1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ext4/inode.c 4 * 5 * Copyright (C) 1992, 1993, 1994, 1995 6 * Remy Card (card@masi.ibp.fr) 7 * Laboratoire MASI - Institut Blaise Pascal 8 * Universite Pierre et Marie Curie (Paris VI) 9 * 10 * from 11 * 12 * linux/fs/minix/inode.c 13 * 14 * Copyright (C) 1991, 1992 Linus Torvalds 15 * 16 * 64-bit file support on 64-bit platforms by Jakub Jelinek 17 * (jj@sunsite.ms.mff.cuni.cz) 18 * 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 20 */ 21 22 #include <linux/fs.h> 23 #include <linux/mount.h> 24 #include <linux/time.h> 25 #include <linux/highuid.h> 26 #include <linux/pagemap.h> 27 #include <linux/dax.h> 28 #include <linux/quotaops.h> 29 #include <linux/string.h> 30 #include <linux/buffer_head.h> 31 #include <linux/writeback.h> 32 #include <linux/pagevec.h> 33 #include <linux/mpage.h> 34 #include <linux/namei.h> 35 #include <linux/uio.h> 36 #include <linux/bio.h> 37 #include <linux/workqueue.h> 38 #include <linux/kernel.h> 39 #include <linux/printk.h> 40 #include <linux/slab.h> 41 #include <linux/bitops.h> 42 #include <linux/iomap.h> 43 #include <linux/iversion.h> 44 45 #include "ext4_jbd2.h" 46 #include "xattr.h" 47 #include "acl.h" 48 #include "truncate.h" 49 50 #include <trace/events/ext4.h> 51 52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 53 struct ext4_inode_info *ei) 54 { 55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 56 __u32 csum; 57 __u16 dummy_csum = 0; 58 int offset = offsetof(struct ext4_inode, i_checksum_lo); 59 unsigned int csum_size = sizeof(dummy_csum); 60 61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset); 62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size); 63 offset += csum_size; 64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 65 EXT4_GOOD_OLD_INODE_SIZE - offset); 66 67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 68 offset = offsetof(struct ext4_inode, i_checksum_hi); 69 csum = ext4_chksum(sbi, csum, (__u8 *)raw + 70 EXT4_GOOD_OLD_INODE_SIZE, 71 offset - EXT4_GOOD_OLD_INODE_SIZE); 72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, 74 csum_size); 75 offset += csum_size; 76 } 77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset, 78 EXT4_INODE_SIZE(inode->i_sb) - offset); 79 } 80 81 return csum; 82 } 83 84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 85 struct ext4_inode_info *ei) 86 { 87 __u32 provided, calculated; 88 89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 90 cpu_to_le32(EXT4_OS_LINUX) || 91 !ext4_has_metadata_csum(inode->i_sb)) 92 return 1; 93 94 provided = le16_to_cpu(raw->i_checksum_lo); 95 calculated = ext4_inode_csum(inode, raw, ei); 96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 99 else 100 calculated &= 0xFFFF; 101 102 return provided == calculated; 103 } 104 105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 106 struct ext4_inode_info *ei) 107 { 108 __u32 csum; 109 110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 111 cpu_to_le32(EXT4_OS_LINUX) || 112 !ext4_has_metadata_csum(inode->i_sb)) 113 return; 114 115 csum = ext4_inode_csum(inode, raw, ei); 116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 119 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 120 } 121 122 static inline int ext4_begin_ordered_truncate(struct inode *inode, 123 loff_t new_size) 124 { 125 trace_ext4_begin_ordered_truncate(inode, new_size); 126 /* 127 * If jinode is zero, then we never opened the file for 128 * writing, so there's no need to call 129 * jbd2_journal_begin_ordered_truncate() since there's no 130 * outstanding writes we need to flush. 131 */ 132 if (!EXT4_I(inode)->jinode) 133 return 0; 134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 135 EXT4_I(inode)->jinode, 136 new_size); 137 } 138 139 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 140 int pextents); 141 142 /* 143 * Test whether an inode is a fast symlink. 144 * A fast symlink has its symlink data stored in ext4_inode_info->i_data. 145 */ 146 int ext4_inode_is_fast_symlink(struct inode *inode) 147 { 148 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) { 149 int ea_blocks = EXT4_I(inode)->i_file_acl ? 150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 151 152 if (ext4_has_inline_data(inode)) 153 return 0; 154 155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 156 } 157 return S_ISLNK(inode->i_mode) && inode->i_size && 158 (inode->i_size < EXT4_N_BLOCKS * 4); 159 } 160 161 /* 162 * Called at the last iput() if i_nlink is zero. 163 */ 164 void ext4_evict_inode(struct inode *inode) 165 { 166 handle_t *handle; 167 int err; 168 /* 169 * Credits for final inode cleanup and freeing: 170 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor 171 * (xattr block freeing), bitmap, group descriptor (inode freeing) 172 */ 173 int extra_credits = 6; 174 struct ext4_xattr_inode_array *ea_inode_array = NULL; 175 bool freeze_protected = false; 176 177 trace_ext4_evict_inode(inode); 178 179 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL) 180 ext4_evict_ea_inode(inode); 181 if (inode->i_nlink) { 182 truncate_inode_pages_final(&inode->i_data); 183 184 goto no_delete; 185 } 186 187 if (is_bad_inode(inode)) 188 goto no_delete; 189 dquot_initialize(inode); 190 191 if (ext4_should_order_data(inode)) 192 ext4_begin_ordered_truncate(inode, 0); 193 truncate_inode_pages_final(&inode->i_data); 194 195 /* 196 * For inodes with journalled data, transaction commit could have 197 * dirtied the inode. And for inodes with dioread_nolock, unwritten 198 * extents converting worker could merge extents and also have dirtied 199 * the inode. Flush worker is ignoring it because of I_FREEING flag but 200 * we still need to remove the inode from the writeback lists. 201 */ 202 if (!list_empty_careful(&inode->i_io_list)) 203 inode_io_list_del(inode); 204 205 /* 206 * Protect us against freezing - iput() caller didn't have to have any 207 * protection against it. When we are in a running transaction though, 208 * we are already protected against freezing and we cannot grab further 209 * protection due to lock ordering constraints. 210 */ 211 if (!ext4_journal_current_handle()) { 212 sb_start_intwrite(inode->i_sb); 213 freeze_protected = true; 214 } 215 216 if (!IS_NOQUOTA(inode)) 217 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb); 218 219 /* 220 * Block bitmap, group descriptor, and inode are accounted in both 221 * ext4_blocks_for_truncate() and extra_credits. So subtract 3. 222 */ 223 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 224 ext4_blocks_for_truncate(inode) + extra_credits - 3); 225 if (IS_ERR(handle)) { 226 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 227 /* 228 * If we're going to skip the normal cleanup, we still need to 229 * make sure that the in-core orphan linked list is properly 230 * cleaned up. 231 */ 232 ext4_orphan_del(NULL, inode); 233 if (freeze_protected) 234 sb_end_intwrite(inode->i_sb); 235 goto no_delete; 236 } 237 238 if (IS_SYNC(inode)) 239 ext4_handle_sync(handle); 240 241 /* 242 * Set inode->i_size to 0 before calling ext4_truncate(). We need 243 * special handling of symlinks here because i_size is used to 244 * determine whether ext4_inode_info->i_data contains symlink data or 245 * block mappings. Setting i_size to 0 will remove its fast symlink 246 * status. Erase i_data so that it becomes a valid empty block map. 247 */ 248 if (ext4_inode_is_fast_symlink(inode)) 249 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data)); 250 inode->i_size = 0; 251 err = ext4_mark_inode_dirty(handle, inode); 252 if (err) { 253 ext4_warning(inode->i_sb, 254 "couldn't mark inode dirty (err %d)", err); 255 goto stop_handle; 256 } 257 if (inode->i_blocks) { 258 err = ext4_truncate(inode); 259 if (err) { 260 ext4_error_err(inode->i_sb, -err, 261 "couldn't truncate inode %lu (err %d)", 262 inode->i_ino, err); 263 goto stop_handle; 264 } 265 } 266 267 /* Remove xattr references. */ 268 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array, 269 extra_credits); 270 if (err) { 271 ext4_warning(inode->i_sb, "xattr delete (err %d)", err); 272 stop_handle: 273 ext4_journal_stop(handle); 274 ext4_orphan_del(NULL, inode); 275 if (freeze_protected) 276 sb_end_intwrite(inode->i_sb); 277 ext4_xattr_inode_array_free(ea_inode_array); 278 goto no_delete; 279 } 280 281 /* 282 * Kill off the orphan record which ext4_truncate created. 283 * AKPM: I think this can be inside the above `if'. 284 * Note that ext4_orphan_del() has to be able to cope with the 285 * deletion of a non-existent orphan - this is because we don't 286 * know if ext4_truncate() actually created an orphan record. 287 * (Well, we could do this if we need to, but heck - it works) 288 */ 289 ext4_orphan_del(handle, inode); 290 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds(); 291 292 /* 293 * One subtle ordering requirement: if anything has gone wrong 294 * (transaction abort, IO errors, whatever), then we can still 295 * do these next steps (the fs will already have been marked as 296 * having errors), but we can't free the inode if the mark_dirty 297 * fails. 298 */ 299 if (ext4_mark_inode_dirty(handle, inode)) 300 /* If that failed, just do the required in-core inode clear. */ 301 ext4_clear_inode(inode); 302 else 303 ext4_free_inode(handle, inode); 304 ext4_journal_stop(handle); 305 if (freeze_protected) 306 sb_end_intwrite(inode->i_sb); 307 ext4_xattr_inode_array_free(ea_inode_array); 308 return; 309 no_delete: 310 /* 311 * Check out some where else accidentally dirty the evicting inode, 312 * which may probably cause inode use-after-free issues later. 313 */ 314 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list)); 315 316 if (!list_empty(&EXT4_I(inode)->i_fc_list)) 317 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL); 318 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 319 } 320 321 #ifdef CONFIG_QUOTA 322 qsize_t *ext4_get_reserved_space(struct inode *inode) 323 { 324 return &EXT4_I(inode)->i_reserved_quota; 325 } 326 #endif 327 328 /* 329 * Called with i_data_sem down, which is important since we can call 330 * ext4_discard_preallocations() from here. 331 */ 332 void ext4_da_update_reserve_space(struct inode *inode, 333 int used, int quota_claim) 334 { 335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 336 struct ext4_inode_info *ei = EXT4_I(inode); 337 338 spin_lock(&ei->i_block_reservation_lock); 339 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 340 if (unlikely(used > ei->i_reserved_data_blocks)) { 341 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 342 "with only %d reserved data blocks", 343 __func__, inode->i_ino, used, 344 ei->i_reserved_data_blocks); 345 WARN_ON(1); 346 used = ei->i_reserved_data_blocks; 347 } 348 349 /* Update per-inode reservations */ 350 ei->i_reserved_data_blocks -= used; 351 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 352 353 spin_unlock(&ei->i_block_reservation_lock); 354 355 /* Update quota subsystem for data blocks */ 356 if (quota_claim) 357 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 358 else { 359 /* 360 * We did fallocate with an offset that is already delayed 361 * allocated. So on delayed allocated writeback we should 362 * not re-claim the quota for fallocated blocks. 363 */ 364 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 365 } 366 367 /* 368 * If we have done all the pending block allocations and if 369 * there aren't any writers on the inode, we can discard the 370 * inode's preallocations. 371 */ 372 if ((ei->i_reserved_data_blocks == 0) && 373 !inode_is_open_for_write(inode)) 374 ext4_discard_preallocations(inode, 0); 375 } 376 377 static int __check_block_validity(struct inode *inode, const char *func, 378 unsigned int line, 379 struct ext4_map_blocks *map) 380 { 381 if (ext4_has_feature_journal(inode->i_sb) && 382 (inode->i_ino == 383 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum))) 384 return 0; 385 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) { 386 ext4_error_inode(inode, func, line, map->m_pblk, 387 "lblock %lu mapped to illegal pblock %llu " 388 "(length %d)", (unsigned long) map->m_lblk, 389 map->m_pblk, map->m_len); 390 return -EFSCORRUPTED; 391 } 392 return 0; 393 } 394 395 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk, 396 ext4_lblk_t len) 397 { 398 int ret; 399 400 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) 401 return fscrypt_zeroout_range(inode, lblk, pblk, len); 402 403 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS); 404 if (ret > 0) 405 ret = 0; 406 407 return ret; 408 } 409 410 #define check_block_validity(inode, map) \ 411 __check_block_validity((inode), __func__, __LINE__, (map)) 412 413 #ifdef ES_AGGRESSIVE_TEST 414 static void ext4_map_blocks_es_recheck(handle_t *handle, 415 struct inode *inode, 416 struct ext4_map_blocks *es_map, 417 struct ext4_map_blocks *map, 418 int flags) 419 { 420 int retval; 421 422 map->m_flags = 0; 423 /* 424 * There is a race window that the result is not the same. 425 * e.g. xfstests #223 when dioread_nolock enables. The reason 426 * is that we lookup a block mapping in extent status tree with 427 * out taking i_data_sem. So at the time the unwritten extent 428 * could be converted. 429 */ 430 down_read(&EXT4_I(inode)->i_data_sem); 431 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 432 retval = ext4_ext_map_blocks(handle, inode, map, 0); 433 } else { 434 retval = ext4_ind_map_blocks(handle, inode, map, 0); 435 } 436 up_read((&EXT4_I(inode)->i_data_sem)); 437 438 /* 439 * We don't check m_len because extent will be collpased in status 440 * tree. So the m_len might not equal. 441 */ 442 if (es_map->m_lblk != map->m_lblk || 443 es_map->m_flags != map->m_flags || 444 es_map->m_pblk != map->m_pblk) { 445 printk("ES cache assertion failed for inode: %lu " 446 "es_cached ex [%d/%d/%llu/%x] != " 447 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 448 inode->i_ino, es_map->m_lblk, es_map->m_len, 449 es_map->m_pblk, es_map->m_flags, map->m_lblk, 450 map->m_len, map->m_pblk, map->m_flags, 451 retval, flags); 452 } 453 } 454 #endif /* ES_AGGRESSIVE_TEST */ 455 456 /* 457 * The ext4_map_blocks() function tries to look up the requested blocks, 458 * and returns if the blocks are already mapped. 459 * 460 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 461 * and store the allocated blocks in the result buffer head and mark it 462 * mapped. 463 * 464 * If file type is extents based, it will call ext4_ext_map_blocks(), 465 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 466 * based files 467 * 468 * On success, it returns the number of blocks being mapped or allocated. if 469 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map 470 * is marked as unwritten. If the create == 1, it will mark @map as mapped. 471 * 472 * It returns 0 if plain look up failed (blocks have not been allocated), in 473 * that case, @map is returned as unmapped but we still do fill map->m_len to 474 * indicate the length of a hole starting at map->m_lblk. 475 * 476 * It returns the error in case of allocation failure. 477 */ 478 int ext4_map_blocks(handle_t *handle, struct inode *inode, 479 struct ext4_map_blocks *map, int flags) 480 { 481 struct extent_status es; 482 int retval; 483 int ret = 0; 484 #ifdef ES_AGGRESSIVE_TEST 485 struct ext4_map_blocks orig_map; 486 487 memcpy(&orig_map, map, sizeof(*map)); 488 #endif 489 490 map->m_flags = 0; 491 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n", 492 flags, map->m_len, (unsigned long) map->m_lblk); 493 494 /* 495 * ext4_map_blocks returns an int, and m_len is an unsigned int 496 */ 497 if (unlikely(map->m_len > INT_MAX)) 498 map->m_len = INT_MAX; 499 500 /* We can handle the block number less than EXT_MAX_BLOCKS */ 501 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 502 return -EFSCORRUPTED; 503 504 /* Lookup extent status tree firstly */ 505 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) && 506 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 507 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 508 map->m_pblk = ext4_es_pblock(&es) + 509 map->m_lblk - es.es_lblk; 510 map->m_flags |= ext4_es_is_written(&es) ? 511 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 512 retval = es.es_len - (map->m_lblk - es.es_lblk); 513 if (retval > map->m_len) 514 retval = map->m_len; 515 map->m_len = retval; 516 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 517 map->m_pblk = 0; 518 retval = es.es_len - (map->m_lblk - es.es_lblk); 519 if (retval > map->m_len) 520 retval = map->m_len; 521 map->m_len = retval; 522 retval = 0; 523 } else { 524 BUG(); 525 } 526 527 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 528 return retval; 529 #ifdef ES_AGGRESSIVE_TEST 530 ext4_map_blocks_es_recheck(handle, inode, map, 531 &orig_map, flags); 532 #endif 533 goto found; 534 } 535 /* 536 * In the query cache no-wait mode, nothing we can do more if we 537 * cannot find extent in the cache. 538 */ 539 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT) 540 return 0; 541 542 /* 543 * Try to see if we can get the block without requesting a new 544 * file system block. 545 */ 546 down_read(&EXT4_I(inode)->i_data_sem); 547 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 548 retval = ext4_ext_map_blocks(handle, inode, map, 0); 549 } else { 550 retval = ext4_ind_map_blocks(handle, inode, map, 0); 551 } 552 if (retval > 0) { 553 unsigned int status; 554 555 if (unlikely(retval != map->m_len)) { 556 ext4_warning(inode->i_sb, 557 "ES len assertion failed for inode " 558 "%lu: retval %d != map->m_len %d", 559 inode->i_ino, retval, map->m_len); 560 WARN_ON(1); 561 } 562 563 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 564 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 565 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 566 !(status & EXTENT_STATUS_WRITTEN) && 567 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 568 map->m_lblk + map->m_len - 1)) 569 status |= EXTENT_STATUS_DELAYED; 570 ret = ext4_es_insert_extent(inode, map->m_lblk, 571 map->m_len, map->m_pblk, status); 572 if (ret < 0) 573 retval = ret; 574 } 575 up_read((&EXT4_I(inode)->i_data_sem)); 576 577 found: 578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 579 ret = check_block_validity(inode, map); 580 if (ret != 0) 581 return ret; 582 } 583 584 /* If it is only a block(s) look up */ 585 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 586 return retval; 587 588 /* 589 * Returns if the blocks have already allocated 590 * 591 * Note that if blocks have been preallocated 592 * ext4_ext_get_block() returns the create = 0 593 * with buffer head unmapped. 594 */ 595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 596 /* 597 * If we need to convert extent to unwritten 598 * we continue and do the actual work in 599 * ext4_ext_map_blocks() 600 */ 601 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 602 return retval; 603 604 /* 605 * Here we clear m_flags because after allocating an new extent, 606 * it will be set again. 607 */ 608 map->m_flags &= ~EXT4_MAP_FLAGS; 609 610 /* 611 * New blocks allocate and/or writing to unwritten extent 612 * will possibly result in updating i_data, so we take 613 * the write lock of i_data_sem, and call get_block() 614 * with create == 1 flag. 615 */ 616 down_write(&EXT4_I(inode)->i_data_sem); 617 618 /* 619 * We need to check for EXT4 here because migrate 620 * could have changed the inode type in between 621 */ 622 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 623 retval = ext4_ext_map_blocks(handle, inode, map, flags); 624 } else { 625 retval = ext4_ind_map_blocks(handle, inode, map, flags); 626 627 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 628 /* 629 * We allocated new blocks which will result in 630 * i_data's format changing. Force the migrate 631 * to fail by clearing migrate flags 632 */ 633 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 634 } 635 636 /* 637 * Update reserved blocks/metadata blocks after successful 638 * block allocation which had been deferred till now. We don't 639 * support fallocate for non extent files. So we can update 640 * reserve space here. 641 */ 642 if ((retval > 0) && 643 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 644 ext4_da_update_reserve_space(inode, retval, 1); 645 } 646 647 if (retval > 0) { 648 unsigned int status; 649 650 if (unlikely(retval != map->m_len)) { 651 ext4_warning(inode->i_sb, 652 "ES len assertion failed for inode " 653 "%lu: retval %d != map->m_len %d", 654 inode->i_ino, retval, map->m_len); 655 WARN_ON(1); 656 } 657 658 /* 659 * We have to zeroout blocks before inserting them into extent 660 * status tree. Otherwise someone could look them up there and 661 * use them before they are really zeroed. We also have to 662 * unmap metadata before zeroing as otherwise writeback can 663 * overwrite zeros with stale data from block device. 664 */ 665 if (flags & EXT4_GET_BLOCKS_ZERO && 666 map->m_flags & EXT4_MAP_MAPPED && 667 map->m_flags & EXT4_MAP_NEW) { 668 ret = ext4_issue_zeroout(inode, map->m_lblk, 669 map->m_pblk, map->m_len); 670 if (ret) { 671 retval = ret; 672 goto out_sem; 673 } 674 } 675 676 /* 677 * If the extent has been zeroed out, we don't need to update 678 * extent status tree. 679 */ 680 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 681 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) { 682 if (ext4_es_is_written(&es)) 683 goto out_sem; 684 } 685 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 686 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 687 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 688 !(status & EXTENT_STATUS_WRITTEN) && 689 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk, 690 map->m_lblk + map->m_len - 1)) 691 status |= EXTENT_STATUS_DELAYED; 692 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 693 map->m_pblk, status); 694 if (ret < 0) { 695 retval = ret; 696 goto out_sem; 697 } 698 } 699 700 out_sem: 701 up_write((&EXT4_I(inode)->i_data_sem)); 702 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 703 ret = check_block_validity(inode, map); 704 if (ret != 0) 705 return ret; 706 707 /* 708 * Inodes with freshly allocated blocks where contents will be 709 * visible after transaction commit must be on transaction's 710 * ordered data list. 711 */ 712 if (map->m_flags & EXT4_MAP_NEW && 713 !(map->m_flags & EXT4_MAP_UNWRITTEN) && 714 !(flags & EXT4_GET_BLOCKS_ZERO) && 715 !ext4_is_quota_file(inode) && 716 ext4_should_order_data(inode)) { 717 loff_t start_byte = 718 (loff_t)map->m_lblk << inode->i_blkbits; 719 loff_t length = (loff_t)map->m_len << inode->i_blkbits; 720 721 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT) 722 ret = ext4_jbd2_inode_add_wait(handle, inode, 723 start_byte, length); 724 else 725 ret = ext4_jbd2_inode_add_write(handle, inode, 726 start_byte, length); 727 if (ret) 728 return ret; 729 } 730 } 731 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN || 732 map->m_flags & EXT4_MAP_MAPPED)) 733 ext4_fc_track_range(handle, inode, map->m_lblk, 734 map->m_lblk + map->m_len - 1); 735 if (retval < 0) 736 ext_debug(inode, "failed with err %d\n", retval); 737 return retval; 738 } 739 740 /* 741 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 742 * we have to be careful as someone else may be manipulating b_state as well. 743 */ 744 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 745 { 746 unsigned long old_state; 747 unsigned long new_state; 748 749 flags &= EXT4_MAP_FLAGS; 750 751 /* Dummy buffer_head? Set non-atomically. */ 752 if (!bh->b_page) { 753 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 754 return; 755 } 756 /* 757 * Someone else may be modifying b_state. Be careful! This is ugly but 758 * once we get rid of using bh as a container for mapping information 759 * to pass to / from get_block functions, this can go away. 760 */ 761 old_state = READ_ONCE(bh->b_state); 762 do { 763 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 764 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state))); 765 } 766 767 static int _ext4_get_block(struct inode *inode, sector_t iblock, 768 struct buffer_head *bh, int flags) 769 { 770 struct ext4_map_blocks map; 771 int ret = 0; 772 773 if (ext4_has_inline_data(inode)) 774 return -ERANGE; 775 776 map.m_lblk = iblock; 777 map.m_len = bh->b_size >> inode->i_blkbits; 778 779 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map, 780 flags); 781 if (ret > 0) { 782 map_bh(bh, inode->i_sb, map.m_pblk); 783 ext4_update_bh_state(bh, map.m_flags); 784 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 785 ret = 0; 786 } else if (ret == 0) { 787 /* hole case, need to fill in bh->b_size */ 788 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 789 } 790 return ret; 791 } 792 793 int ext4_get_block(struct inode *inode, sector_t iblock, 794 struct buffer_head *bh, int create) 795 { 796 return _ext4_get_block(inode, iblock, bh, 797 create ? EXT4_GET_BLOCKS_CREATE : 0); 798 } 799 800 /* 801 * Get block function used when preparing for buffered write if we require 802 * creating an unwritten extent if blocks haven't been allocated. The extent 803 * will be converted to written after the IO is complete. 