060 4061 ret = ext4_es_remove_extent(inode, first_block, 4062 stop_block - first_block); 4063 if (ret) { 4064 up_write(&EXT4_I(inode)->i_data_sem); 4065 goto out_stop; 4066 } 4067 4068 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4069 ret = ext4_ext_remove_space(inode, first_block, 4070 stop_block - 1); 4071 else 4072 ret = ext4_ind_remove_space(handle, inode, first_block, 4073 stop_block); 4074 4075 up_write(&EXT4_I(inode)->i_data_sem); 4076 } 4077 if (IS_SYNC(inode)) 4078 ext4_handle_sync(handle); 4079 4080 inode->i_mtime = inode->i_ctime = current_time(inode); 4081 ret2 = ext4_mark_inode_dirty(handle, inode); 4082 if (unlikely(ret2)) 4083 ret = ret2; 4084 if (ret >= 0) 4085 ext4_update_inode_fsync_trans(handle, inode, 1); 4086 out_stop: 4087 ext4_journal_stop(handle); 4088 out_dio: 4089 up_write(&EXT4_I(inode)->i_mmap_sem); 4090 out_mutex: 4091 inode_unlock(inode); 4092 return ret; 4093 } 4094 4095 int ext4_inode_attach_jinode(struct inode *inode) 4096 { 4097 struct ext4_inode_info *ei = EXT4_I(inode); 4098 struct jbd2_inode *jinode; 4099 4100 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4101 return 0; 4102 4103 jinode = jbd2_alloc_inode(GFP_KERNEL); 4104 spin_lock(&inode->i_lock); 4105 if (!ei->jinode) { 4106 if (!jinode) { 4107 spin_unlock(&inode->i_lock); 4108 return -ENOMEM; 4109 } 4110 ei->jinode = jinode; 4111 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4112 jinode = NULL; 4113 } 4114 spin_unlock(&inode->i_lock); 4115 if (unlikely(jinode != NULL)) 4116 jbd2_free_inode(jinode); 4117 return 0; 4118 } 4119 4120 /* 4121 * ext4_truncate() 4122 * 4123 * We block out ext4_get_block() block instantiations across the entire 4124 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4125 * simultaneously on behalf of the same inode. 4126 * 4127 * As we work through the truncate and commit bits of it to the journal there 4128 * is one core, guiding principle: the file's tree must always be consistent on 4129 * disk. We must be able to restart the truncate after a crash. 4130 * 4131 * The file's tree may be transiently inconsistent in memory (although it 4132 * probably isn't), but whenever we close off and commit a journal transaction, 4133 * the contents of (the filesystem + the journal) must be consistent and 4134 * restartable. It's pretty simple, really: bottom up, right to left (although 4135 * left-to-right works OK too). 4136 * 4137 * Note that at recovery time, journal replay occurs *before* the restart of 4138 * truncate against the orphan inode list. 4139 * 4140 * The committed inode has the new, desired i_size (which is the same as 4141 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4142 * that this inode's truncate did not complete and it will again call 4143 * ext4_truncate() to have another go. So there will be instantiated blocks 4144 * to the right of the truncation point in a crashed ext4 filesystem. But 4145 * that's fine - as long as they are linked from the inode, the post-crash 4146 * ext4_truncate() run will find them and release them. 4147 */ 4148 int ext4_truncate(struct inode *inode) 4149 { 4150 struct ext4_inode_info *ei = EXT4_I(inode); 4151 unsigned int credits; 4152 int err = 0, err2; 4153 handle_t *handle; 4154 struct address_space *mapping = inode->i_mapping; 4155 4156 /* 4157 * There is a possibility that we're either freeing the inode 4158 * or it's a completely new inode. In those cases we might not 4159 * have i_mutex locked because it's not necessary. 4160 */ 4161 if (!(inode->i_state & (I_NEW|I_FREEING))) 4162 WARN_ON(!inode_is_locked(inode)); 4163 trace_ext4_truncate_enter(inode); 4164 4165 if (!ext4_can_truncate(inode)) 4166 return 0; 4167 4168 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4169 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4170 4171 if (ext4_has_inline_data(inode)) { 4172 int has_inline = 1; 4173 4174 err = ext4_inline_data_truncate(inode, &has_inline); 4175 if (err) 4176 return err; 4177 if (has_inline) 4178 return 0; 4179 } 4180 4181 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4182 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4183 if (ext4_inode_attach_jinode(inode) < 0) 4184 return 0; 4185 } 4186 4187 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4188 credits = ext4_writepage_trans_blocks(inode); 4189 else 4190 credits = ext4_blocks_for_truncate(inode); 4191 4192 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4193 if (IS_ERR(handle)) 4194 return PTR_ERR(handle); 4195 4196 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4197 ext4_block_truncate_page(handle, mapping, inode->i_size); 4198 4199 /* 4200 * We add the inode to the orphan list, so that if this 4201 * truncate spans multiple transactions, and we crash, we will 4202 * resume the truncate when the filesystem recovers. It also 4203 * marks the inode dirty, to catch the new size. 4204 * 4205 * Implication: the file must always be in a sane, consistent 4206 * truncatable state while each transaction commits. 4207 */ 4208 err = ext4_orphan_add(handle, inode); 4209 if (err) 4210 goto out_stop; 4211 4212 down_write(&EXT4_I(inode)->i_data_sem); 4213 4214 ext4_discard_preallocations(inode); 4215 4216 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4217 err = ext4_ext_truncate(handle, inode); 4218 else 4219 ext4_ind_truncate(handle, inode); 4220 4221 up_write(&ei->i_data_sem); 4222 if (err) 4223 goto out_stop; 4224 4225 if (IS_SYNC(inode)) 4226 ext4_handle_sync(handle); 4227 4228 out_stop: 4229 /* 4230 * If this was a simple ftruncate() and the file will remain alive, 4231 * then we need to clear up the orphan record which we created above. 4232 * However, if this was a real unlink then we were called by 4233 * ext4_evict_inode(), and we allow that function to clean up the 4234 * orphan info for us. 4235 */ 4236 if (inode->i_nlink) 4237 ext4_orphan_del(handle, inode); 4238 4239 inode->i_mtime = inode->i_ctime = current_time(inode); 4240 err2 = ext4_mark_inode_dirty(handle, inode); 4241 if (unlikely(err2 && !err)) 4242 err = err2; 4243 ext4_journal_stop(handle); 4244 4245 trace_ext4_truncate_exit(inode); 4246 return err; 4247 } 4248 4249 /* 4250 * ext4_get_inode_loc returns with an extra refcount against the inode's 4251 * underlying buffer_head on success. If 'in_mem' is true, we have all 4252 * data in memory that is needed to recreate the on-disk version of this 4253 * inode. 4254 */ 4255 static int __ext4_get_inode_loc(struct inode *inode, 4256 struct ext4_iloc *iloc, int in_mem) 4257 { 4258 struct ext4_group_desc *gdp; 4259 struct buffer_head *bh; 4260 struct super_block *sb = inode->i_sb; 4261 ext4_fsblk_t block; 4262 struct blk_plug plug; 4263 int inodes_per_block, inode_offset; 4264 4265 iloc->bh = NULL; 4266 if (inode->i_ino < EXT4_ROOT_INO || 4267 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4268 return -EFSCORRUPTED; 4269 4270 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4271 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4272 if (!gdp) 4273 return -EIO; 4274 4275 /* 4276 * Figure out the offset within the block group inode table 4277 */ 4278 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4279 inode_offset = ((inode->i_ino - 1) % 4280 EXT4_INODES_PER_GROUP(sb)); 4281 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4282 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4283 4284 bh = sb_getblk(sb, block); 4285 if (unlikely(!bh)) 4286 return -ENOMEM; 4287 if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)) 4288 goto simulate_eio; 4289 if (!buffer_uptodate(bh)) { 4290 lock_buffer(bh); 4291 4292 /* 4293 * If the buffer has the write error flag, we have failed 4294 * to write out another inode in the same block. In this 4295 * case, we don't have to read the block because we may 4296 * read the old inode data successfully. 4297 */ 4298 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4299 set_buffer_uptodate(bh); 4300 4301 if (buffer_uptodate(bh)) { 4302 /* someone brought it uptodate while we waited */ 4303 unlock_buffer(bh); 4304 goto has_buffer; 4305 } 4306 4307 /* 4308 * If we have all information of the inode in memory and this 4309 * is the only valid inode in the block, we need not read the 4310 * block. 