xref: /openbmc/linux/fs/ext4/inode.c (revision ec2da07c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
43 
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
48 
49 #include <trace/events/ext4.h>
50 
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52 
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 			      struct ext4_inode_info *ei)
55 {
56 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 	__u32 csum;
58 	__u16 dummy_csum = 0;
59 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 	unsigned int csum_size = sizeof(dummy_csum);
61 
62 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 	offset += csum_size;
65 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
67 
68 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 		offset = offsetof(struct ext4_inode, i_checksum_hi);
70 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 				   EXT4_GOOD_OLD_INODE_SIZE,
72 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
73 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 					   csum_size);
76 			offset += csum_size;
77 		}
78 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
80 	}
81 
82 	return csum;
83 }
84 
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 				  struct ext4_inode_info *ei)
87 {
88 	__u32 provided, calculated;
89 
90 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 	    cpu_to_le32(EXT4_OS_LINUX) ||
92 	    !ext4_has_metadata_csum(inode->i_sb))
93 		return 1;
94 
95 	provided = le16_to_cpu(raw->i_checksum_lo);
96 	calculated = ext4_inode_csum(inode, raw, ei);
97 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 	else
101 		calculated &= 0xFFFF;
102 
103 	return provided == calculated;
104 }
105 
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 				struct ext4_inode_info *ei)
108 {
109 	__u32 csum;
110 
111 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 	    cpu_to_le32(EXT4_OS_LINUX) ||
113 	    !ext4_has_metadata_csum(inode->i_sb))
114 		return;
115 
116 	csum = ext4_inode_csum(inode, raw, ei);
117 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121 }
122 
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 					      loff_t new_size)
125 {
126 	trace_ext4_begin_ordered_truncate(inode, new_size);
127 	/*
128 	 * If jinode is zero, then we never opened the file for
129 	 * writing, so there's no need to call
130 	 * jbd2_journal_begin_ordered_truncate() since there's no
131 	 * outstanding writes we need to flush.
132 	 */
133 	if (!EXT4_I(inode)->jinode)
134 		return 0;
135 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 						   EXT4_I(inode)->jinode,
137 						   new_size);
138 }
139 
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 				unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 				  int pextents);
146 
147 /*
148  * Test whether an inode is a fast symlink.
149  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150  */
151 int ext4_inode_is_fast_symlink(struct inode *inode)
152 {
153 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156 
157 		if (ext4_has_inline_data(inode))
158 			return 0;
159 
160 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 	}
162 	return S_ISLNK(inode->i_mode) && inode->i_size &&
163 	       (inode->i_size < EXT4_N_BLOCKS * 4);
164 }
165 
166 /*
167  * Restart the transaction associated with *handle.  This does a commit,
168  * so before we call here everything must be consistently dirtied against
169  * this transaction.
170  */
171 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 				 int nblocks)
173 {
174 	int ret;
175 
176 	/*
177 	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
178 	 * moment, get_block can be called only for blocks inside i_size since
179 	 * page cache has been already dropped and writes are blocked by
180 	 * i_mutex. So we can safely drop the i_data_sem here.
181 	 */
182 	BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 	jbd_debug(2, "restarting handle %p\n", handle);
184 	up_write(&EXT4_I(inode)->i_data_sem);
185 	ret = ext4_journal_restart(handle, nblocks);
186 	down_write(&EXT4_I(inode)->i_data_sem);
187 	ext4_discard_preallocations(inode);
188 
189 	return ret;
190 }
191 
192 /*
193  * Called at the last iput() if i_nlink is zero.
194  */
195 void ext4_evict_inode(struct inode *inode)
196 {
197 	handle_t *handle;
198 	int err;
199 	int extra_credits = 3;
200 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
201 
202 	trace_ext4_evict_inode(inode);
203 
204 	if (inode->i_nlink) {
205 		/*
206 		 * When journalling data dirty buffers are tracked only in the
207 		 * journal. So although mm thinks everything is clean and
208 		 * ready for reaping the inode might still have some pages to
209 		 * write in the running transaction or waiting to be
210 		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 		 * (via truncate_inode_pages()) to discard these buffers can
212 		 * cause data loss. Also even if we did not discard these
213 		 * buffers, we would have no way to find them after the inode
214 		 * is reaped and thus user could see stale data if he tries to
215 		 * read them before the transaction is checkpointed. So be
216 		 * careful and force everything to disk here... We use
217 		 * ei->i_datasync_tid to store the newest transaction
218 		 * containing inode's data.
219 		 *
220 		 * Note that directories do not have this problem because they
221 		 * don't use page cache.
222 		 */
223 		if (inode->i_ino != EXT4_JOURNAL_INO &&
224 		    ext4_should_journal_data(inode) &&
225 		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 		    inode->i_data.nrpages) {
227 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229 
230 			jbd2_complete_transaction(journal, commit_tid);
231 			filemap_write_and_wait(&inode->i_data);
232 		}
233 		truncate_inode_pages_final(&inode->i_data);
234 
235 		goto no_delete;
236 	}
237 
238 	if (is_bad_inode(inode))
239 		goto no_delete;
240 	dquot_initialize(inode);
241 
242 	if (ext4_should_order_data(inode))
243 		ext4_begin_ordered_truncate(inode, 0);
244 	truncate_inode_pages_final(&inode->i_data);
245 
246 	/*
247 	 * Protect us against freezing - iput() caller didn't have to have any
248 	 * protection against it
249 	 */
250 	sb_start_intwrite(inode->i_sb);
251 
252 	if (!IS_NOQUOTA(inode))
253 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254 
255 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 				 ext4_blocks_for_truncate(inode)+extra_credits);
257 	if (IS_ERR(handle)) {
258 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
259 		/*
260 		 * If we're going to skip the normal cleanup, we still need to
261 		 * make sure that the in-core orphan linked list is properly
262 		 * cleaned up.
263 		 */
264 		ext4_orphan_del(NULL, inode);
265 		sb_end_intwrite(inode->i_sb);
266 		goto no_delete;
267 	}
268 
269 	if (IS_SYNC(inode))
270 		ext4_handle_sync(handle);
271 
272 	/*
273 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 	 * special handling of symlinks here because i_size is used to
275 	 * determine whether ext4_inode_info->i_data contains symlink data or
276 	 * block mappings. Setting i_size to 0 will remove its fast symlink
277 	 * status. Erase i_data so that it becomes a valid empty block map.
278 	 */
279 	if (ext4_inode_is_fast_symlink(inode))
280 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 	inode->i_size = 0;
282 	err = ext4_mark_inode_dirty(handle, inode);
283 	if (err) {
284 		ext4_warning(inode->i_sb,
285 			     "couldn't mark inode dirty (err %d)", err);
286 		goto stop_handle;
287 	}
288 	if (inode->i_blocks) {
289 		err = ext4_truncate(inode);
290 		if (err) {
291 			ext4_error(inode->i_sb,
292 				   "couldn't truncate inode %lu (err %d)",
293 				   inode->i_ino, err);
294 			goto stop_handle;
295 		}
296 	}
297 
298 	/* Remove xattr references. */
299 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 				      extra_credits);
301 	if (err) {
302 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303 stop_handle:
304 		ext4_journal_stop(handle);
305 		ext4_orphan_del(NULL, inode);
306 		sb_end_intwrite(inode->i_sb);
307 		ext4_xattr_inode_array_free(ea_inode_array);
308 		goto no_delete;
309 	}
310 
311 	/*
312 	 * Kill off the orphan record which ext4_truncate created.
313 	 * AKPM: I think this can be inside the above `if'.
314 	 * Note that ext4_orphan_del() has to be able to cope with the
315 	 * deletion of a non-existent orphan - this is because we don't
316 	 * know if ext4_truncate() actually created an orphan record.
317 	 * (Well, we could do this if we need to, but heck - it works)
318 	 */
319 	ext4_orphan_del(handle, inode);
320 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
321 
322 	/*
323 	 * One subtle ordering requirement: if anything has gone wrong
324 	 * (transaction abort, IO errors, whatever), then we can still
325 	 * do these next steps (the fs will already have been marked as
326 	 * having errors), but we can't free the inode if the mark_dirty
327 	 * fails.
328 	 */
329 	if (ext4_mark_inode_dirty(handle, inode))
330 		/* If that failed, just do the required in-core inode clear. */
331 		ext4_clear_inode(inode);
332 	else
333 		ext4_free_inode(handle, inode);
334 	ext4_journal_stop(handle);
335 	sb_end_intwrite(inode->i_sb);
336 	ext4_xattr_inode_array_free(ea_inode_array);
337 	return;
338 no_delete:
339 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
340 }
341 
342 #ifdef CONFIG_QUOTA
343 qsize_t *ext4_get_reserved_space(struct inode *inode)
344 {
345 	return &EXT4_I(inode)->i_reserved_quota;
346 }
347 #endif
348 
349 /*
350  * Called with i_data_sem down, which is important since we can call
351  * ext4_discard_preallocations() from here.
352  */
353 void ext4_da_update_reserve_space(struct inode *inode,
354 					int used, int quota_claim)
355 {
356 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357 	struct ext4_inode_info *ei = EXT4_I(inode);
358 
359 	spin_lock(&ei->i_block_reservation_lock);
360 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361 	if (unlikely(used > ei->i_reserved_data_blocks)) {
362 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363 			 "with only %d reserved data blocks",
364 			 __func__, inode->i_ino, used,
365 			 ei->i_reserved_data_blocks);
366 		WARN_ON(1);
367 		used = ei->i_reserved_data_blocks;
368 	}
369 
370 	/* Update per-inode reservations */
371 	ei->i_reserved_data_blocks -= used;
372 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373 
374 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375 
376 	/* Update quota subsystem for data blocks */
377 	if (quota_claim)
378 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
379 	else {
380 		/*
381 		 * We did fallocate with an offset that is already delayed
382 		 * allocated. So on delayed allocated writeback we should
383 		 * not re-claim the quota for fallocated blocks.
384 		 */
385 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386 	}
387 
388 	/*
389 	 * If we have done all the pending block allocations and if
390 	 * there aren't any writers on the inode, we can discard the
391 	 * inode's preallocations.
392 	 */
393 	if ((ei->i_reserved_data_blocks == 0) &&
394 	    !inode_is_open_for_write(inode))
395 		ext4_discard_preallocations(inode);
396 }
397 
398 static int __check_block_validity(struct inode *inode, const char *func,
399 				unsigned int line,
400 				struct ext4_map_blocks *map)
401 {
402 	if (ext4_has_feature_journal(inode->i_sb) &&
403 	    (inode->i_ino ==
404 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
405 		return 0;
406 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
407 				   map->m_len)) {
408 		ext4_error_inode(inode, func, line, map->m_pblk,
409 				 "lblock %lu mapped to illegal pblock %llu "
410 				 "(length %d)", (unsigned long) map->m_lblk,
411 				 map->m_pblk, map->m_len);
412 		return -EFSCORRUPTED;
413 	}
414 	return 0;
415 }
416 
417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418 		       ext4_lblk_t len)
419 {
420 	int ret;
421 
422 	if (IS_ENCRYPTED(inode))
423 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
424 
425 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426 	if (ret > 0)
427 		ret = 0;
428 
429 	return ret;
430 }
431 
432 #define check_block_validity(inode, map)	\
433 	__check_block_validity((inode), __func__, __LINE__, (map))
434 
435 #ifdef ES_AGGRESSIVE_TEST
436 static void ext4_map_blocks_es_recheck(handle_t *handle,
437 				       struct inode *inode,
438 				       struct ext4_map_blocks *es_map,
439 				       struct ext4_map_blocks *map,
440 				       int flags)
441 {
442 	int retval;
443 
444 	map->m_flags = 0;
445 	/*
446 	 * There is a race window that the result is not the same.
447 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
448 	 * is that we lookup a block mapping in extent status tree with
449 	 * out taking i_data_sem.  So at the time the unwritten extent
450 	 * could be converted.
451 	 */
452 	down_read(&EXT4_I(inode)->i_data_sem);
453 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
455 					     EXT4_GET_BLOCKS_KEEP_SIZE);
456 	} else {
457 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
458 					     EXT4_GET_BLOCKS_KEEP_SIZE);
459 	}
460 	up_read((&EXT4_I(inode)->i_data_sem));
461 
462 	/*
463 	 * We don't check m_len because extent will be collpased in status
464 	 * tree.  So the m_len might not equal.
465 	 */
466 	if (es_map->m_lblk != map->m_lblk ||
467 	    es_map->m_flags != map->m_flags ||
468 	    es_map->m_pblk != map->m_pblk) {
469 		printk("ES cache assertion failed for inode: %lu "
470 		       "es_cached ex [%d/%d/%llu/%x] != "
471 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
473 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 		       map->m_len, map->m_pblk, map->m_flags,
475 		       retval, flags);
476 	}
477 }
478 #endif /* ES_AGGRESSIVE_TEST */
479 
480 /*
481  * The ext4_map_blocks() function tries to look up the requested blocks,
482  * and returns if the blocks are already mapped.
483  *
484  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485  * and store the allocated blocks in the result buffer head and mark it
486  * mapped.
487  *
488  * If file type is extents based, it will call ext4_ext_map_blocks(),
489  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490  * based files
491  *
492  * On success, it returns the number of blocks being mapped or allocated.  if
493  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495  *
496  * It returns 0 if plain look up failed (blocks have not been allocated), in
497  * that case, @map is returned as unmapped but we still do fill map->m_len to
498  * indicate the length of a hole starting at map->m_lblk.
499  *
500  * It returns the error in case of allocation failure.
501  */
502 int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 		    struct ext4_map_blocks *map, int flags)
504 {
505 	struct extent_status es;
506 	int retval;
507 	int ret = 0;
508 #ifdef ES_AGGRESSIVE_TEST
509 	struct ext4_map_blocks orig_map;
510 
511 	memcpy(&orig_map, map, sizeof(*map));
512 #endif
513 
514 	map->m_flags = 0;
515 	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516 		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
517 		  (unsigned long) map->m_lblk);
518 
519 	/*
520 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
521 	 */
522 	if (unlikely(map->m_len > INT_MAX))
523 		map->m_len = INT_MAX;
524 
525 	/* We can handle the block number less than EXT_MAX_BLOCKS */
526 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527 		return -EFSCORRUPTED;
528 
529 	/* Lookup extent status tree firstly */
530 	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
531 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532 			map->m_pblk = ext4_es_pblock(&es) +
533 					map->m_lblk - es.es_lblk;
534 			map->m_flags |= ext4_es_is_written(&es) ?
535 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536 			retval = es.es_len - (map->m_lblk - es.es_lblk);
537 			if (retval > map->m_len)
538 				retval = map->m_len;
539 			map->m_len = retval;
540 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 			map->m_pblk = 0;
542 			retval = es.es_len - (map->m_lblk - es.es_lblk);
543 			if (retval > map->m_len)
544 				retval = map->m_len;
545 			map->m_len = retval;
546 			retval = 0;
547 		} else {
548 			BUG();
549 		}
550 #ifdef ES_AGGRESSIVE_TEST
551 		ext4_map_blocks_es_recheck(handle, inode, map,
552 					   &orig_map, flags);
553 #endif
554 		goto found;
555 	}
556 
557 	/*
558 	 * Try to see if we can get the block without requesting a new
559 	 * file system block.
560 	 */
561 	down_read(&EXT4_I(inode)->i_data_sem);
562 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563 		retval = ext4_ext_map_blocks(handle, inode, map, flags &
564 					     EXT4_GET_BLOCKS_KEEP_SIZE);
565 	} else {
566 		retval = ext4_ind_map_blocks(handle, inode, map, flags &
567 					     EXT4_GET_BLOCKS_KEEP_SIZE);
568 	}
569 	if (retval > 0) {
570 		unsigned int status;
571 
572 		if (unlikely(retval != map->m_len)) {
573 			ext4_warning(inode->i_sb,
574 				     "ES len assertion failed for inode "
575 				     "%lu: retval %d != map->m_len %d",
576 				     inode->i_ino, retval, map->m_len);
577 			WARN_ON(1);
578 		}
579 
580 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
581 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
582 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
583 		    !(status & EXTENT_STATUS_WRITTEN) &&
584 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
585 				       map->m_lblk + map->m_len - 1))
586 			status |= EXTENT_STATUS_DELAYED;
587 		ret = ext4_es_insert_extent(inode, map->m_lblk,
588 					    map->m_len, map->m_pblk, status);
589 		if (ret < 0)
590 			retval = ret;
591 	}
592 	up_read((&EXT4_I(inode)->i_data_sem));
593 
594 found:
595 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
596 		ret = check_block_validity(inode, map);
597 		if (ret != 0)
598 			return ret;
599 	}
600 
601 	/* If it is only a block(s) look up */
602 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
603 		return retval;
604 
605 	/*
606 	 * Returns if the blocks have already allocated
607 	 *
608 	 * Note that if blocks have been preallocated
609 	 * ext4_ext_get_block() returns the create = 0
610 	 * with buffer head unmapped.
611 	 */
612 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
613 		/*
614 		 * If we need to convert extent to unwritten
615 		 * we continue and do the actual work in
616 		 * ext4_ext_map_blocks()
617 		 */
618 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
619 			return retval;
620 
621 	/*
622 	 * Here we clear m_flags because after allocating an new extent,
623 	 * it will be set again.
624 	 */
625 	map->m_flags &= ~EXT4_MAP_FLAGS;
626 
627 	/*
628 	 * New blocks allocate and/or writing to unwritten extent
629 	 * will possibly result in updating i_data, so we take
630 	 * the write lock of i_data_sem, and call get_block()
631 	 * with create == 1 flag.
632 	 */
633 	down_write(&EXT4_I(inode)->i_data_sem);
634 
635 	/*
636 	 * We need to check for EXT4 here because migrate
637 	 * could have changed the inode type in between
638 	 */
639 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
640 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
641 	} else {
642 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
643 
644 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
645 			/*
646 			 * We allocated new blocks which will result in
647 			 * i_data's format changing.  Force the migrate
648 			 * to fail by clearing migrate flags
649 			 */
650 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
651 		}
652 
653 		/*
654 		 * Update reserved blocks/metadata blocks after successful
655 		 * block allocation which had been deferred till now. We don't
656 		 * support fallocate for non extent files. So we can update
657 		 * reserve space here.
658 		 */
659 		if ((retval > 0) &&
660 			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
661 			ext4_da_update_reserve_space(inode, retval, 1);
662 	}
663 
664 	if (retval > 0) {
665 		unsigned int status;
666 
667 		if (unlikely(retval != map->m_len)) {
668 			ext4_warning(inode->i_sb,
669 				     "ES len assertion failed for inode "
670 				     "%lu: retval %d != map->m_len %d",
671 				     inode->i_ino, retval, map->m_len);
672 			WARN_ON(1);
673 		}
674 
675 		/*
676 		 * We have to zeroout blocks before inserting them into extent
677 		 * status tree. Otherwise someone could look them up there and
678 		 * use them before they are really zeroed. We also have to
679 		 * unmap metadata before zeroing as otherwise writeback can
680 		 * overwrite zeros with stale data from block device.
681 		 */
682 		if (flags & EXT4_GET_BLOCKS_ZERO &&
683 		    map->m_flags & EXT4_MAP_MAPPED &&
684 		    map->m_flags & EXT4_MAP_NEW) {
685 			ret = ext4_issue_zeroout(inode, map->m_lblk,
686 						 map->m_pblk, map->m_len);
687 			if (ret) {
688 				retval = ret;
689 				goto out_sem;
690 			}
691 		}
692 
693 		/*
694 		 * If the extent has been zeroed out, we don't need to update
695 		 * extent status tree.
696 		 */
697 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
698 		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
699 			if (ext4_es_is_written(&es))
700 				goto out_sem;
701 		}
702 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
703 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
704 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
705 		    !(status & EXTENT_STATUS_WRITTEN) &&
706 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
707 				       map->m_lblk + map->m_len - 1))
708 			status |= EXTENT_STATUS_DELAYED;
709 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
710 					    map->m_pblk, status);
711 		if (ret < 0) {
712 			retval = ret;
713 			goto out_sem;
714 		}
715 	}
716 
717 out_sem:
718 	up_write((&EXT4_I(inode)->i_data_sem));
719 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
720 		ret = check_block_validity(inode, map);
721 		if (ret != 0)
722 			return ret;
723 
724 		/*
725 		 * Inodes with freshly allocated blocks where contents will be
726 		 * visible after transaction commit must be on transaction's
727 		 * ordered data list.
728 		 */
729 		if (map->m_flags & EXT4_MAP_NEW &&
730 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
731 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
732 		    !ext4_is_quota_file(inode) &&
733 		    ext4_should_order_data(inode)) {
734 			loff_t start_byte =
735 				(loff_t)map->m_lblk << inode->i_blkbits;
736 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
737 
738 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
739 				ret = ext4_jbd2_inode_add_wait(handle, inode,
740 						start_byte, length);
741 			else
742 				ret = ext4_jbd2_inode_add_write(handle, inode,
743 						start_byte, length);
744 			if (ret)
745 				return ret;
746 		}
747 	}
748 	return retval;
749 }
750 
751 /*
752  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
753  * we have to be careful as someone else may be manipulating b_state as well.
754  */
755 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
756 {
757 	unsigned long old_state;
758 	unsigned long new_state;
759 
760 	flags &= EXT4_MAP_FLAGS;
761 
762 	/* Dummy buffer_head? Set non-atomically. */
763 	if (!bh->b_page) {
764 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
765 		return;
766 	}
767 	/*
768 	 * Someone else may be modifying b_state. Be careful! This is ugly but
769 	 * once we get rid of using bh as a container for mapping information
770 	 * to pass to / from get_block functions, this can go away.
771 	 */
772 	do {
773 		old_state = READ_ONCE(bh->b_state);
774 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
775 	} while (unlikely(
776 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
777 }
778 
779 static int _ext4_get_block(struct inode *inode, sector_t iblock,
780 			   struct buffer_head *bh, int flags)
781 {
782 	struct ext4_map_blocks map;
783 	int ret = 0;
784 
785 	if (ext4_has_inline_data(inode))
786 		return -ERANGE;
787 
788 	map.m_lblk = iblock;
789 	map.m_len = bh->b_size >> inode->i_blkbits;
790 
791 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
792 			      flags);
793 	if (ret > 0) {
794 		map_bh(bh, inode->i_sb, map.m_pblk);
795 		ext4_update_bh_state(bh, map.m_flags);
796 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
797 		ret = 0;
798 	} else if (ret == 0) {
799 		/* hole case, need to fill in bh->b_size */
800 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
801 	}
802 	return ret;
803 }
804 
805 int ext4_get_block(struct inode *inode, sector_t iblock,
806 		   struct buffer_head *bh, int create)
807 {
808 	return _ext4_get_block(inode, iblock, bh,
809 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
810 }
811 
812 /*
813  * Get block function used when preparing for buffered write if we require
814  * creating an unwritten extent if blocks haven't been allocated.  The extent
815  * will be converted to written after the IO is complete.
816  */
817 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
818 			     struct buffer_head *bh_result, int create)
819 {
820 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
821 		   inode->i_ino, create);
822 	return _ext4_get_block(inode, iblock, bh_result,
823 			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
824 }
825 
826 /* Maximum number of blocks we map for direct IO at once. */
827 #define DIO_MAX_BLOCKS 4096
828 
829 /*
830  * Get blocks function for the cases that need to start a transaction -
831  * generally difference cases of direct IO and DAX IO. It also handles retries
832  * in case of ENOSPC.
833  */
834 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
835 				struct buffer_head *bh_result, int flags)
836 {
837 	int dio_credits;
838 	handle_t *handle;
839 	int retries = 0;
840 	int ret;
841 
842 	/* Trim mapping request to maximum we can map at once for DIO */
843 	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
844 		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
845 	dio_credits = ext4_chunk_trans_blocks(inode,
846 				      bh_result->b_size >> inode->i_blkbits);
847 retry:
848 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
849 	if (IS_ERR(handle))
850 		return PTR_ERR(handle);
851 
852 	ret = _ext4_get_block(inode, iblock, bh_result, flags);
853 	ext4_journal_stop(handle);
854 
855 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
856 		goto retry;
857 	return ret;
858 }
859 
860 /* Get block function for DIO reads and writes to inodes without extents */
861 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
862 		       struct buffer_head *bh, int create)
863 {
864 	/* We don't expect handle for direct IO */
865 	WARN_ON_ONCE(ext4_journal_current_handle());
866 
867 	if (!create)
868 		return _ext4_get_block(inode, iblock, bh, 0);
869 	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
870 }
871 
872 /*
873  * Get block function for AIO DIO writes when we create unwritten extent if
874  * blocks are not allocated yet. The extent will be converted to written
875  * after IO is complete.
876  */
877 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
878 		sector_t iblock, struct buffer_head *bh_result,	int create)
879 {
880 	int ret;
881 
882 	/* We don't expect handle for direct IO */
883 	WARN_ON_ONCE(ext4_journal_current_handle());
884 
885 	ret = ext4_get_block_trans(inode, iblock, bh_result,
886 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
887 
888 	/*
889 	 * When doing DIO using unwritten extents, we need io_end to convert
890 	 * unwritten extents to written on IO completion. We allocate io_end
891 	 * once we spot unwritten extent and store it in b_private. Generic
892 	 * DIO code keeps b_private set and furthermore passes the value to
893 	 * our completion callback in 'private' argument.
894 	 */
895 	if (!ret && buffer_unwritten(bh_result)) {
896 		if (!bh_result->b_private) {
897 			ext4_io_end_t *io_end;
898 
899 			io_end = ext4_init_io_end(inode, GFP_KERNEL);
900 			if (!io_end)
901 				return -ENOMEM;
902 			bh_result->b_private = io_end;
903 			ext4_set_io_unwritten_flag(inode, io_end);
904 		}
905 		set_buffer_defer_completion(bh_result);
906 	}
907 
908 	return ret;
909 }
910 
911 /*
912  * Get block function for non-AIO DIO writes when we create unwritten extent if
913  * blocks are not allocated yet. The extent will be converted to written
914  * after IO is complete by ext4_direct_IO_write().