804 */ 805 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock, 806 struct buffer_head *bh_result, int create) 807 { 808 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n", 809 inode->i_ino, create); 810 return _ext4_get_block(inode, iblock, bh_result, 811 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT); 812 } 813 814 /* Maximum number of blocks we map for direct IO at once. */ 815 #define DIO_MAX_BLOCKS 4096 816 817 /* 818 * `handle' can be NULL if create is zero 819 */ 820 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 821 ext4_lblk_t block, int map_flags) 822 { 823 struct ext4_map_blocks map; 824 struct buffer_head *bh; 825 int create = map_flags & EXT4_GET_BLOCKS_CREATE; 826 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT; 827 int err; 828 829 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 830 || handle != NULL || create == 0); 831 ASSERT(create == 0 || !nowait); 832 833 map.m_lblk = block; 834 map.m_len = 1; 835 err = ext4_map_blocks(handle, inode, &map, map_flags); 836 837 if (err == 0) 838 return create ? ERR_PTR(-ENOSPC) : NULL; 839 if (err < 0) 840 return ERR_PTR(err); 841 842 if (nowait) 843 return sb_find_get_block(inode->i_sb, map.m_pblk); 844 845 bh = sb_getblk(inode->i_sb, map.m_pblk); 846 if (unlikely(!bh)) 847 return ERR_PTR(-ENOMEM); 848 if (map.m_flags & EXT4_MAP_NEW) { 849 ASSERT(create != 0); 850 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) 851 || (handle != NULL)); 852 853 /* 854 * Now that we do not always journal data, we should 855 * keep in mind whether this should always journal the 856 * new buffer as metadata. For now, regular file 857 * writes use ext4_get_block instead, so it's not a 858 * problem. 859 */ 860 lock_buffer(bh); 861 BUFFER_TRACE(bh, "call get_create_access"); 862 err = ext4_journal_get_create_access(handle, inode->i_sb, bh, 863 EXT4_JTR_NONE); 864 if (unlikely(err)) { 865 unlock_buffer(bh); 866 goto errout; 867 } 868 if (!buffer_uptodate(bh)) { 869 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 870 set_buffer_uptodate(bh); 871 } 872 unlock_buffer(bh); 873 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 874 err = ext4_handle_dirty_metadata(handle, inode, bh); 875 if (unlikely(err)) 876 goto errout; 877 } else 878 BUFFER_TRACE(bh, "not a new buffer"); 879 return bh; 880 errout: 881 brelse(bh); 882 return ERR_PTR(err); 883 } 884 885 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 886 ext4_lblk_t block, int map_flags) 887 { 888 struct buffer_head *bh; 889 int ret; 890 891 bh = ext4_getblk(handle, inode, block, map_flags); 892 if (IS_ERR(bh)) 893 return bh; 894 if (!bh || ext4_buffer_uptodate(bh)) 895 return bh; 896 897 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true); 898 if (ret) { 899 put_bh(bh); 900 return ERR_PTR(ret); 901 } 902 return bh; 903 } 904 905 /* Read a contiguous batch of blocks. */ 906 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count, 907 bool wait, struct buffer_head **bhs) 908 { 909 int i, err; 910 911 for (i = 0; i < bh_count; i++) { 912 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */); 913 if (IS_ERR(bhs[i])) { 914 err = PTR_ERR(bhs[i]); 915 bh_count = i; 916 goto out_brelse; 917 } 918 } 919 920 for (i = 0; i < bh_count; i++) 921 /* Note that NULL bhs[i] is valid because of holes. */ 922 if (bhs[i] && !ext4_buffer_uptodate(bhs[i])) 923 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false); 924 925 if (!wait) 926 return 0; 927 928 for (i = 0; i < bh_count; i++) 929 if (bhs[i]) 930 wait_on_buffer(bhs[i]); 931 932 for (i = 0; i < bh_count; i++) { 933 if (bhs[i] && !buffer_uptodate(bhs[i])) { 934 err = -EIO; 935 goto out_brelse; 936 } 937 } 938 return 0; 939 940 out_brelse: 941 for (i = 0; i < bh_count; i++) { 942 brelse(bhs[i]); 943 bhs[i] = NULL; 944 } 945 return err; 946 } 947 948 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode, 949 struct buffer_head *head, 950 unsigned from, 951 unsigned to, 952 int *partial, 953 int (*fn)(handle_t *handle, struct inode *inode, 954 struct buffer_head *bh)) 955 { 956 struct buffer_head *bh; 957 unsigned block_start, block_end; 958 unsigned blocksize = head->b_size; 959 int err, ret = 0; 960 struct buffer_head *next; 961 962 for (bh = head, block_start = 0; 963 ret == 0 && (bh != head || !block_start); 964 block_start = block_end, bh = next) { 965 next = bh->b_this_page; 966 block_end = block_start + blocksize; 967 if (block_end <= from || block_start >= to) { 968 if (partial && !buffer_uptodate(bh)) 969 *partial = 1; 970 continue; 971 } 972 err = (*fn)(handle, inode, bh); 973 if (!ret) 974 ret = err; 975 } 976 return ret; 977 } 978 979 /* 980 * Helper for handling dirtying of journalled data. We also mark the folio as 981 * dirty so that writeback code knows about this page (and inode) contains 982 * dirty data. ext4_writepages() then commits appropriate transaction to 983 * make data stable. 984 */ 985 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh) 986 { 987 folio_mark_dirty(bh->b_folio); 988 return ext4_handle_dirty_metadata(handle, NULL, bh); 989 } 990 991 int do_journal_get_write_access(handle_t *handle, struct inode *inode, 992 struct buffer_head *bh) 993 { 994 int dirty = buffer_dirty(bh); 995 int ret; 996 997 if (!buffer_mapped(bh) || buffer_freed(bh)) 998 return 0; 999 /* 1000 * __block_write_begin() could have dirtied some buffers. Clean 1001 * the dirty bit as jbd2_journal_get_write_access() could complain 1002 * otherwise about fs integrity issues. Setting of the dirty bit 1003 * by __block_write_begin() isn't a real problem here as we clear 1004 * the bit before releasing a page lock and thus writeback cannot 1005 * ever write the buffer. 1006 */ 1007 if (dirty) 1008 clear_buffer_dirty(bh); 1009 BUFFER_TRACE(bh, "get write access"); 1010 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh, 1011 EXT4_JTR_NONE); 1012 if (!ret && dirty) 1013 ret = ext4_dirty_journalled_data(handle, bh); 1014 return ret; 1015 } 1016 1017 #ifdef CONFIG_FS_ENCRYPTION 1018 static int ext4_block_write_begin(struct folio *folio, loff_t pos, unsigned len, 1019 get_block_t *get_block) 1020 { 1021 unsigned from = pos & (PAGE_SIZE - 1); 1022 unsigned to = from + len; 1023 struct inode *inode = folio->mapping->host; 1024 unsigned block_start, block_end; 1025 sector_t block; 1026 int err = 0; 1027 unsigned blocksize = inode->i_sb->s_blocksize; 1028 unsigned bbits; 1029 struct buffer_head *bh, *head, *wait[2]; 1030 int nr_wait = 0; 1031 int i; 1032 1033 BUG_ON(!folio_test_locked(folio)); 1034 BUG_ON(from > PAGE_SIZE); 1035 BUG_ON(to > PAGE_SIZE); 1036 BUG_ON(from > to); 1037 1038 head = folio_buffers(folio); 1039 if (!head) { 1040 create_empty_buffers(&folio->page, blocksize, 0); 1041 head = folio_buffers(folio); 1042 } 1043 bbits = ilog2(blocksize); 1044 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1045 1046 for (bh = head, block_start = 0; bh != head || !block_start; 1047 block++, block_start = block_end, bh = bh->b_this_page) { 1048 block_end = block_start + blocksize; 1049 if (block_end <= from || block_start >= to) { 1050 if (folio_test_uptodate(folio)) { 1051 set_buffer_uptodate(bh); 1052 } 1053 continue; 1054 } 1055 if (buffer_new(bh)) 1056 clear_buffer_new(bh); 1057 if (!buffer_mapped(bh)) { 1058 WARN_ON(bh->b_size != blocksize); 1059 err = get_block(inode, block, bh, 1); 1060 if (err) 1061 break; 1062 if (buffer_new(bh)) { 1063 if (folio_test_uptodate(folio)) { 1064 clear_buffer_new(bh); 1065 set_buffer_uptodate(bh); 1066 mark_buffer_dirty(bh); 1067 continue; 1068 } 1069 if (block_end > to || block_start < from) 1070 folio_zero_segments(folio, to, 1071 block_end, 1072 block_start, from); 1073 continue; 1074 } 1075 } 1076 if (folio_test_uptodate(folio)) { 1077 set_buffer_uptodate(bh); 1078 continue; 1079 } 1080 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1081 !buffer_unwritten(bh) && 1082 (block_start < from || block_end > to)) { 1083 ext4_read_bh_lock(bh, 0, false); 1084 wait[nr_wait++] = bh; 1085 } 1086 } 1087 /* 1088 * If we issued read requests, let them complete. 1089 */ 1090 for (i = 0; i < nr_wait; i++) { 1091 wait_on_buffer(wait[i]); 1092 if (!buffer_uptodate(wait[i])) 1093 err = -EIO; 1094 } 1095 if (unlikely(err)) { 1096 page_zero_new_buffers(&folio->page, from, to); 1097 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 1098 for (i = 0; i < nr_wait; i++) { 1099 int err2; 1100 1101 err2 = fscrypt_decrypt_pagecache_blocks(folio, 1102 blocksize, bh_offset(wait[i])); 1103 if (err2) { 1104 clear_buffer_uptodate(wait[i]); 1105 err = err2; 1106 } 1107 } 1108 } 1109 1110 return err; 1111 } 1112 #endif 1113 1114 /* 1115 * To preserve ordering, it is essential that the hole instantiation and 1116 * the data write be encapsulated in a single transaction. We cannot 1117 * close off a transaction and start a new one between the ext4_get_block() 1118 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of 1119 * ext4_write_begin() is the right place. 1120 */ 1121 static int ext4_write_begin(struct file *file, struct address_space *mapping, 1122 loff_t pos, unsigned len, 1123 struct page **pagep, void **fsdata) 1124 { 1125 struct inode *inode = mapping->host; 1126 int ret, needed_blocks; 1127 handle_t *handle; 1128 int retries = 0; 1129 struct folio *folio; 1130 pgoff_t index; 1131 unsigned from, to; 1132 1133 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 1134 return -EIO; 1135 1136 trace_ext4_write_begin(inode, pos, len); 1137 /* 1138 * Reserve one block more for addition to orphan list in case 1139 * we allocate blocks but write fails for some reason 1140 */ 1141 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1142 index = pos >> PAGE_SHIFT; 1143 from = pos & (PAGE_SIZE - 1); 1144 to = from + len; 1145 1146 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1147 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1148 pagep); 1149 if (ret < 0) 1150 return ret; 1151 if (ret == 1) 1152 return 0; 1153 } 1154 1155 /* 1156 * __filemap_get_folio() can take a long time if the 1157 * system is thrashing due to memory pressure, or if the folio 1158 * is being written back. So grab it first before we start 1159 * the transaction handle. This also allows us to allocate 1160 * the folio (if needed) without using GFP_NOFS. 1161 */ 1162 retry_grab: 1163 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 1164 mapping_gfp_mask(mapping)); 1165 if (!folio) 1166 return -ENOMEM; 1167 /* 1168 * The same as page allocation, we prealloc buffer heads before 1169 * starting the handle. 1170 */ 1171 if (!folio_buffers(folio)) 1172 create_empty_buffers(&folio->page, inode->i_sb->s_blocksize, 0); 1173 1174 folio_unlock(folio); 1175 1176 retry_journal: 1177 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1178 if (IS_ERR(handle)) { 1179 folio_put(folio); 1180 return PTR_ERR(handle); 1181 } 1182 1183 folio_lock(folio); 1184 if (folio->mapping != mapping) { 1185 /* The folio got truncated from under us */ 1186 folio_unlock(folio); 1187 folio_put(folio); 1188 ext4_journal_stop(handle); 1189 goto retry_grab; 1190 } 1191 /* In case writeback began while the folio was unlocked */ 1192 folio_wait_stable(folio); 1193 1194 #ifdef CONFIG_FS_ENCRYPTION 1195 if (ext4_should_dioread_nolock(inode)) 1196 ret = ext4_block_write_begin(folio, pos, len, 1197 ext4_get_block_unwritten); 1198 else 1199 ret = ext4_block_write_begin(folio, pos, len, ext4_get_block); 1200 #else 1201 if (ext4_should_dioread_nolock(inode)) 1202 ret = __block_write_begin(&folio->page, pos, len, 1203 ext4_get_block_unwritten); 1204 else 1205 ret = __block_write_begin(&folio->page, pos, len, ext4_get_block); 1206 #endif 1207 if (!ret && ext4_should_journal_data(inode)) { 1208 ret = ext4_walk_page_buffers(handle, inode, 1209 folio_buffers(folio), from, to, 1210 NULL, do_journal_get_write_access); 1211 } 1212 1213 if (ret) { 1214 bool extended = (pos + len > inode->i_size) && 1215 !ext4_verity_in_progress(inode); 1216 1217 folio_unlock(folio); 1218 /* 1219 * __block_write_begin may have instantiated a few blocks 1220 * outside i_size. Trim these off again. Don't need 1221 * i_size_read because we hold i_rwsem. 1222 * 1223 * Add inode to orphan list in case we crash before 1224 * truncate finishes 1225 */ 1226 if (extended && ext4_can_truncate(inode)) 1227 ext4_orphan_add(handle, inode); 1228 1229 ext4_journal_stop(handle); 1230 if (extended) { 1231 ext4_truncate_failed_write(inode); 1232 /* 1233 * If truncate failed early the inode might 1234 * still be on the orphan list; we need to 1235 * make sure the inode is removed from the 1236 * orphan list in that case. 1237 */ 1238 if (inode->i_nlink) 1239 ext4_orphan_del(NULL, inode); 1240 } 1241 1242 if (ret == -ENOSPC && 1243 ext4_should_retry_alloc(inode->i_sb, &retries)) 1244 goto retry_journal; 1245 folio_put(folio); 1246 return ret; 1247 } 1248 *pagep = &folio->page; 1249 return ret; 1250 } 1251 1252 /* For write_end() in data=journal mode */ 1253 static int write_end_fn(handle_t *handle, struct inode *inode, 1254 struct buffer_head *bh) 1255 { 1256 int ret; 1257 if (!buffer_mapped(bh) || buffer_freed(bh)) 1258 return 0; 1259 set_buffer_uptodate(bh); 1260 ret = ext4_dirty_journalled_data(handle, bh); 1261 clear_buffer_meta(bh); 1262 clear_buffer_prio(bh); 1263 return ret; 1264 } 1265 1266 /* 1267 * We need to pick up the new inode size which generic_commit_write gave us 1268 * `file' can be NULL - eg, when called from page_symlink(). 1269 * 1270 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1271 * buffers are managed internally. 1272 */ 1273 static int ext4_write_end(struct file *file, 1274 struct address_space *mapping, 1275 loff_t pos, unsigned len, unsigned copied, 1276 struct page *page, void *fsdata) 1277 { 1278 struct folio *folio = page_folio(page); 1279 handle_t *handle = ext4_journal_current_handle(); 1280 struct inode *inode = mapping->host; 1281 loff_t old_size = inode->i_size; 1282 int ret = 0, ret2; 1283 int i_size_changed = 0; 1284 bool verity = ext4_verity_in_progress(inode); 1285 1286 trace_ext4_write_end(inode, pos, len, copied); 1287 1288 if (ext4_has_inline_data(inode) && 1289 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) 1290 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1291 1292 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 1293 /* 1294 * it's important to update i_size while still holding folio lock: 1295 * page writeout could otherwise come in and zero beyond i_size. 1296 * 1297 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree 1298 * blocks are being written past EOF, so skip the i_size update. 1299 */ 1300 if (!verity) 1301 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1302 folio_unlock(folio); 1303 folio_put(folio); 1304 1305 if (old_size < pos && !verity) 1306 pagecache_isize_extended(inode, old_size, pos); 1307 /* 1308 * Don't mark the inode dirty under folio lock. First, it unnecessarily 1309 * makes the holding time of folio lock longer. Second, it forces lock 1310 * ordering of folio lock and transaction start for journaling 1311 * filesystems. 1312 */ 1313 if (i_size_changed) 1314 ret = ext4_mark_inode_dirty(handle, inode); 1315 1316 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1317 /* if we have allocated more blocks and copied 1318 * less. We will have blocks allocated outside 1319 * inode->i_size. So truncate them 1320 */ 1321 ext4_orphan_add(handle, inode); 1322 1323 ret2 = ext4_journal_stop(handle); 1324 if (!ret) 1325 ret = ret2; 1326 1327 if (pos + len > inode->i_size && !verity) { 1328 ext4_truncate_failed_write(inode); 1329 /* 1330 * If truncate failed early the inode might still be 1331 * on the orphan list; we need to make sure the inode 1332 * is removed from the orphan list in that case. 1333 */ 1334 if (inode->i_nlink) 1335 ext4_orphan_del(NULL, inode); 1336 } 1337 1338 return ret ? ret : copied; 1339 } 1340 1341 /* 1342 * This is a private version of page_zero_new_buffers() which doesn't 1343 * set the buffer to be dirty, since in data=journalled mode we need 1344 * to call ext4_dirty_journalled_data() instead. 1345 */ 1346 static void ext4_journalled_zero_new_buffers(handle_t *handle, 1347 struct inode *inode, 1348 struct folio *folio, 1349 unsigned from, unsigned to) 1350 { 1351 unsigned int block_start = 0, block_end; 1352 struct buffer_head *head, *bh; 1353 1354 bh = head = folio_buffers(folio); 1355 do { 1356 block_end = block_start + bh->b_size; 1357 if (buffer_new(bh)) { 1358 if (block_end > from && block_start < to) { 1359 if (!folio_test_uptodate(folio)) { 1360 unsigned start, size; 1361 1362 start = max(from, block_start); 1363 size = min(to, block_end) - start; 1364 1365 folio_zero_range(folio, start, size); 1366 write_end_fn(handle, inode, bh); 1367 } 1368 clear_buffer_new(bh); 1369 } 1370 } 1371 block_start = block_end; 1372 bh = bh->b_this_page; 1373 } while (bh != head); 1374 } 1375 1376 static int ext4_journalled_write_end(struct file *file, 1377 struct address_space *mapping, 1378 loff_t pos, unsigned len, unsigned copied, 1379 struct page *page, void *fsdata) 1380 { 1381 struct folio *folio = page_folio(page); 1382 handle_t *handle = ext4_journal_current_handle(); 1383 struct inode *inode = mapping->host; 1384 loff_t old_size = inode->i_size; 1385 int ret = 0, ret2; 1386 int partial = 0; 1387 unsigned from, to; 1388 int size_changed = 0; 1389 bool verity = ext4_verity_in_progress(inode); 1390 1391 trace_ext4_journalled_write_end(inode, pos, len, copied); 1392 from = pos & (PAGE_SIZE - 1); 1393 to = from + len; 1394 1395 BUG_ON(!ext4_handle_valid(handle)); 1396 1397 if (ext4_has_inline_data(inode)) 1398 return ext4_write_inline_data_end(inode, pos, len, copied, page); 1399 1400 if (unlikely(copied < len) && !folio_test_uptodate(folio)) { 1401 copied = 0; 1402 ext4_journalled_zero_new_buffers(handle, inode, folio, 1403 from, to); 1404 } else { 1405 if (unlikely(copied < len)) 1406 ext4_journalled_zero_new_buffers(handle, inode, folio, 1407 from + copied, to); 1408 ret = ext4_walk_page_buffers(handle, inode, 1409 folio_buffers(folio), 1410 from, from + copied, &partial, 1411 write_end_fn); 1412 if (!partial) 1413 folio_mark_uptodate(folio); 1414 } 1415 if (!verity) 1416 size_changed = ext4_update_inode_size(inode, pos + copied); 1417 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1418 folio_unlock(folio); 1419 folio_put(folio); 1420 1421 if (old_size < pos && !verity) 1422 pagecache_isize_extended(inode, old_size, pos); 1423 1424 if (size_changed) { 1425 ret2 = ext4_mark_inode_dirty(handle, inode); 1426 if (!ret) 1427 ret = ret2; 1428 } 1429 1430 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode)) 1431 /* if we have allocated more blocks and copied 1432 * less. We will have blocks allocated outside 1433 * inode->i_size. So truncate them 1434 */ 1435 ext4_orphan_add(handle, inode); 1436 1437 ret2 = ext4_journal_stop(handle); 1438 if (!ret) 1439 ret = ret2; 1440 if (pos + len > inode->i_size && !verity) { 1441 ext4_truncate_failed_write(inode); 1442 /* 1443 * If truncate failed early the inode might still be 1444 * on the orphan list; we need to make sure the inode 1445 * is removed from the orphan list in that case. 1446 */ 1447 if (inode->i_nlink) 1448 ext4_orphan_del(NULL, inode); 1449 } 1450 1451 return ret ? ret : copied; 1452 } 1453 1454 /* 1455 * Reserve space for a single cluster 1456 */ 1457 static int ext4_da_reserve_space(struct inode *inode) 1458 { 1459 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1460 struct ext4_inode_info *ei = EXT4_I(inode); 1461 int ret; 1462 1463 /* 1464 * We will charge metadata quota at writeout time; this saves 1465 * us from metadata over-estimation, though we may go over by 1466 * a small amount in the end. Here we just reserve for data. 1467 */ 1468 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1469 if (ret) 1470 return ret; 1471 1472 spin_lock(&ei->i_block_reservation_lock); 1473 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1474 spin_unlock(&ei->i_block_reservation_lock); 1475 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1476 return -ENOSPC; 1477 } 1478 ei->i_reserved_data_blocks++; 1479 trace_ext4_da_reserve_space(inode); 1480 spin_unlock(&ei->i_block_reservation_lock); 1481 1482 return 0; /* success */ 1483 } 1484 1485 void ext4_da_release_space(struct inode *inode, int to_free) 1486 { 1487 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1488 struct ext4_inode_info *ei = EXT4_I(inode); 1489 1490 if (!to_free) 1491 return; /* Nothing to release, exit */ 1492 1493 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1494 1495 trace_ext4_da_release_space(inode, to_free); 1496 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1497 /* 1498 * if there aren't enough reserved blocks, then the 1499 * counter is messed up somewhere. Since this 1500 * function is called from invalidate page, it's 1501 * harmless to return without any action. 1502 */ 1503 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1504 "ino %lu, to_free %d with only %d reserved " 1505 "data blocks", inode->i_ino, to_free, 1506 ei->i_reserved_data_blocks); 1507 WARN_ON(1); 1508 to_free = ei->i_reserved_data_blocks; 1509 } 1510 ei->i_reserved_data_blocks -= to_free; 1511 1512 /* update fs dirty data blocks counter */ 1513 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1514 1515 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1516 1517 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1518 } 1519 1520 /* 1521 * Delayed allocation stuff 1522 */ 1523 1524 struct mpage_da_data { 1525 /* These are input fields for ext4_do_writepages() */ 1526 struct inode *inode; 1527 struct writeback_control *wbc; 1528 unsigned int can_map:1; /* Can writepages call map blocks? */ 1529 1530 /* These are internal state of ext4_do_writepages() */ 1531 pgoff_t first_page; /* The first page to write */ 1532 pgoff_t next_page; /* Current page to examine */ 1533 pgoff_t last_page; /* Last page to examine */ 1534 /* 1535 * Extent to map - this can be after first_page because that can be 1536 * fully mapped. We somewhat abuse m_flags to store whether the extent 1537 * is delalloc or unwritten. 1538 */ 1539 struct ext4_map_blocks map; 1540 struct ext4_io_submit io_submit; /* IO submission data */ 1541 unsigned int do_map:1; 1542 unsigned int scanned_until_end:1; 1543 unsigned int journalled_more_data:1; 1544 }; 1545 1546 static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1547 bool invalidate) 1548 { 1549 unsigned nr, i; 1550 pgoff_t index, end; 1551 struct folio_batch fbatch; 1552 struct inode *inode = mpd->inode; 1553 struct address_space *mapping = inode->i_mapping; 1554 1555 /* This is necessary when next_page == 0. */ 1556 if (mpd->first_page >= mpd->next_page) 1557 return; 1558 1559 mpd->scanned_until_end = 0; 1560 index = mpd->first_page; 1561 end = mpd->next_page - 1; 1562 if (invalidate) { 1563 ext4_lblk_t start, last; 1564 start = index << (PAGE_SHIFT - inode->i_blkbits); 1565 last = end << (PAGE_SHIFT - inode->i_blkbits); 1566 1567 /* 1568 * avoid racing with extent status tree scans made by 1569 * ext4_insert_delayed_block() 1570 */ 1571 down_write(&EXT4_I(inode)->i_data_sem); 1572 ext4_es_remove_extent(inode, start, last - start + 1); 1573 up_write(&EXT4_I(inode)->i_data_sem); 1574 } 1575 1576 folio_batch_init(&fbatch); 1577 while (index <= end) { 1578 nr = filemap_get_folios(mapping, &index, end, &fbatch); 1579 if (nr == 0) 1580 break; 1581 for (i = 0; i < nr; i++) { 1582 struct folio *folio = fbatch.folios[i]; 1583 1584 if (folio->index < mpd->first_page) 1585 continue; 1586 if (folio->index + folio_nr_pages(folio) - 1 > end) 1587 continue; 1588 BUG_ON(!folio_test_locked(folio)); 1589 BUG_ON(folio_test_writeback(folio)); 1590 if (invalidate) { 1591 if (folio_mapped(folio)) 1592 folio_clear_dirty_for_io(folio); 1593 block_invalidate_folio(folio, 0, 1594 folio_size(folio)); 1595 folio_clear_uptodate(folio); 1596 } 1597 folio_unlock(folio); 1598 } 1599 folio_batch_release(&fbatch); 1600 } 1601 } 1602 1603 static void ext4_print_free_blocks(struct inode *inode) 1604 { 1605 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1606 struct super_block *sb = inode->i_sb; 1607 struct ext4_inode_info *ei = EXT4_I(inode); 1608 1609 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1610 EXT4_C2B(EXT4_SB(inode->i_sb), 1611 ext4_count_free_clusters(sb))); 1612 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1613 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1614 (long long) EXT4_C2B(EXT4_SB(sb), 1615 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1616 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1617 (long long) EXT4_C2B(EXT4_SB(sb), 1618 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1619 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1620 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1621 ei->i_reserved_data_blocks); 1622 return; 1623 } 1624 1625 /* 1626 * ext4_insert_delayed_block - adds a delayed block to the extents status 1627 * tree, incrementing the reserved cluster/block 1628 * count or making a pending reservation 1629 * where needed 1630 * 1631 * @inode - file containing the newly added block 1632 * @lblk - logical block to be added 1633 * 1634 * Returns 0 on success, negative error code on failure. 