4311 */ 4312 if (in_mem) { 4313 struct buffer_head *bitmap_bh; 4314 int i, start; 4315 4316 start = inode_offset & ~(inodes_per_block - 1); 4317 4318 /* Is the inode bitmap in cache? */ 4319 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4320 if (unlikely(!bitmap_bh)) 4321 goto make_io; 4322 4323 /* 4324 * If the inode bitmap isn't in cache then the 4325 * optimisation may end up performing two reads instead 4326 * of one, so skip it. 4327 */ 4328 if (!buffer_uptodate(bitmap_bh)) { 4329 brelse(bitmap_bh); 4330 goto make_io; 4331 } 4332 for (i = start; i < start + inodes_per_block; i++) { 4333 if (i == inode_offset) 4334 continue; 4335 if (ext4_test_bit(i, bitmap_bh->b_data)) 4336 break; 4337 } 4338 brelse(bitmap_bh); 4339 if (i == start + inodes_per_block) { 4340 /* all other inodes are free, so skip I/O */ 4341 memset(bh->b_data, 0, bh->b_size); 4342 set_buffer_uptodate(bh); 4343 unlock_buffer(bh); 4344 goto has_buffer; 4345 } 4346 } 4347 4348 make_io: 4349 /* 4350 * If we need to do any I/O, try to pre-readahead extra 4351 * blocks from the inode table. 4352 */ 4353 blk_start_plug(&plug); 4354 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4355 ext4_fsblk_t b, end, table; 4356 unsigned num; 4357 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4358 4359 table = ext4_inode_table(sb, gdp); 4360 /* s_inode_readahead_blks is always a power of 2 */ 4361 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4362 if (table > b) 4363 b = table; 4364 end = b + ra_blks; 4365 num = EXT4_INODES_PER_GROUP(sb); 4366 if (ext4_has_group_desc_csum(sb)) 4367 num -= ext4_itable_unused_count(sb, gdp); 4368 table += num / inodes_per_block; 4369 if (end > table) 4370 end = table; 4371 while (b <= end) 4372 sb_breadahead_unmovable(sb, b++); 4373 } 4374 4375 /* 4376 * There are other valid inodes in the buffer, this inode 4377 * has in-inode xattrs, or we don't have this inode in memory. 4378 * Read the block from disk. 4379 */ 4380 trace_ext4_load_inode(inode); 4381 get_bh(bh); 4382 bh->b_end_io = end_buffer_read_sync; 4383 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4384 blk_finish_plug(&plug); 4385 wait_on_buffer(bh); 4386 if (!buffer_uptodate(bh)) { 4387 simulate_eio: 4388 ext4_error_inode_block(inode, block, EIO, 4389 "unable to read itable block"); 4390 brelse(bh); 4391 return -EIO; 4392 } 4393 } 4394 has_buffer: 4395 iloc->bh = bh; 4396 return 0; 4397 } 4398 4399 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4400 { 4401 /* We have all inode data except xattrs in memory here. */ 4402 return __ext4_get_inode_loc(inode, iloc, 4403 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4404 } 4405 4406 static bool ext4_should_use_dax(struct inode *inode) 4407 { 4408 if (!test_opt(inode->i_sb, DAX)) 4409 return false; 4410 if (!S_ISREG(inode->i_mode)) 4411 return false; 4412 if (ext4_should_journal_data(inode)) 4413 return false; 4414 if (ext4_has_inline_data(inode)) 4415 return false; 4416 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4417 return false; 4418 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4419 return false; 4420 return true; 4421 } 4422 4423 void ext4_set_inode_flags(struct inode *inode) 4424 { 4425 unsigned int flags = EXT4_I(inode)->i_flags; 4426 unsigned int new_fl = 0; 4427 4428 if (flags & EXT4_SYNC_FL) 4429 new_fl |= S_SYNC; 4430 if (flags & EXT4_APPEND_FL) 4431 new_fl |= S_APPEND; 4432 if (flags & EXT4_IMMUTABLE_FL) 4433 new_fl |= S_IMMUTABLE; 4434 if (flags & EXT4_NOATIME_FL) 4435 new_fl |= S_NOATIME; 4436 if (flags & EXT4_DIRSYNC_FL) 4437 new_fl |= S_DIRSYNC; 4438 if (ext4_should_use_dax(inode)) 4439 new_fl |= S_DAX; 4440 if (flags & EXT4_ENCRYPT_FL) 4441 new_fl |= S_ENCRYPTED; 4442 if (flags & EXT4_CASEFOLD_FL) 4443 new_fl |= S_CASEFOLD; 4444 if (flags & EXT4_VERITY_FL) 4445 new_fl |= S_VERITY; 4446 inode_set_flags(inode, new_fl, 4447 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4448 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4449 } 4450 4451 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4452 struct ext4_inode_info *ei) 4453 { 4454 blkcnt_t i_blocks ; 4455 struct inode *inode = &(ei->vfs_inode); 4456 struct super_block *sb = inode->i_sb; 4457 4458 if (ext4_has_feature_huge_file(sb)) { 4459 /* we are using combined 48 bit field */ 4460 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4461 le32_to_cpu(raw_inode->i_blocks_lo); 4462 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4463 /* i_blocks represent file system block size */ 4464 return i_blocks << (inode->i_blkbits - 9); 4465 } else { 4466 return i_blocks; 4467 } 4468 } else { 4469 return le32_to_cpu(raw_inode->i_blocks_lo); 4470 } 4471 } 4472 4473 static inline int ext4_iget_extra_inode(struct inode *inode, 4474 struct ext4_inode *raw_inode, 4475 struct ext4_inode_info *ei) 4476 { 4477 __le32 *magic = (void *)raw_inode + 4478 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4479 4480 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4481 EXT4_INODE_SIZE(inode->i_sb) && 4482 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4483 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4484 return ext4_find_inline_data_nolock(inode); 4485 } else 4486 EXT4_I(inode)->i_inline_off = 0; 4487 return 0; 4488 } 4489 4490 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4491 { 4492 if (!ext4_has_feature_project(inode->i_sb)) 4493 return -EOPNOTSUPP; 4494 *projid = EXT4_I(inode)->i_projid; 4495 return 0; 4496 } 4497 4498 /* 4499 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4500 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4501 * set. 4502 */ 4503 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4504 { 4505 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4506 inode_set_iversion_raw(inode, val); 4507 else 4508 inode_set_iversion_queried(inode, val); 4509 } 4510 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4511 { 4512 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4513 return inode_peek_iversion_raw(inode); 4514 else 4515 return inode_peek_iversion(inode); 4516 } 4517 4518 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4519 ext4_iget_flags flags, const char *function, 4520 unsigned int line) 4521 { 4522 struct ext4_iloc iloc; 4523 struct ext4_inode *raw_inode; 4524 struct ext4_inode_info *ei; 4525 struct inode *inode; 4526 journal_t *journal = EXT4_SB(sb)->s_journal; 4527 long ret; 4528 loff_t size; 4529 int block; 4530 uid_t i_uid; 4531 gid_t i_gid; 4532 projid_t i_projid; 4533 4534 if ((!(flags & EXT4_IGET_SPECIAL) && 4535 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) || 4536 (ino < EXT4_ROOT_INO) || 4537 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) { 4538 if (flags & EXT4_IGET_HANDLE) 4539 return ERR_PTR(-ESTALE); 4540 __ext4_error(sb, function, line, EFSCORRUPTED, 0, 4541 "inode #%lu: comm %s: iget: illegal inode #", 4542 ino, current->comm); 4543 return ERR_PTR(-EFSCORRUPTED); 4544 } 4545 4546 inode = iget_locked(sb, ino); 4547 if (!inode) 4548 return ERR_PTR(-ENOMEM); 4549 if (!