915  */
916 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
917 		sector_t iblock, struct buffer_head *bh_result,	int create)
918 {
919 	int ret;
920 
921 	/* We don't expect handle for direct IO */
922 	WARN_ON_ONCE(ext4_journal_current_handle());
923 
924 	ret = ext4_get_block_trans(inode, iblock, bh_result,
925 				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
926 
927 	/*
928 	 * Mark inode as having pending DIO writes to unwritten extents.
929 	 * ext4_direct_IO_write() checks this flag and converts extents to
930 	 * written.
931 	 */
932 	if (!ret && buffer_unwritten(bh_result))
933 		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
934 
935 	return ret;
936 }
937 
938 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
939 		   struct buffer_head *bh_result, int create)
940 {
941 	int ret;
942 
943 	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
944 		   inode->i_ino, create);
945 	/* We don't expect handle for direct IO */
946 	WARN_ON_ONCE(ext4_journal_current_handle());
947 
948 	ret = _ext4_get_block(inode, iblock, bh_result, 0);
949 	/*
950 	 * Blocks should have been preallocated! ext4_file_write_iter() checks
951 	 * that.
952 	 */
953 	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
954 
955 	return ret;
956 }
957 
958 
959 /*
960  * `handle' can be NULL if create is zero
961  */
962 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
963 				ext4_lblk_t block, int map_flags)
964 {
965 	struct ext4_map_blocks map;
966 	struct buffer_head *bh;
967 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
968 	int err;
969 
970 	J_ASSERT(handle != NULL || create == 0);
971 
972 	map.m_lblk = block;
973 	map.m_len = 1;
974 	err = ext4_map_blocks(handle, inode, &map, map_flags);
975 
976 	if (err == 0)
977 		return create ? ERR_PTR(-ENOSPC) : NULL;
978 	if (err < 0)
979 		return ERR_PTR(err);
980 
981 	bh = sb_getblk(inode->i_sb, map.m_pblk);
982 	if (unlikely(!bh))
983 		return ERR_PTR(-ENOMEM);
984 	if (map.m_flags & EXT4_MAP_NEW) {
985 		J_ASSERT(create != 0);
986 		J_ASSERT(handle != NULL);
987 
988 		/*
989 		 * Now that we do not always journal data, we should
990 		 * keep in mind whether this should always journal the
991 		 * new buffer as metadata.  For now, regular file
992 		 * writes use ext4_get_block instead, so it's not a
993 		 * problem.
994 		 */
995 		lock_buffer(bh);
996 		BUFFER_TRACE(bh, "call get_create_access");
997 		err = ext4_journal_get_create_access(handle, bh);
998 		if (unlikely(err)) {
999 			unlock_buffer(bh);
1000 			goto errout;
1001 		}
1002 		if (!buffer_uptodate(bh)) {
1003 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1004 			set_buffer_uptodate(bh);
1005 		}
1006 		unlock_buffer(bh);
1007 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1008 		err = ext4_handle_dirty_metadata(handle, inode, bh);
1009 		if (unlikely(err))
1010 			goto errout;
1011 	} else
1012 		BUFFER_TRACE(bh, "not a new buffer");
1013 	return bh;
1014 errout:
1015 	brelse(bh);
1016 	return ERR_PTR(err);
1017 }
1018 
1019 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1020 			       ext4_lblk_t block, int map_flags)
1021 {
1022 	struct buffer_head *bh;
1023 
1024 	bh = ext4_getblk(handle, inode, block, map_flags);
1025 	if (IS_ERR(bh))
1026 		return bh;
1027 	if (!bh || buffer_uptodate(bh))
1028 		return bh;
1029 	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1030 	wait_on_buffer(bh);
1031 	if (buffer_uptodate(bh))
1032 		return bh;
1033 	put_bh(bh);
1034 	return ERR_PTR(-EIO);
1035 }
1036 
1037 /* Read a contiguous batch of blocks. */
1038 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1039 		     bool wait, struct buffer_head **bhs)
1040 {
1041 	int i, err;
1042 
1043 	for (i = 0; i < bh_count; i++) {
1044 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1045 		if (IS_ERR(bhs[i])) {
1046 			err = PTR_ERR(bhs[i]);
1047 			bh_count = i;
1048 			goto out_brelse;
1049 		}
1050 	}
1051 
1052 	for (i = 0; i < bh_count; i++)
1053 		/* Note that NULL bhs[i] is valid because of holes. */
1054 		if (bhs[i] && !buffer_uptodate(bhs[i]))
1055 			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1056 				    &bhs[i]);
1057 
1058 	if (!wait)
1059 		return 0;
1060 
1061 	for (i = 0; i < bh_count; i++)
1062 		if (bhs[i])
1063 			wait_on_buffer(bhs[i]);
1064 
1065 	for (i = 0; i < bh_count; i++) {
1066 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1067 			err = -EIO;
1068 			goto out_brelse;
1069 		}
1070 	}
1071 	return 0;
1072 
1073 out_brelse:
1074 	for (i = 0; i < bh_count; i++) {
1075 		brelse(bhs[i]);
1076 		bhs[i] = NULL;
1077 	}
1078 	return err;
1079 }
1080 
1081 int ext4_walk_page_buffers(handle_t *handle,
1082 			   struct buffer_head *head,
1083 			   unsigned from,
1084 			   unsigned to,
1085 			   int *partial,
1086 			   int (*fn)(handle_t *handle,
1087 				     struct buffer_head *bh))
1088 {
1089 	struct buffer_head *bh;
1090 	unsigned block_start, block_end;
1091 	unsigned blocksize = head->b_size;
1092 	int err, ret = 0;
1093 	struct buffer_head *next;
1094 
1095 	for (bh = head, block_start = 0;
1096 	     ret == 0 && (bh != head || !block_start);
1097 	     block_start = block_end, bh = next) {
1098 		next = bh->b_this_page;
1099 		block_end = block_start + blocksize;
1100 		if (block_end <= from || block_start >= to) {
1101 			if (partial && !buffer_uptodate(bh))
1102 				*partial = 1;
1103 			continue;
1104 		}
1105 		err = (*fn)(handle, bh);
1106 		if (!ret)
1107 			ret = err;
1108 	}
1109 	return ret;
1110 }
1111 
1112 /*
1113  * To preserve ordering, it is essential that the hole instantiation and
1114  * the data write be encapsulated in a single transaction.  We cannot
1115  * close off a transaction and start a new one between the ext4_get_block()
1116  * and the commit_write().  So doing the jbd2_journal_start at the start of
1117  * prepare_write() is the right place.
1118  *
1119  * Also, this function can nest inside ext4_writepage().  In that case, we
1120  * *know* that ext4_writepage() has generated enough buffer credits to do the
1121  * whole page.  So we won't block on the journal in that case, which is good,
1122  * because the caller may be PF_MEMALLOC.
1123  *
1124  * By accident, ext4 can be reentered when a transaction is open via
1125  * quota file writes.  If we were to commit the transaction while thus
1126  * reentered, there can be a deadlock - we would be holding a quota
1127  * lock, and the commit would never complete if another thread had a
1128  * transaction open and was blocking on the quota lock - a ranking
1129  * violation.
1130  *
1131  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1132  * will _not_ run commit under these circumstances because handle->h_ref
1133  * is elevated.  We'll still have enough credits for the tiny quotafile
1134  * write.
1135  */
1136 int do_journal_get_write_access(handle_t *handle,
1137 				struct buffer_head *bh)
1138 {
1139 	int dirty = buffer_dirty(bh);
1140 	int ret;
1141 
1142 	if (!buffer_mapped(bh) || buffer_freed(bh))
1143 		return 0;
1144 	/*
1145 	 * __block_write_begin() could have dirtied some buffers. Clean
1146 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1147 	 * otherwise about fs integrity issues. Setting of the dirty bit
1148 	 * by __block_write_begin() isn't a real problem here as we clear
1149 	 * the bit before releasing a page lock and thus writeback cannot
1150 	 * ever write the buffer.
1151 	 */
1152 	if (dirty)
1153 		clear_buffer_dirty(bh);
1154 	BUFFER_TRACE(bh, "get write access");
1155 	ret = ext4_journal_get_write_access(handle, bh);
1156 	if (!ret && dirty)
1157 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1158 	return ret;
1159 }
1160 
1161 #ifdef CONFIG_FS_ENCRYPTION
1162 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1163 				  get_block_t *get_block)
1164 {
1165 	unsigned from = pos & (PAGE_SIZE - 1);
1166 	unsigned to = from + len;
1167 	struct inode *inode = page->mapping->host;
1168 	unsigned block_start, block_end;
1169 	sector_t block;
1170 	int err = 0;
1171 	unsigned blocksize = inode->i_sb->s_blocksize;
1172 	unsigned bbits;
1173 	struct buffer_head *bh, *head, *wait[2];
1174 	int nr_wait = 0;
1175 	int i;
1176 
1177 	BUG_ON(!PageLocked(page));
1178 	BUG_ON(from > PAGE_SIZE);
1179 	BUG_ON(to > PAGE_SIZE);
1180 	BUG_ON(from > to);
1181 
1182 	if (!page_has_buffers(page))
1183 		create_empty_buffers(page, blocksize, 0);
1184 	head = page_buffers(page);
1185 	bbits = ilog2(blocksize);
1186 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1187 
1188 	for (bh = head, block_start = 0; bh != head || !block_start;
1189 	    block++, block_start = block_end, bh = bh->b_this_page) {
1190 		block_end = block_start + blocksize;
1191 		if (block_end <= from || block_start >= to) {
1192 			if (PageUptodate(page)) {
1193 				if (!buffer_uptodate(bh))
1194 					set_buffer_uptodate(bh);
1195 			}
1196 			continue;
1197 		}
1198 		if (buffer_new(bh))
1199 			clear_buffer_new(bh);
1200 		if (!buffer_mapped(bh)) {
1201 			WARN_ON(bh->b_size != blocksize);
1202 			err = get_block(inode, block, bh, 1);
1203 			if (err)
1204 				break;
1205 			if (buffer_new(bh)) {
1206 				if (PageUptodate(page)) {
1207 					clear_buffer_new(bh);
1208 					set_buffer_uptodate(bh);
1209 					mark_buffer_dirty(bh);
1210 					continue;
1211 				}
1212 				if (block_end > to || block_start < from)
1213 					zero_user_segments(page, to, block_end,
1214 							   block_start, from);
1215 				continue;
1216 			}
1217 		}
1218 		if (PageUptodate(page)) {
1219 			if (!buffer_uptodate(bh))
1220 				set_buffer_uptodate(bh);
1221 			continue;
1222 		}
1223 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1224 		    !buffer_unwritten(bh) &&
1225 		    (block_start < from || block_end > to)) {
1226 			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1227 			wait[nr_wait++] = bh;
1228 		}
1229 	}
1230 	/*
1231 	 * If we issued read requests, let them complete.
1232 	 */
1233 	for (i = 0; i < nr_wait; i++) {
1234 		wait_on_buffer(wait[i]);
1235 		if (!buffer_uptodate(wait[i]))
1236 			err = -EIO;
1237 	}
1238 	if (unlikely(err)) {
1239 		page_zero_new_buffers(page, from, to);
1240 	} else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1241 		for (i = 0; i < nr_wait; i++) {
1242 			int err2;
1243 
1244 			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1245 								bh_offset(wait[i]));
1246 			if (err2) {
1247 				clear_buffer_uptodate(wait[i]);
1248 				err = err2;
1249 			}
1250 		}
1251 	}
1252 
1253 	return err;
1254 }
1255 #endif
1256 
1257 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1258 			    loff_t pos, unsigned len, unsigned flags,
1259 			    struct page **pagep, void **fsdata)
1260 {
1261 	struct inode *inode = mapping->host;
1262 	int ret, needed_blocks;
1263 	handle_t *handle;
1264 	int retries = 0;
1265 	struct page *page;
1266 	pgoff_t index;
1267 	unsigned from, to;
1268 
1269 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1270 		return -EIO;
1271 
1272 	trace_ext4_write_begin(inode, pos, len, flags);
1273 	/*
1274 	 * Reserve one block more for addition to orphan list in case
1275 	 * we allocate blocks but write fails for some reason
1276 	 */
1277 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1278 	index = pos >> PAGE_SHIFT;
1279 	from = pos & (PAGE_SIZE - 1);
1280 	to = from + len;
1281 
1282 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1283 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1284 						    flags, pagep);
1285 		if (ret < 0)
1286 			return ret;
1287 		if (ret == 1)
1288 			return 0;
1289 	}
1290 
1291 	/*
1292 	 * grab_cache_page_write_begin() can take a long time if the
1293 	 * system is thrashing due to memory pressure, or if the page
1294 	 * is being written back.  So grab it first before we start
1295 	 * the transaction handle.  This also allows us to allocate
1296 	 * the page (if needed) without using GFP_NOFS.
1297 	 */
1298 retry_grab:
1299 	page = grab_cache_page_write_begin(mapping, index, flags);
1300 	if (!page)
1301 		return -ENOMEM;
1302 	unlock_page(page);
1303 
1304 retry_journal:
1305 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1306 	if (IS_ERR(handle)) {
1307 		put_page(page);
1308 		return PTR_ERR(handle);
1309 	}
1310 
1311 	lock_page(page);
1312 	if (page->mapping != mapping) {
1313 		/* The page got truncated from under us */
1314 		unlock_page(page);
1315 		put_page(page);
1316 		ext4_journal_stop(handle);
1317 		goto retry_grab;
1318 	}
1319 	/* In case writeback began while the page was unlocked */
1320 	wait_for_stable_page(page);
1321 
1322 #ifdef CONFIG_FS_ENCRYPTION
1323 	if (ext4_should_dioread_nolock(inode))
1324 		ret = ext4_block_write_begin(page, pos, len,
1325 					     ext4_get_block_unwritten);
1326 	else
1327 		ret = ext4_block_write_begin(page, pos, len,
1328 					     ext4_get_block);
1329 #else
1330 	if (ext4_should_dioread_nolock(inode))
1331 		ret = __block_write_begin(page, pos, len,
1332 					  ext4_get_block_unwritten);
1333 	else
1334 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1335 #endif
1336 	if (!ret && ext4_should_journal_data(inode)) {
1337 		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1338 					     from, to, NULL,
1339 					     do_journal_get_write_access);
1340 	}
1341 
1342 	if (ret) {
1343 		unlock_page(page);
1344 		/*
1345 		 * __block_write_begin may have instantiated a few blocks
1346 		 * outside i_size.  Trim these off again. Don't need
1347 		 * i_size_read because we hold i_mutex.
1348 		 *
1349 		 * Add inode to orphan list in case we crash before
1350 		 * truncate finishes
1351 		 */
1352 		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1353 			ext4_orphan_add(handle, inode);
1354 
1355 		ext4_journal_stop(handle);
1356 		if (pos + len > inode->i_size) {
1357 			ext4_truncate_failed_write(inode);
1358 			/*
1359 			 * If truncate failed early the inode might
1360 			 * still be on the orphan list; we need to
1361 			 * make sure the inode is removed from the
1362 			 * orphan list in that case.
1363 			 */
1364 			if (inode->i_nlink)
1365 				ext4_orphan_del(NULL, inode);
1366 		}
1367 
1368 		if (ret == -ENOSPC &&
1369 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1370 			goto retry_journal;
1371 		put_page(page);
1372 		return ret;
1373 	}
1374 	*pagep = page;
1375 	return ret;
1376 }
1377 
1378 /* For write_end() in data=journal mode */
1379 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1380 {
1381 	int ret;
1382 	if (!buffer_mapped(bh) || buffer_freed(bh))
1383 		return 0;
1384 	set_buffer_uptodate(bh);
1385 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1386 	clear_buffer_meta(bh);
1387 	clear_buffer_prio(bh);
1388 	return ret;
1389 }
1390 
1391 /*
1392  * We need to pick up the new inode size which generic_commit_write gave us
1393  * `file' can be NULL - eg, when called from page_symlink().
1394  *
1395  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1396  * buffers are managed internally.
1397  */
1398 static int ext4_write_end(struct file *file,
1399 			  struct address_space *mapping,
1400 			  loff_t pos, unsigned len, unsigned copied,
1401 			  struct page *page, void *fsdata)
1402 {
1403 	handle_t *handle = ext4_journal_current_handle();
1404 	struct inode *inode = mapping->host;
1405 	loff_t old_size = inode->i_size;
1406 	int ret = 0, ret2;
1407 	int i_size_changed = 0;
1408 	int inline_data = ext4_has_inline_data(inode);
1409 
1410 	trace_ext4_write_end(inode, pos, len, copied);
1411 	if (inline_data) {
1412 		ret = ext4_write_inline_data_end(inode, pos, len,
1413 						 copied, page);
1414 		if (ret < 0) {
1415 			unlock_page(page);
1416 			put_page(page);
1417 			goto errout;
1418 		}
1419 		copied = ret;
1420 	} else
1421 		copied = block_write_end(file, mapping, pos,
1422 					 len, copied, page, fsdata);
1423 	/*
1424 	 * it's important to update i_size while still holding page lock:
1425 	 * page writeout could otherwise come in and zero beyond i_size.
1426 	 */
1427 	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1428 	unlock_page(page);
1429 	put_page(page);
1430 
1431 	if (old_size < pos)
1432 		pagecache_isize_extended(inode, old_size, pos);
1433 	/*
1434 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1435 	 * makes the holding time of page lock longer. Second, it forces lock
1436 	 * ordering of page lock and transaction start for journaling
1437 	 * filesystems.
1438 	 */
1439 	if (i_size_changed || inline_data)
1440 		ext4_mark_inode_dirty(handle, inode);
1441 
1442 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1443 		/* if we have allocated more blocks and copied
1444 		 * less. We will have blocks allocated outside
1445 		 * inode->i_size. So truncate them
1446 		 */
1447 		ext4_orphan_add(handle, inode);
1448 errout:
1449 	ret2 = ext4_journal_stop(handle);
1450 	if (!ret)
1451 		ret = ret2;
1452 
1453 	if (pos + len > inode->i_size) {
1454 		ext4_truncate_failed_write(inode);
1455 		/*
1456 		 * If truncate failed early the inode might still be
1457 		 * on the orphan list; we need to make sure the inode
1458 		 * is removed from the orphan list in that case.
1459 		 */
1460 		if (inode->i_nlink)
1461 			ext4_orphan_del(NULL, inode);
1462 	}
1463 
1464 	return ret ? ret : copied;
1465 }
1466 
1467 /*
1468  * This is a private version of page_zero_new_buffers() which doesn't
1469  * set the buffer to be dirty, since in data=journalled mode we need
1470  * to call ext4_handle_dirty_metadata() instead.
1471  */
1472 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1473 					    struct page *page,
1474 					    unsigned from, unsigned to)
1475 {
1476 	unsigned int block_start = 0, block_end;
1477 	struct buffer_head *head, *bh;
1478 
1479 	bh = head = page_buffers(page);
1480 	do {
1481 		block_end = block_start + bh->b_size;
1482 		if (buffer_new(bh)) {
1483 			if (block_end > from && block_start < to) {
1484 				if (!PageUptodate(page)) {
1485 					unsigned start, size;
1486 
1487 					start = max(from, block_start);
1488 					size = min(to, block_end) - start;
1489 
1490 					zero_user(page, start, size);
1491 					write_end_fn(handle, bh);
1492 				}
1493 				clear_buffer_new(bh);
1494 			}
1495 		}
1496 		block_start = block_end;
1497 		bh = bh->b_this_page;
1498 	} while (bh != head);
1499 }
1500 
1501 static int ext4_journalled_write_end(struct file *file,
1502 				     struct address_space *mapping,
1503 				     loff_t pos, unsigned len, unsigned copied,
1504 				     struct page *page, void *fsdata)
1505 {
1506 	handle_t *handle = ext4_journal_current_handle();
1507 	struct inode *inode = mapping->host;
1508 	loff_t old_size = inode->i_size;
1509 	int ret = 0, ret2;
1510 	int partial = 0;
1511 	unsigned from, to;
1512 	int size_changed = 0;
1513 	int inline_data = ext4_has_inline_data(inode);
1514 
1515 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1516 	from = pos & (PAGE_SIZE - 1);
1517 	to = from + len;
1518 
1519 	BUG_ON(!ext4_handle_valid(handle));
1520 
1521 	if (inline_data) {
1522 		ret = ext4_write_inline_data_end(inode, pos, len,
1523 						 copied, page);
1524 		if (ret < 0) {
1525 			unlock_page(page);
1526 			put_page(page);
1527 			goto errout;
1528 		}
1529 		copied = ret;
1530 	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1531 		copied = 0;
1532 		ext4_journalled_zero_new_buffers(handle, page, from, to);
1533 	} else {
1534 		if (unlikely(copied < len))
1535 			ext4_journalled_zero_new_buffers(handle, page,
1536 							 from + copied, to);
1537 		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1538 					     from + copied, &partial,
1539 					     write_end_fn);
1540 		if (!partial)
1541 			SetPageUptodate(page);
1542 	}
1543 	size_changed = ext4_update_inode_size(inode, pos + copied);
1544 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1545 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1546 	unlock_page(page);
1547 	put_page(page);
1548 
1549 	if (old_size < pos)
1550 		pagecache_isize_extended(inode, old_size, pos);
1551 
1552 	if (size_changed || inline_data) {
1553 		ret2 = ext4_mark_inode_dirty(handle, inode);
1554 		if (!ret)
1555 			ret = ret2;
1556 	}
1557 
1558 	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1559 		/* if we have allocated more blocks and copied
1560 		 * less. We will have blocks allocated outside
1561 		 * inode->i_size. So truncate them
1562 		 */
1563 		ext4_orphan_add(handle, inode);
1564 
1565 errout:
1566 	ret2 = ext4_journal_stop(handle);
1567 	if (!ret)
1568 		ret = ret2;
1569 	if (pos + len > inode->i_size) {
1570 		ext4_truncate_failed_write(inode);
1571 		/*
1572 		 * If truncate failed early the inode might still be
1573 		 * on the orphan list; we need to make sure the inode
1574 		 * is removed from the orphan list in that case.
1575 		 */
1576 		if (inode->i_nlink)
1577 			ext4_orphan_del(NULL, inode);
1578 	}
1579 
1580 	return ret ? ret : copied;
1581 }
1582 
1583 /*
1584  * Reserve space for a single cluster
1585  */
1586 static int ext4_da_reserve_space(struct inode *inode)
1587 {
1588 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1589 	struct ext4_inode_info *ei = EXT4_I(inode);
1590 	int ret;
1591 
1592 	/*
1593 	 * We will charge metadata quota at writeout time; this saves
1594 	 * us from metadata over-estimation, though we may go over by
1595 	 * a small amount in the end.  Here we just reserve for data.
1596 	 */
1597 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1598 	if (ret)
1599 		return ret;
1600 
1601 	spin_lock(&ei->i_block_reservation_lock);
1602 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1603 		spin_unlock(&ei->i_block_reservation_lock);
1604 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1605 		return -ENOSPC;
1606 	}
1607 	ei->i_reserved_data_blocks++;
1608 	trace_ext4_da_reserve_space(inode);
1609 	spin_unlock(&ei->i_block_reservation_lock);
1610 
1611 	return 0;       /* success */
1612 }
1613 
1614 void ext4_da_release_space(struct inode *inode, int to_free)
1615 {
1616 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1617 	struct ext4_inode_info *ei = EXT4_I(inode);
1618 
1619 	if (!to_free)
1620 		return;		/* Nothing to release, exit */
1621 
1622 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1623 
1624 	trace_ext4_da_release_space(inode, to_free);
1625 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1626 		/*
1627 		 * if there aren't enough reserved blocks, then the
1628 		 * counter is messed up somewhere.  Since this
1629 		 * function is called from invalidate page, it's
1630 		 * harmless to return without any action.
1631 		 */
1632 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1633 			 "ino %lu, to_free %d with only %d reserved "
1634 			 "data blocks", inode->i_ino, to_free,
1635 			 ei->i_reserved_data_blocks);
1636 		WARN_ON(1);
1637 		to_free = ei->i_reserved_data_blocks;
1638 	}
1639 	ei->i_reserved_data_blocks -= to_free;
1640 
1641 	/* update fs dirty data blocks counter */
1642 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1643 
1644 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1645 
1646 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1647 }
1648 
1649 static void ext4_da_page_release_reservation(struct page *page,
1650 					     unsigned int offset,
1651 					     unsigned int length)
1652 {
1653 	int contiguous_blks = 0;
1654 	struct buffer_head *head, *bh;
1655 	unsigned int curr_off = 0;
1656 	struct inode *inode = page->mapping->host;
1657 	unsigned int stop = offset + length;
1658 	ext4_fsblk_t lblk;
1659 
1660 	BUG_ON(stop > PAGE_SIZE || stop < length);
1661 
1662 	head = page_buffers(page);
1663 	bh = head;
1664 	do {
1665 		unsigned int next_off = curr_off + bh->b_size;
1666 
1667 		if (next_off > stop)
1668 			break;
1669 
1670 		if ((offset <= curr_off) && (buffer_delay(bh))) {
1671 			contiguous_blks++;
1672 			clear_buffer_delay(bh);
1673 		} else if (contiguous_blks) {
1674 			lblk = page->index <<
1675 			       (PAGE_SHIFT - inode->i_blkbits);
1676 			lblk += (curr_off >> inode->i_blkbits) -
1677 				contiguous_blks;
1678 			ext4_es_remove_blks(inode, lblk, contiguous_blks);
1679 			contiguous_blks = 0;
1680 		}
1681 		curr_off = next_off;
1682 	} while ((bh = bh->b_this_page) != head);
1683 
1684 	if (contiguous_blks) {
1685 		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1686 		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1687 		ext4_es_remove_blks(inode, lblk, contiguous_blks);
1688 	}
1689 
1690 }
1691 
1692 /*
1693  * Delayed allocation stuff
1694  */
1695 
1696 struct mpage_da_data {
1697 	struct inode *inode;
1698 	struct writeback_control *wbc;
1699 
1700 	pgoff_t first_page;	/* The first page to write */
1701 	pgoff_t next_page;	/* Current page to examine */
1702 	pgoff_t last_page;	/* Last page to examine */
1703 	/*
1704 	 * Extent to map - this can be after first_page because that can be
1705 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1706 	 * is delalloc or unwritten.