1635 */ 1636 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk) 1637 { 1638 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1639 int ret; 1640 bool allocated = false; 1641 bool reserved = false; 1642 1643 /* 1644 * If the cluster containing lblk is shared with a delayed, 1645 * written, or unwritten extent in a bigalloc file system, it's 1646 * already been accounted for and does not need to be reserved. 1647 * A pending reservation must be made for the cluster if it's 1648 * shared with a written or unwritten extent and doesn't already 1649 * have one. Written and unwritten extents can be purged from the 1650 * extents status tree if the system is under memory pressure, so 1651 * it's necessary to examine the extent tree if a search of the 1652 * extents status tree doesn't get a match. 1653 */ 1654 if (sbi->s_cluster_ratio == 1) { 1655 ret = ext4_da_reserve_space(inode); 1656 if (ret != 0) /* ENOSPC */ 1657 goto errout; 1658 reserved = true; 1659 } else { /* bigalloc */ 1660 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) { 1661 if (!ext4_es_scan_clu(inode, 1662 &ext4_es_is_mapped, lblk)) { 1663 ret = ext4_clu_mapped(inode, 1664 EXT4_B2C(sbi, lblk)); 1665 if (ret < 0) 1666 goto errout; 1667 if (ret == 0) { 1668 ret = ext4_da_reserve_space(inode); 1669 if (ret != 0) /* ENOSPC */ 1670 goto errout; 1671 reserved = true; 1672 } else { 1673 allocated = true; 1674 } 1675 } else { 1676 allocated = true; 1677 } 1678 } 1679 } 1680 1681 ret = ext4_es_insert_delayed_block(inode, lblk, allocated); 1682 if (ret && reserved) 1683 ext4_da_release_space(inode, 1); 1684 1685 errout: 1686 return ret; 1687 } 1688 1689 /* 1690 * This function is grabs code from the very beginning of 1691 * ext4_map_blocks, but assumes that the caller is from delayed write 1692 * time. This function looks up the requested blocks and sets the 1693 * buffer delay bit under the protection of i_data_sem. 1694 */ 1695 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1696 struct ext4_map_blocks *map, 1697 struct buffer_head *bh) 1698 { 1699 struct extent_status es; 1700 int retval; 1701 sector_t invalid_block = ~((sector_t) 0xffff); 1702 #ifdef ES_AGGRESSIVE_TEST 1703 struct ext4_map_blocks orig_map; 1704 1705 memcpy(&orig_map, map, sizeof(*map)); 1706 #endif 1707 1708 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1709 invalid_block = ~0; 1710 1711 map->m_flags = 0; 1712 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len, 1713 (unsigned long) map->m_lblk); 1714 1715 /* Lookup extent status tree firstly */ 1716 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) { 1717 if (ext4_es_is_hole(&es)) { 1718 retval = 0; 1719 down_read(&EXT4_I(inode)->i_data_sem); 1720 goto add_delayed; 1721 } 1722 1723 /* 1724 * Delayed extent could be allocated by fallocate. 1725 * So we need to check it. 1726 */ 1727 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1728 map_bh(bh, inode->i_sb, invalid_block); 1729 set_buffer_new(bh); 1730 set_buffer_delay(bh); 1731 return 0; 1732 } 1733 1734 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1735 retval = es.es_len - (iblock - es.es_lblk); 1736 if (retval > map->m_len) 1737 retval = map->m_len; 1738 map->m_len = retval; 1739 if (ext4_es_is_written(&es)) 1740 map->m_flags |= EXT4_MAP_MAPPED; 1741 else if (ext4_es_is_unwritten(&es)) 1742 map->m_flags |= EXT4_MAP_UNWRITTEN; 1743 else 1744 BUG(); 1745 1746 #ifdef ES_AGGRESSIVE_TEST 1747 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1748 #endif 1749 return retval; 1750 } 1751 1752 /* 1753 * Try to see if we can get the block without requesting a new 1754 * file system block. 1755 */ 1756 down_read(&EXT4_I(inode)->i_data_sem); 1757 if (ext4_has_inline_data(inode)) 1758 retval = 0; 1759 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1760 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1761 else 1762 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1763 1764 add_delayed: 1765 if (retval == 0) { 1766 int ret; 1767 1768 /* 1769 * XXX: __block_prepare_write() unmaps passed block, 1770 * is it OK? 1771 */ 1772 1773 ret = ext4_insert_delayed_block(inode, map->m_lblk); 1774 if (ret != 0) { 1775 retval = ret; 1776 goto out_unlock; 1777 } 1778 1779 map_bh(bh, inode->i_sb, invalid_block); 1780 set_buffer_new(bh); 1781 set_buffer_delay(bh); 1782 } else if (retval > 0) { 1783 int ret; 1784 unsigned int status; 1785 1786 if (unlikely(retval != map->m_len)) { 1787 ext4_warning(inode->i_sb, 1788 "ES len assertion failed for inode " 1789 "%lu: retval %d != map->m_len %d", 1790 inode->i_ino, retval, map->m_len); 1791 WARN_ON(1); 1792 } 1793 1794 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1795 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1796 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1797 map->m_pblk, status); 1798 if (ret != 0) 1799 retval = ret; 1800 } 1801 1802 out_unlock: 1803 up_read((&EXT4_I(inode)->i_data_sem)); 1804 1805 return retval; 1806 } 1807 1808 /* 1809 * This is a special get_block_t callback which is used by 1810 * ext4_da_write_begin(). It will either return mapped block or 1811 * reserve space for a single block. 1812 * 1813 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1814 * We also have b_blocknr = -1 and b_bdev initialized properly 1815 * 1816 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1817 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1818 * initialized properly. 1819 */ 1820 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1821 struct buffer_head *bh, int create) 1822 { 1823 struct ext4_map_blocks map; 1824 int ret = 0; 1825 1826 BUG_ON(create == 0); 1827 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1828 1829 map.m_lblk = iblock; 1830 map.m_len = 1; 1831 1832 /* 1833 * first, we need to know whether the block is allocated already 1834 * preallocated blocks are unmapped but should treated 1835 * the same as allocated blocks. 1836 */ 1837 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1838 if (ret <= 0) 1839 return ret; 1840 1841 map_bh(bh, inode->i_sb, map.m_pblk); 1842 ext4_update_bh_state(bh, map.m_flags); 1843 1844 if (buffer_unwritten(bh)) { 1845 /* A delayed write to unwritten bh should be marked 1846 * new and mapped. Mapped ensures that we don't do 1847 * get_block multiple times when we write to the same 1848 * offset and new ensures that we do proper zero out 1849 * for partial write. 1850 */ 1851 set_buffer_new(bh); 1852 set_buffer_mapped(bh); 1853 } 1854 return 0; 1855 } 1856 1857 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio) 1858 { 1859 mpd->first_page += folio_nr_pages(folio); 1860 folio_unlock(folio); 1861 } 1862 1863 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio) 1864 { 1865 size_t len; 1866 loff_t size; 1867 int err; 1868 1869 BUG_ON(folio->index != mpd->first_page); 1870 folio_clear_dirty_for_io(folio); 1871 /* 1872 * We have to be very careful here! Nothing protects writeback path 1873 * against i_size changes and the page can be writeably mapped into 1874 * page tables. So an application can be growing i_size and writing 1875 * data through mmap while writeback runs. folio_clear_dirty_for_io() 1876 * write-protects our page in page tables and the page cannot get 1877 * written to again until we release folio lock. So only after 1878 * folio_clear_dirty_for_io() we are safe to sample i_size for 1879 * ext4_bio_write_folio() to zero-out tail of the written page. We rely 1880 * on the barrier provided by folio_test_clear_dirty() in 1881 * folio_clear_dirty_for_io() to make sure i_size is really sampled only 1882 * after page tables are updated. 1883 */ 1884 size = i_size_read(mpd->inode); 1885 len = folio_size(folio); 1886 if (folio_pos(folio) + len > size && 1887 !ext4_verity_in_progress(mpd->inode)) 1888 len = size & ~PAGE_MASK; 1889 err = ext4_bio_write_folio(&mpd->io_submit, folio, len); 1890 if (!err) 1891 mpd->wbc->nr_to_write--; 1892 1893 return err; 1894 } 1895 1896 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay)) 1897 1898 /* 1899 * mballoc gives us at most this number of blocks... 1900 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1901 * The rest of mballoc seems to handle chunks up to full group size. 1902 */ 1903 #define MAX_WRITEPAGES_EXTENT_LEN 2048 1904 1905 /* 1906 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1907 * 1908 * @mpd - extent of blocks 1909 * @lblk - logical number of the block in the file 1910 * @bh - buffer head we want to add to the extent 1911 * 1912 * The function is used to collect contig. blocks in the same state. If the 1913 * buffer doesn't require mapping for writeback and we haven't started the 1914 * extent of buffers to map yet, the function returns 'true' immediately - the 1915 * caller can write the buffer right away. Otherwise the function returns true 1916 * if the block has been added to the extent, false if the block couldn't be 1917 * added. 1918 */ 1919 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1920 struct buffer_head *bh) 1921 { 1922 struct ext4_map_blocks *map = &mpd->map; 1923 1924 /* Buffer that doesn't need mapping for writeback? */ 1925 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1926 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1927 /* So far no extent to map => we write the buffer right away */ 1928 if (map->m_len == 0) 1929 return true; 1930 return false; 1931 } 1932 1933 /* First block in the extent? */ 1934 if (map->m_len == 0) { 1935 /* We cannot map unless handle is started... */ 1936 if (!mpd->do_map) 1937 return false; 1938 map->m_lblk = lblk; 1939 map->m_len = 1; 1940 map->m_flags = bh->b_state & BH_FLAGS; 1941 return true; 1942 } 1943 1944 /* Don't go larger than mballoc is willing to allocate */ 1945 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1946 return false; 1947 1948 /* Can we merge the block to our big extent? */ 1949 if (lblk == map->m_lblk + map->m_len && 1950 (bh->b_state & BH_FLAGS) == map->m_flags) { 1951 map->m_len++; 1952 return true; 1953 } 1954 return false; 1955 } 1956 1957 /* 1958 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1959 * 1960 * @mpd - extent of blocks for mapping 1961 * @head - the first buffer in the page 1962 * @bh - buffer we should start processing from 1963 * @lblk - logical number of the block in the file corresponding to @bh 1964 * 1965 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1966 * the page for IO if all buffers in this page were mapped and there's no 1967 * accumulated extent of buffers to map or add buffers in the page to the 1968 * extent of buffers to map. The function returns 1 if the caller can continue 1969 * by processing the next page, 0 if it should stop adding buffers to the 1970 * extent to map because we cannot extend it anymore. It can also return value 1971 * < 0 in case of error during IO submission. 1972 */ 1973 static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1974 struct buffer_head *head, 1975 struct buffer_head *bh, 1976 ext4_lblk_t lblk) 1977 { 1978 struct inode *inode = mpd->inode; 1979 int err; 1980 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1) 1981 >> inode->i_blkbits; 1982 1983 if (ext4_verity_in_progress(inode)) 1984 blocks = EXT_MAX_BLOCKS; 1985 1986 do { 1987 BUG_ON(buffer_locked(bh)); 1988 1989 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 1990 /* Found extent to map? */ 1991 if (mpd->map.m_len) 1992 return 0; 1993 /* Buffer needs mapping and handle is not started? */ 1994 if (!mpd->do_map) 1995 return 0; 1996 /* Everything mapped so far and we hit EOF */ 1997 break; 1998 } 1999 } while (lblk++, (bh = bh->b_this_page) != head); 2000 /* So far everything mapped? Submit the page for IO. */ 2001 if (mpd->map.m_len == 0) { 2002 err = mpage_submit_folio(mpd, head->b_folio); 2003 if (err < 0) 2004 return err; 2005 mpage_folio_done(mpd, head->b_folio); 2006 } 2007 if (lblk >= blocks) { 2008 mpd->scanned_until_end = 1; 2009 return 0; 2010 } 2011 return 1; 2012 } 2013 2014 /* 2015 * mpage_process_folio - update folio buffers corresponding to changed extent 2016 * and may submit fully mapped page for IO 2017 * @mpd: description of extent to map, on return next extent to map 2018 * @folio: Contains these buffers. 2019 * @m_lblk: logical block mapping. 2020 * @m_pblk: corresponding physical mapping. 2021 * @map_bh: determines on return whether this page requires any further 2022 * mapping or not. 2023 * 2024 * Scan given folio buffers corresponding to changed extent and update buffer 2025 * state according to new extent state. 2026 * We map delalloc buffers to their physical location, clear unwritten bits. 2027 * If the given folio is not fully mapped, we update @mpd to the next extent in 2028 * the given folio that needs mapping & return @map_bh as true. 2029 */ 2030 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio, 2031 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk, 2032 bool *map_bh) 2033 { 2034 struct buffer_head *head, *bh; 2035 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2036 ext4_lblk_t lblk = *m_lblk; 2037 ext4_fsblk_t pblock = *m_pblk; 2038 int err = 0; 2039 int blkbits = mpd->inode->i_blkbits; 2040 ssize_t io_end_size = 0; 2041 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end); 2042 2043 bh = head = folio_buffers(folio); 2044 do { 2045 if (lblk < mpd->map.m_lblk) 2046 continue; 2047 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2048 /* 2049 * Buffer after end of mapped extent. 2050 * Find next buffer in the folio to map. 2051 */ 2052 mpd->map.m_len = 0; 2053 mpd->map.m_flags = 0; 2054 io_end_vec->size += io_end_size; 2055 2056 err = mpage_process_page_bufs(mpd, head, bh, lblk); 2057 if (err > 0) 2058 err = 0; 2059 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) { 2060 io_end_vec = ext4_alloc_io_end_vec(io_end); 2061 if (IS_ERR(io_end_vec)) { 2062 err = PTR_ERR(io_end_vec); 2063 goto out; 2064 } 2065 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits; 2066 } 2067 *map_bh = true; 2068 goto out; 2069 } 2070 if (buffer_delay(bh)) { 2071 clear_buffer_delay(bh); 2072 bh->b_blocknr = pblock++; 2073 } 2074 clear_buffer_unwritten(bh); 2075 io_end_size += (1 << blkbits); 2076 } while (lblk++, (bh = bh->b_this_page) != head); 2077 2078 io_end_vec->size += io_end_size; 2079 *map_bh = false; 2080 out: 2081 *m_lblk = lblk; 2082 *m_pblk = pblock; 2083 return err; 2084 } 2085 2086 /* 2087 * mpage_map_buffers - update buffers corresponding to changed extent and 2088 * submit fully mapped pages for IO 2089 * 2090 * @mpd - description of extent to map, on return next extent to map 2091 * 2092 * Scan buffers corresponding to changed extent (we expect corresponding pages 2093 * to be already locked) and update buffer state according to new extent state. 2094 * We map delalloc buffers to their physical location, clear unwritten bits, 2095 * and mark buffers as uninit when we perform writes to unwritten extents 2096 * and do extent conversion after IO is finished. If the last page is not fully 2097 * mapped, we update @map to the next extent in the last page that needs 2098 * mapping. Otherwise we submit the page for IO. 2099 */ 2100 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2101 { 2102 struct folio_batch fbatch; 2103 unsigned nr, i; 2104 struct inode *inode = mpd->inode; 2105 int bpp_bits = PAGE_SHIFT - inode->i_blkbits; 2106 pgoff_t start, end; 2107 ext4_lblk_t lblk; 2108 ext4_fsblk_t pblock; 2109 int err; 2110 bool map_bh = false; 2111 2112 start = mpd->map.m_lblk >> bpp_bits; 2113 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2114 lblk = start << bpp_bits; 2115 pblock = mpd->map.m_pblk; 2116 2117 folio_batch_init(&fbatch); 2118 while (start <= end) { 2119 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch); 2120 if (nr == 0) 2121 break; 2122 for (i = 0; i < nr; i++) { 2123 struct folio *folio = fbatch.folios[i]; 2124 2125 err = mpage_process_folio(mpd, folio, &lblk, &pblock, 2126 &map_bh); 2127 /* 2128 * If map_bh is true, means page may require further bh 2129 * mapping, or maybe the page was submitted for IO. 2130 * So we return to call further extent mapping. 2131 */ 2132 if (err < 0 || map_bh) 2133 goto out; 2134 /* Page fully mapped - let IO run! */ 2135 err = mpage_submit_folio(mpd, folio); 2136 if (err < 0) 2137 goto out; 2138 mpage_folio_done(mpd, folio); 2139 } 2140 folio_batch_release(&fbatch); 2141 } 2142 /* Extent fully mapped and matches with page boundary. We are done. */ 2143 mpd->map.m_len = 0; 2144 mpd->map.m_flags = 0; 2145 return 0; 2146 out: 2147 folio_batch_release(&fbatch); 2148 return err; 2149 } 2150 2151 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2152 { 2153 struct inode *inode = mpd->inode; 2154 struct ext4_map_blocks *map = &mpd->map; 2155 int get_blocks_flags; 2156 int err, dioread_nolock; 2157 2158 trace_ext4_da_write_pages_extent(inode, map); 2159 /* 2160 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2161 * to convert an unwritten extent to be initialized (in the case 2162 * where we have written into one or more preallocated blocks). It is 2163 * possible that we're going to need more metadata blocks than 2164 * previously reserved. However we must not fail because we're in 2165 * writeback and there is nothing we can do about it so it might result 2166 * in data loss. So use reserved blocks to allocate metadata if 2167 * possible. 2168 * 2169 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2170 * the blocks in question are delalloc blocks. This indicates 2171 * that the blocks and quotas has already been checked when 2172 * the data was copied into the page cache. 2173 */ 2174 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2175 EXT4_GET_BLOCKS_METADATA_NOFAIL | 2176 EXT4_GET_BLOCKS_IO_SUBMIT; 2177 dioread_nolock = ext4_should_dioread_nolock(inode); 2178 if (dioread_nolock) 2179 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2180 if (map->m_flags & BIT(BH_Delay)) 2181 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2182 2183 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2184 if (err < 0) 2185 return err; 2186 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2187 if (!mpd->io_submit.io_end->handle && 2188 ext4_handle_valid(handle)) { 2189 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2190 handle->h_rsv_handle = NULL; 2191 } 2192 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2193 } 2194 2195 BUG_ON(map->m_len == 0); 2196 return 0; 2197 } 2198 2199 /* 2200 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2201 * mpd->len and submit pages underlying it for IO 2202 * 2203 * @handle - handle for journal operations 2204 * @mpd - extent to map 2205 * @give_up_on_write - we set this to true iff there is a fatal error and there 2206 * is no hope of writing the data. The caller should discard 2207 * dirty pages to avoid infinite loops. 2208 * 2209 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2210 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2211 * them to initialized or split the described range from larger unwritten 2212 * extent. Note that we need not map all the described range since allocation 2213 * can return less blocks or the range is covered by more unwritten extents. We 2214 * cannot map more because we are limited by reserved transaction credits. On 2215 * the other hand we always make sure that the last touched page is fully 2216 * mapped so that it can be written out (and thus forward progress is 2217 * guaranteed). After mapping we submit all mapped pages for IO. 2218 */ 2219 static int mpage_map_and_submit_extent(handle_t *handle, 2220 struct mpage_da_data *mpd, 2221 bool *give_up_on_write) 2222 { 2223 struct inode *inode = mpd->inode; 2224 struct ext4_map_blocks *map = &mpd->map; 2225 int err; 2226 loff_t disksize; 2227 int progress = 0; 2228 ext4_io_end_t *io_end = mpd->io_submit.io_end; 2229 struct ext4_io_end_vec *io_end_vec; 2230 2231 io_end_vec = ext4_alloc_io_end_vec(io_end); 2232 if (IS_ERR(io_end_vec)) 2233 return PTR_ERR(io_end_vec); 2234 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits; 2235 do { 2236 err = mpage_map_one_extent(handle, mpd); 2237 if (err < 0) { 2238 struct super_block *sb = inode->i_sb; 2239 2240 if (ext4_forced_shutdown(EXT4_SB(sb)) || 2241 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) 2242 goto invalidate_dirty_pages; 2243 /* 2244 * Let the uper layers retry transient errors. 2245 * In the case of ENOSPC, if ext4_count_free_blocks() 2246 * is non-zero, a commit should free up blocks. 2247 */ 2248 if ((err == -ENOMEM) || 2249 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2250 if (progress) 2251 goto update_disksize; 2252 return err; 2253 } 2254 ext4_msg(sb, KERN_CRIT, 2255 "Delayed block allocation failed for " 2256 "inode %lu at logical offset %llu with" 2257 " max blocks %u with error %d", 2258 inode->i_ino, 2259 (unsigned long long)map->m_lblk, 2260 (unsigned)map->m_len, -err); 2261 ext4_msg(sb, KERN_CRIT, 2262 "This should not happen!! Data will " 2263 "be lost\n"); 2264 if (err == -ENOSPC) 2265 ext4_print_free_blocks(inode); 2266 invalidate_dirty_pages: 2267 *give_up_on_write = true; 2268 return err; 2269 } 2270 progress = 1; 2271 /* 2272 * Update buffer state, submit mapped pages, and get us new 2273 * extent to map 2274 */ 2275 err = mpage_map_and_submit_buffers(mpd); 2276 if (err < 0) 2277 goto update_disksize; 2278 } while (map->m_len); 2279 2280 update_disksize: 2281 /* 2282 * Update on-disk size after IO is submitted. Races with 2283 * truncate are avoided by checking i_size under i_data_sem. 2284 */ 2285 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT; 2286 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) { 2287 int err2; 2288 loff_t i_size; 2289 2290 down_write(&EXT4_I(inode)->i_data_sem); 2291 i_size = i_size_read(inode); 2292 if (disksize > i_size) 2293 disksize = i_size; 2294 if (disksize > EXT4_I(inode)->i_disksize) 2295 EXT4_I(inode)->i_disksize = disksize; 2296 up_write(&EXT4_I(inode)->i_data_sem); 2297 err2 = ext4_mark_inode_dirty(handle, inode); 2298 if (err2) { 2299 ext4_error_err(inode->i_sb, -err2, 2300 "Failed to mark inode %lu dirty", 2301 inode->i_ino); 2302 } 2303 if (!err) 2304 err = err2; 2305 } 2306 return err; 2307 } 2308 2309 /* 2310 * Calculate the total number of credits to reserve for one writepages 2311 * iteration. This is called from ext4_writepages(). We map an extent of 2312 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2313 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2314 * bpp - 1 blocks in bpp different extents. 