(inode->i_state & I_NEW)) 4550 return inode; 4551 4552 ei = EXT4_I(inode); 4553 iloc.bh = NULL; 4554 4555 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4556 if (ret < 0) 4557 goto bad_inode; 4558 raw_inode = ext4_raw_inode(&iloc); 4559 4560 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4561 ext4_error_inode(inode, function, line, 0, 4562 "iget: root inode unallocated"); 4563 ret = -EFSCORRUPTED; 4564 goto bad_inode; 4565 } 4566 4567 if ((flags & EXT4_IGET_HANDLE) && 4568 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4569 ret = -ESTALE; 4570 goto bad_inode; 4571 } 4572 4573 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4574 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4575 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4576 EXT4_INODE_SIZE(inode->i_sb) || 4577 (ei->i_extra_isize & 3)) { 4578 ext4_error_inode(inode, function, line, 0, 4579 "iget: bad extra_isize %u " 4580 "(inode size %u)", 4581 ei->i_extra_isize, 4582 EXT4_INODE_SIZE(inode->i_sb)); 4583 ret = -EFSCORRUPTED; 4584 goto bad_inode; 4585 } 4586 } else 4587 ei->i_extra_isize = 0; 4588 4589 /* Precompute checksum seed for inode metadata */ 4590 if (ext4_has_metadata_csum(sb)) { 4591 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4592 __u32 csum; 4593 __le32 inum = cpu_to_le32(inode->i_ino); 4594 __le32 gen = raw_inode->i_generation; 4595 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4596 sizeof(inum)); 4597 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4598 sizeof(gen)); 4599 } 4600 4601 if (!ext4_inode_csum_verify(inode, raw_inode, ei) || 4602 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) { 4603 ext4_error_inode_err(inode, function, line, 0, EFSBADCRC, 4604 "iget: checksum invalid"); 4605 ret = -EFSBADCRC; 4606 goto bad_inode; 4607 } 4608 4609 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4610 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4611 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4612 if (ext4_has_feature_project(sb) && 4613 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4614 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4615 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4616 else 4617 i_projid = EXT4_DEF_PROJID; 4618 4619 if (!(test_opt(inode->i_sb, NO_UID32))) { 4620 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4621 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4622 } 4623 i_uid_write(inode, i_uid); 4624 i_gid_write(inode, i_gid); 4625 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4626 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4627 4628 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4629 ei->i_inline_off = 0; 4630 ei->i_dir_start_lookup = 0; 4631 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4632 /* We now have enough fields to check if the inode was active or not. 4633 * This is needed because nfsd might try to access dead inodes 4634 * the test is that same one that e2fsck uses 4635 * NeilBrown 1999oct15 4636 */ 4637 if (inode->i_nlink == 0) { 4638 if ((inode->i_mode == 0 || 4639 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4640 ino != EXT4_BOOT_LOADER_INO) { 4641 /* this inode is deleted */ 4642 ret = -ESTALE; 4643 goto bad_inode; 4644 } 4645 /* The only unlinked inodes we let through here have 4646 * valid i_mode and are being read by the orphan 4647 * recovery code: that's fine, we're about to complete 4648 * the process of deleting those. 4649 * OR it is the EXT4_BOOT_LOADER_INO which is 4650 * not initialized on a new filesystem. */ 4651 } 4652 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4653 ext4_set_inode_flags(inode); 4654 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4655 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4656 if (ext4_has_feature_64bit(sb)) 4657 ei->i_file_acl |= 4658 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4659 inode->i_size = ext4_isize(sb, raw_inode); 4660 if ((size = i_size_read(inode)) < 0) { 4661 ext4_error_inode(inode, function, line, 0, 4662 "iget: bad i_size value: %lld", size); 4663 ret = -EFSCORRUPTED; 4664 goto bad_inode; 4665 } 4666 /* 4667 * If dir_index is not enabled but there's dir with INDEX flag set, 4668 * we'd normally treat htree data as empty space. But with metadata 4669 * checksumming that corrupts checksums so forbid that. 4670 */ 4671 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4672 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4673 ext4_error_inode(inode, function, line, 0, 4674 "iget: Dir with htree data on filesystem without dir_index feature."); 4675 ret = -EFSCORRUPTED; 4676 goto bad_inode; 4677 } 4678 ei->i_disksize = inode->i_size; 4679 #ifdef CONFIG_QUOTA 4680 ei->i_reserved_quota = 0; 4681 #endif 4682 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4683 ei->i_block_group = iloc.block_group; 4684 ei->i_last_alloc_group = ~0; 4685 /* 4686 * NOTE! The in-memory inode i_data array is in little-endian order 4687 * even on big-endian machines: we do NOT byteswap the block numbers! 4688 */ 4689 for (block = 0; block < EXT4_N_BLOCKS; block++) 4690 ei->i_data[block] = raw_inode->i_block[block]; 4691 INIT_LIST_HEAD(&ei->i_orphan); 4692 4693 /* 4694 * Set transaction id's of transactions that have to be committed 4695 * to finish f[data]sync. We set them to currently running transaction 4696 * as we cannot be sure that the inode or some of its metadata isn't 4697 * part of the transaction - the inode could have been reclaimed and 4698 * now it is reread from disk. 4699 */ 4700 if (journal) { 4701 transaction_t *transaction; 4702 tid_t tid; 4703 4704 read_lock(&journal->j_state_lock); 4705 if (journal->j_running_transaction) 4706 transaction = journal->j_running_transaction; 4707 else 4708 transaction = journal->j_committing_transaction; 4709 if (transaction) 4710 tid = transaction->t_tid; 4711 else 4712 tid = journal->j_commit_sequence; 4713 read_unlock(&journal->j_state_lock); 4714 ei->i_sync_tid = tid; 4715 ei->i_datasync_tid = tid; 4716 } 4717 4718 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4719 if (ei->i_extra_isize == 0) { 4720 /* The extra space is currently unused. Use it. */ 4721 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4722 ei->i_extra_isize = sizeof(struct ext4_inode) - 4723 EXT4_GOOD_OLD_INODE_SIZE; 4724 } else { 4725 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4726 if (ret) 4727 goto bad_inode; 4728 } 4729 } 4730 4731 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4732 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4733 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4734 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4735 4736 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4737 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4738 4739 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4740 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4741 ivers |= 4742 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4743 } 4744 ext4_inode_set_iversion_queried(inode, ivers); 4745 } 4746 4747 ret = 0; 4748 if (ei->i_file_acl && 4749 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4750 ext4_error_inode(inode, function, line, 0, 4751 "iget: bad extended attribute block %llu", 4752 ei->i_file_acl); 4753 ret = -EFSCORRUPTED; 4754 goto bad_inode; 4755 } else if (!ext4_has_inline_data(inode)) { 4756 /* validate the block references in the inode */ 4757 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4758 (S_ISLNK(inode->i_mode) && 4759 !ext4_inode_is_fast_symlink(inode))) { 4760 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4761 ret = ext4_ext_check_inode(inode); 4762 else 4763 ret = ext4_ind_check_inode(inode); 4764 } 4765 } 4766 if (ret) 4767 goto bad_inode; 4768 4769 if (S_ISREG(inode->i_mode)) { 4770 inode->i_op = &ext4_file_inode_operations; 4771 inode->i_fop = &ext4_file_operations; 4772 ext4_set_aops(inode); 4773 } else if (S_ISDIR(inode->i_mode)) { 4774 inode->i_op = &ext4_dir_inode_operations; 4775 inode->i_fop = &ext4_dir_operations; 4776 } else if (S_ISLNK(inode->i_mode)) { 4777 /* VFS does not allow setting these so must be corruption */ 4778 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4779 ext4_error_inode(inode, function, line, 0, 4780 "iget: immutable or append flags " 4781 "not allowed on symlinks"); 4782 ret = -EFSCORRUPTED; 4783 goto bad_inode; 4784 } 4785 if (IS_ENCRYPTED(inode)) { 4786 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4787 ext4_set_aops(inode); 4788 } else if (ext4_inode_is_fast_symlink(inode)) { 4789 inode->i_link = (char *)ei->i_data; 4790 inode->i_op = &ext4_fast_symlink_inode_operations; 4791 nd_terminate_link(ei->i_data, inode->i_size, 4792 sizeof(ei->i_data) - 1); 4793 } else { 4794 inode->i_op = &ext4_symlink_inode_operations; 4795 ext4_set_aops(inode); 4796 } 4797 