1707 	 */
1708 	struct ext4_map_blocks map;
1709 	struct ext4_io_submit io_submit;	/* IO submission data */
1710 	unsigned int do_map:1;
1711 };
1712 
1713 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1714 				       bool invalidate)
1715 {
1716 	int nr_pages, i;
1717 	pgoff_t index, end;
1718 	struct pagevec pvec;
1719 	struct inode *inode = mpd->inode;
1720 	struct address_space *mapping = inode->i_mapping;
1721 
1722 	/* This is necessary when next_page == 0. */
1723 	if (mpd->first_page >= mpd->next_page)
1724 		return;
1725 
1726 	index = mpd->first_page;
1727 	end   = mpd->next_page - 1;
1728 	if (invalidate) {
1729 		ext4_lblk_t start, last;
1730 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1731 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1732 		ext4_es_remove_extent(inode, start, last - start + 1);
1733 	}
1734 
1735 	pagevec_init(&pvec);
1736 	while (index <= end) {
1737 		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1738 		if (nr_pages == 0)
1739 			break;
1740 		for (i = 0; i < nr_pages; i++) {
1741 			struct page *page = pvec.pages[i];
1742 
1743 			BUG_ON(!PageLocked(page));
1744 			BUG_ON(PageWriteback(page));
1745 			if (invalidate) {
1746 				if (page_mapped(page))
1747 					clear_page_dirty_for_io(page);
1748 				block_invalidatepage(page, 0, PAGE_SIZE);
1749 				ClearPageUptodate(page);
1750 			}
1751 			unlock_page(page);
1752 		}
1753 		pagevec_release(&pvec);
1754 	}
1755 }
1756 
1757 static void ext4_print_free_blocks(struct inode *inode)
1758 {
1759 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1760 	struct super_block *sb = inode->i_sb;
1761 	struct ext4_inode_info *ei = EXT4_I(inode);
1762 
1763 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1764 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1765 			ext4_count_free_clusters(sb)));
1766 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1767 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1768 	       (long long) EXT4_C2B(EXT4_SB(sb),
1769 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1770 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1771 	       (long long) EXT4_C2B(EXT4_SB(sb),
1772 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1773 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1774 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1775 		 ei->i_reserved_data_blocks);
1776 	return;
1777 }
1778 
1779 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1780 {
1781 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1782 }
1783 
1784 /*
1785  * ext4_insert_delayed_block - adds a delayed block to the extents status
1786  *                             tree, incrementing the reserved cluster/block
1787  *                             count or making a pending reservation
1788  *                             where needed
1789  *
1790  * @inode - file containing the newly added block
1791  * @lblk - logical block to be added
1792  *
1793  * Returns 0 on success, negative error code on failure.
1794  */
1795 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1796 {
1797 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1798 	int ret;
1799 	bool allocated = false;
1800 
1801 	/*
1802 	 * If the cluster containing lblk is shared with a delayed,
1803 	 * written, or unwritten extent in a bigalloc file system, it's
1804 	 * already been accounted for and does not need to be reserved.
1805 	 * A pending reservation must be made for the cluster if it's
1806 	 * shared with a written or unwritten extent and doesn't already
1807 	 * have one.  Written and unwritten extents can be purged from the
1808 	 * extents status tree if the system is under memory pressure, so
1809 	 * it's necessary to examine the extent tree if a search of the
1810 	 * extents status tree doesn't get a match.
1811 	 */
1812 	if (sbi->s_cluster_ratio == 1) {
1813 		ret = ext4_da_reserve_space(inode);
1814 		if (ret != 0)   /* ENOSPC */
1815 			goto errout;
1816 	} else {   /* bigalloc */
1817 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1818 			if (!ext4_es_scan_clu(inode,
1819 					      &ext4_es_is_mapped, lblk)) {
1820 				ret = ext4_clu_mapped(inode,
1821 						      EXT4_B2C(sbi, lblk));
1822 				if (ret < 0)
1823 					goto errout;
1824 				if (ret == 0) {
1825 					ret = ext4_da_reserve_space(inode);
1826 					if (ret != 0)   /* ENOSPC */
1827 						goto errout;
1828 				} else {
1829 					allocated = true;
1830 				}
1831 			} else {
1832 				allocated = true;
1833 			}
1834 		}
1835 	}
1836 
1837 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1838 
1839 errout:
1840 	return ret;
1841 }
1842 
1843 /*
1844  * This function is grabs code from the very beginning of
1845  * ext4_map_blocks, but assumes that the caller is from delayed write
1846  * time. This function looks up the requested blocks and sets the
1847  * buffer delay bit under the protection of i_data_sem.
1848  */
1849 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1850 			      struct ext4_map_blocks *map,
1851 			      struct buffer_head *bh)
1852 {
1853 	struct extent_status es;
1854 	int retval;
1855 	sector_t invalid_block = ~((sector_t) 0xffff);
1856 #ifdef ES_AGGRESSIVE_TEST
1857 	struct ext4_map_blocks orig_map;
1858 
1859 	memcpy(&orig_map, map, sizeof(*map));
1860 #endif
1861 
1862 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1863 		invalid_block = ~0;
1864 
1865 	map->m_flags = 0;
1866 	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1867 		  "logical block %lu\n", inode->i_ino, map->m_len,
1868 		  (unsigned long) map->m_lblk);
1869 
1870 	/* Lookup extent status tree firstly */
1871 	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1872 		if (ext4_es_is_hole(&es)) {
1873 			retval = 0;
1874 			down_read(&EXT4_I(inode)->i_data_sem);
1875 			goto add_delayed;
1876 		}
1877 
1878 		/*
1879 		 * Delayed extent could be allocated by fallocate.
1880 		 * So we need to check it.
1881 		 */
1882 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1883 			map_bh(bh, inode->i_sb, invalid_block);
1884 			set_buffer_new(bh);
1885 			set_buffer_delay(bh);
1886 			return 0;
1887 		}
1888 
1889 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1890 		retval = es.es_len - (iblock - es.es_lblk);
1891 		if (retval > map->m_len)
1892 			retval = map->m_len;
1893 		map->m_len = retval;
1894 		if (ext4_es_is_written(&es))
1895 			map->m_flags |= EXT4_MAP_MAPPED;
1896 		else if (ext4_es_is_unwritten(&es))
1897 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1898 		else
1899 			BUG();
1900 
1901 #ifdef ES_AGGRESSIVE_TEST
1902 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1903 #endif
1904 		return retval;
1905 	}
1906 
1907 	/*
1908 	 * Try to see if we can get the block without requesting a new
1909 	 * file system block.
1910 	 */
1911 	down_read(&EXT4_I(inode)->i_data_sem);
1912 	if (ext4_has_inline_data(inode))
1913 		retval = 0;
1914 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1915 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1916 	else
1917 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1918 
1919 add_delayed:
1920 	if (retval == 0) {
1921 		int ret;
1922 
1923 		/*
1924 		 * XXX: __block_prepare_write() unmaps passed block,
1925 		 * is it OK?
1926 		 */
1927 
1928 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1929 		if (ret != 0) {
1930 			retval = ret;
1931 			goto out_unlock;
1932 		}
1933 
1934 		map_bh(bh, inode->i_sb, invalid_block);
1935 		set_buffer_new(bh);
1936 		set_buffer_delay(bh);
1937 	} else if (retval > 0) {
1938 		int ret;
1939 		unsigned int status;
1940 
1941 		if (unlikely(retval != map->m_len)) {
1942 			ext4_warning(inode->i_sb,
1943 				     "ES len assertion failed for inode "
1944 				     "%lu: retval %d != map->m_len %d",
1945 				     inode->i_ino, retval, map->m_len);
1946 			WARN_ON(1);
1947 		}
1948 
1949 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1950 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1951 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1952 					    map->m_pblk, status);
1953 		if (ret != 0)
1954 			retval = ret;
1955 	}
1956 
1957 out_unlock:
1958 	up_read((&EXT4_I(inode)->i_data_sem));
1959 
1960 	return retval;
1961 }
1962 
1963 /*
1964  * This is a special get_block_t callback which is used by
1965  * ext4_da_write_begin().  It will either return mapped block or
1966  * reserve space for a single block.
1967  *
1968  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1969  * We also have b_blocknr = -1 and b_bdev initialized properly
1970  *
1971  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1972  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1973  * initialized properly.
1974  */
1975 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1976 			   struct buffer_head *bh, int create)
1977 {
1978 	struct ext4_map_blocks map;
1979 	int ret = 0;
1980 
1981 	BUG_ON(create == 0);
1982 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1983 
1984 	map.m_lblk = iblock;
1985 	map.m_len = 1;
1986 
1987 	/*
1988 	 * first, we need to know whether the block is allocated already
1989 	 * preallocated blocks are unmapped but should treated
1990 	 * the same as allocated blocks.
1991 	 */
1992 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1993 	if (ret <= 0)
1994 		return ret;
1995 
1996 	map_bh(bh, inode->i_sb, map.m_pblk);
1997 	ext4_update_bh_state(bh, map.m_flags);
1998 
1999 	if (buffer_unwritten(bh)) {
2000 		/* A delayed write to unwritten bh should be marked
2001 		 * new and mapped.  Mapped ensures that we don't do
2002 		 * get_block multiple times when we write to the same
2003 		 * offset and new ensures that we do proper zero out
2004 		 * for partial write.
2005 		 */
2006 		set_buffer_new(bh);
2007 		set_buffer_mapped(bh);
2008 	}
2009 	return 0;
2010 }
2011 
2012 static int bget_one(handle_t *handle, struct buffer_head *bh)
2013 {
2014 	get_bh(bh);
2015 	return 0;
2016 }
2017 
2018 static int bput_one(handle_t *handle, struct buffer_head *bh)
2019 {
2020 	put_bh(bh);
2021 	return 0;
2022 }
2023 
2024 static int __ext4_journalled_writepage(struct page *page,
2025 				       unsigned int len)
2026 {
2027 	struct address_space *mapping = page->mapping;
2028 	struct inode *inode = mapping->host;
2029 	struct buffer_head *page_bufs = NULL;
2030 	handle_t *handle = NULL;
2031 	int ret = 0, err = 0;
2032 	int inline_data = ext4_has_inline_data(inode);
2033 	struct buffer_head *inode_bh = NULL;
2034 
2035 	ClearPageChecked(page);
2036 
2037 	if (inline_data) {
2038 		BUG_ON(page->index != 0);
2039 		BUG_ON(len > ext4_get_max_inline_size(inode));
2040 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2041 		if (inode_bh == NULL)
2042 			goto out;
2043 	} else {
2044 		page_bufs = page_buffers(page);
2045 		if (!page_bufs) {
2046 			BUG();
2047 			goto out;
2048 		}
2049 		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2050 				       NULL, bget_one);
2051 	}
2052 	/*
2053 	 * We need to release the page lock before we start the
2054 	 * journal, so grab a reference so the page won't disappear
2055 	 * out from under us.
2056 	 */
2057 	get_page(page);
2058 	unlock_page(page);
2059 
2060 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2061 				    ext4_writepage_trans_blocks(inode));
2062 	if (IS_ERR(handle)) {
2063 		ret = PTR_ERR(handle);
2064 		put_page(page);
2065 		goto out_no_pagelock;
2066 	}
2067 	BUG_ON(!ext4_handle_valid(handle));
2068 
2069 	lock_page(page);
2070 	put_page(page);
2071 	if (page->mapping != mapping) {
2072 		/* The page got truncated from under us */
2073 		ext4_journal_stop(handle);
2074 		ret = 0;
2075 		goto out;
2076 	}
2077 
2078 	if (inline_data) {
2079 		ret = ext4_mark_inode_dirty(handle, inode);
2080 	} else {
2081 		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2082 					     do_journal_get_write_access);
2083 
2084 		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2085 					     write_end_fn);
2086 	}
2087 	if (ret == 0)
2088 		ret = err;
2089 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2090 	err = ext4_journal_stop(handle);
2091 	if (!ret)
2092 		ret = err;
2093 
2094 	if (!ext4_has_inline_data(inode))
2095 		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2096 				       NULL, bput_one);
2097 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2098 out:
2099 	unlock_page(page);
2100 out_no_pagelock:
2101 	brelse(inode_bh);
2102 	return ret;
2103 }
2104 
2105 /*
2106  * Note that we don't need to start a transaction unless we're journaling data
2107  * because we should have holes filled from ext4_page_mkwrite(). We even don't
2108  * need to file the inode to the transaction's list in ordered mode because if
2109  * we are writing back data added by write(), the inode is already there and if
2110  * we are writing back data modified via mmap(), no one guarantees in which
2111  * transaction the data will hit the disk. In case we are journaling data, we
2112  * cannot start transaction directly because transaction start ranks above page
2113  * lock so we have to do some magic.
2114  *
2115  * This function can get called via...
2116  *   - ext4_writepages after taking page lock (have journal handle)
2117  *   - journal_submit_inode_data_buffers (no journal handle)
2118  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2119  *   - grab_page_cache when doing write_begin (have journal handle)
2120  *
2121  * We don't do any block allocation in this function. If we have page with
2122  * multiple blocks we need to write those buffer_heads that are mapped. This
2123  * is important for mmaped based write. So if we do with blocksize 1K
2124  * truncate(f, 1024);
2125  * a = mmap(f, 0, 4096);
2126  * a[0] = 'a';
2127  * truncate(f, 4096);
2128  * we have in the page first buffer_head mapped via page_mkwrite call back
2129  * but other buffer_heads would be unmapped but dirty (dirty done via the
2130  * do_wp_page). So writepage should write the first block. If we modify
2131  * the mmap area beyond 1024 we will again get a page_fault and the
2132  * page_mkwrite callback will do the block allocation and mark the
2133  * buffer_heads mapped.
2134  *
2135  * We redirty the page if we have any buffer_heads that is either delay or
2136  * unwritten in the page.
2137  *
2138  * We can get recursively called as show below.
2139  *
2140  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2141  *		ext4_writepage()
2142  *
2143  * But since we don't do any block allocation we should not deadlock.
2144  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2145  */
2146 static int ext4_writepage(struct page *page,
2147 			  struct writeback_control *wbc)
2148 {
2149 	int ret = 0;
2150 	loff_t size;
2151 	unsigned int len;
2152 	struct buffer_head *page_bufs = NULL;
2153 	struct inode *inode = page->mapping->host;
2154 	struct ext4_io_submit io_submit;
2155 	bool keep_towrite = false;
2156 
2157 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2158 		ext4_invalidatepage(page, 0, PAGE_SIZE);
2159 		unlock_page(page);
2160 		return -EIO;
2161 	}
2162 
2163 	trace_ext4_writepage(page);
2164 	size = i_size_read(inode);
2165 	if (page->index == size >> PAGE_SHIFT)
2166 		len = size & ~PAGE_MASK;
2167 	else
2168 		len = PAGE_SIZE;
2169 
2170 	page_bufs = page_buffers(page);
2171 	/*
2172 	 * We cannot do block allocation or other extent handling in this
2173 	 * function. If there are buffers needing that, we have to redirty
2174 	 * the page. But we may reach here when we do a journal commit via
2175 	 * journal_submit_inode_data_buffers() and in that case we must write
2176 	 * allocated buffers to achieve data=ordered mode guarantees.
2177 	 *
2178 	 * Also, if there is only one buffer per page (the fs block
2179 	 * size == the page size), if one buffer needs block
2180 	 * allocation or needs to modify the extent tree to clear the
2181 	 * unwritten flag, we know that the page can't be written at
2182 	 * all, so we might as well refuse the write immediately.
2183 	 * Unfortunately if the block size != page size, we can't as
2184 	 * easily detect this case using ext4_walk_page_buffers(), but
2185 	 * for the extremely common case, this is an optimization that
2186 	 * skips a useless round trip through ext4_bio_write_page().
2187 	 */
2188 	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2189 				   ext4_bh_delay_or_unwritten)) {
2190 		redirty_page_for_writepage(wbc, page);
2191 		if ((current->flags & PF_MEMALLOC) ||
2192 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2193 			/*
2194 			 * For memory cleaning there's no point in writing only
2195 			 * some buffers. So just bail out. Warn if we came here
2196 			 * from direct reclaim.
2197 			 */
2198 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2199 							== PF_MEMALLOC);
2200 			unlock_page(page);
2201 			return 0;
2202 		}
2203 		keep_towrite = true;
2204 	}
2205 
2206 	if (PageChecked(page) && ext4_should_journal_data(inode))
2207 		/*
2208 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2209 		 * doesn't seem much point in redirtying the page here.
2210 		 */
2211 		return __ext4_journalled_writepage(page, len);
2212 
2213 	ext4_io_submit_init(&io_submit, wbc);
2214 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2215 	if (!io_submit.io_end) {
2216 		redirty_page_for_writepage(wbc, page);
2217 		unlock_page(page);
2218 		return -ENOMEM;
2219 	}
2220 	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2221 	ext4_io_submit(&io_submit);
2222 	/* Drop io_end reference we got from init */
2223 	ext4_put_io_end_defer(io_submit.io_end);
2224 	return ret;
2225 }
2226 
2227 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2228 {
2229 	int len;
2230 	loff_t size;
2231 	int err;
2232 
2233 	BUG_ON(page->index != mpd->first_page);
2234 	clear_page_dirty_for_io(page);
2235 	/*
2236 	 * We have to be very careful here!  Nothing protects writeback path
2237 	 * against i_size changes and the page can be writeably mapped into
2238 	 * page tables. So an application can be growing i_size and writing
2239 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2240 	 * write-protects our page in page tables and the page cannot get
2241 	 * written to again until we release page lock. So only after
2242 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2243 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2244 	 * on the barrier provided by TestClearPageDirty in
2245 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2246 	 * after page tables are updated.
2247 	 */
2248 	size = i_size_read(mpd->inode);
2249 	if (page->index == size >> PAGE_SHIFT)
2250 		len = size & ~PAGE_MASK;
2251 	else
2252 		len = PAGE_SIZE;
2253 	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2254 	if (!err)
2255 		mpd->wbc->nr_to_write--;
2256 	mpd->first_page++;
2257 
2258 	return err;
2259 }
2260 
2261 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2262 
2263 /*
2264  * mballoc gives us at most this number of blocks...
2265  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2266  * The rest of mballoc seems to handle chunks up to full group size.
2267  */
2268 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2269 
2270 /*
2271  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2272  *
2273  * @mpd - extent of blocks
2274  * @lblk - logical number of the block in the file
2275  * @bh - buffer head we want to add to the extent
2276  *
2277  * The function is used to collect contig. blocks in the same state. If the
2278  * buffer doesn't require mapping for writeback and we haven't started the
2279  * extent of buffers to map yet, the function returns 'true' immediately - the
2280  * caller can write the buffer right away. Otherwise the function returns true
2281  * if the block has been added to the extent, false if the block couldn't be
2282  * added.
2283  */
2284 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2285 				   struct buffer_head *bh)
2286 {
2287 	struct ext4_map_blocks *map = &mpd->map;
2288 
2289 	/* Buffer that doesn't need mapping for writeback? */
2290 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2291 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2292 		/* So far no extent to map => we write the buffer right away */
2293 		if (map->m_len == 0)
2294 			return true;
2295 		return false;
2296 	}
2297 
2298 	/* First block in the extent? */
2299 	if (map->m_len == 0) {
2300 		/* We cannot map unless handle is started... */
2301 		if (!mpd->do_map)
2302 			return false;
2303 		map->m_lblk = lblk;
2304 		map->m_len = 1;
2305 		map->m_flags = bh->b_state & BH_FLAGS;
2306 		return true;
2307 	}
2308 
2309 	/* Don't go larger than mballoc is willing to allocate */
2310 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2311 		return false;
2312 
2313 	/* Can we merge the block to our big extent? */
2314 	if (lblk == map->m_lblk + map->m_len &&
2315 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2316 		map->m_len++;
2317 		return true;
2318 	}
2319 	return false;
2320 }
2321 
2322 /*
2323  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2324  *
2325  * @mpd - extent of blocks for mapping
2326  * @head - the first buffer in the page
2327  * @bh - buffer we should start processing from
2328  * @lblk - logical number of the block in the file corresponding to @bh
2329  *
2330  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2331  * the page for IO if all buffers in this page were mapped and there's no
2332  * accumulated extent of buffers to map or add buffers in the page to the
2333  * extent of buffers to map. The function returns 1 if the caller can continue
2334  * by processing the next page, 0 if it should stop adding buffers to the
2335  * extent to map because we cannot extend it anymore. It can also return value
2336  * < 0 in case of error during IO submission.
2337  */
2338 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2339 				   struct buffer_head *head,
2340 				   struct buffer_head *bh,
2341 				   ext4_lblk_t lblk)
2342 {
2343 	struct inode *inode = mpd->inode;
2344 	int err;
2345 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2346 							>> inode->i_blkbits;
2347 
2348 	do {
2349 		BUG_ON(buffer_locked(bh));
2350 
2351 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2352 			/* Found extent to map? */
2353 			if (mpd->map.m_len)
2354 				return 0;
2355 			/* Buffer needs mapping and handle is not started? */
2356 			if (!mpd->do_map)
2357 				return 0;
2358 			/* Everything mapped so far and we hit EOF */
2359 			break;
2360 		}
2361 	} while (lblk++, (bh = bh->b_this_page) != head);
2362 	/* So far everything mapped? Submit the page for IO. */
2363 	if (mpd->map.m_len == 0) {
2364 		err = mpage_submit_page(mpd, head->b_page);
2365 		if (err < 0)
2366 			return err;
2367 	}
2368 	return lblk < blocks;
2369 }
2370 
2371 /*
2372  * mpage_map_buffers - update buffers corresponding to changed extent and
2373  *		       submit fully mapped pages for IO
2374  *
2375  * @mpd - description of extent to map, on return next extent to map
2376  *
2377  * Scan buffers corresponding to changed extent (we expect corresponding pages
2378  * to be already locked) and update buffer state according to new extent state.
2379  * We map delalloc buffers to their physical location, clear unwritten bits,
2380  * and mark buffers as uninit when we perform writes to unwritten extents
2381  * and do extent conversion after IO is finished. If the last page is not fully
2382  * mapped, we update @map to the next extent in the last page that needs
2383  * mapping. Otherwise we submit the page for IO.
2384  */
2385 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2386 {
2387 	struct pagevec pvec;
2388 	int nr_pages, i;
2389 	struct inode *inode = mpd->inode;
2390 	struct buffer_head *head, *bh;
2391 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2392 	pgoff_t start, end;
2393 	ext4_lblk_t lblk;
2394 	sector_t pblock;
2395 	int err;
2396 
2397 	start = mpd->map.m_lblk >> bpp_bits;
2398 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2399 	lblk = start << bpp_bits;
2400 	pblock = mpd->map.m_pblk;
2401 
2402 	pagevec_init(&pvec);
2403 	while (start <= end) {
2404 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2405 						&start, end);
2406 		if (nr_pages == 0)
2407 			break;
2408 		for (i = 0; i < nr_pages; i++) {
2409 			struct page *page = pvec.pages[i];
2410 
2411 			bh = head = page_buffers(page);
2412 			do {
2413 				if (lblk < mpd->map.m_lblk)
2414 					continue;
2415 				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2416 					/*
2417 					 * Buffer after end of mapped extent.
2418 					 * Find next buffer in the page to map.
2419 					 */
2420 					mpd->map.m_len = 0;
2421 					mpd->map.m_flags = 0;
2422 					/*
2423 					 * FIXME: If dioread_nolock supports
2424 					 * blocksize < pagesize, we need to make
2425 					 * sure we add size mapped so far to
2426 					 * io_end->size as the following call
2427 					 * can submit the page for IO.
2428 					 */
2429 					err = mpage_process_page_bufs(mpd, head,
2430 								      bh, lblk);
2431 					pagevec_release(&pvec);
2432 					if (err > 0)
2433 						err = 0;
2434 					return err;
2435 				}
2436 				if (buffer_delay(bh)) {
2437 					clear_buffer_delay(bh);
2438 					bh->b_blocknr = pblock++;
2439 				}
2440 				clear_buffer_unwritten(bh);
2441 			} while (lblk++, (bh = bh->b_this_page) != head);
2442 
2443 			/*
2444 			 * FIXME: This is going to break if dioread_nolock
2445 			 * supports blocksize < pagesize as we will try to
2446 			 * convert potentially unmapped parts of inode.
2447 			 */
2448 			mpd->io_submit.io_end->size += PAGE_SIZE;
2449 			/* Page fully mapped - let IO run! */
2450 			err = mpage_submit_page(mpd, page);
2451 			if (err < 0) {
2452 				pagevec_release(&pvec);
2453 				return err;
2454 			}
2455 		}
2456 		pagevec_release(&pvec);
2457 	}
2458 	/* Extent fully mapped and matches with page boundary. We are done. */
2459 	mpd->map.m_len = 0;
2460 	mpd->map.m_flags = 0;
2461 	return 0;
2462 }
2463 
2464 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2465 {
2466 	struct inode *inode = mpd->inode;
2467 	struct ext4_map_blocks *map = &mpd->map;
2468 	int get_blocks_flags;
2469 	int err, dioread_nolock;
2470 
2471 	trace_ext4_da_write_pages_extent(inode, map);
2472 	/*
2473 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2474 	 * to convert an unwritten extent to be initialized (in the case
2475 	 * where we have written into one or more preallocated blocks).  It is
2476 	 * possible that we're going to need more metadata blocks than
2477 	 * previously reserved. However we must not fail because we're in
2478 	 * writeback and there is nothing we can do about it so it might result
2479 	 * in data loss.  So use reserved blocks to allocate metadata if
2480 	 * possible.