2315 */ 2316 static int ext4_da_writepages_trans_blocks(struct inode *inode) 2317 { 2318 int bpp = ext4_journal_blocks_per_page(inode); 2319 2320 return ext4_meta_trans_blocks(inode, 2321 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2322 } 2323 2324 static int ext4_journal_page_buffers(handle_t *handle, struct page *page, 2325 int len) 2326 { 2327 struct buffer_head *page_bufs = page_buffers(page); 2328 struct inode *inode = page->mapping->host; 2329 int ret, err; 2330 2331 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2332 NULL, do_journal_get_write_access); 2333 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len, 2334 NULL, write_end_fn); 2335 if (ret == 0) 2336 ret = err; 2337 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len); 2338 if (ret == 0) 2339 ret = err; 2340 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 2341 2342 return ret; 2343 } 2344 2345 static int mpage_journal_page_buffers(handle_t *handle, 2346 struct mpage_da_data *mpd, 2347 struct page *page) 2348 { 2349 struct inode *inode = mpd->inode; 2350 loff_t size = i_size_read(inode); 2351 int len; 2352 2353 ClearPageChecked(page); 2354 mpd->wbc->nr_to_write--; 2355 2356 if (page->index == size >> PAGE_SHIFT && 2357 !ext4_verity_in_progress(inode)) 2358 len = size & ~PAGE_MASK; 2359 else 2360 len = PAGE_SIZE; 2361 2362 return ext4_journal_page_buffers(handle, page, len); 2363 } 2364 2365 /* 2366 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2367 * needing mapping, submit mapped pages 2368 * 2369 * @mpd - where to look for pages 2370 * 2371 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2372 * IO immediately. If we cannot map blocks, we submit just already mapped 2373 * buffers in the page for IO and keep page dirty. When we can map blocks and 2374 * we find a page which isn't mapped we start accumulating extent of buffers 2375 * underlying these pages that needs mapping (formed by either delayed or 2376 * unwritten buffers). We also lock the pages containing these buffers. The 2377 * extent found is returned in @mpd structure (starting at mpd->lblk with 2378 * length mpd->len blocks). 2379 * 2380 * Note that this function can attach bios to one io_end structure which are 2381 * neither logically nor physically contiguous. Although it may seem as an 2382 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2383 * case as we need to track IO to all buffers underlying a page in one io_end. 2384 */ 2385 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2386 { 2387 struct address_space *mapping = mpd->inode->i_mapping; 2388 struct folio_batch fbatch; 2389 unsigned int nr_folios; 2390 pgoff_t index = mpd->first_page; 2391 pgoff_t end = mpd->last_page; 2392 xa_mark_t tag; 2393 int i, err = 0; 2394 int blkbits = mpd->inode->i_blkbits; 2395 ext4_lblk_t lblk; 2396 struct buffer_head *head; 2397 handle_t *handle = NULL; 2398 int bpp = ext4_journal_blocks_per_page(mpd->inode); 2399 2400 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2401 tag = PAGECACHE_TAG_TOWRITE; 2402 else 2403 tag = PAGECACHE_TAG_DIRTY; 2404 2405 mpd->map.m_len = 0; 2406 mpd->next_page = index; 2407 if (ext4_should_journal_data(mpd->inode)) { 2408 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE, 2409 bpp); 2410 if (IS_ERR(handle)) 2411 return PTR_ERR(handle); 2412 } 2413 folio_batch_init(&fbatch); 2414 while (index <= end) { 2415 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2416 tag, &fbatch); 2417 if (nr_folios == 0) 2418 break; 2419 2420 for (i = 0; i < nr_folios; i++) { 2421 struct folio *folio = fbatch.folios[i]; 2422 2423 /* 2424 * Accumulated enough dirty pages? This doesn't apply 2425 * to WB_SYNC_ALL mode. For integrity sync we have to 2426 * keep going because someone may be concurrently 2427 * dirtying pages, and we might have synced a lot of 2428 * newly appeared dirty pages, but have not synced all 2429 * of the old dirty pages. 2430 */ 2431 if (mpd->wbc->sync_mode == WB_SYNC_NONE && 2432 mpd->wbc->nr_to_write <= 2433 mpd->map.m_len >> (PAGE_SHIFT - blkbits)) 2434 goto out; 2435 2436 /* If we can't merge this page, we are done. */ 2437 if (mpd->map.m_len > 0 && mpd->next_page != folio->index) 2438 goto out; 2439 2440 if (handle) { 2441 err = ext4_journal_ensure_credits(handle, bpp, 2442 0); 2443 if (err < 0) 2444 goto out; 2445 } 2446 2447 folio_lock(folio); 2448 /* 2449 * If the page is no longer dirty, or its mapping no 2450 * longer corresponds to inode we are writing (which 2451 * means it has been truncated or invalidated), or the 2452 * page is already under writeback and we are not doing 2453 * a data integrity writeback, skip the page 2454 */ 2455 if (!folio_test_dirty(folio) || 2456 (folio_test_writeback(folio) && 2457 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2458 unlikely(folio->mapping != mapping)) { 2459 folio_unlock(folio); 2460 continue; 2461 } 2462 2463 folio_wait_writeback(folio); 2464 BUG_ON(folio_test_writeback(folio)); 2465 2466 /* 2467 * Should never happen but for buggy code in 2468 * other subsystems that call 2469 * set_page_dirty() without properly warning 2470 * the file system first. See [1] for more 2471 * information. 2472 * 2473 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz 2474 */ 2475 if (!folio_buffers(folio)) { 2476 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index); 2477 folio_clear_dirty(folio); 2478 folio_unlock(folio); 2479 continue; 2480 } 2481 2482 if (mpd->map.m_len == 0) 2483 mpd->first_page = folio->index; 2484 mpd->next_page = folio->index + folio_nr_pages(folio); 2485 /* 2486 * Writeout when we cannot modify metadata is simple. 2487 * Just submit the page. For data=journal mode we 2488 * first handle writeout of the page for checkpoint and 2489 * only after that handle delayed page dirtying. This 2490 * makes sure current data is checkpointed to the final 2491 * location before possibly journalling it again which 2492 * is desirable when the page is frequently dirtied 2493 * through a pin. 2494 */ 2495 if (!mpd->can_map) { 2496 err = mpage_submit_folio(mpd, folio); 2497 if (err < 0) 2498 goto out; 2499 /* Pending dirtying of journalled data? */ 2500 if (folio_test_checked(folio)) { 2501 err = mpage_journal_page_buffers(handle, 2502 mpd, &folio->page); 2503 if (err < 0) 2504 goto out; 2505 mpd->journalled_more_data = 1; 2506 } 2507 mpage_folio_done(mpd, folio); 2508 } else { 2509 /* Add all dirty buffers to mpd */ 2510 lblk = ((ext4_lblk_t)folio->index) << 2511 (PAGE_SHIFT - blkbits); 2512 head = folio_buffers(folio); 2513 err = mpage_process_page_bufs(mpd, head, head, 2514 lblk); 2515 if (err <= 0) 2516 goto out; 2517 err = 0; 2518 } 2519 } 2520 folio_batch_release(&fbatch); 2521 cond_resched(); 2522 } 2523 mpd->scanned_until_end = 1; 2524 if (handle) 2525 ext4_journal_stop(handle); 2526 return 0; 2527 out: 2528 folio_batch_release(&fbatch); 2529 if (handle) 2530 ext4_journal_stop(handle); 2531 return err; 2532 } 2533 2534 static int ext4_do_writepages(struct mpage_da_data *mpd) 2535 { 2536 struct writeback_control *wbc = mpd->wbc; 2537 pgoff_t writeback_index = 0; 2538 long nr_to_write = wbc->nr_to_write; 2539 int range_whole = 0; 2540 int cycled = 1; 2541 handle_t *handle = NULL; 2542 struct inode *inode = mpd->inode; 2543 struct address_space *mapping = inode->i_mapping; 2544 int needed_blocks, rsv_blocks = 0, ret = 0; 2545 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2546 struct blk_plug plug; 2547 bool give_up_on_write = false; 2548 2549 trace_ext4_writepages(inode, wbc); 2550 2551 /* 2552 * No pages to write? This is mainly a kludge to avoid starting 2553 * a transaction for special inodes like journal inode on last iput() 2554 * because that could violate lock ordering on umount 2555 */ 2556 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2557 goto out_writepages; 2558 2559 /* 2560 * If the filesystem has aborted, it is read-only, so return 2561 * right away instead of dumping stack traces later on that 2562 * will obscure the real source of the problem. We test 2563 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because 2564 * the latter could be true if the filesystem is mounted 2565 * read-only, and in that case, ext4_writepages should 2566 * *never* be called, so if that ever happens, we would want 2567 * the stack trace. 2568 */ 2569 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) || 2570 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) { 2571 ret = -EROFS; 2572 goto out_writepages; 2573 } 2574 2575 /* 2576 * If we have inline data and arrive here, it means that 2577 * we will soon create the block for the 1st page, so 2578 * we'd better clear the inline data here. 2579 */ 2580 if (ext4_has_inline_data(inode)) { 2581 /* Just inode will be modified... */ 2582 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2583 if (IS_ERR(handle)) { 2584 ret = PTR_ERR(handle); 2585 goto out_writepages; 2586 } 2587 BUG_ON(ext4_test_inode_state(inode, 2588 EXT4_STATE_MAY_INLINE_DATA)); 2589 ext4_destroy_inline_data(handle, inode); 2590 ext4_journal_stop(handle); 2591 } 2592 2593 /* 2594 * data=journal mode does not do delalloc so we just need to writeout / 2595 * journal already mapped buffers. On the other hand we need to commit 2596 * transaction to make data stable. We expect all the data to be 2597 * already in the journal (the only exception are DMA pinned pages 2598 * dirtied behind our back) so we commit transaction here and run the 2599 * writeback loop to checkpoint them. The checkpointing is not actually 2600 * necessary to make data persistent *but* quite a few places (extent 2601 * shifting operations, fsverity, ...) depend on being able to drop 2602 * pagecache pages after calling filemap_write_and_wait() and for that 2603 * checkpointing needs to happen. 2604 */ 2605 if (ext4_should_journal_data(inode)) { 2606 mpd->can_map = 0; 2607 if (wbc->sync_mode == WB_SYNC_ALL) 2608 ext4_fc_commit(sbi->s_journal, 2609 EXT4_I(inode)->i_datasync_tid); 2610 } 2611 mpd->journalled_more_data = 0; 2612 2613 if (ext4_should_dioread_nolock(inode)) { 2614 /* 2615 * We may need to convert up to one extent per block in 2616 * the page and we may dirty the inode. 2617 */ 2618 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode, 2619 PAGE_SIZE >> inode->i_blkbits); 2620 } 2621 2622 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2623 range_whole = 1; 2624 2625 if (wbc->range_cyclic) { 2626 writeback_index = mapping->writeback_index; 2627 if (writeback_index) 2628 cycled = 0; 2629 mpd->first_page = writeback_index; 2630 mpd->last_page = -1; 2631 } else { 2632 mpd->first_page = wbc->range_start >> PAGE_SHIFT; 2633 mpd->last_page = wbc->range_end >> PAGE_SHIFT; 2634 } 2635 2636 ext4_io_submit_init(&mpd->io_submit, wbc); 2637 retry: 2638 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2639 tag_pages_for_writeback(mapping, mpd->first_page, 2640 mpd->last_page); 2641 blk_start_plug(&plug); 2642 2643 /* 2644 * First writeback pages that don't need mapping - we can avoid 2645 * starting a transaction unnecessarily and also avoid being blocked 2646 * in the block layer on device congestion while having transaction 2647 * started. 2648 */ 2649 mpd->do_map = 0; 2650 mpd->scanned_until_end = 0; 2651 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2652 if (!mpd->io_submit.io_end) { 2653 ret = -ENOMEM; 2654 goto unplug; 2655 } 2656 ret = mpage_prepare_extent_to_map(mpd); 2657 /* Unlock pages we didn't use */ 2658 mpage_release_unused_pages(mpd, false); 2659 /* Submit prepared bio */ 2660 ext4_io_submit(&mpd->io_submit); 2661 ext4_put_io_end_defer(mpd->io_submit.io_end); 2662 mpd->io_submit.io_end = NULL; 2663 if (ret < 0) 2664 goto unplug; 2665 2666 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) { 2667 /* For each extent of pages we use new io_end */ 2668 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2669 if (!mpd->io_submit.io_end) { 2670 ret = -ENOMEM; 2671 break; 2672 } 2673 2674 WARN_ON_ONCE(!mpd->can_map); 2675 /* 2676 * We have two constraints: We find one extent to map and we 2677 * must always write out whole page (makes a difference when 2678 * blocksize < pagesize) so that we don't block on IO when we 2679 * try to write out the rest of the page. Journalled mode is 2680 * not supported by delalloc. 2681 */ 2682 BUG_ON(ext4_should_journal_data(inode)); 2683 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2684 2685 /* start a new transaction */ 2686 handle = ext4_journal_start_with_reserve(inode, 2687 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2688 if (IS_ERR(handle)) { 2689 ret = PTR_ERR(handle); 2690 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2691 "%ld pages, ino %lu; err %d", __func__, 2692 wbc->nr_to_write, inode->i_ino, ret); 2693 /* Release allocated io_end */ 2694 ext4_put_io_end(mpd->io_submit.io_end); 2695 mpd->io_submit.io_end = NULL; 2696 break; 2697 } 2698 mpd->do_map = 1; 2699 2700 trace_ext4_da_write_pages(inode, mpd->first_page, wbc); 2701 ret = mpage_prepare_extent_to_map(mpd); 2702 if (!ret && mpd->map.m_len) 2703 ret = mpage_map_and_submit_extent(handle, mpd, 2704 &give_up_on_write); 2705 /* 2706 * Caution: If the handle is synchronous, 2707 * ext4_journal_stop() can wait for transaction commit 2708 * to finish which may depend on writeback of pages to 2709 * complete or on page lock to be released. In that 2710 * case, we have to wait until after we have 2711 * submitted all the IO, released page locks we hold, 2712 * and dropped io_end reference (for extent conversion 2713 * to be able to complete) before stopping the handle. 2714 */ 2715 if (!ext4_handle_valid(handle) || handle->h_sync == 0) { 2716 ext4_journal_stop(handle); 2717 handle = NULL; 2718 mpd->do_map = 0; 2719 } 2720 /* Unlock pages we didn't use */ 2721 mpage_release_unused_pages(mpd, give_up_on_write); 2722 /* Submit prepared bio */ 2723 ext4_io_submit(&mpd->io_submit); 2724 2725 /* 2726 * Drop our io_end reference we got from init. We have 2727 * to be careful and use deferred io_end finishing if 2728 * we are still holding the transaction as we can 2729 * release the last reference to io_end which may end 2730 * up doing unwritten extent conversion. 2731 */ 2732 if (handle) { 2733 ext4_put_io_end_defer(mpd->io_submit.io_end); 2734 ext4_journal_stop(handle); 2735 } else 2736 ext4_put_io_end(mpd->io_submit.io_end); 2737 mpd->io_submit.io_end = NULL; 2738 2739 if (ret == -ENOSPC && sbi->s_journal) { 2740 /* 2741 * Commit the transaction which would 2742 * free blocks released in the transaction 2743 * and try again 2744 */ 2745 jbd2_journal_force_commit_nested(sbi->s_journal); 2746 ret = 0; 2747 continue; 2748 } 2749 /* Fatal error - ENOMEM, EIO... */ 2750 if (ret) 2751 break; 2752 } 2753 unplug: 2754 blk_finish_plug(&plug); 2755 if (!ret && !cycled && wbc->nr_to_write > 0) { 2756 cycled = 1; 2757 mpd->last_page = writeback_index - 1; 2758 mpd->first_page = 0; 2759 goto retry; 2760 } 2761 2762 /* Update index */ 2763 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2764 /* 2765 * Set the writeback_index so that range_cyclic 2766 * mode will write it back later 2767 */ 2768 mapping->writeback_index = mpd->first_page; 2769 2770 out_writepages: 2771 trace_ext4_writepages_result(inode, wbc, ret, 2772 nr_to_write - wbc->nr_to_write); 2773 return ret; 2774 } 2775 2776 static int ext4_writepages(struct address_space *mapping, 2777 struct writeback_control *wbc) 2778 { 2779 struct super_block *sb = mapping->host->i_sb; 2780 struct mpage_da_data mpd = { 2781 .inode = mapping->host, 2782 .wbc = wbc, 2783 .can_map = 1, 2784 }; 2785 int ret; 2786 2787 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb)))) 2788 return -EIO; 2789 2790 percpu_down_read(&EXT4_SB(sb)->s_writepages_rwsem); 2791 ret = ext4_do_writepages(&mpd); 2792 /* 2793 * For data=journal writeback we could have come across pages marked 2794 * for delayed dirtying (PageChecked) which were just added to the 2795 * running transaction. Try once more to get them to stable storage. 2796 */ 2797 if (!ret && mpd.journalled_more_data) 2798 ret = ext4_do_writepages(&mpd); 2799 percpu_up_read(&EXT4_SB(sb)->s_writepages_rwsem); 2800 2801 return ret; 2802 } 2803 2804 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode) 2805 { 2806 struct writeback_control wbc = { 2807 .sync_mode = WB_SYNC_ALL, 2808 .nr_to_write = LONG_MAX, 2809 .range_start = jinode->i_dirty_start, 2810 .range_end = jinode->i_dirty_end, 2811 }; 2812 struct mpage_da_data mpd = { 2813 .inode = jinode->i_vfs_inode, 2814 .wbc = &wbc, 2815 .can_map = 0, 2816 }; 2817 return ext4_do_writepages(&mpd); 2818 } 2819 2820 static int ext4_dax_writepages(struct address_space *mapping, 2821 struct writeback_control *wbc) 2822 { 2823 int ret; 2824 long nr_to_write = wbc->nr_to_write; 2825 struct inode *inode = mapping->host; 2826 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2827 2828 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2829 return -EIO; 2830 2831 percpu_down_read(&sbi->s_writepages_rwsem); 2832 trace_ext4_writepages(inode, wbc); 2833 2834 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc); 2835 trace_ext4_writepages_result(inode, wbc, ret, 2836 nr_to_write - wbc->nr_to_write); 2837 percpu_up_read(&sbi->s_writepages_rwsem); 2838 return ret; 2839 } 2840 2841 static int ext4_nonda_switch(struct super_block *sb) 2842 { 2843 s64 free_clusters, dirty_clusters; 2844 struct ext4_sb_info *sbi = EXT4_SB(sb); 2845 2846 /* 2847 * switch to non delalloc mode if we are running low 2848 * on free block. The free block accounting via percpu 2849 * counters can get slightly wrong with percpu_counter_batch getting 2850 * accumulated on each CPU without updating global counters 2851 * Delalloc need an accurate free block accounting. So switch 2852 * to non delalloc when we are near to error range. 2853 */ 2854 free_clusters = 2855 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2856 dirty_clusters = 2857 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2858 /* 2859 * Start pushing delalloc when 1/2 of free blocks are dirty. 2860 */ 2861 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2862 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2863 2864 if (2 * free_clusters < 3 * dirty_clusters || 2865 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2866 /* 2867 * free block count is less than 150% of dirty blocks 2868 * or free blocks is less than watermark 2869 */ 2870 return 1; 2871 } 2872 return 0; 2873 } 2874 2875 static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2876 loff_t pos, unsigned len, 2877 struct page **pagep, void **fsdata) 2878 { 2879 int ret, retries = 0; 2880 struct folio *folio; 2881 pgoff_t index; 2882 struct inode *inode = mapping->host; 2883 2884 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 2885 return -EIO; 2886 2887 index = pos >> PAGE_SHIFT; 2888 2889 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) { 2890 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2891 return ext4_write_begin(file, mapping, pos, 2892 len, pagep, fsdata); 2893 } 2894 *fsdata = (void *)0; 2895 trace_ext4_da_write_begin(inode, pos, len); 2896 2897 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2898 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len, 2899 pagep, fsdata); 2900 if (ret < 0) 2901 return ret; 2902 if (ret == 1) 2903 return 0; 2904 } 2905 2906 retry: 2907 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 2908 mapping_gfp_mask(mapping)); 2909 if (!folio) 2910 return -ENOMEM; 2911 2912 /* In case writeback began while the folio was unlocked */ 2913 folio_wait_stable(folio); 2914 2915 #ifdef CONFIG_FS_ENCRYPTION 2916 ret = ext4_block_write_begin(folio, pos, len, ext4_da_get_block_prep); 2917 #else 2918 ret = __block_write_begin(&folio->page, pos, len, ext4_da_get_block_prep); 2919 #endif 2920 if (ret < 0) { 2921 folio_unlock(folio); 2922 folio_put(folio); 2923 /* 2924 * block_write_begin may have instantiated a few blocks 2925 * outside i_size. Trim these off again. Don't need 2926 * i_size_read because we hold inode lock. 2927 */ 2928 if (pos + len > inode->i_size) 2929 ext4_truncate_failed_write(inode); 2930 2931 if (ret == -ENOSPC && 2932 ext4_should_retry_alloc(inode->i_sb, &retries)) 2933 goto retry; 2934 return ret; 2935 } 2936 2937 *pagep = &folio->page; 2938 return ret; 2939 } 2940 2941 /* 2942 * Check if we should update i_disksize 2943 * when write to the end of file but not require block allocation 2944 */ 2945 static int ext4_da_should_update_i_disksize(struct page *page, 2946 unsigned long offset) 2947 { 2948 struct buffer_head *bh; 2949 struct inode *inode = page->mapping->host; 2950 unsigned int idx; 2951 int i; 2952 2953 bh = page_buffers(page); 2954 idx = offset >> inode->i_blkbits; 2955 2956 for (i = 0; i < idx; i++) 2957 bh = bh->b_this_page; 2958 2959 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2960 return 0; 2961 return 1; 2962 } 2963 2964 static int ext4_da_write_end(struct file *file, 2965 struct address_space *mapping, 2966 loff_t pos, unsigned len, unsigned copied, 2967 struct page *page, void *fsdata) 2968 { 2969 struct inode *inode = mapping->host; 2970 loff_t new_i_size; 2971 unsigned long start, end; 2972 int write_mode = (int)(unsigned long)fsdata; 2973 2974 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2975 return ext4_write_end(file, mapping, pos, 2976 len, copied, page, fsdata); 2977 2978 trace_ext4_da_write_end(inode, pos, len, copied); 2979 2980 if (write_mode != CONVERT_INLINE_DATA && 2981 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2982 ext4_has_inline_data(inode)) 2983 return ext4_write_inline_data_end(inode, pos, len, copied, page); 2984 2985 start = pos & (PAGE_SIZE - 1); 2986 end = start + copied - 1; 2987 2988 /* 2989 * Since we are holding inode lock, we are sure i_disksize <= 2990 * i_size. We also know that if i_disksize < i_size, there are 2991 * delalloc writes pending in the range upto i_size. If the end of 2992 * the current write is <= i_size, there's no need to touch 2993 * i_disksize since writeback will push i_disksize upto i_size 2994 * eventually. If the end of the current write is > i_size and 2995 * inside an allocated block (ext4_da_should_update_i_disksize() 2996 * check), we need to update i_disksize here as certain 2997 * ext4_writepages() paths not allocating blocks update i_disksize. 2998 * 2999 * Note that we defer inode dirtying to generic_write_end() / 3000 * ext4_da_write_inline_data_end(). 3001 */ 3002 new_i_size = pos + copied; 3003 if (copied && new_i_size > inode->i_size && 3004 ext4_da_should_update_i_disksize(page, end)) 3005 ext4_update_i_disksize(inode, new_i_size); 3006 3007 return generic_write_end(file, mapping, pos, len, copied, page, fsdata); 3008 } 3009 3010 /* 3011 * Force all delayed allocation blocks to be allocated for a given inode. 3012 */ 3013 int ext4_alloc_da_blocks(struct inode *inode) 3014 { 3015 trace_ext4_alloc_da_blocks(inode); 3016 3017 if (!EXT4_I(inode)->i_reserved_data_blocks) 3018 return 0; 3019 3020 /* 3021 * We do something simple for now. The filemap_flush() will 3022 * also start triggering a write of the data blocks, which is 3023 * not strictly speaking necessary (and for users of 3024 * laptop_mode, not even desirable). However, to do otherwise 3025 * would require replicating code paths in: 3026 * 3027 * ext4_writepages() -> 3028 * write_cache_pages() ---> (via passed in callback function) 3029 * __mpage_da_writepage() --> 3030 * mpage_add_bh_to_extent() 3031 * mpage_da_map_blocks() 3032 * 3033 * The problem is that write_cache_pages(), located in 3034 * mm/page-writeback.c, marks pages clean in preparation for 3035 * doing I/O, which is not desirable if we're not planning on 3036 * doing I/O at all. 3037 * 3038 * We could call write_cache_pages(), and then redirty all of 3039 * the pages by calling redirty_page_for_writepage() but that 3040 * would be ugly in the extreme. So instead we would need to 3041 * replicate parts of the code in the above functions, 3042 * simplifying them because we wouldn't actually intend to 3043 * write out the pages, but rather only collect contiguous 3044 * logical block extents, call the multi-block allocator, and 3045 * then update the buffer heads with the block allocations. 3046 * 3047 * For now, though, we'll cheat by calling filemap_flush(), 3048 * which will map the blocks, and start the I/O, but not 3049 * actually wait for the I/O to complete. 3050 */ 3051 return filemap_flush(inode->i_mapping); 3052 } 3053 3054 /* 3055 * bmap() is special. It gets used by applications such as lilo and by 3056 * the swapper to find the on-disk block of a specific piece of data. 3057 * 3058 * Naturally, this is dangerous if the block concerned is still in the 3059 * journal. If somebody makes a swapfile on an ext4 data-journaling 3060 * filesystem and enables swap, then they may get a nasty shock when the 3061 * data getting swapped to that swapfile suddenly gets overwritten by 3062 * the original zero's written out previously to the journal and 3063 * awaiting writeback in the kernel's buffer cache. 3064 * 3065 * So, if we see any bmap calls here on a modified, data-journaled file, 3066 * take extra steps to flush any blocks which might be in the cache. 