inode_nohighmem(inode); 4798 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4799 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4800 inode->i_op = &ext4_special_inode_operations; 4801 if (raw_inode->i_block[0]) 4802 init_special_inode(inode, inode->i_mode, 4803 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4804 else 4805 init_special_inode(inode, inode->i_mode, 4806 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4807 } else if (ino == EXT4_BOOT_LOADER_INO) { 4808 make_bad_inode(inode); 4809 } else { 4810 ret = -EFSCORRUPTED; 4811 ext4_error_inode(inode, function, line, 0, 4812 "iget: bogus i_mode (%o)", inode->i_mode); 4813 goto bad_inode; 4814 } 4815 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 4816 ext4_error_inode(inode, function, line, 0, 4817 "casefold flag without casefold feature"); 4818 brelse(iloc.bh); 4819 4820 unlock_new_inode(inode); 4821 return inode; 4822 4823 bad_inode: 4824 brelse(iloc.bh); 4825 iget_failed(inode); 4826 return ERR_PTR(ret); 4827 } 4828 4829 static int ext4_inode_blocks_set(handle_t *handle, 4830 struct ext4_inode *raw_inode, 4831 struct ext4_inode_info *ei) 4832 { 4833 struct inode *inode = &(ei->vfs_inode); 4834 u64 i_blocks = READ_ONCE(inode->i_blocks); 4835 struct super_block *sb = inode->i_sb; 4836 4837 if (i_blocks <= ~0U) { 4838 /* 4839 * i_blocks can be represented in a 32 bit variable 4840 * as multiple of 512 bytes 4841 */ 4842 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4843 raw_inode->i_blocks_high = 0; 4844 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4845 return 0; 4846 } 4847 if (!ext4_has_feature_huge_file(sb)) 4848 return -EFBIG; 4849 4850 if (i_blocks <= 0xffffffffffffULL) { 4851 /* 4852 * i_blocks can be represented in a 48 bit variable 4853 * as multiple of 512 bytes 4854 */ 4855 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4856 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4857 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4858 } else { 4859 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4860 /* i_block is stored in file system block size */ 4861 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4862 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4863 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4864 } 4865 return 0; 4866 } 4867 4868 static void __ext4_update_other_inode_time(struct super_block *sb, 4869 unsigned long orig_ino, 4870 unsigned long ino, 4871 struct ext4_inode *raw_inode) 4872 { 4873 struct inode *inode; 4874 4875 inode = find_inode_by_ino_rcu(sb, ino); 4876 if (!inode) 4877 return; 4878 4879 if ((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4880 I_DIRTY_INODE)) || 4881 ((inode->i_state & I_DIRTY_TIME) == 0)) 4882 return; 4883 4884 spin_lock(&inode->i_lock); 4885 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4886 I_DIRTY_INODE)) == 0) && 4887 (inode->i_state & I_DIRTY_TIME)) { 4888 struct ext4_inode_info *ei = EXT4_I(inode); 4889 4890 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4891 spin_unlock(&inode->i_lock); 4892 4893 spin_lock(&ei->i_raw_lock); 4894 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4895 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4896 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4897 ext4_inode_csum_set(inode, raw_inode, ei); 4898 spin_unlock(&ei->i_raw_lock); 4899 trace_ext4_other_inode_update_time(inode, orig_ino); 4900 return; 4901 } 4902 spin_unlock(&inode->i_lock); 4903 } 4904 4905 /* 4906 * Opportunistically update the other time fields for other inodes in 4907 * the same inode table block. 4908 */ 4909 static void ext4_update_other_inodes_time(struct super_block *sb, 4910 unsigned long orig_ino, char *buf) 4911 { 4912 unsigned long ino; 4913 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4914 int inode_size = EXT4_INODE_SIZE(sb); 4915 4916 /* 4917 * Calculate the first inode in the inode table block. Inode 4918 * numbers are one-based. That is, the first inode in a block 4919 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4920 */ 4921 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4922 rcu_read_lock(); 4923 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4924 if (ino == orig_ino) 4925 continue; 4926 __ext4_update_other_inode_time(sb, orig_ino, ino, 4927 (struct ext4_inode *)buf); 4928 } 4929 rcu_read_unlock(); 4930 } 4931 4932 /* 4933 * Post the struct inode info into an on-disk inode location in the 4934 * buffer-cache. This gobbles the caller's reference to the 4935 * buffer_head in the inode location struct. 4936 * 4937 * The caller must have write access to iloc->bh. 4938 */ 4939 static int ext4_do_update_inode(handle_t *handle, 4940 struct inode *inode, 4941 struct ext4_iloc *iloc) 4942 { 4943 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4944 struct ext4_inode_info *ei = EXT4_I(inode); 4945 struct buffer_head *bh = iloc->bh; 4946 struct super_block *sb = inode->i_sb; 4947 int err = 0, rc, block; 4948 int need_datasync = 0, set_large_file = 0; 4949 uid_t i_uid; 4950 gid_t i_gid; 4951 projid_t i_projid; 4952 4953 spin_lock(&ei->i_raw_lock); 4954 4955 /* For fields not tracked in the in-memory inode, 4956 * initialise them to zero for new inodes. */ 4957 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4958 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4959 4960 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4961 i_uid = i_uid_read(inode); 4962 i_gid = i_gid_read(inode); 4963 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4964 if (!(test_opt(inode->i_sb, NO_UID32))) { 4965 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4966 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4967 /* 4968 * Fix up interoperability with old kernels. Otherwise, old inodes get 4969 * re-used with the upper 16 bits of the uid/gid intact 4970 */ 4971 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4972 raw_inode->i_uid_high = 0; 4973 raw_inode->i_gid_high = 0; 4974 } else { 4975 raw_inode->i_uid_high = 4976 cpu_to_le16(high_16_bits(i_uid)); 4977 raw_inode->i_gid_high = 4978 cpu_to_le16(high_16_bits(i_gid)); 4979 } 4980 } else { 4981 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4982 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4983 raw_inode->i_uid_high = 0; 4984 raw_inode->i_gid_high = 0; 4985 } 4986 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4987 4988 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4989 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4990 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4991 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4992 4993 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4994 if (err) { 4995 spin_unlock(&ei->i_raw_lock); 4996 goto out_brelse; 4997 } 4998 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4999 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 5000 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 5001 raw_inode->i_file_acl_high = 5002 cpu_to_le16(ei->i_file_acl >> 32); 5003 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 5004 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) { 5005 ext4_isize_set(raw_inode, ei->i_disksize); 5006 need_datasync = 1; 5007 } 5008 if (ei->i_disksize > 0x7fffffffULL) { 5009 if (!ext4_has_feature_large_file(sb) || 5010 EXT4_SB(sb)->s_es->s_rev_level == 5011 cpu_to_le32(EXT4_GOOD_OLD_REV)) 5012 set_large_file = 1; 5013 } 5014 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 5015 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 5016 if (old_valid_dev(inode->i_rdev)) { 5017 raw_inode->i_block[0] = 5018 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5019 raw_inode->i_block[1] = 0; 5020 } else { 5021 raw_inode->i_block[0] = 0; 5022 raw_inode->i_block[1] = 5023 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5024 raw_inode->i_block[2] = 0; 5025 } 5026 } else if (!ext4_has_inline_data(inode)) { 5027 for (block = 0; block < EXT4_N_BLOCKS; block++) 5028 raw_inode->i_block[block] = ei->i_data[block]; 5029 } 5030 