2481 	 *
2482 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2483 	 * the blocks in question are delalloc blocks.  This indicates
2484 	 * that the blocks and quotas has already been checked when
2485 	 * the data was copied into the page cache.
2486 	 */
2487 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2488 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2489 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2490 	dioread_nolock = ext4_should_dioread_nolock(inode);
2491 	if (dioread_nolock)
2492 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2493 	if (map->m_flags & (1 << BH_Delay))
2494 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2495 
2496 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2497 	if (err < 0)
2498 		return err;
2499 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2500 		if (!mpd->io_submit.io_end->handle &&
2501 		    ext4_handle_valid(handle)) {
2502 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2503 			handle->h_rsv_handle = NULL;
2504 		}
2505 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2506 	}
2507 
2508 	BUG_ON(map->m_len == 0);
2509 	return 0;
2510 }
2511 
2512 /*
2513  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2514  *				 mpd->len and submit pages underlying it for IO
2515  *
2516  * @handle - handle for journal operations
2517  * @mpd - extent to map
2518  * @give_up_on_write - we set this to true iff there is a fatal error and there
2519  *                     is no hope of writing the data. The caller should discard
2520  *                     dirty pages to avoid infinite loops.
2521  *
2522  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2523  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2524  * them to initialized or split the described range from larger unwritten
2525  * extent. Note that we need not map all the described range since allocation
2526  * can return less blocks or the range is covered by more unwritten extents. We
2527  * cannot map more because we are limited by reserved transaction credits. On
2528  * the other hand we always make sure that the last touched page is fully
2529  * mapped so that it can be written out (and thus forward progress is
2530  * guaranteed). After mapping we submit all mapped pages for IO.
2531  */
2532 static int mpage_map_and_submit_extent(handle_t *handle,
2533 				       struct mpage_da_data *mpd,
2534 				       bool *give_up_on_write)
2535 {
2536 	struct inode *inode = mpd->inode;
2537 	struct ext4_map_blocks *map = &mpd->map;
2538 	int err;
2539 	loff_t disksize;
2540 	int progress = 0;
2541 
2542 	mpd->io_submit.io_end->offset =
2543 				((loff_t)map->m_lblk) << inode->i_blkbits;
2544 	do {
2545 		err = mpage_map_one_extent(handle, mpd);
2546 		if (err < 0) {
2547 			struct super_block *sb = inode->i_sb;
2548 
2549 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2550 			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2551 				goto invalidate_dirty_pages;
2552 			/*
2553 			 * Let the uper layers retry transient errors.
2554 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2555 			 * is non-zero, a commit should free up blocks.
2556 			 */
2557 			if ((err == -ENOMEM) ||
2558 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2559 				if (progress)
2560 					goto update_disksize;
2561 				return err;
2562 			}
2563 			ext4_msg(sb, KERN_CRIT,
2564 				 "Delayed block allocation failed for "
2565 				 "inode %lu at logical offset %llu with"
2566 				 " max blocks %u with error %d",
2567 				 inode->i_ino,
2568 				 (unsigned long long)map->m_lblk,
2569 				 (unsigned)map->m_len, -err);
2570 			ext4_msg(sb, KERN_CRIT,
2571 				 "This should not happen!! Data will "
2572 				 "be lost\n");
2573 			if (err == -ENOSPC)
2574 				ext4_print_free_blocks(inode);
2575 		invalidate_dirty_pages:
2576 			*give_up_on_write = true;
2577 			return err;
2578 		}
2579 		progress = 1;
2580 		/*
2581 		 * Update buffer state, submit mapped pages, and get us new
2582 		 * extent to map
2583 		 */
2584 		err = mpage_map_and_submit_buffers(mpd);
2585 		if (err < 0)
2586 			goto update_disksize;
2587 	} while (map->m_len);
2588 
2589 update_disksize:
2590 	/*
2591 	 * Update on-disk size after IO is submitted.  Races with
2592 	 * truncate are avoided by checking i_size under i_data_sem.
2593 	 */
2594 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2595 	if (disksize > EXT4_I(inode)->i_disksize) {
2596 		int err2;
2597 		loff_t i_size;
2598 
2599 		down_write(&EXT4_I(inode)->i_data_sem);
2600 		i_size = i_size_read(inode);
2601 		if (disksize > i_size)
2602 			disksize = i_size;
2603 		if (disksize > EXT4_I(inode)->i_disksize)
2604 			EXT4_I(inode)->i_disksize = disksize;
2605 		up_write(&EXT4_I(inode)->i_data_sem);
2606 		err2 = ext4_mark_inode_dirty(handle, inode);
2607 		if (err2)
2608 			ext4_error(inode->i_sb,
2609 				   "Failed to mark inode %lu dirty",
2610 				   inode->i_ino);
2611 		if (!err)
2612 			err = err2;
2613 	}
2614 	return err;
2615 }
2616 
2617 /*
2618  * Calculate the total number of credits to reserve for one writepages
2619  * iteration. This is called from ext4_writepages(). We map an extent of
2620  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2621  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2622  * bpp - 1 blocks in bpp different extents.
2623  */
2624 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2625 {
2626 	int bpp = ext4_journal_blocks_per_page(inode);
2627 
2628 	return ext4_meta_trans_blocks(inode,
2629 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2630 }
2631 
2632 /*
2633  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2634  * 				 and underlying extent to map
2635  *
2636  * @mpd - where to look for pages
2637  *
2638  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2639  * IO immediately. When we find a page which isn't mapped we start accumulating
2640  * extent of buffers underlying these pages that needs mapping (formed by
2641  * either delayed or unwritten buffers). We also lock the pages containing
2642  * these buffers. The extent found is returned in @mpd structure (starting at
2643  * mpd->lblk with length mpd->len blocks).
2644  *
2645  * Note that this function can attach bios to one io_end structure which are
2646  * neither logically nor physically contiguous. Although it may seem as an
2647  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2648  * case as we need to track IO to all buffers underlying a page in one io_end.
2649  */
2650 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2651 {
2652 	struct address_space *mapping = mpd->inode->i_mapping;
2653 	struct pagevec pvec;
2654 	unsigned int nr_pages;
2655 	long left = mpd->wbc->nr_to_write;
2656 	pgoff_t index = mpd->first_page;
2657 	pgoff_t end = mpd->last_page;
2658 	xa_mark_t tag;
2659 	int i, err = 0;
2660 	int blkbits = mpd->inode->i_blkbits;
2661 	ext4_lblk_t lblk;
2662 	struct buffer_head *head;
2663 
2664 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2665 		tag = PAGECACHE_TAG_TOWRITE;
2666 	else
2667 		tag = PAGECACHE_TAG_DIRTY;
2668 
2669 	pagevec_init(&pvec);
2670 	mpd->map.m_len = 0;
2671 	mpd->next_page = index;
2672 	while (index <= end) {
2673 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2674 				tag);
2675 		if (nr_pages == 0)
2676 			goto out;
2677 
2678 		for (i = 0; i < nr_pages; i++) {
2679 			struct page *page = pvec.pages[i];
2680 
2681 			/*
2682 			 * Accumulated enough dirty pages? This doesn't apply
2683 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2684 			 * keep going because someone may be concurrently
2685 			 * dirtying pages, and we might have synced a lot of
2686 			 * newly appeared dirty pages, but have not synced all
2687 			 * of the old dirty pages.
2688 			 */
2689 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2690 				goto out;
2691 
2692 			/* If we can't merge this page, we are done. */
2693 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2694 				goto out;
2695 
2696 			lock_page(page);
2697 			/*
2698 			 * If the page is no longer dirty, or its mapping no
2699 			 * longer corresponds to inode we are writing (which
2700 			 * means it has been truncated or invalidated), or the
2701 			 * page is already under writeback and we are not doing
2702 			 * a data integrity writeback, skip the page
2703 			 */
2704 			if (!PageDirty(page) ||
2705 			    (PageWriteback(page) &&
2706 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2707 			    unlikely(page->mapping != mapping)) {
2708 				unlock_page(page);
2709 				continue;
2710 			}
2711 
2712 			wait_on_page_writeback(page);
2713 			BUG_ON(PageWriteback(page));
2714 
2715 			if (mpd->map.m_len == 0)
2716 				mpd->first_page = page->index;
2717 			mpd->next_page = page->index + 1;
2718 			/* Add all dirty buffers to mpd */
2719 			lblk = ((ext4_lblk_t)page->index) <<
2720 				(PAGE_SHIFT - blkbits);
2721 			head = page_buffers(page);
2722 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2723 			if (err <= 0)
2724 				goto out;
2725 			err = 0;
2726 			left--;
2727 		}
2728 		pagevec_release(&pvec);
2729 		cond_resched();
2730 	}
2731 	return 0;
2732 out:
2733 	pagevec_release(&pvec);
2734 	return err;
2735 }
2736 
2737 static int ext4_writepages(struct address_space *mapping,
2738 			   struct writeback_control *wbc)
2739 {
2740 	pgoff_t	writeback_index = 0;
2741 	long nr_to_write = wbc->nr_to_write;
2742 	int range_whole = 0;
2743 	int cycled = 1;
2744 	handle_t *handle = NULL;
2745 	struct mpage_da_data mpd;
2746 	struct inode *inode = mapping->host;
2747 	int needed_blocks, rsv_blocks = 0, ret = 0;
2748 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2749 	bool done;
2750 	struct blk_plug plug;
2751 	bool give_up_on_write = false;
2752 
2753 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2754 		return -EIO;
2755 
2756 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2757 	trace_ext4_writepages(inode, wbc);
2758 
2759 	/*
2760 	 * No pages to write? This is mainly a kludge to avoid starting
2761 	 * a transaction for special inodes like journal inode on last iput()
2762 	 * because that could violate lock ordering on umount
2763 	 */
2764 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2765 		goto out_writepages;
2766 
2767 	if (ext4_should_journal_data(inode)) {
2768 		ret = generic_writepages(mapping, wbc);
2769 		goto out_writepages;
2770 	}
2771 
2772 	/*
2773 	 * If the filesystem has aborted, it is read-only, so return
2774 	 * right away instead of dumping stack traces later on that
2775 	 * will obscure the real source of the problem.  We test
2776 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2777 	 * the latter could be true if the filesystem is mounted
2778 	 * read-only, and in that case, ext4_writepages should
2779 	 * *never* be called, so if that ever happens, we would want
2780 	 * the stack trace.
2781 	 */
2782 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2783 		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2784 		ret = -EROFS;
2785 		goto out_writepages;
2786 	}
2787 
2788 	if (ext4_should_dioread_nolock(inode)) {
2789 		/*
2790 		 * We may need to convert up to one extent per block in
2791 		 * the page and we may dirty the inode.
2792 		 */
2793 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2794 						PAGE_SIZE >> inode->i_blkbits);
2795 	}
2796 
2797 	/*
2798 	 * If we have inline data and arrive here, it means that
2799 	 * we will soon create the block for the 1st page, so
2800 	 * we'd better clear the inline data here.
2801 	 */
2802 	if (ext4_has_inline_data(inode)) {
2803 		/* Just inode will be modified... */
2804 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2805 		if (IS_ERR(handle)) {
2806 			ret = PTR_ERR(handle);
2807 			goto out_writepages;
2808 		}
2809 		BUG_ON(ext4_test_inode_state(inode,
2810 				EXT4_STATE_MAY_INLINE_DATA));
2811 		ext4_destroy_inline_data(handle, inode);
2812 		ext4_journal_stop(handle);
2813 	}
2814 
2815 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2816 		range_whole = 1;
2817 
2818 	if (wbc->range_cyclic) {
2819 		writeback_index = mapping->writeback_index;
2820 		if (writeback_index)
2821 			cycled = 0;
2822 		mpd.first_page = writeback_index;
2823 		mpd.last_page = -1;
2824 	} else {
2825 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2826 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2827 	}
2828 
2829 	mpd.inode = inode;
2830 	mpd.wbc = wbc;
2831 	ext4_io_submit_init(&mpd.io_submit, wbc);
2832 retry:
2833 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2834 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2835 	done = false;
2836 	blk_start_plug(&plug);
2837 
2838 	/*
2839 	 * First writeback pages that don't need mapping - we can avoid
2840 	 * starting a transaction unnecessarily and also avoid being blocked
2841 	 * in the block layer on device congestion while having transaction
2842 	 * started.
2843 	 */
2844 	mpd.do_map = 0;
2845 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2846 	if (!mpd.io_submit.io_end) {
2847 		ret = -ENOMEM;
2848 		goto unplug;
2849 	}
2850 	ret = mpage_prepare_extent_to_map(&mpd);
2851 	/* Unlock pages we didn't use */
2852 	mpage_release_unused_pages(&mpd, false);
2853 	/* Submit prepared bio */
2854 	ext4_io_submit(&mpd.io_submit);
2855 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2856 	mpd.io_submit.io_end = NULL;
2857 	if (ret < 0)
2858 		goto unplug;
2859 
2860 	while (!done && mpd.first_page <= mpd.last_page) {
2861 		/* For each extent of pages we use new io_end */
2862 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2863 		if (!mpd.io_submit.io_end) {
2864 			ret = -ENOMEM;
2865 			break;
2866 		}
2867 
2868 		/*
2869 		 * We have two constraints: We find one extent to map and we
2870 		 * must always write out whole page (makes a difference when
2871 		 * blocksize < pagesize) so that we don't block on IO when we
2872 		 * try to write out the rest of the page. Journalled mode is
2873 		 * not supported by delalloc.
2874 		 */
2875 		BUG_ON(ext4_should_journal_data(inode));
2876 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2877 
2878 		/* start a new transaction */
2879 		handle = ext4_journal_start_with_reserve(inode,
2880 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2881 		if (IS_ERR(handle)) {
2882 			ret = PTR_ERR(handle);
2883 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2884 			       "%ld pages, ino %lu; err %d", __func__,
2885 				wbc->nr_to_write, inode->i_ino, ret);
2886 			/* Release allocated io_end */
2887 			ext4_put_io_end(mpd.io_submit.io_end);
2888 			mpd.io_submit.io_end = NULL;
2889 			break;
2890 		}
2891 		mpd.do_map = 1;
2892 
2893 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2894 		ret = mpage_prepare_extent_to_map(&mpd);
2895 		if (!ret) {
2896 			if (mpd.map.m_len)
2897 				ret = mpage_map_and_submit_extent(handle, &mpd,
2898 					&give_up_on_write);
2899 			else {
2900 				/*
2901 				 * We scanned the whole range (or exhausted
2902 				 * nr_to_write), submitted what was mapped and
2903 				 * didn't find anything needing mapping. We are
2904 				 * done.
2905 				 */
2906 				done = true;
2907 			}
2908 		}
2909 		/*
2910 		 * Caution: If the handle is synchronous,
2911 		 * ext4_journal_stop() can wait for transaction commit
2912 		 * to finish which may depend on writeback of pages to
2913 		 * complete or on page lock to be released.  In that
2914 		 * case, we have to wait until after after we have
2915 		 * submitted all the IO, released page locks we hold,
2916 		 * and dropped io_end reference (for extent conversion
2917 		 * to be able to complete) before stopping the handle.
2918 		 */
2919 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2920 			ext4_journal_stop(handle);
2921 			handle = NULL;
2922 			mpd.do_map = 0;
2923 		}
2924 		/* Unlock pages we didn't use */
2925 		mpage_release_unused_pages(&mpd, give_up_on_write);
2926 		/* Submit prepared bio */
2927 		ext4_io_submit(&mpd.io_submit);
2928 
2929 		/*
2930 		 * Drop our io_end reference we got from init. We have
2931 		 * to be careful and use deferred io_end finishing if
2932 		 * we are still holding the transaction as we can
2933 		 * release the last reference to io_end which may end
2934 		 * up doing unwritten extent conversion.
2935 		 */
2936 		if (handle) {
2937 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2938 			ext4_journal_stop(handle);
2939 		} else
2940 			ext4_put_io_end(mpd.io_submit.io_end);
2941 		mpd.io_submit.io_end = NULL;
2942 
2943 		if (ret == -ENOSPC && sbi->s_journal) {
2944 			/*
2945 			 * Commit the transaction which would
2946 			 * free blocks released in the transaction
2947 			 * and try again
2948 			 */
2949 			jbd2_journal_force_commit_nested(sbi->s_journal);
2950 			ret = 0;
2951 			continue;
2952 		}
2953 		/* Fatal error - ENOMEM, EIO... */
2954 		if (ret)
2955 			break;
2956 	}
2957 unplug:
2958 	blk_finish_plug(&plug);
2959 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2960 		cycled = 1;
2961 		mpd.last_page = writeback_index - 1;
2962 		mpd.first_page = 0;
2963 		goto retry;
2964 	}
2965 
2966 	/* Update index */
2967 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2968 		/*
2969 		 * Set the writeback_index so that range_cyclic
2970 		 * mode will write it back later
2971 		 */
2972 		mapping->writeback_index = mpd.first_page;
2973 
2974 out_writepages:
2975 	trace_ext4_writepages_result(inode, wbc, ret,
2976 				     nr_to_write - wbc->nr_to_write);
2977 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2978 	return ret;
2979 }
2980 
2981 static int ext4_dax_writepages(struct address_space *mapping,
2982 			       struct writeback_control *wbc)
2983 {
2984 	int ret;
2985 	long nr_to_write = wbc->nr_to_write;
2986 	struct inode *inode = mapping->host;
2987 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2988 
2989 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2990 		return -EIO;
2991 
2992 	percpu_down_read(&sbi->s_journal_flag_rwsem);
2993 	trace_ext4_writepages(inode, wbc);
2994 
2995 	ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2996 	trace_ext4_writepages_result(inode, wbc, ret,
2997 				     nr_to_write - wbc->nr_to_write);
2998 	percpu_up_read(&sbi->s_journal_flag_rwsem);
2999 	return ret;
3000 }
3001 
3002 static int ext4_nonda_switch(struct super_block *sb)
3003 {
3004 	s64 free_clusters, dirty_clusters;
3005 	struct ext4_sb_info *sbi = EXT4_SB(sb);
3006 
3007 	/*
3008 	 * switch to non delalloc mode if we are running low
3009 	 * on free block. The free block accounting via percpu
3010 	 * counters can get slightly wrong with percpu_counter_batch getting
3011 	 * accumulated on each CPU without updating global counters
3012 	 * Delalloc need an accurate free block accounting. So switch
3013 	 * to non delalloc when we are near to error range.
3014 	 */
3015 	free_clusters =
3016 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3017 	dirty_clusters =
3018 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3019 	/*
3020 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
3021 	 */
3022 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3023 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3024 
3025 	if (2 * free_clusters < 3 * dirty_clusters ||
3026 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3027 		/*
3028 		 * free block count is less than 150% of dirty blocks
3029 		 * or free blocks is less than watermark
3030 		 */
3031 		return 1;
3032 	}
3033 	return 0;
3034 }
3035 
3036 /* We always reserve for an inode update; the superblock could be there too */
3037 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3038 {
3039 	if (likely(ext4_has_feature_large_file(inode->i_sb)))
3040 		return 1;
3041 
3042 	if (pos + len <= 0x7fffffffULL)
3043 		return 1;
3044 
3045 	/* We might need to update the superblock to set LARGE_FILE */
3046 	return 2;
3047 }
3048 
3049 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3050 			       loff_t pos, unsigned len, unsigned flags,
3051 			       struct page **pagep, void **fsdata)
3052 {
3053 	int ret, retries = 0;
3054 	struct page *page;
3055 	pgoff_t index;
3056 	struct inode *inode = mapping->host;
3057 	handle_t *handle;
3058 
3059 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3060 		return -EIO;
3061 
3062 	index = pos >> PAGE_SHIFT;
3063 
3064 	if (ext4_nonda_switch(inode->i_sb) ||
3065 	    S_ISLNK(inode->i_mode)) {
3066 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3067 		return ext4_write_begin(file, mapping, pos,
3068 					len, flags, pagep, fsdata);
3069 	}
3070 	*fsdata = (void *)0;
3071 	trace_ext4_da_write_begin(inode, pos, len, flags);
3072 
3073 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3074 		ret = ext4_da_write_inline_data_begin(mapping, inode,
3075 						      pos, len, flags,
3076 						      pagep, fsdata);
3077 		if (ret < 0)
3078 			return ret;
3079 		if (ret == 1)
3080 			return 0;
3081 	}
3082 
3083 	/*
3084 	 * grab_cache_page_write_begin() can take a long time if the
3085 	 * system is thrashing due to memory pressure, or if the page
3086 	 * is being written back.  So grab it first before we start
3087 	 * the transaction handle.  This also allows us to allocate
3088 	 * the page (if needed) without using GFP_NOFS.
3089 	 */
3090 retry_grab:
3091 	page = grab_cache_page_write_begin(mapping, index, flags);
3092 	if (!page)
3093 		return -ENOMEM;
3094 	unlock_page(page);
3095 
3096 	/*
3097 	 * With delayed allocation, we don't log the i_disksize update
3098 	 * if there is delayed block allocation. But we still need
3099 	 * to journalling the i_disksize update if writes to the end
3100 	 * of file which has an already mapped buffer.
3101 	 */
3102 retry_journal:
3103 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3104 				ext4_da_write_credits(inode, pos, len));
3105 	if (IS_ERR(handle)) {
3106 		put_page(page);
3107 		return PTR_ERR(handle);
3108 	}
3109 
3110 	lock_page(page);
3111 	if (page->mapping != mapping) {
3112 		/* The page got truncated from under us */
3113 		unlock_page(page);
3114 		put_page(page);
3115 		ext4_journal_stop(handle);
3116 		goto retry_grab;
3117 	}
3118 	/* In case writeback began while the page was unlocked */
3119 	wait_for_stable_page(page);
3120 
3121 #ifdef CONFIG_FS_ENCRYPTION
3122 	ret = ext4_block_write_begin(page, pos, len,
3123 				     ext4_da_get_block_prep);
3124 #else
3125 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3126 #endif
3127 	if (ret < 0) {
3128 		unlock_page(page);
3129 		ext4_journal_stop(handle);
3130 		/*
3131 		 * block_write_begin may have instantiated a few blocks
3132 		 * outside i_size.  Trim these off again. Don't need
3133 		 * i_size_read because we hold i_mutex.
3134 		 */
3135 		if (pos + len > inode->i_size)
3136 			ext4_truncate_failed_write(inode);
3137 
3138 		if (ret == -ENOSPC &&
3139 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3140 			goto retry_journal;
3141 
3142 		put_page(page);
3143 		return ret;
3144 	}
3145 
3146 	*pagep = page;
3147 	return ret;
3148 }
3149 
3150 /*
3151  * Check if we should update i_disksize
3152  * when write to the end of file but not require block allocation
3153  */
3154 static int ext4_da_should_update_i_disksize(struct page *page,
3155 					    unsigned long offset)
3156 {
3157 	struct buffer_head *bh;
3158 	struct inode *inode = page->mapping->host;
3159 	unsigned int idx;
3160 	int i;
3161 
3162 	bh = page_buffers(page);
3163 	idx = offset >> inode->i_blkbits;
3164 
3165 	for (i = 0; i < idx; i++)
3166 		bh = bh->b_this_page;
3167 
3168 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3169 		return 0;
3170 	return 1;
3171 }
3172 
3173 static int ext4_da_write_end(struct file *file,
3174 			     struct address_space *mapping,
3175 			     loff_t pos, unsigned len, unsigned copied,
3176 			     struct page *page, void *fsdata)
3177 {
3178 	struct inode *inode = mapping->host;
3179 	int ret = 0, ret2;
3180 	handle_t *handle = ext4_journal_current_handle();
3181 	loff_t new_i_size;
3182 	unsigned long start, end;
3183 	int write_mode = (int)(unsigned long)fsdata;
3184 
3185 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3186 		return ext4_write_end(file, mapping, pos,
3187 				      len, copied, page, fsdata);
3188 
3189 	trace_ext4_da_write_end(inode, pos, len, copied);
3190 	start = pos & (PAGE_SIZE - 1);
3191 	end = start + copied - 1;
3192 
3193 	/*
3194 	 * generic_write_end() will run mark_inode_dirty() if i_size
3195 	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3196 	 * into that.
3197 	 */
3198 	new_i_size = pos + copied;
3199 	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3200 		if (ext4_has_inline_data(inode) ||
3201 		    ext4_da_should_update_i_disksize(page, end)) {
3202 			ext4_update_i_disksize(inode, new_i_size);
3203 			/* We need to mark inode dirty even if
3204 			 * new_i_size is less that inode->i_size
3205 			 * bu greater than i_disksize.(hint delalloc)
3206 			 */
3207 			ext4_mark_inode_dirty(handle, inode);
3208 		}
3209 	}
3210 
3211 	if (write_mode != CONVERT_INLINE_DATA &&
3212 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3213 	    ext4_has_inline_data(inode))
3214 		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3215 						     page);
3216 	else
3217 		ret2 = generic_write_end(file, mapping, pos, len, copied,
3218 							page, fsdata);
3219 
3220 	copied = ret2;
3221 	if (ret2 < 0)
3222 		ret = ret2;
3223 	ret2 = ext4_journal_stop(handle);
3224 	if (!ret)
3225 		ret = ret2;
3226 
3227 	return ret ? ret : copied;
3228 }
3229 
3230 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3231 				   unsigned int length)
3232 {
3233 	/*
3234 	 * Drop reserved blocks
3235 	 */
3236 	BUG_ON(!PageLocked(page));
3237 	if (!page_has_buffers(page))
3238 		goto out;
3239 
3240 	ext4_da_page_release_reservation(page, offset, length);
3241 
3242 out:
3243 	ext4_invalidatepage(page, offset, length);
3244 
3245 	return;
3246 }
3247 
3248 /*
3249  * Force all delayed allocation blocks to be allocated for a given inode.
