1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/time.h> 24 #include <linux/highuid.h> 25 #include <linux/pagemap.h> 26 #include <linux/dax.h> 27 #include <linux/quotaops.h> 28 #include <linux/string.h> 29 #include <linux/buffer_head.h> 30 #include <linux/writeback.h> 31 #include <linux/pagevec.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/uio.h> 35 #include <linux/bio.h> 36 #include <linux/workqueue.h> 37 #include <linux/kernel.h> 38 #include <linux/printk.h> 39 #include <linux/slab.h> 40 #include <linux/bitops.h> 41 #include <linux/iomap.h> 42 #include <linux/iversion.h> 43 44 #include "ext4_jbd2.h" 45 #include "xattr.h" 46 #include "acl.h" 47 #include "truncate.h" 48 49 #include <trace/events/ext4.h> 50 51 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 52 struct ext4_inode_info *ei) 53 { 54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 55 __u32 csum; 56 __u16 dummy_csum = 0; 57 int offset = offsetof(struct ext4_inode, i_checksum_lo); 58 unsigned int csum_size = sizeof(dummy_csum); 59 60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 62 offset += csum_size; 63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 64 EXT4_GOOD_OLD_INODE_SIZE - offset); 65 66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 67 offset = offsetof(struct ext4_inode, i_checksum_hi); 68 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 69 EXT4_GOOD_OLD_INODE_SIZE, 70 offset - EXT4_GOOD_OLD_INODE_SIZE); 71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 73 csum_size); 74 offset += csum_size; 75 } 76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 77 EXT4_INODE_SIZE(inode->i_sb) - offset); 78 } 79 80 return csum; 81 } 82 83 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 84 struct ext4_inode_info *ei) 85 { 86 __u32 provided, calculated; 87 88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 89 cpu_to_le32(EXT4_OS_LINUX) || 90 !ext4_has_metadata_csum(inode->i_sb)) 91 return 1; 92 93 provided = le16_to_cpu(raw->i_checksum_lo); 94 calculated = ext4_inode_csum(inode, raw, ei); 95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 98 else 99 calculated &= 0xFFFF; 100 101 return provided == calculated; 102 } 103 104 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 105 struct ext4_inode_info *ei) 106 { 107 __u32 csum; 108 109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 110 cpu_to_le32(EXT4_OS_LINUX) || 111 !ext4_has_metadata_csum(inode->i_sb)) 112 return; 113 114 csum = ext4_inode_csum(inode, raw, ei); 115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 118 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 119 } 120 121 static inline int ext4_begin_ordered_truncate(struct inode *inode, 122 loff_t new_size) 123 { 124 trace_ext4_begin_ordered_truncate(inode, new_size); 125 /* 126 * If jinode is zero, then we never opened the file for 127 * writing, so there's no need to call 128 * jbd2_journal_begin_ordered_truncate() since there's no 129 * outstanding writes we need to flush. 130 */ 131 if (!EXT4_I(inode)->jinode) 132 return 0; 133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 134 EXT4_I(inode)->jinode, 135 new_size); 136 } 137 138 static void ext4_invalidatepage(struct page *page, unsigned int offset, 139 unsigned int length); 140 static int __ext4_journalled_writepage(struct page *page, unsigned int len); 141 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 142 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 143 int pextents); 144 145 /* 146 * Test whether an inode is a fast symlink. 147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 148 */ 149 int ext4_inode_is_fast_symlink(struct inode *inode) 150 { 151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 152 int ea_blocks = EXT4_I(inode)->i_file_acl ? 153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 154 155 if (ext4_has_inline_data(inode)) 156 return 0; 157 158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 159 } 160 return S_ISLNK(inode->i_mode) && inode->i_size && 161 (inode->i_size < EXT4_N_BLOCKS * 4); 162 } 163 164 /* 165 * Called at the last iput() if i_nlink is zero. 166 */ 167 void ext4_evict_inode(struct inode *inode) 168 { 169 handle_t *handle; 170 int err; 171 /* 172 * Credits for final inode cleanup and freeing: 173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 174 * (xattr block freeing), bitmap, group descriptor (inode freeing) 175 */ 176 int extra_credits = 6; 177 struct ext4_xattr_inode_array *ea_inode_array = NULL; 178 179 trace_ext4_evict_inode(inode); 180 181 if (inode->i_nlink) { 182 /* 183 * When journalling data dirty buffers are tracked only in the 184 * journal. So although mm thinks everything is clean and 185 * ready for reaping the inode might still have some pages to 186 * write in the running transaction or waiting to be 187 * checkpointed. Thus calling jbd2_journal_invalidatepage() 188 * (via truncate_inode_pages()) to discard these buffers can 189 * cause data loss. Also even if we did not discard these 190 * buffers, we would have no way to find them after the inode 191 * is reaped and thus user could see stale data if he tries to 192 * read them before the transaction is checkpointed. So be 193 * careful and force everything to disk here... We use 194 * ei->i_datasync_tid to store the newest transaction 195 * containing inode's data. 196 * 197 * Note that directories do not have this problem because they 198 * don't use page cache. 199 */ 200 if (inode->i_ino != EXT4_JOURNAL_INO && 201 ext4_should_journal_data(inode) && 202 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 203 inode->i_data.nrpages) { 204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 206 207 jbd2_complete_transaction(journal, commit_tid); 208 filemap_write_and_wait(&inode->i_data); 209 } 210 truncate_inode_pages_final(&inode->i_data); 211 212 goto no_delete; 213 } 214 215 if (is_bad_inode(inode)) 216 goto no_delete; 217 dquot_initialize(inode); 218 219 if (ext4_should_order_data(inode)) 220 ext4_begin_ordered_truncate(inode, 0); 221 truncate_inode_pages_final(&inode->i_data); 222 223 /* 224 * Protect us against freezing - iput() caller didn't have to have any 225 * protection against it 226 */ 227 sb_start_intwrite(inode->i_sb); 228 229 if (!IS_NOQUOTA(inode)) 230 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 231 232 /* 233 * Block bitmap, group descriptor, and inode are accounted in both 234 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 235 */ 236 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 237 ext4_blocks_for_truncate(inode) + extra_credits - 3); 238 if (IS_ERR(handle)) { 239 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 240 /* 241 * If we're going to skip the normal cleanup, we still need to 242 * make sure that the in-core orphan linked list is properly 243 * cleaned up. 244 */ 245 ext4_orphan_del(NULL, inode); 246 sb_end_intwrite(inode->i_sb); 247 goto no_delete; 248 } 249 250 if (IS_SYNC(inode)) 251 ext4_handle_sync(handle); 252 253 /* 254 * Set inode->i_size to 0 before calling ext4_truncate(). We need 255 * special handling of symlinks here because i_size is used to 256 * determine whether ext4_inode_info->i_data contains symlink data or 257 * block mappings. Setting i_size to 0 will remove its fast symlink 258 * status. Erase i_data so that it becomes a valid empty block map. 259 */ 260 if (ext4_inode_is_fast_symlink(inode)) 261 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 262 inode->i_size = 0; 263 err = ext4_mark_inode_dirty(handle, inode); 264 if (err) { 265 ext4_warning(inode->i_sb, 266 "couldn't mark inode dirty (err %d)", err); 267 goto stop_handle; 268 } 269 if (inode->i_blocks) { 270 err = ext4_truncate(inode); 271 if (err) { 272 ext4_set_errno(inode->i_sb, -err); 273 ext4_error(inode->i_sb, 274 "couldn't truncate inode %lu (err %d)", 275 inode->i_ino, err); 276 goto stop_handle; 277 } 278 } 279 280 /* Remove xattr references. */ 281 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 282 extra_credits); 283 if (err) { 284 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 285 stop_handle: 286 ext4_journal_stop(handle); 287 ext4_orphan_del(NULL, inode); 288 sb_end_intwrite(inode->i_sb); 289 ext4_xattr_inode_array_free(ea_inode_array); 290 goto no_delete; 291 } 292 293 /* 294 * Kill off the orphan record which ext4_truncate created. 295 * AKPM: I think this can be inside the above `if'. 296 * Note that ext4_orphan_del() has to be able to cope with the 297 * deletion of a non-existent orphan - this is because we don't 298 * know if ext4_truncate() actually created an orphan record. 299 * (Well, we could do this if we need to, but heck - it works) 300 */ 301 ext4_orphan_del(handle, inode); 302 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 303 304 /* 305 * One subtle ordering requirement: if anything has gone wrong 306 * (transaction abort, IO errors, whatever), then we can still 307 * do these next steps (the fs will already have been marked as 308 * having errors), but we can't free the inode if the mark_dirty 309 * fails. 310 */ 311 if (ext4_mark_inode_dirty(handle, inode)) 312 /* If that failed, just do the required in-core inode clear. */ 313 ext4_clear_inode(inode); 314 else 315 ext4_free_inode(handle, inode); 316 ext4_journal_stop(handle); 317 sb_end_intwrite(inode->i_sb); 318 ext4_xattr_inode_array_free(ea_inode_array); 319 return; 320 no_delete: 321 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 322 } 323 324 #ifdef CONFIG_QUOTA 325 qsize_t *ext4_get_reserved_space(struct inode *inode) 326 { 327 return &EXT4_I(inode)->i_reserved_quota; 328 } 329 #endif 330 331 /* 332 * Called with i_data_sem down, which is important since we can call 333 * ext4_discard_preallocations() from here. 334 */ 335 void ext4_da_update_reserve_space(struct inode *inode, 336 int used, int quota_claim) 337 { 338 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 339 struct ext4_inode_info *ei = EXT4_I(inode); 340 341 spin_lock(&ei->i_block_reservation_lock); 342 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 343 if (unlikely(used > ei->i_reserved_data_blocks)) { 344 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 345 "with only %d reserved data blocks", 346 __func__, inode->i_ino, used, 347 ei->i_reserved_data_blocks); 348 WARN_ON(1); 349 used = ei->i_reserved_data_blocks; 350 } 351 352 /* Update per-inode reservations */ 353 ei->i_reserved_data_blocks -= used; 354 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 355 356 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 357 358 /* Update quota subsystem for data blocks */ 359 if (quota_claim) 360 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 361 else { 362 /* 363 * We did fallocate with an offset that is already delayed 364 * allocated. So on delayed allocated writeback we should 365 * not re-claim the quota for fallocated blocks. 366 */ 367 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 368 } 369 370 /* 371 * If we have done all the pending block allocations and if 372 * there aren't any writers on the inode, we can discard the 373 * inode's preallocations. 374 */ 375 if ((ei->i_reserved_data_blocks == 0) && 376 !inode_is_open_for_write(inode)) 377 ext4_discard_preallocations(inode); 378 } 379 380 static int __check_block_validity(struct inode *inode, const char *func, 381 unsigned int line, 382 struct ext4_map_blocks *map) 383 { 384 if (ext4_has_feature_journal(inode->i_sb) && 385 (inode->i_ino == 386 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 387 return 0; 388 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 389 map->m_len)) { 390 ext4_error_inode(inode, func, line, map->m_pblk, 391 "lblock %lu mapped to illegal pblock %llu " 392 "(length %d)", (unsigned long) map->m_lblk, 393 map->m_pblk, map->m_len); 394 return -EFSCORRUPTED; 395 } 396 return 0; 397 } 398 399 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 400 ext4_lblk_t len) 401 { 402 int ret; 403 404 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 405 return fscrypt_zeroout_range(inode, lblk, pblk, len); 406 407 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 408 if (ret > 0) 409 ret = 0; 410 411 return ret; 412 } 413 414 #define check_block_validity(inode, map) \ 415 __check_block_validity((inode), __func__, __LINE__, (map)) 416 417 #ifdef ES_AGGRESSIVE_TEST 418 static void ext4_map_blocks_es_recheck(handle_t *handle, 419 struct inode *inode, 420 struct ext4_map_blocks *es_map, 421 struct ext4_map_blocks *map, 422 int flags) 423 { 424 int retval; 425 426 map->m_flags = 0; 427 /* 428 * There is a race window that the result is not the same. 429 * e.g. xfstests #223 when dioread_nolock enables. The reason 430 * is that we lookup a block mapping in extent status tree with 431 * out taking i_data_sem. So at the time the unwritten extent 432 * could be converted. 433 */ 434 down_read(&EXT4_I(inode)->i_data_sem); 435 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 436 retval = ext4_ext_map_blocks(handle, inode, map, flags & 437 EXT4_GET_BLOCKS_KEEP_SIZE); 438 } else { 439 retval = ext4_ind_map_blocks(handle, inode, map, flags & 440 EXT4_GET_BLOCKS_KEEP_SIZE); 441 } 442 up_read((&EXT4_I(inode)->i_data_sem)); 443 444 /* 445 * We don't check m_len because extent will be collpased in status 446 * tree. So the m_len might not equal. 447 */ 448 if (es_map->m_lblk != map->m_lblk || 449 es_map->m_flags != map->m_flags || 450 es_map->m_pblk != map->m_pblk) { 451 printk("ES cache assertion failed for inode: %lu " 452 "es_cached ex [%d/%d/%llu/%x] != " 453 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 454 inode->i_ino, es_map->m_lblk, es_map->m_len, 455 es_map->m_pblk, es_map->m_flags, map->m_lblk, 456 map->m_len, map->m_pblk, map->m_flags, 457 retval, flags); 458 } 459 } 460 #endif /* ES_AGGRESSIVE_TEST */ 461 462 /* 463 * The ext4_map_blocks() function tries to look up the requested blocks, 464 * and returns if the blocks are already mapped. 465 * 466 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 467 * and store the allocated blocks in the result buffer head and mark it 468 * mapped. 469 * 470 * If file type is extents based, it will call ext4_ext_map_blocks(), 471 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 472 * based files 473 * 474 * On success, it returns the number of blocks being mapped or allocated. if 475 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 476 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 477 * 478 * It returns 0 if plain look up failed (blocks have not been allocated), in 479 * that case, @map is returned as unmapped but we still do fill map->m_len to 480 * indicate the length of a hole starting at map->m_lblk. 481 * 482 * It returns the error in case of allocation failure. 483 */ 484 int ext4_map_blocks(handle_t *handle, struct inode *inode, 485 struct ext4_map_blocks *map, int flags) 486 { 487 struct extent_status es; 488 int retval; 489 int ret = 0; 490 #ifdef ES_AGGRESSIVE_TEST 491 struct ext4_map_blocks orig_map; 492 493 memcpy(&orig_map, map, sizeof(*map)); 494 #endif 495 496 map->m_flags = 0; 497 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 498 "logical block %lu\n", inode->i_ino, flags, map->m_len, 499 (unsigned long) map->m_lblk); 500 501 /* 502 * ext4_map_blocks returns an int, and m_len is an unsigned int 503 */ 504 if (unlikely(map->m_len > INT_MAX)) 505 map->m_len = INT_MAX; 506 507 /* We can handle the block number less than EXT_MAX_BLOCKS */ 508 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 509 return -EFSCORRUPTED; 510 511 /* Lookup extent status tree firstly */ 512 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 513 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 514 map->m_pblk = ext4_es_pblock(&es) + 515 map->m_lblk - es.es_lblk; 516 map->m_flags |= ext4_es_is_written(&es) ? 517 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 518 retval = es.es_len - (map->m_lblk - es.es_lblk); 519 if (retval > map->m_len) 520 retval = map->m_len; 521 map->m_len = retval; 522 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 523 map->m_pblk = 0; 524 retval = es.es_len - (map->m_lblk - es.es_lblk); 525 if (retval > map->m_len) 526 retval = map->m_len; 527 map->m_len = retval; 528 retval = 0; 529 } else { 530 BUG(); 531 } 532 #ifdef ES_AGGRESSIVE_TEST 533 ext4_map_blocks_es_recheck(handle, inode, map, 534 &orig_map, flags); 535 #endif 536 goto found; 537 } 538 539 /* 540 * Try to see if we can get the block without requesting a new 541 * file system block. 542 */ 543 down_read(&EXT4_I(inode)->i_data_sem); 544 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 545 retval = ext4_ext_map_blocks(handle, inode, map, flags & 546 EXT4_GET_BLOCKS_KEEP_SIZE); 547 } else { 548 retval = ext4_ind_map_blocks(handle, inode, map, flags & 549 EXT4_GET_BLOCKS_KEEP_SIZE); 550 } 551 if (retval > 0) { 552 unsigned int status; 553 554 if (unlikely(retval != map->m_len)) { 555 ext4_warning(inode->i_sb, 556 "ES len assertion failed for inode " 557 "%lu: retval %d != map->m_len %d", 558 inode->i_ino, retval, map->m_len); 559 WARN_ON(1); 560 } 561 562 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 563 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 564 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 565 !(status & EXTENT_STATUS_WRITTEN) && 566 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 567 map->m_lblk + map->m_len - 1)) 568 status |= EXTENT_STATUS_DELAYED; 569 ret = ext4_es_insert_extent(inode, map->m_lblk, 570 map->m_len, map->m_pblk, status); 571 if (ret < 0) 572 retval = ret; 573 } 574 up_read((&EXT4_I(inode)->i_data_sem)); 575 576 found: 577 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 578 ret = check_block_validity(inode, map); 579 if (ret != 0) 580 return ret; 581 } 582 583 /* If it is only a block(s) look up */ 584 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 585 return retval; 586 587 /* 588 * Returns if the blocks have already allocated 589 * 590 * Note that if blocks have been preallocated 591 * ext4_ext_get_block() returns the create = 0 592 * with buffer head unmapped. 593 */ 594 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 595 /* 596 * If we need to convert extent to unwritten 597 * we continue and do the actual work in 598 * ext4_ext_map_blocks() 599 */ 600 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 601 return retval; 602 603 /* 604 * Here we clear m_flags because after allocating an new extent, 605 * it will be set again. 606 */ 607 map->m_flags &= ~EXT4_MAP_FLAGS; 608 609 /* 610 * New blocks allocate and/or writing to unwritten extent 611 * will possibly result in updating i_data, so we take 612 * the write lock of i_data_sem, and call get_block() 613 * with create == 1 flag. 614 */ 615 down_write(&EXT4_I(inode)->i_data_sem); 616 617 /* 618 * We need to check for EXT4 here because migrate 619 * could have changed the inode type in between 620 */ 621 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 622 retval = ext4_ext_map_blocks(handle, inode, map, flags); 623 } else { 624 retval = ext4_ind_map_blocks(handle, inode, map, flags); 625 626 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 627 /* 628 * We allocated new blocks which will result in 629 * i_data's format changing. Force the migrate 630 * to fail by clearing migrate flags 631 */ 632 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 633 } 634 635 /* 636 * Update reserved blocks/metadata blocks after successful 637 * block allocation which had been deferred till now. We don't 638 * support fallocate for non extent files. So we can update 639 * reserve space here. 640 */ 641 if ((retval > 0) && 642 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 643 ext4_da_update_reserve_space(inode, retval, 1); 644 } 645 646 if (retval > 0) { 647 unsigned int status; 648 649 if (unlikely(retval != map->m_len)) { 650 ext4_warning(inode->i_sb, 651 "ES len assertion failed for inode " 652 "%lu: retval %d != map->m_len %d", 653 inode->i_ino, retval, map->m_len); 654 WARN_ON(1); 655 } 656 657 /* 658 * We have to zeroout blocks before inserting them into extent 659 * status tree. Otherwise someone could look them up there and 660 * use them before they are really zeroed. We also have to 661 * unmap metadata before zeroing as otherwise writeback can 662 * overwrite zeros with stale data from block device. 663 */ 664 if (flags & EXT4_GET_BLOCKS_ZERO && 665 map->m_flags & EXT4_MAP_MAPPED && 666 map->m_flags & EXT4_MAP_NEW) { 667 ret = ext4_issue_zeroout(inode, map->m_lblk, 668 map->m_pblk, map->m_len); 669 if (ret) { 670 retval = ret; 671 goto out_sem; 672 } 673 } 674 675 /* 676 * If the extent has been zeroed out, we don't need to update 677 * extent status tree. 678 */ 679 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 680 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 681 if (ext4_es_is_written(&es)) 682 goto out_sem; 683 } 684 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 685 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 686 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 687 !(status & EXTENT_STATUS_WRITTEN) && 688 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 689 map->m_lblk + map->m_len - 1)) 690 status |= EXTENT_STATUS_DELAYED; 691 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 692 map->m_pblk, status); 693 if (ret < 0) { 694 retval = ret; 695 goto out_sem; 696 } 697 } 698 699 out_sem: 700 up_write((&EXT4_I(inode)->i_data_sem)); 701 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 702 ret = check_block_validity(inode, map); 703 if (ret != 0) 704 return ret; 705 706 /* 707 * Inodes with freshly allocated blocks where contents will be 708 * visible after transaction commit must be on transaction's 709 * ordered data list. 710 */ 711 if (map->m_flags & EXT4_MAP_NEW && 712 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 713 !(flags & EXT4_GET_BLOCKS_ZERO) && 714 !ext4_is_quota_file(inode) && 715 ext4_should_order_data(inode)) { 716 loff_t start_byte = 717 (loff_t)map->m_lblk << inode->i_blkbits; 718 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 719 720 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 721 ret = ext4_jbd2_inode_add_wait(handle, inode, 722 start_byte, length); 723 else 724 ret = ext4_jbd2_inode_add_write(handle, inode, 725 start_byte, length); 726 if (ret) 727 return ret; 728 } 729 } 730 return retval; 731 } 732 733 /* 734 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 735 * we have to be careful as someone else may be manipulating b_state as well. 736 */ 737 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 738 { 739 unsigned long old_state; 740 unsigned long new_state; 741 742 flags &= EXT4_MAP_FLAGS; 743 744 /* Dummy buffer_head? Set non-atomically. */ 745 if (!bh->b_page) { 746 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 747 return; 748 } 749 /* 750 * Someone else may be modifying b_state. Be careful! This is ugly but 751 * once we get rid of using bh as a container for mapping information 752 * to pass to / from get_block functions, this can go away. 753 */ 754 do { 755 old_state = READ_ONCE(bh->b_state); 756 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 757 } while (unlikely( 758 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 759 } 760 761 static int _ext4_get_block(struct inode *inode, sector_t iblock, 762 struct buffer_head *bh, int flags) 763 { 764 struct ext4_map_blocks map; 765 int ret = 0; 766 767 if (ext4_has_inline_data(inode)) 768 return -ERANGE; 769 770 map.m_lblk = iblock; 771 map.m_len = bh->b_size >> inode->i_blkbits; 772 773 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 774 flags); 775 if (ret > 0) { 776 map_bh(bh, inode->i_sb, map.m_pblk); 777 ext4_update_bh_state(bh, map.m_flags); 778 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 779 ret = 0; 780 } else if (ret == 0) { 781 /* hole case, need to fill in bh->b_size */ 782 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 783 } 784 return ret; 785 } 786 787 int ext4_get_block(struct inode *inode, sector_t iblock, 788 struct buffer_head *bh, int create) 789 { 790 return _ext4_get_block(inode, iblock, bh, 791 create ? EXT4_GET_BLOCKS_CREATE : 0); 792 } 793 794 /* 795 * Get block function used when preparing for buffered write if we require 796 * creating an unwritten extent if blocks haven't been allocated. The extent 797 * will be converted to written after the IO is complete. 