5031 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5032 u64 ivers = ext4_inode_peek_iversion(inode); 5033 5034 raw_inode->i_disk_version = cpu_to_le32(ivers); 5035 if (ei->i_extra_isize) { 5036 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5037 raw_inode->i_version_hi = 5038 cpu_to_le32(ivers >> 32); 5039 raw_inode->i_extra_isize = 5040 cpu_to_le16(ei->i_extra_isize); 5041 } 5042 } 5043 5044 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5045 i_projid != EXT4_DEF_PROJID); 5046 5047 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5048 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5049 raw_inode->i_projid = cpu_to_le32(i_projid); 5050 5051 ext4_inode_csum_set(inode, raw_inode, ei); 5052 spin_unlock(&ei->i_raw_lock); 5053 if (inode->i_sb->s_flags & SB_LAZYTIME) 5054 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5055 bh->b_data); 5056 5057 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5058 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5059 if (!err) 5060 err = rc; 5061 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5062 if (set_large_file) { 5063 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5064 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5065 if (err) 5066 goto out_brelse; 5067 ext4_set_feature_large_file(sb); 5068 ext4_handle_sync(handle); 5069 err = ext4_handle_dirty_super(handle, sb); 5070 } 5071 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5072 out_brelse: 5073 brelse(bh); 5074 ext4_std_error(inode->i_sb, err); 5075 return err; 5076 } 5077 5078 /* 5079 * ext4_write_inode() 5080 * 5081 * We are called from a few places: 5082 * 5083 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5084 * Here, there will be no transaction running. We wait for any running 5085 * transaction to commit. 5086 * 5087 * - Within flush work (sys_sync(), kupdate and such). 5088 * We wait on commit, if told to. 5089 * 5090 * - Within iput_final() -> write_inode_now() 5091 * We wait on commit, if told to. 5092 * 5093 * In all cases it is actually safe for us to return without doing anything, 5094 * because the inode has been copied into a raw inode buffer in 5095 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5096 * writeback. 5097 * 5098 * Note that we are absolutely dependent upon all inode dirtiers doing the 5099 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5100 * which we are interested. 5101 * 5102 * It would be a bug for them to not do this. The code: 5103 * 5104 * mark_inode_dirty(inode) 5105 * stuff(); 5106 * inode->i_size = expr; 5107 * 5108 * is in error because write_inode() could occur while `stuff()' is running, 5109 * and the new i_size will be lost. Plus the inode will no longer be on the 5110 * superblock's dirty inode list. 5111 */ 5112 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5113 { 5114 int err; 5115 5116 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5117 sb_rdonly(inode->i_sb)) 5118 return 0; 5119 5120 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5121 return -EIO; 5122 5123 if (EXT4_SB(inode->i_sb)->s_journal) { 5124 if (ext4_journal_current_handle()) { 5125 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5126 dump_stack(); 5127 return -EIO; 5128 } 5129 5130 /* 5131 * No need to force transaction in WB_SYNC_NONE mode. Also 5132 * ext4_sync_fs() will force the commit after everything is 5133 * written. 5134 */ 5135 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5136 return 0; 5137 5138 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 5139 EXT4_I(inode)->i_sync_tid); 5140 } else { 5141 struct ext4_iloc iloc; 5142 5143 err = __ext4_get_inode_loc(inode, &iloc, 0); 5144 if (err) 5145 return err; 5146 /* 5147 * sync(2) will flush the whole buffer cache. No need to do 5148 * it here separately for each inode. 5149 */ 5150 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5151 sync_dirty_buffer(iloc.bh); 5152 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5153 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5154 "IO error syncing inode"); 5155 err = -EIO; 5156 } 5157 brelse(iloc.bh); 5158 } 5159 return err; 5160 } 5161 5162 /* 5163 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5164 * buffers that are attached to a page stradding i_size and are undergoing 5165 * commit. In that case we have to wait for commit to finish and try again. 5166 */ 5167 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5168 { 5169 struct page *page; 5170 unsigned offset; 5171 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5172 tid_t commit_tid = 0; 5173 int ret; 5174 5175 offset = inode->i_size & (PAGE_SIZE - 1); 5176 /* 5177 * If the page is fully truncated, we don't need to wait for any commit 5178 * (and we even should not as __ext4_journalled_invalidatepage() may 5179 * strip all buffers from the page but keep the page dirty which can then 5180 * confuse e.g. concurrent ext4_writepage() seeing dirty page without 5181 * buffers). Also we don't need to wait for any commit if all buffers in 5182 * the page remain valid. This is most beneficial for the common case of 5183 * blocksize == PAGESIZE. 5184 */ 5185 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5186 return; 5187 while (1) { 5188 page = find_lock_page(inode->i_mapping, 5189 inode->i_size >> PAGE_SHIFT); 5190 if (!page) 5191 return; 5192 ret = __ext4_journalled_invalidatepage(page, offset, 5193 PAGE_SIZE - offset); 5194 unlock_page(page); 5195 put_page(page); 5196 if (ret != -EBUSY) 5197 return; 5198 commit_tid = 0; 5199 read_lock(&journal->j_state_lock); 5200 if (journal->j_committing_transaction) 5201 commit_tid = journal->j_committing_transaction->t_tid; 5202 read_unlock(&journal->j_state_lock); 5203 if (commit_tid) 5204 jbd2_log_wait_commit(journal, commit_tid); 5205 } 5206 } 5207 5208 /* 5209 * ext4_setattr() 5210 * 5211 * Called from notify_change. 5212 * 5213 * We want to trap VFS attempts to truncate the file as soon as 5214 * possible. In particular, we want to make sure that when the VFS 5215 * shrinks i_size, we put the inode on the orphan list and modify 5216 * i_disksize immediately, so that during the subsequent flushing of 5217 * dirty pages and freeing of disk blocks, we can guarantee that any 5218 * commit will leave the blocks being flushed in an unused state on 5219 * disk. (On recovery, the inode will get truncated and the blocks will 5220 * be freed, so we have a strong guarantee that no future commit will 5221 * leave these blocks visible to the user.) 5222 * 5223 * Another thing we have to assure is that if we are in ordered mode 5224 * and inode is still attached to the committing transaction, we must 5225 * we start writeout of all the dirty pages which are being truncated. 5226 * This way we are sure that all the data written in the previous 5227 * transaction are already on disk (truncate waits for pages under 5228 * writeback). 5229 * 5230 * Called with inode->i_mutex down. 5231 */ 5232 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5233 { 5234 struct inode *inode = d_inode(dentry); 5235 int error, rc = 0; 5236 int orphan = 0; 5237 const unsigned int ia_valid = attr->ia_valid; 5238 5239 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5240 return -EIO; 5241 5242 if (unlikely(IS_IMMUTABLE(inode))) 5243 return -EPERM; 5244 5245 if (unlikely(IS_APPEND(inode) && 5246 (ia_valid & (ATTR_MODE | ATTR_UID | 5247 ATTR_GID | ATTR_TIMES_SET)))) 5248 return -EPERM; 5249 5250 error = setattr_prepare(dentry, attr); 5251 if (error) 5252 return error; 5253 5254 error = fscrypt_prepare_setattr(dentry, attr); 5255 if (error) 5256 return error; 5257 5258 error = fsverity_prepare_setattr(dentry, attr); 5259 if (error) 5260 return error; 5261 5262 if (is_quota_modification(inode, attr)) { 5263 error = dquot_initialize(inode); 5264 if (error) 5265 return error; 5266 } 5267 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5268 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5269 handle_t *handle; 5270 5271 /* (user+group)*(old+new) structure, inode write (sb, 5272 * inode block, ? - but truncate inode update has it) */ 5273 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5274 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5275 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5276 if (IS_ERR(handle)) { 5277 error = PTR_ERR(handle); 5278 goto err_out; 5279 } 5280 5281 /* dquot_transfer() calls back ext4_get_inode_usage() which 5282 * counts xattr inode references. 