3250  */
3251 int ext4_alloc_da_blocks(struct inode *inode)
3252 {
3253 	trace_ext4_alloc_da_blocks(inode);
3254 
3255 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3256 		return 0;
3257 
3258 	/*
3259 	 * We do something simple for now.  The filemap_flush() will
3260 	 * also start triggering a write of the data blocks, which is
3261 	 * not strictly speaking necessary (and for users of
3262 	 * laptop_mode, not even desirable).  However, to do otherwise
3263 	 * would require replicating code paths in:
3264 	 *
3265 	 * ext4_writepages() ->
3266 	 *    write_cache_pages() ---> (via passed in callback function)
3267 	 *        __mpage_da_writepage() -->
3268 	 *           mpage_add_bh_to_extent()
3269 	 *           mpage_da_map_blocks()
3270 	 *
3271 	 * The problem is that write_cache_pages(), located in
3272 	 * mm/page-writeback.c, marks pages clean in preparation for
3273 	 * doing I/O, which is not desirable if we're not planning on
3274 	 * doing I/O at all.
3275 	 *
3276 	 * We could call write_cache_pages(), and then redirty all of
3277 	 * the pages by calling redirty_page_for_writepage() but that
3278 	 * would be ugly in the extreme.  So instead we would need to
3279 	 * replicate parts of the code in the above functions,
3280 	 * simplifying them because we wouldn't actually intend to
3281 	 * write out the pages, but rather only collect contiguous
3282 	 * logical block extents, call the multi-block allocator, and
3283 	 * then update the buffer heads with the block allocations.
3284 	 *
3285 	 * For now, though, we'll cheat by calling filemap_flush(),
3286 	 * which will map the blocks, and start the I/O, but not
3287 	 * actually wait for the I/O to complete.
3288 	 */
3289 	return filemap_flush(inode->i_mapping);
3290 }
3291 
3292 /*
3293  * bmap() is special.  It gets used by applications such as lilo and by
3294  * the swapper to find the on-disk block of a specific piece of data.
3295  *
3296  * Naturally, this is dangerous if the block concerned is still in the
3297  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3298  * filesystem and enables swap, then they may get a nasty shock when the
3299  * data getting swapped to that swapfile suddenly gets overwritten by
3300  * the original zero's written out previously to the journal and
3301  * awaiting writeback in the kernel's buffer cache.
3302  *
3303  * So, if we see any bmap calls here on a modified, data-journaled file,
3304  * take extra steps to flush any blocks which might be in the cache.
3305  */
3306 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3307 {
3308 	struct inode *inode = mapping->host;
3309 	journal_t *journal;
3310 	int err;
3311 
3312 	/*
3313 	 * We can get here for an inline file via the FIBMAP ioctl
3314 	 */
3315 	if (ext4_has_inline_data(inode))
3316 		return 0;
3317 
3318 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3319 			test_opt(inode->i_sb, DELALLOC)) {
3320 		/*
3321 		 * With delalloc we want to sync the file
3322 		 * so that we can make sure we allocate
3323 		 * blocks for file
3324 		 */
3325 		filemap_write_and_wait(mapping);
3326 	}
3327 
3328 	if (EXT4_JOURNAL(inode) &&
3329 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3330 		/*
3331 		 * This is a REALLY heavyweight approach, but the use of
3332 		 * bmap on dirty files is expected to be extremely rare:
3333 		 * only if we run lilo or swapon on a freshly made file
3334 		 * do we expect this to happen.
3335 		 *
3336 		 * (bmap requires CAP_SYS_RAWIO so this does not
3337 		 * represent an unprivileged user DOS attack --- we'd be
3338 		 * in trouble if mortal users could trigger this path at
3339 		 * will.)
3340 		 *
3341 		 * NB. EXT4_STATE_JDATA is not set on files other than
3342 		 * regular files.  If somebody wants to bmap a directory
3343 		 * or symlink and gets confused because the buffer
3344 		 * hasn't yet been flushed to disk, they deserve
3345 		 * everything they get.
3346 		 */
3347 
3348 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3349 		journal = EXT4_JOURNAL(inode);
3350 		jbd2_journal_lock_updates(journal);
3351 		err = jbd2_journal_flush(journal);
3352 		jbd2_journal_unlock_updates(journal);
3353 
3354 		if (err)
3355 			return 0;
3356 	}
3357 
3358 	return generic_block_bmap(mapping, block, ext4_get_block);
3359 }
3360 
3361 static int ext4_readpage(struct file *file, struct page *page)
3362 {
3363 	int ret = -EAGAIN;
3364 	struct inode *inode = page->mapping->host;
3365 
3366 	trace_ext4_readpage(page);
3367 
3368 	if (ext4_has_inline_data(inode))
3369 		ret = ext4_readpage_inline(inode, page);
3370 
3371 	if (ret == -EAGAIN)
3372 		return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3373 						false);
3374 
3375 	return ret;
3376 }
3377 
3378 static int
3379 ext4_readpages(struct file *file, struct address_space *mapping,
3380 		struct list_head *pages, unsigned nr_pages)
3381 {
3382 	struct inode *inode = mapping->host;
3383 
3384 	/* If the file has inline data, no need to do readpages. */
3385 	if (ext4_has_inline_data(inode))
3386 		return 0;
3387 
3388 	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3389 }
3390 
3391 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3392 				unsigned int length)
3393 {
3394 	trace_ext4_invalidatepage(page, offset, length);
3395 
3396 	/* No journalling happens on data buffers when this function is used */
3397 	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3398 
3399 	block_invalidatepage(page, offset, length);
3400 }
3401 
3402 static int __ext4_journalled_invalidatepage(struct page *page,
3403 					    unsigned int offset,
3404 					    unsigned int length)
3405 {
3406 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3407 
3408 	trace_ext4_journalled_invalidatepage(page, offset, length);
3409 
3410 	/*
3411 	 * If it's a full truncate we just forget about the pending dirtying
3412 	 */
3413 	if (offset == 0 && length == PAGE_SIZE)
3414 		ClearPageChecked(page);
3415 
3416 	return jbd2_journal_invalidatepage(journal, page, offset, length);
3417 }
3418 
3419 /* Wrapper for aops... */
3420 static void ext4_journalled_invalidatepage(struct page *page,
3421 					   unsigned int offset,
3422 					   unsigned int length)
3423 {
3424 	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3425 }
3426 
3427 static int ext4_releasepage(struct page *page, gfp_t wait)
3428 {
3429 	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3430 
3431 	trace_ext4_releasepage(page);
3432 
3433 	/* Page has dirty journalled data -> cannot release */
3434 	if (PageChecked(page))
3435 		return 0;
3436 	if (journal)
3437 		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3438 	else
3439 		return try_to_free_buffers(page);
3440 }
3441 
3442 static bool ext4_inode_datasync_dirty(struct inode *inode)
3443 {
3444 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3445 
3446 	if (journal)
3447 		return !jbd2_transaction_committed(journal,
3448 					EXT4_I(inode)->i_datasync_tid);
3449 	/* Any metadata buffers to write? */
3450 	if (!list_empty(&inode->i_mapping->private_list))
3451 		return true;
3452 	return inode->i_state & I_DIRTY_DATASYNC;
3453 }
3454 
3455 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3456 			    unsigned flags, struct iomap *iomap)
3457 {
3458 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3459 	unsigned int blkbits = inode->i_blkbits;
3460 	unsigned long first_block, last_block;
3461 	struct ext4_map_blocks map;
3462 	bool delalloc = false;
3463 	int ret;
3464 
3465 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3466 		return -EINVAL;
3467 	first_block = offset >> blkbits;
3468 	last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3469 			   EXT4_MAX_LOGICAL_BLOCK);
3470 
3471 	if (flags & IOMAP_REPORT) {
3472 		if (ext4_has_inline_data(inode)) {
3473 			ret = ext4_inline_data_iomap(inode, iomap);
3474 			if (ret != -EAGAIN) {
3475 				if (ret == 0 && offset >= iomap->length)
3476 					ret = -ENOENT;
3477 				return ret;
3478 			}
3479 		}
3480 	} else {
3481 		if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3482 			return -ERANGE;
3483 	}
3484 
3485 	map.m_lblk = first_block;
3486 	map.m_len = last_block - first_block + 1;
3487 
3488 	if (flags & IOMAP_REPORT) {
3489 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3490 		if (ret < 0)
3491 			return ret;
3492 
3493 		if (ret == 0) {
3494 			ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3495 			struct extent_status es;
3496 
3497 			ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3498 						  map.m_lblk, end, &es);
3499 
3500 			if (!es.es_len || es.es_lblk > end) {
3501 				/* entire range is a hole */
3502 			} else if (es.es_lblk > map.m_lblk) {
3503 				/* range starts with a hole */
3504 				map.m_len = es.es_lblk - map.m_lblk;
3505 			} else {
3506 				ext4_lblk_t offs = 0;
3507 
3508 				if (es.es_lblk < map.m_lblk)
3509 					offs = map.m_lblk - es.es_lblk;
3510 				map.m_lblk = es.es_lblk + offs;
3511 				map.m_len = es.es_len - offs;
3512 				delalloc = true;
3513 			}
3514 		}
3515 	} else if (flags & IOMAP_WRITE) {
3516 		int dio_credits;
3517 		handle_t *handle;
3518 		int retries = 0;
3519 
3520 		/* Trim mapping request to maximum we can map at once for DIO */
3521 		if (map.m_len > DIO_MAX_BLOCKS)
3522 			map.m_len = DIO_MAX_BLOCKS;
3523 		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3524 retry:
3525 		/*
3526 		 * Either we allocate blocks and then we don't get unwritten
3527 		 * extent so we have reserved enough credits, or the blocks
3528 		 * are already allocated and unwritten and in that case
3529 		 * extent conversion fits in the credits as well.
3530 		 */
3531 		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3532 					    dio_credits);
3533 		if (IS_ERR(handle))
3534 			return PTR_ERR(handle);
3535 
3536 		ret = ext4_map_blocks(handle, inode, &map,
3537 				      EXT4_GET_BLOCKS_CREATE_ZERO);
3538 		if (ret < 0) {
3539 			ext4_journal_stop(handle);
3540 			if (ret == -ENOSPC &&
3541 			    ext4_should_retry_alloc(inode->i_sb, &retries))
3542 				goto retry;
3543 			return ret;
3544 		}
3545 
3546 		/*
3547 		 * If we added blocks beyond i_size, we need to make sure they
3548 		 * will get truncated if we crash before updating i_size in
3549 		 * ext4_iomap_end(). For faults we don't need to do that (and
3550 		 * even cannot because for orphan list operations inode_lock is
3551 		 * required) - if we happen to instantiate block beyond i_size,
3552 		 * it is because we race with truncate which has already added
3553 		 * the inode to the orphan list.
3554 		 */
3555 		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3556 		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3557 			int err;
3558 
3559 			err = ext4_orphan_add(handle, inode);
3560 			if (err < 0) {
3561 				ext4_journal_stop(handle);
3562 				return err;
3563 			}
3564 		}
3565 		ext4_journal_stop(handle);
3566 	} else {
3567 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3568 		if (ret < 0)
3569 			return ret;
3570 	}
3571 
3572 	iomap->flags = 0;
3573 	if (ext4_inode_datasync_dirty(inode))
3574 		iomap->flags |= IOMAP_F_DIRTY;
3575 	iomap->bdev = inode->i_sb->s_bdev;
3576 	iomap->dax_dev = sbi->s_daxdev;
3577 	iomap->offset = (u64)first_block << blkbits;
3578 	iomap->length = (u64)map.m_len << blkbits;
3579 
3580 	if (ret == 0) {
3581 		iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3582 		iomap->addr = IOMAP_NULL_ADDR;
3583 	} else {
3584 		if (map.m_flags & EXT4_MAP_MAPPED) {
3585 			iomap->type = IOMAP_MAPPED;
3586 		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3587 			iomap->type = IOMAP_UNWRITTEN;
3588 		} else {
3589 			WARN_ON_ONCE(1);
3590 			return -EIO;
3591 		}
3592 		iomap->addr = (u64)map.m_pblk << blkbits;
3593 	}
3594 
3595 	if (map.m_flags & EXT4_MAP_NEW)
3596 		iomap->flags |= IOMAP_F_NEW;
3597 
3598 	return 0;
3599 }
3600 
3601 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3602 			  ssize_t written, unsigned flags, struct iomap *iomap)
3603 {
3604 	int ret = 0;
3605 	handle_t *handle;
3606 	int blkbits = inode->i_blkbits;
3607 	bool truncate = false;
3608 
3609 	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3610 		return 0;
3611 
3612 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3613 	if (IS_ERR(handle)) {
3614 		ret = PTR_ERR(handle);
3615 		goto orphan_del;
3616 	}
3617 	if (ext4_update_inode_size(inode, offset + written))
3618 		ext4_mark_inode_dirty(handle, inode);
3619 	/*
3620 	 * We may need to truncate allocated but not written blocks beyond EOF.
3621 	 */
3622 	if (iomap->offset + iomap->length >
3623 	    ALIGN(inode->i_size, 1 << blkbits)) {
3624 		ext4_lblk_t written_blk, end_blk;
3625 
3626 		written_blk = (offset + written) >> blkbits;
3627 		end_blk = (offset + length) >> blkbits;
3628 		if (written_blk < end_blk && ext4_can_truncate(inode))
3629 			truncate = true;
3630 	}
3631 	/*
3632 	 * Remove inode from orphan list if we were extending a inode and
3633 	 * everything went fine.
3634 	 */
3635 	if (!truncate && inode->i_nlink &&
3636 	    !list_empty(&EXT4_I(inode)->i_orphan))
3637 		ext4_orphan_del(handle, inode);
3638 	ext4_journal_stop(handle);
3639 	if (truncate) {
3640 		ext4_truncate_failed_write(inode);
3641 orphan_del:
3642 		/*
3643 		 * If truncate failed early the inode might still be on the
3644 		 * orphan list; we need to make sure the inode is removed from
3645 		 * the orphan list in that case.
3646 		 */
3647 		if (inode->i_nlink)
3648 			ext4_orphan_del(NULL, inode);
3649 	}
3650 	return ret;
3651 }
3652 
3653 const struct iomap_ops ext4_iomap_ops = {
3654 	.iomap_begin		= ext4_iomap_begin,
3655 	.iomap_end		= ext4_iomap_end,
3656 };
3657 
3658 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3659 			    ssize_t size, void *private)
3660 {
3661         ext4_io_end_t *io_end = private;
3662 
3663 	/* if not async direct IO just return */
3664 	if (!io_end)
3665 		return 0;
3666 
3667 	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3668 		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3669 		  io_end, io_end->inode->i_ino, iocb, offset, size);
3670 
3671 	/*
3672 	 * Error during AIO DIO. We cannot convert unwritten extents as the
3673 	 * data was not written. Just clear the unwritten flag and drop io_end.
3674 	 */
3675 	if (size <= 0) {
3676 		ext4_clear_io_unwritten_flag(io_end);
3677 		size = 0;
3678 	}
3679 	io_end->offset = offset;
3680 	io_end->size = size;
3681 	ext4_put_io_end(io_end);
3682 
3683 	return 0;
3684 }
3685 
3686 /*
3687  * Handling of direct IO writes.
3688  *
3689  * For ext4 extent files, ext4 will do direct-io write even to holes,
3690  * preallocated extents, and those write extend the file, no need to
3691  * fall back to buffered IO.
3692  *
3693  * For holes, we fallocate those blocks, mark them as unwritten
3694  * If those blocks were preallocated, we mark sure they are split, but
3695  * still keep the range to write as unwritten.
3696  *
3697  * The unwritten extents will be converted to written when DIO is completed.
3698  * For async direct IO, since the IO may still pending when return, we
3699  * set up an end_io call back function, which will do the conversion
3700  * when async direct IO completed.
3701  *
3702  * If the O_DIRECT write will extend the file then add this inode to the
3703  * orphan list.  So recovery will truncate it back to the original size
3704  * if the machine crashes during the write.
3705  *
3706  */
3707 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3708 {
3709 	struct file *file = iocb->ki_filp;
3710 	struct inode *inode = file->f_mapping->host;
3711 	struct ext4_inode_info *ei = EXT4_I(inode);
3712 	ssize_t ret;
3713 	loff_t offset = iocb->ki_pos;
3714 	size_t count = iov_iter_count(iter);
3715 	int overwrite = 0;
3716 	get_block_t *get_block_func = NULL;
3717 	int dio_flags = 0;
3718 	loff_t final_size = offset + count;
3719 	int orphan = 0;
3720 	handle_t *handle;
3721 
3722 	if (final_size > inode->i_size || final_size > ei->i_disksize) {
3723 		/* Credits for sb + inode write */
3724 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3725 		if (IS_ERR(handle)) {
3726 			ret = PTR_ERR(handle);
3727 			goto out;
3728 		}
3729 		ret = ext4_orphan_add(handle, inode);
3730 		if (ret) {
3731 			ext4_journal_stop(handle);
3732 			goto out;
3733 		}
3734 		orphan = 1;
3735 		ext4_update_i_disksize(inode, inode->i_size);
3736 		ext4_journal_stop(handle);
3737 	}
3738 
3739 	BUG_ON(iocb->private == NULL);
3740 
3741 	/*
3742 	 * Make all waiters for direct IO properly wait also for extent
3743 	 * conversion. This also disallows race between truncate() and
3744 	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3745 	 */
3746 	inode_dio_begin(inode);
3747 
3748 	/* If we do a overwrite dio, i_mutex locking can be released */
3749 	overwrite = *((int *)iocb->private);
3750 
3751 	if (overwrite)
3752 		inode_unlock(inode);
3753 
3754 	/*
3755 	 * For extent mapped files we could direct write to holes and fallocate.
3756 	 *
3757 	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3758 	 * parallel buffered read to expose the stale data before DIO complete
3759 	 * the data IO.
3760 	 *
3761 	 * As to previously fallocated extents, ext4 get_block will just simply
3762 	 * mark the buffer mapped but still keep the extents unwritten.
3763 	 *
3764 	 * For non AIO case, we will convert those unwritten extents to written
3765 	 * after return back from blockdev_direct_IO. That way we save us from
3766 	 * allocating io_end structure and also the overhead of offloading
3767 	 * the extent convertion to a workqueue.
3768 	 *
3769 	 * For async DIO, the conversion needs to be deferred when the
3770 	 * IO is completed. The ext4 end_io callback function will be
3771 	 * called to take care of the conversion work.  Here for async
3772 	 * case, we allocate an io_end structure to hook to the iocb.
3773 	 */
3774 	iocb->private = NULL;
3775 	if (overwrite)
3776 		get_block_func = ext4_dio_get_block_overwrite;
3777 	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3778 		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3779 		get_block_func = ext4_dio_get_block;
3780 		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3781 	} else if (is_sync_kiocb(iocb)) {
3782 		get_block_func = ext4_dio_get_block_unwritten_sync;
3783 		dio_flags = DIO_LOCKING;
3784 	} else {
3785 		get_block_func = ext4_dio_get_block_unwritten_async;
3786 		dio_flags = DIO_LOCKING;
3787 	}
3788 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3789 				   get_block_func, ext4_end_io_dio, NULL,
3790 				   dio_flags);
3791 
3792 	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3793 						EXT4_STATE_DIO_UNWRITTEN)) {
3794 		int err;
3795 		/*
3796 		 * for non AIO case, since the IO is already
3797 		 * completed, we could do the conversion right here
3798 		 */
3799 		err = ext4_convert_unwritten_extents(NULL, inode,
3800 						     offset, ret);
3801 		if (err < 0)
3802 			ret = err;
3803 		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3804 	}
3805 
3806 	inode_dio_end(inode);
3807 	/* take i_mutex locking again if we do a ovewrite dio */
3808 	if (overwrite)
3809 		inode_lock(inode);
3810 
3811 	if (ret < 0 && final_size > inode->i_size)
3812 		ext4_truncate_failed_write(inode);
3813 
3814 	/* Handle extending of i_size after direct IO write */
3815 	if (orphan) {
3816 		int err;
3817 
3818 		/* Credits for sb + inode write */
3819 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3820 		if (IS_ERR(handle)) {
3821 			/*
3822 			 * We wrote the data but cannot extend
3823 			 * i_size. Bail out. In async io case, we do
3824 			 * not return error here because we have
3825 			 * already submmitted the corresponding
3826 			 * bio. Returning error here makes the caller
3827 			 * think that this IO is done and failed
3828 			 * resulting in race with bio's completion
3829 			 * handler.
3830 			 */
3831 			if (!ret)
3832 				ret = PTR_ERR(handle);
3833 			if (inode->i_nlink)
3834 				ext4_orphan_del(NULL, inode);
3835 
3836 			goto out;
3837 		}
3838 		if (inode->i_nlink)
3839 			ext4_orphan_del(handle, inode);
3840 		if (ret > 0) {
3841 			loff_t end = offset + ret;
3842 			if (end > inode->i_size || end > ei->i_disksize) {
3843 				ext4_update_i_disksize(inode, end);
3844 				if (end > inode->i_size)
3845 					i_size_write(inode, end);
3846 				/*
3847 				 * We're going to return a positive `ret'
3848 				 * here due to non-zero-length I/O, so there's
3849 				 * no way of reporting error returns from
3850 				 * ext4_mark_inode_dirty() to userspace.  So
3851 				 * ignore it.
3852 				 */
3853 				ext4_mark_inode_dirty(handle, inode);
3854 			}
3855 		}
3856 		err = ext4_journal_stop(handle);
3857 		if (ret == 0)
3858 			ret = err;
3859 	}
3860 out:
3861 	return ret;
3862 }
3863 
3864 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3865 {
3866 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3867 	struct inode *inode = mapping->host;
3868 	size_t count = iov_iter_count(iter);
3869 	ssize_t ret;
3870 
3871 	/*
3872 	 * Shared inode_lock is enough for us - it protects against concurrent
3873 	 * writes & truncates and since we take care of writing back page cache,
3874 	 * we are protected against page writeback as well.
3875 	 */
3876 	inode_lock_shared(inode);
3877 	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3878 					   iocb->ki_pos + count - 1);
3879 	if (ret)
3880 		goto out_unlock;
3881 	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3882 				   iter, ext4_dio_get_block, NULL, NULL, 0);
3883 out_unlock:
3884 	inode_unlock_shared(inode);
3885 	return ret;
3886 }
3887 
3888 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3889 {
3890 	struct file *file = iocb->ki_filp;
3891 	struct inode *inode = file->f_mapping->host;
3892 	size_t count = iov_iter_count(iter);
3893 	loff_t offset = iocb->ki_pos;
3894 	ssize_t ret;
3895 
3896 #ifdef CONFIG_FS_ENCRYPTION
3897 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
3898 		return 0;
3899 #endif
3900 
3901 	/*
3902 	 * If we are doing data journalling we don't support O_DIRECT
3903 	 */
3904 	if (ext4_should_journal_data(inode))
3905 		return 0;
3906 
3907 	/* Let buffer I/O handle the inline data case. */
3908 	if (ext4_has_inline_data(inode))
3909 		return 0;
3910 
3911 	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3912 	if (iov_iter_rw(iter) == READ)
3913 		ret = ext4_direct_IO_read(iocb, iter);
3914 	else
3915 		ret = ext4_direct_IO_write(iocb, iter);
3916 	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3917 	return ret;
3918 }
3919 
3920 /*
3921  * Pages can be marked dirty completely asynchronously from ext4's journalling
3922  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3923  * much here because ->set_page_dirty is called under VFS locks.  The page is
3924  * not necessarily locked.
3925  *
3926  * We cannot just dirty the page and leave attached buffers clean, because the
3927  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3928  * or jbddirty because all the journalling code will explode.
3929  *
3930  * So what we do is to mark the page "pending dirty" and next time writepage
3931  * is called, propagate that into the buffers appropriately.