3067 */ 3068 static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 3069 { 3070 struct inode *inode = mapping->host; 3071 sector_t ret = 0; 3072 3073 inode_lock_shared(inode); 3074 /* 3075 * We can get here for an inline file via the FIBMAP ioctl 3076 */ 3077 if (ext4_has_inline_data(inode)) 3078 goto out; 3079 3080 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 3081 (test_opt(inode->i_sb, DELALLOC) || 3082 ext4_should_journal_data(inode))) { 3083 /* 3084 * With delalloc or journalled data we want to sync the file so 3085 * that we can make sure we allocate blocks for file and data 3086 * is in place for the user to see it 3087 */ 3088 filemap_write_and_wait(mapping); 3089 } 3090 3091 ret = iomap_bmap(mapping, block, &ext4_iomap_ops); 3092 3093 out: 3094 inode_unlock_shared(inode); 3095 return ret; 3096 } 3097 3098 static int ext4_read_folio(struct file *file, struct folio *folio) 3099 { 3100 int ret = -EAGAIN; 3101 struct inode *inode = folio->mapping->host; 3102 3103 trace_ext4_readpage(&folio->page); 3104 3105 if (ext4_has_inline_data(inode)) 3106 ret = ext4_readpage_inline(inode, folio); 3107 3108 if (ret == -EAGAIN) 3109 return ext4_mpage_readpages(inode, NULL, folio); 3110 3111 return ret; 3112 } 3113 3114 static void ext4_readahead(struct readahead_control *rac) 3115 { 3116 struct inode *inode = rac->mapping->host; 3117 3118 /* If the file has inline data, no need to do readahead. */ 3119 if (ext4_has_inline_data(inode)) 3120 return; 3121 3122 ext4_mpage_readpages(inode, rac, NULL); 3123 } 3124 3125 static void ext4_invalidate_folio(struct folio *folio, size_t offset, 3126 size_t length) 3127 { 3128 trace_ext4_invalidate_folio(folio, offset, length); 3129 3130 /* No journalling happens on data buffers when this function is used */ 3131 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio))); 3132 3133 block_invalidate_folio(folio, offset, length); 3134 } 3135 3136 static int __ext4_journalled_invalidate_folio(struct folio *folio, 3137 size_t offset, size_t length) 3138 { 3139 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3140 3141 trace_ext4_journalled_invalidate_folio(folio, offset, length); 3142 3143 /* 3144 * If it's a full truncate we just forget about the pending dirtying 3145 */ 3146 if (offset == 0 && length == folio_size(folio)) 3147 folio_clear_checked(folio); 3148 3149 return jbd2_journal_invalidate_folio(journal, folio, offset, length); 3150 } 3151 3152 /* Wrapper for aops... */ 3153 static void ext4_journalled_invalidate_folio(struct folio *folio, 3154 size_t offset, 3155 size_t length) 3156 { 3157 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0); 3158 } 3159 3160 static bool ext4_release_folio(struct folio *folio, gfp_t wait) 3161 { 3162 journal_t *journal = EXT4_JOURNAL(folio->mapping->host); 3163 3164 trace_ext4_releasepage(&folio->page); 3165 3166 /* Page has dirty journalled data -> cannot release */ 3167 if (folio_test_checked(folio)) 3168 return false; 3169 if (journal) 3170 return jbd2_journal_try_to_free_buffers(journal, folio); 3171 else 3172 return try_to_free_buffers(folio); 3173 } 3174 3175 static bool ext4_inode_datasync_dirty(struct inode *inode) 3176 { 3177 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 3178 3179 if (journal) { 3180 if (jbd2_transaction_committed(journal, 3181 EXT4_I(inode)->i_datasync_tid)) 3182 return false; 3183 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT)) 3184 return !list_empty(&EXT4_I(inode)->i_fc_list); 3185 return true; 3186 } 3187 3188 /* Any metadata buffers to write? */ 3189 if (!list_empty(&inode->i_mapping->private_list)) 3190 return true; 3191 return inode->i_state & I_DIRTY_DATASYNC; 3192 } 3193 3194 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap, 3195 struct ext4_map_blocks *map, loff_t offset, 3196 loff_t length, unsigned int flags) 3197 { 3198 u8 blkbits = inode->i_blkbits; 3199 3200 /* 3201 * Writes that span EOF might trigger an I/O size update on completion, 3202 * so consider them to be dirty for the purpose of O_DSYNC, even if 3203 * there is no other metadata changes being made or are pending. 3204 */ 3205 iomap->flags = 0; 3206 if (ext4_inode_datasync_dirty(inode) || 3207 offset + length > i_size_read(inode)) 3208 iomap->flags |= IOMAP_F_DIRTY; 3209 3210 if (map->m_flags & EXT4_MAP_NEW) 3211 iomap->flags |= IOMAP_F_NEW; 3212 3213 if (flags & IOMAP_DAX) 3214 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev; 3215 else 3216 iomap->bdev = inode->i_sb->s_bdev; 3217 iomap->offset = (u64) map->m_lblk << blkbits; 3218 iomap->length = (u64) map->m_len << blkbits; 3219 3220 if ((map->m_flags & EXT4_MAP_MAPPED) && 3221 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3222 iomap->flags |= IOMAP_F_MERGED; 3223 3224 /* 3225 * Flags passed to ext4_map_blocks() for direct I/O writes can result 3226 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits 3227 * set. In order for any allocated unwritten extents to be converted 3228 * into written extents correctly within the ->end_io() handler, we 3229 * need to ensure that the iomap->type is set appropriately. Hence, the 3230 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has 3231 * been set first. 3232 */ 3233 if (map->m_flags & EXT4_MAP_UNWRITTEN) { 3234 iomap->type = IOMAP_UNWRITTEN; 3235 iomap->addr = (u64) map->m_pblk << blkbits; 3236 if (flags & IOMAP_DAX) 3237 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3238 } else if (map->m_flags & EXT4_MAP_MAPPED) { 3239 iomap->type = IOMAP_MAPPED; 3240 iomap->addr = (u64) map->m_pblk << blkbits; 3241 if (flags & IOMAP_DAX) 3242 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off; 3243 } else { 3244 iomap->type = IOMAP_HOLE; 3245 iomap->addr = IOMAP_NULL_ADDR; 3246 } 3247 } 3248 3249 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map, 3250 unsigned int flags) 3251 { 3252 handle_t *handle; 3253 u8 blkbits = inode->i_blkbits; 3254 int ret, dio_credits, m_flags = 0, retries = 0; 3255 3256 /* 3257 * Trim the mapping request to the maximum value that we can map at 3258 * once for direct I/O. 3259 */ 3260 if (map->m_len > DIO_MAX_BLOCKS) 3261 map->m_len = DIO_MAX_BLOCKS; 3262 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len); 3263 3264 retry: 3265 /* 3266 * Either we allocate blocks and then don't get an unwritten extent, so 3267 * in that case we have reserved enough credits. Or, the blocks are 3268 * already allocated and unwritten. In that case, the extent conversion 3269 * fits into the credits as well. 3270 */ 3271 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits); 3272 if (IS_ERR(handle)) 3273 return PTR_ERR(handle); 3274 3275 /* 3276 * DAX and direct I/O are the only two operations that are currently 3277 * supported with IOMAP_WRITE. 3278 */ 3279 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT))); 3280 if (flags & IOMAP_DAX) 3281 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO; 3282 /* 3283 * We use i_size instead of i_disksize here because delalloc writeback 3284 * can complete at any point during the I/O and subsequently push the 3285 * i_disksize out to i_size. This could be beyond where direct I/O is 3286 * happening and thus expose allocated blocks to direct I/O reads. 3287 */ 3288 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode)) 3289 m_flags = EXT4_GET_BLOCKS_CREATE; 3290 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3291 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT; 3292 3293 ret = ext4_map_blocks(handle, inode, map, m_flags); 3294 3295 /* 3296 * We cannot fill holes in indirect tree based inodes as that could 3297 * expose stale data in the case of a crash. Use the magic error code 3298 * to fallback to buffered I/O. 3299 */ 3300 if (!m_flags && !ret) 3301 ret = -ENOTBLK; 3302 3303 ext4_journal_stop(handle); 3304 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 3305 goto retry; 3306 3307 return ret; 3308 } 3309 3310 3311 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length, 3312 unsigned flags, struct iomap *iomap, struct iomap *srcmap) 3313 { 3314 int ret; 3315 struct ext4_map_blocks map; 3316 u8 blkbits = inode->i_blkbits; 3317 3318 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3319 return -EINVAL; 3320 3321 if (WARN_ON_ONCE(ext4_has_inline_data(inode))) 3322 return -ERANGE; 3323 3324 /* 3325 * Calculate the first and last logical blocks respectively. 3326 */ 3327 map.m_lblk = offset >> blkbits; 3328 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3329 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3330 3331 if (flags & IOMAP_WRITE) { 3332 /* 3333 * We check here if the blocks are already allocated, then we 3334 * don't need to start a journal txn and we can directly return 3335 * the mapping information. This could boost performance 3336 * especially in multi-threaded overwrite requests. 3337 */ 3338 if (offset + length <= i_size_read(inode)) { 3339 ret = ext4_map_blocks(NULL, inode, &map, 0); 3340 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED)) 3341 goto out; 3342 } 3343 ret = ext4_iomap_alloc(inode, &map, flags); 3344 } else { 3345 ret = ext4_map_blocks(NULL, inode, &map, 0); 3346 } 3347 3348 if (ret < 0) 3349 return ret; 3350 out: 3351 /* 3352 * When inline encryption is enabled, sometimes I/O to an encrypted file 3353 * has to be broken up to guarantee DUN contiguity. Handle this by 3354 * limiting the length of the mapping returned. 3355 */ 3356 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len); 3357 3358 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3359 3360 return 0; 3361 } 3362 3363 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset, 3364 loff_t length, unsigned flags, struct iomap *iomap, 3365 struct iomap *srcmap) 3366 { 3367 int ret; 3368 3369 /* 3370 * Even for writes we don't need to allocate blocks, so just pretend 3371 * we are reading to save overhead of starting a transaction. 3372 */ 3373 flags &= ~IOMAP_WRITE; 3374 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap); 3375 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED); 3376 return ret; 3377 } 3378 3379 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length, 3380 ssize_t written, unsigned flags, struct iomap *iomap) 3381 { 3382 /* 3383 * Check to see whether an error occurred while writing out the data to 3384 * the allocated blocks. If so, return the magic error code so that we 3385 * fallback to buffered I/O and attempt to complete the remainder of 3386 * the I/O. Any blocks that may have been allocated in preparation for 3387 * the direct I/O will be reused during buffered I/O. 3388 */ 3389 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0) 3390 return -ENOTBLK; 3391 3392 return 0; 3393 } 3394 3395 const struct iomap_ops ext4_iomap_ops = { 3396 .iomap_begin = ext4_iomap_begin, 3397 .iomap_end = ext4_iomap_end, 3398 }; 3399 3400 const struct iomap_ops ext4_iomap_overwrite_ops = { 3401 .iomap_begin = ext4_iomap_overwrite_begin, 3402 .iomap_end = ext4_iomap_end, 3403 }; 3404 3405 static bool ext4_iomap_is_delalloc(struct inode *inode, 3406 struct ext4_map_blocks *map) 3407 { 3408 struct extent_status es; 3409 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1; 3410 3411 ext4_es_find_extent_range(inode, &ext4_es_is_delayed, 3412 map->m_lblk, end, &es); 3413 3414 if (!es.es_len || es.es_lblk > end) 3415 return false; 3416 3417 if (es.es_lblk > map->m_lblk) { 3418 map->m_len = es.es_lblk - map->m_lblk; 3419 return false; 3420 } 3421 3422 offset = map->m_lblk - es.es_lblk; 3423 map->m_len = es.es_len - offset; 3424 3425 return true; 3426 } 3427 3428 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset, 3429 loff_t length, unsigned int flags, 3430 struct iomap *iomap, struct iomap *srcmap) 3431 { 3432 int ret; 3433 bool delalloc = false; 3434 struct ext4_map_blocks map; 3435 u8 blkbits = inode->i_blkbits; 3436 3437 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK) 3438 return -EINVAL; 3439 3440 if (ext4_has_inline_data(inode)) { 3441 ret = ext4_inline_data_iomap(inode, iomap); 3442 if (ret != -EAGAIN) { 3443 if (ret == 0 && offset >= iomap->length) 3444 ret = -ENOENT; 3445 return ret; 3446 } 3447 } 3448 3449 /* 3450 * Calculate the first and last logical block respectively. 3451 */ 3452 map.m_lblk = offset >> blkbits; 3453 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits, 3454 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1; 3455 3456 /* 3457 * Fiemap callers may call for offset beyond s_bitmap_maxbytes. 3458 * So handle it here itself instead of querying ext4_map_blocks(). 3459 * Since ext4_map_blocks() will warn about it and will return 3460 * -EIO error. 3461 */ 3462 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 3463 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3464 3465 if (offset >= sbi->s_bitmap_maxbytes) { 3466 map.m_flags = 0; 3467 goto set_iomap; 3468 } 3469 } 3470 3471 ret = ext4_map_blocks(NULL, inode, &map, 0); 3472 if (ret < 0) 3473 return ret; 3474 if (ret == 0) 3475 delalloc = ext4_iomap_is_delalloc(inode, &map); 3476 3477 set_iomap: 3478 ext4_set_iomap(inode, iomap, &map, offset, length, flags); 3479 if (delalloc && iomap->type == IOMAP_HOLE) 3480 iomap->type = IOMAP_DELALLOC; 3481 3482 return 0; 3483 } 3484 3485 const struct iomap_ops ext4_iomap_report_ops = { 3486 .iomap_begin = ext4_iomap_begin_report, 3487 }; 3488 3489 /* 3490 * For data=journal mode, folio should be marked dirty only when it was 3491 * writeably mapped. When that happens, it was already attached to the 3492 * transaction and marked as jbddirty (we take care of this in 3493 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings 3494 * so we should have nothing to do here, except for the case when someone 3495 * had the page pinned and dirtied the page through this pin (e.g. by doing 3496 * direct IO to it). In that case we'd need to attach buffers here to the 3497 * transaction but we cannot due to lock ordering. We cannot just dirty the 3498 * folio and leave attached buffers clean, because the buffers' dirty state is 3499 * "definitive". We cannot just set the buffers dirty or jbddirty because all 3500 * the journalling code will explode. So what we do is to mark the folio 3501 * "pending dirty" and next time ext4_writepages() is called, attach buffers 3502 * to the transaction appropriately. 3503 */ 3504 static bool ext4_journalled_dirty_folio(struct address_space *mapping, 3505 struct folio *folio) 3506 { 3507 WARN_ON_ONCE(!folio_buffers(folio)); 3508 if (folio_maybe_dma_pinned(folio)) 3509 folio_set_checked(folio); 3510 return filemap_dirty_folio(mapping, folio); 3511 } 3512 3513 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio) 3514 { 3515 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio)); 3516 WARN_ON_ONCE(!folio_buffers(folio)); 3517 return block_dirty_folio(mapping, folio); 3518 } 3519 3520 static int ext4_iomap_swap_activate(struct swap_info_struct *sis, 3521 struct file *file, sector_t *span) 3522 { 3523 return iomap_swapfile_activate(sis, file, span, 3524 &ext4_iomap_report_ops); 3525 } 3526 3527 static const struct address_space_operations ext4_aops = { 3528 .read_folio = ext4_read_folio, 3529 .readahead = ext4_readahead, 3530 .writepages = ext4_writepages, 3531 .write_begin = ext4_write_begin, 3532 .write_end = ext4_write_end, 3533 .dirty_folio = ext4_dirty_folio, 3534 .bmap = ext4_bmap, 3535 .invalidate_folio = ext4_invalidate_folio, 3536 .release_folio = ext4_release_folio, 3537 .direct_IO = noop_direct_IO, 3538 .migrate_folio = buffer_migrate_folio, 3539 .is_partially_uptodate = block_is_partially_uptodate, 3540 .error_remove_page = generic_error_remove_page, 3541 .swap_activate = ext4_iomap_swap_activate, 3542 }; 3543 3544 static const struct address_space_operations ext4_journalled_aops = { 3545 .read_folio = ext4_read_folio, 3546 .readahead = ext4_readahead, 3547 .writepages = ext4_writepages, 3548 .write_begin = ext4_write_begin, 3549 .write_end = ext4_journalled_write_end, 3550 .dirty_folio = ext4_journalled_dirty_folio, 3551 .bmap = ext4_bmap, 3552 .invalidate_folio = ext4_journalled_invalidate_folio, 3553 .release_folio = ext4_release_folio, 3554 .direct_IO = noop_direct_IO, 3555 .migrate_folio = buffer_migrate_folio_norefs, 3556 .is_partially_uptodate = block_is_partially_uptodate, 3557 .error_remove_page = generic_error_remove_page, 3558 .swap_activate = ext4_iomap_swap_activate, 3559 }; 3560 3561 static const struct address_space_operations ext4_da_aops = { 3562 .read_folio = ext4_read_folio, 3563 .readahead = ext4_readahead, 3564 .writepages = ext4_writepages, 3565 .write_begin = ext4_da_write_begin, 3566 .write_end = ext4_da_write_end, 3567 .dirty_folio = ext4_dirty_folio, 3568 .bmap = ext4_bmap, 3569 .invalidate_folio = ext4_invalidate_folio, 3570 .release_folio = ext4_release_folio, 3571 .direct_IO = noop_direct_IO, 3572 .migrate_folio = buffer_migrate_folio, 3573 .is_partially_uptodate = block_is_partially_uptodate, 3574 .error_remove_page = generic_error_remove_page, 3575 .swap_activate = ext4_iomap_swap_activate, 3576 }; 3577 3578 static const struct address_space_operations ext4_dax_aops = { 3579 .writepages = ext4_dax_writepages, 3580 .direct_IO = noop_direct_IO, 3581 .dirty_folio = noop_dirty_folio, 3582 .bmap = ext4_bmap, 3583 .swap_activate = ext4_iomap_swap_activate, 3584 }; 3585 3586 void ext4_set_aops(struct inode *inode) 3587 { 3588 switch (ext4_inode_journal_mode(inode)) { 3589 case EXT4_INODE_ORDERED_DATA_MODE: 3590 case EXT4_INODE_WRITEBACK_DATA_MODE: 3591 break; 3592 case EXT4_INODE_JOURNAL_DATA_MODE: 3593 inode->i_mapping->a_ops = &ext4_journalled_aops; 3594 return; 3595 default: 3596 BUG(); 3597 } 3598 if (IS_DAX(inode)) 3599 inode->i_mapping->a_ops = &ext4_dax_aops; 3600 else if (test_opt(inode->i_sb, DELALLOC)) 3601 inode->i_mapping->a_ops = &ext4_da_aops; 3602 else 3603 inode->i_mapping->a_ops = &ext4_aops; 3604 } 3605 3606 static int __ext4_block_zero_page_range(handle_t *handle, 3607 struct address_space *mapping, loff_t from, loff_t length) 3608 { 3609 ext4_fsblk_t index = from >> PAGE_SHIFT; 3610 unsigned offset = from & (PAGE_SIZE-1); 3611 unsigned blocksize, pos; 3612 ext4_lblk_t iblock; 3613 struct inode *inode = mapping->host; 3614 struct buffer_head *bh; 3615 struct folio *folio; 3616 int err = 0; 3617 3618 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT, 3619 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 3620 mapping_gfp_constraint(mapping, ~__GFP_FS)); 3621 if (!folio) 3622 return -ENOMEM; 3623 3624 blocksize = inode->i_sb->s_blocksize; 3625 3626 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 3627 3628 bh = folio_buffers(folio); 3629 if (!bh) { 3630 create_empty_buffers(&folio->page, blocksize, 0); 3631 bh = folio_buffers(folio); 3632 } 3633 3634 /* Find the buffer that contains "offset" */ 3635 pos = blocksize; 3636 while (offset >= pos) { 3637 bh = bh->b_this_page; 3638 iblock++; 3639 pos += blocksize; 3640 } 3641 if (buffer_freed(bh)) { 3642 BUFFER_TRACE(bh, "freed: skip"); 3643 goto unlock; 3644 } 3645 if (!buffer_mapped(bh)) { 3646 BUFFER_TRACE(bh, "unmapped"); 3647 ext4_get_block(inode, iblock, bh, 0); 3648 /* unmapped? It's a hole - nothing to do */ 3649 if (!buffer_mapped(bh)) { 3650 BUFFER_TRACE(bh, "still unmapped"); 3651 goto unlock; 3652 } 3653 } 3654 3655 /* Ok, it's mapped. Make sure it's up-to-date */ 3656 if (folio_test_uptodate(folio)) 3657 set_buffer_uptodate(bh); 3658 3659 if (!buffer_uptodate(bh)) { 3660 err = ext4_read_bh_lock(bh, 0, true); 3661 if (err) 3662 goto unlock; 3663 if (fscrypt_inode_uses_fs_layer_crypto(inode)) { 3664 /* We expect the key to be set. */ 3665 BUG_ON(!fscrypt_has_encryption_key(inode)); 3666 err = fscrypt_decrypt_pagecache_blocks(folio, 3667 blocksize, 3668 bh_offset(bh)); 3669 if (err) { 3670 clear_buffer_uptodate(bh); 3671 goto unlock; 3672 } 3673 } 3674 } 3675 if (ext4_should_journal_data(inode)) { 3676 BUFFER_TRACE(bh, "get write access"); 3677 err = ext4_journal_get_write_access(handle, inode->i_sb, bh, 3678 EXT4_JTR_NONE); 3679 if (err) 3680 goto unlock; 3681 } 3682 folio_zero_range(folio, offset, length); 3683 BUFFER_TRACE(bh, "zeroed end of block"); 3684 3685 if (ext4_should_journal_data(inode)) { 3686 err = ext4_dirty_journalled_data(handle, bh); 3687 } else { 3688 err = 0; 3689 mark_buffer_dirty(bh); 3690 if (ext4_should_order_data(inode)) 3691 err = ext4_jbd2_inode_add_write(handle, inode, from, 3692 length); 3693 } 3694 3695 unlock: 3696 folio_unlock(folio); 3697 folio_put(folio); 3698 return err; 3699 } 3700 3701 /* 3702 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3703 * starting from file offset 'from'. The range to be zero'd must 3704 * be contained with in one block. If the specified range exceeds 3705 * the end of the block it will be shortened to end of the block 3706 * that corresponds to 'from' 3707 */ 3708 static int ext4_block_zero_page_range(handle_t *handle, 3709 struct address_space *mapping, loff_t from, loff_t length) 3710 { 3711 struct inode *inode = mapping->host; 3712 unsigned offset = from & (PAGE_SIZE-1); 3713 unsigned blocksize = inode->i_sb->s_blocksize; 3714 unsigned max = blocksize - (offset & (blocksize - 1)); 3715 3716 /* 3717 * correct length if it does not fall between 3718 * 'from' and the end of the block 3719 */ 3720 if (length > max || length < 0) 3721 length = max; 3722 3723 if (IS_DAX(inode)) { 3724 return dax_zero_range(inode, from, length, NULL, 3725 &ext4_iomap_ops); 3726 } 3727 return __ext4_block_zero_page_range(handle, mapping, from, length); 3728 } 3729 3730 /* 3731 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3732 * up to the end of the block which corresponds to `from'. 3733 * This required during truncate. We need to physically zero the tail end 3734 * of that block so it doesn't yield old data if the file is later grown. 3735 */ 3736 static int ext4_block_truncate_page(handle_t *handle, 3737 struct address_space *mapping, loff_t from) 3738 { 3739 unsigned offset = from & (PAGE_SIZE-1); 3740 unsigned length; 3741 unsigned blocksize; 3742 struct inode *inode = mapping->host; 3743 3744 /* If we are processing an encrypted inode during orphan list handling */ 3745 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode)) 3746 return 0; 3747 3748 blocksize = inode->i_sb->s_blocksize; 3749 length = blocksize - (offset & (blocksize - 1)); 3750 3751 return ext4_block_zero_page_range(handle, mapping, from, length); 3752 } 3753 3754 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3755 loff_t lstart, loff_t length) 3756 { 3757 struct super_block *sb = inode->i_sb; 3758 struct address_space *mapping = inode->i_mapping; 3759 unsigned partial_start, partial_end; 3760 ext4_fsblk_t start, end; 3761 loff_t byte_end = (lstart + length - 1); 3762 int err = 0; 3763 3764 partial_start = lstart & (sb->s_blocksize - 1); 3765 partial_end = byte_end & (sb->s_blocksize - 1); 3766 3767 start = lstart >> sb->s_blocksize_bits; 3768 end = byte_end >> sb->s_blocksize_bits; 3769 3770 /* Handle partial zero within the single block */ 3771 if (start == end && 3772 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3773 err = ext4_block_zero_page_range(handle, mapping, 3774 lstart, length); 3775 return err; 3776 } 3777 /* Handle partial zero out on the start of the range */ 3778 if (partial_start) { 3779 err = ext4_block_zero_page_range(handle, mapping, 3780 lstart, sb->s_blocksize); 3781 if (err) 3782 return err; 3783 } 3784 /* Handle partial zero out on the end of the range */ 3785 if (partial_end != sb->s_blocksize - 1) 3786 err = ext4_block_zero_page_range(handle, mapping, 3787 byte_end - partial_end, 3788 partial_end + 1); 3789 return err; 3790 } 3791 3792 int ext4_can_truncate(struct inode *inode) 3793 { 3794 if (S_ISREG(inode->i_mode)) 3795 return 1; 3796 if (S_ISDIR(inode->i_mode)) 3797 return 1; 3798 if (S_ISLNK(inode->i_mode)) 3799 return !ext4_inode_is_fast_symlink(inode); 3800 return 0; 3801 } 3802 3803 /* 3804 * We have to make sure i_disksize gets properly updated before we truncate 3805 * page cache due to hole punching or zero range. Otherwise i_disksize update 3806 * can get lost as it may have been postponed to submission of writeback but 3807 * that will never happen after we truncate page cache. 