798 */ 799 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 800 struct buffer_head *bh_result, int create) 801 { 802 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 803 inode->i_ino, create); 804 return _ext4_get_block(inode, iblock, bh_result, 805 EXT4_GET_BLOCKS_IO_CREATE_EXT); 806 } 807 808 /* Maximum number of blocks we map for direct IO at once. */ 809 #define DIO_MAX_BLOCKS 4096 810 811 /* 812 * `handle' can be NULL if create is zero 813 */ 814 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 815 ext4_lblk_t block, int map_flags) 816 { 817 struct ext4_map_blocks map; 818 struct buffer_head *bh; 819 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 820 int err; 821 822 J_ASSERT(handle != NULL || create == 0); 823 824 map.m_lblk = block; 825 map.m_len = 1; 826 err = ext4_map_blocks(handle, inode, &map, map_flags); 827 828 if (err == 0) 829 return create ? ERR_PTR(-ENOSPC) : NULL; 830 if (err < 0) 831 return ERR_PTR(err); 832 833 bh = sb_getblk(inode->i_sb, map.m_pblk); 834 if (unlikely(!bh)) 835 return ERR_PTR(-ENOMEM); 836 if (map.m_flags & EXT4_MAP_NEW) { 837 J_ASSERT(create != 0); 838 J_ASSERT(handle != NULL); 839 840 /* 841 * Now that we do not always journal data, we should 842 * keep in mind whether this should always journal the 843 * new buffer as metadata. For now, regular file 844 * writes use ext4_get_block instead, so it's not a 845 * problem. 846 */ 847 lock_buffer(bh); 848 BUFFER_TRACE(bh, "call get_create_access"); 849 err = ext4_journal_get_create_access(handle, bh); 850 if (unlikely(err)) { 851 unlock_buffer(bh); 852 goto errout; 853 } 854 if (!buffer_uptodate(bh)) { 855 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 856 set_buffer_uptodate(bh); 857 } 858 unlock_buffer(bh); 859 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 860 err = ext4_handle_dirty_metadata(handle, inode, bh); 861 if (unlikely(err)) 862 goto errout; 863 } else 864 BUFFER_TRACE(bh, "not a new buffer"); 865 return bh; 866 errout: 867 brelse(bh); 868 return ERR_PTR(err); 869 } 870 871 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 872 ext4_lblk_t block, int map_flags) 873 { 874 struct buffer_head *bh; 875 876 bh = ext4_getblk(handle, inode, block, map_flags); 877 if (IS_ERR(bh)) 878 return bh; 879 if (!bh || ext4_buffer_uptodate(bh)) 880 return bh; 881 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh); 882 wait_on_buffer(bh); 883 if (buffer_uptodate(bh)) 884 return bh; 885 put_bh(bh); 886 return ERR_PTR(-EIO); 887 } 888 889 /* Read a contiguous batch of blocks. */ 890 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 891 bool wait, struct buffer_head **bhs) 892 { 893 int i, err; 894 895 for (i = 0; i < bh_count; i++) { 896 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 897 if (IS_ERR(bhs[i])) { 898 err = PTR_ERR(bhs[i]); 899 bh_count = i; 900 goto out_brelse; 901 } 902 } 903 904 for (i = 0; i < bh_count; i++) 905 /* Note that NULL bhs[i] is valid because of holes. */ 906 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 907 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, 908 &bhs[i]); 909 910 if (!wait) 911 return 0; 912 913 for (i = 0; i < bh_count; i++) 914 if (bhs[i]) 915 wait_on_buffer(bhs[i]); 916 917 for (i = 0; i < bh_count; i++) { 918 if (bhs[i] && !buffer_uptodate(bhs[i])) { 919 err = -EIO; 920 goto out_brelse; 921 } 922 } 923 return 0; 924 925 out_brelse: 926 for (i = 0; i < bh_count; i++) { 927 brelse(bhs[i]); 928 bhs[i] = NULL; 929 } 930 return err; 931 } 932 933 int ext4_walk_page_buffers(handle_t *handle, 934 struct buffer_head *head, 935 unsigned from, 936 unsigned to, 937 int *partial, 938 int (*fn)(handle_t *handle, 939 struct buffer_head *bh)) 940 { 941 struct buffer_head *bh; 942 unsigned block_start, block_end; 943 unsigned blocksize = head->b_size; 944 int err, ret = 0; 945 struct buffer_head *next; 946 947 for (bh = head, block_start = 0; 948 ret == 0 && (bh != head || !block_start); 949 block_start = block_end, bh = next) { 950 next = bh->b_this_page; 951 block_end = block_start + blocksize; 952 if (block_end <= from || block_start >= to) { 953 if (partial && !buffer_uptodate(bh)) 954 *partial = 1; 955 continue; 956 } 957 err = (*fn)(handle, bh); 958 if (!ret) 959 ret = err; 960 } 961 return ret; 962 } 963 964 /* 965 * To preserve ordering, it is essential that the hole instantiation and 966 * the data write be encapsulated in a single transaction. We cannot 967 * close off a transaction and start a new one between the ext4_get_block() 968 * and the commit_write(). So doing the jbd2_journal_start at the start of 969 * prepare_write() is the right place. 970 * 971 * Also, this function can nest inside ext4_writepage(). In that case, we 972 * *know* that ext4_writepage() has generated enough buffer credits to do the 973 * whole page. So we won't block on the journal in that case, which is good, 974 * because the caller may be PF_MEMALLOC. 975 * 976 * By accident, ext4 can be reentered when a transaction is open via 977 * quota file writes. If we were to commit the transaction while thus 978 * reentered, there can be a deadlock - we would be holding a quota 979 * lock, and the commit would never complete if another thread had a 980 * transaction open and was blocking on the quota lock - a ranking 981 * violation. 982 * 983 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 984 * will _not_ run commit under these circumstances because handle->h_ref 985 * is elevated. We'll still have enough credits for the tiny quotafile 986 * write. 987 */ 988 int do_journal_get_write_access(handle_t *handle, 989 struct buffer_head *bh) 990 { 991 int dirty = buffer_dirty(bh); 992 int ret; 993 994 if (!buffer_mapped(bh) || buffer_freed(bh)) 995 return 0; 996 /* 997 * __block_write_begin() could have dirtied some buffers. Clean 998 * the dirty bit as jbd2_journal_get_write_access() could complain 999 * otherwise about fs integrity issues. Setting of the dirty bit 1000 * by __block_write_begin() isn't a real problem here as we clear 1001 * the bit before releasing a page lock and thus writeback cannot 1002 * ever write the buffer. 1003 */ 1004 if (dirty) 1005 clear_buffer_dirty(bh); 1006 BUFFER_TRACE(bh, "get write access"); 1007 ret = ext4_journal_get_write_access(handle, bh); 1008 if (!ret && dirty) 1009 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1010 return ret; 1011 } 1012 1013 #ifdef CONFIG_FS_ENCRYPTION 1014 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 1015 get_block_t *get_block) 1016 { 1017 unsigned from = pos & (PAGE_SIZE - 1); 1018 unsigned to = from + len; 1019 struct inode *inode = page->mapping->host; 1020 unsigned block_start, block_end; 1021 sector_t block; 1022 int err = 0; 1023 unsigned blocksize = inode->i_sb->s_blocksize; 1024 unsigned bbits; 1025 struct buffer_head *bh, *head, *wait[2]; 1026 int nr_wait = 0; 1027 int i; 1028 1029 BUG_ON(!PageLocked(page)); 1030 BUG_ON(from > PAGE_SIZE); 1031 BUG_ON(to > PAGE_SIZE); 1032 BUG_ON(from > to); 1033 1034 if (!page_has_buffers(page)) 1035 create_empty_buffers(page, blocksize, 0); 1036 head = page_buffers(page); 1037 bbits = ilog2(blocksize); 1038 block = (sector_t)page->index << (PAGE_SHIFT - bbits); 1039 1040 for (bh = head, block_start = 0; bh != head || !block_start; 1041 block++, block_start = block_end, bh = bh->b_this_page) { 1042 block_end = block_start + blocksize; 1043 if (block_end <= from || block_start >= to) { 1044 if (PageUptodate(page)) { 1045 if (!buffer_uptodate(bh)) 1046 set_buffer_uptodate(bh); 1047 } 1048 continue; 1049 } 1050 if (buffer_new(bh)) 1051 clear_buffer_new(bh); 1052 if (!buffer_mapped(bh)) { 1053 WARN_ON(bh->b_size != blocksize); 1054 err = get_block(inode, block, bh, 1); 1055 if (err) 1056 break; 1057 if (buffer_new(bh)) { 1058 if (PageUptodate(page)) { 1059 clear_buffer_new(bh); 1060 set_buffer_uptodate(bh); 1061 mark_buffer_dirty(bh); 1062 continue; 1063 } 1064 if (block_end > to || block_start < from) 1065 zero_user_segments(page, to, block_end, 1066 block_start, from); 1067 continue; 1068 } 1069 } 1070 if (PageUptodate(page)) { 1071 if (!buffer_uptodate(bh)) 1072 set_buffer_uptodate(bh); 1073 continue; 1074 } 1075 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1076 !buffer_unwritten(bh) && 1077 (block_start < from || block_end > to)) { 1078 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1079 wait[nr_wait++] = bh; 1080 } 1081 } 1082 /* 1083 * If we issued read requests, let them complete. 1084 */ 1085 for (i = 0; i < nr_wait; i++) { 1086 wait_on_buffer(wait[i]); 1087 if (!buffer_uptodate(wait[i])) 1088 err = -EIO; 1089 } 1090 if (unlikely(err)) { 1091 page_zero_new_buffers(page, from, to); 1092 } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) { 1093 for (i = 0; i < nr_wait; i++) { 1094 int err2; 1095 1096 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize, 1097 bh_offset(wait[i])); 1098 if (err2) { 1099 clear_buffer_uptodate(wait[i]); 1100 err = err2; 1101 } 1102 } 1103 } 1104 1105 return err; 1106 } 1107 #endif 1108 1109 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1110 loff_t pos, unsigned len, unsigned flags, 1111 struct page **pagep, void **fsdata) 1112 { 1113 struct inode *inode = mapping->host; 1114 int ret, needed_blocks; 1115 handle_t *handle; 1116 int retries = 0; 1117 struct page *page; 1118 pgoff_t index; 1119 unsigned from, to; 1120 1121 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1122 return -EIO; 1123 1124 trace_ext4_write_begin(inode, pos, len, flags); 1125 /* 1126 * Reserve one block more for addition to orphan list in case 1127 * we allocate blocks but write fails for some reason 1128 */ 1129 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1130 index = pos >> PAGE_SHIFT; 1131 from = pos & (PAGE_SIZE - 1); 1132 to = from + len; 1133 1134 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1135 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1136 flags, pagep); 1137 if (ret < 0) 1138 return ret; 1139 if (ret == 1) 1140 return 0; 1141 } 1142 1143 /* 1144 * grab_cache_page_write_begin() can take a long time if the 1145 * system is thrashing due to memory pressure, or if the page 1146 * is being written back. So grab it first before we start 1147 * the transaction handle. This also allows us to allocate 1148 * the page (if needed) without using GFP_NOFS. 1149 */ 1150 retry_grab: 1151 page = grab_cache_page_write_begin(mapping, index, flags); 1152 if (!page) 1153 return -ENOMEM; 1154 unlock_page(page); 1155 1156 retry_journal: 1157 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1158 if (IS_ERR(handle)) { 1159 put_page(page); 1160 return PTR_ERR(handle); 1161 } 1162 1163 lock_page(page); 1164 if (page->mapping != mapping) { 1165 /* The page got truncated from under us */ 1166 unlock_page(page); 1167 put_page(page); 1168 ext4_journal_stop(handle); 1169 goto retry_grab; 1170 } 1171 /* In case writeback began while the page was unlocked */ 1172 wait_for_stable_page(page); 1173 1174 #ifdef CONFIG_FS_ENCRYPTION 1175 if (ext4_should_dioread_nolock(inode)) 1176 ret = ext4_block_write_begin(page, pos, len, 1177 ext4_get_block_unwritten); 1178 else 1179 ret = ext4_block_write_begin(page, pos, len, 1180 ext4_get_block); 1181 #else 1182 if (ext4_should_dioread_nolock(inode)) 1183 ret = __block_write_begin(page, pos, len, 1184 ext4_get_block_unwritten); 1185 else 1186 ret = __block_write_begin(page, pos, len, ext4_get_block); 1187 #endif 1188 if (!ret && ext4_should_journal_data(inode)) { 1189 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1190 from, to, NULL, 1191 do_journal_get_write_access); 1192 } 1193 1194 if (ret) { 1195 bool extended = (pos + len > inode->i_size) && 1196 !ext4_verity_in_progress(inode); 1197 1198 unlock_page(page); 1199 /* 1200 * __block_write_begin may have instantiated a few blocks 1201 * outside i_size. Trim these off again. Don't need 1202 * i_size_read because we hold i_mutex. 1203 * 1204 * Add inode to orphan list in case we crash before 1205 * truncate finishes 1206 */ 1207 if (extended && ext4_can_truncate(inode)) 1208 ext4_orphan_add(handle, inode); 1209 1210 ext4_journal_stop(handle); 1211 if (extended) { 1212 ext4_truncate_failed_write(inode); 1213 /* 1214 * If truncate failed early the inode might 1215 * still be on the orphan list; we need to 1216 * make sure the inode is removed from the 1217 * orphan list in that case. 1218 */ 1219 if (inode->i_nlink) 1220 ext4_orphan_del(NULL, inode); 1221 } 1222 1223 if (ret == -ENOSPC && 1224 ext4_should_retry_alloc(inode->i_sb, &retries)) 1225 goto retry_journal; 1226 put_page(page); 1227 return ret; 1228 } 1229 *pagep = page; 1230 return ret; 1231 } 1232 1233 /* For write_end() in data=journal mode */ 1234 static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1235 { 1236 int ret; 1237 if (!buffer_mapped(bh) || buffer_freed(bh)) 1238 return 0; 1239 set_buffer_uptodate(bh); 1240 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1241 clear_buffer_meta(bh); 1242 clear_buffer_prio(bh); 1243 return ret; 1244 } 1245 1246 /* 1247 * We need to pick up the new inode size which generic_commit_write gave us 1248 * `file' can be NULL - eg, when called from page_symlink(). 1249 * 1250 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1251 * buffers are managed internally. 1252 */ 1253 static int ext4_write_end(struct file *file, 1254 struct address_space *mapping, 1255 loff_t pos, unsigned len, unsigned copied, 1256 struct page *page, void *fsdata) 1257 { 1258 handle_t *handle = ext4_journal_current_handle(); 1259 struct inode *inode = mapping->host; 1260 loff_t old_size = inode->i_size; 1261 int ret = 0, ret2; 1262 int i_size_changed = 0; 1263 int inline_data = ext4_has_inline_data(inode); 1264 bool verity = ext4_verity_in_progress(inode); 1265 1266 trace_ext4_write_end(inode, pos, len, copied); 1267 if (inline_data) { 1268 ret = ext4_write_inline_data_end(inode, pos, len, 1269 copied, page); 1270 if (ret < 0) { 1271 unlock_page(page); 1272 put_page(page); 1273 goto errout; 1274 } 1275 copied = ret; 1276 } else 1277 copied = block_write_end(file, mapping, pos, 1278 len, copied, page, fsdata); 1279 /* 1280 * it's important to update i_size while still holding page lock: 1281 * page writeout could otherwise come in and zero beyond i_size. 1282 * 1283 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1284 * blocks are being written past EOF, so skip the i_size update. 1285 */ 1286 if (!verity) 1287 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1288 unlock_page(page); 1289 put_page(page); 1290 1291 if (old_size < pos && !verity) 1292 pagecache_isize_extended(inode, old_size, pos); 1293 /* 1294 * Don't mark the inode dirty under page lock. First, it unnecessarily 1295 * makes the holding time of page lock longer. Second, it forces lock 1296 * ordering of page lock and transaction start for journaling 1297 * filesystems. 1298 */ 1299 if (i_size_changed || inline_data) 1300 ext4_mark_inode_dirty(handle, inode); 1301 1302 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1303 /* if we have allocated more blocks and copied 1304 * less. We will have blocks allocated outside 1305 * inode->i_size. So truncate them 1306 */ 1307 ext4_orphan_add(handle, inode); 1308 errout: 1309 ret2 = ext4_journal_stop(handle); 1310 if (!ret) 1311 ret = ret2; 1312 1313 if (pos + len > inode->i_size && !verity) { 1314 ext4_truncate_failed_write(inode); 1315 /* 1316 * If truncate failed early the inode might still be 1317 * on the orphan list; we need to make sure the inode 1318 * is removed from the orphan list in that case. 1319 */ 1320 if (inode->i_nlink) 1321 ext4_orphan_del(NULL, inode); 1322 } 1323 1324 return ret ? ret : copied; 1325 } 1326 1327 /* 1328 * This is a private version of page_zero_new_buffers() which doesn't 1329 * set the buffer to be dirty, since in data=journalled mode we need 1330 * to call ext4_handle_dirty_metadata() instead. 1331 */ 1332 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1333 struct page *page, 1334 unsigned from, unsigned to) 1335 { 1336 unsigned int block_start = 0, block_end; 1337 struct buffer_head *head, *bh; 1338 1339 bh = head = page_buffers(page); 1340 do { 1341 block_end = block_start + bh->b_size; 1342 if (buffer_new(bh)) { 1343 if (block_end > from && block_start < to) { 1344 if (!PageUptodate(page)) { 1345 unsigned start, size; 1346 1347 start = max(from, block_start); 1348 size = min(to, block_end) - start; 1349 1350 zero_user(page, start, size); 1351 write_end_fn(handle, bh); 1352 } 1353 clear_buffer_new(bh); 1354 } 1355 } 1356 block_start = block_end; 1357 bh = bh->b_this_page; 1358 } while (bh != head); 1359 } 1360 1361 static int ext4_journalled_write_end(struct file *file, 1362 struct address_space *mapping, 1363 loff_t pos, unsigned len, unsigned copied, 1364 struct page *page, void *fsdata) 1365 { 1366 handle_t *handle = ext4_journal_current_handle(); 1367 struct inode *inode = mapping->host; 1368 loff_t old_size = inode->i_size; 1369 int ret = 0, ret2; 1370 int partial = 0; 1371 unsigned from, to; 1372 int size_changed = 0; 1373 int inline_data = ext4_has_inline_data(inode); 1374 bool verity = ext4_verity_in_progress(inode); 1375 1376 trace_ext4_journalled_write_end(inode, pos, len, copied); 1377 from = pos & (PAGE_SIZE - 1); 1378 to = from + len; 1379 1380 BUG_ON(!ext4_handle_valid(handle)); 1381 1382 if (inline_data) { 1383 ret = ext4_write_inline_data_end(inode, pos, len, 1384 copied, page); 1385 if (ret < 0) { 1386 unlock_page(page); 1387 put_page(page); 1388 goto errout; 1389 } 1390 copied = ret; 1391 } else if (unlikely(copied < len) && !PageUptodate(page)) { 1392 copied = 0; 1393 ext4_journalled_zero_new_buffers(handle, page, from, to); 1394 } else { 1395 if (unlikely(copied < len)) 1396 ext4_journalled_zero_new_buffers(handle, page, 1397 from + copied, to); 1398 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1399 from + copied, &partial, 1400 write_end_fn); 1401 if (!partial) 1402 SetPageUptodate(page); 1403 } 1404 if (!verity) 1405 size_changed = ext4_update_inode_size(inode, pos + copied); 1406 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1407 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1408 unlock_page(page); 1409 put_page(page); 1410 1411 if (old_size < pos && !verity) 1412 pagecache_isize_extended(inode, old_size, pos); 1413 1414 if (size_changed || inline_data) { 1415 ret2 = ext4_mark_inode_dirty(handle, inode); 1416 if (!ret) 1417 ret = ret2; 1418 } 1419 1420 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1421 /* if we have allocated more blocks and copied 1422 * less. We will have blocks allocated outside 1423 * inode->i_size. So truncate them 1424 */ 1425 ext4_orphan_add(handle, inode); 1426 1427 errout: 1428 ret2 = ext4_journal_stop(handle); 1429 if (!ret) 1430 ret = ret2; 1431 if (pos + len > inode->i_size && !verity) { 1432 ext4_truncate_failed_write(inode); 1433 /* 1434 * If truncate failed early the inode might still be 1435 * on the orphan list; we need to make sure the inode 1436 * is removed from the orphan list in that case. 1437 */ 1438 if (inode->i_nlink) 1439 ext4_orphan_del(NULL, inode); 1440 } 1441 1442 return ret ? ret : copied; 1443 } 1444 1445 /* 1446 * Reserve space for a single cluster 1447 */ 1448 static int ext4_da_reserve_space(struct inode *inode) 1449 { 1450 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1451 struct ext4_inode_info *ei = EXT4_I(inode); 1452 int ret; 1453 1454 /* 1455 * We will charge metadata quota at writeout time; this saves 1456 * us from metadata over-estimation, though we may go over by 1457 * a small amount in the end. Here we just reserve for data. 1458 */ 1459 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1460 if (ret) 1461 return ret; 1462 1463 spin_lock(&ei->i_block_reservation_lock); 1464 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1465 spin_unlock(&ei->i_block_reservation_lock); 1466 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1467 return -ENOSPC; 1468 } 1469 ei->i_reserved_data_blocks++; 1470 trace_ext4_da_reserve_space(inode); 1471 spin_unlock(&ei->i_block_reservation_lock); 1472 1473 return 0; /* success */ 1474 } 1475 1476 void ext4_da_release_space(struct inode *inode, int to_free) 1477 { 1478 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1479 struct ext4_inode_info *ei = EXT4_I(inode); 1480 1481 if (!to_free) 1482 return; /* Nothing to release, exit */ 1483 1484 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1485 1486 trace_ext4_da_release_space(inode, to_free); 1487 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1488 /* 1489 * if there aren't enough reserved blocks, then the 1490 * counter is messed up somewhere. Since this 1491 * function is called from invalidate page, it's 1492 * harmless to return without any action. 1493 */ 1494 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1495 "ino %lu, to_free %d with only %d reserved " 1496 "data blocks", inode->i_ino, to_free, 1497 ei->i_reserved_data_blocks); 1498 WARN_ON(1); 1499 to_free = ei->i_reserved_data_blocks; 1500 } 1501 ei->i_reserved_data_blocks -= to_free; 1502 1503 /* update fs dirty data blocks counter */ 1504 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1505 1506 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1507 1508 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1509 } 1510 1511 /* 1512 * Delayed allocation stuff 1513 */ 1514 1515 struct mpage_da_data { 1516 struct inode *inode; 1517 struct writeback_control *wbc; 1518 1519 pgoff_t first_page; /* The first page to write */ 1520 pgoff_t next_page; /* Current page to examine */ 1521 pgoff_t last_page; /* Last page to examine */ 1522 /* 1523 * Extent to map - this can be after first_page because that can be 1524 * fully mapped. We somewhat abuse m_flags to store whether the extent 1525 * is delalloc or unwritten. 1526 */ 1527 struct ext4_map_blocks map; 1528 struct ext4_io_submit io_submit; /* IO submission data */ 1529 unsigned int do_map:1; 1530 }; 1531 1532 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1533 bool invalidate) 1534 { 1535 int nr_pages, i; 1536 pgoff_t index, end; 1537 struct pagevec pvec; 1538 struct inode *inode = mpd->inode; 1539 struct address_space *mapping = inode->i_mapping; 1540 1541 /* This is necessary when next_page == 0. */ 1542 if (mpd->first_page >= mpd->next_page) 1543 return; 1544 1545 index = mpd->first_page; 1546 end = mpd->next_page - 1; 1547 if (invalidate) { 1548 ext4_lblk_t start, last; 1549 start = index << (PAGE_SHIFT - inode->i_blkbits); 1550 last = end << (PAGE_SHIFT - inode->i_blkbits); 1551 ext4_es_remove_extent(inode, start, last - start + 1); 1552 } 1553 1554 pagevec_init(&pvec); 1555 while (index <= end) { 1556 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end); 1557 if (nr_pages == 0) 1558 break; 1559 for (i = 0; i < nr_pages; i++) { 1560 struct page *page = pvec.pages[i]; 1561 1562 BUG_ON(!PageLocked(page)); 1563 BUG_ON(PageWriteback(page)); 1564 if (invalidate) { 1565 if (page_mapped(page)) 1566 clear_page_dirty_for_io(page); 1567 block_invalidatepage(page, 0, PAGE_SIZE); 1568 ClearPageUptodate(page); 1569 } 1570 unlock_page(page); 1571 } 1572 pagevec_release(&pvec); 1573 } 1574 } 1575 1576 static void ext4_print_free_blocks(struct inode *inode) 1577 { 1578 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1579 struct super_block *sb = inode->i_sb; 1580 struct ext4_inode_info *ei = EXT4_I(inode); 1581 1582 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1583 EXT4_C2B(EXT4_SB(inode->i_sb), 1584 ext4_count_free_clusters(sb))); 1585 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1586 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1587 (long long) EXT4_C2B(EXT4_SB(sb), 1588 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1589 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1590 (long long) EXT4_C2B(EXT4_SB(sb), 1591 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1592 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1593 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1594 ei->i_reserved_data_blocks); 1595 return; 1596 } 1597 1598 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1599 { 1600 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1601 } 1602 1603 /* 1604 * ext4_insert_delayed_block - adds a delayed block to the extents status 1605 * tree, incrementing the reserved cluster/block 1606 * count or making a pending reservation 1607 * where needed 1608 * 1609 * @inode - file containing the newly added block 1610 * @lblk - logical block to be added 1611 * 1612 * Returns 0 on success, negative error code on failure. 