5283 */ 5284 down_read(&EXT4_I(inode)->xattr_sem); 5285 error = dquot_transfer(inode, attr); 5286 up_read(&EXT4_I(inode)->xattr_sem); 5287 5288 if (error) { 5289 ext4_journal_stop(handle); 5290 return error; 5291 } 5292 /* Update corresponding info in inode so that everything is in 5293 * one transaction */ 5294 if (attr->ia_valid & ATTR_UID) 5295 inode->i_uid = attr->ia_uid; 5296 if (attr->ia_valid & ATTR_GID) 5297 inode->i_gid = attr->ia_gid; 5298 error = ext4_mark_inode_dirty(handle, inode); 5299 ext4_journal_stop(handle); 5300 if (unlikely(error)) 5301 return error; 5302 } 5303 5304 if (attr->ia_valid & ATTR_SIZE) { 5305 handle_t *handle; 5306 loff_t oldsize = inode->i_size; 5307 int shrink = (attr->ia_size < inode->i_size); 5308 5309 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5310 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5311 5312 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5313 return -EFBIG; 5314 } 5315 if (!S_ISREG(inode->i_mode)) 5316 return -EINVAL; 5317 5318 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5319 inode_inc_iversion(inode); 5320 5321 if (shrink) { 5322 if (ext4_should_order_data(inode)) { 5323 error = ext4_begin_ordered_truncate(inode, 5324 attr->ia_size); 5325 if (error) 5326 goto err_out; 5327 } 5328 /* 5329 * Blocks are going to be removed from the inode. Wait 5330 * for dio in flight. 5331 */ 5332 inode_dio_wait(inode); 5333 } 5334 5335 down_write(&EXT4_I(inode)->i_mmap_sem); 5336 5337 rc = ext4_break_layouts(inode); 5338 if (rc) { 5339 up_write(&EXT4_I(inode)->i_mmap_sem); 5340 return rc; 5341 } 5342 5343 if (attr->ia_size != inode->i_size) { 5344 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5345 if (IS_ERR(handle)) { 5346 error = PTR_ERR(handle); 5347 goto out_mmap_sem; 5348 } 5349 if (ext4_handle_valid(handle) && shrink) { 5350 error = ext4_orphan_add(handle, inode); 5351 orphan = 1; 5352 } 5353 /* 5354 * Update c/mtime on truncate up, ext4_truncate() will 5355 * update c/mtime in shrink case below 5356 */ 5357 if (!shrink) { 5358 inode->i_mtime = current_time(inode); 5359 inode->i_ctime = inode->i_mtime; 5360 } 5361 down_write(&EXT4_I(inode)->i_data_sem); 5362 EXT4_I(inode)->i_disksize = attr->ia_size; 5363 rc = ext4_mark_inode_dirty(handle, inode); 5364 if (!error) 5365 error = rc; 5366 /* 5367 * We have to update i_size under i_data_sem together 5368 * with i_disksize to avoid races with writeback code 5369 * running ext4_wb_update_i_disksize(). 5370 */ 5371 if (!error) 5372 i_size_write(inode, attr->ia_size); 5373 up_write(&EXT4_I(inode)->i_data_sem); 5374 ext4_journal_stop(handle); 5375 if (error) 5376 goto out_mmap_sem; 5377 if (!shrink) { 5378 pagecache_isize_extended(inode, oldsize, 5379 inode->i_size); 5380 } else if (ext4_should_journal_data(inode)) { 5381 ext4_wait_for_tail_page_commit(inode); 5382 } 5383 } 5384 5385 /* 5386 * Truncate pagecache after we've waited for commit 5387 * in data=journal mode to make pages freeable. 5388 */ 5389 truncate_pagecache(inode, inode->i_size); 5390 /* 5391 * Call ext4_truncate() even if i_size didn't change to 5392 * truncate possible preallocated blocks. 5393 */ 5394 if (attr->ia_size <= oldsize) { 5395 rc = ext4_truncate(inode); 5396 if (rc) 5397 error = rc; 5398 } 5399 out_mmap_sem: 5400 up_write(&EXT4_I(inode)->i_mmap_sem); 5401 } 5402 5403 if (!error) { 5404 setattr_copy(inode, attr); 5405 mark_inode_dirty(inode); 5406 } 5407 5408 /* 5409 * If the call to ext4_truncate failed to get a transaction handle at 5410 * all, we need to clean up the in-core orphan list manually. 5411 */ 5412 if (orphan && inode->i_nlink) 5413 ext4_orphan_del(NULL, inode); 5414 5415 if (!error && (ia_valid & ATTR_MODE)) 5416 rc = posix_acl_chmod(inode, inode->i_mode); 5417 5418 err_out: 5419 ext4_std_error(inode->i_sb, error); 5420 if (!error) 5421 error = rc; 5422 return error; 5423 } 5424 5425 int ext4_getattr(const struct path *path, struct kstat *stat, 5426 u32 request_mask, unsigned int query_flags) 5427 { 5428 struct inode *inode = d_inode(path->dentry); 5429 struct ext4_inode *raw_inode; 5430 struct ext4_inode_info *ei = EXT4_I(inode); 5431 unsigned int flags; 5432 5433 if ((request_mask & STATX_BTIME) && 5434 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5435 stat->result_mask |= STATX_BTIME; 5436 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5437 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5438 } 5439 5440 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5441 if (flags & EXT4_APPEND_FL) 5442 stat->attributes |= STATX_ATTR_APPEND; 5443 if (flags & EXT4_COMPR_FL) 5444 stat->attributes |= STATX_ATTR_COMPRESSED; 5445 if (flags & EXT4_ENCRYPT_FL) 5446 stat->attributes |= STATX_ATTR_ENCRYPTED; 5447 if (flags & EXT4_IMMUTABLE_FL) 5448 stat->attributes |= STATX_ATTR_IMMUTABLE; 5449 if (flags & EXT4_NODUMP_FL) 5450 stat->attributes |= STATX_ATTR_NODUMP; 5451 if (flags & EXT4_VERITY_FL) 5452 stat->attributes |= STATX_ATTR_VERITY; 5453 5454 stat->attributes_mask |= (STATX_ATTR_APPEND | 5455 STATX_ATTR_COMPRESSED | 5456 STATX_ATTR_ENCRYPTED | 5457 STATX_ATTR_IMMUTABLE | 5458 STATX_ATTR_NODUMP | 5459 STATX_ATTR_VERITY); 5460 5461 generic_fillattr(inode, stat); 5462 return 0; 5463 } 5464 5465 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5466 u32 request_mask, unsigned int query_flags) 5467 { 5468 struct inode *inode = d_inode(path->dentry); 5469 u64 delalloc_blocks; 5470 5471 ext4_getattr(path, stat, request_mask, query_flags); 5472 5473 /* 5474 * If there is inline data in the inode, the inode will normally not 5475 * have data blocks allocated (it may have an external xattr block). 5476 * Report at least one sector for such files, so tools like tar, rsync, 5477 * others don't incorrectly think the file is completely sparse. 5478 */ 5479 if (unlikely(ext4_has_inline_data(inode))) 5480 stat->blocks += (stat->size + 511) >> 9; 5481 5482 /* 5483 * We can't update i_blocks if the block allocation is delayed 5484 * otherwise in the case of system crash before the real block 5485 * allocation is done, we will have i_blocks inconsistent with 5486 * on-disk file blocks. 5487 * We always keep i_blocks updated together with real 5488 * allocation. But to not confuse with user, stat 5489 * will return the blocks that include the delayed allocation 5490 * blocks for this file. 5491 */ 5492 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5493 EXT4_I(inode)->i_reserved_data_blocks); 5494 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5495 return 0; 5496 } 5497 5498 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5499 int pextents) 5500 { 5501 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5502 return ext4_ind_trans_blocks(inode, lblocks); 5503 return ext4_ext_index_trans_blocks(inode, pextents); 5504 } 5505 5506 /* 5507 * Account for index blocks, block groups bitmaps and block group 5508 * descriptor blocks if modify datablocks and index blocks 5509 * worse case, the indexs blocks spread over different block groups 5510 * 5511 * If datablocks are discontiguous, they are possible to spread over 5512 * different block groups too. If they are contiguous, with flexbg, 5513 * they could still across block group boundary. 5514 * 5515 * Also account for superblock, inode, quota and xattr blocks 5516 */ 5517 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5518 int pextents) 5519 { 5520 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5521 int gdpblocks; 5522 int idxblocks; 5523 int ret = 0; 5524 5525 /* 5526 * How many index blocks need to touch to map @lblocks logical blocks 5527 * to @pextents physical extents? 