3808 */ 3809 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3810 loff_t len) 3811 { 3812 handle_t *handle; 3813 int ret; 3814 3815 loff_t size = i_size_read(inode); 3816 3817 WARN_ON(!inode_is_locked(inode)); 3818 if (offset > size || offset + len < size) 3819 return 0; 3820 3821 if (EXT4_I(inode)->i_disksize >= size) 3822 return 0; 3823 3824 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3825 if (IS_ERR(handle)) 3826 return PTR_ERR(handle); 3827 ext4_update_i_disksize(inode, size); 3828 ret = ext4_mark_inode_dirty(handle, inode); 3829 ext4_journal_stop(handle); 3830 3831 return ret; 3832 } 3833 3834 static void ext4_wait_dax_page(struct inode *inode) 3835 { 3836 filemap_invalidate_unlock(inode->i_mapping); 3837 schedule(); 3838 filemap_invalidate_lock(inode->i_mapping); 3839 } 3840 3841 int ext4_break_layouts(struct inode *inode) 3842 { 3843 struct page *page; 3844 int error; 3845 3846 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock))) 3847 return -EINVAL; 3848 3849 do { 3850 page = dax_layout_busy_page(inode->i_mapping); 3851 if (!page) 3852 return 0; 3853 3854 error = ___wait_var_event(&page->_refcount, 3855 atomic_read(&page->_refcount) == 1, 3856 TASK_INTERRUPTIBLE, 0, 0, 3857 ext4_wait_dax_page(inode)); 3858 } while (error == 0); 3859 3860 return error; 3861 } 3862 3863 /* 3864 * ext4_punch_hole: punches a hole in a file by releasing the blocks 3865 * associated with the given offset and length 3866 * 3867 * @inode: File inode 3868 * @offset: The offset where the hole will begin 3869 * @len: The length of the hole 3870 * 3871 * Returns: 0 on success or negative on failure 3872 */ 3873 3874 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length) 3875 { 3876 struct inode *inode = file_inode(file); 3877 struct super_block *sb = inode->i_sb; 3878 ext4_lblk_t first_block, stop_block; 3879 struct address_space *mapping = inode->i_mapping; 3880 loff_t first_block_offset, last_block_offset, max_length; 3881 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 3882 handle_t *handle; 3883 unsigned int credits; 3884 int ret = 0, ret2 = 0; 3885 3886 trace_ext4_punch_hole(inode, offset, length, 0); 3887 3888 /* 3889 * Write out all dirty pages to avoid race conditions 3890 * Then release them. 3891 */ 3892 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3893 ret = filemap_write_and_wait_range(mapping, offset, 3894 offset + length - 1); 3895 if (ret) 3896 return ret; 3897 } 3898 3899 inode_lock(inode); 3900 3901 /* No need to punch hole beyond i_size */ 3902 if (offset >= inode->i_size) 3903 goto out_mutex; 3904 3905 /* 3906 * If the hole extends beyond i_size, set the hole 3907 * to end after the page that contains i_size 3908 */ 3909 if (offset + length > inode->i_size) { 3910 length = inode->i_size + 3911 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) - 3912 offset; 3913 } 3914 3915 /* 3916 * For punch hole the length + offset needs to be within one block 3917 * before last range. Adjust the length if it goes beyond that limit. 3918 */ 3919 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize; 3920 if (offset + length > max_length) 3921 length = max_length - offset; 3922 3923 if (offset & (sb->s_blocksize - 1) || 3924 (offset + length) & (sb->s_blocksize - 1)) { 3925 /* 3926 * Attach jinode to inode for jbd2 if we do any zeroing of 3927 * partial block 3928 */ 3929 ret = ext4_inode_attach_jinode(inode); 3930 if (ret < 0) 3931 goto out_mutex; 3932 3933 } 3934 3935 /* Wait all existing dio workers, newcomers will block on i_rwsem */ 3936 inode_dio_wait(inode); 3937 3938 ret = file_modified(file); 3939 if (ret) 3940 goto out_mutex; 3941 3942 /* 3943 * Prevent page faults from reinstantiating pages we have released from 3944 * page cache. 3945 */ 3946 filemap_invalidate_lock(mapping); 3947 3948 ret = ext4_break_layouts(inode); 3949 if (ret) 3950 goto out_dio; 3951 3952 first_block_offset = round_up(offset, sb->s_blocksize); 3953 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3954 3955 /* Now release the pages and zero block aligned part of pages*/ 3956 if (last_block_offset > first_block_offset) { 3957 ret = ext4_update_disksize_before_punch(inode, offset, length); 3958 if (ret) 3959 goto out_dio; 3960 truncate_pagecache_range(inode, first_block_offset, 3961 last_block_offset); 3962 } 3963 3964 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3965 credits = ext4_writepage_trans_blocks(inode); 3966 else 3967 credits = ext4_blocks_for_truncate(inode); 3968 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3969 if (IS_ERR(handle)) { 3970 ret = PTR_ERR(handle); 3971 ext4_std_error(sb, ret); 3972 goto out_dio; 3973 } 3974 3975 ret = ext4_zero_partial_blocks(handle, inode, offset, 3976 length); 3977 if (ret) 3978 goto out_stop; 3979 3980 first_block = (offset + sb->s_blocksize - 1) >> 3981 EXT4_BLOCK_SIZE_BITS(sb); 3982 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3983 3984 /* If there are blocks to remove, do it */ 3985 if (stop_block > first_block) { 3986 3987 down_write(&EXT4_I(inode)->i_data_sem); 3988 ext4_discard_preallocations(inode, 0); 3989 3990 ret = ext4_es_remove_extent(inode, first_block, 3991 stop_block - first_block); 3992 if (ret) { 3993 up_write(&EXT4_I(inode)->i_data_sem); 3994 goto out_stop; 3995 } 3996 3997 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3998 ret = ext4_ext_remove_space(inode, first_block, 3999 stop_block - 1); 4000 else 4001 ret = ext4_ind_remove_space(handle, inode, first_block, 4002 stop_block); 4003 4004 up_write(&EXT4_I(inode)->i_data_sem); 4005 } 4006 ext4_fc_track_range(handle, inode, first_block, stop_block); 4007 if (IS_SYNC(inode)) 4008 ext4_handle_sync(handle); 4009 4010 inode->i_mtime = inode->i_ctime = current_time(inode); 4011 ret2 = ext4_mark_inode_dirty(handle, inode); 4012 if (unlikely(ret2)) 4013 ret = ret2; 4014 if (ret >= 0) 4015 ext4_update_inode_fsync_trans(handle, inode, 1); 4016 out_stop: 4017 ext4_journal_stop(handle); 4018 out_dio: 4019 filemap_invalidate_unlock(mapping); 4020 out_mutex: 4021 inode_unlock(inode); 4022 return ret; 4023 } 4024 4025 int ext4_inode_attach_jinode(struct inode *inode) 4026 { 4027 struct ext4_inode_info *ei = EXT4_I(inode); 4028 struct jbd2_inode *jinode; 4029 4030 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 4031 return 0; 4032 4033 jinode = jbd2_alloc_inode(GFP_KERNEL); 4034 spin_lock(&inode->i_lock); 4035 if (!ei->jinode) { 4036 if (!jinode) { 4037 spin_unlock(&inode->i_lock); 4038 return -ENOMEM; 4039 } 4040 ei->jinode = jinode; 4041 jbd2_journal_init_jbd_inode(ei->jinode, inode); 4042 jinode = NULL; 4043 } 4044 spin_unlock(&inode->i_lock); 4045 if (unlikely(jinode != NULL)) 4046 jbd2_free_inode(jinode); 4047 return 0; 4048 } 4049 4050 /* 4051 * ext4_truncate() 4052 * 4053 * We block out ext4_get_block() block instantiations across the entire 4054 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 4055 * simultaneously on behalf of the same inode. 4056 * 4057 * As we work through the truncate and commit bits of it to the journal there 4058 * is one core, guiding principle: the file's tree must always be consistent on 4059 * disk. We must be able to restart the truncate after a crash. 4060 * 4061 * The file's tree may be transiently inconsistent in memory (although it 4062 * probably isn't), but whenever we close off and commit a journal transaction, 4063 * the contents of (the filesystem + the journal) must be consistent and 4064 * restartable. It's pretty simple, really: bottom up, right to left (although 4065 * left-to-right works OK too). 4066 * 4067 * Note that at recovery time, journal replay occurs *before* the restart of 4068 * truncate against the orphan inode list. 4069 * 4070 * The committed inode has the new, desired i_size (which is the same as 4071 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 4072 * that this inode's truncate did not complete and it will again call 4073 * ext4_truncate() to have another go. So there will be instantiated blocks 4074 * to the right of the truncation point in a crashed ext4 filesystem. But 4075 * that's fine - as long as they are linked from the inode, the post-crash 4076 * ext4_truncate() run will find them and release them. 4077 */ 4078 int ext4_truncate(struct inode *inode) 4079 { 4080 struct ext4_inode_info *ei = EXT4_I(inode); 4081 unsigned int credits; 4082 int err = 0, err2; 4083 handle_t *handle; 4084 struct address_space *mapping = inode->i_mapping; 4085 4086 /* 4087 * There is a possibility that we're either freeing the inode 4088 * or it's a completely new inode. In those cases we might not 4089 * have i_rwsem locked because it's not necessary. 4090 */ 4091 if (!(inode->i_state & (I_NEW|I_FREEING))) 4092 WARN_ON(!inode_is_locked(inode)); 4093 trace_ext4_truncate_enter(inode); 4094 4095 if (!ext4_can_truncate(inode)) 4096 goto out_trace; 4097 4098 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 4099 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 4100 4101 if (ext4_has_inline_data(inode)) { 4102 int has_inline = 1; 4103 4104 err = ext4_inline_data_truncate(inode, &has_inline); 4105 if (err || has_inline) 4106 goto out_trace; 4107 } 4108 4109 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 4110 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 4111 err = ext4_inode_attach_jinode(inode); 4112 if (err) 4113 goto out_trace; 4114 } 4115 4116 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4117 credits = ext4_writepage_trans_blocks(inode); 4118 else 4119 credits = ext4_blocks_for_truncate(inode); 4120 4121 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 4122 if (IS_ERR(handle)) { 4123 err = PTR_ERR(handle); 4124 goto out_trace; 4125 } 4126 4127 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 4128 ext4_block_truncate_page(handle, mapping, inode->i_size); 4129 4130 /* 4131 * We add the inode to the orphan list, so that if this 4132 * truncate spans multiple transactions, and we crash, we will 4133 * resume the truncate when the filesystem recovers. It also 4134 * marks the inode dirty, to catch the new size. 4135 * 4136 * Implication: the file must always be in a sane, consistent 4137 * truncatable state while each transaction commits. 4138 */ 4139 err = ext4_orphan_add(handle, inode); 4140 if (err) 4141 goto out_stop; 4142 4143 down_write(&EXT4_I(inode)->i_data_sem); 4144 4145 ext4_discard_preallocations(inode, 0); 4146 4147 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4148 err = ext4_ext_truncate(handle, inode); 4149 else 4150 ext4_ind_truncate(handle, inode); 4151 4152 up_write(&ei->i_data_sem); 4153 if (err) 4154 goto out_stop; 4155 4156 if (IS_SYNC(inode)) 4157 ext4_handle_sync(handle); 4158 4159 out_stop: 4160 /* 4161 * If this was a simple ftruncate() and the file will remain alive, 4162 * then we need to clear up the orphan record which we created above. 4163 * However, if this was a real unlink then we were called by 4164 * ext4_evict_inode(), and we allow that function to clean up the 4165 * orphan info for us. 4166 */ 4167 if (inode->i_nlink) 4168 ext4_orphan_del(handle, inode); 4169 4170 inode->i_mtime = inode->i_ctime = current_time(inode); 4171 err2 = ext4_mark_inode_dirty(handle, inode); 4172 if (unlikely(err2 && !err)) 4173 err = err2; 4174 ext4_journal_stop(handle); 4175 4176 out_trace: 4177 trace_ext4_truncate_exit(inode); 4178 return err; 4179 } 4180 4181 static inline u64 ext4_inode_peek_iversion(const struct inode *inode) 4182 { 4183 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4184 return inode_peek_iversion_raw(inode); 4185 else 4186 return inode_peek_iversion(inode); 4187 } 4188 4189 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode, 4190 struct ext4_inode_info *ei) 4191 { 4192 struct inode *inode = &(ei->vfs_inode); 4193 u64 i_blocks = READ_ONCE(inode->i_blocks); 4194 struct super_block *sb = inode->i_sb; 4195 4196 if (i_blocks <= ~0U) { 4197 /* 4198 * i_blocks can be represented in a 32 bit variable 4199 * as multiple of 512 bytes 4200 */ 4201 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4202 raw_inode->i_blocks_high = 0; 4203 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4204 return 0; 4205 } 4206 4207 /* 4208 * This should never happen since sb->s_maxbytes should not have 4209 * allowed this, sb->s_maxbytes was set according to the huge_file 4210 * feature in ext4_fill_super(). 4211 */ 4212 if (!ext4_has_feature_huge_file(sb)) 4213 return -EFSCORRUPTED; 4214 4215 if (i_blocks <= 0xffffffffffffULL) { 4216 /* 4217 * i_blocks can be represented in a 48 bit variable 4218 * as multiple of 512 bytes 4219 */ 4220 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4221 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4222 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4223 } else { 4224 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4225 /* i_block is stored in file system block size */ 4226 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4227 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4228 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4229 } 4230 return 0; 4231 } 4232 4233 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode) 4234 { 4235 struct ext4_inode_info *ei = EXT4_I(inode); 4236 uid_t i_uid; 4237 gid_t i_gid; 4238 projid_t i_projid; 4239 int block; 4240 int err; 4241 4242 err = ext4_inode_blocks_set(raw_inode, ei); 4243 4244 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4245 i_uid = i_uid_read(inode); 4246 i_gid = i_gid_read(inode); 4247 i_projid = from_kprojid(&init_user_ns, ei->i_projid); 4248 if (!(test_opt(inode->i_sb, NO_UID32))) { 4249 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4250 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4251 /* 4252 * Fix up interoperability with old kernels. Otherwise, 4253 * old inodes get re-used with the upper 16 bits of the 4254 * uid/gid intact. 4255 */ 4256 if (ei->i_dtime && list_empty(&ei->i_orphan)) { 4257 raw_inode->i_uid_high = 0; 4258 raw_inode->i_gid_high = 0; 4259 } else { 4260 raw_inode->i_uid_high = 4261 cpu_to_le16(high_16_bits(i_uid)); 4262 raw_inode->i_gid_high = 4263 cpu_to_le16(high_16_bits(i_gid)); 4264 } 4265 } else { 4266 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4267 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4268 raw_inode->i_uid_high = 0; 4269 raw_inode->i_gid_high = 0; 4270 } 4271 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4272 4273 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4274 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4275 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4276 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4277 4278 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4279 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4280 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4281 raw_inode->i_file_acl_high = 4282 cpu_to_le16(ei->i_file_acl >> 32); 4283 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4284 ext4_isize_set(raw_inode, ei->i_disksize); 4285 4286 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4287 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4288 if (old_valid_dev(inode->i_rdev)) { 4289 raw_inode->i_block[0] = 4290 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4291 raw_inode->i_block[1] = 0; 4292 } else { 4293 raw_inode->i_block[0] = 0; 4294 raw_inode->i_block[1] = 4295 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4296 raw_inode->i_block[2] = 0; 4297 } 4298 } else if (!ext4_has_inline_data(inode)) { 4299 for (block = 0; block < EXT4_N_BLOCKS; block++) 4300 raw_inode->i_block[block] = ei->i_data[block]; 4301 } 4302 4303 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4304 u64 ivers = ext4_inode_peek_iversion(inode); 4305 4306 raw_inode->i_disk_version = cpu_to_le32(ivers); 4307 if (ei->i_extra_isize) { 4308 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4309 raw_inode->i_version_hi = 4310 cpu_to_le32(ivers >> 32); 4311 raw_inode->i_extra_isize = 4312 cpu_to_le16(ei->i_extra_isize); 4313 } 4314 } 4315 4316 if (i_projid != EXT4_DEF_PROJID && 4317 !ext4_has_feature_project(inode->i_sb)) 4318 err = err ?: -EFSCORRUPTED; 4319 4320 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 4321 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4322 raw_inode->i_projid = cpu_to_le32(i_projid); 4323 4324 ext4_inode_csum_set(inode, raw_inode, ei); 4325 return err; 4326 } 4327 4328 /* 4329 * ext4_get_inode_loc returns with an extra refcount against the inode's 4330 * underlying buffer_head on success. If we pass 'inode' and it does not 4331 * have in-inode xattr, we have all inode data in memory that is needed 4332 * to recreate the on-disk version of this inode. 4333 */ 4334 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino, 4335 struct inode *inode, struct ext4_iloc *iloc, 4336 ext4_fsblk_t *ret_block) 4337 { 4338 struct ext4_group_desc *gdp; 4339 struct buffer_head *bh; 4340 ext4_fsblk_t block; 4341 struct blk_plug plug; 4342 int inodes_per_block, inode_offset; 4343 4344 iloc->bh = NULL; 4345 if (ino < EXT4_ROOT_INO || 4346 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 4347 return -EFSCORRUPTED; 4348 4349 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); 4350 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 4351 if (!gdp) 4352 return -EIO; 4353 4354 /* 4355 * Figure out the offset within the block group inode table 4356 */ 4357 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4358 inode_offset = ((ino - 1) % 4359 EXT4_INODES_PER_GROUP(sb)); 4360 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 4361 4362 block = ext4_inode_table(sb, gdp); 4363 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) || 4364 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) { 4365 ext4_error(sb, "Invalid inode table block %llu in " 4366 "block_group %u", block, iloc->block_group); 4367 return -EFSCORRUPTED; 4368 } 4369 block += (inode_offset / inodes_per_block); 4370 4371 bh = sb_getblk(sb, block); 4372 if (unlikely(!bh)) 4373 return -ENOMEM; 4374 if (ext4_buffer_uptodate(bh)) 4375 goto has_buffer; 4376 4377 lock_buffer(bh); 4378 if (ext4_buffer_uptodate(bh)) { 4379 /* Someone brought it uptodate while we waited */ 4380 unlock_buffer(bh); 4381 goto has_buffer; 4382 } 4383 4384 /* 4385 * If we have all information of the inode in memory and this 4386 * is the only valid inode in the block, we need not read the 4387 * block. 4388 */ 4389 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) { 4390 struct buffer_head *bitmap_bh; 4391 int i, start; 4392 4393 start = inode_offset & ~(inodes_per_block - 1); 4394 4395 /* Is the inode bitmap in cache? */ 4396 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 4397 if (unlikely(!bitmap_bh)) 4398 goto make_io; 4399 4400 /* 4401 * If the inode bitmap isn't in cache then the 4402 * optimisation may end up performing two reads instead 4403 * of one, so skip it. 4404 */ 4405 if (!buffer_uptodate(bitmap_bh)) { 4406 brelse(bitmap_bh); 4407 goto make_io; 4408 } 4409 for (i = start; i < start + inodes_per_block; i++) { 4410 if (i == inode_offset) 4411 continue; 4412 if (ext4_test_bit(i, bitmap_bh->b_data)) 4413 break; 4414 } 4415 brelse(bitmap_bh); 4416 if (i == start + inodes_per_block) { 4417 struct ext4_inode *raw_inode = 4418 (struct ext4_inode *) (bh->b_data + iloc->offset); 4419 4420 /* all other inodes are free, so skip I/O */ 4421 memset(bh->b_data, 0, bh->b_size); 4422 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4423 ext4_fill_raw_inode(inode, raw_inode); 4424 set_buffer_uptodate(bh); 4425 unlock_buffer(bh); 4426 goto has_buffer; 4427 } 4428 } 4429 4430 make_io: 4431 /* 4432 * If we need to do any I/O, try to pre-readahead extra 4433 * blocks from the inode table. 4434 */ 4435 blk_start_plug(&plug); 4436 if (EXT4_SB(sb)->s_inode_readahead_blks) { 4437 ext4_fsblk_t b, end, table; 4438 unsigned num; 4439 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 4440 4441 table = ext4_inode_table(sb, gdp); 4442 /* s_inode_readahead_blks is always a power of 2 */ 4443 b = block & ~((ext4_fsblk_t) ra_blks - 1); 4444 if (table > b) 4445 b = table; 4446 end = b + ra_blks; 4447 num = EXT4_INODES_PER_GROUP(sb); 4448 if (ext4_has_group_desc_csum(sb)) 4449 num -= ext4_itable_unused_count(sb, gdp); 4450 table += num / inodes_per_block; 4451 if (end > table) 4452 end = table; 4453 while (b <= end) 4454 ext4_sb_breadahead_unmovable(sb, b++); 4455 } 4456 4457 /* 4458 * There are other valid inodes in the buffer, this inode 4459 * has in-inode xattrs, or we don't have this inode in memory. 4460 * Read the block from disk. 4461 */ 4462 trace_ext4_load_inode(sb, ino); 4463 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL); 4464 blk_finish_plug(&plug); 4465 wait_on_buffer(bh); 4466 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO); 4467 if (!buffer_uptodate(bh)) { 4468 if (ret_block) 4469 *ret_block = block; 4470 brelse(bh); 4471 return -EIO; 4472 } 4473 has_buffer: 4474 iloc->bh = bh; 4475 return 0; 4476 } 4477 4478 static int __ext4_get_inode_loc_noinmem(struct inode *inode, 4479 struct ext4_iloc *iloc) 4480 { 4481 ext4_fsblk_t err_blk = 0; 4482 int ret; 4483 4484 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc, 4485 &err_blk); 4486 4487 if (ret == -EIO) 4488 ext4_error_inode_block(inode, err_blk, EIO, 4489 "unable to read itable block"); 4490 4491 return ret; 4492 } 4493 4494 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4495 { 4496 ext4_fsblk_t err_blk = 0; 4497 int ret; 4498 4499 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc, 4500 &err_blk); 4501 4502 if (ret == -EIO) 4503 ext4_error_inode_block(inode, err_blk, EIO, 4504 "unable to read itable block"); 4505 4506 return ret; 4507 } 4508 4509 4510 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino, 4511 struct ext4_iloc *iloc) 4512 { 4513 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL); 4514 } 4515 4516 static bool ext4_should_enable_dax(struct inode *inode) 4517 { 4518 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4519 4520 if (test_opt2(inode->i_sb, DAX_NEVER)) 4521 return false; 4522 if (!S_ISREG(inode->i_mode)) 4523 return false; 4524 if (ext4_should_journal_data(inode)) 4525 return false; 4526 if (ext4_has_inline_data(inode)) 4527 return false; 4528 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT)) 4529 return false; 4530 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY)) 4531 return false; 4532 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) 4533 return false; 4534 if (test_opt(inode->i_sb, DAX_ALWAYS)) 4535 return true; 4536 4537 return ext4_test_inode_flag(inode, EXT4_INODE_DAX); 4538 } 4539 4540 void ext4_set_inode_flags(struct inode *inode, bool init) 4541 { 4542 unsigned int flags = EXT4_I(inode)->i_flags; 4543 unsigned int new_fl = 0; 4544 4545 WARN_ON_ONCE(IS_DAX(inode) && init); 4546 4547 if (flags & EXT4_SYNC_FL) 4548 new_fl |= S_SYNC; 4549 if (flags & EXT4_APPEND_FL) 4550 new_fl |= S_APPEND; 4551 if (flags & EXT4_IMMUTABLE_FL) 4552 new_fl |= S_IMMUTABLE; 4553 if (flags & EXT4_NOATIME_FL) 4554 new_fl |= S_NOATIME; 4555 if (flags & EXT4_DIRSYNC_FL) 4556 new_fl |= S_DIRSYNC; 4557 4558 /* Because of the way inode_set_flags() works we must preserve S_DAX 4559 * here if already set. */ 4560 new_fl |= (inode->i_flags & S_DAX); 4561 if (init && ext4_should_enable_dax(inode)) 4562 new_fl |= S_DAX; 4563 4564 if (flags & EXT4_ENCRYPT_FL) 4565 new_fl |= S_ENCRYPTED; 4566 if (flags & EXT4_CASEFOLD_FL) 4567 new_fl |= S_CASEFOLD; 4568 if (flags & EXT4_VERITY_FL) 4569 new_fl |= S_VERITY; 4570 inode_set_flags(inode, new_fl, 4571 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX| 4572 S_ENCRYPTED|S_CASEFOLD|S_VERITY); 4573 } 4574 4575 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4576 struct ext4_inode_info *ei) 4577 { 4578 blkcnt_t i_blocks ; 4579 struct inode *inode = &(ei->vfs_inode); 4580 struct super_block *sb = inode->i_sb; 4581 4582 if (ext4_has_feature_huge_file(sb)) { 4583 /* we are using combined 48 bit field */ 4584 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4585 le32_to_cpu(raw_inode->i_blocks_lo); 4586 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4587 /* i_blocks represent file system block size */ 4588 return i_blocks << (inode->i_blkbits - 9); 4589 } else { 4590 return i_blocks; 4591 } 4592 } else { 4593 return le32_to_cpu(raw_inode->i_blocks_lo); 4594 } 4595 } 4596 4597 static inline int ext4_iget_extra_inode(struct inode *inode, 4598 struct ext4_inode *raw_inode, 4599 struct ext4_inode_info *ei) 4600 { 4601 __le32 *magic = (void *)raw_inode + 4602 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4603 4604 if (EXT4_INODE_HAS_XATTR_SPACE(inode) && 4605 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4606 int err; 4607 4608 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4609 err = ext4_find_inline_data_nolock(inode); 4610 if (!err && ext4_has_inline_data(inode)) 4611 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA); 4612 return err; 4613 } else 4614 EXT4_I(inode)->i_inline_off = 0; 4615 return 0; 4616 } 4617 4618 int ext4_get_projid(struct inode *inode, kprojid_t *projid) 4619 { 4620 if (!ext4_has_feature_project(inode->i_sb)) 4621 return -EOPNOTSUPP; 4622 *projid = EXT4_I(inode)->i_projid; 4623 return 0; 4624 } 4625 4626 /* 4627 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of 4628 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag 4629 * set. 4630 */ 4631 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val) 4632 { 4633 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) 4634 inode_set_iversion_raw(inode, val); 4635 else 4636 inode_set_iversion_queried(inode, val); 4637 } 4638 4639 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino, 4640 ext4_iget_flags flags, const char *function, 4641 unsigned int line) 4642 { 4643 struct ext4_iloc iloc; 4644 struct ext4_inode *raw_inode; 4645 struct ext4_inode_info *ei; 4646 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4647 struct inode *inode; 4648 journal_t *journal = EXT4_SB(sb)->s_journal; 4649 long ret; 4650 loff_t size; 4651 int block; 4652 uid_t i_uid; 4653 gid_t i_gid; 4654 projid_t i_projid; 4655 4656 if ((!