1613 */ 1614 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1615 { 1616 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1617 int ret; 1618 bool allocated = false; 1619 1620 /* 1621 * If the cluster containing lblk is shared with a delayed, 1622 * written, or unwritten extent in a bigalloc file system, it's 1623 * already been accounted for and does not need to be reserved. 1624 * A pending reservation must be made for the cluster if it's 1625 * shared with a written or unwritten extent and doesn't already 1626 * have one. Written and unwritten extents can be purged from the 1627 * extents status tree if the system is under memory pressure, so 1628 * it's necessary to examine the extent tree if a search of the 1629 * extents status tree doesn't get a match. 1630 */ 1631 if (sbi->s_cluster_ratio == 1) { 1632 ret = ext4_da_reserve_space(inode); 1633 if (ret != 0) /* ENOSPC */ 1634 goto errout; 1635 } else { /* bigalloc */ 1636 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1637 if (!ext4_es_scan_clu(inode, 1638 &ext4_es_is_mapped, lblk)) { 1639 ret = ext4_clu_mapped(inode, 1640 EXT4_B2C(sbi, lblk)); 1641 if (ret < 0) 1642 goto errout; 1643 if (ret == 0) { 1644 ret = ext4_da_reserve_space(inode); 1645 if (ret != 0) /* ENOSPC */ 1646 goto errout; 1647 } else { 1648 allocated = true; 1649 } 1650 } else { 1651 allocated = true; 1652 } 1653 } 1654 } 1655 1656 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1657 1658 errout: 1659 return ret; 1660 } 1661 1662 /* 1663 * This function is grabs code from the very beginning of 1664 * ext4_map_blocks, but assumes that the caller is from delayed write 1665 * time. This function looks up the requested blocks and sets the 1666 * buffer delay bit under the protection of i_data_sem. 1667 */ 1668 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1669 struct ext4_map_blocks *map, 1670 struct buffer_head *bh) 1671 { 1672 struct extent_status es; 1673 int retval; 1674 sector_t invalid_block = ~((sector_t) 0xffff); 1675 #ifdef ES_AGGRESSIVE_TEST 1676 struct ext4_map_blocks orig_map; 1677 1678 memcpy(&orig_map, map, sizeof(*map)); 1679 #endif 1680 1681 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1682 invalid_block = ~0; 1683 1684 map->m_flags = 0; 1685 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1686 "logical block %lu\n", inode->i_ino, map->m_len, 1687 (unsigned long) map->m_lblk); 1688 1689 /* Lookup extent status tree firstly */ 1690 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1691 if (ext4_es_is_hole(&es)) { 1692 retval = 0; 1693 down_read(&EXT4_I(inode)->i_data_sem); 1694 goto add_delayed; 1695 } 1696 1697 /* 1698 * Delayed extent could be allocated by fallocate. 1699 * So we need to check it. 1700 */ 1701 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1702 map_bh(bh, inode->i_sb, invalid_block); 1703 set_buffer_new(bh); 1704 set_buffer_delay(bh); 1705 return 0; 1706 } 1707 1708 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1709 retval = es.es_len - (iblock - es.es_lblk); 1710 if (retval > map->m_len) 1711 retval = map->m_len; 1712 map->m_len = retval; 1713 if (ext4_es_is_written(&es)) 1714 map->m_flags |= EXT4_MAP_MAPPED; 1715 else if (ext4_es_is_unwritten(&es)) 1716 map->m_flags |= EXT4_MAP_UNWRITTEN; 1717 else 1718 BUG(); 1719 1720 #ifdef ES_AGGRESSIVE_TEST 1721 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1722 #endif 1723 return retval; 1724 } 1725 1726 /* 1727 * Try to see if we can get the block without requesting a new 1728 * file system block. 1729 */ 1730 down_read(&EXT4_I(inode)->i_data_sem); 1731 if (ext4_has_inline_data(inode)) 1732 retval = 0; 1733 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1734 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1735 else 1736 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1737 1738 add_delayed: 1739 if (retval == 0) { 1740 int ret; 1741 1742 /* 1743 * XXX: __block_prepare_write() unmaps passed block, 1744 * is it OK? 1745 */ 1746 1747 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1748 if (ret != 0) { 1749 retval = ret; 1750 goto out_unlock; 1751 } 1752 1753 map_bh(bh, inode->i_sb, invalid_block); 1754 set_buffer_new(bh); 1755 set_buffer_delay(bh); 1756 } else if (retval > 0) { 1757 int ret; 1758 unsigned int status; 1759 1760 if (unlikely(retval != map->m_len)) { 1761 ext4_warning(inode->i_sb, 1762 "ES len assertion failed for inode " 1763 "%lu: retval %d != map->m_len %d", 1764 inode->i_ino, retval, map->m_len); 1765 WARN_ON(1); 1766 } 1767 1768 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1769 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1770 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1771 map->m_pblk, status); 1772 if (ret != 0) 1773 retval = ret; 1774 } 1775 1776 out_unlock: 1777 up_read((&EXT4_I(inode)->i_data_sem)); 1778 1779 return retval; 1780 } 1781 1782 /* 1783 * This is a special get_block_t callback which is used by 1784 * ext4_da_write_begin(). It will either return mapped block or 1785 * reserve space for a single block. 1786 * 1787 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1788 * We also have b_blocknr = -1 and b_bdev initialized properly 1789 * 1790 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1791 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1792 * initialized properly. 1793 */ 1794 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1795 struct buffer_head *bh, int create) 1796 { 1797 struct ext4_map_blocks map; 1798 int ret = 0; 1799 1800 BUG_ON(create == 0); 1801 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1802 1803 map.m_lblk = iblock; 1804 map.m_len = 1; 1805 1806 /* 1807 * first, we need to know whether the block is allocated already 1808 * preallocated blocks are unmapped but should treated 1809 * the same as allocated blocks. 1810 */ 1811 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1812 if (ret <= 0) 1813 return ret; 1814 1815 map_bh(bh, inode->i_sb, map.m_pblk); 1816 ext4_update_bh_state(bh, map.m_flags); 1817 1818 if (buffer_unwritten(bh)) { 1819 /* A delayed write to unwritten bh should be marked 1820 * new and mapped. Mapped ensures that we don't do 1821 * get_block multiple times when we write to the same 1822 * offset and new ensures that we do proper zero out 1823 * for partial write. 1824 */ 1825 set_buffer_new(bh); 1826 set_buffer_mapped(bh); 1827 } 1828 return 0; 1829 } 1830 1831 static int bget_one(handle_t *handle, struct buffer_head *bh) 1832 { 1833 get_bh(bh); 1834 return 0; 1835 } 1836 1837 static int bput_one(handle_t *handle, struct buffer_head *bh) 1838 { 1839 put_bh(bh); 1840 return 0; 1841 } 1842 1843 static int __ext4_journalled_writepage(struct page *page, 1844 unsigned int len) 1845 { 1846 struct address_space *mapping = page->mapping; 1847 struct inode *inode = mapping->host; 1848 struct buffer_head *page_bufs = NULL; 1849 handle_t *handle = NULL; 1850 int ret = 0, err = 0; 1851 int inline_data = ext4_has_inline_data(inode); 1852 struct buffer_head *inode_bh = NULL; 1853 1854 ClearPageChecked(page); 1855 1856 if (inline_data) { 1857 BUG_ON(page->index != 0); 1858 BUG_ON(len > ext4_get_max_inline_size(inode)); 1859 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1860 if (inode_bh == NULL) 1861 goto out; 1862 } else { 1863 page_bufs = page_buffers(page); 1864 if (!page_bufs) { 1865 BUG(); 1866 goto out; 1867 } 1868 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1869 NULL, bget_one); 1870 } 1871 /* 1872 * We need to release the page lock before we start the 1873 * journal, so grab a reference so the page won't disappear 1874 * out from under us. 1875 */ 1876 get_page(page); 1877 unlock_page(page); 1878 1879 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1880 ext4_writepage_trans_blocks(inode)); 1881 if (IS_ERR(handle)) { 1882 ret = PTR_ERR(handle); 1883 put_page(page); 1884 goto out_no_pagelock; 1885 } 1886 BUG_ON(!ext4_handle_valid(handle)); 1887 1888 lock_page(page); 1889 put_page(page); 1890 if (page->mapping != mapping) { 1891 /* The page got truncated from under us */ 1892 ext4_journal_stop(handle); 1893 ret = 0; 1894 goto out; 1895 } 1896 1897 if (inline_data) { 1898 ret = ext4_mark_inode_dirty(handle, inode); 1899 } else { 1900 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1901 do_journal_get_write_access); 1902 1903 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1904 write_end_fn); 1905 } 1906 if (ret == 0) 1907 ret = err; 1908 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1909 err = ext4_journal_stop(handle); 1910 if (!ret) 1911 ret = err; 1912 1913 if (!ext4_has_inline_data(inode)) 1914 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1915 NULL, bput_one); 1916 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1917 out: 1918 unlock_page(page); 1919 out_no_pagelock: 1920 brelse(inode_bh); 1921 return ret; 1922 } 1923 1924 /* 1925 * Note that we don't need to start a transaction unless we're journaling data 1926 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1927 * need to file the inode to the transaction's list in ordered mode because if 1928 * we are writing back data added by write(), the inode is already there and if 1929 * we are writing back data modified via mmap(), no one guarantees in which 1930 * transaction the data will hit the disk. In case we are journaling data, we 1931 * cannot start transaction directly because transaction start ranks above page 1932 * lock so we have to do some magic. 1933 * 1934 * This function can get called via... 1935 * - ext4_writepages after taking page lock (have journal handle) 1936 * - journal_submit_inode_data_buffers (no journal handle) 1937 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1938 * - grab_page_cache when doing write_begin (have journal handle) 1939 * 1940 * We don't do any block allocation in this function. If we have page with 1941 * multiple blocks we need to write those buffer_heads that are mapped. This 1942 * is important for mmaped based write. So if we do with blocksize 1K 1943 * truncate(f, 1024); 1944 * a = mmap(f, 0, 4096); 1945 * a[0] = 'a'; 1946 * truncate(f, 4096); 1947 * we have in the page first buffer_head mapped via page_mkwrite call back 1948 * but other buffer_heads would be unmapped but dirty (dirty done via the 1949 * do_wp_page). So writepage should write the first block. If we modify 1950 * the mmap area beyond 1024 we will again get a page_fault and the 1951 * page_mkwrite callback will do the block allocation and mark the 1952 * buffer_heads mapped. 1953 * 1954 * We redirty the page if we have any buffer_heads that is either delay or 1955 * unwritten in the page. 1956 * 1957 * We can get recursively called as show below. 1958 * 1959 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1960 * ext4_writepage() 1961 * 1962 * But since we don't do any block allocation we should not deadlock. 1963 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1964 */ 1965 static int ext4_writepage(struct page *page, 1966 struct writeback_control *wbc) 1967 { 1968 int ret = 0; 1969 loff_t size; 1970 unsigned int len; 1971 struct buffer_head *page_bufs = NULL; 1972 struct inode *inode = page->mapping->host; 1973 struct ext4_io_submit io_submit; 1974 bool keep_towrite = false; 1975 1976 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 1977 ext4_invalidatepage(page, 0, PAGE_SIZE); 1978 unlock_page(page); 1979 return -EIO; 1980 } 1981 1982 trace_ext4_writepage(page); 1983 size = i_size_read(inode); 1984 if (page->index == size >> PAGE_SHIFT && 1985 !ext4_verity_in_progress(inode)) 1986 len = size & ~PAGE_MASK; 1987 else 1988 len = PAGE_SIZE; 1989 1990 page_bufs = page_buffers(page); 1991 /* 1992 * We cannot do block allocation or other extent handling in this 1993 * function. If there are buffers needing that, we have to redirty 1994 * the page. But we may reach here when we do a journal commit via 1995 * journal_submit_inode_data_buffers() and in that case we must write 1996 * allocated buffers to achieve data=ordered mode guarantees. 1997 * 1998 * Also, if there is only one buffer per page (the fs block 1999 * size == the page size), if one buffer needs block 2000 * allocation or needs to modify the extent tree to clear the 2001 * unwritten flag, we know that the page can't be written at 2002 * all, so we might as well refuse the write immediately. 2003 * Unfortunately if the block size != page size, we can't as 2004 * easily detect this case using ext4_walk_page_buffers(), but 2005 * for the extremely common case, this is an optimization that 2006 * skips a useless round trip through ext4_bio_write_page(). 2007 */ 2008 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 2009 ext4_bh_delay_or_unwritten)) { 2010 redirty_page_for_writepage(wbc, page); 2011 if ((current->flags & PF_MEMALLOC) || 2012 (inode->i_sb->s_blocksize == PAGE_SIZE)) { 2013 /* 2014 * For memory cleaning there's no point in writing only 2015 * some buffers. So just bail out. Warn if we came here 2016 * from direct reclaim. 2017 */ 2018 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 2019 == PF_MEMALLOC); 2020 unlock_page(page); 2021 return 0; 2022 } 2023 keep_towrite = true; 2024 } 2025 2026 if (PageChecked(page) && ext4_should_journal_data(inode)) 2027 /* 2028 * It's mmapped pagecache. Add buffers and journal it. There 2029 * doesn't seem much point in redirtying the page here. 2030 */ 2031 return __ext4_journalled_writepage(page, len); 2032 2033 ext4_io_submit_init(&io_submit, wbc); 2034 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 2035 if (!io_submit.io_end) { 2036 redirty_page_for_writepage(wbc, page); 2037 unlock_page(page); 2038 return -ENOMEM; 2039 } 2040 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 2041 ext4_io_submit(&io_submit); 2042 /* Drop io_end reference we got from init */ 2043 ext4_put_io_end_defer(io_submit.io_end); 2044 return ret; 2045 } 2046 2047 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 2048 { 2049 int len; 2050 loff_t size; 2051 int err; 2052 2053 BUG_ON(page->index != mpd->first_page); 2054 clear_page_dirty_for_io(page); 2055 /* 2056 * We have to be very careful here! Nothing protects writeback path 2057 * against i_size changes and the page can be writeably mapped into 2058 * page tables. So an application can be growing i_size and writing 2059 * data through mmap while writeback runs. clear_page_dirty_for_io() 2060 * write-protects our page in page tables and the page cannot get 2061 * written to again until we release page lock. So only after 2062 * clear_page_dirty_for_io() we are safe to sample i_size for 2063 * ext4_bio_write_page() to zero-out tail of the written page. We rely 2064 * on the barrier provided by TestClearPageDirty in 2065 * clear_page_dirty_for_io() to make sure i_size is really sampled only 2066 * after page tables are updated. 2067 */ 2068 size = i_size_read(mpd->inode); 2069 if (page->index == size >> PAGE_SHIFT && 2070 !ext4_verity_in_progress(mpd->inode)) 2071 len = size & ~PAGE_MASK; 2072 else 2073 len = PAGE_SIZE; 2074 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 2075 if (!err) 2076 mpd->wbc->nr_to_write--; 2077 mpd->first_page++; 2078 2079 return err; 2080 } 2081 2082 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 2083 2084 /* 2085 * mballoc gives us at most this number of blocks... 2086 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 2087 * The rest of mballoc seems to handle chunks up to full group size. 2088 */ 2089 #define MAX_WRITEPAGES_EXTENT_LEN 2048 2090 2091 /* 2092 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 2093 * 2094 * @mpd - extent of blocks 2095 * @lblk - logical number of the block in the file 2096 * @bh - buffer head we want to add to the extent 2097 * 2098 * The function is used to collect contig. blocks in the same state. If the 2099 * buffer doesn't require mapping for writeback and we haven't started the 2100 * extent of buffers to map yet, the function returns 'true' immediately - the 2101 * caller can write the buffer right away. Otherwise the function returns true 2102 * if the block has been added to the extent, false if the block couldn't be 2103 * added. 2104 */ 2105 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 2106 struct buffer_head *bh) 2107 { 2108 struct ext4_map_blocks *map = &mpd->map; 2109 2110 /* Buffer that doesn't need mapping for writeback? */ 2111 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 2112 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 2113 /* So far no extent to map => we write the buffer right away */ 2114 if (map->m_len == 0) 2115 return true; 2116 return false; 2117 } 2118 2119 /* First block in the extent? */ 2120 if (map->m_len == 0) { 2121 /* We cannot map unless handle is started... */ 2122 if (!mpd->do_map) 2123 return false; 2124 map->m_lblk = lblk; 2125 map->m_len = 1; 2126 map->m_flags = bh->b_state & BH_FLAGS; 2127 return true; 2128 } 2129 2130 /* Don't go larger than mballoc is willing to allocate */ 2131 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 2132 return false; 2133 2134 /* Can we merge the block to our big extent? */ 2135 if (lblk == map->m_lblk + map->m_len && 2136 (bh->b_state & BH_FLAGS) == map->m_flags) { 2137 map->m_len++; 2138 return true; 2139 } 2140 return false; 2141 } 2142 2143 /* 2144 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 2145 * 2146 * @mpd - extent of blocks for mapping 2147 * @head - the first buffer in the page 2148 * @bh - buffer we should start processing from 2149 * @lblk - logical number of the block in the file corresponding to @bh 2150 * 2151 * Walk through page buffers from @bh upto @head (exclusive) and either submit 2152 * the page for IO if all buffers in this page were mapped and there's no 2153 * accumulated extent of buffers to map or add buffers in the page to the 2154 * extent of buffers to map. The function returns 1 if the caller can continue 2155 * by processing the next page, 0 if it should stop adding buffers to the 2156 * extent to map because we cannot extend it anymore. It can also return value 2157 * < 0 in case of error during IO submission. 2158 */ 2159 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 2160 struct buffer_head *head, 2161 struct buffer_head *bh, 2162 ext4_lblk_t lblk) 2163 { 2164 struct inode *inode = mpd->inode; 2165 int err; 2166 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 2167 >> inode->i_blkbits; 2168 2169 if (ext4_verity_in_progress(inode)) 2170 blocks = EXT_MAX_BLOCKS; 2171 2172 do { 2173 BUG_ON(buffer_locked(bh)); 2174 2175 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2176 /* Found extent to map? */ 2177 if (mpd->map.m_len) 2178 return 0; 2179 /* Buffer needs mapping and handle is not started? */ 2180 if (!mpd->do_map) 2181 return 0; 2182 /* Everything mapped so far and we hit EOF */ 2183 break; 2184 } 2185 } while (lblk++, (bh = bh->b_this_page) != head); 2186 /* So far everything mapped? Submit the page for IO. */ 2187 if (mpd->map.m_len == 0) { 2188 err = mpage_submit_page(mpd, head->b_page); 2189 if (err < 0) 2190 return err; 2191 } 2192 return lblk < blocks; 2193 } 2194 2195 /* 2196 * mpage_process_page - update page buffers corresponding to changed extent and 2197 * may submit fully mapped page for IO 2198 * 2199 * @mpd - description of extent to map, on return next extent to map 2200 * @m_lblk - logical block mapping. 2201 * @m_pblk - corresponding physical mapping. 2202 * @map_bh - determines on return whether this page requires any further 2203 * mapping or not. 2204 * Scan given page buffers corresponding to changed extent and update buffer 2205 * state according to new extent state. 2206 * We map delalloc buffers to their physical location, clear unwritten bits. 2207 * If the given page is not fully mapped, we update @map to the next extent in 2208 * the given page that needs mapping & return @map_bh as true. 2209 */ 2210 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page, 2211 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2212 bool *map_bh) 2213 { 2214 struct buffer_head *head, *bh; 2215 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2216 ext4_lblk_t lblk = *m_lblk; 2217 ext4_fsblk_t pblock = *m_pblk; 2218 int err = 0; 2219 int blkbits = mpd->inode->i_blkbits; 2220 ssize_t io_end_size = 0; 2221 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2222 2223 bh = head = page_buffers(page); 2224 do { 2225 if (lblk < mpd->map.m_lblk) 2226 continue; 2227 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2228 /* 2229 * Buffer after end of mapped extent. 2230 * Find next buffer in the page to map. 2231 */ 2232 mpd->map.m_len = 0; 2233 mpd->map.m_flags = 0; 2234 io_end_vec->size += io_end_size; 2235 io_end_size = 0; 2236 2237 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2238 if (err > 0) 2239 err = 0; 2240 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2241 io_end_vec = ext4_alloc_io_end_vec(io_end); 2242 if (IS_ERR(io_end_vec)) { 2243 err = PTR_ERR(io_end_vec); 2244 goto out; 2245 } 2246 io_end_vec->offset = mpd->map.m_lblk << blkbits; 2247 } 2248 *map_bh = true; 2249 goto out; 2250 } 2251 if (buffer_delay(bh)) { 2252 clear_buffer_delay(bh); 2253 bh->b_blocknr = pblock++; 2254 } 2255 clear_buffer_unwritten(bh); 2256 io_end_size += (1 << blkbits); 2257 } while (lblk++, (bh = bh->b_this_page) != head); 2258 2259 io_end_vec->size += io_end_size; 2260 io_end_size = 0; 2261 *map_bh = false; 2262 out: 2263 *m_lblk = lblk; 2264 *m_pblk = pblock; 2265 return err; 2266 } 2267 2268 /* 2269 * mpage_map_buffers - update buffers corresponding to changed extent and 2270 * submit fully mapped pages for IO 2271 * 2272 * @mpd - description of extent to map, on return next extent to map 2273 * 2274 * Scan buffers corresponding to changed extent (we expect corresponding pages 2275 * to be already locked) and update buffer state according to new extent state. 2276 * We map delalloc buffers to their physical location, clear unwritten bits, 2277 * and mark buffers as uninit when we perform writes to unwritten extents 2278 * and do extent conversion after IO is finished. If the last page is not fully 2279 * mapped, we update @map to the next extent in the last page that needs 2280 * mapping. Otherwise we submit the page for IO. 2281 */ 2282 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2283 { 2284 struct pagevec pvec; 2285 int nr_pages, i; 2286 struct inode *inode = mpd->inode; 2287 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2288 pgoff_t start, end; 2289 ext4_lblk_t lblk; 2290 ext4_fsblk_t pblock; 2291 int err; 2292 bool map_bh = false; 2293 2294 start = mpd->map.m_lblk >> bpp_bits; 2295 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2296 lblk = start << bpp_bits; 2297 pblock = mpd->map.m_pblk; 2298 2299 pagevec_init(&pvec); 2300 while (start <= end) { 2301 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, 2302 &start, end); 2303 if (nr_pages == 0) 2304 break; 2305 for (i = 0; i < nr_pages; i++) { 2306 struct page *page = pvec.pages[i]; 2307 2308 err = mpage_process_page(mpd, page, &lblk, &pblock, 2309 &map_bh); 2310 /* 2311 * If map_bh is true, means page may require further bh 2312 * mapping, or maybe the page was submitted for IO. 2313 * So we return to call further extent mapping. 