5528 */ 5529 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5530 5531 ret = idxblocks; 5532 5533 /* 5534 * Now let's see how many group bitmaps and group descriptors need 5535 * to account 5536 */ 5537 groups = idxblocks + pextents; 5538 gdpblocks = groups; 5539 if (groups > ngroups) 5540 groups = ngroups; 5541 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5542 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5543 5544 /* bitmaps and block group descriptor blocks */ 5545 ret += groups + gdpblocks; 5546 5547 /* Blocks for super block, inode, quota and xattr blocks */ 5548 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5549 5550 return ret; 5551 } 5552 5553 /* 5554 * Calculate the total number of credits to reserve to fit 5555 * the modification of a single pages into a single transaction, 5556 * which may include multiple chunks of block allocations. 5557 * 5558 * This could be called via ext4_write_begin() 5559 * 5560 * We need to consider the worse case, when 5561 * one new block per extent. 5562 */ 5563 int ext4_writepage_trans_blocks(struct inode *inode) 5564 { 5565 int bpp = ext4_journal_blocks_per_page(inode); 5566 int ret; 5567 5568 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5569 5570 /* Account for data blocks for journalled mode */ 5571 if (ext4_should_journal_data(inode)) 5572 ret += bpp; 5573 return ret; 5574 } 5575 5576 /* 5577 * Calculate the journal credits for a chunk of data modification. 5578 * 5579 * This is called from DIO, fallocate or whoever calling 5580 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5581 * 5582 * journal buffers for data blocks are not included here, as DIO 5583 * and fallocate do no need to journal data buffers. 5584 */ 5585 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5586 { 5587 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5588 } 5589 5590 /* 5591 * The caller must have previously called ext4_reserve_inode_write(). 5592 * Give this, we know that the caller already has write access to iloc->bh. 5593 */ 5594 int ext4_mark_iloc_dirty(handle_t *handle, 5595 struct inode *inode, struct ext4_iloc *iloc) 5596 { 5597 int err = 0; 5598 5599 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5600 put_bh(iloc->bh); 5601 return -EIO; 5602 } 5603 if (IS_I_VERSION(inode)) 5604 inode_inc_iversion(inode); 5605 5606 /* the do_update_inode consumes one bh->b_count */ 5607 get_bh(iloc->bh); 5608 5609 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5610 err = ext4_do_update_inode(handle, inode, iloc); 5611 put_bh(iloc->bh); 5612 return err; 5613 } 5614 5615 /* 5616 * On success, We end up with an outstanding reference count against 5617 * iloc->bh. This _must_ be cleaned up later. 5618 */ 5619 5620 int 5621 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5622 struct ext4_iloc *iloc) 5623 { 5624 int err; 5625 5626 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5627 return -EIO; 5628 5629 err = ext4_get_inode_loc(inode, iloc); 5630 if (!err) { 5631 BUFFER_TRACE(iloc->bh, "get_write_access"); 5632 err = ext4_journal_get_write_access(handle, iloc->bh); 5633 if (err) { 5634 brelse(iloc->bh); 5635 iloc->bh = NULL; 5636 } 5637 } 5638 ext4_std_error(inode->i_sb, err); 5639 return err; 5640 } 5641 5642 static int __ext4_expand_extra_isize(struct inode *inode, 5643 unsigned int new_extra_isize, 5644 struct ext4_iloc *iloc, 5645 handle_t *handle, int *no_expand) 5646 { 5647 struct ext4_inode *raw_inode; 5648 struct ext4_xattr_ibody_header *header; 5649 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5650 struct ext4_inode_info *ei = EXT4_I(inode); 5651 int error; 5652 5653 /* this was checked at iget time, but double check for good measure */ 5654 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5655 (ei->i_extra_isize & 3)) { 5656 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5657 ei->i_extra_isize, 5658 EXT4_INODE_SIZE(inode->i_sb)); 5659 return -EFSCORRUPTED; 5660 } 5661 if ((new_extra_isize < ei->i_extra_isize) || 5662 (new_extra_isize < 4) || 5663 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5664 return -EINVAL; /* Should never happen */ 5665 5666 raw_inode = ext4_raw_inode(iloc); 5667 5668 header = IHDR(inode, raw_inode); 5669 5670 /* No extended attributes present */ 5671 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5672 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5673 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5674 EXT4_I(inode)->i_extra_isize, 0, 5675 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5676 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5677 return 0; 5678 } 5679 5680 /* try to expand with EAs present */ 5681 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5682 raw_inode, handle); 5683 if (error) { 5684 /* 5685 * Inode size expansion failed; don't try again 5686 */ 5687 *no_expand = 1; 5688 } 5689 5690 return error; 5691 } 5692 5693 /* 5694 * Expand an inode by new_extra_isize bytes. 5695 * Returns 0 on success or negative error number on failure. 5696 */ 5697 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5698 unsigned int new_extra_isize, 5699 struct ext4_iloc iloc, 5700 handle_t *handle) 5701 { 5702 int no_expand; 5703 int error; 5704 5705 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5706 return -EOVERFLOW; 5707 5708 /* 5709 * In nojournal mode, we can immediately attempt to expand 5710 * the inode. When journaled, we first need to obtain extra 5711 * buffer credits since we may write into the EA block 5712 * with this same handle. If journal_extend fails, then it will 5713 * only result in a minor loss of functionality for that inode. 5714 * If this is felt to be critical, then e2fsck should be run to 5715 * force a large enough s_min_extra_isize. 5716 */ 5717 if (ext4_journal_extend(handle, 5718 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5719 return -ENOSPC; 5720 5721 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5722 return -EBUSY; 5723 5724 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5725 handle, &no_expand); 5726 ext4_write_unlock_xattr(inode, &no_expand); 5727 5728 return error; 5729 } 5730 5731 int ext4_expand_extra_isize(struct inode *inode, 5732 unsigned int new_extra_isize, 5733 struct ext4_iloc *iloc) 5734 { 5735 handle_t *handle; 5736 int no_expand; 5737 int error, rc; 5738 5739 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5740 brelse(iloc->bh); 5741 return -EOVERFLOW; 5742 } 5743 5744 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5745 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5746 if (IS_ERR(handle)) { 5747 error = PTR_ERR(handle); 5748 brelse(iloc->bh); 5749 return error; 5750 } 5751 5752 ext4_write_lock_xattr(inode, &no_expand); 5753 5754 BUFFER_TRACE(iloc->bh, "get_write_access"); 5755 error = ext4_journal_get_write_access(handle, iloc->bh); 5756 if (error) { 5757 brelse(iloc->bh); 5758 goto out_unlock; 5759 } 5760 5761 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5762 handle, &no_expand); 5763 5764 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5765 if (!error) 5766 error = rc; 5767 5768 out_unlock: 5769 ext4_write_unlock_xattr(inode, &no_expand); 5770 ext4_journal_stop(handle); 5771 return error; 5772 } 5773 5774 /* 5775 * What we do here is to mark the in-core inode as clean with respect to inode 5776 * dirtiness (it may still be data-dirty). 5777 * This means that the in-core inode may be reaped by prune_icache 5778 * without having to perform any I/O. This is a very good thing, 5779 * because *any* task may call prune_icache - even ones which 5780 * have a transaction open against a different journal. 5781 * 5782 * Is this cheating? Not really. Sure, we haven't written the 5783 * inode out, but prune_icache isn't a user-visible syncing function. 5784 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5785 * we start and wait on commits. 