(flags & EXT4_IGET_SPECIAL) && 4657 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) || 4658 ino == le32_to_cpu(es->s_usr_quota_inum) || 4659 ino == le32_to_cpu(es->s_grp_quota_inum) || 4660 ino == le32_to_cpu(es->s_prj_quota_inum) || 4661 ino == le32_to_cpu(es->s_orphan_file_inum))) || 4662 (ino < EXT4_ROOT_INO) || 4663 (ino > le32_to_cpu(es->s_inodes_count))) { 4664 if (flags & EXT4_IGET_HANDLE) 4665 return ERR_PTR(-ESTALE); 4666 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0, 4667 "inode #%lu: comm %s: iget: illegal inode #", 4668 ino, current->comm); 4669 return ERR_PTR(-EFSCORRUPTED); 4670 } 4671 4672 inode = iget_locked(sb, ino); 4673 if (!inode) 4674 return ERR_PTR(-ENOMEM); 4675 if (!(inode->i_state & I_NEW)) 4676 return inode; 4677 4678 ei = EXT4_I(inode); 4679 iloc.bh = NULL; 4680 4681 ret = __ext4_get_inode_loc_noinmem(inode, &iloc); 4682 if (ret < 0) 4683 goto bad_inode; 4684 raw_inode = ext4_raw_inode(&iloc); 4685 4686 if ((flags & EXT4_IGET_HANDLE) && 4687 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) { 4688 ret = -ESTALE; 4689 goto bad_inode; 4690 } 4691 4692 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4693 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4694 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4695 EXT4_INODE_SIZE(inode->i_sb) || 4696 (ei->i_extra_isize & 3)) { 4697 ext4_error_inode(inode, function, line, 0, 4698 "iget: bad extra_isize %u " 4699 "(inode size %u)", 4700 ei->i_extra_isize, 4701 EXT4_INODE_SIZE(inode->i_sb)); 4702 ret = -EFSCORRUPTED; 4703 goto bad_inode; 4704 } 4705 } else 4706 ei->i_extra_isize = 0; 4707 4708 /* Precompute checksum seed for inode metadata */ 4709 if (ext4_has_metadata_csum(sb)) { 4710 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4711 __u32 csum; 4712 __le32 inum = cpu_to_le32(inode->i_ino); 4713 __le32 gen = raw_inode->i_generation; 4714 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4715 sizeof(inum)); 4716 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4717 sizeof(gen)); 4718 } 4719 4720 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) || 4721 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) && 4722 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) { 4723 ext4_error_inode_err(inode, function, line, 0, 4724 EFSBADCRC, "iget: checksum invalid"); 4725 ret = -EFSBADCRC; 4726 goto bad_inode; 4727 } 4728 4729 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4730 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4731 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4732 if (ext4_has_feature_project(sb) && 4733 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE && 4734 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid)) 4735 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid); 4736 else 4737 i_projid = EXT4_DEF_PROJID; 4738 4739 if (!(test_opt(inode->i_sb, NO_UID32))) { 4740 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4741 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4742 } 4743 i_uid_write(inode, i_uid); 4744 i_gid_write(inode, i_gid); 4745 ei->i_projid = make_kprojid(&init_user_ns, i_projid); 4746 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4747 4748 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4749 ei->i_inline_off = 0; 4750 ei->i_dir_start_lookup = 0; 4751 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4752 /* We now have enough fields to check if the inode was active or not. 4753 * This is needed because nfsd might try to access dead inodes 4754 * the test is that same one that e2fsck uses 4755 * NeilBrown 1999oct15 4756 */ 4757 if (inode->i_nlink == 0) { 4758 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL || 4759 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4760 ino != EXT4_BOOT_LOADER_INO) { 4761 /* this inode is deleted or unallocated */ 4762 if (flags & EXT4_IGET_SPECIAL) { 4763 ext4_error_inode(inode, function, line, 0, 4764 "iget: special inode unallocated"); 4765 ret = -EFSCORRUPTED; 4766 } else 4767 ret = -ESTALE; 4768 goto bad_inode; 4769 } 4770 /* The only unlinked inodes we let through here have 4771 * valid i_mode and are being read by the orphan 4772 * recovery code: that's fine, we're about to complete 4773 * the process of deleting those. 4774 * OR it is the EXT4_BOOT_LOADER_INO which is 4775 * not initialized on a new filesystem. */ 4776 } 4777 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4778 ext4_set_inode_flags(inode, true); 4779 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4780 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4781 if (ext4_has_feature_64bit(sb)) 4782 ei->i_file_acl |= 4783 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4784 inode->i_size = ext4_isize(sb, raw_inode); 4785 if ((size = i_size_read(inode)) < 0) { 4786 ext4_error_inode(inode, function, line, 0, 4787 "iget: bad i_size value: %lld", size); 4788 ret = -EFSCORRUPTED; 4789 goto bad_inode; 4790 } 4791 /* 4792 * If dir_index is not enabled but there's dir with INDEX flag set, 4793 * we'd normally treat htree data as empty space. But with metadata 4794 * checksumming that corrupts checksums so forbid that. 4795 */ 4796 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) && 4797 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) { 4798 ext4_error_inode(inode, function, line, 0, 4799 "iget: Dir with htree data on filesystem without dir_index feature."); 4800 ret = -EFSCORRUPTED; 4801 goto bad_inode; 4802 } 4803 ei->i_disksize = inode->i_size; 4804 #ifdef CONFIG_QUOTA 4805 ei->i_reserved_quota = 0; 4806 #endif 4807 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4808 ei->i_block_group = iloc.block_group; 4809 ei->i_last_alloc_group = ~0; 4810 /* 4811 * NOTE! The in-memory inode i_data array is in little-endian order 4812 * even on big-endian machines: we do NOT byteswap the block numbers! 4813 */ 4814 for (block = 0; block < EXT4_N_BLOCKS; block++) 4815 ei->i_data[block] = raw_inode->i_block[block]; 4816 INIT_LIST_HEAD(&ei->i_orphan); 4817 ext4_fc_init_inode(&ei->vfs_inode); 4818 4819 /* 4820 * Set transaction id's of transactions that have to be committed 4821 * to finish f[data]sync. We set them to currently running transaction 4822 * as we cannot be sure that the inode or some of its metadata isn't 4823 * part of the transaction - the inode could have been reclaimed and 4824 * now it is reread from disk. 4825 */ 4826 if (journal) { 4827 transaction_t *transaction; 4828 tid_t tid; 4829 4830 read_lock(&journal->j_state_lock); 4831 if (journal->j_running_transaction) 4832 transaction = journal->j_running_transaction; 4833 else 4834 transaction = journal->j_committing_transaction; 4835 if (transaction) 4836 tid = transaction->t_tid; 4837 else 4838 tid = journal->j_commit_sequence; 4839 read_unlock(&journal->j_state_lock); 4840 ei->i_sync_tid = tid; 4841 ei->i_datasync_tid = tid; 4842 } 4843 4844 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4845 if (ei->i_extra_isize == 0) { 4846 /* The extra space is currently unused. Use it. */ 4847 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3); 4848 ei->i_extra_isize = sizeof(struct ext4_inode) - 4849 EXT4_GOOD_OLD_INODE_SIZE; 4850 } else { 4851 ret = ext4_iget_extra_inode(inode, raw_inode, ei); 4852 if (ret) 4853 goto bad_inode; 4854 } 4855 } 4856 4857 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4858 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4859 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4860 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4861 4862 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4863 u64 ivers = le32_to_cpu(raw_inode->i_disk_version); 4864 4865 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4866 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4867 ivers |= 4868 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4869 } 4870 ext4_inode_set_iversion_queried(inode, ivers); 4871 } 4872 4873 ret = 0; 4874 if (ei->i_file_acl && 4875 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) { 4876 ext4_error_inode(inode, function, line, 0, 4877 "iget: bad extended attribute block %llu", 4878 ei->i_file_acl); 4879 ret = -EFSCORRUPTED; 4880 goto bad_inode; 4881 } else if (!ext4_has_inline_data(inode)) { 4882 /* validate the block references in the inode */ 4883 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) && 4884 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4885 (S_ISLNK(inode->i_mode) && 4886 !ext4_inode_is_fast_symlink(inode)))) { 4887 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 4888 ret = ext4_ext_check_inode(inode); 4889 else 4890 ret = ext4_ind_check_inode(inode); 4891 } 4892 } 4893 if (ret) 4894 goto bad_inode; 4895 4896 if (S_ISREG(inode->i_mode)) { 4897 inode->i_op = &ext4_file_inode_operations; 4898 inode->i_fop = &ext4_file_operations; 4899 ext4_set_aops(inode); 4900 } else if (S_ISDIR(inode->i_mode)) { 4901 inode->i_op = &ext4_dir_inode_operations; 4902 inode->i_fop = &ext4_dir_operations; 4903 } else if (S_ISLNK(inode->i_mode)) { 4904 /* VFS does not allow setting these so must be corruption */ 4905 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) { 4906 ext4_error_inode(inode, function, line, 0, 4907 "iget: immutable or append flags " 4908 "not allowed on symlinks"); 4909 ret = -EFSCORRUPTED; 4910 goto bad_inode; 4911 } 4912 if (IS_ENCRYPTED(inode)) { 4913 inode->i_op = &ext4_encrypted_symlink_inode_operations; 4914 } else if (ext4_inode_is_fast_symlink(inode)) { 4915 inode->i_link = (char *)ei->i_data; 4916 inode->i_op = &ext4_fast_symlink_inode_operations; 4917 nd_terminate_link(ei->i_data, inode->i_size, 4918 sizeof(ei->i_data) - 1); 4919 } else { 4920 inode->i_op = &ext4_symlink_inode_operations; 4921 } 4922 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4923 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4924 inode->i_op = &ext4_special_inode_operations; 4925 if (raw_inode->i_block[0]) 4926 init_special_inode(inode, inode->i_mode, 4927 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4928 else 4929 init_special_inode(inode, inode->i_mode, 4930 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4931 } else if (ino == EXT4_BOOT_LOADER_INO) { 4932 make_bad_inode(inode); 4933 } else { 4934 ret = -EFSCORRUPTED; 4935 ext4_error_inode(inode, function, line, 0, 4936 "iget: bogus i_mode (%o)", inode->i_mode); 4937 goto bad_inode; 4938 } 4939 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) 4940 ext4_error_inode(inode, function, line, 0, 4941 "casefold flag without casefold feature"); 4942 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) { 4943 ext4_error_inode(inode, function, line, 0, 4944 "bad inode without EXT4_IGET_BAD flag"); 4945 ret = -EUCLEAN; 4946 goto bad_inode; 4947 } 4948 4949 brelse(iloc.bh); 4950 unlock_new_inode(inode); 4951 return inode; 4952 4953 bad_inode: 4954 brelse(iloc.bh); 4955 iget_failed(inode); 4956 return ERR_PTR(ret); 4957 } 4958 4959 static void __ext4_update_other_inode_time(struct super_block *sb, 4960 unsigned long orig_ino, 4961 unsigned long ino, 4962 struct ext4_inode *raw_inode) 4963 { 4964 struct inode *inode; 4965 4966 inode = find_inode_by_ino_rcu(sb, ino); 4967 if (!inode) 4968 return; 4969 4970 if (!inode_is_dirtytime_only(inode)) 4971 return; 4972 4973 spin_lock(&inode->i_lock); 4974 if (inode_is_dirtytime_only(inode)) { 4975 struct ext4_inode_info *ei = EXT4_I(inode); 4976 4977 inode->i_state &= ~I_DIRTY_TIME; 4978 spin_unlock(&inode->i_lock); 4979 4980 spin_lock(&ei->i_raw_lock); 4981 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4982 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4983 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4984 ext4_inode_csum_set(inode, raw_inode, ei); 4985 spin_unlock(&ei->i_raw_lock); 4986 trace_ext4_other_inode_update_time(inode, orig_ino); 4987 return; 4988 } 4989 spin_unlock(&inode->i_lock); 4990 } 4991 4992 /* 4993 * Opportunistically update the other time fields for other inodes in 4994 * the same inode table block. 4995 */ 4996 static void ext4_update_other_inodes_time(struct super_block *sb, 4997 unsigned long orig_ino, char *buf) 4998 { 4999 unsigned long ino; 5000 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 5001 int inode_size = EXT4_INODE_SIZE(sb); 5002 5003 /* 5004 * Calculate the first inode in the inode table block. Inode 5005 * numbers are one-based. That is, the first inode in a block 5006 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 5007 */ 5008 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 5009 rcu_read_lock(); 5010 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 5011 if (ino == orig_ino) 5012 continue; 5013 __ext4_update_other_inode_time(sb, orig_ino, ino, 5014 (struct ext4_inode *)buf); 5015 } 5016 rcu_read_unlock(); 5017 } 5018 5019 /* 5020 * Post the struct inode info into an on-disk inode location in the 5021 * buffer-cache. This gobbles the caller's reference to the 5022 * buffer_head in the inode location struct. 5023 * 5024 * The caller must have write access to iloc->bh. 5025 */ 5026 static int ext4_do_update_inode(handle_t *handle, 5027 struct inode *inode, 5028 struct ext4_iloc *iloc) 5029 { 5030 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 5031 struct ext4_inode_info *ei = EXT4_I(inode); 5032 struct buffer_head *bh = iloc->bh; 5033 struct super_block *sb = inode->i_sb; 5034 int err; 5035 int need_datasync = 0, set_large_file = 0; 5036 5037 spin_lock(&ei->i_raw_lock); 5038 5039 /* 5040 * For fields not tracked in the in-memory inode, initialise them 5041 * to zero for new inodes. 5042 */ 5043 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 5044 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 5045 5046 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) 5047 need_datasync = 1; 5048 if (ei->i_disksize > 0x7fffffffULL) { 5049 if (!ext4_has_feature_large_file(sb) || 5050 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV)) 5051 set_large_file = 1; 5052 } 5053 5054 err = ext4_fill_raw_inode(inode, raw_inode); 5055 spin_unlock(&ei->i_raw_lock); 5056 if (err) { 5057 EXT4_ERROR_INODE(inode, "corrupted inode contents"); 5058 goto out_brelse; 5059 } 5060 5061 if (inode->i_sb->s_flags & SB_LAZYTIME) 5062 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 5063 bh->b_data); 5064 5065 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 5066 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5067 if (err) 5068 goto out_error; 5069 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 5070 if (set_large_file) { 5071 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 5072 err = ext4_journal_get_write_access(handle, sb, 5073 EXT4_SB(sb)->s_sbh, 5074 EXT4_JTR_NONE); 5075 if (err) 5076 goto out_error; 5077 lock_buffer(EXT4_SB(sb)->s_sbh); 5078 ext4_set_feature_large_file(sb); 5079 ext4_superblock_csum_set(sb); 5080 unlock_buffer(EXT4_SB(sb)->s_sbh); 5081 ext4_handle_sync(handle); 5082 err = ext4_handle_dirty_metadata(handle, NULL, 5083 EXT4_SB(sb)->s_sbh); 5084 } 5085 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 5086 out_error: 5087 ext4_std_error(inode->i_sb, err); 5088 out_brelse: 5089 brelse(bh); 5090 return err; 5091 } 5092 5093 /* 5094 * ext4_write_inode() 5095 * 5096 * We are called from a few places: 5097 * 5098 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 5099 * Here, there will be no transaction running. We wait for any running 5100 * transaction to commit. 5101 * 5102 * - Within flush work (sys_sync(), kupdate and such). 5103 * We wait on commit, if told to. 5104 * 5105 * - Within iput_final() -> write_inode_now() 5106 * We wait on commit, if told to. 5107 * 5108 * In all cases it is actually safe for us to return without doing anything, 5109 * because the inode has been copied into a raw inode buffer in 5110 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 5111 * writeback. 5112 * 5113 * Note that we are absolutely dependent upon all inode dirtiers doing the 5114 * right thing: they *must* call mark_inode_dirty() after dirtying info in 5115 * which we are interested. 5116 * 5117 * It would be a bug for them to not do this. The code: 5118 * 5119 * mark_inode_dirty(inode) 5120 * stuff(); 5121 * inode->i_size = expr; 5122 * 5123 * is in error because write_inode() could occur while `stuff()' is running, 5124 * and the new i_size will be lost. Plus the inode will no longer be on the 5125 * superblock's dirty inode list. 5126 */ 5127 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 5128 { 5129 int err; 5130 5131 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) || 5132 sb_rdonly(inode->i_sb)) 5133 return 0; 5134 5135 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5136 return -EIO; 5137 5138 if (EXT4_SB(inode->i_sb)->s_journal) { 5139 if (ext4_journal_current_handle()) { 5140 ext4_debug("called recursively, non-PF_MEMALLOC!\n"); 5141 dump_stack(); 5142 return -EIO; 5143 } 5144 5145 /* 5146 * No need to force transaction in WB_SYNC_NONE mode. Also 5147 * ext4_sync_fs() will force the commit after everything is 5148 * written. 5149 */ 5150 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 5151 return 0; 5152 5153 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal, 5154 EXT4_I(inode)->i_sync_tid); 5155 } else { 5156 struct ext4_iloc iloc; 5157 5158 err = __ext4_get_inode_loc_noinmem(inode, &iloc); 5159 if (err) 5160 return err; 5161 /* 5162 * sync(2) will flush the whole buffer cache. No need to do 5163 * it here separately for each inode. 5164 */ 5165 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 5166 sync_dirty_buffer(iloc.bh); 5167 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 5168 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO, 5169 "IO error syncing inode"); 5170 err = -EIO; 5171 } 5172 brelse(iloc.bh); 5173 } 5174 return err; 5175 } 5176 5177 /* 5178 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate 5179 * buffers that are attached to a folio straddling i_size and are undergoing 5180 * commit. In that case we have to wait for commit to finish and try again. 5181 */ 5182 static void ext4_wait_for_tail_page_commit(struct inode *inode) 5183 { 5184 unsigned offset; 5185 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 5186 tid_t commit_tid = 0; 5187 int ret; 5188 5189 offset = inode->i_size & (PAGE_SIZE - 1); 5190 /* 5191 * If the folio is fully truncated, we don't need to wait for any commit 5192 * (and we even should not as __ext4_journalled_invalidate_folio() may 5193 * strip all buffers from the folio but keep the folio dirty which can then 5194 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without 5195 * buffers). Also we don't need to wait for any commit if all buffers in 5196 * the folio remain valid. This is most beneficial for the common case of 5197 * blocksize == PAGESIZE. 5198 */ 5199 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode))) 5200 return; 5201 while (1) { 5202 struct folio *folio = filemap_lock_folio(inode->i_mapping, 5203 inode->i_size >> PAGE_SHIFT); 5204 if (!folio) 5205 return; 5206 ret = __ext4_journalled_invalidate_folio(folio, offset, 5207 folio_size(folio) - offset); 5208 folio_unlock(folio); 5209 folio_put(folio); 5210 if (ret != -EBUSY) 5211 return; 5212 commit_tid = 0; 5213 read_lock(&journal->j_state_lock); 5214 if (journal->j_committing_transaction) 5215 commit_tid = journal->j_committing_transaction->t_tid; 5216 read_unlock(&journal->j_state_lock); 5217 if (commit_tid) 5218 jbd2_log_wait_commit(journal, commit_tid); 5219 } 5220 } 5221 5222 /* 5223 * ext4_setattr() 5224 * 5225 * Called from notify_change. 5226 * 5227 * We want to trap VFS attempts to truncate the file as soon as 5228 * possible. In particular, we want to make sure that when the VFS 5229 * shrinks i_size, we put the inode on the orphan list and modify 5230 * i_disksize immediately, so that during the subsequent flushing of 5231 * dirty pages and freeing of disk blocks, we can guarantee that any 5232 * commit will leave the blocks being flushed in an unused state on 5233 * disk. (On recovery, the inode will get truncated and the blocks will 5234 * be freed, so we have a strong guarantee that no future commit will 5235 * leave these blocks visible to the user.) 5236 * 5237 * Another thing we have to assure is that if we are in ordered mode 5238 * and inode is still attached to the committing transaction, we must 5239 * we start writeout of all the dirty pages which are being truncated. 5240 * This way we are sure that all the data written in the previous 5241 * transaction are already on disk (truncate waits for pages under 5242 * writeback). 5243 * 5244 * Called with inode->i_rwsem down. 5245 */ 5246 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5247 struct iattr *attr) 5248 { 5249 struct inode *inode = d_inode(dentry); 5250 int error, rc = 0; 5251 int orphan = 0; 5252 const unsigned int ia_valid = attr->ia_valid; 5253 bool inc_ivers = true; 5254 5255 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5256 return -EIO; 5257 5258 if (unlikely(IS_IMMUTABLE(inode))) 5259 return -EPERM; 5260 5261 if (unlikely(IS_APPEND(inode) && 5262 (ia_valid & (ATTR_MODE | ATTR_UID | 5263 ATTR_GID | ATTR_TIMES_SET)))) 5264 return -EPERM; 5265 5266 error = setattr_prepare(idmap, dentry, attr); 5267 if (error) 5268 return error; 5269 5270 error = fscrypt_prepare_setattr(dentry, attr); 5271 if (error) 5272 return error; 5273 5274 error = fsverity_prepare_setattr(dentry, attr); 5275 if (error) 5276 return error; 5277 5278 if (is_quota_modification(idmap, inode, attr)) { 5279 error = dquot_initialize(inode); 5280 if (error) 5281 return error; 5282 } 5283 5284 if (i_uid_needs_update(idmap, attr, inode) || 5285 i_gid_needs_update(idmap, attr, inode)) { 5286 handle_t *handle; 5287 5288 /* (user+group)*(old+new) structure, inode write (sb, 5289 * inode block, ? - but truncate inode update has it) */ 5290 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 5291 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 5292 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 5293 if (IS_ERR(handle)) { 5294 error = PTR_ERR(handle); 5295 goto err_out; 5296 } 5297 5298 /* dquot_transfer() calls back ext4_get_inode_usage() which 5299 * counts xattr inode references. 5300 */ 5301 down_read(&EXT4_I(inode)->xattr_sem); 5302 error = dquot_transfer(idmap, inode, attr); 5303 up_read(&EXT4_I(inode)->xattr_sem); 5304 5305 if (error) { 5306 ext4_journal_stop(handle); 5307 return error; 5308 } 5309 /* Update corresponding info in inode so that everything is in 5310 * one transaction */ 5311 i_uid_update(idmap, attr, inode); 5312 i_gid_update(idmap, attr, inode); 5313 error = ext4_mark_inode_dirty(handle, inode); 5314 ext4_journal_stop(handle); 5315 if (unlikely(error)) { 5316 return error; 5317 } 5318 } 5319 5320 if (attr->ia_valid & ATTR_SIZE) { 5321 handle_t *handle; 5322 loff_t oldsize = inode->i_size; 5323 loff_t old_disksize; 5324 int shrink = (attr->ia_size < inode->i_size); 5325 5326 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 5327 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5328 5329 if (attr->ia_size > sbi->s_bitmap_maxbytes) { 5330 return -EFBIG; 5331 } 5332 } 5333 if (!S_ISREG(inode->i_mode)) { 5334 return -EINVAL; 5335 } 5336 5337 if (attr->ia_size == inode->i_size) 5338 inc_ivers = false; 5339 5340 if (shrink) { 5341 if (ext4_should_order_data(inode)) { 5342 error = ext4_begin_ordered_truncate(inode, 5343 attr->ia_size); 5344 if (error) 5345 goto err_out; 5346 } 5347 /* 5348 * Blocks are going to be removed from the inode. Wait 5349 * for dio in flight. 