3932  */
3933 static int ext4_journalled_set_page_dirty(struct page *page)
3934 {
3935 	SetPageChecked(page);
3936 	return __set_page_dirty_nobuffers(page);
3937 }
3938 
3939 static int ext4_set_page_dirty(struct page *page)
3940 {
3941 	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3942 	WARN_ON_ONCE(!page_has_buffers(page));
3943 	return __set_page_dirty_buffers(page);
3944 }
3945 
3946 static const struct address_space_operations ext4_aops = {
3947 	.readpage		= ext4_readpage,
3948 	.readpages		= ext4_readpages,
3949 	.writepage		= ext4_writepage,
3950 	.writepages		= ext4_writepages,
3951 	.write_begin		= ext4_write_begin,
3952 	.write_end		= ext4_write_end,
3953 	.set_page_dirty		= ext4_set_page_dirty,
3954 	.bmap			= ext4_bmap,
3955 	.invalidatepage		= ext4_invalidatepage,
3956 	.releasepage		= ext4_releasepage,
3957 	.direct_IO		= ext4_direct_IO,
3958 	.migratepage		= buffer_migrate_page,
3959 	.is_partially_uptodate  = block_is_partially_uptodate,
3960 	.error_remove_page	= generic_error_remove_page,
3961 };
3962 
3963 static const struct address_space_operations ext4_journalled_aops = {
3964 	.readpage		= ext4_readpage,
3965 	.readpages		= ext4_readpages,
3966 	.writepage		= ext4_writepage,
3967 	.writepages		= ext4_writepages,
3968 	.write_begin		= ext4_write_begin,
3969 	.write_end		= ext4_journalled_write_end,
3970 	.set_page_dirty		= ext4_journalled_set_page_dirty,
3971 	.bmap			= ext4_bmap,
3972 	.invalidatepage		= ext4_journalled_invalidatepage,
3973 	.releasepage		= ext4_releasepage,
3974 	.direct_IO		= ext4_direct_IO,
3975 	.is_partially_uptodate  = block_is_partially_uptodate,
3976 	.error_remove_page	= generic_error_remove_page,
3977 };
3978 
3979 static const struct address_space_operations ext4_da_aops = {
3980 	.readpage		= ext4_readpage,
3981 	.readpages		= ext4_readpages,
3982 	.writepage		= ext4_writepage,
3983 	.writepages		= ext4_writepages,
3984 	.write_begin		= ext4_da_write_begin,
3985 	.write_end		= ext4_da_write_end,
3986 	.set_page_dirty		= ext4_set_page_dirty,
3987 	.bmap			= ext4_bmap,
3988 	.invalidatepage		= ext4_da_invalidatepage,
3989 	.releasepage		= ext4_releasepage,
3990 	.direct_IO		= ext4_direct_IO,
3991 	.migratepage		= buffer_migrate_page,
3992 	.is_partially_uptodate  = block_is_partially_uptodate,
3993 	.error_remove_page	= generic_error_remove_page,
3994 };
3995 
3996 static const struct address_space_operations ext4_dax_aops = {
3997 	.writepages		= ext4_dax_writepages,
3998 	.direct_IO		= noop_direct_IO,
3999 	.set_page_dirty		= noop_set_page_dirty,
4000 	.bmap			= ext4_bmap,
4001 	.invalidatepage		= noop_invalidatepage,
4002 };
4003 
4004 void ext4_set_aops(struct inode *inode)
4005 {
4006 	switch (ext4_inode_journal_mode(inode)) {
4007 	case EXT4_INODE_ORDERED_DATA_MODE:
4008 	case EXT4_INODE_WRITEBACK_DATA_MODE:
4009 		break;
4010 	case EXT4_INODE_JOURNAL_DATA_MODE:
4011 		inode->i_mapping->a_ops = &ext4_journalled_aops;
4012 		return;
4013 	default:
4014 		BUG();
4015 	}
4016 	if (IS_DAX(inode))
4017 		inode->i_mapping->a_ops = &ext4_dax_aops;
4018 	else if (test_opt(inode->i_sb, DELALLOC))
4019 		inode->i_mapping->a_ops = &ext4_da_aops;
4020 	else
4021 		inode->i_mapping->a_ops = &ext4_aops;
4022 }
4023 
4024 static int __ext4_block_zero_page_range(handle_t *handle,
4025 		struct address_space *mapping, loff_t from, loff_t length)
4026 {
4027 	ext4_fsblk_t index = from >> PAGE_SHIFT;
4028 	unsigned offset = from & (PAGE_SIZE-1);
4029 	unsigned blocksize, pos;
4030 	ext4_lblk_t iblock;
4031 	struct inode *inode = mapping->host;
4032 	struct buffer_head *bh;
4033 	struct page *page;
4034 	int err = 0;
4035 
4036 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
4037 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
4038 	if (!page)
4039 		return -ENOMEM;
4040 
4041 	blocksize = inode->i_sb->s_blocksize;
4042 
4043 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4044 
4045 	if (!page_has_buffers(page))
4046 		create_empty_buffers(page, blocksize, 0);
4047 
4048 	/* Find the buffer that contains "offset" */
4049 	bh = page_buffers(page);
4050 	pos = blocksize;
4051 	while (offset >= pos) {
4052 		bh = bh->b_this_page;
4053 		iblock++;
4054 		pos += blocksize;
4055 	}
4056 	if (buffer_freed(bh)) {
4057 		BUFFER_TRACE(bh, "freed: skip");
4058 		goto unlock;
4059 	}
4060 	if (!buffer_mapped(bh)) {
4061 		BUFFER_TRACE(bh, "unmapped");
4062 		ext4_get_block(inode, iblock, bh, 0);
4063 		/* unmapped? It's a hole - nothing to do */
4064 		if (!buffer_mapped(bh)) {
4065 			BUFFER_TRACE(bh, "still unmapped");
4066 			goto unlock;
4067 		}
4068 	}
4069 
4070 	/* Ok, it's mapped. Make sure it's up-to-date */
4071 	if (PageUptodate(page))
4072 		set_buffer_uptodate(bh);
4073 
4074 	if (!buffer_uptodate(bh)) {
4075 		err = -EIO;
4076 		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4077 		wait_on_buffer(bh);
4078 		/* Uhhuh. Read error. Complain and punt. */
4079 		if (!buffer_uptodate(bh))
4080 			goto unlock;
4081 		if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
4082 			/* We expect the key to be set. */
4083 			BUG_ON(!fscrypt_has_encryption_key(inode));
4084 			WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
4085 					page, blocksize, bh_offset(bh)));
4086 		}
4087 	}
4088 	if (ext4_should_journal_data(inode)) {
4089 		BUFFER_TRACE(bh, "get write access");
4090 		err = ext4_journal_get_write_access(handle, bh);
4091 		if (err)
4092 			goto unlock;
4093 	}
4094 	zero_user(page, offset, length);
4095 	BUFFER_TRACE(bh, "zeroed end of block");
4096 
4097 	if (ext4_should_journal_data(inode)) {
4098 		err = ext4_handle_dirty_metadata(handle, inode, bh);
4099 	} else {
4100 		err = 0;
4101 		mark_buffer_dirty(bh);
4102 		if (ext4_should_order_data(inode))
4103 			err = ext4_jbd2_inode_add_write(handle, inode, from,
4104 					length);
4105 	}
4106 
4107 unlock:
4108 	unlock_page(page);
4109 	put_page(page);
4110 	return err;
4111 }
4112 
4113 /*
4114  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4115  * starting from file offset 'from'.  The range to be zero'd must
4116  * be contained with in one block.  If the specified range exceeds
4117  * the end of the block it will be shortened to end of the block
4118  * that cooresponds to 'from'
4119  */
4120 static int ext4_block_zero_page_range(handle_t *handle,
4121 		struct address_space *mapping, loff_t from, loff_t length)
4122 {
4123 	struct inode *inode = mapping->host;
4124 	unsigned offset = from & (PAGE_SIZE-1);
4125 	unsigned blocksize = inode->i_sb->s_blocksize;
4126 	unsigned max = blocksize - (offset & (blocksize - 1));
4127 
4128 	/*
4129 	 * correct length if it does not fall between
4130 	 * 'from' and the end of the block
4131 	 */
4132 	if (length > max || length < 0)
4133 		length = max;
4134 
4135 	if (IS_DAX(inode)) {
4136 		return iomap_zero_range(inode, from, length, NULL,
4137 					&ext4_iomap_ops);
4138 	}
4139 	return __ext4_block_zero_page_range(handle, mapping, from, length);
4140 }
4141 
4142 /*
4143  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4144  * up to the end of the block which corresponds to `from'.
4145  * This required during truncate. We need to physically zero the tail end
4146  * of that block so it doesn't yield old data if the file is later grown.
4147  */
4148 static int ext4_block_truncate_page(handle_t *handle,
4149 		struct address_space *mapping, loff_t from)
4150 {
4151 	unsigned offset = from & (PAGE_SIZE-1);
4152 	unsigned length;
4153 	unsigned blocksize;
4154 	struct inode *inode = mapping->host;
4155 
4156 	/* If we are processing an encrypted inode during orphan list handling */
4157 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4158 		return 0;
4159 
4160 	blocksize = inode->i_sb->s_blocksize;
4161 	length = blocksize - (offset & (blocksize - 1));
4162 
4163 	return ext4_block_zero_page_range(handle, mapping, from, length);
4164 }
4165 
4166 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4167 			     loff_t lstart, loff_t length)
4168 {
4169 	struct super_block *sb = inode->i_sb;
4170 	struct address_space *mapping = inode->i_mapping;
4171 	unsigned partial_start, partial_end;
4172 	ext4_fsblk_t start, end;
4173 	loff_t byte_end = (lstart + length - 1);
4174 	int err = 0;
4175 
4176 	partial_start = lstart & (sb->s_blocksize - 1);
4177 	partial_end = byte_end & (sb->s_blocksize - 1);
4178 
4179 	start = lstart >> sb->s_blocksize_bits;
4180 	end = byte_end >> sb->s_blocksize_bits;
4181 
4182 	/* Handle partial zero within the single block */
4183 	if (start == end &&
4184 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4185 		err = ext4_block_zero_page_range(handle, mapping,
4186 						 lstart, length);
4187 		return err;
4188 	}
4189 	/* Handle partial zero out on the start of the range */
4190 	if (partial_start) {
4191 		err = ext4_block_zero_page_range(handle, mapping,
4192 						 lstart, sb->s_blocksize);
4193 		if (err)
4194 			return err;
4195 	}
4196 	/* Handle partial zero out on the end of the range */
4197 	if (partial_end != sb->s_blocksize - 1)
4198 		err = ext4_block_zero_page_range(handle, mapping,
4199 						 byte_end - partial_end,
4200 						 partial_end + 1);
4201 	return err;
4202 }
4203 
4204 int ext4_can_truncate(struct inode *inode)
4205 {
4206 	if (S_ISREG(inode->i_mode))
4207 		return 1;
4208 	if (S_ISDIR(inode->i_mode))
4209 		return 1;
4210 	if (S_ISLNK(inode->i_mode))
4211 		return !ext4_inode_is_fast_symlink(inode);
4212 	return 0;
4213 }
4214 
4215 /*
4216  * We have to make sure i_disksize gets properly updated before we truncate
4217  * page cache due to hole punching or zero range. Otherwise i_disksize update
4218  * can get lost as it may have been postponed to submission of writeback but
4219  * that will never happen after we truncate page cache.
4220  */
4221 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4222 				      loff_t len)
4223 {
4224 	handle_t *handle;
4225 	loff_t size = i_size_read(inode);
4226 
4227 	WARN_ON(!inode_is_locked(inode));
4228 	if (offset > size || offset + len < size)
4229 		return 0;
4230 
4231 	if (EXT4_I(inode)->i_disksize >= size)
4232 		return 0;
4233 
4234 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4235 	if (IS_ERR(handle))
4236 		return PTR_ERR(handle);
4237 	ext4_update_i_disksize(inode, size);
4238 	ext4_mark_inode_dirty(handle, inode);
4239 	ext4_journal_stop(handle);
4240 
4241 	return 0;
4242 }
4243 
4244 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4245 {
4246 	up_write(&ei->i_mmap_sem);
4247 	schedule();
4248 	down_write(&ei->i_mmap_sem);
4249 }
4250 
4251 int ext4_break_layouts(struct inode *inode)
4252 {
4253 	struct ext4_inode_info *ei = EXT4_I(inode);
4254 	struct page *page;
4255 	int error;
4256 
4257 	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4258 		return -EINVAL;
4259 
4260 	do {
4261 		page = dax_layout_busy_page(inode->i_mapping);
4262 		if (!page)
4263 			return 0;
4264 
4265 		error = ___wait_var_event(&page->_refcount,
4266 				atomic_read(&page->_refcount) == 1,
4267 				TASK_INTERRUPTIBLE, 0, 0,
4268 				ext4_wait_dax_page(ei));
4269 	} while (error == 0);
4270 
4271 	return error;
4272 }
4273 
4274 /*
4275  * ext4_punch_hole: punches a hole in a file by releasing the blocks
4276  * associated with the given offset and length
4277  *
4278  * @inode:  File inode
4279  * @offset: The offset where the hole will begin
4280  * @len:    The length of the hole
4281  *
4282  * Returns: 0 on success or negative on failure
4283  */
4284 
4285 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4286 {
4287 	struct super_block *sb = inode->i_sb;
4288 	ext4_lblk_t first_block, stop_block;
4289 	struct address_space *mapping = inode->i_mapping;
4290 	loff_t first_block_offset, last_block_offset;
4291 	handle_t *handle;
4292 	unsigned int credits;
4293 	int ret = 0;
4294 
4295 	if (!S_ISREG(inode->i_mode))
4296 		return -EOPNOTSUPP;
4297 
4298 	trace_ext4_punch_hole(inode, offset, length, 0);
4299 
4300 	/*
4301 	 * Write out all dirty pages to avoid race conditions
4302 	 * Then release them.
4303 	 */
4304 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4305 		ret = filemap_write_and_wait_range(mapping, offset,
4306 						   offset + length - 1);
4307 		if (ret)
4308 			return ret;
4309 	}
4310 
4311 	inode_lock(inode);
4312 
4313 	/* No need to punch hole beyond i_size */
4314 	if (offset >= inode->i_size)
4315 		goto out_mutex;
4316 
4317 	/*
4318 	 * If the hole extends beyond i_size, set the hole
4319 	 * to end after the page that contains i_size
4320 	 */
4321 	if (offset + length > inode->i_size) {
4322 		length = inode->i_size +
4323 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4324 		   offset;
4325 	}
4326 
4327 	if (offset & (sb->s_blocksize - 1) ||
4328 	    (offset + length) & (sb->s_blocksize - 1)) {
4329 		/*
4330 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4331 		 * partial block
4332 		 */
4333 		ret = ext4_inode_attach_jinode(inode);
4334 		if (ret < 0)
4335 			goto out_mutex;
4336 
4337 	}
4338 
4339 	/* Wait all existing dio workers, newcomers will block on i_mutex */
4340 	inode_dio_wait(inode);
4341 
4342 	/*
4343 	 * Prevent page faults from reinstantiating pages we have released from
4344 	 * page cache.
4345 	 */
4346 	down_write(&EXT4_I(inode)->i_mmap_sem);
4347 
4348 	ret = ext4_break_layouts(inode);
4349 	if (ret)
4350 		goto out_dio;
4351 
4352 	first_block_offset = round_up(offset, sb->s_blocksize);
4353 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4354 
4355 	/* Now release the pages and zero block aligned part of pages*/
4356 	if (last_block_offset > first_block_offset) {
4357 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4358 		if (ret)
4359 			goto out_dio;
4360 		truncate_pagecache_range(inode, first_block_offset,
4361 					 last_block_offset);
4362 	}
4363 
4364 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4365 		credits = ext4_writepage_trans_blocks(inode);
4366 	else
4367 		credits = ext4_blocks_for_truncate(inode);
4368 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4369 	if (IS_ERR(handle)) {
4370 		ret = PTR_ERR(handle);
4371 		ext4_std_error(sb, ret);
4372 		goto out_dio;
4373 	}
4374 
4375 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4376 				       length);
4377 	if (ret)
4378 		goto out_stop;
4379 
4380 	first_block = (offset + sb->s_blocksize - 1) >>
4381 		EXT4_BLOCK_SIZE_BITS(sb);
4382 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4383 
4384 	/* If there are blocks to remove, do it */
4385 	if (stop_block > first_block) {
4386 
4387 		down_write(&EXT4_I(inode)->i_data_sem);
4388 		ext4_discard_preallocations(inode);
4389 
4390 		ret = ext4_es_remove_extent(inode, first_block,
4391 					    stop_block - first_block);
4392 		if (ret) {
4393 			up_write(&EXT4_I(inode)->i_data_sem);
4394 			goto out_stop;
4395 		}
4396 
4397 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4398 			ret = ext4_ext_remove_space(inode, first_block,
4399 						    stop_block - 1);
4400 		else
4401 			ret = ext4_ind_remove_space(handle, inode, first_block,
4402 						    stop_block);
4403 
4404 		up_write(&EXT4_I(inode)->i_data_sem);
4405 	}
4406 	if (IS_SYNC(inode))
4407 		ext4_handle_sync(handle);
4408 
4409 	inode->i_mtime = inode->i_ctime = current_time(inode);
4410 	ext4_mark_inode_dirty(handle, inode);
4411 	if (ret >= 0)
4412 		ext4_update_inode_fsync_trans(handle, inode, 1);
4413 out_stop:
4414 	ext4_journal_stop(handle);
4415 out_dio:
4416 	up_write(&EXT4_I(inode)->i_mmap_sem);
4417 out_mutex:
4418 	inode_unlock(inode);
4419 	return ret;
4420 }
4421 
4422 int ext4_inode_attach_jinode(struct inode *inode)
4423 {
4424 	struct ext4_inode_info *ei = EXT4_I(inode);
4425 	struct jbd2_inode *jinode;
4426 
4427 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4428 		return 0;
4429 
4430 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4431 	spin_lock(&inode->i_lock);
4432 	if (!ei->jinode) {
4433 		if (!jinode) {
4434 			spin_unlock(&inode->i_lock);
4435 			return -ENOMEM;
4436 		}
4437 		ei->jinode = jinode;
4438 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4439 		jinode = NULL;
4440 	}
4441 	spin_unlock(&inode->i_lock);
4442 	if (unlikely(jinode != NULL))
4443 		jbd2_free_inode(jinode);
4444 	return 0;
4445 }
4446 
4447 /*
4448  * ext4_truncate()
4449  *
4450  * We block out ext4_get_block() block instantiations across the entire
4451  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4452  * simultaneously on behalf of the same inode.
4453  *
4454  * As we work through the truncate and commit bits of it to the journal there
4455  * is one core, guiding principle: the file's tree must always be consistent on
4456  * disk.  We must be able to restart the truncate after a crash.
4457  *
4458  * The file's tree may be transiently inconsistent in memory (although it
4459  * probably isn't), but whenever we close off and commit a journal transaction,
4460  * the contents of (the filesystem + the journal) must be consistent and
4461  * restartable.  It's pretty simple, really: bottom up, right to left (although
4462  * left-to-right works OK too).
4463  *
4464  * Note that at recovery time, journal replay occurs *before* the restart of
4465  * truncate against the orphan inode list.
4466  *
4467  * The committed inode has the new, desired i_size (which is the same as
4468  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4469  * that this inode's truncate did not complete and it will again call
4470  * ext4_truncate() to have another go.  So there will be instantiated blocks
4471  * to the right of the truncation point in a crashed ext4 filesystem.  But
4472  * that's fine - as long as they are linked from the inode, the post-crash
4473  * ext4_truncate() run will find them and release them.
4474  */
4475 int ext4_truncate(struct inode *inode)
4476 {
4477 	struct ext4_inode_info *ei = EXT4_I(inode);
4478 	unsigned int credits;
4479 	int err = 0;
4480 	handle_t *handle;
4481 	struct address_space *mapping = inode->i_mapping;
4482 
4483 	/*
4484 	 * There is a possibility that we're either freeing the inode
4485 	 * or it's a completely new inode. In those cases we might not
4486 	 * have i_mutex locked because it's not necessary.
4487 	 */
4488 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4489 		WARN_ON(!inode_is_locked(inode));
4490 	trace_ext4_truncate_enter(inode);
4491 
4492 	if (!ext4_can_truncate(inode))
4493 		return 0;
4494 
4495 	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4496 
4497 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4498 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4499 
4500 	if (ext4_has_inline_data(inode)) {
4501 		int has_inline = 1;
4502 
4503 		err = ext4_inline_data_truncate(inode, &has_inline);
4504 		if (err)
4505 			return err;
4506 		if (has_inline)
4507 			return 0;
4508 	}
4509 
4510 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4511 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4512 		if (ext4_inode_attach_jinode(inode) < 0)
4513 			return 0;
4514 	}
4515 
4516 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4517 		credits = ext4_writepage_trans_blocks(inode);
4518 	else
4519 		credits = ext4_blocks_for_truncate(inode);
4520 
4521 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4522 	if (IS_ERR(handle))
4523 		return PTR_ERR(handle);
4524 
4525 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4526 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4527 
4528 	/*
4529 	 * We add the inode to the orphan list, so that if this
4530 	 * truncate spans multiple transactions, and we crash, we will
4531 	 * resume the truncate when the filesystem recovers.  It also
4532 	 * marks the inode dirty, to catch the new size.
4533 	 *
4534 	 * Implication: the file must always be in a sane, consistent
4535 	 * truncatable state while each transaction commits.
4536 	 */
4537 	err = ext4_orphan_add(handle, inode);
4538 	if (err)
4539 		goto out_stop;
4540 
4541 	down_write(&EXT4_I(inode)->i_data_sem);
4542 
4543 	ext4_discard_preallocations(inode);
4544 
4545 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4546 		err = ext4_ext_truncate(handle, inode);
4547 	else
4548 		ext4_ind_truncate(handle, inode);
4549 
4550 	up_write(&ei->i_data_sem);
4551 	if (err)
4552 		goto out_stop;
4553 
4554 	if (IS_SYNC(inode))
4555 		ext4_handle_sync(handle);
4556 
4557 out_stop:
4558 	/*
4559 	 * If this was a simple ftruncate() and the file will remain alive,
4560 	 * then we need to clear up the orphan record which we created above.
4561 	 * However, if this was a real unlink then we were called by
4562 	 * ext4_evict_inode(), and we allow that function to clean up the
4563 	 * orphan info for us.
4564 	 */
4565 	if (inode->i_nlink)
4566 		ext4_orphan_del(handle, inode);
4567 
4568 	inode->i_mtime = inode->i_ctime = current_time(inode);
4569 	ext4_mark_inode_dirty(handle, inode);
4570 	ext4_journal_stop(handle);
4571 
4572 	trace_ext4_truncate_exit(inode);
4573 	return err;
4574 }
4575 
4576 /*
4577  * ext4_get_inode_loc returns with an extra refcount against the inode's
4578  * underlying buffer_head on success. If 'in_mem' is true, we have all
4579  * data in memory that is needed to recreate the on-disk version of this
4580  * inode.
4581  */
4582 static int __ext4_get_inode_loc(struct inode *inode,
4583 				struct ext4_iloc *iloc, int in_mem)
4584 {
4585 	struct ext4_group_desc	*gdp;
4586 	struct buffer_head	*bh;
4587 	struct super_block	*sb = inode->i_sb;
4588 	ext4_fsblk_t		block;
4589 	struct blk_plug		plug;
4590 	int			inodes_per_block, inode_offset;
4591 
4592 	iloc->bh = NULL;
4593 	if (inode->i_ino < EXT4_ROOT_INO ||
4594 	    inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4595 		return -EFSCORRUPTED;
4596 
4597 	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4598 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4599 	if (!gdp)
4600 		return -EIO;
4601 
4602 	/*
4603 	 * Figure out the offset within the block group inode table
4604 	 */
4605 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4606 	inode_offset = ((inode->i_ino - 1) %
4607 			EXT4_INODES_PER_GROUP(sb));
4608 	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4609 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4610 
4611 	bh = sb_getblk(sb, block);
4612 	if (unlikely(!bh))
4613 		return -ENOMEM;
4614 	if (!buffer_uptodate(bh)) {
4615 		lock_buffer(bh);
4616 
4617 		/*
4618 		 * If the buffer has the write error flag, we have failed
4619 		 * to write out another inode in the same block.  In this
4620 		 * case, we don't have to read the block because we may
4621 		 * read the old inode data successfully.
4622 		 */
4623 		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4624 			set_buffer_uptodate(bh);
4625 
4626 		if (buffer_uptodate(bh)) {
4627 			/* someone brought it uptodate while we waited */
4628 			unlock_buffer(bh);
4629 			goto has_buffer;
4630 		}
4631 
4632 		/*
4633 		 * If we have all information of the inode in memory and this
4634 		 * is the only valid inode in the block, we need not read the
4635 		 * block.
4636 		 */
4637 		if (in_mem) {
4638 			struct buffer_head *bitmap_bh;
4639 			int i, start;
4640 
4641 			start = inode_offset & ~(inodes_per_block - 1);
4642 
4643 			/* Is the inode bitmap in cache? */
4644 			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4645 			if (unlikely(!bitmap_bh))
4646 				goto make_io;
4647 
4648 			/*
4649 			 * If the inode bitmap isn't in cache then the
4650 			 * optimisation may end up performing two reads instead
4651 			 * of one, so skip it.
4652 			 */
4653 			if (!buffer_uptodate(bitmap_bh)) {
4654 				brelse(bitmap_bh);
4655 				goto make_io;
4656 			}
4657 			for (i = start; i < start + inodes_per_block; i++) {
4658 				if (i == inode_offset)
4659 					continue;
4660 				if (ext4_test_bit(i, bitmap_bh->b_data))
4661 					break;
4662 			}
4663 			brelse(bitmap_bh);
4664 			if (i == start + inodes_per_block) {
4665 				/* all other inodes are free, so skip I/O */
4666 				memset(bh->b_data, 0, bh->b_size);
4667 				set_buffer_uptodate(bh);
4668 				unlock_buffer(bh);
4669 				goto has_buffer;
4670 			}
4671 		}
4672 
4673 make_io:
4674 		/*
4675 		 * If we need to do any I/O, try to pre-readahead extra
4676 		 * blocks from the inode table.
4677 		 */
4678 		blk_start_plug(&plug);
4679 		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4680 			ext4_fsblk_t b, end, table;
4681 			unsigned num;
4682 			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4683 
4684 			table = ext4_inode_table(sb, gdp);
4685 			/* s_inode_readahead_blks is always a power of 2 */
4686 			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4687 			if (table > b)
4688 				b = table;
4689 			end = b + ra_blks;
4690 			num = EXT4_INODES_PER_GROUP(sb);
4691 			if (ext4_has_group_desc_csum(sb))
4692 				num -= ext4_itable_unused_count(sb, gdp);
4693 			table += num / inodes_per_block;
4694 			if (end > table)
4695 				end = table;
4696 			while (b <= end)
4697 				sb_breadahead(sb, b++);
4698 		}
4699 
4700 		/*
4701 		 * There are other valid inodes in the buffer, this inode
4702 		 * has in-inode xattrs, or we don't have this inode in memory.
4703 		 * Read the block from disk.