2314 */ 2315 if (err < 0 || map_bh == true) 2316 goto out; 2317 /* Page fully mapped - let IO run! */ 2318 err = mpage_submit_page(mpd, page); 2319 if (err < 0) 2320 goto out; 2321 } 2322 pagevec_release(&pvec); 2323 } 2324 /* Extent fully mapped and matches with page boundary. We are done. */ 2325 mpd->map.m_len = 0; 2326 mpd->map.m_flags = 0; 2327 return 0; 2328 out: 2329 pagevec_release(&pvec); 2330 return err; 2331 } 2332 2333 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2334 { 2335 struct inode *inode = mpd->inode; 2336 struct ext4_map_blocks *map = &mpd->map; 2337 int get_blocks_flags; 2338 int err, dioread_nolock; 2339 2340 trace_ext4_da_write_pages_extent(inode, map); 2341 /* 2342 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2343 * to convert an unwritten extent to be initialized (in the case 2344 * where we have written into one or more preallocated blocks). It is 2345 * possible that we're going to need more metadata blocks than 2346 * previously reserved. However we must not fail because we're in 2347 * writeback and there is nothing we can do about it so it might result 2348 * in data loss. So use reserved blocks to allocate metadata if 2349 * possible. 2350 * 2351 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2352 * the blocks in question are delalloc blocks. This indicates 2353 * that the blocks and quotas has already been checked when 2354 * the data was copied into the page cache. 2355 */ 2356 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2357 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2358 EXT4_GET_BLOCKS_IO_SUBMIT; 2359 dioread_nolock = ext4_should_dioread_nolock(inode); 2360 if (dioread_nolock) 2361 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2362 if (map->m_flags & (1 << BH_Delay)) 2363 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2364 2365 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2366 if (err < 0) 2367 return err; 2368 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2369 if (!mpd->io_submit.io_end->handle && 2370 ext4_handle_valid(handle)) { 2371 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2372 handle->h_rsv_handle = NULL; 2373 } 2374 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2375 } 2376 2377 BUG_ON(map->m_len == 0); 2378 return 0; 2379 } 2380 2381 /* 2382 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2383 * mpd->len and submit pages underlying it for IO 2384 * 2385 * @handle - handle for journal operations 2386 * @mpd - extent to map 2387 * @give_up_on_write - we set this to true iff there is a fatal error and there 2388 * is no hope of writing the data. The caller should discard 2389 * dirty pages to avoid infinite loops. 2390 * 2391 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2392 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2393 * them to initialized or split the described range from larger unwritten 2394 * extent. Note that we need not map all the described range since allocation 2395 * can return less blocks or the range is covered by more unwritten extents. We 2396 * cannot map more because we are limited by reserved transaction credits. On 2397 * the other hand we always make sure that the last touched page is fully 2398 * mapped so that it can be written out (and thus forward progress is 2399 * guaranteed). After mapping we submit all mapped pages for IO. 2400 */ 2401 static int mpage_map_and_submit_extent(handle_t *handle, 2402 struct mpage_da_data *mpd, 2403 bool *give_up_on_write) 2404 { 2405 struct inode *inode = mpd->inode; 2406 struct ext4_map_blocks *map = &mpd->map; 2407 int err; 2408 loff_t disksize; 2409 int progress = 0; 2410 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2411 struct ext4_io_end_vec *io_end_vec; 2412 2413 io_end_vec = ext4_alloc_io_end_vec(io_end); 2414 if (IS_ERR(io_end_vec)) 2415 return PTR_ERR(io_end_vec); 2416 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2417 do { 2418 err = mpage_map_one_extent(handle, mpd); 2419 if (err < 0) { 2420 struct super_block *sb = inode->i_sb; 2421 2422 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2423 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2424 goto invalidate_dirty_pages; 2425 /* 2426 * Let the uper layers retry transient errors. 2427 * In the case of ENOSPC, if ext4_count_free_blocks() 2428 * is non-zero, a commit should free up blocks. 2429 */ 2430 if ((err == -ENOMEM) || 2431 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2432 if (progress) 2433 goto update_disksize; 2434 return err; 2435 } 2436 ext4_msg(sb, KERN_CRIT, 2437 "Delayed block allocation failed for " 2438 "inode %lu at logical offset %llu with" 2439 " max blocks %u with error %d", 2440 inode->i_ino, 2441 (unsigned long long)map->m_lblk, 2442 (unsigned)map->m_len, -err); 2443 ext4_msg(sb, KERN_CRIT, 2444 "This should not happen!! Data will " 2445 "be lost\n"); 2446 if (err == -ENOSPC) 2447 ext4_print_free_blocks(inode); 2448 invalidate_dirty_pages: 2449 *give_up_on_write = true; 2450 return err; 2451 } 2452 progress = 1; 2453 /* 2454 * Update buffer state, submit mapped pages, and get us new 2455 * extent to map 2456 */ 2457 err = mpage_map_and_submit_buffers(mpd); 2458 if (err < 0) 2459 goto update_disksize; 2460 } while (map->m_len); 2461 2462 update_disksize: 2463 /* 2464 * Update on-disk size after IO is submitted. Races with 2465 * truncate are avoided by checking i_size under i_data_sem. 2466 */ 2467 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2468 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2469 int err2; 2470 loff_t i_size; 2471 2472 down_write(&EXT4_I(inode)->i_data_sem); 2473 i_size = i_size_read(inode); 2474 if (disksize > i_size) 2475 disksize = i_size; 2476 if (disksize > EXT4_I(inode)->i_disksize) 2477 EXT4_I(inode)->i_disksize = disksize; 2478 up_write(&EXT4_I(inode)->i_data_sem); 2479 err2 = ext4_mark_inode_dirty(handle, inode); 2480 if (err2) { 2481 ext4_set_errno(inode->i_sb, -err2); 2482 ext4_error(inode->i_sb, 2483 "Failed to mark inode %lu dirty", 2484 inode->i_ino); 2485 } 2486 if (!err) 2487 err = err2; 2488 } 2489 return err; 2490 } 2491 2492 /* 2493 * Calculate the total number of credits to reserve for one writepages 2494 * iteration. This is called from ext4_writepages(). We map an extent of 2495 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2496 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2497 * bpp - 1 blocks in bpp different extents. 2498 */ 2499 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2500 { 2501 int bpp = ext4_journal_blocks_per_page(inode); 2502 2503 return ext4_meta_trans_blocks(inode, 2504 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2505 } 2506 2507 /* 2508 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2509 * and underlying extent to map 2510 * 2511 * @mpd - where to look for pages 2512 * 2513 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2514 * IO immediately. When we find a page which isn't mapped we start accumulating 2515 * extent of buffers underlying these pages that needs mapping (formed by 2516 * either delayed or unwritten buffers). We also lock the pages containing 2517 * these buffers. The extent found is returned in @mpd structure (starting at 2518 * mpd->lblk with length mpd->len blocks). 2519 * 2520 * Note that this function can attach bios to one io_end structure which are 2521 * neither logically nor physically contiguous. Although it may seem as an 2522 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2523 * case as we need to track IO to all buffers underlying a page in one io_end. 2524 */ 2525 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2526 { 2527 struct address_space *mapping = mpd->inode->i_mapping; 2528 struct pagevec pvec; 2529 unsigned int nr_pages; 2530 long left = mpd->wbc->nr_to_write; 2531 pgoff_t index = mpd->first_page; 2532 pgoff_t end = mpd->last_page; 2533 xa_mark_t tag; 2534 int i, err = 0; 2535 int blkbits = mpd->inode->i_blkbits; 2536 ext4_lblk_t lblk; 2537 struct buffer_head *head; 2538 2539 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2540 tag = PAGECACHE_TAG_TOWRITE; 2541 else 2542 tag = PAGECACHE_TAG_DIRTY; 2543 2544 pagevec_init(&pvec); 2545 mpd->map.m_len = 0; 2546 mpd->next_page = index; 2547 while (index <= end) { 2548 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2549 tag); 2550 if (nr_pages == 0) 2551 goto out; 2552 2553 for (i = 0; i < nr_pages; i++) { 2554 struct page *page = pvec.pages[i]; 2555 2556 /* 2557 * Accumulated enough dirty pages? This doesn't apply 2558 * to WB_SYNC_ALL mode. For integrity sync we have to 2559 * keep going because someone may be concurrently 2560 * dirtying pages, and we might have synced a lot of 2561 * newly appeared dirty pages, but have not synced all 2562 * of the old dirty pages. 2563 */ 2564 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2565 goto out; 2566 2567 /* If we can't merge this page, we are done. */ 2568 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2569 goto out; 2570 2571 lock_page(page); 2572 /* 2573 * If the page is no longer dirty, or its mapping no 2574 * longer corresponds to inode we are writing (which 2575 * means it has been truncated or invalidated), or the 2576 * page is already under writeback and we are not doing 2577 * a data integrity writeback, skip the page 2578 */ 2579 if (!PageDirty(page) || 2580 (PageWriteback(page) && 2581 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2582 unlikely(page->mapping != mapping)) { 2583 unlock_page(page); 2584 continue; 2585 } 2586 2587 wait_on_page_writeback(page); 2588 BUG_ON(PageWriteback(page)); 2589 2590 if (mpd->map.m_len == 0) 2591 mpd->first_page = page->index; 2592 mpd->next_page = page->index + 1; 2593 /* Add all dirty buffers to mpd */ 2594 lblk = ((ext4_lblk_t)page->index) << 2595 (PAGE_SHIFT - blkbits); 2596 head = page_buffers(page); 2597 err = mpage_process_page_bufs(mpd, head, head, lblk); 2598 if (err <= 0) 2599 goto out; 2600 err = 0; 2601 left--; 2602 } 2603 pagevec_release(&pvec); 2604 cond_resched(); 2605 } 2606 return 0; 2607 out: 2608 pagevec_release(&pvec); 2609 return err; 2610 } 2611 2612 static int ext4_writepages(struct address_space *mapping, 2613 struct writeback_control *wbc) 2614 { 2615 pgoff_t writeback_index = 0; 2616 long nr_to_write = wbc->nr_to_write; 2617 int range_whole = 0; 2618 int cycled = 1; 2619 handle_t *handle = NULL; 2620 struct mpage_da_data mpd; 2621 struct inode *inode = mapping->host; 2622 int needed_blocks, rsv_blocks = 0, ret = 0; 2623 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2624 bool done; 2625 struct blk_plug plug; 2626 bool give_up_on_write = false; 2627 2628 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2629 return -EIO; 2630 2631 percpu_down_read(&sbi->s_writepages_rwsem); 2632 trace_ext4_writepages(inode, wbc); 2633 2634 /* 2635 * No pages to write? This is mainly a kludge to avoid starting 2636 * a transaction for special inodes like journal inode on last iput() 2637 * because that could violate lock ordering on umount 2638 */ 2639 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2640 goto out_writepages; 2641 2642 if (ext4_should_journal_data(inode)) { 2643 ret = generic_writepages(mapping, wbc); 2644 goto out_writepages; 2645 } 2646 2647 /* 2648 * If the filesystem has aborted, it is read-only, so return 2649 * right away instead of dumping stack traces later on that 2650 * will obscure the real source of the problem. We test 2651 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2652 * the latter could be true if the filesystem is mounted 2653 * read-only, and in that case, ext4_writepages should 2654 * *never* be called, so if that ever happens, we would want 2655 * the stack trace. 2656 */ 2657 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2658 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2659 ret = -EROFS; 2660 goto out_writepages; 2661 } 2662 2663 /* 2664 * If we have inline data and arrive here, it means that 2665 * we will soon create the block for the 1st page, so 2666 * we'd better clear the inline data here. 2667 */ 2668 if (ext4_has_inline_data(inode)) { 2669 /* Just inode will be modified... */ 2670 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2671 if (IS_ERR(handle)) { 2672 ret = PTR_ERR(handle); 2673 goto out_writepages; 2674 } 2675 BUG_ON(ext4_test_inode_state(inode, 2676 EXT4_STATE_MAY_INLINE_DATA)); 2677 ext4_destroy_inline_data(handle, inode); 2678 ext4_journal_stop(handle); 2679 } 2680 2681 if (ext4_should_dioread_nolock(inode)) { 2682 /* 2683 * We may need to convert up to one extent per block in 2684 * the page and we may dirty the inode. 2685 */ 2686 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2687 PAGE_SIZE >> inode->i_blkbits); 2688 } 2689 2690 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2691 range_whole = 1; 2692 2693 if (wbc->range_cyclic) { 2694 writeback_index = mapping->writeback_index; 2695 if (writeback_index) 2696 cycled = 0; 2697 mpd.first_page = writeback_index; 2698 mpd.last_page = -1; 2699 } else { 2700 mpd.first_page = wbc->range_start >> PAGE_SHIFT; 2701 mpd.last_page = wbc->range_end >> PAGE_SHIFT; 2702 } 2703 2704 mpd.inode = inode; 2705 mpd.wbc = wbc; 2706 ext4_io_submit_init(&mpd.io_submit, wbc); 2707 retry: 2708 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2709 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2710 done = false; 2711 blk_start_plug(&plug); 2712 2713 /* 2714 * First writeback pages that don't need mapping - we can avoid 2715 * starting a transaction unnecessarily and also avoid being blocked 2716 * in the block layer on device congestion while having transaction 2717 * started. 2718 */ 2719 mpd.do_map = 0; 2720 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2721 if (!mpd.io_submit.io_end) { 2722 ret = -ENOMEM; 2723 goto unplug; 2724 } 2725 ret = mpage_prepare_extent_to_map(&mpd); 2726 /* Unlock pages we didn't use */ 2727 mpage_release_unused_pages(&mpd, false); 2728 /* Submit prepared bio */ 2729 ext4_io_submit(&mpd.io_submit); 2730 ext4_put_io_end_defer(mpd.io_submit.io_end); 2731 mpd.io_submit.io_end = NULL; 2732 if (ret < 0) 2733 goto unplug; 2734 2735 while (!done && mpd.first_page <= mpd.last_page) { 2736 /* For each extent of pages we use new io_end */ 2737 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2738 if (!mpd.io_submit.io_end) { 2739 ret = -ENOMEM; 2740 break; 2741 } 2742 2743 /* 2744 * We have two constraints: We find one extent to map and we 2745 * must always write out whole page (makes a difference when 2746 * blocksize < pagesize) so that we don't block on IO when we 2747 * try to write out the rest of the page. Journalled mode is 2748 * not supported by delalloc. 2749 */ 2750 BUG_ON(ext4_should_journal_data(inode)); 2751 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2752 2753 /* start a new transaction */ 2754 handle = ext4_journal_start_with_reserve(inode, 2755 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2756 if (IS_ERR(handle)) { 2757 ret = PTR_ERR(handle); 2758 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2759 "%ld pages, ino %lu; err %d", __func__, 2760 wbc->nr_to_write, inode->i_ino, ret); 2761 /* Release allocated io_end */ 2762 ext4_put_io_end(mpd.io_submit.io_end); 2763 mpd.io_submit.io_end = NULL; 2764 break; 2765 } 2766 mpd.do_map = 1; 2767 2768 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2769 ret = mpage_prepare_extent_to_map(&mpd); 2770 if (!ret) { 2771 if (mpd.map.m_len) 2772 ret = mpage_map_and_submit_extent(handle, &mpd, 2773 &give_up_on_write); 2774 else { 2775 /* 2776 * We scanned the whole range (or exhausted 2777 * nr_to_write), submitted what was mapped and 2778 * didn't find anything needing mapping. We are 2779 * done. 2780 */ 2781 done = true; 2782 } 2783 } 2784 /* 2785 * Caution: If the handle is synchronous, 2786 * ext4_journal_stop() can wait for transaction commit 2787 * to finish which may depend on writeback of pages to 2788 * complete or on page lock to be released. In that 2789 * case, we have to wait until after after we have 2790 * submitted all the IO, released page locks we hold, 2791 * and dropped io_end reference (for extent conversion 2792 * to be able to complete) before stopping the handle. 2793 */ 2794 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2795 ext4_journal_stop(handle); 2796 handle = NULL; 2797 mpd.do_map = 0; 2798 } 2799 /* Unlock pages we didn't use */ 2800 mpage_release_unused_pages(&mpd, give_up_on_write); 2801 /* Submit prepared bio */ 2802 ext4_io_submit(&mpd.io_submit); 2803 2804 /* 2805 * Drop our io_end reference we got from init. We have 2806 * to be careful and use deferred io_end finishing if 2807 * we are still holding the transaction as we can 2808 * release the last reference to io_end which may end 2809 * up doing unwritten extent conversion. 2810 */ 2811 if (handle) { 2812 ext4_put_io_end_defer(mpd.io_submit.io_end); 2813 ext4_journal_stop(handle); 2814 } else 2815 ext4_put_io_end(mpd.io_submit.io_end); 2816 mpd.io_submit.io_end = NULL; 2817 2818 if (ret == -ENOSPC && sbi->s_journal) { 2819 /* 2820 * Commit the transaction which would 2821 * free blocks released in the transaction 2822 * and try again 2823 */ 2824 jbd2_journal_force_commit_nested(sbi->s_journal); 2825 ret = 0; 2826 continue; 2827 } 2828 /* Fatal error - ENOMEM, EIO... */ 2829 if (ret) 2830 break; 2831 } 2832 unplug: 2833 blk_finish_plug(&plug); 2834 if (!ret && !cycled && wbc->nr_to_write > 0) { 2835 cycled = 1; 2836 mpd.last_page = writeback_index - 1; 2837 mpd.first_page = 0; 2838 goto retry; 2839 } 2840 2841 /* Update index */ 2842 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2843 /* 2844 * Set the writeback_index so that range_cyclic 2845 * mode will write it back later 2846 */ 2847 mapping->writeback_index = mpd.first_page; 2848 2849 out_writepages: 2850 trace_ext4_writepages_result(inode, wbc, ret, 2851 nr_to_write - wbc->nr_to_write); 2852 percpu_up_read(&sbi->s_writepages_rwsem); 2853 return ret; 2854 } 2855 2856 static int ext4_dax_writepages(struct address_space *mapping, 2857 struct writeback_control *wbc) 2858 { 2859 int ret; 2860 long nr_to_write = wbc->nr_to_write; 2861 struct inode *inode = mapping->host; 2862 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2863 2864 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2865 return -EIO; 2866 2867 percpu_down_read(&sbi->s_writepages_rwsem); 2868 trace_ext4_writepages(inode, wbc); 2869 2870 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2871 trace_ext4_writepages_result(inode, wbc, ret, 2872 nr_to_write - wbc->nr_to_write); 2873 percpu_up_read(&sbi->s_writepages_rwsem); 2874 return ret; 2875 } 2876 2877 static int ext4_nonda_switch(struct super_block *sb) 2878 { 2879 s64 free_clusters, dirty_clusters; 2880 struct ext4_sb_info *sbi = EXT4_SB(sb); 2881 2882 /* 2883 * switch to non delalloc mode if we are running low 2884 * on free block. The free block accounting via percpu 2885 * counters can get slightly wrong with percpu_counter_batch getting 2886 * accumulated on each CPU without updating global counters 2887 * Delalloc need an accurate free block accounting. So switch 2888 * to non delalloc when we are near to error range. 2889 */ 2890 free_clusters = 2891 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2892 dirty_clusters = 2893 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2894 /* 2895 * Start pushing delalloc when 1/2 of free blocks are dirty. 2896 */ 2897 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2898 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2899 2900 if (2 * free_clusters < 3 * dirty_clusters || 2901 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2902 /* 2903 * free block count is less than 150% of dirty blocks 2904 * or free blocks is less than watermark 2905 */ 2906 return 1; 2907 } 2908 return 0; 2909 } 2910 2911 /* We always reserve for an inode update; the superblock could be there too */ 2912 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2913 { 2914 if (likely(ext4_has_feature_large_file(inode->i_sb))) 2915 return 1; 2916 2917 if (pos + len <= 0x7fffffffULL) 2918 return 1; 2919 2920 /* We might need to update the superblock to set LARGE_FILE */ 2921 return 2; 2922 } 2923 2924 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2925 loff_t pos, unsigned len, unsigned flags, 2926 struct page **pagep, void **fsdata) 2927 { 2928 int ret, retries = 0; 2929 struct page *page; 2930 pgoff_t index; 2931 struct inode *inode = mapping->host; 2932 handle_t *handle; 2933 2934 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2935 return -EIO; 2936 2937 index = pos >> PAGE_SHIFT; 2938 2939 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) || 2940 ext4_verity_in_progress(inode)) { 2941 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2942 return ext4_write_begin(file, mapping, pos, 2943 len, flags, pagep, fsdata); 2944 } 2945 *fsdata = (void *)0; 2946 trace_ext4_da_write_begin(inode, pos, len, flags); 2947 2948 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2949 ret = ext4_da_write_inline_data_begin(mapping, inode, 2950 pos, len, flags, 2951 pagep, fsdata); 2952 if (ret < 0) 2953 return ret; 2954 if (ret == 1) 2955 return 0; 2956 } 2957 2958 /* 2959 * grab_cache_page_write_begin() can take a long time if the 2960 * system is thrashing due to memory pressure, or if the page 2961 * is being written back. So grab it first before we start 2962 * the transaction handle. This also allows us to allocate 2963 * the page (if needed) without using GFP_NOFS. 2964 */ 2965 retry_grab: 2966 page = grab_cache_page_write_begin(mapping, index, flags); 2967 if (!page) 2968 return -ENOMEM; 2969 unlock_page(page); 2970 2971 /* 2972 * With delayed allocation, we don't log the i_disksize update 2973 * if there is delayed block allocation. But we still need 2974 * to journalling the i_disksize update if writes to the end 2975 * of file which has an already mapped buffer. 2976 */ 2977 retry_journal: 2978 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2979 ext4_da_write_credits(inode, pos, len)); 2980 if (IS_ERR(handle)) { 2981 put_page(page); 2982 return PTR_ERR(handle); 2983 } 2984 2985 lock_page(page); 2986 if (page->mapping != mapping) { 2987 /* The page got truncated from under us */ 2988 unlock_page(page); 2989 put_page(page); 2990 ext4_journal_stop(handle); 2991 goto retry_grab; 2992 } 2993 /* In case writeback began while the page was unlocked */ 2994 wait_for_stable_page(page); 2995 2996 #ifdef CONFIG_FS_ENCRYPTION 2997 ret = ext4_block_write_begin(page, pos, len, 2998 ext4_da_get_block_prep); 2999 #else 3000 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 3001 #endif 3002 if (ret < 0) { 3003 unlock_page(page); 3004 ext4_journal_stop(handle); 3005 /* 3006 * block_write_begin may have instantiated a few blocks 3007 * outside i_size. Trim these off again. Don't need 3008 * i_size_read because we hold i_mutex. 