5350 */ 5351 inode_dio_wait(inode); 5352 } 5353 5354 filemap_invalidate_lock(inode->i_mapping); 5355 5356 rc = ext4_break_layouts(inode); 5357 if (rc) { 5358 filemap_invalidate_unlock(inode->i_mapping); 5359 goto err_out; 5360 } 5361 5362 if (attr->ia_size != inode->i_size) { 5363 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 5364 if (IS_ERR(handle)) { 5365 error = PTR_ERR(handle); 5366 goto out_mmap_sem; 5367 } 5368 if (ext4_handle_valid(handle) && shrink) { 5369 error = ext4_orphan_add(handle, inode); 5370 orphan = 1; 5371 } 5372 /* 5373 * Update c/mtime on truncate up, ext4_truncate() will 5374 * update c/mtime in shrink case below 5375 */ 5376 if (!shrink) { 5377 inode->i_mtime = current_time(inode); 5378 inode->i_ctime = inode->i_mtime; 5379 } 5380 5381 if (shrink) 5382 ext4_fc_track_range(handle, inode, 5383 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5384 inode->i_sb->s_blocksize_bits, 5385 EXT_MAX_BLOCKS - 1); 5386 else 5387 ext4_fc_track_range( 5388 handle, inode, 5389 (oldsize > 0 ? oldsize - 1 : oldsize) >> 5390 inode->i_sb->s_blocksize_bits, 5391 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >> 5392 inode->i_sb->s_blocksize_bits); 5393 5394 down_write(&EXT4_I(inode)->i_data_sem); 5395 old_disksize = EXT4_I(inode)->i_disksize; 5396 EXT4_I(inode)->i_disksize = attr->ia_size; 5397 rc = ext4_mark_inode_dirty(handle, inode); 5398 if (!error) 5399 error = rc; 5400 /* 5401 * We have to update i_size under i_data_sem together 5402 * with i_disksize to avoid races with writeback code 5403 * running ext4_wb_update_i_disksize(). 5404 */ 5405 if (!error) 5406 i_size_write(inode, attr->ia_size); 5407 else 5408 EXT4_I(inode)->i_disksize = old_disksize; 5409 up_write(&EXT4_I(inode)->i_data_sem); 5410 ext4_journal_stop(handle); 5411 if (error) 5412 goto out_mmap_sem; 5413 if (!shrink) { 5414 pagecache_isize_extended(inode, oldsize, 5415 inode->i_size); 5416 } else if (ext4_should_journal_data(inode)) { 5417 ext4_wait_for_tail_page_commit(inode); 5418 } 5419 } 5420 5421 /* 5422 * Truncate pagecache after we've waited for commit 5423 * in data=journal mode to make pages freeable. 5424 */ 5425 truncate_pagecache(inode, inode->i_size); 5426 /* 5427 * Call ext4_truncate() even if i_size didn't change to 5428 * truncate possible preallocated blocks. 5429 */ 5430 if (attr->ia_size <= oldsize) { 5431 rc = ext4_truncate(inode); 5432 if (rc) 5433 error = rc; 5434 } 5435 out_mmap_sem: 5436 filemap_invalidate_unlock(inode->i_mapping); 5437 } 5438 5439 if (!error) { 5440 if (inc_ivers) 5441 inode_inc_iversion(inode); 5442 setattr_copy(idmap, inode, attr); 5443 mark_inode_dirty(inode); 5444 } 5445 5446 /* 5447 * If the call to ext4_truncate failed to get a transaction handle at 5448 * all, we need to clean up the in-core orphan list manually. 5449 */ 5450 if (orphan && inode->i_nlink) 5451 ext4_orphan_del(NULL, inode); 5452 5453 if (!error && (ia_valid & ATTR_MODE)) 5454 rc = posix_acl_chmod(idmap, dentry, inode->i_mode); 5455 5456 err_out: 5457 if (error) 5458 ext4_std_error(inode->i_sb, error); 5459 if (!error) 5460 error = rc; 5461 return error; 5462 } 5463 5464 u32 ext4_dio_alignment(struct inode *inode) 5465 { 5466 if (fsverity_active(inode)) 5467 return 0; 5468 if (ext4_should_journal_data(inode)) 5469 return 0; 5470 if (ext4_has_inline_data(inode)) 5471 return 0; 5472 if (IS_ENCRYPTED(inode)) { 5473 if (!fscrypt_dio_supported(inode)) 5474 return 0; 5475 return i_blocksize(inode); 5476 } 5477 return 1; /* use the iomap defaults */ 5478 } 5479 5480 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path, 5481 struct kstat *stat, u32 request_mask, unsigned int query_flags) 5482 { 5483 struct inode *inode = d_inode(path->dentry); 5484 struct ext4_inode *raw_inode; 5485 struct ext4_inode_info *ei = EXT4_I(inode); 5486 unsigned int flags; 5487 5488 if ((request_mask & STATX_BTIME) && 5489 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) { 5490 stat->result_mask |= STATX_BTIME; 5491 stat->btime.tv_sec = ei->i_crtime.tv_sec; 5492 stat->btime.tv_nsec = ei->i_crtime.tv_nsec; 5493 } 5494 5495 /* 5496 * Return the DIO alignment restrictions if requested. We only return 5497 * this information when requested, since on encrypted files it might 5498 * take a fair bit of work to get if the file wasn't opened recently. 5499 */ 5500 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) { 5501 u32 dio_align = ext4_dio_alignment(inode); 5502 5503 stat->result_mask |= STATX_DIOALIGN; 5504 if (dio_align == 1) { 5505 struct block_device *bdev = inode->i_sb->s_bdev; 5506 5507 /* iomap defaults */ 5508 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1; 5509 stat->dio_offset_align = bdev_logical_block_size(bdev); 5510 } else { 5511 stat->dio_mem_align = dio_align; 5512 stat->dio_offset_align = dio_align; 5513 } 5514 } 5515 5516 flags = ei->i_flags & EXT4_FL_USER_VISIBLE; 5517 if (flags & EXT4_APPEND_FL) 5518 stat->attributes |= STATX_ATTR_APPEND; 5519 if (flags & EXT4_COMPR_FL) 5520 stat->attributes |= STATX_ATTR_COMPRESSED; 5521 if (flags & EXT4_ENCRYPT_FL) 5522 stat->attributes |= STATX_ATTR_ENCRYPTED; 5523 if (flags & EXT4_IMMUTABLE_FL) 5524 stat->attributes |= STATX_ATTR_IMMUTABLE; 5525 if (flags & EXT4_NODUMP_FL) 5526 stat->attributes |= STATX_ATTR_NODUMP; 5527 if (flags & EXT4_VERITY_FL) 5528 stat->attributes |= STATX_ATTR_VERITY; 5529 5530 stat->attributes_mask |= (STATX_ATTR_APPEND | 5531 STATX_ATTR_COMPRESSED | 5532 STATX_ATTR_ENCRYPTED | 5533 STATX_ATTR_IMMUTABLE | 5534 STATX_ATTR_NODUMP | 5535 STATX_ATTR_VERITY); 5536 5537 generic_fillattr(idmap, inode, stat); 5538 return 0; 5539 } 5540 5541 int ext4_file_getattr(struct mnt_idmap *idmap, 5542 const struct path *path, struct kstat *stat, 5543 u32 request_mask, unsigned int query_flags) 5544 { 5545 struct inode *inode = d_inode(path->dentry); 5546 u64 delalloc_blocks; 5547 5548 ext4_getattr(idmap, path, stat, request_mask, query_flags); 5549 5550 /* 5551 * If there is inline data in the inode, the inode will normally not 5552 * have data blocks allocated (it may have an external xattr block). 5553 * Report at least one sector for such files, so tools like tar, rsync, 5554 * others don't incorrectly think the file is completely sparse. 5555 */ 5556 if (unlikely(ext4_has_inline_data(inode))) 5557 stat->blocks += (stat->size + 511) >> 9; 5558 5559 /* 5560 * We can't update i_blocks if the block allocation is delayed 5561 * otherwise in the case of system crash before the real block 5562 * allocation is done, we will have i_blocks inconsistent with 5563 * on-disk file blocks. 5564 * We always keep i_blocks updated together with real 5565 * allocation. But to not confuse with user, stat 5566 * will return the blocks that include the delayed allocation 5567 * blocks for this file. 5568 */ 5569 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 5570 EXT4_I(inode)->i_reserved_data_blocks); 5571 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 5572 return 0; 5573 } 5574 5575 static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 5576 int pextents) 5577 { 5578 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 5579 return ext4_ind_trans_blocks(inode, lblocks); 5580 return ext4_ext_index_trans_blocks(inode, pextents); 5581 } 5582 5583 /* 5584 * Account for index blocks, block groups bitmaps and block group 5585 * descriptor blocks if modify datablocks and index blocks 5586 * worse case, the indexs blocks spread over different block groups 5587 * 5588 * If datablocks are discontiguous, they are possible to spread over 5589 * different block groups too. If they are contiguous, with flexbg, 5590 * they could still across block group boundary. 5591 * 5592 * Also account for superblock, inode, quota and xattr blocks 5593 */ 5594 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 5595 int pextents) 5596 { 5597 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 5598 int gdpblocks; 5599 int idxblocks; 5600 int ret; 5601 5602 /* 5603 * How many index blocks need to touch to map @lblocks logical blocks 5604 * to @pextents physical extents? 5605 */ 5606 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 5607 5608 ret = idxblocks; 5609 5610 /* 5611 * Now let's see how many group bitmaps and group descriptors need 5612 * to account 5613 */ 5614 groups = idxblocks + pextents; 5615 gdpblocks = groups; 5616 if (groups > ngroups) 5617 groups = ngroups; 5618 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 5619 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 5620 5621 /* bitmaps and block group descriptor blocks */ 5622 ret += groups + gdpblocks; 5623 5624 /* Blocks for super block, inode, quota and xattr blocks */ 5625 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 5626 5627 return ret; 5628 } 5629 5630 /* 5631 * Calculate the total number of credits to reserve to fit 5632 * the modification of a single pages into a single transaction, 5633 * which may include multiple chunks of block allocations. 5634 * 5635 * This could be called via ext4_write_begin() 5636 * 5637 * We need to consider the worse case, when 5638 * one new block per extent. 5639 */ 5640 int ext4_writepage_trans_blocks(struct inode *inode) 5641 { 5642 int bpp = ext4_journal_blocks_per_page(inode); 5643 int ret; 5644 5645 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 5646 5647 /* Account for data blocks for journalled mode */ 5648 if (ext4_should_journal_data(inode)) 5649 ret += bpp; 5650 return ret; 5651 } 5652 5653 /* 5654 * Calculate the journal credits for a chunk of data modification. 5655 * 5656 * This is called from DIO, fallocate or whoever calling 5657 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 5658 * 5659 * journal buffers for data blocks are not included here, as DIO 5660 * and fallocate do no need to journal data buffers. 5661 */ 5662 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 5663 { 5664 return ext4_meta_trans_blocks(inode, nrblocks, 1); 5665 } 5666 5667 /* 5668 * The caller must have previously called ext4_reserve_inode_write(). 5669 * Give this, we know that the caller already has write access to iloc->bh. 5670 */ 5671 int ext4_mark_iloc_dirty(handle_t *handle, 5672 struct inode *inode, struct ext4_iloc *iloc) 5673 { 5674 int err = 0; 5675 5676 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) { 5677 put_bh(iloc->bh); 5678 return -EIO; 5679 } 5680 ext4_fc_track_inode(handle, inode); 5681 5682 /* the do_update_inode consumes one bh->b_count */ 5683 get_bh(iloc->bh); 5684 5685 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5686 err = ext4_do_update_inode(handle, inode, iloc); 5687 put_bh(iloc->bh); 5688 return err; 5689 } 5690 5691 /* 5692 * On success, We end up with an outstanding reference count against 5693 * iloc->bh. This _must_ be cleaned up later. 5694 */ 5695 5696 int 5697 ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5698 struct ext4_iloc *iloc) 5699 { 5700 int err; 5701 5702 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) 5703 return -EIO; 5704 5705 err = ext4_get_inode_loc(inode, iloc); 5706 if (!err) { 5707 BUFFER_TRACE(iloc->bh, "get_write_access"); 5708 err = ext4_journal_get_write_access(handle, inode->i_sb, 5709 iloc->bh, EXT4_JTR_NONE); 5710 if (err) { 5711 brelse(iloc->bh); 5712 iloc->bh = NULL; 5713 } 5714 } 5715 ext4_std_error(inode->i_sb, err); 5716 return err; 5717 } 5718 5719 static int __ext4_expand_extra_isize(struct inode *inode, 5720 unsigned int new_extra_isize, 5721 struct ext4_iloc *iloc, 5722 handle_t *handle, int *no_expand) 5723 { 5724 struct ext4_inode *raw_inode; 5725 struct ext4_xattr_ibody_header *header; 5726 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb); 5727 struct ext4_inode_info *ei = EXT4_I(inode); 5728 int error; 5729 5730 /* this was checked at iget time, but double check for good measure */ 5731 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) || 5732 (ei->i_extra_isize & 3)) { 5733 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)", 5734 ei->i_extra_isize, 5735 EXT4_INODE_SIZE(inode->i_sb)); 5736 return -EFSCORRUPTED; 5737 } 5738 if ((new_extra_isize < ei->i_extra_isize) || 5739 (new_extra_isize < 4) || 5740 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE)) 5741 return -EINVAL; /* Should never happen */ 5742 5743 raw_inode = ext4_raw_inode(iloc); 5744 5745 header = IHDR(inode, raw_inode); 5746 5747 /* No extended attributes present */ 5748 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5749 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5750 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE + 5751 EXT4_I(inode)->i_extra_isize, 0, 5752 new_extra_isize - EXT4_I(inode)->i_extra_isize); 5753 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5754 return 0; 5755 } 5756 5757 /* 5758 * We may need to allocate external xattr block so we need quotas 5759 * initialized. Here we can be called with various locks held so we 5760 * cannot affort to initialize quotas ourselves. So just bail. 5761 */ 5762 if (dquot_initialize_needed(inode)) 5763 return -EAGAIN; 5764 5765 /* try to expand with EAs present */ 5766 error = ext4_expand_extra_isize_ea(inode, new_extra_isize, 5767 raw_inode, handle); 5768 if (error) { 5769 /* 5770 * Inode size expansion failed; don't try again 5771 */ 5772 *no_expand = 1; 5773 } 5774 5775 return error; 5776 } 5777 5778 /* 5779 * Expand an inode by new_extra_isize bytes. 5780 * Returns 0 on success or negative error number on failure. 5781 */ 5782 static int ext4_try_to_expand_extra_isize(struct inode *inode, 5783 unsigned int new_extra_isize, 5784 struct ext4_iloc iloc, 5785 handle_t *handle) 5786 { 5787 int no_expand; 5788 int error; 5789 5790 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) 5791 return -EOVERFLOW; 5792 5793 /* 5794 * In nojournal mode, we can immediately attempt to expand 5795 * the inode. When journaled, we first need to obtain extra 5796 * buffer credits since we may write into the EA block 5797 * with this same handle. If journal_extend fails, then it will 5798 * only result in a minor loss of functionality for that inode. 5799 * If this is felt to be critical, then e2fsck should be run to 5800 * force a large enough s_min_extra_isize. 5801 */ 5802 if (ext4_journal_extend(handle, 5803 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0) 5804 return -ENOSPC; 5805 5806 if (ext4_write_trylock_xattr(inode, &no_expand) == 0) 5807 return -EBUSY; 5808 5809 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc, 5810 handle, &no_expand); 5811 ext4_write_unlock_xattr(inode, &no_expand); 5812 5813 return error; 5814 } 5815 5816 int ext4_expand_extra_isize(struct inode *inode, 5817 unsigned int new_extra_isize, 5818 struct ext4_iloc *iloc) 5819 { 5820 handle_t *handle; 5821 int no_expand; 5822 int error, rc; 5823 5824 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5825 brelse(iloc->bh); 5826 return -EOVERFLOW; 5827 } 5828 5829 handle = ext4_journal_start(inode, EXT4_HT_INODE, 5830 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)); 5831 if (IS_ERR(handle)) { 5832 error = PTR_ERR(handle); 5833 brelse(iloc->bh); 5834 return error; 5835 } 5836 5837 ext4_write_lock_xattr(inode, &no_expand); 5838 5839 BUFFER_TRACE(iloc->bh, "get_write_access"); 5840 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh, 5841 EXT4_JTR_NONE); 5842 if (error) { 5843 brelse(iloc->bh); 5844 goto out_unlock; 5845 } 5846 5847 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc, 5848 handle, &no_expand); 5849 5850 rc = ext4_mark_iloc_dirty(handle, inode, iloc); 5851 if (!error) 5852 error = rc; 5853 5854 out_unlock: 5855 ext4_write_unlock_xattr(inode, &no_expand); 5856 ext4_journal_stop(handle); 5857 return error; 5858 } 5859 5860 /* 5861 * What we do here is to mark the in-core inode as clean with respect to inode 5862 * dirtiness (it may still be data-dirty). 5863 * This means that the in-core inode may be reaped by prune_icache 5864 * without having to perform any I/O. This is a very good thing, 5865 * because *any* task may call prune_icache - even ones which 5866 * have a transaction open against a different journal. 5867 * 5868 * Is this cheating? Not really. Sure, we haven't written the 5869 * inode out, but prune_icache isn't a user-visible syncing function. 5870 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5871 * we start and wait on commits. 5872 */ 5873 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode, 5874 const char *func, unsigned int line) 5875 { 5876 struct ext4_iloc iloc; 5877 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5878 int err; 5879 5880 might_sleep(); 5881 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5882 err = ext4_reserve_inode_write(handle, inode, &iloc); 5883 if (err) 5884 goto out; 5885 5886 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize) 5887 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize, 5888 iloc, handle); 5889 5890 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5891 out: 5892 if (unlikely(err)) 5893 ext4_error_inode_err(inode, func, line, 0, err, 5894 "mark_inode_dirty error"); 5895 return err; 5896 } 5897 5898 /* 5899 * ext4_dirty_inode() is called from __mark_inode_dirty() 5900 * 5901 * We're really interested in the case where a file is being extended. 5902 * i_size has been changed by generic_commit_write() and we thus need 5903 * to include the updated inode in the current transaction. 5904 * 5905 * Also, dquot_alloc_block() will always dirty the inode when blocks 5906 * are allocated to the file. 5907 * 5908 * If the inode is marked synchronous, we don't honour that here - doing 5909 * so would cause a commit on atime updates, which we don't bother doing. 5910 * We handle synchronous inodes at the highest possible level. 5911 */ 5912 void ext4_dirty_inode(struct inode *inode, int flags) 5913 { 5914 handle_t *handle; 5915 5916 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5917 if (IS_ERR(handle)) 5918 return; 5919 ext4_mark_inode_dirty(handle, inode); 5920 ext4_journal_stop(handle); 5921 } 5922 5923 int ext4_change_inode_journal_flag(struct inode *inode, int val) 5924 { 5925 journal_t *journal; 5926 handle_t *handle; 5927 int err; 5928 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5929 5930 /* 5931 * We have to be very careful here: changing a data block's 5932 * journaling status dynamically is dangerous. If we write a 5933 * data block to the journal, change the status and then delete 5934 * that block, we risk forgetting to revoke the old log record 5935 * from the journal and so a subsequent replay can corrupt data. 5936 * So, first we make sure that the journal is empty and that 5937 * nobody is changing anything. 5938 */ 5939 5940 journal = EXT4_JOURNAL(inode); 5941 if (!journal) 5942 return 0; 5943 if (is_journal_aborted(journal)) 5944 return -EROFS; 5945 5946 /* Wait for all existing dio workers */ 5947 inode_dio_wait(inode); 5948 5949 /* 5950 * Before flushing the journal and switching inode's aops, we have 5951 * to flush all dirty data the inode has. There can be outstanding 5952 * delayed allocations, there can be unwritten extents created by 5953 * fallocate or buffered writes in dioread_nolock mode covered by 5954 * dirty data which can be converted only after flushing the dirty 5955 * data (and journalled aops don't know how to handle these cases). 5956 */ 5957 if (val) { 5958 filemap_invalidate_lock(inode->i_mapping); 5959 err = filemap_write_and_wait(inode->i_mapping); 5960 if (err < 0) { 5961 filemap_invalidate_unlock(inode->i_mapping); 5962 return err; 5963 } 5964 } 5965 5966 percpu_down_write(&sbi->s_writepages_rwsem); 5967 jbd2_journal_lock_updates(journal); 5968 5969 /* 5970 * OK, there are no updates running now, and all cached data is 5971 * synced to disk. We are now in a completely consistent state 5972 * which doesn't have anything in the journal, and we know that 5973 * no filesystem updates are running, so it is safe to modify 5974 * the inode's in-core data-journaling state flag now. 5975 */ 5976 5977 if (val) 5978 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5979 else { 5980 err = jbd2_journal_flush(journal, 0); 5981 if (err < 0) { 5982 jbd2_journal_unlock_updates(journal); 5983 percpu_up_write(&sbi->s_writepages_rwsem); 5984 return err; 5985 } 5986 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5987 } 5988 ext4_set_aops(inode); 5989 5990 jbd2_journal_unlock_updates(journal); 5991 percpu_up_write(&sbi->s_writepages_rwsem); 5992 5993 if (val) 5994 filemap_invalidate_unlock(inode->i_mapping); 5995 5996 /* Finally we can mark the inode as dirty. */ 5997 5998 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5999 if (IS_ERR(handle)) 6000 return PTR_ERR(handle); 6001 6002 ext4_fc_mark_ineligible(inode->i_sb, 6003 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle); 6004 err = ext4_mark_inode_dirty(handle, inode); 6005 ext4_handle_sync(handle); 6006 ext4_journal_stop(handle); 6007 ext4_std_error(inode->i_sb, err); 6008 6009 return err; 6010 } 6011 6012 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode, 6013 struct buffer_head *bh) 6014 { 6015 return !buffer_mapped(bh); 6016 } 6017 6018 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf) 6019 { 6020 struct vm_area_struct *vma = vmf->vma; 6021 struct folio *folio = page_folio(vmf->page); 6022 loff_t size; 6023 unsigned long len; 6024 int err; 6025 vm_fault_t ret; 6026 struct file *file = vma->vm_file; 6027 struct inode *inode = file_inode(file); 6028 struct address_space *mapping = inode->i_mapping; 6029 handle_t *handle; 6030 get_block_t *get_block; 6031 int retries = 0; 6032 6033 if (unlikely(IS_IMMUTABLE(inode))) 6034 return VM_FAULT_SIGBUS; 6035 6036 sb_start_pagefault(inode->i_sb); 6037 file_update_time(vma->vm_file); 6038 6039 filemap_invalidate_lock_shared(mapping); 6040 6041 err = ext4_convert_inline_data(inode); 6042 if (err) 6043 goto out_ret; 6044 6045 /* 6046 * On data journalling we skip straight to the transaction handle: 6047 * there's no delalloc; page truncated will be checked later; the 6048 * early return w/ all buffers mapped (calculates size/len) can't 6049 * be used; and there's no dioread_nolock, so only ext4_get_block. 6050 */ 6051 if (ext4_should_journal_data(inode)) 6052 goto retry_alloc; 6053 6054 /* Delalloc case is easy... */ 6055 if (test_opt(inode->i_sb, DELALLOC) && 6056 !ext4_nonda_switch(inode->i_sb)) { 6057 do { 6058 err = block_page_mkwrite(vma, vmf, 6059 ext4_da_get_block_prep); 6060 } while (err == -ENOSPC && 6061 ext4_should_retry_alloc(inode->i_sb, &retries)); 6062 goto out_ret; 6063 } 6064 6065 folio_lock(folio); 6066 size = i_size_read(inode); 6067 /* Page got truncated from under us? */ 6068 if (folio->mapping != mapping || folio_pos(folio) > size) { 6069 folio_unlock(folio); 6070 ret = VM_FAULT_NOPAGE; 6071 goto out; 6072 } 6073 6074 len = folio_size(folio); 6075 if (folio_pos(folio) + len > size) 6076 len = size - folio_pos(folio); 6077 /* 6078 * Return if we have all the buffers mapped. This avoids the need to do 6079 * journal_start/journal_stop which can block and take a long time 6080 * 6081 * This cannot be done for data journalling, as we have to add the 6082 * inode to the transaction's list to writeprotect pages on commit. 6083 */ 6084 if (folio_buffers(folio)) { 6085 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio), 6086 0, len, NULL, 6087 ext4_bh_unmapped)) { 6088 /* Wait so that we don't change page under IO */ 6089 folio_wait_stable(folio); 6090 ret = VM_FAULT_LOCKED; 6091 goto out; 6092 } 6093 } 6094 folio_unlock(folio); 6095 /* OK, we need to fill the hole... */ 6096 if (ext4_should_dioread_nolock(inode)) 6097 get_block = ext4_get_block_unwritten; 6098 else 6099 get_block = ext4_get_block; 6100 retry_alloc: 6101 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 6102 ext4_writepage_trans_blocks(inode)); 6103 if (IS_ERR(handle)) { 6104 ret = VM_FAULT_SIGBUS; 6105 goto out; 6106 } 6107 /* 6108 * Data journalling can't use block_page_mkwrite() because it 6109 * will set_buffer_dirty() before do_journal_get_write_access() 6110 * thus might hit warning messages for dirty metadata buffers. 6111 */ 6112 if (!ext4_should_journal_data(inode)) { 6113 err = block_page_mkwrite(vma, vmf, get_block); 6114 } else { 6115 folio_lock(folio); 6116 size = i_size_read(inode); 6117 /* Page got truncated from under us? */ 6118 if (folio->mapping != mapping || folio_pos(folio) > size) { 6119 ret = VM_FAULT_NOPAGE; 6120 goto out_error; 6121 } 6122 6123 len = folio_size(folio); 6124 if (folio_pos(folio) + len > size) 6125 len = size - folio_pos(folio); 6126 6127 err = __block_write_begin(&folio->page, 0, len, ext4_get_block); 6128 if (!err) { 6129 ret = VM_FAULT_SIGBUS; 6130 if (ext4_journal_page_buffers(handle, &folio->page, len)) 6131 goto out_error; 6132 } else { 6133 folio_unlock(folio); 6134 } 6135 } 6136 ext4_journal_stop(handle); 6137 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 6138 goto retry_alloc; 6139 out_ret: 6140 ret = block_page_mkwrite_return(err); 6141 out: 6142 filemap_invalidate_unlock_shared(mapping); 6143 sb_end_pagefault(inode->i_sb); 6144 return ret; 6145 out_error: 6146 folio_unlock(folio); 6147 ext4_journal_stop(handle); 6148 goto out; 6149 } 6150