4704 		 */
4705 		trace_ext4_load_inode(inode);
4706 		get_bh(bh);
4707 		bh->b_end_io = end_buffer_read_sync;
4708 		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4709 		blk_finish_plug(&plug);
4710 		wait_on_buffer(bh);
4711 		if (!buffer_uptodate(bh)) {
4712 			EXT4_ERROR_INODE_BLOCK(inode, block,
4713 					       "unable to read itable block");
4714 			brelse(bh);
4715 			return -EIO;
4716 		}
4717 	}
4718 has_buffer:
4719 	iloc->bh = bh;
4720 	return 0;
4721 }
4722 
4723 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4724 {
4725 	/* We have all inode data except xattrs in memory here. */
4726 	return __ext4_get_inode_loc(inode, iloc,
4727 		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4728 }
4729 
4730 static bool ext4_should_use_dax(struct inode *inode)
4731 {
4732 	if (!test_opt(inode->i_sb, DAX))
4733 		return false;
4734 	if (!S_ISREG(inode->i_mode))
4735 		return false;
4736 	if (ext4_should_journal_data(inode))
4737 		return false;
4738 	if (ext4_has_inline_data(inode))
4739 		return false;
4740 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4741 		return false;
4742 	return true;
4743 }
4744 
4745 void ext4_set_inode_flags(struct inode *inode)
4746 {
4747 	unsigned int flags = EXT4_I(inode)->i_flags;
4748 	unsigned int new_fl = 0;
4749 
4750 	if (flags & EXT4_SYNC_FL)
4751 		new_fl |= S_SYNC;
4752 	if (flags & EXT4_APPEND_FL)
4753 		new_fl |= S_APPEND;
4754 	if (flags & EXT4_IMMUTABLE_FL)
4755 		new_fl |= S_IMMUTABLE;
4756 	if (flags & EXT4_NOATIME_FL)
4757 		new_fl |= S_NOATIME;
4758 	if (flags & EXT4_DIRSYNC_FL)
4759 		new_fl |= S_DIRSYNC;
4760 	if (ext4_should_use_dax(inode))
4761 		new_fl |= S_DAX;
4762 	if (flags & EXT4_ENCRYPT_FL)
4763 		new_fl |= S_ENCRYPTED;
4764 	if (flags & EXT4_CASEFOLD_FL)
4765 		new_fl |= S_CASEFOLD;
4766 	inode_set_flags(inode, new_fl,
4767 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4768 			S_ENCRYPTED|S_CASEFOLD);
4769 }
4770 
4771 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4772 				  struct ext4_inode_info *ei)
4773 {
4774 	blkcnt_t i_blocks ;
4775 	struct inode *inode = &(ei->vfs_inode);
4776 	struct super_block *sb = inode->i_sb;
4777 
4778 	if (ext4_has_feature_huge_file(sb)) {
4779 		/* we are using combined 48 bit field */
4780 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4781 					le32_to_cpu(raw_inode->i_blocks_lo);
4782 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4783 			/* i_blocks represent file system block size */
4784 			return i_blocks  << (inode->i_blkbits - 9);
4785 		} else {
4786 			return i_blocks;
4787 		}
4788 	} else {
4789 		return le32_to_cpu(raw_inode->i_blocks_lo);
4790 	}
4791 }
4792 
4793 static inline int ext4_iget_extra_inode(struct inode *inode,
4794 					 struct ext4_inode *raw_inode,
4795 					 struct ext4_inode_info *ei)
4796 {
4797 	__le32 *magic = (void *)raw_inode +
4798 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4799 
4800 	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4801 	    EXT4_INODE_SIZE(inode->i_sb) &&
4802 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4803 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4804 		return ext4_find_inline_data_nolock(inode);
4805 	} else
4806 		EXT4_I(inode)->i_inline_off = 0;
4807 	return 0;
4808 }
4809 
4810 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4811 {
4812 	if (!ext4_has_feature_project(inode->i_sb))
4813 		return -EOPNOTSUPP;
4814 	*projid = EXT4_I(inode)->i_projid;
4815 	return 0;
4816 }
4817 
4818 /*
4819  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4820  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4821  * set.
4822  */
4823 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4824 {
4825 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4826 		inode_set_iversion_raw(inode, val);
4827 	else
4828 		inode_set_iversion_queried(inode, val);
4829 }
4830 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4831 {
4832 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4833 		return inode_peek_iversion_raw(inode);
4834 	else
4835 		return inode_peek_iversion(inode);
4836 }
4837 
4838 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4839 			  ext4_iget_flags flags, const char *function,
4840 			  unsigned int line)
4841 {
4842 	struct ext4_iloc iloc;
4843 	struct ext4_inode *raw_inode;
4844 	struct ext4_inode_info *ei;
4845 	struct inode *inode;
4846 	journal_t *journal = EXT4_SB(sb)->s_journal;
4847 	long ret;
4848 	loff_t size;
4849 	int block;
4850 	uid_t i_uid;
4851 	gid_t i_gid;
4852 	projid_t i_projid;
4853 
4854 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4855 	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4856 	    (ino < EXT4_ROOT_INO) ||
4857 	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4858 		if (flags & EXT4_IGET_HANDLE)
4859 			return ERR_PTR(-ESTALE);
4860 		__ext4_error(sb, function, line,
4861 			     "inode #%lu: comm %s: iget: illegal inode #",
4862 			     ino, current->comm);
4863 		return ERR_PTR(-EFSCORRUPTED);
4864 	}
4865 
4866 	inode = iget_locked(sb, ino);
4867 	if (!inode)
4868 		return ERR_PTR(-ENOMEM);
4869 	if (!(inode->i_state & I_NEW))
4870 		return inode;
4871 
4872 	ei = EXT4_I(inode);
4873 	iloc.bh = NULL;
4874 
4875 	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4876 	if (ret < 0)
4877 		goto bad_inode;
4878 	raw_inode = ext4_raw_inode(&iloc);
4879 
4880 	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4881 		ext4_error_inode(inode, function, line, 0,
4882 				 "iget: root inode unallocated");
4883 		ret = -EFSCORRUPTED;
4884 		goto bad_inode;
4885 	}
4886 
4887 	if ((flags & EXT4_IGET_HANDLE) &&
4888 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4889 		ret = -ESTALE;
4890 		goto bad_inode;
4891 	}
4892 
4893 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4894 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4895 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4896 			EXT4_INODE_SIZE(inode->i_sb) ||
4897 		    (ei->i_extra_isize & 3)) {
4898 			ext4_error_inode(inode, function, line, 0,
4899 					 "iget: bad extra_isize %u "
4900 					 "(inode size %u)",
4901 					 ei->i_extra_isize,
4902 					 EXT4_INODE_SIZE(inode->i_sb));
4903 			ret = -EFSCORRUPTED;
4904 			goto bad_inode;
4905 		}
4906 	} else
4907 		ei->i_extra_isize = 0;
4908 
4909 	/* Precompute checksum seed for inode metadata */
4910 	if (ext4_has_metadata_csum(sb)) {
4911 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4912 		__u32 csum;
4913 		__le32 inum = cpu_to_le32(inode->i_ino);
4914 		__le32 gen = raw_inode->i_generation;
4915 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4916 				   sizeof(inum));
4917 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4918 					      sizeof(gen));
4919 	}
4920 
4921 	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4922 		ext4_error_inode(inode, function, line, 0,
4923 				 "iget: checksum invalid");
4924 		ret = -EFSBADCRC;
4925 		goto bad_inode;
4926 	}
4927 
4928 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4929 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4930 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4931 	if (ext4_has_feature_project(sb) &&
4932 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4933 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4934 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4935 	else
4936 		i_projid = EXT4_DEF_PROJID;
4937 
4938 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4939 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4940 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4941 	}
4942 	i_uid_write(inode, i_uid);
4943 	i_gid_write(inode, i_gid);
4944 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4945 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4946 
4947 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4948 	ei->i_inline_off = 0;
4949 	ei->i_dir_start_lookup = 0;
4950 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4951 	/* We now have enough fields to check if the inode was active or not.
4952 	 * This is needed because nfsd might try to access dead inodes
4953 	 * the test is that same one that e2fsck uses
4954 	 * NeilBrown 1999oct15
4955 	 */
4956 	if (inode->i_nlink == 0) {
4957 		if ((inode->i_mode == 0 ||
4958 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4959 		    ino != EXT4_BOOT_LOADER_INO) {
4960 			/* this inode is deleted */
4961 			ret = -ESTALE;
4962 			goto bad_inode;
4963 		}
4964 		/* The only unlinked inodes we let through here have
4965 		 * valid i_mode and are being read by the orphan
4966 		 * recovery code: that's fine, we're about to complete
4967 		 * the process of deleting those.
4968 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4969 		 * not initialized on a new filesystem. */
4970 	}
4971 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4972 	ext4_set_inode_flags(inode);
4973 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4974 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4975 	if (ext4_has_feature_64bit(sb))
4976 		ei->i_file_acl |=
4977 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4978 	inode->i_size = ext4_isize(sb, raw_inode);
4979 	if ((size = i_size_read(inode)) < 0) {
4980 		ext4_error_inode(inode, function, line, 0,
4981 				 "iget: bad i_size value: %lld", size);
4982 		ret = -EFSCORRUPTED;
4983 		goto bad_inode;
4984 	}
4985 	ei->i_disksize = inode->i_size;
4986 #ifdef CONFIG_QUOTA
4987 	ei->i_reserved_quota = 0;
4988 #endif
4989 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4990 	ei->i_block_group = iloc.block_group;
4991 	ei->i_last_alloc_group = ~0;
4992 	/*
4993 	 * NOTE! The in-memory inode i_data array is in little-endian order
4994 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4995 	 */
4996 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4997 		ei->i_data[block] = raw_inode->i_block[block];
4998 	INIT_LIST_HEAD(&ei->i_orphan);
4999 
5000 	/*
5001 	 * Set transaction id's of transactions that have to be committed
5002 	 * to finish f[data]sync. We set them to currently running transaction
5003 	 * as we cannot be sure that the inode or some of its metadata isn't
5004 	 * part of the transaction - the inode could have been reclaimed and
5005 	 * now it is reread from disk.
5006 	 */
5007 	if (journal) {
5008 		transaction_t *transaction;
5009 		tid_t tid;
5010 
5011 		read_lock(&journal->j_state_lock);
5012 		if (journal->j_running_transaction)
5013 			transaction = journal->j_running_transaction;
5014 		else
5015 			transaction = journal->j_committing_transaction;
5016 		if (transaction)
5017 			tid = transaction->t_tid;
5018 		else
5019 			tid = journal->j_commit_sequence;
5020 		read_unlock(&journal->j_state_lock);
5021 		ei->i_sync_tid = tid;
5022 		ei->i_datasync_tid = tid;
5023 	}
5024 
5025 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5026 		if (ei->i_extra_isize == 0) {
5027 			/* The extra space is currently unused. Use it. */
5028 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5029 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5030 					    EXT4_GOOD_OLD_INODE_SIZE;
5031 		} else {
5032 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5033 			if (ret)
5034 				goto bad_inode;
5035 		}
5036 	}
5037 
5038 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5039 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5040 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5041 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5042 
5043 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5044 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5045 
5046 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5047 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5048 				ivers |=
5049 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5050 		}
5051 		ext4_inode_set_iversion_queried(inode, ivers);
5052 	}
5053 
5054 	ret = 0;
5055 	if (ei->i_file_acl &&
5056 	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5057 		ext4_error_inode(inode, function, line, 0,
5058 				 "iget: bad extended attribute block %llu",
5059 				 ei->i_file_acl);
5060 		ret = -EFSCORRUPTED;
5061 		goto bad_inode;
5062 	} else if (!ext4_has_inline_data(inode)) {
5063 		/* validate the block references in the inode */
5064 		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5065 		   (S_ISLNK(inode->i_mode) &&
5066 		    !ext4_inode_is_fast_symlink(inode))) {
5067 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5068 				ret = ext4_ext_check_inode(inode);
5069 			else
5070 				ret = ext4_ind_check_inode(inode);
5071 		}
5072 	}
5073 	if (ret)
5074 		goto bad_inode;
5075 
5076 	if (S_ISREG(inode->i_mode)) {
5077 		inode->i_op = &ext4_file_inode_operations;
5078 		inode->i_fop = &ext4_file_operations;
5079 		ext4_set_aops(inode);
5080 	} else if (S_ISDIR(inode->i_mode)) {
5081 		inode->i_op = &ext4_dir_inode_operations;
5082 		inode->i_fop = &ext4_dir_operations;
5083 	} else if (S_ISLNK(inode->i_mode)) {
5084 		/* VFS does not allow setting these so must be corruption */
5085 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5086 			ext4_error_inode(inode, function, line, 0,
5087 					 "iget: immutable or append flags "
5088 					 "not allowed on symlinks");
5089 			ret = -EFSCORRUPTED;
5090 			goto bad_inode;
5091 		}
5092 		if (IS_ENCRYPTED(inode)) {
5093 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5094 			ext4_set_aops(inode);
5095 		} else if (ext4_inode_is_fast_symlink(inode)) {
5096 			inode->i_link = (char *)ei->i_data;
5097 			inode->i_op = &ext4_fast_symlink_inode_operations;
5098 			nd_terminate_link(ei->i_data, inode->i_size,
5099 				sizeof(ei->i_data) - 1);
5100 		} else {
5101 			inode->i_op = &ext4_symlink_inode_operations;
5102 			ext4_set_aops(inode);
5103 		}
5104 		inode_nohighmem(inode);
5105 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5106 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5107 		inode->i_op = &ext4_special_inode_operations;
5108 		if (raw_inode->i_block[0])
5109 			init_special_inode(inode, inode->i_mode,
5110 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5111 		else
5112 			init_special_inode(inode, inode->i_mode,
5113 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5114 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5115 		make_bad_inode(inode);
5116 	} else {
5117 		ret = -EFSCORRUPTED;
5118 		ext4_error_inode(inode, function, line, 0,
5119 				 "iget: bogus i_mode (%o)", inode->i_mode);
5120 		goto bad_inode;
5121 	}
5122 	brelse(iloc.bh);
5123 
5124 	unlock_new_inode(inode);
5125 	return inode;
5126 
5127 bad_inode:
5128 	brelse(iloc.bh);
5129 	iget_failed(inode);
5130 	return ERR_PTR(ret);
5131 }
5132 
5133 static int ext4_inode_blocks_set(handle_t *handle,
5134 				struct ext4_inode *raw_inode,
5135 				struct ext4_inode_info *ei)
5136 {
5137 	struct inode *inode = &(ei->vfs_inode);
5138 	u64 i_blocks = inode->i_blocks;
5139 	struct super_block *sb = inode->i_sb;
5140 
5141 	if (i_blocks <= ~0U) {
5142 		/*
5143 		 * i_blocks can be represented in a 32 bit variable
5144 		 * as multiple of 512 bytes
5145 		 */
5146 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5147 		raw_inode->i_blocks_high = 0;
5148 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5149 		return 0;
5150 	}
5151 	if (!ext4_has_feature_huge_file(sb))
5152 		return -EFBIG;
5153 
5154 	if (i_blocks <= 0xffffffffffffULL) {
5155 		/*
5156 		 * i_blocks can be represented in a 48 bit variable
5157 		 * as multiple of 512 bytes
5158 		 */
5159 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5160 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5161 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5162 	} else {
5163 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5164 		/* i_block is stored in file system block size */
5165 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5166 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5167 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5168 	}
5169 	return 0;
5170 }
5171 
5172 struct other_inode {
5173 	unsigned long		orig_ino;
5174 	struct ext4_inode	*raw_inode;
5175 };
5176 
5177 static int other_inode_match(struct inode * inode, unsigned long ino,
5178 			     void *data)
5179 {
5180 	struct other_inode *oi = (struct other_inode *) data;
5181 
5182 	if ((inode->i_ino != ino) ||
5183 	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5184 			       I_DIRTY_INODE)) ||
5185 	    ((inode->i_state & I_DIRTY_TIME) == 0))
5186 		return 0;
5187 	spin_lock(&inode->i_lock);
5188 	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5189 				I_DIRTY_INODE)) == 0) &&
5190 	    (inode->i_state & I_DIRTY_TIME)) {
5191 		struct ext4_inode_info	*ei = EXT4_I(inode);
5192 
5193 		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5194 		spin_unlock(&inode->i_lock);
5195 
5196 		spin_lock(&ei->i_raw_lock);
5197 		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5198 		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5199 		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5200 		ext4_inode_csum_set(inode, oi->raw_inode, ei);
5201 		spin_unlock(&ei->i_raw_lock);
5202 		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5203 		return -1;
5204 	}
5205 	spin_unlock(&inode->i_lock);
5206 	return -1;
5207 }
5208 
5209 /*
5210  * Opportunistically update the other time fields for other inodes in
5211  * the same inode table block.
5212  */
5213 static void ext4_update_other_inodes_time(struct super_block *sb,
5214 					  unsigned long orig_ino, char *buf)
5215 {
5216 	struct other_inode oi;
5217 	unsigned long ino;
5218 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5219 	int inode_size = EXT4_INODE_SIZE(sb);
5220 
5221 	oi.orig_ino = orig_ino;
5222 	/*
5223 	 * Calculate the first inode in the inode table block.  Inode
5224 	 * numbers are one-based.  That is, the first inode in a block
5225 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5226 	 */
5227 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5228 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5229 		if (ino == orig_ino)
5230 			continue;
5231 		oi.raw_inode = (struct ext4_inode *) buf;
5232 		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5233 	}
5234 }
5235 
5236 /*
5237  * Post the struct inode info into an on-disk inode location in the
5238  * buffer-cache.  This gobbles the caller's reference to the
5239  * buffer_head in the inode location struct.
5240  *
5241  * The caller must have write access to iloc->bh.
5242  */
5243 static int ext4_do_update_inode(handle_t *handle,
5244 				struct inode *inode,
5245 				struct ext4_iloc *iloc)
5246 {
5247 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5248 	struct ext4_inode_info *ei = EXT4_I(inode);
5249 	struct buffer_head *bh = iloc->bh;
5250 	struct super_block *sb = inode->i_sb;
5251 	int err = 0, rc, block;
5252 	int need_datasync = 0, set_large_file = 0;
5253 	uid_t i_uid;
5254 	gid_t i_gid;
5255 	projid_t i_projid;
5256 
5257 	spin_lock(&ei->i_raw_lock);
5258 
5259 	/* For fields not tracked in the in-memory inode,
5260 	 * initialise them to zero for new inodes. */
5261 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5262 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5263 
5264 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5265 	i_uid = i_uid_read(inode);
5266 	i_gid = i_gid_read(inode);
5267 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5268 	if (!(test_opt(inode->i_sb, NO_UID32))) {
5269 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5270 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5271 /*
5272  * Fix up interoperability with old kernels. Otherwise, old inodes get
5273  * re-used with the upper 16 bits of the uid/gid intact
5274  */
5275 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5276 			raw_inode->i_uid_high = 0;
5277 			raw_inode->i_gid_high = 0;
5278 		} else {
5279 			raw_inode->i_uid_high =
5280 				cpu_to_le16(high_16_bits(i_uid));
5281 			raw_inode->i_gid_high =
5282 				cpu_to_le16(high_16_bits(i_gid));
5283 		}
5284 	} else {
5285 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5286 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5287 		raw_inode->i_uid_high = 0;
5288 		raw_inode->i_gid_high = 0;
5289 	}
5290 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5291 
5292 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5293 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5294 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5295 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5296 
5297 	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5298 	if (err) {
5299 		spin_unlock(&ei->i_raw_lock);
5300 		goto out_brelse;
5301 	}
5302 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5303 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5304 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5305 		raw_inode->i_file_acl_high =
5306 			cpu_to_le16(ei->i_file_acl >> 32);
5307 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5308 	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5309 		ext4_isize_set(raw_inode, ei->i_disksize);
5310 		need_datasync = 1;
5311 	}
5312 	if (ei->i_disksize > 0x7fffffffULL) {
5313 		if (!ext4_has_feature_large_file(sb) ||
5314 				EXT4_SB(sb)->s_es->s_rev_level ==
5315 		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5316 			set_large_file = 1;
5317 	}
5318 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5319 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5320 		if (old_valid_dev(inode->i_rdev)) {
5321 			raw_inode->i_block[0] =
5322 				cpu_to_le32(old_encode_dev(inode->i_rdev));
5323 			raw_inode->i_block[1] = 0;
5324 		} else {
5325 			raw_inode->i_block[0] = 0;
5326 			raw_inode->i_block[1] =
5327 				cpu_to_le32(new_encode_dev(inode->i_rdev));
5328 			raw_inode->i_block[2] = 0;
5329 		}
5330 	} else if (!ext4_has_inline_data(inode)) {
5331 		for (block = 0; block < EXT4_N_BLOCKS; block++)
5332 			raw_inode->i_block[block] = ei->i_data[block];
5333 	}
5334 
5335 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5336 		u64 ivers = ext4_inode_peek_iversion(inode);
5337 
5338 		raw_inode->i_disk_version = cpu_to_le32(ivers);
5339 		if (ei->i_extra_isize) {
5340 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5341 				raw_inode->i_version_hi =
5342 					cpu_to_le32(ivers >> 32);
5343 			raw_inode->i_extra_isize =
5344 				cpu_to_le16(ei->i_extra_isize);
5345 		}
5346 	}
5347 
5348 	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5349 	       i_projid != EXT4_DEF_PROJID);
5350 
5351 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5352 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5353 		raw_inode->i_projid = cpu_to_le32(i_projid);
5354 
5355 	ext4_inode_csum_set(inode, raw_inode, ei);
5356 	spin_unlock(&ei->i_raw_lock);
5357 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5358 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5359 					      bh->b_data);
5360 
5361 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5362 	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5363 	if (!err)
5364 		err = rc;
5365 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5366 	if (set_large_file) {
5367 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5368 		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5369 		if (err)
5370 			goto out_brelse;
5371 		ext4_set_feature_large_file(sb);
5372 		ext4_handle_sync(handle);
5373 		err = ext4_handle_dirty_super(handle, sb);
5374 	}
5375 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5376 out_brelse:
5377 	brelse(bh);
5378 	ext4_std_error(inode->i_sb, err);
5379 	return err;
5380 }
5381 
5382 /*
5383  * ext4_write_inode()
5384  *
5385  * We are called from a few places:
5386  *
5387  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5388  *   Here, there will be no transaction running. We wait for any running
5389  *   transaction to commit.
5390  *
5391  * - Within flush work (sys_sync(), kupdate and such).
5392  *   We wait on commit, if told to.
5393  *
5394  * - Within iput_final() -> write_inode_now()
5395  *   We wait on commit, if told to.
5396  *
5397  * In all cases it is actually safe for us to return without doing anything,
5398  * because the inode has been copied into a raw inode buffer in
5399  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5400  * writeback.
5401  *
5402  * Note that we are absolutely dependent upon all inode dirtiers doing the
5403  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5404  * which we are interested.
5405  *
5406  * It would be a bug for them to not do this.  The code:
5407  *
5408  *	mark_inode_dirty(inode)
5409  *	stuff();
5410  *	inode->i_size = expr;
5411  *
5412  * is in error because write_inode() could occur while `stuff()' is running,
5413  * and the new i_size will be lost.  Plus the inode will no longer be on the
5414  * superblock's dirty inode list.
5415  */
5416 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5417 {
5418 	int err;
5419 
5420 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5421 	    sb_rdonly(inode->i_sb))
5422 		return 0;
5423 
5424 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5425 		return -EIO;
5426 
5427 	if (EXT4_SB(inode->i_sb)->s_journal) {
5428 		if (ext4_journal_current_handle()) {
5429 			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5430 			dump_stack();
5431 			return -EIO;
5432 		}
5433 
5434 		/*
5435 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5436 		 * ext4_sync_fs() will force the commit after everything is
5437 		 * written.
5438 		 */
5439 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5440 			return 0;
5441 
5442 		err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5443 						EXT4_I(inode)->i_sync_tid);
5444 	} else {
5445 		struct ext4_iloc iloc;
5446 
5447 		err = __ext4_get_inode_loc(inode, &iloc, 0);
5448 		if (err)
5449 			return err;
5450 		/*
5451 		 * sync(2) will flush the whole buffer cache. No need to do
5452 		 * it here separately for each inode.
5453 		 */
5454 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5455 			sync_dirty_buffer(iloc.bh);
5456 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5457 			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5458 					 "IO error syncing inode");
5459 			err = -EIO;
5460 		}
5461 		brelse(iloc.bh);
5462 	}
5463 	return err;
5464 }
5465 
5466 /*
5467  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5468  * buffers that are attached to a page stradding i_size and are undergoing
5469  * commit. In that case we have to wait for commit to finish and try again.
5470  */
5471 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5472 {
5473 	struct page *page;
5474 	unsigned offset;
5475 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5476 	tid_t commit_tid = 0;
5477 	int ret;
5478 
5479 	offset = inode->i_size & (PAGE_SIZE - 1);
5480 	/*
5481 	 * All buffers in the last page remain valid? Then there's nothing to
5482 	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5483 	 * blocksize case
5484 	 */
5485 	if (offset > PAGE_SIZE - i_blocksize(inode))
5486 		return;
5487 	while (1) {
5488 		page = find_lock_page(inode->i_mapping,
5489 				      inode->i_size >> PAGE_SHIFT);
5490 		if (!page)
5491 			return;
5492 		ret = __ext4_journalled_invalidatepage(page, offset,
5493 						PAGE_SIZE - offset);
5494 		unlock_page(page);
5495 		put_page(page);
5496 		if (ret != -EBUSY)
5497 			return;
5498 		commit_tid = 0;
5499 		read_lock(&journal->j_state_lock);
5500 		if (journal->j_committing_transaction)
5501 			commit_tid = journal->j_committing_transaction->t_tid;
5502 		read_unlock(&journal->j_state_lock);
5503 		if (commit_tid)
5504 			jbd2_log_wait_commit(journal, commit_tid);
5505 	}
5506 }
5507 
5508 /*
5509  * ext4_setattr()
5510  *
5511  * Called from notify_change.
5512  *
5513  * We want to trap VFS attempts to truncate the file as soon as
5514  * possible.  In particular, we want to make sure that when the VFS
5515  * shrinks i_size, we put the inode on the orphan list and modify
5516  * i_disksize immediately, so that during the subsequent flushing of
5517  * dirty pages and freeing of disk blocks, we can guarantee that any
5518  * commit will leave the blocks being flushed in an unused state on
5519  * disk.  (On recovery, the inode will get truncated and the blocks will
5520  * be freed, so we have a strong guarantee that no future commit will
5521  * leave these blocks visible to the user.)
5522  *
5523  * Another thing we have to assure is that if we are in ordered mode
5524  * and inode is still attached to the committing transaction, we must
5525  * we start writeout of all the dirty pages which are being truncated.