3009 */ 3010 if (pos + len > inode->i_size) 3011 ext4_truncate_failed_write(inode); 3012 3013 if (ret == -ENOSPC && 3014 ext4_should_retry_alloc(inode->i_sb, &retries)) 3015 goto retry_journal; 3016 3017 put_page(page); 3018 return ret; 3019 } 3020 3021 *pagep = page; 3022 return ret; 3023 } 3024 3025 /* 3026 * Check if we should update i_disksize 3027 * when write to the end of file but not require block allocation 3028 */ 3029 static int ext4_da_should_update_i_disksize(struct page *page, 3030 unsigned long offset) 3031 { 3032 struct buffer_head *bh; 3033 struct inode *inode = page->mapping->host; 3034 unsigned int idx; 3035 int i; 3036 3037 bh = page_buffers(page); 3038 idx = offset >> inode->i_blkbits; 3039 3040 for (i = 0; i < idx; i++) 3041 bh = bh->b_this_page; 3042 3043 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 3044 return 0; 3045 return 1; 3046 } 3047 3048 static int ext4_da_write_end(struct file *file, 3049 struct address_space *mapping, 3050 loff_t pos, unsigned len, unsigned copied, 3051 struct page *page, void *fsdata) 3052 { 3053 struct inode *inode = mapping->host; 3054 int ret = 0, ret2; 3055 handle_t *handle = ext4_journal_current_handle(); 3056 loff_t new_i_size; 3057 unsigned long start, end; 3058 int write_mode = (int)(unsigned long)fsdata; 3059 3060 if (write_mode == FALL_BACK_TO_NONDELALLOC) 3061 return ext4_write_end(file, mapping, pos, 3062 len, copied, page, fsdata); 3063 3064 trace_ext4_da_write_end(inode, pos, len, copied); 3065 start = pos & (PAGE_SIZE - 1); 3066 end = start + copied - 1; 3067 3068 /* 3069 * generic_write_end() will run mark_inode_dirty() if i_size 3070 * changes. So let's piggyback the i_disksize mark_inode_dirty 3071 * into that. 3072 */ 3073 new_i_size = pos + copied; 3074 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 3075 if (ext4_has_inline_data(inode) || 3076 ext4_da_should_update_i_disksize(page, end)) { 3077 ext4_update_i_disksize(inode, new_i_size); 3078 /* We need to mark inode dirty even if 3079 * new_i_size is less that inode->i_size 3080 * bu greater than i_disksize.(hint delalloc) 3081 */ 3082 ext4_mark_inode_dirty(handle, inode); 3083 } 3084 } 3085 3086 if (write_mode != CONVERT_INLINE_DATA && 3087 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 3088 ext4_has_inline_data(inode)) 3089 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 3090 page); 3091 else 3092 ret2 = generic_write_end(file, mapping, pos, len, copied, 3093 page, fsdata); 3094 3095 copied = ret2; 3096 if (ret2 < 0) 3097 ret = ret2; 3098 ret2 = ext4_journal_stop(handle); 3099 if (!ret) 3100 ret = ret2; 3101 3102 return ret ? ret : copied; 3103 } 3104 3105 /* 3106 * Force all delayed allocation blocks to be allocated for a given inode. 3107 */ 3108 int ext4_alloc_da_blocks(struct inode *inode) 3109 { 3110 trace_ext4_alloc_da_blocks(inode); 3111 3112 if (!EXT4_I(inode)->i_reserved_data_blocks) 3113 return 0; 3114 3115 /* 3116 * We do something simple for now. The filemap_flush() will 3117 * also start triggering a write of the data blocks, which is 3118 * not strictly speaking necessary (and for users of 3119 * laptop_mode, not even desirable). However, to do otherwise 3120 * would require replicating code paths in: 3121 * 3122 * ext4_writepages() -> 3123 * write_cache_pages() ---> (via passed in callback function) 3124 * __mpage_da_writepage() --> 3125 * mpage_add_bh_to_extent() 3126 * mpage_da_map_blocks() 3127 * 3128 * The problem is that write_cache_pages(), located in 3129 * mm/page-writeback.c, marks pages clean in preparation for 3130 * doing I/O, which is not desirable if we're not planning on 3131 * doing I/O at all. 3132 * 3133 * We could call write_cache_pages(), and then redirty all of 3134 * the pages by calling redirty_page_for_writepage() but that 3135 * would be ugly in the extreme. So instead we would need to 3136 * replicate parts of the code in the above functions, 3137 * simplifying them because we wouldn't actually intend to 3138 * write out the pages, but rather only collect contiguous 3139 * logical block extents, call the multi-block allocator, and 3140 * then update the buffer heads with the block allocations. 3141 * 3142 * For now, though, we'll cheat by calling filemap_flush(), 3143 * which will map the blocks, and start the I/O, but not 3144 * actually wait for the I/O to complete. 3145 */ 3146 return filemap_flush(inode->i_mapping); 3147 } 3148 3149 /* 3150 * bmap() is special. It gets used by applications such as lilo and by 3151 * the swapper to find the on-disk block of a specific piece of data. 3152 * 3153 * Naturally, this is dangerous if the block concerned is still in the 3154 * journal. If somebody makes a swapfile on an ext4 data-journaling 3155 * filesystem and enables swap, then they may get a nasty shock when the 3156 * data getting swapped to that swapfile suddenly gets overwritten by 3157 * the original zero's written out previously to the journal and 3158 * awaiting writeback in the kernel's buffer cache. 3159 * 3160 * So, if we see any bmap calls here on a modified, data-journaled file, 3161 * take extra steps to flush any blocks which might be in the cache. 3162 */ 3163 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3164 { 3165 struct inode *inode = mapping->host; 3166 journal_t *journal; 3167 int err; 3168 3169 /* 3170 * We can get here for an inline file via the FIBMAP ioctl 3171 */ 3172 if (ext4_has_inline_data(inode)) 3173 return 0; 3174 3175 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3176 test_opt(inode->i_sb, DELALLOC)) { 3177 /* 3178 * With delalloc we want to sync the file 3179 * so that we can make sure we allocate 3180 * blocks for file 3181 */ 3182 filemap_write_and_wait(mapping); 3183 } 3184 3185 if (EXT4_JOURNAL(inode) && 3186 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 3187 /* 3188 * This is a REALLY heavyweight approach, but the use of 3189 * bmap on dirty files is expected to be extremely rare: 3190 * only if we run lilo or swapon on a freshly made file 3191 * do we expect this to happen. 3192 * 3193 * (bmap requires CAP_SYS_RAWIO so this does not 3194 * represent an unprivileged user DOS attack --- we'd be 3195 * in trouble if mortal users could trigger this path at 3196 * will.) 3197 * 3198 * NB. EXT4_STATE_JDATA is not set on files other than 3199 * regular files. If somebody wants to bmap a directory 3200 * or symlink and gets confused because the buffer 3201 * hasn't yet been flushed to disk, they deserve 3202 * everything they get. 3203 */ 3204 3205 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 3206 journal = EXT4_JOURNAL(inode); 3207 jbd2_journal_lock_updates(journal); 3208 err = jbd2_journal_flush(journal); 3209 jbd2_journal_unlock_updates(journal); 3210 3211 if (err) 3212 return 0; 3213 } 3214 3215 return generic_block_bmap(mapping, block, ext4_get_block); 3216 } 3217 3218 static int ext4_readpage(struct file *file, struct page *page) 3219 { 3220 int ret = -EAGAIN; 3221 struct inode *inode = page->mapping->host; 3222 3223 trace_ext4_readpage(page); 3224 3225 if (ext4_has_inline_data(inode)) 3226 ret = ext4_readpage_inline(inode, page); 3227 3228 if (ret == -EAGAIN) 3229 return ext4_mpage_readpages(page->mapping, NULL, page, 1, 3230 false); 3231 3232 return ret; 3233 } 3234 3235 static int 3236 ext4_readpages(struct file *file, struct address_space *mapping, 3237 struct list_head *pages, unsigned nr_pages) 3238 { 3239 struct inode *inode = mapping->host; 3240 3241 /* If the file has inline data, no need to do readpages. */ 3242 if (ext4_has_inline_data(inode)) 3243 return 0; 3244 3245 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true); 3246 } 3247 3248 static void ext4_invalidatepage(struct page *page, unsigned int offset, 3249 unsigned int length) 3250 { 3251 trace_ext4_invalidatepage(page, offset, length); 3252 3253 /* No journalling happens on data buffers when this function is used */ 3254 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 3255 3256 block_invalidatepage(page, offset, length); 3257 } 3258 3259 static int __ext4_journalled_invalidatepage(struct page *page, 3260 unsigned int offset, 3261 unsigned int length) 3262 { 3263 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3264 3265 trace_ext4_journalled_invalidatepage(page, offset, length); 3266 3267 /* 3268 * If it's a full truncate we just forget about the pending dirtying 3269 */ 3270 if (offset == 0 && length == PAGE_SIZE) 3271 ClearPageChecked(page); 3272 3273 return jbd2_journal_invalidatepage(journal, page, offset, length); 3274 } 3275 3276 /* Wrapper for aops... */ 3277 static void ext4_journalled_invalidatepage(struct page *page, 3278 unsigned int offset, 3279 unsigned int length) 3280 { 3281 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3282 } 3283 3284 static int ext4_releasepage(struct page *page, gfp_t wait) 3285 { 3286 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3287 3288 trace_ext4_releasepage(page); 3289 3290 /* Page has dirty journalled data -> cannot release */ 3291 if (PageChecked(page)) 3292 return 0; 3293 if (journal) 3294 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3295 else 3296 return try_to_free_buffers(page); 3297 } 3298 3299 static bool ext4_inode_datasync_dirty(struct inode *inode) 3300 { 3301 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3302 3303 if (journal) 3304 return !jbd2_transaction_committed(journal, 3305 EXT4_I(inode)->i_datasync_tid); 3306 /* Any metadata buffers to write? */ 3307 if (!list_empty(&inode->i_mapping->private_list)) 3308 return true; 3309 return inode->i_state & I_DIRTY_DATASYNC; 3310 } 3311 3312 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3313 struct ext4_map_blocks *map, loff_t offset, 3314 loff_t length) 3315 { 3316 u8 blkbits = inode->i_blkbits; 3317 3318 /* 3319 * Writes that span EOF might trigger an I/O size update on completion, 3320 * so consider them to be dirty for the purpose of O_DSYNC, even if 3321 * there is no other metadata changes being made or are pending. 3322 */ 3323 iomap->flags = 0; 3324 if (ext4_inode_datasync_dirty(inode) || 3325 offset + length > i_size_read(inode)) 3326 iomap->flags |= IOMAP_F_DIRTY; 3327 3328 if (map->m_flags & EXT4_MAP_NEW) 3329 iomap->flags |= IOMAP_F_NEW; 3330 3331 iomap->bdev = inode->i_sb->s_bdev; 3332 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3333 iomap->offset = (u64) map->m_lblk << blkbits; 3334 iomap->length = (u64) map->m_len << blkbits; 3335 3336 /* 3337 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3338 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3339 * set. In order for any allocated unwritten extents to be converted 3340 * into written extents correctly within the ->end_io() handler, we 3341 * need to ensure that the iomap->type is set appropriately. Hence, the 3342 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3343 * been set first. 3344 */ 3345 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3346 iomap->type = IOMAP_UNWRITTEN; 3347 iomap->addr = (u64) map->m_pblk << blkbits; 3348 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3349 iomap->type = IOMAP_MAPPED; 3350 iomap->addr = (u64) map->m_pblk << blkbits; 3351 } else { 3352 iomap->type = IOMAP_HOLE; 3353 iomap->addr = IOMAP_NULL_ADDR; 3354 } 3355 } 3356 3357 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3358 unsigned int flags) 3359 { 3360 handle_t *handle; 3361 u8 blkbits = inode->i_blkbits; 3362 int ret, dio_credits, m_flags = 0, retries = 0; 3363 3364 /* 3365 * Trim the mapping request to the maximum value that we can map at 3366 * once for direct I/O. 3367 */ 3368 if (map->m_len > DIO_MAX_BLOCKS) 3369 map->m_len = DIO_MAX_BLOCKS; 3370 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3371 3372 retry: 3373 /* 3374 * Either we allocate blocks and then don't get an unwritten extent, so 3375 * in that case we have reserved enough credits. Or, the blocks are 3376 * already allocated and unwritten. In that case, the extent conversion 3377 * fits into the credits as well. 3378 */ 3379 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3380 if (IS_ERR(handle)) 3381 return PTR_ERR(handle); 3382 3383 /* 3384 * DAX and direct I/O are the only two operations that are currently 3385 * supported with IOMAP_WRITE. 3386 */ 3387 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT)); 3388 if (IS_DAX(inode)) 3389 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3390 /* 3391 * We use i_size instead of i_disksize here because delalloc writeback 3392 * can complete at any point during the I/O and subsequently push the 3393 * i_disksize out to i_size. This could be beyond where direct I/O is 3394 * happening and thus expose allocated blocks to direct I/O reads. 3395 */ 3396 else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode)) 3397 m_flags = EXT4_GET_BLOCKS_CREATE; 3398 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3399 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3400 3401 ret = ext4_map_blocks(handle, inode, map, m_flags); 3402 3403 /* 3404 * We cannot fill holes in indirect tree based inodes as that could 3405 * expose stale data in the case of a crash. Use the magic error code 3406 * to fallback to buffered I/O. 3407 */ 3408 if (!m_flags && !ret) 3409 ret = -ENOTBLK; 3410 3411 ext4_journal_stop(handle); 3412 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3413 goto retry; 3414 3415 return ret; 3416 } 3417 3418 3419 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3420 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3421 { 3422 int ret; 3423 struct ext4_map_blocks map; 3424 u8 blkbits = inode->i_blkbits; 3425 3426 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3427 return -EINVAL; 3428 3429 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3430 return -ERANGE; 3431 3432 /* 3433 * Calculate the first and last logical blocks respectively. 3434 */ 3435 map.m_lblk = offset >> blkbits; 3436 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3437 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3438 3439 if (flags & IOMAP_WRITE) 3440 ret = ext4_iomap_alloc(inode, &map, flags); 3441 else 3442 ret = ext4_map_blocks(NULL, inode, &map, 0); 3443 3444 if (ret < 0) 3445 return ret; 3446 3447 ext4_set_iomap(inode, iomap, &map, offset, length); 3448 3449 return 0; 3450 } 3451 3452 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3453 loff_t length, unsigned flags, struct iomap *iomap, 3454 struct iomap *srcmap) 3455 { 3456 int ret; 3457 3458 /* 3459 * Even for writes we don't need to allocate blocks, so just pretend 3460 * we are reading to save overhead of starting a transaction. 3461 */ 3462 flags &= ~IOMAP_WRITE; 3463 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3464 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3465 return ret; 3466 } 3467 3468 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3469 ssize_t written, unsigned flags, struct iomap *iomap) 3470 { 3471 /* 3472 * Check to see whether an error occurred while writing out the data to 3473 * the allocated blocks. If so, return the magic error code so that we 3474 * fallback to buffered I/O and attempt to complete the remainder of 3475 * the I/O. Any blocks that may have been allocated in preparation for 3476 * the direct I/O will be reused during buffered I/O. 3477 */ 3478 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3479 return -ENOTBLK; 3480 3481 return 0; 3482 } 3483 3484 const struct iomap_ops ext4_iomap_ops = { 3485 .iomap_begin = ext4_iomap_begin, 3486 .iomap_end = ext4_iomap_end, 3487 }; 3488 3489 const struct iomap_ops ext4_iomap_overwrite_ops = { 3490 .iomap_begin = ext4_iomap_overwrite_begin, 3491 .iomap_end = ext4_iomap_end, 3492 }; 3493 3494 static bool ext4_iomap_is_delalloc(struct inode *inode, 3495 struct ext4_map_blocks *map) 3496 { 3497 struct extent_status es; 3498 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3499 3500 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3501 map->m_lblk, end, &es); 3502 3503 if (!es.es_len || es.es_lblk > end) 3504 return false; 3505 3506 if (es.es_lblk > map->m_lblk) { 3507 map->m_len = es.es_lblk - map->m_lblk; 3508 return false; 3509 } 3510 3511 offset = map->m_lblk - es.es_lblk; 3512 map->m_len = es.es_len - offset; 3513 3514 return true; 3515 } 3516 3517 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3518 loff_t length, unsigned int flags, 3519 struct iomap *iomap, struct iomap *srcmap) 3520 { 3521 int ret; 3522 bool delalloc = false; 3523 struct ext4_map_blocks map; 3524 u8 blkbits = inode->i_blkbits; 3525 3526 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3527 return -EINVAL; 3528 3529 if (ext4_has_inline_data(inode)) { 3530 ret = ext4_inline_data_iomap(inode, iomap); 3531 if (ret != -EAGAIN) { 3532 if (ret == 0 && offset >= iomap->length) 3533 ret = -ENOENT; 3534 return ret; 3535 } 3536 } 3537 3538 /* 3539 * Calculate the first and last logical block respectively. 3540 */ 3541 map.m_lblk = offset >> blkbits; 3542 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3543 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3544 3545 ret = ext4_map_blocks(NULL, inode, &map, 0); 3546 if (ret < 0) 3547 return ret; 3548 if (ret == 0) 3549 delalloc = ext4_iomap_is_delalloc(inode, &map); 3550 3551 ext4_set_iomap(inode, iomap, &map, offset, length); 3552 if (delalloc && iomap->type == IOMAP_HOLE) 3553 iomap->type = IOMAP_DELALLOC; 3554 3555 return 0; 3556 } 3557 3558 const struct iomap_ops ext4_iomap_report_ops = { 3559 .iomap_begin = ext4_iomap_begin_report, 3560 }; 3561 3562 /* 3563 * Pages can be marked dirty completely asynchronously from ext4's journalling 3564 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3565 * much here because ->set_page_dirty is called under VFS locks. The page is 3566 * not necessarily locked. 3567 * 3568 * We cannot just dirty the page and leave attached buffers clean, because the 3569 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3570 * or jbddirty because all the journalling code will explode. 3571 * 3572 * So what we do is to mark the page "pending dirty" and next time writepage 3573 * is called, propagate that into the buffers appropriately. 3574 */ 3575 static int ext4_journalled_set_page_dirty(struct page *page) 3576 { 3577 SetPageChecked(page); 3578 return __set_page_dirty_nobuffers(page); 3579 } 3580 3581 static int ext4_set_page_dirty(struct page *page) 3582 { 3583 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page)); 3584 WARN_ON_ONCE(!page_has_buffers(page)); 3585 return __set_page_dirty_buffers(page); 3586 } 3587 3588 static const struct address_space_operations ext4_aops = { 3589 .readpage = ext4_readpage, 3590 .readpages = ext4_readpages, 3591 .writepage = ext4_writepage, 3592 .writepages = ext4_writepages, 3593 .write_begin = ext4_write_begin, 3594 .write_end = ext4_write_end, 3595 .set_page_dirty = ext4_set_page_dirty, 3596 .bmap = ext4_bmap, 3597 .invalidatepage = ext4_invalidatepage, 3598 .releasepage = ext4_releasepage, 3599 .direct_IO = noop_direct_IO, 3600 .migratepage = buffer_migrate_page, 3601 .is_partially_uptodate = block_is_partially_uptodate, 3602 .error_remove_page = generic_error_remove_page, 3603 }; 3604 3605 static const struct address_space_operations ext4_journalled_aops = { 3606 .readpage = ext4_readpage, 3607 .readpages = ext4_readpages, 3608 .writepage = ext4_writepage, 3609 .writepages = ext4_writepages, 3610 .write_begin = ext4_write_begin, 3611 .write_end = ext4_journalled_write_end, 3612 .set_page_dirty = ext4_journalled_set_page_dirty, 3613 .bmap = ext4_bmap, 3614 .invalidatepage = ext4_journalled_invalidatepage, 3615 .releasepage = ext4_releasepage, 3616 .direct_IO = noop_direct_IO, 3617 .is_partially_uptodate = block_is_partially_uptodate, 3618 .error_remove_page = generic_error_remove_page, 3619 }; 3620 3621 static const struct address_space_operations ext4_da_aops = { 3622 .readpage = ext4_readpage, 3623 .readpages = ext4_readpages, 3624 .writepage = ext4_writepage, 3625 .writepages = ext4_writepages, 3626 .write_begin = ext4_da_write_begin, 3627 .write_end = ext4_da_write_end, 3628 .set_page_dirty = ext4_set_page_dirty, 3629 .bmap = ext4_bmap, 3630 .invalidatepage = ext4_invalidatepage, 3631 .releasepage = ext4_releasepage, 3632 .direct_IO = noop_direct_IO, 3633 .migratepage = buffer_migrate_page, 3634 .is_partially_uptodate = block_is_partially_uptodate, 3635 .error_remove_page = generic_error_remove_page, 3636 }; 3637 3638 static const struct address_space_operations ext4_dax_aops = { 3639 .writepages = ext4_dax_writepages, 3640 .direct_IO = noop_direct_IO, 3641 .set_page_dirty = noop_set_page_dirty, 3642 .bmap = ext4_bmap, 3643 .invalidatepage = noop_invalidatepage, 3644 }; 3645 3646 void ext4_set_aops(struct inode *inode) 3647 { 3648 switch (ext4_inode_journal_mode(inode)) { 3649 case EXT4_INODE_ORDERED_DATA_MODE: 3650 case EXT4_INODE_WRITEBACK_DATA_MODE: 3651 break; 3652 case EXT4_INODE_JOURNAL_DATA_MODE: 3653 inode->i_mapping->a_ops = &ext4_journalled_aops; 3654 return; 3655 default: 3656 BUG(); 3657 } 3658 if (IS_DAX(inode)) 3659 inode->i_mapping->a_ops = &ext4_dax_aops; 3660 else if (test_opt(inode->i_sb, DELALLOC)) 3661 inode->i_mapping->a_ops = &ext4_da_aops; 3662 else 3663 inode->i_mapping->a_ops = &ext4_aops; 3664 } 3665 3666 static int __ext4_block_zero_page_range(handle_t *handle, 3667 struct address_space *mapping, loff_t from, loff_t length) 3668 { 3669 ext4_fsblk_t index = from >> PAGE_SHIFT; 3670 unsigned offset = from & (PAGE_SIZE-1); 3671 unsigned blocksize, pos; 3672 ext4_lblk_t iblock; 3673 struct inode *inode = mapping->host; 3674 struct buffer_head *bh; 3675 struct page *page; 3676 int err = 0; 3677 3678 page = find_or_create_page(mapping, from >> PAGE_SHIFT, 3679 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3680 if (!page) 3681 return -ENOMEM; 3682 3683 blocksize = inode->i_sb->s_blocksize; 3684 3685 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3686 3687 if (!page_has_buffers(page)) 3688 create_empty_buffers(page, blocksize, 0); 3689 3690 /* Find the buffer that contains "offset" */ 3691 bh = page_buffers(page); 3692 pos = blocksize; 3693 while (offset >= pos) { 3694 bh = bh->b_this_page; 3695 iblock++; 3696 pos += blocksize; 3697 } 3698 if (buffer_freed(bh)) { 3699 BUFFER_TRACE(bh, "freed: skip"); 3700 goto unlock; 3701 } 3702 if (!buffer_mapped(bh)) { 3703 BUFFER_TRACE(bh, "unmapped"); 3704 ext4_get_block(inode, iblock, bh, 0); 3705 /* unmapped? It's a hole - nothing to do */ 3706 if (!buffer_mapped(bh)) { 3707 BUFFER_TRACE(bh, "still unmapped"); 3708 goto unlock; 3709 } 3710 } 3711 3712 /* Ok, it's mapped. Make sure it's up-to-date */ 3713 if (PageUptodate(page)) 3714 set_buffer_uptodate(bh); 3715 3716 if (!buffer_uptodate(bh)) { 3717 err = -EIO; 3718 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 3719 wait_on_buffer(bh); 3720 /* Uhhuh. Read error. Complain and punt. */ 3721 if (!buffer_uptodate(bh)) 3722 goto unlock; 3723 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) { 3724 /* We expect the key to be set. */ 3725 BUG_ON(!fscrypt_has_encryption_key(inode)); 3726 err = fscrypt_decrypt_pagecache_blocks(page, blocksize, 3727 bh_offset(bh)); 3728 if (err) { 3729 clear_buffer_uptodate(bh); 3730 goto unlock; 3731 } 3732 } 3733 } 3734 if (ext4_should_journal_data(inode)) { 3735 BUFFER_TRACE(bh, "get write access"); 3736 err = ext4_journal_get_write_access(handle, bh); 3737 if (err) 3738 goto unlock; 3739 } 3740 zero_user(page, offset, length); 3741 BUFFER_TRACE(bh, "zeroed end of block"); 3742 3743 if (ext4_should_journal_data(inode)) { 3744 err = ext4_handle_dirty_metadata(handle, inode, bh); 3745 } else { 3746 err = 0; 3747 mark_buffer_dirty(bh); 3748 if (ext4_should_order_data(inode)) 3749 err = ext4_jbd2_inode_add_write(handle, inode, from, 3750 length); 3751 } 3752 3753 unlock: 3754 unlock_page(page); 3755 put_page(page); 3756 return err; 3757 } 3758 3759 /* 3760 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3761 * starting from file offset 'from'. The range to be zero'd must 3762 * be contained with in one block. If the specified range exceeds 3763 * the end of the block it will be shortened to end of the block 3764 * that cooresponds to 'from' 3765 */ 3766 static int ext4_block_zero_page_range(handle_t *handle, 3767 struct address_space *mapping, loff_t from, loff_t length) 3768 { 3769 struct inode *inode = mapping->host; 3770 unsigned offset = from & (PAGE_SIZE-1); 3771 unsigned blocksize = inode->i_sb->s_blocksize; 3772 unsigned max = blocksize - (offset & (blocksize - 1)); 3773 3774 /* 3775 * correct length if it does not fall between 3776 * 'from' and the end of the block 3777 */ 3778 if (length > max || length < 0) 3779 length = max; 3780 3781 if (IS_DAX(inode)) { 3782 return iomap_zero_range(inode, from, length, NULL, 3783 &ext4_iomap_ops); 3784 } 3785 return __ext4_block_zero_page_range(handle, mapping, from, length); 3786 } 3787 3788 /* 3789 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3790 * up to the end of the block which corresponds to `from'. 