5786 */ 5787 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5788 const char *func, unsigned int line) 5789 { 5790 struct ext4_iloc iloc; 5791 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5792 int err; 5793 5794 might_sleep(); 5795 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5796 err = ext4_reserve_inode_write(handle, inode, &iloc); 5797 if (err) 5798 goto out; 5799 5800 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5801 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5802 iloc, handle); 5803 5804 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5805 out: 5806 if (unlikely(err)) 5807 ext4_error_inode_err(inode, func, line, 0, err, 5808 "mark_inode_dirty error"); 5809 return err; 5810 } 5811 5812 /* 5813 * ext4_dirty_inode() is called from __mark_inode_dirty() 5814 * 5815 * We're really interested in the case where a file is being extended. 5816 * i_size has been changed by generic_commit_write() and we thus need 5817 * to include the updated inode in the current transaction. 5818 * 5819 * Also, dquot_alloc_block() will always dirty the inode when blocks 5820 * are allocated to the file. 5821 * 5822 * If the inode is marked synchronous, we don't honour that here - doing 5823 * so would cause a commit on atime updates, which we don't bother doing. 5824 * We handle synchronous inodes at the highest possible level. 5825 * 5826 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5827 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5828 * to copy into the on-disk inode structure are the timestamp files. 5829 */ 5830 void ext4_dirty_inode(struct inode *inode, int flags) 5831 { 5832 handle_t *handle; 5833 5834 if (flags == I_DIRTY_TIME) 5835 return; 5836 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5837 if (IS_ERR(handle)) 5838 goto out; 5839 5840 ext4_mark_inode_dirty(handle, inode); 5841 5842 ext4_journal_stop(handle); 5843 out: 5844 return; 5845 } 5846 5847 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5848 { 5849 journal_t *journal; 5850 handle_t *handle; 5851 int err; 5852 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5853 5854 /* 5855 * We have to be very careful here: changing a data block's 5856 * journaling status dynamically is dangerous. If we write a 5857 * data block to the journal, change the status and then delete 5858 * that block, we risk forgetting to revoke the old log record 5859 * from the journal and so a subsequent replay can corrupt data. 5860 * So, first we make sure that the journal is empty and that 5861 * nobody is changing anything. 5862 */ 5863 5864 journal = EXT4_JOURNAL(inode); 5865 if (!journal) 5866 return 0; 5867 if (is_journal_aborted(journal)) 5868 return -EROFS; 5869 5870 /* Wait for all existing dio workers */ 5871 inode_dio_wait(inode); 5872 5873 /* 5874 * Before flushing the journal and switching inode's aops, we have 5875 * to flush all dirty data the inode has. There can be outstanding 5876 * delayed allocations, there can be unwritten extents created by 5877 * fallocate or buffered writes in dioread_nolock mode covered by 5878 * dirty data which can be converted only after flushing the dirty 5879 * data (and journalled aops don't know how to handle these cases). 5880 */ 5881 if (val) { 5882 down_write(&EXT4_I(inode)->i_mmap_sem); 5883 err = filemap_write_and_wait(inode->i_mapping); 5884 if (err < 0) { 5885 up_write(&EXT4_I(inode)->i_mmap_sem); 5886 return err; 5887 } 5888 } 5889 5890 percpu_down_write(&sbi->s_writepages_rwsem); 5891 jbd2_journal_lock_updates(journal); 5892 5893 /* 5894 * OK, there are no updates running now, and all cached data is 5895 * synced to disk. We are now in a completely consistent state 5896 * which doesn't have anything in the journal, and we know that 5897 * no filesystem updates are running, so it is safe to modify 5898 * the inode's in-core data-journaling state flag now. 5899 */ 5900 5901 if (val) 5902 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5903 else { 5904 err = jbd2_journal_flush(journal); 5905 if (err < 0) { 5906 jbd2_journal_unlock_updates(journal); 5907 percpu_up_write(&sbi->s_writepages_rwsem); 5908 return err; 5909 } 5910 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5911 } 5912 ext4_set_aops(inode); 5913 5914 jbd2_journal_unlock_updates(journal); 5915 percpu_up_write(&sbi->s_writepages_rwsem); 5916 5917 if (val) 5918 up_write(&EXT4_I(inode)->i_mmap_sem); 5919 5920 /* Finally we can mark the inode as dirty. */ 5921 5922 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5923 if (IS_ERR(handle)) 5924 return PTR_ERR(handle); 5925 5926 err = ext4_mark_inode_dirty(handle, inode); 5927 ext4_handle_sync(handle); 5928 ext4_journal_stop(handle); 5929 ext4_std_error(inode->i_sb, err); 5930 5931 return err; 5932 } 5933 5934 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5935 { 5936 return !buffer_mapped(bh); 5937 } 5938 5939 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 5940 { 5941 struct vm_area_struct *vma = vmf->vma; 5942 struct page *page = vmf->page; 5943 loff_t size; 5944 unsigned long len; 5945 int err; 5946 vm_fault_t ret; 5947 struct file *file = vma->vm_file; 5948 struct inode *inode = file_inode(file); 5949 struct address_space *mapping = inode->i_mapping; 5950 handle_t *handle; 5951 get_block_t *get_block; 5952 int retries = 0; 5953 5954 if (unlikely(IS_IMMUTABLE(inode))) 5955 return VM_FAULT_SIGBUS; 5956 5957 sb_start_pagefault(inode->i_sb); 5958 file_update_time(vma->vm_file); 5959 5960 down_read(&EXT4_I(inode)->i_mmap_sem); 5961 5962 err = ext4_convert_inline_data(inode); 5963 if (err) 5964 goto out_ret; 5965 5966 /* Delalloc case is easy... */ 5967 if (test_opt(inode->i_sb, DELALLOC) && 5968 !ext4_should_journal_data(inode) && 5969 !ext4_nonda_switch(inode->i_sb)) { 5970 do { 5971 err = block_page_mkwrite(vma, vmf, 5972 ext4_da_get_block_prep); 5973 } while (err == -ENOSPC && 5974 ext4_should_retry_alloc(inode->i_sb, &retries)); 5975 goto out_ret; 5976 } 5977 5978 lock_page(page); 5979 size = i_size_read(inode); 5980 /* Page got truncated from under us? */ 5981 if (page->mapping != mapping || page_offset(page) > size) { 5982 unlock_page(page); 5983 ret = VM_FAULT_NOPAGE; 5984 goto out; 5985 } 5986 5987 if (page->index == size >> PAGE_SHIFT) 5988 len = size & ~PAGE_MASK; 5989 else 5990 len = PAGE_SIZE; 5991 /* 5992 * Return if we have all the buffers mapped. This avoids the need to do 5993 * journal_start/journal_stop which can block and take a long time 5994 */ 5995 if (page_has_buffers(page)) { 5996 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5997 0, len, NULL, 5998 ext4_bh_unmapped)) { 5999 /* Wait so that we don't change page under IO */ 6000 wait_for_stable_page(page); 6001 ret = VM_FAULT_LOCKED; 6002 goto out; 6003 } 6004 } 6005 unlock_page(page); 6006 /* OK, we need to fill the hole... */ 6007 if (ext4_should_dioread_nolock(inode)) 6008 get_block = ext4_get_block_unwritten; 6009 else 6010 get_block = ext4_get_block; 6011 retry_alloc: 6012 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6013 ext4_writepage_trans_blocks(inode)); 6014 if (IS_ERR(handle)) { 6015 ret = VM_FAULT_SIGBUS; 6016 goto out; 6017 } 6018 err = block_page_mkwrite(vma, vmf, get_block); 6019 if (!err && ext4_should_journal_data(inode)) { 6020 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 6021 PAGE_SIZE, NULL, do_journal_get_write_access)) { 6022 unlock_page(page); 6023 ret = VM_FAULT_SIGBUS; 6024 ext4_journal_stop(handle); 6025 goto out; 6026 } 6027 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6028 } 6029 ext4_journal_stop(handle); 6030 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6031 goto retry_alloc; 6032 out_ret: 6033 ret = block_page_mkwrite_return(err); 6034 out: 6035 up_read(&EXT4_I(inode)->i_mmap_sem); 6036 sb_end_pagefault(inode->i_sb); 6037 return ret; 6038 } 6039 6040 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf) 6041 { 6042 struct inode *inode = file_inode(vmf->vma->vm_file); 6043 vm_fault_t ret; 6044 6045 down_read(&EXT4_I(inode)->i_mmap_sem); 6046 ret = filemap_fault(vmf); 6047 up_read(&EXT4_I(inode)->i_mmap_sem); 6048 6049 return ret; 6050 } 6051