5526  * This way we are sure that all the data written in the previous
5527  * transaction are already on disk (truncate waits for pages under
5528  * writeback).
5529  *
5530  * Called with inode->i_mutex down.
5531  */
5532 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5533 {
5534 	struct inode *inode = d_inode(dentry);
5535 	int error, rc = 0;
5536 	int orphan = 0;
5537 	const unsigned int ia_valid = attr->ia_valid;
5538 
5539 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5540 		return -EIO;
5541 
5542 	if (unlikely(IS_IMMUTABLE(inode)))
5543 		return -EPERM;
5544 
5545 	if (unlikely(IS_APPEND(inode) &&
5546 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5547 				  ATTR_GID | ATTR_TIMES_SET))))
5548 		return -EPERM;
5549 
5550 	error = setattr_prepare(dentry, attr);
5551 	if (error)
5552 		return error;
5553 
5554 	error = fscrypt_prepare_setattr(dentry, attr);
5555 	if (error)
5556 		return error;
5557 
5558 	if (is_quota_modification(inode, attr)) {
5559 		error = dquot_initialize(inode);
5560 		if (error)
5561 			return error;
5562 	}
5563 	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5564 	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5565 		handle_t *handle;
5566 
5567 		/* (user+group)*(old+new) structure, inode write (sb,
5568 		 * inode block, ? - but truncate inode update has it) */
5569 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5570 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5571 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5572 		if (IS_ERR(handle)) {
5573 			error = PTR_ERR(handle);
5574 			goto err_out;
5575 		}
5576 
5577 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5578 		 * counts xattr inode references.
5579 		 */
5580 		down_read(&EXT4_I(inode)->xattr_sem);
5581 		error = dquot_transfer(inode, attr);
5582 		up_read(&EXT4_I(inode)->xattr_sem);
5583 
5584 		if (error) {
5585 			ext4_journal_stop(handle);
5586 			return error;
5587 		}
5588 		/* Update corresponding info in inode so that everything is in
5589 		 * one transaction */
5590 		if (attr->ia_valid & ATTR_UID)
5591 			inode->i_uid = attr->ia_uid;
5592 		if (attr->ia_valid & ATTR_GID)
5593 			inode->i_gid = attr->ia_gid;
5594 		error = ext4_mark_inode_dirty(handle, inode);
5595 		ext4_journal_stop(handle);
5596 	}
5597 
5598 	if (attr->ia_valid & ATTR_SIZE) {
5599 		handle_t *handle;
5600 		loff_t oldsize = inode->i_size;
5601 		int shrink = (attr->ia_size < inode->i_size);
5602 
5603 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5604 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5605 
5606 			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5607 				return -EFBIG;
5608 		}
5609 		if (!S_ISREG(inode->i_mode))
5610 			return -EINVAL;
5611 
5612 		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5613 			inode_inc_iversion(inode);
5614 
5615 		if (shrink) {
5616 			if (ext4_should_order_data(inode)) {
5617 				error = ext4_begin_ordered_truncate(inode,
5618 							    attr->ia_size);
5619 				if (error)
5620 					goto err_out;
5621 			}
5622 			/*
5623 			 * Blocks are going to be removed from the inode. Wait
5624 			 * for dio in flight.
5625 			 */
5626 			inode_dio_wait(inode);
5627 		}
5628 
5629 		down_write(&EXT4_I(inode)->i_mmap_sem);
5630 
5631 		rc = ext4_break_layouts(inode);
5632 		if (rc) {
5633 			up_write(&EXT4_I(inode)->i_mmap_sem);
5634 			return rc;
5635 		}
5636 
5637 		if (attr->ia_size != inode->i_size) {
5638 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5639 			if (IS_ERR(handle)) {
5640 				error = PTR_ERR(handle);
5641 				goto out_mmap_sem;
5642 			}
5643 			if (ext4_handle_valid(handle) && shrink) {
5644 				error = ext4_orphan_add(handle, inode);
5645 				orphan = 1;
5646 			}
5647 			/*
5648 			 * Update c/mtime on truncate up, ext4_truncate() will
5649 			 * update c/mtime in shrink case below
5650 			 */
5651 			if (!shrink) {
5652 				inode->i_mtime = current_time(inode);
5653 				inode->i_ctime = inode->i_mtime;
5654 			}
5655 			down_write(&EXT4_I(inode)->i_data_sem);
5656 			EXT4_I(inode)->i_disksize = attr->ia_size;
5657 			rc = ext4_mark_inode_dirty(handle, inode);
5658 			if (!error)
5659 				error = rc;
5660 			/*
5661 			 * We have to update i_size under i_data_sem together
5662 			 * with i_disksize to avoid races with writeback code
5663 			 * running ext4_wb_update_i_disksize().
5664 			 */
5665 			if (!error)
5666 				i_size_write(inode, attr->ia_size);
5667 			up_write(&EXT4_I(inode)->i_data_sem);
5668 			ext4_journal_stop(handle);
5669 			if (error)
5670 				goto out_mmap_sem;
5671 			if (!shrink) {
5672 				pagecache_isize_extended(inode, oldsize,
5673 							 inode->i_size);
5674 			} else if (ext4_should_journal_data(inode)) {
5675 				ext4_wait_for_tail_page_commit(inode);
5676 			}
5677 		}
5678 
5679 		/*
5680 		 * Truncate pagecache after we've waited for commit
5681 		 * in data=journal mode to make pages freeable.
5682 		 */
5683 		truncate_pagecache(inode, inode->i_size);
5684 		/*
5685 		 * Call ext4_truncate() even if i_size didn't change to
5686 		 * truncate possible preallocated blocks.
5687 		 */
5688 		if (attr->ia_size <= oldsize) {
5689 			rc = ext4_truncate(inode);
5690 			if (rc)
5691 				error = rc;
5692 		}
5693 out_mmap_sem:
5694 		up_write(&EXT4_I(inode)->i_mmap_sem);
5695 	}
5696 
5697 	if (!error) {
5698 		setattr_copy(inode, attr);
5699 		mark_inode_dirty(inode);
5700 	}
5701 
5702 	/*
5703 	 * If the call to ext4_truncate failed to get a transaction handle at
5704 	 * all, we need to clean up the in-core orphan list manually.
5705 	 */
5706 	if (orphan && inode->i_nlink)
5707 		ext4_orphan_del(NULL, inode);
5708 
5709 	if (!error && (ia_valid & ATTR_MODE))
5710 		rc = posix_acl_chmod(inode, inode->i_mode);
5711 
5712 err_out:
5713 	ext4_std_error(inode->i_sb, error);
5714 	if (!error)
5715 		error = rc;
5716 	return error;
5717 }
5718 
5719 int ext4_getattr(const struct path *path, struct kstat *stat,
5720 		 u32 request_mask, unsigned int query_flags)
5721 {
5722 	struct inode *inode = d_inode(path->dentry);
5723 	struct ext4_inode *raw_inode;
5724 	struct ext4_inode_info *ei = EXT4_I(inode);
5725 	unsigned int flags;
5726 
5727 	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5728 		stat->result_mask |= STATX_BTIME;
5729 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5730 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5731 	}
5732 
5733 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5734 	if (flags & EXT4_APPEND_FL)
5735 		stat->attributes |= STATX_ATTR_APPEND;
5736 	if (flags & EXT4_COMPR_FL)
5737 		stat->attributes |= STATX_ATTR_COMPRESSED;
5738 	if (flags & EXT4_ENCRYPT_FL)
5739 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5740 	if (flags & EXT4_IMMUTABLE_FL)
5741 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5742 	if (flags & EXT4_NODUMP_FL)
5743 		stat->attributes |= STATX_ATTR_NODUMP;
5744 
5745 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5746 				  STATX_ATTR_COMPRESSED |
5747 				  STATX_ATTR_ENCRYPTED |
5748 				  STATX_ATTR_IMMUTABLE |
5749 				  STATX_ATTR_NODUMP);
5750 
5751 	generic_fillattr(inode, stat);
5752 	return 0;
5753 }
5754 
5755 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5756 		      u32 request_mask, unsigned int query_flags)
5757 {
5758 	struct inode *inode = d_inode(path->dentry);
5759 	u64 delalloc_blocks;
5760 
5761 	ext4_getattr(path, stat, request_mask, query_flags);
5762 
5763 	/*
5764 	 * If there is inline data in the inode, the inode will normally not
5765 	 * have data blocks allocated (it may have an external xattr block).
5766 	 * Report at least one sector for such files, so tools like tar, rsync,
5767 	 * others don't incorrectly think the file is completely sparse.
5768 	 */
5769 	if (unlikely(ext4_has_inline_data(inode)))
5770 		stat->blocks += (stat->size + 511) >> 9;
5771 
5772 	/*
5773 	 * We can't update i_blocks if the block allocation is delayed
5774 	 * otherwise in the case of system crash before the real block
5775 	 * allocation is done, we will have i_blocks inconsistent with
5776 	 * on-disk file blocks.
5777 	 * We always keep i_blocks updated together with real
5778 	 * allocation. But to not confuse with user, stat
5779 	 * will return the blocks that include the delayed allocation
5780 	 * blocks for this file.
5781 	 */
5782 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5783 				   EXT4_I(inode)->i_reserved_data_blocks);
5784 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5785 	return 0;
5786 }
5787 
5788 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5789 				   int pextents)
5790 {
5791 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5792 		return ext4_ind_trans_blocks(inode, lblocks);
5793 	return ext4_ext_index_trans_blocks(inode, pextents);
5794 }
5795 
5796 /*
5797  * Account for index blocks, block groups bitmaps and block group
5798  * descriptor blocks if modify datablocks and index blocks
5799  * worse case, the indexs blocks spread over different block groups
5800  *
5801  * If datablocks are discontiguous, they are possible to spread over
5802  * different block groups too. If they are contiguous, with flexbg,
5803  * they could still across block group boundary.
5804  *
5805  * Also account for superblock, inode, quota and xattr blocks
5806  */
5807 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5808 				  int pextents)
5809 {
5810 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5811 	int gdpblocks;
5812 	int idxblocks;
5813 	int ret = 0;
5814 
5815 	/*
5816 	 * How many index blocks need to touch to map @lblocks logical blocks
5817 	 * to @pextents physical extents?
5818 	 */
5819 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5820 
5821 	ret = idxblocks;
5822 
5823 	/*
5824 	 * Now let's see how many group bitmaps and group descriptors need
5825 	 * to account
5826 	 */
5827 	groups = idxblocks + pextents;
5828 	gdpblocks = groups;
5829 	if (groups > ngroups)
5830 		groups = ngroups;
5831 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5832 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5833 
5834 	/* bitmaps and block group descriptor blocks */
5835 	ret += groups + gdpblocks;
5836 
5837 	/* Blocks for super block, inode, quota and xattr blocks */
5838 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5839 
5840 	return ret;
5841 }
5842 
5843 /*
5844  * Calculate the total number of credits to reserve to fit
5845  * the modification of a single pages into a single transaction,
5846  * which may include multiple chunks of block allocations.
5847  *
5848  * This could be called via ext4_write_begin()
5849  *
5850  * We need to consider the worse case, when
5851  * one new block per extent.
5852  */
5853 int ext4_writepage_trans_blocks(struct inode *inode)
5854 {
5855 	int bpp = ext4_journal_blocks_per_page(inode);
5856 	int ret;
5857 
5858 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5859 
5860 	/* Account for data blocks for journalled mode */
5861 	if (ext4_should_journal_data(inode))
5862 		ret += bpp;
5863 	return ret;
5864 }
5865 
5866 /*
5867  * Calculate the journal credits for a chunk of data modification.
5868  *
5869  * This is called from DIO, fallocate or whoever calling
5870  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5871  *
5872  * journal buffers for data blocks are not included here, as DIO
5873  * and fallocate do no need to journal data buffers.
5874  */
5875 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5876 {
5877 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5878 }
5879 
5880 /*
5881  * The caller must have previously called ext4_reserve_inode_write().
5882  * Give this, we know that the caller already has write access to iloc->bh.
5883  */
5884 int ext4_mark_iloc_dirty(handle_t *handle,
5885 			 struct inode *inode, struct ext4_iloc *iloc)
5886 {
5887 	int err = 0;
5888 
5889 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5890 		put_bh(iloc->bh);
5891 		return -EIO;
5892 	}
5893 	if (IS_I_VERSION(inode))
5894 		inode_inc_iversion(inode);
5895 
5896 	/* the do_update_inode consumes one bh->b_count */
5897 	get_bh(iloc->bh);
5898 
5899 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5900 	err = ext4_do_update_inode(handle, inode, iloc);
5901 	put_bh(iloc->bh);
5902 	return err;
5903 }
5904 
5905 /*
5906  * On success, We end up with an outstanding reference count against
5907  * iloc->bh.  This _must_ be cleaned up later.
5908  */
5909 
5910 int
5911 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5912 			 struct ext4_iloc *iloc)
5913 {
5914 	int err;
5915 
5916 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5917 		return -EIO;
5918 
5919 	err = ext4_get_inode_loc(inode, iloc);
5920 	if (!err) {
5921 		BUFFER_TRACE(iloc->bh, "get_write_access");
5922 		err = ext4_journal_get_write_access(handle, iloc->bh);
5923 		if (err) {
5924 			brelse(iloc->bh);
5925 			iloc->bh = NULL;
5926 		}
5927 	}
5928 	ext4_std_error(inode->i_sb, err);
5929 	return err;
5930 }
5931 
5932 static int __ext4_expand_extra_isize(struct inode *inode,
5933 				     unsigned int new_extra_isize,
5934 				     struct ext4_iloc *iloc,
5935 				     handle_t *handle, int *no_expand)
5936 {
5937 	struct ext4_inode *raw_inode;
5938 	struct ext4_xattr_ibody_header *header;
5939 	int error;
5940 
5941 	raw_inode = ext4_raw_inode(iloc);
5942 
5943 	header = IHDR(inode, raw_inode);
5944 
5945 	/* No extended attributes present */
5946 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5947 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5948 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5949 		       EXT4_I(inode)->i_extra_isize, 0,
5950 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5951 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5952 		return 0;
5953 	}
5954 
5955 	/* try to expand with EAs present */
5956 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5957 					   raw_inode, handle);
5958 	if (error) {
5959 		/*
5960 		 * Inode size expansion failed; don't try again
5961 		 */
5962 		*no_expand = 1;
5963 	}
5964 
5965 	return error;
5966 }
5967 
5968 /*
5969  * Expand an inode by new_extra_isize bytes.
5970  * Returns 0 on success or negative error number on failure.
5971  */
5972 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5973 					  unsigned int new_extra_isize,
5974 					  struct ext4_iloc iloc,
5975 					  handle_t *handle)
5976 {
5977 	int no_expand;
5978 	int error;
5979 
5980 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5981 		return -EOVERFLOW;
5982 
5983 	/*
5984 	 * In nojournal mode, we can immediately attempt to expand
5985 	 * the inode.  When journaled, we first need to obtain extra
5986 	 * buffer credits since we may write into the EA block
5987 	 * with this same handle. If journal_extend fails, then it will
5988 	 * only result in a minor loss of functionality for that inode.
5989 	 * If this is felt to be critical, then e2fsck should be run to
5990 	 * force a large enough s_min_extra_isize.
5991 	 */
5992 	if (ext4_handle_valid(handle) &&
5993 	    jbd2_journal_extend(handle,
5994 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5995 		return -ENOSPC;
5996 
5997 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5998 		return -EBUSY;
5999 
6000 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6001 					  handle, &no_expand);
6002 	ext4_write_unlock_xattr(inode, &no_expand);
6003 
6004 	return error;
6005 }
6006 
6007 int ext4_expand_extra_isize(struct inode *inode,
6008 			    unsigned int new_extra_isize,
6009 			    struct ext4_iloc *iloc)
6010 {
6011 	handle_t *handle;
6012 	int no_expand;
6013 	int error, rc;
6014 
6015 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6016 		brelse(iloc->bh);
6017 		return -EOVERFLOW;
6018 	}
6019 
6020 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
6021 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6022 	if (IS_ERR(handle)) {
6023 		error = PTR_ERR(handle);
6024 		brelse(iloc->bh);
6025 		return error;
6026 	}
6027 
6028 	ext4_write_lock_xattr(inode, &no_expand);
6029 
6030 	BUFFER_TRACE(iloc->bh, "get_write_access");
6031 	error = ext4_journal_get_write_access(handle, iloc->bh);
6032 	if (error) {
6033 		brelse(iloc->bh);
6034 		goto out_stop;
6035 	}
6036 
6037 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6038 					  handle, &no_expand);
6039 
6040 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6041 	if (!error)
6042 		error = rc;
6043 
6044 	ext4_write_unlock_xattr(inode, &no_expand);
6045 out_stop:
6046 	ext4_journal_stop(handle);
6047 	return error;
6048 }
6049 
6050 /*
6051  * What we do here is to mark the in-core inode as clean with respect to inode
6052  * dirtiness (it may still be data-dirty).
6053  * This means that the in-core inode may be reaped by prune_icache
6054  * without having to perform any I/O.  This is a very good thing,
6055  * because *any* task may call prune_icache - even ones which
6056  * have a transaction open against a different journal.
6057  *
6058  * Is this cheating?  Not really.  Sure, we haven't written the
6059  * inode out, but prune_icache isn't a user-visible syncing function.
6060  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6061  * we start and wait on commits.
6062  */
6063 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6064 {
6065 	struct ext4_iloc iloc;
6066 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6067 	int err;
6068 
6069 	might_sleep();
6070 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6071 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6072 	if (err)
6073 		return err;
6074 
6075 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6076 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6077 					       iloc, handle);
6078 
6079 	return ext4_mark_iloc_dirty(handle, inode, &iloc);
6080 }
6081 
6082 /*
6083  * ext4_dirty_inode() is called from __mark_inode_dirty()
6084  *
6085  * We're really interested in the case where a file is being extended.
6086  * i_size has been changed by generic_commit_write() and we thus need
6087  * to include the updated inode in the current transaction.
6088  *
6089  * Also, dquot_alloc_block() will always dirty the inode when blocks
6090  * are allocated to the file.
6091  *
6092  * If the inode is marked synchronous, we don't honour that here - doing
6093  * so would cause a commit on atime updates, which we don't bother doing.
6094  * We handle synchronous inodes at the highest possible level.
6095  *
6096  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6097  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6098  * to copy into the on-disk inode structure are the timestamp files.
6099  */
6100 void ext4_dirty_inode(struct inode *inode, int flags)
6101 {
6102 	handle_t *handle;
6103 
6104 	if (flags == I_DIRTY_TIME)
6105 		return;
6106 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6107 	if (IS_ERR(handle))
6108 		goto out;
6109 
6110 	ext4_mark_inode_dirty(handle, inode);
6111 
6112 	ext4_journal_stop(handle);
6113 out:
6114 	return;
6115 }
6116 
6117 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6118 {
6119 	journal_t *journal;
6120 	handle_t *handle;
6121 	int err;
6122 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6123 
6124 	/*
6125 	 * We have to be very careful here: changing a data block's
6126 	 * journaling status dynamically is dangerous.  If we write a
6127 	 * data block to the journal, change the status and then delete
6128 	 * that block, we risk forgetting to revoke the old log record
6129 	 * from the journal and so a subsequent replay can corrupt data.
6130 	 * So, first we make sure that the journal is empty and that
6131 	 * nobody is changing anything.
6132 	 */
6133 
6134 	journal = EXT4_JOURNAL(inode);
6135 	if (!journal)
6136 		return 0;
6137 	if (is_journal_aborted(journal))
6138 		return -EROFS;
6139 
6140 	/* Wait for all existing dio workers */
6141 	inode_dio_wait(inode);
6142 
6143 	/*
6144 	 * Before flushing the journal and switching inode's aops, we have
6145 	 * to flush all dirty data the inode has. There can be outstanding
6146 	 * delayed allocations, there can be unwritten extents created by
6147 	 * fallocate or buffered writes in dioread_nolock mode covered by
6148 	 * dirty data which can be converted only after flushing the dirty
6149 	 * data (and journalled aops don't know how to handle these cases).
6150 	 */
6151 	if (val) {
6152 		down_write(&EXT4_I(inode)->i_mmap_sem);
6153 		err = filemap_write_and_wait(inode->i_mapping);
6154 		if (err < 0) {
6155 			up_write(&EXT4_I(inode)->i_mmap_sem);
6156 			return err;
6157 		}
6158 	}
6159 
6160 	percpu_down_write(&sbi->s_journal_flag_rwsem);
6161 	jbd2_journal_lock_updates(journal);
6162 
6163 	/*
6164 	 * OK, there are no updates running now, and all cached data is
6165 	 * synced to disk.  We are now in a completely consistent state
6166 	 * which doesn't have anything in the journal, and we know that
6167 	 * no filesystem updates are running, so it is safe to modify
6168 	 * the inode's in-core data-journaling state flag now.
6169 	 */
6170 
6171 	if (val)
6172 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6173 	else {
6174 		err = jbd2_journal_flush(journal);
6175 		if (err < 0) {
6176 			jbd2_journal_unlock_updates(journal);
6177 			percpu_up_write(&sbi->s_journal_flag_rwsem);
6178 			return err;
6179 		}
6180 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6181 	}
6182 	ext4_set_aops(inode);
6183 
6184 	jbd2_journal_unlock_updates(journal);
6185 	percpu_up_write(&sbi->s_journal_flag_rwsem);
6186 
6187 	if (val)
6188 		up_write(&EXT4_I(inode)->i_mmap_sem);
6189 
6190 	/* Finally we can mark the inode as dirty. */
6191 
6192 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6193 	if (IS_ERR(handle))
6194 		return PTR_ERR(handle);
6195 
6196 	err = ext4_mark_inode_dirty(handle, inode);
6197 	ext4_handle_sync(handle);
6198 	ext4_journal_stop(handle);
6199 	ext4_std_error(inode->i_sb, err);
6200 
6201 	return err;
6202 }
6203 
6204 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6205 {
6206 	return !buffer_mapped(bh);
6207 }
6208 
6209 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6210 {
6211 	struct vm_area_struct *vma = vmf->vma;
6212 	struct page *page = vmf->page;
6213 	loff_t size;
6214 	unsigned long len;
6215 	int err;
6216 	vm_fault_t ret;
6217 	struct file *file = vma->vm_file;
6218 	struct inode *inode = file_inode(file);
6219 	struct address_space *mapping = inode->i_mapping;
6220 	handle_t *handle;
6221 	get_block_t *get_block;
6222 	int retries = 0;
6223 
6224 	if (unlikely(IS_IMMUTABLE(inode)))
6225 		return VM_FAULT_SIGBUS;
6226 
6227 	sb_start_pagefault(inode->i_sb);
6228 	file_update_time(vma->vm_file);
6229 
6230 	down_read(&EXT4_I(inode)->i_mmap_sem);
6231 
6232 	err = ext4_convert_inline_data(inode);
6233 	if (err)
6234 		goto out_ret;
6235 
6236 	/* Delalloc case is easy... */
6237 	if (test_opt(inode->i_sb, DELALLOC) &&
6238 	    !ext4_should_journal_data(inode) &&
6239 	    !ext4_nonda_switch(inode->i_sb)) {
6240 		do {
6241 			err = block_page_mkwrite(vma, vmf,
6242 						   ext4_da_get_block_prep);
6243 		} while (err == -ENOSPC &&
6244 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6245 		goto out_ret;
6246 	}
6247 
6248 	lock_page(page);
6249 	size = i_size_read(inode);
6250 	/* Page got truncated from under us? */
6251 	if (page->mapping != mapping || page_offset(page) > size) {
6252 		unlock_page(page);
6253 		ret = VM_FAULT_NOPAGE;
6254 		goto out;
6255 	}
6256 
6257 	if (page->index == size >> PAGE_SHIFT)
6258 		len = size & ~PAGE_MASK;
6259 	else
6260 		len = PAGE_SIZE;
6261 	/*
6262 	 * Return if we have all the buffers mapped. This avoids the need to do
6263 	 * journal_start/journal_stop which can block and take a long time
6264 	 */
6265 	if (page_has_buffers(page)) {
6266 		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6267 					    0, len, NULL,
6268 					    ext4_bh_unmapped)) {
6269 			/* Wait so that we don't change page under IO */
6270 			wait_for_stable_page(page);
6271 			ret = VM_FAULT_LOCKED;
6272 			goto out;
6273 		}
6274 	}
6275 	unlock_page(page);
6276 	/* OK, we need to fill the hole... */
6277 	if (ext4_should_dioread_nolock(inode))
6278 		get_block = ext4_get_block_unwritten;
6279 	else
6280 		get_block = ext4_get_block;
6281 retry_alloc:
6282 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6283 				    ext4_writepage_trans_blocks(inode));
6284 	if (IS_ERR(handle)) {
6285 		ret = VM_FAULT_SIGBUS;
6286 		goto out;
6287 	}
6288 	err = block_page_mkwrite(vma, vmf, get_block);
6289 	if (!err && ext4_should_journal_data(inode)) {
6290 		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6291 			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6292 			unlock_page(page);
6293 			ret = VM_FAULT_SIGBUS;
6294 			ext4_journal_stop(handle);
6295 			goto out;
6296 		}
6297 		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6298 	}
6299 	ext4_journal_stop(handle);
6300 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6301 		goto retry_alloc;
6302 out_ret:
6303 	ret = block_page_mkwrite_return(err);
6304 out:
6305 	up_read(&EXT4_I(inode)->i_mmap_sem);
6306 	sb_end_pagefault(inode->i_sb);
6307 	return ret;
6308 }
6309 
6310 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6311 {
6312 	struct inode *inode = file_inode(vmf->vma->vm_file);
6313 	vm_fault_t ret;
6314 
6315 	down_read(&EXT4_I(inode)->i_mmap_sem);
6316 	ret = filemap_fault(vmf);
6317 	up_read(&EXT4_I(inode)->i_mmap_sem);
6318 
6319 	return ret;
6320 }
6321