3791 * This required during truncate. We need to physically zero the tail end 3792 * of that block so it doesn't yield old data if the file is later grown. 3793 */ 3794 static int ext4_block_truncate_page(handle_t *handle, 3795 struct address_space *mapping, loff_t from) 3796 { 3797 unsigned offset = from & (PAGE_SIZE-1); 3798 unsigned length; 3799 unsigned blocksize; 3800 struct inode *inode = mapping->host; 3801 3802 /* If we are processing an encrypted inode during orphan list handling */ 3803 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3804 return 0; 3805 3806 blocksize = inode->i_sb->s_blocksize; 3807 length = blocksize - (offset & (blocksize - 1)); 3808 3809 return ext4_block_zero_page_range(handle, mapping, from, length); 3810 } 3811 3812 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3813 loff_t lstart, loff_t length) 3814 { 3815 struct super_block *sb = inode->i_sb; 3816 struct address_space *mapping = inode->i_mapping; 3817 unsigned partial_start, partial_end; 3818 ext4_fsblk_t start, end; 3819 loff_t byte_end = (lstart + length - 1); 3820 int err = 0; 3821 3822 partial_start = lstart & (sb->s_blocksize - 1); 3823 partial_end = byte_end & (sb->s_blocksize - 1); 3824 3825 start = lstart >> sb->s_blocksize_bits; 3826 end = byte_end >> sb->s_blocksize_bits; 3827 3828 /* Handle partial zero within the single block */ 3829 if (start == end && 3830 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3831 err = ext4_block_zero_page_range(handle, mapping, 3832 lstart, length); 3833 return err; 3834 } 3835 /* Handle partial zero out on the start of the range */ 3836 if (partial_start) { 3837 err = ext4_block_zero_page_range(handle, mapping, 3838 lstart, sb->s_blocksize); 3839 if (err) 3840 return err; 3841 } 3842 /* Handle partial zero out on the end of the range */ 3843 if (partial_end != sb->s_blocksize - 1) 3844 err = ext4_block_zero_page_range(handle, mapping, 3845 byte_end - partial_end, 3846 partial_end + 1); 3847 return err; 3848 } 3849 3850 int ext4_can_truncate(struct inode *inode) 3851 { 3852 if (S_ISREG(inode->i_mode)) 3853 return 1; 3854 if (S_ISDIR(inode->i_mode)) 3855 return 1; 3856 if (S_ISLNK(inode->i_mode)) 3857 return !ext4_inode_is_fast_symlink(inode); 3858 return 0; 3859 } 3860 3861 /* 3862 * We have to make sure i_disksize gets properly updated before we truncate 3863 * page cache due to hole punching or zero range. Otherwise i_disksize update 3864 * can get lost as it may have been postponed to submission of writeback but 3865 * that will never happen after we truncate page cache. 3866 */ 3867 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3868 loff_t len) 3869 { 3870 handle_t *handle; 3871 loff_t size = i_size_read(inode); 3872 3873 WARN_ON(!inode_is_locked(inode)); 3874 if (offset > size || offset + len < size) 3875 return 0; 3876 3877 if (EXT4_I(inode)->i_disksize >= size) 3878 return 0; 3879 3880 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3881 if (IS_ERR(handle)) 3882 return PTR_ERR(handle); 3883 ext4_update_i_disksize(inode, size); 3884 ext4_mark_inode_dirty(handle, inode); 3885 ext4_journal_stop(handle); 3886 3887 return 0; 3888 } 3889 3890 static void ext4_wait_dax_page(struct ext4_inode_info *ei) 3891 { 3892 up_write(&ei->i_mmap_sem); 3893 schedule(); 3894 down_write(&ei->i_mmap_sem); 3895 } 3896 3897 int ext4_break_layouts(struct inode *inode) 3898 { 3899 struct ext4_inode_info *ei = EXT4_I(inode); 3900 struct page *page; 3901 int error; 3902 3903 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem))) 3904 return -EINVAL; 3905 3906 do { 3907 page = dax_layout_busy_page(inode->i_mapping); 3908 if (!page) 3909 return 0; 3910 3911 error = ___wait_var_event(&page->_refcount, 3912 atomic_read(&page->_refcount) == 1, 3913 TASK_INTERRUPTIBLE, 0, 0, 3914 ext4_wait_dax_page(ei)); 3915 } while (error == 0); 3916 3917 return error; 3918 } 3919 3920 /* 3921 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3922 * associated with the given offset and length 3923 * 3924 * @inode: File inode 3925 * @offset: The offset where the hole will begin 3926 * @len: The length of the hole 3927 * 3928 * Returns: 0 on success or negative on failure 3929 */ 3930 3931 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3932 { 3933 struct super_block *sb = inode->i_sb; 3934 ext4_lblk_t first_block, stop_block; 3935 struct address_space *mapping = inode->i_mapping; 3936 loff_t first_block_offset, last_block_offset; 3937 handle_t *handle; 3938 unsigned int credits; 3939 int ret = 0; 3940 3941 trace_ext4_punch_hole(inode, offset, length, 0); 3942 3943 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 3944 if (ext4_has_inline_data(inode)) { 3945 down_write(&EXT4_I(inode)->i_mmap_sem); 3946 ret = ext4_convert_inline_data(inode); 3947 up_write(&EXT4_I(inode)->i_mmap_sem); 3948 if (ret) 3949 return ret; 3950 } 3951 3952 /* 3953 * Write out all dirty pages to avoid race conditions 3954 * Then release them. 3955 */ 3956 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3957 ret = filemap_write_and_wait_range(mapping, offset, 3958 offset + length - 1); 3959 if (ret) 3960 return ret; 3961 } 3962 3963 inode_lock(inode); 3964 3965 /* No need to punch hole beyond i_size */ 3966 if (offset >= inode->i_size) 3967 goto out_mutex; 3968 3969 /* 3970 * If the hole extends beyond i_size, set the hole 3971 * to end after the page that contains i_size 3972 */ 3973 if (offset + length > inode->i_size) { 3974 length = inode->i_size + 3975 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3976 offset; 3977 } 3978 3979 if (offset & (sb->s_blocksize - 1) || 3980 (offset + length) & (sb->s_blocksize - 1)) { 3981 /* 3982 * Attach jinode to inode for jbd2 if we do any zeroing of 3983 * partial block 3984 */ 3985 ret = ext4_inode_attach_jinode(inode); 3986 if (ret < 0) 3987 goto out_mutex; 3988 3989 } 3990 3991 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3992 inode_dio_wait(inode); 3993 3994 /* 3995 * Prevent page faults from reinstantiating pages we have released from 3996 * page cache. 3997 */ 3998 down_write(&EXT4_I(inode)->i_mmap_sem); 3999 4000 ret = ext4_break_layouts(inode); 4001 if (ret) 4002 goto out_dio; 4003 4004 first_block_offset = round_up(offset, sb->s_blocksize); 4005 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 4006 4007 /* Now release the pages and zero block aligned part of pages*/ 4008 if (last_block_offset > first_block_offset) { 4009 ret = ext4_update_disksize_before_punch(inode, offset, length); 4010 if (ret) 4011 goto out_dio; 4012 truncate_pagecache_range(inode, first_block_offset, 4013 last_block_offset); 4014 } 4015 4016 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4017 credits = ext4_writepage_trans_blocks(inode); 4018 else 4019 credits = ext4_blocks_for_truncate(inode); 4020 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4021 if (IS_ERR(handle)) { 4022 ret = PTR_ERR(handle); 4023 ext4_std_error(sb, ret); 4024 goto out_dio; 4025 } 4026 4027 ret = ext4_zero_partial_blocks(handle, inode, offset, 4028 length); 4029 if (ret) 4030 goto out_stop; 4031 4032 first_block = (offset + sb->s_blocksize - 1) >> 4033 EXT4_BLOCK_SIZE_BITS(sb); 4034 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 4035 4036 /* If there are blocks to remove, do it */ 4037 if (stop_block > first_block) { 4038 4039 down_write(&EXT4_I(inode)->i_data_sem); 4040 ext4_discard_preallocations(inode); 4041 4042 ret = ext4_es_remove_extent(inode, first_block, 4043 stop_block - first_block); 4044 if (ret) { 4045 up_write(&EXT4_I(inode)->i_data_sem); 4046 goto out_stop; 4047 } 4048 4049 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4050 ret = ext4_ext_remove_space(inode, first_block, 4051 stop_block - 1); 4052 else 4053 ret = ext4_ind_remove_space(handle, inode, first_block, 4054 stop_block); 4055 4056 up_write(&EXT4_I(inode)->i_data_sem); 4057 } 4058 if (IS_SYNC(inode)) 4059 ext4_handle_sync(handle); 4060 4061 inode->i_mtime = inode->i_ctime = current_time(inode); 4062 ext4_mark_inode_dirty(handle, inode); 4063 if (ret >= 0) 4064 ext4_update_inode_fsync_trans(handle, inode, 1); 4065 out_stop: 4066 ext4_journal_stop(handle); 4067 out_dio: 4068 up_write(&EXT4_I(inode)->i_mmap_sem); 4069 out_mutex: 4070 inode_unlock(inode); 4071 return ret; 4072 } 4073 4074 int ext4_inode_attach_jinode(struct inode *inode) 4075 { 4076 struct ext4_inode_info *ei = EXT4_I(inode); 4077 struct jbd2_inode *jinode; 4078 4079 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4080 return 0; 4081 4082 jinode = jbd2_alloc_inode(GFP_KERNEL); 4083 spin_lock(&inode->i_lock); 4084 if (!ei->jinode) { 4085 if (!jinode) { 4086 spin_unlock(&inode->i_lock); 4087 return -ENOMEM; 4088 } 4089 ei->jinode = jinode; 4090 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4091 jinode = NULL; 4092 } 4093 spin_unlock(&inode->i_lock); 4094 if (unlikely(jinode != NULL)) 4095 jbd2_free_inode(jinode); 4096 return 0; 4097 } 4098 4099 /* 4100 * ext4_truncate() 4101 * 4102 * We block out ext4_get_block() block instantiations across the entire 4103 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4104 * simultaneously on behalf of the same inode. 4105 * 4106 * As we work through the truncate and commit bits of it to the journal there 4107 * is one core, guiding principle: the file's tree must always be consistent on 4108 * disk. We must be able to restart the truncate after a crash. 4109 * 4110 * The file's tree may be transiently inconsistent in memory (although it 4111 * probably isn't), but whenever we close off and commit a journal transaction, 4112 * the contents of (the filesystem + the journal) must be consistent and 4113 * restartable. It's pretty simple, really: bottom up, right to left (although 4114 * left-to-right works OK too). 4115 * 4116 * Note that at recovery time, journal replay occurs *before* the restart of 4117 * truncate against the orphan inode list. 4118 * 4119 * The committed inode has the new, desired i_size (which is the same as 4120 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4121 * that this inode's truncate did not complete and it will again call 4122 * ext4_truncate() to have another go. So there will be instantiated blocks 4123 * to the right of the truncation point in a crashed ext4 filesystem. But 4124 * that's fine - as long as they are linked from the inode, the post-crash 4125 * ext4_truncate() run will find them and release them. 4126 */ 4127 int ext4_truncate(struct inode *inode) 4128 { 4129 struct ext4_inode_info *ei = EXT4_I(inode); 4130 unsigned int credits; 4131 int err = 0; 4132 handle_t *handle; 4133 struct address_space *mapping = inode->i_mapping; 4134 4135 /* 4136 * There is a possibility that we're either freeing the inode 4137 * or it's a completely new inode. In those cases we might not 4138 * have i_mutex locked because it's not necessary. 4139 */ 4140 if (!(inode->i_state & (I_NEW|I_FREEING))) 4141 WARN_ON(!inode_is_locked(inode)); 4142 trace_ext4_truncate_enter(inode); 4143 4144 if (!ext4_can_truncate(inode)) 4145 return 0; 4146 4147 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 4148 4149 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4150 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4151 4152 if (ext4_has_inline_data(inode)) { 4153 int has_inline = 1; 4154 4155 err = ext4_inline_data_truncate(inode, &has_inline); 4156 if (err) 4157 return err; 4158 if (has_inline) 4159 return 0; 4160 } 4161 4162 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4163 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4164 if (ext4_inode_attach_jinode(inode) < 0) 4165 return 0; 4166 } 4167 4168 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4169 credits = ext4_writepage_trans_blocks(inode); 4170 else 4171 credits = ext4_blocks_for_truncate(inode); 4172 4173 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4174 if (IS_ERR(handle)) 4175 return PTR_ERR(handle); 4176 4177 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4178 ext4_block_truncate_page(handle, mapping, inode->i_size); 4179 4180 /* 4181 * We add the inode to the orphan list, so that if this 4182 * truncate spans multiple transactions, and we crash, we will 4183 * resume the truncate when the filesystem recovers. It also 4184 * marks the inode dirty, to catch the new size. 4185 * 4186 * Implication: the file must always be in a sane, consistent 4187 * truncatable state while each transaction commits. 4188 */ 4189 err = ext4_orphan_add(handle, inode); 4190 if (err) 4191 goto out_stop; 4192 4193 down_write(&EXT4_I(inode)->i_data_sem); 4194 4195 ext4_discard_preallocations(inode); 4196 4197 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4198 err = ext4_ext_truncate(handle, inode); 4199 else 4200 ext4_ind_truncate(handle, inode); 4201 4202 up_write(&ei->i_data_sem); 4203 if (err) 4204 goto out_stop; 4205 4206 if (IS_SYNC(inode)) 4207 ext4_handle_sync(handle); 4208 4209 out_stop: 4210 /* 4211 * If this was a simple ftruncate() and the file will remain alive, 4212 * then we need to clear up the orphan record which we created above. 4213 * However, if this was a real unlink then we were called by 4214 * ext4_evict_inode(), and we allow that function to clean up the 4215 * orphan info for us. 4216 */ 4217 if (inode->i_nlink) 4218 ext4_orphan_del(handle, inode); 4219 4220 inode->i_mtime = inode->i_ctime = current_time(inode); 4221 ext4_mark_inode_dirty(handle, inode); 4222 ext4_journal_stop(handle); 4223 4224 trace_ext4_truncate_exit(inode); 4225 return err; 4226 } 4227 4228 /* 4229 * ext4_get_inode_loc returns with an extra refcount against the inode's 4230 * underlying buffer_head on success. If 'in_mem' is true, we have all 4231 * data in memory that is needed to recreate the on-disk version of this 4232 * inode. 4233 */ 4234 static int __ext4_get_inode_loc(struct inode *inode, 4235 struct ext4_iloc *iloc, int in_mem) 4236 { 4237 struct ext4_group_desc *gdp; 4238 struct buffer_head *bh; 4239 struct super_block *sb = inode->i_sb; 4240 ext4_fsblk_t block; 4241 struct blk_plug plug; 4242 int inodes_per_block, inode_offset; 4243 4244 iloc->bh = NULL; 4245 if (inode->i_ino < EXT4_ROOT_INO || 4246 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4247 return -EFSCORRUPTED; 4248 4249 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 4250 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4251 if (!gdp) 4252 return -EIO; 4253 4254 /* 4255 * Figure out the offset within the block group inode table 4256 */ 4257 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4258 inode_offset = ((inode->i_ino - 1) % 4259 EXT4_INODES_PER_GROUP(sb)); 4260 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 4261 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4262 4263 bh = sb_getblk(sb, block); 4264 if (unlikely(!bh)) 4265 return -ENOMEM; 4266 if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO)) 4267 goto simulate_eio; 4268 if (!buffer_uptodate(bh)) { 4269 lock_buffer(bh); 4270 4271 /* 4272 * If the buffer has the write error flag, we have failed 4273 * to write out another inode in the same block. In this 4274 * case, we don't have to read the block because we may 4275 * read the old inode data successfully. 4276 */ 4277 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 4278 set_buffer_uptodate(bh); 4279 4280 if (buffer_uptodate(bh)) { 4281 /* someone brought it uptodate while we waited */ 4282 unlock_buffer(bh); 4283 goto has_buffer; 4284 } 4285 4286 /* 4287 * If we have all information of the inode in memory and this 4288 * is the only valid inode in the block, we need not read the 4289 * block. 4290 */ 4291 if (in_mem) { 4292 struct buffer_head *bitmap_bh; 4293 int i, start; 4294 4295 start = inode_offset & ~(inodes_per_block - 1); 4296 4297 /* Is the inode bitmap in cache? */ 4298 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4299 if (unlikely(!bitmap_bh)) 4300 goto make_io; 4301 4302 /* 4303 * If the inode bitmap isn't in cache then the 4304 * optimisation may end up performing two reads instead 4305 * of one, so skip it. 4306 */ 4307 if (!buffer_uptodate(bitmap_bh)) { 4308 brelse(bitmap_bh); 4309 goto make_io; 4310 } 4311 for (i = start; i < start + inodes_per_block; i++) { 4312 if (i == inode_offset) 4313 continue; 4314 if (ext4_test_bit(i, bitmap_bh->b_data)) 4315 break; 4316 } 4317 brelse(bitmap_bh); 4318 if (i == start + inodes_per_block) { 4319 /* all other inodes are free, so skip I/O */ 4320 memset(bh->b_data, 0, bh->b_size); 4321 set_buffer_uptodate(bh); 4322 unlock_buffer(bh); 4323 goto has_buffer; 4324 } 4325 } 4326 4327 make_io: 4328 /* 4329 * If we need to do any I/O, try to pre-readahead extra 4330 * blocks from the inode table. 4331 */ 4332 blk_start_plug(&plug); 4333 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4334 ext4_fsblk_t b, end, table; 4335 unsigned num; 4336 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4337 4338 table = ext4_inode_table(sb, gdp); 4339 /* s_inode_readahead_blks is always a power of 2 */ 4340 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4341 if (table > b) 4342 b = table; 4343 end = b + ra_blks; 4344 num = EXT4_INODES_PER_GROUP(sb); 4345 if (ext4_has_group_desc_csum(sb)) 4346 num -= ext4_itable_unused_count(sb, gdp); 4347 table += num / inodes_per_block; 4348 if (end > table) 4349 end = table; 4350 while (b <= end) 4351 sb_breadahead(sb, b++); 4352 } 4353 4354 /* 4355 * There are other valid inodes in the buffer, this inode 4356 * has in-inode xattrs, or we don't have this inode in memory. 4357 * Read the block from disk. 4358 */ 4359 trace_ext4_load_inode(inode); 4360 get_bh(bh); 4361 bh->b_end_io = end_buffer_read_sync; 4362 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh); 4363 blk_finish_plug(&plug); 4364 wait_on_buffer(bh); 4365 if (!buffer_uptodate(bh)) { 4366 simulate_eio: 4367 ext4_set_errno(inode->i_sb, EIO); 4368 EXT4_ERROR_INODE_BLOCK(inode, block, 4369 "unable to read itable block"); 4370 brelse(bh); 4371 return -EIO; 4372 } 4373 } 4374 has_buffer: 4375 iloc->bh = bh; 4376 return 0; 4377 } 4378 4379 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4380 { 4381 /* We have all inode data except xattrs in memory here. */ 4382 return __ext4_get_inode_loc(inode, iloc, 4383 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4384 } 4385 4386 static bool ext4_should_use_dax(struct inode *inode) 4387 { 4388 if (!test_opt(inode->i_sb, DAX)) 4389 return false; 4390 if (!S_ISREG(inode->i_mode)) 4391 return false; 4392 if (ext4_should_journal_data(inode)) 4393 return false; 4394 if (ext4_has_inline_data(inode)) 4395 return false; 4396 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4397 return false; 4398 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4399 return false; 4400 return true; 4401 } 4402 4403 void ext4_set_inode_flags(struct inode *inode) 4404 { 4405 unsigned int flags = EXT4_I(inode)->i_flags; 4406 unsigned int new_fl = 0; 4407 4408 if (flags & EXT4_SYNC_FL) 4409 new_fl |= S_SYNC; 4410 if (flags & EXT4_APPEND_FL) 4411 new_fl |= S_APPEND; 4412 if (flags & EXT4_IMMUTABLE_FL) 4413 new_fl |= S_IMMUTABLE; 4414 if (flags & EXT4_NOATIME_FL) 4415 new_fl |= S_NOATIME; 4416 if (flags & EXT4_DIRSYNC_FL) 4417 new_fl |= S_DIRSYNC; 4418 if (ext4_should_use_dax(inode)) 4419 new_fl |= S_DAX; 4420 if (flags & EXT4_ENCRYPT_FL) 4421 new_fl |= S_ENCRYPTED; 4422 if (flags & EXT4_CASEFOLD_FL) 4423 new_fl |= S_CASEFOLD; 4424 if (flags & EXT4_VERITY_FL) 4425 new_fl |= S_VERITY; 4426 inode_set_flags(inode, new_fl, 4427 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4428 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4429 } 4430 4431 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4432 struct ext4_inode_info *ei) 4433 { 4434 blkcnt_t i_blocks ; 4435 struct inode *inode = &(ei->vfs_inode); 4436 struct super_block *sb = inode->i_sb; 4437 4438 if (ext4_has_feature_huge_file(sb)) { 4439 /* we are using combined 48 bit field */ 4440 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4441 le32_to_cpu(raw_inode->i_blocks_lo); 4442 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4443 /* i_blocks represent file system block size */ 4444 return i_blocks << (inode->i_blkbits - 9); 4445 } else { 4446 return i_blocks; 4447 } 4448 } else { 4449 return le32_to_cpu(raw_inode->i_blocks_lo); 4450 } 4451 } 4452 4453 static inline int ext4_iget_extra_inode(struct inode *inode, 4454 struct ext4_inode *raw_inode, 4455 struct ext4_inode_info *ei) 4456 { 4457 __le32 *magic = (void *)raw_inode + 4458 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4459 4460 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <= 4461 EXT4_INODE_SIZE(inode->i_sb) && 4462 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4463 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4464 return ext4_find_inline_data_nolock(inode); 4465 } else 4466 EXT4_I(inode)->i_inline_off = 0; 4467 return 0; 4468 } 4469 4470 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4471 { 4472 if (!ext4_has_feature_project(inode->i_sb)) 4473 return -EOPNOTSUPP; 4474 *projid = EXT4_I(inode)->i_projid; 4475 return 0; 4476 } 4477 4478 /* 4479 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4480 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4481 * set. 4482 */ 4483 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4484 { 4485 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4486 inode_set_iversion_raw(inode, val); 4487 else 4488 inode_set_iversion_queried(inode, val); 4489 } 4490 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4491 { 4492 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4493 return inode_peek_iversion_raw(inode); 4494 else 4495 return inode_peek_iversion(inode); 4496 } 4497 4498 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4499 ext4_iget_flags flags, const char *function, 4500 unsigned int line) 4501 { 4502 struct ext4_iloc iloc; 4503 struct ext4_inode *raw_inode; 4504 struct ext4_inode_info *ei; 4505 struct inode *inode; 4506 journal_t *journal = EXT4_SB(sb)->s_journal; 4507 long ret; 4508 loff_t size; 4509 int block; 4510 uid_t i_uid; 4511 gid_t i_gid; 4512 projid_t i_projid; 4513 4514 if ((!(flags & EXT4_IGET_SPECIAL) && 4515 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) || 4516 (ino < EXT4_ROOT_INO) || 4517 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) { 4518 if (flags & EXT4_IGET_HANDLE) 4519 return ERR_PTR(-ESTALE); 4520 __ext4_error(sb, function, line, 4521 "inode #%lu: comm %s: iget: illegal inode #", 4522 ino, current->comm); 4523 return ERR_PTR(-EFSCORRUPTED); 4524 } 4525 4526 inode = iget_locked(sb, ino); 4527 if (!inode) 4528 return ERR_PTR(-ENOMEM); 4529 if (!(inode->i_state & I_NEW)) 4530 return inode; 4531 4532 ei = EXT4_I(inode); 4533 iloc.bh = NULL; 4534 4535 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4536 if (ret < 0) 4537 goto bad_inode; 4538 raw_inode = ext4_raw_inode(&iloc); 4539 4540 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) { 4541 ext4_error_inode(inode, function, line, 0, 4542 "iget: root inode unallocated"); 4543 ret = -EFSCORRUPTED; 4544 goto bad_inode; 4545 } 4546 4547 if ((flags & EXT4_IGET_HANDLE) && 4548 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4549 ret = -ESTALE; 4550 goto bad_inode; 4551 } 4552 4553 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4554 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4555 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4556 EXT4_INODE_SIZE(inode->i_sb) || 4557 (ei->i_extra_isize & 3)) { 4558 ext4_error_inode(inode, function, line, 0, 4559 "iget: bad extra_isize %u " 4560 "(inode size %u)", 4561 ei->i_extra_isize, 4562 EXT4_INODE_SIZE(inode->i_sb)); 4563 ret = -EFSCORRUPTED; 4564 goto bad_inode; 4565 } 4566 } else 4567 ei->i_extra_isize = 0; 4568 4569 /* Precompute checksum seed for inode metadata */ 4570 if (ext4_has_metadata_csum(sb)) { 4571 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4572 __u32 csum; 4573 __le32 inum = cpu_to_le32(inode->i_ino); 4574 __le32 gen = raw_inode->i_generation; 4575 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4576 sizeof(inum)); 4577 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4578 sizeof(gen)); 4579 } 4580 4581 if (!ext4_inode_csum_verify(inode, raw_inode, ei) || 4582 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) { 4583 ext4_set_errno(inode->i_sb, EFSBADCRC); 4584 ext4_error_inode(inode, function, line, 0, 4585 "iget: checksum invalid"); 4586 ret = -EFSBADCRC; 4587 goto bad_inode; 4588 } 4589 4590 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4591 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4592 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4593 if (ext4_has_feature_project(sb) && 4594 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4595 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4596 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4597 else 4598 i_projid = EXT4_DEF_PROJID; 4599 4600 if (!(test_opt(inode->i_sb, NO_UID32))) { 4601 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4602 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4603 } 4604 i_uid_write(inode, i_uid); 4605 i_gid_write(inode, i_gid); 4606 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4607 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4608 4609 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4610 ei->i_inline_off = 0; 4611 ei->i_dir_start_lookup = 0; 4612 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4613 /* We now have enough fields to check if the inode was active or not. 4614 * This is needed because nfsd might try to access dead inodes 4615 * the test is that same one that e2fsck uses 4616 * NeilBrown 1999oct15 4617 */ 4618 if (inode->i_nlink == 0) { 4619 if ((inode->i_mode == 0 || 4620 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4621 ino != EXT4_BOOT_LOADER_INO) { 4622 /* this inode is deleted */ 4623 ret = -ESTALE; 4624 goto bad_inode; 4625 } 4626 /* The only unlinked inodes we let through here have 4627 * valid i_mode and are being read by the orphan 4628 * recovery code: that's fine, we're about to complete 4629 * the process of deleting those. 4630 * OR it is the EXT4_BOOT_LOADER_INO which is 4631 * not initialized on a new filesystem. */ 4632 } 4633 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4634 ext4_set_inode_flags(inode); 4635 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4636 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4637 if (ext4_has_feature_64bit(sb)) 4638 ei->i_file_acl |= 4639 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4640 inode->i_size = ext4_isize(sb, raw_inode); 4641 if ((size = i_size_read(inode)) < 0) { 4642 ext4_error_inode(inode, function, line, 0, 4643 "iget: bad i_size value: %lld", size); 4644 ret = -EFSCORRUPTED; 4645 goto bad_inode; 4646 } 4647 /* 4648 * If dir_index is not enabled but there's dir with INDEX flag set, 4649 * we'd normally treat htree data as empty space. But with metadata 4650 * checksumming that corrupts checksums so forbid that. 4651 */ 4652 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4653 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4654 ext4_error_inode(inode, function, line, 0, 4655 "iget: Dir with htree data on filesystem without dir_index feature."); 4656 ret = -EFSCORRUPTED; 4657 goto bad_inode; 4658 } 4659 ei->i_disksize = inode->i_size; 4660 #ifdef CONFIG_QUOTA 4661 ei->i_reserved_quota = 0; 4662 #endif 4663 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4664 ei->i_block_group = iloc.block_group; 4665 ei->i_last_alloc_group = ~0; 4666 /* 4667 * NOTE! The in-memory inode i_data array is in little-endian order 4668 * even on big-endian machines: we do NOT byteswap the block numbers! 4669 */ 4670 for (block = 0; block < EXT4_N_BLOCKS; block++) 4671 ei->i_data[block] = raw_inode->i_block[block]; 4672 INIT_LIST_HEAD(&ei->i_orphan); 4673 4674 /* 4675 * Set transaction id's of transactions that have to be committed 4676 * to finish f[data]sync. We set them to currently running transaction 4677 * as we cannot be sure that the inode or some of its metadata isn't 4678 * part of the transaction - the inode could have been reclaimed and 4679 * now it is reread from disk. 4680 */ 4681 if (journal) { 4682 transaction_t *transaction; 4683 tid_t tid; 4684 4685 read_lock(&journal->j_state_lock); 4686 if (journal->j_running_transaction) 4687 transaction = journal->j_running_transaction; 4688 else 4689 transaction = journal->j_committing_transaction; 4690 if (transaction) 4691 tid = transaction->t_tid; 4692 else 4693 tid = journal->j_commit_sequence; 4694 read_unlock(&journal->j_state_lock); 4695 ei->i_sync_tid = tid; 4696 ei->i_datasync_tid = tid; 4697 } 4698 4699 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4700 if (ei->i_extra_isize == 0) { 4701 /* The extra space is currently unused. Use it. */ 4702 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4703 ei->i_extra_isize = sizeof(struct ext4_inode) - 4704 EXT4_GOOD_OLD_INODE_SIZE; 4705 } else { 4706 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4707 if (ret) 4708 goto bad_inode; 4709 } 4710 } 4711 4712 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4713 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4714 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4715 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4716 4717 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4718 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4719 4720 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4721 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4722 ivers |= 4723 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4724 } 4725 ext4_inode_set_iversion_queried(inode, ivers); 4726 } 4727 4728 ret = 0; 4729 if (ei->i_file_acl && 4730 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4731 ext4_error_inode(inode, function, line, 0, 4732 "iget: bad extended attribute block %llu", 4733 ei->i_file_acl); 4734 ret = -EFSCORRUPTED; 4735 goto bad_inode; 4736 } else if (!ext4_has_inline_data(inode)) { 4737 /* validate the block references in the inode */ 4738 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4739 (S_ISLNK(inode->i_mode) && 4740 !ext4_inode_is_fast_symlink(inode))) { 4741 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4742 ret = ext4_ext_check_inode(inode); 4743 else 4744 ret = ext4_ind_check_inode(inode); 4745 } 4746 } 4747 if (ret) 4748 goto bad_inode; 4749 4750 if (S_ISREG(inode->i_mode)) { 4751 inode->i_op = &ext4_file_inode_operations; 4752 inode->i_fop = &ext4_file_operations; 4753 ext4_set_aops(inode); 4754 } else if (S_ISDIR(inode->i_mode)) { 4755 inode->i_op = &ext4_dir_inode_operations; 4756 inode->i_fop = &ext4_dir_operations; 4757 } else if (S_ISLNK(inode->i_mode)) { 4758 /* VFS does not allow setting these so must be corruption */ 4759 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4760 ext4_error_inode(inode, function, line, 0, 4761 "iget: immutable or append flags " 4762 "not allowed on symlinks"); 4763 ret = -EFSCORRUPTED; 4764 goto bad_inode; 4765 } 4766 if (IS_ENCRYPTED(inode)) { 4767 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4768 ext4_set_aops(inode); 4769 } else if (ext4_inode_is_fast_symlink(inode)) { 4770 inode->i_link = (char *)ei->i_data; 4771 inode->i_op = &ext4_fast_symlink_inode_operations; 4772 nd_terminate_link(ei->i_data, inode->i_size, 4773 sizeof(ei->i_data) - 1); 4774 } else { 4775 inode->i_op = &ext4_symlink_inode_operations; 4776 ext4_set_aops(inode); 4777 } 4778 inode_nohighmem(inode); 4779 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4780 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4781 inode->i_op = &ext4_special_inode_operations; 4782 if (raw_inode->i_block[0]) 4783 init_special_inode(inode, inode->i_mode, 4784 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4785 else 4786 init_special_inode(inode, inode->i_mode, 4787 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4788 } else if (ino == EXT4_BOOT_LOADER_INO) { 4789 make_bad_inode(inode); 4790 } else { 4791 ret = -EFSCORRUPTED; 4792 ext4_error_inode(inode, function, line, 0, 4793 "iget: bogus i_mode (%o)", inode->i_mode); 4794 goto bad_inode; 4795 } 4796 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 4797 ext4_error_inode(inode, function, line, 0, 4798 "casefold flag without casefold feature"); 4799 brelse(iloc.bh); 4800 4801 unlock_new_inode(inode); 4802 return inode; 4803 4804 bad_inode: 4805 brelse(iloc.bh); 4806 iget_failed(inode); 4807 return ERR_PTR(ret); 4808 } 4809 4810 static int ext4_inode_blocks_set(handle_t *handle, 4811 struct ext4_inode *raw_inode, 4812 struct ext4_inode_info *ei) 4813 { 4814 struct inode *inode = &(ei->vfs_inode); 4815 u64 i_blocks = inode->i_blocks; 4816 struct super_block *sb = inode->i_sb; 4817 4818 if (i_blocks <= ~0U) { 4819 /* 4820 * i_blocks can be represented in a 32 bit variable 4821 * as multiple of 512 bytes 4822 */ 4823 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4824 raw_inode->i_blocks_high = 0; 4825 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4826 return 0; 4827 } 4828 if (!ext4_has_feature_huge_file(sb)) 4829 return -EFBIG; 4830 4831 if (i_blocks <= 0xffffffffffffULL) { 4832 /* 4833 * i_blocks can be represented in a 48 bit variable 4834 * as multiple of 512 bytes 4835 */ 4836 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4837 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4838 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4839 } else { 4840 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4841 /* i_block is stored in file system block size */ 4842 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4843 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4844 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4845 } 4846 return 0; 4847 } 4848 4849 struct other_inode { 4850 unsigned long orig_ino; 4851 struct ext4_inode *raw_inode; 4852 }; 4853 4854 static int other_inode_match(struct inode * inode, unsigned long ino, 4855 void *data) 4856 { 4857 struct other_inode *oi = (struct other_inode *) data; 4858 4859 if ((inode->i_ino != ino) || 4860 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4861 I_DIRTY_INODE)) || 4862 ((inode->i_state & I_DIRTY_TIME) == 0)) 4863 return 0; 4864 spin_lock(&inode->i_lock); 4865 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4866 I_DIRTY_INODE)) == 0) && 4867 (inode->i_state & I_DIRTY_TIME)) { 4868 struct ext4_inode_info *ei = EXT4_I(inode); 4869 4870 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4871 spin_unlock(&inode->i_lock); 4872 4873 spin_lock(&ei->i_raw_lock); 4874 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4875 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4876 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4877 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4878 spin_unlock(&ei->i_raw_lock); 4879 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4880 return -1; 4881 } 4882 spin_unlock(&inode->i_lock); 4883 return -1; 4884 } 4885 4886 /* 4887 * Opportunistically update the other time fields for other inodes in 4888 * the same inode table block. 4889 */ 4890 static void ext4_update_other_inodes_time(struct super_block *sb, 4891 unsigned long orig_ino, char *buf) 4892 { 4893 struct other_inode oi; 4894 unsigned long ino; 4895 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4896 int inode_size = EXT4_INODE_SIZE(sb); 4897 4898 oi.orig_ino = orig_ino; 4899 /* 4900 * Calculate the first inode in the inode table block. Inode 4901 * numbers are one-based. That is, the first inode in a block 4902 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4903 */ 4904 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4905 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4906 if (ino == orig_ino) 4907 continue; 4908 oi.raw_inode = (struct ext4_inode *) buf; 4909 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4910 } 4911 } 4912 4913 /* 4914 * Post the struct inode info into an on-disk inode location in the 4915 * buffer-cache. This gobbles the caller's reference to the 4916 * buffer_head in the inode location struct. 4917 * 4918 * The caller must have write access to iloc->bh. 4919 */ 4920 static int ext4_do_update_inode(handle_t *handle, 4921 struct inode *inode, 4922 struct ext4_iloc *iloc) 4923 { 4924 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4925 struct ext4_inode_info *ei = EXT4_I(inode); 4926 struct buffer_head *bh = iloc->bh; 4927 struct super_block *sb = inode->i_sb; 4928 int err = 0, rc, block; 4929 int need_datasync = 0, set_large_file = 0; 4930 uid_t i_uid; 4931 gid_t i_gid; 4932 projid_t i_projid; 4933 4934 spin_lock(&ei->i_raw_lock); 4935 4936 /* For fields not tracked in the in-memory inode, 4937 * initialise them to zero for new inodes. */ 4938 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4939 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4940 4941 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4942 i_uid = i_uid_read(inode); 4943 i_gid = i_gid_read(inode); 4944 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4945 if (!(test_opt(inode->i_sb, NO_UID32))) { 4946 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4947 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4948 /* 4949 * Fix up interoperability with old kernels. Otherwise, old inodes get 4950 * re-used with the upper 16 bits of the uid/gid intact 4951 */ 4952 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4953 raw_inode->i_uid_high = 0; 4954 raw_inode->i_gid_high = 0; 4955 } else { 4956 raw_inode->i_uid_high = 4957 cpu_to_le16(high_16_bits(i_uid)); 4958 raw_inode->i_gid_high = 4959 cpu_to_le16(high_16_bits(i_gid)); 4960 } 4961 } else { 4962 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4963 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4964 raw_inode->i_uid_high = 0; 4965 raw_inode->i_gid_high = 0; 4966 } 4967 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4968 4969 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4970 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4971 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4972 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4973 4974 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4975 if (err) { 4976 spin_unlock(&ei->i_raw_lock); 4977 goto out_brelse; 4978 } 4979 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4980 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4981 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4982 raw_inode->i_file_acl_high = 4983 cpu_to_le16(ei->i_file_acl >> 32); 4984 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4985 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) { 4986 ext4_isize_set(raw_inode, ei->i_disksize); 4987 need_datasync = 1; 4988 } 4989 if (ei->i_disksize > 0x7fffffffULL) { 4990 if (!ext4_has_feature_large_file(sb) || 4991 EXT4_SB(sb)->s_es->s_rev_level == 4992 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4993 set_large_file = 1; 4994 } 4995 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4996 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4997 if (old_valid_dev(inode->i_rdev)) { 4998 raw_inode->i_block[0] = 4999 cpu_to_le32(old_encode_dev(inode->i_rdev)); 5000 raw_inode->i_block[1] = 0; 5001 } else { 5002 raw_inode->i_block[0] = 0; 5003 raw_inode->i_block[1] = 5004 cpu_to_le32(new_encode_dev(inode->i_rdev)); 5005 raw_inode->i_block[2] = 0; 5006 } 5007 } else if (!ext4_has_inline_data(inode)) { 5008 for (block = 0; block < EXT4_N_BLOCKS; block++) 5009 raw_inode->i_block[block] = ei->i_data[block]; 5010 } 5011 5012 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 5013 u64 ivers = ext4_inode_peek_iversion(inode); 5014 5015 raw_inode->i_disk_version = cpu_to_le32(ivers); 5016 if (ei->i_extra_isize) { 5017 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 5018 raw_inode->i_version_hi = 5019 cpu_to_le32(ivers >> 32); 5020 raw_inode->i_extra_isize = 5021 cpu_to_le16(ei->i_extra_isize); 5022 } 5023 } 5024 5025 BUG_ON(!ext4_has_feature_project(inode->i_sb) && 5026 i_projid != EXT4_DEF_PROJID); 5027 5028 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 5029 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 5030 raw_inode->i_projid = cpu_to_le32(i_projid); 5031 5032 ext4_inode_csum_set(inode, raw_inode, ei); 5033 spin_unlock(&ei->i_raw_lock); 5034 if (inode->i_sb->s_flags & SB_LAZYTIME) 5035 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5036 bh->b_data); 5037 5038 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5039 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 5040 if (!err) 5041 err = rc; 5042 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5043 if (set_large_file) { 5044 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5045 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 5046 if (err) 5047 goto out_brelse; 5048 ext4_set_feature_large_file(sb); 5049 ext4_handle_sync(handle); 5050 err = ext4_handle_dirty_super(handle, sb); 5051 } 5052 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5053 out_brelse: 5054 brelse(bh); 5055 ext4_std_error(inode->i_sb, err); 5056 return err; 5057 } 5058 5059 /* 5060 * ext4_write_inode() 5061 * 5062 * We are called from a few places: 5063 * 5064 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5065 * Here, there will be no transaction running. We wait for any running 5066 * transaction to commit. 5067 * 5068 * - Within flush work (sys_sync(), kupdate and such). 5069 * We wait on commit, if told to. 5070 * 5071 * - Within iput_final() -> write_inode_now() 5072 * We wait on commit, if told to. 5073 * 5074 * In all cases it is actually safe for us to return without doing anything, 5075 * because the inode has been copied into a raw inode buffer in 5076 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5077 * writeback. 5078 * 5079 * Note that we are absolutely dependent upon all inode dirtiers doing the 5080 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5081 * which we are interested. 5082 * 5083 * It would be a bug for them to not do this. The code: 5084 * 5085 * mark_inode_dirty(inode) 5086 * stuff(); 5087 * inode->i_size = expr; 5088 * 5089 * is in error because write_inode() could occur while `stuff()' is running, 5090 * and the new i_size will be lost. Plus the inode will no longer be on the 5091 * superblock's dirty inode list. 5092 */ 5093 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5094 { 5095 int err; 5096 5097 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5098 sb_rdonly(inode->i_sb)) 5099 return 0; 5100 5101 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5102 return -EIO; 5103 5104 if (EXT4_SB(inode->i_sb)->s_journal) { 5105 if (ext4_journal_current_handle()) { 5106 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 5107 dump_stack(); 5108 return -EIO; 5109 } 5110 5111 /* 5112 * No need to force transaction in WB_SYNC_NONE mode. Also 5113 * ext4_sync_fs() will force the commit after everything is 5114 * written. 5115 */ 5116 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5117 return 0; 5118 5119 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal, 5120 EXT4_I(inode)->i_sync_tid); 5121 } else { 5122 struct ext4_iloc iloc; 5123 5124 err = __ext4_get_inode_loc(inode, &iloc, 0); 5125 if (err) 5126 return err; 5127 /* 5128 * sync(2) will flush the whole buffer cache. No need to do 5129 * it here separately for each inode. 5130 */ 5131 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5132 sync_dirty_buffer(iloc.bh); 5133 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5134 ext4_set_errno(inode->i_sb, EIO); 5135 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 5136 "IO error syncing inode"); 5137 err = -EIO; 5138 } 5139 brelse(iloc.bh); 5140 } 5141 return err; 5142 } 5143 5144 /* 5145 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 5146 * buffers that are attached to a page stradding i_size and are undergoing 5147 * commit. In that case we have to wait for commit to finish and try again. 5148 */ 5149 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5150 { 5151 struct page *page; 5152 unsigned offset; 5153 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5154 tid_t commit_tid = 0; 5155 int ret; 5156 5157 offset = inode->i_size & (PAGE_SIZE - 1); 5158 /* 5159 * If the page is fully truncated, we don't need to wait for any commit 5160 * (and we even should not as __ext4_journalled_invalidatepage() may 5161 * strip all buffers from the page but keep the page dirty which can then 5162 * confuse e.g. concurrent ext4_writepage() seeing dirty page without 5163 * buffers). Also we don't need to wait for any commit if all buffers in 5164 * the page remain valid. This is most beneficial for the common case of 5165 * blocksize == PAGESIZE. 5166 */ 5167 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5168 return; 5169 while (1) { 5170 page = find_lock_page(inode->i_mapping, 5171 inode->i_size >> PAGE_SHIFT); 5172 if (!page) 5173 return; 5174 ret = __ext4_journalled_invalidatepage(page, offset, 5175 PAGE_SIZE - offset); 5176 unlock_page(page); 5177 put_page(page); 5178 if (ret != -EBUSY) 5179 return; 5180 commit_tid = 0; 5181 read_lock(&journal->j_state_lock); 5182 if (journal->j_committing_transaction) 5183 commit_tid = journal->j_committing_transaction->t_tid; 5184 read_unlock(&journal->j_state_lock); 5185 if (commit_tid) 5186 jbd2_log_wait_commit(journal, commit_tid); 5187 } 5188 } 5189 5190 /* 5191 * ext4_setattr() 5192 * 5193 * Called from notify_change. 5194 * 5195 * We want to trap VFS attempts to truncate the file as soon as 5196 * possible. In particular, we want to make sure that when the VFS 5197 * shrinks i_size, we put the inode on the orphan list and modify 5198 * i_disksize immediately, so that during the subsequent flushing of 5199 * dirty pages and freeing of disk blocks, we can guarantee that any 5200 * commit will leave the blocks being flushed in an unused state on 5201 * disk. (On recovery, the inode will get truncated and the blocks will 5202 * be freed, so we have a strong guarantee that no future commit will 5203 * leave these blocks visible to the user.) 5204 * 5205 * Another thing we have to assure is that if we are in ordered mode 5206 * and inode is still attached to the committing transaction, we must 5207 * we start writeout of all the dirty pages which are being truncated. 5208 * This way we are sure that all the data written in the previous 5209 * transaction are already on disk (truncate waits for pages under 5210 * writeback). 5211 * 5212 * Called with inode->i_mutex down. 5213 */ 5214 int ext4_setattr(struct dentry *dentry, struct iattr *attr) 5215 { 5216 struct inode *inode = d_inode(dentry); 5217 int error, rc = 0; 5218 int orphan = 0; 5219 const unsigned int ia_valid = attr->ia_valid; 5220 5221 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5222 return -EIO; 5223 5224 if (unlikely(IS_IMMUTABLE(inode))) 5225 return -EPERM; 5226 5227 if (unlikely(IS_APPEND(inode) && 5228 (ia_valid & (ATTR_MODE | ATTR_UID | 5229 ATTR_GID | ATTR_TIMES_SET)))) 5230 return -EPERM; 5231 5232 error = setattr_prepare(dentry, attr); 5233 if (error) 5234 return error; 5235 5236 error = fscrypt_prepare_setattr(dentry, attr); 5237 if (error) 5238 return error; 5239 5240 error = fsverity_prepare_setattr(dentry, attr); 5241 if (error) 5242 return error; 5243 5244 if (is_quota_modification(inode, attr)) { 5245 error = dquot_initialize(inode); 5246 if (error) 5247 return error; 5248 } 5249 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 5250 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 5251 handle_t *handle; 5252 5253 /* (user+group)*(old+new) structure, inode write (sb, 5254 * inode block, ? - but truncate inode update has it) */ 5255 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5256 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5257 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5258 if (IS_ERR(handle)) { 5259 error = PTR_ERR(handle); 5260 goto err_out; 5261 } 5262 5263 /* dquot_transfer() calls back ext4_get_inode_usage() which 5264 * counts xattr inode references. 5265 */ 5266 down_read(&EXT4_I(inode)->xattr_sem); 5267 error = dquot_transfer(inode, attr); 5268 up_read(&EXT4_I(inode)->xattr_sem); 5269 5270 if (error) { 5271 ext4_journal_stop(handle); 5272 return error; 5273 } 5274 /* Update corresponding info in inode so that everything is in 5275 * one transaction */ 5276 if (attr->ia_valid & ATTR_UID) 5277 inode->i_uid = attr->ia_uid; 5278 if (attr->ia_valid & ATTR_GID) 5279 inode->i_gid = attr->ia_gid; 5280 error = ext4_mark_inode_dirty(handle, inode); 5281 ext4_journal_stop(handle); 5282 } 5283 5284 if (attr->ia_valid & ATTR_SIZE) { 5285 handle_t *handle; 5286 loff_t oldsize = inode->i_size; 5287 int shrink = (attr->ia_size < inode->i_size); 5288 5289 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5290 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5291 5292 if (attr->ia_size > sbi->s_bitmap_maxbytes) 5293 return -EFBIG; 5294 } 5295 if (!S_ISREG(inode->i_mode)) 5296 return -EINVAL; 5297 5298 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 5299 inode_inc_iversion(inode); 5300 5301 if (shrink) { 5302 if (ext4_should_order_data(inode)) { 5303 error = ext4_begin_ordered_truncate(inode, 5304 attr->ia_size); 5305 if (error) 5306 goto err_out; 5307 } 5308 /* 5309 * Blocks are going to be removed from the inode. Wait 5310 * for dio in flight. 5311 */ 5312 inode_dio_wait(inode); 5313 } 5314 5315 down_write(&EXT4_I(inode)->i_mmap_sem); 5316 5317 rc = ext4_break_layouts(inode); 5318 if (rc) { 5319 up_write(&EXT4_I(inode)->i_mmap_sem); 5320 return rc; 5321 } 5322 5323 if (attr->ia_size != inode->i_size) { 5324 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5325 if (IS_ERR(handle)) { 5326 error = PTR_ERR(handle); 5327 goto out_mmap_sem; 5328 } 5329 if (ext4_handle_valid(handle) && shrink) { 5330 error = ext4_orphan_add(handle, inode); 5331 orphan = 1; 5332 } 5333 /* 5334 * Update c/mtime on truncate up, ext4_truncate() will 5335 * update c/mtime in shrink case below 5336 */ 5337 if (!shrink) { 5338 inode->i_mtime = current_time(inode); 5339 inode->i_ctime = inode->i_mtime; 5340 } 5341 down_write(&EXT4_I(inode)->i_data_sem); 5342 EXT4_I(inode)->i_disksize = attr->ia_size; 5343 rc = ext4_mark_inode_dirty(handle, inode); 5344 if (!error) 5345 error = rc; 5346 /* 5347 * We have to update i_size under i_data_sem together 5348 * with i_disksize to avoid races with writeback code 5349 * running ext4_wb_update_i_disksize(). 5350 */ 5351 if (!error) 5352 i_size_write(inode, attr->ia_size); 5353 up_write(&EXT4_I(inode)->i_data_sem); 5354 ext4_journal_stop(handle); 5355 if (error) 5356 goto out_mmap_sem; 5357 if (!shrink) { 5358 pagecache_isize_extended(inode, oldsize, 5359 inode->i_size); 5360 } else if (ext4_should_journal_data(inode)) { 5361 ext4_wait_for_tail_page_commit(inode); 5362 } 5363 } 5364 5365 /* 5366 * Truncate pagecache after we've waited for commit 5367 * in data=journal mode to make pages freeable. 5368 */ 5369 truncate_pagecache(inode, inode->i_size); 5370 /* 5371 * Call ext4_truncate() even if i_size didn't change to 5372 * truncate possible preallocated blocks. 5373 */ 5374 if (attr->ia_size <= oldsize) { 5375 rc = ext4_truncate(inode); 5376 if (rc) 5377 error = rc; 5378 } 5379 out_mmap_sem: 5380 up_write(&EXT4_I(inode)->i_mmap_sem); 5381 } 5382 5383 if (!error) { 5384 setattr_copy(inode, attr); 5385 mark_inode_dirty(inode); 5386 } 5387 5388 /* 5389 * If the call to ext4_truncate failed to get a transaction handle at 5390 * all, we need to clean up the in-core orphan list manually. 5391 */ 5392 if (orphan && inode->i_nlink) 5393 ext4_orphan_del(NULL, inode); 5394 5395 if (!error && (ia_valid & ATTR_MODE)) 5396 rc = posix_acl_chmod(inode, inode->i_mode); 5397 5398 err_out: 5399 ext4_std_error(inode->i_sb, error); 5400 if (!error) 5401 error = rc; 5402 return error; 5403 } 5404 5405 int ext4_getattr(const struct path *path, struct kstat *stat, 5406 u32 request_mask, unsigned int query_flags) 5407 { 5408 struct inode *inode = d_inode(path->dentry); 5409 struct ext4_inode *raw_inode; 5410 struct ext4_inode_info *ei = EXT4_I(inode); 5411 unsigned int flags; 5412 5413 if ((request_mask & STATX_BTIME) && 5414 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5415 stat->result_mask |= STATX_BTIME; 5416 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5417 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5418 } 5419 5420 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5421 if (flags & EXT4_APPEND_FL) 5422 stat->attributes |= STATX_ATTR_APPEND; 5423 if (flags & EXT4_COMPR_FL) 5424 stat->attributes |= STATX_ATTR_COMPRESSED; 5425 if (flags & EXT4_ENCRYPT_FL) 5426 stat->attributes |= STATX_ATTR_ENCRYPTED; 5427 if (flags & EXT4_IMMUTABLE_FL) 5428 stat->attributes |= STATX_ATTR_IMMUTABLE; 5429 if (flags & EXT4_NODUMP_FL) 5430 stat->attributes |= STATX_ATTR_NODUMP; 5431 if (flags & EXT4_VERITY_FL) 5432 stat->attributes |= STATX_ATTR_VERITY; 5433 5434 stat->attributes_mask |= (STATX_ATTR_APPEND | 5435 STATX_ATTR_COMPRESSED | 5436 STATX_ATTR_ENCRYPTED | 5437 STATX_ATTR_IMMUTABLE | 5438 STATX_ATTR_NODUMP | 5439 STATX_ATTR_VERITY); 5440 5441 generic_fillattr(inode, stat); 5442 return 0; 5443 } 5444 5445 int ext4_file_getattr(const struct path *path, struct kstat *stat, 5446 u32 request_mask, unsigned int query_flags) 5447 { 5448 struct inode *inode = d_inode(path->dentry); 5449 u64 delalloc_blocks; 5450 5451 ext4_getattr(path, stat, request_mask, query_flags); 5452 5453 /* 5454 * If there is inline data in the inode, the inode will normally not 5455 * have data blocks allocated (it may have an external xattr block). 5456 * Report at least one sector for such files, so tools like tar, rsync, 5457 * others don't incorrectly think the file is completely sparse. 5458 */ 5459 if (unlikely(ext4_has_inline_data(inode))) 5460 stat->blocks += (stat->size + 511) >> 9; 5461 5462 /* 5463 * We can't update i_blocks if the block allocation is delayed 5464 * otherwise in the case of system crash before the real block 5465 * allocation is done, we will have i_blocks inconsistent with 5466 * on-disk file blocks. 5467 * We always keep i_blocks updated together with real 5468 * allocation. But to not confuse with user, stat 5469 * will return the blocks that include the delayed allocation 5470 * blocks for this file. 5471 */ 5472 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5473 EXT4_I(inode)->i_reserved_data_blocks); 5474 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5475 return 0; 5476 } 5477 5478 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5479 int pextents) 5480 { 5481 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5482 return ext4_ind_trans_blocks(inode, lblocks); 5483 return ext4_ext_index_trans_blocks(inode, pextents); 5484 } 5485 5486 /* 5487 * Account for index blocks, block groups bitmaps and block group 5488 * descriptor blocks if modify datablocks and index blocks 5489 * worse case, the indexs blocks spread over different block groups 5490 * 5491 * If datablocks are discontiguous, they are possible to spread over 5492 * different block groups too. If they are contiguous, with flexbg, 5493 * they could still across block group boundary. 5494 * 5495 * Also account for superblock, inode, quota and xattr blocks 5496 */ 5497 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5498 int pextents) 5499 { 5500 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5501 int gdpblocks; 5502 int idxblocks; 5503 int ret = 0; 5504 5505 /* 5506 * How many index blocks need to touch to map @lblocks logical blocks 5507 * to @pextents physical extents? 5508 */ 5509 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5510 5511 ret = idxblocks; 5512 5513 /* 5514 * Now let's see how many group bitmaps and group descriptors need 5515 * to account 5516 */ 5517 groups = idxblocks + pextents; 5518 gdpblocks = groups; 5519 if (groups > ngroups) 5520 groups = ngroups; 5521 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5522 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5523 5524 /* bitmaps and block group descriptor blocks */ 5525 ret += groups + gdpblocks; 5526 5527 /* Blocks for super block, inode, quota and xattr blocks */ 5528 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5529 5530 return ret; 5531 } 5532 5533 /* 5534 * Calculate the total number of credits to reserve to fit 5535 * the modification of a single pages into a single transaction, 5536 * which may include multiple chunks of block allocations. 5537 * 5538 * This could be called via ext4_write_begin() 5539 * 5540 * We need to consider the worse case, when 5541 * one new block per extent. 5542 */ 5543 int ext4_writepage_trans_blocks(struct inode *inode) 5544 { 5545 int bpp = ext4_journal_blocks_per_page(inode); 5546 int ret; 5547 5548 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5549 5550 /* Account for data blocks for journalled mode */ 5551 if (ext4_should_journal_data(inode)) 5552 ret += bpp; 5553 return ret; 5554 } 5555 5556 /* 5557 * Calculate the journal credits for a chunk of data modification. 5558 * 5559 * This is called from DIO, fallocate or whoever calling 5560 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5561 * 5562 * journal buffers for data blocks are not included here, as DIO 5563 * and fallocate do no need to journal data buffers. 5564 */ 5565 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5566 { 5567 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5568 } 5569 5570 /* 5571 * The caller must have previously called ext4_reserve_inode_write(). 5572 * Give this, we know that the caller already has write access to iloc->bh. 5573 */ 5574 int ext4_mark_iloc_dirty(handle_t *handle, 5575 struct inode *inode, struct ext4_iloc *iloc) 5576 { 5577 int err = 0; 5578 5579 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5580 put_bh(iloc->bh); 5581 return -EIO; 5582 } 5583 if (IS_I_VERSION(inode)) 5584 inode_inc_iversion(inode); 5585 5586 /* the do_update_inode consumes one bh->b_count */ 5587 get_bh(iloc->bh); 5588 5589 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5590 err = ext4_do_update_inode(handle, inode, iloc); 5591 put_bh(iloc->bh); 5592 return err; 5593 } 5594 5595 /* 5596 * On success, We end up with an outstanding reference count against 5597 * iloc->bh. This _must_ be cleaned up later. 5598 */ 5599 5600 int 5601 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5602 struct ext4_iloc *iloc) 5603 { 5604 int err; 5605 5606 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5607 return -EIO; 5608 5609 err = ext4_get_inode_loc(inode, iloc); 5610 if (!err) { 5611 BUFFER_TRACE(iloc->bh, "get_write_access"); 5612 err = ext4_journal_get_write_access(handle, iloc->bh); 5613 if (err) { 5614 brelse(iloc->bh); 5615 iloc->bh = NULL; 5616 } 5617 } 5618 ext4_std_error(inode->i_sb, err); 5619 return err; 5620 } 5621 5622 static int __ext4_expand_extra_isize(struct inode *inode, 5623 unsigned int new_extra_isize, 5624 struct ext4_iloc *iloc, 5625 handle_t *handle, int *no_expand) 5626 { 5627 struct ext4_inode *raw_inode; 5628 struct ext4_xattr_ibody_header *header; 5629 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5630 struct ext4_inode_info *ei = EXT4_I(inode); 5631 int error; 5632 5633 /* this was checked at iget time, but double check for good measure */ 5634 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5635 (ei->i_extra_isize & 3)) { 5636 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5637 ei->i_extra_isize, 5638 EXT4_INODE_SIZE(inode->i_sb)); 5639 return -EFSCORRUPTED; 5640 } 5641 if ((new_extra_isize < ei->i_extra_isize) || 5642 (new_extra_isize < 4) || 5643 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5644 return -EINVAL; /* Should never happen */ 5645 5646 raw_inode = ext4_raw_inode(iloc); 5647 5648 header = IHDR(inode, raw_inode); 5649 5650 /* No extended attributes present */ 5651 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5652 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5653 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5654 EXT4_I(inode)->i_extra_isize, 0, 5655 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5656 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5657 return 0; 5658 } 5659 5660 /* try to expand with EAs present */ 5661 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5662 raw_inode, handle); 5663 if (error) { 5664 /* 5665 * Inode size expansion failed; don't try again 5666 */ 5667 *no_expand = 1; 5668 } 5669 5670 return error; 5671 } 5672 5673 /* 5674 * Expand an inode by new_extra_isize bytes. 5675 * Returns 0 on success or negative error number on failure. 5676 */ 5677 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5678 unsigned int new_extra_isize, 5679 struct ext4_iloc iloc, 5680 handle_t *handle) 5681 { 5682 int no_expand; 5683 int error; 5684 5685 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5686 return -EOVERFLOW; 5687 5688 /* 5689 * In nojournal mode, we can immediately attempt to expand 5690 * the inode. When journaled, we first need to obtain extra 5691 * buffer credits since we may write into the EA block 5692 * with this same handle. If journal_extend fails, then it will 5693 * only result in a minor loss of functionality for that inode. 5694 * If this is felt to be critical, then e2fsck should be run to 5695 * force a large enough s_min_extra_isize. 5696 */ 5697 if (ext4_journal_extend(handle, 5698 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5699 return -ENOSPC; 5700 5701 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5702 return -EBUSY; 5703 5704 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5705 handle, &no_expand); 5706 ext4_write_unlock_xattr(inode, &no_expand); 5707 5708 return error; 5709 } 5710 5711 int ext4_expand_extra_isize(struct inode *inode, 5712 unsigned int new_extra_isize, 5713 struct ext4_iloc *iloc) 5714 { 5715 handle_t *handle; 5716 int no_expand; 5717 int error, rc; 5718 5719 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5720 brelse(iloc->bh); 5721 return -EOVERFLOW; 5722 } 5723 5724 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5725 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5726 if (IS_ERR(handle)) { 5727 error = PTR_ERR(handle); 5728 brelse(iloc->bh); 5729 return error; 5730 } 5731 5732 ext4_write_lock_xattr(inode, &no_expand); 5733 5734 BUFFER_TRACE(iloc->bh, "get_write_access"); 5735 error = ext4_journal_get_write_access(handle, iloc->bh); 5736 if (error) { 5737 brelse(iloc->bh); 5738 goto out_unlock; 5739 } 5740 5741 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5742 handle, &no_expand); 5743 5744 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5745 if (!error) 5746 error = rc; 5747 5748 out_unlock: 5749 ext4_write_unlock_xattr(inode, &no_expand); 5750 ext4_journal_stop(handle); 5751 return error; 5752 } 5753 5754 /* 5755 * What we do here is to mark the in-core inode as clean with respect to inode 5756 * dirtiness (it may still be data-dirty). 5757 * This means that the in-core inode may be reaped by prune_icache 5758 * without having to perform any I/O. This is a very good thing, 5759 * because *any* task may call prune_icache - even ones which 5760 * have a transaction open against a different journal. 5761 * 5762 * Is this cheating? Not really. Sure, we haven't written the 5763 * inode out, but prune_icache isn't a user-visible syncing function. 5764 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5765 * we start and wait on commits. 5766 */ 5767 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5768 { 5769 struct ext4_iloc iloc; 5770 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5771 int err; 5772 5773 might_sleep(); 5774 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5775 err = ext4_reserve_inode_write(handle, inode, &iloc); 5776 if (err) 5777 return err; 5778 5779 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5780 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5781 iloc, handle); 5782 5783 return ext4_mark_iloc_dirty(handle, inode, &iloc); 5784 } 5785 5786 /* 5787 * ext4_dirty_inode() is called from __mark_inode_dirty() 5788 * 5789 * We're really interested in the case where a file is being extended. 5790 * i_size has been changed by generic_commit_write() and we thus need 5791 * to include the updated inode in the current transaction. 5792 * 5793 * Also, dquot_alloc_block() will always dirty the inode when blocks 5794 * are allocated to the file. 5795 * 5796 * If the inode is marked synchronous, we don't honour that here - doing 5797 * so would cause a commit on atime updates, which we don't bother doing. 5798 * We handle synchronous inodes at the highest possible level. 5799 * 5800 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5801 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5802 * to copy into the on-disk inode structure are the timestamp files. 5803 */ 5804 void ext4_dirty_inode(struct inode *inode, int flags) 5805 { 5806 handle_t *handle; 5807 5808 if (flags == I_DIRTY_TIME) 5809 return; 5810 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5811 if (IS_ERR(handle)) 5812 goto out; 5813 5814 ext4_mark_inode_dirty(handle, inode); 5815 5816 ext4_journal_stop(handle); 5817 out: 5818 return; 5819 } 5820 5821 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5822 { 5823 journal_t *journal; 5824 handle_t *handle; 5825 int err; 5826 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5827 5828 /* 5829 * We have to be very careful here: changing a data block's 5830 * journaling status dynamically is dangerous. If we write a 5831 * data block to the journal, change the status and then delete 5832 * that block, we risk forgetting to revoke the old log record 5833 * from the journal and so a subsequent replay can corrupt data. 5834 * So, first we make sure that the journal is empty and that 5835 * nobody is changing anything. 5836 */ 5837 5838 journal = EXT4_JOURNAL(inode); 5839 if (!journal) 5840 return 0; 5841 if (is_journal_aborted(journal)) 5842 return -EROFS; 5843 5844 /* Wait for all existing dio workers */ 5845 inode_dio_wait(inode); 5846 5847 /* 5848 * Before flushing the journal and switching inode's aops, we have 5849 * to flush all dirty data the inode has. There can be outstanding 5850 * delayed allocations, there can be unwritten extents created by 5851 * fallocate or buffered writes in dioread_nolock mode covered by 5852 * dirty data which can be converted only after flushing the dirty 5853 * data (and journalled aops don't know how to handle these cases). 5854 */ 5855 if (val) { 5856 down_write(&EXT4_I(inode)->i_mmap_sem); 5857 err = filemap_write_and_wait(inode->i_mapping); 5858 if (err < 0) { 5859 up_write(&EXT4_I(inode)->i_mmap_sem); 5860 return err; 5861 } 5862 } 5863 5864 percpu_down_write(&sbi->s_writepages_rwsem); 5865 jbd2_journal_lock_updates(journal); 5866 5867 /* 5868 * OK, there are no updates running now, and all cached data is 5869 * synced to disk. We are now in a completely consistent state 5870 * which doesn't have anything in the journal, and we know that 5871 * no filesystem updates are running, so it is safe to modify 5872 * the inode's in-core data-journaling state flag now. 5873 */ 5874 5875 if (val) 5876 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5877 else { 5878 err = jbd2_journal_flush(journal); 5879 if (err < 0) { 5880 jbd2_journal_unlock_updates(journal); 5881 percpu_up_write(&sbi->s_writepages_rwsem); 5882 return err; 5883 } 5884 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5885 } 5886 ext4_set_aops(inode); 5887 5888 jbd2_journal_unlock_updates(journal); 5889 percpu_up_write(&sbi->s_writepages_rwsem); 5890 5891 if (val) 5892 up_write(&EXT4_I(inode)->i_mmap_sem); 5893 5894 /* Finally we can mark the inode as dirty. */ 5895 5896 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5897 if (IS_ERR(handle)) 5898 return PTR_ERR(handle); 5899 5900 err = ext4_mark_inode_dirty(handle, inode); 5901 ext4_handle_sync(handle); 5902 ext4_journal_stop(handle); 5903 ext4_std_error(inode->i_sb, err); 5904 5905 return err; 5906 } 5907 5908 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5909 { 5910 return !buffer_mapped(bh); 5911 } 5912 5913 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 5914 { 5915 struct vm_area_struct *vma = vmf->vma; 5916 struct page *page = vmf->page; 5917 loff_t size; 5918 unsigned long len; 5919 int err; 5920 vm_fault_t ret; 5921 struct file *file = vma->vm_file; 5922 struct inode *inode = file_inode(file); 5923 struct address_space *mapping = inode->i_mapping; 5924 handle_t *handle; 5925 get_block_t *get_block; 5926 int retries = 0; 5927 5928 if (unlikely(IS_IMMUTABLE(inode))) 5929 return VM_FAULT_SIGBUS; 5930 5931 sb_start_pagefault(inode->i_sb); 5932 file_update_time(vma->vm_file); 5933 5934 down_read(&EXT4_I(inode)->i_mmap_sem); 5935 5936 err = ext4_convert_inline_data(inode); 5937 if (err) 5938 goto out_ret; 5939 5940 /* Delalloc case is easy... */ 5941 if (test_opt(inode->i_sb, DELALLOC) && 5942 !ext4_should_journal_data(inode) && 5943 !ext4_nonda_switch(inode->i_sb)) { 5944 do { 5945 err = block_page_mkwrite(vma, vmf, 5946 ext4_da_get_block_prep); 5947 } while (err == -ENOSPC && 5948 ext4_should_retry_alloc(inode->i_sb, &retries)); 5949 goto out_ret; 5950 } 5951 5952 lock_page(page); 5953 size = i_size_read(inode); 5954 /* Page got truncated from under us? */ 5955 if (page->mapping != mapping || page_offset(page) > size) { 5956 unlock_page(page); 5957 ret = VM_FAULT_NOPAGE; 5958 goto out; 5959 } 5960 5961 if (page->index == size >> PAGE_SHIFT) 5962 len = size & ~PAGE_MASK; 5963 else 5964 len = PAGE_SIZE; 5965 /* 5966 * Return if we have all the buffers mapped. This avoids the need to do 5967 * journal_start/journal_stop which can block and take a long time 5968 */ 5969 if (page_has_buffers(page)) { 5970 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5971 0, len, NULL, 5972 ext4_bh_unmapped)) { 5973 /* Wait so that we don't change page under IO */ 5974 wait_for_stable_page(page); 5975 ret = VM_FAULT_LOCKED; 5976 goto out; 5977 } 5978 } 5979 unlock_page(page); 5980 /* OK, we need to fill the hole... */ 5981 if (ext4_should_dioread_nolock(inode)) 5982 get_block = ext4_get_block_unwritten; 5983 else 5984 get_block = ext4_get_block; 5985 retry_alloc: 5986 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5987 ext4_writepage_trans_blocks(inode)); 5988 if (IS_ERR(handle)) { 5989 ret = VM_FAULT_SIGBUS; 5990 goto out; 5991 } 5992 err = block_page_mkwrite(vma, vmf, get_block); 5993 if (!err && ext4_should_journal_data(inode)) { 5994 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5995 PAGE_SIZE, NULL, do_journal_get_write_access)) { 5996 unlock_page(page); 5997 ret = VM_FAULT_SIGBUS; 5998 ext4_journal_stop(handle); 5999 goto out; 6000 } 6001 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 6002 } 6003 ext4_journal_stop(handle); 6004 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6005 goto retry_alloc; 6006 out_ret: 6007 ret = block_page_mkwrite_return(err); 6008 out: 6009 up_read(&EXT4_I(inode)->i_mmap_sem); 6010 sb_end_pagefault(inode->i_sb); 6011 return ret; 6012 } 6013 6014 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf) 6015 { 6016 struct inode *inode = file_inode(vmf->vma->vm_file); 6017 vm_fault_t ret; 6018 6019 down_read(&EXT4_I(inode)->i_mmap_sem); 6020 ret = filemap_fault(vmf); 6021 up_read(&EXT4_I(inode)->i_mmap_sem); 6022 6023 return ret; 6024 } 6025